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UNIT- I

Complex Variables

Introduction to Complex Numbers

A general form of a complex number is z = x + iy when x and y are

real and i = /-1 . Here x is called the real part and y is the imaginary
part of z. . | |

A conjugate of a cumpléx number z is z =x —iy. Then

z+z = 2x = 36=%[z+3]

| i TR
zZ—-z 2iy = y=2—;[z—-z]

zz = (x+iy)(x—iy) = x2+2
The complex number z = x + iy can be represented by a point (x, y)
in a complex plane. The modulus (absolute value) of z is given by

2] = x2+)2

The distance between the points z; and z, is |z, —z, |-

If z; = x| + iy, and z, =x, + iy, then the distance
zZy 3’-'.2 = |zy—2z,|

= |Gty —(x, - iy7) }

= 1O =x)+i(y—»,)]

Polar form of a complex number : Let the polar coordinates of the
point (x, y) be (», 0), then

z = x+iy=r[cosO+isin@] = r ei®
X = rcos9, y=rsinb
Squaring and adding, we get
x2+y2 = r2



Sor = '\f::r:2+ly2

Dividing the above results, we get

6 = t.an‘l (i‘)

The number r is called the modulus value of z and © is called the
amplitude (argument) of the complex number z.
Euler’s Formula
We know ein® = cos n@+ isin'nd
Demoivre’s tﬁeoram for positive mteger, -
(cos ©+isinB)? = cos n6 + i sin nd-

Note : e~ "9 =cos (n6)—isin (n6)

Functions of a Complex Variable

Letz =x +iyand @ =u + iv. If z and o are two complex variables .
and if for each value of z in a complex plane there corresponds one or
more values of @, then @ is called to be a function of z.

u+iv = ux,y)+ ivi,y).

We can write o = f(z2)
Here u and v are real functions of the: real variables x and y.
For example  f(z) = 22

= @) +iRxy) .
Singled Valued Function

A function f(z) is called a single valued function of z if for each value
of z in the domain R, there is only one value of .

~For example, f(z) = z3,§

f(2) - 72 + 1

If there is more than one value of @ corresponding to a given value of
z, then f(z) is called multiple-valued function.

For example, f(z) = zl"‘*, Nz



We can represent z = x + iy and ® = » + iv on separate complex
planes called z-plane and w-plane respectively. The relation ® = f(2)
gives the correspondence between the points (x, y) of the z-plane and the
points (u, v) of the ®-plane.

Limits : Let z = x+iy
| Let zg = Xogt+ iy
Lt _ Lt _
z > z, 0 = z— 2, f(Z)— @
Lt _ Lt : i s :
oy f@ = 5w w) [ f@)=u+iv]
_ Lt O .
T risk (u+w} ug+ivg
Y=Y
In symbols, we write
Lt _
E.—?"EO f(z) B l
~ Continuity of f(7) :
A function f(2) is said to be continuous at z =z if o
Lt _ |
2>z, f(2) - f(z)-

~ If f(2) is continuous in any region R of the z-plane, if it is continuous
at every point of that region.

Derivatives of f(z7) -

Let ® = f(z)-be a single-valued function of the variable z. The
derivative of f(z) is defined as

d + Az) —

d_(; = f'(2) = aino [ﬂz ;2 ﬂz)} if limits exists.
Partial derivative of u :

Ou _ Lt |uxt+Ax,y)-ulx,y)

Ox  Ax—0 | Ax | '

Ou _ Lt | uby+Ay)—u(x,y)

oy Ay—>0 | Ay |




Analytic Functions

A single valued function f(z) which possesses a unique derivative
with respect to z at all points of a region R is called an analytic function.
It is also called a Regular function or Holomorphic function.

Singular Point : A point at which an analytic function f(z) ceases to
possess a derivative is called a singular point of the furiction or singularity
of f(2). | :

The necessary and sufficient conditions for the derivative of the
function f(z).

_ ou Ou Ov | ov o s : - :
(i) dx’ Dy’ 0x’ Oy are continuous functions of x and y in the

region R.
o du_ov . du_ ov .
(i) ax Oy and dy ~ ox (C-R equations).

Derivation of Cauchy-Reimann Equations
(Necessary condition for a function f(2) to be analytic)

Let us assume that f(z) = u + iv is analytic in a région R of the z-
plane.

i.e., f(z) has a derivative everywhere in the region R.

Lt [f(z +AZ)—f(@)]

f(z) T Az 0 Az
Weknow z=x +iy, Az=Ax+iAy.

Az approaches to zero along any path in R.
i

jma

We can write f'(z) as below :

- 1t [ulx+Ax,y+Ay)+iv(x+Ax,y+Ay)]
@ = [u@ ) *ivep)] D

Ay—>0 Ax +1Ay

O




Now we choose the path BCA.Let Ay — 0, first and then Ax — 0.
[Az = Ax]

.. The above equation (1) becomes

, Lt [u(x+£x_£)+rv(x+ﬁx y)]——J:u(x Z)+:v(xm
J'(2) T A0 | - Ax

Lt u(x+Ax,y)— H(xJ) Lt vix+Ax,y)—v(x,y)
Ax—0 Ax ﬂ:c -0

f@) =gt | e

Secondly we choose the path BDA. Let Ax— 0 first and then
Ay— 0. (Az =iAy). '

Therefore, the equation (1) becomes,

fry = Lt LMLy +AY)+ivee,y + AY)] - [uGe, ) +iv(, )]

Ay—0 IAy.
_1 ul,y +Ay)—u(x,y) Lt v(x,y +Az)-v(x y)
I é.y—:-{} Ay ﬂy—}ﬂ y *
g = _ 2%, O
f'(z2) = ay + 3y . ... (3)
From (2) and (3), we have
ou  ov_ v ou
dx ' ox ay‘ 8y
Equating real and imaginary parts,
ou _ v . du_ v /
ox oy W 5= -5 - ()

The above equation (4) are called Cauchy-Riemann’s equations.

The CR-equations can also be written as

u, = Vy
Hy = = Vi




Note : Tl oA
(i) To check the given function is analytic or not, we can use the CR
equations. - - -

(ii) To find the derivative of f(z), we can use
f@@) = utiv

ou , . Ov
f'@ = ax ! ox

(i) To find f(z) or f'(z) in terms of z, we can substitute x =z and
y = 0 on both sides.
(iv) Recall the following formulae :
sin(ix) = isinhx
cos (ix) = coshx
sm(0) = 0, cos(0) =1
sinh(0) = 0, cosh(0)=1

d .
75 (sinx) = cosx,

d

E(nusx) = —sh}x

d
E(sinhx) = +coshx

%(cosﬁx) = +sinhx
sin (x +y) -= sin (x) cos (y) + cos (x) sin (y)

cos(x +y) = cosx cosy—sinx siny

Example 1 | Prove that f(z) = z? is an analptic function.

Solution : Given:  f(z) = z2
= (x +iy)
= x2+i2)2+2ixy
= x2-p24i2xy
u = xt-y v = 2xy
ou _ o _
ax ¥ ox 2V
o _ o _
y -2y " 2x
Ou dv
Here x .
-
Oy ~ Ox

C.R. equations are satisfied.
~. f(2) is analytic function.



Test the analyticity of f (z) = e%

Solution : Given: e? = eg**y
= e*[cosy+isiny]

= e*cosy +ie*siny

Here u = e*cosy | v = e*siny

ou ov

, ———= = X e — X a1
P e*cosy P e* siny
ou ov
— e wX al —_— = X
3 e* sin y dy e* cos y

Jou _ v ou_ v

- Ox oy an oy - Ox

". f(z) = e? 1s analytic function.

Test whether the function f(z) = cos z is analytic or

.not, -

 Solution : Given: f(z) = cosz |
= co0s (x +iy) ».
= cos (x) cos (iy) —sin (x) sin (iy)
= cos (x) cosh y —sin (x) i sinh y I

= cosx coshy + i (—sin x sinh y)

He;e | 'u = .CcO$ x coshy v = —sinx sinhy
% = —sinx coshy % = —COSX SiIlﬂy
g—; = cosx sinh y ":%}E = —sinx coshy
Here '2_;' = g'_; and %z“%

. f(z) = cos z is analytic function.
Discuss the analyticity of f (z) = log z.

1
Solution : We know logz = 5 log (2 +y%) + itan™ (i)



1
— = 2 — o=l [ £
U zlog(x +32) v tan (x)
Ou _ _x ov _ 1 -y
Ox x2 + 2 ox Y (xz)
: 1+( )
X
Ou _ _y _ Y
oy — x2+)? O x2+y?
21 (1)
oy 2 "\ x
4 1+(Z
x
3 X
T x24y2
{
u _ ov
Ox Oy
Ou . Ov
oy - Ox

~ The partial derivatives are continuous except at.x = 0, y = 0. CR
equations are satisfied.

Its derivative is

o\ _ Qu, v
f(z)_6x+ ax

(xuyz% (75)

_ (x iy)
2+y2 1y)(x+1y)
1

x +iy

|

l
z

Hence f(z) = Iog z is .analytic everywhere except at z = 0, (at the
orlgm)

Example 5 | Prove that f (z) =sin z is analytic functmn and hence
find the derwatwe. - '
Solution : Given : f(2)

sinz = sin(x +iy)

|

sin (x + iy)



sin (x) cos (iy) + cos x sin (iy)

sin x cosh y + i cosx sinh y

- u = sinxcoshy vy = cosxsinhy
ou ov s
5y _ COSX cosh y 5 _ —Smx smhy
Ou S v _
dy sin x sinh y 3y cos x cosh y
Here CR equations are satisfied.
ou . Bv

Consider f'(2) = 7, + 15y

f'(z2) = cosx coshy +i (—sinx sinhy)
To find f'(z) in terms of z, let us substitute x = z and y = 0 on both
sides, '
f'(z) = cosz-1 + i(—sinz -0)
f'(z) = C0S2Z
Note : Here after we can use this method to find f(z) or f'(z) by‘
substituting x =z and y = 0. :

‘ Examﬁle 6 | Prove that f(z) =23 is analytic function.

3

Solution : Given : f(z) = 27
I = (x +iy)®
= x3+3x2 fy+3x(fy)2+(iy)3
= (3-3x2)+iBx%y-y3).
x3 -3 x)? v = 3x2y;y3

u. —
ou ov
EM 3x | 3 y2 P 6xy
ou | ov
— _ _— = 2 —
By 6xy dy - 3x2-3y~%

. CR equations are satisfied.

Hence f(z) is an analytic function.



10

| Example 7| Show that f(z) = | z |2 is differentiable only at the
origin. | -

Solution : Given: f(z) = |z|?
| = x24)2 [ |zP=zZ =x2+)?]
S.u = xz"l"yz, v = 0
ou ov |
ox 2% ox 0;
au' ov
oy ~ %Y ay =0

‘Here CR equations are satisfied only when x = 0 and y =0.

Note that CR equations. are not satisfied for other values. Thus
f (z) = | z |? is differentiable only at the origin.

Prove that sin (x — iy) is not analytic.
Solution : f(2) = sin (x —iy)

= sinx coshy—:cosx sinh y

u = sinx coshy y = —cosxsinhy
U, = cosx coshy vV, = sinx sinhy
u, = sinx sinhy v, = —cosx coshy
CR equations are not satisfied.
. f(z) 1s not analytic.

| Example 9] Prove that f(z) = €% s analytic and find ifs

derivative.

Solution : Given: f(z) = e22
= el (x tiy) = g2x piy

= eXX[cos2y+isin2y]
= eXcos2y+ieXsin2y

u = 2e**cosy v = eXsin2y
ou | ov
QU - oy OV 5 2k

™ 2e“*cosly | P 2e“*sm22y
0 0
—a;f_ = —2¢25in2y —a; = 2e%cos2y
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ax oy Moy Tox
CR equations are satisfied.

: Jdu = .0

Consider f'(z) = 6_;:+ f—a;v

= (2eXcos2y)+i(2e*sin2y)
Put x =z and y =0 on both sides,

flz) = 2e2z
| Example 10 | Prove that Edg [ sin z | = cos z by using complex
variables. | o
Solution : Given : f(z) = sin(z)
= sin (x +iy)

= sin (x) cos (iy) + cos x sin (iy)
= sinx coshy +icosx sinhy

u = sinx coshy vy = cosxsinhy

ou ov

o cos x cosh y 5y _ —Smx sinh y
ou _ . v _

dy sin x sinh y, Ay cos x cosh y

. CR equations are satisfied.

‘Consider  f'(z) = —gxﬁ + i %

= cosx coshy + i(—sinx sinhy)
Put x =z and y =0, we get |

f'(z) = cosz
d
" —%Q = %(sinz) = COSZ

Example 11 | Prove that e* [ cos. y + isiny ] is an analytic

furiction. (or) Prove that e is an analytic function and hence find Us
derivative. -

Solution : Given : f(z)

ez = ex Tiy .

eX eV

= e*[cosy tisiny ]
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Here u = e*cosy v = e*siny
ax e* cos i * sin
- y oy ~ €siny
Ox Ox
0 _ ov
5}% = —e*siny Ey_ = e*cosy
- CR equations are satisfied.
ou Ov
/ = —_— 4 ] —
We know f'(2) 5% T 15y
= e*cosy + ie*siny ... (1)
= e*[cosy+isiny]
= eXelV = gxtiy
f@) = et

Note : Here we can also use x

=z, and y =01in (1) to get f'(z) = e=.

Example 12 | Test whether f(z) = cosh z is analytic or not.

Solution : Given: f(z) =
u = coshx cosy
\ . Ou . =
P smh x cos y
du
3y —cosh x sin y

CR equations are satisfied.

derivative:;

cosh z

cos (iz) = cos[i(x +iy)]

cos (ix —y)

cos (ix) cos (y) + sin (ix) sin ()

coshx cos y + i sinh x sin () «

v = sinhx siny
ov ;
B cosh x sin y
0
a_yt = sinhx cosy

Prove that f(z) = sinh z is analytic and find its

Solution: f(z) = sinhz sin (ix) = i sinh x
1 . _ 1 .
= 7sin[iz] sinhx = 7 sin ix
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—isin[i(x+iy)]
—i[sin (ix-y)]
— i [ sin (ix) cos y —COS (ix) sin (») ]

= —j[isinhx cos y — cosh x siny ]

f(z) = sinhx cosy +icoshx siny

~u = sinhxcosy v = coshxsmy
du . _ ov . .
Pl coshx cosy A T sinhx sy .
Oou . . ov _

By —sinh x siny By cosh x cosy

| CR equations are satisfied.
For derivative of f(z), we have
o) = 2 it
= coshx cosy +isinhx siny
Put x=z and y = 0, weget.
f'(z) = coshz

Milne-Thomson Method to find £(2)

This mgthod can be used to find an analytic function f(z) when z or v
is given.

Let us assume that the real part of f(z) is given. Then we can find g—:'
ou
| and 3y
. . _ Ou .0V
Con51d§r f'(z) = o +1 %
ou .( Ou . :
= 1 ;(— dy ),usmg CR equations.
_ du . 0u
ax ~ ' oy

Put x =z and y = 0 on both sides, we get
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, 3 i . Ou(z, 0) -
f'@) = 5pu@0 -1 %5 . (1)
which 1is a function of z.
Integrating (1), we get f(z) in terms of z. .
C . . ov ov
Note : If the imaginary part of f(z) is given, we can find B and 5
For this consider
t _ ﬂ . _Q_E_ - | =
'@ = Ox +'16x
ov ., 0Ov . .
= By + i 5 7, using CR equations.

Put x =z and y = 0 on both sides, we get

0
£1(z) = 81:‘(3:; )+ f@vg? 0)

Integrating (2), we get f(z) in terms of z. This method is called Milne-
Thomson method.

Method of find f(2) when u is given

g I Example 1 | Find an analytic function f(z) whose real part is
givenby u=x3-3xp? +3x°-3y°+ 1.

- Solution : Given : u = ¥3-3x2+3x2-3)2+1
ou
LY _ 2
o 3x2-3y2+6x
ou
By 0—6xy+0f6y+0
= —6xy—06y
e oy o QU OV
Consider f'(z) = i + i o 3
Here u is given and using CR equations

oy - Ou . du)
AN 3x+:(_3yj
[3x2-3y>+6x]+i[6xy+6y]
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Put x =z and y =0 on both sides
f'(z) = 3z2+6z
Integfating, we get

~ 3 2
z z
f@) = 3-FT+6-5+C
f(z) = z3+3z2+C, Cisacomplex constant.

I Exam-gle 2 | Find an analytic function f(z) whose real part is
given as u =y + e* cos y.

Solution : Given: u = yte*cosy
ou
—_— = X :
P e* cosy
ou :
— = X
3y l—e*siny

: 0 0
- Consider f'(z) = _—3.:: + i 3:

(ﬂ}( _@3)
ox )" '\ 8y
= e¥cosy + i(-1+e*siny)

Put x =z and y =0 on both sides,

fi(z) = e*—i
Integrating, we get f(z) = e#=iz+C ]
Find an analytic function whose real part is given by
x .
U= x2 +y2 .

Solution : Given:  u

;1r.:2-|-_y2
3 gx2+y2)1—-2x2 __yz—ch2
T @R G

0—x 2y) =2xy
) = WP T @R

u+iv

~
I

C
&
~
o
N
p—
|
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f'(z = u, tiv,
ux—fuy

_ Y-xr . 2xy
IS Dt

- Put x =z and y =0, we get

- z2 ]
1@ = -2=-2
Integrating, we get f@ = :i‘+ C

Example 4 \ Find f(z) which is analytic, given

u= % log (x? + y?).

Solution : Given : u = %,log (x2 +2)
u _ 1 2x _ _=x
Ox 2 x2+3y2  x2+4y2
Ou _ 1 2y _ _y
oy ‘2'x2+y2 x2 + 2
. o — U .0V
Copmder f'(z) = P AP
_ Ou ( ﬂ)
ox. ' )Y

Put x =z and y =0, we get"
iy = Zu o = L
f'l@) = 5+i0) = ;
iIntegrating, we get f@z) = logz+C

If u= Y 5 find an analytic function f (7).

x2+y

Y
Solution : Given: u X2+ 2
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ou 0_;y(2x)= —2xy
ox ~ 2R 24y

Ou _ E2+yH1-y@2y) _ _x_:.ﬁ

oy . 2y (2 + %)
- ou dv ou Ou
Consider '@ = 5 Y Pax T ax T 1(—'3_})‘)

(&5 &

Put x =2z, y =0, we get

f'@

I
—
|
m|m
D
1
Il-
7N
|
le,_,
N—e

Integrating, we get

I
Ty

f@ = i+ C

= zi + C where C is complex constant

I Exa;ngle 6 l Find an analytic function f(z) = u + iv if u is given
by u = cos x cosh y.

Solution : Given : u = cosxcoshy ‘
o= sin x ;:osh |
ox Y
Ou - . .-
- = inh
dy cos x sinh y
y .. Ou ov
Consider f'(z) = O + i A

Bu ( _@E)
ox '\ oy

—sinx coshy +i (- cos x sinh y)

Put x =z and y =0, we get

/' (@)
Integrating, we get f(2)

.

—sinz +0

cosz +C
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———

| Examéle \ Find an analytic funcr:on f(z) whose real part is
given by u=e** [x cos 2y —y sin 2y ]. *

Solution : Given: u = é*xcos2y—e?*ysin2y

d
a—;‘ [e2+2x 2 ]cos2y —2 ey sin2y

e?[cos2y+2xcos2y—2ysin2y]

ou : :
" —2eXxsin2y—eX[sin2y+2ycos2y]
= _Eh[zxsin2y+sin2y+2y cos2y |
] .
Consider f'(z) = gf“*" [ 6:

Ou ( @)
ax Oy

e [cos2y+2xcos2y—2ysin2y]

+i[eZ*(2xsin2y+sin2y+2ycos2y)]
Put x =z and y =0, we get |
fl@) = eZ[1+22z]+0
Integrating, we get

fl@ = .[-(2:«: +1) e2z dz + C

For using Bernouli’s formula

Put1 u = 2z+1 y = g2z
22
e
u' = 2 Vi = 5
2z
e
(¥ — — ——
juv dx = wl—u'v2+u”v3— .........

fz) = (zz+1) -2+ C
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1 1

. fl® = z e+ C
Find the analytic function f(z) =u + v if
u=ex[(x?2-y? cosy +2xysiny |].
Solution : u, =I.e“x[2xcdsy+2ysiny]— |
| | e*[(x2—y%)cosy +2xysiny ].
u, = e‘x[—2ycosy—yzsiny+2xl(ycosy+siny)]

y
At x =2z, y =0, |

u, = e Z[2z] - e ?[(zD)] = e"F[22 2]

Uy, = e 2] 0]
LF(@E) = u tiv,
= u t+i(-u)
F'(z) = e %[2z—z2]
F(z) = .[(23—;:2) e~“dz + C

Using Bernouli’s formula, we get

U = 2z —2z2 v = e %
u' = 2-2z v, = —e?
u'" = -2 | v, = e ?
uru — 0 1-"3 = _e—z
.'.fuv dx = U vl—u'1{2+u”v3— .........

;. F(z) ~(2z-2z%)e2-(2-2z2)e ?+2(e %)+ C
e=?[—-2z+22-2+2z+2]+C

z2e=2+C

F(z)
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Example 9 | An electrostatic field in the xy-plane is given by the
potential function ¢ = 3 x2y — y3, find the complex potential function.

Solution : Let F(z) = ¢ +iy
Given ¢ = 3x%2y—)°
. 0b _ o0 _t 2
o 6 xy, 8y 3 x%-3y72
o TIY = JA e
Consider F'(z) = 2P
2 (3)
Ox oy |

Il

6xy — i(3x2—-3y2)
Put x =z, y =0, we get

F'(z) = —i3z?2
Integrating, we get  F(z) = —iz3+C

Note : If we take F(z) = ¢ + iy and it is analytic then the CR
equations are |

0b _ _tuandja _ 9y

| 0x oy oy O0x
DE'xample 10 |. Find an analytic function f(z) = u + iv, whose real
| | sin 2x

partis given by u = cosh 2y — cos 2x’

Solution: Let f(z) = u+iv, and Uy =V, Uy ==V,

sin 2 x
cosh2y —cos2x

(cosh 2y — cos 2x) 2 cos 2x — sin 2x (2 sin 2x)
x (cosh 2y — cos 2x)?

2 (cos 2x cosh 2y — 1 L
(cosh 2y — 1805,‘;3:)2 : e ops” 25+ sin® 22.= 1]

0 — 2sin 2x (2 sinh 2y)
y (cosh 2y — cos 2x)?
—2sin2xsinh2y
(cosh 2y — cos 2x)?2

Given : U =

=~
Il




21

Considerf'(z) = u,+tiv,
= u, -1 U,

2(cos2xcosh2y—1) . 2sin2xsinh2y
2 T 1 2
(cosh2y —cos2x) (cosh2y —cos 2 x)

Put x =z,y =0, we get

2 % _ 2(cos2z-1)
1@ = (1 —cos 2 z)?
B -2 N 1
~ (1=cos2z)  sin22z
f'(z) = —cosec?2z

Integrating, we get
| f(z = cotz+C
.Note : In the same way we can find f(z), where-

2sin2 x 1S g1ven
U = "
e2Y +e—2Y _2cos2x 8

~Method of Finding F(z)= u +iv when v is given

Example 1 | Find an analytic function f(z) where v =2 xy.

Solution : Given: v = 2xy

v oy
P 2y and ay—Zx

Ou . 0v

We know f'(z) = P + i 3 [Here u is not given]
_ v o [ au-_av]
oy ' ox " 9x Oy

Put x =z and y=0,wegét

| f'@ = 2z
Integrating, we get

7 (2)

z24+C



| Example 2

- is given by v =e* sin y.

Solution : Given : V

o0x

. Consider f'(z)

A
 —

i —
—

. ou

22

Find an analytic function f(z) whose imaginary part

e* sin y
ov

X q1 ' —_—= X
e*siny and 3y e* cosy

. OV

Ox ox

v o
oy ' ox

e*cosy +ie*siny

eX[cosy +isiny ]

Put x =z and y = 0 on both sides,

f'@ =

Integrating, we get  f(z) =

ez

e+ C

' If v = — sin x sinh y, find a function foz which is |

regular.
Solution : Given : y =
ov _
0Ox

Consider f'(z)

|

Il

Put x =z and .y =0, we get
')
(@)

Integrating, we get

—sin x sinh y

—

ov :
—cos x sinh y, é; =—sin x coshy

Ou
Ox

i
Iax

(—sin x cosh y) + i (- cos x sinh y)

—sinz

cosz +C
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' Example 4 | Find an analytic functmn f (z) whose imaginary part
isy= x3 - 3 xp? +2x+1.

Solution : Given: v = x3-3xp2+2x+1
v, = 3x2-3y2+2
_ Vy = —6xy
v, (z,0) = 3z2+2
vy(z,O) = 0
Consider F'(z) = u,+iv,
= v, T,

Putting x =z,y =0, we get
F'(z) = v,z 0)+iv, (z, 0)
= 0+i(3z2+2)

Integrating, we get F(z)

fj(3z2+2)dz+'c

i[z3+22z]+C

. . ~_2cos x cosh g' o
If ' w = o5 2x +cosh 2y then . find the
corresponding analytic function f (7).
[Ans : f(z)=secz +C]
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| Example 6 ] Find a regular f (zj whose imaginary part is givén

v=eX[xcosy+ysiny].

Solution : Given: v = e*[xcosy+ysiny ]

v, = e*[cosy]—e*[xcosy+ysiny]

= e*|[cosy—xcosy—ysiny]

— —XT - - - "
vy, e hl—xsmy+y-cosy+smy]
Consider F'(z) = u +iv,
=V, T 1y,

Atx =z, y =0, we get

F'(z)

v, (z,0)+iv, (z,0).

O+ie ?[1—-z]
Integrating, we get

I

F(z) I'J.(l——z)e‘zdz-l-c

= i[-(1-2)e Z=(=1)e 2]+ C
= j[-1le % +z e‘z+e;z]+C
F(z) = i[ze 2]+C"
l Exa;-&e 7 ‘ Find the regular function f(z) whose imaginary part
is givenbyv=e>* [xsiny—ycosy].

Solution : Given: v = e*[xsiny—ycosy ]

e,
a_; e*[1-siny]—e*[xsiny—ycosy ]

e*[siny—xsiny+ycosy ]

ﬂ = —X -+ 1
3y e*[xcosy—cosy+ysiny ]
Consider f'(z) = % + f%

v ov
oy ' ox
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= eg*[xcosy—cosy—ysny ]

+je*[siny—xsiny+ycosy ]

Put x =z and y =0, we get

'@ =

Integrating, we get

f(2)

——
—

f2) =

Find the analytic function whose imaginary part is

= (z=1)e™ %

J(z —1)e % dz

e=Z[z—-1]+ie 2[0]

—(z=-1)e2—e2-1+C u =
—ze Z+e Z—-e2+C | u' =
—ze %2+ C u'' =

exz -y sin (2 xy).

Solution :

Given: v

v

ox

ov

. Oy
We know

z—1, v = e %

1, Vi = —eg?

_0: vz = e %

x> =¥ sin (2 xy)

e* "J’Z(Zx)sm(ny)+ex =y* cos2xy(2y)

exz__yz (-2y)sin2 xy+ ex?._yz cos (2xy) (2 x)

f@

f'(@)

—
—

u+iv
ux+:vx

4
Vy I'I-"

2 e* ‘J’z[ ysm2xy+xcos2xy]

+i2e* ‘y2 [ x sm2xy+y cos2xy ]

Put x=z and y =0,
'@

f'G)

2672 [0+2] + i2¢e%

2
2z e?

[0]
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Integrating  f(z) = J’ 2z e-’-’z dz+C

Put z2=¢, . 2zdz = dt

s f(2) = fe‘ dt+C
S f(2) = et+C
f(z) = 632 +C

Construct the analytic function whose imaginary part

ise*[xcosy+ysiny]and which equals 1 at the origin.

Solution : Given:. v = e*[xcosy+y siny]
v, = e‘.‘x[1-cosy+0]—-e“x[xcosy+ySiIIJf’]
vy, = €*[—xsiny+1-siny+ycosy]
Consider F'(z) = u, + iv,
= v t 1y,

= e€*[—xsiny+siny+ycosy]
+ie*[cosy—xcosy—ysiny]
Put x =z and y =0, we get '
F'(z)

e ?2[0]+ie?[1-2z]
Integrating, we get F(z) = if(l ~z)e % dz+C

Using integration by parts, we get

u = 1-z, dv = e ?dz’
du = —dz, y = —g 2
F(z) = i| —(1-2)e"2 —f—e‘z(—dz) +C
= i[-(-2)et+er]+C
F(z) = ize 2+ C
Given F(0) = 1 = C=1
S f@) = ize 2+ 1
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I Examﬁ!z 10 | Ifv=e*[xsiny +y cos y] is an imaginary part of
an analytic function f (z), find f (z) in terms of z.

Solution : Given: Vv

Vx

Yy

Consider f'(z)

——

—
—

eX¥(x siny +y cosy)

e (x sin y +y'cos y) +e* (siny)
e*(x siny +ycosy +siny)

e* (x'cosy +cosy—ysiny)

U, +iv,

vy + v,

e* (x cosy +cosy—ysiny)

+ie*(xsiny +ycosy +siny)

Put x =z, y =0 on both sides,

f'@) = er(z+1)

Integrating, we get f tz)_ = J-(z +1)e? dz

/(@)

I

(z+1)e? —e* + C

ze? + C

Method of finding f(2) when u - v is given

Let f(z) = u+iv and is an analytic function.

f@ = utiv .. (1)
ifG) = iu—v L (2)
Adding (1) and (ii), we get
C(A+)f@) = @—v)y+i(u+v) | .. (3)
Let U=u—v, V=u+vand F(z)=(1 + i) f(2).
Then (ii1) becomes,
F(z) = U+iV .. (4)

If u — v is given in the problem, then

(a) Substitute #u —v =U. (Now U is known)
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(b) Find F(z) by usual method.

(¢) Equate F(z) = (1+19) f(2)

@) = 1—1—1 F(z)

This is a procedure to find f(2) if # — v is given.

Note : If u + v is given in the problem, we can use the similar
method as above.

Let - f(z) = u+iv .. (1)
 0if(z) = iu-v | .. (2)
Adding (1) and (2), | |

A+)f@@) = @-v)+i(w+v)
ie, F(z) = U+iV
Here u +v is given: Then
(1) Substitute u +v = V [ V is known ]
(2) - Find F(z) as usual method.

(3) _Equate "Fiz) = (1+1)f(2
L@ = T FG)

Note : If F(z) = U+ iV is analytic, then CR equations are

U, = V,
U, = -V,

Ifu—v=eX[cosy—siny ], find the corresponding

analytic function f(z) =u + iv.
Solution : Consider  f(2) = u+1iv . (D)
i f(2) = ju—v ... (11)
Adding (i) and (i), |
1+ f@z) = (w—v)+i(u+tv).
ie., F(z) = U+iV

u—v = e*[cosy—siny ]is given

‘Here | U
U. = eX[cosy—siny]

e*[—siny —_cosy ]

=
I



Consider

F'(z) =
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U, + iV,
U, +i(=0)

ex[cosy—smy]+fex[smy+cosy]

Putx =z, y =0, we get

F'(z) =
Integrating, we get
| F(z) =
re, . (1+9)f(@z) =
i@ =

e? + i e?

(1+7)e?

(1+i)e?+C
(1+de*+C
ez+C1

Example 12 | Find an analytic fﬁncﬁaﬂ f (z) if given u + v =
x2 —y? + 2 xy.
Solution : Consider

Adding

f@ = u+iv

i f(z) = iy —v

(1+)f@) = (@-v)+i(u+v)

(111) can be wntten as

F(z) = U+iV

where % — v—U u+v =V, (l+z)f(z) F(z).

Given

V =

"t:< H<:
I

Consider F'(z)

2x+2y
-2y+2x

= U, +1iV,
= Yy+f\&

—
—

2y +2x)+i(2x+2y).

Put x =z, y =0 on both sides,

F'(z)

Integrating  F(z)

Le.,

(I1+0)f()

2z+1i2z
2(1+0)z
(1+i)z2+c

(1+i)z%+¢

.. (@)
... (i)
... (iii)
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z% +

€
1+1i

;- - f(2)
- f@) = z% + ¢

Find an analytic function
f@=u+ivifu—v=(x-y) (2 +4x9+y?).
Solution : Consider f(z) = ut1w
i f(z) = iu—v
A+Df@) = @-v)+i@+v)
" F@) = U+iV

Herelet U = (x —y) (x2+4xy+y%)
= x3+4x2y+¥y2—x2y—4xy2—}r3
= x3+ 3x2y-3xy2-) |
U, = 3x2+6xy-3)%
U, = '3_x2—6xy—3y2j‘
F2) = U +iV,
= U, - iU,

= (3x2+6xy—3y2)-—1'(3xz—ﬁxj;—3y2)
Put x =z, y=0on bo_th'sides,
F'(z) = 3z2-i32z%

= 3(1-1i)z2
Integrating Fz) = (1-i)z3+c
ie, (1+)f@@) = (1-iz3+c

1—i

- J@) = (1+i) 2o+ (11:‘)

| 1—i  (1=H-=i) l-i-i-1
Now. 17 - Q+)Q0=9 1+1
Y
- 5=
1 1—i 1 —1

oS~
N
N’
Il

I
Lo |
(3N ]
('S
+
o
 —
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Harmonic Function

A function f(x, y) is called Harmonic if it satisfies Laplace equation
i.e., The solution of Laplace equation 1s called Harmonic function.

‘ Example 1 | A function f=x?—y? is harmonic.

Solution : Given: f = x2-)? f = x2-32
fx = 2x fy = =2y |
for = 2 - foy = =2

Vit fy = 2+(2) = |

Eiample 2 | A function f =% log (x? + y?) is harmonic.

log (x2 +y?)

Solution : Given : - f

N = N

=
fr = 2 P20

X
x2 + )2

4
x2+y?
(x2+y%) - 1 —x-(2 x)
2+ PP

oy
G257
(x2+32) 1 -y (2y)
f = 52
. X2y
2+ 77

et fy = 0= f is harmonic function. -.

:h
|

-,
e
|

‘ Example 3 | Prove that f = e* sin y satisfies Laplace equation.

Solution : Given: f = e*siny f, = e*cosy
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, fII = Exsi_[]_y fyy = *—E):Si.n_}’
faxt Sy, = e*siny—eXsiny =0

~. f 1s harmonic function which satisfies Laplace equation.

Prove that the real part of an analytic function

satisfies Laplace equation (Harmonic function).
Solution : Pfoof: Given: f(z) = u+ ;‘v 1s analytic.
( It satisfies CR equations. | |
U, =V | ()

x y
U, = -V, | . (i)
Differentiating (i) partially with respect to x, |
| U = Vo

- Differentiating (ii) partially with respect to y,

Uy = =V
Adding the above two equations, we get
Uy Ty, = 0

= The real part » satisfies Laplace equation.
i.e., u is a harmonic function. |
Note : If f(2) is analytic function, then # is a harmonic function.

Prove that an imaginary part of an analytic function
satisfies Laplace equation (harmonic function).

Solution : Given : f(z) = wu +ivis an analytic function.
LU =, | ... (1)
§ Uy = —v ... (i0)

Differentiaﬁhg (1) partially with respect to y, we get

Uy = Yy

Differentiating (ii) partially with respect to x, we get
Uy = — Vi

Uy T Vx
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Adding the above two equation, we get
Vix TV = 0

v satisfies Laplace equation.

= v is a harmonic function.

Note ; If f(z) is analytic then v is harmonic. The real and imaginary
parts of an analytic functions are harmonic.

1 _ ' | -
Prove that u = 3 log (x? + y?) is a real part of an

analytic function f (7).

. 1
Solution : Given : U 5 log (x 2 + %)

. x

x x2+y2

=
|

T a2
_ Yx?
" BT
_ Y
T X242
_ 21—y 2y)
Uy (:ch-!-yz)2
oy
2 +y2)
Loy Uy, = 0

u 1s a harmonic function.

u is a real part of an analytic function f(z).

| Examplé 7 ‘ Prove that e* sin y is an Imaginary -part of an
analytic function f (7).

Solution : We know that the real and imaginary parts of an analytic
functions are harmonic.

Given : - v = e*siny
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= oXcin = pX
.V, e*smy, v, = e*cosy
y —— X o — X a1
V. e* sin y, Vi = —ersmy
) vn+vw = (

v 1s harmonic function.

. v 1s an imaginary part of an analytic function.

Example 8 | Check the function x? + y? is a real part of an
analytic function f(z) or not.

Solution : Let u = x2+y2

ux'= 2x, u, = 2y
Uy ?_2(' Upp) = 2
Upe T Uy, = 2+:2=4:t0

% 1s not harmonic. ;
~. u is not a real part of analytic function.

[ ExamEIe 9 ‘ Prove that an analytic function with constant real —
part is constant. |

Solution : Given : f(2) |
Also given u

Il

u + iv is an analytic function.

constant (¢;)

u, = 0
U, = 0
Since f(z) is analytic, then it satisfies
Uy =V, ar_ld U, = =V
v, = 0, v.=0 = [ ux=uy=0]
= V is constant (¢y)- |
Sof2) = outiv
= ctic
= constant

= If u is constant then f(z) is constant.



35

I Example 1 g_l Prove that an an'a{prfc function with constant
imaginary part is constant.
Solution : Proof : Given: v = constant (¢;)

g Vy = 0, vy=.0

Since f(z) =wu + iv is analytic, it satisfies

U, = v, and Uy, = —Vy
.= U, = 0, U, = 0 [ vx=vy=0]

= u 1s constant (c,)
L f(2) = utiv
=" ¢y +icy = constant
.. If v 1s constant then f(z) is constant.

Example 11 | Prove that an analytic funéﬁan with constant
modulus is constant.

- Solution : Proof : Consider f(z) = u+iv = u(x,y)+iv(x,y)

f@] = ul+y?
Giveﬁ that \] u?2+v2 = constant (¢)
Squaring u2+v2 = c¢2 ... (i)
Differentiating (i) ﬁartially with respect to x, |

2uu+2vv, = 0
uu,+vv, = 0 ' ... (11)

Differentiating (i) partially with respect to y,

+ —
2uuy 2vvy

: N _
U Hy 'I-?"I-?y

u(-v)+vu, = [~ CR equation]

... (iii)

o O O O

vu +(—u)v, =
For solving #, and v, from (ii) and (iii),

u V

= _u2-y2 = —(uz-l;vz)

vV —U
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= —c¢2, using (i)
£ 0 |
“u, = 0 and v, =#0

Since f(z) is analytic, it satisfies

U, = v, and U, = —v,
vy'= 0 and u, =0 [ u,=0, v.=0]

= u,=0, uy=0, v, =0, vy=0.
= u =constant (¢c;) and v = constant (c,)
S f@) = e tic
= constant

2 52
Example 12 | Prove ﬂ:at(aiz+§vz) | f@)1? = 4| f' ()P

if f(2) is a regular function.
Solution : Proof : We know that f(z) = u +iv
Then |f(2) ]2 = u2++2

Also f'(z) = u,+iv,

! 2 2 2
1 /()| u, +v,

Given f(z) = u + ivis analytic, therefore
Uy = V) Uy, = =V, and
un+uw = (), va+v}y=0
. Now consider | f@ R = u2++12 . .. (D

Differentiating (1) partially with respect to x,
a—a;|f(z)|21 = 2uu, +2vv,

2
SR

2{luu, +tu u +v Vi TV, V) ]

2[{uu, +u§ +v vxx-i-vi] ...I(2)
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Sijnilarly differentiating (1) partially with respect to y twice

Qz_ 7 _ 2 2
6y2|f(z)| = 2[uu}{},+uy +vvw+uy]-...(3)

Adding (2) and (3), using Laplace: equatmﬂ
82 B2 , : 2
(ax2+5y2)|f(z)|2 - 2[ux+vx+uy Ty ]
Usx +u}g} = vﬂ+vjﬂ,=0

Using CR equations on RHS, we get

o 2 2 2 2 4.-
- Z[Hx +Vx +Vx +Hx]

4[u> +v2 ]
4| f(2) |
52 32 )
_ L = 2 =1 / 2
(Z+5)irer - 4116
Example 13 | If f(z) is a holomorphic function of 7, show that

12

5 5 :
1< | /@) : + 4..5 | f(@)} } = | f'(2) |*
Solution : Let f(z) = ut+tiv=ux,y) +iv(x,y)
@] = N u?+y?
= (W2+?)'P2
o 1 _ d
I f@I] = 5 @*+v?) 2 [2u a; 2v jj}

] l: Ou ou Qv ]
(w2 +v2)' 12 ox =~ ox |

w

5 1% 1 du  Ov
=lIf@1 ek “a?”ax}

| __ (6::) +v2(ﬂ)2+2 du 0Ov
u2+v2 T\ ox Ox "W ox ox




Similarly

Adding, we get
- . ~ 2
d .
o f @1

.
Ty

[
u2+v2

2
{f—ynf(zm}

+

i
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1 ou \ ov ou Ov
- o[ CH oy O OV |,
u2+v2_u(8y) +v2(6y oy 5yJ

M

Using CR Equatitms, we get

1
u? + y2

2

Orthogonal System

22

(

(

v

Ox

—
—

ou

Ox

ov

+ v ox

1

K

ov
>

(

+9 _8u611_+3u6v-?
--”"_axax ayﬁy_
2 2 7
‘ov
)+(@)_+
2 27 - T o 7 -
Ou i Ou 0v  0Ov Ou
) +.[5.1:) _+2‘“" | 0x'0x  Ox Ox |
3 i 5 - 5 = -
1 ou ov
2 il ~
u2+v2'_(u +V2)_(3x) +(5J’) |
(&) +(&)
Ox oy
1 @P

Orthogonal curves : Two curves are said to be orthogonal to each
other, if they intersect at right angles at each of their points of

intersection.

If m) and m, are slopes of the two curves, then m; m, =— 1.

Let f(z)=u +iv is an analytic function, then the family of curves u =
¢ and v = ¢, are orthogonal. The real and imaginary parts of an analytic

function forms an orthogonal

| System.
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If f(z) = u + iv is analytic, prove that the family of
curves u(x, y) =c; and v (x, y) = c, are orthogonal. - '

Solution : Given : u(x,y) = ¢ ... (D

Differentiating partially with respect to x,

ou_ dudy _
6x+8ydx =¥
u
dy _ ox
..dx_ ﬂ
dy

Let m, is the slope of the curve u = ¢;.

ux
i ml — H_y - (2)
Also v(x,y) =0 : ... (3)

Differentiating partially with respect to x,

5v+ ov dy
Ox Oy dx

(2)
cdy _ _\0ox
BT
Since f(z) is analytic, it satisfies CR equations.
%)
cdy _ 0y
todx ( ou )
O0x

Let m, is the slope of the curve v = ¢,.

. m2=

'th B

Then m] m2 = —'1

The family of curves are orthogonal.
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" [ Example 2| Consider the analytic function f @) =7 = (x?-y?
+i(2xy).
Solution : Let x2—)? = ¢;; 2xy=c,.

Differentiating with respect to x on both sides,

d d
2x—2y2§ = 0;2[x3§+y~1:| = 0

d d '
x—y&‘% = 0; xﬁ+y = 0
dy _ x dy oy
dx y dx X
- * _ X

m = y : moy = Ty

| I Examg?e 3 | Consider an analytic function f (z7) = e%

| et = e*cosy+ieXsiny
Solution : Let u = ¢,
Le., e*cosy- = ¢
_ d
Exc05y+ex(—smy)3'§ =0
y .
3‘5 = coty
ml o Cﬂty
Let v = Cz
e¥siny = cy
. d
e*siny +e*cosy 3‘5_ =0
ay _
dx T —hny
my = —tany

S My Moy (Cﬁty) (— taﬂy) = —1]
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I Example 4 \ If f(z) = sin 7 is an analytic ﬁincﬁm, prove that the

' Jamily of curves u(x, y) = c; and v(x, y) = c, are orthogonal to each
other.

Solution : Given: f(z) = sinz = sin(x +iy)

sin x cos (iy) + cos (x) sin (iy)

sin x cosh y + i cos x sinh y
Consider u(x,y) = ¢

sinx coshy = ¢ _ . .. (1)
Differentiating (1) partially with respect to x, we get

L d
s x sinh y E‘% + cosx coshy = 0 '=

dy _ cosxcoshy
dx  ~ sinxsinhy
my = _cotx coth_y"

Again consider v(x,y) = ¢,
cosx sinhy = ¢, ' | .. 2
Ditferentiating partially with respect to x, we get

L d
—smxsmhy+cosxcoshy3'§ = 0

dy sin x sinh y.
dx cos x cosh y

Il

My = tan x tﬂﬂhy
e ml m2 — - 1
u(x,y) = c¢; and v(x y) = ¢, are orthogonal.

Note : For any analytic function F(z) = u + iv, the fanuly of curves
U =cy, v =c, forms an orthogonal system.
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HARMONIC CONJUGATES

We know that the real and i imaginary parts of an analytic function f(z)
=y + iv are Harmonic Functions (satisfies Laplace equation). Here # and
v are called Harmonic conjugates. i.e., # is harmonic conjugate to v and v
is harmonic conjugate to u. -

Result (i) : If f(z) = u + iv is analytic then » and v are harmonic
functions.

For example, f(z) =x2 —3% + i 2 xy = z2 is analytic and u = x2 - )?,
vy =2 xy are harmonic. |

Result (i) : If u and v are harmonic, then f(z) = u + iv need not be

‘harmonic. For example, -= x2 — y2, v = e* sin y are harmonic but u + iv
= f(z) 1s not analytic.

Result (iii) : Since u is a function of x and y,

ou ou
du = o dx + By —dy
. . _Ov - 0Ov
Similarly we can write dv = N dx + By . dy

| Method of Finding Harmonic Conjugates

Given f(z)=u + ivis analytic function, u(x, y) is the real.part of f(z)
and harmonic.

U T Vy, Uy==Vy, Uy Uy = 0.

Since v is a Ha ' ' ' te,
rmonic conjugate and a function of x and y, we write,

_ Ov av
dv = 5 dx-f-'_'dy

- Using CR equations, we have
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. ou ou
Integrating, we get v = J‘-E—dx + f . "a——dy+constant
du o ou .
LetM——ay,N—ax .. (1)
V = jde+dey+C .. (1)

(i) Integrate M with respect to x by treating y as a constant.

(i) Integrate N with respect to y by deleting the terms containing x.

In the same way we can find # if v is given.

T Jde—JNdy

(1) Integrate M with respect to x by treating y as a constant.

(1) Integrate the second integral N with respect to y by deleting the
terms which contains x.

This method is explained clearly by the following examples.

, Ifu=x2- v2 is a real part of an analytic function o

/), find its harmonic conjugate v.

Solution : Given: u = x2-)2

ou ou
P 2x, By -2y
- _ Ov . ov
Consider dv = . dx + By dy
du ou

I
|
|
2
-
+

= ) . £, " AV
By oy dy = 2ydx + 2xdy
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2yJ-dx+0

v = 2yx+tec

Integrating J- dv

[-- By deleting the term containing x in the second integral]
"y = 2xy+c,where c is a constant.

‘ Exaﬁgle 2 l Prove that u = e* cos y is a harmonic function and
find its harmonic conjugate.

Solution : Given : u = e*cosy
Uy = e*cosy, U, = —e*siny
u, = e*cosy, Uy = —e*cosy
Uy T Uy, = 0
— u is a harmonic function.
To find its harmonic conjugate, consider
ov ov
= — + —
dv 3 dx By dy .
ou ou
Oy ax Ox dy

= e¥sinydx + e*cosy dy

Integrating on both sides, we get

f

v = siny f e*dx+0  [by deleting the term containing x]

v = e*¥siny+c

Example 3 | If u = % log (x2 + y?) is a real part of an analytic
function f (z), find v.

Solution : Given: u

% log (x2 + %)

S
I

X _
x x2+y2’ uy_x2+y2



Consider dv

[
|

X
2|
<

|

I
Sy
<

|
I
=
+
>

|

[
+ | N
7~ N |77 N
® [
e
%
L
o
+ |—
& 1
b
o
|
5
o
N
Q|
S

: _ (X |
Integrating, we get v = tan ( ” ) +c

‘ Example 4 \ Show that the function u = x* — 6 x? y? + y4 is

harmonic and find its harmonic conjugate.

Solution : Given : u = x*—6x2y2+yd
| u, = 4x3-12x)?
U, = 12 x2-12 32
u, = —12x2y+4)3
u, = —12x2+12)%
Uy, tu,, = 0

- -
Consider dv = % dx + Dy dy
du , . du
= _6ydx+ axdy _

(12 x2y -4 y3) dx + (4 x> — 12 xy?) dy



Integrating,
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v o= 12yfx?-dx—4y3fdx+o

x3 \
12y 3 -4y’x+c

= 4x3y-4x)y’+c

[ Example 5—] Ifu=3x%y+2x?—-y3-2y?is the real part of an
analytic function f(z), find v.

- Solution : Given: u =

Consider dv

Integrating, we get v

Example 6

Hx=

dl

v:

3x2y+2x2—)3-2y2
ﬁxy—l-é}x,'uy =3x2-3)2-4y
ov v

a—xdx -+ gdy

ou . Ju
~ By dx + P dy

(-3 x2 +,3fﬁf+ 4y)dx+(6xy+ 4Ix) cfy

x5 . . - |
35 +3)2x+4dyx+ec

-l-x3+3xj)2+4xy+c

If v =2 xy is the imaginary part &f an analytic
function f(z), find its conjugate. o

Solution : Given: v =

Consider du

du =

2xy;, v, =2y, v,=2Xx

X Yy
ou ,  ou
o dx Qy dy
ov ov
By dx (— . )dy

(y —constant) (delete x terms)
2xdx—2ydy

Integrating on both sides, we get

‘ Example 7

f (Z)J ﬁﬂd u.

H:

2= +c

If e* sin y is an imaginary part of a regular function

Solution : Given : v

e* sy



vV, = e*smy, v, = e*cosy
| _ du B
Consider du = P dx Dy dy
ov ov
=  ——i -+ o —
By dx ( P )dy
du = e*cosy dx — e*siny dy
Integrating fdu = COSy f eXdx — 0
Uu = -cosyer+ec
u = e*cosy+tc

Efx‘@?l;s | If f(z) = u + iv is an analytic function, and v = x2 .

X

y2+

Solution : Given: v

I

=
[

|
o
..l..

(W]

.+.
o

Consider,
du = % dx + %‘- _dy
- [ -] e ‘-[‘“ - Ef;:f)i} “
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Integrating, we get

E-xampfe 9 | If ® = ¢ + iy represents the complex potential for

X
an electric field and y =x%2—y* + 2 +

2 determine ¢.

| [Ans : & =—2x.}'+x2%:_yz]

rExamgle 10 I In a two dimensional flow, the stream function is
-y =tan! (‘% ) F ind the velocity potential ¢.

Solution : Let f(z) = o+iy

‘Given: y = tan’| (%)
_ Y
Ve = x2 +y2
B X
ﬂJJ’ B x2+y2
- 0 0
Consider - d}:\ = 6% dx + %dy
_ v (_.5—‘2)
Jy dx + dy

Ox

X Yy
x2+yzdx‘—x2+yzdy

| 1 2x
Integrating, we get ¢ = 5 jx2+y2 dx +0 +c

1
5 log (2 +y%) +c

-
[
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Cauchy-Riemann Equations in Polar Form
Consider a function f(z) = v +iv and z=r el® .
| f@@ = f(r e®) = u(r,0) + iv(r, 0)
Dﬂerentlatmg (1) partially, with respect to , we get
. ou ov
f'@) e® = or i
Differentiating (1) partially with respect to 6, we get

F@re® i~ 55+ izg
39 ' 90

@) 40— 1 au av]
69 ' 80

_ [au 6v

00 69

_ l_ _ au+ ov |
r 7" o0 T80 |
[ au}

r [ 00 ' 60

Equating (2) and (3) of RHS, we get
ou av 1 [ oy . 5u]

I

or ' or 00 "8
Equating real and imaginary parts, we get F'
Ou _ °1 ov
or  r 96
ov 1o
or ~r 06

. (1)

. (2)

. (3)

.. (4)

The above equation given by (4) is called CR equations in polér form.

Note : Consider the equation (2),
| . ou . Ov
' i = ==
f + (2) ‘3 ' or + 1 or
. ou ov
' — —iB =
f'@@) = e [ar“ar]

This equation can be used to find the derivative of f(z).

... (5
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This equation can be used to find the derivative of f (2).

Example 11 | Prove that ‘the function f (z) =7 is ana{ytxc and

hence find its derivative.
Solution : Let z = r ¢

= (re®)n = yn.gimd =pn [ cos ng+isinnd ]
Here u =r" cosn, v = r" sin nb .

- _
5% = nrh—1 cosnb g—: = r:;r"“l sin #6
ou | ov '

30 —n 1" sin no . 39 = nr’" cos nb
ou _ 1 0v ov _ 1 ou

" or r 90 ° or = r

CR equations in polar form satisfied. -
. f(z) = 2" is a rggular function of z.

For derivative ¢f f(z), consider
_au v
/ (z)\ _Or . or

= & O [nrm=1 cosnB+inr'=1 sinnd]

= ¢ 19y pn=1 [cos nB +isin no ]

= ¢ 19 5 pn-1 ,ind
f'e) = n 2

g d—[z”] = pzh-1
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‘ Examéle 12 | Prove that f(7) = Iog Z IS a regular function of 7

and find its derivative.

Solution : Given : f(z)

= logz, let z = rei®
= log(re®) |
= logr + log(e®)
= logr +i0 loge |
= logr +i6 [~ log,e=1]
Here u =-logr, v = 0 '
w1 v
or r’ or
% = (), g—g.= 1

Here CR equation in polar form satisfied.
f(z) = logz is analytic function of z.

For derivative of f(z), consider

. | ou oy
! - —i0 | == Pl
1@ e | Or +‘a;-_
- e—lﬂ |:%+0i| — '(rel'ﬂ)—l

= z_l
]
e = ;
d ]
Le., e [logz ] = ,
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Laplacian Operator
In cartesian coordinates, the Laplacian operator is

02 9?2

02 1o 1 82
or2 ' r or  r? 082
Note: If f(2) = u(r, ©) + i v(r, 8) is an analytic function, then
u(r, 0) and v(r, 0) are Harmonic functions.
Harmonic Functions
We know that CR equations in polar form is

_ 1 _ 1
U, = Vo> Vp T T U¥p
Consider ru, = Vg | | .. (1)

Differentiating (1) partially with respect to 6, we get

rUgr — Voo

S | .

. rVBB = Ug, | .(2)

Now consider rv, = —1ug .. (3)

Differentiating (3), partially with respect to r, we get
PV TV, = —Ug (4)

Since ug,=u,q, (4) becomes,

r vrr+vr
rlv. + rv.+v = ()
rr r 00 .

PR T B
= (vrr+rvr+r2v99 B

The above equation is Laplace equation, and we can say v 1S a

e i ]

harmonic function.:

Similarly, we can prove

= u is also Harmonic function)
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CONFORMAL MAPPING

Mapping (Transformation)

A curve C in the z-plane is mapped into the respective curve C; in the

o-plane by the given function @ = f(z) which defines a mapping
(transformation) of the z-plane into the w-plane.

Some standard transformations =
(i) Translationby =2z +c¢

_ '(ii) ‘Magnification and rotation by @ = ¢z
| 1

(iii) Inversion and reflection by @ =7

=

: 1; nsf . _az+b
(iv) Bilinear transformation ® = -

Here a, b, ¢, d arc complex constants.

.

Conformal Mapping (Conformal Transformation)

Let two curves C; and C, in the z-plane intersect at the point P and
the cnrrespunding curves C5 and C, in the w-plane intersect at the point
Q. If the angle of intersection of the curves at P and Q are the same in
magnitude and sense, then the transformation is conformal or mapping is

conformal.

Note : The transtormation by the function (analytic) o = f(z) is
conformal if f’'(z) = 0.

Critical point : A point at which the derivative of f(z) equals to zero

(the mapping is not conformal). i e., A point at which f’(z) = 0 is called a
critical point of the transformation w = £(2).

For example, consider ® = z2, then j—? = 2 z.
do _ =
d= — 2z =0 .
z =0
z = 0 is a critical point of the transformation ® = z2.
_2
Examplie : Consider w = z + ‘% = = :: 1
do  z(2z)—(2+1)"
dz o 32
_ z2 -1
| z?
dm

The critica i —_—
1 points are =

1
b
|

0
z2—-1 = 0
1
-

1

I
Il
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Fixed Points (Invariant Points)

Fixed points of a mapping @ = f(z) are points that are mapped on to
themselves (image is same as z).

Fixed points are obtained by f(z)=z.

: 1
Example 1 .‘ Find the invariant points of @ = T— 21"

1
z—-21

Solution :

= z2_2 iz

z2 = 2iz—1=0

Tz = 0

Example 2_] Find the points at which the transformation ® = sin 7
is not conformal.

Solution : f'z) = 0= cosz =0
_ I 3m
z = 2 3 2 9 *resressenaas
rEﬁa}zg!e 3| Find the invariant points of the transformation
I+i '
- I1-ize
: 1+iz 3
Solution . 1 — i, — Z
fz'2+(f-—ll)z+1_ =
1 . .
Lz = 5 [1+ikN6i]
[ Example 4 | Consid = f| -—l(l+i)—-l 2+i
fom_zpe J onsider o= f(z T2\t ) =35 ).
Solution : The invariants points are obtained from
f@@) = z
1
2 (z2+1) = z
z2+1 = 222
z2 = ]

z +1
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Isogonal Transformation (Isogonal Mapping)

If the angle of intersection of the curves at P in z-plane is the same as
the angle of intersection of the curves at Q of @-plane only in magnitude
then the transformation is called Isogonal.

W Discuss the transformation ® = f(3) =2
Solution : Given : flz) = z2 |
| u+iv = (x+iy)?
= (x2-y9)+i2xy
u = x2-3)2, v=2xy

Case (i) : Let u = constant C,
;. x2—y* = Cywhichisa reétangular hyperbola.
Similarly if v = C,, then '
2 Xy = Cz
. C,
Xy = 5 hich also represents rectangular hyperbola.
~. A pair of lines u = Cy, v = C, parallel to the axes in the @-plane,
mapping into the pair of orthogonal rectangular hyperbolas in the z-plane,

Case (ii) + Let x = c, a constant.

v
2
vV
S AP
Eliminating y from the above equations,
| 2

SV, s00
TR T 42

v = 4c?(c?-u)
which represents a parabola.

Let y = constant (k).
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" Then x2—k2 = y, 2xk = v
x2 = u+k x = i};_k
2
2 = X
& 2k
Eliminating x from the above equations, we get
, .
Y

v2 = 2 k2 (u + k%) which is also parabola.

Here the pair of lines x = ¢ and y = k parallel to the axes in the
z-plane map into orthogonal parabolas in the @-plane. The critical point
of mapping » = z2 is z = 0. (not conformal at z = 0).

- . . 1
Discuss the transformation © =z + .

Solution : Let z = r (cos6+isin 6) in polar form.
. ‘ 1 -
- Given : 0 = z+
. - N 1
utiv = r(cosO+isinf) +

r [cos 6 + i isn O]

r (cos O +isin0) + I'I:[cose-fsine]

u+tiy = (r+l)cc>§9 + i (r—l)sine

¥ ¥

(r+:—,)cosﬁ , V= (r—;lj)sine

U ] vV

—

S.cosO = B sin@ = 1
) (r-7)

We know cos2 0 +sin20 =1.
Hz 1-’2

(r+%)2 + = 1 | .. (1)

(3

For r = constant (c), the equation (1) represents an ellipse.

Equating u
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-
b
Y

Again consider @ =wu +iv = r (cos O -+ i sin O).

1
u = (r-l-i‘)cosﬁ, v = (r—;)sine

Lo 1 _ v
Fy cos 9’ "Tr sin 0
(r2+1) _ _u (rz—l) _
4 cos 6’ roJ sin 6

-

(r2+1)2 u2 (rz—l)z 2
r cos? 6’ r ' sin? 0
u? p2 (r4+1+2r2) (r4+1—-2r2)2
cos20®  sin?0® r2 - r2

rA+1+2r2—r4—1+272
2

|

4
u2 2
4cos’® 4sin?0
- For © = constant of the z-plane transforms into a family of hyperbolas.

W2 2

"—"'_'—"=1 O
a? b2

=1 . | __ .. (2)

. _ k?
Example 3 | Discuss the transformation ® =z + re

Solution : (Solve the problem as above.) _
Discuss the transformation ® = cosh z.

Solution : Given: o = f(z) = cosh(z)

u+iv = coshx cosy +isinhx siny -
u = coshxcosy, v = sinhxsiny .. (D
U . V
..coshx‘— oSy’ sinhx = sin y

We know that cosh? x — sinh? x = 1 (eliminating y).
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2 32

cos?y  siny

= 1 )

L.e., The lines parallel to x-axis (y = constant) in the z-plane mapping
into hyperbola. |
u? 2

il

We know that cos? y + sin2 Y = l. For eliminating y from the given
equation (1), |

B 1 _ Y
0S¥ = Coshx> SNy = sinh x
2 2
U V
' + - =
cosh? x * sinh2 x 1 3)

.e., The lines parallel to Y-axis (x = constant) in the z-plane mapping
Into ellipse in the w-plane. '

ut v
A2 + B2 l N
- . ) ) 1
Discuss the transformation @ = 7"
_ , _ 1 _ 1 . x—
Solution : Given: o Tz T v & + 1) (x — iy)
_ X ; —
:.b:?'-+y2 x:’1+y2
- == = Y
U x2+y2, Vv —x2+y2
¥ _ X - Y
v o —y = Yy = THI

- X u?x u?
2. Y 5, @Hv)x2 T (u2+42)
X% 2 X
U
U

>
l
-~
S
"
To



~ v —V U _ v
Y = Tut T u u2 + 2 T\ w2 +v2
U _ 1% |
X = H2+"P2 and y = - H2+1’2 (l)
: ] 1
Now consider @ = pe z =
. 1 (u —iv) |
XTY =+ iv) (u—w)
B - v
u?+y?
u Y
.x—u2+v7_andy——u2+v2 - ...(2)_

~ Consider the equation, ‘
a(x2+y? )+ bx +cy +d =0 - ...(3)

. For a = 0, this represents a straight line and for a # 0, tl'us represents a
circle.

' . 1 | .- .
For the transformation @ = 7, we can substitute the value of x and y

in (3).

1 U — U '
a+bu—cv+d@?+v¥) = 0 |

e, d(@2+?)+bu—cv+a = 0 . (4)
If d = 0, this (4) represents a circle in the o-plane.

If d = 0, it represents a straight line.

| 1 . . . :
‘The transformation @ = " transforms circles into circles. It is called

circular transfonnation.

Find the mapping of the circle | z | = c by the
transformation ® = 2 Z

Solution : Given : W =.2z=2@x+iy) =2x+i2y

ut+iv = 2x+ily
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U 2x, v=2y

Consider |z |=c. ‘\/.1l:2+y2 = ¢
x2+y% = ¢2 (circle)

U 4 Vv 2
U 4 - 33
(2) +(2) d
2,2
U v
I A
4 T4 T ¢
ul+v: = 4¢2
u+v2 = (2¢)?

This is an equatmn of the circle centre at the origin and radius 2 c.

 Example 7 | Find the mapping af the circle | z | = k by the
transformation f (7))=z+2+3L

. Solution : Given :- 0 = z+2+3r‘
u+iv = x+iy+2+3i
utiv = (x+2)+i(y+3)

u = x+2, v = y+3
X = u-—-2, | y = v-3
Consider, z| = k =  x2 +y? = k2

@—-22+@w-32= g2
which IS an equation of a circle with centre (2, 3) and radius k.

' Example 8 | Find the image of the circle | z - 1| I in the

complex plane under the mapping o = E

I
N =

Solution : ®

1 —y
X iy (x+ry)(x iy)

I

u -+

|l
'\'::.'_'H'




The equation of the circleis |z —1|=1.

ie., |x+iy—-1| = 1
x—-—D+iy| = 1
(x=1*+ @) = (1)

x2+1-2x+y2 = 1
x2+y2 = 2x
x 1
x2 + 32 2
. _ 1 N
ie., u = 5 TR ¥
2u = 1

2u—1 = 0 which is a straight line.
| Example 9 ‘ Find the image of | z— 2 i | = 2 under the mapping

m:

& |

I

Solution : Given: o

|

' | VT X242

Alsogiven |z-2i

|x +iy—21i
% +i(y-2)
x2+ (y —2)2
I x2+32+4 -4y
x2+y2—4y

x2 + 2

4

|

|
© A BN NN

|
N
=

x2 +
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Il

3.
x% + 2

I

1
4
1
4

—V | [-"v=x2+y2]
4v+1 = 0 whichisa straight line.
I E.:-ran-xgle 10 | Discuss the transformation @ =sin z.

Solution : Given: © = f(z) = sin () |
| u+iv = sin (x) cosh (¥) + i cos (x) sinh (y)

u = sinx coshy, vV = €0sx sinh y
i u ’ V
sinx = cosh y ° cosx = sinh y .. (1)
We know sin?x +cos2x = 1.
w2 2

. +— _
cosh?y  sinh? y :

For y = constant (c,), say cosh? () = 42, sinh2 () =582

| u? 2 :
then 2+ 2 1 (Ellipse)
{
Similarly from (1),
U . V.
coshy = Gnx» Simhy = CoS x

We know that cosh? y — sinh? y = 1. -
u? 2

Csin?x  costx |
For x = constant (c,), say. sinx = A2
cos’x = B2
% ~R2 = 1 (Hyberl:n:::nl::sl)~

‘ E;m;gle_ 11 ‘ Discuss the transformation ® = cos 7.

Solution : Consider ® = cos(z)

utiv = cos(x+iy)
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= cosx coshy — isinx sinhy

u = cosx coshy, v = —sinx sinhy
_ _u _ B V
GOs X ~coshy’> > % ~ sinh y

For eliminating x, consider cos? x + sin® x = 1.
- u? N V2
" cosh?y = sinh?y
For y =c, cosh?y = a* (say), sinh? (y) = b2.

w2 v ,
S+ = 1 (Bllipse)

= 1

For eliminating y, considér cosh?y —sinh?y = 1.

u o i iV
-.coshy = cos % * sinh’y Sin %
u? V2

cosh? y —sinh?y =

u2 2

" cos?x  sin?x

cos?x  sin*x

(2

= 1

For x = constant, say cos?x = A2, sin?x = B2.
2 2

U V

A2 " RZ - 1 (Hype;bola)

Example 12 | Discuss the transformation ® = sinh z.

Solution : Given: ® = sinhz = sinh (x +iy)

-
. Y

1 . .
- ';‘5111(1.1:-—32)
u+iv = sinhx cosy + icoshx siny
u = sinhx cosy v = coshxsiny...
. U %
sinhx = cos y cosh x Sin y

We know cosh? x —sinh? x = 1 (for eliminating y)
u? -2

cos2y _ sinZy :

(1)



64

For y = ¢,
2 u? ,
sin ¢ cos?
" V2 gyl | |
2" 2 = 1 for a =sinc ; b—posc.
vi oyt : . |
22 1| which is a confocal hyperbola.
o U , LV
From (i) €O3Y T sinhx’ MY T coshx
We know cos? y+sin?y = 1
u? V2

- i

sinhx  cosh? x

Forx = constant; say sinhx = A, coshx = B.
u? vz

Ag + 32 = 1 whichis an ellipse.

Bilinear Transformation

The transformation of the form

| az + b
o = e

where a, b, ¢, d are complex constants is known as Bilinear
transformation if ad — bc # 0. It is also called MOblUS transformation or
Linear fractional transformation.

The condition ad — bc # 0 means that the transformation is conformal.

- az+ b
- Note : Q. = g | ... (D
do  (cztd)a-(az+b)c
dz (cz + d)?
_ acztad—acz—bc
 (cz+ d)?
ad - bc

(cz + d)?
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The Bilinear transformation (1) is conformal if C:;T 0.

re., ad—bc#0.

dm
Note : If ad— bc =0 then 7z - 0.

t.e., Every point of the z-plane is a critical point.

The inverse mapping of (1‘) 1s also bilinear transformation.
—do+b

ci—a

e, . z =

The invariant points of a bilinear transformation,’

az + b
z = [ o=z; f(@)=z]
cz2+dz = az+b

c2+(d-a)z—b = 0

The roots of this equation is invariant point or fixed point of the
transformation.

Note :
(1) A bilinear transformation maps circles into circles.
(i) A bilinear transformation preserves cross-ratio of four points.
(@7 — ;) (@5 — ). X (2] —2y) (23— z4) |
"((Dl - 0}4) (4 — ;) 3 | (21 —2y) (33 fzz)
(OR)
(-0 (@3-0y)  (z1-2) (23— 24)
(04 —0) (@ —w3)  (24—z)) (z;—23)

Example 13 13 | Find the Mobius transformation that maps tke
points z = 1, i, -1 into the points ® = 2, i, —2.

SOIHIIQH- Let 31 = 1, ‘Zz = f, 23=—I
0 = 2, 0y=i, o3 =-2

((01"-032)(0)3—:::}4) B (ZI_ZZ)(ZB"ch) :
({04—(1)1)((1}2—(1}3) - (34_31)(32—33) (1)

We know
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Put z,=z, @, = o, in (1),

(0] —®,) (03 — ) (z{ —z9) (z3—2z)
(W“WI) (‘502‘*‘333) (3*31) (32—33) |

- 2-)(=2-0) (1-H)(=1-2)
(@-2)(+2) .  (E-1D3GE+1)
(©+2) @-i) _ @+1) (1=
(w—-2) (2+1) (z-1) (1+9)

(0 + 2) z+1) A=) 2+
(0-2) z-1) 1+ @2-i)
(z+1) R+i-2i+1)
(z-1) Q-i+2i+1)
(z+1) 3-i)
z-1) (3+1)
(@+2) 3z—iz+3—j

(w-2) 3z+iz—-3-i

Using componcndo and dividendo
ad C

d
C

——
—

+d
c_g » weget

b
a+b
a-—c¢

(0 +2)+ (0 —2) Bz—iz+3-)+@Bz+iz—-3-1)
(@+2)—(0-2) Bz-iz+3-)-Bz+iz-3-))

20  6z-2i
4 —2iz+6
®  203z-i)
2 2(-iz+3)
_ 2[3z-1] )
© T =iz+3]
_ =6z +2]
‘ Examg_:v!e_faf ‘ Find the invariant points of the transformation
27+4i
4.0 B
2z+41]

Solution : - zt1 - z+ [ - ®
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2z+41i
2z+4;
iz2+3z+4i = 0

—3+49-4(G)(4))

-z = 2 i

—3+5 _1 -4
i

-z (iz+1)

—fz?'—z

-

 —
—

21 I 2
N Exa;rzpie 15 | Find the bilinear fransformation which maps the
points z =1, i, —I into points ® =0, 1, =
Solution : We know that
(0] —@,) (03 — ) - (z1 —29) (23— 2) _
(0 — ;) (0, — @3) (z-2)) (zy—z3) - ()

= —i, 4i

Here 0, = w0 is given. Equation (1) can be written as

| o
(0= @) 5 ( 1 -“33) (21 -2) (23— 2)

- B (3—21)(32—23)
(0 —-0;) o3 a—l
(fﬂl—ﬂ)z). K (.Zl -‘Zz)(z:;-'Z)
(@-0) 1) (-2 (-z23)
~(O-l) _ (1-D(1-2)

(@ - 0) (z-1)(@+1)
1 z+1) (1-))
o (-1 (+i)
1 _ (z+1) (1-9)
 -(z-1) 1+

z—1) (1+1)
@ (z+1) (1-9)
z+tiz—1—1
z—iz+1—i

_ A+dHz-aQ+) ... az+ b
®w = (T=i)z +(1-7) which is of the form cz+d

_|..

I
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maps the points z=-1, 0, 1 into o= 0, i, 3i.
Solution : We know that
(0.)1 — ﬂ)z) ((03 — (D)

(0 — o) (0, — ®3)

(0 —

1) (3 — o)

(0 —

0) (i—39)

)3 i-a)

o (— 2 i)

Bi—n)
2

+1)(Bi-w)
3iz—zo+3i—

3i(z+1)

)

[

|

—
e

(z) —zy) (z3-2)
(z —21) (25— z3)

(=1-0)(1-2z)
z+1)(O0-1

Dd-2)
DE+1D

(1-2)
(z+1)

20(1-2)

20-2z0
20)—2zrm+;co+u)
30-z0 = 0 (3-2)
3i(z+1)

(3-2)

fz+1
_31(2_3)

—

Find the linear fractional transformation which

‘ Exam Eze' 17 ‘ Find the Mobius transformation which maps from

(25 i, 0) into (0, i, ).

Solution : Substituting in the above formula,
(0] — ©,) (@3 — ©) N (2 ‘—_Zz) (z3-2)

(@-0) (@-0;)  (z-2z) (-2

Taking z| and w5 outside and substitute, we get

0-D(1-0) = (1-0)(0-2z)

(@

—0) (1)
(L))

3
0

O-1)(E-0)

(1) (=2)
(— 1)

Z
I

@

1
z
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UNIT - I

‘Complex Integration

Introduction :

Consider a continuous function f (z) of the complex variable z = x + 1y
defined at all points of a curve C having end points A and B. Divide C into n parts
at the points
A= PD(ZD) ] 'Pl(Zl) g ssuons ,Pi(Z ,'), ....... ,PH(Z n) = B.

Let Szi =z, -1 and { be any point on the arc P;_, P;. The limit of the sum
1 1

I
2 f ((;i)ﬁzi as n— In such a way that the length of the chord 8z approaches
1=1 . i
zero, is called the line integral of f(z) taken along the path C, i.e.
_ J.f(z)dz.
Writing f(z) = u(x,y) + iv(x,y) and nothing that dz = dx + i dy,
[ f(z)dz = jc (udx - vdy)+i I.: (vdx + udy)

which shows that the evaluation of the line integral of a complex function can be
reduced to the evaluation of two line integrals of real functions.

Pn=B8B NﬂtE -

Pn-1 I o=fz)=u(x,y)+iv(x,y)

Pi thEIl IE f(Z)d.Z = I{: -(]_]: -+ l‘d') d (x + IIY)
i = -[E (u+iv) (dx + idy)
P2 . L (udx + vdy)+ i—[c (vdx + udy)
Pl

PO= A



Simply connected Region: A simply connected region is one in which any closed

curve lying entirely within it can be contracted to a point without passing out of
the region.

Simply Connected Regiun

Multi-connected region . Simply connected region

CAUCHY’S THEOREM
Theorem : . _
If f(z) 1s an analytic function and f ‘(z) 1s continuous at each point
within and an a closed curve C, then jf(z) dz=0.

C
C
Proof: *
Consider f{(z) = u(x,y) +iv(x,y) and z = x+1iy , dz =dx + idy
o f(z)dz= j(udx-vdy)+i*j(vdx+udy)l ...... (1)

C C - C



du du 0v 0v
0x 0y 0x dy
in the region D enclosed by C. We know Green’s theorem is

o o[3Q o |
(I:(de+Qdy)-g[ax ay}dxdy.

using this i (1)

Since f'(z)is continuous, therefore, are also continuous

EE PP I
[fz)dz=- [[| —+=— |dxdy [ o %
. NESCEN +J'j'ax ay-dxdy ..2)

Now f(z) being analytic, u and v necessarily-'satisfy' the Cauchy-Riemann
equations -

Ou v u_0v
Cox oy 0y ox

1.e

Substituting (3) in (2) we have

ou | | | ov ov
jf(z)dz:]j[@——)dx dy+iﬂ(———] dx dy
; S\ o S’
| ~ Hence [f(z)dz=0
C
Extension of Cauchy’s Theorem,

If f(z) is analytic in the region D between two simp'le closed curves C and
C,, then, [f(z)dz= [f(z)dz.
C Cl

"

To prove this, we need t o introduce the cross-cut AB. Then jf(z)dz-=‘0 ‘

where the path is as indicated by amrows in Fig.(l) .ie. along AB-along C;in

clockwise sense & along BA - along C in anti {clockwise sense
| \

\.‘1

h_\“.'

ie. [ flz)dz+ [f(z)dz+ | f(z)dz +[f(£)dz=0.
AB Cl BA C



C

. C3 -
C A B ¥ Cl
C2 .
E
| D

Fig.(1) Fig.(2)

-

But, since the integrals along AB and along BA cancel,, it follows that
[f(z)dz+ [f(z)dz =0.
C C

Reversing the direction of the integral around C, and transposing , we get
[f(z)dz= [f(z)dz each integration being taken in the anti-clockwise
C C '
]

Sense.
If C,,C,,C,;,.......be any number of closed curves within C ( Fig-2) then
[f(z)dz= [f(z)dz+ [ f(z)dz + [f(z)dz+.....
C C | C2 C -

1 3
CAUCHY’S INTEGRAL FORMULA
Theorem : :
If f(z) 1s analytic within and on a closed curve and if a is any point
within C, then f(a)= —— [T 2%
2m C Z-2

Proof :

Consider the function f(z) / (z-a) which is analytie at all points
within C except at z = a. With the point a as center and radius r , draw a small circle
C lying entirely within C.

Now f(z) / (z-a) being analytic in the region enclosed by C and C1,
we have by Cauchy’s theorem,

j@dz= j'f(z)dz

z-a | A
C C,
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= J' f(a +11'BE ) uele de =i ff(a +1'1E:IEI )9, ... (1)

G- ¢

In the limiting form, as the circle C; shrinks to the pointa, ie. as 1= 0, the integral
(1) will approach to

2n
i | .f(a)dd =if(a) [ dO = 2mif(a). thusj () = 2mif (a)

C1 0 cZ
ie. f(a) = ——j fz) dz
211 . Z—2
which- is the desired Cauchy's integral formula.
= f_(z)_ dz=2mnif (a)
Z-a

C

Cauchy’s integral formula for derivative of an analytic function:-

We know Cauchy’s ,mtegfal formula is

F(a) = 1 .[f(z) iy

2m Jz-a

Differentiating bnth 51des of (2) w.r.t. a,

_ 1 ra[f@)], _1 [ f@)
‘f‘(a) - Iaa_z ;| @ 21:1! - & . 3)

. 2! r f(z)

similarly, f’(a) = . 4

milaly, (&)= J(z_a)3 )
ol

and in general,f’(a)=— {z) dz.

i (Z ) a) n+l

thus 1t follows from the results (2) to (5) that 1f a function f(z) is known to be
analytic on the simple closed curve C then the values of the function and all its
derivatives can be found at any point of C. Incidently we have establisheda



remarkable fact that an analytic function possesses derivatives of all orders aj
these are themselves all analytic.

2

Example 1: Evaluate Iz — zl+1 dx where C is the circle
2.1 -
| ) 1 %
(1) |Z|=1, (i) |z|=5.
(i). Here f(z) =z*~z+1 anda =1. (-1,4 30

- | Z+1+1|=2
Since f(z) is analytic within /_—\ |

and on circle .
C: ‘z|=1 anda=1 lieson C.

(-1,-1)

| 2 _
.. By Cauchy's Integral Formula : _ J- f(z) =f(a)=1 ie. Iz 2 ldz = 2Ti.
2m1 sz-a z-1

. >
,l'S” (z° —z+1)

(11) " In this case , a =1 lies outside the circle C ; ‘ Z ‘=
- 2 (z-1)
analytic everywhere within C.
. By Cauchy's Theorem -[ - ZI+ 1dz = ().
‘ c. 27
Example 2:
Using Cauchy’s integral formula, Evaluate I 5 a2 dz where c is
z° +2z+4

C
circle |z +1+i|=2

Solution: |
‘z + 1+ i‘ = ‘z ~(=1-1 )l 1s the circle with centre at z = -1-I and radius 2 unit



Z+1

The function will cease to be analytic where z* +2z+4 =0

2% +2z+4

- (1B, |T

|

7z = -14i3,-1-i3

o (z+1) z+1
72t +2z+4 (z+1-iJ§)(z+1+iJ§)
The above function is analytic at all points except at the points —1+1 J3 liesoutside ¢

and —1-1 «E lies inside c.

~. we consider the function f(z) = 2+
z+1-iy3 |
by cauchy integral formula
0)= — [~z
2m Yz—a

C
7+ 1

. " |
here a =-1- 14/3 , ( lies inside c).". .[Z+ I‘E dz=2mif(a)
Z-[—l-l-\/?_))



=2mif(- 1-i+/3 )

[ —1-if3 41
‘=2 .
| [-1—1J§+1—iJ§]

substitution in f(z)
o] =B |
~2i3
- Example 3:
Uéing cauchy’s integral formula evaluate I B dz where c is circle
| : 2% +22+5
lz+1-i=2.

Solution : by : .
z +1 —i|=|z-— (—1+'i_)|‘ is the circle with center at (-1+i ) and radius 2

+4 .
units. The function - will cease to be regular where

22 +22+5

22 +22+5=0

ie, 22 +2z+5=0

- —2%+/4-20

Z=
2
Rl 1 TS
z= _2_ 16=-1i2i
2
Lz =-1+21, -1-21
z+4 z+4

(z° +2z +5) =-[z—(-1f_2i)]-[z — (— 1 - Zi)]

The above function is analytic at all points except at z=-1+21 which lies inside ¢
and z = -1 --2i which lies outside c.

We consider the function



z+4

1—21)] f(z)
C1+2i)] 2

f(z) = IZ

. By cauchy integral formula

j 1) 45 - 2nif(2)

Takng a =-1+2i (lies inside ¢)

[ z+ 4 J -
j[ z+1+21 dz=2nif(-1+2i)

Z— (—-1+21
=2ni[ -1+_21+4 J

-1+21+1+21
= 21l £+ £(2i+3)
41 2
Example 4:
) . y, ‘ 2 )
Evaluate Fm M2 TC°™ 4z where c is | Z ‘=3 using - cauchy
(z-1)(z-2)
integral formula.
Solution: _
|z \=3 is a circle with center at the origin and radius 3 units
consider

1 . A B
(z-1)(z-2) z-1 (z-2)
| 1 = A(z-2) + B(z-1)

putz=1 A =-]
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putz=2 B=1
_ 1 -l " 1
T (z-1)(z-2) (z-1) (z-2)
_Isi;u:ltzl+1r.:ut:»s..'nz2 dz =- sin mz” + cos mz” dz + Ism:n:z +cnsn22dz
(z-1)(z-2)

c

-

. . - - . . - . y
Since z=1, and z=2 lies inside ¢ and f(z) =smn iz~ +C0s nz’

By cauchy integral formula

= . 2mi f(1) + 2ni £(2)

= -2mi ( sin 7 + cos m)+2mi (sin 21 + cos 21)

=2mi( 1+1) |

= 4m1
Example 5:

Using cauchy integral formula evaluate I dz
(z +1)(z° —4)
where c 1s I > dzz where c is |'z |==1
' (2% +1)(z" —4) 2

Solution :

Iz I=3 is the circle with center at the origin and radius 3/2

units. .
1 1
(z% +1)(z* -4) " (z+i)z- i)(z+2)(z-2)
The above function is analytic at all points excepts at z =i, -1 which lies

inside ¢ and z= +2- which lies outside C
we consider the function

Now
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1 A B

(z+1)(z-1) =(z+ij+ (z-1)

1° =A(z—-1)+B(z+1)
Put z=1, =l_=-—1—
21 2
Put z=-1, B=—i_-=l -
21 2
i |
1 2 2

et ) (z+) (z-i)

e ( 1
J' 2 i 2 1 dz=iI Zz _..4
’ (z+i) (z-1) |z* -4 2:: Z+1

taking a =1 , -i ( which lie inside c)
By cauchy integral formula

j £®) 4 = 2mi f(a)

Jz-a
='[%]2nif(-i)~(i2] 2mif(i) -

= —1-]27& : - .
2 -5 -5
[
= -Tr —_———t —
b 5 5-

|

0

)

1

1

2

{

C

g
z° —4

Z—1

).



z%dz
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Example 6: Evaluate I

c

integral formula.

Solution :

(z-1)* (z* +1)

where ¢ is |z-2|=2.Using cauchy

‘z - 2‘ =2 i$ a circle with (:TBIltﬁr at 2 and radius 2 units consider.

2
Z2 Z

(z-1)%(z* -1 ) (z-1)°(z+1)
A B

C

D

B (Z*l)'+ (z-—l)2 +(z—3)3 +(z+.1)

22 = A(z-1)? (z+1) + B(z-1)(z+1) + C(z+1) + D(z-1)*

put z =1,

1
2
put z=-1

equating- constant coefficient
A-B+C-D=0

. B= —t=—at—
8 2 8

I+4+1
8

3

1 1 1

6
g

Y

|z-2| =2
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7% 1 1 3¢ 1 1 dz 1-de
-[(z-—l)z(zz—l) 73 J(z-—l)dz+4 I(z-l)2 "3 I(z-lf 8 I(z+1)

C c c c

Since the point z=1 lies inside ¢ and z = -1 lies outside ¢. By cauchy integral
formula & its derivatives we have

| - -*3 < 1 (2m1) 7 (1)
= _mif()+—(2m)f (1)+ +0
< 2 £(1)+ 2 (2m) £ () + 22—
= Lonis 3 omi o 125
8 4 2 2
m. 3 . m. m+6m+2m 9m
= —j+—Ti+—1 = =—
4 2 2 4 4

[ =1 f()=1 f()=1 f11)=1 ]
Example 7: Evaluateusing Cauchy’s integral formula :
2z |
I : _where C is the circle | z | =3
2(z-1)(z-2)

Solution: f(z) =e** is analytic within the circle C: |z | =3 and the two singular
points a =1 and a = 2 lie inside C.

2z L'Zz 2z
J‘ e dz=j.ezz 1_1 dz=-[e ,dz-Ie i
(z-1)(z-2) z—-2 z-1 z—2 z—1
C C C C |
= 2mie* - 2nie? = 2nl (¢’ -¢”)
- [By Cauchy’s integral formula]
Example 8:
2 -
Evaluate J. P2 dz wherec is the circle [z | =3.
(z-1)(z-2)
Solution :

Here | z | = 3 is a circle with center at the origin and radius 3 units.
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Also f(z) = cos 1z’

1 A B
_|_

(z-1)(z-2) } z-1 z-2

and consider

1=A(z- 2)+ B(z-1)

put z=1, A=-]
put z =2, B=1
) | S B
(z-1)(z-2) (z-1) (z-2)
2 2 2
'[ cosmz” . _. Icnsnz 4 + [COSTZ
& (z=1)(z-2) < (z-1) 2 (z-2)

Since z =1 and z = 2 lies inside c. By cauchy integral formula we have
=-2mi f(1) + 27i f(2)
=-27i [ - cos 1 + cos 4n]
=2mi [-(-1)+1] = 4mi

Example 8:

Evaluate I

C
integral formula.

(z+1)dz -
(z% + Zz+-4)2

where ¢ is |z+1+1i|=2 using cauchy

Solution : |
|z+.1+1|=2is a circle with centre (-1, -1) and radius 2 units.

z+1 z}l

(z? + 2z +4)° [z.(.l.ﬁi)]2 [z—(—l+1/§i)]2
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The above function is analytic at all points except at z = -1-V3 I which
lies inside ¢ and z =-1++/3 I which lies outside c.

. Consider the function

z+1
By z-(—l+«/§i]i
[Z‘(.—l—ﬁi)]d

. By cauchy integral formula for derivatives

- f(z) Py
El.(z—a)z dz=2mf'(a)

taking a=-1—'1/_i .
=2 mif(-1-+/3i)

z+1
But f(z)= :
[z-(—-1+\/§i)]2
_z+] =—1+‘\/§i
(z—a)*
£(2) = (z-m)2 -2(z+1)(z-a) _ -(z+a+2)
(z—a)" (z—a)’

'(a)=£'(-1-43i)

-[-1-J§i-1+£i+2]= 0'
(1-Bis1-4B)  -4Bif

=0

I (g+3)de = 2mi f’(-l-wﬁi)

(z2 +2z+4)°

C

= () o f(-1-4/31) =0
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Example 10 :
2z

Evaluate J. ©

" dz , where ¢ isl Z ‘=2 using cauchy integral
(z+1) |

C
formula.

Solution :
| z | =2 is a circle with centre at the origin and radius 2 units

Here f(z) = &%
Clearly z = -1 lies inside ¢
2z 2z

) G I Py

c

since z=-1 lies inside ¢

By cauchy integral formula for derivatives

f”(aj= 3! j’ f(z) i

271 . (2—3)4

e’? 2mi £ "(a)
dz =
s
= 27ti f"(-1) (D
since f(z)_=e.=.:zz
f'(z) =2e*
f"(z)=4e*
f(z)=8e%
f(-1)=8e" ..(2)

Therefore (2) in (1) we get
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2z - 0.2
2mi X 8
_[ e _dz = mi x 8e
z-¢-pf* 6
8
= —mie™
3
Example 11:
~
r{fﬂzdz around a rectangle with vertices 2+1,-2 +1.
z° -1 2 |
C

Solutiur!. :

f(z) = cos mz is analytic in the region bounded by the given rectangle and

the two singular points a=1 and a = -1 lie inside this rectangle.

ICDS nz c']z=l SR, ]CDS nz d: AW
7z —1 2\ z-1 z+1 ' _
C c" -2+i R +i
| 5 -:1 3 3 > X
=1 Icns nZ d7 - Icus nZ iz e, ' —3
2(: z-1 zZ+1 | -1

%{Zni cos (1) }-—é— {2mi cos n(-1)}=0.

[By Cauchy’s integral formula]

Example 12:

(z-1)
(z+1)*(z-2)

Evaluate j

c

dz where ciscircle |z—i|=2

Solution :
|z—1]|= 2 is a circle with centre at 1 and radius 2 units.

z-1

Consider . =
(z+1)*(z- 2)
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The above function is analytic at all except at z= - |

which lies inside ‘c’.

. we consider f(z) = <l s
Z-2
)
Z-2 . o
o N dz = 2mi f' (-1) (1)

'('.' Lfsing cauchy integral formula takinga =-1)

since ,f(z)=£-—1
Z-2

' (2“2)—(2-1)
f'(z2) =

(2) (z—.’Z)2 |
_ Z2-2-z+1 | v

(z-2)* g i<
—__ i ]
. (2-2)?
IRV
(D)= o veenne(2) x

Substitute (2 ) in (1) we get

z—1 -
dz =2mif’'(-1
J(z+1)2(z—2) 2 =omib(-1)

S |
=271 [-—
i[5 ]

_  2mi

9
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Example 13: |
Evaluate
.2
(i) "% _dz , where Cis the circle |z|=1.
(z n/ 6)
(i1) I dz ,rwhere Cisthecircle |z |=2.
| o (z+ ¢
Solution: .
(1) f(z) =sin’ z is analytic inside the circle C: |z|=1and the

pointa = /6 ( 0.5 -approx.) lies within C.

f(z)

]
By cauchy's integral formula f" (a)— J. dz, .
& (z-a)’
.2 [ 42 i
We get j on 2 7 dz=mi qu——(sinz z)
- d(z-n/6) dzt ]

= mi(2cos2z) ,_ s =2micos /3 =mi

(ii) f(z) = ** is analytic within the circle.C : |z|=2. Also z = -1 lies
mside C. . ' '

3! I f(2)dz

, 7
271 & (z- a)

| 33(. 22 . .
We get Jl(z+1) dz=2:1 d(f; ] =?[3322L=_1=%I—16'2

. By cauchy's integral formula :f"(a) =

z=-]

Example 14:

dz,where'eis lz|=1

Evaluate I 3
C [ e
| 6
Solution :

Here {(z) = sin’ z | z| = 1 is the circle with center at the origin and
radius 1 units |
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clearly z= = lies inside |z |=1

il
6
.. By cauchy integral formula for derivatives

f(z)\_ 2mi f,,l
I(z-a ) oL @

C /

w -

. 6 : ' .
j 1 zadz=@‘-f"(m6) | (1)
. C[Z_E
6

2!
But f(z)=sinz
f*(z)=6sinz COS Z

=6 [ -sin’z + 5 cos z sin‘z]

6 -'s,in‘5 [£]+5 cos(ﬁjx sin“(f—]
] 6 6 6 .

: 5}:3 ......... (2)

64 16 4

o —

T

|

)

o | A

=6

-1
16
Substitute ( 2)) in ( 1) we have

J‘sinf’z dz=2ﬂ:i[21J _ 21mi

3 2! \ 16 16
=
6 k
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Taylor’s series: |
If f(z) is analytic inside a circle C with centre at a , then for z inside C

()= fl2) + P(a) (Za)r 2 (z-a)? ...+ L 2)

n
% - (%) L S (1)
Note: If a =0 in Taylor’s series we get Maclaurin’s theorem
f(z) = ia z" v.;heré a_ = f7(0)
n n n!

n=0

Note: Comp]ex analytic functions can always be represented by power series of
the form (1)

Complex analytic functions can always be represented by power séries
of the form (1)

Laurent’s Series: |

- Iff(z) is analytic in the ring-shaped region R bounded by-two
concentric circlés C and C, of radiir and r, (r>1;) and with centre at a , then for
allzin R |

flz)=agta(za)+a(z-a)+...... +bi(z-a)" %bz(z-a)'2+

[ being any curve in R, encircling
C, -

f
Where_aﬁLJ. L dt

: n+l
| 2mc(t_a) .
b, = I_J' 04

C
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Note: Z a,(z—a)" is called integral part and Z b,(z-a)™ is called principle
n=0

n=0

part of the Laurents series.

‘Note:
(1)
(i1)
(111)
Example 1:

Solution: f(z) =

To obtain Taylor’s series or Laurent’s series simply expand f{(z)
by Binomial theorem. |

Laurent’s series of a given analytic function f(z) in its annulus of
COnVergence 1s unique.

If [z| <1, then ( We Know)

.Find the Laurents series Expansion of - 1 in the region
2" —gz—2
1<|z|<2
1 . 1
2’ -z-2 (z+1)(z-2)
1 A B

@i)z-2) @+ z-2)

=A(z-2)+B(z+1)

putz=2 . B=—
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1
utz =-1 A=——
g 3
f(z)= — l = :
722 —z-2 (z+1)(z-2)
1 I S
" (z+1)(z-2) . 3(z+]) 3(z-2)
1 1

T 32(1+1/z) 6(1-2/2)

In the first series the expansion in valid | —|[<1, 1.e. 1<|z|
. Z
. .G .|z
In the second series the expansion in valid > <1,|z[<2

The series is valid when 1<| z [<2.

Example 2: Obtain the expansion of the function _z_—z_l in Taylors series of

Z
powers of (z - 1) and state the region of validity. |

-1
Solution: f(z) = Z—z—
Z
— 1 1 -
Z zg

The Taylors series at z =1 is

F(z) = f(l)+z(z_n:) £7 (1) | (1)

n=1
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|
2

Now f(z) = o

Z .Z

f(1)=0 ..(2)
i) = — L4 EC)

2
Z Z

fﬂ'(z) e (”1)g—2) + (_1)(—3)(_3)

Z Z

llllllllllllllllllllllllllll

(="n! (D™ (a+D)!

-
Zn+1 Zm—.,

f"(z)=

A =(=)"al+ (D)™ (n+1)!

=(-1)" n![1-(n+1)]

=(-1)" n!(-n)

£ (1)=(-1)"'nn! | ...(3)
Substitute (2) & (3) in (1) we have
f(z)= ) n(-)"(z-1)’

n=l )
' f(z) is analytic at z=0. Also | z - 1 | <1 is the region of converges.

Hence the region of validity [z—-1 | <]
Example 3: Obtain the Taylors series of expansion of log (1 +z) when | z |<I.
Solution: Let f(z) = log (1 + z )

f(0) = log (1) = 0 (D)

f'(z)=-—l—
1+2
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1 .
(1+2)?

mo _ (=1)(=2) _ 21(-1)?
f"(z) = =
(2) (1+z)° (1+2)

f'(z) = -

..................................

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

£ ()= CDED)—(n-1) _ (n- 1)'(1)“‘
(1+2z)" (1+2)"

< £2(0)=(n-1) 1 (-1) ™! f2)

The Taylors series at z=0 is

f(z) = £(0) + Z —f (0) | ...(3)
n=I n!
substitute (1) & (2) we get

an

f(z) = Z'z;r(ﬂ-l) (-1

f(z) = Z (— 1)

n=l|

n-1

. . s
Example 4: Expand cos z in a Taylors series about z = —

4
Solution: .
f(z) = cos z f(i)::—l—-
4 2
f'(z) =-sinz f"[£)=«-L
4 2
l
f(z) = ~cosz f"[i):———-
4) 2
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f"(z) = sin z f'“[ﬂ:-‘/%

The Taylors series about z = a is

Example 5: Find Taylors expansion of

(1) f(z)= ( 11) >~ about the point z=- i,
Z+
3

(ii) f(z) = =i about the point z =i

2% 42

(1) To expand f(z) aboutz=-1 ie.in power of z+i, puf z+1=t. Then

1 . .
f(z)=(t_i+1)2 =(1-1) [ 1+t/(1-1)]2

2t 3t? 41>
T ——— ..
-1 (1-i)*  (1-i)

1=
2

(Expandmg by Binomial theorem)

p—

N | =

= . (n +l)(z+1')ﬁ -
1+ E (-1)
n=] (I—i)n
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3

(11) f(z)- +l =2z-2+ =l =(21-2)+2(z-1)+— +-1—- (1)
z(z+1) z(z+1) - z z+l]
- (By partial fractions)
To expand 1/z and 1/(z+1) about z - 1 =1, 80 that
, -1
1 -—1— = 1(1 + 1] (Expanding by Binomial theorem)
z (t+1) 1 1
—l-l—l+ 5 —t3 +ti - uop
i| i 2 3 4
—-1-+£+t2—t3+t4-—- 00
. N z—1i)"
=—-1+(z—1)+Z(—1)“(_“+I) | ..(2)
- i
111 )"
and =— = — [l +— (Expanding by Binomial theorem)
oz+1 t+i+]l 141 141 ‘
SR R t? t* )
- |1-— et —— 0
1+1] 141 (1+1)° (1+1)° (1+1) |
- ot | t t? t*
= _ -+ == 0
2 2| (1+1)° (A+0) (1+1) i
1 i z-i s, . (2=1)"
Y (- & G

=————-—1+
2 2 2 “~ (1+1)™
Substituting from (2) and (3) in (1) we get

| R 1Y, &, o 1 1 N
f(Z)'_'( -2~ 1+§'-'5] [24‘1-;]( —*l)'l'Z(-'l) (in+1+(1+i)“+l }(2—1)

n=2

3 _liz=1)"
[E_E] [3+ }z 1+;( l)[ (l+)“+l}(z_-l).
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2z
Example 6: Find the Laurents series expansion of (z) = ( E - abovez =1
z—1)
eZz
Solution: f(z)= :
(z-1)

Here we have to expand f(z) in Laurents series as powers of (z - 1)

Put z -1=uile,z=u+l

2u+2 2 [ 2
-
u u 1! 21

S| ) 2u (2u)?  (2u)’
. ; 3+( )3 +( )3 + ...
u- u 2u 3l

|1 2 2 4 2
+ + +—+
(z-1)° (z-1)* (z-1) 3 3

The series is valid when |z—1|>0

(z-1)+..0

Example 7: Find the Laurents series of f(z) = : in |z|>2
(z-1)(z-2)
Solution: f(z)= :
(z-1)(z-2)
f(z) = = + : (using partial fraction)
=) (z-2) P

In the region | z |>2 the Laurents series is
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R
f(z) = —%{n&}@z +]+é{1+@+@2 +]

. . -
Example 8: Find the Laurents expansion of f(z)= M. in
(z+2)(z+3)

(i) |z|>3 ()2<[z][<3

Solution:
2
z _a B N C
(z+2)(z+3) (z+2) (z+3)

f(z)=

l‘\ 'r

zz~.— 1=A(z+2)(z+3)+B(z+3)+ C(z + 2)

put z = -3 -C=8 ..C=38
put z =-2 B=3
Equating the coefficient of z* =1
~f(z) =1+ > 8

(z+2) (z+3)
1) [z]|>3

8

Lf(z) =1+ 2
2 3
z[1+—) z(1+-——}
Z Z
= -1
=1+1(]+E] ——8-[1+2]
z v4 Z Z J
[ 2 2
f(z)=1+i 1[5}[-2—] —. —§ 1—[-3—]-1-[5] - ..
Z Z Z Z Z Z
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In the above expansion the first series is valid when 2 <lie2<|z]
vi
. . 3 :
In the second series valid for [—{ <1 1.e. 3< | Z ‘
y4

The whole expansion is valid when | z | >3
(i)2<|z|<3

3 8

flz)=1+ &
z[1+12-J 3{11&]
. Z 3
-1
=1+—3-[1+£] -_._8_[14_
Z zZ 3
i} o z] ? :
oo 3y - O~

Z Z Z

2

—

Z

El«:_l le.|z|<3
3 _

The whole expansion is valid2 < |z | <3

In the above expansion the first series is valid when 1ie.2<|g

In the second expansion is valid when

Tz—2 .
n
z(z+1)(z—2)

Example9: Find the Laurents Expansion of the function f(z) =

the annulus 1< lz+1|<3

Solution: ‘put z+ 1=
z=u-1
f(2) = T(u-1)-2 7u-9

B (u-1)u(u-3) - u(u-1)(u-3)
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3 1 2
+ +
u u-1 u-3

(using partial fraction), 1<|u | <3

3

1

LD

(z+1)

3

[

3

]Z

clearly this series is valid in the region 1 <|z+1|<3 |

Example 10:

2 _ro_1-
Find the Laurents series expansion of the function 2" ~0z-1

| (z-1)(z-3)(z+2)
in the region 3<|z+2|<5

Solution :
Put z+2=u
z=u-—2
(u-2)* -6(u-2)-1
(u-2-1(u-2-3)u

_u’-4u+4-6u+12-1
(u=3)(u->5nu

of(z)=

~ u®-10u+15
u(u-3)(u-5)




and the regionis 3 <|u| <35

1 1 1
— + —
u u-3 u-5
1 1 1

32

(using partial fractions)

=—+

1 1], 3 32
= —+t—|14+—+—+
u u u y?
2 3 37 1
=|—+—+—+.. |+ 1+
u u u 5

Clearly this series valid when |u

£.3<|ul|<5

) -

z+2 (z+2)*
4 +...
5 52

<1 1e., 3<:|u| and

| .
}.e.intheannulus 3<|z+2]|<5

<1 i.e.|u| <5

:Example 11: Find the Laurents series about the point z = 0 for the

z% —1

2

function .
| z°+5z+6

z° —1

22 +52+6

Solution: f(z) =

in the region 2 <|z|<3.
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B 7% —1
" (z+3)(z+2)

B C
+ +
(z+3) (z+2)

(since the Nr. Degree is equal to Dr. degree

3 8

+ - ing partial fracti
212 @3 (using partial fraction)

=1

Now in the region 2 <| z | <3 the Laurents series is

- ‘ 2 § 2 1.
12124 (2) -3 -24(2) -
zZ zZ v/ | 3 3 \3

clearly the above expansion is valid for2 <|z | <3

o

Example 12: Find the Laurents series expansion for the function

1
zZ+ 2

f(z)=(z-3) sin[ ] about z = -2.

Solution: Given f(z) =(z-3) sin( : J
z+2

Putting z + 2 =u

f(z)=(u-3) sin[l]
u
:(u—S) 1'- 1 + l —...00
u 3w’ S’
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5 1
z+2  6(z+2)° _
Example 13: Expand f(z) = 1/(z — 1)(z — 2) in the region:

f(z)=1- +...

(a) |z|<],
(b) 1<]z|[<2,
(c) 1z]|>2,

(d) 0<|z-1|<1.
Solution:
1 1 1

(z—l)(z—2)=z—2_z—1 )

(a) By partial fractions

1 Z - -1 | .
=__[1——-] +(1—z) ...(11)

2 2
For |z |<1,both |z/2|and |z | are less than 1. Hence (i1) gives an expansion

2 3
f(z)=—l 14242 2
2 2 4 8

+..‘]+(1+z+z2 +z° +)

1, 3,7, + 22,3 4. whichisa Taylor’s series.

2 4 8 16

(b) For 1{|i|ﬁ'2,wewrite(i ) as

_ 1 1 ) 1 .
f(z) 2 (1-2/2) 2.2 - ...(111)

and notice that both |z/2|and |z ~!| are less than 1. Hence (1ii ) gives on
expansion

2 3
f(z)=-%{1+§+Z 4+ 2 +...‘J-l(1+z"+z'2+z‘3+ ...... )

4 8 y4
=....-2'4—2'3—z'z—z"—l-lz-—l-zz——1—23— ........
2 4 8 16 |

which is a Laurent’s series.

(c)For |z|>2,wewrite(1) as



35

1 ] 1
z(1-2z ) z(1-z1)

f(z) =

=z"(1+23'1+f?1z"?+82'3+....)—-z'l(1+z'l+z'z+z'3

=  +8z*+4z2 42z -1—-2z-z2%........

(d)For 0<|z-1|<1, wewrte(1) as

_ 1
(z) (z-1)-1 z-1

=-(z-1)"'-[1-(z-1]~

=-(z-1)"-[1+(z-1D)+(z=-1)°+(z-11+...]

T oren
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(1) Zeroes of an analytic function
Def . A zero of an analytic function f(z) is that value of z for which f(z) =0.
(2) Singularities of an analytic function
Def . A singular point of a function is the point at which the function ceases to be
analytic. |
(i) Isolated Singularity . It z =a is a singularity of f(z) such that f{z) is analytic at each
point 1n 1ts neighbourhood ( i.e., there exists a circle with centre a which has no other
singularity) , then z =a is called an isolated singularity.

In such a cas, f(z) can be expanded in a Laurent’s series around z = a, giving
flz)=ao+2a (z-1)+ay(z—a)’ +......t by (2= 1) +by(z-a)?+..... ..(1)

For example , f(z) = cot (7 / z) is not ahalytic where tan ( 7/ z }=0 i.e., at the points 1 / z
=4nor z=1/n(n=123,..)

Thus z=1,%,1/3, ..... are all isolated singularities as there is no other
singularity in their neighbourhood.

But when n 1s large , z=0 is such a singularity that there are infinite number of

other singularities in its neighbourhood. Thus z = 0 is the non — isolated singularity of

f(z).

(1) Removable Singularity . If all the negative powers of (z-a) in (1) are zero , then

Z a, (z - a)“ .Here the singularity can be removed by defining f{z) at z =ain
0 | ,

f(z)

n
such a way that it becomes analytic at z = a. Such a singularity is called a removable

singularity.
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Thusif 74 f(z) exists finitely , thenz=alisa removable singularity

X=>d
( iii ) Poles . If all the negative powers of (z—2 ) mn (1 ) after the n" are missing,

then the singularity at z = a is called a pole of order n
A pole of first order 1s called a simple pole.

(iv) Essential singularity . If the number of negative powers of (z—a) in (1) is

infinite , then z = a is called an essential singularity . In this case, -

1t fz) does not exist.

X—>2
Example 1 :
Find the nature of singularities of the function
Z -SIn Z

(i) ==

Z

Solution :
Here z = 0 is a singularity.

z-sinz _ 1 22 z° z’ z z° 2’
Also = —2Z-| 2~ Fo | p= +—

2 7 3 5 7! BT

Since there are no negative powers of z in the expansion , z=0 is a removable
singularity.

is .1
(ii) (z+1)sin ——
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Solution :

(z+1)51'_11-1—2=(t+2+,1) sin% where t=z -2
z_

= (t+3) {l— 13 + 15 —}
t 31t7 5t

=11 : + : +[E 1 + 2
32 51t ) Lt 23 st

PO I S S
t 6t 2t° 120t
3 11
2-2 6(z-2)> 2(z-2)3

=1_|_

Since there are infinite number of terms in the negative powers of (z- 2 ) is an essential
singularity.
1

COS Z-SIN Z

(i)

Solution: Poles of {(z) = ! _ are given by equating the denominator to
COS Z -Sin z

zero , i.e.,bycosz—sinz=0ortanz =1 orz=m/4 is a simple pole of f(z).

Example :

What type ;:}f singularity have the following functions :

(1)

[-e®

Solution :Poles of f(z) = : — are found by equating tQ zero\l —e*=0 or e’ =1-
(1-e7)

2nnl
e
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z=+2nni(n=0,i1,i2,....'...)

Clearly f(z) has a simple pole at z = 2mi.

() EZ:
11
(z-D)°
Solution :

2z 2(t+1)° 2

e’= & e :

—=—— = 4_52‘ where t =2z -1

(z-1) t t

(1 2 2 4 2 4
=e AN A A S
4¢3 g2 3t 3 15

: 2 - : +2+45(z—1)+... }

(z—1)“+(z-1)3+(z-1)?+3(z—1) 3 1

ey

since there are finite (4) number of terms containing negative powers of (z-1), .

- z=11isapole of 4 th order.

|22

(111) ze'

' 1
Solution : f(z) =ze”z: =Z {1+ 12 + : + +}
122 2zt Az°

since there are infinite number of terms in the negative powers of z , therefore z=0

is an essential singularity of f(z).
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RESIDUES

The co —efficient of (z—a )’ m the expansion of f(z) around an

isolated singularity is called the residue of f(z) at that point. Thus in the Laurent’s

series expansion of f(z) around z=a ie., f(z)=a,+a,(z-a)+a,(z-a ) +

llllll
i

a, (z-a)*+...., theresidue of f(z) atz=aisa

Res f(a) =L_ f(z)dz
2m1
C
ie, If(z)dz = 2mi Resf(a) e (1)
C
CALCULATION OF RESIDUES

(1) If f(z) has a simple pole at z=a, then
Res f(2) = Lt [(z—a)f(z) ]

Z=>4

Laurent’s series in this case 1s |

f(z) =co+c,(z-a)+c,(z—a)......... +c . (z-a)~
| Mulﬁplying throughput by z—a , we have
| (z-a)f(z)=co(z-2a)+c,(z-a)°+...... +C

Taking limits asz = a, we get

It [(z —~ a)f(z)] =c -1 =Res f(a)

Z->a

(2) Another formula for Res f(a)': |
Let f(z) = ¢(z) / ¥(z) , where ¥(z) =(z -a) F(z) , F(a) # 0

Then Lt .

Z—>a

- Lt

(z—2)[p(a) + (z-2) (a) +......]
_ / k
[(z a)t.:p(z) w(z)] e V(@) +(z-2)y'(@)+.......

p(a)+(z-a)o'(a)+....
ZI_‘fa y'(a)+(z-a)y''(a)+....

, sincey(a)=0
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¢(a)
v'(a)

Thus Res f(a) =

(3) If f(z) has a pole ofordernatz=a, then

ﬁ

( dﬁpl )
Res f(a) = @ 11)! 4 = [(z—- a) f(z)]?

Example :

k Find the poles and residues of f(z)=—
z° =3z+2

Solution :

3 /A
flz) = (z—-2)(z-1)

To find poles of f(z) put Dr=0
(ie) (z-2) (z—-1)= 0
z =12 ,1are two simple poles of f(z)

Residue of f(z)atz =2

| - z
= 1t |20,

z—>2 L

Residue of f(z) atz =1

B | - Z
- Lt _(Z 1)(z-—z)(z-l)_

z—>1

1

= = .]

1-2
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Example :
Find the poles and residues of f(z) = cot z.
Solution : f{(z)= cotz
=cosz/sinz
This is of the form
f(z) = ¢(z) / w(z)
poles , sin z =0

Z =17 z=0, 7, +2m,...........

.'.(p(a)io and y(a)=0

o(a)
¥'(a)

Residue atz=a is

z=a=0,tmn +2xn,...

Residue of f(z) = dcos -
—(smz
77 8m2)
_ cosz
cosz |
=1
| ze”
Example : Find the poles and residues of {(z) = (z_a)’
z—a
_ ze”
Solution:  f(z) = 3
| (z-a)”

.z =a Is a pole of order 3.

| dm-l .
= (m__l) EI__,JE dzm_] (Z"‘E) f(Z)
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Herem=3

2 z
=2 T4 E—(z a)? ——
2! za dz2 (z a)’

=%—(2&a +ae?)

m—

1 4
=—e (2+a
; (2+a)

Example: Evaluate the residue at the poles for the function

1 —
f(z) = Z : 2Z
(z+1)*(z* +4)
z? -2z
Solution: f(z) = is pole of order 2

(z+1)%(z* +4)

z = 21 is a simple pole
Residue of f(z) at z=- 1 (pole of order 2)

2
cn L —E %

z>-1dz (z+1)2(z+4)




2
_ It d|z°-2z
z»-1dz | 2% +4

(z% +4)(2z2-2) - (z* —22)(22)

= Lt
21 (z® +4)°
_B)=)-B)(=2)
25
_18
25

Residue of f(z) at z = 2i (simple pole)

2 —
- Lt (z-2)— 2 =
z—2i (z+1)"(z-2i)(z+21)
2 - "
- Lt i

-2 (z+1)% (2 - 2i)(z + 2i)

_ (2i)% —2(21)
(2i+1)% (41)

44
(—4 +1+ 4i)4i -

_ —4(1+1)
 4i(=3+4i)

_Z(+D) _ A+ (3i+4)
—3i—4 3i+4 (=3i+4)

_ T+
25

:Residua of f(z) at z = -2i (simple pole)
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z% 2z

= Lt (z+2i). - . :
220 . (z+1)"(z+2i)(z—21)

B z? -2z
B LE- 2/~
z—-21 (z+1)" (z—21)

_ (—21)% —2(-2i)

(—2i+1)* (—4i)
. HA-+h :
L (—4i)(-4 - 4i+])

. —4+4
" (—4i)(-3 - 4i)

1
()3 +4i)

_ - (3i-4)
3i-4)  (-3i-4)

 (1-i)@i+4)
T (Bi-4)(3i+4)

(1-1)(3i+4)
(3i—4)(3i+4)

72 -2z
(z+1)2(z* +1)

Example: Find poles and residues of f(z) =

22 -2z
(z+1)2(z”° +1)

Solution: f(z) =

Poles of f(z) is
z = -1 is pole of order 2
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z =11s a simple pole
z=-1 1s a simple pole

Residue at z = - 1 (pole of order 2)

| 2
1t Sz 2 : 23
z—>-1dz (z+1)*(z* +1)

2 1
_ 14 d|[|z -2z
z>-1dz| z? +1

(z2 +1)(2z-2) - (z*22)(22)

= L

e (z* +1)°
_ ()4 -0B)(=2)

| 4

_ —8+6

4

__2_ 1

4 2

Residue of f(z) atz=1 (simple pole)

= Lt (z-i)}—— 222‘
z—>-1 S (z+1D)%(z° +1D)(z-1)
2—.-
- Tt z° -2z

z-i (z+1)* (z+1)

(1)* —-2(i)
(1+1)%(2i)
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_—(1+21) 1+21
-4 4

Residue of [(z) at z =1 (simple pole)

2 _27
- Lt (z+i)——
e S T

2 .
_ Lt (z+i)—— — 2%
z—-i (z+1)%(z+i)(z—-1)

_ ()* -2()
(<i+1)%(-2i)

_ —1+21 _—1+2i_1—21
(—21)(-21) -4 4

RESIDUE THEOREM
If f(z) is analytic in a closed curve C except at a finite number of singular!

points within C, then
If (z)dz = 2mi x (sum of the residues at the singular points within C)
C

[et us surround each nf the singular points a,, a3, 23,.....,an by a small circ
such that it encloses no other singular point. Then these circlés C,, Cs,... ,C,together
with C, form a multiply connected region in which f(2) is analytic. o

Applying Cauchy’s theorem, we have

jf(z)dz - ]'f(z)dz + J'f(z)dz A _[f'(z)dz by (1)
C o C, o
= 2ni[Res f(a,)+Resf(a,) +....+Resf(a, )]

which is the desired result.
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: 3z2 +2
Example: Use residue theorem to evaluate j dz

2 (z=1)(z* +9)

Wherecis |z—2|=2.

3z% 42

Solution: f(z) =-
olution: f(z) 2122 19)

Poles are -
z =1 1s a simple pole
z = % 31 are two simple poles.
Here c is the circle [ z— 2 |= 2.
z = 1 is only pole lies inside c.

By cauchy residue theorem

I f(z)dz = 2mi (sum of the residue of f(z) ...(1)
C

at the poles which lies inside c)

Residue of f(z) at z= 1 (simple pole)

J' f(z)dz = 2n(1/2)
C

= 111
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and hence evaluate

Example: Determine poles and residues of f(z) = 5
(1-z)“(z+2)

jf (z)dz where c is the curve |z|=15/2
C

Solution: f(z) =
' (1-2)*(z+2)

poles are z = 1 is poles of order 2 and z = -2 is a simple pole.

Here c is the circle | z | = 5/2.

z =1 and z = -2 are lying inside c.

Residue of f(z) at z = 1 (pole of order 2)

d ' 2
=Lt —(z-1
z-1 dz (z ) (1-"3)1 (Z+2)

= Lt_El... -
zoldz\z+2 .

_ 1, E+20-E)0

21 (z+2)°

3-1_2
9 9
Residue of f(z) at z = - 2 (simple pole)

= Lt (z+2)
z>=2 (1-2) 2 (z+2)

(-2) _ 2

T (=2-D2 9
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By Cauchy residue theorem

jf (z)dz = 2mi (sum of the residues of f(z) at the poles which lies inside c)
C

sin 1z* + cos nz?

(z—-1)(z-2)

Example: Evaluate I
- C

dz where|z|=3.

sin 22 + cos 1tz >

Solution: f(z)= z-Dz-2)

The poles are
z = 1 simple pole
~z =2 simple pole
Here the circleis |z | =3
Bothz=1 & z =2 lies inside ¢
Residue of f(z) atz =1

- 2 2
— Lt (Z _ 1) SIN TZ -+ COSTZ |
= (z-1)(z~2)

sint+cosm _ —1

= =—=]

-1 =1
Residue of f(z) at z = 2.

2

- Lt(z-2) sin tz? +cos nz
252 (z—-1)(z-2)
3 sin 4m +cos4m _ 1

= =1
l S
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By residue theorem

If (z)dz = 2mi (sum of the residues at the interior poles)
C

=2mi(1+1)
= 411
Example :
R 4-3z : : '
Evaluate I _dz where c is the circle | z | =3/2
& 2(z—1)(z—-2)

Solution :

The poles are
: |z|=3/2
z = 0 simple pole

z =1 simple pole

Here the circle is | z | = 3/2

z=0 & z =1 lie inside

' Y
z =2 simple pole C : 1

c and z =2 lies outside c.

Residue of f(z) at z =0 simple pole

= . 4-3z7
Lt ® 2 (z-1)(z-2)

z—>0

4.
2
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Residue of f(z) at z=1 1s

4-3z
z%gl(z_l)z(z-Z)
I
1(=1)

. By cauchy integral theorem

If (z) dz = 27i ( sum of the residues at the interior poles)
C

=2mi (2-1)
= 271
Example :

dz
(x> +4)*

Evaluate I
C

around the closed contour |z—1| =2.

Solution :

1
(z2 +«‘-1)2

f(z) =

The poles are z = + 21are

pole of order 2.

Here the circle is [z —i|=2
z = 2iis the only pole
lies nside c.

. Residue of f(z) at

z = 2i ( pole of order 2)

d,. _.\2 1
= —\z-21)".
z}.::-tZi dz ( ) (z—2i) 2*(3 + Zi)z
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(z+2i)2(0)-1(2)z + 2i)
L (z+2)

_(2z+4i) -(4i+4i) _ i

Ut Tge2)t @)t 32

By cauchy’s integral theorem

If (z) dz=2ni (sum of the residues at the interior poles)
& 1

comi | 22X
5%

Example : Evaluate I (z,:l) where c is the circle | z—1| =2.
: 7 (z+1) (z—-2)
Solution :
f(z) = (z-D

(z+1)*(z-2)
The poles are z = -1 pole of

order 2

& z = 2 simple pole
Here the circle is |z —1| =2

Therefore z = -1 is the only pole

Lies inside c.
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Therefore Residue of f(z) at
= -1 ( pole of order 2)

d 2 (z-1)
= . —(z+1).
ziildz(z+) (z+1)*(z-2)

_ d[z 1)
. _I;tldz z-2
_ (z-2)(1)-(z-1) (1)

Lt
e (z-2)°

_(3)-(2) 1

9 9
By Residue theorem

1 271
If(z)dz omi ('E)”'T

Example :
Find the poles and residues of
zZ-3
(z+1)*(z-2)

f(z) =

The poles are z = -1 pole of order 2
& z = 2 simple pole
Here the circle is | z—i[=2
Here z = -1 is the only pole lies
Inside c.
Therefore Residue at z =-1

( pole of order 2)
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I Example 4 I If f(z) = sin z is an analytic fﬁnctiﬁn_, prove that the

Jamily of curves u(x, y) = ¢; and v(x, y) = c, are orthogonal fo each

other.

Solution : Given: f(2) sinz = sin (x +iy)

sin x cos (iy) + cos (x) sin (iy)

| sin x coshy+fcosxsinhy
Consider u(x, y)

¢
sinx coshy = ¢ , " .. (1)
Difterentiating (1) partially with respect to x, we get

L d |
sin x sinh y 3‘% + cosx coshy =0 'r

dy _  cosxcoshy
dx ~ sinx sinhy
my = _cotx cothy
Again consider v(x,y) = ¢,
cosx sinhy = ¢, | .. (2)

Differentiating partially with respect to x, we get

i d
—sinx sinh y + cos x coshya% = 0

dy . sinxsinhy
dx  cosx coshy

e ml mz = —]
u(x,y) = ¢; and v(x y) = ¢, are orthogonal.

Note : For any analytic function F(z) =u + iv, the fannly of curves
u =c), v =c, forms an orthogonal system.
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Example :

Evaluate I 273 dz, where Cis the circle

2
oz +2Z+5

(i) | z| =1 (i) |z+1-i|=2 (i) |z+1+| =2

Solution:

z—3;

2

The poles of {(z) =
z° 422+

are given by z°+2z+5=0

i.e., by . z= =-1£2i

- (1) Both the poles z =-1+21 and z =-1 -2i lie outside the circle |z | =1.
Therefore f(z) 1s analytic evérywhera within C.

Hence by Cauchy s theorem , j 5 dz=0
z +2z +

(i1) Here only one pole z = -1 + 2i lies inside the circle C: | z +1-1| = 2.
- Therefore , f(z) is analytic within C except at this pole.

L ResfCl+2)= 1, [e-(-1+20fR))= g, C2E)

z->-1+2i Z->-1+21 2> +22+5
-3 -4 2
= 1t (z ) +1-1+1f2
o> -1+2i z+1+21 4

Hence by residue theorem jf(z) dz = 2mi Res f{-142i ) =2mi (i+1/2) =m (i-2)

(i)  Here only one pole z =-1 - 2i lies inside the circle C: | z +1+i | = 2.

Therefore , f{(z) is analytic within C except at this pole.

. 14 21)(7 -
. Resf-1-2)= 1, 1+ 2)z-3)
7->-1-2i 2 +224+5
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= 14 (3_3)_ =.i'_?_1.-_-1/2 _i
Z'}'l'2i2+1_21 "41-
If (z)dz
2
_ =2mi Res f(-1-21)
Hence by residue theorem
= 2mi (1/2-i)
=m(2+1)
Example :
Evaluate Itan z dz where C is the circle | z | = 2.
B .
Solution:

The poles of f(z) =sin z / cos z are given by cosz =01.e., 2= (2n+1)7/2,

n=0, £1,+2,..... off these many poles, z=7/2 , and -n/2 only are within the given

Res f(n/2)= 14 = Lt [5“_” ]=-1
| z-b-nfz.a;(gosz) zZ->12 —SIz

sin z
=-1

Similarly Res f(-7/2 )= 14
z->-1/2 ——(cos 'z)
dz

Hence by residue theorem ,

If(z)dz =2mi1 { Res f(ﬂ!i) +.Resf(-1t/2) b =2mi1(-1 —1)=-411:i

C
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Example :

sin 71z 4 COS nz?

(z-1)*(z-2)

Bualuate | dz, where C is the circle |z | =3

C

Solution :

— dz is analytic within the circle 1z|=3
(z-1)"(z-2)

/) = J‘sin nz? +cos nz’
C
excepting the polesz=1and z=2.

Since z =1 1s a pole of order 2.

— oy

Resf(1)= 11! ;z {(z -1)? f(z)}- = ;Z (Sin nz;i ;c))s nz’ ]

- Jz=]

— - z:l

_ (z-2)(2nz cos mz’® - 2nzsin nz*)—(sin ftz2 J;cosnzz)“
, _
(z-2)" I
=(-1)(-2m)—(-1)=2n+1 |
) 2
.|..
Also Res f(2) = 1t [(2-2)f(z)]= Lt S TR e

z->2 z->2 02-1)2

Hence by Residue Theorem,

If(z)dz= ?ni [Rcs f(1)+Res'f(2)] =2ni(2ﬂ%1+1;)#4n(n+l)i
C
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CONTOUR INTEGRATION

VALUATION OF REAL DEFINITE INTEGRALS

lany important definite integrals can be evaluated by applying the Residue theorem to
loperly chosen integrals.

2n
a) Integration around the circle: An integral of the type If (sin 0, cos 0)d0 , where
| 0

the integrand is a rational function of sin6 and cos® can be evaluated by

writing e'° = z.

Since sin 0 = l(z —lj and cos0 = l(z +l] , then integral takes the form

21 Z 2 Z

| Jf(z)dz , where f(z) is a rational function of z and C is a unit circle | z | = 1.
C

Hence the integral is equal to 27 times the sum of the residues at those poles of f(z)

which are within C. |
2R

Procedure: Integrals of the form I
0

©(cos,sin 0)dd where ¢ isa rational function of

cos® andsinf.

Working rule: putz=¢ ®— cos@+isin®

=

_1.=¢‘i9 =cos@—isin®

Z
0 Lo @ 1[0 1)
cos© 5 2( ;
ﬂiﬂ _E—iE 1 ( 1)
- — —_— 'Z"——
sin© > Y .
18

since Z= €
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dz=ie* do
dﬂ:_ii%
ie
-9z
1z
2n - ; 7
1( 1)1 l]dz . v
: ‘ = — — |, —| z—=|—| where c is the unit circle
c. jtp(cﬂsﬁ,smﬂ)dﬁ J(p 2(z+2] Zi( 15 _
0 - c - > -
|z|=1
=If(z.)dz

By cauchy residue theorem
=2ni (sum of the residues of f(z) at e poles which lies inside c)

. - 2n
Example: Using method of contour integration evaluate I
| 0

do
2+cosH

Solution: put z =g"
~.do = E
1Z

cosO = -1—[2. + l}
2

Z

2n ‘
de dz/iz . Lo -
I = I where c is the unit circle [z | =1

0 2+C.ﬂse C 2+l(z+l]
2 Z
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dz/i1z °
4z +7° +1

Il
ey

C

_ZI dz
=- -
Loz +4z +1

= % Jf(z)dz

By cauchy residue theorem

= 2_ 2mi (sum of the residue of f(z) at the poles lies inside ::)
1

=47 (sum of the residues of f{(z) at the poles inside c)

The poles of f(z) are given by the roots of z* +4z +1 =0

—4x416-4

y

ie,z=-2+V3 & z=2-43

i.e., a=—2+1/§, |3=—-2-\E
Butz = a lies iﬁside C

Residue of f(z) at z= o.(simple pole).
Residue at the simple pole is given by Lt (z—a)f(z)

Z—Q

1
Hence. z]":},tu(z —_u) 2= 0)z-P)

|
a-p
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1
(-2+43 =(-2-+3))
__1
23
n
I dz =4:ﬂ.:L
ﬂ2+0039 24/3
2
3
21
- cos 20
mple: Evaluate do
Examp 6[5+4°°SB
- - i20 .
ZJ_ c0s 28 9_2 R.Pe |
5+ 40030 ‘ _5+4cn5€l ‘
. 0 2
% ) e
=R.P. J.S +4cosB
0
putz=eig
t:1(§}=iE
o 1Z
c039=—1{z+1)
2 z
=RP.I z-dz/ iz
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2
=1-R.P.-[ Z d‘:
1 CSZ+ZZ +2

~Irp If(z)dz
1 & ‘

ZE

22% +5z+2

where f(z) =

= lR.P. 27i (sum of the residue of f(z) at its interior poles)

1

=R.P. 21 (sum of the residue of f(z) at its interior poles)

For poles of f(z) put Dr.=0
_i.e., 272+ 5z +2 =0
2z(z+2)+1(z+2)=0
(22+1)tz+2)=0
z=-2, —-1_!2

But only z = -1/2 lies inside c,

Hence Residue of f(2) atz=-1/2 is

= Lt l(z + %)f (z)

z—-
2

—

= 2ar
= Lt |z+
z.+_% 2 )(z+2)(2z +1)



1/4 1

2312 12

2m i20
: 5+4co0s0 -\ 12

54+4cosHB 6

27 _p
RP. J‘cos 20 +1isin zede _ [E]
0

0

Example: By integrating around a unit circle, evaluate I

1
2

and cos36 = -1—(e3i9 +e‘3i9)=.1_ 7> +_1-
2 2 3

1

| 27 )
e, '[ cos 26 0-|Z
5+4cosb 6

Putting z=¢"*, d0=dz/ iz, cosb = —(z + L

Z

2R

0

cos 36

dé.

5—4cosO



1 2% +1 ' 1 (z6 +1)dz
_ .[23

‘ 21Cz (22° -52+2) 21(:

= _% If ('z)dz where C is the unit circle | z|= 1.
e | |

Now f(z) has a pole of order 3 at z = 0 and simple poles at z="2and z=2. Of these

only z =0 and z = % lie within the unit circle.

-

- Resf(1/2)= Lt

(z-1/2)(2° +1) _ ” 241 | 65
z—1/2 (22—1)(2—2)- 721/

) 22°(z-2) Y

1 [ d™ 2 |
Resf(0) = oDl ( = [(z-0)"f (Z)]l_:{]

w2 (50 Y dfe2-5+062’ - +)éz-9)| .,
zhdz2 22% —52+2 dz _2(222——52+2)2

- Z= -

"

'3 .
d 827 -252° +122° -4z+5 ||
dz|  22z%-5z+2)*

= Jz=0
(222 -52.+2)* (562° ~1502° +60z° _4)- (82 -252¢
+122° —4z+5)2(28° 52 +2)(4z-5)

2(22% -52+2)"

1' -

- 4(-4)-5(-20) 84 21
2x16 32 8

| 65 21 ] T
Hence I =-—[2mi(Resf(1/2)+Resf(0))]=-M ——+— [=—1 77|~ 75"
- ZiF (Resf(1/2)+Rest(O)) ( % 3] ’{ 12} 12
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UNIT-1I
Z -TRANSFORMATIONS AND DIFFERENCE EQUATIONS

Definition:

Let {f(n) }be a sequence defined for n = 0,%1, 2,43, ..then the Z-transform of f{nJis defined
as Zif(n)} = ¥n=—=f(n)z™™ = F(z) which is known as two sided or Bilateral Z-transform of

fln).

If f(n) =0 forn < 0, then the Z-transform reduces to one sided or Unilateral Z-transform and is
defined as Z{f(n)} = X, = f(n)z™® = F(z).

Z-transform for discrete values of t:

If the function f(2) is defined at discrete values of t, where t = nT, n =0,1,2,3,...= T being the
sampling period, then Z{f(t)} =X, = f(nT)z ™™ =F(z).

Z-transform of standard functions:

1. z{a"} = — if 2| > |al

Proof: By the definition Z{f{n)} = X = fn) z™™

(== =]
-
s

=Y ey @ =1e2e (@)

n=0 n=0

1

=(1-3) 7 =(=9) ==

Note:
() Whena=1, Z{1} = =

=z—1



(i) Whena=-1, Z{(-1)"}= —
2.2(k) = ke—

Proof: By definition Z{f(n)} = 5., f(n)z ™™

DRSS WNC
1+;+C)‘+---

3. Z{Tl} = ﬁ

Zik} =k

Proof: By definition Z{f(n)} = E;=,f(n)z™"

Z{n} = Sgnz =2+ ZG)E +3 G)E +

E CEC RS
z z
~z (z—i}ﬂ]z(z—i}
Z{n}_ fﬂz

o 2 =to0(2)

Proof: By the definition Z{f(n)} = X -, f(n) z ™™

= —iﬂg(i —;1) = —Iag(%l) [+ log(1 —x) = — x+:‘;+x§+ m]

S IRWEE
5. 2{=—} =z10g (=)

Proof: By the definition Z{f(n)} = Xon_,f(n)z™®



I e I Y PR PTE e T
nt+l) Lon+1. T lm+iz) T oT2\Z) 73 4
n=0 n=0
SIORER
z 2 3
1 z—1 = g
- 09 (1 2) = 206 (<) - et =) <~ [+ T+ ]

1
Z{n + 1} = zlog (i)

6.3&}: oz

=2z

Proof: By the definition Z{f(n)} = X;=,f(n)z™®

3

N Y O (O PR TOR

n=0

az

(z—a)?

7. Z{na"} =

Proof: By the definition Z{f(n)} =X, _,f(n)z~=

o0

st = 3 ner e 3 (2 =22 5 -

n=0

Sfir2@ oo -]

=2(1-9) =2z =

zsind

zlz—cosd)

22—-2zcosf+1

8. Zicosng} = and Z{sinng8} =

2i-2zcos0+1

Proof: Let a = &'?

= =

We know that Z{a"} = :—E = Z{‘[E‘EE}H}

z—6f  z—{cosf+izing)



z
Zl(cos8 + isind)™} =

(z — cos@) — isind

z[{z — cos@) + isind] B z(z — cosd) + izsind

4 8 + isinng} = 5 =— > 5
{cosnf + isinn} {(z—cas&}}‘+si:r12€ z¢ —2zcos0 + cos-0 + sin“6

z(z — ros@) + izsing z(z — cos8) i zsing
c =— i—
ze¢ —2zcos80 + 1 zt—2zcos0+ 1 z¢ — 2zecos0 + 1

Zleosngdl + iZ{sinng} =

Equate the real and imaginary parts on both sides, we get

z{z — cos8)
Z g =—
(cosnfl} ze —2zcos58+ 1
zZsing
Zlsinng} =

z2 — 2zros8 + 1

Note: When & = g

T =% T
= Z{sinn—} =
Z{camz} =241 and 2 =241

=

=l z—coshd)

gf—2zroshBf+1

Proof: Z{coshn8}=Z {w} = %z{{eﬂ}” + {E—E}”]

9. Z{roshnd} =

1[ z + =z ]_z z—e ¥ 47— gf
T 2lz—ef oz —e7fl 2l{z—ef)z—e"F)

o z(z - roshd)
22— 2zcoshB+ 1

_z[ 2z — (e +e77)
2

2022 —z(e? + e )+ 1

ssinhf

2—2zcoshB+1

10. Z{sinhn8} =

ng_ _—ng
Proof: Z{sinhng} = Z{%}

=32{(e¥)" - (=)}

I—g

1[ =z Z ] z[lz—e ¥ —z+&f
z—g "

T2 e T2|z-ef)z—e%)

i {eg + e‘g} _ zsinhg
T2z —z(ef 4 e 41| 2z —2zcoshB +1



11. Z-Transform of unit step function:

1, =0
Unit step function is denoted by u(n) and is defined by u{n) = {ﬂ ;zii <0

By the definition Z{f(n)} = Xz, f(n) z ™™

oo ==} oo

~ Zfu(n)} = Zu(ﬂ} 27" = Z lz7= Z G)n

n=0 n=0 n=0
1 /142 117 jz—17171 =z
PO ) P s S
=z z =z z—1
z
o Ziuln)) =
z—1

Note: Z{u(n — k)} = z7%z{u(n)} = 2% =

12. Z-Transform of unit impulse function:

1, forn=10

Unit impulse function is denoted by é({n) and is defined by &(n) = {ﬂ forn =0

By the definition Z{f(n)} = Xi=,f(n)z ™™

oo

o Z{8(n)) = Z sln)z-" =1
n=0 1

Note: Z{6(n — &)} = z-*Z{6(n)} = &

Properties of Z-transform:
1. Linearity property
If Z{f(n)} = F(z) andZ{g(n)} = G(z) then Zlaf(n) £ bg(n)] = aZ{f(n)} £ bZ{g(n)}

Proof: By the definition Z{f(n)} =X, _,f(n)z~=

oo

2(laf (n) £ bg(m)]} = ) laf () £ bg(m)]z ™ =a ) fm)z™+b ) g(n)z™
n=0 n=0

n=0
= aZ{f(n)} + bZ{g(n)} = aF(z) + bG(z)

2. Damping Rule



If Z{f(n)} = F(z)then Z{a™f(n)} = F(gj

Proof: By the definition Z{f(n)} = X, -, f(n)z ™™

Zarf)= ) arfz=y f@) () =F(2)
n=0 n=0
Note: Z{a " f(n)} = F(az)
3. Differentiation in Z-domain
It Z{f(n)} = F(2) then Z{nf(n)} = —z = [F(2)]

Proof: By the definition F(z) = Z{f(n)} = Ta_,f(n) z™®

Differentiate w.r.t. z on both sides we get,

L

S IF@ = Zuf(n}(—n} 2=zt nfm) 2

n=0

w

= —%Z nf(n)z™"

n=0

—Z% [F(z)] = Z nfln)z™™

n=0
d
w Zinf(n)} = —Z [F(2)]

4. Time shifting property

If Z{f(n)} = F(2), then

(i) Z{fln—k)} =z"%F(z)
() Zfn+1)}=z*[F@) —f(0) — F(Vz 71— f(2Dz72 — o — fFlk — 1)z~ V]

Proof: By the definition Z{f(n)} = X, -, f(n)z™™®

Z{fln— 1)} = Zf(n —k)zm
n=0

Putn—k=m=n=m+k



Z{f(n—k)} = i flm) z~(m¥k) = 77k i flm)z™m =z7% i fm)z™™
m=0

m=—k m=—k

~ Z{f(n—k)} = z7%F(z)
Now

Z(fn+0)= ) fla+R)z
n=0

Putnt+k=m=n=m-—-=%k

Zf+R} = ) fomz R =z Y fom)zm
m=k m=k

=z¥ [ikf(m} 27"+ Ef(m} z™™ — ?Zf(m} 2"“]
Z flm)z™— Sf(ﬂl} Z'm]

= Z{f(n +k)} = z8[F(2) — £(0) — fF(1)z7 1 — F(2)z2 — oo — fk — 1)z~ (D]

=Zk

Note:
Z{f(t + kD)} = Z{fusr} = 2*[F(2) — F(0) — F()z7 - F(2)z72 — - — fk — 1)z~ V]
Problems:

1. Find the Z-transform of 2"

[ (n+2 2z 2 .
Solution: Z{‘”H}ﬂ‘ﬁ }} = Z{n . }= ~[z{n?}+ 32{n} + 22{1}]
11z(z+1) z z ]
== + -+ 2
2l{z—1)3 (z—1)% z—1
2. Find the Z-transform of ,1
nin+1)
. 1
Solution: Let f(n) = ey
. . 1 _4, 8 _ Aint1)+En
By partial fraction D) n Tl mined

=>1=A(n+1)+ Bn



Whenn=-1=B=-landn=0=>A=1

N Y

= log(zi—i) - zlcg(zi—i) =(1- z}lcg(zi—ij

3. Find the Z-transform of - nt3

(n+1)(n+2)
: 2n+3
. N)=—T=7 =
Solution: Let fin) T
. . Intd 4 B Aln+2)+B(nt1)
By partial fraction (n+1)(n+2)  n+1 n+2  (n+1)in+2)

=>2n+3=An+2)+Bn+1)

Whenn=-2=2B=1andn=-12A=1

. 2n+3 _ 1 + 1 ;‘~Z{ 2n+3 }—E{ 1 }+Z{ 1 }
"m+1Dn+2) n+1 n+2 n+ Dn+2)) “ln+1 n+2

= zlng{zi—i) + zzlug(zi—i) —z=1(z+ z}lug(zi—i) -z

4. Find the Z-transform of ab™ + 2n.
z

(z—1)2

Solution; Z{ab™ + 2n} = aZ{b™} + 2Z{n} = ﬂﬁ*‘ 2

. |1, forn=k
5. Find the Z-transform of f{n) = Ll otherwise
Solution: By the definition Z{f(n)} = X -, fln)z™™

2 = Lz =
6. Find the Z- transform of f(n —5)

Solution: We know that Z{f(n — k)} = z™*F(z)

2 Z{f(n—=5)} =z*Z{f(n)} =27 = (since f(n) is a unit step function)

7. Find the Z- transform of 2"&(n — 3)



Solution: We know that Z{g(n —k)} =z7% = z—lh,

- Z{2"8(n — 3)} = [z22{8(m)}]__z

1 g . o~ . . .
= [—] == (since d(n)is a unit impulse function)

. 1
8. Find the Z-transform of sy
Solution: Let f{n +2) = n'r:f-}- = f(n) =$

By shifting theorem
Z{fln+ 1)} = z*[F(2) — f(0) — F(z"1 = F(Dz72 — . — fk — 1)z~ 1]
2 Z{f(n + 2)} = 22[F(2) — F(0) — F(1)z71]

F(2) = Z{F(n)) = z%} -

1
gz —1— z_l]

1
o Z {—} = 2
m+2) °
9. Find the Z-transform of r™cosnf and r*sinnd

Solution: We know that
z{z — cos8)
z28 — Jzrosf + 1

Zlcosn8} =

By damping rule Z{a™f(n)} = F (E)

z(z — cos@) } B g(g - C’JSE)
.

z¢— 2zcos8+1 (;)‘ -2 ; cosf + 1

Zirtcosnd} = {

r

zZlz — rcosd
~ Z{rtcosnf} = )

z2 — 2zrcos8 + ri

ssind

gt—2zco=0+1

Also Z{sinng} =

10



- z r
zsing } ;5”1'9

2—2zrosB+ 1), - (5)2 — 2% cos+1
' T 'y

Zirtsinnd} = L

zrsing

s Zirtsinngl = — 5
{rnsinng} 5 —2zrcos8 +r-

10. Find the Z-transform of n conng

Solution: We know that
z{z — cosd)
z2 —2zcos6+ 1

Zlcosn8} =

By the property of Z-transform Z{nf{n)} = —zi [F(z)]

Z B =—z—4—
{n cosnb} z z¢—2zros0 + 1

d z(z — cos8)
dz { }

B (22 — 2zcos@ + 1)(2z — cos@) — (z° — zcos6)(2z — 2cos6)
== (z? — 2zcos8 + 1)2

z(z%cos6 — 2z + cosd)
(z2 — 2zrpsf + 1)2

~Z{n cosnf} =

11. Find the Z-transform of sin? (nf::l

Solution:

sin? (HT,T) _ 1—cai2{?_} _ 1—caj£%_}

= .

et () =22 a0y e ()

Y 2
T 2lz—-1 zP41

Theorems on Z-transform
1. First Shifting Theorem

If Z{f(t)} = F(z) then Z{e 2t f(t)} = F(zeT)

11



Proof: By the definition of Z-transform Z{f(£)} = X>_,f(nT) z™®

==

~Z{eT®f(t)} = Z e T f(nT)z "= Z f(nT) (ze?T)™
n=0

n=0
« Z{e=atf(£)} = F(zedT)
Note: Z{e=f(£)} = F (=)

2. Second Shifting theorem
If Z{f(£)} = F(2) then Z{f(t + T} = z{F(z) — f(0)}

Proof: By the definition of Z-transform Z{f ()} = X, - f(nT) z ™™
SZ{fe+ T} = i fnT+T)z ™™= i flln+1)T)z™™
n=0 n=0
Putn+tl=m Z{f(t+T)}=30_, fmT)z"m D =zF%"__ f(mT)z ™™
=z [i f(mT}Z"m—f(ﬂ}] = z{F(z) — f(0)}
m=1

3. Initial Value theorem
If Z{f (n)} = F(z),then f(0) = lim__.. F(z)
Proof: By the definition F(z) = Z{f(n)} = ¥ - f(n)z™™

£ N f(1)

=z 2

— £ + F(Dz7 + £z + - = £(0) + ‘..

Taking limit as z —+ @o on both sides
lim F(z) = f(0) + 0+~
= f(0) = lim.... F(z)

4. Final Value Theorem

If Z{f(n)} = F(2),then lim, .. f(n) = lim_,(z — 1) F(2)

Proof: By the definition F{z) = Z{f(n)} = ¥, _,f(n)z™™

12



Z{f(n+1) - f(n)} = i[f(ﬂ +1) — f(n)] z™
n=0
= z{F(z) — f(0)} - F(2) = XL [f(n + 1) — f(n)] 2™
(z—DF(z) — zf(0) = i [fin+1)—f(n)]z™"
n=0
Taking limit z — 1 on both sides
lim[(z — 1)F(2) —zf(0)] = Ll—%i [fin+1) —fln)]z™™
n=0

lim(z — D FE) = £©0) = £(1) = £(0) + F(2) = F(D) +£(3) = F2) + . f(e2)
lim(z — 1) F(2) = () = lim £(n)
- Jim f() = lim(z — 1) F(2)

Convolution of sequences

The convolution of two sequences {f(n)} and {g(n)} is defined as

fln) xgln) =Xh=o fk) g(n —k)
5. Convolution Theorem

If Z{f(n)} = F(z) and Z{g(n)} = G(2),then Z{f (n) » g(n)} = F(2)G(2)

Proof: By the definition F(z) = Z{f(n)} = X, -, f(n) z™™

ZEF(n) « g(n)} = Z [F(n) « g(n)] z—
n=>0

= Mo Enzof (k) g(n — k) z~™ ( By the definition of convolution)

By changing the order of summation
2 g} = ) 100 ) gln—i)z™
k=0 n=0

=) Fzlglm -} =) f)z7*6() = F6()

13



Problems:
1. Find the Z-transform of
(i) f(£) = e™=¢
(ii) fF(t) = eat
(iii) f(t) = cosat
(iv)f(t) = sinat
Solution:

(1) By first shifting property Z{e 2t f(t)} = F(ze®T)

=

“ 2o () = 2 er = [

ZEET
zedT —1

(@ zZle= W)=z, 2 =[] .

=—

A

gal =z
%_1 z— el
e

(3) By the definition Z{f(t)} = X f(nT)z ™™

& Z{rosat) = Z cosanTz ™" = Z cosn{alT)z ™™

n=0 n=0

z{z — cosaT)
22 —2zrosaT + 1

(4) Z{sinat} = X —ysinanTz ™" = X, sinn(aT) z ™"

zsinal

T z2 —2zcosaT + 1

2. Find the Z-transform of sin(t+T)
Solution: Let f(t +T) = sin (t + T) implies f(t) = sint

By second shifting theorem Z{f(t + T)} = z[F(z) — f(0)]

14



zsinT

fF(0) = sin0 = 0and F(z) = Z{f(t)} = Z{sint} = z2 — 2zrosT + 1

2 Z{sin(t+T)} ==z

zsinT ] B z2ginT
z2 — 2zcosT + 1 " 72— 2zcosT+ 1

3. Find the Z-transform of (t + T)e~(t+T)
Solution:

Let f{t + T) = sin (¢ + T) implies f{¢) = te™*

By second shifting theorem Z{f(t + T)} = z[F(z) — f(0)]

f(0) =0e® =0and F(z) = Z{f(t)} = Z{te™t} = Z{t}

H_}EET
B Tz ] B Tzel
S lz-DAU_ 1 (zeT—1)2
) Tzel Tz2eT
fZ{E+Ne T D =z | ———— - 0| = ———3
{{ Je } z (zeT — 1) (zeT —1)2

=

T
(z—1)i(z—2)

4. Find the initial value of F(z) =

Solution:

By initial value theorem f(0) = lim__... F(z)

—_— 1' Z
T -DE-2)

e
= lim -0
s oy _ 1y, _2
22(1-3)(1-3)
5. If F(z) = ———, find f(0)and f ()

Solution: By initial value theorem f(0) = lim__... F(z)

1+z71

0)=lim————=
(0 = lim 055

By final value theorem, flee) = lim._,;(z — 1) F(z) = lim._,(z — 1)

6. 11 F(2) =222 find f(2)and £(3)

15
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Solution: By initial value theorem f(0) = lim__... F(z)

3,14
o 222 43z4+14 (2+ +*)
=11m—4=11m )
S T
K
~f(0)=0

FO) = lim [2(F () — £(0))]

3, 14
. 2z343z+14 [2+g+;r]

=limz—————5— = limz?>—=—=+
=00 (z—'ljlq' T=+00 1
#(1-2)

A F(1) =0
f(2) = lim [z2(F(z) — F(0) — F(1)z"1)]

3 14
J2z8+3z+14 4[2"‘54‘;:]
= lim z2————— = limz 3
F—oo (z—'l}q' F—too 1
#(1-3)
z
~f2)=2

f£(3) = lim [z3(F(2) — £(0) — f(1)z7* — F(2)z7?)]

. 2 222+32+14_£
=1 L W N TR

o [2z*+32% + 1427 — 22% +82° -~ 1227 + Bz - 2
= limz =
e | ze(z —1)%
i 2.8 _2
, 1123+ 222 +8z-2] 11+Z ;—gsr
= lim z3 ~ n = limz®
oo | Z&(Z_ 'l} E—#o0 1— 1
( )
~f(3)=11

Verify initial and final value theorem for f(t) = e~ cosbt,
Solution: Given f(t) = e cosbt,

F(z) = Z{f(t)} = Z{e % cos bt} = [Z{cosnT}]

H—:’EE

16



= lim(z — 1)
z—=1

z(z — cosbT) ]
z2 — 2zcoshT + 1) o zeaT

ze®T(ze®T — coshT)
(ze®T)? — 2ze%TcosbT+ 1

Fi(z) =

By initial value theorem f{0) = lim__.. F(z)

Consider L.H.S f(0) = lim._g f(t) = lim.pe % cosbt = 1 .o v

N Ay
Consider R.H.S lim__,..F(z) = lim ;e e [ze —cosbl)

(ze97)2— 22897 coshT+1

cos bt

2,2aT(q _
— lim Pz =1 (2)
[ Zcosbt 1
z“e [1_ ZoaTl +Zzezar]

(1)

From (1) and (2) L.H.S= R.H.S . Hence Initial Value theorem verified.

By final value theorem, f(e2) = lim._;(z — 1) F(z)
Consider L.H.S fleo) = lim,,.. f(£) = lim,..e % cosbt = 0 ...... ...

Consider R.H.S lim__,(z — 1) F(z) = lim_.4(z — 1) F(z)

ze®" (ze®T — cosbT)
(ze®T)2 — 2zeTcoshT +1

- (2)

(D

From (1) and (2) L.H.S= R.H.S . Hence Final Value theorem verified.

Find the Z-transform of the convolution of f{n) = a®U(n) and g(n) = b™U(n)

Solution: We knowthat Z{f{n) = g(n)} = Z{f(n)}Z{g(n)}
~Z{a™U(n) « b"U(n)} = Z{a™U(n) 1 Z{b"U(n)}

oz z zZ
T z—az—b (z—alz-b)

Find the Z-transform of 5" * cosné and sinn~ * cosn=

Solution: We know that Z{f{n) = g(n)} = Z{f(n)}zZ{gn)}

~Z{5"x cosnf } = Z{5"}Z{cosnd }

17



oz z{z — cos@) B z2{z — cos8)
T z—5z2 —2zco0s8+1 (z —5)(z%— 2zcos6+ 1)

z
We know that Z{cam E} = f arnd Z{sa’nn E} ==
2 241 2 241

~Z {sinn;—r ® cam;—r} =z {51?1?1 ;—E}Z {CGS?I ;_r}

z z2 z3

=zz+1z:+1=(zz+1}:

The Inverse Z-Transform

If Z[f (n)] = F(Z) then Z71F(Z) = f(n) is called inverse Z-transform of F(Z)

Example:

L= - o

Methods of finding inverse Z-transforms:

1. Method of partial fraction
2. Method of residues
3. Convolution method

Partial Fraction Method:

. . 1
1. Find the inverse Z-transform of — = =
gi-3=+2

Solution:

10z _ 10z
z2—3z+2  (z—-1)z-2)

F(Z) =

F(z) 10z B 10z
10z z2—-3z+2 (z—-1)(z-2)

1 4 N B
z-1(E-2) =z—-1 =z-2

1=A(z—-2)+B(z—1)
Putz =1 A=1

Putz=2 B=1

18



1 _ -1 + 1
(z—1)(z—-2) z—1 z-2

F(z) -1 . 1
10z z—1 z-2

F(}_—iﬂz_'_ 10z
2= z—1 =z-2
—10=z 10z
Z7iF =z-1[ ]+z-1 ]
F(2)] —1 z—2
—_ -1 Z -1
102 [ _1]+1nz [2—2}
10z
e U [ (R n n -
7t | =10+ 107, nzo0
2. Find the inverse Z-transform of L
(z—1)z—-2)2
Solution:
z—4
FlZ)= -
(2) (z—1)(z—2)2
z—4 A B C

z-1E-27 z—1+z—2+(z_2}2

z—4=AE-22+Bz-D+cz—-1)(z-2)
Putz =1 A= -3
Putz=2 B=-2

Equating coefficientof 22 A+C=0,C=3

z-4 -3 2,3
z-DE-2)2 z—-1 (z—-2)% =z-2
z—4 1 2 1
Z-1 ,,]: —3z71 ]—Z“l ,.]+3Z_1 ]
(z—1)(z—-2)2 z—1 (z—12)° z—2
z-1 Z- ]: —3(0)" 11— (n— 1)1 + 3(2)"1, n=1
(z—1)(z—-2)? ! =
3. Find the inverse Z-transform of ﬁ

Solution:

19



zZ + 3z

F(2) = (z—1)%(z*+1)

F(z) z2+ 3z
z  (z—-1%z*+1)

2?2+ 3z A N B +C'z+L"
(z—-1)3(z2+1) z-1 (z—-1)? z2+1

-

224+ 3=A -1+ 1D +B*+ 1)+ ({Cz+D)(z—1% ... (1)

Solving (1) weget A=-1, B=2, C=1, D=0

F(z) -1 2 z
= + ,.|+ -
z z—1 (z—2)% z¢+1

_ - _ z
) =z [+ 2z [l 2
_ z2+ 3z o A

z 1{(2—1} 2(=? +1} -

Method of Residues

To find inverse Z- transform using residue theorem
If Z[f(n)] = F(Z),then f(n) which gives the inverse Z-transform of F(Z) is obtained from the

following result f(n) = i IZHF(Z} dz

E/h& eCist closed contour which encloses all the poles of the integrand.
y eS|due eorem

J‘Zn_lp(z) dz = 27i [sum o residuesof z"'F(z) atits poles]
C

Substituting (2) in (1)

1. Find the inverse Z — transform of ﬁ
Solution: Let F(2) = o fln) = Z277F(2)
2"'F (2)= —
(z-1(z-2)
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The poles arez = 1, z = 2 ( simple poles)
f(n)= sum of the residues z"'F (z) at its

n-1 —h _ Z—n _ n
poIesRes{z F(z)}z:1 Izlir;(z 1) TETE (1)
Zn

Re s{z“*lF(z)} = ILn;(z - Z)m -

z=2

f(n)= sum of the residues z"'F (z) at its poles
=2"-()", n >0

+
Find £~ 1{ ﬂ}s} by Residue theorem.
Iz +4
Solution: Let F{(z) = E_,, =
= L:'
1 1 22 + 4z
=— | z"F(2)dz= —j l—————dz
fn) 2mi J;— z (z2)dz 2mi J- z" (z—2)%
1 (Zz+4)
fln) = = J"l_, - —z}Ed ................. (1)
(2z+4
Let @lz) = =™ z}i
Equate the denominator to zero, we get
= 2isapole of order 3
1 d? 2z +4
Remp(z} ——11111 5 [(z—2)3z n g]
(z—-2)
1 d? 1 d?
— n _ nt+l n
= Zi}ﬂ = = [z7(2z+ 4)] = Ll_I}Il = [2z7%1 + 427)]
1

d 1
=3 llmd— 2Zn+ 1)z +4nz"1)] = —11m En(n+1)z" 1 +4n(n—1)z""?]
=3

=nn+12)" 14+ Inin— 12" 2 =n(2)" n+ 1+ n—1] = ni2n

By Residue theorem
fln)=— Em [Res.=, @(2)] (by (1)

o fln) =n?2"
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3. Find Z7 1L1+zz+ }by

Residue theorem.

Solution' Let
1 z
= n~1F(z)dz = L

fl) = j (2)dz = Zm.-_—z zc+2z+2 z
F(z} T zP42z+2

—_ 1 ! 1
fln) = T ‘r"—' z xz+23+zdz
................. (1) Let

1

— [y

o(z) = 12242

. T 1
Res 0@ = lim lz-(-1-7l Z—(—1-Dlz— (-1 +1)]
(—1—i)™ 1] = Im 3m\"
T [‘“2 (cos —15n7) }
1

2 v(z) = 3_].}1_]:1{._'-:_[2 — (14Dl [z — (-1 -0z — (-1 +i)]

_(=1+0™ 1 "E( 3t 311)”
= =5;[V2[cos - +ising

By Residue theorem

(’]"1} =—2mi [RESE=—1 afﬂ(Z} + RESE_—1+i(¢‘)?ZG]])
2mi

(n) = 1 2( 37r+ 3?1') 2( 3T 371')
fin) = W 6054 151?14 W 6054 asm4

—y Tl
_'[*-.-"2} 31r1i'r+_  3nm 3m'r+_  3nm ] g } 3nn
=" Cos ) isin 2 Cos 2 isin 2 V2) sin )

inm

o fln) = {*'.' 2} sm—
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Convolution Method:

=2

1. Find the inverse Z-transform of .—

using convolution theorem.

Solution:

By convolution theorem

Z7HF(z) »6(2)} = Z7H{F(2)}z7Ha(2)}

Z_l{(zi‘a}z}zz_l{zf a 'z i a}

- =l

=a"xa”
! ! T !
=Zf{k}g{n—k}=Zaka”‘k=Za”=a” 1=(n+1)a”
k=0 k=0 k=0 k=0
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2

2. Find the inverse Z-transform of T-l-l} using convolution theorem.

Solution:

By convolution theorem Z=1{F(z) + G{z)} = Z~Y{F(z)}Z71{G(z)}

-1 8z? I 8z2 I z z
‘ {'122—13’(42+13'}_Z 8(z—2)(z+3) ~f (z-3) (+3
_ z _ =z
{m} LJ
-3 (-3
n n k n—k n
S rwsn-0- S0 - Y|

k=0 k=0

_l T
= ?1) M+ (-2 +(-2)2+ -+ (—2)"]
[ —f =+ —pittt
= 5) [1 2 ] [Sincea+ ar +ar? +ard + . +ar® =1 whenr <1
4 1-(-2) -

-
(-
e (RG]

w2 {(22— f}zi';z + 1}} - %(_%)n * %(%)n
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3.

=2

(z—1)iz-3]

Find the inverse Z-transform of using convolution theorem.

Solution:

By convolution theorem Z~1{F(z) = G(z)} = Z~H{F(z)}1Z71{G(z)}

_ z? _ z z
z 1{(2—1}(2—3}}:‘3 1{(2—1} '(2—3}}

= 3-1{(;1}}3-1{(; 3}}

= (1) = (3)”

n 1,{

- if(k}g(n k) = i(ﬂk(z}n-k -@"y
k=0 k=0 =0

orfue o o]

l_lfj;}jh] [Sincea+ ar + ar? +ar® + . +ar® ==

5K

3 1 nt+l 1
Ok {1 -(3) } =S (@™1-1]

1

n+i

=(3)"

Jwhenr <1

-

_ z? 1 ,
“Z 1{(2— 1)(z — 3}} - E[(B} ol

z
Find the inverse Z-transform of r;:m using convolution theorem.
“ s &

Solution:

By convolution theorem Z=X{F(z) = G(z)} = Z-YF(z)}Z-Y{G(z)}
7-1 L =71 z . z
{{z—%) ':z—%ﬂ} {(z—%} ':z—%ﬂ}
=71 z 7-1 z — 1 " ¥ 1 "
{fz—%}} {fz—%z} 6@
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s | pal
I
——
| =
e

1
—
r
[N
Eo

n n k n—k n
-3 st =3 (3 (= (0

- (i)n 1+ @2+ (2)2+ -+ (2]

i"l.+‘__1

Jwhenr =1

14 B rrarig ) . )
=(‘) [ ] [Sincea+ ar+ar? +ar® + . +ar™ =

F—
&

=(3) r-u=2(3) - ()

T m -2(3) ()

Difference Equations:

A difference equation is a relation between the differences of an unknown function at
one or more general values of the argument.

Example:

1. ¥n+z —Vnt1 T ¥ =5
2. Qplly3q +a1U, = g(n)

Formation of difference equation

. . . T
1. Form a difference equation given ¥, = cosn—

Solution:
Given ¥, = camg .............. (1)
T T nI . W
Vp+1 = cos(n + 1) - = cos (; + T) = —sin—
Vpe1 = _.S'E:T'l? .................... (2)
(n+1)m ﬂ,'+ﬂﬂ.')_ nm
Vnsg = ST sin|Z + cos >

ol (3)
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Yn+2 = —¥n (By (1)
“» ¥ni2 + Yo = 0

2. Form a difference equation given u,, = %n(n +1)

Solution:
. 1 n® n
Givenu,=-nln+1) =—+-........ (1)
(m+1)®  (m+1) =?  3nm
Uppy =~ +——=—+—-+1........ (2)
{ z { z
Upgp = T L 30D g L s, 3)
(3)- (2) giveS Up+z —Ups1 =N+ 2 ... (4)
(2)- (1) givesUpss —Up=n+1 ... (5)

(4) — (5) gives Un+2 — 2Uns4 + U, = 1 which is the required difference equation.

3. Form a difference equation given ¥, = a(2)™ + b{(—3)"

Solution:
Given ¥, = al2)™+b(=3)" ... (1)

Yner = a(2)1 4 b(=3)"+1 = 2a(2)™ — 3b(—3)™........... (2)
Vso = 2a(2)"1 — 3b(—3)"*1 = 4a(2)" + 9B(=3)".......... 3)

Eliminating 2” and (—3)™ from equations (1) (2) and (3)

Vi a b
Vn+1 22 —3b| =0
Vniz 4a 9D

= v, [18ab + 12ab] — v,41[9ab — 4ab] + y,:2[—3ab — 2ab]l = 0
= —baby,is — Saby,sq + 30aby,, =0

+ by — Sab ,we get
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¥n+z T Vns1 — 6y =0

4. Form a

difference equation by eliminating 2%,3™ and 4™ from the sequence

Uy =2 (D" -3+ ()"

Solution:
. 1 1
Given  u,=-(2)"-3"4+-(4)" ... (1)
Upay =2 ()™ —3 1 L 2 () = (DR —337+2(9)7 (2)
Upsz = (2)771 33741 4 2(4)"* 1 = 2(2)" - 93" +8(4)"........... (3)
Upysz = 2(2)7F1 — 9,37+ 4 g(4)"+1 = 4(2)" —27.3" + 32(4)™..........
1 1
u -1
no2 2
u., 1 -3 2L,
u., 2 -9 8
U, 4 -27 32
1 3 3 1 1 1 1 1 1 1 1
N P ., |2 2| 4, |2 2| |2
"2 -9 8 "2 -9 8 el -3 2 "L -3
4 =27 32 4 =27 32 4 =27 32 2 -8

Expanding by usual determinant method, we get

Upsz — Fpsg + 26Uy, — 24u, = 0 which is the required difference equation.

Solution of Difference Equation Using Z-Transform:
The following results are used to solve difference equation.

(M Z{}’(Tl + 1}} = Z}"(Z} — z}r{o)
(i) Z{y(n + 2)} = 22¥(z) — =*

(i) Z{y(n +3)} = 2°¥Y(z) — 2°
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And so on...

1.Solve
Vntz2 T 6Vps1 + 9y, = 2% given vy = ¥y = 0 using Z-transform.

Solution:
Given ¥usz T 6Vns+1 + 9y =27
Taking Z-transform on both sides,

Z{}?n+2}+ 5‘2{}?n+1}+ gz{}n} = Z{En}

22¥(z) — 22y(0) — zy(1) + 6[z¥(2) — zy(0)] +9Y(2) = ﬁ

22¥(2) + 62¥(z) +9Y(2) = ——

z—2
- z
Viz)[z2+6z+9] =——
z—2
Z
¥iz) = =
@ =+
Y(z) 1
z  (z—2)z+ 3)?
. . A B c
By partial fraction TheieE o Toa T aaE e (1)

1=A(z+3)*+B(z-2)z+3)+C(z—2)

Put z=—3=}~C=—§ Putz=2=4=

e

Equate the co-efficient of zZ on both sides, we get

A+B=0=B=—-A=——

.

Equation (1) becomes ¥(z) _ 1 _ 2= =z =
= (z-2)=z#3)T z-2 =43 (=z+3)E
1 = 1 = 1 z
¥(z) = — - —-= .
@) =35 3 %773 5G+3):

o) -2 (B - A )
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ny(n) = % (2" - % (-3)"+ %n(—S}”

2.Solve
Vn+z T ¥, = 2 given yg = ¥; = 0 using Z-transform.

Solution:
Given ¥psz + ¥, =2

Taking Z-transform on both sides,
Z{yns2}+ Z{y} = 22{1}
22¥(2) = 229(0) - 29(D) +¥(2) = 22—
a 4
22V (z) +¥(z) =2——
z—1

V()2 +1] = 2——
z—1

z

Y@ =2 Hee D

Y(z) 2
z  (z—1(z2+1)

By partial fraction -

2=AE*+1)+(Bz+C)(z—1)
Putz=1 = 4=1
Equate the co-efficient of z? on both sides, we get
A+B=0=5=-4=-1
Equate the co-efficient of z on both sides, we get
B+C=0=C=B=-1

¥iz) 2 1 —-z—1

Equation (1) becomes el e vy R + =y

zZ z
1 z24+1 z¥2+1

V() = —
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=y =z {F} -2 - )

) =1 nw o nm
~yln) = cos—-—sin—

3.Solve
yin+3)—6yv(in+2) +12y(n + 1) — 8y(n) = 0 given y(0) = —1;

y(1) = 0;and y(2) =1 using Z-transform.
Solution:
Givenvin+3)—é6y(n+2) +12v{n+1)—8y(n) =0

Taking Z-transform on both sides,

Zivin+3)} —6Z{y(n+ 2} +12Z{yv(n+ 1)} — 8Z{y(n)} =0

23¥(z) — 239(0) — 22y(1) — zy(2) — 6[22¥(2) — z%y(0) — zy(1)] + 12[zY (z) — zy(0)]
—8¥(z) =0

z3¥(z) + 23 —z — 622¥(z) — 622 + 12z¥(z) + 12z — 8Y(z) = 0
¥(z)[z3 — 622 + 12z — 8] = —z3 + 622 — 11z

—z[z? — 6z +11]

d = =
@ =5 ey 12z -8
¥(z) —[z? —6z+ 11]
= z (z—2)3
—|z?-6z+11] a4 -] c

By partial fraction

G —zz G2 GpE e (1)
—[z2—6z4+11] =A(z—2)2+B(z—-2)+C
Putz=2 =C=-3
Equate the co-efficient of z2 on both sides, we get
A=-1
Equate the co-efficient of z on both sides, we get
-AA+B=6=B=2

¥iz) _ —|z®-sz+11] _ -1 2 3

(z—2)8  z-2 (z-2)% (z-2)F

Equation (1) becomes
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Y(}— —z 2z 3z
i e Y EA Y

S

(z—2) (z—2)E

£ y@) =~ @7+ n@)" = 2n(r - D@)"

4.Solve
y(n) +3y(n— 1) —4y(n—2) = 0,n = 2, given that y{0) = 3and y(1) = —2 using Z-
transform.
Solution: Giveny(n) +3y(n — 1) —4yn—2)=0................ (1)

Changing ‘n’ into ‘n+2’ we get,

yin+2)+3yn+ 1) —4y(n)=0.................... (2)

Taking Z-transform on both sides,

Z{y(n+2)} +3Zy(n+ D} - 4zZ{y(m)} =0

22¥(z) — 229(0) — zy(1) + 3[z¥(2) — zy(0)] — 4¥(2) = 0
22¥(2) — 322 + 2z +32¥(2) — 9z —4¥(2) = 0

¥Y(z)[z2 +3z—4] =322+ 7=

Y(z) = 3z22+7z 32247z
z T zE+3z-4 (z+4)z-1)
Y(z) 3z4+7
z (z—-1D(z+4)
By partial fractionﬁﬂ;ﬂfﬁ i .................. (3)

3z+7=A(z+4)+B(z—-1)

Put z=-4 =65=1 Putz=1 =2A4=2

Equation (3) becomes YTE} = =7 2 1

(z—1)(=+4) = =1 + =+4

z z
Y =2—+4
(2) z—1 =44
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= y(n) =2zt { =)+ 21 { 2]
syn) =2(D)"+(-4H"

5.Solve
x(n+2) +4x(n+ 1)+ 4x(n) = n, given x(0) = 0 and x(1) = 1 using

Z-transform.

Solution:

Givenx(n+2) +4x(n+1)+4x(n)=n
Taking Z-transform on both sides,

Zixn+2)} + 4Z{x(n + 1)} + 42{x(n)} = Z{n}

22X(z) — z2x(0) — zx(1) + 4[zX(2) — zx(0)] + 4¥(z) = ;ﬂ
(z—-1)7

z22¥(z) —z +4=zX(z) +4X(z) = ﬁ

, z
X(Z}[Z‘ + 4z + 4‘] = W+Z
z z
X@ =iy i T Gt 22
X(z) _ 1 1 z2 -2z 472

z _(2—1}2(z+2}2+(z+2}2=(2—1}2(z+2}:

. . g2-2z+2 4 B c D
By partial fraction o—D2(ee)? o1 + -:g—ﬂz+ P (maz)areeereeee s (1)

222242 =Az—-1)(z+2)2+B(z+2)2+C(z—1)*z+2)+ D(z —1)2

Put z=1:~5=§ Putz:-Z;"D:j'T:

Equate the co-efficient of z* on both sides, we get
A+C=0

Equate the co-efficient of z* on both sides, we get

3A+B+D:1=:~3A=1_B_D=1_§_§=_§
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2
C=—-A=C=—

27
X(=) i-2=z+2 - = — =
i S — 5 2T 9
Equation (1) becomes e vy P i e i S
2 =z 1 z 2 =z 10 z

¥(z)=—

— += _ +— .
27z—1 9(z—1)% 27z+2 9 (z+2)*

2 z 1 z 2 z 10 z
= x(n) = ——21 +—z-1{—q}+—z-1 . +—z-1{—q
xn) = -3 {z—i} g“ -1 27 {z+2} 9 z+2)2

“xm) =~ (O 430+ (<D~ n(-2)"

***********A L L TH E B EST***************
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UNIT IV

PARTIAL DIFFERENTIAL EQUATIONS

11 INTRODUCTION

Partial differential equations are found in problems involving wave phenomena, heat
conduction in homogeneous solids and potential theory. As an equation containing
ordinary differential coefficients is called an ordinary differential equation, an equa-
tion containing partial differential coefficients is called a partial differential equation.

1.2 FORMATION OF PARTIAL DIFFERENTIAL EQUATIONS
Partial differential equation can be formed by
) Eliminating arbitrary constants
(i) Eliminating arbitrary functions.

Note:

I. If the number of arbitrary constants to be eliminated is equal to the number of
independent variables, the process of elimination results in a partial differential
equation of the first order.

2. If the number of arbitrary constants to be eliminated is more than the num-
ber of independent variables, the process of elimination will lead to a partial
differential equation of second or higher orders.

3. If the partial differential equation is formed by eliminating arbitrary functions,
the order of the equation will be, in general, equal to the number of arbitrary
functions eliminated.



13 ELIMINATION OF ARBITRARY CONSTANTS

Consider the functional relation among
0 06 (X, 2,4: ) =0 (1)

where a and b are arbitrary constants to be eliminated.
Differentiating (1) partially with respect to x and y, we get

af 0z . of
0, ie — 0 2
8t+678x 3x+82p 2)
af  af oz . af af
d UL 28 oy im Ly Ay s 3
an 3y + 52 3y ay + 52 q (3)

Equations (2) and (3) will contain a and b.

If we eliminate a and b from equations (1), (2) and (3), we get partial differential equation
(involving p and q) of the first order.

1.4 ELIMINATION OF ARBITRARY FUNCTIONS

Let us consider the relation

fu,v)y=0 (1

w here u and v are functions of x, y, zand f is an arbitrary function to be eliminated.
Differentiating (1) partially with respect to x,

af (Ou  OJu of (dv  dv
Lo, T 2
814(8r+ p)+a (8x+32p) )

[since u and v are functions of x, y, z and z is in turn, a function of x, y]
Differentiating (2) partially with respect to y,

Bf du  ou af (dv v
— — 0 3
u (d_v+32q>+3v (d +3Zq) )
e ..o of df
Instead of eliminating f, let us eliminate =i and o from (2) and (3).
u

EXAMPLE 1

Form the partial differential equation by eliminating a and b from



SOLUTION

:=(x2+al)(y2+b2) -(1)
Differentiating (1) partially w.r.t x and y we get
p=§=(y2+b2)2x -(2)
=Z=(+a)y  -0)

Multiplying Eqn. (2) and Eqn (3) =
pPg= (xz +a’ )(y2 + b2)4xy
pq =4xyz [using (1)]

EXAMPLE 2

Find the differential equation of all spheres of fixed radius having their centres in
the ry plane.

SOLUTION

A point lying in the xy plane is of the form (a,b,0). Let the fixed radius be c.



Equation of the sphere is
(x —a)® + (y — b)? + z% = ¢*(a, b arbitrary constants)

Differentiating partially w.r.t. r we get

. 2(;r-a)+2:g—;-=0 = Ir—a=-2p
Differentiating partially w.r.t. y we have
dz
A0y—-b)+2: — =0 = y—-b=-z
3y q

Substituting in (1)
(=2p) +(-29)* + 22 = ¢
= 2+ +1)=¢*

Note: Here z is given as an implicit function of z and y.

EXAMPLE 3

Obtain the partial differential equation by eliminating arbitrary constants a and b from

(x—a)2+(y—b)2 Fzh =1,

SOLUTION

(1)

(2)

(3)



(x=a) +(y=b) +z*=1 (1)
Differentiating (1) partially w.r. t x and y we get
2(x=a)+2zp=0

DX=a==2p -(2)
2(y=b)+2:zg=0
= y=b=-xq -(3)

Substituting (2) & (3) in (1) we get
2+ =1

1€ :z(p2 +q +l)=l

EXAMPLE 4

Form the partial differential equation from the following relation by eliminating

PR I
the arbitrary constants, — + — + — = 1.
¢ 2tpta

SOLUTION

Differentiating partially w.r.t. z and y we get

- e r  zp _
;;+§2ap—0 = 02+c2—-0 (1)
2y 1 B Yy, 2q _
b2+C222q-0 = b’+c2—0 (2)
Differentiating (1) partially w.r.t. z
1 1
atalrtr’)=0 (3)
Eliminating —lj and-l— from (1) and (3) we get
a c?

xr zp _ ! o

1 arg I—O = zar+zIp°—-2p=0
i.e zz &z +r dz\* z_é)z ={)
© ox? \ Oz dr

EXAMPLE 5



Form the partial differential equation by eliminating the arbitrary function * f” from
(i) z=1¢€"Y f(x + by); and
9 1
(ii) z=y"+2f (; + logy)

SOLUTION
(1) z=¢e%.f(x + by)
i.e. e V7= f(x +by) (N

Differentiating (1) partially with respect to x and then with respect to y, we get
e Vp=f'lu)-I 2)
e g —ae™z = f'(u)b (3)

where u = x + by
Eliminating f'(i) “-om (2) and (3), we get

;i 2 b
p
i.c. q=az+bp
. 5 |
(ii) z:y'+2f(;+log_v)
; 5 I ‘
Le. giiyei=2f (; + !ogy) (1
Differentiating (1) partially with respect to x and then with respect to y, we get
, -1
p=2f(u). (‘;2—) (2)

|
and q—2y=2f"(u). (—) (3)

y



]
wherc u = — + log y
X
Dividing (2) by (3), we have

Le. px* 4+ qy = 2y*

which isthe required partial differential equation.

EXAMPLE 6

Form the differential equation by eliminating f and g from z = xf(ax + by) +
g(ax + by).

SOLUTION

z=x-f(u)+ g (N

where 1 = ax + by.
Difterentiating partially with respect to x and y,

p=xfw)-a+ fu)+g'u)-a (2)
q=xf'(u)-b+g'w-b 3)
r=x-f"(wa>+ f'(u)-2a+g" W) -a* @)
s =xf"(wab + f ()b + g"(w)ab 5)

t =xf"(w)b*>+g" ) - b* (6)



[(4) x b — (5) x 2a] gives

br —2as = —a*blxf" (u) + g" ()} (7
|
_ 2
= —a“b x ‘I',—2-t, from (6)
3%z 8%z 8%z
ice. b>—= —2ab 2"~ =0
. ax2 dxdy TR dy?
EXAMPLE 6

Form the differcntial equation by eliminating the arbitrary functions f and g from

flx+iv)+(x+iv)g(x —iyv), where i=+v-=1 and x+iv#:z
() + (x +iy)g(v) (n

whereu =x+iy and v=x—1iy.

SOLUTION

Differentiating partially with respect to x and y,

p=fw): 14 x+iy)g @ -1+gw) (2)
qg=f'u)-i+(x+iyg WN=i)+g)-i (3)
r=f"u)- 1+ @x+iyg" () - 14+2¢"(v)-1 (4)
s= f"u) i+ (x +iy)g" (W)(—i) (5)
t=f"a)(=1)+ (x+iv)g" ) - (=1) +2¢'(v) (6)

Adding (4) and (6), we get
r+t=4g'(v) (7N
From (2) and (3), we get
p+ig=2x+iy)g () (8)

Eliminating g'(v) from (7) and (8). we get



r+t=2 -

X+1y
i (x +iy) 83z+622)_2(8z+iaz)
o Y\ 92 ay?)  “\ax oy

EXAMPLE 7

Form the differential equation by eliminating f and ¢ from z = xf(y/x) + y¢(x).

z=xf(u) + yp(x) (n

y
wherec u = =-.
X

SOLUTION

Differentiating partially with respect to x and'y, we get

p=xf'(u)- (—;‘2-) + f(u)+ yo'(x)

8 p= —% - )+ fu) + ye' (x) )
g=x-f'(u)- % + ¢(x)
Le. q= f'(u) + ¢(x) (3)
y " y A
r==1 W (-;-) +y¢"(x)
ie. i ;:’-5 () + yo" (x) @)
g —;%f”(u) +¢'(x) (5)
1
= L 6
t xf (u) (6)

Eliminating f”(«) from (5) and (6), we get

10



s+ f: = ¢'(x) )

From (2) and (3), we get

px +qy = [xf(u) + yp(x)} + xye'(x)
ie. px +qy =2+ xy¢'(x) (8)
Eliminating ¢'(x) from (7) and (8), we get
xXys + ,vzl =px+qy—2
Pz ,9% 9z, a2

o b /2 S i o ettt 4
axdy =~ ay* T ax Ay

1.e. xy

15 SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

A solution of a P.D.E. which contains as many arbitrary constants as the number
of independent variables is called the complete solution or complete integral of the
equation.

A solution of a P.D.E. which contains as many arbitrary functions as the order of

the equation is called the general solution or general integral of the equation.

1.6 PROCEDURE TO FIND GENERAL SOLUTION

11



Let F(x,y.2,0.9)=0 (n

be a first order P.D.E. Let its complete solution be
d(x,y,z,a,b)=0 (2)

where @ and b are arbitrary constants.
Letb = f(a) |ora = g(b)], where * f" is an arbitrary function.

Then (2) becomes
¢lx. vy, z.a, fla)] =0 3)
Differentiating (2) partially with respect to a, we get
ap ¢
—_—t — =1) 4
% T35 @ (4)

Theoretically, it is possible to eliminate ‘a’ between (3) and (4).
This eliminant, which contains the arbitrary function * f*, is the general solution
of (1).

A solution obtained by giving particular values to the arbitrary constants in the
complete solution or to the arbitrary functions in the general solution is called a
particular solution or particular integral of the P.D.E.

1.7 PROCEDURE TO FIND SINGULAR SOLUTION

Let Fix,y.2.0,.9)=0 (1)

be a first order PD.E.
Let its complete solution be

o(x,v.z,a,b)=0 (2)

Differentiating (2) partially with respect to « and then b, we have

¢

— =) 3

da )

¢

— =0 4
and b (4)

The eliminant of @ and b from equations (2), (3) and (4), if it exists, is the singular
solution of the P.D.E. (1).

1.8 COMPLETE SOLUTIONS OF FIRST ORDER NON-LINEAR
P.D.E

12



A P.D.E., the partial derivatives occurring in which are of the first degree, is said (o
be linear; otherwise it is said to be non-linear.

DHpe 1

Equations of the forin f(p, q) = 0,i.e. the P.D.E.s thatcontain p and g only explicitly.
For equations of this type, it is known that a solution will be of the following form,

I=ux+by+c (1)

But this solution contains three arbitrary constants, whereas the number of indepen-
dent variables is two. Hence if we can reduce the number of arbitrary constants in
(1) by one, it becomes the complete solution of the equation f(p, g) = 0. Now from
(1), p=aandg = b.If (1) is to be a solution of f(p, g) = 0, the values of p and g
obtained from (1) should satisfy the given equation.

i.c. fla,b) =0
Solving this, we can get b = ¢(a), where ¢ is a known function. Using this value
of b in (1), the complete solutiion of the given PD.E. is
z=ax+¢a)y+c (2)

The general solution can be obtained from (2) by the method given earlier.
To find the singular solution, we have to climinate a and ¢ from

z=ax+¢@y+c, x+¢'(a)y=0 and 1=0

of which the last equation is absurd. Hence there is no singular solution for equations
of type L.

13



Type II
Clairaut’s type, i.e. the P.D.E.s of the form

z2=px+qy+ f(p.q) (n
For equations of this type also, it is known that a solution will be 01 “e form
z=ax+by+c (2)

If we can reduce the number of arbitrary constants in (2) by one, it becomes the
complete solution of (1).

From (2) weget p=a and g = b.

As before, =ax+by+ f(a,b) 3)

From (2) and (3), we get ¢ = f(a, b)
Thus the complete solution of (1) is given by (3).

The singular and general integral are obtained in the usual manner
Type Ll
Equations not containing x and y explicitly, i.e. equations of the form
fz.p,q)=0 (N
For equations of this type, it is known that a solution will be of the form
z=¢(x +ay) (2)

where ‘a’ is an arbitrary constant and ¢ is a specific function to be found out.

Putting x 4+ ay = u, (2) becomes z = ¢(u) or z(u)

_d: i)u_dz
p-du ax  du

14



If (2) is to be a solution of (1), the values of p and ¢ obtained should satisfy (1).

i.c.f( dz dz):o 3)

‘7. —‘a—
“du' du

From (3), we can get

dz
- V(z,a) 4)
Now (4) is an ordinary differential equation, which can be solved by the variable
separable method.
The solution of (4), which will be of the form g(z,a) = u + b or g(z,a) =
X + ay + b, is the complete solution of (1).
The general and singular solutions of (1) can be found out by the usual methods.

ype IV

Eguations of the form
fx.p)=2g(y.q) (H

that is equations which do not contain z explicitly and in which terms containing p
and x can be separated from those containing ¢ and y.

To find the complete solution of (1), we assume that f(x, p) = g(y.q) = a,
where ‘a’ is an arbitrary constant.

Solving f(x, p) = a, we can get p = ¢(x, a) and solving g(v, g) = a, we can

getg = y(y,a).
Now
9z daz
dz = ad.\’ + a dy or pdx + gdy
ie. dz = ¢(x,a)dx + ¥ (v, a)dy

Integrating with respect to the concerned variables, we get

z= /¢(x.a)dx +/¢I(,\'.a)dy+b (2)

The complete solution of (1) is given by (2), which contains two arbitrary constants
a and b.
The general and singular solutions of (1) are found out by the usual methods.
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Type V

Equations of the form f(x" p, y"g) = 0or f(x™p, y"q,2) =0,
where m and n are constants, each not equal to 1.
We make the transformations x' ™ = X and y' ™" = Y.

9z dz aX az

= e = et — = (] = -mP, PE—

Then p T (1 —m)x where e and
dz dz aY it 9z

q—a—y'—ﬁ"'é;—(l n)y Q,WhCTCQan.

Therefore the equation f(x™ p, y"g) = O reducesto f {(1 —m)P,(1 —n)Q) =
0, which is a type I equation.

The equation f(x"p, y"q,2) = 0 reduces to f{(1 —m)P,(1 —n)Q,z} = 0,
which is a type III equation.

Type VI
Equations of the form f(px,qy) =0or f(px,qy,2) =0
These equations correspond to m = 1 and n = 1 of the type A equations.

The required transformations are

logx =Xand logy =Y

ithisas g 380X LB 1 a0 B2 BF
PEROP = Tax ax ax xOPITIMUNTH Ty T
dz 1 3z 3z
W-;qu—Q,whercP:-éTandQ_a_Y.,
Therefore the equation f(px, gy) = 0 reduces to f(P, Q) = 0, which is a type I

equation.
The equation f(px,qy,z) = 0 reduces to f(P, Q,z) = 0, which is a type III
equation.

EXAMPLE 1

Solve the equation pg 4+ p 4+ q = 0.

SOLUTION
This equation contains only p and ¢ explicitly.
Let a solution of the equation be

z=ax+by+c (n

16



From(l), weget p=aand g = b.
Since (1) is a solution of the given equation,

ab+a+b=0
b e )
a+ |

Using (2) in (1), the required complete solution of the equation

y+4c (3)

z=ax — 1
a+

To find the general solution, we pute = f(a)in(3), where * ' is an arbitrary function.
ie. I=ax — ;—-_v + f(a) (4)
Differentiating (4) partially with respect to a, we get

i+ =0 (5)

Eliminating a between (4) and (5), we get the required general solution.

To find the singular solution, we have to differentiate (3) partially with respect to
a and c.

When we differentiate (3) partially with respect to ¢, we get 0 = |, which is
absurd.

Hence, no singular solution exists for the given equation.

EXAMPLE 2

Solve the equation Z = px + gy + ¢/ 1 + p* + ¢°.
SOLUTION

The given equation

i

t=px+qy+el+pP+4° (n

is & Clairaut’s type equation.
Its complete solution is

t=ax+by+cyl +a* 4+ b (2)

17



where ¢ and b are arbitrary constants and ¢ is a given constant.
The general solution of (1) is found out from (2) as usual.
To find the singular solution of (1), we differentiate (2) partially with respect to a

and then b.
ca

O=x+ ———m (3)
\/l+¢;;+b‘
¢
and O=y+ —m—— (4)
Vi+a>+b
b
From (3) and (4), we get Ll or = k, say
b v x ¥

a=kxand b =ky

Using these values in (3), we have
ke -
VI +k(x 4 y7)

since Kk is negative,

ic. | + k2 (x2 + v3) = k22
or k(e*—x* =y =1
x |
i.c. k= ~—
=
Je—x2 = y-I
X y
a=— b=—

NI Je ;x-' -2
and Vita®+b =
VA —xT—y?

Using these values in (2), the singular solution of (1) is got as

I 2
= 3 bl o] + T ) 3
N R LY g T

EXAMPLE 3
Solve the equation z°(p? 4 ¢° + 1) = ¢*, where ¢ is a constant.

SOLUTION

18



The given equation

e s 2 2
T(p~+qg +1)=c¢ (1)
does not contain x and y explicitly.
Therefore (1) has a solution of the form

z=z(x+ay) (2)

e

where z2(1) = z(x + ay) is a function of (x + ay), where @ is an arbitrary constant.

me(Z).wchavep:jz-—‘-‘- and g = % -a
Since (2) is a solution of (1), we get

ety

2 2

ie. (I+az)(§§-) =§—2—|

. dz Jei =72

1Le. l +ac— = —

du 2z
zdz
ie. | + 0 ———— =du (3)
N

Integrating (3), the complele solution of (1) is

—2zdz
s/|+ — =u+b
\/c-—z

i.e. ~JT+a*J/eE = 2=.r+a_v-i-bor
(1 +a>)(c* —2%) = (x +ay + b)* (4)

The general and singular solutions of (1) are found out from (4) as usual.
EXAMPLE 4
Solve the equation
pr(1 + xH)y = gx°

SOLUTION

19



The given equation, which does not contain z,.can be rewritten as

s(1+x) ¢
—————-=a, |
P y o
ax o
= —— a =ay
T
dz = pdx + gdy
X
= /a4 - —=dx + aydy (2)
Ja = y

Integrating (2), we get the complete solution of the given equation as

Z=Ja(l+.r3)+2§:+l) (3)

where a and b are arbitrary constants.
From {2), we get the general solution as usual. Singular solution does not exist.

EXAMPLE 5
) 3 “
oy
Solve the equation — + ~— =z,
s LR
SOLUTION

The given cquali('m does not belong 10 any of the standard types.
It can be rewritien as

—5 =2 (1)

20



As cqualmn (1) contains px = and gy~ *, we make the substitutions X =
Y = v'. [Refer to type A equations)

iz I |
Then P = ax =P 3P 3P and similarly v~ = 3Q.
Then (1) becomes
| |
e o G
P Q

As (2) does not contain X and ¥ explicitly, it has a solution of the form
z=2z(u) = X +aY)

From (3), P = d—- and Q -aﬁ
du du

Since (3) is a solution of (2), we get

~

:—;(l +a) = 3az (-:Ti)-

dz dz
E(Md“—a—O-O

As g:-'#(). M'(%—a-fl

Solving (4), / Jazdz=(a+ Du+b

1.c. %a:2 =(a+ INUX +aY)+ b

which is the complete solution of equation (2).
The complete solution of equation (1) is

3 5
ia:' =(a+ N+ ay3) + b

where ¢ and b are arbitrary constants.
The general and singular solutions are found out as usual.

EXAMPLE 6

21
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Solve the equation
yp =2xy +logq

SOLUTION

The given equation, which does not contain z, can be rewritten as

p—lr:%logq=a. say (n
p=ix +a and q =%
Now dz = pdx + qdy
i.e. dz = (2x + a)dx + e“*dy (2)

Integrating (2), we get l
z=x"+ax+—€e” +b 3)
a
where @ and b are arbitrary consjants.
Equation (3) is the complete solution of the given equation.

General solution is found out as usual.
Singular solution does not exist.

1.8 GENERAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Partial differential equations, for which the general solution can be obtained directly,
can be divided into the following three categories

I. Equations that can be solved by direct (partial) integration.

2. Lagrange’s lincar equation of the first order,

3. Linear partial differential equations of higher order with constant coefficients,

1.9 LAGRANGE’S LINEAR EQUATION

A lincar partial differential equation of the first order, which is of the form Pp+ Qg =
R where P, Q, R are functions of x, v, z, is called Lagrange’s linear equatior.

General solution of Lagrange’s linear equation

22



The general solution of the equation Pp + Q¢ = R is f(u,v) = 0, where “f’ is an

arbitrary function and u(x, y, z) = ¢ and v(x, v, ) = b are independent solutions of
g : . dx  dy d:z
the simultaneous differential equations — = — = —
p

Q R
Working rule to solve Pp + Qq =R

(1) To solve Pp + Qg = R, we form the corresponding subsidiary simultaneous
equation LA
S R
(11) Solving these equations, we get two independent solutions ¥ = a and v = b.

(111) Then the required general solution is f(u#,v) = 0oru = ¢(v) or v = ¥ (u).

1.10 SOLUTION OF THE SIMULTANEOUS EQUATIONS dX _dy _dz

P Q@ R
Method of grouping

By grouping any two of three ratios, it may be possible to get an ordinary differential
equation containing only two variables, eventhough P; Q; Rare, in general, functions
of x, y, z. By solving this equation, we can get a solution of the simultaneous equa-
tions. By this method, we may be able to get two independent solutions, by using
different groupings.

Method of Multipliers

It we can find a set of three quantities [, m, n, which may be constants or functions of
the variables x, y, z, such that [P+ mQ+ nR = 0, then a solution of the simultaneous
equations is found out as follows.

dx dy dz Ildx+ mdy+ ndz

P Q R IP+mQ+nR

Since [P + mQ + nR = 0,ldx + mdy + ndz = 0. If Idx + mdy + ndz is an exact
differential of some function u(x, y, z), then we get du = 0. Integrating this, we get

dx d
u = a, which is a solution of F i —QZ = %
Similarly, if we can find another set of independent multipliers /', m’, n’, we can

get another independent solution v = b.

EXAMPLE 1
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4
. = xy
Solve the equations gx* -
SOLUTION
0%z
— =Xy “ )
axz

Integrating both sides of (1) partially with respect to x (i.e. treating y as a constant),

dz

4
5
— = ) — 2
= y 3 + @(y) (2)

Integrating (2) partially with respect to x,

3
z=%w+fUHw-Mﬁ (3)

where f(y) and ¢(y) are arbitrary functions. Equation (3) is the required general
solution of (1).

EXAMPLE 2

By changing the independent variables by the transformations u = x — yand v =
9%z Pz | %2

_—t 2= = 0 can be transformed as

ax? * dxdy + ay?

x + y, show that the equation

3%z ;
5 = 0 and hence solve it.
du-
SOLUTION

u=x—-—yandv=x+y

‘= u+v i vV—u
R )
If we express x and y in z in terms of u and v, z becomes a function of u and v.
az 9z du
2o = s = Zy " Uy + Zy - Uy, Where z,, =a—andu, = —, elcC.

24



Ly =y + Wy ==+
Zex = (Zuw + Zuw) + (Zow + 200) = Zuw + 2200 + 2w
Zry = (= Zuu + Zuw) + (—Zpu + 2vv) = —Zuu + 20
Zyy = Zuu — Zuv + (= 2w + 2wv) = Zuw = 22uv + Zwv

Using these values in the given equation 2, +22,y+2yy = 0, ithecomes4z,, = 0.
3%z

i.e. a—vz' =0 (l)
Integrating (1) partially with respect to v,

0z

T 8(u) )

Integrating (2) partially with respect to v,

z=v-gu)+ fu) 3)
.". The solution of the given equation is

= fx=y+x+ygx—y
EXAMPLE 3
Solve the equation x> p + v°q + 2° =

SOLUTION

The given cquauon
Cp4ylg=-7 M
is a Lagrange’s lincar equation with P = x*, 0 = y* and R = -2
The subsidiary equations are
dy

= =5
.‘l

dz

—
-~

Wl &

L

Taking the first two ratios, we get an ordinary differential equation in x and v, namely,
dre dy

> 5
X- )--
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!
Integrating, we get sl

¥

2 L
Le. -———=a (n
X ¥
¥ : . dy —dz
Taking the last two ratics, we get the cquation o o =
b o z=
dy dz
b
- o 1
Integrating, we get Tl - b
Solving,
.3
-—+—-=b (2)
v <
Thegenemlmlulmnoﬂheglmeqwlontsf(- - -+ ) 0, where * f°
is an arbitrary function,
EXAMPLE 4
Solve the cquation (v — 22p 4+ (28 — v)g
SOLUTION
This is Lagrange’s linear
cquationwith P = x = 2:. Q@ =2: -~ vand R = y — x.
The subsidiary cquations are
dx dy d:
X=2: 2=y ~N=—X Ll
dy +dy + dz
Using the multiplicrs 1. 1, 1. cach ratio in (1) = = (;‘
de +dy +d: =0
Integrating, we get, X+y+i=a (2)
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Using the multipliers v, x, 22, cach ratio in (1) =

ydx + xdy + 2:d:

0
dixy) + 22d: =

Integrating, we get xy+ 2=

Therefore the general solution of the given cquationis f(x 4+ v+ 2. v +2°) = 0

EXAMPLE 5

Solve the cquation (x7 — v= — =3)p + 2xyg = 2zx.
SOLUTION

This is Lagrange’s linear

R

cquation with P = ¢* = y* =2*, Q@ =2ry, R=2x,
The subsidiary equations are

= —— —— (h

Integrating, we get log v = log s + loga

Le. =a

fa|'=

Using the mu'ltiphers x, v, 2, each of the ratios in (1) =

xdx 4 ydy + zd:

Taking the last ratio in (1) and the ratio in (3),

4

1 - -
d= -d(\‘ S 2 e -

-

2xx xu- -+ \- + I
dz dixc” + v* )

e, —_—= <

= =+ \- 2
Integrating, we get logb + logz = log (7 + ¥° + %)

~ “ -
2 X"+ ¥y +ta"
LC. = b

At +? +29)

Thcm!mlhcgcncmlsoluuonoﬂhcpvenequﬂwnssf(v e b s =

27
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EXAMPLE 6

Solve the equation £7(y — 2)p + ¥y (2 — x)g = 27(x — ¥).
SOLUTION
Tzlis is a Lagrange's linear cquation with P = 13 (y —2), Q@ =y (z—-x), R=
=(x —- v).
The subsidiary eyguations are
dx dy dz

—_— = ———— = —_—— 1
x={y —2) VI - x) 2*(x = ¥) W

1 1 1
| Lo ;d.l + ;sd_\‘ + :sd:
Using the multiplicrs Pl 2l cach of the ratios in (1) = . o -

I )
' \ S—
odx + —;.‘__d,\ + = dz =0

I I
+;+:=a (2)

-!-dx + -'-d,\' + -!-d:

Using the multiplicrs %. % %.cachoflbcmios mil)= - y

0
1 I I
~dv 4+ ~dy + -dz =0
X 3 S
Integrating, wegetlogx + logy + logzs = logh
or xyz=b (3)

I 1 1 '
Theretore the general solution of the given equation is f (-(— + - +=. X ,\-:) = (),

-
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1.13 LINEAR P.D.E.S OF HIGHER ORDER WITH CONSTANT COEFFICIENTS

Linear partial differential equations of higher order with constant coefficients may be
divided into two categories as given below.

(i) Equations in which the partial derivatives occurring are all of the same order (of
course, with degree 1 each) and the coetficients are constants. Such equations
arc called homogeneous linear P.D.E.s with constant coefficients.

(ii) Equations in which the partial derivatives occurring are not of the same order
and the coefficients are constants are called non-homogeneous linear P.D.E.s
with constant coefficients.

Any equation of the form

all z a" all - an i

= bl ——— Oy it 8, — = F(%, y) i)
ox ox" " dy ox" " dy” dy
wherea,, a,, ....... , a, are all constants, is called a homogeneous linear partial differential equation of the nth

order with constant coefficients.

It is called homogeneous because all the terms contain derivatives of the same order i.e., nth order.

0 d
Writing D for — and D’ for — (1) becomes

X y
[D"+a, D" D' +4, D" D + ...t @, D" | 2 =F(x, y)
or ¢ (D, D)z= F(x, y)

where ¢ (D,D’)=D" + a D" D'+ a,D" 2Pt a, DA

As in the case of ordinary linear differential equations with constant coefficients the complete solution
consists of two parts.
(D The Complementary Function (C.F.): It is the complete solution of the equation ¢ (D, D”) z=0. It must
contain n arbitrary functions where n is the order of the differential equation.
(I The Particular Integral (P.I): It is a particular solution (free from arbitrary constants) of ¢ (D, D")z = F(x, y).
Then complete solution C.S.is Z = C.F. + P.L.
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WORKING RULE FOR FINDING THE C.F.

0%z " 9’z n 9’z
o> oxdy oy’
which in the symbolic form is
[D*+a DD’ +aD"?Z=0
Its symbolic form equated to zero is
D*+a,DD’+a,D"=
Itis called Auxiliary Equation (A.E.)

M ES!

Consider the equation

1}
QU
-
=

D
DI

D 2
(2) can be expressed as quadratic in o ie., (——) +q, [

Let its roots be m, and m,

Case I. When the roots of the auxiliary equation are distinct then (1) can be put in the form

(D- mID') (D —mZD’)z =

D

DI

(1)

wiZ)

«(3)

. . . 2 82
Now the solution of (D —m, D’) z= 0 is the solution of (3) .". to solve it we have — —m, — =0 or p—m,q=0,

which is Lagrange’s form .. its auxiliary equation are

de _ _dy e

Taking Ist and 2nd terms of the ratio m dx = — dy. Integrate y + m x = a

Also z=0 = z=b.

Solutionof ~ (D-m,D")z=0isz=f, (y +m,x)

Similarly from (3) the other factor (D —m;D)z=0 will give the solution z=f, (v +m, x)

Hence the complete solutionof (1)isz=/f, (v+m, x) + f> (y + m, x)

30
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Case II. When the roots of the auxiliary equation are equal i.e., m, = m, = m (say) then (1) can be written as
(D=mD’)(D-mD’)z=0 .[4a)]

Let (D-=mD")z=u wily)

Then [4(a)] becomes(D —mD’) u=0

Its solution as proved in Ist case is u = fly + mx)

Substituting the value of ‘u’ in (5), we get (D—m D’) z = f(y + mx)

Jdz oz
or ——m— = f(y+mx)
ox ady /€
or p —mgq = f(v + mx), which is Lagrange’s form

dy  dz
-m  f(y+mx)

oA ; dx
Its auxiliary equations are — =

Taking Ist and 2nd terms of the ratio — m dx = dy. Integral
v+mx=a ..(6)
Taking Ist and 3rd terms and substituting y + mx =a

de  dz
I f@)
Integrating, we get z=fla)x+b

¥O

Combining (6) and (7) complete solution of (1)is z—f(a) x=f(v+mx)
or | z=f(y+mx) +xf(y+mx)
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Note 1. Auxiliary equation of (1) i.e., D* + a DD’ + a, a”* = 0, which is quadratic in =

D\ D
ie., [E) + 4 (§)+ a,=0 can also be represented by m, + a m + a, = 0, where m is obtained by replacing

D by m and D" by 1 so for convinence A.E. of (1) can be written as m, + am + a,= 0.
Note 2. Generalised form of the results obtained in case I and case II
Case L. If the distinct rootsof an A.E.arem , m, m, ......... , then
CF =f, (y+mx) +f2 (y+myx) + f, (y + m_x) and so on.

Case IL If the roots of the A.E. are m , m,, m and only two roots are equal i.e., only

e
m =m,=m and all other are distinct.

Then C.F. = f (y + mx) +xf, (y + mx) + f,(y + m x) and so on.

Case IIL If the roots of the auxiliary equation arem , m,, m m,, ...... and three roots are equal i.e.,
m =m,=m,=m the CE=f s (y+mx)+ Afz (v + mx) %, f3 (y+mx) + f4 (ptmx) + i

We can continue this process of equal roots to any number of times.

TABLE FOR FINDING COMPLEMENTARY FUNCTIONS

Step L. Write the equation in symbolic form i.e., (D" +a D" D'+ a,D" *D?+..4a D")z=0
Step IL Write the auxiliary equation (putting D =m, D" =1)
m'+am'+a,m+. .+a =0

Step IIL Solve it for m. We will get exactly n values of m.

Step IV. Write C.F. as follows.

Roots of A.E. C.F.
(1) m, My, My, ... (all distinct) Jily +m l.vc) +H 0+ mzx) + fi(v + m, X)+ ..
@)m.m,m,...... (two equal roots) SHy+mx) +xfo(y+mx)+fi(y+m x)+ .....
B)ym,m,m,m,......(three equal Sily +mx) +xfo (v +mx) +° fi(y+m x)
roots) +fi(v+ m,x) +....
4) m,m;,..... rames, My, q ...... iy +m X)) +x L+ mx) ... et fr(y+m )
(r equal roots) +fra1 (VM) ...
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EXAMPLE 1

Solve the following equation

d°; g d°z 5 0°
dx

S NS

=0

o | M

4 =
dx 3\' a_\'
SOLUTION

Symbolic form of the given equation is (D*+4 DD’ ~5D") z=
A.E.is m*+4m—-5= 0
(m-D(m+5)=0 .. m=1-5
Required solutionis z =/, (v +x) + f, (v — 5x)

EXAMPLE 2

Solve the following equation
(D’ —-6D’D’+ 12 DD* -8D")z = 0.
SOLUTION

(D?—6D?D’ + 12DD”> —8D"%) z=0
AE.is m*—6m*+ 12m—-8=0
(m=2’=0 2 m=2,2,2
Reqd. solutionis z=/f, (v + 2x) +xf, (¥ + 2x) + X°f, (v + 2x)

RULES FOR FINDING PARTICULAR INTEGRALS

The complete solution of the homogeneous equation is
aﬂ_ a"‘," an_ an -

n +a| n—1 +a2 n—Z" 2 n
ox ox" " dy dx" "~ dy dy

ie, (D"+a D" 'D'+a,D" *D"*+.+a,D")z=F(x,y)

....... a, =F(x, y)

is known if C.F. and P.1. are obtained.
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To Find Particular Integral

(i) When F(x, y)=e“*"

¢(D, D) ¢(a,b)

[i.e., putD=aandD’=b]provided ¢ (a,b)#0

If f{a, b) =0 ; it is called case of failure.

(ii) When F(x,y) =sin(ax +by)

1

¢|:— g ghy— bz}
li.e., put D*=—-a? DD’=—-ab, D =-b?* provided ¢ (-a*— ab, -b*) # (0

If ¢ (- a?®, —ab, - b*) =0 then it is called a case of failure.
(7ii) A similar rule holds for cos (ax + by)

PlL=

sin (ax + by) = sin (ax + by)

¢{D?, DD, D'3}

In each case expand by

(iv) When F(x, y) =x" y", where m, n are positive integers. ¢ )
Binomial theorem

I =]
Pl.= ——— x" y" = D, D’ X" _\,""
¢(D, D') - [¢( )]

If m < nexpand [¢p (D, D”)]" in powers of %

’

and ifm >n [¢(D,D’)]"'in powers of l]))

Also we have -[l—) F(x, y)= J F(x, y) dx
v constant
1
and ~ F(x, y) = J. F(x, yv) dy
X constant
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TABLE FOR FINDING P.I.

We know from Symbolic form P.I. =

S.No. Function

1. When F(x, y) = ¢ * "

2 When F(x, y) = sin (ax + by)

3. When F(x. y) = cos (ax + by)

|
Ay
¢(D,D")
Pl
1 ax+ by ’,
PlL.= ——¢ S [PutD=a, D =b]
¢(a.b)
provided &a., b) 20

Pl.= ﬁsin (ax + by)
¢(D-, DD’ D~)

___sin(ax+by)

- ¢(—a2.—ab.—b2)
Put D* = - &, DD’ = —ab, D = - b*
where ¢ (- a’, —ab, -b:) #0
B cos (ax + by)

" ¢(-a*,—ab,-b?)

2 ' o2

PL

4, When F(x, y) =" y"

provided ¢ (- @, —ab,-b*)#0
Pl= : — " "
¢(D,D")
= [6(D, D) ' ¥y

If m < nexpand [¢ (D, D) " in power of %

’

If m > nexpand [¢ (D, D) " in power of %

5. | WhenF(x,y)=é¢"*" V, where V PL= — 1 go+by o jartby ——'—
¢(D,D") O(D+a)(D +b)
is a function of x and y
6. When F(x, y) is any function of Resolve ———— into partial fractions and apply
(x.y) '0:B)
-ﬁ; F(x, v) =JF(.:. ¢—mx) dx, where ¢ = y + mx
-m
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EXAMPLE 3
Solve the equation

(D} =3DD" +2D")z = ¥~ 4 ¢

SOLUTION

The auxiliary cquation is m* —3m +2 =0

1.e. m=Dm+m-=2)=0
LC. m—=17m+2)=0
m=1,1,-2

CE=xfi(y +x)+ foly + x) + fa(y — 2x)

| . .
Pl = - A(p-' \ +(“H\)
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The general solution of the given cquation is

-

T agn K ek
z=xfilyv+ )+ v+ x)+ fi3lv=2x)+ 6t" V4 ﬁc"*‘

EXAMPLE 4

Solve the equation (D* = 3DD' +2D")z = 2cosh (3x + 4y)
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SOLUTION

The auxiliary equation is m>=3m+2=0
1.C. (m-=0Dm-2)=0
m=1,2

. The C.F. of the given PD.E. = fi(y + x) + fo(y + 2x)

Pl. = — s2cosh (3x +4y)
D--3DD" +2D"
= — ! i {e.hN_v +e-(31+4,v)]
D--3DD' +2D"
= ! e-“"“‘-" + I e-—(.erv)
3 -334+242 {(=3)2 = 3(=3)(—4) + 2(—4)°

|
- 2 [cley +e—(31+4y)]

cosh(3x + 4y)

Wi

The gencral solution of the given equation is 2 = fi(v + ) + fa(v + 2x) +

2
5 cosh(3x + 4v).

EXAMPLE 5

Solve the cquation
(D —1DD"” — 6D )z = x° + xy* + y°

SOLUTION
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The auxiliary equation is
m*—=Tm—-6=0, ie. (m+1)(m*=m—6)=
ic. (m+ 1)(m+2)(m - 3) =

m=-1,-2,3
CFE = fily =x)+ faly = 2xX) + fa(y + 3x)

I "
Pl = . 2 +xy2 +vH)
D} -7DD"” - 6D" P

, (700” + 6D")

28 D’

I
I (x* 4+ xy° + v
I D" ' 2 3 4
=F |+BT(ZD+6D)+°" x*+xy"+)y)

- [b'.T 4. D'b(wo +6D”)] (x2 4+ xy? 4+ 3)

[
5-3-(.r- +xy 4+ )+ pel7D - Q2x+6y) + 36}

|
= D‘“ + Xy~ +\’)+—(50)

5 I k! 3
X " 3 X X
_ .2 A L ) T
345 7Y 32t 123 T 123
1 S .3, Vogg .V 34
6() +—‘-( +24r\ +6x,\

The general solution is

> 235 i}

= fily = x)+ foily =200+ iy + 30+ = + =2 + —xy? + -2y}

60 3 24

EXAMPLE 6
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Solve the equation
(Dz - 2DDI + Dlz)z — x2y2e1+)'
SOLUTION

The auxiliary equationis m*> —2m + 1 =0

m=1,1

CE =xfi(y+x)+ faly + x)

|
T (D-D)?

p— +y

& (x2y?)
1 2
(D+h-D+DE

= 'ty —(D = D:)z‘t y
axd

= ex+)’_l_ (l - 2) } (x2).2)

PlL

D? D

2
l 2D’ D’ > 3
= e.:+y_5_2_ (l + 3 +332-) (x°y%)

1 s 2 3
=t — 1%y + B(Zrz)') + 5-5(2::2)}

" » I 5 I 5

el I:_V" s =z (X7) + 4y - —03(x )+ 6- F(X )]
[ % ] |

= (—l-.ﬁy“ e —x°) ) i d

. General solution is

| 1 1,
z=xfily+x)+ Lo(y+x)+ (ﬁy2 + -,—sxy4- @r ) xte Y

EXAMPLE 7

Solve the equation
(D -5DD"+6D7%)z=ysinx

SOLUTION
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The auxiliary equation is m*> — 5m 46 =0

1.C. (m—=2¥m—-=3)=0
m=2,3
CE =¢)(y + 2x) + ¢2(y + 3x)

|
(D=2D') (D - 3D’

- (@ — 3x)sin xdy
D-2D = v+3x

[{(a@ = 3x)(—cosx) + 3(—sin )],y 43,

Pl

Vsinx

D-2D'
|

= ~yeosx — 3si
D—-ZD" VoS X sin x|

= - ‘/ [(@ —2x)cosx +3sinx|d.\}

= y+2y

= —[(a —2x)sinx + 2(—cosx) — 3cos.t]
U V42X
= 5¢Cosx — ysinx

.. General solution is

=@y +2x) + @a(y +3x) + 5¢cosx — ysinx
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UNIT V

THEORY OF SAMPLING AND TESTING OF HYPOTHESIS

Population:
The group of individuals, under study is called is called population.

Sample:
A finite subset of statistical individuals in a population is called Sample.

Sample size:
The number of individuals in a sample is called the Sample size.

Parameters and Statistics:
The statistical constants of the population are referred as Parameters and the
statistical constants of the Sample are referred as Statistics.

Standard Error :
The standard deviation of sampling distribution of a statistic is known as its
standard error and is denoted by (S.E)

Test of Significance :

It enable us to decide on the basis of the sample results if the deviation between the
observed sample statistic and the hypothetical parameter value is significant or the
deviation between two sample statistics is significant.

Null Hypothesis:
A definite statement about the population parameter which is usually a hypothesis
of no-difference and is denoted by H,

Alternative Hypothesis:
Any hypothesis which is complementary to the null hypothesis is called an
Alternative Hypothesis and is denoted by H;.

Errors in Sampling:
Type | and Type Il errors.
Type | error: Rejection of Ho when it is true.
Type Il error: Acceptance of Ho when it is false.

Two types of errors occur in practice when we decide to accept or reject a lot
after examining a sample from it. They are Type 1 error occurs while rejecting H,
when it is true. Type 2 error occurs while accepting H, when it is wrong.
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Critical region:

A region corresponding to a statistic t in the sample space S which lead to the
rejection of H, is called Critical region or Rejection region. Those regions which
lead to the acceptance of H, are called Acceptance Region.

Level of Significance :

The probability a that a random value of the statistic “t” belongs to the critical
region is known as the level of significance. In otherwords the level of significance
Is the size of the type | error. The levels of significance usually employed in testing
of hypothesis are 5% and 1%.

One tail and two tailed test:

A test of any statistical hyposthesis where the alternate hypothesis is one
tailed(right tailed/ left tailed) is called one tailed test.

For the null hypothesis Ho if p = o then.

Hi = 1 > Wo (Right tail)

Hi= W< (Left tail)

Hi= p# o (Two tail test)

Types of samples :

Small sample and Large sample

Small sample (n<<30 ) : “Students t test, F test , Chi Square test
Large sample (n>30) : Z test.

95 % confidence limit for the population mean p in a small test.
Let x be the sample mean and n be the sample size. Let s be the sample S.D.
Then x + to05 (S/Vn-1)

Application of t — distribution
When the size of the sample is less than 30, ,,t™ test is used in (a) single mean and
(b) difference of two means.

Distinguish between parameters and statistics.

Statistical constant of the population are usually referred to as parameters.
Statistical measures computed from sample observations alone are usually referred
to as statistic.

In practice, parameter values are not known and their estimates based



Write short notes on critical value.

The critical or rejection region is the region which corresponds to a predetermined
level of significancea. Whenever the sample statistic falls in the critical region we
reject the null hypothesis as it will be considered to be probably false. The value
that separates the rejection region from the acceptance region is called the critical
value.

Define level of significance explain.

The probability o that a random value of the statistic,,t™ belongs to the critical
region is known as the level of significance. In other words level of significance is
the size of type I error. The levels of significance usually employed in testing of
hypothesis are 5% and 1%.

Outline the assumptions made when the‘t’ test us applied for difference of
means.

(i)  Degree of freedom is ny +n, — 2.

(i)  The two population variances are believed to be equal.

2 2
(iii) S= J(nlsl +N2%°) s the standard error.
(n1+ no— 2

Type | Student t test for single mean
|t| _ _X—u
s/vJn-1
Where x the sample mean, [ is is the population mean, s is the SD and n is the
number of observations.

Problems :

1. The mean weakly sales of soap bars in departmental stores were 146.3 bars per
store. After an advertising campaign the mean weekly sales in 22 stores for a
typical week increased to 153.7 and showed a SD of 17.2. Was the advertising
campaign successful?

Solution:

Calculated t value = 1.97 and Tabulated Value = 1.72(at 5% level of
significance with 21 degrees of freedom)

Calculated value > Tabulated value, Reject Ho (Null hypothesis)

2. A sample of 26 bulbs gives a mean life of 990 hours with SD of 20 hours. The
manufacturer claims that the mean life of bulbs is 1000 hours. Is the sample not
upto the standard.



Solution:

Calculated t value = 2.5

Tabulated Value = 1.708(at 5% level of significance with 25 degrees of
freedom)

Calculated value > Tabulated value, Reject Ho (Null hypothesis)

3. The average breaking strength of steel rod is specified to be 18.5 thousand
pounds. To test this sample of 14 rods was tested. The mean and SD obtained were
17.85 and 1.955 respectively. Is the result of the experiment significant?

Solution:

Calculated t value = 1.199

Tabulated Value = 2.16(at 5% level of significance with 13 degrees of freedom)
Calculated value < Tabulated value, Accept Ho (Null hypothesis)

4. Find the confidence limits of the mean of the population for a random sample of
size 16 from a normal population with mean 53 and SD V10 with t value at 5% for
15 Degrees of freedom is 2.13.

Solution

(54.68, 51.31)

Type 11 Student t test when SD not given

|t] =(x-w)/(s/n) )
Where x=3(x)/n and s> =1/ (n-1) £ (X- x )2

PROBLEMS

Students t test where SD of the sample is not given directly)

1. A random sample of 10 boys had the following IQs
70,120,110,101,88,83,95,98,107,100. Do these data support the assumption of a
population mean 1Q of 100? Find the reasonable range in which most of the mean
IQ values of samples of 10 boys lie?

Solution:

Calculated t value = 0.62

Tabulated Value = 2.26(at 5% level of significance with 9 degrees of freedom)
Calculated value < Tabulated value, Accept Ho (Null hypothesis)

95% confidence limits: (86.99, 107.4)

2. The heights of 10 males of a given locality are found to be
70,67,62,68,61,68,70,64,64,66 inches. Is it reasonable to believe that the average
height is greater than 64 inches Test at 5%.

Solution:

Calculated t value = 2

Tabulated Value = 1.833(at 5% level of significance with 9 degrees of freedom)
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Calculated value > Tabulated value, Reject Ho (Null hypothesis)

3. Certain pesticide is packed into bags by a machine. A random sample of 10 bags
Is drawn and their contents are found to be as follows:
50,49,52,44,45,48,46,45,49,45. Test if the average packing to be taken 50 grams
Solution:

Calculated t value = 3.19

Tabulated Value = 2.262 (at 5% level of significance with 9 degrees of
Freedom)

Calculated value > Tabulated value, Reject Ho (Null hypothesis)

Type 111 Student t test for difference of means of two samples

To test the significant difference between two mea n x 1and x , of sample sizes n;

and n; use the statistic. J
tL =(x1-%2)/5S /ny) + (1/n

Where s? = (rjlle + rgz)éji)/ ?ﬁ)f n- % )+ (Un2))

s; and s, being the sample standard deviations degree of freedom being n; + n, — 2.

PROBLEMS

1. Samples of two types of electric light bulbs were tested for length of life and
following data were obtained.

Type | Type Il

Sample size n; =8 na=7

Sample means x; = 1234 hrs | x, = 1036 hrs

Sample S.D. s;=36nhrs S, =40 hrs

Is the difference in the means sufficient to warrant that type | is superior to type Il

regarding length of life.

Solution:

Calculated t value = 9.39

Tabulated Value = 1.77 (at 5% level of significance with 13 degrees of freedom)

Calculated value > Tabulated value, Reject Ho (Null hypothesis)

2. Below are given the gain in weights (in N) of pigs fed on two diets A and B.

DietA|25 |32 |30 |34 |24 |14 |32 |24 |30 |31 |35 |25

DietB |44 |34 |22 |10 |47 |31 (40 |32 |35 |18 |21 |35 |29 |22

Test if the two diets differ significantly as regards their effect on increase in
weight.

Solution:

Calculated t value = 0.609




Tabulated Value =2.06 (at 5% level of significance with 25 degrees of freedom)
Calculated value < Tabulated value, Accept Ho (Null hypothesis)

3. The nicotine content in milligrams of two samples of tobacco were found to be
as follows:

Sample |24 |27 |26 |21 |25

A

Sample |27 |30 |28 |31 |22 |36
B

Can it be said that two samples come from normal populations having the same
mean.

Solution:

Calculated t value = 1.92

Tabulated Value =2.262 (at 5% level of significance with 9 degrees of freedom)
Calculated value < Tabulated value, Accept Ho (Null hypothesis)

4. The means of two random samples of sizes 9 and 7 are given as 196.42 and
198.82. The sum of the squares of the deviations from mean is 26.94 and 18.73
respectively. Can the sample be considered to have been drawn from the same
normal population?

Solution:

Calculated t value = 2.63

Tabulated Value = 2.15 (at 5% level of significance with 14 degrees of freedom)
Calculated value > Tabulated value, Reject Ho (Null hypothesis)

E- TEST

To test if the two samples have come from same population we use F test (OR) To
test if there is any significant difference between two estimates of population
variance.

F= GREATER VARIANCE/SMALLER VARIANCE

(OR)

F= 812/ 822

Where

812 =X (X- )?)2/ ni-1

822 =2 (y- )7)2/ no-1

Where n; is the first sample size and n; is the second sample size



1. Applications of F-test.

To test whether if there is any significant difference between two estimates of
population variance. To test if the two samples have come from the same
population we use f test.

2. Uses f test in sampling

To test whether there is any significant difference between two estimates of
population variance. To test if the two samples have come from the same
population.

If the sample variance S? is not given we can obtain the population variance by
using the relation
812 = n1512/(n1-1) and 822 =Nns5 §l(n2-1)

If we have to test whether the samples come from the same normal population
then the problem has to be solved by both the t test and the f tests.

(i) To test the equality of the variances by F test
(i1) To test the equality of means by t test

Problems

1. In one sample of 8 observations the sum of the squares of deviations of the

sample values from the sample mean was 84.4 and in the other sample of 10

observation it was 102. 6. Test whether this difference is significant at 5 % level.

Solution:

Calculated F value = 1.057

Tabulated Value = 3.29 (at 5% level of significance with (7,9) degrees of
freedom)

Calculated value < Tabulated value, Accept Ho (Null hypothesis)

2. Two random samples gave the following results.

Sample | Size | Sample Sum of squares of
mean deviations
from the mean
1 10 |15 90
2 12 |14 108

Test whether the samples come from the same normal population.
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Solution:

Calculated F value = 1.018

Tabulated Value =2.9 (at 5% level of significance with (9,11) degrees of
freedom)

By t test Calculated t value = 0.74

Tabulated Value =2.086 ( at 5% level of significance).

In both the tests of sampling

Calculated value < Tabulated value, Accept Ho (Null hypothesis)

3. The time taken by workers in performing a job by method I and method 11 is
given below.

Method | |20 |16 |26 |27 |23 |22

Method |27 |33 |42 |35 |32 |34 |38

I

Do the data show that the variances of time distribution from population from

which these samples are drawn do not differ significantly?

Solution:

Calculated F value = 1.37

Tabulated Value =4.95 (at 5% level of significance with (6,5) degrees of
freedom)

Calculated value < Tabulated value, Accept Ho (Null hypothesis)

4. The nicotine content in milligrams of two samples of tobacco were found to be

as follows:

Sample |24 |27 |26 |21 |25

A

Sample |27 |30 |28 |31 |22 |36
B

Can it be said that two samples come from normal populations having the same

variances.

Solution:

Calculated F value =4.07

Tabulated Value =6.26 (at 5% level of significance with (5,4) degrees of
freedom)

Calculated value < Tabulated value, Accept Ho (Null hypothesis)

CHI-SQUARE TEST

CHI-SQUARE TEST FORMULAE
(O-E)

2
YV =z
E



Where O is the observed frequency and E is the Expected frequency
1. Define Chi square test of goodness of fit.

Under the test of goodness of fit we try to find out how far observed values of a
given phenomenon are significantly different from the expected values. The Chi
square statistic can be used to judge the difference between the observed and
expected frequencies.

2. Give the main use of Chi-square test.

To test the significance of discrepancy between experimental values and the
theoretical values, obtained under some theory or hypothesis.

3. Write the condition for the application of y? test.
y? test can be applied only for small samples.
4. How is the number of degrees of freedom of chi-square distribution fixed for
testing the goodness of fit of a poisson distribution for the given data.
Degree of freedom = n — 1 where n is the no. of observations.

CHI-SQUARE TEST FOR INDEPENDENCE OF ATTRIBUTES

An attribute means a quality or characteristic. Eg. Drinking, smoking, blindness,
honesty

2 X2 CONTINGENCY TABLE
Consider any two attributes A and B. A and B are divided into two classes.

OBSERVED FREQUENCIES

(@

A |a
B

EXPECTED FREQUENCIES
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E(a)= E(b)=(b+d)(a+b)/N | a+b
(a+c)(a+b)/N
E(c) = | E(d)=(b+d)(c+d)/N | c+d
(a+c)(c+d)/N
a+c b+d N(Total
frequencies)
PROBLEMS
1. Adie is thrown 264 times with the following results. Show that the dieis
biased
No appearedonthe |1 |2 |3 |4 |5 |6
die
Frequency 40 |32 |28 |58 |54 |60
Solution:

Calculated y? value =17.6362

Tabulated Value =11.07 (at 5% level of significance with 5 degrees of
freedom)

Calculated value > Tabulated value, Reject Ho (Null hypothesis)

2. 200 digits were chosen at random from a set of tables. The frequencies of the
digits were

Digits |0 |1 |2 |3 |4 |5 |6 |7 |8 |9
Frequency | 18 |19 |23 |21 |16 |25 |22 |20 |21 |15

Use the y? test to assess the correctness of the hypothesis that the digits were
distributed in the equal number in the tables from which these were chosen.
Solution:

Calculated y? value = 4.3

Tabulated Value =16.919 ( at 5% level of significance with 9 degrees of
freedom)

Calculated value< Tabulated value, Accept Ho (Null hypothesis)

3. Two groups of 100 people each were taken for testing the use of a vaccine 15
persons contracted the disease out of the inoculated persons while 25 contracted
the disease in the other group. Test the efficiency of the vaccine using chi square
test.
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Solution:

Calculated y? value = 3.125

Tabulated Value =3.184 ( at 5% level of significance with 1 degrees of
freedom)

Calculated value< Tabulated value, Accept Ho (Null hypothesis)

4. In a certain sample of 2000 families 1400 families are consumers of tea. Out of

1800 Hindu families, 1236 families consume tea. Use Chi square test and state

whether there is any significant difference between consumption of tea among

Hindu and Non — Hindu families.

Solution:

Calculated y? value = 15.238

Tabulated Value = 3.841 ( at 5% level of significance with 1 degrees of
freedom)

Calculated value > Tabulated value, Reject Ho (Null hypothesis)

5. Given the following contingency table for hair colour and eye colour. Find the
value of Chi-Square and is there any good association between the two

Hair Fair Brown Black
colour

Eye colour

Grey 20 10 20

Brown 25 15 20

Black 15 5 20
Solution:

Calculated y? value = 3.6458

Tabulated Value =9.488 ( at 5% level of significance with 4 degrees of
freedom)

Calculated value < Tabulated value, Accept Ho (Null hypothesis)

LARGE SAMPLES

TEST OF SIGNIFICANCE OF LARGE SAMPLES
If the size of the sample n>30 then that sample is called large sample.
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Type 1. Test of significance for single proportion

Let p be the sample proportion and P be the population proportion, we use the
statistic Z= (p-P) / \/(PQ/ n)

Limits for population proportion P are given by p+3./(PQ/ n)
Where q = 1-p

1. A manufacture claimed that at least 95% of the equipment which he supplied to
a factory conformed to specifications. An examination of a sample of 200 pieces of
equipment revealed that 18 were faulty. tEst his claim at 5% level of significance.
Solution:

Calculated Z value = 2.59

Tabulated Value = 1.96 (at5% level of significance) Calculated value >
Tabulated value, Reject Ho (Null hypothesis)

2. In a big city 325 men out of 600 men were found to be smokers. Does this
information support the conclusion that the majority of men in this city are
smokers.

Solution:
Calculated Z value = 2.04
Tabulated Value = 1.645 (at 5% level of significance) Calculated value >

Tabulated value, Reject Ho (Null hypothesis)

3. A die is thrown 9000 times and of these 3220 yielded 3 or 4. Is this consistent
with the hypothesis that the die was unbiased?

Solution:

Calculated Z value = 4.94 since z>3

Calculated value > Tabulated value, Reject Ho (Null hypothesis)

4 A random sample of 500 apples were taken from the large consignment and 65
were found to be bad. Find the percentage of bad apples in the consignment.
Solution:

(0.175, 0.085) Hence percentage of bad apples in the consignment lies between
17.5% and 8.5%

Type Il Test of significance for difference of proportions

13



Let n; and n; are the two sample sizes and sample proportions are p; and p;
7= ( P1— p2)

- [P ny+ 17 np) where p= (n1p1+nzpz)/ni+n; and g=1-p

Proplems

1. Before an increase in excise duty on tea, 800 persons out of a sample of 1000
persons were found to be tea drinkers. After an increase in duty 800 people were
tea drinkers in the sample of 1200 people. Using standard error of proportions state
whether there is a significant decrease in the consumption of tea after the increase
In the excise duty.

Solution:

Calculated Z value = 6.972

Tabulated value at 5% (one tail) = 1.645

Calculated value > Tabulated value, Reject Ho (Null hypothesis)

2. In two large populations there are 30% and 25% respectively of fair haired
people. Is this difference likely to be hidden in samples of 1200 and 900
respectively from the two populations.

Solution:

Calculated Z value = 2.55

Tabulated value at 5% = 1.96

Calculated value > Tabulated value, Reject Ho (Null hypothesis)

Type Il Test of significance for single Mean

z=x - u/ (o/Nn) where x is the same mean
u is the population mean, s is the population S.D.
n is the sample size.

The values of x = 1.96 (c/vn) are called 95% confidence limits for
the mean of the population corresponding to the given sample.

The values of x + 2.58 (c/Vn) are called 99% confidence limits for
the mean of the population corresponding to the given sample.

14



PROBLEMS

1. A sample of 900 members has a mean of 3.4 cms and SD 2.61 cms. Is the
sample from a large population of mean is 3.25 cm and SD 2.61 cms. If the
population is normal and its mean is unknown find the 95% confidence limits of
true mean.

Solution:

Calculated Z value =1.724

Tabulated value at 5% = 1.96

Calculated value < Tabulated value, Accept Ho (Null hypothesis)

Limits (3.57, 3.2295)

2. An insurance agent has claimed that the average age of policy holders who issue
through him is less than the average for all agents which is 30.5 years. A random
sample of 100 policy holders who had issued through him gave the following age
distribution.

Age 16-20 | 21-25 | 26-30 | 31-35 | 36-40
No of 12 22 20 30 16
persons

Test the significant difference at 5% level of significance.

Solution:

Calculated Z value = 2.68

Tabulated value at 5% = 1.645

Calculated value > Tabulated value, Reject Ho (Null hypothesis)
3 Write down the test statistic for single mean for large samples.

u =X - i/ (o/\n) where X is the same mean
u is the population mean, s is the population S.D.
n is the sample size.

4. The mean score of a random sample of 60 students is 145 with a SD of 40. Fine
the 95 % confidence limit for the population mean.

Solution z =X +1.96 (o/\n)
= 145 + (1.96) (40/\60)
=145+ 10.12
= 155.12 or 134.88
.. The confidence limits are 155.12 and 134.88.

Type 1V Test of significance for Difference of means
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Z= (x1- x2) I N (622/n1) + (o ¥ny)

PROBLEMS

1. The means of 2 large samples of 1000 and 2000 members are 67.5 inches and 68
inches respectively. Can the samples be regarded as drawn from the same
population of SD 2.5 inches.

Solution:

Calculated Z value =5.16

Tabulated value at 5% = 1.96

Calculated value > Tabulated value, Reject Ho (Null hypothesis)

2. The mean yield of wheat from a district A was 210 pounds with SD 10 pounds
per acre from a sample of 100 plots. In another district the mean yield was 220
pounds with sD 12 pounds from a sample of 150 plots. Assuming that the SD of
yield in the entire state was 11 pounds test whether there is any significant
difference between the mean yield of crops in the two districts.

Solution:

Calculated Z value = 7.041

Tabulated value at 5% = 1.96

Calculated value > Tabulated value, Reject Ho (Null hypothesis)

PRACTICE PROBLEMS

1. Ten cartoons are taken at random from an automatic filling machine.
The mean net weight of 10 cartoons is 11.802 and SD is 0.15. Does the sample
mean differ significantly from the weight of 12?

Solution:

Calculated t value = 4

Tabulated Value = 2.26( at 5% level of significance with 9 degrees of freedom)
Calculated value > Tabulated value, Reject Ho(Null hypothesis)

2. A random sample of size 20 from a normal population gives a sample mean
of 42 and sample SD 6. Test if the population mean is 44?

Solution:

Calculated t value = 1.45

Tabulated Value = 2.09( at 5% level of significance with 19 degrees of freedom)
Calculated value < Tabulated value, Accept Ho(Null hypothesis)

3. A machine which produces mica insulating washers for using electric
devices is said to turn out washers having a thickness of 10 mm. A sample of 10
washers has an average of 9.52 mm with SD of 0.6 mm. calculate students t test.
Solution:
Calculated t value = 2.528

Tabulated Value = 2.26( at 5% level of significance with 9 degrees of freedom)
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Calculated value > Tabulated value, Reject Ho(Null hypothesis)

4, The mean lifetime of 25 fans produced by a company is computed to be
1570 hours with SD 120 hrs. The company claims that the average life of fans
produced by them is 1600 hours. Is the claim acceptable.

Solution:

Calculated t value = 1.22

Tabulated Value = 2.06( at 5% level of significance with 24 degrees of freedom)
Calculated value < Tabulated value, Accept Ho(Null hypothesis)

5. From a population of students 10 are selected. Their weekly packet money
observed as 20,22,21,15,25,19,18,20,21,22. Test if the sample supports that on an
average student get Rs.25 as packet money.

Solution:

Calculated t value = 1.89

Tabulated Value = 2.26 ( at 5% level of significance with 24 degrees  of
freedom)

Calculated value < Tabulated value, Accept Ho(Null hypothesis).

6. Ten individuals are chosen from random and their heights are found to be in
inches 63,63,64,65,66,69,69,70,70,71. Discuss the solution that the mean height of
the universe is 65?

Solution :

Calculated t value = 2.02

Tabulated Value =2.26 (at 5% level of significance with 9 degrees of freedom)
Calculated value < Tabulated value, Accept Ho(Null hypothesis).

7. An 1Q test was given to 5 persons before and after they were trained. Results
are given below.

1Q before | 110 | 120 | 123 | 132 | 125
training
IQ after training | 120 | 118 | 125 | 136 | 121
Test if there is any change in the 1Q after the training program.
Solution :

Calculated t value = 0.816

Tabulated Value =2.78 (at 5% level of significance with 4 degrees of freedom)
Calculated value < Tabulated value, Accept Ho(Null hypothesis).

8. Memory capacity of 10 girls were tested before and after training. State if
the training was effective or not

Before |12 |14 |11 |8 |7 |10 |3 |0 |5 |6
After |15 |16 |10 |7 |5 |12 |10 |2 |3 |8
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Solution :

Calculated t value = 1.3646

Tabulated Value =2.26 (at 5% level of significance with 9 degrees of freedom)
Calculated value < Tabulated value, Accept Ho(Null hypothesis).

9. 1.Two random samples gave the following results. Test whether the samples
come from the same normal population.
Sample | Size | Sample Mean | Sum of squares of deviations from the mean

1 10 15 90

2 12 14 108
Solution:
Calculated F =1.018, Tabulated F for (9,11) d.f at 5% level=2.90. Since

Calculated F< Tabulated F, the null hypothesis Hy is accepted. Calculated t
=0.74,Tabulated t for 20 d.f at 5% level=2.086. Since Calculated t < Tabulated t,
the null hypothesis Hy is accepted.

10. The fatality rate of typhoid patients is believed to be 17.26%. In a certain year
640 patients suffering from typhoid were treated in a metropolitan hospital and
only 63 patients died. Can you consider the hospital efficient?

Ans:z=4.96, Ho rejected.

11. A salesman in a departmental store claims that at most 60 percent of the
shoppers entering the store leave without making a purchase. A random sample of
50 shoppers showed that 35 of them left without making a purchase. Are these
sample results consistent with the claim of the salesman?

Ans:z=1.443, Ho accepted

12. In a large city A, 20% of a random sample of 900 school boys had a slight
physical defect. In another large city B, 18.5% of a random sample of 1600 school
boys had the same defect. Is the difference between the proportions significant?
Ans:z=0.92, Ho accepted.

13. Before and increase in excise duty on tea, 800 people out of a sample of 1000
were consumers of tea. After the increase in duty 800 out of a sample of 1200
persons. Find whether there is a significant decrease in the consumption of tea
after the increase in duty.

Ans: z=6.82, Ho is rejected.

14. A sample of 100 students is taken from a large population. The mean height of
the students in this sample is 160cm. Can it be reasonably regarded that, in the
population, the mean height is 165cm, and the SD is 10cm?
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Ans:z=5, Ho rejected.

15. A simple sample of heights of 6400 English men has a mean of 170cm and SD
of 6.4cm, while a sample of heights of 1600 Americans has a mean of 172cm and a
SD of 6.3cm. Do the data indicate that Americans, on the average taller than
Englishmen?

Ans: z=11.32, Ho rejected.

16. The average marks scored by 32 boys is 72 with SD of 8, while that for 36
girls is 70 with SD of 6. Test at 1% level whether boys perform better than girls.
Ans:z-1.15, Ho accepted.

17. A random sample of 600 men chosen from a certain city contained 400
smokers. In another sample of 900 men chosen from another city, there were 450
smokers. Do the data indicate that (i)the cities are significantly different with
respect to smoking habit among men? and (ii)the first city contains more smokers
than the second?

Ans:z=6.49,(i)yes (ii)yes

18. In a college, 60 junior students are found to have a mean height of 171.5cmand
50 senior students are found to have a mean height of 173.8 cm. Can we conclude,
based on these data, that the juniors are shorter than the seniors at 1% level
assuming that the SD of students of that college is 6.2cm?

Ans:No, z=1.937

19. Tests made on the breaking strength of 10 pieces of a metal gave the following
results: 578,572,570,568,572,570, 570,572,596 and 584kg. Test if the mean
breaking strength of the wire can be assumed as 577 kg?

Ans:yes,t=0.65

20. A mechinist is expected to make engine parts with axle diameter of 1.75cm. A
random sample of 10 parts shows a mean diameter of 1.85cm, with SD of 0.1cm.
On the basis of this sample, would you say that the work of the machinist is
inferior?

Ans: yes, t=3

21. A certain injection administered to each of the 12 patients resulted in the
following increases of blood pressure: 5, 2, 8, -1, 3,0, 6, -2, 1, 5, 0, 4. Can it be
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concluded that the injection will be in general, accompanied by an increase in BP?
Ans: yes, t=2.89

22. The mean life time of a sample of 25 bulbs is found as 1550h, with SD of 120h.
The company manufacturing the bulbs claims that the average life of their bulbs is
1600h. Is the claim acceptable?

Ans: yes, t=2.04

23. Two independent samples of sizes 8 and 7 contained the following values:
Sample 1: 19, 17, 15, 21, 16, 18, 16, 14 and Sample 2: 15, 14, 15, 19, 15, 18, 16.
Is the difference between the sample means significant?

Ans:No,t=0.93

24. The average production of 16 workers in a factory was 107 with SD of 9, while
12 workers in another comparable factory had an average production of 111 with
SD of 10. Can we say that the production rate of workers in the latter factory is
more than that in the former factory?

Ans: No, t=1.067

25. The following table gives the number of fatal road accidents that occurred
during the 7 days of the week. Find whether the accidents are uniformly
distributed over the week.
Ans:y?=4.17, accidents occur uniformly

Day Sun [ Mon | Tue | Wed | Thu | Fri | Sat
Number| 8 14 16 12 | 11 | 14 | 9

26. 1000 families were selected at random in a city to test the belief that high
income families usually send their children to public schools and the low income
families often said their children to government schools. From the following
results test whether income and type of schooling are independent.

Ans:y?=22.5, reject Ho

Income School
Public | Gouvt.
Low 370 430
High 130 70

27. Three samples are taken comprising 120 doctors, 150 advocates and 130
university teachers. Each person chosen is asked to select one of the three
categories that best represents his feeling toward a certain national policy. The
three categories are in favour of the policy(F), against the policy(A), and
indifferent toward the policy(l). The results of the interviews are given below. On
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the basis of this data can it be concluded that the views Doctors, Advocates, and
University teachers are homogeneous in so far as National policy under discussion
IS concerned.

Ans:y?=27.237, reject Ho

Occupation Reaction
F A |
Doctors 80 30 10
Advocates 70 40 40
University 50 50 30
teachers

28. A marketing agency gives you the following information about age groups of
the sample informants and their liking for a particular model of scooter which a
company plans to introduce. On the basis of the data can it be concluded that the
model appeal id independent of the age group of the informants?

Ans:y?=42.788, reject Ho

Age group of informants
Below | 20-39| 40-
20 59
Liked 125 420 60
Disliked 75 220 100

29. A certain drug is claimed to be effective in curing cold. In an experiment on
500 persons with cold, half of them were given the drug and half of them were
given the sugar pills. The patient™s reaction to the treatment are recorded and
given below. On the basis of this data, can it be concluded that the drug and sugar
pills differ significantly in curing cold?

Ans:x?=3.52, do not differ significantly

Helped | Harmed | No

effect
Drug 150 30 70
Sugar Pills 130 40 80
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