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Course Objectives:

To motivate the students to apply the concepts and methods of differential equations to solve
complex problems.

Course Outcomes: At the end of the course, the student will be able to:

CO1 Define Order, degree of ODE and PDE. Identify the methods to solve homogeneous and
non-homogeneous ODE and PDE.

CO2 Classify ODE and PDE. lllustrate various methods to solve second order Differential
equation and Partial differential equations.

CO3 Solve some special types of partial differential equations by Charpit’s and Jacobi’s method.
CO4 Analyze the solution of first order differential equations by various methods.
CO5 Evaluate higher order differential equations by method of variation of parameters.

CO6 Formation of ODE & PDE for the given function.

Syllabus
Unit | Differential Equations of First Order

Elementary Methods in Ordinary Differential Equations. Formation of differential equation.
Solutions: General, particular, and singular. First order exact equations and integrating factors.
Degree and order of a differential equation. Equations of first order and first degree. Equations
in which the variable are separable. Homogeneous equations. First order higher degree equations
solvable for x, y, p. Clairaut's form and singular solutions. Linear differential equations with
constant coefficients. Homogeneous linear ordinary differential equations.

Unit 11 Differential Equations of Second Order

Linear differential equations of second order. Second order equation with constant coefficient
with particular integrals for e, x™, e*sinmx, e*cosmx. Method of variation of parameters.
Ordinary simultaneous differential equations.



Unit 111 Partial Differential Equation

Partial differential equations. Formation of partial differential equations. Types of solutions.
PDEs of the first order. Lagrange's solution.

Unit IV Partial Differential Equation (Contd...)

Some special types of equations which can be solved easily by methods other than the general
methods. Charpit's and Jacobi's general method of solution.

Unit V Second and Higher Order Partial Differential Equation

Partial differential equations of second and higher order. Classification of linear partial
differential equations of second order. Homogeneous and non-homogeneous equations with
constant coefficients. Partial differential equations reducible to equations with constant
coefficients.
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Unit |
Differential Equations of First Order

Topics covered in this unit are: Definition of an ordinary differential equation, Degree and order
of a differential equation, Formation of differential equations, Solutions: General, particular, and
singular, First order exact equations and integrating factors, Equations in which the variable are
separable, Homogeneous equations, Equations of first order and first degree, Linear equations
and equations reducible to linear form, First order higher degree equations solvable for X, y, p,
Clairaut's form and singular solutions, Orthogonal trajectories.

1 Introduction to Ordinary Differential Equations (ODE)

1.1 Definition
A differential equation is an equation which involves differentials or differential coefficients.
Differential equation is an equation involving one or more functions with its derivatives. The
derivatives of the function define the rate of change of a function. Differential equations are
used to model physical phenomena that involves rate of change.

2
Examples: (i) T+ 22 +y = sinx (i) 2 = x2.

1.2 Order and Degree of a ODE
Order is the highest derivative present in the differential equation and degree is the exponent
of the highest derivative.

2

3
Example: In (3732’) + 2 (3—1’)2 + y = 2, Order = 2 and Degree = 3.
2 Formation of Ordinary Differential Equations

The following are the steps involved in forming a ODE:

Given the general solution of a ODE in the form f(x,y,cy,¢5, ...,cy) =0 1)

Step 1: Find the number of arbitrary constants ‘n’ present in equation (1).

Step 2: Differentiate (1) w.r.t. independent variable x, present in (1).

Step 3: Keep differentiating ‘n’ times, so that (n+1) equations are obtained.

Step 4: Using the (n+1) equations are obtained, eliminate the constants ¢,, ¢, ..., ¢,,.

Example 1
Construct an ordinary differential equation whose general solution is y = Ae?* + Be™?*.
Solution.

Giveny = Ae** + Be™%* (1)

Since there are two arbitrary constants A and B, we differentiate (1) twice.

y1 = 2Ae?* — 2Be™%* (2)
y, = 4Ae?* + 4Be™?* (3)

This implies that y, = 4(4e?* + Be™%%).



=y, =4y

Therefore, 32732' — 4y = 0 is the required ODE.

Example 2

Construct a differential equation whose general solution is y = Ae* + Be?* + Ce™3%,

Solution.

Giveny = Ae* + Be?* + Ce™3* (1)

Since there are three arbitrary constants A, B and C, we differentiate (1) thrice.

y, = Ae* + 2Be** — 3Ce™3* (2)
y, = Ae* + 4Be?* + 9Ce 3% (3)
y; = Ae* + 8Be?* — 27Ce 3 (4)

First we eliminate A from (1), (2), (3) and (4).

(2)— (1) =y, —y = Be** —4Ce™3*,

(3) — (2) =y, —y; = 2Be?* + 12Ce~3*,

(2)— (1) = y; — y, = 4Be?* — 36Ce™3*,

We then eliminate Band C, by using the determinant,

yvi—y B —4C
y2 - yl ZB 12C
y3 - y2 4‘B _36C

=0

yvi—y 1 1C

Y.—y1 2 3C
ys—y, 4 9C

= =0

Expanding the determinant we get,

7y1—6y—y3;=0

or,
y3 — 7y, + 6y = 0.

3
= dTy - 7% + 6y = 0 is the required ODE.

3 Types of Solution of a ODE

Solution: Any relation connecting the variables of an equation and not involving their
derivatives, which satisfies the given differential equation is called a solution.

General Solution: A solution of a differential equation in which the number of arbitrary
constants is equal to the number of independent variables in the equation is called a general
or complete solution or complete primitive of the equation.



Example: y = Ax + B.

Particular Solution: The solution obtained by giving particular values to the arbitrary
constants of the general solution, is called a particular solution of the equation.

Example:y = 3x + 5.

Singular Solution: A solution of a differential equation in which contains no arbitrary
constants is called the singular solution.

4 Exact Linear Differential Equations

A differential equation of the type Mdx + Ndy = 0 is called an exact differential equation
where M and N are functions of x and y if and only if M,, = N,.. The solution of an exact

differential equation is of the form F(x,y) = c, where c is an arbitrary constant.

The following are the steps involved in solving an exact equation:

Step 1: Test the exactness of the given equation.

Step 2: Write the general solution as F (x,y) = ¢ where F, = M and E, = N.
Step 3: Integrate F w.r.t. X and y and write the constants in terms of g(y) and h(x).
Step 4: Compare F and find g(y) and h(x).

Step 5: Substitute F in Step 2 which is the general solution.

Example 3
Solve 4xsinydx + 2x%cosydy = 0.
Solution.

Let M = 4xsiny and N = 2x?cosy.

= M,, = 4xcosy and N,, = 4xcosy

= M, = Ny.

=The given equation is exact.

Therefore, the general solution is F(x,y) =c____ (1), where E, =M and F, = N.
= F, = 4xsiny and F, = 2x*cosy.

Integrating F w.r.t x and y, we get, F = 2x2siny.

Substituting F in equation (1),

2x%siny = c is the general solution of the given differential equation.

Example 4
Solve (3x%y — 6x)dx + (x3 + 2y)dy = 0.
Solution.

Let M = 3x%y —6x and N = x3 + 2y.
= M, = 3x*and N, = 3x?

= M,, = N,.

=The given equation is exact.



Therefore, the general solutionis F(x,y) =c____ (1), where F, =M and F, = N.
= F, =3x*—6xand F, = x> + 2y.

Integrating F w.r.t x and y, we get, F = x3y — 3x? + y2.

Substituting F in equation (1),

x3y — 3x? + y? = c is the general solution of the given differential equation.

5 Separable Equations

A first order differential equation y' = f(x,y) is called a separable equation if the function
f(x,y) can be factorised into two functions g(y) and h(x). The following are the steps involved
in solving separable equations:

Step 1: Check whether the given equation is separable.

Step 2: Separate the variables y and dy to the LHS and those of x and dx to the RHS.

Step 3: Integrate on both sides to get the general solution.

Step 4: To find the particular solution, substitute the initial conditions in the general solution.

Example 5
d 2
Solve =% = =,
dx 3y
Solution.

The given differential equation is separable.
Therefore, 3y2dy = 2xdx.

Integrating on both sides, we get,
y3=x2+C.

1
= y = (x%2 + C)3 is the general solution.

Example 6
Solve y' = y?sinx.
Solution.
Given equation can be written as Z—i = y?2sinx.

The given differential equation is separable.
Therefore, % = sinxdx.

Integrating on both sides, we get,

1
;=cosx+C.

=y =

is the general solution.
cosx+C

6 Homogeneous Equations

An expression is said to be homogeneous if the degree of the variables (or the sum of the powers
of different variables) in each term is the same.

Examples: 2x + 5y, 5x? — 3xy + 4y2.



_ &y

An homogeneous differential equation is of the form 2l
dx  g(xy)

where f(x,y) and g(x,y) are
homogeneous expressions in x and y of same degree.

d x%+y?
Example: = = 4
dx

e~ is a homogeneous equation.

Steps involved to solve homogeneous equations:

Step 1: Perform the substitution using v = % This implies y = vx and % =v+xZ

dx
Step 2: Solve the resulting equation using separation of variables.
Step 3: Substitute for v in terms of x and y.

Example 7

_ 3y%+xy

d
Solve == -
dx X

Solution.

_ 3y%+xy
===

Given equation Z—i’ (1) is homogeneous

Therefore, put y = vx (2)

dy dv
=>dx—v+xdx—(3)

Substituting (2) and (3) in (1) and simplifying we get,

dv
— = 3v2.
dx

Separating the variables, we get,

dv dx

32 x "

Integrating on both sides, we get,

1
—5, = logx+C 4)

X

_ Y — - _
Putv = ~in (4) we get, y = Csiog where C; = —3C.

Example 8
Solve & = X2
dx
Solution.
Given equation Z—z = (1) is homogeneous
Therefore, put y = vx 2

dy ﬂ
:>dx—v+xdx_(3)



Substituting (2) and (3) in (1) and simplifying we get,

dv
—=1.
dx

Separating the variables, we get,

dx
dv = —.
X

Integrating on both sides, we get,

v=logx+C___ (4)

Putv = % in (4) we get, y = x(logx + C) is the general solution.

7 Linear Differential Equations and Equations Reducible to Linear Form

A first order linear differential equation is of the form Z—z + P(x)y = Q(x) where P(x) and Q(x)
are functions of x or constant. The following are the steps involved in solving a linear ODE:

Step 1: Find the integrating factor (I.F.) = eJ Pdx,
Step 2: The solution is given by y(I.F.) = [ Q(I.F.)dx + C.

A differential equation of the form f'(y) Z—i’ + Pf(y) = Q where P(x) and Q(x) are functions

of x, can be reduced to a linear differential equation. The following are the steps involved in
solving these equations:

Step 1: Put f(y) = v. This implies f’(y)Z—i’ = %

Step 2: Substitute Step equations in the given differential equation.
Step 3: Step 2 gives a linear equation of the form Z—: + P(x)v = Q(x)
Step 4: The solution is given by v(I.F.) = [ Q(I.F.)dx + C.
Example 9

dy axy 1
Solve dx + x2+1  (x2+1)3

Solution.

The given equation a linear equation of the form % + P(x)y = Q(x).

4 1

X
241 and Q = (x2+1)3’

Here P =

X

4xdx
I.F.=elPax = olizi,

Putt=x2+1,dt=2xdx:>%=xdx.

Therefore [ F. = e2 )t = o2l0gt = g2108(x*+1) = glog (P +1)? — (x% + 1)2.



The solution is given by y(I.F.) = [ Q(I.F.)dx + C.

1
(x2+1)3

Therefore, y(x? + 1)% = [ (x? + 1)%dx + C.

1
x2+1

:)y(x2+1)2=f dx + C.

= y(x?+1)? =tan"x + C.

= y = {5 s the general solution
y= (x241)2 g .
Example 10

d .
Solve é + xsin2y = x3cos?y.
Solution.

Since the RHS of the given equation must contain only x terms, we divide the equation
throughout by cos?y.

2 dy  2xsinycosy 3
sec — T =X
ydx + cos?y
2 d_y 2 — 43 1
= secy—~+ 2xtany = x (1)

This equation is in the form f'(y) % + Pf(y) = Q.

Here f'(y) = sec?y and f(y) = tany.

To solve this, we put f(y) = vand f'(y) Z—i’ = % in (1).

Therefore, we get, Z—Z + Pv = Q where P = 2x, Q = x3.
|.F.= e/ Pdx — pf2xdx — 5x*

The solution is given by v(I.F.) = [ Q(I.F.)dx + C.
= vx? = [x3eXdx +C.

Using integration by parts, we get ve*” = %[xze"2 — x%| + C where v = tany.

x? 2 . .
tany = —[1—e™'| + C is the general solution.
8 First order higher degree differential equations solvable for x, y, p

The differential equation which involves Z—i , denoted by p, in higher degree is of the form

f(x,y,p) = 0is called a first order higher degree differential equation. These equations can be
solved by the following methods:

0] Equations solvable for x
(i) Equations solvable for y
(ili)  Equations solvable for p



Example 11

2
SoIvey(Z—z) +(x—y)Z—z—x= 0.

Solution.

. dy\? d
leeny(d—y) +(x—y)£—x=0 Q)

X
PUt% =pin (1), we get, yp* + (x —y)p —x = 0.
Treating this as quadratic equation in p and solving we get, two equations namely,

X
p—1andp——;.

d d
=2=1and 2= -
dx dx

e

Separating the variables and integrating, we get,
dy = dx and ydy = —xdx.
=y=x+candy?=x%+c,.
=y—x+c,=0andy?—x?+¢,=0.

= (y —x +¢; = 0)(y? — x? + ¢, = 0) is the general solution.

Example 12

Solve y = sinp — pcosp.

Solution.

Giveny =sinp —pcosp (1)

Differentiating the given equation (1) w.r.t. X, we get,

v _ a _ —sinp ap
ax  COSPoy [p ( sinp dx) + cosp dx]'

p = psinp Z—Z.

1 =sinp Z—Z.

Separating the variables,

sinpdp = dx.

Integrating we get, —cosp = x + C.
=cosp=C—x_____ (2

=p=cos I (C—x)___ _(3)



= sinp = /1 — cos?p = /1 — (C — x)? (4)
Substituting (2), (3) and (4) in (1), we get,

y=41—(C—x)2%—(C—x)cos™(C — x) is the general solution.

9 Clairaut’s Equations

The non-linear differential equation of the form y = px + f(p) is called the Clairaut’s equation.
To solve Clairaut’s equation:

Step 1: Put p = c in the given equation to obtain the general solution.

Step 2: To obtain the singular solution, differentiate the general solution w.r.t ‘c’.
Step 3: Eliminate ‘¢’ from equations in Steps 1 and 2.

Example 13

Solve the Clairaut’s equation y = px + p2.

Solution.

Giveny =px+p?____ (1)

Putp = cin (1), weget,y = cx + ¢ ___ (2), which is the general solution.
Differentiating (2) w.r.t. ‘c’ we get,

0=x+2c.

=c= —g I ()

Substituting (3) in (2), we get,

x% + 4y = 0 which is the singular integral.

Example 14

Solve the Clairaut’s equation y = px + piz.

Solution.

Giveny = px + piz_(1)

Putp =cin (1), weget,y = cx + C%_(Z), which is the general solution.
Differentiating (2) w.r.t. ‘c’ we get,

2
O=x+c—3.



1

—e=()
Substituting (3) in (2), we get,

4y3 = 27x?% , which is the singular integral.
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Unit 11

Differential Equations of Second Order

This unit covers the following topics: Linear differential equations of second order, Second order
equation with constant coefficient with particular integrals for e%*, x™, e**sinmx, e**cosmx.
Method of variation of parameters, Ordinary simultaneous differential equations, Transformation
of the equation by changing — the dependent variable and the independent variable.

1 Introduction

The second order ODE with constant coefficients is of the form ay” + by’ + cy = f(x)_(1)
where a # 0, b and c are constants and y is a function of x. The general solution of (1) is given
by y = Complementary Function + Particular Integral. Thatis,y = C.F.+ P.I.__(2)

2 The following are the rules to find C. F.:

Q) Solve the characteristic equation am? + bm + ¢ = 0____ (3) and let the roots of (3)
be m; and m,.

(i) If the roots of (3) are real and distinct then C. F.= Ae™* + Be™2*,

(iii)  If the roots of (3) are real and equal, say my = m, = mthen C.F.= (A + Bx)e™".

(iv)  If the roots of (3) are complex, say, m; =a+if and m, =a —if then
C.F.= e**(AcosPBx + Bsinfx).

3 Rules to find P.I.:
Type I: If the RHS of (1) =0, then P.1.= 0.

Type I1: If the RHS of (1) = e%* then P.I. = %ea".

Replace D by a.

_L ax
= P.I.—f(a)e .

Note:

If the denominator becomes zero then, multiply the numerator by x and differentiate the
denominator w.r.t D. Repeat until the denominator is not zero.

Type I11: fthe RHS of (1) = sinax or cosax then P.1.= %D) sinax or cosax.

Replace D? by —a?.

= P.l.= sinax Or cosax.

1
f(=a?)



(a) If the denominator becomes zero then, multiply the numerator by x and differentiate the
denominator w.r.t D. Repeat until the denominator is not zero and then use integration

for =.
D
(b) If the denominator contains factors of f(D) then multiply and divide by the conjugate of
the factors and then replace D? by —a?.

Type IV: If the RHS of (1) is a polynomial say, x™ then P.1.= %xm-

Write the denominator as (1 + ¢(D))~! and expand using either (1 +x)™* =1—x +x% —
x3+-or(1—x)"'=1+x+x?+x3+ - and then operate D on x™.

Type V: If the RHS of (1) = e**sinbx or e“**cosbx, then P.1.= ﬁe‘”‘sinbx or e**cosbx.

Replace D by D + a.

— P.I.= ——e%gsinbx or e®cosbx.
f(a)

Proceed as in Type IlI.

4 Method of Variation of Parameters (Type V1)

If the RHS of (1) is secx, tanx, cosecx etc., then we use method of variation of parameters.
Steps involved in method of variation of parameters:

Step 1: Find C.F.say, C.F.= Af, + Bf,.

Step 2: Find f; and f,.

Step 3: Compute fif; — fi fo.

Step 4: Find P = [ =2X% \yhere X = RHS of (1).
ff:-fif2
. . f1de

Step 5: Find Q = where X = RHS of (1).

fifs=fifz
Step 6: Write P.1.= Pf; + Qf,

Step 7: The general solutionis:y = C.F.+ P.I..
Example 1

Solve y” — 6y’ + 9y = 0.

Solution.

Given equation can be written as (D? — 6D + 9)y = 0.
Therefore, the auxiliary equation is m? — 6m + 9 = 0.
Solving the roots are m = 3, 3 (equal roots)

Therefore, C.F.= (A + Bx)e3*.

RHS of the given equation is zero.



Therefore, P.1.= 0.

=y =C.F.+P.I.= (A + Bx)e3.

Example 2

Solve y" — 5y’ + 6y = 12e5*.

Solution.

Given equation can be written as (D? — 5D + 6)y = 12e°*.
Therefore, the auxiliary equation is m? — 5m + 6 = 0.
Solving the roots are m = 2, 3 (distinct roots)

Therefore, C.F.= Ae?* + Be3*.

RHS of the given equation is 12e5*,

1
D2-5D+6

Therefore, P.1.= 12e5%,

Replace D by 5.

— ; 5x
P.1.=12 52_5(5)+6e .

P.l.=12—~¢5%,

25—-25+6
P.l.=121e5%,

6
P.I.= 2e5*,

= y=C.F.+P.I.

= y = Ae?* + Be3* + 2¢°*.

Example 3

Solve y" + y = sin2x.

Solution.

Given equation can be written as (D% + 1)y = sin2x.

Therefore, the auxiliary equation is m? + 1 = 0.

Solving the roots are m = +i (complex roots) where « = 0 and g = 1.
Therefore, C. F.= e®*(Acosx + Bsinx) = Acosx + Bsinx.

RHS of the given equation is sin2x.

1 .
— sin2x.
D4“+1

Replace D? by —22 = —4,

Therefore, P.1.=




P.I.= sin2x.

—4+1

P.l.==
3

sin2x.

=y=C.F.+P.1I.

sin2x

= y = Acosx + Bsinx —
Example 4
Solve y" + y' — 6y = 36x.

Solution.

Given equation can be written as (D? + D — 6)y = 36x.

Therefore, the auxiliary equation ism? + m — 6 = 0.

Solving the roots are m = 2, —3 (distinct roots).

Therefore, C.F.= Ae?* + Be™3*,

RHS of the given equation is a polynomial 36x.

Therefore, P.I.=D L 36x..

2+D-6
1
—6+D+D?

Write the denominator as (1 + ¢(D)) ™! .

P.1.=36

X.

P'I':i_Z(l_(l)+_D2))x'

(1

Expandusing (1 —x)"' =1+ x+x%2 +x3 +

-1

P.1.=—6(1-222)

6

P.1.=—6(1+ (D+6D2>)x
P.I.= —6(X+M+@).
P.o==6(x+z+2).
P.l.=—-6x-1

= y=C.F.4+P.1I.

= y = Ae®* + Be™3* — 6x — 1.

--- and then operate D on the given polynomial.



Example 5

Solve (D? — 4D + 13)y = e**sin2x.

Solution.

Given equation is (D? — 4D + 13)y = e**sin2x.

Therefore, the auxiliary equation is m? — 4m + 13 = 0.

Solving the roots are m = 2 + 3i (complex roots) where « = 2 and 8 = 3.
Therefore, C. F.= e?*(Acos3x + Bsin3x).

RHS of the given equation is e**sin2x.

1 .
Therefore, P.l.= ——— e**sin2x.
D4—4D+13

Replace D by D + 4.

— 4x 1 ;
P.l.=e DT 20T D13 sin2x.

1 .
P.l.= e®™ ———sin2x.
D2+4D+13

Replace D? by —22 = —4.

1 .
P.l.=e*® ——sin2x.
—44+4D+13

P.l[.=e** - sin2x
4D + 9

4x  AD—9
(4D+9)(4D—9)

P.l.=¢ sin2x.

(4D-9)
16D?%-169

Replace D? by —22 = —4.,

P.l.=e** sin2x.

4D-9 .
P.l=e*—8279 cinoy.
16(—4)—169
P [ = e (4Dsin2x—9sin2x)
T 16(—4)—169
Pl = e4x (8cos2x—9sin2x)

—-233
= y=C.F.4+P.I.

4 (8€c0s2x—9sin2x)

= y = e?*(Acos3x + Bsin3x) — e =

Example 6
Solve y" + y = sec?x.

Solution.



Given equation can be written as (D? + 1)y = sec?x.

Therefore, the auxiliary equation is m? + 1 = 0.

Solving the roots are m = +i (complex roots) where « = 0 and 8 = 1.
Therefore, C.F.= Acosx + Bsinx.

RHS of the given equation is sec?x.

Therefore, P.1.= Pf, + Qf, where P = ff]’:z de; and Q = fff;xj‘fxf and X = sec?x.
2 2

Here f; = cosx and f, = sinx.

Therefore, f; = —sinx and f, = cosx.
= ff; —fifz=1
P f —szdx
fifs—fif2
—qj 2
— p =f sinxsec“x dx
1
—sinx dx
= P= f cos?x

= P = [ —tanxsecx dx.

= P = —secx.

fl Xdx
Q= J‘f1fz -fify’

cosxsec®x dx

= Q=

= Q= nd
= Q = [ secxdx.

= @ = log (secx + tanx).

P.1.=Pf; +Qf,.

= P.l.= —secxcosx + log (secx + tanx)sinx.

= P.I.= —1+log (secx + tanx)sinx.

= y=C.F.+P.1.

= y = Acosx + Bsinx — 1 + log (secx + tanx)sinx.

5 Solution of Simultaneous Differential Equations

Example 7

Solve%+y=sint;%+x=costgivenx=2,y= Owhent = 0.



Solution.

Given equations can be writtenas Dx +y = sint_____ (1)and Dy +x = cost__ (2)
Solving equations (1) and (2) simultaneously, we get, (D? — 1)y = —2sint.

The characteristic equation is: m? — 1 = 0.

Solving we get, m = %1 (distinct roots).

= C.F.= Ae' + Be L.

P.l.= — 2sint.

D?2-1

1
= P.l.= —Zm sint

Replace D2 by —12 = —1.

P.l.=-2 sint.

-1+1

P.l.= :—zsint.

P.I.= sint.

= y=C.F.4+P.1I.

= y = Ae' + Be ™t + sint (3)

To find x, substitute y = Ae' + Be™t + sint, in equation (2), we get,
x = cost — D(Ae' + Be™t + sint).

= x = cost — Ae' + Be~t + cost.

= x=—Ae'+Be t (4

To find the constants A and B in (3) and (4), we use the initial conditions given in the problem.
Given: x =2whent =0andy = 0 whent = 0.

Substituting these values in (3) and (4), we get,

0=A4A+B___ (5

2=—-A+B__ (6)

Solving (5) and (6), we get, A=1and B = 1.

Putting the values of A and B in (3) and (4), we get the solution as:
y=et+et+sintand x = —et + 7.
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Unit 111
Partial Differential Equations

This unit covers topics that explain the formation of partial differential equations and the
solutions of special types of first order partial differential equations (PDE).

1 Introduction

A partial differential equation (PDE) is one which involves one or more partial
derivatives. The order of the highest derivative is called the order of the equation. A partial
differential equation contains more than one independent variable. But, here we shall consider
partial differential only equation two independent variables x and y so that z = f(x, y). We shall
denote

A partial differential equation is linear if it is of the first degree in the dependent variable
and its partial derivatives. If each term of such an equation contains either the dependent variable
or one of its derivatives, the equation is said to be homogeneous, otherwise it is non
homogeneous. Partial differential equations are used to formulate and thus aid the solution of
problems involving functions of several variables; such as the propagation of sound or heat,
electrostatics, electrodynamics, fluid flow, and elasticity.

2 Formation of Partial Differential Equations

Partial differential equations can be obtained by the elimination of arbitrary constants or
by the elimination of arbitrary functions.

(i) By the elimination of arbitrary constants
Let us consider the function f(x,y,z,a,b )=0 -------mmm-- (1)
where a & b are arbitrary constants

Differentiating equation (1) partially w.r.t x & y, we get



+ p =0 (2)
OX (874
oo oo
+ q =0 (3)
0y oz

Eliminating a and b from equations (1), (2) and (3), we get a partial differential equation of the
first order of the form f (x,y, z, p, q) = 0.

(i) By the elimination of arbitrary functions

Let uand v be any two functions which are arbitrary. This relation can be expressed as
u=f(v) (1)

Differentiating (1) partially w.rt x and y and eliminating the arbitrary functions from
these relations, we get a PDE of the first order of the form f(x, y, z, p,q) =0.

Example 1
Eliminate the arbitrary constants aand b from z = ax + by + ab to construct a the PDE.

Solution. Consider z = ax + by + ab (1)

Differentiating (1) partially w.r.t. x and y, we get

Oz

= a 1€, p=a (2)
0x
Oz

= b e, q =b (3)
oy

Using (2) and (3) in (1), we get, z = px + qy + pq, which is the required PDE.

Example 2

Construct the partial differential equation by eliminating the arbitrary constants a and b
from z = (x2+ a?) (y*+ b?).

Solution. Givenz = ( x*> + a?) (y*+ b?) 1)

Differentiating (1) partially w.r.t x and y, we get



p = 2x (y?+ b?)
q =2y (x*+a®)

Substituting the values of p and q in (1), we get, 4xyz = pq, which is the PDE.

Example 3

Find the partial differential equation of the family of spheres of radius one whose centre lie on
the xy — plane.

Solution.

The equation of the sphere is givenby (x-a)? + (y-b)? + z? =1 (1)
Differentiating (1) partially w.r.t x &y, we get, 2(x —a) + 2zp = 0and

2(y —b) + 2zq =0.

From these equations we obtain

X—a = —zp @)
y—-b=-zg____ (3

Put (2) and (3) in (1), we get, z?p? +z2q? +z> =1or z?(p>+q¢*+1)? =1

Example 4

Eliminate the arbitrary constants a, b and ¢ from

and form the partial differential equation.



Solution.

— e §— = (1)

Differentiating (1) partially wrt x & y, we get

2x 2zp
—_— — =0
a
2y  2zq
—_— =0
b &

Therefore we get

X zp
=g sg @)

a’ ¢

y zq
= =) (3)
b’ ¢

Again differentiating (2) partially w.rt *x’, we set

(l/a2)+(l/c2)(zr+p2)=0 (4)
Multiplying (4) by x, we get

s
X Xxzr px
—_—t— +— =0

-

2 2 2
a C C

From (2) . we have

or -zp + xzr + pzx=0

Therefore, xp? — zp + xzr = 0 is the required PDE.
[4 P



Example 5
Form the PDE by eliminating f & ® from z = f(x+ay) + ®( x-ay)

Consider z= f(x+ay) + @ ( x-ay) (1)

Differentiating (1) partially wrt x &y , we get

p = f'(x+ay) +®d' (x—ay) (2)

q= f'(x+ay).a+ d®' (x—ay)(-a) (3)

Differentiating (2) & (3) again partially w.rt x &y, we get

r =f"(x+ay) +®"( x-ay)
t =f"(x+ay).a’+®"( x-ay) (-a)’

ie, t=a{f(x+ ay) +®"( x-ay)}

or i=aTr

Example 6

Form the partial differential equation by eliminating the arbitrary function f
fromz = e f(x + y)

Solution. Consider z = e¥ f (x + y) (1)

Differentiating (1) partially w.r.t x & y, we get

p =¢e fl(x+y)
q=efx+y)+flx+y)e’
Hence, we have, ¢ = p + z, which is the required PDE.

Example 7

Obtain the partial differential equation by eliminating f from the equation
z=(x+y)f(x* - y?).

Solution.

Let us now consider the equation z = (x + y)f(x? — y?) (1)

Differentiating (1) partially w.r.t x & y, we get

p=&+yf'(x*— y*).2x + f(x* — y?)

y=@+»fx?— y3).(=2y) + f(x* — ¥?)



p-f(x-y) =(x+y)f'(x°-y
qQ-f(x°-y) =(x+y)f(x°-y

7 o

-
-

[ S I S )
| 55 T S )

2X

). 2
) (-2y) (3)

Hence, we get

p £ (- X

q-f (x*-y) y

py — yf(x? = y?) = —qx + xf (x* — y?)
py +qx = (x +y)f (x* — y?)
Therefore, we have by (1), py + qx = z, which is the required PDE.
Exercises:
3 Solutions of a Partial Differential Equation

A solution or integral of a partial differential equation is a relation connecting the
dependent and the independent variables which satisfies the given differential equation. A partial
differential equation can result both from elimination of arbitrary constants and from elimination
of arbitrary functions. But there is a basic difference in the two forms of solutions. A solution
containing as many arbitrary constants as there are independent variables is called a complete
integral. Here, the partial differential equations contain only two independent variables so that
the complete integral will include two constants. The solution obtained by giving particular
values to the arbitrary constants in a complete integral is called a particular integral.

Singular Integral

Let f (x,y,z,p,q) =0 1)

be the partial differential equation whose complete integral is
f(x,y,z,ab)=0 (2)

where a and b are arbitrary constants.

Differentiating (2) partially w.r.t. a and b, we obtain



-------- =0 —mmmmmmeee= (3)
oa
o

and 1. J e — 4
b

The eliminant of a and b from the equations (2), (3) and (4), when it exists, is called the singular
integral of (1).

General Integral
In the complete integral (2), put b = F(a), we get
f(x,y,z,a F@))=0  ---o--mv (5)

Differentiating (2), partially w.r.t. a, we get

------- +oememe Fla) = eemes (6)

The eliminant of a between (5) and (6), if it exists, is called the general integral of (1).

4 Lagrange’s Linear Equation

Equations of the form Pp + Qg =R (1), where P, Q and R are functions of
X,Y,z,are known as Lagrange equations. To solve this equation, let us consider the
equations u =aand v = b, where a, b are constants and u, v are functions of X, y, z.

- -

cu ou cu
du= — dx+ — dy + — dz
oX oy oz
Comparing (2) and (3), we have
cu cu cu
—_—dx ¥ —dy+ —dz =0 (3)
X oy oz
Similarly, ov ov ov
—OX —dyt —dz = (4)

-

oX oy oz



By cross-multiplication, we have

dx dy dz
cu ¢év Cu ov cu Ov du ov cu Ov Ou oV
oz oy oy oz X o0z o0z oOx 0y OXx Ox Oy
(or)
dx dy dz
. 2 s)
P Q R

Equation (5) represent a pair of simultaneous equations which are of the first order and of first
degree. Therefore, the two solutions of (5) areu=aand v =b. Thus, f(u, v) =0 is the required
solution of (1).

Note:

To solve the Lagrange’s equation, we have to form the subsidiary or auxiliary equations
dx dy dz

p Q R
which can be solved either by the method of grouping or by the method of multipliers.

Example 8
Find the general solution of px + qy = z.

Solution.

Here, the subsidiary equations are

Taking the first two ratios, dx dy

Integrating, log x = log y + log c:

orx=ciyieci=x/y



From the last two ratios,

NI

dy _
y

Integrating, log y = log z + log c2
ory=c2z
e, c2=Yyl/z

Hence the required general solution is ®(x/y, y/z) = 0.

Example 9
Solveptanx +qtany =tanz
Solution.

The subsidiary equations are

dx dy dz
tanx tany tanz
Taking the first two ratios, dx  dy

1e cotx dx = coty dy

3

Integrating, log sinx = log siny + log ¢,

ie, sinx = ¢, siny



Therefore, ¢ = sinx /siny
Similarly, from the last two ratios, we get
siny = ¢z sinz

e, c2= siny/ sinz

Hence the required general solution is

sInx siny
P s ={)
siny sinz
Example 10

Solve(y—2)p + (z—x)q = x—y.
Solution.

Here the subsidiary equations are

dx dy dz

y-z z- X X =y

Using multipliers 1,1,1,
dx + dy +dz

each ratio =
0

Therefore, dx + dy + dz =0.

Integrating, x+y +z = ¢

Again using multipliers x, y and z,

xdx + ydy + zdz

each ratio =
0

(1)



Therefore, xdx+ydy +zdz =0.
Integrating, x°/2 +y*/2 +z°/2 = constant
or X+y +7Z =0 (2)
Hence from (1)and(2), the general solution is

(I)(x+y+z,x2+y2+zz)= 0

Example 11

Find the general solution of (imz — ny)p + (nx — lz)q = ly — mx.

Solution.
dx dy dz
mz- ny nx - lz ly - mx

Using the multipliers x, y and z, we get

xdx + ydy + zdz

each fraction =
Tooxdx +ydy+zdz = 0, wh?ch on integration gives
x*12 +y*/2 +Z*/2 = constant
or x> + y2 + 22 = ¢ (1)

Again using the multipliers 1, m and n, we have

Idx + mdy + ndz

each fraction =
0
" .. ldx +mdy +ndz = 0, which on integration gives
Ix +my +nz = ¢ (2)

Hence, the required general solution is

(x> + y2 + 722, Ix+ my+nz )= 0



Example 12

Solve (x*- y*-Z°)p + 2xy q = 2xz.
The subsidiary equations are
dx dy dz
X-y?-22 2xy

Taking the last two ratios,

Integrating, we get logy =logz + logc,
or 'y =c¢z

e, ¢ =vyl/z (1)

Using multipliers x,y and z, we get

xdx + ydy +zdz xdx + ydy +zdz
each fraction =

X (x>-y*-Z* W2xy*+2x7> x(X+y +2°)

Comparing with the last ratio, we get

xdx + ydy +zdz

X(X+y +2)



2xdx + 2ydy + 2zdz dz

e, =
L M
xX-Ey T=Z z
: B o
Integrating, log (x+y +z° ) =logz + logc;
Y T
or XTy +z° =6z
i
Xy Rz
e, ¢=——o (2)
z

From (1) and (2), the general solutionis ®(c;, c)=0.

2 2 2
Xehy. FZ
ie, ®|(ylz),—/8— | =0
Y 4
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UNIT - IV
Partial Differential Equations (Contd...)

1 Some Special Types of Equations which can be Solved Easily by Methods other than the
General Methods

The first order partial differential equation can be written as f(x, y, z, p, q) =0, where p = z—i and

q= Z—; In this section, we shall solve some standard forms of equations by special methods.

Type I: f(p, q) = 0. (Equations containing p and g only).
Suppose that z = ax + by +c is a solution of the equation f(p, g) = 0,
where f (a, b) = 0.

Solving this for b, we get b = F (a).

Hence the complete integral isz=ax + F(a) y + ¢ 1)
To find the singular integral, differentiate (1) w.r.t. a, we get, 0 = x + yF'(a) (2

Now, the singular integral is obtained by eliminating a and ¢ from (1) and (2), we get 0 = 1.
The last equation being absurd, the singular integral does not exist in this case.
To obtain the general integral, let us take ¢ = F(a).
Then,z=ax + F(a) y + F(a) (2)
Differentiating (2) partially w.r.t. a, we get
O=x+F().y+F'@ (3
Eliminating a from (2) and (3), we get the general integral.
Example 1
Solvepqg = 2
Solution.
The given equation is of the form f (p, q) =0

The solution is z = ax + by +c, where ab = 2.



Solving, b = 2/a.
The complete integral isz=ax+2/ay+c = ---------- (1)

Differentiating (1) partially w.r.t c, we have, 0 = 1, which is absurd. Hence, there is no
singular integral. To find the general integral, putc = ® (a) in (1), we get, z=ax + 2/ay + F (a)

Differentiating partially w.r.t. a, we get,

0=x-2/a’y+F’(a)

Eliminating a between these equations, gives the general integral.
Example 2

Solvepg+p+g=0

Solution.

The given equation is of the form f (p, q) = 0.

The solution is z = ax + by +c, where ab + a + b = 0.

Solving, we get

a
Hence the complete Integral 1s z=ax - [...-... vFC mmeee (1)
l+a

Differentiating (1) partially w.r.t. c, we get, 0 = 1.

The above equation being absurd, there is no singular integral for the given partial differential
equation.

To find the general integral, put c = F (a) in (1), we have

a
2 =@ ——= |¥E0iy 0000 == (2)
| +a



Differentiating (2) partially w.r.t a, we get
1

e N — 3
(1+a)

Eliminate a from (2) and (3) gives the general integral.

Example 3
Solve p% + q* = npq.

Solution.
The solution of this equation is z = ax + by + ¢, where a? + b? = nab.

Solving, we get,

Differentiating (1) partially w.r.t ¢, we get 0 = 1, which is absurd. Therefore, there is no singular
integral for the given equation.

To find the general integral, put C = F (a), we get

n+vn -4
Zz="gxt B y +® (a)
2

Differentiating partially w.r.t “a’, we have

n+vVn -4
0=x + y + @' (a)
2

The eliminant of a between these equations gives the general integral.



Type 1lI: Equations of the form f (x,p,q) =0, f (y,p,q) = 0 and f (z,p,g) = 0. (One of the
variables x, y and z occurs explicitly)

(i) Let us consider the equation f (x,p,q) = 0.
Since z is a function of x and y, we have

0z 0z
dz = -==---- dx + ==meeemm dy
ox oy
or dz = pdx + qdy
Assume that g = a.

Then the given equation takes the form f (x,p,a) = 0.

Solving, we get p = F(x, a). Therefore, dz = F(x, a) dx + a dy.

(i) Let us consider the equation f(y, p, q) = 0. Assume that p = a.
Then the equation becomes f (y, a, q) = 0 Solving, we get g = F (y, a).
Therefore, dz = adx + F(y,a) dy.

Integrating, z = ax + F(y,a) dy + b, which is a complete Integral.

(iii) Let us consider the equation f(z, p, q) = 0.

Assume that g = ap.

Then the equation becomes f (z, p, ap) =0
Solving, we get p = F(z,a). Hence dz = F(z,a) dx + a F(z, a) dy.

dz
R =dx + ady.
D (z,a)
dz
Integrating, [ ----eeemm- =x +ay + b, which 1s a complete Integral.

D (z.a)



Example 4

Solve q = xp + p?

Solution.

Given g = Xp + p? ------------- (1)
This is of the form f (x, p, q) = 0.
Putg=ain (1), we get
a=xp+p’°

i.e,p?+xp—a=0.

Therefore,
-X +\/(.\'2 + 4a)
p —3
2
-x+Vx*+4a
Integrating , z=] dx+ay+b
2
Thus,
x° X 5 X
Z= = eeseeek {eeee V(42 + x°)+ a sin h™' E---] +ay+b
4 2Va o 2Va
Example 5
Solve q =y p?
Solution.

This is of the form f (y, p, q) =0

Then, putp =a.



Therefore, the given equation becomes q = a?y.
Since dz = pdx + qdy, we have
dz = adx + a%y dy

Integrating, we get z = ax + (8% y?/2) + b

Example 6
Solve 9 (p?z + ) = 4
Solution.

This is of the form f (z, p,q) =0

Then, putting g = ap, the given equation becomes 9 (p?z + a%p?) = 4.

2
Therefore, p=%t =mmememem-
3 (\/z +a’)
2a
and =% —mmememem
3(Vz+2%)
Since dz = pdx + qdy,
2 1 1
dz=+ dx + dy
3 z+a Nz +a’
Multiplying both sides by Vz +a”, we get
2 2
Vz+a dz=---—-- dx + -=---- ady, which on integration gives
3 3
(z+a2 i 2 2
FAL L S X 4+ eceea-
32 3 3

orz+a?)¥=x+ay+h.



Type 1I: f1(x, p) = f2 (y, Q). ie, equations in which ‘z’ is absent and the variables are
separable.

Let us assume as a trivial solution that f(x,p) = g(y,q) = a (say).

Solving for p and g, we get p = F(x, a) and q = G(y, a).

dz o
But dz = —mmemm- dX + - dy

Hence dz = pdx + qdy = F(x, a) dx + G(y, a) dy

Therefore, z = 0F(X, a) dx + 0G(y, a) dy + b, which is the complete integral of the given equation
containing two constants a and b. The singular and general integrals are found in the usual way.

Example 7
Solve pg = xy
Solution.

The given equation can be written as

p ¥
e — = a(say)
X q
P
Therefore, ----- = a mplies p=ax
y y
and = - =a implies q=-----
q a

Since dz = pdx + qdy, we have

dz =axdx + ------ dy, which on integration gives.



Example 8

Solve p? + g2 = x% + y?

Solution.
The given equation can be written as p? — = y? —g? = a2 (say)
p?—x2 = a% implies p = Vx2 + a2
and y? — ¢? = a® implies q = \/y? — a?

But dz = pdx + qdy

ie, dz=Va +x dx+Vy'—a’ dy

Integrating, we get

2 2 4
X a X y a
— > o 2 2 =
Z = e VX" + @7 e sinh™ |- [+ ----\1_\" B e o +b
2 2 a 2 2 a

Type IV (Clairaut’s) form

Equation of the type z = px + qy + f (p,q) ------ (1) is known as Clairaut’s form.
Differentiating (1) partially w.rt xandy, we getp=aand g =b.

Therefore, the complete integral is given by
z=ax + by +f(ab).

Example 9
Solve z = px + qy +pq

Solution.
The given equation is in Clairaut’s form

Putting p =aand g = b, we have ,
z=aXx+by+ab e 1)

which is the complete integral.



To find the singular integral, differentiating (1) partially w.r.t a and b, we get
0=x+b

O=y+a

Therefore, we have, a = -y and b= -x.

Substituting the values of a & b in (1), we get, z = -xy —Xy + Xy
or z+xy =0, which is the singular integral.

To get the general integral, put b = F(a) in (1).
Thenz=ax+F(ay+aF(@  -—m- @)
Differentiating (2) partially w.r.t a, we have
O=x+F@y+aF(@+Fa - 3)
Eliminating a between (2) and (3), we get the general integral.
Example 10

Find the complete and singular solutions of

z=px+qy+VI+p +q°

The complete integral is given by

z=ax+by+VI+ta +b el 1))

To obtain the singular integral, differentiating (1) partially w.r.t a & b. Then,

a
O=x+
V1 +a° + b
b
O=y+




Therefore,
-a
X= (2)
V(1 +a° + b)
-b

and y=
V(1 +a° +b?)

Squaring (2) & (3) and adding, we get

2 2 az + bz
R y. = 2 2
l+a +b°
1
Now, =% y2 =
ol 2
l+a +b"
|
Le, | +a’ + b*=
-~y
Therefore,
1
V(1 +a” + b%) = SRt (4)

Using (4) in (2) & (3), we get

x=-—avVl-x"-y
and y==b¥l-x-y
- _}r
Hence, 4= ———— o and e o
v 1—}{2—§2 v 1—)(2—1,,'1

Substituting the values of a& bin (1), we get

2 2

-X y 1
4

iy iy iy

Z:




which on simplification gives
i=N1- -y
or x’+y +7z =1, which is the singular integral.
2 EQUATIONS REDUCIBLE TO THE STANDARD FORMS

Sometimes, it is possible to have non — linear partial differential equations of the first
order which do not belong to any of the four standard forms discussed earlier. By changing the
variables suitably, we will reduce them into any one of the four standard forms.

Type (1): Equations of the form F(x™ p, y"q) = 0 (or) F (z, x™p, y"q) = 0.

Case(i): If m and n are not equal to 1 then put x}™ = X and y*" =Y.

0z 0z oX oz
Now, p= = = (I-m)x ™
Ox oX Ox oX
(74 oz
Therefore, x"p = ==---- (1-m) =(1 —=m) P, where P = -------
oX oX
oz
Similarly, y'q = (1-n)Q, where Q = ------
oY

Hence, the given equation takes the form F(P, Q) = 0 (or) F(z, P, Q) = 0.

Case(ii) : Ifm=1andn=1, then putlogx=Xandlogy =Y.

oz oz X oz 1
Now, p =-----= : =
ox 0X Ox X x
oz
Therefore, xp = ------=P.
X
Similarly, yg=Q
Example 11

Solve x*p? + y?zq = 22°



Solution.

The given equation can be expressed as (xp)? + (y?q)z = 272
Herem=2,n=2

PutX=x'"=x1and Y=y!"=y™L
We have x™p = (1- m) P and y"q = (1- n)Q

i.e, x’p =-Pand y?q=-Q.

Hence the given equation becomes

P? - Qz =272 ---------- (1)
This equation is of the form f (z, P, Q) = 0.

Let us take Q = aP.

Then equation (1) reduces to

P2 —aPz =27
at \/(33 +8)
Hence, p= 7
2
at V(@ +8)
and Q | — Z
2

Since dz=PdX + QdY, we have




dz (a + ‘J(az + a
1e, = (dX +ady)

: L 2

Integrating, we get
in Va~ +8

logz=L 5

(X +aY)+b

atV(a + SW 1 ﬂ
Therefore, logz= + + b which is the complete solution.

Y

Example 12
Solve x°p? + y?0f = 72

Solution.

The given equation can be written as (xp)? + (yq)? = z2
Herem=1,n=1.

Put X =logxand Y =logy.

Then xp =P and yq = Q.

Hence the given equation becomes

This equation is of the form F(z, P, Q) = 0.
Therefore, let us assume that Q = aP.

Now, equation (1) becomes,

PP+a’ P =7



Z

Hence P=---mm-m-
V(1+a%)
az
and Q= —mmmmmme
V(1+a%)
Since dz=PdX + QdY, we have
z az
dz= dX + dyY.
V(1+a%) V(1+a%)
dz
ie, V(1+a®) —-—- = dX +adY.
yA

Integrating, we get, V1 + a? logz= X +aY +b.

Therefore, V1 + a? log z = logx + alogy + b, which is the complete solution.

Type (1) : Equations of the form F(zKp, zKq) = 0 (or) F(x, Z*p) = G(y, zXq).

Case (i) : If k is not equal to -1, put Z = Z**1,

oz o7 oz oz
Now = = (k+1)Z". wemeeee = (k+1) Z'p.
X 0z ox ox
1 oz
Therefore, sz i s
k+l ox
1 oz

Similarly, 2 = seres  eeees

k+1  dy



Case (ii) : If k=-1, putZ=log z.

oz 0L oz |
Now, = = p
(574 1
Similarly, SO ST q.
oy z
Example 13

Solve z*q? —z%p =1
Solution.
The given equation can also be written as (z%q)? —(z%p) =1

Here k = 2. Putting Z = z ¥** = 23, we get

1 oz 1 oz
ka = e e and qu R
k+1 ox k+1 oy
1 oz 1 oz
1e, Zzp = cmammn —am—a- and qu S
3 OX 3 dy

Hence the given equation reduces to

QY P
THE
3 3
ie, Q’=3P-9=0,

i.e, Q>—3P—-9=0,which is of the form F(P, Q) = 0.
Hence its solution is z = ax + by + ¢, where b>—3a—9 = 0.
Solving for b, we get, b=++/3a +9

Hence the complete solutionisZ=ax++v3a+9y+c¢

or Z*=ax++V3a+9y+c



3 Charpit’s Method

This is a general method to solve the most general non-linear PDE f(x,y,z,p,q) =0 (1) of
order one involving two independent variables. To solve (1), we solve the system of auxiliary
equations called Charpit’s equations.

dp __ _dq _ __dz _ dx _dy _ df )
fxtD/fz fy+afz -pfp—afq —fp —fq 0 .

Working rule of Charpit’s Method:

Step 1. Transfer all the terms of the PDE to LHS and denote the entire expression by
f&x,y,2,p,q) = 0.

Step 2: Write down Charpit’s auxiliary equations.

Step 3: Find £, f,, fz, f, and f;. Put them in Step 2 and simplify.

Step 4: Choose two fractions such that the resulting integral is a simplest relation involving p or
q or both,

Step 5: Use Step 4 to find p and g and put p and q in the equation dz = pdx + qdy, which
on integration gives the complete integral.

Example 14

Find the complete integral of the PDE 3p? = q using Charpit’s method.

Solution.

Given 3p? = q.
=3p?-q=0____ (1)
= f =3p? —q.

= f=0,f=0f=0,f,=6pand f, = —1.

Charpit’s auxiliary equations are:

v _ _dq___dz _ax_ay
fxtDfz fy+afz -pfp—afq —fp —fq .

dp dq dz _dx _ay

0 0 -6p2+q -6p 1 °




Taking the first fraction, %p = k.

= dp = 0.

Integrating, p = a.

Substituting p = a in (1), 3a®> — q = 0.

= q = 3a?.

Substituting p and q in dz = pdx + qdy, we get, dz = adx + 3a’dy.
Integrating, z = ax + 3a®y + b is the complete integral.

4 Jacobi’s Method

This method is used to solve non-linear first order PDE which involves three or more
independent variables. Consider a non-linear PDE of order one of the form:

f(x1, %2, %3, p1,P2,03) =0____ (1)

involving three independent variables x,, x,, x; where the dependent variable z do not occur

. . . . bz bz bz
except by its partial derivatives p; = P2 =0 Pa =

To solve (1), we solve the following auxiliary equations:

dpy _ dxy _ dpy _ dxp _ dpz _ dxs
fxq ~fo1 fx; ~Jfp2 fxs ~Jfps .

Working rule of Jacobi’s Method:

Step 1: Transfer all the terms of the PDE to LHS and denote the entire expression by
f(x1,%2,%3,p1,P2,03) = 0 _(1).

Step 2: Write down Jacobi’s auxiliary equations.

Step 3: Find fy., fx,» frs: foys fp,@d f,,,. Put them in Step 2 and simplify.

Step 4: Choose two fractions such that we  obtain two additional equations as
Fy(x1, %2, X3, 01, P2, P3) = c1_____(3) and F,(xy, X3, X3, P1,02,03) = C,_____(4) where ¢; and
c, are arbitrary constants. While obtaining (3) and (4), we try to select simple fractions from (2),
so that solution of equations (1), (3) and (4) may be as easy as possible.

bF; bF,  bF, bFj

Step 5: Verify that the relations (3) and (4) satisfy the condition ¥3_, (En_p- — En_p-) = 0.



Step 6: If Step 5 is satisfied, then solve equations (1), (3) and (4) to find p,, p,, ps.

Step 7: Substitute p,,p,,ps; in the equation dz = p;dx; + p,dx, + psdx;, which on
integration gives the complete integral.

Example 15

Find the complete integral of the PDE p,3 + p,2 + p; = 1 using Jacobi’s method.
Solution.

Given p3 + p2+p;=1.

= pP+pltHpz—1=0___ (1)

dpy _ dxy; _ dpy _ dxp _ dps _ dxg

fxq B ~fp1 B fxy B ~Jp2 B fxz ~Jp3 .

dpy _ dx1 _dpy _ dx; _ dps _ dxs )
0 —3p,2 0 -2p, 0 -1

Taking the first and the third fractions of (2), we have dp, = 0 and dp, = 0 so that p; = c;and
p, = C,, Where ¢; and c, are arbitrary constants.

=p=c¢____(B)and p, =c,

(4)

: 3 (bR _ bﬂbﬂ) =
To verify whether };;_, (bxi o " oxope) =

(22— 12 = [(0(0) — (O] + [(0)(D) = @)(©@)] + [(0)(0) = (0)(@)] = 0.

bx;dbp;  bx; dp;
Since the equation is verified, we substitute p; = c;and p, = ¢, in (1) to find p5.
=p;=1- ¢;°—c,>
Putting in dz = p;dx; + pydx, + psdxs We get, z = c;x; + x5 + (1 — 3 — c2)x5 +

C3.

Reference

Dr. S. Sudha, Differential Equations & Integral Transforms, Emerald Publishers, 2002.
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unitVv

Second and Higher Order Partial Differential Equations
This unit covers the following topics: Partial differential equations of second and higher order,
Classification of linear partial differential equations of second order, Homogeneous and
non-homogeneous equations with constant coefficients, Monge's methods.
1 Classification of linear partial differential equations of second order
The general second order linear PDE has the following form

Auyy + Buyy, + Cuyy, + Du, + Euy, + Fu =G, (1)

where the coefficients A, B, C, D, F and the free term G are in general functions of the
independent variables x, y, but do not depend on the unknown function u. The classification of
second order linear PDEs is given by the following:
The second order linear PDE (1) is called
(i) Hyperbolic, if B2 — 4AC > 0
(ii) Parabolic, if B2 —4AC = 0
(ii) Elliptic, if B> —4AC < 0

Example 1

Determine the regions in the xy —plane where the following equation is hyperbolic, parabolic,
or elliptic: uy, + yu,, + 12u,,.

Solution.

Given uy, + yu,, + 12u,, .

The coefficients of the leading terms in this equationare: A= 1,B = 0,C = y.
The discriminant is then B2 — 4AC = —4y.

Hence the equation is (i) hyperbolic when y < 0, (ii) parabolic when y = 0, and (iii) elliptic
wheny > 0.

Example 2

Classify the equation uy, + 2uy, + 2u,, = 0.



Solution.

Here A= 1,B= 2,C = —4.

The discriminant is then B> — 4AC = 4 — 4(1)(2) = —4 < 0.

Hence the equation is elliptic.

2 Homogeneous Partial Linear Differential Equations with constant Coefficients.

A homogeneous linear partial differential equation of the n™ order is of the form

"z 0"z 0"z
Co +Ci s + Cp ==mmmeee =F(xy) e (1)
axn (‘,}xn-]ay (?'\,"n
where ¢, ¢j ===mm=nnm , Cn are constants and F 1s a function of *x” and ‘y’. It1s

homogeneous because all its terms contain derivatives of the same order.

Equation (1) can be expressed as

(ceD"+¢, D' D+ ... +¢,D" )z=F (xy)

or f(DD)z=F(xy) = ——u (2),
0 0 .
where, ----- =D and’ ——=D"
ox oy

As in the case of ordinary linear equations with constant coefficients the complete
solution of (1) consists of two parts, namely, the complementary function and the particular

integral.

The complementary function is the complete solution of f (D, D) z = 0------- (3), which must
contain n arbitrary functions as the degree of the polynomial f(D, D"). The particular integral is

the particular solution of equation (2).

Finding the complementary function

Let us now consider the equation f(D, D) z = F (X, y).

The auxiliary equation of (3) is obtained by replacing D by m and D by 1.



. -1
ie. 'C[]]Tl“+{:[m“ +  _+ EI‘L:D ________ (4}

Solving equation (4) for m, we get n roots. Depending upon the nature of the roots, the
Complementary function is written as given below:

Roots of the auxiliary Nature of the Complementary function(C.F)
equation roots
m;,mymy........m, distinct roots f) (ytmpx)+H6H(y+mox) + ... 4 (v+m,x).
m;=my=m, m3 My,.....m, | two equal roots | fi(y+mx)+xfa(y+m;x) + f3(y+msx) + ...+
fo(y+mpx).
m=my=...=m,=m |all equal roots fi(y+mx)+xfy(y+mx) + x f3(y+mx)+ ... .
+ . +x"" £, (y+mx)

Finding the particular Integral

Consider the equation fiD.D)z=F (x,y).
1
Now, the P.1is given by --------- F (x.y)
fiD.D)

Case (i) : When F(xy) =e™ +by

1
PI  erccccce——— e&‘*b)«
f(D.D)

Replacing D by ‘a’ and D by ‘b’, we have

3 SN ™™ where f(a,b) #0.



Case (ii) : When F(x,y) =sin(ax + by) (or) cos (ax +by)
1
BIS i) (ax+by) or cos (ax+by)
fiD*.DD D7)
Replacing D*=-a’, DD *= -ab and D =-b’, we get
l 2
| ) [ R sin (ax+by) or cos (ax+by) , where f(-a", - ab, -b%) #0.
f(-a’, - ab, -b%)
Case (iii) : When F(x,y) =x"y",
I L
PI=secaon® Y= [£@D} 2

Expand [f (D, D")]* in ascending powers of D or D' and operate on x™ y" term by term.

Case (iv) : When F(x,y) is any function of x and y.

1
Pl= .-------'-- F (X,y).
f(D.D)

1
Resolve--------.'--
f(D.D)

into partial fractions considering f (D,D") as a function of D alone.
Then operate each partial fraction on F(x,y) in such a way that

......... .F (x,y) = | F(x,c-mx) dx ,
D—mD

where c is replaced by y+mx after integration
Example 3
Solve (D% -3D?D' + 4D") z = e**¥

Solution.



The auxiliary equation is m®—3m? + 4 =0
Therootsare: m=-1,2, 2

Therefore, C.F. is fi(y-x) + f2 (y+ 2x) + xf3 (y+2X).

x+2y

e
L g (Replace D by 1 and D by 2)
D’-3D°D+4D"*

Hence, the solutionisz=C.F. + P.l.

e, z=f;(y-x)+ f(y+2x) + x f3(y+2x) + -=--n-mee-

Example 4

Solve (D? —4DD' +4 D'?) z = cos (x —2y)
Solution.

The auxiliary equation is m? —4m + 4 =0
Solving, we get, m = 2, 2.

Therefore, C.F is f1(y+2x) + xf2(y+2x).



|
~PI= mesmesmmommmmmmaeos COS (x-2y)
D -4DD + 4D

Replacing D* by — 1, DD by 2 and D * by —4, we have
1

Pl = cos (x-2y)
(-1)-4(2) +4(-4)

cos (x-2y)

- . . cos(x-2y)
. Solution is z = fj(y+2x) + xfy(y+2X) = ===emmmmmmeen i

25

Example 5
Solve (D? -2DD") z = X%y + &>

Solution.
The auxiliary equation is m? —2m = 0.
Solving, we get, m =0, 2.

Hence, C.F. is f1 (y) + f2 (y+2x).

Il
: —
TR
+
3°)
v
+
N
)
+
—
’;u
-
S’



2

1 2 . 4 2
= [(x3>")+ ——D(dy) + =D () ...

D~ D D
1 2 4
= _----{ (xzy) + e (xJ) § e — O)F s J
D’ D D’
1 2
= e (Xy) + = (X))
D D
xsy x°
— SRS T —
20 60
ch
Pl = =-=-=--e--m=-- (Replace D by 5 and D by 0)
D" -2DD
CS\
25 o >
‘)y ‘6 c),\
~.Solution is z = fi(y) + f2 (y+2x) + + +
20 60 25
Example 6

Solve (D’ + DD -6 D )22 =y COSX.

Solution.
The auxiliary equation is m? + m —6 = 0.
Therefore, m = -3, 2.

Hence, C.F. is fi(y-3x) + fa(y + 2x).



y COSX
PI=

D’+DD -6D

y COSX

(D+3D)(D-2D)

1 1

= ' === Y COSX
(D+3D) (D-2D)
1
S - [(c—2x) cosx dx, wherey=c-2x
(D+3D)
1
o - [(c—2x) d (sinx)
(D+3D)
1
= --- [(c—=2x) (sinx)—(-2) ( - cosx)]
(D+3D)
1
= [ y $in x — 2 ¢0s x}]
(D+3D)

= [(c + 3x) sinx — 2 cosx] dx , where y=c + 3x

= (¢ + 3x) (-cosx) — (3) ( - sinx) — 2 sinx
= -y COsX + sinx
Hence the complete solution is
z = fy(y —3x) + fo(y + 2X) —y cosx + sinx
Example 7

Solver —4s + 4t = ¢ 2

Solution.
@22 {3'22 5‘12

Given equation is --- o T DAL L
ox’ oxay By’

i.e, (D2-4DD' + 4D'2) z = e>*Y



The auxiliary equation is m? —4m + 4 = 0.

Therefore, m=2, 2

Hence, C.F. is fi(y + 2x) + X fa(y + 2X).

Tuty

Pl = 8 - T
D’ —4DD+4D

Since D2 -4DD'+4D'2 = 0 for D = 2 and D' = 1, we have to apply the general rule.

2x+y

e
o L B

(D-2D) (D -2D)

1 1

el 2x+y
e

(D-2D) (D-2D)

o [P ™ x| where y=c—2x.
(D-2D)

1 1

i Iy

(D-2D) (D-2D)

1
= [ ™ ™ dx , where y=c—-2x.
(D-2D)

y+2x

= essssssssssee xXg -

D-2D



"~ )
=[xe™*™dx , wherey=c-2x.

Hence the complete solution is

z = fi(y+2x) + f5(y+2x) + ==--- e

3 Non —Homogeneous Linear Equations
Let us consider the partial differential equation
f(D,D) 2 = F (xy)—— (1)

If f (D,D") is not homogeneous, then (1) is a non—-homogeneous linear partial differential
equation. Here also, the complete solution = C.F + P.I.

The methods for finding the Particular Integrals are the same as those for homogeneous linear
equations.

But for finding the C.F, we have to factorize f (D, D') into factors of the form D — mD' —c.

Consider now the equation (D -mD' —) z = 0 ----------- (2).
This equation can be expressed as p —mq = €z --------- (3), which is in Lagrangian form.

The subsidiary equations are

The solutions of (4) are y + mx = a and z = be®.

Taking b =f (a), we get z = e f (y+mXx) as the solution of (2).

Note:



1. If (D-m:D'-Cy1) (D —-m2D'-C2) ...... (D-mnD"™-Cy) z = 0 is the partial
differential equation, then its complete solution is

z = e fi(y +max) + e%* fo(y+max) +. . . .. + €% fa(y+mnXx).
2. In the case of repeated factors, the equation (D-mD' —Cn)z = 0 has a complete

solution z = €™ fy(y +mx) + x e fo(y+mx) + . . . .. +X n-1 €% fa(y+mx).

Example 8
Solve (D-D'-1) (D-D' -2)z = e Y

Solution.
Here, mi=1, mx=1,c1=1,co=2.

Therefore, the C.F is e* f1 (y+x) + &% f5 (y+Xx).

2x-y

€
PIL= : : PutD=2,D=-1.
(D-D-1)(D-D -2)

2x-y

e
2-(-D-DH2-(-D-2)
e;‘.\-)
2
e
Hence the solution is z=e* fj (y+x) + €™ 5 (y+X) +  =meememmme
2

Example 9

Solve (D2 -DD' + D' -1) z = cos (X + 2y)
Solution.

The given equation can be rewritten as
(D-D'+1) (D-1) z = cos (X + 2y)
Heremi=1,m2=0,c1=-1,cc=1.

Therefore, C.F. = e * fi(y+x) + e* 2 (y)



1 2
PI= e cos (x+2y) [PutD*= -1DD =-2.D = -4]
(D’-DD +D -1)

1
= - cos (x+2y)
-1=-(=2)+D-1

1
= i cos (\+2))
D

sin (x+2y)
2
sin(x+2y)

Hence the solution is z = e™ fj(y+x) e* fi(y) + ==eesemmeamenen- )

Example 10

Solve [(D + D'-1) (D + 2D' —3)] z = &**¥ + 4 + 3x +6y
Solution.

Heremi=-1m;=-2,c1=1,c2=3.

Hence the C.F is z = e* fi(y —x) + e¥* fo(y —2X).

Hence the C.F is z=e¢" fy(y — x) + ¢ fy(y — 2x).

X#2y
et

Pl = . : [PutD=1,D=2]
(D+D' - 1) (D +2D - 3)

X+2y
e

(142 = 1) (144 = 3)



PLL= (4 + 3x + 6y)
(D+D - 1) (D + 2D - 3)

1

= (4 + 3x + 6y)
D +2D
A1 =D LN ssmnenas
3
I : D+2D Y
= e [I =(D+ D)]" |1 = weemeemmmneeee (4 +3x+6y)
3 3

I ‘ - D+2D | .
Seee[1 +(D+ D)+ (D+D) + .. ] &+ ------- ee + ceeee (DH2D ) + ... ﬂ (4 + 3x +6y)
3 3 9

1 4 - -
i LIl D SR D+ ....|(4+3x+6y)
3 3 3
1 4 5
= eeee | 4 43X + 6y + =emm (3) + ====(6)
3 3 3
=x+2y+6

Hence the complete solution is

X2y

z2=¢") (y=-X) + €™ £ (y = 2X) + ==emeee + X 4+ 2y + 6.
4

4 Monge’s Method
This method is used to solve non-linear second order PDE with the standard form

Rr+Ss+Tt =V 1)
Where R, S, T and V are functions of x, y, z, p and g.
Procedure to solve by Monge’s method:



Stepl: Write the given PDE in the standard form and find R, S, T and V.

Step 2: The auxiliary equations are:

Rdpdy + Tdqdx — Vdxdy = 0 (2)

R(dy)? — Sdxdy + T(dx)?> =0 (3)

Step 3: First factorise equation (3) and get the factors in terms of dx and dy.

Step 4: If these factors are equations (4) and (5), use each factor in (2) to get equations (6) and
.

Step 5: Obtain the values of p and g using equations (6) and (7).

Step 6: The general solution of (1) is dz = pdx + qdy.

Example 11

Using Monge’s method, solve 2 = at.
Solution.

Given equation is 7% = at (1)

HereR =1,S=0,T = —a? V = 0.

Monge’s auxiliary equations are:

Rdpdy + Tdqdx — Vdxdy = 0 (2)

R(dy)? — Sdxdy + T(dx)? =0 €))

From (3), we have, (dy)? — a?(dx)? = 0.

= (dy — adx) = 0 and (dy + adx) = 0.

= dy = adx and dy = —adx.

Integrating both the equations, we get,

= y=ax+candy = —ax + c,.

=y—ax =c¢ @andy+ax=c, (5
Case(i) Put (4) in (2).

= dp(adx) — a’dqdx = 0.

= dp —adq = 0.

Integrating, we get,

= p—aq = @;(y — ax) (6) [using equation(4)]
Case(ii) Put (5) in (2).

= dp(adx) + a*dqdx = 0.

= dp + adq = 0.

Integrating, we get,

= p+aq = @,(y + ax) (7) [using equation(5)]
6)+ ()= 2p = @1(y — ax) + ¢, (y + ax).

= p =301~ a0) + 9, (y + ax)].

(7) = (6) = 2aq = ¢, (y + ax) — 1 (y — ax).

= q=—[p:(y + ax) — 91 (y — ax)].

The general solution of (1) is dz = pdx + qdy.

Substituting p and q in dz = pdx + qdy, we get,

dz = [p1(y — ax) + o (y + ax)]dx + [, (y + ax) — ¢, (y — ax)]dy.
Simplifying and integrating we get,

z =91 (y —ax) + P, (y + ax)].




The arbitrary constant of integration may be considered as absorbed in either of the functions

Y1(y — ax) or P, (y + ax).
Therefore, the complete integral is z = ¥, (y — ax) + ¥, (y + ax)] where ¥; and i, are
arbitrary functions.
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