SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES
DEPARTMENT OF MATHEMATICS

UNIT - 1 - BASIC DIFFERENTIAL CALCULUS - SMTA1105




UNIT - |
BASIC DIFFERENTIAL CALCULUS

Introduction to Derivative of a function — Rules of Differentiation — Product Rule — Quotient
Rule — Implicit Functions - Evaluating Higher order Derivatives —-Maxima and minima of
functions of one variable

Definition 1. Differentiation

The rate at which a function changes with respect to the independen
derivative of the function.

(i.,e) If y= f(x) be a function, where x and y are real variables which

dependent variables respectively, then the derivative of y with respect to

Definition 2. Derivative of addition or subtraction of functions

If f(x) and g(x) are two functions of x, then d[f(x)di; ge9] _ d[;(:)] + d[i{:)]

Definition 3. Product rule
If y = uv, where u and v are functions of x, then

dluv]  dfu] d[v]
ax ¥ ax | Yax

Definition 4. Quotient rule

. a :
If y = =, where u and v are functions of x, then — [5] = 4= dx
v N LV A

Important Derivatives Formulae

1. (fi(c) = 0 where ‘c’ is any constan!
X
d
2 - L - n—l_
—(fY (T :' FIx-
d
3. 2 (0 -
(i"(‘( g{* T} .



5. d (ex)z e .

dx

6. —(sin x)=cosx.
dx '

7. i(r:aznrs:r):—51'11 x.
dx :

8. i(tﬂn x)=sec’ x.
dx

9. i(r:«:-t:r] — —cosec’x.
dx '

10. d—(secx)zsecxtaux.
x
d
11. d—(cos ecx)=—cosecxcot x .
x
12. L fsin ™ x) = ——
dx ’ 1—x°
d -1 —1
13. —lcos x )=
(fx( ) 1— 2
14. i(‘ran_l x)=- ! .
dx T 1+ x"
15. < (cot™ x)=——L
dx ol +x"
d 1
16. —(Sec_lx):—.
dx A




Problems
. Ordinary Differentiation Problems

Differentiate x + i

Solution Let y = x +%

d(cosx) - d(e®) L, d(5)

dy _d(x+3) _dw | dxhH _, 1
Then dx dx - dx + dx =1 x2Z
Differentiate 3tanx +2cosx —e*+ 5
Solution:
Lety = 3tanx+2cosx—e*+5
Then dy _ d(3tan x+2 cosx—e*+5) — 3 d(tanx) 42
dx dx dx
= 3sec?x — 2sinx — e¥
Differentiate y = e“*cos3x
) d d(e®*cos3x d(e2®
Solution: ¥ —dleTeos3n) oo AT | ax
dx dx dx

dx dx

d(cos3x)

dx

= 2c0s3x e2¥ — 3e2%sin3x

Differentiate y = x3e *tanx

; d d( e Xtan:
Solution: ay _ (x"e “tanx)
dx dx
— di 3 3 d( e=%
= o Xanx S 1 3 tapx 3L )
dx <
= 3x%e “tanx — x°e *tanx + x e sec
X
Differentiate y = e
COs5X

'EX
: d (cns cosx e¥ —e¥ (—sinx
Solution: =% = ) —
dx dx cos?x
cosx e* +e* (sinx)

cosZx

2

+ x3e7X

X

dx



Differentiate y =

cx+d
. dy  (cx+d)a—(axt+b)c .
Solutlon.dx = oty (by quotient rule)
. . 242x+3
Differentiate %
..\ln'
— ; -1 —_— ; 2 1
L avy Vx@x+2)—(P+2x+3)ik Yz 2Vx (x+1)—(x+2x+3)—
Solution: =L = {, 2 = _ 2Vx
dx (Vx) (V)
2vx x24/x (x+1)—(x®+2x+3) _4dx(x+1)—(x2+2x+3)
2 \.-}?( \,?} z 2% 3/
_ax?+4x—x?-2x-3 _ 3x2+2x-3
- 3 - 3
2x /2 T /2

Differentiate y = (3x2 — 1)3
Solution: Giveny = (3x? — 1)3

Differentiating w.r.to x, we get
= =¥ = 3(3x? — 1)%6x

= 3(9x* —6x% + 1) = 27x* — 18k? + 3
Differentiate: log (HSI“X)

1—sinx
1+s1 11}{)

1—sinx

Solution: Lety = log(
= y = log(1 + sinx) — log(1 — sinx)
Differentiate y w.r.to x, we get

dy
—_ = — COSX — -
dx 1+sinx 1—sinx

(—cosx)

(1—sinx)cosx+cosx(1l+sinx)
(1+sinx)(1—sinx)

COSX—sIny cosx+cosx+ cosx sinx

5 lIsinzx

Cas5X

= — =2 = 2 secx
cCOoscX COSX

Il. Differentiation Problems on Logarithmic Functions

Differentiate x5nx
Solution: Let y = xSinx
Taking log on both sides, we get logy = sinx logx



Now differentiating with respect to x

1y logx(cosx) + sumi (Using product rule)

y dx
d 1
= d—y =y (logx{ cosx) + smx—)
X X
d ( +si
_, 4y _ y(xcosx logx+sinx)
dx X _
- ay _ Sinx (I{CGSXIDgl{+S]IIX)
dx X .
— dy logx
Y = eX7¥ =
2. Ifx e™ ¥, prove that —— T logn)?

Solution: Given x¥ = %%
Taking log on both sides, we get logx¥ = log

= ylogx = (x — y)log.e

= ylogx = (X —y)---ooo--- (1)
1 dy

:‘=—y+logx—= 1 — ==

= logx <X + <X
DgX d*c

{logx + 1) =

d}f Xy
dx x(1+logx)
dy _ viogx (2)

dx x(1+logx) "’
Again from (1) v + vlogx = x
y 1
= y(1 + logx) = X = Trlosx

dy logx
dx  (1+logx)®




lll. Differentiation of Implicit functions
If two variables x and y are connected by the relation f(x, y) = 0 and none of the variable is
directly expressed in terms of the other, then the relation is called an implicit function.

Problems
Find :—i , if x3+y3 = 3axy
Solution:
Diﬁerentiating w.r.to x, we get
= 3x?% + 3y2 v 3a[x£—|—y]

2 dy d_ _ _
= jy 1 3axd 3ay — 3x2
= d—i(;}y — 3ax) = 3ay — 3x?
_ Ei:::(an—szj 3(ay—x-) _ (ay—x2)
dx 3yZ—3ax 3(y2—ax) (vZ—ax)

2. Find =X, if x? +y? = 16
Solution:
Given x? +vy?2 = 16
= y2 =16 — x?

=y =V16 — x?

dy 1 . 2'_1f :
- —=—=(16 — x 2 X (—2x
Y- 2( ) (—2x)
y _ __x _ _ X
dx Wi1l6—x2 v

; D ifx = at? v =
3. Find dx,lfx at-,y = 2at

Solution: Given x = at?,y = 2at
dx

—2t Y — 2a
dt d d d 2 1
X a
dx dt dt Zat t



4. Findg, if y2 + x% — xy + cosy = 0
Solution:
Given y? + x® — xy + cosy = 0O
dy 2 4 — siny Y —
— Zydx + 3x - prp (x3y) Sll;llydx O .
— si o 2 __ o
= (2vy siny) o —|—d3x (X o TV X 1)
= (Zy—siny—xjd—i—l— 3x? —yv =0
= (2y—siny—x]%=y—3xz
dy  y—3x2

cx 2% —siny—x

Maxima and Minima of one Variable

If you have a differentiable function f[z] to extremize over a compact interval [a, b]

(a) Compute f'[z]. (Be sure it is defined on all of [a, b].)
(b) Find the critical points, that is, afl solutions ¢ of f'[¢] =0 with a < ¢ < b.
(¢) Make a table of the values f|z]| at # = endpoints and critical points.

(d) Select the largest and smallest values of the function at the candidate points.



Find the mazximum and minimum of

; 3 . 2 .
fle] =" — 62"+ 92+ 1
[SOLUTION:
First, we isolate the possible candidates. The endpoints are
z=0 and r=25

The interior critical points are found by first computing f/[z] and then finding all solutions of the

equation f'[x] = 0.

& _

— =] = 322 — 12+ 9

=3z —-1)(z—-3)

The derivative is always defined, so f[z] is continuous and differentiable on [0, 5].

The solutions of f'[z] =0 are

e —1)(z—-3)=0 = r=1 o x=23

on the interval [0, 5].

T'his isolates the candidates, so we compute their values:

Candidate Value

0 1
1 5
3 1

e
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UNIT Il
FUNCTIONS OF SEVERAL VARIABLES

Partial derivatives— Euler’s theorem for homogeneous functions— Jacobians
Maxima and Minima for functions of several variables— Method of Lagrangian
multipliers

Partial Differentiation:

IConsider z = f(x,y), here z is a function of two independent variables x and y. z can be
differentiated with respect to x or y but when we are differentiating z with respect to x (ory ) we
must keep the variable y (or x ) as a constant.

Notations:
Let z=f(Xx,y)
First order partial derivatives of f(x, y) with respect to x and y.
af __ af
ox X’ By y

Second order partial derivatives of f(x, y) with respectto x and y
82f 92f

Ix2  Xx ay2 - vy

Second order mixed partial derivatives of f(X, y)
s 5% i i i ol £

6x6y_ Xy ayax_ yx

Problems:

- O o
Ifu=x%+ %2 + 3xy, find o= ° oy
Solution: Given If u = x% + v2 + 3xyv
du > du >
6}(—3:{ + 3w ,ay—3y -+ 3x
= 3 3 3 _ ou L ou ou_ _ 3%
2. fu=log((x®+y>+z 3xyz), show that o= T oy + rare———
2 . ass 3 3 <
Solutionzu =log (x> +y~ + z 3xyz)
Ju 1 2
ax x3+y3+2z3—3xyz 3= Vs
du 1
—= a0 3y? — 3xz,
ay x3 +y3 +2z3—3xyz
du 1 2
az x3 +y3 + z3—-3xy=z S ey
du du du 3x2+3y%2+3z2—3yz—3xz—3x
Now — + — —T 4 4 4
Iox ay dz x3 +y3 + z3—-3xyz
3(x2 +y? + z2—xy—yz—zx) 3

- (x+y+z)(x2 + y2 + z2—xy—yz—zx) x+y+z



3. If f(x,y) = x* siny + y” cosx, then find its all first and 2nd order partial derivatives.
Solution: Given f(x,y) = x? siny + y? cosx
f, = 2xsiny — y? sinx; fy = X2 cosy + 2y cosx.
foe = 2siny — y*cosx; fyy = —x% sy + 2 cosx;

fyy = 2xcosy — 2ysinx; fyx = 2xcosy — 2ysinx.

4. Iff(xy)= 1 logx then find its all 1st and 2nd order derivatives.

Solution: f, = 1—+logx ( )— ¥ (1~ logs) £, log‘(,

1
£, = % (—;) L (1 -logx) = —( 121~ logx)) et = (logx—3);
1
foy = 0, = (1 —logx); fy = ; = —logx == (1 —logx)
du Jdu Ju -
5. Find s By a_f ru = sin(ax + by + cz)
Solution:
% = a cos(ax + by + cz)
% = b cos(ax + by + cz)
%z c cos(ax + by + cz)

VI. Euler’s Theorem for Homogeneous Functions

A homogenous function of degree n of the variables x, y, zis a function in which each term
degree n. For example, the function 7 (x, y, ) = Ax® + By* + CZ* + Dxy? + Exz*> + FyzZ’ + Gy»
Hzx? + Izy? + Jxyz, is a homogeneous function of x, y, z, in which all terms are of degree th
Note:

A function f(x ,y) of two independent variables x and y is said to be homogeneous in x and"
degree n if f(tx, ty) = t*f(x,y)for any positive quantity t.

Euler’s theorem:
1).If f(x,y) is a homogeneous function of degree n, then

w2 p ya = nf

2).. 1 f(x y,z) is a homogeneous function of degree n, then
of af
+ Yoy HE = nf
Result: If z is a homogeneous function of x, y of degree n and z=f(u) then

b, 28 p2u o
(l)' X6x+ yay nf’(u)




1. Verify Euler’s theorem when u = x3 + y® + 23 + 3xyz
Solution:
Givenu=x*+y° + 2% + 3xyz
Now tu = (tx)® + (ty)® + (tz)° + 3txtytz
=33 +y3 +2° + 3xyz) = tu
Therefore u is a homogeneous function of degree 3.

du_ , 9
s 3x° + 3yz

Therefore x% + y% + z% = x(3x% + 3yz) + y(3y* + 3xz) + 2(32% + 3xy)

=3x° + 3y3 +32% + 9xyz
=3(x* +x*+3xy) = 3u
Hence Euler's theorem is verified.

2.Ifu = xlog (i), then prove that x% —+ yg—; = nu
Solution:
Given u = xlog (%)
u is a homogeneous function of degree 1.

. 2 2
Therefore by Euler's theorem xa—: —+ ya;

= 1 X u=nu



3. If

4.

(xy)——+1+logx gythenprovethatx y—+2f 0

xé+y? '
Solution:
. i 1 logx-logy
f(X,Y) t y+ ¥2+Y
i 1 logtx-logty
Now f(tx, ty) (‘txz txty | (tx)2+(ty)?
tx
_ 1 1 logg

X2 xy  x%+y?

_ 2L s 1 logx—logy)
= (‘(2 i Xy ) x2+y2
Therefore f(x, y) is a homogeneous function of degree -2

By Euler's theorem, x%+ yZ—fv ==-2f

O o v op o
:>xax+yay+2f—0

3.3
If u=tan—?! (%) show that x a_ +y 2 = sin2u

- . T - 3+
Solution: Given u = tan™? (—:_z )

X3+ 3
= tanu =( Y )
X=y
+y

X3 3

Let z = tanu = ( )
X—y

And zis a homogeneous function of order 2.




ou, ou_ | fw
We know that X—+ ¥ oy~ Moo

Here f(u) = tanu

= f’(u) = sec?u

Therefore by the result,

du du tanu sinu 2

XE + % =2 secZu 2 COSU X cosTu
= 2Zsinu X cosu = sinZu
(Or)
: dz dz
By Euler's theorem, x—+ y—=nz
dx dy
2 du 2 du
= XSsec“u—— -+ ysecu— = 27
dx dy
du du
= XSECzlla——F}?SECzll — = 2tanu
be v
= x 1 au+ 1 du sinu
cos?u dx ycoszu dy cosu
1 Ju 1 du sinu
f— —_— f—
cosu dx cosu dy 1
du du . .
= X— + y—— = Zsinu cosu = sin 2u.
dx dv

Jacobians

Changing variable is something we come across very often in Integration. There are many
reasons for changing variables but the main reason for changing variables is to convert the
integrand into something simpler and also to transform the region into another region which is
easy to work with. When we convert into a new set of variables it is not always easy to find the
limits. So, before we move into changing variables with multiple integrals we first need to see
how the region may change with a change of variables. In order to change variables in an
integration we will need the Jacobian of the transformation.



du du

o] -
- o(u,v cx oy
If u and v are functions of x and y, then J(u,v)=ﬁ) = =
éx v
If f1, T2, . . . ., T, are n differentiable functions of n variables X4, X5, . . ., X,,, then the determinant
o o oh
ox, o, S ox,
of, o, af,
ox, ox,  ox,
o, o
é, ox,  éx,
is defined as the Jacobian of fy, f, . . . ., f, with respect to the n variables x4, Xz, . . ., X, and is

o(fy- S50 13D

denoted by - )
A(x),x,,...x,)

ey |

Maxima and Minima of Functions two variables

Maximum Value: A function f (X;y) is said to have a maximum value at x =a;y = b
if f(a; b)>f(at+ h;b+k); for small and independent values of h and k; positive or negative.

Minimum Value: A function f (x ;y) is said to have a maximum valueatx =a;y=b
If f(a;b) <f(a+h;b+k);for small and independent values of h and k; positive or negative.

Extreme Value: f (a ;b) is said to be an extremum value of f (x ;y) if it is either maximum or
minimum.

Working rule to find extreme values (Necessary Conditions)

Step 1: Find 0 f/0x and 0 f /0y

Step 2: Solve the equations 0 f/ 0x = 0 and 0 f /0y = 0 simultaneously.
Let the solutions be (a, b), (c,d),...

Stationary Points: The point (a,b) at which 0 f/ 6x = 0 and 0 f /0y = 0 are called stationary points of
the function f(x,y)

Stationary values: The values of f(x,y) at the stationary points are called stationary values of the
function f(x,y).



Note: Every extremum value is a stationary value but a stationary value need not be an extremum.
Sufficient Condition for Maxima and Minima
Let (a,b) be a stationary point.
Thenif rt—s®> >0at (a, b) and r < 0 (t < 0) then f(a ,b) is maximum value.
rt —s 2> 0 at (a,b) and r > 0 (t > 0) then f(a ,b) is minimum value.
rt —s 2called a saddle point of the function f(x ,y).
if rt —s 2 =0, then the case is doubtful and hence further investigations are required.
Discuss the maximum and minimum of x 2 +y 2 +6x +12.
Solution: Let f(x,y) = x 2 +y 2 +6x +12
Nowp=2x+6,0g=2y,r=2,s=0andt=2
The stationary points are givenby p=0,q=0
=>2x+6=0and2y=0=x=-3andy=0
(-3, 0) is the stationary point
Hence f(x,y) is minimum when x =—3 and y = 0.

Examine f(x,y) = x 3 +y ® —3xy for maximum and minimum values

Solution: Let f(x,y) = x 3 +y 3 —3xy
Nowp=3x2-3y, q=3y?-3x, r=6x, s=-3and t=6y

The stationary points are given by p=0,q=0
=3x2-3y=0and3y%-3x=0

x?2=y (@Dandy?=x (2

Substituting (2) in (1), we getx2=Vx =2 x*=x=2x(x3-1)=0
=>x=0,land y=0,1

Examine f(x,y) = x ® +y ® —3axy for maxima and minima.

Solution: Given f(x,y) = x 3 +y ® —3axy

Now p = 3x 2 —3ay,q = 3y 2 —3ax, r = 6x,s = —3a and t = 6y
The stationary points are obtained by equatingp=0andq=0
=3x2-3ay=0and3y2-3ax=0=x2=ayandy ? = ax

Solving these two equations, we get (0,0) and (a,a).
Therefore the stationary points are (0,0) and (a,a)
Hence the point (a,a) isa minimum ifa>0 and (a,a) isamaximum ifa<0

Lagrange’s Method of Undetermined Multipliers

The conditions for f(x,y,z) to have a maximum point or a minimum point is du = 0.
Therefore we get 0 f/ 0x .dx + 0 f/0y .dy + 01/ 0z .dz=0



Multiply by A, we get

A Og/ 0x .dx +A O0g/ 0y .dy +A 0g/ 0z .dz=0

Adding we get

o0f/ 0x +A0g/ox dx + 0t/ 0y +hog/ oy dy+ 01t/ 0z+Lh g oz dz=0

A rectangular box open at the top is to have volume of 32 cubic ft. find the dimensions in order that
the total surface area is minimum.

Solution: Given g(x,y,z) = xyz =32 =0

Let X,y,z be the dimension of rectangular box open at the top.

Total surface area (S): f(x,y,z) = Xy +2xz +2yz

We define the function F(x,y,z) = xy +2xz +2yz +AM(xyz —32)

At the critical points, we have 0 f/ 0x +A 0g /0x =0 = y +2z +Ayz=0
0f/ 0y +A0g/ 0y =0 = x+2z +Axz=0

0f/0z +\ 0g/ 0z=0 = 2x +2y +Axy =0

X—y=0=>Xx=y

=>y2-2yz=0
=>Yy(y—2z)=0=>y=0and y—2z=0
= y=22

Wegetx=4y=4z=2.
Hence the dimensions are 4cm, 4cm and 2cm

Find the dimensions of the rectangular box, open at the top of maximum capacity whose surface is
432 sg.cm.
Solution: Let x, y, z be the dimensions of the rectangular box, open at the top.
Given its surface area g(x ,\y,z) =Xy +2yz +2zx —432 =0
The volume is (V): f(x,y ,z) = xyz
We define the function F(X, y, z) = xyz +A (xy +2yz +2zx —432)
At the critical points, we get yz +A(y +2z) =0

xz +tMx +2z2) =0

Xy A2y +2x) =0

=>X=y andy=2z

Wegetx=12.y=12,2=6.

Hence the dimensions of the rectangular box are 12 cm, 12 cm and 6 cm
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UNIT - 11
BASIC INTEGRAL CALCULUS

Review of Integration and its methods — Definite Integrals — Properties of
Definite Integrals — Problems on Evaluating Definite Integrals — Beta and
Gamma Functions — Relation between Beta and Gamma functions (without
proof)— Properties and Simple problems.

Definite Integrals

b &
Property 1: :._: J(x)dx _:!- J(=)d=

E’ I
Property 2: J‘ f(.:\‘}dx — 7]— f(;x'}dx
a &
Propertys 3: .Jr.-. O e = _£ f{x}ah-+_r[ F e

(XD = I (a — x)ax
Property 4: ;!- ;!.-

Propertv S:

o O 7 F(x)is odd
__[T J(x)dx — 2]‘ F (XD Ax i F(x)is everr



Problems based on definite Integrals

PROBLEM (1)

Evaluate log(sinn x)ddx

O om0 [ 3

Solution:

N
I
O el

log (sin x)edx L)
By using J‘ F(x)dx = j JFla —x)dx
) )

N
|
Ot |

log[si_n[ % x]}dx

log(cos x)dx 2)

I
Oty |

E

27 = I log sin xdx +I logcosxdx (Since " loga+logh =logab)
0 0

_ 2 sin 2x _ sin 2x
- j log| ———— |dx '.'smxcos.rziz
0

log 24 3)

Oty |3

=,
.27 = j log sin 2 xcadx —
o



O eyl | §

log(sin 2x)dx = éj logsin ydy
0

1 VA
= 5(2)

%5
= I log sin ydy
0

log sin xdx

%
!

To evaluate log(sin Zx)dx

Oty 1| 8

Put 2x = y.2dx =dv
when x=0,1y=0
por ol
XN =-—_,VvV =T
5 -

sub (4) 1n (3)

27 =7 " log2
2

T
> log 2

I =

2
I log sin yvdy
0

()



PROBLEM (2)

log( 1l + tan &) &

— k|

Evaluate .

=]

let] = | log(1+tan8)d8

T
lo l+tau{——3
g[ 3

ey e | iy

(=

i
= e T

A

s

%

i
o My i | 9
=3
i L=]
[S——1
=
—
:
T
L 1
'
T

I
o Moy s | 54
=3
[ L=]
1
[
| IS
=
L

(D)

)



M+ =

3 T \
2I = log(l+tan8)dé+ | mg{ 2 e
3 o 1+tan@
E 2 ™
27=| log (1+tane)f de
;) 1+ tan@ )

27 =1log 26 =§1-:rg2
i

S 2I=—log?2
4 log

T
- I=—log?2
2 g

Gamma Functions:

]

Gamma function 1s defined as J e x"d:n >0 and it is denoted by [n
0

(ie) |n= [ e dx, n>0
0

Beta function:

1
Beta function is defined as ‘[ YT 1-x)""dx,m>0n>0 and it in
0

denoted by B(m. n)



1
(ie)  B(m.n) =I A=) dem>0n>0

Result : 1 Recurrence formula for E

Result : 2 [1=1
Result 3: when 'n" 15 a positive integer. then |;FJ' +1=mn!

Properties of Beta function:

1) Symmertric Property: f(m. n) = f(n. m)
2) Transformation of Beta function:
:rr:e—l
m.r
Blm.n) = j (1+ T
3) Trigonometric form of Beta function:

J:;-z"
Blm.n)=2| sin2™6.cos™ GO

0



Relation between Beta and Gamma functions:

B(m.n) = m

(m+n)

Proof: WK.T [n = J' e x*ldx
0

5

Put x=y"

dx =2ydy

[n = J e (v 2y-dy

oo

— 2,[ g2 _J,zx-z _ },1 ﬁI'L

1]

[ea]

]E =2J E—}'E _}rix—ld}r

0

Similarly [(m) =2 j e . x™ 7 dx
0



-~
3
S
~
o
)
Il
[

oo oo

—x* Zm—1 - 2x-1
‘[e - X dx-ZIé Ty - v
] o

3 3 -
E—{x -1 :II _m—l_l_}_.ﬂrr—l _df_ﬂi}-'

Il

-
O e,
S ey

Put X =rcos y=rsmé&
Hence |J| = 1. by change of vaniables (jacobian)

dxdy = r.dr.d@ wherer = J | (fe)r” =x" + v~
The region of integration 1s the complete first gquadrant.

In which r varies from 0 to oo

& wvaries from Dm%_

o 9 -4

e P (cos @) (sin @)V | r | dr-d@

S t— i
= e

{3 ano]

Using Beta & Gamma Properties.

= 2o+ |- Bom.n)
4

= [om) - [G) =[Gn+n) - Bom.n)
. B(m.n) = M

(m+n)



Result : E = '\J?

E

Proof: WK.T B(m.n)=2[ (sin6f"" (cos 6)""d6
]

1 1

']_ 1 ) 1 i |
B[—,—]=2j (sin@) 2 .(cos®) 2 d&
272 )

3
=2I 1d6
o
=2[9]E=zxg=g (1)
1 1]
——|=7
272

10



Hence proved

11



Evaluate I E'_I:d:r

0

Solution

Put x* =t; 2xdx =dt

et Xdt

Il
P | =
oy

—1

= lf e’t? dt

11

212

N
2

PROBLEM (4)

Esaluate

F- 3
z
-6 7 - i
j sin. xcos Xdxusing Gamma functions
o

12



Property 1: J‘ f(x)dx =j f(2)dz

Proof: LH.S = j JF(x)dx = [F(-‘f}]i
- FIb]- Fla]
RHS=(f(z)d==[F(2)]

= Flb]l-Fla]

LHS =R HS

Property 2: I flx)dx = —I F(x)dx
Proof : LH.S = j f(x)dx =[F(x)]} = F[b]- Fla]

RHS = —j fx)dx ={F(0]:

= —[F(a)-F(b)]
= [F(b)—F(a)]

LHS =FR.HS5S

13



Property 3: I F(x)dx =‘T f(.r}dr+j F(x)dx

b
Proof - LH.S = j' F(x)dx

=[F(x)], = F®&) — F(a)

RHS =I f(x}dx+j' f(x)dx

= [F@L +[F
= F(c)-F(a)+ F(b)-F(c)
= F(b)-F(a)

Hence LHS=EHS

14



Praoperty 4: jf f(x)dx =T f(a—x)dx

Proof : Consider, LHS
Put x=a-—:

dx =—d=

If x=0=:z=a

X=a—Z=

[ foade={ fla-2)-db)

= — j fla—2)d:z

15



= I fla—z)dz [by property 2]
i}

= i fla—x)dx [by property 1]
=RHS

i f{x}d:lr::[ fla—x)dx

Property 5: [1=1

we know that m = jE_II"_I.d‘-E
0

16



Property 6:

F(m. n) = B(n. m)

1
Proof : WK.T B(m,n) = j ™ (1—x)" dx

0

W.EK.T Ef(x}dx=]1 fla—x)dx

1

- B, n) = J‘ A" 1-q-x)]" dx

L

(1—x)" 7 X" dx

[

" (1—x)" dx

o ey

L(m,n) = G(n,m), by definition of Beta function.

17
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UNIT - IV
NUMERICAL METHODS FOR SOLVING EQUATIONS

Solution of algebraic equation and transcendental equation: Regula Falsi Method, Newton Raphson
Method — Solution of simultaneous linear algebraic equations: Gauss Elimination Method, Gauss
Jacobi & Gauss Seidel Method.

An expression of the form f(x) = aox"+ax" '+ - +a,_1x+a,. ay #0 is
called a polynomial of degree ‘n’and the polynomial f(x) = 0 is called an algebraic
equation of n'" degree If f(x) contains trigonometric, logarithmic or exponential
functions, then f(x) =0 is called a transcendental equation. For example x? +
2sinx + e* = 0 1s a transcendental equation.

If f(x)1s an algebraic polynomial of degree less than or equal to 4, direct methods for
finding the roots of such equation are available. But if f(x)is of higher degree or it
involves transcendental functions, direct methods do not exist and we need to apply
numerical methods to find the roots of the equation f(x) = 0.

Most numerical methods use iterative procedures to find an approximate root of an
equation f(x) = 0. They require an initial guess of the root as starting value and each
subsequent iteration leads closer to the actual root.

Order of convergence: For any iterative numerical method, each successive iteration
gives an approximation that moves progressively closer to actual solution. This 1s known
as convergence. Any numerical method is said have order of convergence p, if p is the
largest positive number such that |e,.,| < kle,|?, where €, and €,., are errors in
n*and (n + 1) iterations, k is a finite positive constant.

Regula-Falsi method 1s also known as method of false position as false position of curve
1s taken as initial approximation. Let y = f(x) be represented by the curve AB.The real
root of equation f(x) = 01is a as shown in adjoining figure. The false position of curve
AB 1s taken as chord AB and mitial approximation x, 1s the point of intersection of chord



AB with x-axis. Successive approximations Xx;, X, ...are given by point of intersection of
n . . . . .
chord A'B, A" B, ...with x — axis, until the root is found to be of desired accuracy.

. . . . . B { b.f(b
Now equation of chord AB in two-point form is given by: | B0

y—f(@) =20 x —a)

To find x; (point of intersection of chord AB with x-
axis), puty =0

(b)—f(a)
> —f(0) =122 (x, - a)
)= —(b—a)f(a)
f(b)—f(a)

(b—a)
:> - _——
X0 =@ 7@l (@

Repeat the procedure until the root is found to the desired
accuracy.

a

= (xg—a

Alaf@))

Remarks:

o Rate of convergence is much faster than that of bisection method.

e Unlike bisection method, one end point will converge to the actual root a ,
whereas the other end point always remains fixed. As a result Regula- Falsi
method has linear convergence.

Example5S Apply Regula-Falsi method to find a root of the equation x* + x — 1 =
0 correct to two decimal places.

Solution:f (x) =x3 +x—1
Here f(0) = —1and f(1) =1= f(0).f(1) <0

Also f(x)is continuous in [0,1], - atleast one root exists in [0,1]
(b—a)

Initial approximation:x, = a — f{b) @ )f( ):a=0,b=1
_ (1-0)
=% =0- g f0) =0-¢ n( 1)=05
f(0.5) = —=0.375, f(0.5).f(1) <0
First approximation: a =05.b =1
_ __(1-05) e _
x; =05 f—{l)—f(O.E)f(O'S) =0 375)( 0.375) = 0.636

£(0.636) = —0.107, f(0.636). f(l) <0

Second approximation: a = 0.636,b =1
(1-0.636)
f(1)—£(0.636)

0.364

X; = 0.636 — 1—(—=0.107)

7(0.636) = 0.636 — (—=0.107) = 0.6711



f(0.6711) = —0.0267, f(0.6711).f(1) <0
Third approximation: a = 0.6711.b =1

f(.6711) =.6711 —

0.3289
1—(—0.0267)

(1-0.6711)
F(1)-f(0.6711)
Furst 2 decimal places have been stabilized; hence 0.6796 1s the real root correct to
two decimal places.

X3 =.6711 — (—.0267) = 0.6796

Example6 Use Regula-Falsi method to find a root of the equation xlog,, x — 1.2 =0
correct to two decimal places.

Solution:f (x) = xlog,;q x — 1.2
Here f(2) = —0.5979and f(3) =0.2314 = f(2).f(3) <0

Also f(x) is continuous in [2,3], - atleast one root exists in [2,3]

s s s _ . (-a) o _
Initial approximation: x, = a f(b)_f(a)f(a) ca=2,b=3
—n_ (-2 _ 1 - _
=2 f3) f(z)f( )= © 02314—(-05979) (=0.5979) = 2.721

f(2.721) = —0.0171, f(2.721).f(3) <0
First approximation: a = 2.721,b =3
X, =2.721 —ﬂ‘B 2720 £(2.721) = 2.721 —

3)—f(2. ?21)

£(2.7402) = —0.0004., f(2.7402).f(3) <0

0.279
2314—(—0.0171)

(=0.0171) = 2.7402

Second approximation: a = 2.7402,b =3
x, = 2.7402 — —C7Z7292) £ 7402) = 2.7402 — —22%___(—0004) = 2.7407

f(3)—f(2.7402) 2314 —(—.0004)

First two decimal places have been stabilized: hence 2.7407 is the real root correct to
two decimal places.

Example7 Use Regula-Falsi method to find a root of the equation tanx + tanhx =
0 upto three iterations only.

Solution:f(x) = tanx + tanh x
Here f(2) = —1.2210and f(3) = 0.8525 =2 f(2).f(3) <0
Also f(x)is continuous in [2,3]. -~ atleast one root exists in [2,3]

G0 f@):a=2b=3

Initial approximation:x, = a O

_ (3—2) o 1
=X =2- F(3)— (2)f( ) = 0.8525—(—1.221)

£(2.5889) = 0.3720, f(2).f(2.5889) < 0

(-1.221) = 2.5889



First approximation: a = 2, b = 2.5889
X, =2 -89 gy 05889 (_49210) = 24514

F(2.5889)—f(2) 0.3720—(—1.2210)
f(2.4514) = 0.1596. f(2).f(2.4514) <0

Second approximation: a = 2. b = 2.4514

_ o _(24514-2) o 04514 _ _
Xy =2 f(2.4514)—f(2)f(2) =2 0.15%—(—1.2210)( 1.2210) = 2.3992

£(2.3992) = 0.0662, f(2).f(2.3992) <0

Third approximation: a = 2, b = 2.3992
(2.3992-2) o

f(2.3992)—f(2)f(2) =2

~Real root of the equationtan x + tanh x = 0 after three iterations is 2.3787

0.3992
0.0662—(—1.2210)

Xy =2— (-1.2210) = 2.3787

Newton-Raphson method named after Isaac Newton and Joseph Raphson 1s a powertul
fechnique for solving equations numerically. The Newton-Raphson method in one
variable is implemented as follows:

Let a be an exact root and x, be the initial approximate

root of the equation f(x) = 0. First approximation x; is f
taken by drawing a tangent to curve y = f(x) at the \ (0. f(x0))
point (x,, f (x,)). If @ is the angle which tangent
through the point (x,, f (x,)) makes with x- axis, then

slope of the tangent 1s given by: o/ e
_ fxo) _ g N/ &
tan@ = o f(x0) o

_ _ f&o)

=X = X f'(xo)

_ fa)
f'(x1)

Similarly x, = x,;

The required root to desired accuracy is obtained by drawing tangents to the curve
at points (x,, f(x,)) successively.

_ f(xn)
f10)

xn +1 = xn



Example 9 Use Newton-Raphson method to find a root of the equation x3> —5x + 3 =0
correct to three decimal places.

Solution: f(x) = x* —5x+3

= f'(x) =3x%2-=5

Here f(0) = 3and f(1)=-1= f(0).f(1) <0

Also f(x) is continuous in [0,1], - atleast one root exists in [0,1]
[nitial approximation: Let initial approximation (x,) in the interval [0,1] be 0.8

f(xn)

By Newton-Raphson method x,,,; = x, — o)
n

First approximation:

Xy = Xy — ;f(i")) _where x, = 0.8, £(0.8) = —0.488, f'(0.8) = —3.08
0
=x, =08 ———=0.6416

Second approximation:

X, = x; — }f({f;)] _ where x, = 0.6415, £(0.6416) = 0.0561, f'(0.6416) = —3.7650
1 - — - -
0.05611
= x, = 0.6416 ————— = 0.6565
_3.7650

Third approximation:

X3 = X, —% _ where x, = 0.6565, £(0.6565) = 0.0004, f'(0.6565) = —3.7070
2
= x; = 0.6565 — = = 0.6566

Hence a root of the equation x*> — 5x + 3 = 0 correct to three decimal places is 0.6566

Example 10 Find the approximate value of v/28 correct to 3 decimal places using
Newton Raphson method.

Solution: x =v28 =x2-28=0
o f(x) =x*-128
= f'(x) =2x
Here f(5) = =3 and f(6) =8= f(5).f(6) <0
Also f(x) is continuous in [5,6], .- atleast one root exists in [5,6]

Initial approximation: Let initial approximation (x,) in the interval [5,6] be 5.5

f(xn)
)d(xn)

By Newton-Raphson method x,,,; = x,, —

First approximation:

fxp)
f'(xg)’

where x, = 5.5, f(5.5) = 2.25, f'(5.5) = 11

xlsz_



> x, = 5.5 - 22 = 5.2955

Second approximation:

Xy = x; — L5 where x, = 5.2955, £(5.2955) = 0.0423, £'(5.2955) = 10.591

flixg)
0.0423

= X, = 5.2955 — 222 = 52915

591

Third approximation:
X = Xy — % _where x, = 5.2915, £(5.2915) = —0.00003, f'(5.2915) = 10.583
2

= xy = 52915 — 2%

10.583

= 5.2915

Hence value of /28 correct to three decimal places is 5.2915

Consider a system of linear equations:
ax+by+cz=d,
a,x + b,y +cz=d,;...(D
asx + byy + c3z =d;

We have been using direct methods for solving a system of linear equations. Direct
methods produce exact solution after a finite number of steps whereas iterative
methods give a sequence of approximate solutions until solution 1s obtamned up to
desired accuracy. Common iterative methods for solving a system of linear
equations are:

1. Gauss-Jacobi’s iteration method
2. Gauss-Seidal’s 1teration method
Example 14 Solve the following system of equations using Gauss Jacobi's method
bx—2y+3z=-1
—3x+9y+z=2
2x—y—7z=3



Zy = i(?—E + 2(0.146) — 0.319) = —0.432

7
Third Approximation:

X5 =%(—1 + 2y, —32,) ., V3 =%(2 + 3x3 — Z,) . Z3 =§(—3 +2x3 — V3)
5 x3 == (=1 +2(0.319) — 3(~0.432)) = 0.187

ys == (2 +3(0.187) + 0.432) = 0.333

73 = (=3 +2(0.187) — 0.333) = —0.423

zZ, = %(2—3 + 2(0.146) — 0.319) = —0.432
Third Approximation:

1 1 1
X3 =g(—1+2}”2 _332)~y3 =;(2+3xa —Zz)ng =;(_3 + 2x3 — y3)

S é(—l +2(0.319) — 3(—0.432)) = 0.187
ys == (2 +3(0.187) + 0.432) = 0.333
23 ==(=3+2(0.187) — 0.333) = —0.423

Solution: The given system of equations is satisfying rules of partial pivoting.
Using Gauss Seidal's approximations, system can be rewritten as
Xoi1 = 2 (=14 2y, —32,)
Yny1 = 5(2 + 3x'n,+l - Zn)
Zny1 = é(i_?’ + 2Xp 11 = Yns1)
Taking x, = y, = z, = 0 as 1nitial approximation
First Approximation:
X, =—+==02y, :%: 0222,z = —% = —0.429

5
Second Approximation:

1 1, 1 .
Xy = g(_l + 2y, —32) .y, :;(.2 +3x;,—2,) .2, = ;(__3 + 2x, — )
=X, = é(:—l +2(0.222) — 3(—0.429)) = 0.146
Vo = 5(2 + 3(:0.146) +0.429) = 0.319



Zy = %(:—3 + 2(0.146) — 0.319) = —0.432
Third Approximation:
X3 =%(—1 + 2y, = 32,) , y3 =%(2 +3x3 — 2,) , 23 =%(—3 + 2x3 — V3)
> X3 = é{:—l + 2(0.319) — 3(—0.432)) = 0.187
V3 = 5(2 + 3(0.187) + 0.432) = 0.333

Z5 = %(:—3 + 2(0.187) — 0.333) = —0.423
Fourth Approximation:
Xy = %(_1 +2y; —323) .y, = %(2 +3xy —23) .2, = %(_3 + 2x4 — V)
=Xy = é(—l + 2(0.333) — 3(-0.423)) = 0.187
Vi = 5(2 + 3(0.187) + 0.423) = 0.332
Zy = %(:—3 + 2(0.187) — 0.332) = —0.423
Values of variables have been stabilized, .. approximate solution is given by

x =0.187,y =0.332 and z = —0.423
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UNIT -V

INTERPOLATION NUMERICAL DIFFERENTIATION AND
INTEGRATION

Interpolation: Newton forward and backward interpolation formula, Lagrange’s formula for
unequal intervals — Numerical differentiation: Newton’s forward and backward differences to
compute first and second derivatives — Numerical integration: Trapezoidal rule, Simpson’s 1/3™
rule and Simpson’s 3/8" rule.

Differentiation and integration are basic mathematical operations with a wide
range of applications in various fields of science and engineering. Simple
continuous algebraic or transcendental functions can be easily differentiated or
integrated directly. However at times there are complicated continuous functions
which are tedious to differentiate or integrate directly or in the case of
experimental data, where tabulated values of variables are given in discrete form,
direct methods of calculus are not applicable.

Newton’s forward interpolation formula for the function y = f(x) is given by

_ p(p=1) p(p—-1)(p-2) p(p=1)(p-2)(p-3)
Y = Yo +PAyo + =A%y + —— A%, + = Aty + -,

_ X=Xp 0
p = e

Newton’s backward interpolation formula for the function y = f(x) is given by

o p(p+1) p(p+1)(p+2) p(p+1)(p+2)(p+3)
Y=Y+ +TV2)’n +TV3)’n + 2 V4}’n T
I—Xn T\
= = aisl Q)

— e . . 7N

Example 1 Given a cubic polynomial with following data points

x 0 1 2 3
f(x) 5 6 3 8

i G0 d’y =
Find==and == atx = 0



Solution: Derivative has to be evaluated near the starting of the table, thereby
constructing forward difference table for the function y = f(x)

X y . ) &3
: ==
7
1 6 g
-3 .
2 ’ |
5
. 8

To find the derivative at x = 0, taking x, = 0 and applying the relation:

d 1 A2 A3 A*
ay =-[ﬂ}’n— Yo Yo _ 3’n+”_] @.

+
dxly = x, 2 3 4

Fromtable h = 1, Ay, = 1, A%y, = =4, A%y, =12, A'y, =0
Substituting these values in (1, we get

dy (—4)
2. n_-[l__+ Z+0]=7
ﬂ _i[ 2., _ A3 11,4 _]
AISD dx? x=xu—h2 Ayﬂ dy0+12d }'U
. 4%y

== [-4-12+0] = -

'dxz x=0 12

Example 2 Given a polynomial with following data points:

X 1.0 1.1 1.2 1.3 1.4 1.5 1.6
f(x) 7989 8403 8.781 9.129 9451 9.750 10.031

2
Findd—yandd—’zl atx=1l1landx = 1.5
dx dx



Solution: Derivatives has to be evaluated near the starting as well as towards the
end of the table, thereby constructing difference table for the function y = f(x)

x y=f(x) 15diff 2™diff 379diff 4"diff S5"diff 6"diff
1.0 7.989

0.414
1.1 8403 -0.036
0378 . 0.006
1.2 8781 —0.030".._ —0.002
0.348 0.004 .. 0.001
1.3  9.129 —-0.026 —0.001~% 0.002
0.322 0.003."" 0.003
1.4 9451 ~0.023"" i3
0.299..."" 0.005
1.5 9750 7 -0.018
0.281
1.6 10.031
To find the derivative at x = 1.1 | taking x, = 1.1 and applying the relation:
dy _1 Ay, , A3y Ay, |, ASy, )
;x”:o—;[A}’o- z T8 & T g _] A1)

From table h = 0.1, Ay, = 0.378, A%y, = —0.03, A3y, = 0.004,
Ay, = —0.001 , ASy, = 0.003
Substituting these values in (1), we get

dy _ i[0.378 _ (c003) L 0004 _ (=0.001) 0.003] — 3957
dxly =11 0.1 3 + 5
d%y = 3ITaae _ age: oM. Sus ]
N |82y, — A%y, + A%y, =245y, +
. d%y 1

|-0.03 = 0.004 +2(-0.001) —2(0.003)| = -3.74

Tdax?ly =9 (0.1)2 12

To find the derivative at x = 1.5, taking x,, = 1.5 and applying the relation:



®

dy _ 1[ Vyn , Pyn , V'yn | Ty ]
dxx=xﬂ_hvyn+ 2 T3 t—, t— F

From table h = 0.1, Vy, = 0.299, V2y, = —0.023, V3y, = 0.003,
Vty, = —0.001, VSy, = 0.001
Substituting these values in (2), we get

d_y 1 [0 299 4+ (- 0023] + 0.003 + (-0.001) + 0.001] — 2.8845
dx x=15 3 4
dzy 1 2 3 11 4 5 5
Ao 2] =[Py + oy + SV, + 200, ]
L &y

[—0 023 + 0.003 + = (=0.001) + %(0.001)] = —2.0083

Taxtly-p (01}2

Example 8 From the following table, find x for which y 1s maximum.

X 3 - 5 6 7 8
f(x) 0205 0240 0.259 0262 0.250 0.224

Also find maximum value of y.

Solution: Constructing forward difference table for the function y = f(x), upto
third differences

x y=f(x) A A? A3
3 02057
0.035
4 0240 —0.016".p
0.019 0
5 0.259 —-0.016
0.003 0.001
6 0.262 —-0.015
-0.012 0.001
7 0.250 -0.014
-0.026
8 0.224
Newton’s forward interpolation formula for the function y = f(x) is given by
Y = Yo +phy, + EER A2y, + BNy 4o p= TR @

Taking x, = 3, y, = 0.205, Ay, = 0.035, A%y, = —0.016, A%y, =0



Substituting these values in (1), we get
y = (0.205) + p(0.035) + 222 (=0.016) + 0 @
Differentiating with respect to p, we get

j—: = 0.035 + Z=(=0.016) = 0.035 — (0.008)(2p — 1)

. d
For y to be maximum, d—:; =0

= 0.035 — (0.008)(2p—1) =0

= p = 2.6875
Also p = x_:" or x = x, + ph

= x = 3 + 2.6875(1) = 5.6875
%y 1s maximum when x = 5.6875 or p = 2.6875

Substituting in (2) , maximum value of y is given by

= (0.205) + (2.6875)(0.035) + 287202687571 (_.016) = 0.2628
y

Numerical Integration i1s the process of computing the value of definite
integral f: ydx , when the integrand function y = f(x) is given as discrete set of

points (x;,y;), i =0,1,2,3,....,n . As in case of numerical differentiation, here
also the integrand y = f(x) is first replaced with an interpolating polynomial, and
then it is integrated to compute the value of the definite integral. This gives us
'quadrature formula' for numerical integration.

h h h h
[ 2™ f)dx =500 + 1) +5 01 +¥2) + o+ 5 Ones + V)

[} f()dx = 2o + 20 + Y2+ + Ynor) + Yl

i % : b :
This i1s known as trapezoidal rule to evaluate fa f(x)dx, where the function

y = f(x) is given as discrete set of points (x;,y;), i =0,1,2,3,....,n.



J 2 fOdx =2 [yo + 3yy + 3y, + yal + 3 [ya + 3y, + 3y5 + ¥
+ - + [}’n—a + 3Yn—2 + 3Yn-1 + ¥ul
[y F)dx =2 (o + Yu) + 30 + Y2 + Y + Y5+ + Ynoz + Yua)
+2(y3 + Y6+ + Yno3)]

This is known as Simpson’s three-eighths rule to evaluate fab f(x)dx, where the
function y = f(x) is given as discrete set of points (x;,y;), i =0,1,2,3,....,n

Example9 Evaluate f ——dx using
i Trapezoidal rule taking h = %
ii. Simpson’s % rule taking h = %
iii. Simpson’s % rule taking h = %

x 0 02 04 06 08 I
y=f(x) 1 096 0.86 074 061 05

By trapezoidal rule ;< - '-Z'[yo +2(n +y2 +y3 +ys) +ys]
= E [1+2(0.96 + 0.86 + 0.74 + 0.61) + 0.5]
fol — dx = 0.784 using trapezondal rule.

ii. To solve

Takmgh—-—o.zs,n="’_“=ﬂ=4

~ Dividing the interval (0,1) into 4 equal parts for the function f(x) =

1+x2

x 0025 05 075 1
y:f(x) 1 094 0.8 064 05

By Simpson’s - - rule fo —dx = -[(yo +y5) + 40 +y3) +2(,)]

=°_2-"[(1+05)+4(094+064)+2(08)]




Solution: i. To solve [ ——dx using trapezoidal rule
0 1+4x2 g P

-~ Dividing the interval (0,1) into 5 equal parts for the function f(x) =

1+x2

Examplel3 From the following table, find the area bounded by the curve and
x — axis, between the ordinates x = 7.47 to x = 7.52.

X 74717481749 750([751 1752
y=f(x)]|193][195]/1.98[2.01[2.03]|2.06

Solution: As n =5, Simpson’s i rule Simpson’s % rules are not applicable.

Applying trapezoidal rule with h = 0.01

172 F)ydx = 2[1.93 + 2(1.95 + 1.98 + 2.01 + 2.03) + 2.06]
= 0.005[19.93] = 0.09965 square units

Examplel4 The velocity v of an airplane which starts from rest is given at fixed
intervals of time ¢t as shown:

t(minutes) (2| 4|6 |8 [10[12]|14]16|18 |20

v=f(t)
(e /ifingtes) 8117(24128|30|120(12|6(2]0

Estimate the approximate distance covered in 20 minutes.
Solution: Since the airplane starts from rest, its initial velocity is zero. So the
time/velocity relationship may be tabulated as:

t(mmnutes) 0 2 4 6 8 10 12 14 16 18 20
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