INSTITUTE OF SCIENCE AND TECHNOLOGY

(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES
DEPARTMENT OF MATHEMATICS

UNIT — I — Ordinary Differential Equation - SMTA1303




COURSE NAME: DIFFERENTIAL EQUATIONS AND NUMERICAL METHODS
COURSE CODE : SMTA1303

UNIT —1 ORDINARY DIFFERENTIAL EQUATION

Exact differential equation.
A first order differential equation of type M (X, y)dx+ N(X, y)dy =0

is called an exact differential equation if there exists a function of two variables u(x,y) with
continuous partial derivatives such that du(x, y) = M (X, y)dx+ N(x, y)dy

The general solution of an exact equation is given by u(X,y)+ j f (y)dy = c ,where c is an arbitrary

constant

Test for Exactness
Let functions M (X, y) and N(X,y) have continuous partial derivatives in a certain domain D.

oM ©ON

The differential equation M (x, y)dx+ N(x, y)dy = 0is an exact equation if and only if E = X
X

Algorithm for Solving an Exact Differential Equation

1. First it's necessary to make sure that the differential equation is exact using the test for exactness:

M _oN
oy 0oX

2. Integrate M with respect to x keeping y constant ieJ. Mdx

3. Integrate those terms in N not containing x with respect to y.ieI {N —%J. de} dy

4. The general solution of the exact differential equation is given by I Mdx +J. {N —%J. de} dy=c

Examplel. Solve (5x* +3x°y* —2xy®)dx + (2x°y —3x%*y* —=5y*)dy =0

M =5x* +3x2y? — 2xy° N =2x’y—3x’y* —5y*

= M _ 6X°y —6xy? and 2—N =6x°y —6Xy? = M _ Z—N -.the givenequation isexact.
X X

oy



The required solution is given by I MdX+I [terms of N not containing X]dy =C
J(Sx“ +3x%y? —2xy¥)dx  + I (-5y")dy =c

X6 +xX3y? —x2yP —yS =¢

Equations Reducible to Exact equations.

Rulel. If i(ﬂ—@) is function of x alone ,say f (x)thenI.F = o) 1000
N oy ox

Rule2. If _—1(%—@) is function of y alone ,say f (y)then I.F = ol 100
M oy ox
Rule3. If M isof the formM = yf (xy) N isof the form N = xf, (xy),then |.F = v ! N
X—Ny
Rule4. IfMdx + Ndy =0 isahomogeneous equationin xand ythen |.F = !
Mx + Ny
Example2. Solve (2xlogx— xy)dy +2ydx = 0.
Solution . Given (2xlog x—xy)dy +2ydx =0. (1)
Here M =2y, N =2xlogx-xy.
:@:2 and 2—N:2(1+Iogx)—y =
X
1 (6I\/I __ ON y — —2logx+y = 1
N oy OX 2x log X — xy x

-1
|F =l 0o :ehdx —g X —x =

< |~

OILF=> ﬂdx+ (2log x — y)dy = 0= mdx + ndy = O which is exact.
X
The required solution is given by jmdx+I [terms of n not containing x]dy =c

= The required solution is given byj' ﬂdx+_|' (-y)dy=0.
X

2
= The required solution is given by 2ylog x—y? =0.

Example3. Solve (y*+2y)dx+(xy® +2y* —4x)dy =0.

Solution . Given (y* +2y)dx+ (xy* +2y* —4x)dy =0. (1)
HereM =y* +2y N =xy’+2y* —4x

M ON.  (4y'+2)-(y'-4) _

:ﬂ:4y3+2 and ﬂ=y3—4:> _—1(———)= .
oy OX M oy ox y'+2y

_ A-3logy _ ,-3 _
=e _y =—

y
DIL.F= (y+%)dx+(x+2y—%)dy = 0= mdx + ndy = Owhich is exact.

LE el 0

The required solution is given by jmdx +I [terms of n not containing X]dy =C

3

-—=1f(y).
y



= The required solution is given byj (y+%)dx+.[ (2y)dy =c.
y
The required solution is given by x(y+%) +y’=c¢
y
Exampled. Solve Y(Xy+2x*y*)dx+ x(xy —x*y*)dy =0.

Solution . Given Y(Xy + 2x*y?)dx + x(xy —x*y?)dy =0. (1)
= y(1+2xy)dx+ x(1—xy)dy =0

M =y(@+2xy) = yf,(xy) and N = Xx(1-xy) = xf,(xy),
1 1 1

Then |.F= == =
Mx—Ny  y(@+2xy)x—x(L-xy)y 3x%y?
1 2 1 1 .
WI.F = (-5 +--)dX+(-—5 —=—)dy = 0= mdx +ndy = Owhich is exact.
3x°y  3x 3xy° 3y

The required solution is given by jmdx+f [terms of n not containing x]dy =c
1
3x°y

1 2logx lo
209X 109y _ .

= The required solution is given byj ( +£)dx+.[ (—i)dy =C.
3X 3y

= The required solution is given by —

3xy 3 3
3 3
Example5. Solve d—y = #
dx Xy
Solution . Given (X% + y®)dx + (xy?)dy = 0. (1)

Here M = (x® + y*)and N =—(xy?)whicharehomogeneousin xand y.
1 1 1

A

thenl.F = =— =
Mx+Ny (X°+y)x+(=xy9)y X

3 2
@1F = 2+ Lydx— (X )dy = 0= mdx + ndy = Owhich is exact.
X X X

The required solution is given by jmdx +I [terms of n not containing X]dy =C

3
— The required solution is given by J' (£+y—4)dx+.[(0)dy =c.
X X

3

= The required solution is given by log x —% =C.
X

Example6. Solve (y° —2x°y)dx+ (2xy* —x*)dy =0



Solution . Given (y* —2x?y)dx+ (2xy® —x*)dy =0.

3 ny2
Heredy f(x,y):—y 2xy

— = — 3 (1) which are homogeneous in x and y.
dx 2Xy“ —X

puty=vx in (1) P S 2 . S
' dx  2xvx2-x*  2v’-1

dv 2v—V3 3v-3v°
X—=—a——V=—"
dx 2v°-1 2v- -1
2_ 2_
jzv—zldvzxdx:# V:|:é i_{_i:ldvz_:gd_x
=3v(v- -1) v(ve-1) v v+l v-1 X

:>I F+1/—2+1/—2}dv=j —3%+c
v v+l v-1 X

= log(vy/v> —1) =—log x* +logc

=x}(vW/V* -1)=c

=Xy (x* ~y*)=c

LINEAR EQUATIONS OF HIGHER ORDER

A linear equation of n™ order with constant coefficients is of the form

dny dn—ly dn—Zy

o +a, o +a2W+ ..... a,y=X (1)

where a;, a,....... a, are constants and X is a function of x. This equation can also be written in the form
(D" +a, D" +a,D"? +..... +an)y: X where D = " D? :%, ........ D" = (;jxnn

Consider (D” +a,D"" +a,D"% +...+a, )y =0 2)

where y,,Y,,......y, are nindependent solutions and c,,C,,......C, are arbitrary constants.

Y is called the complementary function (C.F) of equation (1).
Suppose u is a particular solution (particular integral) of equation (1)
Then the general solution of equation (1) is of the form y=Y+u where Y is the complementary function

and u is a particular integral (P.I).



Thus y=C.F + P.I

To find Complementary functions

Case (1)

Roots of the A.E are real and distinct say m; and m;
y=c,e™ +c,e™"

Case (2)

Roots of the A.E are imaginary then

y=e(c, cos X + ¢, sin px)

Case (3)

Roots of the A.E are real and equal say m; = m, then

y=e™(c,x+c,)

2

1.sove 3 2% 43y
dx dx

Put i= D
dx

(D?y - 2Dy +3y)=0
(D2 -2D +3)y=0

The auxiliary equation is m* —2m+3=0

(22 - @0E)

(2)@)
m=24_rB
2
2+i22
m=——m—>
2

m=1+iv/2



CF=¢" [cl COS(\/EX)-F C, sin(\/Ex)J
The general solution is y = C.F+P.|

y=e* lcl cos(\/ix)+ C, sin(\/ix)J+0

To find Particular integral

When the R.H.S of the given differential equation is a function of x , we have to find particular

Integral.
Case (i)
If f(x)=e%,then P.l = F(lD) e® . Replace D by a in F(D), provided F(D)# 0.
X
If F(a) = 0 then P.I = e® provided F'(a) =0
(@) (D) p (a)

If F’'(a) = 0 then P.I =

e® provided F"(a) #0 and so on

X
F"(D)

Case (ii)

If f(xX) = sinax or cosax then P.l = sin axor cosax

Replace D’by —a?in F(D), provided F(D)# 0.
If F(D) = 0, when we replace D? by —a® then proceed as case (i)
Case (iii)

If f(x) =a" then P.l = X"

F(D)

P.1 =[F(D)]'x" , Expand [F(D)]" by using binomial theorem and then operate on x".
Case (iv)
If f(x)=e™x, where X is sinax (or) cosax (or) x then

1 Ay _ g 1

Pl=—"o¢ — - X
F(D) F(D +a)



Here ; X can be evaluated by using anyone of the first three types.
F(D+a)

Problems

1.Solve (D2 +6D +9)y =5e*
m’+6m+9=0

(m+3)* =0

m=-3,-3

C.F=(c,x+c,)e™

1

Pl = - 5e*
iD +6D +9i

-
(3)* +6(3)+9

5

_e3x

36

The general solutionisy = C.F + P.I

2. Solve (D2 +6D + 5)y =g
m? +6m+5=0
(m+5)m+1)=0

m=-1,-5

CF=ce ™ +c,e™

1

P.I = e’
[iDZ +6D +5iJ

i {(—1)2 +2(—1)+ 5]e_x



The general solutionisy = C.F + P.I

—-X

. sy, X
y= ce " +c e 5X+Ze

2.Solve (D2 +D+ 1)y =sin2x
Solution:

The auxiliary equation is m? +m+1=0

_1+i43
2

C.F= e_z)(|:c1 cos{@J +C, sin{@ﬂ
2 2

P.l = 1 sin2x
(D2 +D +1ij

= ; sin2x
(-4+D+1)

= ! sin2x
=

D+3 .
== Sin2x
D -9

D+3

jsian

_ 2cos2x  3sin2x
13 13




The general solutionisy = C.F + P.I

> \/_ \/_x _2cos2x  3sin2x
y=e?|c,co +C, sin
13 13

3.Solve (D? +3D + 2y = X
Solution:

The auxiliary equationis m* +3m+2=0
(mM+2)(m+1)=0
Hence m=-2, -1

—X

CF=ce ™ +c,e

P.I = L x?
iDZ +3D+2i

2 -1
_1(,,3D+D%) ,
2 2

The general solutionisy = C.F + P.I

1 7
=ce?+ce+ = x?-3x+—
y 1 2 2( 2]
4. Solve (D2 —4D +3)y =e* cos2x

Solution:

The auxiliary equation is m* —4m+3=0

Mm-1)(m-3)=0



Hencem=1,3
C.F=ce* +c,e*

1

P.l = 5 e’ cos2x
iD - 4D + 3i

eX
) (D +1)° —4(D+1)+3JCOSZX

ex
= = C0S2X
D°-2D

= _¢ CO0S2X
-4-2D

_ e {(D—Z)COSZX}

2 ~8

X

= € (~2sin2x - 2cos2x)
16

X

= —%(sin2x+0052x)

The general solution is y =C.F+ P.|

X

er .
y = c,e* +c,e® — ——(sin2x + cos2x)
8

5. Solve (D? —2D +2)y = e* sinx
The auxiliary equation is m* —2m+2 =0
m=1+i

C.F=e*[c,cosx +c, sinx]



1

P.I = e” sinx
(D2 -2D + 2’]

X

| (D+1 -2(D+1)+ 2}“

[ ex .
= sinx
| D? +J

B X

e

= e* Imaginary part of —}e‘x

= e* Imaginary part of 2—1_xeix}
' 2i

N 1 o
= e* Imaginary part of —Elx(cosx+|smx)}

1. .«
= — = xe* cosx
2
The general solutionisy = C.F + P.I
x - 1. .«
y = e*[c, cosx +c, sinx] — 5 Xe’ cosx

6. Solve (D° —3D? +3D —1)y = x%e”

The auxiliary equation is m® —3m? +3m—-1=0

(m-1° =0

m=1 (thrice)

CF = ex(c1+c2x+03x2)

P.1 = 1 2@X

X
D®-3D*+3D-1

e” )
= X
(D+1°-3D+1}° +3(D+1)-1

11



e X 1 2
- e (Eg)x
e*x*® : . %
= 80 ( By integrating x? thrice with respect to x )

The general solutionis y = C.F + P.|

e*x*®
60

y=e" (c, +C,X +Cyx7 )+

12
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COURSE NAME: DIFFERENTIAL EQUATIONSAND NUMERICAL METHODS

COURSE CODE: SMTA1303

UNIT- 1l PARTIAL DIFFERENTIAL EQUATION

INTRODUCTION

A partial differential equation is an equation involving a function of two or more

variables and some of its partial derivatives. Therefore a partial differential equation contains one

dependent variable and more than one independent variable

Notationsin PDE

p=0z/0x q=dzloy

r = 9%2/0x?
s = 022/0xdy
t = 9°z/oy?

Formation of partial differential equations:
There are two methods to form a partial differential equation.
(i) By elimination of arbitrary constants.

(i) By elimination of arbitrary functions.

Formation of partial differential equations by elimination of arbitrary constants:
1. Form ap.d.e by eliminating the arbitrary constants a and b from Z=(x+a)?+(y-b)?
Solution:

Given Z= (x+a)?+(y-b)?



0z . p
P=— =2(x+a) , ie) x+ta= —
OX (+a) ) 2
0z . q
=—=2(y-b) , ie) y-b=—
q oy (y-b) ) yb=3
pY (aY
)=z =+ 2
W= @ @
2 2
4 4
4z = p*+q?
which is the required p.d.e.
2. Find the p.d.e of all planes having equal intercepts on the X and Y axis.
Solution:
Xy z
mmmqnmmﬂﬁmeMMmaNanB-a+E+E:L

Given : a=b. [Equal intercepts on the x and y axis]

LR S|
a b c (1)

Here a and c are the two arbitrary constants.

Differentiating (1) p.w.r.to ‘x’ we get

1+0+l§:O

a C OX

1+lp:0.

a c

1 1

—=—-=—p. 2
=P @

Diff (1) p.w.r.to. ‘y’ we get



Sy 3
C

From (2) and (3) :-%pz—%q

p=q ,which is the required p.d e.

3. Form the p.d.e by eliminating the constants a and b from z = ax"+by".
Solution:
Given: z =ax"+by". (1)

p=L _ anxmt
0

o= axt
px

Multiply © x* we get, " = ax" (2

oz

= 2= =pny™!

q oy y
H = byn-l

: LV
Multiply “y* we get, |~ =by"  (3)

- : : Px oy
Substitute (2) and (3) in (1) we get the required p.de z= "+,

zn = px+qy.



Formation of partial differential equations by elimination of arbitrary functions:

1. Eliminate the arbitrary function f from z= f[%} and form a partial differential
equation.
Solution:
Given z = f(%] @

Differentiating (1) p.w.r.to ‘x’ we get

_oz_ [y -Y
== 37 @

Differentiating (1) p.w.r.to y we get

_oz_.(y)\1l
vl @@ ®)

@ a x
SpX =-qy

ie) px+qy = 0 istherequired p.d.e.

2. Eliminate the arbitrary functions f and g from z = f(x+iy)+g(x-iy) to obtain a partial

differential equation involving z,x,y.

Solution:
Given : z = f(x+iy)+g(x-iy) Q)
0z ) .
pP= a_X = f'(x+iy)+g '(x-1y) 2

- f(x-+iy)-ig '(x-iy) @)
oy



2

r =% = Pl(cty) g (x-ly) @)

2

(o))

t= L= prxtiy)-g(x-iy) (5)

2

r+t=0 istherequired p.d.e.

3. Form the p.d.e by eliminating arbitrary function ¢ from the relation
d(xyz, x> +y® +12%)=0

Solution:
o
The pde is obtained from [2¥ X/ =0
o o
oy oy

YZ+Xyp 2X+2zp

XZ+Xyq 2y+2zq

(yz+xyp)(2y+220)-(xz+xyq)(2x+2zp)=0

SOLUTION OF PDE

Complete solution: A solution which contains as many arbitrary constants as there are
independent variables is called a complete integral (or)complete solution.(number of arbitrary
constants=number of independent variables)

Particular solution: A solution obtained by giving particular values to the arbitrary constants in
a complete integral is called a particular integral (or) particular solution.

General solution: A solution of a p.d.e which contains the maximum possible number of
arbitrary functions is called a general integral (or) general solution.

1. Find the general solution of 0

0’z _
oy?
Solution:

Given 6—: 0
0



ie) ﬁ(@j ~0
oy \ o
Integrating w.r.to ‘y’ on both sides

a_ a (constants)
oy

ie) g—;:f(x)

Again integrating w.r.to ‘y’ on both sides.
z = f(x) y + b which is the required solution.
Lagrange’s linear equations:

The equation of the form  Pp + Qq =R is known as Lagrange’s equation, where P, Q and R
are functions of x, y and z. To solve this equation it is enough to solve the subsidiary equations.

dx/P = dy/Q = dz/R

If the solution of the subsidiary equation is of the form u(x, y, z) = ¢1 and v(X, Yy, z) = ¢z then the
solution of the given Lagrange’s equation is ®(u, v) = 0.

To solve the subsidiary equations we have two methods:

1 Method of Grouping:

Consider the subsidiary equation dx/P = dy/Q = dz/R..Take any two members say first
two or last two or first and last members. Now consider the first two members dx/P = dy/Q. If P
and Q contain z (other than x and y) try to eliminate it. Now direct integration gives u(x, y) = c1.
Similarly take another two members dy/Q = dz/R. If Q and R contain x(other than y and z) try to
eliminate it. Now direct integration gives v(y, z) = c2. Therefore solution of the given Lagrange’s
equation is ®(u, v) = 0.

1. Solvepx+qy=z
Solution:
The Lagrange'segnisPp+ Qg =R

and the auxilliary eqn. is% Y &
P Q R



ie dx _dy_az (1)

X 'y z
Taking the first two ratios,

dx _dy

Xy

Integrating, logx = logy + loga
>=a 2)
y

Similarly, taking last two ratios of eqn (1),

2-b ®)
z

Eqgns (2) and (3) are independent solns of (1).

Hence the complete soln of the given eqgn. is ¢(u,v)=0

ie; ¢[5,¥j=0
y Z

Method of multiplier’s

Choose any three multipliers I, m, n may be constants or function of x, y and z such that
in%_ﬂ_g_ldx+mdy+ndz
X 'y z IP+mQ+nR

the expression IP + mQ + nR =0. Hence ldx + mdy + ndz=0

. . I
[ since each of the above ratios equal to a constant X = ady = gz = dx + mdy + ndz
X 'y z IP+mQ+nR

=k(say)

ldx + mdy + ndz =k(IP + mQ + nR)



If IP+mQ+nR=0 then Idx + mdy + ndz=0]
Now direct integration gives u(X, y, z) = c1.
similarly choose another set of multipliers 1’, m’, n’

dx dy dz Il'dx+m'dy+n'dz

y z I'P+m'Q+n'R

the expression I'P+m'Q+n'R =0
therefore I'dx+m'dy+n'dz =0 (as explained earlier)

Now direct integration gives v(X, Y, z) = C2.

Therefore solution of the given Lagrange’s equation is ®(u, v) = 0.

1. Solve x(y? —z?)p—y(z® + x*)q=z(x* + y?)
Solution:

The Lagrange'seqnis Pp+ Qg =R

and the auxilliary eqgn. is% Yy &
P Q R
dx dy dz

X(y?—27) —y(z?+x%) 2(x’+y?)

Taking multpliers as x,y,z;
dx dy dz Xdx + ydy + zdz

x(yz—zz) —y(z® +x3) z(x*+y?) xX*(y*-z3) -y (2 +x)+ 2% (x> +y?) (say)

xdx+ ydy + zdz =k(x*(y* —z%) — y*(z® + x*) + 2*(x* + y?))

xdx+ ydy + zdz =0

2 2 2
Integrating , X? B y7 + Z? :%

ie; X2+y’+z%=¢



u=x2+y*+ 27 1)
Again taking the multipliers as 1/x,-1/y,-1/z,

d q d 1dx+_—1dy+_—1dz
2X 2 = 2y 2 = 2Z 2 = 2 X2 g 2 : 2 2 =k(3ay)
x(y —z) —y(z°+x%) z(x*+y°) (Y -z)+(z°+x)=-(x"+y°)

1dx+_—ldy+_—1dz=k(y2 1)+ (@2 +x)-(x2+y?H)
X y z

1dx+_—1dy+_—1dz=0
X y z

Integrating, log x- log y- log z= log C’

)

X
Solutionis (% +Y° + ZZ,;) =0
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COURSE NAME: DIFFERENTIAL EQUATIONSAND NUMERICAL METHODS

COURSE CODE: SMTA1303

UNIT- 111 NUMERICAL METHODSFOR SOLVING EQUATIONSAND INTERPOLATION

INTRODUCTION
Solution of Algebraic and Transcendental Equations

A polynomial equation of the form
fO) =pa()=apx™ + a1 X + a2 + . A X+ a,=0
is called an Algebraic equation. For example,
.4 4:_{_(}4_2 i'—-'—[]'-.l‘j {:—"-—{—{} R R
T =30 7o=U A —ox T A=A =% T AT 3 = Uare algebraic equations.

An equation which contains polynomials, trigonometric functions, logarithmic functions,

exponential functions etc., is called a Transcendental equation. For example,
. +
tanx—e =0; sinx —xe™ =0; xe =cosx

are transcendental equations.

Finding the roots or zeros of an equation of the form f(x) = 0 is an important problem in
science and engineering. We assume that f (x) is continuous in the required interval. A root of
an equation f (x) = 0 is the value of x, say x = a for which f () = 0. Geometrically, a root of
an equation f (x) = 0 is the value of x at which the graph of the equation y = f (x) intersects the
X — axis (see Fig. 1)

fix) T

Yy—l'{xl )

Fig. 1 Geometrical Interpretation of a root of f(x) =0

A number o is a simple root of f (x) = 0; if f () = 0 and f '(a) # 0. Then, we can write



f(x) as, f (x) = (x—a) g(x), 9(a) #0.
A number a is a multiple root of multiplicity m of f (x) =0,

and ) ™ (a)=0.
Then. f(x) can be writhen as.

fO=@Ex-a)gx).g(a) = 0

A polynomial equation of degree n will have exactly n roots, real or complex, simple or
multiple. A transcendental equation may have one root or no root or infinite number of roots
depending on the form of f (x).

The methods of finding the roots of f (x) = 0 are classified as,

1. Direct Methods

2. Numerical Methods.

Direct methods give the exact values of all the roots in a finite number of steps. Numerical
methods are based on the idea of successive approximations. In these methods, we start with
one or two initial approximations to the root and obtain a sequence of approximations Xg, X1,

.. xk Which in the limit as k —co converge to the exact root x = a. There are no direct methods
for solving higher degree algebraic equations or transcendental equations. Such equations can
be solved by Numerical methods. In these methods, we first find an interval in which the root
lies. If a and b are two numbers such that f (a) and f (b) have opposite signs, then a root of f
(X) = 0 lies in between a and b. We take a or b or any valve in between a or b as first
approximation x;. This is further improved by numerical methods. Here we discuss few

important Numerical methods to find a root of f (x) = 0.



NEWTON RAPHSON METHOD

' i(x)

./ /z’ Xn+2 :!Xn+1 Xn

\
¥

This is another important method. Let xy be approximation for the root of f(x) = 0. Let
x; = xg + & be the correct root so that /(x;) = 0. Expanding { (x,) = {xy + &) by Taylor series,
we get

Fl) = oo+ R =) +h et e )+ =0 (1)

2r
For small valves of h, neglecting the terms with hi B ... ete, We get

Sxa)+h lx)=0 e 2)

- S(x)
S(xy)
xy=xp+h
S(x,)
f(x,)

and h=

=Xx9—

Proceeding like this, successive approximation xs, X3, ... X, - are given by,
S(x)

- 5 (3
F(x) &

Xn+1—Xq

Forn=0,1,2, ......
Note:
(1) The approximation x,.; given by (3) converges, provided that the initial
approximation xy is chosen sufficiently close to root of /(x) = 0.
(i1) Convergence of Newton-Raphson method: Newton-Raphson method is similar to
iteration method

Sf(x)
X)=x—=2 (1)
5 S (x)

differentiating (1) w.r.t to ‘x” and using condition for convergence of iteration method i.e.

[0 <1,



We get

- f'[-*f]'-f'[.‘fll—_J"‘[.r]_f"[x]|{]
WREIN |

Simplifying we get condition for convergence of Newton-Raphson method is

|A(x). ()| < AT

Example 1

Using Newton-Raphson method (a) Find square root of a number (b) Find a reciprocal

of a number.

Solution

(a) Let n be the number and x = vn x* = n

fFf(X)=x*-n=0....(1)

Then the solution to f (x) =x*—n=0is x =Vn

f1(x) = 2x

by Newton Raphson method
fix) xf -n

fl(x,.}::"'_[ ]

) 1 X
.71r'+‘1=? X. +—

using the above formula the square root of any number ‘n’ can be found to required

Xi+1=X;i—

accuracy.
(b) To find the reciprocal of a number ‘n’

f)=--n=0 (D)
.. solution of (1) is x = %
10 =—

Now by Newton-Raphson method,



= [ flm;-} ]
fix)

Xi+1=X (2-x;n)
using the above formula the reciprocal of a number can be found to required accuracy.
Example 2
Find the reciprocal of 18 using Newton—Raphson method
Solution

The Newton-Raphson method
Xiv1 = Xi (2 —Xi n) (D)
considering the initial approximate value of x as xo = 0.055 and given n = 18

. X1 =0.055 [2 — (0.055) (18)]

. X1 = 0.0555

X2 = 0.0555 [2 — 0.0555 x 18]

X, = (0.0555) (1.001)

Xo=0.0555

Hence x; = X, = 0.0555

.. The reciprocal of 18 is 0.0555.

Example 3
Find a real root for x tan x +1 = 0 using Newton—Raphson method
Solution

Givenf(x)=xtanx+1=0



f1(x) = x sec2 x + tan x
f(2)=2tan2+1=—3.370079<0
f(3)=2tan3+1=—0572370>0

.. The root lies between 2 and 3

Take xo :22LS =25 (average of 2 and 3), By Newton-Raphson method
_-}l'._l = x: — [ f{:{i} ]
I A )
([ f(x)
X1 =%o— | g
\ f (xu}_
X =25 (—0.86755)
3.14808

x; =2.77558

_ f(x)
1T - 3 :
fix)
f(x1) =—0.06383. F(x1)= 2.80004
06383
1, = 277558 _ (2006383
2.80004
X3 =2.798
f(x)=—0.001080,  f(xy)=2.7983
| — 0.001080
X3 =1 — 7{(’-} — 2795 2 0.001080]
ix) 2.7983
x3=2.798.
X=X

.. Thereal root of x tanx +~ 1 =01s 2.798
Example 4
Find a root of €* sin x = 1 using Newton—Raphson method
Solution

Givenf(x) =¢e*sinx—1=0

f1(x) = e*sin x + e* cos x



Takex; =0,x;=1
f(0)=f(x;)=e’sin0-1=-1<0

f(1)=f(xp) =e'sin (1)—1=1.287>0

The root of the equation lies between 0 and 1.Using Newton Raphson Method

Xy
Ki+1 =X — ‘fl( )
ANE
Now consider xg = average of 0 and 1
_1+0 0.5
Xpog = > = .
xp = 0.5

f(xp) = €% sin (0.5) — 1
I (x) = €7 sin (0.5) + &7 cos (0.5)=2.2373
f(%) _ 5 _ (£0.20956)

Xy — Xp— -
LT T ) 52373

x1 =0.5936
f(x1)=¢" sin (0.5936) — 1 =0.0128
1 () = €% sin (0.5936) + €% cos (0.5936) = 2.5136

fI(xl} —0.5036_ (0:0128)

X2 =X — -
fx) 2.5136
x; = 0.58854
similarly X3=X— @
J(x)

f(x) =% sin (0.58854) — 1 = 0.0000181

£ () = "7 sin (0.58854) + "% cos (0.58854)
f(x)=2.4983

0.0000181

x3 =0.58854 —
2.4083
a3 = 0.5385

Xy —x; =0.5885

0.5885 is the root of the equation € sinx—1=0



SOLVING A SYSTEM OF LINEAR EQUATIONS

The system of equations

11171 + @19F3 + oo, BTy =
91 F] + d20Fs + ..., Qo, Ty = Da
Ap)1L) T dp2ds T .oy Apnly = ll-i'rl

can be expressed in the matrix form as AX = B where

where [A4] is an n ® n matrix of coeflicients

fiy] 413 ... i
flay daz ... ilag
|_ 1 LEo) ass Apn J

B is the n x 1 column vector of constants, and X is the n = 1 column vector of unknowns:
[o] [=]
g_ | ® X=| "
by I
Two types of approach, Direct and Indirect (or Iterative) methods are used for solving system
of linear equations. In direct methods, the solution is obtained by performing arithmetic
operations with the equations using matrix form whereas in iterative methods, an initial

approximate solution is assumed and then an iterative process is used for obtaining
successively more accurate solutions.

Direct methods for solving system of equations
)} Gauss-Jordan method  ii)  Crout’s method
Indirect methods for solving system of equations
Gauss-Seidel method
In Gauss Jordan method, coefficient matrix is converted into a diagonal matrix.

In the case of Crout’s method, “A” matrix is decomposed into LU matrix where L is the
lower triangular matrix and U is the unit upper triangular matrix and then the unknown values
are obtained.

In Gauss-Seidel method, transform the equations in such a way that the first equation has ‘x’
coefficient as the largest; the second equation has ‘y’ coefficient as the largest; the third
equation has ‘z’ coefficient as the largest and so on. Assuming initially the values of the
unknowns as 0, refine the values of the unknowns by taking the latest values at each stage.



Example 1. Solve the following system by using the Gauss-Jordan elimination method.

T+y+z=23
20 4+ 3y + 52 =38
dr + 52 =2

Solution: The augmented matrix of the system is the following.

= N

11
3 5
0 5

N Co Ut

We will now perform row operations until we obtain a matrix in reduced row echelon form.

1 1 1|5
2 3 5|8
4 0 5|2

11 1] 5
fa2f, o 13| -2
40 5| 2
1 11| 5
L I T T O )
0 —4 1|-18
11 1] 5
fotlfe, o 1 3| —2
0 0 13]-26
11 1] 5
LR
BTl o0 1 3] -2
00 1|-2
11 1] 5
o35 1 g 1 0] 4
00 1|-=2
11 0| 77
fa-Rs, 1 0| 4
00 1]|-2
710 0 37
MR g1 0] 4
00 1]|-2




Example 2. Solve the following system by using the Gauss-Jordan elimination method.

r+2y—3z2=2
6 +3y—92 =6
Tr+ 14y — 21z = 13

Solution: The augmented matrix of the system is the following.

1 2 =32
6 3 —-91]6
7 14 -21|13

Let’s now perform row operations on this augmented matrix.

1 2 —3|2 1 2 -3 2
6 3 —9]6 |2 1o 9 9|6
7 14 —21 |13 7 14 —21| 13
(1 2 —3| 2

Bl g 9 9l—6

0 0 0|-1

We obtain a row whose elements are all zeros except the last one on the right. Therefore, we conclude
that the system of equations is inconsistent, i.e., it has no solutions.

Example 3. Solve the following system by using the Gauss-Jordan elimination method.

dy+z2z=2
20+ 6y —22=3
dr+8y — bz =4

Solution: The augmented matrix of the system is the following.

0 4
2 6 =23
4 8



We will now perform row operations until we obtain a matrix in reduced row echelon form.

04 1]2 2 6 —2|3
9 6 —2]3 | Br=B2 1 g 4 102
4 8 —54 4 8 —5|4
2 6 —2| 3

i I I B )

0 -4 —1|-2

6 —213

fstle g 4 12

00 00

e [26 -2 3

- 01 1/4]1/2

00 010

2 0 —7/2| 0
F6R g1 1/4(1)2

00 010

e [10 =7/4] 0

2, 1 1/4|1/2

00 010

This last matrix is in reduced row echelon form so we can stop. It corresponds to the augmented
matrix of the following system.

We can express the solutions of this system as
_7 =1_1
T=32, Y=35— 72

Since there is no specific value for z, it can be chosen arbitrarily. This means that there are infinitely
many solutions for this system. We can represent all the solutions by using a parameter ¢ as follows.

Any value of the parameter ¢ gives us a solution of the system. For example,

t =4 gives the solution (z,y,z2) = (7, _%74)

t = —2 gives the solution (z,y,z)= (—%, 1,-2).

11



Example 4. Solve the following system by using the Gauss-Jordan elimination method.

A+B+2C=1
2A-B+D=-2
A-B-C-2D =14
2A-B+2C—-D=0

Solution: We will perform row operations on the augmented matrix of the system until we obtain a
matrix in reduced row echelon form.

1 1 2 0 1 1 1 2 0 17 [ 1 1 2 0 17
e —_—
1 -1 -1 -2 4 1 -1 -1 -2 4 0o —2 -3 -2 3
2 -1 2 —1| 0 2 -1 2 —1| 0| 2 -1 2 —1| 0|
[ 1 1 2 17 [ 1 1 2 17
R4—2R, 0 -3 —4 1| -4 | Ri—Rs 0 -3 —4 1] -4
_ _
0o —2 -3 -2 3 0o —2 -3 -2 3
0 -3 —2 —1|-2 0 0 2 —2| 2|
1 1 2 0 1 1 1 2 0 1
RooRs | 0 —2 =3 —2| 3| im |0 1 3/2 1|-3/2
—_—
0 -3 —4 1| -4 0 — —4 1| —4
0 0 2 =2 2 0 0 2 =2 2
(1 1 2 0 1 1 1 2 0 1
Rs+3R, | O 1 3/2 1| -=3/2 |2mrs | O 1 3/2 1|-3/2
0 0 1/2 4| -17/2 0 0 1 8| —17
0o 0 2 —2| 2 | 0o 0 2 -2 2
(1 1 2 0 1 7 1 1 2 0 1
Ra—2ms |0 1 3/2 1 |-3/2| %R |0 1 3/2 1|-3/2
_ —_—
0 0 1 8 | —17 0 0 1 8| —17
0 0 0 -—18| 36 0 0 0 1| -2
(1 1 2 0 1 1 1 2 0 1
Rs—8Rs | 0 1 3/2 1|-3/2 | R-rs | 0O 1 3/2 0] 1/2
— —
0 0 1 0] -1 0 0 1 0o -1
0 0 0 1| -2 0 0 1] -2
1 1 2 0 1 1 0 0 0 1
Ra—3Rg3 0 1 0 0| 2| Ri—-2R3, Ri—Ro 0O 1 0 0| 2
— —_—
0 0 1 0] -1 0 0 1 0|-1
0 0 0 1]-2 0 0 0 1] -2

From this final matrix, we can read the solution of the system. It is

A=1, B=2, C=-1, D=-2.

12



-~ CROUT'S METHOD ’ o )

1. Solve by Crout's method the system of equations 2x+3y+z = -1,5x+y+z = 9,3x+2y+4z = 11

The given system of equations can be written in matrix form AX=B as follows

2 3 1 x —1
5 1 1 y| = 9
3 2 4 = 11

Let, A=LU such that

2 3 1 a 0 O 1 g h
5 1 1 = b c 0 0 1 i =
3 d e f] lo o 1
ah T
bg—|—r: bh 4+ i
d dg 4+ e dh+ ei+ F|
a=2b=5,d=3
3
ag =3 ..g = Y
—13
bg+c=1 -.e=1-—5(3/2) = 5
3 —5
d — 2 ~e=2-3- = =~
g’—|—E [ =4 2 2
ah=1 -~ h=1/2
bh+ci=—3 - (5)(1/2)+ (—13/2)i =1
_1-5/2 -3 -2 _ 3
T —13/2 2 12 ~ 13
dh +ei+ f=4
) 1 —b 3 o ) o E 1_5 o 104 — 39 + 15 o
BRI+ gt f=1 =45 +55 = 26 -
80 _ 40
26 13

13



2 0 0 1 3/2 1/2
~L=|5 -13/2 0 | andU = |0 1 3/13
3 —5/2 40/3 0 0 1

Now, LY = B WhereY = UX

2 0 0 " -1
5 —13/2 0 w| =109
3 —5/2 40/3] |us 11

S =—1 oy =-1/2

13 13 5 23
5y1—?y2:19 So——y = 9-5(-1/2) =94+ - = —

2 2 2
o232 23
ST T3 T 13
oo T = 1
40 3 115 210 210 13 21
.'.ﬁygzll—FE—E:% .‘.y3:¥x52§

NowUX =Y

1 3/2 1/2 . —1/2
o 1 3/13| |yl = | —23/12
0 o 1 2 21/8
21
)
3 23 _—23 3 21 —247 _
Y+ 13*= 13 Y= 13 T 13 8 104
3,4, -1, -3 -247 121 1
T Q¥ T 9f T T T Ty 104 2" '8 2
.xr = 1.75

.z =1.75y=—2.375z= 2625



2. Solve by Crout's method the system of equations
SX;+4X;+X;=3.4
10X + 9X, +4X;= 8.8

10X, + 13X, +15X5=19.2

5 4 1 Xy 34
A=|10 9 4 X=X B=| 88
10 13 15 3 19.2

LetA=LlU

ag ah
bg +c bh + ci

5 4 =
10 9 4 |=
10 13- 15 dg+e dh+ei+f

ES TR S

a=5 b=10 d=10
g=4/5 c=1 e=5

h=3/5 i=5 =3

letly=B

5 0 0\/hN 34
10 1 0])|Y2)=| 88
10 5 3/\Y; 19.2

5Y; =3.4;Y,=0.68
10Y, +Y,=8.8;Y, =2

10Y, + 5Y, + 3Y; =19.2; Y; =0.80

Y, =0.68 Y,=2 Ys=0.80

LetUx=y

X3 0.68
X5 | = 2
3 0.80

X5 =0.80

[NV TS
N U e

X +2X%X5=2; X, =0.40

Xs + 4/5X; + 1/5X; = 0.68; X; = 0.20

0.20
X =040
0.80

15



Example 1

Solve the following system of equations by Gauss — Seidel method
28x +4y -z = 32

Xx+3y+10z =24

2x+17y+4z2=35

Solution

Since the diagonal element in given system are not dominant, we rearrange the equation as

follows

28x +4y -7 =32

2X+17y+4z2=35

x+3y+10z=24

Hence

X =1/28[32 — 4y +z]

y = 1/17[35-2x -4z]

z = 1/10[24 —x — 3y]

Setting y =0 and z = 0, we get,

First iteration

x® = 1/28 [ 32- 4(0) +(0)] = 1.1429

y® =1/17 [ 35 — 2(1.1429) -4(0)] = 1.9244
zW = 1/10 [ 24 — 1.1429 — 3(1.9244)] = 1.8084

Second lteration

16



x®@ = 1/28 [ 32- 4(1.9244) +(1.8084)] = 0.9325
y® =1/17 [ 35— 2(0.9325) -4(1.8084) ] = 1.5236
z®) = 1/10 [ 24 — 0.9325 — 3(1.5236)] = 1.8497
Third Iteration

x®) = 1/28 [ 32- 4(1.5236) +(1.8497)] = 0.9913
y® =1/17 [ 35 — 2(0.9913) -4(1.8497)] = 1.5070
z® = 1/10 [ 24 -0.9913- 3(1.5070)] = 1.8488
Fourth Iteration

x® = 1/28 [ 32- 4(1.5070 ) +(1.8488)] = 0.9936
vy =1/17 [ 35— 2(0.9936) -4(1.8488)] = 1.5069
z™ = 1/10 [ 24 - 0.9936 — 3(1.5069)] = 1.8486
Fifth Iteration

x®) = 1/28 [ 32- 4(1.5069) +(1.8486)] = 0.9936
y® =1/17 [ 35 — 2(0.9936) -4(1.8486)] = 1.5069
z® = 1/10 [ 24 — 0.9936 — 3(1.5069)] =1.8486
Since the values of X, y, z are same in the 4™ and 5™ Iteration, we stop the procedure here.

Hence x = 0.9936, y = 1.5069, z = 1.8486.

17



Interpolation

The process of computing intermediate values of (x,, x,,) for a function y(x) from a given

set of values of a function

Gregory-Newton’s forward interpolation formula

2
y(x) =Y, +%u + A2y0 u(u-1+

A%y,

uu-1(u-2) +%u(u “D(U-2)U-3)+———(a)

1
where u = H(x —X%,)
Gregory-Newton’s backward interpolation formula

2 3 4
yO) =y, +%v+%v(v+l)+%v(v+l)(v+ 2)+%v(v+1)(v+2)(v+3)+———(b)

where v=%(x—xn)

Remark:

Q) The process of finding the values of y(x;) outside the interval (x,, x,,) is called
extrapolation

(i) The interpolating polynomial is a function p,(x) through the data points y; =
f(x;) = B,(x;) 1=0,12,..n

(i)  Gregory-Newton’s forward interpolation formula (a) can be applicable if the
interval difference h is constant and used to interpolate the value of y(x;) nearer
to beginning value x, of the data set

(iv)  If y = f(x)is the exact curve and y = p,(x) is the interpolating polynomial then

the Error in polynomial interpolation is y(x) — p,(x) given by
Error :%(x—xo)(x—xl)——(x—xn): Xy <X <X, % <C<X,———(C)

(v) Error in Newton'’s Sforward interpolation is
Error :%u(u “DU—-2)——(U—-n): %, <X<X,, % <C<X,————(d)

18



(vi)  Error in Newton'’s backward interpolation is
hn+1y(n+l) (C)
Error = Wv(v+1)(v+2)——(v+ N): X, <X<X,, % <C< X, ————(€)
+1):

Problem1: Estimate 8 atx =43 & x =84 from the following table .also find y(x)

X

40 50

60

70

80

90

0

184 204

226

250

276

304

Solution: Here all the intervals are equal with h=x;-xo=10 we apply Newton interpolation

Difference Table:

x| 8=y Ay A%y A3y Aty ASy
A0 | 184=vy, | y,—Y,=20=Ay,
o0 | 204=y, | y,—V,=22=Ay, 2=A%, | 0=A%,
60 | 226=y, | y,—Y,=24=Ay, 2=A%, | 0=A%, | 0=A%, 0=V°y,
70 | 250=y, | y,—Y,=26=Ay, 2=A%, | 0=V% | 0=V'y

80 | 276=y, | y,—VY,,=2018=Vy | 2=V’y_

90 | 304=y

Case (i): to find the value of 8 at x = 43

Since x = 43 is nearer to x, we apply Newton’s forward Interpolation

y(x) =Y

A 0
+—Cu+
1

Ao =1+ 20y -1 -2)+ 20y —D(u—2)(u—3) + —— -
Tu(u D+ 5 uu-u-2)+ 24 uu-)(u-2)(u-3)+ @

where u :%(x—xo) =%(43—40) =l—=O.3:>u—1=—0.7,u—2=—1.7,u—3=—2.7———(2)

3
0

Substituting (2) in (1), we get y(x=43) =184+ 2—10 (%) +

2,37
E(E)(E)w =

18979 _ 189.79
10
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Case (ii): to find the value of 8 at x = 84

Since x = 84 is nearer to x,, we apply Newton’s backward Interpolation

V;y” viv+1(v+2)+ %v(v +D)(V+2)(V+3)+———(3)

2
y(x)=y, + Vi/” v+%v(v+l)+

where v:l(x—xn):i(84—90):_—6:>v+1:i,v+2:E,v+3:ﬁ———(4)
h 10 10 10 10 10

N . 28 -6, 2,-6.,4 7174
Substituting (4) in (3), we get =84)=304+—(—)+=(—)(—=)+0=——=286.96
g (4) in (3), we get y(x=84) s (1O)+2(10)(10)+ >

To find polynomial y(x), from (1) we get

LAY N ARy AT e
y(xX)=y, + 1 u+ 5 u(u-1)+ 5 uu-1)u-2)+ 24 uu-Du-2)(u—-3)+ @

1 1 1 1 1
here u=—(Xx—X,)=-—=(x-40 —1=—(x-50),u—2=-"—(x-60),u—3=-"—(x—60)———(2)"
where U == (x~x,) = 7 (x~40) = U~1= = (x~50),u~2 = 5 (x~60),u~3 == (x~60) =~ (2)

Substituting 4) in (3), we get

201 a0)+ 2L (x-40)L (x—50)+0 =184+ 2x—80+ — (x? ~90x + 2000)
110 210 10 100

= y(X) = ﬁ (x* +110x+12400) —————————— (5)

y(x) =184+

To Estimate # atx =43 &x =84 ,put x =43 &x =84 in (5), we get

1 1
43) = ——(18979) =189.79and y(84) = —(28696) = 286.96
Y(43) = - (18979) Y(84) = - (2869%)

Problem2: Estimate the number of students whose weight is between 60 Ibs and 70 Ibs from

the following data

60-80 80-100 100-120

Weight(lbs) | 0-40 40-60
100 70 50

No.Students | 250 120
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Solution: let x-Weight less than 40 lbs, y-Number of Students, = x, = 40,x; = 60,x, =
80,x; = 100, x,, = 120, Here all the intervals are equal with h=x;-xc=20 we apply Newton

interpolation

Difference Table:

x y Ay A%y Ay Aty
A0 | 250=Yy, | y,—Y, =120=Ay,

60 | 370=y, | y,—y,=100=Ay, | —20=A%y, | -10=A%y,

80 470=y, | Y,—Y,=70=Ay, -30=A%, | 10=V?y, 20=A"y, =V*y,

100 | 540=y, | Y,—VY,,=50=Vy, | -20=V?y,

120 | 500-y,

Case (i): to find the number of students y whose weight less than 60 Ibs (x = 60)

From the difference table the number of students y whose weight less than 60 Ibs (x =
60) = 370

Case (ii): to find the number of students y whose weight less than 70 Ibs (x = 70)

Since x = 70 is nearer to x, we apply Newton’s forward Interpolation

2 3 4
y(x) =Y, +%u + A2y0 u(u-1+ A Yo u(u-1)(u-2) +%u(u -DUu-2)u-3)+-————@1)
where u zl(x—xo) :i(70—40) :§:>u—1:§,u—2zg,u—2:_—1,u— e S (2)
h 20 2 2 2 2 2
Substituting @) in (1), we get
120 ,3, -20,3,,1, -10,3,,1.,-1 20,3,,1,,-1 ,-3
y(x=70) =250+ ER (E) + > (E)(E) +? (E)(E)(?) + o (?(?(7)(7) =423.59

The number of students y whose weight less than 70 Ibs (x = 70) =424

Number of students whose weight is between 60 lbs and 70 lbs =

{ The number of students y } B { The number of students y } — 424-370 = 54
whose weight less than 70 lbs whose weight less than 60 lbs
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Lagrange’s interpolation formula Unequal intervals

BRI )X %) | (K X)X )= -x)

(X =X) (% = %) ==(% = %) 7 (% =%)(% = %) ——(% —X;)
R R X x|
(Xn - XO)(Xn - Xi) __(Xn - Xn—1) "

y(

X)X =) —=(x =x,)
(Xz _Xo)(xz - )(1)__()(2 _Xn)

Yo+

Problem 3: Determine the value of y(1) from the following data using Lagrange’s

Interpolation

x -1 0 2 3

y -8 3 1 12

Solution: given

x X =-1 x =0 X, =3 X, =3

y yo:_8 y1:3 y2:1 Yn =12

Since the intervals ere not uniform we cannot apply Newton’s interpolation.

Hence by Lagrange’s interpolation for unequal intervals

9= KX =) (X X)X =) ~X,)
(% = X)(% =X )% = %) 77 (% = Xo)(% = X, )(% —X,)
L)X R %) XK X)) %)
(X% =X ) (% = X)X —X,) 72 (X, = %) (X, = X)(X, =Xy q) "

y( Y1

y(X) = x =0)(x =2)(x =3) (—8)+(X +D(x =2)(x =3 3

T (-1-0)(-1-2)(-1-3) (0+1)(0-2)(0-3)
+(x +D(x =0)(x =3) (1)+(x +D(x =0)(x —2) (12)————(1)
(2+1)(2-0)(2-3) (3+1)(3-0)(3-2)

To compute y(1) put x = 1in (1), we get

o (-00-2@-3) . @+Da-2) -3)
Y =D = o213 0 T orno_203 O
, 0D0-00-3) ,\  (+1A-00-2)
2+12-0)2-3) " (3+1D(3-0)(3-2)
=y(x=1)=2
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To find polynomial y(x), from (1) we get

y(X) =§(x3—5x2 +6x)+%(x3—4x2 +X+6)

—%(x3—2xz—3x)+%(x3—x2—2x)————(1)
3,2 1 -10 -4 2 12 1 3
=X (E+Z-Z+1 S D)X (24222
y(x) X(3+ SO (e DX (S )()
= y(x)=2x>—6X*+3X +3————— (2)

To compute y(1) putx = 11in(2), we get y(x=1)=2-6+3+3=2

Inverse interpolation

For a given set of values ofxand y, the process of finding x(dependent) given

y(independent) is called Inverse interpolation

x(y) =Y T =Y2) ==y =¥a) (Y =YY =¥o) ==y —V0)

(Yo = YD) (Yo = ¥2) ——(Yo — n)X° Vi =Yo) (V1= ¥2) (Y, — n)x1
Y=V =)= =Va) =Y =)=l =Y
(Y2 = Yo) (Yo = Y) == (¥, = ¥,) Y)Y (oY)

Problem 4: Estimate the value of x given y = 100 from the following data,y(3) = 6
y(5) =24 ,y(7) =58,y(9) =108, y(11) = 174

Solution: given

x X =3 X =5 X, =7 X, =9 X, =11

y Y, =6 y, =24 Yy, =58 y, =108 y, =174

By applying Lagrange’s inverse interpolation
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x(y) = =IO =Y )Y =Y )Y =¥o) OV =¥0)Y =Yo)Y =YY =¥0)
(Yo =X)(Yo = Y2)(Yo = Y2)(Yo — ¥a) (Y2 = Yo ) (Vi = Y2 ) (V1 = V) (Y1 — Va)
L =Y =YY =YY =¥a) Y Y)Y Y)Y — Y)Y V)
(Y2_yo)(y2_y1)(y2_y3)(Y2_yn) ? (ys_yo)(Y3_y1)(y3_yz)(ys_yn) ?
LY =YY =Y = Y)Y = Vad)
(Yo =YO) Yo =YD Vo =Y )(Vo = Yor)

. (100) - (100—24)(100-58)(100-108)(100-174) ., (1006)(100-58)(100~108)(100-174)
(6—24)(6—58)(6—108)(6—174) (24-6)(24—58)(24—108)(24 -174)
. (100-6)(100—24)(100~108)(100-174) ) _ (100-6)(100-24)(100~58)(100-174) .,
(58 —6)(58 — 24)(58—108)(58 —174) (108—6)(108 — 24)(108 —58)(108 —174)
, (100-6)(100—24)(100-58)(100-108)
(174—6)(L74 — 24)(174—58)(174—108)
— x(100) = 0.35344 —1.51547 + 2.88703 + 7.06759 — 0.13686 = 8.65573
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COURSE NAME: DIFFERENTIAL EQUATIONS AND NUMERICAL METHODS
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UNIT - IV NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

Introduction
An ordinary differential equation of order # in of the form F(x,y,¥",y", .., y™) =0,

ay

where y™ = —

We will discuss the Numerical solution to first order linear ordinary differential equations

by Taylor series method, and Runge - Kutta method, given the initial condition y(x,) = y,.
Taylor Series method

Consider the first order differential equation of the form j—ﬁ = f(x,v). ¥(xg) = ¥o.

The solution of the above initial value problem is obtained in two types

# Power series solution

# Point wise solution

(i) Power series solution

— _ 2 _ 3
y(x) = y(xp) + (x l!xu) y'(x0) + %}’”ﬁ‘o) + %}*'”&o] + oo

{(ii) Point wise solution

2 h3

h h
y(x) = v(x,) + ﬂJﬂ’(:'fu) + EJ"”(IE] + gy"'(xu) + o

Problems:

Using Taylor series method find y at x = 0.1 if'j—i =y+1,y(0)=1.

Solution:

Given=~=y+landxo =0,y = Lh=0.1



Taylor series formula for ¥(0.1) is

h
y(x) = y(xp) + F}"(l‘n} +

2 k]

i h e
E}" (X'u) +§}' (In) + o

Y =y+1 Y0 =y0+1=1+1=2
y'(x) =y y'(0)=y'(0)=2
y"(x) =y" y"(0) =y"(0) =2

Substituting in the Taylor’s series expansion:

2

h
y(0.1) = (0) + hy'(0) + 5y"(0) + -

0.01 0.001

:1+0.1x2+‘Tx2+

X 2+
- +

y(0.1) = 1.2103

Find the Taylor series solution with three terms for the initial

value pruhlem% =x*+yyl)=1

Solution:

. dy
Given — = ¥4+yx,=1Ly,=1

y'i(x)=x*+y

Yy =1+1=2

y'(x) =2x +y

Yy ()=2+2=4

y'x)=2+y"

Y (1) =2+4=6




}r.l'v‘(x} — yrrr yJ'U(]-] — 6

The Taylor’s series expansion about a point x = x; 1s given by

_ _ 2 _ 3
y(x) = y(xg) +¥}"(xu) +¥}'”(qu +%y’”(nﬂ + oo
Henceatx =1
-1 —1)2 —1)3
y() = y(0) + Sy () + Sy + Sy 4 -
_ _ 132 433
y(x]:1+2(x 1)+4(x L -I-Eu(x L + -

1! 2! 3!

Solve " =x + y, y(0) = 1 by Tavlor's series method. Hence find the val-
unesof yatx =0.1 and x = 0.2,

Solution:

Differentiating successively, we get

y=x+y y'(0)=1 [~ y(0)=1]
yr=1+y y"(0) =2
yr# — ”.” -rj_n.-'l:‘{:.] — 2
yr# — ”.""'" -rj_n.-'l:‘{:.] — 21 ete
Tu_‘.'l{:r's series is
, (x—x,) .. lx—x) ..
iy =y =+ [x — .1:“:'-[5; T +TC_H ha +T{y :'u +rae
Here x,=0,4y,=1
2 3 o
y=1+x(1)+=—(2) +“T’;{:2;+;—’;i4]---
3 4
Thus ¢(0.1)=1+0.1+(0.1) +(ﬂ.31!} K [”:!}
=1.11053
. I-’ L -L
and y(0.2)=1+02+(02) + ("? - {”? +

= 1.2497




Employ Taylor’s method to obtain approximate value of y at x = 0.2 for
the differential equation dy/dx = 2y + 3¢*, y(0) = 0. Compare the numerical
solution obtained with the exact solution.

Solution:
(a) We have y” = 2y + 3¢*; y'(0) = 24(0) + 3e" = 3.

Differentiating successively and substituting x = 0, y = 0 we get

y” =2y" + 3¢, y”(0)=24'(0)+3=9
y”" = 2y" + 3¢", y”(0) =24"(0) +3=21

y" =2y" + 3e*, y(0) = 2¢4""(0) + 3 =45 etc.

Putting these values in the Taylor’s series, we have
° '3 4
yl(x) = y(0) + xy'(0) + '_ y"(0) + e ,"(0) g =i — " (0) + -
9 21 3 4:)
=0+4+3x+—x" +—x" +—2x' +.-
+3x 3 x° P x3 21 x
N W |
=3x +§x' +FIJ +?x‘ o it
Hence 4(0.2) = 3(0.2) + 4.5(0.2)* + 3.5(0.2)% + 1.875(0.2)! +-.-=0.8110 (i)

el
(B Now I_y_ 2y =3¢ is a Leibnitz’s linear in x

oy

Its LF. being e, , the solution is
_r;e'!r = fﬁe"e_i‘ dx+c=-e"+cor y=-3"+ ce™r
Since iy = 0 when x =0, S =
Thus the exact solution is y = 3(e™ — )
When x =02, y =3 = ") =0.8112 (i)

Comparing (i) and (#), it is clear that (i) approximates to the exact value
up to three decimal places



Solving simultaneous equations by Taylor’s series method

Let the simultaneous differential equations be

dy

2 flen2) M
d=
and e glx.,y.z) (2)

with initial conditions y{x,) =, and =(x, ) = =,.
If & be the step-size, ¥y, = v(x, + i) and =, = z(x, + A)

Then Taylor’s algorithm for (1) and (2) gives

¥ 'ﬁz L '& rF
R e Tt TR TR SRR (3)
i h
- - _ i e
z Hu+&,u+iuu+fuu (4)
Differentiating (1) and (2) successively we get "', =", etc.

o —

So the values v/ .y . v ... and =] =" =" ... are known. Substituting these

in (3) and (4), we obtain y .z, for the next step.

Simularly,
h? h?
Yy =y Hhyl v oyl (5)
e i
- - i i _
Z, ”1+'&”1+E”|+f“1 (6)
Since y, and =, are known, we calculate _1:; . _1::" ... and :; . ::‘r ... substituting

these in (5) and (6) we get 3, and =,.

Proceeding further, we can calculate the other walues of v and = step by
step.

Given j—i = and E —xz — v with ¥(0) = 1, =(0) = 0, obtain
vand = for x - 0.1.0.2,0.3 by Taylor’s series method.
Hini:
We have
y =z and z'= _xz_y

We use Tavlor’s series method to find v and =.



Runge-Kutta method
Runge-kutta methods of solving initial value problem do not require the
calculations of higher order derivatives and give greater accuracy. The Runge-Kutta
formula possesses the advantage of requiring only the function values at some selected
points. These methods agree with Taylor series solutions up to the term in h" where r

15 called the order of that method.

Fourth-order Runge-Kutta method
Let £ = £(x,9),¥(xo) = yo be given.
Working rule to find y(x;)

The value of y,, = ¥(x,,) where x,, = x,,_y + h where h is the incremental value for x is

obtained as below:

Compute the auxiliary values

ky = hf (xq,¥0)

k —h.f( 42 +k1)
2 = Xp 2:)’0 2

k —n( 42 +k2)
3 =Nhf|xg E-J-"u i

kq_ = hf{xn + h,}rg +k3]
Compute the incremental value for y

ky 4 2ky + 2ks + ks
- 6

The iterative formula to compute successive value of yis v, ., = ¥, + Ay

Ay

Problems
Find the value of y at x = 0. 2, Given j—; = x% + y,¥(0) = 1, using R-K method of
order IV.



Sol:

Here f(x,y) =x* +y,y(0) =1
Choosing h =0.1,x; =0,y, =1
Then by R-K fourth order method,

1
y, = J.eD+E[.'.:1+2k2 +2k, +k,]

k, =hf (x,, y,) =0

h k
k, = hf (x, + Vot _j} =0.00525

h k,
ky=hf (x+ 2,y + ) =0.00525

k, = hf (x, +h, y, +k,) = 0.0110050

y(0.1) = 1.0053

To find ¥(0.2) given x, = x, + h = 0.2,y, = 1.0053

Va=W +§[k1+2k2 + 2k, +k,]

k, = hf (x,, y,) =0.0110
k, = hf (x, +%, y, + "1!] =0.01727

k, =hf{x1+§,y1+ "f;] ~0.01728
k, = hf (%, +h, y, +k,) = 0.02409

v(0.2)=1.0227
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Numerical Solution to Partial Differential Equations
Solution of Laplace Equation and Poisson equation

Partial differential equations with boundary conditions can be solved in a region by
replacing the partial derivative by their finite difference approximations. The finite difference
approximations to partial derivatives at a point (x;, yi) are given below:

(X0, V) —ulx, ¥;)
h

ux(_xir }'PL} =

ulxg, ¥ier) — ulxg, vi)
k

uy (X, ;) =

U (Xiv, Vi) — (X ¥i)  u(re, i) — 2u(xg, yi) + ulxi-1, ¥i)
h B h?

uxx'[xir}’ri} =

Uy (X Vigr) — Uy (6 V) ulag, yier) — 2uxg, yi) + ulxg, yioq)
k B k2

uyy(rh }"E} =

Graphical Representation

The xy-plane is divided into small rectangles of length and breadth by drawing the lines
x =ihand vy =jk, parallel to the coordinate axes. The points of intersection of these lines
are called grid points or mesh points or lattice points. The grid points (Xi,y;) is denoted by
(i,)) and is surrounded by the neighbouring grid points (i-1, j) to the left, (i+1, j) to the right,
(i, j+1) above and (i, j-1) below.

Note

The most general linear P.D.E of second order can be written as

atu 3tu
A—+FE
dx* dxdy

9 u du du _
+Ca—yz+ DE“LEEJ'F“ = f(x,v)

Where A, B, C, D, E, F are functions of x and y.



A partial differential equation in the above form 1s said to be

Elliptic 1f B —4AC <0
L]
*  Parabolicif B2 —44C =10
Hyperbolic ifB2 —4AC =10

Standard Five Point Formula (SFPF)

1
U ;= E[uf—l._j F Uy Uy “:‘.jﬂ]

Diagonal Five Point Formula (DFPF)

1

Ujj = 1 [uf—l,_j—l F Ujpq o1+ Uie j+1 T u[—l,j+1]

Solution of Laplace equation uxx+uyy=0
Leibmann’s Iteration Process

We compute the initial values of ug, uz, ..... ,ug by using standard five point formula and
diagonal five point formula .First we compute u5 by standard five point formula (SFPF).

1
ug = Zlh? + by + by + b3
We compute us, Us, Uz, Ug by using diagonal five point formula (DFPF)

1
u, :E[b1+u5+b3+b15]

1

T8 =E[u5 +b. +b, +b,]
1

u, = I[bﬂ +u, +1'.r15 +bn]

1
u, :I[bw +b11 +b~3 +”5]

Finally, we compute u,, u4, ue, Ug by using standard five point formula.



1

u, =—[L.|5 +£'.r3 +u, +u3]
4
1

u, :z[u1 +u; +b, +u,]

1
u =:[u3 +u,+u_+b.]

1
uyg =E[u? +b,, +u, +u.]

Solve the system of simultaneous equations obtained by finite difference method to get the
value at the interior mesh points. This process is called Leibmann’s method.

Solution of Poisson equation

An equation of the type V?u = f(x,y) i.e., is called Poisson’s equation where f(x,y) is a
function of x and y. Substituting the finite difference approximations to the partial differential
coefficients, we get

I . : :
Uj_qj + Ujer,j + Wi j—1 + Ujjr1 — duy; = h*f(ih, jh)

Solution of One dimensional heat equation

In this chapter, we will discuss the finite difference solution of one dimensional
heat flow equation by Explicit method.

Explicit Method (Bender-Schmidt method)

2
Consider the one dimensional heat equation ?3_1; = q? % . This equation is an example of
parabolic equation.
ui_j+1 = lui_l,j + (1 - ZA)ULJ + /1ui+1,j

The above expression is called the explicit formula and it is valid for 0 < A <

N =

If A= % the equation reduces to Ujjyr = %{ui_lj + ui+1,j}
This formula is called Bender-Schmidt formula.
Solution of One dimensional wave equation
One Dimensional wave equation u,; = a?u,, is of hyperbolic type.
The solution is given by the recurrence relation
Ujje1 = Uji—1,j T U1, — Uj

(for filling the other ‘u” values where k = h/a). The above formula is called explicit scheme or
explicit formula to solve the wave equation.



Whenj=0, u;; = %{ui—m + Ujy1,0) (for filling the I row ‘u’ values)

Problems

Classify the PDE wy,+4uyy+(x? +4y%)u,,,=0
Solution: Here A=1, B=4, C=x?+4y?, B2 — 4AC = 16 — 4(x%+4y?),

2 z
The equation is elliptic, if 4-x>—4y?<0, x?+4y% > 4,%1-:“?:4.
z 2
It is elliptic in the region outside the ellipse %% =1
: o N
It is Hyperbolic inside the ellipse TT:L

. . .oz oyt
It is parabolic on the ell ipse—+—=1.

Solve Uy +u,,, = 0 for the following square mesh with boundary values as shown in the figure
below.
A 1 2 B
1 4
2 5
D 4 5 C

Solution: The boundary values are symmetrical about the diagonal AC but not about BD.
Let the values at the interval grid points beu,, u;, us, uy.

By Symmetry, U, = U3 Uy F Uy

Assume u, =3 (Since u, =2 +3(5-2) =3).

Rough values: u; = %(1+102u2)=2. (SFPF).

U =3, uy = %(5054»2112) =§(S+u2)=4

First Iteration: u, = %(1*u2)=2, u; = %(S*unu,): %(602*4)=3, Uy = %(S*uz)=4-

Result u;=2,u, =3, uy = 4.

Solve U,.-2u, =0, given u(0,t)=0,u(4,t)=0, u(x,0)=x(4-x).Assume h=1.Find the values of u up to t=5
by Bender-S5chmidt recurrence egquation.

Solution: u,,=au,;, here a=2.

To use Bender-Schmidt recurrence equation, Ic=-: h®=1.

Step -size in time =k=1.

The values of u; ; are tabulated below



i 1 2 3 4
J
0 0 3 4 3 0
1 1] 2 3 2 0
2 1] 1.5 2 1.5 0
3 1] 1 1.5 1 0
4 1] 0.75 1 0.75 0
5 1] 0.5 0.75 0.5 0

Solve u,.,-32u,=0, taking h=0.25 for t>0,0<x<1 and u(x,0)=0, u({0,t)=0, u(1,t)=t using Bender =
Schmidt method.
Solution: The range of x is (0, 1); h=0.25.

22 (L) ; ;
-2h =5 |15 J71- Step size oftis 1.

J i |O 0.25 0.5 0.75 1
0 0 0 0 0 0
1 0 0 0 0 1
2 0 0 0 0.5 2
3 0 0 0.25 1 3
4 1] 0.125 0.5 1.625 4

5 0 0.25 0.875 2.25 5

Solve V?u = —10(x? + y? + 10) over the square mesh with sidesx=0,x=3,y=0,y =
3 with u = 0 on the boundary and mesh length 1 unit.

Using the theory,
Uiy Uperj + U oy +Upjer — 4y = =100 + 2+ 10) e e o (2)

Applying the formula at i=1, j=2, we get, 0+0+ i=1,j=2,
we get , 0+0+u,+uy — 4uy = —10(15)

U; + Uz —4uy = =150... ........(3)
Applying at i=2, j=2, we get, uy + wy — 4u; = =180 ... oo s e (4)

Applying at i=1, j=1, we get, wy + wy — 4y = =120 s (5)

Applying at i=2, =1, we get, Uz + Uz — g = —150. e [ B)

Solving equations (3), (4), (5), (B), we get,u, = uy = 75 u, = B2.5, uy = 67.50



Solution:

U1 u2 u3
U4 us ue
uz7 us us

Take the coordinate system with origin at the center of the square.
Since the boundary conditions are symmetrical about the x, y axes and x=y, we haveu, =
Uz = Uz = Ug.
Uz = Uy = Ug = Ug
We need to find u,, uy, us only.

u(_” + u‘“_, + ulJ-l + ul.]*l - 4!1“’ = 8i2i2 aas oss ass ses (l)
Ati=-1,j=-1, wehave, u, + us —4u; =8 =u, — 2uy = 4 ... (2)
Ati=0, =1, we have, uy + Uz + Us — 44U =0 = 2uy +us —4u; =0..........(3)
At i=0, j=0, we have, u; + uy + Ug + Ug — 4Us = 0 = Up~U=0urvvvevierinnnns (4)

From(2), uy = %(uz - 4)

From (4), us = u,

Using 1n (3), we getuy =-2.

Therefore. u2=-2 =us. u1 =-3



Solve A2u = 8x?y? for square mesh given u=0 on the 4 boundaries dividing the square into
16 sub-squares of length 1 unit.
Solution:

U1 uz2 U3
U4 us ]3]
u7z us us

Take the coordinate system with origin at the center of the sguare.
Since the boundary conditions are symmetrical about the x, y axes and x=y, we haveu, =
Uz = Us = Ug.
Uz = Uy = Uz = Ug
We need to find uy, us, ug only.

Uj. 1, + ui.+1...j + uf'j_j_ + u{'_ﬁ.j_ - 4uiJ = szjz [ ...{1)
Ati=-1,j=-1,we have, u; + Uy —4uy =8 =u; — 2uy =4 o eil(2)
At i=0, j=1, we have, uy + Uz + Ug — 4u; = 0= 2uy +ug —4u, = 0. .. ... (3)
At =0, j=0, we have, u; + uy + ug + ug — 4ug = 0 = wp—ug=0..cccviiinnnen(4)

From (2), uy =7 (u; —4)

From (4), us = u,
Using in (3), we get u> = -2.

Therefore, up =-2 = us, Uy = -3

Solve u; = u,., subject to u(0,t)=0, u(1,t})=0 and u(x,0)=sin{mx),0 < x < 1 by Bender-
Schmidt method.

Solution: Since h and K are not given we will select them properly and use Bender-Schmidt
method.

Kz%hz%hz, since a=1.

Since range of x is (0, 1), take h=0.2.

Hence k==>0.22=0.02.

The formulae isw; ;,., = %{”1—1,;' +Upyqp)

We form the table.



J I |O 0.2 04 0.6 0.8 1
0 4] 0.5878 0.9511 0.9511 0.5878 0
0.02 0 0.4756 0.7695 0.7695 0.4756 0
0.04 0 0.3848 0.6225 0.6225 0.3848 0
0.06 4] 0.3113 0.5036 0.5036 0.3113 0
0.08 4] 0.2518 0.4074 0.4074 0.2518 0
0.1 0 0.2037 0.3296 0.3296 0.2037 0

Solve numerically, 4u,, = u,;, with the boundary conditions u(0,t)=0, u(4, t)=0 and the
initial conditions w,(x,0) = 0 and

U(x, 0) =x (4-x), taking h=1. (For 4 time steps).

Solution: Since a®=4, h=1, k:E:L"J!.

Taking k=1/2 , we use the formula, u; j4q = Up—q j + Ugpq j—Ugj-1

From u(0,t)=0= U along x=0 are all zero.

From u(4,t) =0= u along x=4 are all zero.

U{x,0)=x(4-x)= u(0,0)=0, u{1,0)=3, u(2,0)=4, u(3,0)=3.

Mow, we fill up the row t=0 using the above values,

Ui oFli—10
u(x0)=0=2u, =——,
_ Uggtisg

3 =2,u4I1=D



T 0 1 2 3 4
X

0 0 3 4 3 0
0.5 o 2 2 0
1 0 0 0 0 0
1.5 0 -2 -3 -2 0
2 0 -3 -4 -3 0
2.5 0 -2 -3 -2 0
3 0 0 0 0 0
35 0 2 2 0
4 0 3 4 3 0

Solve , 25u,., = u;, for u at the pivotal points, given u (0, t)= u(5,t)=0, u;(x,0) = 0 and
u(x,0)= 2x for O<x<2.5,=10-2x, for 2.5<x<5 for one half period of vibration.

Solution:

a*=25, a=5

2x5
Period of vibration=2|fa=%=2 seconds.

Half period=1 second. We want values up to t=1 second. Taking h=1, kzgzl,.l’S.

Step-size in t-direction=1,/5.

The explicit scheme is, 1; j, ; = Wy j + Uyyq j= U4
As explained in previous problem, we have u(0,0)=0,u(1, 0)=2, u(2,0)=4, u(3,0)=4, u(4,0)=2,
u(5,0)=0.

u LTI
ul(x' []:} — [] = u[.‘[ — i+1.0 i—1,0

Uy = %21 Upq = @= 3uz; = wz 3ugy = 2.
T X 0 1 2 3 4 5
0 0 2 4 4 2 0
1/s 0 2 3 3 2 o
2/5 0 1 1 1 1 0
3/5 0 -1 -1 -1 -1 0
45 0 -2 -3 -3 -2 o
1 0 -2 -4 -4 -2 o




Solve u,, +u,,, = 0 over the square mesh of side 4 unit satisfying the boundary
conditions:

U0, y)=0foro<y< 4, u(4,v) =12+ yfor0<y <4 ulx,0)=3xfor0<x <
4 ulx,4) = x*for0< x < 4.

Solution:

We divide the square mesh into 16 sub-squares of side 1 unit and calculate the numerical
values of u on the boundary

using given analytical expressions.

0 1 4 9 16
U1 u2 U3
15
0
ua Us ]3]
14
0
ui us us
13
0
3 B 9
12
Let the internal grid points be wy upus | Ug.
Rough values: ug = %{4+E+14+ﬂ] =6 (SFPF)
1
uy = I{D+E+4+ﬂ}:l5 (DFPF)
1
Uz = :{15+6+14+4]:1ﬂ (DFPF)
1
Us = I{E+E+E+ﬂ]:3 (DFPF)

1y = {6+6+14+12)=9.5 (DFPF)



We use SFPF to get the other values of u.

U, = {2.546+4+10)=5.625 (SFPF)
Uy = }{n+5+2.5+31=3.125 (SFPF)
ug = }{10+5+14+9.5J=9.3?5 (SFPF)
ug = }{5+5+3+9.51=5.125 (SFPF)

MNow we proceed for iteration using always SFPF.

Ul uz u3
2.4375 5.6094 9.8711
2.3672 5.5888 9.8652
U4 us ue
2.8594 6.1172 9.8721
2.8698 6.1209 9.8731
u7 us us
2.9948 6.153 9.5063
3.0057 6.1582 9.5078

Repeating one more iteration, we conclude, correct to 2 decimals,

ur =2.37,u2 =5.59, u3 =9.87, us = 2.88, us = 6.13, us = 9.88, uy = 3.01, ug = 6.16, ug = 9.51
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