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UNIT II SET THEORY 

The concept of a set is used in various disciplines and particularly in computers.  

Basic Definition: 

1. “A collection of well defined objects is called a set”. 

      The capitals letters are used to denote sets and small letters are used for denote 

objects of the set. Any object in the set is called element or member of the set. If x 

is an element of the set X, then we write  to be read as ‘x belongs to X’ , and 

if x is not an element of X, the we write   to be read as ‘ x does not belongs to 
X’. 

2. The number of elements in the set A is called cardinality of the set A, 

denoted by |A| or n(A) . We note that in any set the elements are distinct. 

The collection of sets is also a set. 

 

Here  itself one set and it is one element of S and |S|=4. 

3. Let A and B be any two sets. If every element of A is an element of B, then 

A is called a subset of B is denote by . 

We can say that A contained (included) in B, (or) B contains (includes) A. 

Symbolically,   (or)  

Logically,  

Basic concepts of Set theory - Laws of Set theory - Partition of set, Relations - Types of Relations: 

Equivalence relation, Partial ordering relation - Graphs of relation - Hasse diagram, Functions: 

Injective, Surjective, Bijective functions, Compositions of functions, Identity and Inverse 

functions.  
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Let  

Then   

, since   and  

Some of the important properties of set inclusion. 

For any sets A, B and C 

 (Reflexive) 

 (Transitive) 

Note that  does not imply  except for the following case. 

4. Two sets A and B are said to be equal  if and only if  and , 

 

Example  and  then  

Since  and  eventhough  

The equality of sets is reflexive, symmetric, and transitive. 

5. A set A is said to be a proper subset of a set B if  and . 

Symbolically it is written as  

 is also called a proper inclusion. 

6. A set is said to be universal set if it includes every set under our discussion. A 

universal set is denoted by or E. 

In other words, if  p(x) is a predicate.  

One can observe that universal set contains all the sets. 

7. A set is said to be empty set  or null set if it does not contain any element, which 

id denoted by . 
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In other words, if  p(x) is a predicate.  

One can observe that null set is a subset for all sets. 

8. For a set A, the set of all subsets of A is called the power set of A. The power set 

of A is denoted by  or   

Example, Let  

Then  

Then set and A are called improper subsets of A and the remaining sets are 

called proper subsets of A. 

One can easily note that the number of elements of   is 

.  

SOME OPERATIONS ON SETS 

1. Intersection of sets 

Definition: 

Let A and B be any two sets, the intersection of A and B is written as  is the 

set of all elements which belong to both A and B. 

Symbolically 

 

Example   then . From the 

definition of intersection it follows that for any sets A,B,C and universal set E.  

                 

  

 

2. Disjoint sets 
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Definition: 

Two set A and B are called disjoint if and only if , that is, A and B have 

no element in common. 

Example   

  

A and B are disjoint and B and C also, but A and C are not disjoint. 

3. Mutually disjoint sets 

Definition: 

A collection of sets is called a disjoint collection, if for every pair of sets in the 

collection, are disjoint. The elements of a disjoint collection are said to be mutually 

disjoint. 

Let  be an indexed set, A is mutually disjoint if and only if 

 for all  

Example

 

Then  is a disjoint collection of sets. 

    and  

4. Unions of sets 

Definition: 

The  union of two sets A and B, written as , is the set of all elements which 

are elements of A or the elements of B or both. 

Symbolically  

Example Let    then    

From the union, it is clear that, for any sets A, B,C, and universal set E. 
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5. Relative complement of a set 

Definition: 

Let A and B are any two sets. The relative complement of B in A, written  is 

the set of elements of A which are not elements of B. 

Symbolically  

Note that . 

Example Let   

  then   

  

  

It is clear from the definition that, for any set A and B. 

  

  

  

6. Complement of a set 

Definition: 

Let A be any set, and E be universal. The relative complement of A in E is called 

absolute complement or complement of A. The complement of A is denoted by  

(or ) 

Symbolically 
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Example Let  be universal set and  

 be any set in E. 

Then  

  

From the definition, for any sets A  

 

 

7. Boolean sum of sets 

Definition: 

Let A and B are any two sets. The symmetric difference or Boolean sum of A and 

B is the set A+B defined by 

 

(or)  

Example  Let  

  

  then   

 From the definition, for any sets A and B. 

  

  and  
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8. The principle of duality 

If we interchange the symbols  , , E and  and  and  in a set equation 

or expression. We obtain a new equation or expression is said to be dual of the 

original on (primal). 

“ If T is any theorem expressed in terms of   and  deducible from the given 

basic laws, then the dual of T is also a theorem”. 

Note that, the theorem T is proved in m steps, then dual of T also proved in m  step. 

 

Example The dual of  is given by . 

Remark: Dual (Dual T) =T. 

Identities on sets 

                                                          Idempotent laws 

  

                                                  Commutative laws 

  

                              Associative laws 

  

                    Distributive laws 

  

                                                Absorption laws 

    

                                                 De Morgan’s laws 

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS-SMTA1302, UNIT II



8

  

     

     

     

                                      

 

 

 

PROBLEMS 

1.  ,   Find  and  

Solution: 

  

  

2. If . Find  

Solution: 

  and  

  

  

3. Write all proper subsets of  . 

Solution: 

The proper subsets are 

SATHYABAMA UNIVERSITY,DISCRETE MATHEMATICS & NUMERICAL METHODS, SMT1203, UNIT 2
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4. Show that    

Solution: 

If , then  

Now , let 

 and  

  

  

If  then 

Let       

Therefore   

5. If  Find  and 

 

Solution: 

  

  

  

  

6. If  Find  

and  

Solution: 
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Note that 

  

7. Show that   and  

Solution: 

Let  

  

  

  

Now let  

  

  

Hence    and  

Remark:   and   

8. Show that for any two sets A and B,   

Solution: 
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  and  

Therefore  

9. Show that  

Solution:  

  

   

  

  

  

Therefore  

10. Show that  

Solution: 

Let   

  

  

  

Therefore  

11. Show that  
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Solution: 

                ( ) 

  

                           (Associative) 

                           (De Morgan’s law) 

12. Show that   

Solution: 

Let  

  

   

   

   

   

   

   

   

 

ASSIGNMENT PROBLEMS 

Part –A 

1. Define a set 

2. Define subset of a set. What is mean by proper subset? 
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(i) Find all subset of   

(ii) Find all proper subsets of A. 

3. Define power set. 

4. Define disjoint sets with example? 

5. If  and . Find  

 and  

6. Which of the following sets are empty? 

7.  

8.  

9.  

10. State duality principle in set theory. 

11. Define cardinality of a set. 

12. If a set A has n elements, then the number of elements of power set of A 

is…….. 

13. Find the intersection of the following sets 

(i)  

14. Write the dual of  

15. Let A, B and C sets, such that  and , can we 

conclude that B=C. 

16. State De Morgan’s Laws. 

17. Whether the union of sets is commutative or not? 

 

PART –B 

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS-SMTA1302, UNIT II
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1. Show that  

2. Verify the De Morgan’s laws 

(i) , (ii)  

3. Show that the intersection of sets is associative. 

4. Show that . 

5. Show that   

6. Let  for  find (a)   (b)  

7. Prove that  

8. Show that for any two sets A and B,   

9. Prove that  and . 

10.  If  and , prove that B=C.(cancelation law) 

11.  Show that . 

12.  Show that  where + is the symmetric difference of sets. 

13.  Show that  and  imply . 

14.  Given that  and . Show that . 

 

CARTESIAN PRODUCT OF SETS 

The Cartesian product of the sets A and B, is written an  is the set of all 

ordered pairs in which the first elements are in A and the second elements are in 

B. 

 

For example 

Let  

Now  

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS-SMTA1302, UNIT II
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It is clear from the definition 

 and  is an ordered triple then 

 and . 

Now ,  

Note that  is not an ordered triple. 

This fact show that  

i.e. Cartesian product is not associative. 

Now  

 and  

Note that if A has n elements and B has m elements  has nm elements. 

 

 

 

PROBLEMS 

1.If . Find  and and  

Solution : 
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2.Show that . 

Solution:  For any , 

  

  

  

  

  

  

3.Show that . 

Solution:  For any  , 

  

  

  

  

 . 

 

 

ASSIGNMENT PROBLEMS 
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Part A 

1. Define Cartesian product of sets? Given an example? 

2. If  find . 

3. If  and  , find , . 

4. True or False 

I. If  , the   

II. If  , the   

5. If   

Part B 

6. If A,B and C are sets, prove that . 

7. Prove that . 

8. If  and  ,and , find 

I.  

II.  

III.  

IV.  

9. Show that the Cartesian product is not commutative? It is commutative 

only for equality of sets? 

 

 

RELATIONS 

Binary relation 

Any set of ordered pairs defines a binary relation. 
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Course Material 

SMT5201-Foundation of Mathematics 

Unit II 

Relations 

 

Relations: Product set, Relations (Directed graph of relations on set is omitted). 

Composition of relations, Types of relations, Partitions, Equivalence relations 

with example of congruence modulo relation, Partial ordering relations, n-ary 

relations. 

 

If a set A is given explicitly, it is immaterial in which order the elements of A are listed, e.g. the set 

{x,y} is the same as the set {y,x}. In many instances, however, one would like, and, indeed, needs, 

to have some order in the appearance of the elements. As an example, consider a coordinate plane 

with an x-axis and a y-axis; then we can identify any point in the plane by its coordinates <x, y>. If 

you wanted to find the point, <a,b>, you would move on the x-axis a units to the right or to the left 

from the origin (depending on the sign of a), and then you would move b units up or down. If a and 

b are different, then <a,b> and <b,a> denote different points. So, in this example the order in which 

the elements appear is relevant. 

The decisive property of ordered pairs is that two ordered pairs are equal if the respective 

components are the same. 

Introduction to Relations  

Sometimes it is necessary not to look at the full Cartesian product of two sets A and B, but rather at 

a subset of the Cartesian product. This leads to the following Definition. Any subset of A × B is 

called a relation between A and B. Any subset of A × A is called a relation on A. 

In other words, if A is a set, any set of ordered pairs with components in A is a relation on A. Since 

a relation R on A is a subset of A × A, it is an element of the powerset of A × A, i.e. R ⊆ P(A × A). 

If R is a relation on A and <x,y> ∈ R, then we also write xRy, read as “x is in R-relation to y”, or 

simply, x is in relation to y, if R is understood.  
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If x and y are binary related, under the relation R, the we write   or 

 If not the case we write . 

1. Example    

  

Then F, L are binary relations. 

2.Example Let A and B be any two sets, then any non empty subset R of  

 is called a binary relation. 

Now 

  

  then 

  

     Let  

  

  

   

Then  and  are binary relations A to B. 

Let S be any binary relation. The domain of S is the set of all elements x such 

that for some  

  

Similarly, the range of S is the set of all elements y such that, for some 

x,  

  

Let 

 SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS-SMTA1302, UNIT II
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If  then clearly  and . 

In case of  then the relation defined on  is called an universal 

relation in X. 

If  then a relation on  is called void relation in X. 

Since relations are sets, then we can have their union and intersection and so on. 

  

  

  

  

Properties of Binary relations 

1. Reflexive 

Let R be a binary relation defined on X. 

Then R is reflexive if, for every . 

 

Example: 

Let  

  

  and  

   are defined on X.  

 
SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS-SMTA1302, UNIT II
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Then R is reflexive, but S is not reflexive. Since  and  

2. Symmetric 

A relation R from X to Y is symmetric if every  and , whenever 

 then . 

That is, if , then R is symmetric 

Example: 

Let  

  

  and  

   are defined on X.  

Then R is symmetric, but S is not symmetric. Since  but  

3. Transitive  

A relation R is transitive if, whenever  and then . 

That is, if , then R is transitive. 

Example: 

Let  

  and  

   

Then R is transitive, but S is not transitive. Since  and  but 

 

4.Irreflexive 

A relation R in a set X is irreflexive if, for every . 

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS-SMTA1302, UNIT II
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Example: 

Let  

  

  and  

   

Then R is irreflexive, but S is not reflexive. Since and . 

5. Antisymmetric 

A relation R in a set X is  antisymmetric  if, whenever  and 

then  

That is, if , then R is antisymmetric. 

Example: 

Let  

X be the set of all subsets of E. 

R be the inclusion relation  defined on X. 

  

Therefore  R is antisymmetric in X. 

6. Relation matrix 

Let   are ordered sets, R be a relation 

defined from X to Y, then the relation matrix of R, is defined as 

 

Example 1: 

Let     
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   be a relation from X to Y. Then  

Example 2: Let 

  be a relation on  . 

Then  

7. Composition of Binary Relations 

The concept of composition of relation is different from union and intersection 

of two relations. 

Definition: 

Let R be a relation from X to Y and S be a relation from Y to Z. Then the 

composite  is a relation from X to Z defined by 

The operation  in  is called “ composition of relations”. 

Example. 

Let  

  

 . Then 

   

  

Note that 

  

  

 etc., 

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS-SMTA1302, UNIT II
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Definition: 

The relation matrix for  is given by  where  is defined 

as follows. 

  where ( ) is 1 if and only if row i of  

and column j of  have a 1 in the same relative position k, for some k. 

Example: 

Let  

  

 . Then 

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS-SMTA1302, UNIT II
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Definition 

Let R be a relation from X to Y. The converse of R, is written as , is a relation 

from Y to X such that . 

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS-SMTA1302, UNIT II
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Example: 

If    

  

Also it is clear that 

1.  

2.  

3.  

Result: The relation matrix  is the transpose of the relation . 

 

Example: 

Let  

   

   

We have 
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EQUIVALENCE RELATION 

Definition: 

A relation R on a set X is called an equivalence relation if it is reflexive, 

symmetric, and transitive. 

Example 1: 

Let  

 and  

 is an equivalence relation 

on X. 

Example 2: 

Equality of subsets on a universal set is an equivance relation. 

Example 3: 

Let  

  

  

Now,   is divisible by 3. 

Therefore (reflexive)  

For any   

Let  is divisible by 3 we have  is also 

divisible by 3. 

(symmetric) 

Let  

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS-SMTA1302, UNIT II
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 is divisible by 3 and  is divisible by 3. 

)+ ) is divisible by 3. 

 is divisible by 3. 

Therefore (Transitive) 

Therefore R is an equivalence relation on X. 

EQUIVALENCE CLASSES 

Definition: 

Let R be an equivalence relation on a set X. For any  the set  

given by 

 

is called an R-equivalence class generated by  

Therefore, an equivalence class  of   is the set of all elements which 

are related to x by an equivalence relation R on X. 

Example: 

Let Z be the set of all integers and R be the relation called “congruence modulo 
4” defined by 

(or ) 

Now, we determine the equivalence classes generated by R. 

  

  

  

  

Note that  

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS-SMTA1302, UNIT II
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Therefore  

In a similar manner, we get the equivalence classed generated by the relation 

“congruence modulo m” for any integer m. 

Therefore, an equivalence relation R on X, will divide the set X into an 

equivalence classes, and they are called portion of X. 

 

PARTIAL ORDERED RELATION 

A relation R on a set X is said to be a partial ordered relation, if R satisfies 

reflexive, antisymmetric, and transitive. 

Example: 

Let  be the power set of a set A. 

Define a subset relation  on , then is a partial ordered relation. 

Usually we denote the partial ordered relations as  is said to be partially 

ordered set (or) poset, which is denoted by . We will study more about 

posets in the subsequent sections. 

1. Closures of a relation 

Let R be a relation on the set X. 

2. Reflexive closure 

We have the relation R is reflexive if and only if the relation. 

 is contained in R. 

i.e. R is reflexive  

Definition: 

 
SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS-SMTA1302, UNIT II
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Let R be a relation on X, then the smallest reflexive relation on X, containing R, 

is called reflexive closure of R. 

Therefore  is the reflexive closure of R. 

 

3. Symmetric closure 

We have, the relation R is symmetric if   

  

Definition: 

Let R be a relation X, then smallest symmetric relation on X, containing R, is 

called the symmetric closure of R. 

Therefore  is the symmetric of R. 

4. Transitive closure 

We have, the relation R is transitive, if   then     

. 

Definition: 

A relation  is said to be the transitive closure of the relation R on X if   is 

the smallest transitive relation on X, containing R, 

i.e  is the transitive closure of R, if  

I.  

II.  is transitive on X 

III. There is no transitive relation  on X, such that  

Remarks: 

1. The transitive closure of R can be obtained by 

 SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS-SMTA1302, UNIT II
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2. We know that  if and only if there is an element y such that 

 and . 

 

Therefore  if and only if we can find a sequence  

in X such that  are all in R. 

 

The sequence   is said to be a chain of length n from a to 

b in R. Here  are called interval vertices of the chain in R. 

Note that the interval vertices need not be distinct. 

 

PROBLEMS 

1. If ,  

Find (i)  (ii) domains of  and (iii) ranges 

of . 

Solution: 

  

  

  

  

Domain of    

Domain of    

Domain of    

Range of    

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS-SMTA1302, UNIT II
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Range of    

Range of    

It is clear that  

  and  

  

In general   and . 

2.Let  and  

   

 . Find  and  

Solution: 

Given that   and   

   

  

Remarks: 

  

  

  

  

3.Let   and  , where  . Find 

the range of S and T, find  and  

Solution: 

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS-SMTA1302, UNIT II
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  and  

  

   

  

    

  

    

  

  

    

  

(Now  and  

 ) 

  

4. Given an example which is neither reflexive nor irreflexive? 

Solution: 

Let  and  

  

Then R is not reflexive, since , for and R is not irreflexive, since 

, and . 

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS-SMTA1302, UNIT II
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5. Test whether the following relations are transitive or not on  

  

  

  

 . 

Solution:  The relation R and T are transitive. 

Since, in R, we have , then check any other pair starting with , 

then we must have  i.e.,  but there is no pair staring 

with 1. So, pass on to next pair  then we check any other pair starting with 2, 

and so on. 

In T, we have , then there are two pairs  and  must be the 

transitive of , then we must have  and  in T. Then pass to 

 the transitive pairs are  and  then we must have the pairs 

 in T. 

Then pass to , find the transitive pairs of  and so on, for all pairs in 

T. Hence T is a transitive relation. 

The relation S is not transitive, since for , the transitive pairs are  and 

 then we must  and  in S but . 

6. Let R denotes a relation on the set of pairs of positive  integers such that  

 if and only if  . Show that R is an equivalence relations. 

Solution: 

Let  

  

Now R is a relation defined on P as 

 SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS-SMTA1302, UNIT II
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   for  

Let  and  

I. R is reflexive:  

We have 

   (RHS) is true. 

 

II. R is symmetric: 

Let    

   

   

  

 

III. R is transitive: 

Let  and  

   and  

   and  

   

   

   

Therefore R is reflexive, symmetric , and transitive. 

Hence R is an equivalence relation. 

7. Let R and S are equivalence relations on X, show that  also equivalent? 

Whether  is also an equivalent relation. If not given an example. 

SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS-SMTA1302, UNIT II
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Solution: 

Given let R and S are equivalence relations on X. 

Let  and  

(i) We have  and   

Therefore  is reflexive. 

(ii) Let    and  

  and  

    

Therefore  is symmetric. 

(iii) Let  and  

  and  and   and  

  and  and   and  

 and  

  

Therefore  is transitive. 

Hence  is equivalence. 

8. Prove that the relation “congruence modulo m” over the set of positive integers 

is an equivalence relation? 

Show also that if  and  then . 

Solution: 

Let N be the set of all positive integers we have  “congruence modulo m” relation 

on N as   for  

Let  
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(i) We have  

  

Therefore  for  

“Congruence modulo m” is reflexive. 

(ii) Let  

  

  

, for some integer  

, for some integer  

   

“congruence modulo m” is symmetric on N. 

(iii) Let  

  and   

, and  for some integer  

  

  for some integer  

  

“Congruence modulo m” is transitive on N. 

Hence “congruence modulo m” is an equivalence relation. 

Let and . 

Then  and  

i.e.,   and  

Now  

  

 SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY, DISCRETE MATHEMATICS-SMTA1302, UNIT II
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9. Let  

   and  

 be a relation defined on A. Find the transitive 

closure of R? 

Solution: 

The matrix of the relation R is given by 
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Hence 

 

ASSIGNMENT PROBLEMS 

Part -A 

1. If    and 

 be any relations on . Find 

. 

2. Give an example for reflexive, symmetric, transitive and irreflexive 

relations. 

3. Give an example of a relation which is neither reflexive nor irreflexive. 

4. Give an example of a relation which is neither symmetric not 

antisymmetric? 

5. Find the graph of the relation 
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6. Find the relation matrix of  

   

7. If      and 

 . Find , , , , 

 and  

8. Define equivalence relation and equivalence classes? 

9. Define Poset? 

10.  Define reflexive closure? 

11.  Define transitive closure of the relation R? 

12.  Let  be a relation . 

Identify the root of the tree of R. 

13.  Determine whether the relation R is a partial ordered on the set Z, where Z 

is set of positive integer, and aRb if and only if a=2b. 

14.  The following relations are on . Let R be a relation, xRy if and only 

if , and let S be a relation, xSy if and only if . Find  

and   

15.  True or False: The relation  on  is not a partial order since it is not 

reflexive. 

Part B 

1. Show that the intersection of equivalence relations is an equivalence 

relation. 

2. Determine whether the relations represented by the following zero-one 

matrices are equivalence relations. 
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3. If R and S are symmetric, show that  and  are symmetric. 

4. Let L be set of all straight lines in the Euclidean plane and R be the relation 

in L defined by  is perpendicular to  Is R is Reflexive? 

Symmetric? Antisymmetric? Transive? 

5. Consider the subsets ,  and  where 

 is an universal set. List the non empty minsets generated 

by A,B and C . Do they form a partition on E? 

6. Let  and  be a 

relation on X. Show that R is an equivalent relation and find the partition of 

X induced by R. 

7. If R is an equivalence relation on an arbitrary set A. Prove that the set of all 

equivalence classes constitute a partition on A. 

8. Given the relation matrix  and . Explain how to find , and 

 

9. Let A be s set of books. Let R be a relation on A such that  if ‘ 

book a’ with cost more and contains fever pages then ‘ book b’. In general, 

is R reflexive? Symmetric? Antisymmetric? Transitive? 

10.  Let R be a binary relation on the set of all positive integers such that 

 Is R reflexive? Symmetric? Antisymmetric? 

Transitive? An equivalence relation? 
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UNIT – III – Functions – SMT5201 



Course Material 

SMT5201 – Foundation of Mathematics 

Unit III 

Functions 

 

A relation is a function if for every x in the domain there is exactly one y in the codomain. A 

vertical line through any element of the domain should intersect the graph of the function exactly 

once. (one to one or many to one but not all the Bs have to be busy. 

 

A function is injective if for every y in the codomain B there is at most one x in the domain. A 

horizontal line should intersect the graph of the function at most once (i.e.not at all or once). (one to 

one only but not all the Bs have to be busy. 

 

A function is surjective if for every y in the codomain B there is at least one x in the domain. A 

horizontal line intersects the graph of the function at least once (i.e.once or more). The range and 

the codomain are identical. (one to one or many to one and all the Bs must be busy). 

 

A function is bijective if for every y in the codomain there is exactly one x in the domain. A 

horizontal line through any element of the range should intersect the graph of the function exactly 

once. (one to one only and all the Bs must be busy). 

 

Let f:AB be a one-to-one correspondence (bijection). Then the inverse function of f, f1 :BA, 

is defined by: f1 (b) = that unique element aA such that f(a)=b. We say that f is invertible.  

Example  

If f(x) = 4x − 1 and g(x) = x 2 . Then g(x), for g : R → R is not a bijection, so it cannot have an 

inverse. Now f(x) is a bijection, so we can compute its inverse. Suppose that y = f(x), then y = 4x − 



1 ⇐⇒ y + 1 = 4x ⇐⇒ x = y + 1 4 , and f −1 (y) = y+1 4 . We saw that for the notion of inverse f −1 

to be defined, we need f to be a bijection. The next result shows that f −1 is a bijection as well. 

Proposition 1. 

 If f : X → Y is a one-to-one correspondence, then f −1 : Y → X is a one-to-one correspondence.  

Proof.  

To prove this, we just apply the definition of bijection, namely, we need to show that f −1 is an 

injection, and a surjection. Let us start with injection. f −1 is an injection: we have to prove that if f 

−1 (y1) = f −1 (y2), then y1 = y2. All right, then f −1 (y1) = f −1 (y2) = x for some x in X. But f −1 

(y1) = x means that y1 = f(x), and f −1 (y2) = x means that y2 = f(x), by definition of the inverse of 

function. But this shows that y1 = y2, as needed.  f −1 is an surjection: by definition, we need to 

prove that any x ∈ X has a preimage, that is, there exists y such that f −1 (y) = x. Because f is a 

bijection, there is some y such that y = f(x), therefore x = f −1 (y) 

 

Example  

 Consider f : Z → Z and g : Z → Z defined by f(n) = 2n+3, g(n) = 3n + 2. We have (f ◦ g)(n) = 

f(g(n)) = f(3n + 2) = 2(3n + 2) + 3 = 6n + 7, while (g ◦ f)(n) = g(f(n)) = g(2n + 3) = 3(2n + 3) + 2 = 

6n + 11.  

Suppose now that you compose two functions f, g, and both of them turn out to be injective. The 

next result tells us that the combination will be as well. 

Proposition 2.  

Let f : X → Y and g : Y → Z be two injective functions. Then g ◦ f is also injective. 

 Proof.  

What we need to do is check the injectivity of a function, so we do this as usual: we check that g ◦ 

f(x1) = g ◦ f(x2) implies x1 = x2. Typically, to be able to prove this, you will have to keep in mind 

assumptions, namely that both f and g are injective. So let us start. We have g ◦f(x1) = g ◦f(x2) or 

equivalently g(f(x1)) = g(f(x2)). But we know that g is injective, so this implies f(x1) = f(x2). Next 

we use that f is injective, thus x1 = x2, as needed! Let us ask the same question with surjectivity, 

namely whether the composition of two surjective functions gives a function which is surjective. 



Proposition 3.  

Let f : X → Y and g : Y → Z be two surjective functions. Then g ◦ f is also surjective. 

 Proof.  

The codomain of g ◦ f is Z, therefore we need to show that every z ∈ Z has a preimage x, namely 

that there always exists an x such that g ◦ f(x) = z. Again, we keep in mind that f and g are both 

surjective. Since g is surjective, we know there exists y ∈ Y such that g(y) = z. Now again, since f 

is surjective, we know there exists x ∈ X such that f(x) = y. Therefore there exist x, y such that z = 

g(y) = g(f(x)) as needed. 

Complexity of Algorithm 

 
Complexity of an algorithm is a measure of the amount of time and/or space required by an 

algorithm for an input of a given size (n). 

What effects run time of an algorithm? 

 (a) computer used, the harware platform 

 (b) representation of abstract data types (ADT's) 

 (c) efficiency of compiler 

 (d) competence of implementer (programming skills) 

 (e) complexity of underlying algorithm 

 (f) size of the input 

We will show that of those above (e) and (f) are generally the most significant 

Time for an algorithm to run t(n) 

A function of input. However, we will attempt to characterise this by the size of the input. We will 

try and estimate the WORST CASE, and sometimes the BEST CASE, and very rarely the 

AVERAGE CASE. 

What do we measure? 

In analysing an algorithm, rather than a piece of code, we will try and predict the number of times 

"the principle activity" of that algorithm is performed. For example, if we are analysing a sorting 

algorithm we might count the number of comparisons performed, and if it is an algorithm to find 



some optimal solution, the number of times it evaluates a solution. If it is a graph colouring 

algorithm we might count the number of times we check that a coloured node is compatible with its 

neighbours. 

Worst Case 

Worse case is the maximum run time, over all inputs of size n, ignoring effects (a) through (d) 

above. That is, we only consider the "number of times the principle activity of that algorithm is 

performed". 

Best Case 

In this case we look at specific instances of input of size n. For example, we might get best 

behaviour from a sorting algorithm if the input to it is already sorted. 

Average Case 

Arguably, average case is the most useful measure. It might be the case that worst case behaviour is 

pathological and extremely rare, and that we are more concerned about how the algorithm runs in 

the general case. Unfortunately this is typically a very difficult thing to measure. Firstly, we must in 

some way be able to define by what we mean as the "average input of size n". We would need to 

know a great deal about the distribution of cases throughout all data sets of size n. Alternatively we 

might make a possibly dangerous assumption that all data sets of size n are equally likely. 

Generally, in order to get a feel for the average case we must resort to an empirical study of the 

algorithm, and in some way classify the input (and it is only recently with the advent of high 

performance, low cost computation, that we can seriously consider this option). 

The Growth rate of t(n) 

Suppose the worst case time for algorithm A is 

            t(n) = 60*n*n + 5*n + 1 

for input of size n. 

Assume we have differing machine and compiler combinations, then it is safe to say that 

            t(n) = n*n + 5*n/60 + 1/60 



That is, we ignore the coefficient that is applied to the most significant (dominating) term in t(n). 

Consequently this only affects the "units" in which we measure. It does not affect how the worst 

case time grows with n (input size) but only the units in which we measure worst case time Under 

these assumptions we can say ... 

             "t(n) grows like n*n as n increases" 
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Course Material 

SMT5201-Foundation of Mathematics 

UNIT IV: BASIC LOGIC I 

Basic Logic-1 Introduction, propositions, truth table, negation, conjunction and disjunction. 

Implications, biconditional propositions, converse, contra positive and inverse propositions 

and precedence of logical operators. Propositional equivalence: Logical equivalences. 

Predicates and quantifiers: Introduction, Quantifiers, Binding variables and Negations 

Propositional Logic – Definition 

A proposition is a collection of declarative statements that has either a truth value "true” or a 

truth value "false". A propositional consists of propositional variables and connectives. We 

denote the propositional variables by capital letters (A, B, etc). The connectives connect the 

propositional variables. 

 

Some examples of Propositions are given below − 

 
 "Man is Mortal", it returns truth value“TRUE” 

 "12 + 9 = 3 − 2", it returns truth value “FALSE” 

The following is not a Proposition− 

 "A is less than 2". It is because unless we give a specific value of A, we cannot say 

whether the statement is true orfalse. 

Connectives 

In propositional logic generally we use five connectives which are − OR (˅), AND (˄), 

Negation/ NOT (¬), Implication / if-then (→), If and only if (↔). 

 

OR (˅) : The OR operation of two propositions A and B (written as A ˅B) is true if at least any 

of the propositional variable A or B istrue. 

The truth table is as follows − 
 

A B A ˅ B 

True True True 

True False True 

False True True 

False False False 
 

False False False 
 

False False 
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AND (˄): The AND operation of two propositions A and B (written as A ˄ B) is true if both the 

propositional variable A and B is true. 

 

The truth table is as follows − 
 

A B A ˄ B 

True True False 

True False False 

False True False 

False False True 

 
 

Negation (¬) :The negation of a proposition A (written as ¬A) is false when A is true and is true 

when A is false. 

 

The truth table is as follows – 
 
 

A ¬A 

True False 

False True 

Implication / if-then (→): An implication A→B is False if A is true and B is false. The rest of the  

cases are true. 

The truth table is as follows − 
 

A B A→  B 

True True True 

True False False 

False True True 

False False True 
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If and only if (↔) :A↔B is bi-conditional logical connective which is true when p and q are 

both false or both are true. 

 

The truth table is as follows − 
 

A B A↔B 

True True True 

True False False 

False True False 

False False True 

 

 

Tautologies 

A Tautology is a formula which is always true for every value of its propositional variables.Example− 
Prove [(A → B) ˄ A] → B is a tautology 

 
The truth table is as follows − 

 

A B A → B (A → B) ˄ A [(A → B) ˄ A] → B 

True True True True True 

True False False False True 

False True True False True 

False False True False True 

As we can see every value of [(A → B) ˄ A] → B is “True”, it is a tautology. 

 

 

Contradictions 

A Contradiction is a formula which is always false for every value of its propositional variables. 

 
Example − Prove (A ˅ B) ˄ [(¬A) ˄ (¬B)] is a contradiction 
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The truth table is as follows − 
 

A B A ˅ 

B 

¬A ¬B (¬A) ˄ 

(¬B) 

(A ˅ B) ˄ [(¬A) ˄ 

(¬B)] 

True True True False False False False 

True False True False True False False 

False True True True False False False 

False False False True True True False 

As we can see every value of (A ˅ B) ∧[(¬A)  ∧ (¬B)] is “False”, it is a 

contradiction 

Contingency 

A Contingency is a formula which has both some true and some false values for every value of 

its propositional variables. 

 

Example − Prove (A ˅ B˅) ˄ (¬A) a contingency 

 
The truth table is as follows − 

 

A B A ˅ B ¬A (A ˅ B) ∧ (¬A) 

True True True False False 

True False True False False 

False True True True True 

False False False True False 

As we can see every value of (A ˅ B) ˄ (¬A) has both “True” and “False”,it 

is a contingency. 

Propositional Equivalences 

Two statements X and Y are logically equivalent if any of the following two conditions − 

 
 The truth tables of each statement have the same truthvalues. 

 The bi-conditional statement X ↔Y is atautology. 
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Example − Prove ¬(A ˅ B) and [(¬A) ˄ (¬B)] are equivalent 

Testing by 1st method (Matching truth table) 

A B A ˅ B ¬ (A ˅ B) ¬A ¬B [(¬A) ˄ (¬B)] 

True True True False False False False 

True False True False False True False 

False True True False True False False 

False False False True True True True 

Here, we can see the truth values of ¬ (A ˅ B) and [(¬A) ˄ (¬B)] are same, hence the statements 

are equivalent. 

 

Testing by 2nd method (Bi-conditionality) 

A B ¬ (A ˅ 

B) 

[(¬A) ˄ 

(¬B)] 

[¬ (A ˅B)] ⇔ [(¬A) ˄ 

(¬B)] 

True True False False True 

True False False False True 

False True False False True 

False False True True True 

As [¬ (A ˅ B)] ⇔ [(¬A) ˄ (¬B)] is a tautology, the statements are equivalent. 
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EQUIVALENT LAWS 

 

 
 

Logical Equivalences involving Conditional Statements 

 
 

Logical Equivalences involving Biconditional Statements 
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A conditional statement has two parts − Hypothesis and Conclusion. 

 
Example of Conditional Statement − “If you do your homework, you will not be punished.” 

Here, "you do your homework" is the hypothesis and "you will not be punished" is the 

conclusion. 

Inverse, Converse, andContra-positive 
 

Inverse –An inverse of the conditional statement is the negation of both the hypothesis and the 

conclusion. If the statement is “If p, then q”, the inverse will be “If not p, then not q”. The 

inverse of “If you do your homework, you will not be punished” is “If you do not do your 

homework, you will be punished.” 

 

Converse−The converse of the conditional statement is computed by interchanging the 

hypothesis  and  the  conclusion.  If  the  statement  is  “If  p,  then  q”,  the  inverse willbe “If q, 

thenp”. The converse of "If you do your homework, you will not be punished" is "If you will 

not be punished, you do not do your homework”. 

 
Contra-positive –The contra-positive of the conditional is computed by interchanging the 

hypothesis and the conclusion of the inverse statement. If the statement is “If p, then q”, the 

inverse will be “If not q, then not p”. The Contra-positive of "If you do your homework, you 

will not be punished” is "If you will be punished, you do yourhomework”. 

Example: 

 

DUALITY PRINCIPLE 

Duality principle set states that for any true statement, the dual statement obtained by 

interchanging unions into intersections (and vice versa) and interchanging Universal set into 

Null set (and vice versa) is also true. If  dual of any statement is the statement itself, it is       

said self-dualstatement. 

 

Examples :i) The dual of (A ∩ B) ∪ C is (A ∪ B) ∩ C 

ii)The dual of P˄Q˄F is P˅Q˅ T 
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Course Material 

SMT5201-Foundation of Mathematics 

UNIT V: BASIC LOGIC II 
 

Basic Logic-2 Methods of proof: Rules of inference, valid arguments, methods of proving theorems; direct 

proof, proof by contradiction, proof by cases, proofs by equivalence, existence proofs, uniqueness proofs 

and counter examples. 

 

Inference Theory 

 
The theory associated with checking the logical validity of the conclusion of the given set of premises by 

using Equivalence and implication 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consistency and Inconsistency of Premises 

 

A set of formular H
1
,H

2
,…,H

m
 is said to be inconsistent if their conjunction implies 

Contradiction. 

A set of formular H
1
,H

2
,…,H

m
 is said to be consistent if their conjunction implies 

Tautology. 

 

Rules of Inference 

 

Rule P: A premise may be introduced at anypoint in the derivation 

Rule T: A formula S may be introduced at any point in a derivation if S is tautologically 

implied by any one or more of the preceedingformula. 

Rule CP: If S can be derived from R and set of premises , then R S can be derived from the 

set ofpremises alone. 
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Rule of inference to build arguments 

 

Example: 
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Quantifiers 

The variable of predicates is quantified by quantifiers. There are two types of quantifier in 

predicate logic − Universal Quantifier and Existential Quantifier. 
 

Universal Quantifier 

Universal quantifier states that the statements within its scope are true for every value of the 

specific variable. It is denoted by the symbol ∀. 

 ∀x P(x) is read as for every value of x, P(x) is true. 

 
Example − "Man is mortal" can be transformed into the propositional form ∀x P(x) where P(x) 

is the predicate which denotes x is mortal and the universe of discourse is all men. 

Existential Quantifier 

Existential quantifier states that the statements within its scope are true for some values of the 

specific variable. It is denoted by the symbol ∃.∃x P(x) is read as for some values of x, P(x) is 

true. 
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Example − "Some people are dishonest" can be transformed into the propositional form ∃x P(x) 

where P(x) is the predicate which denotes x is dishonest and the universe of discourse is some 

people. 

Nested Quantifiers 

If we use a quantifier that appears within the scope of another quantifier, it is called nested 

quantifier. 

 

 

Inference theory for Predicate calculus 
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Symbolize the following statements: 

(a) All men are mortal 

(b) All the world loves alover 

(c) X is the father of mother of Y 

(d)No cats has atail 

(e) Some people who trust others are rewarded 

 

Solution: 
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