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LOGIC 

Propositional Logic – Definition 

A proposition is a collection of declarative statements that has either a truth value "true” or a 

truth value "false". A propositional consists of propositional variables and connectives. We 

denote the propositional variables by capital letters (A, B, etc). The connectives connect the 

propositional variables. 

 

Some examples of Propositions are given below − 

 

• "Man is Mortal", it returns truth value “TRUE” 

• "12 + 9 = 3 − 2", it returns truth value “FALSE” The following is not a Proposition 

• "A is less than 2". It is because unless we give a specific value of A, we cannot say whether 

the statement is true or false. 

Connectives  

In propositional logic generally we use five connectives which are − OR (˅), AND (˄), Negation/ 

NOT (¬), Implication / if-then (→), If and only if (↔). 

 

OR (˅) : The OR operation of two propositions A and B (written as A ˅ B) is true if at least any 

of the propositional variable A or B is true. 

 

The truth table is as follows − 

 

A B 
A ˅ B 

True True True 

True False True 

False True True 

False False False 
 

False False False 
 

False False False 
 

 

AND (˄) : The AND operation of two propositions A and B (written as A ˄ B) is true if both the 

propositional variable A and B is true. 

 

The truth table is as follows − 

 

A B 
A ˄ B 

True True False 
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True False False 

False True False 

False False True 

 

 

Negation (¬) :The negation of a proposition A (written as ¬A) is false when A is true and is true 

when A is false. 

 

The truth table is as follows – 

 

 

A ¬A 

True False 

False True 

Implication / if-then (→):  An implication A→ B is False if A is true and B is false. The rest of 

the cases are true. 

The truth table is as follows − 

 

A B 
A→  B 

True True True 

True False False 

False True True 

False False True 

 

 

 

 

If and only if (↔) : A↔B is bi-conditional logical connective which is true when p and q are 

both false or both are true. 

 

The truth table is as follows − 

 

A B A↔B 

True True True 
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True False False 

False True False 

False False True 

Tautologies 

A Tautology is a formula which is always true for every value of its propositional variables. 

Example − Prove [(A → B) ˄ A] → B is a tautology            

 

The truth table is as follows − 

 

A B 
A → B (A → B) ˄ A [(A → B) ˄ A] → B 

True True True True True 

True False False False True 

False True True False True 

False False True False True 

As we can see every value of [(A → B) ˄ A] → B is “True”, it is a tautology. 

 

Contradictions 

A Contradiction is a formula which is always false for every value of its propositional variables. 

 

Example − Prove (A ˅ B) ˄ [(¬A) ˄ (¬B)] is a contradiction 

 

The truth table is as follows − 

 

A B A ˅ B ¬A ¬B (¬A) ˄ (¬B) (A ˅ B) ˄ [(¬A) ˄ (¬B)] 

True True True False False False False 

True False True False True False False 

False True True True False False False 

False False False True True True False 

As we can see every value of (A ˅ B) ∧ [(¬A)  ∧ (¬B)] is “False”, it is a 

contradiction 
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Contingency 

A Contingency is a formula which has both some true and some false values for every value of 

its propositional variables. 

 

Example − Prove (A ˅ B ˅) ˄ (¬A) a contingency 

 

The truth table is as follows − 

 

A B A ˅ B ¬A (A ˅ B) ∧ (¬A) 

True True True False False 

True False True False False 

False True True True True 

False False False True False 

As we can see every value of (A ˅ B) ˄ (¬A) has both “True” and “False”, it is a contingency. 

 

 

Propositional Equivalences 

Two statements X and Y are logically equivalent if any of the following two conditions − 

 

• The truth tables of each statement have the same truth values. 

• The bi-conditional statement X ↔Y is a tautology. 

Example − Prove ¬(A ˅ B) and [(¬A) ˄ (¬B)] are equivalent 

 

Testing by 1st method (Matching truth table) 

A B A ˅ B ¬ (A ˅ B) ¬A ¬B [(¬A) ˄ (¬B)] 

True True True False False False False 

True False True False False True False 

False True True False True False False 

False False False True True True True 

Here, we can see the truth values of ¬ (A ˅ B) and [(¬A) ˄ (¬B)] are same, hence the statements 

are equivalent. 
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Testing by 2nd method (Bi-conditionality) 

 

A B ¬ (A ˅ B) [(¬A) ˄ (¬B)] [¬ (A ˅ B)] ⇔ [(¬A) ˄ (¬B)] 

True True False False True 

True False False False True 

False True False False True 

False False True True True 

 

As [¬ (A ˅ B)] ⇔ [(¬A) ˄ (¬B)] is a tautology, the statements are equivalent. 
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EQUIVALENT LAWS 

 

 
 

Logical Equivalences involving Conditional Statements 

 

 
 

 

Logical Equivalences involving Biconditional Statements 
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A conditional statement has two parts − Hypothesis and Conclusion. 

 

Example of Conditional Statement − “If you do your homework, you will not be 

punished.” Here, "you do your homework" is the hypothesis and "you will not be punished" 

is the conclusion. 

Inverse, Converse, and Contra-positive 

 

Inverse –An inverse of the conditional statement is the negation of both the hypothesis and 

the conclusion. If the statement is “If p, then q”, the inverse will be “If not p, then not q”. 

The inverse of “If you do your homework, you will not be punished” is “If you do not do 

your homework, you will be punished.” 

 

Converse −The  converse  of  the  conditional  statement  is  computed  by  interchanging  

the 

hypothesis  and  the  conclusion.  If  the  statement  is  “If  p,  then  q”,  the  inverse will be 

“If q, 

then p”. The converse of "If you do your homework, you will not be punished" is "If you 

will 

not be punished, you do not do your homework”. 

 

Contra-positive –The contra-positive of the conditional is computed by interchanging the 

hypothesis and the conclusion of the inverse statement. If the statement is “If p, then q”, 

the inverse will be “If not q, then not p”. The Contra-positive of "If you do your homework, 

you will not be punished” is "If you will be punished, you do your homework”. 

 

 

 

 

 

 

Example: 
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DUALITY PRINCIPLE 

Duality principle set states that for any true statement, the dual statement obtained by 

interchanging unions into intersections (and vice versa) and interchanging Universal set 

into Null set (and vice versa) is also true. If  dual of any statement is the statement itself, it 

is       said self-dual statement. 

 

Examples  : i) The dual of (A ∩ B) ∪ C is (A ∪ B) ∩ C 

 ii)  The dual of P ˄ Q ˄ F is P ˅ Q ˅ T   
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Elementary Product: A product of the variables and their negations in a formula is called 

an elementary product. If P and Q are any two atomic variables, then p, ¬ p  q ,  

¬ q p  ¬ p are some examples of elementary products. 

Elementary Sum: A sum of the variables and their negations in a formula is called an 

elementary sum. If P and Q are any two atomic variables, then p, ¬ p  q, ¬ q  p are some 

examples of elementary sums. 

 

Normal Forms 

We can convert any proposition in two normal forms − 
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1.  Conjunctive normal form 2.Disjunctive normal form 

Conjunctive Normal Form 

A compound statement is in conjunctive normal form if it is obtained by operating AND 

among variables (negation of variables included) connected with ORs. 

 

Examples 

 

• (P ∪ Q) ∩ (Q ∪ R) 

• (¬P ∪ Q ∪ S ∪¬T) 

 

 

 

Disjunctive Normal Form 

A compound statement is in disjunctive normal form if it is obtained by operating OR 

among variables (negation of variables included) connected with ANDs. 

 

Examples 

 

• (P ∩ Q) ∪ (Q ∩ R) 

• (¬P ∩ Q ∩ S ∩¬T) 

Predicate Logic deals with predicates, which are propositions containing variables. 

 

Functionally Complete set 

 

A set of logical operators is called functionally complete if every compound proposition is 

logically equivalent to a compound proposition involving only this set of logical operators. 

, , and ¬form a functionally complete set of operators. 

 

Minterms: For two variables p and q there are 4 possible formulas which consist of 

conjunctions of p,q or its negation given by p  q, p  ¬q, ¬ p  q and ¬ p ¬ ¬ q 

Maxterms: For two variables p and q there are 4 possible formulas which consist of 
disjunctions of p,q or its negation given by p  q, p  ¬ q, ¬ p q and ¬ p  ¬ q 

Principal Disjunctive Normal Form: For a given formula an equivalent formula 

consisting of disjunctions of minterms only is known as principal disjunctive normal 

form(PDNF) 
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Principal Conjunctive Normal Form: For a given formula an equivalent formula 

consisting of conjunctions of maxterms only is known as principal conjunctive normal 

form(PCNF) 

 

 
 

 

Consistency and Inconsistency of Premises 
 
A set of formular H

1
,H

2
,…,H

m
 is said to be inconsistent if their conjunction implies Contradiction. 

A set of formular H
1
,H

2
,…,H

m
 is said to be consistent if their conjunction implies Tautology. 

 
Rules of Inference  
 
Rule P: A premise may be introduced at any point in the derivation 
Rule T: A formula S may be introduced at any point in a derivation if S is tautologically implied by 
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Rule of inference to build arguments 
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Example: 
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Quantifiers 

The variable of predicates is quantified by quantifiers. There are two types of quantifier in 

predicate logic − Universal Quantifier and Existential Quantifier. 

 

Universal Quantifier 

Universal quantifier states that the statements within its scope are true for every value of 

the specific variable. It is denoted by the symbol ∀. 

 

∀x P(x) is read as for every value of x, P(x) is true. 

 

Example − "Man is mortal" can be transformed into the propositional form ∀x P(x) where 

P(x) is the predicate which denotes x is mortal and the universe of discourse is all men. 

 

 

Existential Quantifier 

Existential quantifier states that the statements within its scope are true for some values of 
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the specific variable. It is denoted by the symbol ∃.∃x P(x) is read as for some values of x, 

P(x) is true. 

 

Example − "Some people are dishonest" can be transformed into the propositional form 

∃x P(x) where P(x) is the predicate which denotes x is dishonest and the universe of 

discourse is some people. 

Nested Quantifiers 

If we use a quantifier that appears within the scope of another quantifier, it is called nested 

quantifier. 
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Inference theory for Predicate calculus 

 

 

 
 

Symbolize the following statements: 

(a) All men are mortal 

(b) All the world loves a lover 
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(c) X is the father of mother of Y (d)No cats has a tail 

(e) Some people who trust others are rewarded 

 

Solution: 
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SET THEORY 
 

Basic concepts of Set theory -Laws of Set theory -Partition of set, Relations -Types of Relations: 

Equivalence relation, Partial ordering relation-Graphs of relation-Hasse diagram, Functions: 

Injective, Surjective, Bijective functions, Compositions of functions, Identity and Inverse 

functions. 

 

The concept of a set is used in various disciplines and particularly in computers. 

Basic Definition: 

1. “A collection of well-defined objects is called a set”. 

The capital letters are used to denote sets and small letters are used 

for denote objects of the set. Any object in the set is called element or 

member of the set. If x is an element of the set X, then we write to 

be read as ‘x belongs to X’, and 

If x is not an element of X, the we write to be read as ‘x 

does not belong to X’. 

2. The number of elements in the set A is called cardinality of the 

set A, denoted by |A| or n(A). We note that in any set the elements 

are distinct. The collection of sets is also a set. 

 

 

Here  itself one set and it is one element of S and |S|=4. 

3. Let A and B be any two sets. If every element of A is an element 

of B, then A is called a subset of B is denote by . 

We can say that A contained(included) in B, (or) B contains(includes)A. 

Symbolically, (or)  

                                                     Logically. 



 

 

 

Let 

 

Then 

 

, since and 

 

Some of the important properties of set inclusion. 

For any sets A, B and C

(Reflexive) 

(Transitive) 

Note that does not imply  except for the following case. 

4. Two sets A and B are said to be equal if and only if and , 

 

 

Example and then

Since and  even though  

The equality of sets is reflexive, symmetric, and transitive. 

 

5. A set A is said to be a proper subset of a set B if and . 

Symbolically it is written as 

 

 is also called a proper inclusion. 

6. A set is said to be universal set if it includes every set under our discussion. A universal set 

is denoted by or E. 

In other words, if p(x) is a predicate. 

 

One can observe that universal set contains all the sets. 

7. A set is said to be empty set or null set if it does not contain any element, which is denoted by

 . 



 

 

In other words, if p(x)is a predicate. 

 

One can observe that null set is a subset for all sets. 

8. For a set A, the set of all subsets of A is called the power set of A. The power set of Ais 

denoted by or 

Example, Let  

Then  

Then set and A are called improper subsets of A. A and the remaining sets are called 

proper subsets of A. 

One can easily note that the number of elements of is 

 

 

SOMEOPERATIONS ONSETS 

1. Intersection of 

sets Definition: 

Let A and B be any two sets, the intersection of A and B is written as  is the set of all 

elements which belong to both A and B. 

Symbolically 

 

 

Example then 

. From the 

definition of intersection, it follows that for any sets A, B, C and universal set E. 

 

 

  
 

 
 

 

. 



 

 

2. Disjoint sets 

 

Definition: 

Two sets A and B are called disjoint if and only if , that is, A and B have no element 

in common. 

Example  

 

 

A and B are disjoint and B and C also, but A and C are not disjoint. 

 

3. Mutually disjoint sets 

Definition: 

A collection of sets is called a disjoint collection, if for every pair of sets in the collection are 

disjoint. The elements of a disjoint collection are said to be mutually disjoint. 

Let be an indexed set, Ais mutually disjoint if and only if 

for all  

Example 

 

 

Then  is a disjoint collection of sets. 

and  

4. Unions of sets 

Definition: 

The union of two sets A and B, written as , is the set of all elements which are elements 

of A or the elements of B or both. 

Symbolically  

Example Let  then  

From the union, it is clear that, for any sets A, B, C, and universal set E. 



 

 

(or ) 

 

   
 

 
 

5. Relative complement of a set 

Definition: 

Let A and B are any two sets. The relative complement of B in A, written is the set of 

elements of A which are not elements of B. 

Symbolically

Note that . 

Example Let  

then 

 

 
 

 

It is clear from the definition that, for any set A and B. 

 

 
 

 
 

 

6. Complement of a set 

Definition: 

Let A be any set, and E be universal. The relative complement of A in E is called 

absolute complement or complement of A. The complement of A is denoted by Symbolically 

 
 



 

 

Example Let  be universal set and be 

any set in E. 

Then 

 

 
 

From the definition, for any sets A 

 

 
 

7. Boolean sum of set 

Definition: 

Let A and B are any two sets. The symmetric difference or Boolean sum of A and B is the set 

A+B defined by 

 

 
 

(or)  

Example Let 

 

 

then 

 From the definition, for any sets A and B. 

 

 

and 

 

 
 

8. The principle of duality 

If we interchange the symbols , , E and  and  and in a set equation or expression. 

We obtain a new equation or expression is said to be dual of the original on (primal). 



 

 

“If T is any theorem expressed in terms of and deducible from the given basic laws, then 

the dual of T is also a theorem”. 

Note that, the theorem T is proved in m steps, then dual of T also proved in m step. 

Example The dual of  is given by . 

Remark: Dual (Dual T) = T. 

 

Identities on sets 

 Idempotent laws 

 

 

 Commutative laws 

 

 

 Associative laws 

 

 

 Distributive laws 

 

 

 Absorption laws 

 

 

De Morgan’s laws 

 

 

 

 
 

  
 

  
 



 

 

  
 

   
 

PROBLEMS 

 

1. , Find and  

Solution: 

 

 
 

 

2. If . Find  

Solution: 

 
 

 
 

 

3. Write all proper subsets of . 

Solution: 

The proper subsets are 

 

 
 

4. Show that  

Solution: 

 

If , then  Now, let 

and 

 

 
 



 

 

5.If 

 
 

If then 

Let

Therefore  

 

 

Solution: 

 

 
 

 
 

 
 

 
 

6. If
Find 

 

 

 

 

 

 

Find and 



 

 

Solution: 

 

 

 
 

 
 

   
 

 
 

Note that 

 

 

7. Show that and 

Solution: 

Let 

 

 
 

 
 

 

Now let  

 

 
 

 

Hence and 

Remark: and  

8. Show that for any two sets A and B,  

Solution: 

 



 

 

 
 

 
 

 
 

 
 

 
 

and 

 

Therefore 

 

9. Show that  

Solution: 

 

 
 

 
 

 
 

 
 

 
 

Therefore 

 

10. Show that  

Solution: 

 

Let 

 

 
 

 
 



 

 

 
 

Therefore 

 

11. Show that



 

 

Solution: 

 

 

 

 

 
 

 
 

 

12. Show that 

 

Solution: 

Let 

 

 

 

 
 

 

(Associative) 

 

(De Morgan’s law) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ASSIGNMENT PROBLEMS 

Part –A 

 

1. Define a set 

2. Define subset of a set. What is meant by proper subset? 

( ) 



 

 

 

 

 

(i) Find all subsets of   

(ii) Find all proper subsets of A. 

3. Define power set. 

4. Define disjoint sets with example? 

5. If and . Find and 

6. Whichofthefollowingsetsareempty?7.

 

8.  

9.  

10.State duality principle in set theory. 

11.Define cardinality of a set. 

12. If a set A has n elements, then the number of elements of power set of A 

is…….. 

13. Find the intersection of the following sets 

(i) 14.Write 

the dual of  

15. Let A, B and C sets, such that and ,can we conclude 

that B = C. 

16. State De Morgan’s Laws. 

17. Whether the union of sets is commutative or not? 

 

 

PART–B 

1. Show that  

2. Verify the De Morgan’s laws 



 

 

(i) ,(ii) 

3. Show that the intersection of sets is associative. 

4. Show that . 

5. Show that  

6. Let for find(a) (b)  

7. Prove that  

8. Show that for any two sets A and B,  

9. Prove that and . 

10. If and , prove that B=C. (cancelation law) 

11. Show that . 

12. Show that where + is the symmetric difference of sets. 

13. Show that and imply . 

14. Given that and . Show that . 

 

 

CARTESIAN PRODUCT OFSETS 

The Cartesian product of the sets A and B, is written as  is the set of all ordered pairs in 

which the first elements are in A and the second elements are in B. 

 

 

For example 

 

Let Now 



 

 

 

 

 

 
 

 
 

 
 

It is clear from the definition 

 

 

 

 

Now, 

and  is an ordered triple

 then and . 

 

Note that  is not an ordered triple. 

This fact shows that  

i.e. Cartesian product is not associative. 

Now 

 

and  

Note that if A has n elements and B has m elements  has nm elements. 

 

PROBLEMS 

1.If . Find and and  

Solution: 
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2.Show that . 

Solution: For any , 

 

 
 

 
 

 
 

 
 

 
 

 

3.Show that . 

Solution: For any , 

 

 
 

 
 

 
 

 

. 
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ASSIGNMENT PROBLEMS 

 

 

Part A 

 

1. Define Cartesian product of sets? Give an example? 

2. If find . 

3. If and , find , . 

4. True or False 

I. If ,the 

II. If ,the 

5. If  

 

Part B 

 

6. If A, B and C are sets, prove that . 

7. Prove that . 

8. If  and ,and , find I.

  

II. 

III.  

IV.  

9. Show that the Cartesian product is not commutative? It is commutative only for equality 

of sets? 

 

 

 

 

 

 

RELATIONS 

Binary relation 
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Any set of ordered pairs defines a binary relation. 

 

If x and y are binary related, under the relation R, then we write or  If not the 

case we write . 

1. Example  

 

 

Then F, L are binary relations. 

2.Example Let A and B be any two sets, then any nonempty subset R of  is called a 

binary relation. 

Now 

 

 

then 

 

 

Let 

 

 
 

 
 

 

Then and are binary relations A to B. 

Let S be any binary relation. The domain of S is the set of all elements x such that for some 

 

 

 

Similarly, the range of S is the set of all elements y such that, for some 

 

 
 

x, 
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Let 

 

 
 

 
 

 
 

If  then clearly and . 

In case of  then the relation defined on  is called a universal relation in X. 

If  then a relation on  is called void relation in X. 

Since relations are sets, then we can have their union and intersection and so on. 

 

 
 

 
 

 
 

 

Properties of Binary relations 

1. Reflexive 

Let R be a binary relation defined on X. 

 

Then R is reflexive if, for every . 

 

Example: 

Let 

 

and 

are defined on X. 
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Then R is reflexive, but S is not reflexive. Since and  

2. Symmetric 

 

A relation R from X to Y is symmetric if every and ,whenever then 

. 

That is, if , then R is symmetric 

Example: 

Let 

 

 

and

are defined on X. 

Then R is symmetric, but S is not symmetric. Since but  

3. Transitive 

A relation R is transitive if, whenever and then .That is, if

, then R is transitive. 

Example: 

Let 

 

and 

 

 

Then R is transitive, but S is not transitive. Since and but 

 

 

4.Irreflexive 
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A relation R in a set X is irreflexive if, for every



 

 

Example: 

Let 

 

 

 

 

 

and 

 

 
 

Then R is irreflexive, but S is not reflexive. Since and . 

5. Antisymmetric 

A relation R in a set X is antisymmetric if, whenever and 

then 

That is, if , then R is antisymmetric. 

Example: 

Let 

X be the set of all subsets of E. 

 

R be the inclusion relation defined on X. 

 

 

Therefore R is antisymmetric in X. 

 

6. Relation matrix 

Let are ordered sets, R be a relation 

Defined from X to Y, then the relation matrix of R, is defined as 

 

 

Example 1: 

Let 



 

 

 

 

 

 

 

 
 

Example 2: Let 

 

 

 

be a relation from X to Y. Then 

 

 

 

 

 

 

7. Composition of Binary Relations 

be a relation on . 

Then 



 

 

 

The concept of composition of relation is different from union and intersection of two 

relations. 

Definition: 

Let R be a relation from X to Y and S be a relation from Y to Z. Then the composite  

is a relation from X to Z defined by 

The operation  in  is called “composition of relations”. 

Example. 

Let 

 

 

. Then 

 

 
 

 

Note that 

 

 
 

 
 

etc., 

 

 

 

Definition: 

The relation matrix for  is given by  where  is defined as follows. 

where ( ) is1if and only if row I of and column 

j of have a1in the same relative position k, for some k. 

 

Example: 

Let 



 

 

 

 

. Then 

 

 

 
 

 
 

 

 

 



 

 

 

Definition 

Let R be a relation from X to Y. The converse of R, is written as , is a relation from Y to X 

such that    .



 

 

Example: 

If  

 

Also it is clear that 1. 

2. 

3. 

 

Result: The relation matrix  is the transpose of the relation . 

 

 

Example: 

Let 

 

 
 

 

We have 

 

 
 

 
 

 



 

 

EQUIVALENCE RELATION 

 

Definition: 

A relation R on a set X is called an equivalence relation if it is reflexive, symmetric, and 

transitive. 

Example 1: 

Let 

 

and 

 

 

 
on X. 

 

Example 2: 

Is an equivalence relation 

 

Equality of subsets on a universal set is an equivalence relation. 

Example 3: 

Let 

 

 
 

 

Now,  is divisible by 3. Therefore,

(reflexive) 

For any  

Let  is divisible by 3 we have is also divisible by 3. 

(symmetric) 

Let 



 

 

 

 

 

is divisible by 3 and is divisible by 3. 

 

) +  ) is divisible by 3. 

 

is divisible by 3. 

 

Therefore (Transitive) 

Therefore, R is an equivalence relation on X. 

 

EQUIVALENCE CLASSES 

Definition: 

Let R be an equivalence relation on a set X. For any  the set given by 

 

 

is called an R-equivalence class generated by  

Therefore, an equivalence class  of  is the set of all elements which are related to x 

by an equivalence relation R on X. 

Example: 

Let Z be the set of all integers and R be the relation called “congruence modulo 4” defined by 

 

 
Now, we determine the equivalence classes generated by R. 

 

 
 

 
 

 
 

 

Note that 

(or ) 



 

 

 

 
 

Therefore 

 

In a similar manner, we get the equivalence classed generated by the relation 

“congruence modulo m” for any integer m. 

Therefore, an equivalence relation R on X, will divide the set X into an 

Equivalence classes, and they are called portion of X. 

 

 

PARTIAL ORDERED RELATION 

A relation R on a set X is said to be a partial ordered relation, if R satisfies reflexive, 

antisymmetric, and transitive. 

Example: 

Let  be the power set of a set A. 

Define a subset relation  on , then is a partial ordered relation. 

Usually, we denote the partial ordered relations as is said to be partially ordered set (or) 

poset, which is denoted by . We will study more about posets in the subsequent sections. 

1. Closures of a relation 

Let R be a relation on the set X. 

2. Reflexive closure 

We have the relation R is reflexive if and only if the relation. 

 

 is contained in R. 

i.e., R is reflexive  

Definition: 

 

Let R be a relation on X, then the smallest reflexive relation on X, containing R, is called reflexive 

closure of R. 



 

 

Therefore  is the reflexive closure of R. 

 

3. Symmetric closure 

We have, the relation R is symmetric if  

 

 

Definition: 

Let R be a relation X, then smallest symmetric relation on X, containing R, is called the 

symmetric closure of R. 

Therefore  is the symmetric of R. 

4. Transitive closure 

We have, the relation R is transitive, if then 

 

 

Definition: 

A relation  is said to be the transitive closure of the relation R on X if is the smallest 

transitive relation on X, containing R, 

i.e.,  is the transitive closure of R, if 

 

 

Remarks: 

1. The transitive closure of R can be obtained by 

. 

I

. 

  

II

. 

Is transitive on X 

III

. 

There is no transitive relation on X, such 

that  



 

 

 

 

 

 

 

 

 

2. We know that  if and only if there is an element y such that and . 

 

Therefore, if and only if we can find a sequence in X 

such that  are all in R. 

 

The sequence is said to be a chain of length n from a to 

b in R. Here are called interval vertices of the chain in R. Note that 

the interval vertices need not be distinct. 

 

PROBLEMS 

1.If ,  

Find(i)  (ii) domains of and(iii)ranges of . 

Solution: 

 

 
 

 
 

 
 

 
 

Domain of  

Domain of 

Domain of  

Range of 



 

 

Range of  

Range of 

It is clear that  

 

and 

 

 
 

In general, and . 

2.Let and  

 

  

. Find and  

Solution: 

Given that and 

 

 
 

 

Remarks: 

 

 
 

 
 

 
 

 

3.Let and  , where . Find 

the range of S and T, find  and 

 

Solution



 

 

    
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

(Now and 

 

 

 

 

and 

 

) 

 

 
 

4. Given an example which is neither reflexive nor irreflexive? 

 

Solution: 

Let and 

 

 

Then R is not reflexive, since ,for and R is not irreflexive, since 

,and . 



 

 

 

 

 

5. Test whether the following relations are transitive or not on 

 

 
 

 
 

 

. 

Solution: The relation R and T are transitive. 

 

Since, in R, we have , then check any other pair starting with ,then we 

must have  i.e.,  but there is no pair staring 

with 1. So, pass onto next pair then we check any other pair starting with 2, and so 

on. 

In T, we have  , then there are two pairsand  must be the transitive of , the 

new must have         and  in T. Then pass to the transitive 

pairs are  and then we must have the pairs 

In T. 

 

Then pass to ,find the transitive pairs of  and soon, for all pairs in 

T. Hence T is a transitive relation. 

 

The relation S is not transitive, since for , the transitive pairs are  and

 then we must  and  in S but  . 

6. Let R denotes a relation on the set of pairs of positive  integers such that

if and only if . Show that R is an equivalence relation. 

Solution: 

Let 

 

 



 

 

Now R is a relation defined on P as 

 

for 

 

Let and  

I. R is reflexive: 

We have 

 

 

 

 

 

(RHS) is true. 



 

 

 

 

II. R is symmetric: 

Let  

 

  
 

  
 

 
 

III. R is transitive: 

Let and  

and 

 

and 

 

  
 

  
 

  
 

Therefore, R is reflexive, symmetric, and transitive. Hence R is an 

equivalence relation. 

7. Let R and S are equivalence relations on X, show that also equivalent? Whether is 

also an equivalence relation. If not give an example. 

 

 

 

Solution: 

Given let R and S are equivalence relations on X. 

 

Let and  

(i) We have and



 

 

Therefore is reflexive. 

(ii) Let and  

and  

 

 

Therefore is symmetric. 

(iii) Let and  

and  and  and  

and and and and

 

 

Therefore is transitive. 

 

Hence is equivalence. 

8. Prove that the relation “congruence modulo m” over the set of positive integers is an 

equivalence relation? 

Show also that if and then . 

Solution: 

Let N be the set of all positive integers we have “congruence modulo m” relation on N as 

 for  

Let 



 

 

 

 

 

(i)We have 

 

 

Therefore for  

“Congruence modulo m” is reflexive. (ii)Let 

 
 

 

, for some integer 

,for some integer  

 

“congruence modulo m” is symmetric on N. 

(iii) Let 

 

and  

, and for some integer 

 

 
 

for some integer 

 

 
 

“Congruence modulo m” is transitive on N. 

 

Hence “congruence modulo m” is an equivalence relation. Let 

and . 

Then and  

i.e., and  

Now 



 

 

 



 

 

 
 

 
 

 
 

9. Let  

 

and 

 

 

 
closure of R? 

 

Solution: 

be a relation defined on A. Find the transitive 

 

The matrix of the relation R is given by 

 

 



 

 

 

 

 

 
 

Hence  

 

 

ASSIGNMENT PROBLEMS 

Part -A 



 

  

 

1. If and 

be any relations on . Find 

. 

2. Give an example for reflexive, symmetric, transitive and irreflexive relations. 

3. Give an example of a relation which is neither reflexive nor irreflexive. 

4. Give an example of a relation which is neither symmetric nor 

antisymmetric? 

5. Find the graph of the relation 

 

 
 

 

 

6. Find the relation matrix of 

 

 

7. If and 

. Find , , , , 

 

and  

8. Define equivalence relation and equivalence classes? 

9. Define Poset? 

10. Define reflexive closure? 

11. Define transitive closure of the relation R? 

12. Let be a relation . Identify 

the root of the tree of R. 

13. Determine whether the relation R is a partial ordered on the set Z, where Z is set of positive 

integers, and aRb if and only if a=2b. 

14.  The following relations are on . Let R be a relation, xRy if and only if , 



 

  

and let S be a relation, xSy if and only if . Find and  

15. True or False: The relation on is not a partial order since it is not reflexive. 

Part B 

1. Show that the intersection of equivalence relations is an equivalence relation. 

2. Determine whether the relations represented by the following zero-one matrices are 

equivalence relations. 

 

 

 
 

3. If R and S are symmetric, show that and are symmetric. 

4. Let L be set of all straight lines in the Euclidean plane and R be the relation in L defined 

by is perpendicular to  Is R is Reflexive? Symmetric? Antisymmetric? 

Transitive? 

5. Consider the subsets , and  where 

 is a universal set. List the non-empty min sets generated by A, B 

and C. Do they form a partition on E? 

6. Let and be a 

relation on X. Show that R is an equivalent relation and find the partition of X induced 

by R. 

7. If R is an equivalence relation on an arbitrary set A. Prove that the set of all equivalence 

classes constitute a partition on A. 

8. Given the relation matrix and . Explain how to find , and 

 

 

9. Let A be a set of books. Let R be a relation on A such that if ‘book a’ with 



 

  

cost more and contains fever pages then ‘book b’. In general, is R reflexive? 

Symmetric? Antisymmetric? Transitive? 

10. Let R be a binary relation on the set of all positive integers such that 

 Is R reflexive? Symmetric? Antisymmetric? Transitive? An 

equivalence relation? 



 

 

 

 

 

HASSE DIAGRAM 

A partial ordering on a finite set P can be represented in a plane by means of a diagram called 

Hasse diagram or a partially ordered set set diagram of . If , then we place  above 

, and draw a line (edge) between them. The upward direction indicates success or and downward 

direction indicates the predecessor. And the incomparable elements are in the same horizontal 

line. 

w 

 

 

y 

 

 

x z 

 

 is immediate successor of (or)  is immediate predecessor of  is 

immediate predecessor of , and  and  are incomparable. 

 is predecessor of  but not immediate predecessor. 

PROBLEMS 

1.Let 

 

 
 

and be a relation such that if and only if 
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2.Let 

 

be the power set of 

 

 

 

Consider the inclusion  relation as the partial ordering on then the Hasse diagram 

of is 

                                                           {a,b,c} 

                                         

 

                                   {a,b}              {a,c}              {b,c} 

  

 

                                  {a}             {b}                    {c} 

 

 

 

 

 

 

3.Let us consider the set of all divisor of 24, then it is a poset which is denoted by 

 

 

That is and let the divisor relation be partial ordering. 
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FUNCTIONS 

A function in set theory world is simply a mapping of some (or all) elements from Set 

A to some (or all) elements in Set B. In the example above, the collection of all the 

possible elements in A is known as the domain; while the elements in A that act as 

inputs are specially named arguments. On the right, the collection of all possible 

outputs (also known as “range” in other branches), is referred to as the codomain; 

while the collection of actual output elements in B mapped from A is known as the 

image. 

Types of Functions 

 

1. Injective (One-to-One) Functions: A function in which one element of 

Domain Set is connected to one element of Co-Domain Set. 

 

 
 

 

2. Surjective (Onto)Functions: A function in which every element of Co-

Domain Set has one pre-image. 

 

Example: Consider, A = {1,2,3,4}, B= {a, b, c} and f= {(1,b),(2,a), (3, c), 

(4, c)}. 

 

It is a Surjective Function, as every element of B is the image of some A 

 

 
 

Note: In an Onto Function, Range is equal to Co-Domain. 

 

3. Bijective (One-to-One Onto) Functions: A function which is both injective (one-

to - one) and surjective(onto) is called bijective (One-to-One Onto) Function. 

 



 

 

 
 

Example: 

 

1. Consider P= {x, y, z} 

2. Q = {a, b, c} 

3. and f: P→Q such that 

4. f = {(x, a), (y, b), (z, c)} 

 

The f is a one-to-one function and also it is onto. So, it is a bijective function. 

 

4. Into Functions: A function in which there must be an element of co-domain Y does not 

have a pre-image in domain X. 

 

Example: 

 

1. Consider, A = {a, b, c} 

2. B= {1, 2,3,4} and f: A →B such that 3.

 f={(a,1), (b,2), (c,3)} 

4. In the function f, the range i.e., {1, 2, 3} ≠ co-domain of Y i.e., 

{1,2,3,4} 

 

Therefore, it is an into function 

 

 
 

 

5. One – One Into Functions: Let f: X→Y. The function f is called one-one into function 

if different elements of X have different unique images of Y. 

 

Example: 

 

1. Consider, X = {k, l, m} 

2. Y = {1, 2,3,4}and f: X →Y such that 

3. f={(k,1), (l, 3), (m,4)} 

 



 

 

The function f is a one-one into function 

 

 
 

 

6. Many – One Functions: Let f: X→Y. The function f is said to be many-one functions if 

there exist two or more than two different elements in X having the same image in Y. 

 

Example: 

 

1. Consider X = {1, 2, 3, 4,5} 

2. Y = {x, y, z}and f: X →Y such that3.

 F= {(1, x), (2, x), (3, x), (4, y), (5, z)} 

 

The function f is a many-one function 

 

 
Example1: Test whether the function f: R→R, f(x) = |x| +x is one-one onto function 

Solution: 

(1) Given f(x) = |x| +x 

f(3) = |3|+3=6 

f(-3) = |-3|+(-3)= 0f(2) = 

|2|+2= 4 

f(-2) = |-2|+(-2)= 0 

f(-3) = f(-2) =0 

0 has more than one pre-image. Thus f(x) is not 1-1function 

(2) The range of f is the set of non-negative real numbers. 

 f is not onto function 

 

Example2: Let S = {x, x2/x  N} and T={(x,2x)/x  N} where N 

= {1,2….}. Find the range of S and T. Find ST and ST Solution: 

S = {x, x2/x  N} 

S = {(1,1), (2,4), (3,9), (4,16), ………} 



 

 

T= {(x,2x)/ x  N} 

S = {(1,2), (2,4), (3,6), (4,8), ………} 

Range of S= {1, 4, 9, ………………………} 

Range of T = {1, 4, 6, 8, …………………..} 

ST= {(1,1), (2,4), (3,9), (4,16), (1,2), (3,6), (4,8), ………} 

ST= {(2,4)} 

Example3: If f: R→R, g: R→R are defined by f(x) = x2-2, g(x)= x+4, find (fog) and (gof) 

and check whether these functions are injective, surjective and bijective 

Solution: 

fog(x) = f[g(x)] = f(x+4) = (x+4)2-2=x2+8x+14-----------------(1) 

g o f(x) =g[f(x)] =g(x2-2) = x2+2---------------------------------(2) 

Given f: R→R g: R→R f(x) =x2-

2 

(1) f(1) =11-2=-1 

f (-1) = (-1)2-2=-1 

i.e., f(x1) = f(x2) does not imply x1= x2  

Hence f is not1-1function 

(2) Let f: R→R 

Let y  R. Suppose x R such that f(x) = y   

x2-2=y 

x2=y+2 

x=y+2 

f(y+2) = (y+2)2-2=y+2-2=y 

for any y  R There exist atleast one element y+2R such that f(y+2) = y 

 f is onto function g(x) = x+4 

(1) g(x1) =g(x2) 

x1+4=x2+4 

x1=x2 

gis1-1function 

(2) g: R→R 

Let y R. Suppose x  R such that f(x) =y x= y-

4 for any y  R 

There exist atleast one element y-4R such that g(y-4) 

=y 

 g is onto function 

As f is not1-1but onto, f is not bijective  

As g is1-1and onto, g is bijective 
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NUMERICAL METHODS FOR SOLVING EQUATIONS 

Numerical Solution of algebraic and transcendental equations: Regula Falsi method, Newton 

Raphson method - Numerical Solution of simultaneous linear algebraic equations: Gauss 

Jordan method, Gauss Jacobi method, Gauss Seidel method. 

 

INTRODUCTION 

Solution of Algebraic and Transcendental Equations 

A polynomial equation of the form 

 

is called an Algebraic equation. For example, 

 are algebraic equations. 

An equation which contains polynomials, trigonometric functions, logarithmic functions, 

exponential functions etc., is called a Transcendental equation. For example, 

 

are transcendental equations. 

Finding the roots or zeros of an equation of the form f(x) = 0 is an important problem in science 

and engineering. We assume that f (x) is continuous in the required interval. A root of an 

equation f (x) = 0 is the value of x, say x = α for which f (α) = 0. Geometrically, a root of an 

equation f (x) = 0 is the value of x at which the graph of the equation y = f (x) intersects the x – 

axis (see Fig. 1) 

 

A number α is a simple root of f (x) = 0; if f (α) = 0 and f  (α) ≠ 0. Then, we can write 

f (x) as, f (x) = (x – α) g(x), g(α) ≠0. 

A number α is a multiple root of multiplicity m of f (x) = 0,  



 

 

 

A polynomial equation of degree n will have exactly n roots, real or complex, simple or 

multiple. A transcendental equation may have one root or no root or infinite number of roots 

depending on the form of f (x). 

The methods of finding the roots of f (x) = 0 are classified as, 

1. Direct Methods 

2. Numerical Methods. 

Direct methods give the exact values of all the roots in a finite number of steps. Numerical 

methods are based on the idea of successive approximations. In these methods, we start with 

one or two initial approximations to the root and obtain a sequence of approximations x0, x1, 

… xk which in the limit as k →∞ converge to the exact root x = a. There are no direct methods 

for solving higher degree algebraic equations or transcendental equations. Such equations can 

be solved by Numerical methods. In these methods, we first find an interval in which the root 

lies. If a and b are two numbers such that f (a) and f (b) have opposite signs, then a root of f (x) 

= 0 lies in between a and b. We take a or b or any valve in between a or b as first approximation 

x1. This is further improved by numerical methods. Here we discuss few important Numerical 

methods to find a root of f (x) = 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

REGULA FALSI METHOD 

This is another method to find the roots of f (x) = 0. This method is also known as Regular 

False Method. In this method, we choose two points a and b such that f (a) and f (b) are of 

opposite signs. Hence a root lies in between these points. The equation of the chord joining the 

two points. 



 

 

 



 

 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NEWTON RAPHSON METHOD



 

 

 

 

 

 

Example 1 

Using Newton-Raphson method (a) Find square root of a number (b) Find a reciprocal 



 

 

of a number. 

  

Solution 

(a) Let n be the number and x = √𝑛 x2 = n 

If f (x) = x2 – n = 0 …..(1) 

Then the solution to f (x) = x2 – n = 0 is x =√𝑛 

f 1(x) = 2x 

by Newton Raphson method 

 

using the above formula the square root of any number ‘n’ can be found to required 

accuracy. 

(b) To find the reciprocal of a number ‘n’ 

f (x) = 
1

𝑥
 - n = 0    …..(1) 

  solution of (1) is x = 
1

𝑛
 

f 1(x) = –
1

𝑥2 

Now by Newton-Raphson method,  

 

 

Using the above formula, the reciprocal of a number can be found to required accuracy. 

Example 2 

Find the reciprocal of 18 using Newton–Raphson method. 

Solution 

The Newton-Raphson method 



 

 

xi+1 = xi (2 – xi n)      …..(1) 

considering the initial approximate value of x as x0 = 0.055 and given n = 18 

 

 x1 = 0.055 [2 – (0.055) (18)] 

 x1 = 0.0555 

x2 = 0.0555 [2 – 0.0555 × 18] 

x2 = (0.0555) (1.001) 

x2= 0.0555 

Hence x1 = x2 = 0.0555 

 The reciprocal of 18 is 0.0555. 

Example 3 

Find a real root for x tan x +1 = 0 using Newton–Raphson method 

Solution 

Given f (x) = x tan x + 1 = 0 

f 1 (x) = x sec2 x + tan x 

f (2) = 2 tan 2 + 1 = – 3.370079 < 0 

f (3) = 2 tan 3 + 1 = – 0.572370 > 0 

 The root lies between 2 and 3 

Take x0 =
2+3

2
= 2.5   (average of 2 and 3), By Newton-Raphson method 

 



 

 

 

Example 4 

Find a root of ex sin x = 1 using Newton–Raphson method 

Solution 

Given f (x) = ex sin x – 1 = 0 

f 1 (x) = ex sin x + ex cos x 

Take x1 = 0, x2 = 1 

f (0) = f (x1) = e0 sin 0 – 1 = –1 < 0 

f (1) = f (x2) = e1 sin (1) – 1 = 1.287 > 0 

The root of the equation lies between 0 and 1. Using Newton Raphson Method 

 



 

 

 

 

GAUSS ELIMINATION METHOD 

This is the elementary elimination method and it reduces the system of equations to an 

equivalent upper – triangular system, which can be solved by back substitution.  

 We consider the system of n linear equations in n unknowns  

   a11x1 +a12x2 + …. + a1nxn = b1  

   a21x1 +a22x2 + …. + a2nxn = b2 

   ⁞ 

   an1x1 +an2x2 + …. + annxn = bn 

There are two steps in the solution viz., the elimination of unknowns and back substitution. 

 

Example 1 

Solve the following system of equations using Gaussian elimination. 

x1 + 3x2 − 5x3 = 2  

3x1 + 11x2 − 9x3 = 4 



 

 

 −x1 + x2 + 6x3 = 5  

Solution  

An augmented matrix is given by 

 

We use the boxed element to eliminate any non-zeros below it.  

This involves the following row operations 

 

 And the next step is to use the 2 to eliminate the non-zero below it. This requires the final row 

operation 

 

This is the augmented form for an upper triangular system, writing the system in extended form 

we 

 

This gives x3 = -1; x2 = 2; x1 = -9. 

 

Example 2 

Solve the system of equations 

2x + 4y +6z = 22 

3x + 8y + 5x = 27 

-x + y +2z = 2 

Solution 

[
2 4 6 
3 8 5  

−1 1 2
 
22
27
2

]  

𝑹𝟏 ‘= 𝟏/𝟐𝑹1 



 

 

[
1 2 3 
3 8 5  

−1 1 2
 
11
27
2

]  

𝑹𝟐’ = 𝑹𝟐 – 𝟑𝑹1 ; 𝑹𝟑’ = 𝑹𝟑 + 𝑹1 

[
1 2 3 
0 2 −4  
0 3 5

 
11
−6
13

]  

𝑹𝟐’ = 𝟏/𝟐𝑹2 ; 𝑹𝟏’ = 𝑹𝟏 – 𝟐𝑹2 ; 𝑹𝟑’ = 𝑹𝟑 − 𝟑𝑹𝟐 

[
1 0 7 
0 1 −2  
0 0 11

 
17
−3
22

]  

𝑹𝟑’ = 𝟏/𝟏𝟏𝑹1 ; 𝑹𝟏’ = 𝑹𝟏 – 𝟕𝑹3 ; 𝑹𝟏’ = 𝑹𝟏 – 𝟕𝑹3 ; 𝑹𝟐’ = 𝑹𝟐 + 𝟐𝑹3 

[
1 0 0 
0 1 0  
0 0 1

 
3
1
2

]   

Thus, the solution to the system is x = 3, y = 1, z = 2. 

ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS  

As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, 

a solution is obtained after a single application of Gaussian elimination. Once a “solution” has 

been obtained, Gaussian elimination offers no method of refinement. The lack of refinements 

can be a problem because, as the previous section shows, Gaussian elimination is sensitive to 

rounding error. Numerical techniques more commonly involve an iterative method. For 

example, in calculus you probably studied Newton’s iterative method for approximating the 

zeros of a differentiable function. In this section you will look at two iterative methods for 

approximating the solution of a system of n linear equations in n variables. 

The Jacobi Method The first iterative technique is called the Jacobi method, after Carl Gustav 

Jacob Jacobi (1804–1851). This method makes two assumptions: (1) that the system given by 

a11x1 +a12x2 + …. + a1nxn = b1  

   a21x1 +a22x2 + …. + a2nxn = b2 

   ⁞ 

   an1x1 +an2x2 + …. + annxn = bn 

 has a unique solution and (2) that the coefficient matrix A has no zeros on its main diagonal. 

If any of the diagonal entries are zero, then rows or columns must be interchanged to obtain a 

coefficient matrix that has nonzero entries on the main diagonal. A matrix A is diagonally 

dominated if, in each row, the absolute value of the entry on the diagonal is greater than the 

sum of the absolute values of the other entries. More compactly, A is diagonally dominated if 



 

 

  

To begin the Jacobi method, solve the first equation for the second equation for and so on, as 

follows 

x1  = 1/ a11[b1 - a12x2 - … - a1nxn] 

   x2  =1/ a22[ b2 - a21x1 - … - a2nxn] 

   ⁞ 

   xn =1/ann[ bn - an1x1 - an2x2 - …] 

Then make an initial approximation of the solution, Initial approximation and substitute these 

values of into the right-hand side of the rewritten equations to obtain the first approximation. 

After this procedure has been completed, one iteration has been performed. In the same way, 

the second approximation is formed by substituting the first approximation’s x-values into the 

right-hand side of the rewritten equations. By repeated iterations, you will form a sequence of 

approximations that often converges to the actual solution.  

GAUSS JACOBI METHOD 

Example  

Use the Jacobi method to approximate the solution of the following system of linear equations. 

 

 

Solution  

To begin, write the system in the form 

 

Let x1 = 0, x2 = 0, x3 = 0 

as a convenient initial approximation. So, the first approximation is 

 

Continuing this procedure, you obtain the sequence of approximations shown in Table 



 

 

n 0 1 2 3 4 5 6 7 

x1 0.000 -0.200 0.146 0.192 0.181 0.185 0.186 0.186 

x2 0.000 0.222 0.203 0.328 0.332 0.329 0.331 0.331 

x3 0.000 -0.429 -0.517 -0.416 -0.421 -0.424 -0.423 -0.423 

Because the last two columns in the above table are identical, you can conclude that to three 

significant digits the solution is x1= 0.186 , x2 = 0.331 , x3 = -0.423. 

 

GAUSS SEIDEL METHOD 

Intuitively, the Gauss-Seidel method seems more natural than the Jacobi method. If the solution 

is converging and updated information is available for some of the variables, surely it makes 

sense to use that information! From a programming point of view, the Gauss-Seidel method is 

definitely more convenient, since the old value of a variable can be overwritten as soon as a 

new value becomes available. With the Jacobi method, the values of all variables from the 

previous iteration need to be retained throughout the current iteration, which means that twice 

as much as storage is needed. On the other hand, the Jacobi method is perfectly suited to parallel 

computation, whereas the Gauss-Seidel method is not. Because the Jacobi method updates or 

‘displaces’ all of the variables at the same time (at the end of each iteration) it is often called 

the method of simultaneous displacements. The Gauss-Seidel method updates the variables one 

by one (during each iteration) so its corresponding name is the method of successive 

displacements. 

Example  

 Solve the following system of equations by Gauss – Seidel method  

28x +4y –z = 32 

x + 3y + 10z = 24 

2x + 17y + 4z = 35 

Solution 

Since the diagonal element in given system are not dominant, we rearrange the equation as 

follows 

28x +4y – z = 32 

2x + 17y + 4z = 35 

x + 3y + 10z = 24 

Hence  

x =1/28[32 – 4y +z] 

y = 1/17[35-2x -4z] 



 

 

z = 1/10[24 –x – 3y] 

Setting y = 0 and z = 0, we get, 

First iteration 

x(1) = 1/28 [ 32- 4(0) +(0)] = 1.1429 

y(1) = 1/17 [ 35 – 2(1.1429) -4(0)] =  1.9244 

z(1) = 1/10 [ 24 – 1.1429 – 3(1.9244)] = 1.8084 

Second Iteration 

x(2) = 1/28 [ 32- 4(1.9244) +(1.8084)] = 0.9325 

y(2) = 1/17 [ 35 – 2(0.9325) -4(1.8084) ] =  1.5236 

z(2) = 1/10 [ 24 – 0.9325 – 3(1.5236)] = 1.8497 

Third Iteration 

x(3) = 1/28 [ 32- 4(1.5236) +(1.8497)] = 0.9913 

y(3) = 1/17 [ 35 – 2(0.9913) -4(1.8497)] =  1.5070 

z(3) = 1/10 [ 24 –0.9913– 3(1.5070)] = 1.8488 

Fourth Iteration 

x(4) = 1/28 [ 32- 4(1.5070 ) +(1.8488)] = 0.9936 

y(4) = 1/17 [ 35 – 2(0.9936) -4(1.8488)] = 1.5069 

z(4) = 1/10 [ 24 – 0.9936 – 3(1.5069)] = 1.8486 

Fifth Iteration 

x(5) = 1/28 [ 32- 4(1.5069) +(1.8486)] =  0.9936 

y(5) = 1/17 [ 35 – 2(0.9936) -4(1.8486)] =  1.5069 

z(5) = 1/10 [ 24 –  0.9936 – 3(1.5069)] =1.8486 

Since the values of x, y, z are the same in the 4th and 5th Iteration, we stop the procedure here. 

Hence x = 0.9936, y = 1.5069, z = 1.8486. 
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UNIT – II – NUMERICAL  

INTERPOLATION, DIFFERENTIATION  

AND INTEGRATION – SMTA1208 



 

 

 

 

NUMERICAL INTERPOLATION, DIFFERENTIATION AND 

INTEGRATION 

Interpolation: Newton’s forward and backward difference interpolation formula (equal 

interval) -Lagrange’s interpolation formula (unequal interval). Numerical Differentiation - 

Newton’s forward and backward difference interpolation formula (equal interval). Numerical 

Integration: Trapezoidal rule, Simpson’s 1/3rd and 3/8 th rule. 

 

Interpolation 

The process of computing intermediate values of (𝑥0, 𝑥𝑛)  for a function 𝑦(𝑥) from a given set 

of values of a function 

Gregory-Newton’s forward interpolation formula  

2 3 4

0 0 0 0
0

0

( ) ( 1) ( 1)( 2) ( 1)( 2)( 3) ( )
1 2 6 24

1
( )

y y y y
y x y u u u u u u u u u u a

where u x x
h

   
= + + − + − − + − − − + − − −

= −

 

Gregory-Newton’s backward interpolation formula  

2 3 4

( ) ( 1) ( 1)( 2) ( 1)( 2)( 3) ( )
1 2 6 24

1
( )

n n n n
n

n

y y y y
y x y v v v v v v v v v v b

where v x x
h

   
= + + + + + + + + + + + − − −

= −

 

Remark: 

(i) The process of finding the values of  𝑦(𝑥𝑖)  outside the interval (𝑥0, 𝑥𝑛)  is called 

extrapolation 

(ii) The interpolating polynomial is a function 𝑝𝑛(𝑥) through the data points 𝑦𝑖 =

𝑓(𝑥𝑖) = 𝑃𝑛(𝑥𝑖)  i = 0,12,..n 

(iii) Gregory-Newton’s forward interpolation formula (a) can be applicable if the 

interval difference ℎ is constant and used to interpolate the value of y(xi)  nearer to 

beginning value x0 of the data set 

(iv) If 𝑦 = 𝑓(𝑥)is the exact curve and 𝑦 = 𝑝𝑛(𝑥) is the interpolating polynomial then 

the Error in polynomial interpolation is 𝑦(𝑥) − 𝑝𝑛(𝑥)  given by

1 ( 1)

0 1 0 0

( )
( )( ) ( ): , ( )

( 1)!

n n

n n n

h y c
Error x x x x x x x x x x c x c

n

+ +

= − − − − −     − − −
+

 



 

 

(v) Error in Newton’s forward  interpolation is 

1 ( 1)

0 0

( )
( 1)( 2) ( ): , ( )

( 1)!

n n

n n

h y c
Error u u u u n x x x x c x d

n

+ +

= − − − − −     − − − −
+

 

(vi) Error in Newton’s backward  interpolation is 

1 ( 1)

0 0

( )
( 1)( 2) ( ): , ( )

( 1)!

n n

n n

h y c
Error v v v v n x x x x c x e

n

+ +

= + + − − +     − − − −
+

 

 

Problem1: Estimate 𝜃   at 𝑥 = 43 & 𝑥 = 84    from the following table .also find 𝑦(𝑥) 

𝑥 40 50 60 70 80 90 

𝜃 184 204 226 250 276 304 

Solution: Here all the intervals are equal with h=x1-x0=10 we apply Newton interpolation 

Difference Table:  

𝑥 𝜃 = 𝑦 ∆𝑦 ∆2𝑦 ∆3𝑦 ∆4𝑦 ∆5𝑦 

40 
0184 y=  1 0 020y y y− = =       

50 
1204 y=  2 1 122y y y− = =   2

02 y=   3

00 y=     

60 
2226 y=  3 2 224y y y− = =   2

12 y=   3

10 y=   4

00 y=   50 ny=   

70 
3250 y=  4 3 326y y y− = =   2

22 y=   30 ny=   40 ny=    

80 
4276 y=  1 20.18n n ny y y−− = =   22 ny=      

90 304 ny=       

 

Case (i): to find the value of 𝜃  at 𝑥 = 43  

Since 𝑥 = 43 is nearer to 𝑥0 we apply Newton’s forward Interpolation 

2 3 4

0 0 0 0
0

0

( ) ( 1) ( 1)( 2) ( 1)( 2)( 3) (1)
1 2 6 24

1 1 3
( ) (43 40) 0.3 1 0.7, 2 1.7, 3 2.7 (2)

10 10

y y y y
y x y u u u u u u u u u u

where u x x u u u
h

   
= + + − + − − + − − − + − − −

= − = − = =  − = − − = − − = − − − −

 

Substituting (2) in (1), we get 
20 3 2 3 7 18979

( 43) 184 ( ) ( )( ) 0 189.79
1 10 2 10 10 10

y x
−

= = + + + = =  

Case (ii): to find the value of 𝜃  at 𝑥 = 84  

Since 𝑥 = 84 is nearer to 𝑥𝑛 we apply Newton’s backward Interpolation 



 

 

2 3 4

( ) ( 1) ( 1)( 2) ( 1)( 2)( 3) (3)
1 2 6 24

1 1 6 4 14 24
( ) (84 90) 1 , 2 , 3 (4)

10 10 10 10 10

n n n n
n

n

y y y y
y x y v v v v v v v v v v

where v x x v v v
h

   
= + + + + + + + + + + + − − −

−
= − = − =  + = + = + = − − −

 

Substituting (4) in (3), we get 
28 6 2 6 4 7174

( 84) 304 ( ) ( )( ) 0 286.96
1 10 2 10 10 25

y x
− −

= = + + + = =  

To find polynomial 𝑦(𝑥), from (1) we get 

2 3 4

0 0 0 0
0

1

0

( ) ( 1) ( 1)( 2) ( 1)( 2)( 3) (1)
1 2 6 24

1 1 1 1 1
( ) ( 40) 1 ( 50), 2 ( 60), 3 ( 60) (2)

10 10 10 10

y y y y
y x y u u u u u u u u u u

where u x x x u x u x u x
h

   
= + + − + − − + − − − + − − −

= − = −  − = − − = − − = − − − −

 

Substituting (4) in (3), we get 

2

2

20 1 2 1 1 1
( ) 184 ( 40) ( 40) ( 50) 0 184 2 80 ( 90 2000)

1 10 2 10 10 100

1
( ) ( 110 12400) (5)

100

y x x x x x x x

y x x x

= + − + − − + = + − + − +

 = + + − − − − − − − − − −

 

To Estimate 𝜃   at 𝑥 = 43 & 𝑥 = 84   , put  𝑥 = 43 & 𝑥 = 84  in (5), we get  

1 1
(43) (18979) 189.79 (84) (28696) 286.96

100 100
y and y= = = =  

Problem2: Estimate the number of students whose weight is between 60 lbs and 70 lbs from 

the following data 

Weight(lbs) 0-40 40-60 60-80 80-100 100-120 

No. Students 250 120 100 70 50 

Solution: let  𝑥-Weight less than 40 lbs, 𝑦-Number of Students, ⇒ 𝑥0 = 40, 𝑥1 = 60, 𝑥2 =

80, 𝑥3 = 100, 𝑥𝑛 = 120, Here all the intervals are equal with h=x1-x0=20 we apply Newton 

interpolation 

Difference Table:  

 

 

𝑥 𝑦 ∆𝑦 ∆2𝑦 ∆3𝑦 ∆4𝑦 

40 
0250 y=  1 0 0120y y y− = =      

60 
1370 y=  2 1 1100y y y− = =   2

020 y− =   3

010 y− =    

80 
2470 y=  3 2 270y y y− = =   2

130 y− =   210 ny=   4 4

020 ny y=  =   



 

 

100 
3540 y=  1 50n n ny y y−− = =   220 ny− =     

120 590 ny=      

Case (i): to find the number of students  𝑦 whose weight less than 60 lbs (𝑥 = 60)  

From the difference table the number of students  𝑦 whose weight less than 60 lbs (𝑥 = 60) =

370 

Case (ii): to find the number of students  𝑦 whose weight less than 70 lbs (𝑥 = 70)  

Since 𝑥 = 70 is nearer to 𝑥0 we apply Newton’s forward Interpolation 

2 3 4

0 0 0 0
0

0

( ) ( 1) ( 1)( 2) ( 1)( 2)( 3) (1)
1 2 6 24

1 1 3 3 2 1 3
( ) (70 40) 1 , 2 , 2 , 3 (2)

20 2 2 2 2 2

y y y y
y x y u u u u u u u u u u

where u x x u u u u
h

   
= + + − + − − + − − − + − − − −

− −
= − = − =  − = − = − = − = − − − − −

Substituting (2) in (1), we get 

120 3 20 3 1 10 3 1 1 20 3 1 1 3
( 70) 250 ( ) ( )( ) ( )( )( ) ( )( )( )( ) 423.59

1 2 2 2 2 6 2 2 2 24 2 2 2 2
y x

− − − − −
= = + + + + =  

The number of students  𝑦 whose weight less than 70 lbs (𝑥 = 70) =424 

Number of students whose weight is between 60 lbs and 70 lbs = 
 

{
The number of students  𝑦

whose weight less than 70 lbs
} − {

The number of students  𝑦 
whose weight less than 60 lbs

}  = 424-370 = 54 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Lagrange’s interpolation formula for Unequal intervals 

1 2 0 2
0 1

0 1 0 2 0 1 0 1 2 1

0 1 0 1 1
2

2 0 2 1 2 0 1 1

( )( ) ( ) ( )( ) ( )
( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

n n

n n

n n
n

n n n n n

x x x x x x x x x x x x
y x y y

x x x x x x x x x x x x

x x x x x x x x x x x x
y y

x x x x x x x x x x x x

−

−

− − − − − − − − − −
= +

− − − − − − − − − −

− − − − − − − − − −
+ + − − − +

− − − − − − − − − −

 

Problem 3: Determine the value of 𝑦(1) from the following data using Lagrange’s 

Interpolation 

𝑥 -1 0 2 3 

𝑦 -8 3 1 12 

Solution: given 

𝑥 
0 1x = −  1 0x =  2 3x =  3nx =  

𝑦 
0 8y = −  1 3y =  2 1y =  12ny =  

Since the intervals ere not uniform we cannot apply Newton’s interpolation. 

 Hence by Lagrange’s interpolation for unequal intervals 

1 2 0 2
0 1

0 1 0 2 0 1 0 1 2 1

0 1 0 1 1
2

2 0 2 1 2 0 1 1

( )( )( ) ( )( )( )
( )

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

n n

n n

n n
n

n n n n n

x x x x x x x x x x x x
y x y y

x x x x x x x x x x x x

x x x x x x x x x x x x
y y

x x x x x x x x x x x x

−

−

− − − − − −
= +

− − − − − −

− − − − − −
+ +

− − − − − −

 

( 0)( 2)( 3) ( 1)( 2)( 3)
( ) ( 8) (3)

( 1 0)( 1 2)( 1 3) (0 1)(0 2)(0 3)

( 1)( 0)( 3) ( 1)( 0)( 2)
(1) (12) (1)

(2 1)(2 0)(2 3) (3 1)(3 0)(3 2)

x x x x x x
y x

x x x x x x

− − − + − −
= − +

− − − − − − + − −

+ − − + − −
+ + − − − −

+ − − + − −

 

To compute 𝑦(1) put 𝑥 = 1 in (1), we get 



 

 

(1 1)(1 2)(1 3)(1 0)(1 2)(1 3)
( 1) ( 8) (3)

( 1 0)( 1 2)( 1 3) (0 1)(0 2)(0 3)

(1 1)(1 0)(1 3) (1 1)(1 0)(1 2)
(1) (12)

(2 1)(2 0)(2 3) (3 1)(3 0)(3 2)

( 1) 2

y x

y x

+ − −− − −
= = − +

− − − − − − + − −

+ − − + − −
+ +

+ − − + − −

 = =

 

To find polynomial 𝑦(𝑥), from (1) we get 

3 2 3 2

3 2 3 2

3 2

3 2

2 1
( ) ( 5 6 ) ( 4 6)

3 2

1 1
( 2 3 ) ( 2 ) (1)

6 1

2 1 1 10 4 2 12 1 3 6
( ) ( 1) ( 1) ( 2) ( )

3 2 6 3 2 6 3 2 6 2

( ) 2 6 3 3 (2)

y x x x x x x x

x x x x x x

y x x x x

y x x x x

= − + + − + +

− − − + − − − − − −

− −
= + − + + + + − + + + − +

 = − + + − − − − −

 

To compute 𝑦(1) put 𝑥 = 1 in (2), we get ( 1) 2 6 3 3 2y x = = − + + =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inverse interpolation 

For a given set of values of 𝑥 and 𝑦, the process of finding 𝑥(𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡) given  

𝑦(𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡) is called Inverse interpolation  

1 2 0 2
0 1

0 1 0 2 0 1 0 1 2 1

0 1 0 1 1
2

2 0 2 1 2 0 1 1

( )( ) ( ) ( )( ) ( )
( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

n n

n n

n n
n

n n n n n

y y y y y y y y y y y y
x y x x

y y y y y y y y y y y y

y y y y y y y y y y y y
x x

y y y y y y y y y y y y

−

−

− − − − − − − − − −
= +

− − − − − − − − − −

− − − − − − − − − −
+ + − − − +

− − − − − − − − − −

 



 

 

Problem 4: Estimate the value of  𝑥  given  𝑦 = 100 from the following data,𝑦(3) = 6  𝑦(5) =

24 , 𝑦(7) = 58 , 𝑦(9) = 108  , 𝑦(11) = 174 

Solution: given 

𝑥 
0 3x =  1 5x =  2 7x =  3 9x =  11nx =  

𝑦 
0 6y =  1 24y =  2 58y =  3 108y =  174ny =  

By applying Lagrange’s inverse interpolation  

1 2 3 0 2 3
0 1

0 1 0 2 0 3 0 1 0 1 2 1 3 1

0 1 3 0 1 2
2

2 0 2 1 2 3 2 3 0

( )( )( )( ) ( )( )( )( )
( )

( )( )( )( ) ( )( )( )( )

( )( )( )( ) ( )( )( )( )

( )( )( )( ) (

n n

n n

n n

n

y y y y y y y y y y y y y y y y
x y x x

y x y y y y y y y y y y y y y y

y y y y y y y y y y y y y y y y
x

y y y y y y y y y y

− − − − − − − −
= +

− − − − − − − −

− − − − − − − −
+ +

− − − − −
3

3 1 3 2 3

0 1 2 1

0 1 2 1

)( )( )( )

( )( )( )( )

( )( )( )( )

(100 24)(100 58)(100 108)(100 174) (100 6)(100 58)(100 108)(100 174)
(100) (3)

(6 24)(6 58)(6 108)(6 174) (24 6)(24 58

n

n
n

n n n n n

x
y y y y y y

y y y y y y y y
x

y y y y y y y y

x

−

−

− − −

− − − −
+

− − − −

− − − − − − − −
 = +

− − − − − −
(5)

)(24 108)(24 174)

(100 6)(100 24)(100 108)(100 174) (100 6)(100 24)(100 58)(100 174)
(7) (9)

(58 6)(58 24)(58 108)(58 174) (108 6)(108 24)(108 58)(108 174)

(100 6)(100 24)(100 58)(100 108)

(174 6)(174 2

− −

− − − − − − − −
+ +

− − − − − − − −

− − − −
+

− −
(11)

4)(174 58)(174 108)

(100) 0.35344 1.51547 2.88703 7.06759 0.13686 8.65573x

− −

 = − + + − =

 

 

 

 

Numerical Differentiation 

The process of computing the derivatives of y at a given value of x using a set of given values 

of x and y is called Numerical differentiation. 

Newton’s forward formula for Derivatives 





2 3 4
' 2 3 20 0 0

0

3 42
'' 2 20 0

0 02 2

1
( ) (2 1) (3 6 2) (4 18 22 6)

2 6 24

1 1
( ) ( 1) (12 36 22) ( )

1 24

y y ydy
y x y u u u u u u

dx h

y yd y
y x y u u u where u x x

dx h h

   
= =  + − + − + + − + − + − − −



  
= =  + − + − + + − − − = −



 

Newton’s backward formula for Derivatives 





2 3 4
' 2 3 2

3 42
'' 2 2

2 2

1
( ) (2 1) (3 6 2) (4 18 22 6)

2 6 24

1 1
( ) ( 1) (12 36 22) ( )

1 24

n n n
n

n n
n n

y y ydy
y x y v v v v v v

dx h

y yd y
y x y v v v where v x x

dx h h

   
= =  + + + + + + + + + + − − −



  
= =  + + + + + + − − − = −



 



 

 

Problem 5: Find the rate of growth of population in the year 1941&1961 from the following 

table 

year 1931 1941 1951 1961 1971 

Population 40.62 60.80 79.95 103.56 132.65 

Solution: Here all the intervals are equal with h=x1-x0=10 we apply Newton interpolation 

Difference Table: let  𝑥-year,𝑦-Population 

𝑥 𝑦 ∆𝑦 ∆2𝑦 ∆3𝑦 ∆4𝑦 

1931 
040.62 y=  1 0 020.18y y y− = =      

1941 
160.80 y=  2 1 119.15y y y− = =   2

01.03 y− =   3

05.49 y=    

1951 
279.95 y=  3 2 223.61y y y− = =   2

14.46 y=   21.02 ny=   4 4

04.47 ny y− =  =   

1196 
3103.56 y=  1 20.18n n ny y y−− = =   25.48 ny=     

197

1 

132.65 ny=      

      

Case (i): to find rate of growth of population (
𝑑𝑦

𝑑𝑥
) in the year (𝑥 = 1941)  

Since 𝑥 = 1941 is nearer to 𝑥0 we apply Newton’s forwarded formula for derivative 


2 3 4

' 2 3 20 0 0
0

0

1
( ) (2 1) (3 6 2) (4 18 22 6)

2 6 24

1 1
( ) (1941 1931) 1

10

y y ydy
y x y u u u u u u

dx h

whereu x x
h

   
= =  + − + − + + − + − + − − −



= − = − =

 

' 1 1.03 5.49 4.47
( 1941) 20.18 (2 1) (3 6 2) (4 18 22 6)

10 2 6 24

dy
y x

dx

− −
 = = = + − + − + + − + − + − − −


 

The rate of growth of population (
𝑑𝑦

𝑑𝑥
) in the year (𝑥 = 1941)= 

'(1941) 2.36425y =  

 

Case (ii): to find rate of growth of population (
𝑑𝑦

𝑑𝑥
)in the year (𝑥 = 1961)  

Since 𝑥 = 1961 is nearer to 𝑥𝑛 we apply Newton’s backward formula for derivative 



 

 


2 3 4

' 2 3 21
( ) (2 1) (3 6 2) (4 18 22 6)

2 6 24

1 1
( ) (1961 1971) 1

10

n n n
n

n

y y ydy
y x y v v v v v v

dx h

v x x
h

   
= =  + + + + + + + + + + − − −



= − = − = −

 

' 1 5.48 1.02 4.47
( 1961) 29.09 ( 2 1) (3 6 2) ( 4 18 22 6)

10 2 6 24

dy
y x

dx

−
 = = = + − + + − + + − + − + + − − −


 

The rate of growth of population (
𝑑𝑦

𝑑𝑥
) in the year (𝑥 = 1961)= 

'(1961) 2.65525y =  

 

 

 

Problem 6 A rod is rotating in a plane, estimate the angular velocity and angular acceleration 

of the rod at time 6 secs from the following table 

Time-t(sec) 0 0.2 0.4 0.6 0.8 1.0 

Angle-θ(radians) 0 0.12 0.49 1.12 2.02 3.20 

Solution: Here all the intervals are equal with h=x1-x0=0.2 we apply Newton interpolation 

Difference Table: let  𝑥- time (sec),𝑦-Angle (radians) 

𝑥 𝑦 ∆𝑦 ∆2𝑦 ∆3𝑦 ∆4𝑦 

0 
00 y=  1 0 00.12y y y− = =      

 
10.12 y=  2 1 10.37y y y− = =   2

00.25 y=   3

00.01 y=    

 
20.49 y=  3 2 20.63y y y− = =   2

10.26 y=   3

10.01 y=   4

00 y=   

 
31.12 y=  4 3 30.90y y y− = =   2

20.27 y=   20.01 ny=   40 ny=   

 
42.02 y=  1 1.18n n ny y y−− = =   20.28 ny=     

 3.20 ny=      

Case (i): to find Angular velocity (
𝑑𝑦

𝑑𝑥
) in time (𝑥 = 0.6 𝑠𝑒𝑐)  

Since 𝑥 = 0.6 𝑠𝑒𝑐 is nearer to 𝑥𝑛 we apply Newton’s backward formula for derivative 



 

 


2 3 4

' 2 3 21
( ) (2 1) (3 6 2) (4 18 22 6)

2 6 24

1 1
( ) (0.6 1.0) 2

0.2

n n n
n

n

y y ydy
y x y v v v v v v

dx h

v x x
h

   
= =  + + + + + + + + + + − − −



= − = − = −

 

' 3 2

'

1 0.28 0.01 0
( 0.6) 1.18 ( 4 1) (12 12 2) (4 18 22 6)

0.2 2 6 24

( 0.6) 3.81665 / sec

dy
y x v v v

dx

Theangular velocity y x radian


= = = + − + + − + + + + + + − − −



 = =

 

Case (ii): to find Angular acceleration (
𝑑2𝑦

𝑑𝑥2) in time (𝑥 = 0.6 𝑠𝑒𝑐)  

Since 𝑥 = 0.6 𝑠𝑒𝑐 is nearer to 𝑥𝑛 we apply Newton’s backward formula for derivative 





3 42
'' 2 2

2 2

''

2

'' 2

1
( ) ( 1) (12 36 22)

1 24

1 1
( ) (0.6 1.0) 2

0.2

1 0.01
( 0.6) 0.28 ( 2 1) 0

0.2 1

(0.6) 6.75 / sec

n n
n

n

y yd y
y x y v v v

dx h

where v x x
h

y x

y radian

  
= =  + + + + + + − − −



= − = − = −


 = = + − + +



=

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Numerical Integration 

The process of evaluating an integral w.r.t x whose integrand is f(x) between the limits a and b 

using a given set of x and y values is called Numerical Integration. 

Trapezoidal rule 


0

0

0 1 2 3 4 0

1
( ) ( ) 2( ) ( ), int

2

x nh

n n

x

h
y x dx y y y y y y whereh x x n number of ervals

n

+

= + + + + + + −− = − −  

Simpson’s 1/3 rd rule 


0

0

0 2 4 6 1 3 5

0

( ) ( ) 2( ) 4( )
3

1
( ), int

x nh

n

x

n

h
y x dx y y y y y y y y

where h x x n number of ervals
n

+

= + + + + + − + + + + −−

= − −


 

Simpson’s 3/8 th rule 


0

0

0 3 6 9 1 2 4 5

0

3
( ) ( ) 2( ) 3( )

8

1
( ), int

x nh

n

x

n

h
y x dx y y y y y y y y y

where h x x n number of ervals
n

+

= + + + + + − + + + + + −−

= − −


 

Remarks: 

1) Geometrical interpretation of∫ 𝑦(𝑥)𝑑𝑥
𝑥𝑛

𝑥0
is approximated by the sum of area of the 

trapezium 

2) Simpson’s 1
3⁄  rule is applicable when number of intervals are multiples of 2 and 

Simpson’s 3 8⁄  rule is applicable when number of intervals are multiples of 3 

3) The error in trapezoidal rule is 
𝑏−𝑎

12
ℎ2𝑀  where 𝑀 = 𝑚𝑎𝑥{𝑦0

′′, 𝑦1
′′, … }which is of order 

ℎ2 



 

 

4) The error in  Simpson’s 1 3⁄  rule rule is 
𝑏−𝑎

180
ℎ4𝑀  where 𝑀 = 𝑚𝑎𝑥{𝑦0

′′′′, 𝑦2
′′′′, … }which 

is of order ℎ4 

    

Problem7: Evaluate 

6

2

1

1

1
dx

x+ using (i) Trapezoidal rule (ii) Simpson’s 1
3⁄  rule (iii) 

Simpson’s 3 8⁄  rule and Compare your answer with actual value. 

Solution: Given 
0

0

6

0 02 2

0

1 1
( ) ( ) , 0, 6 (1)

1 1

x nh

x

dx y x dx y x x x nh
x x

+

=  = = + = − − − −
+ +   

Choose the number of interval (n)=6  so that we can apply all rules 

x  
0 0x =  1 0 1x x h= + =  2 1 2x x h= + =  3 3x =  4 4x =  5 5x =  6nx =  

2

1
( )

1
y x

x
=

+
 

1

1
 

1

2
 

1

5
 

1

10
 

1

17
 

1

26
 

1

37
 

case(i) Trapezoidal rule 





0

0

0 1 2 3 4

6

2

0

( ) ( ) 2( )
2

1 1 1 1 1 1 1 1
(1 ) 2( ) 1.410799

1 2 37 2 5 10 17 26

x nh

n

x

h
y x dx y y y y y y

dx
x

+

= + + + + + + −−


 = + + + + + + =

+ 





 

Case (ii) Simpson’s 1 3⁄  rule 





0

0

0 2 4 6 1 3 5

6

2

0

( ) ( ) 2( ) 4( )
3

1 1 1 1 1 1 1 1
(1 ) 2( ) 4( ) 1.36617

1 3 37 5 17 2 10 26

x nh

n

x

h
y x dx y y y y y y y y

dx
x

+

= + + + + + − + + + + −−


= + + + + + + =

+ 





 

Case(iii) Simpson’s 3 8⁄  rule 



 

 





0

0

0 3 6 9 1 2 4 5

6

2

0

3
( ) ( ) 2( ) 3( )

8

1 3 1 1 1 1 1 1
(1 ) 2( ) 3( ) 1.35708

1 8 37 10 2 5 17 26

x nh

n

x

h
y x dx y y y y y y y y y

dx
x

+

= + + + + + − + + + + + −−


= + + + + + + =

+ 





 

Comparison  

Exact value 

6
6

1 1 1

2 0
0

1
tan ( ) tan (6) tan (0) 1.40565

1

x

x
dx x

x

=
− − −

=
 = = − = +  

Hence trapezoidal rule gives better approximation than Simpson’s rule. 

Problem 8: By dividing the range into 10 equal part Determine the value of  
0

sin x dx



 using (i) 

Trapezoidal rule (ii) Simpson’s 1 3⁄  rule (iii) Simpson’s 3 8⁄  rule and Compare your answer 

with actual value. 

Solution: Given 
0

0

0 0

0

sin ( ) ( ) sin , 0, 10 (1)

x nh

x

x dx y x dx y x x x x nh and n





+

=  = = + = = − − − −   

0

1 1
int ( ) 10, (1) ( ) ( 0)

10 10
ngiven number of ervals n h x x

n


=  = − = − =  

x  
0 0x =  

1 0
10

x x h


= + =  
2 1

2

10
x x h


= + =  

3

3

10
x


=  

4

4

10
x


=  

5

5

10
x


=  

6

6

10
x


=  

( ) sin( )y x x=  sin(0)

0=
 sin( )

10

0.30901



=

 

2
sin( )

10

0.58779



=

 

3
sin( )

10

0.80901



=

 

4
sin( )

10

0.95106



=

 

5
sin( )

10

1.0



=

 

6
sin( )

10

0.95106



=

 

x  
7

7

10
x


=  

8

8

10
x


=  

9

9

10
x


=  nx =     

( ) sin( )y x x=  7
sin( )

10

0.80902



=

 

8
sin( )

10

0.58779



=

 

9
sin( )

10

0.30902



=

 

10
sin( )

10

0



=

 

   

Case (i) Trapezoidal rule 



 

 



 

0

0

0 1 2 3 4

6

2

0

6

2

0

( ) ( ) 2( )
2

1 1
(0 0) 2(0.30901 0.58779 0.80901 0.95106 1.0 0.95106 0.80901 0.58779 0.30901)

1 2

1
1.98352

1

x nh

n

x

h
y x dx y y y y y y

dx
x

dx
x

+

= + + + + + + −−

 = + + + + + + + + + +
+

 =
+







 

Case (ii) Simpson’s 1 3⁄  rule 



 

0

0

0 2 4 6 1 3 5

6

0

6

0

( ) ( ) 2( ) 4( )
3

sin( ) (0 0) 2(0.58779 0.95106 0.95106 0.58779) 4(0.30901 0.80901 1.0 0.80901 0.30901
30

sin( ) 2.00010

x nh

n

x

h
y x dx y y y y y y y y

x dx

x dx



+

= + + + + + − + + + + −−

 = + + + + + + + + + +

 =







 

Case (iii) Simpson’s 3 8⁄  rule 


0

0

0 3 6 9 1 2 4 5

3
( ) ( ) 2( ) 3( )

8

sin 3

x nh

n

x

h
y x dx y y y y y y y y y

This rulecannot be applied ce n is not a multipoleof

+

= + + + + + − + + + + + −−  

Comparison  

Exact value    
0

0

sin( ) cos( ) cos( ) cos(0) 2.0
x

x
x dx x





=

=
= − = − − =  

Hence, Simpson’s 1 3⁄  rule gives better approximation than trapezoidal rule 

 


