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UNIT - |
Centre of Gravity

Centre of Gravity of areas —surfaces and volumes of solids of revolution —conditions
of equilibrium,

Center of Mass and Centroids

Concentrated Forces: if dimension of the contact area is negligible
compared to other dimensions of the body > the contact forces may be treated as
Concentrated Forces .
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Distributed Forces: if forces are applied over a region whose dimension
is not negligible compared with other pertinent dimensions - proper distribution of
contact forces must be accounted for to know intensity of force at any location.
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Centre of Gravity:

The centre of gravity (C.G.) of a body is the point about which the algebraic sum of moments of weights
of all the particles constituting the body is zero. The entire weight of the body can be considered to act at
this point howsoever the body is placed.



Determination of CG

- Apply Principle of Moments

Moment of resulftant gravitational force W about
any axis eguals sum of the moments about the

PR P Y . et 3 i o X Taly
same axis of the gravitafional forces dW acting
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on all particles treated as infinifesimal elemenis. . zlx'{:-- ;.-
Weight of the body W = [dW W ]
Moment of weight of an element (dW) @ x-axis = ydW \w-;{ __y
Sum of moments for all elements of body = [ydW ‘\\
From Principle of Moments: [yadW =y W x
_ fraw [ydW [adW
= ¥y= =
w W W

= Numerator of these expressions represents the sum of the momenis;
Product of Wand corresponding coordinate of G represents
the moment of the sum = Moment Principle.

Center of Mass and Centroids

Center of Mass

A body of mass min equilibrium under
the action of tension in the cord, and .

resultant Wof the gravitational forces e
acting on all particles of the body. ¢ Gy ©
- The resultantis collinear with the cord l

Suspend the body from ditferent points
on the body
- Dotted lines show lines of action of the resultant force in each case.
- These lines of action will be concurrent at a single point G
As long as dimensions of the body are smaller comparad with those of the earth.
- we assume uniform and parallel forca field dua to the gravitational attraction of
the earth.

The unigue Point G is called the Center of Gravity of the body (CG)
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Center of Mass and Centroids vTw T
N N F
Determination of CG
Substituting W= myg and dW = gdm dm
> g fxm  [yam e /‘/z
iy iy} i r
In vector notations: o
Pasition vector for elemental mass: r=xi+yj+zk "
Position vector for mass center G: r=xi+7j+zk
The above equations are tha Sa
_ Jrdm o .
= Ir= components of this single vector equation x
m

Density p of a body = mass per unit volume
= Mass of a differential element of volume dV = dm = paV
= p may not be constant throughout the body
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Center of Mass and Centroids

Center of Mass: Following equations independent of g
JJmm  yam o o fram o [V
x= y= = r= J' pdV
nt i m i3
- They define a unique point, which is a function of distribution of mass
- Thig point is Center of Mass (CM)
- CM coincides with CG as long as gravity field is treated as uniform and parallel
= CG or CM may lie outside the body
CM always lie on a line or a plane of symmetry in 2 homogeneous body

A
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Right Circular Cone Half Right Circular Cone Half Ring
CM on central axis CM on vertical plane of symmatry CM on intersection of two planes of symmetry (line AB)



Centroids of Lines, Areas, and Volumes

Guidelines for Choice of Elements for Integration

= Order of Element Selected for Integration

A first order differential element should be selected in preferance to a higher
order element = only one integration should cover the entire figure
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Centroids of Lines, Areas, and Volumes

Guidelines for Choice of Elements for Integration

Discarding Higher Order Terms

Higher order tarms may always be dropped compared with lower order terms

Vertical strip of area under the curve is given by the first order term = dA = ydx

The second order triangular area 0.5dxdy may be discarded
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Centroids of Lines, Areas, and Volumes
Guidelines for Choice of Elements for Integration

» Choice of Coordinates
Coordinate system should best match the boundaries of the figure
- easiest coordinate system that satisfies boundary conditions should be chosan
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Boundaries of this area (not circular)
can be easily described in rectangular
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Boundaries of this circular sector are
best suited to polar coordinates

coordinates

Center of Mass and Centroids

Centroids of Lines, Areas, and Volumes
Guidelines for Choice of Elements for Integration

= Order of Element Selected for Integration
A first order differential element should be selected in preference to a higher
order element = only ong integration should cover the entire figure
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Center of Mass and Centroids

Centroids of Lines, Areas, and Volumes
Guidelines for Choice of Elements for Integration

Continuity
Choose an element that can be integrated in one continuous operation to cover
the entire figure 2 the function reprasenting the body should be continuous

= only one integral will cover the entire figure
y
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Discontinuity in the expraession
for the height of the strip at
S - X= X1

Caontinuity in the exprassion v, "

for the width of the strip

S — ¥

Center of Mass and Centroids

Centroids of Lines, Areas, and Volumes
Guidelines for Choice of Elements for Integration

Choice of Coordinates
Coordinate system should bast match the boundaries of the figure

2 easiest coordinate system that satisfies boundary conditions should be chosan
y
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Boundaries of this area (not circular)
can be easily described in rectangular
coordinates

-_X
Boundaries of this circular sector are
best suited to polar coordinates



Centroids of Lines, Areas, and Volumes
Guidelines for Choice of Elements for Integration

= Discarding Higher Order Terms

Higher order terms may always be dropped compared with lower order terms

WVertical strip of area under the curve is given by the first order term = dA = ydx
The second order triangular area 0.5dxdy may be discarded
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Center of Mass and Centroids

Examples: Centroids y )
Locate the centroid of the triangle along h from the base !
i y I'-, d
! l i h
Solution: | .r‘r;".
x P |
dd = xdy m =% s

Total Area A = Zbh V=1,

3

[x

d4 _ [v.dd
YT A

"

I=

i

5
Il
—_
&
1

[
ra|
=
Il
ﬂ'\-—._":r
b
o
-
=
|
-
L
=)
3
Il
|t:r'
=
(]

=]
I
Wl =



Shape X i Arca
h bh
Triangular area 3 o
Quarter-circular Ar Ar wr?
area R k74 4
Semicirenlar area 0 & "
3w 2
Quarter-clliptical 4a £l wab
area 3w 37 4
Semielliptical 0 4b wab
area 3 2




Semiparabolic

da 3k 2ah
area 8 5 3
Parabolic area o 3h Aah
5 3
- _ 3a 3h ah
walle: spandrel 4 10 3
. n+l i+l ah
Ceneral spandrel ne2" in+2 nal
Circular sector == 0 s
Jex
Shape T [} Length
Quarter-circular 2r 2r or
o = r 3 T
Semicircular are 0 % o
Are of circle : E:: “ = -
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Unit —I1 Virtual Work

Virtual work — simple problems — equilibrium of strings and chains — common
catenary — Suspension bridge

Equilibrium of Strings

‘When a uniform string or chain hangs freely between two points not in the same vertical
line, the curve in which it hangs under the action of gravity is called a catenary. If the weight

per unit length of the chain or string is constant, the catenary is called the uniform or common
catenary.

Equation of the common catenary:

A uniform heavy inextensible string hangs freely under the action of gravity; to find the
equation of the curve which it forms.

peGame n-a

w3




Let ACB be a uniform heavy flexible cord attached to two points A and B at the same
level, C being the lowest, of the cord. Draw CO vertical, OX horizontal and take OX as X axis
and OC as Y axis. Let P be any point of the string so that the length of the are CP =s

Let o be the weight per unit length of the chain.

Consider the equilibrium of the portion CP of the chain.

The forces acting on it are:

(1) Tension T, acting along the tangent at C and which is therefore horizontal.

(11) Tension T acting at P along the tangent at P making an angle ¥ with OX.

(11)  Its weight ws acting vertically downwards through the C.G. of the arc CP.

For equilibrium, these three forces must be concurrent.

Hence the line of action of the weight ws must pass through the point of the

intersection of T and T,
Resolving horizontally and vertically, we have

TcosW=T,... ... (1)

Dividing (2) by (1), tan ¥ =2
0

Now it will be convenient to write the value of T, the tension at the lowest point,

as To=wec ... ... (3) where c 1s a constant. This means that we assume T,, to be equal to the
weight of an unknown length ¢ of the cable.



Equation (4) is called the intrinsic equation of the catenary.

It gives the relation between the length of the area of the curve from the lowest point to
any other point on the curve and the inclination of the tangent at the latter point.

To obtain the cerresian equation of the catenary,

We use the equation (4) and the relations

dy . d .

i =sin ¥ and ﬁ = tan ¥ which are true for any curve.
dy dy ds

Now a2y = 3 aw

. d
=smY¥Y —ctan ¥
aw
= sin csec”P = csec ¥ tan P

~y=[csecPtan ¥ d¥ + A
=csec ¥ +8S
If y=c when ¥ =0, then ¢ = ¢sec0 + A
~A=0
Hencey=csec¥ ... ... ... (5)

ny=c"sec¥=c (1+tan’ P)

=c’+s?... ... (6)

d -

Y otanp==0"F

dx c C
dy dx

- 1y
Integrating, cos h (E)
Whenx=0,y=c¢



ie.cosh'!l1=0+BorB=0
. LYy X
-~ cosh (C)

C
1.e.y=ccosh G) ...... (7)

(7) 1s the Cartesian equation to the catenary.

We can also find the relation connecting s and x.

Differentiating (7).

d ) xr 1 ] X
2 — csinh =

dx c C c

From (4), s =ctan ¥

[l
]
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@
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Definitions:
. . . X x . .
The Cartesian equation to the catenary is y = ccosh - cosh —isaneven function of x. Hence

the curve is symmetrical with respect to the y-axis i.e. to the vertical through the lowest point.

This line of symmetry is called the axis of the catenary.

Since c is the only constant, in the equation, it is called the parameter of the catenary and
it determines the size of the curve.

The lowest point C is called the vertex of the catenary. The horizontal line at the depth ¢
below the vertex (which is taken by us the x — axis) is called the directrix of the catenary.

If the two points A and B from where the string is suspended are in a horizontal line, then
the distance AB is called the span and the distance CD (i.e. the depth of the lowest point C below
AB) is called the sag.



Important Formulae:

The Cartesian coordinates of a point P on the catenary are (x, y) and its intrinsic
coordinates are (s, ¥). Hence there are four variable quantities we can have a relation connecting
any two of them. There will be 4C; = 6 such relations, most of them having been already
derived. We shall derive the remaining. It is worthwhile to collect these results for ready

reference.
(1) The relation connecting X and y is

y:ccoshg e (D)

and this is the Cartesian equation to the catenary.

(11)  The relation connecting s and ¥ is

(111) The relation connecting y and ¥ 1s

(1v) The relation connecting y and s is

(v) The relation connecting s and x is

. X
s = csinh =



Integrating, x = [ csec Y d¥ + D
= clog (sec¥ + ran¥) + D
At the lowest point, ¥ =0 and x =0
=~ 0=clog (secO+tan0 + D
1e.0=D
~ x=clog (sec¥ + tan V)

(vii)  The tension at any point=wy ... ... (7), where y is the distance of the point from the
directrix.
(vii1) The tension at the lowest point = we ... ... (8)

sinh” x = log(x+Vx2 + 1)
cosh™ x = log(x+Vx2 — 1)

Geometrical Properties of the Common catenary:




Let P be any point on the catenary y = ccosh % :

PT 1s the tangent meeting the directrix (1.e. the x axis) at T.

angle PTX =%
PM (=y) 1s the ordinate of P and PG i1s the normal at P.
Draw MN 1 to PT.

From APMN. MN = PMcos¥

=ypcos¥

=csec? cos ¥
=c=constant
1.e. The length of the perpendicular from the foot of the ordinate on the tangent at any point of

the catenary is constant.

N _ PN

MN c

o~ PN = tan ¥ = S arc CP
PM? = NM” + PN

Again tan ¥ =

~y* =c*+s°, arelation already obtained.

If is the radius of curvature of the catenary at P,

— L _ 4 = csec?
- = o (ctan ¥) = csec™V

Let the normal at P cut the x axis at G.

If 1s the radius of curvature of the catenary at P,
_ds _ d_ _ 2
P=—= = (ctan ¥) = csec™V
Let the normal at P cut the x axis at G.
Then PG. cos W =PM =y
:}!

2
-~ PG=—— = csec?. sec¥ = csec’V
cos¥

. p= PG
Hence the radius of curvature at any point on the catenary is numerically equal to the
length of the normal intercepted between the curve and the directrix, but they are drawn in

opposite directions.



A uniform chain of length 1 is to be suspended from two points in the same horizontal

line so that either terminal tension is n times that at the lowest point. Show that the span must be
ﬁ log(n+ VnZ -1
Solution:
Tension at A = wy,
And tension at C = w.yc since T =wy at any point
Noww.yy = nw.ye

~ Y4 = AVe =HC

A

or 2 = cosh'n = log (n+vVn2 —1)

C

~Xa = clog(ntvnZ—=1)......... (1)
We have to find c.
y'a =c’+s’4, sa denoting the length of CA.

2
= ¢+ 11 (as total length =1)

2
ie n’c? = o+ 2
4
2 12
ore = 4(n2—1)
_ 12
. C m ...... (2)
Substituting (2) in (1),

Xa = Mr— log (n++vn? —1)

s~ span AB = 2% = h) log (n+vn? —1)
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Unit —3
Simple Harmonic motion

Simple Harmonic motion and its application - Particle attached to an elastic string-
composition of two simple harmonic motions - Simple pendulum - tangential and Normal
velocity and acceleration of a particle along a curve.

Simple Harmonic Motion (S.H.M) is an interesting special type of motion in nature,
having forward and backward oscillation (or) to and fro oscillation about a fixed point. The fixed
point is known as the mean position or equilibrium position. When the oscillation is very small
we prove the motion is simple harmonic. In this section we study about the resultant of two
S.H.M’S of the same period in the same straight line and in two perpendicular lines. Also we

find the periodic time of oscillation of a simple pendulum.

Examples
Small oscillation of a cradle, simple pendulum, seconds pendulum, simple equivalent

pendulum, transverse vibrations of a plucked violin string etc.

Definition
When a particle moves in a straight line so that its acceleration is always directed

towards a fixed point in the line and proportional to the distance from that point, its

motion is called Simple Harmonic Motion.



Equation (1) is the fundamental differential equation representing a S.H.M.

If v is the velocity of the particle at time t (1) can be written as

V@= — HX1e. vdv=—puxdx = ... (2)
dx

2 2
Integrating (2), we have % = _,uxT +C i (3)
Initially let the particle starts from rest at the point A where OA =a
Hence when x=a, v=0= ﬁ

dt

pa’ pa’
Putting these in (3), 0= — T +corc= 5

: : a” ‘

Putting these in (3), 0 = — £ +corc= ,u;z

2

Svi=—u x’ +,uaz=,u(a2—x2)

Equation (4) gives the velocity v corresponding to any displacement x.

. dx . )
Now as t increases, X decreases. So — 1s negative.
t

Hence we take the negative sign in (4),

%ﬂ:_m ........ G)



. dx _ \/; dt
;Illiaz —x2 '

Integrating, cos ™ X Ju t+A
a

Initially whent =0, x = a, cos _ll:0+A:> A=

seos™ T= [utor x=acosut ... (6)
a

To get the time from A to A', putx = —a in (6)

We have cos Jut=—-1=cos 7,t= %
U

. The time from A to 4" and back =

€l

Equation (6) can be written as

X=2aco0S /i t=acos (\/; t+2:fr)=acos(\/;t+4 ) ete

=acos\/; f+2—ﬂr =acos\/ﬁ.!‘Jr'ﬂ'—jr etc.
Ju

Ju

Differentiating (6),

dx .
—=—qa . sin t
7 #

=—a ,usin(\/; t+2 7{):*0\/; sin(\/; t+4 ) etc.

= —afu sin \Ju (t+ j%)z—aﬁ sin /e (t + %)etc.

The values of dx are the same if t is increased by 27
z T

Tz

after a time
Ju

L . .2
same direction. Hence the particle has the period Tﬂ- .
y7i

-~ —~

T o by any multiple of 2—” . Hence

2 L . . . . .
—— the particle is again at the same point moving with the same velocity in the



T= 2—'7 ; frequency =

27
Ju Vu

The distance through which the particle moves away from the centre of motion on either

NI

side of'it is called the amplitude of the oscillation.

Amplitude=0A = 04'=a.

ZTI, is independent of the amplitude. It depends only on the
H

constant g which is the acceleration at unit distance from the centre.

The periodic time =

Deductions : 1) Maximum acceleration = x.a = u . (amplitude)

2) Since v= w/,u(af2 —xz), the greatest value of vis at x =0 and its

Maximum velocity = a \/; = \/; . (amplitude) at the centre

General solution of the S.H.M. equation

2

The S.H.M. equation is J; = —ux
2
. d°x
Le. + pgx =0 . (1)
d it

(1) 1s a differential equation of the second order with constant coefficients. Its general
solution is of the form

X=Acos\/;t+Bsin\/E t cen(2)

where A and B are arbitrary constants.

Other forms of the solution equivalent to (2) are

XZCCOS(.\/;“[-F 5)....(3)andX=Dsin(_\/;t+a) ......... ()]
% If the solution of the S.H.M. equation is X = a cos (\/; t+ g), the quantity £ is called
the epoch.



e

Definition

If two simple harmonic motions of the same period can be represented by
x, =a, cos ( \/; t+e, )and x, =azcos(\/; t+&y)

& — &
T

= If g =¢&, the motions are in the same phase.

= The difference in phase =

» If g =&, = 7, they are in opposite phase.
4.2 Geometrical Representation of S.H.M
If a particle describes a circle with constant angular velocity, the foot of the perpendicular

from the particle on a diameter moves with S.H.M.

i}t

hat



Let 44" be the diameter of the circle with centre O and P be the position of the particle
at time fsecs. Let N be the foot of the perpendicular drawn from P on the diameter 44". P
moves along the circumference of the circle with uniform speed and describes equal arcs in equal

times. Let @ — be the angular velocity. .. Z40P = ot

[fON=x,0p=aqa,then,x=acos (@t) .................. (1)
dx ; .
—=—qosm(@f) .................... 2
= —aosin(ar) (2)
2
d—; = —aw? cos(t)=—0°x  oeeiiieen, (3)
dt

(3) shows that the motion of N is simple harmonic. When P moves along the circumference of

the circle starting from A. N oscillates from A to 4" and 4" to 4.

A particle 1s moving with S.H.M. and while making an oscillation from one extreme
position to the other, its distances from the centre of oscillation at 3 consecutive seconds are

. P 2r
X1 X, X3 Prove that the period of oscillation s
o 005—1( m]

2JC2

Solution:

If a is the amplitude, # the constant of the S.H.M. and x is the displacement at time t, we

know that x = a cos ,/E t.....(1)

Let x1,x x3_be the displacements at three consecutive seconds ), #; +1, #; +2.

Then xj;=acos \/; t, L 2)
Xy = acos ﬁ(rl +1) =acos (\/EIPL\/;) ....... (3)
X3= acos \/;(tl +2)=acos (\/;tl +2\/;) ....... 4)



S X]+x3 =a[cos (\/ﬂ_fl-i-z\/;) + cos ( 7 rl)]
Vit + 2+ un o8 Vs + 23— un
2 2

=a.2 cos

. C

=2acos (\/; f1+\/;).cosﬁ =2x,.C08 \/;

.'. M = COS H . ’\/; = CDS _1 m
2x5 - 2x,
. 2 2
Period = T - il
Ju cos 1| XT3
2.1'2
Problem 2

If the displacement of a moving point at any time be given by an equation of the form

x=acos @ t+bsin @ t, show that the motion is a simple harmonic motion.

If a = 3, b=4, @= 2 determine the period, amplitude, maximum velocity and maximum

acceleration of the motion.

Solution:



Givenx=acos @t+bsmat ... (1)

Differentiating (1) with respect to t,

%= —aosin ot+b@cosof ........................ 2)
2
dx :
— =—w’cos wt—-bw’sinot
dt
- _w2(@cos @t+bsin @)= - *x...(3)

.. The motion is simple harmonic.

The constant # of the SHM. = @”.

s Period= = =T — T o g secs.
Amplitude is the greatest value of x.

) . dx
When x 1s maximum, = =0.
t

—amsm ot +bwcosax =01e.asin of =bcos wtortan @ t= é:
a
4 . 4 3
When tan @t= —, sin @t= 5 and cos ot= 5
Greatest value of x = a x%+bx%:3a;4b:3'3:4'4:5

Hence amplitude = 5.
Max. acceleration = g . Amplitude =4 x 5 =20

Max. velocity = \/; . Amplitude=2x 5=10

Problem 3

|



Show that the energy of a system executing S.H.M. is proportional to the square of the

amplitude and of the frequency.

Solution:

The acceleration at a distance x from O = ux.
Force = mass xacceleration =m px

If the particle is given displacement dx from P,

work done against the force =m g x dx

Total work done 1n displacing the particle to a distance x

X
= J.m mdx:m Jl_j,'x— ......... (].)
5 2

Work done = potential energy at P.

If v is the velocity at P. we know that v’= ,u(a?‘ —x’ ),

.. Kinetic energy at P = % mv?’= é

The total energy at P = Potential energy + Kinetic energy
m,wcz mu( 2 2 M:,{Ja2
= —+—(a —-Xx ):7 (3)
2 2 2

Total energy at P a?

If n 1s the frequency, we know that

R S/
Period {er 27

N

22
mula® —x*) L.

10



@zZﬁn or ﬂ:4ﬂ'2ﬁ!2

1
Total energy = Em. Ar*n*a? = 270°ma*n® a n?

Problem 4

A mass of 1 gm. Vibrates through a millimeter on each side of the midpoint of its path
256 times per sec; if the motion be simple harmonic, find the maximum velocity,

Solution:

Maximum velocity v=,/u.a

ﬂ
27

: 1
Given, frequency =? =256=

Ju =2x256 x 7.

Given, amplitude =a = 1 millimeter =1 x 10~} c.m.

1 256«

.. Maximum velocity, V=2 x 256 x 7 x E: cm/ sec

Problem 5

In a S.H.M. if f be the acceleration and v the velocity at any time and T is the periodic
time. Prove that /T~ +47°v* is constant.

Solution:

Velocity at any time, v =4/ u a’ —x

11



Periodic time = —_ ——=f

d2

For, S.H.M, —f = —UX
dt
L =—ux

2
.'.f2T2 N #2Y2.4i +4x ,uz(az —xz)
y7,

=1 ﬂrz,uxz +4:fr2,ua2 —4?.?2;&:2
=4 ﬁzmz (constant)

Problem 6

A body moving with simple harmonic motion has an amplitude ‘a’ and period T. Show

that the velocity v at a distance x from the mean position is given by v’7* = 47° (a2 —x° )

Solution:

We know, v2 = p(az —xz)
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Unit — IV
Dynamics of a particle

Velocity and Acceleration of a particle in polar coordinates — circular, elliptic
hyperbolic and parabolic orbits.

Circular Orbit E = Emm

The lowest energy state, E__. corresponds to the mimmimum of the effective potential

energy, £ =(U_)_. - We can minimize the effective potential energy

0— dUEff B I’ G mm,
oy T 1r3+ rt
r=r, ! 0 0

and solve Equation

For E=E__, r=r, which corresponds to a circular



Elliptic Orbit £ < E <0

For E < E <0, there are two points » and »__ such that E=U_(r_)=U_(r,__).

At these points K__ =0, therefore dr/dt =0 which corresponds to a point of closest or

furthest approach (Figure 25.6). This condition corresponds to the minimum and
maximum values of » for an elliptic orbit.

i b =2 I
—~ / | “—-\\
/ r S % : \'\\\
f.-" \\. 9 \" - | \.\I\I
| g | [ min \
f | T max ]
AN /'I.l . : ,.f';
_/; \ P
N S \ | /
L o N | //_/
S ' —~. R P 4
(a) (b)
The energy condition at these two points
I’ Gm m
EZZ_@UZ_ rl 2’ r:rmjn:max’
r
1s a quadratic equation for the distance r,
Gm m I’
P —L2y— =0.
E 2UE
There are two roots
172

r:—Gm‘mzi Gm m, 2+ I?
2F 2E 2UE



p=—0_(lg)=—0

7

| - l5e

Substituting the last expression in (25.4.20) info Equation (25.4.19) gives :
for the points of closest and furthest approach,

r r
r=—"—(1+e)=-—2
1—8“( ) lxe

The minus sign corresponds to the distance of closest approach,

o
F’E‘Vmin:
1+¢

and the plus sign corresponds to the distance of furthest approach,

Parabolic Orbit £=0

The effective potential energy, as given in Equation (25.4.1), approaches zero (U_. —0)
when the distance » approaches mfinity (» — o). When E =0, as » — oo, the kinetic
energy also approaches zero, K — 0. This corresponds to a parabolic orbit (see
Equation (25.3.23)). Recall that in order for a body to escape from a planet, the body
must have an energy E£=0 (we set U__ =0 at infinity). This escape velocity condition
corresponds to a parabolic orbit. For a parabolic orbit, the body also has a distance of
closest approach. This distance 7 can be found from the condition

2 Gm.m
E=U_(r_)= LM%y
d 2ur,, r




— LE 1 -
rpar o o*
2uGmm, 2

/

Hyperbolic Orbit £ >0

When £>0, m the limit as r —>e the kinetic energy is positive, K__ >0. This
corresponds to a hyperbolic orbit (see Equation (25.3.24)). The condition for closest
approach 1s similar to Equation (25.4.14) except that the energy is now positive. This

mmplies that there is only one positive solution to the quadratic Equation (25.4.15), the
distance of closest approach for the hyperbolic orbit

_ %

T e

The constant 7, is independent of the energy and from Equation (25.3.14) as the energy

of the single body increases, the eccentricity increases, and hence from Equation
(25.4.26), the distance of closest approach gets smaller (Figure 25.5).

A satellite of mass m, 1s i an elliptical orbit around a planet of mass m, >>m,. The

planet 1s located at one focus of the ellipse. The satellite 1s at the distance 7, when it is
furthest from the planet. The distance of closest approach is r, (Figure 25.11). What is (1)
the speed v, of the satellite when it is closest to the planet and (i1) the speed v, of the
satellite when it is furthest from the planet?



P

Solution: The angular momentum about the origin is constant and because r, 1 v_ and

I, , LV, the magnitude of the angular momentums satisfies

L=L =L

a.p Oa”

(25.6.1)

Because m <<m,, the reduced mass p=m, and so the angular momentum condition

becomes
L=mryv =mry, (25.6.2)

We can solve for v, in terms of the constants G, m,, r, and r, as follows. Choose zero
for the gravitational potential energy, U(» = =)= 0. When the satellite is at the maximum

distance from the planet, the mechanical energy is

(25.6.3)




When the satellite 1s at closest approach the energy is

1 , Gm m,
E =—mv " —
I 2 i p F
P
Mechanical energy is constant,
E=F =FE ,
d r

therefore

1 Gm.m 1 Gm.m

E= —m;vp2 ——f=—my ——2
2 7, 2 r

From Eq. (25.6.2) we know that
v, = (rp / "a)""_,, :

Substitute Eq. (25.6.7) into Eq. (25.6.6) and divide through by m_/2 yields

2
., 2Gm_ r 2Gm
2 r r 2 r
oV, .
r
a

V
P

¥
P

r

a



¥ I 1

v; -5 |=2Gm | —— |=
LT L
, |
, r;—r; r,—r,
v ——F— |=2Gm =
z r lorr
. a Pa
(
r—r ¥ +r) ro—r
v i =2 Ea E1=2Gm | —~ |=
P r lorr
\ a pa
2Gm r
v = £L
f :
(r,+r)r,
Z'G?HPJ"p
v =(r /r)v =

a poasr (ra+rp)ra'
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DEFINITION OF MOMENTS OF INERTIA FOR AREAS

Centroid for an area is determined by the first moment
of an area about an axis

Second moment of an area is referred as the moment
of inertia

Moment of inertia of an area originates whenever one
relates the normal stress o or force per unit area




DEFINITION OF MOMENTS OF INERTIA FOR AREAS

Moment of Inertia

Consider area A lying in the x-y plane

Be definition, moments of inertia of the differential
plane area dA about the x and y axes

dl, =v*dd dl, =x"d4

For entire area, moments of <
inertia are given by : A /




DEFINITION OF MOMENTS OF INERTIA FOR AREAS

Moment of Inertia

« Formulate the second moment of dA about the pole O
or Z axis

« This Is known as the polar axis
dJ, =r’d4
where r is perpendicular from the pole (z axis) to the
element dA
« Polar moment of inertia for entire area,

J, = Lﬁm =1 +1,



PARALLEL AXIS THEOREM FOR AN AREA

« For moment of inertia of an area known about an axis
passing through its centroid, determine the moment of
iInertia of area about a corresponding parallel axis
using the parallel axis theorem

« Consider moment of inertia of the shaded area

« A differential element dA is
located at an arbitrary distance y’
from the centroidal x’ axis y, -




PARALLEL AXIS THEOREM FOR AN AREA
The fixed distance between the parallel x and x’ axes
Is defined as d,
For moment of inertia of dA about x axis
dl =(y'+d ) d4
For entire area

1= L ()"—.L(]J, FdA4

= [ y?dd+2d,[ y'dd+d [ dd

oA

First integral represent the moment of inertia of the
area about the centroidal axis



PARALLEL AXIS THEOREM FOR AN AREA

Second integral = 0 since x’ passes through the area’s
centroid C [yda=7[da=0: 7=0

Third integral represents the total area A
I, =1 +Ad,

Similarly
I,=1I,+A4d;

For polar moment of inertia about an axis

perpendicular to the x-y plane and passing through

pole O (z axis) B
Jo=Jq+Ad’



RADIUS OF GYRATION OF AN AREA

Radius of gyration of a planar area has units of length
and is a quantity used in the design Df columns in

structural mechanics

For radii of gyration I )

o lf o I} . J{} o : ”“a
Ty T T )

Similar to finding moment of inertia of a differential
area about an axis

I.=k:id dI,=yv*d4 {




EXAMPLE

Determine the moment of inertia for the rectangular area
with respect to (a) the centroidal x” axis, (b) the axis x,
passing through the base of the rectangular, and (c) the
pole or z' axis perpendicular to the x'-y’ plane and
passing through the centroid C.




SOLUTION
Part (a)
Differential element chosen, distance y’ from x’ axis.
Since dA =b dy’,

: ) : 1
I :j1 d4 = 2 (bdy') = j '@:Emﬁ

hi2®
Part (b)
By applying parallel axis theorem,

I =1 +Ad° _ L +bf{hJ Ly
12 2] 3



SOLUTION

Part (c)
For polar moment of inertia about point C,
= 1
I},r - — g}'bg
12

J.=1 +f},. = ébh(h‘z +5b%)



MOMENTS OF INERTIA FOR COMPOSITE AREAS

+ Composite area consist of a series of connected
simpler parts or shapes

« Moment of inertia of the composite area = algebraic
sum of the moments of inertia of all its parts

Procedure for Analysis
Composite Parts

+ Divide area into its composite parts and indicate the
centroid of each part to the reference axis

Parallel Axis Theorem

« Moment of inertia of each part is determined about its
centroidal axis




MOMENTS OF INERTIA FOR COMPOSITE AREAS

Procedure for Analysis

Parallel Axis Theorem

« When centroidal axis does not coincide with the
reference axis, the parallel axis theorem is used

Summation

« Moment of inertia of the entire area about the
reference axis is determined by summing the results
of its composite parts




EXAMPLE

Compute the moment of inertia of the composite area
about the x axis.

— 100 mm —

25 mm 75 mm

N
-

75 mm




SOLUTION

Composite Parts

Composite area obtained by subtracting the circle form
the rectangle.

Centroid of each area is located in the figure below.

— 100 mm —

25 mm

75 mm
. -®

75 mm




SOLUTION

Parallel Axis Theorem

Circle

I, =1, +Ad;

B 1 -\4 PRV, 2 11 a8 4
= 7(25)' +2(25) (75) = 11.4{10° pram
Rectangle

I.r :f.r' _|_AOIJ:f

. 1%(_100](150)3 +(100)150)75) =112.5(10 pum*



SOLUTION

Summation

For moment of inertia for the composite area,
I, =-114(10°)+112.5(10°)
~101(10° m*



PRODUCT OF INERTIA FOR AN AREA

Moment of inertia for an area is different for every axis
about which it is computed

First, compute the product of the inertia for the area as
well as its moments of inertia for given X, y axes

Product of inertia for an element of area dA located at

a point (x, y) is defined as
dl,, = xydA 1

Thus for product of inertia, T

3
s dA

N
T

I, = L xydA




PRODUCT OF INERTIA FOR AN AREA

Parallel Axis Theorem

« For the product of inertia of dA with respect to the x
and y axes

dr, = [ (x+d, )v+d, Jid | _ o

« For the entire area, { ,M—[ |
I, = I ’ (x'+d., )(V'+d_v b4 L = L7
= ¥'v'dd+d,| vad+d,[Yad+dd,[dd T

« Forth integral represent the total area A,

I = I_x.y. +A4d d,



EXAMPLE

Determine the product I, of the triangle.

-‘ /




SOLUTION

Differential element has thickness dx and area dA =y dx
Using parallel axis theorem,

dl, =dl_ +dA%y

(¥.7) locates centroid of the element or origin of X', y" axes




SOLUTION

Due to symmetry, d]_r.v =0 =xy=y/2

dl_ =0+ ()'{ix)x[l] = (ﬁxdx )\‘(LTJ = h~, Xdx
; 2 b 2b ) 2b°
Integrating we have :
h2 b b2h2
I — 5 j ",\‘3dx e —— ¥ =%x
v 2% 0 8 o
1
7 |o|E»
| —‘1 }"d.\'
b




SOLUTION

Differential element has thickness dy and

area dA = (b - x) dy.
For centroid,

i: :x+(b—.\‘)/2:(b+x)/2’5?:J»

For product of inertia of element

2

a’]_‘y =d_fn,+dA;ﬁ =O+(b—x)d1(b+r)
b’
72 )

| ( bl ) dy{m (b/h );}y g 1‘[ o
- - .

a

o




MOMENTS OF INERTIA FOR AN AREAABOUT
INCLINED AXES

 |n structural and mechanical design, necessary to
calculate |, |, and |, for an area with respect to a set
of inclined u and v axes when the values of 6, |,, Iy and
l,, are known

« Use transformation equations which relate the x, y and
u, v coordinates

U=xcos@+ vsinb y -
. =Y p —1 \
< [\ (A e v
V= 71CO0S @—xsmé \ L. G Sy »
¥ ) ~= (Y _5. "

2 . p. \ " xsn

dl =v-d4A=(ycos@—xsiné) dA4 |\ T3
o L___ v “_.' "' vasmd

dl, =u’dA=(xcosf@+ ysinf)>dA |
dl  =uvd4d=(xcos@+ ysinf)(ycosfd—xsind)dA \

e
¥ Cos b -\
L



MOMENTS OF INERTIA FOR AN AREAABOUT
INCLINED AXES

* Integrating,

I,=1_cos’ o+1, sin” 6—21 _,smécosd

I, =1_sin’ 0+1, cos’ O+21  smébcosO

I, =1 smé@cosf—1 smbcosf+2] (cos® @ —sin” 0)
« Simplifying using trigonometric identities,

sin2é =2smécosd

2 - 7
cos28 =cos  @—smn" &



MOMENTS OF INERTIA FOR AN AREAABOUT
INCLINED AXES

We can simplify to
I +I, I -1
I = :

; + Y cos28—1 sin28
2 2 s
I+I, I.-1, .

I = L ~cos260+1_ sin26
2 2 n

I -1 .
Iw = 5 = S1n 29+2!ﬂ, cos 26

Polar moment of inertia about the z axis passing
through point O is,

Jo=1,+1,=1 +1



MOMENTS OF INERTIA FOR AN AREAABOUT
INCLINED AXES

Principal Moments of Inertia

- |, |, and |, depend on the angle of inclination 8 of the
u, v axes

+ The angle 6 = 6, defines the orientation of the principal
axes for the area

dl I.—1, R o
U _ _2{ x 45 Jsm 260-21 4 COS 26=0 ,(__)
de 2 : " |
1”] [\"\ .‘*. .
6 = Hp .
tan26, = 1y _( L-n) | (7

(Ix E Iy ,)/ 2 \ ;)‘ £




MOMENTS OF INERTIA FOR AN AREA ABOUT
INCLINED AXES
Principal Moments of Inertia

« Substituting each of the sine and cosine ratios, we
have

s _ I +I:
min 9 —V
« Result can gives the max or min moment of inertia for
the area
+ |t can be shown that |, = 0, that is, the product of
inertia with respect to the principal axes is zero

« Any symmetric axis represent a principal axis of inertia
for the area

(1, Ir

+I;.
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