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UNIT I: LOGIC

Statements - Truth tables - Connectives - Equivalent Propositions - Tautological Implications
- Normal forms -Predicate Calculus, Inference theory for Propositional Calculus and Predicate
Calculus.

Propositional Logic — Definition

A proposition is a collection of declarative statements that has either a truth value "true” or a
truth value "false". A propositional consists of propositional variables and connectives. We

denote the propositional variables by capital letters (A, B,..., P,Q,...). The connectives connect
the propositional variables.

Some examples of Propositions are given below —

"Man is Mortal", it returns truth value “TRUE”
e "12+9=3-2" itreturns truth value “FALSE”

The following is not a Proposition —

"Ais less than 2". It is because unless we give a specific value of A, we cannot say
whether the statement is true or false.

Connectives

In propositional logic generally we use five connectives which are — OR (V), AND (A),
Negation/ NOT (=), If-then/Conditional (—), If and only if/ Biconditional («<).

OR (V) : The OR operation of two propositions A and B (written as A v B) is true if at least any
of the propositional variable A or B is true.

The truth table is as follows —

A B AVB
True True True
True False True
False True True

False False False
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AND (A) : The AND operation of two propositions A and B (written as A A B) is true if both
the propositional variable A and B is true.

The truth table is as follows —

A B AAB
True True True
True False False
False True False
False False False

Negation (=) :The negation of a proposition A (written as -A) is false when A is true and is true
when A is false.

The truth table is as follows —

A -A
True False
False True

If-then /Conditional (—): An implication A— B is False if A is true and B is false. The rest of the
cases are true.Here A is called Hypothesis or antecedent and q is called consequent or conclusion.

The truth table is as follows —

A B A— B
True True True
True False False
False True True
False False True




SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS — SMTA1302

If and only if («») : A—B is bi-conditional logical connective which is true when p and q are
both false or both are true.

The truth table is as follows —

A B A-B

True True True

True False False

False True False

False False True
Tautologies

A Tautology is a formula which is always true for every value of its propositional variables.
Example — Prove [(A — B) A A] — B is a tautology

The truth table is as follows —

A B A—-B | (A->B)AA [(A— B)AA] > B
True True True True True
True False False False True
False True True False True
False | False True False True

As we can see every value of [(A — B) A A] — B is “True”, it is a tautology.

Contradictions

A Contradiction is a formula which is always false for every value of its propositional variables.

Example — Prove (A V B) A [(-A) A (=B)] is a contradiction
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The truth table is as follows —

A B AV -A -B (=A) A (AVB)A[(=A) A
B (-B) (-B)]
True | True | True | False | False False False
True | False | True | False | True False False
False | True | True | True | False False False
False | False | False | True | True True False

As we can see every value of (A vV B) A [(-A) A (—B)] is “False”, itis a
contradiction

Contingency

A Contingency is a formula which has both some true and some false values for every value of
its propositional variables.

Example — Prove (A vV B V) A (=A) a contingency

The truth table is as follows —

A B AVB -A (AVB)A(-A)
True True True False False
True False True False False
False True True True True
False False False True False

As we can see every value of (A vV B) A (—A) has both “True” and “False”, it
is a contingency.

Propositional Equivalences

Two statements X and Y are logically equivalent if any of the following two conditions —

o The truth tables of each statement have the same truth values.

5
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The bi-conditional statement X <Y is a tautology.

Example — Prove —(A Vv B) and [(-A) A (-B)] are equivalent

Testing by 1st method (Matching truth table)

A B AVB | - (AVB) -A -B [(=A) A (=B)]
True | True | True False False | False False
True | False | True False False | True False
False | True | True False True | False False
False | False | False True True | True True

Here, we can see the truth values of = (A v B) and [(-A) A (-B)] are same, hence the statements
are equivalent.

Testing by 2nd method (Bi-conditionality)

A B - (AvV [(=A) A [-(AVB)]e[(-A)A
B) (-B)] (=B)]
True | True False False True
True | False False False True
False | True False False True
False | False True True True

As[- (A V B)] < [(-A) A (-B)] is a tautology, the statements are equivalent.
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EQUIVALENT LAWS

Equivalence Name of Identity
pAT =p Identity Laws
pvF =p
pANF =F Domination Laws
pvIl'=T
pApP=p Idempotent Laws
pvVp=p
—(—p)=p Double Negation Law

PAG=qgAp Commutative Laws

pPVg=gqVp

(pANG) AT =pA(gAT) Associative Laws

(pvg) Vr=pV(qgVr)
pA(gVTr)=(pAgqg)V(pAT) Ditributive Laws
pVigrr)=@varlpvr)

—(pAg)=-pV g
—(pVg)=-pA—g

De Morgan’s Laws

pA(pV q) =p Absorption Laws
pV(pAg) =p
pA—p=F Negation Laws

Logical Equivalences involving Conditional Statements

p—~>q=-pVg
P—~>q=—q—>—p
pVg=-p—>gq
pAg=—(p——q)

p—=q)=pA—g

(p—=q@A(p—=r)=p—>(gAr)

(p—=rIn(g—=r)=(pVvg)—=r
(p—=q)V(ip—=r)=p—(gVr)
(p—=r)vVig—=r)=(pAg)—r

Logical Equivalences involving Biconditional Statements

Il

Pqg=—po—q

~(peg=peo—q

P<g=(p—>q)Alg— p)

P g=(pAg)VI{—=pA—g)
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A conditional statement has two parts — Hypothesis and Conclusion.

Example of Conditional Statement — “If you do your homework, you will not be punished.”
Here, "you do your homework™ is the hypothesis and "you will not be punished" is the
conclusion.

Inverse, Converse, andContra-positive

Inverse —An inverse of the conditional statement is the negation of both the hypothesis and the
conclusion. If the statement is “If p, then q”, the inverse will be “If not p, then not q”. The
inverse of “If you do your homework, you will not be punished” is “If you do not do your

homework, you will be punished.”

Converse —The converse of the conditional statement is computed by interchanging the
hypothesis and the conclusion. If the statement is “If p, then q”, the inverse will be “If q,
then p”. The converse of "If you do your homework, you will not be punished" is "If you will

not be punished, you do not do your homework™.

Contra-positive —The contra-positive of the conditional is computed by interchanging the
hypothesis and the conclusion of the inverse statement. If the statement is “If p, then q”, the
inverse will be “If not g, then not p”. The Contra-positive of "If you do your homework, you
will not be punished” is "If you will be punished, you do your homework™.

Example:

Give the converse and the Contra positve of the implication “ If it is raining then I get wet™.
Solution

P :Itisraming Q:1 get wet

Converse : 0 — P : If [ get wet, then 1t 1s raining.

Contrapositive : =0 — =P : If I do not get wet, then it is not raining

DUALITY PRINCIPLE
Duality principle set states that for any true statement, the dual statement obtained by
interchanging unions into intersections (and vice versa) and interchanging Universal set into
Null set (and vice versa) is also true. If dual of any statement is the statement itself, it is
said self-dual statement.

Examples : i) The dual of ANB)UCis(AUB)NC
i) Thedual of PAQAFIiISPVQVT
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Example:1
Construct a truth table for (p— g )= (g = p)

p—=>gq | q—=>p | (p2q)—=>(q—>q)

=S = = =
=S| = = =
- m| = -

| o o= = s
| o= T -] =

Example 2: Show that —(pv q) and —p A—q are logically equivalent

Solution : The truth tables for these compound proposition 1s as follows.

1 2 3 B 5 6 1 8
P Q| =P | -Q |PvQ -(PvQ) -PA=Q | 67
T T F F T F F T
T F F T T F F i)
F T 1 F T F F T
F F T T F T T T

We can observe that the truth values of —(pV q)and — p A —q agree for all possible
combinations of the truth values of p and q.
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Example 3: Show that p—q and —pwvq are logically equivalent.

Solution : The truth tables for these compound proposition as follows.

p q | -p [-pva[p—q
T T F T T
T s F F F
F T T T T
F F T T T

As the truth values of p —» q and —pv q are logically equivalent.

Example 4 : Determine whether each of the following form 1s a
tautology or a contradiction or neither :

) (PAQ)—(PvQ)

) (PvQ)a(=PA—=Q)
i) (-PA—-Q)—>(P—->Q)
1) {P—rQ;In[P n—Q}
V) [PA[P—}—~Q]—>Q]

Solution:
1) The truth table for (pag)—(pvq)

P q pAag pvq {pﬁq]—p{pvq:}
T T T T T
T F F T T
F T F T T
F F F F T

Here all the entries in the last column are ‘T".
~(paq)—=(pvq) is a tautology.

10
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i1) The truth table for (pva)a(—pa—q) is

1 2 3 4 5 6

r q Pvgqg | —P =4 | =P~A—-q | 30
T T T F F F F
T F T F T F F
F T T T F F F
F F F T T T F

The entries in the last column are *F°. Hence (pvg)a{—pAr—q) 1sa

contradiction.

111) The truth table 1s as follows.

p q —p —q | "pA—q pP—q |j—.p;\_q_}_}{_p_}q']

Mo H o
Mo A
H o=
L I
= o
H o= 1
H oA 4 -

Here all entries in last column are “T".

{—| PA— q_‘J — (p—q) 1s a tautology.

1v) The truth table 1s as follows.

p q | "4 | pA—q pP—=q (p—=q)r(pr—q)
T T F F T F
T F T T F F
F T F F T F
F F T F T F

All the entries in the last column are “F°. Hence 1t 15 contradiction.

11



SATHYABAMA UNIVERSITY, DISCRETE MATHEMATICS & NUMERICAL METHODS, SMT1203, UNIT1

v) The truth table for[pA(p— —q)—q]

Pl a| 73| P79 | palpa—q)| [prlp==q)=q]|
Tt F F F T
Tl F| T T T F
FlT| F T F T
F|F| T T F T

The last entries are neither all “T" nor all *F".

[p Alp—=>—q)— q] 15 a neither tautology nor contradiction. It 1s a
Contingency.

Example 5: Symbolize the following statement

Let p, q,  be the following statements:
p: I will study discrete mathematics
q: I will watch T.V.
r: I amin a good mood.
Write the following statements in terms of p, q, r and logical connectives.
(1) If I do not study and I watch T.V., then I am in good mood.
(2) If I am in good mood, then I will study or I will watch T.V.
(3) If I am not in good mood, then I will not watch T.V. or I will study.
(4) Iwill watch T.V. and I will not study if and only if I am in good mood.
Solution:
(1) (=parq)—r
(2)r—=(pva)
(3) =r=(-fvp)
(4)(qr=p)er

12
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Example ¢:Show that —(p V (—p A q))
is logically equivalent to —p A —¢q

Solution :
=(pV(-pAgq))

-pA-(-pAgq) by the second De Morgan law
-p A [=(—p) V q] by the first De Morgan law
-pA(pV —q) by the double negation law
(=pAp)V(-pA—g) by the second distributive law

W e e e me

FV(-pA—q) because -pAp=F
(-pA—-q)VF by the commutative law
for disjunction
= (-pA—q) by the identity law for F

Example 7:Show that = (p<»q) = (pvq) /\ 7 (pAq) without constructing the truth table

Solution :

7 (p—q) =(pve A T (pAg)

“(pe= "9 A (@op)
==(7pvg N (7 qvp)
== ("pva) A @ V(" pva) /Ap)

Elementary Product. A product of the variables and their negations in a formula is

called an elementary product. If P and Q are any two atomic variables, thenp, = p A (Q,
= q AP A - p are some examples of elementary products.

Elementary Sum: A sum of the variables and their negations in a formula is called an

elementary sum. If P and Q are any two atomic variables, then p, = p v q, = q v p are some
examples of elementary sums.

Normal Forms

We can convert any proposition in two normal forms —

1. Conjunctive normal form 2.Disjunctive normal form
Conjunctive Normal Form

A compound statement is in conjunctive normal form if it is obtained by operating AND among
variables (negation of variables included) connected with ORs.

Examples

« PUQNEQUR)
13
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e (FPUQUSUAT)
Disjunctive Normal Form

A compound statement is in disjunctive normal form if it is obtained by operating OR among
variables (negation of variables included) connected with ANDs.

Examples

« PNQUQNR)
« (-PNQNSN-T)

Predicate Logic deals with predicates, which are propositions containing variables.

Functionally Complete set

A set of logical operators is called functionally complete if every compound proposition is
logically equivalent to a compound proposition involving only this set of logical operators.
v, A, and =form a functionally complete set of operators.

Minterms: For two variables p and q there are 4 possible formulas which consist of
conjunctions of p,q or its negation given by pAq, pA =0, "pAagand =pA- —(Q

Maxterms: For two variables p and q there are 4 possible formulas which consist of
disjunctions of p,q or its negation given by pv g, pv =q, =~pvgand -pv -q

Principal Disjunctive Normal Form: For a given formula an equivalent formula
consisting of disjunctions of minterms only is known as principal disjunctive normal
form(PDNF)

Principal Conjunctive Normal Form: For a given formula an equivalent formula consisting of
conjunctions of maxterms only is known as principal conjunctive normal form(PCNF)

Obtain DNFof @ v (P n Ry —{{Pv R)n Q).

S olution:

Ouw(PaRina((PuvR)al)
S (@ viPARNAGGIF R A D (Demorgan law)
S (@ viPARNASFA-RB v (Demotgan law)

S (AP AaaRNv(@a-Dv((PARI AP aaRIv((FARIASD

(E xtended distributed law)
S AP AR vFw(FaRa-RIw(Fa-a@aR) (Hegationlaw)
S (AF A AR v(Paad aR) (Negationlaw)

14
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Obtain Panf and Pdnf of the formula (-2 v-¢)= (P & - @)

Solution;
LEtS:(-!PU-!Q)—) (JD L '|Q)

PIQ| -P|-Q| aPv-Q | Peoa-p|S| Mntem | Maxterm

T|T| F | F F F |T| Pap
T|F| F | T T T |T|Pnap
FIT| T | F T T |T|rnp
FIF[ T [T T F [T PvQ

PCNF: Pv @ and PDNF: (PA Q)v(P A -0 )v (P A Q)

Inference Theory

The theory associated with checking the logical validity of the conclusion of
the given set of premises by using Equivalence and Implication rule is called
Inference theory

Direct Method
When a conclusion is derived from a set of premises by using the accepted

rules of reasoning is called direct method.

Indirect method

While proving some results regarding logical conclusions from the set of
premises, we use negation of the conclusion as an additional premise and try to
arrive at a contradiction is called Indirect method

Consistency and Inconsistency of Premises

A set of formular Hl’Hz" ..,H 1s said to be inconsistent if their conjunction implies
m

Contradiction.
A set of formular H]’Hz" ..,H 1s said to be consistent if their conjunction implies
m

Tautology.

Rules of Inference

Rule P: A premise may be introduced at any point in the derivation

Rule T: A formula S may be introduced at any point in a derivation if S is tautologically
implied by any one or more of the preceeding formula.

Rule CP: If S can be derived from R and set of premises , then R S can be derived from the
set of premises alone.

15
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Rules of Inference

TABLE 1 Rules of Inference.

Rule of Inference Tautology Name
P [prilp—+qg)l—+gq Modus ponens
P—q

S
=4 [~g nip =gl =—p Maodus tollens
pP—+q
-p
F—+q [lp—=aqinig—=ril—=ip—=r) Hypuothetical syllogism
q—r

Sop=r
rpvy [lpvagln—-p]l—+q Disjunctive syllogism
-p
q
P p—(pvg) Addition
pvq
Prg (prgl—p Simplification

e P
P [(p) A (g)] = (p A g) Conjunction
q

SopAg
Pvq [(pvg)rl=pvri]—igvr) Resolution
—|p W F

gV E

Rule of inference to build arguments

Example:

It is not sunny this afternoon and it is colder than yesterday.
If we go swimming it is sunny.

If we do not go swimming then we will take a canoe trip.

If we take a canoe trip then we will be home by sunset.

We will be home by sunset

oW

16
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p Itis sunny thus afternoon l. =png
q Itis colder than vesterday 2. r->p
o Wego swunming
. 3. ar—s
s Wewill take a canoe tup
t Wewil be home by sunset (the conclusion) 4. §—=>1
> 1

| propositions hypotheses

Example 1. Show that R is logicallv derived fom P — Q. Q — FE and P

Soltion. {1} () P—Q RuleP
2 ) P Rule P
1.2} 3) Q Rule (1). (2) and I11
143 4 Q—R RuleP
1.2.4) (5) R Rule (3). (4) and I11.

Example 2. Show that S V R tautologically implied by (PV Q) A (P—R) A (Q—S).

Solution. {1} (1) PVQ Rule P

n @) P—Q T.(1).E1 and E16
B} B Q-—s P

1.3} (@ 7P—S T.(2).(3). and 113
1.3} (5) 7S—P T.(4).E13 and E1
6} (6 P—R P

1.3.6} (7) 7S—R T. (5). (6). and I13
1.3.6) (8) SVR T. (7). E16 and E1

17
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Example 3. Show that 7Q, P— Q == TP

Solution . {1t (1) P—Q Rule P
1y ()7P—7Q T.andEIS

33 (3) 7Q P
1.3y (4 7P T.(2).(3). and 111 .

Example 4 Prove that B A (P V Q) is a valid conclusion from the premises PVQ) |

Q—RP—Mand M

Solution. {1} (1) P—M P
{2} (2) ™ P
1.2} (3) 7P T. (1). (2). and 112
{4} 4 PVQ p
1.2.4 (5 Q T. (3). (4). and T10.
{6} (6) Q—R P
{1,246} () R T. (5). (6) and 111

[1.2.4.6} (8) RA(PVQ) T.(4). (7). and 10,

Example 5 .Show that R — S can be derived from the premises
P—(Q—S),7RVP,and Q.

Solution. {1} (1) RVP P
{2} 2) R P, assumed premise
{1, 2} (3)P T.(1).(2). and I10
4} @HP—@Q—9) P
{1.2. 4} 35)Q—S T.(3).(4).and I11
{6} ©) Q P
{1.2.4.6} (NS T.(5).(6).and I11
{1.4. 6} BR—S CP.

18
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Example 6. Show that P — 5 can be derived from the prenuses, TPV Q. 7QV

RandR—S.
Solution.
{1} (1) 7PVQ P
{2} (2) P P, assumed prenuse
{1, 2} (3) Q T. (1), (2) and I11
{4} 4) TQVER P
{1.2. 4} (5) R T, (3).(4)and I11
{6} (6) R—S5S P
{1.2,4.6; (7)) S T. (3). (6) and I11
{2.7} (8) P—S5S CP
Predicate Logic

A predicate is an expression of one or more variables defined on some specific
domain. A predicate with variables can be made a proposition by either
assigning a value to the variable or by quantifying the variable.

Eg.
“xisaMan”

Here Predicate is “ is a Man” and it is denoted by M and subject “x” is
denoted by x.
Symbolic form is M(x).

Quantifiers

The variable of predicates is quantified by quantifiers. There are two types of quantifier in
predicate logic — Universal Quantifier and Existential Quantifier.

Universal Quantifier

Universal quantifier states that the statements within its scope are true for every value of the
specific variable. It is denoted by the symbol V.

vx P(x) is read as for every value of x, P(x) is true.

Example — "Man is mortal" can be transformed into the propositional form ¥x P(x) where P(x)
is the predicate which denotes x is mortal and the universe of discourse is all men.

19
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Existential Quantifier

Existential quantifier states that the statements within its scope are true for some values of the

specific variable. It is denoted by the symbol 3.3x P(x) is read as for some values of x, P(x) is
true.

Example — "Some people are dishonest" can be transformed into the propositional form 3x P(X)
where P(x) is the predicate which denotes x is dishonest and the universe of discourse is some
people.

Nested Quantifiers

If we use a quantifier that appears within the scope of another quantifier, it is called nested
quantifier.

Eg.2.
“Every apple is red”.
The above statement can be restated as follows
For all x, if x is an apple then x is red

Now, we will translate it into symbolic form using univer:)
quantifier.

Define A (x) : xisan apple.
R (x) : xisred.
We write (*) into symbolic form as

(Vx) (A —>RX)

Eg.3. “Sormre men are clever™.
The above statement can be restated as
“there is an x such that x is a man and x is clever.

We will translate it into symbolic form using Existenrial

quantifier.
Let M (x) : xis a man
and C(x) : xisclever

We write (B) into symbolic form as

(B x) (M ) A C (XD

20
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Inference theory for Predicate calculus

Rule of Inference Name
Vo P(x
- P(y) Rule US: Universal Specification

P(c) for any c
VmP[a:) Rule UG: Universal Generalization

dzP(x)
. P(c) for any ¢

Rule ES: Existential Specification

P(c) for any c
EI:rP(;r) Rule EG: Existential Generalization

Problem : | Show that (3x) M(x) follows logically from tha
es (x) (H(x) =& M(x)) and (3x) H(x)

premis
Solution : 1) (3x) H(x) rule P
2) HW) ES
3) MHGE->MEK) P
4) HQ@) > MO) uUs
5) MQ) T, (2)
6) (3x) M(x) EG

Problem : 2
Symbolize the following statements:
(@) All men are mortal
(b) All the world loves a lover

(c) X is the father of mother of Y
(d)No cats has a tail
(e) Some people who trust others are rewarded

Solution:

21
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{a) Let M(x): x is a man Hix): x is Mortal
{ 7 x)(Mix) = H(x))

(b) Let P(x): x is a person L{x): x is a lover R(x.y): X lovesy
(x) (P(x) — (y) (P(y) ~ L{y) — ROy

(c) Let P(x): x is a person F(x.y): x is the father of y

Mx.,y): x is the mother of y { 3 z) (P{z) » F(x,z) ~ Miz,y))
{d) Let Cix): x is a cat T(x): x has a tail
( 7 x)(Cix) = =Tix)
(e) Let P(x): x is a person T(x): x trust others R(x): x is rewarded
( 3 x) (P(x) A T(x) ~ Rix))

Problem: 3

Use the indirect method to prove that the conclusion 3;0( ;) follows from the premises
Yx(Plx)— @(x))and 3pP(y)

solution:

1 ~3z0(z) P(assumed)
2 | ¥za002) T, (1)

3 Iy Fiy) P

4 P(a) E3, (3)

> | -00) Us, @)

6 Pla)n -Q(a) T, (@),

7 ~(Pla) = Q(a) T,

8 | ¥x(P(x)> Q) P

Q Fla) = (Q(a) 173, (8)

10 Pla) = Q(a)n ~(Pla) = Q(a) T,(D),) contradiction
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Problem: 4
Showthat (3%) (PG A QED = EAXPEA (3X) QK)
s olution:

D (3 =) (P A Q) EuleP

2P A Qla) EZ, 1

3 P@) RuleT, 2

43 Qia) RuleT, 2

DI PE EG, 3

6) (3% Q® EG, 4

TADPE A (32 QE) RuleT, 5, 6

ASSIGNMENT PROBLEMS

1. Write the statement in symbolic form “Some real numbers are rational

b

Svmbolize the expression “x 1s the father of the mother of v~
Syvmbolize the expression ~All the world loves a lover™

Write the negation of the statement “If there 1s a will. then there 1s a way .

s W

Construct the truth table for —C& )
6. Find the CNF and DNF of —'#7 ¥ @) <= {(p " q)

7. Show that P— Q.0 ——=R.RPv(J A 5) imply J »§
8. Show that P - Q.P — R.Q — R, P are inconsistent.
9. Prove that (Zx)(P(x) » Q(x) = (3x)P(x) A (Cx)0Q(x)

10.Show that —P(a.b) follows logically from (x)}y)(P(x, y} —W(x, y) and
—Wia, b)

11.Show that —=Pv (Q.—~QvRR—S=P—S§

12.Show that (P~ =Q)An—Qv RA—-R=—P

23
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13.Show that P is equivalent to —P, PAP,Pv P, PA(Pv Q)L (PA Qv (PA=Q)
14.Indicate which one are tautologies (or) contradictions
(@aPrQ) =P (b)p—PvQ
15.If R:Ram is rich, H:Ram is happy ,Write in symbolic form
(a) Ram is poor but happy (b) Ram is poor or unhappy
( ¢) Ram 1s neither rich nor happy

16.Show that the hyvpothesis, “Tt 1s not sunny this afternoon and 1t 1s colder than
yvesterday.” ~ We will go swimming only 1f 1t 15 sunny.” “If we do not go
swimming then we will take a canoe trip.” and “If we take a canoe trip. then
we will be home by sunset “lead to the conclusion “we will be home by
sunset
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UNIT Il SET THEORY

Basic concepts of Set theory - Laws of Set theory - Partition of set, Relations - Types of Relations:
Equivalencerelation, Partial ordering relation - Graphs of relation - Hasse diagram, Functions:

| njective, Surjective, Bijective functions, Compositions of functions, |dentity and Inverse
functions.

The concept of aset is used in various disciplines and particularly in computers.
Basic Definition:
1. “A collection of well defined objectsis called a set”.

The capitals |etters are used to denote sets and small |etters are used for denote
objects of the set. Any object in the set is called element or member of the set. If x
Is an element of the set X, then we write x € X, to be read as ‘X belongs to X’ , and

If x isnot an element of X, the we write x & X to beread as ‘ x does not belongs to
X

2. The number of elements in the set A is caled cardinality of the set A,
denoted by |A] or n(A) . We note that in any set the elements are distinct.
The collection of setsis aso aset.

S= {Plx{szpa}:PmPa}
Here {P,, P, } itself one set and it is one element of Sand |§=4.

3. Let A and B be any two sets. If every element of A isan element of B, then
A iscalled asubset of B isdenoteby ‘4 = B’

We can say that A contained (included) in B, (or) B contains (includes) A.
Symbolicaly, ASB(or)B=2A

Logicaly, AS B = (xV){x € A — x € B}
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LetA=1{1,2,345}, B={1,24}, C={1,5}, D={2}, E={1,472}
Then B€ A, C< A DS ADCHEH

C £€B,since5eC=5¢¢B, ECB andB S E.

Some of the important properties of set inclusion.

For any setsA, B and C

A € A (Reflexive)

(ASB)A(BEC) = (4 €C) (Transtive)

Notethat A © B does not imply B € A except for the following case.

4. Two sets A and B aresaid to beequal if andonly if A € B and B € A4,
l.e., A=B &< (ASBand BE ()

Example {1,2,4} = {4,1,2} and P = {{1,2},4}, Q = {1,2,4}thenP +# @
Since{l,2} € Pand {1,2} & @ eventhough 1,2 € Q.

The equality of setsis reflexive, symmetric, and transitive.

5. A set A issaid to be aproper subset of asetBif AS Band A # B.
Symbolicaly itiswrittenasA c B.i.e, ACB& (ASB A A+ B)

c isaso caled aproper inclusion.

6. A setissaid to be universal set if it includes every set under our discussion. A
universal set is denoted by U or E.

In other words, if p(X) isapredicate.E = {x|p(x)V 1p(x)}

One can observe that universal set contains all the sets.

7. A setissaid to be empty set or null set if it does not contain any element, which
id denoted by @.
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In other words, if p(X) isapredicate.d = {x|p(x)V 1p(x)}
One can observe that null set is a subset for all sets.

8. For aset A, the set of all subsets of A iscalled the power set of A. The power set
of A isdenoted byp(A) or 2" i.e., p(A) ={5|S € A}

Example, Let A = {a, b, c}
Then p(4) = {@,{a}, {b}, {c},{a, b}, {a, c},{b,c}, 4}

Then set @ and A are called improper subsets of A and the remaining sets are
called proper subsets of A.

One can easily note that the number of elementsof p(A4)is
21l i e, |p(A)] =2

SOME OPERATIONSON SETS
1. Intersection of sets
Definition:
Let A and B be any two sets, the intersection of A and B iswrittenas A n B isthe
set of all elements which belong to both A and B.
Symbolicaly

ANnB={x|x€Aandx € B}

Exampled = {1,2,3,4,5,6}, B ={2,4,6,8} then AnB ={2,4,6]. From the
definition of intersection it follows that for any sets A,B,C and universal set E.

AnA=A4 AnNnB=BnA An(BnC)=AnB)NnC
ANnE=A4 ANd=10
2. Digoint sets
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Definition:

Two set A and B arecalled digoint if and only if An B = 0, that is, A and B have
no element in common.

Example A = {1,2,3} B ={5,7,9} C = {3,4}

AnNB=0, AnC={3}, BNnC=0

A and B are digoint and B and C aso, but A and C are not digoint.
3. Mutually digoint sets

Definition:

A collection of sets is called a digoint collection, if for every pair of sets in the
collection, are digoint. The elements of adigoint collection are said to be mutually
digoint.

Let A = {4, };c; beanindexed set, A is mutually digoint if and only if
A, n A = Ofordli,jeli#].

Example
A, ={{1,2},{33}, 4, ={{1},{2,3}}, 4; ={{1,2,3}}

Then A ={A, ,A,,A;} isadigoint collection of sets.

AN A, =0, A, n A; = 0 and A, N A; =0
4. Unions of sets
Definition:

The union of two sets A and B, writtenas A U B, is the set of al elements which
are elements of A or the e ements of B or both.

Symbolicaly AUB ={x|x € Aorx € B}
ExampleLet A = {1,2,3,4,5,6} B = {2,4,6,8} then AUB = {1,2,34,5,,6,8}

From the union, it is clear that, for any sets A, B,C, and universal set E.
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AUA=A AUB=BUA AUu(BuC)=(AuB)uUC
AUE=E AuUup=A

5. Relative complement of a set

Definition:

Let A and B are any two sets. The relative complement of B in A, written A — B, is
the set of elements of A which are not elements of B.

Symbolically A —B ={x|x € Aor x € B}
Notethat A—B = ANB.

Example Let A = {1,2,3,4,5,6)

B ={2,4,6,8} then

A—B ={1,35}

B —A={8)}

It is clear from the definition that, for any set A and B.

A—-B=20
A—B+B-—-A
A-0=A4

6. Complement of a set
Definition:

Let A be any set, and E be universal. The relative complement of A in E is caled
absolute complement or complement of A. The complement of A is denoted by A
(or A€ or - A)

Symbolically
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E—-A=A={x|x€Eandx & A}
ExampleLet E = {1,2,3,4,...} beuniversal set and
A=1{2468,..}beany setinE.

Then

A={1357..}

From the definition, for any sstsAA=A @ =E

E=0 AUA=EANA=0

7. Boolean sum of sets
Definition:

Let A and B are any two sets. The symmetric difference or Boolean sum of A and
B isthe set A+B defined by

A+B=(A—-B)U(B—A)=(AnB)u(BnA)
(oNA+B={x|x€dAandx € B} U{x|xEBandx & A}
Example Let

A=1{123456)

B = {2,4,6,3} then

A+ B = {1,3,5,8} From the definition, for any sets A and B.
A+A=0, A+0=A

A+E=A, A+B=B+ A4 and

A+(B+C)=(A+B)+C
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8. The principle of duality

If we interchange the symbols N, U, E and @, € and 2, < and 2, in a set equation

or expression. We obtain a new equation or expression is said to be dual of the
original on (primal).

“If T is any theorem expressed in terms of N,U and — deducible from the given
basic laws, then the dual of T is also a theorem”.

Note that, the theorem T is proved in m steps, then dual of T also provedin m step.

Example Thedua of AN A = @isgivenby AUA =E.
Remark: Dual (Dua T) =T.

[dentities on sets

AUA=A | dempotent laws
AnA=A

AUB=BUA Commutative laws
ANB=BnA

(AUB)UC=AU(BUO) Associative laws

AnB)NnC=An(BnC)
AUBNC)=(AUB)Nn(Au D) Distributive laws

AnN(BUCO)=(AnBYU((ANn(O)

AU(AnB)=A Absorption laws
An(AuB)=A
(AUB)=AnNB De Morgan’s laws
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(AnB)=AURB

Aud=A AN =0

AUE =E AnE=A4

AUA=E ANA=0

0=E E=0 A=A

PROBLEMS
15 ={abpq}, Q={a,pt} . FindSUuQ@andSn Q?

Solution:
SuQ ={abnpq,t}
SnQ ={a,p}

2.1f A = {a,b, c}. Find p(4)?

Solution:

p(4) = {@,{a},{b},{c},{a,b},{a,c},{b,c},A} and
|4] =3

lp(4)| = 2° = 8

3. Write al proper subsetsof A = {a,b, c}.
Solution:

The proper subsets are
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p(4) = {{a}, {b}, {c},{a, b}, {a,c},{bc}}
4. Showthat A€ B < AnB = A.

Solution:

fAS B thenWVxed=x¢cB
Now , let

xEAx€EA andx €EB

& x€EANB

A=AnNE

If AnB = A, then

Letxed, x€eAnB =x€B
Therefore A € B.

51fA=1{25,67},B=1{1234} C={1,357.FindA—-B,A—-C,C—B and
B —C.

Solution:

A—B ={567)
A—C=1{26)
C—B=1{5T7)
B—C={24)

6.1fA=1{234},B=1{12}, C={456}.FindA+B,B+C,A+C,A+B+C
and (A+B)+ (B+ ().

Solution:

A+B={134
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B+C={1,2,45,6}

A+C=1{235,6)}

A+B+C=1{1356)
(A+B)+(B+C)=1{2356])

Note that
A+(B+B)+C=A+@)+C=A+C=1{23,5,6}
7.Showthat A€ AUB andAnB € A.

Solution:
Let

x€EA =x€A(or)x€BRB

— xEAUBRB

—=ACAUB

Nowlet xeANB =x€Adandx €B

—x€eEA

AnNnBEA

Hence AS AUB andANnB € A.
Remark: BE AUB,AnB&EBand AnBE AUB.

8. Show that for any two setsA andB, A—(AnB)=A —B.

Solution:
xEA—(AnB)exedandx & (AnB)

o xeAdand{x & Aorx & B}

10
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S{xedandx & A}(or){x € Aand x € B}
& 0 (or){x e Aand x & B}

< xcAandx & B

A—(ANnB) €A—-B andA—-B<SA—-(ANnB)
Therefore A —(AnB)=A—B.
9.Showthat AU(BNC)=(AUB)N (AU ()
Solution:
x€EAUBNC)e=xedorxeBnC

& xedor {xeBandx e (C}
S{x€dorxeBland {x€EAorx €}
= {x€eAUB}and {x € AU (}

S xeE(AUB)N (AU D)

Therefore AU(BNC)=(AUB)N (AU C).
10. Show that (AU B) = An B.

Solution:

Let x€ (AUB) ©x¢€AUB

S x¢Aandx & B

& xeAdandx€B

S x€e AnB

Therefore (AU B) = AnB.

11. Showthat (A —B)—C=A— (BUC(C).

11
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Solution:

(A-B)—C=((A-B)nC (P—Q=PnQ)
=(AnB)nC

=An(BnC) (Associative)
=An(Bul) (De Morgan’s law)

12. Showthat AN(B—C)=(ANB)—(ANC)
Solution:

Let (ANB)— (AN C)

=(ANB)N(ANC)

—(AnB)N(Au )
—(ANBNADUM@ANBNO)
=((AnA)NB)UMANBNC)

=@NRUANBNC)

=0UANBNnC)
=An(BnC)
=An(B-0)
ASSIGNMENT PROBLEMS
Part —-A
1. Define aset

2. Define subset of aset. What is mean by proper subset?

12
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(i) Find all subset of A = {1,2,3}
(if)Find all proper subsets of A.
3. Define power set.
4. Define digoint sets with example?
5. IfA={1,2345}and B = {2,4,6,8,10). FindAUB,AnB,a— B,B — 4,

A+ B,andB + A?

6. Which of the following sets are empty?

7. {x|xER,x+6 =6}

8. {x | xis a real integer such that x* + 1 = 0}
9. {x | xis areal integer and x* — 4 = 0}
10.State duality principlein set theory.

11.Define cardinality of a set.

12.1f aset A has n e ements, then the number of elements of power set of A

13.Find the intersection of the following sets
) {x|x*—1=0}L{x|x*+2x+1=0)
14.Writethe dud of AN 4 = 0.
15.Let A,Band Csets, suchthat AUB =AuCandAnNB =AnC,canwe

conclude that B=C.
16.State De Morgan’s Laws.

17 .Whether the union of setsis commutative or not?

PART -B

13
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Showthaa AN(BUC)=(AnB)u(AnC).

Verify the De Morgan’s laws

) AUB=AnB,(i)AnB=AUB

Show that the intersection of setsis associative.
Showthat A— (B —C) =(A—B)U (AN C).

Showthat AN (B—C)=(ANB)—(AnC)

Let4, ={1,2,3,...}fori =1,2,3,...find () UL, 4; (b) NiL,; 4;
Provethat A — (A — B) c B.

Show that for any two setsA and B, A — (AN B) = A — B.
Provetht ANBcAc AuBandAnBcBc AUB.

10.IfAUB=AuCandAnB = AnC, prove that B=C.(cancelation law)
11. Showthat A — (BU C) = (A—B)n (4 — C).

12. Show that A + A = @, where + isthe symmetric difference of sets.

13. Show that (R € S)and (S < Q) imply R c Q.

14. Giventha AnNC<SBnCandANnC € BnC.Showtha A € B.

CARTESIAN PRODUCT OF SETS

The Cartesian product of the sets A and B, iswritten an A X B, is the set of all
ordered pairsin which the first elementsare in A and the second elements arein

B.

i.e. AXB={x,y)x€Aand x € B}

For example

LetA={1,2},B={a,b,c}, c ={a B}

Now

14
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AX B ={(1,a),(1,b),(1,cX2,a),(2,b),(3,c)}
AXC={1,a),(1,5),(2,a),(2,B)}

AX B = {{a a),(a,b),{a,cXB,a),{B,b),{B,c)}
Itis clear from the definition

AXB+#BxA and {{a,b),cyeE(AXB)XC(C, is an ordered triple then
{a,b) e AXBandc€C.

Now ,A X (BX C) ={{a,{(b,c))|la€ Aand (b,c) € {B,C)}
Notethat {a, {b, c}) isnot an ordered triple.
Thisfactshowthat (A XB)X C# A X (B X ()

I.e. Cartesian product is not associative.
Now
AXA=A7={{x,y),Vx,y € A}and A" = A" 1 X A.

Notethat if A has n eements and B has m elements 4 X B has nm elements.

PROBLEMS
11fA=1{1,23}, B={a,b}.FindAX B,Bx Aand A x Aand A2 X B
Solution :
AX B ={{1,a),(1,b),(2,a),({2,b),{(3,a),(3,b)}
BxA={a1l)(a2){a3) (b 1),(b,2),{(b3)}

AP =AXA={(1,1),(1,2),{1,3),(2,1),{(2,2),{2,3),(3,1),{3,2),(3,3)}}

15
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AE x B = {{1J1J a’}! {1J1J b}! {1.'2! a}! {]'JZJ b}! {1J3J a’}! {1J3J b}! {ZJ]'.I ﬂ'}! {ZF]'J b}!

(2,2,a),(2,2,b),(2,3,a),(2,3,b),{3,1,a),(3,1,b),(3,2,a),(3,2,b),{3,3,a),({3,3,b) }

2.Showtha A X (BNC)=(AXB)n(AXC(C).
Solution: For any (x, v},

(x,y) X(BNC)=x€eAandyeBnNnC

S xcAdand{y€eBandye(}

S {xedandy€EBland{y EBandy € C}

= {x,v)EAXBland {{x,y) € A X (C}

= {x, VAXB)N(AXCO)}
AXBNC)=(AXB)Nn(AxX0()

3.Showtha (ANB)X(CND)=(AXC)n (B XxD).
Solution: For any {x, v},

(x, M XANB)YXx(CnD)=xe(AnB)andy € (CnD)
< {(x€eAandx € B}and {y € Cand y € D}

s {xedandy € Cland {x € Bandy € D}

= {x,v) EA X Cland {{x,v) € B XD}

= {{x, yWAXC)N(B X D)}.

ASSIGNMENT PROBLEMS

16
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Part A

Define Cartesian product of sets? Given an example?
If A= {0,1},find AZ.
If A= {1,2,3}and B = {a,b},findA X B,B X A, A*.

w0 DB

Trueor False
. If A= {1,3,5,7,9},the {Vx € A, x + 2 is a prime number}
1. If A= {1,2,345},the {3 x€A4,x+3 =10}

5 IfAX B ={(1,2),(1,3),(2,2),(2,3),(4,2),{4,3),(5,2),{5,3)}

Part B

6. If A,Band C aresets, provethat A X (BUC) =(AX B)U (A X0C).
7. Provethat (AXC)—(BXxC)=(A—B)XC.
8. If A= {a,b}and B = {1,2},and C = {2,3}, find
. Ax(Bu<(l)

. (AXB)U(AXC)

. AxX(BNnC)

IV. (AXB)N(AXC)
9. Show that the Cartesian product is not commutative? It is commutative

only for equality of sets?

RELATIONS
Binary relation

Any set of ordered pairs defines a binary relation.

17
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If x and y are binary related, under the relation R, the we write (x, y) € R or
xRy. If not the case we write (x, v} € R.

1. Example F = {{x,v) |xis the father of v}
L = {{x,y) |x and y are real number and x < y}

Then F, L are binary relations.

2.Example Let A and B be any two sets, then any non empty subset R of
A X Biscdled abinary relation.

Now
A= {123}
B = {a,b} then

AX B ={(1,a),{1,b),(2,a),{2,b),(3,a),(3,b)}

Let
Rl = {{lla}l {ZJb}J {3;{1}1{31'&]}}
RE = {{llb}l {31(1}}

R; = {{2,a)]

Then R,,R, and R, are binary relations A to B.

Let S be any binary relation. The domain of Sis the set of all elements x such
that for some y, (x, y) € S.

D(S)={x|{x,y) €S, for somey}

Similarly, the range of S is the set of al elements y such that, for some
X, (x,y) €S

R(S) ={y {x,v) €S, for somex}

Let

18
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S ={1,a),(1,b),(2,b),(3,a)}

D(S) ={1,2,3}

R(S) = {a, b}

IfSS X XY, thenclearly D(5) € X and R(S) €Y.

Incaseof X =V, thenthereation defined on X x X is called an universal
relation in X.

If X =0, thenardationon X x X iscaled void relation in X.

Since relations are sets, then we can have their union and intersection and so on.
RUS ={{x,y) |xRy or xSy }

RnS = {{x,y) |xRy and xSy}

R — S = {{x,y) |xRy and (x,y) € 5}

R+ S ={{x,y)|{x,y) is either in R or in S but not in both }

Properties of Binary relations
1. Reflexive
Let R be abinary relation defined on X.

Then Risreflexiveif, for every x € X, {x,y) € R.

Example;

Let

X =1{1,273)

R ={{(1,1),(1,2),(2,2),{3,3),(2,3)} and

S = {{1,1),(1,2),(2,1),(3,3)} aredefined on X.
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Then Risreflexive, but Sisnot reflexive. Since (2,2} € Sand 2 € X.

2. Symmetric

A relation R from X to Y is symmetric if every x € X and y € ¥, whenever
(x,y) € R, then (y,x) ER.

Thatis, if xRy = yRx, then Rissymmetric

Example:

Let

X ={12)

R ={{(1,1),(1,2),(2,1),{2,3),(3,2)} and

S ={(1,2),(2,2),{1,3),{(3,1)} aredefined on X.

Then R issymmetric, but Sis not symmetric. Since {1,2) € S but (1,2} & S.
3. Transitive

A relation R istranstiveif, whenever (x, y) € R and {y,z) € R, then {(x, z) € R.
That is, if xRy A yRz, then Ristransitive.

Example:

Let

R ={{1,1),{1,2),(2,2),{1,3),(2,3),{(2,1)} and

S ={(1,2),(2,3),(1,3),(3,3),(2,1}}

Then R is trangitive, but S is not transitive. Since (2,1} € S and (1,2) € S but
(2,2) & S.

4.1rreflexive

A relation Rinaset X isirreflexiveif, for every x € X, {x,x} & R.
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Example:

Let

A=1{1723)

R ={(2,1),(1,2),(2,2),{3,2),(2,3),{1,3)} and
§={(1,1),(2,3),(2,2),(1,3)}

Then Risirreflexive, but Sisnot reflexive. Since(3,3) € S and {1,1) € S.

5. Antisymmetric

A relation R in a set X is antisymmetric if, whenever (x,y) € R and
{v,z) ER,thenx = y.

Thatis, if xRy A yRx = x =y, then Risantisymmetric.
Example:

Let

X bethe set of al subsets of E.

R be theinclusion relation (<) defined on X.
ASBABSA=A=B

Therefore R isantisymmetricin X.

6. Relation matrix

Let X ={x;,%;,...x,.}, Y ={y, 5, ...v,,,} ae ordered sets, R be a relation
defined from X to Y, then the relation matrix of R, is defined as

M, = (Tl-j)iil —-m,j:1—-n
Example 1.

Let X = {1,23)Y = {a, b}
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1 1
R = {(1,a},{1,b),(2,a}),{3,b)} beardationfromXtoY.Then My = [1 {]]
0 1

Example 2: Let

R = {(1,1),(1,2),(2,1),{(1,3),(2,2),(3,1),(3,2)} be arelationon X = {1,2,3}.
1 1 1

ThenMz=(1 1 0
1 1 0

7. Composition of Binary Relations

The concept of composition of relation is different from union and intersection
of two relations.

Definition:

Let R be arelation from X to Y and S be a relation from Y to Z. Then the
composite R o S isarelation from X to Z defined by

The operation e in R o S iscaled “ composition of relations .

Example.

Let

R ={(1,2),(2,3),(3,4),42,2)}
S={(2,3),(4,1),(4,3),(2,1)} . Then

RS ={(1,3),{(1,1),(3,1),(3,3),(2,3),(2,1)}
SoR={(2,4),(4,2),{4,4),(2,2)}

Note that

RoR = R?

RoRoR=R?cR=R?

R™1oR = R™elc,,
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Definition:

The relation matrix for R o S isgiven by M,.. = M,(®M; where ¢ is defined
asfollows.

MzOMs = (m,;) where m;;((i,j)th element) is 1 if and only if row i of M
and column j of M have a1l in the same relative position k, for some k.

Example:
Let
R = {(1,2),(1,5),(2,2),(3,4),(5,1},{5,5)}

S ={(1,3),(2,5),(3,1),(4,2),(4,4),(5,2),(5,3)} . Then
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01001
01000
Mp = 00010
00000
| 1 0 00 1]
[0 0 1 0 07
00001
Ms = 1 0000
01010
|01 1.0 0 |
Mp,s = Mp®e Ms
01 0 0 17 00100
01000 00001
= 00010 1 0000
00000 01010
1 0001 | 01100
01 1 0 1]
00001
= 01010
00000
|01 1 0 0|
and
"U’R! = ﬂ'.l’j{ O f”“
01 0 0 17 01001
01000 01000
= 00010 00010
00000 00000
| 1 0 00 1] 1 0001
1 1 0 0 17
01000
= 00000
00000
| 1 1 00 1]

R* = {(1,1),(1,2),(1,5),(2,2),(5,1),{5,2),(5,5)}

Definition
Let R beardation from X to Y. The converse of R, iswritten as R, isarelation
from Y to X such thatxRy < xRy.
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Example:
If R={{1,a),(2,b),(2,a),(b 3)
R = {{a,1),{b,2),{a,2),{b,3)

Also it is clear that

Result: Therelation matrix Mz isthe transpose of the relation M.
i.e.Mz = transpose of Mg

Example:

Let

R = {{1,1),{2,1),(2,2),{(2,3),{3,1),{3,3)

R = {{1,1),{2,1),{2,2),{3,2),{1,3),{3,3)

We have
1 1 0
M,=10 1 1
1 0 1
1 0 1
Ms=|1 1 0
0 1 1
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EQUIVALENCE RELATION
Definition:

A relation R on a set X is called an equivalence relation if it is reflexive,
symmetric, and transitive.

Example 1.
Let
X={1234}and

R = {(1,1),{1,4),(4,1),{4,4),(2,2),{2,3),(3,2),(3,3)} is an equivalence relation
on X.

Example 2:

Equality of subsets on auniversal set is an equivance relation.
Example 3:

Let

X=1{1,23,..7}

R = {{x, v} |x — v is divisible by 3}

Now, Vx € X,x —x = 0 isdivisible by 3.

ThereforeV x € X, {x, x} € R (reflexive)

Forany x,y € X

Let {(x,x) ER = x — vy is divisible by 3 we have —(x—y) =y —x is aso
divisible by 3.

{y,x) € R (symmetric)

Let{x,y) ERA{y,2) ER
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= x — y isdivisbleby 3and y — z isdivisible by 3.

= (x —y)+ (v —z) isdivisbleby 3.

= x —zisdivisble by 3.

Therefore (x, y) € R (Transitive)

Therefore R is an equivalence relation on X.
EQUIVALENCE CLASSES

Definition:

Let R be an equivalence relation on a set X. For any x € X, the set [x], € X
given by

[x]z = {y |xRy fory € X}
Is called an R-equivalence class generated by x € X.

Therefore, an equivalence class [x]; of x € X isthe set of al elements which
are related to x by an equivalence relation R on X.

Example:

Let Z be the set of all integers and R be therelation called “congruence modulo
4" defined by

R = {{x,y) |(x — y) is divisible by 4, for x and y € Z} (or x = y(mod 4))
Now, we determine the equivalence classes generated by R.

[0l = {..— 8,—4,0,48..}
[1]g = {..—7,-3,1,59...}
[2]g = {..— 6,—2,2,6,10...}
[3lg = {..—5,—1,3,7,11...}

Note that
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[0]g = [4]z,[1]; = [5]R, .- etc.
Therefore% = {[0]g, [1]g, [2]&, [3]&]

In asimilar manner, we get the equivaence classed generated by the relation
“congruence modulo m” for any integer m.

Therefore, an equivalence relation R on X, will divide the set X into an
equivalence classes, and they are called portion of X.

PARTIAL ORDERED RELATION

A relation Ron aset X issaid to be apartial ordered relation, if R satisfies
reflexive, antisymmetric, and transitive.

Example:

Let p(A) bethe power set of aset A.
Define asubset relation (<) on p (4), then € isapartial ordered relation.

Usually we denote the partial ordered relations as * <’ is said to be partially
ordered set (or) poset, which is denoted by (X, <}. We will study more about
posets in the subsequent sections.

1. Closuresof areation

Let R be arelation on the set X.

2. Reflexive closure

We have therelation R isreflexiveif and only if the relation.
R={{xv)|VxeX}iscontanedinR.

I.e. Risreflexive = [ € R.

Definition:
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Let R bearelation on X, then the smallest reflexive relation on X, containing R,
is called reflexive closure of R.

Therefore R; = R U1 isthereflexive closure of R.

3. Symmetric closure

We have, therelation R is symmetricif {x,v) ER < {(v,x) €R
i.e.R ={(y,x)|{x,y) ER}

Definition:

Let R beareation X, then smallest symmetric relation on X, containing R, is
called the symmetric closure of R.

Therefore R U R isthe symmetric of R.

4. Transitive closure

We have, therdation Ristrangitive, if (x,y) € R and {y,z) € R then
{x,z) ER.

Definition:

A relation R* issaid to be the transitive closure of therelation Ron X if R is
the s™'e trangitive relation on X, containing R,

i.e R* isthetransitive closure of R, if

. R €ER™
Il. RTistransitiveon X
1. Thereisno transitiverelation R; on X, suchthat R ©c R, ©c R*

Remarks:

1. Thetransitive closure of R can be obtained by
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R*=RUR?*UR?*U .= URE'
i=1
2. We know that {x,z) € R? if and only if there is an element y such that

(x,y) e Rand(y,z) ER.

Therefore {a, by € R™ if and only if we can find a sequence x,,x,, ... X, _;
in X such that {a, x, },{x;,x;), ...{x,,_;, b) aredl in R.

The sequence a, x,,x,, .... X,,_4, b IS said to be a chain of length n from ato
b in R. Here x,,x,,....x,_, are caled interval vertices of the chain in R.
Note that the interval vertices need not be distinct.

PROBLEMS
11f P={(1,2),(2,4),(3,4)}, Q@ = {(1,3),{2,4),{4,2)}

Find () PUQ,PnQ,P,PuQ (ii) domainsof P,P U Q,P n Q and (iii) ranges
of Q,PU@R,PnNnQ.

Solution:

PuU Q= {{(1,2),(13),(2,4),(3,4),{(4,2)}
PNQ={(2,4)}

P ={(2,1),(4,2),(4,3)}
PuQ={{1,3),(24),(4,2),(2,1),(4,3)}
Domain of P = {1,2,3}

Domain of (P U Q)= D(PU Q) = {1,2,3,4)
Domainof (PN Q)=D(PnQ) = {2}

Rangeof Q = R(Q) = {2,3,4)
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Rangeof (PUQ)=R(PUQ)={234)

Rangeof (PNQ)=R(PNQ)={4}

Itisclear that

D(PU Q) =D(P)uUD(Q) and

R(PNQ)<S R(P)NR(Q)

Ingenera D (P) = R(P) and R(P) = D(P).

2LetX ={1,23,4)andR = {{x,V) | x,y € X and (x — y) is anintegeral
non zeromultiple of 2} S = {{x,¥) | x,v € X and (x — y) is an integeral
non zeromultiple of 3} .FiINdRUSandR NS ?

Solution:

Giventhat R = {(1,3),{3,1),(2,4),{4,2)} and

S={1,4),(41)JRUS = {(1,3),(1,4),(2,4),(3,1),(4,1),(4,2)}

RNS=0

Remarks:

D(R) ={1,2,34}

R(R) ={1,2,3/4}

D(S) = (1,4}

R(S) = {1,4)

3LetS={{x,x*)|x €N} andT = {{x,2x) | x E N}, where={0,1,2,....} . Find
therangeof Sand T, findSUT andSNT?

Solution:
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S={{x,x*)|xEN}
={(0,0),(1,1),(2,4),(3,9),(4,16),...... } and

T ={(x,2x) | x N}

= {{(0,0),(1,2),(2,4),(3,6),(4,8),...... }

R(S) ={x*|x €N}

={0,1,49,16,25... ... }

R(TY={2x|x EN}

={0,2,4,6,810,...... }

SUT ={(x,x*) | x e N} U {{x, 2x) | x € N}

= {{x,¥) | x,v € N, such that y = x* (or)2x}

= {(0,0),(1,1),(1,2) ,({2,4),(3,6),{3,9), ... ... }

SNT ={x,y) | x,y € N,such that y = 2x and y = x*}
(Nowy=2xandy=x? =22x=x?le.x=00rx=2
x=0y=0andx=2 =2y=4)

SNT ={0,0),(2,4)}

4. Given an example which is neither reflexive nor irreflexive?
Solution:

LetX ={1,2,3,4}and

R = {(1,1),(1,2) ,(2,3),(3,3) ,{4,1),(4,4)}

Then Risnot reflexive, since(2,2) € R, for 2 € X and Ris not irreflexive, since
1eX,and{(1,1)ER.
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5. Test whether the following relations are transitive or not on
X =1{1,273)

R ={(11)(2,2)}

S ={(1,1),(1,2),(2,2) ,(2,2),(2,3)}

T = {{(1,1),(1,2),(1,3),(2,1) ,{2,2),(2,3)} .

Solution: Therelation Rand T are trangitive.

Since, in R, we have (1,1} € R, then check any other pair starting with {1,z} € R,
then we must have 1R1 A1Rz = 1Rz i.e, {1,z) € R, but there is no pair staring
with 1. So, pass on to next pair {2,2) then we check any other pair starting with 2,
and so on.

In T, we have {1,1} € T, then there are two pairs {1,2} and (1,3} must be the
transitive of {(1,1) € T, then we must have (1,2) and {1,3) in T. Then pass to
{1,2) € T thetransitive pairs are {2,1),{2,2) and {2,3) then we must have the pairs
(1,1),{1,2),{1,3}IinT.

Then passto (1,3) € T, find the transitive pairs of {1,3) and so on, for all pairsin
T. Hence T is atransitive relation.

Therdation Sis not transitive, since for {1,2) € S, the transitive pairsare (2,2) and
{2,3)thenwemust {1,2) and {1,3) in Sbut (1,3) & S.

6. Let R denotes arelation on the set of pairs of positive N X N integers such that
{x, y)R {u,v)if and only if xv = yu. Show that R is an equivalence relations.

Solution:
Let
P = {{x,y) | x and y are positive integer}

Now R isardation defined on P as
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{x, V)R {u,v)  xv=yufor{x,y),{uv)eP.
Let {x, y), {u,v) and {m,n) € P.
. Risreflexive:

We have

(x, V)R {x,y) < xy =yx (RHS)istrue.

1. Rissymmetric:
Let (x, V)R {u,v) < xv=yu
< YU = XV
= Uy = vx

< (u, V)R (x,y)

l1l.  Ristransitive:
Let {x, y}R {u, v} and {u, v)R {(m,n)
< (xv = yu) and (un = vm)
< (xv=yu)and (u = %)
= xw=y(7)
& xn=ym

= (u, V)R {m,n)

Therefore R is reflexive, symmetric , and transitive.
Hence R is an equivalence relation.

7. Let R and S are equivalence relations on X, show that R NS also equivalent?
Whether R U S isaso an equivalent relation. If not given an example.
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Solution:
Given let R and S are equivalence relations on X.
Letx,yandz €X.
(i) Wehave{x,x)ERand {x,x}) ES = {(x,x)ERNS, Vx €X.
Therefore R N S isreflexive.
(iLet{x,y) ERNS={(x,y) ERand{x,y)ES
=(y,x) ERand{y,x) €S
={(y,x)ERNS
Therefore R NS is symmetric.
(i) Let{x,y)ERNnSand{(y,z) ERNS
= ({{(x,y) ERand{(x,y) € S)and ({y,z) ER and(y,z) €5)
= ({(x,y) ERand(y,z) €S)and ({x,y) ER and(y,z) €5)
={x,y) ERand(x,z) ES
={x,zY ERNS

Therefore R N S istransitive.

Hence R N S isequivalence.

8. Prove that the relation “congruence modulo m” over the set of positive integers
Is an equivalence relation?

Show also that if x; = y;and x, = y, then (x; + x5) = (vy +5).
Solution:

Let N be the set of al positive integers we have “congruence modulo m” relation
onNas x = y(mod m) < m| x — y,for x,y € N.

Letx,y,zEN
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(i) We have

x—x=0=0m

Therefore x = x (mod m) for x € N.

“Congruence modulo m” is reflexive.

(ii)Let

(iii)

Now

x = y(mod m)

= m|x—y

= x —y = km, for someinteger k € Z

=y —x = (—k)m, for someinteger —k € Z
= y = x (mod m)

“congruence modulo m” is symmetric on N.
Let

x = y(modm) andy = z (mod m)
=x—y=kymandy—x = k,mfor someinteger k,,k, € Z
=>x—y)+(y—2z) =(k; +k,)m

= x —z = (k; + k,)m for someinteger k, + k.

= x = z (mod m)

“Congruence modulo m” istransitive on N.

Hence “congruence modulo m” is an equivalence relation.
Let x; = y, (med m) and x, = y, (mod m).
Thenm| x; —y, and m| x, — v,

e, x,—y, =kymandx, —y, =k,m

(X, —y) + G — ) =kym+k,m
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(xy +x5) — (g + ) = (ky +k)m
= m|(x; +x) — (g +32)

(x1 +x5) = (y1 + y2)(mod m)

0. Let

X =1{1,2,3,4} and

R ={{(1,2),(2,3),(3,3),(3,4),(4,2)} be ardation defined on A. Find the transitive
closure of R?

Solution:

The matrix of therelation R is given by

01 0 0
0010
00 1 1
01 0 0
;"Hr;g? — _-'1'_{]2 E) _-'11'_{!3

01 0 0 0 1
oo 1ol _|oo
- oo1 1|~ loo
01 0 0 0

0 0 0

1
o o1
1
1

o
=l
o= o0

o 0 1
0 0 0

and
;1'I;g3 == _-]L-IR;! O 11'I;g
0 0 1 0 0
0 0
0 1
0o 0

[0 0
01
01
00

—
—

=N

e e R

0 0

0
0

—t b b b [ T
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Mpi = Mps @ Mg
001 0] 0100
B 01 10 0010
N 0111 0011
[ 00 1 1] 0100
[0 0 1 1]
Cloo1
N 0111
(011 1)
As |A] =4, we get
Mp: = MV Mp2V Mpa v Mpa
[0 1 0 0] 0010 0010 0011
_ 0010 0011 y 01 10 v 0011
o011 0111 0111 0111
[ 01 0 0 0010 0011 01 11
[0 1 1 17
o1t
N o111
(0011 1]

Hence
R* ={(1,2),(1,3),(1,4),(2,2),42,3),(2,4),(3,2),(3,3),(3,4),{4,2),(4,3),{4,4)}

ASSIGNMENT PROBLEMS
Part -A
1. If R={1,1),(1,2),{2,1),{3,1),{3,2),{2,2)} and
S ={{1,2),(2,3),(3,1),{1,3),{3,3)} beany relationson X = {1,2,3}. Find
RUS,RnS,R,R(R),R(S5),D(RUS),R(RNS).
2. Give an example for reflexive, symmetric, transitive and irreflexive
relations.
3. Givean example of arelation which is neither reflexive nor irreflexive.
4. Give an example of arelation which is neither symmetric not
antisymmetric?
5. Find the graph of the relation
R = {(1,2),(1,3),(2,1),(2,2),(3,1),43,2),(3,3)3
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6. Find the relation matrix of
R = {(1,1),(1,2),(2,1),{(2,2),(2,3),(3,1),(3,3)}

7. 1f R =1{(1,1),(1,2),(2,1),(2,2),(2,3),(3,1),(3,3)] and
={(1,1),(1,3),(2,1),{2,2),(2,3),{3,2)} . FiINndRoS,Se R,RoR,S o S,
RoRoSandSo 50587

8. Define equivalence relation and equival ence classes?

9. Define Poset?

10. Define reflexive closure?

11. Define transitive closure of the relation R?

12. Let R = {(1,2),(3,5),(6,1),(6,3),(6,4)} be arelation A = {1,2,3,4,5,6}.
Identify the root of the tree of R.

13. Determine whether the relation R is a partial ordered on the set Z, where Z
Is set of positive integer, and aRb if and only if a=2b.

14. Thefollowing relationsareon {1,3,5}. Let R be arelation, xRy if and only
if y =x 4 2,andlet Sbearedation, xSy ifandonlyif x < y. FindR o §
and 5o R?

15. True or False: Therelation < on Z* isnot apartia order sinceit is not

reflexive.

Part B

1. Show that the intersection of equivalence relationsis an equivalence
relation.
2. Determine whether the relations represented by the following zero-one

matrices are equivalence relations.
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If Rand S are symmetric, show that R US and R U S are symmetric.

Let L beset of all straight linesin the Euclidean plane and R be the relation
in L defined by xRy < x isperpendicular to y. ISR is Reflexive?
Symmetric? Antisymmetric? Transive?

Consider the subsets 4 = {1,7,8}, B = {1,6,9,10} and C = {1,9,10} where
E={123.... 10} isan universal set. List the non empty minsets generated
by A,B and C . Do they form a partition on E?

Let X ={1,23,.....20)and R = {{x, vy} |x — y is divisible by b} be a
relation on X. Show that R is an equivaent relation and find the partition of
X induced by R.

If Risan equivalencerelation on an arbitrary set A. Prove that the set of all
equivaence classes congtitute a partition on A.

Given the relation matrix My and M. Explain how to find M., M;.zand
Mpg2?

Let A besset of books. Let R bearelation on A such that {(a, b) € R if

book a’ with cost more and contains fever pages then ¢ book b’. In general,

IS R reflexive? Symmetric? Antisymmetric? Transitive?

10. Let R be abinary relation on the set of all positive integers such that

R = {{a,b) |a = b*}. IsRreflexive? Symmetric? Antisymmetric?

Transitive? An equivalence relation?
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HASSE DIAGRAM

A partia ordering = on afinite set P can be represented in a plane by means of a
diagram called Hasse diagram or a partially ordered set set diagram of (P, <). If
x <« y, then we place y above x, and draw a line (edge) between them. The

upward direction indicates successor and downward direction indicates the
predecessor. And the incomparabl e elements are in the same horizontal line.

w

X
y isimmediate successor of x (or) x isimmediate predecessor of y.
z isimmediate predecessor of y, and x and y are incomparable.

x is predecessor of w but not immediate predecessor.

PROBLEMS
1.Let

P, = {2,3,6,12,24)

P, ={1,2,3,46,12} and < bearelation such that x < y if and only if x|y.
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2.Let

p(4) = {0,{a},{b},{c},{a, b}, {b,c},{a,c},{a,b,c},} bethepower set of
{fa,b,c}.

Consider the inclusion (<) relation as the partial ordering on p(A4), then the Hasse
diagramof {p(4),<S) is

{ab, C}\
{ab} {ab}
{a b c}

3.Let us consider the set of al divisor of 24, then it is a poset which is denoted by
Du

ThatisD,, = {1,2,3,4,6,8,12,24} and let the divisor relation be partial ordering.
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FUNCTIONS

A function in set theory world is simply a mapping of some (or all) elements
from Set A to some (or all) elements in Set B. In the example above, the
collection of all the possible elements in A is known as the domain; while the
elements in A that act as inputs are specially named arguments. On the right,
the collection of all possible outputs (also known as “range” in other branches),
Is referred to as the codomain; while the collection of actual output elements in
B mapped from A is known as the image.

Types of Functions

1. Injective (One-to-One) Functions: A function in which one element of
Domain Set is connected to one element of Co-Domain Set.

F1 F2
f f
1
A 2 A
B 2 B ‘\ [ 2
E : c —} [
D 6

F1 and F2 show one to one Function

2. Surjective (Onto) Functions: A function in which every element of Co-
Domain Set has one pre-image.

Example: Consider, A ={1, 2, 3,4},B={a, b, c}and f= {(1, b), (2, a), (3, ¢),
(4, c)}.

It is a Surjective Function, as every element of B is the image of some A

Domain Co-Domain

Note: In an Onto Function, Range is equal to Co-Domain.

3. Bijective (One-to-One Onto) Functions: A function which is both injective
(one to - one) and surjective (onto) is called bijective (One-to-One Onto)
Function.



Example:

1. Consider P = {x, vy, z}

2. Q={ab,c}
3. and f: P — Q such that

4. f={(x a), (y, b). (z, c)}
The f is a one-to-one function and also it is onto. So it is a bijective function.

4. Into Functions: A function in which there must be an element of co-domain
Y does not have a pre-image in domain X.

Example:

1. Consider, A={a, b, c}
2. B={1,2, 3,4} andf. A— Bsuch that

3. f={(a 1), (b, 2), (c,3)}
4. In the function f, the range i.e., {1, 2, 3} # co-
domainof Y i.e., {1, 2, 3, 4}

Therefore, it is an into function

A

5. One-One Into Functions: Let f: X — Y. The function f'is called one-one
into function if different elements of X have different unique images of Y.

Example:

1. Consider, X = {k, I, m}
2. Y ={1, 2, 3,4} and f: X — Y such that



3. f={(k 1), (1, 3), (m, 4)}

The function f is a one-one into function

x y

6. Many-One Functions: Let f: X — Y. The function f'is said to be many-one
functions if there exist two or more than two different elements in X having the
same image in'Y.

Example:

1. Consider X ={1, 2, 3, 4,5}
2. Y ={x,y, z} and f: X — Y such that
3. f={(1,x),(2,x),3,x),(4y), (5 2)}

The function f is a many-one function

n h W N =

X
Example 1:Test whether the function f:R—R, f(x) = |X| + X is one-one
onto function
Solution:

(1) Givenf(x)=|x| +x

f(3) =13[+3 =6

f(-3) = [-3[+(-3) =0

f(2) = |2|+2=4

f(-2) =[-2[+(-2) =0

f(-3) =1f(-2) =0

0 has more than one pre-image. Thus f(x) is not 1-1 function
(2)  Therange of f is the set of non-negative real numbers.



.. fis not onto function

Example 2: Let S = {x, x¥ xeN} and T ={(x,2x)/xeN } where N
={1,2....}. Find the range of S and T. Find SUT and ST
Solution:

S = {x, X xeN}

S={(@1,1), (2,4), (3,9), (4,16), ......... }

T ={(x,2X) IxeN }

S={(1,2), (2,4), (3,6), (4,8), ......... }

Rangeof S={1,4,9, ..., }

Rangeof T={1,4,6,8, ....................... }

SuT ={(1,1), (2,4), (3,9), (4,16), (1,2), (3,6), (4,8), ......... }

ST ={(2,4)}

Example 3: If f: R—>R, g: R—R are defined by f(x) = x?-2, g(x) = x+4,
find (fog) and (gof) and check whether these functions are injective,
surjective and bijective

Solution:

fog(x) = fIg(x)] = f(x+4) =(x+4)2-2 = X2+8X+14--------n-=------ (1)
gof(x) = g[f(X)] = g(X?-2) = XPH2-n-mmmmmmmmmmmmmmmm oo ()
Given f: R->R g: R—>R

f(x) = x2-2

(1) f(1)=1-2=-1
f(-1) =(-1)*2=-1
.e., f(x1) = f(x2) does not imply X; = X,
Hence f is not 1-1 function
(2) Letf:R—>R
Let yeR. Suppose xeR such that f(x) =y
X2-2=y
X2=y+2
X =\y+2
f(Ny+2) = (Vy+2)2-2=y+2-2 =y
for any yeR There exist at least one element Vy+2eR such that
f(\Ny+2)=y
.. fis on to function
g(x) = x+4
(1) 9(x1) =9(x2)
X1+4 = Xo+4
X1 = X2



g is 1-1 function
(2) 0:R->R
Lety eR. Suppose xeR such that f(x) =y
X =y-4 forany yeR
There exist at least one element y-4<R such that
g(y-4) =y
.. g is on to function
As fis not 1-1 but onto, f is not bijective
As g is 1-1 and onto, g is bijective

Theorem 1 : A function f:A—B has an inverse if and only if it is bijective.

Proof.

Suppose g is an inverse for f (we are proving the implication =). Since gof=l4,
gof=la is injective, so is f . Since fog=ig, fog=ig is surjective, so is f.

Therefore f is injective and surjective, that is, bijective.

Conversely, suppose f is bijective. Let g:B—A, g:B—A be a pseudo-inverse
to f. since ff is surjective, fog=ig fog=ig, and since f is injective, gof=ip gof=ia.

Theorem 2: Let A and B be nonempty sets, and suppose f: A — B is
invertible. Then f—1 : B — A is also invertible, and (f 1) 1 =f.

Proof. f ! is invertible if there is a function g : A — B that satisfies g o f 1= Ig
and f 1 - g = I; and in that case the function g is the unique inverse of f 1.
Since g = f is such a function, it follows that f * is invertible and f is its inverse.

Theorem 3: If f:A—B has an inverse function then the inverse is unique.

Proof.
Suppose g: and g are both inverses to f. Then

01=01°lg=g10(fog2)=(g1°f)°g2=1a°02=02,91=01°ls=g1°(feg2)=(g1°f)°g2=1a°g2=0p,
proving the theorem

Theorem 4 : Iff: A— Bandg: B — C are one-one, then gof : A — C is also
one-one.

Proof:
A function f : A — B is defined to be one-one, if the images of distinct elements



of A under f are distinct, i.e. for every xi, X2 € A, f(x1) = (X2) implies X; = X,.
Given that f: A — B and g: B — C are one-one.

For any xi, X2 € A

f(x1)=f(x2) = x1=x2...(>)

g(X1)=g(X2) = X1=X> ...(i1)

To show: If gof(x1) = gof(x,), then x; = X,
Let gof(x;) = gof(xz)

= g[f(x1)] = g[f(x2)]

= f(x1) = f(X2) ...from (i)

= X3 = Xz ...from (i1)

Hence, the functions gof: A — C are one-one.

Theorem 5: Iff: A— Band g : B — C are onto, then gof : A — C is also onto.

Proof:
Let us consider an arbitrary elementz € C
"' g isonto 3 a pre-image y of z under the function g such that g (y) =z

=Y ... (i1)

Therefore, gof (x) =g (f (x)) = g (y) from (ii)

=z from (i)

Thus, corresponding to any element z € C, there exists an element x € A such
that gof (x) = z.

Hence, gof is onto.

Note: In general, if gof is one-one, then f is one-one. Similarly, if gof is onto,
then g is onto.

The composition of functions can be considered for n number of functions.

Theorem 6: Iff: X —>Y,g:Y — Zand h:Z — S are functions, then ho(gof )
= (hog) o f.

Proof: Letx € A
LHS: ho(gof) (x)
= h(gof(x))
= h(g(f(x))), v x in X
RHS: (hog) of f(x)
= hog(f(x))
= h(g(f (x))), ¥ x in X.
LHS = RHS
Hence, ho(gof) = (hog)of.



The composition of functions satisfies the associative property.

Theorem 7: Letf: X — Y and g : Y — Z be two invertible functions. Then gof
is also invertible with (gof)*=f tog™*

Proof:

Given that f: A — B and g: B — C are bijective.
Then gof :A — C is also bijective. Therefore (gof)*:C — A exists.

Also f1: B—A and g': C—B exists. Therefore f 'og™:C — A exists.
Also we know that

fof‘IZIBandf‘lonIA
geg !'=l.andg 'eg=1Ip

Consider

(f *og™) o (gof) = (f "o(g *og)of)
= (f o(Igof))
= |A

Also

(gof) o(f *og™) = (go(f of *)og™*)
fl(go(lsog‘1 )
Hence, (gof)1=f ‘1o$‘1.
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GROUP THEORY

Course Contents: Groups — Properties of groups — Semi group and Monoid (definition
and examples only) — Subgroups, Cosets — Lagranges Theorem

Binary Operations

Definition
Let S be a set. A binary operation on S is a mapping #: S x S — S,

which we will usually denote by * (a, b) = a = b.

Also, we’ve written * as a function from S xS to S, which means
two things in particular:

1. The operation * is well-defined: given a, b € S, there is exactly
one ¢ € S such that a * b = c. In other words, the operation is
defined for all ordered pairs, and there is no ambiguity in the
meaning of a x b.

2. Sisclosed under =: foralla,b €S, a * bisagainin S.
Example

Here are some examples of binary operations.

. Addition and multiplication on Z are binary operations.
. Addition and multiplication on Z, are binary operations.
Addition and multiplication on M,(R) are
binary operations.

The following are non -examples.

- Define x on R by a * b = a/b. This is not a binary operation, since
it is not defined everywhere. In particular, a * b is undefined
whenever b = 0.

. Define * on R by a *b = ¢, where ¢ is some number larger
than a + b. This is not well-defined, since it is not clear
exactly what a *b should be. This sort of operation is fairly
silly, and we will rarely encounter such things in the wild.
It’s more likely that the given set is not closed under the
operation.

. Matrix multiplication is a binary operation on GL,(R).
Recall from linear algebra that the determinant is
multiplicative, in the sense that

det(AB) = det(A)det(B).
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Properties of binary operation
A binary operation * on a set S is commutative if
a*b=Db=+aforalla bes.

Example

Let’s ask whether some of our known examples of binary operations are actually
commutative.

1.+ and - on Z and Z, are commutative.

2. Matrix multiplication is not commutative (on both Mn(R) and GLn(R)).

i) A binary operation = on a set S is associative if
(@a*xb)xc=a=x(bxc)foralla, b,ceS.

Example
The following are examples of associative (and non- associative) binary operations.
1.+ and -on Z (and Z,) are associative.

2. Matrix multiplication is associative.
. Subtraction on Z is a binary operation, but it is not associative. For example,

B-5)-1=-2-1=-3,
While3 —(5-1)=3—-4=-1.

. The cross product on R3isa binary operation, since it combines two vectors to produce

a new vector. However, it is not associative, since
ax(bxc)=(axb)xc—bx(cxa).

. (Composition of functions) Let S be a set, and define

F(S) = {functions f : S — S}.

if f,g,h € F(S), then (fo-g)°h =f-(g-h). To show that two functions are equal, we need
to show that their values at any element x € S are equal.

For any x € S, we have
(f°9) - h(x) = (f- 9)(h(x)) = f(g(h(x))) and
fo(g°h)(x) =1 ((g° h)(x)) = f(g(h(x)))

In other words, (f-g)°h(x) = fe(geh)(x) forall x € S,
so (feg)eh = f+(g-h), and composition of functions is associative.
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Groups
A group is a set G together with a binary operation *: Gx G —G satisfying

Closure:
Foralla,b € G,wehavea b € G

Associativity:
Forall a, b, c e G,wehavea = (b *c) = (axb)*c.

Identity:
There exists an element e € G with the property that
exa=axe=aforallaeG.
Inverses:
For every a € G, there is an element a* € G with the property that
axal=alxa=e.
Example

Here are some examples of groups and not a group
. (Z, +) is a group, as we have already seen.
. (Mn(R), +) is agroup.
3. (Zn, +n) is a group.

. (Z,-)is not a group, since inverses do not always exist. However, ({1,—1},-) is a group.
We do need to be careful here—the restriction of a binary oper- ation to a smaller set
need not be a binary operation, since the set may not be closed under the operation.
However, {1, —1} is definitely closed under multiplication, so we indeed have a group.

. (Ma(R), -) is not a group, since inverses fail. However, (GLn(R), -) is a group. We already
saw that it is closed, and the other axioms hold as well.

. (Zn, n) is not a group, again because inverses fail. However, (Z§ ,«) will be a group.

Again, we just need to verify closure: if a,b € Zj, then a and b are both relatively prime
to n. But then neither a nor b shares any prime divisors with n, so ab is also relatively

prime to n. Thus ab € Zf.

Definition

A group (G, *) is said to be abelian if * is commutative, i.e.
axb=Db=xa

for all a, b € G. If a group is not commutative, we’ll say that it is nonabelian.
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Definition

The order of a group G, denoted by |G|, is the number of elements in G.
If a group G has infinitely many elements, we will write |G| = .3
Definition

A group G is said to be finite if |G| < .

Example

For any n, the additive group Z, is a finite group, with

|Zn| =nNn.

Cayley Tables

One of the things that makes finite groups easier to handle is that we can write down a
table that completely describes the group. We list the elements out and multiply “row by
column.”

Example

Let’slook at Z3, for example. We’llwrite down a “multiplication table” that tells us how the
group operation works for any pair of elements. As we mentioned, each entry is computed
as “row times column”:

0

RIOININ

oIN| Rk

l\)l—‘o+

0
1
2

(Of course we have to remember that “times” really means “plus” in this example.) This is called
a group table (or a Cayley table).

Exercise

Show that any group of order 4 is abelian. [Hint: Compute all possible Cayley tables.
Up to a reordering of the elements, there are two possible tables.]

Exercise

Show that any group of order 5 is abelian. [Hint: There is only one possible Cayley
table, up to relabeling.

Basic Properties of Groups
Property.1

Let G be a group. The identity element e € G is unique, i.e., there is only one element e of G
with the property thatae = ea = afor all a € G.
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Proof

For this proof, we need to use the standard mathematical trick for proving uniqueness:
we assume that there is another gadget that behaves like the one in which we’re
interested, and we prove that the two actually have to be the same.

Suppose there is another f € G with the property that
for all a € G. Then in particular, af = fa = a
But since e is an identity, Therefore ef = fe = eSince e is unique, f.e =ef="f.
Property.2.
(Cancellation laws). Let G be a group, and let a, b, c € G. Then:
(a) Ifa*b =Db*c, thenb =c.
(b) Ifb*a=c*a, thenb=c.

Proof. (a) Suppose that ab = ac. Multiply both sides on the left by a™*:
al(ab) = a(ac).

By associativity, this is the same as
(a"ta)b = (ata)c,

and since a 'a = e, we have eb = ec

Since e is the identity, b = c. The same sort of argument works for (b), except we
multiply the equation on the right by a™.

The cancellation laws actually give us a very useful corollary. You may have
already guessed that this result holds, but we will prove here that inverses in a group
are unique.

Property 3.
Let G be a group. Every a € G has a unique inverse, i.e. to each
a € G there is exactly one element a~* with the property that

aal=zala=e.

Proof. Let a € G, and suppose that b € G has the property that ab =ba =e. Then in
particular,

ab=e=aal,

and by cancellation, b =at. Thusa™ is unique.
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Property 4.
Ifa€G,then(@)t=a

Proof. By def|n|t|on al(@al)t=e Butala=aal=easwell, sobyunique-ness of
inverses, (@)=

Property 5.
Foranya,be€G, (ab)*=bta™
Proof. We’ll explicitly show that b *a? is the inverse of ab by computing:
(@b)(bta™) =((ab)b Ha?
= (a(bb™h)a™
= (ae)a?
=aal
=e.

Of course we also need to check that (b ta!)(ab) = e, which works pretty much the
same way:

(b*a*)(ab) =b *(a *(ab))
=b*((a™a)b)
= b *(eb)
=b b
=e.

Thus (ab)™* =bta™.

Property. 6. The equations ax = b and xa = b have unique solutions in G.

Proof. The solution to ax = b is x = a™'b, and for xa = b it is x = ba™*. These are unique
since inverses are unique.

Property.7. Let G be a group, and let a, b G. If either alz= e or ba = e, then
b=awl

Proof. This really amounts to solving the equation ax = e (or xa = e} We know from
Proposition5, that there is a unique solution, namely x = a te = a* (in either case}
Therefore, ifab=eorba=e,thenbisa solution to either ax = e or xa = e,sob=a
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Exercise

Prove that if G isa group and a, b € G with ab = a, thenb =e.

The Order of an Element and Cyclic Groups

Let G be a group. We say that an element a € G has finite order if there exists n € Z* such
that a" = e. The smallest such integer is called the order of a, denoted by o(a) (or |a]). If no
such integer exists, we say that a has infinite order.

Example.1

The identity element in any group has order 1.

Example.2

. In Z12, we see that 0(2) = 6 and 0(3) = 4.

We’ll calculate the powers of 2 first:

1.2=2
2.2=2+1,2=4
3:.2=2+172+1,2=6
4.2=8

5.2=10
6-2=[12]12=0
7.2=[14]12=2

82 =[16]1, =4

and so on. What about powers of 3?

1-3=3
2:-3=3+123=6
3:3=3+123+123=9
4.3=[12]12=0

5.3 = [15]2 =3
6-3=[18]12=6

and so on. Notice that the lists repeat after a while. In particular, we reach 0 (i.e., the
identity) after a certain point. We quantify this phenomenon by saying that these
elements have finite order.
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Proposition
Let G be a finite group. Then every element a € G has finite order.

Proof. Consider the set{a : n> 0% = {e, a, a, .. .}Since G is finite, this list of powers
can’t be infinite. (This follows from the Pigeon- hole principle, for instance. We have
an infinite list of group elements that need to fit into only finitely many slots.)
Therefore, two different powers of a must coincide, say a' = al, with j f/=i. We can
assume that j > i. Then

a'=alal=aa'=e,

so a has finite order. (In particular, o(a) <j —i.) Since a € G was arbitrary, the result
follows.

Let’s get on with proving some facts about order. First, we’ll relate the order of an
element to that of its inverse.

Proposition
Let G be a group and let a € G. Then o(a) = o(a™?).
Proof. Suppose first that a has finite order, with o(a) =n. Then
@Y =a"=(@)l=el=e,
so o(a ) <n =o0(a). On the other hand, if we let m = o(a™?1), then
at=(@hHH"=@hH"=(@hHM *=e,
son<m. Thus n=m, or o(a) = o(a™?).

Now suppose that a has infinite order. Then for all n € Z*, we have a" f=e.
But then

(a—l)n =g "= (an)—l f: e
for all n € Z*, so a ! must have infinite order as well.

Let’s continue with our investigation of basic properties of order. The first one
says that the only integers m for which a™ = e are the multiples of o(a).

Proposition

If o(a) = nand m € Z, then a™ = e if and only if n divides

m.

Proof. If n | m, it is easy. Write m = nd for some d € Z. Then
am=a"=(@M9=¢e’=e.

On the other hand, if m > n, we can use the Division Algorithm to write
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m=qn +r with 0 <r <n. Then

e=am"=a"m"=a%a" = (aM%"=ea" = a",
so a"' =e. Butr <n, and n is the smallest positive power of a which yields the
identity. Therefore r must be 0, and n divides m.

Note that this tells us something more general about powers of a: when we proved
that elements of finite groups have finite order, we saw that a' = @' implied that &' =
e. This means that n = o(a) divides j — i. In other words, i and j must be congruent
mod n.

Proposition
Let G be a group, a € G an element of finite order n. Then
a' = al if and only if i = j(modn).

Along the same lines, we observed that if a' = al with j > i, then @' = ¢, so a has
to have finite order. Taking the contrapositive of this statement, we get the following
result.

Cyclic Groups

Let’s take a few steps back now and look at the bigger picture. That is, we want to
investigate the structure of the set (a) for a € G. What do you notice about it?

. Closure: a'al = a™l € (a) for all i, j € Z.
. ldentity: e = a° €(a)
. Inverses: Since (al)™ = a7, we have (al)™ € (a) for all j € Z.

It other words, (a) is itself a group. That is, the set of all powers of a group element is
a group in its own right. We will investigate these sorts of objects further in the next
section, but let’s make the following definition now anyway.

Definition
Fora € G, the set (a) is called the cyclic subgroup generated by a.

For now, let’s look at a particular situation. Is G ever a cyclic subgroup of itself? That
is, can a “generate” the whole group G? Yes, this does happen some times, and such groups
are quite special.

Definition

A group G is called cyclic if G = (a) for some a € G. The element a is called a generator for
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Example

1. One of our first examples of a group is actually a cyclic ~ one: Z forms a cyclic group
under addition. What is a generator for Z? Both 1 and —1 generate it, since every integer
n € Z can be written as a “power” of 1 (or —1):

These are actually the only two generators.

2. How about a finite cyclic group? For any n, Z, is cyclic, and 1 is a generator in much
the same way that 1 generates Z. There are actually plenty of other generators, and we
can characterize them by using our knowledge of greatest common divisors. We’ll
postpone this until we’ve made a couple of statements regarding cyclic groups.

3. The group (Q, +) is not cyclic. (This is proven in Saracino.)
4. The dihedral group D3 is not cyclic. The rotations all have order 3, so
(r1) = (r2) = {i, ry, r2}.
On the other hand, all of the reflections have order 2, so
(my) ={i,ms}, (m2) ={i, m2}, (m3) = {i, m3}.

Now let’s start making some observations regarding cyclic groups. First, if G =

#a) is cyclic, how big is it? It turns out that our overloading of the word “order” was
airly appropriate after all, for |G| = o(a).

Theorem

If G = (a) is cyclic, then |G| = o(a).

Proof. If a has infinite order, then |G| must be infinite. On the other hand, if o(a) =n,
then we know that a' = al if and only if i =j mod n, so the elements of G are

{e, a,a ..., a" '}of which there are n = o(a).

If we pair this result with Theorem, we can characterize the generators of any finite
cyclic group.

Proposition

Let G be a finite cyclic group. Then for any b € G, we have
o(b) | |G-

Theorem 1.

Every cyclic group is abelian.

Proof. Let G be a cyclic group and let a be a generator for G, i.e. G =(a). Then
given two elements x, y € G, we must have x =a' and y = al for some i, j €Z. Then

xy = a'al = a'™ = al*' = ala' = yx,

and it follows that G is abelian.

10
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Remark

The converse to Theorem1 is not true. That is, there are abelian groups that are not cyclic.

Saracino gives the example of the non-cyclic group (Q, +). However, this is a good place
to introduce a different group—the Klein 4-group, denoted V4. The Klein 4-group is an
abelian group of order 4. It has elements V4 = {e, a, b,c}, with

a?=pb’=c?=eandab=c,bc=a,ca=h.

Note that it is abelian by a previous exercise (Exercise 2.1).8 However, it is not cyclic,
since every element has order 2 (except for the identity, of course). If it were cyclic, there
would necessarily be an element of order 4.

Subgroups
Let (G, *) be a group. A subgroup of G is a nonempty subset
H < G with the property that (H, *) isa group.

Note that in order for H to be a subgroup of G, H needs to be a group with respect
to the operation that it inherits from G. That is, H and G always carry the same binary
operation. Also, we’ll write

H<G

to denote that H is a subgroup of G. Finally, if we want to emphasize that H < G
but H /= G, we will say that H is a proper subgroup of G.

Let’s look at the group Z (under addition, of course). Define 2Z = {even integers} = {2n
:n € Z}. Is 2Z a subgroup of Z? We need to check that 2Z itself forms a group under
addition:

- Closure: Ifa, b e 2Z,thena=2nand b = 2m for somen, m € Z. Then

a+b=2n+2m=2(n+m) € 2Z, so 2Z is indeed closed under

addition.

- Associativity: Z is already associative, so nothing changes when we pass to a subset of

Z.

- lIdentity: The identity for addition on Z is O, which iseven: 0 =2 -0 € 2Z.

- Inverses: If a € 2Z, then a = 2n forsomen € Z,and —a = -2n =2(—n) €

27.

Therefore, (2Z, +) is a group, hence a subgroup of Z.

Examples:.

11
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1. Every group G has two special subgroups, namely

{e} and G.

These are called the trivial subgroups of G.°

2. We saw earlier that 2Z is a subgroup of Z. There is nothing special about 2 in this

example: foranyn e Zz¥,
nZ={na:aeZ}

is a subgroup of Z. The exact same computations that we performed for 2Z will
show that nZ < Z.

3. The rational numbers Q form an additive subgroup of R.

4. Here is an example from linear algebra. Consider the n-dimensional vector space R".

Then R" is, in particular, an abelian group under addition, and any vector subspace of

R" is a subgroup of R"N.1° If H is a subspace of R", then it is closed under addition,
and closure under scalar multiplicationguarantees that 0 e H and forveH, -v=—1 v
€ H.

Definition
The group (a) is called the cyclic subgroup generated by a.

When we say that a “generates” (a), we mean that that (a) is created entirely out of
the element a. In a certain sense, (a) is the smallest possible subgroup of G which
cr?ntzilins a. Let’s try to make this more precise. If H <G and a € H, then H must contain
the elements

a, a% as, ...,

since H is closed. It also must contain e and a %, hence all of the elements

-2

,ad aleaa’...,

I.e. all powers of a. That is, (a) < H, and we have proven the following fact:
Theorem

Let G be a group and let a € G. Then (a) is the smallest subgroup of G containing a, in the
sense that if H < G and a € H, then (a) € H.

Of course we’ve already encountered several examples of cyclic subgroups in our studies
thus far.

Example

1. Our first example of a subgroup, 2Z < Z, is a cyclic sub- group, namely (2).
Similarly, nZ is cyclic for any n € Z.

2. The subgroup consisting of rotations on Dy,
H={i,ryro..., M1} <D,

is cyclic since H = (r1).

12
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3. All the proper subgroups of Z4 and V4 that we listed are cyclic. In addition,
Zs4 is a cyclic subgroup of itself, but Vs is not.

4. The trivial subgroup {e} is always a cyclic subgroup, namely (e).

Theorem

Lgt G be a group. A nonempty subset H € G is a subgroup if and only if whenever a, b € H,
ab™ € H.

Proof. Suppose that H <G, and leta, b € H. Thenb™ € H, so ab™* € H since H

is closed.
Conversely, suppose that ab € H for all a, b € H. Then for any a € H, we can take a =
b and conclude that

e=aal€H,
so H contains the identity. Since e € H, for any a € H we have
al=ealeH,

so H is closed under taking mverses Flnally, we claim that H is closed under the group
operation. Ifa,b € H, thenb™* € H, sob*a ! € H, and therefore

i 21
ab=(ab)* “=(lal)teH.
Thus H is closed, hence a subgroup of G. -

The next criterion is quite interesting. It obviously reduces the number of things that
one needs to check, but it only works for a finite subset of a group G.

Theorem
Let G be a group and H a nonempty finite subset of G. Then H

Is a subgroup if and only if H is closed under the operation on G.

Proof. If H is a subgroup, then it is obviously closed by hypothesis.

On the other hand, we are assumlng that H is closed, so we need to verify that e €
H and that for every a € H, at € H as well. Since {e} < G, we may assume that H is
nontrivial, i.e. that H contains an element a distinct from the identity. Since H is
closed, the elements

a, a as, ...

are all in H, and since H is finite, this list cannot go on forever. That is, we must
eventually have duplicates on this list, so

a'=al
for some 1 <i<j<|H| Sincei<j,j—i>0and we have

a'=al=al'a,

13
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and using cancellation, we get
al'=e.

Therefore, e € H. Now observe that j —i—1>0, so a ! e H, and
aal 171 =al 1= e,

soal=al"!eH. Therefore, H is a subgroup of G.

This theorem has an easy corollary, which is useful when the group is finite.
Corollary

If G is a finite group, a subset H < G is a subgroup of G if and only if it is closed under the
operation on G.

Definition
The number of distinct (right) cosets of H in G is called the
index of H in G, denoted by
[G: H].
The set of all right cosets of H in G is denoted by G/H, so

#(G/H) = [G : H].

Subgroups of Cylic Groups

Let’s return now to the cyclic case. There is one very important thing that we can say
about cyclic groups, namely that their subgroups are always cyclic.

Theorem

A subgroup of a cyclic group is cyclic.

Proof. Let G = (a) be a cyclic group and let H be a subgroup of G. We may assume
that H f= {e}, since {e} 1s already known to be cyclic. Then H contains an element
other than e, which must have the form a™ for some m € Z since G is cyclic. Assume
that m is the smallest positive integer for which a™ e H. We claim that H = (a™). Todo
this, we need to show that if a" € H, then a" is a power of a .

Suppose that a" € H, and use the Division Algorithm to write n = gm + r, where 0
<r < mThen

a" =aim™mr =aIma" = (aM9a'.
Since H is a subgroup, (a™) % € H, hence (a™) %a" € H, and it follows that

a"= (@™ 9a"

14
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isin H. But r < m and we have assumed that m is the smallest positive integer such that
a™ € H, so we must have r = 0. In other words, a" = (a™)9, so a" € (a™). Since a" was
an arbitrary element of H, we have shown that H < (a™). Since a™ € H, we also have

a™ € H, so H=(a™), and H iscyclic. This theorem has a particularly nice corollary,
which tells us a lot about the structure of Z as an additive group. _

Lagrange’s Theorem

Theorem

Let G be a finite group and let H < G. Then |H| divides |G|.

Proof. Let Hai, . . . , Hax denote the distinct cosets of H in G. That is, ay, . . ., ax all
represent different cosets of H, and these are all the cosets. We know that the cosets of H
partition G, so

|G| = O(Ha) + - +O(Hax).

(Here O means the cardinality of the set, or simply the number of elements in that set.)
Therefore, it will be enough to show that each coset has the same number of elements
as H.

We need to exhibit a bijection between H and Ha; for each i. For each

i = 1,...,k, define a function fi : H — Hai by
f(h) = ha.i.

If we can prove that f is a bijection, then we will have
|H| =O(Hai)

for alli. if hy, hy € H with f (hy) = F (h2), then

hiai = hoai,

which implies that h1 = ho, so f is one-to-one. To see that it is onto, take h € H;
then f(h) = hai.
Thus all the cosets have the same number of elements, namely |H|, and really

says that
Gl = IHL - 1H| = k|
k times

this implies |H| divides |G|.

15
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UNIT IV: COMBINATORICS

COURSE CONTENT: Mathematical induction — The basics of counting —
The pigeonhole principle — Permutations and combinations — Recurrence
relations — Solving linear recurrence relations — Generating functions —
Inclusion and exclusion principle and its applications

MATHEMATICAL INDUCTION

1 1 1 n
— +— 4. + = —
1.2 2.3 n({n+1) n+1
Example 1: Show that
1
Let P(n): — TR p—h
1 1
1.P(1): 12 10D is true
2.ASSUME
1 1 1
P(k): 5 T35 Tt PCTER
k .
= P is true. > (1)
CLAIM : P(k+1) is true.
1 1 1 1
Plktl) =15 +55 +ont k(D) | (ke (k+2)
k 1 .
T k+1 (k+1)(k+2) using (1)
_ k(k+2)+1
T (k+1)(k+2)
_ (kk)+2k+1
T (k+1)(k+2)
_ (k+1)(k+1)
T (k+1)(k+2)
_ (k+1)
T (k+2)
k+1

(k+1)+1
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= P(k+1) is true.
BY THE PRINCIPLE OF MATHEMATICAL INDUCTION

1 1 n
— +— + = —
1.2 2.3 n(n+1) n+1

? Is true foralln.
EXAMPLE 2 : Using mathematical induction prove that if
n>=1, then 1.1!1+2.21+3.3! +..._+n.n! = (n+1)!-1

SOLUTION:

Let p(n): 1.1l +2.21 +3.3!1 +....+n.nl = (n+1)! - 1

1.P(1):1.1! =(1+1)!1 =1 is true

2. ASSUME p(k) : 1.1! + 2.2! +3.3! +......+k.k!
= (k+1)! - 1is true
CLAIM : p(k+1) is true.
P(k+1)= 1.11+ 2.21 +3.31 +....+k.k! +(k+1)(k+1)!
= (k+1)!-1 +(k+1)(k+1)!
= (k+1)! [(1+k+1)] =1
= (k+1)! (k+2) -1
=(k+2) -1
=[(k+1)+1]!1-1

P(k+1)is true.

BY THE PRINCIPLE OF MATHEMATICAL INDUCTION,

P(n):1.11+2.21+3.3! +.....+n.nl = (n+1)1 =1 , n>=1

EXAMPLE 3 : Use mathematical induction , prove that 5"y 3™ = —(3/\“;1)_1
SOLUTION:
Let p(n): 3°+ 3'+...... 3" = D2

o_ (3A0+1)-1

1.p(0): 3 >

2 .
= 5 =1 istrue.
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2.ASSUME
P(k): ): 3%+ 3'+..... 3" = % is true.
CLAIM : p(k+1)is true.
P(k+1):): 3%+ 3%+ 3% ... +3" 43
= —(3;\1(;1)—1 + 361 using (1)
_ (BAR+1)+2.(3Ak+1)—1
- 2
_ 3(3Ak+1)-1
- 2
_ (3AkR+2)-1
- 2
_ (BAk+1)+1)-1
- 2
P(k+1)is true.
By the principle of mathematical induction.
P(n): 3mo 3" = GAntD)=1 s true for n>=0
EXAMPLE 4 :Use mathematical induction , prove that —;— +—1—,_ +% +....+—-1—,_— >yn , n>=2
V1 V2 V3 \Vn

SOLUTION:
1 1 1 1
Let p(n): Tttt E +""+\/T >yn , n>=2

1.p(2): that =(1.707)>V2 +(1.414) is true

4 .1
NN
2.ASSUME

1 1 1 ;
P(k): that iy >vk istrue -> (1)

CLAIM : p(k+1) is true.

1 1 1 1
— t— .t ——+
V1o V2o Wk Vk+1

P(k+1) :

Vi + - using (1)

k+1
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VE VE+1 +1
VE+1

k+1
Vi+1

>vk+1
P(k+1) > vVk+1

P(K+1) istrue

BY THE PRINCIPLE OF MATHEMATICAL INDUCTION.

1 1

1
that \.'_'1_ +\(—2_ +\/'? +“"+\,_"'Tl_

>vn+1

EXAMPLE 5: Using mathematical induction ,prove that 1% +3?+5%+.... (2n-1)’=

SOLUTION :
Let p(n): 1%+ 3%+ 5% +..... (2n-1)°= § n(2n-1)(2n+1)

1.p(1): 12 = §1(2-1)(2+1) = Lq

W | =

=1is true.

2.ASSUME p(k)is true.
12432452 +...... (2k-1)*= %n(Zk-l)(2k+1) > (1) Istrue.

CLAIM : p(k+1) is true.

P (k+1)

W | =

k (2k-1) (2k+1) +(2k+1)? using (1)

= S (2k+1) [k(2k-1) +3(2k+1)]

- % (2k+1) (2k2+5k+3)

= 2 (2k+1)(2k+3)(k+1)

= % (k+1) [2(k+1)-1][2(k+1)+1]

P(k+1) is true.

n(2n-1)(2n+1)
3



SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS — SMTA1302, UNIT IV

BY THE PRINCIPLE OF MATHEMATICAL INDUCTION,

P(n)=12+32+ 5%+ (2n-1)? = 2ER-DEMD

EXAMPLE 6:Use mathematical induction to show that n® - n is divisible by 3. For n € Z*
SOLUTION:
Let p(n): n" - n is divisible by 3.
1. p(1): 1®-1 isdivisible by 3,is true.
2. ASSUME p(k): k*-k isdivisibleby3.  ->(1)
CLAIM : p(k+1) istrue.
P(k+1): (k+1)® - (k+1)

= k®+3k% + 3k+1 -k-1

= (k3-k) + 3(k*+k) ->(2)
(1) => k* =k Is divisible by 3 and 3(k? + k) is divisible by 3 ,we have equation (2) is divisibleby 3
Therefore P(k+1) is true.

By the principle of mathematical induction, n’-n is divisible by 3.

Strong Induction:

There is another form of mathematics induction that is often useful in
proofs.In this form we use the basis step as before, but we use a different inductive step. We
assume that p(j)is true for j=1....k and show that p(k+1)must also be true based on this
assumption . This is called strong Induction (and sometimes also known as the second principles
of mathematical induction).

We summarize the two steps used to show that p(n)is true for all positive integers

Basis Step : The proposition P(1) is shown to be true
Inductive Step: It is shown that

[P(DHAP2) A.......AP(K)] > P(k+1)
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NOTE:

The two forms of mathematical induction are equivalent that is, each can be shown to be
valid proof technique by assuming the other

EXAMPLE 1: Show that if n is an integer greater than 1, then n can be written as the product of
primes.

SOLUTION:
Let P(n) be the proportion that n can be written as the product of primes
Basis Step : P(2) is true , since 2 can be written as the product of one prime

Inductive Step: Assume that P(j) is positive for all integer j with j<=k. To complete the Inductive
Step, it must be shown that P(k+1) is trueunder the assumption.

There are two cases to consider namely
i) When (k+1) is prime
i1) When (k+1) is composite
Case 1 : If (k+1) is prime, we immediately see that P(k+1) is true.

Case 2: If ( k+1) is composite

Then it can be written as the product of two positive integers a and b with
2<=a<b<=k+1. By the Innduction hypothesis, both a and b can be written as the
product of primes, namely those primes in the factorization of a and those in the
factorization of b .

WELL ORDERING PROPERTY

The validity of mathematical induction follows from the following
fundamental axioms about the set of integers.

Every non-empty set of non negative integers has a least element.

The well-ordering property can often be used directly in the proof.
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PERMUTATION AND COMBINATION

PERMUTATION
A Permutation is an arrangement of set of n objects in a definite order taken some
or all at a time.
Example: 1.Three letters a,b,c can be arranged
abc, ach, bac, bca, cab, cha. We have taken all the three for arrangement.
2. Using the three letters a,b,c the total no. of arrangements or permutation taking
two at a time.
ab, bc, ac, ba, cb, ca.
The no. of permutation of n objects taken r at a time is denoted by P(n,r) or nB.and is
defined as

n!
npP. = p— where r < n.
Corollary
If r=n,
n! n!
= = —=n!
nh, (n—n)! o

Permutation with repetition
Let P(n; ny,na,...,n,) denote the no. of permutation of n objects of which n; are alike
n, are alike ...n, are alike then the formula is given by

|
P(n;ny,n,,n;,..n,.) = —nl!nmz;!....nr!
Circular Permutation
Arrangement of objects in a circle is called Circular Permutation. A circular
Permutation of n different objects is (n-1)!
Solved Problems

1. Find the value of n if nPs = 42nP3where n>4

Solution
n! n!

(n-5)! 2 (n-3)!

_ 1

(n-5)! 4 (n-3)(n—4)(n-5)!

(n—3)(n-4) =42

n2-7n-30 =0

(n-10)(n+3) =0

n =10, -3

Since n is positive, n =10

2. How many four digit nos. can be formed by using the digits 1 to 9. If repetition of
digits are not allowed.

Solution

9P4:

9! 9X8X7X6XS5!

51 51

= 3024.
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3. Find the no. of permutations of the letters of the word ALLAHABAD.
Solution
There are 9 letters in this word. To form different words containing all these 9

letters is
9!

~
4. (i) A committee of 3 is to be chosen out of 5 English, 4 French, 3 Indians and the
committee to contain one each. In how many ways can this be done? (ii) In how many
arrangements one particular Indian can be chosen?
Solution
(i)One English member can be chosen in 5 ways
One French member can be chosen in 4 ways
One Indian member can be chosen in 3 ways

No of ways the committee can be formed = 5x4x3 = 60 ways.

(if)Since the Indian member is fixed, we have to fill the remaining two places choosing
one from English and French each. This can be done in 5x4 = 20 ways.
5. There are 5 trains from Chennai to Delhi and back to Chennai. In how many ways a
person go Chennai to Delhi and return to Chennai.
Solution

5x4=20.
6. There is a letter lock with three rings, each ring with 5 letters and the password is
unknown. How many different useless attempts are made to open the lock.
Solution

Total no. of attempts =5x5x 5=5%

Only one will unlock , so the total no. of useless attempts is (53-1) = 125 -1

=124,

7. (i) Find the no. of arrangements of the letters of the word ELEVEN,(ii) How many of
them begin and end with E. (ii1)) How many of them have three E’s together. (iv) How
many begin with E and end with N.
Solution

(1) :—:= 6 X 5 X4 =120 ways.
(i) First and last places are fixed, the remaining 4 places are done in 4! ways.

(i11) Treat the 3 E’s as a single element.
Therefore, this single element along with L,V,N can be arranged in 4! ways.

(V)5 =4x3=12
8. There are 6 different books on Physics, 3 on Chemistry, 2 on Mathematics. In how

many ways can they be arranged on a shelf if the books of the same subject are always
together?
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Solution
Considering Physics books, Chemistry books, Mathematics books as three
elements, three elements can be arranged in 3! ways. Also
Physics books can themselves be arranged in 6! Ways
Chemistry books can themselves be arranged in 3! Ways
Mathematics books can themselves be arranged in 2! Ways
No.of arrangements = 3! 6! 3! 2!
9. Find the no. of arrangements in which 6 boys and 4girls can be arranged in a line such
that all the girls sit together and all the boys sit together.
Solution
The no. of arrangement with all the girls sit together and all the boys sit together is
21 41 6! ways.
10. Find the no. of ways in which 10 exam papers can be arranged so that 2 particular
papers may not come together.
Solution
2 particular papers should not come together. The remaining 8 papers can be
arranged in 8! ways.The 2 papers can be filled in 9 gaps in between these 8
papers in 9P, ways.

11. In how many ways can an animal trainer arrange 5 lions and 4 tigers in a row so that
no two lions are together?

Solution

The 5 lions should be arranged in the 5 places marked ‘L’.

This can be done in 5! ways.

The 4 tigers should be in the 4 places marked “T°.

This can be done in 4! ways.

Therefore, the lions and the tigers can be arranged in 5!*4!= 2880 ways

12. In how many ways 5 boys and 3 girls can be seated in a row so that no two girls are
together?
Solution

5 boys can be seated in a row in 5! ways.

Also the girls can be seated in 3! ways

The 3 girls can be filled in the 6 gaps between the boys in 6P; ways.

Total no of arrangements = 5! x 3! x 6P3 = 1440

13. There are 4 books on fairy tales, 5 novels and 3 plays. In how many ways can you
arrange these so that books on fairy tales are together, novels are together and plays are
together and in the order, books on fairy tales, novels and plays.
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Solution

There are 4 books on fairy tales and they have to be put together.
They can be arranged in 4! ways.

Similarly, there are 5 novels.
They can be arranged in 5! ways.

And there are 3 plays.
They can be arranged in 3! ways.

So, by the counting principle all of them together can be arranged in 41*51*3!1=
17280 ways

13. Suppose there are 4 books on fairy tales, 5 novels and 3 plays as in Example 5.3.
They have to be arranged so that the books on fairy tales are together, novels are together
and plays are together, but we no longer require that they should be in a specific order. In
how many ways can this be done?

Solution

First, we consider the books on fairy tales, novels and plays as single objects.
These three objects can be arranged in 3!=6 ways.

Let us fix one of these 6 arrangements.

This may give us a specific order, say, novels -> fairy tales -> plays.

Given this order, the books on the same subject can be arranged as follows.
The 4 books on fairy tales can be arranged among themselves in 41=24 ways.
The 5 novels can be arranged in 5!=120 ways.

The 3 plays can be arranged in 3!=6 ways.

For a given order, the books can be arranged in 24*120*6=17280 ways.
Therefore, for all the 6 possible orders the books can be arranged in 6*17280= 103680
ways.

14. In how many ways can 4 girls and 5 boys be arranged in a row so that all the four
girls are together?

Solution

Let 4 girls be one unit and now there are 6 units in all.

They can be arranged in 6! ways.In each of these arrangements 4 girls can be
arranged in 4! ways.

=> Total number of arrangements in which girls are always together
=61*41=720*24= 17280.

10
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15. How many arrangements of the letters of the word ‘BENGALI’ can be made

(i) If the vowels are never together.
(ii) If the vowels are to occupy only odd places.

Solution
There are 7 letters in the word ‘Bengali; of these 3 are vowels and 4 consonants.

(i) Considering vowels a, e, i as one letter, we can arrange 4+1 letters in 5! ways in
each of which vowels are together. These 3 vowels can be arranged among
themselves in 3! ways.

=> Total number of words =5!*3!

=120*6=720

So there are total of 720 ways in which vowels are ALWAYS TOGEGHER.

Now,

Since there are no repeated letters, the total number of ways in which the letters of
the word ‘BENGALTI’ cab be arranged:

=71=5040

So,

Total no. of arrangements in which vowels are never together:

=ALL the arrangements possible — arrangements in which vowels are ALWAY'S
TOGETHER

=5040-720=4320

i) There are 4 odd places and 3 even places. 3 vowels can occupy 4 odd places in
4P3 ways and 4 constants can be arranged in 4P4 ways.
=> Number of words =4P3;*4P,= 576.

16. In how many ways 5 gentlemen and 3 ladies can be arranged along a round table so
that no 2 ladies are together.

Solution:
The 5 gentlemen can be arranged in a round table in (5-1)! = 4! ways.

Since no 2 ladies are together, they can occupy the 5 gaps in between the gentlemen in
oP3;ways.

Therefore, total no. of arrangements = 5P3 x 4!

11
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COMBINATION

Let us consider the example of shirts and trousers as stated in the introduction. There you
have 4 sets of shirts and trousers and you want to take 2 sets with you while going on a
trip. In how many ways can you do it?

Let us denote the sets by S1,52,S3,54. Then you can choose two pairs in the following
ways:

1.{S1,52} 2.{S1,53} 3.{S1,54}
4. {S2,53} 5.{S2,54} 6.{S3,54}

[Observe that {S1,52} is the same as {S2,S1}. So, there are 6 ways of choosing the two
sets that you want to take with you. Of course, if you had 10 pairs and you wanted to take
7 pairs, it will be much more difficult to work out the number of pairs in this way.

Now as you may want to know the number of ways of wearing 2 out of 4 sets for two
days, say Monday and Tuesday, and the order of wearing is also important to you. We
know that it can be done in 4P4=12 ways. But note that each choice of 2 sets gives us two
ways of wearing 2 sets out of 4 sets as shown below:

1. {S1,S2} -> S1 on Monday and S2 on Tuesday or S2 on Monday and S1 on Tuesday
2. {S1,S3} -> S1 on Monday and S3 on Tuesday or S3 on Monday and S1 on Tuesday
3. {S1,54} -> S1 on Monday and S4 on Tuesday or S4 on Monday and S1 on Tuesday
4. {S2,S3} -> S2 on Monday and S3 on Tuesday or S3 on Monday and S2 on Tuesday
5. {S2,54} -> S2 on Monday and S4 on Tuesday or S4 on Monday and S2 on Tuesday
6. {S3,54} -> S3 on Monday and S4 on Tuesday or S4 on Monday and S3 on Tuesday

Thus, there are 12 ways of wearing 2 out of 4 pairs.
This argument holds good in general as we can see from the following theorem.

Theorem
Let n>1 be an integer and r<n. Let us denote the number of ways of choosing r objects
out of n objects by nCr. Then

nPk.
nCr=——-=.
r!

Example: Find the number of subsets of the set {1,2,3,4,5,6,7,8,9,10,11} having 4
elements.

Solution

Here the order of choosing the elements doesn’t matter and this is a problem in
combinations.

We have to find the number of ways of choosing 4 elements of this set which has
11 elements.

11xX10X9x8
11C4=——— =330
1X2X3x4 »
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Example: 12 points lie on a circle. How many cyclic quadrilaterals can be drawn by
using these points?

Solution

For any set of 4 points we get a cyclic quadrilateral. Number of ways of choosing 4
points out of 12 points is 12C,=495.

Therefore, we can draw 495 quadrilaterals.

Example: In a box, there are 5 black pens, 3 white pens and 4 red pens. In how many
ways can 2 black pens, 2 white pens and 2 red pens can be chosen?

Solution

Number of ways of choosing 2 black pens from 5 black pens

=5C,=2F2 = 3% _ 19

21 1x2

Number of ways of choosing 2 white pens from 3 white pens
3P, _ 3X2 _

=3C,=— = =3

2! 1X2

Number of ways of choosing 2 red pens from 4 red pens
4P, 4x3
=4Co=—= — =6
2! 1X2
=> By the Counting Principle, 2 black pens, 2 white pens, and 2 red pens can be

chosen in 10*3*6= 180ways.

Example: A question paper consists of 10 questions divided into two parts A and B.
Each part contains five questions. A candidate is required to attempt six questions in all
of which at least 2 should be from part A and at least 2 from part B. In how many ways
can the candidate select the questions if he can answer all questions equally well?

Solution

The candidate has to select six questions in all of which at least two should be from
Part A and two should be from Part B. He can select questions in any of the
following ways:

Part A Part B
i 2 4
@i 3 3
(i) 4 2

If the candidate follows choice (i), the number of ways in which he can do so is:
5C,*5C,4=10*5=50

13
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If the candidate follows choice (ii), the number of ways in which he can do so is:
5C3*5C3=10*10=100

Similarly, if the candidate follows choice (iii), then the number of ways in which
he can do so is:5C,*5C,=5*10=50

Therefore, the candidate can select the question in 50+100+50= 200 ways.

Example: A committee of 5 persons is to be formed from 6 men and 4 women. In how
many ways can this be done when:(i) At least 2 women are included?(ii) At most 2
women are included?

Solution

(i) When at least 2 women are included.
The committee may consist of

3 women, 2 men: It can be done in 4C*6C, ways
Or, 4 women, 1 man: It can be done in 4C,*6C; ways
or, 2 women, 3 men: It can be done in 4C,*6C; ways

=> Total number of ways of forming the committee:
=4C3*6C,+4C,*6C,+4C,*6C3= 186 ways

(i) When at most 2 women are included
The committee may consist of

2 women, 3 men: It can be done in 4C,*6C3 ways
Or, 1 women, 4 men: It can be done in 4C,*6C, ways
Or, 5 men: It can be done in 6Cs ways

=> Total number of ways of forming the committee:
=4C,*6C3+4C*6C4+6Cs= 186 ways

Example: The Indian Cricket team consists of 16 players. It includes 2 wicket keepers
and 5 bowlers. In how many ways can a cricket eleven be selected if we have to select 1
wicket keeper and at least 4 bowlers?

Solution

We are to choose 11 players including 1 wicket keeper and 4 bowlers
or, 1 wicket keeper and 5 bowlers.

Number of ways of selecting 1 wicket keeper, 4 bowlers and 6 other players
=2C,*5C4*9C¢=840

14
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Number of ways of selecting 1 wicket keeper, 5 bowlers and 5 other players
=2C1*5C5*9C5=252

=> Total number of ways of selecting the team:
=840+252= 1092

Example: There are 5 novels and 4 biographies. In how many ways can 4 novels and 2
biographies can be arranged on a shelf?

Solution

4 novels can be selected out of 5 in 5C, ways.

2 biographies can be selected out of4 in 4C, ways.
Number of ways of arranging novels and biographies:
=5C,*4C,=30

After selecting any 6 books (4 novels and 2 biographies) in one of the 30 ways,
they can be arranged on the shelf in 6!=720 ways.
By the Counting Principle, the total number of arrangements =30*720= 21600

Example: From 5 consonants and 4 vowels, how many words can be formed using 3
consonants and 2 vowels?

Solution

From 5 consonants, 3 consonants can be selected in 5C3 ways.
From 4 vowels, 2 vowels can be selected in 4C, ways.
Now with every selection, number of ways of arranging 5 letters is 5Ps

Total number of words =5C3*4C,*5Ps= 7200.
Binomial Theorem
(a+b)"=nCoa"+ nCia"b+...+ nCyb"

Example: Find the coefficient of the independent term of x in expansion of (3x -
(2/x%))®.

Solution

The general term of (3x - (2/x?))% is written, as Tr.1 = °C; (3x)¥™" (-2/x?)". It is
independent of x if,

15
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15-r-2r=0=>r=5
. Te= 15C5(3)10(_2)5 - _ 16C5 310 25
Example: Find the value of the greatest term in the expansion of V3(1+(1/43))%.

Solution
Let T,+1 be the greatest term, then T, < Ty41 > T2

Consider : Ty > T,
=>20C, (1/V3)" > 20C.1(1/73)*
=> ((20)1/(20-0)!r!) (1/(\N3)") > ((20)1/(21-n)!(r-1)!) (1/(N3)™)
=>1 < 21/(\N3+1)
=>r<7686 . 0]
Similarly, considering T+1 > T+
=>r>669 . (ii)
From (i) and (ii), we get
r=7

Hence greatest term = Tg = 25840/9

16
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RECURRENCE RELATIONS
Definition

An equation that expresses a,, the general term of the
sequence {a,} in terms of one or more of the previous terms of the

a non —ve integer is called a recurrence relation for {a,} or a
difference equation.

If the terms of a recurrence relation satisfies a recurrence
relation , then the sequence is called a solution of the recurrence
relation.

For example ,we consider the famous Fibonacci sequence
0,1,1,2,3,5,8,13,21,.....,
which can be represented by the recurrence relation.
Fo=Fn.1+Fno,n>=2
& Fy=0,F1=1. Here F;=0 & F1=1 are called initial conditions.

It is a second order recurrence relation.

17
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Solving Linear Homogenous Recurrence Relations with
Constants Coefficients.

Step 1: Write down the characteristics equation of the given
recurrence relation .Here ,the degree of character equation is 1 less
than the number of terms in recurrence relations.

Step 2: By solving the characteristics equation first out the
characteristics roots.

Step 3: Depends upon the nature of roots ,find out the solution
a, as follows:

Case 1: Let the roots be real and distinct say rq,r,r3.....,r, then
A= "+ oo+ asrs M +........ +a,r,,

Where a;, a;, ....,an are arbitrary constants.

Case 2: Let the roots be real and equal say ri=r,=r3=r, then
A= air "+ nosr"+n? osrs™+........ +n” a,r,",

Where o a,, ....,0, are arbitrary constants.

Case 3: When the roots are complex conjugate, then

an=r"(oycosnf+ a,sinnf)
Case 4: Apply initial conditions and find out arbitrary constants.
Note:

There is no single method or technique to solve all recurrence
relations. There exist some recurrence relations which cannot be
solved. The recurrence relation.

S(k)=2[S(k-1)]’-kS(k-3) cannot be solved.

18
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Example If sequence a,=3.2",n>=1, then find the recurrence
relation.
Solution:
For n>=1
a,=3.2",

q
now, an1=3.2"

=3.2"/2
anq=a"/2
an =2(ap-1)

a, = 2a,-1, for n> 1 with a,=3

Example

Find the recurrence relation for S(n) = 6(-5),n>0

Sol:
Given S(n) = 6(-5)"
S(n-1) = 6(-5)""
=6(-5)" /-5

S(n-1) =S(n) /-5

S, =-5.5(n-1), n> 0 with s(0) =6
Example Find the relation from Y =A.2% +B.3¥
Sol :
Given Vi=A2" B3N esenncans >(1)

Yi.; =A.251 +B.3¥!

=A.2".2+B3" 3
Y1 =2A.2° +3B.3" —0)
Yier =8A.2 +9B.3" >(3)

(3) = 5(2) +6(1)

19
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D Vier -5V + 6y =4A.2° +9B.3-10A.2" - 15B.3“+ 6A.2" + 6B.3"
=0

2 Yie1-5Yks1 + 6y =0 in the required recurrence
relation.

Example

Solve the recurrence relation defind by S, = 100 and S (1.08)
Sk for k>1

Sol;
Given Sp=100
Sc=(1.08) Si1  k>1
S;=(1.08) Sp =(1.08)100
S,=(1.08) S; = (1.08)(1.08)100

=(1.08)’ 100
S;=(1.08) S, = (1.08)(1.08)*100

==(1.08)’ 100

S =(1.08)S.4 = (1.08)*100

Example Find an explicit formula for the Fibonacci sequence .
Sol ;
Fibonacci sequence 0,1,2,3,4........ satisify the recurrence relation

fn=fq+foa
fn-fo1-f2=0
& also satisfies the initial condition f,=0,f;=1
Now , the characteristic equation is
r-r-1 =0
Solving we get r=1+ 1+4 / 2

=1+5/2

20



SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS — SMTA1302, UNIT IV

fn=oy (145/2)"+ 0, (1-5/2)" -—>(A)
given fo =0 put n=0in (A) we get

fo=a, (145/2)°+a,(1-5/2)°

(A)=» al +a2=0 2(1)
given f; =1 put n=1in (A) we get
fi=ay (1+45/2)' +a, (1-5/2)"

(A)D(1+5/2)" + a2 (1-5/2)" ag =1 —----- >(2)

To solve(1) and (2)
(1) X(1+5/2)=>(1+5/2) o + (1+5/2) @, =0-—--=>(3)
(1+5/2) a1+ (1+5/2) o =1-——->(2)
(-) (-) (-)

1/2 0;+5/2 a;,-1/2 0, + 5/2 a;=-1

25 dp=-1

a, =-1/5

Puta, =-1/5 inegn (1) we get a; 1/5
Substituting these values in (A) we get

Solution fn=1/5 (1+5/2)" -1/5 (1+5/ 2 )"
Example

Solve the recurrence equation

an=2ap1—2ap2,n>2&ag=1&a;=2
Sol :
The recurrence relation can be written as
an-2ap1+23,,=0
The characteristic equation is
r2—2r-2=0
Roots are r=2+2i/2

=1+
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LINEAR NON HOMOGENEOUS RECRRENCE RELATIONS WITH
CONSTANT COEFFICIENTS

A recurrence relation of the form
Ap =€ Ap_q1+Cy Ap_ot.. ... Ck An_gptF(M)................ (A)

Where c¢;,c¢5 ..... cx are real numbers and F(n) is a function not identically zero
depending only on n,is called a non-homogeneous recurrence relation with
constant coefficient.

Here .the recurrence relation

Is called Associated homogeneous recurrence relation.
NOTE:
(B) is obtained from (A) by omitting F(n) for example ,the recurrence relation

a, = 3 a,_1+2, is an example of non-homogeneous recurrence relation .Its
associated

Homogeneous linear equation is

ap, = 3 ay_1 | By omitting F(n) =2n |

PROCEDURE TO SOLVE NON-HOMOGENEOUS RECURRENCE
RELATIONS:

The solution of non-homogeneous recurrence relations is the sum of two
solutions.

1.solution of Associated homogeneous recurrence relation (By considering
RHS=0).

2.Particular solution depending on the RHS of the given recurrence relation

22
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STEP1:
a) if the RHS of the recurrence relation is
r

ap+a;n...a, n, then substitute

Gy H6i T oM siunse ¢ 0-1)" inplaceof a; —1 ........... and so on ,in the
LHS of the given recurrence relation

(b) if the RHS is a "then we have

Casel:if the base a of the RHS is the characteristric root,then the solution is of the
can" .therefore substitute ca” in place of a,, ,ca™ in place of c¢(n-1) a,, etc..

Case2: if the base a of RHS is not a root , then solution is of the form ca" therefore
substitute ca” in place of a, ,ca™ in place of a, etc..

STEP2:

At the end of step-1, we get a polynomial in ‘n’ with coefficient cy,c;...... on
LHS

Now, equating the LHS and compare the coefficients find the constants cy,cy,....

Example
Solve a,, = 3 a,,_4 +2n with a; =3
Solution:
Give the non-homogeneous recurrence relation is

a, — 3 ap_1 -2n=0
It’s associated homogeneous equation is

a, — 3 a,_, =0 [omitting f(n) =2n]

It’s characteristic equation 1s

23
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r-3=0 => r=3

now, the solution of associated homogeneous equation is
a, (n) =«,3"

To find particular solution

Since F(n) =2n is a polynomial of degree one,then the solution is of
the from

a, = ¢, +d (say) where ¢ and d are constant

Now, the equation
a, = 3 a,_q +2n becomes
¢, +d =3(c(n-1)+d)+2n
[replace a, by ¢, +d a, by c(n-1)+d]

= ¢, +d =3cn-3c¢+3d+2n

= 2cn+2n-3¢+2d=0

= (242¢)n+(2d-3¢)=0

= 2+2¢=0 and 2d-3¢c=0

= Saving we get c=-1 and d=-3/2 therefore cn+d is a solution if c=-1 and
d=-3/2

an (p)=-n-3/2
Is a particular solution.
General solution
ap=an(n)+ ay(p)
Ay =K 3"0-3/2 i (A)
Given a; = 3 put n=1 in (A) we get
a, =« 1(3) "' -1-3/2

3=3c -5/2
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3 =11/2
o« =11/6
Substituting o¢ ;=11/6 in (A) we get
General solution
a =-n-3/2+(11/6)3"
Example:
Solve s(k)-5s(k-1)+6s(k-2)=2
With s(0)=1 ,s(1)=-1
Solution:
Given non-homogeneous equation can be written as
anp=5a,; +6 a ,,-2=0
The characteristic equation is
I*-5r+6=0
roots are r=2,3
the general solution is
3p(n) =0 (2)™+0¢ 5 (3)"
To find particular solution

As RHS of the recurrence relation is constant ,the solution is of the
form C , where C is a constant

Therefore the equation
aAn-dan -6 a,,-2=2

c-Sc+6¢c=2
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the particular solution is

sa(p)=1

the general solution is
Sp= Sp(N)+ Su(p)

S, =0 1(2)"+0C 5 (3)™F1.......... (A)

S, = (2)"+0c , (3)™+1.......... (A)
Given so=1 put n=0 in (A) we get
S =0 1(2)"+0< 5, (3)%+1

Sg = 1+ 5 +1

(A) => So=1 = |+ 5 +1

Given a;=-1 put n=1 in(A)

= S, = {(2)'+% 5 (3)'+1
= (A) -1=¢ (2)+ 5 (3)+1
D 2 X 43 X =2 ......... (1)

oC +cC 2:0

By solving (1) and (2)
oC |=2,0( 2='2

Substituting o« ;=2,0¢ ,=-2 in (A) we get
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Solution is

= S =2.(2)"-2. (3)"+1

Example
Solve a,, —4 a,,_;+4 a,,_,=3n+2"

a0=a1=1

Solution:
The given recurrence relation is non-homogeneous
Now, its associated homogeneous equation is,
[ts characteristic equation is
2
r-4r+4=0

=22
solution , @, (n) = ;(2)"+n < ,(2)"

an(n) = ( ;40 « )2"
To find particular solution

The first term in RHS of the given recurrence relation is 3n.therefore ,the solution
is of the form c¢;+c,n

Replace a, by c¢;+cyn, a,—q by ¢i+c;(n-1)
And a,,_, by ¢;+c,(n-2) we get
(c1+con)-4(cy+cy(n-1))+4(cy+c2(n-2))=3n

= ¢y-4c; + 4cy + ¢y n-4cyntdeyntde,-8c,=3n
= ¢;+cy,n-4¢,=3n
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Generating function:

The generating function for the sequence ‘S’ with terms ag,ay,..... a,

Of real numbers is the infinite sum.

Equating the corresponding coefficient we have
¢1-4c,=0 and ¢,=3
c1=12 and c,=3

Given ay=1 using in (2)

(2) => o +12=1

Given a,=1 using in (2)

(2)=> (o |+ )241243+1/2 .2=1

=> (2 1+2 ) +H16=1........ ... .. (14)
3) o« ;=11

Using in (4) we have o« ,=7/2

Solution a ,=(-1147/2n)2"+12+3n+1/2n"2"

G(x)=G(s;x)="ag+aix+},..... %X t.oeec= Ypg @™
For example,

i) the generating function for the sequence ‘S’ with the terms 1,1,1,1.....1.s
given by,

G)=GExX)= ) ex"=1/1x

11)the generation function for the sequence ‘S’ with terms 1,2,3,4.....1s given
by

G(x)=G(sx)= Y. _ (n+ a™
=142X43x ...

=(1-x)*=1/(1-x)*
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2.Solution of recurrence relation using generating function
Procedure:
Stepl:rewrite the given recurrence relation as an equation with 0 as RHS

Step2:multiply the equation obtained in step(1) by x" and summing if form 1 to «
(or 0 to =) or (2 to ).

Step3:put G(x)= Y7 -oa™x™ and write G(x) as a function of x
Step 4:decompose G(x) into partial fraction
StepS:express G(x) as a sum of familiar series

Step6:Express a, as the coefficient of X" in G(x)

29
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The following table represent some sequence and their generating functions

stepl sequence generating function
1 1 1/1-z

2 D" 1/1+z

3 a" 1/1-az

4 (-a)" 1/1+az

5 n+1 1/1-(z)>

6 n 1/(1-z)°

7 n’ z(142)/(1-z)’

8 na" az/(1-az)’

Eg:use method of generating function to solve the recurrence relation
a,=3a,.+1; n>1 given that a,=1
solution:
let the generating function of {a,} be
G(X)= Xn=o anx"
ap=3a,.1+1
multiplying by x" and summing from 1 to o,
n=o AnX" =351 (an_1x™)+ 2= (™)
Yorbnk® =8 Y (a3 8™ D405 (")
G(x)-293xG(X)+x/1-x

G(x)(1-3x)=ap+x/1-x
=1+x/1-x
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G(x)(1-3x)=1=x+x/1-x
G(x)=1/(1-x)(1-3x)

By applying partial fraction
G(x)=-1/2/1-x+3/2/1-3x
G(x)=-1/2(1-x)"'+3/2(1-3x)"
G(x)[1-x-X*]=a¢-a,X-2pX
G(x)[1-x-X%]= ag-apx+a;X

G(x)=1/1-x-x>  [a¢=1, a;=1]

1
T-1+v5 x/2)(1-1—v5  x/2)

A . B
-2 -y

Now,

1/1-x-x2=—2 B e
T (“"—)) 1-(22x )

1=A11 — (25014 Bl1 - ()0]......2)

Put x=01in (2)
(2)=> A+B=1
Put x=2/1-v/5 in(2)

1+\/_]
—5

1-/5 =1—+/5 |
1-+/5

(2)=> 1=B[l-

1=B|
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15
B_—Z\/S_
145
3) = 245

Sub A and Bin (1)
1+\/_)[1 (1+\/_

G(x)=—= (

= -

—— D (22 0P
L ES S EE P

a,=coefficient of x" in G(x)
solving we get

1+v/5 \n+ 1-v5 \n+
A e = i

Pigeon Hole Principle :

If (7 + ].) pigeon occupies ‘n’ holes then atleast one hole has
more than 1 pigeon.

)

Assume (77 + 1) pigeon occupies ‘n’ holes.

Claim : Atleast one hole has more than one pigeon.

Suppose not, ie., Atleast one hole has not more than on
pigeon.

Therefore, each and every hole has exactly one pigeon.

Since, there are ‘n’ holes, which implies, we have totally ‘z
pigeon.

which is a =< to our assumption that there are (7 + 1
pigeon.

Therefore, atleast one hole has more than 1 pigeon.

THE PIGEONHOLE PRINCIPLE

If n pigeonholes are occupied by n+1 or more pigeons, then at least one pigeonhole is
occupied by greater than one pigeon. Generalized pigeonhole principle is: - If n
32
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pigeonholes are occupied by kn+1 or more pigeons, where K is a positive integer, then at
least one pigeonhole is occupied by k+1 or more pigeons.

Examplel: Find the minimum number of students in a class to be sure that three of them
are born in the same month.

Solution: Here n = 12 months are the Pigeonholes
Andk+1=3
K=2

Example2: Show that at least two people must have their birthday in the same month if
13 people are assembled in a room.

Solution: We assigned each person the month of the year on which he was born. Since
there are 12 months in a year.

So, according to the pigeonhole principle, there must be at least two people assigned to
the same month.

‘THE PRINCIPLE OF INCLUSION -EXCLUSION

Assume two tasksT; and T, that can be done at the same
time(simultaneously) now to find the number of ways to do one of the two tasks
Tiand T,, if we add number ways to do each task then it leads to an over count.
since the ways to do both tasks are counted twice. To correctly count the number
of ways to do each of the two tasks and then number of ways to do both tasks

i.e MTVL)=A(T)HN To)-N TATy)
this technique is called the principle of Inclusion —exclusion
FORMULA:4

1) I AivAVA 5l=IA A HASHIA N A TA A AL AN A A AN Asl

2) ]A|VA2VA 3V A 4|:|A||+|A3|+|A3|+| A4|-|A|AA3|-|A|AA3|-|A|AA4|-|A3AA_}|-
|A2AA4|-|A3AA4|+|A|AA3A A} |+|A|AA2A A4 |+|A|AA3A A4 |+|A3AA3A A4 |+'A|AA3A
A A,
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Example

A survey of 500 from a school produced the following information.200 play
volleyball,120 play hockey,60 play both volleyball and hockey. How many are not
playing either volleyball or hockey?

Solution:
Let A denote the students who volleyball
Let B denote the students who play hockey
It is given that
n=500
IAI=200

IBI=120
IA7BI=60

Bt the principle of inclusion-exclusion, the number of students playing either
volleyball or hockey

|IAvBI=|Al+IBI-IA"BI
IAvBI=200+120-60=260
The number of students not playing either volleyball or hockey=500-260
=240
Example

In a survey of 100 students it was found that 30 studied mathematics,54
studied statistics,25 studied operation research, | studied all the three subjects.20
studied mathematics and statistic,3 studied mathematics and operation research
And 15 studied statistics and operation research

1.how many students studied none of these subjects?

2.how many students studied only mathematics?

Solution:

1) Let A denote the students who studied mathematics

Let B denote the students who studied statistics
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Let C denote the student who studied operation research
Thus IAI=30 ,IBI=54 ,ICI=25 ,IA7BI=20 JA*CI=3 ,IBACI=15 ,and IA*B~Cl=1

By the principle of inclusion-exclusion students who studied any one of the subject
is

|IAvBvCl=IAl+IBI+ICI=IA"BI-IACI-IBACI+IA*BACI
=30+54+25-20-3-15+1
=110-38=72

Students who studied none of these 3 subjects=100-72=28
2) now ,

The number of students studied only mathematics and statistics=n(A”B)-
n(A*B”C)

=20-1=19

The number of students studied only mathematics and operation
research=n(A*C)-n(A*B*C)

=3-1=2

Then The number of students studied only mathematics =30-19-2=9

Example
How many positive integers not exceeding 1000 are divisible by 7 or 11?
Solution:

Let A denote the set of positive integers not exceeding 1000 are divisible by

7
Let B denote the set of positive integers not exceeding 1000 that are divisible by 1] .

Then |AI=[1000/7]=[142.8]=142
IBI=[1000/11]=[90.9]=90
IAMBI=[1000/7#11]=[12.9]=12
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The number of positive integers not exceeding 1000 that are divisible either
7or11isl|AvBI

By the principle of inclusion —exclusion

IAvBI=IAl+IBI-IA"BI

=142+90-12=220

There are 220 positive integers not exceeding 1000 divisible by either 7 or
11

36



(D))

SATHYABAMA

(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES
DEPARTMENT OF MATHEMATICS

UNIT — V — DISCRETE MATHEMATICS — SMTA 1302



SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS- SMTA 1302 UNIT V

UNIT V - GRAPH THEORY

COURSE CONTENT: Introduction to graphs — Types of graphs (directed and undirected) —
Basic terminology — Sub graphs — Representing graphs as incidence and adjacency matrix —
Graph Isomorphism — Connectedness in Simple graphs, Paths and Cycles in graphs - Euler and
Hamiltonian paths (statement only) — Tree — Binary tree (Definition and simple problems)

INTRODUCTION

The concept of graph theory is considered to have originated in 1736 with the
publication of Euler’s solution of the Konigsberg bridge problem. Euler (1707-1782)
Is regarded as the father of graph theory.

The Konigsberg Bridge Problem: The city of Konigsberg was located on the Pregel
river in Prussia. The river divided the city into four separate landmasses, including the
island of Kneiphopf. These four regions were linked by seven bridges as shown in the
diagram. Residents of the city wondered if it were possible to leave home, cross each
of the seven bridges exactly once, and return home. The Swiss mathematician
Leonhard Euler thought about this problem and gave a solution.

G
C o
e
—— e, ”
o :

The key to Euler’s solution was in a very simple abstraction of the puzzle. Let
us redraw our diagram of the city of Konigsberg by representing each of the land
masses as a vertex and representing each bridge as an edge connecting the vertices
corresponding to the land masses. We now have a graph that encodes the necessary
information. The problem reduces to finding a closed walk” in the graph which
traverses each edge exactly once, this is called an Eulerian circuit. Euler proved such
a circuit does not exist.

Graph theory is the study of points, lines and the ways in which sets of points
can be connected by lines or arcs. Graphs in this context differ from the more familiar
coordinate plots that portray mathematical relations and functions.

1
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Graph theory has many colourful applications in many branches such as Physics,
Chemistry, Communication Science, Computer technology, Electrical and Civil
engineering, Architecture, Operations research, Genetics, Sociology, Economics etc..
It has proven useful in the design of integrated circuits (IC s) for computers and other
electronic devices. These components more often called chips, contain complex,
layered microcircuits that can be represented as sets of points interconnected by lines
or arcs. Using graph theory, engineers develop chips with maximum component
density and minimum total interconnecting conductor length. This is important for
optimizing processing speed and electrical efficiency.

BASIC TERMINOLOGIES OF GRAPHS

A graph is usually denoted as G = (V, E), where V is called the vertex set of G
and E is the edge set of G. The elements of the set V are called vertices or points or
nodes and the members of the set E are called edges or lines or arcs.

The number of vertices in a graph G is called the order of the graph and is
denoted by |V|. The number of edges in a graph is called the size of the graph and is
denoted by |E|. A graph is finite if both its vertex set and edge set are finite.
Otherwise it is an infinite graph. We study only finite graphs, so the term graph
means only finite graphs.

A graph with p vertices and g edges is called a (p, ) graph. A graph with one
vertex i.e., a (1, 0) graph is called trivial graph and all other graphs are non trivial. A
graph with zero edges i.e., a (p, 0) graph is called empty or null or void graph.
Each graph has a diagram associated with it. These diagrams are useful for
understanding problems involving such graphs.

Adjacency

Two vertices v and w of a graph G are adjacent if there is an edge vw joining
them, and the vertices v and w are then incident with such an edge. Similarly, two
distinct edges e and f are adjacent if they have a vertex in common

v W ! ..--‘l‘—
e« e

adjacant vartices adjacant edges

DIRECTED AND UNDIRECTED GRAPHS

Directed graph

A directed graph G consists of a set V of vertices and a set E of edges such that
eeE is associated with an ordered pair of vertices. In other words, if each edge of the
graph G has a direction then the graph is called directed graph or digraph.
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In the diagram of directed graph, each edge is represented by an arrow or directed
curve from initial point to the terminal point.

/\

Suppose e = (a, b) is a directed edge in a digraph, then

(1) ais called the initial vertex of e and b is the terminal vertex of e

(i)  eissaidto be incident from vertex to vertex b.
Un-directed graph

An un-directed graph G consists of set V of vertices and a set E of edges such
that each edge e € E is associated with an unordered pair of vertices. In other words,
if each edge of the graph G has no direction then the graph is called un-directed
graph.
Figure given below is an example of an undirected graph. An edge joining the vertex
pair a and b can be referred as either (a, b) or (b, a).

A &
a /
\
B
Y,
.r"r \‘."'
; A
E."'r [+

Loop : An edge of a graph that joins a vertex to itself is called loop.
Example:

Multigraph: Two or more edges of a graph G joining the same pair of vertices are
called multiple edges or parallel edges. The corresponding graph is called
multigraph. In a multigraph no loops are allowed.
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—\_._‘_

\A

Un-firgctad multigraph

In the above figure there are two parallel edges joining nodes vi, v, and Vs, Vs.

Diractad mulligresh

In the above figure there are two parallel edges associated with vertices v, and vs

Pseudo graph: A graph, in which loops and multiple edges are allowed, is called a
pseudo graph.

u z
/ Vs
__.I' ) f
y / /
___r'r ?1_}' ﬁ_r
A i
.r'f l_.r". _.-"I
A T
S — - >
ey ——— " e W
Un-diracted Pssuda gragh Crirgectan Psguda graph

Simple graph: A graph with no loops and multiple edges is called a simple graph.

(a) Simple graph
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DEGREE OF A VERTEX:

For an undirected graph, the number of edges incident on a vertex v; with self-
loops counted twice is called the degree of a vertex v; and is denoted by deg (vi ) or
deg vi or d(vi ). The degree of a vertex is also referred to as its valency.

For example let us consider the graph G given below. The degrees of vertices are
deg (v1) =4, deg (v2) =5, deg (v3) =5, deg (v4) = 3, and deg (vs) = 1.

LA TV

ﬁl\m________,-’ f,fj Y
W7
\ \ \l, e
W Wy

A

Isolated vertex: A vertex having no incident edge on it is called an isolated vertex.
In other words vertex with zero degree is called an isolated vertex.

Pendent vertex or end vertex: A vertex of degree one, is called a pendent vertex or
an end vertex and the corresponding edge is called the pendant edge. The vertex to
which an end vertex is adjacent is called support vertex. In the above Figure, vs is a
pendent vertex.

Degree Sequence: The vertex degrees of a graph arranged in non-increasing order is
called degree sequence of the graph G. The degree sequence of the above graph is 5,
54,31

IN DEGREE and OUT DEGREE of a Vertex

In a digraph G, the number of edges beginning at vertex v; is called the out
degree of a vertex vi, denoted by deg/ (v;) or out deg (vi).
. Inadigraph G, the number of edges ending at vertex v; is called the in degree of a
vertex vi , denoted by deg; (v;) or in deg (vi).
A vertex with zero in degree is called a source and a vertex with zero out degree is

called a sink.
The sum of the in degree and out degree of a vertex is called the total degree of the

vertex.
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——

degz (vy) = 2,degi (vy) = 1,deg; (2) = 2,degf (v,) = 3,deg; (v3)
= 2,degt(v3) =2

Note: For any directed graph the following property is true
ZvEV deg_ (v) = ZvEV d€g+ (v) = |E|

Problem. Find the in-degree and out-degree of each vertex of the following directed
graph

Solution.

in-degree v1 = 2, out-degree vl =1 in-degree v2 = 2, out-degree v2 =
2

in-degree v3 = 2, out-degree v3 =1 in-degree v4 = 2, out-degree v4 =
2

in-degree v5 = 0, out-degree v5 = 3

Problem. Find the in-degree and out-degree of each vertex of the following directed
graph
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Solution.
in-degree a = 6, out-degreea =1 in-degree b = 1, out-degree b =5
in-degree ¢ = 2, out-degree c =5 in-degree d = 2, out-degree d = 2.

Theorem 1: (THE HANDSHAKING THEOREM)

Statement: If G = (V, E) be an undirected graph with e edges, then )., deg; (v) =
2e. 1.e., the sum of degrees of the vertices is an undirected graph is even.

(or)
IfV ={v, vy, ...... Vn} is the vertex set and E is the edge set of a non directed graph G
then Y, deg;(v;) = 2|E]|
Proof :

Since the degree of a vertex is the number of edges incident with that vertex, the sum
of the degree counts the total number of times an edge is incident with a vertex. Since
every edge is incident with exactly two vertices, each edge gets counted twice, once
at each end. Thus the sum of the degrees equals twice the number of edges.

Thus Xi-, degs (v;) = 2|E|

Note : This theorem applies even if multiple edges and loops are present. The above
theorem holds this rule that if several people shake hands, the total number of hands
shaken must be even that is why the theorem is called handshaking theorem.

Corollary 1: In a non directed graph, the total number of odd degree vertices is even.
Proof :

Let G = (V, E) anon directed graph. Let U denote the set of even degree vertices in
G and W denote the set of odd degree vertices.

Then ZvieV dege(v;) = ZvieU degq(vi) + Zview degq(v;)

= 2e — ZvieU dege(v;) = ZvieW degg(vi)

7
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= Yo.ew dege (v;) is also even
-~ The number of odd vertices in G is even.

Theorem 2: If G is a directed graph, then >, degt (v;) = Yir,degz; (v;) = |E]|
Proof : Since when the degrees are summed, each edge contributes a count of one to
the degree of each of the two vertices on which the edge is incident.

Corollary 2 : In any undirected graph there is an even number of vertices of odd
degree.

Proof : Let W be the set of vertices of odd degree and let U be the set of vertices of
even degree. Then 3,y degg (V) + Xyew dege(v) = Ypey dege (v) = 2|E|
Certainly, Y.,y dege (V) is even. Hence Y., degq (V) is even.

= |W] is even.

Corollary 3 : If k = 8(G) is the minimum degree of all the vertices of a non directed
graph G, then

kV| < ZdegG(v) — 2|E|

vev
In particular, if G is a k-regular graph, then

KIVI= ) degs(v) = 2IE|

vev

Problem. Show that the total number of odd degree vertices of a (p, q)-graph is
always even. Solution. Let v, V7 ...... Vi be the odd degree vertices in G.
Then, we have Y.P_, deg;(v;) = 2q=even number
=Y dege(w) + XF_, ., degs(vy) = even number
= Y¥  deg;(v;) =even number — ¥, . degs(vy)
= Y¥  deg;(v;) = even number — even number
= even number.
= This implies that number of terms in the left-hand side of the equation is even.
Therefore, k is an even number.

Problem. Determine the number of edges in a graph with 6 vertices, 2 of degree 4
and 4 of degree 2.

Solution. Suppose the graph with 6 vertices has e number of edges. Therefore by
Handshaking lemma. ¥2_, deg; (v;) = 2|e]

= d(v1) + d(v2) + d(v3) + d(vs) + d(vs) + d(ve) = 2e

Now, given 2 vertices are of degree 4 and 4 vertices are of degree 2.
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Hence the above equation becomes, (4 +4)+(2+2+2+2) =2e
= 16=2e=>e=8.
Hence the number of edges in a graph with 6 vertices with given condition is 8.

Problem. How many vertices are needed to construct a graph with 6 edges in which
each vertex is of degree 2?

Solution. Suppose these are n vertices in the graph with 6 edges. Also given the
degree of each vertex is 2.

By handshaking lemma, }i-, deg; (v;) = 2|e|=2x 6 =12

= d(v1) + d(v2) + ...... +d(vn) =12

=>2+4+2+--+2=12

n times

=2n=12
= n = 6 vertices are needed.

Problem. It is possible to draw a simple graph with 4 vertices and 7 edges ? Justify.

Solution. In a simple graph with n-vertices, the maximum number of edges will be
n(n-1)
—

Hence a simple graph with 4 vertices will have at most 4><2_><3 = 6edges.

Therefore, a simple graph with 4 vertices cannot have 7 edges.
Hence such a graph does not exist.

Problem. Show that there exists no simple graph corresponds to the following degree
sequence : (i) 0,2,2,3,4 (i) 1,1, 2,3 (iii) 2,2, 3,4,5,5(iv) 2, 2, 4, 6.

Solution. (i) to (iii) : There are odd number of odd degree vertices in the graph.
Hence there exists no graph corresponds to this degree sequence.

(iv) Number of vertices in the graph is four and the maximum degree of a vertex is 6,
which is not possible as the maximum degree cannot exceed one less than the number
of vertices.

Problem. Show that the following sequence 6, 5, 5, 4, 3, 3, 2, 2, 2 is graphical.
Solution.

We can reduce the sequence as follows :

Given sequence 6, 5,5, 4, 3,3,2,2,2

Reducing first 6 terms by 1 counting from second term 4, 4, 3,2, 2,1, 2, 2.
Writing in decreasing order 4, 4,3, 2,2, 2,2, 1

Reducing first 4 terms by 1 counting from second 3,2, 1,1,2,2,1

Writing in decending order 3,2,2,2,1,1,1

Reducing first 3 terms by 1, counting fromsecond 1,1, 1,1,1,1

9
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Sequence 1,1,1, 1,1, 1isgraphical.
Hence the given sequence is also graphical

Problem. Show that the sequence 6, 6, 6, 6, 4, 3, 3, 0 is not graphical.

Solution. To prove that the sequence is not graphical.

The given sequence is 6, 6, 6, 6, 4, 3, 3,0

Resulting the sequence 5, 5, 5, 3,2, 2,0

Again consider the sequence 4,4,2,1,1,0

Repeating the same 3,1, 0,0,0

Since there exists no simple graph having one vertex of degree three and other vertex
of degree one. The last sequence is not graphical.

Hence the given sequence is also not graphical.

Problem. Show that the maximum number of edges in a simple graph with n vertices

is 22~ Solution. By the handshaking theorem,
*.deg;(v;) = 2|e|lwhere e is the number of edges with n vertices in the
graph G.
= d(v) +d(v2) + ...... +d(vn) =28 e, (1)

We know that the maximum degree of each vertex in the graph G can be (n — 1).
Therefore, equation (1) reduces (n— 1)+ (n—1) + -+ (n—1) =2e

n times

=>n(n-1)=2e
nn-1)

=>e=

Hence the maximum number of edges in any simple graph with n vertices is @

SOME SPECIAL GRAPHS:
COMPLETE GRAPH

A simple graph G is said to be complete if every vertex in G is connected with every
other vertex.
I.e., iIf G contains exactly one edge between each pair of distinct vertices.

A complete graph is usually denoted by Kn. It should be noted that Kn has exactly
@edges.

The figure given below shows complete graphs K; to Kg

10
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— A X

REGULAR GRAPH

A graph in which all vertices are of equal degree, is called a regular graph.

If the degree of each vertex is r, then the graph is called a regular graph of degree r.
Note 1. Every null graph is regular of degree zero.

Note 2: The complete graph Kn is a regular of degree n — 1.

Note 3: If G has n vertices and is regular of degree r, then G has edges.

Note 4: The figure given below shows 3 regular graphs which are also called as cubic
graphs. The socond graph is also known as Petersen graph.

™

BIPARTITE GRAPH

A graph G is said to be bipartite if its vertex set can be partitioned into two
subsets such that no two vertices in the same partition are adjacent. In other words if
the simple graph G(V, E) can be partitioned into two subsets V; and V; such that
every edge of G connects a vertex in V1 to a vertex in V, and no edge in G connects
either two vertices in V1 or V, then G is called a bipartite graph.

If each vertex of V is connected with every vertex of V, by an edge, Then G is said
to be a complete bipartite graph. If V; contains m vertices and V; contains n
vertices then the complete bipartite graph is denoted by K, n.

The following figure shows bipartite and complete bipartite graph

11
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THE COMPLEMENT OF A GRAPH

Let G be a simple graph. The complement of G denoted by G€ has the same vertex set
as G and two vertices in G and G° are adjacent if and only if they are not adjacent in
G.

The graph G and its complement G°¢ are depicted below

¥

SUBGRAPH

If G and H are two graphs with vertex sets V(H), V(G) and edge sets E(H) and E(G)
respectively such that V(H) €1V(G) and E(H) S[1E(G) then we call H as a
subgraph of G or G as a supergraph of H.

In the figure given below G; is a subgraph of graph G.

G: G,:

SPANNING SUBGRAPH

A graph H is called a subgraph of a graph G if V(H) €0V(G) and E(H) S[E(G.
If V(H) c1V(G) and E(H) c[IE(G) then H is called a proper subgraph of G.

If V(H) = V(G) then we say that H is a spanning subgraph of G.

A spanning subgraph need not contain all the edges in G. The graphs F1 and H1 of
the figure shown below are spanning subgraphs of G1, but J1 is not a spanning
subgraph of G1.

12
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Vs Vg Vs Vg Va V3 Vy Vy
G, Fio H.: J.o:
A v, v, Vs v, Vg v, Vg

Removal of a vertex and an edge

The removal of a vertex vi from a graph G result in that subgraph G —vi of G
containing of all vertices in G except vi and all edges not incident with vi. Thus G —
vi is the maximal subgraph of G not containing vi. On the otherhand, the removal of
an edge xj from G yields the spanning subgraph G — Xj
containing all edges of G except xj. Thus G — xj is the maximal subgraph of G not
containing edge xj.

The following figure shows deletion of vertices and deletion of edges from a graph

"u"4 "l..l'1 "I.I"_d_ "ul'.l
G: Va G-wv,:
Vg Vg
V3
Vg Vs Vs

The following figure shows deletion of edges from a graph

13
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v, v Vg v v Vi
o o) 3 o]
G G— v,
Vy Vs Vy V3
v, A
O Vs
G — {vavy, VoV, VoV, )t ©
O
Va Va
INDUCED SUB GRAPH:

Let G be a graph with vertex set V(G), edge set E(G) and S be a non empty
subset of V(G). A subgraph of G whose vertex set is S and all edges of G which have
both their ends in S is known as the subgraph induced by S and is denoted by G[S] or
< § >. Any subgraph induced by a set of vertices will be called a vertex induced
subgraph or simply an induced sub graph. In other words a sub graph H of a
graph G where V(H) €1V(G) and E(H) consists of only thoe edges that are incident
on the elements of VV(H), is called an induced sub graph of G.

Let M be a non empty subset of E(G). A subgraph of G whose edge set is M
and whose vertices are the ends of edges in M, is said to be a subgraph induced by M
and is denoted by G[M] or < M >. The second figure below displays the vertex
induced sub graph of graph G induced by vertex set {v,, v,, v3} and the third image
in the figure shown below is the edge induced sub graph of G induced by the edge set

{ ey e3,64,€7, 65}
Vv,

' Bt
L] i
¥y € v € Vs €y ¥y vy €y ¥ €y

Graph G ” Induced sub grabhs of graph' G

Example H is not an induced subgraph since v4vl €E(G), but v4v3 ¢E(H).

14
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Vy Vy V, vy v, v,
vy
G: H: J:
Vy Vs Vs Vs Vy Vs
Example for spanning sub graph, vertex induced sub graph and edge induced sub

graph
u
7 f
v y v y v
g g
b d b d
w X w X
c

A spanning G-{u, w)
subgraph of G

u u u
: \ o/ \¢
Yy v v y v
g g
d h
X0 w X O _
c

X0 5 Ow
G-{a,b,f} The induced The edge-induced
. subgraph subgraph
Glu, v, x}1] Glig, c,e,gl]

GRAPHS ISOMORPHISM

15
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Let G1 =(V1, El) and G2 = (V2, E2) be two graphs. A function f: V1 -[1V2 is
called a graphs isomorphism if

(i) f is one-to-one and onto.

(if) for all a, b €e1V1, {a, b} €E1 if and only if {f(a), f(b)} €e[1E2 when such a
function exists, G1 and G2 are called isomorphic graphs and is written as G1 =[1G2.
In other words, two graphs G1 and G2 are said to be isomorphic to each other if there
IS a one to- one correspondence between their vertices and between edges such that
incidence relationship is preserved. It is written as G1 =[111G2 or G1 = G2.

The necessary conditions for two graphs to be isomorphic are

1. Both must have the same number of vertices

2. Both must have the same number of edges

3. Both must have equal number of vertices with the same degree.

4. They must have the same degree sequence and same cycle vector (c1, ...... , CN),
where ci IS

the number of cycles of length i.

The isomorphic pair of graphs are shown below

Example 1:
Example 2:
Example 3:

16
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Example of two graphs that are not isomorphic

-
on

Va

al

a b’

Solution. Let f : G —[1G'[1be any function defined between two graphs degrees of
the graph G and

G'[Tare as follows :

deg (G) deg (G')

deg (a) =3 deg (@)=3

deg (b) =2 deg (b") =2

deg (c) =3 deg (c") =3

deg (d) =3 deg (d")=3

deg (e)=1deg (e =1

Each has 5-vertices and 6-edges.

d(@) =d@)=3
d(b) =d(b") =2
d(c) =d(c") =3
d(d) =d(d) =3

17
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de)=d(e) =1
Hence the correspondenceisa—a’,b-b’, ....,e—¢".
Therefore, the given two graphs are isomorphic.

Problem. Show that the following graphs are isomorphic.

by
c
a
O e G
G
b Cc a
a c'

Solution. Let f : G —[1G'[1be any function defined between two graphs degrees of
the graphs G

and G'[are as follows :

deg (G) deg (G')

deg (a) =3 deg (@)=3

deg (b) =2 deg (b")=2

deg (c) =3deg (c)=3

deg (d)=5deg (d")=5

deg(e)=1deg (e =1

Each has 5-vertices, 6-edges and 1-circuit.

deg(a) = deg(a’) =3

deg(b) = deg(b") =2

deg(c) = deg(c’) =3

deg(d) = deg(d") =5

deg(e) =deg(e") =1

Hence the correspondenceisa—a’,b-b’, ....,e—¢'.
Therefore, the given two graphs G and G’[Jare isomorphic.

Problem. Are the 2-graphs, is given below, is isomorphic ? Give a reason.

18
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Solution. Let us enumerate the degree of the vertices
Vertices of degree 4 : b —f’

d-c
Vertices of degree 3:a—a’
c—d
Vertices of degree 2 : e — b’
f—e

Now the vertices of degree 3, in G are a and ¢ and they are adjacent in G’, while these
are a’'lJand

d’'CJwhich are not adjacent in G'.

Hence the 2-graphs are not isomorphic.

Problem. For each pair of graphs shown, either label the graphs so as to exhibit an
iIsomorphism or explain why the graphs are not isomorphic.

a
1 b
2 G.:
G, 3 c
d

()
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Problems. Are the 2-graphs, is given below, is isomorphic ? Give a reason.

b

(1)

e

a b’
rl q—b cr
/ d

&
bl
7
o'

20
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a
a )
(iif) © b & @.
.
d C d \

Problem. Find whether the following pairs of graphs are isomorphic or not

a
-]
b a
(i) b a
¢ d c d
G G
.
y c' o
(ii)
C b
G b
o

Problem. Consider two graphs G1 and G2 as shown below, show that the graphs G1
and
G2 are isomorphic.
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REPRESENTATION OF GRAPHS

Although a diagrammatic representation of a graph is very convenient for a visual

study but this
Is only possible when the number of nodes and edges is reasonably small.Two types

of representation are given below :

Matrix representation

The matrix are commonly used to represent graphs for computer processing. The
advantages of representing the graph in matrix form lies on the fact that many results
of matrix algebra can be readily

applied to study the structural properties of graphs from an algebraic point of view.
There are number of
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matrices which one can associate witch any graph. We shall discuss adjacency matrix
and the incidence
matrix.

ADJACENCY MATRIX
Representation of undirected graph

The adjacency matrix of a graph G with n vertices and no parallel edges is an n by n
matrix A = {aij}
whose elements are given by aij =

1 if there is an edge between ith and jth vertices
{0 if there is an edge between ith and jth vertices
Note that for a given graph, the adjacency matrix is based on ordering chosen for the
vertices. Hence, there are as many as n ! different adjacency matrices for a graph with
n vertices, since there are n ! different ordering of n vertices. However, any two such
adjacency matrices are closely related in that one can be obtained from
the other by simply interchanging rows and columns.
There are a number of observations that one can make about the adjacency matrix A
of a graph G. They are

(i) Ais symmetric i.e. aij = aji for all i and j
(if) The entries along the principal diagonal of A all zeros if and only if the graph has
no self loops. A self loop at the vertex corresponding to aij = 1.

(iii) If the graph is simple (no self loop, no parallel edges), the degree of vertex
equals the number of 1’s in the corresponding row or column of A.
(iv) The (i, j) entry of Am is the number of paths of length (no. of occurrence of
edges) m from vertex vi to vertex vj.
(v) If G be a graph with n vertices v1, v2, ...... vn and let A denote the adjacency
matrix of G with respect to this listing of the vertices. Let B be the matrix and B = A
+A2+A3+ ... +An-1
Then G is a connected graph if B has no zero entries of the main diagonal.
This result can be also used to check the connectedness of a graph by using its
adjacency matrix.

Adjacency can also be used to represent undirected graphs with loops and
multiple edges. A loop at the vertex v1 is represented by a 1 at the (i, j)th position of
the adjacency matrix. When multiple edges are present, the adjacency matrix is no
longer a zero-one matrix, since the (i, j)th entry equals the number of edges these are
associated to {vi —vj}.

23
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All undirected graphs, including multigraphs and pseudographs, have symmetric
adjacency matrices.

Representation of directed graph

The adjacency matrix of a diagonal D, with n vertices is the matrix A = {aij}n x nin
which
aiij = {1 ifarc {vi - vj}isinD

0 otherwise

One can make a number of observations about the adjacency matrix of a diagonal.
Observations

(i) A is not necessary symmetric, since there may not be an edges from vi to vj when
there is an edge from vi to vj.

(if) The sum of any column of j of A is equal to the number of arcs directed towards
V]

(iii) The sum of entries in row i is equal to the number of arcs directed away from
vertex vi (out degree of vertex vi)

(iv) The (i, j) entry of Am is equal to the number of path of length m from vertex vi to
vertex vj entries of AT. A shows the in degree of the vertices.

The adjacency matrices can also be used to represent directed multigraphs. Again
such matrices are not zero-one matrices when there are multiple edges in the same
direction connecting two vertices.

In the adjacency matrix for a directed multigraph aij equals the number of edges that
are associated to (vi, vj).

INCIDENCE MATRIX
Representation of undirected graph

Consider a undirected graph G = (V, E) which has n vertices and m edges all labelled.
The

incidence matrix B = {bij}, is then n x m matrix,

1 when edge e; is incident with vertex v;

where bl] = { ]
0 otherwise

We can make a number of observations about the incidence matrix B of G.
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(i) Each column of B comprises exactly two unit entries.

(ii) A row with all O entries corresponds to an isolated vertex.

(iii) A row with a single unit entry corresponds to a pendent vertex.

(iv) The number of unit entries in row i of B is equal to the degree of the corresponding
vertex v;.

(v) The permutation of any two rows (any two columns) of B corresponds to a labelling of the
vertices (edges) of G.

(vi) Two graphs are isomorphic if and only if their corresponding incidence matrices differ
only by a permutation of rows and columns.

(vii) If G is connected with n vertices then the rank of Bis n— 1.

Incidence matrices can also be used to represent multiple edges and loops. Multiple
edges are represented in the incidence matrix using columns with identical entries. Since
these edges are incident with the same pair of vertices. Loops are represented using a column
with exactly one entry equal to 1, corresponding to the vertex that is incident with this loop.

Representation of directed graph

The incidence matrix B = {b;;} of digraph D with n vertices and m edges is the n X m matrix
1 if arcjis directed away from vertex v;

{—1 if arcjis directed towards vertex v;
0 otherwise

in which bU =

Problem 14. Use adjacency matrix to represent the graphs shown in Figure below

Vs Wa " ; : vy Vo

:_'_,_,_,-F"'-I'l;/ |I|
| |
/ [ .
Wy ¢ \'
Wy Wy A Vy
(@) (&) i)

Solution. We order the vertices in Figure (a) as vy, v, v3 and va.
Since there are four vertices, the adjacency matrix representing the graph will be a square
matrix of order four. The required adjacency matrix A is
01 11
1 1
01
1 0
We order the vertices in Figure (b) as v, v, and v3. The adjacency matrix representing the
graph is given by

o

0
1
0

Fd =

ﬂ:

L= = |
e = =
=

Taking the order of the vertices in Figure (¢) as vy, v2, v3 and v4. The adjacency matrix
representing the graph is given by

25
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Lo = == [ =}
[= N = R =
=D =
L= R = |

Problem 15. Draw the undirected graph represented by adjacency matrix A given by
o1 100

(S
o e

0
A= 1
7
1

o
DD e D
=T
b b D

Solution.

Since the given matrix is a square of order 5, the graph G has five vertices vy, va, v3,
v4and vs.Draw an edge from v; to v; where a;; = 1.
The required graph is drawn in Figure below.

Wy Va

Problem 16. Draw the digraph G corresponding to adjacency matrix

=1
<
o e D b

1
1
a
1

by b O
b b O

Solution. Since the given matrix is square matrix of order four, the graph G has 4 vertices v,
V2, v3 and v4 . Draw an edge from v; to v; where a;; = 1.
The required graph is shown in Figure below.

Y4

Va
Il. “\\\H ‘ /.\'.

Loy

—p——

—
I.II

" 1

Problem 17. Show that the graphs G and G ' are isomorphic
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Solution. Consider the map f: G -G’ defined as f(a) =d, f(b)=a’, f(c) =b’, f(d) = ¢  and
fley=e

The adjacency matrix of G for the ordering a, b, ¢, d and e is

a b e de

alb 1.0 1 0
Bj1 0 1 0 1
A(G}:C"le}ll
(1 0 1 0 1
el 1 1 1 0

The adjacency matrix of G’ for the ordering d’, a’, b',c and e'is

d a b £
0

By

-

AG)=

-

b

e
0
1
1
1
0

Toa
=R =
_ T e S e

1
0
1
1

(R o T S o T Sy

-

o

ie.,A(G) = A(G")
Therefore G and G’ are isomorphic.

Problem 18. Represent the graph shown in Figure below, with an incidence matrix.

-E‘|_ Ej g1 € E‘i E?.j

wll 10000
w001 101
w0000 11
wll 01 000
010110

Problem 19. Represent the Pseudo graph shown in Figure below, using an incidence matrix.
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1
0
0
0
0

Problem 20. Find the incidence matrix to represent the graph shown in Figure below :

¥y & Vo v, B Vs
Y 8 Wy A B Wy
()

===
=T ==
=T
[T e R e

(B}

Solution.
The incidence matrix of Figure (a) is obtained by entering for row v and column e is 1
if e is incident on v and O otherwise. The incidence matrix is

é‘l Ej E; Ea -E?s

011

'I-\I:
Ll =]

-
¥

[ e R N
ot

00
1 0
11

=
=R =]

Vs
The incidence matrix of the graph of Figure () is
1 0 0 -1 1

-1 1 0 0 0
o -1 1 0 -1
o 0 -1 1 0

Problems for practice

1. Draw the undirected graph G corresponding to adjacency matrix
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WALKS, PATHS AND CYCLES
Definition

A walk in G is a sequence of vertices vy, vVy,...,V; and a sequence of edges(v;, v14+1) € E (G). A walk is a path if
all v; are distinct. v is the initial vertex and vy, is the terminal vertex. A zero length walk is just a single vertex v,. If for such a
path with k > 2, (v, vy)is also an edge in G, then vy, vy,..., Vg, Vg is a cycle. For multigraphs, we also consider loops and
pairs of multiple edges to be cycles.
Definition

The length of a path, cycle or walk is the number of edges in it.
Example
V5ViV3V4 is a path of length 3

Vs Vs Vs
v ViV2Vs is a cycle of length 3

VsVivavsViVs is a walk of length 5

Vi V3

Proposition: Every walk from « to v in G contains a path between u and v.
Proof.

By induction on the length / of the walk u = ugy, uy,...,v; = v.Ifl = 1 then our walk is also a path. Otherwise, if our
walk is not a path there is w; = wywith i < j, then u = ug, uy, U;,Uj4q,V is also a walk from u to v which is shorter. We can
use induction to conclude the proof.

H= U 1 Hi-1 Hi= U Uj+1 v

Proposition: Every G with minimum degree § > 2 contains a path of length § and a cycle of length at least § + 1.

Proof. Let vy, v,,..., v, be alongest path in G. Then all neighbors of v, belong to vy, v,,...,Vx—1s0k —1>8and k = § +
1, and our path has at least § edges. Let i (1 < i < k)be the minimum index such that (v;, vy) € E (G). Then the neighbors of
Vj are amongvy, Vs,...,Vg—1, S0 k — i = 8. Then v;, v;44,..., Vg is a cycle of length at least § + 1.

TREES

Definition:
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A graph having no cycle is acyclic. A tree is a connected acyclic graph. A leaf (or pendant vertex ) is a vertex of degree
1. A forest is an acyclic graph. A tree is a connected forest. A subforest is a subgraph of a forest. A connected subgraph of a tree
is a subtree. A spanning tree of a connected graph is a subtree that includes all the vertices of that graph. The edges of a spanning
tree are called branches.

Example:

forest tree

Lemma: Every finite tree with at least two vertices has at least two leaves. Deleting a leaf from an n-vertex tree produces a tree
with n — 1 vertices.

Proof.

Every connected graph with at least two vertices has an edge. In an acyclic graph, the end points of a maximum path
have only one neighbor on the path and therefore have degree 1.Hence the endpoints of a maximum path provide the two desired
leaves.

{ If v had multiple neighbors on the
- path we would get a cycle . )

[ W
Suppose v is a leaf of a tree G, and let G' = G — v. If u,w € V(G"), then no u, w-path P in G can pass through the

vertex v of degree 1, so P is also present in G'. Hence G is connected. Since deleting a vertex cannot create a cycle, G is also
acyclic. We conclude that G is a tree with n — 1vertices.

Theorem: For an n-vertex simple graph G (with n > 1), the following are equivalent (and characterize the trees with n vertices).
(a) G is connected and has no cycles.
(b) Gis connected and has n — 1 edges.
(c) Ghasn — 1 edges and no cycles.
(d) For every pair u,v € V (G), there is exactly one u, v — path in G.
To prove this theorem we will need a small lemma.
Definition: An edge of a graph is a cut-edge if its deletion disconnects the graph.
Lemma: An edge contained in a cycle is not a cut-edge.

Proof of the lemma:

Let (u, v) belong to a cycle.
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Then any path x ... y in G which uses the edge (u, v) can be extended to a walk in G — (u, v) asfollows:

*—---- * & - e .- -— & ——-- *— & ———-- -
I i v u T u 151 tg—1 v Y
Proof of Theorem:

We first demonstrate the equivalence of (a), (b), (c) by proving that any two of {connected, acyclic, n — 1 edges}
implies the third.

(a) = (b), (c): We use induction on n. For n = 1, an acyclic 1-vertex graph has no edge. For the induction step, suppose
n > 1, and suppose the implication holds for graphs with fewer than n vertices. Given G, the Lemma provides a leaf v and states
that G' = G — v is acyclic and connected. Applying the induction hypothesis to G'yields e(G) = n — 2, and hencee(G) =
n— 1.

(b) = (a), (c): Delete edges from cycles of G one by one until the resulting graph G’ is acyclic. By Lemma, G is
connected. By the paragraph above, G hasn — 1 edges. Since this equals|E (G)], no edges were deleted, and G itself is acyclic.

(c) = (a), (b): Suppose G has k components with orders n,. . .ng. Since G has no cycles, each component satisfies
property (a), and by the first paragraph the ith component has n; — 1 edges. Summing this over all components yields e(G) =
Y(ni—1)=n—k.Wearegivene(G) = n—1,sok = 1, and G is connected.

(a) = (d): Since G is connected, G has at least one u, v —path for each pair u,v € V (G). SupposeG has distinct
u,v —paths P and Q. Let e = (x,y) be an edge in P but not in Q. The concatenation of P with the reverse of Q is a closed walk

in which e appears exactly once. Hence, (P U Q) — e is anx,y —walk not containing e. Thus we have a cycle with e and
contradicts the hypothesis that G is acyclic. Hence G has exactly one u, v —path.

(d) = (a): If there is a u; v-path for every u; v & V (G), then G is connected. If G has a cycle C, then G has two paths
between any pair of vertices on C.

Definition:
Given a connected graph G, a spanning tree T is a subgraph of G which is a tree and contains every vertex of G.
Corollary:
(a) Every connected graph on n vertices has at least n — 1 edges and contains a spanning tree;
(b) Every edge of a tree is a cut-edge;
(c) Adding an edge to a tree creates exactly one cycle.
Proof.

(a) Delete edges from cycles of G one by one until the resulting graph Gy is acyclic. By Lemma, G is connected. The
resulting graph is acylic so it is a tree. Therefore G had at least n — ledges and contains a spanning tree.

(b) Note that deleting an edge from a tree T on n vertices leaves n — 2 edges, so the graph is disconnected by (a).
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[ = T
—
T by s T

I
3
A= 0
a

[

2. Use an adjacency matrix to represent the graph shown in Figure below

g ]

c d
3. Draw a graph with the adjacency matrix
g 110

2 b by

o0
g 0
I 1

o b b
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connected not connected

Definition:

A (connected) component of G is a connected subgraph that is maximal by inclusion. We say G is connected if and
only if it has one connected component. The graph G which is given below has 4 connected components.

G=

Proposition: A graph with n vertices and m edges has at least n — m connected components.
Proof.

Start with the empty graph (which has n components), and add edges one-by-one. Note that adding an edge can
decrease the number of components by at most 1.

Definition: (Vertex connectivity)

A vertex cut in a connected graph G = (V,E) is aset S € V such that G\ S = G[V \ S] has more than one
connected component. A cut vertex is a vertex v such that {v}is a cut.

Definition:
G is called k-connected if |V (G)| > k and if G \X is connected for every set X € Vwith |X| < k|. In other words, no
two vertices of G are separated by fewer than k other vertices. Every (non-empty) graph is O-connected and the 1-connected

graphs are precisely the non-trivial connected graphs. The greatest integer k such that G is k — connected is the connectivity
k(G)of G. For example, if G = K,,, then k(G) = n — 1. In the below example, deleting v disconnects G, so v is a cut vertex.

G- KG) =1

Proposition: For every graph G, k(G) < §(G).

Proof.

Let v € V(G) be a vertex of minimum degree d(v) = & (G). Then deleting N(v) disconnects v from the rest of G.
Definition: (Edge connectivity)

A disconnecting set of edges is a set S € E(G) such that G \ Fhas more than one component. Given S,T € V(G) the

notation [S, T] specifies the set of edges having one end point in S and the other in T. An edge cut is an edge set of the form
[S, S 1, where S is a non-empty proper subset of V (G). A graph is k-edge-connected if every disconnecting set has at least k
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edges. The edge-connectivity of G, written k'(G), is the minimum size of a disconnecting set. One edge disconnecting G is called
a bridge. For example, if G = K, then k'(G) =n — 1.

G= k'(G) = 3 whereas k(G)‘ =2

Remark: An edge cut is a disconnecting set but not the other way around. However, everyminimal disconnecting set is a cut.
Theorem:k(G) < k'(G) < §(G).
Proof.

The edges incident to a vertex v of minimum degree, form a disconnecting set, hence k'(G) < §(G). It remains to show
that k(G) < k'(G). Suppose|G| > 1 and [S, S] is a minimum edge cut, having size k'(G).

If every vertex of S is adjacent to every vertex of S and |G| = |V(G)| = n, then k'(G) = |S||S| = |S|(|G| — |S]). This
expression is minimized at |S| = 1. By definition,k(G) < |G| — 1, so the inequality holds.

-
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Hence we may assume there exists x € S, y € S with x not adjacent to y. Let T be the vertex set consisting of all
neighbors of x in S and all vertices of S\ x that have neighbours in S (illustrated below). Deleting T destroys all the edges in the
cut [S, S] (but does not delete x or y), so T is a separating set. Now, by the definition of T we can injectively associate at least one
edge of [S,S ] to each vertex in T, so .k(G) < |T| < |[S, S]] = k'(G).

Definition: Two paths are internally disjoint if neither contains a non-endpoint vertex of the other. We denote the length of the
shortest path from u to v (the distance from u to v) by d(u, v).

Theorem: (Whitney 1932).A graph G having at least three vertices is 2-connected if and only if each pair u,v € V(G) is
connected by a pair of internally disjoint u, v — paths in G.

Proof.

When G has internally disjoint u, v —paths, deletion of one vertex cannot separate u from v. Since this is given for
every u, v, the condition is sufficient. For the converse, suppose that G is2-connected. We prove by induction on d(u, v) that G
has two internally disjoint u, v paths. When d(u,v) = 1, the graph G \ (u,v) is connected, since k'(G) = k(G) = 2. A u,v —
path in G \ (u, v) is internally disjoint in G from the u, v —path consisting of the edge (u, v) itself.
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For the induction step, we consider d(u,v) = k > 1 and assume that G has internally disjoint x, y —paths whenever
1 <d(x,y) < k. Let w be the vertex before v on a shortest u, v —path. We have d(u,w) = k — 1, and hence by the induction
hypothesis G has internally disjoint u, w — paths P andQ. Since G \ w is connected, G \ w contains a u, v —path R. If this path
avoids P or Q, we are finished, but R may share internal vertices with both P and Q. Let x be the last vertex of R belonging
to P U Q. Without loss of generality, we may assume, x € P. We combine the u, x —subpath of P with the x, v —subpath of R
to obtain a u, v —path internally disjoint from Q U {(w, v)}.

Corollary: G is 2-connected and|V (G)| = 3 if and only if every two vertices in G lie on a common cycle.

EULERIAN AND HAMILTONIAN PATHS

Definition: A trail is a walk with no repeated edges.

Definition: An Eulerian trail in a graph ¢ = (V, E) is a walk in G passing through every edge exactly once. If this walk is closed
(starts and ends at the same vertex) it is called an Eulerian tour.

Theorem: A connected graph has an Eulerian tour if and only if each vertex has even degree.
In order to prove this theorem we use the following lemma.

Lemma: Every maximal trail in a graph where all the vertices have even degree is a closed trail.

Proof.

Let T be a maximal trail. If T is not closed, then T has an odd number of edges incident to the final vertex v. However,
as v has even degree, there is an edge incident to v that is not in T. This edge can be used to extend T to a longer trail,
contradicting the maximality of T.

Proof of Theorem
To see that the condition is necessary, suppose G has an Eulerian tour C. If a vertex v was visited k times in the tour C,
then each visit used 2 edges incident to v (one in comingedge and one outgoing edge). Thus, d(v) = 2k, which is even.

To see that the condition is sufficient, let G be a connected graph with even degrees. Let T = e e;...e; (where
e; = (v;_1,v;))be a longest trail in G. Then, by Lemma, T is closed, that is, vy = v;. If T does not include all the edges of G
then, since G is connected, there is an edge outside of T such that e = (u,v;) for some vertex v; in T. But then
T = eej,q ... €81, ...€;is a trail in G which is longer than T, contradicting the fact that T is a longest trail in G. Thus, we
conclude that T includes all the edges of G and so it is an Eulerian tour.

HAMILTON PATHS AND CYCLES

Definition: A Hamilton path/cycle in a graph G is a path/cycle visiting every vertex of G exactly once. A graph G is called
Hamiltonian if it contains a Hamilton cycle.

Hamilton cycles were introduced by Kirkman in 1985, and were named after Sir William Hamilton, who produced a

puzzle whose goal was to find a Hamilton cycle in a specific graph.

Example: Hamilton cycle in the skeleton of the 3-dimensional cube.
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Proposition 5.3.
Theorem: If G is Hamiltonian then for any set S € V(G) the graph G \ Shas at most |S|connected components.
Proof.

Let Cy, C,,...,Cy be the components of G \ S. Imagine that we are moving along a Hamilton cycle in some order,
vertex-by-vertex (in the picture below, we are moving clockwise, starting from some vertex in C;, say). We must visit each
component of G \ Sat least once, when we leaveC; forthe first time, let v; be the subsequent vertex visited (which must be in S).
Each v; must be distinct because a cycle cannot intersect itself. Hence, S must have at least as many vertices as the number of
connected components of G \ S.

CI CI

C: Cs

Example:

The condition in Proposition is not sufficient to ensure that a graph is Hamiltonian. The graph G above satisfies the
condition of Proposition, but is not Hamiltonian. Indeed, one would need to include all the edges incident to the vertices v4, v,
and v; in a Hamiltoncycle of G, however, in that case the vertex u would have degree at least 3 in that Hamilton cycle, which is
impossible. We also give some sufficient conditions for Hamiltonicity.

Theorem: (Dirac 1952). If G is a simple graph with n > 3 vertices and if §(G) = g, then G
is Hamiltonian.
Proof.

The condition that n = 3 must be included since K, is not Hamiltonian but satisfies §(G) = % If there is a non-
Hamiltonian graph satisfying the hypotheses, then adding edges cannot reduce the minimum degree, so we may restrict our
attention to maximal non-Hamiltonian graphs G with minimum degree at least g By “maximal" we mean that for every pair
(u, v) of non-adjacent vertices of G, the graph obtained from G by adding the edge e = (u, v) is Hamiltonian.

The maximality of G implies that G has a Hamilton path, say from u = v, to v = v,, because every Hamilton cycle
in G U {e} must contain the new edge e. We use most of this path v;, v,,..., v, with a small switch, to obtain a Hamilton cycle in
G. If some neighbor of u immediately follows a neighbor of v on the path, say (u; vi+1) € E(G) and (v; vi) € E(G), then G has
the Hamilton cycle(u, viy1,Vit2,--+)Vn—1,V, V;, Vi1, -, V2) shown below.

To prove that such a cycle exists, we show that there is a common index in the sets S and T defined by S=
{i: (W, vy, € E(G)} and T= {i: (v, v; € E(G)}. Summing the sizes of these sets, yields|]SUT| + |SNT| =S|+ |T| = d(u) +
d(v) = n. Neither S nor T contains the index n. This implies that |S U T| < n, and hence |S N T| = 1, as required. This is a
contradiction.

It can be observed that this argument uses only that d(u) + d(v) = n. Therefore, we can weaken the requirement of

minimum degree g to require only that d(u) + d(v) = n whenever u is not adjacent to v.
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(c) Let u,v € T. There is a unique path in T between u and v, so adding an edge (u,v) closes this path to a unique
cycle.

Theorem: A connected graph has at least one spanning tree.
Proof.

Consider the connected graph G with n vertices and m edges. f m = n — 1, then G is a tree. Since G is connected,
m = n- 1. We still have to consider the case m = n, where there is a circuit in G. We remove an edge e from that circuit. G —
e is now connected. We repeat until there are n — 1 edges. Then, we are left with a tree.

Theorem: If a tree is not trivial, then there are at least two pendant vertices.
Proof.

If a tree has n >2 vertices, then the sum of the degrees is 2(n — 1). If every vertex has a degree > 2, then the sum will be
= 2n. On the other hand, if all but one vertex have degree > 2, then the sum would be > 1 + 2(n — 1) = 2n- 1. This is

because a cut vertex of a tree is not a pendant vertex. A forest with k components is sometimes called a k-tree. (So a 1-tree is a
tree.)

Theorem (Cayley’s Formula). There are n™ 2trees with vertex set n.

Question: What is the number of spanning trees in a labeled complete graph on n vertices?

n-2 .

By Cayley’s formula, it is n

Example:

Theorem: If G is a tree, then the number of edges in G=n - 1.
Proof.

Let us denote the number of edges in G by m. By induction on n, when n = 1, G is isomorphic to K; and so the number
of edges in Gis m = 0 = n - 1. Suppose the theorem is true for all trees on fewer than v vertices and let G be a tree on n > 2
vertices. Let (u,v) € E(G), then G — (u, v) contains no u, v — path, since (u, v) is the unique u, v — path in G. Thus G — (u, v)
is disconnected so w(G — uv) = 2.The components G, and G, of G — (u, V), being acyclic are trees. Moreover, each has fewer
than n vertices. Therefore by induction hypothesis, E(G;) =V(G;)- 1, for i =1, 2. ThusE(G) = E(G;)) + E(G) +1 =
V(G)+V( G+ 1=V((GE)—1=n—-1.

CONNECTIVITY
Definition:
A graph G is connected if, for all pairs u,v € V(G"), there is a path in G from u to v.

Note that it suffices for there to be a walk from u to v, by Proposition
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Definition: The left (right) subtree of a vertex v in a binary tree is the binary subtree spanning the left (right)-child of v and all of
its descendants.

Theorem: The complete binary tree of height h has 2"+1 — 1 vertices.

Corollary: Every binary tree of height / has at most 2"** — 1vertices.

Expression Trees
An expression tree is a special type of a binary tree that represents an algebraic expression in such a way that
stores its structure and shows how the order of operations applies. This is a very important type of a tree in computer science.
We're interested in a few different operators. We break these operators down into two categories:
e  Binary Operators - operators that take two inputs

o +

o - (here, subtraction)

1) k

o/ (both integer and floating-point division)
o % (modulus)

o  “or ** (exponentiation)

e  Unary Operators - operators that take one input
o - (here, negation)
Note that we don't mention parentheses. The expression tree's structure removes the need to talk about parentheses, as
the structure encodes precedence.

When we have a single expression based on a binary operator, we draw the expression tree as follows:

e The operator is the root of the tree.

e  The operands are the children. Because some operations are not commutative, order does matter. The operand before
the operator is the left child and the operand after the operator is the right child. Thus, we get a tree with a root and two
children. For example see figure (a).

When we have a single expression based on a unary operator, we draw the expression tree as follows:
e The operator is the root of the tree.
e  The operand is the child.

Thus, we get a tree with a root and one child. (It's really more of a linear structure than a tree, but it does fit the
definition of a tree. We'll find that these kinds of trees are interesting when we join them together as part of more complicated
expressions.) The Expression tree for —a is in figure (e). Note that we could treat negation as multiplication by -1 and eliminate
the need for unary trees if we'd like to have all nodes in our tree having exactly 2 children (or no child). When we wish to work
with more complicated expressions, we invoke the recursive nature of binary trees. When an operand is an expression rather than
a single variable or constant, we simply put the expression tree for that expression in lieu of theoperand. Figures (b), (c¢) and (d)
are examples of such expression trees.
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(a)a/b b)a*b+c (c)a*(b+c) da*b+c*d)/e (e) -a

N
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