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Set Theory

Introduction to Set theory, Laws of set theory, Venn diagram, Partition of Sets,
Cartesian of Sets, basic theorems in set.

The concept of a set is used in various disciplines and particularly in computers.
Basic Definition:
1. “A collection of well defined objects is called a set”.

The capitals letters are used to denote sets and small letters are used for denote
objects of the set. Any object in the set is called element or member of the set. If x
is an element of the set X, then we write x € X, to be read as ‘x belongs to X’ , and

if x 1s not an element of X, the we write x & X to be read as ‘x does not belongs to
X

2. The number of elements in the set A is called cardinality of the set A,
denoted by |4| or n(4) . We note that in any set the elements are distinct.
The collection of sets is also a set.

S= {Plx{szpa}:PmPa}
Here {P,, P, } itself one set and it is one element of S and |S|=4.

3. Let A and B be any two sets. If every element of A is an element of B, then
A is called a subset of B is denote by ‘A S B’

We can say that A contained (included) in B, (or) B contains (includes) A.
Symbolically, A€ B (or)B 2 A

Logically, A€ B = (xV){x € A = x € B}



LetA=1{1,2,345}, B={1,2,4}, C={15}, D={2}, E={14,2}
Then B€ A, CS A DESEADCSEH

C €B,since 5eC=5¢&B, ESB andB CE.

Some of the important properties of set inclusion.

For any sets A, B and C

A € A (Reflexive)

(ASB)A(B &) = (A € () (Transitive)

Note that A € B does not imply B € A except for the following case.

4. Two sets A and B are said to be equal ifand onlyif A € Band B € A,
l.e., A=B &< (ASBand BE ()

Example {1,2,4} = {4,1,2} and P = {{1,2},4}, Q = {1,24} then P # Q
Since {1,2} € P and {1,2} & Q eventhough 1,2 € Q.

The equality of sets is reflexive, symmetric, and transitive.

5. A set A 1s said to be a proper subset of aset Bif A € B and A # B.
Symbolically it is writtenas A € B.i.e, Ac B &= (ASB AN A+ B)

C is also called a proper inclusion.

6. A set 1s said to be universal set if it includes every set under our discussion. A
universal set is denoted by U or E.

In other words, if p(x) is a predicate.E = {x|p(x) vV 1 p(x)}

One can observe that universal set contains all the sets.

7. A set is said to be empty set or null set if it does not contain any element, which
id denoted by 0.



In other words, if p(x) is a predicate.® = {x|p(x)V 1p(x)}

One can observe that null set is a subset for all sets.

8. For a set A, the set of all subsets of A is called the power set of A. The power set
of A is denoted byp(4) or 2" i.e., p(4) ={S| S € A}

Example, Let A = {a, b, c}

Then P(Aj = {E}, {ﬂ}, {b}y {C}J {ﬂ, b}y {aJ C}J {bl C}J A}

Then set @ and A are called improper subsets of A and the remaining sets are

called proper subsets of A.

One can easily note that the number of elements of p(A4) is
21l i e, |p(A) =2

SOME OPERATIONS ON SETS
1. Intersection of sets
Definition:

Let A and B be any two sets, the intersection of A and B is written as A N B is the
set of all elements which belong to both A and B.

Symbolically
ANnB={x|x€Aandx € B}

Exampled = {1,2,3,4,5,6}, B = {2,4,6,8) then ANB ={2,4,6]. From the

definition of intersection it follows that for any sets A,B,C and universal set E.
AnA=A4 AnNnB=BnA An(BnC)=(AnB)NnC

ANE=A4 ANG=20

2. Disjoint sets



Definition:

Two set A and B are called disjoint if and only if A n B = @, that is, A and B have

no element in common.

Example A = {1,2,3} B ={5,79} C={3,4}

ANB=0, AnC={3}, BNnC=0

A and B are disjoint and B and C also, but A and C are not disjoint.
3. Mutually disjoint sets

Definition:

A collection of sets is called a disjoint collection, if for every pair of sets in the
collection, are disjoint. The elements of a disjoint collection are said to be mutually
disjoint.
Let A = {4, },; be an indexed set, A is mutually disjoint if and only if

A, n A = Oforalli,j €1,i#].

Example

A, ={{1,2},{33}, 4, ={{1},{2,3}}, 4; ={{1,2,3}}
Then A = { A, ,A,, A;} is a disjoint collection of sets.

AN A, =0, A, n A; = 0 and A, N A; =0
4. Unions of sets

Definition:

The wunion of two sets A and B, written as 4 U B, is the set of all elements which

are elements of A or the elements of B or both.

Symbolically AUB ={x | x € Aor x € B}
Example Let A = {1,2,3,4,5,61 B = {2,4,6,8} then AUB = {1,2,34,5,,6,8}

From the union, it is clear that, for any sets A, B,C, and universal set E.



AUA=A AUB=BUA AUu(BuC)=(AuB)uUC
AUE=E Aup=A4

5. Relative complement of a set

Definition:

Let A and B are any two sets. The relative complement of B in A, written A — B, 1s

the set of elements of A which are not elements of B.
Symbolically A —B ={ x| x € Aor x € B}

Note that A — B = ANB.

Example Let A = {1,2,3,4,5,6}

B ={2,4,6,8} then

A—B =1{135)

B—-A={8]

It is clear from the definition that, for any set A and B.

A—-B=20
A—B+B-—-A
A-0=A4

6. Complement of a set
Definition:

Let A be any set, and E be universal. The relative complement of A in E is called
absolute complement or complement of A. The complement of A is denoted by A

(or A€ or - A)

Symbolically



E—-A=A={x|x€Eandx & A}

Example Let £ = {1,2,3,4, ...} be universal set and
A=1{2,468,..}beanysetinE.

Then

A=1{1357,..}

From the definition, for any sets AM=4 0O=E

E=0 AUA=EANA=0

7. Boolean sum of sets
Definition:

Let A and B are any two sets. The symmetric difference or Boolean sum of A and
B is the set A+B defined by

A+B=(A—-B)U(B—A)=(AnB)u(BnA)
(or)A+B={x|x€Aandx & B} U{x|x € Bandx & A}
Example Let

A=1{1,2345,6}

B = {2,4,6,8) then

A+ B = {1,3,5,8} From the definition, for any sets A and B.
A+A=0, A+0=A4A

A+E=A4, A+B=B+ A and

A+(B+C)=(A+B)+C



8. The principle of duality

If we interchange the symbols N, U, E and @, € and 2, € and 3, in a set equation

or expression. We obtain a new equation or expression is said to be dual of the
original on (primal).

“If T is any theorem expressed in terms of N,U and — deducible from the given
basic laws, then the dual of T is also a theorem”.

Note that, the theorem T is proved in m steps, then dual of T also proved in m step.

Example The dual of AN A = B isgivenby AUA =E.

Remark: Dual (Dual T) =T.

Identities on sets

AUA=A Idempotent laws
AnNnA=A

AUB=BUA Commutative laws
ANnB=BnA

(AUB)UC=AU(BUO) Associative laws

AnB)NnC=An(BnC)
AUBNC)=(AUB)YN(AU0) Distributive laws

AnN(BUCO)=(AnBYU((ANn(O)

AU(AnB)=A Absorption laws
An(AuB)=A
(AUB)=AnNB De Morgan’s laws



(AnB)=AUB

Aud =4 ANd =0

AUE =E AnNnE=A4

AUA=E ANA=0

0=E E=0 A=A
PROBLEMS

1.5={a,b,pq}, Q={a,p,t}.FindSUQandSn Q?

Solution:
SuQ ={abnpq,t}
SNQ ={ap}

2.1f A ={a,b,c}. Find p(A)?

Solution:

p(4) = {@,{a}, (b}, {c},{a,b},{a,c},{b,c},A} and
|A] =3

lp(A)|=2°=8

3. Write all proper subsets of A = {a,b, c}.

Solution:

The proper subsets are



p(4) = {{a}, {b}, {c},{a, b}, {a,c},{bc}}
4. Showthat A S B<= AnNnEB = A.

Solution:

IfAS B, thenVxeA=x€B

Now , let

xEA=xeA andx €RB

< xeAnB

A=AnNnBEB

IfANB = A4, then

Letxed, xeAnNB =xeB
Therefore A € B.

5.1fA=1{2,567},B=1{1,234}, C={1,3,57.FindA—B,A—C,C —B and
B —C.

Solution:
A—B ={5,67}
A—C={2,6}
C—B ={57}
B—-C=1{24}

6.1fA=1{2,34},B={12}, C={456}.FindA+B,B+C,A+C,A+B+C
and (A +B) + (B + (C).

Solution:

A+B={134



B+C={1,2/45,6}

A+C={2,35,6)}

A+B+C=1{1,356}
(A+B)+(B+C)={2,356}

Note that
A+(B+B)+C=A+@)+C=A+C=1{23,5,6}
7.Showthat A€ AUB andAnB € A

Solution:
Let

x€EA =x€A(or)x€BRB

= x€AUBRB

— AC AUB

Nowlet xEANB = xeAandx €B

—x €4

ANBEA

Hence ASAUB andANnB € A.
Remark: B€ AUB,AnB&Band AnBS AUB.

8. Show that for any two sets Aand B, A—(AnB)=A—B.

Solution:

xEA—(AnB)exedandx & (AnB)

o xeAdand{x & Aorx & B}

10



S{xedandx & A}(or){x € Aand x € B}
& 0 (or){x e Aand x & B}
—x€Aandx &b

A—(AnB) €A—B and A—-BEA—-(ANRB)
Therefore A—(ANB)=A—B.

9. Show that AU (BN )= (AUB)N (AU )
Solution:
x€EAUBNC)e=xedorxeBnC

& xedor {xeBandx e (C}
S{x€dorxeBland {x€EAorx €}
= {x€eAUB}and {x € AU (}

S xeE(AUB)N (AU D)

Therefore AU(BNC)=(AUB)n (AU ().
10. Show that (AU B)=An B.

Solution:

Let x€ (AUB) ©x & AUB
Sx¢Aandx € B

S x€EAdandx € B

<xe AnB

Therefore (AU B) = AN B.

11. Show that (A —B)—-C=A— (B U ().

11



Solution:

(A—B)—C=(A-B)nC (P—Q=PnQ
=(AnB)nC

=An(BnC) (Associative)
=An(BU0) (De Morgan’s law)

12. Show that AN(B—C€) =(ANB)—(ANC)
Solution:

Let (ANB)— (AN C)

=(ANB)N(ANC)

=(ANBNAU0)
—(ANBNADUM@ANBNO)
=((AnA)NB)UMANBNC)
=(@NB)U@ANBNC(C)

=0U((ANBNC(C)

—An(Bnl)

—ANn(B-0)

ASSIGNMENT PROBLEMS
Part -A

1. Define a set

2. Define subset of a set. What is mean by proper subset?

12



(1) Find all subset of A = {1,2,3}
(i1)Find all proper subsets of A.
3. Define power set.

4. Define disjoint sets with example?

5. 1fA=1{1,2345}and B = {2,4,6,810}). Find AUB,AnB,a— B,B — A,
A+ B,and B + A?

Which of the following sets are empty?
{x|xeER,x+6 =6}

{x | x is a real integer such that x* + 1 = 0}

A SR

{x | xis areal integer and x> — 4 = 0}
10.State duality principle in set theory.
11.Define cardinality of a set.

12.1f a set A has n elements, then the number of elements of power set of A

13.Find the intersection of the following sets
) x|x*—1=0,L,{x|[x*+2x+1=0]}
14.Write the dual of AN A = 0.
15.Let A, Band Csets,suchthat AUB =AuCandANB =AnNC, can we

conclude that B=C.
16.State De Morgan’s Laws.

17.Whether the union of sets is commutative or not?

PART -B

13



A

. Showthat An(BUC)=(AnB)YU(AnNC).

Verify the De Morgan’s laws
i) AUB=AnB,({)AnB=AUB

. Show that the intersection of sets is associative.

Show that A —(B—C)=(A—B)U (An(C).

Show that AN(B—C)=(AnB)—(AnC(C)

LetA; ={1,2,3,...} fori = 1,2,3,... find (a) UL; 4; (b) N}, 4;
Prove that A — (A — B) © B.

Show that for any two sets Aand B,A— (AnB)=A —B.
Provethat AnNBc Ac AUuBandAnBc Bc AUB.

10.fAUB=AUuCand AnB = AnC, prove that B=C.(cancelation law)
11. Showthat A —(BUC)=(A—B)n(A—C).

12. Show that A + A = @, where + is the symmetric difference of sets.

13. Show that (R € S) and (S < Q) imply R < Q.

14. Giventhat ANC<SBNCand ANC S BNC.Show that A € B.

CARTESIAN PRODUCT OF SETS

The Cartesian product of the sets A and B, is written an A X B, is the set of all

ordered pairs in which the first elements are in A and the second elements are in

B.

i.e. AXB={x,y)x€Aand x € B}

For example

LetA={1,2},B={a,b,c}, c = {a, )}

Now

14



AX B ={(1,a),(1,b),(1,cX2,a),(2,b),(3,c)}
AXC={1,a),(1,5),(2,a),(2,B)}

AX B = {{a a),(a,b),{a,cXB,a),{B,b),{B,c)}
It 1s clear from the definition

AXB#B XA and {{a,b),c)E(AXB)XC, is an ordered triple then
{a,b) EAXBandceC.

Now ,AX (BXC) ={{a,{b,c))|la€ Aand (b,c) € {B,C)}
Note that {a, {b, c}) is not an ordered triple.
This fact show that (A X B) X C # A X (B X ()

1.e. Cartesian product is not associative.
Now

AXA=A4%={{x,y),Vx,y € A}and A" = A" 1 X A.

Note that if A has n elements and B has m elements A X B has nm elements.

PROBLEMS

10fA=1{1,23}, B=1{ab}.FindAX B,Bx Aand A X Aand A*> X B
Solution :

AX B ={(1,a),{1,b),(2,a),{2,b),(3,a),(3,b)}
BxA={a1l){a2){a3){b, 1),(b,2),(b3)]}

AP =AXA={(1,1),(1,2),{1,3),(2,1),{(2,2),{2,3),(3,1),{3,2),(3,3)}}

15



AE x B = {{1J1J a’}! {1J1J b}! {1.'2! a}! {]'JZJ b}! {1J3J a’}! {1J3J b}! {ZJ]'.I ﬂ'}! {ZF]'J b}!

(2,2,a),(2,2,b),(2,3,a),(2,3,b),{3,1,a),(3,1,b),(3,2,a),(3,2,b),{3,3,a),({3,3,b) }

2.Showthat AX (BNC)=(AXB)n(AXC0C).
Solution: For any (x, y},

(x,y) X(BNC)=x€eAandyeBnNnC

S xcAdand{y€eBandye(}

< {x€EAandy €EB}and {y EBandy € (C}

= {x,v)EAXBland {{x,y) € A X (C}

= {x, VAXB)N(AXCO)}
AXBNC)=(AXB)Nn(AxX0()

3.Show that (ANB)X (CND)=(AXC)n (B xD).
Solution: For any {x, vy},

(x, M XANB)YXx(CnD)=xe(AnB)andy € (CnD)
< {(x€eAandx € B}and {y € Cand y € D}

s {xedandy € Cland {x € Bandy € D}

= {x,v) EA X Cland {{x,v) € B XD}

= {{x, yYAXC)N(B X D)}.

ASSIGNMENT PROBLEMS

16



Sl

Part A

. Define Cartesian product of sets? Given an example?

If A= {0,1}, find A%
IfA= {1,2,3}and B = {a, b}, find A X B,B x A, A*.
True or False
I. If A= {1,3,57,9},the {Vx € A, x + 2 is a prime number}
. If A= {1,2,345},the 3x €4, x+3 =10}

. IfAX B ={{1,2),{(1,3),(2,2),{2,3),{4,2),{4,3),({5,2),{5,3)}

Part B

If A,B and C are sets, prove that A X (BUC) = (A X B)U (A X (0).
Prove that (A X C)—(BXC)=(A—B)XC.

. IfA= {a,b}and B = {1,2},and C = {2,3}, find

I. AX(BuC()
. (AXB)U(AXC)
. AX(Bn<C)
IV. (AXB)Nn(AXxXC)
Show that the Cartesian product is not commutative? It is commutative

only for equality of sets?

17
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Relations

Relations: Product set, Relations (Directed graph of relations on set is omitted).
Composition of relations, Types of relations, Partitions, Equivalence relations
with example of congruence modulo relation, Partial ordering relations, n-ary
relations.

If a set A is given explicitly, it is immaterial in which order the elements of A are listed, e.g. the set
{x,y} is the same as the set {y,x}. In many instances, however, one would like, and, indeed, needs,
to have some order in the appearance of the elements. As an example, consider a coordinate plane
with an x-axis and a y-axis; then we can identify any point in the plane by its coordinates <x, y>. If
you wanted to find the point, <a,b>, you would move on the x-axis a units to the right or to the left
from the origin (depending on the sign of a), and then you would move b units up or down. If a and
b are different, then <a,b> and <b,a> denote different points. So, in this example the order in which

the elements appear is relevant.

The decisive property of ordered pairs is that two ordered pairs are equal if the respective

COl’l’lpOIleIltS are the same.
Introduction to Relations

Sometimes it is necessary not to look at the full Cartesian product of two sets A and B, but rather at
a subset of the Cartesian product. This leads to the following Definition. Any subset of A x B is

called a relation between A and B. Any subset of A x A is called a relation on A.

In other words, if A is a set, any set of ordered pairs with components in A is a relation on A. Since
arelation R on A is a subset of A X A, it is an element of the powerset of A X A, i.e. R € P(A x A).
If R is a relation on A and <x,y> € R, then we also write xRy, read as “x is in R-relation to y”, or

simply, X is in relation to y, if R is understood.



If x and y are binary related, under the relation R, the we write {x, v} € R or

xRy. If not the case we write {x, v} & R.
1. Example F = {{x,Vv) |xis the father of v}
L = {{x,y) |x and y are real number and x < y}

Then F, L are binary relations.

2.Example Let A and B be any two sets, then any non empty subset R of
A X B 1s called a binary relation.

Now
A= (1,23}
B = {a,b} then

AX B ={(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}

Let

R, = {{1,a),(2,b),(3,a),(3,b)}

R, = {(1,b),(3,a)]

Ry = {(2,a)}

Then R,, R, and R, are binary relations A to B.

Let S be any binary relation. The domain of S is the set of all elements x such
that for some vy, {(x, y) € S.

D(S)={x|{x,y) €S, for somey}

Similarly, the range of S is the set of all elements y such that, for some
x {x,y)ES

i.e. R(S) ={y {x,v) €S, for somex}

Let



§ = {{1,a),{1,b),{2,b),(3,a)}

D(S) = {1,2,3}

R(S) = {a, b}

IfS € X X Y, then clearly D(S) € X and R(S) € Y.

In case of X =V, then the relation defined on X X X is called an universal

relation in X.

If X = 0, then a relation on X X X is called void relation in X.

Since relations are sets, then we can have their union and intersection and so on.
RUS ={{x,y) |xRy or xSy }

RnS = {{x,y) |xRy and xSy}

R —5 = {(x,y) [xRy and (x,y) & S}

R+ S ={{x,y)|{x,y) is either in R or in S but not in both }

Properties of Binary relations
1. Reflexive
Let R be a binary relation defined on X.

Then R is reflexive if, for every x € X,{x,y) € R.

Example:
Let

X ={1.23)

R = {(1,1),(1,2),(2,2),(3,3),(2,3)} and

S={{1,1),{(1,2),(2,1),(3,3)} are defined on X.



Then R is reflexive, but S is not reflexive. Since {2,2) € S and 2 € X.

2. Symmetric

A relation R from X to Y is symmetric if every x € X and y € ¥, whenever
(x,y) € R, then (y,x) € R.

That is, if xRy = yRx, then R is symmetric

Example:

Let

X =1{1,2}

R ={{(1,1),(1,2),(2,1),{2,3),(3,2)} and

S={{1,2),{(2,2),(1,3),(3,1)} are defined on X.

Then R is symmetric, but S is not symmetric. Since {1,2) € S but (1,2} & S.
3. Transitive

A relation R is transitive if, whenever {x, v} € R and (v, z) € R, then (x, z) € R.
That is, if xRy A yRz, then R 1s transitive.

Example:

Let

R ={{1,1),{1,2),(2,2),{1,3),(2,3),{2,1)} and

S ={(1,2),(2,3),(1,3),(3,3),(2,1}}

Then R is transitive, but S is not transitive. Since {2,1) € S and {1,2) € S but
(2,2) & S.

4.Irreflexive

A relation R in a set X is irreflexive if, for every x € X, {x, x) € R.



Example:

Let

A=1{1,23]}

R = {(2,1),(1,2),{(2,2),(3,2),(2,3),{1,3)} and

S ={{1,1),(2,3),(2,2),(1,3)}

Then R is irreflexive, but S is not reflexive. Since (3,3} € S and {(1,1) € S.

5. Antisymmetric

A relation R in a set X is antisymmetric if, whenever (x,y) € R and
{v,z) € R, thenx = y.

That 1s, if xRy A yRx = x = y, then R 1s antisymmetric.
Example:

Let

X be the set of all subsets of E.

R be the inclusion relation (<) defined on X.
ASBABESA=A=E

Therefore R is antisymmetric in X.

6. Relation matrix

Let X = {x;,x;,...x,}, Y = {y,,5,... V,y} are ordered sets, R be a relation

defined from X to Y, then the relation matrix of R, is defined as
M, = (Tl-j)iil —-m,j:1—-n

Example 1:
LetX ={1,23}Y = {a, b}



1 1
R = {(1,a},{1,b),(2,a}),{3,b)} be arelation from X to Y. Then My = [1 {]]
0 1

Example 2: Let
R ={{1,1),{1,2),(2,1),{1,3),(2,2),(3,1),(3,2)} be a relation on X = {1,2,3} .

1 1 1
ThenMp, =1 1 0
1 1 0

7. Composition of Binary Relations

The concept of composition of relation is different from union and intersection
of two relations.

Definition:

Let R be a relation from X to Y and S be a relation from Y to Z. Then the
composite R o § is a relation from X to Z defined by

The operation ¢ in R ¢ § is called “ composition of relations”.

Example.

Let
R = {(1,2),(2,3),(3,4),{2,2)}

S = {(2,3),(4,1),(4,3),(2,1)} . Then

R oS = {(1,3),(1,1),(3,1),(3,3),(2,3),(2,1)}
SoR={(2,4),(4,2),(44)(2,2)}

Note that

RoR =R?

RoRoR=R?*cR =R?

R™1oR =R"etc.,



Definition:

The relation matrix for R o S is given by Mz.c = My M, where (© is defined
as follows.

MzOMs = (m,;) where m;;((i,j)th element) is 1 if and only if row i of M

and column j of M; have a 1 in the same relative position 4, for some £.

Example:
Let
R = {(1,2),(1,5),(2,2),(3,4),(5,1),{5,5)}

S={(1,3),(2,5),(3,1),(4,2),{4,4),(5,2),{5,3)} . Then
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Definition

—~

Let R be a relation from X to Y. The converse of R, is written as R, is a relation

from Y to X such thatxRy < xRy.



Example:
If R={{1,a),(2,b),{2,a),{b,3)
R = {{a,1),{b,2),{a,2),{b,3)

Also it 1s clear that

Result: The relation matrix M is the transpose of the relation M.
i.e.Mz = transpose of Mg

Example:

Let

R = {{1,1),{2,1),(2,2),{(2,3),{3,1),{3,3)

R = {{1,1),{2,1),{2,2),{3,2),{1,3),{3,3)

We have
1 1 0
M,=10 1 1
1 0 1
1 0 1
Ms=|1 1 0
0 1 1




EQUIVALENCE RELATION
Definition:

A relation R on a set X is called an equivalence relation if it is reflexive,
symmetric, and transitive.

Example 1:
Let
X ={1,23,4} and

R = {{1,1),{1,4),(4,1),{4,4),(2,2),(2,3),(3,2),(3,3)] is an equivalence relation
on X.

Example 2:

Equality of subsets on a universal set is an equivance relation.
Example 3:

Let

X={123,..7}

R = {{x, v} |x — v is divisible by 3}

Now, ¥ x € X,x —x = 0 is divisible by 3.

Therefore Vx € X,{x, x) € R (reflexive)

Forany x,y € X

Let {x,x) ER = x — y is divisible by 3 we have —(x —y) =y —x is also
divisible by 3.

(v,x) € R (symmetric)

Let{x,y) ERA (v,z) ER



= x — y 1s divisible by 3 and y — z is divisible by 3.

= (x — y)+ (v — 2) is divisible by 3.

= x — z is divisible by 3.

Therefore {x, y) € R (Transitive)

Therefore R is an equivalence relation on X.
EQUIVALENCE CLASSES

Definition:

Let R be an equivalence relation on a set X. For any x € X, the set [x], €E X

given by
[x]z = {y |xRy for y € X}
is called an R-equivalence class generated by x € X.

Therefore, an equivalence class [x]; of x € X is the set of all elements which
are related to x by an equivalence relation R on X.

Example:

Let Z be the set of all integers and R be the relation called “congruence modulo
47 defined by

R = {{x,y) |(x — y) is divisible by 4, for x and y € Z} (or x = y(mod 4))

Now, we determine the equivalence classes generated by R.
[0]g ={..-—8,—4,048...}

1]z ={.-—7,-3,1,59...}

[2]g ={..—6,—2,2,6,10 ...}

[3]lg ={..—5,—-1,3,7,11 ...}

Note that
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[0]g = [4]z,[1]; = [5]R, .- etc.
Therefore % = {[0]g, 11, [2]g, [3]&]

In a similar manner, we get the equivalence classed generated by the relation
“congruence modulo m” for any integer m.

Therefore, an equivalence relation R on X, will divide the set X into an
equivalence classes, and they are called portion of X.

PARTIAL ORDERED RELATION

A relation R on a set X is said to be a partial ordered relation, if R satisfies
reflexive, antisymmetric, and transitive.

Example:

Let p(A) be the power set of a set A.
Define a subset relation (<) on p (4), then € is a partial ordered relation.

Usually we denote the partial ordered relations as ' <’ is said to be partially
ordered set (or) poset, which is denoted by (X, <). We will study more about
posets in the subsequent sections.

1. Closures of a relation

Let R be a relation on the set X.

2. Reflexive closure

We have the relation R is reflexive if and only if the relation.
R = {{x, v} |V x € X}is contained in R.

1.e. Ris reflexive & I © R.

Definition:

11



Let R be a relation on X, then the smallest reflexive relation on X, containing R,
is called reflexive closure of R.

Therefore R; = R U is the reflexive closure of R.

3. Symmetric closure

We have, the relation R is symmetric if {x,v) ER < {y,x) €ER

i.e.R ={{y,x)|{x,y) ER}
Definition:

Let R be a relation X, then smallest symmetric relation on X, containing R, is
called the symmetric closure of R.

Therefore R U R is the symmetric of R.

4. Transitive closure

We have, the relation R is transitive, if {x,y) € R and {y,z) € R then
{x,z) ER.

Definition:

A relation R is said to be the transitive closure of the relation R on X if R is

the smallest transitive relation on X, containing R,

i.e R¥ is the transitive closure of R, if

I. R SRt
II. RTistransitive on X

III.  There is no transitive relation R, on X, such that R € R, € R~

Remarks:

1. The transitive closure of R can be obtained by

12



R*=RUR*UR?*U .= URE'
i=1
2. We know that {x,z) € R? if and only if there is an element y such that

(x,y) € Rand {y,z) ER.

Therefore {a, b) € R™ if and only if we can find a sequence x,,X5, ... X, _;

in X such that {a, x,),{x,,%,),...{x,,_,, b} are all in R,

The sequence a,x,,X,,....X,,_4, b 1s said to be a chain of length n from a to
b in R. Here x,,x,,....x,,_,; are called interval vertices of the chain in R.

Note that the interval vertices need not be distinct.

PROBLEMS
1.If P = {{(1,2),(2,4),(3,4)}, Q = {{1,3),{2,4),{4,2)}

Find G))PU Q,P N Q,P,P u Q (ii) domains of P, P U @, P N Q and (iii) ranges
of Q,PUQ,PNQ.

Solution:
PUQ = {(1,2),(1,3),(2,4),(3,4),(4,2)
PNnQ={(2,4)]

P ={(2,1),(4,2),(4,3)}
PuQ={(1,3),(24),(4,2),(2,1),{(4,3)}
Domain of P = {1,2,3}

Domain of (PU Q)= D(PU Q) = {1,2,3,4}
Domain of (PN Q)= D(P N Q) = {2}

Range of Q@ = R(Q) = {2,3,4}

13



Range of (PUQ)=R(PUQ)={2,34}
Range of (PN Q) =R(PN Q)= {4}

It is clear that

D(P U Q) = D(P)uU D(Q) and

R(P N Q) S R(P)NR(Q)

In general D(P) = R(P) and R(P) = D(P).

2LetX ={1,234}and R = {{x,y) | x,v € X and (x — y) is anintegeral

non zeromultiple of 2} 5= {{x,y) | x,y € X and (x — y) is an integeral

non zeromultiple of 3} . Find RUS and R NS ?

Solution:

Given that R = {(1,3),(3,1),(2,4),{4,2)} and
S={1,4),(41)JRUS ={(1,3),(1,4),(2,4),(3,1),(4,1),(4,2}
RNS=0

Remarks:

D(R) ={1,2,34}

R(R) ={1,2,3/4}

D(S) = {14}

R(S) ={1,4}

3LetS={{x,x*)|x €N} and T = {{x,2x) | x E N}, where = {0,1,2,
the rangeof Sand T, find SUT and SN T ?

Solution:

14
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S={{x,x*)|xEN}

= {{0,0),(1,1),(2,4),(3,9),(4,16),...... } and

T ={(x,2x) | x N}

= {{0,0),(1,2),(2,4),(3,6) ,{4,8),...... }

R(S) ={x*|x €N}

={0,1,49,16,25... ... }

R(T)={2x|x EN}

={0,2,4,6,810,...... }

SUT ={{(x,x*) | x e N} U {{x, 2x) | x € N}

= {{x,¥) | x,v € N, such that y = x* (or)2x}

= {{0,0),(1,1),(1,2),(2,4),(3,6),(3,9), ... ... }

SNT ={x,y) | x,y € N,such that y = 2x and y = x*}
(Nowy=2xandy=x? =22x=xl.eex=00rx=2
x=0y=0andx=2 =2y=4)

SNT ={0,0),(2,4)}

4. Given an example which is neither reflexive nor irreflexive?
Solution:

LetX ={1,2,3,4} and

R ={(1,1),(1,2),(2,3),(3,3) ,{4,1),{4.4)}

Then R is not reflexive, since {2,2) € R, for 2 € X and R is not irreflexive, since
1eX,and{(1,1) € R.

15



5. Test whether the following relations are transitive or not on
X={1,23}

R={(11),(2,2)}

S={11),(1,2),(2,2) ,(2,2),(23)}

T ={{1,1),{(1,2) ,(1,3) ,{2,1) ,(2,2),{2,3)} .

Solution: The relation R and T are transitive.

Since, in R, we have {1,1} € R, then check any other pair starting with {1,z) € R,
then we must have 1R1 A 1Rz = 1Rz i.c., {1,2z) € R, but there is no pair staring
with 1. So, pass on to next pair {2,2) then we check any other pair starting with 2,

and so on.

In T, we have (1,1} € T, then there are two pairs {1,2) and (1,3} must be the
transitive of {1,1) € T, then we must have {1,2) and {1,3) in T. Then pass to
(1,2) € T the transitive pairs are {2,1),(2,2) and (2,3) then we must have the pairs
(1,1),(1,2),{1,3}in T.

Then pass to {1,3) € T, find the transitive pairs of {1,3) and so on, for all pairs in

T. Hence T is a transitive relation.

The relation S is not transitive, since for {1,2) € S, the transitive pairs are {2,2) and
{2,3) then we must {(1,2) and {1,3)in Sbut {1,3) & S.

6. Let R denotes a relation on the set of pairs of positive N X N integers such that

{x, y)R {u, v) if and only if xv = yu. Show that R is an equivalence relations.

Solution:
Let
P = {{x,y) | x and y are positive integer}

Now R is a relation defined on P as
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{x, V)R {u,v) © xv = yu for (x,y),{u,v) € P.
Let (x, y), (u,v) and {m,n) € P.
I. Risreflexive:

We have
(x, V)R {x,y) < xy = yx (RHS) is true.

II. R is symmetric:
Let {(x, )R {(u,v) < xv=7yu
& yu = xv
S uy =vx

< (u, V)R (x,y)

[I. R is transitive:
Let {x, v}R {(u, v} and {u, V)R {(m,n})
< (xv = yu) and (un = vm)
< (xv =yu)and (u = ?]
= xw=y(™)
S xn=ym

= (u, V)R {m,n)

Therefore R is reflexive, symmetric , and transitive.
Hence R is an equivalence relation.

7. Let R and S are equivalence relations on X, show that R N .S also equivalent?

Whether R U § is also an equivalent relation. If not given an example.
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Solution:
Given let R and S are equivalence relations on X.
Letx,yandz €X.
(1) Wehave{x,x}) ERand {x,x)€S = {x,x)ERNS, Vx €X.
Therefore R N S is reflexive.
(i)Let{x,y) ERNS={x,y) ERand(x,y) ES
= (y,x) ERand{y,x) ES
={(y,x)ERNS
Therefore R NS 1s symmetric.
(i) Let{x,y)ERnNnSand{y,z) ERNS
= ({x,y) ERand (x,v) € §) and ({y,2z) ER and (y,z) €5)
= ({x,v) ER and (v,z) €S)and ({x,y) ER and (y,z) €5)
={x,y) ERand(x,z) ES
={x,zY ERNS

Therefore R N S is transitive.

Hence R N § is equivalence.

8. Prove that the relation “congruence modulo m” over the set of positive integers
is an equivalence relation?

Show also that if x; = y,and x, = y, then (x; + x5) = (y; + ).
Solution:

Let N be the set of all positive integers we have “congruence modulo m” relation
onNas x = y(modm) <& m|x—y, forx,y €N.

Letx,y,z €N

18



(1) We have

x—x=0=0m
Therefore x = x (mod m) for x € N.

“Congruence modulo m” is reflexive.

(ii)Let

(iii)

Now

x = y(mod m)

= m|x—y

= x — y = km, for some integer k € Z

=y —x = (—k)m, for some integer —k € Z
= y = x (mod m)

“congruence modulo m” is symmetric on N.

Let

x = y(modm) and y = z (mod m)

= x —y=k;m, and y — x = k,m for some integer k,k, € Z
=x—-v)+(y—2) =(k,+k,)m

= x — z = (k, + k,)m for some integer k, + k,

= x = z (mod m)

“Congruence modulo m” is transitive on N.

Hence “congruence modulo m” is an equivalence relation.
Let x; = y, (mod m) and x, = y, (mod m).
Then m| x; — y; and m| x;, — y,

e, x;—y;, =kymandx, —y, = k,m

(X, —y) + G — ) =kym+k,m

19



(xy +x5) — (g + ) = (ky +k)m
= m|(x; +x) — (g +32)

(x1 +x5) = (y1 + y2)(mod m)

9. Let

X={1,23,4} and

R = {{(1,2),(2,3),(3,3),(3,4),(4,2)} be a relation defined on A. Find the transitive

closure of R?
Solution:

The matrix of the relation R is given by

01 0 0
0010
00 1 1
01 0 0
;'1{“2 == ﬂ'fj{ E) ﬂ'fﬁ

01 0 0 0 1
oo 1ol _|oo
- oo1 1|~ loo
01 0 0 0

0 0 0

1
o o1
1
1

o
=l
o= o0

o 0 1
0 0 0

and
;1'f;gﬂ == ﬂ-f;g-z O 11'f;g
0 0 1 0 0
0 0
0 1
0o 0

[0 0
01
01
00

—
—

=N

e e R

0 0

0
0

—t b b b [ T
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Mp = ;{f;grl = Mg

(001 0] 0100

o110 0010

o111 0011
(001 1] 0100
000 1 17

Cloo1

= o111
(0011 1]

As |A| =4, we get
Mp: = MV Mp2V Mpa v Mpa

01001 [0O010 0010 0011
0010 0011 0110 001 1

= oot 1t |Vl ottt |Y]or11|Y)o111
o1 00] (0010 001 1 0111
0011 1]

o1t

= lo111
0111

Hence
R* = {{(1,2),(1,3),(1,4),(2,2),(2,3),{2,4),(3,2),(3,3),(3,4),{4,2),(4,3),{4,4)}

ASSIGNMENT PROBLEMS
Part -A
1. If R ={{1,1),(1,2),{(2,1),(3,1),{3,2),{2,2)} and
S ={{1,2),(2,3),(3,1),{1,3),{3,3}] be any relations on X = {1,2,3}. Find
RUS,RnS,R,R(R),R(S5),D(RUS),R(RNS).
2. Give an example for reflexive, symmetric, transitive and irreflexive
relations.
3. Give an example of a relation which is neither reflexive nor irreflexive.
4. Give an example of a relation which is neither symmetric not
antisymmetric?

5. Find the graph of the relation
R = {(1,2),(1,3),(2,1),42,2),(3,1),(3,2),(3,3)}
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6. Find the relation matrix of
R = {(1,1),(1,2),(2,1),{(2,2),(2,3),(3,1),(3,3)}

7. If R ={(1,1),(1,2),(2,1),(2,2),{2,3),(3,1),(3,3)} and
= {{1,1),(1,3),(2,1),(2,2),(2,3),{(3,2)} . Find RoS,SoR,RoR, 50§,
RoRoSandSoS5058?

8. Define equivalence relation and equivalence classes?

9. Define Poset?

10. Define reflexive closure?

11. Define transitive closure of the relation R?

12. Let R = {{1,2),(3,5),(6,1),{(6,3),(6,4)} be a relation A = {1,2,3,4,5,6}.
Identify the root of the tree of R.

13. Determine whether the relation R is a partial ordered on the set Z, where Z
1s set of positive integer, and aRb if and only if a=2b.

14. The following relations are on {1,3,5}. Let R be a relation, xRy if and only
ify =x + 2, and let S be a relation, xSy ifand only if x < y. Find R o §
and S o R?

15. True or False: The relation << on Z™ is not a partial order since it is not

reflexive.

Part B

1. Show that the intersection of equivalence relations is an equivalence
relation.
2. Determine whether the relations represented by the following zero-one

matrices are equivalence relations.
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b1

a)

0

1 010 111
{Hll\'}ll—l |71 1 1 0
1 1 0
0 1

1 010 A
0101 0 0

. If R and S are symmetric, show that R US and R U § are symmetric.

Let L be set of all straight lines in the Euclidean plane and R be the relation
in L defined by xRy < x is perpendicular to y. Is R is Reflexive?

Symmetric? Antisymmetric? Transive?

. Consider the subsets A = {1,7,8}, B = {1,6,9,10} and € = {1,9,10} where

E={123.... 10} is an universal set. List the non empty minsets generated
by A,B and C . Do they form a partition on E?

LetX ={1,2,3,.....20}and R = {{x, ¥} |x — v is divisible by 5} be a
relation on X. Show that R is an equivalent relation and find the partition of
X induced by R.

If R is an equivalence relation on an arbitrary set A. Prove that the set of all

equivalence classes constitute a partition on A.

. Given the relation matrix My and M. Explain how to find M., Ms.zand

MRZ?
Let A be s set of books. Let R be a relation on A such that {a, b) € R if ¢

book a’ with cost more and contains fever pages then ¢ book b’. In general,

is R reflexive? Symmetric? Antisymmetric? Transitive?

10. Let R be a binary relation on the set of all positive integers such that

R = {{a,b) |a = b?}. Is R reflexive? Symmetric? Antisymmetric?

Transitive? An equivalence relation?
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Functions

A relation is a function if for every x in the domain there is exactly one y in the codomain. A
vertical line through any element of the domain should intersect the graph of the function exactly

once. (one to one or many to one but not all the Bs have to be busy.

A function is injective if for every y in the codomain B there is at most one x in the domain. A
horizontal line should intersect the graph of the function at most once (i.e.not at all or once). (one to

one only but not all the Bs have to be busy.

A function is surjective if for every y in the codomain B there is at least one x in the domain. A
horizontal line intersects the graph of the function at least once (i.e.once or more). The range and

the codomain are identical. (one to one or many to one and all the Bs must be busy).

A function is bijective if for every y in the codomain there is exactly one x in the domain. A
horizontal line through any element of the range should intersect the graph of the function exactly

once. (one to one only and all the Bs must be busy).

Let f:A—B be a one-to-one correspondence (bijection). Then the inverse function of f, f—1 :B—>A,

is defined by: f—1 (b) = that unique element a€ A such that f(a)=b. We say that f is invertible.
Example

If f(x) = 4x — 1 and g(x) = x 2 . Then g(x), for g : R — R is not a bijection, so it cannot have an

inverse. Now f(X) is a bijection, so we can compute its inverse. Suppose that y = f(x), then y = 4x —



lesy+l=d4xe>x=y+ 14, and f—1 (y) =y+1 4. We saw that for the notion of inverse f —1

to be defined, we need f to be a bijection. The next result shows that f—1 is a bijection as well.
Proposition 1.

If f: X — Y is a one-to-one correspondence, then f —1 : Y — X is a one-to-one correspondence.
Proof.

To prove this, we just apply the definition of bijection, namely, we need to show that f —1 is an
injection, and a surjection. Let us start with injection. f —1 is an injection: we have to prove that if f
=1 (yl) =f—-1 (y2), then yl = y2. All right, then f—1 (y1) = f -1 (y2) = x for some x in X. But f —1
(yl) = x means that yl = f(x), and f —1 (y2) = x means that y2 = f(x), by definition of the inverse of
function. But this shows that yl = y2, as needed. f —1 is an surjection: by definition, we need to
prove that any x € X has a preimage, that is, there exists y such that f —1 (y) = x. Because f is a

bijection, there is some y such that y = f(x), therefore x = f —1 (y)

Example

Consider f: Z — Z and g : Z — Z defined by f(n) = 2n+3, g(n) = 3n + 2. We have (f > g)(n) =
flg(n)) = f(3n +2) = 2(3n + 2) + 3 = 6n + 7, while (g = N)(n) = g(f(n)) = g(2n + 3) = 3(2n + 3) + 2 =
6n + 11.

Suppose now that you compose two functions f, g, and both of them turn out to be injective. The

next result tells us that the combination will be as well.
Proposition 2.

Letf: X— Yand g:Y — Z be two injective functions. Then g ° f'is also injective.
Proof.

What we need to do is check the injectivity of a function, so we do this as usual: we check that g °
f(x1) = g » f(x2) implies x1 = x2. Typically, to be able to prove this, you will have to keep in mind
assumptions, namely that both f and g are injective. So let us start. We have g °f(x1) = g °f(x2) or
equivalently g(f(x1)) = g(f(x2)). But we know that g is injective, so this implies f(x1) = f(x2). Next
we use that f is injective, thus x1 = x2, as needed! Let us ask the same question with surjectivity,

namely whether the composition of two surjective functions gives a function which is surjective.



Proposition 3.

Letf: X — Yand g: Y — Z be two surjective functions. Then g ° f'is also surjective.
Proof.

The codomain of g ° f is Z, therefore we need to show that every z € Z has a preimage x, namely
that there always exists an x such that g o f(x) = z. Again, we keep in mind that f and g are both
surjective. Since g is surjective, we know there exists y € Y such that g(y) = z. Now again, since f
is surjective, we know there exists x € X such that f(x) = y. Therefore there exist x, y such that z =

g(y) = g(f(x)) as needed.
Complexity of Algorithm

Complexity of an algorithm is a measure of the amount of time and/or space required by an

algorithm for an input of a given size (n).
What effects run time of an algorithm?

(a) computer used, the harware platform

(b) representation of abstract data types (ADT'"s)

(c) efficiency of compiler

(d) competence of implementer (programming skills)
(e) complexity of underlying algorithm

(f) size of the input

We will show that of those above (e) and (f) are generally the most significant
Time for an algorithm to run t(n)

A function of input. However, we will attempt to characterise this by the size of the input. We will
try and estimate the WORST CASE, and sometimes the BEST CASE, and very rarely the
AVERAGE CASE.

What do we measure?

In analysing an algorithm, rather than a piece of code, we will try and predict the number of times
"the principle activity" of that algorithm is performed. For example, if we are analysing a sorting

algorithm we might count the number of comparisons performed, and if it is an algorithm to find



some optimal solution, the number of times it evaluates a solution. If it is a graph colouring
algorithm we might count the number of times we check that a coloured node is compatible with its

neighbours.

Worst Case

Worse case is the maximum run time, over all inputs of size n, ignoring effects (a) through (d)
above. That is, we only consider the "number of times the principle activity of that algorithm is

performed".

Best Case

In this case we look at specific instances of input of size n. For example, we might get best

behaviour from a sorting algorithm if the input to it is already sorted.

Average Case

Arguably, average case is the most useful measure. It might be the case that worst case behaviour is
pathological and extremely rare, and that we are more concerned about how the algorithm runs in
the general case. Unfortunately this is typically a very difficult thing to measure. Firstly, we must in
some way be able to define by what we mean as the "average input of size n". We would need to
know a great deal about the distribution of cases throughout all data sets of size n. Alternatively we
might make a possibly dangerous assumption that all data sets of size n are equally likely.
Generally, in order to get a feel for the average case we must resort to an empirical study of the
algorithm, and in some way classify the input (and it is only recently with the advent of high

performance, low cost computation, that we can seriously consider this option).

The Growth rate of t(n)

Suppose the worst case time for algorithm A is
t(n) = 60*n*n + 5*n + 1

for input of size n.

Assume we have differing machine and compiler combinations, then it is safe to say that

t(n) = n*n + 5*n/60 + 1/60



That is, we ignore the coefficient that is applied to the most significant (dominating) term in t(n).
Consequently this only affects the "units" in which we measure. It does not affect how the worst
case time grows with n (input size) but only the units in which we measure worst case time Under
these assumptions we can say ...

"t(n) grows like n*n as n increases"
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Course Material
SMT5201-Foundation of Mathematics
UNIT IV: BASIC LOGIC1

Basic Logic-1 Introduction, propositions, truth table, negation, conjunction and disjunction.
Implications, biconditional propositions, converse, contra positive and inverse propositions
and precedence of logical operators. Propositional equivalence: Logical equivalences.
Predicates and quantifiers: Introduction, Quantifiers, Binding variables and Negations

Propositional Logic — Definition

A proposition is a collection of declarative statements that has either a truth value "true” or a
truth value "false". A propositional consists of propositional variables and connectives. We
denote the propositional variables by capital letters (A, B, etc). The connectives connect the
propositional variables.

Some examples of Propositions are given below —

e "Man is Mortal", it returns truth value“TRUE”
o "12+9=3-2" itreturns truth value “FALSE”

The following is not a Proposition—

e "Aisless than 2". It is because unless we give a specific value of A, we cannot say
whether the statement is true orfalse.

Connectives

In propositional logic generally we use five connectives which are — OR (V), AND (A),
Negation/ NOT (=), Implication / if-then (—), If and only if («<>).

OR (V) : The OR operation of two propositions A and B (written as A VB) is true if at least any
of the propositional variable A or B istrue.
The truth table is as follows —

A B AVB
True True True
True False True
False True True
False Fhlsse Falsbe Fhlskse




AND (A): The AND operation of two propositions A and B (written as A A B) is true if both the

propositional variable A and B is true.

The truth table is as follows —

A B AAB
True True False
True False False
False True False
False False True

Negation (=) :The negation of a proposition A (written as =A) is false when A is true and is true

when A is false.

The truth table is as follows —

A -A
True False
False True

Implication / if-then (—): An implication A—B is False if A is true and B is false. The rest of the

cases are true.

The truth table is as follows —

A B A— B
True True True
True False False
False True True
False False True




If and only if (<) :A<>B is bi-conditional logical connective which is true when p and q are

both false or both are true.

The truth table is as follows —

A B A<B

True True True

True False False

False True False

False False True
Tautologies

A Tautology is a formula which is always true for every value of its propositional variables.Example—
Prove [(A — B) A A] — B is a tautology

The truth table is as follows —

A B A—B (A—->B)AA [(A—B)AA] - B
True True True True True
True False False False True
False True True False True
False | False True False True

As we can see every value of [(A — B) A A] — B is “True”, it is a tautology.

Contradictions

A Contradiction is a formula which is always false for every value of its propositional variables.

Example — Prove (A V B) A [(=A) A (=B)] is a contradiction



The truth table is as follows —

A B AV -A -B (=A) A (AVB)A[(mA) A
B (-B) (-B)]
True | True | True | False | False False False
True | False | True | False | True False False
False | True | True | True | False False False
False | False | False | True | True True False

As we can see every value of (A V B) A[(mA) A (=B)] is “False”, itis a

contradiction

Contingency

A Contingency is a formula which has both some true and some false values for every value of

its propositional variables.
Example — Prove (A V BV) A (=A) a contingency

The truth table is as follows —

A B AVB -A (AVB)A(-A)
True True True False False
True False True False False
False True True True True
False False False True False

As we can see every value of (A V B) A (=A) has both “True” and “False”, it

is a contingency.

Propositional Equivalences

Two statements X and Y are logically equivalent if any of the following two conditions —

o The truth tables of each statement have the same truthvalues.

e The bi-conditional statement X <Y is atautology.

4



Example — Prove (A V B) and [(—A) A (=B)] are equivalent

Testing by 1st method (Matching truth table)

A B AVB | ~(AVB) -A -B [(mA) A (-B)]
True | True | True False False | False False
True | False | True False False | True False
False | True | True False True | False False
False | False | False True True | True True

Here, we can see the truth values of = (A V B) and [(=A) A (-B)] are same, hence the statements

are equivalent.

Testing by 2nd method (Bi-conditionality)

A B - (AV [(=A) A [F(AVB)] e [(-A) A
B) (-B)] (-B)]
True | True False False True
True | False False False True
False | True False False True
False | False True True True

As [ (A V B)] & [(0A) A (mB)] is a tautology, the statements are equivalent.




EQUIVALENT LAWS

Equivalence Name of Identity
pAT =p Identity Laws
pvF =p
pANF =F Domination Laws
pvIl'=T
pApP=p Idempotent Laws
pvVp=p
—(—p)=p Double Negation Law

PAG=qgAp Commutative Laws

pPVg=gqVp

(pANG) AT =pA(gAT) Associative Laws

(pvg) Vr=pV(qgVr)
pA(gVTr)=(pAgqg)V(pAT) Ditributive Laws
pVigrr)=@varlpvr)

—(pAg)=-pV g
—(pVg)=-pA—g

De Morgan’s Laws

pA(pV q) =p Absorption Laws
pV(pAg) =p
pA—p=F Negation Laws

Logical Equivalences involving Conditional Statements

p—>q=-pVqg
P—>q=—q—>—p
PVg=—p—>q
pAg=—(p——q)

—(p—=q)=pA—g

(p—=qg)A(p—=r)=p—=(gAr)
(p—=r)A(g—=r)=(pVvg)—>r
(p—=q)Vp—=r)=p—(gVr)

(p—=r)vig—=r)=(pAg)—r

Logical Equivalences involving Biconditional Statements

Il

Peqg=—ps—q

peg)=p e —q

Ppg=(p—=>q)Alg— p)

P<q=(pAg)V(-pA—g)




A conditional statement has two parts — Hypothesis and Conclusion.

Example of Conditional Statement — “If you do your homework, you will not be punished.”
Here, "you do your homework" is the hypothesis and "you will not be punished" is the

conclusion.

Inverse, Converse, andContra-positive

Inverse —An inverse of the conditional statement is the negation of both the hypothesis and the
conclusion. If the statement is “If p, then q”, the inverse will be “If not p, then not q”. The
inverse of “If you do your homework, you will not be punished” is “If you do not do your

homework, you will be punished.”

Converse—The converse of the conditional statement is computed by interchanging the
hypothesis and the conclusion. If the statement is “If p, then q”, the inverse willbe “If g,
thenp”. The converse of "If you do your homework, you will not be punished" is "If you will

not be punished, you do not do your homework™.

Contra-positive —The contra-positive of the conditional is computed by interchanging the
hypothesis and the conclusion of the inverse statement. If the statement is “If p, then q”, the
inverse will be “If not ¢, then not p”. The Contra-positive of "If you do your homework, you
will not be punished” is "If you will be punished, you do yourhomework™.

Example:

Give the converse and the Contra positve of the implication * If it is raining then I get wet™.
Solution :

P :Itisraining @ :1 get wet
Converse : J — P 1 If I get wet, then it 1s raining.

Contrapositive ©: =0 — = : If [ do not get wet, then it is not raining

DUALITY PRINCIPLE

Duality principle set states that for any true statement, the dual statement obtained by
interchanging unions into intersections (and vice versa) and interchanging Universal set into
Null set (and vice versa) is also true. If dual of any statement is the statement itself, it is

said self-dualstatement.

Examples :i) The dual of AN B)UCis(AUB)NC
ii)The dual of PAQAF is PvQV T



Example:1
Construct a truth table for (p— g )— (g — p)

p q p=>q | q—=p | (p>q)2>(q—>q)
T T i ) T
T F F T T
F T j ! F F
F F j i T T

Example 2: Show that —(pv q) and —p A—q are logically equivalent

Solution : The truth tables for these compound proposition 1s as follows.

1 2 3 B 5 6 1 8
P Q| =P | -Q |PvQ ~(PvQ) -PA=Q | 67
T T F F T F F T
T F F T T F F T
F /¥ e F T F F T
F F T T F T T T

We can observe that the truth values of —(pVv q)and — p A —~q agree for all possible
combinations of the truth values of p and q.



Example 3: Show that p— q and —pwvq are logically equivalent.

Solution : The truth tables for these compound proposition as follows.

p q | -p [-pPva[p—>gq
T P F T T
T = F F F
F T T 1 T
F F T T T

As the truth values of p - q and —pv q are logically equivalent.

Example 4 : Determine whether each of the following form s a
tautology or a contradiction or neither :

i) (PAQ)—(PvQ)

1) (PvQ)a(=PA—-Q)
iii) (PA—Q)—> (P> Q)
iv) (P=>Q)a(PA-Q)
v) [PA(P>-Q)—Q]

Solution:
i) The truth table for (pagq)— (pvq)

P q PAQ | PVA | (paq)—(pva)
T T T T T
T F F T T
F T F T T
F F F F i b

Here all the entries in the last column are ‘T".
~(paq)—(pvq) is a tautology.



i1) The truth table for (pvq)a(—pna—q) is

6

F

1 2 3 4 5
P q pvgq | —P =4 | =Pnr—g
g T T F
d s F T F K,
F X T g 3 F
F F ¥ T T

I
F
at:

e I T

The entries in the last column are “F°. Hence

contradiction.

111) The truth table 1s as follows.

(pva)r{—pn—q) 1sa

P q e —=q | 2PpA—1 P—q

(=pA—=q)—=(p—>q)

Mo H o
Mo A
H o= o
oM o
G
e

e

Here all entries in last column are “T°.

o (=pa—gq)—(p—q) is a tautology.

1v) The truth table 1s as follows.

p q | "4 | pA—q pP—=q (p—=q)r(pr—q)
T T F F T F
T F T T F F
F T F F T F
F F T F T F

All the entries in the last column are “F°. Hence 1t 15 contradiction.

10




v) The truth table for[pA({p— —q)—q]

P q | 79| P79 [ palp— —q) i;pn[p--.qp-n-q]
T T F F F T
T F T g i T F
F T F T E T
F F T T F T

The last entries are neither all “T" nor all *F".

[p Alp——q)— q] 15 a neither tautology nor contradiction. It 1s a
Contingency.

Example 5: Symbolize the following statement

Let p, q, r be the following statements:

p: I will study discrete mathematics

q: Iwill watch T.V.

r: T amin a good mood.

Write the following statements in terms of p, q, r and logical connectives.

(1) If I do not study and I watch T.V., then I am in good mood.
(2) If I am in good mood, then I will study or I will watch T.V.
(3) If I am not in good mood, then I will not watch T.V. or I will study.
(4) Iwill watch T.V. and I will not study if and only if I am in good mood.
Solution:

(1)(=pag)—=r

(2)r=(pva)

(3) =r—(=lvp)

(4)(qr—=p)er

11
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Course Material
SMT5201-Foundation of Mathematics
UNIT V: BASIC LOGIC II

Basic Logic-2 Methods of proof: Rules of inference, valid arguments, methods of proving theorems; direct
proof, proof by contradiction, proof by cases, proofs by equivalence, existence proofs, uniqueness proofs
and counter examples.

Inference Theory

The theory associated with checking the logical validity of the conclusion of the given set of premises by
using Equivalence and implication

Inference Theory

The theory associated with checking the logical validity of the conclusion of
the given set of premises by using Equivalence and Implication rule is called
Inference theory

Direct Method

When a conclusion is derived from a set of premises by using the accepted
rules of reasoning is called direct method.

Indirect method

While proving some results regarding logical conclusions from the set of
premises, we use negation of the conclusion as an additional premise and try to
arrive at a contradiction is called Indirect method

Consistency and Inconsistency of Premises

A set of formular Hl’Hz" ..,H s said to be inconsistent if their conjunction implies
m

Contradiction.
A set of formular H] ,Hz,. ..,H is said to be consistent if their conjunction implies
m

Tautology.

Rules of Inference

Rule P: A premise may be introduced at anypoint in the derivation

Rule T: A formula S may be introduced at any point in a derivation if S is tautologically
implied by any one or more of the preceedingformula.

Rule CP: If S can be derived from R and set of premises , then R S can be derived from the
set ofpremises alone.



Rules of Inference

TABLE 1 Raules of Inference.

Rule of Inference Tautology Name
P [prlp—qll—=4q Modus ponens
P=q

S
=q [Fgrlp—=gll—+-p Modus tollens
pP—+q

=
r—+gq llp—=glrnig—=ril—=(p—+r) Hypathetical syllogism
g—r
p=sr
pvyg [(pvgia—p]l—q Disjunctive syllogism
-p

o
P p—(pvq) Addition

L PvY
PAg (prgl—p Simplification

P
P [(p) A~ (g)] = (P Ag) Conjunction
q

L PAg
Pvy [(pvadnl=pvr]—(gvr) Resolution
—|p W F
gvr

Rule of inference to build arguments

Example:

It is not sunny this afternoon and it is colder than yesterday.
If we go swimming it is sunny.
If we do not go swimming then we will take a canoe trip.
If we take a canoe trip then we will be home by sunset.
We will be home by sunset

o w e




p  Itis sunny thus afternoon l. =pAag
q Itis colder than yesterday 2. r->p
r Wego swunnming
. 3. —r—os
s We will take a canoe tup
r Wewill be home by sunset (the conclusion) 4. s— 1/
> /

(ypotheses

Example 1. Show that R is logicallv derived fom P — Q. Q — FE and P

Soltion. {1} () P—Q RuleP
2 ) P Rule P
1.2} 3) Q Rule (1). (2) and I11
143 4 Q—R RuleP
1.2.4) (5) R Rule (3). (4) and I11.

Example 2.5how that 5 V R tautologically mplied by (PV Q) 4 (P—F) A (Q —5).

Solution. {1} (1) PVQ Rule P

n @) P—Q T.(1).E1 and E16
B} B Q-—s P

1.3} (@ 7P—S T.(2).(3). and 113
1.3} (5) 7S—P T.(4).E13 and E1
6} (6 P—R P

1.3.6} (7) 7S—R T. (5). (6). and I13
1.3.6) (8) SVR T. (7). E16 and E1



Example 3. Show that 7Q, P— Q == TP

Solution . {1y (1) P—Q Rule P
1} () 7P—7Q T.andE18

33 (3) 7Q P
1.3y (4 7P T.(2).(3). and 111 .

Example 4 Prove that B A (P V Q) is a valid conclusion from the premises PVQ) |

Q—RP—Mand M
Solution. {1} (1) P—M P
{2} (2) ™ P
(1.2} (3) 7P T. (1). (2). and 112
{4} 4 PVQ p
L2.4 (5 Q T. (3). (4). and T10.
{6} (6) Q—R P
1.2.4.6} () R T. (5). (6) and 11

{1.2.4.6} (8) RAPVQ) T.(4).(7).andIo.

Example 5 Show that R — S can be derived from the premises
P—(Q—S).7RVP and Q.

Solution (1 (1) RVP P
{2} @ R P. assumed premise
{1, 2} (3)P T.(1),(2), and I10
{4} @OP—=@Q—9) P
.24 (5)Q—S T.(3). (4), and I11
{6} © Q P
1,246} (NS T.(5), (6), and I11
{1,4.6} (B)R—S CP.



Example 6.5how that P — S can be derived from the premuses, TPV Q. 7QV

FRandR—S5.
Solution.
{1} (1) TPVQ P
{2} 2y P P, assumed premise
{1.2} (3 Q T, (1). (2) and I11
{4 4 TQVE P
{1.2. 4} (5) R T. (3). (4) and I11
{6} (6) R—S5 P
{1.2.4.6} (7)) S T. (5). (6) and I11
{2.7} 8 P—S CP
Predicate Logic

A predicate is an expression of one or more variables defined on some specific
domain. A predicate with variables can be made a proposition by either
assigning a value to the variable or by quantifying the variable.

Eg.
“xisa Man”
Here Predicate is “ is a Man” and it is denoted by M and subject “x” is
denoted by x.
Symbolic form is M(x).

Quantifiers

The variable of predicates is quantified by quantifiers. There are two types of quantifier in

predicate logic — Universal Quantifier and Existential Quantifier.

Universal Quantifier

Universal quantifier states that the statements within its scope are true for every value of the
specific variable. It is denoted by the symbol V.

Vx P(x) is read as for every value of x, P(x) is true.

Example — "Man is mortal" can be transformed into the propositional form V¥x P(x) where P(x)

is the predicate which denotes x is mortal and the universe of discourse is all men.

Existential Quantifier

Existential quantifier states that the statements within its scope are true for some values of the
specific variable. It is denoted by the symbol 3.3x P(x) is read as for some values of x, P(x) is
true.



Example — "Some people are dishonest" can be transformed into the propositional form 3x P(x)

where P(x) is the predicate which denotes x is dishonest and the universe of discourse is some

people.

Nested Quantifiers

If we use a quantifier that appears within the scope of another quantifier, it is called nested

quantifier.

Eg.2.
“Every apple is red”.
The above statement can be restated as follows
For all x, if x is an apple then x is red

Now, we will translate it into symbolic form using univer:a)
quantifier.
Define A (x) : xisan apple.

R (x) : xisred.
We write (*) into symbolic form as

(Vx) (A&)—>RE)

Eg.3. “Sorme men are clever™.
The above statement can be restated as
“there is an x such that x is a man and x is clever’.

We will translate it into symbolic form using Existen

quantifier.
Let M(x) : xis a man
and C(x) : xisclever

We write (B) into symbolic form as

(Fx) (M ) A C ()

Inference theory for Predicate calculus

rial

Rule of Inference Name
Ve P(z
- P(y) Rule US: Universal Specification

P(c) for any c

‘a’mP(:z:) Rule UG: Universal Generalization

dzP(x)
.. P(c) for any c

P(c) for any c
o dzP(x)

Rule ES: Existential Specification

Rule EG: Existential Generalization



Problem : Show that (dx) M(x) follows logically from thea
premises (x) (H(x) = M(x)) and (3x) H(x)

Solution : 1)  (3x) H(Xx) rule P
2) HO») ES
3) HE->ME) P
4) HO) —»>MO) uUs
5)  MO) T, (2)
6) (3x) M(x) EG

Symbolize the following statements:
(a) All men are mortal
(b)All the world loves alover

(¢) X is the father of mother of Y
(d)No cats has atail
(e) Some people who trust others are rewarded

Solution:

(a) Let Mix): x 15 a man Hix): x is Mortal
{7 x) (M(x) — Hix))

(b) Let P(x): x is a person L{x): x is a lover R(x,y): x lovesy
(30 (P — (y) (Ply) o~ Liy) — Ry

(c) Let P(x): x is a person F(x,y): x is the father of y
Mix.y): x is the mother of y { 3 2) (P(2) ~ Flx.z) » Miz,y))

(d) Let C{x): x 15 a cat T(x): x has a tail
(7 x)(C(x} = = Tix))
(e) Let P(x): x is a person T(x): x trust others R(x): x is rewarded

(2P A Tix) » Rix))



Use the indirect method to prove that the conclusion 3;9(z) follows from the premises
Yx(Plx)— @(x)and IpP(y)

5 olution:

1 -3z0(z2) Plassurmed)
2 | ¥ez-p(z) T, (1)

3 pF(y) P

4 Pla) E3, (3

> | -2() Ug, @

6 | PE)n-D@) T, @,05)

T | (P = D) T, (©)

8 Yx(P(x)— Q(x)) P

9 Flay = Q(a) 73, (8

10 Pla) = Qla)n ~(FPla) = Q) T,(7,(9) contradiction

Showthat (3x) POA QX)) = IXNPHA (3% QX)

Solution:
1D (3 ) (P A Q) RuleP
2) Pla) ~ Qra) EZ 1
ENREY RuleT, 2
4) Qla) RuleT, 2
N3z PE EG, 3
) (3 %) QX) EG, 4
TARDPE A (3% QX) RuleT, 5,6




