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PARTIAL DIFFERENTIAL EQUATIONS:

If a dependent variable is a function of two or more independent variables, then an equation

involving partial differential coefficients is called a partial differential equation.

PDEs are models of various physical and geometrical problems, arising when the unknown
functions (the solutions) depend on two or more variables.

The simplest physical systems can be modeled by ODEs, whereas most problems in
dynamics, elasticity, heat transfer, electromagnetic theory, and quantum mechanics require
PDEs.

The range of applications of PDEs is enormous, compared to that of ODEs.

PDEs of applied mathematics, the wave equations governing the vibrating string and the
vibrating membrane, the heat equation, and the Laplace equation.

Solving initial and boundary value problems, that is methods of obtaining solutions
satisfying conditions that are given by the physical situation.

PDEs can also be solved by Fourier and Laplace transform methods.

Boundary Conditions: The condition that the solution u assume given values on the
boundary of the region R.

Initial Conditions: When time t is one of the variables, u (or Ut = du/ ot or both) may be
prescribed att=0

A relation between the wvariables (including the dependent one) and the partial differential
coefficients of the dependent variable with the two or more independent variables is called

a partial differential equation (p.d.e.)
For example:
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The order of a partial differential equation is the order of the highest order differential
coefficient occuring in the equation and the degree of the partial differential equation is the
degree of the highest order differential coefficient occurring in the equation.
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Types of Partial Differential Equations

|. Linear equation: A first order p.d.e. is said to be a linear equation if it is
lincar in p,q and z, i.c., if it is of the form

Ple,yp | e, y)g — Rla,y)z | S(r,y).
Example: yp — g — ryz + w.

2. Semi-linear equation: A lirst order p.d.e. is said 1o be a semi-linear equation
if it s linear in p and ¢ and the coeflicients of p and ¢ are functions of 2 and y
only, i.e., if it is of the form

Ple.ylp+XNe.y)qg — R{z,y.z).
Example: ¢'p — yrq — x2°.

3. Quasi-linear equation: A first order p.d.e. is said to be a quasi-linear equa-
tion if it is linear inopand g, 0., 0030 s of the form

Playuy, 2p | e,y 2 = B, wz2)

Fxample: (#° « 2%)p—ayg - 200+ .

. Non-linear equation: Partial differential couations of the form fla oy, 2,0 p0g)
1 that do not come under the previous three types are said 1o be non-linear
e ations,

Exmmple: pg — @ does not belong to any of the lrst three types, So it i85 a
non=linear fivet arder poae. Also reler o Example 1.2.0,

e Homogeneous and non-homogeneous

A linear PDE homogeneous if each of its terms contains either u or one of its partial
derivatives. Otherwise we call the equation non-homogeneous.

If each term of the equation contains either the dependent variable or one of its derivatives,
it is said to be homogeneous, otherwise, non-homogeneous. For example, equation (2) is
homogeneous, whereas equation (1) is non-homogeneous

e The partial differential equation is said to be linear if the differential co-efficients occurring
in it are of the I** order only or in other word if in each of the term, the differential
coefficients are not in square or higher powers or their product, otherwise, non-linear. e.g. x>
p+y’q=zisalinear in z and of first order

e APDE is linear if it is of the first degree in the unknown function u and its partial
derivatives. Otherwise it is nonlinear.
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FORMATION OF PARTIAL DIFFERENTIAL EQUATIONS

These equations are formed either by the elimination of arbitrary constants or by the
elimination of the arbitrary functions from a relation with one dependent variable and the
rest two or more independent variables.

Observations: When p.d.e. formed by elimination of arbitrary constants

If the number of arbitrary constants are more than the number of independent variables in
the given relations, the p.d.e. obtained by elimination will be of 2nd or higher order.

If the number of arbitrary constants equals the number of independent variables in the given
relation, the p.d.e. obtained by elimination will be of order one.

Observations: When p.d.e. formed by elimination of arbitrary functions.

When n is the number of arbitrary functions, we may get several p.d.e., but out of which
generally one with two least order is selected.

e.g. z = x f(y) + yg (x) involves two arbitrary functions, f and g.

Xys = Xp + yq — z (second order) ...(ii) are the two p.d.e. are obtained by elimination of the
arbitrary functions. However, 2nd equation being in lower in order to 1st is the desired
p.d.e.

Example 1. Form a pde by eliminating the arbitrary constants a and b from
z=(x+a)(y+b)
Solution:

d(l) p.w.rtox,

0z/0x = 1(y+b) == p = y+b

d.pw.rtoy
0z/0y= (x+a) 1 => q = x+a
Sub (2) and (3) in (1), z=gp

Example 2. Form the pde by eliminating the constants a and b from

z= (x*+a’) (y*+b?)



G.T. z=(x*+a’) (y"+b®) (1)

d{l)pw.rtux,:—z'=p=2x {y2+b2]:>%=}r1+b3 __________ 2)
d(l)pw.rto y,:_;=q=g},(x2+33}:>;_y=x3+az __________ 3)
Substitute

(2) & (3)in (1)

[ -_
= EE: P4 4:{}-'2

Example 3. Find the pde of all spheres having their centres on the z-axis.

Let the Centre of the sphere be (0, 0, ¢) point on the Z —axis and ‘r” it’s radius.

< (x-0) 3+|[3‘»,-r—{]':| 2+{z—(:] = [Since centre Lies on Z axis]
1e, :l{2+1v‘.,-r2+{z—<:}2 o -1
d(l) pwrtox, [c&er arbitrary constants]

2x+2{z—c}:—;={}
= x+tpl(z-¢c)=0 e (2)

d(l) pwr.toy,
2y + 2(z-c) j—; -0

=Sy +q@E-¢=0 e 3)
From( 2) and (3)

(2) = z—c=-x/p

(3) = z—c=-v/q

Sx/p=-yig

—=>qx = py, which is the required p.d.e

Example 4. Form the pde from (x —a)?+ (y — b)? = r?

Given that (x-a) :+{}r-h} e e —— (1)
d.p.w.r to x,
2(x-a) + EZ:—i =10 [ 215 a fun of x and v]
= (x-a)+zp=0 e (2)
dz
dpwr toy, P or
=(y-b)+z2q=0
2 (y-b) + 2252 = 0 5 (y-b) +2q

Eliminating a and b from 1, 2 and 3



2> x—a=-zp

3 =v-b=-2q

A (1) = (-zp)*H(-zq) 42 = 1
— Zp gt =r

= 7" (p+q+1)=r

which is the required p.d.e

Example 5. Form a partial differential equation by eliminating a, b, ¢ from the relation

LS A
Tt =1

Solution: Clearly in the given equation a, b, c are three arbitrary constants and z is a
dependent variable, depending on x and y. We can write the given relations as:

Ca 2
[(x.y.z)=[;z—+%:-+c—2—l]=0 ...(1)
then differentiating (1) partially with respect to x and y respectively, we have

LA 2 (s 20
e 0, | Keeping 5 0

and p» a. ay =0, |Keeping a!,’-0

L Pors o
or “z*‘.z F = x+alzp=0 ..(2)

2y 2:4
and E-;_E ;;}z 0 = Fy+bzg=0 ...(3)

Again differentiating (2) with respect to x, we have
I [E] nfz— ~0
dx

2
On substituting % = —ig—; from (2) in above equation, we get

2z (azY 'z
xax+[ax] T e =0

2
or xz-aj+x[a—z] _29 ¢ ...(4)

&
Similarly, differentiating (3) partially with respect to y and substituting the value of A

from (3) in the resultant equation, we have

2
Elzz 9z | _ .9z
=0
y ayg ay ay _.,{5}
Thus equations (4) and (5) are "partial differential equations’ of first degree and second
order.

Example 6. Eliminate the arbitrary function ‘f* from z = f (y/x) and form a pde.
Solution:



Giventhat z=f{y/’x) e (1)

dlpw.rtox,p -—= f (y/x)(-y/x ) J———— (2)
dlpwrtoy,q= ﬁ =fi(y/x) (1/X) = eeeomeeee (3)
Now
rGed

_—— 4 (;) xZ
B— q f’(-;)(l/x)

A A
= sz .

P__ Yy
=, o

q X
= PX =-qy

1s, px + qy = 0 1s the required p.d.e.

Example 7. Form the pdeby eliminating the arbitrary function from z% — xy = f (x/z)
Solution:
G.T zz—xy= fiey e (1)
d(l) pwr tox
iz
292 ¢ (e | e
ZLE—}’—F(LQ][ l

ZZ

2z p-y = ' (x/2) [Z Ip] ————————————— (2)

di{l)pwrtoy

2z ——x = f'(x/z) [zml} ai_ yl

2z g-x = f'

—xqg
F2
2) _ 2zp-y _z-xp

(3] 2zg—Xx o —xq

= (-xq) (2zp-v) = (2zq-x W z-xp)
— -2xZpq + Xyq =2;?iq—2:¢z]:lq—u+x3p
— xyq=2z'q-xz+Xp

= xzp + Ezzq —Xyq = Xz

= xzp —(xy - Zzz]q = xz 1s the required p.d.e

Example 8. Form the pde of all planes cutting equal intercepts from the x and y axes.



Solution:

The equation of such plane is

xatyat+tzb=1 & -eeeeee | (x and y have equal intercepts)
p.d.ow.r. to x
1 1az
a bax
i-l—% =0, p= —g - 2
pdwr.toy
Il '5‘_ _
a b dy
tieo oo 0
From (2) and (3)

P=q
p —q = 0 1s the required p.d.e.

Example 9. Form the pde by eliminating the function fromz =f(x +t) + g (x —t)
Solution: z=f(x +t) +g (x - t)

dpwrtox,p =j—i =f(x+)Hg'(xt) = - —(1)

dpwrtot, q=‘;—i=fl{x+l)-g](x-t} ............ (2)

£=F ) XA e (3)

F—[‘ (x+) +g"(x-1) (4)
%z 9%z

From (3)and (4), Froiakere

= f ).
Example 10. Form partial differential equation from 2= xfiEs s Sl D

Solution: Clearly z is a function of x and #
c'lz
o - ﬁ{x+;]+xﬁ[x+t}+fz[x+t]

q=%=xf1'[x+t]+ fz’[x+t}

= ‘Fz = flx+)+xfix+)+ flx+D)+ f7x+1)

=2fi'lx+0+xfi"x+ 0+ f;,"(x+ 1)

s—ma—m—ﬁ[x+t]+xf, {x+r]+f2 (x+1)

I'='T—r; xfx+)+ f;"(x+1)



Now (r+D)=2f"lx+0)+2xfi"(x+ D +2f,"(x+ 1) =2s
Pz Pz, 'z _

or 2 of “oxat

COMPATIBLE SYSTEMS OF FIRST-ORDER PDEs
A system of two first-order PDEs f (X, y, u, p, q) =0 (1) and g(X, Yy, u, p, q) = 0 (2) are said to be
compatible if they have a common solution
Equations (1) and (2) are compatible on a domain D if
(1) J=0o(f,g) d(p,q) = 0onD.
(i1) p and q can be explicitly solved from (1) and (2) as p = ¢(x, y, u) and q = y(X, y, u). Further, the
equation du = ¢(x, y, u)dx + y(x, y, u)dy is integrable.

Theorem:
A necessary and sufficient condition for the integrability of the equation du = ¢(x, y, u)dx + y(x, y,
u)dy is
[f,g]l=0(f, g) /ox, p) + o(f, g) /oy, q) +p A(f, g) /0(u, p) +q d(f, g) /6(u, q) = 0. ----(3)
equations (1) and (2) are compatible iff (3) holds

Example: Show that the equations xp — yq = 0, Xxup + yuq = 2xy are compatible and solve them.
Solution. Take f=xp —yq=0, g=u(xp + yq) — 2xy =0. Then fx =p, fy=—q, fu=0, fp=x, fq=
~y, gx=up — 2y, gy = uq — 2X, gu = Xp + yq, gp = ux, gq = uy.

Compute

o(f,g) £ f X —y
J= - , i = - =2 0

8(:0" q) g &g ux uy uxy + uxy uxy ?é
for x # 0, y #0, u # 0. Further,
_3(f,g) fe fp P X
8()(1 P) 8x &p up — 2y ux uxp X( up _V) xy
o(f.g) f, £ 0 N i
. = = = O — X\ xp + —J— vy — X
d(uu p) Bu B8p xXp+yq ux ( P yQ) P vq
o(f.g) f, f g _y ‘

- = — —quy + y(ug — 2x) = —2

Ay, q) 8 & uq —2x uy quy + y(ug — 2x) xy
o(f,g) f, f, 0 —y ‘ )
Fi = P — X + — + X )
(v, q) 8 & xp+yqg zy | = YOPTYOD=yatxp

It is an easy exercise to verify that

d(f,g) O(f,g o(f, g of.g

g = A8, N08), Jg) | Olrg)

Ax,p)  Ay.q) ~Au,p) "O(uq)

= 2xy — x’p* — xypq — 2xy + ¥°q" + xypq
— 2P — x2p?
= 0.

So the equations are compatible.




Next step is to determine p and q from the two equations xp — yq = 0, u(xp + yq) = 2xy. Using
these two equations, we have uxp +uyq —2xy=0==>Xp +yg=2XyuU==2Xp=2Xyu==p=yu
=oX,y,u).andxp—yq=0==>qg=Xpy=Xyyu==>qg=xu=vy(x,y,u).

Substituting p and g in du = pdx + qdy, we get udu = ydx + xdy = d(xy), and hence integrating, we
obtain u 2 = 2xy + k, where k is a constant.

CHARPIT’S METHOD

It is a general method for finding the general solution of a nonlinear PDE of first-order of the form f
(Xv yv U, pv q) = 0

Basic ldea: To introduce another partial differential equation of the first order g(x, y, u,p,q,a) =0
which contains an arbitrary constant a and is such that

Q) equations can be solved for p and g to obtain p = p(x, y, u, a), q = q(X, Y, U, a).
(i)  The equation du = p(x, y, u, a)dx + q(X, Y, u, a)dy is integrable.
(ili)  The compatability of equations yields

of.g)  of.g) Of.g)  Ofg)

-61= 560 T30, 0) TP(ap) T I0(aq) "

auxiliary equations:

dx dy du dp dg

fo  fy  phhtafy  —(h+ph)  —(f +df)

These equations are known as Charpit’s equations. Once an integral g(x, y, u, p, q, a) of this kind
has been found, the problem reduces to solving for p and g, and then integrating equation.

Example: Find a general solution of p>x +q 2y = u.

Solution. To find a general solution, we proceed as follows: * Step 1: (Computing fx , fy , fu, fp,
fq). Setf=p2x+q2y—u=0.Thenfx=p2,fy=q2, fu=-1, fp = 2px, fq = 2qy, and hence,
pfp+afq=2p2x+2q2y, (& +pfu) =—p 2 +p, ~(fy + qfu) = —q 2 +¢q

Step 2: (Writing Charpit’s equations and finding a solution

g(x,y,u,p,q,a)).
The Charpit’s equations (or auxiliary) equations are:

dx dy du B dp B dg
fo  fo  phtafy  —(h+pf) —(f +qf)
dx dy du dp dg

2px  2qy  2(p’x+q%) —pPP+p —¢*+gq

From which it follows that
p’dx +2pxdp  q°dy + 2qydq
2p3x +2p?x —2p3x  2q%y +2q%y — 2q3y
p2dx + 2pxdp  q*dy + 2qydq
p*x 9’y
On integrating, we obtain

—




log(p®x) = log(¢°y) + log a

p’x = aq’y,

pPx+qfy =u, p*x=aq’y
= (a’y)+qy=u=qy(1+a)=u

1/2
— e == [
(1+a)y (I+a)y]
2 2y u_y au

p- =aq ;za(l_l_a)y;:(l—l-a)x

— o]

au 1/2 u e
du=|—2 | dx+|——]| d
! [{1+a}x] x+[(1+3h’] g

1/2 1,2 1/
(1+"”) du — (3) dx + (l) dy.
u X ¥

Integrate to have

[(1+ )] = (ax)2 + (y)Y2 + b
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JACOBI METHOD

The auxiliary equation for Jacobi’s method is

dx dy dz dy, Gy, dy
_fux _)Fu_.,. _)Fuz )Fx )3.! f:z

and solve the equation

Z

du = u,dx + u,dy + u,dz

Ex.1) Solve or find complete integral or integral curves of
22+ zu, —ui+uy =0
by Jacobi’s method.

Sol. Let

By Jacobi’s method, the auxiliary equation is

dx dy dz d,, du, d,

~foe Too Su e f

d« dy dz d, du, dy

2u, —2u, -z 0 0 2z+u,
Consider
dy
X —_
0 dy, =0
Integrating, we get
U, =a
similarly consider
dy
T =0
Integrating, we get
Uy =b

Now from equation (1), we have
2Z2+zu, —a*+bht=10
zu, = a* —b* - z*

gt — b2 -z

U, = z

(D



Integrating, we have
2

z
u=ax+by+(a2—b2)logz—?+c

This is the general solution or complete integral or integral curves or primitives
of given DE (1).

Ex.1) Solve or find complete integral or integral curves of

p*x+q’y =z
by Jacobi’s method.
Sol. The given PDE 1s
p’x+q’y =z
— M .
where p = " andg = "

(2 x>

xug + yuj = zu;

xuy +yuy — zu; =
Let

f(xy zuy, uy,u,) = xud + yul —zul =0

(1)

By Jacobi’s method, the auxiliary equation is

dx dy dz  dy, ﬂ _d,

“fo toy Fu o f F

Z

dx  dy  dz _dux_duy_duz
—2xu, —2yu, 2zu, uf uj —uZ
Consider
dx _duz
—2xu,  ul
dx dy,
—2x  u,
d d
2o F

Uy X



Integrating, we get

2logu, + logx = loga
gt g g Similarly, consider

logu + logx = loga

dy

log(xu2) = loga —2yu,
xui=a dy
u_,zc = 5 _2}'

d
" =JE p e Y
x x u}_

Integrating, we get
2logu, + logy = logb
loguj + logy = logb

log(yu;) = logh

yu; =b
b
uf,:—
y
u, = E zui=a+b
y
a+b
uz =
Now from equation (1), we have z
x=+ E—zuz— B
x y}’ z = Uy = 7

Consider equation

a b a+b
du= [=dx+ |=dy+ dz
X y z

Integrating, we have

u=2ax+2,/by+.(a+b)z+c

This 1s the general solution or complete integral or integral curves or primitives
of given DE (1).




Inteoral surface passinge through a eiven a curve
Consider the first order linear PDE Pp+ Qg =R

We know that the auxiliary system associated with the given PDE is given by

dx c.ty_E

Q2 P R

Let u(x,v,2z) =c¢; and v(x,y,2) = c; represent the integral surface of the above
system.

Suppose that [x(t), v(t), z(t)] be the parametric form of the curve passing
through the above integral surface

e, ulx(®), y(t), z()] =0
and  v[x(t), y(t), z(t)] =0
The general integral of the given PDE is f(u,v) = 0, subject to the condition that

flepcz) =0

Exercise: Find the equation of the integral surface of the PDE
2y(z=3)p+ (2x —z)q = y(2x = 3)
Sol: The auxiliary system is given by

dx _ody dz
2y(z-3)  2x—z  y{(2x—3)

Taking the 1% and 3™ fraction of (1.62a), we get

dx _ dz
2y(z-3)  yi2x-3)
dx dz
= = —_—
2(z—3) 2x-3
= (2x = 3)dx = (2z — 6)dz

Integrating we get
x*—3x=z"—6z+0q

or x*=3x—z*+6z=0¢

Using (0, y,—1) as multipliers each fraction

ydy — dz _ydy—dz ydy-—dz
2xy —yz=2yx+3y —=yz+3y y(3-2)

Equating this expression with 1¥ fraction of



=

=

dx _ ydy—dz
2y(z=3)  y(3-z)

dx  _ ydy—dz
2y(z=3)  y(3-2) Integrating we get
dx _ ydy—dz x+y?=2z=c
2 -1 g o

dx + 2ydy — 2dz = (0 Now the given curve is ¥t +yi=2x, z=0,

This equation can also be written as  (x — 1) + (v — 0)* = 1 which is circle with
centre (1,0) and radius 1. The corresponding parametric equation is

x=1=cos#l, yv=0=sind, z=10.
or x=1+cosd, y=sinf, z=10.
By the given condition, the integral surface passes through the above circle. Therefore
1+cos@+sin®8=2(0)=c,
14+cosf+1—cos?8 =rc,

24+ cosf —cos? B =y

Also from (1.63), we get

=

(1+cos@)*—3(1+cosf)—0%+6(0)=c¢
1+ 2cos@ +cos?f —3—3cosb =
cos?f —2—cosl =q

—(2+cos@ —cos?f)=¢

From (1.65) and (1.66), we get

or

Cy = =Cy

E1+CE=D

x*=3x=—z'+6z+x+y*=2z=0

x4yt =zt =2x+4z=10

Integral surface orthogonal to given surface:

Consider the linear partial differential equation

Let

Pp+Qg=R

flx,y,z2) =c¢

be the integral surface of (1.67), also for any surface

z=g(x,y)



Exercises: Find the surface which is orthogonal to one parameter system

z = cxy(x® + ¥*) and passes through the hyperbola x* = y* = a?, z=0.

; . Epyd 1
Solution: The given one parameter system is iyt _ 1
z (4
3 2
Let fx,y,2) = 2]
e vl yt)eeaty
Now, P=f, = —_—
e x(x®4yPeaxy?
Q=fy= - z
_ o _ —xy(xiey?)
and R= f;.. = z—z
now auxiliary system of equations are
dx _ dy _ dz
yiZ+y2)raxty T x(x2ey)raxy? T —xy(xZ+y?)
z z z%
dx dy zdz
or > = = —] -
y(x2+y2)e2x?y  x(x*+y?)+2xy?  —xy(x*+y?)

Using multipliers (x, y, 1), each ratio of (1.70) is equal to

xdx+ydy+zdz _ xdx+ydy+zdz

3x3y+xy3+x3y+3xyd—x3y—xy3 3xy(x?+y?)

Equating this with 3™ term of (1.70), we get

xdx+ydy+zdz __ zdz
3xy(x2+y?)  —xy(xZ4y?)

= xdx + ydy + zdz = —3zdz
= xdx + ydy + 4zdz = 0
Integrating

Xy e _a

2 2 2z 2
= x2+y?+4z%2 =

Using multipliers (x,y,0) and (x,—y, 0) and equating the two fractions we get

xdx+ydy _ xdx—ydy
3Ix3y+xy3+x3y+3xy3  3x3y+xy3-x3y-3xy3
xdx+yd xdx—yd
= ydy _ ydy

ax3y+axy’  2x3y-2xy3

= xdx+ydy _ 2(xdx—ydy)
xZ4yz | xi-y?

Integrating, we get

log(x? + y?) =2log(x* = y?) + logc,



x4yt
= (x2-y¥)2 €2

Now parametric systems of hyperbola is

x=asecH, x=atan @, z=10

& from (1.72),
¢; =a* sec’d +a*tan® @
= ¢, =a’(sec’f +tan’ 8)
o = a® sec? G+a®tan® o
2 (a? sec? @—a?tan? @)
sec’ #+tan? f
= o = ————
2 a?(sec? d—tan2 @)2
- __ secd+tan? @
2 az(1)2
5
z
= — i
2 a?(1)?
2] — fll
= Ly = pry
= ate, = ¢
= £, =ate,

The required surface orthogonal to the given system 1s

(x2-y%) (x2+y?+427) =t
xEyd

QUASILINEAR EQUATION

Quasilinear Equations: The Method of Characteristics

The quasilinear partial differential equation in two independent variables,
a(x, y, uux +b(x, y, uuy - c(x, y, u) = 0.
dt=dx/a=dy/b=du/c.

Example: Find the general solution: uy + u, —u=0.

de  dy  du
1 1 -
e can pair the differentials in three ways:
dy du du
=5 = lf = .. = # <. = -
dx dx " dy H

¢ tiwo of these relations are independent. We focus on the
he first equation gives the characteristic curves in the xy
sily solved to give

¥y =x-4Cy.

second eguation can be solved to give u = cpe™.



general solution of the differential equation as

u(x,y) = Gly — x)et.
Find solutions of uy + 1y — u = 0 subject to u(x,0) = 1.

We found the general solution to the partial differential equation as u(x,y) =
G(y — x)e*. The side condition tells us that u = 1 along y = 0. This requires

1=u(x,0) = G(—x)e".
Thus, G(—x) = e~ *. Replacing x with —z, we find
G(z) =¢.

Thus, the side condition has allowed for the determination of the arbitrary function
G(y — x). Inserting this function, we have

u(x,y) = Gy —x)e* =¥ "e* = éV.
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Second order partial differential equations in two variables

The general second order partial differential equations in two variables is of the form

The equation is guasi-linear if it is linear in the highest order derivatives (second order),
that is if it is of the form

alx, v, u, u,, i(l‘.]u waT 2 b0y, u,, u_\.)u ot clx,y, u,u,, u_\.]u_\._\. =d(x,y, u,u,, ul\.)

We say that the equation is semi-linear if the coeflicients a, b, ¢ are independent of u. That 1s 1f 1t
takes the form

alx, y) o +2bx, Vu,, Telx, yyu,, = dx, y,u v, u,)

Finally, 1f the equation is semi-linear and d 1s a linear function of u, v, and u,, we say that the
equation is /inear. That is, when F is linear in 1 and all its derivatives.

Finally, if the equation 1s semi-linear and d 1s a linear function of u, u , and u ,, we say that the
equation 18 /inear. That 18, when F is linear in u and all its derivatives.

Let &= g(x, v), n=1{x, y) be an invertible transformation of coordinates. That 15,

9
aE.n)_ |ox
axy) |2¥

dx

By the chain rule

My = ”;:'i’.».- + ”il;lli".w u_r - “:'.E,q:'_'.' - "r;w_'.'

My = U f'..-,"p.r.n' T tp.r(u:.fj.:, e *+ "f-..—,'r; I||!'rl:] + ”r; Yo T w.t("i].';'@.r + “:;rﬂ’.:]

3 2 - . .
= Uz + Qugd Y, + wputp” + firstorder derivatives of u

Similarly,

2 2 . .
Uy = U™ + Quggdpp, + wpptp” + first order derivatives of u

Uy = Uz + HEFF(EP_{!P..I. + -r,t:_‘.lp_{) + gy, + first order derivatives of u



Substituting into the partial differential equation we obtain,

A&, nu g +2B(E, n)u et C(E, Mt yy = D(E n,u,ug, uy)

==

where
AE m=ap,” +2b9 ¢, +co,’
B{ E" n} = a¢.l.' w.l.' + b{¢! IPe'r_'l.' + IP“.L’¢_1'} + Ctp_'u' w_-.'

B - AC=(b*-ac) [P] .

CE m=ap,” +2by y, +ey,”. %)

Therefore B?— AC has the same sign as b *— ac. We will now choose the new coordinates
E=¢lx,y), n=yx, y) to simplify the partial differential equation.

¢(x, ¥) = constant ,y(x, ¥) = constant defines two families of curves in R . On a member of the
family ¢(x, ¥) = constant, we have that

Therefore substituting in the expression for A(5, 1) we obtain
7 7 2 2
A§, n)=a :p}.' yo=2b tp}.' v+ cq}J.'

= ¢, [ay* -2by+c].

This nonlinear ordinary differential equation 1s called the characteristic equation of the partial
differential equation and provided thata £ 0, b *—ac>0 it can be written as

=
o= b+ \b" - ac

i

For this choice of coordinates A(E, 1) = 0 and similarly it can be shown that C(E, i) = 0 also. The
partial differential equation becomes

285 mu = D& nuueg, u”]



where it 1s easy to show that B(E, i) # 0. Finally, we can write the partial differential equation in
the normal form

gy = INE 1, u, ug )

The two families of curves ¢(x, y) = constant ,y{x, v)= constant obtained as solutions of the
characteristic equation are called characteristics and the semi-linear partial differential equation is

called hyperbolic if b 2_ ac > 0 whence it has two families of characteristics and a normal form as
given above,

If b2~ ac <0, then the characteristic equation has complex solutions and there are no real

characteristics. The functions @(x, v), y{x, ¥) are now complex conjugates . A change of variable to
the real coordinates

£=¢lx, y) + lx, y), 0 =i ¢lx, y) = yix, ¥))

results in the partial differential equation where the mixed derivative term vanishes,

U =D(& n, U, Ug, tp).

S

In this case the semi-linear partial differential equation is called elliptic 1f b *— ac < 0. Notice that the

left hand side of the normal form 1s the Laplacian. Thus Laplaces equation is a special case of an
elliptic equation (with D = 0).

Hge = DNE nuug, ”r;]

=
-

The partial differential equation is called parabolic in the case b*—a=0.An example of a parabolic
partial differential equation is the equation of heat conduction

2
du " u
— = k— =0 where u=u(x, ).

at ax-

Classify, reduce to normal form and obtain the general solution of the partial differential equation

X u, + l'tjru_n_ Ty, = 4™
For this equation b —ac= [:ry]: -x _].=1 = [ . the equation 1s parabolic everywhere in the plane (x, ). The
charactenstic equation 15

gy

y ===

¥
4 =
a X X

Therefore there 1s one family of ::harau:u:nxtms; = constant.



Let E=xand =‘-1: . Then using the chain rule,

- v
My = g I +u ii[r_qJ_ e - z Uy

1
u‘l_ = u_,;_ 0+ u”[:] = _‘%u‘j

1 1
o= =m0 + u -l = —=u
V¥ .r( ns ’I’.i‘[_t)] w2
B 1 1 v
U T gy T gl | - T
x X x

y 1
= L L - —2H

x e YT 2

Substituting mto the partial differential equation we obtain the normal form
Integrating with respect to £

where 15 an arbitrary function of a real vanable. Integrating again with respect to &
u(§, n) =25 + Hin)y+ g(n),
Therefore the general solution 15 given by
.

e ) =27 +xf (Y + 2(2)

where f, g are arbitrary functions of a real variable.

Deriving the wave equation

Let’s consider a string that has mass
per unit length is p. It is stretched by
a tension T, which is much larger
than the weight of the string and its
equilibrium position is along the x
axis. This diagram shows a short
section of the string, stretched in the
X direction, and the forces acting on
it. Our analysis only applies for
small deformations, for which the
string is a linear medium, and we




neglect the gravitational force on the string (which in any case is constant).

One consequence of this restriction to small deformations is that the angle 6 between the string
and the x direction is much smaller than 1, so sin6 = 6 and cos 6 = 1. (On our diagram,
however, the deformation has been exaggerated for clarity.) It also follows that the length of
the segment shown is dx.

Let's apply Newton's second law in the vertical y direction:

Fy = may.
The sum of forces in the y direction is
Fy = Tsin 6, —T sin 0;.

Using the small angle approximation, sin 6 = tan 0 = dy/0x. So we may write:

_ 6?) (ﬂyj
F, r (ﬂx A r X9
So the total force depends on the difference in slope between the two ends: if the string were
straight, no matter what its slope, the two forces would add up to zero. Now let's get
quantitative. The mass per unit length is p, so its mass dm = pdx. The acceleration in the y
direction is the rate of change in the y velocity, so a, = dvy/0t = dy*/0t>. So we can write
Newton’s second law in the y direction as

v, = 7((3)- (%)) - vex @

a"f:-

Rearranging this gives

&) - ()
a’?' _ I \(}X 6‘

ot H dx
Now we have been using the subscript 1 to identify the position x, and 2 to identify the
position (x+dx). So the numerator in the last term on the right is difference between the
(first) derivatives at these two points. When we divide it by dx, we get the rate of change of
the first derivative with respect to x, which is, by definition, the second derivative, so we
have derived the wave equation:

2y T &y

FTR V) &
So the acceleration (on the left) is proportional to the tension T and inversely proportional to
the mass per unit length p. It is also proportional to 8y2/6x2. So the a greater curvature in the
string produces a greater acceleration and, as we have seen, a straight portion is not
accelerated.




A solution to the wave equation

The wave equation is a partial differential equation. Sine waves can propagate in a one
dimensional medium like a string. And we know that any function f(x —vt) is a wave
travelling at speed v. In the first chapter on travelling waves, we saw that an elegant version
of the general expression for a sine wave travelling in the positive x direction is
y = Asin (kx — ot + ¢). A suitable choice of x or t axis allows us to set ¢ to zero, so let's
look at the equation

y = Asin (kx — ot)
to see whether and when this is a solution to the wave equation

2y T %y
a2~ M ox>

SEMI-INFINITE STRING

Example Consider the nitial boundary value problem
ty — oty = 0 for =01 =10
wlx, 0) = glr), wlr 0)=h(zx) Jor x =1
u(l,t) =10 fort =10,

where g(0) =0 = h(0). If we exlend g and h as odd functions on —oo < r < 00, show
that d'Alembert’s formula gives the solution.

Proof. Extend g and k as odd funetions on —oo << o < oo

x =) ; hix). =0
)= Ih T2 TOEE SN
—g(—x), =<0 —h(—z), =<0

Then, we need to solve

- q = o . .
U — CUpe = ) for — o0 = oo, b =)
wlax,0)=glx), dlx,0)=hz) for —eoo < x < oo
To show that d’Alembert’s formula gives the solution to we need to show that

the solution given by d’Alembert’s formula satisfies the boundary condition a(0, ) = (0.

1 1 T+t .
e, t) = =(glert+ect)+gle—cl))+ — / R(£) dE,
: 2" ’ 2 Jo_w
: 1. : L[
W(0,t) = 5(d(ct) +a(—et) + 5= [ h(€)d

= l[f}[r'!] —glet)) + i[HI:H’] — Hi—et))
2x ’ " 2e
1
= 04 —(H(et)— H(et)) = 0,
2e

where we used H(r) = ﬂ; n'?r[{] df; and since I is odd, then H is even.
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Initial Value Problem: An initial value problem is one in which the dependent variable
and possibly its derivatives are specified initially (i.e. at time r = 0) or at the same value

of independent variable in the equation. Initial value problems are generally time-
dependent problems.

Pure Initial Value Problem (Cauchy Problem):

1) du _ < 1z0
— == —co £ XS oa, [ 2
dr dx
along with the initial condition
H(x,l]}=_f(ﬂ._, s I -
i <w, 120
—=— —co £ X < oo, >
dr  dx”

along with the initial conditions

u(x,0)= f(x)

u,(x,0)=g(x), —e0 € X < 00
a) Initial Boundary Value Problem :

i) ai:a_f xz20,120
di oy’

along with the initial condition
u(x,0)= f(x) 0<x<os
and the boundary condition

w0.n=a, (), w(00)=alt), r=0.

¥

du _ ﬂ
gt ax

0=x=1l,1rz0

along with the initial condition

u(x,0)= f(x)

D=x=1
and the boundary conditions

u(i)y=a,(r), wil.t)=a,(1). t20.



Boundary Value Problems: A boundary value problem is one in which the dependent
variable and possibly its derivatives are specified at the extreme of the independent
variable. For steady state equilibrium problems, the auxiliary conditions consist of
boundary conditions on the entire boundary of the closed solution domain. There are

three types of boundary condition:

i. Dirichlet boundary condition: Dirichlet boundary condition is a  type
of boundary condition, named after Johann Peter Gustav Lejeune Dirichlet (1805-
1859). When imposed on an ordinary or a partial differential equation, it specifies
the values a solution needs to take on the boundary of the domain. For example if
an iron rod had one end held at absolute zero then the value of the problem would
be known at that point in space. The question of finding solutions to such
equations is known as the Dirichlet problem. 1t is also called first type boundary
condition.

ii. Neumann boundary condition: The Neumann boundary conditionis a type
of boundary condition, named after Carl Neumann. When imposed on
an ordinary or a partial differential equation, it specifies the values that
the derivative of a solution is to take on the boundary of the domain. For example
if one iron rod had heater at one end then energy would be added at a constant rate

but the actual temperature would not be known. It is also called second type

boundary condition.

iii. Mixed boundary condition: The linear combination of Dirichlet and Neumann
boundary conditions specified on the boundary is known as mived boundary
condition. Mixed boundary conditions are also known as Cauchy boundary
conditions. A Cauchy boundary condition imposed on an ordinary or a partial
differential equation specifies both the values a solution of a differential equation
is to take on the boundary of the domain and the normal derivative at the

boundary. It is also called Robin’s boundary condition.

BOUNDARY VALUE PROBLEM

o 9'u 1{ou
1. Heat Equation: — =—|—
A S k[ar]l

B 'u d'u 1(du

In two dimensional —+——=—| —

o L 13 )
2 2
2. Wave Equation: EE = 1 f.'_u
. ax'l c'z arz

3. laplace Equation: Vu =0



Solution of one dimensional wave equation with initial valie pr&bfam

Let problem beu, —c*u_ =0, —o0 < x <00, 2() | (1)
InitialConditionsu(x,0)=1 (x),k, (x.0)=v(x) | (2
Let characteristic lines be £ = x—ct,5 = x+ct '
Sowe have u, = p1.¢ +ui), = p; ﬂ:, _

u, :ﬂgf; .‘|‘H#ﬁ', :C{ﬂq _4”;] )

At d ) | |

.h_?=aiu,)=a_[“; ﬂf«] =Hyg t2ug Ul _“'(_3)
F

Sfﬂﬂ-l’ﬂrf_}-’. aa—:;:cz[;lg _2“@- +#w} ...ll"f)i

Substituting (3) and (4) in equation (1), we get 4., =0

Integrating, p(&,n)=¢(&)+y (), where ¢ and Y- are arbitrary functions.
. the general solution is given by

iz, t)=gdlx-ct)+wix+ct) Y

Substituting initial conditions in (3), we - ~ '

P +p(x)=n(x) .(6)

elo'(0)-y'(0)]=v(x) - -

Inegrating. 9(x) ~y(x) = ~ e A7)
a . . P

From eguation (6) and {’?’), ﬁm nx) +_.-jp{.f}d§ and w ( } ?}‘(x} 1 j’v{f]ﬁ-’;
cy .

-, equation (5) gwes uix, a‘] =~ [q{x +ef) +7(x - ca‘j]+ % Jv(§M§
xI=cf
wﬁzc}: is E:'wwn as D’ Afemberr s solution of one dimensional wave equanun

Jj"v=ﬂ.!'f:en ufx,t)= %[ﬂl{x+ et)=n(x—ct)]

Solution of wave equation with initial and boundary conditions.
Consider one dimensional wave equation _
u, =c’u,, 0Sx<Lt>0 _ ()]
Boundary Conditions :u(0,1)=0=(L,t),t >0
Initial Conditions:u(x,0)= f(x),u, (x.0) = g(x)
Let ufx,t) be solution of (1)
u (x, t) = X{x) T(t) and substituting into equation (1) we abram
T _ c'T a°x
‘ﬂ.2 . g‘il't
. d'X/ldx' d'Tldi’ '
ie, X == =k f2)

¥




d*X

2
Case- I When k>0, we have k= *. Then “ - X =0and® L. - T =0
' dt
Their solution can be put in the form
X=ce"+ce™
T=c,e™ +c,e™ o
Therefore, u(x,t) = (c,e™ +c,e™ Ne,e™ +c,e™™) '_ f3)
CE.H.'H Let k=0. waﬂ wehawd X =0 d'T =0
a* dr?

Tﬁetr solutions are fﬂund to be X=Ax " B, T= {I: +D _ _
Iherefare, the required solution of the PDE is ufx, t} = (Ax + BNCt + D)

Case HI: When k<0, say k =~A%, the differential equations are
d* x d'T

dr?
Th&:r general solutions give

u(x,t) = (¢ cos Ax +¢, sin Ax)(c, cosc At + ¢, sinc )

+A*X =0, +et AT =0

Example 1. Let u(x,t) be solution of initial boundary value problem
0u &’
a
uix,0) = cos [ﬁTxJ 0= x<e

Osx<on =0

a—u(x,[}}=[},l]£x{m
dt _
a—“{ﬂ,r]:ﬂT tz0
ox
Solution: u_=u,,
' 3
u(x,0)=n(x)= cns—;

u, (x,0)=0=v(¢)
J.ByD 'Afentberr principle sn!un‘an is given by

u{x 1= [1}‘(.:: +ct)~ ?J'{x c.l:)]

u{x,t]=l cnsm: +€ffl_m G -‘-‘i‘} —s!.nE'\EsmE '
2 o2 N 2.2

Unigueness Theorem. The solution to the wave equation u, =c*u_0<x<L,t>0
satisfying the initial conditions
u(x0)=f(x)0sx<L
u, (x,0) = g(x), 0sx<L
and boundary conditions u(0, t) = u(L, t) = 0 where u(x, t) is twice dgﬁ’emnrmbfe function w.r.t to x and
t. is always unique



CHARACTERISTICS OF ‘DOMAIN OF DEPENDENCE’ AND THE ‘RANGE
OF INFLUENCE’

The solution w(x, t) of the initial value problem depends
on the values of « at the endpoints of the interval [z — ef, # + ¢f] and on the
values of 3 on this interval only, see Figure The interval [x — ef, x + ¢f]
is called domain of dependence.

t

(xpsty)

X4Cl=const.

J

Xp~Ch X, Xg+ct, X
Figure  : Interval of dependence

2, Let P be a point on the r-axis. Then we ask which points (x, 1) need
values of a or 3 at P in order to caleulate w(x, )7 From the d’Alembert
formula it follows that this domain is a cone, see Figure This =et is
called domain of influence.

1

—

K—Cl=COnsl

Figure - Domain of influence



Initial/Boundary Value Problem
Problem 1. Consider the initial /boundary value problem

tgt — gy = 0 D<ax<L t=10
u(x,0) = g(z), w(x,0)=~h(z) O0<zx<L
u(0,t) = 0, w(L,t) =0 t=0.

Proof. Find u{x, 1) in the form

u(x,t) = QE{ - Zﬂﬂ CU‘:T + by (t) sin

n=1

nmwr

o Functions a,(t) and by(t) are determined by the boundary conditions:

0= u(0, 1) = 2L ﬂ +Eun =  an(t)=0. Thus

n=1

ulxr, t) = Z by (t) sin %
n=1

s [f we substitute into the equation wuy — c2uze =0, we get

- . =, i 2 nwr

Zbﬂ(t} SiﬂT + CQZ (T) (I}qu =1, or
n=1

B(t) + (“:“) b (t) =0,

whose general solution is

nmct nmet

by(t) = e sin L- + d, cos

Also, i, (t) = (%) cos 52 — dn(4%) sin 5L
s The constants ¢, and d,, are determined by the initial conditions:

oa i e v
g[.r] = ?..[I[:]':.,I.r]:l = Zbﬂ({]} sin% — Zdu sin nwr
n=1
- nwr '.I'I'JTI‘ 'H'J't'ﬂ"
h(z) = w(z,0) = Y b,(0) sin —— = Zi,n i
n=1

By orthogonality, we may multiply by sin(mmx/L) and integrate:

L
: T L
. [ﬂ g(x)sin -m;ra* dr = f ﬂz_; i, sin —.L‘:ll] m;w dr = de~
L . . . .

./n h{x) sin -m;m: dr = fn ﬂz_: Cn ﬂ;‘* sin HE'I sin m;r.r de = e, T—rfL%

Thus,
9 L - ) L .
iy = E[n g{x) sin % dr, Cn = —o : h(x) sin %m



Solution of Heat Equation

.Ieuﬁepmbiem be | 2% dtu)_ du D)
at ) o ' .
subject to boundary conditions u(0,)=0 and ufa,t)=0 't.and -f2)
initial condition is u(x,0)=f{x), 0<x<a. _ .(3)
Suppose that solution is of the form u(x,t)]=X(x)T(t) {4}
where X and T are respectively the functions of x and t alone. Using the values @‘ {4) in (1), we get
:{ ' T: i
=—=j {54 )
oL i) - ©
where L is a separafion constant.
From equation (5), we can deduce that X" - X =0 ' ..(6)
and T =uCT o (7)
using (2) and (4), we get X(0) = 0 and X{a) = 0 (8)

Now, we want to solve (6) subject to the bourm’my condition. Hence, we have the following cases:

Case I: Let ,u' =0. Then solution of (6) is given be{fr} Ax +B
Using (8), wegetA=B =0 = X(x)=0 = u =0, which does not mr::.fy (3)
Case II: Let = A, A #0.In this case, solution of (6) is given by X (x) = Ae™ + Be™

Using (8), we get A+B=0and 0= Ae*+De™ = A=B=0 =X=0 =u=0
Thus, we reject this case also.

CaseIH Let = -2, A#0.In rfus case, solution of (6) is given by X(x)= Acos Ax+ BSlna:Il.I
Using (8), we get
- A=0and Acosda+Bsinda=0
Let B#0, then sin da=0
=SAa= nﬂ.'r:-—l,z
nT

.:-‘*.1——- n-—lE
a

i ﬁerejhre non zero s::rhman af () is given

byx,.tx;=3.sm["“J

a

z .
putting, 1="% in (?) we gel = =--”—£1£dr-¢£arc dt
a T a T

whose solution is given by T (f) = B_‘,,s:"cfr _
Thus, we have y_(x,1)= X (x)T,((}=E, sin[m—':]e'ci' (9
T

.. The more general solution of (1) is given by

w(rt) =Y u, (0, 0)=3 E, sin[m:; "}efﬂ’ - (10)

n=| a=l

Putting ¢ = 0 in (10) and using (3) we get f (x) = i E, sin { nx "]
: A=l a

which is a fourier sine series, thus the constants E_are given by

—J f(x]sm[

]dx n=123,.



Solve the equation in region 0< x<x,t20,subject to conditions
(1, ~ Tremains finite as t = oo o
(2) T=0ifx=0and & forallt

x ﬂ§x££
() Ati=0T={
' T—x iﬂx'iﬂ'

2
Solution: The solution of equation is T (x,1) =Y E, sin nxe "™
n=]
T(x0)= 3 E, sinnx. where
A=l .
2# 2 xi2 L . .
E, =-—IT{1;U}Ein-'ixd_x = —[‘[ x sin nxdx + I(?I — Xx)sin de']
T z| 3 A |
“alr_ T inney” | - 4sin(na f2) .
=E[ xcusru:_sm:l.:} +[{ _{ETI}GGW‘FSHIM] - (z
T n o nooon - nr
[ i
_-_T[x,;}=ize—M5inm
g H

MAXIMUM AND MINIMUM PRINCIPLES:

(Maximum prineiple). Assume u is harmonic in a con-
nected domain and achieves its supremum or infimuwm in {1, Then u = const.
in (1.

FProof. Consider the case of the supremum. Let xp £ €2 such that

u(xg) = supu(x) =: M.
i
Set £ :=={xr e Q: wlx)=M}and O = {xr e Q: ulx) < M}. The
set €1 is not empty since zy € €2). The set {13 is open since u € C?(€2).
Consequently, 2o is empty if we can show that £, is open. Let T £ {2y, then
there is a py > 0 such that B, (T) € Q and u(x) = M for all x € B, (T).

If not, then there exists p = 00 and T such that |7 —F| = p, 0 < p < py and
u(¥) < M. From the mean value formula, see Proposition 7.2, it follows

1 M
M=— [ u(zr) dS < — [ dS = M,
wn ™ Jag, (T wap" " Jas, ()

which is a contradiction. Thus, the set €25 i3 empty since {1y i= open.

Corollary. Assume € is connected and bounded, and u € C(Q2) N C(1)
is harmonie in 2. Then u achieves its minimum and its maximum on the
boundary 992



Unigueness

Sufficiently regular solutions of the initial-boundary wvalue problem
are uniquely determined since from

c¢ = Die in 2 x(0,00)
clz,0) = 0
9e
in
it follows that for each + > 0

0 = f f (epe — D(Le)e) dedt
T la ) T 5.2 )
= ff PG dhf1+ﬂ-/£;fﬂ |Vacf? dudt
—f e*(x,7) .:fm+Df f |Vee|® dadt.
2 Ja o Jo

Problems: Heat Equation

0 on 90 = (0, =a).

Cronsider
Uy = gy for x=0,t=0
u(x,0) = g(x) for x =10
wl0,t) =10 for 1 =0,

where g is continuous and bounded for x > 0 and g(0) = 0.
Find a formula for the solution w(x, ).

FProof. Extend g to be an odd function on all of E:

. - g(x), x=0
glz) = { _g(—z), x=<0.

Then, we nead to solve

ity = Ty, for e R, =10
ifx. 0) = g(x) for = R.



The solution is given by: %

iu(x,t) = [H{J y. Dgly fIJ_\.r'"J_[ I[]r:it

1 a0 . a 0 (2 a3
- ST gyl dy + T TR L
»ﬂ?[fn £ aly) dy . gly) dy
o
gly) €
T

oo R ey
= ! |:f P y) dy — [ = gly) dyjl
-f.li'rf 0 J0

z%y ‘-‘I-r.' i 2% dru HE
4

2

v@ [ —e ) gly) dy

\f—f =
47
ul‘

ulx, t) = \,f_ =i 2sinh (

Sinee sinh(0) = 0, we can verify that u(0.¢) = 0.

f‘ e H_%) g(y) dy.

gly) dy.

)&
==

Problem 1: The 2D LAPLACE Equation on a Sqguare.
Let € = (0, 7) = (0, 7), and use separation of variables to solve the boundary value
problem

¥
Urr + Uyy =0 D<ey<m ]
w(0,y)=0=u(m,y) D<y=<mw
w(x,0) =10, ulx, w) = glx) 0<ax<m .
where g is a continuous function satisfying g(0) = 0= g(x). ¥ o
-

Proof. Assume u(x, y) = X(x)¥(y). then substitution in the PDE gives X"V + XV =
0.
XH YH'
— ==\
X Y

o From X"+ AX =0, we get X,(x) = apcosnx + bysinnr.  Boundary conditions
give

{ u(0,y) = X(0)Y(y) =0 X(0)=0=X(x).

u(m,y)=X(x)¥Y(y)=0
Thus, Xu(0) = a, = 0, and

Xolz)=bysinne, n=1.2.....
—nh, sinnr + b, sinnz = 0,
An=n% n=12,.... ¥



e With these values of A, we solve YY" —n’Y =0 tofind Y¥,(y) = e,coshny +
dy sinhny.
Boundary conditions give

wz,0)=X(z)Y{(0)=0 = Y(0)=0=nr,.
Yo (x) = dy sinh ny.

s By superposition, we write

o0
ulx,y) = E it,, sin nur sinh ny,

n=1

which satifies the equation and the three homogeneous boundary conditions. The
boundary condition at y = 7 gives

o

w(z, )= glx) = E iy sin nz sinh nr,
n=1
s T
. .. . . T,
[" glz)sinmz dr = E iy, sinh f sin na sinmaer dr = Eﬂ"’ sinh .
0 0
n=1

. 2 " .
fi, sinhnw = — gl x) sinny dr.
i
Jo
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Inhomogeneous equation

Here we consider the initial value problem

Ou = w(r.t) onzeR" teR
u(x,0) = f(x)
ut(ﬂ':, ﬂ] = QEIL

where Du 1= uy — 2 Au. We assume f € CF, g € C? and w € C?, which

are given.
Set w = uy 4 wo, where u; is a solution of problem with
w =1} and us is the solution where f =0 and g =0 in Since

we have explicit solutions «; in the cases n =1, n = 2 and n = 3, it remains
to solve

Ou = w(rt) onzeR" teR
ulx,0) = 0
w(x,0) = 0.

The following method is called Duhamel’s principle which can be considered
as a generalization of the method of variations of constants in the theory of
ordinary differential equations.

To solve this problem, we make the ansatz

t
u(x, t) =f vlr, b, 8) ds.
0
where v is a function satisfying

Op =0 forall s

and
vz, s, 8) =1

From ansatz and assumption we get

t
= ﬂ{ﬂ:,lff}+f vl 1, 8) ds,
0

t
= f vz, 1, 8).
0

It follows wug(x,0) = 0. The initial condition w(x, 1) = 0 is satisfied because

i
tip ve(w, t,t) + f v, t, ) ds,
1]

t
Dpu f HMovlx. t. ) ds.
0



t
ug — cchgu = 't,‘t{.'l?,t,”-'-f{ﬂif}{i,tf.‘i:] s
0
= w(x,t).

Thus necessarily w(x.f,1) = wix. t), We have seen that the
ansatz provides a solution of if for all &

Ov =10, viz,s,8) =0, vz, s 8)=wx, s).
Let v*(x,t, 8) be a solution of

Ov=0, v(r,0,5)=0, wv(x,0,s) =wlr,s),

then
v, t,8) == v"(x,t — 8,38)
is a solution of . In the case n = 3, where v* is given by, see Theorem
v*(z,t,8) = - 1‘2 / w(&, s) dSg.
47!'(. i 63“{1_)
Then
v(z,t,8) = v'(x,t—s.s)
1
= —_—— w(€, s) dS;.
41!’02([ = .'3) 5 3Bc(,,_,)(1‘) ¢

from it follows

ulx, t)

t
f vlx, t,s) ds
0

1t X
_Zf f WE9) yeas.
dmes fo OBy, (x) t—s

Changing variables by 7 = ¢(t — 5) yields

1 “t w(fi t— T.’lc}
— ——— dSgdr
el ﬁ -/E;B.,—f:‘:] T J
— 1 w(gat - r.l'lllr:)
n dme Lﬂ () r dET
where r = |2 — £|.

Formulas for the cases n = 1 and n = 2 follow {from formulas for the as-
sociated homogeneous equation with inhomogeneous initial values for these
CASES.

ulx,t)

Theorem The solution of

Ou=w(x,t), u(zr,0)=0, u(x,0)=0,



where w € C1, is given by:

Cose =3 1 (&t =r/e)
wiE.t—rfle
ti.'l::i.‘., t}= ﬁ Bec(a) 7‘1{:7
where + = |£—£|, r= {1‘1,-1‘2:.-1‘3],- £= {£1,£z,€3}-
Casen =2:

B L W{E?T} r
et = 4“':‘/': ('/;'ctt-rzif} Velt—r)? -2 dﬁ) ”
x = (r1,72), £ = (&1, &2).

Casen = 1:
1 t zto(t—T)
et =5 [ w(e,r) de | dr.
2c Jo r—c{t—T)
Problem The 2D LAPLACE Equation in an Upper-Half Plane.
Consider the Laplace equation
&gﬂ+azu-ﬂ =0, —o<r< 4o
A
du(ax, 0)
- —u "r'.vﬂ = f{mL
5~ u(z,0)
where f(x) € Co(RY). - =0 | 0 =

Find a bounded solution u(x, y) and show that u(x,y) — 0 when |z| + y — oc.

Proof. Assume u(x,y) = X(x)Y(y). then substitution in the PDE gives X"Y + X¥" =
0.
Xﬂ' Yﬂf
x v o
o Consider X" + AX = (.
If =10, Xplz) = apr + by
If A>0, X,(z) =a,cos/ A,z +b,sin/X .
Since we look for bounded solutions as |z| — oo, we have ap = (.
o Consider V" — A ¥V =0.
If An =0, Yoly) = coy + do.
If A, > 0, Y(y) = cpe™V2 4 eV,
Since we look for bounded solutions as y — oo, we have ¢y = 0, d,, = 0. Thus,



(& 4]
u(x,y) = ap + Ze_m’*[&n cos v/ Anz + by sin \/A_n:r]
n=1

Initial condition gives:

[~]#

f(@) = uy(,0) — u(z,0) = —dg —

[v’i+1}[&nmsﬁm + Eﬂsinq/i_n:r].
1

flz) € Cge(R!), i.e. has compact support [—L, L], for some L > 0. Thus the coefficients
dp, by are given by

L
f flx)cos /A xde —(/An + 1)a, L.
—L
L
f flzx) sin/Apzx de —(vAn + 1},%“[,,
L

Thus, u(x, y) — 0 when |z| + y — oc.

-]
Il

The 2D LAPLACE Equation on a Circle.
Let €} be the unit disk in R? and consider the problem

Do =) in {1
-:-3“; =h on 0,

where ki3 o continuous funclion.

FProaf. Use polar coordinates (r, )

Uy + 2ty + =rugg = 0 for 0<r<1, 0<0<2x
du(1,0) = h(6) for 0<6 < 2.

ity + T, + tugg = 0.

Let r = et u(r(t),d).

—t
W = Uplt = —€ Up,
—t —t —2t 2
ug = (—eup)t =€ 't +€ "t = ruy + 1 U
Thus, we have
g + tgg = (.

Let u(t, #) = X(t)Y(#), which gives X"(1)¥(#) + X (1)Y™"(#) = (.

X"(t)  Y"(8)

X(t)  Y(#) -




o From Y"(0) + AY(#) = 0, we get Y,(#) = a, cosnf + b, sin nf.
A=n n=0,12,...

e With these values of A, we solve X"(t) —n?X(t) = 0.

If n=10, Xﬂ-[!-} = rpt + dp. o X;][‘l"} = —p ].Clg]" + dp.
Ifn#0 X,(t)=ce™+de™ = X,(r)=c,r "+d, "

» We have

ug(r,8) = Xg(r)¥p(#) = (—eglogr + dp)ag,

n(r,8) = Xu(r)Ya(8) = (eor ™™ + dur™){a, cos nfl + by, sinnf).
But & must be finiteat r=0.s0 e, =0.n=0,1,2....

up(r, @) = doap,

tn(r,0) = d,r"|a,cosnd + b, sinnd).

By superposition, we write

oo
u(r, ) = ag + Zv“[&ﬂ cos nfl + by, sin nfl).

n=1

Boundary condition gives

[a )
wue(1.0) = Zn[ﬁ,ﬁ cos nfl + by, sin nf) = h(f).

n=1

The coefficients ay, by for n > 1 are determined from the Fourier series for h(#).
ap is not determined by (@) and therefore may take an arbitrary value. Moreover,

the constant term in the Fourier series for i(#) must be zero [Le., frf " h(@)ds = 0.

Therefore, the problem is not solvable for an arbitrary funetion h(#), and when it is
solvable, the solution is not unigue.

Problem The 2D LAPLACE Equation on a Circle.
LetQ={(z,y) e R :2? +y* <1} ={(r,8):0<r < 1,0< 8 < 27},
and use separalion of variables (r, 8) to solve the Dirichlet problem

Loau=1 in {1
w(l,8)=g(#) for 0<8 < 27.
Proof. Use polar coordinates (r. #)
{uﬂ+%u,ﬂ+#um={] for 0<r<1, 0<f <27

w(l,8) = g(#) for 0 <@ < 2m.

rzuﬁ- + rip + gy = (.
Let v = et wu(r(t),#).

e = Urp = —€ iy,

—t —t _at 2
g = (—€ )t =€ "ty + & T lipr = Fily + F Upp.



Thus, we have
g + tigg = (.
Let u(t, @) = X(t)Y(#), which gives X"(£)Y(#) + X(1)Y"(#) = 0.

X”(Lj o }rh‘{ﬂ.:l

X v ™

o From Y"(@) + AY(#) =0, we get Y, (8) = a, cosnd + by, sinnf.
A=nd n=012 ...

e With these values of A, we solve X"(t) —n?X(t) = 0.

If n=10, Xﬂ[l!] = rpi + dy. — X[][.r'] = —yp lﬂgl“ + dp.
n#0, X,(t)=c,e™ +de™ = X, (r)=c,r " +d,r"

s We have

up(r,0) = Xg(r)Yo(f) = (—eplogr + dglag,
w(r,8) = X, (r)Y,(0) = (e, r ™+ d,r")(a, cosnfl + b, sin nf).
But @ must be finiteat r=0. 80, =0 n=0,1,2,...

ug(r,0) = dpag,
wg(r,0) = dyr"|a,cosnd + b, sinnd).

By superposition, we write

e )
u(r, @) = ag + Z "y cosnf + by sinnf).
n=1

Boundary condition gives

o0
u(l,#) = ag + Z{&ﬂ cosnfl + by, sinnf) = g(8).

n=1
1 m
ag = —[ gl ) di,
T.Jo
2 m
i, = —[ gl ) cosnd 48,
T.Jo
- 2 x
b, = —[ gl ) sinn# de.
TJo



