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l. Connectivity

Contents - Connectivity and edge-connectivity — 2-connected graphs — Menger’s theorem.

Connectivity

A graph is said the connectivity of a graph. A graph with multiple disconnected
vertices and to be connected if there is a path between every pair of vertex. From
every vertex to any other vertex, there should be some path to traverse. That is called
edges is said to be disconnected.

Example 1

In the following graph, it is possible to travel from one vertex to any other vertex.
For example, one can traverse from vertex ‘a’ to vertex ‘e’ using the path ‘a-b-¢’.

a b

Example 2

In the following example, traversing from vertex ‘a’ to vertex ‘f” is not possible
because there is no path between them directly or indirectly. Hence it is a
disconnected graph.

L
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Cut Vertex

Let ‘G’ be a connected graph. A vertex V € G is called a cut vertex of ‘G’, if ‘G-V’
(Delete ‘V’ from ‘G’) results in a disconnected graph. Removing a cut vertex from
a graph breaks it in to two or more graphs.

Note — Removing a cut vertex may render a graph disconnected. A
connected graph ‘G’ may have at most (n—2) cut vertices.

Example

In the following graph, vertices ‘e’ and ‘c’ are the cut vertices.
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By removing ‘e’ or ‘c’, the graph will become a disconnected graph.
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Cut Set of a Graph

Let ‘G’= (V, E) be a connected graph. A subset E’ of E is called a cut set of G if
deletion of all the edges of E’ from G makes G disconnect.

If deleting a certain number of edges from a graph makes it disconnected, then those
deleted edges are called the cut set of the graph.

Example
Take a look at the following graph. Its cut set is E1 = {el, e3, €5, e8}.
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After removing the cut set E1 from the graph, it would appear as follows —

e9g
=

Similarly, there are other cut sets that can disconnect the graph —

E3 = {e9} — Smallest cut set of the graph.
E4 = {e3, e4, e5}
Edge Connectivity

Let ‘G’ be a connected graph. The minimum number of edges whose removal makes
‘G’ disconnected is called edge connectivity of G.

Notation — M(G)
In other words, the number of edges in a smallest cut set of G is called the edge
connectivity of G.



If ‘G’ has a cut edge, then A(G) is 1. (edge connectivity of G.)

Example

Take a look at the following graph. By removing two minimum edges, the connected
graph becomes disconnected. Hence, its edge connectivity (A(G)) is 2.

b e
Here are the four ways to disconnect the graph by removing two edges —
I Ix IIx Iv ©

Vertex Connectivity

Let ‘G’ be a connected graph. The minimum number of vertices whose removal
makes ‘G’ either disconnected or reduces ‘G’ in to a trivial graph is called its vertex
connectivity.

Notation — K(G)

Example
In the above graph, removing the vertices ‘e’ and ‘i’ makes the graph disconnected.

If G has a cut vertex, then K(G) = 1.

Notation — For any connected graph G,

Vertex connectivity (K(G)), edge connectivity (MG)), minimum number of degrees
of G(8(Q)).

Theorem (Whitney) For any graph G, «(G) <A (G) <3 (G).
Proof: We first prove M(G) < 8(G).
If G has no edges, then A = 0 and & = 0. If G has edges, then we get a disconnected

graph, when all edges incident with a vertex of minimum degree are removed. Thus,
in either case, A (G) <6 (G).

We now prove k(G) <A (G). For this, we consider the various cases. If G
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= Kn, then k(G) = A (G) =n — 1. Now let G be an incomplete graph. In case G is
disconnected or trivial, then obviously k = A = 0.

If G is disconnected and has a cut edge (bridge) x, then A = 1. In this case, k = 1,
since either G has a cut vertex incident with x, or G is K2.

Finally, let G have A > 2 edges whose removal disconnects it. Clearly, the removal
of A —1 of these edges produces a graph with a cut edge (bridge) x

= uv. For each of these A —1 edges, select an incident vertex different from u or v.
The removal of these vertices also removes the A — 1 edges and quite possibly more.
If the resulting graph is disconnected, then k <A . If not, x is a cut edge (bridge) and
hence the removal of u or v will result in either a disconnected or a trivial graph, so
that k <A in every case.

Illustration
We illustrate this by the graph shown in Figure Here x =2, A =3 and 6 = 4.
Example

Calculate M(G) and K(G) for the following graph —

d

Solution

From the graph, 8(G) =3

K(G) <MG)<d(G)=3(1)K(G)>2(2)

Deleting the edges {d, e} and {b, h}, we can disconnect G. Therefore,
MG)=2

2<MG)<d(G)=2(3)

From (2) and (3), vertex connectivity K(G) = 2

Theorem : Forany v € V and any e € E of a graph G(V, E), k(G)—1 < k(G—v) and
MG)—1 <MG—e) < MG). Proof We observe that the removal of a vertex or an edge
from a graph can bring down k or A by at most one, and that while k may be increased
by the removal of a vertex, A cannot be increased by the removal of an edge.

Theorem : For any three integers r, s, t with 0 <r < s <t, there is a graph G with K

=1, A =s and 6 = t. Proof Take two disjoint copies of Kt+1. Let A be a set of r

vertices in one of them and B be a set of s vertices in the other. Join the vertices of

A and B by s edges utilising all the vertices of B and all the vertices of A. Since A

is a vertex cut and the set of these s edges is an edge cut of the resulting graph G, it
5



is clear that k(G) = r and A(G) = s. Also, there is at least one vertex which is not in
AUB, and it has degree t, so that 6 (G) =t.

Menger’s Theorem

Harary listed eighteen variations of Menger’s theorem including those for
digraphs. Clearly, all these are equivalent and one can be obtained from the other.

Let u and v be two distinct vertices of a connected graph G. Two paths joining u
and v are called disjoint (vertex disjoint) if they have no vertices other than u and
Vv (and hence no edges) in common. The maximum number of such paths between
u and v is denoted by p(u, v). If the graph G is to be specified, it is denoted by
p(u, v|G).

The following is the vertex form of Menger’s theorem. The proof is due to Nash-
Williams and Tutte

Theorem (Menger-vertex form)

The minimum number of vertices separating two non-adjacent vertices s and t is
equal to the maximum number of disjoint s—t paths, that is, for any pair of non-
adjacent vertices s and t, the clot number equals the maximum number of disjoint s—t
paths. That is, (s, t) = p(s, t), for every pair s, t € V with st €/ E. Proof Let G(V, E)
be a graph with |[E| = m. We use induction on m, the number of edges. The result is
obvious for a graph with m =1 or m = 2. Assume that the result is true for all graphs
with less than m edges. Let the result be not true for the graph G with m edges. Then
we have p(s, t|G) < (s, t|G) = q (say), as for any graph, we obviously have p(s, t) <
K(s, t). Let e =uv be an edge of G. The deletion graph G1 = G — e, and the contraction
graph G2 = Gle has a smaller number of edges than G. Therefore, by induction
hypothesis, we have p(s, t|G1) = «(s, t|G1) and p(s, t|G2) = (s, t|G2). Let I be an (s,
t) — clot in G1 and J 0 be an (s, t)— clot in G2. Then we have

1] = (s, t|{G1) = p(s, t|G1) < p(s, t|G) < q and

Jjl = x(s, t|G2) = p(s, t|G2) < p(s, t|G) < q, So |Jj|
< q and therefore |Jj] <q— 1.

Now to Jj there corresponds an (s — t) vertex cut J of G such that [JI< |Jj| + 1, since, by
elementary contraction, (S, t) can be decreased by at most one, and this decrease actually
occurs when e € E((J)).

Thus, J|<Jjj+1<q-1+1
= q, that is, [J]| <q.
Since J is an (s, t) vertex cut in G, (s, t) < |J|, q

<|J]. Thus, q <|J| <q, so that |J| = q.

Therefore, [I|<gand |Jj=gandu,v € J
Let Ht € | U J : there exists an s — w path in G, vertex-disjoint from | U J —
={w {w}}and
Ht = {w € 1 U J : there exists a t — w path in G, vertex-disjoint from | U
6



J— {wll.

Clearly, Hs and Ht are (s — t) separating vertex cuts in G. Therefore,

|[Hs| > q and |Ht | > q.

Obviously, Hsu Ht < 1 U J.

We claim that Hs N Ht € | U J. For this, let w € Hs N Ht. Then there exists an s
— w path P1 and w — t path P2 in G vertex disjoint from I U J— {w}. So P1 U P2
contains a path, say P. If e € P then we have u, v e V (P) N J € {w}, which is
impossible. Therefore e €/ P and so P € G —e¢. Since | is an (s, t) separator in G
—e and Jis an separator in G, P has a vertex common with I and also with J. So
welNJ Thus, HsNHt <1 NJ.

Combining (5.17.4) and (5.17.5), and the above observation, we have

qtq<|Hs|+Ht{=HsUHt|+ HsNHt | <[TUuJ+|INJ =]+ <q+q, whichisa
contradiction

Thus not true, and therefore, we have k(s, t|G) = p(s, t| G).

Definition: Two paths joining u and v are said to be edge-disjoint if they have no
edges in common. The maximum number of edge- disjoint paths between u and
v is denoted by I(u, v). -

The following is the edge form of Menger’s theorem and the proof is adopted
from Wilson [196].

Theorem (Menger-edge form) For any pair of vertices s and t of a graph G, the
minimum number of edges separating s and t equals the maximum number of
edge-disjoint paths joining s and t, that is, A (s, t) = I(s, t) for every pairs,t € V.

Proof Let G(V, E) be a graph and let |[E| = m. We use induction on the number of
edges m of G. For m =1, 2, the result is obvious. Assume the result to be true for
all graphs with fewer than m edges. Let A (s, t) = k. We have two cases to consider.

Case (i) Suppose G has an (s —t) band F such that not all edges of F are incident
with s, nor all edges of F are incident with t. Then G — F consists of two non-
trivial components C1 and C2 with s € C1l and t € C2. Let G1 be the graph
obtained from G by contracting the edges of C1, and G2 be a graph obtained from
G by contracting the edges of C2. Therefore,

G1 =G||E(C1) and G2 = G||E(C2).

Since G1 and G2 have less edges than G, the induction hypothesis applies to them.
Also, the edges corresponding to F provide an (s —t) band in G1 and G2, so that
A (s, t|G1) =k and A (s, t|G2) = k. Thus, by induction hypothesis, there are k edge-
disjoint paths joining s and t in G1, and there are k edge-disjoint paths joining s
and t in G2. Thus I(s, t|G1) = k and I(s, t|G2) = k.



The section of the path of the k edge-disjoint paths joining s and t in G2 which
are in C1 and the section of the paths of the k edge-disjoint paths joining s and t
in G1 which are in C2 can now be combined to get k- edge disjoint paths between
sandtin G. Hence I(s, t|G) = k.

Case (ii) Every (s — t) band of G is such that either all its edges are incident with s,
or all its edges are incident with t.

If G has an edge e which is not in any (s — t) band of G, then A (s, t|G — e) = A (s, t|G) =k.
Since the induction hypothesis is applicable to G — e, there are k edge-disjoint paths between s
and t in G — e and thus in G. Hence (s, t|G) = k.

Now, assume that every edge of G is in at least one (s — t) band of G.

Then every s — t path P of G is either a single edge or a pair of edges. Any such path P can
therefore contain at most one edge of any (s — t) band. Then G — E(P) = G1 is a graph with A(s,
t|G1) =« — 1.

Appling induction hypothesis, we have I(s, t|G1) = « — 1. Together with P, we get
I(s, t|G)=k.

Theorem

A graph G with at least three vertices is 2-connected if and only if any two vertices
of G are connected by at least two internally disjoint paths.

Proof Let G be 2-connected so that G contains no cut vertex. Let u and v be two
distinct vertices of G. To prove the result, we induct on d(u, v).

If d(u, v) = 1, let e = uv. Since G is 2-connected and n(G) > 3, therefore e cannot be
a cut edge of G. For, if e is a cut edge, then at least one of u and v is a cut vertex.
Now, a Theorem e belongs to a cycle C in G. Then C — e is a u — v path in G,
internally disjoint from the path uv.

Assume any two vertices x and y of G, such that d(x, y) =t — 1, t > 2, are joined by
two internally disjoint x — y paths in G. Let d(u, v) =t and let P be a u — v path of
length t, and w be the vertex before v on P. Then d(u, w) =t — 1. Therefore, by
induction hypothesis, there are two internally disjoint u — w paths, say P1 and P2, in
G. Since G has no cut vertex, G — w is connected and therefore there existsau — v
path Q in G — w. Clearly, Q is a u — v path in G not containing w. Suppose X is the
vertex of Q such that x — v section of Q contains only the vertex x in common with
P1u P2 Assume x belongs to P1. Then the union of the u — x section of
P1 and x — v section of Q together with P2 U {wv} are two internally disjoint u — v
paths in G.

Conversely, assume any two distinct vertices of G are connected by at least two
internally disjoint paths. Then G is connected. Also, G has no cut vertex. For, if v is
a cut vertex of G, then there exist vertices u and w such that every u — w path contains
v, contradicting the hypothesis. Thus, G is 2-connected.



QUESTION BANK

PART A
1. For a graph G with p vertices and g edges, K (G) = |2q/p| CO2 (L2)
2. Let G be a simple graph of order p and k be an integer with 1< k < p-1. If &(G)>
(ptk-2)/2, then G is K — connected. CO4 (L1)

3. For K >0, find a k — connected graph G and a set V’ of k vertices of G such that
o (G-V’)>2. CO2 (L1)
4.Give an example to show if P is a (u,v) — path in a 2 — connected graph G, then G
does not necessarily contain a (u,v) — path Q internally disjoint from P. CO6 (L2)
5. Prove that Connectivity of Hy is k. CO5 (L5)

6. Show that a graph is 2 edges connected if and only if any two vertices are

connected by at least two edges disjoint paths. CO6 (L2)

7.a) Define edge connectivity of a graph. CO1 (L1

b) Show that if G is k -edge connected, then q > Kk.p/2 CO2(L2)
PART B

1. Prove that, for any graph G, k (G) <A(G) < &G). CO2 (L5)

2. Prove that the connectivity and edge connectivity of a simple cubic graph G are

equal. CO2 (L5)

3. A graph with p >3 is 2 — connected if and only if any two vertices of G are
connected by at least two internally disjoint paths - Discuss. CO4 (L6)
4. Prove that the minimum number of vertices separating two nonadjacent vertices
u &vV is equal to the maximum number of disjoint u-v paths in G. CO2 (L2)
5. If P (G) > 3, then the following statements are equivalent.

(i) G is 2 — connected. CO6 (L4)



(if) Any two vertices of G are joined by two internally disjoint paths
(iii) Any two vertices of G lie on a common cycle.
(iv) &G)> 1 and only two edges of G lie on a common cycle.
6. @) Show that if G is simple graph with 6 >p — 2, then k =6.
b) Find a simple graph G with 6= p-3 and k< ¢.

CO4 (L4)
CO4 (L4)
CO4 (L4)
CO3 (L2)
CO2 (L1)
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[I.  Matching

Content: Matching — System of Distinct Representatives and Marriage problem —
Covering - 1-factor —Stable M atching.

Definition: A subset M of E is called a matching in G if no two of the edges in M
are adjacent. The two ends of an edge in M are said to be matched under M.

Example: In the graph G of figure the sets M1= {es, es},

Vi € Vs
G: 6
V3 oz V4
7
Vs - &3 TV6
Cs
V7e = Ve
; .
Vou S LVlo

M3= {es, €7, €s, €9} and Msz= {e, €z, €3, €4, es} are all matchings.

Definition: A matching M saturates a vertex v if one edge of M is incident with v.
Also, we say v is M-saturated. Otherwise, v is M-unsaturated.

Example: In the graph G of figure , vi is both M1-saturated and Mz-saturated; va
is M-saturated but Mi-unsaturated; but Ms saturates every vertex of G.

Definition: If M is a matching in G such that every vertex of G is M-saturated then
M is called a perfect matching.

Example: The matching M, of G of figure is a perfect matching where as M1 and M
are not perfect.

Note: If G has a perfect matching, then p is even.

Definition: A matching M is called a maximal matching of G if there is no matching
M’ of G such that M' oM.

Remark: Note that two maximal matchings need not have same Cardinality.
Example: In the graph G , M1 = (e1, es, €3} and Mz={es, ez} are maximal matchings.

Definition: A matching M of G is called a Maximum matching if G has no matching
M' with [M’| > |M|. The number of edges in a maximum matching of G is called as
the matching number of G.



We note that M1= {e1, es, €3} is a maximum matching of G, but M>= {es, es} is not
a maximum matching, though it is a maximal matching of G. Clearly every perfect
matching is maximum; but maximum matchings need not be perfect.

Example: Consider the star Ky and in general Kz p. Here any maximum matching
contains only one edge and hence it is not perfect.

Ki,6

Definition: Let M be the matching in G. An M-alternating path in G is a path whose
edges are alternately in E/M and M.

Example: In the graph G, if we consider the matching M= {e1, e>} then the path
V1V2VeVsV3 is an M- alternating path.

Definition: Let M be a matching in G. An M-augmenting path is an M-alternating
path whose origin and terminus are M-unsaturated.

Example: In the graph G, if we consider the matching M={e1 , e>} then the path
V1V2VeVsV3 IS an M-augmenting path.
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Note: 1. In M-augmenting path initial and final edges are in E\M.

2. An M- alternating path whose initial and final edges are in E\M, need not
be an M-augmenting path.

Vi
G:
\/! © \7
€2
V3 \"/ 5
V4

Theorem 6.1 (Berge)

A matching M in G is a maximum matching if and only if G contains no M-
augmenting path.

Proof: Let M be a maximum matching in G. We prove that G has no M-augmenting
path. Suppose not, let G have a M-augmenting path, voeivieaVz...Vom €2m+1Vom+1. We
note that such a path is of odd length. Now we define set M' CE by,

M'= {M- {e, es,..., e2m}}U{ e1,e3,...,e2m+1 }.

Then M' is a matching in G and |M'|= |[M|+1. This is a contradiction to the fact that M is
maximum matching. Hence, G has no M-augmenting path.

Conversely, let G has no M-augmenting path. We prove that M is a maximum matching in G.
Suppose not, let M' be a maximum matching in G.

Then, [M'|> |M| (1)

Let H G[M A M'] where MAM' denotes the symmetric difference of M and M'. Each vertex of
H has degree either one or two in H, since it can be incident with at most one edge of M and
one edge of M'. Thus each component of H is either an even cycle with edges alternately in M
and M’ or else a path with edges alternately in M and M".

By (1), H contains more edges of M' than of M and so some path component P of H
must contain more edges of M' than M and therefore must start and end with edges of M'. The
origin and terminus of P being M’ -saturated in H and of degree one, are M-unsaturated in G.
Therefore, P is an M-augmenting path in G, which is a contradiction to our assumption. Hence,
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M is a maximum matching in G.
SYSTEM OF DISTINCT REPRESENTATIVES AND MARRIAGE PROBLEM

Let X be a non-empty finite set and S = {S1,S2,.,Sm} be a family of (not necessarily
distinct) non empty subset of X. If there exists a set{X1, X2, Xm} of X such that x; € S; and Xi
# X if i # j then the set {X1, X2, Xm} is called a system of distinct representatives (S.D.R) of
the family S.

For example, consider X= {1, 2, 3, 4, 5} and S= {S1, Sz, S3, S4, S5} where S1={1, 2},
S={1, 2, 3}, S3= {1, 2, 3}, S4={1, 4, 3} and Ss={1, 5}. Now, {1, 2, 3, 4, 5} is a system of
distinct fepresentatives of the family S. Instead, if we take S1={1, 2}, S>={1, 2, 3}, Sz = {1, 2,
3}, S4={1,5} and Ss ={2, 5} then S has no system of distinct representatives.

Naturally, we can identify S. with a bipartite graph with bipartition (S, X) in which S;
€ S is joined to every x € X contained in S. A system of distinct representatives is then a set of
m independent edges (thus each S; is incident with one of these edges).

It is customary to formulate this problem of finding S.D.R in terms of marriage
arrangements.

The Marriage Problem

Suppose there are n boys each of whom has several girlfriends, under what conditions
can we marry off the boys in such a way that each boy marries one of his girl friends? We
assume that only single life partner marriage is allowed. This is known as marriage problem.

In graph theoretical terms, the above problem, can be stated as follows. Construct a
bipartite graph G with bipartition (X,Y) where X = {X1,X2,..,Xn} represents the. set of n boys
and Y = {y1, Y2... ym} represents their girlfriends. An edge joins a vertex x; to a vertex y; if and
only if y; is a girl friend of x;. The marriage problem is then equivalent to finding conditions
for the existence of a matching in G which saturates every vertex of X.

For example, suppose there are five boys b, b2, bs, bs and bs and six girls g1, g2, s, Ja,
gs and ge with their relationship as follows:
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by > {88, 8} =5

b, — {g,8} =5

b3 —> {8} =S

b4 —H {g3} - S4
bs ——— {84, 85, 86} = Ss
The bipartite graph represenﬁng this situation is shown
by b, by s bs
gl £2 83 g - gs g

One of the solutions to this example is, b1 to marry gz, b, to marry g1, bz to marry ga,
b4 to marry gs and bs to marry gs.

Now, we present a necessary and sufficient condition for the existence of a solution to
the above marriage problem, first given by P. Hall(1935).

Theorem (Hall's Marriage theorem)

Let G be a bipartite graph with bipartition (X, Y). Then G contains a matching that saturates
every vertex in X if and only if [N (S)| > [S| for all S € X.

Proof: Suppose that G contains a matching M which saturates every vertex in X and let S be a

subset of X. Since the vertices in S are matched under M with distinct vertices in N(S), we
have | N(S)| > 2S|.

Conversely, Let G be a bipartite graph with | N(S) | > |S] for all SE€ X. We assume that G has
no matching which saturates all vertices in X. Let M* be a maximum matching in G. By our
assumption, M* does not saturate all vertices in X. Let u be an M*- unsaturated vertex in X.
Let Z denote the set of all vertices connected to u by M*-alternating paths. Since M* is a
maximum matching in G, G has no M*-augmenting path. That is, u is the only M*-unsaturated
vertex in Z. We set S =ZN X and T=ZN Y. Clearly, the vertices in S/{u} are matched under
M* with vertices in T. So, we get |T|=|S| -1 and N(S) 2 T. Since every vertex in N(S) is
connected to u by an M*-alternating path, we also have N(S) €T and hence N(S) = T. So,
IN(S)|=|T| = |S| -1 <|S|. This is a contradiction to the given hypothesis and hence G has a
matching that saturates every vertex in X.
13



Now, let us reformulate the marriage theorem in terms of system of distinctive
representatives.

Theorem 6.3 A family S= {S1,S>,..,Sm} of sets has a system of distinctive representatives if

Us,

ieF

and only if > |F| for every F €{1,2,., m}.
Corollary: If G is a k-regular bipartite graph with k> 0, then G has a perfect matching.
Proof: Let G be a k-regular bipartite graph with bipartition (X, Y). Since G is k-regular, |X]=|Y/|.

Now, let S be a subset of X and denote E1 and E> the sets of edges incident with vertices
in S and N(S) respectively. By definition of N(S), E1SE> and therefore k|N(S)| = |E2| = |Ea|=
k|S|. Therefore, IN(S)| = |S| and hence, by theorem, that G has a matching M that saturates
every vertex in X. Since |X|=|Y|, M is a perfect matching. Hence the corollary.

COVERING

Definition: A covering of a graph G is a subset K of V such that every edge of G has at least
one end in K. For example, in the graph G of figure, the set

\\‘\y i

V3

K={v, v1, V2, v3, Va}is a covering of G1.

Definition: A covering K is called a minimal covering of G if there is no covering K' of G such
that K' € K.

For example, the covering K of G is a minimal covering.

Definition: A covering K is called a minimum covering of G if G has no covering K' with
IK<IK].
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For example, {v1, v3, vs} is a minimum covering of the graph G». Also, we note that {vi, v»,
V4, Vs} IS @a minimal covering but not minimum covering of Go.

Remark: If K is a covering of G and M is a matching of G then K contains at least one end of
each of the edges in M. Thus, for any matching M and any covering K, [M|< |K|. In particular,
if M* is a maximum matching and K* is a minimum covering then,

IM* [ [K* . 1)

In general, equality does not hold in (1). For example, consider the graph G. Here, |[M*| =2
and |K*| =3. Under what conditions, does the equality hold? If G is bipartite then |[M*|= |K*|.
This result was proved by Konig and Egervary in 1931. Now, we present a lemma, which is
useful in proving the Konig-Egervary theorem.

Lemma Let M be a matching and K be a covering such that |[M| =|K|. Then M is a maximum
matching and K is a minimum covering.

Proof: Let M* be a maximum matching and K* be a minimum covering of G. Then, [M|< [M*¥|
<|K*|< |K|. Since |[M[= [K], in the above, equality must hold throughout and hence the lemma.

Konig-Egervary Theorem

In a bipartite graph, the number of edges in a maximum matching is equal to the number of
vertices in a minimum covering.

Proof: Let G be a bipartite graph with bipartition (X, Y) and let M* be a maximum matching
of G.

Suppose M* is perfect then |X| = [Y| = |M*|. In this case X is a covering and the theorem
holds.

So, we assume that M* is not perfect. Let U denote the set of all M*-unsaturated
vertices in X and let Z be the set of all vertices connected by M*-alternating paths to vertices
of U. Let S=ZnX and T=ZNY. Clearly every vertex in T is M*-saturated and N(S) =T (as in
Hall's theorem). Define K* = (X/S) UT. Every edge of G must have at least one of its ends in
K*; otherwise, there would be an edge with one end in S and one end in YT, contradicting
N(S) =T. Thus, K* is a covering of G and clearly M"|= K*|. By lemma 6.5, K* is a minimum
covering. Hence the theorem.
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1-FACTOR
Definition: A factor of a graph G is a spanning subgraph of G.
Definition: A k-factor of a graph G is a spanning k-regular subgraph of G.

Thus, a perfect matching of a graph G induces a 1-factor of G and conversely. A 2-
factor is a union of edge disjoint cycles, containing all vertices.

Definition: A component of a graph is odd or even according as it has odd or even number of
vertices; the number of odd components of G is o(G).

Tutte found a necessary and sufficient condition for a graph to have a 1-factor. Here,
we present the proof of Lovasz (1975).

Tutte's Theorem
A graph G has a 1-factor if and only if o(G-S) <|S|forall S € V and S # V.

Proof: It is enough if we prove the theorem for simple graphs. Let us assume that G has a 1-
factor and let M be a perfect matching of G. Let S be a subset of V and S # V and let G1, G,
.., Gn be the odd components of G-S. Since Gi is odd , some vertex vi of G; must be matched
under M with a vertex vj of S. Clearly, {V1,V2,..,Vn} € S and vis are distinct and hence,

0(G-S) = n=[{v1,v2,..,vn} <S].

Odd components of G-S Eyen components of G-S

Conversely, let G satisfy the inequality o(G-S) < |S| for all SE€ V and S#V and G have no
perfect matching. Then G is a spanning subgraph of a maximal graph G* having no perfect
matching. Since G-S is a spanning subgraph of G*-S, 0(G*-S) < 0(G-S).
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Therefore, o(G*-S) <|S| for all S € V(G*) and S# V(G*). Q)
In particular, setting S = @, we get 0o(G*) =0 and hence p(G*) = p is even.

Let U denote the set of all vertices of degree p-1 in G*. Since G* has a perfect matching
if U =V, we may assume that U# V.

Claim: Now we prove that G*-U is a disjoint union of complete graphs. Suppose not, there is
a component of G*-U which is not complete. Since this component is not complete, we can
find three vertices x, y and z such that xy € E(G*), yz € E(G*) and xz & E(G*). Also, we can
find a vertex w in G-U such that yw ¢ E(G*), since y ¢ U.

By our assumption G* is a maximal graph containing no perfect matching and so G*+xz and
G+yw have perfect matchings, say, M1 and M2, respectively.

Let H be the subgraph of G* U{xz, yw} induced by M1 A M; Since M: and M are
perfect matchings, each vertex of H has degree two and hence H is a disjoint union of cycles.
Also, all of these cycles are even, since edges of My alternate with edges of M2 around them.
We distinguish two cases.

Case 1. xz and yw are in different components of H.
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/ C
M, M
1
y
M| M2 "
X M, z
Mz M2

M .
Mi on a edge irlldicates that the edges belongs to M;, i =1, 2.

Now if yw is in the cycle C of H, then the edges of My in C together with the edges of M2 not
in C, constitute a perfect matching in G*. This is a contradiction since G* has no perfect
matching.

Case 2. xz and yw are in the same component C of H. By symmetry of x and z, we may assume
that the vertices X, y, w and z occur in that order on C.

M, M,

| <
&
<

M,

P

Mz Ml M2 " Ml
X Z

M; on a edge indicates that the edge belongs to M;, 1 =1, 2.

Then the edges of My in the section yw...z of C, together with the edge yz and the edges of M»
not in the section yw...z of C, constitute a perfect matching in G*. This is a contradiction since
G* has no perfect matching. Hence, G*-U is a disjoint union of complete graphs. Now by (1),
0(G*-U) <|UJ. Therefore, G*-U can have almost |U| odd components. This implies that G* has
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a perfect matching, as below.

One vertex in each odd component of G*-U is matched with a vertex of U; the
remaining vertices in U and in components of G*-U, are then matched to any vertex in the
same component as illustrated. This is possible since each component is complete.

Odd components of G*-U Even components of G*-U

This is a contradiction to our assumption that G* has no perfect matching. Hence G has
a perfect matching. That is, G has a 1-factor.

Corollary Every 3-regular graph without cut edges has a perfect matching.

Proof: Let G be a 3-regular graph without cut edges. Let S be a subset of V such that S#V and
let G1, G, ..., Gn, be the odd components of G-S. Let a1 be the number of edges with one end
in Gj and the other end in S. Since G is 3-regular,
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Zd(v)= 3.p(G) for1< i<n and Zd(v) = 3|S|.
veV(G;) . veS

Now, Zd(V) - o = 2q(Gj)

VEV(Ol)

o = Zd(V) -2q(Gj)

veV(Gi)

We note that, since p(G;) is odd, Zd(v) is odd and hence «; is odd
veV(Ol)

Since G has no cut edge, o; # 1 and thus a; 23 for 1 €i<n.

n
Thatis, (1/3)oy> 1 for 1 <i<n. Hence, (1/3) ) o, =n.
i=l

Now, o(G-S)=n<(1/3) Y o <(1/3) D .d(v)=]8].

i=1 veS

By Tutte's theorem, G has a perfect matching.
Remark: A 3-regular graph with cut edges need not have a perfect matching

Consider the graph G. Clearly G is 3-regular and has cut edge. Since 0o(G-v) =3, by Tutte's
theorem, G has no perfect matching.
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STABLE MATCHINGS

Now we turn to a special type of matchings, that is, matchings satisfying certain
conditions. Matchings satisfying certain conditions are called stable matchings. In 1961, Gale
and Shapley introduced stable matchings. It is customary to formulate the conditions and
results in terms of marriage arrangements between boys and girls. So, naturally the
corresponding graphs are simple bipartite and we consider only simple graphs, in this section.
However, we have defined stable matching for a bipartite multigraph in the exercise.

Consider a bipartite graph G with bipartition (V1, V2) where V1= {a, b,...} is the set of
n boys and V2= {A, B, ... } is the set of m girls. An edge a A means that the boy a knows the
girl A. Suppose that each boy has an order of preferences on the set of girls he knows, and each
girl has an order of preferences on the set of boys she knows. We assume that these orders are
linear orders but place no other restriction on them.

Stable Matching:  Given the preferences, a stable matching in G is a set M of independent
edges of G such that if aB € E(G) - M, then either aA€ M for some girl A preferred to B by a,
or bB € M for some boy b preferred to a by B.

Thus, if a is not married to B, then either a is married to a girl he prefers to B, or else
B is married to a boy she prefers to a. Otherwise the matching is "unstable”; a and B will leave
their current partners and switch to each other.

Example. Consider a set of 4 boys {a, b, ¢, d}, aset of 4 girls {A, B, C, D} and their preferences
as below.

Preference 1

ao oW
Qa»»
WO AAwWWN
> > wOw
CwWwgo s
COQw>»
P LT O
TP oo
MO O oL B

3
b
a
b
c

Here, the matching {aA, bB, cD, dC } is a stable matching.

a b c d

A B C D

Note: We have not assumed that a stable matching saturates all vertices in V1 or V>

Result 1. Every stable matching is a maximal matching in G.
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Stable Matching Theorem For every assignment of preferences in a bipartite graph, there is
a stable matching.

Proof: We consider a variant of the above algorithm, in which all boys and all girls act
simultaneously, in rounds.

In every odd round, each boy proposes to his highest preference among those girls
whom he knows and who have not yet refused him, and in every even round each girl refuses
all but her highest suitor. The process ends when no girl refuses a suitor; then every girl marries
her (only) suitor, if she has one. This process terminates after at most 2nm rounds, since at
most m(n-1) proposals are refused, where n is the number of boys and m is the number of girls.

Since at every stage each boy proposes to at most one girl, and each girl rejects all but
at most one boy, this algorithm results with a matching.

Now we prove that this matching is a stable matching. If aB € E(G)-M, then either a
never proposed to B, or a was refused by B during the algorithm. In the former case a marries
a girl he prefers to B, as he never goes as low as B, and in the later case B refused a for a boy
she prefers to a and got married. Hence this matching is a stable matching.

Definition: A cycle C is called preference-oriented cycle if it can be written in the form
aAbB...zZ such that A prefers b to a, b prefers B to A..and Z prefers a to z. That is, each person
prefers the next person to previous person.

Theorem Let M and M’ be two stable matchings in a bipartite graph with certain preferences,
and let C be a component of the subgraph H formed by the edges of MUM'. If C has at least
three vertices, then it is a preference-oriented cycle. In particular, if aA, bB € M and aB € M,
then a prefers A to B if and only if B prefers a to b.

Proof: Without distinguishing between boys and girls, here, we write x1, X2 for either of them.
Clearly, C is either a path of length at least two or a cycle of length at least four.

If C has a path x1x2xsxa, With X2 preferring x3 to x; and assuming x2x3 €M then it is clear that
x3 prefers x4 to X2, since M is stable. Using this fact, we prove that C is a preference-oriented
cycle.
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X2 X4

If X1X2X3...Xk is a cycle and x, prefers X3 to X1, then considering the path Xi1X2x3xs we see that x3
prefers X4 to x2. Next, consider the path x2x3xaXs we see that X prefers Xs to Xs.

Continuing in this way, we find that xk prefers x1 to xk-1 and x1 prefers x, to Xx. Thus, C is a
preference-oriented cycle.

Xk

If C is a path xix2...X, 1 < 3 and x1x2 € M, say, then x, prefers x3 to x1, since M is stable.
Similarly, xi1 prefers xi-2 to xi. This is not possible, since, arguing as above, x. prefers x3 to X1,
X3 prefers x4 to X2, X4 prefers xs to x3, and so on, xi-1 prefers x; to X2,

Since the component of H containing the path AaBb is prefernce-oriented cycle, the
particular case follows.

Note: It is worth to note that all stable matchings are incident with the same set of vertices.
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Theorem For every assignment of preferences in a bipartite graph with bipartition (V1, V2),
there are subsets U1 €V1 and Uz € V> such that every stable matching saturates all vertices of
U and Ua.

In particular, all stable matchings have the same cardinality.

Proof: Suppose the theorem is not true. Then we can find some edge aA of M such that a is not
incident with any edge of M'. Since M" is maximal, we can find someb € Vi,b #a  such
that bA € M'. But then the component of a in the subgraph formed by the edges MUM' which
contains a, A and b is not a cycle. This is a contradiction. Hence the theorem.
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QUESTION BANK

PART A
1. Prove that If G is a K — regular bipartite graph with k >0, then G has a perfect
matching. CO2 (L2)
2. Prove that every 3 — regular graph without cut edges has a perfect matching.
CO2 (L2)
3. Prove that every stable matching is a maximal matching in G. CO2 (L2)
4. Define stable matching. CO1(L1)

5. Consider a set of boys {a, b, c, d}, a set of 4 girls {A, B, C, D} and their
preferences as below. Find the stable matching.
Preferences 1 2 3 4

a A B C D
b A C B D
c C D A B
d C B AD

1 2 3 4
A ¢ a b d
B b d a ¢
C d a b c
D a b c¢c d

CO2 (L1)
5. a) Define minimal covering and minimum covering of a graph.  CO1 (L1)
b) Prove that if M* is a maximum matching and K* is a minimum covering
then, |[M*| < |K*| CO2 (L2)
6. a) Define perfect matching. CO1 (L1)



b) Prove that a 3 — regular graph with cut edges need not have a perfect
matching. CO2 (L2)
PART B
1. Matching M in G is a maximum matching if and only if G contains no M —
augmenting path - Discuss CO5 (L6)
2. A matching M in g is a maximum matching if and only if G contains no M
augmenting path. Let G be a bipartite graph with bipartition (X, Y). Then G
contains a matching that saturates every vertex in X if and only if [ N(s) Hs
| for all s < X. - Discuss CO5 (L6)
3. Prove that in a bipartite graph, the number of edges in a maximum matching
is equal to the number of vertices in a minimum covering. CO4 (L2)

4. Discuss that A graph has a 1-factor if and only if o(G — S) < |S| forall S ¢

Vand S =V. CO5 (L6)
5. Prove that, for every assignment of preferences in a bipartite graph, there is a
stable matching. CO3(L2)

6. Let M and M’ be two stable matching’s in a bipartite graph with certain
preferences, and let C be a component of the sub graph H formed by the edges
of MUM’. If C has at least three vertices, then it is a preference-oriented cycle.
In particular, if aA, bB <M and aBeM’, then a prefers A to B if and only if B
prefersatob - Discuss CO3 (L6)
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I11. Independence and Coverning

Conte_r!t:_ﬂl nde“p_en_'der_n‘ Sets A—‘I‘Edge - colouring —Vizing's Theorem — Vertex Colouring -
Uniquely Colourable graphs— Critical graphs.

Definition:  An independent set or stable set of a graph G is a subset S of
V such that no two vertices of S are adjacent in G.

For example, in the graph G of figure , the set § = {v|,vy,vs} is an
independent set of G.

Vi , \'%)

G:

Figure - 1
Definition:  An independent set S is cailed a maximum independent set
of G if there is no independent set S’ of G with |S'| >|S].
For example, the independent set S, = {v,v3,vs,v7} of G of figure ) isa
maximum independent set.

Definition: The number of vertices in a maximum indépendent set of G is
called the independence number or stability nutpb’er of G and is denoted
by a(G).
For example, the independence number of the graph G of figure. | is 4,
since |S;| =4. \
We have defined covering of a graph in the chapter 6. A covering
of a graph G is a subset K of V such that every edge of G has at least one end
in K. A covering K is called a minimum covering if it is a covering of least
cardinality. '

Definition:  The number of vertices in a minimum covering of G is called
the covering number of G and is denoted by B(G).

For example, the covering number of the graph G of figure - | is S, since
K = {v,v},v3,Vs,v7} is a minimum covering of G.
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Theorem .  AsetSc Visan independent set of G if and only if V-S is a
covering of G. :

Proof: By definition,
S is an independent set of G if and only if no edge of G has both ends in S.
if and only if each edge has at least one end in V-S.

if and only if V-S is a covering of G.  #

Corollary’ In any graph G, a+B=p.

_ Proof: Let S be a maximum independent set and K be a minimum covering
of G. By theorem we get V-K is an independent set of G.. Therefore, |V-
K| <|S|. ‘This implies that p-B < o or p < a+p. By theorem since S'is an
independent set, V-S is a covering of G. Since K is a minimum covering, we
have, K| <|[V-S|. So,*B <p-a. Thus a+f <p. Hence the corollary.
' | #

Now we introduce two similar concepts with respect to
edges. -
Definition: An edge independent set or.matching of a graph Gisa -
subset M of E such that no two edges of M are adjacent.

Definition: The number of edges in a maximum edge-independent set of
G is called the edge independence number-of G and is denoted by a'(G).

For the graph G of figure .\, a'(G) =4.

Definition:  An edge covering of a graph G is a subset L of E such that
each vertex of G is an end of some edge in L. -
Note: A graph G hegan edge covering if and only if 6> 0.

Definition:  The nimber of edges in a minimum edge covering of G is
called edge covering number of G and is denoted by B'(G).

For example, the edge covering number of the graph G-of figure -\ is 5,
since L = {VV2, V3V4, VsV, V7V, VV|} is a minimum edge covering of G.

-

Theorem [n any graph G with § >0, o'+’ =p.

Proof: Consider -a maximum matching M in G with M| = o'. Let U
denotes the set of all M-unsaturated vertices in G. Since M is maximum, no
two vertices of U are adjacent. Since & >0, we can find a set E' of [U| edges,
one incident with each vertex in U. Clearly, MUE' is an edge covering of fi
This implies that, |
' <MUE'| = M| + [E'| = o'+H(p-2a") = p-ot'.
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Thus, a'+p' <p. | ) /
Next, we consider a minimum edge covering L of G with |L| = f',
Let H = G[L] and let M, be a maximum matching in H. We denote the set of
M -unsaturated vertices in H by U;. Since M, is maximum, no two vertices
of U, are adjacent. We can find a set F’ of |U,| edges in H one incident with
each vertex in U, and ¥’ < L-M,. Now *

ILI-IM,| = |L/My| 2 [F'| = [Uy] = p-2|M,|.
Since H is a subgraph of G, M, is'a matching in G and [M,| € «’. Thus,
a'+p’ > [M,[+|L| = p. Hence, we get a'+f' =p. #

Theorem In a bipartite graph with & > 0, the number of vertices in a
maximum independent set is equal to the number of edges in a2 minimum

edge covering.

Proof: Let G be a bipartite graf)h with 8 > 0. By corollary  and theorem
we have a+p = o'+p’. By Konig-Egarvary theorem, we have a’ = B.

Hence we get o = p'. #
EDGE COLOURINGS

Definition: A k-edge colouring of a graph G is an assignment of k
colours, usually denoted by 1,2,...,k, to the edges of G (one colour per edge).

Thus, a k-edge ‘colouring of a graph G is a mapping =n: E(G) > {1,2,....k}.

Definition: An edge colouring is proper if no two adjacent edges have the
same colour.

Thus, a proper k-edge colouring 7 of G is a mapping m: E(G) = {1,2,....k}
such that it (¢) # T (¢') whenever e and e’ are adjacent in G.

ouring then the edge set E(G) has a
all edges of E (possibly empty)
ote that if the colouring is proper

Remark: Clearly, if G has a k-edge col
partition (E;,E,,...,Ex) where E; denotes
which are coloured with the colouri. Wen
then each E; is a matching. .
Definition: A graph G is k-edge colourable if G has a proper k-edge
colouring.

G is q-edge colourable.

Note: 1. Clearly, every graph
d Ve then G is also k’-edge colourable for

2. IfG is k-edge colourable,
every k' > k. ”



Definition: The edge chromatic number x,(G) of a graph G is the

minimum k for which G is k-edge coloural?le.
G is said to be k-edge chromatic if x1(G) =k.

Examples: : .
1. Consider a path P, (n > 2) with 2 colours. We can give a proper

2-edge colouring to P, by alternating the 2 colours about P, and
2 is the minimum. Hence y(Pn) = 2.
Since K has no edges, x:( K; )=0.

3. Consider a cycle C,. When n is even, x(C,) =2 as in the case 1.
When n is odd, if we try to colour the edges of C, with 2
colours, we must alternate the two colours about C,. But then
two adjacent edges must be assigned the same colour. So three
colours are needed to give a proper edge colouring. Hence,
¥1(Cp) = 3, if n is odd.

4. Consider the star K;,,. Since any two edges are adjacent, we
need "at least n colours to give a proper edge colouring to the

star. Hence, (K, ) =n.

[ V]

Observation:  Since, in any proper edge colouring, the edges incident with
any one vertex must be assigned.different colours, we have %,(G) 2 A(G).
Note: We say that colour i is represented at'vertex v if some edge incident
with v has colour i.

Theorem . The edge chromatic number of a complete graph on n
vertices is n, if n is odd (n#1); n-1 if n is even.

Proof: If n=2 then the result is immediate. Hence we assume that n > 2.
Let n be odd. We place the vertices of K,, in the form of a regular polygon.
Colour the edges around the boundary using a different colour for each edge.
Now each of the remaining ‘internal edges’ of G is parallel to exactly one on
the boundary and we assign it the same colour as we have assigned to the
edge on the boundary. Since two edges have the same colour only if they are
parallel, tl}is colouring is a proper n-edge colouring. So, 1,(K,) < n.

Since the maximum number of edges with a particular colour is

Va(n(n-1)) _ .
Y2(n-1)

2(n-1) and K, has A(n(n-1)) edges, we need at least

colours for a proper edge colouring. Hence y,(K,) = n.
Now let us assume that n is even. For any graph G, x:(G) > A(G)
and so we get x1(Kn) 2 n-1. Hence it is engugh if we prove that K, has a



proper n-1 edge colouring of G. Let v be some fixed vertex of K.. Consider
Ky={v}. This is complete with n-1 vertices. Since n-1 is &id by the
previous case, we have a proper n-1 edge colouring of K,-{v}, as cicscribed
above. With this colouring there is a colour absent at each vertex, namely

the colour assigned to‘the edge opposite to the vertex, with different vertices
having different absentees. This proper edge colouring can be extended to a
proper edge colouring of K,. Colour each edge vw where w is a vertex of
Kq-{v} with the colour absent at w. This gives a proper (n-1) edge colouring
of K, and hence the theorem. #

Aliter: Let vy,va,...,v, be the vertices of K, arid let n be odd. For the edge
joining v; and v;, give the colour k+1 where k = i+j (mod n). If n is even,
colour K,-v, as above. For the edge joining v; and vy, give colour k+1 where
k =2i @@mod n). Itis easy to verify that this gives a proper edge colouring.

Theorem . - Let G be a connected graph that is not an odd cycle. Then G
has a 2-edge colouring in which both colours are represented at each vertex

of degree at least two.

Proof: If G is trivial then there is nothing to pr6ve. Hence we assume that

G is non-trivial.

Case 1. G is eulerian. o ) :
If G itself is an even cycle, the proper 2-edge colouring of G has the

required property. Otherwise, since G is eulerian a vertex v, repeats on the
eulerian tour and hence G has a vertex v, of degree at least four. Let
Vo Vi...exVo be an Euler tour of G. Now we set,

E, = {e;/iis odd} and E; = {e; /i is even}.
Now, since each vertex of G is an internal vertex of voe,v;...exvo, the 2-edge
colouring (E;,E,) of G satisfies the theorem.

Case 2. G is not eulerian. _
Now we introduce a new vertex vo and join Vo to each vertex of odd

degree in G. Let the new graph be G*. Since the number of vertices of odd
degree is even, the new graph G* is eulerian. Let voevi...€Vo lze an Euler
tour of G* and we define E, and E, as in the previous case. Clearly, the

2-edge colouring (E;NE, ExNE) of G satisfies the theorem. #

denote the number of
) < d(v) and equality
edge cologring of G.

Note: Consider a k-edge colouring m of G. We
distinct colours represented at v by c(v). Clearly ¢(v
holds for every vertex of G if and only if m is a proper k-
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Definition:* A k-edge colouring 1’ of G is said to be an improvement on n

if
Y e'v)> D ev)
veV veV
where ¢'(v) is the number of distinct colours represented at v

in the colouring nt'.

Definition: An optimal k-edge colouring is one, which cannot be
improved.

Theorem Let t = (Ey,Ey,...,Ex) be an optimal k-edge colouring of G.
If there is a vertex u in G and colours i and j such that i is not represented at u
and j is represented at least twice at u, then the component of G[E;UE|] that
contains u is an odd cycle.

Proof: Let u be a vertex of G such that colour i is not represented at u and j
is represented at least twice at u. Let H be the component of G[E\VE|]
containing u. We prove that H is an odd cycle. If not, then by theorem 7.6,
H has a 2-edge colouring in which both colours are represented at each
vertex of degree at least two in H. Now, we recolour the edges of H with
colours i and j in this way and so we get a new k-edge colouring
n = (E,"Ey,....EK') of G. Let ¢'(v) denote the number of distinct colours at v
in the colouring n’. Clearly, both colours i and j are represented at u in 7’
and so c'(u) =c(u) +1 and also ¢'(v) 2 c(v) for v # u.

Thus, Y c'(v)> D c(v).

veV veV
This is a contradiction to the fact that & is an optimal k-edge colouring.
Hence H is an odd cycle. # ‘

Theorem . If G is a bipartite graph, the x,(G) = A(G).

Proof: Let G be a bipartite graph. We know that x,(G) 2 A(G) for any
graph. Suppose x,(G) > A(G), let & = (Ey,E,,...,Ea) be an optimal A-edge
“colouring of G. Since m is not proper, we can find a vertex u such that
c(u) < d(u). That is, at u, some colour is not represented and some other

colour is represented at least twice. Now, by theorem , G contains an odd
cycle. This is a contradiction to the fact that G is bipartite. Hence,
21(G) = A(G). i

Corolla %1(Km,n) = max {myqn}.



APPLICATION

Now we present a simple but interesting application of edge

colourings.
Latin squares are used frequently by statisticians and quality control

analysts in experimental design.”” Here, we consider construction of Latin

squares. -
A Latin square is an nxn matrix having the numbers 1,2,...,n as their

entries such that no single number appears more than once in any row or any

column. ‘ ‘
Here, we show that the construction of a Latin square of order n

using an n-edge colouring of the complete bipartite graph K,,,. By
theorem 7.8, K, has a proper n-edge colouring but no proper edge colouring
with less than n colours. Let the bipartition of K,,, be (X,Y) where X =
{v1,Va,...,vn} and Y = {uj,uy,...,un} and denote the colours of the proper n-
edge colouring by 1,2,...,n. Now we define the matrix A = (a;;) by

ajj = k if the edge viy; is coloured with k.
Since the edges incident with the same vertex v; have different colours, all
the elements of the i™ row are different. Similarly for columns.
Note: Conversely any nxn Latin square can be used to give a proper edge

colouring of K, .

VIZING’S THEOREM

Now we find bounds for the edge chromatic number of a graph.
The maximum number of edges joining two vertices in G is called

the multiplicity of G, and denoted by p(G).
Theorem For any graph G, A £ 1 < A+p.

This theorem is best possible in the sense that for any 4, there existg a
graph G such that = A+u. For example, consider the graph G of figure
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Here A =2p and x; = q(G) = 3 since any two edges are adjacent. Hence,
X1 =Atp. :
Now we prove this result for simple graphs and the proof is due to
Fournier (1973). *

Theorem If G is a simple graph, then A <1 < A+1.
That is, 3, = A or ; = A+1. |

Proof: We know that, for any graph G, 1 = A. So, it is enough if we prove
that 1, < A+1. Suppose x; > A+l. Let m = (E;,Ey,...,Ea+1) be an optimal
(A+1)-edge colouring of G. Since x; > A+l and = is an (A+1)-edge
colouring, 7 is not proper and we have a vertex u such that c(u) < d(u). So
there exists colours iy and i; such that iy is not represented at u and i 1s
represented at least twice at u. ‘Let the edges uv and uv, have colour ij.
Since d(v;) < A+1, some colour i» is not represented at v). Now i, must be
represented at u since otherwise, recolouring uv, with i, we would obtain an
improvement on m. Thus some edge uv, has colour i,.
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Again, since d(v;) < A+1, some colour i3 is not represented at v, and i; must
be represented at u since otherwxse by recolourmg uv; with i, ane uv, with i,
we would obtain an improved (A+1) edge colourmg Thus some edge uv;
has colour ij.

Contmuing this process, we .construct a sequence Vi,V,,Vs,... of
vertices and a sequence 1y,ly,i3,... of colours such that ,

(1) uv; has colour i; and

(ii) ij+1 is not represented at v,
Since the degree of u is finite, there exists a smallest positive integer £ such |
that for some k < ¢

(iii) 1ev1 =iy
We now recolour edges of G as follows For 1 <j < k-1, recolour uyv; with
colour i, and leaving other edge colours unchanged we get a new
(A+1)-edge colouring ' = (E\",Ey’,....E'as).
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We note that ¢'(v) 2 c(v) for all veV and so n’ is also an optimal (A+1)-edge
colouring of G. By theorem  the component H' of G[E;O )/ E;k] that

contains u is an odd cycle, since iy is not represented and i is represented
twice at u.

Now, in addition, for k < j < £, recolour uv; with colour ij+; and this
gives a new (A+1)-edge colouring n”” = (EJ, EJ,...,E},,) .

Clearly, ¢"'(v) 2 ¢ (v) for all ve V and the component H" of G[E;’O v E;’k ]

that contains u is an odd cycle.
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Both H’' and H"” contain the vertex vi. Since vy has degree two in H', the
degree of vy in H" is one. This is a contradiction since H" is an odd cycle.
Hence the theorem. #

Solved Problems

1. Show that if G is bipartite with & > 0, then G has a 8-edge colouring such
that all § colours are represented at each vertex.

Solution: Consider an optimal 5-edge colouring of the graph G. If there is
some vertex u such that all the & colours are not represented then some colour
is represented at least twice at u.

Let the colour i be not represented at u and the colour j be
represented twice at u. Then the component of G[E; U E;] that contains u is

an odd cycle. This isa contradiction to the fact that G is bipartite. Hence the
solution.
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“.

Show by finding an appropriate edge colouring, that ¢ 1(Ky.n) = A(K.a).

Solution: Consider a complete bipartite graph G with bipartition (X.,Y)
where X contains uy,uy,..., iy and Y contains vy,va, ...,Va.

Figure

Let max {n, m} = n. Consider the edge u;v;. Divide i+j by n and let r be the
remainder. Colour the edge u;v; by the colour r+1. This colouring uses only
n colours and for any particular i, the n numbers i+1, i+2, ..., i+n gives
different remainder when divided by n. It is easy to see that this is a proper

n-edge colouring and so ¥;(Kp,n) < n.
Since for any graph G, y;(G) > A = n, we conclude X1(Kmsn) = 0= A(Kgp,p)-

VERTEX COLOURINGS
Instead of colouring edges, here, we colour vertices.

Definition: A Kk-vertex colouring of a graph G is an assignment of K *
colours, usually denoted by 1,2,...,k, to the vertices of G. Thus, a k-vertex
colouring of a graph G is a mapping n: V(G) - {1,2,...,k}.

Deﬁnition: A vertex colouring is proper if no two distinct adjacent
vertices have the same colour.

Thus, a proper k-vertex colouring  of G is a mapping n: V(G) — {1,2,....k}
such that m(v,) # n(v,) whenever v, gud v, are adjacent in G.



Remark:  Clearly, if G has a proper k-vertex colouring then the vertex set
V(G) has a partition (V|,V,,...,Vi), where V; denotes all vertices of V

(possibly empty) which are coloured with the colour i; each V; is an
independent set.

Example:  Consider the graph G of figure A proper 2-vertex
colouring is illustrated in the figure ‘

1y~ ‘T2

2~ : 3!

lo— \ YA
Figure

Definition: A graph G is k-vertex colourable if G has a proper k-vertex
colouring. ’ |

Notation: It is customary to abbreviate a proper vertex colouring as a
colouring, a proper k-vertex colouring as a k-colouring and k-vertex
colourable as k-colourable.

Definition: The chromatic number x(G), of a graph G, is the minimum k
for which G is k-colourable. \
G is said to be k-chromatic if y(G) =k.

Remark:  Since presence of multiple edges do not change the chromatic
number, when we consider vertex colourings, we consider only simple
graphs. Therefore, in the rest of this chapter, graph means simple graph.

Examples:
1. Consider a path P, (n >2). We can give a 2-colouring to the vertices
of P, by alternating the 2 colours about P, and 2 is the minimum.
Hence %(P,) = 2.

2. Since K; has no edges, x(K;) =1.

3. Consider a cycle C,. When n is even, x(C,) =2 as in th.e example 1.
When n is odd, if we try to colour the vertices of C, with 2-colourS,
we must alternate the two colours about C,. But then two adjacent
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vertices must be assigned the same colour. So, three colours are
needed to give a colouring. Hence %(C,) = 3, if n is odd.

4. Consider the star K,,,, Colouring all the end vertices with one
colour and the other vertex by another colour, we have x(K,,,) = 2.

The following results are easy to prove.
Results
1. IfGis a(p,q) graph, then x(G) < p.
2. IfHis a subgraph of a graph G, then x(H) < x(G).
3. xKp)=p.
4. IfK, is a subgraph of G, then %(G) > p.
5

If G;,Gy, ...,Gx are the components of G, then x(G) = , i\/l.a: " 1G,)-
' . S1S

Theorem A non-empty graph G is 2-colourable if and only if G is
bipartite.

Proof: Let G be 2-colourable. Let X denotes the set of all vertices of colour
1 and Y denote the set of all vertices of colour 2. Since no. two adjacent
vertices can have the same colour, there is no edge between any two vertices
of X and no edge between any two vertices of Y. So, (X,Y) is a bipartition
of G. Hence G is bipartite.

Conversely, let G be a bipartite graph with bipartition (X,Y). Now we
assign colour 1 to the vertices of X and colour 2 to the vertices of Y. Since
G is non-empty, %(G) = 2. Hence, G is 2-colourable. #

UNIQUELY COLOURABLE GRAPHS YO
Now, we present a few results on uniquely colourable
graphs. Harary, Hedetniemi and Robinson (1969) proved many results on
the construction of uniquely colourable graphs. Chartrand and Geller (1969)

and Aksionov (1977) obtained good results on uniquely colourable planar
graphs. | , |

Definition: A graph G is said to be uniquely k-colourable if all

k-colourings of G, with no colour class empty, induce the same partition
of V.

Definition: Two k-colourings of a graph G are different if they induce
different partitions. That is, two colourings (V,,V,,.. ., Vi) and

(Vi ,V; 5o, Vi ) are different if (Vi,Vo,.. Vi # (V] |V, ..., V] }.
Each V; is called a colour class. :
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Examples
1. The only uniquely 1-colourable graphs are empty graphs.

2. The only uniquely 2-colourable graphs are connected bipartite graphs.
3. Clearly, K; is uniquely 3-colourable and K, is uniquely n-colourable.
Theorem If G is uniquely k-colourable then §(G) > k-1.

Proof: Consider a vertex v of G, which is uniquely k-colourable. In any
k-colouring, v must be adjacent with at least one vertex of every colour
different from that assigned to v. Otherwise, by recolouring v with a colour
which is not represented at any adjacent vertex of v, we get a different
k-colouring and hence a different partition of V. Therefore, d(v) > k-1 and

hence 6(G) 2 k-1. #

Theorem ~If G is uniquely k-colourable then the subgraph induced by
the union of any two colour classes of a k-colouring of G is connected.

Proof: Let G be a uniquely k-colourable graph and let C,, C, be two colour
classes in a k-colouring of G. Let C,; be the subgraph induced by C,;UCs.
Suppose C,,; is not connected, let H be a component of C;UC,. Clearly, no
vertex of H is adjacent to a vertex in V(G)/V(H) that is coloured with 1 or 2. -
Now, interchanging the colours of the vertices of H and retaining the original
colours for all other vertices, we get a different k-colouring of G. This is not
possible, since G is uniquely k-colourable. Hence C,,; is connected. #

Theorem If G is uniquely k-colourable then G is (k-1)-connected.

Proof: If G is a complete graph en k vertices then it is (k-1)-connected.
Suppose G is an incomplete uniquely k-colourable graph which is not
(k-1)-connected. Let S be a vertex cut of G with at most (k-2) vertices.
- Then, at least two colours of any k-colouring of G will not be present in S.
Let the colours be 1 and 2. Since the subgraph induced by the colours 1 and
2 is connected, it is contained in some component of G — S. Now, if we
recolour any vertex in some other component of G — S with colour 1 or 2, we
get a different k-colouring of G. This is a contradiction, since G is uniquely

k-colourable. Hence the theorem. #
7.7 CRITICAL GRAPHS

Critical graphs play a vital role in the study of colourings. Dirac (1952)
was the first person to make an extensive study of critical graphs. A survey
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by Toft . is an interesting and useful survey which contains many

results on critical graphs.
Definition: A graph G i
Hof G.

Definition: A graph which is critical a
graph.
E’mmplc(.‘onsider the complete graph on 4 vertices, Ks. We show that K4 is

A-critical. We know that x(K4) = 4.

is critieal if x(H) < y(G) for every proper subgraph

nd k-chromatic is called a k-critical

: | )

If we remove 1, 2 or 3 vertices then we get K3, Ky, K, respectively. In these
cases, the chromatic number is 3,2,1 respectlve]y Therefore, the chromatic
number decreases strictly.
If we remove any single edge from Ky, the resulting graph is two
triangles with a common edge, which is 3 chromatic. In this case also, the

chromatic number ‘decreases strictly. ~All other cases can be disposed
similarly.

1

AN

Hence, K4 is 4-critical. 41



Results
1. Every k-chromatic graph has a k-critical subgraph.

Proof: Let G be a k-chromatic graph. If G is critical, then G is the

required subgraph. Otherwise, G has a subgraph H such that «(H) = %(G). If
H is critical, then H is the required subgraph. Otherwise, we repeat this

* process and we get a k-critical subgraph.
2. Every critical graph is connected.

Proof: Consider a critical graph G and let %(G) = k. Suppose G is not
connected, let G,,G,,...,G, be its components,

Let o = Max x(Gi).

1<i<n
By 7.12(5), k = a. But since G is critical, a < k, which is a contradiction.

Hence G is connected.
Theorem If G is k-critical, then & > k-1.

Proof:  Suppose G is a k-critical graph with 8 <k-1. Let v be a vertex of
degree & in G. Since G is k-critical, G-v is (k-1)-colourable. Since degree
of v is 6, we can find a colour in this (k-1)-colouring which is not represented
at any adjacent vertex of v. Now we can assign this colour to v. Hence G is
(k-1)-colourable. This is a contradiction to the fact that G is k-chromatic.

Hence & > k-1. #

Corollary Every k-chromatic gx"aph has at least k vertices of degree

at least k-1. '

Proof: Let G be a k-chfomatic graph. By result , it has a k-critical

subgraph, say H. By theorem  , each vertex of H has degree at least k-1
in H and hence also in G. Since H is k-chromatic, it has at least k-vertices.

Hence the result. #
Corollary For any graph G, x(G) s A(G)*+1.

Proof: Let G be k-chromatic. By corollary , G has at least k vertices
of degree at least k-1, Therefore, A(G) 2 k-1. So, k < A(G)+1. Hence

x(G) S A(G)+!.

42



Definition: Let S be a vertex cut of a connected graph G. Let the
components of G-S have vertex sets Vi.Va,...Va.  The subgraphs

G, = G[V,US] are called the S-components of Gi.

Definition: The colourings of the S-components G,,Gy,...,G, of G are said
to agree on S if, for every v € S, each colouring assigns the same colour to v,

Theorem ’ In a critical graph, no vertex cut is a clique.

Proof: Let G be a k-critical graph. We prove that no vertex cut of G is a
clique. Suppose not, let us assume that G has a vertex cut S that is a clique.
Let G,,Go. ...,G, be the S-components of G. Since G is k-critical, each G; is
(k-1)-colourable. Furthermore, because S is a clique, the vertices in S must
receive distinct colours in any (k-1)-colouring of G;. It follows that there are

V| Vz V

(k-1)-colourings of G,,G,,...,G, which agree on S. This gives a

(k-1)-colouri ot .
Hence the { }::gr:;G. This is a contradiction to the fact that G#is k-critical.

L]

Corollary Every critical graph is a block.

Proof: This is immediate by theorem -

Note: If G is k-critical with a 2-verte
: -vertex cut {u,
adjacent. 4s {u,v} then u and v cannot be



QUESTION BANK

PART A
1. Prove that Inany graph G, a + =p CO2 (L2)
2. Prove that If G is a bipartite graph, then 41 (G) = A(G). CO2 (L2)

3. Show that if G is bipartite with & > 0, then G has a é - edge coloring such
that all 5 colors are represented at each vertex. CO2 (L2)

4. Show by finding an appropriate edge coloring, that y1 (Kmn) = A( Kmn)

CO2 (L1)

5. Prove that A non-empty graph G is 2 — colorable if and only if G is bipartite.

CO2 (L2)

6. Prove that, every critical graph is connected. CO2 (L2)

7 .1f G is k — critical then show that 5(G) > k-1. CO2 (L1)

8. a) Define k- critical graph. CO1(L1)

b) show that In a critical graph, no vertex cut is a clique. CO2(L2)
PART B

1. In any graph G with &0, prove that a'+p'=p CO5 (L5)

2. Examine that, The edge chromatic number of a complete graph on n vertices
is n, if nis odd (n=1): n-1 if n is even. CO5 (L4)
3. Let G be a connected graph that is not an odd cycle. Then prove G has a 2 —

edge coloring in which both colors are represented at each vertex of degree at least

two.
CO4 (L5)
4. If Gis asimple graph, then A< y1< A+1 CO4 (L2)
5. a) If G is uniquely K — colorable then. §(G) > k-1. CO4 (L2)
b) If G is uniquely k — colorable then G is (k-1) connected. CO3 (L2)

6. In a bipartite graph with & > 0, prove that a = 8’ CO4 (L5)
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|V.LABELINGS

Content: Predecr and Successor — Algorithm — Graceful Labeling —
Sequential functions - Magic graphs— Conservative graphs.

Labeling of a graph is an assignment of labels (numbers) to
its vertices or/and edges or faces, which satisfy some conditions. These are
different from colouring problems since some properties and structures of
numbers such as ordering, addition and subtraction are used here which are -
not properties of colours.

_ In 13™ century, Chinese mathematician Yang Hui and others (1275)
have studied labeling of geometric figures which are later called plane
graphs. Later Chang Chhao (1670), Pao Chhi-Shou (1880), Li Nien also
contributed to this area. But in 1983, the notions of magic and consecutive
labelings of plane graphs were defined by Ko-Wei Lih.

In 1963, Ringel conjectured that if T is any tree with n edges, then
the complete. graph Kj,+; can be decomposed into 2ntl1 subgraphs
isomorphic to T.

, S.W.Golomb was instrumental in coining the phraseology “Graceful
Graphs” and it was popularised by the articles of S.W.Golomb and M.
Gardener. Interest in this field was aroused by the conjecture of Ringel and
an article of Rosa. The same concept has been used in additive number
theory but under the name of restricted difference basis. Graceful graphs
have several applications in coding theory, X-ray crystallography, radar,
communication networks and astronomy. The conjecture, “All trees are
graceful” by Ringel-Kotzig-Rosa is well-known and still open.
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PREDECESSOR AND SUCCESSOR

Consider the sequence of integers n : (aj,ay, ...,a,), a; 2 0, not all Zero,
Let b, =|a,-a,|, by = [az-a3|, by =|as-a4|, ..., by, = |a,-a;|. Let n’ be
(b),by, ...,by). mis called a predecesqor and ' is called its successor.
Clearly, every predecessor has a unique successor. But a sequence of
non-negative integers, not all zero (successor), need not have a predecessor.
, For example, (1, 2, 5, 9) has no predecessor.

Result If (by, by, ..., by) is the successor of a predecessor

n
(aj, 2, ..., a,), then Y bi is even.
i=l

' ' 1

Proof: Let b,=aj-a;, b,=a-a3, b;=a3-a4, ..., b, =a,-a;. We know that
|b;|="b;

U ! ' !
Obviously, b, +b,+...+ b, =0. So all b;s cannot be positive. Some of

them must be negative such that the sum of the positive terms is equal to sum

of the negative terms with different sign.
'

Let b,,b,,... b be the positive terms and bk+1’bk+2""’bn be the

negative terms. Therefore, sum of by, by, ..., by is equal to the sum of
bk+], bk+2, cony bn . That iS, b1+b2+. ..t bk+bk+]+. . .+bn = 2(b|,+b2+. .+ bk)
Hence, b;,+b,+...+ b, is even. #

Remark: From above, it is clear that if (b;, b,, ..., b,) is the successor of a
predecessor (ay, ay, ..., a,) then sum of some b;s is equal to the sum of the
other b;s. Now, we prove that this necessary condition is also sufficient for a
successor (sequence of non-negative integers, not all zero) to have a

predecessor.

Theorem . A sequence of non-negative integers (b,,b,, ...,b,), not all
zero, has a predecessor if and only if the sum of some b;s is equal to the sum
of other b;s.

Proof: Let the sequence of non-negative integers (b,,b,, ...,b,), not all zero,
has a predecessor. Then by the above remark, the sum of some bis is equal to
the sum of other b;s is clear.

Conversely, let us assume that the sum of some b;s is equal to the
sum of other b;s for the sequence of non-negative integers (by,bs, ...,by), not
all zero, We show that this has a predecessor. Suppose w : (aj,az, ...,an) be
its predecessor, then we find a;s in terms of b;s. Clearly,
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by = Clr-ﬂzl, b, = lle‘il;lls by = |51A;-84|, oy Dy = |an-a||,
So, l?l = X (aj-ay), by = + (0-a3), by = + (ay-a), ..., b, = + (a,-a;).
Thatis, aj-a, = + b, ay-a, = + b, as-as = + by, ... | a,-a; = + by,
So we get, ‘
A=atbtbytbyt,. +b,
B =atbytbyt.. .+,
B=a;tbytbst... +b,

g =a;jtb,;=b, and
an = a] i bn.

From the above, we have, +b,+b,+ b3t ...£b,=0. By our assumption,
the sum of the some b;s is equal to the sum of other bis. Now let us partition
the set {b;,by, ...,b,} into two sets namely, A and B such that the sum of A is
equal to the sum of B. With out loss of generality, we can assume that b;

takes positive sign if b; €A or negative sign if it belongs to B. Now the
above set of equations becomes,

a =a1+0, a; = 4 + b|, a3 = 4 + b| * bz, s = ib] ibzi’by,, 2oy
a,,=a,ib] ibzib;;i ...i"bn-].
At present, we assume that a,=0., Hence, a;s are known in terms of b;s. Here,
some a;s may be negative. To get all a;s to be non-negative, choose a, to be
the absolute value of the most negative term among +b,, +b,*b,,
b tb,tb;, ..., £bjtbytbst...£b,,. Therefore, all a;s are non-
negative. Hence, (by, b, ..., b,) has a predecessor. #

Now we present a necessary and sufficient condition on n for a
sequence (1,2,3, ...,n) to have a predecessor.

Theorem The sequence (1,2,3, ...,n) has a predecessor if and only if
n=10,3 (mod 4).

Proof: First we prove that if n = 0,3 (mod 4), then the sequence

(1,2, ...,n) has a predecessor.

Case 1: Let n =0 (mod 4).

It is enough if we prove that the sum of some terms of the sequence
(1,2,3, ...,n) is equal to the sum of the remaining terms. Let k = .n/4 and
ki =n/2. Now, the sum of the terms starting with k+1 and ending with k+k;

is, = (k+k)(k+ky+1)/2 = k(k+1)/2
= Vs [K>+kk +k+kk+k, >+k,-k?-k]

=Y [2kk|+k1+k12] 47
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The sum of the remaining terms of the sequence = nln+1)/2 - nlsvt 1 /4 =
n(n+1Y4. Hence the sequence (1,2,3, ...,n) has a predecessor.
Case 2: Letn =3 (mod 4). Now taking k = (n-3)/4 and k; = (n+1)/2, we can
prove that, as in the previous case, the sum of the terms starting with k+1 and
ending with k+k, is equal to the sum of the remaining terms of the sequence.
Hence the sequence (1,2,3, ...,n) has a predecessor.

Conversely, let us assume that the sequence (1,2,3, ....n) has a
predecessor. We know that by result 10.1, n(n+1)/2 = 2k, for some k. That
is, n(n+1) = 4k. Hence we conclude that n = 0,3 (mod 4). #

ALGORITHM

Given a successor (by,by, ...,b,) such that the sum of some b;s is equal
to the sum of other b;s, this algorithm finds its predecessor (a,a,, ...,a,).
Step 1. Partition the set {by,b, ...,b,} into 2 subsets namely, A and B such
that the sum of elements of A is equal to the sum of elements of B.

Assume that b; takes positive sign if b; belongs to A or negative sign
if it belongs to B.

Step 3. Assume a; =0.
Step 4. Find a,, a,,

Step 2.

..., @y using the following equations.

a1=a|+0
a2=a,ib1
a3=a,ib,ib2

a4=a|ib1ib2ib3

ap = 4 ib]ibzi b3i ...ibn.l.
If all a;s are non-negative then stop,

Otherwise, choose a, to be the absolute value of the most negative

termamong + by, £bytb,, bt byth,, ...,
tbhtbytbyt.. . b,

Step 6. Repeat step 4 and stop,

Step 5.

INustration

Consider the successor (4,2,7,9,3,3) = (b,,b,, ...,be).
Iteration 1.
Step1. LetA={b =4,by=7,bs=3} and B = (b, =2, by =9, bs=3}.

Step 2. We assume that b, by and b take positive sign and by, b, and bs
take negative sign. 18



Step 3. Leta; =0.
Step 4. a; =0+0=0.

Q = - 04+4 =4,
ay = 04+4-2 = 2.
ag = 0+4-2+7 =9,

as = 044-2+7-9 = (
ag = 0+4-2+7-9-3 = .3,
Step S.  We have ag = -3 and choose a; =|-3| =3
Iteration 2.
Stepd. a;=3,a,=7,a3=5,a,=12,as=3 and ag=0.
Hence (3,7,5,12,3,0) is a predecessor of the given successor.

GRACEFUL GRAPHS

Definition:  Let G be a simple graph with order p and size q. A function
f: V(G) —» {0,1, ...,q} is called a graceful labelmg (numbering) if

(1) fis one-to-one.

(ii)  the edges receive all the labels (numbers) from 1 to q, where
the label of an edge is computed to be the absolute value of the
difference between the vertex labels at its ends ( that is, if
‘e =(x,y) then the label of e is |f(x)-f(y)| ).

Definition: A graph that has a graceful labeling is called a graceful
graph. '

Examples:
1. The graph C, is a graceful graph since it has a graceful labeling as
shown in figure .l. .
4 4
3 2
3 l 2

2. Petersen graph is graceful and its graceful labeling is shown in

fi 2.
igure 2 -



3. The graph Cs is not graceful

Remarks:

1. A graceful graph may be a disconnected graph. The graph G of
figure  ~ is a disconnected graceful graph. -

2. Subgraph of a graceful graph need not be graceful. Consider the»
wheel We, which is graceful but the subgraph C; is not graceful.
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3. If'G is a disconnected graph with k-components such that each
component is graceful, even then G need not be graceful. Now,
consider the graph G as shown in figure .5.

*

Here, G has 3-components and a graceful labeling of each
component is given below.

/

ot
—e
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But, G is not graceful. If G is graceful, then it is possible to labe]
the vertices of G with different labels from {0,1, ...,7} so that the
labels from | to 7 are realized by the edges. Since the label 7
should be realized by an edge, the vertex labels 0 and 7 should be
given to adjacent vertices say v; and v,, and since the label 6 should
be realized by an edge, the vertex adjacent to v; and v, should get
either 6 or 1. In either case, the label 5 cannot be realized by any

edge of G. Hence, G is not graceful.

4. If Gis graceful, then it is connected or contains a cycle.
Proof: Let G be a graceful graph of order p and size q. Since G is
graceful, it is possible to label the vertices of G with different labels

from {0,1,2, ...,q} in such a way that the edges receive all the labels -
from 1 to q. Thus, q+1 > p. That is, q 2 p-1. This implies that G is
connected or contains a cycle. =

Theorem * . . If G is graceful eulerian graph with size g, then
q=0, 3 (mod 4).

i’roof: Since G is Eulerian, by theorem ~ and by result , the sum of
the edge labels is an even number. Since G is graceful this number is equal

to the sum 1+2+...+q. Thus,
q(q+1)/2 = 2k, for some k, or
q(g+l) =4k.
Hence q =0, 3 (mod 4). &

SEQUENTIAL FUNCTIONS

Simply sequential and sequential graphs were first introduced
by D.W.Bange, A.E.Barkauskas and peter J.Slater in their paper, “Simply
Sequential and Graceful Graphs”

Definition: Let G be a simple graph with order p and size q. A function

f: V(GVE(G) — {k, k+1, k+2, ..., ptq+k-1} is called a k-sequential
function if f is one-to-one and for any edge e, f(e) equals the absolute value
of the difference between the -tex labels at its end vertices. (that is, if

e = (x,y) then f(e) = [f(x)-f(¥)| ]

Definition: A simply sequential function is a 1-sequential function.
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Definition: If'a graph G admits a k-sequential function then it is called a
K-sequential graph.
Examples: )

. The graph Cg is 1-sequential graph since it has a 1-sequential labeling

as shown in figure .6, '
1 11

2. The wheel Wy is l-s‘equential and a 1-sequential labeling is shown in
figure 7.

Theorem A graph G is 1-sequential if and only if G+v is graceful by
a labeling f with f(v) = 0.

Proof: Let us assume that G is 1-sequential.

Clearly, |[E(G+v)| = [V(G)+|E(G)]. Now, we extend a 1-sequential function
of G to the vertex v also by assigning zero to v. In G+v, each edge of G
retains the original value of f'and for all edges e = (u,v) receives the label

flu). Hence, we have a graceful labelin%gf G+v.



Conversely, we assume that f is a graceful labeling of Gtv with
fiv) = 0. For each vertex ue V(G) receives the same label of: the edge )
e = (u,v). Thus, we get a 1-sequential function to G by restricting fto Gi. #

APPLICATION

»

Now we give a mathematical application usipg gracefgl labeling
and the turning trick. Consider the following tree T with 9 vertices and 8
edges with a graceful labeling.

¢
1
7 5
7 6
5
. R 4 A
8 i 4
3
1 2 3 12

We would like to decompose K7 into seventeen copies of T. We do this in

the following way. First we place seventeen vertices around a circle and
number nine consecutive vertices 0,1,2, ...,8.




.Then we introduce an edge between two of the numbered vertices if
the vertices l.abeled by those two numbers are adjacent in T. Since the
labeling of T is graceful, every edge has a distinct label, and thus every edge

has distinct geometric length. Thus we got a copy of T.
Consequently the turning trick will give us a decomposition of K7

into seventeen copies of T.
This kind of construction is possible for every graceful tree and

leads us to the following theorem.

Theox:em If a tree T with q edges is graceful, then the complete graph
Kaq+1 is decomposable into 2q+1 trees, each isomorphic to the given tree T.

MAGIC GRAPHS

Let G be a graph with q edges. G is said to be magic if the

Definition:
..,q so that the sum of the

edges of G can be labeled by the numbers 1,2,3, .
Jabels of all the edges incident with any vertex is the same.

Examples:
1. The graph K33 is magic since it has"a magic labelling as shown in

figure  10.

Figure 10.10

is magi i ing is shown in

7. The graph K4 15 magIc and a magic label.mg is shown
ﬁgureg pll. Notice that Kag is decomposable into two Hamilton
f one of the Hamilton cycles are

Jes. 1ne labels on the edges 0 '
<l>)’01 §S 3, 11,59 7, 15 The edges of the other Hamilton cycle are

2,16, 4, 14,6, 12, 8, 10.

not magic since we cannot find a magic

ers 1,2 and 3.
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Theorem K, is magic forn=2 ,
Proof: The proof is left as an exercise to the reader. - #

Theorem _ If a bipartite graph G is decomposable into two Hamilton

cycles, then G is magic.

Proof: Since G is bipartite, the length of the Hamilton cycle is even, say 2n.
Thus the number of edges in G is q = 4n. We label one Hamilton cycle with

even numbers and the other with odd numbers.
We choose a vertex a and label the edges of the first Hamilton cycle

starting at a by 4n-1, 1, 4n-3, 3, ..., 2n+1, 2n-1.
Then we label the edges of the second Hamilton cycle starting at a, by

2,4n, 4, 4n-2, ..., 2n, 2n+2.
Since G is bipartite, the vertices can be coloured red and blue with no two

adjacent vertices of the same colour.
If a is blue, then the sum of the odd-numbered edges at all blue

vertices except a is 4n-2. The sum of even-numbered edges at all blue
vertices except a is 4n+4. We note that the sum of all edges at a is 8n+2.
Thus the sum of all edges at any blue vertex is 8n+2. The sum of the odd-
numbered edges at each red vertex is 4n. The sum of the even-numbered
edges at each red vertex is 4n+2. Hence the sum of all edges at any red

vertex is 8n+2. Hence G is magic. #
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‘Theorem If a graph G is decomposable into two magic spanning
subgraphs G, and G, where G; is regular, then G is magic. '

Proof: Let q, and q; denote the number of edges of G, and Gy, respectively.
Consider a magic labeling of G, and a magic labeling of G;. To each label of
G,, we add q,. Since G, is regular, we have added the same amount at each
vertex. We now have the edges of G labeled with the integers 1,2,3, ...,qi,
qi+1, ....qi*+q2, and the sum of the labels at each vertex is the same. Hence

G is magic. #

Now we introduce antimagic graphs:

The above figure shows some examples of graphs whose edges are labeled
with the integers 1,2, ...,q so that the sum of the labels at any given vertex is
different from the sum of the labels at any other vertex, that is, no two
vertices have the same sum. We shall call a graph that can be so labeled as-

antimagic.
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Conjecture Every connected graph #K; is antimagic.
Conjecture Every tree # K, is antimagic.

Definition: Let G be a graph with p vertices and q edges. G is said to be
magic total if the vertices and edges of G can be labelled by the numbers
1,2,3,...,p+q so that for each edge e = (u,v) € E(G) we have f(u) + f(e) + f(v)
is the same.

Definition: Let G be a graph with q edges. G is said to be bi-magic if the
edges of G can be labelled by the numbers 1,2,3,...,q so that the sum of the
labels of all the edges incident with any vertex is either k; or ky, where k; and
k, are two constants.

Definition: Let G be a graph with p vertices and q edges. G is said to be bi-
magic total if the vertices and edges of G can be labelled by the numbers
1,2,3,...,p+q so that for each edge e = (u,v) € E(G) we have f(u) + f(e) + f(v)
=k; or k,, where k; and k; are two constants.

L(2,1)-LABELING

Defmition: ‘;;,?A L(2,1) - labeling of a graph G is an assignment f from the
vertex set V(G) to the set of non-negative integers such that
lf(x)-—f(y)lz 2 if x and y are adjacent and If(x)—f(y)lz lifxandy
are at distance 2, for all xand y in V(G).

A k-L(2,1)-labeling is an L(2,1)-labeling f: V' (G)— {0,..., k}.

The minimum k among all such possible assignments is known as
the L(2,1)-labeling number or A-number and is denoted by A(G).

Note: A L(2,1)-labeling is also called as Distance two labelling.

Definition: An injective L(2,1)-labeling is called an L'(2,1)-labeling.
A k-L'(2,1)-labeling is an L'(2,1)-labeling £ : V' (G)— {0...., k}.

' The minimum k among all such possible assignments is known as
the L'(2,1)-labeling number or A'-number and is denoted by A'(G).

Definition: Let f be a labeling of a graph G. The number of occurrence ’

a lab.el .le'ss one is called the multiplicity of the label in f and the sum of t
multiplicity of labels of f is called the multiplicity of f. )



Here, we find an upper bound of the A-number for the corona
G0 G; whe.re Gy and G, are any two graphs such that G; has an injective
L(2,1)-labeling and also we prove that the bound is attainable when ¢ 3 and

G, are complete. Also we present an upper bound of the A-number for the
corona Gy o G2 Where G, and G, are any two graphs, ’

Theorem . For any two graphs G, and G;, MG, 0Gy) < MGy) + 1 (Gy)
+2 and the bound is attainable when G, and G, are complete.

Proof: Let f) be the L(2,1)-labeling of G, corresponding to A(G) and f, be
the injective L(2,1)-labeling of G, corresponding to N (Gy).
Set V(G,)= {u, uy,..., Uy} and V(G,) = {vy,..., va} and define a labeling

fonV (G;0Gy):
f(w) = fi(w)
f(vi) = f(vi) + A(G;) + 2, for all v; in all copies.

Clearly fis a L(2,1) - labeling for G; o G,.

Hence A (G;oG,) <MGy) +A(Gy) + 2.
Now let us assume that G; and G, are complete. Since G, is complete on m

vertices, any L(2,1)-labeling of G;o G, needs 2m distinct labels for the
vertices of G; and a different set of 2n labels for the vertices of G,. Since we

can use the label zero also, .
A(GioGy) 22m+2n-2=2m-2+2n-2+2=MGy) + N'(Gy) + 2.

That is, A (G0 Gy) = A (G]) + N (Gy) + 2. #

For any two graphs G; and G;, A (G10Gy) < )»(Gl) +

Theorem |
L(2,1)-labeling

MGy)+m+2, where m is the multiplicity of the
corresponding to A(Gy).

Proof: Let f, be the L(2,1)-labeling of G, corresponding to A(G)), f; be the
L(2,1)-labeling of G, corresponding to A(G,) and m be the multiplicity of f.

Let V(G)) = {uy, va,..., up} and V(G,) = {Vi,..., Va}.
If £, is injective then by the above theorem, A (G0 G2) <A (Gy) + MGy) +2
and since m = 0 in this case, the theorem is true. Otherwise, we rename the

vertices of G, as below.
Let k = A(G,) and let n; denotes the multiplicity of the label i of f> For

. i=0,1,2,..,kand j=0,1,2,..,nlet {v;;} denote the set of all vertices of
G, which receive the colour i in f, and these sets form a partition of V(a,).
We note that for some i, this set may be empty. Hence the multiplicity of f,

isng+n + ...+ ny
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QUESTION BANK

PART A
1. If (b1, by, bs, by) is the successor of a predecessor ( as, az, as, an), then prove i~ bi
IS even. CO2 (L2)
2. a) Define graceful labeling of a graph G. CO1 (L1)
b) Analyse the graceful labeling of Petersen graph. CO2 (L4)

3. If G is graceful eulerian graph withsize g, then identify q = 0,3(mod4) CO2 (L2)
4. Conclude that A graph G is 1- sequential if and only if G +V is graceful by a

labeling f with f (v) = 0. CO5 (L5)
5 If G is decomposable into two Hamilton cycles, then examine that G is
conservative. CO2 (L4)
6. If G is decomposable into two Hamilton cycles, then show that G is strongly
conservative. CO2(L2)
PART B
1. Prove that, the sequence (1, 2, 3, n) has a predecessor if and only if n =0, 3
(mod4). CO2 (L5)
2. Prove that, if a bipartite graph G is decomposable into two Hamilton cycles then
G is magic. CO2 (L5)
3. For any two graphs G; and G, A( G1°Gz) <A( G1) + A* (G2) +2 and the bound is
attainable when G; and G, are complete - Discuss CO5 (L6)

4. For any two graphs G; and Gz, A( G1°Gz) <A( G1) + A( G2) +m +2, where m is the
multiplicity of the L (2,1)—labeling corresponding to A(G).-Discuss CO5 (L6)
5 If G is decomposable into two sub graphs H; and H; and if H; is conservative, and

H> is strongly conservative then prove that G is strongly conservative.
CO5 (L5)



6. If G is a labeled directed graph such that Kirchhoff’s current law holds at every
vertex of G except a particular vertex a, then Kirchhoff’s law also holds at the

Vertex a. - Discuss CO5 (L6)



UNIT - V — Advanced Graph Theory — SMT5207

61



V.PERFECT GRAPHS

Content: Perfect Graphs— The Perfect Graph Theorem — Chordal Graphs—
Interval Graphs— Comparability Graphs.

The chromatic number of a graph G is always greater than or equal
to the clique number of the graph. For what type of graphs, equality holds?

Also, the clique cover number of G is always greater than or equal to
the independence number of G. For what type of graphs, equality holds?

In 1961, Claude Berge conjectured that o-perfect and x-perfect are
equivalent. This was proved by Laszl6 Lovasz in 1971, at the age of 22.
The above equivalence was almost proved earlier by Fulkerson. On hearing
the success of Lovasz from Berge, he completed his own proof, with in a few
hours. No doubt it was a moment of sorrow for Fulkerson. But in this
process, Fulkerson invented the notion of antiblocking pairs of polyhedra, an
idea which has become an important topic in the field of polyhedral
combinatorics,

In this chapter, mostly, we deal with vertex colouring and clique and
S0 we restrict our attention to simple graphs.
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PERFECT GRAPHS

For a graph G, we know that 7(G) denotes the chreg .
number of G;

The minimum number of colours needed to properly colous 1,
vertices of G; equivalently, the minimum number of independent sets neese
to partition the vertices of G.

@(G) denotes the clique number of G; the cardinality of the largest cligue
of G.

a(G) denotes the independence number of G; the cardinality of the largest
independent set of G.

8(G) denotes the clique cover number of G; the minimum number of cligues,
needed to partition (or cover) the vertices of G.

Remark: The intersection of a clique and an independent set of a graph ¢
can be at most one vertex. So, for any graph G,

a(G) £ 6(G) and ©(G) < x(G).
Notation:  In this chapter, G5 denotes the subgraph induced by A, that is
G[A].
Definition: A graph G is defined to be x-perfect if (Gp) = w (G,), for all
AcV.
Definition: A graph G is defined to be a~-perfect if ct(Gp) = 0(G,), for all
AcV.
Note: 1. o(Gp) < a(G), w(Ga) < w(G)
X(Ga) < x(G), 8(Ga) < 6(G).
2. A graph need not be x-perfect (u-perfect) even if every proper

induced subgraph is y-perfect («-perfect). This can be seen by
considering the cycle Cs.

Examples:
1. Consider the graph C,.
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Here X(C4) =2= (D(C4).
Also x(Ga) = ©(Ga), where G = C4and A < V(Cy).
Hence C4 is y-perfect.

Also a(Cy) =2 = 0(C,) and a(Gp) = 0(Gp), where G = C4and A c V(Cy)
Therefore, C, is a-perfect.

2. If G is a bipartite graph, then we know that, x(G) =2 = w(G), if G has an
edge; Otherwise, %(G) =1 = w(G).
Hence G is x-perfect
Also, it is easy to see that, for bipartite graphs, a(G) = 6(G).
Hence it is also a-perfect.

3. Consider Cy41, k> 1.
This is not x-perfect since x(Cak+1) = 3 and w(Cax+1) = 2.

Also this is not o-perfect because a(Cyu+1) = k and 8(Cx+1) = kt1, a2
minimum partition consists of k, 2 cliques and one 1-clique.

Theorem A graph G is y-perfect if and only if its complementary
graph G is a-perfect.

Proof: Clearly a(Gy) =o(G?})

8(Ga) =%(G})
Thus, o(G,) = 8(Gy) is equivalent to w(G§ ) = (G} ) and

o(G$ ) =06(G},) is equivalent to w(Ga) = X(Ga)-
Hence the theorem. #

Corollary©  Ifeither a graph G or its complementary graph G contains
an odd cycle of length greater than 3 without chords, then G is neither
y-perfect nor a-perfect .

Proof: Let A be the vertex set of such a cycle of G.
Then X(GA) # m(GA), (X(GA) # G(GA)
Thus G is neither x-perfect nor a-perfect.

If the complementary graph G° contains such a cycle, then it is
neither x-perfect nor a-perfect and by the previous theorem, G is neither
x-perfect nor a-perfect. #

Now we introduce the concept of multiplication of the vertices of a
graph. 64



Let G be a graph with vertex v. The graph Gov is obtained from (;
by adding a new vertex v' which is connected to all the neighbours of v.

G: . GOV:

It is easy to see that, (Gov)-u = (G-u)ov for distinct vertices vand u.
More generally, if vj,vy,.,.,v, are the vertices of G and

h = (hy,hy,...,hy) is a vector of non-negative integers, then H = Goh is

constructed by substituting for each v; an independent set of h; vertices

vi' .., V; | and joining Vv; with V; if and only if v; and v; are adjacent in G.
We say that H is obtained from G by multiplication of vertices.

Example

G: Goh:
where h=(2,0,1)

Note: 1. Ifwe take h;= 0 then H does not contain v;. '
2. Every induced subgraph of G can be obtqmed by
multiplication of an appropriate vector, in which h; is zero of

‘ one.
3. Ifeachh;=1 then Goh=G.
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Theorem (Berge) Let H be obtained from G by multiplication of
vertices.

(i) If G is y-perfect then H is x-perfect.

(i) 1f Gis a-perfect then H is a-perfect.

Proof: The theorem is true if G has only one vertex. We shall assume that
(i) and (ii) are true for all graphs with fewer vertices than G. Let H=Goh.
If one of the co-ordinates of h equals zero, say h; = 0, then H can be obtained
from G-v; by multiplication of vertices, But if G is -perfect then G-v; also
y-perfect.  Also, if G is a-perfect then G-v; also a-perfect. Now by
induction hypothesis, the theorem is true.

Thus, we may assume that each co-ordinate h; > 1 and some h; 2 2.
Since H can be built up from a sequence of smaller multiplications (Hint:

refer exercise 12.4 ), it is sufficient to prove the result for H=Gov. Let v’
denote the added copy of v.

Let us assume that G is x-perfect.

So, @W(Ga) =%(Gp), forall Ac V.

Since v and v’ are non-adjacent, @w(Gov) = @(G).

Let G be coloured using @w(G) colours. Colour v’ the same colour as v. This
will be a colouring of Gov in w(Gov) colours.

So, x(Gov) = w(G) = w(Gov).

Similarly we can prove that y(Ha) = w(H,) where H = Gov and for all
A c V(H). Hence, Gov is y-perfect.

Now we assume that G is a-perfect. So, a(Ga) = 0(G,), forall A c V.

It is enough to prove that o(Gov) = 6(Gov).

Let N bea clique cover of G with | N | =06(G) = a(G) and let K, be the
clique of N containing v. Now we consider two cases.

Case 1: v is contained in a maximum independent set S of G such that
S| = a(G).

Now S U {v'} is a independent set of Gov and a(Gov) = (G)+1.

Since N U {v'} is a clique cover of Gov, we have that
6(Gov) < 0(G)+1 = a(G)+1 = a(Gov) £ 0(Gov).
Hence, a(Gov) = 0(Gov),

Case 2: No maximum independent set of G contains v. So a(Gov) = a(QG).
Since each cli

he que of N intersects a maximum independent set exactly once,
this is true in

particular for K,, Butv i%got a member of any maximum



independent set. Therefore, D = K, —{v} intersects each maximum
independent set of G exactly once, so a(Gy.p) = a(G)-1.

Now 6(Gv.p) = a(Gv.p) = a(G)-1 = a(Gov)-1.

Taking a clique cover of Gyp of cardinality a(Gov)-1 along with extra
clique D U{v'}, we obtain a clique cover of Gov.

Hence 8(Gov) = a(Gov). #

Remark: In this chapter, our main aim is to prove the Perfect Graph

theorem, which states that a graph is x-perfect if and only if it is a-perfect.

This was proved by Lovasz along with a third equivalent condition,
@(Ga).a(Ga) 2 |A|, forall A c V.

Theorem . (Fulkerson[1971], LovéSz[l_972]) Let G be a graph each

of whose proper induced subgraphs are a-perfect, and let H be obtained from
G by multiplication of vertices. If G satisfies the condition

®(Ga).0(Ga) 2 |A|, for all A c V then H also satisfies this condition.

Proof: Let G satisfy the condition,
@(Ga).a(Ga) 2 |A|, forall Ac V (P)
Choose H to be a graph having the smallest possible number of vertices

which can be obtained from G by multiplication of vertices but which fails to
satisfy (P) itself. So,

@(H).a(H) < [X]|, where X denotes the vertex set of H, yet (P) does

hold for each proper induced subgraph of H.

As in the proof of the above theorem, we may assume that each
vertex of G was multiplied at least once and that some vertex u was
multiplied at least twice (that is, h > 2). Let U = {u',uz,...,uh} be the vertices
of H corresponding to u. The vertex u' plays an important role in this proof.

By the minimality of H, (P) is satisfied by Hx-u‘ , Which gives,
Xr1=Xul<o(H, ).o(H ) by®)
< w(H).a(H)
< [X]-1.
Thus, equality must hold throughout, and we define,
p=o(H_,)=oMH)

a=a(H_)=aH)

and piq; = [X-1. < < |
Since Hy.y is obtained from G-u by multiplication of vertices, by the
_previous theorem Hy_y is a-perfect. Thus, Hx _y can be covered by a set of q



cliques of H, say I(I,I(z,...,qu . We can assume that K;’s are pairwise

disjoint and |Ky| 2 |K;| > ...2| Kq1 |

q)
Now » |Ki| =X-U|=[X] - h = pq +1-h = pyq-(h-1).
i=1

Since |Kj| < py, at most h-1 of the K; cannot contribute p; to the sum.
Hence K| =|Ky|= ...= |qu_hJrl |=Dp.

Let H' be the subgraph of H induced by
X' =KiKou. UK u{u'}.

IX'|=p1 (qi -h+1)+1 <piqi+1 = X]
So by the minimality of H, we have,
o) a(H) = [X|
But p; = w(H) > =(H'),
So, a(H") =2 |X'| /p1 > qi-h+1.
Let S’ be an independent set of H' of cardinality q;-h+2. Since S’ cannot
have two vertices of a clique, u'eS'. Hence, S = S"UU is an independent set
of H with q;+1 vertices, which is a contradiction, to the definition of q;. #

" THE PERFECT GRAPH THEOREM

The Perfect Graph Theorem . (Lovéasz) For a graph G, the
following statements are equivalent.

1. Gis y-perfect.

2. G is a-perfect.

3. w(Ga).0(Ga) 2 |A|, forallAc V.

Proof: We may assume that the theorem is true for all graphs with fewer
vertices than G.
(1)= (3). Letus assume that G is y-perfect.
So we have, ©(Ga) = %(Ga), forall Ac V.
It means, we can colour G4 in @(Ga) colours.
Since there are at most o(Ga) vertices of a given colour,
we get @w(Ga).o(Ga) 2 |A.
(3)=(1). Let us assume that G satisfies the condition
w(Ga).(Ga) 2 |A|, forall A V.
Each proper induced subgraph of G satisfies (3) and by induction
assumption, satisfies all the above three conditions.
So it is enough if we prove that m(G) g8X(G).



If we have an independent set S of G such that @(Gy.s) < ©(G), then
we can colour the elements of S by a new colour and Gy.s in W(G)-1 other
colours. This is a colouring of G and so %(G) < w(G)-1+1 = w(G).

But we know, ©(G) < %(G) for any graph G. Hence, @w(G) = x(G).

Suppose Gy.s has an w(G)-clique K(S) for every independent set S

of G.
Let & be the collection of all independent sets of G.

Also SNK(S) = ¢.
For each v;eV, let h; denote the number of cliques K(S) which contain v,
Let H be obtained from G by multiplying each v; by h; and let V(H) = X.
By theorem 12.4, w(H).a.(H) = |X].
Now we compute,
[X| = Z h, = Z'K(S)I , since h; equals the number of non-zeros in row i,
v.eV  Sef
and |K(S)| equals the number of non-zeros in its corresponding column in
the incidence matrix whose rows are indexed by the vertices vy,v,,...,v, and
whose columns correspond to the cliques K(S) for Se§ .
Therefore, the above equation becomes,
X = > hi= 2 [K(S) ==
v eV - Se&
Now we consider any clique in H. Since, at most one ‘copy’ of any

vertex of G could be in a clique of H, we have w(H) < ©(G).
We note that, if a maximum independent set of H contains some of the

‘copies’ of v;, then it will contain all of the ‘copies’ and hence,:

> IT N K(S)I by considering the entries of the
z | ’ ding to T in the
Te|set rows corresponding
above matrix.

<|¢]-1 since [TNK(T)| =0 and [TNK(S)| < 1, since T is an
independent set and K(S) is a clique.

*Now consider,

w(H).a(H) < w(G).(&] -1) <[X],
which is a contradiction.

Hence the result.
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(2) <= (@)
G is a-perfect if and only if G® is x-perfect.
if and only if w( G, ).a(GZ )2 |A|, forall Ag V

if and only if a(Ga).w(Gp) 2 |Al, forall Ag V.
Hence the theorem. y

Corollary A graph G is perfect if and only if its complement G is
perfect.

Proof: By theorem | , the corollary is immediate. #

' Corollary A graph G is perfect if and only if every graph H obtained
from G by muitiplication of vertices is perfect.

Note: Sine y-perfect and a-perfect are equivalent for any graph G, here
after we call the graph which satisfy any one of them as perfect graph.
However, the above equivalence fails for uncountable graphs.

Now we present another characterization for perfect graphs.

Theorem . A necessary and sufficient condition for a non-empty graph
G to be perfect is that for every induced subgraph H < G there is an
independent set of vertices I, such that w(H-I) < w(H).

Proof: Let G be a perfect graph and H be an induced subgraph of G, and so
H is also perfect. Let k = x(H) = w(H).

In this k-colouring of H, let I be a colour class. Now,

w(H-]) < y(H-I) = x(H)-1 < w(H). Hence this part.

Conversely, let us assume that for each induced subgraph H c G, there is an
independent set of vertices I, such that w(H-I) < w(H).

We prove this result by induction on w(G).

If w(G) = 2, then the result is obvious.

So, let w(G) > 2 and we assume the result for smaller values of the clique
number.

By induction hypothesis, we can colour H-I with w(H-I) colours and
colouring the vertices of I with a new colour, we obtain a colouring of H with
w(H-1)+1 < w(H) colours. So x(H) < w(H). Hence G is perfect. #
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Conjecture:  When we talk about perfect graphs, it is natural to think
about graphs, which are not perfect. Consider odd cycles of length at least
five. It's chromatic number is three, but it’s clique number is two. So it is
not perfect. But we note that every subgraph of this is perfect. In 1960,
Berge raised the question of the existence of other minimal imperfect graphs
other than odd cycles of length at least five and their complements. He
conjectured that there are none other than these. This has come to be known
as strong perfect graph conjecture. It may be stated as below. A graph G
is perfect if and only if G has no induced subgraph that is an odd cycle of
length at least five or its complement.

CHORDAL GRAPHS

The concept of chordal graphs is due to Hajnal and Suranyi. '
In 1958, they showed that chordal graphs are a-perfect, and Berge, in 1960,
proved that chordal graphs are y-perfect. So, chordal graphs are very good
examples for perfect graphs.

Definition: A graph G is called chordal if every cycle of length strictly
greater than 3 possesses a chord, that is, an edge joining two non-consecutive

vertices of the cycle.

Remark: (i) By definition, G does not contain an induced subgraph
isomorphic to C, for n> 3. :

(i) A subgraph of a chordal graph is also chordal, since, if the
subgraph has a cycle of length greater than three without chords then G
would also have a cycle of length greater than three without chords.

(iii) Chordal graphs are also called as triangulated graphs.

Examples

« 1. All complete graphs are chordal graphs.
2. All trees are chordal graphs
3. The following graph is chordal.
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4. Wheel W, is not a chordal graph ifn > 5. .
5. K M, n 22 is not chordal. |

Definition: A vertex v of G is called simplicial if i ‘
' : 4 plicial if its adjacency set Adj
is a clique of G (not necessarily maximal). : Y set Ad)

Definition: LetGbea graph and let ¢ = [V1,v2,...,Vp] be an ordering of the

vertices. c is called a perfect vertex elimination scheme (or perfect
scheme) if each v; is a simplicial vertex of the induced subgraph

G )
{Vi>sVp}

Equivalently, X; = {vje Adj(v))/j>i} is a clique.

Examples:
1. In a tree, successive deletion of leaves induces a perfect vertex
elimination scheme. ' S

2. If G is a cycle of length greater than three, then G cannot have a
perfect vertex elimination scheme, since a cycle has no simplicial
vertex to start the elimination.

Definition: Let a and b be two non-adjacent vertices in a connected graph
G. A subset S c V is a vertex separator for a and b (or an a-b separator) if
the removal of S from the graph separates a and b into distinct components.

If no proper subset of S is an a-b separator, then S is a
minimal vertex separator for a and b.

Theorem For a graph G, the following statements are equivalent.
(i) Gis chordal.
(ii) Every minimal vertex separator is a clique.
Proof: _
(ii) = (i) Let us assume that every minimal vertex separator is a clique.
Consider a cycle of length strictly greater than three of G, say,
[a,%,5,¥1,y2,..-,Yka), k2 1. . -
Any minimal a-b separator must contain vertices X and y; for some i; So
xy; € E, which is a chord of the cycle.
Hence G is a chordal.
(i) = (i) Let us assume that G be a chordal graph.
Let S be a minimal a-b separator with G and Gg being the components of

Gv.s containing a and b respectively. .
Since S is minimal, each x € S is adjacent to some verteX in A and some

vertex in B.
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Letx,y € S. Since G, is connected, there exists a path between x and y wit,
internal vertices from Gy,

Now we choose such a path of smallest length say, [x,a,,...,a,,y], where

a; € A.

Similarly, we choose a path of smallest length between x and y, say
[y.by,...,bX], Where b; e B.

Now combining these two we get a cycle [x,ay,...,a,,y,by,.. .,bi,%], whose
length is at least 4,

By our assumption, this cycle must have a chord. Since S is vertex separator,
abj ¢ E. Also ag; ¢ E, bibj ¢ E, xa; ¢ E for i >1, ya, ¢ E for j <r,xb ¢ E
forj <tand yb; ¢ E for j > 1 by the minimality of the length of the paths,

Therefore, the only possible chord is xy € E.

Hence the theorem. #

Theorem Every chordal graph has a simplicial vertex. Moreover, if
G is not a ctlique, then it has two non-adjacent simplicial vertices.

Proof: Let G be a chordal graph. The theorem is true trivially if G is
complete. Now we assume that G has two non-adjacent vertices a and b and
that the theorem is true for all graphs with fewer vertices than G.
Let S be a minimal vertex separator for a and b with G, and Gg being the
components of Gy.s containing a and b, respectively.
By induction, either the subgraph Gas has two non-adjacent simplicial
vertices one of which must be in A, since S is a clique or Gpus is itself
-complete and any vertex of A is simplicial in Ga_s. Since no vertex of A is
adjacent with a vertex in B, a simplicial vertex of G s in A is simplicial in
G. Similarly, B contains a simplicial vertex of G.
Hence the theorem. #

Now we present an equivalent condition for chordal graphs
by Dirac(1961).

Theorem For a graph G, the following statements are equivalent,
(i) G s chordal.
(ii) G has a perfect vertex elimination scheme. Moreover, any
simplicial vertex can start a perfect scheme.
(iii) Every minimal vertex separator is a clique.

Proof:

(1) = (ii) Let G be chordal.
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Let us assume the result for all graphs with fewer vertices than G.
Since G is chordal, it has a simplicial vertex, say v,

Since any subgraph of a chordal graph is chordal, Gy.(vy is chordal and

smaller than G. So, by induction, Gy.(v) has a perfect scheme which, when
adjoined as a suffix of v, gives a perfect scheme for G.

(i) = (i) Let G has a perfect vertex elimination scheme and let C be a cycle
of G with length greater than three. Let v be the vertex of C with the
smallest index in the perfect scheme of G. Since C is a cycle,

|Adj(v)NC]| 2 2; and the eventual simpliciality of v gives a chord in C.
Hence G is chordal.

(i) & (iii) already proved.
Hence the theorem.

Definition: A subset S — V of a connected graph G is said to be a vertex
separator if G-S is disconnected.

Theorem Let S be a vertex separator of a connected graph G and let
G Ay G A, N & A, be the components of Gys. If S is a clique (not

necessarily maximal), then

x(G) = Max X(GSUA= )

and
o(G) = Max W(GSuAi )

Proof: Obviously x(G) 2 x(Gg, A, ) for each i,

So x(G) 2 M;elx X(Gsw\i) = k.

Now we show that G can be coloured using exactly k colours. First colour
Gs, then independently extend the colouring to each piece of Gyg, A This

will be a colouring of G with k colours and this is possible because S is a
clique. Hence x(G) =k.
Now we prove the other equality.

We know, @(G) = o( GSuAi ) for each i.

w(Gg .
So, m(G)ZM‘ax ( suAi) m, ,



Let X be a maximum clique of G with ®(G) elements. Then X must lie
wholly in one of the Gg_ A, » Since any two vertices of X are connected and.
so they cannot belongs to G, and G, , fori#j,

1 J
So,m2 ‘m(GSUAr ) 2 |X| = o(G).

Hence ©(G) = m. #
Corollary - Let S be a vertex separator of a connected graph G and

let G A, ,G A, oy G A, be the components of Gy.s. If S is a clique, and if

each subgraph G, is perfect, then G is perfect.
- i

Proof: We assume that the result is true for all graphs with fewer vertices

than G. So it is enough if we show that ¥(G) = w(G). Let each graph
Gg . be perfect,
1

Now by the previous theorem,

x(G) = Max ¥(Gsua, )= Max @(Gsua, )= w(G).

Hence G is berfect.

Theorem Chordal graphs are perfect.

Proof: Let G be a chordal graph.

We assume that the theorem is true for all graphs having fewer vertices than

G. Also, we may assume that G is connected, for otherwise we consider
each component individually. '

If G is complete, then G is perfect.

If G is not complete, then let S be a minimal vertex separator for some pair
of non-adjacent vertices. Since G is chordal, S is a clique.

Also, by induction hypothesis, since each of the subgraph§ Ggua, (as
1

defined in the corollary) are chordal, they are perfect,
Hence, by the previous corollary, G is perfect, #

INTERVAL GRAPHS

" Consider the fo]lqwing open intervals on the real line,
(0, 2), (1, 4), (3, 6), (5,7), (1, 7) and (6, 9) :
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o—b o
6 7 8 9

*———————o—o
0 2 3 4 5

1

[

Now we construct a graph from these intervals by introducing a vertex for
each of these intervals and joining two such vertices by an edge whenever

the corresponding intervals overlap. The graph arising from the intervals is
shown in figure

(1,7)

(0,2) (1,4) 3,6 ;7 (6,9

Any graph, which arises in this way from a set of_ intervals, is cglled an
interval graph. For example, the above Fan is an interval graph since we
obtained this from the above intervals. |

G. Hajo’s and N. Wiener (1957) were the first to study
interval graphs.

Definition:  Consider a family 4= (A}, Az, ..., An) of in'tcrvals on the rgal
line. The representative graph of A is defined to be a Sm}ple graph G in
which each vertex a; corresponds to an interval A;, and with two vertices
joined together if, and only if, the corresponding intervals overlap. Such a
graph is called an interval graph. 76



Theorem Every interval graph is chordal.

Proof: Let G be an interval graph.

Suppose, G has a chordless cycle [vo,vy,..., V,_y ,vo] With ?>3,

Let I, denote the interval corresponding to vi.

Fori=1.2,...,£-1, choose a point o; € Iy N I;. Since I, and I;s; do not
overlap, a; constitute a strictly increasing or strictly decreasing sequence. So
Io and I,_jcannot intersect, which is a contradiction, to the fact that

Vo V,_; is an edge of G. Hence G is chordal. #
Theorem Interval graphs are perfect.

Proof: Since every interval graph is chordal and since chordal graphs are
perfect, the theorem is true. #
Solved Problems:

1.  Show that the complement of a bipartite graph is perfect without using
perfect graph theorem.

Solution: Since an induced subgraph of the complement of a bipartite graph
is also the complement of a bipartite graph, it is enough if we prove that, if G
is a bipartite graph then %(G°) = ©(G"). ‘

Now, in a colouring of G°, every colour class is either a vertex or a pair of
adjacent vertices in G. Thus ¥(G) is the minimal number of vertices and
edges of G, covering all vertices of G. Let H be the subgraph of G obtained
by deleting all isolated vertices of G. In H the minimum number of edges
covering all the vertices of H equal to maximum number of independent
vertices of H, a = p'. Now adding isolated vertices on both sides, we get the
minimum number of vertices and edges of G covering all vertices of G is
equal to the maximum number of independent vertices of G. Hence
%(G") = o(G°).

2. Let G be a bipartite graph with the line graph H = L(G). Show that H
and H* are perfect. ,

Solution: Since an induced subgraph of the line graph of a bipartite graph is
also the line graph of a bipartite graph, it is enough if we prove that
x(H) = o(H). Also, it is enough if we prove that x(H°) = w(H°).

A set of edges in G are adjacent if and only if all the edges pass through the
same vertex. 77



Hence, @(H) = A(G)

x(H) = x:1(G)

But for bipartite graphs, %1(G) = A(G), hence H is perfect.

Now, we note that x(H®) is the minimal number of vertices of G
covering all the edges and w(H°) is the maximal number of independent
edges of G. Since both of them are equal for bipartite graphs (o’ = B), H is
perfect.

Note: Problem 1, is the first result on perfect graphs, proved by Gallai and
Konig in 1932, although the concept of perfect graph was explicitly defined

by Berge in 1960.

3. Give an example of a chordal graph, which is not an interval graph.
Solution:

*X

¢a

Obviously, the above graph is chordal. In the interval representation of the
above graph, the intervals I,, Iy and I, are disjoint.

I

L

T

Without loss of generality, we assume I, be in between I, and L. Since d is
adjacent to a, b and ¢, 14 should properly include I. But it is impossible to
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have an interval Iy which has non-empty intersection with I, but disjoint with
Is. Hence this graph is not an interval graph.

COMPARABILITY GRAPHS

Definition: A graph G is called a comparability graph if it is possible to
direct its edges so that the resulting graph with arc set F satisfies:

() xy)eF, (v,22eF=>(x,2) € F (transitivity)
) ) xy)eF=>(y,x)e¢F (anti-symmetry)

Note: A comparability graph may have more than one orientation of edges
satisfying the two conditions. ’

Examples:

1. Every bipartite graph is a comparability graph, since if (A, B) is the
bipartition then, we direct all the edges from A to B.
2. Clearly subgraph of comparability graph is a comparability graph.

Theorem Comparability graphs are perfect.

Proof: Let G be a comparability graph. Consider G with its direction.

For each vertex v, let t(v) denote the length of the longest path from v plus
one. If max t(v) =Kk, there exists a k-clique containing all the vertices in the
longest path from v. But in G there cannot be a (k+1)-clique; otherwise we
can find a path with k+1 vertices. Thus ©(G) = k.

Consider k colours say, 1,2,...,k.. Colour each vertex v with colour t(v).

Two adjacent vertices cannot have the same colour, because if there is an arc

directed from v, to v, then t(v,) > t(v;). Thus x(G) <K.

But x(G) 2 w(G) =k and hence %(G) =k.

Therefore, %(G) = w(G).

Now by perfect graph theorem, G is péidect. it



QUESTION BANK

UNIT V
PART A

1. Show thatA graph G is y - perfect if and only if its complementary graph G° is a
— perfect. CO2 (L2)
2. Let S be a vertex separator of a connected graph G and let Ga1,Ga, ..., Gat be

the components of Gy If S is a clique and if each sub graph Gsuajis perfect, then G

Is perfect. CO2 (L2)

4.Explain Every chordal graph is perfect. CO2 (L2)
5. Explain Every interval graph is Chordal. CO2 (L2)
6. Explain Comparability graphs are perfect. CO2 (L2)

7. Give an example of a chordal graph, which is not an interval graph. CO1 (L2)
PART B
1. Prove that if either a graph G or its complementary graph G¢ contains an odd cycle
of length greater than 3 without chords, then G is neither y - perfect nor a — perfect.
CO3 (L5)
2. Let H be obtained from G by multiplication of vertices the prove that
1) If G is y - perfect then H is y - perfect
i) If g is a — perfect then H is a — perfect CO3 (L5)
3. Let G be a graph each of whose proper induced sub graphs are a — perfect, and
let H be obtained from G by multiplication of vertices. If G contains the condition
®(Ga). a Ga) >|A] for all A cV then H also satisfies this condition. If g is a —
perfect then H is a — perfect — Discuss. CO3 (L6)
4. For a graph G, the following Analyse that statements are equivalent.
1) G is y - perfect
2) G is a — perfect



3) ®(Ga). o Ga) =|A]|, forall A cV. CO6 (L4)
5.A necessary and sufficient for a non-empty graph G to be perfect is that for every

induced sub graph H — G there is an independent set of vertices I, suchthat  @w(H-

I) <o(H). — Discuss CO6 (L6)
6. For a graph G, Prove that the following statements are equivalent.
) G is Chordal
i) Every minimal vertex separator is a clique. CO6 (L5)
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