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UNIT I
MATRICES
CHARACTERISTIC EQUATION:
The equation |A — A/| = 0 Is called the characteristic equation of the matrix A
Note:

1. Solving |A — Al = 0, we get n roots for A and these roots are called characteristic roots
or eigen values or latent values of the matrix A

2. Coresponding to each value of A, the equation AX = AX has a non-zero solution vector
X
If X, be the non-zero vector satisfying AX = AX, when A = A, X, is said to be the latent
vector or eigen vector of a matrnix A corresponding to 4,

CHARACTERISTIC POLYNOMIAL:

The determinant |4 — 47| when expanded will give a polynomial, which we call as
characteristic polynomial of matrix A

Working rule to find characteristic equation:
Fora3 x 3 matrix:
Method 1:

The characteristic equation is |A — A/] = 0

Method 2:




Its characteristic equation can be written as 23 — 5;2% + S,1 — S; = 0 where
S; = sum of the main diagonal elements,

S; = Sum of the minors of the main diagonal elements ,
S; = DeterminantofA = |A|
For a 2 x 2 matrix:
Method 1:

The characteristic equation is |[4 — AI] =0
Method 2:

Its characteristic equation can be written as 212 — 5,1 + S, = 0 where

S = sum of the main diagonal elements, S, = Determinant of A = |A|

Problems:

1. Find the characteristic equation of the matrix ((1) ;)

Solution: Let A = ((1) ;) Its characteristic equation is 12 — 5,1 + S, = Owhere S; =

sumofthemaindiagonalelements = 1 + 2 = 3,
S, = DeterminantofA = |A| = 1(2) —2(0) =2

Therefore, the characteristic equationis 12 —31+2 =0

8 —6 2
2. Find the characteristic equation of (—6 7 —4)
2 —4 3
Solution: Its characteristic equation is 23 — 5,42 + S,1 — S3; = 0, where
S; = sumofthemaindiagonalelements = 8+ 7 + 3 = 18,

—6

S, = Sumo ftheminorso fthemaindiagonalelements = |774 ;4| + |g ;l + |f6 7

=5+
20 + 20 = 45, S; = DeterminantofA = |A| = 8(5)+6(-10)+2(10) = 40-60 +20=0
Therefore, the characteristic equation is 2> — 1812 + 451 = 0

3 1

3. Find the characteristic polynomial of (71 >




Solution: Let A= (3, 1)

The characteristic polynomial of Ais A2 — 5; A + 5, where 5, — sumofthemaindiagonalelements
=3+ 2=5and S, = DeterminantofA = |4 = 3(2)— 1(-1)=7

Therefore, the characteristic polynomial is A2 — 54 + 7

CAYLEY-HAMILTON THEOREM:
Statement: Every square matrix satisfies its own characteristic equation
Uses of Cayley-Hamilton theorem:

(1) To calculate the positive integral powers of A
(2) To calculate the inverse of a square matrix A

Problems:

1. Show that the matrix [; ;2] satisfies its own characteristic equation
SolutionLet A = [; ;2] The characteristic equation of A is A2 — 5,4 + 5, = 0 where
S, = Sum of the main diagonal elements = 1 + 1 = 2
S, = |lal =1 —-—(-4)=>5

The characteristic equation is A2 — 24 +5 =0

To prove A% — 24 + 51 = 0

az—am =1 2L 2A=02 2
az—zaw+sr=[2 “A-12 "+[2 2= =0

Therefore, the given matrix satisfies its own characteristic equation

2 IfA= [(1) g] write A% interms of A and I, using Cayley — Hamilton theorem

Solution:Cayley-Hamilton theorem states that every square matrix satisfies its own
characteristic equation.

The characteristic equation of A is A2 — S, A + S, = 0 where
S, = Sum of the main diagonal elements = 6

s, = |a|l =5




Therefore, the characteristic equation is A2 —6A + 5 = 0

By Cayley-Hamilton theorem, AZ — 6A + 51 = O

i,e., A2 = 6A — 51

3. Verify Cayley-Hamilton theorem, find A* and A~! when A = [

2
—1
i

—1
2
—1

Solution: The characteristic equation of Ais A3 — 5,22 + S,A — S; = 0 where

S, = Sum of the main diagonal elements

Sz

Sz

2+2+2=6

Therefore, the characteristic equation is 2° — 6242 + 81 — 3 = 0

To prove that: 4% — 642 + 84 — 3] = O—————- (1)
2 -1 2 2 —1 2 7 —6 9
Az = [—1 2 ~1] [—1 2 —1] = [vs 6 ——6]
1 —1 2 1 —1 2 5 —5 7
7 —6 9 2 —1 2 29 —28
A3 = A%2(A) = [75 6 —6] [71 2 71] = [722 23
5 —5 7 1 -1 2 22 —22
A% —e64A%? +8A — 31
29 —28 38 42 —36 54 16
[722 23 —28] —= l73o 36 —36] + [—8
22 —22 29 30 —30 42 8
o O o
= [0 o o] =0
o o o

To find 4*:

(1) = A3 —6A2 +8A — 31 =0 = A3 = 64%2 —8A + 31

Multiply by A on both sides, A* = 643 — 842 + 34 — 6(64%2 — 84 + 3I) — 84% + 3A

Therefore, A* = 3642 — 484 + 18] — 8A% + 34 = 28A% — 454 + 187

Hence, A% = 28[

7 —6 9 2
—5 6 —6| —45|—1
5 =5 7 1

—1 2 1 O O
2 —1|+18|0 1 O
—: 2 O o0 1

la]l =24 —D+1C2+D+21—2)=23)—1—2=3

|

Sum of the minirs of the main diagonal elements = 3 + 2 + 3 =8

4
—1
2




196 —168 252 90 —45 90 18 o o
= [714{) 168 7168] [745 20 74—5] [O 18 o ] =
140 —140 196. 45 —45 90 o o 18
124 —123 162
[795 96 7123]
95 —95 124

To find A~
Multiplying (1) by 4= %,4%2 —6A + 8 — 341 =
= 3471 = 42 —64 +8J

7 —6 9 2 —1 2 1
=3A4"1=— | -5 6 —6|—6|—1 2 —1|+8|0

5 —5 7 1 === 2 (0]

(=R e
=0C
| S

7 —6 9 —12 [ —12 8 0 O 3 o —3
=|—5 6 —6| — 6 —12 6 +]0 8 0= 1 2 o
5 —5 7 —6 [ —12 0O O 8 —1 1 3
1[3 o —
Sl e 1 2 0
3l 1 3
4. Verify that A= [ ] satisfies its own characteristic equation and hence find A%
Solution:Given A = [; fl] The characteristic equation of A is A2 — S, A + S, = 0 where S, =
Sum of the main diagonal elements = O

S,=|Al=—1—4=—5
Therefore, the characteristic equation is A2 —0A — 5 =0i.e.,A? — 5 =0
To prove: AZ — 51 = O————- (1)

= Ak Al-L7 £030-0 2

se—su=n 2~%lg 4l= s El~I§ Z=15 &l=0

To find a*:
From (1), we get, AZ — 51 = 0 = A% = 57

5 0]:[25 0]

Multiplying by A2 on both sides, we get, 4* = A2(51) = 542 =5 [0 5 o 28

1 —1 4
5 FindAaAl'ifA= [3 2 71], using Cayley-Hamilton theorem
i —1




Solution: The characteristic equation of A is A3 — 5,22 + S, A — S; = O where

S, = Sum of the main diagonal elements = 1 + 2 — 1 = 2

S = Sum of the minors of the main diagonal elements = (—2 + 1) + (—1 — 8) + (2 + 3)
= —1 —9 +5=—5

S;3 =14l =12+ 1D+ 1(—3+2)+4(3—4) =11 4= —6

The characteristic equation of A is 12 — 222 — 524 +6 =0
By Cayley- Hamilton theorem, 4% — 242 — 54 + 6] = O ——————— (1)
To find A~ 1:

Multiplying (1) by A~1, we get, 42 — 24 — 54 "1'4A+ 6A7'T =0 = A2 —2A —5I +6A~ 1 =0

64~ = —A% + 24+ 51 = A~' =Z(—A4% + 24 + 5I) —————- (2)
1 —1 4 1 —1 4 1—3+8 —1—2-+4 4+1—4 6 1 1
A% = |3 2 —1| |3 2 —1|=|3+6—2 —3+4—1 12— 2+ 1| = |7 o 11
2 1 —all=z 1 —1 2+3—2 —2+2—1 8 — 1+ 1 3 —1 8
—6 —1 —1 2 —2 8 5 O O 1 —3 7
—A2 +2A + 51 = |—7 o —11|+ |6 4 —2|+|o 5 o|l=|—1 o —13
—3 1 —8 4 2 —2 O O 5 1 3 —5
! —3 7
From (2). a7t = < | —1 L=} —13
1 3 —5

6. IfA= [; ;] ,find A™ intermsof A

Solution: The characteristic equation of A is A2 — S, A + S, — O where
S, = Sum of the main diagonal elements = 1 + 2 = 3
S, =|lAl=2—0=2

L ] ) o B e
The characteristic equation of Ais A2 — 31+ 2 — 0 i.e., A — 22vC 32)(21)4(1)(2) — 3;1 = 2,1

To find 4™:
VWhen A" is divided by 22 — 324 + 2, let the quotient be Q (1) and the remainder be aA + b
A" = (A2 — 32+ 2)QA) +aA + b ———— (1)

VwWhen A = 1,1 = a + b wWhen A = 2,2™ = 2a + b

2a+b— 27 ——— ()




a+b=1" ——— (3)
Solving (2) and (3), we get, (2)- (3)= a = 2" — 1"
(2)—2x(3) = b = —2" + 2(1)"
ie.,a=2"—1"
b = 2(1)" — 2n
Since A% — 34 + 2I = 0 by Cayley-Hamilton theorem, (1) = A™ = aA + bI
ar =@ -1 [} Z+rmwm-27) 9]
1 4

2 3
polynomial in A (i) 45 — 44* — 743 + 1142 — A — 101 (ii)A* —44% — 542 + A+ 21

7. Use Cayley-Hamilton theorem for the matrix A = [ ] to express as a linear

Solution: Given A = [; ‘3*] The characteristic equation of A is A2 — S, A + S, = 0 where
S, = Sum of the main diagonal elements =1 + 3 = 4

S, =4l =3—8= -5

The characteristic equation is 22 — 414 — 5 =0

By Cayley-Hamilton theorem, we get, 42 —44 — 51 =0 ————— 1)

A3 — 22+ 3

N2 —42 — 525 —42* — 723 + 1122 — 21— 10

A5 — 42t — 523

— 223 +112%2 — 2
(-)— 223 + 822 + 104

31 — 114 — 10

(—) 322 —122— 15

A+5

AS —4A* — 7A% + 11A%2 — A — 101 = (A2 —4A —5D(A3 —2A+ 31D+ A+ 51 =0 + A + 5I
= A + 5I (by (1)) which is a linear polynomial in A
) Az

A2 — 442 —52*— 423 — 522 + A+ 2




A* — 423 — 522
) A+ 2

A* — 4A3 — 5A%2 + A+ 21 =A%2(A2 —4A —5D +A+2I=0+A+21=A+21 (by (1)) whichisa
linear polynomial in A

i o 3
8. Using Cayley-Hamilton theorem, find 4A=* when A = [2 1 —1]
i —1 i

Solution: The characteristic equation of A is A2 — 5,42 + S,A — S; = 0 where
S; = Sum of the main diagonal elements =1+ 1+ 1= 3

S, = Sum of the minors of the main diagonal elements = (1 — 1) + (1 —3) + (1 — 0)
= 00— 2ET=—3

Ss3=lAl=11—1)+02+ 1) +3(—-2—1)=1(0)+0—9= -9
The characteristic equation is 2> — 342 — 1+ 9 =0

By Cayley-Hamilton theorem, A3 — 342 — A+ 91 = O

Pre-multiplying by A=1, we get, 42 — 34 — I +9A 1 =0=> A"1 = %(7142 + 34+ 1)
1 o 8 1 o 3 1+0+3 0+0—3 3+0+3 4 —3 6
A% = |2 1 —1(]2 1 —1|=|2+2—1 O0+1+1 6—1—1|=|3 2 4
1 —1 1 1 —1 1 1—2+1 0—1—1 3+1+1 o —2 5
—4 3 —6 3 o 9 1 O O
—A2=|-3 —2 —4a|.34=|e6 3 —3|;I= |0 1 O
o 2 —5 3 —3 3 o o0 1
1/[—4 3 —6 3 o 9 1 0 O 1[0 3 3
A“l:g -3 —2 —4a|+|e 3 —3|+|0 1 o|)=35|3 2 —7
o 2 —5 3 —3 3 o o0 1 3 —1 —1
1 3 7
9. Verify Cayley-Hamilton theorem for the matrix A= |4 2 3
1 2 1
1 3 7
Solution: Given A= |4 2 3
1 2 1

The Characteristic equation of A is A2 — 5,42 + S,A — S; = 0 where
S; = Sum of the main diagonal elements = 1+2+1 = 4

S, = Sum of the minors of the main diagonal elements = (2 —6) + (1 —7) + (2 —12)
= —4 —6—10 = —20




S; = lAl=1(2—6)—3(4—3)+7(8—2)=—4— 3+ 42 = 35
The characteristic equation is 23 — 442 — 201 — 35 =0

To prove that: 43 — 442 — 204 — 351 = O

A2 = -

4 2 3|14 2 3 4+ 8+ 3 12+4+6 28 +6+ 3

15 22 37
i 2 1111 2 1 1+8+ 1 3+4r 2 746+ 1

[1 3 7][1 3 7] [1+12+7 3+6+ 14 7+9+7]
10 9 14

[20 23 23]

A3:A2A:|15 22 37||l4 2 3 15 +88 +37 45+ 44+ 74 105 + 66 + 37

20 23 23] [1 3 7] [20+92+23 60 + 46 + 46 140+69+23]
10 9 14ll1 2 1 10 + 36 + 14 30 + 18 + 28 70 + 27 + 14

140 163 208

[135 152 232]
60 76 111

135 152 232 20 23 23 i 3 7 1 O O
A3 — 4A%2 — 20A — 351 = |140 163 208|— 4|15 22 37|—20|4 2 3|—35(0 1 O
60 76 111 10 9 14 1 2 1 0O O 1

135 152 232 80 92 92 ] [20 60 140] [35 o o ]

= [140 163 208] == [60 88 148 80 40 60 o 35 o
60 76 111 40 36 56 20 40 20 o o 35

O O o
=0 O oO|=0
o O o

Therefore, Cayley-Hamilton theorem is verified.

10. Verify Cayley-Hamilton theorem for the matrix (i) A= [_31 _51] (ii)A = [;‘ ;]
- - . - 3 —
Solution:(i) Given A = [_1 - ]

The characteristic equation of Ais 22 — 5,4 + S, = 0 where
S, = Sum of the main diagonal elements = 3 +5 =8

S, =4l =15 — 1 = 14

The characteristic equation is 22 — 824 + 14 = 0

To prove that: 42 — 84 + 141 = O

Sl S | IS Bl IR ] el B ]




ea—w] 5 2'-[E8 a6l
147 = 14 [(1) (1’] = [104 104]

10 —8] o [24-

o8 —8]+[14— 0]=[O 0]=0

25 —
Az —8a+1ar — | -8 40 o 14 o o

Hence Cayley-Hamilton theorem is verified.

(i) Given A = [; g]

The characteristic equation of Ais 212 — 5,4 + S, = 0 where
S; = Sum of the main diagonal elements = 1 + 3 = 4

S, =]Al =3 —-8= —5

The characteristic equation is 12 — 44 — 5 =0

To prove that: A2 — 44 — 51 = 0O

A2=[1 4][1 4]_ 1+8

2 3ll2 31 l2+e6
z sl=Ic Ehe=ssf; fl=[F ‘4l

a*—aa—si=[g 37]1-[g El-[6 s1=[6 ol=°

shol=ls

4-A:4-[

Hence Cayley-Hamilton theorem is verified.

EIGEN VALUES AND EIGEN VECTORS OF A REAL MATRIX:

Working rule to find eigen values and eigen vectors:

1. Find the characteristic equation |4 — AI|] = O

17)

2. Solve the characteristic equation to get characteristic roots. They are called eigen values

3. To find the eigen vectors, solve [4 — AI]lx = O for different values of A

1. Corresponding to n distinct eigen values, we get n independent eigen vectors

2. If 2 or more eigen values are equal, it may or may not be possible to get linearly

independent eigen vectors corresponding to the repeated eigen values




3. If X; is a solution for an eigen value 2;, then cX; is also a solution, where c is an arbitrary
constant. Thus, the eigen vector corresponding to an eigen value is not unique but may
be any one of the vectors cx;

4. Algebraic multiplicity of an eigen value A is the order of the eigen value as a root of the
characteristic polynomial (i.e., if A is a double root, then algebraic multiplicity is 2)

5. Geometric multiplicity of A is the number of linearly independent eigen vectors

corresponding to A
Non-symmetric matrix:
If a square matrix A is hon-symmetric, then A # A7

Note:

1. In a non-symmetric matrix, if the eigen values are non-repeated then we get a linearly
independent set of eigen vectors

2. In a non-symmetric matrix, if the eigen values are repeated, then it may or may not be
possible to get linearly independent eigen vectors.
If we form a linearly independent set of eigen vectors, then diagonalization is possible

through similarity transformation
Symmetric matrix:
If a square matrix A is symmetric, then A = A7

Note:

1. In a symmetric matrix, if the eigen values are non-repeated, then we get a linearly
independent and pair wise orthogonal set of eigen vectors

2. In a symmetric matrix, if the eigen values are repeated, then it may or may not be
possible to get linearly independent and pair wise orthogonal set of eigen vectors
If we form a linearly independent and pair wise orthogonal set of eigen vectors, then
diagonalization is possible through orthogonal transformation

Problems:

1. Find the eigen values and eigen vectors of the matrix (; _11)




Solution: Let A = (; 31) which is a non-symmetric matrix

To find the characteristic equation:

The characteristic equation of A is 17 — 5,1 + 5, = 0 where
S, = sumofthemaindiagonalelements = 1 — 1 = 0O,
S, = DeterminantofA = |A]l = 1(-1)— 1(3)=-4

Therefore, the characteristic equation is A2 —4 =0i.e., AZ =40riA = +2
Therefore, the eigen values are 2, -2

A is a non-symmetric matrix with non- repeated eigen values

To find the eigen vectors:

[4A4 — AI]X = O

(G 226G DEE=RBI=IG ZJ—G Dk]= IG5

RN [ - N— @
Case 1: If A = —2,[1 7;5’72) 1 71(72)] [i;] = [g] [From (1)]
e [3 Al - 6
iie., 3x1 +x2 = 0O
3x; +xp = O
i.e., we get only one equation 3x; + x; = 0 = 3x; = —x, —> 2= =%
Therefore X, = [33]
Case 2:1f 4 — 2,|" e 2] ezl = [o] tFrom (1]




e [0 LI - [o
e, —x; +x, =0 = x; —x;, =0
3x; —3x, =0=>x; —x; =0

i.e., we get only one equation x; — x, = 0

X1 X2
= = = — = —=
xXq X 1 1
I
Hence, X, = [1]
2 2 1
2. Find the eigen values and eigen vectorsof (1 3 1
i 2z 2
2 2 1
Solution: Let A= |1 3 1| which is a non-symmetric matrix
i 2 2

To find the characteristic equation:
Its characteristic equation can be written as 2% — 5,42 + S,1 — S; = 0 where

S, = sumofthemaindiagonalelements = 2 +3 +2 =17,

2

Sz = Sumo ftheminorso fthemaindiagonalelements = |; ;l + Ii ;I + ﬁ 3

|=24+3+4=

11,

S3 = DeterminantofA = |A| = 2(4)-2(1)+1(-1) =5

Therefore, the characteristic equation of A is A2 — 722 + 114 — 5 =0
1 1 -7 11 —5

o 1 — 6 5

1 -6 5 o}

A—1)A%2 —-6A2+5)=0=>1=1,

6+ /(6 —a()(5) 6+V16 _6+4 6+4 6—4
B 2(D ——— =

5,1




Therefore, the eigen values are 1, 1, and 5

A is a non-symmetric matrix with repeated eigen values
To find the eigen vectors:

[A —AI]lX = O

2—A 1 X1 o
1 3 — A 1 Xz | = (o]
1 2 2 — A X3 (0]
2. 2 1 X (o3
Case 1: If A =5, 1 3 —5 1 Xz | = |O
1 2 2 — 51 1lxs O
—3 2 1 B (8]
e [ 22 a|[2]- |9
1 2 —3 X3 O
= —3x, + 2x5 +x3 = 0 ———— (1)
X, — 2% + X3 =0 —m———— (2)
x3 + Zx3 — 3xz3 = 0 ——————— (3)

Considering equations (1) and (2) and using method of cross-multiplication, we get,

XXXz

XX X
-2 1 1 -2
s, 2 X Xz . Xha o O 5
4 = 4 1 1 1
1
Therefore, x;, = 1
a1

22— 2 1 X3 [8]
Case 2: Ifa.zl,[ 1 3—1 1 ][xz]: [0]
1 2 2— 1




= x; + 2x;, +x3 = 0
xq, +2x, +x3 =0
xq, + 2x2 +x3 = 0
All the three equations are one and the same. Therefore, x; + 2x; + x3 = O

Put x; = 0 = 2x; + x3 = 0 = 2x; = —x3.Takingxs = 2,x; = —1

o
Therefore, X, = [—1]
2

Put x; =0 = x; + x3 = 0= x3 = —x3.Takingx; = 1,x3 = —1

1
Therefore, X, = [ o ]
—1

2 —2 2
3. Find the eigen values and eigen vectors of [1 1 1 ]

i 3 =1
z —2 2
Solution: Let A= [1 1 1 ] which is a non-symmetric matrix
i 3 —1

To find the characteristic equation:

Its characteristic equation can be written as 23 — 5; 42 + S, A — S3 = 0 where

S, = sumofthemaindiagonalelements = 2 +1 — 1 = 2,
B & ; : - _ |11 1 | 2 2 2
> = Sumo ftheminorso fthemaindiagonalelements = | | + I | + |
3 —1 1 —1 1
—4—4+4= —1,
S3 = DeterminantofA = |A| = 2(-4)+2(-2)+2(2)=-8—-4+4=-8

Therefore, the characteristic equation of A is 23 — 242 — 41 +8 =0

2 1 — 2 S 8

Eim




1 o] -4
A—2)(A2 —4)=0= 4= 2, A= 22
Therefore, the eigen values are 2, 2, and -2
A is a non-symmetric matrix with repeated eigen values
To find the eigen vectors:

[A —AI]lX =0

2—(—2) —2 2 X1 o
Case 1: If A = —2, 1 1—(—2) 1 [xz] = [0]
1 3 —1—(—2)| Lx= o
4 —2 27 [*1 (o3
e [ 5 ] H = [o]
1 3 111x3 (0}
= 4x; — 2x3 + 2x3 = 0 ————- (1)
xy +3x; +x3 =0 ——m——— (2)
xy +3x5 + x5 =0 ————— (3) . Equations (2) and (3) are one and the same.

Considering equations (1) and (2) and using method of cross-multiplication, we get,

XXX
-1 1 2 -1
N AT
Fi X2 Xz 1 K2  *s
—4 —1 7 4 1 —7

4
Therefore, x;, = [ 1 ]
—7




T2 —i 2 Xy (o]
Case 2: IfA = 2, 1 1—2 1 Xz | = |0
1 3 —1 — 2] 1Xx3 0]
D —2 2 X1 (o]
i,e., |1 —1 1 Xz | = |O
1 3 —.311x3 0]
= 0x;, — 2x5 + 2x3 = 0————— (1)
Xy — Xy +x3 = O0———————— (2)
xy + 3x, — 3x3 = O0——m———— (3)

Considering equations (1) and (2) and using method of cross-multiplication, we get,

XXXz
-2 2 0] -2
X1 Xz X3 X4 Xz X3
S —_—_— e = === = = =
o 2 2 o 1 1

0
Therefore, X, = [1]
1

VWe get one eigen vector corresponding to the repeated root A, = A; = 2

i 1a 3
4. Find the eigen values and eigen vectors of [1 5 1]
3 1 1
1 1 3
Solution: Let A =[1 5 1] which is a symmetric matrix
3 1 1

JTo find the characteristic egquation:

Its characteristic equation can be written as A% — 5,42 + 5,4 — 53 = 0 where




51 = sumofthemaindiagonalelements = 1 + 5 + 1 = 7,

o . S 15 1 1 3 1 1

S; = Sumo ftheminorsofthemaindiagonalelements = |1 1| -+ |3 1| -+ |1 =

8+ 4 = 0,

S3 = DeterminantofA = |A| = 1(4)-1(-2)+3(-14)=-4 + 2-42 = - 36
Therefore, the characteristic equation of Ais A% — 742 + 04 — 36 = O

—2 1 — 7 (o] 36
(o] —2 18 — 36
1 -9 18 o]
A —(—2))(A2 —94+18) =0 = A = —2,

e

9+ /(=97 —a(1(@A8) _9+V8B1 72 _9+3 _

9+3 9—3

2(1 2 2
Therefore, the eigen values are -2, 3, and 6
A is a symmetric matrix with non- repeated eigen values
To find the eigen vectors:

[A—AIlXx = O

1—A 1 3 X (8]
1 5—A 1 Xz| = |O
3 1 1 — Allxs (8]

1—(—2) 1 3 x, o
Case 1:If A= —2, 1 5—(—2) 1 [xz] = [0]
3 1 1— (—2)] Ixs o
3 1 37> o
ie., [1 7 1] [XZ] — [0]
3 1 31 1LXx3 (0]
= 3x3 +x2 + 3x3 = 0 ———— (1)
X9 + 7x +x3 =0 —m————— (2)

3x, + x5 +3x3 =0 ——— 3)

2 v 2

= 6,3




Considering equations (1) and (2) and using method of cross-multiplication, we get,

Xq Xz X3
DX X,
rd 1 1 7
. xy Xz X3 x4 Xz Xz xqy Xz Xz
—20 O 20 —a o a4 —1 o 1
—1
Therefore, x, = o
1
1— 3 1 3 BT o
Case 2: IfA = 3, 1 5—3 1 Xz | = |O
3 1 1 — 3] lxs o
—2 1 3 BT o
ie.. | 1 2 1 xz| = |O
3 1 —2llxs o
= —2x,; + x5 +3x3 — 0 ———— 1)
X, +2x5 + %53 —0 —Mm8MmM ——————— (2)
3x;, + x2 — 2x3 = 0 ————— — (3)

Considering equations (1) and (2) and using method of cross-multiplication, we get,

X x2 X3
1 3 -2 1
N S N A
X1 Xz X3 X3 Xz X3 X3 Xz Xz
= = = = =3 e — A -
— 5 —5 —1 1 —1 1 —1 1
1
Therefore, X, = —1
1

1— 6 1 3 Xq [8]
Case 3: IfA = 6, [ 1 5 —6 1 ] [xz] = [0]




—5 1 3 Xq (8]
i.e., 1 S | 1 Xz | = |O

3 4. —51 1x= (o]
= —5x47 +x5 +3x3 —0 —m—— (1)
Xy — Xz +x3 =0 —m«—————— (2)
3x3y +xz2 — 5x3 =0 ———m——— (3)

Considering equations (1) and (2) and using method of cross-multiplication, we get,

XXX

DG
-1 1 1 -1
X1 Xz X3 X1 X2 X3
— L = = =2 1 — =
4 8 4 1 2 1
1
Therefore, X5 = 2
1
(4] a a
5. Find the eigen values and eigen vectors of the matrix|1 O 1|. Determine the
a s L4 ]
algebraic and geometric multiplicity
(o] 1 1
Solution: Let A =|1 0 1| which is a symmetric matrix
1 1 (o]
To find the characteristic equation:
Its characteristic equation can be written as A% — 5,42 + 5.4 — 53z = 0 where
Sy, = sum of the main diagonal elements = 0+ 0+ 0 = 0,
S, = Swm of the minors of the main diagonal elements = |0 1| -+ |0 ll -+ |0 1| —
1 (8] - (8] 1 (o]
—1—1— 1= —3,
S35 = Determinantof A= |A|l=0-1-1)+ 1(1)=0+ 1+ 1=2

Therefore, the characteristic equation of Ais A — 042 — 314 — 2 =0




(8] — 1 1 2
1 -1 -2 (o]
A—(C—1))AZ2 —A2—2)=0=> 44— —1,
1+ /(—1D% —4(1D(—2) 1 +~V1 +8 1+ 3 1+31-3
2(1) o 2 Tz =z
Therefore, the eigen values are 2, -1, and -1
Al is a symmetric matrix with repeated eigen values. The algebraic multiplicity of A = —1 is 2

To find the eigen vectors:

[4A—Ar]X = O

o — 2 1 1 X3 o
Case 1: If A = 2=, 1 o—2 1 X2 o
1 1 o — 2 X3 o
—2 1 1 X (8]
i.e., 1 =2 1 Xz | = (0]
1 1 —2 X3 (8]
= —2x;, + x5 +x53 =0 ——— (1)
Xy — 2% +x3 =0 —m0mMm ———— (2)
Xy + X5 —2%3 =0 ——M—Mm ——— (3)

Considering equations (1) and (2) and using method of cross-multiplication, we get,

Xy Xz X3

X X

2




- L ..~ SO, O .. WO .0
3 3 3 1 1 1
1
Therefore, x, = [1]
1
0O — (—1) 1 1 Xy (o]
Case 2: IfA = —1, 1 o — (—1) 1 [xz] = [0]
1 1 0 — (—1)] l>s o
1 1 1] [*1 o
e[ 3 IR B
1 1 1llxs o
= xy + x5 + x3 = O ————— 1)
Xq + X3 X3 — 0 ——m—————— (2)
X, X X3 — 0 ——————— (3). All the three equations are one and the same.
Therefore, x; + x5 +x3 =0 . Putx;, = 0 = x5, + x3 = 0 = x5 — — x5 ::»%: j—i
o
Therefore, X = [ 1 ]
—1
I
Since the given matrix is symmetric and the eigen values are repeated, let x5 — [m] X5 is
n
orthogonal to X, and X .
i
[1 1 1][m]=0:-£+m+n=0 ——————— (1)
n
1
[o 1 —1][m]=0:»01+m—n:0 ————— (2)
rn
Solving (1) and (2) by method of cross-multiplication, we get,
| m "
1 1 1 1
OB ST B
i L] " 2
S W—m=, Therafare, X, |
i
Thus, for the repeated sigen value A 1, thera corresponds two lineary Independent algen
vactors X, and Xy, So, the geometric multiplicity of elgen value A 1is2




1'

-1 | 1
Find the sum and product of the eigen values of the matrix l 1 1 1 I
1 1 1

Solution Sum of the elgen values = Sum of the main diagonal elements = .3

Product of the eigen values = [A] = <1 (1T« 1) 1(=T =« )+ (1 (+1))= 24224

[0 2z 2
Product of two eigen values of the matrix A= | 2 4 —1)|im 16, Find the third eigen
Z A *

value
Solution: Letthe eigen values of the matrix be A4,,4,, 4,

GSiven A A, ~ 1G

We know that A, 4,4, ~ | A (Since product of the eigen values is equal to the determinant of
the matrix)

6 -2 2
AsgAzAy = 2 3 1| = 6(9-1)+2(-6+2) +2(2-6) » 48-8-8 = 32
2 1 3

Therve [!)I‘OP.A,A;A;. - 32 = '()A:‘ - 32 = A;. - 2
3. Find the sum and product of the sigen values of the matrix A= (‘: 3) without
finding the roots of the characteristic equation
Solution'We know that the sum of the eigon values = Trace of A= a + d

Product of the eigen values » |A| = ad - be




B 2 — 6 2
4. If 3 and 15 are the two eigen values of A= | -6 7 —a|, find | A|, without
2 — 4 3
expanding the determinant
Solution:Glven A, — 3and A, — 15, A, —7?
We know that sum of the eigen values = Sum of the main diagonal elements

= Ay + Az +Ady —8 47+ 3

=> 3+ 15+ Az = 18 = Az =0
We know that the product of the eigen values — | A |
=5 (3)(15)(0) — | A
= |A | = 0
< 10 5
5 If 2 2, 3 are the eigen values of A = .’2 ':; ; , find the eigen values of A7

Solution By the property "A square maltrix A and its transpose A”have the same eigen
values", the eigen values of A7 are 2,2,3

2 0 o0
6. Find the eigen values of Aw |1 32 0
0O a4 4]
(2 (8] O
Solution Given A = |1 3 0] Clearly, A is a lower triangular matrix., Hence, by the
(8] + 3

property "“the characteristic roots of a triangular matrix are just the diagonal elements of the
matrix”, the elgen values of A are 2, 3, 4

=3 ot ¥ A
7. Two of the eigen values of A = l i} 5 1| are 3 and 6. Find the eigen values of
1 1 3
A 1
Solution: Sum of the elgen values » Sum of the malin diagonal elements = 3 4543 = 11

Given 3,6 are two elgen values of A, et the third eigen value be k.




Then, 3+6+KkK= 11 =k = 2
Therefore, the eigen values of A are 3, 6, 2

By the property "If the eigen values of A arei, 4., 4,. then the eigen values of A~

1 1 1w 1 1 1
a'EA.'a"a, 2°3%¢

the eigen values of A~ are
8. Find the evigen values of the malrixl _lq _42 |. Hence, form the matrix whose sigen
values are = and — 1
Solution: Let A =I ."5 42] The characteristic equation of the given matrix is A< — 5,4 +

S5; = owhere 5, = Sum of the main diagonal elements = 5 and 5; — lal = -6

s+ =8 =N~ 6) _ 547
2(1) 2

Therefore, the characteristic equation is A — 54 — 6 — 0 = A4 —

G, —1
Therefore, the eigen values of A are 6, -1

Hence, the matrix whose eigen values are -:: and 1is A™?

1
AT - m ¢ldj A

|A] =4-10=-6 agA= |2 Z

- 1+ 2
Therefore, A7 — — s 1
F4 i 0O
9. Find the eigen values of the inverse of the matrix A= |0 32 a4
0o o a4

Solution'VWe know that A Is an upper triangular matrix. Therefore, the elgen values of A are
2, 3, 4, Hence, by using the property "If the elgen values of A arei,. 4., 4,, then the elgen

values of A~' ares—,=—,—", the elgen values of A~ are =, 5.~
s 2 Aa 2’34

1 2 3

10. Find the eigen values of A* given A= |0 2 -7
o0 0 3.




1 2 3
Solution:Given A= |0 2 7| Alis an upper triangular matrix. Hence, the eigen values of
0o o 3

Aare1, 2 3
Therefore, the eigen values of A" are 1*,2",3" |.e, 1,827

11.If 1 and 2 are the eigen values of a 2 x 2 matrix A, what are the eigen values of
A* and A™'7?

Solution Gliven 1 and 2 are the eigen values of A,

Therefore, 1 and 24 i.e., 1 and 4 are the eigen values of A* and 1 and T’!- are the eigen

values of A~*

z 2 1
12. If 1,1,5 are the eigen values of A= [1 3 1]. find the eigen values of S5A
1 2 2

Solution By the property "IT A,, 4., 4, are the eigen values of A, then kA, kA., kA, are the
eigen values of kA, the eigen values of 5A are 5(1), 5(1), 5(5) ile., 55,25

13. Find the eigen values of A, A%, A%, A*', 34,47, A 1,347 + 547 —6A + 2IiIf Am [f, ;]
Solution:Given A = [(‘: ;] A is an upper triangular matrix. Hence, the eigen values of A are
2,8

The eigen values of A* are 24, 5% j.e., 4, 25

The eigen values of A% are 24, 5% .e., 8, 125

The eigen values of A* are 2, 5% i.e., 16, 625

The elgen values of 3A are 3(2), 3(5)l.e., 6, 15

The eigen values of A~! are =,

A-i=[g 3l-lo S1=[o 3l




Since A - | is an upper triaangular matrix, the eigen values of A- | are its main diagonal
elements i.e., 1.4

Elgen values of 347 + 5A4% — 6A + 27 are 3457 + BA] — 64y + 2 and 344 + 5ALZ — 6AL + 2 where
Ay = 2and A, — 5

First eigen value = 347 + 547 — 64, + 2
=3(2)+ B2 -6(2)+2=24+ 20-12 + 2=34

Second eigen value 3AZ + BAE — 64, + 2

25+ 5(5)*- 6(5) + 2

375+ 125-30 + 2 = 472

B 2z 1]
14. Find the eigen values of adj A if A= 0O 4 ZJ
O (o] a
3 2 1
Solution Given A =[0 4 2 | A is an upper triangular matrix,. Hence, the eigen values of A
0o o0 1
are 3, 4,1
iy 1
We know that A = -lTl- adf A
Ad) A= |A| A
The eigen values of A~* are =, 5,1
| A| =Product of the eigen values = 12
Therefore, the eigen values of adj A is equal to the eigen values of 12 A~ ' e, 12,22 126,
4, 3, 12
1 2 3 1 0 O 1 0 0]
Note: A=|0 4 5] B o [2 4 l)],C - [0 4 0. Here, A is an upper triangular martrix,
0O 0 6 32 5 6 0O 0 6

B is a lower triangular matrix and C is a diagonal matrix. In all the cases, the elements in the
main diagonal are the eigen values,. Hence, the eigen values of A, B and C are 1, 4, 6




z
1
1

15. Two eigen values of A = are equal and they are -,9‘- times the third. Find

MWK
N o

them

Solution Let the third eigen value be A,

We know that A, + A, + A, =243+2 =7

Given A, = A= 4
A A
e e
1 1 7
[g+z+1]ra-7=%20~7=2.~5
Therefore, A, — A, — 1 and hence the eigen values of A are 1,1, &6
2 0 1
16. If 2, 3 are the eigen values of |0 2 0O|.find the value of a
a 0o 2
2 0 1
Solution Let A =[0 2 o] Let the eigen values of A be 2, 3, k
2] (8} 2.

We know that the sum of the eigen values = sum of the main diagonal elements
Therefore, 2 +3 +K = 24 242 = 6 = k = 1

We know that product of the eigen values = | A|

=2(3)k) = | A|

2 0 1

= 6= |0 2 Olnt:—‘z(ft)f()—f 1(—2a) >6=—8 —2a =>2a=—=2=>a=1
a O 2
T 1 3
17. Prove that the eigen vectors of the real symmaetric matrix A= |1 5 1| are
2 1 1

orthogonal in pairs




Solution: The characteristic equation of A is

AT — 5,47 + 5,4 — S5 ~ owhere S, — sum of the main diagonal elements — 7,
S, = Sum of the minors of the main diagonal elements = 4 + (—8) +4 =0
1 1 3
Sa= lal =|1 5 1|= 1)~ 1(—~2) 4+ 3(—~14) = —36
3 1 1

The characteristic equation of A Is A* — 74% + 36 — 0
3 1-7 0 36

o 3 -12 -36

1 -4 -12 I [&]

Therefore, A — 3,A4% — 44 — 12 =0 = A — 3,4 — *COSDEID 48 6, 2

Therefore, the eigen values of A are -2, 3, 6

A AlI)X - O

3 1 £ | X3 (8}

Case 1: When 4 — 2.I1 7 1sz]_ o

3 1 3N (8}
3x; + Xz + 3X3 = O cemmmun (1)
Xy 4 7Txg 4 X5 = 0 ————— (2)
3xy 4 Xz + BNy = O wm——— - (3)

Solving (1) and (2) by rule of cross-multiplication, we get,

X1 X2Xn

I




—2 1 3] [* O
Qﬂﬁﬁ_Z;WhenA—'A.[ 1 2 1”»\'3]-— Io]
3 1 —21 1Xx (8]

2x1 + Xz + 3xy = 0 —m—— (1)
Xy b 2Xz 4 Xg = 0 e———ee (2)
3x; +x3 — 2x4 = 0 — (3)

Solving (1) and (2) by rule of cross-multiplication, we get,

X3 X2Xq
1 3 -2 1
N am i a
S R
5 1 3 Ny 0
Case 3;When 4 — 6, 1 —1 1| |x=2]| |0|
3 1 5114 (8]
—Bxy 4+ X3 4+ 3x4 - 0 —— (1)
Xy — Xg + Xy ™ O ———- (2)
3x, v Xy B5X3 = 0 i (3)

Solving (1) and (2) by rule of cross-multiplication, we get,

Xy XXy

g 1 vy

. g | R 1
O || Xaza=|—1]| Xy = 2
. RI 1 |

To prove that, X/ x. = o, xIx, —~ 0, X7x, =0

Therefore, X, —

1
XX =[—1 O |]|—1|— —1 4041 =0
1

BN




XTX;=[1~-1 1] =] =24 1=0

1
2
1

—1
0
1

XIXys=[1 2 1] - 14+04+1 =0

Hence, the eigen vectors are orthogonal in pairs

1 2 3
18. Find the sum and product of all the eigen values of the matrix A = Iz 2 4].!0 the
i 2 7

matrix singular?
Solution: Sum of the eigen values = Sum of the main diagonal elements =Trace of the matrix
Therefore, the sum of the eigen values = 1+2+7=10
Product of the eigen values = |A| = 1(14 - 8) -2(14 - 4) 4+ 3(4 - 2) = 6-20+ 6= - 8

| A| #0. Hence the matrix is non-singular.

1 2 —2
19. Find the product of the eigen values of A= | 1 0 3 ]
2 1 -3
1 2 —_2
Solution:Product of the eigen values of A= |A|=| 1 0 3|1=1(3)—2(3)—2(—1) =
2 1 3

3—6+4+2-—1
ORTHOGONAL TRANSFORMATION OF ASYMMETRIC MATRIX TODIAGONAL FORM:
Orthogonal matrices:
A square matrix A (with real elements) Is sald to be orthogonal If AA” — A”A — 1 or AT — A~}
Problems:
[ cos O sin® 0
1. Check whether the matrix B is orthogonal, Justify. B = ~~s:)n o co(.; o (:
Solution: Condition for orthogonality is AA” — ATA —~ 1
To prove that: " — B'r — 1
cos 0 sin@ 0

B = sin@ cos O ()I: BT =~
0 (8] 1

cos @ sin¢ 0O
sin@ cos 0
(8] 0 1




. Ccos 0 xin @ O] |[co=sa — min O O
BBET = | —xin@ cos0 Of|sin@ cos O (4]
(0] (8] 1 0 (8] 1
COs*0 + sin*e —sinfcos@ + sinfcos@ 0O 1 0 o0
= | —sinfcosO + sind cos @ + 0 sin*0 + cos*6 + 0 o|— |0 1 0O
(8] [8) 1 (8] (8] 1
Simllarly,
7 cos @ sin @ cos 0 sin 6 (e}
BB — |sine@ ('osé) - <.‘ln & cos@ 0=
o o 1
cos®O 4+ sln‘*a Bin ()c os@ — sin@ cos® O 1 0 0O
sin@ cos @ sin @ cos @ sin*@ + cos?*@ 1+ O o|l-]10 1 o0
(8] (8] 1 Q (8] 1
Therefore, B Is an orthogonal matrix
2. Show that the matrix P = | cosi0 SLT2 0] Is orthogonal
xin O cos 0
Solution:To prove that: »r" — p"'p — 1
p oo [ cOsO sin 0]‘ PT o= [ros 0 —s%in0O
—sin O cos 0l =in O cos 0
pPpT — cos*@ 4+ sin“o —sin @ cos @ + sin @ cos 0] ik |‘1 ()'|= |
| — 8in @ cos O + sin @ cos @ sin?0 + cos? o (ST |
SRR ¥ s . |[fOos 0O —=5in 0] cos 0 =in O
Skrndlntyn, JrOF [stn (3] cos 0 I I.—sin 0O cos0
= [ cos*0 + sin*0 sin@ cos 0 sin@ cos@| _ [ 0] — 7
sin @ cos @ sin @ cos @ sin*0 + cos*0 (o N |

Therefore, P is an orthogonal matrix
WORKING RULE FOR DIAGONALIZATION
[ORTHOGONAL TRANSFORMATION]:
Step 1: To find the characteristic equation
Step 2: To solve the characteristic equation

Step 2:To find the eigen vectors

Step 4:
Step 5!
Step 6:
Step 7:

If the eigen vectors are orthogonal, then form a normalized matrix N

Find v”

Calculate AN

Calculate D =

NTAN




Problems:
3 —a 1
1. Diagonalize the matrix | -1 5 — 1
1 1 3
3 —3 1
Solution: Let A = 15 -1
1 —% 3

The characteristic equation is A" — 5, 4% + 5,4 — 5, — 0 where
Sy~ Sum of the main diagonal elements — 3 + 5 ¢+ 3 — 11

S. = Sum of the minors of the main diagonalelements — (15 — 1) + (9 — 1) + (15 — 1)

=14 + 8 + 14 = 36

Sqg = Al =-3(156—1)+1(—3+1)+1(1 —-5)=3(14)—2— 4 - 42 — 6 — 36

Therefore, the characteristic equation is A* 11A4% 1 364 36 = 0

2 1 =11 36 -36
o] 2 -18 36
1 -9 18 0

. z _ D . . - ot ‘/(—--:)5—4(1)(171) - 2AVBI=TZ_ 0ts
A 2,4 94 + 18 0 - A 2,A 2¢1) = e

- 6,3
Hence, the eigen values of A are 2, 3, 6

To find the eigen vectors:

cA ANDX «~ 0

—1 5—A4 =
3

[3— A —id 1 l
A

s o
X2|= |O
Xa 0

1
1 -1 1 X 0
Case 1: When A — 2,| 1 3 — 1| [¥=] — |O
—1 1 Xa O

1
Xy —Xag X3 ™ 0 — 1
Xy 4+ 3x, Xa = 0O~ (2)
Xy Xag X3 = 0 wem—— (3)

Solving (1) and (2) by rule of cross-multiplication,




XNy XXz
-1 1 1 -1
S % i e
ATy = X2 AR ) POl N} PRl VPG, . MLt R
1 3 T4 1 3 1 2 (5] 2 1 [6} 1
1
Xy - (8]
1
O —1 1] [*] O]
Case 2: When A — 3, 1 2 1| | X=] — |O
.1 o | O | lxa QO
Oxy Kz Xy = O mema——— (1)
—Xy 22Xz — Xy = O we——(2)
Xy — Xa + 0xy = 0 wemw——— (3)

Solving (1) and (2) by rule of cross-multiplication,

Xy XNz
-1 1 (o] -1
G PG % 5
X4 = Xz — Xy . Mg g oy o Mg Xy
1 2 1 (8] (8] 1 1 1 1 1 1 1
1
Xz = |1
1
—3 s | 1 X O
Case 3: When A — 6, 1 1 1>« — |O
1 | —3 Xa (8]
3x, Xz + X3 = 0 =e—me———— (1)
—Xy — Xa — Xy = O mw——— -—(2)
Xy — Xg — Bxg = 0 ——— (3)

Solving (1) and (2) by rule of cross-multiplication,




X1 Xa2X3

T

X X2 Xy Xy X2 Xy X X2 Xy
— ond D m—— e e —— =D e— e —t e ——
1+ 1 —1—3 3—1 2 —4 2 1 —2 1
1
Xy ™ 2
%]
-
XTXy =[~1 O 11| = 14+0+1 =0
1
1
xIx: =1 1 1]1|—2|=1~2+1=0
1
" —1
XixX,=[1 —2 1]|]Oo|=—-—1+0+1=0
1

Hence, the eigen vectors are orthogonal to each other

The Normalized matrix N =

dLel-de
sl

1 1
3 —1 1 70! 3
AN = | -1 5 i | B A
N L 1 3 1 1
7z A
- (8] “+ (8] (8]
v V2 2 Ve o Jiz
R 1 oz (3] 9 0
3 V3 N 3 NET
1 - O 0 36
Ve e Viz Vis 6
2 0 o0
lL.e., D - NTAN — [o 3 0
0O 0 o

The diagonal elements are the eigen values of A

2 0 O
- [0 3 0
0O 0 o




" o z
2. Diagonalize the m-trlxl 6 7 4+
z 4 3
(5] 6 2
Solution LetA= | & 7 - 4]
2 4 3

The characteristic equation is 4™ 5,4% + 8.4 54 = 0 where
S, = Sum of the main diagonal elements — 8 + 7 + 3 — 18

Se = Sum of the minors of the main diagonalelements — (21 16) + (29 4) + (56
- 54 20 + 20 — 45

S¢ = |A] = 8(21 — 16) + 6(—18 + 8) + 2(24 — 14) = 8(5) — 60 + 20 = O

36)

Therefore, the characteristic equation is A~ 18A% 4 454 — 0 = 0le. A" 1847 + 454 = 0O

. 18 18)~ a4C1 15 18 + . 180
=5 A(A2 — 1BA + 45) — 0 = A = 0,4 — + V¢ 2 S0 L = -

18 + 12

2C1) 2
- 15,3

Hence, the eigen values of A are 0, 3, 15
To find the eigen vectors:

A— AI)X — O

8 —A — 6 2 X1 (8
—6 7—A — 4 xz |~ o
2 — 4 33— A *a (8]
121 o P4 *y (8]
Case 1: When 4 — 0O, o 7 al|*=] — |O
2 4 3 X3 o0
8Bxy — 6x3 + 2x3 = 0 ——m-——- (1)
-6GXxy + 7x3 4xg = 0 —— (2)
2x; — 4xy + Bxy — 0 —— (3)

Solving (1) and (2) by rule of cross-multiplication,

X1 X2 X

2




Xy . A2 o Xz Xy X2 Xa Xy Xz
24 — 14 —12+ 32 56 — 36 10 20 20 1 2

o= (3

5 —& 2 X1 (8]

Case 2: When A — 3, o a 4| |xX2]— |O

2 4 (8] X3 | 0
Bxy —6x3 + 2x4 = 0 === (1)
6Xxy + 4X3 — x4 = 0 (2)
2xy; — 4xy; 4+ Ox4 = O ——~ (3)

Solving (1) and (2) by rule of cross-multiplication,

* X2 xa
-G 2 5 -6
BE =
X e Xz .y X3 dxl_ﬁ_ Xa :,ﬁ_ﬂ_x:
24 a8 12 + 20 20 36 16 s 16 2 1 2
-2
Xy = 1
—

Case 3: When A — 15,

-7 —6 2 X1 o
-6 —8 — Xz2|= |O
2 —4 — 121 1¥a (8]

—7Xy — 6Xz + 2X3 = O ———— (1)
—6xy — Bxy — 4xz3 = 0 ——ee—— (2)
2x, Ax, 12X3 = O memememae (3)

Solving (1) and (2) by rule of cross-multiplication,

Xy X xy
-6 2 = -6
-BX -4>< -sx -8

X Xa __Xs X2 Xa _ Xs X3 Xz X3
24 + 16 —12 — 28 56 — 36 140 — 40 20 2 —2 1




o[

2
Xix;=[M1 2 2] 1]—2.2 4 =0
-2
: 2
XIX;=[2 1 —2]|-2]|=42-2=0
1
1
X31X:=[2 —2 1]|2|=2—a9+2=0
2

Hence, the sigen vectors are orthogonal to each other

- 1 -
32 3 1 2 2
The Normalized matrix N = | = ==| = ilz 1 —2]
2 =z 1 2 2 1
2 ™ El
1 2 b
3 3 3 P
oo:|Z T =21 1f2 # 2
N = |—= - — = |2 1 —2
3 3 3 3| R
2 2 1
3 3 3
AN =
8 6 21 11 2 2 . 8 6 2 1 2 2
(&) 7 4—32 1 - 4 s o 7 4 r 1 2] -
2 -4 3 2 -2 1 ; 2 -4 3 2 -2 1
L [B—12+4 16 — 6 — 4 16 + 124+ 2 Jjo e 30 o 2 10
s|-6+14—8 —12+7+8 —12—14—4|==|0 3 —-30| = |o 1 —10
Z2—846 4 -4 -6 4+8+3 0 —6 15 o -2 5
11 2 2 o 2 10 1fJO+0+0 242 -4 10— 20+ 10
N'A~:52 1 —2| |o 1 ~10| ==|0+0+0 4+ 1+4 201010
2 —2 1 o —2 5 0O+04+0 4—-2-2 20+ 2045
‘0 (4] (8] (8] [8) 0
-3l 2 o|—=|o 3 o
0O 0 45 0o 0 15
. (3] (3] (8]
ie.D -~ N'AN -0 3 0
0o o 15

The diagonal elements are the eigen values of A




QUADRATIC FORM- REDUCTION OF QUADRATIC FORM TO CANONICAL FORM BY
ORTHOGONAL TRANSFORMATION:

Quadratic form:

A homogeneaous polynomial of second degree in any number of vanables is called a quadratic
form

Example: 2x7 | 3x3 x5 4 4x, x5 + 5x,x,; - Gxax,is a quadratic form in three variables
Note:

The matrix corresponding to the quadratic form Is

coeff.of x{ -;-t‘oe['[.of Xy X2 -l-roe/'f. of xyxy
-%caeff.o[‘ XXy coeff.of x3 -;-r:ocff.of x5 Xy
-;- coeff.of xyx, %cue/‘f.u]‘ Xyxy coeff.of x%

Problems:

1. Write the matrix of the quadratic form 2x7 — 2x3 + 4x5 + 2x,x; — 6x,x3 + 6x3x,

coeff.of x§ % oeff.of xyx. %coe/‘f. of xyx4
Solution:@Q = |Zcoef f.of x.x, coeff.of x  Zcoeff.of x.x,
ic‘oet‘/'.ot‘ KXy %c:)et‘f. of xaxz coeff.of x5
Here xzx; — x3x3 | Xgxy ™ X3X3 , XXz ™ XgXz
2 1 —3
Q = 1 2 =3
3 3 4

2. Write the matrix of the quadratic form 2x® + 8% + 4xy + 10xz — Zy=z

2 2 2 5
Solution: Q = |% coeff.of yx  coeff.of ¥y* X coeff.of yzl - [2 R 1]
5 —1

%- roeff.of zx % coeff.of zy coeff.of 2% 8

coeff.of x* % coeff.of xy = coeff.of xz

3. Write down the quadratic form corresponding to the following symmaetric matrix

o —1 2Z]
—a 1 “4

2 4 3
@y Q12 @ya o —1 2
Solution lLet |z azz  azy| « | -1 1 “+
LE SR gz Aax 2 4 3




The required quadratic form s

Ay xXf + Apax? + Agexd 4+ 2C12)x1 x5 + 2C(ag)Xaxy + 2(d13)X X
= 0xF + x3 + 3xF 2X4 X5 + AXy X3 4+ Bxgyxa
NATURE OF THE QUADRATIC FORM:

Rank of the quadratic form:The number of square terms In the canonical Tform Is the rank (r) of
the quadratic form

Index of the quadratic form: The number of positive square terms In the canonlical form |Is
called the index (s) of the quadratic form

Signature of the quadratic form: The difference between the number of positive and negative
square terms = s — (r-s) = 2%, is called the signature of the quadratic form

The quadratic form is said to be

(1) Positive definite il all the eigen values are positive numbers

(2) Negative definite if all the eigen values are negative numbers

(3) Positive Semi-definite if all the eigen values are greater than or equal to zero and at
least one elgen value |Is zero

(4) Negative Semi-definite IT all the elgen values are less than or equal to zero and at least
one eigen value is zero

(5) Indefinite IT A has both positive and negative eigen values

Problems:
1. Determine the nature of the following quadratic form f(x,,x.,x4) — x5 + Z2x3
1 (8] O
Solution: The matrix of the quadratic form is Q = [n 2 0
O 0 0]
The eigen values of the matrix are 1, 2, O
Therefore, the quadratic form is Positive Semi-definite
2. Discuss the nature of the quadratic form 2Zx?% + 3y?2 4+ 222 4+ 2Zxy without reducing it to
canonical form
-~ 1 0
Seolution The matrix of the quadratic form is Q = |‘1 3 o|
(8] (8] 2

D, = 2(+wve)




Dy = |f 2 = scrved
2 1 0

Dy— |1 3 0] =206—-0) 12 - 0)+0 — 12 — 2 — 10(+ve)
o o =z

Therefore, the quadratic form is positive definite

REDUCTION OF QUADRATIC FORM TO CANONICAL FORM THROUGH ORTHOGONAL
TRANSFORMATION [OR SUM OF SQUARES FORM OR PRINCIPAL AXES FORM]
Working rule:

Step 1: Write the matrix of the gliven quadratic form

Step 2! To find the characteristic equation

Step 3 To solve the characteristic equation
Step 4: To find the eigen vectors orthogonal to each other
Step 5. Form the Normalized matrix N

D Find AN

3
4
5
Step 6: Find v7T
Step 7
&

Step 8 Find D= ~Nv"aAN

g
Step 9 The canonical form is v, yv.yvall22] [;Vzl
Vs

Problems:

1. Reduce the given quadratic form Q to its canonical form using orthogonal
transformation Q = x* 4+ 3y?* 4 32% — 2y

coefl'f.of xz

coefll.of x* '7 coel'f.of xy -L-
Solution: The matrix of the Q.F Is A = -:—! coeff.of yvx coeff.of v* -:— coeff.of v
% coelf.of zx % coell.of zv coefll.of =
1 (8] O
e, A= O 3 1
o —1 3

The characteristic equation of A ls A7 — 5, 4% + 5,4 — 54, — 0 where

Sy 7 Sum of the main diagonal elements — 1 -+ 3 + 3 — 7




Sz = Sum of the minors of the main diagonal elemeents — (9 1) v (3 0) + (3 0)
— 843+ 3 — 14

Sy = |JA] = 1(9 — 1) 4+0 +0 -« 8
The characteristic equation of A is A* — 747 4 144 8= 0

1 1 -7 14 -8
o 1 -6 a8
1 -6 8 (o]
- i - - 64+ JT 6 —a)@ _ 64Va 62
A 1.4 GA + 8 0= 4 1,4 &S] > > 4,2
The eigen values are 1, 2, 4
To find the eigen vectors:
(A — AIDX = O
1 A 0 (8] A O
(8} 3—A —1 X2 | =10
(3] —1 3 — Al lxs O
O (8] o X 0
Case 1: When A — 1,0 2 1 xXz|— |O
¢ I 2 X (3]
Ox; + 0Oxz + Ox;3= 0 comiman (1)
Ox; + 2x3 — X3 = O we————— (2)
Ox; — X3 + 2x3 = O ——— (3)

Solving (2) and (3) by rule of cross multiplication, we get,

X3 XXy
2 -1 o 2
. A <A
o | X2 Xy - b | X2 X3 i X X2 X
4a-1 o-o0o 0-0o 3 o o =N o o

[




1 0 0 (X1 O
Case 2: When a4 — 2,| 0 1 1 [¥=z| = |O
0 1 1 X O

(1)

—xy + Oxz + Oxg= 0
Ox; +xy — x4 ™ 0 ——(2)

Ox; — Xz + Xy = O =———eeem (3)
Solving (1) and (2) by rule of cross multiplication, we get,

Xy XaX3
o} (o] -1 (o]
1 X -1><o x 1
Xy . X2 - Xa )xl_-"z_-":a )-"1_1’2_-"1
(8] (8] 0 1 1 0 o0 1 1 0 1 1
(8]
1
—3 (8] O 1[* (8]
Case 3:; Whenal—d.[o —7 ﬁll [x;] = [0]
(8] —1 — 1) 1xy 0
—3x, + 0xz + 0x3™ O womemwee (1)
Ox,; — X2 Xy = 0 c———e (2)
Oxy X2 Xz = O =—emeee (3)
Solving (1) and (2) by rule of cross multiplication, we get,
X3 X2X3

T I

Xy Xz Xa o L. . .. RN - -
- —1 1

0O -0 0O— 3
0

XNa == | —1
1




1 o 0
i 1 0 o
The Normallized matrix N = -;""- 3'-2- %;N': o =
o 1 1 O = =
w.‘,‘.‘.' 53 V2 V2
1 o o
1 o ofFE E Al 2 2 o
an=lo 3 % & F-|° 7 F
e =1 3 ) 1 1 o = .-
vr, S B, =
1 0 o1 0 0
6 e 2l = =2 1 0 0
NTAN — vz V2 V2 z2|l—- o 2 o
o =3 2lle = 2 0o 0 4
vz vz vz Jz
1 0 0
le..D=N"AN = |0 2 o
0O 0 4

1 0 0]V
The canonical Torm IS [y, .y, ] [o 2 0] [J’z] = yif + 2y3 + 4y3
0O 0 4llys

8 0 0] M A
canonicalform is |y, y2 w3l |0 2 o] |Yz| = 8yF + 2yF + 2y3
0o o 2]y

1. Reduce the quadratic form to a canonical form by an orthogonal reduction
Zxyxy + 2xyx4 — 2Zxgzxg Also find its nature.

coeff.of xi -:';coef/.o['x.x; :,—_-caej f.of xyx3
Solution: The matrix of the Q.Fis A = %coe['f.o[’ XXy caoeff.of x§ %coeff'. of xzx4
%cueff.o[ XXy %cue[f.of Xyx, coeff.of x3

o 1 1
le A= [1 o - 1]
i -1 0
The characteristic equation of A is A7 — 5,4% + 5,4 — §; — 0 where

S, = Sum of the main diagonal elements = 0
S; = Swmn of the minors of the main diagonal elements — —1 -1 —1 — —3
Sa= Al «00 1) - 1(O0O+ 1)+ 1(—1—-0) «“0—1— 1=~ -2

The characteristic equation of A IS A* — 04 — 34 +2=0= A" — 34 +2=0




1 1 o -3 2
(&) 1 1 -2
1 1 —2| (e}
A= 2,47 4 A 5wt 04 —1 4 /17 —4C1)(—2) —1 =+ =+ — 3
- AT A — 2 - > A= 1, STEH) - = - = —2,1

The eigen values are 1, 1, -2
To find the eigen vectors:
(A — AIDDX — O
—A 1 1] [* O

L Za H] n]: |o|

1 — 1 —A [ X O |

2 1 1 X (8]
Case 1: When A — 2.[] 2 —'l] Xz] —= lo
1 —1 2 1 LXs (8]

2xy +x3 +x3 ™ O ——— (1)
Xy 4+ 2x, — Xgq = 0 ——-—— (2)
Xy — Xy + 2x4 = 0 ——-— (3)

e X2 x5
1 1 2 1
225 A% P 5

Xy Xa __Xs X4 _ Xz  Xs _ X3 _ Xz  Xs
—1—2 1+2 4—1 -3 3 3 -1 1 1

1
Xy = | 1
1

r— 1 1

Case 2: When A — 1.[ 1 —1 —1
1 —1 — 1.




—xy + X2 ¥+ x4 — 0O (1)
Xy — Xz — Xz = 0 ——(2)
Xy — Xz — Xy — 0 —— (3)

All three equations are one and the same

Putxy; — 0, x3 — —xg.lLetxy — 1. Then x; — —1

0
Xy - 1
1
!
Let X, « |m]. Since X is orthogonal to X, and X, X{ Xy ~ 0and XXy ~ 0
rn

! g
[—1 1 1] I;n] “0Dand |0 —1 1] [nv] — 0
n n

I+mA4n =0 c—— (1)

ol —m +n = 0 —m—(2)
I m n
1 1 -1 1
P A P
BT T o B
1+ 1 0+ 1 1—0 2 1 1

Xy =

2
1
1

-1 o 2 -1 1 3
73 = o P, SRR, Y,
1 -1 3|, . ) -y 1
The Normalized matrix N = T F = NT = - = =
1 1 1 = 1 1
i SR S 4 % Vo e
-1 o 2 2 o P By
o 12 13l E | [ & &
AN = |1 o —1 1 =1 il |=2 = 1
v S 3 o RV S 4
& | 1 O 1 1 ' -2 3 '
= = Te = = =




1 1 1112 0 2 —~6 o ]
B 3 GBI|VGE VI B 3 V& Vis
NYA~_0—~|1——2<11_020_"5?3
VzZ vz 2||VB V2 VB| |6 2 Az o & 1
2 1 1||l—-2 1 1 o o 6
Ve V6 Vellya vz Ve vie viz 6
-2 0 0
le,. D= NAN=| 0 1 0
0o 0 1
-2 0 0] M
The canonical formis [y, ¥: ¥l 0 1 of |¥:|= —2yf +yF +¥i
0o o0 1 2
Nature: The eigen values are -2, 1, 1. Therefore, it is indefinite in nature.
Reference Links
1. Introduction to matrices.” From Math Insight. http //mathinsiaht org/matrix introduction
mathinsight org/matrix_introduction
www. mathresource it ac.infinear? 20algebra/chapter2. 0. html!
Jlen { ia ol
w slideshare.n khtarS0/a ati 1 rices-in-real-life

DDA WN

www voutube com/watch?v=izHb IRSwWWWY L)
www.clarkson.edu/~pmarzocc/AE430/Matlab_Eig.paf
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UNIT =1

GEOMETRICAL APPLICATIONS OF DIFFERENTIAL CALCULUS

Curvature:

At each point on a curve, with equation y=f(x), the tangent line turns at a certain rate. A
measure of this rate of turning is the curvature

fix)
K= - 3
1+ [f

Radius of curvature in Cartesian form:

If the curve is given in Cartesian coordinates as y(x), then the radius of curvature is

dy
o=@+ [y172)@/2)/y" where y=ax, " = (@'2)/(dx"2) .

Radius of curvature in Parametric form:
If the curve is given parametrically by functions x(t) and y(t), then the radius of curvature is

(=" +»%) . dx d'x | dy d’y
—_ V= —
F dt’

=ﬁ h
Examples:

1
il
4

1. Find the radius of the curvature at the point ( )on the curve VX +4y7 =1
Solution: ¥x + 47 =1

Differentiating w. r. t x ,we get

¥ =[x 1@V Y — ¥y 1/ (@2Vx)/x]


https://en.wikipedia.org/wiki/Cartesian_coordinates
https://en.wikipedia.org/wiki/Parametric_equation

_(1+1)z 1
PRy T V2
e 173
. . v = ccosh (—) e
Show that the radius of the curvature at any point of the curve - cllis ¢ .

X

v = hi-

Solution: y=ceos (c)

Differentiating y w. r. t X we get
r . x
Vv = sinh (E)

V' =1/c cosh(x/c)

¥ |02

1 inh? (= 2
= [ -1I-5 " (C)] = ccosh?® (E) =
- cosh (E £ £

Find the radius of the curvature of the curve y = x*(x-3) at the points where the tangent is
parallel to the x — axis.

Solution: y = x*(x-3)

Differentiating y w. r. t x we get

v =3x% — 6x

V' =6x—6

The points at which the tangent parallel to the x — axis can be found by equating y’ to
zero.

e, 3x*—-bx=0=2x=0,x=1

Atx=0,y"=-6. Atx=2,y" =6.

Therefore at x =0 and x = 2, p= 6.

Prove that the radius of the curvature of the curve at any point of the cycloid

dacost
x = alt + sint),y=all+cost) s~ 2



Solution: We have ¥ = alt + sint), v = all + cost)

dx dy

— = al(l+ cost) — = asint.
Therefore dt ,dt
2sint .
‘ dy B >—cost _
dy _ ',-"rdt _ asint _ ——3 —— ftant
dt  dx;. a(l+cost) st 2
NOW Hﬂ[ 2cos 3

diy _d (dy\ _d stant d flanfy)dt 1 ¢ 1 1t
—z = 5=l =,—( . ) —( _ ),—=—sec‘—f=—sec =.
Also dx? dx\dx/ dx\ 2 /- [(di\ 2 J)dx 2 2a(1+cost) 4a 2

vl 0d

Lt
(l"'m” i) dacost
p: n = -
1___.f 2
Hence Fa-°C 2

Centre and Circle of curvature:

Let the equation of the curve be y = f(x). let P be the given point (x,y) on this curve and Q the
point (x+Ax,y+Ay) in the neighborhood of P. let N be the point of intersection of the normals at
P and Q. As Q—P, suppose N—C. Then C is the centre of curvature of P. The circle whose

centre C and radius £ is called the circle of curvature. The co-ordinates of the centre of
curvature is denoted as . ¥ -

where (xY =x—(" {1+ Ky"R2)/y" | Y =y+(@+ [y"3 200"
Equation of the circle of curvature:

If .37 be the coordinates of the centre of curvature and 2 be the radius of curvature at any
point (x,y) on a curve, then the equation of the circle of curvature at that point is

x—x)»¥+-¥) =p*
Examples:
1. Find the centre of curvature of the curve a*y = x#.
Solution: a*y = x?

dy 3x* ,d*y  6x
—=—and — =—
dx a3 dx? a3




il
Il
P
I
|

X o4 X ox4
z(”F)-E[l‘F

9x*
. _1'3+[1+F _5:{'3+a:
7 ad 6x  2a% " 6x
a:

(1 [ 91‘] 5y @ a‘)

, Ny e wl B o

Therefore the required centre of curvature is \ 2 a*] 2a®  6x/
1

2. Find the centre of curvature of y =x?at \ 4 /~

Solution: y’ = 2x,y" = 2.

1
&
At V4 /) y=1y =2

Therefore -2 2

[5*]
=]
|Lr||
""‘-___-""F

Therefore the required centre of curvature is (_

3. Find the centre of curvature of the curve xy = a° at (a,a).

Solution: ¥ = —a'2/x'2 ,y" =2a"2x"(-3) At(aa)y =-1,y =

X = =a4

= 2a,

L\:l

a+o—
Therefore 2}; a

The required centre of curvature is (2a, 2a).

3a
- - (2.3&)
4. Find the circle of curvature of the curve ¥~ + ¥ = 3axy atthe point* 2 /°

Solution: ¥* + ¥¥ = 3axy
30+ 3yy’ = 3a(y’ 4 )

. ay—x?T
Vo=

Vi —ax

3a
. (2.3&)
Voath 2 is -1.




V=02 —ax)(a" - 20— (av—x"2)2v" — a/0"2 - a2

v at(3a/2.3af2) = (—32)/3a

—

24/ 2(3a)

P="33

_  3a 2 21a

2 _Szfaﬂzﬁ

—  3a 2 __Ela

vV = —_— =
“ 2 32 1la
faa .

( Ela)“ ( Em)“ 93
_ x—=) vy =2
The circle of curvature is 16 16 128

5. Find the circle of curvature at the point (2,3)on 4 &+ 8 z.
2x 2y’ . —9x . -3
—+— =02y =——2v (23 =—
Solution: 4 9 ) dy -

Y= (90 - MN/@2) |y at (23) = (—3)/2

s, )% s

13 =
- —3 4
P=Ta 7 ,
(1+9;’) 5
— 4)_5
y=3+—F%3 "¢

2

(3 o3 -2
The circle of curvature is 4 6 123
Evolute and Involute

Evolute: Evolute of the curve is defined as the locus of the centre of curvature for that
curve.

Involute : If C’ is the evolute of the curve C then C is called the involute of the curve C'.
Procedure to find the evolute:
Let the given curve be f(x,y,a,b) = 0. )

Find y’ and y” at the point P.



Find the centre of curvature &7}, Using (x = x — (™ (1 + Ky™1 '2))/y" |
oYy =y+id+ Ly2nn . (2

Eliminate x, y from (1), (2) we get f((x >’ Sab) =10 (3)
Equation (3) is the required evolute.

Examples:

1. Show that the evolute of the cycloid ¥ = a{f + sinf),» = all — cos6) is another
cycloid given by * = alff — sinf),y — 2a = all + cos6).
ax d}, B .
Solution: gg — @ +cos6). 75 = asiné
dy o 4g _ asinf  tan@
dx dxy, _ a(l+cosf) 2
lis ( )

V' =dfdf (tan 6/2) (d8)/dx = (Ksecd "4 8/2)f4a
tand

2 I 1+ tan? ii,'-rl
x = alf + sinf) — — 3 —L = a{f + sinf) — 2asinf = a{f — sind)

4
5EC 2/
40

/ -
|1+ tan~ x| g8
¥ =a{l — cosd) + - 3 L=l - cos@) + -Iacos‘i = a({l + cosd) + 2a.

4
SEC 2/
40

x = ald —sindhy — 2a = a(l + cosd)
The locus of ¥ and ¥ js x = al# — sinf), v — 2a = all + cos8)

2. Prove that the evolute of the curve ¥ = alcos@ + 8sinf), v = alsind — fcosd) s a
circle x* + y* = a®.

dx - , _ dy .
Solution: d8 — a(=sing + sinf + Geost) = adcosd, de afising.

dy a}:r‘rd,g affcosd
- == = — = fand
dx dxj afsing

dd

v'=1f(@f Kcos] '36)



tanf( 1 + tan’@)

X = a(cos8 + 8sing) — - = qross,
1}; ;i
afcos
14 tan?d
v = a(sinf — fcosf) + w = asind.
afcoss

Eliminating , * and ¥ wegetX -+ ¥ ‘=a®.

The evolute of the given curve is ** + ¥ = a®,



ENVELOPE

A curve which touches each member of a given family of curves is called envelope of that
family.

Procedure to find envelope for the given family of curves:
Case 1: Envelope of one parameter family of curves
Let us consider y = f(x,a) to be the given family of curves with ‘a’ as the parameter.
Step 1: Differentiate w.r.t to the parameter a partially, and find the value of the parameter

Step 2: By Substituting the value of parameter a in the given family of curves, we get the
required envelope.

Special Case: If the given equation of curve is quadratic in terms of parameter,i.e.
Ao*+Ba+c=0, then envelope is given by discriminant = 0 i.e. B>- 4AC=0

Case 2: Envelope of two parameter family of curves.

Let us consider y = f(x,a, B) to be the given family of curves, and a relation connecting the
two parameters a and B, g(a, B) =0

Step 1: Consider a as independent variable and 8 depends a . Differentiate y = f(x,a, B)
and g(a, B) = 0, w.r. to the parameter a partially.

Step 2: Eliminating the parameters a,  from the equations resulting from step 1 and
g(a, B) = 0, we get the required envelope.

Problems on envelope of one parameter family of curves :

1. Find the envelope of y = mx+ am?” where m is the parameter and a, p are constants
Solution : Differentiate  y =mx+am” (1)

with respect to the parameter m, we get,

0=x+ pam’’

= n= () 2)




Using (2) eliminate m from (1)

which is the required equation of envelope of (1)

. Determine the envelope of Xsin@ —ycos@ = a0, where 9 being the parameter.

Solution : Differentiate |,

xsin@ — ycos@ =al (1)

with respect to 6 , we get,

xcos@ + ysinf =a (2)

As B8 cannot be eliminated between (1) and (2) ,we solve (1) and (2) for x and y in terms of 6.

For this, multiply (2) by sin@ and (1) by cos® and then subtracting, we get,
y=a(sinf — 0O cosO) . Using similar simplification, we get, X = a(0sin +cos0)

. (Leibnitz’s problem) Calculate the envelope of family of circles whose centres lie on the x-axis
and radii are proportional to the abscissa of the centre.

Solution : Let (a,0) be the centre of any one of the member of family of curves with a as the
parameter. Then the equation of family of circles with centres on x-axis and radius

proportional to the abscissa of the centre is



()c—a)2+y2 = ka? (1)

where k is the proportionality constant. Differentiating (1) with respect to a, we get,

—2(x—a) =2ka
. a: x
l.e. 1— k-
2
x 2 k 2
From (1), [X—j + = 5X
() 1—k (1—k)?
i_e_(kz —k]xz +(1—k)2 2 =0, k=1
2

4. Find the envelope of xsec~ 0 + ycosec20 = a, Where 0 is the parameter.

2 2
Solution : The given equation is rewritten as ,x(l + tan 9] + J/(l + cot 9] =a

i.e.xtan40+(x+y—a)tan29+y:O,

which is a quadratic equation in = tan2 @ . Therefore the required envelope is given by the

discriminant equation : B2-4AC =0
. N2 B
ie.(x+y—a) 4xy =0

i.e.x2 +y2 —2xy—2ax—2ay+a2 =0

Envelope of Two parameter family of curves :

1. Find the envelope of family of straight lines ax+by=1, where a and b are

parametersconnected by the relation ab = 1

Solution :

ax+by =1 1)



ab=1 (2)

Differentiating (1) with respect to a ( considering ‘a’ as independent variable and ‘b’

depends on a).

db
x+—y=0
cmy

db —x
- )

ie.  da y

Differentiating (2) with respect to a

db

b+a—=0
da
db —b
ey, T 4 (4)

From (3) and (4), we have

=1 and b= )
2x 2y

Using (5) in (2), we get the envelope as 4xy = 1

: . : , x |y
2. Find the envelope of family of straight Ilnes\/;+\/;=1 , Where a and b are parameters

connected by the relation va ++vb =1

Solution :



Ja++/b =1 (2)

Differentiating (1) with respect to a

\/§+\5de

=0
532 5,32 da

i.e @=—_ﬁ—b3/2 (3)

" da [y a3/2

Differentiating (2) with respect to a

2Ja 2-/b da
i.e @2_\@
7 da Ja “)

From (3) and (4), we have

Nxb _
Jra

ie. \/5:\/22\/§+\/g=1

Ja b Ja+Jb o1

1

a=~x and b=» (5)
Using (5) in (2), we get the envelope as x4 y1/4 =1

, : . x ¥
. Find the envelope of family of straight lines ~ +7 =1, where a and b are parameters

connected by the relation a’p’= ¢’



Differentiating (1) with respect to a,

—-x y db:

Xy dav_y
a2 b2 da

_ db  —b2%x

l.e. - =
da a2y

Differentiating (2) with respect to a

2ab3 +3a262 %% _ ¢

a

db _ —2b
da 3a

From (3) and (4), we have

3x_2y

a b

x ¥y o x,y
ie a_b_a b_1

3 2 5 5

_ 5x S5y

4= and P=5

Using (5) in (2), we get the envelope as

4. Find the envelope of the family of circles whose centres lie on the ellipse

which pass through its centre.

(1)

(2)

)

(4)

)

2

2
a

+

2

i—z=1and



Solution: Let (a,B) be the centre of arbitrary member of family of circles which lie on the
2 2
ellipse z—z + Z—z =1, whose centre is (0,0). Therefore, equation of the circles passing through

origin and having centreat (a,B) is

x2+y2—2ax—2ﬁy20 (1)
with

a2 ﬁz

Z 4+ =

a’ b3 2)

Differentiating (1) with respect to a ( ‘a’ as independent variable and ‘B’ depends on a ),

ap

da

X+ y=0

dp _—x
ie. @‘7 (3)

Differentiating (2) with respect to a

200 2B dB _

a2 b2 da
2
) dp —-b "«
ie. do a2,3 (4)

From (3) and (4), we have

+ , where k = ax+
2,2 27,2 By



a2x b2

azTand ﬁZTy (5)

From (1), we have , x2+y? =2k (6)

2
2 2 2.2 2.2
Using (5) and (6) in (2), we get the envelope as (X +y ) = 4(61 xX“+b7y j

x2 y2
5. Determine the equation of the envelope of family of ellipses _z 7z =1where the
2 b2

. a
parameters a and b are connected by the relation el =1,/ and m are non-zero

constants.

Differentiating (1) with respect to a,

_2x2 2y2 db
e
a3 b3 da
_ db  —b3x2 -
i.e. — =
da a3y2

Differentiating (2) with respect to g

2a 2b db
2t 0
/ m*< da
2
db —
ie. e (4)
da 14b

From (3) and (4), we have



_m_
A2 2
R T
| a> _b> _a> b2 _1
- a? % a* b 1
) m2 12 m2
S at =022 bt —m2)2
ie. a? =Ixand b2=my (5)
X y_
Using (5) in (2), we get the envelope as 7+ =1

Problems on Evolute as envelope of its normals :

x2 y2
1. Determine the evolute of hyperbo|ai2 - bT =1 by ConSidering it as an envelope of its normal
a

Solution : Let P (a cosht, b sinht) be any point on the given hyperbola. Then

dy

dl_ﬂzbcosht =écotht

dx dx gsinht a
dt

Equation of normal line to the hyperbola is

) —a
—bsinht) = x—acosht
o ) bcoshl( ) (1)
'by 4 :a2 +b2
sinhz cosht 2)

Differentiating (2) partially with respect to t, we have,



_—by

5 cosht —Lsinht =0
(sinht)

(cosh t)2

1/3
= tanh¢= _[byj
ax

1/3 1/3
= sinh¢= j{b;] andcosh ¢ = i[CZCJ (3)

Where h=+/(ax) "o (by) »

Using (3) in (2) , we get,

by1/3 h+ "xl/3 h=a? +b2
—(by) (ax)

e, (@) =) (@0 - @n)**)” =a? +52

e, (a0 — () = (a2 +b2]

2. By considering the evolute of a curve as the envelope of its normal, find the evolute of

x=cos0+60sinf y=sinf —Ocosb

Solution :

dy
dy 4o Osin0
dx dx  @cosO
do

=tan@

Equation of normal line to the hyperbola is

(¥ —(sin@ — O cosB)) = . 10 (x —(cos @ + Osin 9))

an



= ysin@—sin2 O + Osin O cos@ = —xcosO + cos? O + Osin O cos O

6. ysin@ + xcosO =1 (1)

Differentiating (1) with respect to the parameter 6, we have

ycosfO —xsinf =0 2)
Multiplying (1) by cos8 and (2) by sin@ and then subtracting, we have,

x =cosf (3)
Similarly we get,

y=sin@ 4)

Eliminating 6 between (3) and (4) we get the required evolute as x2 + y2 =1
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Jacobians

Changing wariable iz something we oome aonoss very ofien i Inlegration. There ame many
reasons lor changing wariables bul the magin reaseon for changing wanables s o coneert jhe
intagrand inta somathing simpler and also to ransform tha region into ancthar regicn which is
ey by work with, When we comver inbe a new sef o verables it s nol always aasy o find the
limits, So. bafore wie mave inlo charging variables with multiple imegrals we ficst need (o 566
howe the ragior may changa with & change of variakbles. In ordar to change vanables in an
integretion we will need the Jaceblan of the transicamatien.

1y 1e, . ..o, B are ndilleremizble lunclions ol n vamables =, |, 5, . . ., %, Wen e delarminant
af 4 a
oy f"r= T o
o iif,
CEL i iy
i, i, i,
ax dxr, i,
is dedined as the Jacohian of . §5 .. . |, with respect o the nvariables =, 5, . x, and 5
(LN T R
denoted by Joifgwendyd
Ce B P .
T
) N Fe Ay
i u and « arg functons of x and ¥, than Jiuwvi= i"“ L t:"
LR Y| o o

~
4
.':!l |




Ou St Oue

ox Oy Oz

If u, v and w are functions of x, y and z, then J(l..l,v,w):M = ﬂ ﬂ ﬂ
A(x, ¥, z2) ox oy Oz

Ow Sw ow

Ox oy oz

Properties of the Jacobian

1. Chain Rule for Jacobians: If u and v are functions of independent variables r and s and

each of r and s are functions of the variables x and y, then u and v are functions of x and

y. Further the jacobians satisfy the chain rule Olu,v) _ Ou, V). CALAT )
(X, ¥) A(r,s) S(x,y)
2. If u and v are functions of x and y, then x and y can be solved in terms of u and v. Then
O(u,v) O(x,y)
B(x, ) B, vy
3.

If u, v and w are functions of x, y and z and if u, v, w are functionally related or
(e, v, w)

dependent then =0
(x, ¥, z)
Problems
1. Hu=xyz, v=xZ+y" + 25, w=x +y + z, find J (x, vy, 2)
_ O(x, ¥, z) 1
Solut J (%, v, = N =
olution J (x, vy, z) A, v, w)  Ou.v,w)
O(x, yv.z)

Ot Tu Oue
ox Sy oz vz  xz Xy

S, v.w) _|dv v Ov - y

O, v, w) _ | Ov =[2x 2y 2z|=-2(x-— —2Nz—x

A(x, v, z) ax oy oz x hY z (x =y gl
we ow aw 1 ! !
ax ay oz
O(x, y.z) —1

Therefore =
O, v, w) 2(x — y)(y —z)Wz— x)

-5

(e, v, w) "

2. fu=x+y+2z, uv=y + z, u>w = z, show that =
a(x, ¥, 2)

Solution: Ux = Uy =uz =1




Vx=—2(y+z), vy=u—2(>y+z), G u—2(y+z)

3 & 3
u- u u

ou ou ou
Oox Oy Oz 1 1 1
ow,v,w) |Ov ov ov|_[-2(y+z2) u—2(y+z) u—2(y+z)
a(x,y,z) |&x oy oz u’ w’ w?
ow  ow  ow —3z —3z u—3z
ox E Bz 78 u’ w?t
1 (0] (0]
= —2(_V‘+Z) l, l, Cy; —>Cy —C;,C3 —>C3 —C
u:; u’ ul“
—3Z
(0]
u? w?
1
=—
If u=>2"Y gndv=tan"' x + tan v, show that s L) =0
1—xy d(x,y)

Solution: Let x = tan® and y = tang,
tan @ + tan @
1—tan @ tan ¢

then u = = tan(@ + @)

Andv =06+

o(u,v) o(u,v) 0(0,p)
o(x,y) 9(O0.p) (x.y)

Ue=sec?(® + @), uy=sec?(® + @), Vo = Vu = 1

O(u,v) _|sec’(@+ @) sec’(@+ )|
20.¢) 1 1 B
o(u,v)
a(x,y)

(0]

Thus




4. Show that u = x® — y*z% v = x® + y?z® + xyz and w = x —yz are functionally dependent and
also find the relation.
Solution: If u, v, w are functionally dependent then o(u, v, w) =0
O(X,y,z)
3x? —3y3z3 —3y°®z?
o(u,v,w) 1)’ 2 *
—— 2 — =2x+yz 2yz°+xz 2y z+ Xy
o(x,y.z)
1 —z -y
%2 —3y?z? —3y?z?
=yz|2X +yz 2yz + X 2yz+ X| taking zcommonfromc, and yfromc;
1 -1 —1
= 0 (Twocolumns are identical )
Since x® —y?z? = (x —yz)(x* + xyz + y?z?)
u = v w is the relation between the three variables.
5. If u =e*cosy, v = e*siny, where x = Ir + sm, y = mr — sl, verify if
o(u,v)  O(u,v) 9(x,y)
a(r,s) O(x,y) O(r,s)
6. O(u,v) |e"cosy —e'siny| 22"

o(x, y) e*sin y e* cosy

l 2 2
O(x,y) _ LGl (U S
o(r,s) m —1

u = e *Mcos(mr-sl), v = e"™*Msin(mr-sl)

u, = le"*Mcos(mr-sl) - m e"**"sin(mr-sl)
us = me'™*Mcos(mr-sl) + | **Msin(mr-sl)
v, = le"™*Msin(mr-sl) + m e"**Mcos(mr-sl)
Ve = me'™*Msin(mr-sl) - | e"*"cos(mr-sl)

o(u,v)

o(r,s) -

ur u.\‘

= —e* (U2 +m?) = o(u,v) _6(X; »)
o(x,y) O(r.s)

1% Vg

~




Useful Links for this topic

1. http:/mathwiki.ucdavis.edu/Calculus/Vector Calculus/Multiple Integrals/Jacobians

2. http://www-astro.physics.ox.ac.uk/~sr/lectures/multiples/L ectureSreallynew.pdf

3. http://math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/vcal
gﬂﬁgo_l/@ml_ht_m_l

4.

B&url—httg°/°3A%2F°A>2Fwww tcc. edu°/02 FVML°/02FMth1 63°/02Fdocuments°/02FJacob|an
s.pptx&ei=1DKSVZIbG867uAS t4CABg&usg=AFQCNHQDmMFpTK-

pU16sC61WTkwouEVUFA&bvm=bv.96783405.d.c2E
5. http://math.etsu.edu/multicalc/prealpha/Chap3/Chap3-3/printversion.pdf

Taylor's Series

Statement : Let f(x,3) be a function of two variables x, y» which possess continuous partial
derivatives at all points (x, ). Then

ot By £ — Flnad + = (e vy r+ S 2 +22) £+ 22 snl)
oty = Flmy 11 \"ax 2y Tai\”ax o) LF o) T
+ 2L alY #e
41 ax oy e
Another form of Taylor series :

£ = £lab) + 5[ (x — @fula b) + & — B)fy(a, )]
* 21. [ (x — @2 finla, b) + 2(x — @) (3 — B) fi, (@, B) + (3 — BI2f;,,.(a, b)]

+ 5[ — @ faee@B) + 3 — DG — Bfawy (@ 5) + 3(x — D — 5) oy, B)

+ o — B3 f,(aB)]+

Maclaurin's series :

The Taylor series expansion of f{x,y) about the point (0, 0) is called Maclaurin's series.




£ = £0,0 +1 [x£00,0) +¥£,00,0] + I [ x2£2(0,0) + 2xv£,(0,0) + ¥2£,(0,00] +
31: [ 230,00 + 3x23£,(0,0) + 3x12fe,,.(0,0) + ¥3£.,.,.(0,00] + } [ x4 (0.0) +

AX 3V ey (0,0) + 6xZy2 £, (0, 0) + 4xy3 £,,,,,,(0,0) + y2f,,.,.(0,0)]

e it

Problems

1. Find the Taylor series expansion of cos{x — y)upto second degree terms.

Solution:

Taylor series expansion of f{x,)) upto second degree term is given by

FGay) = £00.0) + 1 [%£(0,0) + ¥£,(0,0] + 3 [¥2£ex(0,0) + 2%/, (0,0) + ¥2£55,(0,0)]

Let f(x,y) = cos(x —¥) £(0,0) =cos0 =1
filx,y) = —sin(x —») £(0,0) = —sin0= 0
£:(x,9) = sin (x — ) £.(0,0) =sin0 =0
fox(2,y) = —cos{(x —y) fxe{0,0) = —cos0 = —1
fasyr(6,3) = cos(x —¥) fes(0,0) = cos0 =1

fir (6,90 = —cos (x — ) fis(0,0) = —cos0=—1

Taylor series expansion of f{x,y) = cos (x — y)upto second degree terms
1 5
cos{(x—y) = 1+ I [x(0) + y(0)] + ET] [x2(—1) + 2xy(1) + y»2(—1)]
i,e,, cos{x—y) = 1— zi [xZ— 2xy + ¥2]
2. Expand e**¥ in powers of { x — 1) and ( ¥ + 1) upto and including second degree term.

Solution:

Taylor series expansion of f{x,y) about the point (a.b) i.e., in powers of (x — a) and (v — b)
upto second degree term is given by




Fy) = flab) + = = fila b) + & — )@ »] + 3 [(x — @) finla b)
+ 26— DG - Ofiy (@b + G- 52,00 )]

Let fx,y) = e**¥ A, =-D=a"t=e0=1
Lley) = ex+> L=t = a0 =1
5x,y) = e+ fll,—1) =el"1= e®=1
fax () = €¥%¥ fx(l,—1) =ell=e%=1
ey (6, y) = e Loy, —1) =at"1 =0 =1
Gy y) = e fir(L,—1) =el™1= g0 =1

Taylor series expansion of f{x,y) = e**> in powers of (x — 1) and (y + 1) upto second degree
term is given by

Fe) = £ =D + 5 [ = DAWL-D + & + DA D] + 5 [ — D e (1,—1)
+ 20— DG+ D, 1, -+ &+ 125,01, -1)]
i.e.,
e = 1+ [ GE-DW+ o+ DWI+ 3 [G— DD+ 26— D&+ DD + & — D3]

Lo e = 13+ G-D+ T+l + 2 [G—D?3+ 26— Do+ 1) + (r—17]

3. Expand tan“li—;

as a Taylor series in the neighbourhood of (1, 1) upto second degree term

Solution:
Taylor series expansion of f{x,y) in the neighbourhood of (a, 5) upto second degree term is

given by

£ = Fla ) + 5[ = fab) + & — B)fla B + 3 [(x — o) ula, )
+ 2(x — )y — b)fay(a, b) + (¥ — b)2f;,(a,b)]

Let f(x,y) = tan~1Z Fi1, )= tan—1i =T
x 1 4
5 = 2 ) S A L i
A£G = oo (-%)=-== rAD=-3

&N = g (I = =5 A =3

x4+ 32




N Py?)0—y(22) 2%y i
fex () = (x2+y2)2 T (x24p)2 f:vx(lxl) = 3
(=24 52) (1D —>(23) 2 —x? _
fay(x,3) = — o e e feryL, D=0
_ (=®+52)(0)—x(2y) _ 2xy e
Hyy) = — o s = T e (LD = —3

Taylor series expansion of f(x,y) = ta‘n“f in the neighbourhood of (1, 1) upto second degree

term is given by

flx,y) = FLD + %[ x—-DAAD+ -G D]+ % [(x —1)2f..(1,1)
+ 20— DG — D, LD+ &r— 125,(1,1)]

T i L ICH IO NSO

2!

2 — D —DO + r—1)2(—3)]

Lo, tam 2% = =S -1~ r— 0+  [E—-17— -1)7

(43 (x4o)® | (xb9d®
1 2 3

4. Using Taylor series show that log(1 + x +y) =

Solution:

Taylor series expansion of f{x, ) upto third degree term is given by
1 1
F(x3) = £(0,0) + 5 [x£(0,0) + ¥£,(0,0] + 5; [ *2£.(0,0) + 2xy£,(0,0) + ¥2£,,(0,0]
1
* o [x3fxx(0,0) + 3x2¥f,.,(0,0) + 3xy2f,,,(0,0) + ¥3f,,,,(0,0]]

Let flx,y) =log(1+x+y) F(0, 0) =logl=0

Y = oo £O0=1
O = o £(0,0) =1
Fexm3) = . fex(00) = —1

T it

—
(1+x+3)2

fay (63 = fey (0,00 = —1




3

Ly () =— e fiy(0,0) = —1
Fean®)) = i feex(0,0) = 2
Fery6¥) = s fexy(0,0) = 2
Fory @M = i feyy(0,0) = 2
Fryy (9 = OTZH), foyy(0,0) = 2

Taylor series expansion of f(x,y) = log (1 + x + y) upto third degree term is given by
1 1 1
log(1+x+3) = 0+ [x(1) +yD]+ 55 [¥2D + 2xy (D + »2 D1+ 55 [%3(2)
+ 3x2y(2) + 3xy2(2) + y3(2)]
ie., logll+x+3) =(x +3) — 7 [x? + 2xy + 71+  [2®+ 3x2y + 3xy% + »7]
ie,logll+x+y) = (:Tﬂ')— (L")z+ Coetwd?
5. Expand cosx cosy in powers of x, ¥ upto fourth degree terms.

Solution:

Taylor series expansion of f(x,y) upto third degree term is given by

f(x,3) = £(0,0) +% [x£(0,0) + y£,(0,00] + % [x2£2(0,0) + 2x3£.,,(0,0) + ¥2f,,(0,0)]
+ % [ %3 oz (0,0) + 3x23£.,(0,0) + 3xy2£,,,(0,0) + ¥3£,,(0,0)]

2 )
+ 47 [ %% fre (0,0) + %3 friny (0,0) + 63252 [y, (0,0) + 4% fi35,(0,0)

+3* fyy3y (0,0)]

Let f(x,5) = cosx cosy f0,00=1
fe(x,y) = —sinxcosy f(0,00=0
fi(x, %) = —cosxsiny £(0,0) =0
fex(x,3) = —cosxcosy for(0,0) = —1

fey(%,¥) = sinxsiny fey(0,0) =0




fir(x,9) = —cosx cosy
fexx(x,¥) = sinx cosy
frexy(%,¥) = cosxsiny
freyy (%, %) = sinx cosy
foyy(x,¥) = cosxsiny
frexxx(x,3) = cosxcosy
frexay(%,¥) = —sin xsiny
frexyy(%,7) = cosxcosy
ﬁ)—)-,»(x.)’) = —sinxsiny

fyyyy (%) = cosxcosy

£y (0,00 = —1
fexx(0,00 = O
fexy(0,0) = 0
feyy(0,0) = 0
£y(0,0) = O
Frxwx(0,0) = 1
L (0,0) =D
Fawmnl0) =1
P (OD) =10

fyyy(0,0) = 1

Taylor series expansion of f{x,y) = cosx cosy in powers of x, ¥ upto fourth degree terms

cosxcosy= 1 +% [ x(0) + y(0)] + % [x2(—1) + 2xy(0) + y2(—1)]

+ 3 [0 + 3x23(0) + 3:2(0) + ¥*(0)]

+ % [ x*(1) + 4x3y(0) + 6x2y2(1) + 4xy3(0) + y*(1)]

i.,e.,cosxcosy= 1 —% (x2+y) + 2—14 (x*+6x2y2 +y%)

Maxima and Minima of functions of two variables

The problem of determining the maximum or minimum of a function is encountered in
geometry, mechanics, physics, and other fields, and was one of the motivating factors in
the development of the calculus in the seventeenth century.

A function of two variables can be written in the form z = f(x, y). A critical point is a point

(a, b) such that the two partial derivatives gamd %are zero at the point (a, b). A
X y

relative maximum or a relative minimum occurs at a critical point.

A critical point is a maximum if the value of f at that point is greater than its value at all its
sufficiently close neighboring points.




A critical point is a minimum if the value of f at that point is less than its value at all its
sufficiently close neighboring points.

A critical point is a saddle point if the value of f at that point is greater than its value at
some neighboring point and if the value of f at that point is less than its value at some
other neighboring point. Saddle point is a point which is neither a maximum nor a
minimum.

Working rule for identifying critical points of the function z = f(x,y) and to classify
them

Step 1: Find the partial derivatives gand @ Solving & =0and & = 0 gives the
ox oy ox oy

critical points (a,b) at which a maxima or minima may exist.

Step 2: Find the value of r = g f , 8§ = 9= and 7 = 6'71 at all the points (a,b) got in
ox? OxOy oy~
step 1.
Step 3:
i.lf r <0 and rt —s? > 0 the f(x,y) has a maximum point at (a,b) and the
corresponding maximum value is f(a,b).
ii.if r >0 and rt — s® > 0 the f(x,y) has a minimum point at (a,b) and the
corresponding minimum value is f(a,b).
jii. If rt — s® < 0 the f(x,y) has neither a maximum nor a minimum point at (a,b)
and the point is called a saddle point.
iv. If rt — s® = 0 the further investigation is required to classify the point
Problems

1. Find the maxima and minima of the function, if any, for the function
f(x,y) = y? + 4xy +3x> +x°

Solution: f, = 4y + 6x + 3x2, f, = 2y + 4x. Equate f, and f,to zero

4y + 6x + 3x?=0 ...... 1)

2y +4x=0 ...... 2)

Solving equations (1) and (2) we get the critical points (0,0) and (2/3,-4/3)
r =fuw=6 + 6Xx, t=fy=2, s=fy=4




Critical Point r rt — s? Classification
(0,0) 6 -4 Saddle point
(2/3,-4/3) 10 4 Minimum point

The point (2/3, -4/3) is a minimum point of the function and the minimum value
F(2/3,-4/3) = -4/27

2. Find the maxima and minima of the function f(x,y) = xy (a —x - y)
Solution: f, = ay — 2xy —y?, f, = ax — x* — 2xy. Equate f, and f,to zero
y(@a—2x—y)=0..

x(a—x-2y)=0
Solving equations (1) and (2) we get the critical points (0,0), (a,0), (0,a) and

NE))

(a/3, a/3).
r=fw=-2y, t="f,=-2x, s=fiy=a-2x -2y
Critical Point r rt —s? Classification
(0,0) 0 -a® Saddle point
(a,0) 0 -a® Saddle point
(0,a) -2a -a Saddle point
(a/3, a/3) -2a/3 a’/3 Maximum or
minimum point

(a/3, a/3) is the only point which could be either be a maximum or a minimum.

r depends on the value of ‘a’.

r=-2a/3 < 0if ‘a’ is positive

r=-2a/3 > 0if ‘a’ is negative

Hence f(x,y) has a maximum at (a/3, a/3) if ‘a’ is positive and has a minimum at
(a/3, a/3) if ‘a’ is negative.

3
The value is f(a/3, a/3) =;—7

3. Examine the function f(x,y) = x® + 3xy” -15x% +72x -15y for extreme values

Solution: f, = 3x? +3y? -30x +72, fy = 6xy — 30y. Equate f;, and f,to zero




3x2 +3y? -30x +72 =0 ...... (1)

6xy —30y=0  ...... 2)

Solving equations (1) and (2) we get the critical points (5,1), (5,-1), (4,0) and
(6,0).

r = fux= 6x-30, t = f,y = 6x-30, s = fyy= By
Critical Point r rt—s? Classification
(5,1) [6) -36 Saddle point
(5,-1) [6) -36 Saddle point
(4,0) -6 36 Maximum point
(6, 0) 6 36 Minimum point

(4, 0) is a maximum point and the maximum value is f(4,0) = 112
(6, 0) is a minimum point and the minimum value is f(6,0) = 108

Find the extreme values of the function u = x>y?> —5x> —8xy —5y?
Solution: uy = 2xy? -10x - 8y, u, = 2x°y — 8x -10y. Equate f, and f,to zero
2xy? -10x -8y =0 ...... 1)

2x’y —8x -10y =0 ...... (2)

Since (0,0) satisfies both (1) and (2), (0, 0) is a critical point. To get the other
points rewrite equation (1)

From (1) we get x = — 2

Substitute this in (2)

ol 8F | poml  BF N gpe-p )
2y7—10 2y —10

Solving (4) we gety = 3, -3, 1, -1 Substitute these values in (3) we get the critical
points (0, 0), (1,-1), (-1,1), (3,3), (-3,-3).

r=fw=22y?-10, t="f,=2x?-10, s =fy=4xy -8




Critical Point r rt—s? Classification
(0,0) -10 36 Maximum point
(1,-1) -8 -80 Saddle point
(-1,1) -8 -80 Saddle point
3,3) 8 -720 Saddle point

(-3, -3) 8 -720 Saddle point

(0,0) is a maximum point and the maximum value is f(0,0) = 0.

5. Show that x = a/2, y = a/3 makes the function u = ax® y* — x* y* — x°° a
maximum.

Solution:
u, =3ax’y? —4xy? —3x2y* .....(1)
u, =2ax’y—2x*y—-3x7y* ... (2)

Put x = a/2 and y =a/3 in both equations (1) and (2)

Since both u, and u, are zero at ( a/2,a/3), it is a critical point.
u, =6axy’ —12x’y? —6xy’
u,, =2ax’ —2x*—6xy

¥

u, =6ax’y—8x'y—9x’y’

a
rat (a/2, a/3) = — % which is negative for any value of ‘a’.
a«t
tat (a/2, a/3) = Y
‘14
sat(a/2,a/3) = ——
12

8
rt —s? at (a/2, a/3) = laﬂwhich is positive for any value of ‘a’.

Since r is negative and rt — s? is positive the point (a/2, a/3) is a maximum point




Useful Links for this topic

1. http:/personal.maths.surrey.ac.uk/st/S.Zelik/teach/calculus/max min_2var.pdf

2. http://www.maths.manchester.ac.uk/~mheil/Lectures/2M1/Material/Chapter2.pdf

3. http://tutorial.math.lamar.edu/Classes/Calclll/RelativeExtrema.aspx

4. http://www.ccs.neu.edu/home/lieber/courses/algorithms/cs4800/f10/lectures/11.4.
Maximizing.pdf

5. http/www.maths.manchester.ac.uk/~ngray/MATH19662/Section%204%20-

“Y20Functions%200f%20Two%20Variables.pdf

Constrained Maxima and Minima

Sometimes we may require to find the extreme values of a function of three ( or
more ) variables say f{x,y,z) which are not independent, but are connected by a
relation say gi{x,y. z) = 0. The extreme values of a function in such a situation is called
constrained extreme values.

In such situations, we use g{x,y, z) = 0 to eliminate one of the variables, say z
from the given function, thus converting the function of three variables as a function of

only two variables. Then we find the unconstrained maxima and minima of the converted
function.

When this procedure cannot be used, we use Lagrange's method.

Lagrange's Multiplier Method
Sometimes we may require to find the maximum and minimum values of a
function F{x,»,z) where x, ¥, z subject to the constraint g{x,y,z) = 0.
(1)
We define a function F(x,y.z ) = f{x,yv,z) + Ag(x, v, z)
where A is the Lagrange's multiplier independent of x, y, z.

The neccessary condition for a maximum or minimum are
aF

Bx =0
@
e
aF (3)
-
(4)

Solving the four equations (1), (2), (3) and (4) we get the values of x, y, z, A which give
the extreme values of f{x,wv,z)

Problems




1. Prove that the stationary values of a®x2 + b3y? + ¢3z2 where§+ f - i = 1 occur at

a+b+c a+b+c a+b+c
= R =
a b c
Solution:

Let f = a3x2+ b3yZ + 322
1 1 :

and F=f+ Ag =a3x2+ b3y2 + 0322+A(i+i+ i—l)

gi: — implies 2a®x — —;l: =D ar*= g
ar ) R a2 X
T implies 2b3y — )7=o=>b3y3= =
ar @ G a a
= 0 implies 2c3x — == 0=>c3z3 = =

(3)

From (1), (2) and (3) we get a3x3 = b3y3 = 323

i.e., ax= by = cz
ie e b [ a+b+c a+b+c
€, T=7T=T ST EZE 5T 1
t ¥ = xtyta 1
A a at+b+c at+b+c
consider = = &
% 1 a
- b at+b+c atbic
consider = = =2y
; : 3 o
P c a+b+c a+b+c
consider = =
= 1 c
5 " X 3 a+b+c a+b+c a+b+c
Thus f is stationary at this point = — e A

2. Find three positive constants such that their sum is a constant and their product is

maximum.

Solution:

Let the three positive constants be x, y, z such that x +y + z = a.

Let f =xyz

and g=x+y+z—a (1)

We have to maximize f = xyz subject to the constraintg=x+y +z —a
Let F=f+ g =xyz+ A(x+y+z—a)




Z—: =0 implies »z + A(1) = 0 = vz = —A
= (2)
% =0 implies xz+ A(1) =0 = xz = —A
i (3)
=0 implies xv + A(1) =0 = xy = —A
4)
From (2), (3) and (4) we get yz = xz = x¥
Consider yz = xz = ¥ = X
Consider xz = xy = z=
Therefore x =y = =
Substituting in (1), weget x +x+x =a = 3x = a = x = s
Therefore = £, =z = Z.
3 3

Hence the three numbers are § % §

3. Split 24 into three parts such that continued product of the first , square of the second
and cube of the third may be minimum.

Solution:

Let the three parts be x, v, z such that x + v + =z = 24,

Let f = xy2=z3 (1)
We have to minimize jFf = xy»?z3 subject to the constraint g = x +y + =z — 24

Let F=f+ Ag = x3y2%z% + A(x+y+=z—24)

:—: =D implies 32z3% + A(1) =0 = y»2z3 = —2
s (2)
o (o] implies 2xyz3 + A(1) = 0= 2xy=z% = —A4
(3)
Z—}; =0 implies 3xy2z2+ A(1) = 0 = 3xy2z? = —A4
(4)

From (2), (3) and (4) we get v2z3 = 2xy=z% = 3xyp?=z?

Consider 32z3 = 2xy=z3? = 3y = 2x

Consider ¥2z3% = 3xy2%2z? = =z = 3x

Substituting in (1), we get x + 2x + 3x = 24 = 6x = 24 = x = 4
Therefore = 8, =z = 12 .

Hence the three parts of 24 are 4, 8, 12,




4. Find the shortest distance of the point (2, 1, -3) from the plane 2x + y = 2z + 4
Solution:

Let the foot of the perpendicular from the point (2, 1, -3) to the plane be 2x +y =2z + 4
be P(x,y,z).

Shortest distance from (2, 1, -3 ) to the point P(x,),z) on the plane is the perpendicular
distance d = J(x—2)Z2+ O —1DZ+(z+3)2

~d?2=0(x—2)2+ (y— 12+ (z+3)2

We have to find the minimum distance d equivalently €2 subject to the constraint

2x +y =2z + 4.

Let F=(x—2)2+ (ryr—1D2+ (z+3)2

and g= 2x+y—2z—4 (1)
Let F=f+ Ag = (x—2)2+ (v —1)2+(=+3)2+ A(2x+y —2z—4)

2f —o0 implies 2(x—2)+ 2(2) =0 = x—2= -2 )
j—i:o implies 2(y — 1)+ 2(1)=0 = 2(y—1) = —A4 (3)
%:0 implies 2(z+3) + A(—2) =0 = —(z+3)= —A4

(4)

From (2), (3) and (4) weget x —2=2(y —1) = —(z + 3)
Consider x —2 = 2(y — 1) = x = 2y _—,,y=§
Consider x —2= —z—3 = x= —z—1=z= —1—x

Substituting this in (1) we get 2x + ’;’ + 2x+2 =4 = x = 59

= . 2 13
ay:; |.e.,y=; and Z=—?

Shortest distance from (2, 1, -3 ) to the point P G 5 %,— 1?3) on the plane is given by

2 __anz2 = 4= y A B L
JE-22+ G-+ 8432 ]
5. Find the points on the surface z? = xy + 1 nearest to the origin
Solution:
Let the point on the surface z2 = xy + 1, which is nearest to the origin be P(x,y,z).
Distance from this point P(x,y,z) to the originis d = /x? + y% +z2
=~ f(xy,z) = x2 +y2+22 1)
Butz? =xy+1 )
Using (2) in (1), we get f(x,¥y,z) = x2 +3y2 + xy + 1

ar

ar. 7 = = -
Now |a~w_‘2x+J ay—Z) +x




% _ B2 i DRI
=g 2 t‘ayz_z Sl T
To find the point at which maximum and minimum occurs we equate
.l =
e 0 = 2x+y=0 (3)
%_0 = 2y+x=0 C)
3y

Solving (3) and (4) weget= x=0, y=0

Substituting forx =0, ¥y =0in (2) wegetz? =1 = z= *1

Therefore stationary points are (0,0, 1) and 0, O, -1).

At the stationary point (0, 0, 1) rt — s? =3 = 0 = the function has a minimum at (0, 0,
1)

At the stationary point (0, 0, -1) rt — s2 =3 = 0 = the function has a minimum at (0, 0,-
1)

Hence the points on the surface nearest to the originare (0,0, 1) and 0, O, -1).
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» Definite integrals

>Properties of definite integrals and
problems

» Beta and Gamma integrals

» Relation between them

>Properties of Beta and Gamma integrals
with proofs

» Evaluation of definite integrals in terms of

Beta and Gamma function.




Definite Integrals

b b
Property 1: j f(x)dx = j f(z)dz

b a
Property 2: j f(x)dx = —j f(x)dx
a b

Property 3: } f(x)dx = I f(I:'fiT+j J(x)dx




&a

Property 4: j f(x)dx = j f(a—x)dx
0

0

0 if f(x)isodd

P ty 5: Vx =1 11
roperty S _j f(x)dx > j F(x)dx if f(x)iseven
L0




Problems based on definite Integrals

PROBLEM (1) Evaluate | log(sin x)dx

o 3|y

Solution:

I =\ log(smux)dx (1)

S e 13 |

By using j J(x)dx = j f(a—x)dx
0 0




Adding (1) & (2)

T

3 2
21 :j log sin xdx +j logcosxdx  (Since " loga+logh=Ilogab)
0 V]

_ 2 sin 2x . sin2x
= j log dx ""SIN X COS X = >
0

log 2dx (3)

I~
by
I
O Ty 13 |
[E—
®]
=
un
=-
=
¥y
3
|
O 2 |




O byt | X

log(sin 2x)dx = %j logsin ydy

0

= j log sin ydy

0

7

= j log sin xdx

sub (4) 1n (3)

27 =1-"log2
2

—
I=—1log?2
2 g

7
I logsin ydy
1]

™~

To evaluate | log(sin 2x)dx

O e 13 | B

Put 2x =y.2dx=dy

when x=0.y=0

T
X=—.y=nx
2

(4)




PROBLEM (2) Evaluate log(l+tan&)d &

o e g iy

ey | By

let] =| log(l+4tan8)d& (1)

=

Il
o My |
EA
i
1
|—l
=+
.-"_L
|5
I
i
-
I
-,
i

Il
A Py s |
=3
(=1
—
I
2
Ty
L 1
&,
&

Il
o My s |

l-:rgl: 2 }:ﬂ ') (2)




M+ =

i
2] =—log?2
1 g
T
I=—log?2
2 g




BETA AND GAMMIA FUNCTIONS

Gamma Functions:

]

Gamma function 1s defined as j e X" 'd:n >0 and it is denoted by E
0

ie) In= [ e dx, n>0
0

Beta function:

1
Beta function is defined as I Y1 1-x) de,m>0n>0 and it in
0

denoted by B(m. n)

1
(1e)  Blm.n) =I M- dem>0n>0
L]




Result : 1 Recurrence formula for IE

Result : 2 |_1=1

Result 3: when ‘n" i1s a positive integer. then |I? +1=nl!

Properties of Beta function:

1) Symmertric Property: P(m. n) = f(n. m)
2) Transformation of Beta function:
:rr:e—l
m.r
Blm.n) = j (1+ T
3) Trigonometric form of Beta function:

%
B(m.n)=2| sin2™6.cos™ GO

0




Relation between Beta and Gamma functions:

B(m.n) = ) Jo

(m+mn)

Proof: WK.T [n = J' e x*ldx
0

2

Put x=y"
dx =2ydy

[n=[ e ") 2y dy

— EJ‘ e—}'? _J:Ex—l ._}’lﬂf]r'

0

[ea]

E -2 J V2 _}rjx—l dy

0

Similarly [(m) =2 j e X gy
i}




ml(? = ETe_f -;rzm_ltir-gf[e_'r!_vh_l -dv
0 0

S TR
E—{x -3 )I_mhl_}_j.rr—l_i{a},

4
]

Put x=rcost;, y=rsmb

o My, §

Hence [J| =1, by change of vanables (jacobian)
dxdy =r.drd8 wherer 3 J|(ie)r’ =x" +y°
The region of integration 1s the complete first quadrant.

In which r varies from 0 to @

Gvaries from Dmg_




.i'i"

= 4j pime "drj (cos8)"(sin&)""" 46

@ z £
:4‘[ e~ [rl]m+m—1%d(r:|2_’|' {EDEH}EM—I_(EI'HE)EH—IHTH
] 0




1 1
55 - {36} s
Using Beta & Gamma Properties.

= 2TGntm) |- Bom.n)
4

= [m) - |(m) =[G +n) - BOm.n)

CoB(mon) = IE]E

(m+n)




Result : E= JE

| =

Proof: WK.T S(m.n)=2[ (sin6)"™" (cos 6" d6
0

(1)




. .




PROBLEM (3)

Evaluate I E_f ax

0
Solution
Put x° =t; 2xdx=dt

P o dt
_'.!;gfd:f:?[e 0

@ 1

1

1: .31
= —J‘ et dr
2 0

1|1

212

1z
2




- R

" -6 7 ! _
PROBLEM @)  Evaluate sin” xcos xdxusing Gamma functions

O Ry, e | B

Solution:

we know that

‘('pﬂ]‘('gﬁ]
sin® 8 costadg = LN 2 JI\ 2,

l:lt——.h;l'\_-‘

[p+q+2)
2
Herep=6.q=7
o B D
2 i 15
g jsmﬁ:fcm'xdx:l Z _2 -
: 2 5 BT, 2]
2 2 2 2 27|\ 2,
2 13x11=9=7
_ 16
3003




Property 1: I f(x)dx =j f(2)d:z

Proof :LHS = j J(x)dx= [F(r)]i
- FIb]-Fla]
RHS=|f(z)d=[F(Z)],

= F[b]-Fla]

LHS =RHS




Property 2: I f(x)dx = —j fx)dx

Proof: LH.S = [ f(x)dx=[F(x)]; = F[b]-Fla]

RHS = —J' f(x)dx=—{F(x)];

- —[F(a)-F(®)
- [F&)-F(a)]

LHS =R HS




Property 3: I fx)dx =]: f (I}-:ETI+I f(x)dx

b
Proof : LH.S = [ f(x)dx

= [F(x)l, = F(5)- F(a)

RHS =j f(x}dﬂj' f(x)dx

= [F@L +[Fxf
= F(c)—F(a)+ F(b)—F(c)
= F(b)—F(a)

Hence LHS=EFRE.HS




Praoperty 4: jf f(x)dx =T f(a—x)dx

Proof : Consider. LHS
Put x=a-—:

dx =—d=

If x=0=z=a

r=a=z=0

f fdx=| fla—2)~dz)

= — j fla—z)dz




= I fla—z)dz [by property 2]
0

= [ fla—xax [by property 1]
0
=RHS

T Flx)dx =T fla—x)dx




Property 5: 1=1

]

we know that E = je?_x.?:" - dx

0

Putn=1 1 = IE_IiI=|:E } dx
i} i




Property 6: B(m. n) = f(n. m)

Proof : WK.T Blm,n) = j ™ (1-x)"dx

WEKT }f(x)dr=i fla—x)dx
- B(m,n) = j 10" 1--x)]" dx

1
= j (1-x)"" x" dx
]

1
= J. O (1= dx
0

L(m n)= G(n,m), by definition of Beta function.
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# Double mntegrals in Cartesian and polar co-ordinates

» Change the order of integration

# Change of vanables from Cartesian to polar co-ordmates
7 Area of plane curves using double integrals

r Tnple integrals

r Volume using triple integrals in Cartesian co-ordinates




Problem (1)

Pod ey
'

'i dxely
2

xy

dxelv

Xy

Evaluate ﬁ

L log 1 v
v

I
fod oy £

I
[a—
0
3
N
L | &
| |
[a—
0
19
-
[N
'l
[~




Problem (2)

da 24fax
Change the order of integration and hence evaluate { F xy dy dx
0
e
4a Wfaxr
LetI= | [ xydvdx
e
. : X o .
The limits for v varies from y=—=to y= EJE and the limts for x vanes from x =0 to
a

X = 4a. The region of integration 1s enclosed between the curves (parabolas) X = 4ay and
v~ = 4ax and the lines x = 0 and x = 4a. The two parabolas intersect at (0. 0) and (4a, 4a).

Y
x° = 4ay

v = 4ax




To change the order of integration, first mtegrate wrt x and then wrt y. Since first
mtegration 15 w.r.t X, we consider a horizontal strip. The lints for x vanes from x = yl.-"4a

to x= Eﬁan{l then y varies from y=0to y = 4a.

Hence,
4a I-q"f}_' 4a I] lHE
= [ T oy = [[5]
] 1 II.'-' = ¥
'4—9 4a
d4a 4
day Y
= —_— V- —. ] I'.'JT'
F[ 2 VT34 '11 y
_—2 }} 1 I]_:ﬁ Sk
3 32a° 6 |
3 ]
{5, 64a° 1 1 (4a)
I 3 32a 6
_128a" 64a°
3 3
_ 64a’
3

™~




Problem (3)

Change the order of integration in

o T—

-y
[ xyebely and hence evaluate 1t.
::-,'

Solution:

The region of integration 15 bounded by x =y, x =2 - y. y =0 and y =1 which 1s
shown 1n the figure.




When we change the order of integration, we first mtegrate with respect to y
keepmg x as constant. When the region of integration 1s covered by vertical strip, 1t does
not mtersect the region of integration m the same fashion. Hence the region AOAR 1s
splitted into two subregions AOAC and ACAB. Hence

G[wa=£xmﬁt++£ xydydx
_][ T ey =:[ ! el +E 1[ e

0y

o] 2]




P | bt




Area Using Double Integral

2 g

3=

Problem (4) Find the Area enclosed by the ellipse I—ﬂ+';—2 =1
.

Solution: ' .
k) S+

From the equation of the ellipse. we have W %
1 ; TN

, F %z’//ﬁ/ ay
Lo+ 1=
b a’

So, the region of integration R can be considered as the area bounded by

=1

—-b 7 b 7
x=—aandx=a.y—Na —x andy=—va —x
a a

Area = H dydx =4x Area in first quadrant

R




= /mb square units.




Problem (5)

Find the area of the circle X~ + _‘p‘z =7 lies in the positive quadrant

Solution

The circle lies in the first quadrant is bounded by x=0,y=0,x" +y" ="

Therefore, the region of mtegration R can be considered as the area bounded by

x=0,x=r,y=0and y=vr" -x

Area = ﬂ dxdy
R

al)

| (0.0)

N

™~







Problem (6) Find the area of the cardioids r = a(1+cos8)

Solution

Area = || dxdy y 4
R
r=af1+cos 8 )

= [[ rdrde

Given r=a(l+cosd) o0 7 .
Limaits \é /

r:0—=a(l+coséd)

0.0 — 27

2r a(l+cosd) Ix }"2 a(l+cos &)
Area = rardf=| | — de
0

0 0 0

= —EI (1+cos8) d@
0




(1+2cos 8+ cos 8)d8

Il
&
=]
=

1+cos 28 ]dﬁ

:ﬂ2

[1+2m53+

= e

—

_ a{mzsmm%{ms’f&ﬂ

<A

- a’ {{;r —0)+2(0-0) +%{(n—ﬂ)+%(ﬂ—ﬂiﬂ

. 1\ 37 , :
= a° ;-;r.|_§ﬂ- =?ﬁr' Square units.




Volume using Triple Integrals

Problem (7)

Find the volume of the sphere X T+ }-‘2 +z° =a” without transformation.
Solution

V =8 x volume in the first octant

. ¥ g ¥
zvaries fromz=0toz= -Jﬂ" —-X -y

- 2 2
wvaries fromy=0to y= va —x

avaries fromx=0tox=a

P o P
w:a{ ! l d=dvdx

of T o







3 3 3 3
- 2:?[:13 _a_} - 2[35’ a } - 4? cubic units




4 N

Problem (8)
2 2 2
Find the volume of that portion of the EuipSGidI—:'F';;—:-l- —=1 which lies n
a [
the first octant using triple integration.
Solution
2 2 2
X ! Z
Given _+2 42 o1 (1)
a- b ¢

Volume = Jj] dzdydx

To find x limit put vy =0and z =0 we get (line integral)

-

X
(1}:::—2:12}1’2 —a’ =>x=*a
a

1e.x =0 tox = a("” first octant area)

To find y limat put z = 0 we get (surface integral)




IE 2
{1}:;=rﬂ—2+';:3 -1
=2 —1-=
b a

=3 =E}2[1—%]
ﬂ. -

_+p 1-X

=y=2byl Aﬁ

= y=D>, |'1—17
Y= .

—

e

| '::_
ie, y=0,y=b,1-=
' V' df

(** first octant area)




To find z limit [volume mtegral]

o ey
[ ]







}-‘jbz[l—x—gJ—.m b [1—I—:
. ;
+ - a
2 2
bz[l_g)
0+ a [E ax




.Fi!i:lf[ .:J]

—_ H—_

4 3

_ mbc 2a  mabc
4 3 6

Hence the volume of the ellipsoid

mabc 4 i .
= — jmbec cubic units.

" =8x




