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UNIT – I – CURVES AND SURFACES – SMT5204 



PARTIAL DIFFERENTIAL EQUATIONS: 

 If a dependent variable  is a function of two or more independent variables, then an equation 

involving partial differential coefficients is called a partial differential equation. 

 PDEs are models of various physical and geometrical problems, arising when the unknown 

functions (the solutions) depend on two or more variables. 

 The simplest physical systems can be modeled by ODEs, whereas most problems in 

dynamics, elasticity, heat transfer, electromagnetic theory, and quantum mechanics require 

PDEs.  

 The range of applications of PDEs is enormous, compared to that of ODEs.  

 PDEs of applied mathematics, the wave equations governing the vibrating string and the 

vibrating membrane, the heat equation, and the Laplace equation.  

 Solving initial and boundary value problems, that is methods of obtaining solutions 

satisfying conditions that are given by the physical situation.  

 PDEs can also be solved by Fourier and Laplace transform methods.  

 Boundary Conditions: The condition that the solution u assume given values on the 

boundary of the region R. 

 Initial Conditions: When time t is one of the variables, u (or Ut = ∂u/ ∂t or both) may be 

prescribed at t = 0  

The order of a partial differential equation is the order of the highest order differential 

coefficient occuring in the equation and the degree of the partial differential equation is the 

degree of the highest order differential coefficient occurring in the equation. 

Equation (1) is of I
st
 order I

st
 degree, equation (2) is of 2

nd
 order I

st
 degree whereas equation 

(3) is of 2
nd

 order 3
rd

 degree.  



Types of Partial Differential Equations 

 

 

 
 

 Homogeneous and non-homogeneous 

A linear PDE homogeneous if each of its terms contains either u or one of its partial 

derivatives. Otherwise we call the equation non-homogeneous. 

If each term of the equation contains either the dependent variable or one of its derivatives, 

it is said to be homogeneous, otherwise, non-homogeneous. For example, equation (2) is 

homogeneous, whereas equation (1) is non-homogeneous 

 The partial differential equation is said to be linear if the differential co-efficients occurring 

in it are of the I
st
 order only or in other word if in each of the term, the differential 

coefficients are not in square or higher powers or their product, otherwise, non-linear. e.g. x
2
 

p + y
2
 q = z is a linear in z and of first order 

 A PDE is linear if it is of the first degree in the unknown function u and its partial 

derivatives. Otherwise it is nonlinear. 



 
FORMATION OF PARTIAL DIFFERENTIAL EQUATIONS 

 These equations are formed either by the elimination of arbitrary constants or by the 

elimination of the arbitrary functions from a relation with one dependent variable and the 

rest two or more independent variables.  

 Observations: When p.d.e. formed by elimination of arbitrary constants  

 If the number of arbitrary constants are more than the number of independent variables in 

the  given relations, the p.d.e. obtained by elimination will be of 2nd or higher order.  

 If the number of arbitrary constants equals the number of independent variables in the given  

relation, the p.d.e. obtained by elimination will be of order one.  

 Observations: When p.d.e. formed by elimination of arbitrary functions.  

When n is the number of arbitrary functions, we may get several p.d.e., but out of which 

generally one with two least order is selected.  

e.g. z = x f(y) + yg (x) involves two arbitrary functions, f and g.  

xys = xp + yq – z (second order) …(ii) are the two p.d.e. are obtained by elimination of the 

arbitrary functions. However, 2nd equation being in lower in order to 1st is the desired 

p.d.e.  

Example 1. Form a pde by eliminating the arbitrary constants a and b from  

z = ( x + a) (y + b) 

 
 

 
 

Example 2.  Form the pde by eliminating the constants a and b from    

 



 
 

Example 3. Find the pde of all spheres having their centres on the z-axis. 

 
Example 4.  Form the pde from (x – a)

2 
+ (y – b)

2
 = r

2
 

 



 
 

Example 5. Form a partial differential equation by eliminating a, b, c from the relation 

 
Solution: Clearly in the given equation a, b, c are three arbitrary constants and z is a 

dependent variable, depending on x and y. We can write the given relations as: 

 

 
 

Example 6. Eliminate the arbitrary function ‘f’ from z = f (y/x) and form a pde. 

Solution:   



 

 
 

Example 7. Form the pdeby eliminating the arbitrary function from z
2
 – xy = f (x/z) 

 
 

Example 8. Form the pde of all planes cutting equal intercepts from the x and y axes. 



       

 
 

Example 9.  Form the pde by eliminating the function from z = f(x + t) + g (x – t ) 

Solution: z = f(x + t) + g (x – t )   

 

Example 10. Form partial differential equation from  



 
 

COMPATIBLE SYSTEMS OF FIRST-ORDER PDEs 

A system of two first-order PDEs f (x, y, u, p, q) = 0 (1) and g(x, y, u, p, q) = 0 (2) are said to be 

compatible if they have a common solution 

Equations (1) and (2) are compatible on a domain D if  

(i) J = ∂(f ,g)/ ∂(p,q) =   0 on D.  

(ii) p and q can be explicitly solved from (1) and (2) as p = φ(x, y, u) and q = ψ(x, y, u). Further, the 

equation du = φ(x, y, u)dx + ψ(x, y, u)dy is integrable.  

 

Theorem: 

A necessary and sufficient condition for the integrability of the equation du = φ(x, y, u)dx + ψ(x, y, 

u)dy is 

[f , g] ≡ ∂(f , g) /∂(x, p) + ∂(f , g) /∂(y, q) + p ∂(f , g) /∂(u, p) + q ∂(f , g) /∂(u, q) = 0. ----(3) 

equations (1) and (2) are compatible iff (3) holds 

 

Example: Show that the equations xp − yq = 0, xup + yuq = 2xy are compatible and solve them.  

Solution. Take f ≡ xp − yq = 0, g ≡ u(xp + yq) − 2xy = 0. Then fx = p, fy = −q, fu = 0, fp = x, fq = 

−y, gx = up − 2y, gy = uq − 2x, gu = xp + yq, gp = ux, gq = uy. 

 

 
So the equations are compatible.  



 Next step is to determine p and q from the two equations xp − yq = 0, u(xp + yq) = 2xy. Using 

these two equations, we have uxp + uyq − 2xy = 0 =⇒ xp + yq = 2xy u =⇒ 2xp = 2xy u =⇒ p = y u 

= φ(x, y, u). and xp − yq = 0 =⇒ q = xp y = xy yu =⇒ q = x u = ψ(x, y, u). 

Substituting p and q in du = pdx + qdy, we get udu = ydx + xdy = d(xy), and hence integrating, we 

obtain u 2 = 2xy + k, where k is a constant. 

 

CHARPIT’S METHOD 

It is a general method for finding the general solution of a nonlinear PDE of first-order of the form f 

(x, y, u, p, q) = 0. 

Basic Idea: To introduce another partial differential equation of the first order g(x, y, u, p, q, a) = 0  

which contains an arbitrary constant a and is such that  

(i) equations can be solved for p and q to obtain p = p(x, y, u, a), q = q(x, y, u, a).  

(ii) The equation du = p(x, y, u, a)dx + q(x, y, u, a)dy is integrable. 

(iii) The compatability of equations  yields 

 

 

These equations are known as Charpit’s equations. Once an integral g(x, y, u, p, q, a) of this kind 

has been found, the problem reduces to solving for p and q, and then integrating equation. 

Example: Find a general solution of p 
2
 x + q 

2
 y = u.  

Solution. To find a general solution, we proceed as follows: • Step 1: (Computing fx , fy , fu, fp, 

fq). Set f ≡ p 2 x + q 2 y − u = 0. Then fx = p 2 , fy = q 2 , fu = −1, fp = 2px, fq = 2qy, and hence, 

pfp + qfq = 2p 2 x + 2q 2 y, −(fx + pfu) = −p 2 + p, −(fy + qfu) = −q 2 + q 
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UNIT –II – CURVES AND SURFACES,FIRST ORDER PDE – SMT5204 



JACOBI METHOD 
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QUASILINEAR EQUATION 

  

The quasilinear partial differential equation in two independent variables, 

 a(x, y, u)ux + b(x, y, u)uy − c(x, y, u) = 0.  

dt = dx/ a = dy/ b = du / c . 

Example: Find the general solution: ux + uy − u = 0. 
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UNIT –III – SECOND ORDER PDE – SMT5204 



Second order partial differential equations in two variables 

 

 





 



 

Deriving the wave equation 

Let’s consider a string that has mass 

per unit length is μ. It is stretched by 

a tension T, which is much larger 

than the weight of the string and its 

equilibrium position is along the x 

axis. This diagram shows a short 

section of the string, stretched in the 

x direction, and the forces acting on 

it. Our analysis only applies for 

small deformations, for which the 

string is a linear medium, and we 



neglect the gravitational force on the string (which in any case is constant). 

One consequence of this restriction to small deformations is that the angle θ between the string 

and the x direction is much smaller than 1, so sin θ  ≅  θ and cos θ  ≅ 1. (On our diagram, 

however, the deformation has been exaggerated for clarity.) It also follows that the length of 

the segment shown is dx. 

Let's apply Newton's second law in the vertical y direction: 

Fy  =  may. 

The sum of forces in the y direction is 

Fy  =  T sin θ2 − T sin θ1. 

Using the small angle approximation, sin θ ≅ tan θ = ∂y/∂x. So we may write: 

 

So the total force depends on the difference in slope between the two ends: if the string were 

straight, no matter what its slope, the two forces would add up to zero. Now let's get 

quantitative. The mass per unit length is μ, so its mass dm = μdx. The acceleration in the y 

direction is the rate of change in the y velocity, so ay  =  ∂vy/∂t  =  ∂y
2
/∂t

2
. So we can write 

Newton’s second law in the y direction as 

 

Rearranging this gives 

 
Now we have been using the subscript 1 to identify the position x, and 2 to identify the 

position (x+dx). So the numerator in the last term on the right is difference between the 

(first) derivatives at these two points. When we divide it by dx, we get the rate of change of 

the first derivative with respect to x, which is, by definition, the second derivative, so we 

have derived the wave equation: 

 
So the acceleration (on the left) is proportional to the tension T and inversely proportional to 

the mass per unit length μ. It is also proportional to ∂y
2
/∂x

2
. So the a greater curvature in the 

string produces a greater acceleration and, as we have seen, a straight portion is not 

accelerated.  

 



A solution to the wave equation 

The wave equation is a partial differential equation. Sine waves can propagate in a one 

dimensional medium like a string. And we know that any function f(x − vt) is a wave 

travelling at speed v. In the first chapter on travelling waves, we saw that an elegant version 

of the general expression for a sine wave travelling in the positive x direction is 

y  =  A sin (kx − ωt + φ). A suitable choice of x or t axis allows us to set φ to zero, so let's 

look at the equation 

y  =  A sin (kx − ωt) 

to see whether and when this is a solution to the wave equation 

 
 

SEMI-INFINITE STRING 
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UNIT – IV – BOUNDARY VALUE PROBLEMS – SMT5204 



 

 



 

 



 

 

 



 

 

 



 

CHARACTERISTICS OF ‘DOMAIN OF DEPENDENCE’ AND THE ‘RANGE 

OF INFLUENCE’ 

 

 



 

 



 



 

MAXIMUM AND MINIMUM PRINCIPLES: 
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UNIT – V – DIRICHLET AND HEAT PROBLEM – SMT5204 







 







 

 

 

 

 

 


