SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES

Department of Mathematics

UNIT - — LOGIC — SMTA1208



Propositional Logic — Definition

LOGIC

A proposition is a collection of declarative statements that has either a truth value "true” or a
truth value "false”. A propositional consists of propositional variables and connectives. We
denote the propositional variables by capital letters (A, B, etc). The connectives connect the
propositional variables.

Some examples of Propositions are given below —

"Man is Mortal", it returns truth value “TRUE”

"12 +9 =3 —2", it returns truth value “FALSE” The following is not a Proposition

"Ais less than 2". It is because unless we give a specific value of A, we cannot say whether
the statement is true or false.

Connectives

In propositional logic generally we use five connectives which are — OR (V), AND (A), Negation/
NOT (=), Implication / if-then (—), If and only if («).

OR (V) : The OR operation of two propositions A and B (written as A v B) is true if at least any
of the propositional variable A or B is true.

The truth table is as follows —

A B AVB
True True True
True False True
False True True
False False False False Félakse

Faladse

AND (A) : The AND operation of two propositions A and B (written as A A B) is true if both the
propositional variable A and B is true.

The truth table is as follows —

A

B

A A B

True

True

False




True False False
False True False
False False True

Negation (=) :The negation of a proposition A (written as —=A) is false when A is true and is true

when A is false.

The truth table is as follows —

A -A
True False
False True

Implication / if-then (—): An implication A— B is False if A is true and B is false. The rest of
the cases are true.

The truth table is as follows —

A B A— B
True True True
True False False
False True True
False False True

If and only if (<) : A<B is bi-conditional logical connective which is true when p and q are
both false or both are true.

The truth table is as follows —

A B A—B

True True True




True False False

False True False

False False True
Tautologies

A Tautology is a formula which is always true for every value of its propositional variables.

Example — Prove [(A — B) A A] — B is a tautology

The truth table is as follows —

A B A—B (A—B)AA [(A— B)AA] — B
True True True True True
True False False False True
False True True False True
False False True False True

As we can see every value of [(A — B) A A] — B is “True”, it is a tautology.

Contradictions

A Contradiction is a formula which is always false for every value of its propositional variables.

Example — Prove (A Vv B) A [(=A) A (=B)] is a contradiction

The truth table is as follows —

A B AvB A -B (-A) A (=B) [(A V B) A [(=A) A (-B)]
True True True False False False False

True False True False True False False

False True True True False False |False

False False False True True True False

As we can see every value of (A vV B) A [(-A) A (—B)] is “False”, it is a
contradiction




Contingency
A Contingency is a formula which has both some true and some false values for every value of
its propositional variables.

Example — Prove (A vV B V) A (=A) a contingency

The truth table is as follows —

A B AV B -A (A VB)A(-A)
True True True False False
True False True False False
False True True True True
False False False True False

As we can see every value of (A V B) A (—A) has both “True” and “False”, it is a contingency.

Propositional Equivalences

Two statements X and Y are logically equivalent if any of the following two conditions —

o The truth tables of each statement have the same truth values.
« The bi-conditional statement X <Y is a tautology.

Example — Prove =(A v B) and [(-A) A (=B)] are equivalent

Testing by 1st method (Matching truth table)

A B AVB | -(AvB) |™A |[7B |[(-A)A (-B)]
True | True | True False False | False | False
True | False | True False False | True | False
False | True | True False True | False | False
False | False | False | True True | True | True

Here, we can see the truth values of = (A v B) and [(-=A) A (-B)] are same, hence the statements
are equivalent.



Testing by 2nd method (Bi-conditionality)

& B C(AVB)  [(-A) A (=B)] [~ (AVB)] & [(-A) A (-B)]
True True False False True
True False False False True
False True False False True
False False True True True

As [- (A V B)]  [(-A) A (=B)] is a tautology, the statements are equivalent.




EQUIVALENT LAWS

Equivalence Name of Identity
pAT =p Identity Laws
pvF=p
pANF =F Domination Laws
pvIl'=T
pAp=p Idempotent Laws
pVp=p
—(=p)=p Double Negation Law

PAG=qADp Commutative Laws

pPVg=qVp

PAGQ)AT=pA(qgAT)

Associative Laws

(

(pVg)Vr=pV(qVr)
PA(gVT)=(PANg)V(pAT) Ditributive Laws
pVigrar)=@VvVar(pVvr)

—(pANg)=-pVq
—(pVg)=-pANq

De Morgan’s Laws

pA(pVq) =p Absorption Laws
pV(pAg) =p
pA—p=F Negation Laws

Logical Equivalences involving Conditional Statements

p—>q=-pVvgq
pP—>q=—q—>—p
pVg=—p—gq
pAg=—(p——q)

Ap—=>q)=pA—g

(p—=qg)A(p—=r)=p—>(gAr)
(p—=rIAn(g—=r)=(pVg)—r
(p—=q)V(ip—=r)=p—=(gVr)

(p—=r)vig—=r)=(pag)—r

Logical Equivalences involving Biconditional Statements




p=g=(p—>q)Alg— p)
S Sl SR |
P<g=(pAg)VI{—pA—g)

pg)=p e —q

A conditional statement has two parts — Hypothesis and Conclusion.

Example of Conditional Statement — “If you do your homework, you will not be
punished.” Here, "you do your homework" is the hypothesis and "you will not be punished"
is the conclusion.

Inverse, Converse, andContra-positive

Inverse —An inverse of the conditional statement is the negation of both the hypothesis and
the conclusion. If the statement is “If p, then q”, the inverse will be “If not p, then not q”.
The inverse of “If you do your homework, you will not be punished” is “If you do not do

your homework, you will be punished.”

Converse —The converse of the conditional statement is computed by interchanging
the

hypothesis and the conclusion. If the statement is “If p, then q”, the inverse will be
chfq'

then p”. The converse of "If you do your homework, you will not be punished" is "If you
will

not be punished, you do not do your homework™.

Contra-positive —The contra-positive of the conditional is computed by interchanging the
hypothesis and the conclusion of the inverse statement. If the statement is “If p, then q”,

the inverse will be “If not g, then not p”. The Contra-positive of "If you do your homework,

you will not be punished” is "If you will be punished, you do your homework”.

Example:



Give the converse and the Contra positve of the implication * If it is raining then I get wet”.
Solution :

P :ltisraining Q:1get wet

Converse : 0 — P - I get wet, then it is raining,

Contrapositive : —=Q — =P : If [ do not get wet, then it is not raining

DUALITY PRINCIPLE
Duality principle set states that for any true statement, the dual statement obtained by
interchanging unions into intersections (and vice versa) and interchanging Universal set
into Null set (and vice versa) is also true. If dual of any statement is the statement itself, it
is  said self-dual statement.

Examples : i) The dual of ANB)UCIiIS(AUB)NC
ii) Thedual of PAQAFiSPVQVT

Example: 1
Construct a truth table for (p— g )— (g — p)

p q P=>q | 9q=>p | (p2q)>(qQ—>q)
T T T T T
T F F I 1
F T T F F
F F T I I




Example 2: Show that —(pv q) and —p A—q are logically equivalent

Solution : The truth tables for these compound proposition s as follows.

1 2 3 B 5 6 1 8
P Q| =P | -Q |PvQ -(PvQ) -PA=Q | 67
T T F F ) F F T
T F F T T F F T
F iy 1 F T F F T
F F T T F T T T

We can observe that the truth values of —(pV q) and — p A —q agree for all possible
combinations of the truth values of p and q.

Example 3: Show that p— q and —pwvq are logically equivalent.

Solution : The truth tables for these compound proposition as follows.

p q | -p [-pPva[p—q
T T F T T
T = F F F
F T T T T
F F T T T

As the truth values of p - q and —p v q are logically equivalent.
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Example 4 : Determine whether each of the following form 1s a
tautology or a contradiction or neither :

) (PAQ)—(PvQ)

) (PvQ)a(—=PA—-Q)
i) (-PA—-Q)—>(P—>Q)
1v) {P—)Q]n[P n—rQ}
v) [P:\[P—}—.Q}—}Q]

Solution:
1) The truth table for (pAg)—(pva)

P q png Pvq {pnq]—}{_qu_’}
T T T T T
T F F T T
F T F T T
F F F F T

Here all the entries in the last column are ‘T".
s (paq)—(pvq) is a tautology.



i1) The truth table for (pvq)a(—pa—q) is

1 2 3 4 5 6

P q pvgq | P =4 | =PA—-q | 30
T T T F F F F
T F T F T F F
F T T T F F F
F F F T T T F

The entries in the last column are *F°. Hence (pvg)a{—pAr—q) 1sa

contradiction.

111) The truth table 1s as follows.

p q —-p | =q | =pA—-q pP—q (-pA—-q)—=(p—q)
T T F F F T T
T F F T F F T
F T T F F T T
F F T T T T T

Here zall entries in last column are “T°.

o (—=pAa—q)—(p—>q) is a tautology.

1v) The truth table 1s as follows.

p | a|-a| pPr-a | P=>a | (posg)a(pa—a)
T T F F T F
T F T T F F
F T F F T F
F F T F T F

All the entries 1n the last column are “F°. Hence 1t 15 contradiction.
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v) The truth table for[pA(p— —q)—q]

p |l a| =9 P9 |palp=—q)]| lprlp==q)=+q]
T T F F F T
T F T T T F
F T F T F T
FlF| T T F T

The last entries are neither all “T" nor all *F".

[p Alp—>—q)— q] 15 a neither tautology nor contradiction. It 15 a
Contingency.

Example 5: Symbolize the following statement

Let p, q, r be the following statements:
p: I will study discrete mathematics
q: I will watch T.V.
r: Iamin a good mood.
Write the following statements in terms of p, q, r and logical connectives.
(1) If I do not study and I watch T.V., then I am in good mood.
(2) If I am in good mood, then I will study or I will watch T.V.
(3) If I am not in good mood, then I will not watch T.V. or I will study.
(4) I'will watch T.V. and I will not study if and only if I am in good mood.
Solution:
(1) (=prg)—>r
(2)r—(pva)
(3) =r—=(=kvp)
(4)(ar—p)er

Elementary Product: A product of the variables and their negations in a formula is called
an elementary product. If P and Q are any two atomic variables, then p, - p [1 q,

= q Op [0 = p are some examples of elementary products.

Elementary Sum: A sum of the variables and their negations in a formula is called an
elementary sum. If P and Q are any two atomic variables, then p, = p [ g, = q [J p are some
examples of elementary sums.

Normal Forms

We can convert any proposition in two normal forms —

13



1. Conjunctive normal form 2.Disjunctive normal form
Conjunctive Normal Form

A compound statement is in conjunctive normal form if it is obtained by operating AND
among variables (negation of variables included) connected with ORs.

Examples

e PUQNWQUR)
e (FPUQUSUAT)

Disjunctive Normal Form

A compound statement is in disjunctive normal form if it is obtained by operating OR
among variables (negation of variables included) connected with ANDs.

Examples

« PNQU@QNR)
« (-PNQNSN-T)

Predicate Logic deals with predicates, which are propositions containing variables.

Functionally Complete set

A set of logical operators is called functionally complete if every compound proposition is
logically equivalent to a compound proposition involving only this set of logical operators.
(1, (1, and =form a functionally complete set of operators.

Minterms: For two variables p and q there are 4 possible formulas which consist of
conjunctions of p,q or its negation given by p (g, p[J =g, ~pJgand ~p [J= ~q

Maxterms: For two variables p and q there are 4 possible formulas which consist of
disjunctions of p,q or its negation given by p (1 g, p[J =q, -plJgand =p[J =q

Principal Disjunctive Normal Form: For a given formula an equivalent formula
consisting of disjunctions of minterms only is known as principal disjunctive normal
form(PDNF)
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Principal Conjunctive Normal Form: For a given formula an equivalent formula
consisting of conjunctions of maxterms only is known as principal conjunctive normal
form(PCNF)

Obtain DNF of Qui{PaAR)n-((PvR)n().

Solution:

OuwiPaRina((PvEial)
S (v (PAaRNA(S(FPvRIa (Demorgan law)
S (D w(PARNA((RPA-R v (Demorgan law)

S (AP aaBNvi(@a-Mvi(PARI AP AR v ((FaRIa-()

(E rtended distributed law)
S (AP A AR v Fw(FaRaaRIw(FaaaR) (Negationlaw)
S (AP Al AR v(Paag aR) (Negationlaw)

Obtain Penf and Pdnf of the formula (-2 v-@)= (P & - @)

Solution:
LEtS:(-!PV-!Q)—) (P = '|Q)

PIQ| ~P|~Q| 2Pv-Q |Peo-p |5 | Mntem | Maxterm

PnQ
Pﬁﬂ@
“PaQ

| —3| 3| 3

T|IT| F F F
TIF| F | T T
FIT| T F T
FIF| T | T T

Pvp

PCNF: Py Q and PDNF: (PA Q)v(Pa-Q)v(aPA(Q)

Inference Theory

The theory associated with checking the logical validity of the conclusion of
the given set of premises by using Equivalence and Implication rule is called
Inference theory

Direct Method
When a conclusion is derived from a set of premises by using the accepted
rules of reasoning is called direct method.

Indirect method

While proving some results regarding logical conclusions from the set of
premises, we use negation of the conclusion as an additional premise and try to
arrive at a contradiction is called Indirect method

Consistency and Inconsistency of Premises

A set of formular H1’Hz'""H is said to be inconsistent if their conjunction implies Contradiction.
m

A set of formular H1’Hz'""H is said to be consistent if their conjunction implies Tautology.
m 15

Rules of Inference

Rule P: A premise may be introduced at any point in the derivation



Rules of Inference

TABLE 1 Rules of Inference.
Rule of Inference Tautology Name
P [paip=—>qg)]l—gq Modus ponens
pP=q
g
=g [-“]" A [P — q}] a4 Modus tollens
P—q
- Sp
rP—>q [lp=glnig—=ril—=ip—r) Hypothetical syllogism
'
P —
Pvy [(pvaq)a—pl—aq Disjunctive syllogism
-p
S
P p—+ipvql Addition
wevg
prg (prg)—p Simplification
P
P [(P) A (g)] = (pAg) Conjunction
q
L PAg
pvyg [(pvglnl=pvr)]l—=gvr) Resolution
—|p WF
gvrF

Rule of inference to build arguments
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Example:

1. It is not sunny this afternoon and it is colder than yesterday.
2. If we go swimming it is sunny.
3. If we do not go swimming then we will take a canoe trip.
4. If we take a canoe trip then we will be home by sunset.
5. We will be home by sunset
p  Itis sunny thus afternoon l. —png
q Itis colder than vesterday 2. r->p
r o Wego swunming

. 3. ar—s
s Wewill take a canoe tup
¢t Wewill be home by sunset (the conclusion) 4. s>t

3. /

Example 1. Show that R is logicallv derived fom P — Q. Q — FE and P

Soltion. {1} () P—Q RuleP
2 () P Rule P
1.2} (3) Q Rule (1). (2) and 111
4} 4) Q—R RuleP
1.2.4 (5) R Rule (3). (4) and I11.

Example 2.Show that S V R tautologically implied by (PV Q) » (P—R) A (Q —S).

Solution. {1} (1) PVQ Rule P
3 2) P—Q T.(1).El and E16
{3} 3) Q—5 P
1.3 @ 7P—5S T.(2). (3). and 113
1.3t (5) 78—P T.(4).E13 and E1
16} 6 P—R P
1.3.6} (7) 7S—R T. (5). (6). and I13
1.3.6) (8) SVR T.(7).E16 and E1

17



Example 3. Show that 7Q, P— Q== TP
Solution . {1} (1) P—Q Rule P
1} () TP —=T70Q T and E 18
3} (3) 7Q P
1.3y 7P T.(2),(3), and I11 .

Example 4 Prove that R A (P V Q) is a valid conclusion from the premises PVQ) |

Q—RP—Mand ™M

Solution. {1} (1) P—M P
{2} () ™ P
(1.2} (3) 7P T. (1). (2). and 112
{4} 4 PVQ p
.2.4 (5) Q T. 3). (4). and T10.
{6} (6) Q—R P
1.2.4.6} () R T. (5). (6) and 11

{1.2.4.6) (8 RAPVQ) T.(4).(7).andIo.

Example 5 Show that R — S can be derived from the premises
P—(Q—S).,7RVP and Q.

Solution. {1} (1) IRVP P
{2} 2) R P, assumed premise
{1, 2} (3)P T.(1).(2). and I10
{4} @HP—Q—Y9) P
{1.2. 4} 35)Q—S T.(3).(4).and I11
{6} ©) Q P
{1.2.4.6} (NS T.(5).(6).and I11

{1. 4.6} (8)R—S

CP.

18



Example 6.Show that P — 5 can be derived from the premises, TPV Q. 7QV

FRandR—5S.

Sohtion.
{1} 1y "PVQ P
{2} 2y P P. assumed premise
{1, 2} (3) Q T.(1).(2) and 111
4 4y TQVER P
{12, 4} 3} R T.(3). (4)and I11
{6} @ R—5 P
{1.2,4.6y (M 5 T. (5). (6) and I11
{2, 7} (8) P—35 CP

Predicate Logic

A predicate is an expression of one or more variables defined on some specific
domain. A predicate with variables can be made a proposition by cither
assigning a value to the variable or by quantifying the variable.

Eg.
“ x is a Man”
Here Predicate is *“ is a Man™ and it is denoted by M and subject “X” is
denoted by x.
Symbolic form is M(x).

Quantifiers
The variable of predicates is quantified by quantifiers. There are two types of quantifier in
predicate logic — Universal Quantifier and Existential Quantifier.

Universal Quantifier

Universal quantifier states that the statements within its scope are true for every value of
the specific variable. It is denoted by the symbol V.

vx P(x) is read as for every value of x, P(x) is true.

Example —"Man is mortal” can be transformed into the propositional form vx P(x) where
P(x) is the predicate which denotes x is mortal and the universe of discourse is all men.

Existential Quantifier

Existential quantifier states that the statements within its scope are true for some values of

19



the specific variable. It is denoted by the symbol 3.3x P(x) is read as for some values of X,
P(x) is true.

Example — "Some people are dishonest™ can be transformed into the propositional form

3ax P(x) where P(x) is the predicate which denotes x is dishonest and the universe of
discourse is some people.

Nested Quantifiers

If we use a quantifier that appears within the scope of another quantifier, it is called nested
quantifier.

Eg.2.
“Every apple is red”.
The above statement can be restated as follows
For all x, if x is an apple then x is red

Now, we will translate it into symbolic form using univer:)
quantifier.
Define A (x) : xisan apple.

R (x) : xisred.
We write (*) into symbolic form as

(Vx) (A&x)—>RE)

20



Eg3. “Some men are clever™.
The above statement can be restated as
“there is an x such that x is a man and x is clever’.

wc will translate it into symbolic form using Existenrial
quantifier. N

Let M(x) : xisaman
and C(x) : xisclever

We write (B) into symbolic form as

B x) (M)A C ()

Inference theory for Predicate calculus

Rule of Inference Name
Yz P(z)
- P(y) Rule US: Universal Specification

P(c) for any c
Va‘:P(:z:) Rule UG: Universal Generalization

JzP(x)

.. P(c) for any c Rule ES: Existential Specification

P(c) for any c
EI:I:P(&:) Rule EG: Existential Generalization

Problem: Show that (3x) M(x) follows logically from tha
premises (x) (H(x) = M(x)) and (3x) H(x)

Solution : 1) (3x) HX) rule P
2) H®») ES
3) ®HE->ME) P
4) H@)—>MO) us
5) MO) T, (2)
6) (3x) M(x) EG

Symbolize the following statements:
(@) All men are mortal
(b) All the world loves a lover



(€) X is the father of mother of Y (d)No cats has a tail
(e) Some people who trust others are rewarded

Solution:
(a) Let Mix): x 15 a man Hix): x is Mortal
(7 x)(Mix) — Hix)

(b) Let P(x): x is a person L{x): x is a lover R(x,y): x lovesy
() (PO} — (y) (Ply) » Liy) — Rix.y)))

{c) Let P(x): x is a person Fix,y): x is the father of y

Mix.y): x is the mother of y ( 3 2) (P(z) ~ Flxz) » Miz.y))
(d) Let Cix): x is a cat T(x): x has a tail
(¥ x)(Cix) = =Tix))
(e) Let P(x): x is a person T(x): x trust others R(x): x is rewarded

(3xI P A T ~ RxD

Use the indirect method to prove that the conclusion 3;9(z) follows from the premises
Yx(P(x)— @(x))and IpP(y)

S olution:

1 ~3z0(z2) Plassumed)
2 | ¥e-p(2) T, (1)

3 Py P

4 F(a) E3, (3)

S| ~0G@) U, @

6 Plajn -2(a) T, 4,05

1 -(Pla)— Q(3)) T, (6)

8 | ¥r(P(x)— Qz)) P

9 P(a) = Q(a) T3, (8)

10 | Pla)—= Qla)na -(F(a) = Q(a) T,(1,(9) contradiction

22



Showthat (3x) POA QX)) = IXNPHA (3% QX)

Solution:
1D (3 ) (P A Q) RuleP
2)Playa Qla) E3 1
3) Pl RuleT, 2
41 Qla) RuleT, 2
5 (3P EG,3
) (3 ) QX) EG, 4
TEADPE A (35 QX RuleT, 5,6

ASSIGNMENT PROBLENS

]

B

8.
9.

. Write the statement in symbolic form “Some real numbers are rational .

Syvmbolize the expression “x is the father of the mother of v
Svmbolize the expression “All the world loves a lover”
Write the negation of the statement “If there 15 a will. then there 15 a way ™.

Construct the truth table for —t& -~ e

Find the CNF and DNF of —(7 v @) <= (p " q)

. Showthat P - Q.Q——=R. R Pv(J A5 implyJ AS

Show that P - Q.P — R,Q — R. P are inconsistent.

Prove that (2x)iPlx) A O(x) = (Tx)P(x) A (Gx00(x)

10.Show that —P(a.b) follows logically from (x)(y)(P(x, y) — W(x, y) and

—Wia, b)

11.Show that —-Pv Q.—QvR.R—S=P—§

12.Show that (P A -Q)A—Qv RA—R= =P

23



13.Show that P is equivalent to —P.PAP,Pv P.PA(PvQL(PAQIvIPASD)
14.Indicate which one are tautologies (or) contradictions
(Ay(PrnQ) =P (byP=PvQ
15.1f R:Ram is rich, H:Ram is happy .Write in symbolic form
(a) Ram is poor but happy (b) Ram is poor or unhappy
( ¢) Ram is neither rich nor happy

16.5how that the hvpothesis, It 15 not sunny this afternoon and 1t 15 colder than
vesterday.” ~ We will go swimnung only 1f 1t 1s sunny.” “If we do not go
swimming then we will take a canoe trip.” and “If we take a canoe trip, then
we will be home by sunset “lead to the conclusion “we will be home by
sunset .
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SET THEORY

Basic concepts of Set theory -Laws of Set theory -Partition of set, Relations -Types of Relations:
Equivalence relation, Partial ordering relation-Graphs of relation-Hasse diagram, Functions:
Injective, Surjective, Bijective functions, Compositions of functions, Identity and Inverse
functions.

The concept of a set is used in various disciplines and particularly in computers.

Basic Definition:

1. “A collection of well-defined objects is called a set”.

The capital letters are used to denote sets and small letters are used
for denote objects of the set. Any object in the set is called element or
member of the set. If x is an element o&tl:,? set X, then we write to

X )
be read as ‘x belongs to X, and

If x is not an element of X, the we vﬁi% X to be read as
does not belong to X"

2. The number of elements in the set A is called cardinality of the
set A, denoted by |A] or n(A). We note that in any set the elements
are distinct. The collection of sets is also a set.

§= {Plr{szpz};PmPa}
Here {P,, P, } itself one set and it is one element of S and |S|=4.

3. Let Aand B be any two sets. If every element of A is an element
of B, then A is called a subset of B is denote by'A € B'.

We can say that A contained(included) in B, (or) B contains(includes)A.

Symbolically, A & B(on)BE 2 A

ASB = (xV){x €4 — x EBPY



Letd = {1,2,3,45}, B=1{1,24}, C={1,5}, D=1{2}, E ={1,4,2}
Then B€ A, C<S A DS ADCER

C €B.,since 5e6C=5¢&B, ESCB andB CE.

Some of the important properties of set inclusion.

For any sets A, Band CAE A

(Reflexive)
(ASB)A(B €C) = (A € C)(Transitive)

Note that A € Bdoes not imply B € A except for the following case.
4. Two sets A and B are said to be equal if and only if A € Bandb € A4,
i.e., A=B< (ASBand B € ()

Example{1,2,4} = {4,1,2}and P = {{1,2},4}, Q = {1,2,4}thenP # Q
Since{1,2} € Pand{1,2} & Q even though 1,2 € Q.
The equality of sets is reflexive, symmetric, and transitive.

5. A set A is said to be a proper subset of a set B if ASB andAd# B .
Symbolically itis writtenas A c B.i.e, ACB< (ASB A A+B)

C is also called a proper inclusion.

6. A set is said to be universal set if it includes every set under our discussion. A universal set
is denoted by U or E.

In other words, if p(x) is a predicate. E={xlp(x)Vvipx)}
One can observe that universal set contains all the sets.

7. A set is said to be empty set or null set if it does not contain any element, which is denoted by

1)



In other words, if p(x)is a predicate. 0= {xlp(x)V 1p(x)}
One can observe that null set is a subset for all sets.

8. For a set A, the set of all subsets of A is called the power set of A. The power set of Ais
denoted byp (A)or 2Mi.e., p(A) ={5|S € A}

Example, Letd = {a, b, c}
Thenp(4) = {@,{a}, {b},{c},{a, b}, {a,c},{b,c}, A}

Then set @ and A are called improper subsets of A. A and the remaining sets are called
proper subsets of A.

One can easily note that the number of elements of p(4)is

214l j e, [p(A)] =214l
SOMEOPERATIONS ONSETS

1. Intersection of

sets Definition:

Let A and B be any two sets, the intersection of A and B is written as A N B is the set of all
elements which belong to both A and B.

Symbolically

AnB={x|x€Aandx € B}

Exampled = {1,2,3,4,5,6}, B = {2,4,6,8}then AnB={24,6}
. From the
definition of intersection, it follows that for any sets A, B, C and universal set E.

AnA=A4A ANnB=BnA
An(BnC)=(AnB)nC

ANE=A4A ANG=0



2. Disjoint sets
Definition:

Two sets A and B are called disjoint if and only if A N B = @, that is, A and B have no element
in common.

Exampled = {1,2,3} B ={5,79} C= {3,4}

AnB=0, AnC={3}, BnC=0
A and B are disjoint and B and C also, but A and C are not disjoint.

3. Mutually disjoint sets
Definition:

A collection of sets is called a disjoint collection, if for every pair of sets in the collection are
disjoint. The elements of a disjoint collection are said to be mutually disjoint.

LetA = {A, },-, beanindexed set, Ais mutually disjoint if and only if
for alli, H € f ig?jz )

Example

A, = {1,233}, A, ={{1},{2,3}}, A; ={{1,2,3}}
Thend = { A, ,A,, A5} isadisjoint collection of sets.

A, n A, =0, A, n A; = Qand A, N A; =0
4. Unions of sets
Definition:

The union of two sets A and B, written as A U B is the set of all elements which are elements
of A or the elements of B or hoth.

SymbolicallyAUB ={x | x € Aor x € B}
Example Let A = {1,2,3,4,5,6)B = {2,4,6,8) then AU B = {1,2,3,4,5,,6,8)

From the union, it is clear that, for any sets A, B, C, and universal set E.



AUA=A4 AUB=BUA AU(BUC)=(AuB)UuC
AUE=E Aud=A4

5. Relative complement of a set

Definition:

Let A and B are any two sets. The relative complement of B in A, written A — B, is the set of
elements of A which are not elements of B.

Symbolicallyd —B = { x| x € Aor x &€ B}
Notethat A —B = ANB.

Example Let A = {1,2,3,4,5,6)

B = {2,4,6,8}then

A—B ={1,35}

B —A={8}

It is clear from the definition that, for any set A and B.

A—-B=20
A—B+B—-A
A-0=A

6. Complement of a set
Definition:

Let A be any set, and E be universal. The relative complement of A in E is called

absolute complement or complement of A. The complement of A is denoted by fiSymboIicaIIy
(or A€ or ~ A)

E-A=A={x|x€Eandx & A}



Example Let E = {1,2,3,4, ...} be universal set and4d = {2,4,6,5, ... }be
any setin E.

Then

A=1{1357..)

(=Y
|
ry

From the definition, for any sets A A=A

E=0 AUA=EANnA=0

7. Boolean sum of set
Definition:

Let A and B are any two sets. The symmetric difference or Boolean sum of A and B is the set
A+B defined by

A+B=(A—-B)UB-A)=(AnBYu(BnAi)
NA+B={x|x€Aandx & B} U{x|x € Bandx & A}
Example Let

A=1{1,2345,6}

B = {2,4,6,8}then

A+ B = {1,3,5,8} From the definition, for any sets A and B.
A+A=0, A+0=A4
AWE=A4, A+B=B+A

A+(B+C)=(A+B)+C

8. The principle of duality

If we interchange the symbols N, U, E and @, € and =2, € and 2,in a set equation or expression.
We obtain a new equation or expression is said to be dual of the original on (primal).



“If T is any theorem expressed in terms of N,Uand—deducible from the given basic laws, then
the dual of T is also a theorem”.

Note that, the theorem T is proved in m steps, then dual of T also proved in m step.

Example The dual of AN A = G isgivenby AUA =E,
Remark: Dual (Dual T) =T.
Identities on sets

A U A = A Idempotent laws

AnA=A4A

AU B = B U A Commutative laws

AnNnB=BnA

(AUB)UC = AU (B U () Associative laws
(AnB)NC=An(Bn<0C)
AU(BnC)= (AU B)n (AU C) Distributive laws
AnNn(BUC)=(AnBYUu(AnC(C)

AU (AN B)= A Absorption laws

An(AuB)=A

(AUBR)=ANB De Morgan’s laws
(AnB)=AURB
Aupd=4A AN =0

AUE=E ANE=A4



AUA=E ANA=0

O=E E=0 A=A
PROBLEMS

1.5 ={a,b,p,q},Q = {a,p,t}.Find S U QandS N Q?

Solution:

SuQ ={a,b,p,q,t}

SnQ ={a,p;}

2. 1fA = {a,b, c}. Findp(A4)?

Solution:

p(4) = {0,{a}, {b},{c},{a, b}, {a, c},{b, c},A}
|A| =3

lp(A)|=2°=8

3. Write all proper subsets of A = {a, b, c}.

Solution:

The proper subsets are
p(4) = {{a}, (b}, {c},{a,b},{a,c},{b c}}
4, Showthatd €E B &< AnNB = A.
Solution:

IfA € B thenV x €A = x € B Now, let

xEAe=xed andx eR

= x€eANnBEB



A=ANEB

IfA N B = A,then

letx EAxEANBE = x€ERB

Therefored € B.

Find 4—B,A—C,C— B and
5f A=1{25,67},B=1{1,234}, C=1{1,3,57}

Bselugion:

A—B={56T)
A—C={2,6)
C—B={5T)
B—C={24)

6.1A={234},B=(12}, C={456)}. A+BB+CA+CA+B+C
B+ (B+0).



Solution:

A+ B =1{134)
B +C = {12,456}

A+C=1{2,356])

A+B+C={135,6}
(A+B)+(B+C)={2,3,56]}

Note that
A+(B+B)+C=A+(@)+C=A+C={23,5,6}

7.Showthatd € AU Band ANB € A.

Solution:

Let

x€EA =x€A(or)x€EB

= xc€AUBRB

= AC AUB

Nowletx EANB = x€AdAandxeb

—x €A

ANnBEA

HenceA €S AUBand ANB S A

Remark: BEAUB, ANBEEB andANB S AUBE.

8. Show that for any two sets Aand B,A — (AN B)=A — B.

Solution:



xEA—(AnB)exedandx € (ANB)
S xcAand{x & Aorx & B}

S {xedandx & A}(or) {x € Aand x & B}
& 0 (or){x € Aand x & B}

S xeceAdandx &b

A—(ANB)€A—B andA—-B<SA—-(ANB)
Therefore 4 — (AN B)=A— B.

9. Showthatd U (BNC)=(AUB)N (AU (C)
Solution:
xEAU(BNC)e=xedorxeBnC

& xedAor (xeBandx e (}

S {xeAorxeBland {x€eAorx €(}
S {x€eAUB}land {x€ AU (C}

S xeE(AUB)N(AU )

Therefore AU(BNC)=(AUuB)N (AU ).

10. Show that(A U B) = A n B.

Solution:
let x e (AUB) ®x & AUB

S xEAandx & B

e xedandx € B



& xe AnB

Therefore (AU B)= AN B.

11. showthat (A—B)—C=A—(BuUC().



Solution:

(A—B)—C=(A-B)nC

(P-Q=PnQ)
=(AnB)nC
=ANn(BNC) (Associative)
—An(EBUO0) (De Morgan’s law)

12. showthat AN(B—C)=(ANB)— (AN C)
Solution:

Let(ANB)— (AN )

=ANB)N(ANC)

= ((mBYMBHAU N BN ()

= {6 A BYVAUNBABN O)
=0UAnBnC()
=An(Bn(C)

—An(B-0)

ASSIGNMENT PROBLEMS

Part -A

1. Define a set

2. Define subset of a set. What is meant by proper subset?



(i) Find all subsets of A = {1,2,3}

(if)Find all proper subsets of A.
3. Define power set.

4. Define disjoint sets with example?

5. 1fA = {1,2,3,4,5)andB = {2,4,6,8,10}. FindAU B,AN B,a — B,B — A, and

6. WhithBfthefollBwingbétsareempty?7.
{x|xER,x+6 =6}

8.{x | xis areal integer suchthat x* + 1 = 0}
9{x | xis areal integer and x* — 4 = 0}
10.State duality principle in set theory.

11.Define cardinality of a set.

12.1f a set A has n elements, then the number of elements of power set of A

13.Find the intersection of the following sets
) {x [x*—1 =0} {x|x* + 2x + 1 = 0}14.Write
the dual of AN A = @,

15.Let A, B and C sets, suchthat A U B = A U Candd N B = A N C,can we conclude
that B =C.

16.State De Morgan’s Laws.

17.Whether the union of sets is commutative or not?

PART-B
1. ShowthatA N (BUC)= (AN B)YU(ANC).

2. Verify the De Morgan’s laws



Q) HUBZJHE,(“) AnB=AUB

Show that the intersection of sets is associative.

Showthat A —(B—C)=(A—B)Uu (An ().
ShowthatAN (B —C)=(AnNB)—(AnC)

Letd; = {1,2,3,... }fori = 1,2,3, ...find(a) U=, A;(b)Ni=; 4;
Prove thatd — (A — B) € B.

Show that for any two sets Aand B,A — (AN B) = A — B.

© o N o g bk~ W

ProvethatANBc AcAuBandANBcBcAUB.

10. TAUB =AU CandA N B = A N C, prove that B=C. (cancelation law)
11. ShowthatA —(BUC) =(A—B)n (A —C).

12. Show that A + A = @,where + is the symmetric difference of sets.

13. Show that (R € S)and(5 < @Q)implyR < Q.

14. GiventhatA N C S BN CandANC €EB N €. showthat 4 < B.

CARTESIAN PRODUCT OFSETS

The Cartesian product of the sets A and B, is written as A X B, is the set of all ordered pairs in
which the first elements are in A and the second elements are in B.

i.e. AXB ={{x,v}|x € Aand x € B}
For example

Letd = {1,2},B = {a, b, c}, ¢ = {a, F}Now



AX B ={(1,a),(1,b),{1,c)X2,a},{2,b),{3,c)}
AXC={1,a)(1,B)(2,a),(2,B)}
AX B = {a,a),{a,b),{a,c)B,a),{B,b),{B, c)}

It is clear from the definition

AXB+#BXA | {{a,b),c)E(AXB)XC,
a

n is an ordered ftriple
(ab)eAxB tec P

then and

Now,
AX(BXC)={a, b c))|laceAdand(b,c)E(B,C)}

Note that {a, {b, €}) is not an ordered triple.

This fact shows that(A X B) X C # A X (B X C)

i.e. Cartesian product is not associative.

Now
AXA=A%={{x,y),Vx,y € AlandA™ = A" 1 X A.

Note that if A has n elements and B has m elements A X B has nm elements.

PROBLEMS
1.1f4 = {1,2,3}, B ={a,b}. FindA X B,B X Aand A X Aand A> X B
Solution:
AX B ={(1,a),{1,b),(2,a),{2,b),(3,a),{3,b)}
BxA={a1l),a,2)(a3){b,1)(b,2)(b 3)}

AP =AXA={(11)(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),{3,2),{3,3)}



AE x B = {{IJJ‘J a’}! {1J1J b}! {1F2J a}! {llzlb}l {1J3J a’}! {1J3J b}! {2.'1!(1}! {ZJ]'JE‘]}J

(2,2,a),(2,2,b),(2,3,a),(2,3,b),(3,1,a),{3,1,b),(3,2,a),(3,2,b),{3,3,a),{(3,3,b) }

2.Showthatd X (BNC)=(AXB)n(AXC().
Solution: For any{x, ¥,
(x,y)X(BnC)=xecAdandyeEBnNC
Sxcdand{y e Bandye (C}

s {x€dandy€E€Bland {y EBandy € C}

= {{x,y) EAXB}and {{x,y) € A X C}

= {x,MAXB)N(AX ()}
AX((BNC)=(AXB)N(AxX(C)
3.Showthat(ANB) X (CND)=(AXC)n (B X D).
Solution: For any{x, ¥},

(x, M XANBYX(CnD)=xe(AnB)andye (CnNnD)
= {x€eAandx € Bland {y € Candy € D}
={x€Adandy € C}and {x EB and y € D}

= {x,y)EA X Cland {{x,y) E B XD}

= {x, AXC)N(B X D)}

18
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ASSIGNMENT PROBLEMS

Part A
Define Cartesian product of sets? Give an example?
IfA = {0,1}find A2.
IfA = {1,2,3}and B = {a, b}, find AXB,BxA A*
True or False
I. 1A = {1,3,5,7,9} the {Vx € A,x + 2 is a prime number}
1. 1fA = {1,2,3,4,5} the Bxedx+3=10}
IfA X B = {(1,2),(1,3),(2,2),{2,3),{(4,2),{(4,3),{5,2),(5,3}}

Part B

If A, B and C are sets, prove thatd X (BUC) = (A X B)U (A X C).

Provethat (A XC)— (B XC)=(A—B) X .

If4A = {a,b} and B = {1,2}andC = {2,3}, find I
AX(BuUC)

. (AXB)U(AxC)

m. AxX(Bn<C)

Iv. (AXB)N(AX0C)

Show that the Cartesian product is not commutative? It is commutative only for equality
of sets?

RELATIONS

Binary relation

19



Any set of ordered pairs defines a binary relation.

If x and y are binary related, under the relation R, then we write{x, '} € RorxRy. If not the

case we write{x, V) € R.
1. ExampleF = {{x,y) |x is the father of y}
L = {{x,y) |x and y are real number and x < y}

Then F, L are binary relations.

2.Example Let A and B be any two sets, then any nonempty subset R of A X B is called a
binary relation.

Now
A= {123}
B = {a, b}then
A X B ={(1,a),(1,b),(2,a),(2,b), (3,a),(3,b)}
Let
R, ={(1,a),(2,b),(3,a),(3,b)}
R, = {{1,b),(3,a)}
Ry = {(2,a)}

ThenR,, R,andR ;are binary relations A to B.

Let S be any binary relation. The domain of S is the set of all elements x such that for some
v, {x,y) €S.

D(S) = {x{(x,y) €S, for somey }
Similarly, the range of S is the set of all elements y such that, for some

X, {x,y) €S

20



ie. R(S)={yl(x,y) €S for somex}
Let

S ={(1,a),(1,b),(2,b),(3,a)}

D(S) = {1,2,3}

R(S) = {a, b}

IfS € X X Y, then clearly D(S) € XandR(S) €Y.

In case of X = Y, then the relation defined on X X X is called a universal relation in X.
IfX = @, then a relation on X X X is called void relation in X.

Since relations are sets, then we can have their union and intersection and so on.

RUS ={{x,y) |xRy or xSy}

RnS ={{x,vy) |xRy and xSy}

R —S = {{x,y) [xRy and (x,y) & S}

R+ S ={{x,y)|{x,y)is either in R or in S but not in both }

Properties of Binary relations

1. Reflexive

Let R be a binary relation defined on X.
Then R is reflexive if, for everyx € X, {x,y) € R.

Example:

Let
X ={123)

R = {{1,1),{1,2),(2,2),{3,3),{2,3)}and

S = {{(1,1),{(1,2),(2,1),(3,3)pre defined on X.

21



Then R is reflexive, but S is not reflexive. Since {2,2)} & Sand2 € X.

2. Symmetric

A relation R from X to Y is symmetric if every x € Xandy € Y whenever {x, v} € R,then
(y,x) ER.

That is, if xRy = yRx, then R is symmetric

Example:

Let

X ={12}

R = {{1,1),(1,2),(2,1),{2,3),(3,2)}and

S = {{1,2),(2,2),{1,3),{3,1}}are defined on X.

Then R is symmetric, but S is not symmetric. Since{1,2) € Sbut{1,2) & S.

3. Transitive

A relation R is transitive if, whenever{x, v) € Rand(y,z} € R, then{X, z) € R.That is, if
xRy A yRz, then R is transitive.

Example:

Let

R = {{1,1),(1,2),(2,2),{1,3},(2,3),(2,1)Jand

S ={(1,2),(2,3),(1,3),(3,31,(2,1)}

Then R is transitive, but S is not transitive. Since {2,1)} € Sand{1,2) € Sbut

(2,2) € S.

4. 1rreflexive
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A relation R in a set X is irreflexive if, for every

x EX {x,x)&R

23



Example:

Let
A=1{1,23}

R = {{2,1),{1,2),(2,2),{3,2),{2,3),{1,3)] and
S = {{1,1%,(2,3),(2,2),{1,3)}

Then R is irreflexive, but S is not reflexive. Since{3,3) & S and{1,1) € S.

5. Antisymmetric

A relation R in a set X is antisymmetric if, whenever{x, ¥} € Rand
(v,z) ER, thenx = y.

That is, if xRy A yRx = x = y, then R is antisymmetric.
Example:

Let

X be the set of all subsets of E.

R be the inclusion relation (< )defined on X.
ASBABSCA=A=EB

Therefore R is antisymmetric in X.

6. Relation matrix

LetX = {x,,%,, ..., },Y = {¥1, V5, ... V.., } are ordered sets, R be a relation
Defined from X to Y, then the relation matrix of R, is defined as

M, = (Tl-j-)iil -m,j:1—-n
Example 1:

LetX = {1,2,31Y = {a, b}



1 1
be a relation from X to Y. Then M, = [1 0‘

R = {(1,),(1,b),(2,a),(3,b) o1

Example 2: Let

R = {{111}1{112}1{211}1{113}1{212}1 {311}1 {312}} X = {1’2’3}
1 1 1 be a relation on
1 1 0

7. Composition of Binary Relations



The concept of composition of relation is different from union and intersection of two
relations.

Definition:

Let R be a relation from X to Y and S be a relation from Y to Z. Then the composite R © S
is a relation from X to Z defined by

The operation o in R o S is called “composition of relations”.

Example.

Let

R ={{1,2),(2,3),(3,4),(2.2)}

S = {(2,3),(4,1),{4,3),(2,1)}. Then

R oS = {(1,3),(1,1),(3,1),(3,3),(2,3),(2,1)}
SoR={{2,4),(4,2),(44),(2,2)}

Note that

RoR =R?

RoRoR=R2oR =R?

R 1,R — R" etc,,

Definition:
The relation matrix for R © & is given by Mp.c = My (M. where(®) is defined as follows.

Mz OMs = (m,;Where m;;({i, j)th element)islif and only if row I of Mgand column
j of M}ave alin the same relative position k, for some k.

Example:

Let



{(1,2),(1,5),42,2),(3,4),{5,1),{5,5)}

R =

((1,3),(2,5),(3,1),{4,2),{4,4),(5,2),(5,3)Then

S:
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Definition

Let R be a relation from X to Y. The converse of R, is written as R", is a relation from Y to X
such that xRy < xﬁy



Example:
ItR = {{1,a),{2,b),({2,a),{b,3)

R ={{a,1),(b,2),{a,2),(b,3)
Also it is clear that 1.

2. o .
R=S<=R="5

RES=RcS
ResultgThegelatignmafrix M z is the transpose of the relation M.

i.e.Mp = transpose of Mg

Example:

Let
R = {{1,1),(2,1),(2,2),(2,3),(3,1),{(3,3)

R = {{1,1),(2,1),{2,2),{3,2),{1,3),{3,3)

We have
(1 1 0]
Mp=10 1 1
1 0 1
(1 0 1]
Ms=|1 1 0
0 1 1.




EQUIVALENCE RELATION

Definition:

A relation R on a set X is called an equivalence relation if it is reflexive, symmetric, and
transitive.

Example 1:
Let
X ={1,2,3,4%d
Is an equivalence relation

R = {{1,1),(1,4),(4,1),{4,4),(2,2),(2,3),(3,2),43,3)}
on X.

Example 2:

Equality of subsets on a universal set is an equivalence relation.
Example 3:

Let

X={123,..7}

R = {{x,y) |x — y is divisible by 3}

Now, WV x €X,x —x =0 is divisible by 3. Therefore,

Vx €X,{x,x) € R (reflexive)

Forany x,y € X

Let{x, x) € R = x — y is divisible by 3 we have—(x — y) = ¥ — xis also divisible by 3.
(y,x) € R (symmetric)

Let (GY)YERA(y,z)€ER



= ¥ — @divisible by 3 and y —igdivisible by 3.
= (x 9y (v ) sdivisible by 3.
= y —Iigdivisible by 3.

Therefore {x, ¥} € R (Transitive)

Therefore, R is an equivalence relation on X.

EQUIVALENCE CLASSES
Definition:
Let R be an equivalence relation on a set X. For any x € X, the set [x]z € Xgiven by
[x]z = (v [xRy for y € X}
is called an R-equivalence class generated by x € X.

Therefore, an equivalence class [x ]z of X € X is the set of all elements which are related to x
by an equivalence relation R on X.

Example:

Let Z be the set of all integers and R be the relation called “congruence modulo 4 defined by

R = {{x,v) |(x — v) is divisible by 4, for xand y € Z}
Now, we determine the equivalence classes generated by R. (or x = y(mod 4))

[0]g = {..—8,—4,048..}
[1]g = {..—7,-3,1,59...)
[2]g = {..—6,—2,2,6,10 ...}

[3]g = {..—5,—1,3,7,11 ...}

Note that



[0]g = [4]z,[1]z = [5]&,...etc.

Therefore §= {[01g,[1]5,[2]R, [3]1R)

In a similar manner, we get the equivalence classed generated by the relation
“congruence modulo m ” for any integer m.

Therefore, an equivalence relation R on X, will divide the set X into an
Equivalence classes, and they are called portion of X.

PARTIAL ORDERED RELATION

A relation R on a set X is said to be a partial ordered relation, if R satisfies reflexive,
antisymmetric, and transitive.

Example:

Let o(A) be the power set of a set A.
Define a subset relation (<) on p (A), then € is a partial ordered relation.

Usually, we denote the partial ordered relations as ' = is said to be partially ordered set (or)
poset, which is denoted by (X, <}. We will study more about posets in the subsequent sections.

1. Closures of a relation

Let R be a relation on the set X.

2. Reflexive closure

We have the relation R is reflexive if and only if the relation.
R = {{x,y) | ¥ x € X}is contained in R.

i.e., Risreflexive = I C R.

Definition:

Let R be a relation on X, then the smallest reflexive relation on X, containing R, is called reflexive
closure of R.



ThereforeR, = R U [ is the reflexive closure of R.

3. Symmetric closure

We have, the relation R is symmetric if{x, y} ER<= {y,x} €ER

i.e.R={{y,x)|{x,y) €ER}
Definition:

Let R be a relation X, then smallest symmetric relation on X, containing R, is called the
symmetric closure of R.

ThereforeR U R is the symmetric of R.

4. Transitive closure

We have, the relation R is transitive, if{x, ¥) € R and {y,z) € Rthen
{x,z) ER.

Definition:

A relationE ™ is said to be the transitive closure of the relation R on X if R Tis the smallest
transitive relation on X, containing R,

i.e., R is the transitive closure of R, if
I R ©SR*

I R's transitive on X
1l There is no transitive relation RpnX,such R cR; € R*

Remarks:

1. The transitive closure of R can be obtained by



R*=RUR?UR3*U ..= LJRi
i=1

2. Weknowthat {x,z) € R? ifand only if there is an element y such that and .

(x,y)ER  (y,z2) ER
Therefore, {a@, b} € R™ if and only if we can find a sequencexy, X5, -... X _1in X

such that (a,x,),{xy,%,),...{x,,_,,b) areallinR.

The sequence @, X1,X5, - Xpq, b is said to be a chain of length n from a to

bin R. Here are called interval vertices of the chain in R. Note that
X1, X9, Xp_q

the interval vertices need not be distinct.

PROBLEMS
Lif P = {{1,2),(2,4),(34)}, @ = {{1,3),{2,4),(4,2}}
Find) PUQ,PNnQ,P,PuUQ (ii)domains of P, P U @, P N Qand(iii)ranges of .

PugQ,Pn
Sol%tion: Q, Q

PUQ = {(1,2),(1,3),(2,4),(3,4),(4,2)}
PN Q= {(2,4)

P ={(2,1),(4,2),(4,3)}
PUQ={(1,3),(24),(4,2),(2,1),(433
Domain of P = {1,2,3}

Domain of (PU Q)= D(PU Q) = {1,2,3,4}

Domainof (PN Q) =D(PN Q) = {2}

Range of @=R(Q)=1{234}



Rangeof (PUQ)=R(PUQ)=1{2,3,4}

Renge ot (PN =R(PNQ)=(4)

It is clear that
D(PUQ)=D(P)uD(Q) and

R(PNQ@)ER(P)NR(Q)

In general, D(P) = R(P)andR(P) = D(P).

2.LetX = {1,2,3,4}andR = {{x, v} | x, ¥y € X and (x — y) is anintegeral
non zeromultiple of 2} § = {{x,v) | x,¥ € X and (x — y) is an integeral
non zeromultiple of 3}. Find R USandR NS ?

Solution:

Given that R = {(1,3),(3,1),(2,4),(4,2)}and
S={14),(41)JRUS ={(1,3),(1,4),(2,4),(3,1),(4,1),{4,2)}
RNS=0

Remarks:

D(R) ={1,2,34}

R(R) ={1,2,3,4}

D(S) = {1,4}

R(S) ={1,4}

3.LetS = {{x,x?*) | x EN} andT = {{x,2x) | x E N} , where = {0,1,2,.... }. Find
therangeof Sand T,find gy T and§SnT?

Solution



S={x,x*)|xEN}

= {{0,0),(1,1),(2,4),(3,9),(4,16), ......
and

T ={{x,2x) | x e N}

= {{0,0),{1,2),(2,4),(3,6),{4,8),...... }

R(S)={x*|xE N}

={0,1,49,16,25...... }

R(T) = 2x| x EN}

SULI' 2 ?{?rgx%?lxei'}u{{x 2x) | x € N}

= {{x,¥) | x,v € N,such that y = x? (or)2x}

= {{0,0),(1,1),{(1,2),(2,4),(3,6),{3,9), ... ... }

SNT ={{x,y)|x,y € N,such that y = 2x and y = x*}

(Nowy =2x andy =x? = 2x=x%iex=00rx=2

X=0y=0andx=2 =>y=4
SNT ={(0,0,(2,4)}

4. Given an example which is neither reflexive nor irreflexive?
Solution:
LetX = {1,2,3,4}and

R ={(1,1),(1,2) ,(2,3),(3,3),{4,1),{44)}

Then R is not reflexive, since {2,2) & R for2 € X and R is not irreflexive, since
1eX .and (1,1)ER .



5. Test whether the following relations are transitive or not on
X=1{123}

R={(11),(2,2)}
S={1,1),(1,2) (2,2) ,(2,2),(2,3)}

T ={{1,1),{1,2),(1,3),(2,1} ,{2,2),(2,3)}.

Solution: The relation R and T are transitive.

Since, inR, wehave  {1,1) € R ,then check any other pair starting with {1, z} € R thenwe

must have 1R1A1Rz = 1Rz ie.{1,2z) € R, but there is no pair staring
with 1. So, pass onto next pair (2,2) then we check any other pair starting with 2, and so
on.

InT,wehave  {1,1) € T , then there are two pairsand{1,3}p@Jst be the transitive of, the
new musthave(1,1) € T and (1,2) in T{T¥n pass to the transitive
(naipy aret2,1),(2,2) and then we must have the pairs (2 3)

(1,1),(1,2),41,3y InT.

Then pass to {1,3) € T find the transitive pairs of {1,3) and soon, for all pairs in
T. Hence T is a transitive relation.

The relation S is not transitive, since for {(1,2) € 5, the transitive pairs are {2,2) and
(2,3) then we must {1,2) and{1,3) in S but (1,3) ¢ S .

6. Let R denotes a relation on the set of pairs of positive N X N integers such that
(x, V)R {u, v)if and only if X7 = yu. Show that R is an equivalence relation.

Solution:

Let

P = {{x,v) | x and y are positive integer}



Now R is a relation defined on P as
{x, V)R {u,v) <orxv=yu  {x,v),{u,v) € P,
Let(x, v}, {u, v}and{m, n}) € P.

I. R is reflexive:

We have
(RHS) is true.

(x, V)JR{x,y) © xy=yx



Il. Rissymmetric:

Let{x, V)R {u, v} =xv=yu
S yu = xv

S uy = vx

= (u, V)R (x,y)

I1l.  Ris transitive:
Let(x, V)R {(u, v)and(u, v)R (m,n)
< (xv = yu) and(un = vm)
e (xv = yu) and (u= E]
n
v
S AV =Y (T)
fa ) xXn = }Im
< (u, V)R (m,n)
Therefore, R is reflexive, symmetric, and transitive. Hence R is an

equivalence relation.

7. Let R and S are equivalence relations on X, show that R N Salso equivalent? Whether is
also an eq@valance relation. If not give an example.

Solution:

Given let R and S are equivalence relations on X.
Letx,vandz € X.

(i) Wwe  have(x,x) € Rand{x,x) €ES = (x,x)ERNS, Vx € X.



ThereforeR M Sis reflexive.
(i)Let{x,y) ERNS ={x,¥) ER and{x,y)ES
and{y,x} ES =(y,x)ER

=(y,x)ERNS
ThereforeR N Sis symmetric.
(iii) Let{x,¥) E RNSand(y,z) ERNS
= ({x,¥) ER and(x,y) € S)and ({y,2) E Rand {y,z) ES)
= ({x,¥) ER and(y,z) € S)and ({x, ¥) € Rand(y,z) € S)and

={x,y) ER (x,z) €S
={(x,zZY ERNS

ThereforeR N Sis transitive.
HenceR N Siis equivalence.

8. Prove that the relation “congruence modulo m” over the set of positive integers is an
equivalence relation?

Show also that if x; = y;andx, = Yythen(x; + x5) = (y;, +3,).

Solution:

Let N be the set of all positive integers we have “congruence modulo m” relation on N as
x = y(modm) & m| x — y,forx,y € N.

Letx,y,z €N



(i)We have
x—x=0=0m
Thereforex = x (tnod m)forx € N.
“Congruence modulo m " is reflexive. (ii)Let
x = y(mod m)
=>m|x—y
=x—y=km, for some integer kE€Z
= y — x = (—k)m,for some integer—k € Z
= y = x (mod m)
“congruence modulo m " is symmetric on N.
(i) Let
x = y(mod m)andy = z (mod m)
=x—y=km , and y—x=k,m for some integer ki k,€Z

=x—yv)+(y—2z)=(k,+k,)m

= x —z = (k, + k,)m for some integer ky+k,

= x = z (mod m)

“Congruence modulo m " is transitive on N.
Hence “congruence modulo m” is an equivalence relation. Let
X, = y,(mod m) and x, = y,(mod m).
Thenmt| xy — yyandm| x5 — Vs
i.e.,Xy — Yy, = kymandx, —y, = k,m

Now



(X —y)+ 0 —y) =kym+k,m



(g + %) — QO +2) = (ky + ky)m
=m|(x; +x,) — (O +)2)
(x; +x,) = (¥, +¥,)(mod m)

9. Let
X =1{1,23,4} and

“be a relation defined on A. Find the transitive
R ={(1,2),(2,3),(3,3),(34),(4,2)

closure of R?

Solution:

The matrix of the relation R is given by

01 0 0
o 0 1 0
o 0 1 1

01 0 0

Mp: = Mgp& Mg

01 0 0 0 1
0o 0 1 0 0 0
o0 1 1 0 0

01 0 0 0

00 0

1
oo 1
1
1

M B =

=l ™
o=oo

- 01
0 0 0

and
115.{“5 = ﬂ-IRQ © 115{;{
0 0 1 0 0
0 0
0 1
0 0

(0 0
01
o1
0 0

0 0
0 0

0
0

=l ™
o=oo

— b ek [EE T —



Mp: = ;{f;ga = Mg

0010 0100
ot tof {0010
— o1t 11| 7]l0o0 11
(00 1 1] 0100
00 1 1]
Cloo
~ o111
(001 1 1]
As |A| =4, we get
Mg+ = My M2V Mpa Vv Mg
(010 0] 0010 0010 0011
0010 0011 0110 0011
oot 1|V ot 11 |Y]otr11|Y]o111
(010 0| 0010 001 1 0111
[001 1 17
Clo1 1
“ o111
(001 1 1]
Hence
R* ={(1,2),{1,3),(1,4),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)}
ASSIGNMENT PROBLEMS

Part -A



1. 1f R ={(1,1),{(1,2),(2,1),{3,1),{(3,2),(2,2)]and
S = {{1,2),(2,3),(3,1),{1,3),{3,3)Jbe any relations on X = {1,2,3}. Find
RUS,RNS,R,R(R),R(S),D(RUS),R(RNYS).

2. Give an example for reflexive, symmetric, transitive and irreflexive relations.

3. Give an example of a relation which is neither reflexive nor irreflexive.

4. Give an example of a relation which is neither symmetric nor
antisymmetric?

5. Find the graph of the relation

R ={(1,2),(1,3),42,1),(2,2),(3,1),(3,2),(3,3)}

6. Find the relation matrix of

R = {(1,1),(1,2),(2,1),(2,2),42,3),(3,1),(3,3)}
7.1 R ={(1,1),(1,2),(2,1),(2,2),(2,3),(3,1),(3,3)Jand
= {(1,1),(1,3),(2,1),(2,2),(2,3),(3,2)Find  RoS SoR RoR SaS§

RoRoSandSo S0 S8?

8. Define equivalence relation and equivalence classes?

9. Define Poset?

10. Define reflexive closure?

11. Define transitive closure of the relation R?

12.LetR = {{1,2),(3,5),(6,1),{6,3),{(6,4)Ibe a relationd = {1,2,3,4,5,6]. Identify
the root of the tree of R.

13.Determine whether the relation R is a partial ordered on the set Z, where Z is set of positive
integers, and aRb if and only if a=2b.

14. The following relations are on {1,3,5]. Let R be a relation, xRy if and only if y = x + 2,



and let S be a relation, xSy if and only if x =< y. FindR o SandS o R?

15.True or False: The relation <<onZ *is not a partial order since it is not reflexive.

Part B

1. Show that the intersection of equivalence relations is an equivalence relation.

2. Determine whether the relations represented by the following zero-one matrices are

equivalence relations.

otot]| |10
11

Y1101 0 b1y 0
010 1 000 1

3. If Rand S are symmetric, show thatR U SandR U Sare symmetric.

4. Let L be set of all straight lines in the Euclidean plane and R be the relation in L defined
by xRy < xis perpendicular to V. Is R is Reflexive? Symmetric? Antisymmetric?
Transitive?

5. Consider the subsets A = {1,7,8},B = {1,6,9,10}andC = {1,9,107} where

E={123.... 10} is a universal set. List the non-empty min sets generated by A, B
and C. Do they form a partition on E?

6. LetX ={1,2,3,.....20%andR = {{x, ¥) |x — v is divisible by 5}be a
relation on X. Show that R is an equivalent relation and find the partition of X induced
by R.

7. IfRisan equivalence relation on an arbitrary set A. Prove that the set of all equivalence

classes constitute a partition on A.

8. Given the relation matrix MpandMc. Explain how to find Mz.¢,Mc.zand

MRZ?

9. Let A be a set of books. Let R be a relation on A such that {a, b) € Rif ‘book a’ with



cost more and contains fever pages then ‘book b’. In general, is R reflexive?

Symmetric? Antisymmetric? Transitive?
10. Let R be a binary relation on the set of all positive integers such that
R = {{a,b) |a = b?}. Is R reflexive? Symmetric? Antisymmetric? Transitive? An

equivalence relation?



HASSE DIAGRAM

A partial ordering =on a finite set P can be represented in a plane by means of a diagram called
Hasse diagram or a partially ordered set set diagram of {P, <. Ifx << y, then we place y above

X, and draw a line (edge) between them. The upward direction indicates success or and downward

direction indicates the predecessor. And the incomparable elements are in the same horizontal
line.

YV is immediate successor of x(or)X is immediate predecessor of V. Zis
immediate predecessor of ¥, and X and ¥ are incomparable.

X is predecessor of W but not immediate predecessor.

PROBLEMS

1.Let

P, ={2,3,6,12,24)

P, ={1,2,3,46,12} and < be arelation suchthat y < y if and only if x|y.



N

Z@Z
e



2.Let

p(4) = {0,{a},{b},{c},{a, b}, {b,c} {a,c}{a,b,c},} bethepowersetof
{a,b,c}.

Consider the inclusion (&) relation as the partial ordering on p(A4) then the Hasse diagram
of (p(A), <) is
{a,b c}

S

3.Let us consider the set of all divisor of 24, then it is a poset which is denoted by

D,,

That is D,,=1{1,2,3,468,12,24} and let the divisor relation be partial ordering.



QY




FUNCTIONS

A function in set theory world is simply a mapping of some (or all) elements from Set
A to some (or all) elements in Set B. In the example above, the collection of all the
possible elements in A is known as the domain; while the elements in A that act as
inputs are specially named arguments. On the right, the collection of all possible
outputs (also known as “range” in other branches), is referred to as the codomain;
while the collection of actual output elements in B mapped from A is known as the
image.

Types of Functions

1. Injective (One-to-One) Functions: A function in which one element of
Domain Set is connected to one element of Co-Domain Set.

F1 F2
. f . . f .

F1 and F2 show one to one Function

2. Surjective (Onto)Functions: A function in which every element of Co-
Domain Set has one pre-image.

Example: Consider, A = {1,2,3,4}, B={a, b, ¢} and f={(1,b),(2,a), (3, c),
(4,0}

It is a Surjective Function, as every element of B is the image of some A

A B

Domain Co-Domain

Note: In an Onto Function, Range is equal to Co-Domain.

3. Bijective (One-to-One Onto) Functions: A function which is both injective (one-
to - one) and surjective(onto) is called bijective (One-to-One Onto) Function.



Example:

1. Consider P={X, y, z}

2. Q={ab,c}

3. and f: P—Q such that

4. f={(x,a), (y.h), (z. c)}

The f is a one-to-one function and also it is onto. So, it is a bijective function.

4. Into Functions: A function in which there must be an element of co-domain Y does not
have a pre-image in domain X.

Example:

1. Consider, A={a, b, c}
2. B={1, 2,3,4} and f: A —B such that 3.

f={(a 1), (b,2), (c,3)}
4. In the function f, the range i.e., {1, 2, 3} # co-domain of Y i.e.,
{1,2,3,4}

Therefore, it is an into function

A

ey

5. One —One Into Functions: Let f: X—Y. The function f is called one-one into function
if different elements of X have different unique images of Y.

Example:

1. Consider, X = {k, I, m}
2. Y ={1, 2,3,4}and f: X =Y such that
3. f={(k,2), (I, 3), (m,4)}



The function f is a one-one into function

6. Many — One Functions: Let f: X—Y. The function f is said to be many-one functions if
there exist two or more than two different elements in X having the same image in Y.

Example:

1. Consider X ={1, 2, 3, 4,5}
2. Y = {x, y, z}and f: X —Y such that3.
F={(1.x), (2, %), 3. %), (4.y), (5 2)}

The function f is a many-one function

f
1
2
3
4
5
X
Examplel: Test whether the function f: R—R, f(x) = |x| +x is one-one onto function
Solution:

(1) Given f(x) = |x| +x

f(3) = |3|+3=6

f(-3) = |-3[+(-3)= 0f(2) =

|2|+2= 4

f(-2) = |-2|+(-2)=0

f(-3) =f(-2) =0

0 has more than one pre-image. Thus f(x) is not 1-1function
(2) The range of f is the set of non-negative real numbers.

.. Tis not onto function

Example2: Let S = {x, x2Ix e N} and T={(x,2x)/x € N} where N
= {1,2....}. Find the range of Sand T. Find SUT and SNT Solution:

S={x, x2Ix e N}
S={(11), (2,4), (3,9), (4,16), ......... }



T={(X,2x)/ X € N}

S={(1,2), (2,4), (3,6), (4.8), ......... }

Rangeof S={1,4,9, ..........cooiiiiiin.. }

Rangeof T={1,4,6,8, ............cceevn..o }

SuT={(1,1), (2,4), (3,9), (4,16), (1,2), (3,6), (4,9), ......... }
SNT={(2,4)}

Example3: If f: R—>R, g: R—>R are defined by f(x) = x2-2, g(x)= x+4, find (fog) and (gof)
and check whether these functions are injective, surjective and bijective
Solution:

fog(x) = f[g(X)] = F(x+4) = (x+4)2-2=X2+8X+1dermemmemmemmemen- 1)
g 0 f(x) =g[f(x)] =g(x*-2) = x°+2 )
Given f: R>R g: R>R f(x) =x2-

2

@ f)=1lo=1

f(-1) = (-1)2-2=-1
i.e., f(x1) = f(x2) does not imply x1= x2
Hence f is not1-1function
2 Letf: R>R
Lety € R. Suppose x €R such that f(x) =y
x2-2:y
x2:y+2
x=\y+2
f(\y+2) = (Vy+2)2-2=y+2-2=y
forany y e R There exist atleast one element Vy+2eR such that f(\y+2) =y
.. fis onto function g(x) = x+4
(1) g(x1) =9(x2)
X1+4=x2+4
X1=X2
gis1-1function
2 g: R—>R
Lety €R. Suppose X € R such that f(x) =y x=y-
4foranyy e R
There exist atleast one element y-4eR such that g(y-4)
=y
.. g is onto function
As f is notl-1but onto, f is not bijective
As g isl-1and onto, g is bijective
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COMBINATORICS AND RECURRENCE RELATIONS

Generating functions - Recurrence relations — Counting: Permutations and Combinations —
Principle of Inclusion and Exclusion - The pigeonhole principle — Simple Applications

Strong Induction

There is another form of mathematics induction that is often useful in
proofs.In this form we use the basis step as before, but we use a different inductive step. We
assume that p(j)is true for j=1....k and show that p(k+1)must also be true based on this
assumption . This is called strong Induction (and sometimes also known as the second principles
of mathematical induction).

We summarize the two steps used to show that p(n)is true for all positive integers

Basis Step : The proposition P(1) is shown to be true
Inductive Step: It is shown that

[P(DAP(2) A...... AP(K)] ->P(k+1)



NOTE:

The two forms of mathematical induction are equivalent that is, each can be shown to be
valid proof technique by assuming the other

EXAMPLE 1: Show that if n is an integer greater than 1, then n can be written as the product of
primes.

SOLUTION:
Let P(n) be the proportion that n can be written as the product of primes
Basis Step : P(2) is true , since 2 can be written as the product of one prime

Inductive Step: Assume that P(j) is positive for all integer j with j<=k. To complete the Inductive
Step, it must be shown that P(k+1) is trueunder the assumption.

There are two cases to consider namely

i) When (k+1) is prime
i) When (k+1) is composite

Case 1 : If (k+1) is prime, we immediately see that P(k+1) is true.

Case 2: If ( k+1) is composite
Then it can be written as the product of two positive integers a and b with
2<=a<b<=k+1. By the Innduction hypothesis, both a and b can be written as the
product of primes, namely those primes in the factorization of a and those in the
factorization of b .

WELL ORDERING PROPERTY

The validity of mathematical induction follows from the following
fundamental axioms about the set of integers.

Every non-empty set of non negative integers has a least element.

The well-ordering property can often be used directly in the proof.

Theorem :
For every non negative integer n, 5Sn =0
Proof:

Basis Step: 5-0=0



Inductive Step: Suppose that 5j = 0 for all non negative integers j with o<=j<=k. Write k+1 = i+j
where | and j are natural numbers less than k+1. By the induction hypothesis

5(k+1) =5(+)) =51+ 5j=0+0=0
Example 1:

Among any group of 367 people, there must be atleast 2 with same birthday, because there are
only 366 possible birthdays.

Example 2:

In any group of 27 English words, there must be at least two, that begins with the same letter,
since there are only 26 letters in English alphabet

Example 3:
Show that among 100 people , at least 9 of them were born in the same month
Solution :
Here, No of Pigeon = m = No of People = 100
No of Holes = n = No of Month = 12
Then by generalized pigeon hole principle

{[100-1}/12}+1 = 9, were born in the same month

Combinations:

Each of the difference groups of sections which can be made by taking

some or all of a number of things at a time 1s called a combinations.

The number of combinations of ‘n’ things taken ‘r’ as a time means the

number as groups of ‘r’ things which can be formed from the ‘n’ things.

It denoted by nCr.



The value of nCr :

Each combination consists /r/ difference things which can be arranged among
themselves in r! Ways. Hence the number of arrangement for all the
combination is nCr x r! . This 1s equal to the permulations of ‘n” difference

things taken ‘r’ as a time.

nCrxr!'=nPr

nCr=nPr/r!- 2>(A)
= n(n-1), (n-2)........ (n-r+1)/ 1,2,3,......r

Corl: nPr= n!/(nr)! - ->(B)

Substituting (B) in (A) we get

nCr= n!/(n-r)!r!

Cor 2: To prove that nCr = nCn-r

Proof :

nCr=n!/r!(n-r)! - 2>(1)

nCn-r =n!/ (n-r)! [n-(n-r)]!
=n!/(M-1) ! r! 2(2)
From 1 and 2 we get
nCr=nCn-r
Example :
30C,5-30 C39_0g
=30C,

30x29/1x2



Example

In how many can 5 persons be selected from amongs 10 persons ?
Sol :

The selection can be done in 10Cs5 ways.

=10x9x8x7x6 / 1X2x3x4X5

=9 x 28 ways.
Example

How many ways are there to from a commitiee , if the consists of 3

educanalis and 4 socialist if there are 9 educanalists and 11 socialists.

Sol : The 3 educanalist can be choosen from a educanalist in 9C3 ways. The

socialist can be choosen from 11 socialist in 11C4 ways.

.". By products rule , the number of ways to select the commitiee is

=9C;.11C,

=9! /3!6! . 11!/74!7!
=84 x 330

27720 ways.
Example

1. A team of 11 players is so be chosen from 15 members. In how ways can

this be done if

i.  One particular player is always included.

ii.  Two such player have always to be included.



Sol : Let one player be fixed the remaining players are 14 . Out of these 14

players we have to select 10 players in 14C,, ways.
14C4 ways. [.. nCr = nCy |
= 14x13x12x11/ 1x2x3x4
= 1001 ways.

2. Let 2 players be fixed. The remaining players are 13. Out of these

players we have to select a players in 13Cy ways.
13Cyways [ .. nC, =nC,; |

= 13x12x11x10 / 1x2x3x4 ways

=715 ways.

Example
Find the value of ‘r’ if 20C,;=20¢.»

Sol: Given 20 C,=20Cy. -2y Pr=20-(r+2) --------------—- 2>(1)

r=9
Example

From a commitiee consisting of 6 men and 7 women in how many waysd

can be select a committee of

(1)3men and 4 women.
(2)4 members which has atleast one women.
(3)4 persons of both sexes.

(4)4 person in which Mr. And Mrs kannan is not included.



Sol :

(a) 3 men can be selected from 6 men is 6C; ways. 4 women can

be selected from 7 women in 7C4 ways.

.. By product rule the committee of 3 men and 4 women can be |

selected in

6C; x7C; ways = 6x5x4x X 7x6x5x4
1x2x3 1x2x3x4

=700 ways.

(b) For the committee of atleast one women we have the following

possibilities

1 women and 3 men

2 women and 2 men

[ I O

3 women and 1 men

4 women and 0 men

R

There fore the selection can be done in
=7C; x 6C3 4+ 7C; x 6C, +7C; x6C, + 7C, x 6Cg ways
= 7x20+21x15+35x6+4+35x1
=140x315x210x35
=700 ways.
(d) For the committee of bath sexes we have the following possibilities .

1. 1 men and 3 women
2. 2 men and 2 women

3. 3 men and 1 women



Which can be done in
:6C1X7C3+6C2X7C2+6C3X7C|
=6x35+15x21+20x7

=210+315+140

=665 ways.

Sol : (1) 4 balls of any colour can be chosen from 11 balls (6+5) in 11C,4 way
=330 ways.

(2) The 2 white balls can be chosen in 6C, ways. The 2 red balls can b

chosen in 5C, ways. Number of ways selecting 4 balls 2 must be red

=6C, + 5C,
= 6x5 . +.5x4.
1x2 1x2
=15+ 10
=25 ways. |
Number of ways selecting 4 balls and all Of same colouris =6C4+ 5 C‘

=15+5
=20ways.

Definition

.A Linear homogeneous recurrence relation of degree K with
constant coefficients is a recurrence relation of the form
The recurrence relation in the definition is linesr since the right hand
side is the sum of multiplies of the previous terms of sequence.

The recurrence relation is homogeneous , since no terms occur that
are not multiplies of the aj”s.



The coefficients of the terms of the sequence are all constants

LU

,rather than function that depends on “n”.
The degree is k because an is exrressed in terms of the previous k
terms of the sequence
Ex:  The recurrence relation
H,=2H,,+1
Is not homogenous
Ex:  The recurrence relation
B.=nB,.1
Does not have constant coefficient
Ex The relation T(k)=2[T(k-1)]°KT(K-3)
Is a third order recurrence relation &
T(0),T(1),T(2) are the initial conditions.
Ex: The recurrence relation for the function
f : N->Z defined by
f(x)=2x,¥ x € N is given by
f(n+1)=f(n)+2,n>=0 with f(0)=0
f(1)=f(0)+2=0+2=2
f(2)=f(1)+2=2+2=4 and so on.

It is a first order recurrence relation.
RECURRENCE RELATIONS

Definition

An equation that expresses a,, the general term of the
sequence {an} in terms of one or more of the previous terms of the

sequence , namely ag,a, __a,.1,for all integers n with n>=0,where ngis

.......

a non —ve integer is called a recurrence relation for {a,} or a
difference equation.



If the terms of a recurrence relation satisfies a recurrence
relation , then the sequence is called a solution of the recurrence
relation.

For example ,we consider the famous Fibonacci sequence
0,1,1,2,3,5,8,13,21,.....,
which can be represented by the recurrence relation.
Fo=Fn1t+Fn5,n>=2
& Fy=0,F;=1. Here Fy=0 & F;=1 are called initial conditions.

It is a second order recurrence relation.

Solving Linear Homogenous Recurrence Relations with
Constants Coefficients.

Step 1: Write down the characteristics equation of the given
recurrence relation .Here ,the degree of character equation is 1 less
than the number of terms in recurrence relations.

Step 2: By solving the characteristics equation first out the
characteristics roots.

Step 3: Depends upon the nature of roots ,find out the solution
a, as follows:

Case 1:  Let the roots be real and distinct say ry,ry,rs.....,r, then
An=aqr™+ aor™+ asrs . +or,,

Where a; ay, ....,a, are arbitrary constants.

Case 2: Let the roots be real and equal say ri=r,=rs=r, then

2 2
A= aqr™+ noLr 0’ osrs ™. +n” a.r,",



Where a;, a; ....,a,are arbitrary constants.

Case 3: When the roots are complex conjugate, then
an=r"(a;,cosnf+ a,sinnf)

Case 4: Apply initial conditions and find out arbitrary constants.

Note:

There is no single method or technique to solve all recurrence
relations. There exist some recurrence relations which cannot be
solved. The recurrence relation.

S(k)=2[S(k-1)]’-kS(k-3) cannot be solved.

Example If sequence a,=3.2",n>=1, then find the recurrence
relation.
Solution:
For n>=1
a,=3.2",

.1'
now, an.1=3.2"

=3.2"/2
an1=a"/2
an = 2(an-1)

a, = 2a,-1, for n>1 with a,=3



Example

Find the recurrence relation for $(n) = 6(-5),n> 0

sol :
Given S(n) = 6(-5)"
S(n-1) = 6(-5)""
=6(-5)" /-5
S(n-1) =S(n) /-5
Sp =-5.5(n-1), n> 0 with s(0) =6
Example Find the relation from Y, =A.2* + B.3"
Sol :
Given Yy =A.2" +B.3" -rrrrrrev (1)
Yior =A.25" +B.3"!
=A.2“.2+B3" 3
Yier =2A.2% +3B.3F - ——-=>(2)
V.Y S | i A — >(3)

(3)—5(2) +6(1)
Vi -5Vir + 6y =4A.2° + 9B.3%-10A.2" - 15B.3+ 6A.2% +6B.3"
=0

e Yie1-5Yke1 + 6y =0 in the required recurrence
relation.

Example

Solve the recurrence relation defind by S, = 100 and Sy (1.08)
Siq for k>1

Sol ;
Given Sy=100
S¢=(1.08) Sk1 k>1
S1=(1.08) Sy = (1.08)100
S;=(1.08) S, = (1.08)(1.08)100

=(1.08)’ 100



S;=(1.08) S, = (1.08)(1.08)°100
= =(1.08)” 100

S, =(1.08)S.1 = (1.08)“100

Example Find an explicit formula for the Fibonacci sequence .
Sol;
Fibonacci sequence 0,1,2,3,4........ satisify the recurrence relation
fn="f 1 +f.
fn-fo1-fha=0

& also satisfies the initial condition fy=0,f;=1
Now , the characteristic equation is

r-r-1 =0
Solving we get r=1+ 1+4 / 2

=1+5/2
fn=oy (1+45/2)"+a, (1-5/2)" -—=>(A)

given fy =0 put n=0in (A) we get

fo=a; (145/2)° +a, (1-5/2)°

(A)=2 al +02 =0 ------m--mmmme e -2>(1)
given f; =1 put n=1in (A) we get

fi=a; (145/2) +ay (1-5/2)"

(A)P(1+5/2)" +ay (1-5/2)" 0y = 1 ——--->(2)



To solve(1) and (2)
(1) X(1+5/2)=>(1+5/2) s + (1+5/2) @, =0----->(3)
(145/2) o+ (145/2) o = 1------ 2>(2)

(-) (-) (-)

1/2 o+ 5/2 0;-1/2 0, +5/2 a; = -1

25 d=-1

a, =-1/5

Puta, =-1/5 ineqgn (1) we get a; 1/5
Substituting these values in (A) we get

Solution fn=1/5 (1+5/2)" -1/5 (1+5/ 2 )"

Example
Solve the recurrence equation
an=2ap1—2a,2,n>2 &ap=1&a;=2
Sol :
The recurrence relation can be written as
an-23n1+2a,2=0
The characteristic equation is
r2—2r-2=0
Roots arer=2+2i/2

=1+



LINEAR NON HOMOGENEOUS RECRRENCE RELATIONS WITH
CONSTANT COEFFICIENTS

A recurrence relation of the form
Ay, =C1 Ap_1+Cy Apy_ot...o....... Cx Ap_ptF(m)................ (A)

Where c¢q,c; ,.... ¢k are real numbers and F(n) is a function not identically zero
depending only on n,is called a non-homogeneous recurrence relation with
constant coefficient.

Here .the recurrence relation
Ay, = C1 Apu_1+Cy Ap_ot. ... .. Ck Ap_ptF(m). ... .. (B)
Is called Associated homogeneous recurrence relation.
NOTE:
(B) 1s obtained from (A) by omitting F(n) for example ,the recurrence relation

a, = 3 a,_1+2, is an example of non-homogeneous recurrence relation .Its
associated

Homogeneous linear equation is

a, = 3 a,_1 [ By omitting F(n)=2n ]

PROCEDURE TO SOLVE NON-HOMOGENEOUS RECURRENCE
RELATIONS:

The solution of non-homogeneous recurrence relations is the sum of two
solutions.

1.solution of Associated homogeneous recurrence relation (By considering
RHS=0).

2.Particular solution depending on the RHS of the given recurrence relation
STEP1:
a) if the RHS of the recurrence relation is
ay+ayn..a, n', then substitute

Co+cin+cyn . ¢ (n-1)" inplaceof a, —1........... and so on ,in the
LHS of the given recurrence relation



(b) if the RHS is a " then we have

Casel:if the base a of the RHS is the characteristric root,then the solution is of the

can” .therefore substitute ca” in place of a,, ,ca™ in place of c(n-1) a,, etc..

Case2: if the base a of RHS is not a root , then solution is of the form ca” therefore

substitute ca” in place of a, , ca™' in place of a, efc..
STEP2:

At the end of step-1, we get a polynomial in ‘n” with coefficient co,c;......
LHS

Now, equating the LHS and compare the coefficients find the constants co,c;,.. ..

Example
Solve a,, = 3 a,,_; +2n with a,; =3
Solution:
Give the non-homogeneous recurrence relation is
a, — 3 a,_1 -2n=0
It’s associated homogeneous equation is
a, — 3 a,,_1 =0 [omitting f(n) =2n]

It’s characteristic equation 1s

r-3=0 => r=3

now, the solution of associated homogeneous equation is
a, (n) =x,3"

To find particular solution

Since F(n) =2n is a polynomial of degree one,then the solution is of
the from

a, = ¢, +d (say) where ¢ and d are constant



Now, the equation
a, = 3 a,_; +2n becomes
¢, +d =3(c(n-1)+d)+2n
[replace a, by ¢,, +d a, by c(n-1)+d]

= ¢, +d =3cn-3c+3d+2n

= 2cn+2n-3c¢+2d=0

= (24+2¢)n+(2d-3¢)=0

= 242¢=0 and 2d-3¢=0

= Saving we get c=-1 and d=-3/2 therefore cn+d is a solution if ¢=-1 and
d=-3/2

a, (p)=-n-3/2
Is a particular solution.
General solution
an=an(n)+ a,(p)
a, =<3"-n-3/2 ... (A)
Given a; = 3 putn=1 in (A) we get

a; =x 1(3) ' -1-3/2

3=3c< ;-5/2
3o =112
o |=11/6

Substituting o< (=11/6 in (A) we get
General solution

a ,=-n-3/2+(11/6)3"



Example:
Solve s(k)-Ss(k-1)+6s(k-2)=2

With s(0)=1 ,s(1)=-1
Solution:

Given non-homogeneous equation can be written as
a,=5a,;+6a,,-2=0
The characteristic equation is

r*-5r+6=0
roots are r=2,3
the general solution is

3p(n) =o¢(2)"+0¢ 5 (3)"
To find particular solution

As RHS of the recurrence relation is constant ,the solution is of the
form C , where C is a constant

Therefore the equation
an,-da,,-6a,,-2=2
c-5¢c+6¢=2

2¢c=2
c=2
the particular solution is
sa(p)=1
the general solution is
Sp= Sn(N)+ Sx(p)

S, =0 (2)"+0¢ 5 (3) 1. (A)



S, =0 (2)"+0c , (3) 1. (A)
Given sg=1 put n=0 in (A) we get
So =€ 1(2)"+0¢ 5 (3)%+1

Sg = 1+, +1

(A) => So=1 = |+ 5, +1

Given aq=-1 put n=1 in(A)

> S, = (2)'+0¢ , (3)'+1
D (A) -1=¢ (2)+0¢ 5 (3)+1

oC +0C =0
200 43 X p=-2 . ... (2)
By solving (1) and (2)

& =2, y=-2

Substituting & =2, ,=-2 in (A) we get

Solution is

= S =2.(2)"-2. (3)"+1

Example
Solve a, — 4 a,,_,+4 a,,_,=3n+2"

a0=a1=1



Solution:

The given recurrence relation is non-homogeneous
Now, its associated homogeneous equation is,

a, —4 ay_1+4 a,_,=0
Its characteristic equation is

2

1°-4r+4=0

1=2,2
solution , a,,(n) =« ;(2)"+n « ,(2)"

an(n) = (o< 1+n o¢,)2"
To find particular solution

The first term in RHS of the given recurrence relation is 3n.therefore ,the solution
is of the form c¢;+c,n

Replace a,, by ¢;+c;n, a,_q by ci+cz(n-1)

And a,,_, by ¢+c;(n-2) we get
(¢cq+con)-4(cq+cy(n-1))+4(cy+c5(n-2))=3n

= ¢y-4cy + 4cy + ¢, n-4cyn+4c,n+4c,-8c,=3n
= ¢y+Cn-4¢,=3n

Equating the corresponding coefficient we have
¢q-4¢5=0 and ¢,=3
c1=12 and ¢,=3

Given ag=1 using in (2)

(2) => o +12=1

Given a;=1 using in (2)

(2)=> (o€ 4+ 2)2412+43+1/2 .2=1

=> (2 1 +2 X )+16=1................. (14)
3) o< =11

Using in (4) we have oc ,=7/2

Solution a ,=(-11+7/2n)2"+12+3n+1/2n2"



Example:
HOW MANY INTEGERS BETWEEN 1 to 100 that are
i) not divisible by 7,11,0r 13
ii) divisible by 3 but not by 7
Solution:
i) let A,B and C denote respectively the number of integer between 1 to 10C
that are divisible by 7,11 and 13 respectively
now,
Al =[100/7]=14
IBI =[100/11]=9
ICI =[100/13]=7
IAMBI =[100/7]=1
IANCI =[100/7%13]=1
IBACI =[100/11%13]=0

IAABACI =[100/7*11*13]=0
That are divisible by 7, 11 or 13 is |IAvBvCl

By principle of inclusion and exclusion

IAVBVCI =IAl+IBI+ICI-IAMBI-IAMNCI-IBACIHIAMBACI
=14+9+7-(1+14+0)+0
=30-2=28
Now,
The number of integer not divisible by any of 7,11,and 13=total-IAvBvCl
=100-28=72

ii) let A and B denote the no. between 1 to 100 that are divisible by 3 and 7
respectively



IAl =[100/3]=33
IBI=[100/7]=14
| AAB 1=[100/3*7]=14
The number of integer divisible by 3 but not by 7
=IAl-l A”B |
=33-4=29
Example:

There are 2500 student in a college of these 1700 have taken a course in
C, 1000 have taken a course pascal and 550 have taken course in networking
Jfurther 750 have taken course in both C and pascal ,400 have taken courses
in both C and Networking and 275 have taken courses in both pascal and
networking. If 200 of these student have taken course in C pascal and
Networking.

i)how many these 2500 students have taken a courses in any of these three
courses C ,pascal and networking?

ii)How many of these 2500 students have not taken a courses in any of these
three courses C,pascal and networking?

Solution:

Let A,B and C denotes student have taken a course in C,pascal and
networking respectively

Given
IAI=1700
IBI=1000
ICI=550
I AB | =750
| ANCI=40
| BAC =275
| AABAC 1=200

Number of student who have taken any one of these course=| A*B*C |

By principle of inclusion and exclusion



IAvBVCI =IAl+BI+ICI-IAABI-IAMCI-IBACHIAMBACI
=(1700+1000+550)-(750+400+275)+200
=3450-1425=2025

The number between 1-100 that are divisible

by 7 but not divisible by 2,3.5,7= =IDI-  A*BAC "CDI

=142-4=138

Example:

A survey of 500 television watches produced the following
information.285 watch hockey games.195 watch football games 115 watch
basketball games .70 watch football and hockey games.50 watch hockey and

basketball games and 30 watch football and hockey games.how many people
watch exactly one of the three games?

Solution:
H=> let television watches who watch hockey
F=> let television watches who watch football
B=> let television watches who watch basketball
Given
n(H)=285,n(F)=195,n(B)=115,n(H*F)=70,n(H"B),n(F"B)=30
let x be the number television watches who watch all three games

now, we have

-\ L =
| bS5t X0y asta
/ < 1
{'90,’1 30 -7

As+x. |
B



Given 50 members does not watch any of the three games.
Hence (1654X)+(95+X)+(35+x)+(70+X)+(50+x)+(30+x)+x=500
=445+x=500
X=55

Number of students who watches exactly one game 1s=165+x+95+x+35+x

=295+3%55
=460
Generating function:
The generating function for the sequence °S’ with terms ao,ay,..... a,

Of real numbers is the infinite sum.
G(x)=G(s,X)= agta;x+,..... apx"+.. .= Y ax"

For example,

i) the generating function for the sequence ‘S’ with the terms 1,1,1,1.....1.s
given by,

G(x)=G(s,x)= Yopzo x™=1/1-x

11)the generation function for the sequence ‘S’ with terms 1,2,3.4.....1s given
by

G(x)=G(s,x)= Z:;O(n + 1)x™
=142x43x+... ...

=(1-x)*=1/(1-x)*



2.Solution of recurrence relation using generating function
Procedure:
Stepl:rewrite the given recurrence relation as an equation with 0 as RHS

Step2:multiply the equation obtained in step(1) by x" and summing if form 1 to o
(or 0 to o) or (2 to «).

Step3:put G(x)=Y.n-oa™x™ and write G(x) as a function of x
Step 4:decompose G(X) into partial fraction

StepS:express G(x) as a sum of familiar series

Step6:Express a, as the coefficient of X" in G(x)

The following table represent some sequence and their generating functions

stepl sequence generating function
1 1 1/1-z

2 -1)" 1/1+z

3 a" 1/1-az

4 (-a)" 1/1+az

5 n+1 1/1-(z)?

6 n 1/(1-z)°

7 n’ z(1+2)/(1-z)’

8 na" az/(1-az)>



Eg:use method of generating function to solve the recurrence relation
a,=3a,.+1; n>1 given that a)=1
solution:
let the generating function of {a,} be
G(X)=Xn=o Anx"
ap=3a,.,+1
multiplying by x" and summing from 1 to o,
n=o An X" =3Y -1 (A1 X))+ L= (x™)
Yiieo Anx™ =3 ). (Ang ™) +N5e (™)
G(x)-29=3xG(X)+x/1-X

G(x)(1-3x)=ap+x/1-x

=14+x/1-x



G(x)(1-3x)=1=x+x/1-x
G(x)=1/(1-x)(1-3x)

By applying partial fraction
G(x)=-1/2/1-x+3/2/1-3x
G(x)=-1/2(1-x)"'+3/2(1-3x)""
G(x)[1-x-x*]=a¢-a,X-a0X
GXx)[ l—x—x2]= ag-apX+a;x

G(x)=1/1-x-x>  [ap=1, a;=1]

1

:(1—1+v’5_ x/2)(1-1-5 x/2)
A . B
1-(EEyn -y

Now,

1/1-x-x> = A : 5 .
- a-(2E

1=A[1 — (25)x01+ B[1 -

Put x=01in (2)
(2)=> A+B=1
Put x=2/1-V5 in(2)

1+\/_]
1-V5"

1-v/5-1-+5 |
1-5

(2)=> 1=BJ[I-

1=B|[

1=BJ[

1F]



1-/5
-2v5

B=

1475
T 245

Sub A and Bin (1)

(3) =>

G(x)= = D)1

1+~/_

=L A (2

___1 1_\X5_ 1—\/5_ - 2
_\/5—( 5 )[1+( 2 )X+( > ).
ap=coefficient of x" in G(x)

solving we get

1+\/_ n+l —\/_ n+1
== \/— ( ) V"_ ( )

!

THE PRINCIPLE OF INCLUSION -EXCLUSION

Assume two tasksT; and T, that can be done at the same
time(simultaneously) now to find the number of ways to do one of the two tasks
Tiand T,, if we add number ways to do each task then it leads to an over count.
since the ways to do both tasks are counted twice. To correctly count the number
of ways to do each of the two tasks and then number of ways to do both tasks

i.e MTvT)="( T+ To)-"( T"T)

this technique is called the principle of Inclusion —exclusion

FORMULA:4

l) | A|VA2VA 3|=|A||+|A3|+|Aj|-|A|AAg|-|A|AA1|-|A3AA3|+|A|AA3A A}l

2) IAIVARVA 3v A yl=IA A+ A Ag A A AG-IA M AGIHIA M AY- LA Al
AN AYIANALHIA AN Ay HIAMAN Ag IHIANAN Ay HIANAN Ay 1HIA AN

As"A4



Example

A survey of 500 from a school produced the following information.200 play
volleyball, 120 play hockey,60 play both volleyball and hockey. How many are not
playing either volleyball or hockey?

Solution:
Let A denote the students who volleyball
Let B denote the students who play hockey
It is given that
n=500
IAI=200

IBI=120
IA*BI=60

Bt the principle of inclusion-exclusion, the number of students playing either
volleyball or hockey

IAvBI=IAl+IBI-IA”BI
IAvBI=200+120-60=260
The number of students not playing either volleyball or hockey=500-260
=240
Example

In a survey of 100 students it was found that 30 studied mathematics,54
studied statistics,25 studied operation research, | studied all the three subjects.20
studied mathematics and statistic,3 studied mathematics and operation research
And 15 studied statistics and operation research

I.how many students studied none of these subjects?

2.how many students studied only mathematics?

Solution:
1) Let A denote the students who studied mathematics

Let B denote the students who studied statistics



Let C denote the student who studied operation research
Thus IAI=30 ,IBI=54 ,ICI=25 ,IA*BI=20 JA*CI=3 IBACl=15 ,and IAAB"Cl=1

By the principle of inclusion-exclusion students who studied any one of the subject
is

IAvBvCI=IAl+IBI+ICI=IA*BI-IAMCI-IBACIHIAMBACI
=30+54+25-20-3-15+1
=110-38=72

Students who studied none of these 3 subjects=100-72=28
2) now ,

The number of students studied only mathematics and statistics=n(A”B)-
n(A*B*C)

=20-1=19

The number of students studied only mathematics and operation
research=n(A*C)-n(A*B"C)

=3-1=2

Then The number of students studied only mathematics =30-19-2=9

Example
How many positive integers not exceeding 1000 are divisible by 7 or 11?
Solution:

Let A denote the set of positive integers not exceeding 1000 are divisible by
7

Let B denote the set of positive integers not exceeding 1000 that are divisible by 1] .
Then I1AI=[1000/7]=[142.8]=142
IBI=[1000/11]=[90.91=90
IAABI=[1000/7*11]=[12.9]=12



The number of positive integers not exceeding 1000 that are divisible either
7or 11 is|AvBI

By the principle of inclusion —exclusion
IAvBI=IAl+IBI-IA*BI
=142+90-12=220

There are 220 positive integers not exceeding 1000 divisible by either 7 or
11

Example:

A survey among 100 students shows that of the three ice cream flavours
vanilla,chocolate,and strawberry ,50 students like vanilla,43 like chocalate ,28 lik
strawberry, 13 like vanilla, and chocolate, 1 1like chocalets and strawberry, 12 like
strawberry and vanilla and 5 like all of them.

Find the number of students surveyed who like each of the following flavours
l.chocalate but not strawberry
2.chocalate and strawberry ,but not vanilla
3.vanilla or chocolate, but not strawberry
Solution:
Let A denote the set of students who like vanilla
Let B denote the set of students who like chocalate
Let C denote the set of students who like strawberry

Since 5 students like all flavours



SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES

Department of Mathematics

UNIT — Il = NUMERICAL METHODS

FOR SOLVING EQUATIONS —
SMTA1208




NUMERICAL METHODS FOR SOLVING EQUATIONS

Numerical Solution of algebraic and transcendental equations: Regula Falsi method, Newton
Raphson method - Numerical Solution of simultaneous linear algebraic equations: Gauss
Jordan method, Gauss Jacobi method, Gauss Seidel method.

INTRODUCTION

Solution of Algebraic and Transcendental Equations

A polynomial equation of the form
fO =paX)=ap ™ +a ™+ @™+ +a, x+a,=0
is called an Algebraic equation. For example,

4 2, e_ 2 ey 243 2 e — . .
XA T 5=0.407 =507 7= 00207 =537+ Tx 5= 0 gre algebraic equations.
An equation which contains polynomials, trigonometric functions, logarithmic functions,
exponential functions etc., is called a Transcendental equation. For example,

tanx — € =0; sinx—xe™* =0; xe =cosx

are transcendental equations.

Finding the roots or zeros of an equation of the form f(x) = 0 is an important problem in science
and engineering. We assume that f (x) is continuous in the required interval. A root of an
equation f (x) = 0 is the value of x, say x = a for which f (a) = 0. Geometrically, a root of an
equation f (x) = 0 is the value of x at which the graph of the equation y = f (x) intersects the x —

axis (see Fig. 1)

fix)

\<'y—l'{xl )
TN

Fig. 1 Geometrical Interpretation of a root of f(x) =0

A number a is a simple root of f (x) = 0; if f (a) = 0 and f (o) # 0. Then, we can write

f(x)as, f (x) = (x—a) g(x), g(a) #0.
A number a is a multiple root of multiplicity m of f (x) =0,



and ) M (a)=0.
Then. f(x) can be writhen as.

fE)=(x-a)"g@®).g(@ =0

A polynomial equation of degree n will have exactly n roots, real or complex, simple or
multiple. A transcendental equation may have one root or no root or infinite number of roots
depending on the form of f (x).

The methods of finding the roots of f (x) = 0 are classified as,

1. Direct Methods

2. Numerical Methods.

Direct methods give the exact values of all the roots in a finite number of steps. Numerical
methods are based on the idea of successive approximations. In these methods, we start with
one or two initial approximations to the root and obtain a sequence of approximations Xo, X1,

.. xk which in the limit as k —o0 converge to the exact root x = a. There are no direct methods
for solving higher degree algebraic equations or transcendental equations. Such equations can
be solved by Numerical methods. In these methods, we first find an interval in which the root
lies. If a and b are two numbers such that f (a) and f (b) have opposite signs, then a root of f (x)
=0 lies in between a and b. We take a or b or any valve in between a or b as first approximation
x1. This is further improved by numerical methods. Here we discuss few important Numerical
methods to find a root of f (x) = 0.



REGULA FALSI METHOD

This is another method to find the roots of f (x) = 0. This method is also known as Regular
False Method. In this method, we choose two points a and b such that f (a) and f (b) are of
opposite signs. Hence a root lies in between these points. The equation of the chord joining the

two points.



(a, f(a)) and (b, (b)) is given by

y-fla) _fb)-Jla) .5

x-d b-ua

We replace the part of the curve between the points [a, f(a)] and [b, f{b)] by means of the
chord joining these points and we take the point of intersection of the chord with the x axis as
an approximation to the root (see Fig.3). The point of intersection is obtained by putting y =10
in (5), as

_._af(b)-b[la)
I=x = —m——
[(b)- f(a)

x 18 the first approximation to the root of f {(x)=10.

..{6)

YA

(a, f{a))

Fig. 3 Method of False Position

[f f(x;) and f (&) are of opposite signs, then the root lies between a and x; and we replace b
by x1 in (6) and obtain the next approximation x2. Otherwise, we replace a by xi and generate
the next approximation. The procedure 1s repeated ull the root is obtained to the desired
accuracy. This method is also called linear interpolation method or chord method.



1.  Find the root of the equation 2x — log x = 7 which lies between 3.5 and 4 by
Regula—False method. (JNTU 2006)

Solution
Given flx) = 2 - logeyy=7 . (1)
Take x;=35, x =4
Using Regula Falsi method
R
f(n)-1(x)
4-35

n=35- (~0.5441)
(0.3979+0.5441)

x:=3.7888
Now taking x; = 3. 7888 and x; =4

X3 =X - f[xls_;{ru}-f[xu}

437888
3= 3.7888 - ———— (~0.0009)
0.3988

S {-Tu)

Xa=xp—

x3=13.7893
The required root 1s = 3. 789



2. Find a real root of xe* = 3 using Regula-Falsi method.
Solution
Given flx)=xe -3=0
f(l)=e-3=-02817<0
fi)=2"-3=11778>0
One root lies between 1 and 2
Now taking xy=1,x, =2
Using Regula — Falsi method




1(11.778)-2(-0.2817)
2T 778400817
x=1329
Now f(x2) =f1.320) = 1.329 ¢ -3=20199 > 0
f(1)=-0.2817<0
The root lies between 1 and 1.329 taking x = 1 and x; = 1.329
Taking xy= 1 and x,=1.329
. 5/ (%) -5/ (%)
f[:fz)-f{l'n]
1(2.0199) +(1.329)(0.2817)
(2.0199) +(0.2817)

23942

Now (') = 1.04 "™ -3=—0.05<0
The root lies between x° and x°

e, 104and 1329 [ f(x2)> 0 andf(x;) < 0]
_nf(x) xS (x) _ (104)(-0.05)-(1.329)(20199)
Y () f(xn) (-0.05)~(2.0199)

x; = 1.08 is the approximate root



3. Find a real root of &' sin x = 1 using Regula — Falsi method
Solution
Given flx)=¢" sinx—1=10
Consider x; =2
fi)=f(2)=e"sin2-1=-0.7421 <0
fe)=f(3)=¢'sin3-1=0511>0
The root lies between 2 and 3
Using Regula — Falsi method
= -TUI[IJ} _Ilf[xﬂ}
- ()= S(x%)




~ 2(0.511)+ 3(0.7421)
0.511+0.7421
x2=293557
fix2) = e 5in(2.93557)— 1
f(x2) =—0.35538 <0
Root lies between x> and x,

i, lies between 293557 and 3
x ) [II} - Ilf[xz}

X

(¥

=

W

BT T () ()
(2.93557)(0.511) — 3(—35538)
- 0.511+ 035538
x3=2.96199

F(xs) =" """ 5in(2.96199) —1 = —0.000819 < 0
root lies between xs and x
_ Isf{-’f:} —Ilf{l’a}
f{-’ﬁ }—f(-ﬁ}
 2.96199(0.511) +3(0.000819)
0.511+ 0.000819

S = & in(2.9625898) — 1
Fix")y=—0.0001898 <0
The root lies between xy and x,
_x_ﬂf[xl}—xlf[xd}

f{xl}—f{xd}

= 29625898

X4

Xg =

| 2.9625898(0.511) +3(0.0001898)
- 0.511+(0.0001898)

x5 = 2.9626

we have
x5 = 29625
xs= 29626
L Xg =y = 2962
The root lies between 2 and 3 is 2.962



4.  Find a real root of x € = 2 using Regula — Falsi method
Solution
flx)=xe-2=0
f0y==-2<0, f(l)=ie,-2=(2.7183)2
fi1)=07183=0
The root lies between 0 and 1
Considering x;=0,x,=1
f0)=fix)=-2; f(1)=/(x)=0.7183
By Regula - Falsi method
e %of (%) -5/ (%)
C S(n)-(x)
I][EII.?IEE]— 1[—2} 2
0.7183- {—2} 2.7183
x3=0.73575
Now f(x) = f(0.73575) = 0.73575 ¢" " -2
flxa)=-046445<10
and f(x;)=0.7183=0
The root x; lies between x; and x»
) I:f{.‘l.’l }—_rlf{_t._,}
f(x)-1(x)

X3=

(J



(0.73575)(0.7183)
0.7183+0.46445

_ 052848 + 0.46445
1. 18275

0.992939
3= —
1. 18275

A3

A3

(0.83951)

v =083951 f(x)=
’ T6)= G g30s1)e

f(xs) = (0.83951) %1 2
f(x3)=—0.056339 < 0



One root lies between x, and x;

_ ()= (x) (083951)(0.7183)-1(-0.056339)

f(%)-f(x) 0.7183+0.056339

R

_ 065935
0.774639

flxg) = 0851171 e0.851171 -2 =-0.006227 <0

Now x; lies between x; and x;
_ Iaf{x|}_xlf(xa}
f[IL)‘f(Id]
~(0.851171)(0.7183)+(.006227)
‘ 0.7183 +0.006227

o 0.617623
0.724527

Now f (xs) = 0.85245 &" %% "% _ 2 = _0.0006756 < 0
One root lies between x; and xs, (1.e., x; lies between x; and xs)

Using Regula — Falsi method

 (0.85245)(0.7183) + 0.0006756
0.7183+0.0006756

x5 =0.85260
Now f(xg) =-0.00006736 <0
One root x4 lies between x; and x,
By Regula - Falsi method

=(.851171

X4

=().85245




_ xS [-"-'l }_ xS {-"ﬁ}
f‘[-‘ft}_f[xﬁ}
. [U.ESEEH}(D.?IE3]+H.E{]{JE?EE
0.7183 +0.0006736
x7=10.85260
From x” = 0.85260 and x; = 0.85260

A real root of the given equation 15 0. 85260

NEWTON RAPHSON METHOD

This is another important method. Let x; be approximation for the root of /" (x) = 0. Let
x; =xy + h be the correct root so that f(x;) = 0. Expanding /'(x) = f(x; + h) by Taylor series,
we get

2

fx)=fa+h)=f(x)+h f'{I”JJr% [T+ =0 (1)

For small valves of h, neglecting the terms with h"’, - etc,. We get

So) +h f (x0) =0 .2)



h=- f(xo)

and -
I(x)
xn=xo+h
_ o Jx)
2 i
f(x)
Proceeding like this, successive approximation xs, X3, ... X, - are given by,
Xp+1=Xy— f'(x,) : el )
f(x,)
Forn=0,1,2, ......
Note:

(1) The approximation x,. given by (3) converges, provided that the imtial
approximation x, is chosen sufficiently close to root of f(x) = 0.

(1) Convergence of Newton-Raphson method: Newton-Raphson method is similar to

iteration method
f(x)
Wx)=x——— 1)
f(x)
differentiating (1) w.r.t to ‘x’ and using condition for convergence of iteration method i.e.
') <1,
We get
NAE) WACY R (E3VAlEo)
S@F
Simplifying we get condition for convergence of Newton-Raphson method 1s
(). ()] < [f(F
Example 1

Using Newton-Raphson method (a) Find square root of a number (b) Find a reciprocal



of a number.

Solution

(a) Let n be the number and x =vn x? =n
Iff(x)=x>2—n=0....(1)

Then the solutionto f (X) =x*—n=0isx =vn
f1(x) = 2x

by Newton Raphson method

using the above formula the square root of any number ‘n’ can be found to required
accuracy.
(b) To find the reciprocal of a number ‘n’

fx)=3-n=0 (D)
- solution of (1) is x = -

Fi(0) =—

Now by Newton-Raphson method,

s = { flix,-} ]
fix)

Xi+1 =% (2-x; 1)
Using the above formula, the reciprocal of a number can be found to required accuracy.
Example 2
Find the reciprocal of 18 using Newton—Raphson method.
Solution

The Newton-Raphson method



Xi+1 = Xi (2 —Xi n) (D)

considering the initial approximate value of x as xo = 0.055 and given n = 18

. X1 = 0.055 [2 — (0.055) (18)]

. X1 =0.0555

X2 = 0.0555 [2 — 0.0555 x 18]

x2 = (0.0555) (1.001)

X2= 0.0555

Hence x1 = X2 = 0.0555

.. The reciprocal of 18 is 0.0555.
Example 3

Find a real root for x tan x +1 = 0 using Newton—Raphson method
Solution
Givenf(x)=xtanx+1=0

f1(x) = x sec2 x + tan x
f(2)=2tan2+1=-3.370079<0
f(3)=2tan3+1=-0.572370>0

.. The root lies between 2 and 3

Take xo :22L3 =25 (average of 2 and 3), By Newton-Raphson method
_x._l = x: — [ f{‘xi} ]
A W €]
X1 = x0— ( J(xy) ]
LS (%)
=25 _ (—0.86755)
YT 3014808



fx) .

Fix)
f(x1) =—0.06383, Fl(x) = 2.80004
06383
Xy =2.77558 — (£0.06383)
2.80004
x3=2.798
f(x)=—0.001080,  f(xy)=2.7983
| — 0.001080
X3 =% — Lf"—} — 2705 17 0:001080]
f(x) 2.7983
x3=2.798.
X2 =X

- Thereal rootofxtanx + 1=01s 2.798
Example 4
Find a root of e* sin x = 1 using Newton—-Raphson method
Solution
Givenf (x) =e*sinx—1=0
f1(x)=e*sinx+ e*cos x
Takex1=0,x2=1
f(0)=f(x1)=€e’sin0-1=-1<0
f(1)=f(x2)=elsin(1)-1=1.287>0
The root of the equation lies between 0 and 1. Using Newton Raphson Method

X))
Xi+1 =4 — fl(—
f(x)
Now consider xp = average of 0 and 1
1+0
ip= ={.5
2
Xg= 0.5

fxo) =€ sin (0.5)—1

11 (x0) = €° sin (0.5) + &% cos (0.5) =2.2373
f(x) ,_ (£0.20056)

) 2.2373




x1 = 0.5936
f(x1) =" sin (0.5936) — 1 = 0.0128
1 () = €% sin (0.5936) + €% cos (0.5936) = 2.5136

Xy =x1— —;Z{IT} =0.5936 — M
J (%) 2.5136
x; = 0.58854
similarly X3=1— fl (%)
f(x)

f(x2) = &% sin (0.58854) — 1 = 0.0000181

1 () = €% sin (0.58854) + "% cos (0.58854)
f(x2) = 2.4983

0.0000181

x3 = 0.58854 —
2.4983

x3 = 0.5885

Ar—2X3; = (0.5885

0.5885 is the root of the equation ¢ sinx—1=0

GAUSS ELIMINATION METHOD
This is the elementary elimination method and it reduces the system of equations to an

equivalent upper — triangular system, which can be solved by back substitution.
We consider the system of n linear equations in n unknowns
a11X1 +aXe + ... +amXn = b1

a21X1 +azXo + ... + axnXn = b2

an1X1 +an2X2 + ... + annXn = bn

There are two steps in the solution viz., the elimination of unknowns and back substitution.

Example 1
Solve the following system of equations using Gaussian elimination.

X1+ 3X2—5x3=2

3X1+ 11X —9x3=4



—X1+X2+6X3=5
Solution

An augmented matrix is given by

3 —5]2
3 11 —9|4
1 1 65

We use the boxed element to eliminate any non-zeros below it.

This involves the following row operations

3 5|2 3 -5| 2
3 11 -9|4| R2-3xRl = | 02 6]|-2
1 1 6|5] R3+RI 04 1| 7

And the next step is to use the 2 to eliminate the non-zero below it. This requires the final row

operation
1 3 5| 2 1 3 -5 2
0 6| —2 = |0 6|2
0 4 1| 7] R3-2xR2 0 0 —11f 11

This is the augmented form for an upper triangular system, writing the system in extended form

we
'r[ |' ;‘}.i"j -_;|_il‘_.; s 2
2zy + bxg 9
11lrys = 11

This gives x3 =-1; X2 = 2; X1 = -0.

Example 2

Solve the system of equations
2X + 4y +6z = 22

3X + 8y +5x =27
X+y+22=2

Solution

2 4 6 22
3 8 5 27
-1 1 2 2

R1‘=1/2R:




1 2 311
3 8 5 27
-1 1 2 2
R2’=R2—-3R1;R3’=R3+ R
(1 2 3 117
0 2 -4 -6
0 3 5 13
R2’=1/2R> ; R1’=R1—-2R>; R3’=R3— 3Rz
1 0 7 17]
0 1 -2 -3
0 0 11 221
R3’=1/11R;1; R1’=R1—7R3; R1’=R1—-7R3; R2’=R2 + 2R3
1 0 03
01 01
0 0 12

Thus, the solution to the systemisx =3,y =1,z =2.
ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is,

a solution is obtained after a single application of Gaussian elimination. Once a “solution” has
been obtained, Gaussian elimination offers no method of refinement. The lack of refinements
can be a problem because, as the previous section shows, Gaussian elimination is sensitive to
rounding error. Numerical techniqgues more commonly involve an iterative method. For
example, in calculus you probably studied Newton’s iterative method for approximating the
zeros of a differentiable function. In this section you will look at two iterative methods for
approximating the solution of a system of n linear equations in n variables.

The Jacobi Method The first iterative technique is called the Jacobi method, after Carl Gustav
Jacob Jacobi (1804-1851). This method makes two assumptions: (1) that the system given by

a11X1 +aXe + ... + amXn = by

a21X1 +azXo + ... + axnXn = b2

an1X1 +an2X2 + ... + annXn = bn
has a unique solution and (2) that the coefficient matrix A has no zeros on its main diagonal.
If any of the diagonal entries are zero, then rows or columns must be interchanged to obtain a
coefficient matrix that has nonzero entries on the main diagonal. A matrix A is diagonally
dominated if, in each row, the absolute value of the entry on the diagonal is greater than the

sum of the absolute values of the other entries. More compactly, A is diagonally dominated if



Al> Y |4 foralli

INEdl
To begin the Jacobi method, solve the first equation for the second equation for and so on, as
follows
X1 =1/ an[b: - a2X2 - ... -@1nXn

X2 =1/ ax[ b2-a2iX1- ... - @2nXn]

Xn =1/ann[ bn - an1X1-an2X2- ]

Then make an initial approximation of the solution, Initial approximation and substitute these
values of into the right-hand side of the rewritten equations to obtain the first approximation.
After this procedure has been completed, one iteration has been performed. In the same way,
the second approximation is formed by substituting the first approximation’s x-values into the
right-hand side of the rewritten equations. By repeated iterations, you will form a sequence of
approximations that often converges to the actual solution.

GAUSS JACOBI METHOD

Example
Use the Jacobi method to approximate the solution of the following system of linear equations.

Sx; — 2x, + 3xy; = — 1
“3x, 0+ x; = 2
2x; — 23— Ty = 3
Solution

To begin, write the system in the form

1 2. — d.
X —5 T 5%, — 5%
x, = §+5x — ax

3, 2 |
X; = —5 +3x — 3x,.

Letx;=0,x2=0,x3=0

as a convenient initial approximation. So, the first approximation is
x, = —& + 30) — H0) = —0.200

+ 40 - Loy= 0222

x, = —2 + 50) — }0) = —0.429.

Continuing this procedure, you obtain the sequence of approximations shown in Table



n 0 1 2 3 4 5 6 7

X1 0.000 -0.200  0.146 0.192 0.181 0.185 0.186 0.186
X2 0.000 0.222 0.203 0.328 0.332 0.329 0.331 0.331
X3 0.000 -0.429 -0517 -0416 -0.421 -0.424 -0423 -0.423

Because the last two columns in the above table are identical, you can conclude that to three
significant digits the solution is x;= 0.186 , x2 = 0.331 , x3 = -0.423.

GAUSS SEIDEL METHOD

Intuitively, the Gauss-Seidel method seems more natural than the Jacobi method. If the solution

is converging and updated information is available for some of the variables, surely it makes
sense to use that information! From a programming point of view, the Gauss-Seidel method is
definitely more convenient, since the old value of a variable can be overwritten as soon as a
new value becomes available. With the Jacobi method, the values of all variables from the
previous iteration need to be retained throughout the current iteration, which means that twice
as much as storage is needed. On the other hand, the Jacobi method is perfectly suited to parallel
computation, whereas the Gauss-Seidel method is not. Because the Jacobi method updates or
‘displaces’ all of the variables at the same time (at the end of each iteration) it is often called
the method of simultaneous displacements. The Gauss-Seidel method updates the variables one
by one (during each iteration) so its corresponding name is the method of successive

displacements.

Example
Solve the following system of equations by Gauss — Seidel method
28x +4y -z = 32

X+ 3y +10z =24
2X+ 17y +4z2=35
Solution

Since the diagonal element in given system are not dominant, we rearrange the equation as
follows

28X +4y —z2 =32
2x+ 17y +4z2=35
X+ 3y +10z =24
Hence

X =1/28[32 — 4y +7]
y = 1/17[35-2x -4z]



z =1/10[24 —x — 3y]

Setting y =0 and z = 0, we get,

First iteration

x® =1/28 [ 32- 4(0) +(0)] = 1.1429

y® = 1/17 [ 35— 2(1.1429) -4(0)] = 1.9244

z® = 1/10 [ 24 — 1.1429 — 3(1.9244)] = 1.8084
Second Iteration

x@ = 1/28 [ 32- 4(1.9244) +(1.8084)] = 0.9325
y@ =1/17 [ 35— 2(0.9325) -4(1.8084) ] = 1.5236
z® =1/10 [ 24 — 0.9325 — 3(1.5236)] = 1.8497
Third Iteration

x® = 1/28 [ 32- 4(1.5236) +(1.8497)] = 0.9913
y® =1/17 [ 35— 2(0.9913) -4(1.8497)] = 1.5070
z® =1/10 [ 24 —0.9913- 3(1.5070)] = 1.8488
Fourth Iteration

x® = 1/28 [ 32- 4(1.5070 ) +(1.8488)] = 0.9936
y® = 1/17 [ 35— 2(0.9936) -4(1.8488)] = 1.5069
z® = 1/10 [ 24 — 0.9936 — 3(1.5069)] = 1.8486
Fifth Iteration

x® = 1/28 [ 32- 4(1.5069) +(1.8486)] = 0.9936
y® =1/17 [ 35— 2(0.9936) -4(1.8486)] = 1.5069
z® =1/10 [ 24 — 0.9936 — 3(1.5069)] =1.8486
Since the values of x, y, z are the same in the 4" and 5™ Iteration, we stop the procedure here.
Hence x = 0.9936, y = 1.5069, z = 1.8486.
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NUMERICAL INTERPOLATION, DIFFERENTIATION AND
INTEGRATION

Interpolation: Newton’s forward and backward difference interpolation formula (equal
interval) -Lagrange’s interpolation formula (unequal interval). Numerical Differentiation -
Newton’s forward and backward difference interpolation formula (equal interval). Numerical
Integration: Trapezoidal rule, Simpson’s 1/3™ and 3/8 " rule.

Interpolation
The process of computing intermediate values of (x,, x,,) for a function y(x) from a given set

of values of a function

Gregory-Newton’s forward interpolation formula

Y0 = yy + S+ = 2y°u(u 1)+ 6y°u(u (u-2)+ 2y°u(u H(u-2)(u-3)+--—(a)

where u :%(x—xo)

Gregory-Newton’s backward interpolation formula

2
Y0 =y, + ey L

v(v+1) +%v(v+1)(v+ 2) +%v(v +D(v+2)(v+3)+———(b)
where v :%(x— X,)

Remark:

Q) The process of finding the values of y(x;) outside the interval (x,, x,) is called
extrapolation

(i) The interpolating polynomial is a function p,(x) through the data points y; =
f(x;) = B,(x;) 1=0,12,..n

(i) Gregory-Newton’s forward interpolation formula (a) can be applicable if the
interval difference h is constant and used to interpolate the value of y(x;) nearer to
beginning value x, of the data set

(iv)  If y = f(x)is the exact curve and y = p, (x) is the interpolating polynomial then
the Error in polynomial interpolation is y(x) — p,(x) given by

n+l (n+l)()
Error:—(x X )(X=%X) ——(X=X,): X, <X< X, % <C<X ———(C)

(n+1)!



(v)  Error in Newton'’s forward interpolation is

h n+1y(n+1) (C)

Error = (n+D)! UU-U-2)——(Uu—n): X, <X<X,, X <C<X,————(d)
(vi)  Error in Newton'’s backward interpolation is
n+l (n+1)( )
Error =Wv(v+l)(v+2)——(v+ N): Xy <X <X, X <C< X, ————(e)

Problem1: Estimate 8 atx =43 & x =84 from the following table .also find y(x)
X 40 50 60 70 80 90
0 184 204 226 250 276 304

Solution: Here all the intervals are equal with h=x1-x0=10 we apply Newton interpolation
Difference Table:

x 6=y Ay A%y A3y Aty ASy
40 184=y, vy, —y,=20=Ay,
50 204=y, vy,-y,=22=Ay, 2=NA%y, 0=A%,
60 226=y, y,—-Yy,=24=Ay, 2=A%, 0=A%, 0=A%, 0=V°y,
70 250=vy, y,—Y,=26=Ay, 2=A%, 0=V 0=V'y

80 276=y, y -y, ,=2018=Vy 2=V?y
90 304=y,

Case (i): to find the value of 8 at x = 43

Since x = 43 is nearer to x, we apply Newton’s forward Interpolation

YO

Y= Yo + 2y°u(u 1)+ 6y°u(u Hu-2)+ 2y° UU-1)U-2)(u-3)+ ()

Whereu——(x xO)_—(43 40)_%_03:>u 1=-07,u-2=-17,u-3=-2.7--——(2)

Substituting (2) in (1), we get y(x=43) =184+ Q( 3) +—=(— )(—) O—18979 =189.79

1100 21010 10

Case (ii): to find the value of 8 at x = 84

Since x = 84 is nearer to x,, we apply Newton’s backward Interpolation



2 3 4
)=y +%v+%v(v+l)+%v(v+l)(v+2)+%v(v+l)(v+2)(v+3)+———(3)

where v:l(x—xn) :i(84—90):_—6:>v+1:i,v+2:E,v+3:g———(4)
h 10 10 10 10 10

L ) 28 6, 2,-6.,4 7174
Substituting (4) in (3), we get y(x=84) =304+ —(—) +—=(—)(—) +0=——=286.96
g (4) in (3), we get y( ) 1 (10) 2(10)(10) or

To find polynomial y(x), from (1) we get
2 3 4
y(X) =Y, +%u +%u(u —m%u(u ~D)(u —2)+%u(u—1)(u ~2)(u—=3)+———(1)

1 1 1 1 1
where u==(x-x,)=—(x—-40)=>u-1=—(x-50),u—2=—(x-60),u-3=—(x—60)———(2)*
h( o) 10( ) 10( ) 10( ) 10( ) (2)

Substituting 4) in (3), we get
y(x):184+gi(x—m)+Ei(x—40)i(x—50)+0=184+2x—80+i(x2—90x+2000)
110 210 10 100
1. ..
= y(x)=—(x"+110x+12400) - ————————— 5
y(x) 100( ) ()

To Estimate # atx =43 &x =84 ,put x =43 & x = 84 in (5), we get
1 1
43) =—(18979) =189.79and y(84) = —(28696) = 286.96
y(43) 100( ) y(84) 100( )

Problem2: Estimate the number of students whose weight is between 60 Ibs and 70 Ibs from
the following data

Weight(lbs)  0-40 40-60 60-80 80-100 100-120

No. Students 250 120 100 70 50
Solution: let x-Weight less than 40 Ibs, y-Number of Students, = x, = 40,x; = 60,x, =
80, x3 = 100, x, = 120, Here all the intervals are equal with h=x1-xo=20 we apply Newton
interpolation

Difference Table:

X y Ay A*y A3y Aty
40 230=y, Y,—Y,=120=Ay,
60 370=y, y,-y,=100=Ay, -20=A%, -10=A%,
80 470=y, Yy,—y,=70=Ay, -30=A%, 10=V?y, 20=A"y, =V*'y.



100 540=y, vy,-V,,=50=Vy, -20=V?y,

Case (i): to find the number of students y whose weight less than 60 Ibs (x = 60)

From the difference table the number of students y whose weight less than 60 Ibs (x = 60) =
370

Case (ii): to find the number of students y whose weight less than 70 Ibs (x = 70)

Since x = 70 is nearer to x, we apply Newton’s forward Interpolation

2 3 4
00 = yo+ our 2oy -2+ Aoy u-nu -2+ AVouu-(u-2)u -3+ -~
1 2 6 24
whereu——(x x)——(70 40)—§:>u 1—§ —2=z,u—2:__1,u_3:__3 _____ (2)
2 2’ 2 2 2
Substituting 2 in (1), we get
120 3, -20,3,,1, -10,3,,1 20 ,3,,1

y(x=70)=250+=—(2)+— )G+~ (2)(2)(2) Q(E)(E)(7)(_) 423.59

The number of students y whose weight less than 70 Ibs (x = 70) =424

Number of students whose weight is between 60 lbs and 70 lbs =

{ The number of students y } B { The number of students y } — 424-370 = 54
whose weight less than 70 lbs whose weight less than 60 lbs



Lagrange’s interpolation formula for Unequal intervals

(X _X1)(X _Xz)__(x _Xn) y +(X _Xo)(x —X2)——(X _Xn)

(Xo - Xl)(XO - Xz) __(Xo - Xn) ’ (X1 - Xo)(x1 - Xz) __(Xl - Xn)

LX) ) () ) ol x, )
(Xz - Xo)(xz - X1) __(Xz - Xn) (Xn - Xo)(xn - X1) __(Xn - Xn—l)

y(x) =

Y1

Yn

Problem 3: Determine the value of y(1) from the following data using Lagrange’s
Interpolation

x -1 0 2 3

y -8 3 1 12
Solution: given

X X, =—1 X, =0 X, =3 X, =3

y Yo =—8 y, =3 y,=1 y, =12

Since the intervals ere not uniform we cannot apply Newton’s interpolation.

Hence by Lagrange’s interpolation for unequal intervals

(X _X1)(X _Xz)(x _Xn) Vo + (X _Xo)(x _Xz)(x _Xn)

(Xo - Xi)(XO - Xz)(xo - Xn) ’ (X1 - Xo)(x1 - Xz)(x1 - Xn)

L XXX =) (X X)X )X =%, )
(Xz - Xo)(xz - X1)(X2 - Xn) ’ (Xn - XO)(Xn - Xl)(Xn - Xn—l)

y(x) =

Yi

Yn

y(x) = (x =0)(x =2)(x =3) (—8)+(X +1)(x =2)(x =3) 3
(-1-0)(-1-2)(-1-3) (0+1)(0-2)(0-3)
+(x +D(x =0)(x =3) (1)+(x +D(x =0)(x —=2) (12) - ———()
(2+1)(2-0)(2-3) (3+1)(3-0)(3-2)

To compute y(1) put x = 1in (1), we get



y(x=1) = 1-0(21-2)(1-3) (-8) + 1+1)(1-2)Q -3) 3
(-1-0)(-1-2)(-1-3) (0+1)(0-2)(0-3)
N 1+1)(1-0)2-3) M)+ @1+1(1-0)(@2-2) 12)
(2+1)(2-0)(2-3) (3+1)(3-0)(3-2)
= y(x=1)=2
To find polynomial y(x), from (1) we get

y(x):g(x3—5x2+6x)+%(x3—4x2 +X+6)

~2 (=20 =31 + 1 X - 20) -~
2 11 10 —4 2 12 1 3 6
X)=XE+ - 4+D)+ X (—+—+ =D+ X (=+=+==-2+(=
y(x) (326)(326)(326)(2)
= y(x) =2x*—6x* +3x +3-———- (2)

To compute y(1) putx = 1in(2), we get y(x=1)=2-6+3+3=2

Inverse interpolation

For a given set of values ofxand y, the process of finding x(dependent) given

y(independent) is called Inverse interpolation

x(y)= Y =W =Yo) ==y =¥, OV =Y )Y =¥,) ==y =¥)
(Yo = YD) Yo = ¥2) —— (Yo — ¥u) = Yo) (s = ¥o) (Y. = Y,)
S (y _yo)(y _yl)__(y _yn—l) X
V= Yo) (Yo =Y ——(Yo = Vot) "

O =YY =y ==Y =)
(Yo = Y)Y, = Yo) (Y, = ¥2)

2




Problem 4: Estimate the value of x given y = 100 from the following data,y(3) = 6 y(5) =
24 ,y(7) =58,y(9) =108 ,y(11) = 174
Solution: given

X X =3 X, =5 X, =17 X;=9 X, =11
y Y, =6 y, =24 y, =58 y, =108 y, =174
By applying Lagrange’s inverse interpolation

x(y) = =IO Y)Y =YY =¥0) Y =YY =¥o)lY YoV = ¥o)
(Yo = X) (Yo = Y2)(Yo = ¥a)(Yo — V) (Y2 = Yo)(Vr = ¥2) (Y = Va) (Vi — Vi)

LY =YY —Y)Y —ya) (Y —Ya) (Y =YY Y)Y Y)Y V)

(Y2 - yo)(yz - yl)(yz - ys)(yz - yn) ? (ys - yo)(y3 - yl)(y3 - yz)(Ya - yn) ?
LY =Y =) =YY —Ya)

(Yo =Y ) (Yo = YD) Vo = Y2 ) (Vo = Vo)
. X(100) = (100 — 24)(100 — 58)(100 —108)(100 —174) @)+ (100 6)(100—58)(100—108)(100—174) ©)

(6—24)(6—58)(6 —108)(6—174) (24— 6)(24 —58)(24-108)(24 —174)
, (100-6)(100 - 24)(100-108)(100~174) M)+ (100 6)(100 — 24)(100 — 58)(100—174) )
(58— 6)(58— 24)(58 —108)(58 —174) (108 —6)(108 — 24)(108 —58)(108 —174)

(100 —6)(100 — 24)(100 — 58)(100 —108) w1

(174—-6)(174 —24)(174—58)(174-108)
— x(100) = 0.35344 —1.51547 + 2.88703+ 7.06759— 0.13686 = 8.65573

Numerical Differentiation

The process of computing the derivatives of y at a given value of x using a set of given values
of x and y is called Numerical differentiation.

Newton’s forward formula for Derivatives

2 3 4
y'(x):%:%{AyO+AZyO (2u—1)+%(3u2—6u+2)+%(4u3—18u2+22u—6)+——— }
2 3 4
y"(x):Kg:%{Azy(ﬁ%(u—lh%(ﬂuz—36u +22)+——— }Whereu:%(x—xo)

Newton’s backward formula for Derivatives

. dy 1 vy vy o, Viy o, )
X)=—=—<Vy +—"(2v+1)+—"(3v" +6V+2)+—"(4v° +18v° + 22V +6) +———
y()dxh{yn S (U D) =2 TR )=}
: d’y 1 {_, V% Viy ) 1
X)=—2=—<Vy +—(v+D)+—"(12v"+36v +22)+——— lwhere v==(X—x
Y (0="3 hz{ B A Ryl Jho== ) ~(x=x,)



Problem 5: Find the rate of growth of population in the year 1941&1961 from the following
table

year 1931 1941 1951 1961 1971

Population 40.62 60.80 79.95 103.56 132.65
Solution: Here all the intervals are equal with h=x1-x0=10 we apply Newton interpolation
Difference Table: let x-year,y-Population

x y Ay A%y A%y Aty

1931  40.62=y, y,-Y,=20.18=Ay,
1941 60.80=y, VY,—y,=1915=Ay, -1.03=A%, 5.49=A%,
1951 79.95=y, vy,—y,=2361=Ay, 4.46=A%, 1.02=V?y, -447=A%y,=V'y,
1196  103.56=y, y,—VY,,=20.18=Vy, 548=V?y,

197 132.65=Yy,
1

Case (i): to find rate of growth of population (Z—Z) in the year (x = 1941)

Since x = 1941 is nearer to x, we apply Newton’s forwarded formula for derivative

dyl

Y(X)— .

{Ay+ 2 Yo o414 y°(3u _6u+2)+ y°(4u —180° +22u—6) +———

whereu:— X=X )=-—(1941-1931) =1
h( o) 10( )

=y (x=1941) =~

10{2018 ﬂ(2 -1+ %(3 6+2)+ %(4 18+22 - 6)+———}

The rate of growth of population (Z—z) in the year (x = 1941)= y (1941) = 2.36425

Case (ii): to find rate of growth of population (Z—z)in the year (x = 1961)

Since x = 1961 is nearer to x,, we apply Newton’s backward formula for derivative



2 3 4
y) =P Loy Y oy 1) Y a2 s oy 2) 4 VY0 (av® +18v2 4 22v 4 6) 1 ——— )
dx h 2 6 24

1 1
Vv=—(X—-X)=—(1961-1971) =-1
h( n) 10( )

=y (x=1961) :%:%{29.09+5'—38(—2+1)+%(3—6+2)+%(—4+18—22+6)+——— }

The rate of growth of population (Z—z) in the year (x = 1961)= y (1961) = 2.65525

Problem 6 A rod is rotating in a plane, estimate the angular velocity and angular acceleration
of the rod at time 6 secs from the following table
Time-t(sec) 0 0 04 06 08 10
Angle-6(radians) 0 0.12 0.49 1.12 2.02 3.20
Solution: Here all the intervals are equal with h=x1-x0=0.2 we apply Newton interpolation
Difference Table: let x- time (sec),y-Angle (radians)
X y Ay A%y A3y Aty
0 0=y, Y, =Y, =0.12 = Ay,
012=y, y,-y,=037=Ay, 025=A%, 0.01=A%;,
049=y, vy,-Vy,=063=Ay, 026=A% 0.01=A%, O0=A%,
112=y, y,~y,=090=Ay, 0.27=A%, 0.01=V?y, 0=V'y,
202=y, vy,-Vy,,=118=Vy, 0.28=V?y,
3.20=y,

Case (i): to find Angular velocity (Z—z) intime (x = 0.6 sec)

Since x = 0.6 sec is nearer to x,, we apply Newton’s backward formula for derivative



2 3 4
y) =P Loy Y oy 1) Y a2 s oy 2) 4 VY0 (av® +18v2 4 22v 4 6) 1 ——— )
dx h 2 6 24

1 1
v=—(X-Xx)=——(0.6-1.0)=-2
h( n) 0_2( )

y'(x:0.6): _012{118 %(—4 1)+ 0—01(12 12+ 2)+ (4v3+l8v2+22v+6)+———}
dx
= Theangular velocity y (x = 0.6) = 3.81665 radian / sec

2
Case (ii): to find Angular acceleration (3732’) intime (x = 0.6 sec)

Since x = 0.6 sec is nearer to x,, we apply Newton’s backward formula for derivative
2
y ()= 3—2’ = h—lz{vzyn VYo (414 Y0 y“ (12v7 +36v +22)+——— }
X
where v—l(x—x ) —i(o 6-1.0)=-2
h o020 T

=y (x=0.6) = 2{028 0—01( 2+1)+0 }

y (0.6) = 6.75 radian/ sec’



Numerical Integration

The process of evaluating an integral w.r.t x whose integrand is f(x) between the limits aand b

using a given set of x and y values is called Numerical Integration.

Trapezoidal rule

Xg+nh

I y(x)dx = g{(y0 +y,)+2(y,+Y,+Y;+Y,+—)whereh = %(xn —X,),n—number of intervals
X0

Simpson’s 1/3 rd rule

Xo+nh

h
I y(X)dXZE{(yo + yn)+2(y2 + y4 +Y6 +_)+4(y1+ y3+ y5+__) }

X

1 .
whereh == (x, —X,),n—number of intervals
n

Simpson’s 3/8 th rule

Xg+nh

3h
I Y(X)dng{(yo + Yn)+2(y3+ ye + y9 +_)+3(y1+ yz + y4 + y5+__) }

X

1 .
whereh == (x_ —X,),n—number of intervals
n

Remarks:

1) Geometrical interpretation of f;;”y(x)dxis approximated by the sum of area of the
trapezium

2) Simpson’s 1/3 rule is applicable when number of intervals are multiples of 2 and
Simpson’s 3/8 rule is applicable when number of intervals are multiples of 3

3) The error in trapezoidal rule is bl;zath where M = max{yg, y{, ... ywhich is of order

hZ



4) Theerrorin Simpson’s 1/3 rule rule is ’;;—gh“M where M = max{y{", y5", ..

is of order h*

6
Problem7: Evaluate Il !
+

1

Simpson’s 3/8 rule and Compare your answer with actual value.

6 Xo+nh

1 ° 1
Solution: Given | ——dx = y(x)dx = y(X) = —,
-([1+ X J. 1+x?

X0

Choose the number of interval (n)=6 so that we can apply all rules

X =0 X=%+h=1 X,=x+h=2 x,=3 X, =4 x=
wo L 1 1 1 111
=1 1 2 5 10 17 26
case(i) Trapezoidal rule
Xo+nh h
[ y0odx=Z {0y + )+ 2+ Yo + Va4 ¥+ =)
Xo
6
:j%dx_ {(1 ek vode i Lty 1410700
o L+ X 2 5 10 17 26
Case (ii) Simpson’s 1/3 rule
Xg+nh h
J. y(X)dXZE{(yo"‘yn)"'z(yz+y4+Y6+_)+4(y1+Y3+y5+__) }
Xo
6
| L {(1+—)+2(— —) 4(— i+—) | =1.36617
01+x2 2 10 26

Case(iii) Simpson’s 3/8 rule

.. Jwhich

~0x using (i) Trapezoidal rule (ii) Simpson’s 1/3 rule (iii)
X

X, =0,X+nh=6————()



Xg+nh

3h
I y(X)dXZE{(yO + yn)+2(y3+ ye + yg +_)+3(y1+ yz + y4 + y5+__) }

Xo

6

| L 2olx:§{(1+i)+2(i)+3(1+1+l+i) | =1.35708
)1+ X gl” 377 10" T2 5 17 26
Comparison

6
Exact value I Sdx = [tanfl(x)]:: = tan"*(6) — tan*(0) =1.40565
0

1+X

Hence trapezoidal rule gives better approximation than Simpson’s rule.

Problem 8: By dividing the range into 10 equal part Determine the value of J'sin xdx using (i)
0

Trapezoidal rule (ii) Simpson’s 1/ 3 rule (iii) Simpson’s 3/8 rule and Compare your answer

with actual value.

T Xg+nh
Solution: Given Isin xdx = I y(x)dx = y(x) =sinx,x, =0, X, + nh=zand n =10 -—-——(1)
0 X

given number of intervals(n) =10,(1)) = h = 1(xn —X,) = i(7z—0) =2
n 10 10
X X, =0 Vs 2 3 A 57z 67
=X, +h=-—X =X +h=—3X=— X,=— X.=— X, =—
=% e 10° 10 * 10 ° 10 ° 10
y(x) =sin(x)in(0) . T .21 . 3 . Ar . 5z, . 6r
sin(— sin(— sin(—=) sin(—) sin(—) sin(—
=0 (10) (10) (10) (10) (10) (10)
=0.30901 =0.58779 =0.80901=0.95106=1.0 =0.95106
X w17 _8 _97 Xy =7
10 ° 10 =710
y(x)=sin(x) . 7rx . 87 .97 . 107
sin(—) sin(— sin(— sin(——
(10) (10) (10) (10)

=0.80902=0.58779 =0.30902 =0

Case (i) Trapezoidal rule



X+nh

h
Jy00d= {0+ ¥ + 200+ Yo+ Yo+ Yo+ =)

de:

2

{(0+0)+2(0.30901+0.58779+0.80901+0.95106 +1.0+0.95106 + 0.80901+0.58779+0.30901) }

[N
+
>
N |-

1 ix-1983%

1+x

Case (ii) Simpson’s 1/3 rule

Xp+nh

h
[ Y0 = (Yo + Y+ 200+ Y+ Yo +) + A0+ Yo+ Y+ )

X0

6
= [ sin(x)dx = %{(0+ 0) +2(0.58779+0.95106 + 0.95106 + 0.58779) + 4(0.30901+ 0.80901+1.0+ 0.80901-+ 0.30901}
0

6
= [sin(x)dx = 2.00010
0

Case (iii) Simpson’s 3/8 rule

Xo+nh
3h
[ YOO ="y + V) + 205+ Yo+ Yo + ) 430+ Vo + Y+ Vs + )
Xo
This rulecannot be applied since n isnot amultipoleof 3

Comparison

Exact value jsin(x)dx =[-cos(X)]. =—[cos(x) —cos(0)] = 2.0

Hence, Simpson’s 1/3 rule gives better approximation than trapezoidal rule



