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UNIT II 

EULERIAN AND HAMILTONIAN GRAPH 

 
There are many games and puzzles which can be analysed by graph theoretic 
concepts.  In fact, the two early discoveries which led to the existence of graphs arose 
from puz- zles, namely, the Konigsberg Bridge Problem and Hamiltonian Game, and 
these puzzles also resulted in the special types of graphs, now called Eulerian graphs 
and Hamiltonian graphs. Due to the rich structure of these graphs, they find wide use 
both in research and application. 

 

 

2.1 Euler Graphs 

A closed walk in a graph G containing all the edges of G is called an Euler line in G. 
A graph containing an Euler line is called an Euler graph. 

We know that a walk is always connected. Since the Euler line (which is a walk) 
contains all the edges of the graph, an Euler graph is connected except for any isolated 
vertices the graph may contain. As isolated vertices do not contribute anything to the 
understanding of an Euler graph, it is assumed now onwards that Euler graphs do not 
have any isolated vertices and are thus connected. 

 
Example  Consider the graph shown in Figure 3.1. Clearly, v1 e1 v2 e2 v3 e3 v4 e4 v5 e5 
v3 v6 e7 v1 in (a) is an Euler line, whereas the graph shown in (b) is non-Eulerian. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following theorem due to Euler [74] characterises Eulerian graphs. Euler 
proved the necessity part and the sufficiency part was proved by Hierholzer [115]. 

 
Theorem 2.1 (Euler)  A connected graph G is an Euler graph if and only if all 
vertices of G are of even degree. 

 
Proof  
Necessity Let G(V, E) be an Euler graph. Thus G contains an Euler line Z, which is a 
closed walk. Let this walk start and end at the vertex u ∈ V. Since each visit of Z to an 
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intermediate vertex v of Z contributes two to the degree of v and since Z traverses 
each edge exactly once, d(v) is even for every such vertex. Each intermediate visit to u 
contributes two to the degree of u, and also the initial and final edges of Z contribute 
one each to the degree of u. So the degree d(u) of u is also even.  
Second proof for sufficiency    Assume that all vertices of G are of even degree.  We 
con- struct a walk starting at an arbitrary vertex v and going through the edges of G 
such that no edge of G is traced more than once.  The tracing is continued as far as 
possible.  Since every vertex is of even degree,  we exit from the vertex we enter and 
the tracing clearly cannot stop at any vertex but v.  As v is also of even degree, we 
reach v when the tracing comes to an end. If this closed walk Z we just traced includes 
all the edges of G, then G is an Euler graph. If not, we remove from G all the edges in 
Z and obtain a subgraph Z

J
 of G formed by the remaining edges. Since both G and Z 

have all their vertices of even degree, the degrees of the vertices of Z
J
 are also even. 

Also, Z
J
 touches Z at least at one vertex say u, because G is connected. Starting from u, 

we again construct a new walk in Z
J
. As all the vertices of Z

J
 are of even degree, 

therefore this walk in Z
J
 terminates at vertex u. This walk in Z

J
combined with Z forms a 

new walk, which starts and ends at the vertex v and has more edges than Z. This process 
is repeated till we obtain a closed walk that traces all the edges of G. Hence G is an 
Euler graph (Fig. 3.2) ❑ 

 

 

Konigsberg Bridge Problem 

Two islands A and B formed by the Pregal river (now Pregolya) in Konigsberg (then 
the capital of east Prussia, but now renamed Kaliningrad and in west Soviet Russia) 
were connected to each other and to the banks C and D with seven bridges. The 
problem is to start at any of the four land areas, A, B, C, or D, walk over each of the 
seven bridges exactly once and return to the starting point. 

Euler modeled the problem representing the four land areas by four vertices, and the 
seven bridges by seven edges joining these vertices. This is illustrated in Figure. 

C 

 

 

A B 

 

 

 

 

 

 
We see from the graph G of the Konigsberg bridges that not all its vertices are of 

even degree. Thus G is not an Euler graph, and implies that there is no closed walk in 
G con- taining all the edges of G. Hence it is not possible to walk over each of the 

C 

A B 

D 
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seven bridges exactly once and return to the starting point. 

 
Note Two additional bridges have been built since Euler’s day. The first has been built 
between land areas C and D and the second between the land areas A and B. Now in 
the graph of Konigsberg bridge problem with nine bridges, every vertex is of even 
degree and the graph is thus Eulerian. Hence it is now possible to walk over each of 
the nine bridges exactly once and return to the starting point . 

 

 

The following characterisation of Eulerian graphs is due to Veblen [254]. 

Theorem 2.2 A connected graph G is Eulerian if and only if its edge set can be 
decom- posed into cycles. 
Proof Let G(V, E) be a connected graph and let G be decomposed into cycles. If k of 

these cycles are incident at a particular vertex v, then d(v) = 2k. Therefore the degree of 

every vertex of G is even and hence G is Eulerian. Conversely, let G be Eulerian. We 

show G can be decomposed into cycles. To prove this, we use induction on the number of 

edges. Since d(v) ≥ 2 for each v ∈ V, G has a cycle C. Then G−E(C) is possibly a 

disconnected graph, each of whose components C1, C2, ..., Ck is an even degree graph 

and hence Eulerian. By the induction hypothesis, each Ci is a disjoint union of cycles. 

These together with C provide a partition of E(G) into cycles. 

Theorem 2.3 If W is a walk from vertex u to vertex v, then W contains an odd 
number of u − v paths. 

Proof  Let W be a walk which we consider as a graph in itself, and not as a subgraph 
of some other graph. Let u and v be initial and final vertices of the walk W. Clearly, 
d(u|W) and d(v|W) are odd, and d(w|W) is even, for every w ∈V(W)− {u, v}. We 
count the number of distinct u−v walks in W. These walks are the subgraphs of W. 
When we take a u − v walk by successively selecting the edges e1, e2, ..., es , initial 
vertex of e1being u and terminal vertex of es being v, for each edge there are an odd 
number of choices. The total number of such edges is the product of these odd 
numbers and is therefore odd. Now from these walks, we find the u−v paths. If a u−v 
walk W1 is not a path, then it contains one or more cycles. The traversal of these 
cycles in the two possible alternative directions (clockwise and anticlockwise) 
produces in all an even number of walks, all with the same edge set as W1. Omitting 
these even number of walks which are not paths from the total odd collection of u−v 
walks, gives an odd number of u−v paths. ❑ 

 

 

 
Toida [244] proved the necessity part and McKee [157] the sufficiency part of the 

next characterisation. The second proof of this result can be found in Fleischner [79], 
[80]. 
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Theorem 2.4 A connected graph is Eulerian if and only if each of its edges lies on an 
odd number of cycles. 

Proof 
Necessity Let G be a connected Eulerian graph and let e = uv be any edge of G. Then 

G−e is a u−v walk W, and so G−e = W contains an odd number of u−v paths. Thus each of 

the odd number of u−v paths in W together with e gives a cycle in G containing e and these 

are the only such cycles. Therefore there are an odd number of cycles in G containing e. 

Sufficiency Let G be a connected graph so that each of its edges lies on an odd number of 

cycles. Let v be any vertex of G and Ev = {e1, ..., ed } be the set of edges of G incident on v, 

then |Ev| = d(v) = d. For each i, 1 ≤ i ≤ d, let ki be the number of cycles of G containing ei . 

By hypothesis, each ki is odd. Let c(v) be the number of cycles of G containing v. Then 

clearly c(v) = 1 2 d ∑ i=1 ki implying that 2c(v) = d ∑ i=1 ki . Since 2c(v) is even and each ki 

is odd, d is even. Hence G is Eulerian. 

 

 
Corollary 2.1 The number of edge−disjoint paths between any two vertices of an 
Euler graph is even. 

A consequence of Theorem 3.4 is the result of Bondy and Halberstam [37], which 
gives yet another characterisation of Eulerian graphs. 

 
Corollary 2.2 A graph is Eulerian if and only if it has an odd number of cycle decom- 
positions. 

 
Proof In one direction, the proof is trivial. If G has an odd number of cycle 
decompositions, then it has at least one, and hence G is Eulerian. Conversely, assume 
that G is Eulerian. Let e ∈ E(G) and let C1, ..., Cr be the cycles containing e. By 
Theorem 3.4, r is odd. We proceed by induction on m = |E(G)|, with G being Eulerian. 
If G is just a cycle, then the result is true. Now assume that G is not a cycle. This 
means that for each i, 1 ≤ i ≤ r, by the induction assumption, Gi = G−E(Ci) has an odd 
number, say si , of cycle decompositions. (If Gi is disconnected, apply the induction 
assumption to each of the nontrivial components of Gi). The union of each of these 
cycle decompositions of Gi and Ci yields a cycle decomposition of G. Hence the 
number of cycle decompositions of G containing Ci is si , 1 ≤ i ≤ r. Let s(G) denote 
the number of cycle decompositions of G. Then s(G) ≡ r ∑ i=1 si ≡ r(mod 2) (since si 
≡ 1(mod 2)) ≡ 1(mod 2). 

 

 

Unicursal Graphs 

An open walk that includes (or traces) all edges of a graph without retracing any edge 
is called a unicursal line or open Euler line. A connected graph that has a unicursal 
line is called a unicursal graph. Figure 3.6 shows a unicursal graph. 

 

 
 

 

Clearly by adding an edge between the initial and final vertices of a unicursal line, 
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we get an Euler line. 

 

The following characterisation of unicursal graphs can be easily derived from Theorem 

3.1. 

Theorem 2.5 A connected graph is unicursal if and only if it has exactly two vertices 
of odd degree. 

Proof Let G be a connected graph and let G be unicursal. Then G has a unicursal line,  
say from u to v, where u and v are vertices of G. Join u and v to a new vertex w of G to 
get a graph H. Then H has an Euler line and therefore each vertex of H is of even 
degree. Now, by deleting the vertex w, the degree of vertices u and v each get reduced 
by one, so that u and v are of odd degree. 

Conversely, let u and v be the only vertices of G with odd degree. Join u and v to a 
new vertex w to get the graph H. So every vertex of H  is of even degree and thus H is 
Eulerian. 

Therefore, G = H − w has a u − v unicursal line so that G is unicursal. ❑ 

The following result is the generalisation of Theorem 3.5. 

Theorem 2.6 In a connected graph G with exactly 2k odd vertices, there exists k edge 
disjoint subgraphs such that they together contain all edges of G and that each is a 
unicursal graph. 

Proof Let G be a connected graph with exactly 2k odd vertices. Let these odd vertices 
be named v1, v2, ..., vk ; w1, w2, ..., wk in any arbitrary order. Add k edges to G 
between the vertex pairs (v1, w1), (v2, w2), ..., (vk , wk) to form a new graph H, so 
that every vertex of H is of even degree. Therefore H contains an Euler line Z. Now, if 
we remove from Z the k edges we just added (no two of these edges are incident on 
the same vertex), then Z is divided into k walks, each of which is a unicursal line. The 
first removal gives a single unicursal line, the second removal divides that into two 
unicursal lines, and each successive removal divides a unicursal line into two 
unicursal lines, until there are k of them. Hence the result. 

 

Arbitrarily Traceable Graphs 

An Eulerian graph G is said to be arbitrarily traceable (or randomly Eulerian) from a 
vertex v if every walk with initial vertex v can be extended to an Euler line of G. A 
graph is said to be arbitrarily traceable if it is arbitrarily traceable from every vertex 
(Fig. 3.7). 

 

 

 
The following characterisation of arbitrarily traceable graphs is due to Ore [174]. Such 

graphs were also characterised by Chartrand and White [56] . 
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Theorem 2.7 An Eulerian graph G is arbitrarily traceable from a vertex v if and only 
if every cycle of G passes through v. 

 

Proof 

 

Necessity Let the Eulerian graph G be arbitrarily traceable from a vertex v. Assume there 

is a cycle C not passing through v. Let H = G−E(C). Then every vertex of H has an even 

degree and the component of H containing v is Eulerian. This component of H can be 

traversed as an Euler line Z, starting and ending with v and contains all those edges of G 

which are incident at v. Clearly, this v−v walk cannot be extended to contain the edges of 

C also, contradicting that G contains v. Thus every cycle in G contains v. Sufficiency Let 

every cycle of the Eulerian graph G pass through the vertex v of G. We show that G is 

arbitrarily traceable from v. Assume, on the contrary, that G is not arbitrarily traceable 

from v. Then there is a v − v closed walk W of G containing all the edges of G incident 

with v and yet not containing all the edges of G. Let one such edge be incident at a vertex 

u on W. So every vertex of H = G − E(W) is of even degree and v is an isolated vertex of 

H and u is not. The component of H containing u is therefore Eulerian subgraph of G not 

passing through v, contradicting the assumption. Hence the result follows. 

 

Corollary 2.3 Cycles are the only arbitrarily traceable graphs. 

 

 

Sub-Eulerian Graphs 

A graph G is said to be sub-Eulerian if it is a spanning subgraph of some Eulerian 

graph. The following characterisation of sub-Eulerian graphs is due to Boesch, 

Suffel and Tin- 
dell [28]. 

Theorem 2.8 A connected graph G is sub-Eulerian if and only if G is not spanned by 
a complete bipartite graph. 

Proof 

Necessity We prove that no spanning supergraph H of an odd complete bipartite graph 
G is Eulerian. Let V1 ∪V2 be the bipartition of the vertex set of G. Since degree of each 
vertex of G is odd, and G is complete bipartite, therefore |V1| and |V2| are odd. If H1 is 
the induced subgraph of H on V1, then at least one vertex, say v, of V1 has even degree 
in H1, since |V1| 

is odd. But then d(v|H) = d(v|H) + |V2|, which is odd. Therefore H is not Eulerian. 

Sufficiency    Refer Boesch et. al., [28]. ❑ 

 

Super-Eulerian graphs 

A non-Eulerian graph G is said to be super-Eulerian if it has a spanning Eulerian 

subgraph. 
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The following sufficient conditions for super-Eulerian graphs are due to Lesniak-
Foster and Williams [148]. 
Theorem 2.9  

If a graph G is such that n ≥ 6, δ ≥ 2 and d(u)+d(v) ≥ n−1, for every pair of non-

adjacent
 
vertices u and v, then G is super-Eulerian. 

 

The following result is due to Balakrishnan and Paulraja [12]. 

Theorem 2.10  If G is any connected graph and if each edge of G belongs to a triangle  
in G, then G has a spanning Eulerian subgraph. 

Proof Since G has a triangle, G has a closed walk.  Let W  be the longest closed walk in 

G. Then W  must be a spanning Eulerian subgraph of G. If not, there exists a vertex v ∈/ W 

and v is adjacent to a vertex u of W . By hypothesis, uv belongs to a triangle, say uvw. 

If none of the edges of this triangle is in W , then W ∪ {uv, vw, wu} yields a closed walk 

longer 

than W (Fig. 3.8). If uw ∈ W , then (W − uw) ∪ {uv, vw} would be a closed walk longer 

than 

W . This contradiction proves that W is a spanning closed walk in G. ❑ 

 

Hamiltonian Graphs 

A cycle passing through all the vertices of a graph is called a Hamiltonian cycle. A 
graph containing a Hamiltonian cycle is called a Hamiltonian graph. A path passing 
through all the vertices of a graph is called a Hamiltonian path and a graph containing 
a Hamiltonian path is said to be traceable. Examples of Hamiltonian graphs are given 
in Figure . 

 

 

 

 

 
 

 
 

 
If the last edge of a Hamiltonian cycle is dropped, we get a Hamiltonian path. 
However,  a non-Hamiltonian graph can have a Hamiltonian path, that is, Hamiltonian 
paths cannot always be used to form Hamiltonian cycles. For example, in Figure 3.10, 
G1 has no Hamil- tonian path, and so no Hamiltonian cycle; G2 has the Hamiltonian 
path v1v2v3v4, but has no Hamiltonian cycle, while G3 has the Hamiltonian cycle 
v1v2v3v4v1. 
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Hamiltonian graphs are named after Sir William Hamilton, an Irish Mathematician 
(1805−1865), who invented a puzzle, called the Icosian game, which he sold for 25 
guineas to a game manufacturer in Dublin. The puzzle involved a dodecahedron on 
which each of the 20 vertices was labelled by the name of some capital city in the 
world. The aim of the game was to construct, using the edges of the dodecahedron a 
closed walk of all the cities which traversed each city exactly once, beginning and 
ending at the same city. In other words, one had essentially to form a Hamiltonian 
cycle in the graph corresponding to the dodecahedron. Figure 3.11 shows such a cycle. 

 

 

 

 
Clearly, the n-cycle Cn with n distinct vertices (and n edges) is Hamiltonian. Now, 

given any Hamiltonian graph G, the supergraph G
J
 (obtained by adding in new edges 

between non-adjacent vertices of G) is also Hamiltonian. This is because any 
Hamiltonian cycle in G is also a Hamiltonian cycle of G

J
.  For instance, Kn is a 

supergraph of an n-cycle and so Kn is Hamiltonian. 
A multigraph or general graph is Hamiltonian if and only if its underlying graph is 

Hamiltonian, because if G is Hamiltonian, then any Hamiltonian cycle in G remains a 
Hamiltonian cycle in the underlying graph of G. Conversely, if the underlying graph 
of a graph G is Hamiltonian, then G is also Hamiltonian. 

Let G be a graph with n vertices. Clearly, G is a subgraph of the complete graph Kn. 
From G, we construct step by step supergraphs of G to get Kn, by adding an edge at 
each step between two vertices that are not already adjacent (Fig. 3.12). 

 

 

 
Now, let us start with a graph G which is not Hamiltonian. Since the final outcome 
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of the procedure is the Hamiltonian graph Kn, we change from a non-Hamiltonian 
graph to  a Hamiltonian graph at some stage of the procedure. For example, the non-
Hamiltonian. 

 

graph G1 above is followed by the Hamiltonian graph G2. Since supergraphs of 
Hamilto- nian graphs are Hamiltonian, once a Hamiltonian graph is reached in the 
procedure, all the subsequent supergraphs are Hamiltonian. 

Definition: A simple graph G is called maximal non-Hamiltonian if it is not 
Hamiltonian and the addition of an edge between any two non-adjacent vertices of it 
forms a Hamilto- nian graph. For example, G1 above is maximal non-Hamiltonian. 
Figure 3.13 shows a maximal non-Hamiltonian graph. 

 

 
It follows from the above procedure that any non-Hamiltonian graph with n-vertices 

is a subgraph of a maximal non-Hamiltonian graph with n vertices. 

 
The above procedure is used to prove the following sufficient conditions due to 

Dirac [68]. 

Theorem 2.11 (Dirac) If G is a graph with n vertices, where n ≥ 3 and d(v) ≥ n/2, for 

every vertex v of G, then G is Hamiltonian. Hamiltonian graph H in which d(v) ≥ 

n/2, for every vertex of H.  

Proof Assume that the result is not true. Then for some value n ≥ 3, there is a non- 

graph K (i.e., with the same vertex set) of H, d(v) ≥ n/2 for every vertex of K, since 

any 

non-Hamiltonian graph G with n vertices and d(v) ≥ n/2 for every v in G. Using this G, 

we proper supergraph of this form is obtained by adding more edges. Thus there is a 

maximal obtain a contradiction. 

Clearly, G ƒ= Kn, as Kn is Hamiltonian. Therefore there are non-adjacent vertices u 

and v in G.  Let G + uv be the supergraph of G by adding an edge between u and v.  

Since G   is maximal non-Hamiltonian, G + uv is Hamiltonian. Also, if C is a 

Hamiltonian cycle of G + uv, then C contains the edge uv, since otherwise C is a 

Hamiltonian cycle of G, which is not possible. Let this Hamiltonian cycle C be u = v1, 

v2, . . ., vn = v, u. 

Now, let S = {vi ∈ C : there is an edge from u to vi+1 in G} and T = {vj ∈ C : there is an 

edge from v to v j in G}. 

Then vn ∈/ T , since otherwise there is an edge from v to vn = v, that is a loop, which is 

impossible. 
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Also vn ∈/ S, (taking vn+1  as v1), since otherwise we again get a loop from u to v1 = u. 

Therefore, vn ∈ S ∪ T. 

 

 

 

Let |S|, |T | and |S ∪ T | be the number of elements in S, T and S ∪ T respectively. So 

Therefore,        |S|         =        d(u).         Similarly,         |T         |         =        d(v). 

|S ∪ T | < n.  Also, for every edge incident with u, there corresponds one vertex vi 

in S. 

Now, if vk  is a vertex belonging to both S and T , there is an edge e joining u to vk+1 and 

an edge  f  joining v to vk. This implies that C
J
 = v1, vk+1, vk+2, . . . , vn, vk, vk−1, . . ., v2, v1 

is that there is no vertex vk in S ∩ T , so that S ∩ T = Φ.                                                              

a Hamiltonian cycle in G, which is a contradiction as G is non-Hamiltonian.  This 

shows 

Thus |S ∪ T | = |S| + |T | − |S ∩ T | gives |S| + |T | = |S ∪ T |, so that d(u) + d(v) < n. This is 

a contradiction, because d(u) ≥ n/2 for all u in G, and so d(u) + d(v) ≥ n/2 + n/2 giving 

d(u) + d(v) ≥ n. Hence the theorem follows. ❑ 

The following result is due to Ore [176]. 

 

vertices in G such that d(u) + d(v) ≥ n. Let G + uv denote the super graph of G obtained 

by joining u and v by an edge. Then G is Hamiltonian if and only if G + uv is 

Hamiltonian.  

Theorem 2.12 (Ore)    Let G be a graph with n vertices and let u and v be non-

adjacent 

in G such that d(u) + d(v) ≥ n. Let G + uv be the super graph of G obtained by adding 

the Proof Let G be a graph with n vertices and suppose u and v are non-adjacent 

vertices edge uv. Let G be Hamiltonian. Then obviously G + uv is Hamiltonian. 

Conversely, let G + uv be Hamiltonian. We have to show that G is Hamiltonian. Then, 

as in Theorem 3.11, we get d(u) + d(v) < n, which contradicts the hypothesis that 

d(u) + d(v) ≥ n. Hence G is Hamiltonian.  

 
The following is the proof of Bondy [35] of Theorem 2.12, and this proof bears a 

close resemblance to the proof of Dirac’s theorem given by Newman [170], but is 
more direct. 

Proof (Bondy [35]) Consider the complete graph K on the vertex set of G in which the 
edges of G are coloured blue and the remaining edges of K are coloured red. Let C be 
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G 

a Hamiltonian cycle of K with as many blue edges as possible. We show that every 
edge of , in other words, that C is Hamiltonian cycle of G. 

Suppose to the contrary, C has a red edge uu
−
 (where u

−
 is the successor of u on C). 

Consider the set S of vertices joined to u by blue edges (that is, the set of neighbours of 

u in G). The successor u
−
 of u on C must be joined by a blue edge to some vertex v

−
 of 

S
−
, because if u

−
 is adjacent in C only to vertices V −(S

−
U {u

−
}), dG(u)+ dG(u

−
) = 

|NG(u)| +|NG(u
−
)| ≤ |S| +(|V | −|S

−
| − 1) = |V (G)| − 1, contradicting the hypothesis that 

dG(u)+ dG(u
−
) ≥ |V (G)|, u and u

−
 being non-adjacent in G. But now the cycle C obtained 

from C by exchanging the edges uu
−
 and vv

−
 has more blue edges than C, which is a 

contradiction. ❑ 

and v1 in G such that d(u1) + d(v1 ) ≥ n, join u1 and v1 by an edge to form the super 

graph G1. Now, if there are two non-adjacent vertices u2 and v2 in G1 such that d(u2) + 

d(v2) ≥ n,  

Definition:  Let G be a graph with n  vertices.   If there are two non-adjacent vertices 

u1 join u2 and v2 by an edge to form supergraph G2. Continue in this way, recursively 

joining. The final supergraph thus obtained is called the closure of G and is denoted 

by c(G).  pairs of non-adjacent vertices whose degree sum is at least n until no such 

pair remains. 

The example in Figure 3.15 illustrates the closure operation. 

 

 

 
 

vertices u and v with d(u) + d(v) ≥ n. Therefore the closure procedure can be carried 

out in We observe in this example that there are different choices of pairs of non-

adjacent several different ways and each different way gives the same result. 

In the graph shown in below Figure, n = 7 and d(u)+ d(v) < 7, for any pair u, v of 

adjacent vertices. Therefore, c(G) = G. 

 

The importance of c(G) is given in the following result due to Bondy and Chvatal 

[36].  

 

Theorem 2.13 A graph G is Hamiltonian if and only if its closure c(G) is 
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Hamiltonian. Proof Let c(G) be the closure of the graph G. Since c(G) is a supergraph 

of G, therefore, if G is Hamiltonian, then c(G) is also Hamiltonian. 

Conversely, let c(G) be Hamiltonian. Let G, G1, G2, . . ., Gk−1, Gk = c(G) be the sequence 

of graphs obtained by performing the closure procedure on G. Since c(G) = Gk is 

obtained from Gk−1 by setting Gk = Gk−1 + uv, where u, v is a pair of non adjacent 

vertices in Gk−1 with d(u)+ d(v) ≥ n, therefore it follows that Gk−1 is Hamiltonian. 

Similarly Gk−2, so Gk−3, 

. . ., G1 and thus G is Hamiltonian. ❑ 

 

Corollary 2.4 Let G be a graph with n vertices with n ≥ 3. If c(G) is complete, then G 

is Hamiltonian. 

 
There can be more than one Hamiltonian cycle in a given graph, but the interest lies in 
the edge-disjoint Hamiltonian cycles. The following result gives the number of edge-
disjoint Hamiltonian cycles in a complete graph with odd number of vertices. 

The next result involving degrees give the sufficient conditions for a graph to be Hamil- 
tonian. 

 

Theorem 2.14 (Nash-Williams) Every k-regular graph on 2k + 1 vertices is Hamilto- 

nian. 

Proof Let G be a k-regular graph on 2k + 1 vertices.  Add a new vertex  w and join it 

by an edge to each vertex of G. The resulting graph H on 2k + 2 vertices has δ = k + 1. 

Thus by Theorem 3.15 (A), H is Hamiltonian. Removing w from H, we get a 

Hamiltonian path, 

say v0v1 . . .v2k . then vi−1v2k ∈ E, since d(v0) = d(v2k) = k. Assume that G is not 

Hamiltonian, so that (a) if v0vi ∈ E, then vi−1v2k ∈/ E, (b) if v0vi ∈/ E, 

The following cases arise. 

Case (i) v0 is adjacent to v1, v2, . . ., vk, and v2k is adjacent to vk, vk+1, , v2k−1. Thenthere is 

an i with 1 ≤ i ≤ k such that vi is not adjacent to some v j  for 0 ≤ j ≤ k( j =ƒ    i).  But d(vi) = 

k. So vi is adjacent to v j for some j with k + 1 ≤ j ≤ 2k − 1. Then the cycle C given by 

vivi−1 . . .v0vi+1 . . .v j−1v2kv2k+1 v j is a Hamiltonian cycle of G (Fig 3.18). 

Case (ii)     There is an i  with 1 ≤ i ≤ 2k − 1  such that vi+1v0 ∈ E,  but viv0 ∈/ E.   Then 

by (b), vi−1v2k ∈ E. Thus G contains the 2k-cycle vi−1vi−2 . . .v0vi+1. Renaming the 

2k-cycle C as u1u2 . . .u2k and let u0 be the vertex of G not on C. Then u0 cannot be 
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adjacent to two consecutive vertices on C and hence u0  is adjacent to every second 

vertex on C, say u1, u3, . . . , u2k−1. Replacing u2i by u0, we obtain another maximum 

cycle C
J
 of G and hence u2i must be adjacent to u1, u3, . . ., u2k−1. But then u1 is adjacent 

to u0, u2, . . . , u2k, implying d(u1) ≥ k + 1. This is a contradiction and hence G is 

Hamiltonian. ❑ 

 
 
Pancyclic Graphs 

 

Definition: A graph G of order n(≥ 3) is pancyclic if G contains all cycles of lengths 

from 3 to n. G is called vertex-pancyclic if each vertex v of G belongs to a cycle of 

every length A, 3 ≤ A ≤ n. 

 

  Example Clearly, a vertex-pancyclic graph is pancyclic. However, the converse is 

not true. Figure  displays a pancyclic graph that is not vertex-pancyclic. 

 

The result of pancyclic graphs was initiated by Bondy [34], who showed that Ore’s 
sufficient condition for a graph G to be Hamiltonian (Theorem 6.2.5) actually implies much 

more. Note that if δ ≥ 
n
 , then m ≥ 

n2 
. The proof of the following result due to Thomassen 

can be found in Bollobas [29]. 

Exercises 

Prove that the wheel Wn is Hamiltonian for every n ≥ 2, and n-cube Qn is Hamiltonian 
for each n ≥ 2. 

If G is a k-regular graph with 2k − 1 vertices, then prove that G is Hamiltonian. 
Show that if a cubic graph G has a spanning closed walk, then G is Hamiltonian. 

If G = G(X , Y ) is a bipartite Hamiltonian graph, then show that |X | = |Y |. 

Prove that for each n ≥ 1, the complete tripartite graph Kn, 2n, 3n is Hamiltonian, but 

Kn, 2n, 3n+1 is not Hamiltonian. 

Prove that a graph G with n ≥ 3 vertices is randomly traceable if and only if it is 
randomly Hamiltonian. 

Find the closure of the graph given in Figure 3.2. Is it Hamiltonian? 

Does there exist an Eulerian graph with 

i. an even number of vertices and an odd number of edges, 

ii. and odd number of vertices and an even number of edges. 

Draw such a graph if it exists. 

Characterise graphs which are both Eulerian and Hamiltonian. 
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Characterise graphs which possess Hamiltonian paths but not Hamiltonian cycles. 

Characterise graphs which are unicursal but not Eulerian. 

Give an example of a graph which is neither pancyclic nor bipartite, but whose n- 
closure is complete. 
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3. 5 ALGORITHMS FOR CONSTRUCTING SPANNING TREES 

An algorithm for finding a spanning tree based on the proof of the theorem : A simple graph 

G has a spanning tree if and only if G is connected, would not be very efficient, it would 

involve the time- consuming process of finding cycles. Instead of constructing spanning trees 

by removing edges, spanning tree can be built up by successively adding edges. Two 

algorithms based on this principle for finding a spanning tree are Breath-first search (BFS) 

and Depth-first search (DFS). 

3.5.1 BFS algorithm 

In this algorithm a rooted tree will be constructed, and underlying undirected graph of this 

rooted 
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forms the spanning tree. The idea of BFS is to visit all vertices on a given level before going 

into the next 

level. 

Procedure : 

(i) Arbitrarily choose a vertex and designate it as the root. Then add all edges incident to this 

vertex, such that the addition of edges does not produce any cycle. 

(ii) The new vertices added at this stage become the vertices at level 1 in the spanning tree, 

arbitrarily order them. 

(iii) Next, for each vertex at level 1, visited in order, add each edge incident to this vertex to 

the 

tree as long as it does not produce any cycle. 

(iv) Arbitrarily order the children of each vertex at level 1. This produces the vertices at level 

2 in the tree. 

(v) Continue the same procedure until all the vertices in the tree have been added. 

(vi) The procedure ends, since there are only a finite number of edges in the graph. 

(vii) A spanning tree is produced since we have produced a tree without cycle containing 

every 

vertex of the graph. 

3.5.2 DFS algorithm 

An alternative to Breath-first search is Depth-first search which proceeds to successive levels 

in 

a tree at the earliest possible opportunity. 

DFS is also called back tracking. 

Procedure : 

(i) Arbitrarily choose a vertex from the vertices of the graph and designate it as the root. 

(ii) Form a path starting at this vertex by successively adding edges as long as possible where 

each new edge is incident with the last vertex in the path without producing any cycle. 

(iii) If the path goes through all vertices of the graph, the tree consisting of this path is a 

spanning tree. 

Otherwise, move back to the next to last vertex in the path, and, if possible, form a new 

path starting at this vertex passing through vertices that were not already visited. 

(iv) If this cannot be done, move back another vertex in the path, that is two vertices back in 

the 

path, and repeat. 

(v) Repeat this procedure, beginning at the last vertex visited, moving back up the path one 

vertex at a time, forming new paths that are as long as possible until no more edges can be 

added. 

(vi) This process ends since the graph has a finite number of edges and is connected. A 

spanning 
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tree is produced.



SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY   GRAPH THEORY           SMT1505 

 
 

20 
 

 

 

 



 

SCHOOL OF SCIENCE AND HUMANITIES 

DEPARTMENT OF MATHEMATICS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT – IV –OPTIMIZATION AND MATCHING – SMT 1505 



SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY   GRAPH THEORY           SMT1505 

 

1 
 

 

UNIT IV 

OPTIMIZATION AND MATCHING 

Cut vertex cut set and bridge 
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