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Introduction 

 The Simplex Method also called the ‘Simplex Technique’ or the Simplex 

Algorithm is an iterative procedure for solving a linear programming problem in a 

finite number of steps. The method provides an algorithm which consists in moving 

from one vertex / corner point of the region of feasible solutions to another vertex in 

such a manner that the value of the objective function at the succeeding vertex is 

improved [lesser in case of minimization and more in case of maximization] than at 

the preceding vertex. This procedure of jumping from one vertex to another is then 

repeated. Since the number of vertices is finite, the method leads to an optimal vertex 

in a finite number of steps or indicates the existence of an unbounded solution. 

We will introduce various concepts / definitions that are related to simplex method in 

the following paragraphs. 
 

 Definations: 
  
1. Objective Function 
 The function that is to be either minimized or maximized is called as objective 

function. For example, it may represent the cost that you are trying to minimize or 

total revenue that is to be maximized and so on. 

 2. Constraints 
 A set of equalities and inequalities that the feasible solution must satisfy is called as 

constraints of the problem. 
3. Optimal Solution 
 A vector X, which is both feasible (satisfying all the constraints in the given 

problem) and optimal (obtaining the largest or smallest value for the objective 

function, depends upon the case) is known as optimal solution. 
 4. Feasible Solution 
 A solution vector, X, which satisfies all the constraints of the given problem is called 

feasible solution to the given LPP. 
 5. Basic Solution 
 X of (AX=b) is a basic solution if the n components of X can be partitioned into m 

“basic” and n-m “non-basic” variables in such a way that: the m columns of A 

corresponding to the basic variables form a nonsingular basis and the value of each 

“non-basic” variable is 0. The constraint matrix A has m rows (constraints) and n 

columns (variables). 



 
6. Basis 
The set of basic variables is called the basis for the given problem. 

 
 7. Basic Variables 
 Basic variables are set of variables, which are obtained by setting n-m variables 

values to zero, and are solving the resulting system. 

 
 8. Non-basic Variables 

 A variable not in the basic solution, not part of the solution is called non-basic 

variable. 
 

9. Slack Variable 
If we have a ‘less or equal’ to constraint, to convert that as an equation, a variable is 

added to the left hand side of the constraint; the new variable, which is added to the 

left hand side of the constraint is called as slack variable. 
 

 

Ex:                         2X1 + 5X2 ≤10 
                           2X1 + 5X2 + SX3 = 10 
The variable, SX3, is called as slack variable for the given constraint. 
 10. Surplus Variable 
 If we have a ‘greater or equal’ to constraint, to convert that as an equation, a variable 

is subtracted from the left hand side of the constraint; the new variable, which is 

subtracted, to the left hand side of the constraint is called as surplus variable. 
 

Ex:                                          2X1 + 5X2 ≥10 
                                          2X1 + 5X2 – SX4 = 10 
The variable, SX4, is called as surplus variable for the given constraint. Therefore, it 

is a variable added to the problem to eliminate greater-than constraints. 
 11. Artificial Variable 
 To get the initial basis in a ‘greater than or’ equal to constraint, additional variable is 

added in addition to the surplus variable. The additional variable added to a linear 

programming problem is called as ‘artificial variable’. 
12. Unbounded Solution 
 For some linear programs it is possible for the objective function to achieve 

infinitely high / low values, depends upon the objective. Such an LP is said to have 

an unbounded solution. 
 

 13. Standard form of LPP 
 Let the objective function be 
Max Z = CX 
 And the set of constraints are represented as  



AX<=b 
Where, b- the vector obtained by collecting all the right hand side of the constraints. 
If we add set of slack variables to all the constraints and if the constraints are 

equation, then that particular form is called as standard form of linear programming 

problem. 
Therefore, Max Z = CX And the set of constraints are represented as 
AX=b 
Example 
Consider the following LPP 
Maximize Z = 15X1 + 10X2 
 Subject to constraints 
4X1+6X2 <=360 
3X1+0X2<=180 
0X1+5X2 <=200 
X1, X2>=0 
  
The standard form of the given problem is obtained by adding slack variable X3 to 

the first constraint, X4 to the second and X5 to the third constraint. 
 

 
4X1+6X2 + X3=360 
3X1+0X2 +X4=180 
 0X1+5X2 +X5=200 
X1, X2, X3, X4 & X5>=0 
The modified objective function is 
Maximize Z = 15X1 + 10X2 + 0X3 + 0X4 +OX5 
14. Canonical form of LPP 
 Let the objective function be 
Max Z = CX 
 And the set of constraints are represented as  
AX<=b 

Where, b- the vector obtained by collecting all the right hand side of the constraints. 
This form, where all the constraints are ‘<=’ type for a maximization problem and 

‘>=’ type for a minimization problem is known as canonical form of LPP. 
Simplex Algorithm 
Step 1 

 Check whether the objective function of the given L.P.P. is to be maximized or 

minimized. 
If it is to be minimized then convert it into a problem of maximizing it by using the 

result 

Minimum= -Maximum (-z) 
Step 2 



 Check whether all ‘b’ values are non-negative. If any one of b is negative then 

multiply the corresponding inequality constraints by –1, so as to get all b values as 

non-negative. 
Step 3 

 Convert all the in equations of the constraints into equations by introducing slack 

and/or surplus variables in the constraints. Put the costs of these variables equal to 

zero in the objective function, if the variables are slack variables. If surplus / artificial 

variables are added, then we need to use ‘Big M’ Method, which is a modified 

algorithm of the same simplex method. 
 Step 4 

 Obtain an initial basic feasible solution to the problem in the form Xb=B^-1 b and 

put it in the first column of the simplex table. 
Step 5 

 Compute the net evaluations zj-cj (j=1,2…n) by using the relation, 
 Zj-Cj=CB yj-cj. 
 
Examine the sign zj-cj. 
i.        If all values are >=0, then initial basic feasible solution is an optimum feasible 

solution. 
ii.      If at least one value < 0, go to next step. 
 Step 6 

 If there is more than one negative value, then choose most negative. 
 Step 7 

 Compute the ratio 
{xb/yi, yi>0,I=1,2…. m} and choose the minimum of them. 
 
 The common element in the kth row and rth column is known as the leading element 

(pivotal element) of the table. 
 
 Step 8 

 Convert the leading element to unity by dividing its row by the leading element itself 

and all other elements in its column to zeros. 
Step 9 

 Go to step 5 and repeat the process until either an optimum solution is obtained or 

there is an indication of unbounded solution. 
 
  
 



 

Properties of The Simplex Method 
  

1.      The Simplex method for maximizing the objective function starts at a basic 

feasible solution for the equivalent model and moves to an adjacent basic feasible 

solution that does not decrease the value of the objective function. If such a solution 

does not exist, an optimal solution for the equivalent model has been reached. That 



is, if all of the Coefficients of the non-basic variables in the objective function 

equation are greater than or equal to zero at some point, then an optimal solution for 

the equivalent model has been reached. 
2.      If an artificial variable is in an optimal solution of the equivalent model at a 

nonzero level, then no feasible solution for the original model exists. On the contrary, 

if the optimal solution of the equivalent model does not contain an artificial variable 

at a non-zero level, the solution is also optimal for the original model. 
 3.      If all the slack, surplus, and artificial variables are zero when an optimal 

solution of the equivalent model is reached, then all of the constraints in the original 

model are strict “equalities” for the values of the variables that optimize the objective 

function. 
4.      If a non-basic variable has zero coefficients in the objective function equation 

when an optimal solution is reached, there are multiple optimal solutions. In fact, 

there is infinity of optimal solutions, the Simplex method finds only one optimal 

solution and stops. 
 5.      Once an artificial variable leaves the set of basic variables (the basis), it will 

never enter the basis again, so all calculations for that variable can be ignored in 

future steps. 
6.      When selecting the variable to leave the current basis: 
(a)    If two or more ratios are smallest, choose one arbitrarily. 
 

(b)   If a positive ratio does not exist, the objective function in the original model is 

not bounded by the constraints. Thus a Finite optimal solution for The original model 

does not exist. 
 7.    If a basis has a variable at zero level, it is called a degenerate basis. 
8.       Although cycling is possible, there have never been any practical problems for 

which the Simplex method failed to converge. 
 

Example 
 
Maximize z = X1+2X2 
Subject to: 
 -X1+2X2<=8, 
X1+2X2<=12, 
X1-X2<=3; 
X1>=0 and X2>=0. 
Solution 
 
 Step 1 
 
 Introducing the slack Variable X3>=0, X4>=0 and X5>=0 to the first, second and 

third constraints respectively and convert the problem into standard form. 



  
 

-X1+2X2 + X3 = 8,X1+2X2 +X4 =12,X1-   X2 +X5 = 3; 
 
 And the modified objective function is  
 
Z=X1+2X2+0X3+0X4+0X5 
 
X1, X2, X3, X4 & X5 >0 
 
 The constraints the given L.P.P are converted into the system of equations: 
 

 
 
Step 2 
An obvious initial basic feasible solution is given by XB=B-1b. 
 Where B=I3 and XB=[X3 X4 X5], & I3 stands for Identity matrix of order of 3 (that 

is a 3X3 matrix). That is, 
[X3 X4 X5] = I3 [8    12    3] = [8      12     3] 
 
Step 3 
 
 We compute yj and the net evaluations, zj-cj corresponding to the basic variables 

X3, X4 and X5: 
 

 y1=B-1a1 = I3 [-1 1 1] = [1  1 1] 

y2=B-1a1 = I3 [2 2 -1] =  [2  2 -1] 

y3 = B-1e1 = e1,  y4 = B-1e2 = e2 and y5 = B-1e3 = e3. 

Z1-C1 = cB y1-c1 = (0 0 0) [-1 1 1]-1 = -1. 

Z2-C2 = cB y2-c2 = (0 0 0) [2 2   -1]-2 = -2. 

  
 



                            Z3-C3 = cB y3-c3 = (0 0 0) e1-0 = 0, 
 
  
 
                            Z4-C4 = cB y4-c4 = (0 0 0) e2-0 = 0, 
 
  
 
                            Z5-C5 = cB y5-c5 = (0 0 0) e3-0 = 0. 
 
  
 
  
 
Step 4 - Deciding the entering variable 
 
  
 
Making use of the above information, the starting simplex tableau is written as 

follows: 
 

 

 
 

 
From the starting tableau, it is apparent that there are two Zj-Cj values, which are 

having negative coefficients. 
 
 We choose the most negative of these, viz., -2. The corresponding column vector y2, 

therefore, enters the basis. 
  



Step 5 - Deciding the leaving variable 
 
Now, we will compute the ratios using the entering column elements and RHS of 

each constraint. 
 
Each row of the table, the respective RHS coefficient of the constraint is divided by 

entering column, non-zero element and placed in the last column of the table. Then, 

the minimum among the value is chosen as leaving variable. 
Min {XBi/Yi2, Yi2>0} = Min. {8/2, 12/2, no ratio for third row} = 4. Since the 

minimum ratio occurs for the first row, basis vector Y3 leaves the basis. The 

common intersection element y12 (=2) become the leading element for updating. We 

indicate the leading element in bold type with a star *. 
Step 6 
 
Convert the leading element y12 to unity and all other elements in its column (i.e.y2) 

to zero by the following transformations: 
 
Y11 =Y11/Y12 =1/2, Y10 = Y10/Y12 =8/2  or 4, so on,  
 
Y20=y20-(y10/y11) y22=12-(8/2) (2) =4.  
 
Y30=y30-(y10/y12) y32=3-(8/2) (-2) =11.  
 
Y21=y21-(y11/y12) y22=1-(-1/2) (2) =2. 
  
Y31=y31-(y11/y12) y32=1-(-1/2) (-2) =0. And so on……… 
 
  
Step 7 
 
Using the above computations, the following iterated simplex tableau is obtained:  
 
The above simplex tableau yields a new basic feasible solution with the increased 

value of z. 
 
 Now since z1-c1 < 0, y1 enters the basis.  
 
Also, since Min. {X Bi / yi >0} = Min {4/2, 7/ (1/2)} = 2, y4 leaves the basis.  
 
Thus the leading element will be y21 (=2).  
 
Converting the leadwing element to unity and all other elements of yi to zero by 

usual row transformations the next iterated tableau is obtained. 



 

 

 
 

 
Since, all Zj-Cj>=0, we conclude that there is no more improvement possible and the 

problem is in its optimum stage.  
 
Therefore, the optimal solution for the given problem is  
 
X1= 2       X2= 5      Max Z = 12  

 

 

 

 

 

 

 

Examples 

1.  Solve the following LP problem using Simplex method. And also obtain the 
variations in 
     C j  (j = 1,2) which are permitted without changing the optimal solution 

Maximize Z = 3x1 + 5x2, 
Subject to constraints  
x1 + x2 ≤ 1, 

              2x1  + x2 ≤ 1  
              x1,  x2 ≥ 0 
 



 
 
 
2.  Solve the following LP problem using Simplex method. 

Maximize Z = 45x1 + 80x2, 
Subject to constraints  
5x1 + 20x2   ≤ 400, 

              10x1 + 15x2  ≤ 450,    
               x1, x2 ≥ 0 
 
3. Determine the ranges for discrete changes in the components b2 of the 
requirement vector so                     as maintain the feasibility of the current optimal 
solution 
Maximize Z = -x1 +2x2 – x3   

Subject to constraints 
 3 x1 + x2 –x3   ≤ 10 
 -x 1  +  4  x2  + x3 ≥ 6  
 x2    +     x3   ≤ 4   
and  x1, x2 ≥ 0 
 
4. Discuss the effect on the optimum solution of the discrete changes in 
  a)  The availability of resources. 
  b)  Change in the input- output coefficients.  

  c)  Change in the coefficient of objective function. 
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UNIT – II - INTEGER LINEAR PROGRAMMING – SMT5210 



 

INTRODUCTION: 

Integer programming expresses the optimization of a linear function subject to a set 

of linear constraints over integer variables. 

The statements presented in IPP are all linear programming models. However, linear 

programs with very large numbers of variables and constraints can be solved 

efficiently. Unfortunately, this is no longer true when the variables are required to 

take integer values. Integer programming is the class of problems that can be 

expressed as the optimization of a linear function subject to a set of linear constraints 

over integer variables. It is in fact NP-hard. More important, perhaps, is the fact that 

the integer programs that can be solved to provable optimality in reasonable time are 

much smaller in size than their linear programming counterparts. There are 

exceptions, of course, and this documentation describes several important classes of 

integer programs that can be solved efficiently, but users of OPL should be warned 

that discrete problems are in general much harder to solve than linear programs. 

Example 
 
Maximize z = X1+2X2 
Subject to: 
 -X1+2X2<=8, 
X1+2X2<=12, 
X1-X2<=3; 
X1>=0 and X2>=0. 
Solution 
 
 Step 1 
 
 Introducing the slack Variable X3>=0, X4>=0 and X5>=0 to the first, second and 

third constraints respectively and convert the problem into standard form. 
  
 

-X1+2X2 + X3 = 8,X1+2X2 +X4 =12,X1-   X2 +X5 = 3; 
 
 And the modified objective function is  
 
Z=X1+2X2+0X3+0X4+0X5 
 
X1, X2, X3, X4 & X5 >0 
 
 The constraints the given L.P.P are converted into the system of equations: 



 

 
 
Step 2 
An obvious initial basic feasible solution is given by XB=B-1b. 
 Where B=I3 and XB=[X3 X4 X5], & I3 stands for Identity matrix of order of 3 (that 

is a 3X3 matrix). That is, 
[X3 X4 X5] = I3 [8    12    3] = [8      12     3] 
 
Step 3 
 
 We compute yj and the net evaluations, zj-cj corresponding to the basic variables 

X3, X4 and X5: 
 

 y1=B-1a1 = I3 [-1 1 1] = [1  1 1] 

y2=B-1a1 = I3 [2 2 -1] =  [2  2 -1] 

y3 = B-1e1 = e1,  y4 = B-1e2 = e2 and y5 = B-1e3 = e3. 

Z1-C1 = cB y1-c1 = (0 0 0) [-1 1 1]-1 = -1. 

Z2-C2 = cB y2-c2 = (0 0 0) [2 2   -1]-2 = -2. 

  
 
                            Z3-C3 = cB y3-c3 = (0 0 0) e1-0 = 0, 
 
  
 
                            Z4-C4 = cB y4-c4 = (0 0 0) e2-0 = 0, 
 
  
 
                            Z5-C5 = cB y5-c5 = (0 0 0) e3-0 = 0. 

 
  
 



  
 
Step 4 - Deciding the entering variable 
 
  
 
Making use of the above information, the starting simplex tableau is written as 

follows: 
 

 

 
 

 
From the starting tableau, it is apparent that there are two Zj-Cj values, which are 

having negative coefficients. 
 
 We choose the most negative of these, viz., -2. The corresponding column vector y2, 

therefore, enters the basis. 
  
Step 5 - Deciding the leaving variable 
 
Now, we will compute the ratios using the entering column elements and RHS of 

each constraint. 
 
Each row of the table, the respective RHS coefficient of the constraint is divided by 

entering column, non-zero element and placed in the last column of the table. Then, 

the minimum among the value is chosen as leaving variable. 
Min {XBi/Yi2, Yi2>0} = Min. {8/2, 12/2, no ratio for third row} = 4. Since the 

minimum ratio occurs for the first row, basis vector Y3 leaves the basis. The 

common intersection element y12 (=2) become the leading element for updating. We 



indicate the leading element in bold type with a star *. 
Step 6 
 
Convert the leading element y12 to unity and all other elements in its column (i.e.y2) 

to zero by the following transformations: 
 
Y11 =Y11/Y12 =1/2, Y10 = Y10/Y12 =8/2  or 4, so on,  
 
Y20=y20-(y10/y11) y22=12-(8/2) (2) =4.  
 
Y30=y30-(y10/y12) y32=3-(8/2) (-2) =11.  
 
Y21=y21-(y11/y12) y22=1-(-1/2) (2) =2. 
  
Y31=y31-(y11/y12) y32=1-(-1/2) (-2) =0. And so on……… 
 
  
Step 7 
 
Using the above computations, the following iterated simplex tableau is obtained:  
 
The above simplex tableau yields a new basic feasible solution with the increased 

value of z. 
 
 Now since z1-c1 < 0, y1 enters the basis.  
 
Also, since Min. {X Bi / yi >0} = Min {4/2, 7/ (1/2)} = 2, y4 leaves the basis.  
 
Thus the leading element will be y21 (=2).  
 
Converting the leadwing element to unity and all other elements of yi to zero by 

usual row transformations the next iterated tableau is obtained. 
 

 



 
 

 
Since, all Zj-Cj>=0, we conclude that there is no more improvement possible and the 

problem is in its optimum stage.  
 
Therefore, the optimal solution for the given problem is  
 
X1= 2       X2= 5      Max Z = 12  

 

 

Example: 

1. Obtain integer solution to the all integer programming problem 
        Maximize Z = x1 + 2x2 
        Subject to constraints 
        3x1 + 2 x2 ≤ 5 
         x2 ≤ 2 
        x1 ,x2 ≥ 0 and are integer. 
 
2.  Obtain integer solution to the all integer programming problem 
     Maximize Z = x1 + x2 
     Subject to constraints 
     x1 + 2 x2 ≤ 4 
     6x1 + 2 X2 ≤ 9 
     x1 ,x2 ≥ 0 and are integer. 
 
 
 
 



3. Solve the LPP by using Gomory’s cutting plane method 
   Maximize Z = x1 +x2 
   Subject to constraints 
     3x1 + 2 x2  ≤  5 
     x2 ≤ 2  
     x1 ,x2 ≥ 0 and are integer. 
 
 4. Write algorithm on Fractional cut method-all integer programming problem. 
 
 5.  Write algorithm on Fractional cut method-mixed integer programming problem. 
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UNIT – III - GOALPROGRAMMING – SMT5210 



INTRODUCTION: 

Goal programming approach establishes a specific numeric goal for each 
of the objective and then 
 attempts to achieve each goal sequentially up to a satisfactory level rather 

than an optimal level. An important technique that has been developed to 

supplement LP is called goal programming  It is not possible for LP to 
have multiple goals unless they are all measured in the same units, and 

this is a highly unusual situation  In linear and integer programming 

methods the objective function is measured in one dimension only  They 

may want to achieve several, sometimes contradictory, goals  Firms often 
have more than one goal.  
  
 
In GP, Slack and Surplus variables are known as Deviational Variables (di 
– and di +) (means under achievement In GP, instead of trying to minimize 
or maximize the objective function directly, as in case of an LP, the 
deviations from established goals within given set of constraints are 

minimized.  Ijiri (1965) developed the concept of preemptive priority 
factors, assigning different priority levels to incommensurable goals and 
different weights to the goals at the same priority level.  Examples of 
Multiple Conflicting Goals are: i. Maximize Profit and increase wages paid 

to employees ii. Upgrade product quality and reduce product cost  GP; 
Channes and Cooper (1961); Suggested a method for solving an 
infeasible LP problem arising from various conflicting resource constraints 
(Goals). GOAL PROGRAMMING: AN INTRODUCTION (Cont…These 
deviational variables represent the extent to which target goals are not 
achieved. The objective function then becomes the minimization of a sum 
of these deviations, based on the relative importance within the 
preemptive structure assigned to each deviation.  
 
 
 
OVERACHIEVEMENT 
 
These deviations from each goal or sub-goal. Deviational variables are 
real “Satisficing” (instead of optimizing) Deviational variables minimized 
(instead of maximizing profit or minimizing cost of LP) Multiple goals 
(instead of one goal) 
 
 
 



Example 
 
Maximize z = X1+2X2 
Subject to: 
 -X1+2X2<=8, 
X1+2X2<=12, 
X1-X2<=3; 
X1>=0 and X2>=0. 
Solution 
 
 Step 1 
 
 Introducing the slack Variable X3>=0, X4>=0 and X5>=0 to the first, second and 

third constraints respectively and convert the problem into standard form. 
  
 

-X1+2X2 + X3 = 8,X1+2X2 +X4 =12,X1-   X2 +X5 = 3; 
 
 And the modified objective function is  
 
Z=X1+2X2+0X3+0X4+0X5 
 
X1, X2, X3, X4 & X5 >0 
 
 The constraints the given L.P.P are converted into the system of equations: 
 

 
 
Step 2 
An obvious initial basic feasible solution is given by XB=B-1b. 
 Where B=I3 and XB=[X3 X4 X5], & I3 stands for Identity matrix of order of 3 (that 

is a 3X3 matrix). That is, 
[X3 X4 X5] = I3 [8    12    3] = [8      12     3] 
 



Step 3 
 
 We compute yj and the net evaluations, zj-cj corresponding to the basic variables 

X3, X4 and X5: 
 

 y1=B-1a1 = I3 [-1 1 1] = [1  1 1] 

y2=B-1a1 = I3 [2 2 -1] =  [2  2 -1] 

y3 = B-1e1 = e1,  y4 = B-1e2 = e2 and y5 = B-1e3 = e3. 

Z1-C1 = cB y1-c1 = (0 0 0) [-1 1 1]-1 = -1. 

Z2-C2 = cB y2-c2 = (0 0 0) [2 2   -1]-2 = -2. 

  
 
                            Z3-C3 = cB y3-c3 = (0 0 0) e1-0 = 0, 
 
  
 
                            Z4-C4 = cB y4-c4 = (0 0 0) e2-0 = 0, 
 
  
 
                            Z5-C5 = cB y5-c5 = (0 0 0) e3-0 = 0. 

 
  
 
  
 
Step 4 - Deciding the entering variable 
 
Making use of the above information, the starting simplex tableau is written as 

follows: 
 

 



 
 

 
From the starting tableau, it is apparent that there are two Zj-Cj values, which are 

having negative coefficients. 
 
 We choose the most negative of these, viz., -2. The corresponding column vector y2, 

therefore, enters the basis. 
  
Step 5 - Deciding the leaving variable 
 
Now, we will compute the ratios using the entering column elements and RHS of 

each constraint. 
 
Each row of the table, the respective RHS coefficient of the constraint is divided by 

entering column, non-zero element and placed in the last column of the table. Then, 

the minimum among the value is chosen as leaving variable. 
Min {XBi/Yi2, Yi2>0} = Min. {8/2, 12/2, no ratio for third row} = 4. Since the 

minimum ratio occurs for the first row, basis vector Y3 leaves the basis. The 

common intersection element y12 (=2) become the leading element for updating. We 

indicate the leading element in bold type with a star  
 

 

 

Step 6 
 
Convert the leading element y12 to unity and all other elements in its column (i.e.y2) 

to zero by the following transformations: 
 
Y11 =Y11/Y12 =1/2, Y10 = Y10/Y12 =8/2  or 4, so on,  



 
Y20=y20-(y10/y11) y22=12-(8/2) (2) =4.  
 
Y30=y30-(y10/y12) y32=3-(8/2) (-2) =11.  
 
Y21=y21-(y11/y12) y22=1-(-1/2) (2) =2. 
  
Y31=y31-(y11/y12) y32=1-(-1/2) (-2) =0. And so on……… 
 
  
Step 7 
 
Using the above computations, the following iterated simplex tableau is obtained:  
 
The above simplex tableau yields a new basic feasible solution with the increased 

value of z. 
 
 Now since z1-c1 < 0, y1 enters the basis.  
 
Also, since Min. {X Bi / yi >0} = Min {4/2, 7/ (1/2)} = 2, y4 leaves the basis.  
 
Thus the leading element will be y21 (=2).  
 
Converting the leadwing element to unity and all other elements of yi to zero by 

usual row transformations the next iterated tableau is obtained. 
 

 

 
 

 
Since, all Zj-Cj>=0, we conclude that there is no more improvement possible and the 

problem is in its optimum stage.  
 



Therefore, the optimal solution for the given problem is  
 
X1= 2       X2= 5      Max Z = 12  

  
 

EXAMPLES: 

1. Solve the GP problem 

Minimize = P 1 d 1 + +   P2 d2 -   +   P 3 d 3 - 

Subject to  

  x 1 + x 2 + d1 -  -  d1 + = 40 

 x 1  + d2 -  -  d3 + = 20 

 x1, x2, d i > o  

  

2.   Use simplex method to solve the goal programming problem 
Minimize Z = P 1 d 1-  + P 2  (2d 2-  + d 3 - ) +P 3 d 1+ 
Subject to constraints 
x 1 + x 2 + d 1- - d 1+ = 500 
x 1 + d 2- = 340  
x 2 + d 3 

-  =400 
   x 1, x 2, d 1-, d 1+, d 2- ,d 3 

- ≥  0 

  
3. Use simplex method to solve the goal programming problem 

Minimize Z = P 1 d 1-   + P 2 (2d 2-  + d 3 - ) +P 3 d 1+ 
Subject to constraints 
x 1 + x 2 + d 1- - d 1+ = 400 
x 1 + d 2-  = 240  
x 2 + d 3 

-  = 300 
   x 1, x 2, d 1-, d 1+, d 2- ,d 3 

- ≥  0 

 

 

 

 



4 Solve the goal programming problem by using Simplex method 

Minimize Z =  P 1 d 1- +P 2 d 4+ +5p 3 d 2- + 3p 3 d 3  - + p 4 d 1 + 
Subject to constraints 
x 1 + x 2 + d 1- - d 1+ = 80 
x 1 + x 2 + d 4 - - d 4+ = 90 
x 1 +d 2- = 70  
x 2 +d 3- = 45 

x 1,x 2, d 1- ,d 1+  d 2-, d 3-  d 4- d 4+ ≥  0 
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UNIT – IV - DECISIONANDGAMETHEORY – SMT5210 



INTRODUCTION: 

DECISION THEORY  

 Introduction to Decision Making process - Decision making under uncertainty - 

Maximin and Maximax criteria - Hurwicz criterion – Laplace criterion – Minimax 

Regret criterion – Decision tree analysis - Simulation - Nature and need for 

simulation - Monte Carlo method. 

Decision theory deals with methods for determining the optimal course of action 

when a number of alternatives are available and their consequences cannot be 

forecast with certainty. It is difficult to imagine a situation which does not involve 

such decision problems, but we shall restrict ourselves primarily to problems 

occurring in business, with consequences that can be described in dollars of profit or 

revenue, cost or loss.  

For these problems, it may be reasonable to consider as the best alternative that 

which results in the highest profit or revenue, or lowest cost or loss, on the average, 

in the long run. This criterion of optimality is not without shortcomings, but it should 

serve as a useful guide to action in repetitive situations where the consequences are 

not critical. (Another criterion of optimality, the maximization of expected ìutility,î 

provides a more personal and subjective guide to action for a consistent decision-

maker.) The simplest decision problems can be resolved by listing the possible 

monetary consequences and the associated probabilities for each alternative, 

calculating the expected monetary values of all alternatives, and selecting the 

alternative with the highest expected monetary value.  

The determination of the optimal alternative becomes a little more complicated when 

the alternatives involve sequences of decisions. In another class of problems, it is 

possible to acquire often at acertain cost additional information about an uncertain 

variable. This additional information is rarely entirely accurate. Its value hence, also 

the maximum amount one would be willing to pay to acquire it should depend on the 

difference between the best one expects to do with the help of this information and 



the best one expects to do without it. These are, then, the types of problems which we 

shall now begin to examine in more detail. 

Very simply, the decision problem is how to select the best of the available 

alternatives. The elements of the problem are the possible alternatives (actions, acts), 

the possible events (states, outcomes of a random process), the probabilities of these 

events, the consequences associated with each possible alternative-event 

combination, and the criterion (decision rule) according to which the best alternative 

is selected. 

  

 The pay off (profit or loss) for the range of possible outcomes based on two factors: 

1. Different decision choices 

2. Different possible real world scenarios 

For example, suppose Geoffrey Ramsbottom is faced with the following pay-off 

table. He has to choose how many salads to make in advance each day before he 

knows the actual demand. 

• His choice is between 40, 50, 60 and 70 salads. 

• The actual demand can also vary between 40, 50, 60 and 70 with the 

probabilities as shown in the table - e.g. P(demand = 40) is 0.1. 

• The table then shows the profit or loss - for example, if he chooses to make 70 

but demand is only 50, then he will make a loss of $60. 

 

 

Maximax 



The maximax rule involves selecting the alternative that maximises the maximum 

payoff available. 

This approach would be suitable for an optimist, or 'risk-seeking' investor, who seeks 

to achieve the best results if the best happens. The manager who employs the 

maximax criterion is assuming that whatever action is taken, the best will happen; 

he/she is a risk-taker. So, how many salads will Geoffrey decide to supply? 

Looking at the payoff table, the highest maximum possible pay-off is $140. This 

happens if we make 70 salads and demand is also 70. Geoffrey should therefore 

decide to supply 70 salads every day. 

Minimax 

The maximin rule involves selecting the alternative that maximises the minimum 

pay-off achievable. The investor would look at the worst possible outcome at each 

supply level, then selects the highest one of these. The decision maker therefore 

chooses the outcome which is guaranteed to minimise his losses. In the process, he 

loses out on the opportunity of making big profits.  

This approach would be appropriate for a pessimist who seeks to achieve the best 

results if the worst happens. 

So, how many salads will Geoffrey decide to supply? Looking at the payoff table, 

• If we decide to supply 40 salads, the minimum pay-off is $80. 

• If we decide to supply 50 salads, the minimum pay-off is $0. 

• If we decide to supply 60 salads, the minimum pay-off is ($80). 

• If we decide to supply 70 salads, the minimum pay-off is ($160). 

The highest minimum payoff arises from supplying 40 salads. This ensures that the 

worst possible scenario still results in a gain of at least $80. 

The miimax regret 

 The minimax regret strategy is the one that minimises the maximum regret. It is 

useful for a risk-neutral decision maker. Essentially, this is the technique for a 'sore 

loser' who does not wish to make the wrong decision. 

'Regret' in this context is defined as the opportunity loss through having made the 

wrong decision. 



To solve this a table showing the size of the regret needs to be constructed. This 

means we need to find the biggest pay-off for each demand row, then subtract all 

other numbers in this row from the largest number. 

For example, if the demand is 40 salads, we will make a maximum profit of $80 if 

they all sell. If we had decided to supply 50 salads, we would achieve a nil profit. 

The difference or 'regret' between that nil profit and the maximum of $80 achievable 

for that row is $80.  

Regrets can be tabulated as follows :  

 

The maximum regrets for each choice are thus as follows (reading down the 

columns): 

• If we decide to supply 40 salads, the maximum regret is $60. 

• If we decide to supply 50 salads, the maximum regret is $80. 

• If we decide to supply 60 salads, the maximum regret is $160. 

• If we decide to supply 70 salads, the maximum regret is $240. 

A manager employing the minimax regret criterion would want to minimise that 

maximum regret, and therefore supply 40 salads only. 

Note that the above techniques can be used even if we do not have probabilities.  

 

 

 

 

EXAMPLE: 

1. The following Pay - off table is given 

  



                                                                                                  EVENTS 

 

 Determine the decision rule under i) Maximini ii) Regret iii) Minimax 

                                                                                        iv) Laplace criterion. 

2. Solve the game by using dominance property 

                           

                                   Group B 

  
I II III IV 

 
A 8 10 9 14 

                  Group A B 10 11 8 12 

 
C 13 12 14 13 

    
 

 
3. Solve the following game graphically 

Player B 

 

Player A 

1 3 -3 7 

2 5 4 -6 

 

 

 

 

 

 

 

 

Action E1 E2 E3 E4 

A1 40 200 -

200 

100 

A2 200 0 -

200 

0 

A3 0 100 0 150 

A4 -50 400 100 0 
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UNIT –V - DYNAMICPROGRAMMING – SMT5210 



INTRODUCTION: 

Dynamic programming is both a mathematical optimization method and a 
computer programming method. The method was developed by Richard 
Bellman in the 1950s and has found applications in numerous fields, from 
aerospace engineering to economics. Dynamic programming is a method for 
solving a complex problem by breaking it down into simpler sub problems, 
solving each of those sub problems just once, and storing their solutions – in 
an array (usually). 

Now, every time the same sub-problem occurs, instead of recomputing its 
solution, the previously calculated solutions are used, thereby saving 
computation time at the expense of storage space. 

Example 
 
Maximize z = X1+2X2 
Subject to: 
 -X1+2X2<=8, 
X1+2X2<=12, 
X1-X2<=3; 
X1>=0 and X2>=0. 
Solution 
 
 Step 1 
 
 Introducing the slack Variable X3>=0, X4>=0 and X5>=0 to the first, second and 

third constraints respectively and convert the problem into standard form. 
  
 

-X1+2X2 + X3 = 8,X1+2X2 +X4 =12,X1-   X2 +X5 = 3; 
 
 And the modified objective function is  
 
Z=X1+2X2+0X3+0X4+0X5 
 
X1, X2, X3, X4 & X5 >0 
 
 The constraints the given L.P.P are converted into the system of equations: 



 

 
 
Step 2 
An obvious initial basic feasible solution is given by XB=B-1b. 
 Where B=I3 and XB=[X3 X4 X5], & I3 stands for Identity matrix of order of 3 (that 

is a 3X3 matrix). That is, 
[X3 X4 X5] = I3 [8    12    3] = [8      12     3] 
 
Step 3 
 
 We compute yj and the net evaluations, zj-cj corresponding to the basic variables 

X3, X4 and X5: 
 

 y1=B-1a1 = I3 [-1 1 1] = [1  1 1] 

y2=B-1a1 = I3 [2 2 -1] =  [2  2 -1] 

y3 = B-1e1 = e1,  y4 = B-1e2 = e2 and y5 = B-1e3 = e3. 

Z1-C1 = cB y1-c1 = (0 0 0) [-1 1 1]-1 = -1. 

Z2-C2 = cB y2-c2 = (0 0 0) [2 2   -1]-2 = -2. 

  
 
                            Z3-C3 = cB y3-c3 = (0 0 0) e1-0 = 0, 
 
  
 
                            Z4-C4 = cB y4-c4 = (0 0 0) e2-0 = 0, 
 
  
 
                            Z5-C5 = cB y5-c5 = (0 0 0) e3-0 = 0. 
 

  
 



  
 
Step 4 - Deciding the entering variable 
 
  
 
Making use of the above information, the starting simplex tableau is written as 

follows: 
 

 

 
 

 
From the starting tableau, it is apparent that there are two Zj-Cj values, which are 

having negative coefficients. 
 
 We choose the most negative of these, viz., -2. The corresponding column vector y2, 

therefore, enters the basis. 
  
Step 5 - Deciding the leaving variable 
 
Now, we will compute the ratios using the entering column elements and RHS of 

each constraint. 
 
Each row of the table, the respective RHS coefficient of the constraint is divided by 

entering column, non-zero element and placed in the last column of the table. Then, 

the minimum among the value is chosen as leaving variable. 
Min {XBi/Yi2, Yi2>0} = Min. {8/2, 12/2, no ratio for third row} = 4. Since the 

minimum ratio occurs for the first row, basis vector Y3 leaves the basis. The 

common intersection element y12 (=2) become the leading element for updating. We 



indicate the leading element in bold type with a star *. 
Step 6 
 
Convert the leading element y12 to unity and all other elements in its column (i.e.y2) 

to zero by the following transformations: 
 
Y11 =Y11/Y12 =1/2, Y10 = Y10/Y12 =8/2  or 4, so on,  
 
Y20=y20-(y10/y11) y22=12-(8/2) (2) =4.  
 
Y30=y30-(y10/y12) y32=3-(8/2) (-2) =11.  
 
Y21=y21-(y11/y12) y22=1-(-1/2) (2) =2. 
  
Y31=y31-(y11/y12) y32=1-(-1/2) (-2) =0. And so on……… 
 
  
Step 7 
 
Using the above computations, the following iterated simplex tableau is obtained:  
 
The above simplex tableau yields a new basic feasible solution with the increased 

value of z. 
 
 Now since z1-c1 < 0, y1 enters the basis.  
 
Also, since Min. {X Bi / yi >0} = Min {4/2, 7/ (1/2)} = 2, y4 leaves the basis.  
 
Thus the leading element will be y21 (=2).  
 
Converting the leadwing element to unity and all other elements of yi to zero by 

usual row transformations the next iterated tableau is obtained. 
 

 



 
 

 
Since, all Zj-Cj>=0, we conclude that there is no more improvement possible and the 

problem is in its optimum stage.  
 
Therefore, the optimal solution for the given problem is  
 
X1= 2       X2= 5      Max Z = 12  

 

EXAMPLE: 

1. Obtain optimum solution by using dynamic programming problem 
        Maximize Z = 2x1 + 5x2 
        Subject to constraints 
        2x1 + x2 ≤ 430 
        2 x2 ≤ 460 
         x1 ,x2 ≥ 0 
  
2. Solve the LPP by using dynamic programming problem 
        Maximize Z = 3x1 + 5x2 
        Subject to constraints 
         x1 ≤ 4 
         x2 ≤ 6 
        3x1 + 2 x2 ≤ 18 
        x1 ,x2 ≥ 0 
          
3. Use dynamic programming to solve the following 

Minimize Z = y 1 2 + y 2 2 + y 3 2  

Subject to constraints 
Y 1 + y 2 + y 3 = 10  and y1,y2, y3 ≥ 0 



 
 

 

 

 

 

 

 

 


