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l. Analytic Function

Introduction to Complex Numbers

A general form of a complex number is z = x + iy when x and y are
real and i = \[ =1 . Here x is called the real part and y is the imaginary
part of z. '

A conjugate of a compléx number z is z =x ~iy. Then
z2+z = 2x = 5=%[z+?]

1 2
2=z = 2y = yéﬁ[z--z]

27 = (x+iy)(x-iy) = x2+4)2
The complex number z = x + iy can be represented by a point (x, y)
in a complex plane. The modulus (absolute value) of z is given by

1z = VxT+)2
The distance between the points z, and z, is |z, —z, |.
If zy = x| +iy, and z, =x, + iy,, then the distance
7% = |z-n|
= |(x+ iy,)—(x2+' iyy) }
= |Gp=—x)+i(y; -y |
Polar forin of a complex number : Let the polar coordinates of the
point (x, y) be (r, 9), then
z = x+iy=r[cosB+isin®] = rei®
x = rcos®, y=prsiné
Squaring and adding, we get
x24+)2 = 2

I;ividing the above results, we get

- w(?)

'The number r is called the modulus value of z and 6 is called the
amplitude (argument) of the complex num_l:;g__- z.



Euler’s Formula
We know ein® = cos n®+ isin nd
Demoivre’s tl1eorem for positive integer, -
(cosB+isinB)” = cos n® + isin nd -
Note : e~ 17® =cos (nB)— isin (n0)

Functions of a Complex Variable

Letz =x + iyand @ = + iv. If z and o are two complex variables
and if for each value of z in a complex plane there corresponds one or
more values of o, then © is called to be a function of z.

We can write w = f(@ =utiv=ul, y)+ zv(x ).
Here u and v are real functions of the: real variables x and y.
For example fiz) = z2 ) ‘

' = (2 +iCx) .

We can represent z = x + iy and ® = u + iv on separate compleﬁ
planes called z-plane and w-plane respectively. The relation © = f(z)
gives the correspondence between the points (x, ) of the z-plane and the
points (u, v) of the w-plane.

Limits : Let z = x+iy

Loy o Lt g

Z—)‘Zﬂ Z—)Zn

z- 2, f@) = N (u + ) [ f@=u+i]

Z=I,

Lt O :
e (u +w? = ug+ivy

Y=y

In symbols, we write

U t@) = 1

2—}2‘0



Continuity of f(z) : _
- A function f (z) is said to be continuous at z = zg if *

7@ = fGo)

~ If f(2) is continuous in any region R of the z-plane, if it is continuous
at every point of that region.
Derivatives of f(z) -
Let @ = f(z)-be a single-valued function of the variable z. The
derivative of f(2) is defined as

do _ Lt [f(z"'ﬁz)—f(zl
Az

2—)20

e fli@) = Az 0 ] if limits exists.

Partial derivative of u :

Bdu _ Lt [ﬂ(x +ﬁx,y}—u(x,y)]
8x  Ax—>0 Ax :
Ou _ 1Lt [ﬁ{x,y +i\-y)—u(x,y)]
oy Ay— 0 Ay
Analytic Functions

A single valued function f(z) which possesses a unique denvatwe
with respect to z at all points of a region R is called an analytic function.

It is also called a Regular function or Holomorphic function.
Singular Point : A point at which an analytic function f(z) ceases to
possess a derivative is called a singular point of the flmctmn or singularity

of f(2).

The necessary and sufficient conditions for the derivative of the

function f(z).
du du E'B‘v av L . )
(@ dx* 3y’ ax’ By are con@uom functions of x and y in the
region R.
Ou _ Ov O o C-R equations).

(i 6x=3y ard oy =_3x(



Note : S s
(i) To check the given function is analytic or not, we can use the CR
equations. : -

(i) To find the derivative of f(z), we can use

f(@) = u+tiv
u . D
o) = B i

(ifi) To find f(z) or F'(z) in terms of z, we can substitute x = z and
y =0 on both sides.
(iv) Recall the following formulae :
sin(ix) = isinhx
cos (ix) = coshx
sin(0) = 0, cos(0) =1
sinh(0) = 0, cosh(0)=1

E‘I(Sin"‘} = COSX,
a(msx) = —siq.r

+ coshx

s
@,
-
1

S

I

%{mshx) = + sinh x

sin (x +y) .= sin (x) cos (¥) + cos (x) sin ()
cos(x +y) = cosxcosy—sinxsiny

Example 1 | Prove that f(z) = 72 is an analytic function.
Solution : Given : fiz) = 2%

= (x+iyp?
x2+ 22 +2ixy
S o= x2opl+i2xy
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u = xz—y2 vy = ny
du av
ax 2% ax %Y
Su _ v _
3y -2y ax 2x
Ou ov
Here A 3y
Bu-_ _ av
dy T ox
C.R. equations are satisfied.
“. f(2) is analytic function.

Example 2 | Test the analyticity of f(z) = e%

Solution : Given: e? = ex+iy

= eXeV
= e*[cosy+isiny ]

= eX¥cosy+ie*siny

Here u = e*cosy v = e*siny
3 ﬂ' = 4 -QX' = X q1
o - ercosy o e*siny
2 e* sin y 2 e*cosy
gy dy
uo_ v . o
ox oy ¢ oy ox

. f(2) = e is analytic function.



not,
Solution : Given: f(z) =

Example 3 | Test whether the function f(z) = cos z is analytic or

oS Z

cos (x +iy) 3

cos (x) cos (iy) — sin (x) sin (iy)
cos (x) cosh y —sin (x) i sinh y
cos x cosh y + i (—sin x sinh y)

Here u = cosx coshy v = —sinx sinhy
| G
‘g—:' = —sinx coshy 8_: = —cosxsinhy
g—; = cosx sinhy g—; = —sinxcoshy
e B BV L O DY
¢ ox oy ™ 5y " Tiox

. f(z) = cos z is analytic function.

Solution : Welknow logz = %

[ logz =log (re®)

= logr + log(e®)

= log+/x* +y* +i0

Example 4 | Discuss the analyticity of f(z) = log z.

log (x2+2) + itan"! ('_,‘E)

_ 2 2\Y. ; -1(Y
=log (x*+y“) /2 +itan (x)

1
T2

_ 2 92\ L itan-1(?
log (x* + y*) + itan (x) ]



1
| u 5 log (x +y7-}_ v tamn (x
Gu _ _x ov 1 (=¥
dx x2+y2 ax N xz)
- 1+(‘E
X
Ou _ _¥ - _ Y
dy  x2+4,2 T xl4y?
v _ 1 (l)
a 2 '\x
4 1+(-‘1
x
_ X
T ox24y2
!
 Bu _ v .
oax Ay
du v
dy T ox

The partial derivatives are continuous except at.x = 0, y = 0, CR
equations are satisfied.

Its derivative is

o) . Ov
@ = gt e

= = 1 —L—
(@) (555)

- o 3 S (x—1iy)
x2+y2  (x-iy)(x+1iy)
1 1

x+iy z ;
log z is analytic everywhere except at z = 0, (at the

Hence f(z)
origin).

Example 5 | Prove that f () = sin 7 is analytic function and hence
find the derivative, | | -

Selution ; Given: f{z) = sinz = sin(x +iy)
= sin (x +iy)



. = sin(x) cos (iy) + cos x sin (iy)
' = sinx coshy +icosx sinhy

u = sinxcoshy v = cosxsinhy
du Qv
By cosx cosh y . sin x smljly
du i o v _ ch
a—y‘ = ginx sinh y dy = ¢o0sx coshy
Here CR equations are satisfied.

: du ov
Consider f'(2) = 5. * i3
f'(z) = cosx coshy +i(—sinx sinhy)

To find f'(z) in terms of z, let us substitute x =z and y = 0 on both
sides,
cosz -1 + i(—sinz - 0)

[

f (z) = cosz |

Note : Here after we can use this method to find f(z) or I’ [z} by
substituting x =z and y = 0. .

| Example 7 | Show that f(z) = | z |? is differentiable only at the
origin.

Solution : Given: f(z) = |z]2 .
= x2+y2 [ |zP=2Z =x2+)2]
SoUo= x24y2 v = 0
du av -
ox - 2% ar ~ 0
Ou _ ov _

'Here CR equations are satisfied only when x =0 and y = 0.

Note that CR equations. are not satisfied for other values. Thus
f(z) =|z [ is differentiable only at the origin.



Milne-Thomson Method to find f(2)

This mgthod can be used to find an analytic function f(z) when # or v
is given.

Let us assume that the real part of f(z) is given. Then we can find %‘u‘
ou
and "
. bt e O 5 OV
Consider f'(z) = ox +1 %
ou ([ Ou : ;
= o + z(— dy ) ; usmg CR equations.
_ou . ou |
ox ' oy
Put x =z and y = 0 on both sides, we get
B e i . Ou(z, 0)
'@ = gpu0) i =y 1)
which is a function of z. |
Integrating (1), we get f(z) interms of z. ;
Note : 1f the imaginary part of f(z)is given, we can find ? and —aal
; X
For this consider ’
1 _ Ou . OV <
'@ Ox T Ox
ov ov

= -5 +ia using CR equations.

Put x =z and y =0 on both sides, we get



von _ 0v(z,0) . 0v(z,0)
I'@ = T e

Integrating. (2), we get f(z) in terms of z. This method is called Milne-
Thomson method. : :

Method of find f(2) when u is given

- | Example 1 | Find an analytic function f(z) whose real part is
~givenby u=x3-3xy?+3x?2-3y°+1.

- Solution : Given : u = x3-3x2+3x2-3y2+1
ou
ou _ D

P™ 3x2-3)2+6x

ou

By 0—6xy+0f6y+0

= —6xy—-6y
' )
. Consider f'(z) = %+ia—: ,

Here u is given and using CR equations

= [3x2—3y2+6x]+i[6xy+6y]

Putx =z and y = 0 on both sides
f'z) = 3z2+6z

Integfating, we get
; 3 2
~ 2 £
fl@) = 3-—3"'+6-2+C

f(z) = z3+32z2+C, Cisacomplex constant.

10



Example 2 | Find an analytic function f(z) whose real part is
given asu =y +e* cos y.

Solution : Given: u = y+e*cosy

Ou _ .
o e* cosy
ou
— _ pX o1
3y l—e*siny
0
- Consider '@ = —g; + i _6:

;.(@_)+.( Qz)
ox )" '\ oy
= e¥cosy + i(-1+e*siny)

Put x =z and y =0 on both sides,

Put x =z and y =0 on both sides,

fl(z) = e*—i
Integrating, we get f(z = e*-iz+C

Example 3 | Find an analytic function whose real part is given by
x .
u= x—zrp ‘

X
Solution : Given:  u =
n x2+y2

@2+ 1-2x2 Y -x?
L R B
3 0—x(2y)  _—2xy
RO NSOy
Let f(z) = u+iv

11



'z = u+1ty,
= ux—iuy
—x2

B AR 25

- Put x=z and y =0, we get

z2 1
'@ = —g=-3
Integrating, we get f(@ = %+C

Example 4 | Find f(z) which is analytic, given

u=} log (x2+1.

Solution : Given : u = %log (x2+32)
Ql= h 2% _ X
Bx 2 x2+32  x24y2
Ou _ 1 2y _ _ Yy
oy 2 x2+y2 x2+)?
: i o U i OV
Cogsxder 7(2) = ox + I 5%
_ Ou ( ﬂ)
ox. "\ T oy
|
x2+y2 "\~

Put x =z and y =0, we get"
iy = Zriy = L
fl@) = S+i0) = 3

Integrating, we get ~ f(z) = logz +C

12



Example 5 | If u= x_2.+Ly2 find an analytic function f (7).

Solution : Given: u = _‘2'2
x2+y?

ou  0-y@2x) _—2xy
Bx  (x2+)y2)?2  (x2+y%)?
Ou G2+ 1-y2y) _ _x2-)?

y . (x2 +12) T (x2+y2)?
Consider fl@ = g: M 12; - g;+ i(_%)

3 [(xzijﬁ)l] N "[(ﬂ ;;22)2]

Put x =z, y =0, we get .
. . —z2 .. 1
fl@ = ‘[—24:1 - (_22)

: .
z+'_C

Integrating, we get

.
.

f@) =

+ C where C is complex constant

N |~

13



Example 6 | Find an analytic function f(z) =u+ivifuis given
by u = cos x cosh y. |

Solution : Given : u = cosx coshy .
.a_u - ' : . h .
5 _ —sinxcoshy
O . " ™
By cos x sinh y
Ou ov

Consider f'(z) = T ok

=_Q£+ ( au)
Ox '. oy

—sinx cosh y + i (—cos x sinh y)

Il

Put x =z and y =0, we get
f'z) = —sinz+0
Integrating, we get f(z) = cosz+C

Example 7 | Find an analytic functwn f(z) whose real part is
given by u=e?* [x cos 2y —y sin 2y ].

Solution : Given: u = ¢é*xcos2y—e*ysin2y

Ju
ke [eZ+2xe*]cos2y—2eX*ysin2y

= eX[cos2y+2xcos2y—2ysin2y]
ou g
oy " —2eXxsin2y—eX[sin2y+2ycos2y]

= —eZ[2xsin2y+sin2y+2ycos2y]

14



Consider f'(z) =

ou ov
— + Y —
Ox ! ox

o, (_o0)

ax '\ oy

eX[cos2y+2xcos2y—2ysin2y]
+i[e®(2xsin2y+sin2y+2ycos2y)]

Put x =z and y =0, we get

f'@ =
Integrating, we get

f@ =

e2Z[142z]+0

J.(Zz-l-l).ezz dz + C

For using Bernouli’s formula

Put.‘ u = 2z+1 vy = g2z
2z

e
u' = 2 Vi T 3
2z

e
' =0 v, = 7
wy—u'vyt+tu'vy—.l

: J\uv‘dx

1@

(@)

2z - 2z
= Qz+) S -25+cC

= gz e22+% e22_% e2z2+C

=z e22+ C

15



Example 8 | Find the analytic function f(z) =u + v if

u=e*[(x?-y?)cosy +2xysiny J.
Solution: u, = e¢*[2xcosy+2ysiny |- |
. eX[(x2-yPcosy +2xysiny].

u, = e*[—2ycosy—y*siny +2x (y cosy +siny) ]

At x =z, y =0,

u, = e ?[2z] - e'z[(zz)]_ = e"z[Z;z—zz]

U, = e %[0]
L F(E) = ou tiv,

= u +i(- uy)

Fi(z) = e ?[2z-22]

F(z) f(2z—zz) e~?dz+ C

Using Bernouli’s formula, we get

u = 2z-2% v = e *
u' = 2-2z v, = —e’?
u'" = -2 vy = e ?
=0 v; = —e” %

, u
i ' ' "
..J‘uv‘dx uvi—u' vptu'vy—.........

~Fz) = -Qz-2zY)e2-(2-2z)e ?+2(e5)+C

16



= e #[-2z+22-2+2z+2]+C

F(z) = z2e 2+C

Example 9 | An electrostatic field in the xy-plane is given by the
potential function ¢ = 3 x?y —y3, find the complex potential function.

Solution : Let F(z) = ¢ +iy
Given ¢ = 3x%2y—)3

.00 _ 9 _ ,
© Oy 6xy,. oy 3x2-3)2

Consider F'(z) = oy + ifl\l{

O0x Ox
()
Ox oy ,

= 6xy —i(3 x2-3y2)
Put x =z, y =0, we get
F'(z) = —i32z2
Integrating, we get  F(z) = —-iz3+C

Note : 1f we take F(z) = ¢ + iy and it is analytic then the CR
equations are '

o6 _ oy ., b __ 2y
Ox oy ¢ 5y T 7 ox

17



Example 10 |. Find an analytic function f(z) = u+ iv, whose real
‘ sin 2x
cosh 2y — cos 2x°

{}J’art is given by u =
Solution: Let f(z) = u+iv, and u = Vy, U, ==V
sin 2 x
cosh2y —cos2x :
_ (cosh 2y — cos 2x) 2 cos 2x — sin 2x (2 sin 2x)
x (cosh 2y — cos 2x)?
2 (cos 2x cosh 2y —1)
(cosh 2y — cos 2x)?

0 —2sin 2x (2 sinh 2y)

Given : u =

[ cos? 2x + sin? 2x = 1]

“y T " (cosh2y - cos 2x)?
_ —2sin2xsinh2y
(cosh 2y — cos 2x)?
Consider @@ = utiv,
= - I U,

2(cos2x costh—l)+ . 2sin2xsinh2y
(cosh2y —cos2x)2  '(cosh2y —cos2x)>

Put x =z,y =0, we get

f'@ = :il((-;iS:OZSZZ z)lg
L B
T (1-cos2z) " sin22z
f'(z) = —cosec?2z
Integrating, we get

f(@) = cotz+C

18



.Note : In the same way we can find f(z), where-

2sin2x is given
u — -
2y +e~2¥—2cos2x oo

_Method of Finding F(z) = u +iv when v is given

Example 1 | Find an analytic function f(z) where v = 2 xy.

Solution : Given: v = 2xy

av . coly OB
il 2y and ay—Zx

We know fli@ = %+ i-aa;v [Here u is not given]
_ ov . ov [..ﬂ':@:]
oy ' ox O0x Oy

Put x =z andy=0,wegét
f'@) = 2z

Integrating, we get
f(z) = z2+C

19



Example 2
is given by v =e* sin y.

Solution : Given : v

0x

.. Consider f'(z)

Find an analytic function f(z) whose imaginary part

e*sin y

X i T
e*siny and Dy

e*cosy

.Ou - 0Ov
L

0x ox
ov . Ov

_+ —_—
oy ! ox
e*cosy +ie*siny

e*[cosy +isiny ]

Put x =z and y = 0 on both sides,

'@

Integrating, we get

' Example 3
regular. |
Solution : Given: v =
ov _
Ox

Consider f'(z)

Put x =z and .y =0, we get

—sin x sinh y

= ez

f@ = e#+C

If v = — sin x sinh y, find a function foz which is |

v

-=—sinx coshy

—cos x sinh y, By

(-sinx coshy) +i(-cosx sinhy)

20



f'(z) = —sinz

Integrating, we get f(z) = cosz+C

Example 4 | Find an analytic function f(z) whose imaginary part
isv=x3-3x?+2x+1. ‘

Solution : Given: v = x3-3x)?+2x+1
v, = 3x2-3)2+2
| L -6xy
v, (z,0) = 3z2+2
vy(z,O) = 0
Consider F'(z) = u, +iv,
= -vy+ivx

Putting x =z,y =0, we get
F(z) = v (z,0)+iv,(z,0)
= 0+i(3z2+2)

Integrating, we get F(z) i j (322+2)dz+C

= j[23+2z]+C

2 cos x cosh y
cos 2x +cosh2y

corresponding analytic function f(z).

, then . find the

| Example 5 \If u =

[Ans: f(z)=secz+C]

21



Example 6 | Find a regular f(z) whose imaginary part is given

v=e*[xcosy+ysiny].
Solution : Given: v = e*[xcosy+ysiny ]
v, = e€X[cosy]-e*[xcosy+ysiny]

= e¢*[cosy—xcosy—ysiny ]

v, = e*[-xsiny+y-cosy+siny ]
Consider F'(z) = u, +iv,
= vy + 1V,

Atx =z, y =0, we get
F(z) = v,(z,0)+iv.(z,0).

| = 0+ie ?[l-z]
Integrating, we get
F(z) = if(l —z)e ?dz+C

= i[—(luz)e‘.z—(—l) e=2]+C
- i[-le‘z+ze‘z+e;z]+C
F(z) = i[ze ?]+C"

22



Example 7 | Find the regular function f(z) whose imaginary part
isgivenbyv=e>*[xsiny—ycosy].

Solution : Given: v = e*[xsiny—ycosy ]

¢ 0v : .
Bx e*[1-siny]—-e*[xsiny—ycosy]

= e*[siny—xsiny+ycosy ]

ﬂ ., —x -
By e*[xcosy—cosy+ysiny ]
Consider f'(z) = % " i—aa;"
_ v, o
oy  'ox

= eX[xcosy—cosy—ysiny ]
+ie*[siny—xsiny +ycosy ]
Put x =z and y =0, we get |
f'(2) = e ?[z-1]+ie ?[0]

= (z-1)e %
Integrating, we get
fi@ = J‘(zz—l)e“z dz
= —(z-1)eZ2-e2-1+C u = z—1, v = e?
= —ze 2+e3-e*+C | u' = 1], Vi = _eZ

@) = —zei+C W' =0, w= e

23



Example 8 | Find the analytic function whose imaginary part is
e"z’-"z sin (2 xy).
Solution :

Given: v = ex2 -7 sin (2 xy)

% = -7 (2x) si1,1(2xy)+e"2">’2 cos2xy (2y)
a% = e?=7 (<2y)sin2xy+e’ =Y cos 2xy) 2%)
Weknow  f(z) = u+iv
'@ = u*iv
= wriv, [+ =]

= QeX —}’2[ ysm2xy+xcos2xy]

+i2 e —y2 [x sm2xy+ycos2xy]

Put x=z and y =0,
@) = 2ez2[0+z] +i2 e [0]
F@) = 2z

Integrating  f(z) = sz e dz+C
Put z2=¢, . 2zdz = dt '
L f@) = fe’ dt+¢
“ J@@) = ef+C

f@) = e +C

24



Example 9 | Construct the analytic function whose imaginary part
ise*[xcosy+ysiny]and which equals 1 at the origin.

Solution : Given:. v = e*[xcosy+ysiny ]

v, = €*[l-cosy+0]-e*[xcosy+ysiny]
v, = €*[-xsiny+1-siny+ycosy]
Consider F'(z) = u, + iv,
= v tiv
= e*[-xsiny+siny+ycosy]
tie*[cosy—xcosy—ysiny ]
Put x =z and y =0, we get '
Fi(z) = e %2[0]+ie2[1-2]

Integrating, we get F(z) = if(l ~-z)e ? dz+C

Using integration by parts, we get
u = l-z, dv = e ?dz’

du = —dz, vy = —g2
F(z) = i{—(l—z)e“z - f—e‘z(—dz) ]+C

= i[-(I-z)e2+e"2]+C
F(z) = ize 2 + C
Given F0) = 1 = C=1
S f@) = izem2+ ]

25



Example 10 | If v=e* [x sin y +y cos y] is an imaginary part of
an analytic function f(z), find f (z) in terms of z.

Solution : Given: v = .e*(xsiny +y cosy)
| Py, = eX (x siny +y cos y) +e* (siny)

= e¥(xsiny +ycosy +siny)

v, = e* (x cosy +cosy—y siny)
Consider f'(z) = u,*tiv,
= v *= Iy,

= e¥(xcosyt+cosy-—y siny)

+ieX(xsiny +ycosy +siny)

Put x =z, y =0 on both sides,
fl@ = e@z+1)
Integrating, we get f (z)_ = J(z +1)e? dz
| = (z+1)e? —e*+ C

f@z) = ze2+C

Method of finding f(z) when u - v is given
Let  f(z) = u+iv and is an analytic function.
f@@) = u+iv ... (1)
if(2) = iu—-v .ei (2)
Adding (i) and (ii), we get

CA+DfE) = @=v)+i(u+v) | ..(3)
Let U=u—-v, V=u+vand F(z) =(1 +i) f(2).

26



Then (iii) becomes,

Fiz) = U+iV @
If u — v is given in the problem, then
(a) Substitute # —v =U. (Now U is known)

(b) Find F(z) by usual method.
(c) Equate F(z) = (1+9)f(@)

© @) = 1—1+—l F(z)

This is a procedure to find f(z) if u — v is given.

Note : If u + v is given in the problem, we can use the similar
ethod as above.

Let f@) = u+iv e

if(z) = iu—v | e (2)
Adding (1) and (2), | '
1+ f@@ = @-v)+i(u+v)
ie, Fiz) = U+iV

Here u +v is given: Then

(1) Substitute u +v = V [ V is known ]
(2)- Find F(z) as usual method.
(3) Equate "Fz) = (1+0)f(@
1 _
S @) = 1+ F(z)

Note : If F(z) = U+ iV is analytic, then CR equations are -

U, =V,
U, = -V
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Example 11 | If u—v =e* [ cos y —sin y ], find the corresponding
analytic function f(7) = u + iv. |
Solution : Consider f(z) = u+iv . ()

if(z) = iu—v 1)

- Adding (i) and (i),
1+ f@) = @-v)+i(u+v).
| ie, Fiz) = U+iV
‘Here H = a=u= e*[cosy —siny ]is given
U, = e"['cosy—sin);] :

U, = e"[—siny—bosy]

Consider F'(z) = U, + iV,
= U, +i(-Uy
= --e"[cc)sy'—siny]+iex[siny+cosy.]
Putx =z, y=0,weget - .
F'(z) = ez +ie?
| = (1+)e?
Integrating, we get
| Fz) = (1+)e*+C
e, . (1+)f@@) = (Q+i)e*+C
f@) = e#+C;

Example 12 | Find an analytic function f(z) if given u + v =
x2—y? + 2 xp.

28



Solution : Consider f fz) = u+iv

Adding

if(z2) = iu—v |
I+ f@@) = (w-v)+i(u+v)

(111) can be wntten as F(z) = U+iV
where u—-v="U, u+v v, (1+z)f(z) F(z).

Given V
Vx
Vy

Consider

= u+v =x2-32+2xy
= 2x+2y
= -2y+2x
Fiz) = U, +iV,
=V, +iV,
= (2y+2x)+i2x+2y).

Put x =z, y =0 on both sides,
F'(z) = 2z+i2z
o= 2(0+)z
Integrating F(z) = (1+i)z2+¢
Le., 1+)f@E) = (1+i)z2+¢c

~f@ = 2T

- f@ = 22+ ¢
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Example 13 | Find an analytic function
f@=u+ivifu-v=(x-y) (x? +4xp+y?).

Solution : Consider f(z) = u+iv
if(z) = u-v
A+D)f@) = @—v)+i(+v)
" F@) = U+iV
(x —y) &2 +4xy+)%)
= x3+4x2y+xy2—x2y—4x)2-)3
= x3+ 3x2y-3xy2—)3 '
U, = 3x2+6xy—3)%

U, = '3_x2—6xy—3y2'.

Here let U

F'(z) = U, +iV,
='U, = iU,
Gx2+6xy-33)—i(3x2-6xy—3)7)
Put x=z, y=0on both sides,
F'(z) = 32z2-i322

= 3(- z)'z2
Integrating Fiz) = (1-)z3+c¢
ie, . (1+0)f(2) = (1-dz3+c

Ji=1 c
s f@) = (1—+1;) z3 + a+7
. 1-i (1=Dd-=-9) _1-i-i-1
oy 1+ - A+D(1=9 .  1+1
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=21 X
=g
it 1—i  _1-i
1+i  (A+)A-1i) 2
s f@) = —izd+g '

Harmonic Function

A function f(x, y) is called Harmonic if it satisfies Laplace equation

i.e., The solution of Laplage equation is called Harmonic function.

Example 1 | A function f=x?—y? is harmonic.

Solution : Given: f = x2-)? f=x2-
Is = 2% Iy = #2y
fre = 2 T = —2

fofatfy = 2¥(E2)=0

Eiample 2 | A function f =% log (x? + y?) is harmonic.

Solution : Given : f = %log x2 +32)
1 1
Jx = Exz_,_yz(zx)
_ x
=
fo = .
b 4 X2 +y% *
_ 24y -1-x(2x)
Ta = G PP
-

TGP
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2+ 1-y (2y)

Iw = TP
— '—ﬁ_xz—
TGP
. Tp¥ly = 0= f is harmonic function.

Exﬁmple 3 | Prove that [ = e* sin y satisfies Laplace equation.

Solution : Given: f = e*siny fy = e*cosy
faxt [y = e*siny—e*siny =0

- f is harmonic function which satisfies Laplace equation.
Example 4 | Prove that the real part of an analytic function
satisfies Laplace equation (Harmonic function).

Solution : Proof : Given: f(z) = u + iv is analytic.

/. It satisfies CR equations.

U, =¥, | L 0)
U, = =¥V, ‘ ... (i1)
Differentiating (i) partially with r"éspect to x, |
e T Vg
- Differentiating (ii) partially with respect to y,
u, = —v

Yy yx
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Adding the above two equations, we get

uxx+uyy = (0

= The real part » satisfies Laplace equation.
i.e., u is a harmonic function. '
Note : If f(z) is analytic function, then # is a harmonic function.

Example 5 | Prove that an imaginary part of an analytic function
satisfies Laplace equation (harmonic function).

Solution : Given : f(z) = wu+ivisan analytic function.
LUy =, ' w5 (1)
. Wy = = ... (i)

Differentiating (i) partially with respect to y, we get

u = ¥

Differentiating (ii) partially with respect to x, we get

uxy = ~ Vi

Adding the above two equation, we get

vxx+vyy = 0

v satisfies Laplace equation.
= v is a harmonic function.

Note : If f(z) is analytic then v is harmonic. The real and imaginary
parts of an analytic functions are harmonic.
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Example 9 | Prove that an analytic function with constant real
part is constant.

Solution : Given : f() = wu+ivisan analytic function.
~ Alsogiven u = constant (c)
B =
U, = 0
Since f(z) is analytic, then it satisfies
U = v, and u, = —v,
S
v, = 0, »=0 [+ ux=uy=0]

= V is constant (c,).
S f@ = utiv
= Cl + i C2
= constant

= If u is constant then f(2) is constant.

Example 11 | Prove that an analytic funétion with constant
modulus is constant.

Solution : Proof : Consider f(z) u+iv=ulx,y)+ivix,y)

| f@]| = Vu+2
Giventhat \/ u2+v2 = constant (c)

Squaring ul+yv2 = 2 ... (i)

Differentiating (i) pﬁrtially with respect to x,
2uu . tr2vv, = 0

uu.+vv, = 0 ... (i)
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Differentiating (i) partially with respect to y,

2u uy+2vvy =

. " —
uuy vvy

u-v)+vu, =

S O o O

vu, +(—u)v,
For solving #, and v, from (ii) and (iii),

A R —(uz-i;vz)

vV —u

= —c¢2, using (i)
# 0
SoU = 0 and v, =_0

Since f(z) is analytic, it satisfies

y y x
v, = 0 and u, = 0
= u, =0, uy=0, v, =0, vy=0.

= u =constant (¢;) and v = constant (c)
S f@) = etic

= constant

2

if f(2) is a regular function.
Solution : Proof : We know that f(z) = u +iv |
Then |f(z)* = u2+12

35
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Also fi@) = u,+iv,
1f'@P = ul +v?

Given f(z) = u + ivis analytic, therefore

Uy = V) Uy, = =V, and
Upy YUy, = 0, vxx+vw=0
- Now consider [f@R = u?2+2 : . (1)

Differentiating (1) partially with respect to x,

a .
al_)"(z)l2 = 2uu +2vv,
2
Eﬁ.lf(z)lz = 2[uuy tuu +vv +v, v,] |
= 2[u'uxx+u: +vvxx+v§] ...I(2)

Similarly differentiating (1) partially with respect to y twice
i o - 2 2
ayzlf(z)| = 2[uuyy+uy+vvyy+vy]-...(3)

Adding (2) and (3), using Laplace equation,

92 02 ; 2.2 ,.2 ., 2
('é?+§)|f(z)|2 = 2[u_ +w, tu, '+vy]
u, +u,, = v_+v.. =0

x = -Lyy xx ' yy

Using CR equations on RHS, we get

- 2 2 2 2
=2 P, - i

4[uJ2‘ +v§]
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HARMONIC CONJUGATES

We know that the real and imaginary parts of an analytic function f(z)
=y + iv are Harmonic Functions (satisfies Laplace equation). Here # and
v are called Harmonic conjugates. i.e., # is harmonic conjugate to v and v
is harmonic conjugate to u.

Result (i) : If f(z) = u + iv is analytic then » and v are harmonic
functions.

For example, .f(z) =x2 -2 +i2xy=2z21s analytlc and u =x2 -2,
v =2 xy are harmonic.

Result (i) : If u and v are harmonic, then f(z) = u + iv need not be
harmonic. For example, #-= x2 — 2, v = e* sin y are harmonic but u + iv
= f(z) is not analytic.

Result (iii) - Since u is a function of x and y,

ou Ju
du = ox dx + By dy
e 3 _ Ov ov
Similarly we can write 'dv - dx + ———a dy

Method of Finding Harmonic Conjugates

Given f(z)=u + iv is analytic function, u(x, y) is the real part of f(z)
and harmonic.

L=V ==y, untu, =0,
Since v is a Harmonic conjugate and a function of x and ¥y, wWe write,

_ov o v
dv axdt'i'aydy
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Using CR equations, we have

ou Ou
dv = o dx + ox dy
Integrating, we get v = f— 3y dx + f o dy+ constant
L %u B :
LetM——ay,N—ax . (1)
V = fde + dey+C (1)

(i) Integrate M with respect to x by treating y as a constant.
(i) Integrate N with respect to y by deleting the terms containing x.

In the same way we can find u if v is given.

u = fMa’x-dey

(i) Integrate M with respect to x by treating y as a constant.

(if) Integrate the second integral N with respect to y by deleting the
terms which contains x.

This method is explained clearly by the following examples.

If u=x? — y? is a real part of an analytic function

f (@), find its harmonic conjugate v,
Solution : Given: o = _13 -2

Ou du
P 2x, 2y = -2y
Consider dv = ‘?—P dx + ij‘v dy
dx dy
B B o
Tap T e W yax mexa
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Example 2 | Prove that u = e* cos y is a harmonic function and
find its harmonic conjugate.

Solution : Given : u = e*cosy
u, = e*cosy, Uy = —e*siny
u, = e*cosy, Uy = —e*cosy
Uy T Uy, = 0
=» u is a harmonic function.
To find its harmonic conjugate, consider
ov dv
‘ dv = axdx+aydy
du du
i et

= eXsiny dx + e*cosy dy
Integrating on both sides, we get ,

y = sin}'.l.exdx+ﬂ [by deleting the term containing x ]

v = e*siny+c

| Example 3 | If u = % log (x? + y?) is a real part of an analytic
funcﬂ&u f(z), find v.
Solution : Given: u = % log (x2 +3?%)

Consider dv

I
&
+

&
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_ xdy-ydx
x2 + )2

x dy—y dx

al1+(2) |
- (1) v L dx = tan! (2]
@) t: [ 7 (2

Integrating, we get v = tan~l (Z) +c

X

Cauchy-Riemann Equations in Polar Form

Conslderafuncmnf(z} =u+ivand z=re®.
f@) = fre®)=u(r, 0+ iv(r, 8 ..(1)
Differentiating (1) partially, with respect to r, we get
) du av
@) e = 5 i, )
Differentiating (1) partially with respect to 6, we get

. du dv
' 8 = — .
Fleyre®i = 5 * 1%

1| @ 2
f'@ e® = i—[a—:-l-f—;]

- l[_ ﬂq_ﬁv
rl”" a0 " a8 )
_ 1l av  ou
r e_:-aa ) “.(3}

Equating (2) and (3) of RHS, we get

EE +f§£ _ 1 av ,EJ:.:
aF ar 39
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Equating real and imaginary parts, we get

ou _ 1 av
or  r 6

v _ 1 ou

ar _~ "r 5@ )

The above equation given by (4) is called CR equations in polar form.
Note : Consider the eguation (2),

o~ | Bu dv
r = — ig _— jo—
- @ s ] [ar""‘ar] e (3)
This equation can be used to find the derivative of f(z).

This equation can be used to find the derivative of f(z). :
Example 11 | Prove that the function f(z) = 7" is analytic and
hence find its derivative. -
Solution : Let z = rel®
2 = (re®)n =pn.eind =pn [cosnG+isinnd ]

Here u=r" cosnB, ‘v = r" sinnd

6_1! ov

o = nrt=1 cosn@ - nr"=1 sinnd

0 )

a—g' = —nr" sinnd -6_62 = nr" cosnb
Jou _ 1w dv _ 10u
“or  roe’ or ~ Tr 06

CR equations in polar form satisfied. -

. f(z) = 2" is-a rgular function of z.
For derivative ¢f f(z), consider :
| Ou Bv
i - IE —_— i,
I'e 4 [5." i ar :|

= e® [nrm=1 cosnB+inrm-1 sinnd]
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" dz

'@
[2"]

0. 5 pn-1 [ cos nB + isin nB ]
g—i0 p pn=1 ,ind

n(r et )n—l
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UNIT 11

TRANSFORMATIONS
CONFORMAL MAPPING
Mapping (Transformation)

A curve C in the z-plane is mapped into the respective curve C, in the

o-plane by the given function ® = f(z) which defines a mapping
(transformation) of the z-plane into the w-plane.

Some standard transformations *
(i) Translationby @ =z +¢

' '(ii) .Magnification and rotation by @ = cz

-

1

(iii) Inversmn and reflection by ® = ]
i . : . _az+b
(iv) Bilinear transformation ® = -

Here a, b, ¢, d arc complex constants.

Conformal Mapping (Conformal Transformation)

Let two curves C; and C, in the z-plane intersect at the point P and
the corresponding curves C, and C, in the w-plane intersect at the point
Q. If the angle of intersection of the curves at P and Q are the same in
magnitude and sense, then the transformation is conformal or mapping is
conformal.

Note : The transtormation by the function (analytic) @ = f(z2) is
conformal if f’(z) = 0.
Critical point : A point at which the derivative of f(z) equals to zero

(the mapping is not conformal). ie., A point at which f'(z) =

1€ . 0 is called a
critical point of the transformation w = f(2).

For example, consider ® = z2, then Z‘; = 2z.
do _ i
dz e 22 e 0 =
z = 0

= 0 is a critical point of the transformation w = z2.
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Example ;- Consider @w = z -+ -z— = =
do z2z2)—(2+1)"
dz a2

_ z2—1
= =
dm
The critical points are F = 0
z2—-1 = 0
z2 = 1
z + 1

Fixed Points (Invariant Points)

Fixed points of a mapping @ = f(z) are points that are mapped on to

themselves (image is same as z).

Fixed points are obtained by f(z) = z.

1
Example 1 | Find the invariant points of ® = Z_2i

, 1
Solution : oY z

I
3]

(W]

|
(W]
~.
N

z2 = 2iz—1=0
.z = I

— -3 -

is not conformal.

Solution : f'd) = 0 = cosz =0
_ & 3m
zZ = 2, 2, ............
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Example 3 | Find the invariant points of the transfbrmation

_Itig
1-iz~
Solution : } t,l; = z
L2+ (i-1)z+1 = 0
e B %[1+iim]

Example 4 | Consider o = f(z) = é (z+§) = % (72 +j).

Solution : The invatiants points are obtained from

JG@ = z

|
> @2+1) = 2z
z2+1 = 2 2
22=1
z = +1]

Isogonal Transformation (Isogonal Mapping)

If the angle of intersection of the curves at P in z-plane is the same as
the angle of intersection of the curves at Q of @-plane only in magnitude
then the transformation is called Isogonal.

Discuss the transformation ® = f(z) = 2.
Solution : Given : fz) = 22 .
| u+iv = (x+iy)?
= (x2-y)+i2xy
u = x2-)% v=2xy
constant C;

Case (i) : Let u
.. x2-y2 = C;whichisa rectangular hyperbola.
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Similarly if v = C,, then

2xy = Cy
. C 2
xy = & which also represents rectangular hyperbola.

~. A pair of lines u = C;, v = C, parallel to the axes in the @-plane,
mapping into the pair of orthogonal rectangular hyperbolas in the z-plane.

Case (ii) : Let x =c, aconstant.

u = c2-y>% v = 2¢p
14
2
2 = L=
Y 4 c?
Eliminating y from the above equations,
' 2
3 e
= 4 c?
v = 4c2(c?-u)
which represents a parabola.
Let y = constant (k).
~ Then x2-2 = u, 2xk = v
XS utk, * = 2%
2
2 = ¥
T 2%
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Eliminating x from the above equations, we get

o,
2 k?
v2 = 2 k2 (u + k%) which is also parabola.

Here the pair of lines x = ¢ and y = k parallel to the axes in the
z-plane map into orthogonal parabolas in the w-plane. The critical point
of mapping © = z2 is z = 0. (not conformal at z = 0).

u+k =

. . 1
Example 2 | Discuss the transformation ® = 7 + %

Solution : Let z = r (cos6 +isin6) in polar form.

+-1-'
zZ

" Given : ®

1
r [cos O + iisn 0]

u+iv = r(cos®+isin0) +

= r(cosO+isinb) + %‘[cosG-isinO]

utiv = (r+%)co$6+i(r—'l-,)sine
L 1 1X ..
Equating u = (r+;) cosO , v = (r—;)sme

U \4

S.cosO = 7 I sin 6
(r+7)

We know cos20 +sin20 = 1.
u? V2

eONen

For r = constant (c), the equation (1) represents an ellipse.

(1)
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1%

+ﬁ—1‘
3 =

N

a

Again consider ®=wu +iv = r (cos 6 +isin 0).

(r+;lj)cose, v = (r—%)sine

R
I

W2 P (r4+1+2r2) (r4+1—2r2)2

cos20 ~ sin2®

u? v2 (r4+1+2r2) (r“+1-—2r2)2

cos2®  sin?2 @

rd+1+42r2-r4_1+2r2

r2
= 4
u2 2

4cos?® 4sim?o ' | £ ')

For 6 = constant of the z-plane transforms into a family of hyperbolas.
2 2

a’? b2 &
: k?
Example 3 | Discuss the transformation ® =z + .

z

Solution : (Solve the problem as above.)
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Example 4 Discuss the transformation ® = cosh z

Solution : Given: ® = f(z) = cosh(2)

u+iv = coshx cosy+isinhx siny

u = coshx cosy, v = sinhxsiny .. (1)
u , Y
coshx_= cosy sinhx = _siny

We know that cosh? x — sinh? x = 1 (eliminating y).

u? v i .
cos?y ~ siny - (2)

i.e., The lines parallel to x-axis (y = constant) in the z-plane mapping
into hyperbola.

w2 2
2" "}

We know that cos? y + sin2

y = L. For eliminating y from the given
equation (1), :

u L
cosy = ‘coshx» SIBY = sinh x

_u W _ :

cosh? x ' sinh2 x ... (3)

l.e., The lines parallel to Y-axis (x = constant) in the z-plane mapping
into ellipse in the @-plane. :

w2 2
Az g2 T 1 swsi(F)
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Example S | Discuss the transformation o = =

1 . — iy

; : W -
Solution : Given : 0 = =& +iy (x_Hy) -1y
o P e
x2+y2 x2+y2
i » il
U x2+y2, L% x2+y2
y e R .
oy = —y = Yy —fux
Substituting the value of y in ,
X ulx u?
RN P T
u
_ U
w232
v =Y L = i )
Y = Tut T oy (u2+v2) (uz‘*'vz
u - . . (D
.x = 3, 7 ad Y u? + 2

1
Now consider © = 7.

_ 1 (u—-w)
Xt = G+ iv) (u—-w)

u-—-1
i u2+v2

.. (2) |

/3 — ._v_.
..x=u2+v2andy——u2+v2
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_ Consider the equation, _
a(x2+y2) + bx +cy +d =0 ...(3)
. For a = 0, this represents a straight line and for a # 0, thJS represents a
circle.

For the tranéformation ®= %, we can substitute the value of x and y
in (3). | .
[ris] +o[s] e [] + 4o
a+bu—cv+d@?+v¥) = 0 -
e, - d@+W@)+tbu—cv+¥a = 0 ()
If d # 0, this (4) repr‘esents a circle in the o-plane.
If d =0, it represents a stréight line.

. 1 ; ; ; y
‘The transformation @ =  transforms circles into circles. It is called

circular transformation.

Example 6 | Find the mapping of the circle | z | = c by the
transformation ® =2 z. :

Solution : Given : o =.2z=2@x+iy) =2x+ily

utiv = 2x+ily

U =.2x, v=2y

Consider |z|=c. -~ \x2+32 = ¢

b (circle)
(3)+(3) - <
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u2+v2 = 4¢2
w2+ = (2c)

This is an equation of the circle centre at the origin and radius 2 c.
Example 7 | Find the mapping of the circle | z | = k by the
transformation f(z7) = z+2+ 3 i '

. Solution : Given :- O = z+2+3]
u+iv = x+iy+2+3i
utiv = (x+2)+i(y +3)

u = x+2, v = 3+3
S X = w—=2 y = v-3
Consider, z| = k =  x2 +y2 = k2

wW-22+@w-32= 2

which is an equation of a circle with centre (2, 3) and radius .

Example 8 | Find the image of the circle | z = I| = 1 in the

complex plane under the mapping ® = %
- 1
Solution : ® = 7
e 1 x—1y
TV T xtiy T ) -1y)

_ Xx=iy.
x2 +y2

__-x =—L— L
u—x2+y2andv x2+y2
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The equation of the circleis |z —1|=1.

ie., |x +iy—-1] = 1
|Gx-D+iy| = 1
x-12+@y = (1)
x2+1-2x+)2 = 1
x2+y2 = 2x
% _ 1
x2 + 32 2
. 1 X
ie., u = 3 e e =5
2y = 1

2u—1 = 0 which is a straight line.

Example 9 | Find the image of | z — 2 i | = 2 under the mapping

m=l
7
. . 1
Solution : Given: o = -
e 1 _ X
e TURK S x +1p RS Jc2+y2
. : G
x2+3y2
Also given |z-2i]| = 2
' |x +iy-2i| = 2
lx+i(y-2)| = 2
x2+(y-22 = 4

53



x2+)2+4-4y =

xt+y2-4y =
x2+y2 = 4y
2 4
g = TP
1 _y
4 x2 +
1 _
7= ~v [y = 525]

4v+1 = 0 which is a straight line.

T Tresavas av W UMGIZILL LUV,

Example 10 | Discuss the transformation ® = sin 7.
Solution : Given: o = f (z) = sin (z)

| u+iv = sin(x)cosh(y)+icos(x)sinh('y)o

“ u = sinxcoshy, vV = cosx sinhy
) /] ) v
sinx = cosh y ° cosx = sinh y .. (D
We know sin? x + cos2x = |.
2

A 5 G =
cosh?y ' sinh2 y :

For y =constant (c;), say cosh? (y) = a2, sinh2 () = b2,

: 2
then Z_2 4 z% = 1 (Ellipse)
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Similarly from (1),

coshy = =— sinhy =
We know that cosh? y — sinh? y = 1.
ut 2

Csinfx costx L
For x = constant (c,), say. sinfx = A2
cos?x = B2
u?2 2

AZ "R " 1 (Hyberbola).

Example 11 | Discuss the transformation ® = cos z.

Solution : Consider ® = cos(z)

utiv = cos(x+iy)

= cosx coshy — isinx sinhy

u = cosx coshy, v = —sinxsinhy
u . . it
- sinx = —_
COSX = coshy> sinh y

For eliminating x, consider cos?x + sin®x = 1.
u? V2
2 i =
coshy  sinh“y
: = h2
For y =c, cosh?y = a2 (say), sinh? (y) = b2.

972
% - L =1 (Ellipse)

=
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For eliminating y, consider cosh? y —sinh?y = 1.

u P /
Lcoshy = s sinh’y = &
u? v2

cosh? y —sinh?y =

2 4

" cos2x  sin?x

cos?x  sin?x

&

= 1

For x = constant, say cos?x = A2, sin? x = B2.
o

u y

A2 TEE 1 (Hyperbola)

e

Example 12 | Discuss the transformation ® = sinh z.
~sinhz = sinh (x +iy)

L .
o 'i'sm(ix—y)

Solution : Given: ®©

u+iv = sinhxcosy + icoshxsiny

u = sinhx cosy v = coshxsiny...
e . u %
sinhx = cosy > cosh x sin y

We know cosh? x —sinh? x = 1 (for eliminating y)
u? -2

cos?y  sin?y

= ]

For y=c¢,
v2 u?

sinfe  cos?ec

QNIi-’
|

Bl%
I
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[Z 2

2 ;2 ] which is a confocal hyperbola.

o . _ _u ) L
rom (i) cos y sinhx® SV = Coshx

We know cos?y+siny = 1
o u? 2
19 + 2 = 1
sinh*x  cosh®x
Forx = constant; say sinh x = A, cosh x = B.

g2 i 52
aztgp = 1 which is an ellipse.

Bilinear Transformation
The transformation of the form

. + b
W = +d , ...(1)

where a, b, ¢, d are complex constants is known as Bilinear

transformation if ad — bc # 0. It is also called MOblUS transformation or
Linear fractional transformation.

8

8

The condition ad — bc # 0 means that the transformation is conformal.

~ az+ b
Note : 0= g ss k1)
do L (cz+d)a—(az+b) c
dz (cz+ d)?
_ acztad—acz—bc
~ (cz+d)?
ad— bc

(cz+d)?
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d
The Bilinear transformation (1) is conformal if ‘cg #0.

ie., ad—bc#0.
dw
Note : 1If ad— bc=0 then = =0

i.e., Every point of the z-plane is a critical point.
The inverse mapping of (1) is also bilinear transformation.

—do+b

e = z =
co—a
The invariant points of a bilinear transformation,’

;= EX [v0=z; f@)=z]

c2+dz = az+b

c2+(d—-a)z—b = 0

The roots of this equation is invariant point or fixed point of ‘the
transformation.

Note :
(1) A bilinear transformation maps circles into circles.
(1) A bilinear transformation preserves' cross-ratio of four points.
@ —0)) (@3-04).  (1-2)(E3-24)
(0] —ag) (03 —,) ,(21‘24) (z3 fzz)
| (OR)
' (0)1 - 0)2) ((1)3 - (.04). B (Zl —22) (23 —24)
(04— 0p) (@ —3)  (24—2)) (z5—23)
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Example 13

Find the Mobius transformation that maps the

points z =1, i, -1 into the points ® = 2, i, 2.

Solution : Let z;.= 1,. 2, = z3=-1

(o,

O = 2, 0=i, O3 =-2

— ) (3 — 00y) 3 (2] —2) (23— 24)

We know

Put 24 —~2 (D4

(04—0p) (@y—w3)  (24—2)) (25— 23)

(1)

=» , in (1):

(0] — @,) (03 — ) (21 —2) (z3—2)

(0 —w) (0, — @3) (z —2;) (zy —z3)

" 2=DE2-0) (A-H(-1-2)

(-2)({+2). (E-D(@G+1)
(@+2) 2-) _ (+1) (1-i)
(@=2) 2+  (z-1) (1+))
(@ +2) +1D) A=) @+
(@-2) ~ @-1) 1+)E-))
(z+1) 2+i-2i+1)
z-1) 2-i+2i+1)
z+1) B-9
z-1) 3+
+2) 3z—iz+3-i

(@-2) 3z+iz—-3-—j

Using componencio ‘and dividendo

a cC

b~ d
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a+b c+d
a—¢ = c—d» weget
@+2)+(@=-2) @Bz-iz+3-)+@Bz+iz—=3-i)
(@+2)-(0-2) @Bz-iz+3-)-Bz+iz—3-))
20 6z-2i
4 T —2iz+6
©  2Bz-i)
2 2(-iz+3)
_ 2[3z-1i] "
© 7 iz+3]
, _ =6z+2i
l.e., o = 12_3
Example 14 | Find the in variant points of the transformation
- 2z+4i
.V g+l
. 2z+4
Solution : — el ™ g [vo=z]
2z+4i = —z(iz+1)
2z+4i = —jiz2—2
iZ2Z+3z+4i = 0 -
=3+ 9-4@() (4
zZ - 2i
-3+5 1

= — =-=i, 41

4
21 2 3
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Example 15

Find the bilinear transformation which maps the

pomtsz 1, i, =1 into points ® =0, 1,

Solution : We know that
@ -0)@3-0) (z-2)(E;-2) .
((0—(01) ((02—(03) - '(Z—Zl) (22—23) o (l)
Here @5 = o is given. Equation (1) can be written as
’ o
(ml'_ 0)2) 03 ( L= ‘”3) —. (zl _22)'(23 —Z)
& - (Z—Zl)(22—'23)
(0 — ) o, co3_1
((01—0)2) N (21—22)(23—2)
@-w)E1)  (E-z)(5-z23)
~(0=1D) - (1=i)(-1-2)
(@-0)  (E-1D@GE+1)
R N ) N ()
Yo~ TE-Da+
1  (+1) (1-i)
o . (z-1) (1+1)
_ (=1 (d+9)
©T @+ d-))
_ ztiz—1-i
®F T—iztlIi
0 = %it:;z+8+:§ which is of the form azi-z
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_Example 16 | Find the linear fractional transformation which
maps the points z =-1, 0, 1 into o= 0, i, 3i.

Solution : We know that
(©] — ) (03— ) (z) —2p) (z3-2)
(0 — ;) (0y — 3) (z —2z)) (3~ 23)
 (0-)Bi—0)  (=1-0)(1-2)
(0 —0) (i —3i) (z+1)(0-1)

CNBi-0) - (=DU-2)
® (-2 i) DE+1)

Bi—0) (1-2)
20 (z+1)

E+1)Bi-0) = 20(1-2)

3iz—zo+3i-0 = 20-2z0

3i(z+1) = 20)—22'0)-!-2'03-*-0)
= 30-zo = 0(3-2)
. _ die+1l)
ve @ = (3_2)
Nzd]
o = -3i(535)
e~y

Example 17 | Find the Mobius transformation which maps from
(25 i, 0) into (0, i, ). :
Solution : Substituting in the above formula,
(0 - ;) (03 - o) _ (21 — 2)) (23— 2)
(0-0) (0-w03) (-2 (2 —23)
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Taking z; and w5 outside and substitute, we get

0-H1-0 _ (1-0)(0-2)
@-0¢E1)  (0-1)(@-0)

) _ (D(2)
-0 =)
i _z
® i

|
o ===
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UNIT 11
COMPLEX INTEGRATION

Introduction :

Consider a continuous function f (z) of the complex variable z = x + iy
defined at all points of a curve C having end points A and B. Divide C into n parts
at the points

A =Py(z) ,P\(zy), ...... PUZ )se e Pu(z 1) = B.

Let 8z = z -1 and l;i be any point on the arc P;_, P;. The limit of the sum
1

n
z f(t;i)ﬁzi as n— in such a way that the length of the chord Szi approaches
i=1 -
zero, is called the line integral of f(z) taken along the path C, i.e.
Jf(z)dz.
Writing f(z) = u(x,y) + iv(x,y) and nothing that dz = dx + i dy,
[ f(2)dz = Ic (udx - vdy)+i jc (vdx + udy)

which shows that the evaluation of the line integral of a complex function can be
reduced to the evaluation of two line integrals of real functions.

Pn=B Note :
Pn-1 :
I o=fz)=u(xy)+iv(x,y)
& then [ f(z)dz = (u+iv) d(x + iy)
- - jc (u+iv) (dx + idy)
& = J (udx + vay)+ i (vax +udy)
Pl
PO= A
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Simply connected Region: A simply connected region is one in which any closed

curve lying entirely within it can be contracted to a point without passing out of
the region.

Simply Connected Region

Simply Connected Region

A
G

Multi-connected region . Simply connected region
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CAUCHY’S THEOREM
Theorem : . ,
If f(z) is an analytic function and f ‘(z) is continuous at each point
within and an a closed curve C, then [f(z)dz=0.

C
C
Proof: '
Consider f{z) = u(x,y) +iv(x,y) and z = x+iy , dz =dx + idy
jf(z) dz= j(udx -vdy)+ 1] (vdx + udy) C L s (1)
C C. . o ‘
Since f'(z)is continuous, therefore, o ; % ,av ; a_v are also continuous
0x 0y 0x 0y

in the region D enclosed by C. We know Green’s theorem is

oP

using this in (1)

jf(Z)dZ—'”[g‘iJr%JdXdyqj{—-— y )

C
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Now f(z) being analytic, u and v necessarily satisfy the Cauchy-Riemann
equations

Hence [f(z)dz=0
c

Extension of Cauchy’s Theorem.

If f(z) is analytic in the region D between two simple closed curves C and
C,, then, [f(z)dz= [f(z)dz.
C C

To prove this, we need t o introduce the cross-cut AB. Then If(z)dz<='0 :

where the path is as indicated by arrows in Fig.(1) .i.e. along AB-along C,in
clockwise sense & along BA - along C in anti —/\élockwise sense

\-
N

ie. | flz)dz+ [fz)dz+ | f(z)dz + [fz)dz=0.
AB C BA C

Fig.(1)
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But, since the integrals along AB and along BA cancel,, it follows that
[f(z)dz+ [f(z)dz =0.
& G

Reversing the direction of the integral around C, and transposing , we get
[f(z)dz= [f(z)dz each integration being taken in the anti-clockwise

C C1 :

sense. :
1 B0 8% 2T N— be any number of closed curves within C ( Fig-2) then
[fz)dz= [f(z)dz+ [ f(z)dz + [f(z)dz+.....

& C1 C2 C3
CAUCHY’S INTEGRAL FORMULA
Theorem : :
If f(z) is analytic within and on a closed curve and if a is any point
il O i, B s [ R
27 C -2
Proof :

Consider the function f(z) / (z-a) which is analytie at all points
within C except at z = a. With the point a as center and radius r , draw a small circle
C, lying entirely within C.

- Now f(z) / (z-a) being analytic in the region enclosed by C and C1,
we have by Cauchy’s theorem,

Aldr= [
cz-a C[l z-a
_ o fa+re®) . o :
= f(a_iree_).uele do=i | f(a-&-rele )de. . (1)
C1 e’ . Cl

In the limiting form, as the circle C; shrinks to the pointa, ie.ast = 0, the integral
(1) will approach to
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; o . f(z) .
i [ f(a)d® =if(a) [ dO = 2mi f(a).thus| ——~dz = 2mif(a)
o ) c®—4

l.f f(z)dz

mc Z—a

which- is the desired Cauchy's integral formula.

ie. fla) =
f(a) 5

Z—a
c

= _[ 22 42— 2xif (a)

Cauchy’s integral formula for derivative of an analytic function:-

We know Cauchy’s ;integfal formula is

2ni Jz-a
C

Differentiating both sides of (2) w.r.t.a,

a1 (8[f2)] . _1 ¢ f(2)

.f‘(a) i cv[a:[z—a} = 2mi ! (z-a) S -
similally, ~ (a) = 221; (fza)) —z @)
and in general,£'(a)=—> < 5)

i : (z_a)n+l '.

thus it follows from the results (2) to (5) that if a function f(z) is known to be
analytic on the simple closed curve C then the values of the function and all its
derivatives can be found at any point of C. Incidently we have established a

remarkable fact that an analytic function possesses derivatives of all orders aj
these are themselves all analytic.
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2

Example 1: Evaluate Izh—zlﬂdx where C is the circle '
¢ %

. 5 1 :
(i) |z[|=1, ) [z]=3 !

i =222+ =1. 1,830
(1). Heref(z) =z°~z+1 anda =1 | (-1,431 |Ze14i b
Since f(z) is analytic within /——\ \ |
andoncucle : . %

|z| landa—lhcsonC -
C

. By Cauchy's Integral Formula ZL f(z) =fla)=11 I i l =2mi.
m 2z
(i)  Inthis case,a= 1 lies outside the circle C: |z |=—.So @ —z+1)
- 2 (z-1)
analytic everywhere within C.
.. By Cauchy's Theorem —Zlﬂdz 0.
C.
Example 2: -
Using Cauchy’s integral formula, Evaluate Izz;l dz where c is tl
z°+2z+4

C
gi;cle |z-f;1+i|=2

Solution: ‘
Iz +1+ i| = |z ~(-1-1 )| 1s the circle with centre at z = -1-I and radius 2 unitg

The funcﬁon L will cease to be analytic where 2 +22+4=0
© 22 +2z+4 .
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z ¥—1ti\/?_,
2 =-1++3,-1-i{3

(241 . z+1
22 +22+4  (z+1-i3)z+1+iV3)
The above function is analytic af all points except at the points —1+1 3 liesoutside c

and —1-1 «/5 lies inside c.

. we consider the function f(z) = .
z+1- i«/g .

by cauchy integral formula
1 f(z) ;
- — [
fe) 2m1 ;[ z-a
Z+1

here a =-1- i+/3 , ( lies inside c).-. If:—ll"i—‘/i—)dz'= 2mi f(a)
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=2mif(- 1-143)

[ =1=i841
= 2l
[—1—iJ§+1—iJ§]

substitution in f(z)
-3 J .
=i

= 2mi
{- 2iy3

. Example 3:
Using cauchy’s integral formula evaluate jzz—+4— dz where c is circle
52" +22+5

k+1—q=z

Solution: . o
[z+1-1|=|z- (-1+1i)| is the circle with center at (-1+i ) and radius 2

k. will cease to be regular where

) ) Z
units. The function e —
z°+2Z+5

zz’+2z+5=0
i:c=:.,'_z~2 +2z+5=0

S —2444-20

2
z= _2i2—16=-1i21
z=-1+421, -1-21
z+4 _ z+4
(z® +2z+5) E'(‘lf?-i)”z‘(‘l‘ﬁ)]

The above function is analytic at all points except at z=-1+2i which lies inside ¢
and z = -1 --2i which lies outside c.
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We consider the function
Z+4
-(1-2i)] f(z)
fiz)= -[z (—1 +2 T

". By cauchy integral formula

j 1) 4, < 2if(a)

Takng a =-1+2i (lies inside c)

z+4 ] -
z+1+21

dz=2mif(-1+ 21
fp ey
[ -1+21+4
=2m - -
[—1+21+1+21)
=2mi At 3J—£(Zi+3)
41 2
Example 4:
. sinnz? +cosmz® | : _ .
Evaluate J Z-1Dz-2) dz' where c is | z |—3 using . cauchy
integral formula.
Solutiqr;n:

|z|=3 is a circle with center at the origin and radius 3 units

consider
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1 . A " B
(z-})(z—2) z-1 (z-2)
1 =A(z-2) +B(z-1)

putz=1 A=-]
putz=2 B=]

N SN
“(2-1)z-2) (z-1) (z-2)

. 2 2
sin z~ +COS MZ sin 1tZ + COS TIZ sin TIIZ " +COS 1£Z
g = | o é

z-Dz-2)

c

-~

Since z=1, and 7=2 lies inside ¢ and f(z) =sin nz? +cos nz>

By cauchy integral formula
= . 2mi f(1) + 2ni f(2)
= 2xi ( sin 7 + cos m)+2mi (sin 2m + cos 2m)
=2mi(1+1)
= 4mi
Example 5:
. ; : dz
Using cauchy integral formula evaluate I >
Iz +1)(z* - 4)
where c is I 2 d22 where cis |'z |=i
' 72" +1)(z -4) 2

Solution :

|z |=-:;— is the circle with center at the origin and radius 3/2

units.
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1 i
(2% +1)(z* -4) T (2+i)e- i)(z+2)(z-2)
The above function is analytic at all points excepts at z = i,
inside ¢ and z = +2. which lies outside C

we consider the function
1

22 -4
(z+i)(z-1)

-1 which lies

f(z) =
Now

1 _ A - B
(z+1)(z-1) (z+1) (z-1)

1" =A(z-i)+B(z+1)

Pat z=1, B=—1;=--1—
21 2
Put z=-, =——L=i
21 2

.

1 2 2

Zt)@-1) @+i) (z-1)

j % % [P I(z “sz ILz —4J

i
(z+i) (z-1)|z* -4 2 Z+1

(]
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taking a =1, -i ( hich lie inside c)
By cauchy integral formula

j $2) 57=2xif(a)
Z—a

!

]

a

|

W | —

-+
| —
1

z%dz

Example 6: Evaluate I
P (z-1)% (z* +1)

where ¢ is |z-2|=2.Using cauchy
s ,
integrai formula.

Solution : ‘ .
|z - 2| =2 i$ a circle with center at 2 and radius 2 units consider.
z? ~ z?
(z-1)2(z*-1) (z-1)°(z+1)

_ A B C- ¢ D
= + + +
(z-1) (z-1)? (z-3)® (z+1)

22 = A(z-1)* (z+1) + B(z-1)(z+1) + C(z+1) + D(z-1)

put z =1,

76



1 Y
c= .2_ |Z-2| = 2
put z=-
D=1,
_ 1
--8— i
Coefficient of z°, A +D =0 B
A=-D
A = .}_
8

equating- constant coefficient
A-B+C-D=0 :
1 1 1

B= 44—
8 2 8
L 1+4+41 6
8 8
B:i
4

2 .

7 1 1 3 1 1 dz | -dz
dz =— dz += bt .
I(z—l)z(zz—l) 8 !(z-l) ey 2cj(z-l)3 SJ(Z”)

c

Since the point z=1 lies inside ¢ and z =-1 lies outside c. By cauchy integral
formula & its derivatives we have

]

E §2nif'(1)+%(2ni)f'(l)+1M+0

2 2l
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= 12m+£21ti+'-1-'(zil)'

8 4 2 2.
_m. 3 . m. m+6m+2m 9m
= —i4—T+—1= =

4 2 ' 4 4

[ fizy=1 f1)=1 f(1)=1 £{1)=1]

Example 7: Evaluateusing Cauchy’s integral formula :

_where C is the circle | z | =3

I eZz
dz-Dz-2)

Solution: f(z) =e* is analytic within the circle C: |z | =3 and the two singular
points a =1 and a =2 lie inside C. _
2z 2z 2z

] 1
J‘(z-::)(z-z)dzi!‘e2 [Z%E'E]dzzg:—z‘dz“!:—ldz_

C
=2mie* - 2mie? = 2nl (&' -¢?)

[By Cauchy’s integral formula]

Example 8:
2

Evaluate J ki
2 (z- )(z-2)

Solution : ;
Here | z | = 3 is a circle with center at the origin and radius 3 units.

dz where ¢ is the circle [z | =3.

Also f(z) = cos 1z’

1 A B

‘ and consider = +
(z-1)(z-2) z-1 z-2

1=A(z - 2)+ B(z-1)
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put z=1, A=-1

put z =2, B=1
) , 1 =
(z-1)(2-2) (-1) (z-2)
J cos 2> P J‘cosnz2 : cos nz?
d(z=1)(z-2) ¢ (z-1) g (z=2)

Since z =1 and z = 2 lies inside c. By cauchy integral formula we have
=2mi f{1) + 27i f(2)
=-27i [ - cos T + cos 47] |
= 2mi [-(-1)+1] = 4ni

Example 8:

Evaluate I

C
integral formula.

(z+1)dz -
(22 +2z+4)>

where ¢ is |z+1+i|=2 using cauchy

Solution : ‘
|z+.1+1i|=2is acircle with centre (-1, -i) and radius 2 units.

z+1 - |

(22 +22+4)° [z_(.l-ﬁi)]z [z—(—l+ﬁi)]2

The above function is analytic at all points except at z = -1-V/3 I which
lies inside c and z = -1++/3 I which lies outside c.

. Consider the function
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z+1

, 5
~/f(z)= 7 z-(—1+\/§1

(1 JGi)f

. By cauchy integral formula for derivatives

' f(Z) - s et 4
I(z—a)z dz=2mif'(a)

taking a=-1-43i
=2 mif(-1-+/3)

c

1
But A T N
(141
= a=-1++3i
(z-a)?
f,(Z)=(z-o.)2 -2(z+1)(z-a) _ -(z+a+2)
(z-w)* (z-0)’

£'(a)=1£'(-1-43i) |
-I-1-£1-1+J§i+2]= 0 |

= ___0
[1-4Bi +1-43i) avaif
o 2(z-t-l‘)dz _ = 2mi f'(-l-'\/ii)
Uz +2z+4)
=0 o 1 (-1-431) =0

80



Example 10 :
2z _
dz , where ¢ isl VA |= 2 using cauchy integral

Evaluate I © n

c(z+1)

formula.

Solution :
|z | =2 is a circle with centre at the origin and radius 2 units

Here f(z) - e
Clearly z =-1 lies inside ¢
2z 2z
?(z+1) I z-(-1))

since z=-1 lies inside ¢

By cauchy integral formula for derivatives

f"(aj— 3! J‘ f(z) e

=— 2
2m1 : (z—a)

= 2mi f"{-1) ()
since: f(z)_= o=
f'(z) =2*
f"(z)=4e*
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f(z)=8e*

f’"(-])=8e'2 ...(2)
Therefore (2) in (1) we get
2z i ¢ Re2
I e : dz= 2mix 8e
: lz-¢-n] g
= §1rie'2
3
Example 11:
ICOS "2 42 around a rectangle with \fz’rtices 2+1,-2%1
oz -1 | |
Solutioq -

f(z) = cos mz is analytic in the region bounded by the given rectangle and

the two singular points a=1 and a = -1 lie inside this rectangle.

; ‘.‘cosnz et M2 8 cos nz d: 4Y
z2 <1 2\ z-1 z+1
¢ ¢ ‘ 2+ 1 +i
: -2 -1 1 2 "X
=1 J‘ COS MZ dz- J'cosvtz dz - N
2J z-1 z+1 -i
c c
1 : 1 :
-2-{2111 cosm (1) }-E{Zm cosn(-l)}=0.

[By Cauchy’s integral formula]
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Example 12:
' (z-1)
(z+1)*(2-2)

Evaluate I dz whereciscircle |z—1|=2

c

Solution :
|z—1|= 2 is a circle with centre at i and radius 2 units.

z-1
(z+l)2(z—2)

Consider .

The above function is analytic at all except at z=- |

which lies inside ‘c’.
. we consider f(z) = z-1
z-2

&

" I &-(1)

dz=2ni ' (-1) (1)

e u‘Sing cauchy integral formula takinga =-1)

since _f(z):z_'1
z-2
fi(z)= Z=D=(z-1)
(z-2)*
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z-2-z+1

- 2 Y
1 : |z-1|=2
- (Z-Z)2 /'bi C
1 '
N i O ) T 2 .
( o ( ), g -
Substitute ( 2 ) in (1) we get
= | ;
—= dz =2mif'(-1)
c(z+1)*(z-2) -
1
=27 [-—
Iy ]
=_2m
9
Example 13: |
Evaluate
-2
(i) _[Lzs dz , where C's the circle |z|=1.
b (z-n/6)
e22 ;
(i) J’ ~dz , where C s the circle |z|=2.
. c(z+]) |
Solution: :
@) f(z) =sin’ z is analytic inside the circle C: |z | =1 and the

point a = /6 ( 0.5 approx.) lies within C.

!
By cauchy's integral formula f"(a)= £l J. f(z)

: 3
2mi 2 (z-a)

) , 2
We get J'Lzﬁlz= 1ti[—d—2(sin2 z)}
o(z-m/6) dz® "

3 .

=mi(2c0s2z) ,. s =2micos /3 =mi
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(ii) f(z) = e* is analytic within the circle.C: [z | = 2. Also z = -1 lies

inside C.

_ !
. By cauchy's integral formula :f"(a) = 3'_ I f(z)di.
: - 2mi 2 (2-a)

o 3 2z ’ .
e get 2= 2mi |d (63 X =E[8€22]z=—1 =@e'2

(Z+l) 6 I dz |z=—l 3 -

Example 14:

Evaluate I.—-—s'dz, where ¢ is lz|=1

(o)
N
]
a3
——

Solution :
 Here f(z) =sin®z | z| =1 is the circle with center at the origin and
radius 1 units |

clearly z=% lies inside |z|=1

. By cauchy integral formula for derivatives

j f(z)\ 21t1f( )
(z a) \L

f(n/6) - saseil 1)

'-—.
N

But f(z)=sin%
f‘(z)=6sinsz COS Z
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£(2)=6[sin’z(-sinz)+cosz(5sin‘z)]

=6[-sin’z+5cosz sin‘z]

f'(%)=6[é sin’® (%}us cos (%Jx siﬁ“(%]]

1 5 3
=6 —_—— — K —
. [ 64 16 4]. .
=2t
16
Substitute ( 2 ) in ( 1) we have
jsinéz dZ_Zni[_Z_l] _ 2m
16 16

| DAY
6 \
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UNIT IV

TAYLORS AND LAURENTS THEOREM

Taylor’s series: |
If f(z) is analytic inside a circle C with centre at a , then for z inside C

f" (a)
n!
Note: If a =0 in Taylor’s series we get Maclaurin’s theorem

0 ' n
f(z) = Zanz“ where a = 40
=0

n!

, f(z) = f(a) + F(a) (z-a)+% (z-2)% +........... +

Note: Comp]ex analytic functions can always be represented by power series of
the form (1) .

Complex analytic functions can always be represented by pbwer séries
of the form (1)

Laurent’s Series:

- Iff(z) is analytic in the ring-shaped region R bounded by two
concentric circles C and C, of radiirand r; (1> 1;) and with centre at a , then for
allzinR | |
' 'f(z)=ao+a1(z-a)+a2(z—a)z+ ........ +by(z-a)’ +bhy(z-a)%+.....

Km% y
2,(z-2)" + ) b,(z-a)™"
n=]

[Ms

]
o

n

I" being any curve in R', encircling

C ;
Where a , = 21, I f(t)n”
m J(t-a) .
i 2:ri f t -
& (t-2)
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Note: Z a,(z-a)" is called integral part and Z b,(z-2)™ is called principle
n=0

n=0
part of the Laurents series.

‘Note:
(1) To obtain Taylor’s series or Laurent’s series simply expand f(z)
: by Binomial theorem. :
(ii) Laurent’s series of a given analytic function f(z) in its annulus of
convergence is unique.
(111) If |z|<1 , then ( We Know)
(Hz)'=l-z+22—z% ...
(lz)y'=l+z+2+2%. ...
(l4z)?*=1-22+322 -4z ...
(lz)?=1+22+322+4z2%+............
Example 1:
Find the Laurents series Expansion of in the region
A RS
1<|z|<2
; 1 1
Solution: f(z) = ; =
z°-z-2 (z+1)(z-2)
1 A B

@i)z-2) @+ @-2)

1=A(z-2)+B(z+1)

|
utz=2 . Boe
P ' 3
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s o b
putz=-1 A 3
fi2)= ———— =
22 -72-2 (z+1)(z-2)
S SR
“(z+1)(z-2) . Hz+1) 3(z-2)
1 1

T 3z(1+1/z) 6(1-2/2)

-1 -]
SRS
3z z 6 2
2 2
f(z)= ——l—(l—l+(-1-) —...)—l{l+—z-+(£] +}
3z zZ \Z 6 2 \2

—|<1, 1e 1<|z]|
Z

In the first series the expansion in valid

<1l,|z|<2

In the second series the expansion in valid %
The series is valid when 1<| z |<2.

Example 2: Obtain the expansion of the function Z——zl in Taylors series of
z

powers of (z - 1) and state the region of validity.

Solution: f(z) = E-Tl
z

.1 sl
=23

L 7.
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The Taylors series at z=1 is

f(z) = f(n+z(z':) £ (1) (1)

n

1
Nowf(z)=l—-lz-
Z .z

f(1)=0 .(2)
P Y ) o)

2
Al Z3

-1)(-2) (-D(=2)(-3
fr(g) = D), (DD

Z y4

(-1)"n! N (-1)n+l (n+1)!

2
n+l Zn+_

f"(z) =

Z

AP Q) =(-)"nl+ (-1)" (n+1)!
=(-1)" n![1-(n+1)]
=(-1)" n!(-n)
£ (1)=(-1) ! -.(3)

Substitute (2) & (3) in (1) we have
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@

f(z)= Y n(-)"(z-1)"

n=| .
f(z) is analytic at z= 0. Also | z - 1 | <1 is the region of converges.

Hence the region of validity |z —1| <l
Example 3: Obtain the Taylors series of expansion of log (1 +z) when | z I<1.
Solution: Let f (z) = log (1 + z)

f0) = log (1) =0 (D

f’(z)=-—1—
1+2

1
(1+2z)?

fr(z) = EDED) 21D
(1+2)°  (1+2)°

f'(z) =~

f'(2)= ('-1)(—2)"}_01—1) _ (n—l)!'(-l)“"_
(1+Z)n (]+Z)n

-~

S £2(0)=(n-1) ! (-1) ™! ' (2)

The Taylors series at z=0 is

st . z" n | ‘
f(z) = f(0)+nz=]:§f (0) ..(3)
substitute (1) & (2) we get
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f(z)= Z—(n ~Di- ~y*

f(z) Z( l)nl

n=l

Example 4: Expand cos z in a Taylors series about z = ;

Solution:

f(z) = cos z f(4) —JI=

£ = — i (T
(?) sinz f 4]

~
II

J:-I:l

f"(z) = ~cosz f”

ﬁl

N

T
f"(z)=sinz f"] —
(z) =sin (4

The Taylors series about z = a is

f(z)=f(a)+ Z(i_n?—)f" (a)
n=1 :

s S}
et 08 (),
V2 | 2!
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Example 5: Find Taylors expansion of

: ' 1

(1) f(z)= >~ about the point z =- i,
(z+1)

o w228 $1

(i) f(z) = il about the point z =i
z°+z _

(1) To expand f(z) aboutz=-1i ie.in power of z+i, puf z+i=t. Then

1
f(Z)=—— = (1-§)"2 ~2
(2) Y (1-0)2[1+t/(1=i)]

_ify 2t 3 4t |
=—|]l-—0x - P
2] -1 (-i)? a-i)?

(Expanding by Binomial theorem)

[HZ( % (n+l)(z+1) J

1/ (1-1)"

.3 1
22 +1 _ o0 g 27+1 = (2i-2)+2(z- 1)+ e (1)

f -
W) 12)=Zn) 2z +1).
. (By partial fractions)
To expand 1/z and 1/(z+1) about z-1=1, $0 that
. -1
L B -1-[1 + -t—] (Expanding by Binomial theorem)
z (t+i) 1 1
2 3 M
=l 1_.t_+£_._t_+7_ o0
| R T L G
2 3 4
='1-+£+-t—'—.t—'+}5—— 00
i 1@ i
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=—i+(z— 1)+Z( 1" (=i (2

n+l

' -1
and 2 14. = 1 (1+ t_) (Expanding by Binomial theorem)
Coz+l t+i+] 14\ 141 :

1 t t? t> &
= : 1_ .+ ) - 3 + 4 —...0
1#1f  I+1 (+0)° (@Q+0) (A+1)° .

-1t ¢t t’ 3§ }
= - + -..00
2 2 (1+i)3 A+t )’
1 1 z—i (z-1i)"
VTN i3
2 2 2i = ( ) (1+1 )’”‘l G)

Substituting from (2) and (3) in (1) we get

| o1 o
f(z)=( -2- 1+—2-—-£} (2+1——] - ;( 1) (ﬂ”l (]+)M)(z—1)

3
(5—5] (3+ )Z HZ( )[n“*‘ (1+1)“*‘)(z 4

LL

Example 6: Find the Laurents series expansion of f(z) =

abovez=1
(z-1)

eZz

Solution: f(z)=
(z-1)°

Here we have to expand f(z) in Laurents series as powers of (z - 1)
Put z -1=uie,z=u+l
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;ez[ ! + o +(2u)2 +(2u)3 +]

wouwd 2 3w’
. - =+ - —+ - +i+z(z—l)+...oo
(z-1)° (z-1)* (z-1) 3 3
The series is valid when |z—1|>0
Example 7: Find the Laurents series of f(z) =—1——in |z|>2
(z-1)(z-2)
Solution: f(z) =——1—-—
(z-1)(z-2)
-1
f(z)= + using partial fractio
(2) ) -2 (using p n)

In the region | z [>2 the Laurents series is




-~

Example 8: Find the Laurents expansion of f(z)= z' -1 in
(z+2)(z+3)

G |z|>3 ()2<|z|<3

Solution:
f(z) =
\ 7
Z2-1=A(z+2)(z+3)+Bz+3)+C(z+2)

z? B '
=A+ +
(z+2)(z+3) (z+2) (z+3)

putz=-3 -C=8 ..C=8
putz=-2 B=3
Equating the coefficient of z =]
s f(z)=1+ D: . &
(z+2) (z+3)
@ [z]>3
Lf(z)=1+

S
]
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In the above expansion the first series is valid when

E{(l ie.2<|z|
z

<1 1Le. 3<|z|
z

In the second series valid for

The whole expansion is valid when | z | >3

(i) 2<|z|<3

flz)=1+ -
z(l+—2-) 3(1+E)
. z 3
=1+-3—(1+3)-1' —§(1+£)—l
YA z 3 3 )
; # > 2 1
f(Z)=1+—3-[l—[g)+(z)—,..]—% l_(g)‘*(;) -

Z zZ Z

<1 i.e.2<|z|

Z

%d ie |z|<3
3 ;

The whole expansion is valid 2 <|z| <3

In the above expansion the first series is valid when

In the second expansion is valid when
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Example9: Find the Laurents Expansion of the function f(z) =

the an;lulus I<|z+1|<3

Solution: ‘put z+1=u

z=u-l1

f(2) = Tu-)-2 _ Tu-9
(u=Du(u-3) u(u-1)(u-3)

3 1 2
=-— +
u u-1 u-3

(using partial fraction), 1<|u | <3

3 1 2
= ——t —_—

"of-g) {3
u 3
-1 =
; u u u 3 3
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= _2+ : + ! + . 1+(z+1)+((z+l)Jz+ .....
(z+1) (z+1)? (z+1)° 3 3 3

clearly this series is valid in the region 1<|z+1|<3 |

(1) Zeroes of an analytic function
Def . A zero of an analytic function f(z) is that va;luc of z for which f(z) = 0.
(2) Singularities of an analytic function
Def . A singular point of a function is the point at which the function ceases to be
analytic. '
(1) Isolated Singﬁlarity . Itz =a is a singularity of f(z) such that f{z) is analytic at each
point in its neighbourhood ( i.e., there exists a circle with centre a which has no other
singularity) , then z=a is called an jsolated singularity.

In such a case, f(z) can be expanded in a Laurent’s series around z = a, giving

flz)=ap+2,(z-1)+a,(z-a)+....... +bi(z-1)7" +by(z-a)+.... ..(1)

For example , f{z) = cot (/) is not analytic where tan (7 /z )=0 i.e., at the points 7/ z
=4nor z=1/n(n= 1,2,3,....)

Thus z=1, %, 1/3, ..... are all isolated singularities as there is no other
singularity in their neighbourhood.

But when n is large , z=0 is such a singularity that there are infinite number of

other singularities in its neighbourhood. Thus z = 0 is the non — isolated singularity of

f(z).
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(i) Removable Singularity . If all the negative powers of (z—a) in (1) are zero , then
f(z)= Z a, (z - a)" .Here the singularity can be removed by defining f(z) at z =ain
n=0 ’ :

such a way that it becomes analytic at z =a. Such a singularity is called a removable
singularity.

Thus if ¢ f(z) exists finitely , then z =a is a removable singularity
X=>a

(iii ) Poles . If all the negative powers of (z —a )in (i) after the n™ are missing,

then the singularity at z = a is called a pole of order n

A pole of first order is called a simple pole.

(iv) Essential singularity . If the number of negative powers of (z—a) in (1) is

infinite , then z = a is called an essential singularity . In this case, -

1t f(z) does not exist.

X—>a
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Example 1 :
Find the nature of singularities of the function

Z-SInz

(1)

72
Solution :

Here z = 0 is a singularity.

z-sinz _ 1 z2 7% 2z’ z z° 2°
Also = —{z-|z2-—+—-—+..... =———t— ...
72 72 s 7N 357

Since there are no negative powers of z in the expansion , z=0 is a removable

singularity.

” .1
(ii) (z+1)sm—§-

Solution :

.1
(z+1)sm-z—2=(t+2+_l) sin% where t=2z-2

1 1 1
=(t+3) < —- + T
(143) {t 3it*  sit° }

-(l- 1 + 1 -.....)+(E-L+—3 -
312 51t t 2t3 s1¢°

_3.1 1 1

— + J—
t 6t 2t° 120t*

3 1 1

=1+ - -
z-2 6(z-2)> 2(z-2)°
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Since there are infinite number of terms in the negative powers of (z -~ 2 ) is an essential

singularity.

(ii)

COS Z-SINZ

1 ; ) .
Solution: Poles of f(z) = ————— are given by equating the denominator to
‘ cos z -Sinz

zero , i.e., by cosz—sinz=0ortanz=1orz=n/4 is a simple pole of f(z).

Example :

What type of singularity have the following functions :

(1)

[-¢e?

Solution :Poles of f(z) = are found by equating tq zero\l - ee=0ore =1:

(1-e%)
e?.rml
z=2nmi(n=0,+1,£2,....)

Clearly f(z) has a simple pole at z = 2.

822

(i1)
(-

Solution :

2z c2(t+1)' 52 .

(z-1)* t¢ t*

2 (g 207 (290 @) (@)’
{+1!+ o + 3 + a1 + 5| e
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2 1 y) 2 4 2 f_ )
e { (2_1)4 +(Z"1)3+(z—1)?+3(z—1)+3+15(z 1)+... }

since there are finite (4) number of terms containing negative powers of (z-1),

- z=1isapole of 4 th order.

(i) ze /%
' 2 1 1 1
Solution : f(z) =ze''* =z {1+ + + + e
122 2z* 32
3. -5
-1 Z
=z+Z +-j—+———+ 0
73 g5

since there are infinite number of terms in the negative powers of z , therefore z=0

is an essential singularity of f(z).
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UNIT V
EVALUATION OF INTEGRAL
RESIDUES

The co ~efficient of (z—a )’ in the expansion of f(z) around an

isolated singularity is called the residue of f(z) at that point. Thus in the Laurent’s

series expansion of f(z) aroundz=a 1ie., f(z)=a,+a,(z-a)+a,(z-a)’+.....,
a, (z-a)?+....,theresidue of fz)atz=aisa_,
1
Res f(a) =— |f(z)dz
es 1(s) = [f(2)
¢
ie,  [f@e=2mtResfd ... (1)
e
CALCULATION OF RESIDUES
(1) If f(z) has a simple pole at z=a , then
Res f(a)= Lt [(z—a)f(z) ]
z—>a
Laurent’s series in this case is |
flz) =co+ci(z-a)+c(z—a)........ +c 1 (z-2a)™"

' Multiplying throughput by z — a , we have
(z-a)f(z)=co(z—a)+c,(z—a) +...... +c _,

Taking limits as z = a , we get
Lt [(z - a)f(z)] =c -1 = Res f(a)
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(2) Another formula for Res f(a);
Let f(z) = ¢(z) / ¥(z) , where ¥(z) =(z -a) F(z) , F(a) # 0

Then 14 fo-altowta)] - 1 E2EO DO ]
' . roa V@) (Z-2) Y (@)+.......

Z—>a

-1 p(a)+(z-2)0'(a)+....
z—:!:a lll'(a)-l—(z-a) W”(a)+....

, sincey(a)=0

Thus  Resf(a)= L
v'(2)

(3) If f(z) has a pole ofordernatz=a, then

- an-l
Res f(a) = G 1—1)' { d [(z = a)“ f(Z)]}

dZn—l s
Example :
i Find the poles and residues of f(z)=— -
z° —-3z+2
Solution :
z
f p—
@ = e ED

To find poles of f(z) put Dr=0
(ie) (z-2)(z—-1)=0
z=2,1are two simple poles of f(z)
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Residue of f(z) atz =2

’ : z
B }:}z[(z_ 2oz -1)]

2

= 2

5.
Residue of f(z) at z

[ ]

(z—2)(z-1)

1

I|
N
19
—

Example :

Find the poles and residues of f(z) = cot z.
Solution : f(z) = cotz

=cosz/sinz

This is of the form
f2) = (2) / w(z)
poles , sin z =0
Z=nmn z=0, £xn,+2x,

.'.(p(a):tO and y(a)=0

Residue atz=a is 9(a)
¥'(a)
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COosz

Residue of f(Z) =
—(sinz
i ( )

COosZ

CosSz (

=]

ze?

Example : Find the poles and residues of f(z) = 2_a)
z—-a

ze?

(z-a)®

Solution: f(z)=

.z =a is a pole of order 3.

l dm-l
m-—1) z—a
Herem=3
1 d? 3 ze”
=— Lt —(z~-
2!z—>tadzz ) (z—a)’

2
-4 57 e)
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t(e® +ze® +e”)

oo o
»n

1
=—(2e? +ae?
2( 5)
|
=—e"(2+a
5 (2+a)

Example: Evaluate the residue at the poles for the function

2 —_—
f(z) = z° -2z
(z+1)(z* +4)
z% -2z
Solution: f(z) = is pole of order 2
(z+l)2_(z2 +4)

z = 2i is a simple pole

Residue of f{z) at z = - 1 (pole of order 2)

2
TR S el

z->-1dz (z+1)*(z+4)
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2
P d(z°-2z
z--1dz| 22 +4

T (z% +4)(2z-2)- (2% - 22)(22)

z—>-1 (z2 -+ 4)2
_O)(=4)-0B)=2)
25
_14
25

Residue of f(z) at z = 2i (simple pole)

2 —
- Lt (z-2i) =
232 (z+1)?(z-2i)(z+2i)
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z? -2z
= Lt - _ -
222 (z+1)“ (2 —2i)(z+ 2i)

_(2)* -2(2i)
(2i+1)% (41)

44
(—4+1+4i)4i

_ —4(1+1)
" 4i(-3+4i)

_=(1+1)  (1+1) N (-31+4)
T -3i-4 3i+4 (S3i+4)

;Residue of f(z) at z = -2i (simple pole)

22 -2z

= ) D 22

z’ -2z
- z—I:EZi 2(y—2i
(z+1)"(z-21)

_(=2i)® —2(=2i)
(=21 +1)%(—4i)
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44
- (—4i)(—4 - 4i+1)

44 41
(—4i)(-3-4i)

1
()3 +4i)

_a-) (3Bi-4)
(3i-4) " (-3i-4)

 (1-0)Gi+4)
T Gi-4)3i+4)

_(1-)Ei+4)
T (Bi-4)(3i+4)

(1-1)(3i+4)
(3i—-4)(3i+4)

2 -2z
(z+1)%(z® +1)

Example: Find poles and residues of f(z) =

22 -2z
(z+1)2(z* +1)

Solution: f(z)=

Poles of f(z) 1s

z = -1 is pole of order 2
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z =11s a simple pole
z=-1 is a simple pole
Residue at z = - 1 (pole of order 2)

-1t S —E 2
z—-1dz (z+D)°(z" +1)

— T4 d(z?-22
z>-1dz| 2% +1
i T (z% +1)(2z-2) - (22 22)(22)

z--1 (2% +1)*

_2)(4)-B)(=2)
4

_—8+6

Residue of f(z) at z=1 (simple pole)

= Lt (z-i 2" ~2z
z>-1 " (z+1)%(z% +1)(z-1)
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22 =2z

= Lt
z-i (z+1)% (2 +1)
_ ()* -23)
(+1)%(2i)
_—(1+2i) 142
T -4 4
Residue of {(z) at z =1 (simple pole)
z? -2z
= Lt (z+i)—
z—»-i(z +) (z+1)(z+i)(z—1)
5
- Tt (i e 2
z>-i (z+1)%(z+i)(z-1)
_ (=)? -2()

(-i+1)%(-2i)

L1420 1420 1-2i
(=2i)(-2i) -4 4
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RESIDUE THEOREM
If f(z) is analytic in a closed curve C except at a finite number of singular

points within C, then

If (z)dz = 2mi x (sum of the residues at the singular points within C)
3

Let us surround each of the singular points a;, 83, 23,.....,3n by a small circ
such that it encloses no other singular point. Then these circles C,, Cyp,... ,C,together
with C, form a multiply connected region in which f(z) is analytic. @

Applying Cauchy’s theorem, we have

j f(z)dz = J'f(z)dz + I £(2)dzZ + ...+ jf‘(z)dz by (1)
C (o} C, Ca
=2ni[Res f(a,)+Resf(a,) +....+Resf(a, )]

which is the desired result.

2
Example: Use residue theorem to evaluate I el dz

& (z-1)(z* +9)

Wherecis |z—-2|=2.

2
Solution:  f(z) =- 32" +2
(z-1)(z* +9)

Poles are -
z=1 is a simple pole
z = = 31 are two simple poles.
Here c is the circle | z— 2 |= 2.

z =1 is only pole lies inside c.
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By cauchy residue theorem

_[ f(z)dz = 2mi (sum of the residue of f(z) (1)

at the poles which lies inside c)

Residue of f(z) at z= 1 (simple pole)
_ Lt - 1 3z2 +2
z-1 (z le +j

)

1
10 2

J' f(z)dz = 2n(1/2)

=i

and hence evaluate

Example: Determine poles and residues of f(z) = -2’ @2+2)

jf (z)dz where c is the curve |z|=5/2

Solution: f(z)= -2 @2)

poles are z =1 is poles of order 2 and z = -2 is a simple pole.

Here c is the circle | z | = 5/2.

z=1and z = -2 are lying inside c.
Residue of f(z) atz= 1 (pole of order 2)
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- [t )
“LDE (1-2)*(z+2)

d z
= a;[‘—z]
_ 1 2 20-@0

1 (z+2)

3-1

o|N

Residue of f(z) at z = - 2 (simple pole)

= Lt 2
z.»-z(z+ )(l—z)z(z+2)

__(=2)
(-2-1)?

O N

By Cauchy residue theorem

J.f (z)dz = 2mi (sum of the residues of f(z) at the poles which lies inside c)
¢

(31

=0
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sin 1z% + cos nz>

(z-1)(z-2)

Example: Evaluate I dz where|z|=3.
R -

sinz? +cos nz?

Solution: f(z)= (2—Dz-2)

The poles are
z = 1 simple pole
~z =2 simple pole -
Here the circleis |z | =3
Bothz=1 & z =2 lies inside c
Residue of f(z) atz=1

N 2
=Lt(Z_l)smnz +cosmz”
z—>1 (z-1)(z-2)
_sinm+cosm -1 _,
-1 -1
Residue of f(z) at z = 2.
.. 2
- Lt (z_z)smnz +COSTZ
z-52 (z-1)z-2)
_ sin4m +cos 4n __l__1

1 1

By residue theorem

If (z)dz = 2mi (sum of the residues at the interior poles)
€

=2mi(1+1)

= 4mi
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Example :

Evaluate“j s _dz where c is the circle | z | =3/2
& 2(z-1)(z-2)
Solution :
4-3z
f(z) =
z(z-1)(z-2)

The poles are

5 §
z = 0 simple pole
z = 1 simple pole

|z|=37/2

N —-

z =2 simple pole
Here the circle is |z|=3/2 K

z=0 & z =1 lie inside
¢ and z =2 lies outside c.
Residue of f(z) at z=0 simple pole
= . 4-3z
Lt z(z-1)(z-2)

z—>0

_4_,
2
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Residue of f(z) atz=1 is

4-32z
L AR PTeR
IS A
1(-1)

. By cauchy integral theorem

If (z) dz = 27i ( sum of the residues at the interior poles)

C
=2mi (2-1)
=2mi
Example :
Evaluate J‘——z——i— around the closed contour |z—i| =2.
& (x° +4)

Solution :

1

)= (z% +4)° Y

The poles are z = * 2iare

pole of order 2.

Here the circleis |z —i| =2 :

z=2iis the only pole
lies inside c.
. Residue of f(z) at
z = 2i ( pole of order 2)
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(z+2i)%(0)-1(2)z +2i)

o (z+20)*
L —(2z+40)  -(4i+4) _
- _ .

oz+2i)t 4 32

By cauchy’s integral theorem

jf (z) dz=2mi (sum ofthe residues at the interior poles)
z .

—omi X=X
32) 16

(z—1)
(z+1)%(z-2)

Example : Evaluate I where c is the circle | z—1| =2.

c

Solution :

' z-1
o) = —&
(z+1)*(z-2)
The poles are z =-1 pole of <

order 2

& z =2 simple pole
Here the circle is |z —i| =2

Therefore z = -1 is the only pole

Lies inside c.
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Therefore Residue of f(z) at
z =-1 ( pole of order 2)

z—I;t—l dz (Z+1)2(Z‘2)
_ d (z—l)
Lt =
ey 42\ Z2-2
- . (z-2)(1)-(z-1) (1)
=i (2
= 362 1
9 9
By Residue theorem
4 1 27
J'f(z)dz=zm(--g-)=-T
c
Example :

Find the poles and residues of

f(z) = z-3
(z+1)%(z-2) Y
The poles are z =-1 pole of order 2 K»zi\l\z-ihﬂ
& z = 2 simple pole 1
Here the circle is | z—i| =2 : : "

Here z = -1 is the only pole lies
Inside c.

Therefore Residue at z =.]

( pole of order 2)
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Example 4 | If f(z) = sin 7 is an analytic function, prove that the
Samily of curves u(x, y) =c¢; and v(x, y) = ¢, are orthogonal to each

other.
Solution : Given: f(z) = sinz = sin(x +iy)
. = sinx cos (iy) + cos (x) sin (iy)
= sinx coshy +icosx sinhy
Consider u(x,y) = ¢
sinx coshy = ¢ , s asll)
| Differentiating (1) partially with respect to x, we get

d
sin x sinh y "é + cosx coshy = 0 R

dy _ cosxcoshy
dx =~ sinxsinhy
m; = —cotx cothy

Again consider v(x,y) = ¢,
cosxsithy = ¢, | l(2)
Differentiating partially with respect to x, we get

; d
—sinx sinh y + cos x coshya‘)zc =.0

dy _  sinxsinhy
dx  cosxcoshy

m, = tanx tanhy

'mlmz = =]
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u(x,y) = c; and v(x,y)= c, are orthogonal.

Note : For any analytic function F(z) =u+ iv, the family of curves
u =cy, v = ¢, forms an orthogonal system.

Example :
Z—
Evaluate I : dz where Cis the circle
ez + 2z+5
(i) |z]=1 (i) |z+1-1]|=2 (1) |z+1+i| =2
Solution:
The poles of f(z) = ; are given by z2°+2z+5=0
z°+2z+5 -
-2i,ﬂ4—20§
ie., by . zZ= ; =-1+2i

- (1) Both the poles z =-1+2i and z =-1-2i lie outside the circle |z | = 1.
Therefore , f(z) is analytic everywhere within C.

Hence by Cauchy’s theorem , I—— dz=0
oz +2z+5

(i)  Here only one pole z =-1 + 2i lies inside the circle C: | z +1-1| = 2.

. Therefore , f(z) is analytic within C except at this pole.

© Resf(-142)= 1, [lz-(-1+20ff@)]= |, (Z+1—21)(z—3)
z->-142i z>-1421 27 +2z+5
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(z-3) .. -4+2i
z+1+21 4

= 1y =i+1/2

z->-1+21

Hence by residue theorem J.f (z) dz =2miRes f{-1+ 21 ) =2mi (i+1/2) =n(1-2)
e

(i11) Here only one pole z =-1 - 2i lies inside the circle C: |z +1+i | = 2.
Therefore , f{z) is analytic within C except at this pole.
(z+1+2i)(z-3)

z..>..1..2i Zz_+22+5

*. Res f(-1-2i)=

(z-3) _A2_y5

c U, zei-2 -4
If(z) dz
L
=2mi Res f(-1-21)
Hence by residue theorem
=2ni(1/2-1)
=m(2+1)
CONTOUR INTEGRATION

VALUATION OF REAL DEFINITE INTEGRALS

[any important definite integrals can be evaluated by applying the Residue theorem to
joperly chosen integrals.
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2n
a) Integration around the circle: An integral of the type If (sin 6, cos 0)d6 , where
' 0

the integrand is a rational function of sin® and cos® can be evaluated by

writing el®=2

Since sin 6 = zl(z —1] and cos0 = %(z +—1—) , then integral takes the form
i z z

| If(Z)dz , where f(z) is a rational function of z and C is a unit circle |z | = 1.
C .

Her;;:e the integral is equal to 2 times the sum of the residues at those poles of f(z)
which are within C.

2 .
Procedure: Integrals of the form j(p(cos 9,sin 0)d0 where ¢ is a rational function of
0

cos® and sin® .

Working rule: putz = e®=cos@+isin®
l=c'i9=cose—isine
z
e® 40 1[- 1)
’ =—=Z+—|"
cos© T 9 z
el® _e 1 1[ IJ
1 - = — z.-_
sinf =— 25l Z
since z=t=.',iﬁ
dz=ie®do
' dz
w= =2
1€ 1Z
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2n 2
j(p(cos 0,sin 0)d0 = j(p{-% (z + l} —l—(z —l} 9—2—} where c is the unit circle
0 - C

z) 21 z )1z

lz|=1

- j’ f(z)dz

By cauchy residue theorem

=2mni (sum of the residues of f(z) at e poles which lies inside c)

A - 2n
Example: Using method of contour integration evaluate I ¢

2+cosH

Solution: put z=¢"

;.do ==
cosd = l(z+l)
2 z
2n

I_gg___=j dz/iz wherecistheunitcirclelz‘|=1
2+cos0 - 1( 1] : _

2
1Z

0 C24+—|z+—
2 z
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| _j' dz/iz -
4z+z° +1
-2z

.[
3 2
122" +4z+1

C

| b

- % Jf(z)dz

By cauchy residue theorem

= —2- 2mi (sum of the residue of f(z) at the poles lies inside c)
1

=47 (sum of the residues of f(z) at the poles inside c)

The poles of f(z) are given by the roots of z2 +4z +1 =0

_—4x416-4

zZ=

ite.,z=—2+1/§ & z=2-3
{6, g=-2+48; P23
Butz= a lies inside

Residue of f(z) at z = a.(simple pole).
Residue at the simple pole is given by Lt (z-a)f(z)
z—Q
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1
Hencef Lt (z=a) (z—a)(z-PB)

__1
a_..
3 1
(-2+3 = (-2-+/3))
__1
23
2n
I dz =4n —
2+cos0O 24/3
_2n
B
2n
: cos 20
Example: Evaluate |——df
g 6'-_5+4c059
- < i20
ZJ— cos 20 de_z-&de
0—5+4cose ' 5+4cosf
2 (eie)Z

=R.P. I5+4cbse
0

putz=e®
=

12

cos 6 =l(z+1)
2 z
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2 .
=R.P.I z-dz/iz
C5+4J~(z+£]

2 z

2
=-1,-R.P.I de
1 C5z+2z +2

Irp j' f(z)dz
1 C'

ZZ

222 +5z+2

where f(z) =

= 17R.P. 27ti (sum of the residue of f(z) at its interior poles)

1

=R.P. 21t (sum of the residue of f(z) at its interior poles)

For poles of f(z) put Dr.=0

ie., 222+ 52+2=0
2z(z+2)+1(z+2)=0
(2z+1)(z+2)=0

=-2, -1/2
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But only z = -1/2 lies inside c,

Hence Residue of f(z) atz=-1/2 s

= Z_I:E l[z - é—)f (z)

= Lt (z+]) 2’
_H_% 2 )(z+2)(2z +1)

_1/4 1
(2)(3/2) 12
2n i20

ARP [—8 go=2qd L
2 5+4cosH 12

5+4cosH 6

RP. jc0329+1sm 29 e=[nJ
6

2n

Le.. . Iﬂda =] *
. 5+4cosb 6

Example: By 1ntegratmg around a unit circle, evaluate Made.
4 cos

Putting z =€, d0=dz/ iz, cosd = %(z+l]
z
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and cos30 = l ( e +e‘3i°)=.l_(z3 +LJ
2 2 23

Hence the glven integral I = I
"CS5- 2(z+l) =
- 'z

___1_I ) W __l_j‘ (z° +1)dz
2i Cz3(2z2 -52+2) ZiCZ3(22'1)(Z‘2)

=-§ jf('z)dzwhereCis the unit circle | z| = 1.
- K ok

Now f(z) has a pole of order 3 atz=0 and simple poles at z=

only z=0and z = ' lie within the unit circle.

-~

1, and z=2. Of these

, 6 6
- Rest/2)= L , @U2)E ) Lt( 28 +1 } 65

z-)lIZ (2z-1)(z-2) " 2sll2 2°(z-2)) %

n-1
Resf(0) = @ 1 D ( :z“" [(z-0)" f(z)]]

1] %2 2% +1
2| dz? \ 222 -52+2

=0

(2z -5z+2)6z ~(z® +1)(4z-5) _0
» & 2(22 ~52+2)*
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| 827 -252° 41227 ~4z45 ||
2| 22 -52+d)t ]

(222 - 524+2)%(562° ~1502° +60z* ~4) - (82 ~252° |

+122° —42+5)2(28% 52 +2)(4z-5)
2(2z2 ~5z+2)*

- ‘ ' . ol 2=

_4(-4)-5(-20) _ 84 21
2x16 32 8

1 65 21 1 n
H [=——[2mi(Resf(1/2)+Resf(0)]=-1 - —+—[=—1 = |= 75
ence 2i[ m(. esf(1/2)+Resf(0))] ( Y 8) 1{ 12) T
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