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UNIT 1 - DIFFERENTIAL CALCULUS

SUCCESSIVE DIFFERENTIATION

1.1 Introduction

Successive Differentiation is the process of differentiating a given function successively
n times and the results of such differentiation are called successive derivatives. The
higher order differential coefficients are of utmost importance in scientific and
engineering applications.

Let f(x) be a differentiable function and let its successive derivatives be denoted by

F@.f" X, . fM )

Common notations of higher order Derivatives of y = f(x)

. d
1*' Derivative: f'(x) ory ory, or d_: or Dy
nd o . rr " dzy 2
2" Derivative: f''(x) ory" or y, or =z or D%
th . . (n) (n) d”y n
n'" Derivative: () ory'"™ ory, or i D"y

1.2 Calculation of n'" derivative

i. n'" Derivative of e™*P

Let y = edxth

y, = ae®xth
y, = aledx+b
Vi = qlte®x+tb
n

ii. n" Derivative of y = log(ax + b)

Let y =log(ax + b)

a

Y1 = (ax+b)
—a2

Y2 = (ax+b)2
2!a3

Y3 = (ax+p)?
e Ara=d (n—1)!a™
yll - ( 1) (a_\._H,)n
iii. n'" Derivative of (ax + b)™
Case 1: When m is a positive integer i.e., whenm > 0,m=>n

Lety=(ax + b)™
y; = ma(ax +b)y™ 1!
v, = m(m — 1)a?(ax + b)™ 2



v, =a’m(m—1)(m—2)(ax+b) "~

o= m(m—1)..(m—n+ 1)a™(ax +b)™ "

m! _
Vp = an (GX + b)m n

(m—m)!

Case 2: When m is a negative integer i.e.,whenm > 0,m <n

Putm = —p where p is a positive integer in the above result.

D*(ax+b)™ = a®m(m—1)(m—2) ... (m —(n- 1))(ax +bh)m "
D™"(ax + b)P =a"(—p)(—p— 1)(—p — 2) ... (—p —(n—- 1))(ax + bp) P
D™ (ax+b) P =a"(-D)"(p)p+Dp+2)..(p+n—1)(ax + b) P "
Multiply and divide by 1.2.3.... (p — 1) to the rhs of above equation

Then D™(ax + b) P = (—1)" D gy 4 p)—pn

(p—-1)!

Change p to m we get

iv.

V.

n (m—n+1)!

D"(ax+ b)™ = (—1) -~y

a(ax + b)™™m ™

n'" Derivative of y = sin(ax + b)

Let y = sin(ax + l;)
y; = acos(ax + b) = asin (ax +b +§)

= =5 i) YRR g % 2n
Vo= @ COS((IX+1)+2)—(1 sm(ax+b+—2)
L ng
Yn= a sm((zx+b+2)

Similarly if y = cos(ax + b)
— nn
yi =la cos(ax+b+2)

n'" Derivative of y = e®sin(ax + b)

Let y=e%sin(bx +¢)
y, = ae®sin(bx +c) + e™b cos(bx + ¢)
= e™ [asin(bx + ¢) + b cos(bx + ¢)]
= e™ [ r cosa sin(bx + ¢) + r sina cos(bx + ¢)]
Putting a = r cosa, b = r sina
=e? r sin(bx+c+ a)

Similarly  y, = e r? siﬁ(bx +c+ 20’)

y, =e™ r" sin(bx + ¢ + na)
b
where r? = a? + b? and tana = =



Similarly if y = e™*cos (ax + b)
Yo = e r" cos (bx + ¢ + na)

_ pax 2 2\% -1b
=e®™ (a*+b*)z cos|bx +c+ntan -

Summary of Results

Function n'" derivative
eax+b aneax+b
- n—1 (n—=1)'a™
log(ax + b) (=1 (ax+Db)n
m! n m-n
——a"(ax +b)
(m—n)! when m>0andm >n
(ax+b)™
0 when 0<m<n
(m—n+1)!
(ax +b)™™ -)"—— a"(ax+ b)) ™™™
(m—=1)!
sin(ax + b) a™ sin (ax + b+ %
n nm
cos(ax + b) a™ cos (ax + b+ ?)
Y L —1b
esin(ax + b) e™ (a?+ b?)z sin (bx +c+ntan™? Z)
(2 L B2V A B
e™cos (ax + b) e™ (a®+ b*)z cos (bx + ¢+ ntan ;)
Example 1 Find the n*" derivative of —_—
1-5x+6x2
1
Solution: Let y = -
Resolving into partial fractions
= 2 = L e i
Y = I—sx+ex? (1-3x)(1-2x) 1-3x 1-23
iy oz BE)R=1)0Y . 2D 1) !
T T T Ao (2ot

= y, =(=1)"1n! [(1_33.\.)11“ - (1_22.\»)”H]

P=N

Example 2 Find the n™ derivative of sin6x cos4x
Solution: Lety = sin6x cos4x

1 1
==(sml0 x + cos2 x)
2

oY= %[10” sin (10x + %) + 2" cos (ZX +%)]

Example 3 Find n*" derivative of sin’xcos®x
Solution: Lety= sin?xcos3x



= sin’xcos’x cosx

Il

z 1
sin?2x cosx = - (1 — cos4x)cosx

1
CcoSXx — = cos4dx cosx

I
Wl ol &=

1
cosx —— (cos3x + cos5x)

i |
e (2cosx — cos3x — cos5x)

“ =g [2605 (X + %) — 3"cos (3x - %) — 5"cos (5x + %)]

Example 4 Find the n" derivative of sin*x
Solution: Let y = sin*x = (sin%x)?
2
= (12 sinzx)
2

= %((1 — cos 2x)?

1|4 _ 1 2

=1 [1 2cos2x + . (2cos 2x)]

= i[l — 2cos2x + % (1+ cos4x)]

=2_2 cos2Z2x + %cos4x

| 2

“¥Yn = —%2" cos (2x + %) + %4" cos (4x + %)

Example 5 Find the n"* derivative of e3*cosx sin?2x
Solution: Let y = e**cosx sin?2x
.
Now cos x sin2x = = (cos x - cos x cos 4x)

w it 2y = % (1 - cos 4x)
= %(COS x- %(cos bx + €os 3x)
= y = ¢™eos¥sin®2x = %e:""'cos x— %e“cos 5x — ie&"cos 3x
g s %83"' (9 + l)g cos (x +n tan’lé) — ie3"' (9 + 25)§ cos (Sx +n tan‘lz)
—ieg‘“" 9+ 9)3 cos (3x +n tan'lg)

1 3x 105 ~11) _ 1, 3x 943 -15
;e' 102 cos(x + ntan 3 —Ze' 342 cos|5x + ntan 3

n
—%e*”"’ 18z cos(3x +ntan'1)

1
Example 6 Ify = sinax + cos ax ,prove that y, = a"[1+ (—=1)"sin2ax |z
Solution: y = sinax + cosax

oY, =at [sin (ax + %) + cos (ax + ?)]

1
272
=a" [{sin (ax + ?) + cos (ax + %)} ]
1
=q" [sin2 (ax — ?) + cos? (ax - %) + 2sin (ax - %).cos (ax - %)]2
1
=a"[1 + sin(2ax + nm)]z
1
=a"[1 + sin 2ax cos nm + cos 2ax sinnm |2

1
=a"[1+ (—1)"sin2ax]z ~cosnm=(—1)"andsinnm =0



Example 7 Find the nt" derivative of tall_lg

Solution: Let y = tan"l'ai
1

= _dy _ _a _ a
Y155 a(1+£;) x2+a? ~ x2—(ai)?
a

. a _a ( 1 1 )
(x+ai)(x—ai) 2ai \ x—ai x+ai

_1( 1 1 )
2i \ x—ai x+ai

Differentiating above (n — 1) times w.r.t. x, we get

E0 e e -l

n —

; (x—ai)n (x+ai)n
. - " L
Substituting x = r cos@, a = r sinf such that @ = tan 1;
(D) (n-1)! [ 1 1 ]
= = - —_
In 2i rM(cos@—isin@)"  r*(cosB+isind)"
-1 1(n-1)! .. _ .. _
= ()2% [(cos@ —isinf)™™ — (cos @ + i sinf)™"]
r
Using De Moivre’s theorem, we get
(- (n—1)! . .
= % [cos n@ + i sinnf — cosnf + i sinnf|
r
(—1)" 1(n-1)!
=0 @ Ginng
-
)" (n-1)! .
()a# sinnf v a=rsind
(sinﬂ)
- (n-1)! , _qa
= ()a—“() sinn@ sin" @ where 6 = tan 1¥
Example 8 Find the n®" derivative of m
. 1
Solution: Lety = ——
1+x+x2
1 —1+iy3 -1-i\3
=————— where w =———and w? =

(x—w)(x—w?)
Resolving into partial fractions

_ 1 ( 1 1 )
y_w—wz x—-w x—w?

1 ( 1 1 ) i ( 1 1 )
T i3I \x-w  x-w2/ T V3 \x-w  x-w?
Differentiating n times w.r.t. , we get
i [ (—1)™n! (—1)™n! ]
Yn = V3 L(x—w)n+1 (x—w2)n+1
_ —i(=1)"n! 1 1 ]
- V3 (x—w)n+1 (x—w2)n+1
_ i)™ 1 1
= = n+i P TES T
V3 i3 L 1,03
(55 ) (++3+5)

jgnti (—1)"+1nT [ ]
n+1 - - ESY
(21+1 iV3) (2x+1+iV3)

5



L ) 3
Substituting 2x + 1 = r cos0, V3 = r sin@ such that & = tan 1%
o
. jnti (_1)n+1n!

n = T3 a1 [(6036 — isin)~ (D _ (cosO + isinH)-(n+1)]

Using De Moivre’s theorem, we get
i2n+1 (_1)n+1 1

Y = ———— [cos(n + 1) + i sin(n + 1)8 — cos(n + 1)6 + isin(n + 1)6]
V3 (ﬁ)

sin@
/3 =rsind
iantl (—)ntipy _ | s i
———— 2isin(n+ 1)8 sin™" 6
(\/§) +2

I i N R T e
= ﬁn+2 sinn Sin where = tan p—

2
Example 9 If y = x +tan x. show that coszx%— 2y+2x =0
X

Solution: y =x+tanx

d
> X =1 +sec?x
dx

2

y _ _ 2
2 = 2secx (secxtanx) = 2 sec” xtanx

dz
. cos? xﬁ— 2y + 2x = 2cos® x sec” xtanx — 2(x + tanx) + 2x

= 2tanx — 2x — 2tanx + 2x
=0

2
Example 10 If y = log(x + VxZ + 1), show that (1 + xz)% + x:—i’ =0
Solution: y = log(x +VxZ 1)

X

1
o> oy 1
dx x++vV1+x2 Vi+x2

ST+ L =1
Differentiating both sides w.r.t. x , we get

d?y x dy
v 2 -
( 1+x ) dx? -I-W.'1+x2 dx 0

d2
:>(1+x2)d—x);+xz—z=0

1.2 LEIBNITZ'S THEOREM

If u and v are functions of x such that their nt*derivatives exist, then the n**derivative
of their product is given by

(uv), = u,v+ Ne, Up—1 V1 + N Uy oV + g Uy U + o+ upy,

where u,. and v, represent r*"derivatives of u and v respectively.



Examplel1l Find the n®" derivative of x log x

Solution: Letu =logx and v = x

2)!

X 1

Thenu, = (—1)"" 1(n 1) andu,_, = (-1 -2

By Leibnitz’s theorem, we have
(Uv), = uyv+ ng Uy V1 + N, Uy oV o F N Uy VU F o U,

(n— 1) (n 2)

= (xlogx), = (m1)" 1—=x+ n(-1)"2 +0

s (_1)11—1 ("‘1) l( 1)11 2(" 2)'

= (—1)* z(n = —[-(n—1) + n]

= ()" 2(" 2)'

Example 12 Find the n*" denvatlve of x2e3% sin 4x

Solution: Let u = e3* sin4x and v = x?2

= . _14
Then u,, = e** 252 sin (4x +ntan™* ;)

. il
= e3* 5™ gin (4x + ntan 1;)

By Leibnitz’s theorem, we have
UV)p = UV + N, Uy V) + N Uy 2 V2 + -+ N Uy U + - FUY,

> (xzezx sin4x ) = x%e>* 5" sin (4x + ntan™? i) +
n 3
2nxe®* 5" sin (4x +(n—1)tan?! %) -
n(n-— 1)e3" 5"2 sin (4x 4+ (n—2)tan™? g) +0
g™ 5P [x sin (4x +ntan™? %) +

o = ~1AY, sl ] s
S sin (4x+ (n —1)tan 3)+ o5 Sin (4x+ (n —2)tan 3)]

Example 13 If y = acos(logx) + b sin(log x), show that
X2yni2 + 2n+ Dxype +n(n + 1)y, =0
Solution: Here y = acos(logx) + b sin (log x)

Sy = _Tasin (logx) + %cos (logx)

= xy; = —asin(logx) + b cos(logx)

Differentiating both sides w.r.t. x , we get
Xy, +y; = —% cos(logx) + _x—b sin(logx)

= x2y, + xy; = —{acos(logx) + b sin(logx)}

==



2x%y, +xy +y =0
Using Leibnitz's theorem, we get
(Vns2X® + Ne, Vn+12X + N, Vp. 2) + (J’n+1x + e, Ve 1) + =0
= YntaX? + Ype1 2000 + (0 = 1) + Vpsa X + 10 + Y = 0
= X%ypig + 20+ Dxypey + (0% + 1)y, = 0
Example 14  Ify = log (x + V1 + x2)
Prove that (1 + x?)yp4s + (2n + Dxy,sy + 1%y, =0

Solution: y =log(x + V1 + x?2

sy = (1 A) = 2
N= e T e YY) T e

= (1+x)y2=1
Differentiating both sides w.r.t. x, we get

(1 +x2)2y,y, + 2xy,2=0

> +x)y, +xy, =0

Using Leibnitz’s theorem

Wn+2(1 + x2) + ng Yns12x + ng,Yn- 2] + (Yus1x + n¢, Y1) = 0
= Yur2(1 + %) + Ype1 20 + 00 = 1Yy + YparX + 1y, = 0
2> 1+ 2)ypiz + @+ Dxypsq + 02y, = 0

Example 15 If y = sin (m sin”x). show that
(1 = xH)yps2 = @+ Dxypeq + (n? — m?)y,. Also find y, (0)

Solution:  Here y = sin(m sin™1x) s
=Ny = ‘/%cos(m sin"lx) ... ®

= (1 — x2)y,% = m%cos?(m sin"1x)
= (1 - x?)y;%2 = m?[1 - sin®(m sin"'x)]
> (1 -x¥)y,2=m?(1 - y?)...... ®
> (1-x)y,2 + m?2y? = m?

Differentiating w.r.t. x, we get

(1 = x3)2y,y, + y12(=2x) + m*2yy, » 0

SA-x)y, —xy; +m?y =0
Using Leibnitz's theorem, we get

Drns2(1 = X%) + ng, ¥as1(=22) + 06, (=2)] = (Yns1X + 0, 1) + m?y, = 0



Dns2(1 = X%) + n¢, Y1 (=2%) + g,y (=2)] = (V41X + n¢, 1) + m2y, = 0
2 Yus2(1 = x2) = yps12nx — n(n — 1)y, — (Ype1x + ny,) + m2y, =0
2 (1= x¥)yps2 = Cn+ Dxypeg + @2 —m?)y,...... @
Puttingx = 0in @, @and @
y(0) = 0,y,(0) =mand y,(0) =0
Putting x = 0 in @
Yn+2(0) = (n* —m?)y, (0)
Puttingn = 1,2,3 ... ... 7in the above equation, we get

y3(0) = (12 = m?)y, (0)
=(12-m?)m =y 0)=m

y4(0) = (22 — m?)y,(0)
=0 = y,(0) =0
y5(0) = (3% = m2) y;(0)
=m(1%2 — m?)(32 —m?)

- ©) = { 0, if niseven
WniS) = m(12 —m?)(3%2 —m?) ...[(n — 2)?) — m?],if nis odd

msin~tx

Example 16 Ify = ¢ , show that
(1 — xH)Ypenr — @0+ Dxypey — 02 + m?)y, = 0. Also find  y,(0).

Solution: Here y = ™" * (D)

__m m sin”"lx
ST e
__my
— W ------ @

= (1 - x2)y,2 =m?y?
Differentiating above equation w.r.t. x , we get
(1 = x)2y1y, + 317 (=2x) = m*2yy,
S>A-xDy, —xy,—miy=0 ... ®)

Differentiating above equation n times w.r.t. x using Leibnitz’s theorem, we get



ns2(1 — x%) + ng, Yn+1(—2x) + ne,y, (—2)] - (yn+1x v 7101}’n1) -m?y, =0
2 Yns2(1 = x%) = Yps12nx — n(n = Dy — Gparx + nyp) —m?y, =0
> (1= x)ype2 — @n+ Dy — 2+ m?)y, =0...... @
Tofind ,(0): Puttingx = 0in D, @and @
y(0) = 1, y;(0) = m and y,(0) = m?
Also putting x = 0 in , we get
Yn+2(0) = (0% + m?)y, (0)

Putting n = 1,2,3 ... in the above equation, we get

y3(0) = (12 + m?)y,(0)

=12 + m¥)m “y0)=m
¥4(0) = (22 + m?)y,(0)
= m2(22 + m?) = y,(0) = m?

ys(0) = (32 - mz)y3(0)

=m(12 + m?)(3% + m?)

m2(22 + m?) ...[(n - 2)2 + m?] , if nis even

SORY
> %(0) m(1%2 + m?)(32 + m?) ..[(n — 2)®2 + m?],if nis odd

Example 17 If y = tan™'x . show that
(1 = x¥)yps2 + 20 + Dxypeq + n(n + 1)y, = 0. Also find y,(0)

Solution: Herey = tan tx.....(D

1
SV =T e @
_ —2x
yZ - 1+x2

= (1+x2)y, +2xy, =0...... ©)
Differentiating equation (3 n times w.r.t. x using Leibnitz's theorem
2 (L +2%) + ng, Yne1(20) + 1, Yo (2)] + 2(Yns1X + 1,y 1) = 0
= Ynr2(1+ %) + ype12nx + n(n — Dy + 2(peqx +ny,) =0
= (14 2y + 20+ Dxypey +nln+ 1)y, =0......@
Tofind y,(0): Puttingx = 0in D, @and @), we get

y(0) = 0,y,(0) = 1and y,(0) =0

10



Also putting x = 0 in (4), we get
VYns2(0) = —n(n + 1)y, (0)
Putting n = 1,2,3 ... in the above equation, we get

y3(0) = =1(2)y,(0)

- +0)=1
¥4(0) = —2(3)y,(0)
= v y2(0) =0
¥5(0) = =3(4)y;(0)
=—3(4)(-2) = 4!

¥6(0) = —4(5)y,(0) = 0
y7(0) = =5(6)y5(0) = —5(6)4! = —(6!)

= Yous1(0) = (-1)*(2n)!and y,,(0) =0

Examplel8  If y = (sin 1x)?, show that
(1 = x®)yps2 — 2 + 1)xyn+1 — n%y, = 0. Also find y,(0)

Solution: Here y = (sin"'x)2....QD
.
=2y, = 2sin IX.W ...... &)

Squaring both the sides, we get
(1 - xVy ? = 4 (sin"1x)?
= (1-x)y,? =4 (y)?
Differentiating the above equation w.r.t. x, we get
(1= x®)2y1y, + 12 (-2x0) — 4y, = 0
SA-xDy, +y(-x)-2=0 ... @)
Differentiating the above equation n times w.r.t. x using Leibnitz’s theorem, we get
n+2(1 — x%) + Ne, Yn+1(—2x) + ne,yn(=2)] — (yn+1x + ncl)’nl) =0
= Yns2(1 = %) = ypi12nx — n(n — 1)y, — ps1x +ny,) = 0
51— xD)ype — @n+ Dxypey —yun?2 =0.....@

Tofind y,(0): Puttingx = 0in D, @and @), we get

y(0) = 0,y,(0) = 0 and y,(0) = 2

11



Also putting x = 0 in @), we get
Yn+2(0) = n?y, (0)
Putting n = 1,2,3 ... in the above equation, we get
y3(0) = 1%y, (0)
=0 “y,00)=0
y4(0) = 22y,(0)
=272 y2(0) =2
5(0) = 3%y3(0)=0
y6(0) = 4%y,(0) = 42222

. (0)—{ 0, if nisodd
W = 22242 (n —2)%,if nis even

Angle of intersection of two Curves

Lety = f(x) and y = g (x) be two given intersecting curves. Angle of intersection of these curves is
defined as the acute angle between the tangents that can be drawn to the given curves at the point

of intersection.
Let (xy, v;) be the point of intersection

Slope of the tangent drawn to the curve y = f (x) at (x;, Vi)

df(x)

dz  (z14)

ie. myp —
Similarly slope of the tangent drawn to the curve y = g(x) at (x;, v1)

dg(z)
d:l’: (Ilsyl)

ie. My —

The angle of intersection between two curves = The angle of intersection between the
tangents to these curves. Therefore If « is the acute angle of intersection between two curves,

—1 | Mi—m;

then a = tan
1+mym,

12



PROBLEMS:
1. For the curves x? =4y and y*=4x, find the angle of intersection.
Solution:
To find the point of intersection of the curves. solve the equation x>=4y andy?=4x.
Consider the curve x2=4y.
On squaring both sides of the equation, we have

x* =16y = x*=16(4x) = x* —64x=0 =x(x*-64)=0

=x=0 or

x3 —64=0= x3=64 = x=4.

The corresponding values of y are:

x=0= y2 =4(0) = y=0

x=4= y? = 4(4) =y2=16 =y=4.

The points of intersection are (0.0) and (4.4) .

(1) Consider the point (4.4).
To find m,, consider the curve x* = 4y.

On differentiating, we get

2x dx=4dy —dx—= L X

X
x dx 2 7

(1)

. ’ . . 4
m,is the value 0% at the point (4.4), that is, 5=2

To find m,, consider the curvey? = 4x.

Ondifferentiating, we get

dy 2

=2 Q)

dx y
- td\' . .2 A
m,is the value o ™ at the point (4.4), that Bz ==
We know that, the angle between the two straight lines y=m;x+¢; and y=mox+c; 1s
tan—1 ( mp—mj )
1+mimy/’

" 2l 22
At the point (4.4),tanf = ——% =—2p=-2

1+mqimy 14+2x5




= tanf = % = 6 = tan~! (%)

(11) Consider the point (0, 0).

m;is obtained by substituting (0, 0) in (1).

ie.m; = % =0= tan8 =0 =6 = tan"}(0) =0
m,1s obtained by substituting (0, 0) in (2)

e, m, = % == tanf = » = 6 = tan" () = %
Therefore, the values of i for the two curves are 0 and%.

Hence the angle of intersection is%.

That is, the curves cut orthogonally.

2. Find the angle at which the curves (1)x?=ay and (2)x> + y*® = 3axy cut eah other.
Solution:
Substituting the value of y from x2 = ay in x> + y3 = 3axy

x2

=xl=ay= y=

: .
On substituting the value of y in x> + y* = 3axy, we have

3
3 X’ x* 3 x® 3 x® 3 x® 3
= x+|— | =3ax|— = X +—3=3x :>—3:2x =>—3—2x =
a a a a a

xz
= x3=0 or (a_Siz)zo

3 3 :
= x=0 or x° =2a — x = (2)3 az

. - . l
On substituting these values of x in x*> = ay. we have y=0 or y=a (4)3

1 1
Hence, the curve cut at the points (0.0) and {a(2)3_ ;a (4)3}.

On differentiating x? = ay . we get.

14



d dy _ 2
2xdx = ady. = 2x=a = = ===
dx dx a

On differentiating x3 + y3 — 3axy = 0. we get.
3x%2dx + 3y?dy — 3ax dy — 3aydy = 0
= 3y?dy — 3ax dy = 3aydy — 3x*dx
= dy(3y? — 3ax)=(3ay-3x?) dx
= dy(y? — ax)=(ay-x?)dx

dy_gy—xz

dx yl-ax’

. dy 1 1 . 4
(1) The value of ol {3(2)3 ,a(4)3}for the curve is 23
and for the second curve at the same point is 0.

4 1
~tand =25 = 6 = tan* {2(23)}
(1)) The value of Z—i at (0.0) for both of the two curves is 0

That is. the two curves touch at the origin, y=0.

That 1s. the tangent is common to both the curves.

3. Find the condition that the curves at ax?+ by? =1. a,x?>+ b,y? = 1shall cut
orthogonally.

Solution:
Let the curves intersect at the point whose co-ordinates are (x; , y,)

caxi+byl—1=0anda,x? +b,y; —1=0

2 2
. WP ; G 1 (1)
bi—b a—a; aby—aib

On differentiating the equations of the curve, we get

2ax + 20y =
ax = — T —
ydx dx by
. ay _ dy _ _aux
2a,x + 2b,y . 0 = — by

The gradients of the tangents of the two curves at the points of intersection are:

axi aixi

byy ' biyi

15



These curves cut each other orthogonally.

Then. we know that.

2 2
axy —ajxq aaix x bby
by biy; bbyy{ yi aay
2
~ X . by—b
But the value of = from (1) is —
Y1 a—aj
by-b bby bi—b aj—a 1 1 1 1 1 1 1 1
a—aq aaq bbq aaq b by a aq a b ay by

LENGTHS OF TANGENT, NORMAL, SUBTANGENT AND SUB NORMAL
Let y = f (x) be the curve that is differentiable at a point P. Let the tangent and normal at P(x, y) to the curve meet
at the x-axis at points T and N. M is the projection of P on the x-axis. In the figure below,

0

o ™ ~

= PT is the length of the tangent

* PN is the length of the normal

s TM is the length of subtangent

s MN is the length of the subnormal

Let ZPTN = 0 and ZMPN = 0

_ Y — 9x
Then PM = y, tanf = ol cotfd = &

Now length of the tangent PT = |ycosec8| = |y|V1 + cot?6

G = N

Bl @)

(&)

2
Length of the tangent =|y| |1 + (Z—;) =

16



2
Now length of the normal PN = |ysec@| = |y|V1 + tan?6 = |y| /1 + (%)

2
~ Length of the normal = Iylm

Now length of the sub tangent TM = |y cot8| = |3’Z_; = |7

(&)

Length of the sub tangent = |y 2—;| = ﬁ
dx

Now length of the sub normal MN = |ytan@| = |y3—z

Length of the sub normal = |y %|

Formulae:

2
Length of the tangent =|y| /1 + (Z—;) =
ay 2
Length of the normal = |y| [1 + (E)

Length of the sub tangent = |y Z—;| =

Yy

(3

y

Length of the sub normal = |y %|
Problems

1.Show that. in the parabola y?> = 4ax, the subtangent at any point is double the abscissa and
the subnormal 1s constant.

Proof:

Differentiating the equation of the parabola.y? = 4ax. we have

dy 4a 2a
2ydy = 4adx = ==—===
. dx 2y y
' oy oy oyt
The subtangent= &~ = 77z = . 2x
dx y
= double the abscissa
dy 2a
The subnormal= y - Ty 2a (constant)
X y

17



2. Show that the length of sub-normal at any point on the curve xy = a? varies as
the cube of the ordinate of the point.

Proof: Equation of the curveisxy = a? =y = —

. . d 2
Differentiating w.r.t. x we get 2o a—z
dx x

2
a 2.,,3

o= @y
()

Thus the length of sub-normal at any point on the curve xy = a? varies as the cube of the ordinate

Length of the sub normal = |y2—i| = |y (—z—z)

:y_

3. Show that at any point (x, y) on the curve y = beX’3, the length of the sub-

2
tangent is constant and the length of the sub-normal is y
a
: . / dy 1y
Equation of the curve is y = be* 3 Y _pexB X
dx a a
d
Length of the sub tangent = |y—x = |-
dy (_y)
dx.
J
=——=a = constant
v
"
dy
Length of the sub normal = |y El
—y.yla=y*/a
Find the length of sub-tangent and sub normal at a point of the
X
curvey =b.sin—.
a
X dy x1 b X
Sol: Equation of the curve is y =b.sin— = Y —b.eosX.2=2.cosX
a dx aa a a
d
Length of the sub tangent = |y—x = |2~
vl (@)
X
X
b.sin— X
= hiﬂ =la.tan—
—.CoSs— a
a a
d . b? . 2
Length of the sub normal = |y—y| = |bsmi (bcos 5) = |=sin=
dx a a 2a a

18



5. Atany point t on the curve x = a (t + sin t), y = a(1 - cos t). Find the lengths of
the tangent, normal, sub-tangent and sub-normal.

Sol: Equation of the curve is x =a (t + sint), y=a(l — cos t)

d_V) i oo
(I—y_ (lt B aSinI B SlnE.COSE - S]]]E -
dx [d_x} a(l+cost) 2C052i L
dt 2 2
Y — tant
dx 2
Length of the tangent =|y| 1+(d—x)2 =2 [1+ (d_y)z
J g ed ay) (%) dx
=la(l-cost),/1+cot >
= 2a.sinzl.coseci = 2a.sinzi.— = Zasini
2 2 .. 2
SmE

2
Length of the normal = |y| |1 + (Z_i)

= a(1l — cost) /1 + tanzé =a (Zsin2 %) sec% = 2asin§tan%

Length of the sub tangent = |y§—; =

dy
(&)
a(1l—cost .t t .
= (—t) = 2asin- cos—- = asint
tan; 2 2

Length of the sub normal = |y %|
= a(1 — cost) tan%
6. Find the length of normal and sub-normal at a point on the
curvey = %(exla + e—x/a)'

Sol: Equation of the curve is y = %(ex/a + e_X/a) - a.cosh(iJ
a

= d_y :a.sinh(i)l :sinhE
dx ala a
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2
Length of the normal = |y]| ’1 + (d—y) = acosh> ’1 + sinh?= = acosh=cosh=
dx a a a a

= acosh?=

a
Length of the sub normal = |yd—y| = acosh>sinhZ= 2 (Zcoshzsinh £) = Zsinh 2
dx a a 2 a a 2 a

THE LENGTH OF AN ARC

Consider the following diagram

Ay

A R
/ AX

Let P be any point (x.y) on the curve y=f(x). Let Q be a point very near P. so that the
coordinates of Qare (x + Ax,y + Ay).

Now, let S be the length of the arc AP,where A is a fixed point on the curve. Then, s+As is
the length of the arc AQ, so that arc PQ=As.

As Ax tends to zero, Q approaches P.Then, the chord PQ and arc PQ become almost
equal. Thus, the ultimate ratio of the arc PQ to the chord PQis unity.as As — 0.

Now, from the right-angled triangle PQR,

(chord PQ)? = (PR)? + (QR)?
= (chord PQ)?*= (Ax)? + (Ay)?

: 2 D
= (2222) =14 () [ On dividing both sides by (Ax)? ]

Ax

, 2 . 2 i
= (Chmd PQ) (mc PQ) =1+ (A—‘) [multiplyand divide by (arc PQ)? in L.H.S]

arc PQ Ax Ax

Taking the limits as Ax — 0, we get

2 arc PQ ds !
1, lim,,_,—— = —,andlim,, _,
’ Ax—0 A% A" Ax—0

Ay _ dy

Ax  dx

chord PQ __

Lim,,
8x=0 " e PQ

20



Simlarly, 1t may be shown that(:.—‘s')2 =1+ (—)2

NOTE:

Y 1s the angle between OX and the tangent at the point (x.y)

From the figure, it easily follows that i = ‘;—‘S
PROBLEM:
For the cycloidx = a(1 — cos6),y = a(6 + sin®).find .

Solution:

Given thatx = a(1 — cosf) and y = a(f + sinb)

ax _ o ciop. WY _
i asing ; i a(1 + cos0O)
dy  a(l4cosf) _ 2"052(0/2) ot [ (0/2)

. 3]
S— = = cot
dx asin@ 251'11(9/2)605(9/2) sin (9/2) vo ( /2)

2
(:x—s) =1+ cot® 9/2 = cosec’ 9/2

= = = cosec(%/,).

2. Find %in the curve y = a cosh (i) :

Solution :
Given that, y = a cosh (i) ssal 1)
We know that, (:—f)z =1+ (:—1)2

On differentiating (1), we get

%: a (sin h (2) - (%)) = sinh (g)
2

: (:—i)z =1+ (sin h (g)) = 1+ sin’h (g) = cosh? (2)

ds X
—— = cosh (—)
d a

X
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POLAR COORDINATES

Consider the following diagram

el
0 A

The position of a point P on a plane can be indicated by stating:

(1) Its distance r from a fixed point ‘O’.
(2) The inclination @ of OP to a fixed straight line through ‘O’.

Here, 1 1s called the radius vector and 8 the vertorial angle, O the pole and OA the initial line,
where r and @ are called the polar coordinates of P.

r 1s considered to be positive when measured away from O along the line bounding the
vertorial angle and 6 is considered to be positive when measured in the anticlock wise

direction.
When converting polar co-ordinates to Cartesian or vice versa, it is customary to take the

pole as the origin and initial line as the x-axis.
Then, the formulae for conversion are x = r cos fandy = r sin 6.

ANGLE BETWEEN THE RADIUS VECTOR AND THE TANGENT

Consider the following diagram. Let P, P’ be two neighbouring points on a curve. Let
(r, 8) be the polar coordinates of P and ( + Ar, 6 + A@)be the polar coordinates of P'.

If we join P, P’ and draw PN perpendicular to OP’, we have
PN = OPsin £PON = rsin Af.
Again, PN = OP' — ON = r+Ar-rcosA@

= = Ar + r (1 — cos AG)

=3 =Ar + 2r sin? (%).
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Denote by ¢ the angle between the radius vector OP and the tangent at P. If we now

let AB approach the limit zero, then

(1) The point P" will approach P

(2) The secant PP’ will become the tangent PT in the limiting positions.
(3) The angle PP'N will approach ¢ as a limit.

From the above diagram, we have

sin A8
' rsin A8 N A8
tanPP O = —————~ - 5
Ar+2r sinz(T) Ar rsin (T) )
Ae+—A9 sin=
2
.28
g sin A® : y : in—-
limyg_o—— =1, lim sin® | lim 4+ =1
AB-0 2 7 A8
5-0 2
2
. Ar dr
and lim — = —
26 A8  de
__’0
2
1 1 de
~tang = lim tanPP'O=r 47——=r—
A8-0 g tr10 dr
PROBLEMS:

: . : 1
1. Find the angle at which the radius vector cuts the curve - = 1+ ecosb.

Solution:

Let @ be the angle between the radius vector and the tangent at the point at which the
radius vector meets the curve.

; i I ;
On differentiating = 1+ ecos B with respect toB, we get

{0 —esin® :E—ﬁsine
r2de de 1 :

de
We know that, tan® = r =

el 1 _l+ecos®

tan® =

esin®r2 r.e sin© e sin 6

The required angle. = tan™! (1228
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POLAR SUBTANGENT AND POLAR SUBNORMAL

Consider the following diagram

V%

=2

£
Draw a line NT through the pole perpendicular to the radius vector of the point P on

the curve. If PT is the tangent and PN the normal to the curve at P, then

OT= Length of the polar sub tangent.

ON=Length of the subnormal of the curve at P.

de de
Polar subtangent= OT = OP tan® = r.r i rsz.

Polar subnormal = ON = OPtan 2 OPN = OPtan (£TPN — 2TPO)

r

= OPtan("/,—0) = r cot 0 = =

tan0

al ™
@

Il
a-la.
@ |-

Tar

. 5df . dr
Hence. Polar subtangent isr> - and Polar subnormal is L
"

Problems:
1. Show that in the curve r=ae® ¢t @
(1) The polar subtangent =r tan a.

(11)The polar subnormal = r cot a.

Solution
Here. 1 = aeB cot o
dr
et aee cot a— r cot a

G
Hence, the polar subnormal is(rcot a)

1
r cota

dg
Also.; =
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de r?

dr r cota

=r tana

Hence, the polar subtangentis ( tan «)

2. Show that in the curve r = a8, the polar subtangent varies as the square of the radius vector
and the polar subnormal is constant.

Solution:

Given that, r = af.

dr s =
i a.which 1is constant.
. de 1 2d8  r?
AR = o = e
< dr a dr o

Thus. the polar subtangent varies asther?.

THE LENGTH OF ARC IN POLAR CO ORDINATES

Consider the following diagram

9 X
Let the coordinates of a point P on the curve be (1,0).
Then, OP =r1: and ZAOP=6.
Let the coordinates of a point Q on the curve very close to Pbe (r + Ar,6 + A6 ).
Then, OQ=r+Ar, ZQOA = 6+A6 and 2 POR = AS6.

Let s be the length of the arc BP, where B is a fixed point on the curve. Then. the
length of the arc BQ 1s s + As and the length of the arc PQ 1s As.

Now, PR = OP sinA6 = r sinA@ .

OR = OP cosAB = r cosAD.

Also.QR = r + Ar—r cosA® = r(1— cosA8) + Ar = 2r sin? %+Ar‘
PQ? = PR? + RQ?

A6
= (rsinédd)? + {2r si1127+ Ar}?,
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2
. (chord PQ)2 =(r sinAe)z " 2r sinz% + Ar = (sinAe)2 + r sin %
" 48 26 28 46 40 =]

2

Passing to the limit as A0 tends to zero, we get

sinA® Ar dr
_) - -
A AB doe

chord PQ " chord PQ arcPQ " ds

AB arcPQ ~ A8 "de
(dS)z . (dr)2
2il—1 =7 —
dé dé
: ds\2 _ [_de)?
In the same way, 1t may be shown that(g) = (r ;) +-1.

. . d . de
It 1s easily seen that cos @ = éand sin@ =r -
Problem:

1. Find :—; and :—; for the cardioid r = a (1+cos 0).

Solution:

Given that r=a (1+cos 0)

On differentiating the above equation, we have

dr . .

—=a(0—sinB)= —asinb.

de

de r a(1l+cos ) 1+cos 6@ 2 cos? 62
Also.r.— = . = i = = = i

dr —a sin @ —a sin @ sin 6 2sinf /2 cos /2

2 2
We know that, (2—:) =1+ (r ﬂ)
=1+ cot?(8/2) = cosec?® 0/2.

ds
“ = = cosec 0/2.

We know that, (:—;)2 a—— (d_r)z

= a%(1 + cos0)? + a%sin?0

26
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=a%(1 + cos?0 + 2 cosB) + a’sin’0
=a’ 4 a?(cos?0 + sin?0) + 2a%cos O

= a% + a? + 2a% cos 8 = 2a%(1 + cos 0)

= (:—2)2 = 2a’[2cos%(0/2)] = 4 a’cos?(0/2).

= 4 _ 2acosg
ae 2

.. d ds .
2. Find £ and ﬁ for the curve r = a (1-cos 0)

Solution;

. d. 1
Given that, r= a(l-cosB) = é = asinb.

a(l—cos @)

. de
Consider, r.— =
dr asin@

B 2a sin®6/2
" 2asin@/2 cos6/2

=tan6/2

We know that.(%)2 =4 % (r %)2

=1+ tan?0/2 = sec?0/2.
(ds) 6/2

~|—) = sec
dr

We know that, (&) = 12 + (&)’
€ Know tnat. T =r 10 _ 32( 1— COSB)Z-FSZSHIZG

= a? + a%cos20 + a%sin?0 — 2a% cos 0

= a? + a%(cos?0 + sin?0) — 2a% cos 6
= 2a% — 2a% cos 0 = 2a?(1 — cos 0) =4a’*sin? 0 /2

(:—;) = 2asinf/2.
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UNIT 2

DIFFERENTIAL CALCULUS

INTRODUCTION

In the late seventeenth century the invention of Calculus by Newton and Leibnitz has turned
the house of math into a metropolis. Differential geometry and curvature were natural applications
for the calculus because they provided words to its music. More specifically, Calculus methods of
infinitesimals and limits were the perfect tools for the problem of curvature because most curves
have a different degree of bending at every point. The use of infinitesimals to study rates of change
can be found in Indian Mathematics, Perhaps as early as 500 AD, when the astronomer and
Mathematician Aryabhata (476 — 550) used infinitesimals to study the motion of the moon. The
motivation of optics in Differential geometry yielded concept of involutes and evolutes (Huygens in

1673) and later envelope, a representative of family of curves.
Curvature

Nature is too beautiful for words. Many curves in the plane and in space are simply beautiful.
Mathematicians have developed several ways of describing them. One of the elegant method of
describing a curve is to say that how much the curve “bends” at each point. This measure of bending
is known by the technical word “Curvature”. In many practical problems, we are concerned with
comparision of bending of two curves or bending of a curve at its different points, for example, is
laying the rail tracks and calculating the maximum speed that a train can have when it turns or

designing high ways or constructing curved focal planes of telescope.

Fig 2.1

For getting the idea of Curvature let us consider two curves APB and A'PB' as shown in the

figure. The curve APB is bending more rapidly than A'PB" in the neighborhood of P.
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In otherwords it may be said that the curvature of APB is greater than that of A'PB'. Here if

we consider the curves of arcs of circles then it is very clear that radius of APB is lesser than that of
A'PB".

Fig 2.2

The curvature of a given curve at a particular point is the curvature of the approximating circle at the
point. The radius of curvature of the curve is defined as the radius of the approximating circle. This
radius changes as we move along the curve. The approximating circle is said to be circle of curvature.

The formal definitions of above terms can be given as follows.

Definition of Curvature

-
Q
A
P
A
i \p Ay -
Fig 2.3

Let P and Q be any two close points on a plane curve. Let the arcual distances of P and Q

measured from a fixed point A on the given curve be s and s + As, so that PQ (The arcual length of
PQ)is As.
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Let the tangent at P and Q to the curve make angles ¥ and ¥+ AW with a fixed line in the
plane of the curve, say the x-axis.

Then the angle between the tangents at P and Qis AY.
Thus for a change of As in the arcual length of the curve, the direction of the tangent to the

curve changes by AY.

AY
Hence A—is the average rate of bending of the curve (or average rate of change of direction
S

of the tangent to the curve in the arcual interval PQ ) or average curvature of the arc PQ.

limit (Aqu d¥y

—— | = —is the rate of bending of the curve with respect to arcual distance at P
As = 0\ AS ds
called the curvature of the curve at the point P and is denoted by K.
For example, Let us find the curvature of a circle of radius at any point on it.

Let the arcual distances of points on the circle be measured from A, the lower point of the
circle and let the tangent at A be chosen as the x-axis. Let AP =S and let the tangent at P makes an

angle W with the x-axis

Thens=a ACP

=a¥

or ¥= 1s [ The angle between CA and CP equals the angle
a

between the respective perpendicular AT and PT.]
dv

S

QD | =

Thus the Curvature of a circle at any point on it equals the reciprocal of its radius. Equivalently, the

radius of a circle equals the reciprocal of the curvature at any point on it.
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Radius of curvature of a curve at any point on it is defined as the reciprocal of the curvature of

1 ds
the curve at that point and denoted by p Thus p=—=—

dy’

To find K or p of a curve at any point on it, we should know the relation between s and W for

that curve, which is not easily derivable in most cases.

Some Basic Results

Let P(x, y) and Q (X + AX, y+Ay) be any two close points on a curve y =f (X) .Let AP =5

and AQ =S+ Aswhere A is a fixed point on the curve. Let a chord PQ make an angle 8 with the x-

axis.

Ay
(®
R
§] L
Fig 2.5
From APQR, sind= — 2 -RQ as (1)
ChordPQ As Chord PQ
where PQ = As
Ay A
As  Chord PQ
and
PR Chord PR As
cosd = = .
Chord PQ As Chord PQ
Ax As
== 2
As PQ
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AS
when Q approaches P chord PQ — tangent at P and hence & — ¥ . Also % —1.

Thus in the limiting case when Q — P, (1) and (2) becomes

sinszﬂ and cos‘P=%

ds ds
.'.tan‘P:ﬂ
dx

l. Formula for Radius of Curvature in Cartesian co-ordinates

Let W be the angle made by the tangent at any point (x, y) on the curve y = f (X) .

Then tan ¥ :ﬂ (1)
dx

Differentiating both sides of (1) w.r.t x, we get

2
Secqud_lp = H
dx dX2
2
i.e, seCZ‘Pd—‘P.E = d—
ds ‘dx gx2
2.1 d2y dx
sec™Y —.sec¥ = — [ cos¥ = —}
P dx ds

( SeCZI// =1+tan 21//)
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3
2

2
1+(dyj
dx
p= 5 by eqn (1)
a%y
dx2
3
1+y.%)2 2
p:—( 1 ) Wherey1 :ﬂandyz _d %/
Y, dx dx
Ay
P
=
s
0 A I >
Fig 2.6

Note :

This formula does not hold good where the tangent at the point (x, y) is parallel to y axis. In

that case d_ is not defined. Since the value of p is independent of the choice of axis of co-ordinates,
X

in this case we take the formula for p as

) 3
2
1+ [dxj
dy
d’x
dy?

Il. Formula for Radius of Curvature in Parametric co-ordinates

Let the parametric equation of the curve be x = f (t) and y = ¢(t).
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dy _dyl/dt

Then =
dx dx/dt
Let x':% and y':ﬂ
dt dt
Wy
dx X

dt Using Quotient Rule of differention
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3

2
12 12
13 X"+ y
X 12
X

T XYy

5 (XI2+y|2)§
3
(Xlz)E(X|y||_y|Xn)
X|3(X|2+y|2)§

:x's(x'y"—y'x")

3

(X|2+yl2)5

p = 1 n 1 n

(X"y"=y'x")
Examples

1. Find the Curvature and radius of curvature of X*+Yy*=25.

Solution:

X% + y2 =25 represents a circle of radius 5. We know that the curvature of a circle of radius

.1
ris—

Hence curvature of X’ + y2 =25is %
Also the radius of curvature is the reciprocal of the curvature
.". Radius of curvature of the circle
x> +y®=25is5.
2. Find the radius of curvature at any point (x, y) on the curve y =clog sec(x / C) .
Solution:
y =clogsec(x/c)

Differentiating y w.r.t x we get
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y :c;.sec(x/c)tan(x/c)l/c

sec(x/c)

1+y?)2
Radius of curvature = M
A
3
2
(1+ tan? (XD
_ C
1sec2 (Xj
Cc C

3. Find the radius of curvature at (a, 0) of the curve Xy2 —a*-x°.
Solution:

Differentiating Xy2 =a® - x* with respect to x we get,

2Xyy '+ y? = 3%
Je —(3x2 + yz)

2Xy
At(a,O), y'=o0,
dx  —2xy

Hence we find — =

dy 3x*+y°
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- 2(3x2 + yz)(x+ ydx]—2xy(6xx+2yj
d?x dy
Now 5 >
dy (3x2 + yz)
2 _ 3 _
(30) S5 = =
dy 9a 3a
N
2
[14_((1)(} J
dy
ST
dy’
1 3
= = =5
3a
. . _ 3a 3a 3 3
4. Find the radius of curvature at the point (? , ?) on the curve X*+ Y~ =3axy.
Solution:

Differentiating X+ y3 = 3axy with respect to x, we get

3% +3y2d—y:3a{xﬂ+ y}

dx dx
dy dy
X’ +y*—Z=ax—=+a
Y dx dx y
2dy _ dy 2
—~Z —ax—==ay—X
y dx dx y
%(y2 ax)—ay—x2
dy ay-x°
dx y®-—ax
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22 dx_(3ajz (3a]
2 2
-3,
(i
asa) 3.,
dx (3737) Zaz
d d
a2y (y2—ax)(a&—ZXJ—(ay—xz)(Zym{—aj
e (yz—ax)2
3aY’ 3a 3a 3a 3a )’ 3a
— | -a| —|||a-2 = ||-|a] = |-| = 2| —|-a
(dzy] 2 2 2 2 2 2
dX2 3a3a 3a ? 3a 2
53] o Ta
2 2
3 2
az(—a—3a)—( j(—3a—a)
16
—-3a°-3a’ _
:( Z )><16= 32
%a 3a
3 3
(Ley?) e (242
y" 2\
3a
32
=——a.
o=
5. Show that for the curve y:ﬁ,the radius of curvature p at (x, y) related as
a+x

2
2 2 2
(2_/3)3 XLy
a y° X

Solution:

The given equationis y = ——;
a+Xx

Differentiating y w.r.t to x, we get
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a (a+x) :(a+x)2:7 X a+x
_(a+ X)Z(O)—az(z(a+x))_ 232
(a+x)* (a+x)
_2y
a x
3
(1+y*)?
P = "
']
4 3 4 3 3
2 2 X
[
Ty T2
ax a
4 3 3
a y* )2 X
= — 1 _— —_—
P=3 (er“j y®

2 22
6. Find the radius of curvature at the point (acos3 6,asin® 49) on the curve X3 +y°® =a®,

Solution:
The parametric equations of the given curve are X = acos®d and y=asin3 1%

Differentiating twice with respect to &,

X=%=3acosze(—sin 0)
do
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. dy -
=——=3asin“ @(cos @
y 90 (cos )

2
K= d’x _ C%a(cos3 0 +2cosd(-sin6)sin 6)
dé

-
=—3a(cos3 6 —2cos @sin? 9)

2

y:((;i Y —3a(sin” 6(~sin 6) + 2sin O cos’ )

92

:Ba(—sin3 0+ 2sin 0 cos’ 0)

(¢

3
(9a2 cos” @sin® @ +9a®sin* O cos’ «9)2

(—3acos2 gsin 9)(3a(23in 0cos’ 0 —sin® 49))

+(3asin” 9(cos 9))(—3a(0033 6 —2cos Gsin 6?))

3 3

(9a2 )5 (sin2 6 cos? 0)5 (cos2 0 +sin? 9)
9a? cos® @sin? 0(—(0052 0 +sin’ 49))

3
2

=3asingcosé.

7. Show that the radius of curvature at the point ‘0’ on the curve Xx=3acos& —acos36,

y =3asind—asin3fis3asing .

Solution:

Differentiating with respect to ‘0", we get

x=3a(-sing)—a(-3sin30)
=-3asind+3asin360

y =3acosd—a(3cos36)
=3acosé —3acos 36

dy y 3a(cosd—cos30)

dx X% 3a(sin30-sing)
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_2sin20sin0

= — =tan 20
2c0s20sin @

2
d—zzi(tan 20).%
dx- do@ dx

1
3a(sin30—sin )

=2sec’ 26.

2sec? 20
3a(2cos20sin §)

_ 2sec’20
6a cos 26sin 6
_ sec’20
3asiné
2 3 2 3
1+y*“)? (1l+tan® 260)?
p:( y") :( 5 ) 3asing
|y sec® 26

=3asing.

EXERCISES

Part—-A

11
1. Find the radius of curvature at the point (Z , Z] on the curve \/; + \N =1.

V4 .
2. Find the radius of curvature at X = Eon the curve y = 4sinx.

3. Find the radius of curvature of y = logsinx.

2

4. Show that the radius of curvature at any point of the catenary Y =Ccosh (X / C) iSy—.

c

5. Find the radius of curvature at any point of the curve X =aco0sé, y =asiné.
6. Find the radius of curvature for the curve X =at’,y = 2at.

7. Find the radius of curvatureon Yy = e” at the point where the curve cuts the y-axis
Part—-B

log x
1. Find the radius of curvature for y = iat x=1
X
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Find the radius of curvature at any point of the parabola y2 =4ax.

X
Show that the measure of curvature of the curve \/:+\/%:1 at any point (x, y) on it is
a
ab
— -
2(ax+by)2
Find the radius of curvature of the curve y = XZ(X—3) at the points where the tangent is

parallel to the x — axis

Find the radius of curvature at @ on the curve X = a(@—sin 9), y= a(l—COS 0) .

For the curve x = X= a(cos<9+05im9),y:a(sin H—QCOSH) prove that the radius of

curvature is ad
Prove that the radius of curvature at any point of the cycloid X = a(9+sin 49), y= a(l— cos 6’)

is 4acos€
2

ANSWER

Part A

ol

N

cosec X

Q

2a(1+t2)5

22

PartB
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2 3
2. —(Xx+a)2
N
1
4 —
b
5. 4asin€
2

CENTRE AND CIRCLE OF CURVATURE

y A N
B
;\T‘ﬂ'-‘
WP P IIIIII
U Pl ‘j\'
AT
'I,IJ
—~ ; ; »
0 I C P X

Fig 2.7

Let APB be a curve y = f(X)and P be a point (x, y) on the curve y= f(X).Draw the

tangent TP and the normal PN at P(x, y). Along PN, cut off a length PC = p, such that C and the curve
lie on the same side of the tangent TP. Note that p is the radius of curvature of the curve at P. The

point Cis called the centre of curvature at P for the curve.

The circle whose centre is at C and radius p is called the circle of curvature.

Let C (;, T/) be the co-ordinates of the centre of curvature of the curve at point P(x, y).
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Then x=0C'
=0OP'-C'P'
=0P'-PQ

From ACPQ,sin ¥ :E

CP

_PQ (“CP=p)

Y2,
ie, PQ = psin¥
S X=X—psin¥
3
1+y,%)?
:x—( 1) siny
Y,
We know that tan\P=ﬂ= Vi
dx
Hence sin¥ = Sin ¥ .cos¥
cos¥
_tan¥?Y  tan¥
secY 1+tan?V¥
i.e,sin‘P:L
J1+y?
cosVY = 1

sec?  1+tan’ ¥

1

1+ Y’

3
X (1+ y12 )E Y1

X=X—
Yo o 14y,

X= x—£(1+ y.)

2

Also 9: c'C
=P'P+QC
=y+QC
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from ACPQ
Q¢ _Qc
Y2

cosY¥ = ~.CP=p)

ie, QC = pcos¥
S y=Yy+pcos¥

Yo,
secV

Yo,

J1+tan®¥

3

(1+ye?)? dy d?y
We k that p=~—"—2—, =—and y,=—
e know that p==— V=g and v, =
3
g’—y+(l+y12)2 .
Y, .«/1+y12
(1+y/?)
Y,

Therefore the equation of circle curvature is given by
—\2 —\2
2
(x=x) +(y=y) =r

where x = x—ﬁ(l+ y.)

Y,

y=ye(1ey?)

2

Example 1
Find the centre of curvature of the curve y = x® —6X° +3X+1 at the point (l, —l) .

Solution:

3 a2

Given y =x7-6x“+3x+1

Y1 = 3x2 -12x+3

Yyuy =3-12+3
=6
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Example 2

Find the equation of the circle of curvature of the rectangular hyperbola xy = 12 at the point
(3, 4).

Solution:
Given xy =12

Differentiating with respect to x

Xy, +y.1=0
Y, = __Xy
-4
Yiga) = 3
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Radius of curvature p =

(1+y7)2
Y>
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Circle of curvature is
(x=X) +(y-y) =/

2032

Example 3

Find the centre and circle of curvature for the curve \/;+ ﬁ:ﬁat(%,%)

Solution:
Given \/;+ \N = \/g

Differentiating with respect to x,

I SV,
2Jdx 2y "

(or) Y, =— %
Hence Y. =— ar4 =-1
22 Va/4

Differentiating Y, with respect to x, we get

Y, =

1 1
) \/;Z\/Vyl_\/ym
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a a
Centre of curvatureat | —, —
4 4

;:X—L(l-i— A

2

a a
=—+—(1+1
+2 s

N vl 3a 3a
Hence the centre of curvature is (X, y) = 7

Equation of circle of curvature is

(x5 (53 -

Example 4

T
Find the radius and centre of curvature of any point on X = log tan (Z + Ej’ y =asecé

Solution:

dx 1 (7 6)1

a0 x> a2)2
tan| —+—
53)
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25in[7[+
4

cosd

ﬂ:asecﬁ.tan
deo

49) (n 9]
cos| —+—
2 4 2

[ 2sin Acos A=sin2A]

0

_dy dy do _asecftand

AT Tde x| a
cosd@
cosd
=asec@tan dx
a
=tan @
d?y , d6
=—= =5ec’ 00—
Y2 dx? dx
_ sec? gcose _ secd
a a
Y1

X = x——(1+ yf)

2

B r  0) tand 2
_alogtan(4+2j sec9(1+tan 0)
a
:alogtan(£+€j—Lanec26?
4 2) cos6.secO
=a|ogtan(£+gj—asme ecd
4 2 cosé
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y=y+ {1+ y?)

2
1
(sec&j
a
a 2
=asecd+—-—sec @
secd

=asecfd+asecd=2asecd

=asecq+

(1+tan2 49)

Centre of curvature = [a log tan [% + gj —atané@secd, 2asec 0)

(1+y,? )i
Y2

Radius of curvature =

(1+ tan? 49)2

B (secej
a
3

= (sec2 9)5 x =asec?d

secd

Example 5
Find the equation of the circle of curvature of the parabola y2 =12X, at the point (3, 6)
Solution:
Given y* =12x
Differentiating with respect to x, we get
2yy, =12
6
(or) Yy, =—
y

6
Yige) = 6 1

Differentiating again with respect to x, we get
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y _Fyl
-1
Yo(ae) _E
3 2\
(1+y2?)? (l+(—1) )2
Lp= = ]
Y> -
6
3
:_6(2)2
= —6x242
=122
So radius of curvature = |p| =122
Centre of curvature
Q:x—ﬁ(l+ v )
Y,
= 1
X at (3,6):3—_—1(1+1)
)
=34+6x%x2
=15
— 1 ,
y=y+—(1+y7)
Y>
1
=6+ (1+1)=-6

Circle of curvature
—\2 —\2
(x5 (53] =
:>(x—15)2 +(y+6)2 =(12\/§)2
= x> —30x+15° + y* +12y +6° =144 x2

= x> +y*-30x+12y-27=0

52



EXERCISES

Part-A
1. Find the x-coordinate of the centre of curvature of the curve y = X’ at the origin.
2. Find the y-coordinate of the centre of curvature of the curve Xy =1 at (1, 1).
3. State the formula for finding the centre of curvature at any point (x, y) on a given curve.
4. Find the centre of curvature of y = X? at the origin.
PART -B
X2 y2

1. Find the equation of the circle of curvature at the point (2, 3) on Z +? =2.
2. Find the co-ordinates of the centre of curvature at the point (a, 2a) on the parabola

y? = 4ax.
3. Find the equation of the circle of curvature of the curve X+ y3 =3axy at the point

3a 3a
2'2)
X2
4. Show that the circle of curvature of the parabola ¥y =mx+-—at (0, 0) is
a

X +y* =a(l+m?)(y—mx).

. 2 11
5. Find the centre of curvature of Yy = X" at E , Z .
6. Find the centre of curvature of Xy = ¢’ at (C, C) .
7. Find the centre of curvature of X =a(cost+tsint), y =a(sint—tcost)at 't".
8. Find the centre of curvature of y = xlog X at the point where y'=0.

ANSWERS

Part A:
1. zero
2 2
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Part B:

2 afy8) o8
4 6 12°

( Zlaj2 ( 21a]2 9a’
X——— | +|y——| =—
16 16 128

(acost,asint)

(&9

Evolute

Let C ()_(,T/) be the centre of curvature of the given curve C, at the point P(X, y). When P

moves on the curve Cl, centre of curvature will also take different position and move on another

curve C,which is called as evolute of the given curve C,. Hence evolute is defined as the locus of

centres of curvature of a curve.

Involute

If C,is evolute of the given curve C, then the given curve C, is called the involute of C,.

Procedure

Let the given curve be

f(x y,a,b)=0 (1)
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2
Find y, = %at pointPand Y, = ((jj—Zat point P
X X

Find the centre of curvature (i, y)

X = X—L(l+ yf)

2

Y=y (1ey?)

2

Eliminate x & y from (1), (2) & (3) we get

Locus of (X, y) is the required evolute.

PARAMETRIC REPRESENTATION OF SOME STANDARD CURVES

Curve Cartesian Form Parametric Equations
Parabola (Horizontal) y? = 4ax X = at’; y = 2at
Parabola (Vertical) x? = day X = 2at; y = at*
Ellipse X2y X =acosd; y=bsinég
—+—2 :1
a~ b
Hyperbola x> y? . X=asecH; y=btané
a? b*
Rectangular Hyperbola Xy = c? X=ct; y= C
’ t
Circle (x—a)2+(y—b)2:r2 X=a+rcosd; y=b+rsing
Astroid 2 2 2 X =acos® @ =asin®
x3+y*=ad 0.y 0
Cycloid - x=a(f-sind); y=a(l-cosd)
(or)
x=a(f+sing); y=-a(l-cos6)
Tractrix -

x:a(cos«9+logtan§j; y=asind
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PROPERTIES OF EVOLUTE

. The involute of a curve is orthogonal to all the tangents of that curve.

1. The evolute of the curve is independent of parametrization of any differentiable function
1l. The evolute of the curve is the envelope of the normal to the given curve.

Problems

1. Find the evolute of the parabola y2 =4ax.

Solution:

The parametric form of the parabola y*=4ax is x=at’, y=2at

:>d = 2at, dy =2a
dt dt
dy
- /t
Y dx /
1
= - 1
: (1)
y, = d(dyj d(dyj 1
2
dx
dx\dx /) dt\dx At
_i(}ji
dt\t ) 2at
_(_1) 1
2at
1
—_ — 2
y2 2at3 ( )

The co-ordinates of centre of curvature ( y) is given by

Kox- L (Lo y?), Y=y (1ey).

2 2
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. (5) (.1
x=2at-———|1+= | (from(@)and(2))+
)

= at® + 2at® (tz +1j

tZ

X = at? +2at’ +2a
—  x=2a+3at?

— 3at’ = x—2a

X—2a
2= X 3
= ” (3)

y=y+(Ley?)

2

=2at+— ! £1+t£2j
%aﬁ

2
= 2at—2at3(t +1j

t2

=2at —2at? — 2at

y =-2at®
= (9)2 = (—2at3)2 = 43> (tz)3
- 3
-2
:4a2(x3aa [ from(3)]
- 3
_ X—2a
= (y) =4a (22 27&3)

= 27a(y) =4(x-2a)

The Locus of (X, y) is 27ay® = 4(x—2a)2 is the required evolute of y2 =4ax.

2 2
2. Find the evolute of the ellipse —2+F=1.
a

Solution:

2 2
The parametric form of the ellipse — + o7 =1lis x=acos#, y=hsind
a
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:ﬁz—asine, %zbcose

do
dy
Ly, =W _do
TN odx dx
do
l:_IC)C(_)SQ:_—bcotH (1)
-asingd a
_d%y _d(dy
y2_dx2 ~dxLdx
. d (dyj 1
~do\dx ) dx
da\ dx 40

_i[—bcos@j 1
do\ asin@ )-asin@

= Ecosecze( 1 j
a —asinéd
b
a’sin®o

b
Y, =——5cosec’d =—
a

)

The co-ordinates of centre of curvature (i, y) is given by X=X —L(l+ yf ),

2

y=y+ (%)

2

—bcos@
( asin&) +b2 COSZ@J

1
(—y ) [ a’sin’@
a’sin®@

a?sin’@+b%cos’ 0
a’sin’@

X =acosf—

[ from(1)and (2)]

=acos@—£cos€sin29
a

1
= acosé?—acose[a2 (l—cos2 ¢9)+b2 cos? H]

= acosé’—lcose[a2 —a?cos? 6 +b? cos? 9}
a
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b2
—acosfd—acosfd+acos’d——cos’o

a
_ a?—b?
X = COS H[ bJ
1

3
= C0s0 = [a _sz 3
y=bsing+ a Sin"9:+b” cos’ 0 | from(1)and (2) ]
a sin® a’sin’ 6

bsing—a2sin®@| a’sin’ 0 +b’ (1—sin2 9)
- b a’sin®o

= bsinH—%(a2 sin? @ +b? —b?sin? 9)

2
=bsin Q—anin3 6 —bsin@+bsin®o

- b*-a’
=sin®@
s 5

by [
=sinfd = m (4)
(3)° +(4)°
. _ 2
. ax |3 —by |
:>cosze+sm29=[a2_b2} +|:a2—b2:|

§1=(ﬁf {[aﬂg +(byﬂ

2 2
:(az—bz)

= (a§)5 + (by)§ (5)

wIN

The locus of ()_(,9) is (ax)% +(by)% z(az—bz)%which is the required evolute of the given

2 2

ellipse —+—=1.
a2 b2
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2 2

X
3. Find the evolute of the hyperbola — — Y =1.

a’ b?
Solution:

2 2

X
The parametric form of the hyperbola _2_§ =1lis x=asecH, y=btand
a

jﬁzasecetane, ﬂzbseczg
do do
dy
y, =Y _do _asecotand
bodx o dx bsec? @
do
bsecd b
= =—cosect 1
h atand a (1)

. d (dy}_ d (dyj 1
2= 4xax )~ do\ dx '(d%e)

d [b j 1
=—| —cosecld | —————
do\ a asecd.tan @

=—Ecosec0cot0 ;
a asecfdtand

y, = —%cot3 0 2)

The co-ordinates of the centre of curvature ()_(, y)

x=x—ﬁ(l+ yf),y_/z y+i(1+ yf)

2 2

using (1) & (2)

bsecd
— 2 ?
X=asecH— % 1+b289—029

b a“tan @

a’tan®@

a’ tan® 6 +b? sec?
=asecd+asechdtan’ o 20 > 0
a“tan“ @
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- asec&+ﬁ[a2 (sec2 9—1)+b2 sec? 9}
a
2

b
=asecd+asec’d—asecd+—sec o

a
_ 2
X = sec® 9[a+b—j
a

:>sec¢9:£ ax js 3)

a’+b?

_ 2 2 2 2
y=btand+ a“tan- @ +b“sec 0}

1
(—y ) a’tan’é
a’tan®o

a’tan® Glaz tan? @ +b? (1+tan2 0)]

—y=Dbtang—
y a’tan’0

=btan 6’—%tan H(a2 tan® 8 +b? +b? tan? 9)

2
:btané?—%tanae—btan0—btan36?

2
:tan3t9[—a——b]
b

3
tand = 4
= (a2+b2] )

(3)° —(4)°

_ 42 2
3 . 3
:secze—tanzez% B Zby2
a“+b a“+b

1 -2 _.2

:1:_{(ax)s_(by)3}

(a2+b2)3
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2 2 2

= (ax)* —(by)* =(a*+b*)® (5)

2
=(a2 +b2)3 which is the required evolute of the given by

wln

The locus of ( ,9) is (ax)g—(by)

X
hyperbola — — y—2 =
a b
4. Find the evolute of the rectangular hyperbola Xy=C2 .

Solution:

C
The parametric form of the rectangular hyperbola Xy = c?is x=ct y=—

%:C & ﬂ:__zc

dt dt t
dy —C
dx 2
At c t

Y, = %[%] ) it(g_ij(dxlﬁt)

-5 @)

The co-ordinates of centre of curvature (i, 9) is given by

x:x—ﬁ(1+ yf) y= y+i(l+ yf)

2 2

(y ) 1+t14j | from(1)and (2)
ct®
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X =%(3t+tlsj 3)
<
t

y= +(21 )(1+t£4) [ from(1)and (2)]

y=3[ 3] @

R L
Similarly
- — —f, 1Y 1T 2~ —
RS
(5)° - (6)*

:»427:(;@)3_(;_9)3 @)

- — 2

2 2
The locus of (X, y) is (x+y)3—(x—y)3 =(4c)?

which is the required evolute of Xy = c?.

2 2 2
Find the evolute of the asteroid X® +y3® =as3.
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Solution:

2 2 2
The parametric equation of the astroid X® +y® =a® is x=acos’ g, y =asin’ @

= dx _ —3acos’ @sin g, dy _ 3asin? @cosd
de de

dy
d 3asin®@cosd
e %

Cdx dx/ - 2 9si
dx 40 3acos- @sin@
—siné@
= =—tan@ 1
“= s 1)
y, = d (dyj_ d [dy] 1
27 axlax ) del\ dx ) dx
dx \ dx dé\ dx 40
d 1
=—/(-tan @
% d9( )—3ac05295in9
1

=—sec’ 0 ———
-3acos” @sin @

1
~ 3acos’ @sind

)

Y2

The co-ordinates of centre of curvature ()_(, 9) is given by

- - 1
X=x—L(1+y?) y=y+—(1+y2)

2 2

cos’ @

x=aco0s’ 6 - (_Czi:;) ](1+Sin29J [ from(1)and (2) ]

1
[3acos46?sin9

2 =2
=acos® 0 +3acos® Osin? 9( wj

cos’ 4

=a[ cos® 0 +3cosOsin’ 0 | (3)
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1 cos® @ +sin’ 0

y_asin39+( . ){ —" j [ from(1)and (2)]

3acos* @sin@

:asin39+3acos493in0( 12 j
cos“ @

=a sin’ 0+3cos’ Osin 0 | (4)
(3) +(4)
= X+y= a[cos3 6 +3cosfsin’ §+3cos® Bsin §+sin® 49]

=a(cosf +sin 6)°

W

:>c050+sin0:(x%ay] 5)

(3)-(4)
= x—y =al cos’ @ +3cos fsin’ 6 —3cos’ Osin 6 —sin® 0 |

=a(cosf—sinH)°

1
Y_v)3
:>cos(9—sin6?=[leyj (6)

(5)**(6)°

w N

2
I
:>(cos:9+sina9)2+(cos€—sin9)2=(X+y) {X y]
a a

=c0s° @+ 2c0s@sin @ +sin® @+ cos® @ —2cosdsin @ +sin’ 6

- -z _ _2z
(x+y)*  (x=y)°
= 2 T 2

ad a3

= 2(cos’ 6+5in’ 6) =i{(>_<+§)§ +(§<—§)§}

2%
= (x+ 9)g +(x —9)5 = 2a§ (7
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- _ 2 2

The locus of (X, y) is (X+Yy)®+(x—y)®=2a
2
3

wI|N

, which the required evolute of the asteroid

22
x:+y3=a
6. Prove that the evolute of the cycloid x:a(é’— sin 9), y:a(l—cos 9) is another cycloid.
Solution:

Given x=a(@-sind), y=a(l—cosé)

:%:a(l—cose), ﬂ:asine
de deo

:2asin2§ :2asingcos§
2 2 2

dy .6 0
—~  2asin—cos—
_dy_do T
o
do

Y
2asin2€
2

2 _ cotg 1)

:i(ﬂj:i(d_yji
2= 4xLax ) " dolax ) dx

0

o

) —y (2)
4asin“€
2

The co-ordinates of centre of curvature (;, §) is given by

}:x—ﬁ(1+ ylz), ;/:y+i(1+y12)

2 Y2
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x=a(0-sing)- 2 1+ 2 [ from(1)and (2)]

sin? Q+cosz 0
2 2

= a&—asin9+4acos§sin3—

sinzg
:ae—asin¢9+4asingcosg
2 2
=afd—asinf+2asind
x=a(0+sind) ©)
— 1
y=y+—(1+y})
Y,
1 sin2§+coszz
=a(l-cos)+ —3 [from(l)and(z)]
sin® =
-1 2
4asin4g
2
:a(ZSin2€j—4asin2€
2 2
:—2asinzg
y =-2a(1-cosb) (4)

The locus of )_(,9 is Xx=a(@+sin@), y =—-2a(1—cos @) which is another cycloid.
(xy) (©+sind), y =—2a(l—cos6)

t .
7. Find the evolute of the tractrix X =a(cost + log tan E), y=asint.
Solution:

t .
Given X =a(cost + log tan E)’ y =asint
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dx }
= —=a|-sint+

1 L,t(1
sec” —.| —
t 212

tan —
2

=al| —sint+
2si

n—cosi
2 2

( ! 1 j
=a —S|nt+_—
sint

1-sin’t
=a -
sint

dx _ acos’t
dt sint

dy

y=asint = — =acost
dt

dy

_dy _dt _
dx dx
dt

Y1

sint
=——=tan
cost

- L(#)-2
2 dx\dx) dt

d 1
=—(tant).
dt(an)

acost

acos’t
sint

t

dy) 1
dx “dx

sint
acos’t
_sint
~acos't

=sec’t

Y,

acos’t
sint
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The co-ordinates of centre of curvature (%, y) is given by

x:x—£(1+ yf) §/:y+i(1+ yf)

2 2

cos’t

acos*t

sint
X = a(cost +log tan %)— ((:)rf':)) £1+ sin”t j [ from(1)and (2)]

cos’ t +sin? tj

=acost+a|ogtan£—acos3t -
2 cos”t

t
= acost+a|og tanz—acost

- t
X =alogtan—
g 2
t X
logtan —==—
g 2 a
t X
= tan—=e? 3)
2
y=asint + ! cos”t +sin”t [ from(1)and (2)]
( sint j cos’t
acos’t
) acos’t
=asint+—
sint

_asin*t+acos’t
sint
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—=y=
2tan —

e
_az-+¢e using (3)
2
y=2 e_§+e§

2
:>§/=32005hX [ cosh x:l(eX +e) } 4)

2 a 2

- X
The locus of (X, y) isy= acosh — which is a catenary.
a
EXERCISES

1. Show that the evolute of the cycloid X = a(¢9+sin 9), y= a(l—COS 9)is another cycloid

givenby x=a(6-sind), y—2a=a(l+cosd).

2. Prove that the evolute of the curve X = a(COSt9+ gsin 9), y= a(sin 0 — 6 cos 49) is a circle
x*+y’=a’.

ENVELOPES

Introduction

In the plane, an envelope is a curve that is a tangent at some point to each member of the
family of curves. Hence envelope can be viewed as a curve that touches every member of the family
at some point. Classically, a point on the envelope can be imagined as the limit of intersection of
nearby curves. This idea can be generalized to an envelope of surfaces in space and also extended to
higher dimensions. A family of curves may have no envelope or unique envelope or several
envelopes.

Note: In the study of ordinary differential equations, envelopes are considered as

singular solutions of ODEs.

Consider the equation f (X, Y, a) =0 where « is an arbitrary constant. Assigning different

values for & results in number of equations representing a family of curves. Hence the quantity o

is called parameter of the family of curves.
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.:--'----__
(o} 12
C3 3
Cy ‘]_

Fig 2.9
Definition

The locus of the limiting positions of the points of intersection of consecutive members of a family of

curves is called the envelope of the family.

Theorem

The envelope of a family of curves touches every member of the family of curves.

Proof:

Fig 2.10

Consider three consecutive intersecting member of the family, given by f (X, Y, a) =0. Let curves A

and B intersect at the point P, curves B and C intersect at the point Q. The points P and Q lie on the
envelope and on the curve B. Now there exist a common tangent for the curve B and the envelope.

In a similar manner, it can be proved that the envelope touches every point of the curve of the

family.

Note: The envelope of a family of curves is the curve which touches every member

of the family of curves.
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Method of finding the equation of the envelope of single parameter family of curves

Let f (X, Y, (x) = Obe the equation of the given family of curves, where « is the parameter. The two

consecutive members of the family corresponding to two close values of & are given by
f(x,y,a)=0 (1)
and f(xy,a+Aa)=0 (2)

The co-ordinates of the points of intersection of (1) and (2) will satisfy (1) and (2) and hence
f(x.y,a+Aa)-f(xVy,a)
Aa

=0

satisfy

Hence the co-ordinates of the limiting positions of the points of intersection of (1) and (2)

lim | f(xya+Aa)-f(xy,a) o
Aa—0 Aa -

will satisfy the equation

. 0 of
ie.—f(x,y,a)=0=—=0 3
oa ( ya) oa )

These limiting points will continue to lie on (1) and satisfy f (X, y,a) =0 Eliminating @ between

f (X, Y, a) =0 and i =0, the required envelope of the family of curves is obtained.
ox

Equation of the envelope of the family Aa’ +Ba +C =0, where « is the parameter and A, B, C

are functions of xand y

Let the family of curves be quadratic in the parameter & given by
Ac? +Ba+C=0 (1)

Differentiating (1) partially w.r.t o,

2Aa+B:0:>a:£ (2)
2A

Substituting (2) in (1)

2
A(f] + B(fjw =0
2A 2A

2 2
B__B_+C:0
4A 2A
— B? —4AC =0,
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which is the equation of the required envelope of the given family.

Note: If the family of curves is a quadratic in the parameter « then the required

envelope is given by B2 —4AC =0.

Examples

a
1. Find the envelope of the curve y = mX+—,where mis the parameter.
m

Solution:

. a
Given y=mx+—
m
2
ym=m-x+a

m2x—ym+a:0

This is a quadratic equation in m with
A=X, B=-vy, C=a
Hence the required envelope is given by

B2—4AC =0

= (~y)'-4(x)(a)=0
=y’ —4ax=0
= y? =4ax

The envelope is a parabola.

2. Find the envelope of the family of curves Y =mX+ amz, M being the parameter.
Solution:
Given Yy =mx+am’ (1)

Differentiating (1) with respect to m,

0= x+2am
—m=_2 (2)
2a
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Substituting (2) in (1)

=— +a—
y 2a 4a?
Y

X% = —4ay is the required envelope. Envelope is a parabola.

3. Find the envelope of family of straight lines given by Yy = mxi\/azmz +b? , M being the
parameter.
Solution:

Given y= mxi\/m
(y—mx)zim

(y- mx)2 =a’m® +b’

yZ +m*x® —2xym = a’m?’ +b?

(x* —a®)m® —2xym+(y* —b*) =0

which is quadratic in m, with
A=x*-a’; B=-2xy; C=y*-Db’

Envelope is given by B> —4AC =0
4x*y? —4(x2 —az)(y2 —b2) =0
}Z/V[:}%//‘(—xzbz—a2 y’ +a’b?
b2X2 +a2y2 — a2b2
Dividing by a’b?,

2 2
X—2+y—:1

2

QD
(o

The required envelope is an ellipse.

4, Find the envelope of the family of straight lines y=mx—2am—am3, where m is a

parameter.
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Solution:

Given Yy =mx—2am—am’ (1)

Differentiating partially w.r.t m,

0=x—-2a—3am?’ (2)
N m? = X—2a 3)
3a

From (1) = y=m(x—2a—am2)

y-mx-za-a 222 [ron(a)]

3a
= m[(x—Za)—%(x—Za)}
y= m%(x—Za)
3
mzz(x—yza) “

From (3) and (4), we get

(x—2a) _[ 3y T

3a | 2x-4a

:>(x—2a)3 :27f7ay

= 4(x—2a)’ =27ay*

is the required envelope.
. . 1 .
5. Find the envelope of the family of curves X =my +—,m being the parameter.
m
Solution:

1
Given X=my +—
m

xm=m’y+1
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m?y —xm+1=0
This is a quadratic equationin ‘m’ A=y;B=-x; C=1

Required envelope: B? —4AC =0

(X - 4(1)1) =0
x> —4y=0
X’ =4y

Envelope is a parabola.
. X .
6. Find the envelope of ?+ yt = 2c, t being the parameter.
Solution:

X
Given ?+ yt=2cC

= yt* —2ct+x=0
= yt® +x = 2ct
This is a quadratic equation int’ with A=Yy; B=-2c; C=x
Required Envelope B? —4AC =0

(—2c)* -4(y) (x)=0

4c* —4yx =0
¢’ —yx=0
Xy = c?

The envelope is rectangular hyperbola.

7. Find the envelope of family of circles (X— a)2 + y2 =2a where ‘@’ is a parameter.
Solution:
Given (x—a)2+y2 =2a (1)

Differentiating w.r.t ‘a’ we get
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2(x-a)(-1)=2
a=x+1 (2)
Substituting (2) in (1)
[x—(x+1)]2+y2 =2(x+1)
1+y>=2x+2
y? =2x+1

The required envelope is a parabola.

8. Find the envelope to the family of circles x> +(y—b)2 =a’ with centres on y-axis & of
given radius ‘a’ with ‘b’ as the parameter.

Solution:
Consider x? +(y—b)2 =a’ (1)
Differentiate (1) w.r.t ‘b’
-2(y—-b)=0=y-b=0

—b=y (2)

N > X

.. Thetwolines X = aand X = —a are the two envelopes to this family of circles
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9. Show that the x-axis y = 0 is the envelope of the family of semicubical parabola

y’ —(X+b)3 =0 with b as the parameter.

Solution:

<&
<

Fig 2.12
Consider y? —(Xer)3 =0 (1)
Differentiate (1) w.r.t ‘b’
—3(x+b)2 =0
=X+b=0 (2)
Substituting (2) in (1), we get
y*=0
= y =0, is the envelope

10. Show that the family of straight lines 2y —4Xx+a =0 has no envelope, where « is the

parameter.
Solution:

Differentiating 2y —4X+ a =0, with respectto &

we get 0+0+1=0 which is a contradiction. We observe that the given family of straight lines

a , . .
y =2X——are all parallel with common slope m = 2. Hence no curve (envelope) exists which

touches each member of this parallel straight lines.

11. Show that the family of circles X? +(y—b)2 =b? with centres lying on the y-axis has no

envelope.
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Solution:

Fig 2.13
Differentiating X* + ( y— b)2 =Db? with respect to b we get,

0-2(y-b)=2b
=>y=0

We observe that the given family of circles meets at the origin and that we could not find a curve

which covers or touches every member.

Hence the envelope does not exist for this family of circles.

X ;
12. Find the envelope of the family of lines —cos¢9+lsm 0 =1, @ being the parameter.
a
Solution:
X ;
Given —cose+%sm9:1 (1)
a

Differentiating (1) partially with respect to 6

_—Xsin0+%cose=0 (2)

a
Squaring and adding (1) and (2), we get
X ? —X ?
(—cos@+%sin 9) +(—sin 9+%cos€j =1 +0°

a a
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2 2 2 ain? 2 2
(%cosﬂ%#sinﬂ% X g cose}(x :? 0, (;Ozs Q—W]:l

2 2
% (cos? 6 +sin’ 6’)+t))/—2(cos2 0+sin®0)=1
a
X2 y2
¥+b—2:1

The required envelope is an ellipse.

13. Find the envelope of the family of curves X 0S8+ ysin @ = «, @ being the parameter.
Solution:
Given XC0s@+ysind =« (1)

Differentiating (1) with respect to 8
—xsin@+ycosfd=0 (2)

Squaring and adding (1) and (2)

(xcos@+ysin 6’)2 +(—xsing+ ycosé?)2 =a’+0°
X* (cos® 6+sin’ @)+ y* (sin® @ +cos* 0) = a®

X2+y2:a2

The required envelope is a circle.

_ _ a’ b* ) . _
14. Find the envelope of the family of curves | — |C0SO—| — [SIN@=C,0 being the
X y

parameter.

Solution:

2 2
Given (a—}cose—(b—]siné?:c (1)
X y

Differentiating with respect to 0
2 2
a . b
(—j(—sm 9)—(—}039 =0
X y
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2 2
(a?jsin 0+[%]cos¢9:0 (2)

The equation of the envelope is obtained by eliminating 6 between (1) and (2)
Now squaring and adding (1) and (2)

a?) b?
(?j (cos2 0 +sin? 9)+[—](sin2 0 + cos’ 9) =c?

y

a' b
X2 2
2

=C
a4y 1b*x? = szzyz

is the required envelope.

15. Find the envelope of the family of straight lines XCOS« + ySina =CSiNa COSa, @ being

the parameter.
Solution:

Given by XCOSa + ySina =CSina Cosa
Dividing by Sin & C0S r, we get

XY "

sina CcoSa

Differentiating (1) with respect to a, we get

X .
——C0Sa + y2 Sina=0 (2)
sin“a cos” o

XCosa _ ysina
sinfa cos® a

X y
= = =k(sa 3
sinfa cos’a (say) )
sinor =~ cos’ar =2
k k

We knowsin® o +cos* o =1
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2 2 2

X3 +y® =k? (4)

1 1

_ 3 yé
From (3) we have SIn@ = —; COSa =~ (5)

k3 k3

Using (5) in (1)
1 1
ke ke L =c

(x*+y3)=c=>x3+y3=c?
is the required envelope.
16. Find the envelope of y = Xtana +2seca, a being the parameter.
Solution:
Given y=Xtana +2seca (2)

Differentiating with respect to a

0=xsec’ a+2secatana

Dividing by SEC«

Xseca +2tana =0 (2)
(1)*-(2)* gives

(xtana +2seca)’ —(xseca+2tana)’ = y?

(x2 tan’ or + 4sec’® ar + 2x tan aseca)—(xz sec’ o +4tan® o + 2xsec o tan a) =y
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G (tan2 o —Sec? 0:)+4(sec2 a —tan? a) =y’

—X*+4=y?

The required envelope is a circle.

17. Find the envelope of xcosecd —ycot = a, d being the parameter.
Solution:
Given xcosecd—ycotd=a (1)

Differentiating with respect to 6,

—xcosecdcotd + ycosec’d =0
xcosecé cotd = ycosec’d

X cosec?d

y - cosecdcotd

x__1
y cosé
[\2 2
cosH:X X sin¢9:u (2)
X X
%2 - yz X
n 0

Fig 2.14
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Substituting (2) in (1)

xcosecd—ycotd =a

X y
){ /X2_y2]_y[ lxz_sz_a
x2—y2

= x’-y*=a

= =a

=x* - y2 =a’ is the required envelope.

EXERCISE

Part— A

1. Define envelope of a family of curves.

2. Show that the envelope of the curve y= mx+£,m being the parameter is given by

m

y? =4x.

3. Show that the envelope of the family of lines y =mx+4m?* m being the parameter is
given by x> =16y .

4. Show that the envelope of y=mx++1+m?,m being the parameter is given by
X*+y?=1.

5. Show that the envelope of y=mx++/m’-1,m being the parameter is given by
x> —y?=1.

6. Show that the envelope of the family of circles (X—a)2+y2 =4a,a being the
parameter is given by y* = 4(x+1).

7. Show that the envelope of the lines 5sece—%tane:l,é? being the parameter is

a
2 2

given by %—ézl.

8. Show that the envelope of the lines xsecé—ytand=a,f being the parameter is
givenby x> —y*=a’.

9. Show that the envelope of the family of straight lines xcosa + ysina =aseca,«
being the parameter is given by y* =-4a(x-a).

10.  Show that the envelope of the family of straight lines y =mx—+/a’m?—b*,m being

2 2

the parameter is given by %—Z—Z =1.

11.  Show that the envelope of the family of straight lines y=mx+amP®,m being the

parameter is given by ap®y"™* +(p —1)"‘l xP=0.
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12.  Show that the envelope of family of curves y=mx+am®,m being the parameter is
given by 27ay’ +4x*=0.
13.  Show that the envelope of 1— x2+(y—k)2 =0,k being the parameter is given by

x? =1.

14.  Show that the family of circles (x—a)2 +y®>=a® has no envelope, ‘a’ being the
parameter.

15.  Show that the envelope of the family of curves :—z+k2y2a2 =1, ‘a’ being the
parameter is given by x+y=+k.

Part B

16. Show that the envelope of the lines xsec&+ ycosecd =c,0 being the parameter is

2 2 2
givenby x3+y3 =a?,
17.  Show that the envelope of the family of straight lines ycosé—siné =acos 26,6
2 2 2
being the parameter is given by (x+y)3 +(x—y)3 =2a®.
18.  Show that the envelope of the family of circles x* + y* —2axcos@—2aysind=c’, 6
being the parameter is given by 4a’x® +4a’y’® = (x2 +y? —cz)2
ax by

19. Show that the envelope of the family of straight lines —— ——— =a® —b?, 0 being
coséd sing

2 2 2
the parameter is given by (ax)s +(by)s = (a’ —b?)?
20.  Show that the envelope of the lines xcos®a+ ysin®a =a, were a the parameter is
given by x*y* =a’ (X’ +y?).

21.  Show that the envelope of the family of curves xz(x—a)+(x+a)(y—m)2 =0,m
2 2 2
being the parameter is given by (x—y)3 +(x+y)3 = 2a2.
22.  Find the envelope of y = mx + va’m? —=b> m is the parameter.

i)

23. Find the envelope of the family of curves y = mx + a+/1+m? , m being the parameter.

2

24, Find the envelope of the family of curves y = x tan a - ng >— Where a is the
2U° cos” «
parameter.
25.  Find the envelope of the circles described on the radii vectors of the ellipse
2 2
x_2+y_2 =1 as diameters.
a b
26. Find the envelope of the circles passing through the origin and with their centres lying
_ X2 yz
on the ellipse ¥+b—2 =1.
27.  Find the envelope of the circle whose centre lies on xy =c? and passes through the

origin.
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Envelopes of families of curves with single parameters

Equation of the Curve Envelope of family with respect to given
conditions

(X_a)2+y2=r2

o is the parameter

x> +(y—b)’=a’ ¥

b is the parameter

yv2—(x+b)*=0 Y
(semicubical parabolas) b is the parameter
0 4
c
y = Mx+—
m

m is the parameter

Xcosa+ysino=p

o is the parameter
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ENVELOPE OF FAMILY OF CURVES WITH TWO PARAMETERS

In this section we find envelopes of families of curves with two parameters, the parameters

being connected by a relation.

For example, to find the envelope of a line segment of constant length c sliding on two fixed

X
perpendicular lines leads to the problem of finding the envelope of the family of lines —+% =1
a

where a? +b? =¢?

In some problems of finding the envelope of two parameter family of curves, it may be
possible to express one of the parameters explicitly interms of the other. This reduces the problem

to a single parameter problem. When this is not possible we proceed as below.

Consider the equations f (X, y,a, b) =0 (1)

p(a,b)=0 (2)
Differentiating (1) and (2) with respect to ‘a’ (Treating b as a function of a)

of of db
Weget, —+—.—=0 (3)
oa ob da

8_(p+8¢) db_O

and —_——=
oa ob da

(4)

db
Substitute for d—from (4) in (3) and eliminating a and b from the resulting equation and the
a
relations (1) and (2) we get the envelope.

Examples

y

X
1. Find the envelope of the straight line —+E=1 where a and b are connected by the
a

relation a+b=cC where cis a constant, a and b are parameters.
Solution:

Given 5+%=1 (1)

a
and a+b=c (2)

Differentiating (1) with respect to ‘a’
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Differentiating (2) with respect to ‘a’

(i.e.)

1+@=0
da
db_

da

Substituting (4) in (3)

—X
2
Xy
Ry
2) ) (33)
a/_ b -4 b s|nce§_£:3
a b a+b b d f
1 1
=—= == [From (1) and (2
L= [From (1) and (2)]
x_1
a’ ¢
= cx =a?
:>a:(cx)%

1
2

Similarly b =(cy)

Substitute aand b in (2)

1 1

(cx)z+(cy)z =c

i1
=C?|x2+y?|=cC

1

Sc

2 2 —
= X2 +yr=—
C2

S

is the envelope of the given family of curves.
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2. Find the envelope of the straight lines 5Jr%:lwhere the parameters are related by the
a

equation a’ +b? =c? where cis constant.

Solution:

Given 5+X:1
a b

Also a*+b*=c? (2)
Differentiating (1) with respect to ‘a’

-x ydb
X_yd_, 3
a’ b’da G)

Differentiating (2) with respect to ‘a’

2a+2b@=0
da

db -a
= —=— (4)
da b

Substituting (4) in (3)

_(gj_(?g)_ 1 a _Ci [From () &(2)]

a a a
X a L
=S =5 =a = x=>a=(cx)’
a° ¢
1
I ay a 3 2 (20\3
Similarly F_—Z:b =C y:>b_(c y)

Substituting a and b in (2)
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,_\
oo\.b \_/
w\w

/-\

\_/

w\m

N

2 42
—c3x3+c3yd =¢
4 2 2
=c3x3+y? |=c?
2 22

X3 +y3

is the required envelope of the family of straight lines.

X
3. Find the envelope of the straight line —+% =Jlwhere the parameters a and b are related by
a

the equation a" +b" =c", c being a constant.
X
Solution: — +X =1 (1)
a b

a"+b"=c" (2)
Differentiating (1) w.r.t ‘a’

-x y db
Z2_ Y2 9 3
a’ b’da )

Differentiating (2) w.r.t ‘a’

na"" +nb"* do_ 0
da
. (4)
da b"*

Substituting (4) in (3)

—X an—l
=gt
Xyt x

a2 bn+1 an+l bn+1
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oy GGG s

:> I’1= n= n = n = n n = n
aa" bb a b a"+b C

X 1 n+l n n i1

1 =—n:>a. = X.C :>a=[X.C :|n+
a C

y _1 i

b _C_n =b" = y.Cn =b= [y_c”:lnﬂ

Substituting a and b in (2)

(xc” )”+l+(yC ) =

n? n
Cn+1 Xn+1+y

El=
|—|
O

>

nooon n
= Xn+l+ n+l —
y - 2
cnil
n2
n———
=C n+l
n non

which is the required envelope.

4, Find the envelope of X +X =1 where a and b are connected by the relation ab =
Solution:
Given 5JrX=1 (1)
a b
Also ab = c? (2)

Differentiating (1) w.r.t ‘a’

-x ydb

X YA 3
a’ b?da G)

Differentiating (2) w.r.t ‘a’

a@+b 0
da

91



do b

= (4)
da a
Substitute (4) in (3)
-X y(-b
—~_ Il =Z1l=0
a’ bz( a j
X_Y
a®> ab
v ) ) G s
X _y_\aj_ —, .8 == [ from (1)]
a b 1 1 1+1 2
=>—=—=a=2X
a
1
and y_= =b=2y
2
Substitute a, b in (2)
(2x)(2y)=c?
= 4xy =c?
which is the required envelope
5. Determine the envelope of the two parameter family of parabolas \/g+\/g =J1where the
a
two parameters a and b are connected by the relation @ + b = C where c is a given
constant.
Solution:

Using the givenrelation a + b = ¢,
Eliminate b=c—a (1)

From the given family,

/x fy
aJr b 2)

Substitute (1) in (2)

92



Jg+/—l—=1 (3)
a c—a

which is now a one - parameter family of parabolas with ‘a’ as the parameter

Differentiating (3) w.r.t ‘a’

Il
VR
> <
N7
Wl

1
ca_y
!
a NG
1
c 3
—:y—1+1
a =
X3
11
c_ X3 +y3
1
a N
1
cx3
:>a:ﬁ (4)
X3 +y3

Substitute (4) in (3) we get the required envelope as

1 1
2 [ 21 1\ 1
il +|:y3[x3+y3]i| =02

111
Thus the envelope is the asteroid given by X3 +y3 =c3.
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X
6. Show that the envelope of a family of parabolas \/:+\/% =1lunder the condition ab = c?
a
is a hyperbola having its asymptotes coinciding with the axes.

Solution:

1

N

. (X2 [y
Equation of hyperbolasis | — | + E =1 (1)
a

where ab = ¢? (2)

Differentiating (1) with respect to ‘a’ regarding b as a function of a

trqy 202 S db
X2 — a2 b2 —=0 3
Gl rEh G ¥

Differentiating (2) w.r.t ‘a’ regarding b as a function of a

a@+bl 0
da

_do_-b “
da a

Substitute (4) in (3)

-1\ =2 1
— |x%a? +| —
(zj (2jy
-1
Dividing by ( > ]and multiplying by ‘a

i1 1
x?a2 —y2h?

2(
K5 m L),

1

=0

From (1)

NII—\
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Squaring,

:ﬁzl and y 1
a 4 b 4
—a=4x and b=4y

Substitute a and b in (2), we get

(4x)(4y)=c?
= 16Xy =c?

which we know is a rectangular hyperbola with asymptotes as axes.

2 2
X
7. Find the envelope of the ellipse —2+§=1where a and b are connected by
a
\/54_\/5 = \/Eand cis a constant.
Solution:
2 2
X
Given —2+y—2=1 (2)
a~ b

Also Ja++/b =+/c 2)

Differentiating (1) w.r.t ‘a’

—2x*  2y* db _

_2y B g 3
a b® da )

Differentiating (2) w.r.t ‘a’

1 1 db_

2Ja  2b da

:@=—_“/B (4)
da +a

Substitute (4) in (3)
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T
&) (5]

X'y
a2y 1 1 1

TarJab acvab a|Jarb] vave

Similarly

y’'\Nb 1
b’Va Jave

5 1\s
—b? :yzﬁ:bz(yzcﬂ]

Substitute a and b in (2)

1 1
15 1]s 1
{xzcz} +[y2c2} =c?
1

2 2 2
=c?|x>+y° |=cC

2 2 2

= X5 +y® =c?,

which is the required envelope of the given family.
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2 2
X
8. Find the envelope of the ellipse —2+§ =1, where a and b are connected by the relation
a

a’ +b? =C?, c being a constant.
Solution:

2 2
Given %+§:1 (1)

Also a® +b? =¢? (2)
Eliminating b from (2) we get
b?=c*-a? (3)

X2 yZ
Substitute (3) in (1), we get — + =1
a

2

c’-a’

=(c*-a’)x* +a’y* =a*(c’ -a’)
:>a4—a2(c2+x2—y2)+c2x2:0 (4)
(4) is a quadratic equation in a’.

The envelope is given by B2 —4AC =0

2
= (P+x*-y*) —4c’x* =0
= [(cz+x2—y2)+2cx][c2+x2—y2—2cx}:0
= (x+c)2—y2:0, (x—c)z—y2=0
= X+C=txyandx-c=xy—= Xx=-Ctyandx=cty
= Xty==c
2 2
9. If a®+Db*=c, show that the envelopes of the family of ellipses

— += =1 with a, b as
a~ b

parameters are the straight lines tXt Yy = \/E

Solution:

2 2

Given —+y—:1 (1)

a® b’
Treating b as a function of a and differentiating equation (1) w.r.t ‘a’, we get
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—2x*  2y*db
=0 2
a® b’ da @
Also given a® +b* =c¢

Differentiating (3) w.r.t ‘a’

db

2a+2b— =0
da
db -
b _-—a (4)
da b

Substitute (4) in (2)

Xty

2
4

QD
S
(o

a a 1
= ™ I [from @ and(3)]
2 2
= X—4 = landy—4 1
a“~ ¢ b* ¢

=a’ =++/Cxandb?= i\/Ey
Substitute @’ and bin (3)
(B)=c=a’+b?

c=+Jex+cy

So the required envelopes are =Xty = \/E

2 2
X
10. Find the envelope of —2+Z—2 =1 where @" +b" =c", aand b being the parameters.

Solution:
2 yZ
Given — +— =1 (1)
a“~ b

Also a" +b" =¢"
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Differentiating (1) w.r.t ‘a’

—2x> 2y*db
a® b da

= (3)
b da
Differentiating (2) w.r.t ‘a’

_1@_
da

na"*+nb" 0

do a"*

Tda b W

Substitute (4) in (3)

a
= from (1) and (2
an bn an +bn Cn [ () ( )]
x> 1 y> 1
n+2 _n bn+2 :C_n

= an+2 — XZCn and bn+2 — yZCn
1 1
=a=[xc" ["2andb=| y’c" |2

Substitute aand bin (2)

n n c"
:>(X2)n+2 +(y2)n+2 — —
onez

,nz

=C".Cn+2

=[xy =[]

which is the required envelope.
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11. Find the envelope of the family of ellipses whose axes coincide and whose area is constant.

Solution:

2

Given —+t—=
a

2

y
b2

=1

is the equation of the ellipse where a and b are the variables

Parameters connected by the equation 7ab =k
ab being the area of an ellipse whose semi - axes are a and b.

Differentiating (1) and (2) regarding a and b as variables, we get

x> y*db db —x°p®
St o =0=—=—e
a” b’da da avy
a® g B
da da a

X
From the above equations, we get —
a

From (1)

2 2
a~ 2 b 2

—a=+xJ2 and b=J_ry\/§

Substitute aand bin (2),

2

y

=2

(1)

(2)

k
we get the envelope Xy = -_|-2— a pair of conjugate rectangular hyperbolas.
T

12. Find the envelopes of the family of curves —m+b—m =
a

connected by the relation a” +b® =c”.

Solution:

Equation of the given family of curves is

m

y

m

where the parameters a and b are connected by the relation

af +b? =cP

lwhere the parameters a and b are

(2)

Now we shall differentiate (1) and (2) w.r.t ‘a’ regarding b as a function of a.
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-mx"  my" db
From (1) we get, ———— o d_ =
a a

From (2) we get,
paf™+ pb‘”@ =0
da

db -a’*!
“da b “

. db
Equating the two values of —, we get

- — =
v
bm

Eliminating a and b between (1), (2) and (5) we get the required envelope

From (5) we have

Xy XLy
a"‘_bm_am bm_l

= T T [ from (1)and (2)]
oxT 1
e aPm _Cp

1
=a"m=x"c" =>a= [chp]ﬁ

p mp - _p?
=a’ =[X"cP [prm = x"" P
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mp p°

Similarly b? =y P CP*™

Substitute a”and b”in (2) we get

p’ mp mp

chm Xp+m+yp+m =cP

2

_mp_ _mp_ -~

:Xp+m+yp+m:C p+m
_mp_ _mp_ _mp_
p+m

= X"yt =CPrm

which is the required envelope.

Exercise:
X
1. Find the envelope of —+% =1 where 8’ +b*=4.
a
. . . . Xy
2. Find the envelope of the family of straight lines _+E:l where parameters a and b are
a

connected by the relation a®+b®= C3,C being a constant.

X
3. Find the envelope of the straight line — +% =1 where ab = 4.
a
1 1
X \2 y 2
4. Find the envelope of the family of curves | — | + E =1 where a and b are connected by
a
the relation (i) @" +b" =c".
(ii) a + b = ¢, c being a constant.
m m
5. Find the envelope of curves —m+b—m =1.
a
when (i)a+b=c.
(i) ab = ¢?, Cbeing a constant.
6. Show that the envelope of the straight line of given length | which slides with extremities on

2 2
two fixed straight lines at right anglesis X3 +y3 =13,

wlnN
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Hint : Let us take the two fixed straight lines at right angles as axes. Let the equation of the

X
line with its ends on the given perpendicular lines as axes be — +% =1where a® +b* =12,
a
AY
B
[J
b
0 a A ’x
Fig.2.15
X2 y2
7. Find the envelope of the family of ellipses — +-— =1 where the parameters are connected
a
bya+b=c, cisaconstant.
. Xy .
8. Find the envelope of — +B =1 where the parameters a & b are connected by the relation
a
a™b™=c™"", cis a constant.
Answers
2 2 2
1. x3+yd=a3.
3 3 3
2. X4 +y4=ct
3. 4xy =1.
n o n n O T
4. i) X2n+1 + y2n+1 — C2n+1. ii) X3 + y3 — C3 .
_m _m _m
5. i) XML g ymil = gmil ii) 4xy =c*.
2 2z 2
7. x¥+y3=c3
m+n
m,,n _ C mn
8. X"y" = m™n
m+n

103



Envelope of Family of Curves with Two Parameters

Equation of the Curve

Condition for Parameters

Envelope of Family with Respect to Given
Condition

g+%:1 a+b’=¢
Z_2+E)/_2:l a+b=c
Z_2+E)/_2:l ab=c
P
g+%:1 a+b=c
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EVOLUTE AS ENVELOPE OF NORMALS

Let P, P,, P, be consecutive points on a curve and the normal at P, P, cut at Q, and the
normal at P,, P, cut at Q,. In the limiting process as P,and P, moves towards P,, Q, moves

towards Q,. Q, and Q, are the centres of curvature at the points P, and P,. As both Q, and Q, lie

on the evolute and also on the normals, it is clear that the normals to the original curve are tangents

to the evolute. Hence the evolute can also be thought of as the envelope of the normals to the

original curve.

Fig 2.16

In the differential geometry of curves, the evolute of a curve is the locus of all its centres of
curvature, Equivalently it is the envelope of the normals to a curve. The original curve is an involute

of its evolute.

(-”-'l’o”

Curve
Fig 2.17

The normals to the curve form a family of straight lines. Thus the envelope of the normals is
the locus of the ultimate points of intersection of consecutive normals. But we know that the centres
of curvature is the point of intersection of consecutive normals. So the envelope of the normals

must be the locus of the centres of curvatures, which is the evolute of the given curve.
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Hence, the evolute of a given curve can also be considered as the envelope of the normals to
the curve.

Problems:

1. Find the evolute of y2 =4ax considering it as the envelope of the normals.

Solution:

Any pointon y? =4ax is (at2,2at)

X =at?, y = 2at
%: 2at,d—y: 2a
dt dt

m_dy_dy/dt_ 2a 1

Tdx  dx/dt 2at t

The equation of the normal to (Xl, yl) with m as the slope of the tangent to a curve is given

by

(y—yl):ﬁ(x—xl)

y—2at=_—1(x—at2)

()

y + xt = at® + 2at (1)

Differentiate equation (1) partially with respect to t we have

x =3at? +2a
1
- x—2a:>t_(x—2aj2
3a 3a

Substituting the value of t in equation (1)
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(X—ZaJZ(x+4aj {X—Za}z
y=a —X
3a 3a 3a

()

_(x—Zan _x+4a—3x}

1
_ Za(x—ZaJZ(x—Za] Multiply the numerator
- 3a 3a and denominator by a
X—2a )2
=-2a
! ( 3 J
-2 3
Yy==3 1(X_2a)2
3232

31 3

32a2.y=-2(x-2a)z
Squaring on both side,

27ay’ =4(x— 2a)3.
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2. Regarding the evolute as the envelope of the normals, show that the evolute of the ellipse

X2 y2 2 2
—2+F:1isthe curve (ax)3 +(by) :(aZ_bZ)g.

a

wN

Solution:

2 2
X .

Any point on —2+§ =1 is given by (aCOSQ,bSIn 49)
a

X=4acoso, y=bsin@
%:—sinﬁ d—y:bcosé’
do do

mzﬂzdy/dezbco_se :_—bcotH
dx dx/d@ -asind a

Equation of the normal at(Xl, yl) is

(y—y1)=—%(x—x1)

y—bsingd =

- 0
bcote(x acosd)

bcotd(y—bsing)=a(x—acosd)

coséd .
b=2Y (y—bsing) =a(x—acosé
sine(y sind)=a(x—acosé)

by cos @ —b? cos @sin @ = axsin @ —a? cos dsin &
Divide by sin & cosé

by b? — ax 2

sind  cosd
ﬁ___by:aﬁ_b2 (1)
cos@dsin@

Now partially differentiate equation (1) with respect to ¢

1 sin@ 1 cosé
axx — :—b S
cos@\ coséd sin@ sin@
ax tanez_wcow
cosd sin@
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ax(tan @)’ =—bycot &

J@x)23 + (by )23
(=by)173

(ax)]/:‘;

Fig 2.17

-.sing = (—zby)s =
\/(ax)3 +(by)3

cosé = (?X)S
(ax)s +(by)s

Equation (1) becomes

2 2 2 2
3+(by)s b 3 +(by)s
axy(x): +(09)° by() +(by)

1

(ax)? (by):

=

(a7 (0)° | (20 +(by)° | <o b

2
3

Wl

= (ax)s +(by)s = (a>-b?)

which is the required evolute.
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3) Considering the evolute as the envelope of the normals, find the evolute of the asteroid
2 2 2

X3 +y3 =as.
Solution:

Any point on the asteroid

2 2 2
X3 +y3 =a? is given by (acos3 0,asin® 49)
ie. x=acos’ 6, y=asin’@
%=3ac0529(—sin0) ﬂz?)asinze(cosﬁ)
do do

m_y_dy/de_ 3asin?@cosd
dx dx/d@ —3acos®@dsind

m=-tané@

Equation of the normal is

y—asin?’@:ﬁ(x—acos3 0)
an

sing(y—asin® @) =cosd(x—acos’ 0)

ysin@—asin* @ = xcosd—acos* 6

ysin@—xcos@ = —a(cos* @ —sin* )
=-a(cos’ 0+sin® 0)(cos’ 0—sin’0)  [ra’ b’ =(a+b)@-b)]
= —acos26 [+ cos2A=cos” A-sin® A]

ie. ysin@d—xcosd=—-acos20 (1)

Differentiate equation (1) with respect to ¢

ycos @+ xsin @ = 2asin 20 (2)

Eqn (1)><cos¢9:> y cos@sin @ — x cos’ & = —a cos 20 cos &
Eqn (2)><sin0:> ysin@cosé + xsin® @ = 2asin 260sin @

Subtracting we have,
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—x(cos® @ +sin® #) =—acos 26 cos @ — 2asin 20sin 6
X =acos26cosd+2asin 26sin 0
=a(cos” @ —sin® #)cos 6 + 2a(2sin #cosH)sin &
=a cos’ @ —sin” fcos @ | +4asin’ Ocos o
X =acos® @+ 3asin? &cos o (3)

Now, Egn (1)><sin9:> ysin® @ —xcos@sin@ = —acos 26sin @

Ean (2)xcosé = ycos” 6+ xsin@ cosd = 2asin 26 cosd

Adding we have,
y(sin® @ +cos’ @) = 2asin 26 cos @ —acos 26sin &
y = 2a(2sin #cos f.cos &) —a(cos® & —sin® §)sin &
y = 4asin #cos’ @ —acos’ #sind+asin® 6
y =3asindcos’ #+asin’ (4)
Adding (3) & (4) we get
X+Yy= a(cos3 0 +sin® 9)+3asin A cosA(sin @ +cos &)

=acos®@+3asin’@cosd+3acos’dsinf+asin’ o

X+y=a(cosd+sin 9)3
2 2
(x+y)s =a®(cos@+sin 49)2

Similarly,

Xx—Yy =acos’ d—3acos’ dsind+3asin’ @cosf—asin’ 4

x—y=a(cosd-sin 9)3
2

2 z
(x—y)s =a®(cosd—sin 9)2

Thus,
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(cos@+sin 49)2 +(cos @ —sin 9)2}

2
:ag[cosz0+sin29+;m&m+cosze+sin20—;m&m]
2
3

S (x+y)s+(x—y)s =2ad

which is the required evolute.

4. Find the evolute of cycloid X =a(6—sin#), y=a(1—cos@) treating it as the envelope of
its normals.
Solution:
x=a(f-sind)
y =a(1-cos)
dx

— =a(1l-cosb); d—yzasin9
de do

dy  asing _ siné
dx a(l-cos@) 1-cosd

Equation of the normal,

1
Y-V :_E(X_Xl)

—
dx
y—a(l-coso) :_—1(x—a(9—sin 0))
( sin@ j
1-cosé@
y—a+acosezw(x—a9+asin0)
sin@

ysin @ —asind + asindcosd =—x+ad— asird + xcosd—adcosd + asindcosd

X+ ysin@=afd—aldcosd+ xcosd
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X+ ysin@ =afd(1-cosd)+xcosd
= X—XC0s@+ysinf =ad(1-cosb)

= X(1-cos@)+ysind=ad(1-cosb)

s ysiné _ a0 (1)
1-coséd
. 0

. sin@ Z%COSZ 0
Since = 7 =cot—

1-cosé Zsin/— 2

2

From (1)

x+ycot§=a6' (2)

Differentiate (2) with respect to ¢

y(—coseczﬁ.ijza
2 2

y__ 2
coseczg ( Zsinzgzl—cose)
2 2
., 0
=-2asin®’ =
y 2
y =-a(1-cosf)

Substitute in equation (1)
x+[—a(1—pes?)}1sﬂ =af
Xx—asind=ad
Xx=ad+asind
x=a(0+sino)

From (3) & (4) envelope of the normal is a cycloid.

Hence evolute of the given cycloid is another cycloid.
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Exercise

1. Define Evolute of a curve as an envelope of its normals.
2. Regarding the evolute of a curve as the envelope of its normals, find the evolute of
x? =4ay .
2 yz
3. Find the evolute of — —~—= 1 considering it as an envelope of its normals.
a

4, Considering the evolute of a curve as the envelope of its normals, find the evolute of the

rectangular hyperbola Xy = c?.

5. Show that the evolute of the cycloid X = a(6+sin 9), y=-a (1—COS 0) , treating it as the

envelope of its normals is another cyclord X = a(e—sin 9), y= a(l— cos 49)
Answers
2. 27ax* = 4(y—2a)3

2

3. (ax)% _(by)§ — (az +b? )E

2

4. (x+y)3—(x-y)

2

= (4(;)5

w N
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UNIT 3

MULTI VARIABLE CALCULUS

Introduction

A function of two variables maps points (x, y) in the XY plane to numbers z on the Z axis.
These functions are generally denoted by f (x, y). It can also be considered as an assignment of a real

number to a point (x y) in the XY plane.

The equation in two variables geometrically represents a curve which indicates the
dependency between the variable quantities. This idea is originated from Descartes during 1596-
1650.

Later it was Leibnitz (1646-1716) who first used the term function in 1673. He also

introduced the terms constants, variables and parameters.

A function f of two variables is a relation, which maps every point of a set D in the XY plane
to at most one real number z. The set D is called the domain of the function f. This representation of

two variables as a function is identified by Euler during the period 1707-1783, in practice.
Examples of Functions of Two variables

Consider the functionsz=Xxy, Z= COSXSiny. In these examples x, y are called the

independent variables and z is called the dependent variable.

The graph of the functions of two variables is a surface z = f (x, y) where z is the height of the

surface at (x, y).
Forexample z = 2x*+2y® —4is an elliptic paraboloid.

Applications of functions of two variables

The functions of many variables are useful in every field of engineering applications. For
example when a violin is placed in the XY plane with strings of length / coincides on the x axis, then u

(x, t) is defined as the displacement of the string above or below a point x on the x axis at a time t,

then y = u (X, t) is the shape of the string at a fixed time t. Likewise u (x, t) might represent the

evolution of the temperature distribution of a thin rod, where u represents the temperature at time

t at a distance x from one end. The distribution of temperature on a thin metal plate with surfaces

insulated is also a function of two variables u(x, y) in the XY plane. The Ideal gas law is also an
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example of function of two variables. The Ideal gas law given by P = pRT. Here P is a function of

both density p,temperature T and R is the gas constant.
Limits

The function f (X, y) is said to tend to the limit / as x—a and y— b if and only if the limit

‘I is independent of the path. In this case we write

limf(x,y) = I
yoh

The limit can also be defined in terms of a circular neighbourhood as follows. The function f (x, y)

defined in a region R is said to tend to the limit ‘// as x—a and y — b if and only if corresponding to a

positive number & there exists another positive number & such that ‘ f (X, y) — I‘ < & for
0< (x—a)* +(y—b)? < o = 5% for every point (x, y) in R
Continuity:

A function f (x, y) is said to be continuous at the point (a, b) if

lim f (X, y)exists and lim f (X, y)= f (a, b).
y—b y—b

Partial derivatives

Functions of multiple variables can be differentiated with respect to either of their
independent variables, the other variable being treated as constant during the differentiation. Such

derivatives are known as Partial derivatives.

let z= f (X, y) be a function of two variables x & y. The partial derivative of z with respect

to x keeping y as a constant is defined as

o _ o f(x+Ax,y)-f(xY)
OX Mx—0 AX

Similarly @:Anm0 fx, V+AZ)— f(xy)
Yy y

The partial derivative exists only when the above limit exists.
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First Order Derivatives:
For a function of two variables there are two first order derivatives, For example if z is a
. . . 0z
function of x and y then the first order derivativesare — =2, = F (X, y) and
ax X X

a_
oy

z,= Fy (X, y). These derivatives are also functions of x and y.

Second order and Higher order derivatives

For functions of two variables there are 3 second order partial derivatives which are defined

as
0%z 6(62} 0
~ 2 ~ | A :_(Zx):Zxx
OX~ OX\0X) OX
0%z a(&} d
T &2 T @)=y,
oy" oy\oy) oy
Pz _ofaz) o, \_
oxdy _5(5J “ox )= D
0’z ooz 0
ayax_a(&)_@(zx)_ yX (2)
o’z o’z
Generally =
OX0y  OyoX

The Higher order derivatives are recursively defined as

o’z (0
~ 2 |~ Zx><>(yy

ox’oy> ox* | oy

Problems
1) Find the first and the second order partial derivatives of z=x®+3y —y®—3x.
Solution:

oz 0z

—=3x*-3, —=3-3y?

OX oy

oz _ i(3x2 —3) =6x

ox* o '
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2
020 (3-3y%)=-6y
oy oy
2
02 _ 9 3_3y"y=0
oXdy  OX
2
02 _ 9 (3¢ -3)=0
oyox oy
0’1 0z
2) If z=Xcos y— ycos X, then prove that =
OX0y OyoX
Solution:
0z .
let  —=COSY+Yysinx
OX
7L _2 @
oxoy Ox oy
0z .
—=—XSiny—CoSs X,
oy
o’z 0 .
=—(—xsin y—cos x)
oxoy OX
=—siny + sinx (1)
o)
oyox oy \ ox
0 .
:a(cosy+ ysinx)
=-—siny + sin x (2)
L0z 0z
T oxoy  Oyox
2 2

3) Prove that er—z =0for z=e"cosy

Solution:
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0z

&:ex cosy
@—i(ex cosy)=e*cosy (1)
x> ox
g——eXsin y
oy
2
a—2:2(—exsin y)=—e*cosy (2)
oy oy
(1)+(2) = ﬂ+&—excosy—excosy—o
aXZ ay2 )
2 2 2
4) If u=log (ax +by) find g l:,a sz ou
OX™ OX° oXxoy
Solution:
au_  a
oX ax+by
u_ b
oy ax+hy
@—Q[a(ax+b ']
ox* ox y

PN &
= a(-1)(ax+by)™(a) = axiby)

% :%[b(ax+by)‘1]

_b2

= b(-1)(ax +by)*(b) :W

u_d( b
oxoy ox\ ax+hy

= %(b[amby]l)
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= b(-1)(ax+by)*(a) = (ax_+atl?y)2

2 2

oxoy  dyox

5) Verify for u=sin""(y/x)

Solution:

=[§j<x2 Ly @0

—X

=—"p (1)
(x*-y*)”

azu —i __1 (XZ_ 2)%1

8y8x_8y X y y

=‘—1[y(‘—1j(x2—y2)2(—2y)+(x2—y2)‘%}
X 2

__1[y2+(x2y2)}
TLooe-yy
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6) If U= X", Show that

Solution:

Given u=x’

ou
— =x"log x
E g

Ou _dfaou
oxoy  ox\ oy

_ 1
=yx"tlogx+x’.=
X

=x""*(ylogx+1)
Fu _ o &
ox*oy  ox | oxoy

- %[xy‘l(y log x+1)]

oyt
OX y

5
oyox oy \ ox

=x""+ yx' " log x

=x""(ylogx+1)
Fu o o
ox2oy x|\ oxdy

:g[xy‘l(ylog x+1) ]

ox*oy - OXOYOX
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o’u ou

oX20y  oxOyox

Hence

7.1fz =e®*™ f (ax —by), show that b@+ ag = 2abz
ox oy

Solution:

Differentiating z partially with respect to x

T _ oty '(ax—by)a+ f (ax —by)a e**

b%zab &>/ £ '(ax—by) + f (ax—by)] )

Differentiating z partially with respect toy

92 _ 5 £ (ax—by)(-b) + f (ax—by)b e™*
0z ax+h '
aazabe Y [~ '(ax—by) + f (ax—by)] (2)

Adding (1) & (2)

b2 1 a % _oapem t (ax—by)
oxXx oy

=2abz

Exercise problems

0z
1. Evaluate — and a if z=log (x> + y?)
OX oy
2 2
2. i z=tan | XY | fing & ang &
X+Yy OX oy
2
3. If z = sin3xcos4y, find Q,Q'ﬁ_i
OX oy OX
4 4 2.2 u ou
4. If u=x"+y" +3x"y*, then prove that X—+Yy—=4u
ox "oy
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2 2
5. If z = sin(y + ax), then prove that a—izaza—s
OX oy
6. If x=rcos®, Y =rsin@, then prove that ﬁ=—rsin6?,ﬂ= rsind
00 00
2 2
7. If x=rcos®, Y=rsing, then prove that %wL%:O
ox~ oy
8. If u=x?y+ y?z+2z°X, then prove that 8_u+a_u+6_u: (X+y+12)°
OX oy oz
s s o’u o
9. If u=Xx+y”—3axy, then prove that =
oXoy  oyox
10. If f= x—2y, then find @ and ﬁ
X+Yy oX oy
Answers:
oz 2y 0z 2y
1. — ==
ox XP+y? oy x4y’
, oz X +2xy-y Yy +22xy-x°
' X (x+Y) +0C+y)? oy (x+y) +(XC+Y?)?
2
3. g=3c033xcos4y, g=—4sin 3xsin 4y,a—§=—9sin3xcos4y
oX oy ox
of 3y of -3X
10. —

x  (x+y)? oy (x+y)
HOMOGENEOUS FUNCTIONS

A function in which every term is of the same degree, is known as a homogeneous function

of that degree.

Consider,
f(xy)=ax"+ax"y+..+a Xy “+a _xy""+ay" (1)

Since every term of this function has the same degree, it is a homogeneous function of degree n in x

andy.
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Examples:

1) f(x, y) = ax® + by’ +cxy is a homogeneous function of degree 2
2) f(X,Y) = X+ Yis ahomogeneous function of degree 1

Now the expression (1) can be written as

2 n
f(xy)= x“{a0 +a1(%J+a2 (%) +...ta, (%) } which is of the form x”F(%j

[or]

2 n
f(x,y)=y"<a,+a,, (lj +a, , (ﬁj F oy (lj which is of the form y"G {lj
y y y y

Thus, every homogeneous function of degree n in x and y can be expressed in the form

x"F [lj ory"G (ﬁj
X y

Examples:
1) x* COS(XJ is a homogeneous function in x and y of degree 3
X
2) tan~ (lj is a homogeneous function in x and y of degree 0.
X

TEST FOR HOMOGENEITY OF A FUNCTION OF TWO VARIABLES

If f(tx, ty) = t"f(x, y) then f(x, y) is called a homogeneous function of degree n where n is any

real number.
The above equation is called Euler’s equation

Example:

X3 3

+
F(x,y) = X+§

is a homogeneous function of degree 2

3 3 33 | +3,,3 373 3
since  f(bty) = ) FW) _TXHty TOC+Y)

(tx) + (ty) tX+ty t(x+y)
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3 3
:tZ(X +y j:th(X’y)

X+y
NOTE:

If the numerator of a function is homogeneous of degree p and the denominator of the same

function is homogeneous of degree g, then the degree of the function is given by,

Degree of a function = degree of numerator - degree of denominator=p - q

Example:
1
11
X3 +y3
Let f(X,y)=|— yl
X4~y

1
1 1

1 1102
Here numerator =[X3 + yﬂ = f,(x, y)(say)

1 1

f(tx,ty) = {(tx)g + (ty)% T = {t; [x; + yﬂ}z

ir1 1y 1
fl(tx,ty)ztﬁ[x3+y3] =tef,(X,y)

1
= Numerator is a homogeneous function of degree —

1
1 1Y2
Denominator Z(X“ - y4] = f,(x,y) (say)

1

() = {(tx)i - (txf)‘l‘}2 = l:t‘l‘ (xi _ yiﬂz

rr1r 1
fz(tx,ty):ts[x4 —y4j

N[ =

1
=t8f,(x,y)

1
= Denominator is a homogeneous function of degree —
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1 1 1
-.f(x, y) is also a homogeneous function of degree ———=—

8 24

APPLICATIONS:

Homogeneous functions have enormous applications in various fields. It is applicable in
projective geometry, differential equations, special function, calculus of variations, analytical

mechanics, dimensional analysis, economics, thermodynamics and so on...

LEONHARD EULER [1707-1783] was a pioneering Swiss Mathematician and Physicist. He
made important discoveries in various fields like calculus, graph theory, number theory, physics and
so on. His contributions were so numerous that terms like Euler’s formula or Euler’s theorem can

mean many different things depending on the context.

EULER’S Theorem on Homogeneous Functions

If u(x, y) is homogeneous function of degree ninxand y then | Xx—+Yy—=nu

Proof:

Since u is a homogeneous function of degree n in x and y, can be expressed as

u=x"F (%) (1)

Differentiating (1) partially with respect to x, we have

M XHF(X](__XJ +F (Xj.nx”‘l

OX X J\ X X

M —yx"? F’(zj +nx"'F (lj

OX X X
ou s yj , (y]

SX—=—=yX"F'| = |+nxX"F| = 2
OX y (x X ( )

Differentiating (1) partially with respect to y, we have

a_uz XnF,(lj.l= anFl(zj
oy X) X X
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W ey
R Evt yF(Xj (3)

(2) + (3) gives, xM ya—u:yx”‘lF/ﬁ—yj+ nx"F (Xj+ X"y L
OX oy X X X

x6—u+ ya—u: nx”F(l]=nu
OX oy X

Hence the theorem is proved.

The above theorem can be generalized to homogeneous functions of any number of variables. Thus

if u=f(x,X,,....X,) isa homogeneous function of degree n in variables X, X,,...X, then

X, au Tx Ly M _ nu
o Cox, " oX.
COROLLARY 1:

If uis a homogeneous function of degree n, then

2 2 2
X2 le: +2xyaa;y +y° 2;2/ =n(n-1)u
X
Proof:

Since u is a homogeneous function of degree n, by Euler’s theorem,

xa—u+ya—u:nu (1)

OX oy

Differentiating (1) partially with respect to x, we get,

o°u ou  ou ou
X—+—+Y =n.—
oX® 0oX OXoy OX
2 2
:>xa—lj+y ou :(n—l)a—u (2)
OX oxoy OX

Differentiating (1) partially with respect to y on both sides, we get

o%u o%u  au ou
X +ty—+—=n—
oyox " oy. oy oy
2 2
o x Uy M (3)
oyox " oy oy
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(2)xx+(3)x y gives,

+ Xy X—+y—

> + Xy
OX Oxoy ayax ay ox "oy

, 0°U u  , 0 . 0u  du
= X — +2X >=n(n-1)u since =
OX oxoy oy? OX0y  0OyoX

2 2 2 2
20U ol u Za _(_1)[ ou au}

COROLLARY 2:

If v is a homogeneous function of degree nin xand y and if V= f (U) then

M xa—u+y6—u= HC)

o  f'(u)
(i) x* +2xy ou +y° 2 U =g(u)[g'(u)-1] where g(u)—nm
oxoy T oy f(u)
Proof:
. . . ov
Since v is a homogeneous function, by Euler’s theorem, X—+Yy—=nV
ox oy
ov ov ou
Againsince v=f(u), —=1f"'(u )— —=f'(u)y—
X oy oy
ou ou
o Xf'(u)—+yf '(u)—=nf(u
(u) ™ yf '(u) Y (u)
(or)xa—u+ ya—u:—nf (u)
OX oy f'(u)
Taking ——= nf(u) =g(u)
f'(u)
ou ou
wegetx—+y—=g(u 1
0o Yoy g(u) (1)
Differentiating (1) partially with respect to x,
82u ou o%u .. ou
——Zt 7ty =g'(u)—
8x OX oxoy 0
0’ o%u ou
X—s+ = -1{— 2
:azyaxay[() ]8X ()

Differentiating (1) partially with respect to y,
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o°u

L P
vax Vo Ty 0y
o%u ou -, ou

ovox Y oy TlOWG $

2 2 2 2
(2)><x+(3)><y:>x26 l:+xy ou + Xy ou +y26 121 =
OX oxoy 0yOoX oy

o%u o%u o%u ,
=X —+2 y? Y =[g'(u)-1]g(u)

X +
Y oxoy

) o‘u o
since =
OXoy  0OYyOX

=X

, ou ou
[g (u)—l]{x&+ yg}

APPLICATIONS:

Euler’s theorem on homogeneous function is applicable in Lagrangian Dynamics, useful in
developing thermodynamic distinction between extensive and intensive variables of state and
deriving Gibb’s-Duhem relation [energy form of Euler’s equation] Also useful in production

economics theory.
Examples

1. Verify Euler’s theorem for the following functions

1 1
4 4
(i) 3x*yz +5xy’z+4z* (i) Xl *y (iii) x° Iog(yj

XS +y X
(iv)sin” (5} tan* (XJ
y X

Solution

1
5

(i) Let u=3x’yz+5xy’z+4z*

Then, M 6xyz +5y°z, M 3x*z +10xyz, M 3x°y +5xy® +162°
OX oy oz

XZ_U+ y%u +1 Z—u = X(6xyz +5y°z) + y(3x*z +10xyz) + z(3x*y + 5xy* +162°)
X z

=6X°yz +5xy°z + 3x°yz +10xy°z + 3x°yz + 5xy°z +162*
=12x%yz +20xy’z +162* = 4[3x2yz +5xy°z + 424]
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.". Euler’s theorem is verified.

i

1
X4 +y

(i) U=——
X° +y°

Solution:

T t‘l‘{x‘l‘+y‘l‘} N
(t)* +(ty)* _ ey

u(tx, ty) = T S ara— P
(tx)° +(ty)® tS{x5+y5} (X5 +y5)

S
u(tx,ty) =t®u(x, y) = u is a homogeneous function of degree io

Differentiating u partially with respect to x, we get

E =3 1 4
ou 4 5

OX 11
1 L 2 1y 1 it 1
iX4 X5+y5 _7)(5 X4+y4
ou 4 5
L X—=
ox 11y
[x5 + y5]
Differentiating u partially with respect to y, we get

11y B 1 1y~
X5+5*4—X4+4*5
o (e iyt (e iy

)
X®+y
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ox oy 112
1 1
X4 +y4 (1—1j 1o
4 5 1 x4+y+ 1
= 1 =50 T 1 "

.. Euler’s theorem is verified.

(i) u = x*log (lj
X

The given function is of the form X"F (l) = U is a homogeneous function of degree 3

X

Differentiating u partially with respect to x, we get
2
u_ 51 (-y yj NEEAN R (yj
—=X"—=.| = |+log| = |(3X°)=| — || — |[+3x"log| =
X yj(xz] g(x( ) Yo x? I x
X

ou 3 a3 y
x 3 iadlogl 2 1
X@x XX Og(xj @)

Differentiating u partially with respect to y, we get,

@zxsi(llzx_s
oy (.\/J x) oy
X
ou
M _ s 2
Y5, =¥ (2)
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Hence Euler's theorem is verified.

(iv)u = sin‘l(i}r tan* [lj
y X
u(tx,ty)zsinl(t—x}tanl(t—y):sin(X]Han ( j u(x, y)
ty tX y X

= U is a homogeneous function of degree 0

Differentiating u partially with respect to x, we get

ou 1 1 1 -y 1 y
E e ) v ) R e,
1_()(} l+(} y
y X

Differentiating u partially with respect to y, we get

e et

Xy andy —X Xy
8x \/y 2 Xty oy \/y e x2+y2
:xa—u+ya—u:0:0u
ox =~ OX

.. Euler's theorem is verified.

ou

2. Ifu="f (Xj evaluate xa—u+ y—
X oX OX

Solution:

Since u=f [Xj, u is a homogeneous function of degree ‘0’.
X
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, ou
Hence by Euler’s theorem, X— 4+ Y— = nuU becomes,
OX oy

6u ou

+y—=0
8x oy
z;.lfu:iJrX+£,findxa—u+ya—u+za—u

y z X OX oy 0z
Solution:
u(tx,ty,tz)——x+t—y —_£+X+E=u(x,y,z)

ty tz tx y z X

—>u is a homogeneous function of degree 0

ou ou _ou
Hence by Euler’s theorem, X—+y—+2—=0
OX oy oz
a4.1f z=xy f (yj Show that x%+ yg:ZZ
X OX oy

Solution:

Given z(x,y)=xy f (%j szt ty)=(tx)(ty) f (%’j:tzxy f (%j

z(tx,ty) =t* (X, y)
= z is @a homogeneous function of degree 2.

.. By Euler's theorem, x@+ y@ =2z

ox oy

5. If£=«/x +y? +2°,then provethatxg—u+y%+zg—u:—u
u X /A

Given 1:«/x2+y2+z2 =u(x, Y, z)=;
u X +yi+2°
u(tx,ty,tz) = L ! = !

\/t X2 +t2y® +t°7° \/tz(x2+y2 +12%) _t\/x2+y2 +7°
Solution: U (tx,ty, tz) =t™'u(x, y, z)

= u is a homogeneous function of degree -1
. By Euler's theorem, XZ—U+ ya—u —=(-Du=-u
X

oy 8
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3 3
X3 +
6. |fu:cosl[ . yzj, Prove that x Y + ya—u:—cotu
X“+y OX oy
Solution:
3 3 3 3
X+ X +
Given u:cos‘l( - yzj:cosu= - y2 = v(say)
X2 +y X2 +y

Then v is a homogeneous function of degreel

(0 +(ty) X+ B +y)
(tX)Z +(ty)2 tzxz +t2y2 tz (XZ n yz)
v(txty)=tv(x,y)

since, v (tx,ty) =

(ie) u is not homogeneous, but V= COSU is homogeneous

.". By corollary 2 of Euler’s theorem on homogeneous function,

Xa_u+ya_u:nf(u) where f (u) =v =cosu
ox ~oy f'(u)
(ie) xa—u+ a_u:_n (C_Osu):—cotu
ox ~oy (-sinu)
ou
= X—+Yy—=—cotu
OX

Hence proved.

7.1f U =sinl[MJ show that a_“=__ya_“

Ix+4fy X X Oy
Solution:
o x=y .y
SINU = ———= =V s a homogeneous function, since v(tx, ty)
Ky

R CEN TR TSN BPAR
ity VEx+dy)

= Vv =sinu is a homogeneous function of degree 0

.. By corollary (2) of Euler's theorem on homogeneous function
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a_u+ a_u_nf(u)_0 sinu

= =0. =0. wheref (u)=sinu=v.
OX oy f'(u) cosu

ou ou ou -yoaou
=>X—=-y— (or) —=——.
OX oy OX X OX
Hence it is proved.
8. it U= e Prove that x 2 + ya—u=3ulogu.
OX oy

Solution:

u is not homogeneous as u(tx,ty) = t"u(x,y) but logu = x> + y* = v is homogeneous, since,
v(tx, ty) = (tx)° + (ty)® = X3 +t3y® =3 (0 + y®) =tv(x, y)
=V is homogeneous of degree 3.
.. By corollary 2 of Euler's theorem on homogeneous function,

ou ou nf(u)
X—+y—=—-=
ox “oy f'(u)

where f (u) =v=logu

_3.logu

= 1 =3ulogu
u

ou ou

= Xx—+y—=3ulogu
OX

2 2 2
9. If u:xsinl(xj prove that x2 2 l; +2xy ou +y? 0 32/:0
X o ey oy

Solution:

u(x,y)=xsin™ (%j =u(tx,ty)= txsin‘l(t_y)

tx
u(tx, ty) = txsin™ (lj =tu(x,y)
X

Given = U isahomogeneous function of degree 1

.. By corollary 1 of Euler's theorem on homogeneous function,
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2 2 2
X2 %+2xy§;y +y26—l:= n(n-1)u
X X

2 2 2
:>x28u+2xy ou +y26u

2 > =0
OX OXoy oy

3 3

10. Ifu= tan‘l(x Y j,then prove that
X—y
M xa—u+ y@_u =sin2u
ox "oy
2 2 2
(i) x 0 l:+2xy ou +y° 0 l: =sin4u—sin 2u.
OX Ooxoy oy
Solution:
3_+_ y3

X
Here u = tanl(
X—y
3 3
tanu=v=2"Y
X=y
t*’x® +t°y° t3(X3 + y3)
tx—ty  t(x—Y)
= v Is a homogeneous function of degree 2.

j is not homogeneous, but

is homogeneous.

Also v(tx, ty) = =t’v(x, y)

.. By corollary 2 of Euler's theorem on homogeneous function,

ou ou nf(u)

ox oy fu)

(1)

Where f(u) =tan u

, 02U ou . ,0U iy
and X Wﬁ‘zxyaxay‘l‘y y—g(lj)[g (U) 1] (2)
_ nf(u)
Where g(u) = Y )

ou ou tanu 2.sinu
(1) becomes, x—+y—=2.——= >
OX oy sec°u cosusec-u

= 2sinucosu =sin2u
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ou
ie) x—+ ——sm2u Hence (i) is proved
(ie) o yay (i) isp

2 2 2
(2) becomes, X ou + 2Xy ou y? ou

ox’ oy oy

= (sin 2u)[2cos 2u —1]

= 2sin2ucos2u —sin 2u =sin4u —sin 2u
(using 2sin @ cos @ =sin 26)

, 0°U ou  , 0
>+ 2Xy +y >
OX OXoy oy

=sin4u—sin2u

=X

Hence (ii) is proved.

11.1f u= x¢(¥j+t//(

2 2 2
(1) Xa—u+xa—u:x¢(lj (ii) Xzau+2XyaU+y25U:O
X X OX X0y

], then show that

> |<

Solution:

(i Letv:xq{%j, wzw(%jzxow(%j

Then v is a homogeneous function of degree 1 and w is a homogeneous function of degree 0

= xa—U+ yﬁ—u =0 (2) (By Euler's theorem)
OX oy
xﬁ—w+ ya—w =0 (2) (By Euler's theorem)
OX oy
Butu=v+w
O+ = xa—U+ y—+x8—w+ yﬁ—w_u+0
OX oy OX oy

9 o R
:>X6X(U+a))+yay(u+a)) v X¢(Xj

ou ou y
X—+Yy—=X@| =
Ty ¢(xj

Hence (i) is proved.
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(ii) Similarly since v and w are homogeneous functions, by corollary 1 of Euler’s theorem on

homogeneous functions,

2 2 2
xza—12)+2xy v +y28_12):n(n_1)020 (3)
ox oxoy oy
2 2 2
x26?+2xya—w+y26—l;:n(n—1)a):0 (4)
ox oxoy oy
0? v ,0v Xw ,0%

(3)+(4):>x26—’j+2x
X

Yooy o Taxey Y oy

=0+0=0
282 2 262
=X —(V+w)+2x V+o)+y —(V+w)=0
2 2 2
:>xzau+2xyau+yza—:0

ox’ OXoy oy’
Hence (ii) is proved.

. . \2 p ou ou
12.1f p+ig=(X—1i and u=—, prove that x—+y—=0
p+iq=(x—iy) ; p ™ yay

Solution

Given p+ig=(x— iy)2
P +iq = x* - 2ixy — y? :(xz—yz)—Zixy
Equating real and imaginary parts,

p=x*—y* q=-2xy
B_Xz_yz _yz_Xz

Su=
q —2Xy 2Xy
2 2 2 2
Now u(x, y) = y —X .'.u(tx,ty):M
2xy 2(x)(ty)
2,2 2,2 2 2 2 2 2
:>u(tx,ty)=t y 2—t X1 (yz—x )= y —X =u(x,y)
2t°xy 2t°xy 2xy

= u(tx, ty) =u(x,y)
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..u is a homogeneous function of degree 0

.. By Euler's theorem, xg—u +y—
X

=>X—+y—=0

OX oy

Hence proved

Exercise Problems

PART A

ou nu=0u=0

oy

1. State which of the following functions are homogeneous. If so, find the degree.

(i) X2y + xy? (ii) X): ; (iii) Xy + xy?
(iv) tan(xg * y3j (v) X sin [l)
X—y X

3

2. Give an example of a homogeneous function of degree “—1”.

3. |fu—e/y flndx—u+y6—u
OX oy
2 2 2
4. If u=sin Xty -z f|ndx8_u+ya_u 8_u
Xy + Yz + X ox "oy oz

5. Ifu=x"y*sin™ (y)
X

6. If Z =tanl(

PART B

7. Verify Euler’s

(i) ax + 2hxy + by? (i) 2 (i) = +
X+Y y
(iv) x° cos[lj
X
2 2
8. Ifu :sin‘l(uj show that x Y + ya——tanu
X+Yy OX

e i)l

find xa—u+ y—
OX oy

theorem for the following functions:

24,2
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log x

X

2

0z

then prove that x@ +y—=0.
ox "oy

—logy



x+y+z] u,  ou, ou_,

9. If u=log show that x—+ y—+
X“+y +2z OX oy oz

33
10. If u=sec™ X~y then prove that xg—u + ya—u =2cotu
X+Yy OX oy

11 1t t=cos| 9 provethatxﬂ+ yﬂ+1cott:0
Ix+ly ox oy 2
2y,2 2 2
12. |fu=z(—y showthatxa—u+y6—u= 26‘1:+2 ou +y2‘9_“
X“+y ox oy OX 8 X0y oy’
2 2 2
13. Ifu= xsin‘l(xj prove that X2 0 l: + 2Xxy ou + yza—gzo.
X OX oXoy oy
2 2 2
14, 1 u=—2, showthatxzal:+2xy cu +yza—f=0.
X+Yy OX Oxoy oy

15. 1fu=f (X)h/xz +y?, prove that xg—u+ y%u = X2 +y?
X X

2 2 2
16. If u=sin™" (lj evaluate xza—l:+ 2xy oy yza—
X OX OXoy oy*

17. If uis a homogeneous function of degree n, prove that

.o 82u ou
N 62u a
i) X S -(-)=
(ii) 8xay 6 (n )
1
z(2x% +y* +xz)?
18. Ifv = log, sin ( Y ) : flndthevalueofxg—u+y6—u
2(x2+xy+2yz+zz)5 X "oy

whenx=0,y=112=2

19. |fu+iu=(ax+iby)3, prove the following:
ou ou ov ov

(|)x—+y5:3 (")X&“’E:&"
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, 0°U o°u

2
=—sin2usin®u

20. If u=tan™ (y_ show that x* + 2Xxy
X

21. Given u=sin~ {

T | Show that
X2 +y?
Q) x— ya—z_—ltanu
oy 12
2 2 2
(il X26 L;+2Xy o°u +y28 l: _tanu
22 OX OXoy oy: 144

ANSWers:

1. (iiHomogeneous, 3 (ii) Homogeneous, 2
(iv)Non-homogeneous (v) Homogeneous, 2

3.0

4.0

5.6u

16.0

TOTAL DIFFERENTIATION

Introduction

The total derivative of a function f is the best linear approximation of the value of the
function with respect to its arguments. Unlike partial derivatives, the total derivative approximates
the function with respect to all of its arguments. The term “total derivative” is used only when fis a

function of several variables. Where f is a function of single variable, the total derivative is the same

as the derivative of the function.

2
+
ox’ OXoy y oy’

(13+tan2u)

(iii) Non-homogeneous

0z 0z

1) If z = f(x, y) then the total differential of z is given by dz = a—dX Edy
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2) If z = f(x,y), where x and y are continuous functions of another variable t, then the total

differential coefficient is given by

dz_ozdx azdy
dt oxdt odydt

3) If z= f(U,v); where u and v are functions of other variables x and y, then the partial

derivative of z with respect to x and y are given by

a_an a2
OX OU OX oV OX
o _ozou orv
oy ouoy ovoy

of
q -
4)  If f(x, y) =0is an implicit function of x then the derivative d_y = —g—;(
X
oy
The second order derivative
d’y _ [ p’t—2pgs+q’r
dXZ qS
of of o* f of o* f
where p=—,Q=—,Ir=—,S= = >
OX oy OX OXoy oy
Examples
1) If u=sin(xy?), express the total differential of u in terms of those of x and y.
Solution:
Given u = sin(xy?)
ou ou
du=—dx+— dy
OX oy

Now, u_ cos(xy’) x y?
OX
= y?cos(xy?)
M cos(xy?) x 2xy
oy

= 2xy cos(xy?)
- du = y®cos(xy®)dx + 2xy cos(xy?®)dy
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2) Find (;—l: if u=x>y*+x°y*, where x=at’, y=_2at.

Solution:

Givenu =x’y* +x?y® and x = at?, y = 2at
du_udx audy
dt  oxdt oy dt

Now, M 3x°y* +2xy°
OX

ou
— =2x%y +3x%y?
oy

% = 2at; ﬂ =2a
dt dt
= @y 2xy)2at+ 2Ky +3Xy)2a

=(12a't® +16a't° ) 2at + (4a't’ +12a't" ) 2a
=243’ +32a’t* +8a’t’ + 24a°t°

=32a°t’ +56a°t°

=8a’t° (4t +7)

3) Find ?j—l: if u=log(x+y+z), wherex=e", y=sint, z =cost.

Solution:

Given u =log(x+y+z) and x=e™", y =sint, z = cost.
du_oduodx odudy oude
dt oxaot oyt oz ot

ou 1
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ou 1

o X+y+1
%z_e—‘; ﬂ:cost; %=—Sint
dt dt dt

du - cost sint

Cdt X+Y+Z X+y+zZ X+y+z
_ —e"'+cost—sint
X+Y+z

_ —e ' +cost—sint
e +sint+cost

4) Find % using partial derivatives when x° +3x’y + 6xy” +y° =1
X

Solution:

Given x° +3x°y +6xy* +y* -1=0

" [5)

f(x,y)=x"+3x°y+6xy° +y° -1

i:3x2 +6xy +6Yy?
OX

a_ 3x% +12xy +3y?
oy

Jdy | 3x*+6xy+6y’
dx 3x% +12xy + 3y?

~ 3[x2+2yx+2y2}
3 X* +4xy +y° |

B [ X* +2xy +2y* |

- [x2+4xy+y2]

5) Find (;_u when u :sin(x2 + yz), where x> +4y? =9.
X

Solution:

Given u =sin(x* +y?) and x* +4y* =9,
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du_au a dy
dx ox oy dx

Now, a—u=cos(x2+y2)><2x
OX
=2xcos(x* + y?)
ou 2
— =C0oS(X" +y°)x2y
oy
=2ycos(x* +y?)

Differentiating X* + 4y2 =9 with respect to x,

2x+4><2ydy:0

dx
dy
8y — =-2x
ydx
oy _-X
dx 4y

du = 2Xc0os(X* + y?) + 2y cos(x* + y?) « X

dx 4
= 2xcos(x* + y?) —gcos(x2 +y?)
=3?Xcos(x2 +y).

6) Ifu= f(x-y, y—1z, z—x) Prove that

ou ou ou
—+—+—=0.
OX oy oz
Solution:

Givenu=f(x-y,y-2,2-X)

LetA=x-y;B=y—-z; C=z-x
~u=f(A B, C), where A, B, C, are
functions of X, y, z as assumed

u_ouoA e
OX OA OX OC oX

Now
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u_u_a n
ox OA oc

du_ucA B
oy OAdy OB dy

=8—ux—1+a—uxl
oA oB

ou ou ou

5 oo ®

6u 8u oB 9B _ ou ou ac
az aB 0Z oOc 82

:a—ux( 1)+—><1
0B oc
0z oB oc

From (1), (2) and (3) we have

6u 8u 8u _ou ou ou au ou ou

+
ax ay a2 oA oc aA oB OB oc

7)1f u= f{i, ¥ Ej Provethatha—u:
y z X oz

Solution:

Givenu = f(i,z,ij
y zZ X

. B=Y; c=2

Let A==

y z X

~u=f (A B,C), where A B,C are functions of x, y, z as assumed.
Jou_ou oA auac

. —t—
OX OA OXx acax
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oy OAdy OB dy

-you 1lou
e e 3
2 0B x aoc (3)
. From (1), (2) and (3), we have

ou AU ou [xau z@u}
fy—4z7-=

X—+y—+2—=|—————
OX oy o0z |yoA xoc
-Xou you
4| ——+=—
y 0A 1z 0B
{—yau zau}
+| ——+——
z 0B xoaoc
Hencexa—u+ya—u+za—u:0
OX oy oz
8) If z=f(x,y), wherex=u+v, y=uv, prove that

0z o071 o1 oz
U—+V—=X—+2y—.
ou ov  OX oy

Solution:

Givenz = f(x,y), wherex=u+vVv, y=uv.
oz _ozox 0z dy

ou oxou oy au
a_ax ay

OV OXOV 0y ov
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Now, Q:gxh@v
u ox oy
S 1)
ox oy
oz oz 0z
—=—x1+—u
oV OX oy
-Sud @
ox oy

. From (1) and (2), we have
oz oz oz oz oz oz

U—+V—=U—+UV—+V—+UV—
ou ov  OX oy OX
:(u+v)g+2uva—Z
OX oy
0z 0z
=X—+2y—
OX oy
9) If z=f(u,v), where u=x*—-y?* and v =2xy,
2 2 2 2
Prove that (@j + @ =4(x2+y2) (gj J{QJ
OX oy ou ov
Solution:

Given z = f (u,v), where u = x* — y* and v = 2xy.

@ _ou o
OX OUOX OV OX
0z 0Z0u 070V
—_———

dy oudy ovoy
Now, g=22x+g2y
X ou ov
2 2
G- @ mas o
OX 0 ov ou ov
22 (4. Py,
oy ou
2 2 2
= a3 :4y2(@j +4x° (QJ —8xygg (2)
oy ou ov ou ov



.. From (1) and (2) we have

(5] e G e (3]

f(x,y) where X=Xcosa-Ysina and Yy=Xsina+Ycosa show that

2
OX

10) If z

ZXX + Zyy = ZXX + Zyy
Solution:

Givenz = f(Xx,y) and x = xcosa — ysSina
y =Xsina + ycosa

a2 _ax ay
OX OXOx 0oy oX

0z oz .
=—CO0Sa+—Sina
OX oy

Now

0 o . 0
S —=C0Sa — +Sina —
oX OX

Gy
Tlox? ox\ ox

0 . 0 o0z . 0z
=|cosa—+Sinag— || coOSax — +Sina —
0 oy 0 oy

X X

— cos? 0°1 25 o’z ., 0z
= ayjt smacosw@xay+3|n a@ (1)

Similarly

:@x(—sin a)+@x(cosa)
OX oy

0 .0 0
S —=-Sin@—+Co0sa@ —
oy OX
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_%:EP%
oyt oyloy

. 0 0 . 0z 0z
=|-Sing—+cosa— || —Sina—+CcosSa —
OX oy OX oy

2 2 2
=sin2aa—§—25inacosa 0’z +coszaa—§ (2)
OX oxoy oy
.. From (1) and (2) we have
2 2 2 2
a—ijta—z:(coszowrsinzoz)a—f+(cosza+sin205)a—§
oX~ oy OX
0’1 0%z
= — 4 —
aXZ 6y2

11) If z= f(u,v), where u =Ix+my and v =ly —mx,

2 2 2 2
Show that 8_§+6_§:(|2+m2) a_§+a_§
ox" oy ou®  ov

Solution:

Givenz = f(u,v) and u =Ix+my, v=Ily—mx
2 _azou a2 ov
OX__OUu OX 0oV oX
oz 0z

=—x|+—x-m
ou ov

Now

. ﬂ_ﬁ(ﬁj
Tlox? ox\ ox

0 0 0z 0z
=ll——m— ||| ——-m—
ou ov ou ov

2 2
2 _oim 0L e 2 1)
au auv v
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Similarly

0z 0Z0Uu 070V
—_———— e ——

oy oudy ovoy

0z 0z
=—m+—I

ou ov

0 0 oz oz
= m—+|—)(m—+l—]

ou ov ou ov
2 2 2
—m 92 om 02 202 )
ou ouov ov
.. From (1) and (2) we have
2 2 2 2
8_§+a_§:(|2+m2)6_§+(|2+m2)8_§
ox- oy ou ov
:(I2+m2) 8_22+8_22
8y2 aVZ
EXERCISE:
2 2 . _, of
1) If f(X,y)=x>+Xxy+Yy", where X=rcosé, y=rsiné, then find 8—and
r
3 3 . ., du
2) If u=x"+Yy°, where x=a cost, y =bsint,then find T
. X ¢ ) ., du
3) If u=sin—, x=e', y=t-, then find —.
y dt
2 t —t . dU
4) If u=xyz, x=t°, y=e', z=e ', then find a
5) If u=e*siny, x=st? y=s%,then find au and )
oS ot
6) Find Q if X3+ y® =3axy
dx

dy

7) Find d—,if3x2+xy—y2+4x—2y+1=0
X
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8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

If zis a function of x and y, where

Xx=e"+e" andy:efu—ev, then show tha g—@:Xg_yg'
u ov ox "oy

fx=u+v+w;

Y =VW+Uw-+uv;
z=uvw and
F = f(x,y,2),thenshow that uF, +VvF, + wF, = xF, +2yF +3zF,

ifu=f E,X,E , then prove that xa—u+ya—u+28—u=0
y z X OX oy oz
|fu=f[xz—yz,yz—zz,zz—xz]thenprovethat16—u+la—u+la—u:0.
XOX Yoy zoz

If z=f(u,v), where u=x+y andv=x-y, then show that 2z, =z +z,

If f= f{uﬂ} then show that x> —+vy
Xy X OX

of 2i+zzq:0

oy 0z

If z=f(X,y); X=u+V, y=uv,then prove that u@w@:xgﬂy@.

ou ov  OX oy

If u= f(x,y), where x=rcosé@ andy =rsin @, then prove that

If f="f(,v)andu=e*cosy; v=e" siny, then prove that
2 2 2 2

0 Z+a Z =(u?+v?) 0 £+a Z .
ox~ oy ou  ov

If x=ucosa—vsing, y=usina+VCcoSe, then prove that
AN CAN AL A

R +| — - — +| —

(&)+(5) (5] (5]

If u=u(x,y)and x=e'cos@; y=e"sino,

then show that (u, )’ +(uy)2 =e™ [(Ur)2 +(U9)2}

If u=u(x,y) and x=e" cos&; y =e"sin@, thenshow that u,, +u,, =e™ [urr +u€J
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20) z = f(u,v), where u=coshx cosyand
v=sinhxsiny then prove thatz,, +z,, = [sinh2 X +sin? y] [z, +2,]

21) If z=f(u, v) where u = X - yz, v = 2xy, then show that

o’z 0%z 0’z 0’z
—2=—2:4(X2+y2) —2+—2
ox~ oy ou®  ov

ANSWERS:
1) r(2+sin26); r?cos20

2) I%costsint[b3sint—a3 cost]

t t
3 Q(_j

t2
4) 2t
5) t2%™ sins’t + 2st e coss?t; 2ste™” sins’t +s2e® coss?t.

ay — x°
y* —ax

[6x+y+4}
7) - ———
X—-2y—-2

6)

TAYLOR SERIES
Introduction:

Classically, algebraic functions are defined by an algebraic equation, and transcendental
functions are defined by some property that holds for them, such as differential equations. One may

equally well, define an analytic function by its Taylor Series.

Taylor Series is used to define functions and “operators” in diverse areas of Mathematics. In
particular, this is true in areas where the classical definitions of functions break down. Using Taylor

Series one may define functions of matrices, such as the matrix exponential or matrix logarithm.

In other areas, such as formal analysis, it is more convenient to work directly with the power
series themselves. Thus one may define a solution of a differential equation as a power series which

is the Taylor Series of the desired solution.
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Definition:

Taylor Series expansion of a function f(X,Y) in powers of xand y at (a, b) defined as

f(xy)= f(a,b)+%[(x—a) f,(a,b)+(y-b)f,(a,b)]
+%[(X—a)2 f(a,0) +2(x—a)(y —b) f,, (a,b) + (y—b)* f,, (a,b)]
+%[(x—a)3 foo (D) +3(x—a)" (y —b) f,,, (a,b) + 3(x—a)(y —b)’

f (ab)+(y-b)*f (ab)+..

Example 1: Expand e*cosy in powers of X & y as far as the terms of the third degree.

Solution:

Given f(x,y)=e*cosy f(ab)=f(0,0)=1
f(xy)=¢e"cosy £(0,0)=1
fXX(X'y):eX cosy fxx (0,0)z
fo (X, y)=€*cOSy e (0,0) =
f,(x,y)=—€"siny f,(0,0)=0
fy (X y)=—¢"cosy f,(0,0)=-1
fyyy(x’y):exsmy fyyy(0,0):O
fy(x,y)=—€"siny £,(0,0)=0
foy (X,y)=—€"siny f,,(0,0)=0
foy (X,y) =—€*cosy f,,(0,0)=-1

Taylor series of f (X,Y) inpowersof X andy is

f(x.y)= £(0,0)+ [, (0.0)+ ¥, (0.0)]+ [ ¥ £, (0.0)+ 21, (0.0)+y°1,, (0,0)]

1
31X i (0,0)+3¢¥E, (0,0)+ 3077 F,, (0,0)+ y*F,, (0,0 [+
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e* cos y:1+%[x.1+ y.O]+%[x2.1+ 2xy.0+ yz.(—l)]

1 3 2 2 3
+§[x A+3x°y.0+3xy“.(-) +y .0}

Example 2: Expand X’ in powers of X and Y near the point (1,1) up to the second degree terms.

Solution:

Given f(xy)=x (a,b)=(11)
f(xy)=x" f(11)=1
fo(xy)=yx’" f (11)=1

oa
f (x,y)=x"1
(X y)=x ogx[ >

fo (X, y)=y(y-1)x*"? f(L1)=0
f,, (x,y)=x"(log x)2 f,(11)=0
f, (X, y)=x""+yx’"log x f,(11)=1

Taylor’s series expansion of f (X, y) at (1,1) is given by

f(xy)=f (1,1)+%[(x—1) f(L0)+(y-1) 1, (10)]

e[ (0 LD+ 20-D)(y-D) 1, Y +(y-2) 1, 01 ]+

X :l+[(x—1).1+(y—1).0]+%[(x—1)2 0+2(x-1)(y-1).1+(y-1)° .OJ
=1+(x-1)+(x-1)(y-1)+....

. V4
Example 3: Find the Taylor Series expansion of €*Sin'y near the point (—1, Zj .

Solution:

Given f(x,y)=e*siny (a,b)zi_l,ﬁj
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. 1
f(Xx,y)=e"sin flog 2=
(x.9) g ( 4) ev?2

i 1
f (x,y)=e"siny f, (_ng:;
i 1
f. (X, y)=¢€siny f, (4%):;
i 1
fo (X, Y)=€"siny f (_1, %) -7
f,(x.y)=¢"cosy fy(—l, %) =$
fy (X y)=—€"siny f, (—1,%] zi
f, (X y)=—e"cosy f o (_1,%]:;_12
f,(x,y)=e"cosy f (_1, %)zﬁ
foy (X,y)=6"cosy oy (_1' %) _ %
fy (X, y)=—€"cosy oy (_1, %);%

Taylor’s expansion of f (X, y) at (—1, %j is

f(xy)=f (—1,%)+%{(x+1) f, (—1,%j+[y—%j fy[—l,gﬂ
+%{(x+l)2 f, (—1,%]+2(x+1)(y—%) fy (—1,%)+(y——

+%[(x+1) f (-1 )+3(x+1) (y——)fxxy( 1—)+3(x+1)(y——)

XXX

foy (=1, Z) +(y _Z) f, (=1 Z)+]

[(x +1)

eysiny—\/_ T \/_( " \/_

1 , 1 _nl T
lx+1 .eﬁ+2(X+1)(y 4)eﬁ+(y 2 'eﬁ]
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1 s 1 20y Ty 1 A e A S
+§[(X+1) +3(x+1)°(y 4)eﬁ+3(x+1)(y 4) eﬁJr(y 4) e\E+]...

ev2

1 1 T 1 ) ju _
- m[ﬂﬁ[(X+1)+(Y—Z)]+E[(X+1) +2(x+(y =)= (y=7)"]]

1 3 2 T TT\2 T3
+§[(X+l) +3(x+1) (y—z)—3(x+l)(y—z) —(y—z) ]+..

X+h k
Example 4: Expand w in a series of powers of h and k up to the second degree

X+h+y+k
terms.
Solution:
Letf (x+h,y-+k)= CEM+K)
X+h+y+k
Xy
sf(xy)=——
() X+Yy

Taylor’s series of (X+ h)(y+ k) in powers of h and k is

f(x+hy+k)=f(x y)+£{hﬁ+kg}+

1 ox oy
2 2 2
ihzaz+2hkaf+kzaz Fo. )]
2! OX oxoy oy

_ 2
Now, fx(x,y):(x+y)'y xyl —y

(x+y)2 (x+y)2

2

y :(x+y).x—xy.1: X
fy(xy) AT

2

2
X+y) .0—y22.(x+ )
£ (xy) oY) 0oy 2(xry) | 2y

(x+y)4 (x+y)3
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fo(xy)= (x+y)* 2y y2.2.(x+y)

(x+y)4
_ 2xy
(x+y)3
y :(x+y)2.0—y2.2.(x+y): —2x?
fyy( 'y) (x+y)4 (x+y)4'

Using these values in (1), we have

(x+h)(y+k) _ xy by k¢ by
x+h+y+k x+y (x+y)2 (x+y)2 (x+y)3
. 2hkxy  k*x?

(x+ y)3 (x+ y)3

Example 5: Find the Taylor's series expansion of X?y®+2x’y+3xy® in powers of (X+2) and

(y —1) up to the third degree.

Solution:

Taylor’s series of f (X, y) in powers of (X + 2) and ( y —1) is

f(x,y)=1(-21)+ %[(x +2)f (2D +(y-Df, (-2,1)]
%[(X +2)°f (-2,1)+2(x+2)(y-1) f, (=21 +(y -1)° f,(=2,1)]+

%[(H 2)° f (-2.0) +3(x+ 2)(y ~1) £, (~2.2) +3(x-+ 2)(y ~1)? f,,, (-2.1)

Y- (20]+.. @
f(xy)=x*y*+2x%y +3xy’ f(-21)=6
f, (X, y)=2xy* +4xy +3y’ f,(-2,1)=-9
f, (X, y)=2x*y +2x* +6xy f,(-21)=4
fo (X y)=2y" +4y f (-21)=6
f,, (X, y)=2x*+6x f,(-21)=-4
fy (X, y)=4xy+4x+6y f, (X y)=-10
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fo (X, ¥)=0 fo (—2,1)=0
f(xy)=0 fy(-21)=0
foy (X, Y)=4x+6 fy (-2.1)=-2
foy (X, ) =4y +4 foy (-2,1)=8

Using these values in (1), we have
1
X2y? + 2x%y +3xy? = 6+ﬂ[—9(x+2)+4(y—1)]
1
+Z[6(x+z)2_2o(x+z)(y_1)_4(y_1)2}

+%[24(x+2)2(y—l)—6(x+2)(y—1)1+ .....

Example 6: Find the Taylor’s Series expansion of the function e” log (1+ y) near the point (0, 0).

Solution:

Given: f(x,y)=e"log(1+y); (ab)=(0,0).
f(x,y)=e"log(1+y) f(0,0)=0
f.(x,y)=€"log(1+y) f,(0,0)=0
fo (X, y)=¢€"log(1+y) f(0,0)=0

eX
fy(x,y):1+y f,(0,0)=1
fy ()1 f,(00)=1
f(xy)=-2 £ (0,0)=1
Xy Y 1+ y xy \ 71
Taylor’s series expansion of e*log (1+ y) at (0, 0)

e log(L+y)= f (0,0)+%[x. f,(0,0)+ 1, (0,0)]

%[Xz f (0,0)+2xyF, (0,0)+ y*f, (0,0)]+...

1 1
:0+ﬁ[x.0+ y.1]+5[0+2xy—1]+....
2

y
=V4+XY—Z—+....
y+Xy 5
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Example 8: Expand € at (1, 1) as the Taylor’s Series

Solution: f (x,y) =€ and (a,b) =(1,1)

f(x,y)=e" fl)=e

f (x,y)=ye” f,LY)=e
f (x,y)=y%e” f.(L)=e
f,(xy)=ye’(x)+1e” f,L1)=2e
f, (x,y)=xe” f,L)=e
f, (xy)=x%" f,AD)=e

The Taylor’s Series expansion of f(X,Y) at (1,1)

isf(x,y)= f(1,1)+%[(x—1) f(L1)+(y-1)f, (11)]

1
+E[(x—1)2 fo (L2)+2(x=2)(y=2) f,, (L2)+(y-1)" £, (11) | +-..
y 1 1
e¥ = e+I![(x—1).e+ (y —1).e]+5[(x—1)2.e +2(x=1)(y-1).2e + (y—l)z.e]+
Example 9: Expand sin(xy)at (1, %j as the Taylor’s Series.

Solution: f (X, y) =sin (xy)

_.,
VR
.H
NN
N—
Il
H

[EEN

NN

~—
I
o

f (X, y) = ycos(xy)

o
N

2 T __7[_2
fxx (X’ y) ==y S'”(XY) fxx [1, Ej = 4
f, (X, y) =—xysin(xy) +cos(xy) f, (1, %) = _%
£, (% y) = xcos(xy) [ (1, gj _o
f,, (X, y) =—x*sin(xy) £, (xy)=-1
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Taylor’s Series is

f(xy)= f(l,%}ﬂ(x—l) fx(l,%}r( —gj fy(l,%ﬂ
ey o )ezten(y-5) 0 4552 1 15 -

sin xy :l+%[(x—1).0+ (y—%).0]+%[(x—1)2(%2) +2(x-1)
v

T TT\2
(=22 +(y=2) (Dl + ..

e, AxDy=T) (-0)

T
—1-Z (x-1)' - o
8 2 2

EXERCISE
1. Expand e sinby at (0,0) as Taylor’s Series.

X . . T
2. Expand e” cosy in the neighborhood of O,Z

V4
3. Expand e C0s 2y in the neighborhood of(O,E].
af Yy _
4. Expand tan™'| = | at (a,b)=(11)
X
5. Expand COS(X—Y) up to second degree terms.
. V4

6. Find the Taylor’s Expansion for €*sin y at (0, Ej up to third-degree terms.
7. Expand 2X°y + X+ Y using Taylor’s theorem about (1,—2) up to terms of third order
8. Expand X’ near (1,1) up to second term.
9. Expand e sinby in powers of x and y in terms of third degree.
10. Find the expansion for cos Xcos y in powers of X,y up to second degree.
11.  Expand f(X,y)=2x*—xy+Yy®+3x—4y+1 about the point (-1,1) .
12. Expand Sin(Xx+h)(y+Kk) by Taylor’s Series Expansion.
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Vs
13. Expand e* cos y in the neighborhood of (l,z)

14. Expand x’y +3y — 2 in power of (x — 1) and (y + 2) up to third degree terms.

ANSWERS
1. by+abxy +—| 3a’bx’*y —b’y?
y +abxy 2[ y-b’y*+..

2 2 2 3
2. y+xy—y?+%—%+y?+ .....

3. -1- x+(y—%)+2[—x2 +(y—%)2 +..

7 1 1 2 2
4, Z+§[y—x]+z[(x—l) —(y-1%]+...

1 2
5. 1—§(x— Y) ...

1 1 V4 1 1 V4
61 2 _ = A Y Ve Bt _ /"3
+x+2x 2(y 2)+6x 2(y 2)+
7. —5—7(x—1)+3(y+2)—4(x—1)2+4(x—1)(y+2)2(x—1)2(y+2)+
8.1+(x—1)+(x—1)(y-1)+ ;(x 1 (Y1)
9. by+abxy+%(3a2bx2y—b3y3)+...

2 2

10.1-2 Y
2 2
11. 2-2(x+) — (Y =D+ 2(x+1)* =(x+D(y =D + (y =D +....

12. sinxy +(hy +kx) cos xy + hk cos xy—%(hy+ kx)2 sin xy +....

3. S (-1 -(y-5)+ (X ) DD -5y 4]

14. —-10—-4(x=1) +4(y +2) = 2(Xx=1)* + 2(x=D)(y + 2) + (X =) *(y + 2) +...
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MAXIMA AND MINIMA OF A FUNCTION OF TWO VARIABLES
Introduction

The problem of finding the maximum or minimum of a function is encountered in geometry,
mechanics, physics and other fields which were the motivating factors in the development of the
calculus in the 17™ century. The calculation of the optimum value of a function of two variables is a
common requirement in many areas of engineering, for example in thermodynamics. Unlike the case
of a function of one variable we have to use more complicated criteria to distinguish between the

various types of stationary points.

To optimize something means to maximize (or) minimize some aspects of it. An important
application of multivariate differential calculus is finding the maximum and minimum values of
functions of several variables and determining where they occur. In the study of stability of the
equilibrium state of mechanical and physical systems, determination of extrema is of greatest
importance. Lagrange multipliers method developed by Lagrange in 1755 is a powerful method for
finding extreme values of constrained functions. Numerous cases present, themselves, both in
engineering theory and practice, in which the value of one quantity which depends on the former,

has a maximum (or) minimum value when the former has the determined value.
Definition

Let f (x, y) be a function of two variables. Let (a, b) be a point such that

f (a, b) > f(a+ h, b+k) in some neighborhood of (a, b), then we say that f(x, y) attains its

maximum value at (a, b) and f (a, b) is called the maximum value of f (x, y)

If f(a, b) is such that f (a, b) <f (a+ h, b+ k) in some neighborhood of (a, b) we say that

f(x, y) attains its minimum value at (a, b) and f(a, b) is called a minimum value of f(x, y)

f(a, b) is said to be an extremum of f(x, y) if f(a, b) is either a maximum or a minimum value

and (a, b) is called an extreme point.
The necessary and sufficient conditions for (a,b) to be an extreme point:

By Taylors theorem,

Af=f(a+h, b+k) — f(ab)

=hf, (a,b)+kf, (a,b)+%(h2 fo(ab)+2nkf, (a,b)+k*f (ab))+... ()

For small values of h and k, the second and higher order terms are still smaller and may be

neglected. Thus sign of Af =sign of [hfx (a, b)+ kfy (a, b)]
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Taking h =0, the sign of Af changes with the sign of k.
Similarly taking k= 0, the sign if Af changes with the sign if h. Since Af changes sign with h
and k, f(x, y) cannot have a maximum (or) minimum value at (a, b) unless f, (a, b):O: fy (a,b).
Hence the necessary conditions for (a,b) to a extreme point are
f.(a,b)=0, f, (ab)=0

If these conditions are satisfied, then for small values of h and k

1
Af :a(hz .. (a.b)+2hkf, (a,b)+k*f, (a,b))+...

=%(h2r+2hks+k2t)+...

Where = fxx(a,b), S= fXy (a,b), t= fyy (a,b)

Af =i(h2r2 +2hkrs+k2rt)+....
2r

1
=—(h2r2+2hkrs+k232+k2rt—k232)+....
2r
1 2 2 2
:—[(hr+ks) +k?(rt—s )+} (2)
2r
2, . 2 2 . eps . 2 .
Now (hr+ks) is always positive and K (rt—s ) will be positive if rt—5s“>0. In this
case Af will have the same sign as that of r for all values of h & k.

Hence if rt—s? >0, then f(x, y) has a maximum/minimum value at (a, b) according as

r<0/r>0.

Ifrt—s? < 0, then Af changes sign with h & k. Hence there is neither a maximum nor a

minimum value at (a, b).

2 . . -
If rt—s° =0, no conclusion can be drawn about a maximum (or) a minimum value at (a, b)

and hence further investigation is required, (i.e. higher partial derivatives must be considered).

Stationary values (or) stationary points (or) critical points

. L : cof o .
A function f(x, y) is said to be stationary at (a, b) if 6—20,5:0 at (a, b). The stationary
X
points are the points at which—=0,—=0.
OX oy

Saddle points:

If at a point I't —s?< 0, then f(x, y) has neither maxima nor minima for the function. Such points

are called saddle points.
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Extreme value (or) turning value

The value f(a, b) is said to be an extreme value of the function f(x, y) at the point (a, b) if it is

either maximum nor minimum.
Note:

Every extreme value is a stationary value but a stationary value need not be an extreme

value.
Working procedure to find the maximum or minimum value of f(x,y)
Let f(x,y) be a given function.

Step 1:

Find a_ f, and a_ f,
OX oy

Solve the equations fx =0 and fy = 0to find the values of x and y. These values of x and y

gives the points at which maxima or minima exists.

Let the points be (a;,b4), (a,,b,) etc.

Step 2:

Step 3:
Calculate the values of r, s and t at each of the points found in step 1.

Step 4:

i) If r<Oandrt—s”> 0, then f(x,y) has a maximum and the corresponding value of f(x,y) is

called the maximum value.

i) If r>0andrt—s’ > 0,then f(x,y) has a minimum and the corresponding value of f(x,y) is

called the minimum value;
iii) Ifrt—s? < 0, then f(x,y) has neither a maximum nor a minimum.

iv) ifrt—s®> =0 , further considerations are required.
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Geometrical interpretation of Maxima and Minima

Geometrically, z = f(x,y) represents a surface. The maximum is a point or the surface (hill
top) from which the surface descends (comes down) in every direction towards the XY plane (refer
fig.1). The minimum is the bottom of depression from which the surface ascends (climbs up) in every
direction (see fig.2). In either case, the tangent plane to the surface is horizontal (parallel to XY

plane) and perpendicular to z axis).

Maximum

o\
=

Minimum

>y >

Fig.1 Fig.2

At saddle point f(x,y) is maximum in one direction while minimum in another direction.
Geometrically such a surface (looks like the leather seat on back of a horse). Fig.3 forms a ridge rising

in one direction and falling in another direction.

AZ

Fig.3
Example:

Z = Xy, hyperbolic paraboloid has a saddle point at the origin.
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Solved problems:

: . : 1,
1. Find the stationary points of f(X,y)= > X“ =Xy
Solution:

Given f (X, y) =%x2 —Xy

fo=x-y f,= -x
f=0f =0=>x-y=0, —-x=0
=x=0

y=0"

.". The only stationary point is (0,0)
2. Find the critical points of f (X, y)=X*+y*—2x* +4xy —2y?
Solution:

Given, f(X,y)=x"+y*—2x*+4xy—2y*

f :4(x3—x+ y) , A, :4(y3+x—y)

Critical points are the solutions of f, =0 & f =0

(ie)X®—x+y=0 1)

Yy +x—-y=0 (2)

Adding these two equations, we get

3 3

xX*+y°=0 (or) x=-y
Substituting in (1) gives X(X2 —2)=0

- Xx=0,+2, y:O,iﬁ

.. The critical points are (0,0), (x/E,-\/E) & (-\/E,\/E)
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3. Find the extreme values of the function x® + y* —3axy

Solution:
Given f (X, y) = x*+y®—3axy

f = 3x*-3ay, f, = 3y*—3ax

X y

Now f, = Oandfy =0

= x’-ay =0

y?—ax = 0
X2
= y="—
a
X4

2 =>02)= g—ax:O

=N x(x?’—a3) =0
= X =0, a

Whenx=0,y=0

y=a,x=a

.". The two stationary points are (0,0), (a,a)

Now r =f, = 6x
s=f, = -3a
t = fyy = 6y
At (0,0)

rt—s’= —9a’<0
= There is no extreme value at (0,0)
At (a,a)

rt—s®= 36a*>-9a’= 27a°>0
= f(x,y) has extreme value at (a,a)

Now r = 6a

@)
)

If a>0 then r > 0So that f(x,y) has a minimum value at (a,a)
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Minimum value of f(X, y) = a’+a’*-3a’

= —a3
If a<0then r<0sothat f (X, y) has a maximum value at (a,a)
Maximum value of f (X, y) = —a’-a*+3a’=a’

4) Find the maximum and minima of f (X, y) = x*+y° —63(X+ y)+12xy.
Solution:

Given f (X, y) = x*+y°—63(x+y)+12xy

f(x) = 3x*-63+12y, f(y) = 3y’—63+12x
For extremum f, = 0, f, = 0

= 3x*-63+12y = 0 & 3y’°-63+12x = 0

= X*+4y =21 €))
= y*+4x = 21 2
Solving (1) & (2)

x*—y?—4(x-y) =0
(x—y) (x+y—4) =0
X=y &Xx+y =4 (3)

If x =y, from (1), x*+4x-21 = 0

(x+7) (x=-3) =0
X = -7 3
y =-7,3
Hence stationary points are (-7,-7), (3,3)

If X+Yy = 4from (1)
X +4(4-x) = 21
= xX*-4x-5=0
= Xx=-15

y =5 -1
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Hence other stationery points are (-1,5), (5, -1)
Nowr =f =6x,s =1, =12t =f = 6y
At (-7,-7)
rt—s®= 36(-7)(-7)-144
= 1620
>0

Also, r = —42
<0

Hence f(x,y) has a maximum at (-7,-7)

Maximum value = (—7)3 Jr(—7)3 —63(—14)+12(—7)(—7)

= 784

At (3,3)
rt—s*>=180>0
r =18 >0

Hence f(x,y) has a minimum at (3,3)
Minimum value = —216

At (-1,5)
r-s’= -324<0
f(x,y) has neither maximum nor minimum at (-1,5)
.. (-1,5) is a saddle point
At (5,-1)
r-s*>= -324<0

(5,-1) is a saddle point.

5) Find the extremum points of f (X, y) = x*—y*—2x* +2y%
Solution:

Given, f(x, y) = x*—y*-2x*+2y?

f = 4x’—4x, f, = —4y’+4y

X y
Solvingf, = 0 &f, =0
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4(x*-x) = 0 & 4(y-y°) = 0
ax(x*-1) = 0 & 4y(1-y*) = 0
x =0(or)tl &y =0 (or)£l

.. (0,0), (1,2), (1,-1), (-1,12), (-1,-1), (2,0), (-1,0), (0,1) and (0O,-1) are the critical points.

Now r = 12x*—4,s = 0, t = —12y*+4

Point rt-s> r Nature
(0,0) <0 - Saddle
(1,1) <0 - Saddle
(1,-1) <0 - Saddle
(-1,1) <0 - Saddle
(-1,-1) <0 - Saddle
(1,0) >0 >0 Minimum
(-1,0) >0 >0 Minimum
(0,1) >0 <0 Maximum
(0,-1) >0 <0 Maximum

.. f(x,y) attains its minimum at (1,0) & (-1,0) and the minimum value is -1

f(x,y) attains its maximum at (0,1) & (0,-1) and the maximum value is +1.
6) Examine f (X, y) = x%y? (1— X— y) for extreme values.
Solution:

Given f (X, y) = X’y*(1-x-y)

f, = (1-x-y)3xy* - x’y’

X

f, = 2x%y(1-x-y)-x’y’

y

For Critical points, f, = O, fy =0

(ie) x*y*(3(1-x-y)-x) = 0 = 4x+3y =3 (1)
xy(2(1-x-y)-y) = 0 = 2x+3y =2 (2)
From Equation(1)x=0ory=0o0r4x+3y=3
Equation (2) x=0ory=0o0r2x+3y=2
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. " . 2, 3 11
.. The critical points are (0,0),(O,g), (Z,O), (E,g),(o,l),(l, 0)

Now r = 6(1-x—y)xy?—6x*y’
s=6x"y(1-x—y)—-2x’y —3x*y’

t=2x>(1-x-y)-4x’y

At (0,0), (0, %), (% ,0),(0,2),(1,0) the value of A=rt—s*>=0

“ 55
KoK

rt—s’ =i—i>0
72 144

Alsor <0

f(x,y) is maximum at ( % , %) and the maximum value of

f(xy)=(Y) (%) a-%-%)

7) Test the function f (X, y) = (X2 + yz)e_(XZ”Z) for extremum points which do not lie on the

circle x> +y* =1
Solution:

Given f(x,y) = (x2+y2)e‘(xz+y2)

f = (x2 + yz)e"xz*yz)(—ZX) +2xe )

X
= 2x (1-x*—y?)e )

f = (x2+y2)e’(xz*y2)(—2y) + 2ye )

y
= 2y (1-x"—y?)e ™)

172



NOW, fX = Oand fy = 0
= 2x(1— X2 — y?)e ™) = 0& 2y (1 X2 — y2)e ) =0
=x=0,y=0 & xX*+y°=1

Since points lying on the circle x? + y2 = 1should not be considered, (0, 0) is the only stationary

point.

Now,

fo=(2x - 2x°- 2xy2)e‘(xz+yz’

r=f,= (2-6x— 2y*)e ™) +(2x — 2x°— 2xy*)e ™ (-2x)
= e 0 (4x — 10X+ 4xy— 2y + 2)

s =f,= —dxye @)y (2x — 2%~ 2xy2)e‘(xz+yz)(—2y)

=(-8xy + 4x°y + 4xy3)e’(xz*yz))

t :e‘(XZ”z)(z - 2x* - 6y?) +e‘(xz+yz)(2y - 2y X - 2y°) (-2y)

=g () (2—2x2 — 10y*+ 4x%y? + 4y4)

At (0, 0)
r=2,s=0,t=2
2
t-s"=4>20
&r =2 >0

.. f(x, y) has a minimum value at (0, 0)

Minimum value = 0

8) Find a point within a triangle such that the sum of the square of its distances from the three

vertices is a minimum.
Solution:
Let (X,,Y,),(X;,,Y,) and (X;,Y,) be the vertices of the triangle ABC. Consider a point p(x, y) inside

the triangle.

Let (%, y) = (XY + 6-y))
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For a maximum or minimum

f.=0,f, =0
3 3

= ZZ(X_Xi): 0, ZZ(Y_yi): 0
i=1 i=1

= (X=X)+(X=X,) +(X=X;) = Oand (y—y,) +(y=-Y,)+(y-Y¥;)= 0

= X=X, +X, +X,and3y =V, +V, +V,

X=X1+X2+X3andy:yl+3:/32+y3

=

—> The extreme may occur at the centroid

Now r=6s=0t=6

Thus t—s°=36>0and r >0

Hence f(x, y) is a minimum at the centroid of the triangle.

Exercise

1. Given f =06X, fXy =0, fyy =6y, find the nature of the stationary point (1, 2) of the

function f (x, y)

2. What is the relation between a stationary point and extreme point of a function.
3. Find the stationary points of X* + y* +6y+12.

4, Find the critical points of f (X, y) =x*+y®—3xy

5. Find the stationary points of f (X, y)= X=Xy + Yy —2X+Y

6. Find the extreme values of f (X, y): X' +2x°y —x* +3y°

7. Find the maxima and minima of f (X, y):x3y2 (12-3x-4y)

8. Examine the function for extreme values F (X, y): Xy +27 (% + %j

9. Find the saddle points and extreme points of the function Xy(3X +2y +1)
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10.  Find the maxima and minima of f (X, y) =Sinx+Siny+ Sin(x+ y);ng,ysz

2
11. Discuss the maximum and minimum of (X2 + y2) g&x+2x
12. Find the extreme values of X3+ y? — 3x —6y —1
13. Find the maxima and minima of x*+ y* — 36xy
14. Discuss the maxima and minima of x°> + 3xy* — 15x* =15y + 72x
15. Find the maxima and minima of x*+ y®>— x — 6y +10
16. Examine for extreme values log (X2 + y2 + 2)
17. Find the minimum value of the function f(X, y) =X+ y*+ Xy + ax + by

18. Discuss the maxima and minima of f (X, y)= xy? (3X+ 6y—2)
19. Find the maxima and minima of f (X, y): x* + y4 —2(X— y)2
20. Examine the maxima and minima of f (X, y): x> —4x* —xy—y°

21. Find the maxima and minima of f (X, y):(y— X2) (2— X— y)

22. Discuss the maxima and minima of f (X, y):X3 +y®—x-6y +10

23. Examine for extreme values of U= 2(X— y)2 — X' - y4

24. Find the maximum value of the function xye (***3)

25. Find the maximum and minimum value of and (x, y) = sin x sin y sin (x + y),
0<x, y<m

Answers:

1. Minimum

3. (0, -3)

4. (0,0),(1,1)

5. (1,0)
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10.

11.

12.

13.

14.

15.

16.

17.

18.

Minimum at
e

_ﬁ_lj

Maximum at(2, 1)

Minimum at (3, 3)

(0,0), (_—1,0], (O,_—lj are saddle points
3 2

The maximum point is(% ’ %)

Minimum at (0,0), Minimum value =0

Minimum at (-1,0), Minimum value = ™

(‘%,O) is a saddle point.

(0,0) is a saddle point.

(0,0) is a saddle point.

(-3, -3) & (3, 3) give minimum value.
Minimum at (6,0), Maximum at (4,0)

(5,1), (5,-1) is a saddle points.

Minimum at (}{E,Zj, Maximum at

(Y]

(_}/ﬁﬁj &(/Vﬁ,_ﬁ] are saddle points.

Minima at (0, 0)

Minimum at (6_328[ ,a— ZbJ

13b% +a® +13ab
9

Minimum value =

Minimum at (%%)
(0,%) saddle point.

at (0,0) no conclusion.
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19. Maximum at (0,0)

Minimum at (ﬁ,—ﬁ) & (—ﬁ,ﬁ)

20. Maximum at (0,0), (% , _%) is a saddle point.

21. (1,1) & (-2,4) are saddle points

(—}/,1%) is the maximum point. Minimum at (}/\@ﬁj

22, Maximum at (_}/\/E’_\/E)

(}/\@—ﬁj and (—}/\@,ﬁjare saddle points
23.  Maximum at (ﬁ,—ﬁ)&(—ﬁ,ﬁ)

(0,0) is not an extreme point, Maximum value is 8.

24. (0,0) is not a extreme point, Maximum value at (% , %)

Maximum value is }/
6e’

2r
25. f(x,y) attains minimum value at (—,— ) and the minimum value is

33
o

CONSTRAINED MAXIMA MINIMA (LAGRANGIAN MULTIPLIER METHOD)

Suppose we require to find the maximum and minimum value of f(x,y,z)where x,y,zare

subject to a constraint equation g (X, y,z)=0
We define a function
F(xy,2)=f(xy,2)+19(xY,2) (1)

Where Ais the Lagrange multiplier which is independent of x, y, z

The necessary conditions for a maximum or minimum are

oF
&=0 (2)
oF
—=0 3)
oy
oF
Z -0 4
~ @
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oF

=0 5)

Solving the four equations for four unknowns A, X, Y, Z we obtain (X, Y, Z)

1 11
1. Find the minimum value of X + y® + z*subject to the condition —+—+==1

X y z
Solution:

Let the auxiliary function F be

F(x,y,z):(x2+y2+22)+ﬂ(1+1+1—1j (1)
X y z
a—F=2x+/1(_—1j=2x—%

OX X X

6_F=22+/1[—_1]=22_i
0z X

For a minimum at (x,y,z)we have

1
E:O:>2x—12:0:> NORECR (2)
OX X 2 2
1
oF A A RE
—=0=22y-==0=y'="=y== 3
o y ¥ y > y (2) (3)
ﬁ:o:n—%:o:z%i:z:(if (4)
X 2 2
From (2), (3) & (4) we get
X=y=12 (5)
Given 1,11, [ x=y=1]
X y z
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3=x [ie. x=3]
(3, 3,3) is the point where minimum value occur

The minimum value is

3¥+3°+3*=9+9+9
=27

2. Find the minimum value of X* + y* + z” subject to condition X+ Yy +2=3a

Solution:

To find the stationary value

ﬁ=O:>2x+ﬂ,=0:>2x=—/1 (1)
OX

ﬁ:0:>2y+l:0: 2y=—21 (2)
OX

Z—F=O:22+/1:O:>22:—/1 (3)
z

From (2), (3) & (4) we get
2X=2y=21=>X=Yy=1 (4)

Given: x+y+z=3a
X+X+Xx=3a [by 4]
3x=3a
X=a=>y=a, z=a

(a, a, a) is where minimum value occur. The minimum value is a? +a® + a% =3a?

3. Find the maximum value of x".y"zP whenx+y+z=a
Solution:
Let f =x"y"zPand g=x+y+z —a, then the auxiliary function is

F=f+Ag
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Stationary points are given by

ﬁ=0; ﬁ:o;ﬁzo andﬁzo

ox y o EY)

mx"y"zP + =0 (1)
nx"y"'z? + 1=0 (2)
px"y"zPt+ 1 =0 (3)
X+y+z-a=0 (4)

From (1), (2), (3) we get

m,,n-1

—A=mx"y"zP =nx"y" 'z = px"y"z"*

. m_n
le. —=—
Xy

m+n+ m+n+
PR T Py @)
Z X+y+z a

f attains maximum when

am an . _ ap
m+n+p

X= ; y: ;
m+n+p m+n+p

a.m+n+pmmnn pp
(Mm+n+p)™"P

Maximum value of f =

4. Find the maximum volume of the largest rectangular parallelepiped that can be inscribed in an

llipsoid X + y2 + z
ellipsoid —+—+—
aZ b2 2

c

=1

Solution:

Let the sides of the rectangular parallelepiped be 2x,2y,2z
Hence the volume v=(2x)(2y)(2z)=8xyz
Now, we have to maximize V subject to the condition.

2 2 2
g(x, y,z):x—2+y—+z—

7wt

o
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X2 y2 Z2
Let F:f+ﬁg:8xyz+/1(¥+b—2+c—2—lj (1)
ﬁ:O :>8yz+¥:0 (2)
OX a
a—F:O:>8xz +¥:O (3)
OX b
ﬁ=O:>8xy+22—2;t=0 (4)
0z c
—XA

(2) >4yz= ¥

Multiply by x on both sides,

_X2
= 4xyz=—-1
a

4xyz X
=>——== 5
IR (5)
(3) Axz :_bLZ/1

Multiply by ‘y’ on both sides,

2
bz/1

= 4xyz=

2

_ Az y

A b?

—-ZA
(4) 4AXy =—
c

Multiply by ‘2’ on both sides,

_22
= 4xyz=—-21

From (5) (6) & (7) we get
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QD
[
O
N o
(]
N

2 2 2
' xX* y* oz
Given: —2+—2+—2—1

QD
oy

=k+k+k=1
=3k=1

b
Similarly y=—; Z=
V3 V3

C
The extremum point is (\/§ ,—3,£J .

. Maximum volume :8[a_bc)
33

6. Find the shortest and longest distance from the point (1,2,-1)to the sphere

2 2,2 . , . . -
X“ + Y +2° =24 using Lagrange’s method of constrained maxima and minima

Solution:

Let (x, y, z) be any point on the sphere. Distance of the point (x, y, z) from (1, 2, -1) is given

by

d=(x-17% +(y-2)* +(2+1)

To find the maximum and minimum values of d or equivalently of d?
d% =(x-1)° +(y-2)* +(z+1)°

Subject to constraint x? + y? + 2% —24=0

Here f :(x—l)2 +(y—2)2 +(z +1)2 and

g=x’+y?+2%-24
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Aucxiliary function F=f +1g where Ais the Lagrange multiplier. The stationary points of F

oF . OF . OF_

are given by 2—5:0; Y 0; EZO' 5_0

(ie) 2(x-1)+2Ax=0 (1)
2(y-2)+24x=0 (2)
2(z+1)+242=0 (3)

x2+y?+22=24

(4)
From (1), (2) & (3) we get

1 2 1
X= ’y: L=
1+ 1+2 1+2

Using three values in (4) we get

6 S =24; ie, (1+,1)2=1
(1+2) 4
/1=_—1 or -3

2 2

When /1:—?1 the point on the sphere is (2, 4,—2)

When /1:—?3 the point on the sphere is(—2,—4, 2)

When the point is (2, 4,—2) we get

d=yJ(1)° +(2)° +(-1) =6

When the point is (-2,—4,2) we get

d=yJ(-3)* +(-0)* +3 =36
Shortest and longest distances are J6and 36 respectively.

7. A rectangular box open at the top is to have a volume of 32cc. Find the dimensions of the

box, that requires the least material for its construction
Solution:

Let x, y, z be length, breadth, height of the box
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Surface area = xy + 2yz + 2zx (A)
Volume=xyz=32 (B)
Let auxiliary function F be

F(xy,2)=(xy+2yz+22x)+ A(xyz—32) (1)

Where A is Lagrange multiplier

8—F:y+22+/1yz
OX

ﬁ:x+22+/1yx

ﬁ=2x+ 2y + AXy
0z

ﬁ:0:>y+22+/1yz:03l+g:—ﬂ (2)
OX zZy
i:03x+22+/12x:0:>l+2:—2, (3)

Z X
ﬁ:O:2x+2y+/1xy:0:>EJrg:—ﬂ (4)
oz y X

From (2) & (3) we get

(6)

From (5) & (6) we get x =y = 2z
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(B) Volume = xyz = 32

(22)(22)2:32
473=32

Cost minimum when x = 4; y = 4; z = 2. Thus dimensions of the box are [4, 4, 2]

8. A closed rectangular box is to have one edge equal to twice the other and a constant volume

72m?>. Find the least surface area of the box.

Solution: Let x, y, 2y be the length, breadth and height of the box respectively

Surface Area=2(x)+2(y)(2y)+2(x)(2y)
= 2xy +4y? +4xy
= 6xy +4y° (A)

Volume xyz =72

(ie) xy (2y)=72

2xy? =72
xy? =36 (B)
Let the auxiliary function F be
F(x,y,z):(6xy+4y2)+/1(xy2—36) (1)
oF )
—=6y+41
ox y+A4y
ﬁ:6x+8y+2ﬂuxy
oy
F
0z
oF )
—=0 6y+ Ay =0
o =0y+ay
-6y -6
A=—F=— 2
vy (2)
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i=0:>6x+8y+2xy:0
oy

_ —6x+8y
2Xy

A

From (2) & (3) we get

-6 —(6x+8y)
vy 2y
6 2(3x+4y)
y 2y
6Xx=3x+4y

4y=3x= y:%x

(B) = xy?=36

x(ix2j=36
16
x3=36x%:> x3=4x16

X>=4x4x4
x=4

3
=—x4
y i
=y=3

. f is minimum at (4, 3)

The minimum surface area is=(6)(4)(3)+ 4(3)2

=72+36
=108
9. Show that, if the perimeter of a triangle is a constant, the triangle has maximum area when
it is an equilateral
Solution:
a+b+c

Perimeter S =

Area of the triangle =\/s(s —a)(s—b)(s—c)
(Area)2 =s(s—a)(s—b)(s-c)
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Consider F =s(s—a)(s—b)(s—c)+A(a+b+c—2s)

F is extremum when,

%=—s(s—b)(s—c)+}t:0
%Lz—s(s—a)(s—c)wizo
2—2=—s(s—a)(s—b)+/1=0

s A(s—a)=4(s-b)=A4(s-c)
or s—a=S-b=s-c
sa=b=c

The triangle is equilateral.
10. Show that of all rectangular parallelepiped of given volume, the cube has the least surface area.

Solution:

Let x, y, z be the length, breadth, height of the rectangular parallelepiped

Volume is given as constant
v=xyz=k(say)
Surface Area A = 2(xy +yZ+ ZX)
To find minimum of A, subject to xyz—k=0
letF=f +Ag

=2(xy+yz+2x)+A(xyz—k)

oF

T o2 Ayz=0
™ (y+2)+Ayz
ﬁ:2(x+z)+/1xz:0
Yy

oF
—=2(X+Yy)+Axy=0
po (x+y)+Axy
24_3:_/1

Xy
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Solving the three equations we get
X=y=z
Hence the parallelepiped is a cube.

11. Find the foot of the perpendicular from the origin on the plane 2X+3y—-2z—-5=0

Solution:

Let A be (0, 0, 0). We have to find a point B (X,y,z) such that the distance d is

minimum

AB =d =x*+y*+7°
(ie) f=d*=x>+y*+2° (A)
g=2x+3y-z-5=0 (B)

Let the auxiliary function Fbe F=1f +Ag
(i.e.) F(x,y, z):(x2 +y%+2° —d2)+/1(2x+3y—z—5)

8—F=2X+2/1

OX
ﬁ:2y+3ﬂ.
oy
ﬁ:22—/1
0z

For extremum

Z—F=o:>2x+2/1=o:sx=—/1 (2)
X

%:O:2y+3/1:0:>§y:—1 (3)

%:o:u-z:o:-m:-z (4)

2
From (2), (3), & (4) we get X=§ y=-22
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(B) =2(-22)+3(-3z)-z-5=0

—47-92-7-5=0
-14z =5
>
14
x:—Z(_—5]:>x:§
4 7
2 -5
Zy=—2| =
3y [14)

5) 15
= 3 — |=—
y (l4j 14

Hence the extremum occurs at X=—,

15 -5
14 14

The required point is (§E _—5)
714 14

12. The temperature U(X, y,Z)at any point in space is u=400xyzZ.Find the point on the
surface of the sphere X2 + y2 +27°=1 with highest temperature
Solution:
Given U= f =400xyz*
g:x2 +y2 +22-1=0
Let the auxiliary function Fbe F=f +Ag
(ie)  F(xvy, z):(400xy22)+ﬂb(x2 +y*+17° —1)
oF
&=400yz2 +(2x)

oF
—=400xz> + A (2
™ Xz° + ( y)

oF
—=800 A(2
™ xyz +1(22)
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2
F 0= 400y2? + 42x=0= 2202 __
OX X

2
F 0= 200x2? + 22y=0= 222 __,

aa—F:O:>800xyz +122=0=400xy=—A41
z

From (2) & (3) we get

200yz*  200xz*
X y

From (3) & (4) we get

2
200xz _ 400xy
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Maximum temperature is = 50

13. Assuming the dimensions of a triangle ABC varies show that the maximum value of
cos Acos BcosC is obtained when the triangle is equilateral using Lagrange’s method of

multipliers.
Solution :

Let f =cos AcosBcosC whereA+B+C=m

Suppose J=A+B+C -7
ConsiderF= f +A40
=cos AcosBcosC + A(A+B+C—r)

oF oF oF .
—=—=—=0gives
oA oB oC

Z—F:—sin AcosBcosC +1=0

a—Fz—sin BcosCcos A+1=0
oB

ﬁ:—sin CcosAcosB+1=0
oC
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Hence Sin Acos B cosC =sin B cos B cosC cos A=sin C cos Acos B=cos Acos BcosC

tan A=tanB =tanC
=A=B=C

The triangle is equilateral.
12. Find the dimensions of an open rectangular box of maximum capacity with surface area 432 m’.
Solution:
Let x, y, z be the length, breadth, & height of box
Surface area = Xy +2YyZ +22Xx=432 @
Volume = xyz

Let the auxiliary function F be,
F (XY, 2)=xyz+A(Xy +2yz+22x —432)

oF
—=Yz+ 1 2
o z+A(y+2z)

ﬁ=zx+/1(x+22)
oy

oF
—= A(2x+2
pe Xy + A(2x+2y)

g—i:O: yz+A(y+2z)=0
= yz=—2(y+22)
yz
_¥_ ___, 2
:>(y+22) (@)

ﬁ:0:> X+ A(X+22)=0
oy
= x=—A(x+22)
X

:>(x+22):_/1 ©
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ﬁ—0 = Xy +A(2x+2y)=0

oz
= Xy=—1(2x+2y)
Xy
-2 4
:(2x+2y) @
From (2) & (3) we get
yz X
—(y+22)_—(x+22)
X=y ®)

From (3) & (4) we get

x Xy
X+27 2X+2y

2X°7 4 2Xy2=XY + 2XyZ
2=y (6)

Xy +2yz + 22x=432

(22)(22)+2(22)z+22(22)=432
47° +47% + 477 =432

127* =432

72=36; =6
x=12;y=12;2=6

Thus the dimensions of the box should be 12, 12 and 6. Maximum volume = 12x12x16 = 864m°>

Exercise
1. Find the maxima and minima of the function f (X, y):3x2 +4y2 —xy if 2x+y=21
2. Find the maxima and minima if any of the function f(x, y):12xy—3y2 —x?

Subject to x + y = 16.

3. Show that the maximum value of x°y?z°subject to the constraint
3
2
. [ a
x2+y2+22:a2|5(?]
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4. Find the minimum value of x? + y? +z%, when (i) xyz=a® and (ii) xy+ yz+ zx=3a?

5. Show that the minimum value of (a3x2 +b3y2 +C322), when
1 1 1 1.
Sy=+Z=Zisk*(a+b+c)
Xy z Kk

6. The temperature at any point (x, y, z) is space is given by T =k xyz*, where k is constant.
Find the highest temperature on the surface of the sphere x* + y* + z° =a’

7. Show that, of all rectangular parallelepipeds with given surface area, the cube has the
greatest volume

8. Prove that the rectangular solid of Maximum volume which can be inscribed in a sphere is a
cube

9. Find the points on the surface 72 =XY +1whose distance from the origin is the least.

10. Find the point on the surface Z= X% + y2, that is nearest to the point (3, -6, 4).

11. Find the minimum distance from the point (3, 4, 15) to the cone x?+ y? =472

12. Find the points on the sphere X% + y2 +2° =4 that are closest and farthest from the point
(31-1)

Answers

987 17

1. f(X, y):T attains the minimum at (?,4

2. f (X, y) = 528 attains the maximum at (9,7)

4. (i) 3a% (ii)3a°
ka*

6. —_—

8

9. (0,0,1)and (0,0, -1)

10. (1,-2,5)

11. 125
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JACOBIANS

Introduction:

Carl Gustav Jacob Jacobi [10 December 1804-18 February 1851] was a German

Mathematician, who invented Jacobian determinant formed from the n? differential co-efficients of
N given functions of Nindependent variables. He made fundamental contributions to elliptic
functions, dynamics, differential equations and number theory. In vector calculus, the Jacobian

matrix is the matrix of all first order partial derivatives of vector valued function.

Suppose F :[J" —[1™ is a function form Euclidean N -space to Euclidean M -space. Such a

function is given by M real-valued component functions F(X,X,...X.), F(X,%,...X ).,
F.(X,X,...X,). The partial derivatives of all these functions with respect to the variables

X, X, ... X, (if they exist) can be organized in MxN matrix, the Jacobian matrix J of F as follows:

oF oF ok,
x oo
oF, oF, oF,
J _ a % e a
oF, OoF, oF,
ox, OX,  OX

If M=n the Jacobian matrix will be a square matrix and its determinant, a function of X, X,...X_is

the Jacobian determinant of F
Geometrical Interpretations of F:
(i) Area
(i) Orientation

Area: The Jacobian of a matrix allows us to understand the area. When the determinant of the

Jacobian is not equal to zero, the area is not annihilated but may be enlarged or shrunk.

Definition:
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u ou

0
If U and V be two continuous functions of two independent variables X and y such that a—,—,

X oy
o
oV ov
—,— are also continuous in X and y then the determinant ox 0y is called Jacobian of U
ox” oy v
ox OX

_ _ o(u,v) u,v
and V with respectto X and y . Itis denoted by orJ .
a(x,y) X,y

Note:

ou.
If u,u,...u, be N continuous functions of N independent variables X,X,...X, such that —,

OX j

i=12,...n are also continuous in X, X, ... X, then the determinant

ou, ou, ou,
ou, ou, ou,
ou, ou, ou,
ox, o0x,  OX

o(u,,u,...u,) or

is called of Jacobian u,,U,...,U  with respect to X,X,...X . It is denoted by
1 2 n Xl 2 n a(Xi,XZ...Xn)

ul,uz...un)

X, Xy en X,

J(

Properties of Jacobians:

o(u,v) y o(x,y) 1
o(x,y) o(u,v)

1. If uand v are functions of x and y, then
Proof:

Solve u= f(x,y)and v=g(x,y) forxandy. Let x=¢(u,v) and y= y(u,v)
Then
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ou 6x+6u oy _ou _

ox'ou oy ou ou
u ox oudy _ou_
OX ov 0oy ov oV
NX Ny _N_,
OoX ou oy ou ou
NOX N _N_,

—t——=—=
OX ov oy ov ov

Now

u oul |ox
o(uy) axy) _|ox | fou
o(x,y) ou,v) |ov ov| |y

ox oy| |ou

2l 2[R

% X o
ou oOX ov oy
¥y NX N

OX ou oy

y
oV
%

ou ox oy
xou oy
v ox v
ox'ou oy ou o

! 0Frml
=l p[From@]
=1

(2) If u and v are functions of r and s, where r and s are functions of x and y, then

o(u,v) _ o(u,v) y o(r,s)
ox,y) o(r,s) a(xy)

Proof:

ou ou| |or or
o) a(r.s) _ or Exax dy
0s
ox

o(r,s) a(x y) N V| |0s
or os| |ox

By rewriting the second determinant, we have

ou ou| |or Os
o) a(rs) _ or Exax X
ors) a(xy) oV ov| |or o5
or os| |oy oy
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auor ouds oudr ouds
or ox 0s ox or oy 0s oy
o s avar vas
or oXx 0s oX or oy 0s oy
ou ou
x oy
Tlov ey
BN
_0(u,v)
Ak Y)
(3) If the function u, v, w of three independent variables X, y, z are not independent,
then the Jacobian of u, v, wwith respectto X, y, z vanishes.
Proof:

If U, V, andW are not independent variables then there will be a relation F(u,v,w)=0,

which will connect these dependent variables.

Differentiating this relation with respect to X, y, and z we get

OF u OF v oF ow

U ox v X ow ox
OF ou OF ov OoF ow _
audy ovay ow dy
oF ou OF v OF ow
ouor over ow oz
OF OF . oF au,v,w)

Eliminating —,—and — we get =
ou ov - ow a(x,Y,2)

Note:
If the transformations x = x (u, v), y = y (u, v) are made in the double integral ”f (X, y)dxdy then f(x,

o(x,y)

y) = F(u, v) and dxdy = |J| dudv where J =
o(u,v)

Worked Example

oY) or.0) _,

1) If X=rcosé, y=rsin@, then verify that
o(r,0) o(x,y)

Solution:

Given X=rC0S#, y=rsind
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OX OX

a(x,y) |or 66| |cos@ —rsing
o(r,0) |8y @oy| |sind rcoso
or 06
=r(cos’ @ +sin*G) =r
Now r? = x* + y® and 9=tanl(lJ
X
LTy X
OX oX r
2rg:2y:qzx
oy o r
00 1 -y -y -y
x y2><7:x2+y2:r_2
1+
X
- 00
Similarly — = r—z
Hence
o oI x oy
or.6) |ox oy| | r r
olxy) |06 00) | y X
X oy r’ r?
oxXEeyr ot 1
r r* or

Loxy) o(r0) 1 _
o0 alxy)  r

2. If we transform from three dimensional cartesian co-ordinates (X,Y,Z) to spherical polar co-

ordinates (r, 0, ¢), then show that the Jacobian of X, Y,z with respect to r,8,¢ is I’ siné

Solution:

The transformation equations are

X=rsindcosg, y=rsinésing, z=rcosd
Q:sin 6cos ¢ gzsin @sin ¢ chose
or or or

%:rcosecosqﬁ ﬂ:rcosé?sin(/ﬁ z=—rsin9
00 06

%z—rsin gsing ﬂ=rsin 6cos ¢ @:0
0 ¢ ¢
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OX OX OX

or 00 04 sin@cosg rcos@dcosg —rsindsing
Co(xy,z) _|oy oy oy

o =|— —— —|=(sinfdsing rcos@sing rsinHcosgy
or.0.9) jor 206 0o cos 6 —rsiné 0

0z 07 o012

o 00 04

= r?[sin 8.cos ¢(0 + sin® Acosg) — cos & cos ¢(0 — sin & cos 6 cos @)
—sin@sin ¢(—sin® @sin ¢ — cos’ sin ¢)]

= r’[sin® @cos’ ¢ +sin #cos® Ocos’ ¢ +sin’ Gsin® ¢
+sin@sin® g cos® 4]

=r?sin g[(sin® ¢+ cos® @)(sin® @ +cos” 9)]

=r’sing

3. Ify, =cosx;, y, =sinx cosx,and y, =sin x, sin x, cos x,, then show that
O Y2 Yo) __ g3 X, sin’ X, Sin X,
0%, %, %)

Solution:

Let y, = f,(X), ¥, = F,(X, X)) Y5 = f5(%, %, %) then

=(—sin x,)(—sin x; sin x, )(—sin x, sin X, sin x,)
=-sin® x sin® x, sin x,

o(u,v)

4, If U=2X, v=x*>—y?, Xx=c0S60 and y =rsin@, then compute ———
o(r,0)

Solution:

o(u,v) o(u,v) y o(x,y)
o(r,0)  a(x,y) o(r,o)
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ou au| lox  ox
o o o a0
N N Y Oy
ox oy| lor 06
2y 2x| |cos@ -rsind
= X
2x —2y| |sin@ rcosé
= —4(x* + y*)r(cos’  +sin® 6)
=-4r°
5. Iff(0)=0,f'(x)= f'y)= Ly then without integratin rove
. - ’ _1+X2’ 1+y2' g g p
f(x)+f(y)=f[x+y)
1-xy
Solution:
Let u=~fx)+ f(y) and v=2"Y
1-—xy
a
a(u,v):6X oy M
ax,y) |ov ov
oX oy
ou 1 ou 1
—:f'X = ’—:fl =
OX () 1+x* oy ) 1+y°

v _l-xy+(x+y)y _ 1+y* v 1+
x  (L-xy) L-xy)* "oy (L-xy)*
Substituting in (1) we have
o(u,v)
a(x,y)

=0. Thus there is a relation between Uand V.

Let U=¢(V) then f(X)+ f(y) =¢(1X_+X¥J

Puty =0, weget f(X)+ f(0)=¢p(x)
i.e. T(X)=0(x)

Hence the function ¢ = f.
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.'.f(x)+f(y)=f{x+yj.
1-xy

X, X X, X X, X
273 _ 31 — 2
Yo = Y3 = :

6) Find the Jacobian of y,,Y,, y, withrespectto X, X,,X; ify, =
Xl XZ X3

Solution:

O(Y1: Y2, Ya) |0, O, OY,

(X, Xy, X)X, OX, 0K,

7) Examine if the following functions are functionally dependent. If they are, find also the

functional relationship.

(1) u=sintx+sinty;v= x\/l— y? + yv1-x
(i) u=y+z,v=x+22°,w=x—-4yz-2y*
Solution (i):

ou_ 1 ou_ 1 ov_ 1 -Xy .oV Xy \/72

X J1-xt oy ioy? ox 1oy 1-x2 0y J1-y?

S o(u,v) 1-x° 1-y
a(x,y)
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~.UandV are functionally dependent.
Now sinu =sin[sin ™ x+sin™ y]

=sin(sin™* x) cos(sin* y) +cos(sin"* x)sin(sin* y)

= x.cos(cos‘1 J1- y2) + y.cos(cos'l Vi1- x2)

:x\/l- y? +yl- X2
=v

.. The functional relationship between u and vis Sinu =V

([lu=y+z, v=x+2z> w=x-4yz- 2y’

OX OX OX
6_u=1 @:0 a—W:—4y—4z
oy oy oy
@:1 @=4z %:—4y
0z 0z 0z
1 1
M= 0 47 |=0
o(x,Y,2)

1 -4y-4z -4y
..u, vand w are functionally dependent.
Now V- W=27°+4yz +2y?
=2(y+z)*=2u°
.. The functional relationship among u, vand wis 2u° =v-w
8). Show that ax’ +2hxy +by? and Ax®+2Hxy +By’ are independent unless — = — =

Solution:

Let u =ax®+2hxy+by?, v=Ax*+2Hxy+By’
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u and v are not independent, if there exists a relationship between them and in that case

should vanish identically.

| 2(ax+hy)  2(hx+by) ~0
"Slo(Ax+HyY) 2(Hx+By)|

i.e. (ax+hy)(Hx +By) - (Ax+Hy)(hx+by) =0
(aH - Ah)x* +(aB - Ab)xy +(Bh- bH)y® =0

o(u,v)

o(x,y)

Now the variables x and y are independent and as such the co-efficient of x> and y2 should vanish

simultaneously.

\ aH- Ah=0 or Ezﬁ and
A H
Bh-bH =0 or 1:2
H B
a_b . .
Hence — =— =— are the required conditions.
A B H

9. Express J.” \/ Xyz(1— x—y—z)dxdydz

X+Yy+Z=UYy+Z=UV,Z=UVW.
Solution:

The given transformations are

X+Yy+z=U @
y+z=uv (2)
Z=Uvw (3)

Using (3) in (2), we have y=UV(1—W)
Using (2) in (1), we have X=U(1-V)

dxdydz =|J| dudvdw where
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OX OX OX
au ov owl p_y —u 0
J:—a(x,y,z):g Yy ¥ =v(l-w) u(d-w) —uv|=u’v (4)
o(u,v,w) |ou ov ow
oz oz oz| MW wu v
U ovoow

Using (1), (2), (3) and (4) in the given triple integral |, we have

| = m‘ \/U3V2W(l— v)(1-w)(1— u)u*vdudvdw

- H I u%vzwé @- W)% dudvdw.

EXERCISE
X Z ., o(u,v,w
1. If u= V= y S W= find ( )
y-z2 Z—X X=y o(x,y,2)
2. If U =X +X, + X +X,, U Uy, =X, + X5 +X,, U U,Us =X; +X,, U U,UU, =X, then show
O(X,, X, , X4, X
that %Xz X “):uf’uju3
a(ul’uZ’u3’u4)
o(u,v)

3. If u=x(@-y),v=xyfind ———=
a(x,y)

4. If X =uv,Yy 4V fing o(u,v)

u-v  a(x,y)
5. If u=x*-y?% v=2xy findM
o(u,v)
6. If X X, +o X =Y,

X+t X =YY,

Xyt X = Y1Y,Y,

X, =Y1YoYs o Ya

O(X, Xy,...X,) Nl ne2

Then show that =Yy, Y ,"',yrf_ Yo-1-
O(Yy Yoo ¥) o
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7. Iy, =1- X, Y, =X1- X,), V3 =X%Q- %), Y, =XX,---X,,(1- X,) then show that
OO Yarre¥o) — (Cqyrymiyn2y
O(Xs Xg5 0 %)
8. If x=u(l+v) and y =v(1+u), find the Jacobian of x, y with respect to u and v.
9. If x=u(l- v), y=uv verify that o, y) ouy)
oY) axy)
10.  Ifu=x* v=y? findM
a(x,y)
11. If x=rcog , y=rsimg , z=2zfind J Y22
o
& 0
12. Ifu=xyz,v=x2+y2+zz,W=x+y+z,FindJ§X’y’Zi
u,v,Wg
> . O(F,G,H)
13. F=xu+v-y G=u"+w+w, H=zu- v+vww Find ————
o(u,v,w)
ANSWERS
1. 0
2. X
)2
4. (LI V)Z
(u+v)
1
o. ————c
4(x*+y°)
10. 4xy
11. r
-1
12.
2(x-= y)(y- 2)(z- x)
13. X(vy +1- w)+z- 2uv.
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Part-B

If x=acosha cosb , y =asinha sinb then show that

oxy) _a

— [cosh 2a - cos2p3)

oa.p) 2

2

If u=x@1-v)"% v=y@-r>)"?, w=z(1- r?)Y? where r?=x*+y’+z> then show

-5

o(u,v,w) _ (1-r3)2
o(x,y,2)

that

Examine the functional dependence of the following functions. If they are dependent find

the relation between them.

+
|) u:X y’V:L2

-y  (x-y)
ii) u= +y,v:tan'1x+tan'1y

1- xy
i) f=x+y+z, f,=x*+y° +2%, f, =xy+yz+2x
iv) u=XY = X2

X+2 y+z
v) U=3x+2y-2z,v=x-2y+z, w=X(x+2y- z)
vi) U=x+y+z,v=x>+y +2°, w=x3+y> +2° - 3xyz

vii) U=X+Y-2Z,V=-X+y+z, W=X"+y*+7°- 2yz

viili) U =Xy +yz+zx, V=X>+y’ +72°, W=X+Yy+2

O(Uy, U, u) 1

5

If U = XX, +X,, ulzu2 =X, +X; and ufu3 = X, then prove that =
a(xl’ XZ’ XS) ul

ou,v)  y*-x?
a(x,y)  2uv(u—v)

If u®+v® =x+y, u”+v? =x>+y° then show that
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3 — — l 1 2 — 2 2 2 8(u,V,W)
6. Ifu =xyz, —=—+—+—, W =X"+y"+2° then show that ——
V X Yy z o(x,y,2)
_V(x- y)(y- 2)(z- x)(x+y+z)
3uPw(xy + yz +2x)
7. If U*+v+w+=x+y* +2°

u+vi+w=x>+y+z°
U+v+w =x>+y?+z

o(u,v,w) _ 1-4(xy+yz+zx)+16xyz

Then show that 2 2 > 2.2 2
o(X,y,2) 2-3(u”+v-+w)+27u°vw

Answers:

3)

(i) u® =1+4v
(i) u =tanv

(iii) 12 = f, +21,

. 1

iv) v=—"1ro

(iv) 10

(vi) u® =3uv - 2w
(vii) u® +v? =2w

(viii) W =v+2u
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UNIT-IV
INTEGRAL CALCULUS

INTRODUCTION: The integral of the function g(x) with respect to x is the function whose
derivative with respect to x is g(x) and is written as| g(x)dx.

Example: [ cosx dx = sinx and:—x (sinx) = cosx.
BASIC FORMULAE:

xTL+1
[x"dx==—+c (n=#-1)
n+1
fidx = logx + ¢
[eXdx=e*+c
[ cosxdx = sinx + ¢
[ sinx dx = —cosx + ¢
[ sec?xdx = tanx + ¢

[ cosec?xdx = —cotx + ¢
[ secx tanxdx = secx + ¢

© oNo WD E

. [ cosecxcotx dx = —cosecx + ¢

10 [ tanxdx = log(secx) + ¢

11.  cotxdx = log(sinx) + ¢

12. [ secxdx = log(secx + tanx) + ¢

13. [ cosecxdx = log(cosecx —cotx) + ¢

n (ax+p)"t . .
14. [(ax + b)"dx = D +CIf(n¢ 1)
15. f1+ ~dx =tan"'x + ¢

16. f1+x2 dx = cot 'x +¢

17. fﬁdx =sin"lx+c

18. f\/;—dx =sec 'x+c

19. [ —— =ltan1()+c
a

2_,_2
20.fa dx——log(+x)+c
21 [ dx——log( )+c
22. f\/—dx—log[x+\/W] c

23. fﬁdx = log|x + VxZ + a?] + ¢

24. f\/ﬁdx = sin~! (g) +c
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DEFINITE INTEGRALS

The definite integral of f(x) between the limits x = a and x = b is defined by f:f(x)dx =
[F(x0)]g = F(b) — F(a).

Properties of Definite Integrals:
b b
L [ fl)dx= [ f(t)dt

Proof: [ f(x)dx = [F(x)]5 = F(b) — F(a)

b
[ r@ac=ren =Fo) - F@

Lbf(x)dx = fabf(t)dt

2. [V fO)dx = — [ f(x)dx

Proof: Consider R.H.S

a b
—fb fGdx = =[F(x)]j = —[F(a) = F(b)] = F(b) — F(a) = j f)dx =L.H.S

3. f: fx)dx = facf(x)dx + fcbf(x)dx

Proof: Consider R.H.S

[ b
J f(x)dx + J f)dx = [F()I§+ [F()]2 = F(c) — F(a) + F(b) — F(c)

b
=F(b) — F(a) =j f(x)dx =L.H.S

4. foaf(x)dx = foaf(a — x)dx
Proof: Consider R.H.S foaf(a — x)dx
Puta—x=t =2 —dx =dt = dx=—dt

Limits: Whenx=0=>t=a andx=a=t=0
a 0 a a
—X)dx = —dt) = — —dt) = d
jo f(a—x)dx f F©)(=dt) ]0 £(6)(—dt) jo @)t

= ['f(x)dx = L.H.S (By property (1)
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5. fozaf(x)dx = foaf(x)dx + foaf(Za — x)dx
Proof: Consider [, f(x)dx = [’ f(x)dx + [** f(x)dx

Put x = 2a — t in the second integral.

= dx=—-dtWhen x=a=t=0andx=2a=t=0

fazaf(x)dx = - f:f(Za —t)dt = joaf(Za —t)dt = Joaf(Za — x)dx

2a a a
J f(x)dx =J f(x)dx+j fQa — x)dx
0 0 0
6. (i)If f(2a—x) = f(x),then fozaf(x)dx = Zfoaf(x)dx
(i) If f(2a — x) = —f(x), then fozaf(x)dx =0
Proof: (i) By property (5) [, f(x)dx = [} f(x)dx + [, f(2a — x)dx
= d dx =2 d
| e+ [ reoar=2] e
(ii) By property (5) [, f(x)dx = [} f(x)dx + [} f(2a — x)dx
_ faf(x)dx - faf(x)dx =0
0 0

7. (i) f_aaf(x)dx =2 foaf(x)dx, if £(x) is an even function.
(i) [ fGodx =0, if f(x) is an odd function.
Proof: Suppose f(x) is an even function f(—x) = f(x)

[ fGodx = [° fGdx + [ f()dx

- f_(;f(—x)dx+foaf(x)dx

Put —x = t in the first integral.

=>dx=—-dtWhen x=0=>t=0 andx=-a=>t=a

-/ POty + | fdx = | Fode + | Fdx = | Foodx + | Feod

=2 Laf(x)dx
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(i) Suppose f(x) is an odd function f(—x) = —f(x)

J_C;f(x)dx = j_(;f(x)dx + joaf(x)dx

0 a
=—f f(—x)dx+f f(x)dx
-a 0
Put —x = t in the first integral.
= dx =—-dtWhen x=0=>t=0 andx=-a=>t=a
0 a a a
= — —d dx = — d d
[ roan+ [ reods =~ [ o+ | o
=—f f(x)dx+f f(x)dx =0
0 0

8. [l fdx=[fla+b-x)dx

Proof: Consider R.H.S f:f(a + b — x)dx
Puta+b—x=t=—dx =dt=>dx = —dt

When x=b=>t=a andx=a=t=b

a b b
= [ roEan = [ ro@) = [ rw@n =Lhs
b a a
Problemss
1. Evaluate

?I.'l."lti
(a) / tanzsec’t dz
0

-0
(b) tanzsec® x da

—xfd

Solution

/4
1. (a) / tan xsec? t dx
JO

Let u=tanz = du=sec’zdr: t=0=u=0. x

*/4 2 ' ll2 . 12
/ tanx sec” t dx / u du {—} ——0

2 2

JO Jo < 1o &

N
[}

DN | —
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0
(b) / tan x sec’ x dr

J=w/4

Use the same substitution as in part (a); x ~2 S u=-1,2=0=2u=0
0 0 270
; u 1 1
/ tan x sec? x dx / u du {~] 0—==—=
; 2 2 2
~x/4 =1 <] - -
2. Evaluate

(a) / 3cos” wsin du
0

am
(b) / 3 cos” wsinz dx
2

s

Solution

W
(a) / 3cos zsinx dr
Jo

Let u=cose = du= —sinx dr = —du=sinrdr; r=0=u=1, r=n1=u= -1

N -t 1 3 3

2 2 31—

/ 3cos® xsinx d:z:/ —3utdu — [—u’] = — (=1} = (= (1)) = 2

0 1

3
(b) / 3cos® rsina dr
2m

Use the same substitution as in part {a); r =2r=u=1, z=3r=u—=—1

am -1
/ Jeos?rsina dr = / —3uldu = 2

21 1
3. Evaluate

T/6
(a) / (1 — cos3t)sin 3t dt
0
w/3
(b) / (1 — cos3t) sin 3¢ dt

Solution

7 /6
(a) / (1 = cos3t)sin 3t dt
Jo

| T 7
Tet 1 —=1-=cosdt = du = 3sindt ci£¢§(1t¢ sindtdt; t=0=u=0,1 EZHI- 1‘“’*‘% 1

" L\ 1, 1, ]
[u (1= cos3t) sin 3t dt —fu 3 du = {—3 (?)L =% (1) - a(l})i ~%



r-rl,;".“}
(b) ] (1 — cos 3t)sin 3t di
76

. - ‘ T
Use the same substitution as in part (a); [ — it 1, t =
)

uw—1—cosm—=2
w3 "D 1 |
[ (1 —cos3t)sindt dt = / —udu = {T (
' 3 3
ﬁ‘r-’l) 1

4. Evaluate

0
@ |
—/2
w2
o [
—m/2
Solution

"1)/0 2—|—1'n{' qe'ztff
c A — | 8eC — b
S 2 2

t t
(2 + tan §> sec? §dt

A i
(2 +tan 5) sec? 5 dt

. 3
Let w— 2+ tan 5= du —

(]
/—TT /2

Fa

12

2

o

)

"2 AN
h) 2+ tan — | sec” — di
—7.".:"'2 2 2
Use the same substitution as in part (a); _T” = u

/v Tr__.f"‘é
—m 2

5. Evaluate

E OS2

o +4+3sinz

" cos z

—— dz
x4 +3sinz

(a) dz

(b)

Solution
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1

1,

¢

2 -
('2 | tan i) sec? idt / e (2edu) [u2]2 22 12 3
2 2 . 1

t t e . _
('2. I tan E) sec? 3 de — 2 /] udu — [uz] Ij —32_12—38

| —

1 5 1 ) t -7 .
“sec? —dt = 2du — sec® —dt; t — — = u — 2 | tan (
2 2 2 2 4

-7
/]

l)—Lt—Uéu—Z



T cosz
(a) —————dz
o 4 | 3sinz

_ . 1
Let u =4+ 3sinz = du— 3cosz dz = Edu —coszdz; z=0=>u—4, 2 =2r=>u—14

- du

2 COS Z 1 ]

— dz — — —0
o 4} 3sinz L VU O\ 3
(b

Cos 2
) ———dz
Joz VA +3sinz
Use the same substitution as in part {a); 2 = -7 = u—4 | 3sin(—7) =4, 2=71=>u—41
0 : 1
Cos 7 l 1
Jog /4| 3sinz Ja Vi \3

6. Evaluate

3
T
t2 —d
/ﬁ CO G ey

Solution

3T
T
/ cot? —dx
- 6

z 1 s
LeLu—gédu—gd\ré(idu—dx; l’—ﬁf/‘u—z, r—3r=u—

ro| N

}

3T w/2 w/2
5 X : , /6
/ cot? de — f 6 cot® u du — 6/ (esc®u— 1) du = [6(—cot u— u)]m/; —
T T '

/6 w/6
—6(cot-7rg) 6((30’57(;7;) — 63— 27

2 )

7. Evaluate

1
/ 2xsn (1 — 3:2) dx

1

Solution

1
/ 2 sin (1 - ;rz) dx

1
et u—1—a?=du— —2rdr=—du—2xdr; c— —1=u—-02z—1=u—0

1 0
] 20sin (1 — 2%) dv — / —ginudu =0
—1 U]
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8. Evaluate

Im/4
/ csc zcot 2 dz
i

/4
Solution

g7 /4
f esez ootz dz

w4
am/4 o /d By 7
Let / esczeotz dy = [—cscz )" = | —esc 1) (— ('.‘S(_‘Z) = V21 V2=0
J i ) -

9. Evaluate

w2
/ 5 (sin %)% cos & da
Jo

Solution

/2
/ 5 (sinx)*? cosa da
0

let w —sine=du —cosxdr; - 0=u—0, x— 5

TT‘,/Q 1 2 1 1
. 3/2 3/2 5/2 o,/ 5/2
5 (sinx) 2 cosx de = Su”du = |5 = | u /2| = [2u772] 0=
0 0 2 0

— 9 {71)5/{2 _9 (0)5/'2 9

10. Evaluate
2m/3
/ cos % (E) sin (E) dx
0 2 2

Solution

2n/3
/ cos™ (
0

o =

) sin (%) dx

x 1 . rx L/
Let w = cos (7) = du —5 sin (7) dr = —2du = sin (7) da;

27

0 (N L (3]
r—=\U=u—=cos 3 = ..r—?iu—(os 7 =

b | =

&
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Reduction Formulae:

/ms rdx,
Reduction formula for

/cas“ rdz,

can be evaluated by a reduction formula.

Start by setting:

I, = /cﬂsﬂ'xdx. Now re-writeas [, = [cﬂs“_lzr,cos;r,d;r,,

Integrating by this substitution:

cosxdr = d(sinzx),

I, = /cas“‘lxd(sin:t:).

Now integrating by parts:
/cas“ rdr = cos" ' xsinx — /sin rd(cos™ 1)

=cos" lasinx + (n —1) fsin xcos™ 2

rsinrdx
= cos" 1$51n$+(n—1)/ s %z sin’rdx

— n—1 <2
=cos" "xsinz+ (n—1) [ cos" “z(1 — cos® ) dx

=cos" 'zxsinz+ (n—1) /-:'o-a rdx — (n—l}/cos“rd&:

=cos" 'zsinz + (n - 1)1,_o— (n— 1)1,
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solving for /.

1

I, +(n=1)I, =cos" "xsinx + (n—1)I,_s,

nl, =cos" \(z)sinz + (n— 1)1,
1 1 . n-—1
I, = —cos" 'zsinz +
n
50 the reduction formula is:

I‘n—ﬂ:

1 . n-—1
/cns“ rdr = —cos" lzsinz + cos" % rdx.
n n

To supplement the example, the above can be used to evaluate the integral for (say) n=5;

I = fcosﬁ:rd:r.

Calculating lower indices:
n=>5, I5= %CDS4$SiHI+ %Ia,
n=3, Iy=2%cos’rsinz+ 21,
back-substituting:

oI =fCOSIdI=SiHI+Cl,

I = %GDSZIBiH:L'-l—%SiHﬂT-J—CQ, (@ :%CI,

R S 411 5, . 2 ]
I = 5 cos :rsma:+5 {Scos :rsm:r,+3smm + C,

where C is a constant.

Reduction formula for [ sin"zdx

/sin"rd:r = /sin:r sin" 'z dx
= -cos:rsin"”a'—/(—cos:r).(n—l)sin"“'z;rcos;rd;r

(integrating by parts)

. - . -
= —coszsin" 'z+ (n—l)/sm" 2z cos’z dx

= —coszsin"'z+ (n-1) /sin""2:r(1 — sin’z) dx
(since cos’zr =1 —sin’r)

= —coszsin" 'z + (n—l)/sin"_zrd:r - (n—l)/sin"a'd.-r.(l)
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There is now a term in sin"zdx on the right-hand side as well as on the

left-hand side. Bringing these terms together on the left-hand side, (1) becomes

. . - . - ]
n / sin"rdr = —cosxsin" 'z+ (n—1) / sin" “2dx
: 1 Y g n—1) . i
% /5111"1' dr = —=coszsin" 'z+ ( sin" " %a{dz . (2)
n n

We shall now establish a quick method to evaluate
2

j“ﬂ sin®xdg ard j“; cos®xdx, r eN

0 0
2

consider I, = j:! sin® x dx
2
- Lﬂ/ sin™ (x) dx - sin x dx

2 . :
- Lﬂ/ sin® x. sinx dx
Integrating by parts, we get
V3

)
L, = [(sin®'x)(—cos x)]g - J(n — 1) (sin®2x )(cos x)(—cos x)dx
0

r
2

=(0-0)+ J-(n — 1) (sin™ 2x )cos?xdx

0
T

2
=(n-1) f(sin"‘zx )(1 — sin®x) dx
0
=(n-1) { sin™x dxl
)

ko
ie,1+(n—-1D),= n—DI,_,

sin™%x dx —

e E
O\Nm

I, = (Mm- 1){171—2 - In}

e, nl, = (n—1DI,_,

(n-1)
n In—2

e, I, =

Thus the power of sin x reduces from n to (n - 2 ). We can continue this process
till the power reduces to zero or one.
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Consider 1) L'f? sin® s ds

_ & - 1 enf2 4

= 6 o sin” x dx

= 2[4_1 J:"Ifz sinzxdx]
& <

_ 5 212 -1 2 o

= g - ZI: > j: SitL xd.x}
5 3 1 enf2

= = - = . = 1 o
i a2 3

= 2 .3 1 /2
e 2 20*h

= 2.3 1 = _4
& 4 2 2
- 2z 2 1 =
& 4 2 2
@ 7 sin® x ax
5 - =
=—1 nfgn'n3xdx
5
4 -
=—{—3 1 ;’fzsinxdx]
5 3
4 n
=—-—[-c:r:.:-s:-:]':|Jlrz
5 ]
4 2
= —.—[-0+1]
5 3
_ 4 2
5 3
Ingeneralif 'n'is even.

n-1 n -3 n-5
X X

o) j;‘ﬂ sin® (x) dx =

n n -2 n-2
1
— 1"
X xzxé
If "n'isodd
®f2 _ n -1 n-3 n-5
(2) ju sin. x) dx = - ><n_2><n_2

X ... X

W

Theseformulas also holds for j:p cos™ (%) dx

These formulas have been given by °~ Walli * Hence they are known as Walli’s
reduction formulas.
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4
sin Txcos "y d
Reduction formula for @

v [[m=1{m=3)(m-5)  531][[n-1)(n-3)(n-5] = 531] =z}
-l[sm xoos'x dr = [m+n][m+n—2][m+n—4] R [E],qua!hmandnamsvsn

_ [[m—l][m—B][m—S] ...[20!’1]:I[[H—l][??—3][?‘!—5] . .[201’1]] othermise
(m+n)(m+n-2][m+n-4]. [20r]]

Problems
[ntegrate I = / (secx)" dx
Try integration by parts with

‘
-—2

v =tanuxr
2

u = (seca)"

n—-3

du= (n—2)(secx)"“secrtanxdr dv=sec”rdr

We get

J = /(S(’(‘.l')" dr = /u dv = uv — /l'du

= tan x(secx)" "2 — /(tan x)(n — 2)(sec )" sec x tan  dx
= tan x(sec .1')"“2 —(n—2) /(scc x)" 2 tan? x dx

= tanz(secx)" "2 — (n — 2) /(sc(' x)"2(sec® x — 1) dx

= tanz(secz)" "2 — (n — 2) /(S(‘(‘ x)" — (sec )2 da

= tanx(sec )" % + (n — 2) /(svc ) 2dr— (n—2)-1
Solving for I:
(n—2)I + I = tana(secx)" 2 + (n — 2) /(sc(‘.r)"_2 dx

or
(n — 1)1 = tanz(secx)” 2 + (n — 2) /(sec x)" 2 dx

Dividing by n gives the

1 . n—2 ’
Reduction Formula: /(scc )" dx = ] tan z(sec )" "2 + 1 /(soc o e

n— n —
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Exponential integral

Another typical example is:

/ x"e™ dax..

Start by setting:

fﬂ:/a:“e“ dax.

Integrating by substitution:

n+1
:t:“d:cz—dl:x }
n+1"
1
Iﬂ.: ar ﬂ+1-.
n+1/€ ("),

Now integrating by parts:

/EE:I! d(In+1) — j::'.r1.+1€u:1: _ /In+1 d(eﬂm)
— I*.rz.+181:.'.:1: . EI-/I“-I_IEGE dil:_,

(n+ 1)1, = e — al, iy,

shifting indices back by 1 (son+1—n,n—n-1).
nl,_1 =a"e™ —al,,

solving for In:

1

In=—(@"e™ = nl,1),

s0 the reduction formula is:

[:t:”‘f.‘“ dx = 1 (1:“6.” — n/:t:“_lf.“m dI) )
i1
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UNIT 5
MULTIPLE INTEGRALS

Multiple Integrals

The principle of integration were formulated independently by Isaac Newton and
Gollfried Leibnitz in the late 17th century. Through the fundamental theorem of calculus,
which they independently developed, integration is connected with differentation.

If f is a continuous real valued function defined on a closed interval [a,b] then once an
anti-derivative F of f is known, the definite integral of f over that interval is given by

T f (x)dx = F(b) — F(a)

a

/

The integral of the function f(x) over the range x = a to x = b gives the area under the
curve between theordinates x =aand x =b

Integrals and derivatives become the basic tools of calculus with numerous
applications in Science and Engineering.

The multiple integral is a generalisation of definite integral to functions of more than
one real variable, for example f(x,y) or f(x,y,z). Integrals of a function of two variables over a
region R? are called double integrals.Integrals of a function of three variables over a region R®

are called triple integrals.

Double Integrals:

Let f(x,y) be a continuous and single valued function of x and y within some region R
and on its boundary.Let the region R be subdivided into n sub-regions of areas

oA, OA,......0A, Let (X,,Y,) beany point inside the sub-region of area 6A, and consider the

S E(x,, ),
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The limit of this sum as n—»cand §A —0(r =1,2,.......n) is defined as the double
integral of f(x,y)over the region R.

r=1

Thus ” f(x y)dA= It ZN: f(X,,Y,)0A
R

Suppose the region R is divided into rectangular partitions by a network of lines
parallel to the coordinate axes, the integral H f (X, y)dA is written as ” f(x,y)dxdy
R

y=d x=p(y)
Consider the double integral j f f(x,y) dxdy

y=c x=g@(y)

The region of integration is bounded by the linesy = ¢,y =d, ¢ < d and the curves x
= a(y), X = d(y), A(y) < ¢ (y) which is shown below.

The region ABCD is kno

wn as the region of integration of the given double integral

¥

D y=d o
x=6.(y x= 4. (y)
A\ ¥=C .”B
o x
x=b y=¢(X)
Consider the double integral _[ j f(x,y)dydx
x=a  y=h(x)
§ = (X) c

DIl I

N
.
\

AW,

The region of integration is bounded by the lines x = a, x = b, a < b and curves
Yy = di(X),y = d(X), h(X) < ¢(X) which is shown below.

The region of integration is the region ABCD

224



d b
To evaluate J‘ J. f(x,y)dxdy

y=Cc x=a

The above illustration gives order in which integrations are performed.

Evaluation of double integral:

Y2 X5

To evaluate ” f(x, y)dxdyzj j f (x, y) dxdy
A

(i)

(ii)

(iii)

(iv)

v)

i X
If x,X,,Y,,Y, areconstants, then

Thus,yj2 T f(x, y)dxdyz]2 yfz f (x, y)dxdy

iox N

If X1, X, are functions of y, let x; = @ (Y), X2 = &(y) and y;, y, are constants
then,

Yo 2 (Y)

[[ fooyydxdy=[ [ f(xy)dxdy
A y1 Ai(y)

If y1, yo are functions of x, let y, =g (x),y, =#,(x), and X, X, are constants
then,

X, 9p(X)

jj f(x, y)dxdy = j j f (x, y)dydx

x @(x)

If f(x,y)=1, then the double integral H dxdy gives the area of the region A.
A

Yo X /] X3
Toevaluate [ | f(x,y)dxdy= | {J‘ f(x, y)dx}dy. we integrate
Yio% Y1 X

f(x, y) with respect of x, treating y as a constant, and then the resultant
function of y is integrated with respect to y.
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Sketch roughly the region of integration for the following double integrals.

b a

@ [ [ fxy)dxdy

-b -a

| = f “ f(x,y)dx}dy

y=-b | x=-a

The region of integration bounded by lines x =-a, x =a, y =-b, y = b and is shown in
Fig. 1

N
\

[}
O
=

N\
N

Fig.1
1 x
@ [ [ f0xy)dxdy
0 0
1 X
|:j {j f(x,y)dy}dx
x=0 y=0
¥
x=a) =t x=1
o y=0 %
Fig. 2

The region of integration bounded by lines x =0, x =1,y = 0, y = x is shown in Fig.

@ Jf Xiy; cidy
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0 : =

The region of integration bounded by Fig 3 x =0,
x=a,y=0,y=+a>—x? (ie) x¥* + y* = a’ is shown in Fig.
3.
b oY) N
@ | ] feoy)dxdy -
0 0 =0 x=a
b | 20 NG
= j j f (x, y)dx [dy _
y=0 | x=0 Fig. 4
The region of integration bounded by x = 0,5 +% =1,y=0,y=b isshownin
a
Fig. 4 P
ey
® [ [ fexy) dydx —
0 a-x I ol y=a g
|—j[ j nym%Fx
x=0 y=a-X Fig. 5

The region of integration bounded by x =0, x =a, X +y = a, X* + y* = a’ is shown in Fig. 5

Double integrals with constant limits :

2 1
(6) Evaluate [ [ 4xydxdy
0 0

Y
Solution: 4

y=2
2 1
Let I:j { 4xydx}dy x=0//x=l
A,
y=0

0 0

- j 4{% dy:j 2y(1-0)dy

0 0

2

2 2
:2]3@y=2{%} —4-0=4
0 0
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(7) Evaluate

P — T
- C— )
o
x
[oR
<

Xy
Solution
b a dx:| X _
Let | = == |dy y=b
s
x=1 X=a
B 1[a de ¢ 1 a y:1
=| —|| —|[dy=| —|logx]dy »X
[l =l ot
b b
= I Mdy:k)gaj ﬂ ( |091:0)
1 y 1 y
= loga[log y} = loga[logb—log1]
= logalogh (. logl=0)
1 2 Y
(8) Evaluate I J' (x2 + y?)dxdy N y=1
0 1
Solution x=1 / x=2
1 [2 y:O "X
Let | :f j (x* + yz)dx}dy
0 L1

(9) Evaluate

Y’
Solution 1 0=mn/2
% % p=0 / 2
Let I = | [j sin(0+¢)d6?]d¢ ¢, .
0 0 0=0
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72

=~ [ [cos(0+¢);dg

7l2

=— _[(sin¢+cos¢)d¢

= [~cos¢+singl;”

=0+1)-(-1+0)
=2

Double Integrals with variable limits:
1 x
(10) Evaluatej' I dxdy
0 0

Solution

i [f o

0 0

Here, innermost limits are in terms of x, therefore they are limits of y and outermost

limits are those of x.

- ] {j dy}dxﬁ [y ox

x-0 | y=0 0

L {XZT 1-0 1
0 2 |, 2 2
1 VX
11) Evaluatef _[ xy(x+1)dxdy
0 x
Solution
1 [ Jx
Let |= J. {I (x2y+xy2)ddex
x=0 | y=x
1 2.,2 3 ‘/;
:J. X y _}_& dx
0 2 3 X




12)

Ly x% by 1[x] 1
:J‘ ot (dX=o | 4o
o | 2 3 6 2L 4 0 3L 7

1.2 1 21416-28_9 _3
8 21 6 168 168 56

Evaluate

ot—

Solution:

4
Let 1= J.
o X:V%X +y

y 4
tan-t (ﬁﬂ dy = {tan ‘{X —tan
i Yz, o ’

1
O —

I
oct—x
| —

-1 -1 y
tan~*(1) — tan (Zﬂdy

_ Tyt Y 4—4 4ydy
=5k {{y“"” @} £16+y2}

_ 4%_{[4tan‘1(1)]—2'09 (16~ yz)]o}
= 7-2[log32-log16]

32
= —2'0 A
Vid Q(mj

= r—-2log2
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(0,0)

y2 =4x

A
+

((4.4)

i

4

0

~ 4
tan(@)—tan?| ¥ | |dy=[ Zdy-[ tan*Yd
@ (J} y ! | 4




2

1j~y dxdy

1
13)  Evaluate |
0

o 1+xP+y°
Solution
Let |:j J? dx
Jol do @Hy*)+x?

= %[Iog(1+ \/E)_Iogl]

Iog(1+ \/5) (-log1=0)

i
4

14)  Evaluate J' _[ JaZ —x? — y*dydx
0 0
Solution

Let |I= _[ [ I w/az—xz—yzdy]dx
y=0

x=0
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—X
a 2 2 [42 2 22
= [ |0-2 " sint 50 - 0~ 2" T sin(0) Jd
0 2 a’—x 2

1
ot—

sil

15)  Evaluate [ | rdrde
0 0

Solution

i

- 20 1 in20]"
_I cos _{9_sm }
0

1
—
@,
3
%
||

_4 2

= EKE_S'M”)—O}:% (vsin2z =sin0=0)

16)  Find the limits of integration in the double integral [[ f(x, y)dxdy,R lies in
the first quadrant and boundedby the following curves. '
)] x=0,y=0,x+y=1
To find the Limits of x: Puty=0inx+y=1
x=1

Limits of x:0-1
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To find the Limitsof y: x+y=1=y=1-Xx
Limits of y:0>1-x

The region of integration in bounded by x=0,x=1,y=0and y =1—x

Thus ﬂ f(x, y)dxdy
R

j lf £ (x, y)dydx

x=0 y=0
- NG yz
i) x:O,y:O,¥+F:1
. - Xy
To find the Limits of X: Puty=0in —+-—=1
a® b
X’ =a’
X=za
Since R lies in the first quadrant X=a
Limits of x:0 > a
X2 y2
To find the Limits of y : From —+-—=1
a~ b
2 2
b a
,_b?

y'=— (@ -x°)
a

y:igxlaz —x?

Since R lies in the first quadrant, y:E\/a2 —x%, . limitsofy: 0 —>9\/a2 —x°
a a

Excercise
© 14
1) Evaluate [ [ (x*+3xy”)dydx Ans: =
0 0
a ay a4
2) Evaluatej' f xydxdy Ans : 3
0 0
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X+2

2
3)  Evaluate [ [ (x+y)dydx Ans : 12
0 2
1-y*
4) Evaluatej' f dxdy Ans: Z
0 0 ﬂl X —y 4
2 X
5) Evaluate I Iey’xdydx Ans:e?-1
0 o0

6) Evaluate r*sind cosd drdd Ans:0

O = N
O

7 a(l-cosf)

7) Evaluate J' J' 2zr’sin@drdd  Ans : 87r3|:a
0 0
7 a(l+cosd) 3
8) Evaluate J' I r’ cos@drdé Ans : 5a6 d
0 0
zl2 2cosO T
9)  Evaluate J' J' rcosdrdd Ans: =
0 0
7l2 o r P
10)  Evaluate _[ I T drdé Ans :E

0 0

CHANGE OF ORDER OF INTEGRATION

In calculus, interchange of the order of integration is a methodology that tranforms
iterated integrals offunctions into other hopefully simpler integrals by changing the order in
which integrations are performed.In a double integral if the limits of the integration are
constants, then the order of the integration isimmaterial, provided the limits of integration are
changed accordingly. Thus,

O C— O

[ fooyyddy=[ [ f(x y)dydx

But if the limits of the integration are variables the change of order of integration,
change the limits ofintegration. While doing so, sometimes it is required to split up the region
of integration and the given integralis expressed as the sum of a number of double integrals
with changed limits. To fix up the new limits, it isalways advisable to draw a rough sketch of
the region of integration.
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Region of Integration and change of order:

d &)
Consider the double integral '[ I dxdy . In this integral x varies from ¢.(y) to ¢ (y)
c Ay

and y varies fromc to d. (ie) ¢ (y) <x< ¢o(y) & c<y<d

The above intequalities determine a region in the XOY plane whose boundaries are
the curves x = ¢ (y) and x = ¢(y) along with the boundaries of the linesy = ¢, y = d. This
region of integration is shown as follows.

TJI.

*X

The region ABCD is known as the region of integration of the given double integral.

After changing the order the region ABCD has the boundaries a 'y = ¢1(x),
y = d2(X) with the lines x = a, x = b which is shown in the following figure.

Problems

1) Change the order of integration and compare the results after evaluating it with the
givenorder.

JZ. Jl' (x? + y?)dxdy
1

0

2 1
Solution: Let | =I I (x? + y*)dxdy
1

0
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2 8
=3 3 3 @

1 8
—+—== 2
3 3 )
Since (1) = (2), the change of order of the integral will not affect its solution.
Note:

If the limits of the integral are constants the order of the integration is immaterial
provided the relevant limits are taken for the concerned variable and the integrand is
continuous in the region of integration. This results hold for a triple integral also.

(2 Change the order of integration and then evaluate

1 10
I j y2dydx
0 0
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Solution:

The region is bounded by the lines y =0,y =+1—x2 or (> + x> = 1) (ie)
The region of integration is the unit circle centred at the origin. The other boundaries are
represented by x=0, x = 1. The line x = 0 represents the y axis. Hence the region of
integration is the +ve quadrant of the unit circle which is plotted in the following figure.

1-x2

I=j; _[ y*dydx

0

After changing the order, the integration is with respect to x first. The region is

covered by horizontal stip. The end points of the horizontal strip gives the limits along the x -
direction.

¥
©."

=G
z %{1, o
\jj |

¥y

As one end of the Horizontal strip lies on the circle. We have from the circle

X*=1-y?orx =+ 1-y?

The limits of x are X =0, x=4/1—y?

The number of Horizontal strips used to cover the region determines the limits along
the y direction. Hence y varies from 0 to 1.

-y

o =l. I yZdxdy

0

Y2 () dy

1
O e

y?y1-y?dy

I
O ey

Lety =sin 0, dy = cos 0d0 the limits becomes 8 =0 to %
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7l2

= jsinzexll—sinze cosfdé
0

7l2
= '[ sin® @cos? 6d o

0

. Tsmm 0cos” g <[00 =3).. (M -H(m-3)..1] =
G [(m+n)(m+n-2)..] 2

m, n are even
1 1 _
4 2 2 16

3) Change the order of integration and evaluate

j JZ. (x* + y?)dxdy
N

Solution

The region is bounded by the lines x = \N (or x* = y) and x = 2. This region is
plotted in the following figure.

After changing the order, the integration is with respect to y first. Hence the region of
integration is covered by vertical strips.

The limitsof yarey =1 &y = x?
Hence

2 x?

I [ (*+y?)dydx (After changing the order)

0
3\¥’
yjdx
3

I
P —
>
N
<
+

11
- C— N
1

X_
57><333

2 (128 8 23 (1,1 11
21 3 3) |5 21 3 3
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105
. .. ¢ ¢ xdxdy _
4) Change the order of integration in J f — and then evaluate it
0 vy X"+ y . A
SO'Ution /] (a, a)
i
e
a a 7
ded /,;':}f’ ”;f x=a
Let | :I J. > yz 1
0 vy X"+ y [¢7 \O-D\ y=o .

The region of integration is bounded by the lines x=y,x=aandy=0,y=a.The
sketch of the boundaries of the region is given in the figure.

After changing the order, the integration is with respect to y first.
The limitsof yarey=0and y = x. The limitsof xare x=0and x = a

Let |=T j _ xdydx

2 2
0 0 X +y

= j' x[log(y+\/m) dx J'—de = :Iog(x+\/m)
0 VX +

:i x[log(x + m)— Iog(ﬁ)}ix

0

= T x[log(x+\/5)—log X]dX

0

x[log(1+ \/E)x —log x]dx

X. Iog(ﬁh—xﬁkjdx

1 1
ot—m1n oct—

AN :ja' xlog(1+\/§)dx

= Iog(1+ \/E)j‘ xdx

a

= Iog(1+ ﬁ)(x—;)

0

239



aZ

= ?Iog(1+ J2 )
4 2Jx
5) Change the order of integration in I _[ dydx and then evaluate it.
0 x?
T
Solution: M
+‘;\f;. 7
The region of integration is bounded by the \ flim
X2 2 OI X
curve y = and y= 2. (ie) the parabolas x° =4y B
S
and y* =4x which is shown inthe figure.

The points of intersection of the two parabolas are
obtained bysolving the equations.

x> =4yand y* = 4x

X Ax=x*—64x=0
16

x(x*-64)=0
x=00r x* =64

x364=x=4

When x=0,y=0
Xx=4,y=4

The points of intersection are O(0,0) and A(4,4). After changing the order the given
integral is

I =” dxdy

R

2

dxdy

1
O ey

~ ‘%J—.t‘

4

= [ (0} dy

o
N
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1
O ey
TN
21
|
|<
N
—
o
<

1
O ey
TN

N

<
NN

[
4>|‘<N
N

o

<

1
O ey
N
<
NN
o
<
|
O ey
4>|‘<
o
<

:%P%—ﬂ—ém¢ﬂ)

_ 45 1
= 5(2 )—5(64)

4 16
= —(8)——
3() 3
_32_16_16
3 3 3

6) By changing the order of integration, prove that
o Yy 2
j j ye %dxdyzi
0 0 2

Proof:

The region of integration is bounded by the lines x=0,x=y,y=0andy =o0. The
region of integrationis the infinite triangular region AOB which is shown in the figure.

After changing the order, the integration is with respect to y first. Hence the region of
integration iscovered by vertical strips.

The limits of y are y = Xtoy =00, The limits of x are x=0tox = oo to

Hence

2

T j. ye_ydedy:T T ye_y%dydx
0 0 0 x

= '19 I e_y%d [y?zj dx (,’-) s d
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1
|
—_—
—
(DI
<N
>
o
—~
<
N
~
o
3

0 X .
= %T —x(e™ —e™)dx
0
= %T xe *dx ( e :O)

1
[
|
x
@
x
|
o
x
g

1
= >lo- (-
-1

2

4-x2

2 4-x
7) Change the order of integration inj J' (x+ y)dydx and hence evaluate it.
1 0

Solution:

The region of integration is bounded by the curves x =1,x=2,y=0and
y = 4 — x2. The region ofintegration is shown in the figure.

-

w=1

y=3

x=2

After changing the order, the integration is with respect to x first. Hence the region of
integration is covered by Horizontal strips. The limits of x are x = 1,

X=44-y.

242



The limits of y arey =0, y =3.
Hence
2 42 3 oy
I J. (x+ y)dydx:j I (x+y)dxdy
0 0

1 1
3 2 a-y

= j Xy xy] dy
0 2 1

4- 1
Ty+ y\/4—y—§—y]dy

I
O ey O

t(3 3
= | ———y+y\/4—yjdy
0

2 1

2\ 3
:[ﬂ—?’LJ +J' yyad-ydy Put tP=4-y
2 4 ), 9

y=4-t?

2tdt =—dy
When y=0,t=2,

y=3t=1

w
N &
|
w
N
N
N~
o w
+
N S
|
(0]
—
N
+
N
—
N
keng
—

a

Ja?-y?
8) Change the order of integration inJ' J' Ja? —x? — y?dxdy and evaluate it.
0

0
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Solution

The region of integration is bounded by the curves x = 0, x = \/a®* —y*, y =0 and

y = a. The region of integration is the +ve quadrant of the circle of radius ‘a’ which is plotted
in the figure.

When we change the order of integration, we first integrate with respect to y, keeping
X constant.Hence the region of integration is covered by vertical strips.
The limitsof yarey =0,y = va? - x* , thelimits of x are x = 0, x = a.

a +a?

a Jaiy? 2

y a®—x? —y?dxdy = a? —x? — y?dydx
[ ] [ ]
0 0 0

0

¢ y 2 u2v.,2 a’—x° .1 y B
=@ =x9)y +[ Jsm —_— dx
'([ {2 2 V(az_xz) 0
2
(-:J}/az —x2dx=§\/a2 —x? +a?sin‘1§}

a® —x?

S—sin” (+sint0=0)

Il Il

| O ey
—_—

o))

N

|

>

N
=

>

3 a
= Z[azx—X—J dx
4 3
0
([ , a°
=—|la’——|-(0
71'33
"6
a 2a
9) Change the order of integration and hence evaluate the integral I J. xydxdy
0 2xy

Solution:

The region of integration is bounded by the curves x = 2\/a_y, x =2a,y=0and
y = a. This region isplotted in the following figure.
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X=

After changing the order, the integration is with respect to y first keeping x as
constant. Hence the regionof integration is covered by vertical strips.

2
The limitsof yarey =0 andy = %. The limits of x are x =0 and x =2a

2a

i jxydxdy:
0 2ay

oy
O'—-ﬁ‘xy\)
>
<
o
<
o
x

1
oty
N | X<
TN
o
QD ><J>

N
N~

|
—
>
ol
o
x

1 2-y
10)  Change the order of integration in j J xydxdy and hence evaluate it.
0

y

Solution:

The region of integration is bounded by x =y, x =2 -y, y =0 and y =1 which is shown
in the figure.
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—
1)
=

A
E |
By
|||||. |.|I|||_ _‘\\Bx
y=0

C

When we change the order of integration, we first integrate with respect to y keeping
x as constant. When the region of integration is covered by vertical strip, it does not intersect
the region of integration in the same fashion. Hence the region AOAB is splitted into two
subregions AOAC and ACAB. Hence

” Xydxy = J'J. xydydx++” xydydx
OAB OAC CAB

1 2-

J']

y

0

y

xydxdy=j .X[ xydydx+j T xydydx
0 0 1 0

1 2 X 2 2 2—-X
_ (Lj x| (Lj dx
0 2 0 1 2 0

|
—

1 2
= .|.x3dx+f X(2-x) d
0 1
4 2 2
:1 X X(4+ X —4x)dX
2\ 4 o 1

2 4 32
:l 1_0 +1 4X_+X__4X_
2\ 4 2\ 2 4 3
:l l_}_ 8_{_@_% — 2+1_ﬂ
2|4 4 3 43
_11 (5, 382} (24+3-16
2| 4 3 12

11 5
= —| —4+—
2| 4 12}

8
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|

1
11)  Change the order of integration in I —————dydxand hence evaluate it.
0

Solution:

The region of integration is bounded by the curves y =X,y =v2—-x*,x=0anx = 1.
The region ofintegration is a sector AOB which is shown in the figure.

When we change the order of integration, we first integrate with respect to ‘x’
keeping y constant. So,when the region of integration is covered by horizontal strip, it does
not intersect the region of integration inthe same fashion. Hence the sector AOB is splitted
into two subregions OAC and ACB.

= ——  dvyd dxd dxd
Hence = || 7 dvdx= ﬂsﬁ”ﬂsm”

1y V2 J2y? X
LIt I i

J2-1.3 -
242
-
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[}

&=

a 2a-x

12)  Change the order of integration in f _[ xydydxand then evaluate it.
0 x2

a

Solution:
¥
a 2a-x
Let | :J. J‘ xydydx \ N (0.22) N,
0 x2
a E A y=a
The region of integration is bounded by the B \Y\ .
X2 2 a0 i,
curves y =—or x° = ay, 2
a
y=2a—-xorx+y=2ax=0, and x=ais plotted ,
¥

in the following figure.

After changing the order, the integration is with respect to x first. When we draw lines
parallel to the x axis to evaluate the limits of the inner integral it does not intersect the region
of integration in the samefashion. Hence the region is divided into two subregions OAE and
EAD.

Hence | = J‘ xydydx+ ” xydydx
OAE EAD

a Jay 2a 2a-y
=j I xydxdy+j fxydxdy
0 0 a 0

(The co-ordinates of A is obtained by solving the equations X+ Yy = 2aand x* = ay)
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a Vay a 2a-
.-.I:_[ y(x—z] ydy+2‘f y[X—ZJ ydy

2

0 a 0

a

12a
=2 y@dy+ | y@2a-y)*dy

0

3\2 2a
= %(%J +%f y(4a® —day+y? dy

0

(a3)+%2f (4a%y — day® + y* )dy

a

a
6

3

at 1 y2 y y4 2a
=~ +>|4a’L-—4al-+1-
6 2 2 3 4

a

a' 1 2(pa2  2) 43,03 sy, 1 4 4
= —+—-|2a°l4a"-a°")]-—@Ba’—-a’)+—(16a" —a
5+ 28t (at—at) - eat -at) )
P
= a—+l 661“—ﬁ(7a3)+115a4
6 2| 3 4

4 4
= a—+3a“—14a +Ea4
6 3 8

a'(4+72-112+45) 9a* 3a*
24 24 8

Exercise:

1)

2)

3)

4)

Change the order of Integration in the following integrals.

1-x

j f (x, y)dydx

0

1 1y

I I f(x, y)dxdy Ans:

0 0

O e

1

j f(x, y)dxdy

y2

4

2Jx
[ £(xy)dydx Ans:

0

O e
O ey N

Change the order of integration and hence evaluate the following integrals.

|

e*y
——dydx Ans:1

X Sy )

t ¢ xdxdy _7ma
_([ .Xf 1y Ans: vy
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5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

O ey
—
o
<
o
>

O e
—_—
@D
N
<
n
<
o
<
o
>

N Sy 0O
P C— N
|-
o
x
o
<

O ey
—

@D
=<

>

o

<

o

>

Vi iy

j j log(x* + y?)dxdy,a >0
0y
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Ans . ——

ANs :

ANs:

Ans

ANs :

Ans :

ANs:

ANs :

ANs:

ANs :

7a
ANs:

60

o3

1
Zlog2
5 g

:8log2

-7

28 20



17) .[ I x.e_ﬁdydx Ans e’ -1
0 0

al % BZ*XZ
18) [ [ xdydx Ans : Z a%
5% 16
al va?-x2 a3
19) I J y.dxdy Ans:E
0 a-y
1 Y
20) j I 3ydxdy Ans:2
0 _1-y?

Change of variables from cartesian to polar co-ordinates

The evaluation of a double or a triple integral sometimes becomes easier when we
transform the given variables into new variables.

In R? , if the domain has a circular symmetry and the function has some particular
characteristics one can apply the transformation to polar co-ordinates, which means that the
point P(X,y) in cartesian coordinates switch to their respective points in polar co-ordinates,
that allows one to change the shape of the domain and simplify the operations.

The polar co-ordinates r and 6are defined by x =r cos6, y = r sin6

; :
Ay . .
PRI LQre) |
\ I : :
- @ o : ;
5 \X 0 ;3 b r
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Transformation from cartesian to polar co-ordinates

Then on substituting for x and vy, the double integral ” f (x, y)dxdy is transformed to
T

H f(rcosd,rsing)|J |drdd where J(r,®) is the jacobian of (x,y) with respect to (r, ).
U

OX OX
o 3—5 06| |cos@ —rsing|
' _@ Q_ sind rcos@|
or 06

Therefore dxdy=| J |d&dr =rdé&dr

2a-x?

I (x* + y?)dydx

2a
1) By changing to polar coordinates, find the value of the integral J'
0 0

Solution

The region of integration is bounded by x =0,x =2a,y =0 and Yy =v/2ax - x*

Take y=+2ax-x’

y? =2ax—x*

x=2a

x=0

x> +y®>-2ax=0 (1) -/ '

The polar coordinates are x =rcosé,y =rsind and dxdy=rdrdé&
The polar equation of the circle X* + y*—2ax =0 is
r’cos’ @ +r’sin®6 —2arcosé =0
= r® —2arcosd =0

= r =2aco0sd

The region of integration is bouned by o

«9:0,9:%, r=0andr =2acosd

2acosd
| [(r cos@) +(rsin@y ]rd rdo

0

Il
O —yro |y
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2)

zaTwrz (cos? @ +sin® 6)rdrdeo

0

I
O N | N

% 2acos@
= j J. ridrde
0 0
% o4 2acos @
= | r—} do
0 _4 0
% B 4
:,f (2acos®) —O}de
> L 4
% 4 4 4
_ .[ 2"a" cos Gde
0 4

I
O = N[N

H

(o]

D

N
o
o
wm
S
)
=
)

4 l2

J' cos" 6d@ =

o

By changing into polar coordinates, evaluate

2 A2x-x?

T
s Xty
Solution :
Given i J? X dxdy
<o X+y?
_ 2 Vaxox®
ie, I:!; ! XZerzdydx

(n-)(n-3)..1 =«

n(n—2)...2 2

x=0 y=+2x-x

if nis even

¥=2

[Standard form]

The region of integration is bounded by x=0,x =2,y =0and y = v2x — x*

Take y=+/2x-x°
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y2 =2x—-Xx°
X4y =2x=0
In this region the polar equation of the circle is

(rcos@) +(rsin@)f —2rcosd =0

4 =r =2co0sé

? , 142"’0& Since X =rcosé

r:;’) 9:0 > y=rsing
Polar form dxdy = rdrdé@

In polar co-ordinates the same region is bounded by the curves
r=0r :20039,9:0,49:%

2cos @
J~ I‘COS@ rdrdo
0

(rcos@Y +(rsin@y

||
o=y

_ i|2[_ 2cos@ z(r:-osed da
0 0
% 2cosé

= I I cosddrdé
0 0

cosO[rf*’de

1
O N | N

cosé[2cosd —0]do

1
oty

R
22

NN

(I cos” oo = (M —1)(n—3)....1><£j

3) Transform the integral into polar co-ordinates and hence evaluate

I X% + y*dydx
0

O ey
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Solution

The region of integration is bounded by
y:O,yzm,x:Oandx:a

ie, y=0,x*+y*=a’,x=0andx=a

(ie)  The given region is a quadrant of the circle x* +y* =a’

YA

\

Cartesian form

H

In this region the polar equation of the circle is

(rcos@) +(rsingf =a’=>r’=a’=r=a

y}
o “°
B
]
(==}
(,0 6 =0
Polar Form

In polar co-ordinate the same region is bounded by the curve
Ja?x?

r=0,r=a,0=0and¢9=% jl IX VX2 + yPdydx =
0

0

O N |y

T rrdrdé
0
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dxdy over the annular region between the circles x* + y* = a*

4, Evaluate J'J' x2+y2

X2 yZ
and x* +y® =b’(b > a) by transforming into polar co-ordinates.

Solution

Putting x =rcos#,y =rsin@ the given circles becomes
X +y?=a’=r’cos’f+r’sin“f=a’
=r’=a’=r=a

2=r=b

x> +y2=b*=r?=b
ando varies from 0 to 2=

In polar coordinates the annular region is bounded by the curves
r=a,r=>b6@d=0andf=2r

N

ya

x2y? % r’cos’@r?sin?e
dxdy = rdrd@ (.-dxdy=rdrdd
” X% +y? ¢ !! r?cos® 0 +r?sin’ 6 (- dxdy )

2z b

= I j r®cos® @sin® &drdé
0 a

2z r4 b
= J' coszesinze(ZJ do

0 a

4 4 )
- (b 4a j4j. cos? @sin&do
0

11 »
=(b*-a") ===
O -a"52

N[

f Sin™ 9 oos" G0 = [(n-1)(n-3)..... 3.1][(m—1)(m—3)....3.1]x£
' (m+n)(m+n-2)....3.1 2

0
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where m & n are even
T
- b4 _ a.4
16( )

x’dxdy

X2+ y?

5) Evaluate by changing to polars, the integral J' J'
0y

Solution
The region of integration is bounded by y=0,y=a,x=yandx=a

Let us transform this integral into polar co-ordinates by taking
X=rcosd,y=rsing,dxdy=rdrdd

In polar co-ordinates the given region of integration is bounded by the curves

If=0,r=asec6?,t9=0and6?=%

% asecd 2 2
:j _[ rcos’0 rdrd@
5 0 \/(rcose)2+(rsin9)2

asecd _3 2
I I’ cos gdrde

I
Ot [N

asecd .3

r?cos® 6

drdé@

I
Ot [N

asecd

I r? cos? adrdé@

1
Ot [N

1
Ot [N

3 aseco
{cos 0— } do
3

0

257



z )
= 2| cos?0%% g
0
-
=2 I
3 5 cosd
~
:a_J' secddo
3 0

a

= a?g[log (secd + tan )¢
- %[Iog (\/§+1)— log (1+0)]
= a—;[log(ﬁ+1)— 0]

= a—; |Og(\/§ +1)

Exercise:

1)

2)

3)

4)

5)

6)

Evaluate ja' | (" +y* Jiyax
0

o

f "y

Evaluate I
o +y

Evaluate (x*y+y®)dxdy

ot—a

Evaluate

Ot

J
0
e @ =XE—y?)

_ Xdxdy

x+y)/

Evaluatef J. e dxdy
0 vy

Evaluate

[<) —r)
< C—

258

AnNs :

Ans :

AnNs :

ANs :

ANs :

Ans :



7)

8)

Evaluate ”(xz +y?)dydx over the circle x* +y* =a’

4
ANs : 7ra—
4

dxdy

/X2 +y2 _ 32

Evaluate H dxdy taken over the circle x> +y* =1

ANns:m

Area Using Double Integral

1)

2 2

Find the Area enclosed by the ellipse %+ Y 1

b2
Solution:

From the equation of the ellipse, we have

2
Y_ ¥

b 2

QD

So, the region of integration R can be considered as the area bounded by

X =-aand x=a,y_—b\/a2 —x?and y:E\/a2 —x?
a a

Area = ” dydx=4x Area in first quadrant
R

b
= 4f ) [ dydx
0 0
Y
= of o1 o on]  Za

1
N
o | T
O ey
QD
N
|
>
N
o
>
§
o
=2
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%’{(o-opa—;(g—oﬂ

mab square units.

2) Find the area enclosed by the parabola y* = 4ax, x—axis and the latus rectum of the
parabola

Solution:

Given the area is enclosed by y° = 4ax (1)

x —axis(y = 0) and the

Lactus rectum of (1)

e, Xx=a

Points of intersection of (1) & (2)

is (a,2a),(a—2a)

Therefore the region of integration R can be considered as the area bounded by

x=0,x=a,y=—v4axand y =+/4ax

¥

/@‘/ry‘a\
Area = ” dxdy o
R ?‘( x=a
- 7
= J- .[ © Y x
x=0 y=y4ax
a \/m
= 2! { _([ dy]dx 43?

=2 4axdx

O

a 1 3 :
= 2J4a[ x2dx=4a X—]
el
_8Ja(. y
o5 g

3.2
= =3 square units.
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3)

Find the area in the first quadrant included between the parabola

and the liney = 2.

4)

Solution :

The area in the first quadrant is enclosed by

x> =16y )
y=2 )
and x =0(y —axis) 3)

Points of intersection of (1) & (2) is

(- 4v2,2)& (442 2)

x* =16y, y —axis

Therefore the region of integration R is considered as the area bounded by

2
x:O,x:4\/§,y:i(—6andy:2

Area = ” dxdy y
" 5 X=4\E
42 2 \ ) /
T |1 oo /
oo 2 (442.7)
16
42
= | [y[.dx
x=0 16
42 2
= {Z—X—}dx
o 16
3742
= |:2 _ix_:|
16 3 0

= 4\/5[2—%16(2)}
=42 {2—%}

_ 1642

=5 Square units.

Find the area of the circle x> +Yy® =r? lies in the positive quadrant
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Solution

The circle lies in the first quadrant is bounded by x=0,y=0,x* +y* =r°

(0,r)

(0,0) r0) %

Therefore, the region of integration R can be considered as the area bounded by

x=0,x=r,y=0and y =+r’ —x

Area = J.J' dxdy
R
= j l: r]xzdy]dx
x=0 y=0
Area = I [y]ﬁ
x=0

j Vr? —x2dx
0

2

fyw gt

0

ar .
= T square units.

5) Find the area of the region R bounded by the parabola y = x*and x = y?
Solution:

Area = H dxdy
R
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Region of integration is bounded by

2

y=X 1) & i
_ 2 S
X= y (2) rf"
From (1) & (2) A
y=(y*)’ 2 o
= y(1-y%)=0 \\\\na
=y=0y=1

The points of intersection are (0, 0) & (1, 1) therefore, the region of integration can be
considered as the area bounded by x=0,x=1y= x?and y= Jx

Area = j. { JJ? dy}dx

x=0 | y=x?

l=i[ﬂfdx

x=0

oo

(22

1
| =
1
N
P
NN
|
=<
w
| |
o -

“l2a-0)-a-0)]

%Squareunits.
6) Find the area of the cardioids r = a(l+cos@)

Solution

Area = ” dxdy
R
= Hrdrd@
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7)

Given r =a(l+cosd)
Limits
r:0—a(l+coséd)

0.0 > 27

2z a(l+cosd) 27

2 a(l+cos )
Area :j I rdrdezj {%}
0

0 0 0

= a_22]f. (1+cos@)’ do
2

0

T

= a? [ (1+2cos6+cos?0)do

O )

1+c0520jd0

= azf (1+2cos«9+
0

LS

=a

9+23in9+3[9+5'”29]
L 2 2 0

N

a’ (7Z'+%7Z'j=3?ﬂ-az Squa

dé

r=a(1+cos 6 )

(0.0)

= a’|(7-0)+ 2(0—0)+%|:(ﬂ—0)+%(0_0)ﬂ

re units.

Find the area inside the circle r =asin # and outside the cardioid r = a(1—cosé)

Solution

Given r=asind
r=a(l—cosé)

Limits

r:a(l—cos@)— asing
0:0>2

Area = ” rdrd@
R
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1)
(2
N
(0,2) - 2™
= ‘&\\‘COS
i b
0, 0) .
v
(0’ 'a)




asin

rdrd@

a(l-cos@)
2 asin
r
H a0
2 a(l-cos @)

= %j [a2 sin’ e—az(l—cose)z]de
0

I
Oy

1
O v | N

:%i az[sin2 01+ 2cos¢9—c0320]d0
0

27

= a?'[ [-cos260 -1+ 2cosjde
0

o =
= a_ —S|n26—9+28in9:|2

2| 0
— a_z__l(o_o)_ Z_0 +2(1-0)
S 2] 2 2

2
TEn

= %(4_ﬂ) Squareunits.

8) Find the area of the region outside the inner circle r =2cosband inside the outer circle

Ir =4cos0
Solution:
Given r =2cosé (1) oS
ie, r = 4cosé 2

r=2cos 8

From (1) & (2) ©0) "

r:2cosd — 4cosd

6’:0—)Z
2
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/4

2 4cosé

Area = ZI J.rdrde

0 2cos@
P rz 4cos@
= 2| {?} do
2cos@

[(4 cos®d)’ —(2cosOY ]d 0

N

o

B

= 1

O Ly N

cos’ e =12

2
_ 12 .[ 1+00520d9
0 2

O N [N

z
2

1
cD|

9+5|n20}
2

L 0

(7 1
_(E_OJ-FE(O_O)}

Area = 31 square units.

]
(@)

Exercise:

1)

2)

3)

4)

Find the area bounded by the circle x* +y* =a” and the line X+ Yy =a in the first
quadrant

2

Ans :%(7[—2)

Find the area which lies inside the circle r =3acosé and outside the cardioid
r=a(l+cosé)

Ans : za’

Find the area enclosed by the curve y* =4ax and the lines x+y =3a and x —axis

2
Ans :10a
) . X Yy
Find the area enclosed by the lines x=0,y = O’_+E =1
a
Ans :a_b
2
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5) Find the area in the first quadrant bounded by the x-axis and the curves
x> +y?=10,y* =9x

ANs :z
4

6) Find the area enclosed by the parabola y* = (4—X) and the x-axis.

Ans :g
3

7) Find the area bounded by the lines x =0,y =0,5y =3 and the curve X* +y* =1

Ans :£+lsin‘l(l)
25 2

8) Find the area bounded by the parabolas y* =4—xand y* =4—4x

Ans : 8.
TRIPLE INTEGRAL

Triple integral is defined similar to that of double integral. The general form of the
3 Y2 X%

triple integral is.[ j .[ f(x,y,z)dxdydz

L N X

To evaluate the triple integral, first we integrate f (X, y, z) with respect to x keeping y and z as
constant and substitute the limits x; and Xxwhich will be either constants or functions of y
and z . Next we integrate the resulting function of y and z with respect to y keeping z as
constant and substitute the limits y; and y,which will be either constants or functions of
z.Finally we integrate the resulting function of z with respect to z and substitute the limits
z1and zowhich will be constants.

To evaluatej i ja. f(X,y,2z)dxdydz

7=0 y=0 x=0

The order in which the integrations are performed is illustrated as follows.
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.__-)
|| t—y
—
Pa
=
[§
p—
5

dv

1. Evaluate j T j. xyzdxdydz
0 0 O

1
[ 1
O ey
x
o
X
| I
1

o

1 2 3
2. Evaluate_[ j j X+Yy+2 dzdydx
0 0 O
Solution:

Let |

||
O e

jj' (X + y + z)dzdydx
0 0

2

3
(x+y)z+ Z—} dydx
0

I
O ey
O Ly N

9

Ax+y)+ E}dydx

I
O ey
O ey N
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3.

4.

1
O e

2 2
3xy+3i+gy dx
2 27,

1
(6x+6+9)dx = (%st] ~3+15=18
0

1
O ey

1
Evaluate J' Iog(1+xz)dx
5 1+X
Solution:
a b ¢
Let I:I J. I (x2+y2+22)dxdydz
0 0 O
a b _X3 ¢
=Ij —+y2x+zzx} dydz
0 O _3 x=0
a b _C3
:j J‘ —— +cy® +cz” |dydz
0 | 3
b
c
{—y+—+czy dz
3 ;
Jy=0
3 3 7
[bi ﬂ +chz? |dz
3 -
[be® b cbz®
=| =—z+——1z+
37 3 3 |
_abc® acb® bca®
= + +
3 3 3
= a_bc[a2 +b? +c2]
3
1 x Wfx+y
Evaluate J'J' jzdzdydx
0 0 0
Solution
1 x X+y
Let | = j j j zdzdydx
0 0 0
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log2 x x+logy

5. Evaluate | = .f I j eV dzdydx
0

0 0

Solution:

log2 x x+logy
| = j j j e* e e?dzdydx
0

0 0

= Iojlzj. ex.ey[ez]::fgydydx
0

0

= bffzjx' exey[eX+|Ogy —eohydx

0 0

log2 x

=] [ee¥ ™ —e* ¢’ [ydx
0 0

log2 x

- J' j [e>e’y —e%e” Jaydx [.*e"’gy:y]
0

0
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log2 _

= J _ezx(yey —ey)—exey]izodx Uyeydy = ye’ —eyJ

log2 _

= _ezx(xeX —ex)—exeX —(eZX(O—l)—eX)]dx

log2 _
= [ [e™(x=1)—e> +e> +e i

log2
= I _esx(x+1)+ex]dx
0

log 2

3x 3x
= (x—l)e (1)e9 +ex} (By Bernoullis formula)

3~

_ B p3bg2  o3l0g2 og? 1 1
= [[tog2-1)* - & s (( nt §+1j
i eIog 28 eIog 28 1 1
= log2-1 — e | =41
(log2-1)=———=——+ ] (3 + ﬂ
- ('092‘1)%‘§+zj‘(ﬂﬂ |- ebo? = 22 _g]

9

§IogZ—§—§+2}—(§]
13 39 9

1 1
6. Evaluate J' J'
0

Solution:
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1-x

Given J' xdxdydz (not in standard form)
0

O ey
S

1-

_[ xdzdxdy (Standard form)
0

x

< —_

1
| (x2)Z5dxdy

y

I 1
S
A
[ERY
|
>
—~
Q.
x
o
<

1l
O C—y
——
—
>
|
>
N
=
x
o
<

I
O ey
|\>|><
|
oo|><
I
7
<N
o
<

I
O ey
7\
N |~
|
W
N
|
7\
r\>|‘<b
|
w|‘<@
N
1
o
<

I
O ey
|~
|
|\>|‘<h
+
oa|‘<m
N—
o
<

11 1
= -4 —
6 10 21
=4
35

% asin @ (a>-r?)/a
7. Evaluate _[ f j rdzdrd@
0 0 0

Solution

% asin @ (a®-r?)/a

rdzdrd@
0 0
% asin »
= '[ do I drlrz[* "
0 0
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77 asin
[ a0 Jer[az_erdr

0 0 a

”j-z l a2r2 r4 asing
o al 2 4

0

% 4 502 4 - 4
1(a sin“@ a"sin ngG

bal 2 4
37
= —I 2sin” 0 —sin* )40
_a[,1l7x 317
40 22 422
_ Ba’r
64
8.  Evaluate J' I I dzdydx__ . er the region of integration bounded by the planes
(X+y+z+1)°

x:O,y_O,z_O,x+y+z_
Solution

The given region is a tetrahedron. The projection of the given region in the xy plane is
a triangle bounded by the line x=0,y =0and x+ y =1 as shown in figure.

Here xvaries fromx=0tox=1
yvaries fromy=0toy=1-x & o

zvaries fromz=0toz=1-x-y

_ dzdydx (P PTE 1
11 eourereyd I I ol i

&

e

>
=
=

1 1-x 1-x-y

=[ | | (x+y+z+1)"dzdydx

o
o
o

Tl (x+y+z+1)7? nyd i

1
O ey

0

1 1-x

- _%j I [(x+y+1—x—y+1)"2—(x+ y+0+1)"2]dydx

0 0
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L1 [ - y 27 By

0 0

_1 [ (2)—2y_MTdX

2 0 L (_1)

0

(27 (0% + (x+1-x+1)* 0 (x+1)* Jix

I

|
N |-
—_—

1
1)1 x*) 1
= —=|=| x—— [+=x—log(x+1
2 4( 2] 2 o« )L

_ 1 %(1_%j+%—Iog2—(0+0—logl)}

2_
-_1 i><£+l—logZ+O
214 2 2

1{1+4—8I092}_ 1
2

~ =~ [5-8log2
8 16[5809]

1
= —(8log2-5
16( 0g2-5)

dxdydz

over the first octant of the sphere x>+ y*+z* =a’
X2 _y?_7?

9. Evaluate J.'U \/az

Solution
The projection of the given region in the x yplane (z =0) is the region of the circle

x* +y®=a’ lying in the first quadrant which is shown in the figure.

. Inthe region x varies from 0 to a. For a fixed x, y varies from 0 to +/a* — x*.For a

fixed (x,y),z varies from 0to j/a® —x* —y°.

dxdvd a Jalx2ax2—y? dzdvd :_;\x )
e R R R




.T afx {sin{%}—sinl(m]dwx
0 0 a —x -y
Ja?-x2

[ lsin*@-sin(0)jydx

I
O ey

1
NN
<
>
N
I
N——
+
N | X
o)
N
|
>
N
| |

42 2
%sin‘l(ﬁj+%\/a2 ~a’ —a?sin‘l(O)—O}

a

NN
I

2
=712 §int@)+0-0
2| 2
-z @z _md
2" 22 8

10. Evaluate ”j xyzdxdydz whereV is the region of space inside the tetrahedron bounded
\

by the planes x=0,y=0,z=0and§+l+£=1
a b c

Solution

The projection of the given region in the xy-plane is the triangle bounded by the lines

x=0,y=0and §+% =1 as shown in the figure
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Here

x varies fromx =0

y variesfromy=0toy=Db (1—5} variesfromz=0toz=c (
a

J.” xyzdxdydz =
\Y

tox=a

R

7]

0

xyzdzdydx

a
c®f y> 2ty? 1 y* 8
= —I Xt -+ =2 | dx
29 2 b3 b4)
2 a
= C—_[ (E—Ejtljbzxt“dx
2.2 3 4
2.2 a 4
= b’c I X 1—5) dx
24 1 a
2.2a [ 4
_ be [ a 1—(1—% (1—% dx
24 3 a a
2 0a [ 4 5
_ abe | (1-% —(1—5j dx
24 < a a
I XY X\ :
-2 [1=-2
:abzczjl ( aj _( aj d
24 ¢ | -5/a —-6/a
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Exercise

1. Evaluate
2. Evaluate
3. Evaluate
4. Evaluate
5. Evaluate
6. Evaluate
7. Evaluate
8. Evaluate
9. Evaluate
10. Evaluate

- 2L 1]
24 |5 6

a’b%c?
720

O t——y »
O ey T
O ey O

(xy + yz + zx) dxdydz

O Sy

1
|
mﬁ]ﬁi"z dxdydz

4 ! \/l— X2 _ yz _ 72

O e

O ey

1 1-x X+y

I I I e’dxdydz

0 o0 0

2
j xy’zdzdydx

1

O e
P — W

\/;ﬁ-y
j zdzdydx

0

N S
O ey <

Xyzdzdydx

O ey
O ) <
O e <

xy’zdzdydx

O e

|

1 1-x (x+y)?

I J _[xdzdydx

0 0 0

P — N

N
I jxydzdydx
% 0

P C—
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Ans

ANs :

Ans :

ANs

ANs :

Ans :

Ans

Ans :

ANs :

e dzdydx Ans : (e* ~1)(e° —1)(e° 1)

oo|§

N~

126

14

126

2

25[2.(3)% —5—5I093}



11.

12.

13.

14.

15.

16.

17.

18.

19.

dxdydz . .
Evaluate '[V” (X1y+2241) where V is the region enclosed by the planes

x=0,y=0,z=0and x+y+z=1 Ans:%[logS—l]

Evaluate J‘J‘J‘ (x+y + z)dxdydz where the region V is bounded by
\

4

X+y+z=a(@a>0),x=0,y=0,z=0 Ans:%
a az_xz a2_)(2_y2 7za4
Evaluate [ [ | xdxdydz Ans : =
0 0 0 16
a 1-x Xx+y e
Evaluate f J j e*"dxdydz Ans >
0 0 0

Evaluate [[[ y1-x - y? - 2”dxdydz where V is the volume of the sphere
\

2
T

X +yr+zt =1 Ans:T

Evaluate m' dXdde over the sphere x° +y* + 2% =a’

X+ vy 477
Ans : 4ma
a b(l_gj c(l_%_gj 3242
b°c
Evaluate x?yzdzdydx Ans - &
e [ 2520

Find the value of _m xyz(x2 +yP+ zz)dxdydz taken over the positive octant for
8

which x* +y* +z? <a’ Ans:Z—4

Evaluate J'.U xyzdxdydz over the region of integration bounded by x,y,z >0 and

X +y?+2°<9
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Volume using Triple Integrals

1. Find the volume of the region bounded by the surfaces y* = 4ax and x* = 4ay and the
planez=0andz=3

Solution:
y? = 4ax (1)
x* = day (2)
Solving (1) & (2)

x2 )’
(—J = 4ax
4a
= x*-64a’x=0
= x(x*-64a%*) =0
= x=0,%x* =64a°
x=0,x=4a

4a +4ax 3
Required volume = [ [ | dadydx
X2 0
n

4a aax
[z]f,dydx:j J' 3dydx
0 x2

4a
0

5]

4a
=3[ [y]i™dx
) Wl

4a

4a 2
=3 {\/4ax —X—}dx
5 4a

X
4ax3
0

r % . 4a
=3 Jaa X _ }
%

_ 3_\/5 4a4a _ (4a)’ _0]

% 12a
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B 3
=3 4a><4a><§—64a }

12a

32a° 162’ |_ 322’ -16a’
3 3 3

= 16a® Cubic units

Find the volume of the sphere X* + y* + z° = a* without transformation.

Solution

V = 8 x volume in the first octant

z variesfromz=0toz= \/a> —x*—y?

y varies fromy=0toy= va® - x?

X variesfromx=0tox=a

a Jaix?fall-y?
v:s! ! E[dzdydx
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) -
X
=27 azx——}

3 3.3 3
= 27{a3 _a_} = Z{Sa 2 a }: 47? cubic units

3. Evaluate U j dxdydz, where V is the volume of the tetrahedron whose vertices are (0,
\Y
0,0),(0,1,0),(1,0,0)and (0,0, 1).
Solution

Now the plane through the points (0, 1, 0), (1, 0, 0) and (0, 0, 1) is
X+y+z=1

If we first integrate w.r.t ‘X’ then its limits are 0 and 1 — (y + 2)
If the second integration is w.r.t. °y’, its limits are 0 and 1 — z.

Finally, the limits of integration for z are 0 and 1.

1 1z 1-y-z

L” dxdydz:.([ j !dxdydz

0

1-z

f [x} " dydz
0

O ey

[1-y—z]dydz

I
O e
O ey

Il
O ey
<
[
l\)|‘<
|
<
N
N—
iR
&
o
N

Il
O ey
=\
|
N
~
|
=y
N
~—
N
|
=\
|
N
~~—
N
|
o
N—
o
N

Il
O ey
[EEN
N
N
+
N
)
|
=\
o !
—
o
N—
o
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_2-1 1cubic units
6 6
X2 y2 Z2
4. Find the volume of that portion of the ellipsoid — +b—2 +— =1 which lies in the
a c
first octant using triple integration.
Solution
2 2 2
Given %+§+§—2:1 (1)

Volume = ”'J'dzdydx

To find x limit put y=0and z =0 we get (line integral)
X2
O=>5=1=>x*=a’=x=ta
a
ie,x=0tox=a (- first octant area)

To find y limit put z = 0 we get (surface integral)

X2 2
(1):»¥+;'—2=1
y2 2
:>b—2:1—?
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volume=

O e O
O ey
|
o
N
o
<
o
>

1
o t—
o
—_— 7
|
1
(@]
Y
|
N N
<
NN
o
| I |
o
<
o
>

= CT ja 1—2—2—z—jdydx
0 0
LD 1_§ b? (1_)(2j_ y2

= cj j t?z dydx
0 0
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I
[Ke)
—
<
g_
%
TN
=
|
m‘x
N
~
|
<N
%
7\
[EEN
|
m‘x
N
N—
|
iR
<
o
3

5 5 + > sin -
| o2
L a -0
2
v
= EI 0+ a [Zj dx
b 2 2
2 a 2
= ﬂCb J. 1—X_2 dX z %
4b < a
h?c xe )
—_ X_
4b a‘x3 0

a _ mahc

Hence the volume of the ellipsoid

V :8x7zaTbC :%ﬂabc cubic units.

5. Find by triple integral the volume of the tetrahedron bounded by the planes x =0,y =

0,z=0and 5+X+£:1
a b c

Solution:
The projection of the given region of the xy plane is the triangle bounded by the lines

x=0,y=0,and 5Jrl=1.
a b
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In this region x varies from 0 to a. For fixed x,y varies from O to (

fixed (x, y), z varies from O to ( B)c.

-2
a

Vo= Iﬂ dxdydz

X—= cubic units.
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6)  Evaluate _U I dxdydz, where V is the finite region of space (tetrahedron) formed by
\%

the planesx=0,y=0,z=0and 2x + 3y + 4z =12

Solution:

The projection of the given region on the xy plane is the triangle bounded by the lines

x=0,y=0 and 2x+3y=12.

In this region x varies from 0 to 6. For fixed X, y varies from 0 to %(12—2x). For

fixed (x, y), z varies from 0 to % (12—2x-3y).

1 1
Z(12-2x)>(12-2x-3
3¢ e y)

J.\J/.j dxdydz=.([ j f dzdydx

0 0

1
=(12-2x
3( )

6 1
J- J- [Z]OZ(lZ—ZX—Sy) dde
0

0

L2-2x)

6 3
%j [ (12—2x—3y)dydx
0 0

1
6 T 5 72(12-2x)
lj (12—2x)y—33ﬂ3 dx

0 L 0

o L

1t [1 1
-f g(12—2x)2 —6(12—2x)2}dx

0 L

6
1I %(12—2x)2dx

0

286

(12—2x)%(12—2x)—gx%(12—2x)2}dx



_ u[@}

46| 3x(-2)

0

3 3
= 1 {0 12 }:ixgzﬂ cubic units.

24" —6| 24" 6
Exercise:
1. Find the volume of the region bounded by the surface y = X%, x = y* and the
planesz=0,z=3
Ans:1
2. Find the volume of the solid bounded by the surface x=0,y =0,x+y +z =1 and
z=0
Ans :%

3. Evaluate ”I dxdydz, where V is the region of space bounded by

X2 +y>+2°=9

Ans :@
4. Find the volume of the solid in the first octant bounded by the planes
x=0,y=0,2=0,x+2y+z2-6=0
Ans : 18
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