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I  Introduction 

 
Probability theory has applications in many branches of Science and Engineering.  

Probability theory as a matter of fact, is study of random or unpredictable experiments and is 

helpful in investigating the important features of these random experiments. 

 

Random Experiment 

 An experiment whose outcome or result can be predicted with certainty is called a 

Deterministic experiment.  

 Although all possible outcomes of an experiment may be known in advance the 

outcome of a particular performance of the experiment cannot be predicted owing to a 

number of unknown causes. Such an experiment is called a Random experiment.  

(e.g.) Whenever a fair dice is thrown, it is known that any of the 6 possible outcomes will 

occur, but it cannot be predicted what exactly the outcome will be. 

 

Sample Space 

 The set of all possible outcomes which are assumed equally likely. 

 

Event 

 A sub-set of S consisting of possible outcomes. 

 

Mathematical definition of Probability 

 Let S be the sample space and A be an event associated with a random experiment. 

Let n(S) and n(A) be the number of elements of S and A. then the probability of  event A 

occurring is denoted as P(A), is denoted by 

)(

)(
)(

Sn

An
AP =  

Note: 1. It is obvious that 0  P(A)  1. 

 2. If A is an impossible event, P(A) = 0. 

 3. If A is a certain event , P(A) = 1. 

 

A set of events is said to be mutually exclusive if the occurrence of any one them excludes 

the occurrence of the others. That is, set of the events does not occur simultaneously, 

P(A1  A2  A3 ….. An,….. ) = 0 A set of events is said to be mutually exclusive if the 

occurrence of any one them excludes the occurrence of the others. That is, set of the events 

does not occur simultaneously, 
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P(A1  A2  A3 ….. An,….. ) = 0 

 

Axiomatic definition of Probability 

 Let S be the sample space and A be an event associated with a random experiment. 

Then the probability of the event A, P(A) is defined as a real number satisfying the following 

axioms. 

1. 0  P(A)  1 

2. P(S) = 1 

3. If A and B are mutually exclusive events, P(A  B) = P(A) + P(B)  and 

4. If  A1, A2 A3,….., An,…..  are mutually exclusive events, 

P(A1  A2  A3 ….. An,….. ) = P(A1) + P(A2) + P(A3) + …..  + P(An)….. 

 

Important Theorems 

Theorem 1:  Probability of impossible event is zero. 

 

Proof: Let S be sample space (certain events) and  be the impossible event. 

 Certain events and impossible events are mutually exclusive. 

 P(S  ) = P(S) + P() (Axiom 3) 

     S   = S 

 P(S) = P(S) + P() 

 P() = 0, hence the result. 

 

Theorem 2: If A  is the complementary event of A, 1)(1)( −= APAP . 

 

Proof: Let A be the occurrence of the event 

      A  be the non-occurrence of the event . 

Occurrence and non-occurrence of the event are mutually exclusive. 

 )()()( APAPAAP +=  

 SAA =   1)()( == SPAAP  

 )()(1 APAP +=  

 1)(1)( −= APAP . 

 

Theorem 3:  (Addition theorem) 

  If A and B are any 2 events,  

P(A  B) = P(A) + P(B) − P(A  B)  P(A) + P(B). 
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Proof:  We know, ABBAA =  and ABBAB =  

  )()()( ABPBAPAP +=  and )()()( ABPBAPBP +=  (Axiom 3) 

  )()()()()()( ABPBAPABPBAPBPAP +++=+  

             )()( BAPBAP +=  

P(A  B) = P(A) + P(B) − P(A  B)  P(A) + P(B). 

 

Note: The theorem can be extended to any 3 events, A,B and C 

P(A  B  C) = P(A) + P(B) +P(C) − P(A  B) − P(B  C) − P(C  A) + P(A  B  C) 

 

 

Theorem 4:  If B  A, P(B)  P(A). 

 

Proof:  A and BA  are mutually exclusive events such that ABAB =  

  )()( APBABP =  

  )()()( APBAPBP =+  (Axiom 3) 

  )()( APBP   

 

Conditional Probability 

 The conditional probability of an event B, assuming that the event A has happened, is 

denoted by P(B/A) and defined as 

)(

)(
)/(

AP

BAP
ABP


= , provided P(A)  0 

 

Product theorem of probability 

 Rewriting the definition of conditional probability, We get 

)/()()( BAPAPBAP =  

 The product theorem can be extended to 3 events, A, B and C as follows: 

)/()/()()( BACPABPAPCBAP =  

Note:  1.  If A  B, P(B/A) = 1, since A  B = A. 

2. If B  A, P(B/A)  P(B), since A  B = B, and  ),(
)(

)(
BP

AP

BP
  
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As P(A)  P(S) = 1. 

3. If A and B are mutually exclusive events, P(B/A) = 0, since P(A  B) = 0. 

4. If P(A) > P(B), P(A/B) > P(B/A). 

5. If A1  A2, P(A1/B)  P(A2/B). 

 

Independent Events 

 A set of events is said to be independent if the occurrence of any one of them does not 

depend on the occurrence or non-occurrence of the others. 

 If the two events A and B are independent, the product theorem takes the form P(A  

B) = P(A)  P(B), Conversely, if P(A  B) = P(A)  P(B), the events are said to be 

independent (pair wise independent). 

 The product theorem can be extended to any number of independent events, If   A1 A2 

A3 ….. An  are n independent events, then 

P(A1  A2  A3 ….. An) = P(A1)  P(A2 ) P(A3 )….. P(An) 

 

Theorem 4: 

If the events A and B are independent, the events A  and B are also independent. 

 

Proof: 

The events A  B and A   B are mutually exclusive such that (A  B)  ( A   B) = B 

 P(A  B) + P( A   B) = P(B) 

  P( A   B) = P(B) − P(A  B) 

         = P(B) − P(A) P(B)         (A and B are independent) 

         = P(B) [1 − P(A)] 

         = P( A ) P(B). 

Theorem 5: 

If the events A and B are independent, the events A  and B are also independent. 

 

Proof: 

 P( A B ) = ( )BAP   = 1 − P(A  B) 

       = 1 − [ P(A) + P(B) − P(A  B)]       (Addition theorem) 

       = [1 −  P(A)] − P(B) [1 −  P(A)] 

       = P( A )P( B ). 

 



6 

 

Problem 1: 

 From a bag containing 3 red and 2 black balls, 2 ball are drawn at random. Find the 

probability that they are of  the same colour. 

 

Solution : 

 Let A be the event of drawing 2 red balls 

       B be the event of drawing 2 black balls. 

 P(A  B) =  P(A) +  P(B) 

          =  
2

2

2

2

5

2

5

3

C

C

C

C
+ = 

5

2

10

1

10

3
=+  

 

Problem 2: 

When 2 cards are drawn from a well-shuffled pack of playing cards, what is the probability 

that they are of the same suit? 

 

Solution : 

 Let A be the event of drawing 2 spade cards 

       B be the event of drawing 2 claver cards 

       C be the event of drawing 2 hearts cards 

       D be the event of drawing 2 diamond cards. 

  P(A  B  C  D) = 
2

2

52

13
4

C

C
=

17

4
. 

 

Problem 3: 

When A and B are mutually exclusive events such that P(A) = 1/2 and P(B) = 1/3, find P(A 

 B) and P(A  B). 

 

Solution : 

 P(A  B) = P(A) + P(B) = 5/6 ;  P(A  B) = 0. 

 

Problem 4: 

If P(A) = 0.29, P(B) = 0.43, find P(A  B ), if  A and B are mutually exclusive. 
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Solution : 

 We know A  B = A 

     P(A  B ) = P(A) = 0.29 

 

Problem 5: 

A card is drawn from a well-shuffled pack of playing cards. What is the probability that it is 

either a spade or an ace? 

Solution : 

 Let A be the event of drawing  a spade 

       B be the event of drawing a ace 

 P(A  B) = P(A) + P(B) − P(A  B) 

      = 
13

4

52

1

52

4

52

13
=−+ . 

 

Problem 6: 

If P(A) = 0.4, P(B) = 0.7 and P(A  B) = 0.3, find P( A   B ). 

Solution : 

 P( A   B ) = 1 − P(A  B) 

         = 1 − [P(A) + P(B) − P(A  B)] 

         = 0.2 

 

Problem 7: 

If P(A) = 0.35, P(B) = 0.75 and P(A  B) = 0.95, find P( A   B ). 

Solution : 

 P( A   B ) = 1 − P(A  B) = 1 − [P(A) + P(B) − P(A  B)] = 0.85 

 

Problem 8: 

A lot consists of 10 good articles, 4 with minor defects and 2 with major defects. Two articles 

are chosen from the lot at random(with out replacement). Find the probability that (i) both are 

good, (ii) both have major defects, (iii) at least 1 is good, (iv) at most 1 is good, (v) exactly 1 

is good, (vi) neither has major defects and (vii) neither is good. 

 

Solution : 

(i) P( both are good) = 
8

3

216

210
=

C

C
 

(ii) P(both have major defects) = 
120

1

216

22
=

C

C
 

(iii) P(at least 1 is good) = 
8

7

216

21016110
=

+

C

CCC
 

(iv) P(at most 1 is good) = 
8

5

216

1611026010
=

+

C

CCCC
 

(v) P(exactly 1 is good) = 
2

1

216

16110
=

C

CC
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(vi) P(neither has major defects) = 
120

91

216

214
=

C

C
 

(vii) P(neither is good) = 
8

1

216

26
=

C

C
. 

 

Problem 9: 

If  A, B and C are any 3 events such that P(A) = P(B) = P(C) = 1/4, P(A  B) = P(B  C) = 

0; P(C  A) = 1/8. Find the probability that at least 1 of the events A, B and C occurs. 

 

Solution : 

 Since P(A  B) = P(B  C) = 0; P(A  B  C) = 0 

P(A  B  C) = P(A) + P(B) +P(C) − P(A  B) − P(B  C) − P(C  A) + P(A  B  C) 

  = 
8

5

8

1
00

4

3
=−−− . 

 

Problem 10: 

A box contains 4 bad and 6 good tubes. Two are drawn out from the box at a time. One of 

them is tested and found to be good. What is the probability that the other one is also good? 

 

Solution : 

 Let A be a good tube drawn and B be an other good tube drawn. 

 P(both tubes drawn are good) = P(A  B) = 
3

1

210

26
=

C

C
 

 P(B/A) = 
)A(P

)BA(P 
= 

9

5

106

31
=

/

/
    (By conditional probability) 

 

Problem 11: 

In shooting test, the probability of hitting the target is 1/2, for a, 2/3 for B and ¾ for C. If all 

of them fire at the target, find the probability that (i) none of them hits the target and (ii) at 

least one of them hits the target. 

 

Solution : 

 Let A, B and C be the event of hitting the target . 

 P(A) = 1/2, P(B) = 2/3, P(C) = 3/4 

 P( A ) = 1/2, P( B  ) = 1/3, P(C ) = 1/4 

 

 P(none of them hits) = P( A   B  C ) = P( A )  P( B  )  P(C ) = 1/24 

 

 P(at least one hits) = 1 − P(none of them hits) 

         = 1 − (1/24) = 23/24. 

Problem 12: 

A and B alternatively throw a pair of dice. A wins if he throws 6 before B throws 7 and B 

wins if he throws 7 before A throws 6. If A begins, show that his chance of winning is 30/61. 

 

Solution : 

 Let A be the event of throwing 6 
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       B be the event of throwing 7. 

 

 P(throwing 6 with 2 dice) = 5/36 P(throwing 7 with 2 dice) = 1/6 

 P(not throwing 6) = 31/36  P(not throwing 7) = 5/6 

 

 A plays in I, III, V,……trials. 

 A wins if he throws 6 before Be throws 7. 

 P(A wins) = P(A  A B A   A B A B A  …… ) 

       = P(A) + P( A B A)  + P( A B A B A) + ……  

       = +







+








+

36

5
2

6

5

36

31

36

5

6

5

36

31

36

5
 

       = 
61

30
 

 

Problem 13: 

A and B toss a fair coin alternatively with the understanding that the first who obtain the head 

wins. If A starts, what is his chance of winning? 

 

Solution : 

 P(getting head) = 1/2 ,  P(not getting head) = 1/2  

 

 A plays in I, III, V,……trials. 

A wins if he gets head before B. 

P(A wins) = P(A  A B A   A B A B A  …… ) 

       = P(A) + P( A B A)  + P( A B A B A) + ……  

      = +







+








+

2

1
2

2

1

2

1

2

1

2

1

2

1

2

1
 

      = 
3

2
 

 

Problem 14: 

A problem is given to 3 students whose chances of solving it are 1/2 , 1/3 and 1/4 . What is 

the probability that (i) only one of them solves the problem and (ii) the problem is solved. 

 

Solution : 

 P( A solves) = 1/2  P(B) = 1/3 P(C) = 1/4  

 P( A ) = 1/2, P( B  ) = 2/3, P(C ) = 3/4 

 

 P(none of them solves) = P( A   B  C ) = P( A )  P( B  )  P(C ) = 1/4 

P(at least one solves) = 1 − P(none of them solves) 

         = 1 − (1/4) = 3/4 . 

 

Baye’s Theorem 

 

Statement: If B1, B2, B3, ….Bn be a set of exhaustive and mutually exclusive events 

associated with a random experiment and A is another event associated with Bi, then       
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
=




=

n

i

ii

ii
i

BAPBP

BAPBP
ABP

1

)/()(

)/()(
)/(  

Proof : 

 

 

 

 

 

 

 

 The shaded region represents the event A, A can occur along with B1, B2, B3, ….Bn  

that are mutually exclusive. 

 AB1, AB2, AB3, …, ABn are also mutually exclusive. 

Also A = AB1  AB2  AB3  … ABn   

    P(A) = P(AB1 ) + P(AB2 ) + P(AB3 ) + …+P(ABn) 

       = 
=

n

i

)iAB(P

1

 

       = 
=


n

i

)iB/A(P)iB(P

1

    (By conditional probability) 

 

P(Bi/A) = 
)A(P

)iB/A(P)iB(P 
 = 


=





n

i

)iB/A(P)iB(P

)iB/A(P)iB(P

1

 . 

 

Problem 15: 

Ina bolt factory machines A, B, C manufacture respectively 25%, 35% and 40% of the 

total. Of their output 5%, 4% and 2% are defective bolts. A bolt is drawn at random from 

the produce and is found to be defective. What are the probabilities that it was 

manufactured by machines A, B and C. 

 

Solution : 

 Let B1 be bolt produced by machine A 

       B2 be bolt produced by machine B 

       B3 be bolt produced by machine C 

 Let A/B1 be the defective bolts drawn from machine A 

       A/B2 be the defective bolts drawn from machine B 

                 A/B3 be the defective bolts drawn from machine C. 

 P(B1) = 0.25   P(A/B1) = 0.05 

 P(B2) = 0.35   P(A/B2) = 0.04 

 P(B3) = 0.40   P(A/B3) = 0.02 

  

 Let B1/A be defective bolts manufactured by machine A 

       B2/A be defective bolts manufactured by machine B 

       B3/A be defective bolts manufactured by machine C 

B1          B2       B3         B4        B5      …..       Bn 

                       A 
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 
=

=
3

1

)/()()(
i

ii BAPBPAP = (0.25)  (0.05) + (0.35)  (0.04) + (0.4)  (0.02) 

              =  0.0345 

 P(B1/A) = 
)(

)/()( 11

AP

BAPBP 
 = 0.3623 

P(B2/A) = 
)(

)/()( 22

AP

BAPBP 
 = 0.405 

P(B3/A) = 
)(

)/()( 33

AP

BAPBP 
 = 0.231 . 

 

Problem 16 : 

The first bag contains 3 white balls, 2 red balls and 4 black balls. Second bag contains 2 

white, 3 red and 5 black balls and third bag contains 3 white, 4 red and 2 black balls. One bag 

is chosen at random and from it 3 balls are drawn. Out of three balls two balls are white and 

one is red. What are the probabilities that they were taken from first bag, second bag and 

third bag. 

 

Solution : 

 Let P(selecting the bag) = P(Ai) = 1/3 , i = 1, 2, 3. 

       P(A/B1) = 
84

6

9

23

3

12 =
C

CC
  

=

=
3

1

)/()()(
i

ii BAPBPAP = 0.0746  

       P(A/B2) = 
120

3

10

32

3

12 =
C

CC
 

       P(A/B3) = 
84

12

9

43

3

12 =
C

CC
 

 P(B1/A) = 
)(

)/()( 11

AP

BAPBP 
 = 0.319 

P(B2/A) = 
)(

)/()( 22

AP

BAPBP 
 = 0.4285 

P(B3/A) = 
)(

)/()( 33

AP

BAPBP 
 = 0.638 
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I   Introduction 
 A real variable X whose value is determined by the outcome of a random experiment is 

called a Random variable. 

e.g., consider random experiment of throwing a die. Then X the number of points on 

the die is a random variable, since X takes the values 1, 2, 3, 4, 5 and 6 each with the 

probability 1/6. 

 

Discrete Random Variable 

 If the random variable taken the values only on the set {0, 1, 2, 3, ….. n} is called a 

Discrete random variable. 

 e.g., The number of printing mistakes in each page of a book, the number of telephone 

calls received by the telephone operator. 

 

Continuous Random Variable 

 If a random variable takes on all values within a certain interval, then the random 

variable is called Continuous random variable. 

 e.g., The height, age and weight of individuals, the amount of rainfall on a rainy day. 

 

Distribution Function of the Random Variable X 

 The distribution function of a random variable X defined in (−,) is given by 

     F(x) = P(X  x) 

 

Properties of the Distribution function 

 

1. P(a < X   b) = F(b) − F(a) 

 

2. P(a  X   b) = P(X = a) + F(b) − F(a) 

 

3. P(a < X  < b) = F(b) − F(a) − P(X = b) 

  

4. P(a  X  < b) = F(b) − F(a) − P(X = b) + P(X = a) 

 

 

Probability Mass Function 

 

 Let X be a one dimensional discrete random variable which takes the values x1 ,x2 

,x3,…. Then P(X = xi) satisfies the following conditions 

1. P(xi)  0 

2. 


=1i

P(xi) = 1 

 

Probability Density Function 

 

 If X is a continuous r.v. then f(x) sis called the probability density function of X 

provided f(x) satisfies the following conditions; 

(i) f(x)  0, x 
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(ii) 


−

=1dxf(x) . 

 

Note :  

(a) 1. P(a  X   b) = 
b

a

dxxf )(  

2. When X is continuous r.v. P(X = a) = 0 

 P(a < X   b) = P(a  X   b) = P(a < X  < b) = P(a  X  < b). 

 

(b) If F(x) is the distribution function of one dimensional random variables, then 

1. 0  F(x)  1 

2. If x < y, thenc F(x)  F(y) 

3. F(−) = 0,  F() = 1. 

4. If X is discrete r.v. taking values x1 ,x2 ,x3,… where x1 <  x2 < x3 <… then  

P(X = xi) = F(xi) − F(xi − 1). 

 5.  If X is continuous r.v., then )(
)(

xf
dx

xdF
= . 

 

Problem 1: 

 

A random variable X has the following probability function 

Value of X, xi 0 1 2 3 4 5 6 7 8 

Probability P(x) a 3a 5a 7a 9a 11a 13a 15a 17a 

(ii) Determine the value of ‘a’. 

(iii) Find P(X < 3), P(X  3). P(0 < X < 5). 

(iv) Find the distribution function of X. 

 

Solution : 

(i) Since 


=1i

P(xi) = 1 

  a + 3a + 5a + 7a + 9a + 11a + 13a + 15a + 17a = 1 

     
81

1
=a  

 

 (ii) P(X < 3) = P(0) + P(1) + P(2) = 1/9 

       P(X  3) = 1 − P(X < 3) = 8/9 

       P(0 < X < 5) = 24/81 

 

 

 (iii) 

xi P(xi) F(x) 

0 1/81 1/81 

1 3/81 4/81 

2 5/81 9/81 
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3 7/81 16/81 

4 9/81 25/81 

5 11/81 36/81 

6 13/81 49/81 

7 15/81 64/81 

8 17/81 1 

 

Problem 2:A random variable X has the following probability distribution. 

X −2 −1 0 1 2 3 

P(x) 0.1 K 0.2 2K 0.3 3K 

(a) Find K,  (b) Evaluate P(X < 2) and P(−2 < X <2), (c) find the c.d.f. of X and             (d) 

evaluate the mean of X. 

 

Solution: 

(a) Since 


=1i

P(xi) = 1 

0.1 + K + 0.2 + 2K + 0.3 + 3K = 1 

K = 1/15 

 

 (b) P(X < 2) = 0.1 +  1/15 + 0.2 + 2/15 + = 1/2 

      P(−2 < X < 2) = 1/15 + 0.2 + 2/15 = 2/5 

 

 (c)  

xi P(xi) F(x) 

−2 1/10 1/10 

−1 1/15 1/6 

0 2/10 11/30 

1 2/15 1/2 

2 3/10 4/5 

3 3/15 1 

  

(d) The mean of X is defined as E(X) =  )(xxP  

   

Mean of X = −2  (1/10) + (−1)  (1/15) +  0  (1/5) + 1  (2/15)                     

                                                                            + 2  (3/10) + 3  (1/5) = 16/15 

 

Problem 3: 

 

If the random variable X takes the values 1, 2, 3 and 4 such that 2P(X = 1) = 3P(X = 2) = P(X 

= 3) = 5P(X = 4)., find the probability  

distribution and cumulative distribution function of X. 
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Solution : 

Since 


=1i

P(xi) = 1 

2P(X = 1) = 3P(X = 2) = P(X = 3) = 5P(X = 4) = K 

1
5132
=+++

KKKK
,     K = 30/61 

xi P(xi) F(x) 

1 15/61 15/61 

2 10/61 25/61 

3 30/61 55/61 

4 6/61 1 

 

Problem 4: 

A random variable X has the following probability distribution. 

x  0 1 2 3 4 5 6 7 

P(x)  0 K 2K 2K 3K K2 2K2 7K2 + K 

Find (i) the value of K, (ii) P(1.5 < X 4.5 / X > 2) and (ii) the smallest value of  for which 

P(X  ) > 1/2. 

 

Solution : 

Since 


=1i

P(xi) = 1 

10K2 + 9K = 1 

K = 1/10 or  −1. As K= −1 is meaningless, K = 1/10 

 

2)  P(X

2)]  X (  4.5) X  P[(1.5
  2)  X / 4.5 X  P(1.5




=     

                                   =
)2()1()0([1

)4()3(

=+=+=−

=+=

XPXPXP

XPXP
 = 

7

5
 

 

 P(X  0) = 0; P(X  1) = 0.1; P(X  2) = 0.3; P(X  3) = 0.5 and P(X  4) = 0.8 

    

  = 1/2  for which P(X  ) > 1/2 . 

 

Problem 5: If the density function of a continuous r.v. X is given by 













−





=

elsewhere

xaxa

xa

xax

xf

,0

323

21,

10,

)(  

(i) find the value of a 

(ii) find the c.d.f. of X 

(iii) P(X > 1.5) 
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Solution : 

 (i) Since  f(x) is a p.d.f. 


−

=1dxf(x)  

   =−++=

3

2

2

1

3

0

1

0

1)3( dxaxaadxdxaxdxf(x)  

     a = 1/2  

 

 (ii) 






















−

+
−


−

+





==

3,1

32,
4

6

4

5

21,
2

1

4

1

10,
4

0,0

)()(

2

2

x

x
xx

x
x

x
x

x

xXPxF   

(iv) P(X > 1.5) = 
3

5.1

)( dxxf  = 
2

1

22

3

2

1
3

2

2

5.1

=







−+  dx

x
dx  

 

 

Problem 6: A continuous r.v. has a p.d.f. 0,)( 2 = − xekxxf x . Find k, mean and variance. 

 

Solution : 

 


=

0

1dxf(x)  .   k = ½ 

 Mean = 3]663[
2

1 23

0 0

3 =−−−−== −−−−
 

−
 

xxxxx exeexexdxexdxxf(x)  

 Var(X) = E(X2) − [E(X)]2  

 E[X2] = 


− =

0

4 12dxex x
 

 Var(X) = 3 

 

Problem 7: A continuous r.v. has a p.d.f. f(x) = 3x2, 0  x  1. Find a and b such that  

(i) P(X  a) = P(X > a) and  (ii) P(X > b) = 0.05. 

 

Solution : 

(i) P(X  a) = P(X > a) 

      dxxdxx

a

a

 =

1
2

0

2 33  



7 

 

      
2

13 =a ;   a = 0.7937 

 

(ii) P(X > b) = 0.05 

      05.03

1
2 =

b

dxx  9830.0;953 == bb . 

 

 

Problem 8: If the probability distribution of X is given as: 

x : 1 2 3 4 

P(x) : 0.4 0.3 0.2 0.1 

Find P(1/2 < X < 7/2  / X >1) 

 

Problem 9:  If the c.d.f. of a r.v. is given by F(x) = 0, for x < 0; F(x) = x2/16 for 0  x  4 and 

F(x)  = 1, for 4  x, find P(X > 1 / X < 3). 

 

Problem 10: For the following density function ,,)( −=
−

xaexf
x

 find (i) the value 

of a, (ii) mean and variance of  X.     [1/2, 0, 2] 

 

Problem 11: A r.v. X has the p.d.f. 


 

=
otherwise

xx
xf

,0

10,2
)(  find (i) 










2

1
Xp  (ii) 











2

1

4

1
XP  and (iii) 










2

1
/

4

3
XXP .        [1/4, 3/16, 7/12] 

 

 

Chebyshev Inequality 

 

 If X is a random variable with mean  and variance 2, than for any positive number 

K, we have 

  
2

1
}|{|

K
KXP −   

   (or) 

  
2

1
1}|{|

K
KXP −−   

Solution: We know that 




−

−=−=−= dxxfxXEXEXE )(2)(2][2)]([2       

             




+

−+

+

−

−+

−

−

−=















K

dxxfx

K

K

dxxfx

K

dxxfx )(2)()(2)()(2)(  
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      


+

−+

−

−

−









K

dxxfx

K

dxxfx )(2)()(2)(  

Form first integral   Form second integral 

       

222)(

)(







Kx

Kx

Kx

−

−−

−

  

222)(

)(







Kx

Kx

Kx

−

−

+

 

 




+

+

−

−











K

dxxfK

K

dxxfK )(22)(222  

    


+

+

−

−







K

dxxfK

K

dxxfK )(2)(21  

 

][][{21  KXPKXPK ++−  

][][{21  KXPKXPK −+−−  

]|[|{21  KXPK −  

 
2

1
}|{|

K
KXP −   

 Since the probability is 1, we have 

 
1]|[|]|[| =−+−  KXPKXP  

2

1
1]|[|1]|[|

K
KXPKXP −−−=−   

 

Problem 1: Let X be a continuous RV whose probability density function given by            f( 

x)=e−x  0  x  . Using Chebyshev inequality verify 
4

1
]2|[| − XP  and show that actual 

probability is e−3 . 

 

Solution: E(X) = 1

0

=


−

 dxxxe ;  E(X2) = 2

0

2 =


−

 dxxex ;  Var(X) = 1. 

We know, 
2

1
}|{|

K
KXP −   

 1,2;2 ===  KK  

 
4

1
]2|[| − XP   

)12()21(]2|1[| −+−−−=− XPXPXP  
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3

3

)(0

−=



+= 

e

dxxf
 

 

Problem 2: If X is the number on a die when it is thrown, prove that   

 P[|X - | > 2.5] < 0.47 where  is the mean. 

 

Solution: 

  

 

X 1 2 3 4 5 6 

P(x) 1/6 1/6 1/6 1/6 1/6 1/6 

 

 E(X) =  x p(x) = ( )
2

7
654321

6

1
=+++++  

 E(X2) =  x2 p(x) = 
6

91262524232221
6

1
=





 +++++  

 Var(X) = E(X2) - [E(X)]2 = 9167.2
4

49

6

91
=−  

  = 1.707 

By Chebyshev’s inequality,   P[|X − |  K]  1/K2 

Given    P[|X - | > 2.5] < 0.47 

Comparing.   K = 2.5 K = 1.46  = 1.707 

  P[|X - | > 2.5] = (1/(1.46)2 < 0.47 

 

Problem 3: A discrete RV X takes the values −1,0,1 with probabilities 1/8, 3/4, 1/8 

respectively.  Evaluate P[|X − |  2] and compare it with the upper bound given by 

chebyshev’s inequality. 

 

Solution: 

 E(X) = 0
8

1
1

4

3
0

8

1
1 =++−  

 E(X2) = 
4

1

8

1
1

4

3
0

8

1
1 =++  

 Var(X) = 
4

1
 

 P[|X − |  2] = P[|X|  1 = P(X = −1) +P(X = 1) = 1/8 + 1/8 =1/4 

By Chebychev’s inequality, P[|X − |  2]  
4

1

22

1
= . 

 

Problem 4: A RV X takes the values {−1,1,3,5} with associated probability {1/6, 1/6, 1/6, 

1/2} .Find an upper bound to the probability P[|X − 3|  1] by applying Chebychev’s 

inequality.    [E(X) = 3,Var(X) = 16/3; Prob. 16/3] 
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Problem 5: If x has a distribution with p.d.f of f(x) = e−x ,0  x  . Using Chebychev’s 

inequality to obtain a lower bound to the probability P(−1  x  3) and compare it with actual 

values.  [E(X) = 1, Var(X) = 1, P(−1  x  3)  3/4,  Actual prob. 0.95]  

 

Problem 6: If S denotes the sum of the numbers obtained when 2 dice are thrown, obtain an 

upper bound for p[|X − 7|  4]. Compare with the exact probability.  

 

Solution: Let X1 X2 denote the outcomes of the first  and second dice respectively. 

 E(X1) = E(X2) = 7/2 ; E( 2
1

X ) = E( 2
2

X ) = 91/6 

 Var(X1) = Var(X2) = 35/12 

 

 E(X) = E(X1+ X2) = 7 

 Var(X) = Var(X1+ X2) = (35/12)+ (35/12) = 35/6 

 

 By Chebychev’s inequality,  
2

1
}|{|

K
KXP −   

     
96

35
}4|7{| −XP   

 

 P[|X − 7|  4] = P{X = 2,3,11,12} = 
6

1

36

1

36

2

36

2

36

1
=+++ . 

 

 

Problem 7: A RV has mean 92,12 ==   and an unknown probability distribution. Find 

the probability of P(6 < X < 18).   [P(6 < X < 18)  3/4] 

 

Problem 8: A RV X is exponentially distributed with parameter 1. Use Chebychev’s 

inequality to show that P[−1  X  3]  3/4. Find the actual probability also. 

 

Solution: X is Exponentially distributed with parameter  = 1. E(X) = 1/ and  

 Var(X) = 1/2  

  = 1,  = 1 

 By Chebychev’s inequality,  P[|X − |  K]  1 − (1/K2)    

 P[−1  X  3] = P[−2  X − 1  2] = P[ |X − 1|  2]  

 Comparing, K = 2, as  = 1, K = 2 

 

 P[−1  X  3] = P[ |X − 1|  2]  1 − (1/4)  

 

  P[−1  X  3]  3/4 . 

 

Problem 9: Use Chebychev’s inequality to find how many times a fair coin must be tossed in 

order that the probability that the ratio of the number of heads to the number of tosses will lie 

between 0.45 and 0.55 will be at least 0.95. 

 

Solution: Let X be the number of heads obtained when a fair coin is tossed n times. 

 Then, X follows binomial distribution B(np,npq) where  p = q = 1/2 

  i.e., X  B(np,npq) 
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   X/n  B(p,  (pq/n)) 

  i.e, X/n  B(1/2, 1/2n) 

 

By Chebychev’s inequality, 
2

1
1

2

1

K
K

n

X
P −









−    

   i.e, P[0.5 − K  X/n  0.5 + K]  1− 1/K2 

 

Given,  P[ 0.45  X/n  0.55]  0.95 

 

Comparing, 95.0
2

1
1 =−

K
 

  

20
05.0

12

05.0
2

1

==

=

K

K  
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I  Introduction 
Moments 

 

If  X is a discrete or continuous r.v., E[Xn] is called nth order raw moment of X about 

the orgin and denoted by /
n . 

E[(X −  x)
n] is called the nth order central moment of X and denoted by n. 

 

Note :  1. First order moment about about origin is Mean 

 2. Second order moment about  mean is Variance. 

 

Moment Generating Function 

 Moment generating function (MGF) of a r.v. X (discrete or continuous) is defined as 

E[etX], where t is a real variable and denoted as M(t). 

 If X is discrete, then r

r

tx
petM r=)(  

 If X is continuous r.v. with density function f(x), then 


−

= dxxfetM tx )()( . 

 

Properties of Moment Generating Function 

 

      1.  )(
!

)(
0

n

n

n

XE
n

t
tM 



=

= . 

      2.  

0

/ )()(

=










==

t
n

n
n

n tM
dt

d
XE . 

1. If the MGF of X is )(tM x  and if Y = aX + b, then )()( atMetM x
bt

y = . 

2. If X and Y are independent random variables  and Z = X + Y, then 

)()()( tMtMtM yxz = . 

 

Characteristic function 

 Characteristic function of a r.v. X (discrete or continuous) is defined as E(eiX) and 

denoted by (). 

If X is discrete, then r

r

xi
pe r=

 )(  

 If X is continuous r.v. with density function f(x), then 


−

= dxxfe xi )()(  . 

 

 

Properties of Characteristic Function 

1. /

0
!

)( n

n

nn

n

i



 



=

= . 
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2. 

0

/ )(

=










=







n

n

n
d

d
. 

3. If the characteristic function of a r.v. X is )(xf  and if Y = aX + b , then    

                              )()(   ae x
ib

y = . 

4. If X and Y are independent random variables  and Z = X + Y, then  

)()()(  yxz = . 

 

Problem 1: If X represents the outcome, when a fair die is tossed, find the MGF of X and 

hence find E(X) and Var(X). 

 

Solution : 

 The probability distribution of X is given by 

 P(X = i) = 1/6, i = 1,2,3,4,5,6 

 

 r

r

tx
petM r=)( = 

=

6

1i

i
it pe = )(

6

1 65432 tttttt eeeeee +++++  

 

 0)]([)( == ttMXE  (by property 2 of MGF) 

            
2

7
)65432(

6

1 65432 =+++++= tttttt eeeeee  

 == =0
2 )]([)( ttMXE 0

65432 )36251694(
6

1
=+++++ t

tttttt eeeeee =
6

91
 

 

 22 )]([)()( XEXEXVar −=
12

35

4

49

6

91
=−= . 

 

Problem 2: Find the MGF of a r.v. X whose probability function is ,....3,2,1,
2

1
)( == xxP

x
 

Hence find its mean. 

 

Solution : 

 


=



=

==

11 2

1
)()(

x
x

tx

x

tx
X exPetM  

              

1

1

3

3

2

2

1

)2(

2
1

2

.....
2

)(

2

)(

2

2

−

−



=

−=














−=

+++=














= 

tt

tt

ttt

x

x

t

ee

ee

eee

e
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 tttt
X eeeetM 12 )2()2()( −− −+−−=  

 0)0( == XMMean . 

 

Problem 3: Find the MGF of the r.v. X having p.d.f. 









−



=

otherwise

xx

xx

xf

,0

21,2

10,

)(

 












 −

2

2)1(

t

et

 

 

 

Some Special Probability Distributions 

 

Discrete distributions 

 Some of the discrete distributions are 

• Binomial distribution 

•  Poisson distribution 

• Geometric distribution 

• Negative binomial distribution 

 

Binomial Distribution 

 If X is discrete r.v. which can take values 0,1,2,3,…,n such that  

   rnr

r qpnCrXP −== )( , r = 0,1,2,….,n  where 1=+ qp  

then X is said to follow a Binomial distribution with parameters n and p. 

 

Mean and Variance of the Binomial Distribution 

 

=
r

rr pxXE )( 
=

−=
n

r

rnr
r qpnCr

0

 

      
=

−

−
=

n

r

rnr qp
rnr

n
r

0
)!(!

!
  

      
=

−−−−

−−−−

−
=

n

r

rnr qp
rnr

n
rnp

1

)1()1(1

)}!1()1{()!1(

)!1(
 

      
=

−−−−
−−=

n

r

rnr
r qpCnnp

1

)1()1(1
1)1(  

      nppqnp n =+= −1)(  

 

r

n

rr

rr prpxXE 
=

==
0

222 )(  

         −

−
+−= rnr qp

rnr

n
rrr

)!(!

!
})1({  
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        nppCnpnn r
n

r

r +−−= −

=

− 2

2

2
2 )2()1(  

        nppqpnn n ++−= −22 )()1(  

npqpnnppnnXEXEXVar =−+−=−= 22222 )1()]([)()(  

 

Moment Generating Function of Binomial Distribution 

 The binomial distribution is given by 

 rnr
r qpnCrXP −== )(    , r = 0,1,2,….,n  where 1=+ qp  

 
=

−

=

==
n

r

rnr
r

tr
n

r

r
tr qpnCepetM

00

)(  

       ntrnrt
n

r

r qpeqpenC )()(
0

+== −

=

  

 
]))(1()[()(

)()(

221

1

tnttnt

tnt

peqpeneqpenptM

peqpentM

−−

−

+−++=

+=
 

 

 
])1(1[)0()(

)0()(

2 pnnpMXE

npMXE

−+==

==
 

 npqXEXEXVar =−= 22 )]([)()(  

 

Poisson Distribution 

 If X is a discrete r.v. that can assume the values 0,1,2,… such that its probability mass 

function is given by 

    
!

)(
r

e
rXP

r−
== ,    r = 0,1,2,….;  > 0. 

Then X is said to follow a Poisson distribution with parameter  . 

 

Note: Poisson distribution is a limiting case of binomial distribution under the following 

assumptions. 

(i) The number of trials ‘n’ should be indefinitely large. i.e., n → . 

(ii) The probability of successes ‘p’ for each trial is indefinitely small. 

(iii) np = ,  should be finite where  is a constant. 

 

Mean and Variance of Poisson Distribution 

 

=
r

rr pxXE )( 


=

−

=
0

!
r

r

r

e
r


 

      


=

−
−

−
=

1

1

)!1(
r

r

r
e


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Moment Generating Function of Poisson Distribution 

 

 The Poisson distribution is given by 
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Additive property of independent Poisson Variates 

 Let X and X be independent r.v.’s that follow Poisson distributions with parameters   

and  respectively. Let X = X + X , 
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 Thus the sum of 2 independent random variables with parameters 1 and 2  

Is also a Poisson variable with parameter (1 + 2). 

 This property can be extended to any finite number of independent Poisson variables 

is known as the Reproductive property of Poisson r.v.’s. 

 

Theorem 1: 

If X and Y are independent r.v.’s, show that the conditional distribution of X, given the value 

of X + Y, is a binomial distribution. 

 

Proof : 

Let X and Y follow Poisson distribution with parameters 1 and 2 respectively. 
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Hence the result. 

 

 

Geometric Distribution 

Let the r.v. X denote the number of trials of a random experiment required to obtain 

the first success. Obviously X can take the values 1,2,3,…. 

The first (r − 1) trials result in failure and the rth trial results in success. Hence 

  === − ,...3,2,1,)( 1 rpqrXP r
   where 1=+ qp . 

Then X is said to follow a geometric distribution. 

 

Mean and Variance of Geometric Distribution 
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Note: Some times the probability mass function of a geometric r.v. X is taken as 

....3,2,1,0;)( === rpqrXP r where 1=+ qp  . 

 

Moment Generating Function of Geometric Distribution 
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Negative Binomial Distribution 

 

 Let  p(x)  be the probability that exactly x + r trails will be required to produce r 

success. Clearly the last trial must be a success and the probability is p. In the remaining x + r 

– 1 trials, there must be r – 1 successes and the probability of this is given by 
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Moment Generating Function of Negative Binomial Distribution 

 

 The M.G.F. of a negative Binomial distribution is  
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 Variance(X) = 
2p

rq
rPQ =  

 

Problem 1: The mean and variance of a Binomial distribution are 4 and 4/3.  

         Find P(X  1). 

 

Solution : 

 Mean is np and variance is npq. 

 np = 4 and npq = 4/3   q =1/3  

Also p + q = 1   p = 1 − q =2/3 and n = 6. 

P(X  1) = 1 − P(X < 1) = 1 − P(X = 0) = 1 − 6C0 (2/3)0 (1/3)6 − 0 =0.998. 

 

 

Problem 2: Find the Binomial distribution for which the mean is 4 and variance 3. 

 

Solution : 

 p  = 1/4   q = 3/4   and n = 16    p(x) = 16Cx(1/4)x(3/4)n − x. 

Problem 3: Ten coins are thrown simultaneously. Find the probability of getting atleast 7 

heads. 

Solution : 

 p = 1/2   q = 1/2  n = 10 and X be event of getting heads 

 Then P(X  7) = p(7) + p(8) + p(9) + p(10) 

= 10C7(1/2)7(1/2)3 +10C8(1/2)8(1/2)2 +10C9(1/2)9(1/2)1 +     

    10C10(1/2)10(1/2)0 

= 176/210 = 0.171875 

 

Problem 4: In a large consignment of electric bulbs 10 % are defective. A random sample of 

20 is taken for inspection. Find the probability that (i) All are good bulbs (ii) at most 3 are 

defective bulbs (iii) Exactly there are three defective bulbs. 

 

Solution : Let X be the event of defective bulbs, 

   p = 0.1   q = 0.9  n = 20 

(i) P(X = 0) = 20C0 (0.1)0 (0.9)20 = 0.1216 

(ii) P(X  3) = p(0) + p(1) + p(2) + p(3) 

  = 20C0 (0.1)0 (0.9)20  +20C1 (0.1)1 (0.9)19 +20C2 (0.1)3 (0.9)18 +     

    20C3 (0.1)3 (0.9)17  

  = 0.8666 

(iii) P(X = 3) = 20C3 (0.1)3 (0.9)17 = 0.19. 

 

 

Problem 5: Assuming that half the population are consumers of rice, so that the chance of an 

individual being a consumer is 1/2  and assuming that 100 investigator each take 10 

individuals to see whether these are consumers, how many investigators would you expect 

report that 3 people or less were consumers. 

 

Solution : Let X be the event of rice consumers 

 N = 100, n = 10, p = 1/2 , q = 1/2  

 P(X  3) = p(0) + p(1) + p(2) + p(3) = 0.1718  

 So for 100 investigators, N p(x) = 100  0.1718 = 17 approx. 
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Problem 6:In a 256 sets of twelve tosses of a coin, in how many cases may one expect eight 

heads and four tails? 

 

Solution : Let X be Event of 8 heads and 4 tails, 

 N = 256, n = 12, p = 1/2 , q = 1/2   

 P(8 heads and 4 tails) = 12C8(1/2)8(1/2)4 

 In 256 sets N p(x) = 256  12C8(1/2)8(1/2) = 31 times. 

 

Problem 7: With usual notation find ‘p’ for a binomial random variable ‘X’ if n = 6 and if 

P(X = 4) = P(X = 2).       [ p = 0.25] 

 

Problem 8: If X and Y are independent Poisson variate such that P(X = 1) = P(X = 2) and 

P(Y = 2) = P(Y = 3), find the variance of X – 2Y. [ 14.;32,21 === Var ] 

 

Problem 9: A manufacturer of cotterpins knows that 5% of his product is defective. If he 

sells cotterpins in boxes of 100 and guarantees that not more than 10 pins will be defective. 

What is the approximate probability that a box will fail to meet the guaranteed quality? 

 [n =100, p = 0.05,  = np =5, P(X > 10) = 1 – P(X  10) = 0.014] 

 

Problem 10: If the probability that an applicant for a driver’s license will pass the road test 

on any given trial is 0.8, what is the probability that he will finally pass the test       (a)  on the 

fourth trial and (b) in fewer than 4 trials? 

 

Solution : Let X denote the number of trials required to achieve the first success. Then X  

follows a geometric distribution given by P(X = r) = qr -1 p; r = 1,2,3,…. 

 Here p =0.8 and q = 0.2 

(a) P(X = 4) = 0.8  (0.2)4-1 = 0.0064 

(b) P(X < 4) = 
=

=−
3

1

9984.01)2.0()8.0(

r

r . 

Problem 11: A die is thrown until 6 appear. What is the probability that it must be thrown 

more than 5 times.  [p = 1/6 q = 5/6;P(X > 5) = 1 – P(X  5) = 0.401] 

 

Problem 12: A  fair  die  is  thrown several times. Find the probability that 3 appear before 4. 

 

Solution : Die will be thrown until 3 or 4 occurs. 

 Failure is getting 1,2,5,6 = 4/6; success is getting 3 =1/6 

 P(X = r) = 
2

1
1

6

4
1

6

1

1

1 =
−
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


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−=
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=

−
r

rpq  

 

Problem 13: The probability of a student passing a subject is 0.8. What is the probability that 

he will pass the subject (a) On his third attempt (b) before the third attempt. 

[p = 0.8 q = 0.2;P(X = 3) = 0.032; P(X < 3) = 0.96] 

 

Problem 14: If the probability that a target is destroyed on any one shot is 0.5, what is the 

probability that it would be destroyed on 6th attempt? [P(X = 6) = q6−1 p = (0.5)6] 
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Problem 15: An item is produced in large numbers. The machine is known to produce 5% 

defective. A quality control inspector is examining the items by taking them at random. What 

is the probability that atleast 4 items are to be examined to get 2 defectives? 

[p = 0.05 q = 0.95,  x + r  4 P(X  2) = 1 – P(X < 2) = 0.99275] 

  

Problem 16: Find the probability that in tossing 4 coins one will get either all heads or all 

tails for the third time on the seventh toss. 

 

Solution : P(H H H H) = 1/16; P(T T T T) = 1/16 

 

 P(all head  all tail) = 1/16 + 1/16 = 1/8 

 

  p = 1/8 q =7/8  ; x + r = 7  r = 3 
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Problem 17:  In a company 5% defective components are produced. What is the probability 

that atleast 5 components are to be examined in order to get three defectives? 

 

Solution :  p = 0.05 q = 0.95 x + r  5 r = 3 

 P( X  2) = 1 – P(X < 2) = 1 – P(X = 0) – P(X = 1) 

        = 1 – 2C2 (0.05)3 (0.95)0 – 3C2 (0.05)3 (0.95)1 

        = 0.9995. 

 

Problem 18:  In a colony the probability that a person will own a car is 0.4. Find the 

probability that the 8th person randomly checked be the 4th one to own a car. 

[  p = 0.4 q = 0.6 ; x + r = 8 r = 4 P(X =4) = 7C3 (0.4)4 (0.6)4 = 0.116] 

 

Problem 19:  In a box of different coloured balls, Balls are taken one at a time until a red 

coloured ball is taken. If the probability of picking up a red ball is 0.5, what is the probability 

that a first red ball is picked up in 5th trial?               [  p = 0.5 q = 

0.5 ; x + r = 5 r = 1, P(X = 4) = 4C0 (0.5)1 (0.5)4 = 0.03125] 

 

Special Continuous Distributions 

  

Some of the continuous distributions are 

• Uniform distribution 

• Exponential distribution 

• Gamma distribution 

• Weibull distribution 

 

Uniform distribution 
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 A continuous random variable X is said to follow a uniform distribution ina any finite 

interval if its probability density function is constant in that interval. 
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Mean and Variance of Uniform distribution 
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Moment Generating Function of Uniform distribution 
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Exponential Distribution 

 

 A continuous r.v. X is said to follow an exponential distribution or negative 

exponential distribution with parameter  > 0. Its probability density function is given by 
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Moment Generating Function of Exponential distribution 
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We can write MGF 
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Gamma Distribution 

 

 A continuous r.v. X is said to follow gamma distribution with parameter k > 0 if its 

probability density function is given by 
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Mean and Variance of Gamma Distribution 
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Var(X) = E(X2) – [E(X)]2 = (k + 1)k – k2 = k 

 

Moment Generating Function of Gamma Distribution 
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Weibull Distribution 

 

A continuous r.v. X has a Weibull distribution if its density function is given by 
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if  = 1 it becomes Exponential distribution with parameter . 

 

Mean and Variance of Weibull distribution 

dxxexxdxxxfXE 


−−=



−

=

0

1)()(
  

         


−=

0

dxex x   





1

; 







==

y
xxy  

         

( )1
1

1

1
1

0

1

1

0

1

0
1

+=

=









=

=








−


−



−

−





















dyey

dye
y

x

dy
e

y

y

y

y

 

 



17 

 

dxexxdxxfxXE x



−−


−

==

0

1222 )()(
  

             









+=









=

=

−



−+





1
21

2

2

0

0

1














dye
y

dxex

y

x

 

 

Var (X) = ( ) ( )( )212 1
1

1
1

22
+−+

  
. 

 

 

 

Moment Generating Function of Weibull distribution 

dxxfeeEtM txtX
X )()()( 



−

==  

       


−−=

0

1 dxexe xtx    
( )




=

=

0
!

n

n
tx

n

tx
e  

        
( )

 


−−


=













=

0

1

0
!

dxex
n

tx x

n

n   

                                                            

....
!

......
!2

!1

0

1

0

12
2

0

1

0

1

++++

+=






−−


−−


−−


−−

dxexx
n

t
dxexx

t

dxexx
t

dxex

xn
n

x

xx









 

1)(][ +==
−

 
  n

dxxfxXE

n

X

nn  

         







=

−



=

+=

=

+++++=

0

0

2
2

1
!

)(

)(
!

....)(
!

...)(
!2

)(
!1

1)(

n

nn

n

n
n

n
n

n

n

t
tM

XE
n

t

XE
n

t
XE

t
XE

t
tM


 

 



18 

 

 

Problem 1: Buses arrive at a specified stop at 15 minutes intervals starting at 7:00 a.m. (i.e.) 

they arrive at 7:00, 7:15, 7:30, … If the passenger arrives at the stop at a random time (i.e.) 

Uniformly distributed between 7:00 and 7:30 a.m. Find the probability that he waits (i) less 

than 5 minutes for a bus (ii) atleast 12 minutes for a bus. 

 

Solution: a = 7:00 and b = 7.30 

 f(x) = 300min
30

11
=

−
xutes

ab
 

 P( X < 5) = P(10 < X < 15) + P(25 < X < 30) 

      =  +

30

25

)(

15

10

)( dxxfdxxf  

      = 
3

1
]2530[

30

1
]1015[

30

1
=−+−  

 

 P(waits atleast 12 minutes ) = P(0 < X < 3) + P( 15 < X < 18) 

             = 
5

1
18

15
30

1
3

0
30

1
=+  dxdx  

 

Problem 2: The mileage which car owners get with a certain kind of radial tire is a r.v. 

having an exponential distribution with mean 40,000 km. Find the probabilities that one of 

these tires will last (i) at least 20,000 km and (ii) at most 30,000 km. 

 

Solution: 0,000,40/

000,40

1
)( −= xxexf  

 P(X  20,000) = 6065.05.0

000,20

000,40/

000,40

1
=−=


−

 edxxe  

 

 P(X  30,000) = 527.0

000,30

0

000,40/

000,40

1
=−

 dxxe  

 

Problem 3: Suppose that the life of a certain kind of an emergency lamp back up battery in 

hours is a r.v. X having the Weibull distribution  = 0.1 ,  = 0.5 . Find  (i) mean life time of 

these batteries (ii) the probability that such a battery will last more than 300 hours. 

 

Solution:  Here X is life time of batteries. 

 20011
1

)( =+
−

=


XE  

  life time of the batteries is 200 hours. 

 P(X > 300) = 


300

)( dxxf  
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Problem 4: Each of the 6 tubes of a radio set has a life length (in years) which may be 

considered as a r.v. that follows a Weibull distribution with parameters  = 25,  = 2. If these 

tubes function independently of one another, What is the probability that no tube will have to 

be replaced during the first 2 months of service? 

 

Solution:  X is the length of life of each tube. 

 0,2550)(
2

−= xxxexf        

 P( a tube is not to be replaced during the first two month) is  

 P(X > 1/6) = 
36/25

6/1

2550
2 −=


−

 edxxxe  

 

 P(all the 6 tubes are not to be replaced during the first 2 months) 

         = 0155.06/25
6

36/25 =−=




 − ee  

 

Problem 5: If the life  X (in years) of a certain type of a car has a Weibull distribution with 

the parameter  = 2, fins the value of the parameter , given that probability that the life of 

the car exceeds 5 years is e− 0.25. For these values of  and , find the mean and variance of 

X. 

 

Solution: 0,2)(
2

−= xxexxf   

 

 P(X >5) = 
 25

55

2
22 −=







 −−=


−

 exedxxex  

 Given P(X > 5) = e−0.25   e−25 = e−0.25 

       = 1/100. 

 E(X) = 5      Var(X) = 







−

4
1100


. 

 

 

 

 

Chebyshev Inequality 

 

 If X is a random variable with mean  and variance 2, than for any positive number 

K, we have 
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}|{|

K
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   (or) 

  
2

1
1}|{|

K
KXP −−   

Solution: We know that 


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Form first integral   Form second integral 
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][][{21  KXPKXPK ++−  

][][{21  KXPKXPK −+−−  

]|[|{21  KXPK −  

 
2

1
}|{|

K
KXP −   

 Since the probability is 1, we have 

 
1]|[|]|[| =−+−  KXPKXP  

2

1
1]|[|1]|[|

K
KXPKXP −−−=−   
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Problem 1: Let X be a continuous RV whose probability density function given by            f( 

x)=e−x  0  x  . Using Chebyshev inequality verify 
4

1
]2|[| − XP  and show that actual 

probability is e−3 . 

 

Solution: E(X) = 1

0

=


−

 dxxxe ;  E(X2) = 2

0

2 =


−

 dxxex ;  Var(X) = 1. 

We know, 
2

1
}|{|

K
KXP −   

 1,2;2 ===  KK  

 
4

1
]2|[| − XP   

)12()21(]2|1[| −+−−−=− XPXPXP  

            

3

3

)(0

−=



+= 

e

dxxf
 

 

Problem 2: If X is the number on a die when it is thrown, prove that   

 P[|X - | > 2.5] < 0.47 where  is the mean. 

 

Solution: 

  

 

X 1 2 3 4 5 6 

P(x) 1/6 1/6 1/6 1/6 1/6 1/6 

 

 E(X) =  x p(x) = ( )
2

7
654321

6

1
=+++++  

 E(X2) =  x2 p(x) = 
6

91262524232221
6

1
=





 +++++  

 Var(X) = E(X2) - [E(X)]2 = 9167.2
4

49

6

91
=−  

  = 1.707 

By chebyshev’s inequality,   P[|X − |  K]  1/K2 

Given    P[|X - | > 2.5] < 0.47 

Comparing.   K = 2.5 K = 1.46  = 1.707 

  P[|X - | > 2.5] = (1/(1.46)2 < 0.47 

 

Problem 3: A discrete RV X takes the values −1,0,1 with probabilities 1/8, 3/4, 1/8 

respectively.  Evaluate P[|X − |  2] and compare it with the upper bound given by 

chebyshev’s inequality. 

 

Solution: 
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 E(X) = 0
8

1
1

4

3
0

8

1
1 =++−  

 E(X2) = 
4

1

8

1
1

4

3
0

8

1
1 =++  

 Var(X) = 
4

1
 

 P[|X − |  2] = P[|X|  1 = P(X = −1) +P(X = 1) = 1/8 + 1/8 =1/4 

By Chebychev’s inequality, P[|X − |  2]  
4

1

22

1
= . 

 

Problem 4: A RV X takes the values {−1,1,3,5} with associated probability {1/6, 1/6, 1/6, 

1/2} .Find an upper bound to the probability P[|X − 3|  1] by applying Chebychev’s 

inequality.    [E(X) = 3,Var(X) = 16/3; Prob. 16/3] 

 

Problem 5: If x has a distribution with p.d.f of f(x) = e−x ,0  x  . Using Chebychev’s 

inequality to obtain a lower bound to the probability P(−1  x  3) and compare it with actual 

values.  [E(X) = 1, Var(X) = 1, P(−1  x  3)  3/4,  Actual prob. 0.95]  

 

Problem 6: If S denotes the sum of the numbers obtained when 2 dice are thrown, obtain an 

upper bound for p[|X − 7|  4]. Compare with the exact probability.  

 

Solution: Let X1 X2 denote the outcomes of the first  and second dice respectively. 

 E(X1) = E(X2) = 7/2 ; E( 2
1

X ) = E( 2
2

X ) = 91/6 

 Var(X1) = Var(X2) = 35/12 

 

 E(X) = E(X1+ X2) = 7 

 Var(X) = Var(X1+ X2) = (35/12)+ (35/12) = 35/6 

 

 By Chebychev’s inequality,  
2

1
}|{|

K
KXP −   

     
96

35
}4|7{| −XP   

 

 P[|X − 7|  4] = P{X = 2,3,11,12} = 
6

1

36

1

36

2

36

2

36

1
=+++ . 

 

 

Problem 7: A RV has mean 92,12 ==   and an unknown probability distribution. Find 

the probability of P(6 < X < 18).   [P(6 < X < 18)  3/4] 

 

Problem 8: A RV X is exponentially distributed with parameter 1. Use Chebychev’s 

inequality to show that P[−1  X  3]  3/4. Find the actual probability also. 

 

Solution: X is Exponentially distributed with parameter  = 1. E(X) = 1/ and  

 Var(X) = 1/2  

  = 1,  = 1 
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 By Chebychev’s inequality,  P[|X − |  K]  1 − (1/K2)    

 P[−1  X  3] = P[−2  X − 1  2] = P[ |X − 1|  2]  

 Comparing, K = 2, as  = 1, K = 2 

 

 P[−1  X  3] = P[ |X − 1|  2]  1 − (1/4)  

 

  P[−1  X  3]  3/4 . 

 

Problem 9: Use Chebychev’s inequality to find how many times a fair coin must be tossed in 

order that the probability that the ratio of the number of heads to the number of tosses will lie 

between 0.45 and 0.55 will be at least 0.95. 

 

Solution: Let X be the number of heads obtained when a fair coin is tossed n times. 

 Then, X follows binomial distribution B(np,npq) where  p = q = 1/2 

  i.e., X  B(np,npq) 

   X/n  B(p,  (pq/n)) 

  i.e, X/n  B(1/2, 1/2n) 

 

By Chebychev’s inequality, 
2

1
1

2

1

K
K

n

X
P −









−    

   i.e, P[0.5 − K  X/n  0.5 + K]  1− 1/K2 

 

Given,  P[ 0.45  X/n  0.55]  0.95 

 

Comparing, 95.0
2

1
1 =−

K
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05.0

12

05.0
2

1

==

=

K
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UNIT – IV – Stochastic Convergence – SMT5203 



I. Introduction 

 

Law of large numbers : In statistics, the theorem that, as the number of identically 

distributed, randomly generated variables increases, their sample mean (average) approaches 

their theoretical mean.The law of large numbers was first proved by the  Swiss  

mathematician Jakob Bernoulli in 1713. He and his contemporaries were developing a  

formal probability   theory with   a   view   toward   analyzing   games    of    chance. 

Bernoulli envisaged an endless sequence of repetitions of a game of pure chance with only 

two outcomes, a win or a loss. Labeling the probability of a win p, Bernoulli considered the 

fraction of times that such a game would be won in a large number of repetitions. It was 

commonly believed that this fraction should eventually be close to p. This is what Bernoulli 

proved in a precise manner by showing that, as the number of repetitions increases 

indefinitely,  the  probability  of  this  fraction  being  within  any  prespecified  distance  

from p approaches 1. 

There is also a more general version of the law of large numbers for averages, proved 

more than a century later by the Russian mathematician Pafnuty Chebyshev.The law of large 

numbers is closely related to what is commonly called the law of averages. In coin tossing, 

the law of large numbers stipulates that the fraction of heads will eventually be close to 1/2. 

Hence, if the first 10 tosses produce only 3 heads, it seems that some mystical force must 

somehow increase the probability of a head, producing a return of the fraction of heads to its 

ultimate limit of 1/2. Yet the law of large numbers requires no such mystical force. Indeed, 

the fraction of heads can take a very long time to approach 1/2. For example, to obtain a 95 

percent probability that the fraction of heads falls between 0.47 and 0.53, the number of 

tosses must exceed 1,000. In other words, after 1,000 tosses, an initial shortfall of only 3 

heads out of 10 tosses is swamped by results of the remaining 990 tosses. 

 

The laws of large numbers are a collection of theorems that establish the convergence, in 

some of the ways already studied. These theorems are classified as weak or strong laws, 

depending on whether the convergence is in probability or almost surely. 

Weak laws of large numbers: (Chebychev’s Theorem) Let {Xn}n∈IN be a sequence of 

independent r.v.s (not necessarily identically distributed) such that V (Xn) ≤ M < ∞, ∀n ∈ IN. 

Then, 1 n X n i=1 Xi − 1 n X n i=1 E(Xi) P → 0. 

https://www.britannica.com/science/statistics
https://www.britannica.com/topic/theorem
https://www.britannica.com/science/mean
https://www.britannica.com/biography/Jakob-Bernoulli
https://www.britannica.com/science/probability-theory
https://www.merriam-webster.com/dictionary/envisaged
https://www.britannica.com/biography/Pafnuty-Lvovich-Chebyshev


Chebychev’s Theorem for R.V s with equal mean) :In the conditions of Theorem 3.1, if 

E(Xn) = µ, ∀n ∈ N, then X n ,i=1 Xi P → µ. 

Strong Law Of Large Numbers :Thus, the sample mean converges weakly to the population 

mean. Historically, the next corollary was the first law of large numbers. 

Bernouilli’s Theorem: Let {Xn}n∈IN be a sequence of i.i.d. r.v.s distributed as Bern(p). 

Then, 1 n X n i=1 Xi P → p. The next theorem does not require the existence of the 

variances, but in turn requires the r.v.s to be identically distributed. 

Khintchine’s weak law of large numbers : Let {Xn},n∈N be a sequence of i.i.d. r.v.s with 

mean E(Xn) = µ ∈ (−∞,∞). Then, 1 n X n i=1 Xi P → µ. 

Strong law of large numbers - Kolmogorov’s Inequality: Let {Xn},n∈IN be a sequence of 

independent r.v.s with mean E(Xn) = µn and V (Xn) = σ 2 n , both finite. Let Sn = Pn i=1 Xi 

and c 2 P n = n i=1 σ 2 i . Then, it holds that for all H > 0, P [ n k=1 {ω ∈ Ω : |Sk(ω) − E(Sk)| 

≥ Hcn} ! ≤ 1 H2 . 

 

Kolmogorov’s strong law of large numbers : Let {Xn}n∈IN be a sequence of independent 

r.v.s with mean E(Xn) ,by strong law of large numbers µn and V (Xn) = σ 2 n , both finite. If 

X tends to ∞, n= σ 2 n < ∞, then X n, i=1 Xi − 1 n X n i=1 µi a.s. → 0. 

Borel-Cantelli’s Theorem : Let {Xn}n∈IN be a sequence of i.i.d. r.v.s distributed as 

Bern(p). Then, 1 n X n, i=1 Xi a.s. → p. This theorem says that the relative frequency of a 

dichotomic event goes almost surely to the probability of the event. Finally, the next strong 

law does not require anything to the variances but it assumes that the r.v.s are i.i.d. 

Khintchine’s strong law of large numbers: Let {Xn}n∈IN be a sequence of i.i.d. r.v.s with 

E(Xn) = µ < ∞. Then 1 n X n i=1 Xi a.s. → µ 

Law of Large Numbers for Discrete Random Variables We are now in a position to prove our 

first fundamental theorem of probability. We have seen that an intuitive way to view the 

probability of a certain outcome is as the frequency with which that outcome occurs in the 

long run, when the experiment is repeated a large number of times. We have also defined 

probability mathematically as a value of a distribution function for the random variable 

representing the experiment. The Law of Large Numbers, which is a theorem proved about 

the mathematical model of probability, shows that this model is consistent with the frequency 

interpretation of probability. This theorem is sometimes called the law of averages. To find 



out what would happen if this law were not true, see the article by Robert M. Coates.1 

Chebyshev Inequality To discuss the Law of Large Numbers, we first need an important 

inequality called the Chebyshev Inequality. 

Chebyshev Inequality: Let X be a discrete random variable with expected value µ = E(X), 

and let ² > 0 be any positive real number. Then P(|X − µ| ≥ ²) ≤ V (X) ² . 

Proof. Let m(x) denote the distribution function of X. Then the probability that X differs from 

µ by at least ² is given by P(|X − µ| ≥ ²) = X |x−µ|≥² m(x) . We know that V (X) = X x (x − µ) 

2m(x) , and this is clearly at least as large as X |x−µ|≥² (x − µ) 2m(x) , since all the summands 

are positive and we have restricted the range of summation in the second sum. But this last 

sum is at least X |x−µ|≥² ² 2m(x) = ² 2 X |x−µ|≥² m(x) = ² 2P(|X − µ| ≥ ²) . So, P(|X − µ| ≥ ²) ≤ 

V (X) X in the above theorem can be any discrete random variable. 
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I. Introduction 

The Central Limit Theorem (for the mean) 

If random variable X is defined as the average of n If random variable X is defined as the 

average of n independent and identically distributed random independent and identically 

distributed random variables, X variables, X1, X2, …, Xn; with mean, ; with mean, µ, and 

Sd, σ. Then, for large enough n (typically n≥30), Xn is approximately Normally distributed 

with parameters: µx = µ and σx = σ/ . 
 

Again, this result holds regardless of the shape of the X distribution (i.e. the Xs don’t have to 

be The central limit theorem in statistics states that, given a sufficiently large sample size, the 

sampling distribution of the mean for a variable will approximate a normal distribution 

regardless of that variable’s distribution in the population. 

Distribution of the Variable in the Population 

Part of the definition for the central limit theorem states, “regardless of the variable’s 

distribution in the population.” In a population, the values of a variable can follow different 

probability distributions. These distributions can range from normal, left-skewed, right- 

skewed, and uniform among others.This part of the definition refers to the distribution of the 

variable’s values in the population from which you draw a random sample. 

 
The central limit theorem applies to almost all types of probability distributions, but there are 

exceptions. For example, the population must have a finite variance. That restriction rules out 

the Cauchy distribution because it has infinite variance. 

 

 

How the Central Limit Theorem is used in practice 

In practice, the CLT is used as follows: 

1. we observe a sample consisting of observations , , , ; 

2. if is large enough, then a standard normal distribution is a good approximation of the 

distribution of the standardized sample mean; 

3. therefore, we pretend that 

 

 

4. as a consequence, the distribution of the sample mean is 
 

 

https://statisticsbyjim.com/glossary/statistics/
https://statisticsbyjim.com/glossary/sample/
https://statisticsbyjim.com/glossary/mean/
https://statisticsbyjim.com/glossary/population/
https://statisticsbyjim.com/glossary/skewed-data/
https://statisticsbyjim.com/glossary/sample/
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1. Lindeberg-Lévy Central Limit Theorem 

The best known Central Limit Theorem is probably Lindeberg-Lévy CLT: 

Proposition (Lindeberg-Lévy CLT) Let be an IID sequence of random variables such that: 

where . Then, a Central Limit Theorem applies to the sample mean : 

 
 

Proof: 

 
We will just sketch a proof. For a detailed and rigorous proof see, for example: Resnick 

(1999) and Williams (1991). First of all, denote by the sequence whose generic term is 

 

 
 

https://www.statlect.com/glossary/IID-sequence
https://www.statlect.com/asymptotic-theory/central-limit-theorem#refResnick
https://www.statlect.com/asymptotic-theory/central-limit-theorem#refResnick
https://www.statlect.com/asymptotic-theory/central-limit-theorem#refWilliams
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is the characteristic function of a standard  normal  random  variable  (see  the  lecture  

entitled Normal distribution). A theorem, called Lévy continuity theorem, which we do not 

cover in these lectures, states that if a sequence of random variables is such that their 

characteristic functions converge to the characteristic function  of a random variable , then  

the sequence converges in distribution to . Therefore, in our case the sequence converges in 

distribution to a standard normal distribution. 

2. De Moivre-Laplace Central Limit Theorem 

 

We are interested in the natural random variation of Sn around its mean. From the Weak Law 

of Large Numbers, we know that ℙn |Sn n − p| > ϵ → 0. From the Large Deviations result we 

also know that ℙn |Sn n − p| > ϵ ≤e−nh+(ϵ) + e−nh−(ϵ). Equivalently, we can say that Sn will fall     

outside     the     range np(1 ± ϵ) with     probability     near 0.      Finally,      note      that E (Sn 

− np)2 = np(1 − p).   We    ask,    “How    large    a    fluctuation    or    deviation  of Sn from 

np should be surprising?”. We want a function ψ(n) with 

https://www.statlect.com/probability-distributions/normal-distribution
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lim n→∞ℙn Sn − np > ψ(n) = α, for 0 < α < 1. 

 

To measure the surprise of a fluctuation, we specify α, then ask what is the order 

of ψ(n) as a function of n. Small but fixed values of α would indicate large surprise, 

i.e. unlikely deviations, and so we expect ψ(n) to grow but more slowly than ϵn. 

 

Take p = 1∕2 to simplify the calculations for the discovery oriented proof in this 

subsection. We can make some useful guesses about ψ(n). Interpret the probability on the left 

in as the area in the histogram for the binomial distribution of Sn. From the expression of 

Wallis’ Formula for the central term in the binomial distribution, the maximum height of the 

histogram bars is of the order 1 nπ, see Wallis’ Formula.. That means that to get a fixed 

area α around that central term requires an interval of width at least a multiple of n. If we 

take ψ(n) = xnn∕2 (with the factor 1∕2 put in to make variances cancel nicely), then we are 

looking for a sequence xn which will make 

 

lim n→∞ℙn Sn − n∕2 > xnn∕2 = α as n →∞ 

 
true for 0 < α < 1. By Chebyshev’s Inequality, we can estimate this probability as 

 

ℙn Sn∕n − 1∕2 > xn∕(2n) ≤ 1∕xn2. 

 
If limsup n→∞xn = ∞, we could only obtain α = 0, so xn is bounded above. 

If liminf n→∞xn = 0 then for a fixed ϵ > 0 and some subsequence nm such that for 

sufficiently large m 

 

ℙnm Snm∕nm − 1∕2 > ϵ > xnm∕(2nm) → 0. 

 
which is also contradiction to the assumption α > 0. Hence xn is bounded below by a positive 

value. We guess that xn = x so ψ(n) = xn∕2 for all values of n. 

 

Proof : 

To simplify the calculations, take the number of trials to be even and p = 1∕2. Then the 

expression we want to evaluate and estimate is 

 

ℙ2n= S2n − n < x2n∕2 . 

This is evaluated as ∑ |k−n|<xn∕22−2n2n k = ∑ |j|<xn∕22−2n 2n n + j. 

 

Let Pn = 2−2n2n n be the central binomial term and then write each binomial probability in 

terms of this central probability Pn, specifically 

 

2−2n 2n n + j = Pn ⋅n(n − 1)⋯(n − j + 1) (n + j)⋯(n + 1) . 

Name the fractional factor above as Dj,n and rewrite it as 

Dj,n = 1 (1 + j∕n)(1 + j∕(n − 1))⋯(1 + j∕(n − j + 1)) and then 

 

log(Dj,n) = −∑ k=0j−1 log(1 + j∕(n − k)).Now use the common two-term asymptotic 

expansion for the logarithm function log(1 + x) = x(1 + ϵ1(x)). Note that 

ϵ1(x) = log(1 + x) x − 1 = ∑ k=2n(−1)k+1xk k 

https://www.math.unl.edu/~sdunbar1/ProbabilityTheory/Lessons/StirlingsFormula/WallisFormula/wallisformula.xml
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so −x∕2 < ϵ1(x) < 0 and lim x→0ϵ1(x) = 0.log(Dj,n) = −∑ k=0j−1 j n − k 1 + ϵ1 j n − k.Let 

ϵ1,j,n ∑ k=0j−1 j n − k = ∑ k=0j−1 j n − kϵ1 j n − k. 

Then we can write log(Dj,n) = −(1 + ϵ1,j,n) ∑ k=0j−1 j n − k. and 

then ϵ1,j,n = max |j|<xn∕2ϵ1 j n − k → 0 as n →∞. 

Write j n − k = j n ⋅ 1 1 − k∕n and then 

 

expand 1 1−k∕n = 1 + ϵ2(k∕n) where ϵ2(x) = 1∕(1 − x) − 1 = ∑ k=1∞xk so ϵ2(x) → 0 as x → 0. 

 

Once again k is restricted to the range |k|≤|j| < xn∕2 so k n < xn∕2 n = x 2n 

ϵ2,j,n = max |k|<xn∕2ϵ2 k n → 0 as n →∞. 

Then we can write 

 

log(Dj,n) = −(1 + ϵ1,j,n)(1 + ϵ2,j,n) ∑ k=0j−1 j n. 

log(Dj,n) = −(1 + ϵ3,j,n) ∑ k=0j−1 j n = −(1 + ϵ3,j,n)j2 n 

where ϵ3,j,n = ϵ1,j,n + ϵ2,j,n + ϵ1,j,n ⋅ ϵ2,j,n. Therefore ϵ3,j,n → 0 as n →∞ uniformly in  j. 

Exponentiating ,Dj,n = e−j2∕n(1 + Δ j,n) 

where Δj,n → 0 as n → 0 uniformly in j. 

 

Using Stirling’s Formula, Pn = 2−2n (2n)! n! ,n! = 1 nπ(1 + δn). 

 

Summarizing,ℙ2n S2n − n < x2n∕2 = ∑ |j|<xn∕22−2n 2n n + j = ∑ |j|<xn∕2Pn ⋅ Dj,n = ∑ |j|<xn∕2 

Pn ⋅e−j2∕n(1 + Δ j,n) = (1 + δn) ∑ |j|<xn∕2 1 2π ⋅e−j2∕n 2 n 

3. Levy-Cramer theorem 

If the sum of two independent non-constant random variables is normally distributed, then 

each of the summands is normally distributed. This result was stated by P. Lévy [1] and 

proved by H. Cramer [2]. Equivalent formulations are: 

1) if the convolution of two proper distributions is a normal distribution, then each of them is 

a normal distribution; and 

2) if ϕ1(t)ϕ1(t) and ϕ2(t)ϕ2(t) are characteristic functions and 

if ϕ1(t)ϕ2(t)=exp(−γt2+iβt 

then ϕj(t)=exp(−γjt2+iβt),γj≥0,−∞<β<∞.ϕj(t)=exp⁡(−γjt2+iβt),γj≥0,−∞<β<∞. 

https://encyclopediaofmath.org/wiki/L%C3%A9vy-Cram%C3%A9r_theorem#References
https://encyclopediaofmath.org/wiki/L%C3%A9vy-Cram%C3%A9r_theorem#References
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In formulation 1), the Levy–Cramer theorem admits a generalization to the convolution of 

two signed measures with restrictions on their negative variation; in formulation 2) it admits a 

generalization to the case when instead of condition ,one considers the condition 

∏j=1m{ϕj(t)}αj=exp(−γt2+iβt),∏j=1m{ϕj(t)}αj=exp⁡(−γt2+iβt), 

γ≥0,−∞<β<∞,t∈E,γ≥0,−∞<β<∞,t∈E, 

where ϕ1(t),…,ϕm(t)ϕ1(t),…,ϕm(t) are characteristic functions, α1,…,αmα1,…,αm are 

positive numbers and EE is a set of real numbers with a limit point at the origin. There are 

generalizations of the Lévy–Cramér theorem to random variables in Euclidean spaces and in 

locally compact Abelian groups.The Levy–Cramer theorem has the following stability 

property. Closeness of the distribution of a sum of independent random variables to the 

normal distribution implies closeness of the distribution of each of the summands to the 

normal distribution; qualitative estimates of the stability are known.Theorems analogous to 

the Lévy–Cramér theorem have been obtained for the Poisson distribution (Raikov's 

theorem), for the convolution of a Poisson and a normal distribution, and for other classes of 

infinitely-divisible distributions. 


