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UNIT I: LOGIC 

Statements - Truth tables - Connectives - Equivalent Propositions - Tautological Implications 

- Normal forms -Predicate Calculus, Inference theory for Propositional Calculus and Predicate 

Calculus. 

Propositional Logic – Definition 

A proposition is a collection of declarative statements that has either a truth value "true” or a 

truth value "false". A propositional consists of propositional variables and connectives. We 

denote the propositional variables by capital letters (A, B,…, P,Q,…). The connectives connect 

the propositional variables. 

 

Some examples of Propositions are given below − 

 
• "Man is Mortal", it returns truth value “TRUE” 

• "12 + 9 = 3 − 2", it returns truth value “FALSE” 

The following is not a Proposition − 

• "A is less than 2". It is because unless we give a specific value of A, we cannot say 

whether the statement is true or false. 

Connectives  

In propositional logic generally we use five connectives which are − OR (˅), AND (˄), 

Negation/ NOT (¬), If-then/Conditional (→), If and only if/ Biconditional (↔). 

 

OR (˅) : The OR operation of two propositions A and B (written as A ˅ B) is true if at least any 

of the propositional variable A or B is true. 

 

The truth table is as follows − 
 

A B A ˅ B 

True True True 

True False True 

False True True 

    False  False  False 
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AND (˄) : The AND operation of two propositions A and B (written as A ˄ B) is true if both 

the propositional variable A and B is true. 

 

The truth table is as follows − 
 

A B A ˄ B 

True True True 

True False False 

False True False 

False False False 

 
 

Negation (¬) :The negation of a proposition A (written as ¬A) is false when A is true and is true 

when A is false. 

 

The truth table is as follows – 
 
 

A ¬A 

True False 

False True 

 

If-then /Conditional (→):  An implication A→ B is False if A is true and B is false. The rest of the  

cases are true.Here A is called Hypothesis or antecedent and q is called consequent or conclusion. 

The truth table is as follows − 
 

A B A→  B 

True True True 

True False False 

False True True 

False False True 
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If and only if (↔) : A↔B is bi-conditional logical connective which is true when p and q are 

both false or both are true. 

 

The truth table is as follows − 
 

A B A↔B 

True True True 

True False False 

False True False 

False False True 

 

 

Tautologies 

A Tautology is a formula which is always true for every value of its propositional variables. 

Example − Prove [(A → B) ˄ A] → B is a tautology            

 
The truth table is as follows − 

 

A B A → B (A → B) ˄ A [(A → B) ˄ A] → B 

True True True True True 

True False False False True 

False True True False True 

False False True False True 

As we can see every value of [(A → B) ˄ A] → B is “True”, it is a tautology. 

 

 

Contradictions 

A Contradiction is a formula which is always false for every value of its propositional variables. 

 
Example − Prove (A ˅ B) ˄ [(¬A) ˄ (¬B)] is a contradiction 
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The truth table is as follows − 

 

A B A ˅ 

B 

¬A ¬B (¬A) ˄ 

(¬B) 

(A ˅ B) ˄ [(¬A) ˄ 

(¬B)] 

True True True False False False False 

True False True False True False False 

False True True True False False False 

False False False True True True False 

As we can see every value of (A ˅ B) ∧ [(¬A)  ∧ (¬B)] is “False”, it is a 

contradiction 

Contingency 

A Contingency is a formula which has both some true and some false values for every value of 

its propositional variables. 

 

Example − Prove (A ˅ B ˅) ˄ (¬A) a contingency 

 
The truth table is as follows − 

 

A B A ˅ B ¬A (A ˅ B) ∧ (¬A) 

True True True False False 

True False True False False 

False True True True True 

False False False True False 

As we can see every value of (A ˅ B) ˄ (¬A) has both “True” and “False”, it 

is a contingency. 

Propositional Equivalences 

Two statements X and Y are logically equivalent if any of the following two conditions − 

 
• The truth tables of each statement have the same truth values. 
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• The bi-conditional statement X ↔Y is a tautology. 

Example − Prove ¬(A ˅ B) and [(¬A) ˄ (¬B)] are equivalent 

Testing by 1st method (Matching truth table) 

A B A ˅ B ¬ (A ˅ B) ¬A ¬B [(¬A) ˄ (¬B)] 

True True True False False False False 

True False True False False True False 

False True True False True False False 

False False False True True True True 

Here, we can see the truth values of ¬ (A ˅ B) and [(¬A) ˄ (¬B)] are same, hence the statements 

are equivalent. 

 

Testing by 2nd method (Bi-conditionality) 

A B ¬ (A ˅ 

B) 

[(¬A) ˄ 

(¬B)] 

[¬ (A ˅ B)] ⇔ [(¬A) ˄ 

(¬B)] 

True True False False True 

True False False False True 

False True False False True 

False False True True True 

As [¬ (A ˅ B)] ⇔ [(¬A) ˄ (¬B)] is a tautology, the statements are equivalent. 
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EQUIVALENT LAWS 

 

 
 

Logical Equivalences involving Conditional Statements 

 
 

Logical Equivalences involving Biconditional Statements 
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A conditional statement has two parts − Hypothesis and Conclusion. 

 
Example of Conditional Statement − “If you do your homework, you will not be punished.” 

Here, "you do your homework" is the hypothesis and "you will not be punished" is the 

conclusion. 

Inverse, Converse, and Contra-positive 
 

Inverse –An inverse of the conditional statement is the negation of both the hypothesis and the 

conclusion. If the statement is “If p, then q”, the inverse will be “If not p, then not q”. The 

inverse of “If you do your homework, you will not be punished” is “If you do not do your 

homework, you will be punished.” 

 

Converse −The  converse  of  the  conditional  statement  is  computed  by  interchanging  the 

hypothesis  and  the  conclusion.  If  the  statement  is  “If  p,  then  q”,  the  inverse will be “If q, 

then p”. The converse of "If you do your homework, you will not be punished" is "If you will 

not be punished, you do not do your homework”. 

 
Contra-positive –The contra-positive of the conditional is computed by interchanging the 

hypothesis and the conclusion of the inverse statement. If the statement is “If p, then q”, the 

inverse will be “If not q, then not p”. The Contra-positive of "If you do your homework, you 

will not be punished” is "If you will be punished, you do your homework”. 

Example: 

 

DUALITY PRINCIPLE 

Duality principle set states that for any true statement, the dual statement obtained by 

interchanging unions into intersections (and vice versa) and interchanging Universal set into 

Null set (and vice versa) is also true. If  dual of any statement is the statement itself, it is       

said self-dual statement. 

 

Examples  : i) The dual of (A ∩ B) ∪ C is (A ∪ B) ∩ C 

 ii)  The dual of P ˄ Q ˄ F is P ˅ Q ˅ T   
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Elementary Product: A product of the variables and their negations in a formula is 

called an elementary product. If P and Q are any two atomic variables, then p, ¬ p  q ,  

¬ q p  ¬ p are some examples of elementary products. 

Elementary Sum: A sum of the variables and their negations in a formula is called an 

elementary sum. If P and Q are any two atomic variables, then p, ¬ p  q, ¬ q  p are some 

examples of elementary sums. 

 
 

Normal Forms 

We can convert any proposition in two normal forms − 

 

1.  Conjunctive normal form 2.Disjunctive normal form 

Conjunctive Normal Form 

A compound statement is in conjunctive normal form if it is obtained by operating AND among 

variables (negation of variables included) connected with ORs. 

 

Examples 

 
• (P ∪ Q) ∩ (Q ∪ R) 
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• (¬P ∪ Q ∪ S ∪¬T) 

Disjunctive Normal Form 

A compound statement is in disjunctive normal form if it is obtained by operating OR among 

variables (negation of variables included) connected with ANDs. 

 

Examples 

 

• (P ∩ Q) ∪ (Q ∩ R) 

• (¬P ∩ Q ∩ S ∩¬T) 

Predicate Logic deals with predicates, which are propositions containing variables. 

 

Functionally Complete set 
 

A set of logical operators is called functionally complete if every compound proposition is 

logically equivalent to a compound proposition involving only this set of logical operators. 

, , and ¬form a functionally complete set of operators. 

 

Minterms: For two variables p and q there are 4 possible formulas which consist of 

conjunctions of p,q or its negation given by p  q, p  ¬q, ¬ p  q and ¬ p ¬ ¬ q 

Maxterms: For two variables p and q there are 4 possible formulas which consist of 

disjunctions of p,q or its negation given by p  q, p  ¬ q, ¬ p q and ¬ p  ¬ q 

Principal Disjunctive Normal Form: For a given formula an equivalent formula 

consisting of disjunctions of minterms only is known as principal disjunctive normal 

form(PDNF) 

 

Principal Conjunctive Normal Form: For a given formula an equivalent formula consisting of 

conjunctions of maxterms only is known as principal conjunctive normal form(PCNF) 
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Consistency and Inconsistency of Premises 

 

A set of formular H
1
,H

2
,…,H

m
 is said to be inconsistent if their conjunction implies 

Contradiction. 

A set of formular H
1
,H

2
,…,H

m
 is said to be consistent if their conjunction implies 

Tautology. 

 

Rules of Inference  

 

Rule P: A premise may be introduced at any point in the derivation 

Rule T: A formula S may be introduced at any point in a derivation if S is tautologically 

implied by any one or more of the preceeding formula. 

Rule CP: If S can be derived from R and set of premises , then R S can be derived from the 

set of premises alone. 
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Rule of inference to build arguments 

 

Example: 
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Quantifiers 

The variable of predicates is quantified by quantifiers. There are two types of quantifier in 

predicate logic − Universal Quantifier and Existential Quantifier. 
 

Universal Quantifier 

Universal quantifier states that the statements within its scope are true for every value of the 

specific variable. It is denoted by the symbol ∀. 

 

∀x P(x) is read as for every value of x, P(x) is true. 

 
Example − "Man is mortal" can be transformed into the propositional form ∀x P(x) where P(x) 

is the predicate which denotes x is mortal and the universe of discourse is all men. 
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Existential Quantifier 

Existential quantifier states that the statements within its scope are true for some values of the 

specific variable. It is denoted by the symbol ∃.∃x P(x) is read as for some values of x, P(x) is 

true. 

 
Example − "Some people are dishonest" can be transformed into the propositional form ∃x P(x) 

where P(x) is the predicate which denotes x is dishonest and the universe of discourse is some 

people. 

Nested Quantifiers 

If we use a quantifier that appears within the scope of another quantifier, it is called nested 

quantifier. 
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Inference theory for Predicate calculus 

 

 

 

 

       Problem : 2 

Symbolize the following statements: 

(a) All men are mortal 

(b) All the world loves a lover 

(c) X is the father of mother of Y 

(d)No cats has a tail 

(e) Some people who trust others are rewarded 

 

Solution: 

1 
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     Problem: 3 
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Problem: 4 
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UNIT II SET THEORY 

The concept of a set is used in various disciplines and particularly in computers.  

Basic Definition: 

1. “A collection of well defined objects is called a set”. 

      The capitals letters are used to denote sets and small letters are used for denote 
objects of the set. Any object in the set is called element or member of the set. If x 
is an element of the set X, then we write  to be read as ‘x belongs to X’ , and 

if x is not an element of X, the we write   to be read as ‘ x does not belongs to 

X’. 

2. The number of elements in the set A is called cardinality of the set A, 
denoted by |A| or n(A) . We note that in any set the elements are distinct. 
The collection of sets is also a set. 

 

Here  itself one set and it is one element of S and |S|=4. 

3. Let A and B be any two sets. If every element of A is an element of B, then 
A is called a subset of B is denote by . 

We can say that A contained (included) in B, (or) B contains (includes) A. 

Symbolically,   (or)  

Logically,  

Basic concepts of Set theory - Laws of Set theory - Partition of set, Relations - Types of Relations: 
Equivalence relation, Partial ordering relation - Graphs of relation - Hasse diagram, Functions: 
Injective, Surjective, Bijective functions, Compositions of functions, Identity and Inverse 
functions.  
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Let  

Then   

, since   and  

Some of the important properties of set inclusion. 

For any sets A, B and C 

 (Reflexive) 

 (Transitive) 

Note that  does not imply  except for the following case. 

4. Two sets A and B are said to be equal  if and only if  and , 

 

Example  and  then  

Since  and  eventhough  

The equality of sets is reflexive, symmetric, and transitive. 

5. A set A is said to be a proper subset of a set B if  and . 

Symbolically it is written as  

 is also called a proper inclusion. 

6. A set is said to be universal set if it includes every set under our discussion. A 
universal set is denoted by or E. 

In other words, if  p(x) is a predicate.  

One can observe that universal set contains all the sets. 

7. A set is said to be empty set  or null set if it does not contain any element, which 
id denoted by . 
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In other words, if  p(x) is a predicate.  

One can observe that null set is a subset for all sets. 

8. For a set A, the set of all subsets of A is called the power set of A. The power set 
of A is denoted by  or   

Example, Let  

Then  

Then set and A are called improper subsets of A and the remaining sets are 

called proper subsets of A. 

One can easily note that the number of elements of   is 

.  

SOME OPERATIONS ON SETS 

1. Intersection of sets 

Definition: 

Let A and B be any two sets, the intersection of A and B is written as  is the 

set of all elements which belong to both A and B. 

Symbolically 

 

Example   then . From the 

definition of intersection it follows that for any sets A,B,C and universal set E.  

                 

  

 

2. Disjoint sets 
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Definition: 

Two set A and B are called disjoint if and only if , that is, A and B have 

no element in common. 

Example   

  

A and B are disjoint and B and C also, but A and C are not disjoint. 

3. Mutually disjoint sets 

Definition: 

A collection of sets is called a disjoint collection, if for every pair of sets in the 
collection, are disjoint. The elements of a disjoint collection are said to be mutually 
disjoint. 

Let  be an indexed set, A is mutually disjoint if and only if 

 for all  

Example

 

Then  is a disjoint collection of sets. 

    and  

4. Unions of sets 

Definition: 

The  union of two sets A and B, written as , is the set of all elements which 

are elements of A or the elements of B or both. 

Symbolically  

Example Let    then    

From the union, it is clear that, for any sets A, B,C, and universal set E. 
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5. Relative complement of a set 

Definition: 

Let A and B are any two sets. The relative complement of B in A, written  is 

the set of elements of A which are not elements of B. 

Symbolically  

Note that . 

Example Let   

  then   

  

  

It is clear from the definition that, for any set A and B. 

  

  

  

6. Complement of a set 

Definition: 

Let A be any set, and E be universal. The relative complement of A in E is called 

absolute complement or complement of A. The complement of A is denoted by  

(or ) 

Symbolically 
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Example Let  be universal set and  

 be any set in E. 

Then  

  

From the definition, for any sets A  

 

 

7. Boolean sum of sets 

Definition: 

Let A and B are any two sets. The symmetric difference or Boolean sum of A and 
B is the set A+B defined by 

 

(or)  

Example  Let  

  

  then   

 From the definition, for any sets A and B. 

  

  and  
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8. The principle of duality 

If we interchange the symbols  , , E and  and  and  in a set equation 

or expression. We obtain a new equation or expression is said to be dual of the 
original on (primal). 

“ If T is any theorem expressed in terms of   and  deducible from the given 

basic laws, then the dual of T is also a theorem”. 

Note that, the theorem T is proved in m steps, then dual of T also proved in m  step. 

 

Example The dual of  is given by . 

Remark: Dual (Dual T) =T. 

Identities on sets 

                                                          Idempotent laws 

  

                                                  Commutative laws 

  

                              Associative laws 

  

                    Distributive laws 

  

                                                Absorption laws 

    

                                                 De Morgan’s laws 
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PROBLEMS 

1.  ,   Find  and  

Solution: 

  

  

2. If . Find  

Solution: 

  and  

  

  

3. Write all proper subsets of  . 

Solution: 

The proper subsets are 
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4. Show that    

Solution: 

If , then  

Now , let 

 and  

  

  

If  then 

Let       

Therefore   

5. If  Find  and 

 

Solution: 

  

  

  

  

6. If  Find  

and  

Solution: 
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Note that 

  

7. Show that   and  

Solution: 

Let  

  

  

  

Now let  

  

  

Hence    and  

Remark:   and   

8. Show that for any two sets A and B,   

Solution: 
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  and  

Therefore  

9. Show that  

Solution:  

  

   

  

  

  

Therefore  

10. Show that  

Solution: 

Let   

  

  

  

Therefore  

11. Show that  
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Solution: 

                ( ) 

  

                           (Associative) 

                           (De Morgan’s law) 

12. Show that   

Solution: 

Let  

  

   

   

   

   

   

   

   

 

ASSIGNMENT PROBLEMS 

Part –A 

1. Define a set 

2. Define subset of a set. What is mean by proper subset? 
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(i) Find all subset of   

(ii) Find all proper subsets of A. 

3. Define power set. 

4. Define disjoint sets with example? 

5. If  and . Find  

 and  

6. Which of the following sets are empty? 

7.  

8.  

9.  

10. State duality principle in set theory. 

11. Define cardinality of a set. 

12. If a set A has n elements, then the number of elements of power set of A 

is…….. 

13. Find the intersection of the following sets 

(i)  

14. Write the dual of  

15. Let A, B and C sets, such that  and , can we 

conclude that B=C. 

16. State De Morgan’s Laws. 

17. Whether the union of sets is commutative or not? 

 

PART –B 
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1. Show that  

2. Verify the De Morgan’s laws 

(i) , (ii)  

3. Show that the intersection of sets is associative. 

4. Show that . 

5. Show that   

6. Let  for  find (a)   (b)  

7. Prove that  

8. Show that for any two sets A and B,   

9. Prove that  and . 

10.  If  and , prove that B=C.(cancelation law) 

11.  Show that . 

12.  Show that  where + is the symmetric difference of sets. 

13.  Show that  and  imply . 

14.  Given that  and . Show that . 

 

CARTESIAN PRODUCT OF SETS 

The Cartesian product of the sets A and B, is written an  is the set of all 

ordered pairs in which the first elements are in A and the second elements are in 
B. 

 

For example 

Let  

Now  
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It is clear from the definition 

 and  is an ordered triple then 

 and . 

Now ,  

Note that  is not an ordered triple. 

This fact show that  

i.e. Cartesian product is not associative. 

Now  

 and  

Note that if A has n elements and B has m elements  has nm elements. 

 

 

 

PROBLEMS 

1.If . Find  and and  

Solution : 
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2.Show that . 

Solution:  For any , 

  

  

  

  

  

  

3.Show that . 

Solution:  For any  , 

  

  

  

  

 . 

 

 

ASSIGNMENT PROBLEMS 
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Part A 

1. Define Cartesian product of sets? Given an example? 

2. If  find . 

3. If  and  , find , . 

4. True or False 

I. If  , the   

II. If  , the   

5. If   

Part B 

6. If A,B and C are sets, prove that . 

7. Prove that . 

8. If  and  ,and , find 

I.  

II.  

III.  

IV.  

9. Show that the Cartesian product is not commutative? It is commutative 

only for equality of sets? 

 

 

RELATIONS 

Binary relation 

Any set of ordered pairs defines a binary relation. 
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If x and y are binary related, under the relation R, the we write   or 

 If not the case we write . 

1. Example    

  

Then F, L are binary relations. 

2.Example Let A and B be any two sets, then any non empty subset R of  
 is called a binary relation. 

Now 

  

  then 

  

     Let  

  

  

   

Then  and  are binary relations A to B. 

Let S be any binary relation. The domain of S is the set of all elements x such 
that for some  

  

Similarly, the range of S is the set of all elements y such that, for some 
x,  

  

Let 
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If  then clearly  and . 

In case of  then the relation defined on  is called an universal 

relation in X. 

If  then a relation on  is called void relation in X. 

Since relations are sets, then we can have their union and intersection and so on. 

  

  

  

  

Properties of Binary relations 

1. Reflexive 

Let R be a binary relation defined on X. 

Then R is reflexive if, for every . 

 

Example: 

Let  

  

  and  

   are defined on X.  
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Then R is reflexive, but S is not reflexive. Since  and  

2. Symmetric 

A relation R from X to Y is symmetric if every  and , whenever 

 then . 

That is, if , then R is symmetric 

Example: 

Let  

  

  and  

   are defined on X.  

Then R is symmetric, but S is not symmetric. Since  but  

3. Transitive  

A relation R is transitive if, whenever  and then . 

That is, if , then R is transitive. 

Example: 

Let  

  and  

   

Then R is transitive, but S is not transitive. Since  and  but 

 

4.Irreflexive 

A relation R in a set X is irreflexive if, for every . 
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Example: 

Let  

  

  and  

   

Then R is irreflexive, but S is not reflexive. Since and . 

5. Antisymmetric 

A relation R in a set X is  antisymmetric  if, whenever  and 

then  

That is, if , then R is antisymmetric. 

Example: 

Let  

X be the set of all subsets of E. 

R be the inclusion relation  defined on X. 

  

Therefore  R is antisymmetric in X. 

6. Relation matrix 

Let   are ordered sets, R be a relation 

defined from X to Y, then the relation matrix of R, is defined as 

 

Example 1: 

Let     
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   be a relation from X to Y. Then  

Example 2: Let 

  be a relation on  . 

Then  

7. Composition of Binary Relations 

The concept of composition of relation is different from union and intersection 
of two relations. 

Definition: 

Let R be a relation from X to Y and S be a relation from Y to Z. Then the 
composite  is a relation from X to Z defined by 

The operation  in  is called “ composition of relations”. 

Example. 

Let  

  

 . Then 

   

  

Note that 

  

  

 etc., 
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Definition: 

The relation matrix for  is given by  where  is defined 

as follows. 

  where ( ) is 1 if and only if row i of  

and column j of  have a 1 in the same relative position k, for some k. 

Example: 

Let  

  

 . Then 
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Definition 

Let R be a relation from X to Y. The converse of R, is written as , is a relation 

from Y to X such that . 
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Example: 

If    

  

Also it is clear that 

1.  

2.  

3.  

Result: The relation matrix  is the transpose of the relation . 

 

Example: 

Let  

   

   

We have 
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EQUIVALENCE RELATION 

Definition: 

A relation R on a set X is called an equivalence relation if it is reflexive, 
symmetric, and transitive. 

Example 1: 

Let  

 and  

 is an equivalence relation 

on X. 

Example 2: 

Equality of subsets on a universal set is an equivance relation. 

Example 3: 

Let  

  

  

Now,   is divisible by 3. 

Therefore (reflexive)  

For any   

Let  is divisible by 3 we have  is also 

divisible by 3. 

(symmetric) 

Let  
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 is divisible by 3 and  is divisible by 3. 

)+ ) is divisible by 3. 

 is divisible by 3. 

Therefore (Transitive) 

Therefore R is an equivalence relation on X. 

EQUIVALENCE CLASSES 

Definition: 

Let R be an equivalence relation on a set X. For any  the set  

given by 

 

is called an R-equivalence class generated by  

Therefore, an equivalence class  of   is the set of all elements which 

are related to x by an equivalence relation R on X. 

Example: 

Let Z be the set of all integers and R be the relation called “congruence modulo 

4” defined by 

(or ) 

Now, we determine the equivalence classes generated by R. 

  

  

  

  

Note that  
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Therefore  

In a similar manner, we get the equivalence classed generated by the relation 
“congruence modulo m” for any integer m. 

Therefore, an equivalence relation R on X, will divide the set X into an 
equivalence classes, and they are called portion of X. 

 

PARTIAL ORDERED RELATION 

A relation R on a set X is said to be a partial ordered relation, if R satisfies 
reflexive, antisymmetric, and transitive. 

Example: 

Let  be the power set of a set A. 

Define a subset relation  on , then is a partial ordered relation. 

Usually we denote the partial ordered relations as  is said to be partially 

ordered set (or) poset, which is denoted by . We will study more about 

posets in the subsequent sections. 

1. Closures of a relation 

Let R be a relation on the set X. 

2. Reflexive closure 

We have the relation R is reflexive if and only if the relation. 

 is contained in R. 

i.e. R is reflexive  

Definition: 
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Let R be a relation on X, then the smallest reflexive relation on X, containing R, 
is called reflexive closure of R. 

Therefore  is the reflexive closure of R. 

 

3. Symmetric closure 

We have, the relation R is symmetric if   

  

Definition: 

Let R be a relation X, then smallest symmetric relation on X, containing R, is 
called the symmetric closure of R. 

Therefore  is the symmetric of R. 

4. Transitive closure 

We have, the relation R is transitive, if   then     

. 

Definition: 

A relation  is said to be the transitive closure of the relation R on X if   is 

the smallest transitive relation on X, containing R, 

i.e  is the transitive closure of R, if  

I.  

II.  is transitive on X 

III. There is no transitive relation  on X, such that  

Remarks: 

1. The transitive closure of R can be obtained by 
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2. We know that  if and only if there is an element y such that 

 and . 

 
Therefore  if and only if we can find a sequence  

in X such that  are all in R. 

 
The sequence   is said to be a chain of length n from a to 

b in R. Here  are called interval vertices of the chain in R. 

Note that the interval vertices need not be distinct. 
 

PROBLEMS 

1. If ,  

Find (i)  (ii) domains of  and (iii) ranges 

of . 

Solution: 

  

  

  

  

Domain of    

Domain of    

Domain of    

Range of    
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Range of    

Range of    

It is clear that  

  and  

  

In general   and . 

2.Let  and  

   

 . Find  and  

Solution: 

Given that   and   

   

  

Remarks: 

  

  

  

  

3.Let   and  , where  . Find 

the range of S and T, find  and  

Solution: 
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  and  

  

   

  

    

  

    

  

  

    

  

(Now  and  

 ) 

  

4. Given an example which is neither reflexive nor irreflexive? 

Solution: 

Let  and  

  

Then R is not reflexive, since , for and R is not irreflexive, since 

, and . 
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5. Test whether the following relations are transitive or not on  

  

  

  

 . 

Solution:  The relation R and T are transitive. 

Since, in R, we have , then check any other pair starting with , 

then we must have  i.e.,  but there is no pair staring 

with 1. So, pass on to next pair  then we check any other pair starting with 2, 

and so on. 

In T, we have , then there are two pairs  and  must be the 

transitive of , then we must have  and  in T. Then pass to 

 the transitive pairs are  and  then we must have the pairs 

 in T. 

Then pass to , find the transitive pairs of  and so on, for all pairs in 

T. Hence T is a transitive relation. 

The relation S is not transitive, since for , the transitive pairs are  and 

 then we must  and  in S but . 

6. Let R denotes a relation on the set of pairs of positive  integers such that  

 if and only if  . Show that R is an equivalence relations. 

Solution: 

Let  

  

Now R is a relation defined on P as 
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   for  

Let  and  

I. R is reflexive:  

We have 

   (RHS) is true. 

 

II. R is symmetric: 

Let    

   

   

  

 

III. R is transitive: 

Let  and  

   and  

   and  

   

   

   

Therefore R is reflexive, symmetric , and transitive. 

Hence R is an equivalence relation. 

7. Let R and S are equivalence relations on X, show that  also equivalent? 

Whether  is also an equivalent relation. If not given an example. 
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Solution: 

Given let R and S are equivalence relations on X. 

Let  and  

(i) We have  and   

Therefore  is reflexive. 

(ii) Let    and  

  and  

    

Therefore  is symmetric. 

(iii) Let  and  

  and  and   and  

  and  and   and  

 and  

  

Therefore  is transitive. 

Hence  is equivalence. 

8. Prove that the relation “congruence modulo m” over the set of positive integers 
is an equivalence relation? 

Show also that if  and  then . 

Solution: 

Let N be the set of all positive integers we have  “congruence modulo m” relation 
on N as   for  

Let  
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(i) We have  

  

Therefore  for  

“Congruence modulo m” is reflexive. 

(ii) Let  

  

  

, for some integer  

, for some integer  

   

“congruence modulo m” is symmetric on N. 

(iii) Let  

  and   

, and  for some integer  

  

  for some integer  

  

“Congruence modulo m” is transitive on N. 

Hence “congruence modulo m” is an equivalence relation. 

Let and . 

Then  and  

i.e.,   and  

Now  
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9. Let  

   and  

 be a relation defined on A. Find the transitive 

closure of R? 

Solution: 

The matrix of the relation R is given by 
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Hence 
 

ASSIGNMENT PROBLEMS 

Part -A 

1. If    and 

 be any relations on . Find 

. 

2. Give an example for reflexive, symmetric, transitive and irreflexive 

relations. 

3. Give an example of a relation which is neither reflexive nor irreflexive. 

4. Give an example of a relation which is neither symmetric not 

antisymmetric? 

5. Find the graph of the relation 
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6. Find the relation matrix of  

   

7. If      and 

 . Find , , , , 

 and  

8. Define equivalence relation and equivalence classes? 

9. Define Poset? 

10.  Define reflexive closure? 

11.  Define transitive closure of the relation R? 

12.  Let  be a relation . 

Identify the root of the tree of R. 

13.  Determine whether the relation R is a partial ordered on the set Z, where Z 

is set of positive integer, and aRb if and only if a=2b. 

14.  The following relations are on . Let R be a relation, xRy if and only 

if , and let S be a relation, xSy if and only if . Find  

and   

15.  True or False: The relation  on  is not a partial order since it is not 

reflexive. 

Part B 

1. Show that the intersection of equivalence relations is an equivalence 

relation. 

2. Determine whether the relations represented by the following zero-one 

matrices are equivalence relations. 
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3. If R and S are symmetric, show that  and  are symmetric. 

4. Let L be set of all straight lines in the Euclidean plane and R be the relation 

in L defined by  is perpendicular to  Is R is Reflexive? 

Symmetric? Antisymmetric? Transive? 

5. Consider the subsets ,  and  where 

 is an universal set. List the non empty minsets generated 

by A,B and C . Do they form a partition on E? 

6. Let  and  be a 

relation on X. Show that R is an equivalent relation and find the partition of 

X induced by R. 

7. If R is an equivalence relation on an arbitrary set A. Prove that the set of all 

equivalence classes constitute a partition on A. 

8. Given the relation matrix  and . Explain how to find , and 

 

9. Let A be s set of books. Let R be a relation on A such that  if ‘ 

book a’ with cost more and contains fever pages then ‘ book b’. In general, 

is R reflexive? Symmetric? Antisymmetric? Transitive? 

10.  Let R be a binary relation on the set of all positive integers such that 

 Is R reflexive? Symmetric? Antisymmetric? 

Transitive? An equivalence relation? 
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HASSE DIAGRAM 

A partial ordering  on a finite set P can be represented in a plane by means of a 

diagram called Hasse diagram or a partially ordered set set diagram of  . If 

, then we place  above , and draw a line (edge) between them. The 

upward direction indicates successor and downward direction indicates the 
predecessor. And the incomparable elements are in the same horizontal line. 

    w 

     

    y 

 

    x  z 

 is immediate successor of  (or)  is immediate predecessor of  

 is immediate predecessor of , and  and  are incomparable. 

 is predecessor of  but not immediate predecessor. 

PROBLEMS 

1.Let  

  

  and  be a relation such that  if and only if  
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     24 

 

     12 

 

      6 

 

   2    3 

 

 

 

 

     12 

 

   4    6 

 

   2    3 

  

      1 
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2.Let  

  be the power set of  

. 

Consider the inclusion  relation as the partial ordering on  then the Hasse 

diagram of   is  

             {a,b,c} 

 

   {a,b}  {a,b}  {b,c}  

 

{a}    {b}    {c}  

 

     

3.Let us consider the set of all divisor of 24, then it is a poset which is denoted by 
 

That is  and let the divisor relation be partial ordering. 
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24 

 

    8    12 

 

    4    6 

 

    2    3 

 

      1 
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FUNCTIONS 

A function in set theory world is simply a mapping of some (or all) elements 

from Set A to some (or all) elements in Set B. In the example above, the 

collection of all the possible elements in A is known as the domain; while the 

elements in A that act as inputs are specially named arguments. On the right, 

the collection of all possible outputs (also known as “range” in other branches), 

is referred to as the codomain; while the collection of actual output elements in 

B mapped from A is known as the image. 

Types of Functions 

1. Injective (One-to-One) Functions: A function in which one element of 

Domain Set is connected to one element of Co-Domain Set. 

 
 

2. Surjective (Onto) Functions: A function in which every element of Co-

Domain Set has one pre-image. 

Example: Consider, A = {1, 2, 3, 4}, B = {a, b, c} and f = {(1, b), (2, a), (3, c), 

(4, c)}. 

It is a Surjective Function, as every element of B is the image of some A 

 

Note: In an Onto Function, Range is equal to Co-Domain. 

3. Bijective (One-to-One Onto) Functions: A function which is both injective 

(one to - one) and surjective (onto) is called bijective (One-to-One Onto) 

Function. 



 

Example: 

1. Consider P = {x, y, z}   

2.          Q = {a, b, c}   

3. and f: P → Q such that   

4.          f = {(x, a), (y, b), (z, c)}   

The f is a one-to-one function and also it is onto. So it is a bijective function. 

4. Into Functions: A function in which there must be an element of co-domain 

Y does not have a pre-image in domain X. 

Example: 

1. Consider, A = {a, b, c}   

2.           B = {1, 2, 3, 4}   and f: A → B such that   

3.           f = {(a, 1), (b, 2), (c, 3)}   

4. In the function f, the range i.e., {1, 2, 3} ≠ co-

domain of Y i.e., {1, 2, 3, 4}   

Therefore, it is an into function 

 
 

5. One-One Into Functions: Let f: X → Y. The function f is called one-one 

into function if different elements of X have different unique images of Y. 

Example: 

1. Consider, X = {k, l, m}   

2.           Y = {1, 2, 3, 4} and f: X → Y such that   



3.           f = {(k, 1), (l, 3), (m, 4)}   

The function f is a one-one into function 

 
 

6. Many-One Functions: Let f: X → Y. The function f is said to be many-one 

functions if there exist two or more than two different elements in X having the 

same image in Y. 

Example: 

1. Consider X = {1, 2, 3, 4, 5}   

2.          Y = {x, y, z} and f: X → Y such that   

3.          f = {(1, x), (2, x), (3, x), (4, y), (5, z)}   

The function f is a many-one function 

 
Example  1:Test whether the function f:R→R, f(x) = |x| + x is one-one 

onto function 

Solution: 

(1) Given f(x) = |x| + x 

f(3) = |3|+3 = 6 

f(-3) = |-3|+(-3) = 0 

f(2) = |2|+2= 4 

f(-2) = |-2|+(-2) = 0 

f(-3) = f(-2) = 0 

0 has more than one pre-image. Thus f(x) is not 1-1 function 

(2)  The range of f is the set of non-negative real numbers.  



  f is not onto function 

 

Example 2: Let S = {x, x2/ xN} and T ={(x,2x)/xN } where N 

={1,2….}. Find the range of S and T. Find ST and ST 

Solution: 

S = {x, x2/ xN}  

S = {(1,1), (2,4), (3,9), (4,16), ………}  

T = {(x,2x) /xN } 

S = {(1,2), (2,4), (3,6), (4,8), ………}  

Range of S = {1, 4, 9, ………………………} 

Range of T = {1, 4, 6, 8, …………………..} 

ST = {(1,1), (2,4), (3,9), (4,16), (1,2), (3,6), (4,8), ………} 

ST = {(2,4)} 

Example 3: If f: R→R, g: R→R are defined by f(x) = x2-2, g(x) = x+4, 

find (fog) and (gof) and check whether these functions are injective, 

surjective and bijective 

Solution:  

fog(x) = f[g(x)] = f(x+4) =(x+4)2-2 = x2+8x+14-----------------(1) 

gof(x) = g[f(x)] = g(x2-2) = x2+2---------------------------------(2) 

 Given f: R→R g: R→R 

f(x) = x2-2 

(1)       f(1) = 11-2 = -1 

  f(-1) = (-1)2-2 = -1 

  i.e., f(x1) = f(x2) does not imply x1 = x2  

Hence f is not 1-1 function 

 (2)  Let f: R→R 

 Let yR. Suppose xR such that f(x) = y 

 x2-2 = y 

 x2 = y+2 

x =y+2 

f(y+2) = (y+2)2-2=y+2-2 = y 

for any yR There exist at least one element y+2R such that  

f(y+2)=y 

 f is on to function 

g(x) = x+4 

(1)      g(x1) = g(x2) 

x1+4 = x2+4 

x1 = x2 



g is 1-1 function 

 (2)  g: R→R 

 Let y R.  Suppose xR such that f(x) = y 

 x = y-4 for any yR  

There exist at least one element y-4R such that  

g(y-4) = y 

 g is on to function 

As f is not 1-1 but onto, f is not bijective 

As g is 1-1 and onto, g is bijective 

Theorem 1 : A function f:A→B has an inverse if and only if it is bijective. 

Proof. 

Suppose g is an inverse for f (we are proving the implication ⇒). Since g∘f=IA, 

g∘f=IA is injective, so is f . Since f∘g=iB, f∘g=iB is surjective, so is f. 

Therefore f is injective and surjective, that is, bijective. 

Conversely, suppose f is bijective. Let g:B→A, g:B→A be a pseudo-inverse 

to f. since ff is surjective, f∘g=iB, f∘g=iB, and since f is injective, g∘f=iA, g∘f=iA. 

 

Theorem 2: Let A and B be nonempty sets, and suppose f : A → B is 

invertible. Then f −1 : B → A is also invertible, and (f −1 ) −1 = f.  

 

Proof. f −1 is invertible if there is a function g : A → B that satisfies g ◦ f −1 = IB 

and f −1 ◦ g = IA; and in that case the function g is the unique inverse of f −1 . 

Since g = f is such a function, it follows that f −1 is invertible and f is its inverse. 

 

Theorem 3: If f:A→B has an inverse function then the inverse is unique. 

Proof. 

Suppose g1 and g2 are both inverses to f. Then 

g1=g1∘IB=g1∘(f∘g2)=(g1∘f)∘g2=IA∘g2=g2,g1=g1∘IB=g1∘(f∘g2)=(g1∘f)∘g2=IA∘g2=g2, 

proving the theorem 

 

Theorem 4 : If f : A → B and g : B → C are one-one, then gof : A → C is also 

one-one. 

 

Proof: 

A function f : A → B is defined to be one-one, if the images of distinct elements 



of A under f are distinct, i.e. for every x1, x2 ∈ A, f(x1) = f (x2) implies x1 = x2. 

 

Given that f: A → B and g: B → C are one-one. 

 

For any x1, x2 ∈ A 

f(x1)=f(x2) ⇒ x1=x2 …(i) 

g(x1)=g(x2) ⇒ x1=x2 …(ii) 

To show: If gof(x1) = gof(x2), then x1 = x2 

Let gof(x1) = gof(x2) 

⇒ g[f(x1)] = g[f(x2)] 

⇒ f(x1) = f(x2) …from (i) 

⇒ x1 = x2 …from (ii) 

Hence, the functions gof: A → C are one-one. 

 

Theorem 5: If f : A → B and g : B → C are onto, then gof : A → C is also onto. 

 

Proof: 

Let us consider an arbitrary element z ∈ C 

'.' g is onto ∃ a pre-image y of z under the function g such that g (y) = z 

………(i) 

Also, f is onto, and hence, for y Î B, there exists an element x ∈ A such that f (x) 

= y ……(ii) 

Therefore, gof (x) = g (f (x)) = g (y) from (ii) 

= z from (i) 

Thus, corresponding to any element z ∈ C, there exists an element x ∈ A such 

that gof (x) = z. 

Hence, gof is onto. 

Note: In general, if gof is one-one, then f is one-one. Similarly, if gof is onto, 

then g is onto. 

The composition of functions can be considered for n number of functions. 

 

Theorem 6: If f : X → Y, g : Y → Z and h : Z → S are functions, then ho(gof ) 

= (hog) o f. 

 

Proof: Let x ∈ A 

LHS: ho(gof ) (x) 

         = h(gof(x)) 

         = h(g(f(x))), ∀ x in X 

RHS: (hog) of f(x) 

= hog(f(x)) 

= h(g(f (x))), ∀ x in X. 

LHS = RHS 

Hence, ho(gof) = (hog)of. 



The composition of functions satisfies the associative property. 

 

Theorem 7: Let f : X → Y and g : Y → Z be two invertible functions. Then gof 

is also invertible with (gof)–1 = f –1og–1 

 

Proof: 

 

Given that f: A → B and g: B → C are bijective. 

Then gof :A → C is also bijective. Therefore (gof)–1 :C → A exists. 

 

Also f-1: B→A and g-1: C→B exists. Therefore  f –1og–1 :C → A exists. 

 

Also we know that 

 

f ◦ f −1 = IB and f −1 ◦ f = IA 

g ◦ g −1 = Ic and g −1 ◦ g = IB 

 

Consider 

 

(f –1og–1
 ) o (gof) = (f –1o(g–1og)of) 

   = (f –1o(IBof)) 

   = IA 

 

Also  

(gof) o(f –1og–1
 ) = (go(f of –1 )og–1

 ) 

   = (go(IBog–1
 )) 

   =IA 

Hence, (gof)–1 = f –1og–1. 
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                                                         GROUP THEORY 

Course Contents: Groups – Properties of groups – Semi group and Monoid (definition 

and examples only) – Subgroups, Cosets – Lagranges Theorem 

Binary Operations 

Definition  

Let S be a set. A binary operation on S is a mapping ∗: S × S → S, 

which we will usually denote by ∗ (a, b) = a ∗ b. 

Also, we’ve written ∗ as a function from S ×S to S, which means 
two things in particular: 

1. The operation ∗ is well-defined: given a, b ∈ S, there is exactly 
one c ∈ S such that a ∗ b = c. In other words, the operation is 
defined for all ordered pairs, and there is no ambiguity in the 
meaning of a ∗ b. 

2. S is closed under ∗: for all a, b ∈ S, a ∗ b is again in S. 

Example 

 Here are some examples of binary operations. 

• Addition and multiplication on Z are binary operations. 

• Addition and multiplication on Zn are binary operations. 

• Addition and multiplication on Mn(R) are 

binary operations.  

• The following are non -examples. 

• Define ∗ on R by a ∗ b = a/b. This is not a binary operation, since 
it is not defined everywhere. In particular, a ∗ b is undefined 
whenever b = 0. 

• Define ∗ on R by a ∗ b = c, where c is some number larger 
than a + b. This is not well-defined, since it is not clear 
exactly what a ∗ b should be. This sort of operation is fairly 
silly, and we will rarely encounter such things in the wild. 
It’s more likely that the given set is not closed under the 
operation. 

• Matrix multiplication is a binary operation on GLn(R). 
Recall from linear algebra that the determinant is 
multiplicative, in the sense that 

det(AB) = det(A) det(B). 

 

 

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS-SMTA1302, UNIT III

1



 

Properties of  binary operation 

i) A binary operation ∗ on a set S is commutative if 

a ∗ b = b ∗ a for all a, b ∈ S. 

Example  

 Let’s ask whether some of our known examples of binary operations are actually 
commutative. 

1. + and · on Z and Zn are commutative. 

2. Matrix multiplication is not commutative (on both Mn(R) and GLn(R)). 

ii)        A binary operation ∗ on a set S is associative if 

(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ S. 

Example 

The following are examples of associative (and non- associative) binary operations. 

1. + and · on Z (and Zn) are associative. 

2. Matrix multiplication is associative. 

3. Subtraction on Z is a binary operation, but it is not associative. For example, 

(3 − 5) − 1 = −2 − 1 = −3, 

                                         While 3 − (5 − 1) = 3 − 4 = −1. 

4. The cross product on R3 is a binary operation, since it combines two vectors to produce 
a new vector. However, it is not associative, since 

a × (b × c) = (a × b) × c − b × (c × a). 

5. (Composition of functions) Let S be a set, and define 

F(S) = {functions f : S → S} . 

if f, g, h ∈ F(S), then (f ◦ g) ◦ h = f ◦ (g ◦ h). To show that two functions are equal, we need 
to show that their values at any element x ∈ S are equal. 

For any x ∈ S, we have 

                             (f ◦ g) ◦ h(x) = (f ◦ g)(h(x)) = f (g(h(x))) and 

f ◦ (g ◦ h)(x) = f ( (g◦ h)(x)) = f (g(h(x)))  

In other words, (f ◦g)◦h(x) = f ◦(g◦h)(x) for all x ∈ S,  

so (f ◦g)◦h = f ◦(g◦h), and composition of functions is associative. 
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Groups 

A group is a set G together with a binary operation ∗: G× G →G satisfying 

       Closure:  

                        For all a, b ∈ G, we have a ∗ b ∈ G 

       Associativity:  

                    For all a, b, c ∈ G, we have a ∗ (b ∗ c) = (a ∗ b) ∗ c. 

       Identity:  

                         There exists an element e ∈ G with the property that 

e ∗ a = a ∗ e = a for all a ∈ G. 

        Inverses:  

                           For every a ∈ G, there is an element a−1 ∈ G with the property that 

a ∗ a−1 = a−1 ∗ a = e. 

Example 

 Here are some examples of groups and not a group 

1. (Z, +) is a group, as we have already seen. 

2. (Mn(R), +) is a group. 

3. (Zn, +n) is a group.  

4. (Z, ·) is not a group, since inverses do not always exist. However, ({1, −1}, ·) is a group. 
We do need to be careful here—the restriction of a binary oper- ation to a smaller set 
need not be a binary operation, since the set may not be closed under the operation. 
However, {1, −1} is definitely closed under multiplication, so we indeed have a group. 
 

5. (Mn(R), ·) is not a group, since inverses fail. However, (GLn(R), ·) is a group. We already 
saw that it is closed, and the other axioms hold as well. 

 

6. (Zn, ·n) is not a group, again because inverses fail.  However, (Z×
n , ·n) will be a group.  

Again, we just need to verify closure:  if a, b ∈ Z×
n , then a and b are both relatively prime 

to n. But then neither a nor b shares any prime divisors with n, so ab is also relatively 

prime to n.  Thus ab ∈ Z×
n . 

Definition  

 A group (G, ∗) is said to be abelian if ∗ is commutative, i.e. 

a ∗ b = b ∗ a 

for all a, b ∈ G. If a group is not commutative, we’ll say that it is nonabelian. 
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Definition  

The order of a group G, denoted by |G|, is the number of elements in G. 

If a group G has infinitely many elements, we will write |G| = ∞.3 

Definition 

 A group G is said to be finite if |G| < ∞. 

Example 

For any n, the additive group Zn is a finite group, with 

|Zn| = n. 

Cayley Tables 

One of the things that makes finite groups easier to handle is that we  can write   down a 
table that completely describes the group. We list the elements out and multiply “row by 
column.” 

Example  

 Let’s look at Z3, for example. We’ll write down a “multiplication table” that tells us how the 
group operation works for any pair of elements. As we mentioned, each entry is computed 
as “row times column”: 

+ 0 1 2 

0 0 1 2 

1 1 2 0 

2 2 0 1 

 

(Of course we have to remember that “times” really means “plus” in this example.)  This is called 
a group table (or a Cayley table). 

 

Exercise  

Show that any group of order 4 is abelian. [Hint: Compute all possible Cayley tables. 
Up to a reordering of the elements, there are two possible tables.] 
 

 

Exercise 

 Show that any group of order 5 is abelian. [Hint: There is only one possible Cayley 
table, up to relabeling. 

 

 

Basic Properties of Groups 

Property.1 

Let G be a group. The identity element e ∈ G is unique, i.e., there is only one element e of G 
with the property thatae = ea = a for all a ∈ G. 
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Proof 

 For this proof, we need to use the standard mathematical trick for proving uniqueness: 
we assume that there is another gadget that behaves like the one in which we’re 
interested, and we prove that the two actually have to be the same. 

Suppose there is another f ∈ G with the property that 

for all a ∈ G. Then in particular, af = fa = a 

But since e is an identity, Therefore ef = fe = eSince e is unique, f.e = e.f = f. 

Property.2. 

(Cancellation laws). Let G be a group, and let a, b, c ∈ G. Then: 

(a) If a*b = b*c, then b = c. 

(b) If b*a = c*a, then b = c. 

 

Proof. (a) Suppose that ab = ac. Multiply both sides on the left by a−1: 

a−1(ab) = a−1(ac). 

By associativity, this is the same as 

(a−1a)b = (a−1a)c, 

and since a−1a = e, we have eb = ec 

Since e is the identity, b = c. The same sort of argument works for (b), except we 
multiply the equation on the right by a−1. 
  

The cancellation laws actually give us a very useful corollary. You may have 
already guessed that this result holds, but we will prove here that inverses in a group 
are unique. 

Property 3. 

 Let G be a group. Every a ∈ G has a unique inverse, i.e. to each 

a ∈ G there is exactly one element a−1 with the property that 

aa−1 = a−1a = e. 

Proof. Let a ∈ G, and suppose that b ∈ G has the property that ab = ba = e. Then in 
particular, 

ab = e = aa−1, 

and by cancellation, b = a−1.  Thus a−1  is unique. 
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Property 4.  

If a ∈ G, then (a−1)−1 = a. 

Proof.  By definition, a−1(a−1)−1 = e.  But a−1a = aa−1 = e as well, so by unique-ness of 
inverses, (a−1)−1 = a. 

 

Property 5. 

 For any a, b ∈ G, (ab)−1 = b−1a−1. 

Proof. We’ll explicitly show that b−1a−1 is the inverse of ab by computing: 

(ab)(b−1a−1) = ((ab)b−1)a−1 

    = (a(bb−1))a−1 

   = (ae)a−1 

   = aa−1 

   = e. 

 
Of course we  also need to check  that (b−1a−1)(ab) = e, which works pretty much   the 
same way: 
 

(b−1a−1)(ab) = b−1(a−1(ab)) 

     = b−1((a−1a)b) 

    = b−1(eb) 

    = b−1b 

    = e. 

Thus (ab)−1 = b−1a−1. 

 

Property. 6. The equations ax = b and xa = b have unique solutions in G. 

Proof. The solution to ax = b is x = a−1b, and for xa = b it is x = ba−1. These are unique 
since inverses are unique. 

 
Property.7. Let G be a group, and let a, b G. If either ab = e or ba = e, then 

 b = a−1. 

Proof. This really amounts to solving the equation ax = e (or xa = e). We know from 
Proposition5, that there is a unique solution, namely x = a−1e = a−1 (in either case). 
Therefore, if ab = e or ba = e, then b is a solution to either ax = e or xa = e, so b = a−1. 
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Exercise 

 Prove that if G is a group and a, b ∈ G with ab = a, then b = e.  

 

The Order of an Element and Cyclic Groups 
 

Let G be a group. We say that an element a ∈ G has finite order  if there exists n ∈ Z+  such 
that an = e.  The smallest such integer is called   the order of a, denoted by o(a) (or |a|). If no 
such integer exists, we say that a has infinite order. 

Example.1 

 The identity element in any group has order 1. 

Example.2  

2. In Z12, we see that o(2) = 6 and o(3) = 4. 

 

We’ll calculate the powers of 2 first: 
 

1 · 2 = 2 

2 · 2 = 2 +12 2 = 4 

3 · 2 = 2 +12 2 +12 2 = 6 

4 · 2 = 8 

5 · 2 = 10 

6 · 2 = [12]12 = 0 

7 · 2 = [14]12 = 2 

8 · 2 = [16]12 = 4 

 

and so on. What about powers of 3? 

1 · 3 = 3 

2 · 3 = 3 +12 3 = 6 

3 · 3 = 3 +12 3 +12 3 = 9 

4 · 3 = [12]12 = 0 

5 · 3 = [15]12 = 3 

6 · 3 = [18]12 = 6 

 
and so on. Notice that the lists repeat after a while. In particular, we reach 0 (i.e., the 
identity) after a certain point. We quantify this phenomenon by saying that these 
elements have finite order.
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n 2 

Proposition  

 Let G be a finite group. Then every element a ∈ G has finite order. 

 

Proof. Consider the set{a : n ≥ 0} = {e, a, a , . . .}Since G is finite, this list of powers 

can’t be infinite. (This follows from the Pigeon- hole principle, for instance. We have 

an infinite list of group elements that need to fit into only finitely many slots.) 

Therefore, two different powers of a must coincide, say ai = aj, with j ƒ= i. We can 

assume that j > i. Then 

aj−i = aja−i = aia−i = e, 

so a has finite order. (In particular, o(a) ≤ j − i.) Since a ∈ G was arbitrary, the result 
follows. 

 

Let’s get on with proving some facts about order. First, we’ll relate the order of an 
element to that of its inverse. 

Proposition  

 Let G be a group and let a ∈ G. Then o(a) = o(a−1). 

Proof. Suppose first that a has finite order, with o(a) = n. Then 

(a−1)n = a−n = (an)−1 = e−1 = e, 

so o(a−1) ≤ n = o(a). On the other hand, if we let m = o(a−1), then 

am = ((a−1)−1)m = (a−1)−m = ((a−1)m)−1 = e, 

so n ≤ m. Thus n = m, or o(a) = o(a−1). 

Now suppose that a has infinite order. Then for all n ∈ Z+, we have an ƒ= e. 
But then 

(a−1)n = a−n = (an)−1 ƒ= e 

for all n ∈ Z+, so a−1 must have infinite order as well. 

Let’s continue with our investigation of basic properties of order. The first one 
says that the only integers m for which am = e are the multiples of o(a). 

Proposition  

If o(a) = n and m ∈ Z, then am = e if and only if n divides 

m. 

Proof. If n | m, it is easy. Write m = nd for some d ∈ Z. Then 

am = and = (an)d = ed = e. 

On the other hand, if m ≥ n, we can use the Division Algorithm to write 
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m = qn + r with 0 ≤ r < n. Then 

e = am = aqn+r = aqnar = (an)qar = ear = ar, 

so ar = e. But r < n, and n is the smallest positive power of a which yields the 
identity. Therefore r must be 0, and n divides m. 

 

Note that this tells us something more general about powers of a: when we proved 
that elements of finite groups have finite order, we saw that ai = aj implied that aj−i = 
e. This means that n = o(a) divides j − i. In other words, i and j must be congruent 
mod n. 

Proposition  

 Let G be a group, a ∈ G an element of finite order n. Then 

ai = aj if and only if i ≡ j(modn). 

Along the same lines, we observed that if ai = aj with j > i, then aj−i = e, so a has 
to have finite order. Taking the contrapositive of this statement, we get the following 
result. 

Cyclic Groups 

Let’s take a few steps back now and look at the bigger picture. That is, we want to 
investigate the structure of the set (a) for a ∈ G. What do you notice about it? 

• Closure: aiaj = ai+j ∈ (a) for all i, j ∈ Z. 

• Identity: e = a0 ∈ (a) 

• Inverses:  Since (aj)−1 = a−j , we have (aj)−1 ∈ (a) for all j ∈ Z. 

It other words, (a) is itself a group. That is, the set of all powers of a group element is 
a group in its own right. We will investigate these sorts of objects further in the next 
section, but let’s make the following definition now anyway. 
 

Definition 

For a ∈ G, the set (a) is called the cyclic subgroup generated by a. 

For now, let’s look at a particular situation. Is G ever a cyclic subgroup of itself? That 
is, can a “generate” the whole group G? Yes, this does happen some times,  and such groups 
are quite special. 

Definition  

A group G is called cyclic if G = (a) for some a ∈ G. The element a is called a generator for 
G. 
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Example 
 

    1.  One of our first examples of a group is actually a cyclic     one:  Z forms a cyclic group 
under addition.  What is a generator for  Z?  Both      1 and −1 generate it, since every integer 
n ∈ Z can be written as a “power”    of 1 (or −1): 

These are actually the only two generators. 

2. How about a finite cyclic group? For any  n, Zn is cyclic, and 1 is a generator  in much 
the same way that 1 generates Z. There are actually plenty of other generators, and we 
can characterize them by using our knowledge of greatest common divisors. We’ll 
postpone this until we’ve made a couple of statements regarding cyclic groups. 

3. The group (Q, +) is not cyclic. (This is proven in Saracino.) 

4. The dihedral group D3 is not cyclic. The rotations all have order 3, so 

(r1) = (r2) = {i, r1, r2}. 

 On the other hand, all of the reflections have order 2, so 

(m1) = {i, m1}, (m2) = {i, m2}, (m3) = {i, m3}. 

Now let’s start making some observations regarding cyclic groups. First, if G = 
(a) is cyclic, how big is it? It turns out that our overloading of the word “order” was 
fairly appropriate after all, for |G| = o(a). 

Theorem 

 If G = (a) is cyclic, then |G| = o(a). 

Proof. If a has infinite order, then |G| must be infinite. On the other hand, if  o(a) = n, 
then we know that ai = aj if and only if i ≡ j mod n, so the elements of G are 
{e, a, a2, . . . , an−1 }of which there are n = o(a). 

If we pair this result with Theorem, we can characterize the generators of any finite 
cyclic group. 

Proposition 

 Let G be a finite cyclic group. Then for any b ∈ G, we have 

o(b) | |G|. 

Theorem 1. 

 Every cyclic group is abelian. 

Proof. Let G be a cyclic group and let a be a generator for G, i.e. G = (a). Then 
given two elements x, y ∈ G, we must have x = ai and y = aj for some i, j ∈ Z. Then 

xy = aiaj = ai+j = aj+i = ajai = yx, 

and it follows that G is abelian. 

 

 

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS-SMTA1302, UNIT III

10



 

7 

Remark  

 The converse to Theorem1 is not true. That is, there are abelian groups that are not cyclic. 
Saracino gives the example of the non-cyclic group (Q, +). However, this is a good place 
to introduce a different group—the Klein 4-group, denoted V4. The Klein 4-group is an 
abelian group of order 4. It has elements V4 = {e, a, b, c}, with 

a2 = b2 = c2 = e and ab = c, bc = a, ca = b. 

Note that it is abelian by a previous exercise (Exercise 2.1).8 However,  it is not  cyclic, 
since every element has order 2 (except for the identity, of course). If it were cyclic, there 
would necessarily be an element of order 4. 
 

Subgroups 

Let (G, ∗) be a group. A subgroup of G is a nonempty subset 

H ⊆ G with the property that (H, ∗) is a group. 

Note that in order for H to be a subgroup of G, H needs to be a group with respect 
to the operation that it inherits from G. That is, H and G always carry the same binary 
operation. Also, we’ll write 

H  ≤ G 

to denote that H is a subgroup of G. Finally, if we want to emphasize that H ≤ G 

but H ƒ= G, we will say that H is a proper subgroup of G. 

Example  

 Let’s look at the group Z (under addition, of course). Define 2Z = {even integers} = {2n 

: n ∈ Z}. Is 2Z a subgroup of Z? We need to check that 2Z itself forms a group under 

addition: 

• Closure: If a, b ∈ 2Z, then a = 2n and b = 2m for some n, m ∈ Z. Then 

a + b = 2n + 2m = 2(n + m) ∈ 2Z, so 2Z is indeed closed under 

addition. 

• Associativity: Z is already associative, so nothing changes when we pass to a subset of 

Z. 

• Identity: The identity for addition on Z is 0, which is even: 0 = 2 · 0 ∈ 2Z. 

• Inverses: If a ∈ 2Z, then a = 2n for some n ∈ Z, and −a = −2n = 2(−n) ∈ 

2Z. 

Therefore, (2Z, +) is a group, hence a subgroup of Z. 

 

 

Examples:. 
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1. Every group G has two special subgroups, namely 

{e} and G. 

These are called the trivial subgroups of G.9 

2. We saw earlier that 2Z is a subgroup of Z. There is nothing special about 2 in this 

example: for any n ∈ Z+, 

nZ = {na : a ∈ Z} 

is a subgroup of Z. The exact same computations that we performed for 2Z will 
show that nZ ≤ Z. 

3. The rational numbers Q form an additive subgroup of R. 

4. Here is an example from linear algebra. Consider the n-dimensional vector space Rn. 

Then Rn is, in particular, an abelian group under addition, and any vector subspace of 

Rn is a subgroup of Rn.10  If H is a subspace of Rn, then it is closed under addition, 
and closure under scalar multiplication guarantees that 0 ∈ H and for v ∈ H, −v = −1 · v 
∈ H. 
 

Definition  

The group (a) is called the cyclic subgroup generated by a. 

When we say that a “generates” (a), we mean that that (a) is created entirely out of 
the element a. In a certain sense, (a) is the smallest possible subgroup of G which 
contains a. Let’s try to make this more precise. If H ≤ G and a ∈ H, then H must contain 
the elements 

a, a2, a3, . . . , 

since H is closed. It also must contain e and a−1, hence all of the elements 

. . . , a−2, a−1, e, a, a2, . . . , 

i.e. all powers of a. That is, (a) ⊂ H, and we have proven the following fact: 

Theorem 

 Let G be a group and let a ∈ G. Then (a) is the smallest subgroup of G containing a, in the 
sense that if H ≤ G and a ∈ H, then (a) ⊆ H. 

Of course we’ve already encountered several examples of cyclic subgroups in our studies 
thus far. 

Example  

1. Our first example of a subgroup, 2Z ≤ Z, is a cyclic sub- group, namely (2). 
Similarly, nZ is cyclic for any n ∈ Z. 

2. The subgroup consisting of rotations on Dn, 

H = {i, r1, r2, . . . , rn−1} ≤ Dn, 

is cyclic since H = (r1). 
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. Σ 

3. All the proper subgroups of Z4 and V4 that we listed are cyclic. In addition, 

Z4 is a cyclic subgroup of itself, but V4 is not. 

4. The trivial subgroup {e} is always a cyclic subgroup, namely (e). 

 

Theorem 

Let G be a group. A nonempty subset H ⊆ G is a subgroup if and only if whenever a, b ∈ H, 
ab−1 ∈ H. 

Proof. Suppose that H ≤ G, and let a, b ∈ H. Then b−1 ∈ H, so ab−1 ∈ H since H 

is closed. 
Conversely, suppose that ab−1 ∈ H for all a, b ∈ H. Then for any a ∈ H, we can take a = 

b and conclude that 

e = aa−1 ∈ H, 

so H contains the identity. Since e ∈ H, for any a ∈ H we have 

a−1 = ea−1 ∈ H, 

so H is closed under taking inverses.  Finally, we claim that H  is closed under the  group 
operation. If a, b ∈ H, then b−1 ∈ H, so b−1a−1 ∈ H, and therefore 

 

 

ab = (ab)−1−1 
= (b−1a−1)−1 ∈ H. 

Thus H is closed, hence a subgroup of G. 

The next criterion is quite interesting. It obviously reduces the number of things that 
one needs to check, but it only works for a finite subset of a group G. 

Theorem 

Let G be a group and H a nonempty finite subset of G. Then H 

is a subgroup if and only if H is closed under the operation on G. 

Proof. If H is a subgroup, then it is obviously closed by hypothesis. 
On the other hand, we are assuming that H is closed, so we need to verify that e ∈ 

H and that for every a ∈ H, a−1 ∈ H as well. Since {e} ≤ G, we may assume that H is 
nontrivial, i.e. that H contains an element a distinct from the identity. Since H is 
closed, the elements 

a, a2, a3, . . . 

are all in H, and since H is finite, this list cannot go on forever. That is, we must 
eventually have duplicates on this list, so 

ai = aj 

for some 1 ≤ i < j ≤ |H|. Since i < j, j − i ≥ 0 and we have 

ai = aj = aj−iai, 
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m 

and using cancellation, we get 

aj−i = e. 

Therefore, e ∈ H.  Now observe that j − i − 1 ≥ 0, so aj−i−1 ∈ H, and 

aaj−i−1 = aj−i = e, 

so a−1 = aj−i−1 ∈ H.  Therefore, H  is a subgroup of G. 

 

This theorem has an easy corollary, which is useful when the group is finite. 

Corollary 

 If G is a finite group, a subset H ⊆ G is a subgroup of G if and only if it is closed under the 

operation on G.  

Definition 

The number of distinct (right) cosets of H in G is called the 

index of H in G, denoted by 

[G : H]. 

The set of all right cosets of H in G is denoted by G/H, so 

 

#(G/H) = [G : H]. 

 

Subgroups of Cylic Groups 

Let’s return now to the cyclic case. There is one very important thing that we can say 
about cyclic groups, namely that their subgroups are always cyclic. 

Theorem 

 A subgroup of a cyclic group is cyclic. 

 
Proof. Let G = (a) be a cyclic group and let H be a subgroup of G. We may assume 
that H ƒ= {e}, since {e} is already known to be cyclic.  Then H  contains an element 
other than e, which must have the form am for some m ∈ Z since G is cyclic. Assume 
that m is the smallest positive integer for which am ∈ H. We claim that H = (am). To do 
this, we need to show that if an ∈ H, then an is a power of a . 

Suppose that an ∈ H, and use the Division Algorithm to write n = qm + r, where 0 
≤ r < m. Then 
 

an = aqm+r = aqmar = (am)qar. 

Since H is a subgroup, (am)−q ∈ H, hence (am)−qan ∈ H, and it follows that 

ar = (am)−qan 
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is in H. But r < m and we have assumed that m is the smallest positive integer such that 
am ∈ H, so we must have r = 0. In other words, an = (am)q, so an ∈ (am). Since an was 
an arbitrary element of H, we have shown that H  ⊆ (am).  Since am ∈ H, we also have 
(am) ⊆ H, so H = (am), and H is cyclic. This theorem has a particularly nice corollary, 
which tells us a lot about the structure of Z as an additive group. 
 

Lagrange’s Theorem 
 

Theorem 

 Let G be a finite group and let H ≤ G. Then |H| divides |G|. 

Proof. Let Ha1, . . . , Hak denote the distinct cosets of H in G.  That is, a1, . . ., ak all 
represent different cosets of H, and these are all the cosets. We know that the cosets of H 
partition G, so 

|G| = O(Ha1) + · · · +O(Hak).  

(Here O means the cardinality of the set, or simply the number of elements in that set.) 
Therefore, it will be enough to show that each coset has the same number of elements 
as H. 

We need to exhibit a bijection between H and Hai for each i.  For  each 

 i  =  1, . . . , k, define a function fi : H → Hai by 

f (h) = hai. 

If we can prove that f is a bijection, then we will have 

|H| =O(Hai) 

for all i. if h1, h2 ∈ H with f (h1) = f (h2), then 

h1ai = h2ai, 

 
which implies that h1 = h2, so f is one-to-one. To see that it is onto, take h ∈ H; 
then f (h) = hai. 

Thus all the cosets have the same number of elements, namely |H|, and really 
says that 

|G| = |H| + · · ·  + |H| = k|H|. 
s 

k t
˛
im

 ̧
es  

x
 

 

this implies |H| divides |G|. 
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UNIT IV: COMBINATORICS 

COURSE CONTENT: Mathematical induction – The basics of counting – 
The pigeonhole principle – Permutations and combinations – Recurrence 
relations – Solving linear recurrence relations – Generating functions – 
Inclusion and exclusion principle and its applications 

 

 

MATHEMATICAL INDUCTION 

 

 

Example 1: Show that 

 

 

1
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= P(k+1) is true. 
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Strong Induction: 
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WELL ORDERING PROPERTY 
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PERMUTATION AND COMBINATION 

 

PERMUTATION 

 A Permutation is an arrangement of set of n objects in a definite order taken some 

or all at a time. 

Example: 1.Three letters a,b,c can be arranged  

        abc, acb, bac, bca, cab, cba. We have taken all the three for arrangement. 

   2. Using the three letters a,b,c the total no. of arrangements or permutation taking 

two at a time. 

        ab, bc, ac, ba, cb, ca. 

The no. of permutation of n objects taken r at a time is denoted by P(n,r) or 𝑛𝑃𝑟  and is 

defined as  

 𝑛𝑃𝑟 =  
𝑛!

(𝑛−𝑟)!
  where r ≤  n. 

Corollary 

 If r= n,  

           𝑛𝑃𝑛 =  
𝑛!

(𝑛−𝑛)!
=  

𝑛!

0!
= 𝑛!  

Permutation with repetition 

 Let P(n; n1,n2,…,nr) denote the no. of permutation of n objects of which n1 are alike 

n2 are alike …nr are alike then the formula is given by  

 𝑃(𝑛; 𝑛1 , 𝑛2, 𝑛3 , … 𝑛𝑟) =  
𝑛!

𝑛1!𝑛2!𝑛3!….𝑛𝑟!
  

Circular Permutation 

 Arrangement of objects in a circle is called Circular Permutation. A circular 

Permutation of n different objects is (n-1)! 

Solved Problems 

1. Find the value of n if nP5 = 42nP3 where n>4 

Solution 
𝑛!

(𝑛−5)!
 = 42 

𝑛!

(𝑛−3)!
 

1

(𝑛−5)!
 = 42 

1

(𝑛−3)(𝑛−4)(𝑛−5)!
 

(𝑛−3)(n-4) = 42 

n2-7n-30 = 0 

(n-10)(n+3) = 0 

n = 10, -3 

Since n is positive, n = 10 

2. How many four digit nos. can be formed by using the digits 1 to 9. If repetition of 

digits are not allowed. 

Solution 

 9𝑃4 =  
9!

5!
=  

9×8×7×6×5!

5!
 

    = 3024. 
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3. Find the no. of permutations of the letters of the word ALLAHABAD. 

Solution 

 There are 9 letters in this word. To form different words containing all these 9 

letters is  

  = 
9!

4!2!
 

4. (i) A committee of 3 is to be chosen out of 5 English, 4 French, 3 Indians and the 

committee to contain one each. In how many ways can this be done? (ii) In how many 

arrangements one particular Indian can be chosen? 

Solution 

(i)One English member can be chosen in 5 ways 

One French member can be chosen in 4 ways 

One Indian member can be chosen in 3 ways 

No of ways the committee can be formed = 5x4x3 = 60 ways. 

 

(ii)Since the Indian member is fixed, we have to fill the remaining two places choosing                                                  

one from English and French each. This can be done in 5x4 = 20 ways. 

5. There are 5 trains from Chennai to Delhi and back to Chennai. In how many ways a 

person go Chennai to Delhi and return to Chennai. 

Solution 

 5 x 4 = 20. 

6. There is a letter lock with three rings, each ring with 5 letters and the password is 

unknown. How many different useless attempts are made to open the lock. 

Solution 

 Total no. of attempts = 5 x 5 x 5 = 53 

 Only one will unlock , so the total no. of useless attempts is (53-1) = 125 -1  

            = 124. 

7. (i) Find the no. of arrangements of the letters of the word ELEVEN,(ii) How many of 

them begin and end with E. (iii) How many of them have three E’s together. (iv)  How 

many begin with E and end with N. 

Solution 

 (i)  
6!

3!
= 6 × 5 × 4 = 120 ways. 

  (ii) First and last places are fixed, the remaining 4 places are done in 4! ways. 

  (iii) Treat the 3 E’s as a single element. 

  Therefore, this single element along with L,V,N can be arranged in 4! ways. 

 (iv) 
4!

2!
= 4 × 3 = 12. 

8. There are 6 different books on Physics, 3 on Chemistry, 2 on Mathematics. In how 

many ways can they be arranged on a shelf if the books of the same subject are always 

together? 
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Solution 

Considering Physics books, Chemistry books, Mathematics books as three 

elements, three elements can be arranged in 3! ways. Also 

 Physics books can themselves be arranged in 6! Ways 

 Chemistry books can themselves be arranged in 3! Ways 

 Mathematics books can themselves be arranged in 2! Ways 

 No.of arrangements = 3! 6! 3! 2! 

9. Find the no. of arrangements in which 6 boys and 4girls can be arranged in a line such 

that  all the girls sit together and all the boys sit together. 

Solution 

 The no. of arrangement with all the girls sit together and all the boys sit together is  

 2! 4! 6! ways. 

10. Find the no. of ways in which 10 exam papers can be arranged so that 2 particular 

papers may not come together. 

Solution 

2 particular papers should not come together. The remaining 8 papers can be 

arranged in 8! ways.The 2 papers can be filled in 9 gaps in between these 8 

papers in 9𝑃2 ways.  

11. In how many ways can an animal trainer arrange 5 lions and 4 tigers in a row so that 

no  two lions are together? 

Solution 

The 5 lions should be arranged in the 5 places marked ‘L’. 

This can be done in 5! ways. 

The 4 tigers should be in the 4 places marked ‘T’. 

This can be done in 4! ways. 

Therefore, the lions and the tigers can be arranged in 5!*4!= 2880 ways 

12. In how many ways 5 boys and 3 girls can be seated in a row so that no two girls are 

together? 

Solution 

5 boys can be seated in a row in 5! ways. 

Also the girls can be seated in 3! ways 

The 3 girls can be filled in the 6 gaps between the boys in 6P3 ways. 

Total no of arrangements = 5! x 3! x 6P3 = 1440 

13. There are 4 books on fairy tales, 5 novels and 3 plays. In how many ways can you 

arrange these so that books on fairy tales are together, novels are together and plays are 

together and in the order, books on fairy tales, novels and plays. 
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Solution 

There are 4 books on fairy tales and they have to be put together. 

They can be arranged in 4! ways. 

Similarly, there are 5 novels.  

They can be arranged in 5! ways. 

And there are 3 plays. 

They can be arranged in 3! ways. 

So, by the counting principle all of them together can be arranged in 4!*5!*3!= 

17280 ways 

13. Suppose there are 4 books on fairy tales, 5 novels and 3 plays as in Example 5.3. 

They have to be arranged so that the books on fairy tales are together, novels are together 

and plays are together, but we no longer require that they should be in a specific order. In 

how many ways can this be done? 

Solution 

First, we consider the books on fairy tales, novels and plays as single objects. 

These three objects can be arranged in 3!=6 ways. 

Let us fix one of these 6 arrangements. 

This may give us a specific order, say, novels -> fairy tales -> plays. 

Given this order, the books on the same subject can be arranged as follows. 

The 4 books on fairy tales can be arranged among themselves in 4!=24 ways. 

The 5 novels can be arranged in 5!=120 ways. 

The 3 plays can be arranged in 3!=6 ways. 

For a given order, the books can be arranged in 24*120*6=17280 ways. 

Therefore, for all the 6 possible orders the books can be arranged in 6*17280= 103680 

ways. 

14. In how many ways can 4 girls and 5 boys be arranged in a row so that all the four 

girls are together? 

Solution 

Let 4 girls be one unit and now there are 6 units in all. 

They can be arranged in 6! ways.In each of these arrangements 4 girls can be 

arranged in 4! ways. 

=> Total number of arrangements in which girls are always together 

=6!*4!=720*24= 17280. 
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15. How many arrangements of the letters of the word ‘BENGALI’ can be made 

(i) If the vowels are never together. 

(ii) If the vowels are to occupy only odd places. 

Solution 

There are 7 letters in the word ‘Bengali; of these 3 are vowels and 4 consonants. 

(i) Considering vowels a, e, i as one letter, we can arrange 4+1 letters in 5! ways in 

each of which vowels are together. These 3 vowels can be arranged among 

themselves in 3! ways. 

=> Total number of words =5!*3! 

=120*6=720 

So there are total of 720 ways in which vowels are ALWAYS TOGEGHER. 

Now, 

Since there are no repeated letters, the total number of ways in which the letters of 

the word ‘BENGALI’ cab be arranged:  

=7!=5040 

So, 

Total no. of arrangements in which vowels are never together: 

=ALL the arrangements possible – arrangements in which vowels are ALWAYS 

TOGETHER 

=5040–720=4320 

 

ii) There are 4 odd places and 3 even places. 3 vowels can occupy 4 odd places in 

4P3 ways and 4 constants can be arranged in 4P4 ways. 

=> Number of words =4P3*4P4= 576. 

16.  In how many ways 5 gentlemen and 3 ladies can be arranged along a round table so 

that no 2 ladies are together. 

Solution:  

The 5 gentlemen can be arranged in a round table in (5-1)!  = 4! ways. 

Since no 2 ladies are together, they can occupy the 5 gaps in between the gentlemen in 

5P3 ways. 

Therefore, total no. of arrangements = 5P3 x 4!  
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COMBINATION 

Let us consider the example of shirts and trousers as stated in the introduction. There you 

have 4 sets of shirts and trousers and you want to take 2 sets with you while going on a 

trip. In how many ways can you do it? 

Let us denote the sets by S1,S2,S3,S4. Then you can choose two pairs in the following 

ways: 

1. {S1,S2}                2. {S1,S3}                 3. {S1,S4} 

4. {S2,S3}                 5. {S2,S4}                6. {S3,S4} 

[Observe that {S1,S2} is the same as {S2,S1}. So, there are 6 ways of choosing the two 

sets that you want to take with you. Of course, if you had 10 pairs and you wanted to take 

7 pairs, it will be much more difficult to work out the number of pairs in this way. 

Now as you may want to know the number of ways of wearing 2 out of 4 sets for two 

days, say Monday and Tuesday, and the order of wearing is also important to you. We 

know that it can be done in 4P4=12 ways. But note that each choice of 2 sets gives us two 

ways of wearing 2 sets out of 4 sets as shown below: 

1. {S1,S2} -> S1 on Monday and S2 on Tuesday or S2 on Monday and S1 on Tuesday 

2. {S1,S3} -> S1 on Monday and S3 on Tuesday or S3 on Monday and S1 on Tuesday 

3. {S1,S4} -> S1 on Monday and S4 on Tuesday or S4 on Monday and S1 on Tuesday 

4. {S2,S3} -> S2 on Monday and S3 on Tuesday or S3 on Monday and S2 on Tuesday 

5. {S2,S4} -> S2 on Monday and S4 on Tuesday or S4 on Monday and S2 on Tuesday 

6. {S3,S4} -> S3 on Monday and S4 on Tuesday or S4 on Monday and S3 on Tuesday 

Thus, there are 12 ways of wearing 2 out of 4 pairs. 

This argument holds good in general as we can see from the following theorem. 

Theorem 

Let n≥1  be an integer and r≤n. Let us denote the number of ways of choosing r objects 

out of n objects by nCr. Then 

nCr=
𝑛𝑃𝑟

𝑟!
. 

Example: Find the number of subsets of the set {1,2,3,4,5,6,7,8,9,10,11} having 4 

elements.  

Solution 

Here the order of choosing the elements doesn’t matter and this is a problem in 

combinations. 

We have to find the number of ways of choosing 4 elements of this set which has 

11 elements. 

11C4 = 
11×10×9×8

1×2×3×4
= 330 
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Example: 12 points lie on a circle. How many cyclic quadrilaterals can be drawn by 

using these points? 

Solution 

For any set of 4 points we get a cyclic quadrilateral. Number of ways of choosing 4 

points out of 12 points is 12C4=495. 

 Therefore, we can draw 495 quadrilaterals. 

Example: In a box, there are 5 black pens, 3 white pens and 4 red pens. In how many 

ways can 2 black pens, 2 white pens and 2 red pens can be chosen? 

Solution 

Number of ways of choosing 2 black pens from 5 black pens 

=5C2= 
5𝑃2

2!
=  

5×4

1×2
= 10  

Number of ways of choosing 2 white pens from 3 white pens 

=3C2= 
3𝑃2

2!
=  

3×2

1×2
= 3 

Number of ways of choosing 2 red pens from 4 red pens 

=4C2= 
4𝑃2

2!
=  

4×3

1×2
= 6 

=> By the Counting Principle, 2 black pens, 2 white pens, and 2 red pens can be 

chosen in 10*3*6= 180ways. 

Example: A question paper consists of 10 questions divided into two parts A and B. 

Each part contains five questions. A candidate is required to attempt six questions in all 

of which at least 2 should be from part A and at least 2 from part B. In how many ways 

can the candidate select the questions if he can answer all questions equally well? 

Solution 

The candidate has to select six questions in all of which at least two should be from 

Part A and two should be from Part B. He can select questions in any of the 

following ways: 

Part A Part B 

(i)   2 4 

(ii)   3 3 

(iii)  4 2 

If the candidate follows choice (i), the number of ways in which he can do so is: 

5C2*5C4=10*5=50 
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If the candidate follows choice (ii), the number of ways in which he can do so is: 

5C3*5C3=10*10=100 

Similarly, if the candidate follows choice (iii), then the number of ways in which 

he can do so is:5C4*5C2=5*10=50 

Therefore, the candidate can select the question in 50+100+50= 200 ways. 

Example: A committee of 5 persons is to be formed from 6 men and 4 women. In how 

many ways can this be done when:(i) At least 2 women are included?(ii) At most 2 

women are included? 

Solution  

(i) When at least 2 women are included. 

The committee may consist of 

3 women, 2 men: It can be done in 4C*6C2 ways 

Or, 4 women, 1 man: It can be done in 4C4*6C1 ways 

or, 2 women, 3 men: It can be done in 4C2*6C3 ways 

=> Total number of ways of forming the committee: 

=4C3*6C2+4C4*6C1+4C2*6C3= 186 ways 

(ii) When at most 2 women are included 

The committee may consist of 

2 women, 3 men: It can be done in 4C2*6C3 ways 

Or, 1 women, 4 men: It can be done in 4C1*6C4 ways 

Or, 5 men: It can be done in 6C5 ways 

=> Total number of ways of forming the committee: 

=4C2*6C3+4C1*6C4+6C5= 186 ways 

Example: The Indian Cricket team consists of 16 players. It includes 2 wicket keepers 

and 5 bowlers. In how many ways can a cricket eleven be selected if we have to select 1 

wicket keeper and at least 4 bowlers? 

Solution 

We are to choose 11 players including 1 wicket keeper and 4 bowlers 

or, 1 wicket keeper and 5 bowlers. 

Number of ways of selecting 1 wicket keeper, 4 bowlers and 6 other players 

=2C1*5C4*9C6=840 
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Number of ways of selecting 1 wicket keeper, 5 bowlers and 5 other players 

=2C1*5C5*9C5=252 

=> Total number of ways of selecting the team: 

=840+252= 1092 

Example: There are 5 novels and 4 biographies. In how many ways can 4 novels and 2 

biographies can be arranged on a shelf? 

Solution  

4 novels can be selected out of 5 in 5C4 ways.  

2 biographies can be selected out of4 in 4C2 ways. 

Number of ways of arranging novels and biographies: 

=5C4*4C2=30 

After selecting any 6 books (4 novels and 2 biographies) in one of the 30 ways, 

they can be arranged on the shelf in 6!=720 ways. 

By the Counting Principle, the total number of arrangements =30*720= 21600 

Example: From 5 consonants and 4 vowels, how many words can be formed using 3 

consonants and 2 vowels? 

Solution  

From 5 consonants, 3 consonants can be selected in 5C3 ways. 

From 4 vowels, 2 vowels can be selected in 4C2  ways. 

Now with every selection, number of ways of arranging 5 letters is 5P5 

Total number of words =5C3*4C2*5P5= 7200. 

Binomial Theorem 

(a+b)n = nC0a
n+ nC1a

n-1b+…+ nCnb
n 

Example: Find the coefficient of the independent term of x in expansion of  (3x - 

(2/x2))15. 

Solution 

 The general term of (3x - (2/x2))15 is written, as Tr+1 = 15Cr (3x)15-r (-2/x2)r. It is 

independent of x if, 
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15 - r - 2r = 0 => r = 5 

  .·.   T6 = 15C5(3)10(-2)5 = - 16C5 3
10 25.   

Example: Find the value of the greatest term in the expansion of √3(1+(1/√3))20. 

 

Solution 

        Let Tr+1 be the greatest term, then Tr < Tr+1 > Tr+2 

        Consider : Tr+1 > Tr 

                => 20Cr   (1/√3)r > 20Cr-1(1/√3)r-1      

                => ((20)!/(20-r)!r!) (1/(√3)r)  >  ((20)!/(21-r)!(r-1)!) (1/(√3)r-1) 

                => r < 21/(√3+1) 

                => r < 7.686                                               ......... (i) 

 

        Similarly, considering Tr+1 > Tr+2 

               => r > 6.69                                              .......... (ii) 

       From (i) and (ii), we get 

 

                        r = 7 

        Hence greatest term = T8 = 25840/9 

 

 

 

 

 

 

 

 

 

 

16



SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS – SMTA1302, UNIT IV 
 

   

 

 RECURRENCE RELATIONS 
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THE PIGEONHOLE PRINCIPLE 

If n pigeonholes are occupied by n+1 or more pigeons, then at least one pigeonhole is 

occupied by greater than one pigeon. Generalized pigeonhole principle is: - If n 

32
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pigeonholes are occupied by kn+1 or more pigeons, where k is a positive integer, then at 

least one pigeonhole is occupied by k+1 or more pigeons. 

Example1: Find the minimum number of students in a class to be sure that three of them 

are born in the same month. 

Solution: Here n = 12 months are the Pigeonholes 

                    And k + 1 = 3 

                    K = 2 

Example2: Show that at least two people must have their birthday in the same month if 

13 people are assembled in a room. 

Solution: We assigned each person the month of the year on which he was born. Since 

there are 12 months in a year. 

So, according to the pigeonhole principle, there must be at least two people assigned to 

the same month. 
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UNIT V - GRAPH THEORY 

 

 

COURSE CONTENT: Introduction  to graphs – Types of graphs (directed and undirected) – 

Basic terminology – Sub graphs – Representing graphs as incidence and adjacency matrix – 

Graph Isomorphism – Connectedness in Simple graphs, Paths and Cycles in graphs  - Euler and 

Hamiltonian paths (statement only) – Tree – Binary tree  (Definition and simple problems) 

 

INTRODUCTION  

 

 The concept of graph theory is considered to have originated in 1736 with the 

publication of Euler’s solution of the Konigsberg bridge problem. Euler (1707–1782) 

is regarded as the father of graph theory.  

 

The Konigsberg Bridge Problem: The city of Konigsberg was located on the Pregel 

river in Prussia. The river divided the city into four separate landmasses, including the 

island of Kneiphopf. These four regions were linked by seven bridges as shown in the 

diagram. Residents of the city wondered if it were possible to leave home, cross each 

of the seven bridges exactly once, and return home. The Swiss mathematician 

Leonhard Euler thought about this problem and gave a solution.  

 

 
 

 

The key to Euler’s solution was in a very simple abstraction of the puzzle. Let 

us redraw our diagram of the city of Konigsberg by representing each of the land 

masses as a vertex and representing each bridge as an edge connecting the vertices 

corresponding to the land masses. We now have a graph that encodes the necessary 

information. The problem reduces to finding a ”closed walk” in the graph which 

traverses each edge exactly once, this is called an Eulerian circuit. Euler proved such 

a circuit does not exist.  

 Graph theory is the study of points, lines and the ways in which sets of points 

can be connected by lines or arcs. Graphs in this context differ from the more familiar 

coordinate plots that portray mathematical relations and functions. 
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 Graph theory has many colourful applications in many branches such as Physics, 

Chemistry, Communication Science, Computer technology, Electrical and Civil 

engineering, Architecture, Operations research, Genetics, Sociology, Economics etc..  

It has proven useful in the design of integrated circuits (IC s) for computers and other 

electronic devices. These components more often called chips, contain complex, 

layered microcircuits that can be represented as sets of points interconnected by lines 

or arcs. Using graph theory, engineers develop chips with maximum component 

density and minimum total interconnecting conductor length. This is important for 

optimizing processing speed and electrical efficiency. 

BASIC TERMINOLOGIES OF GRAPHS 

 

 A graph is usually denoted as G = (V, E), where V is called the vertex set of G 

and E is the edge set of G. The elements of the set V are called vertices or points or 

nodes and the members of the set E are called edges or lines or arcs.  

 The number of vertices in a graph G is called the order of the graph and is 

denoted by |𝑉|. The number of edges in a graph is called the size of the graph and is 

denoted by |𝐸|. A graph is finite if both its vertex set and edge set are finite. 

Otherwise it is an infinite graph. We study only finite graphs, so the term graph 

means only finite graphs. 

A graph with p vertices and q edges is called a (p, q) graph. A graph with one 

vertex i.e., a (1, 0) graph is called trivial graph and all other graphs are non trivial. A 

graph with zero edges i.e., a (p, 0) graph is called empty or null or void graph. 

Each graph has a diagram associated with it. These diagrams are useful for 

understanding problems involving such graphs. 

Adjacency 

 Two vertices v and w of a graph G are adjacent if there is an edge vw joining 

them, and the vertices v and w are then incident with such an edge. Similarly, two 

distinct edges e and f are adjacent if they have a vertex in common 

 

     
 

DIRECTED AND UNDIRECTED GRAPHS 

 

Directed graph 

A directed graph G consists of a set V of vertices and a set E of edges such that 

e𝜖E is associated with an ordered pair of vertices. In other words, if each edge of the 

graph G has a direction then the graph is called directed graph or digraph. 
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In the diagram of directed graph, each edge is represented by an arrow or directed 

curve from initial point to the terminal point. 

    

     
Suppose e = (a, b) is a directed edge in a digraph, then 

(i) a is called the initial vertex of e and b is the terminal vertex of e  

(ii) e is said to be incident from vertex to vertex b. 

Un-directed graph  

An un-directed graph G consists of set V of vertices and a set E of edges such 

that each edge e ∈ E is associated with an unordered pair of vertices. In other words, 

if each edge of the graph G has no direction then the graph is called un-directed 

graph.  

Figure given below is an example of an undirected graph. An edge joining the vertex 

pair a and b can be referred as either (a, b) or (b, a). 

 

     
 

Loop : An edge of a graph that joins a vertex to itself is called loop. 

Example:  

   

 

 

 

 

Multigraph: Two or more edges of a graph G joining the same pair of vertices are 

called multiple edges or parallel edges. The corresponding graph is called 

multigraph.  In a multigraph no loops are allowed.  
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In the above figure there are two parallel edges joining nodes v1, v2 and v2, v3. 

 

      
In the above figure there are two parallel edges associated with vertices v2 and v3 

 

Pseudo graph:  A graph, in which loops and multiple edges are allowed, is called a 

pseudo graph. 

        

  
 

Simple graph:  A graph with no loops and multiple edges is called a simple graph. 
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DEGREE OF A VERTEX:  

 

  For an undirected graph, the number of edges incident on a vertex vi with self-

loops counted twice is called the degree of a vertex vi and is denoted by deg (vi ) or 

deg vi or d(vi ). The degree of a vertex is also referred to as its valency.  

For example let us consider the graph G given below. The degrees of vertices are  

deg (v1) = 4, deg (v2) = 5, deg (v3) = 5, deg (v4) = 3, and deg (v5) = 1.  

 

 

    
 

Isolated vertex:  A vertex having no incident edge on it is called an isolated vertex. 

In other words vertex with zero degree is called an isolated vertex. 

 

Pendent vertex or end vertex:  A vertex of degree one, is called a pendent vertex or 

an end vertex and the corresponding edge is called the pendant edge. The vertex to 

which an end vertex is adjacent is called support vertex. In the above Figure, v5 is a 

pendent vertex.  

 

Degree Sequence: The vertex degrees of a graph arranged in non-increasing order is 

called degree sequence of the graph G. The degree sequence of the above graph is 5, 

5, 4, 3, 1 

 

IN DEGREE and OUT DEGREE of a Vertex 

 In a digraph G, the number of edges beginning at vertex vi  is called the out 

degree of a vertex vi,  denoted by 𝑑𝑒𝑔𝐺
+(𝑣𝑖) or out deg (vi ). 

:  In a digraph G, the number of edges ending at vertex vi is called  the in degree of a 

vertex vi , denoted by 𝑑𝑒𝑔𝐺
−(𝑣𝑖) or in deg (vi ).  

A vertex with zero in degree is called a source and a vertex with zero out degree is 

called a sink. 

The sum of the in degree and out degree of a vertex is called the total degree of the 

vertex.  
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𝑑𝑒𝑔𝐺

−(𝑣1) = 2, 𝑑𝑒𝑔𝐺
+(𝑣1) = 1, 𝑑𝑒𝑔𝐺

−(2) = 2, 𝑑𝑒𝑔𝐺
+(𝑣2) = 3, 𝑑𝑒𝑔𝐺

−(𝑣3)

= 2, 𝑑𝑒𝑔𝐺
+(𝑣3) = 2 

 

Note: For any directed graph the following property is true 

  ∑ 𝑑𝑒𝑔−(𝑣) =𝑣∈𝑉 ∑ 𝑑𝑒𝑔+(𝑣) =𝑣∈𝑉  |𝐸| 
 

 

Problem. Find the in-degree and out-degree of each vertex of the following directed 

graph 

 
 

Solution. 

in-degree v1 = 2, out-degree v1 = 1   in-degree v2 = 2, out-degree v2 = 

2 

in-degree v3 = 2, out-degree v3 = 1   in-degree v4 = 2, out-degree v4 = 

2 

in-degree v5 = 0, out-degree v5 = 3 

 

Problem. Find the in-degree and out-degree of each vertex of the following directed 

graph 
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Solution. 

in-degree a = 6, out-degree a = 1   in-degree b = 1, out-degree b = 5 

in-degree c = 2, out-degree c = 5   in-degree d = 2, out-degree d = 2. 

 

Theorem  1: (THE HANDSHAKING THEOREM) 

 

Statement: If G = (V, E) be an undirected graph with e edges,  then ∑ 𝑑𝑒𝑔𝐺(𝑣)𝑣𝜖𝑉 =

2𝑒.  i.e., the sum of degrees of the vertices is an undirected graph is even. 

(or) 

If V = {v1, v2, ...... vn} is the vertex set and E is the edge set of a non directed graph G 

then ∑ 𝑑𝑒𝑔𝐺(𝑣𝑖) = 
𝑛
𝑖=1 2|𝐸| 

Proof :  

Since the degree of a vertex is the number of edges incident with that vertex, the sum 

of the degree counts the total number of times an edge is incident with a vertex. Since 

every edge is incident with exactly two vertices, each edge gets counted twice, once 

at each end. Thus the sum of the degrees equals twice the number of edges.  

Thus ∑ 𝑑𝑒𝑔𝐺(𝑣𝑖) = 
𝑛
𝑖=1 2|𝐸| 

 

Note : This theorem applies even if multiple edges and loops are present. The above 

theorem holds this rule that if several people shake hands, the total number of hands 

shaken must be even that is why the theorem is called handshaking theorem.  

 

Corollary 1: In a non directed graph, the total number of odd degree vertices is even. 

Proof :  

Let G = (V, E) a non directed graph. Let U denote the set of even degree vertices in 

G and W denote the set of odd degree vertices. 

Then ∑ 𝑑𝑒𝑔𝐺(𝑣𝑖)𝑣𝑖𝜖𝑉 = ∑ 𝑑𝑒𝑔𝐺(𝑣𝑖)𝑣𝑖𝜖𝑈 + ∑ 𝑑𝑒𝑔𝐺(𝑣𝑖)𝑣𝑖𝜖𝑊  

⇒ 2𝑒 − ∑ 𝑑𝑒𝑔𝐺(𝑣𝑖)𝑣𝑖𝜖𝑈 = ∑ 𝑑𝑒𝑔𝐺(𝑣𝑖)𝑣𝑖𝜖𝑊  
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⇒ ∑ 𝑑𝑒𝑔𝐺(𝑣𝑖)𝑣𝑖𝜖𝑊  is also even 

∴ The number of odd vertices in G is even. 

 

Theorem 2:  If G is a directed graph, then  ∑ 𝑑𝑒𝑔𝐺
+(𝑣𝑖) =  ∑ 𝑑𝑒𝑔𝐺

−(𝑣𝑖) 
n
i=1

𝑛
𝑖=1 = |𝐸| 

Proof : Since when the degrees are summed, each edge contributes a count of one to 

the degree of each of the two vertices on which the edge is incident. 

 

Corollary 2 : In any undirected graph there is an even number of vertices of odd 

degree.  

Proof : Let W be the set of vertices of odd degree and let U be the set of vertices of 

even degree. Then ∑ 𝑑𝑒𝑔𝐺(𝑣)𝑣𝜖𝑈 + ∑ 𝑑𝑒𝑔𝐺(𝑣) =𝑣𝜖𝑊  ∑ 𝑑𝑒𝑔𝐺(𝑣)𝑣𝜖𝑉 = 2|𝐸| 

Certainly, ∑ 𝑑𝑒𝑔𝐺(𝑣)𝑣𝜖𝑈  is even. Hence ∑ 𝑑𝑒𝑔𝐺(𝑣)𝑣𝜖𝑊  is even. 

⇒ |𝑊| is even. 

 

Corollary 3 : If k = δ(G) is the minimum degree of all the vertices of a non directed 

graph G, then 

𝑘|𝑉|  ≤  ∑𝑑𝑒𝑔𝐺(𝑣)

𝑣𝜖𝑉

= 2|𝐸| 

In particular, if G is a k-regular graph, then  

𝑘|𝑉| =  ∑𝑑𝑒𝑔𝐺(𝑣)

𝑣𝜖𝑉

= 2|𝐸| 

 

Problem. Show that the total number of odd degree vertices of a (p, q)-graph is 

always even. Solution. Let v1, v2 ...... vk be the odd degree vertices in G.  

Then, we have ∑ 𝑑𝑒𝑔𝐺(𝑣𝑖) = 
𝑝
𝑖=1 2𝑞= even number  

⇒ ∑ 𝑑𝑒𝑔𝐺(𝑣𝑖) + ∑ 𝑑𝑒𝑔𝐺(𝑣𝑖)
𝑝
𝑖=𝑘+1 =  𝑘

𝑖=1 even number 

⇒ ∑ 𝑑𝑒𝑔𝐺(𝑣𝑖) 
𝑘
𝑖=1 = even number − ∑ 𝑑𝑒𝑔𝐺(𝑣𝑖)

𝑝
𝑖=𝑘+1  

⇒ ∑ 𝑑𝑒𝑔𝐺(𝑣𝑖) = 
𝑘
𝑖=1 even number – even number  

    = even number.  

⇒ This implies that number of terms in the left-hand side of the equation is even. 

 Therefore, k is an even number. 

 

Problem. Determine the number of edges in a graph with 6 vertices, 2 of degree 4 

and 4 of degree 2.  

 Solution. Suppose the graph with 6 vertices has e number of edges. Therefore by 

Handshaking lemma. ∑ 𝑑𝑒𝑔𝐺(𝑣𝑖) = 
6
𝑖=1 2|𝑒| 

⇒ d(v1) + d(v2) + d(v3) + d(v4) + d(v5) + d(v6) = 2e 

 Now, given 2 vertices are of degree 4 and 4 vertices are of degree 2.  
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Hence the above equation becomes,  (4 + 4) + (2 + 2 + 2 + 2) = 2e  

⇒ 16 = 2e ⇒ e = 8. 

Hence the number of edges in a graph with 6 vertices with given condition is 8. 

 

Problem. How many vertices are needed to construct a graph with 6 edges in which 

each vertex is of degree 2? 

Solution. Suppose these are n vertices in the graph with 6 edges. Also given the 

degree of each vertex is 2.  

By handshaking lemma, ∑ 𝑑𝑒𝑔𝐺(𝑣𝑖) = 
𝑛
𝑖=1 2|𝑒|= 2× 6 = 12 

⇒ d(v1) + d(v2) + ...... + d(vn) = 12 

⇒ 2 + 2 +⋯+ 2⏟        
𝑛 𝑡𝑖𝑚𝑒𝑠

= 12  

⇒ 2n = 12  

⇒ n = 6 vertices are needed. 

 

Problem. It is possible to draw a simple graph with 4 vertices and 7 edges ? Justify.  

Solution. In a simple graph with n-vertices, the maximum number of edges will be 
𝑛(𝑛−1)

2
.  

Hence a simple graph with 4 vertices will have at most 
4××3

2
= 6edges.  

Therefore, a simple graph with 4 vertices cannot have 7 edges.  

Hence such a graph does not exist. 

 

Problem. Show that there exists no simple graph corresponds to the following degree 

sequence : (i) 0, 2, 2, 3, 4 (ii) 1, 1, 2, 3 (iii) 2, 2, 3, 4, 5, 5 (iv) 2, 2, 4, 6.  

Solution. (i) to (iii) : There are odd number of odd degree vertices in the graph. 

Hence there exists no graph corresponds to this degree sequence. 

(iv) Number of vertices in the graph is four and the maximum degree of a vertex is 6, 

which is not possible as the maximum degree cannot exceed one less than the number 

of vertices. 

 

Problem.  Show that the following sequence 6, 5, 5, 4, 3, 3, 2, 2, 2 is graphical.    

Solution.  

We can reduce the sequence as follows :  

Given sequence 6, 5, 5, 4, 3, 3, 2, 2, 2  

Reducing first 6 terms by 1 counting from second term 4, 4, 3, 2, 2, 1, 2, 2.  

Writing in decreasing order 4, 4, 3, 2, 2, 2, 2, 1  

Reducing first 4 terms by 1 counting from second 3, 2, 1, 1, 2, 2, 1  

Writing in decending order 3, 2, 2, 2, 1, 1, 1  

Reducing first 3 terms by 1, counting from second 1, 1, 1, 1, 1, 1  
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Sequence 1, 1, 1, 1, 1, 1 is graphical.  

Hence the given sequence is also graphical 

 

Problem. Show that the sequence 6, 6, 6, 6, 4, 3, 3, 0 is not graphical.  

Solution. To prove that the sequence is not graphical.  

The given sequence is 6, 6, 6, 6, 4, 3, 3, 0  

Resulting the sequence 5, 5, 5, 3, 2, 2, 0  

Again consider the sequence 4, 4, 2, 1, 1, 0  

Repeating the same 3, 1, 0, 0, 0  

Since there exists no simple graph having one vertex of degree three and other vertex 

of degree one. The last sequence is not graphical.  

Hence the given sequence is also not graphical. 

 

Problem. Show that the maximum number of edges in a simple graph with n vertices 

is 
𝑛(𝑛−1)

2
.  . Solution. By the handshaking theorem,  

 ∑ 𝑑𝑒𝑔𝐺(𝑣𝑖) = 
𝑛
𝑖=1 2|𝑒|where e is the number of edges with n vertices in the 

graph G. 

  ⇒ d(v1) + d(v2) + ...... + d(vn) = 2e  ................ (1)  

We know that the maximum degree of each vertex in the graph G can be (n – 1).  

Therefore, equation (1) reduces (𝑛 − 1) + (𝑛 − 1) +⋯+ (𝑛 − 1)⏟                      
𝑛 𝑡𝑖𝑚𝑒𝑠

  = 2e  

⇒ n(n – 1) = 2e  

⇒ e = 
𝑛(𝑛−1)

2
 .  

Hence the maximum number of edges in any simple graph with n vertices is 
𝑛(𝑛−1)

2
. 

 

SOME SPECIAL GRAPHS: 

  

COMPLETE GRAPH 

 

A simple graph G is said to be complete if every vertex in G is connected with every 

other vertex. 

i.e., if G contains exactly one edge between each pair of distinct vertices. 

A complete graph is usually denoted by Kn. It should be noted that Kn has exactly 
𝑛(𝑛−1)

2
edges. 

The figure given below shows complete graphs K1 to K6 
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REGULAR GRAPH 

 

A graph in which all vertices are of equal degree, is called a regular graph. 

If the degree of each vertex is r, then the graph is called a regular graph of degree r. 

Note 1:  Every null graph is regular of degree zero. 

Note 2: The complete graph Kn is a regular of degree n – 1.  

Note 3: If G has n vertices and is regular of degree r, then G has  edges. 

Note 4: The figure given below shows 3 regular graphs which are also called as cubic 

graphs. The socond graph is also known as Petersen graph. 

 
 

 

BIPARTITE GRAPH 

 

 A graph G is said to be bipartite if its vertex set can be partitioned into two 

subsets such that no two vertices in the same partition are adjacent. In other words if 

the simple graph G(V, E) can be partitioned into two subsets V1 and V2  such that 

every edge of G connects a vertex in V1 to a vertex in V2 and no edge in G connects 

either two vertices in V1 or V2 then G is called a bipartite graph. 

If each vertex of V1 is connected with every vertex of V2 by an edge, Then G is said 

to be a complete bipartite graph. If V1 contains m vertices and V2 contains n 

vertices then the complete bipartite graph is denoted by Km, n.  

 

 

 

The following figure shows bipartite and complete bipartite graph 

 

 



SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS- SMTA 1302 UNIT V 
 

12 
 

 

 

 

THE COMPLEMENT OF A GRAPH  

 

Let G be a simple graph. The complement of G denoted by Gc has the same vertex set 

as G and two vertices in G and Gc are adjacent if and only if they are not adjacent in 

G. 

The graph G and its complement Gc are depicted below 

 
 

SUBGRAPH 

 

If G and H are two graphs with vertex sets V(H), V(G) and edge sets E(H) and E(G) 

respectively such that V(H) ⊆ V(G) and E(H) ⊆ E(G) then we call H as a 

subgraph of G or G as a supergraph of H. 

In the figure given below G1 is a subgraph of graph G. 

 
 

SPANNING SUBGRAPH 

 

A graph H is called a subgraph of a graph G if V(H) ⊆ V(G) and E(H) ⊆ E(G. 

If V(H) ⊂ V(G) and E(H) ⊂ E(G) then H is called a proper subgraph of G. 

If V(H) = V(G) then we say that H is a spanning subgraph of G. 

A spanning subgraph need not contain all the edges in G. The graphs F1 and H1 of 

the figure shown below are spanning subgraphs of G1, but J1 is not a spanning 

subgraph of G1. 
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Removal of a vertex and an edge 

 

 The removal of a vertex vi from a graph G result in that subgraph G – vi of G 

containing of all vertices in G except vi and all edges not incident with vi. Thus G – 

vi is the maximal subgraph of G not containing vi. On the otherhand, the removal of 

an edge xj from G yields the spanning subgraph G – xj 

containing all edges of G except xj. Thus G – xj is the maximal subgraph of G not 

containing edge xj. 

 

The following figure shows deletion of vertices and deletion of edges from a graph  

 
The following figure shows deletion of  edges from a graph 
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INDUCED SUB GRAPH: 

 

 Let G be a graph with vertex set V(G), edge set E(G) and S be a non empty 

subset of V(G). A subgraph of G whose vertex set is S and all edges of G which have 

both their ends in S is known as the subgraph induced by S and is denoted by G[S] or 

< 𝑆 >. Any subgraph induced by a set of vertices will be called a vertex induced 

subgraph or simply an induced sub graph. In other words a  sub graph H of a 

graph G where V(H) ⊆ V(G) and E(H) consists of only thoe edges that are incident 

on the elements of V(H), is called an induced sub graph of G.  

 Let M be a non empty subset of E(G). A subgraph of G whose edge set is M 

and whose vertices are the ends of edges in M, is said to be a subgraph induced by M 

and is denoted by G[M] or < 𝑀 >. The second figure below displays  the vertex 

induced sub graph of graph G induced by vertex set {𝑣1, 𝑣2, 𝑣3} and the third image 

in the figure shown below is the edge induced sub graph of G induced by the edge set 

{ 𝑒2, 𝑒3, 𝑒4, 𝑒7, 𝑒8} 

 
  Graph G    Induced sub graphs of graph G 

 

 

Example  H is not an induced subgraph since v4v1 ∈E(G), but v4v3 ∉E(H). 
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Example for spanning sub graph, vertex induced sub graph and edge induced sub 

graph 

 

 
 

 
 

GRAPHS ISOMORPHISM 
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Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. A function f : V1 → V2 is 

called a graphs isomorphism if 

(i) f is one-to-one and onto. 

(ii) for all a, b ∈ V1, {a, b} ∈E1 if and only if {f(a), f(b)} ∈ E2  when such a 

function exists, G1 and G2 are called isomorphic graphs and is written as G1 ≅ G2. 

In other words, two graphs G1 and G2 are said to be isomorphic to each other if there 

is a one to- one correspondence between their vertices and between edges such that 

incidence relationship is preserved. It is written as G1 ≅ G2 or G1 = G2. 

 

The necessary conditions for two graphs to be isomorphic are 

1. Both must have the same number of vertices 

2. Both must have the same number of edges 

3. Both must have equal number of vertices with the same degree. 

4. They must have the same degree sequence and same cycle vector (c1, ......, cn), 

where ci is 

the number of cycles of length i. 

The  isomorphic pair of graphs  are shown below 

Example 1: 

    

Example 2: 

 

Example 3: 
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Example of two graphs that are not isomorphic  

 

Problem. Show that the following graphs are isomorphic 

 

Solution. Let f : G → G′ be any function defined between two graphs degrees of 

the graph G and 

G′ are as follows : 

deg (G) deg (G′) 

deg (a) = 3 deg (a′) = 3 

deg (b) = 2 deg (b′) = 2 

deg (c) = 3 deg (c′) = 3 

deg (d) = 3 deg (d′) = 3 

deg (e) = 1 deg (e′) = 1 

Each has 5-vertices and 6-edges. 

d(a) = d(a′) = 3 

d(b) = d(b′) = 2 

d(c) = d(c′) = 3 

d(d) = d(d′) = 3 
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d(e) = d(e′) = 1 

Hence the correspondence is a – a′, b – b′, ....., e – e′. 

Therefore, the given two graphs are isomorphic. 

 

Problem. Show that the following graphs are isomorphic. 

 

Solution. Let f : G → G′ be any function defined between two graphs degrees of 

the graphs G 

and G′ are as follows : 

deg (G) deg (G′) 

deg (a) = 3 deg (a′) = 3 

deg (b) = 2 deg (b′) = 2 

deg (c) = 3 deg (c′) = 3 

deg (d) = 5 deg (d′) = 5 

deg (e) = 1 deg (e′) = 1 

Each has 5-vertices, 6-edges and 1-circuit. 

deg(a) = deg(a′) = 3 

deg(b) = deg(b′) = 2 

deg(c) = deg(c′) = 3 

deg(d) = deg(d′) = 5 

deg(e) = deg(e′) = 1 

Hence the correspondence is a – a′, b – b′, ....., e – e′. 

Therefore, the given two graphs G and G′ are isomorphic. 

Problem. Are the 2-graphs, is given below, is isomorphic ? Give a reason. 
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Solution. Let us enumerate the degree of the vertices 

Vertices of degree 4 : b – f ′ 

d – c′ 

Vertices of degree 3 : a – a′ 

c – d′ 

Vertices of degree 2 : e – b′ 

f – e′ 

Now the vertices of degree 3, in G are a and c and they are adjacent in G′, while these 

are a′ and 

d′ which are not adjacent in G′. 

Hence the 2-graphs are not isomorphic. 

Problem. For each pair of graphs shown, either label the graphs so as to exhibit an 

isomorphism or explain why the graphs are not isomorphic. 
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Problems. Are the 2-graphs, is given below, is isomorphic ? Give a reason. 
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\ 

Problem. Find whether the following pairs of graphs are isomorphic or not 

 

 

Problem. Consider two graphs G1 and G2 as shown below, show that the graphs G1 

and 

G2 are isomorphic. 

 



SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS- SMTA 1302 UNIT V 
 

22 
 

 

 

 

REPRESENTATION OF GRAPHS 

Although a diagrammatic representation of a graph is very convenient for a visual 

study but this 

is only possible when the number of nodes and edges is reasonably small.Two types 

of representation are given below : 

 

Matrix representation 

The matrix are commonly used to represent graphs for computer processing. The 

advantages of representing the graph in matrix form lies on the fact that many results 

of matrix algebra can be readily 

applied to study the structural properties of graphs from an algebraic point of view. 

There are number of 
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matrices which one can associate witch any graph. We shall discuss adjacency matrix 

and the incidence 

matrix. 

ADJACENCY MATRIX 

 

Representation of undirected graph 

 

The adjacency matrix of a graph G with n vertices and no parallel edges is an n by n 

matrix A = {aij} 

whose elements are given by aij = 

{
1          if there is an edge between 𝑖th and 𝑗th vertices
0         if there is an edge between 𝑖th and 𝑗th vertices 

   

Note that for a given graph, the adjacency matrix is based on ordering chosen for the 

vertices. Hence, there are as many as n ! different adjacency matrices for a graph with 

n vertices, since there are n ! different ordering of n vertices. However, any two such 

adjacency matrices are closely related in that one can be obtained from 

the other by simply interchanging rows and columns. 

There are a number of observations that one can make about the adjacency matrix A 

of a graph G. They are  

 (i) A is symmetric i.e. aij = aji for all i and j 

(ii) The entries along the principal diagonal of A all zeros if and only if the graph has 

no self loops. A self loop at the vertex corresponding to aij = 1. 

 (iii) If the graph is simple (no self loop, no parallel edges), the degree of vertex 

equals the number of 1’s in the corresponding row or column of A. 

(iv) The (i, j) entry of Am is the number of paths of length (no. of occurrence of 

edges) m from vertex vi  to vertex vj. 

(v) If G be a graph with n vertices v1, v2, ...... vn and let A denote the adjacency 

matrix of G with respect to this listing of the vertices. Let B be the matrix and B = A 

+ A2 + A3 + ...... + An – 1 

Then G is a connected graph if B has no zero entries of the main diagonal. 

This result can be also used to check the connectedness of a graph by using its 

adjacency matrix. 

 

Adjacency can also be used to represent undirected graphs with loops and 

multiple edges. A loop at the vertex v1 is represented by a 1 at the (i, j)th position of 

the adjacency matrix. When multiple edges are present, the adjacency matrix is no 

longer a zero-one matrix, since the (i, j)th entry equals the number of edges these are 

associated to {vi – vj}. 
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All undirected graphs, including multigraphs and pseudographs, have symmetric 

adjacency matrices. 

 

 

Representation of directed graph 

 

The adjacency matrix of a diagonal D, with n vertices is the matrix A = {aij}n × n in 

which 

aij = {
1           if arc {𝑣𝑖 –  𝑣𝑗} is in D
0                            otherwise 

 



One can make a number of observations about the adjacency matrix of a diagonal. 

Observations 

(i) A is not necessary symmetric, since there may not be an edges from vi to vj when 

there is an edge from vi to vj. 

(ii) The sum of any column of j of A is equal to the number of arcs directed towards 

vj 

(iii) The sum of entries in row i is equal to the number of arcs directed away from 

vertex vi (out degree of vertex vi) 

(iv) The (i, j) entry of Am is equal to the number of path of length m from vertex vi to 

vertex vj entries of AT. A shows the in degree of the vertices. 

The adjacency matrices can also be used to represent directed multigraphs. Again 

such matrices are not zero-one matrices when there are multiple edges in the same 

direction connecting two vertices. 

In the adjacency matrix for a directed multigraph aij equals the number of edges that 

are associated to (vi, vj). 

 

INCIDENCE MATRIX 

 

Representation of undirected graph 

 

Consider a undirected graph G = (V, E) which has n vertices and m edges all labelled. 

The 

incidence matrix B = {bij}, is then n × m matrix, 

where 𝑏𝑖𝑗 = {
1     𝑤ℎ𝑒𝑛 𝑒𝑑𝑔𝑒 𝑒𝑗  𝑖𝑠 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣𝑖
0                                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

We can make a number of observations about the incidence matrix B of G. 

 

 



 

 (i) Each column of B comprises exactly two unit entries. 

(ii) A row with all 0 entries corresponds to an isolated vertex. 

(iii) A row with a single unit entry corresponds to a pendent vertex. 

(iv) The number of unit entries in row i of B is equal to the degree of the corresponding 

vertex vi. 

(v) The permutation of any two rows (any two columns) of B corresponds to a labelling of the 

vertices (edges) of G. 

(vi) Two graphs are isomorphic if and only if their corresponding incidence matrices differ 

only by a permutation of rows and columns. 

(vii) If G is connected with n vertices then the rank of B is n – 1. 

Incidence matrices can also be used to represent multiple edges and loops. Multiple 

edges are represented in the incidence matrix using columns with identical entries. Since 

these edges are incident with the same pair of vertices. Loops are represented using a column 

with exactly one entry equal to 1, corresponding to the vertex that is incident with this loop. 

 

Representation of directed graph 

 

The incidence matrix B = {bij} of digraph D with n vertices and m edges is the n × m matrix 

in which    ܾ = {  ͳ   ݂݅ ܽݒ ݔ݁ݐݎ݁ݒ ݉ݎ݂ ݕܽݓܽ ݀݁ݐܿ݁ݎ݅݀ ݏ݅ ݆ ܿݎ  −ͳ         ݂݅ ܽݒ ݔ݁ݐݎ݁ݒ ݏ݀ݎܽݓݐ ݀݁ݐܿ݁ݎ݅݀ ݏ݅ ݆ ܿݎͲ                                                             ݐℎ݁݁ݏ݅ݓݎ  

 

Problem 14. Use adjacency matrix to represent the graphs shown in Figure below 

 

 
Solution. We order the vertices in Figure (a) as v1, v2, v3 and v4. 

Since there are four vertices, the adjacency matrix representing the graph will be a square 

matrix of order four. The required adjacency matrix A is  

   
We order the vertices in Figure (b) as v1, v2 and v3. The adjacency matrix representing the 

graph is given by 

   
Taking the order of the vertices in Figure (c) as v1, v2, v3 and v4. The adjacency matrix 

representing the graph is given by 

25
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Problem 15. Draw the undirected graph represented by adjacency matrix A given by 

   
Solution. 

 Since the given matrix is a square of order 5, the graph G has five vertices v1, v2, v3, 

v4 and v5.Draw an edge from vi to vj where aij = 1. 

The required graph is drawn in Figure below. 

    
 

Problem 16. Draw the digraph G corresponding to adjacency matrix 

   
Solution. Since the given matrix is square matrix of order four, the graph G has 4 vertices v1, 

v2, v3 and v4 . Draw an edge from vi to vj where aij = 1. 

The required graph is shown in Figure below. 

   
 

Problem 17. Show that the graphs G and G ′ are isomorphic 
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Solution. Consider the map f : G →G′ defined as f (a) = ݀′, f (b) = ܽ′, f (c) = ܾ′, f (d) = ܿ ′ and  

f (e) = ݁ ′ 
The adjacency matrix of G for the ordering a, b, c, d and e is 

 

   
 

The adjacency matrix of G′  for the ordering  ݀′,  ܽ′,  ܾ′, ܿ ′ and  ݁ ′ is 

 

   
i.e., �ሺ�ሻ = �ሺ�′ሻ 
Therefore � and �′ are isomorphic. 

 

Problem 18. Represent the graph shown in Figure below, with an incidence matrix. 

   
Solution. The incidence matrix is 

    
 

Problem 19. Represent the Pseudo graph shown in Figure below, using an incidence matrix. 
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Solution. The incidence matrix for this graph is  

 

    
 

Problem 20.  Find the incidence matrix to represent the graph shown in Figure below : 

 

    
Solution.  

The incidence matrix of Figure (a) is obtained by entering for row v and column e is 1 

if e is incident on v and 0 otherwise. The incidence matrix is 

    
The incidence matrix of the graph of Figure (b) is 

    
 

Problems for practice 

 

1.  Draw the undirected graph G corresponding to adjacency matrix 
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WALKS, PATHS AND CYCLES 

Definition  

 A walk in G is a sequence of vertices ݒ, ,ଵݒ  . . . , ݒ and a sequence of edgesሺݒ , ଵ+ଵሻݒ  ∈  ሻ. A walk is a path ifܩሺ ܧ 

all ݒ are distinct. ݒ is the initial vertex and ݒ is the terminal vertex. A zero length walk is just a single vertex ݒ. If for such a 

path with ݇   ʹ, ሺݒ, ,ݒ ሻis also an edge in G, thenݒ  ,ଵݒ . . ., ݒ ,   is a cycle. For multigraphs, we also consider loops andݒ

pairs of multiple edges to be cycles. 

Definition  

 The length of a path, cycle or walk is the number of edges in it. 

Example  

 

Proposition: Every walk from u to v in G contains a path between u and v. 

Proof. 

 By induction on the length l of the walk ݑ = ,ݑ ,ଵݑ . . . , ݒ = = ݈ If.ݒ  ͳ then our walk is also a path. Otherwise, if our 

walk is not a path there is ݑ = > ݅ withݑ  ݆, then ݑ = ,ݑ ,ଵݑ ݑ , ,+ଵݑ  is also a walk from u to v which is shorter. We can ݒ

use induction to conclude the proof. 

 

Proposition: Every G with minimum degree �  ʹ  contains a path of length � and a cycle of length at least  � + ͳ. 

Proof. Let ݒଵ, ,ଶݒ  . . . , ,ଵݒ   belong toݒ  be a longest path in G. Then all neighbors ofݒ ,ଶݒ . . . , ݇ −ଵsoݒ − ͳ  � and ݇  � +ͳ, and our path has at least � edges. Let ݅ ሺͳ  ݅  ݇ሻbe the minimum index such that ሺݒ , ሻݒ  ∈ ,ଵݒ are amongݒ ሻ. Then the neighbors ofܩሺ ܧ  ,ଶݒ  . . . , ݇ −ଵ, soݒ −  ݅  �. Then ݒ , ,+ଵݒ  . . . , �  is a cycle of length at leastݒ + ͳ. 

 

TREES 

Definition: 
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 A graph having no cycle is acyclic. A tree is a connected acyclic graph. A leaf (or pendant vertex ) is a vertex of degree 

1. A forest is an acyclic graph. A tree is a connected forest. A subforest is a subgraph of a forest. A connected subgraph of a tree 

is a subtree. A spanning tree of a connected graph is a subtree that includes all the vertices of that graph. The edges of a spanning 

tree are called branches. 

Example: 

 

Lemma: Every finite tree with at least two vertices has at least two leaves. Deleting a leaf from an n-vertex tree produces a tree 

with ݊ − ͳ vertices. 

Proof. 

 Every connected graph with at least two vertices has an edge. In an acyclic graph, the end points of a maximum path 

have only one neighbor on the path and therefore have degree 1.Hence the endpoints of a maximum path provide the two desired 

leaves. 

 

 Suppose v is a leaf of a tree G, and let ܩ ′ = ܩ − ,ݑ If .ݒ ∋ ݓ  �ሺܩ ′ሻ, then no u, w-path P in G can pass through the 

vertex v of degree 1, so P is also present in ܩ ′. Hence ܩ ′ is connected. Since deleting a vertex cannot create a cycle, ܩ ′ is also 

acyclic. We conclude that ܩ ′ is a tree with ݊ −  ͳvertices. 

Theorem: For an n-vertex simple graph G (with ݊   ͳ), the following are equivalent (and characterize the trees with n vertices). 

(a) G is connected and has no cycles. 

(b) G is connected and has ݊ −  ͳ edges. 

(c) G has ݊ −  ͳ edges and no cycles. 

(d) For every pair ݑ, ∋ ݒ  � ሺܩሻ, there is exactly one ݑ, ݒ − path in G. 

 To prove this theorem we will need a small lemma. 

Definition: An edge of a graph is a cut-edge if its deletion disconnects the graph. 

Lemma: An edge contained in a cycle is not a cut-edge. 

Proof of the lemma: 

 Let ሺݑ,  .ሻ belong to a cycleݒ
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Then any path ݔ … ,ݑin G which uses the edge ሺ ݕ  ܩ ሻ can be extended to a walk inݒ − ሺݑ,  :ሻ asfollowsݒ

 

Proof of Theorem: 

 We first demonstrate the equivalence of (a), (b), (c) by proving that any two of {connected, acyclic, ݊ −  ͳ edges} 

implies the third. 

 (a) ⇒ (b), (c): We use induction on n. For n = 1, an acyclic 1-vertex graph has no edge. For the induction step, suppose 

n > 1, and suppose the implication holds for graphs with fewer than n vertices. Given G, the Lemma provides a leaf v and states 

that ܩ ′ = ܩ − ܩ is acyclic and connected. Applying the induction hypothesis to ݒ ′yields ݁ሺܩ ′ሻ  =  ݊ −  ʹ, and hence݁ሺܩሻ  = ݊ −  ͳ. 

 (b) ⇒ (a), (c): Delete edges from cycles of G one by one until the resulting graph ܩ ′ is acyclic. By Lemma, G is 

connected. By the paragraph above, ܩ ′ has ݊ −  ͳ edges. Since this equals|ܧሺܩሻ|, no edges were deleted, and G itself is acyclic. 

 (c) ⇒ (a), (b): Suppose G has k components with orders ݊ଵ, .  .  . ݊.  Since G has no cycles, each component satisfies 

property (a), and by the first paragraph the ith component has ݊  −  ͳ edges. Summing this over all components yields ݁ሺܩሻ = ∑ሺ݊ − ͳሻ = ݊ − ݇. We are given ݁ሺܩሻ =  ݊ − ͳ, so ݇ =  ͳ, and G is connected. 

 (a) ⇒ (d): Since G is connected, G has at least one ݑ, ݒ −path for each pair ݑ, ∋ ݒ  � ሺܩሻ. SupposeG has distinct ݑ, ݒ −paths P and Q. Let ݁ =  ሺݔ,  ሻ be an edge in P but not in Q. The concatenation of P with the reverse of Q is a closed walkݕ

in which e appears exactly once. Hence, ሺܲ   ܳሻ  −  ݁ is an ݔ, ݕ −walk not containing e. Thus we have a cycle with e and 

contradicts the hypothesis that G is acyclic. Hence G has exactly one ݑ, ݒ −path. 

 

 (d) ⇒ (a): If there is a u; v-path for every u; v   V (G), then G is connected. If G has a cycle C, then G has two paths 

between any pair of vertices on C. 

Definition: 

 Given a connected graph G, a spanning tree T is a subgraph of G which is a tree and contains every vertex of G. 

Corollary: 

(a) Every connected graph on n vertices has at least ݊ −  ͳ edges and contains a spanning tree; 

(b) Every edge of a tree is a cut-edge; 

(c) Adding an edge to a tree creates exactly one cycle. 

Proof. 

 (a) Delete edges from cycles of G one by one until the resulting graph G0 is acyclic. By Lemma, G is connected. The 

resulting graph is acylic so it is a tree. Therefore G had at least ݊ −  ͳedges and contains a spanning tree. 

 (b) Note that deleting an edge from a tree T on n vertices leaves ݊ −  ʹ edges, so the graph is disconnected by (a). 
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2. Use an adjacency matrix to represent the graph shown in Figure below 

   
3. Draw a graph with the adjacency matrix  
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Definition: 

 A (connected) component of G is a connected subgraph that is maximal by inclusion. We say G is connected if and 

only if it has one connected component. The graph G which is given below has 4 connected components. 

 

Proposition: A graph with n vertices and m edges has at least ݊ −  ݉ connected components. 

Proof. 

 Start with the empty graph (which has n components), and add edges one-by-one. Note that adding an edge can 

decrease the number of components by at most 1. 

Definition: (Vertex connectivity) 

 A vertex cut in a connected graph ܩ =  ሺ�, ⊇ ܵ  ሻ is a setܧ  �  such that ܩ \ ܵ =  has more than one [ܵ \ �]ܩ 

connected component. A cut vertex is a vertex v such that {ݒ}is a cut. 

Definition: 

 G is called k-connected if |�ሺܩሻ| > ݇ and if ܩ \� is connected for every set � ⊆  �with |�| < ݇|. In other words, no 

two vertices of G are separated by fewer than k other vertices. Every (non-empty) graph is 0-connected and the 1-connected 

graphs are precisely the non-trivial connected graphs. The greatest integer k such that G is ݇ − connected is the connectivity ݇ሺܩሻof G. For example, if ܩ =  ��, then ݇ሺܩሻ = ݊ − ͳ. In the below example, deleting v disconnects G, so v is a cut vertex. 

 

 

Proposition: For every graph G, ݇ሺܩሻ  �ሺܩሻ. 
 

Proof. 

 Let ݒ ∈  �ሺܩሻ be a vertex of minimum degree ݀ሺݒሻ  =  � ሺܩሻ. Then deleting N(v) disconnects v from the rest of G. 

Definition: (Edge connectivity) 

 A disconnecting set of edges is a set ܵ ⊆ ,ܵ has more than one component. Givenܨ \ ܩ ሻ such thatܩሺܧ ܶ ⊆ �ሺܩሻ  the 

notation [S, T] specifies the set of edges having one end point in S and the other in T. An edge cut is an edge set of the form        

[S, ܵ̅ ], where S is a non-empty proper subset of V (G). A graph is k-edge-connected if every disconnecting set has at least k 
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edges. The edge-connectivity of G, written ݇′ሺܩሻ, is the minimum size of a disconnecting set. One edge disconnecting G is called 

a bridge. For example, if ܩ =  ��, then ݇′ሺܩሻ = ݊ − ͳ. 
 

Remark: An edge cut is a disconnecting set but not the other way around. However, everyminimal disconnecting set is a cut. 

Theorem:݇ሺܩሻ  ݇′ሺܩሻ  �ሺܩሻ. 

Proof. 

 The edges incident to a vertex v of minimum degree, form a disconnecting set, hence ݇′ሺܩሻ  �ሺܩሻ. It remains to show 

that ݇ሺܩሻ  ݇′ሺܩሻ. Suppose|ܩ| > ͳ and [S, S] is a minimum edge cut, having size ݇′ሺܩሻ. 

 If every vertex of S is adjacent to every vertex of ܵ̅ and |ܩ| = |�ሺܩሻ| = ݊, then ݇′ሺܩሻ = |ܵ||ܵ̅| = |ܵ|ሺ|ܩ| − |ܵ|ሻ. This 

expression is minimized at |ܵ| = ͳ. By definition,݇ሺܩሻ  |ܩ| − ͳ, so the inequality holds. 

 

 Hence we may assume there exists ݔ ∈ ∋ ݕ ,ܵ   ܵ̅ with x not adjacent to y. Let T be the vertex set consisting of all 

neighbors of x in S and all vertices of ܵ\ ݔ that have neighbours in S (illustrated below). Deleting T destroys all the edges in the 

cut [S, S] (but does not delete x or y), so T is a separating set. Now, by the definition of T we can injectively associate at least one 

edge of [S,ܵ̅ ] to each vertex in T, so .݇ሺܩሻ  |ܶ|  |[ܵ, ܵ̅]| = ݇′ሺܩሻ. 

Definition: Two paths are internally disjoint if neither contains a non-endpoint vertex of the other. We denote the length of the 

shortest path from u to v (the distance from u to v) by d(u, v). 

Theorem: (Whitney 1932).A graph G having at least three vertices is 2-connected if and only if each pair ݑ, ∋ ݒ  �ሺܩሻ is 

connected by a pair of internally disjoint ݑ, ݒ − paths in G. 

Proof. 

 When G has internally disjoint ݑ, ݒ −paths, deletion of one vertex cannot separate u from v. Since this is given for 

every ݑ, ,ݑthe condition is sufficient. For the converse, suppose that G is2-connected. We prove by induction on ݀ሺ ,ݒ  ሻ that Gݒ

has two internally disjoint u, v paths. When ݀ሺݑ, ሻݒ  =  ͳ, the graph ܩ \ ሺݑ, ሻܩሻ is connected, since ݇′ሺݒ  ݇ሺܩሻ = ʹ. A ݑ, ݒ − path in ܩ \ ሺݑ, ,ݑ ሻ is internally disjoint in G from theݒ ݒ −path consisting of the edge ሺݑ,  .ሻ itselfݒ

 

SATHYABAMA UNIVERSITY, SMT1203, DISCRETE MATHEMATICS & NUMERICAL METHODS, UNIT 3

34



 For the induction step, we consider ݀ሺݑ, ሻݒ  =  ݇ >  ͳ and assume that G has internally disjoint ݔ, ݕ −paths whenever ͳ  ݀ሺݔ, ሻݕ  ݇. Let w be the vertex before v on a shortest ݑ, ݒ −path. We have ݀ሺݑ, ሻݓ =  ݇ −  ͳ, and hence by the induction 

hypothesis G has internally disjoint ݑ, ݓ − paths P andQ. Since ݓ \ ܩ is connected, ݓ \ ܩ contains a ݑ, ݒ −path R. If this path 

avoids P or Q, we are finished, but R may share internal vertices with both P and Q. Let x be the last vertex of R belonging 

to ܲ   ܳ. Without loss of generality, we may assume, ݔ ∈  ܲ. We combine the ݑ, ݔ −subpath of P with the ݔ, ݒ −subpath of R 

to obtain a ݑ, ݒ −path internally disjoint from ܳ  {ሺݓ,  .{ሻݒ

Corollary: G is 2-connected and|�ሺܩሻ|  ͵ if and only if every two vertices in G lie on a common cycle. 

EULERIAN AND HAMILTONIAN PATHS 

 

Definition: A trail is a walk with no repeated edges. 

 

Definition: An Eulerian trail in a graph ܩ =  ሺ�,  ሻ is a walk in G passing through every edge exactly once. If this walk is closedܧ

(starts and ends at the same vertex) it is called an Eulerian tour. 

 

Theorem: A connected graph has an Eulerian tour if and only if each vertex has even degree. 

In order to prove this theorem we use the following lemma. 

 

Lemma: Every maximal trail in  a graph where all the vertices have even degree is a closed trail. 

 

Proof. 

 Let T be a maximal trail. If T is not closed, then T has an odd number of edges incident to the final vertex v. However, 

as v has even degree, there is an edge incident to v that is not in T. This edge can be used to extend T to a longer trail, 

contradicting the maximality of T. 

 

Proof of Theorem  

 To see that the condition is necessary, suppose G has an Eulerian tour C. If a vertex v was visited k times in the tour C, 

then each visit used 2 edges incident to v (one in comingedge and one outgoing edge). Thus, ݀ሺݒሻ  =  ʹ݇, which is even. 

 

 To see that the condition is sufficient, let G be a connected graph with even degrees. Let ܶ = ݁ଵ݁ଶ. . . ݁ (where ݁ = ሺݒ−ଵ, ݒ ,ሻሻbe a longest trail in G. Then, by Lemma, T is closed, that isݒ =  . If T does not include all the edges of Gݒ

then, since G is connected, there is an edge outside of T such that ݁ =  ሺݑ, ܶ                                 in T. But thenݒ ሻ for some vertexݒ ′ = ݁݁+ଵ … ݁݁ଵ݁ଶ … ݁ is a trail in G which is longer than T, contradicting the fact that T is a longest trail in G. Thus, we 

conclude that T includes all the edges of G and so it is an Eulerian tour. 

 

HAMILTON PATHS AND CYCLES 

 

Definition: A Hamilton path/cycle in a graph G is a path/cycle visiting every vertex of G exactly once. A graph G is called 

Hamiltonian if it contains a Hamilton cycle. 

 

 Hamilton cycles were introduced by Kirkman in 1985, and were named after Sir William Hamilton, who produced a 

puzzle whose goal was to find a Hamilton cycle in a specific graph. 

 

 

Example: Hamilton cycle in the skeleton of the 3-dimensional cube. 
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Proposition 5.3. 

Theorem: If G is Hamiltonian then for any set ܵ ⊆ �ሺܩሻ  the graph ܩ \ ܵhas at most |ܵ|connected components. 

Proof. 

 Let �ଵ, �ଶ, … , � be the components of ܩ \ ܵ. Imagine that we are moving along a Hamilton cycle in some order, 

vertex-by-vertex (in the picture below, we are moving clockwise, starting from some vertex in �ଵ, say). We must visit each 

component of ܩ \ ܵat least once, when we leave� forthe first time, let ݒ be the subsequent vertex visited (which must be in S). 

Each ݒ must be distinct because a cycle cannot intersect itself. Hence, S must have at least as many vertices as the number of 

connected components of ܩ \ ܵ. 

 
Example: 

 The condition in Proposition is not sufficient to ensure that a graph is Hamiltonian. The graph G above satisfies the 

condition of Proposition, but is not Hamiltonian. Indeed, one would need to include all the edges incident to the vertices ݒଵ, ݒଶ 

and ݒଷ in a Hamiltoncycle of G, however, in that case the vertex u would have degree at least 3 in that Hamilton cycle, which is 

impossible. We also give some sufficient conditions for Hamiltonicity. 

 
 

Theorem: (Dirac 1952). If G is a simple graph with ݊   ͵ vertices and if �ሺܩሻ   �ଶ, then G 

is Hamiltonian. 

Proof. 

 The condition that ݊   ͵ must be included since �ଶ is not Hamiltonian but satisfies �ሺܩሻ = |�2|ଶ . If there is a non-

Hamiltonian graph satisfying the hypotheses, then adding edges cannot reduce the minimum degree, so we may restrict our 

attention to maximal non-Hamiltonian graphs G with minimum degree at least 
�ଶ. By “maximal" we mean that for every pair ሺݑ, = ݁ ሻ of non-adjacent vertices of G, the graph obtained from G by adding the edgeݒ  ሺݑ,  .ሻ is Hamiltonianݒ

 The maximality of G implies that G has a Hamilton path, say from ݑ = ݒ ଵ,   toݒ =  because every Hamilton cycle   ,�ݒ

in  ܩ {݁} must contain the new edge e. We use most of this path ݒଵ, ,ଶݒ  . . . ,  with a small switch, to obtain a Hamilton cycle in�ݒ

G. If some neighbor of u immediately follows a neighbor of v on the path, say (u; vi+1)   E(G) and (v; vi)   E(G), then G has 

the Hamilton cycleሺݑ, ,+ଵݒ ,+ଶݒ . . . , ,ଵ−�ݒ ,ݒ ݒ , ,−ଵݒ … ,   .ଶሻ shown belowݒ

 To prove that such a cycle exists, we show that there is a common index in the sets S and T defined by                 ܵ ={݅: ሺݑ, +ଵݒ ∈ =ሻ} and Tܩሺܧ {݅: ሺݒ, ݒ ∈ ܵ|ሻ}. Summing the sizes of these sets, yieldsܩሺܧ  ܶ| + |ܵ ת ܶ| = |ܵ| + |ܶ| = ݀ሺݑሻ  + ݀ሺݒሻ  ݊. Neither S nor T contains the index n. This implies that |ܵ  ܶ| < ݊, and hence |ܵ ת ܶ|  ͳ, as required. This is a 

contradiction. 

 

 It can be observed that this argument uses only that ݀ሺݑሻ  +  ݀ሺݒሻ  ݊. Therefore, we can weaken the requirement of 

minimum degree 
�ଶ to require only that ݀ሺݑሻ  +  ݀ሺݒሻ  ݊ whenever u is not adjacent to v. 
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 (c) Let ݑ, ∋ ݒ  ܶ.  There is a unique path in T between u and v, so adding an edge ሺݑ,  ሻ closes this path to a uniqueݒ

cycle. 

 

Theorem: A connected graph has at least one spanning tree.  

Proof. 

 Consider the connected graph G with n vertices and m edges. If ݉ =  ݊ −  ͳ, then G is a tree. Since G is connected, ݉   ݊ –  ͳ. We still have to consider the case ݉   ݊, where there is a circuit in G. We remove an edge e from that circuit. G − 
e is now connected. We repeat until there are ݊ −  ͳ edges. Then, we are left with a tree.  

Theorem: If a tree is not trivial, then there are at least two pendant vertices.  

Proof. 

 If a tree has n ≥2 vertices, then the sum of the degrees is 2(n − 1). If every vertex has a degree ≥ 2, then the sum will be   ʹ݊. On the other hand, if all but one vertex have degree ≥ 2, then the sum would be   ͳ +  ʹሺ݊ −  ͳሻ  =  ʹ݊ –  ͳ. This is 

because a cut vertex of a tree is not a pendant vertex. A forest with k components is sometimes called a k-tree. (So a 1-tree is a 

tree.) 

Theorem (Cayley’s Formula). There are ݊�−ଶtrees with vertex set n. 

Question: What is the number of spanning trees in a labeled complete graph on n vertices?  

By Cayley’s formula, it is ݊�−ଶ.  

Example: 

 

Theorem: If G is a tree, then the number of edges in G= ݊ –  ͳ. 

Proof. 

 Let us denote the number of edges in G by m. By induction on n, when n =  ͳ, G is isomorphic to �ଵ and so the number 

of edges in G is  ݉ = Ͳ =  ݊ –  ͳ. Suppose the theorem is true for all trees on fewer than v vertices and let G be a tree on ݊  ʹ 

vertices. Let ሺݑ, ሻݒ ∈ ܩ ሻ, thenܩሺܧ − ሺݑ, ,ݑ ሻ contains noݒ ݒ − path, since ሺݑ, ,ݑ ሻ is the uniqueݒ ݒ − path in G. Thus ܩ − ሺݑ,  ሻݒ

is disconnected so �ሺܩ − ሻݒݑ = ʹ.The components ܩଵ and ܩଶ of ܩ − ሺݑ,  ሻ, being acyclic are trees. Moreover, each has fewerݒ

than n vertices. Therefore by induction hypothesis, Eሺܩሻ = �ሺܩሻ –  ͳ, for ݅ = ͳ, ʹ. Thusܧሺܩሻ = ሻܩሺܧ + ሻܩሺܧ + ͳ = �ሺܩଵሻ + �ሺܩଶሻ +  ͳ = �ሺܩሻ − ͳ = ݊ − ͳ. 
CONNECTIVITY 

Definition: 

 A graph G is connected if, for all pairs ݑ, ∋ ݒ  �ሺܩ ′ሻ, there is a path in G from u to v.  

Note that it suffices for there to be a walk from u to v, by Proposition  
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Definition: The left (right) subtree of a vertex v in a binary tree is the binary subtree spanning the left (right)-child of v and all of 

its descendants. 

 

Theorem: The complete binary tree of height ℎ has ʹℎ+ଵ − ͳ vertices. 

 

Corollary: Every binary tree of height h has at most ʹℎ+ଵ − ͳvertices. 

 Expression Trees 

  An expression tree is a special type of a binary tree that represents an algebraic expression in such a way that 

stores its structure and shows how the order of operations applies. This is a very important type of a tree in computer science. 

We're interested in a few different operators. We break these operators down into two categories: 

 Binary Operators - operators that take two inputs 

o +  

o - (here, subtraction) 

o * 

o / (both integer and floating-point division) 

o % (modulus) 

o ^ or ** (exponentiation) 

 

 Unary Operators - operators that take one input 

o - (here, negation) 

 Note that we don't mention parentheses. The expression tree's structure removes the need to talk about parentheses, as 

the structure encodes precedence.  

 

 When we have a single expression based on a binary operator, we draw the expression tree as follows: 

 The operator is the root of the tree. 

 The operands are the children. Because some operations are not commutative, order does matter. The operand before 

the operator is the left child and the operand after the operator is the right child. Thus, we get a tree with a root and two 

children. For example see figure (a). 

 

 When we have a single expression based on a unary operator, we draw the expression tree as follows: 

 The operator is the root of the tree. 

 The operand is the child. 

 

 Thus, we get a tree with a root and one child. (It's really more of a linear structure than a tree, but it does fit the 

definition of a tree. We'll find that these kinds of trees are interesting when we join them together as part of more complicated 

expressions.) The Expression tree for –a is in figure (e). Note that we could treat negation as multiplication by -1 and eliminate 

the need for unary trees if we'd like to have all nodes in our tree having exactly 2 children (or no child). When we wish to work 

with more complicated expressions, we invoke the recursive nature of binary trees. When an operand is an expression rather than 

a single variable or constant, we simply put the expression tree for that expression in lieu of theoperand. Figures (b), (c) and (d) 

are examples of such expression trees. 
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