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I. Connectivity 

 

Contents - Connectivity and edge-connectivity – 2-connected graphs – Menger’s theorem. 

 

Connectivity 

A graph is said the connectivity of a graph. A graph with multiple disconnected 

vertices and to be connected if there is a path between every pair of vertex. From 

every vertex to any other vertex, there should be some path to traverse. That is called 

edges is said to be disconnected. 

Example 1 

In the following graph, it is possible to travel from one vertex to any other vertex. 

For example, one can traverse from vertex ‘a’ to vertex ‘e’ using the path ‘a-b-e’. 

 

Example 2 

In the following example, traversing from vertex ‘a’ to vertex ‘f’ is not possible 

because there is no path between them directly or indirectly. Hence it is a 

disconnected graph. 

 

Cut Vertex 

Let ‘G’ be a connected graph. A vertex V ∈ G is called a cut vertex of ‘G’, if ‘G-V’ 

(Delete ‘V’ from ‘G’) results in a disconnected graph. Removing a cut vertex from 

a graph breaks it in to two or more graphs. 

Note − Removing a cut vertex may render a graph disconnected. A 

connected graph ‘G’ may have at most (n–2) cut vertices. 

Example 

In the following graph, vertices ‘e’ and ‘c’ are the cut vertices. 
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By removing ‘e’ or ‘c’, the graph will become a disconnected graph. 

 

 

 

 

Cut Set of a Graph 

Let ‘G’= (V, E) be a connected graph. A subset E’ of E is called a cut set of G if 

deletion of all the edges of E’ from G makes G disconnect. 

If deleting a certain number of edges from a graph makes it disconnected, then those 

deleted edges are called the cut set of the graph. 

 

Example 

Take a look at the following graph. Its cut set is E1 = {e1, e3, e5, e8}. 

 

After removing the cut set E1 from the graph, it would appear as follows − 

 

Similarly, there are other cut sets that can disconnect the graph − 

 

E3 = {e9} – Smallest cut set of the graph. 

E4 = {e3, e4, e5} 

Edge Connectivity 

Let ‘G’ be a connected graph. The minimum number of edges whose removal makes 

‘G’ disconnected is called edge connectivity of G. 

 

Notation − λ(G) 

In other words, the number of edges in a smallest cut set of G is called the edge 

connectivity of G. 
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If ‘G’ has a cut edge, then λ(G) is 1. (edge connectivity of G.) 

 

Example 

Take a look at the following graph. By removing two minimum edges, the connected 

graph becomes disconnected. Hence, its edge connectivity (λ(G)) is 2. 

 

Here are the four ways to disconnect the graph by removing two edges − 

 

Vertex Connectivity 

Let ‘G’ be a connected graph. The minimum number of vertices whose removal 

makes ‘G’ either disconnected or reduces ‘G’ in to a trivial graph is called its vertex 

connectivity. 

 

Notation − K(G) 

 

Example 

In the above graph, removing the vertices ‘e’ and ‘i’ makes the graph disconnected. 

 

 

If G has a cut vertex, then K(G) = 1. 

 

Notation − For any connected graph G, 

Vertex connectivity (K(G)), edge connectivity (λ(G)), minimum number of degrees 

of G(δ(G)). 

 

Theorem (Whitney) For any graph G, κ(G) ≤ λ (G) ≤ δ (G). 

Proof: We first prove λ(G) ≤ δ(G). 

If G has no edges, then λ = 0 and δ = 0. If G has edges, then we get a disconnected 

graph, when all edges incident with a vertex of minimum degree are removed. Thus, 

in either case, λ (G) ≤ δ (G). 
 

We now prove κ(G) ≤ λ (G). For this, we consider the various cases. If G 
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= Kn, then κ(G) = λ (G) = n − 1. Now let G be an incomplete graph. In case G is 

disconnected or trivial, then obviously κ = λ = 0. 

 

If G is disconnected and has a cut edge (bridge) x, then λ = 1. In this  case, κ = 1, 

since either G has a cut vertex incident with x, or G is K2. 

 

Finally, let G have λ ≥ 2 edges whose removal disconnects it. Clearly, the removal 

of λ −1 of these edges produces a graph with a cut edge (bridge) x 

= uv. For each of these λ −1 edges, select an incident vertex different from u or v. 

The removal of these vertices also removes the λ − 1 edges and quite possibly more. 

If the resulting graph is disconnected, then κ < λ . If not, x is a cut edge (bridge) and 

hence the removal of u or v will result in either a disconnected or a trivial graph, so 

that κ ≤ λ in every case. 

 

Illustration 

We illustrate this by the graph shown in Figure Here κ = 2, λ = 3 and δ = 4. 

Example 

 

 

Calculate λ(G) and K(G) for the following graph – 

 

Solution 

From the graph, δ(G) = 3 

K(G) ≤ λ(G) ≤ δ(G) = 3 (1) K(G) ≥ 2 (2) 

Deleting the edges {d, e} and {b, h}, we can disconnect G. Therefore, 

λ(G) = 2 

2 ≤ λ(G) ≤ δ(G) = 2 (3) 

From (2) and (3), vertex connectivity K(G) = 2 
 

Theorem : For any v ∈ V and any e ∈ E of a graph G(V, E), κ(G)−1 ≤ κ(G−v) and 

λ(G)−1 < λ(G−e) ≤ λ(G). Proof We observe that the removal of a vertex or an edge 

from a graph can bring down κ or λ by at most one, and that while κ may be increased 

by the removal of a vertex, λ cannot be increased by the removal of an edge. 

Theorem : For any three integers r, s, t with 0 < r ≤ s ≤ t, there is a graph  G with κ 

= r, λ = s and δ = t. Proof Take two disjoint copies of Kt+1. Let A be a set of r 

vertices in one of them and B be a set of s vertices in the other. Join the vertices of 

A and B by s edges utilising all the vertices of B and all the vertices of A. Since A 

is a vertex cut and the set of these s edges is an edge cut of the resulting graph G, it 
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is clear that κ(G) = r and λ(G) = s. Also, there is at least one vertex which is not in 

A∪B, and it has degree t, so that δ (G) = t. 

Menger’s Theorem 

Harary listed eighteen variations of Menger’s theorem including those for 

digraphs. Clearly, all these are equivalent and one can be obtained from the other. 

Let u and v be two distinct vertices of a connected graph G. Two paths joining u 

and v are called disjoint (vertex disjoint) if they have no  vertices other than u and 

v (and hence no edges) in common. The maximum number of such paths between 

u and v is denoted by p(u, v). If the graph G is to be specified, it is denoted by 

p(u, v|G). 

The following is the vertex form of Menger’s theorem. The proof is due to Nash- 

Williams and Tutte 

 

Theorem (Menger-vertex form) 

The minimum number of vertices separating two non-adjacent vertices s and t is 

equal to the maximum number of disjoint s−t paths, that is, for any pair of non-

adjacent vertices s and t, the clot number equals the maximum number of disjoint s−t 

paths. That is, κ(s, t) = p(s, t), for every pair s, t ∈ V with st ∈/ E. Proof Let G(V, E) 

be a graph with |E| = m. We use induction on m, the number of edges. The result is 

obvious for a graph with m = 1 or m = 2. Assume that the result is true for all graphs 

with less than m edges. Let the result be not true for the graph G with m edges. Then 

we have p(s, t|G) < κ(s, t|G) = q (say), as for any graph, we obviously have p(s, t) ≤ 

κ(s, t). Let e = uv be an edge of G. The deletion graph G1 = G − e, and the contraction 

graph G2 = G|e has a smaller number of edges than G. Therefore, by induction 

hypothesis, we have p(s, t|G1) = κ(s, t|G1) and p(s, t|G2) = κ(s, t|G2). Let I be an (s, 

t) − clot in G1 and J 0 be an (s, t)− clot in G2. Then we have 

|I| = κ(s, t|G1) = p(s, t|G1) ≤ p(s, t|G) < q and 

|Jj| = κ(s, t|G2) = p(s, t|G2) ≤ p(s, t|G) < q, So |Jj| 

< q and therefore |Jj| ≤ q − 1. 

Now to Jj there corresponds an (s − t) vertex cut J of G such that |J|≤ |Jj| + 1, since, by 

elementary contraction, κ(s, t) can be decreased by at most one, and this decrease actually 

occurs when e ∈ E((J)). 

 

Thus, |J| ≤ |Jj| + 1 ≤ q − 1 + 1 

= q, that is, |J| ≤ q. 

Since J is an (s, t) vertex cut in G, κ(s, t) ≤ |J|, q 

≤ |J|. Thus, q ≤ |J| ≤ q, so that |J| = q. 

 

Therefore, |I| < q and |J| = q and u, v ∈ J 

Let Ht ∈ I ∪ J : there exists an s − w path in G, vertex-disjoint from I ∪ J − 

= {w {w}} and  

Ht = {w ∈ I ∪ J : there exists a t − w path in G, vertex-disjoint from I ∪ 
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J − {w}}. 

Clearly, Hs and Ht are (s − t) separating vertex cuts in G. Therefore, 

 

|Hs| ≥ q and |Ht | ≥ q. 

 

Obviously, Hs ∪ Ht ⊆ I ∪ J. 

We claim that Hs ∩ Ht ⊆ I ∪ J. For this, let w ∈ Hs ∩ Ht. Then there exists an s 

− w path P1 and w − t path P2 in G vertex disjoint from I ∪ J− {w}. So P1 ∪ P2 

contains a path, say P. If e ∈ P then we have u, v ∈ V (P) ∩ J ⊆ {w}, which is 

impossible.  Therefore e ∈/ P and so P ⊆ G − e. Since I is an (s, t) separator in G 

− e and J is an separator in G, P has  a vertex common with I and also with J. So 

w ∈ I ∩ J. Thus, Hs ∩ Ht ⊆ I ∩ J. 

Combining (5.17.4) and (5.17.5), and the above observation, we have 

q + q ≤ |Hs| + |Ht| = |Hs ∪ Ht| + |Hs ∩ Ht | ≤ |I ∪ J| + |I ∩ J| = |I| + |J| < q + q, which is a 

contradiction 

Thus not true, and therefore, we have κ(s, t|G) = p(s, t|G). 

 

Definition: Two paths joining u and v are said to be edge-disjoint if they have no 

edges in common. The maximum number of edge- disjoint paths between u and 

v is denoted by l(u, v). 

The following is the edge form of Menger’s theorem and the proof is adopted 

from Wilson [196]. 

Theorem (Menger-edge form) For any pair of vertices s and t of a graph G, the 

minimum number of edges separating s and t equals the maximum number of 

edge-disjoint paths joining s and t, that is, λ (s, t) = l(s, t) for every pair s, t ∈ V . 

Proof Let G(V, E) be a graph and let |E| = m. We use induction on the number of 

edges m of G. For m = 1, 2, the result is obvious. Assume the result to be true for 

all graphs with fewer than m edges. Let λ (s, t) = k. We have two cases to consider. 

Case (i) Suppose G has an (s − t) band F such that not all edges of F are incident 

with s, nor all edges of F are incident with t. Then G − F consists of two non-

trivial components C1 and C2 with s ∈ C1 and t ∈ C2. Let G1 be the graph 

obtained from G by contracting the edges of C1, and G2 be a graph obtained from 

G by contracting the edges of C2. Therefore, 

G1 =G||E(C1) and G2 = G||E(C2). 

 

Since G1 and G2 have less edges than G, the induction hypothesis applies to them. 

Also, the edges corresponding to F provide an (s − t) band in G1 and G2, so that 

λ (s, t|G1) = k and λ (s, t|G2) = k. Thus, by induction hypothesis, there are k edge-

disjoint paths joining s and t in G1, and there are k edge-disjoint paths joining s 

and t in G2. Thus l(s, t|G1) = k and l(s, t|G2) = k. 
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The section of the path of the k edge-disjoint paths joining s and t in G2 which 

are in C1 and the section of the paths of the k edge-disjoint paths joining s and t 

in G1 which are in C2 can now be combined to get k- edge disjoint paths between 

s and t in G.  Hence l(s, t|G) = k. 
 

Case (ii) Every (s − t) band of G is such that either all its edges are incident with s, 

or all its edges are incident with t. 

 

If G has an edge e which is not in any (s − t) band of G, then λ (s, t|G − e) = λ (s, t|G) =k.  

Since the induction hypothesis is applicable to G − e, there are k edge-disjoint paths between s 

and t in G − e and thus in G. Hence l(s, t|G) = k. 

Now, assume that every edge of G is in at least one (s − t) band of G. 

Then every s – t path P of G is either a single edge or a pair of edges. Any such path P can 

therefore contain at most one edge of any (s − t) band. Then G − E(P) = G1 is a graph with λ(s, 

t|G1) = κ − 1. 

Appling induction hypothesis, we have l(s, t|G1) = κ − 1.  Together with P, we get 

l(s, t|G)= k. 

 
Theorem 

A graph G with at least three vertices is 2-connected if and only if any two vertices 

of G are connected by at least two internally disjoint paths. 

Proof Let G be 2-connected so that G contains no cut vertex. Let u and v be two 

distinct vertices of G. To prove the result, we induct on d(u, v). 

If d(u, v) = 1, let e = uv. Since G is 2-connected and n(G) ≥ 3, therefore e cannot be 

a cut edge of G. For, if e is a cut edge, then at least one of u and v is a cut vertex. 

Now, a Theorem e belongs to a cycle C in G. Then C − e is a u − v path in G, 

internally disjoint from the path uv. 

Assume any two vertices x and y of G, such that d(x, y) = t − 1, t ≥ 2, are joined by 

two internally disjoint x − y paths in G. Let d(u, v) = t and let P be a u − v path of 

length t, and w be the vertex before v on P. Then d(u, w) = t − 1. Therefore, by 

induction hypothesis, there are two internally disjoint u − w paths, say P1 and P2, in 

G. Since G has no cut vertex, G − w is connected and therefore there exists a u − v 

path Q in G − w. Clearly, Q is a u − v path in G not containing w. Suppose x is the 

vertex of Q such that x − v section of Q contains only the vertex x in common with 

P1 ∪ P2 (Fig. 5.21). Assume x belongs to P1. Then the union of the u − x section of 

P1 and x − v section of Q together with P2 ∪ {wv} are two internally disjoint u − v 

paths in G. 

Conversely, assume any two distinct vertices of G are connected by at least two 

internally disjoint paths. Then G is connected. Also, G has no cut vertex. For, if v is 

a cut vertex of G, then there exist vertices u and w such that every u − w path contains 

v, contradicting the hypothesis. Thus, G is 2-connected. 

 

 



 

QUESTION BANK 

PART A 

1. For a graph G with p vertices and q edges, K (G) = ⌊2𝑞/𝑝⌋`      CO2 (L2) 

2. Let G be a simple graph of order p and k be an integer with 1≤ 𝑘 ≤ p-1. If (G) 

(p+k-2)/2, then G is K – connected.                                     CO4 (L1) 

3. For K 0, find a k – connected graph G and a set V’ of k vertices of G such that 

 (G – V’) 2.                                                                              CO2 (L1) 

4.Give an example to show if P is a (u,v) – path in a 2 – connected graph G, then G 

does not necessarily contain a (u,v) – path Q internally disjoint from P.   CO6 (L2) 

5. Prove that Connectivity of Hk,p    is k.                                          CO5 (L5) 

6. Show that a graph is 2 edges connected if and only if any two vertices are 

connected by at least two edges disjoint paths.                          CO6 (L2) 

7.a) Define edge connectivity of a graph.                                    CO1 (L1) 

   b) Show that if G is k -edge connected, then q  k.p/2                         CO2 (L2) 

 

                                          PART B 

1. Prove that, for any graph G, k (G) ≤(G)  ≤ (G).                CO2 (L5) 

2. Prove that the   connectivity and edge connectivity of a simple cubic graph G are 

equal.                                                                  CO2 (L5) 

3. A graph with p 3 is 2 – connected if and only if any two vertices of G are 

connected by at least two internally disjoint paths - Discuss.                     CO4 (L6) 

4.  Prove that the minimum number of vertices separating two nonadjacent vertices 

u &v is equal to the maximum number of disjoint u-v paths in G.            CO2 (L2) 

5. If P (G)  3, then the following statements are equivalent. 

(i) G is 2 – connected.                    CO6 (L4) 



(ii) Any two vertices of G are joined by two internally disjoint paths     CO4 (L4) 

(iii) Any two vertices of G lie on a common cycle.                 CO4 (L4) 

(iv)  (G) 1 and only two edges of G lie on a common cycle.                  CO4 (L4) 

6. a) Show that if G is simple graph with    p – 2, then k =.                 CO3 (L2) 

     b) Find a simple graph G with  = p-3 and k .                          CO2 (L1) 
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Definition: A subset M of E is called a matching in G if no two of the edges in M 

are adjacent. The two ends of an edge in M are said to be matched under M. 

Example: In the graph G of figure the sets M1= {e6, e8}, 

 

 

M3= {e6, e7, e8, e9} and M3= {e1, e2, e3, e4, e5} are all matchings. 

Definition: A matching M saturates a vèrtex v if one edge of M is incident with v. 

Also, we say v is M-saturated. Otherwise, v is M-unsaturated. 

Example: In the graph G of figure 6.1, vi is both M1-saturated and M2-saturated; v4 

is M2-saturated but M1-unsaturated; but M3 saturates every vertex of G. 

Definition: If M is a matching in G such that every vertex of G is M-saturated then 

M is called a perfect matching. 

Example: The matching M, of G of figure is a perfect matching where as M1 and M2 

are not perfect.  

Note: If G has a perfect matching, then p is even. 

Definition: A matching M is called a maximal matching of G if there is no matching 

M' of G such that M' ⊃M. 

Remark: Note that two maximal matchings need not have same Cardinality. 

Example: In the graph G , M1 = (e1, e6, e3} and M2={e5, e3} are maximal matchings. 

Definition: A matching M of G is called a Maximum matching if G has no matching 

M' with |M’| > |M|. The number of edges in a maximum matching of G is called as 

the matching number of G. 

II. Matching
Content: Matching – System of Distinct Representatives and Marriage problem –
Covering - 1-factor –Stable Matching.
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We note that M1= {e1, e6, e3} is a maximum matching of G, but M2= {e5, e3} is not 

a maximum matching, though it is a maximal matching of G. Clearly every perfect 

matching is maximum; but maximum matchings need not be perfect. 

Example: Consider the star K1,6 and in general K1,p. Here any maximum matching 

contains only one edge and hence it is not perfect. 

 

 

Definition: Let M be the matching in G. An M-alternating path in G is a path whose 

edges are alternately in E/M and M. 

Example: In the graph G, if we consider the matching M= {e1, e2} then the path 

v1v2v6v5v3 is an M- alternating path. 

Definition: Let M be a matching in G. An M-augmenting path is an M-alternating 

path whose origin and terminus are M-unsaturated. 

Example: In the graph G, if we consider the matching M={e1 , e2} then the path 

v1v2v6v5v3 is an M-augmenting path. 
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Note:  1. In M-augmenting path initial and final edges are in E\M. 

2. An M- alternating path whose initial and final edges are in E\M, need not 

be an M-augmenting path. 

 

 

Theorem 6.1 (Berge) 

A matching M in G is a maximum matching if and only if G contains no M-

augmenting path. 

Proof: Let M be a maximum matching in G. We prove that G has no M-augmenting 

path. Suppose not, let G have a M-augmenting path, v0e1v1e2v2...v2m e2m+1v2m+1. We 

note that such a path is of odd length. Now we define set M' ⊆E by, 

M'= {M- {e2, e4,…, e2m}}∪{ e1,e3,…,e2m+1 }. 

Then M' is a matching in G and |M'|= |M|+1. This is a contradiction to the fact that M is 

maximum matching. Hence, G has no M-augmenting path. 

Conversely, let G has no M-augmenting path. We prove that M is a maximum matching in G. 

Suppose not, let M' be a maximum matching in G. 

Then, |M'|> |M|                           (1) 

Let H G[M Δ M'] where MΔM' denotes the symmetric difference of M and M'. Each vertex of 

H has degree either one or two in H, since it can be incident with at most one edge of M and 

one edge of M'. Thus each component of H is either an even cycle with edges alternately in M 

and M' or else a path with edges alternately in M and M'. 

By (1), H contains more edges of M' than of M and so some path component P of H 

must contain more edges of M' than M and therefore must start and end with edges of M'. The 

origin and terminus of P being M' -saturated in H and of degree one, are M-unsaturated in G. 

Therefore, P is an M-augmenting path in G, which is a contradiction to our assumption. Hence, 
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M is a maximum matching in G. 

SYSTEM OF DISTINCT REPRESENTATIVES AND MARRIAGE PROBLEM 

Let X be a non-empty finite set and S = {S1,S2,.,Sm} be a family of (not necessarily 

distinct) non empty subset of X. If there exists a set{X1, X2, Xm} of X such that xi € Si and xi 

≠ xj if i ≠ j then the set {X1, X2, Xm} is called a system of distinct representatives (S.D.R) of 

the family S. 

For example, consider X= {1, 2, 3, 4, 5} and S= {S1, S2, S3, S4, S5} where S1={1, 2}, 

S2={1, 2, 3}, S3= {1, 2, 3}, S4={1, 4, 3} and S5={1, 5}. Now, {1, 2, 3, 4, 5} is a system of 

distinct fepresentatives of the family S. Instead, if we take S1={1, 2}, S2={1, 2, 3}, S3 = {1, 2, 

3}, S4={1,5} and S5 ={2, 5} then S has no system of distinct representatives. 

Naturally, we can identify S. with a bipartite graph with bipartition (S, X) in which S i 

€ S is joined to every x € X contained in S. A system of distinct representatives is then a set of 

m independent edges (thus each Si is incident with one of these edges). 

It is customary to formulate this problem of finding S.D.R in terms of marriage 

arrangements. 

The Marriage Problem 

Suppose there are n boys each of whom has several girlfriends, under what conditions 

can we marry off the boys in such a way that each boy marries one of his girl friends? We 

assume that only single life partner marriage is allowed. This is known as marriage problem. 

In graph theoretical terms, the above problem, can be stated as follows. Construct a 

bipartite graph G with bipartition (X,Y) where  X = {x1,X2,..,Xn} represents the. set of n boys 

and Y = {y1, y2… ym} represents their girlfriends. An edge joins a vertex xi to a vertex yj if and 

only if yj is a girl friend of xi. The marriage problem is then equivalent to finding conditions 

for the existence of a matching in G which saturates every vertex of X. 

For example, suppose there are five boys b1, b2, b3, b4 and b5 and six girls g1, g2, g3, g4, 

g5 and g6 with their relationship as follows: 
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One of the solutions to this example is, b1 to marry g2, b2 to marry g1, b3 to marry g4, 

b4 to marry g3 and b5 to marry g5. 

Now, we present a necessary and sufficient condition for the existence of a solution to 

the above marriage problem, first given by P. Hall(1935). 

Theorem (Hall's Marriage theorem)  

Let G be a bipartite graph with bipartition (X, Y). Then G contains a matching that saturates 

every vertex in X if and only if |N (S)| ≥ |S| for all S ⊆ X. 

Proof: Suppose that G contains a matching M which saturates every vertex in X and let S be a 

subset of X. Since the vertices in S are matched under M with distinct vertices in N(S), we 

have | N(S)| ≥ | 2S|. 

Conversely, Let G be a bipartite graph with | N(S) | ≥ |S| for all S⊆ X. We assume that G has 

no matching which saturates all vertices in X. Let M* be a maximum matching in G. By our 

assumption, M* does not saturate all vertices in X. Let u be an M*- unsaturated vertex in X. 

Let Z denote the set of all vertices connected to u by M*-alternating paths. Since M* is a 

maximum matching in G, G has no M*-augmenting path. That is, u is the only M*-unsaturated 

vertex in Z. We set S =Z∩ X and T=Z∩ Y. Clearly, the vertices in S/{u} are matched under 

M* with vertices in T. So, we get |T|= |S| -1 and N(S) ⊇ T. Since every vertex in N(S) is 

connected to u by an M*-alternating path, we also have N(S) ⊆T and hence N(S) = T. So,  

|N(S)|=|T| = |S| -1 <|S|. This is a contradiction to the given hypothesis and hence G has a 

matching that saturates every vertex in X. 
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 Now, let us reformulate the marriage theorem in terms of system of distinctive 

representatives. 

Theorem 6.3 A family S= {S1,S2,..,Sm} of  sets has a system of distinctive representatives if 

and only if  ≥ |F| for every F ⊆{1,2,., m}. 

 

Corollary: If G is a k-regular bipartite graph with k> 0, then G has a perfect matching.  

Proof: Let G be a k-regular bipartite graph with bipartition (X, Y). Since G is k-regular, |X]=|Y|.  

Now, let S be a subset of X and denote E1 and E2 the sets of edges incident with vertices 

in S and N(S) respectively. By definition of N(S), E1⊆E2 and therefore k|N(S)| = |E2| ≥  |E1|= 

k|S|. Therefore, |N(S)| ≥ |S| and hence, by theorem, that G has a matching M that saturates 

every vertex in X. Since |X|=|Y|, M is a perfect matching. Hence the corollary. 

 

COVERING 

Definition: A covering of a graph G is a subset K of V such that every edge of G has at least 

one end in K. For example, in the graph G of figure, the set 

 

K={v, v1, v2, v3, v4}is a covering of G1. 

Definition: A covering K is called a minimal covering of G if there is no covering K' of G such 

that K' ⊂ K.  

For example, the covering K of G1 is a minimal covering. 

Definition: A covering K is called a minimum covering of G if G has no covering K' with 

|K'|<|K|. 
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For example, {v1, v3, v5} is a minimum covering of the graph G2. Also, we note that {v1, v2, 

v4, v5} is a minimal covering but not minimum covering of G2. 

Remark: If K is a covering of G and M is a matching of G then K contains at least one end of 

each of the edges in M. Thus, for any matching M and any covering K, |M|≤ |K|. In particular, 

if M* is a maximum matching and K* is a minimum covering then,  

  |M* |≤ |K* |.    (1) 

In general, equality does not hold in (1). For example, consider the graph G2. Here, |M*| =2 

and |K*| =3. Under what conditions, does the equality hold? If G is bipartite then |M*|= |K*|. 

This result was proved by Konig and Egervary in 1931. Now, we present a lemma, which is 

useful in proving the Konig-Egervary theorem. 

Lemma Let M be a matching and K be a covering such that |M| =|K|. Then M is a maximum 

matching and K is a minimum covering. 

Proof: Let M* be a maximum matching and K* be a minimum covering of G. Then, |M|≤ |M*| 

≤|K*|≤ |K|. Since |M|= |K|, in the above, equality must hold throughout and hence the lemma. 

Konig-Egervary Theorem 

In a bipartite graph, the number of edges in a maximum matching is equal to the number of 

vertices in a minimum covering.  

Proof:  Let G be a bipartite graph with bipartition (X, Y) and let M* be a maximum matching 

of G.  

Suppose M* is perfect then |X| = |Y| = |M*|. In this case X is a covering and the theorem 

holds.  

So, we assume that M* is not perfect. Let U denote the set of all M*-unsaturated 

vertices in X and let Z be the set of all vertices connected by M*-alternating paths to vertices 

of U. Let S = Z∩X and T=Z∩Y. Clearly every vertex in T is M*-saturated and N(S) = T (as in 

Hall's theorem). Define K* = (X/S) UT. Every edge of G must have at least one of its ends in 

K*; otherwise, there would be an edge with one end in S and one end in YT, contradicting 

N(S) = T. Thus, K* is a covering of G and clearly M"|= K*|. By lemma 6.5, K* is a minimum 

covering. Hence the theorem. 
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1-FACTOR 

Definition: A factor of a graph G is a spanning subgraph of G.  

Definition: A k-factor of a graph G is a spanning k-regular subgraph of G. 

 Thus, a perfect matching of a graph G induces a 1-factor of G and conversely. A 2-

factor is a union of edge disjoint cycles, containing all vertices. 

Definition: A component of a graph is odd or even according as it has odd or even number of 

vertices; the number of odd components of G is o(G). 

Tutte found a necessary and sufficient condition for a graph to have a 1-factor. Here, 

we present the proof of Lovasz (1975). 

 

Tutte's Theorem  

A graph G has a 1-factor if and only if o(G-S) ≤ |S| for all S ⊆ V and S ≠ V. 

Proof: It is enough if we prove the theorem for simple graphs. Let us assume that G has a 1-

factor and let M be a perfect matching of G. Let S be a subset of V and S ≠ V and let G1, G2, 

.., Gn be the odd components of G-S. Since Gi is odd , some vertex vi of G; must be matched 

under M with a vertex vi of S. Clearly, {V1,V2,..,Vn} ⊆ S and vis are distinct and hence,  

o(G-S) = n=|{v1,v2,..,vn} ≤ |S|. 

 

 

Conversely, let G satisfy the inequality o(G-S) ≤ |S| for all S⊆ V and S≠V and G have no 

perfect matching. Then G is a spanning subgraph of a maximal graph G* having no perfect 

matching. Since G-S is a spanning subgraph of G*-S, o(G*-S) ≤ o(G-S).  
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Therefore, o(G*-S) ≤ |S| for all S ⊆ V(G*) and S≠ V(G*).                           (1)        

In particular, setting S = Ф, we get o(G*) =0 and hence p(G*) = p is even.  

Let U denote the set of all vertices of degree p-1 in G*. Since G* has a perfect matching 

if U = V, we may assume that U≠ V.  

Claim: Now we prove that G*-U is a disjoint union of complete graphs. Suppose not, there is 

a component of G*-U which is not complete. Since this component is not complete, we can 

find three vertices x, y and z such that xy € E(G*), yz € E(G*) and xz ∉ E(G*). Also, we can 

find a vertex w in G-U such that yw ∉ E(G*), since y ∉ U. 

 

 

 

By our assumption G* is a maximal graph containing no perfect matching and so G*+xz and 

G+yw have perfect matchings, say, M1 and M2, respectively.  

Let H be the subgraph of G* U{xz, yw} induced by M1 Δ M2 Since M1 and M2 are 

perfect matchings, each vertex of H has degree two and hence H is a disjoint union of cycles. 

Also, all of these cycles are even, since edges of M1 alternate with edges of M2 around them. 

We distinguish two cases. 

Case 1. xz and yw are in different components of H. 
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Now if yw is in the cycle C of H, then the edges of M1 in C together with the edges of M2 not 

in C, constitute a perfect matching in G*. This is a contradiction since G* has no perfect 

matching. 

 

Case 2. xz and yw are in the same component C of H. By symmetry of x and z, we may assume 

that the vertices x, y, w and z occur in that order on C. 

 

 

Then the edges of M1 in the section yw...z of C, together with the edge yz and the edges of M2 

not in the section yw...z of C, constitute a perfect matching in G*. This is a contradiction since 

G* has no perfect matching. Hence, G*-U is a disjoint union of complete graphs. Now by (1),  

o(G*-U) ≤ |U|. Therefore, G*-U can have almost |U| odd components. This implies that G* has 
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a perfect matching, as below.  

One vertex in each odd component of G*-U is matched with a vertex of U; the 

remaining vertices in U and in components of G*-U, are then matched to any vertex in the 

same component as illustrated. This is possible since each component is complete. 

 

This is a contradiction to our assumption that G* has no perfect matching. Hence G has 

a perfect matching. That is, G has a 1-factor. 

Corollary Every 3-regular graph without cut edges has a perfect matching. 

Proof: Let G be a 3-regular graph without cut edges. Let S be a subset of V such that S≠V and 

let G1, G2, ..., Gn, be the odd components of G-S. Let α1 be the number of edges with one end 

in Gi and the other end in S. Since G is 3-regular, 
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By Tutte's theorem, G has a perfect matching. 

Remark: A 3-regular graph with cut edges need not have a perfect matching  

Consider the graph G. Clearly G is 3-regular and has cut edge. Since o(G-v) =3, by Tutte's 

theorem, G has no perfect matching.

 



21 
 

STABLE MATCHINGS  

Now we turn to a special type of matchings, that is, matchings satisfying certain 

conditions. Matchings satisfying certain conditions are called stable matchings. In 1961, Gale 

and Shapley introduced stable matchings. It is customary to formulate the conditions and 

results in terms of marriage arrangements between boys and girls. So, naturally the 

corresponding graphs are simple bipartite and we consider only simple graphs, in this section. 

However, we have defined stable matching for a bipartite multigraph in the exercise. 

 Consider a bipartite graph G with bipartition (V1, V2) where V1= {a, b,...} is the set of 

n boys and V2= {A, B, ... } is the set of m girls. An edge a A means that the boy a knows the 

girl A. Suppose that each boy has an order of preferences on the set of girls he knows, and each 

girl has an order of preferences on the set of boys she knows. We assume that these orders are 

linear orders but place no other restriction on them.  

 

Stable Matching:  Given the preferences, a stable matching in G is a set M of independent 

edges of G such that if aB ∈ E(G) - M, then either aA∈ M for some girl A preferred to B by a, 

or bB ∈ M for some boy b preferred to a by B. 

Thus, if a is not married to B, then either a is married to a girl he prefers to B, or else 

B is married to a boy she prefers to a. Otherwise the matching is "unstable"; a and B will leave 

their current partners and switch to each other. 

Example. Consider a set of 4 boys {a, b, c, d}, a set of 4 girls {A, B, C, D} and their preferences 

as below. 

 

 

Here, the matching {aA, bB, cD, dC } is a stable matching. 

 

Note: We have not assumed that a stable matching saturates all vertices in V1 or V2  

Result 1. Every stable matching is a maximal matching in G. 
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Stable Matching Theorem  For every assignment of preferences in a bipartite graph, there is 

a stable matching. 

Proof:  We consider a variant of the above algorithm, in which all boys and all girls act 

simultaneously, in rounds. 

 In every odd round, each boy proposes to his highest preference among those girls 

whom he knows and who have not yet refused him, and in every even round each girl refuses 

all but her highest suitor. The process ends when no girl refuses a suitor; then every girl marries 

her (only) suitor, if she has one. This process terminates after at most 2nm rounds, since at 

most m(n-1) proposals are refused, where n is the number of boys and m is the number of girls.

  

 Since at every stage each boy proposes to at most one girl, and each girl rejects all but 

at most one boy, this algorithm results with a matching. 

 Now we prove that this matching is a stable matching. If aB ∈ E(G)-M, then either a 

never proposed to B, or a was refused by B during the algorithm. In the former case a marries 

a girl he prefers to B, as he never goes as low as B, and in the later case B refused a for a boy 

she prefers to a and got married. Hence this matching is a stable matching. 

Definition: A cycle C is called preference-oriented cycle if it can be written in the form 

aAbB...zZ such that A prefers b to a, b prefers B to A..and Z prefers a to z. That is, each person 

prefers the next person to previous person. 

Theorem Let M and M' be two stable matchings in a bipartite graph with certain preferences, 

and let C be a component of the subgraph H formed by the edges of MՍM'. If C has at least 

three vertices, then it is a preference-oriented cycle. In particular, if aA, bB ∈ M and aB ∈ M, 

then a prefers A to B if and only if B prefers a to b. 

Proof: Without distinguishing between boys and girls, here, we write x1, x2 for either of them. 

Clearly, C is either a path of length at least two or a cycle of length at least four. 

 

If C has a path x1x2x3x4, With x2 preferring x3 to x1 and assuming x2x3 ∉M then it is clear that 

x3 prefers x4 to x2, since M is stable. Using this fact, we prove that C is a preference-oriented 

cycle. 
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If x1x2x3...xk is a cycle and x2 prefers x3 to x1, then considering the path x1x2x3x4 we see that x3 

prefers x4 to x2. Next, consider the path x2x3x4x5 we see that x4 prefers x5 to x3 . 

Continuing in this way, we find that xk prefers x1 to xk-1 and x1 prefers x2 to Xk. Thus, C is a 

preference-oriented cycle. 

 

If C is a path x1x2...Xl, l ≤ 3 and x1x2 ∉ M, say, then x2 prefers x3 to x1, since M is stable. 

Similarly, xl-1 prefers xl-2 to xl. This is not possible, since, arguing as above, x2 prefers x3 to x1, 

x3 prefers x4 to x2, x4 prefers x5 to x3, and so on, xl-1 prefers xl to xl-2. 

 Since the component of H containing the path AaBb is prefernce-oriented cycle, the 

particular case follows.  

Note: It is worth to note that all stable matchings are incident with the same set of vertices. 
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Theorem For every assignment of preferences in a bipartite graph with bipartition (V1, V2), 

there are subsets U1 ⊆V1 and U2 ⊆ V2 such that every stable matching saturates all vertices of 

U1 and U2.  

In particular, all stable matchings have the same cardinality. 

Proof: Suppose the theorem is not true. Then we can find some edge aA of M such that a is not 

incident with any edge of M'. Since M' is maximal, we can find some b ∈ Vi, b ≠a such 

that bA ∈ M'. But then the component of a in the subgraph formed by the edges MUM' which 

contains a, A and b is not a cycle. This is a contradiction. Hence the theorem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

QUESTION BANK 

PART A 

1. Prove that If G is a K – regular bipartite graph with k 0, then G has a perfect 

matching.                                                                 CO2 (L2) 

2. Prove that every 3 – regular graph without cut edges has a perfect matching. 

                                                                                                                    CO2 (L2) 

3. Prove that every stable matching is a maximal matching in G.    CO2 (L2) 

4. Define stable matching.                                                                   CO1 (L1) 

5. Consider a set of boys {a, b, c, d}, a set of 4 girls {A, B, C, D} and their 

preferences as below.  Find  the stable matching. 

     Preferences     1 2     3 4  

a        A B    C D 

b A    C     B D 

c C D     A B 

d C B     A D  

 1 2    3 4  

A c a    b d 

B  b d    a c 

C d a    b c 

D a b    c d 

                                                                                                                   CO2 (L1) 

      5. a) Define minimal covering and minimum covering of a graph.      CO1 (L1) 

          b) Prove that if M* is a maximum matching and K* is a minimum covering    

then, |𝑀∗| ≤ |𝐾∗|                                                          CO2 (L2) 

     6. a) Define perfect matching.                                               CO1 (L1) 



         b) Prove that a 3 – regular graph with cut edges need not have a perfect 

matching.                                                         CO2 (L2) 

PART B 

1. Matching M in G is a maximum matching if and only if G contains no M – 

augmenting path - Discuss                                                              CO5 (L6) 

2. A matching M in g is a maximum matching if and only if G contains no M 

augmenting path. Let G be a bipartite graph with bipartition (X, Y).  Then G 

contains a matching that saturates every vertex in X if and only if  ⎡ N(s) ⎡⎡S 

⎡ for all S  X. - Discuss                                                           CO5 (L6) 

3. Prove that in a bipartite graph, the number of edges in a maximum matching 

is equal to the number of vertices in a minimum covering.     CO4 (L2) 

4. Discuss that A graph has a 1-factor if and only if 𝑜(𝐺 − 𝑆) ≤ |𝑆|  for all S  

V and S V.                                                                                       CO5 (L6) 

5. Prove that, for every assignment of preferences in a bipartite graph, there is a 

stable matching.                                                         CO3 (L2) 

6. Let M and M’ be two stable matching’s in a bipartite graph with certain 

preferences, and let C be a component of the sub graph H formed by the edges 

of MM’. If C has at least three vertices, then it is a preference-oriented cycle.  

In particular, if aA, bB M and aBM’, then a prefers A to B if and only if B 

prefers a to b    - Discuss                                     CO3 (L6) 
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Definition: An independent set or stable set of a graph G is a subset S of 
V such that no two vertices of S are adjacent in G. 
For example, in the graph G of figure 7.2, the set S vi,V3,Vs} is an 

independent set of G. 

V2 
G 

N 3 

V6 

Figure 7.2 
Definition: An independent set S is called a maximum independent set 

of G if there is no independent set S' of G with |S'|>|S. 
For example, the independent set S1 = {v1,V3, Vs, V7} of G of figure 7.2 is a 

maximum independent set. 

Definition: The number of vertices in a maximum indépendent set of G is 
called the independence number or stability number of G and is denoted 

by a(G). 
For example, the independence number of the graph G of figure 7.2 is 4, 

since S| =4. 
We have defined covering of a graph in the chapter 6. A covering 

of a graph G is a subset K of V such that every edge of G has at least one end 

in K. A covering K is called a minimum covering if it is a covering of least 

cardinality. 

Definition: The number of vertices in a minimum covering of G is called 

the covering number of G and is denoted by B(G). 
For example, the covering number of the graph G of figure 7.2 is 5, since 

K= {v,vi1,Vs, Vs,V7} is a minimum covering ofG. 
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Theorem 
A set S V is an independent set of G if and only if V-S is a 

covering of G. 

Proof: By definition, 
S is an independent set of G if and only if no edge of G has both ends in S. 

if and only if each edge has at least one end in V-S. 

if and only if V-S is a covering of G. # 

Corollary 
In any graph G, a+B = p. 

Proof: Let S be a maximum independent set and K be a minimum covering 

of G. By theorem 7.1, we get V-K is an independent set of G. Therefore, |V- 

K IS. This implies that p-ß $a or p < a+ß. By theorem 7.1, since S is an 

independent set, V-S is a covering of G. Since Kis a minimum covering, we 

have, K| S[V-S]. So, 'Bsp-a. Thus a+ß Sp. Hence the corollary. 

Now we introduce two similar concepts with respect to 

edges. 
Definition: An edge independent set or matching ofa graph G is a 

" 

subset M of E such that no two edges of M are adjacent.

Definition: The number of edges in a maximum edge-independent set of 

G is called the edge independence number of G and is denoted by a'(G). 

For the graph G of figure 7.2, a'(G) =4. 

Definition: An edge covering of a graph G is a subset L of E such that 

each vertex of G is an end of some edge in L. 

Note: A graph G'as an edge covering if and only if 8> 0. 

Definition: The number of edges in a minimum edge covering of G is 

called edge covering number of G and is denoted by B'(G). 
For example, the edge covering number of the graph G-of figure 7.2 is 5, 

since L {VV2, V3V4, VsV6, V7Vg, VV1} is a minimum edge covering of G. 

Theorem In any graph G with 8>0, a'+ß' = p. 

Proof Consider a maximum matching M in G with |M| = a'. Let U 

denotes the set of all M-unsaturated vertices in G. Since M is maximum, n0 

two vertices of U are adjacent. Since 8 >0, we can find a set E' of |U| edges, 

one incident with each vertex in U. Clearly, MUE' is an edge covering of 
This implies that, 

P'SIMUE| = |M+ |E| = a'+(p-2a) = p-o'. 
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Thus, a'+B' Sp. 
Next, we consider a minimum edge coveringL of G with |L|= P'. 
Let H= G[L] and let Mj be a maximum matching in H. We denote the set of 

Mi-unsaturated vertices in H by U. Since M, is maximum, no two vertices 
of U are adjacent. We can find.a set F" of |Ui| edges in H one incident with 
each vertex in U and F'L-M1. Now 

LHIM=|L/M;|2 |F| |U= p-2/M 
Since H is a subgraph of G, M is a matching in G and |M|| S a'. Thus, 
a'+ 2 IM|+|L| 2 p. Hence, we get a'+B = p. # 

In a bipartite graph with 8 > 0, the number of vertices in a 
maximum independent set is equal to the number of edges in a minimum 
Theorem 

edge covering. 

Proof: Let Gbe a bipartite graph with 8 >0. By corollary 7.2 and theorem 
7.3, we have a+ß = a'+B°'. By Konig-Egarvary theorem, we have a' = B. 

Hence we get a = . # 

EDGE COLOURINGs 

A k-edge colouring of a graph G is an assignment of k 

colours, usually denoted by 1,2,..k, to the edges of G (one colour per edge). 

Thus, a k-edge colouring of a graph G is a mapping n: E(G) -> {1,2,..,k}. 

Definition: 

Definition: An edge colouring is proper if no two adjacent edges have the 

same colour. 

Thus, a proper k-edge colouring n of G is a mapping T: E(G)> {1,2,..,k 
such that u (e) * t (e') whenever e and e' are adjacent in G. 

Remark: Clearly, if G has ak-edge colouring then the edge set E(G) has a 

partition (E,E2,...,E) where E denotes all edges of E (possibly empty) 

Which are coloured with the colour i. We note that if the colouring is proper 

then each E; is a matching. 

Definition: A graph G is k-edge colourable if G has a proper k-edge 

colouring. 

Note: 1. Clearly, every graph G is q-edge colourable. 

2. If Gis k-edge colourable, then G is also k'-edge colourable for 

every k' >k. 
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Definition: The edge chromatic number Xi(G) of a graph G is the 

minimum k for which G is k-edge colourable. 

G is said to be k-edge chromatic ifzi(G) = k. 

Examples: 
Consider a path Pa (n 2 2) with 2 colours. We can give a proper 

2-edge colouring to Pn by alternating the 2 colours about Pn and 

2 is the minimum. Hence i(P)=2. 

1. 

2. Since K has no edges, xi( K) =0. 

3. Consider a cycle C. When n is even, xi(C,) = 2 as in the case I. 
When n is odd, if we try to colour the edges of C, with 2 
colours, we must alternate the two colours about Cp. But then 
two adjacent edges must be assigned the same colour. So three 
colours are needed to give a proper edge colouring. Hence, 
Xi(Ca) = 3, ifn is odd. 

4 

Hence, 

Consider the star Kin. Since any two edges are adjacent, we 
need at least n colours to give a proper edge colouring to the 

star. Hence, xi(K1»)=n. 

Observation: Since, in any proper edge colouring, the edges incident with 

any one vertex must be assigneddifferent colours, we have zi(G)2A(G). 
Note: We say that colour i is repreaented at vertex v if some edge incident 
with v has colour i. 

Theorem. The edge chromatic number of a complete graph on n 
vertices is n, if n is odd (n=*1); n-1 ifn is even. 

Proof: If n=2 then the result is immediate. Hence we assume that n>2. 
Let n be odd. We place the vertices of K, in the form of a regular polygon. 
Colour the edges around the boundary using a different colour for each edge. 
Now each of the remaining 'internal edges' ofG is parallel to exactly one on the boundary and we assign it the same colour as we have assigned to the 
edge on the boundary. Since two edges have the same colour only if they are 

parallel, this colouring is a proper n-edge colouring. So, X1(Ka) S n. 
Since the maximum number of edges with a particular colour is 

(n-1) and K, has %(n(n-1)) edges, we need at least 2MU 1)) = n n(n-1))=n 
(n -1) 

colours fora proper edge colouring. Hence zi(K) = n. 

Now let us assume that n is even. For any graph G, 7i(G) 2 A(G) 
and so we get zi(Kn) 2n-1. Hence it is enough if we prove that Ka has a 
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proper n-1 edge colouring of G. Let v be some fixed vertex of Kn. Consider 
K-{v. This is complete with n-1l vertices. Since n-l is odd, by the 
previous case, we have a proper n-I edge colouring of K,-{v}, as described 
above. With this colouring there is a colour absent at each vertex, namely 
the colour assigned tothe edge opposite to the vertex, with different vertices 
having different absentees. This proper edge colouring can be extended to a 
proper edge colouring of Kg. Colour each edge vw where w is a vertex of 
Ka-{v} with the colour absent at w. This gives a proper (n-1) edge colouring 
of K and hence the theorem.
Aliter: Let Vi,V2..,Vn be the vertices of K, and let n be odd. For the edge 

joining vi and vi, give the colour k+l where k= itj (mod n). Ifn is even, 
colour Ka-Vn as above. For the edge joining Vi and va» give colour k+1 where 
k= 2i (amod n). It is easy to verify that this gives a proper edge colouring. 

# 

Theorem . Let G be a connected graph that is not an odd cycle. Then G 
has a 2-edge colouring in which both colours are represented at each vertex 

of degree at least two. 

Proof: If G is trivial then there is nothing to prove. Hence we assume that 

G is non-trivial. 
Case 1. Gis eulerian. 

IfG itself is an even cycle, the proper 2-edge colouring of G has the 

required property. Otherwise, since G is eulerian a vertex Vo repeats on the 

eulerian tour and hence G has a vertex Vo of degree at least four. Let 

VoeV1...eVo be an Euler tour of G. Now we set, 

E = {e;/ i is odd} and E2 = {ej/i is even}. 
Now, since each vertex of G is an internal vertex of voeV1...ekVo, the 2-edge 

colouring (E,,E2) of G satisfies the theorem. 

Case 2. G is not eulerian. 
Now we introduce a new vertex vo and join vo to each vertex of odd 

degree in G. Let the new graph be G*. Since the number of vertices of odd 

degree is even, the new graph G* is eulerian. Let voeiV|...eVo be an Euler 

tour of G* and we define E and E2 as in the previous case. Clearly, the 

2-edge colouring (EnE, EznE) of G satisfies the theorem. # 

Consider a k-edge colouring T of G. We denote the number of 

distinct colours represented at v by c(v). Clearly c(v) s d(v) and equality 

Olas tor every vertex of G if and only if T is a proper k-edge colouring of G. 

Note: 
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Definition:" A k-edge colouringr' of G is said to be an improvement on n 

if 

vEV veV 

where c'(v) is the number of distinct colours represented at v 

in the colouring n'. 

Definition: An optimal k-edge colouring is one, which cannot be 

improved. 

Theoremn Let n (E,,E2,..E) be an optimal k-edge colouring of G. 
If there is a vertex u in G and colours i and j such that i is not represented at u 

and j is represented at least twice at u, then the component of G[E;UE; that 

contains u is an odd cycle. 

Proof: Let u be a vertex of G such that colour i is not represented at u and j 

is represented at least twice at u. Let H be the component of G[E;UE;] 

containing u. We prove that H is an odd cycle. If not, then by theorem 7.6, 
H has a 2-edge colouring in which both colours are represented at each 

vertex of degree at least two in H. Now, we recolour the edges of H with 

colours i and j in this way and so we get a new k-edge colouring 
T= (E1',E2,...EX) of G. Let c'(v) denote the number of distinct colours at v 

in the colouring t'. Clearly, both colours i and j are represented at u in t' 

and so c'(u) = c(u) +1 and also c'(v)2 c(v) for v *u. 

Thus, 2C(v)> 2c(v). 
veV vEV 

This is a contradiction to the fact that r is an optimal k-edge colouring. 
Hence H is an odd cycle. # 

Theorem IfG is a bipartite graph, the i(G) = A(G). 

Proof Let G be a bipartite graph. We know that x(G) 2 A(G) for any 
graph. Suppose xi(G) > A(G), let n = (E,E2,...,EA) be an optimal A-edge graph. 
colouring of G. Since n is not proper, we can find a vertex u such that 
c(u)< d(u). That is, at u, some colour is not represented and some other 
colour is represented at least twice. Now, by theorem 7.7, G contains an odd 

cycle. This is a contradiction to the fact that G is bipartite. Hence, cycle. 
Xi(G) = A(G). # 

Corolla X(Kmn)max {m, n). 31



APPLICATION 

Now we present a simple but interesting application of edge 

colourings. 
Latin squares are used frequently by statisticians and quality control 

analysts in experimental design." Here, we consider construction of Latin 

squares. 
A Latin square is an nxn matrix having the numbers 1,2,...,n as their 

entries such that no single number appears more than once in any row or any 

column. 
Here, we show that the construction of a Latin square of order n 

using an n-edge colouring of the complete bipartite graph Kas By 
theorem 7.8, Knan has a proper n-edge colouring but no proper edge colouring 

with less than n colours. Let the bipartition of Kan be (X,Y) where X = 

{V1,V2,., Vn} and Y = {uj,u2,...,Un} and denote the colours of the proper n- 

edge colouring by 1,2,..,.n. Now we define the matrix A = (aj)) by 

ajk if the edge viuj is coloured with k. 

Since the edges incident with the same vertex VË have different colours, all 

the elements of the i" row are different. Similarly for columns. 

Note: Conversely any nxn Latin square can be used to give a proper edge 

colouring of Knn. 

VIZING'S THEOREM 

Now we find bounds for the edge chromatic number of a graph. 

The maximum number of edges joining two vertices in G is called 

the multiplicity of G, and denoted by u(G). 

Theorem For any graph G, Ak Xi A+. 

This theorem is best possible in the sense that for any u, there exists a 

graph G such that i=Atu. For example, consider the graph G of figure 7.3. 
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G: 

Here A 24 and xi = q(G) = 31 since any two edges are adjacent. Hence, 

XA+. 
Now we prove this result for simple graphs and the proof is due to 

Fournier (1973). 

Theoremn IfG is a simple graph, then A S 1 SA+1. 

That is, i-A or xi =A+1. 

Proof: We know that, for any graph G, 1 24. So, it is enough if we prove 
that i S A+1. Suppose Xi> A+1. Let n = (E,E2,..,Ea+1) be an optimal 

(A+1)-edge colouring of G. Since XiA+1 and n is an (4+1)-edge 

colouring, T is not proper and we have a vertex u such that c(u) < d(u). So 

there exists colours io and ij such that io is not represented at u and i is 

represented at least twice at u. "Let the edges uv and uvj have colour 1. 

Since d(v) < A+1, some colour i2 is not represented at vi. Now i2 must be 

represented at u since otherwise, recolouring uvj with i2 we would obtain an 

improvement on n. Thus some edge uvz has colour i2 
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*** 

Again, since d(v2) < A+1, some colour i is not represented at vz and iy must 

be represented at u since otherwise by recolouring uv, with iz ane uv2 with i3, 
we would obtain an,improved (A+1) edge colouring. Thus some edge uva 
has colour ig. 

Continuing this process, we construct a sequence V1,V2.V3,.. of 
vertices and a sequence i1,i2,iz,... of colours such that 

i) uv has colour i and 
i) ij+ is not represented at vj. 

Since the degree of u is finite, there exists a smallest positive integer E such . 

that for some k< 

(ii) ie. = ik. 

We now recolour edges of G as follows. For 1 j sk-1, recolour uvj ith 

cOlour j+1 and leaving other edge colours unchanged we get a new 

(A+1)-edge colouring T' = (E',E ,..E'a+1). 
34
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Vk 

10 

******* 

V2 
V1 

We note that c'(v) 2 c(v) for all veV and so t' is also an optimal (4+1)>edge 

colouring of G. By theorem 7.7 the component H' of G[E UE that 

contains u is an odd cycle, since io is not represented and ik is represented 
twice at u. 

Now, in addition, for k sjs l, recolour uv with colour ij+1 and this 

gives a new (A+1)-edge colouring " = (E, E2,., EA). 

Clearly, c"(v)2c (V) for all veV and the component H" of G[E UE 
that contains u is an odd cycle. 
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Both H' and H" contain the vertex Vk. Since vk has degree two in H', the 
degree of vy in H" is one. This is a contradiction since H" is an odd cycle. 
Hence the theorem. # 

Solved Problems 

1. Show that if G is bipartite with >0, then G has a &-edge colouring such 
that all o colours are represented at each vertex. 

Solution: Consider an optimal 8-edge colouring of the graph G. If there is 

some vertex u such'that all the å colours are not represented then some colour 
is represented at least twice at u. 

Let the colour i be not represented at u and the colour j be 

represented twice at u. Then the component of GE;U E] that contains u is 

an odd cycle. This is a contradiction to the fact that G is bipartite. Hence tne 

solution. 
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2. Show by finding an appropriate cdge colouring. that zi(Kmn) AK.mn) 2. 

Solution: Consider a complete bipartite graph G with bipartition (X,Y) 

where X contains u,u2,..,m and Y contains Vi.V2 

V2 

Figure 7.7 

Let max {n, m} = n. Consider the edge uv. Divide i+j by n and let r be the 

remainder. Colour the edge uvj by the colour rtl. This colouring uses only 
n colours and for any particular i, the n numbers it1, it2, .., itn gives 
different remainder when divided by n. It is easy to see that this is a proper 
n-edge colouring and so zi(Kmn) S n. 

Since for any graph G, xi(G) 2 A =n, we conclude xi(Km»n)= n =A(Km»n). 
VERTEX COLOURINGS 

Instead of colouring edges, here, we colour vertices. 

Definition: A k-vertex colouring of a graph G is an assignment of k colours, usually denoted by 1,2,...,k, to the vertices of G. Thus, a k-vertex 
colouringof a graph G is a mapping t: V(G) -{1,2,...k}. 
Definition: A vertex colouring is proper if no two distinct adjacent vertices have the same colour 
Thus, a proper k-vértex colouring n of G is a mapping T: V(G) - {1,2,..k}
such that T(v1) * t(V2) whenever vi and v2 are adjacent in G. 37



Remark: Clearly, if G has a proper k-vertex colouring then the vertex set 
V(G) has a partition (V1,V2,..,Vk), where Vi denotes all vertices of V 

(possibly empty) which are coloured with the colour i; each Vi is an 
independent set. 

Example Consider the graph G of figure 7.8. A proper 2-vertex 
colouring is illustrated in the figure 7.8. 

Figure 7.8 
Definition: A graph G is k-vertex colourable if G has a proper k-vertex 

colouring. 
Notation: It is customary to abbreviate a proper vertex colouring as a 
colouring, a proper k-vertex colouring as a k-colouring and k-vertex 
colourable as k-colourable. 

Definition: The chromatic number z(G), of a graph G, is the minimum k 
for which G is k-colourable. 

Gis said to be k-chromatic if (G) =k. 

Remark: Since presence of multiple edges do not change the chromatic 
number, when we consider vertex colourings, we consider only simple 
graphs. Therefore, in the rest of this chapter, graph means simple graph. 

Examples: 
1. Consider a path Pn (n 2 2). We can give a 2-colouring to the vertices 

of P by alternating the 2 colours about Pn and 2 is the minimum. 
Hence (P,) = 2. 

2. Since K has no edges, x( Kp)= 1. 

3. Consider a cycle Cn When n is even, 2(C) =2 as in the example . 

When n is odd, if we try to colour the vertices of C, with 2 colours, 
we must alternate the two colours about Cn. But then two adjacent 
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vertices must be assigned the same colour. So, three colours are 
needed to give a colouring. Hence x(C) = 3, ifn is odd. 

4. Consider the star Kim Colouring all the end vertices with one . 
colour and the other vertex by another colour, we have x(Kin) = 2. 

The following results are easy to prove. 
Results 

If G is a (p.g) graph, then x(G) S p. 
IfH is a subgraph of a graph G, then x(H) S X(G). 

3. X(Kp)p. 

A. 

1. 

2. 

4. IfK is a subgraph of G, then x(G) 2 p. 
Max 5. If Gi,G2, .G are the components of G, then z(G)= zG). lsiskG,). 

Theoremn non-empty graph G is 2-colourable if and only if G is 
bipartite. 

Proof: Let G be 2-colourable. Let X denotes the set of all vertices of colour 
1 and Y denote the set of all vertices of colour 2. Since no two adjacent 
vertices can have the same colour, there is no edge between any two vertices 
of X and no edge between any two vertices of Y. So, (X,Y) is a bipartition 
of G. Hence G is bipartite. 

Conversely, let G be a bipartite graph with bipartition (X,Y). Now we 
assign colour 1 to the vertices of X and colour 2 to the vertices of Y. Since 
G is non-empty, z(G) = 2. Hence, G is 2-colourable. 

UNIQUELY COLOURABLE GRAPHS 
Now, we present a few results on uniquely colourable 

graphs. Harary, Hedetniemi and Robinson (1969) proved many results on 
the construction of uniquely colourable graphs. Chartrand and Geller (1969) and Aksionov (1977) obtained good results on uniquely colourable planar graphs. 

Definition: A graph G is said to be uniquely k-colourable if all 
k-colourings of G, with no colour class empty, induce the same partition of V. 
Definition: Two k-colourings ofa graph G are different if they induce 
different partitions. That is, two colourings (V,V2,..,V) and 

(VV2,., V; ) are different if {V1V2.,V.) *{V{ ,V2,..,V! }. 
Each Vi is called a colour class. 
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ExAmples 
. The only uniquely 1-colourable graphs are enpty graphs. 
2. The only uniquely 2-colourable graphs are connected bipartite graphs. 
3. Clearly, K is uniquely 3-colourable and K, is uniquely n-colourable. 

Theorem IfG is uniquely k-colourable then 8(G) 2 k-1. 

Proof: Consider a vertex v of G, which is uniquely k-colourable. In any 
k-colouring, v must be adjacent with at least one vertex of every colour 
different from that assigned to v. Otherwise, by recolouring v with a colour 
which is not represented at any adjacent vertex of v, we get a different 

k-colouring and hence a different partition of V. Therefore, d(v) 2 k-l and 

hence &(G) 2 k-1. # 

IfG is uniquely k-colourable then the subgraph induced by 
the union of any two colour classes of a k-colouring ofG is connected. 
Theoremn 

Proof: Let G be a uniquely k-colourable graph and let Ci, Ca be two colour 
classes in a k-colouring of G. Let Ci,2 be the subgraph induced by CUC2 

Suppose C2 is not connected, let H be a component of CiUC2. Clearly, no 
vertex of H is adjacent to a vertex in V(G)/V(H) that is coloured with 1 or 2 
Now, interchanging the colours of the vertices of H and retaining the original1 

colours for all other vertices, we get a different k-colouring of G, This is not 
possible, since G is uniquely k-colourable. Hence C,2 is connected. # 

Theorem IfG is uniquely k-colourable then G is (k-1)-connected. 

Proof: If G is a complete graph omk vertices then it is (k-1)-connected. 
Suppose G is an incomplete uniquely k-colourable graph which is not 

(k-1)-connected. Let S be a vertex cut of G with at most (k-2) vertices. 
Then, at least two colours of any k-colouring of G will not be present in S. 
Let ahe colours be I and 2. Since the subgraph induced by the colours 1 and 
2 is connected, it is contained in some component of G - S. Now, if we 

recolour any vertex in some other component of G-S with colour 1 or 2, we 

get a different k-colouring of G. This is a contradietion, since G is uniquely 

k-colourable. Hence the theorem. # 

7.7 CRITICAL GRAPHS 

Critical graphs play a vital role in the study of colourings. Dirac (1952) 
was the first person to make an extensive study of critical graphs. A survey 
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by Toft [140], is an interesting and useful survey which contains many 

results on critical graphs. 

Definition: A graph G is critical if x(H)< x(G) for every proper subgraph 

H ofG. 
Definition: A graph which is critical and k-chromatic is called a k-critical 

graph. 
Example 

Consider the complete graph on 4 vertices, K4. We show that K is 

4-critical. We know that x(K4) = 4. 

A 

If we remove 1, 2 or 3 vertices then we get K3, K2, Kj respectively. In these 

cases, the chromatic number is 3,2,1 respectively. Therefore, the chromatic 

number decreases strictly. 
If we remove any single edge from K4, the resulting graph is two 

triangles with a common edge, which is 3 chromatic. In this case also, the 

chromatic number decreases strictly. All other cases can be disposed 

similarly. 

Hence, K4 is 4-critical. 41



Results 

1. Every k-chromatic graph has a k-critical subgraph. 

Proof: Let G be a k-chromatic graph. If G is critical, then G is the 
required subgraph. Otherwise, G has a subgraph H such that (H) - z(G). If 
H is critical, then H is the required subgraph. Otherwise, we repeat this 
process and we get a k-critical subgraph. 

2. Every critical graph is connected. 

Proof: Consider a critical graph G and let x(G) = k. Suppose G is not 

connected, let Gi,G2,..Gn be its components. 
Let a= Max x(Gi). 

Isisn 

By 7.12(5), k = a. But since G is critical, a <k, which is a contradiction. 

Hence G is connected. 

Theorem IfG is k-critical, then 82k-1. 

Proof Suppose G is a k-critical graph with & < k-l. Let v be a vertex of 

degree & in G. Since G is k-critical, G-v is (k-1)-colourable. Since degree 
of v is 6, we can find a colour in this (k-1)-colouring which is not represented 
at any adjacent vertex of v. Now we can assign this colour to v. Hence G is 
(k-1)-colourable. This is a contradiction to the fact that G is k-chromatic. 

Hence 2 k-1. # 

Corollary Every k-chromatic graph has at least k vertices of degree 
at least k-1. 

Proof: Let G be a k-chromatic graph. By result 7.17, it has a k-critical 

subgraph, say H. By theorem 7.18, each vertex of H has degree at least k-1 
in H and hence also in G. Since H is k-chromatic, it has at least k-vertices. 
Hence the result. # 

Corollary For any graph G, z(G) S A(G)+1. 

Proof Let G be k-chromatic. By corollary 7.19, G has at least k vertices 

of degree at least k-1. Therefore, A(G) 2 k-1. So, ks A(G)+1. Hence 

(G) s A(G)+1. 
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Let S be a vertex cut of a connected graph G. Let the 

components of G-S have vertex sets Vi.V2,..,Vn The subgraphs 

G G[VUS] are called the S-components of G. 

Definition: 

Definition: The colourings of the S-components G,,G2,...,G, of G are said 
to agree on S if, for every v ¬ S, each colouring assigns the same colour to v. 

Theorem In a critical graph, no vertex cut is a clique. 

Proof: Let G be a k-critical graph. We prove that no vertex cut of G is a 
clique. Suppose not, let us assume that G has a vertex cut S that is a clique. 
Let Gi,G2. G, be the S-components of G. Since G is k-critical, each G, is 
(k-1)-colourable. Furthermore, because S is a clique, the vertices in S must 
receive distinct colours in any (k-1)-colouring of Gi. It follows that there are 

G 

Vi V2 

(k-1)-colourings of G1,Gz,...,G, which agree on S. This gives a 
(k-1)-colouring of G. This is a contradiction to the fact that G is k-critical. 
Hence the theorem. 

# 

Corollary Every critical graph is a block. 

Proof: This is immediate by theorem 7.21. 

Note: IfG is k-critical with a 2-vertex cut {u,v} then u and v cannot be 
adjacent. 43



QUESTION BANK 

PART A 

1. Prove that In any graph G, 𝜶 + β  = p                                               CO2 (L2) 

2. Prove that If G is a bipartite graph, then 1 (G) = (G).                    CO2 (L2) 

3. Show that if G is bipartite with      0 , then G has a  - edge coloring such 

that all  colors are represented at each vertex.                                CO2 (L2) 

4. Show by finding an appropriate edge coloring, that 1 (Km,n) = ( Km,n)  

                                                                                                          CO2 (L1) 

5. Prove that A non-empty graph G is 2 – colorable if and only if G is bipartite. 

                                                                                                          CO2 (L2) 

6. Prove that, every critical graph is connected.                          CO2 (L2) 

     7  .If G is k – critical then show that (G)  k-1.                                   CO2 (L1) 

     8. a) Define k- critical graph.                                                                 CO1 (L1) 

         b) show that In a critical graph, no vertex cut is a clique.                  CO2 (L2) 

PART B 

     1. In any graph G with 0, prove  that 𝜶′ +β′ = p                             CO5 (L5) 

     2. Examine that, The edge chromatic number of a complete graph on n vertices 

is n, if n is odd (n1): n-1 if n is even.                                                         CO5 (L4) 

     3. Let G be a connected graph that is not an odd cycle. Then prove G has a 2 – 

edge coloring in which both colors are represented at each vertex of degree at least 

two. 

                                                                                                                     CO4 (L5) 

   4. If G is a simple graph, then    1     +1                                            CO4 (L2) 

   5. a) If G is uniquely K – colorable then. (G)   k-1.                              CO4 (L2) 

       b) If G is uniquely k – colorable then G is (k-1) connected.                CO3 (L2) 

   6. In a bipartite graph with   0, prove that 𝜶 = β’                                 CO4 (L5) 
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QUESTION BANK 

PART A 

1. If (b1, b2, b3, bn) is the successor of a predecessor ( a1, a2, a3, an), then prove ∑ 𝑏𝑖𝑛
𝑖=1  

is even.                                                                                            CO2 (L2) 

2. a) Define graceful labeling of a graph G.                                                CO1 (L1) 

    b) Analyse the graceful labeling of Petersen graph.                                CO2 (L4) 

3. If G is graceful eulerian graph withsize q, then identify q  0,3(mod4) CO2 (L2) 

4. Conclude that A graph G is 1- sequential if and only if G +V is graceful by   a 

labeling f with f (v) = 0.           CO5 (L5) 

5 If G is decomposable into two Hamilton cycles, then examine that G is 

conservative.                                                                                                CO2 (L4) 

6. If G is decomposable into two Hamilton cycles, then show that  G is strongly 

conservative.                                                                                                CO2 (L2) 

PART B 

 1. Prove that, the sequence (1, 2, 3, n) has a predecessor if and only if n  0, 3 

(mod4).                                                                                                        CO2 (L5) 

2. Prove that, if a bipartite graph G is decomposable into two Hamilton cycles then 

G is magic.                                                                                                  CO2 (L5) 

3. For any two graphs G1 and G2, ( G1G2) ( G1) + ’ (G2) +2 and the bound is 

attainable when G1 and G2 are complete  - Discuss                                    CO5 (L6) 

4. For any two graphs G1 and G2 , ( G1G2) ( G1) + ( G2) +m +2, where m is the 

multiplicity of the L (2,1)–labeling corresponding to (G2).-Discuss  CO5 (L6) 

5 If G is decomposable into two sub graphs H1 and H2 and if H1 is conservative, and 

H2 is strongly conservative then prove that G is strongly conservative.  

                                                                                                                     CO5 (L5) 



   

6. If G is a labeled directed graph such that Kirchhoff’s current law holds at every 

vertex of G except a particular vertex a, then Kirchhoff’s law also holds at the  

Vertex a. - Discuss                                                                                     CO5 (L6) 
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PERFECT GRAPHIS 

The chromatic number of a graph G is always greater than or equal 
to the clique number of the graph. For what type of graphs, equality holds? 

Also, the clique cover number ofG is always greater than or equal to 

the independence number of G. For what type of graphs, equality holds? 
In 1961, Claude Berge conjectured that o-perfect and x-perfect are 

equivalent. This was proved by László Lovász in 1971, at the age of 2. 
The above equivalence was almost proved earlier by Fulkerson. On hearing 
the success of Lovász from Berge, he completed his own proof, with in a few 
hours. No doubt it was a moment of sorrow for Fulkerson But in this 
process, Fulkerson invented the notion of antiblocking pairs of polyhedra, an 
idea which has become an important topic in the field of polyhedral 

combinatorics. 
In this chapter, mostly, we deal with vertex colouring and clique and 

SO we restrict our attention to simple graphs 
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PERFECT GRAPHS 

For a graph G, we know that Zi) clenoten the chrottt, 

number of G; 
The minimum number of colours needed to properly cbur ti 

vertices of G; equivalently, the minimum number of independent sets nexer 

to partition the vertices of G. 
m(G) denotes the clique number of G; the cardinality of the largest clique 

of G. 
a(G) denotes the independence number of G; the cardinality of the laryet 

independent set of G. 
e(G) denotes the clique cover number of G; the minimum number of clique: 
needed to partition (or cover) the vertices ofG. 

Remark: The intersection of a clique and an independent set ofa graph (; 

can be at most one vertex. So, for any graph G, 
a(G) s e(G) and ø(G) S x(G). 

Notation: In this chapter, Ga denotes the subgraph induced by A, that is 

GA]. 
Definition: A graph G is defined to be x-perfect if z(Ga) = (G), for all 

ASV. 
Definition: A graph G is defined to be a-perfect if a(Ga) = 0(GA), for al 

ASV. 
Note: 1. a(Ga) S a(G), a(GA) S G) 

XGA) S X(G), e(GA) e(G). 

2. A graph need not be x-perfect (a-perfect) even if every proper 
induced subgraph is x-perfect (a-perfect). This can be seen by 
considering the cycle Cs. 

Examples: 
1. Consider the graph Ca. 

Ca 

Va 
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Here (C4) =2 o(Ca). 
Also x(G) = o(Ga), where G C� and Ag V(C). 
Hence Ca is X-perfect. 
Also a(Ca) =2= 0(Ca) and a(Ga) =0(Ga), where G= Ca and Ac V(C4) 
Therefore, Ca is a-perfect. 

2. IfG is a bipartite graph, then we know that, (G) = 2= o(G), if G has an 

edge; Otherwise, 2(G) =1 =o(G). 
Hence G is -perfect 
Also, it is easy to see that, for bipartite graphs, a{G) = O(G). 

Hence it is also a-perfect. 

3. Consider C2k+1 , k >1. 
This is not X-perfect since x(C2k-+1)= 3 and o(C2k-+1)= 2. 
Also this is not a-perfect because a(C2k+1) = k and e(C2k+1) = k+1, a 

minimum partition consists of k, 2 cliques and one 1-clique. 

Theorem A graph G is y-perfect if and only if its complementary 

graph G is a-perfect. 

Proof: Clearly a(Ga) = a(G) 

eG)-x(G 
Thus, a(GA) = 0(GA) is equivalent to o(G) = x(G) and 

a( G)=0(G) is �quivalent to o(GA)= X(Ga). 
# Hence the theorem. 

Corollary If either a graph G or its complementary graph G contains 

an odd cycle of length greater than 3 without chords, then G is neither 

-perfect nor a-perfect. 

Proof: Let A be the vertex set of such a cycle of G. 

Then (GA)# a(Ga), a(Ga) * O(GA). 
Thus G is neither x-perfect nor a-perfect. 

If the complementary graph G° contains such a cycle, then it is 

neither -perfect nor a-perfect and by the previous theorem, G is neither 

-perfect nor a-perfect. # 

Now we introduce the concept of multiplication of the vertices of a 

graph 64



Let G be a graph with vertex v. The graph Gov is obtained from G 
by adding a new vertex v' which is connected to all the neighbours of v. 

G: Gov: 

It is easy to see that, (Gov)-u = (G-u)ov for distinct vertices v and u. 

More generally, if Vi,V2»-.,Vp are the vertices of G and 
h = (h,h2,..,hp) is a vector of non-negative integers, then H = Goh is 

constructed by substituting for each vi an independent set of hi vertices 

V,Vand joining vi with v if and only if v, and v, are adjacent in G. 

We say that H is obtained from G by multiplication of vertices. 

Example 

Goh: G: 
where h (2,0,1) 

V2 V3 

1. If we take hj = 0 then H does not contain Vi. 
2. Every induced subgraph of G can be obtained by 

multiplication of an appropriate vector, in which hi is zero or 

Note: 
by 

one. 
3. If each h = 1 then Goh = G. 
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Theorem (Berge) Let H be obtained from G by multiplication of 
vertices. 

() IfG is X-perfect then H is x-perfect. 
(ii) IfG is a-perfect then H is a-perfect. 

Proof: The theorem is true if G has only one vertex. We shall assume that 
) and (i) are true for al graphs with fewer vertices than G. Let H=Goh. 
If one of the co-ordinates of h equals zero, say h, = 0, then H can be obtained 

from G-v; by multiplication of vertices. But ifG is x-perfect then G-v also 
X-perfect. Also, if G is a-perfect then G-v; also a-perfect. Now by 
induction hypothesis, the theorem is true. 

Thus, we may assume that each co-ordinate h; 2 1 and some h; 2 2. 
Since H can be built up from a sequence of smaller multiplications (Hint: 
refer exercise 12.4 ), it is sufficient to prove the result for H=Gov. Let v 
denote the added copy of v. 
Let us assume that G is x-perfect. 
So, a(Ga) =XGa), for all Ac V. 
Since v and v' are non-adjacent, a(Gov) = a(G). 

Let G be coloured using o(G) colours. Colour v the same colour as v. This 

will be a colouring of Gov in o(Gov) colours. 
So, (Gov)= a()= a(Gov). 
Similarly we can prove that x(HA) = »(HA) where H Gov and for all

ACV(H). Hence, Gov is y-perfect 
Now we assume that G is a-perfect. So, a(Ga) = 0(GA), for all AV. 

It is enough to prove that a(Gov) = ¬e(Gov). 
Let N be a clique cover of G with |N|= 0(G) = a(G) and let K, be the 

clique of N containing v. Now we consider two cases. 

Case 1: v is contained in a maximum independent set S of G such that 
IS= a(G). 
Now Su {v} is a independent set of Gov and a(Gov) = a(G)+1. 
Since N u {v) is a clique cover of Gov, we have that 
G(Gov) s 0(G)}+1 = a(G}+1 = a(Gov) se(Gov). 
Hence, a(Gov) = 6(Gov). 
Case 2: No maximum independent set of G contains v. So a(Gov)= a(G). 
Since each clique of N intersects a maximum independent set exactly once, 
this is true in particular for Ky. But v is not a member of any maximum 66



independent set. Therefore, D = = Ky -{v} intersects each maximum 

independent set of G exactly once, so a(Gv-p)= a(G)-1. 
Now e(Gv.D)=«(Gv.d) = a{G)-1 = a(Gov)-1. 
Taking a clique cover of Gv.d of cardinality a(Gov)-1 along with extra 
clique D u{v'}, we obtain a clique cover of Gov. 
Hence (Gov) = a(Gov). 

Remark: In this chapter, our main aim is to prove the Perfect Graph 
theorem, which states that a graph is -perfect if and only if it is a-perfect. 
This was proved by Lovász along with a third equivalent condition, 

(GA).a(GA) 2 [A}, for all AEV. 

Theoremn (Fulkerson[1971], Lovász[1972]) Let G be a graph each 
of whose proper induced subgraphs are a-perfect, and let H be obtained from 
G by multiplication of vertices. IfG satisfies the condition 

aGa).a(G)2 JA|, for all AEV then H also satisfies this condition. 

Proof: Let G satisfy the condition, 
(Ga).a(Ga) 2 JA|, for all A V 

Choose H to be a graph having the smallest possible number of vertices 
which can be obtained from G by multiplication of vertices but which fails to 
satisfy (P) itself. So, 

a(H).a(H)< X, where X denotes the vertex set of H, yet (P) does 
hold for each proper induced subgraph of H. 

(P) 

As in the proof of the above theorem, we may assume that each 
vertex of G was multiplied at least once and that some vertex u was 
multiplied at least twice (that is, h2 2). Let U= {u',uf,..,u"} be the vertices 
of H corresponding to u. The vertex u' plays an important role in this proof. 
By the minimality of H, (P) is satisfied by H,, which gives, 
X-1 X-u' s m(Hy).a(Hy) by (P) 

S o(H).a(H) 

sIX-1. 
Thus, equality must hold throughout, and we define, 

PIo(HU) wH) 
q a( )=a(H) 

and piq= |X|-1." 
Since Hxu is obtained from G-u by multiplication of vertices, by the 

previous theorem Hx-u is a-perfect. Thus, Hxu can be covered by a set of q 

x-U' 
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cliques of H, say Ki,K2,..., Kg,. We can assume that K;'s are pairwise 

disjoint and |Ki|2 |Ka|2 ...2|K, 
Now |X-U] = |X] -h= p1q1+1-h= p1qi-(h-1). 

Since K| s pi, at most h-1 of the Ki cannot contribute p1 to the sum. 

Hence |K- |Kl= ..=|Ka-h+1P 
Let H' be the subgraph of H induced by 

X' =KjUKaU...uKq-h+1 fu'). 
X|=pi (q1 -h+1)+1 < piqit1 = |X 

So by the minimality of H, we have, 
H) a(H) 2 |X|| 

But pa(H) 2 a(H), 
So, a(H') 2|X|/p1 > qi-h+1. 
Let S' be an independent set of H' of cardinality qi-h+2. Since S' cannot 
have two vertices ofa clique, u'eS'. Hence, S = S'uU is an independent set 

of H with q1t1 vertices, which is a contradiction, to the definition of q1. # 

,THE PERFECT GRAPH THEOREM1 

Lovász) For a graph G, the The Perfect Graph Theorem. 
following statements are equivalent. 

1. Gis x-perfect. 
2. G is a-perfect. 
3. o(Ga).a(Ga) 2 JA}, for all A V. 

Proof: We may assume that the theorem is true for all graphs with fewer 

vertices than G. 

(1)=(3). Let us assume that G is x-perfect. 
So we have, w(GA) = x(GA), for all A c V. 

It means, we can colour GA in »(Ga) colours. 

Since there are at most a(GA) vertices ofa given colour, 

we get a(GA).a{GA) 2|A|. 

(3)>(1). Let us assume that G satisfies the condition 

GA).a(GA) 2 JA|, for all Ag V. 
Each proper induced subgraph of G satisfies (3) and by induction 

assumption, satisfies all the above three conditions. 
So it is enough if we prove that o{G) = x{G). 68



If we have an independent set S of G such that o(Gv.s) < o(G), then 
we can colour the elements of S by a new colour and Gv-s in o(G)-1 other 
colours. This is a colouring of G and so x(G) S w(G)-1+1 = o(G). 

But we know, o(G) S x(G) for any graph G. Hence, o(G) = x(G). 

Suppose Gvs has an a(G)-clique K(S) for every independent set S 
of G. 

Let be the collection of all independent sets of G. 
Also SnK(S) = ¢. 

For each ViEV, let h; denote the number of cliques K(S) which contain vi. 
Let H be obtained from G by multiplying each vi by h; and let V(H) = X. 

By theorem 12.4, w).a(H) 2 |X]. 
Now we compute, 

X h, =2K(S). since h; equals the number of non-zeros in row i, 
Se 

and |K(S) equals the number of non-zeros in its corresponding column in 
the incidence matrix whose rows are indexed by the vertices vi,vV2,..,.V, and 
whose columns correspond to the cliques K(S) for Seg. 
Therefore, the above equation becomes, 

VEV 
X-h,-K(S(G|. 

Now we consider any clique in H. Since, at most one 'copy' of any 

vertex of G could be in a clique of H, we have o(H) S o(G). 
We note that, if a maximum independent set of H contains some of the 

copies' of vi, then it will contain all of the 'copies' and hence, 

SEE 

a( -Max2 
Te V¬lT 

Max TKS)l| by considering the entries of the 
Te se rows corresponding to T in the 

above matrix. 

sE-1 since |TnK(T)| = 0 and |TnK{S)| S 1, since T is an 

independent set and K(S) is a clique.

Now consider, 
(H).a(H) s o(G).(E| -1) < [X|, 

which is a contradiction. 
Hence the result. 
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(2)(3) 
G is a-perfect if and only if G is X*perfect. 

if and only if o(G^).a(G^)2 JA}, for all A V 
if and only if a(Ga).o(GA)2 Al, for allASV 

Hence the theorem. 

A graph G is perfect if and only if its complement G° ís Corollary 
perfect. 

Proof: By theorem 12.5, the corollary is immediate. 

A graph G is perfect if and only if every graph H obtained Corollary 
from G by multiplication of vertices is perfect. 

Note: Sine -perfect and a-perfect are equivalent for any graph G, here 

after we call the graph which satisfy any one of them as perfect graph. 
However, the above equivalence fails for uncountable graphs. 

Now we present another characterization for perfect graphs. 

Theorem A necessary and sufficient condition for a non-empty graph 

G to be perfect is that for every induced subgraph Hs G there is an 

independent set of vertices I, such that ø(H-I) < o(H). 

Proof: Let G be a perfect graph and H be an induced subgraph of G, and so 

His also perfect. Let k = x(H) = ®(H). 

In this k-colouring of H, let I be a colour class. Now, 

oH-1) S x(H-I) = z(H)-1 < ø(H). Hence this part. 

Conversely, let us assume that for each induced subgraph H G, there is an 

independent set of vertices I, such that w(H-I) < w(EH). 
We prove this result by induction on w(G). 
If o(G) = 2, then the result is obvious. 
So, let w(G)> 2 and we assume the result for smaller values of the clique 

number. 

By induction hypothesis, we can colour H-I with w(H-I) colours and 

colouring the vertices of I with a new colour, we obtain a colouring of H with 

H-I)+1 S w(H) colours. So x(H) S w(H). Hence G is perfect. # 
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Conjecture: 
about graphs, which are not perfect. Consider odd cycles of length at least 
five. It's chromatic number is three, but it's clique number is two. So it is 

not perfect. But we note that every subgraph of this is perfect. In 1960, 

Berge raised the question of the existence of other minimal imperfect graphs 
other than odd cycles of length at least five and their complements. He 

conjectured that there are none other than these. This has come to be known 

as strong perfect graph conjecture. It may be stated as below. A graph G 

is perfect if and only if G has no induced subgraph that is an odd cycle of 

length at least five or its complement. 

When we talk about perfect graphs, it is natural to think 

CHORDAL GRAPHS 

The concept of chordal graphs is due to Hajnal and Suranyi. 
In 1958, they showed that chordal graphs are a-perfect, and Berge, in 1960, 

proved that chordal graphs are x-perfect. So, chordal graphs are very good 

examples for perfect graphs. 

Definition: A graph G is called chordal if every cycle of length strictly 
greater than 3 possesses a chord, that is, an edge joining two non-consecutive 

vertices of the cycle. 

Remark: By definition, G does not contain an induced subgraph () 
isomorphic to Cg forn>3. 

i) A subgraph of a chordal graph is also chordal, since, if the 

subgraph has a cycle of length greater than three without chords then G 

would also have a cycle of length greater than three without chords. 
(i) Chordal graphs are also called as triangulated graphs. 

Examples 

1. All complete graphs are chordal graphs. 
2. All trees are chordal graphs 
3. The following graph is chordal. 
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4 Wheel Wn is not a chordal graph ifn 2 5. 
5. Kma m, n22 is not chordal. 

Definition: A vertex v of G is called simplicial if its adjacency set Adj(v) is a clique of G (not necessarily maximal). 

Definition: Let G be a graph and let o = [v1,V2,...,Vp) be an ordering of the 
vertices. is called a perfect vertex elimination scheme (or perfect 
scheme) if each Vi is a simplicial vertex of the induced subgraph 

Equivalently, X = {vjEAdi(vi)/j >i} is a clique. 
Examples: 

1. In a tree, successive deletion of leaves induces a perfect vertex 
elimination scheme. 

2. If G is a cycle of length greater than three, then G cannot have a 
perfect vertex elimination scheme, since a cycle has no simplicial 
vertex to start the elimination. 

Definition: Let a and b be two non-adjacent vertices in a connected graph 
G. A subset S c V is a vertex separator for a and b (or an a-b separator) if 
the removal of S from the graph separates a and b into distinct components. 

If no proper subset of S is an a-b separator, then S is a 

minimal vertex separator for a and b. 

Theoremn For a graph G, the following statements are equivalent. 

(i) Gis chordal. 

(ii) Every minimal vertex separator is a clique. 
Proof 

(ii)>(1) Let us assume that every minimal vertex separator is a clique. 
Consider a cycle of length strictly greater than three ofG, say, 

a,x,b,y1,y2,,yka], k21. 

Any minimal a-b separator must contain vertices x and yj for some i; So 

xyi E E, which is a chord of the cycle. 
Hence G is a chordal. 

)>(i) Let us assume that G be a chordal graph. 
Let S be a minimal a-b separator with GA and Gg being the components of 

Gy.s containing a and b respectively. 
Since S is minimal, each x e S is adjacent to some vertex in A and some 

vertex in B. 
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Let x,y e S. Since GA is connected, there exists a path between x and y with 
internal vertices from Ga. 
Now we choose such a path of smallest length say, [x,a1,..,Ar,y}, where 

a A. 
Similarly, we choose a path of smallest length between x and y, say 
(y,b,,bx], where bj e B. 
Now combining these two we get a cycle [x,a1,..,ar,y,b1,...,b,x], whose 
length is at least 4. 

By our assumption, this cycle must have a chord. Since S is vertex separator, a,bj E. Also aaj g E, blbj « E, xaj e E for i >1, ya E for i <r, xb, £ E 
forj<t and yb, e E for j> 1 by the minimality of the length of the paths Therefore, the only possible chord is xy e E. 
Hence the theorem. 

# 

Theorem Every chordal graph has a simplicial vertex. Moreover, if 
G is not a clique, then it has two non-adjacent simplicial vertices 
Proof Let G be a chordal graph. The theorem is true trivially if G is 
complete. Now we assume that G has two non-adjacent vertices a and b and 
that the theorem is true for all graphs with fewer vertices than G. 
Let S be a minimal vertex separator for a and b with Ga and Gs being the 
components of Gy.s containing a and b, respectively. 
By induction, either the subgraph GAUs has two non-adjacent simplicial 
vertices one of which must be in A, since S is a clique or GaLs is itself 

complete and any vertex of A is simplicial in Gaus. Since no vertex of A is 
adjacent with a vertex in B, a simplicial vertex of GAUs in A is simplicial in 
G. Similarly, B contains a simplicial vertex of G. 
Hence the theorem. # 

Now we present an equivalent condition for chordal graphs 

by Dirac(1961).

Theoremn 
() Gis chordal. 
(i) 

For a graph G, the following statements are equivalent. 

G has a perfect vertex elimination scheme. Moreover, any 

simplicial vertex can start a perfect scheme. 
ii) Every minimal vertex separator is a clique. 

Proof 
i)(i) Let G be chordal. 
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Let us assume the result for all graphs with fewer vertices than G. Since G is chordal, it has a simplicial vertex, say v. 
Since any subgraph of a chordal graph is chordal, Gy.(v is chordal and 
smaller than G. So, by induction, Gv-tvj has a perfect scheme which, when 
adjoined as a suffix of v, gives a perfect scheme for G. 

(ii)() Let G has a perfect vertex elimination scheme and let C be a cycle of G with length greater than three. Let v be the vertex of C with the 
smallest index in the perfect scheme of G. 
Adi(v)nC|2 2, and the eventual simpliciality of v gives a chord in C. 
Hence G is chordal. 

Since C is a cycle, 

i) (ii) already proved. 
Hence the theorem. 

Definition: A subset ScV ofa connected graph G is said to be a vertex 
separator if G-S is disconnected. 

Theorem Let S be a vertex separator of a connected graph G and let 

GA,GA,.,GA, be the components of Gv.s. If S is a clique (not 

necessarily maximal), then 

x(G) Max GsUA;) 
i 

and 

(G)= Max (GsUA, ) 
i 

Proof: Obviously x(G)2 x(GsUA,) for each i. 

So x(G)2 Max X(GsuA) =k. 

Now we show that G can be coloured using exactly k colours. First colour 
Gs, then independently extend the colouring to each piece of GsuA, This 

will be a colouring of G with k colours and this is possible because S is a 

clique. Hence x(G) =k. 
Now we prove the other equality. 

We know, o(G) 2 a(GSUA, ) for each i. 

So, w(G) 2 Max (GsuA)= m. 
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Let X be a maximum clique of G with o(G) elements. Then X must lie 
wholly in one of the GsuA. since any two vertices of X are connected and. 
so they cannot belongs to GA and GA., for i #j. 

So, m2 o(GsUA.) 2 X|= a(G). 
Hence o(G) = m. 

# 

Corollary Let S be a vertex separator of a connected graph G and 
let GAGA, ,Ga, be the components of Gy.s. IfS is a clique, and if 

each subgraph GsuA. is perfect, then G is perfect. 

We assume that the result is true for all graphs with fewer vertices 
than G. So it is enough if we show that x(G) = o(G). Let each graph 

Proof: 

SUA be perfect. 

Now by the previous theorem, 

xG)= Max ZGsUA)= Max GsUA,)= w(G). i 

Hence G is perfect. # 

Theorem Chordal graphs are perfect. 

Proof: Let G be a chordal graph. 
We assume that the theorem is true for all graphs having fewer vertices than 
G. Also, we may assume that G is connected, for otherwise we consider 
each component individually. 
IfG is complete, then G is perfect. 
If G is not complete, then let S be a minimal vertex separator for some pair 
of non-adjacent vertices. Since G is chordal, S is a clique. 
Also, by induction hypothesis, since each of the subgraphs GSUA. (as 

defined in the corollary) are chordal, they are perfect. 
Hence, by the previous corollary, G is perfect. # 

INTERVAL GRAPHS 
Consider the following open intervaBs on the real line, 

(0, 2), (1, 4), (3, 6), (5, 7), (1, 7) and (6, 9) 
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Now we construct a graph from these intervals by introducing a vertex for 
each of these intervals and joining two such vertices by an edge whenever 

the corresponding intervals overlap. The graph arising from the intervals is 

shown in figure 12.6. 

(0, 2) (1,4) (3, 6) (5, 7) (6, 9) 

Any graph, which arises in this way from a set of intervals, is called an 

interval graph. For example, the above Fan is an interval graph since we 

obtained this from the above intervals. 

G. Hajo's and N. Wiener (1957) were the first to study 

interval graphs. 

Definition: Consider a family A= (A1, Az,., A,) of intervals on the real 

line. The representative graph of A is defined to be a simple graph G in 

which each vertex a, corresponds to an interval Ai, and with two vertices 

Joined together if, and only if, the corresponding intervals overlap. Such a 

graph is called an interval graph. 76



Theorem Every interval graph is chordal. 

Proof: Let G be an interval graph. 

Suppose, G has a chordless cycle [Vo,V1. V-1 Vo] with e>3. 

Let y denote the interval corresponding to vk 
For i 1,2,., f-1, choose a point a; e li i, Since li1 and I+ do not 
overlap, a; constitute a strictly increasing or strictly decreasing sequence. So 

Io and I cannot intersect, which is a contradiction, to the fact that 

Vo V-is an edge of G. Hence G is chordal. # 

Theoremn Interval graphs are perfect. 

Proof Since every interval graph is chordal and since chordal graphs are 

perfect, the theorem is true. # 

Solved Problems: 

Show that the complement of a bipartite graph is perfect without using 
perfect graph theorem. 
1. 

Solution: Since an induced subgraph of the complement ofa bipartite graph 
is also the complement of a bipartite graph, it is enough if we prove that, if G 

is a bipartite graph then z(G)= o(G). 
Now, in a colouring of G, every colour class is either a vertex or a pair of 
adjacent vertices in G. Thus x(G) is the minimal number of vertices and 
edges of G, covering all vertices of G. Let H be the subgraph of G obtained 
by deleting all isolated vertices of G. In H the minimum number of edges 
covering all the vertices of H equal to maximum number of independent 
vertices of H, a = ®. Now adding isolated vertices on both sides, we get the 
minimum number of vertices and edges of G covering all vertices of G 1s 

equal to the maximum number of independent vertices of G. Hence 

z(G')= o(G) 

2. Let G be a bipartite graph with the line graph H= L(G). Show that H 

and H are perfect. 
Solution: Since an induced subgraph of the line graph of a bipartite graph is 

also the line graph of a bipartite graph, it is enough if we prove that 

KH)=w(H). Also, it is enough if we prove that (H)= o(H). 
A set of edges in G are adjacent if and only if all the edges pass through the 

same vertex. 77



Hence, o(H) = A(G) 
x(H)= xi(G) 

But for bipartite graphs, xi(G) = A(G), hence H is perfect. 

Now, we note that z(H) is the minimal number of vertices of G 

covering all the edges and o(H) is the maximal number of independent 

edges of G. Since both of them are equal for bipartite graphs (a' = B), H° is 

perfect. 

Note: Problem 1, is the first result on perfect graphs, proved by Gallai andd 

Konig in 1932, although the concept of perfect graph was explicitly defined 

by Berge in 1960. 

3. Give an example of a chordal graph, which is not an intérval graph. 

Solution: 

b 

"y 

Obviously, the above graph is chordal. In the interval representation of the 

above graph, the intervals Ia, I, and Ie are disjoint. 

Without loss of generality, we assume l, be in between I, and le. Since d is 

aujacent to a, b and c, Ia should properly include Ip. But it is impossible to 
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have an interval l, which has non-empty intersection with I, but disjoint with 
Ia Hence this graph is not an interval graph. 

COMPARABILITY GRAPHS 

Definition: A graph G is calleda comparability graph if it is possible to 
direct its edges so that the resulting graph with arc set F satisfies: 

() (x, y) e F, (y, z) ¬ F»(x, 2) ¬ F (transitivity) 
(i) (x, y) e F»(y, x)eF (anti-symmetry) 

Note: A comparability graph may have more than one orientation of edges 
satisfying the two conditions. 

Examples: 

1. Every bipartite graph is a comparability graph, since if (A, B) is the 
bipartition then, we direct all the edges from A to B. 

2 Clearly subgraph of comparability graph is a comparability graph. 

Theoremn Comparability graphs are perfect. 

Proof Let G be a comparability graph. Consider G with its direction. 
For each vertex v, let t(v) denote the length of the longest path from v plus 
one. If max t(v) = k, there exists a k-clique containing all the vertices in the 
longest path from v. But in G there cannot be a (k+1)-clique; otherwise we 
can find a path with k+1 vertices. Thus o(G) =k. 
Consider k colours say, 1,2,...k.. Colour each vertex v with colour t(v). 
Two adjacent vertices cannot have the same colour, because if there is an arc 
directed from v, to v2 then t(vi) > t(v2). Thus x(G) SK. 
But (G) 2 o(G) = kand hence x(G) = k. 
Therefore, x(G) = a(G). 

Now by perfect graph theorem, G is perfect. 79



QUESTION BANK 

UNIT V 

                                                      PART A 

1. Show thatA graph G is  - perfect if and only if its complementary graph Gc  is 𝜶 

– perfect.                                                                                                  CO2 (L2) 

2.  Let S be a vertex separator of a connected graph G and let GA1,GA2, …, GAt  be 

the components of Gv-s I If S is a clique and if each sub graph GsAj is perfect, then G 

is perfect.                                                                                                 CO2 (L2) 

4.Explain Every chordal  graph  is  perfect.                                                CO2 (L2) 

5. Explain Every interval graph is Chordal.                                                CO2 (L2) 

6. Explain Comparability graphs are perfect.                                              CO2 (L2) 

7. Give an example of a chordal graph, which is not an interval graph.     CO1 (L2) 

PART B 

1. Prove that if either a graph G or its complementary graph Gc contains an odd cycle 

of length greater than 3 without chords, then G is neither  - perfect nor 𝜶 – perfect.                                                                                                         

CO3 (L5) 

2. Let H be obtained from G by multiplication of vertices the prove that  

                 i) If G is  - perfect then H is  - perfect 

                 ii) If g is 𝜶 – perfect then H is 𝜶 – perfect                                CO3 (L5) 

3. Let G be a graph each of whose proper induced sub graphs are 𝜶 – perfect, and 

let H be obtained from G by multiplication of vertices.  If G contains the condition 

(GA). ( GA) |𝐴| for all A V then H also satisfies this condition. If g is 𝜶 – 

perfect then H is 𝜶 – perfect – Discuss.                                                     CO3 (L6) 

4. For a graph G, the following Analyse that statements are equivalent. 

1) G is  - perfect 

2) G is 𝜶 – perfect 



3) (GA). ( GA) |𝐴|, for all A V.                                          CO6 (L4) 

5.A necessary and sufficient for a non-empty graph G to be perfect is that for every 

induced sub graph H  G there is an independent set of vertices I, such that       (H–

I) (H). – Discuss                                                                            CO6 (L6) 

6. For a graph G, Prove that the following statements are equivalent. 

i) G is Chordal 

ii)  Every minimal vertex separator is a clique.                         CO6 (L5) 
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