

Accredited "A" Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES DEPARTMENT OF MATHEMATICS COMPLEX ANALYSIS –SMT1602

UNIT – I – Analytic Function – SMT1602

I. Analytic Function

Introduction to Complex Numbers

A general form of a complex number is z = x + iy when x and y are real and $i = \sqrt{-1}$. Here x is called the real part and y is the imaginary part of z.

A conjugate of a complex number z is $\overline{z} = x - iy$. Then

$$z + \overline{z} = 2x \implies x = \frac{1}{2} [z + \overline{z}]$$

$$z - \overline{z} = 2iy \implies y = \frac{1}{2i} [z - \overline{z}]$$

$$z \overline{z} = (x + iy) (x - iy) = x^2 + y^2$$

The complex number z = x + iy can be represented by a point (x, y) in a complex plane. The modulus (absolute value) of z is given by

$$|z| = \sqrt{x^2 + y^2}$$

The distance between the points z_1 and z_2 is $|z_1 - z_2|$.

If $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$, then the distance

$$z_1 z_2 = |z_1 - z_2|$$

$$= |(x_1 + iy_1) - (x_2 + iy_2)|$$

$$= |(x_1 - x_2) + i(y_1 - y_2)|$$

Polar form of a complex number: Let the polar coordinates of the point (x, y) be (r, θ) , then

$$z = x + iy = r [\cos \theta + i \sin \theta] = r e^{i\theta}$$

 $x = r \cos \theta, \quad y = r \sin \theta$

Squaring and adding, we get

$$x^2 + y^2 = r^2$$

$$\therefore r = \sqrt{x^2 + y^2}$$

Dividing the above results, we get

$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

The number r is called the modulus value of z and θ is called the amplitude (argument) of the complex number z.

Euler's Formula

We know
$$e^{in\theta} = \cos n\theta + i \sin n\theta$$

Demoivre's theorem for positive integer,

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

Note:
$$e^{-in\theta} = \cos(n\theta) - i\sin(n\theta)$$

Functions of a Complex Variable

Let z = x + iy and $\omega = u + iy$. If z and ω are two complex variables and if for each value of z in a complex plane there corresponds one or more values of ω , then ω is called to be a function of z.

The same of the sa

We can write
$$\omega = f(z) = u + iv = u(x, y) + iv(x, y)$$
.

Here u and v are real functions of the real variables x and y.

For example
$$f(z) = z^2$$

$$= (x^2 - y^2) + i(2xy)$$

$$= (x^2 - y^2) + i(2xy)$$

We can represent z = x + iy and $\omega = u + iv$ on separate complex planes called z-plane and ω -plane respectively. The relation $\omega = f(z)$ gives the correspondence between the points (x, y) of the z-plane and the points (u, v) of the ω -plane.

Limits: Let
$$z = x + iy$$

Let $z_0 = x_0 + iy_0$

$$Lt_{z \to z_0} \omega = Lt_{z \to z_0} f(z) = \omega_0$$

$$Lt_{z \to z_0} f(z) = Lt_{z \to z_0} (u + iv) \qquad [\because f(z) = u + iv]$$

$$= Lt_{x \to x_0} (u + iv) = u_0 + iv_0$$

$$y \to y_0$$

Continuity of f(z):

A function f(z) is said to be continuous at $z = z_0$ if

$$Lt_{z \to z_0} f(z) = f(z_0).$$

If f(z) is continuous in any region R of the z-plane, if it is continuous at every point of that region.

Derivatives of f(z)

Let $\omega = f(z)$ be a single-valued function of the variable z. The derivative of f(z) is defined as

$$\frac{d\omega}{dz} = f'(z) = \operatorname{Lt}_{\Delta z \to 0} \left[\frac{f(z + \Delta z) - f(z)}{\Delta z} \right] \text{ if limits exists.}$$

Partial derivative of u:

$$\frac{\partial u}{\partial x} = \operatorname{Lt}_{\Delta x \to 0} \left[\frac{u(x + \Delta x, y) - u(x, y)}{\Delta x} \right]$$

$$\frac{\partial u}{\partial y} = \operatorname{Lt}_{\Delta y \to 0} \left[\frac{u(x, y + \Delta y) - u(x, y)}{\Delta y} \right]$$

Analytic Functions

A single valued function f(z) which possesses a unique derivative with respect to z at all points of a region R is called an analytic function. It is also called a **Regular function** or **Holomorphic** function.

Singular Point: A point at which an analytic function f(z) ceases to possess a derivative is called a singular point of the function or singularity of f(z).

The necessary and sufficient conditions for the derivative of the function f(z).

- (i) $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$ are continuous functions of x and y in the region R.
- (ii) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ (C-R equations).

Note:

(i) To check the given function is analytic or not, we can use the CR equations.

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

(ii) To find the derivative of f(z), we can use

$$f(z) = u + iv$$

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

- (iii) To find f(z) or f'(z) in terms of z, we can substitute x = z and y = 0 on both sides.
 - (iv) Recall the following formulae:

$$\sin(ix) = i \sinh x$$

$$\cos(ix) = \cosh x$$

$$\sin(0) = 0, \quad \cos(0) = 1$$

$$\sinh(0) = 0, \quad \cosh(0) = 1$$

$$\frac{d}{dx} (\sin x) = \cos x,$$

$$\frac{d}{dx} (\cos x) = -\sin x$$

$$\frac{d}{dx} (\sinh x) = + \cosh x$$

$$\frac{d}{dx} (\cosh x) = + \sinh x$$

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

Example 1 Prove that $f(z) = z^2$ is an analytic function.

Solution: Given:
$$f(z) = z^2$$

= $(x + iy)^2$
= $x^2 + i^2 y^2 + 2 i xy$
= $x^2 - y^2 + i 2 xy$

C.R. equations are satisfied.

:. f(z) is analytic function.

Example 2 Test the analyticity of $f(z) = e^z$.

Solution: Given:
$$e^z = e^{x+iy}$$

$$= e^x e^{iy}$$

$$= e^x [\cos y + i \sin y]$$

$$= e^x \cos y + i e^x \sin y$$

Here
$$u = e^x \cos y$$
 $v = e^x \sin y$ $\frac{\partial u}{\partial x} = e^x \cos y$ $\frac{\partial v}{\partial x} = e^x \sin y$ $\frac{\partial v}{\partial x} = e^x \sin y$ $\frac{\partial v}{\partial y} = -e^x \sin y$ $\frac{\partial v}{\partial y} = e^x \cos y$ $\frac{\partial v}{\partial y} = e^x \cos y$ $\frac{\partial v}{\partial y} = -\frac{\partial v}{\partial x}$

 $f(z) = e^z$ is analytic function.

Example 3 Test whether the function $f(z) = \cos z$ is analytic or not.

Solution: Given:
$$f(z) = \cos z$$

$$= \cos (x + iy)$$

$$= \cos (x) \cos (iy) - \sin (x) \sin (iy)$$

$$= \cos (x) \cosh y - \sin (x) i \sinh y$$

$$= \cos x \cosh y + i (-\sin x \sinh y)$$
Here $u = \cos x \cosh y$ $v = -\sin x \sinh y$

$$\frac{\partial u}{\partial x} = -\sin x \cosh y$$
 $\frac{\partial v}{\partial x} = -\cos x \sinh y$

$$\frac{\partial u}{\partial y} = \cos x \sinh y$$
 $\frac{\partial v}{\partial y} = -\sin x \cosh y$
Here $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

$$\therefore f(z) = \cos z \text{ is analytic function.}$$

Example 4 Discuss the analyticity of $f(z) = \log z$.

Solution: We know $\log z = \frac{1}{2} \log (x^2 + y^2) + i \tan^{-1} \left(\frac{y}{x}\right)$

$$[logz = log (re^{i\theta})$$

$$= logr + log(e^{i\theta})$$

$$= log \sqrt{x^2 + y^2} + i\theta$$

$$= log (x^2 + y^2)^{1/2} + i tan^{-1} \left(\frac{y}{x}\right)$$

$$= \frac{1}{2} log (x^2 + y^2) + i tan^{-1} \left(\frac{y}{x}\right)$$

$$u = \frac{1}{2} \log (x^2 + y^2). \qquad v = \tan^{-1} \left(\frac{y}{x}\right)$$

$$\frac{\partial u}{\partial x} = \frac{x}{x^2 + y^2} \qquad \frac{\partial v}{\partial x} = \frac{1}{1 + \left(\frac{y}{x}\right)^2} \left(\frac{-y}{x^2}\right)$$

$$\frac{\partial u}{\partial y} = \frac{y}{x^2 + y^2} \qquad = -\frac{y}{x^2 + y^2}$$

$$\frac{\partial v}{\partial y} = \frac{1}{1 + \left(\frac{y}{x}\right)^2} \cdot \left(\frac{1}{x}\right)$$

$$= \frac{x}{x^2 + y^2}$$

$$\therefore \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

The partial derivatives are continuous except at x = 0, y = 0. CR equations are satisfied.

Its derivative is

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

$$= \left(\frac{x}{x^2 + y^2}\right) + i \left(\frac{-y}{x^2 + y^2}\right)$$

$$= \frac{x - iy}{x^2 + y^2} = \frac{(x - iy)}{(x - iy)(x + iy)}$$

$$= \frac{1}{x + iy} = \frac{1}{z}$$

Hence $f(z) = \log z$ is analytic everywhere except at z = 0, (at the origin).

Example 5 Prove that $f(z) = \sin z$ is analytic function and hence find the derivative.

Solution: Given:
$$f(z) = \sin z = \sin (x + iy)$$

= $\sin (x + iy)$

$$= \sin(x)\cos(iy) + \cos x \sin(iy)$$

$$= \sin x \cosh y + i \cos x \sinh y$$

$$u = \sin x \cosh y \qquad v = \cos x \sinh y$$

$$\frac{\partial u}{\partial x} = \cos x \cosh y \qquad \frac{\partial v}{\partial x} = -\sin x \sinh y$$

$$\frac{\partial u}{\partial y} = \sin x \sinh y \qquad \frac{\partial v}{\partial y} = \cos x \cosh y$$

Here CR equations are satisfied.

Consider
$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

 $f'(z) = \cos x \cosh y + i (-\sin x \sinh y)$

To find f'(z) in terms of z, let us substitute x = z and y = 0 on both sides,

$$f'(z) = \cos z \cdot 1 + i(-\sin z \cdot 0)$$

$$f'(z) = \cos z$$

Note: Here after we can use this method to find f(z) or f'(z) by substituting x = z and y = 0.

Example 7 Show that $f(z) = |z|^2$ is differentiable only at the origin.

Solution: Given:
$$f(z) = |z|^2$$

$$= x^2 + y^2 \qquad [\because |z|^2 = z \ \overline{z} = x^2 + y^2]$$

$$\therefore u = x^2 + y^2, \qquad v = 0$$

$$\frac{\partial u}{\partial x} = 2x \qquad \frac{\partial v}{\partial x} = 0$$

$$\frac{\partial u}{\partial y} = 2y \qquad \frac{\partial v}{\partial y} = 0$$

Here CR equations are satisfied only when x = 0 and y = 0.

Note that CR equations are not satisfied for other values. Thus $f(z) = |z|^2$ is differentiable only at the origin.

Milne-Thomson Method to find f(z)

This method can be used to find an analytic function f(z) when u or v is given.

Let us assume that the real part of f(z) is given. Then we can find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.

Consider
$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

$$= \frac{\partial u}{\partial x} + i \left(-\frac{\partial u}{\partial y} \right), \text{ using CR equations.}$$

$$= \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y}$$

Put x = z and y = 0 on both sides, we get

$$f'(z) = \frac{\partial}{\partial x} u(z, 0) - i \frac{\partial u(z, 0)}{\partial y} \qquad \dots (1)$$

which is a function of z.

Integrating (1), we get f(z) in terms of z.

Note: If the imaginary part of f(z) is given, we can find $\frac{\partial v}{\partial x}$ and $\frac{\partial v}{\partial y}$. For this consider

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$
$$= \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}, \text{ using CR equations.}$$

Put x = z and y = 0 on both sides, we get

$$f'(z) = \frac{\partial v(z,0)}{\partial y} + i \frac{\partial v(z,0)}{\partial x}$$

Integrating (2), we get f(z) in terms of z. This method is called Milne-Thomson method.

Method of find f(z) when u is given

Example 1 Find an analytic function f(z) whose real part is given by $u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$.

Solution: Given:
$$u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$$

$$\frac{\partial u}{\partial x} = 3x^2 - 3y^2 + 6x$$

$$\frac{\partial u}{\partial y} = 0 - 6xy + 0 - 6y + 0$$

$$= -6xy - 6y$$
Consider $f'(z) = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}$

Here u is given and using CR equations

$$f'(z) = \frac{\partial u}{\partial x} + i \left(-\frac{\partial u}{\partial y} \right)$$
$$= \left[3x^2 - 3y^2 + 6x \right] + i \left[6xy + 6y \right]$$

Put x = z and y = 0 on both sides

$$f'(z) = 3z^2 + 6z$$

Integrating, we get

$$f(z) = 3 \cdot \frac{z^3}{3} + 6 \cdot \frac{z^2}{2} + C$$

$$f(z) = z^3 + 3 z^2 + C, \quad C \text{ is a complex constant.}$$

Example 2 Find an analytic function f(z) whose real part is given as $u = y + e^x \cos y$.

Solution: Given:
$$u = y + e^x \cos y$$

$$\frac{\partial u}{\partial x} = e^x \cos y$$

$$\frac{\partial u}{\partial y} = 1 - e^x \sin y$$
Consider
$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

$$= \left(\frac{\partial u}{\partial x}\right) + i \left(-\frac{\partial u}{\partial y}\right)$$

$$= e^x \cos y + i \left(-1 + e^x \sin y\right)$$

Put x = z and y = 0 on both sides,

Put x = z and y = 0 on both sides,

$$f'(z) = e^z - i$$

Integrating, we get

$$f(z) = e^z - iz + C$$

Example 3 Find an analytic function whose real part is given by $u = \frac{x}{x^2 + y^2}.$

Solution: Given:
$$u = \frac{x}{x^2 + y^2}$$

 $u_x = \frac{(x^2 + y^2) \cdot 1 - 2x^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$
 $u_y = \frac{0 - x(2y)}{(x^2 + y^2)^2} = \frac{-2xy}{(x^2 + y^2)^2}$
Let $f(z) = u + iv$

$$f'(z) = u_x + i v_x$$

$$= u_x - i u_y$$

$$= \frac{y^2 - x^2}{(x^2 + y^2)^2} - i \frac{2 xy}{(x^2 + y^2)^2}$$

Put x = z and y = 0, we get

$$f'(z) = -\frac{z^2}{z^4} = -\frac{1}{z^2}$$

Integrating, we get
$$f(z) = \frac{1}{z} + C$$

Example 4 Find f(z) which is analytic, given

$$u = \frac{1}{2} \log (x^2 + y^2).$$

Solution: Given:
$$u = \frac{1}{2} \log (x^2 + y^2)$$

$$\frac{\partial u}{\partial x} = \frac{1}{2} \cdot \frac{2x}{x^2 + y^2} = \frac{x}{x^2 + y^2}$$

$$\frac{\partial u}{\partial y} = \frac{1}{2} \cdot \frac{2y}{x^2 + y^2} = \frac{y}{x^2 + y^2}$$

Consider
$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

$$= \frac{\partial u}{\partial x} + i \left(-\frac{\partial u}{\partial y} \right)$$

$$=\frac{x}{x^2+y^2}+i\left(-\frac{y}{x^2+y^2}\right)$$

Put x = z and y = 0, we get

$$f'(z) = \frac{z}{z^2} + i(0) = \frac{1}{z}$$

Integrating, we get $f(z) = \log z + C$

Example 5 If $u = \frac{y}{x^2 + y^2}$ find an analytic function f(z).

Solution: Given:
$$u = \frac{y}{x^2 + y^2}$$

$$\frac{\partial u}{\partial x} = \frac{0 - y(2x)}{(x^2 + y^2)^2} = \frac{-2xy}{(x^2 + y^2)^2}$$

$$\frac{\partial u}{\partial y} = \frac{(x^2 + y^2) \cdot 1 - y(2y)}{(x^2 + y^2)^2} = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

Consider

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial u}{\partial x} + i \left(-\frac{\partial u}{\partial y} \right)$$
$$= \left[\frac{-2xy}{(x^2 + y^2)^2} \right] + i \left[\frac{y^2 - x^2}{(x^2 + y^2)^2} \right]$$

Put x = z, y = 0, we get

$$f'(z) = i \left[\frac{-z^2}{z^4} \right] = i \left(-\frac{1}{z^2} \right)$$

Integrating, we get

$$f(z) = i \cdot \frac{1}{z} + C$$

= $\frac{i}{z} + C$ where C is complex constant

Example 6 Find an analytic function f(z) = u + iv if u is given by $u = \cos x \cosh y$.

Solution: Given:
$$u = \cos x \cosh y$$

$$\frac{\partial u}{\partial x} = -\sin x \cosh y$$

$$\frac{\partial u}{\partial y} = \cos x \sinh y$$
Consider $f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$

$$= \frac{\partial u}{\partial x} + i \left(-\frac{\partial u}{\partial y}\right)$$

$$= -\sin x \cosh y + i \left(-\cos x \sinh y\right)$$

Put
$$x = z$$
 and $y = 0$, we get
$$f'(z) = -\sin z + 0$$
Integrating, we get
$$f(z) = \cos z + C$$

Example 7 Find an analytic function f(z) whose real part is given by $u = e^{2x} [x \cos 2y - y \sin 2y]$.

Solution: Given:
$$u = e^{2x} x \cos 2y - e^{2x} y \sin 2y$$

$$\frac{\partial u}{\partial x} = \left[e^{2x} + 2x e^{2x} \right] \cos 2y - 2 e^{2x} y \sin 2y$$

$$= e^{2x} \left[\cos 2y + 2x \cos 2y - 2y \sin 2y \right]$$

$$\frac{\partial u}{\partial y} = -2 e^{2x} x \sin 2y - e^{2x} \left[\sin 2y + 2y \cos 2y \right]$$

$$= -e^{2x} \left[2x \sin 2y + \sin 2y + 2y \cos 2y \right]$$

Consider
$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

$$= \frac{\partial u}{\partial x} + i \left(-\frac{\partial u}{\partial y} \right)$$

$$= e^{2x} \left[\cos 2y + 2x \cos 2y - 2y \sin 2y \right]$$

$$+ i \left[e^{2x} (2x \sin 2y + \sin 2y + 2y \cos 2y) \right]$$

Put x = z and y = 0, we get

$$f'(z) = e^{2z} [1+2z] + 0$$

Integrating, we get

$$f(z) = \int (2z+1)e^{2z} dz + C$$

For using Bernouli's formula

Put
$$u = 2z + 1$$
 $v = e^{2z}$

$$u' = 2$$
 $v_1 = \frac{e^{2z}}{2}$

$$u'' = 0$$
 $v_2 = \frac{e^{2z}}{4}$

$$\int uv \ dx = uv_1 - u' v_2 + u'' v_3 - \dots$$

$$f(z) = (2z+1)\frac{e^{2z}}{2} - 2\frac{e^{2z}}{4} + C$$

$$= z e^{2z} + \frac{1}{2} e^{2z} - \frac{1}{2} e^{2z} + C$$

$$f(z) = z e^{2z} + C$$

Example 8 Find the analytic function
$$f(z) = u + iv$$
 if
$$u = e^{-x} [(x^2 - y^2) \cos y + 2 xy \sin y].$$
Solution: $u_x = e^{-x} [2x \cos y + 2y \sin y] - e^{-x} [(x^2 - y^2) \cos y + 2 xy \sin y].$

$$u_y = e^{-x} [-2y \cos y - y^2 \sin y + 2x (y \cos y + \sin y)]$$

At
$$x = z$$
, $y = 0$,
 $u_x = e^{-z} [2z] - e^{-z} [(z^2)] = e^{-z} [2z - z^2]$
 $u_y = e^{-z} [0]$

$$\therefore F'(z) = u_x + i v_x$$
$$= u_x + i (-u_y)$$

$$F'(z) = e^{-z} [2z - z^2]$$

$$F(z) = \int (2z - z^2) e^{-z} dz + C$$

Using Bernouli's formula, we get

$$u = 2z - z^{2}$$
 $u' = 2 - 2z$
 $v = e^{-z}$
 $v_{1} = -e^{-z}$
 $v_{2} = e^{-z}$
 $v_{3} = -e^{-z}$

$$\therefore \int uv \ dx = u \ v_1 - u' \ v_2 + u'' \ v_3 - \dots$$

$$\therefore F(z) = -(2 \ z - z^2) \ e^{-z} - (2 - 2 \ z) \ e^{-z} + 2 \ (e^{-z}) + C$$

$$= e^{-z} [-2z + z^2 - 2 + 2z + 2] + C$$

$$F(z) = z^2 e^{-z} + C$$

Example 9 An electrostatic field in the xy-plane is given by the potential function $\phi = 3 x^2 y - y^3$, find the complex potential function.

Solution: Let
$$F(z) = \phi + i\psi$$

Given $\phi = 3x^2y - y^3$
 $\therefore \frac{\partial \phi}{\partial x} = 6xy$, $\frac{\partial \phi}{\partial y} = 3x^2 - 3y^2$
Consider $F'(z) = \frac{\partial \phi}{\partial x} + i\frac{\partial \psi}{\partial x}$
 $= \frac{\partial \phi}{\partial x} + i\left(-\frac{\partial \phi}{\partial y}\right)$
 $= 6xy - i(3x^2 - 3y^2)$

Put x = z, y = 0, we get

$$F'(z) = -i3z^2$$

Integrating, we get

$$F(z) = -i z^3 + C$$

Note: If we take $F(z) = \phi + i\psi$ and it is analytic then the CR equations are

$$\frac{\partial \phi}{\partial x} = \frac{\partial \psi}{\partial y}$$
 and $\frac{\partial \phi}{\partial y} = -\frac{\partial \psi}{\partial x}$

Example 10 Find an analytic function f(z) = u + iv, whose real part is given by $u = \frac{\sin 2x}{\cosh 2y - \cos 2x}$.

Solution: Let
$$f(z) = u + iv$$
, and $u_x = v_y$, $u_y = -v_x$

Given:
$$u = \frac{\sin 2x}{\cosh 2y - \cos 2x}$$

$$u_x = \frac{(\cosh 2y - \cos 2x) 2 \cos 2x - \sin 2x (2 \sin 2x)}{(\cosh 2y - \cos 2x)^2}$$

$$= \frac{2 (\cos 2x \cosh 2y - 1)}{(\cosh 2y - \cos 2x)^2} \quad [\because \cos^2 2x + \sin^2 2x = 1]$$

$$u_y = \frac{0 - 2\sin 2x (2 \sinh 2y)}{(\cosh 2y - \cos 2x)^2}$$

$$= \frac{-2 \sin 2x \sinh 2y}{(\cosh 2y - \cos 2x)^2}$$

Consider
$$f'(z) = u_x + i v_x$$

$$= u_x - i u_y$$

$$= \frac{2 (\cos 2x \cosh 2y - 1)}{(\cosh 2y - \cos 2x)^2} + i \frac{2 \sin 2x \sinh 2y}{(\cosh 2y - \cos 2x)^2}$$

Put x = z, y = 0, we get

$$f'(z) = \frac{2(\cos 2z - 1)}{(1 - \cos 2z)^2}$$
$$= \frac{-2}{(1 - \cos 2z)} = -\frac{1}{\sin^2 2z}$$
$$f'(z) = -\csc^2 2z$$

Integrating, we get

$$f(z) = \cot z + C$$

. Note: In the same way we can find f(z), where

$$u = \frac{2 \sin 2x}{e^{2y} + e^{-2y} - 2 \cos 2x}$$
 is given.

Method of Finding F(z) = u + iv when v is given

Example 1 Find an analytic function f(z) where v = 2xy.

Solution: Given: v = 2xy

$$\frac{\partial v}{\partial x} = 2y$$
 and $\frac{\partial v}{\partial y} = 2x$

We know

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$
 [Here u is not given]

$$= \frac{\partial v}{\partial v} + i \frac{\partial v}{\partial x}$$

$$= \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x} \qquad \left[\because \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \right]$$

Put x = z and y = 0, we get

$$f'(z) = 2z$$

Integrating, we get

$$f(z) = z^2 + C$$

Example 2 Find an analytic function f(z) whose imaginary part is given by $v = e^x \sin y$.

Solution: Given:
$$v = e^x \sin y$$

$$\frac{\partial v}{\partial x} = e^x \sin y \text{ and } \frac{\partial v}{\partial y} = e^x \cos y$$

$$\therefore \text{ Consider } f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$$

$$= \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}$$

$$= e^x \cos y + i e^x \sin y$$

$$= e^x [\cos y + i \sin y]$$

Put x = z and y = 0 on both sides,

$$f'(z) = e^z$$

Integrating, we get $f(z) = e^z + C$

Example 3 If $v = -\sin x \sinh y$, find a function foz which is regular.

Solution: Given:
$$v = -\sin x \sinh y$$

$$\frac{\partial v}{\partial x} = -\cos x \sinh y, \quad \frac{\partial v}{\partial y} = -\sin x \cosh y$$
Consider $f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$

$$= \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}$$

$$= (-\sin x \cosh y) + i (-\cos x \sinh y)$$

Put x = z and y = 0, we get

$$f'(z) = -\sin z$$

Integrating, we get
$$f(z) = \cos z + C$$

Example 4 Find an analytic function f(z) whose imaginary part is $y = x^3 - 3xy^2 + 2x + 1$.

Solution: Given:
$$v = x^3 - 3xy^2 + 2x + 1$$

 $v_x = 3x^2 - 3y^2 + 2$
 $v_y = -6xy$
 $v_x(z, 0) = 3z^2 + 2$
 $v_y(z, 0) = 0$
Consider $F'(z) = y + iy$

Consider
$$F'(z) = u_x + i v_x$$

= $v_y + i v_x$

Putting x = z, y = 0, we get

$$F'(z) = v_y(z, 0) + i v_x(z, 0)$$

= 0 + i (3 z² + 2)

Integrating, we get
$$F(z) = i \int (3z^2 + 2) dz + C$$

= $i [z^3 + 2z] + C$

Example 5 If $u = \frac{2 \cos x \cosh y}{\cos 2x + \cosh 2y}$, then find the corresponding analytic function f(z).

[Ans:
$$f(z) = \sec z + C$$
]

Example 6 Find a regular f(z) whose imaginary part is given $v = e^{-x} [x \cos y + y \sin y]$.

Solution: Given:
$$v = e^{-x} [x \cos y + y \sin y]$$

$$v_x = e^{-x} [\cos y] - e^{-x} [x \cos y + y \sin y]$$

$$= e^{-x} [\cos y - x \cos y - y \sin y]$$

$$v_y = e^{-x} [-x \sin y + y \cdot \cos y + \sin y]$$

$$\operatorname{Consider} F'(z) = u_x + i v_x$$

$$= v_y + i v_x$$

At x = z, y = 0, we get

$$F'(z) = v_y(z, 0) + i v_x(z, 0)$$
.

$$= 0 + i e^{-z} [1-z]$$

Integrating, we get

$$F(z) = i \int (1-z) e^{-z} dz + C$$

$$= i \left[-(1-z) e^{-z} - (-1) e^{-z} \right] + C$$

$$= i \left[-1 e^{-z} + z e^{-z} + e^{-z} \right] + C$$

$$F(z) = i \left[z e^{-z} \right] + C$$

Example 7 Find the regular function f(z) whose imaginary part is given by $v = e^{-x} [x \sin y - y \cos y]$.

Solution: Given:
$$v = e^{-x} [x \sin y - y \cos y]$$

$$\frac{\partial v}{\partial x} = e^{-x} [1 \cdot \sin y] - e^{-x} [x \sin y - y \cos y]$$

$$= e^{-x} [\sin y - x \sin y + y \cos y]$$

$$\frac{\partial v}{\partial y} = e^{-x} [x \cos y - \cos y + y \sin y]$$
Consider $f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$

$$= \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}$$

$$= e^{-x} [x \cos y - \cos y - y \sin y]$$

 $+ie^{-x}[\sin y - x\sin y + y\cos y]$

Put x = z and y = 0, we get

$$f'(z) = e^{-z} [z-1] + i e^{-z} [0]$$

= $(z-1) e^{-z}$

Integrating, we get

$$f(z) = \int (z-1) e^{-z} dz$$

$$= -(z-1) e^{-z} - e^{-z} \cdot 1 + C$$

$$= -z e^{-z} + e^{-z} - e^{-z} + C$$

$$u = z-1, v = e^{-z}$$

$$u' = 1, v_1 = -e^{-z}$$

$$u'' = 0, v_2 = e^{-z}$$

Example 8 Find the analytic function whose imaginary part is $e^{x^2-y^2}\sin(2xy)$.

Solution:

Given:
$$v = e^{x^2 - y^2} \sin(2xy)$$

 $\frac{\partial v}{\partial x} = e^{x^2 - y^2} (2x) \sin(2xy) + e^{x^2 - y^2} \cos 2xy (2y)$
 $\frac{\partial v}{\partial y} = e^{x^2 - y^2} (-2y) \sin 2xy + e^{x^2 - y^2} \cos(2xy) (2x)$
We know $f(z) = u + iv$
 $f'(z) = u_x + iv_x$
 $= v_y + iv_x$ [: $u_x = v_y$]
 $= 2e^{x^2 - y^2} [-y \sin 2xy + x \cos 2xy]$
 $+ i2e^{x^2 - y^2} [x \sin 2xy + y \cos 2xy]$
Put $x = z$ and $y = 0$,
 $f'(z) = 2e^{z^2} [0 + z] + i2e^{z^2} [0]$
 $f'(z) = 2ze^{z^2}$
Integrating $f(z) = \int 2ze^{z^2} dz + C$
Put $z^2 = t$, : $2z dz = dt$

$$f(z) = \int e^t dt + C$$

$$f(z) = e^t + C$$

$$f(z) = e^{z^2} + C$$

Example 9 Construct the analytic function whose imaginary part is $e^{-x} [x \cos y + y \sin y]$ and which equals 1 at the origin.

Solution: Given:
$$v = e^{-x} [x \cos y + y \sin y]$$

 $v_x = e^{-x} [1 \cdot \cos y + 0] - e^{-x} [x \cos y + y \sin y]$
 $v_y = e^{-x} [-x \sin y + 1 \cdot \sin y + y \cos y]$
Consider $F'(z) = u_x + i v_x$
 $= v_y + i v_x$
 $= e^{-x} [-x \sin y + \sin y + y \cos y]$
 $+ i e^{-x} [\cos y - x \cos y - y \sin y]$

Put x = z and y = 0, we get

$$F'(z) = e^{-z} [0] + i e^{-z} [1-z]$$

Integrating, we get
$$F(z) = i \int (1-z) e^{-z} dz + C$$

Using integration by parts, we get

$$u = 1-z, dv = e^{-z} dz$$

$$du = -dz, v = -e^{-z}$$

$$F(z) = i \left[-(1-z)e^{-z} - \int -e^{-z}(-dz) \right] + C$$

$$= i \left[-(1-z)e^{-z} + e^{-z} \right] + C$$

$$F(z) = iz e^{-z} + C$$

$$Given F(0) = 1 \Rightarrow C = 1$$

$$\therefore f(z) = iz e^{-z} + 1$$

Example 10 If $v = e^x [x \sin y + y \cos y]$ is an imaginary part of an analytic function f(z), find f(z) in terms of z.

Solution: Given:
$$v = e^x (x \sin y + y \cos y)$$

 $v_x = e^x (x \sin y + y \cos y) + e^x (\sin y)$
 $= e^x (x \sin y + y \cos y + \sin y)$
 $v_y = e^x (x \cos y + \cos y - y \sin y)$
Consider $f'(z) = u_x + i v_x$
 $= v_y + i v_x$
 $= e^x (x \cos y + \cos y - y \sin y)$
 $+ i e^x (x \sin y + y \cos y + \sin y)$

Put x = z, y = 0 on both sides,

$$f'(z) = e^z(z+1)$$

Integrating, we get $f(z) = \int (z+1) e^{z} dz$ $= (z+1) e^{z} - e^{z} + C$

$$f(z) = z e^z + C$$

Method of finding f(z) when u - v is given

Let f(z) = u + iv and is an analytic function.

$$f(z) = u + iv ... (1)$$

$$i f(z) = iu - v ... (2)$$

Adding (i) and (ii), we get

$$(1+i) f(z) = (u-v) + i (u+v) \qquad ... (3)$$

Let U = u - v, V = u + v and F(z) = (1 + i) f(z).

Then (iii) becomes,

$$F(z) = U + iV \qquad ... (4)$$

If u - v is given in the problem, then

- (a) Substitute u v = U. (Now U is known)
- (b) Find F(z) by usual method.
- (c) Equate F(z) = (1+i) f(z) $\therefore f(z) = \frac{1}{1+i} F(z)$

This is a procedure to find f(z) if u - v is given.

Note: If u + v is given in the problem, we can use the similar ethod as above.

Let
$$f(z) = u + iv \qquad \dots (1)$$
$$i f(z) = iu - v \qquad \dots (2)$$

Adding (1) and (2),

$$(1+i) f(z) = (u-v) + i (u+v)$$
i.e., $F(z) = U + i V$

Here u + v is given. Then

(1) Substitute u + v = V

[V is known]

- (2) Find F(z) as usual method.
- (3) Equate F(z) = (1+i) f(z) $\therefore f(z) = \frac{1}{1+i} F(z)$

Note: If
$$F(z) = U + iV$$
 is analytic, then CR equations are $U_x = V_y$

$$U_y = -V_x$$

Example 11 If $u - v = e^x [\cos y - \sin y]$, find the corresponding analytic function f(z) = u + iv.

Solution: Consider
$$f(z) = u + iv$$
(i)

$$i f(z) = iu - v$$
 ... (ii)

Adding (i) and (ii),

$$(1+i) f(z) = (u-v) + i (u+v)$$

i.e., $F(z) = U + i V$

Here

$$U = u - v = e^{x} [\cos y - \sin y] \text{ is given}$$

$$U_{x} = e^{x} [\cos y - \sin y]$$

$$U_{y} = e^{x} [-\sin y - \cos y]$$

Consider
$$F'(z) = U_x + i V_x$$
$$= U_x + i (-U_y)$$
$$= e^x [\cos y - \sin y] + i e^x [\sin y + \cos y]$$

Put x = z, y = 0, we get

$$F'(z) = e^z + i e^z$$

$$= (1+i) e^z$$

Integrating, we get

$$F(z) = (1+i)e^{z} + C$$

i.e., $(1+i) f(z) = (1+i)e^{z} + C$
 $f(z) = e^{z} + C_{1}$

Example 12 Find an analytic function f(z) if given u + v = $x^2 - v^2 + 2 xv$

Solution: Consider
$$f(z) = u + iv$$
 ... (i)

 $i f(z) = iu - v$... (ii)

Adding $(1 + i) f(z) = (u - v) + i (u + v)$... (iii)

(iii) can be written as $F(z) = U + iV$

where $u - v = U$, $u + v = V$, $(1 + i) f(z) = F(z)$.

Given $V = u + v = x^2 - y^2 + 2xy$
 $V_x = 2x + 2y$
 $V_y = -2y + 2x$

Consider $F'(z) = U_x + i V_x$
 $= V_y + i V_x$
 $= (-2y + 2x) + i (2x + 2y)$

Put $x = z$, $y = 0$ on both sides,

 $F'(z) = 2z + i2z$
 $= 2(1 + i)z$

Integrating $F(z) = (1 + i)z^2 + c$
 $i.e.$, $(1 + i) f(z) = (1 + i)z^2 + c$
 $\therefore f(z) = z^2 + \frac{c}{1 + i}$
 $f(z) = z^2 + c_1$

Example 13 Find an analytic function

$$f(z) = u + iv \text{ if } u - v = (x - y) (x^2 + 4xy + y^2).$$

Solution: Consider
$$f(z) = u + iv$$

$$i f(z) = iu - v$$

$$(1+i) f(z) = (u-v)+i(u+v)$$

$$F(z) = U + iV$$

Here let
$$U = (x-y)(x^2+4xy+y^2)$$

$$= x^3 + 4x^2y + xy^2 - x^2y - 4xy^2 - y^3$$

$$= x^3 + 3x^2y - 3xy^2 - y^3$$

$$= x^3 + 3x^2y - 3xy^2 - y^3$$

$$U_x = 3x^2 + 6xy - 3y^2$$

$$U_y = 3x^2 - 6xy - 3y^2$$

$$F'(z) = U_x + i V_x$$

$$= U_x - i U_y$$

$$= (3x^2 + 6xy - 3y^2) - i (3x^2 - 6xy - 3y^2)$$

Put x = z, y = 0 on both sides,

$$F'(z) = 3z^2 - i3z^2$$

$$= 3(1-i)z^2$$

 $F(z) = (1-i)z^3 + c$

i.e.,
$$(1+i) f(z) = (1-i) z^3 + c$$

$$\therefore f(z) = \left(\frac{1-i}{1+i}\right) \cdot z^3 + \frac{c}{(1+i)}$$

Now
$$\frac{1-i}{1+i} = \frac{(1-i)(1-i)}{(1+i)(1-i)} = \frac{1-i-i-1}{1+1}$$

$$= \frac{-2i}{2} = -i$$

$$\frac{1}{1+i} = \frac{1-i}{(1+i)(1-i)} = \frac{1-i}{2} = c_1$$

$$\therefore f(z) = -iz^3 + c_1$$

Harmonic Function

A function f(x, y) is called Harmonic if it satisfies Laplace equation

$$f_{xx} + f_{yy} = 0$$

i.e., The solution of Laplace equation is called Harmonic function.

Example 1 A function $f = x^2 - y^2$ is harmonic.

Solution: Given:
$$f = x^2 - y^2$$
 $f = x^2 - y^2$ $f_x = 2x$ $f_y = -2y$ $f_{xx} = 2$ $f_{yy} = -2$ $f_{xx} + f_{yy} = 2 + (-2) = 0$

Example 2 A function $f = \frac{1}{2} \log (x^2 + y^2)$ is harmonic.

Solution: Given:
$$f = \frac{1}{2} \log (x^2 + y^2)$$

$$f_x = \frac{1}{2} \frac{1}{x^2 + y^2} (2x)$$

$$= \frac{x}{x^2 + y^2}$$

$$f_y = \frac{y}{x^2 + y^2}$$

$$f_{xx} = \frac{(x^2 + y^2) \cdot 1 - x (2x)}{(x^2 + y^2)^2}$$

$$= \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

$$f_{yy} = \frac{(x^2 + y^2) 1 - y (2 y)}{(x^2 + y^2)^2}$$
$$= \frac{x^2 - y^2}{(x^2 + y^2)^2}$$

. $f_{xx} + f_{yy} = 0 \Rightarrow f$ is harmonic function.

Example 3 Prove that $f = e^x \sin y$ satisfies Laplace equation.

Solution: Given: $f = e^x \sin y$ $f_y = e^x \cos y$

$$f_{xx} = e^x \sin y \qquad f_{yy} = -e^x \sin y$$

$$f_{xx} + f_{yy} = e^x \sin y - e^x \sin y = 0$$

 \therefore f is harmonic function which satisfies Laplace equation.

Example 4 Prove that the real part of an analytic function satisfies Laplace equation (Harmonic function).

Solution: Proof: Given: f(z) = u + iv is analytic.

... It satisfies CR equations.

$$U_x = V_y \qquad \dots (i)$$

$$U_y = -V_x \qquad ... (ii)$$

Differentiating (i) partially with respect to x,

$$u_{xx} = v_{xy}$$

Differentiating (ii) partially with respect to y,

$$u_{yy} = 1 - v_{yx}$$

Adding the above two equations, we get

$$u_{xx} + u_{yy} = 0$$

 \Rightarrow The real part u satisfies Laplace equation.

i.e., u is a harmonic function.

Note: If f(z) is analytic function, then u is a harmonic function.

Example 5 Prove that an imaginary part of an analytic function satisfies Laplace equation (harmonic function).

Solution: Given: f(z) = u + iv is an analytic function.

$$\therefore u_x = v_y \qquad \dots (i)$$

$$u_y = -v_x \qquad ... (ii)$$

Differentiating (i) partially with respect to y, we get

$$u_{yx} = v_{yy}$$

Differentiating (ii) partially with respect to x, we get

$$u_{xy} = -v_{xx}$$

$$-u_{xy} = v_{xx}$$

Adding the above two equation, we get

$$v_{xx} + v_{yy} = 0$$

v satisfies Laplace equation.

 $\Rightarrow v$ is a harmonic function.

Note: If f(z) is analytic then v is harmonic. The real and imaginary parts of an analytic functions are harmonic.

Example 9 Prove that an analytic function with constant real part is constant.

Solution: Given:
$$f(z) = u + iv$$
 is an analytic function.

Also given
$$u = \text{constant}(c_1)$$

$$u_r = 0$$

$$u_{v} = 0$$

Since f(z) is analytic, then it satisfies

$$u_x = v_y$$
 and $u_y = -v_x$
 $v_y = 0$, $v_x = 0$ [: $u_x = u_y = 0$]

 \Rightarrow V is constant (c_2) .

$$f(z) = u + iv$$

$$= c_1 + i c_2$$

$$= constant$$

 \Rightarrow If u is constant then f(z) is constant.

Example 11 Prove that an analytic function with constant modulus is constant.

Solution: Proof: Consider
$$f(z) = u + iv = u(x, y) + iv(x, y)$$

 $|f(z)| = \sqrt{u^2 + v^2}$
Given that $\sqrt{u^2 + v^2} = \text{constant}(c)$
Squaring $u^2 + v^2 = c^2$... (i)

Differentiating (i) partially with respect to x,

$$2 u u_x + 2 v v_x = 0$$

$$u u_x + v v_x = 0 \qquad ... (ii)$$

Differentiating (i) partially with respect to y,

$$2 u u_y + 2 v v_y = 0$$

$$u u_y + v v_y = 0$$

$$u (-v_x) + v u_x = 0$$
 [:: CR equation]
$$v u_x + (-u) v_x = 0$$
 ... (iii)

For solving u_x and v_x from (ii) and (iii),

$$\begin{vmatrix} u & v \\ v & -u \end{vmatrix} = -u^2 - v^2 = -(u^2 + v^2)$$

$$= -c^2, \text{ using (i)}$$

$$\neq 0$$

$$\therefore u_x = 0 \text{ and } v_x = 0$$

Since f(z) is analytic, it satisfies

$$u_x = v_y$$
 and $u_y = -v_x$
 $v_y = 0$ and $u_y = 0$ [: $u_x = 0, v_x = 0$]
 $u_x = 0, u_y = 0, v_x = 0, v_y = 0.$
 $u_x = 0$ and $u_y = 0$ [: $u_x = 0, v_x = 0$]
 $u_x = 0$ and $u_y = 0$ [: $u_x = 0, v_x = 0$]
 $v_x = 0$ and $v_y = 0$.
 $v_x = 0$ and $v_y = 0$.
 $v_y = 0$ and $v_y = 0$.

Example 12 Prove that
$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2$$

if f(z) is a regular function.

Solution: Proof: We know that f(z) = u + ivThen $|f(z)|^2 = u^2 + v^2$

Also
$$f'(z) = u_x + i v_x$$

$$|f'(z)|^2 = u_x^2 + v_x^2$$
Given $f(z) = u + iv$ is analytic, therefore
$$u_x = v_y, \quad u_y = -v_x \text{ and}$$

$$u_{xx} + u_{yy} = 0, \quad v_{xx} + v_{yy} = 0$$
Now consider
$$|f(z)|^2 = u^2 + v^2 \qquad \dots (1)$$

Differentiating (1) partially with respect to x,

$$\frac{\partial}{\partial x} |f(z)|^2 = 2 u u_x + 2 v v_x$$

$$\frac{\partial^2}{\partial x^2} |f(z)|^2 = 2 [u u_{xx} + u_x u_x + v v_{xx} + v_x v_x]$$

$$= 2 [u u_{xx} + u_x^2 + v v_{xx} + v_x^2] \dots (2)$$

Similarly differentiating (1) partially with respect to y twice

$$\frac{\partial^2}{\partial y^2} |f(z)|^2 = 2 [u u_{yy} + u_y^2 + v v_{yy} + v_y^2] \cdot ... (3)$$

Adding (2) and (3), using Laplace equation,

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 2 \left[u_x^2 + v_x^2 + u_y^2 + v_y^2 \right]$$

$$\therefore u_{xx} + u_{yy} = v_{xx} + v_{yy} = 0$$

Using CR equations on RHS, we get

$$= 2 \left[u_x^2 + v_x^2 + v_x^2 + u_x^2 \right]$$
$$= 4 \left[u_x^2 + v_x^2 \right]$$

$$= 4 |f(z)|^{2}$$

$$\left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}\right) |f(z)|^{2} = 4 |f'(z)|^{2}$$

HARMONIC CONJUGATES

We know that the real and imaginary parts of an analytic function f(z) = u + iv are Harmonic Functions (satisfies Laplace equation). Here u and v are called Harmonic conjugates. i.e., u is harmonic conjugate to v and v is harmonic conjugate to u.

Result (i): If f(z) = u + iv is analytic then u and v are harmonic functions.

For example, $f(z) = x^2 - y^2 + i \ 2 \ xy = z^2$ is analytic and $u = x^2 - y^2$, $v = 2 \ xy$ are harmonic.

Result (ii): If u and v are harmonic, then f(z) = u + iv need not be harmonic. For example, $u = x^2 - y^2$, $v = e^x \sin y$ are harmonic but u + iv = f(z) is not analytic.

Result (iii): Since u is a function of x and y,

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$$

$$du = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

Similarly we can write $dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial v} dy$

Method of Finding Harmonic Conjugates

Given f(z) = u + iv is analytic function, u(x, y) is the real part of f(z) and harmonic.

$$\therefore u_x = V_y, \quad u_y = -v_x, \quad u_{xx} + u_{yy} = 0.$$

Since v is a Harmonic conjugate and a function of x and y, we write,

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

Using CR equations, we have

$$dv = -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy$$

Integrating, we get $v = \int -\frac{\partial u}{\partial y} dx + \int \frac{\partial u}{\partial x} dy + \text{constant}$

Let
$$M = -\frac{\partial u}{\partial y}$$
, $N = \frac{\partial u}{\partial x}$... (i)

$$V = \int M dx + \int N dy + C \qquad ... (1)$$

- (i) Integrate M with respect to x by treating y as a constant.
- (ii) Integrate N with respect to y by deleting the terms containing x. In the same way we can find u if v is given.

$$u = \int M dx - \int N dy$$

- (i) Integrate M with respect to x by treating y as a constant.
- (ii) Integrate the second integral N with respect to y by deleting the terms which contains x.

This method is explained clearly by the following examples.

Example 1 If $u = x^2 - y^2$ is a real part of an analytic function f(z), find its harmonic conjugate v.

Solution: Given:
$$u = x^2 - y^2$$

$$\frac{\partial u}{\partial x} = 2x, \qquad \frac{\partial u}{\partial y} = -2y$$
Consider $dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$

$$= -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy = 2y dx + 2x dy$$

Example 2 Prove that $u = e^x \cos y$ is a harmonic function and find its harmonic conjugate.

Solution: Given:
$$u = e^x \cos y$$

 $u_x = e^x \cos y$, $u_y = -e^x \sin y$
 $u_{xx} = e^x \cos y$, $u_{yy} = -e^x \cos y$
 $\dots u_{xx} + u_{yy} = 0$

⇒ u is a harmonic function.

To find its harmonic conjugate, consider

$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$
$$= -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy$$
$$= e^x \sin y dx + e^x \cos y dy$$

Integrating on both sides, we get

$$v = \sin y \int e^x dx + 0$$
 [by deleting the term containing x]
 $v = e^x \sin y + c$

Example 3 If $u = \frac{1}{2} \log (x^2 + y^2)$ is a real part of an analytic function f(z), find v.

Solution: Given:
$$u = \frac{1}{2} \log (x^2 + y^2)$$

 $u_x = \frac{x}{x^2 + y^2}, \quad u_y = \frac{y}{x^2 + y^2}$

Consider
$$dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

$$= -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy$$

$$= \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$

$$= \frac{x \, dy - y \, dx}{x^2 + y^2}$$

$$= \frac{x \, dy - y \, dx}{x^2 \left[1 + \left(\frac{y}{x}\right)^2 \right]}$$

$$= \frac{d\left(\frac{y}{x}\right)}{1 + \left(\frac{y}{x}\right)^2} \quad \left[\because \int \frac{1}{x^2 + a^2} \, dx = \tan^{-1}\left(\frac{x}{a}\right) \right]$$

Integrating, we get $v = \tan^{-1}\left(\frac{y}{x}\right) + c$

Cauchy-Riemann Equations in Polar Form

Consider a function f(z) = u + iv and $z = r e^{i\theta}$. $f(z) = f(r e^{i\theta}) = u(r, \theta) + i v(r, \theta) \dots (1)$

Differentiating (1) partially, with respect to r, we get

$$f'(z) e^{i\theta} = \frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r}$$
 ... (2)

Differentiating (1) partially with respect to θ , we get

$$f'(z) \ r \ e^{i\theta} \ i = \frac{\partial u}{\partial \theta} + i \frac{\partial v}{\partial \theta}$$

$$f'(z) \ e^{i\theta} = \frac{1}{ir} \left[\frac{\partial u}{\partial \theta} + i \frac{\partial v}{\partial \theta} \right]$$

$$= \frac{-i}{r} \left[\frac{\partial u}{\partial \theta} + i \frac{\partial v}{\partial \theta} \right]$$

$$= \frac{1}{r} \left[-i \frac{\partial u}{\partial \theta} + \frac{\partial v}{\partial \theta} \right]$$

$$= \frac{1}{r} \left[\frac{\partial v}{\partial \theta} - i \frac{\partial u}{\partial \theta} \right] \dots (3)$$

Equating (2) and (3) of RHS, we get

$$\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} = \frac{1}{r} \left[\frac{\partial v}{\partial \theta} - i \frac{\partial u}{\partial \theta} \right]$$

Equating real and imaginary parts, we get

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$

$$\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$$
... (4)

The above equation given by (4) is called CR equations in polar form.

Note: Consider the equation (2),

$$f'(z) e^{i\theta} = \frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r}$$

$$f'(z) = e^{-i\theta} \left[\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \right] \dots (5)$$

This equation can be used to find the derivative of f(z).

This equation can be used to find the derivative of f(z).

Example 11 Prove that the function $f(z) = z^n$ is analytic and hence find its derivative.

Solution: Let $z = r e^{i\theta}$

$$z^n = (r e^{i\theta})^n = r^n e^{in\theta} = r^n [\cos n\theta + i \sin n\theta]$$

Here $u = r^n \cos n\theta$, $v = r^n \sin n\theta$

$$\frac{\partial u}{\partial r} = n r^{n-1} \cos n\theta \qquad \frac{\partial v}{\partial r} = n r^{n-1} \sin n\theta$$

$$\frac{\partial u}{\partial \theta} = -n r^n \sin n\theta \qquad \frac{\partial v}{\partial \theta} = n r^n \cos n\theta$$

$$\therefore \frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \qquad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$$

CR equations in polar form satisfied.

 $\therefore f(z) = z^n$ is a regular function of z.

For derivative of f(z), consider

$$f'(z) = e^{-i\theta} \left[\frac{\partial u}{\partial r} + i \frac{\partial v}{\partial r} \right]$$
$$= e^{-i\theta} \left[n r^{n-1} \cos n\theta + i n r^{n-1} \sin n\theta \right]$$

$$= e^{-i\theta} n r^{n-1} [\cos n\theta + i \sin n\theta]$$

$$= e^{-i\theta} n r^{n-1} e^{in\theta}$$

$$= n (r e^{i\theta})^{n-1}$$

$$f'(z) = n z^{n-1}$$

$$\therefore \frac{d}{dz} [z^n] = n z^{n-1}$$

www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES **DEPARTMENT OF MATHEMATICS COMPLEX ANALYSIS –SMT1602**

UNIT – II – Transformations – SMT1602

UNIT II

TRANSFORMATIONS

CONFORMAL MAPPING

Mapping (Transformation)

A curve C in the z-plane is mapped into the respective curve C_1 in the ω -plane by the given function $\omega = f(z)$ which defines a mapping (transformation) of the z-plane into the ω -plane.

Some standard transformations:

- (i) Translation by $\omega = z + c$
- (ii) Magnification and rotation by $\omega = cz$
 - (iii) Inversion and reflection by $\omega = \frac{1}{z}$
 - (iv) Bilinear transformation $\omega = \frac{az+b}{cz+d}$.

Here a, b, c, d arc complex constants.

Conformal Mapping (Conformal Transformation)

Let two curves C_1 and C_2 in the z-plane intersect at the point P and the corresponding curves C_3 and C_4 in the ω -plane intersect at the point Q. If the angle of intersection of the curves at P and Q are the same in magnitude and sense, then the transformation is conformal or mapping is conformal.

Note: The transformation by the function (analytic) $\omega = f(z)$ is conformal if $f'(z) \neq 0$.

Critical point: A point at which the derivative of f(z) equals to zero (the mapping is not conformal). i.e., A point at which f'(z) = 0 is called a critical point of the transformation $\omega = f(z)$.

For example, consider $\omega = z^2$, then $\frac{d\omega}{dz} = 2z$.

$$\frac{d\omega}{dz} = 2z = 0$$

$$z = 0$$

z = 0 is a critical point of the transformation $\omega = z^2$.

43

Example: Consider
$$\omega = z + \frac{1}{z} = \frac{z^2 + 1}{z}$$

$$\frac{d\omega}{dz} = \frac{z(2z) - (z^2 + 1)}{z^2}$$

$$= \frac{z^2 - 1}{z^2}$$

The critical points are
$$\frac{d\omega}{dz} = 0$$

$$z^2 - .1 = 0$$

$$z^2 = 1$$

$$z = +1$$

Fixed Points (Invariant Points)

Fixed points of a mapping $\omega = f(z)$ are points that are mapped on to themselves (image is same as z).

Fixed points are obtained by f(z) = z.

Example 1 Find the invariant points of $\omega = \frac{1}{z-2i}$.

Solution:
$$\frac{1}{z-2i} = z$$

$$1 = z^2 - 2iz$$

$$z^2 = 2iz - 1 = 0$$

$$\therefore z = i, i$$

Example 2 Find the points at which the transformation $\omega = \sin z$ is not conformal.

Solution:
$$f'(z) = 0 \Rightarrow \cos z = 0$$
$$z = \frac{\pi}{2}, \frac{3\pi}{2}, \dots$$

Example 3 Find the invariant points of the transformation $\omega = \frac{1+iz}{1-iz}.$

Solution:
$$\frac{1+iz}{1-iz} = z$$

$$\therefore iz^2 + (i-1)z + 1 = 0$$

$$\therefore z = \frac{1}{2} \left[1 + i \pm \sqrt{6i} \right]$$

Example 4 Consider
$$\omega = f(z) = \frac{1}{2} \left(z + \frac{1}{z} \right) = \frac{1}{2} (z^2 + 1)$$
.

Solution: The invariants points are obtained from

$$f(z) = z$$

$$\frac{1}{2}(z^2 + 1) = z$$

$$z^2 + 1 = 2z^2$$

$$z^2 = 1$$

$$z = \pm 1$$

Isogonal Transformation (Isogonal Mapping)

If the angle of intersection of the curves at P in z-plane is the same as the angle of intersection of the curves at Q of ω -plane only in magnitude then the transformation is called Isogonal.

Example 1 Discuss the transformation $\omega = f(z) = z^2$.

Solution: Given:
$$f(z) = z^2$$

 $u + iv = (x + iy)^2$
 $= (x^2 - y^2) + i 2 xy$
 $u = x^2 - y^2, v = 2 xy$

Case (i): Let
$$u = \text{constant } C_1$$

 $\therefore x^2 - y^2 = C_1$ which is a rectangular hyperbola.

Similarly if $v = C_2$, then

$$2xy = C_2$$

 $xy = \frac{C_2}{2}$ which also represents rectangular hyperbola.

 \therefore A pair of lines $u = C_1$, $v = C_2$ parallel to the axes in the ω -plane, mapping into the pair of orthogonal rectangular hyperbolas in the z-plane.

Case (ii): Let x = c, a constant.

$$u = c^{2} - y^{2}$$

$$y^{2} = c^{2} - u$$

$$v = 2 cy$$

$$y = \frac{v}{2 c}$$

$$y^{2} = \frac{v^{2}}{4 c^{2}}$$

Eliminating y from the above equations,

$$c^{2}-u = \frac{v^{2}}{4 c^{2}}$$

$$v^{2} = 4 c^{2} (c^{2}-u)$$

which represents a parabola.

Let y = constant (k).

Then
$$x^{2}-k^{2} = u,$$

$$2xk = v$$

$$x^{2} = u + k^{2},$$

$$x = \frac{v}{2k}$$

$$x^{2} = \frac{v^{2}}{2k}$$

Eliminating x from the above equations, we get

$$u + k^2 = \frac{v^2}{2 k^2}$$

$$v^2 = 2 k^2 (u + k^2) \text{ which is also parabola.}$$

Here the pair of lines x = c and y = k parallel to the axes in the z-plane map into orthogonal parabolas in the ω -plane. The critical point of mapping $\omega = z^2$ is z = 0. (not conformal at z = 0).

Example 2 Discuss the transformation
$$\omega = z + \frac{1}{z}$$
.

Solution: Let $z = r(\cos \theta + i \sin \theta)$ in polar form.

Given:
$$\omega = z + \frac{1}{z}$$

$$u + iv = r (\cos \theta + i \sin \theta) + \frac{1}{r [\cos \theta + i \sin \theta]}$$

$$= r (\cos \theta + i \sin \theta) + \frac{1}{r} [\cos \theta - i \sin \theta]$$

$$u + iv = \left(r + \frac{1}{r}\right)\cos\theta + i\left(r - \frac{1}{r}\right)\sin\theta$$

Equating $u = \left(r + \frac{1}{r}\right) \cos \theta$, $v = \left(r - \frac{1}{r}\right) \sin \theta$

$$\therefore \cos \theta = \frac{u}{\left(r + \frac{1}{r}\right)}, \quad \sin \theta = \frac{v}{\left(r - \frac{1}{r}\right)}$$

We know $\cos^2 \theta + \sin^2 \theta = 1$.

$$\therefore \frac{u^2}{\left(r+\frac{1}{r}\right)^2} + \frac{v^2}{\left(r+\frac{1}{r}\right)^2} = 1 \qquad \dots (1)$$

For r = constant(c), the equation (1) represents an ellipse.

$$\frac{u^2}{a^2} + \frac{v^2}{b^2} = 1$$

Again consider $\omega = u + iv = r (\cos \theta + i \sin \theta)$.

$$u = \left(r + \frac{1}{r}\right)\cos\theta, \qquad v = \left(r - \frac{1}{r}\right)\sin\theta$$

$$r + \frac{1}{r} \cdot = \frac{u}{\cos\theta}, \qquad r - \frac{1}{r} = \frac{v}{\sin\theta}$$

$$\left(\frac{r^2 + 1}{r}\right) = \frac{u}{\cos\theta}, \qquad \left(\frac{r^2 - 1}{r}\right) = \frac{v}{\sin\theta}$$

$$\left(\frac{r^2 + 1}{r}\right)^2 = \frac{u^2}{\cos^2\theta}, \qquad \left(\frac{r^2 - 1}{r}\right)^2 = \frac{v^2}{\sin^2\theta}$$

$$\frac{u^2}{\cos^2\theta} - \frac{v^2}{\sin^2\theta} = \left(\frac{r^4 + 1 + 2r^2}{r^2}\right) - \left(\frac{r^4 + 1 - 2r^2}{r^2}\right)^2$$

$$\frac{u^2}{\cos^2\theta} - \frac{v^2}{\sin^2\theta} = \left(\frac{r^4 + 1 + 2r^2}{r^2}\right) - \left(\frac{r^4 + 1 - 2r^2}{r^2}\right)^2$$

$$= \frac{r^4 + 1 + 2r^2 - r^4 - 1 + 2r^2}{r^2}$$

$$= 4$$

$$\frac{u^2}{4\cos^2\theta} - \frac{v^2}{4\sin^2\theta} = 1 \qquad \dots (2)$$

For θ = constant of the z-plane transforms into a family of hyperbolas.

$$\frac{u^2}{a^2} - \frac{v^2}{b^2} = 1$$

Example 3 Discuss the transformation $\omega = z + \frac{k^2}{z}$.

Solution: (Solve the problem as above.)

Example 4 Discuss the transformation $\omega = \cosh z$.

Solution: Given:
$$\omega = f(z) = \cosh(z)$$

 $u + iv = \cosh x \cos y + i \sinh x \sin y$
 $u = \cosh x \cos y, \qquad v = \sinh x \sin y \qquad \dots (1)$
 $\therefore \cosh x = \frac{u}{\cos y}, \qquad \sinh x = \frac{v}{\sin y}$

We know that $\cosh^2 x - \sinh^2 x = 1$ (eliminating y).

$$\frac{u^2}{\cos^2 y} - \frac{v^2}{\sin^2 y} = 1 \qquad ... (2)$$

i.e., The lines parallel to x-axis (y = constant) in the z-plane mapping into hyperbola.

$$\frac{u^2}{a^2} - \frac{v^2}{b^2} = 1$$

We know that $\cos^2 y + \sin^2 y = 1$. For eliminating y from the given equation (1),

$$\cos y = \frac{u}{\cosh x}, \quad \sin y = \frac{v}{\sinh x}$$

$$\frac{u^2}{\cosh^2 x} + \frac{v^2}{\sinh^2 x} = 1 \qquad \dots (3)$$

i.e., The lines parallel to Y-axis (x = constant) in the z-plane mapping into ellipse in the ω -plane.

$$\frac{u^2}{A^2} + \frac{v^2}{B^2} = 1 \qquad ... (4)$$

Example 5 Discuss the transformation
$$\omega = \frac{1}{\pi}$$
.

Solution: Given:
$$\omega = \frac{1}{z} = \frac{1}{x + iy} = \frac{x - iy}{(x + iy)(x - iy)}$$
$$= \frac{x}{x^2 + y^2} - i \frac{y}{x^2 + y^2}$$
$$u = \frac{x}{x^2 + y^2}, \qquad v = -\frac{y}{x^2 + y^2}$$
$$\therefore \frac{u}{v} = -\frac{x}{y} \implies y = -\frac{v}{u}x$$

Substituting the value of y in u,

$$u = \frac{x}{x^2 + \frac{v^2}{u^2} \cdot x^2} = \frac{u^2 x}{(u^2 + v^2) x^2} = \frac{u^2}{(u^2 + v^2) x}$$

$$\therefore x = \frac{u}{u^2 + v^2}$$

$$\therefore y = -\frac{v}{u} \cdot x = \frac{-v}{u} \left(\frac{u}{u^2 + v^2} \right) = -\left(\frac{v}{u^2 + v^2} \right)$$

$$\therefore x = \frac{u}{u^2 + v^2} \text{ and } y = -\frac{v}{u^2 + v^2} \qquad \dots (1)$$

Now consider $\omega = \frac{1}{z}$. $\therefore z = \frac{1}{\omega}$

$$x + iy = \frac{1}{(u + iv)} \frac{(u - iv)}{(u - iv)}$$

$$= \frac{u - v}{u^2 + v^2}$$

$$x = \frac{u}{u^2 + v^2}$$
 and $y = -\frac{v}{u^2 + v^2}$... (2)

Consider the equation,

$$a(x^2+y^2) + bx + cy + d = 0$$
 ... (3)

For a = 0, this represents a straight line and for $a \neq 0$, this represents a circle.

For the transformation $\omega = \frac{1}{z}$, we can substitute the value of x and y in (3).

$$a\left[\frac{1}{u^{2}+v^{2}}\right] + b\left[\frac{u}{u^{2}+v^{2}}\right] + c\left[\frac{-u}{u^{2}+v^{2}}\right] + d = 0$$

$$a + bu - cv + d\left(u^{2}+v^{2}\right) = 0$$
i.e.,
$$d\left(u^{2}+v^{2}\right) + bu - cv + a = 0 \qquad \dots (4)$$

If $d \neq 0$, this (4) represents a circle in the ω -plane.

If d = 0, it represents a straight line.

The transformation $\omega = \frac{1}{z}$ transforms circles into circles. It is called circular transformation.

Example 6 Find the mapping of the circle |z| = c by the transformation $\omega = 2z$.

Solution: Given:
$$\omega = 2z = 2(x + iy) = 2x + i2y$$

$$u + iv = 2x + i2y$$

$$u = 2x, \quad v = 2y$$
Consider $|z| = c$.
$$\sqrt{x^2 + y^2} = c$$

$$x^2 + y^2 = c^2 \text{ (circle)}$$

$$\left(\frac{u}{2}\right)^2 + \left(\frac{v}{2}\right)^2 = c^2$$

$$\frac{u^2}{4} + \frac{v^2}{4} = c^2$$

$$u^2 + v^2 = 4 c^2$$

 $u^2 + v^2 = (2 c)^2$

This is an equation of the circle centre at the origin and radius 2c.

Example 7 Find the mapping of the circle |z| = k by the transformation f(z) = z + 2 + 3i.

Solution: Given:
$$\omega = z + 2 + 3i$$

 $u + iv = x + iy + 2 + 3i$
 $u + iv = (x + 2) + i(y + 3)$
 $u = x + 2, \qquad v = y + 3$
 $\therefore x = u - 2, \qquad y = v - 3$
Consider, $|z| = k \Rightarrow x^2 + y^2 = k^2$
 $(u - 2)^2 + (v - 3)^2 = k^2$

which is an equation of a circle with centre (2, 3) and radius k.

Example 8 Find the image of the circle |z - 1| = 1 in the complex plane under the mapping $\omega = \frac{1}{z}$.

Solution:
$$\omega = \frac{1}{z}$$

$$u + iv = \frac{1}{x + iy} = \frac{x - iy}{(x + iy)(x - iy)}$$

$$= \frac{x - iy}{x^2 + y^2}$$

$$u = \frac{x}{x^2 + y^2} \text{ and } v = \frac{-y}{x^2 + y^2}$$

The equation of the circle is
$$|z-1|=1$$
.

i.e.,
$$|x + iy - 1| = 1$$

 $|(x - 1) + iy| = 1$
 $(x - 1)^2 + (y)^2 = (1)^2$
 $x^2 + 1 - 2x + y^2 = 1$
 $x^2 + y^2 = 2x$
 $\frac{x}{x^2 + y^2} = \frac{1}{2}$
i.e., $u = \frac{1}{2}$ $\therefore \frac{x}{x^2 + y^2} = u$
 $2u = 1$
 $2u - 1 = 0$ which is a straight line.

Example 9 Find the image of |z-2i|=2 under the mapping $\omega = \frac{1}{z}$.

Solution: Given:
$$\omega = \frac{1}{z}$$

$$u + iv = \frac{1}{x + iy} \qquad \therefore u = \frac{x}{x^2 + y^2}$$

$$v = \frac{-y}{x^2 + y^2}$$
Also given: $|x - y| = 2$

Also given
$$|z-2i| = 2$$

 $|x+iy-2i| = 2$
 $|x+i(y-2)| = 2$
 $x^2+(y-2)^2 = 4$

$$x^{2} + y^{2} + 4 - 4y = 4$$

$$x^{2} + y^{2} - 4y = 0$$

$$x^{2} + y^{2} = 4y$$

$$4 = \frac{x^{2} + y^{2}}{x^{2}}$$

$$\frac{1}{4} = \frac{y}{x^{2} + y^{2}}$$

$$\frac{1}{4} = -v$$

$$[\because v = \frac{-y}{x^{2} + y^{2}}]$$

 $4\nu + 1 = 0$ which is a straight line.

Example 10 Discuss the transformation $\omega = \sin z$.

Solution: Given: $\omega = f(z) = \sin(z)$

$$u + iv = \sin(x) \cosh(y) + i \cos(x) \sinh(y)$$

$$\therefore u = \sin x \cosh y, \qquad v = \cos x \sinh y$$

$$\sin x = \frac{u}{\cosh y}, \qquad \cos x = \frac{v}{\sinh y} \qquad \dots (1)$$

We know $\sin^2 x + \cos^2 x = 1$.

$$\therefore \frac{u^2}{\cosh^2 y} + \frac{v^2}{\sinh^2 y} = 1$$

For $y = \text{constant}(c_1)$, say $\cosh^2(y) = a^2$, $\sinh^2(y) = b^2$,

then
$$\frac{u^2}{a^2} + \frac{v^2}{b^2} = 1 \text{ (Ellipse)}$$

Similarly from (1),

$$\cosh y = \frac{u}{\sin x}, \quad \sinh y = \frac{v}{\cos x}$$

We know that $\cosh^2 y - \sinh^2 y = 1$.

$$\therefore \frac{u^2}{\sin^2 x} - \frac{v^2}{\cos^2 x} = 1$$

For
$$x = \text{constant } (c_2)$$
, say $\sin^2 x = A^2$
 $\cos^2 x = B^2$
 $\frac{u^2}{A^2} - \frac{v^2}{B^2} = 1$ (Hyberbola)

Example 11 Discuss the transformation $\omega = \cos z$.

Solution: Consider

$$\omega = \cos(z)$$

$$u + iv = \cos(x + iy)$$

 $= \cos x \cosh y - i \sin x \sinh y$

$$u = \cos x \cosh y,$$
 $v = -\sin x \sinh y$

$$\cos x = \frac{u}{\cosh y}, \qquad \sin x = -\frac{v}{\sinh y}$$

For eliminating x, consider $\cos^2 x + \sin^2 x = 1$.

$$\therefore \frac{u^2}{\cosh^2 y} + \frac{v^2}{\sinh^2 y} = 1$$

For y = c, $\cosh^2 y = a^2$ (say), $\sinh^2 (y) = b^2$.

$$\frac{u^2}{a^2} + \frac{v^2}{b^2} = 1 \quad \text{(Ellipse)}$$

For eliminating y, consider $\cosh^2 y - \sinh^2 y = 1$.

$$\therefore \cosh y = \frac{u}{\cos x}, \quad \sinh y = \frac{-v}{\sin x}$$

$$\cosh^2 y - \sinh^2 y = \frac{u^2}{\cos^2 x} - \frac{v^2}{\sin^2 x}$$

$$\therefore \frac{u^2}{\cos^2 x} - \frac{v^2}{\sin^2 x} = 1$$

For x = constant, say $\cos^2 x = A^2$, $\sin^2 x = B^2$.

$$\frac{u^2}{A^2} - \frac{v^2}{B^2} = 1 \text{ (Hyperbola)}$$

Example 12 Discuss the transformation $\omega = \sinh z$.

Solution: Given:
$$\omega = \sinh z = \sinh (x + iy)$$

$$= \frac{1}{i} \sin (ix - y)$$

$$u + iv = \sinh x \cos y + i \cosh x \sin y$$

$$u = \sinh x \cos y \qquad v = \cosh x \sin y \dots (i)$$

$$\sinh x = \frac{u}{\cos y}, \qquad \cosh x = \frac{v}{\sin y}$$

We know $\cosh^2 x - \sinh^2 x = 1$ (for eliminating y)

$$\frac{u^2}{\cos^2 y} - \frac{v^2}{\sin^2 y} = 1$$

For
$$y = c$$
,

$$\frac{v^2}{\sin^2 c} - \frac{u^2}{\cos^2 c} = 1$$

$$\frac{v^2}{a^2} - \frac{u^2}{b^2} = 1 \text{ for } a = \sin c \text{ ; } b = \cos c.$$

$$\boxed{\frac{v^2}{a^2} - \frac{u^2}{b^2}} = 1$$
 which is a confocal hyperbola.

From (i)
$$\cos y = \frac{u}{\sinh x}, \sin y = \frac{v}{\cosh x}$$

We know $\cos^2 y + \sin^2 y = 1$

$$\frac{u^2}{\sinh^2 x} + \frac{v^2}{\cosh^2 x} = 1$$

For x = constant, say $\sinh x = A$, $\cosh x = B$.

$$\frac{u^2}{A^2} + \frac{v^2}{B^2} = 1$$
 which is an ellipse.

Bilinear Transformation

The transformation of the form

$$\omega = \frac{az+b}{cz+d} \qquad \dots (1)$$

where a, b, c, d are complex constants is known as Bilinear transformation if $ad - bc \neq 0$. It is also called Mobius transformation or Linear fractional transformation.

The condition $ad - bc \neq 0$ means that the transformation is conformal.

Note:
$$\omega = \frac{az+b}{cz+d} \dots (1)$$

$$\frac{d\omega}{dz} = \frac{(cz+d)a-(az+b)c}{(cz+d)^2}$$

$$= \frac{acz+ad-acz-bc}{(cz+d)^2}$$

$$= \frac{ad-bc}{(cz+d)^2}$$

The Bilinear transformation (1) is conformal if $\frac{d\omega}{dz} \neq 0$.

i.e., $ad-bc \neq 0$.

Note: If ad - bc = 0 then $\frac{d\omega}{dz} = 0$.

i.e., Every point of the z-plane is a critical point.

The inverse mapping of (1) is also bilinear transformation.

i.e.,
$$z = \frac{-d\omega + b}{c\omega - a}$$

The invariant points of a bilinear transformation,

$$z = \frac{az+b}{cz+d}$$

$$cz^2 + dz = az+b$$

$$cz^2 + (d-a)z-b = 0$$
[: $\omega = z$; $f(z) = z$]

The roots of this equation is invariant point or fixed point of the transformation.

Note:

- (i) A bilinear transformation maps circles into circles.
- (ii) A bilinear transformation preserves cross-ratio of four points.

$$\frac{(\omega_{1} - \omega_{2}) (\omega_{3} - \omega_{4})}{(\omega_{1} - \omega_{4}) (\omega_{3} - \omega_{2})} = \frac{(z_{1} - z_{2}) (z_{3} - z_{4})}{(z_{1} - z_{4}) (z_{3} - z_{2})}$$
(OR)
$$\frac{(\omega_{1} - \omega_{2}) (\omega_{3} - \omega_{4})}{(\omega_{4} - \omega_{1}) (\omega_{2} - \omega_{3})} = \frac{(z_{1} - z_{2}) (z_{3} - z_{4})}{(z_{4} - z_{1}) (z_{2} - z_{3})}$$

Example 13 Find the Mobius transformation that maps the points z = 1, i, -1 into the points $\omega = 2$, i, -2.

Solution: Let
$$z_1 = 1$$
, $z_2 = i$, $z_3 = -1$

$$\omega_1 = 2$$
, $\omega_2 = i$, $\omega_3 = -2$
We know
$$\frac{(\omega_1 - \omega_2)(\omega_3 - \omega_4)}{(\omega_4 - \omega_1)(\omega_2 - \omega_3)} = \frac{(z_1 - z_2)(z_3 - z_4)}{(z_4 - z_1)(z_2 - z_3)} \dots (1)$$

Put $z_4 = z$, $\omega_4 = \omega$, in (1),

$$\frac{(\omega_{1} - \omega_{2}) (\omega_{3} - \omega)}{(\omega - \omega_{1}) (\omega_{2} - \omega_{3})} = \frac{(z_{1} - z_{2}) (z_{3} - z)}{(z - z_{1}) (z_{2} - z_{3})}$$

$$\frac{(2 - i) (-2 - \omega)}{(\omega - 2) (i + 2)} = \frac{(1 - i) (-1 - z)}{(z - 1) (i + 1)}$$

$$\frac{(\omega + 2)}{(\omega - 2)} \frac{(2 - i)}{(2 + i)} = \frac{(z + 1)}{(z - 1)} \frac{(1 - i)}{(1 + i)}$$

$$\frac{(\omega + 2)}{(\omega - 2)} = \frac{(z + 1)}{(z - 1)} \frac{(1 - i)}{(1 + i)} \frac{(2 + i)}{(2 - i)}$$

$$= \frac{(z + 1)}{(z - 1)} \frac{(2 + i - 2i + 1)}{(2 - i + 2i + 1)}$$

$$= \frac{(z + 1)}{(z - 1)} \frac{(3 - i)}{(3 + i)}$$

$$\frac{(\omega + 2)}{(\omega - 2)} = \frac{3z - iz + 3 - i}{3z + iz - 3 - i}$$

Using componendo and dividendo

$$\frac{a}{b} = \frac{c}{d}$$

$$\frac{a+b}{a-c} = \frac{c+d}{c-d}, \text{ we get}$$

$$\frac{(\omega+2)+(\omega-2)}{(\omega+2)-(\omega-2)} = \frac{(3z-iz+3-i)+(3z+iz-3-i)}{(3z-iz+3-i)-(3z+iz-3-i)}$$

$$\frac{2\omega}{4} = \frac{6z-2i}{-2iz+6}$$

$$\frac{\omega}{2} = \frac{2(3z-i)}{2(-iz+3)}$$

$$\omega = \frac{2[3z-i]}{[-iz+3]}$$
i.e., $\omega = \frac{-6z+2i}{iz-3}$

Example 14 Find the invariant points of the transformation

$$\omega = -\frac{2z+4i}{iz+1}.$$

Solution:
$$-\frac{2z+4i}{iz+1} = z \qquad [\because \omega = z]$$

$$2z + 4i = -z (iz + 1)$$

$$2z + 4i = -iz^{2} - z$$

$$iz^{2} + 3z + 4i = 0$$

$$\therefore z = \frac{-3 \pm \sqrt{9 - 4(i)(4i)}}{2i}$$

$$= \frac{-3 \pm 5}{2i} = \frac{1}{i}, \frac{-4}{i} = -i, 4i$$

Example 15 Find the bilinear transformation which maps the points z = 1, i, -1 into points $\omega = 0$, 1, ∞

Solution: We know that

$$\frac{(\omega_1 - \omega_2) (\omega_3 - \omega)}{(\omega - \omega_1) (\omega_2 - \omega_3)} = \frac{(z_1 - z_2) (z_3 - z)}{(z - z_1) (z_2 - z_3)} \dots (i)$$

Here $\omega_3 = \infty$ is given. Equation (1) can be written as

$$\frac{(\omega_{1} - \omega_{2}) \, \omega_{3} \left(1 - \frac{\omega}{\omega_{3}}\right)}{(\omega - \omega_{1}) \, \omega_{3} \left(\frac{\omega_{2}}{\omega_{3}} - 1\right)} = \frac{(z_{1} - z_{2}) \, (z_{3} - z)}{(z - z_{1}) \, (z_{2} - z_{3})}$$

$$\frac{(\omega_{1} - \omega_{2})}{(\omega - \omega_{1}) \, (-1)} = \frac{(z_{1} - z_{2}) \, (z_{3} - z)}{(z - z_{1}) \, (z_{2} - z_{3})}$$

$$\frac{-(0 - 1)}{(\omega - 0)} = \frac{(1 - i) \, (-1 - z)}{(z - 1) \, (i + 1)}$$

$$+ \frac{1}{\omega} = + \frac{(z + 1)}{(z - 1)} \, \frac{(1 - i)}{(1 + i)}$$

$$\frac{1}{\omega} = \frac{(z + 1)}{(z - 1)} \, \frac{(1 - i)}{(1 + i)}$$

$$\omega = \frac{(z - 1)}{(z + 1)} \, \frac{(1 + i)}{(1 - i)}$$

$$\omega = \frac{z + iz - 1 - i}{z - iz + 1 - i}$$

$$\omega = \frac{(1 + i) \, z - (1 + i)}{(1 - i) \, z + (1 - i)} \text{ which is of the form } \frac{az + b}{cz + d}$$

Example 16 Find the linear fractional transformation which maps the points z = -1, 0, 1 into $\omega = 0$, i, 3i.

Solution: We know that

$$\frac{(\omega_{1} - \omega_{2}) (\omega_{3} - \omega)}{(\omega - \omega_{1}) (\omega_{2} - \omega_{3})} = \frac{(z_{1} - z_{2}) (z_{3} - z)}{(z - z_{1}) (z_{2} - z_{3})}$$

$$\frac{(0 - i) (3i - \omega)}{(\omega - 0) (i - 3i)} = \frac{(-1 - 0) (1 - z)}{(z + 1) (0 - 1)}$$

$$\frac{(-i) (3i - \omega)}{\omega (-2i)} = \frac{(-1) (1 - z)}{(-1) (z + 1)}$$

$$\frac{(3i - \omega)}{2\omega} = \frac{(1 - z)}{(z + 1)}$$

$$(z + 1) (3i - \omega) = 2\omega (1 - z)$$

$$3iz - z\omega + 3i - \omega = 2\omega - 2z\omega$$

$$3i(z + 1) = 2\omega - 2z\omega + z\omega + \omega$$

$$= 3\omega - z\omega = \omega (3 - z)$$

$$\therefore \omega = \frac{3i(z + 1)}{(3 - z)}$$

$$\omega = -3i\left(\frac{z + 1}{z - 3}\right)$$

(2-3)

Example 17 Find the Mobius transformation which maps from $(\infty, i, 0)$ into $(0, i, \infty)$.

Solution: Substituting in the above formula,

$$\frac{(\omega_1 - \omega_2) (\omega_3 - \omega)}{(\omega - \omega_1) (\omega_2 - \omega_3)} = \frac{(z_1 - z_2) (z_3 - z)}{(z - z_1) (z_2 - z_3)}$$

Taking z_1 and ω_3 outside and substitute, we get

$$\frac{(0-i)(1-0)}{(\omega-0)(-1)} = \frac{(1-0)(0-z)}{(0-1)(i-0)}$$

$$\frac{(-i)}{-\omega} = \frac{(1)(-z)}{(-i)}$$

$$\frac{i}{\omega} = \frac{z}{i}$$

$$\omega = -\frac{1}{z}$$

www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES **DEPARTMENT OF MATHEMATICS COMPLEX ANALYSIS –SMT1602**

UNIT – III – Contour Integral – SMT1602

UNIT III

COMPLEX INTEGRATION

Introduction:

Consider a continuous function f(z) of the complex variable z = x + iy defined at all points of a curve C having end points A and B. Divide C into n parts at the points

$$A = P_0(z_0), P_1(z_1), \dots, P_i(z_i), \dots, P_n(z_n) = B.$$

Let $\delta z_i = z_i - 1$ and ζ_i be any point on the arc $P_{i-1} P_i$. The limit of the sum

 $\sum_{i=1}^{n} f(\zeta_i) \delta z_i \text{ as } n \to \infty \text{ in such a way that the length of the chord } \delta z_i \text{ approaches } zero, is called the line integral of <math>f(z)$ taken along the path C, i.e. $\int_{C} f(z) dz.$

Writing
$$f(z) = u(x,y) + iv(x,y)$$
 and nothing that $dz = dx + i dy$,

$$\int_C f(z)dz = \int_C (udx - vdy) + i \int_C (vdx + udy)$$

which shows that the evaluation of the line integral of a complex function can be reduced to the evaluation of two line integrals of real functions.

Pn = B Note:

Pn-1

If
$$\omega = f(z) = u(x, y) + i v(x, y)$$

then $\int_C f(z) dz = \int_C (u + iv) d(x + iy)$

$$= \int_C (u + iv) (dx + idy)$$

$$= \int_C (udx + vdy) + i \int_C (vdx + udy)$$
P1
P0 = A

Simply connected Region: A simply connected region is one in which any closed curve lying entirely within it can be contracted to a point without passing out of the region.

Simply Connected Region

Simply Connected Region

Multi-connected region

Simply connected region

CAUCHY'S THEOREM

Theorem:

If f(z) is an analytic function and f'(z) is continuous at each point within and an a closed curve C, then $\int f(z) dz = 0$.

Proof:

Consider f(z) = u(x,y) + iv(x,y) and z = x+iy, dz = dx + idy

$$\int_{C} f(z) dz = \int_{C} (udx - vdy) + i \int_{C} (vdx + udy) \qquad \dots (1)$$

C

Since f'(z) is continuous, therefore, $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$ are also continuous in the region D enclosed by C. We know Green's theorem is

$$\int_{C} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

using this in (1)

$$\int_{C} f(z) dz = -\iint_{D} \left[\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right] dx dy + \iint_{D} \left[\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right] dx dy \dots (2)$$

Now f(z) being analytic, u and v necessarily satisfy the Cauchy-Riemann equations

i.e.
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$ (3)

Substituting (3) in (2) we have

$$\int_{C} f(z) dz = \iint_{D} \left(\frac{\partial u}{\partial y} - \frac{\partial u}{\partial y} \right) dx dy + i \iint_{D} \left(\frac{\partial v}{\partial y} - \frac{\partial v}{\partial y} \right) dx dy$$

$$= 0$$

Hence
$$\int_{C} f(z) dz = 0$$

Extension of Cauchy's Theorem.

If f(z) is analytic in the region D between two simple closed curves C and C_1 , then $\int f(z) dz = \int f(z) dz$.

$$C$$
 C

To prove this, we need to introduce the cross-cut AB. Then $\int f(z)dz = 0$ where the path is as indicated by arrows in Fig.(1) i.e. along AB-along C₁ in clockwise sense & along BA – along C in anti –(clockwise sense

i.e.
$$\int f(z) dz + \int f(z) dz + \int f(z) dz + \int f(z) dz = 0$$
.
AB C_1 BA C

But, since the integrals along AB and along BA cancel, it follows that

$$\int f(z) dz + \int f(z) dz = 0.$$

$$C \qquad C_1$$

Reversing the direction of the integral around C1 and transposing, we get

 $\int f(z) dz = \int f(z) dz$ each integration being taken in the anti-clockwise C

sense.

If C₁,C₂,C₃,.....be any number of closed curves within C (Fig-2) then

$$\int f(z) dz = \int f(z) dz + \int f(z) dz + \int f(z) dz + \dots$$

$$C \qquad C_1 \qquad C_2 \qquad C_3$$

CAUCHY'S INTEGRAL FORMULA

Theorem:

If f(z) is analytic within and on a closed curve and if a is any point

within C, then
$$f(a) = \frac{1}{2\pi i} \int_{C} \frac{f(z) dz}{z-a}$$
.

Proof:

Consider the function f(z) / (z-a) which is analytic at all points within C except at z=a. With the point a as center and radius r, draw a small circle C_1 lying entirely within C.

Now f(z) / (z-a) being analytic in the region enclosed by C and C1, we have by Cauchy's theorem,

$$\int_{C} \frac{f(z)}{z-a} dz = \int_{C_1} \frac{f(z)}{z-a} dz$$

$$= \int_{C_1} \frac{f(a + re^{i\theta})}{re^{i\theta}} . ire^{i\theta} d\theta = i \int_{C_1} f(a + re^{i\theta}) d\theta. \qquad(1)$$

In the limiting form, as the circle C_1 shrinks to the point a, i.e. as $r \to 0$, the integral (1) will approach to

$$i \int_{C_1} f(a) d\theta = i f(a) \int_{0}^{2\pi} d\theta = 2\pi i f(a) \cdot \text{thus} \int_{c} \frac{f(z)}{z - a} dz = 2\pi i f(a)$$

i.e.
$$f(a) = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z-a} dz$$

which is the desired Cauchy's integral formula.

$$\Rightarrow \int_{c} \frac{f(z)}{z-a} dz = 2\pi i f(a)$$

Cauchy's integral formula for derivative of an analytic function:-

We know Cauchy's integral formula is

$$F(a) = \frac{1}{2\pi i} \int_{c}^{c} \frac{f(z)}{z-a} dz.$$

Differentiating both sides of (2) w.r.t.a,

$$f'(a) = \frac{1}{2\pi i} \int_{c}^{d} \frac{\partial}{\partial a} \left[\frac{f(z)}{z - a} \right] dz = \frac{1}{2\pi i} \int_{c}^{d} \frac{f(z)}{(z - a)^{2}} dz \qquad(3)$$

similarly,
$$f''(a) = \frac{2!}{2\pi i} \int_{c} \frac{f(z)}{(z-a)^3} dz$$
(4)

and in general,
$$f''(a) = \frac{n!}{2\pi i} \int_{c}^{c} \frac{f(z)}{(z-a)^{n+1}} dz$$
.(5)

thus it follows from the results (2) to (5) that if a function f(z) is known to be analytic on the simple closed curve C then the values of the function and all its derivatives can be found at any point of C. Incidently we have established a

remarkable fact that an analytic function possesses derivatives of all orders at these are themselves all analytic.

Example 1: Evaluate $\int \frac{z^2 - z + 1}{z - 1} dx$ where C is the circle

(i)
$$|z|=1$$
,

(i)
$$|z|=1$$
, (ii) $|z|=\frac{1}{2}$.

(i) Here
$$f(z) = z^2 - z + 1$$
 and $a = 1$.

Since f(z) is analytic within and on circle

C: |z|=1 and a=1 lies on C.

.. By Cauchy's Integral Formula $\frac{1}{2\pi i} \int_{0}^{1} \frac{f(z)}{z-a} = f(a) = 1$ i.e. $\int_{0}^{1} \frac{z^2 - z + 1}{z-1} dz = 2\pi i$.

In this case, a = 1 lies outside the circle C: $|z| = \frac{1}{2}$. So $\frac{(z^2 - z + 1)}{(z - 1)}$ (ii) analytic everywhere within C.

∴ By Cauchy's Theorem
$$\int_{C} \frac{z^2 - z + 1}{z - 1} dz = 0.$$

Example 2:

Using Cauchy's integral formula, Evaluate $\int_{0}^{\infty} \frac{z+1}{z^2+2z+4} dz$ where c is the circle |z+1+i|=2

Solution:

|z + 1 + i| = |z - (-1 - i)| is the circle with centre at z = -1-I and radius 2 units

The function $\frac{z+1}{z^2+2z+4}$ will cease to be analytic where $z^2+2z+4=0$

$$z = \frac{-2 \pm \sqrt{4 - 16}}{2}$$

$$= \frac{-2 \pm \sqrt{-12}}{2}$$

$$= \frac{-2 \pm i2\sqrt{3}}{2}$$

$$z = -1 \pm i\sqrt{3}$$

$$z = -1 + i\sqrt{3}, -1 - i\sqrt{3}$$

$$\therefore \frac{(z+1)}{z^2 + 2z + 4} = \frac{z+1}{(z+1-i\sqrt{3})(z+1+i\sqrt{3})}$$

The above function is analytic at all points except at the points $-1+i\sqrt{3}$ lies outside c and $-1-i\sqrt{3}$ lies inside c.

∴ we consider the function
$$f(z) = \frac{z+1}{z+1-i\sqrt{3}}$$

by cauchy integral formula

$$f(a) = \frac{1}{2\pi i} \int_{c} \frac{f(z)}{z - a} dz$$

here
$$a = -1 - i\sqrt{3}$$
, (lies inside c): $\int \frac{z+1}{z+1-i\sqrt{3}} dz = 2\pi i f(a)$

$$=2\pi i f(-1-i\sqrt{3})$$

$$=2\pi i \left(\frac{-1-i\sqrt{3}+1}{-1-i\sqrt{3}+1-i\sqrt{3}}\right)$$
substitution in f(z)
$$=2\pi i \left(\frac{-i\sqrt{3}}{-2i\sqrt{3}}\right) = \pi i$$

Example 3:

Using cauchy's integral formula evaluate $\int \frac{z+4}{z^2+2z+5} dz$ where c is circle

Solution:

: |z+1-i| = |z-(-1+i)| is the circle with center at (-1+i) and radius 2 The function $\frac{z+4}{z^2+2z+5}$ will cease to be regular $z^2 + 2z + 5 = 0$

i.e.,
$$z^2 + 2z + 5 = 0$$

$$z = \frac{-2 \pm \sqrt{4 - 20}}{2}$$

$$z = \frac{-2 \pm \sqrt{-16}}{2} = -1 \pm 2i$$

$$\therefore z = -1 + 2i, -1 - 2i$$

$$\frac{z + 4}{(z^2 + 2z + 5)} = \frac{z + 4}{[z - (-1 + 2i)][z - (-1 - 2i)]}$$

The above function is analytic at all points except at z=-1+2i which lies inside c and z = -1 --2i which lies outside c.

We consider the function

$$f(z) = \frac{\overline{[z - (-1 - 2i)]}}{\overline{[z - (-1 + 2i)]}} = \frac{f(z)}{z - a}$$

.. By cauchy integral formula

$$\int_{C} \frac{f(z)}{z-a} dz = 2\pi i f(a)$$

Taking a = -1+2i (lies inside c)

$$\int_{c}^{c} \frac{\left(\frac{z+4}{z+1+2i}\right)}{\left[z-\left(-1+2i\right)\right]} dz = 2\pi i f(-1+2i)$$

$$= 2\pi i \left(\frac{-1+2i+4}{-1+2i+1+2i}\right)$$

$$= 2\pi i \left(\frac{2i+3}{4i}\right) = \frac{\pi}{2} (2i+3)$$

Example 4:

Evaluate $\int_{c}^{\frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)}} dz$ where c is |z|=3 using cauchy integral formula.

Solution:

|z|=3 is a circle with center at the origin and radius 3 units consider

$$\frac{1}{(z-1)(z-2)} = \frac{A}{z-1} + \frac{B}{(z-2)}$$

$$1 = A(z-2) + B(z-1)$$

$$put z = 1 \quad A = -1$$

$$put z = 2 \quad B = 1$$

$$\therefore \frac{1}{(z-1)(z-2)} = \frac{-1}{(z-1)} + \frac{1}{(z-2)}$$

$$\therefore \int_{c}^{\frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)(z-2)}} dz = -\int_{c}^{\frac{\sin \pi z^{2} + \cos \pi z^{2}}{z-1}} dz + \int_{c}^{\frac{\sin \pi z^{2} + \cos \pi z^{2}}{z-2}} dz$$

Since z=1, and z=2 lies inside c and $f(z) = \sin \pi z^2 + \cos \pi z^2$

By cauchy integral formula

$$= -2\pi i f(1) + 2\pi i f(2)$$

$$= -2\pi i (\sin \pi + \cos \pi) + 2\pi i (\sin 2\pi + \cos 2\pi)$$

$$= 2\pi i (1+1)$$

$$= 4\pi i$$

Example 5:

Using cauchy integral formula evaluate $\int_{c} \frac{dz}{(z^2+1)(z^2-4)}$

where c is
$$\int_{c} \frac{dz}{(z^2+1)(z^2-4)}$$
 where c is $|z| = \frac{3}{2}$

Solution:

units.

 $|z| = \frac{3}{2}$ is the circle with center at the origin and radius 3/2

$$\frac{1}{(z^2+1)(z^2-4)} = \frac{1}{(z+i)(z-i)(z+2)(z-2)}$$

The above function is analytic at all points excepts at z = i, -i which lies inside c and $z = \pm 2$ which lies outside C

: we consider the function

$$f(z) = \frac{\frac{1}{z^2 - 4}}{(z + i)(z - i)}$$

Now

$$\frac{1}{(z+1)(z-i)} = \frac{A}{(z+i)} + \frac{B}{(z-i)}$$

$$1 = A(z-i) + B(z+i)$$

Put
$$z = i$$
, $B = \frac{1}{2i} = -\frac{i}{2}$

Put
$$z = -i$$
, $B = -\frac{1}{2i} = \frac{i}{2}$

$$\therefore \frac{1}{(z+i)(z-i)} = \frac{\frac{i}{2}}{(z+i)} - \frac{\frac{i}{2}}{(z-i)}$$

$$\therefore \int_{c} \left[\frac{\frac{i}{2}}{(z+i)} - \frac{\frac{i}{2}}{(z-i)} \right] \frac{1}{z^{2} - 4} dz = \frac{i}{2} \int_{c} \frac{\left(\frac{1}{z^{2} - 4}\right)}{z+i} dz - \frac{i}{2} \int_{c} \frac{\left(\frac{1}{z^{2} - 4}\right)}{z-i} dz$$

taking a = i, -i (which lie inside c)

By cauchy integral formula

$$\int_{c}^{\frac{f(z)}{z-a}} dz = 2\pi i f(a)$$

$$= \left(\frac{i}{2}\right) 2\pi i f(-i) - \left(\frac{i}{2}\right) 2\pi i f(i)$$

$$= \left(\frac{i}{2}\right) 2\pi i \left[\frac{1}{-5} - \frac{1}{-5}\right]$$

$$= -\pi \left[-\frac{1}{5} + \frac{1}{5}\right]$$

$$= 0$$

Example 6: Evaluate $\int_{c} \frac{z^2 dz}{(z-1)^2 (z^2+1)}$ where c is |z-2|=2. Using cauchy integral formula.

Solution:

|z-2|=2 is a circle with center at 2 and radius 2 units consider.

$$\frac{z^2}{(z-1)^2(z^2-1)} = \frac{z^2}{(z-1)^3(z+1)}$$

$$= \frac{A}{(z-1)} + \frac{B}{(z-1)^2} + \frac{C}{(z-3)^3} + \frac{D}{(z+1)}$$

$$z^2 = A(z-1)^2(z+1) + B(z-1)(z+1) + C(z+1) + D(z-1)^3$$
put $z = 1$,

$$c = \frac{1}{2}$$
put $z = -1$

$$-8 D = 1,$$

$$D = -\frac{1}{8}$$
Coefficient of z^3 , $A + D = 0$

$$A = -D$$

$$A = \frac{1}{8}$$

equating constant coefficient

A - B + C - D = 0

$$B = \frac{1}{8} + \frac{1}{2} + \frac{1}{8}$$

$$= \frac{1+4+1}{8} = \frac{6}{8}$$

$$B = \frac{3}{4}$$

$$\int_{c} \frac{z^{2}}{(z-1)^{2}(z^{2}-1)} dz = \frac{1}{8} \int_{c} \frac{1}{(z-1)} dz + \frac{3}{4} \int_{c} \frac{1}{(z-1)^{2}} + \frac{1}{2} \int_{c} \frac{dz}{(z-1)^{3}} - \frac{1}{8} \int_{c} \frac{dz}{(z+1)}$$

Since the point z=1 lies inside c and z=-1 lies outside c. By cauchy integral formula & its derivatives we have

$$= \frac{1}{8} 2\pi i f'(1) + \frac{3}{4} (2\pi i) f'(1) + \frac{1}{2} \frac{(2\pi i) f''(1)}{2!} + 0$$

$$= \frac{1}{8} 2\pi i + \frac{3}{4} 2\pi i + \frac{1}{2} \frac{(2\pi i)}{2!}$$

$$= \frac{\pi}{4} i + \frac{3}{2} \pi i + \frac{\pi}{2} i = \frac{\pi i + 6\pi i + 2\pi i}{4} = \frac{9\pi i}{4}$$
[: $f(z) = 1$ $f(1) = 1$ $f'(1) = 1$]

Example 7: Evaluate using Cauchy's integral formula:

$$\int_{C} \frac{e^{2z}}{(z-1)(z-2)}, \text{ where C is the circle } |z| = 3$$

Solution: $f(z) = e^{2z}$ is analytic within the circle C : |z| = 3 and the two singular points a = 1 and a = 2 lie inside C.

$$\int_{C} \frac{e^{2z}}{(z-1)(z-2)} dz = \int_{C} e^{2z} \left(\frac{1}{z-2} - \frac{1}{z-1} \right) dz = \int_{C} \frac{e^{2z}}{z-2} dz - \int_{C} \frac{e^{2z}}{z-1} dz$$
$$= 2\pi i e^4 - 2\pi i e^2 = 2\pi I \left(e^4 - e^2 \right)$$

[By Cauchy's integral formula]

Example 8:

Evaluate
$$\int \frac{\cos \pi z^2}{(z-1)(z-2)} dz$$
 where c is the circle $|z| = 3$.

Solution:

Here |z| = 3 is a circle with center at the origin and radius 3 units.

Also
$$f(z) = \cos \pi z^2$$

and consider $\frac{1}{(z-1)(z-2)} = \frac{A}{z-1} + \frac{B}{z-2}$
 $1 = A(z-2) + B(z-1)$

put
$$z = 1$$
, $A = -1$
put $z = 2$, $B = 1$

$$\therefore \frac{1}{(z-1)(z-2)} = \frac{-1}{(z-1)} + \frac{1}{(z-2)}$$

$$\int_{C} \frac{\cos \pi z^{2}}{(z-1)(z-2)} dz = -\int_{C} \frac{\cos \pi z^{2}}{(z-1)} dz + \int_{C} \frac{\cos \pi z^{2}}{(z-2)} dz$$

Since z = 1 and z = 2 lies inside c. By cauchy integral formula we have

=
$$-2\pi i f(1) + 2\pi i f(2)$$

= $-2\pi i [-\cos \pi + \cos 4\pi]$
= $2\pi i [-(-1)+1] = 4\pi i$

Example 8:

Evaluate
$$\int_{C} \frac{(z+1) dz}{(z^2+2z+4)^2}$$
 where c is $|z+1+i|=2$ using cauchy

integral formula.

Solution:

|z+1+i|=2 is a circle with centre (-1, -i) and radius 2 units.

$$\frac{z+1}{(z^2+2z+4)^2} = \frac{z+1}{\left[z-\left(-1-\sqrt{3}i\right)\right]^2 \left[z-\left(-1+\sqrt{3}i\right)\right]^2}$$

The above function is analytic at all points except at $z = -1 - \sqrt{3}$ I which lies inside c and $z = -1 + \sqrt{3}$ I which lies outside c.

: Consider the function

$$f(z) = \frac{\frac{z+1}{\left[z - (-1 + \sqrt{3}i)^{2}\right]^{2}}}{\left[z - \left(-1 - \sqrt{3}i\right)\right]^{2}}$$

.. By cauchy integral formula for derivatives

$$\int_{c} \frac{f(z)}{(z-a)^{2}} dz = 2\pi i f'(a)$$
taking $a = -1 - \sqrt{3} i$

$$\therefore = 2\pi i f'(-1 - \sqrt{3}i)$$

But
$$f(z) = \frac{z+1}{\left[z - (-1 + \sqrt{3}i)\right]^2}$$

$$= \frac{z+1}{(z-\alpha)^2} \alpha = -1 + \sqrt{3}i$$

$$f'(z) = \frac{(z-\alpha)^2 - 2(z+1)(z-\alpha)}{(z-\alpha)^4} = \frac{-(z+\alpha+2)}{(z-\alpha)^3}$$

$$f'(a) = f'(-1 - \sqrt{3}i)$$

$$= \frac{-\left[-1 - \sqrt{3}i - 1 + \sqrt{3}i + 2\right]}{\left(-1 - \sqrt{3}i\right)^3} = \frac{0}{-\left(2\sqrt{3}i\right)^3} = 0$$

$$\therefore \int_{c} \frac{(z+1) dz}{(z^2 + 2z + 4)^2} = 2\pi i \ f'(-1 - \sqrt{3}i)$$

$$= 0 \qquad \therefore f'(-1 - \sqrt{3}i) = 0$$

Example 10:

Evaluate
$$\int_{c}^{c} \frac{e^{2z}}{(z+1)^4} dz$$
, where c is $|z| = 2$ using cauchy integral

formula.

Solution:

|z| = 2 is a circle with centre at the origin and radius 2 units

Here
$$f(z) = e^{2z}$$

Clearly z = -1 lies inside c

$$\int_{c}^{c} \frac{e^{2z}}{(z+1)^4} dz = \int_{c}^{c} \frac{e^{2z}}{[z-(-1)]^4} dz$$

since z = -1 lies inside c

By cauchy integral formula for derivatives

$$f'''(a) = \frac{3!}{2\pi i} \int_{c} \frac{f(z)}{(z-a)^4} dz$$

$$\int_{c} \frac{e^{2z}}{[z-(-1)]^4} dz = \frac{2\pi i f'''(a)}{3!}$$

$$= 2\pi i f'''(-1) \qquad ...(1)$$

since
$$f(z) = e^{2z}$$

$$f'(z) = 2e^{2z}$$

 $f''(z) = 4e^{2z}$

$$f'''(z) = 8e^{2z}$$

 $f'''(-1) = 8e^{-2}$...(2)

Therefore (2) in (1) we get

$$\int_{c} \frac{e^{2z}}{[z - (-1)]^4} dz = \frac{2\pi i \times 8e^{-2}}{6}$$
$$= \frac{8}{3}\pi i e^{-2}$$

Example 11:

$$\int_{C} \frac{\cos \pi z}{z^2 - 1} dz$$
 around a rectangle with vertices $2 \pm i$, $-2 \pm i$.

Solution:

 $f(z) = \cos \pi z$ is analytic in the region bounded by the given rectangle and the two singular points a=1 and a=-1 lie inside this rectangle.

$$\int_{C} \frac{\cos \pi z}{z^2 - 1} dz = \frac{1}{2} \int_{C} \left(\frac{1}{z - 1} - \frac{1}{z + 1} \right) \cos \pi z dz$$

$$= \frac{1}{2} \int_{C} \frac{\cos \pi z}{z-1} dz - \int_{C} \frac{\cos \pi z}{z+1} dz$$

$$\frac{1}{2} \left\{ 2\pi i \cos \pi (1) \right\} - \frac{1}{2} \left\{ 2\pi i \cos \pi (-1) \right\} = 0.$$

[By Cauchy's integral formula]

Example 12:

Evaluate
$$\int_{c} \frac{(z-1)}{(z+1)^2(z-2)} dz$$
 where c is circle $|z-i|=2$

Solution:

|z-i|=2 is a circle with centre at i and radius 2 units.

Consider
$$\frac{z-1}{(z+1)^2(z-2)}$$

The above function is analytic at all except at z=-1 which lies inside 'c'.

$$\therefore$$
 we consider $f(z) = \frac{z-1}{z-2}$

$$\int_{c}^{c} \frac{\left(\frac{z-1}{z-2}\right)}{\left(z-(-1)\right)^{2}} dz = 2\pi i f'(-1) \qquad(1)$$

(: using cauchy integral formula taking a = -1)

since
$$f(z) = \frac{z-1}{z-2}$$

 $f'(z) = \frac{(z-2)-(z-1)}{(z-2)^2}$

$$= \frac{z - 2 - z + 1}{(z - 2)^2}$$

$$= -\frac{1}{(z - 2)^2}$$
.....(2)
Substitute (2) in (1) we get
$$\int_{C} \frac{z - 1}{(z + 1)^2 (z - 2)} dz = 2\pi i f'(-1)$$

$$= 2\pi i \left[-\frac{1}{9} \right]$$

Example 13:

Evaluate

(i)
$$\int_{C} \frac{\sin^2 z}{(z - \pi/6)^3} dz$$
, where C is the circle $|z| = 1$.

(ii)
$$\int_{C} \frac{e^{2z}}{(z+1)^4} dz$$
, where C is the circle $|z| = 2$.

Solution:

(i) $f(z) = \sin^2 z$ is analytic inside the circle C: |z| = 1 and the point $a = \pi/6$ (0.5 approx.) lies within C.

.. By cauchy's integral formula
$$f''(a) = \frac{2!}{2\pi i} \int_{C} \frac{f(z)}{(z-a)^3} dz$$
,

We get
$$\int_{C} \frac{\sin^{2} z}{(z - \pi / 6)^{3}} dz = \pi i \left[\frac{d^{2}}{dz^{2}} (\sin^{2} z) \right]_{z = \pi / 6}$$
$$= \pi i (2 \cos 2z)_{z = \pi / 6} = 2\pi i \cos \pi / 3 = \pi i$$

(ii) $f(z) = e^{2z}$ is analytic within the circle C : |z| = 2. Also z = -1 lies inside C.

... By cauchy's integral formula :
$$f'''(a) = \frac{3!}{2\pi i} \int_C \frac{f(z)dz}{(z-a)^{4'}}$$

We get
$$\int_{C} \frac{e^{2z}}{(z+1)^4} dz = \frac{2\pi i}{6} \left| \frac{d^3(e^{2z})}{dz^3} \right|_{z=-1} = \frac{\pi i}{3} \left[8e^{2z} \right]_{z=-1} = \frac{8\pi i}{3} e^{-2}$$

Example 14:

Evaluate
$$\int_{C} \frac{\sin^6 z}{\left(z - \frac{\pi}{6}\right)^3} dz$$
, where c is $|z| = 1$

Solution:

Here $f(z) = \sin^6 z$ |z| = 1 is the circle with center at the origin and radius 1 units

clearly
$$z = \frac{\pi}{6}$$
 lies inside $|z| = 1$

.. By cauchy integral formula for derivatives

$$\int_{C} \frac{f(z)}{(z-a)^{3}} = \frac{2\pi i}{2!} f''(a)$$

$$\therefore \int_{C} \frac{\sin^{6} z}{(z-\frac{\pi}{6})^{3}} dz = \frac{2\pi i}{2!} f''(\pi/6) \qquad \dots (1)$$

But
$$f(z) = \sin^6 z$$

 $f'(z) = 6 \sin^5 z \cos z$

$$f''(z) = 6 [\sin^5 z (-\sin z) + \cos z (5 \sin^4 z)]$$

= 6 [-\sin^6 z + 5 \cos z \sin^4 z]

$$\therefore f''(\frac{\pi}{6}) = 6 \left[-\sin^6\left(\frac{\pi}{6}\right) + 5\cos\left(\frac{\pi}{6}\right) x \sin^4\left(\frac{\pi}{6}\right) \right]$$

$$= 6 \left[-\frac{1}{64} + \frac{5}{16} x \frac{3}{4} \right] \qquad(2)$$

$$= \frac{21}{16}$$

Substitute (2) in (1) we have

$$\int_{C} \frac{\sin^{6} z}{\left(z - \frac{\pi}{6}\right)^{3}} dz = \frac{2\pi i}{2!} \left(\frac{21}{16}\right) = \frac{21\pi i}{16}$$

Accredited "A" Grade by NAAC | 12B Status by UGC | Approved by AICTE www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES DEPARTMENT OF MATHEMATICS COMPLEX ANALYSIS –SMT1602

UNIT – IV – Taylors and Laurents Theorem – SMT1602

UNIT IV

TAYLORS AND LAURENTS THEOREM

Taylor's series:

If f(z) is analytic inside a circle C with centre at a, then for z inside C

,
$$f(z) = f(a) + f'(a) (z-a) + \frac{f''(a)}{2!} (z-a)^2 + \dots + \frac{f^n(a)}{n!} (z-a)^n + \dots$$
 (1)

Note: If a = 0 in Taylor's series we get Maclaurin's theorem

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 where $a_n = \frac{f^n(0)}{n!}$

Note: Complex analytic functions can always be represented by power series of the form (1)

Complex analytic functions can always be represented by power series of the form (1)

Laurent's Series:

If f(z) is analytic in the ring-shaped region R bounded by two concentric circles C and C_1 of radii r and r_1 ($r > r_1$) and with centre at a, then for all z in R

$$f(z) = a_0 + a_1 (z-a) + a_2 (z-a)^2 + \dots + b_1 (z-a)^{-1} + b_2 (z-a)^{-2} + \dots$$

$$f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n + \sum_{n=1}^{\infty} b_n (z-a)^{-n}$$

 Γ being any curve in R', encircling C_1

Where
$$a_n = \frac{1}{2\pi i} \int_C \frac{f(t)}{(t-a)^{n+1}} dt$$

$$b_n = \frac{1}{2\pi i} \int_C \frac{f(t)}{(t-a)^{-n+1}} dt$$

Note: $\sum_{n=0}^{\infty} a_n (z-a)^n$ is called integral part and $\sum_{n=0}^{\infty} b_n (z-a)^{-n}$ is called principle part of the Laurents series.

Note:

- To obtain Taylor's series or Laurent's series simply expand f(z) (i) by Binomial theorem.
- Laurent's series of a given analytic function f(z) in its annulus of (ii) convergence is unique.

(iii) If
$$|z| < 1$$
, then (We Know)
 $(1+z)^{-1} = 1 - z + z^2 - z^3 + \dots$
 $(1-z)^{-1} = 1 + z + z^2 + z^3 + \dots$
 $(1+z)^{-2} = 1 - 2z + 3z^2 - 4z^3 + \dots$
 $(1-z)^{-2} = 1 + 2z + 3z^2 + 4z^3 + \dots$

Example 1:

Find the Laurents series Expansion of $\frac{1}{z^2-z-2}$ in the region

Solution:
$$f(z) = \frac{1}{z^2 - z - 2} = \frac{1}{(z+1)(z-2)}$$
$$\frac{1}{(z+1)(z-2)} = \frac{A}{(z+1)} + \frac{B}{(z-2)}$$

$$1=A(z-2)+B(z+1)$$

1=A(z-2)+B(z+1)
put z = 2 B =
$$\frac{1}{3}$$

$$f(z) = \frac{1}{z^2 - z - 2} = \frac{1}{(z+1)(z-2)}$$

$$\frac{1}{(z+1)(z-2)} = \frac{-1}{3(z+1)} + \frac{1}{3(z-2)}$$

$$= \frac{1}{3z(1+1/z)} - \frac{1}{6(1-z/2)}$$

$$= -\frac{1}{3z} \left(1 + \frac{1}{z}\right)^{-1} - \frac{1}{6} \left(1 - \frac{z}{2}\right)^{-1}$$

$$f(z) = -\frac{1}{3z} \left(1 - \frac{1}{z} + \left(\frac{1}{z}\right)^2 - \dots\right) - \frac{1}{6} \left(1 + \frac{z}{2} + \left(\frac{z}{2}\right)^2 + \dots\right)$$

In the first series the expansion in valid $\left| \frac{1}{z} \right| < 1$, i.e. 1 < |z|

In the second series the expansion in valid $\left|\frac{z}{2}\right| < 1$, |z| < 2

∴ The series is valid when 1<| z |<2.</p>

Example 2: Obtain the expansion of the function $\frac{z-1}{z^2}$ in Taylors series of powers of (z-1) and state the region of validity.

Solution:
$$f(z) = \frac{z-1}{z^2}$$
$$= \frac{1}{z} - \frac{1}{z^2}$$

The Taylors series at z = 1 is

$$f(z) = f(1) + \sum_{n=1}^{\infty} \frac{(z-1)^n}{n!} f^n(1)$$
 ...(1)

Now
$$f(z) = \frac{1}{z} - \frac{1}{z^2}$$

$$f(1) = 0 \qquad ...(2)$$

$$f'(z) = -\frac{1}{z^2} + \frac{(-1)(-2)}{z^3}$$

$$f''(z) = \frac{(-1)(-2)}{z^3} + \frac{(-1)(-2)(-3)}{z^4}$$

.....

$$f^{n}(z) = \frac{(-1)^{n} n!}{z^{n+1}} + \frac{(-1)^{n+1} (n+1)!}{z^{n+2}}$$

$$f^{n}(1) = (-1)^{n} n! + (-1)^{n+1} (n+1)!$$

$$= (-1)^{n} n! [1-(n+1)]$$

$$= (-1)^{n} n! (-n)$$

$$f^{n}(1) = (-1)^{n+1} n.n! \qquad ...(3)$$

Substitute (2) & (3) in (1) we have

$$f(z) = \sum_{n=1}^{\infty} n(-1)^{n+1} (z-1)^n$$

f(z) is analytic at z = 0. Also |z - 1| < 1 is the region of converges.

Hence the region of validity $|z-1| \le 1$

Example 3: Obtain the Taylors series of expansion of $\log (1 + z)$ when |z| < 1.

Solution: Let $f(z) = \log(1 + z)$

$$f(0) = \log(1) = 0$$
 ...(1)
 $f'(z) = \frac{1}{1+z}$

$$f''(z) = -\frac{1}{(1+z)^2}$$

$$f'''(z) = \frac{(-1)(-2)}{(1+z)^3} = \frac{2!(-1)^2}{(1+z)^3}$$

.....

$$f^{n}(z) = \frac{(-1)(-2)...-(n-1)}{(1+z)^{n}} = \frac{(n-1)!(-1)^{n-1}}{(1+z)^{n}}$$

$$f^{n}(0) = (n-1)! (-1)^{n-1} \qquad \dots (2)$$

The Taylors series at z = 0 is

$$f(z) = f(0) + \sum_{n=1}^{\infty} \frac{z^n}{n!} f^n(0)$$
 ...(3)

substitute (1) & (2) we get

$$f(z) = \sum_{n=1}^{\infty} \frac{z^n}{n!} (n-1)! (-1)^{n-1}$$

$$f(z) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} z^n$$

Example 4: Expand cos z in a Taylors series about $z = \frac{\pi}{4}$ Solution:

yout to a

$$f'(z) = \cos z \ f\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

$$f''(z) = -\sin z \ f'\left(\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}}$$

$$f'''(z) = -\cos z \ f''\left(\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}}$$

$$f'''(z) = \sin z \ f'''\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$$

The Taylors series about z = a is

$$f(z) = f(a) + \sum_{n=1}^{\infty} \frac{(z-a)^n}{n!} f^n(a)$$

$$= f(a) + \frac{\left(z - \frac{\pi}{4}\right)}{1!} \left(-\frac{1}{\sqrt{2}}\right) + \frac{\left(z - \frac{\pi}{4}\right)^2}{2!} \left(-\frac{1}{\sqrt{2}}\right) + \dots$$

$$\cos z = \frac{1}{\sqrt{2}} \left[1 - \frac{\left(z - \frac{\pi}{4}\right)}{1!} - \frac{\left(z - \frac{\pi}{4}\right)}{2!} + \dots \right]$$

Example 5: Find Taylors expansion of

(i)
$$f(z) = \frac{1}{(z+1)^2}$$
 about the point $z = -i$.

(ii)
$$f(z) = \frac{2z^3 + 1}{z^2 + z}$$
 about the point $z = i$

(i) To expand f(z) about z = -i i.e. in power of z+i, put z+i=t. Then

$$f(z) = \frac{1}{(t-i+1)^2} = (1-i)^{-2} [1+t/(1-i)]^{-2}$$

$$= \frac{i}{2} \left[1 - \frac{2t}{1-i} + \frac{3t^2}{(1-i)^2} - \frac{4t^3}{(1-i)^3} + \dots \right]$$
(Expanding by Binomial theorem)

$$= \frac{i}{2} \left[1 + \sum_{n=1}^{\infty} (-1)^n \frac{(n+1)(z+i)^n}{(1-i)^n} \right]$$

(ii)
$$f(z) = \frac{2z^3 + 1}{z(z+1)} = 2z - 2 + \frac{2z+1}{z(z+1)} = (2i-2) + 2(z-i) + \frac{1}{z} + \frac{1}{z+1} \dots (1)$$

(By partial fractions)

To expand 1/z and 1/(z+1) about z - i = t, so that

$$\frac{1}{z} = \frac{1}{(t+i)} = \frac{1}{i} \left(1 + \frac{t}{i} \right)^{-1} \qquad \text{(Expanding by Binomial theorem)}$$

$$= \frac{1}{i} \left[1 - \frac{t}{i} + \frac{t^2}{i^2} - \frac{t^3}{i^3} + \frac{t^4}{i^4} - \dots \infty \right]$$

$$= \frac{1}{i} + \frac{t}{i} + \frac{t^2}{i^3} - \frac{t^3}{i^4} + \frac{t^4}{i^5} - \dots \infty$$

$$= -i + (z - i) + \sum_{n=2}^{\infty} (-1)^n \frac{(z - i)^n}{i^{n+1}} \dots (2)$$
and
$$\frac{1}{z+1} = \frac{1}{t+i+1} = \frac{1}{1+i} \left(1 + \frac{t}{1+i} \right)^{-1} \qquad \text{(Expanding by Binomial theorem)}$$

$$= \frac{1}{1+i} \left[1 - \frac{t}{1+i} + \frac{t^2}{(1+i)^2} - \frac{t^3}{(1+i)^3} + \frac{t^4}{(1+i)^4} - \dots \infty \right]$$

$$= \frac{1-i}{2} - \frac{t}{2i} + \left[\frac{t^2}{(1+i)^3} - \frac{t^3}{(1+i)^4} + \frac{t^4}{(1+i)^5} - \dots \infty \right]$$

$$= \frac{1}{2} - \frac{i}{2} - \frac{z-i}{2i} + \sum_{n=2}^{\infty} (-1)^n \frac{(z-i)^n}{(1+i)^{n+1}} \qquad \dots (3)$$

Substituting from (2) and (3) in (1) we get

$$f(z) = \left(2i - 2 - i + \frac{1}{2} - \frac{i}{2}\right) + \left(2 + 1 - \frac{1}{2i}\right)(z - i) + \sum_{n=2}^{\infty} (-1)^n \left(\frac{1}{i^{n+1}} + \frac{1}{(1+i)^{n+1}}\right)(z - i)^n$$

$$= \left(\frac{i}{2} - \frac{3}{2}\right) + \left(3 + \frac{i}{2}\right)(z - i) + \sum_{n=2}^{\infty} (-1)^n \left(\frac{1}{i^{n+1}} + \frac{1}{(1+i)^{n+1}}\right)(z - i)^n$$

Example 6: Find the Laurents series expansion of $f(z) = \frac{e^{zz}}{(z-1)^3}$ above z = 1

Solution:
$$f(z) = \frac{e^{2z}}{(z-1)^3}$$

Here we have to expand f(z) in Laurents series as powers of (z - 1)

Put
$$z - 1 = u$$
 i.e., $z = u + 1$

$$\therefore f(z) = \frac{e^{2u+2}}{u^3} = \frac{e^2}{u^3} \left[1 + \frac{(2u)}{1!} + \frac{(2u)^2}{2!} + \dots \right]$$

$$= e^{2} \left[\frac{1}{u^{3}} + \frac{2u}{u^{3}} + \frac{(2u)^{2}}{2u^{3}} + \frac{(2u)^{3}}{3! u^{3}} + \dots \right]$$

$$= e^{2} \left[\frac{1}{(z-1)^{3}} + \frac{2}{(z-1)^{2}} + \frac{2}{(z-1)} + \frac{4}{3} + \frac{2}{3} (z-1) + \dots \infty \right]$$

The series is valid when |z-1| > 0

Example 7: Find the Laurents series of $f(z) = \frac{1}{(z-1)(z-2)}$ in |z| > 2

Solution:
$$f(z) = \frac{1}{(z-1)(z-2)}$$

$$f(z) = \frac{-1}{(z-1)} + \frac{1}{(z-2)}$$
 (using partial fraction)

In the region | z |>2 the Laurents series is

$$f(z) = \frac{-1}{z \left(1 - \frac{1}{z}\right)} + \frac{1}{z \left(1 - \frac{2}{z}\right)}$$

$$= -\frac{1}{z} \left(1 - \frac{1}{z}\right)^{-1} + \frac{1}{z} \left(1 - \frac{2}{z}\right)^{-1}$$

$$f(z) = -\frac{1}{z} \left(1 + \left(\frac{1}{z}\right) + \left(\frac{1}{z}\right)^2 + \dots\right) + \frac{1}{z} \left(1 + \left(\frac{2}{z}\right) + \left(\frac{2}{z}\right)^2 + \dots\right)$$

Example 8: Find the Laurents expansion of $f(z) = \frac{z^2 - 1}{(z+2)(z+3)}$ in

(i)
$$|z| > 3$$
 (ii) $2 < |z| < 3$

Solution:

$$f(z) = \frac{z^2}{(z+2)(z+3)} = A + \frac{B}{(z+2)} + \frac{C}{(z+3)}$$

$$z^2 - 1 = A(z+2)(z+3) + B(z+3) + C(z+2)$$

$$put z = -3 \qquad -C = 8 \qquad \therefore C = 8$$

$$put z = -2 \qquad B = 3$$

Equating the coefficient of z^2 , A=1 $\therefore f(z) = 1 + \frac{3}{(z+2)} - \frac{8}{(z+3)}$

(i)
$$|z| > 3$$

$$f(z) = 1 + \frac{3}{z} \left(1 + \frac{2}{z}\right)^{-1} \frac{8}{z} \left(1 + \frac{3}{z}\right)$$

$$= 1 + \frac{3}{z} \left(1 + \frac{2}{z}\right)^{-1} - \frac{8}{z} \left(1 + \frac{3}{z}\right)^{-1}$$

$$f(z) = 1 + \frac{3}{z} \left[1 - \left(\frac{2}{z}\right) + \left(\frac{2}{z}\right)^{2} - \dots\right] - \frac{8}{z} \left[1 - \left(\frac{3}{z}\right) + \left(\frac{3}{z}\right)^{2} - \dots\right]$$

In the above expansion the first series is valid when $\left|\frac{2}{z}\right| < 1$ i.e. 2 < |z|In the second series valid for $\left|\frac{3}{z}\right| < 1$ i.e. 3 < |z|

.. The whole expansion is valid when | z | >3

(ii)
$$2 < |z| < 3$$

$$f(z) = 1 + \frac{3}{z \left(1 + \frac{2}{z}\right)} - \frac{8}{3 \left(1 + \frac{z}{3}\right)}$$

$$= 1 + \frac{3}{z} \left(1 + \frac{2}{z}\right)^{-1} - \frac{8}{3} \left(1 + \frac{z}{3}\right)^{-1}$$

$$f(z) = 1 + \frac{3}{z} \left[1 - \left(\frac{2}{z}\right) + \left(\frac{2}{z}\right) - \dots\right] - \frac{3}{8} \left[1 - \left(\frac{z}{3}\right) + \left(\frac{z}{3}\right)^{2} - \dots\right]$$

In the above expansion the first series is valid when $\left|\frac{z}{z}\right| < 1$ i.e. 2 < |z|In the second expansion is valid when $\left|\frac{z}{3}\right| < 1$ i.e. |z| < 3

.. The whole expansion is valid 2 < |z| < 3

Example 9: Find the Laurents Expansion of the function $f(z) = \frac{7z-2}{z(z+1)(z-2)}$ in the annulus 1 < |z+1| < 3

Solution: put
$$z + 1 = u$$

$$z = u - 1$$

$$f(z) = \frac{7(u-1)-2}{(u-1)u(u-3)} = \frac{7u-9}{u(u-1)(u-3)}$$

$$=-\frac{3}{u}+\frac{1}{u-1}+\frac{2}{u-3}$$

(using partial fraction), 1< | u | < 3

$$= -\frac{3}{u} + \frac{1}{u\left(1 - \frac{1}{u}\right)} - \frac{2}{3\left(1 - \frac{u}{3}\right)}$$

$$= -\frac{3}{u} + \frac{1}{u} \left(1 - \frac{1}{u} \right)^{-1} - \frac{2}{3} \left(1 - \frac{u}{3} \right)^{-1}$$

$$= -\frac{3}{u} + \frac{1}{u} + \left[1 + \frac{1}{u} + \frac{1}{u^2} + \dots \right] - \frac{2}{3} \left[1 + \frac{u}{3} + \left(\frac{u}{3} \right)^2 + \dots \right]$$

$$= \left[\frac{-2}{u} + \frac{1}{u^2} + \frac{1}{u^3} + \dots \right] - \frac{2}{3} \left[1 + \frac{u}{3} + \left(\frac{u}{3} \right)^2 + \dots \right]$$

$$= \left[\frac{-2}{(z+1)} + \frac{1}{(z+1)^2} + \frac{1}{(z+1)^3} + \dots \right] - \frac{2}{3} \left[1 + \frac{(z+1)}{3} + \left(\frac{(z+1)}{3} \right)^2 + \dots \right]$$

clearly this series is valid in the region 1 < |z+1| < 3

(1) Zeroes of an analytic function

Def. A zero of an analytic function f(z) is that value of z for which f(z) = 0.

(2) Singularities of an analytic function

Def. A singular point of a function is the point at which the function ceases to be analytic.

(i) Isolated Singularity. It z = a is a singularity of f(z) such that f(z) is analytic at each point in its neighbourhood (i.e., there exists a circle with centre a which has no other singularity), then z = a is called an isolated singularity.

In such a case, f(z) can be expanded in a Laurent's series around z = a, giving

$$f(z) = a_0 + a_1 (z-1) + a_2 (z-a)^2 + \dots + b_1 (z-1)^{-1} + b_2 (z-a)^{-2} + \dots (1)$$

For example, $f(z) = \cot(\pi/z)$ is not analytic where $\tan(\pi/z) = 0$ i.e., at the points $\pi/z = 4\pi$ or z = 1/n (n = 1, 2, 3, ...)

Thus z = 1, $\frac{1}{2}$, $\frac{1}{3}$, are all isolated singularities as there is no other singularity in their neighbourhood.

But when n is large, z=0 is such a singularity that there are infinite number of other singularities in its neighbourhood. Thus z=0 is the non – isolated singularity of f(z).

(ii) Removable Singularity. If all the negative powers of (z-a) in (1) are zero, then

$$f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$$
. Here the singularity can be removed by defining $f(z)$ at $z = a$ in

such a way that it becomes analytic at z = a. Such a singularity is called a *removable* singularity.

Thus if $\underset{x\to a}{\text{Lt}} f(z)$ exists finitely, then z = a is a removable singularity

(iii) Poles. If all the negative powers of (z - a) in (i) after the n^{th} are missing, then the singularity at z = a is called a pole of order n

A pole of first order is called a simple pole.

(iv) Essential singularity. If the number of negative powers of (z - a) in (1) is infinite, then z = a is called an essential singularity. In this case,

$$\underset{x\to a}{\text{Lt}} f(z)$$
 does not exist.

Example 1:

Find the nature of singularities of the function

(i)
$$\frac{z - \sin z}{z^2}$$

Solution:

Here z = 0 is a singularity.

Also
$$\frac{z - \sin z}{z^2} = \frac{1}{z^2} \left\{ z - \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots \right) \right\} = \frac{z}{3!} - \frac{z^3}{5!} + \frac{z^5}{7!} - \dots$$

Since there are no negative powers of z in the expansion, z=0 is a removable singularity.

(ii)
$$(z+1) \sin \frac{1}{z-2}$$

Solution:

$$(z+1)\sin\frac{1}{z-2} = (t+2+1)\sin\frac{1}{t} \qquad \text{where } t = z-2$$

$$= (t+3)\left\{\frac{1}{t} - \frac{1}{3! t^3} + \frac{1}{5! t^5} - \dots\right\}$$

$$= \left(1 - \frac{1}{3! t^2} + \frac{1}{5! t^4} - \dots\right) + \left(\frac{3}{t} - \frac{1}{2t^3} + \frac{3}{5! t^5} - \dots\right)$$

$$= 1 + \frac{3}{t} - \frac{1}{6t^2} - \frac{1}{2t^3} + \frac{1}{120t^4} - \dots$$

$$= 1 + \frac{3}{z-2} - \frac{1}{6(z-2)^2} - \frac{1}{2(z-2)^3} + \dots$$

Since there are infinite number of terms in the negative powers of (z-2) is an essential singularity.

(iii)
$$\frac{1}{\cos z - \sin z}$$

Solution: Poles of $f(z) = \frac{1}{\cos z - \sin z}$ are given by equating the denominator to zero, i.e., by $\cos z - \sin z = 0$ or $\tan z = 1$ or $z = \pi/4$ is a simple pole of f(z).

Example:

What type of singularity have the following functions:

$$(i) \frac{1}{1-e^2}$$

Solution: Poles of $f(z) = \frac{1}{(1 - e^z)}$ are found by equating to zero $|1 - e^z| = 0$ or $|1 - e^z| = 0$ or $|1 - e^z| = 0$

$$z = 2 n \pi i (n = 0, \pm 1, \pm 2,)$$

Clearly f(z) has a simple pole at $z = 2\pi i$.

(ii)
$$\frac{e^{2z}}{(z-1)^4}$$

Solution:

$$\frac{e^{2\underline{z}}}{(z-1)^4} = \frac{e^{2(t+1)}}{t^4} = \frac{e^2}{t^4} \cdot e^{2t} \qquad \text{where } t = z-1$$

$$= \frac{e^2}{t^4} \left\{ 1 + \frac{2t}{1!} + \frac{(2t)^2}{2!} + \frac{(2t)^3}{3!} + \frac{(2t)^4}{4!} + \frac{(2t)^5}{5!} + \dots \right\}$$

$$= e^{2} \left\{ \frac{1}{t^{4}} + \frac{2}{t^{3}} + \frac{2}{t^{2}} + \frac{4}{3t} + \frac{2}{3} + \frac{4t}{15} + \dots \right\}$$

$$= e^{2} \left\{ \frac{1}{(z-1)^{4}} + \frac{2}{(z-1)^{3}} + \frac{2}{(z-1)^{2}} + \frac{4}{3(z-1)} + \frac{2}{3} + \frac{4}{15}(z-1) + \dots \right\}$$

since there are finite (4) number of terms containing negative powers of (z-1), z=1 is a pole of 4 th order.

(iii)
$$ze^{1/z^2}$$

Solution: $f(z) = ze^{1/z^2} = z \left\{ 1 + \frac{1}{1!z^2} + \frac{1}{2!z^4} + \frac{1}{3!z^6} + \dots \right\}$
 $= z + z^{-1} + \frac{z^{-3}}{2} + \frac{z^{-5}}{6} + \dots \infty$
 $= z + z^{-1} + \frac{z^{-3}}{2} + \frac{z^{-5}}{6} + \dots \infty$

since there are infinite number of terms in the negative powers of z, therefore z = 0 is an essential singularity of f(z).

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited "A" Grade by NAAC | 12B Status by UGC | Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF SCIENCE AND HUMANITIES DEPARTMENT OF MATHEMATICS COMPLEX ANALYSIS –SMT1602

 $UNIT-V-Evaluation\ of\ Integral-SMT1602$

UNIT V

EVALUATION OF INTEGRAL

RESIDUES

The co-efficient of $(z-a)^{-1}$ in the expansion of f(z) around an isolated singularity is called the **residue** of f(z) at that point. Thus in the Laurent's series expansion of f(z) around z = a i.e., $f(z) = a_0 + a_1 (z - a) + a_2 (z - a)^2 + \dots + a_{-1} (z - a)^{-2} + \dots$, the residue of f(z) at z = a is a_{-1} .

$$\therefore \qquad \text{Res } f(a) = \frac{1}{2\pi i} \int_{C} f(z) dz$$

i.e.,
$$\int_C f(z) dz = 2\pi i \operatorname{Res} f(a) \qquad \dots (1)$$

CALCULATION OF RESIDUES

(1) If f(z) has a simple pole at z = a, then

Res
$$f(a) = Lt_{z\rightarrow a}[(z-a)f(z)]$$

Laurent's series in this case is

$$f(z) = c_0 + c_1 (z-a) + c_2 (z-a)^2 \dots + c_{-1} (z-a)^{-1}$$

Multiplying throughput by z - a, we have

$$(z-a) f(z) = c_0 (z-a) + c_1 (z-a)^2 + \dots + c_{-1}$$

Taking limits as $z \rightarrow a$, we get

Lt
$$[(z-a)f(z)] = c_{-1} = \text{Res } f(a)$$

(2) Another formula for Res f(a):

Let
$$f(z) = \phi(z) / \Psi(z)$$
, where $\Psi(z) = (z - a) F(z)$, $F(a) \neq 0$

Then
$$\underset{z \to a}{\text{Lt}} \left[(z-a) \phi(z) / \psi(z) \right] = \underset{z \to a}{\text{Lt}} \frac{(z-a) \left[\phi(a) + (z-a) \phi'(a) + \dots \right]}{\psi(a) + (z-a) \psi'(a) + \dots}$$

$$= Lt_{z->a} \frac{\varphi(a) + (z-a)\varphi'(a) +}{\psi'(a) + (z-a)\psi''(a) +}, \quad \text{since } \psi(a) = 0$$

Thus Res
$$f(a) = \frac{\varphi(a)}{\psi'(a)}$$

(3) If f(z) has a pole of order n at z = a, then

Res f(a) =
$$\frac{1}{(n-1)!} \left\{ \frac{d^{n-1}}{dz^{n-1}} [(z-a)^n f(z)] \right\}_{z=a}$$

Example:

Find the poles and residues of
$$f(z) = \frac{z}{z^2 - 3z + 2}$$

Solution:

$$f(z) = \frac{z}{(z-2)(z-1)}$$

To find poles of f(z) put Dr = 0

(ie)
$$(z-2)(z-1)=0$$

z=2, 1 are two simple poles of f(z)

Residue of
$$f(z)$$
 at $z = 2$

$$= \underset{z \to 2}{\text{Lt}} \left[(z-2) \frac{z}{(z-2)(z-1)} \right]$$
$$= \frac{2}{2-1} = 2$$

Residue of f(z) at z = 1

$$= \underset{z \to 1}{\text{Lt}} \left[(z - 1) \frac{z}{(z - 2)(z - 1)} \right]$$
$$= \frac{1}{1 - 2} = -1$$

Example:

Find the poles and residues of $f(z) = \cot z$.

Solution:
$$f(z) = \cot z$$

$$=\cos z/\sin z$$

This is of the form

$$f(z) = \phi(z) / \psi(z)$$

poles, $\sin z = 0$

$$z = n\pi$$
 $z = 0, \pm \pi, \pm 2\pi,...$

$$\therefore \varphi(a) \neq 0$$
 and $\psi(a) = 0$

$$\therefore \text{ Residue at } z = a \text{ is } \frac{\varphi(a)}{\Psi'(a)}$$

$$z = a = 0, \pm \pi, \pm 2\pi,...$$

Residue of
$$f(z) = \frac{\cos z}{\frac{d}{dz}(\sin z)}$$

$$= \frac{\cos z}{\cos z}$$

$$= 1$$

Example: Find the poles and residues of $f(z) = \frac{ze^z}{(z-a)^3}$

Solution:
$$f(z) = \frac{ze^z}{(z-a)^3}$$

 \therefore z = a is a pole of order 3.

$$= \frac{1}{(m-1)} \mathop{\rm Lt}_{z \to a} \frac{d^{m-1}}{dz^{m-1}} (z-a)^m f(z)$$

Here m = 3

$$= \frac{1}{2!} \operatorname{Lt}_{z \to a} \frac{d^{2}}{dz^{2}} (z - a)^{3} \frac{ze^{z}}{(z - a)^{3}}$$
$$= \frac{1}{2!} \operatorname{Lt}_{z \to a} \frac{d^{2}}{dz^{2}} (ze^{z})$$

$$= \frac{1}{2} \operatorname{Lt}_{z \to a} \frac{d}{dz} \left(z e^{z} + e^{z} \right)$$

$$= \frac{1}{2} \operatorname{Lt}_{z \to a} \left(e^{z} + z e^{z} + e^{z} \right)$$

$$= \frac{1}{2} (2e^{a} + ae^{a})$$

$$= \frac{1}{2} e^{a} (2 + a)$$

Example: Evaluate the residue at the poles for the function

$$f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+4)}$$

Solution: $f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+4)}$ is pole of order 2

z = 2i is a simple pole

Residue of f(z) at z = -1 (pole of order 2)

: Lt
$$\frac{d}{dz}(z+1)^2 \frac{z^2-2z}{(z+1)^2(z+4)}$$

$$= Lt_{z \to -1} \frac{d}{dz} \left(\frac{z^2 - 2z}{z^2 + 4} \right)$$

$$= Lt_{z \to -1} \frac{(z^2 + 4)(2z - 2) - (z^2 - 2z)(2z)}{(z^2 + 4)^2}$$

$$= \frac{(5)(-4) - (3)(-2)}{25}$$

$$= \frac{14}{25}$$

Residue of f(z) at z = 2i (simple pole)

$$= Lt_{z\to 2i}(z-2i)\frac{z^2-2z}{(z+1)^2(z-2i)(z+2i)}$$

$$= Lt_{z \to 2i} \frac{z^2 - 2z}{(z+1)^2 (z-2i)(z+2i)}$$

$$= \frac{(2i)^2 - 2(2i)}{(2i+1)^2 (4i)}$$

$$= \frac{-4-4i}{(-4+1+4i)4i}$$

$$= \frac{-4(1+i)}{4i(-3+4i)}$$

$$= \frac{-(1+i)}{-3i-4} = \frac{(1+i)}{3i+4} \times \frac{(-3i+4)}{(-3i+4)}$$

$$= \frac{7+i}{25}$$

Residue of f(z) at z = -2i (simple pole)

$$= Lt_{z \to -2i} (z + 2i) \frac{z^2 - 2z}{(z + 1)^2 (z + 2i)(z - 2i)}$$

$$= Lt_{z \to -2i} \frac{z^2 - 2z}{(z + 1)^2 (z - 2i)}$$

$$= \frac{(-2i)^2 - 2(-2i)}{(-2i + 1)^2 (-4i)}$$

$$= \frac{-4 - +4i}{(-4i)(-4 - 4i + 1)}$$

$$= \frac{-4 + 4i}{(-4i)(-3 - 4i)}$$

$$= \frac{1 - i}{(i)(3 + 4i)}$$

$$= \frac{(1 - i)}{(3i - 4)} \times \frac{(-3i - 4)}{(-3i - 4)}$$

$$= \frac{(1 - i)(3i + 4)}{(3i - 4)(3i + 4)}$$

$$= \frac{(1 - i)(3i + 4)}{(3i - 4)(3i + 4)}$$

$$\frac{(1 - i)(3i + 4)}{(3i - 4)(3i + 4)}$$

Example: Find poles and residues of
$$f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+1)}$$

Solution:
$$f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+1)}$$

Poles of f(z) is

z = -1 is pole of order 2

z = i is a simple pole z = -i is a simple pole

Residue at z = -1 (pole of order 2)

$$= Lt_{z\to -1} \frac{d}{dz} (z+1)^2 \frac{z^2 - 2z}{(z+1)^2 (z^2+1)}$$

$$= \underset{z \to -1}{\text{Lt}} \frac{d}{dz} \left(\frac{z^2 - 2z}{z^2 + 1} \right)$$

$$= \underset{z \to -1}{\text{Lt}} \frac{(z^2 + 1)(2z - 2) - (z^2 2z)(2z)}{(z^2 + 1)^2}$$

$$= \frac{(2)(-4) - (3)(-2)}{4}$$

$$= \frac{-8 + 6}{4}$$

$$= -\frac{2}{4} = -\frac{1}{2}$$

Residue of f(z) at z = i (simple pole)

$$= Lt_{z\to -1}(z-i)\frac{z^2-2z}{(z+1)^2(z^2+1)(z-i)}$$

The war the or was of

$$= Lt \frac{z^2 - 2z}{(z+1)^2(z+i)}$$

$$=\frac{(i)^2-2(i)}{(i+1)^2(2i)}$$

$$=\frac{-(1+2i)}{-4}=\frac{1+2i}{4}$$

Residue of f(z) at z = I (simple pole)

$$= Lt_{z \to -i} (z+i) \frac{z^2 - 2z}{(z+1)^2 (z+i)(z-i)}$$

$$= Lt_{z \to -i} (z+i) \frac{z^2 - 2z}{(z+1)^2 (z+i)(z-i)}$$

$$= \frac{(-i)^2 - 2(-i)}{(-i+1)^2 (-2i)}$$

$$= \frac{-1+2i}{(-2i)(-2i)} = \frac{-1+2i}{-4} = \frac{1-2i}{4}$$

RESIDUE THEOREM

If f(z) is analytic in a closed curve C except at a finite number of singular points within C, then

 $\int_C f(z)dz = 2\pi i \times (\text{sum of the residues at the singular points within C})$

Let us surround each of the singular points $a_1, a_2, a_3, \ldots, a_n$ by a small circ such that it encloses no other singular point. Then these circles C_1, C_2, \ldots, C_n together with C_n form a multiply connected region in which f(z) is analytic.

:. Applying Cauchy's theorem, we have

$$\int_{C} f(z)dz = \int_{C_{1}} f(z)dz + \int_{C_{2}} f(z)dz + \dots + \int_{C_{n}} f(z)dz$$
 by (1)
= $2\pi i [\text{Res } f(a_{1}) + \text{Res } f(a_{2}) + \dots + \text{Res } f(a_{n})]$

which is the desired result.

Example: Use residue theorem to evaluate $\int_{C} \frac{3z^2 + 2}{(z-1)(z^2 + 9)} dz$

Where c is |z - 2| = 2.

Solution: $f(z) = \frac{3z^2 + 2}{(z-1)(z^2 + 9)}$

Poles are

z = 1 is a simple pole

 $z = \pm 3i$ are two simple poles.

Here c is the circle |z-2|=2.

z = 1 is only pole lies inside c.

.: By cauchy residue theorem

$$\int_C f(z)dz = 2\pi i \text{ (sum of the residue of } f(z) \qquad \dots (1)$$

at the poles which lies inside c)

 \therefore Residue of f(z) at z = 1 (simple pole)

$$= Lt(z-1)\frac{3z^2+2}{(z-1)(z^2+9)}$$
$$= \frac{5}{10} = \frac{1}{2}$$

$$\int_{C} f(z) dz = 2\pi (1/2)$$

 $= \pi i$

Example: Determine poles and residues of $f(z) = \frac{z}{(1-z)^2(z+2)}$ and hence evaluate

 $\int_{C} f(z)dz \text{ where c is the curve } |z| = 5/2$

Solution: $f(z) = \frac{z}{(1-z)^2(z+2)}$

 \therefore poles are z = 1 is poles of order 2 and z = -2 is a simple pole.

Here c is the circle |z| = 5/2.

z = 1 and z = -2 are lying inside c.

 \therefore Residue of f(z) at z = 1 (pole of order 2)

$$= Lt \frac{d}{dz} (z-1)^{2} \frac{z}{(1-z)^{2} (z+2)}$$

$$= Lt \frac{d}{dz} \left(\frac{z}{z+2}\right)$$

$$= Lt \frac{(z+2)(1) - (z)(1)}{(z+2)^{2}}$$

$$\frac{3-1}{0} = \frac{2}{0}$$

Residue of f(z) at z = -2 (simple pole)

$$= Lt_{z \to -2}(z+2) \frac{z}{(1-z)^2(z+2)}$$
$$= \frac{(-2)}{(-2-1)^2} = -\frac{2}{9}$$

:. By Cauchy residue theorem

 $\int_{C} f(z)dz = 2\pi i \text{ (sum of the residues of } f(z) \text{ at the poles which lies inside c)}$

$$= 2\pi i \left(\frac{2}{9}\right) - \left(\frac{2}{9}\right)$$
$$= 0$$

Example: Evaluate
$$\int_{C} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz \text{ where } |z| = 3.$$

Solution:
$$f(z) = \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)}$$

The poles are

$$z = 1$$
 simple pole

$$z = 2$$
 simple pole

Here the circle is |z| = 3

$$\therefore \quad \text{Both } z = 1 \& z = 2 \text{ lies inside c}$$

$$\therefore$$
 Residue of $f(z)$ at $z = 1$

$$= Lt_{z\to 1}(z-1)\frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)}$$

$$=\frac{\sin \pi + \cos \pi}{-1} = \frac{-1}{-1} = 1$$

Residue of f(z) at z = 2.

$$= Lt_{z\to 2}(z-2) \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)}$$

$$= \frac{\sin 4\pi + \cos 4\pi}{1} = \frac{1}{1} = 1$$

By residue theorem

$$\int_{C} f(z)dz = 2\pi i \text{ (sum of the residues at the interior poles)}$$

$$=2\pi i (1+i)$$

$$=4\pi i$$

Example:

Evaluate
$$\int_{C} \frac{4-3z}{z(z-1)(z-2)} dz$$
 where c is the circle $|z| = 3/2$

Solution:

$$f(z) = \frac{4-3z}{z(z-1)(z-2)}$$

:. The poles are

z = 0 simple pole

z = 1 simple pole

z = 2 simple pole

0 1 2 X

Here the circle is |z| = 3/2

$$z = 0 & z = 1$$
 lie inside

c and z = 2 lies outside c.

Residue of f(z) at z = 0 simple pole

$$= Lt_{z\to 0} z \frac{4-3z}{z(z-1)(z-2)}$$

$$=\frac{4}{2}=2$$

Residue of f(z) at z=1 is

$$Lt_{z\to 1}(z-1)\frac{4-3z}{z(z-2)}$$

$$=\frac{1}{1(-1)}=-1$$

.. By cauchy integral theorem

 $\int_{C} f(z) dz = 2\pi i$ (sum of the residues at the interior poles)

$$=2\pi i (2-1)$$

$=2\pi i$

Example:

Evaluate $\int_{C} \frac{dz}{(x^2+4)^2}$ around the closed contour |z-i|=2.

Solution:

$$f(z) = \frac{1}{(z^2 + 4)^2}$$

The poles are $z = \pm 2i$ are pole of order 2.

Here the circle is |z-i|=2

 $\therefore z = 2i \text{ is the only pole}$ lies inside c.

:. Residue of f(z) at z = 2i (pole of order 2)

$$= \underset{z \to 2i}{\text{Lt}} \frac{d}{dz} (z -$$

$$= \underset{z \to 2i}{\text{Lt}} \frac{(z+2i)^{2}(0)-1(2)(z+2i)}{(z+2i)^{4}}$$

$$= Lt_{z>2i} \frac{-(2z+4i)}{(z+2i)^4} = \frac{-(4i+4i)}{(4i)^4} = -\frac{i}{32}$$

.. By cauchy's integral theorem

 $\int_{C} f(z) dz = 2\pi i$ (sum of the residues at the interior poles)

$$=2\pi i \left(\frac{-i}{32}\right)=\frac{\pi}{16}$$

Example: Evaluate $\int_{c}^{c} \frac{(z-1)}{(z+1)^2(z-2)}$ where c is the circle |z-i|=2.

Solution:

$$f(z) = \frac{(z-1)}{(z+1)^2(z-2)}$$

The poles are z = -1 pole of order 2

& z = 2 simple pole

Here the circle is |z-i|=2

Therefore z = -1 is the only pole

Lies inside c.

Therefore Residue of f(z) at

$$z = -1$$
 (pole of order 2)

$$= \underset{z \to -1}{\text{Lt}} \frac{d}{dz} (z+1)^2 \cdot \frac{(z-1)}{(z+1)^2 (z-2)}$$

$$= \underset{z \to -1}{\text{Lt}} \frac{d}{dz} \left(\frac{z-1}{z-2} \right)$$

$$= \underset{z \to -1}{\text{Lt}} \frac{(z-2)(1) - (z-1)(1)}{(z-2)^2}$$

$$=\frac{(-3)-(-2)}{9}=-\frac{1}{9}$$

By Residue theorem

$$\int_{C} f(z) dz = 2\pi i \left(-\frac{1}{9}\right) = -\frac{2\pi i}{9}$$

Example:

Find the poles and residues of

$$f(z) = \frac{z-3}{(z+1)^2(z-2)}$$

The poles are z = -1 pole of order 2

&
$$z = 2$$
 simple pole

Here the circle is |z-i|=2

Here z = -1 is the only pole lies

Inside c.

Therefore Residue at z = -1 (pole of order 2)

Example 4 If $f(z) = \sin z$ is an analytic function, prove that the family of curves $u(x, y) = c_1$ and $v(x, y) = c_2$ are orthogonal to each other.

Solution: Given:
$$f(z) = \sin z = \sin (x + iy)$$

$$= \sin x \cos (iy) + \cos (x) \sin (iy)$$

$$= \sin x \cosh y + i \cos x \sinh y$$
Consider $u(x, y) = c_1$

$$\sin x \cosh y = c_1 \qquad \dots (1)$$

Differentiating (1) partially with respect to x, we get

$$\sin x \sinh y \frac{dy}{dx} + \cos x \cosh y = 0$$

$$\frac{dy}{dx} = -\frac{\cos x \cosh y}{\sin x \sinh y}$$

$$m_1 = -\cot x \coth y$$

Again consider $v(x, y) = c_2$ $\cos x \sinh y = c_2$... (2)

Differentiating partially with respect to x, we get

$$-\sin x \sinh y + \cos x \cosh y \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = \frac{\sin x \sinh y}{\cos x \cosh y}$$

$$m_2 = \tan x \tanh y$$

$$\therefore m_1 m_2 = -1$$

$$u(x, y) = c_1$$
 and $v(x, y) = c_2$ are orthogonal.

Note: For any analytic function F(z) = u + iv, the family of curves $u = c_1$, $v = c_2$ forms an orthogonal system.

Example:

Evaluate
$$\int_{C} \frac{z-3}{z^2+2z+5} dz$$
, where C is the circle

(i)
$$|z|=1$$
 (ii) $|z+1-i|=2$ (iii) $|z+1+i|=2$

Solution:

The poles of $f(z) = \frac{z-3}{z^2+2z+5}$ are given by $z^2+2z+5=0$

i.e., by
$$z = \frac{-2 \pm \sqrt{(4-20)}}{2} = -1 \pm 2i$$

(i) Both the poles z = -1+2i and z = -1 —2i lie outside the circle |z| = 1.

Therefore, f(z) is analytic everywhere within C.

Hence by Cauchy's theorem,
$$\int_{C} \frac{z-3}{z^2 + 2z + 5} dz = 0$$

(ii) Here only one pole z = -1 + 2i lies inside the circle C: |z + 1 - i| = 2. Therefore, f(z) is analytic within C except at this pole.

$$\therefore \text{ Res } f(-1+2i) = \underset{z \to -1+2i}{\text{Lt}} \left[\left\{ z - (-1+2i) \right\} f(z) \right] = \underset{z \to -1+2i}{\text{Lt}} \frac{(z+1-2i)(z-3)}{z^2+2z+5}$$

$$= Lt_{z=2-1+2i} \frac{(z-3)}{z+1+2i} = \frac{-4+2i}{4i} = i+1/2$$

Hence by residue theorem $\int_{C} f(z) dz = 2\pi i \text{ Res } f(-1+2i) = 2\pi i (i+1/2) = \pi (i-2)$

(iii) Here only one pole z = -1 - 2i lies inside the circle C: |z + 1 + i| = 2. Therefore, f(z) is analytic within C except at this pole.

$$\therefore \text{ Res f(-1-2i)} = \underset{z \to -1-2i}{\text{Lt}} \frac{(z+1+2i)(z-3)}{z^2+2z+5}$$

$$= Lt_{z\to -1-2i} \frac{(z-3)}{z+1-2i} = \frac{-4-2i}{-4i} = 1/2 -i$$

$$\int_{C} f(z) dz$$

$$= 2\pi i \operatorname{Res} f(-1 - 2i)$$

Hence by residue theorem

$$=2\pi i (1/2-i)$$

$$=\pi(2+i)$$

CONTOUR INTEGRATION

VALUATION OF REAL DEFINITE INTEGRALS

any important definite integrals can be evaluated by applying the Residue theorem to operly chosen integrals.

a) Integration around the circle: An integral of the type $\int_0^\infty f(\sin \theta, \cos \theta) d\theta$, where the integrand is a rational function of $\sin \theta$ and $\cos \theta$ can be evaluated by writing $e^{i\theta} = z$.

Since $\sin \theta = \frac{1}{2i} \left(z - \frac{1}{z} \right)$ and $\cos \theta = \frac{1}{2} \left(z + \frac{1}{z} \right)$, then integral takes the form

 $\int_{C} f(z)dz$, where f(z) is a rational function of z and C is a unit circle |z| = 1.

Hence the integral is equal to $2\pi i$ times the sum of the residues at those poles of f(z) which are within C.

Procedure: Integrals of the form $\int_{0}^{2\pi} \varphi(\cos\theta, \sin\theta)d\theta$ where φ is a rational function of

 $\cos\theta$ and $\sin\theta$.

Working rule: put $z = e^{i\theta} = \cos \theta + i \sin \theta$

$$\frac{1}{z} = e^{-i\theta} = \cos\theta - i\sin\theta$$

$$\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{1}{2} \left(z + \frac{1}{z} \right)$$

$$\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2} = \frac{1}{2i} \left(z - \frac{1}{z} \right)$$

since
$$z = e^{i\theta}$$

$$dz = i e^{i\theta} d\theta$$

$$d\theta = \frac{dz}{ie^{i\theta}}$$
 $= \frac{dz}{iz}$

$$\int_{0}^{2\pi} \phi(\cos\theta, \sin\theta) d\theta = \int_{C} \phi \left[\frac{1}{2} \left(z + \frac{1}{z} \right), \frac{1}{2i} \left(z - \frac{1}{z} \right) \frac{dz}{iz} \right] \text{ where c is the unit circle}$$

$$|z| = 1$$

$$=\int f(z)dz$$

.. By cauchy residue theorem

= $2 \pi i$ (sum of the residues of f(z) at e poles which lies inside c)

Example: Using method of contour integration evaluate $\int_{0}^{2\pi} \frac{d\theta}{2 + \cos \theta}$

Solution: put $z = e^{i\theta}$

$$d\theta = \frac{\mathrm{d}z}{\mathrm{i}z}$$

$$\cos\theta = \frac{1}{2} \left(z + \frac{1}{z} \right)$$

$$\int_{0}^{2\pi} \frac{d\theta}{2 + \cos \theta} = \int_{C} \frac{dz/iz}{2 + \frac{1}{2} \left(z + \frac{1}{z}\right)}$$
 where c is the unit circle $|z| = 1$

$$= \int \frac{dz/iz}{2 + \frac{1}{2} \left(\frac{z^2 + 1}{z}\right)}$$

$$= \int_{C} \frac{dz/iz}{4z+z^{2}+1}$$

$$= \frac{2}{i} \int_{C} \frac{dz}{z^{2}+4z+1}$$

$$= \frac{2}{i} \int_{C} f(z)dz$$

By cauchy residue theorem

= $\frac{2}{i} 2\pi i$ (sum of the residue of f(z) at the poles lies inside c)

= 4π (sum of the residues of f(z) at the poles inside c)

The poles of f(z) are given by the roots of $z^2 + 4z + 1 = 0$

$$z = \frac{-4 \pm \sqrt{16 - 4}}{2}$$

$$= \frac{-4 \pm 2\sqrt{3}}{2}$$

$$= -2 \pm \sqrt{3}$$
i.e., $z = -2 + \sqrt{3}$ & $z = 2 - \sqrt{3}$
i.e., $\alpha = -2 + \sqrt{3}$, $\beta = -2 - \sqrt{3}$

But $z = \alpha$ lies inside c

Residue of f(z) at $z = \alpha$ (simple pole).

Residue at the simple pole is given by $\underset{z\to\alpha}{\text{Lt}}(z-\alpha)f(z)$

Hence Lt
$$(z-\alpha)\frac{1}{(z-\alpha)(z-\beta)}$$

$$= \frac{1}{\alpha-\beta}$$

$$= \frac{1}{(-2+\sqrt{3}-(-2-\sqrt{3}))}$$

$$= \frac{1}{2\sqrt{3}}$$

$$\therefore \int_{0}^{2\pi} \frac{dz}{2+\cos\theta} = 4\pi \left(\frac{1}{2\sqrt{3}}\right)$$

$$= \frac{2\pi}{\sqrt{3}}$$

Example: Evaluate
$$\int_{0}^{2\pi} \frac{\cos 2\theta}{5 + 4\cos \theta} d\theta$$

$$\int_{0}^{2\pi} \frac{\cos 2\theta}{5 + 4\cos \theta} d\theta = \int_{0}^{2\pi} \frac{R.P.e^{i2\theta}}{5 + 4\cos \theta} d\theta$$

$$= R.P. \int_{0}^{2\pi} \frac{(e^{i\theta})^2}{5 + 4\cos\theta} d\theta$$

put
$$z = e^{i\theta}$$

$$d\theta = \frac{dz}{iz}$$

$$\cos\theta = \frac{1}{2} \left(z + \frac{1}{z} \right)$$

$$= R.P. \int_{C} \frac{z^{2} dz / iz}{5 + 4 \frac{1}{2} \left(z + \frac{1}{z}\right)}$$

$$= \frac{1}{i} R.P. \int_{C} \frac{z^{2} dz}{5z + 2z^{2} + 2}$$

$$= \frac{1}{i} R.P. \int_{C} f(z) dz$$
where $f(z) = \frac{z^{2}}{2z^{2} + 5z + 2}$

 $=\frac{1}{i}$ R.P. $2\pi i$ (sum of the residue of f(z) at its interior poles)

=R.P. 2π (sum of the residue of f(z) at its interior poles)

For poles of f(z) put Dr.=0

i.e.,
$$2z^2 + 5z + 2 = 0$$

$$2z(z+2)+1(z+2)=0$$

$$(2z+1)(z+2)=0$$

$$z = -2, -1/2$$

But only z = -1/2 lies inside c, Hence Residue of f(z) at z = -1/2 is

$$= \operatorname{Lt}_{z \to -\frac{1}{2}} \left(z + \frac{1}{2}\right) f(z)$$

$$= \operatorname{Lt}_{z \to -\frac{1}{2}} \left(z + \frac{1}{2}\right) \frac{z^2}{(z+2)(2z+1)}$$

$$= \operatorname{Lt}_{z \to -\frac{1}{2}} \left(z + \frac{1}{2}\right) \frac{z^2}{2\left(z + \frac{1}{2}\right)(z+2)}$$

$$= \frac{1/4}{(2)(3/2)} = \frac{1}{12}$$

$$\therefore R.P. \int_{0}^{2\pi} \frac{e^{i2\theta}}{5 + 4\cos\theta} d\theta = 2\pi \left(\frac{1}{12}\right)$$

R.P.
$$\int_{0}^{2\pi} \frac{\cos 2\theta + i \sin 2\theta}{5 + 4 \cos \theta} d\theta = \left(\frac{\pi}{6}\right)$$

i.e.,
$$\int_{0}^{2\pi} \frac{\cos 2\theta}{5 + 4\cos \theta} d\theta = \left(\frac{\pi}{6}\right)$$

Example: By integrating around a unit circle, evaluate $\int_{0}^{2\pi} \frac{\cos 3\theta}{5 - 4\cos \theta} d\theta.$

Putting
$$z = e^{i\theta}$$
, $d\theta = dz / iz$, $\cos\theta = \frac{1}{2} \left(z + \frac{1}{z} \right)$

and
$$\cos 3\theta = \frac{1}{2} \left(e^{3i\theta} + e^{-3i\theta} \right) = \frac{1}{2} \left(z^3 + \frac{1}{z^3} \right)$$

Hence the given integral I =
$$\int_{C}^{\frac{1}{2} \left(z^3 + \frac{1}{z^3}\right)} \frac{dz}{iz}$$

$$= -\frac{1}{2i} \int_{C} \frac{z^{6}+1}{z^{3}(2z^{2}-5z+2)} dz = -\frac{1}{2i} \int_{C} \frac{(z^{6}+1)dz}{z^{3}(2z-1)(z-2)}$$

$$=-\frac{2}{2i}\int f(z)dz$$
 where C is the unit circle $|z|=1$.

Now f(z) has a pole of order 3 at z = 0 and simple poles at $z = \frac{1}{2}$ and z = 2. Of these only z = 0 and $z = \frac{1}{2}$ lie within the unit circle.

$$\therefore \operatorname{Resf}(1/2) = \operatorname{Lt}_{z \to 1/2} \frac{(z - 1/2)(z^6 + 1)}{(2z - 1)(z - 2)} = \operatorname{Lt}_{z \to 1/2} \left(\frac{z^6 + 1}{2z^3(z - 2)} \right) = -\frac{65}{24}$$

Resf(0) =
$$\frac{1}{(n-1)!} \left(\frac{d^{n-1}}{dz^{n-1}} [(z-0)^n f(z)] \right)_{z=0}$$

$$=\frac{1}{2}\left[\frac{d^2}{dz^2}\left(\frac{z^6+1}{2z^2-5z+2}\right)\right]_{z=0}=\frac{d}{dz}\left[\frac{(2z^2-5z+2)6z^5-(z^6+1)(4z-5)}{2(2z^2-5z+2)^2}\right] \ at \ z=0$$

$$= \left[\frac{d}{dz} \left(\frac{8z^7 - 25z^6 + 12z^5 - 4z + 5}{2(2z^2 - 5z + 2)^4}\right)\right]_{z=0}$$

$$= \left[\frac{(2z^2 - 5z + 2)^2 (56z^6 - 150z^5 + 60z^4 - 4) - (8z^7 - 25z^6 + 12z^5 - 4z + 5)2(2z^2 5z + 2)(4z - 5)}{2(2z^2 - 5z + 2)^4}\right]_{z=0}$$

$$=\frac{4(-4)-5(-20)}{2\times16}=\frac{84}{32}=\frac{21}{8}$$

Hence
$$I = -\frac{1}{2i} [2\pi i (\text{Re sf}(1/2) + \text{Re sf}(0))] = -\pi \left(-\frac{65}{24} + \frac{21}{8} \right) = -\pi \left(-\frac{1}{12} \right) = \frac{\pi}{12}.$$