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Unit-I

Up to this point we have been introduced to groups and to rings; the
former has its motivation in the set of one-to-one mappings of a set
onto itself, the latter, in the set of integers. The third algebraic model
which we are about to consider—vector space—can, in large part,
trace its origins to topics in geometry and physics.

Its description will be reminiscent of those of groups and rings—in
fact, part of its structure is that of an abelian group—but a vector
space differs from these previous two structures in that one of the
products defined on it uses elements outside of the set itself. These
remarks will become clear when we make the definition of a vector
space.

Vector spaces owe their importance to the fact that so many models
arising in the solutions of specific problems turn out to be vector
spaces. For this reason the basic concepts introduced in them have a
certain universality and are ones we encounter, and keep encountering;,
in so many diverse contexts. Among these fundamental notions are
those of linear dependence, basis, and dimension which will be de-
veloped in this chapter. These are potent and effective tools in all
branches of mathematics; we shall make immediate and free use of
these in many key places in Chapter 5 which treats the theory of fields.

Intimately intertwined with vector spaces are the homomorphisms
of one vector space into another (or into itself). These will make up
the bulk of the subject matter to be considered in Chapter 6.

In the last part of the present chapter we generalize from vector spaces
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to modules; roughly speaking, a module is a vector space over a ring instead
f over a field. For finitely generated modules over Euclidean rings we
all prove the fundamental basis theorem. This result allows us to give a
mplete description and construction of all abelian groups which are
enerated by a finite number of elements.

1 Elementary Basic Concepts

EFINITION A nonempty set V is said to be a vector space over a field F
if V is an abelian group under an operation which we denote by +, and
if for every « € F, v € V there is defined an element, written av, in ¥ subject

1. a(v + w) = av + ow;
2. (¢ + Bo = av + PBu;
3. a(Bv) = (af)v;

4, lv = v;

for all a, fe F, v, we V (where the | represents the unit element of F
‘under multiplication).

Note that in Axiom 1 above the + is that of V, whereas on the left-hand
side of Axiom 2 it is that of F and on the right-hand side, that of V.
We shall consistently use the following notations:

a. F will be a field.

. Lowercase Greek letters will be elements of F; we shall often refer to
elements of F as scalars. ™

' ¢. Capital Latin letters will denote vector spaces over F.

- d. Lowercase Latin letters will denote elements of vector spaces. We shall
often call elements of a vector space vectors.

If we ignore the fact that ¥ has two operations defined on it and view it
- for a moment merely as an abelian group under +, Axiom 1 states nothing
- more than the fact that multiplication of the elements of V by a fixed scalar
- a defines a homomorphism of the abelian group ¥ into itself. From Lemma
- 4.1.1 which is to follow, if o % 0 this homomorphism can be shown to be
' -an isomorphism of V onto V.

- This suggests that many aspects of the theory of vector spaces (and of
-~ rings, too) could have been developed as a part of the theory of groups,
- had we generalized the notion of a group to that of a group with operators.
. For students already familiar with a little abstract algebra, this is the pre-
~ ferred point of view; since we assumed no familiarity on the reader’s part
- with any abstract algebra, we felt that such an approach might lead to a
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too sudden introduction to the ideas of the subject with no experience to
act as a guide.

Example 4.1.1 Let F be a field and let K be a field which contains F as
a subfield. We consider K as a vector space over F, using as the + of the
vector space the addition of elements of K, and by defining, for a € F,
v € K, aw to be the products of o and v as elements in the field K. Axioms
1, 2, 3 for a vector space are then consequences of the right-distributive
law, left-distributive law, and associative law, respectively, which hold for
K as a ring.

Example 4.1.2 Let F be a field and let V be the totality of all ordered
n-tuples, (ay,...,®,) where the a; € F. Two elements (a;, ..., ,) and
(Bys - - -5 Bs) of V are declared to be equal if and only if a; = B; for each
i=1,2,...,n. We now introduce the requisite operations in V' to make
of it a vector space by defining:

Lo (ogs e 0) + (Bos-oos Ba) = (a1 + Bz + Base sy + Bu)-
2. plotgy - vy o) = (Poty, ..., ) for y € F.

It is easy to verify that with these operations, V' is a vector space over F.
Since it will keep reappearing, we assign a symbol to it, namely F™.

Example 4.1.3 Let F be any field and let V = F[x], the set of poly-
nomials in x over F. We choose to ignore, at present, the fact that in F[x]
we can multiply any two elements, and merely concentrate on the fact that
two polynomials can be added and that a polynomial can always be multi-
plied by an element of F. With these natural operations F[x] is a vector
space over F.

Example 4.1.4 1In F[x] let V, be the set of all polynomials of degree less
than n. Using the natural operations for polynomials of addition and
multiplication, V, is a vector space over F.

What is the relation of Example 4.1.4 to Example 4.1.2? Any element of
V, is of the form a + oayx + *+* + &, x"" !, where a; € F; if we map
this element onto the element (atg, &, - - - , %,_;) in F™ we could reasonably
expect, once homomorphism and isomorphism have been defined, to find
that ¥, and F™ are isomorphic as vector spaces.

DEFINITION If V is a vector space over F and if W < V, then W is 2
subspace of V if under the operations of V, W, itself, forms a vector space
over F. Equivalently, W is a subspace of V whenever w;,w,€ W,
o, B € F implies that aw, + Pw, € W.




Note that the vector space defined in Example 4.1.4 is a subspace of that
‘defined in Example 4.1.3. Additional examples of vector spaces and
_subspaces can be found in the problems at the end of this section.

EFINITION If U and V are vector spaces over F then the mapping T
f U into V is said to be a homomorphism if

(g + u))T =u T + u,T;
2. (au)T = a(u, T);

for all u;, u, € U, and all o € F.

As in our previous models, a homomorphism is a mapping preserving
all the algebraic structure of our system.

If T, in addition, is one-to-one, we call it an isomorphism. The kernel of
T is defined as {ue U|uT = 0} where 0 is the identity element of the
addition in V. It is an exercise that the kernel of 7'is a subspace of U and
that T is an isomorphism if and only if its kernel is (0). Two vector spaces
are said to be wsomorphic if there is an isomorphism of one onfo the other.

- The set of all homomorphisms of U into ¥ will be written as Hom (U, v).
Of particular interest to us will be two special cases, Hom (U, F) and
‘Hom (U, U). We shall study the first of these soon; the second, which can be
shown to be a ring, is called the ring of linear transformations on U. A great
eal of our time, later in this book, will be occupied with a detailed study
f Hom (U, U).

~ We begin the material proper with an operational lemma which, as in
the case of rings, will allow us to carry out certain natural and simple
£omputations in vector spaces. In the statement of the lemma, O represents
the zero of the addition in V, o that of the addition in F, and —u the
dditive inverse of the element v of V.

EMMA 411 If Vis a vector space over F then

a0 = 0 fora € F.

- 00 =0 forveV.

« (=a)o = —(w) foraeF, ve V.

v # 0, then av = 0 implies that a = o.

Proof. The proof is very easy and follows the lines of the analogous

Bsults proved for rings; for this reason we give it briefly and with few
planations.

Since 20 = a(0 + 0) = a0 + a0, we get a0 = 0.
Since ov = (0 + 0)o = ov + ov we get oy = 0.
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3. Since 0 = (a + (—a))p = w + (—a)p, (—W)p = —(av).
4, Ifgv = 0 and a # o then

0=0"10=0a Yw) = (@ ‘e = lv =2

The lemma just proved shows that multiplication by the zero of V or of
F always leads us to the zero of V. Thus there will be no danger of confusion
in using the same symbol for both of these, and we henceforth will merely

use the symbol O to represent both of them.

" Let V be a vector space over F and let W be a subspace of V. Considering
these merely as abelian groups construct the quotient group V/Wj its
elements are the cosets » + W where v € V. The commutativity of the
addition, from what we have developed in Chapter 2 on group theory,
assures us that V/W is an abelian group. We intend to make of it a vector
space. Ifa e F, v + We VW, define a(v + W) = av + W. Asis usual,
we must first show that this product is well defined; that is, if v + W =
v + Wthen a(v + W) = a(v’ + W). Now, because v + W =o' + W,
v — o' is in W; since W is a subspace, a(v — ¢') must also be in W. Using
part 3 of Lemma 4.1.1 (see Problem 1) this says that av — av’ € W and so
w+W=a' +W. Thus alv + W)= + W=a' + W=a(' + W);
the product has been shown to be well defined. The verification of the
vector-space axioms for V/W is routine and we leave it as an exercise.
We have shown

LEMMA 4.1.2 If V is a vector space over F and if W is a subspace of V, then
VIW is a vector space over F, where, for vy + W, v, + We VIW and a € F,

L (o + W)+ (0 + W) = (v, +0,) + W.
2. a(v, + W) =av; + W.

VIW is called the guotient space of V by W.
Without further ado we now state the first homomorphism theorem for

vector spaces; we give no proofs but refer the reader back to the proof of
Theorem 2.7.1.

THEOREM 4.1.1 If T is a homomorphism of U onto V with kernel W, then V
is isomorphic to U|/W. Comversely, if U is a vector space and W a subspace of U,
then there is a homomorphism of U onto U|W.

The other homomorphism theorems will be found as exercises at the end
of this section.

DEFINITION Let V be a vector space over F and let U, ..., U, be
subspaces of V. V is said to be the internal direct sum of Uy, ..., U, if‘every
element v € V can be written in one and only one way as v = u; + u, +
-++ + u, where u; € U,.




~ Given any finite number of vector spaces over F, V,,..., V, consider
the set ¥ of all ordered n-tuples (y, ..., v,) where v; € V,. We declare two
lements (v1,...,0,) and (9},...,2.) of V to be equal if and only if for
each ¢, »; = »/. We add two such elements by defining (v,,...,0,) +
(w1, w,) to be (o, + wy, v, + w,, ..., vy + w,). Finally, if a e F
and (vy,...,9,) € V we define a(o,, ..., vn) to be (awy,av,, ..., a,).
"To check that the axioms for a vector space hold for ¥ with its operations
as defined above is straightforward. Thus V itself is a vector space over F.
‘We call V the external direct sum of V,,. .., V, and denote it by writing
V=V,® @V,

THEOREM 4.1.2 If V is the internal direct sum of U,,..., U,
isomorphic to the external direct sum of U,...,U

ne

, then V is

Proof. Given v e V, v can be written, by assumption, in one and only
one way as v = 4y + Uy + -+ u, where u; € Uy; define the mapping
T of Vinto Uy @ -+-® U, by oT = (u, ..., u,). Since » has a unique
‘representation of this form, 7 is well defined. It clearly is onto, for the
arbitrary element (w,...,w,) e U, @ - ® U, is wT where w = w, +
-+ w, e V. We leave the proof of the fact that 7 is one-to-one and a
‘homomorphism to the reader.

Because of the isomorphism proved in Theorem 4.1.2 we shall henceforth
merely refer to a direct sum, not qualifying that it be internal or external.

Problems
1. In a vector space show that a(v — w) = av — aw. ’
2. Prove that the vector spaces in Example 4.1.4 and Example 4.1.2 are
isomorphic.

3. Prove that the kernel of a homomorphism is a subspace.

4. (a) If F is a field of real numbers show that the set of real-valued,
continuous functions on the closed interval [0, 1] forms a vector
space over F.
(B) Show that those functions in part (a) for which all nth derivatives
existforn = 1,2,... form a subspace.

5. (a) Let F be the field of all real numbers and let ¥ be the set of all
sequences (a;, ay,...,4a,,...), a; € F, where equality, addition
and scalar multiplication are defined componentwise. Prove that
V is a vector space over F.

(b) Let W = {(ay,...,a,...)e V|lim a, = 0}. Prove that W

n—oo

is a subspace of V,
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*7.

10.

11

12.
13.

14.

15.

16.

17.

18.

*(c) Let U = {(a, .-, ay,...) € V] Z a;? is finite}. Prove that U is
i=1
a subspace of ¥ and is contained in .

If U and V are vector spaces over F, define an addition and a multipli-
cation by scalars in Hom (U, V) so as to make Hom (U, V) into a
vector space over F.

Using the result of Problem 6 prove that Hom (F®™, F™) is isomorphic
to F"™™ as a vector space.

. If n > m prove that there is a homomorphism of F™ onto F™ with

a kernel W which is isomorphic to F®~™,

. If v £ 0 F™ prove that there is an element 7 € Hom (F®, F)

such that 7 # 0.

Prove that there exists an isomorphism of F™ into
Hom (Hom (F™, F), F).

If U and W are subspaces of V, prove that U + W = {pe V|v =
u + w, ue U, we W}is a subspace of V.

Prove that the intersection of two subspaces of V is a subspace of V.

If 4 and B are subspaces of ¥ prove that (4 + B)/B is isomorphic to
A/(4 n B).

If T is a homomorphism of U onto V with kernel W prove that there
is a one-to-one correspondence between the subspaces of 7 and the
subspaces of U which contain W.

Let V be a vector space over F and let V,..., V, be subspaces of
V. Suppose that V=V, + V, +--- + V, (see Problem 11), and
that V;n (V; +- 4+ Vioy + Vigy +---+ V,) = (0) for every

1 =1,2,...,n Prove that Vis the internal direct sum of V;,..., V.

Let V=V, @ -@® V,; prove that in V there are subspaces V;

1
isomorphic to V; such that V is the internal direct sum of the V;.

Let T be defined on F® by (x, %) T = (ax; + Pxy, y%, + 0%3)

where a, f, 7, 6 are some fixed elements in F.

(a) Prove that T is a homomorphism of F(?) into itself.

(b) Find necessary and sufficient conditions on «, f8, y, & so that T is
an isomorphism.

Let 7 be defined on F3 by (x, %5, x3) T = (03,% + y2%, +
Oy3Xy, Op1X; + OapXy + Op3X3, U3g¥; + O3p%, + 033%3). Show that T’
is a homomorphism of F(¥ into itself and determine necessary and
sufficient conditions on the a;; so that 7" is an isomorphism.
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Unit-1

If we look somewhat more closely at two of the examples described in the
- previous section, namely Example 4.1.4 and Example 4.1.3, we notice that
- although they do have many properties in common there is one striking
- difference between them. This difference lies in the fact that in the former
- we can find a finite number of elements, 1, x, x2, ..., "~ ! such that every
~ element can be written as a combination of these with coefficients from F,
- whereas in the latter no such finite set of elements exists.
We now intend to examine, in some detail, vector spaces which can be
- generated, as was the space in Example 4.1.4, by a finite set of elements.

- DEFINITION If V is a vector space over F and if v;,...,v, € V then
- any element of the form @y + 00, + - + a,v,, where the a;€F, is a
- linear combination over F of Ugyvvns Upe

~ Since we usually are working with some fixed field 7 we shall often say
_linear combination rather than linear combination over F. Similarly it will
- be understood that when we say vector space we mean vector space over F.

DEFINITION IfSis a nonempty subset of the vector space V, then L(S),
-~ the linear span of S, is the set of all linear combinations of finite sets of
~ elements of .

We put, after all, into L(S) the elements required by the axioms of a
- Vector space, so it is not surprising to find

LEMMA 421 L(S) is o subspace of V.

~ Proof. If vy and w are in L(S), then v = 2,5y + - + A5, and w =

Mgty + cc o pot where the A’s and ws are in F and the s; and ¢, are all

in §. Thus, for «, BeF, av + Pw = a(lys; + -+ + Ausa) + Blugty +
It Hontm) = (@Ay)sy + -+ + (@dn)sy + (Bug)ty + -+ + (Bim)tm and so
Is again in L(S). L(S) has been shown to be a subspace of V.

The proof of each part of the next lemma is straightforward and easy
and we leave the proofs as exercises to the reader.
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LEMMA 4.2.2 If S, T are subsets of V, then

1. § < T implies L(S) < L(T).
2. L(Su T)=L(S) + L(T).
3. L(L(S)) = L(S).

DEFINITION The vector space V is said to be finite-dimensional (over F)
if there is a finite subset S in V such that V = L(S).

Note that F® is finite-dimensional over F, for if § consists of the rn vectors
(1,0,...,0),(0,1,0,...,0),...,(0,0,...,0, 1), then V = L(S).

Although we have defined what is meant by a finite-dimensional space
we have not, as yet, defined what is meant by the dimension of a space.
This will come shortly.

DEFINITION If Vis a vector space and if vy, ..., v, are in V, we say that
they are linearly dependent over F if there exist elements A,,..., A, in F,
not all of them 0, such that 4,0, + A0, + -+ 4,0, = 0.

If the vectors v, . . ., v, are not linearly dependent over F, they are said
to be linearly independent over F. Here too we shall often contract the phrase
“linearly dependent over F*’ to “linearly dependent.” Note that if »,, ...,
v, are linearly independent then none of them can be 0, for if »; = 0,
say, then oo, + Ov, + -+ + Ov, = Ofor any o # O in F.

In F® it is easy to verify that (1, 0, 0), (0, 1, 0), and (0, 0, 1) are linearly
independent while (1, 1, 0), (3, 1, 3), and (5, 3, 3) are linearly dependent.

We point out that linear dependence is a function not only of the vectors
but also of the field. For instance, the field of complex numbers is a vector
space over the field of real numbers and it is also a vector space over the
field of complex numbers. The elements v; = 1, v, = ¢ in it are linearly
independent over the reals but are linearly dependent over the complexes,
since iv; + (—1)v, = 0.

The concept of linear dependence is an absolutely basic and ultra-
important one. We now look at some of its properties.

LEMMA 423 Ifo,...,v, € V are linearly independent, then every element in

their linear span has a unique representation in the form Ajv, + -+ + A, with
the A’i € F.

Proof. By definition, every element in the linear span is of the form
Aoy + +++ 4+ A0, To show uniqueness we must demonstrate that if
Aop + o+ Ay =0+ pw, then Ay =g Ay = pp, o Ay = e
But if Aoy + -+ A, = g0, + - + uuv, then we certainly have




(A — wdoy + (A — pp)o, + -+ + (Aw — w4)v, = 0, which by the linear
independence of o,,..., s, forces A —p =0, 3 —p, =0,...,
n = Mo =0.

The next theorem, although very easy and at first glance of a somewhat
‘technical nature, has as consequences results which form the very foundations
of the subject. We shall list some of these as corollaries ; the others will
appear in the succession of lemmas and theorems that are to follow.

THEOREM 4.21 If o, ..., 0, are in V then either they are linearly independ-

ent or some vy is a linear combination of the preceding ones, vy, ..., v,_,.

Proof. 1Ifuv, ..., v, are linearly independent there is, of course, nothing
to prove. Suppose then that oo, + --- + a0, = 0 where not all the
o’s are 0. Let £ be the largest integer for which «, # 0. Since o; =0
for i >k o, + -4 aw =0 which, since o # 0, implies that
% = o N~ — ap, — - — G-1¥-1) = (=" la)o, + -+
(=% 'o_y)v,_y. Thus o, is a linear combination of its predecessors.

COROLLARY 1 Ifv,,...,v, in V have W as linear span and if vy, ..., v,
are linearly independent, then we can find a subset of v, -+, 0, of the form v,
Us v o5 Vs Uyys oo Uy comsisting of linearly independent elements whose linear

Proof. Ifuv,,..., v, are linearly independent we are done. If not, weed
out from this set the first v ;» which is a linear combination of its predecessors.
Since v, . . ., 9, are linearly independent, j > k. The subset so constructed,
Ve v s Ups oo Ujyqy Djyqsev.,0, has n — | elements. Clearly its linear
pan is contained in W. However, we claim that it is actually equal to W;
for, given w e W, w can be written as a linear combination of vy,..., 0,
But in this linear combination we can replace v; by a linear combination of
Y5 ..., 9;_;. Thatis, wis a linear combination ofovy,...,0;_4, Vigts e v sl
Continuing this weeding out process, we reach a subset Vyy ooy Oy
i - - > ;, whose linear span is still W but in which no element is a linear
~Combination of the preceding ones. By Theorem 4.2.1 the elements
u,.. 70, i5+ - -, U3, must be linearly independent.

X/

k'COROLLARY 2 If V is a finite-dimensional vector space, then it contains a
Jinite set vy, . . . v, of linearly independent elements whose linear span is V.

Proof. Since V is finite-dimensional, it is the linear span of a finite
‘humber of elements Uy -+, Uy, By Corollary 1 we can find a subset of

these, denoted by vy,...,2,, consisting of linearly independent elements
whose linear span must also be V.
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DEFINITION A subset S of a vector space V is called a basis of V if §
consists of linearly independent elements (that is, any finite number of
elements in § is linearly independent) and V' = L(S).

In this terminology we can rephrase Corollary 2 as

COROLLARY 3 If V is a finite-dimensional vector space and if uy, ..., u,
span V then some subset of uy,. .., u, forms a basis of V.

Corollary 3 asserts that a finite-dimensional vector space has a basis

containing a finite number of elements 2y, ..., v, Together with Lemma
4.2.3 this tells us that every element in V has a unique representation in the
form oo, + - + aw, with oy, ..., a,in F.

Let us see some of the heuristic implications of these remarks. Suppose
that V is a finite-dimensional vector space over F; as we have seen above,
V has a basis v;,...,0,. Thus every element v € V has a unique repre-
sentation in the form » = a0, + +*+ + a,2,. Let us map V into F® by
defining the image of &yo; + *** + 2, to be (ay,...,®,). By the unique-
ness of representation in this form, the mapping is well defined, one-to-one,
and onto; it can be shown to have all the requisite properties of an iso-
morphism. Thus V is isomorphic to F® for some 7, where in fact n is
the number of elements in some basis of V over F. If some other basis of
V should have m elements, by the same token ¥ would be isomorphic to
F™_ Since both F™ and F™ would now be isomorphic to V, they would
be isomorphic to each other.

A natural question then arises! Under what conditions on n and m are
F™ and F™ isomorphic? Our intuition suggests that this can only happen
when #n = m. Why? For one thing, if F should be a field with a finite
number of elements—for instance, if F = ], the integers modulo the prime
number p—then F® has p" elements whereas F™ has p™ elements. Iso-
morphism would imply that they have the same number of elements, and
so we would have n = m. From another point of view, if F were the field
of real numbers, then F™ (in what may be a rather vague geometric way
to the reader) represents real n-space, and our geometric feeling tells us
that n-space is different from m-space for n # m. Thus we might expect
that if F is any field then F™ is isomorphic to F™ only if n = m. Equiv-
alently, from our earlier discussion, we should expect that any two bases of
¥ have the same number of elements. It is towards this goal that we prove
the next lemma.

LEMMA 424 Ifo,,...,0, is a basis of V over F and if wy,...,w, in V
are linearly independent over F, then m < n.

Proof. Every vector in V, so in particular w,, is a linear combination

of v,,...,v, Therefore the vectors w,, vy, ..., ¥, are linearly dependent.




Moreover, they span V since vy,..., s, already do so. Thus some proper
subset of these w,, v;,...,v; with £ < n — 1 forms a basis of V. We
have “traded off” one w, in forming this new basis, for at least one o;.
Repeat this procedure with the set w,_;, w,, Ui -« 0. From this
linearly dependent set, by Corollary 1 to Theorem 4.2.1, we can extract a
basis of the form w,_,, w,, v;,...,2;, s <n — 2. Keeping up this
procedure we eventually get down to a basis of V of the form w,, ...,
W1, Wy Ugy Vg - - - 5 SINCE )y is not a linear combination of w,, . . ., w,, _,, the
above basis must actually include some 2. To get to this basis we have
introduced m — 1 w’s, each such introduction having cost us at least one o,
and yet there is a v left. Thus m — 1 <n — 1 and so m < n.

This lemma has as consequences (which we list as corollaries) the basic
results spelling out the nature of the dimension of a vector space. These
corollaries are of the utmost importance in all that follows, not only in this
chapter but in the rest of the book, in fact in all of mathematics. The
corollaries are all theorems in their own rights.

COROLLARY 1 If V is finite-dimensional over F then any two bases of V
have the same number of elements.

Proof. Let v,,...,0, be one basis of V over F and let wy, ..., w, be
another. In particular, wy, ..., w, are linearly independent over F whence,
by Lemma 4.2.4, m < n. Now interchange the roles of the v’s and ®’s and
we obtain that n < m. Together these say that n = m.

COROLLARY 2 F® s isomorphic F“™ if and only if n = m.

Proof. F®™ has, as one basis, the set of n vectors, (1,0,...,0), (0,1,
0,...,0),...,(0,0,...,0,1). Likewise F™ has a basis containing m
vectors. An isomorphism maps a basis onto a basis (Problem 4, end of this
section), hence, by Corollary 1, m = n.

Corollary 2 puts on a firm footing the heuristic remarks made earlier
about the possible isomorphism of F™ and F™. As we saw in those re-
marks, Vis isomorphic to F™ for some n. By Corollary 2, this n is unique, thus

-

COROLLARY 3 If V is finite-dimensional over F then V is isomorphic to F™
Jor a unique integer n; in fact, n is the number of elements in any basis of V over F.

DEFINITION The integer n in Corollary 3 is called the dimension of V

over F.

The dimension of V over F is thus the number of elements in any basis
of V over F.



We shall write the dimension of ¥V over F as dim V, or, the occasional
time in which we shall want to stress the role of the field F, as dimg V.

COROLLARY 4 Any two finite-dimensional vector spaces over F of the same
dimension are isomorphic.

Proof. If this dimension is n, then each is isomorphic to F®™, hence
they are isomorphic to each other.

How much freedom do we have in constructing bases of ¥? The next
lemma asserts that starting with any linearly independent set of vectors
we can “blow it up” to a basis of V.

LEMMA 4.25 If V is finite-dimensional over F and if uy,...,u, €V are
linearly independent, then we can find vectors Upyyis .. - Ums, tn V such that
Uy o ooy Ups Uyt - - - 5 Upyp 15 @ basis of V.

Proof. Since V is finite-dimensional it has a basis; let v;,..., v, be a
basis of V. Since these span V, the vectors uy, ..., %, 0y, ..., v, also span
V. By Corollary 1 to Theorem 4.2.1 there is a subset of these of the form
Uiy .o Uy Uy ---> 0, which consists of linearly independent elements
which span V. To prove the lemma merely put #,4q = 0y -5 Ups, =
v

What is the relation of the dimension of a homomorphic image of V to
that of V? The answer is provided us by

LEMMA 4.2.6 If V is finite-dimensional and if W is a subspace of V, then W
is finite-dimensional, dim W < dim V and dim V/W = dim V — dim W.

Proof. By Lemma 4.2.4, if n = dim V then any n + 1 elements in V
are linearly dependent; in particular, any #» + 1 elements in W are linearly
dependent. Thus we can find a largest set of linearly independent elements
in W, wy,...,w, and m < n If we W then w,...,w,, w is a linearly
dependent set, whence aw + aw; + - + a,w, = 0, and not all of the
a;’s are 0. If ¢ = 0, by the linear independence of the w; we would get that
each a; = 0, a contradiction. Thus a # 0, and so w = —a” Yow, +
-+ 4+ a,w,). Consequently, w,,...,w, span W; by this, W is finite-
dimensional over F, and furthermore, it has a basis of m elements, where
m < n. From the definition of dimension it then follows that dim W <
dim V.

Now, let w,, ..., w, be a basis of W. By Lemma 4.2.5, we can fill this
out to a basis, w,,..., Wy, 0y,...,0, of V, where m + r = dim V and
m = dim W. .

Let 7,,...,7, be the images, in V = V[W, of v,,...,v,. Since any
vector v € V is of the form v = oyw; + - + O, + Bvg + -+ + B,



then 7, the image of o, is of the form 7 = By + -+ B3, (since b, =
Wy =+ =1, =0). Thus7,...,7, span V/W. We claim that they are
linearly independent, for if y,0, + --- + 70 =0 then yo, +--- +
Y0, € W, and so yo; + - + y0, = Awy + -+ + Aw,, which, by the
linear independence of the set wy,...,w,, U15-..,0, forces y; = +-- =
Y»=4A4 == 4, =0. We have shown that VIW has a basis of r
elements, and so, dim V/W =r = dim V — m = dim V — dim W,

COROLLARY  If 4 and B are finite-dimensional subspaces of a vector space V,
then A + B is finite-dimensional and dim (A + B) = dim (4) + dim (B) —
dim (4 n B).

Proof. By the result of Problem 13 at the end of Section 4.1,

A+B _ 4
B " AnB

and since 4 and B are finite-dimensional, we get that
%MA+&—dm3=dm(A;§=dm(‘4)

= dim 4 — dim (4 n B).

Transposing yields the result stated in the lemma.

Problems

1. Prove Lemma 4.2.2.

-~

2. (a) If Fis the field of real numbers, prove that the vectors (1, 1, 0, 0),
(0,1, =1,0), and (0,0, 0, 3) in F® are linearly independent
over F.
(b) What conditions on the characteristic of F would make the three
vectors in (a) linearly dependent?

3. If V has a basis of n elements, give a detailed proof that ¥V is isomorphic
to F®,

4”If T is an isomorphism of ¥ onto W, prove that 7' maps a basis of V
onto a basis of W.

5. If V is finite-dimensional and 7 is an isomorphism of V into V, prove
that 7" must map V onto V.

6. If V is finite-dimensional and T is a homomorphism of V onto V,
prove that T must be one-to-one, and so an isomorphism.

7. If V is of dimension n, show that any set of n linearly independent
vectors in V forms a basis of V.

-



8. If Vis finite-dimensional and W is a subspace of ¥ such that dim V' =
dim W, prove that V = W.

9. If V is finite-dimensional and T is a homomorphism of V into itself
which is not onto, prove that there is some » # 0 in V such that
vT = 0.

10. Let F be a field and let F[x] be the polynomials in x over F. Prove
that F[x] is not finite-dimensional over F.

11. Let V, = {p(x) € F[x] | deg p(x) < n}. Define T by
(dg + ayx + o+ o, 2 HT
=0y 4+ a(x + 1) + apx + D2+ 0+ oy y(x + 1)
Prove that T is an isomorphism of V, onto itself.
12. Let W = {ag + ayx + -+ a,_ " P e F[x] | g + o, + - +

®,-; = 0}. Show that W is a subspace of V, and find a basis of W
over F.

13. Let v;,...,2, be a basis of V and let w,,...,w, be any n elements
in V. Define Ton Vby (A2, + -+ + Av)T = Auw, + -+ + Lw,.
(a) Show that R is a homomorphism of V into itself.
(b) When is T an isomorphism?

14. Show that any homomorphism of V into itself, when V is finite-
dimensional, can be realized as in Problem 13 by choosing appropriate
elements wy, ..., w,.

15. Returning to Problem 13, since v,,...,v, is a basis of V, each

w; = o0 + 0+ oY, o € F. Show that the n? elements a;; of
F determine the homomorphism 7.

*16. If dimy V = n prove that dimy (Hom (V,V)) = n?

17. If V is finite-dimensional and W is a subspace of V prove that there
is a subspace W, of Vsuchthat V = W @ W,.

4.3 Dual Spaces

Given any two vector spaces, ¥ and W, over a field F, we have defined
Hom (V, W) to be the set of all vector space homomorphisms of ¥ into W.
As yet Hom (V, W) is merely a set with no structure imposed on it. We
shall now proceed to introduce operations in it which will turn it into a
vector space over F. Actually we have already indicated how to do so in
the descriptions of some of the problems in the earlier sections. However
we propose to treat the matter more formally here.

Let S and T be any two elements of Hom (V, W); this means that these
are both vector space homomorphisms of ¥ into W. Recalling the definition




of such a homomorphism, we must have (o1 + 03)8 = 9,8 + 0,8 and
(av,)8 = a(v;S) for all 2,0, € V and all x € F. The same conditions also
hold for T.
We first want to introduce an addition for these elements § and T in
- Hom (V, W). What is more natural than to define § + T by declaring
o(S + T) = vS + oT for all ve V? We must, of course, verify that $ + 7
is in Hom (¥, W). By the very definition of S + T, if v, v, € V, then
- (@00 + ) (S+ T) = (v +9)S+ (v, +9,)T;  since (01 +2,)S = 0,8 + 0,8
L and (o, + 0,)T = 9T + 2, T and since addition in W is commutative, we
L get (0 + )+ T) = 0,8 + 0,T + 2,8 + 0, . Once again invoking
the definition of § + T, the right-hand side of this relation becomes
0(S+ T) +0,(S + T); we have shown that (0 +0)(S+ T) =
9§ + T) 4+ 2,(S + T). A similar computation shows that ()(S+ T) =
a(@(S + T)). Consequently S + T is in Hom (V,W). Let 0 be that
~ homomorphism of ¥ into W which sends every element of ¥ onto the zero-
element of W; for § € Hom (V, W) let —S be defined by o(—=S8) = —(v5).
- It is immediate that Hom (¥, W) is an abelian group under the addition
defined above.
: Having succeeded in introducing the structure of an abelian group on
Hom (V, W), we now turn our attention to defining AS for 1 e F and
§ e Hom (V, W), our ultimate goal being that of making Hom (V, W)
into a vector space over F. For A € F and § € Hom (V, W) we define
AS by 9(AS) = A(vS) for all v € V. We leave it to the reader to show that
AS is in Hom (V, W) and that under the operations we have defined,
Hom (V, W) is a vector space over F. But we have no assurance that
Hom (V, W) has any elements other than the zero-homomorphism. Be
that as it may, we have proved -

LEMMA 431 Hom (V, W) is a vector space over F under the operations
described above.

A result such as that of Lemma 4.3.1 really gives us very little information ;
rather it confirms for us that the definitions we have made are reasonable.
We would prefer some results about Hom (V, W) that have more of a
bife to them. Such a result is provided us in

THEOREM 4.3.1 If V and W are of dimensions m and n, respectively, over F,
then Hom (V, W) is of dimension mn over F.

Proof. 'We shall prove the theorem by explicitly exhibiting a basis of
Hom (V, W) over F consisting of mn elements.

Let vy,. .., v, be a basis of V over F and w, ..., w, one for W over F.
If veV then v = 40 + -+ 4 A, where Ats+ 5 Ay are uniquely de-
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fined elements of F; define T;:V — W by v7T,; = Aw;. From the point
of view of the bases involved we are simply letting v, T;; = O for k # ¢
and v;T;; = w;. It is an easy exercise to see that T; is in Hom (V, W).
Since ¢ can be any of 1,2,...,m and j any of 1,2,...,n there are mn
such T7;’s.

Our claim is that these mn elements constitute a basis of Hom (V, W)
over F. For, let §e€ Hom (V, W); since v,S € W, and since any element
in W is a linear combination over F of wy, ..., w,, v, = oy w; + o, +
sov o+ oy, for some oyq, dyp, ..., 04, in F. In fact, ;S = oy + 0 +
o;w, for ¢ =1,2,...,m Consider § = oy, Ty; + oj,T3, + -+ +
WnTin + 03 Tpg +0r Ty + oo Ty + o+ 0y Ty + -0 +
Ot Top1 + *** + OppTn Let us compute 7,5, for the basis vector . Now
S = Ulay T+t Ty + 0+ UppToy) = a3 (07T1) +
a2 T12) + o0+ Uy (0 Ts) + ° + Uy(%Tomn). Since 3, Ty; = 0 for
i # k and 9, T;; = w;, this sum reduces to yS; = oWy + *** + W,W,,
which, we see, is nothing but ,S. Thus the homomorphisms §, and § agree
on a basis of V. We claim this forces §; = § (see Problem 3, end of this
section). However S is a linear combination of the 7;’s, whence § must
be the same linear combination. In short, we have shown that the mn
elements Ty1, Tigsee-s Tamsevvs Topts++» Ty span Hom (¥, W) over F.

In order to prove that they form a basis of Hom (V, W) over F there
remains but to show their linear independence over F. Suppose that
BuuTi + BiaTip + oo+ BraTiw + -+ BuTig + -+ BiTin + - +
Bui Ty + -+ BunTmn = 0 with B;; all in F. Applying this to 7, we get
0 =0,(B11Tyy + -+ BijTi; + *+* + BunToun) = By + Browwy + -+ +
B, since 9, T;; =0 for ¢ # k and yT,; = w;. However, wy,...,w,
are linearly independent over F, forcing f;; = O for all £ and j. Thus the
T;; are linearly independent over F, whence they indeed do form a basis
of Hom (V, W) over F.

An immediate consequence of Theorem 4.3.1 is that whenever V # (0)
and W # (0) are finite-dimensional vector spaces, then Hom (V, W) does
not just consist of the element 0, for its dimension over F'is nm > 1.

Some special cases of Theorem 4.3.1 are themselves of great interest and
we list these as corollaries.

COROLLARY 1 Ifdimp V = m then dimp Hom (V, V) = m?.

Proof. In the theorem put ¥V = W, and so m = n, whence mn = m?>.

COROLLARY 2 [fdimg V = m then dimp Hom (V, F) = m.

Proof. As a vector space F is of dimension 1| over F. Applying the
theorem yields dimy Hom (V, F) = m. .




Corollary 2 has the interesting consequence that if ¥ is finite-dimensional
over F it is isomorphic to Hom (V, F), for, by the corollary, they are of
the same dimension over F, whence by Corollary 4 to Lemma 4.2.4 they
must be isomorphic. This isomorphism has many shortcomings! Let us
~explain. It depends heavily on the finite-dimensionality of ¥V, for if V is
- not finite-dimensional no such isomorphism exists. There is no nice, formal
construction of this isomorphism which holds universally for all vector
spaces. It depends strongly on the specialities of the finite-dimensional
situation. In a few pages we shall, however, show that a “nice”’ isomorphism
does exist for any vector space ¥ into Hom (Hom (V, F), F).

DEFINITION  If Vis a vector space then its dual space is Hom (V, F).

We shall use the notation ¥ for the dual space of V. An element of ¥
will be called a linear functional on V into F.

If V is not finite-dimensional the ¥ is usually too large and wild to be
of interest. For such vector spaces we often have other additional structures,
such asa topology, imposed and then, as the dual space, one does not generally
takeall of our ¥ but rather a properly restricted subspace. If Visfinite-dimen-
- sional its dual space ¥ is always defined, as we did it, as all of Hom (V, F).
 In the proof of Theorem 4.3.1 we constructed a basis of Hom (v, W)
using a particular basis of ¥ and one of W. The construction depended
 crucially on the particular bases we had chosen for ¥ and W, respectively.
- Had we chosen other bases we would have ended up with a different basis
. of Hom (V, W). As a general principle, it is preferable to give proofs,
. whenever possible, which are basis-free. Such proofs are usually referred to
~ as invariant ones. An invariant proof or construction has the advantage,
" other than the mere aesthetic one, over a proof or construction using a
basis, in that one does not have to worry how finely everything depends
on a particular choice of bases.

! The elements of ¥ are functions defined on ¥ and having their values
~in F. In keeping with the functional notation, we shall usually write
- elements of ¥ as f, g, etc. and denote the value on v e V as S (v) (rather
~ than as gf).
~ Let V be a finite-dimensional vector space over F and let Ugs..., 0, be
t, a basis of V; let #; be the element of ¥ defined by 3;(v;) = 0 for i # j,
9i(v;) = 1, and F(o0y + o+ + @ + 00 + ap,) =, In fact the 3;
- are nothing but the 77; introduced in the proof of Theorem 4.3.1, for here
W = F is one-dimensional over F. Thus we know that 4,,. .., 3, form a
basis of V. We call this basis the dual basis of V..o 0, I #0€V, by
. Lemma 4.2.5 we can find a basis of the form vy =10, v5,...,0, and so
there is an element in ¥, namely 4, such that (v) =3,(0) =1 #£0.
We have proved

-



LEMMA 432 If V is finite-dimensional and v # O € V, then there is an
element f € V such that f (v) # 0.

In fact, Lemma 4.3.2 is true if Vis infinite-dimensional, but as we have
1o need for the result, and since its proof would involve logical questions
that are not relevant at this time, we omit the proof.

Let 5, € V, where V is any vector space over F. As f varies over V, and
v, is kept fixed, f (z,) defines a functional on V into F; note that we are merely
interchanging the role of function and variable. Letus denote this function by 7, ;
in other words T, (f) =f(v) for any fe 7. What can we say about
T,? To begin with, T,(f + g = (f + &) =/ (@) + &) =
T, (f) + T,(g); furthermore, 7:,,0(lf) = (M )(w) = & (vol = AT, (f)
Thus T, is in the dual space of V! We write this space as V and refer to
it as the second dual of V.

Given any clement v € V we can associate with it an element T, in 7.
Define the mapping y:V — 14 by oy = T, for every ve V. Is § a homo-
morphism of ¥ into 7? Indeed it is! For, Ty, (f) =f (0 + ) =f () +
f(w) = Tv(f) + Tw(f) = (Tv + Tw)(f)’ and SO Tv+w = Tv + Tw}
that is, (v + @)y = o + wy. Similarly for AeF, (A)y = A(ny). Thus
Y defines a homomorphism of ¥V into V. The construction of  used no
basis or special properties of V; it is an example of an invariant construction.

When is § an isomorphism? To answer this we must know when vy = 0,
or equivalently, when 7, = 0. But if 7, =0, then 0 = T,(f) =/
for all fe V. However as we pointed out, without proof, for a general
vector space, given v # O there is an fe€ V with f(v) # 0. We actually
proved this when V is finite-dimensional. Thus for V finite-dimensional
(and, in fact, for arbitrary V) y is an isomorphism. However, when V is
finite-dimensional ¥ is an isomorphism onto V; when V is infinite-dimen-
sional { is not onto.

If V is finite-dimensional, by the second corollary to Theorem 4.3.1, vV
and ¥ are of the same dimension; similarly, ¥ and 7 are of the same dimen-
sion ; since ¥ is an isomorphism of V into 7, the equality of the dimensions
forces | to be onto. We have proved

LEMMA 4.3.3 If V is finite-dimensional, then \j is an isomorphism of V onlo 7.

We henceforth identify ¥ and 7, keeping in mind that this identification
is being carried out by the isomorphism .

DEFII\iITION If W is a subspace of V then the annihilator of W, A(W) =
{feV]|f(w) =0allwe W} .

We leave as an exercise to the reader the verification of the fact that
A(W) is a subspace of V. Clearly if U = W, then AU) o A(W).




Let W be a subspace of V, where V is finite-dimensional. If fe ¥ let

f be the restriction of f to W; thus f is defined on W by f (w) = f (w) for

every we W. Since fe 7, clearly f e W. Consider the mapping T:V — W
defined by fT = f for fe V. It is immediate that (f + g)T = - fT + gT
and that (Af)T = A(fT). Thus T is a homomorphism of ¥ into W.
What is the kernel of T? If fis in the kernel of T then the restriction of f
to W must be 0; that is, f(w) = 0 for all we W. Also, conversely, if
f (@) = 0 for all we W then fis in the kernel of 7. Therefore the kernel
of T is exactly A(W).

We now claim that the mapping T is onto W. What we must show is
that given any element 4 € W, then 4 is the restriction of some fe V, that
is h =f By Lemma 4.2.5, if w,,...,w, is a basis of W then it can be
expanded to a basis of V of the form w,, ..., w,, v;,..., v, where r + m =
dim V. Let W, be the subspace of ¥ spanned by v;,...,7,. Thus V =
W@ W,. If he W define fe V by: let ve V be written as v = w + wy,
we W, w, € Wy; then f (v) = h(w). Itis easy to see that fis in ¥ and that
Jf=h Thus b = fT and so T maps ¥ onto W. Since the kernel of T is
A(W) by Theorem 4.1.1, W is isomorphic to VJA(W). In particular they
have the same dimension. Let m = dim W, n = dim V, and r = dim
A(W). By Corollary 2 to Theorem 4.3.1, m = dim W and n = dim V.
However, by Lemma 4.2.6 dim V/A(W) = dim V — dim A(W) = n — 1,
and so m = n — r. Transposing, r = n — m. We have proved

THEOREM 4.3.2 If V is finite-dimensional and W is a subspace of V, then
W is isomorphic to V|A(W) and dim A(W) = dim V — dim W.

COROLLARY A(A(W)) = W. -

Proof. Remember that in order for the corollary even to make sense,
since W < Vand A(A(W)) < 7, we have identified ¥ with 7. Now W <
A(A(W)), for if we W then wy = T, acts on V by T, Ww(f) =f(w) and
so is O for all fe A(W). However, dim A(A(W)) = dim V — dim A(W)
(applying the theorem to the vector space I and its subspace 4(W)) so
that dim 4(4(W)) = dim ¥V — dim A(W) = dim V — (dim V — dim W) =
dimW. Since W < A(A(W)) and they are of the same dimension, it
follows that W = A(4(W)).

Theorem 4.3.2 has application to the study of systems of linear homogeneous
equations. Consider the system of m equations in n unknowns

ay1%; + x5 + 0+ agx, =0,

Ay1%; + Gyp%, + v+ ayx, = 0,

Il
L

Am1X1 + QaX; + 0+ @,,%,



where the g;; are in F. We ask for the number of linearly independent
solutions (x;, ..., x,) there are in F™ to this system.

In F™ let U be the subspace generated by the m vectors (a,;,a5, - - - ,41,),
(15 225 -+ > 82p)s -+ > (Bmi> Bmas - - - 5 Gpy) and suppose that U is of
dimension 7. In that case we say the system of equations is of rank r.

Lety; = (1,0, ...,0),5, = (0,1,0,...,0), ...,0,= (0,0, ..., 0, 1)
be used as a basis of F™ and let 4,, d,, ..., 3, be its dual basis in F®™.
Any feF®™ is of the form f= x,3, + x,0, + -+ + x,0,, where the
x;€ F. When is fe A(U)? In that case, since (a,4,...,4a,,) € U,

0 =f<a11’ Qyps« - aln)

= f(ay00 + 0 + ay0,)

= (%01 + %205 + - + x,0,)(a101 + -+ + ay,0,)

= X181y + X8y, + 0t Xl
since 3;(v;) = Ofor: # jand §;(v;) = 1. Similarly the other equations of the
system are satisfied. Conversely, every solution (x,..., x,) of the system
of homogeneous equations yields an element, x,3;, + - -+ + x,0,, in A(U).
Thereby we see that the number of linearly independent solutions of the

system of equations is the dimension of A(U), which, by Theorem 4.3.2 is
n — 7. We have proved the following:

THEOREM 4.3.3 If the system of homogeneous linear equations :
ap ¥ + 0+ agx, =0,

ay1% + 0+ ayx, = 0,

Am1¥1 + o+ Apn¥n = 0’

where a;; € F is of rank 1, then there are n — r lingarly independent solutions in
F®,

COROLLARY If n > m, that is, if the number of unknowns exceeds the number
of equations, then there is a solution (x,, . .., x,) where not all of x,, . .., x, are 0.

Proof. Since U is generated by m vectors, and m < n, r = dim U <
m < n; applying Theorem 4.3.3 yields the corollary.

Problems

1. Prove that A(W) is a subspace of V.

2. If S is a subset of V let A(S) = {fe V|f(s) = OallseS}. Prove
that A(S) = A(L(S)), where L(S) is the linear span of S. :




6.

7.

8.

9.

10.

11.

If §, Te Hom (V, W) and ;S = »;T for all elements v; of a basis
of V, prove that § = 7.

Complete the proof, with all details, that Hom (V, W) is a vector
space over F.

If § denotes the mapping used in the text of V into V glve a complete
proof that ¥ is a vector space homomorphism of ¥ into V.

If V is finite-dimensional and v, # v, are in V, prove that there is an
f€ Vsuch that f (v;) # f(v,).

If W, and W, are subspaces of V, which is finite-dimensional, describe
AW, + W,) in terms of A(W,) and A(W,).
If Vis a finite-dimensional and W, and W, are subspaces of V, describe
AW, n W,) in terms of A(W,) and A(W)).
If F is the field of real numbers, find A(W) where
(a) W is spanned by (1, 2, 3) and (0, 4, —1).
(b) W is spanned by (0, 0, 1, —1), (2, 1, 1, 0),and (2, 1,1, —1).
Find the ranks of the following systems of homogeneous linear equations
over F, the field of real numbers, and find all the solutions.
(@) #, + 2%, — 3x5 + 4x, = 0,
X+ 3xy — x5 =0,
6x; + x; + 2x, = 0.
(b) %y + 3%, + x5 = 0,
% + 4x, + x5 = 0.
(€) %y + %, + x3 + x4 + x5 = 0,
* + 2x, =0,
dx; + Txy + x5 + x4 + x5 = 0, -
Xy — X3 — x4 — x5 = 0.
If f and g are in ¥ such that f(v) = 0 implies g(v) = 0, prove that
= Jf for some 1€ F.
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In our discussion of vector spaces the specific nature of F as a field, other
thagrthe fact that it is a field, has played virtually no role. In this section
we no longer consider vector spaces V over arbitrary fields F; rather, we
restrict F to be the field of real or complex numbers. In the first case ¥
is called a real vector space, in the second, a complex vector space.

We all have had some experience with real vector spaces—in fact both
analytic geometry and the subject matter of vector analysis deal with these.
What concepts used there can we carry over to a more abstract setting?
To begin with, we had in these concrete examples the idea of length;
secondly we had the idea of perpendicularity, or, more generally, that of
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angle. These became special cases of the notion of a dot product (often
called a scalar or inner product.)

Let us recall some properties of dot product as it pertained to the special
case of the three-dimensional real vectors. Given the vectors v = (xy,%,,%;)
and w = (9,,,,03), where the #’s and »’s are real numbers, the dot prod-
uct of v and w, denoted by v-w, was defined as v-w = %9, + 2,9, +
%395. Note that the length of v is given by Vo2 and the angle 6 between
v and w is determined by

0w

0 = ———.
o8 \/v-v\/w'w

What formal properties does this dot product enjoy? We list a few:

l.v:v 20andv-v = 0ifand only if v = 0;
= w-v;
3.u (av+ﬁw)=o¢(u'v)+ﬁ(u~w);

N

for any vectors u, v, w and real numbers «, .

Everything that has been said can be carried over to complex vector
spaces. However, to get geometrically reasonable definitions we must make
some modifications. If we simply define v w = x;9; + x,9, + x5, for
v = (%1, %5, %3) and w = (9y,9,,73), where the #’s and »’s are complex
numbers, then it is quite possible that v-2 = 0 with v # 0; this is illus-
trated by the vector v = (1,¢,0). In fact, 2-» need not even be real. If,
as in the real case, we should want »: » to represent somehow the length of
v, we should like that this length be real and that a nonzero vector should
not have zero length.

We can achieve this much by altering the definition of dot product
slightly. If & denotes the complex conjugate of the complex number o,
returning to the v and w of the paragraph above let us define v-w =
%19 + %39, + x39;. For real vectors this new definition coincides with
the old one; on the other hand, for arbitrary complex vectors » # 0, not
only is » * » real, it is in fact positive. Thus we have the possibility of intro-
ducing, in a natural way, a nonnegative length. However, we do lose
something; for instance it is no longer true that v-w = w-». In fact the
exact relationship between these is v- w = w-v. Let us list a few properties
of this dot product:

l.v-w = w-o;

2. 09 >0,andv-» = Oifand only if v = 0;
3. (o + o) w = a(u-w) + Blv-w);

4 u-(ow + Pw) = a(uv)+ PBlu-w);

for all complex numbers o, § and all complex vectors u, v, w.
We reiterate that in what follows F is either the field of real or complex -
numbers.



DEFINITION The vector space V over F is said to be an inner product
space if there is defined for any two vectors u, v € V an element (u, v) in
F such that

1. (u, v) = (v, u);
2. (u,u) > 0and (4, u) = 0ifand only ifu = 0;
3. (qu + Po, w) = alu, w) + B(v, w);

for any u, v, we Vand a, B e F.

A few observations about properties 1, 2, and 3 are in order. A function
satisfying them is called an inner product. If F is the field of complex numbers,
property 1 implies that (u, «) is real, and so property 2 makes sense. Using
1 and 3, we see that (u, w + Pw) = (w + Pw, u) = a(v, u) + P(w, u) =
a(v, u) + B(W) = a(u, v) + B(ua w).

We pause to look at some examples of inner product spaces.

Example 44.1 In F® define, for u = (a,...,a,) and o = (B, ...,
B.), (u,0) = o,B; + 0B, + -+ + «,B,. This defines an inner product
on F®.

Example 4.4.2 In F® define foru = (a;, a,) and v = (B, B,), (4, v) =
20,8, + aBy + ayB; + a,B,. It is easy to verify that this defines an
inner product on F(?,

Example 44.3 Let V be the set of all continuous complex-valued
functions on the closed unit interval [0, 1]. If £ (¢), g(t) € V, define

(1), £®)) =j yor
0

We leave it to the reader to verify that this defines an inner product on V.

For the remainder of this section ¥ will denote an inner product space.

DEFINITION If ve V then the length of v (or norm of v), written ||o||, is
defined by ||2]] = +/(z, ).

LEMMA 441 If uw,oeV and o, feF then (au + Pv, au + Po) =
oox(u, u) + af(u, v) + %B(v, v) + BB(v, v).

Proof. By property 3 defining an inner product space, (ou + fo, au +
Bv) = a(u,au + Bv) + P(v, au + Pv); but (u, ou + Pv) = x(u, u) + B(u, v)
and (v, au + Pv) = ®(v, u) + PB(v,v). Substituting these in the expression
for (au + Puv, au + Pv) we get the desired result.



COROLLARY  Jloaz| = |o] Jlu].

Proof. |lou|® = (om, au) = o&(u,u) by Lemma 4.4.1 (witho =0).
Since o@ = |a|? and (u,u) = |u]|?, taking square roots yields [au| =

loc] fle]l-

We digress for a moment, and prove a very elementary and familiar
result about real quadratic equations.

LEMMA 4.4.2 If a, b, c are real numbers such that a > O and ad? + 2b4 +
¢ > 0 for all real numbers A, then b% < ac.

Proof. Completing the squares,

2
a/'l.z+2b/1+€=l(a/'|.+b)2+<6———b—).
a a

Since it is greater than or equal to O for all 4, in particular this must be
true for A = —bja. Thus ¢ — (b%/a) > 0, and since a > 0 we get b% < ac.

We now proceed to an extremely important inequality, usually known
as the Schwarz inequality :

THEOREM 4.4.1 Ifu, ve V then |(u, v)| < |l |l2.

Proof. If u =0 then both (z,2) = 0 and ||| |¢]| = 0, so that the
result is true there.

Suppose, for the moment, that (u,2) is real and z # 0. By Lemma
4.4.1, for any real number A, 0 < (Au + v, du + v) = A% (u, u) +
2(u, v)A + (v,v) Let a = (y,u), b = (2,0), and ¢ = (v, v); for these the
hypothesis of Lemma 4.4.2 is satisfied, so that > < ac. That is, (u, 0?2 <
(u, u) (v, v); from this it is immediate that |(z,0)| < [lu] ||2]-

If « = (u,0) is not real, then it certainly is not 0, so that ufa is mean-
ingful. Now,

and so it is certainly real. By the case of the Schwarz inequality discussed
in the paragraph above,

u

-

u

1 = <

ol

u
o
since

1

= — |ul,
o]




we get

N
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whence |a| < |lu| |lo|. Putting in that a = (z,2) we obtain |(, v)] <
[lzll llo|l, the desired result.

Specific cases of the Schwarz inequality are themselves of great interest.
We point out two of them.

1. If V=F® with (4,v) = 0,8, + - + «,B,, where u = (ay,...,,)
and v = (f;,..., B,), then Theorem 4.4.1 implies that

By + oo+ B l? < (logl® + -+ o) (B> + -+ + [Ba).

2. If V is the set of all continuous, complex-valued functions on [0,1] with
inner product defined by

(f@¢m>=f.ﬂoﬂﬂ@
0
then Theorem 4.4.1 implies that

zsjﬂfmﬁwjlwmva
0 0

jiﬂwaﬂﬂ
0

The concept of perpendicularity is an extremely useful and important
one in geometry. We introduce its analog in general inner product spaces.

DEFINITION If u,v € V then u is said to be orthogonal to v if (u,v) = O.

Note that if u is orthogonal to » then v is orthogonal to u, for (v, u) =
(w,9) =0 = 0.

DEFINITION If W is a subspace of V, the orthogonal complement of W,
W+, is defined by W = {x e V|(x, w) = O for all w e W}.

LEMMA 443 W* is a subspace of V.

“Proof. 1If a,be W* then for all o, fe F and all we W, (aa + pb, w) =
o(a, w) + B(b, w) = O since a, b e W*.

Note that W n W+t = (0), for if w e W n W* it must be self-orthogonal,
that is (w,w) = 0. The defining properties of an inner product space
rule out this possibility unless w = 0.

One of our goals is to show that ¥ = W + W<*. Once this is done,
the remark made above will become of some interest, for it will imply that
V is the direct sum of W and W™

-



DEFINITION The set of vectors {v;} in V is an orthonormal set if

. Each v, is of length 1 (i.e., (v;, v;) = 1).
2 For i # j, (v, v5) = 0.
LEMMA 4.4.4 If {v;} is an orthonormal set, then the vectors in {v;} are linearly
independent. If w = ooy + <<+ + v, then o; = (w,v;) for i =1,2,...,n

Proof. Suppose that ap; + av, + -+ + o, = 0. Therefore 0 =
(@2 + -0+ o0, vy) = oy(vg, v;) + -0+ a,(0, ;). Since (v, 9;) =0
for j # ¢ while (v;v;) = 1, this equation reduces to o; = 0. Thus the
v;’s are linearly independent.

If w= o9, + " + a,0, then computing as above yields (w, v;) = a;.

Similar in spirit and in proof to Lemma 4.4.4 is

LEMMA 445 If {v,, ..., 0v,} is an orthonormal set in V and if we V, then
u=w — (w, o)y — (W )v, == (W, V)7 — = (w, v,)v, i
orthogonal to each of vy, v,y .. ., U,

Proof. Computing (u,v;) for any ¢ <

< n, using the orthonormality of
Ugs - - - 5 U, yields the result.

The construction carried out in the proof of the next theorem is one which
appears and reappears in many parts of mathematics. It is a basic pro-
cedure and is known as the Gram-Schmidt orthogonalization process. Although
we shall be working in a finite-dimensional inner product space, the
Gram-Schmidt process works equally well in infinite-dimensional situations.

THEOREM 4.4.2 Let V be a finite-dimensional inner product space; then V has
an orthonormal set as a basis.

Proof. Let V be of dimension n over F and let v, . . ., v, be a basis of V.
From this basis we shall construct an orthonormal set of n vectors; by
Lemma 4.4.4 this set is linearly independent so must form a basis of V.

We proceed with the construction. We seek n vectors w,, ..., w, each
of length 1 such that for i # j, (w;, w;) =0. In fact we shall finally
produce them in the following form: w, will be a multiple of v,, w, will be
in the linear span of w, and v,, w4 in the linear span of w,, w,, and 5, and
more generally, w; in the linear span of w,, w,, ..., w;_;, v;.

Let

U

3
[o4 ]

Uy 41 -
(1, 1) = (uvlu nvln) uvlnz(" ") =

then




hence ||w,| = 1. We now ask: for what value of « is aw; + v, orthogonal
w,;? All we need is that (ow; + v, w;) = 0, that is a(w;, w;) +
2, wy) = 0. Since (w;,w() =1, « = — (v, w;) will do the trick. Let
, = — (03, wy)wy + v;; u, is orthogonal to w, ; since vy and v, are linearly
ndependent, w; and v, must be linearly independent, and so u, # 0.
t wy, = (4,/||u,]); then {w, w,} is an orthonormal set. We continue.
et uy = —(v3, w)w, — (v3, w,)w, + v3; a simple check verifies that
us, w;) = (43, w,) = 0. Since w,, w,, and v; are linearly independent
({for w;, w, are in the linear span of v; and v,), u3 # 0. Let w;y = (u;/[|us]);
en {w,, w,, w3} is an orthonormal set. The road ahead is now clear.
Suppose that we have constructed wy, w,,...,w;, in the linear span of
45+ - - » Ui Which form an orthonormal set. How do we construct the next
ne, w;+,? Merely put u;,q = — (0,40, w)wy — (Virr, W)W, — - —
i+ W)w; + v;4q. That u; # 0 and that it is orthogonal to each of
15« -+ » W; we leave to the reader. Put w;,; = (u;41/]#;4 1)}

In this way, given r linearly independent elements in ¥, we e€an construct
n orthonormal set having r elements. If particular, when dim V = #,
om any basis of ¥V we can construct an orthonormal set having n elements.
his provides us with the required basis for V.

&

@

 We illustrate the construction used in the last proof in a concrete case.
'i'vLet F be the real field and let V be the set of polynomials, in a variable x,
‘over F of degree 2 or less. In V we define an inner product by: if p(x),
‘q(x) € V, then

(p(x), ¢(x)) = Jl b(x)q(x) dx.

Let us start with the basis »; = 1, v, = x, v; = x* of V. Following the
construction used,

1

1_———-_.—___

ol \/J‘ 1 de V2

U, = —(vb wl)wl + 75,

3

whicK after the computations reduces to u, = ¥, and so

= \/J .

—1
uy = — (v3, wy) wy —-(v,,wz)w2+v3=-?+x2,

finally,



and so

-1
—-+x

ws——— _ 1o

ENEET

We mentioned the next theorem earlier as one of our goals. We are now
able to prove it.

(=1 + 3x2).

THEOREM 4.4.3 If V is a finite-dimensional inner product space and if W is
a subspace of V, then V.= W + W*. More particularly, V is the direct sum of
W and W*.

Proof. Because of the highly geometric nature of the result, and because
it is so basic, we give several proofs. The first will make use of Theorem
4.4.2 and some of the earlier lemmas. The second will be motivated geo-
metrically.

First Proof. As a subspace of the inner product space ¥, W is itself an
inner product space (its inner product being that of ¥ restricted to W).
Thus we can find an orthonormal set wy, . . ., w, in W which is a basis of .
If veV, by Lemma 4.45, v, =v — (v, w)w; — (v, wy)w, — -+ —
(v, w,)w, is orthogonal to each of wy,...,w, and so is orthogonal to W.
Thus voe W*, and since v =9, + ((v, w)w;, + -+ + (v, w)w,), ve
W + Wt Therefore V.= W + W', Since W n W' = (0), this sum is
direct.

Second Proof. 1In this proof we shall assume that F is the field of real
numbers. The proof works, in almost the same way, for the complex
numbers; however, it entails a few extra details which might tend to obscure
the essential ideas used.

Let » € V; suppose that we could find a vector w, € W such that
lo — wel < o — w]| for all we W. We claim that then (v — wy, w) = 0
for all w e W, that is, v — w, € W*.

If we W, then wy + w € W, in consequence of which

(@ —wo, v — wp) < (v — (wy + w), v — (wy + w)).

However, the right-hand side is (w, w) + (v — wg, v — wgy) — 2(1;’— Wos W)s
leading to 2(v — wp, w) < (w, w) for all we W. If m is any positive
integer, since w/m € W we have that

g(z)—w(,,w) =2<v—wo,9>s<f,l£>=—l—2(w,w),(
m m m m m

and so 2(v — wy, w) < (1/m)(w, w) for any positive integer m. However,




;

(1/m)(w, w) > 0 as m — oo, whence 2(v — wy, w) < 0. Similarly, —we W,
and 50 0 < —2(2 — w,, w) =2(v — w,, —w) < 0, yielding (v — w,, w)
= 0forallweW. Thus v — wye W'; hence vew, + Wt <« W + W-.
To finish the second proof we must prove the existence of a w,e W
ch that lo — woll < o — w| for all we W Wa indicata cbarnhile 4o
ays of proving the existence of such a w,,.

Let uy,..., u, be a basis of W; thus any w e W is of the form w =
% + 0+ Ay Let B;; = (u;,u;) and let y; = (v,u;) for e V. Thus
w—wo—w =@ diu — = Ly, v — haw, — - — haw,) =
(9,0) — ZA44;B:; — 2 A;p;. This quadratic function in the 1’s is nonnegative
and so, by results from the calculus, has a minimum. The A’s for this
minimum, 4,9, 2, . 1 give us the desired vector wy =
LOu + -+ 4Oy in W.

A second way of exhibiting such a minimizing w is as follows. In V define
a metric { by {(x,») = |x — »|; one shows that { is a proper metric on V,
and V is now a metric space. Let S = {weW| |l — w| < [ol|}; in
this metric § is a compact set (prove!) and so the continuous function
f(w) = llo — w|| defined for we S takes on a minimum at some point
wo € S. We leave it to the reader to verify that w, is the desired vector
satisfying |lo — wy| < |[v — w| for all we W.

COROLLARY  If Vis a finite-dimensional inner product space and W is a subspace
of Vthen (WHL = W.

Proof. If we W then for any ue W', (w,u) =0, whence W c
(WHt. Now V=W + W' and V = W' + (WH)L; from these we get,
since the sums are direct, dim (W) = dim (W%)'). Since W < (W)t
and is of the same dimension as (W*)*, it follows that W = (W1)L,

Problems
In all the problems V is an inner product space over F.

L. If F is the real field and ¥ is F®, show that the Schwarz inequality
in}plies that the cosine of an angle is of absolute value at most 1.

2. If F is the real field, find all 4-tuples of real numbers (a, b, ¢, d) such
that for u = (ay, ), v = (By, B2) € FP, (u,0) = aa,B; + oy, +
coy B, + doyfy defines an inner product on F(?),

3. In V define the distance {(u, v) from u to v by {(4, v) = ||lu — v|]. Prove
that
(a) {(4,v) = 0and {(u,v) = Oifand only ifu = 0.

(b) L(u, v) = L(v, u).
(c) {(u,v) < {(u, w) + {(w,v) (triangle inequality).

s
-



. If {w;,...,w,} is an orthonormal set in V, prove that

|(w;, v)]? < ||v)|? for any v € V.

o

..
I
-

(Bessel inequality)

. If V is finite-dimensional and if {w,, ..., w,} is an orthonormal set in

V such that
Nl
i=1

for every v € V, prove that {wy, ..., w,} must be a basis of V.

. Ifdim V =n and if {w,,...,w,} is an orthonormal set in ¥V, prove

that there exist vectors w,,y,...,w, such that {wg, ..., w,, W, (,
.., w,} is an orthonormal set (and basis of V).

. Use the result of Problem 6 to give another proof of Theorem 4.4.3.

8. In ¥V prove the parallelogram law:

10.

11.

12.

le + o2 + u — ol = 2(Jul® + |o]l?).

Explain what this means geometrically in the special case V = F(®,
where F is the real field, and where the inner product is the usual dot
product.

. Let V be the real functions y = f (x) satisfying d?y/dx®> + 9y = 0.

(a) Prove that ¥V is a two-dimensional real vector space.
ys

(b) In V define (1, z) = J yz dx. Find an orthonormal basis in V.
0

Let V be the set of real functions y = f (x) satisfying

ﬁ_sdy

d
=3 d2+11dy 6y = 0.

(a) Prove that Vis a three-dimensional real vector space.

(b) In V define
0
(u, 0) = f uv dx.

Show that this defines an inner product on ¥ and find an ortho-
normal basis for V.

If W is a subspace of V and if v € V satisfies (v, w) + (w, ) < (w, w
for every w e W, prove that (v, w) = 0 for every we W. .
If V is a finite-dimensional inner product space and if £ is a linear

functional on V (i.e., fe V), prove that there is a #, € ¥ such that
(@) = (v,u) forallve V.
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In fact, we introduced into Hom (V, W) the operations
of addition and of multiplication by scalars (elements of F) in such a
way that Hom (V, W) itself became a vector space over F.

Of much greater interést is the special case V = W, for here, in
addition to the vector space operations, we can introduce a multi-
plication for any two elements under which Hom (V, V) becomes a
ring. Blessed with this twin nature—that of a vector space and of a
ring—Hom (V, V) acquires an extremely rich structure. It is this
structure and its consequences that impart so much life and sparkle
to the subject and which justify most fully the creation of the abstract
concept of a vector space.

Our main concern shall be concentrated on Hom (V, V) where V
will not be an arbitrary vector space but rather will be restricted to be
a finite-dimensional vector space over a field F. The finite-
dimensionality of V imposes on Hom (V, V) the consequence that
each of its elements satisfies a polynomial over F. This fact, perhaps
more than any other, gives us a ready entry into Hom (V, V) and
allows us to probe both deeply and effectively into its structure.

The subject matter to be considered often goes under the name of
linear algebra. It encompasses the isomorphic theory of matrices. The
statement that its results are in constant everyday use in every aspect
of mathematics (and elsewhere) is not in the least exaggerated.




A popular myth is that mathematicians revel in the inapplicability of
their discipline and are disappointed when one of their results is “soiled”
by use in the outside world. This is sheer nonsense! It is true that a mathe-
matician does not depend for his value judgments on the applicability of a
given result outside of mathematics proper but relies, rather, on some
1intr1n51c and at times intangible, mathematical criteria. However, it is
equally true that the converse is false—the utlhty of a result has never
%wered its mathematical value. A perfect case in point is the subject of
linear algebra; it is real mathematics, interesting and exciting on its own,
yet it is probably that part of mathematics which finds the widest applica-
tion—in physics, chemistry, economics, in fact in almost every science and
pseudoscience.

6.1 The Algebra of Linear Transformations

Let V be a vector space over a field F and let Hom (V, V), as before, be
the set of all vector-space-homomorphisms of V into itself. In Section 4.3
we showed that Hom (V, V) forms a vector space over F, where, for
Ty, T,eHom (V, V), Ty + T, is defined by o(T, + T5) = vT; + vT,
for all ve V and where, for a € F, aT; is defined by v(aT;) = a(vT)).
For T,, T,e Hom (V, V), since vTy € V for any ve V, (vT;)T, makes
sense. As we have done for mappings of any set into itself, we define
T,T, by o(TyT,) = (vT;)T, for any ve V. We now claim that 7,7, €
Hom (¥, V). To prove this, we must show that for all a, f € F and all
woeV, ( + po)(T;Ty) = a(u(T,T;) + Bo(Ty Ty)). We compute

(au + Bo)(T)T3) = ((ou + Po)T) T,

(2(uTy) + B(T1))T,

a@T)T, + B(vT)T,

«(w(TyT3)) + B(o(TyTy)).

~ We leave as an exercise the following properties of this product in
Hom (7, 1):

L (T, + T))Ty = T, T, + T,Ts;
2. Ty(T, + T,) = T,T, + T,Ty;
3. Tl(Tsz) = (T, T3)T5;

4. (T Ty) = (aTy) T, = Ty(aTy);

or all 7y, T,, Ty e Hom (V, V) and all x € F.

Note that properties 1, 2, 3, above, are exactly what are required to
make of Hom (V, V) an associative ring. Property 4 intertwines the
tharacter of Hom (V, V), as a vector space over F, with its character as a




Note further that there is an element, I, in Hom (V, V), defined by
oI = v for all v V, with the property that TI = IT = T for every Te
Hom (V, V). Thereby, Hom (¥, V) is a ring with a unit element. More-
over, if in property 4 above we put T, = I, we obtain a7, = T;{al).
Since (al)T, = a(IT;) = a7}, we see that (al)T, = Ty(al) for all T} e
Hom (¥, V), and so al commutes with every element of Hom (V, V).
We shall always write, in the future, ol merely as a.

DEFINITION An associative ring 4 is called an algebra over F if 4 is a
vector space over F such that for all ,be 4 and a € F, a(ab) = (oa)b =
a(ab).

Homomorphisms, isomorphisms, ideals, etc., of algebras are defined as
for rings with the additional proviso that these must preserve, or be in-
variant under, the vector space structure.

Our remarks above indicate that Hom (¥, V) is an algebra over F. For
convenience of notation we henceforth shall write Hom (V, V) as A(V);
whenever we want to emphasize the role of the field F we shall denote it by
Ap(V).

DEFINITION A linear transformation on V, over F, is an element of Ap(V).

We shall, at times, refer to A(V) as the ring, or algebra, of linear trans-
formations on V.

For arbitrary algebras 4, with unit element, over a field F, we can prove
the analog of Cayley’s theorem for groups; namely,

LEMMA 6.1.1 If A is an algebra, with unit element, over F, then A is isomorphic
to a subalgebra of A(V) for some vector space V over F.

Proof. Since 4 is an algebra over F, it must be a vector space over F.
We shall use ¥ = 4 to prove the theorem.

If ae 4, let T,:A - A be defined by 2T, = va for every ve 4. We
assert that T}, is a linear transformation on V(=4). By the right-distribu-
tive law (v, + 05) T, = (v, + vy)a = v1a + vpa = 0, T+ 0,1, Since 4
is an algebra, ()7, = (w)a = a(va) = a(vT,) for ved, ael Thus
T, is indeed a linear transformation on 4.

Consider the mapping ¥:4 —» A(V) defined by ay = T, for every
ae A. We claim that y is an isomorphism of 4 into 4(V). To begin with,
if a,bed and a, feF, then for all ved, vT u1p = v(oa + Pb) =
a(va) + P(vb) [by the left-distributive law and the fact that A is an algebra
over F] = a(vT,) + B(T,) = v(aT, + BT,) since both T, and T, are
linear transformations. In consequence, Tpuypp = 2T, + BTs whence ¥
is a vector-space homomorphism of 4 into A(V). Next, we compute, for




a,bed, vT, = o(ab) = (va)h = WT,)T, = o(T,T,) (we have used
~the associative law of 4 in this computation), which implies that 7, =
T,T}, In this way,  is also a ring-homomorphism of 4. So far we have
proved that  is a homomorphism of 4, as an algebra, into A(V). All that
_remains is to determine the kernel of . Let ae 4 be in the kernel of 1/
then ay = 0, whence 7, = 0 and so 27, = 0 for all ye V. Now V — 4,
and 4 has a unit element, ¢, hence eT, = 0. However, 0 = eT, = ea = g,
roving that @ = 0. The kernel of { must therefore merely consist of 0,
hus implying that y is an isomorphism of 4 into A(V). This completes the
i proof of the lemma.

 Thelemma points out the universal role played by the particular algebras,
~ A(V), for in these we can find isomorphic copies of any algebra.

~ Let 4 be an algebra, with unit element ¢, over F, and let p(x) = ay +
ayx + ** + a,x" be a polynomial in F[x]. For ae A4, by p(a), we shall
- mean the element age + a0 + -+ + a,a" in 4. If p(a) = 0 we shall say

a satisfies p(x).

 LEMMA 6.1 -2 Let A be an algebra, with unit element, over F, and suppose that

A is of dimension m over F. Then every element in A satisfies some nontrivial poly-
. nomial in F[x] of degree at most m.

 Proof. Let ¢ be the unit element of 4; if ae 4, consider the m + 1
~elements ¢,a,a% ...,a"in A. Since 4 is m-dimensional over F, by Lemma
424,¢0,a%, ..., a", being m + 1 in number, must be linearly dependent
fff:‘tf',over F. In other words, there are elements ®gs ®ys- .., 0y in F, not all
0, such that e + aja + - + 2,a" = 0. But then a satisfies the non-
~ trivial polynomial q(x) = o9 + oax + -+ + o,4™ of degree at most 7,
i Fx.

- If Vis a finite-dimensional vector space over F, of dimension n, by
- Corollary 1 to Theorem 4.3.1, A(V) is of dimension n? over F. Since A(V)
_isan algebra over F, we can apply Lemma 6.1.2 to it to obtain that every
element in A(V) satisfies a polynomial over F of degree at most n2. This
fact will be of central significance in all that follows, so we single it out as

HEOREM 6.1.1 Ifv {r an n-dimensional vector space over F, then, given any
ent T in A(V), there exists a nontrivial polynomial q(x) € F[x] of degree at
st n?, such that ¢(T) = 0.

We shall see later that we can assert much more about the degree of ¢(x);
fact, we shall eventually be able to say that we can choose such a q(x)
degree at most n. This fact is a famous theorem in the subject, and is
known as the Cayley-Hamilton theorem. For the moment we can get by
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without any sharp estimate of the degree of g(x); all we need is that a
suitable ¢(x) exists.

Since for finite-dimensional ¥V, given T € A(V), some polynomial g(x)
exists for which ¢(7) = 0, a nontrivial polynomial of lowest degree with
this property, p(x), exists in F[x]. We call p(x) a minimal polynomial for T
over F. If T satisfies a polynomial k(x), then p(x) | A(x).

DEFINITION An element T € A(V) is called right-invertible if there exists
an S € A(V) such that TS = 1. (Here ! denotes the unit element of A(V).)

Similarly, we can define left-invertible, if there is a Ue A(V) such
that UT = 1. If T is both right- and left-invertible and if TS = UT = 1,
it is an easy exercise that § = U and that § is unique.

DEFINITION An element T in A(V) is invertible or regular if it is both
right- and left-invertible; that is, if there is an element $ € A(V) such that
ST = TS = 1. We write Sas T %

An element in A(V) which is not regular is called singular.

It is quite possible that an element in A(V) is right-invertible but is not
invertible. An example of such: Let F be the field of real numbers and let
V be F[x], the set of all polynomials in ¥ over F. In Vlet § be defined by

158 = = g
and T by
2T = f " g(x) d.
1

Then ST s 1, whereas TS = 1. As we shall see in a moment, if V is
finite-dimensional over F, then an element in A(V) which is right-invertible
is invertible.

THEOREM 6.1.2 If V is finite-dimensional over F, then T e A(V) is in-
vertible if and only if the constant term of the minimal polynomial for T is not O.

Proof. Let p(x) = oy + o + *+* + 2%, a, # 0, be the minimal
polynomial for T over F.

If 0p # 0, since 0 =p(T) = T  + T ' + -+ + o, T + g, WE
obtain

1= T( 1 (T Y 4 T2 4+ + al))
do :

(_ L ST ocl))T.
oo




Therefore,

S= = L @I+t )
%o

- acts as an Inverse for 7, whence T is invertible.

Suppose, on the other hand, that T is invertible, yet o = 0. Thus
0=, T+ 7% + -+ + T = (0, + a, T 4 -+ + o 7% ) T. Multi-
plying this relation from the right by 77! yields a, 4+ o, T + -+- +
@, T ! = 0, whereby T satisfies the polynomial g(x) = a; + ax + -« +
‘ox* "' in F[x]. Since the degree of ¢(x) is less than that of p(x), this is
impossible. Consequently, o, # 0 and the other half of the theorem is
~ established.

COROLLARY 1 If V is finite-dimensional over F and if Te A(V) is in-
vertible, then T~ is a polynomial expression in T over F.

- Proof. Since T is invertible, by the theorem, oo + o, 7 + --- +
© o T* = 0 with ¢y # 0. But then

1
T ' = — —(ay + 0,7 + -+ + o, TF ).
%

~ COROLLARY 2 If V is finite-dimensional over F and if T € A(V) is singular,
then there exists an S # 0 in A(V) such that ST = TS = 0.

; Proof. Because T is not regular, the constant term of its minimal
* polynomial must be 0. That is, p(x) = o;x + -+ + ox*, whence 0 =
T+ TS If S=o0 4+ -+ aqT* !, then S # 0 (since
0y + -+ 4 ax* "1 is of lower degree than p(x)) and ST = 7S = 0. .

COROLLARY 3 If V is finite-dimensional over F and if TeA(V) is right-
invertible, then it is invertible.

; Proof. Let TU = 1. If T were singular, there would be an § # 0
~ such that S7 = 0. However, 0 = (ST)U = §(TU) = 81 = § # 0,
a contradiction. Thus 7 is regular.

We wish to transfer the information contained in Theorem 6.1.2 and its
;)

corollaries from A(V) to the’action of T on V. A most basic result in this
Vein is

THEOREM 6.1.3 If V is finite-dimensional over F, then T € A(V) is singular
¥ and only if there exists a v # O in V such that vT = 0.

Proof. By Corollary 2 to Theorem 6.1.2, T is singular if and only if
fhere is an § # 0 in A(V) such that ST = TS = 0. Since S # 0 there
15 an element w € ¥ such that wS # 0.

-



Let » = wS; then T = wS)T = w(ST) = w0 = 0. We have produced
a nonzero vector v in V which is annihilated by 7. Conversely, if o7 = 0
with v # 0, we leave as an exercise the fact that T is not invertible.

We seek still another characterization of the singularity or regularity of
a linear transformation in terms of its overall action on V.

DEFINITION If T e A(V), then the range of T, VT, is defined by VT =
{oT |veV}

The range of T is easily shown to be a subvector space of V. It merely
consists of all the images by 7T of the elements of V. Note that the range
of T is all of V if and only if T is onto.

THEOREM 6.1.4 If V is finite-dimensional over F, then T € A(V') is regular
if and only if T maps V onto V.

Proof. As happens so often, one-half of this is almost trivial; namely,
if T is regular then, given veV, v = (vT~YT, whence VT =V and
T is onto.

On the other hand, suppose that T is not regular. We must show that
T is not onto. Since T is singular, by Theorem 6.1.3, there exists a vector
vy # 0in V such that », T = 0. By Lemma 4.2.5 we can fill out, from vy,
to a basis vy, 03, ..., 0, of V. Then every element in VT is a linear com-
bination of the elements w, = v, T, w, = v,T,...,w, =v,T. Since
w, =0, VT is spanned by the n — 1 elements w,,...,w,; therefore
dim VT <n—1 < n=dim V. But then VT must be different from V;
that is, 7 is not onto.

Theorem 6.1.4 points out that we can distinguish regular elements from
singular ones, in the finite-dimensional case, according as their ranges are
or are not all of V. If Te A(V) this can be rephrased as: T is regular if
and only if dim (VT) = dim V. This suggests that we could use dim (VT)
not only as a test for regularity, but even as a measure of the degree of
singularity (or, lack of regularity) for a given T € A(V).

DEFINITION If V is finite-dimensional over F, then the rank of T is the
dimension of VT, the range of T, over F.

We denote the rank of 7' by 7(T'). At one end of the spectrum, if 7(7") =
dim V, T is regular (and so, not at all singular). At the other end, if
r(T) = 0, then T = 0 and so T is as singular as it can possibly be. The
rank, as a function on A(V), is an important function, and we now investigate
some of its properties.




LEMMA 6.1.3 If V is finite-dimensional over F then for S, T € A(V).
L. 7(ST) < r(T);

2. r(78) < r(T);

(and 50, r(ST) < min {r(T), 7(S)})

3. 1(ST) = r(TS) = r(T) for S regular in A(V).
Proof. We go through 1, 2, and 3 in order.

1. Since VS < V, V(ST) = (V8)T < VT, whence, by Lemma 4.2.6,
dim (V(ST)) < dim VT; that is, 7(ST) < #(T).

2. Suppose that r(T) = m. Therefore, VT has a basis of m elements,
. Wi, W, -+, Wy, But then (VT)S is spanned by w,S, w,S, ..., w,S, hence
has dimension at most m. Since 7(7S) = dim (V(TS)) = dim (VT)S) <
- m =dim VT = r(T), part 2 is proved.
- 3. If § is invertible then VS = V, whence V(ST) = (VS)T = vVT.

Thereby, 7(ST) = dim (V(ST)) = dim (VT) = 7{T). On the other hand,
if VT has wy, ..., w, as a basis, the regularity of § implies that w,S, . ..,
 w,S are linearly independent. (Prove!) Since these span V(TS) they form
a basis of V(7S). But then 7(7S) = dim (V(TS)) = dim (VT) = r(T).

; COROLLARY IfTeA(V) and if S € A(V) is regular, thenr(T) = r(STS™ b,

Proof. By part 3 of the lemma, r(STS"~ Y=r(S(TS™Y) =r((TS" Hs) =
o (7).

Problems
In all problems, unless stated otherwise, V will denote a finite-dimensional
. Vector space over a field F.

1. Prove that Se A(V) is regular if and only if whenever v,...,0,€ V
are linearly independent, then ,,,S, ..., v,S are also linearly
independent.

2. Prove that T e A(V) is completely determined by its values on a
basis of V.

3. Prove Lemma 6.1.1 even when/A does not have a unit element.

4. If A is the field of complex numbers and F is the field of real numbers,
then 4 is an algebra over F of dimension 2. For a = a + fiin 4,
compute the action of 7, (sce Lemma 6.1.1) on a basis of 4 over F.

5. If V is two-dimensional over F and 4 = A(V), write down a basis
of 4 over F and compute T, for each a in this basis.

6. If dim; ¥V > 1 prove that A(V) is not commutative.
7. In A(V) let Z = {TedA(V)|ST = TSforall Se A(V)}. Prove that

-



*8.

*%Q

10.

11.

12.

13.

*14.

*15.
*16.

17.

18.

*19.

20.

21.

22.

23.

Z merely consists of the multiples of the unit element of A(V) by the
elements of F.
If dimy (V) > 1 prove that A(V) has no two-sided ideals other than
(0) and A(V).

_ Prove that the conclusion of Problem 8 is false if V is not finite-

dimensional over F.

If V is an arbitrary vector space over F and if T € A(V) is both
right- and left-invertible, prove that the right inverse and left inverse
must be equal. From this, prove that the inverse of T is unique.

If V is an arbitrary vector space over F and if T e A(V) is right-
invertible with a unique right inverse, prove that T is invertible.

Prove that the regular elements in A(V) form a group.

If F is the field of integers modulo 2 and if V is two-dimensional over
F, compute the group of regular elements in A(V) and prove that
this group is isomorphic to S5, the symmetric group of degree 3.

If F is a finite field with ¢ elements, compute the order of the group
of regular elements in A(V) where V is two-dimensional over F.

Do Problem 14 if V is assumed to be n-dimensional over F.

If V is finite-dimensional, prove that every element in A(V) can be
written as a sum of regular elements.

An element E € A(V) is called an idempotent if E* = E. If Ee A(V)
is an idempotent, prove that V = Vo @ V, where yE = 0 for all
vo€ Vo and v, E = v, for all v, € V.

If TeAp(V), F of characteristic not 2, satisfies T3 = T, prove
that V=¥, @ V; ® V, where

(a) vy € Vy implies y,T = 0.

(b) v, € Vy implies v; T = v;.

(c) vy € V, implies v, T = —v,.

If V is finite-dimensional and T # 0e A(V), prove that there is
an S e A(V) such that E = TS # 0 is an idempotent.

The element T e A(V) is called nilpotent if T™ = 0 for some m. If
T is nilpotent and if vT = av for some v # 0 in V, with a € F, prove
that a = 0.

If TeA(V) is nilpotent, prove that oy + o; T + a,T? + -+ +
a, T* is regular, provided that oy % 0.

If A is a finite-dimensional algebra over F and if a € 4, prove that

—_

for some integer £ > 0 and some polynomial p(x) € F[x], =
ak +1 p( a).

Using the result of Problem 22, prove that for a € 4 there is a poly-
nomial ¢(x) € F[x] such that ¢* = a%*q(a).




. Using the result of Problem 23, prove that given ae A either g is
nilpotent or there is an element b # 0 in 4 of the form b — ah(a),
where 4(x) € F[x], such that 2 = p.

. If 4 is an algebra over F (not necessarily finite-dimensional) and if
foraed, a® — ais nilpotent, prove that either q is nilpotent or there
is an element b of the form b = ah(a) # 0, where h(x) € F[x], such
that 2 = b.

- If T # 0 € A(V) is singular, prove that there is an element S e A(V)
such that 7'S = 0 but ST + 0.

. Let V be two-dimensional over F with basis 01, v. Suppose that
TeA(V) is such that o, T = aw, + Boys v, T = o, + 6v,, where
% B,7, 6 € F. Find a nonzero polynomial in F [%] of degree 2 satisfied
by T.

. If V is three-dimensional over F with basis 1, Uy, v3 and if T'e A(V)
is such that o, = a0, + a0, + a0 for ¢ =1,2,3, with all
a;; € F, find a polynomial of degree 3 in F [#] satisfied by T.

. Let V be n-dimensional over F with a basis V15 -+, Up. Suppose that
T e A(V) is such that
Ul =0,0,T =0;,...,0,_,T =0,
0T = —apy — 0y v, — 0 — %10
where a;,. .., a, € F. Prove that T satisfies the polynomial
p(F) = 2" + " + "2 - 4 g, over .

- If TeA(V) satisfies a polynomial q(x) € F[x], prove that for Se
A(V), S regular, STS™! also satisfies g(x).

- (a) If Fis the field of rational numbers and if ¥ is three-dimensional
over F with a basis v, v,, v;, compute the rank of Te A(V)
defined by

-

nT =0, — v,
02T =0y + v,
;17 = v, + v,
(b) Find a vector ve V, v # 0. such that 97 = 0.

- Prove that the range of 7 and U = {ve V|vT = 0} are subspaces
of V.

I TedV), let Vy={ve V|vT* = 0 for some £}. Prove that
Vo is a subspace and that if 9T™ ¢ Vo, then v € V.

- Prove that the minimal polynomial of T over F divides all polynomials
satisfied by T over F.

- If n(T) is the dimension of the U of Problem 32 prove that r(T) +
n(T) = dim V.

-
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6.2 Characteristic Roots

For the rest of this chapter our interest will be limited to linear transfor-
mations on finite-dimensional vector spaces. Thus, henceforth, V will always
denote a finite-dimensional vector space over a field F.

The algebra A(V) has a unit element; for ease of notation we shall write
this as 1, and by the symbol A — T, for AeF, T e A(V) we shall mean
Al —T.

DEFINITION If TeA(V) then AeF is called a characteristic root (or
eigenvalue) of T if A — T is singular.

We wish to characterize the property of being a characteristic root in the
behavior of T on V. We do this in

THEOREM 6.21 The element A€ F is a characteristic root of T € A(V) if
and only if for some v # 0in V, oT = Jo.

Proof. If 1is a characteristic root of T then 4 — T is singular, whence,
by Theorem 6.1.3, there is a vector v # 0 in V such that »(4 — T) = 0.
But then Av = vT.

On the other hand, if T = Av for some v # 0 in V, then o(A—T) =0,
whence, again by Theorem 6.1.3, A — T must be singular, and so, 4 is a
characteristic root of T.

LEMMA 6.21 If AeF is a charasteristic root of T € A(V), then for any
polynomial q(x) € F[x], q(A) is a characteristic root of q(T).

Proof. Suppose that A€ F is a characteristic root of 7. By Theorem
6.2.1, there is a nonzero vector v in ¥ such that o7 = Av. What about 0 T??

Now 0T? = ()T = A@T) = A(Av) = A%». Continuing in this way,
we obtain that 7% = A% for all positive integers k. If g(x) = oox™ +
a0 x 1 4+ 4y, oy €F, then ¢(T) = aoT™ + a, T™ 1 oo b O
whence vg(T) = v(apT™ + o, T™ "1+ 4 ap) = a(0T™) + a,(@T™ 1) +
coe oo = (0™ 4+ A" 4 o + a,)o = ¢(A)v by the remark made
above. Thus v(q(A) — ¢(T)) = 0, hence, by Theorem 6.2.1, g(d) is 2
characteristic root of ¢(T').

As immediate consequence of Lemma 6.2.1, in fact as a mere special
case (but an extremely important one), we have

THEOREM 6.2.2 If AeF is a characteristic root of Te‘A(V), then A is @
root of the minimal polynomial of T. In particular, T only has a Sfinite number of
characteristic roots in F.




Proof. Let p(x) be the minimal polynomial over F of T; thus p(T) = 0.
If A€ F is a characteristic root of 7, there is a » # 0in V with o7 = Jo.
As in the proof of Lemma 6.2.1, w(T) = p(A)v; but p(T) = 0, which
thus implies that p(1)v = 0. Since » 3 0, by the properties of a vector
space, we must have that p(1) = 0. Therefore, 1 is a root of p(x). Since
p(x) has only a finite number of roots (in fact, since deg p(x) < n? where
n = dimg V, p(x) has at most n® roots) in F, there can only be a finite
number of characteristic roots of 7 in F.

If T'e A(V) and if S € A(V') is regular, then (STS™1)2 = STS~1STS™ ! =
ST2S™1, (STS™1)3 = S§T35~1, ... , (STS™YH! = ST'S™ 1. Consequently,
for any ¢(x) € Fx], ¢(STS™ ') = Sg(T)S~!. In particular, if ¢(T) = 0,
then ¢(STS™ ') = 0. Thus if p(x) is the minimal polynomial for T, then it

follows easily that p(x) is also the minimal polynomial for STS~!. We have
proved

LEMMA 6.2.2 If T,Se A(V) and if S is regular, then T and STS™ ! have
the same minimal polynomial.

DEFINITION The element 0 # ve V is called a characteristic vector of T
belonging to the characteristic root A e Fif oT = Ao.

What relation, if any, must exist between characteristic vectors of T
belonging to different characteristic roots? This is answered in

THEOREM 623 If A\,..., A, in F are distinct characteristic roots of Te
A(V) and if v,,...,v, are characteristic veciors of T belonging to 1, ... s
respectively, then v,, . . . , v, are linearly independent over F.

Proof. For the theorem to require any proof, k£ must be larger than 1;
30 we suppose that £ > 1.

_Ifv,..., 5 are linearly dependent over F, then there is a relation of the
form o9, + -+ + oy, = 0, where ay,..., o, are all in F and not all of
them are 0. In all such relations, there is one having as few nonzero co-

efficients as possible. By suitably renumbering the vectors, we can assume
this shortest relation to be -

Pioy + -+ By =0, B #£0,..., 8 #0. )
We know that 0,7 = 1,,, so, applying T to equation (1), we obtain
MBioy + 00 + AiBjv; = 0. 2)

Multiplying equation (1) by 1; and subtracting from equation (2), we
tain
(A2 = 4)Bavz + -+ + (A; — 4,)Bv; = 0.

1
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Now A; — Ay # 0 for 2 > 1, and f; # 0, whence (1; — 4;)B; # 0. But
then we have produced a shorter relation than that in (1) between o,,
Uz, - .- U This contradiction proves the theorem.

COROLLARY 1 If Te A(V) and if dimy V = n then T can have at most
n distinct characteristic roots in F.

Proof. Any set of linearly independent vectors in ¥ can have at most »
elements. Since any set of distinct characteristic roots of 7, by Theorem
6.2.3, gives rise to a corresponding set of linearly independent characteristic
vectors, the corollary follows.

COROLLARY 2 If Te A(V) and if dimp V = n, and if T has n distinct
characteristic roots in F, then there is a basis of V over F which consists of characteristic
vectors of T.

We leave the proof of this corollary to the reader. Corollary 2 is but the
first of a whole class of theorems to come which will specify for us that a
given linear transformation has a certain desirable basis of the vector space
on which its action is easily describable.

Problems

In all the problems ¥V is a vector space over F.

1. If Te A(V) and if g(x) € F[x] is such that ¢(T) = 0, is it true that
every root of ¢(x) in F is a characteristic root of T? Either prove that
this is true or give an example to show that it is false.

2. If Te A(V) and if p(x) is the minimal polynomial for T over F, sup-
pose that p(x) has all its roots in F. Prove that every root of p(x) is 2
characteristic root of 7.

3. Let ¥V be two-dimensional over the field F, of real numbers, with a
basis v, v,. Find the characteristic roots and corresponding charac-
teristic vectors for T defined by
(@) T =v, + vy, 0, T =09, — v,

(b) o, T = 50, + 6v,, v, T = —7o,.
() vuT = v, + 205, v,T = 3v; + 6v,.

4. Let V be as in Problem 3, and suppose that 7 € A(V) is such that
0T = av; + Pvy, 0,7 = yv; + dv,, where a, B, y, 6 are in F.

(a) Find necessary and sufficient conditions that 0 be a characteristic
root of T in terms of a, B, y, d.




(b) In terms of «, B, v, 6 find necessary and sufficient conditions that
T have two distinct characteristic roots in F.

5. If V is two-dimensional over a field F prove that every element in
A(V) satisfies a polynomial of degree 2 over F.

6. If V is two-dimensional over F and if S, T e A(V), prove that
(ST — TS)? commutes with all elements of A(V).

7. Prove Corollary 2 to Theorem 6.2.3.

8. If V is n-dimensional over F and Te A(V) is nilpotent (ie., T* = 0
for some k), prove that 7" = 0. (Hint: If v € V use the fact that v, vT,
vT?,...,9T" must be linearly dependent over F.)

6.3 Matrices

- Although we have been discussing linear transformations for some- time, it
has always been in a detached and impersonal way; to us a linear trans-

face with specific linear transformations. At the same time it is clear that
if one were to pursue the subject further there would often arise the need

of making a thorough and detailed study of a given linear transformation.
To mention one precise problem, presented with a linear transformation
@and suppose, for the moment, that we have a means of recognizing it),
ow does one go about, in a “practical” and computable way, finding its
characteristic roots? ‘
What we seek first is a simple notation, or, perhaps more accurately,
€presentation, for linear transformations. We shall accomplish this by
€ of a particular basis of the vector space and by use of the action of a
€ar transformation on this basis. Once this much is achieved, by means
the operations in A(V) we can induce operations for the symbols created,
king of them an algebra. This new object, infused with an algebraic life
its own, can be studied as a mathematical entity /_having an interest by
If. This study is what comprises the subject of matrix theory.
HOWevcr, to ignore the source of these matrices, that is, to investigate the
of symbols independently of what they represent, can be costly, for we
ould be throwing away a great deal of useful information. Instead we
all always use the interplay between the abstract, A(V), and the concrete,
© matrix algebra, to obtain information one about the other.
Let ¥ be an n-dimensional vector space over a field F and let v,, .. ., v,
' @ basis of Vover F. If Te A(V) then T is determined on any vector as
I as we know its action on a basis of V. Since 7 maps V into V, v, T,




v,T,...,0,T mustall bein V. As elements of V, each of these is realizable
in a unique way as a linear combination of ;, . .. , 7, over F. Thus

0T = 0349 + 0505 + 0+ Oyp¥n
va = “21”1 + 0622112 + R o aznvn
0; T = o) + 0ip0p + 00+ %P

vnT = U1 + Xn2¥s + 0t Enn¥ns

where each o;; € F. This system of equations can be written more compactly as
n
0, T = Za;jvj, for i =1,2,...,n
j=1

The ordered set of n2 numbers «;; in F completely describes 7. They will
serve as the means of representing 7.

DEFINITION Let V be an n-dimensioned vector space over F and let
9y, .., 0, be a basis for V over F. If T'€ A(V) then the matrix of T in the
basis vy, . . . , v, written as m(T), is

Oyg O3 7 Oy
Oor Ony ¢ &
m(T) = | %2t %22 X2n

: Xpy Opz *°° Upp
where v, T = ¥; a;;0;.

A matrix then is an ordered, square array of elements of F, with, as yet,
no further properties, which represents the effect of a linear transformation
on a given basis.

Let us examine an example. Let F be a field and let ¥ be the set of all
polynomials in x of degree n — 1 or less over F. On V let D be defined
by (Bo + Bix + v+ Buoy® D =By + 2px + - BTN+
(n — 1)B,_,#"~ 2 Tt is trivial that D is a linear transformation on V; in
fact, it is merely the differentiation operator.

What is the matrix of D? The questions is meaningless unless we specify
a basis of V. Let us first compute the matrix of D in the basis 7, = 1,

v, =% 03 = x%,...,0,=x"1, ..., 0, =x"" Now,

01D=1D=0 001+002+-’"+01),,
sz=xD=l=lvl+Ovz+---+Ovn

0D = x"1D = (i — 1)&'"2
=00 + 00, +---+ 09;_, + (1 — Do,y + Oy,

+ -+ Oy,

2,D = 2D = (n — )"~ 2
Ov; + 0oy + -+ 0v,_5 + (n — Do,y + Ov,




oing back to the very definition of the matrix of a linear transformation
a given basis, we see the matrix of D in the basis v,,. .., v,, my(D), is
fact

000 0 0
1 00 0 0
m(D) =[0 2 0 0 0
00 3 0 0
000 n—1) 0

However, there is nothing special about the basis we just used, or in how
e numbered its elements. Suppose we merely renumber the elements of
is basis; we then get an equally good basis w; = 2" !, w, = ¥"~2, ...,
y=2"%L . .,w, =1 What is the matrix of the same linear trans-
ormation D in this basis? Now, /

w,D =+""'D = (n— 1)x"" 2
= 0w, + (n — Nw, + Ow; + -+ + Ow

wD = D = (n — i) i~1
Owy + -+ 4+ Ow; + (n — Dwyyq + Owyyy + -+ + Ow

n

;UnD=]D=O=0wl+0w2+...+0w

n’

0 (n—1) 0 0 ... 00
0 0 (n -2 0 00 .
0 0 0 (n — 3) 0 0 T
my(D) =| 0 .
0 0 0 .01
0 0 0 el ... 000

Before leaving this example, let us compute the matrix of D in still another
sis of V over F. Let uy=1, uy=1+4ux uy=1+2%.. u,=1+x""1;
t is easy to verify that u,,...,u, form a basis of ¥ over F. What is the
matrix of D in this basis? Since

1D=1D=0=0”1+0u2+'+0u"
D= (149D =1 = lu, + 0uy 4+ + Ou,
3D = (1 + 2%)D = 2% = 2(u, — u;) = —2u; + 2uy + Ouz + + -+ + Ou

D

1+ 9D =(n— D@2 = (a = ), — )
—(m—Nuy + Ouy + -+ Oup_p + (n — Du,_, + Ou,.



The matrix, m5(D), of D in this basis is

0 00 0 0
1 00 0 0

-2 20 0 0

-3 03 0o 0

my(D) = 0 0
0 0

—~(n—1 00 ... m=1) 0

By the example worked out we see that the matrices of D, for the three
bases used, depended completely on the basis. Although different from each
other, they still represent the same linear transformation, D, and we could
reconstruct D from any of them if we knew the basis used in their determi-
nation. However, although different, we might expect that some relationship
must hold between m, (D), m,(D), and m3(D). This exact relationship will
be determined later.

Since the basis used at any time is completely at our disposal, given a
linear transformation T (whose definition, after all, does not depend on any
basis) it is natural for us to seek a basis in which the matrix of T has a
particularly nice form. For instance, if T is a linear transformation on V,
which is n-dimensional over F, and if 7 has n distinct characteristic roots
A4y -+ Ay in F, then by Corollary 2 to Theorem 6.2.3 we can find a basis
945+ .., 0, of V over Fsuch that 9,7 = A9;. In this basis T has as matrix
the especially simple matrix,

4 0 0 0

0 A, O 0
m(T)=

0 0 A,

We have seen that once a basis of V is picked, to every linear transforma-
tion we can associate a matrix. Conversely, having picked a fixed basis
¥4, ...,0, of Vover F, a given matrix

%11 e oy,
. . > aijeF:
Ont M %nn

gives rise to a linear transformation 7" defined on V by ;T = > oivj on
this basis. Notice that the matrix of the linear transformation 7, just con-
structed, in the basis vy, . . . , 9, is exactly the matrix with which we started.
Thus every possible square array serves as the matrix of some linear trans-

formation in the basis v, ..., ¥,




It is clear what is intended by the phrase the first row, second row, . .

v

of a matrix, and likewise by the first column, second column,.... In the
matrix

Uy eee Oy,

. . b

Oyt v Oy

the element a;; is in the ith row and Jth column; we refer to it as the (i 5)
entry of the matrix.

To write out the whole square array of a matrix is somewhat awkward;
instead we shall always write a matrix as (2;;); this indicates that the (7, ¥
entry of the matrix is a;;.

Suppose that V is an n-dimensional vector space over F and v, ..., 9,
is a basis of V over F which will remain fixed in the following discussion.
Suppose that S and T are linear transformations on ¥ over F having matrices
m(S) = (o), m(T) = (t:;), respectively, in the given basis. Our objective
is to transfer the algebraic structure of A(V) to the set of matrices having
entries in F.

To begin with, § = T if and only if v§ = 7T for any v e V, hence, if
and only if 4,8 = ;T for any o,,..., v, forming a basis of V over F.
Equivalently, § = T if and only if 6;; = 7,; for each 7 and J-

Given that m(S) = (o; ;) and m(T) = (ti;); can we explicitly write down
m(S + T)? Because m(S) = (1)), v:8 = X; 0,50, likewise, 0, T = 2T
whence

v,-(S —+ T) = v‘-S + viT = Z Uijvj + Z Tijvj = E (aij + Tij)vj.
7 7 7 .

i

But then, by what is meant by the matrix of a linear transformation in a
given basis, m(S + T) = (4ij) where 4;; =0 + 7y for every i and j.
A computation of the same kind shows that for YEF, m(yS)~= (u;)
where p;; = yo, ; for every 7 and j.

The most interesting, and complicated, computation is that of m(ST).
Now

w(ST) = @8)T = (zj o) T = 3 04(s,T).
T 3
However, 5, T = 2_j Tx;v;; substituting in the above formula yields
vi(ST) = Z o-ik (Z ‘L'kjvj) = Z (Z O'ikrkj)vj.
T 7 7 %

(Prove ') Therefore, m(ST) = (v,;), where for each i and BV
k OipTyj-

ij




At first glance the rule for computing the matrix of the product of two
linear transformations in a given basis seems complicated. However, note
that the (i, j) entry of m(ST') is obtained as follows: Consider the rows of
§ as vectors and the columns of T as vectors; then the (i, j) entry of m(ST)
is merely the dot product of the ith row of § with the jth column of T

Let us illustrate this with an example. Suppose that

N
m(T) = (‘; g)

the dot product of the first row of § with the first column of T is (1)(—1) +
(2)(2) = 3, whence the (I, 1) entry of m(ST) is 3; the dot product of the
first row of S with the second column of T'is (1)(0) + (2)(3) = 6, whence
the (1, 2) entry of m(ST') is 6; the dot product of the second row of § with
the first column of T'is (3)(—=1) + (4)(2) = 5, whence the (2, 1) entry of
m(ST) is 5; and, finally the dot product of the second row of § with the
second column of T is (3)(0) + (4)(3) = 12, whence the (2,2) entry of

M(ST) is 12. Thus
3 6
ST) = .
m(8T) (5 12)

The previous discussion has been intended to serve primarily as a motiva-
tion for the constructions we are about to make.
Let F be a field; an n x n mairix over F will be a square array of elements

in F,
(an Oyg +ve ozl,,)
Oni L% R Cnn

(which we write as (a;;)). Let F, = {(o;;) | a;; € F}; in F, we want to
introduce the notion of equality of its elements, an addition, scalar multipli-
cation by elements of F and a multiplication so that it becomes an algebra
over F. We use the properties of m(T') for T'€ A(V) as our guide in this.

and

1. We declare (a;;) = (B;)), for two matrices in F,, if and only if a;; =
B; for each ¢ and j.

9. We define (a;;) + (Bi;) = (4;;) where A;; = a;; + B;; for every 1, j.

3. We define, for y € F, y(a;;) = (u;;) where p;; = ya; for every i and j.

4. We define (a;;)(B;;) = (vi;), where, for every 1 and j, v;; = 2 o
Let V be an n-dimensional vector space over F and let vy, ..., 7, b€ 2

basis of ¥ over F; the matrix, m(T), in the basis vy, ..., 0, associates with
T € A(V) an element, m(T), in F,. Without further ado we claim that the




mapping from A(V) into F, defined by mapping T onto m(T) is an algebra
isomorphism of A(V) onto F,. Because of this isomorphism, F, is an
associative algebra over F (as can also be verified directly). We call F,
the algebra of all n x n matrices over F.

Every basis of V' provides us with an algebra isomorphism of A(V) onto
F,. Itis a theorem that every algebra isomorphism of A(V) onto F, is so
obtainable.

In light of the very specific nature of the isomorphism between 4(V) and
F,, we shall often identify a linear transformation with its matrix, in some
basis, and A(V) with F,. In fact, F, can be considered as A(V) acting on
the vector space ¥V = F® of all n-tuples over F, where for the basis v, =
(1,0,...,0), 2, =(0,1,0,...,0),..., 9, = 0,0,...,0,1), (a;; €F,
acts as v;(a;;) = ith row of (a;;).

We summarize what has been done in

THEOREM 6.31  The set of all n x n matrices over F JSorm an associative
algebra, F,, over F. If V is an n-dimensional vector space over F, then A(V) and
F, are isomorphic as algebras over F. Given any basis vy, ..., v, of V over F, if
Jor Te A(V), m(T) is the matrix of T in the basis Hls oo Uy, the mapping
T — m(T) provides an algebra isomorphism of A(V) onto F,.

The zero under addition in F, is the zero-matrix all of whose entries are 0;
we shall often write it merely as 0. The unit matrix, which is the unit element
“of F, under multiplication, is the matrix whose diagonal entries are 1 and
whose entries elsewhere are 0; we shall write it as I, I, (when we wish to
emphasize the size of matrices), or merely as 1. For o € F, the matrices

A

o
ol =
o

(blank spaces indicate only 0 entries) are called scalar matrices. Because of the
isomorphism between A(V) and F,, it is clear that T'e A(V) is invertible
if and only if m(T'), as a matrix, has an inverse in F,.

Given a linear transformation 7T e A(V), if we pick two bases, Uy ooy U
and w,, ..., w, of V over F, each gives rise to a matrix, namely, m, (7" and
my(T'), the matrices of T in the bases V5. --,0, and wy, ..., w,, respec-
tively. As matrices, that is, as elements of the matrix algebra F,, what is
the relationship between my(T) and m,(T)?

THEOREM 6.3.2 If V is n-dimensional over F and if T e A(V) has the ma-
trix m,(T) in the basis vy, . .., v, and the matrix my(T') in the basis wy, . . ., w,
o V over F, then there is an element C e F, such that my(T) = Cm,(T)C™ 1.

-



In fact, if S is the linear transformation of V defined by v,S = w; fori=12,...,n
then C can be chosen to be my(S).

Proof. Let my(T) = (;;) and my(T) = (Bij); thus o, T = i %0y
w; T = ¥; Bijw;

Let S be the linear transformation on ¥V defined by v;S = w;. Since
045+ » 0, and Wy, ..., W, are bases of V over F, § maps ¥ onto V, hence,
by Theorem 6.1.4, S is invertible in A(V).

Now w;T = ¥ Biw;; since w; = 2,S, on substituting this in the ex-
pression for w;T we obtain 08T = X; Bij(v;S). But then ,(ST) =
(X, Bijvj)S; since S is invertible, this further simplifies to v;(STS™ 1y =
Y Bijv;- By the very definition of the matrix of a linear transformation in
a given basis, m(STS 1 = (B;;) = my(T). However, the mapping
T — m,(T) is an isomorphism of A(V) onto F,; therefore, m (STS™1) =
ml(S)ml(T)ml(S'l) = ml(S)ml(T)ml(S)”l. Putting the pieces together,
we obtain m,(T) = ml(S)ml(T)ml(S)'l, which is exactly what is claimed
in the theorem.

We illustrate this last theorem with the example of the matrix of D, in
various bases, worked out earlier. To minimize the computation, suppose
that V is the vector space of all polynomials over F of degree 3 or less, and let
D be the differentiation operator defined by (¢ + ;% + ayx? + a3x)D =
ot + 20,% + 3agx’.

As we saw earlier, in the basis v; = 1, v, = %, 93 = x2, v, = %3, the
matrix of D is

0000
1 000
mD) =10 2 0 0
0030

In the basis u, = L, u, =1 + % u3 =1+ x2, uy = 1 + x3, the matrix
of D is

w o oo

0000
1000
m®P)=1_2 2 00
-3 0 30

Let § be the linear transformation of V defined by .8 = w, (=01)s
0,8 =w, =1+ % =0y + 0y 2,8 = w, = 1 + 2% =y + 23, and also
0,8 =wy =1+ x3 = v, + vy The matrix of S in the basis vy, 83, 03, 4
is

— b —
oo -0
o - O O
-0 O O




A simple computation shows that

1 000
-1 10 0
o
CT=1_1 01 o
~1 0 0 1
- Then
1 00 0,/00 0 0 1 000
. 1 10 o0}f1 00 ol[f=1120 o0
)
Cmy (D)C "1 o1 0flo 2 0 0)l=1 01 o
1 00 1/\00 3 0/\=1 0 0 1
0 000
1 000
“1-2 2 0 of =™
-3 0 3 0

as it should be, according to the theorem. (Verify all the computations
- used!)

The theorem asserts that, knowing the matrix of a linear transformation
in any one basis allows us to compute it in any other, as long as we know the
linear transformation (or matrix) of the change of basis.

We still have not answered the question: Given a linear transformation,
how does one compute its characteristic roots? This will come later. F rom
the matrix of a linear transformation we shall show how to construct a
polynomial whose roots are precisely the characteristic roots of the linear
transformation.

Problems

1. Corapute the following matrix products:

(@ 1 2 3 1 0 1
(1 -1 2( o 2 3]
3 4 5/\—-1 —1 =1

(b) 6\/3 -2

,<~ 1)(2 3)'

(C)( 2

(d) 1 1?2,

(o -)

2. Verify all the computations made in the example illustrating Theorem
6.3.2.

-

QY -

= ol ot
= )= Gl

W= = L
|
SN —

W




. In F, prove directly, using the definitions of sum and product, that

(a) A(B + C) = AB + AGC;

(b) (4B)C = A(BC);

for A, B, C € F,,.

. In F, prove that for any two elements A and B, (4B — BA)? is a

scalar matrix.

. Let V be the vector space of polynomials of degree 3 or less over F.

In V define T by (2 + ayx + apx> + a32%) T = 0g + oy (x + 1) +

a(x + 1)2 + a3(x + 1)°. Compute the matrix of T in the basis

(a) 1, x, 2, x°.

(b) I, 1 + 1 + %2, 1 + %%

(c) If the matrix in part (a) is A and that in part (b) is B, find a
matrix C so that B = CAC™ 1.

. Let V = F®® and suppose that

1 1 2
-1 2 1
01 3

is the matrix of T'e A(V) in the basis o; = (1,0,0), v, = (0, 1,0},
vs = (0,0, 1). Find the matrix of T in the basis

(a) U = (1$ L), u= (09 1, 1), 3= (0, 0, 1).

(b) u = (1» 1,0), u = (1: 2,0), u3 = (1: 2, ).

. Prove that, given the matrix

0 1 0
4=|0 0 1|eF
6 —11 6

(where the characteristic of F is not 2), then
(a) 4% — 64% + 114 — 6 = 0.
(b) There exists a matrix C € F3 such that

1 00
cAC~1 =0 2 0}.
0 0 3

. Prove that it is impossible to find a matrix C € F, such that
c 11 o1 = a 0 ’
0 1 0 B

. A matrix 4 e F, is said to be a diagonal matrix if all the entries off
the main diagonal of 4 are 0, i.e., if 4 = (a;;) and a;; = 0 for i #J-
If 4 is a diagonal matrix all of whose entries on the main diagonal

for any «, f € F.




*12.

13.

14.

15.

16.

17.

*18.

are distinct, find all the matrices B € F, which commute with 4, that is,
all matrices B such that BA = AB.

. Using the result of Problem 9, prove that the only matrices in F,

which commute with all matrices in F, are the scalar matrices.

. Let 4 € F, be the matrix

0100 ..00
0010 ..00

v
A=9001 00
0000 ...0 1
0000 ...00

whose entries everywhere, except on the superdiagonal, are 0, and
whose entries on the superdiagonal are 1’s. Prove A" = 0 but 4"~ ! # 0.
If 4 is as in Problem 11, find all matrices in ¥, which commute with
A and show that they must be of the form o + 0,4 + a,4% + -+ +
a,_1 4"~ ! where o, oy, ..., 0,_; € F.

Let AeF, and let C(4) = {BeF, | AB = BA}. Let C(C(4)) =
{GeF,|GX = XG forall Xe C(A4)}. Prove that if G e C(C(4)) then
G is of the form ay + o, 4, oy, o, € F.

Do Problem 13 for A€ F;, proving that every Ge C(C(4)) is of
the form oy + 0,4 + o, 42

In F, let the matrices E;; be defined as follows: E;; is the matrix
whose only nonzero entry is the (i, j) entry, which is 1. Prove

(a) The E;; form a basis of F, over F.

(b) E;jEy, = Oforj # k; Ej B, = E,.

(c) Given i, j, there exists a matrix C such that CE;C™' = E.
(d) If i # j there exists a matrix C such that CE;;C™! = E,,.

(e) Find all B € F, commuting with E,.

(f) Find all B € F, commuting with E,;.

Let F be the field of real numbers and let C be the field of complex
numbers. For ae C let T,:C - C by xT, = xa for all xe C. Using
the basis 1, 7 find the matrix of the linear transformation 7, and so get
an isomorphic representation of the complex numbers as 2 x 2
matrices over the real field.

Let @ be the division ring of quaternions over the real field. Using
the basis 1, ¢, j, £ of @ over F, proceed as in Problem 16 to find an
isomorphic representation of @ by 4 x 4 matrices over the field of
real numbers.

Combine the results of Problems 16 and 17 to find an isomorphic

representation of @ as 2 x 2 matrices over the field of complex
numbers.



19.

20.

21.

22.

23.

24.

25.

26.

27.

Let # be the set of all n x n matrices having entries 0 and 1 in such

a way that there is one 1 in each row and column. (Such matrices

are called permutation matrices.)

(a) If M e M, describe AM in terms of the rows and columns of 4.

(b) If Me M, describe M4 in terms of the rows and columns of 4.

Let # be as in Problem 19. Prove

(a)  has n! elements.

(b) If M e #, then it is invertible and its inverse is again in /.

(c) Give the explicit form of the inverse of M.

(d) Prove that . is a group under matrix multiplication.

(e) Prove that . is isomorphic, as a group, to S,, the symmetric
group of degree n.

Let A = (a;;) be such that for each 2, ¥;a; = 1. Prove that 1 is

a characteristic root of 4 (that is, 1 — A is not invertible).

Let A = (a;;) be such that for every J» Ty oy; = 1. Prove that 1 is

a characteristic root of 4.

Find necessary and sufficient conditions on a, B, v, 6, so that

A= (“ ﬁ ) is invertible. When it is invertible, write down 4-1
Y

explicitly.
If EeF, is such that E2 = E # 0 prove that there is a matrix
C e F,, such that

1 0 ... O 0 ... 0
0 1 0
U LI B
10 0 0o ... 0}’
0 0 0 ... 0

where the unit matrix in the top left corner is r x 7, where 7 is the
rank of E.

If F is the real field, prove that it is impossible to find matrices
A, B € F, such that AB — BA = 1.

If Fis of characteristic 2, prove that in F, it is possible to find matrices
A, B such that AB — BA = 1.

The matrix A is called triangular if all the entries above the main

diagonal are 0. (If all the entries below the main diagonal are 0 the

matrix is also called triangular).

(a) If 4 is triangular and no entry on the main diagonal is 0, prove
that A is invertible.

(b) If 4 is triangular and an entry on the main diagonal is 0, prove
that A4 is singular.




28. If 4 is triangular, prove that its char}cteristic roots are precisely the
elements on its main diagonal.

29. If N* = 0, Ne F,, prove that 1 + N is invertible and find its inverse
as a polynomial in N.

30. If 4 € F, is triangular and all the entries on its main diagonal are 0,
prove that 4" = 0.

31. If AeF, is triangular and all the entries on its main diagonal are
equaltoa # 0e F, find 4~ L.

32. Let S, T be linear transformations on V such that the matrix of S
in one basis is equal to the matrix of 7 in another. Prove there exists
a linear transformation 4 on V such that 7 = 4S5S4~ 1.

6.4 Canonical Forms: Triangular Form

Let V be an n-dimensional vector space over a field F.

DEFINITION The linear transformations S, T'e A(V) are said to be
similar if there exists an invertible element C € A(V) such that T = GSC ™ 1.

In view of the results of Section 6.3, this definition translates into one
about matrices. In fact, since F, acts as A(V) on F™, the above definition
already defines similarity of matrices. By it, 4, B € F, are similar if there
is an invertible C € F, such that B = CAC™ 1.

The relation on A(V) defined by similarity is an equivalence relation;
the equivalence class of an element will be called its similarity class. Given
two linear transformations, how can we determine whether or not they are
similar? Of course, we could scan the similarity class of one of these to"see
if the other is in it, but this procedure is not a feasible one. Instead we try
to establish some kind of landmark in each similarity class and a way of
going from any element in the class to this landmark. We shall prove the
existence of linear transformations in each similarity class whose matrix,
in some basis, is of a particularly nice form. These matrices will be called
the canonical forms. To determine if two linear transformations are similar,
we need but compute a particular canonical form for each and check if
these are the same.

There are many possible canonical forms; we shall only consider three of
these, namely, the triangular form, Jordan form, and the rational canonical
form, in this and the next three sections.

DEFINITION The subspace W of V is invariant under T e A(V) if
WT < w.

LEMMA 6.4.1 If W < V is invariant under T, then T induces a linear
transformation T on V|W, defined by (v + W)T = oT + W. If T satisfies



the polynomial q(x) € F[x], then so does T. If py(x) is the minimal polynomial
for T over F and if p(x) is that for T, then p(x) | p(x)-

Proof. Let V = V|W; the elements of V are, of course, the cosets
v+ W of Win V. Given 3 =0 + We V define 5T =T + W. To
verify that T has all the formal properties of a linear transformation on |4
is an easy matter once it has been established that T is well defined on V. We
thus content ourselves with proving this fact.

Suppose that 7 = v, + W = v, + W where vj,0,€ V. We must show
that o, T + W = 2,T + W. Since v; + W =1, + W, v, — v, must be
in W, and since W is invariant under T, (v; — ;) T must also be in W.
Consequently v, T — v,T e W, from which it follows that v T + W=
0, T + W, as desired. We now know that T defines a linear transformation
on V =VIW.

If 5=0+ WeV, then (T2 =oT?+ W= (INT + W=
T + WYT = ((v + W)T)T = 3(T)?; thus (T?) = (T)?. Similarly,
(T® = (T)* for any k > 0. Consequently, for any polynomial ¢(x)
F[x], ¢(T) = ¢(T). For any q(x) € F[x] with ¢(T) = 0, since 0 is the
zero transformation on V, 0 = ¢(T) = ¢(T).

Let p;(x) be the minimal polynomial over F satisfied by T. Ifg(T) =0
for ¢(x) € F[x], then p,(x) | g(x). If p(x) is the minimal polynomial for T
over F, then p(T) = 0, whence p(T) = 0; in consequence, p;(x) | p(x).

As we saw in Theorem 6.2.2, all the characteristic roots of T which lie
in F are roots of the minimal polynomial of T over F. We say that all the
characteristic roots of T are in F if all the roots of the minimal polynomial of T
over F lie in F.

In Problem 27 at the end of the last section, we defined a matrix as being
triangular if all its entries above the main diagonal were 0. Equivalently, if
T is a linear transformation on V over F, the matrix of T in the basis
04, - - - » U, Is triangular if

nT = a0,

0, T = ap101 + 030,

;T = ooy + X0y + 50+ 40
UnT = “nlvl + 0+ amnvn’

i.e., if »; T is a linear combination only of v; and its predecessors in the basis.

THEOREM 6.41 If Te A(V) has all its characteristic roots in F, then there
is a basis of V in which the matrix of T is triangular. :

Proof. 'The proof goes by induction on the dimension of ¥ over F.
If dimy V = 1, then every element in A(V) is a scalar, and so the
theorem is true here.




Suppose that the theorem is true for all vector spaces over F of dimension
n — 1, and let ¥ be of dimension n over F.

The linear transformation 7 on V has all its characteristic roots in F;
let 4, € F be a characteristic root of 7. There exists a nonzero vector v,
in Vsuch that o, T = A;v;,. Let W = {aw, | « € F}; W is a one-dimensional
subspace of V, and is invariant under 7. Let ¥ = V/W; by Lemma 4.2.6,
dim V=dimV —~dimW =n—1. By Lemma 64.1, T induces a
linear transformation 7 on V whose minimal polynomial over F divides
the minimal polynomial of T over F. Thus all the roots of the minimal
polynomial of 7, being roots of the minimal polynomial of T, must lie in F.
The linear transformation T in its action on V satisfies the hypothesis of
the theorem; since V is (n — 1)-dimensional over F, by our induction
hypotbhesis, there is a basis v,, 7, . .., 7, of V7 over F such that

7, T = a,,0,

v3T = 03,0, + a3303

ZiT = aizzz + ai3(_}3 + -+ Otiiﬁ,-

z_)nT = “nzz_’z + an353 +s 4+ annan'

Let v,,...,0, be elements of V mapping into 7,,..., 7, respectively.
Then v,, v,,..., v, form a basis of V (see Problem 3, end of this section).
Since 9, T = ay,7,, 9, T — a,,0, = 0, whence v, T — a,,v, must be in W.
Thus 2, T — «y,v, is a multiple of v,, say a,,v;, yielding, after transposing,
03T = 03,0y + a0,  Similarly, 0,7 ~ a0, — @305 — -+ — a0, € W,
whence v;T = «;,0, + @;,0, + *+ + o;v;. The basis v,,...,v, of V over
F provides us with a basis where every v, T is a linear combination of v;
and its predecessors in the basis. Therefore, the matrix of T in this basis
is triangular. This completes the induction and proves the theorem.

We wish to restate Theorem 6.4.1 for matrices. Suppose that the matrix
A € F, has all its characteristic roots in F. A defines a linear transforma-
tion 7 on F™ whose matrix in the basis

9, = (1,0,...,0),0, = (0,1,0,...,0),...,9, = (0,0,...,0,1),

is precisely 4. The characteristic roots of T, being equal to those of 4, are
all in F, whence by Theorem 6.4.1, there is a basis of F® in which the
matrix of T is triangular. However, by Theorem 6.3.2, this change of basis
Ierely changes the matrix of 7, namely 4, in the first basis, into CAC ~*
for a suitable C = F,. Thus

ALTERNATIVE FORM OF THEOREM 6.4.1 If the matrix Ae€F, has
all its characteristic roots in F, then there is a matrix C e F, such that CAC™ 1 is
a triangular matrix.

-




Theorem 6.4.1 (in either form) is usually described by saying that T
(or A) can be brought to triangular form over F.

If we glance back at Problem 28 at the end of Section 6.3, we see that
after T has been brought to triangular form, the elements on the main
diagonal of its matrix play the following significant role: they are precisely
the characteristic roots of T.

We conclude the section with

THEOREM 6.4.2 If V is n-dimensional over F and if T € A(V) has all its
characteristic roots in F, then T satisfies a polynomial of degree n over F.

Proof. By Theorem 6.4.1, we can find a basis vy,. .., 9, of V over F
such that:
0, T = Ay
0, T = 03101 + 420,

0;T = oy + 0+ % -10i-1 + Ay,
fori=1,2,...,n
Equivalently
o (T — 4) =0
?2(T — Az) = %10y

;)i(T — A) = ooy + 0t 1P
fori =1,2,...,n
What is v,(T — A)(T — 41)? As a result of v,(T — 45) = 219 and
v,(T — A;) = 0, we obtain v,(T — )T — 4) = 0. Since
(T = )T = &) = (T = 2)(T = 4y),
o (T — )T = 4) = 0(T = 4)(T = 4) = 0.

Continuing this type of computation yields

0, (T — )T — Aicg) (T = 4) =0,
v (T — ANT — Ai—qg) = (T — M) = 9,

0T = A)(T = Ayy) = (T = 4y) = 0.

For i = n, the matrix § = (T — A)(T — A—q) (T — 4y) satisfies
9,8 = 0,8 =-+-=17,5 = 0. Then, since S annihilates a basis of ¥, § must
annihilate all of V. Therefore, § = 0. Consequently, T satisfies the poly-
nomial (¥ — A;)(* — ;)" (x — 4,) in F[x] of 'degree n, proving the
theorem.

Unfortunately, it is in the nature of things that not every linear trans-
formation on a vector space over every field F has all its characteristic roots




in F. This depends totally on the field F. For instance, if F is the field of
real numbers, then the minimal equation of

(1 9

over Fis x2 + 1, which has no roots in F. Thus we have no right to assume
that characteristic roots always lie in the field in question. However, we
may ask, can we slightly enlarge F to a new field K so that everything works
all right over K?

The discussion will be made for matrices; it could be carried out equally
well for linear transformations. What would be needed would be the follow-
ing: given a vector space V over a field F of dimension #, and given an
extension K of F, then we can embed ¥V into a vector space Vg over K of
dimension z over K. One way of doing this would be to take a basis vy, . . .,
v, of V over F and to consider Vi as the set of all ayv; + * -+ + a,2, with
the «; € K, considering the o; linearly independent over K. This heavy use
of a basis is unaesthetic; the whole thing can be done in a basis-free way
by introducing the concept of fensor product of vector spaces. We shall not
do it here; instead we argue with matrices (which is effectively the route
outlined above using a fixed basis of V).

Consider the algebra F,. If K is any extension field of F, then F, < K,
the set of 7 x n matrices over K. Thus any matrix over F can be considered
as a matrix over K. If T e F, has the minimal polynomial p(x} over F,
considered as an element of K, it might conceivably satisfy a different
polynomial py(x) over K. But then py(x) | p(x), since py(x) divides all
polynomials over K (and hence all polynomials over F) which are satisfied
by T. We now specialize K. By Theorem 5.3.2 there is a finite extension,
K, of F in which the minimal polynomial, p(x), for T over F has all its roots.
As an element of K, for this K, does T have all its characteristic roots in
K? As an element of K,, the minimal polynomial for T over K, p,(x)
divides p(x) so all the roots of py(x) are roots of p(x) and therefore lie in K.
Consequently, as an element in K, T has all its characteristic roots in K.

Thus, given T in F,, by going to the splitting field, K, of its minimal
polynomial we achieve the situation where the hypotheses of Theorems 6.4.1
and 6.4.2 are satisfied, not over F, but over K. Therefore, for instance, T’
can be- brought to triangular form over K and satisfies a polynomial of
degree n over K. Sometimes, when luck is with us, knowing that a certain
result is true over K we can “cut back” to F and know that the result is still
true over F. However, going to K is no panacea for there are frequent
situations when the result for K implies nothing for F. This is why we have
two types of “canonical form” theorems, those which assume that all the
characteristic roots of T lie in F and those which do not.

A final word; if T € F,, by the phrase “a characteristic root of T we shall




mean an element A in the splitting field K of the minimal polynomial
p(x) of T over F such that A — T is not invertible in K,. It is a fact (see
Problem 5) that every root of the minimal polynomial of T over F is a
characteristic root of 7.

Problems

1. Prove that the relation of similarity is an equivalence relation in 4(V).

2. If TeF, and if K o F, prove that as an element of K,, T is in-
vertible if and only if it is already invertible in F,.

3. In the proof of Theorem 6.4.1 prove that v,,..., v, is a basis of V.

4. Give a proof, using matrix computations, that if 4 is a triangular
n X n matrix with entries 4,, ..., 4, on the diagonal, then

(4= 2)A4 =2 (4d—4,) =0

*5. If TeF, has minimal polynomial p(x) over F, prove that every
root of p(x), in its splitting field K, is a characteristic root of 7.

6. If Te A(V) and if A€ F is a characteristic root of T in F, let U, =
{veV|oT = Jv}. If Se A(V) commutes with T, prove that U,
is invariant under S.

*7. If A is a commutative set of elements in A(V) such that every
M e # has all its characteristic roots in F, prove that there is a
C e A(V) such that every CMC ™!, for M € #, is in triangular form.

8. Let W be a subspace of V invariant under T'€ A(V). By restricting
T to W, T induces a linear transformation 7' (defined by wT =
wT for every we W). Let p(x) be the minimal polynomial of T
over F. .

(a) Prove that p(x) | p(x), the minimal polynomial of T over F.
(b) If T induces T on VW satisfying the minimal polynomial p(x)
over F, prove that p(x) | f(x)p(x).
*(c) If p(x) and p(x) are relatively prime, prove that p(x) = p(x)p(x)-
*(d) Give an example of a T for which p(x) # p(x)p(x).

9. Let ./ be a nonempty set of elements in A(V); the subspace W < V
is said to be invariant under M if for every Me M, WM c W. If
W is invariant under .# and is of dimension r over F, prove that there
exists a basis of V over F such that every M e .# has a matrix, in

this basis, Of the form
( )
4 112 4 42 ’

where M, is an r X r matrix and M, is an (n — r) x (n — r) matrix.




*13.

14.

10.

*]1.

*]12,

15.

16.

In Problem 9 prove that M| is the matrix of the linear transformation
M induced by M on W, and that M, is the matrix of the linear trans-
formation M induced by M on V/W.

The nonempty set, .#, of linear transformations in A(V) is called an
irreducible set if the only subspaces of V invariant under 4 are (0)
and V. If A is an irreducible set of linear transformations on ¥ and if

D= {TedAV)|TM = MT for all M € .4},

prove that D is a division ring.

Do Problem 11 by using the result (Schur’s lemma) of Problem 14,
end of Chapter 4, page 206.

If F is such that all elements in A(V) have all their characteristic
roots in F, prove that the D of Problem 11 consists only of scalars.

Let F be the field of real numbers and let

0 1
eF,.
(7 o)=

(a) Prove that the set .# consisting only of

01
-1 0
is an irreducible set.

(b) Find the set D of all matrices commuting with

01
-1 0
and prove that D is isomorphic to the field of complex numbers.

Let F be the field of real numbers.
(a) Prove that the set

01 00 0 0 0 1
-1 0 0 0 0 1 0
= 00 o 1J°l 0o -1 00
00 —1 0 -1 00

. is an irreducible set.
(b) Find all 4 € F, such that AM = MA for all Mec /.
(c) Prove that the set of all Ain part (b) is a division ring isomorphic
to the division ring of quaternions over the real field.

A set of linear transformations, .# < A(V), is called decomposable
if there is a subspace W < V such that V= W@ W,, W # (0),
W #£ V, and each of W and W, is invariant under . If .# is not
decomposable, it is called indecomposable.

-
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One class of linear transformations which have all their characteristic roots
in F is the class of nilpotent ones, for their characteristic roots are all 0,
hence are in F. Therefore by the result of the previous section a nilpotent
linear transformation can always be brought to triangular form over F.
For some purposes this is not sharp enough, and as we shall soon see, a
great deal more can be said.

Although the class of nilpotent linear transformations is a rather re-
stricted one, it nevertheless merits study for its own sake. More important
for our purposes, once we have found a good canonical form for these we
can readily find a good canonical form for all linear transformations which
have all their characteristic roots in F.

A word about the line of attack that we shall follow is in order. We
could study these matters from a “‘ground-up” approach or we could invoke
results about the decomposition of modules which we obtained in Chapter 4.
We have decided on a compromise between the two; we treat the material
in this section and the next (on Jordan forms) independently of the notion
of 2 module and the results about modules developed in Chapter 4. How-
ever, in the section dealing with the rational canonical form we shall com-
pletely change point of view, introducing via a given linear transformation
a module structure on the vector spaces under discussion; making use of




. Theorem 4.5.1 we shall then get a decomposition of a vector space, and the
resulting canonical form, relative to a given linear transformation.

Even though we do not use a module theoretic approach now, the reader
hould note the similarity between the arguments used in proving Theorem
.5.1 and those used to prove Lemma 6.5.4.

Before concentrating our efforts on nilpotent linear transformations we
rove a result of interest which holds for arbitrary ones.

EMMA 651 If V=V, ®V,® - ®V,, where each subspace V; is of

12
imension n; and is invariant under T, an element of A(V), then a basis of V can

be found so that the matrix of T in this basis is of the form

4, 0 ... 0
0 4, ... 0
0 0 .. o4

‘where each A; is an n; x n; matrix and is the matrix of the linear transformation
tnduced by T on V.

Proof.  Choose a basis of V as follows: 0,V, ..., v, is a basis of V,,
2,,0,P, ..., 9, ® s a basis of V,, and so on. Since each V; 1s invariant
under T, 97T e V; so is a linear combination of 0D, 0,9, ... ,0,®,
~and of only these. Thus the matrix of T in the basis so chosen is of the
desired form. That each 4, is the matrix of T, the linear transformation
induced on V; by T, is clear from the very definition of the matrix of a
linear transformation.

We now narrow our attention to nilpotent linear transformations.

-

LEMMA 652 If Te A(V) is nilpotent, then oy + 0T + -+ + o, T,
where the a; € F, is invertible if oy # 0.

Proof. 1f S is nilpotent and oy # 0 € F, a simple computation shows that
1 S $2 5t
SO/ S
% % %o %o

$7=0. Now if 7" =0, S =, T + 0, T2 + -+ + o, T™ also must
tisfy §” = 0. (Prove!) Thus for oy 5 0 in F, %y + S is invertible.

Notation. M, will denote the ¢ x ¢ matrix

010 ...00
001 ...00
0 0 .01
00 ...00

1 of whose entries are 0 except on the superdiagonal, where they are all 1’.

-



DEFINITION If T e A(V) is nilpotent, then k is called the index of mil-
potence of T if T* = 0 but T 1 % 0.

The key result about nilpotent linear transformations is

THEOREM 6.51 If T e A(V) is nilpotent, of index of nilpotence ny, then a
basis of V can be found such that the matrix of T in this basis has the form

M, O ... 0
Q M,, e O ’
o 0 ... M,
where ny > ny > -+ > n, and where ny + ny + + -+ 4+ n, = dimg V.

Proof. The proof will be a little detailed, so as we proceed we shall
separate parts of it out as lemmas.

Since 7"t = 0 but 7™~ ! # 0, we can find a vector v € V such that
»T™~1 £ 0. We claim that the vectors v,07,...,9T™ ! are linearly
independent over F. For, suppose that av + a7 + -+ + o, 0T™" 1=0
where the a; € F; let o be the first nonzero «, hence

0T Yooy + otgpq T +++- + o, T™7%) = 0.

Since o, # 0, by Lemma 6.5.2, a; + g4, T + -+ + «, 7™ * is invertible,
and therefore 7T~ ! = 0. However, s < n;, thus this contradicts that
oT™~1 % 0. Thus no such nonzero o, exists and v, v7T, ..., vT™ ™1 have
been shown to be linearly independent over F.

Let V, be the subspace of V spanned by v, = v, v, = v7T,...,0, =
»T™~1; V, is invariant under 7, and, in the basis above, the linear trans-
formation induced by T on ¥V has as matrix M, .

So far we have produced the upper left-hand corner of the matrix of the

theorem. We must somehow produce the rest of this matrix.

LEMMA 6.5.3 If ueV, is such that uT™ * = 0, where 0 < k < ny, then
u = uyT* for some uy € V.

Proof. Sinceue Vy, u = a0 + a1 + -+ + T ! + ak+1ka +
s 4w, oT™ L Thus 0 = uT™™% = qoT™™* + -+ + 0 oT™
However, oT™ 7k ..., vT™ ! are linearly independent over F, whence
=y =-=0a, =0, and 50, u = oy, PT* + +++ + o, vT™ " = u T
where uy = a0 + - + @, 0T eV,

The argument, so far, has been fairly straightforward. Now it becomes
a little sticky.




of V, invariant under T, such that

Proof. Let W be a subspace of V, of largest possible dimension, such that
Vin W= (0);
2. W is invariant under 7.

—

We want to show that V = Vi + W. Suppose not; then there exists an
element z € V such that z¢ V, + W. Since 7™ — 0, there exists an in-
eger £, 0 < £ < ny, such that 27% € V; + W and such that 27" ¢V, + W
for ¢ < k. Thus zT* = u + w, where u ¢ Vi and where we W. But then
0= 2T™ = (2THTM* = yTm-k 4 wT™~*%; however, since both v,
“and W are invariant under T,uT" ¥ eV, and wT™ * e W. Now, since
Vi 0 W = (0), this leads to u 7™ % = _zyTm~k¢ Vi n W = (0), resulting
“in wT™k = 0, By Lemma 6.5.3, u = u T* for some uy € Vy; therefore,
2T =u+w=uT"+w Letz =z— uy; then 2, T* = 2T% — 4 T* =
‘weW, and since W is invariant under T this yields 2, 7™ e W for all
m 2> k. On the other hand, if i <k, 2,7 = 27" — uT ¢ V, + W, for
_otherwise 27" must fall in ¥V, + W, contradicting the choice of .

 Let W, be the subspace of V spanned by Wand z,, 2, T, ..., z,T* 1.
Since z; ¢ W, and since W, o W, the dimension of W, must be larger than
“that of W. Moreover, since z;T*e W and since W is invariant under 7T,
W, must be invariant under 7. By the maximal nature of W there must
be an element of the form w, + o2, + 0217 + - + gz, T*1 £ 0 in
W, N V,, where wye W. Not all of ®y,--., 0 can be O; otherwise we
would have 0 # wye W N Vi = (0), a contradiction. Let o be the first
nonzero o; then wy + 2,7 Yoy + oy, T + -+ + ouT* %) e V,. Since
% # 0, by Lemma 6.5.2, a5 + o,y ;7 + -+ - + o, T*"* is invertible and its
inverse, R, is a polynomial in 7. Thus W and V| are invariant under R;
however, from the above, woR + 2,T°" ' e ViR < V,, forcing 2z, T° ' e
Vi+ WReV, + W. Since s — 1 <k this is impossible; therefore

Vi + W= V. Because VinW=1(0), V="V, ® W, and the lemma is
proved.

The hard work, for the moment, is over; we now complete the proof of
Theorem 6.5.1.

By Lemma 6.5.4, V = Vi @ W where W is invariant under T. Using

&e basis v, ..., vn, of Vi and any basis of W as a basis of V, by Lemma
6.5.1, the matrix of 7 in this basis has the form

M, 0
0 4,)

here 4, is the matrix of T, the linear transformation induced on Wby T.
Since 7" = 0, T," = 0 for some n, < n;. Repeating the argument used



for T on V for T, on W we can decompose W as we did V (or, invoke an
induction on the dimension of the vector space involved). Continuing this
way, we get a basis of ¥ in which the matrix of T is of the form

M, O ... 0
0" M,
0 . M,
That n, + n, + -+ + n, = dim V is clear, since the size of the matrix is

n x nwheren = dim V.
DEFINITION The integers ny, n,, .. ., n, are called the invariants of T.

DEFINITION If T e A(V) is nilpotent, the subspace M of V, of dimen-
sion m, which is invariant under 7, is called ¢yelic with respect to T if

1. MT™ = (0), MT™" ' # (0);
2. there is an element z € M such that z, 2T, ..., zT™ ! form a basis of M.

(Note: Condition 1 is actually implied by Condition 2).

LEMMA 6.5.5 If M, of dimension m, is cyclic with respect to T, then the
dimension of MT* ism — k for all k < m.

Proof. A basis of MT* is provided us by taking the image of any basis of
M under T*. Using the basis z, 27, ..., zT™ ! of M leads to a basis 27",
ZT*+1 . 2T™ ' of MT*. Since this basis has m — k elements, the
lemma is proved.

Theorem 6.5.1 tells us that given a nilpotent T in A(¥V) we can find
integers n, > n, > +-- > n, and subspaces, V,,..., V, of V cyclic with

r

respect to 7 and of dimensions 7, n,,...,n, respectively such that
V=V,® &V,
Is it possible that we can find other integers m; > m, > +-+ > mg and

subspaces U, ..., Us of V, cyclic with respect to T and of dimensions
my, ..., ms, respectively, such that V= U, @ ---@® U,? We claim that
we cannot, or in other words that s =7 and m; = n;, my = n,,...,m, =
n,. Suppose that this were not the case; then there is a first integer ¢ such
that m; # n;, We may assume that m; < n;.

Consider VT™. On one hand, since V=V, @ ---@®V, VI™ =
nr~ e---@ virm @---® V,T™. Since dim V\T™ = n, — mp
dim V,T™ = n, — m;, ..., dim V;T™ = n, — m; (by Lemma 6.5.5),
dim VT™ > (n; — m;) + (n, — m;) + -+ + (n; — m;). On the other
hand, since V= U, @ - @® U, and since U;T™ = (0) forj > i, VT™ =
uT™ e U,T™ + ---@® U;_,T™. Thus

dim VT™ = (my — m;) + (my — m;) + -+ + (mi_y — my).




By our choice of 7, n) = m,, n, = My, ..., M;_y = m;_,, whence
dim VI™ = (n, — m;) + (n, — m) + o+ (g — my).

However, this contradicts the fact proved above that dim V7™ >
(ng —my) +- 4+ (n_y —m,) + (n; — m;), since n; — m; > 0.

Thus there is a unigue set of integers n; > n, > -+ > n, such that V is
the direct sum of subspaces, cyclic with respect to 7" of dimensions ny,
s -« 5 M. Equivalently, we have shown that the invariants of T are unique.

Matricially, the argument just carried out has proved that if n; > n, >

Ry

*tr2mn and my > m, > -+ > m, then the matrices
M, ... 0 M, ... 0
? T and 0 -
0 ... M 0o ... M

ms

are similar only if 7 = 5 and g =my,ny =my,...,n =m
So far we have proved the more difficult half of

e

THEOREM 6.5.2 Two nilpotent linear transformations are similar if and only
if they have the same invariants.

Proof. The discussion preceding the theorem has proved that if the two
nilpotent linear transformations have different invariants, then they can-
not be similar, for their respective matrices

M, ... 0 M, ... 0

el and |: el

0 e M, 0 e M, -
cannot be similar.

In the other direction, if the two nilpotent linear transformations § and T
have the same invariants ny = --- 2= n, by Theorem 6.5.1 there are bases
U5+, v, and wy, ..., w, of V such that the matrix of S in v35...,0, and
that of Tin w,, ..., w,, are each equal to
M, 0
0 e M,
But if 4 is the linear transformation defined on ¥ by ;4 = w,, then § =
ATA~!  (Prove! Compare with Problem 32 at the end of Section 6.3),
whence § and T are similar.

Let us compute an example. Let

01 1
T={0 0 0)er,
00 0

-



act on F® with basis 2, = (1,0,0), 2, = (0,1,0), u3 = (0,0, 1). Let
v, = Uy, vy = u T = uy + U3, V3 = Us; in the basis v;, v,, v3 the matrix

of T is
0 1 0
(0 0 0),
000

so that the invariants of T are 2, 1. If 4 is the matrix of the change of

basis, namely
1 0
(0 |
0 0

a simple computation shows that

010
ATA"1 = |0 0 O}.
0 00

One final remark: the invariants of 7' determine a partition of n, the

3

0
1
1

dimension of V. Conversely, any partition of n, ny > -2 n, 7y +
n, + +++ + n,=n, determines the invariants of the nilpotent linear
transformation.

M, ... 0

Thus the number of distinct similarity classes of milpotent n X n matrices is precisely
p(n), the number of partitions of n.

6.6 Canonical Forms: A Decomposition of V: Jordan Form

Let V be a finite-dimensional vector space over F and let 7" be an arbitrary
element in A(V). Suppose that V; is a subspace of V invariant under 7.
Therefore T induces a linear transformation 7; on V; defined by uly =
uT for every ueV,. Given any polynomial ¢(x) € F[x], we claim that
the linear transformation induced by ¢(7’) on V, is precisely ¢(T)- (The
proof of this is left as an exercise.) In particular, if ¢(T") = 0 then ¢(T'y) =
0. Thus 7, satisfies any polynomial satisfied by 7" over F. What can be
said in the opposite direction? -

LEMMA 6.6.1 Suppose that V =V, @ V,, where V, and V, are subspaces
of V invariant under T. Let Ty and T, be the lincar transformations induced by
T on V, and V,, respectively. If the minimal polynomial of Ty over F is py (x) while
that of T, is p,(x), then the minimal polynomial for T over F is the least common
multiple of py(x) and p,(x).




Proof. If p(x) is the minimal polynomial for T over F, as we have seen
above, both p(T'|) and p(T,) are zero, whence b1(x) | p(x) and p,(x) | p(x).
But then the least common multiple of g, (x) and p,(x) must also divide px).

On the other hand, if ¢(x) is the least common multiple of p,(x) and
£2(%), consider ¢(T'). For ; € Vy, since p, (x) | ¢(x), 0,9(T) = v,¢(T,) = 0;
similarly, for v, € V,, v,9(T) = 0. Given any v€ V, v can be written as
v = vy + v;, where v; € V; and v, € V,, in consequence of which vq(T) =
(0 + 22)9(T) = v,9(T) + v,9(T) = 0. Thus q9(T) = 0 and T satisfies
¢(x). Combined with the result of the first paragraph, this yields the lemma.
COROLLARY If V=V, ® - ®V, where cach V; is invariant under T
and if p;(x) is the minimal polynomial over F of T, the linear transformation induced
by T on V,, then the minimal polynomial of T over F is the least common multiple
of p1(x), pa(%), . ., Lu(%).

We leave the proof of the corollary to the reader.
Let T € Ap(V) and suppose that p(x) in F[x] is the minimal polynomial
of T over F. By Lemma 3.9.5, we can factor p(x) in F[x] in a unique way
as p(x) = q;(x)""g,(%)"2+ - - ¢ (x)*, where the g;(x) are distinct irreducible
polynomials in F[x] and where {, [,,..., [ are positive integers. Our
objective is to decompose V as a direct sum of subspaces invariant under
T such that on each of these the linear transformation induced by T has,
-as minimal polynomial, a power of an irreducible polynomial. If & = 1,
Vitself already does this for us. So, suppose that £ > 1.

Let V; = {veV]og,(T)" =0}, V, = {ve V0vg,(T)2 = 0},...,
Vi={veV]|ovg(T)* = 0}. Itis a triviality that each V, is a subspace

t

of V. In addition, V; is invariant under 7, for if u e Vi, since T and ¢,(7T")

commute, (27)q,(T)" = (uq(T)")T = 0T = 0. By the definition of v,
this places u7in V;. Let T be the linear transformation induced by Ton V.

THEOREM 6.6.1 For ecach i = 1,2,...,k, Vi (0)and V=V, @V, ®
* @ Vi The minimal polynomial of T is q;(x)".

Proof. 1Ifk =1 then V = V, and there is nothing that needs proving.
Suppose then that £ > 1.

We first want to prove that each Vi # (0). Towards this end, we intro-
duce the & polynomials:

hy(x) = ’!2(")’293(’5)13 (%),
hy(x) = q1(x)"g5(x)" - -~ gu(x), .. .,
h’t(x) = I;Ii qj(x)lj> R ]

hk.<x) = 41 (x)"1g2(%)"2 -+ - gy ()1,

Since £ > 1, k(%) # p(x), whence k,(T) # 0. Thus, given i, there is a
veV such that_w = oh;(T) # 0. But wg(T)" = v(h(T)q,(T)") = vp(T)



= 0. In consequence, @ # 0 is in V; and so V; # (0). In fact, we have
shown a little more, namely, that Vi,(T) # (0) is in V5. Another remark
about the h;(x) is in order now: if v; € V; for j # i, since qj(x)’f | hy(x),
vh(T) = 0.

The polynomials Ay (x), hy(%), - - h(x) are relatively prime. (Prove!)
Hence by Lemma 3.9.4 we can find polynomials a,(x), ..., g(x) in
F[x] such that a,(x)A;(x) + -+ a,(x)h(x) = 1. From this we get
a (T)h(T) + -+ + a(T)h(T) = 1, whence, given veV, v =0l =
o(ay(T)hy(T) + -+ + a(T)h(T)) = vay (T)hy(T) + -+ + va(T)h(T).
Now, each va,(T)h;(T) is in Vh;(T), and since we have shown above that
Vh(T) < V;, we have now exhibited v as v = v, + *** + ¥, where each

. = 0a,(T)hy(T) isin V;. Thus V=7V, + V, + + Vi

We must now verify that this sum is a direct sum. To show this, it is
enough to prove that if u; + u; + -+ % = 0 with each u; € V;, then
each u; = 0. So, suppose that u; + u; + " * + % = 0 and that some u;,
say 4y, is not 0. Multiply this relation by hy(T); we obtain u;a,(T) + -~ +
uh, (T) = Ohy(T') = 0. However, uhy(T) = 0 for j# 1 since u;€Vj;
the equation thus reduces to uh (T) = 0. But u;q,(T)"* = 0 and since
h,(x) and g (x) are relatively prime, we are led to u; = 0 (Prove!) which
is, of course, inconsistent with the assumption that #, # 0. So far we
have succeeded in proving that V.=V, @ V, @ --* @ Ve

To complete the proof of the theorem, we must still prove that the
minimal polynomial of 7'; on V; is g(x)%. By the definition of V;, since
Vgi(T)% = 0, ¢,(T)" = 0, whence the minimal equation of T'; must be a
divisor of g;(x)%, thus of the form g;(x)’¢ with f; < [;. By the corollary to
Lemma 6.6.1 the minimal polynomial of T over F is the least common
multiple of g, (%)%, ..., g(x)’* and so must be gy (x)71 - -+ g (x)7*. Since
this minimal polynomial is in fact gy (%) -+ - g(x)™ we must have that
fizly, fo =l o, fi =4 Combined with the opposite inequality
above, this yields the desired result [; = fifori =1,2,..., k and so com-
pletes the proof of the theorem.

If all the characteristic roots of T should happen to lie in F, then
the minimal polynomial of T takes on the especially nice form g¢(x) =
(x — Ao (x — )% where Ay,..., 4 are the distinct characteristic
roots of 7. The irreducible factors ¢;(x) above are merely ¢;(x) = * — A
Note that on V,, T; only has ; as a characteristic root.

COROLLARY If all the distinct characteristic roots Aiy-vos Mof T liein F, then
V can be writtenas V=V, @ -+ ® V, where V; = {ve V| o(T — 1)t = 0}

and where T}, has only one characteristic root, ;, on V.

Let us go back to the theorem for a moment; we use the same notation




T}, V; as in the theorem. Since V=V, ® - @ V,, if dim Vi=n; by
Lemma 6.5.1 we can find a basis of ¥ such that in this basis the matrix of
T is of the form

4,
4,

4,

where each 4, is an #; X n; matrix and is in fact the matrix of T..

What exactly are we looking for? We want an element in the similarity
class of 7" which we can distinguish in some way. In light of Theorem 6.3.2
this can be rephrased as follows: We seek a basis of ¥ in which the matrix
of 7" has an especially simple (and recognizable) form.

By the discussion above, this search can be limited to the linear trans-
formations 77; thus the general problem can be reduced from the discussion
of general linear transformations to that of the special linear transformations
whose minimal polynomials are powers of irreducible polynomials. For
the special situation in which all the characteristic roots of 7 lie in F we do
it below. The general case in which we put no restrictions on the charac-
teristic roots of 7" will be done in the next section.

We are now in the happy position where all the pieces have been con-
structed and all we have to do is to put them together. This results in the
highly important and useful theorem in which is exhibited what is usually
called the Jordan canonical form. But first a definition.

DEFINITION The matrix

A1 0 0 T
0 1

. 1

0 o A

with A’s on the diagonal, 1’s on the superdiagonal, and 0’s elsewhere, is a
basic Jordan block belonging to A.

THEOREM 6.6.2 Let T e Ap(V) have all its distinct characteristic roots,

A > Ak i F. Then a basis of V can be found in which the matrix T is of the
Jorm

Ji
J2

Ji



where each

B

Ji = Bi
B

and where By, - - ., By, are basic Jordan blocks belonging to A;.
Proof. Before starting, note that an m X m basic Jordan block belonging
to A is merely A + M,,, where M, is as defined at the end of Lemma 6.5.2.
By the combinations of Lemma 6.5.1 and the corollary to Theorem 6.6.1,
we can reduce to the case when 7 has only one characteristic root A, that is,

T — ) is nilpotent. Thus T =4 + (T — %), and since T — A is nil-
potent, by Theorem 6.5.1 there is a basis in which its matrix is of the form

(Mn |
M,

But then the matrix of T is of the form

) (Mm ‘ ) (Bm . )
.. + - = . ,
A Mn,- Bn,.

using the first remark made in this proof about the relation of a basic Jordan
block and the M,’s. This completes the theorem.

A

Using Theorem 6.5.1 we could arrange things so that in each J; the size
of B,y >size of By = * "+ When this has been done, then the matrix

—

is called the Jordan form of T. Note that Theorem 6.6.2, for nilpotent
matrices, reduces to Theorem 6.5.1.

We leave as an exercise the following: Two linear transformations in
Ap(V) which have all their characteristic roots in F are similar if and only if they
can be brought to the same Jordan form.

Thus the Jordan form acts as a “determiner” for similarity classes of this
type of linear transformation.

In matrix terms Theorem 6.6.2 can be stated as follows: Let A€ F,
and suppose that K is the splitting field of the minimal polynomial of A over F;
then an invertible matrix C € K,, can be found so that CAC™ ! is in Jordan form:




We leave the few small points needed to make the transition from Theorem
6.6.2 to its matrix form, just given, to the reader.

One final remark: If 4 € F, and if in K,, where K is the splitting field
of the minimal polynomial of 4 over F,

Ji
CAC_I — Jz

Ji

i where each Ji corresponds to a different characteristic root, 4, of 4, then
' the multiplicity of 1, as a characteristic root of 4 is defined to be n;, where J;
is an n; x n; matrix. Note that the sum of the multiplicities is exactly n.

Clearly we can similarly define the multiplicity of a characteristic root
of a linear transformation.

Problems

1. If § and T are nilpotent linear transformations which commute,
prove that ST and S + T are nilpotent linear transformations.

2. By a direct matrix computation, show that

0100 0100
001 0 001 0
oo0oo0o0] 2 oo 01
00 0 0 00 0 0

are not similar.

3. If n; > n, and m; > m,, by a direct matrix computation prove that

M"l Mml )
M, and M,

are similar if and only if n;, = m,, n, = m,.
*4. If n; > n, > n; and m; > m, > ms, by a direct matrix computation
prove that

M, M,
M,, and M,,
M, M,

are similar if and only if n, = m, n, = m,, ny = m,.

1 1 1
-1 -1 -1
1 1 0

is nilpotent, and find its invariants and Jordan form.

5. (a) Prove that the matrix



10.

11.

12.

13.

(b) Prove that the matrix in part (a) is not similar to

1 1 1
-1 -1 -=1]1.
1 0 0

. Prove Lemma 6.6.1 and its corollary even if the sums involved are not

direct sums.

. Prove the statement made to the effect that two linear transformations

in Ap(V) all of whose characteristic roots lie in F are similar if and
only if their Jordan forms are the same (except for a permutation in
the ordering of the characteristic roots).

. Complete the proof of the matrix version of Theorem 6.6.2, given in
the text.
. Prove that the n X 7 matrix
0 00 00
1 00 00
010 00
0 0 1° 0 0}’
000 10

having entries 1’s on the subdiagonal and 0’s elsewhere, is similar to M,

1 o
If F has characteristic p > 0 prove that 4 = (O 1) satisfies 47 = 1.

1 o

If F has characteristic 0 prove that 4 = satisfies A™ = 1,

p 01

form > 0, only if ¢ = 0.

Find all possible Jordan forms for

(a) All 8 x 8 matrices having x*(x — 1)? as minimal polynomial.

(b) All 10 x 10 matrices, over a field of characteristic different from
2, having ¥2(x — 1)2(x 4+ 1) as minimal polynomial.

Prove that the n X z matrix

[om—y
—
[
[—

is similar to
00 ... 0
0 00 ... 0

B4

000 ... 0

if the characteristic of F is 0 or if it is p and p ¥ n. What is the multi-
plicity of 0 as a characteristic root of 4?




A matrix 4 = (a;;) is said to be a diagonal matrix if a;; = 0 for i # j,
that is, if all the entries off the main diagonal are 0. A matrix (or linear
transformation) is said to be diagonalizable if it is similar to a diagonal
matrix (has a basis in which its matrix is diagonal).

14. If T is in A(V) then T is diagonalizable (if all its characteristic roots
are in F) if and only if whenever o(T — )™ =0, for ve V and
A€ F, then o(T — 1) = 0.

15. Using the result of Problem 14, prove that if E2 = £ then E is
diagonalizable.

16. If E* = Eand F2 = F prove that they are similar if and only if they
have the same rank.

17. If the multiplicity of each characteristic root of T is 1, and if all the
characteristic roots of T are in F, prove that T is diagonalizable
over F.

18. If the characteristic of F is 0 and if T e Ap(V) satisfies T™ = 1,
prove that if the characteristic roots of T are in F then T is diagonaliz-
able. (Hint: Use the Jordan form of T)

*19. If 4, Be F are diagonalizable and if they commute, prove that
there is an element Ce F, such that both CAC~! and CBC-! are
diagonal.

20. Prove that the result of Problem 19 is false if 4 and B do not commute.

6.7 Canonical Forms: Rational Canonical Form

~ The Jordan form is the one most generally used to prove theorems about
clinear transformations and matrices. Unfortunately, it has one distinct,
 serious drawback in that it puts requirements on the location of the charac-
teristic roots. True, if 7' Ag( V)(or 4 € F,) does not have its characteristic
oots in F we need but go to a finite extension, K, of F in which all the char-
cteristic roots of T lie and then to bring T to Jordan form over K. In
fact, this is a standard operating procedure; however, it proves the result
In K, and not in F,. Very often the result in F, can be inferred from that
n K, but there are many occasions when, after a result has been established
or 4 € F,, considered as an element in K,, we cannot go back from K, to
et the desired information in F,

Thus we need some canonical form for elements in Ap(V) (or in F,)
hich presumes nothing about the location of the characteristic roots of its
€ments, a canonical form and a set of invariants created in Ap(V) itself
sing only its elements and operations. Such a canonical form is provided

s by the rational canonical Jorm which is described below in Theorem 6.7.1
nd its corollary.

-



Let T € Ax(V); by means of T we propose to make V into a module over
F[x], the ring of polynomials in x over F. We do so by defining, for any
polynomial f(x) in F[x], and any ve V, f(x)v = of (T). We leave the
verification to the reader that, under this definition of multiplication of
elements of V by elements of F[x], V becomes an F[x]-module.

Since V is finite-dimensional over F, it is finitely generated over F, hence,
all the more so over F[x] which contains F. Moreover, F[x] is a Euclidean
ring; thus as a finitely generated module over F[x], by Theorem 4.5.1, V is
the direct sum of a finite number of cyclic submodules. From the very way
in which we have introduced the module structure on V, each of these
cyclic submodules is invariant under T; moreover there is an element m,,
in such a submodule M, such that every element m, in M, is of the form
m = my f (T) for some f(x) € F[x].

To determine the nature of T on Vit will be, therefore, enough for us to
know what T looks like on a cyclic submodule. This is precisely what we
intend, shortly, to determine.

But first to carry out a preliminary decomposition of V, as we did in
Theorem 6.6.1, according to the decomposition of the minimal polynomial
of T as a product of irreducible polynomials.

Let the minimal polynomial of T over F be p(x) = q;(x)' -+ - g, (%)%,
where the g;(x) are distinct irreducible polynomials in F[x] and where
each ¢; > 0; then, as we saw earlier in Theorem 66.1, V=V, @V, @ -
@ V), where each V;is invariant under T and where the minimal polynomial
of T on V;is g;(x)*. To solve the nature of a cyclic submodule for an
arbitrary T we see, from this discussion, that it suffices to settle it for a T
whose minimal polynomial is a power of an irreducible one.

We prove the

LEMMA 6.7.1  Suppose that T, in Ap(V), has as minimal polynomial over F the
polynomial p(x) = yo + px + -+ y,_ &1 + &, Suppose, further, that
V, as a module (as described above), is a cyclic module (that is, is cyclic relative to T.)
Then there is basis of V over F such that, in this basis, the matrix of T is

0 1 0 ... 0

0 o 1 ... 0

0 0 0 ... 1
Y P - -0 TVr-a

Proof. Since V is cyclic relative to T, there exists a vector » in ¥ such
that every element w, in V, is of the form w = of (T') for some f (x) in F[x]-

Now if for some polynomial s(x) in F[x], vs(T) = 0, then for any @
in V, ws(T) = (of (T))s(T) = vs(T) f(T) = 0; thus s(T) annihilates all
of V and so s(T") = 0. But then p(x) | s(x) since p(x) is the minimal poly-




- nomial of T. This remark implies that v, 7T, vT2, ..., 0T 1 are linearly

independent over F, for if not, then %0 + @l + -+ 4 o _ 0T 1 =
with «,...,0,_, in F. But then ooy + o, T+ -+ 4 % T77 1) =0,
hence by the above discussion )| (g + ogx + -+ + o—1%"~ 1), which
s impossible since p(x) is of degree r unless

OCO=O£1 ="'=ar_1 = 0.

Since T" = —y, — L ==y, T we immediately have that
r+k for £ > 0, is a linear combination of 1, 7). .. ,T" 1 and so f(T),
or any f(x) e F[x], is a linear combination of 1, T,...,T""1 over F.
‘Since any w in V is of the form w = of (T') we get that w is a linear com-
bination of v, 7, ... 7" 1,

~ We have proved, in the above two paragraphs, that the elements v, 0T,
© oo, 0T form a basis of V over F. In this basis, as is immediately veri-
* fied, the matrix of 7 is exactly as claimed

DEFINITION If f(x) = Yo+ Mix+ -+ 9, "+ 4 is in Flx],
 then the r x 7 matrix

0 1 0 ... 0
0 o 1 ... 0
0 0 0 .. 1
TP TV - . =7y

is called the companion matrix of J (x). We write it as C(f (x)).

Note that Lemma 6.7.1 says that if V is ¢yclic relative to T and if the minimal
polynomial of T in F[x] is p(x) then for some basis of V the matrix of Tis C(p(x)).
Note further that the matrix C (f (%)), for any monic J (%) in F[x], satisfies
S (x) and has f(x) as its minimal polynomial. (See Problem 4 at the end of
this section; also Problem 29 at the end of Section 6.1.)
We now prove the very important

THEOREM 671 If T in Ap(V) has as minimal polynomial p(x) = q(x)e,
Where q(x) is a monic, irreducible polynomial in F[x), then a basis of V over F can
e found in which the matrix of T is of the form

C(g(x)™)
Clg(%))

Clg(%)*)

’leree=e1 e > >

Proof. Since V, as a module over F [x], is finitely generated, and since
[x] is Euclidean, we can decompose Vas V="V, @ - @ V. where the

-



V, are cyclic modules. The V; are thus invariant under T if T is the
linear transformation induced by 7" on V,, its minimal polynomial must be
a divisor of p(x) = ¢(x)¢ so is of the form ¢(x)®. We can renumber the
spaces so thate; > ¢, > - = ¢,

Now ¢(T)°* annihilates each V;, hence annihilates V, whence g(1)** =
0. Thus ¢; > ¢; since ¢, is clearly at most ¢ we get that ¢; = e.

By Lemma 6.7.1, since each V; is cyclic relative to T, we can find a basis
such that the matrix of the linear transformation of T; on V;is C(g(x)).
Thus by Theorem 6.6.1 a basis of ¥ can be found so that the matrix of T

in this basis is

Clg(x)*)
C(q(x)*)

Clg(*)™)

COROLLARY If Tin Ap(V) has minimal polynomial p(x) = q,(x)" - - i (%)%
over F, where q,(x), - . ., q(x) are irreducible distinct polynomials in F[x], then a
basis of V can be found in which the matrix of T s of the form

R,
R,

R,
where each

¢ (Qa(x)e""))

wheree; = ¢,y = € =2 ¢

irg*

Proof. By Theorem 6.5.1, ¥ can be decomposed into the direct sum
V=V, @ ®V, where each V, is invariant under 7" and where the
minimal polynomial of T, the linear transformation induced by T on Vi
has as minimal polynomial g;(x)%. Using Lemma 6.5.1 and the theorem
just proved, we obtain the corollary. If the degree of ¢,(x) is d;, note that
the sum of all the dig;; is n, the dimension of V over F.

DEFINITION The matrix of 7 in the statement of the above corollary
is called the rational canonical form of T.

DEFINITION The polynomials g (%)%, g, (%)%, . . ., g (%)°"1,. - -5 @ (%)
. o5 4 (%)% in F[x] are called the elementary divisors of T. \

One more definition!




DEFINITION If dimg (V) = n, then the characteristic polynomial of T,
pr(x), is the product of its elementary divisors.

We shall be able to identify the characteristic polynomial just defined
with another polynomial which we shall explicitly construct in Section 6.9.
The characteristic polynomial of 7 is a polynomial of degree n lying in
F[x]. It has many important properties, one of which is contained in the

REMARK  Every linear transformation T € Ap(V) satisfies its characteristic
polynomial.  Every characteristic root of T is a root of prp(x).

Note 1. 'The first sentence of this remark is the statement of a very famous
theorem, the Cayley-Hamilton theorem. However, to call it that in the form
we have given is a little unfair. The meat of the Cayley-Hamilton theorem
is the fact that T satisfies p7(x) when p(x) is given in a very specific, con-
crete form, easily constructible from 7. However, even as it stands the
remark does have some meat in it, for since the characteristic polynomial is
a polynomial of degree n, we have shown that every element in Ap(V) does
satisfy a polynomial of degree n lying in F[x]. Until now, we had only
proved this (in Theorem 6.4.2) for linear transformations having all their
characteristic roots in F.

Note 2. As stated the second sentence really says nothing, for whenever T
satisfies a polynomial then every characteristic root of 7 satisfies this same
polynomial; thus p(x) would be nothing special if what were stated in the
theorem were all that held true for it. However, the actual story is the
following: Every characteristic root of 7 is a root of bp7(x), and conversely,
every 100t of pr(x) is a characteristic root of T'; moreover, the multiplicity of any
100t of pr(x), as a root of the polynomial, equals its multiplicity as a characteristic
700t of T. We could prove this now, but defer the proof until later when we
shall be able to do it in a more natural fashion.

Proof of the Remark. We only have to show that T satisfies pr(x), but
this beomes almost trivial. Since pp(x) is the product of g, (x)°'t, g,(x)°2,

s @)™, ..., and since e = e, 6, =65, ..., 0, = ¢, pr(x) is di-
visible by p(x) = g,(x)°* - - - ¢,(x)°%, the minimal polynomial of 7. Since
H(T) = 0 it follows that p(T) = 0.

We have called the set of polynomials arising in the rational canonical
form of T the elementary divisors of 7. It would be highly desirable if these
determined similarity in Ag(V), for then the similarity classes in Ag(V)
would be in one-to-one correspondence with sets of polynomials in F[x].
We propose to do this, but first we establish a result which implies that two
linear transformations have the same elementary divisors.
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