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Unit – I 

Theory of Divisibility and Congruences 

Division Algorithm  

 Theorem:(Division Algorithm). Given integers a and b, with b > 0, there exist unique integer q and r 

satisfying 𝑎 = 𝑞𝑏 + 𝑟, 0 ≤ 𝑟 < 𝑏. The integers q and r are called, respectively, the quotient and remainder in 

the division of a by b.  

Proof.  Consider the set  

𝑆 = {𝑎 − 𝑥𝑏 |𝑥 an integer; 𝑎 − 𝑥𝑏 ≥ 0}  

Claim 1: S is non-empty  

That is to prove that there exists a value of x that makes 𝑎 − 𝑥𝑏 nonnegative. It is given that the integer b ≥  

1. Multiplying both sides by |𝑎|, |𝑎|𝑏 ≥ |𝑎|, and so  

𝑎 − (−|𝑎|)= 𝑎 + |𝑎|𝑏 ≥ 𝑎 + |𝑎| ≥ 0  

Hence for the choice x = −|a|,  a − xb lies in S. By the application of the Well-Ordering Principle, it is guaranteed 

that the set S contains a smallest integer, say r. From the definition of S, it follows that there exists an integer q 

satisfying r = a − qb 0 ≤ r.  

Claim 2: 𝒓 < 𝒃  

Suppose the contradiction that  r ≥ b and  

𝑎 − (𝑞 + 1)= (𝑎 − 𝑞𝑏) − 𝑏 = 𝑟 − 𝑏 ≥ 0  

The implication is that the integer a − (q + 1)b has the proper form to belong to the set S. But a − (q + 1)b = r − 

b < r, leading to a contradiction of the choice of r as the smallest member of S. Hence, r < b.  

Claim 3: Uniqueness  

Next we turn to the task of showing the uniqueness of q and r. Suppose that a has two representations of the 

desired form, say,  

𝑎 = 𝑞𝑏 + 𝑟 = 𝑞′𝑏 + 𝑟′, where 0 ≤ 𝑟 < 𝑏, 0 ≤ 𝑟′ < 𝑏.   

Then 𝑟′ − 𝑟 = (𝑞 − 𝑞′).  

|𝑟′ − 𝑟| = 𝑏|𝑞 − 𝑞′|  

Upon adding the two inequalities −𝑏 < −𝑟 ≤ 0 and 0 ≤ 𝑟′ < 𝑏, we obtain  

−b < r′ − r < b or, in equivalent terms, |𝑟′ − 𝑟| < 𝑏. Thus, 𝑏|𝑞 − 𝑞′| < 𝑏, which yields  

0 ≤ |𝑞 − 𝑞′| < 1  

Because |q − q′| is a nonnegative integer, the only possibility is that |q − q′| = 0 , whence q 

= q′; this, in turn, gives r = r′, ending the proof.  

  

Corollary If a and b are integers, with 𝑏 ≠ 0, then there exist unique integers q and r such that 𝑎 = 𝑞𝑏 + 𝑟, 

   0 ≤ 𝑟 < |𝑏|  

Proof. It is enough to consider the case in which b is negative. Then |b| > 0, and from the division algorithm 

there exits unique integers q′ and r for which  
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𝑎 = 𝑞′|𝑏| + 𝑟, 0 ≤ 𝑟 < |𝑏|  

As 𝑏 < 0, |𝑏| = −𝑏, assuming 𝑞 = −𝑞′ it follows that 𝑎 = 𝑞𝑏 + 𝑟, with 0 ≤ 𝑟 < |𝑏|.  

The Greatest Common Divisor  

 

Definition An integer b is said to be divisible by an integer 𝑎 ≠ 0, denoted by 𝑎|𝑏, if there exists a integer c such 

that 𝑏 = 𝑎𝑐. Otherwise, we say that 𝑏 is not divisible by a and is denoted by 𝑎 ∤ 𝑏. 

 

Theorem For integers a,b and c, the following statements hold  

(a) 𝑎|0,1|𝑎, 𝑎|𝑎.  

(b) 𝑎|1 if and only if 𝑎 = ±1.  

(c) If 𝑎|𝑏 and 𝑐|𝑑, then 𝑎𝑐|𝑏𝑑.  

(d) If a|b and b|c, then a|c.  

(e) 𝑎|𝑏 and 𝑏|𝑎 if and only if 𝑎 = ±𝑏.  

(f) If 𝑎|𝑏 and 𝑏 ≠ 0, then |𝑎| ≤ |𝑏|.  

(g) If 𝑎|𝑏 and 𝑎|𝑐, then 𝑎|(𝑏𝑥 + 𝑐𝑦) for arbitrary integers 𝑥 and 𝑦.  

Proof:  

(a) 0 = (0), 0 ∈ ℤ ⇒ 𝑎|0.  

𝑎 = 1(𝑎), 𝑎 ∈ ℤ ⇒ 1|𝑎.  

𝑎 = (1), 1 ∈ ℤ ⇒ 𝑎|𝑎.  

(b) Case (i): Suppose . Hence 𝑎 = ±1.  

Case (ii): Suppose 𝑎 = ±1. 1 = 1(1) or 1 = −1(−1). Hence 𝑎|1.  

(c) Let it be true that 𝑎|𝑏 and 𝑐|𝑑. It follows that 𝑏 = 𝑎(𝑘1), 𝑘1 ∈ ℤ and 𝑑 = 𝑐(𝑘2), 𝑘2 ∈ ℤ. Hence 𝑏𝑑 = 

𝑎𝑐(𝑘1𝑘2), 𝑘1𝑘2 ∈ ℤ. Hence by divisibility conditions, 𝑎𝑐|𝑏𝑑.  

(d) Let it be true that 𝑎|𝑏 and 𝑏|𝑐. It follows that 𝑏 = 𝑎(𝑘1), 𝑘1 ∈ ℤ and 𝑐 = 𝑏(𝑘2), 𝑘2 ∈ ℤ. Hence 𝑐 = 𝑎(𝑘1𝑘2), 

𝑘1𝑘2 ∈ ℤ. Hence by divisibility conditions, 𝑎|𝑐.  

(e) Let it be true that 𝑎|𝑏 and 𝑏|𝑎. It follows that 𝑏 = 𝑎(𝑘1), 𝑘1 ∈ ℤ and 𝑎 = 𝑏(𝑘2), 𝑘2 ∈ ℤ. Hence 𝑎𝑏 = 

. It follows that 𝑎 = ±𝑏.  

(f) If 𝑎|𝑏, then there exists an integer c such that 𝑏 = 𝑎𝑐; also 𝑏 ≠ 0 implies that 𝑐 ≠ 0. Upon taking absolute 

values, we get |𝑏| = |𝑎𝑐| = |𝑎||𝑐|. Because, 𝑐 ≠ 0 it follows that |𝑐| ≥ 1, whence |𝑏| = |𝑎||𝑐| ≥ |𝑎|.  

(g) Given that  |𝑏 and 𝑎|𝑐. This ensures that 𝑏 = 𝑎𝑟 and 𝑐 = 𝑎𝑠 for suitable integers r and s. For some integer 

values of x and y, 𝑏𝑥 + 𝑐𝑦 = 𝑎𝑟𝑥 + 𝑎𝑠𝑦 = (𝑟𝑥 + 𝑠𝑦). As 𝑟𝑥 + 𝑠𝑦 is an integer, by divisibility conditions, 𝑎|(𝑏𝑥 

+ 𝑐𝑦).  
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Definition: Let a and b be given integers, with at least one of them different from zero. The greatest common 

divisor of a and b, denoted by gcd(a,b), is the positive integer d satisfying the following:  

(a) d|a and d|b.  

(b) If c|a and c|b, then c ≤ d.  

  

Theorem: Given integers a and b, not both of which are zero, there exist integers x and y such that  

𝑔𝑐𝑑(𝑎, 𝑏) = 𝑎𝑥 + 𝑏𝑦  

Proof. Consider the set S of all positive linear combinations of a and b:  

𝑆 = {𝑎𝑢 + 𝑏𝑣 | 𝑎𝑢 + 𝑏𝑣 > 0; 𝑢, 𝑣 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠} Claim 1 S is 

not empty.  

Since, if 𝑎 ≠ 0, then the integer |𝑎| = 𝑎𝑢 + (0) lies in S, where we choose u = 1 or u = −1 according as a is 

positive or negative. By virtue of the Well-ordering Principle, S must contain a smallest element d. Thus, from 

the very definition of S, there exists integers x and y for which 𝑑 = 𝑎𝑥 + 𝑏𝑦.   

Claim 2 𝑑 is a common divisor of 𝑎 and 𝑏.  

By the Division Algorithm, there exists unique integers q and r such that 𝑎 = 𝑞𝑑 + 𝑟, where 0 ≤ 𝑟 < 

 𝑑. Then r can be written in the form  

𝑟 = 𝑎 − 𝑞𝑑 = 𝑎 − (𝑎𝑥 + 𝑏𝑦) = 𝑎(1 − 𝑞𝑥) + 𝑏(−𝑞𝑦)  

If r were positive, then this representation would imply that 𝑟 < 𝑑 is an element of S, contradicting the fact that 

d is the least integer in S. Therefore, r = 0, and so a = qd, or equivalently 𝑑|𝑎. By similar reasoning, 𝑑|𝑏, This 

assures that d a common divisor of a and b.  

Claim 3: 𝑑 = gcd(𝑎, 𝑏).  

Let c be an arbitrary positive common divisor of the integers a and b, then from the theorem it easily follows that 

𝑐|(𝑎𝑥 + 𝑏𝑦) ⇒ 𝑐|𝑑. Hence, 𝑐 = |𝑐| ≤ |𝑑| = 𝑑, so that d is greater than every positive common divisor of a and b. 

Hence, 𝑑 = 𝑔𝑐(𝑎, 𝑏).  

  

Corollary: If a and b are given integers, not both zero, then the set 𝑇 = {𝑎𝑥 + 𝑏𝑦|𝑥, 𝑦 ∈ ℤ} is 

precisely the set of all multiples of 𝑑 = 𝑔𝑐(𝑎, 𝑏).  

Proof.   

Given 𝑑 = gcd(𝑎, 𝑏). It follows that 𝑑|𝑎 and 𝑑|𝑏. By the above theorem 𝑑|(𝑎𝑥 + 𝑏𝑦) for all integers x, y. Thus, 

every member of T is a multiple of d.  

Conversely, 𝑑 ∈ 𝑇 may be written as d = ax0 + by0 for suitable x0, and y0, so that any multiple 𝑛𝑑 of d is of the 

form 𝑛𝑑 = (𝑎𝑥0 + 𝑏𝑦0) = 𝑎(𝑛𝑥0) + 𝑏(𝑛𝑦0). Hence, nd is a linear combination of a and b, and, by definition, 

lies in T.  
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Definition: Two integers a and b, not both of which are zero, are said to be relatively prime whenever gcd(a,b) 

= 1.  

  

Theorem: Let a and b be integers, not both zero. Then a and b are relatively prime if and only if there exist 

integers x and y such that 1 = ax + by.  

Proof:  

If a and b are relatively prime so that gcd(a,b) = 1, then there exists integers x and y satisfying 1 = ax + by. 

Conversely, suppose that 1 = ax + by for some choice of x and y, and that d = gcd(a,b). Because d|a an d|b, it 

follows that d|(ax + by), or d|1. Hence, 𝑑|1 ⇒ 𝑑 = ±1. By assumption 𝑑 is positive. Hence, 𝑑 = gcd(𝑎, 𝑏) = 

1. i.e., 𝑎 and 𝑏 are relatively prime.  

  

Corollary: If 𝑔𝑐(𝑎, 𝑏) = 𝑑, then .  

Proof. Before starting with the proof proper, we should observe that although a/d and b/d have the appearance 

of fractions, in fact, they are integers because d is a divisor both of a and of b. Now, knowing that gcd(a,b) = d, 

it is possible to find integers x and y such that d = ax+by. Upon dividing each side of this equation by d, we obtain 

the expression  

  

Because a/d and b/d are integers, an appeal to the theorem is legitimate. The conclusion is 

that a/d and b/d are relatively prime. 2  

Corollary If 𝑎|𝑐 and 𝑏|𝑐, with 𝑔𝑐(𝑎, 𝑏) = 1, then 𝑎𝑏|𝑐.  

Proof. If 𝑎|𝑐 and 𝑏|𝑐, then there exists integers r and s such that 𝑐 = 𝑎𝑟 = 𝑏𝑠. Given 𝑔𝑐(𝑎, 𝑏) = 1. It then follows 

that there exists integers 𝑥 and 𝑦 such that 1 = 𝑎𝑥 + 𝑏𝑦. Multiplying, the last equation by c:  

𝑐 = 𝑐. 1 = (𝑎𝑥 + 𝑏𝑦) = 𝑎𝑐𝑥 + 𝑏𝑐𝑦 Incorporating 

appropriate substitutions on the right-hand side:  

𝑐 = (𝑏𝑠)𝑥 + 𝑏(𝑎𝑟)𝑦 = 𝑎𝑏(𝑠𝑥 + 𝑟𝑦) It 

follows that, 𝑎𝑏|𝑐.  

Theorem(Euclid’s Lemma). If 𝑎|𝑏𝑐, with 𝑔𝑐(𝑎, 𝑏) = 1, then 𝑎|𝑐.  

Proof. As gcd(𝑎, 𝑏) = 1, it is true that 1 = ax + by, where x and y are integers. Multiplication of this equation by 

c leads to  

𝑐 = 1. 𝑐 = (𝑎𝑥 + 𝑏𝑦)𝑐 = 𝑎𝑐𝑥 + 𝑏𝑐𝑦  

Because 𝑎|𝑎𝑐 and 𝑎|𝑏𝑐, it follows that 𝑎|(𝑎𝑐𝑥 + 𝑏𝑐𝑦). From the above equation it follows that 𝑎|𝑐.  

Theorem Let 𝑎, 𝑏 be integers, not both zero. For a positive integer d, d = gcd(a,b) if and only if:  

(a) 𝑑|𝑎 and 𝑑|𝑏.  

(b) Whenever 𝑐|𝑎 and 𝑐|𝑏, then 𝑐|𝑑.  
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Proof. Suppose that 𝑑 = 𝑔𝑐(𝑎, 𝑏). By definition of greatest common divisor it follows that 𝑑|𝑎 and 𝑑|𝑏, so that 

(a) holds. From the theorem, d is expressible as 𝑑 = 𝑎𝑥 + 𝑏𝑦 for some integers 𝑥, 𝑦. We know that, if 𝑐|𝑎 and 

𝑐|𝑏, then 𝑐|(𝑎𝑥 + 𝑏𝑦) hence it follows that 𝑐|𝑑. In short, condition (b) holds.  

Conversely, let d be any positive integer satisfying the stated conditions. Given any common divisor c of a and 

b, we have 𝑐|𝑑 from hypothesis (b). The implication is that 𝑑 ≥ 𝑐, and consequently d is the greatest common 

divisor of a and b.  

The Euclidean Algorithm  

Let a and b be two integers whose greatest common divisors need to be computed. By the properties of GCD, 

𝑔𝑐(|𝑎|, |𝑏|) = 𝑔𝑐𝑑(𝑎, 𝑏). Assume that a ≥ b > 0. The first step is to apply the Division Algorithm to a and b to 

get  

𝑎 = 𝑞1𝑏 + 𝑟1, 0 ≤ 𝑟1 < 𝑏  

If it happens that 𝑟1 = 0, then 𝑏|𝑎 and 𝑔𝑐(𝑎, 𝑏) = 𝑏.   

When 𝑟1 ≠ 0, again from the division algorithm there exists integers q2 and r2 satisfying  

𝑎 = 𝑞2𝑟1 + 𝑟2, 0 ≤ 𝑟2 < 𝑟1  

If r2 = 0, then we stop; otherwise, proceed as before to obtain  

𝑟1 = 𝑞3𝑟2 + 𝑟3, 0 ≤ 𝑟3 < 𝑟2  

This division process continues until some zero remainder appears, say, at the (n + 1)th stage where rn−1 is divided 

by rn (a zero remainder occurs sooner or later because the decreasing sequence b > r1 > r2 > ···≥ 0  

cannot contain more than b integers).  

The result is the following system of equations:  

 

a  =  q1b + r1  0 < r1 < b  

b  =  𝑞2𝑟1 + 𝑟2  0 < 𝑟2 < 𝑟1  

r1  
=  

.  

.  

.  

𝑞3𝑟2 + 𝑟3  0 < 𝑟3 < 𝑟2  

rn−2  
=  

𝑞𝑛𝑟𝑛−1 + 𝑟𝑛, 0 < 𝑟𝑛 < 𝑟𝑛−1  

rn−1  =  𝑞𝑛𝑟𝑛 + 0   

We argue that rn, the last nonzero remainder that appears in this manner, is equal to gcd(a,b). Our proof is based 

on the lemma below.  

Lemma If 𝑎 = 𝑞𝑏 + 𝑟, then 𝑔𝑐(𝑎, 𝑏) = 𝑔𝑐𝑑(𝑏, 𝑟)  

Proof. If 𝑑 = 𝑔𝑐(𝑎, 𝑏), then the relations 𝑑|𝑎 and 𝑑|𝑏 together imply that 𝑑|(𝑎 − 𝑞𝑏), or 𝑑|𝑟. Thus, d is a common 

divisor of both b and r. On the other hand, if c is an arbitrary common divisor of b and r, then 𝑐|(𝑞𝑏 + 
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𝑟), whence 𝑐|𝑎. This makes c a common divisor of a and b, so that 𝑐 ≤ 𝑑. It now follows from the definition of 

𝑔𝑐(𝑏, 𝑟) that 𝑑 = 𝑔𝑐𝑑(𝑏, 𝑟).  

Theorem If 𝑘 > 0, then 𝑔𝑐(𝑘𝑎, 𝑘𝑏) = 𝑘. 𝑔𝑐𝑑(𝑎, 𝑏)  

Proof. If each of the equations appearing in the Euclidean Algorithm for a and b is multiplied by k, we obtain ak = q1(bk) + r1k 0 < r1k 

< bk bk q2(r1k) + r2k 0 < r2k < r1k  

=  

.  

.  

.  

rn−2k  =  qn(rn−1k) + rnk 0 < rnk < rn−1k rn−1k  =  qn+1(rnk) + 0  

But this is clearly the Euclidean Algorithm applied to the integers ak and bk, so that their greatest common divisor 

is the rnk; that is, gcd(ka,kb) = rnk = k.gcd(a,b).  

  

Corollary For any integer 𝑘 ≠ 0, 𝑔𝑐(𝑘𝑎, 𝑘𝑏) = |𝑘|𝑔𝑐𝑑(𝑎, 𝑏).  

Proof. It suffices to consider the case in which k < 0. Then −𝑘 = |𝑘| > 0 and, by Theorem  

𝑔𝑐𝑑(𝑎𝑘, 𝑏𝑘) = 𝑔𝑐𝑑(−𝑎𝑘, −𝑏𝑘)  

                        = 𝑔𝑐𝑑(𝑎|𝑘|, 𝑏|𝑘|)  

                     = |𝑘|𝑔𝑐𝑑(𝑎, 𝑏)  

  

Definition The least common multiple of two nonzero integers a and b, denote by lcm(a,b), is the positive integer 

m satisfying the following:  

(a) a|m and b|m.  

(b) If a|c and b|c, with c > 0, then m ≤ c.  

Theorem 1.5.6. For positive integers a and b, 𝑔𝑐(𝑎, 𝑏)𝑙𝑐𝑚(𝑎, 𝑏) = 𝑎𝑏  

Proof. Let 𝑑 = 𝑔𝑐(𝑎, 𝑏). It follows that 𝑎 = 𝑑𝑟, 𝑏 = 𝑑𝑠 for integers r and s. If 𝑚 = 𝑎𝑏/𝑑, then 𝑚 = 𝑎𝑠 = 𝑟𝑏. (put 

𝑎 = 𝑑𝑟 gives 𝑚 = 𝑟𝑏 and put 𝑏 = 𝑑𝑠 given 𝑚 = 𝑎𝑠). This shows that m is a (positive) common multiple of a and 

b.  

Now let c be any positive integer that is a common multiple of a and b; say, for definiteness, c = au = bv. As 

we know, there exist integers x and y satisfying d = ax + by. In consequence,  

.  

This equation states that m|c, allowing us to conclude that m ≤ c. Thus, in accordance with Definition of lcm, m 

= lcm(a,b); that is, . The theorem follows.  
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Corollary. For any choice of positive integers a and b, 𝑙𝑐(𝑎, 𝑏) = 𝑎𝑏 if and only if 𝑔𝑐𝑑(𝑎, 𝑏) = 1. The 

Diophantine Equation ax+by =c  

Theorem. The linear Diophantine equation ax + by = c has a solution if and only if d|c, where d = gcd(a,b). If 

x0,y0 is any particular solution of this equation, then all other solutions are given by  

  

where t is an arbitrary integer.  

Proof. To establish the second assertion of the theorem, let us suppose that a solution x0,y0 of the given equation 

is known. If x′,y′ is any other solution, then  

ax0 + by0 = c = ax′ + by′ 

which is equivalent to a(x′ − 

x0) = b(y0 − y′)  

By the corollary to Theorem 1.4.8, there exist relatively prime integers r and S such that a = dr, b = ds. 

Substituting these values into the last-written equation and canceling the common factor d, we find that r(x′ − x0) 

= s(y0 − y′)  

The situation is now this: r|s(y0 − y′), with gcd(r,s) = 1. Using Euclid’s lemma, it must be the case that r|(y0 − y′); 

or, in other words, y0 − y′ = rt for some integer t. Substituting, we obtain  

x′ − x0 = st  

This leads us to the formulas  

  

It is easy to see that these values satisfy the Diophantine equation,regardless of the choice of the integer t; for  

  

 =  c  

Thus, there are an infinite number of solutions of the given equation, one for each value of 

t.  

Corollary If gcd(a,b) = 1 and if x0,y0 is a particular solution of the linear Diophantine equation ax + by = c, 

then all solutions are given by  

x = x0 + bt  y = y0 − at for 

integral values of t.  

  

The Fundamental Theorem of Arithmetic  
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Definition. An integer p > 1 is called a prime number, or simply a prime, if its only positive divisors are 1 and 

p. An integer greater than 1 that is not a prime is termed composite.  

  

Theorem . If p is a prime and p|ab, then p|a or p|b.  

Proof. If p|a, then we need go no further, so let us assume that p  a. Because the only positive divisors of p are 

1 and p itself, this implies that gcd(p,a) = 1. ( In general, gcd(p,a) = p or gcd(p,a) = 1 according as p|a or p  a.) 

Hence, citing  

Euclid’s lemma, we get p|b.  

  

Corollary. If p is a prime and p|a1a2 ···an, then p|ak for some k, where 1 ≤ k ≤ n.  

Proof. We proceed by induction on n, the number of factors. When n = 1, the stated conclusion obviously holds; 

whereas when n = 2, the result is the content of Theorem. Suppose, as the induction hypothesis, that n > 2 and 

that whenever p divides a product of less than n factors, it divides at least one of the factors. Now p|a1a2 ···an.  

From Theorem, either p|an or p|a1a2 ···an−1. If p|an, then we are through. As regards the case where p|a1a2 ···an−1, 

the induction hypothesis ensures that p|ak for some choice of k, with 1 ≤ k ≤ n − 1. In any event, p divides one of 

the integers a1,a2,...,an.  

Corollary. If p,q1,q2,··· ,qn are all primes and p|q1q2 ···qn, then p = qk for some k, where 1 ≤ k ≤ n.  

Proof. By virtue of Corollary above, we know that p|qk for some k, with 1 ≤ k ≤ n.  

Being a prime, qk is not divisible by any positive integer other than 1 or qk itself. Because p 

> 1, we are forced to conclude that p = qk. 2  

  

Theorem(Fundamental Theorem of Arithmetic). Every positive integer n > 1 can be expressed as a product of 

primes; this representation is unique, apart from the order in which the factors occur.  

Proof. Either n is a prime or it is composite; in the former case, there is nothing more to prove. If n is composite, 

then there exists an integer d satisfying d|n and 1 < d < n. Among all such integers d, choose p1 to be the smallest 

(this is possible by the Well − Ordering Principle). Then p1 must be a prime number. Otherwise it too would have 

a divisor q with 1 < q < p1; but then q|p1 and p1|n imply that q|n, which contradicts the choice of p1 as the smallest 

positive divisor, not equal to 1, of n.  

We therefore may write n = p1n1,where p1 is prime and 1 < n1 < n. If n1 happens to be a prime, then we have 

our representation. In the contrary case, the argument is repeated to produce a second prime number p2 such that 

n1 = p2n2; that is,  

 n = p1p2n2  1 < n2 < n1  

If n2 is a prime, then it is not necessary to go further. Otherwise, write n2 = p3n3, with p3 a prime:  

n = p1p2p3n3 1 < n3 < n2 The decreasing sequence n > n1 > n2 > ··· > 1 cannot continue indefinitely, so that after 

a finite number of steps nk−1 is a prime, call it, pk. This leads to the  

prime factorization  
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n = p1p2 ···pk  

To establish the second part of the proof-the uniqueness of the prime factorizationlet us suppose that the integer 

n can be represented as a product of primes in two ways; say,  

n = p1p2 ···pr = q1q2 ···qs  r ≤ s where the pi and qj are all primes, 

written in increasing magnitude so that p1 ≤ p2 ≤···pr and q1 ≤ q2 ≤···qs  

Because p1|q1q2 ···qs, Corollary it follows that p1 = qk for some k; but then p1 ≥ q1. Similar reasoning gives q1  

≥ p1, whence p1 = q1. We may cancel this common factor and obtain p2p3 

···pr = q2q3 ···qs  

Now repeat the process to get p2 = q2 and, in turn, p3p4 

···pr = q3q4 ···qs  

Continue in this fashion. If the inequality r < s were to hold, we would eventually arrive at  

1 = qr+1qr+2 ···qs which is absurd, because each qj > 1. Hence, r = s and 

p1 = q1 p2 = q2,··· ,pr = qr making the two factorizations of n identical. The 

proof is now complete.  

  

Corollary. Any positive integer n > 1 can be written uniquely in a canonical form where, for i 

= 1,2,··· ,r, each ki is a positive integer and each pi is a prime, with p1 < p2 < ··· < pr.  

  

Theorem (Pythagoras). The number √2 is irrational.  

Proof. Suppose, to the contrary, that √2 is a rational number, say, √2 = a/b, where a and b are both integers with 

gcd(a,b) = 1. Squaring, we get a2 = 2b2 , so that b|a2. If b > 1, then the Fundamental Theorem of Arithmetic 

guarantees the existence of a prime p such that p|b. It follows that p|a2 and, by Theorem, that p|a; hence, gcd(a,b) 

≥ p. We therefore arrive at a contradiction, unless b = 1. But if this happens, then a2 = 2, which is impossible (we 

assume that the reader is willing to grant that no integer can be multiplied by itself to give  

2). Our supposition that √2 is a rational number is untenable, and so √2 must be irrational. 2  

  

Theorem (Euclid). There is an infinite number of primes.  

Proof. Euclid’s proof is by contradiction. Let p1 = 2,p2 = 3,p3 = 5,p4 = 7,··· be the primes in ascending order, and 

suppose that there is a last prime, called pn. Now consider the positive integer  

𝑃 = 𝑝1𝑝2 ··· 𝑝𝑛 + 1  

Because P > 1, we may put Theorem to work once again and conclude that P is divisible by some prime p. But 

p1,p2,··· ,pn are the only prime numbers, so that p must be equal to one of p1,p2,··· ,pn. Combining the divisibility 

relation p|p1p2 ···pn with p|P, we arrive at p|P − p1p2 ···pn or, equivalently, p|1. The only positive divisor of the 

integer 1 is 1 itself and, because p > 1, a contradiction arises. Thus, no finite list of primes is complete, whence 

the number of primes is infinite.  



11 | P a g e  

 

  

Theorem. If pn is the nth prime number, then 𝑝𝑛 ≤ 22𝑛−1.  

Proof. Let us proceed by induction on n, the asserted inequality being clearly true when n = 1. As the hypothesis 

of the induction, we assume that n > 1 and that the result holds for all integers up to n. Then  

𝑝𝑛+1 ≤ 𝑝1𝑝2 ··· 𝑝𝑛 + 1  

                   ≤ 2.22 ··· 22𝑛−1 + 1  

                      = 21+2+22+···2𝑛−1 + 1  

Recalling the identity 1 + 2 + 22 + ··· + 2n−1 = 2n−1, we obtain  

𝑝𝑛+1 ≤ 22𝑛−1 + 1  

However, 1 ≤ 22n−l for all n; whence  

𝑝𝑛+1 ≤ 22𝑛−1 + 22𝑛−1  

= 2.22𝑛−1 = 22𝑛  

completing the induction step, and the argument.  

  

Corollary. For n ≥ 1, there are at least n + 1 primes less than 22n.  

Proof. From the theorem, we know that p1,p2,··· ,pn+1 are all less than 22n.   

  

Basic properties of congruence  

Definition Let n be a fixed positive integer. Two integers a and b are said to be congruent modulo n, symbolized 

by 𝑎 ≡ (𝑚𝑜𝑑 𝑛) if n divides the difference a − b; that is, provided that a − b = kn for some integer k.  

Theorem For arbitrary integers a and b, 𝑎 ≡ (𝑚𝑜𝑑 𝑛) if and only if a and b leave the same nonnegative 

remainder when divided by n.  

Proof. First take 𝑎 ≡ (𝑚𝑜𝑑 𝑛), so that 𝑎 = 𝑏 + 𝑘𝑛 for some integer k. Upon division by n, b leaves a certain 

remainder r; that is, 𝑏 = 𝑞𝑛 + 𝑟, where 0 ≤ 𝑟 < 𝑛. Therefore, 𝑎 = 𝑏 + 𝑘𝑛 = (𝑞𝑛 + 𝑟) + 𝑘𝑛 = (𝑞 + 𝑘)+ 𝑟 which 

indicates that a has the same remainder as b.  

On the other hand, suppose we can write 𝑎 = 𝑞1𝑛 + 𝑟 and 𝑏 = 𝑞2𝑛 + 𝑟, with the same remainder r  

(0 ≤ 𝑟 < 𝑛). Then 𝑎 − 𝑏 = (𝑞1𝑛 + 𝑟) − (𝑞2𝑛 + 𝑟) = (𝑞1 − 𝑞2) whence 𝑛|𝑎 − 𝑏. In the language of congruences, 

we have 𝑎 ≡ (𝑚𝑜𝑑 𝑛).  

  

Theorem Let n > 1 be fixed and a,b,c,d be arbitrary integers. Then the following properties hold:  

(a) a ≡ a(mod n).  

(b) If a ≡ b(mod n), then b ≡ a(mod n).  

(c) If a ≡ b(mod n) and b ≡ c(mod n), then a ≡ c(mod n).  
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(d) If a ≡ b(mod n) and c ≡ d(mod n), then a + c ≡ b + d(mod n) and ac ≡ bd(mod n).  

(e) If a ≡ b(mod n), then a + c ≡ b + c(mod n) and ac ≡ be(mod n). (f) If a ≡ b(mod n), then ak ≡ bk(mod n) 

for any positive integer k.  

Proof. For any integer a, we have a − a = 0 · n, so that a ≡ a(mod n). Now if a ≡ b(mod n), then a − b = kn for 

some integer k. Hence, b − a = −(kn) = (−k)n and because −k is an integer, this yields property ( b ).  

Property (c) is slightly less obvious: Suppose that a ≡ b(mod n) and also b ≡ c(mod n). Then there exist integers 

h and k satisfying a − b = hn and b − c = kn. It follows that a − c = (a − b) + (b − c) = hn + kn = (h + k)n which 

is a ≡ c(mod n) in congruence notation.  

In the same vein, if a ≡ b(mod n) and c ≡ d(mod n), then we are assured that a − b = k1n and c − d = k2n for 

some choice of k1 and k2. Adding these equations, we obtain  

(𝑎 + 𝑐) − (𝑏 + 𝑑) = (𝑎 − 𝑏) + (𝑐 − 𝑑) = 𝑘1𝑛 + 𝑘2𝑛 = (𝑘1 + 𝑘2)  

or, as a congruence statement, a + c ≡ b + d(mod n). As regards the second assertion of property (d), note that ac 

= (b + k1n)(d + k2n) = bd + (bk2 + dk1 + k1k2n)n  

Because bk2 + dk1 + k1k2n is an integer, this says that ac − bd is divisible by n, whence ac ≡ bd(mod n).  

The proof of property (e) is covered by (d) and the fact that c ≡ c(mod n). Finally, we obtain property (f) by 

making an induction argument. The statement certainly holds for k = 1, and we will assume it is true for some 

fixed k. From (d), we know that a ≡ b(mod n) and ak ≡ bk(mod n) together imply that aak ≡ bbk(mod n), or 

equivalently ak+1 ≡ bk+1(mod n). This is the form the statement should take for k + 1, and so the induction step is 

complete.  

  

Theorem If ca ≡ cb(mod n), then a ≡ b(mod n/d), where d = gcd(c,n).  

Proof. By hypothesis, we can write  

𝑐(𝑎 − 𝑏) = 𝑐𝑎 − 𝑐𝑏 = 𝑘𝑛  

for some integer k. Knowing that gcd(c,n) = d, there exist relatively prime integers r and s satisfying c = dr, n = 

ds. When these values are substituted in the displayed equation and the common factor d canceled, the net result 

is r(a − b) = ks. Hence, s|r(a − b) and gcd(r,s) = 1. Euclid’s lemma yields s|a − b, which may be recast as a ≡ 

b(mod s); in other words, a ≡ b(mod n/d).  

Corollary. If ca ≡ cb(mod n) and gcd(c,n) = 1, then a ≡ b(modn).  

Corollary. If ca ≡ cb(mod p) and p ∤ c, where p is a prime number, then a ≡ b(mod p).  

Proof. The conditions p ∤ c and p a prime imply that gcd(c,p) = 1.  

  

Binary and Decimal Representations of Integers  

Theorem   be a polynomial function of x with integral coefficients ck. If a ≡ b(mod n), 

then P(a) ≡ P(b)(mod n).  

Proof. Because a ≡ b(mod n), part(f) of Theorem 3.1.4 can be applied to give ak ≡ bk(mod n) for k = 0,1,··· ,m. 

Therefore, cka
k ≡ ckb

k(mod n) for all such k. Adding these m + 1 congruences, we conclude that  
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or, in different notation, P(a) ≡ P(b)(mod n). 2  

Corollary If a is a solution of P(x) ≡ 0(mod n) and a ≡ b(mod n), then b also is a solution.  

Proof. From the last theorem, it is known that P(a) ≡ P(b)(mod n). Hence, if a is a solution of P(x) ≡ 0(mod n), 

then P(b) ≡ P(a) ≡ 0(mod n), making b a solution. 2  

Theorem Let N = am10m + am−110m−1 + ··· + a110 + a0 be the decimal expansion of the positive integer N, 0 ≤ ak 

< 10, and let S = a0 + a1 + ··· + am. Then 9|N if and only if 9|S.  

Proof. Consider , a polynomial with integral coefficients. The key observation is that 10 ≡  

1(mod 9), whence by Theorem 3.2.2, P(10) ≡ P(l)(mod 9). But P(10) = N and P(1) = a0 + a1 + ··· + am = S, so that 

N ≡ S(mod 9). It follows that N ≡ 0(mod 9) if and only if S ≡ 0(mod 9), which is what we wanted to prove.  

Theorem Let N = am10m + am−110m−1 + ··· + a110 + a0 be the decimal expansion of the positive integer N, 0 ≤ ak 

< 10, and let T = a0 − a1 + a2 −··· + (−l)mam. Then 11|N if and only if 11|T.  

Proof. As in the proof of Theorem 3.2.4, put . Because  

10 ≡−1(mod 11), we get P(10) ≡ P(−1)(mod 11). But P(10) = N, whereas  

P(−1) = a0 − a1 + a2 −··· + (−l)mam = T, so that N = T(mod 11). The implication is that either both N and T are 

divisible by 11 or neither is divisible by 11.   

  

Linear Congruence and The Chinese Remainder Theorem  

Theorem. The linear congruence ax = b(mod n) has a solution if and only if d|b, where d = gcd(a,n). If d|b, then 

it has d mutually incongruent solutions modulo n.  

Proof. We already have observed that the given congruence is equivalent to the linear Diophantine equation ax 

− ny = b. From Theorem 1.6.1, it is known that the latter equation can be solved if and only if d|b; moreover, if 

it is solvable and x0,y0 is one specific solution, then any other solution has the form  

  

for some choice of t.  

Among the various integers satisfying the first of these formulas, consider those that occur when t takes on the 

successive values t = 0,1,2,··· ,d − 1:  

  

We claim that these integers are incongruent modulo n, and all other such integers x are congruent to some one 

of them. If it happened that  

  

where 0 ≤ t1 < t2 ≤ d − 1, then we would have   

Now gcd(n/d,n) = n/d, and therefore by Theorem 2.1.7 the factor n/d could be canceled to arrive at the congruence 

t1 ≡ t2(mod d) which is to say that d|t2 − t1. But this is impossible in view of the inequality 0 < t2 − t1 < d.  
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It remains to argue that any other solution x0 + (n/d)t is congruent modulo n to one of the d integers listed 

above. The Division Algorithm permits us to write t as t = qd + r, where 0 ≤ r ≤ d − 1. Hence  

  

with x0 + (n/d)r being one of our d selected solutions. This ends the proof. 2  

 

Corollary If gcd(a,n) = 1, then the linear congruence ax ≡ b(mod n) has a unique solution modulo n.  

 

Theorem  (Chinese Remainder Theorem). Let n1,n2,··· ,nr, be positive integers such that gcd(ni,nj) = 1 for i  

=6 j. Then the system of linear congruences x ≡ 

a1(mod n1) x ≡ a2(mod n2)  

·  

·  

·  

x ≡ ar(mod nr) has a simultaneous solution, which is unique modulo the integer 

n1n2 ···nr. Proof. We start by forming the product n = n1n2 ···nr. For each k = 

1,2,··· ,r, let  

,  

 

In words, Nk is the product of all the integers ni with the factor nk omitted. By hypothesis, the ni are relatively 

prime in pairs, so that gcd(Nk,nk) = 1. According to the theory of a single linear congruence, it is therefore possible 

to solve the congruence  

Nkx ≡ 1(mod nk); call the unique solution xk. Our aim is to prove that the integer x¯ 

= a1N1x1 + a2N2x2 + ··· + arNrxr is a simultaneous solution of the given system.  

First, observe that Ni ≡ 0(mod nk) for i =6 k, because nk|Ni in this case. The result is x¯ = 

a1N1x1 + ··· + arNrxr ≡ akNkxk(mod nk)  

But the integer xk was chosen to satisfy the congruence Nkx ≡ 1(mod nk), which forces x¯ ≡ 

ak · 1 ≡ ak(mod nk)  

This shows that a solution to the given system of congruences exists.  

As for the uniqueness assertion, suppose that x′ is any other integer that satisfies these congruences. Then 

x¯ ≡ ak ≡ x′(mod nk)  k = 1,2,··· ,r and so nk|x¯ − x′ for each value of k. Because gcd(ni,nj) = 1, Corollary 2 to 

Theorem  

1.4.8 supplies us with the crucial point that n1n2 ···nr|x¯ − x′; hence x¯ ≡ x′(mod n).  

With this, the Chinese Remainder Theorem is proven.  
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Theorem The system of linear congruences ax + by ≡ r(mod n);  cx + dy ≡ s(mod n) has a unique solution 

modulo n whenever gcd(ad − bc,n) = 1.  

Proof. Let us multiply the first congruence of the system by d, the second congruence by b, and subtract the 

lower result from the upper. These calculations yield  

(ad − bc)x ≡ dr − bs(mod n) (3.1)  

The assumption gcd(ad − bc,n) = 1 ensures that the congruence  

(ad − bc)z ≡ 1(mod n) possess a unique solution; denote the solution by t. When congruence (3.1) is 

multiplied by t, we obtain x ≡ t(dr − bs)(mod n)  

A value for y is found by a similar elimination process. That is, multiply the first congruence of the system by c, 

the second one by a, and subtract to end up with  

(ad − bc)y ≡ as − cr(mod n) Multiplication of this 

congruence by t leads to y ≡ t(as − cr)(mod n)  

A solution of the system is now established.  
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Part-A 

1 
Using division algorithm, prove that the cube of nay integer has one of the forms 9k, 

9k + 1 or 9k + 8 
 

2 Prove that 3a2 – 1 is never a perfect square.  

3 
Determine all the solutions in positive integers of the Diophantine equation 18x + 

5y = 48. 
 

4 Prove that 2  is irrational.  

5 Find all the prime numbers that divide 50!  

6 Prove that prime factorization of any positive integer n > 1 is unique.  

7 State and prove any one property of congruent modulo n.  

8 State and prove the divisibility condition for 5.  

9 Find all solution to the linear congruence ).13(mod1173  yx   

10 
Show that if gcd(a, n) = 1, then the linear congruence )(mod1 nax  has a unique 

solution modulo n. 
 

Part-B 

1 State and prove division algorithm.  

2 
Prove that if a and b are integers, with b>0, then there exists unique integers q an d r 

satisfying         a = qb + r, where brb 32   
 

3 
Show that for non-zero integers a and b, there exits unique integer x and y such that 

gcd(a, b)=ax+by 
 

4 State and prove Euclid’s lemma.  

5 
Show that the linear Diophantine equation ax + by = c has a solution if and only if d | 

c, where          d = gcd(a, b). 
 

6 State and prove fundamental theorem of arithmetic.  

7 State and prove Euclid’s theorem on number of primes.  

8 
Show that if  


n

k

k

k xcxP
0

)( be a polynomial function of x with integral coefficients 

ck, and ),(modnba   then ).)(mod()( nbPaP   
 

9 State and prove Chinese remainder theorem.  

10 
Show that the system of linear congruence, )(mod);(mod nsdycxnrbyax 

has a unique solution modulo n, whenever gcd(ad – bc, n) = 1. 
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2.1 Fermat’s Little Theorem and Pseudo primes 

 

Theorem: (Fermat’s theorem) 

Let p be a prime and suppose that 𝑝 ∤ 𝑎. Then, 𝑎𝑝−1 ≡ 1(𝑚𝑜𝑑 𝑝). 

 

Proof. Consider the positive integers: 

𝑎, 2𝑎, 3𝑎,··· , (𝑝 −  1)𝑎 

The first 𝑝 − 1 multiples of 𝑎. 

 

The 𝑝 − 1 multiples are mutually incongruent and not a multiple of 𝑝. Suppose that a randomly selected two 

multiples are congruent modulo 𝑝 to each other, 

 

𝑟𝑎 ≡ 𝑠𝑎(𝑚𝑜𝑑 𝑝), 1 ≤ 𝑟 < 𝑠 ≤ 𝑝 − 1 
 

then as 𝑝 ∤ 𝑎, dividing by 𝑎 we get: 

𝑟 ≡ 𝑠(𝑚𝑜𝑑 𝑝) 
which is impossible. 

 

It then follows by Euclid’s lemma that the set of multiples should be congruent modulo p to 1,2,3,··· ,p − 1, taken 

in some order. 

 

Multiplying all these congruencies together, we get: 

𝑎 ⋅  2𝑎 · 3𝑎 ··· (𝑝 − 1)𝑎 ≡ 1 · 2 · 3 ··· (𝑝 − 1)(𝑚𝑜𝑑 𝑝) 
Grouping the common factors together: 

𝑎𝑝−1(𝑝 −  1)!  ≡  (𝑝 −  1)! (𝑚𝑜𝑑 𝑝) 

Since, 𝑝 ∤ (𝑝 − 1), dividing both sides by (𝑝 − 1)! It follows that 

𝑎𝑝−1  ≡  1(𝑚𝑜𝑑 𝑝) 
The theorem follows. 

 

Corollary If p is a prime, then 𝑎𝑝 ≡  𝑎(𝑚𝑜𝑑 𝑝) for any integer a. 

 

Proof. Suppose 𝑝|𝑎, then, 𝑎𝑝 ≡ 0 ≡ 𝑎(𝑚𝑜𝑑 𝑝). Hence the statement is proved. 

If p ∤ a, then according to Fermat’s theorem, we have 

𝑎𝑝−1 ≡ 1(𝑚𝑜𝑑 𝑝) 
When this congruence is multiplied by a, the conclusion 

𝑎𝑝 ≡ 𝑎(𝑚𝑜𝑑 𝑝) 
The statement follows. 

 

Lemma: If 𝑝 and 𝑞 are distinct primes with 𝑎𝑝 ≡ 𝑎(𝑚𝑜𝑑 𝑞) and 𝑎𝑞 ≡ 𝑎(𝑚𝑜𝑑 𝑝), then 𝑎𝑝𝑞 ≡ 𝑎(𝑚𝑜𝑑 𝑝𝑞). 

 

Proof. From the corollary prove above, letting 𝑎 = 𝑎𝑞, we get 

(𝑎𝑞)𝑝 ≡ 𝑎𝑞(𝑚𝑜𝑑 𝑝) 
By our hypothesis 

𝑎𝑞 ≡ 𝑎(𝑚𝑜𝑑 𝑝) 
From these congruencies we obtain 

𝑎𝑝𝑞 ≡ 𝑎(𝑚𝑜𝑑 𝑝) 
Hence the proof. 

 

Definition 

A composite integer 𝑛 is called pseudoprime whenever, 𝑛|2𝑛 − 2. In general, a composite integer 𝑛 for which 

𝑎𝑛 ≡ 𝑎 (𝑚𝑜𝑑 𝑛) is called a pseudoprime to the base 𝑎. 
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The composite numbers 𝑛 which are pseudoprimes to every base 𝑎; that is, 𝑎𝑛 ≡ 𝑎(𝑚𝑜𝑑 𝑛) for all integers 𝑎 are 

called absolute pseudoprimes. 

 

Theorem: If 𝑛 is an odd pseudo prime, then 𝑀𝑛 = 2𝑛 − 1 is also an odd pseudo prime. 

 

Proof. By the definition of pseudo prime, n is a composite number and hence there exists non trivial factors 𝑟 

and 𝑠 such that 𝑛 = 𝑟𝑠, with 1 < 𝑟 ≤ 𝑠 < 𝑛. Hence, 2𝑟 − 1|2𝑛 − 1, or equivalently 2𝑟 − 1|𝑀𝑛. It is clear that 

𝑀𝑛 is a composite number as it has a non-trivial factor 2𝑟 − 1. 

Since 𝑛 is a pseudo prime, 2𝑛 ≡ 2(𝑚𝑜𝑑 𝑛). Hence 2𝑛 − 2 = 𝑘𝑛 for some integer k. It follows that 

Hence, 2𝑀𝑛−1 =  22 𝑛−1−1  =  22𝑛−2  =  2𝑘𝑛. 

It follows that: 

2𝑀𝑛−1 − 1 = 2𝑘𝑛 − 1 = (2𝑛 − 1)(2𝑛(𝑘−1) + 2𝑛(𝑘−2) + ⋯ + 2𝑛 + 1) 

⇒ 2𝑀𝑛−1 − 1 = 𝑀𝑛((2𝑛(𝑘−1) + 2𝑛(𝑘−2) + ⋯ + 2𝑛 + 1)) 

and hence 2𝑀𝑛 − 1 ≡  0(𝑚𝑜𝑑 𝑀𝑛)  ⇒  𝑀𝑛|(2𝑀𝑛 − 2). 

This proves that 𝑀𝑛 is a pseudoprime. 

 

Definition 
An integer is said to be square-free if it is not divisible by the square of any integer greater than 1. 

 

Theorem: Let 𝑛 be a composite square-free integer, say, 𝑛 = 𝑝1𝑝2 ··· 𝑝𝑟, where the 𝑝𝑖  are distinct primes. If 𝑝𝑖 −
1|𝑛 − 1 for 𝑖 = 1,2,··· , 𝑟, then 𝑛 is an absolute pseudo prime. 

 

Proof. Suppose that 𝑎  is an integer satisfying, 𝑔𝑐𝑑(𝑎, 𝑛) = 1 , so that 𝑔𝑐𝑑(𝑎, 𝑝𝑖) = 1  for each 𝑖 . Then by 

Fermat’s theorem 𝑝𝑖|𝑎
𝑝𝑖−1 − 1. 

 

Given that, 𝑝𝑖 − 1|𝑛 − 1 ⇒ 𝑛 − 1 = 𝑘(𝑝𝑖 − 1). 

Since 𝑔𝑐𝑑(𝑎, 𝑝𝑖) = 1, for some prime 𝑝𝑖, 𝑔𝑐𝑑(𝑎𝑘, 𝑝𝑖) = 1. We have 𝑝𝑖|(𝑎𝑘)𝑝𝑖−1 − 1 and therefore 𝑝𝑖|𝑎
𝑛−1 −

𝑎 ⇒ 𝑝𝑖|𝑎
𝑛 − 𝑎 for all 𝑎 and 𝑖 = 1,2,··· , 𝑟. 

 

Hence 𝑝1𝑝2 … 𝑝𝑟|𝑎𝑛 − 𝑎 ⇒ 𝑛|𝑎𝑛 − 𝑎. This proves that 𝑛 is an absolute pseudoprime. 

 

2.2 Wilson’s Theorem 

 

Theorem (Wilson). If 𝑝 is a prime, then (𝑝 − 1)! ≡ −1(𝑚𝑜𝑑 𝑝). 

 

Proof. The cases 𝑝 = 2 and 𝑝 = 3 as being evident, consider 𝑝 > 3. Suppose that 𝑎 is any one of the 𝑝 − 1 

positive integers 

1,2,3,··· , 𝑝 − 1 

and consider the linear congruence 𝑎𝑥 ≡ 1(𝑚𝑜𝑑 𝑝). It is cleat that 𝑔𝑐𝑑(𝑎, 𝑝) = 1 and hence the congruence 

admits a unique solution modulo p. Hence, there is a unique integer 𝑎′, with 1 ≤ 𝑎′ ≤ 𝑝 −  1, satisfying 𝑎𝑎′ ≡
1(𝑚𝑜𝑑 𝑝). 

Because 𝑝 is prime, 𝑎 = 𝑎′ if and only if 𝑎 = 1 𝑜𝑟 𝑎 = 𝑝 −  1. Indeed, the congruence 𝑎2 ≡ 1(𝑚𝑜𝑑 𝑝) is 

equivalent to (𝑎 − 1) · (𝑎 + 1) ≡ 0(𝑚𝑜𝑑 𝑝). Therefore, either 𝑎 − 1 ≡ 0(𝑚𝑜𝑑 𝑝), in which case 𝑎 = 1, or 𝑎 +
1 ≡ 0(𝑚𝑜𝑑 𝑝), in which case 𝑎 = 𝑝 − 1. 

If we omit the numbers 1 and p − 1, the effect is to group the remaining integers 

2,3,··· , 𝑝 − 2  into pairs 𝑎, 𝑎′ , where 𝑎 ≠ 𝑎′ , such that their product 𝑎𝑎′ ≡ 1(𝑚𝑜𝑑 𝑝) . When these 
𝑝−3

2
 

congruencies are multiplied together and the factors rearranged, we get 

2 · 3 ··· (𝑝 − 2) ≡ 1(𝑚𝑜𝑑 𝑝) 
or rather 

(𝑝 − 2)! ≡ 1(𝑚𝑜𝑑 𝑝)  

Now multiply by 𝑝 − 1 to obtain the congruence 

(𝑝 − 1)! ≡ 𝑝 − 1 ≡ −1(𝑚𝑜𝑑 𝑝) 
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as was to be proved. 

Example: A concrete example should help to clarify the proof of Wilson’s theorem. Specifically, let us take p 

= 13. It is possible to divide the integers 2,3,··· ,11 into (p − 3)/2 = 5 pairs, each product of which is congruent 

to 1 modulo 

13. To write these congruences out explicitly: 

2 · 7 = 1(mod 

13) 

3 · 9 = 1(mod 

13) 

4 · 

10 

= 1(mod 

13) 

5 · 8 = 1(mod 

13) 

6 · 

11 

= 1(mod 

13) 

Multiplying these congruences gives the result 

11! = (2 · 7)(3 · 9)(4 · 10)(5 · 8)(6 · 11) ≡ 1(mod 13) 

and so 

12! ≡ 12 ≡−1(mod 13) 

Thus, (p − 1)! ≡−1(mod p), with p = 13. 

 

Theorem The quadratic congruence 𝑥2 + 1 ≡ 0(𝑚𝑜𝑑 𝑝), where 𝑝 is an odd prime, has a solution if and only if 

𝑝 ≡ 1(𝑚𝑜𝑑 4). 

 

Proof. Let 𝑎 be any solution of 𝑥2 + 1 ≡ 0(𝑚𝑜𝑑 𝑝), so that 𝑎2 ≡ −1(𝑚𝑜𝑑 𝑝). It follows that 𝑝 ∤ 𝑎, the outcome 

of applying Fermat’s theorem is 

1 ≡ 𝑎𝑝−1  ≡  (𝑎2)
𝑝−1

2  ≡  (−1)
𝑝−1

2  (𝑚𝑜𝑑 𝑝) 
The possibility that p = 4k + 3 for some k does not arise. If it did, we would have 

(−1)
𝑝−1

2  =  (−1)2𝑘+1 = −1 

hence, 1 ≡ 1(𝑚𝑜𝑑 𝑝). The net result of this is that 𝑝|2, which is patently false. 

Therefore, p must be of the form 4𝑘 + 1 or equivalently 𝑝 ≡ 1(𝑚𝑜𝑑 4). 

 

Conversly, 

 
we have the congruences 

 
Rearranging the factors produces 
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because there are (p − 1)/2 minus signs involved. It is at this point that Wilson’s theorem can be brought to bear; 

for, (p − 1)! ≡−1(mod p), whence 

 
If we assume that p is of the form 4k + 1, then (−1)(p−1)/2 = 1, leaving us with the congruence 

 
The conclusion is that the integer [(p − 1)/2]! satisfies the quadratic congruence 

x2 + 1 ≡ 0(mod p). 

 

2.3 The sum and number of divisors 

Definition Given a positive integer n, let τ(n) denote the number of positive divisors of n and a σ(n) denote the 

sum of these divisors. 

Theorem.  If 𝑛 = 𝑝1
𝑘1𝑝2

𝑘2 ⋯ 𝑝𝑟
𝑘𝑟is the prime factorization of n > 1, then the positive divisors of n are precisely 

those integers 𝑑 of the form 

𝑑 = 𝑝1
𝑎1𝑝2

𝑎2 ⋯ 𝑝𝑟
𝑎𝑟  

where 0 ≤ 𝑎𝑖 ≤ 𝑘𝑖(𝑖 =  1,2,··· , 𝑟). 

 

Proof. Note that the divisor 𝑑 = 1 is obtained when 𝑎1 = 𝑎2 = ··· = 𝑎𝑟 = 0, and 𝑛 itself occurs when 𝑎1 =
𝑘1, 𝑎2 = 𝑘2,··· , 𝑎𝑟 = 𝑘𝑟. Suppose that 𝑑 divides 𝑛 non trivially; say, 𝑛 = 𝑑𝑑′, where 𝑑 > 1, 𝑑′ > 1. Express both 

𝑑 and 𝑑′ as products of ( not necessarily distinct) primes: 

𝑑 = 𝑞1𝑞2 ··· 𝑞𝑠; 𝑑′ = 𝑡1𝑡2  ··· 𝑡𝑢 

with 𝑞𝑖, 𝑡𝑗  prime. Then 

 
are two prime factorizations of the positive integer n. By the uniqueness of the prime factorization, each prime qi 

must be one of the pj. Collecting the equal primes into a single integral power, we get 

 
where the possibility that ai = 0 is allowed. 

Conversely, every number 𝑑 = 𝑝1
𝑎1𝑝2

𝑎2 ⋯ 𝑝𝑟
𝑎𝑟  turns out to be a divisor 

of n. For we can write 

𝑛 = 𝑝1
𝑘1𝑝2

𝑘2  ··· 𝑝𝑟
𝑘𝑟 

= (𝑝1
𝑎1𝑝2

𝑎2  ··· 𝑝𝑟
𝑎𝑟)(𝑝1

𝑘1−𝑎1𝑝2
𝑘2−𝑎2  ··· 𝑝𝑟

𝑘𝑟−𝑎𝑟) 

= 𝑑𝑑′ 

With 𝑑′ = 𝑝1
𝑘1−𝑎1𝑝2

𝑘2−𝑎2  ··· 𝑝𝑟
𝑘𝑟−𝑎𝑟 and 𝑘𝑖 − 𝑎𝑖 ≥ 0 for each i. Then 𝑑′ >  0 and 𝑑|𝑛. 

 

Theorem  is the prime factorization of n > 1, then 

(a) τ(n) = (k1 + 1)(k2 + 1)···(kr + 1), and 

. 

Proof: The positive divisors of n are precisely those integers 

 
where 0 ≤ ai ≤ ki. There are k1 + 1 choices for the exponent a1; k2 + 1 choices for a2,··· ; and kr + 1 choices for ar. 

Hence, there are 

(k1 + 1)(k2 + 1)···(kr + 1) 

possible divisors of n. 

To evaluate σ(n), consider the product 

 
Each positive divisor of n appears once and only once as a term in the expansion of this product, so that 

 
Applying the formula for the sum of a finite geometric series to the ith factor on the right-hand side, we get 

 
It follows that 
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2 

Example. The number 180 = 22 · 32 · 5 has 

τ(180) = (2 + 1)(2 + 1)(1 + 1) = 18 

positive divisors. These are integers of the form 

2𝑎1 · 3𝑎2 · 5𝑎3  

where 𝑎1 = 0,1,2; 𝑎2 = 0,1,2; and 𝑎3 = 0,1. Specifically, we obtain 

1,2,3,4,5,6,9,10,12,15,18,20,30,36,45,60,90,180 

The sum of these integers is 

 
 

Definition. A number-theoretic function f is said to be multiplicative if 

f(mn) = f(m)f(n) 

whenever gcd(m,n) = 1. 

 

Theorem The functions τ and σ are both multiplicative functions. 

 

Proof. Let m and n be relatively prime integers. Because the result is trivially true if either m or n is equal to 1, 

we may assume that m > 1 and n > 1. If 

  and   

are the prime factorizations of m and n, then because gcd(m,n) = 1, no pi can occur among the qj. It follows that 

the prime factorization of the product mn is given by 

 
Appealing to Theorem 5.1.3, we obtain 

τ(mn) = [(ki + 1)···(kr + 1)][(j1 + 1) · (js + 1)] 

= τ(m)τ(n) 

In a similar fashion, Theorem 5.1.3 gives 

 
Thus, τ and σ are multiplicative functions. 

 

Lemma. If gcd(m,n) = 1, then the set of positive divisors of mn consists of all products d1d2, where d1|m, d2|n and 

gcd(d1,d2) = 1; furthermore, these products are all distinct. 

 

Proof. It is harmless to assume that m > 1 and 𝑛 > 1, 𝑚 = 𝑝1
𝑘1𝑝2

𝑘2  ··· 𝑝𝑟
𝑘𝑟 and 𝑛 = 𝑞1

𝑗1𝑞2
𝑗2 ··· 𝑞𝑠

𝑗𝑠  be their 

respective prime factorizations. In as much as the primes p1,··· ,pr,q1,··· ,qs are all distinct, the prime 

factorization of mn is 

 
Hence, any positive divisor d of mn will be uniquely representable in the form 

 
This allows us to write d as d = d1d2, where  divides m and 

 divides n. Because no pi is equal to any qj. we surely must have 

gcd(d1,d2) = 1. 

 

Theorem . If f is a multiplicative function and F is defined by 

𝐹(𝑛) = ∑  𝑓(𝑑)

𝑑|𝑛

 

then F is also multiplicative. 

 

Proof. Let m and n be relatively prime positive integers. Then 
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𝐹(𝑚𝑛) = ∑ 𝑓(𝑑)

𝑑|𝑚𝑛

 

=  ∑ 𝑓(𝑑1𝑑2)

𝑑1|𝑚;𝑑2|𝑛

 

n as a product of a divisor d1 of m and a divisor d2 of n, where gcd(d1,d2) = 1. By the definition of a multiplicative 

function, 

f(d1d2) = f(d1)f(d2) 

It follows that  

=  ∑ 𝑓(𝑑1)𝑓(𝑑2)

𝑑1|𝑚;𝑑2|𝑛

= ∑ 𝑓(𝑑1)

𝑑1|𝑚 

∑ 𝑓(𝑑2)

𝑑2|𝑛

 

 

  

Corollary. The functions τ and σ are multiplicative functions. 

 

Proof. We have mentioned that the constant function f(n) = 1 is multiplicative, as is the identity function f(n) = 

n. Because τ and σ may be represented in the form 𝜏(𝑛)  = ∑ 1𝑑|𝑛  and 𝜎(𝑛)  =  ∑ 𝑑𝑑|𝑛 , which are constant 

functions and hence are multiplicative. 

 

2.4 The Greatest Integer Function 

 

Definition . For an arbitrary real number x, we denote by [x] the largest integer less than or equal to x; that is, [x] 

is the unique integer satisfying x − 1 < [x] ≤ x. 

 

Theorem. If n is a positive integer and p a prime, then the exponent of the highest power of p that divides n! is 

 
where the series is finite, because [n/pk] = 0 for pk > n. 

 

Proof. Among the first n positive integers, those divisible by p are p,2p,··· ,tp, where t is the largest integer such 

that tp ≤ n; in other words, t is the largest integer less than or equal to n/p (which is to say t = [n/p]). Thus, there 

are exactly [n/p] multiples of p occurring in the product that defines n!, namely, 

𝑝,  

The exponent of p in the prime factorization of n! is obtained by adding to the number of integers in Equation 

(5.3), the number of integers among 1,2,··· ,n divisible by p2, and then the number divisible by p3, and so on. 

Reasoning as in the first paragraph, the integers between 1 and n that are divisible by p2 are 

 

which are [n/p2] in number. Of these, [n/p3] are again divisible by p: 

 

After a finite number of repetitions of this process, we are led to conclude that the total number of times p divides 

n! is 

 
2 
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Example. We would like to find the number of zeros with which the decimal representation of 50! terminates. In 

determining the number of times 10 enters into the product 50!, it is enough to find the exponents of 2 and 5 in 

the prime factorization of 50!, and then to select the smaller figure. 

By direct calculation we see that 

[50/2] + [50/22] + [50/23] + [50/24] + [50/25] 

= 25 + 12 + 6 + 3 + 1 = 47 

Theorem 6.9 tells us that 247 divides 50!, but 248 does not. Similarly, 

[50/5] + [50/52] = 10 + 2 = 12 

and so the highest power of 5 dividing 50! is 12. This means that 50! ends with 12 zeros. 

 

Theorem  If n and r are positive integers with 1 ≤ r < n, then the binomial coefficient 

 
is also an integer. 

 

Proof. The argument rests on the observation that if a and b are arbitrary real numbers, then [a + b] ≤ [a] + [b]. 

In particular, for each prime factor p of r!(n − r)! , 

 
Adding these inequalities, we obtain 

 

The left-hand side of Equation gives the exponent of the highest power of the prime p that divides n!, whereas 

the right-hand side equals the highest power of this prime contained in r!(n − r)!. Hence, p appears in the 

numerator of n!/r!(n − r)! at least as many times as it occurs in the denominator. Because this holds true for every 

prime divisor of the denominator, r!(n − r)! must divide n!, making n!/r!(n − r)! an integer. 

 

Corollary. For a positive integer r, the product of any r consecutive positive integers is divisible by r!. 

 

Proof. The product of r consecutive positive integers, the largest of which is n, is 

𝑛(𝑛 −  1)(𝑛 −  2) ··· (𝑛 −  𝑟 +  1) 
Now we have 

𝑛(𝑛 −  1)(𝑛 −  2) ··· (𝑛 −  𝑟 +  1) =
𝑛!

𝑟! (𝑛 − 𝑟)!
𝑟! 

Because n!/r!(n − r)! is an integer by the theorem, it follows that r! must divide the product n(n − 1)···(n − r + 

1), as asserted. 

 

Theorem . Let f and F be number-theoretic functions such that 

𝐹(𝑛)  =  ∑ 𝑓(𝑑)

𝑑|𝑛

 

Then, for any positive integer N, 

 
 

Proof. We begin by noting that 

) 

The strategy is to collect terms with equal values of f(d) in this double sum. For a fixed positive integer k ≤ N, 

the term f(k) appears in Pd|n f(d) if and only if k is a divisor of n. (Because each integer has itself as a divisor, the 

right-hand side of 
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P 

Equation (5.7) includes f(k), at least once.) Now, to calculate the number of sums d|n   f(d) in which f(k) occurs 

as a term, it is sufficient to find the number of integers among 1,2,··· ,N, which are divisible by k. There are 

exactly [N/k] of them: 

k,  

Thus, for each k such that 1 ≤ k ≤ N, f(k) is a term of the sum Pd|n f(d) for [N/k] different positive integers less 

than or equal to N. Knowing this, we may rewrite the double sum in Equation (5.7) as 

 
and our task is complete. 

 

Corollary If N is a positive integer, then 

 
 

Proof. Noting that τ(n) = Pd|n 1, we may writer for F and take f to be the constant function f(n) = 1 for all n. 

 

Corollary. If N is a positive integer, then 

 
Example Consider the case N = 6. The definition of τ tells us that 

 
By above Corollary, 

 
= 14 

as it should. In the present case, we also have 

 
and a simple calculation leads to 

 
= 33 

Definition 

For 𝑛 ≥ 1, 𝜙(𝑛) denotes the number of positive integers not exceeding n and relatively prime to n. The function 

𝜙(𝑛)is usually called the Euler phi-function (indicator or totient). 

 

Note: 

If n is a prime number, then every integer less than n is relatively prime to it; whence, 𝜙(𝑛) = 𝑛 − 1.  

 

Theorem  

If p is a prime and k > 0, then 𝜙(𝑝𝑘)  =  𝑝𝑘 − 𝑝𝑘−1 =  𝑝𝑘 ( 1 −
1

𝑝
)  
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Proof. 

Since 𝑝  is prime, 𝑔𝑐𝑑(𝑛, 𝑝𝑘)  =  1  if and only if 𝑝 ∤ 𝑛 . There are 𝑝𝑘−1  integers between 1 and 𝑝𝑘  that are 

divisible by p, namely, 𝑝, 2𝑝, 3𝑝, . . . (𝑝𝑘−1)𝑝. Thus, the set {1, 2, . . . , 𝑝𝑘} contains exactly 𝑝𝑘 − 𝑝𝑘−1integers that 

are relatively prime to 𝑝𝑘, and so by the definition of the phi-function, 𝜙(𝑝𝑘)  =  𝑝𝑘 − 𝑝𝑘−1. 

  

Lemma. 

Given integers a, b, c, 𝑔𝑐𝑑(𝑎, 𝑏𝑐) =  1 if and only if 𝑔𝑐𝑑(𝑎, 𝑏) =  1 and 𝑔𝑐𝑑(𝑎, 𝑐)  =  1. 

Proof.  

Case (i) 

Suppose that 𝑔𝑐𝑑(𝑎, 𝑏𝑐)  =  1 and let 𝑑 =  𝑔𝑐𝑑(𝑎, 𝑏). Then 𝑑|𝑎 and 𝑑|𝑏 hence it follows that 𝑑|𝑎 and 𝑑|𝑏𝑐. 

This implies that 𝑔𝑐𝑑(𝑎, 𝑏𝑐) = 𝑑, which forces d = 1. Similarly it can be proved that 𝑔𝑐𝑑(𝑎, 𝑐)  =  1.  

Case (ii) 

Assume that 𝑔𝑐𝑑(𝑎, 𝑏) =  1 =  𝑔𝑐𝑑(𝑎, 𝑐)  and 𝑔𝑐𝑑(𝑎, 𝑏𝑐) =  𝑑1 > 1 . Then 𝑑1  must have a prime divisor 𝑝 . 

Because 𝑑1|𝑏𝑐, it follows that 𝑝|𝑏𝑐; in consequence, 𝑝|𝑏 or 𝑝|𝑐. If 𝑝|𝑏, then (by virtue of the fact that pI a) we 

have 𝑔𝑐𝑑(𝑎, 𝑏) ≥ 𝑝, a contradiction. In the same way, the condition 𝑝|𝑐 leads to the equally false conclusion that 

𝑔𝑐𝑑(𝑎, 𝑐) ≥ 𝑝. Thus, 𝑑1 =  1 and the lemma is proven. 

 

Theorem. 

The Euler phi function is a multiplicative function. i.e., if 𝑚  and 𝑛  are two positive integers such that 

gcd(𝑚, 𝑛) = 1, then 𝜙(𝑚𝑛) = 𝜙(𝑚)𝜙(𝑛). 

 

Proof. 

We know that 𝜙(1)  =  1, hence the result obviously holds if either m or n equals 1. Let us suppose that m > 1 

and n > 1. Arranging the integers from 1 to mn in m columns of n integers each, as follows:  

 

1 2 ⋯ 𝑟 ⋯ 𝑚 

𝑚 + 1 (𝑚 + 1) ⋯ (𝑚 + 𝑟) ⋯ 2𝑚 

(2𝑚 + 2) (2𝑚 + 2) ⋯ (2𝑚 + 𝑟) ⋯ 3m 

⋅   ⋅   ⋅   ⋅   

⋅ ⋅ ⋅ ⋅ 

(𝑛 − 1)𝑚 + 1 (𝑛 − 1)𝑚 + 2 ⋯ (𝑛 − 1)𝑚 + 𝑟 ⋯ 𝑚𝑛 

  

From the above array of 𝑚𝑛 elements we have identify numbers that are relatively prime to 𝑚𝑛. From the 

previous lemma it is the same as the number of integers that are relatively prime to both m and n. We know that, 
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𝑔𝑐𝑑(𝑞𝑚 +  𝑟, 𝑚)  =  𝑔𝑐𝑑(𝑟, 𝑚), the numbers in the rth column are relatively prime to m if and only if r itself 

is relatively prime to m. Therefore, only ¢(m) columns contain integers relatively prime to 𝑚, and every entry 

in the column will be relatively prime to m. Now the entries in the rth column (where it is assumed that gcd(r, 

m) = 1) are 𝑟, 𝑚 +  𝑟, 2𝑚 +  𝑟, . . . , (𝑛 −  1)𝑚 +  𝑟. The listed 𝑛 integers are incongruent to modulo 𝑛. For if 

any two integers are congruent modulo 𝑛  i.e. 𝑘𝑚 + 𝑟 ≡ 𝑠𝑚 + 𝑟(𝑚𝑜𝑑 𝑛), 0 ≤ 𝑘 < 𝑠 < 𝑛 ⇒ 𝑘𝑚 ≡

𝑠𝑚(𝑚𝑜𝑑 𝑛) ⇒ 𝑘 ≡ 𝑠(𝑚𝑜𝑑 𝑛). Thus, the numbers in the rth column are congruent modulo n to 0, 1, 2, ... , n- 

1, in some order. But if 𝑠 ≡ 𝑡  (𝑚𝑜𝑑 𝑛), then 𝑔𝑐𝑑(𝑠, 𝑛)  =  1 if and only if 𝑔𝑐𝑑(𝑡 , 𝑛)  =  1. The implication is 

that the rth column contains as many integers that are relatively prime to n as does the set {0, 1, 2, . . . , 𝑛 −  1}, 

namely, ¢(n) integers. Therefore, the total number of entries in the array that are relatively prime to both m and 

n is ¢(m )¢(n ). This completes the proof of the theorem.  

 

Theorem. 

If the integer n > 1 has the prime factorization =  𝑝1
𝑘1𝑝2

𝑘2𝑝3
𝑘3 ⋯ 𝑝𝑟

𝑘𝑟 , then 𝜙(𝑛)  = 𝑛 (1 −
1

𝑝1
) (1 −

1

𝑝2
) ⋯ (1 −

1

𝑝𝑟
) 

Proof. 

Let us prove this theorem by the method of induction, using induction on r, the number of distinct prime factors 

of n.  When 𝑟 = 1, the  statement follows from the previous theorem.  Since , it is true for 𝑟 = 1, let us assume it 

is true for 𝑟 = 𝑖. i.e.,  𝜙(𝑝1
𝑘1𝑝2

𝑘2𝑝3
𝑘3 ⋯ 𝑝𝑖

𝑘𝑖) = 𝑝1
𝑘1𝑝2

𝑘2𝑝3
𝑘3 ⋯ 𝑝𝑖

𝑘𝑖 ((1 −
1

𝑝1
) (1 −

1

𝑝2
) ⋯ (1 −

1

𝑝𝑖
)) 

For 𝑟 = 𝑖 + 1, 𝜙(𝑝1
𝑘1𝑝2

𝑘2𝑝3
𝑘3 ⋯ 𝑝𝑖

𝑘𝑖𝑝𝑖+1
𝑘𝑖+1

) =  𝜙(𝑝1
𝑘1𝑝2

𝑘2𝑝3
𝑘3 ⋯ 𝑝𝑖

𝑘𝑖)𝜙(𝑝𝑖+1
𝑘𝑖+1

) 

= 𝑝1
𝑘1𝑝2

𝑘2𝑝3
𝑘3 ⋯ 𝑝𝑖

𝑘𝑖 ((1 −
1

𝑝1
) (1 −

1

𝑝2
) ⋯ (1 −

1

𝑝𝑖
)) 𝑝𝑖+1

𝑘𝑖+1
(1 −

1

𝑝𝑖+1
𝑘𝑖+1) 

Hence, whenever the statement is true for 𝑛 = 𝑖, it is true for 𝑛 = 𝑖 + 1 by principle of mathematical induction 

the statement is true for all 𝑛 > 1. This proves the theorem. 

 

Theorem. 

For n > 2, 𝜙(𝑛) is an even integer. 

Proof. 

If 𝑛 > 2, is prime then 𝜙(𝑛) = 𝑛 − 1 is even. As every prime number greater than 2 is odd. If  𝑛 is an even 

composite number with the prime factorisation 𝑛 =  𝑝1
𝑘1𝑝2

𝑘2𝑝3
𝑘3 ⋯ 𝑝𝑟

𝑘𝑟then 𝜙(𝑛) = 𝑛 (1 −
1

𝑝1
) (1 −

1

𝑝2
) ⋯ (1 −

1

𝑝𝑟
) which is even as 𝑛 is even. If  𝑛 is odd, then the prime factorization of 𝑛 involves only the odd prime factors. 

Let = 𝑝𝑖
𝑘𝑖𝑚 . Since, Euler’s phi function is multiplicative 𝜙(𝑛) = 𝜙(𝑝𝑖

𝑘𝑖)𝜙(𝑚) = 𝑝𝑖
𝑘𝑖−1(𝑝𝑖 − 1)𝜙(𝑚).  As 𝑝𝑖 −

1 is even 𝜙(𝑛) is even. This proves the theorem
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Hence the proof. 
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Part-A 

1 Using Fermat’s theorem, find the prime factorization of 12499.  

2 

Show that if rk

r

kk
pppn 21

21 is the prime factorization of n > 1, then the positive 

divisors of n are precisely the integers d of the form ra

r

aa
pppd 21

21 where 

.0 ii ka   

 

3 Prove that  and   are both multiplicative functions.  

4 Prove that for any positive integer n and r, the binomial coefficient nCr is an integer.  

5 

Show that, if f and F are number-theoretic functions such that 
nd

dfnF
|

)()( then for 

any positive integer N, 












N

k

N

n k

n
kfnF

11

)()( . 
 

6 

Show that, for the integer n > 1 having the prime factorization rk

r

kk
pppn 21

21 , 

  



























rppp
n

1
1

1
1

1
1

21

 . 
 

 

Part-B 

1 State and prove Fermat’s theorem  

2 Show that if n is an odd pseudo prime, then Mn = 2n – 1 is a larger one.  

3 State and prove Wilson’s theorem.  

4 If rk

r

kk
pppn 21

21 is the prime factorization of n > 1, then find    ., nn    

5 Prove that the function  is an multiplicative function.  

6 

Prove that if n is a positive integer and p a prime, then the exponent of the highest 

power of p that divides n! is 












1k
kp

n
. 

 

7 State and prove Euler’s theorem.  

8 

Prove that for n > 1, the sum of the positive integers less than n and relatively prime to 

n is  .
2

1
nn  
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UNIT – III – Elementary Transformations– SMT5209 
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Example 1.  
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. 

 

Example 2.  
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Part-A 

1 Show that equivalent system of linear equations has exactly the same solutions.  

2 
Show that the inverse of an elementary row operation exists and is an elementary row 

operation of the same type. 
 

3 If 























031

112

213

A find all the solutions of AX = 0 by row-reducing A.  

4 
If A is a square matrix of order n, then A is row-equivalent to In if and only if the 

system of equations AX = 0 has only the trivial solution. 
 

5 Find a row-reduced echelon matrix which is row-equivalent to























ii

i

A

1

22

1

.  

6 

Show that the following statements are true for any square matrix A and B over F: 

i) If A is invertible then so is A-1 and (A-1)-1 = A. 

ii) If both A and B are invertible, so is AB and (AB)-1 = B-1A-1. 

 

7 Prove that an elementary matrix is invertible.  

8 A square matrix with left and right inverse is invertible.  

Part-B 

1 
Prove that every m x n matrix over the field F is row-equivalent to a row-reduced 

matrix. 
 

2 
Show that every m x n matrix over the field F is row-equivalent to a row-reduced 

echelon matrix. 
 

3 
Prove that for any A and B, n x n matrices over the field F. the B is row-equivalent to 

A if and only if B = PA, where P is a product of m x m elementary matrices. 
 

4 
Show that if A is a m x n matrix and m < n, then the homogenous system of linear 

equations AX = 0 has a non-trivial solution. 
 

5 

Prove that if A and B are n x n matrices over the field F, then the following statements 

are true: 

i) A is invertible, so is A-1 and (A-1)-1 = A 

ii) If A and B are invertible then so is AB and (AB)-1=B-1A-1. 

 

6 

Prove that the following statements are equivalent for any square matrix: 

i) A is invertible 

ii) A is row-equivalent to the n x n identity matrix. 

iii) A is a product of elementary matrices. 

 

7 

Show that for an n x n matrix A, the following are equivalent: 

i) A is invertible 

ii) The homogeneous system AX = 0 has only the trivial solution X = 0. 

iii) The system of equations AX = Y has a solution X for each n x 1 matrix Y. 

 

8 
Let 





















1121

5301

0121

A . Find a row-reduced echelon matrix R which is row-

equivalent to A and an invertible 3 x 3 matrix P such that R = PA. 

 

 

 

 



46 | P a g e  

 

 

SCHOOL OF MATHEMATICS 

DEPARTMENT OF MATHEMATICS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

UNIT – IV – System of Linear Equations – SMT5209 
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Check the consistency of the following system of homogeneous equations 
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Part-A 

1 
If A is m x n matrix with entries in the filed F, then show that row –rank(A) = column-

rank(A). 
 

2 

A linear transformation    tPtPT 22:  is defined as 

    1

2

0

22

210 )232(221 attatttataaT  find the eigenvalues and 

eigenvectors of T. 

 

3 If  is a characteristic root of A, then show that k is a characteristic root of Ak.  

4 

Let T be  a finite-dimensional vector space V and let α be a scalar, the following 

statements are equivalent: (i) α is a characteristic value of T (ii) the operator (T – α I) 

is invertible (iii) det(T – αI)=0 

 

 

Part-B 

1 
If V and W are vector spaces over the filed F and T is a linear transformation form V 

into W, show that rank(T) + nullity(T) = dim V. 
 

2 State and prove Sylvester’s law of nullity.  

3 
Show that two similar matrices have the same characteristic polynomial and hence the 

same characteristic roots. 
 

4 
Show that the eigenvectors associated with distinct eigenvalues of an n-square matrix 

A are linearly independent. 
 

5 
Show that an nth order matrix A with distinct eigenvalues n ,, 21 is similar to a 

diagonal matrix D with these eigenvalues as diagonal elements. 
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UNIT – V – Complex Matrices – SMT5209 
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Characteristic Roots and Characteristic Vectors of a Square Matrix 

 

 

 
|𝐴 − 𝜆𝐼| = 0 

Every characteristic root λ of a matrix A is a root of its characteristic equation  

|𝐴 − 𝑥𝐼| = 0. 

Thus, every root of characteristic equation is a characteristic root of the matrix. 

 

 

Characteristic Subspace of a Matrix 
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SOME FUNDAMENTAL THEOREMS 

 

 

 
Find the Characteristic roots and vectors for each of the following matrices 
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NATURE OF THE CHARACTERISTIC ROOTS OF SOME SPECIAL TYPES OF MATRICES 

Theorem 1. The characteristic roots of a Hermitian matrices are all real. 



73 | P a g e  

 

 
So that the modulus of λ is unity. 

Cor. The modulus of each characteristic root of an orthogonal matrix is unity, for every such matrix 

is unitary. 
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Part-A 

1 
Show that the eigenvalues of a Hermitian matrix are real and of skew-Hermitian matrix 

are purely imaginary. 
 

2 
Show that if α is a eigenvalue of a unitary matrix U, then (i) α-1 is an eigenvalue of U 

and (ii) Every eigenvalue of U has unit modulus. 
 

3 
Show that eigenvectors associated with distinct eigenvectors of a Hermitian matrix are 

orthogonal. 
 

4 Show that a normal matric is unitarily similar to a diagonal matrix.  

 

Part-B 

1 
Show that every Hermitian matrix H is unitarily similar to a diagonal matrix whose 

diagonal elements are the eigenvalues of H. 
 

2 
Show that if α is an eigenvalue of multiplicity m of a Hermitian matrix H, then the 

number of linearly independent eigenvectors associated with α is m. 
 

3 
Show that if α is an eigenvalue of Hermitian matrix H of multiplicity m, then there 

exists m orthogonal vectors associated with α. 
 

4 
Show that a Hermitian matrix H of order n possesses an orthogonal set of n 

eigenvectors. 
 

5 

Prove that if A and B are two Hermitian matrices of the same order n with A having 

positive eigenvalues, then there exists an n x n non-singular matrix P such that P*AP 

= I, P*BP=diag(c1, c2,… cn) where ci’s are real. 

 

6 State and prove Cayley-Hamilton theorem.  

 

 

  


