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UNIT I
INTRODUCTION TO GRAPH THEORY

1 The Konigsberg Bridge Problem

The city of Kinigsberg was located on the Pregel river in Prussia. The river di-
vided the city into four separate landmasses, including the island of Kneiphopf.
These four regions were linked by seven bridges as shown in the diagram. Res-
idents of the city wondered if it were possible to leave home, cross each of the
seven bridges exactly once, and return home. The Swiss mathematician Leon-
hard Euler (1707-1783) thought about this problem and the method he used to
solve it is considered by many to be the birth of graph theory.

Exercise 1.1. See if you can find a round trip through the city crossing each
bridge exactly once, or try to explain why such a trip is not possible.

The key to Euler’s solution was in a very simple abstraction of the puzzle.
Let us redraw our diagram of the city of Kinigsberg by representing each of the
land masses as a vertex and representing each bridge as an edge connecting the
vertices corresponding to the land masses. We now have a graph that encodes
the necessary information. The problem reduces to finding a "closed walk™ in
the graph which traverses each edge exactly once, this is called an Eulerian
circnit. Does such a circuit exist?
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2 Fundamental Definitions

We will make the ideas of graphs and circuits from the Konigsberg Bridge
problem more precise by providing rigorous mathematical definitions.

A graph (7 is a triple consisting of a vertex set V((7), an edge set E(().
and a relation that associates with each edge, two vertices called its endpoints
(not necessarily distinct).

Graphically, we represent a graph by drawing a point for each vertex and
representing each edge by a curve joining its endpoints.

For our purposes all graphs will be finite graphs. ie. graphs for which
V((7) and E(() are finite sets, unless specifically stated otherwise.

Note that in our definition, we do not exclude the possibility that the two
endpoints of an edge are the same vertex. This is called a loop, for obvious
reasons. Also, we may have multiple edges. which is when more than one edge
shares the same set of endpoints, i.e. the edges of the graph are not uniquely
determined by their endpoints.

A simple graph is a graph having no loops or multiple edges. In this case,
each edge e in E({7) can be specified by its endpoints u, v in V{{7). Sometimes
we write ¢ = uv.

When two vertices w, v in V({7) are endpoints of an edge, we say u and v
are adjacent.

A path is a simple graph whose vertices can be ordered so that two vertices
are adjacent if and only if they are consecutive in the ordering. A path which
begins at vertex u and ends at vertex v is called a u, v-path.

A cycle is a simple graph whose vertices can be cyclically ordered so that two
vertices are adjacent if and only if they are consecutive in the cyclic ordering.

We usually think of paths and cycles as subgraphs within some larger graph.

1.1 WHAT IS A GRAPH ? DEFINITION

A graph G consists of a set of objects V= {v, v, v, ......} called vertices (also called points or
nodes) and other set E = {e,. e,. e. .......} whose elements are called edges (also called lines or arcs).

The set V(G) 1s called the vertex set of G and E(G) 1s the edge set.
Usually the graph is denoted as G = (V, E)

Let G be a graph and {u. v} an edge of G. Since {u, v} is 2-clement set, we may write {v. 1}
instead of {u. v}. It is often more convenient to represent this edge by uv or vu.

If e=uv is an edge of a graph G, then we say that u and v are adjacent in G and that e joins « and
v. (We may also say that each that of u and v 1s adjacent to or with the other).

For example :
A graph G is defined by the sets
V(G) = {u, v, w, x, y, 2} and E(G) = {uv, uw, wx, xv, xz}.
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Now we have the following graph by considering these sets.

z y u

X W v

Every graph has a diagram associated with it. The vertex # and an edge e are incident with each
other as are v and e. If two distinct edges say e and f are incident with a common vertex. then they are
adjacent edges.

A graph with p-vertices and g-edges is called a (p, ¢) graph.
The (1. 0) graph is called trivial graph.

In the following figure the vertices a and b are adjacent but ¢ and ¢ are not. The edges x and y are
adjacent but x and = are not.

Although the edges x and = intersect in the diagram, their intersection is not a vertex of the graph.
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Examples :
(1) LetV={1.23,4) and E= {{1. 2}, {1. 3}, {3, 2}. {4.4}}.
Then G(V. E) is a graph.
(2) LetV={1.2,3, 4} and E= {{1, 5}, {2. 3}}.
Then G(V, E) is not a graph, as 5 isnotin V.

1.2.1. Directed graph

A directed graph or digraph G consists of a set V of vertices and a set E of edges such thate € E
15 associated with an ordered pair of vertices.

In other words, if each edge of the graph G has a direction then the graph 1s called directed
graph.

In the diagram of directed graph, each edge e = (1. v) 1s represented by an arrow or directed curve
from initial point u of e to the terminal point v.

Figure 1(a) 1s an example of a directed graph.

C

W
o

=] Lo L

Suppose = (1, v) 15 a directed edge i a digraph, then (7) u 1s called the mitial vertex of e and v
15 the terminal vertex of

(i1) e 1s sa1d to be incident from  and to be mcident to v.

(ii1) u 15 adjacent to v, and v 1s adjacent from u.
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Find the in-degree and out-degree of each vertex af the following directed graphs
Example

Vg
Ve Vg
v, < Ve
(#) N
(#)
Solution. (7) n-degree v; = 2, out-degree v; = 1
m-degree v, =2 out-degree v, =
m-degree v; = 2. out-degree v; = 1
m-degree v, = 2. out-degree vy = 2
m-degree v; = 0. out-degree v; = 3
(iif) m-degreea=206 out-degree a =1
imn-degree b =1, out-degree b=23
m-degree ¢ =2 out-degree ¢ = 5
m-degree d = 2, out-degree d = 2.

1.3 BASIC TERMINOLOGIES

1.3.1 Loop : An edge of a graph that joins a node to itself is called loop or self loop.
ie., a loop is an edge (v,. 1}.) where v, =1 7

1.3.2. Multigraph

In a multigraph no loops are allowed but more than one edge can join two vertices. these edges
are called multiple edges or parallel edges and a graph is called multigraph.

Two edges (v;. v) and (v, v,) are parallel edges if v; = v, and v, v,

Vi Vo vy Va
VEI v3
Dirgcted multigragh Un-directag multigraph
Fig. 2(a) Fig. 2(b)

In Figure 1.2(a). there are two parallel edges associated with v, and v,.
In Figure 1.2(b), there are two parallel edges joining nodes v, and v, and v, and ;.
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1.3.3. Pseudo graph
A graph in which loops and multiple edges are allowed. is called a pseudo graph.

u z u z

Vv W

Un-directed Psauda graph Directag Pseuds gragh

Fig. 3(a) Fig. 3(b)

1.3.4. Simple graph
A graph which has neither loops nor multiple edges. i.e., where each edge connects two distinct
vertices and no two edges connect the same pair of vertices is called a simple graph.

Figure 1.1(a) and (b) represents simple undirected and directed graph because the graphs do not
contain loops and the edges are all distinct.

1.3.5. Finite and Infinite graphs

A graph with finite number of vertices as well as a finite number of edges is called a finite graph.
Otherwise. it is an infinite graph.

1.4 DEGREE OF A VERTEX

The number of edges incident on a vertex v; with self-loops counted twice (is called the degree
of a vertex v; and is denoted by degq(v;) or deg v; or d(v)).

The degrees of vertices in the graph G and H are shown in Figure 4(«a) and 4().

v, vy
Vay O
OVe
vy Vg
Fig. 4(a) Fig. 4(b)

In G as shown in Figure 4(a).

deg (vy) =2 = degg, (vy) = degg (vy). degg (v3) = 3 and degg, (v5) = 1 and
In H as shown in Figure 4(5).

degy (vy) = 5. degy (vy) = 3. degy (v3) = 5. degy (vy) = 4 and degy (v5) = 1.
The degree of a vertex is some times also referred to as its valency.
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1.5 ISOLATED AND PENDENT VERTICES

1.5.1. Isolated vertex
A vertex having no incident edge is called an isolated vertex.

In other words. isolated vertices are those with zero degree.

1.5.2. Pendent or end vertex

A vertex of degree one, is called a pendent vertex or an end vertex.

In the above Figure. vs is a pendent vertex.
1.5.3. In degree and out degree
In a graph G. the out degree of a vertex v, of G. denoted by out degg, (v, or degg (v,). is the

number of edges beginning at v; and the in degree of v, denoted by in degg (v;) or degal (v, 1is the
number of edges ending at v,.

The sum of the in degree and out degree of a vertex is called the total degree of the vertex. A
vertex with zero in degree is called a source and a vertex with zero out degree is called a sink. Since
each edge has an initial vertex and terminal vertex.

1.6 THE HANDSHAKING THEOREM 1.1
If G = (. E) be an undirected graph with e edges.

Then Y, degg (v)=2e
veV

i.e., the sum of degrees of the vertices is an undirected graph 1s even.

Corollary : In a non directed graph. the total number of odd degree vertices is even.

Proof : Let G=(V, E) a non directed graph.

Let U denote the set of even degree vertices in G and W denote the set of odd degree

vertices.
Then Z degg, (v;) = Z degg () + Z degg (v;)

eV el eW

= 2e— Y degg () = ), deg (v)

el veW

Now 2 degg (v;) is also even

Vi eW

Therefore. from (1) Z degg (v;) is even

vieW

The no. of odd vertices in G 1s even.

(1)
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Corollary : In a non directed graph, the total number of odd degree vertices 1s even.
Proof : Let G= (V. E) a non directed graph.
Let U denote the set of even degree vertices m G and W denote the set of odd degree

vertices.
Then E, degg (v;) = Z degg (v;) + E, degg (v;)
weWV wel ye W
= 2e- Y degg () = 2, degg (%) )

wel veW

Now Z dege, (v;) 1s also even

ve W

Therefore, from (1) Z deg. (v;) is even
ve W

The no. of odd vertices in G 1s even.

Theorem 1.2. If V = {v vy, .. v,} 1s the vertex set of a non directed graph G,

then 2, deg(v,)=2|E|

i=1

If G is a directed graph. then Y deg’ (v;)= Y deg” (v;)= |E|
i=1 i=1
Proof : Since when the degrees are summed.
Each edge contributes a count of one to the degree of each of the two vertices on which the
edge 1s incident.
Carollary (1) : In any non directed graph there 1s an even number of vertices of odd degree.
Proof : Let W be the set of vertices of odd degree and let U be the set of vertices of even degree.

Then », deg(v)= ) deg(v) + 3 deg(v)=2[E
ve V(G) ve W veU

Certainly, E deg (v) is even,

vell

Hence z deg (v) 1s even,
ve W

Implying that | W | is even.
Corollary (2) : If k= 8&(G) is the minimum degree of all the vertices of a non directed graph G. then
k| V|< Y deg(M=2|E|
ve V(&)
In particular, if G 1s a k-regular graph, then

k|V|= 2 deg()=2|E|
ve Vi)
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Ex ampl o1 E:'ere.i?n{ ne the number of edges in a graph with 0 vertices, 2 of degree 4 and 4 of

degree 2. Draw rwo such graphs.
Solution. Suppose the graph with 6 vertices has & number of edges. Therefore by Handshaking
lemma

6

2 deg (v,)=2e

i=1
= d(v)) +d(vy) + d(vy) +d(vy) + d(vs) + dvg) = 2e
Now, given 2 vertices are of degree 4 and 4 vertices are of degree 2.
Hence the above equation,
A+H+(2+2+2+2)=2e
= 16 =2e = a=§
Hence the number of edges in a graph with 6 vertices with given condition 1s 8.
Two such graphs are shown below in Figure (11).

] 2

How many vertices are needed fo construct a graph with 6 edges in which each

Example 2

vertex is of degree 2.

Solution. Suppose these are P vertices in the graph with 6 degree. Also given the degree of each
vertex 15 2.
By handshaking lemma,
P
Y deg(v,)=2g=2x6
i=1

= dw)+dyy)+ ... +dv)=12

= 242+ . +2=12
= 2P=12 = P =6 vertices are needed.
Example 3

It is possible to draw a simple graph with 4 vertices and 7 edges ? Justify.

Solution. In a simple graph with P-vertices. the maximum number of edges will be M

%]

4x3
Hence a simple graph with 4 vertices will have at most > T 6 edges.

Therefore, the simple graph with 4 vertices cannot have 7 edges.

Hence such a graph does not exist.
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1.7 TYPES OF GRAPHS

Some important types of graph are introduced here.
1.7.1. Null graph

A graph which contains only isolated node, 1s called a null graph.
i.e., the set of edges in a null graph is empty.
Null graph 1s denoted on n vertices by N,

N, 1s shown 1n Figure (13). Note that each vertex of a null graph 1s 1solated.

1.7.2. Complete graph

A simple graph G 1s said to be complete if every vertex in G 1s connected with every other vertex.

i.e., 1f G contamns exactly one edge between each pair of distinct vertices.

-1
A comple graph 1s usually denoted by K,. It should be noted that K, has exactly n(n 1)

edges.
The graphs K, forn=1.2.3.4. 5. 6 are show m Figure 14.

— A X g

1.7.3. Regular graph

A graph n which all vertices are of equal degree, 1s called a regular graph.
If the degree of each vertex 15 r, then the graph 15 called a regular graph of degree .
Note that every null graph is regular of degree zero, and that the complete graph K, 15 a regular of

: . : 1
degree n — 1. Also, note that, 1f G has n vertices and 1s regular of degree 7. then G has S edges.

10
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1.8 SUBGRAPH

A subgraph of G 1s a graph having all of its vertices and edges in G. If G, 15 a subgraph of G, then
G 15 a super graph of G,.

. ®
G: G,

Fig. 19. G, is a subgraph of G.
In other words. If G and H are two graphs with vertex sets V(H). V(G) and edge sets E(H) and
E(G) respectively such that V(H) — V(G) and E(H) € E(G) then we call H as a subgraph of G or G as
a supergraph of H.

1.8.1. Spanning subgraph

A spanning subgraph 1s a subgraph containing all the vertices of G.

In other words, if V(H) — V(G) and E(H) < E(G) then H is a proper subgraph of G and if V(H)
= V(G) then we say that H 1s a spanming subgraph of G.

A spanning subgraph need not contain all the edges in G.

V- v, W,
O
Vs ' W, Vg v, Vg v, V3
G,: F,: H;: Jp
Vy vy Vy Vy Vy vy vy Vs

Fig. 20.

The graphs F; and H, of the above Fig. 20 are spanning subgraphs of G;. but J; is not a spanning
subgraph of G,.

Since V; € V(G)— V(J;). If E 1s a set of edges of a graph G. then G — E 1s a spanning subgraph
of G obtained by deleting the edges i E from E(G).

In fact, H 1s a spanning subgraph of G if and only if H=G - E, where E=E(G) - E(H). If e 15 an
edge of a graph G, then we write G — ¢ instead of G — {g}. For the graphs G,. F; and H; of the Fig. 20,
we have F| = Gy —wvyv; and H) = Gy — {v;wy. vav3}.

1.8.2. Removal of a vertex and an edge

The removal of a vertex v; from a graph G result in that subgraph G — v; of G contammg of all
vertices in G except v; and all edges not incident with v,. Thus G — v, is the maximal subgraph of G not
containing v;. On the otherhand, the removal of an edge x; from G yields the spanning subgraph G — x;
containing all edges of G except x;.

Thus G — x; 1s the maximal subgraph of G not containing x;.

My ¥y Yy ¥y
G Va G- Va
¥ Vs
J Va
Y Vo Ve
Vi
G — v, vo) o]
W
a8 ‘c"_-d
Ve

11
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G: G—wvy
Wy Wy Wy Wy
'I.I'1 I"'I!?
O Vs
O

G — {Vavy, VoM, VNl

1.8.3. Induced subgraph

For any set S of vertices of G, the vertex mduced subgraph or simply an induced subgraph <5= 13
the maximal subgraph of G with vertex set S. Thus two vertices of S are adjacent m <5= 1f and only if
they are adjacent in G-

In other words, 1f G 1s a graph with vertex set V and U 1s a subset of V then the subgraph G(U)
of G whose vertex set 15 U and whose edge set comprises exactly the edges of E which join vertices in
U 1s termed as mduced subgraph of G.

Here H 1s not an induced subgraph since vyv; € E(G), but vyv; & E(H).

On the otherhand the graph J 15 an induced subgraph of G. Thus every induced subgraph of a
graph G 1s obtained by deleting a subset of vertices from G.

Note : Let| V|=mand | E | = n. The total non-empty subsets of V 1s 2" — | and total subsets of
Eis2"

Thus, number of subgraphs 1s equal to (2" — 1) = 2",

The number of spanning subgraphs 1s equal to 2.

12
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1.9 Graph Isomorphism

Let G; = (v. E}) and G, = (v,. E;) be two graphs. A fllfL.'lCtiDﬂ Jivy = v is called a graphs
1somorphism 1f

(i) f1s one-to-one and onto.

(i) foralla. b€ v, {a. b} € E, if and only 1f {f{a). (D)} € E, when such a function exists. G, and
G, are called 1somorphic graphs and 1s written as G; = G,.

In other words, two graphs G, and G, are said to be 1somorphic to each other if there 1s a one-
to-one correspondence between their vertices and between edges such that mcidence relationship 1s
preserve. Wrtten as Gy = G; or Gy =G,

The necessary conditions for two graphs to be 1somorphic are

1. Both must have the same number of vertices

2. Both must have the same number of edges

3. Both must have equal number of vertices with the same degree.
4

. They must have the same degree sequence and same cycle vector (). ....... c,). where ¢; 1s
the number of cycles of length 7.

<.

() (#)

Example Write down all possible non- Immmphrc .'m.-f:lg? aphs of fhf_-? fﬂffﬂu Ii‘}g graphs G.

How many of they are spanning subg aphs

Solution. Its possible all (non-isomorphic) subgraphs are

z e (i) &—® () I g
IS °

L ®
L L
() (vi) @ (vif) I I (viii)
®
(ix) x) ® I> I> ile o @

@
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(i) @ () ——0 () ¢ 0 (i) g—eo (i) @

of these graphs (1) to (x) are spanning subgraphs of G.
All the graphs except (vi) are proper subgraphs of G.

Theorem 1.3.  For any graph G with six points, G or G contains a friangle.
Proof. Letv be a point of a graph G wath six points. Since v 1s adjacent ether in G or in G to
the other five points of G.

We can assume without loss of generality that there are three pomts u;, 1y, u; adjacenttovin G.

If any two of these ponts are adjacent, then they are two pomts of a tnangle whose third point 15 v.
If no two of them are adjacent n G, then . 4, and u; are the poinfs of a tnangle m G.

1.10 Walk, Path, Circuit

A walk 15 defined as a finite alternative sequence of vertices and edges, of the form
VEjr Vie1 9= 1 Vie 2o oo GV
which begins and ends with vertices, such that

(1) each edge in the sequence is incident on the vertices preceding and following it in the
sequelnce.

(1) mo edge appears more than once in the sequence, such a sequence is called a walk or
a trial i G.
For example, 1n the graph shown in Figure 34, the sequences

Vo8gVgesVyesvy and viegisepveepvsenvs are walks,

14
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Note that in the first of these_each vertex and each edge appears only once whereas in the second
each edge appears only once but the vertex v; appears twice.

These walks may be denoted simply as v,vzv,v; and vov,vevsvs respectively.

Fig. 34.

The vertex with which a walk begins is called the initial vertex and the vertex with which a walk
ends 15 called the final vertex of the walk The mitial vertex and the final vertex are together called
terminal vertices. Non-terminal vertices of a walk are called its internal vertices.

A walk having v as the mitial vertex and v as the final vertex 1s called a walk from u to v or briefly
a n —vwalk. A walk that begins and ends at the same vertex 1s called a closed walk. In other words, a
closed walk 15 a walk in which the terminal vertices are coincident.

A walk that 15 not closed 1s called an open walk.
In other words, an open walk 15 a walk that begins and ends at two different vertices.
For example. in the graph shown in Figure 34.
VviegV.egvhe V) 1s a closed walk and vse;vse veesv, 1s an open walk.
In a walk, a vertex can appear more than once. An open walk 1n which no vertex appears more
than once 15 called a simple path or a path.
For example. in the graph shown n Figure 34.
Vg€sV4€3V4e;V, 15 a path whereas vse;vseeve 1s an open walk but not a path.
A closed walk with atleast one edge m which no vertex except the ternunal vertices appears more
than once 1s called a circuit or a cycle.
For example, m the graph shown in Figure 34,
Vi)Vy€gVqegV and VyeyVeesVeqviesV, are circults.
But v,e,v,eqv,e,vee5v,23v385v9€) V) 15 a closed walk but not a circuit.
Note : (i) In walks, path and circuit. no edge can appears more than once.
(i) A vertex can appear more than once 1n a walk but not 1n a path.
(117) A path 15 an open walk. but an open walk need not be a path.

(v) A circuat 15 a closed walk. but a closed walk need not be a circuit.

15
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A ONe I

Cpen walk Cpen walk Closed walk Closed walk
which |s g path which |s not & path which |s g clroult which Is nol & clreult.

The number of edges 1n a walk 1s called its length. Since paths and circuits are walks, 1t follows
that the length of a path 1s the number of edges 1 the path and the length of a circuit 1s the number of
edges 1 the circuit.

A circunt or cycle of length k&, (with & edges) 1s called a k-circust or a k-cycle. A k-circunt 1s called
odd or even according as & 15 odd or even. A 3-cycle 1s called a tnangle.

For example, in the graph shown in Figure 34,
The length of the open walk vgegvseqs 1s 2
The length of the closed walk v eqviegvoev) 1s 3
The length of the circuit vyegveesvyesvie v, 1s 4
The length of the path veesvie;vie e vy 1s 4
The circuit vje;v,egveygyvy 15 a triangle.
Note : (i) A self-loop 1s a l-cycle.
(ii) A pair of parallel edges form a cycle of length 2.
(iif) The edges in a 2-cycle are parallel edges.
Problem 1.76. Write down all possible
(1) paths from v; to vy (i) Cireuits of G and (iii) trails of length three.
in G from vy fo v; of the graph shown in Figure (35).

16
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Solution.
(D Py:wepve. P =1
P, - vieyviemvsegvgegvre vg. I(Py) =5
Py © vieyvieyvie vieqvsegveegvoen vs. 1(P3) =7
These are the only possible paths from v, to vy 1n G.
(i) Cy: viepvye;vsegveegvqe vgerpvy, I(Cy) =6
G, - miepevieqvegvsegveegvievgenvy. 1(Cy) = 8
C; - veyvievaegvseqvs, I(C3) =4
Cyivyeqvy. I(Cy) =1
Cs mvgesvy. I(Cs) =1
Co - V7. 1(Co) = 1
These are the only possible circuts of G
W, : viezvievaevs, (W) =3
W, vyeqvie vyeevs, [(W,) =3
Wi wyevgesvyesvs, [((W3) =3.
These are the only possible trails of length three from v; to vs.

Problem 1.77. In the graph below, determine whether the following are paths, simple paths,
trails, cireuits or simple circuits,

(1) voeyviegvseqvierv; (1) verviegvse gviesviedys

(i) v, (V) vsvvvvvavs.

Solution. (7) The sequence has a repeated vertex v; but does not have a repeated edge so itis a
trail. It 1s not cycle or circuit.

i1) The sequence has a repeated vertex v, and repeated edge e,. Hence 1t 15 a path. It 1s not
eq cp ) cp g¢ &g P
cycle of circuit.

(iif) Tt has no repeated edge. no repeated vertex, starts and ends at same vertex. Hence it is a
simple circuit.

(") Itis a circuit since it has no repeated edge, starts and ends at same vertex. It is not a simple
circuit since vertex v, is repeated.

Theorem 1.14. In a graph (divected or undirected) with n vertices, if there is a path from
vertex u to vertex v then the path cannot be of length greater than (n — 1).
Proof. Let m:u. vy, vy, v5. ... v}, vbe the sequence of vertices in a path « and v.

If there are m edges in the path then there are (m + 1) vertices m the sequence.

17
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If m < n, then the theorem 1s proved by default. Otherwise, if m 2 » then there exists a vertex v; n
the path such that it appears more than once in the sequence

(700 O— — /- Vi, V).
Deleting the sequence of vertices that leads back to the node v;, all the cycles mn the path can be
removed.
The process when completed yields a path with all distinct nodes. Since there are » nodes mn the
graph, there cannot be more than » distinct nodes and hence n — 1 edges.
Problem 1.78. For the graph shown in Figure, indicate the nature of the following sequences

of vertices

(a) vivsvsv, (B) vyvvvsvvs f€) vivvsvevs
(d) vivyvsvvy (€) V§vsvvivivivevs
Va vy vy
®
Vg Vy v,

Solution. (a) Not a walk
() Open walk but not a path
(¢) Open walk which 1s a path
(d) Closed walk which 15 a circut
() Closed walk which 1s not a circuit.

Theorem 1.15. Let G = (¥, E) be an undirected graph, with a, b € ¥, a 2b. If there exists a trail
(in G) from a to b, then there is a path (in G) from a to b.

Proof. Since there is an trail from a to b.
We select one of shortest length, say{a, x\}. {x;. 13}, ..., 1%, b}
If this trail 1s not a path. we have the situation {a. x}. {x. %50, o {6 ). 40 X4 )
(e 1 X 2de oo (1 X s (e Xy 13 oo 3,0 B3,
where k< m and x; =x,. possibly with k=0 and a(=xp) =x, orm=n+land x;= b (=x,,. )
But then we have a contradiction, becanse
{axi}. {x. x) (x4 Xy 10 oo {x,, b} 1s a shortest trail from a to b.

18
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112 CONNECTED AND DISCONNECTED GRAPHS

A graph G 1s said to be a connected if every pair of vertices in G are connected. Otherwise, G 1s
called a disconnected graph. Two vertices in G are said to be connected if there 1s at least one path from
one vertex to the other.

In other words, a graph G 15 said to be connected if there 1s at least one path between every two
vertices i1 G and disconnected 1if G has at least one pair of vertices between which there 1s no path.

A graph 1s connected if we can reach any vertex from any other vertex by travelling along the
edges and disconnected otherwise.

For example. the graphs m Figure 30(a. b, ¢, d, €) are connected whereas the graphs in Figure
31(a, b, ¢) are disconnected.

A
c
B &0
(a) (6)
[
F o
& &
&,
B C
(€) ()

A complete graph 1s always connected, also, a null graph of more than one vertex 1s disconnected
(see Fig. 32). All paths and circuits m a graph G are connected subgraphs of G.

AG

Ee L _1¥

Fig. 32.

Every graph G consists of one or more connected graphs, each such connected graph 1s a subgraph

of G and 1s called a component of G. A connected graph has only one component and a disconnected
graph has two or more components.
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UNIT I
EULERIAN AND HAMILTONIAN GRAPH

There are many games and puzzles which can be analysed by graph theoretic
concepts. In fact, the two early discoveries which led to the existence of graphs arose
from puz- zles, namely, the Konigsberg Bridge Problem and Hamiltonian Game, and
these puzzles also resulted in the special types of graphs, now called Eulerian graphs
and Hamiltonian graphs. Due to the rich structure of these graphs, they find wide use
both in research and application.

2.1 Euler Graphs

A closed walk in a graph G containing all the edges of G is called an Euler line in G.
A graph containing an Euler line is called an Euler graph.

We know that a walk is always connected. Since the Euler line (which is a walk)
contains all the edges of the graph, an Euler graph is connected except for any isolated
vertices the graph may contain. As isolated vertices do not contribute anything to the
understanding of an Euler graph, it is assumed now onwards that Euler graphs do not
have any isolated vertices and are thus connected.

Example Consider the graph shown in Figure 3.1. Clearly, v1 €1 V2 €2 V3 €3 V4 €4 V5 €5
V3 Vg €7 V1 in (@) is an Euler line, whereas the graph shown in (b) is non-Eulerian.

5
€

(’6 Vi e 5
(a)

Eulerian Graph . »

(b)

Non-Eulerian Graph

The following theorem due to Euler [74] characterises Eulerian graphs. Euler
proved the necessity part and the sufficiency part was proved by Hierholzer [115].

Theorem 2.1 (Euler) A connected graph G is an Euler graph if and only if all
vertices of G are of even degree.

Proof
Necessity Let G(V, E) be an Euler graph. Thus G contains an Euler line Z, which is a
closed walk. Let this walk start and end at the vertex u € V. Since each visit of Z to an

2
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intermediate vertex v of Z contributes two to the degree of v and since Z traverses
each edge exactly once, d(v) is even for every such vertex. Each intermediate visit to u
contributes two to the degree of u, and also the initial and final edges of Z contribute
one each to the degree of u. So the degree d(u) of u is also even.

Second proof for sufficiency  Assume that all vertices of G are of even degree. We
con- struct a walk starting at an arbitrary vertex v and going through the edges of G
such that no edge of G is traced more than once. The tracing is continued as far as
possible. Since every vertex is of even degree, we exit from the vertex we enter and
the tracing clearly cannot stop at any vertex but v. As v is also of even degree, we
reach v when the tracing comes to an end. If this closed walk Z we just traced includes
all the edges of G, then G is an Euler graph. If not, we remove from G all the edges in
Z and obtain a subgraph Z’ of G formed by the remaining edges. Since both G and Z
have all their vertices of even degree, the degrees of the vertices of Z’ are also even.
Also, Z’ touches Z at least at one vertex say u, because G is connected. Starting from u,
we again construct a new walk in Z’. As all the vertices of Z’ are of even degree,
therefore this walk in Z’ terminates at vertex u. This walk in Z’combined with Z forms a
new walk, which starts and ends at the vertex v and has more edges than Z. This process
is repeated till we obtain a closed walk that traces all the edges of G. Hence G is an
Euler graph (Fig. 3.2) d

Konigsberg Bridge Problem

Two islands A and B formed by the Pregal river (hnow Pregolya) in Konigsberg (then
the capital of east Prussia, but now renamed Kaliningrad and in west Soviet Russia)
were connected to each other and to the banks C and D with seven bridges. The
problem is to start at any of the four land areas, A, B, C, or D, walk over each of the
seven bridges exactly once and return to the starting point.

Euler modeled the problem representing the four land areas by four vertices, and the
seven bridges by seven edges joining these vertices. This is illustrated in Figure.

We see from the graph G of the Konigsberg bridges that not all its vertices are of
even degree. Thus G is not an Euler graph, and implies that there is no closed walk in
G con- taining all the edges of G. Hence it is not possible to walk over each of the

3
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seven bridges exactly once and return to the starting point.

Note Two additional bridges have been built since Euler’s day. The first has been built
between land areas C and D and the second between the land areas A and B. Now in
the graph of Konigsberg bridge problem with nine bridges, every vertex is of even
degree and the graph is thus Eulerian. Hence it is now possible to walk over each of
the nine bridges exactly once and return to the starting point .

Konigsberg Bridges Underlying Graph

The following characterisation of Eulerian graphs is due to Veblen [254].

Theorem 2.2 A connected graph G is Eulerian if and only if its edge set can be

decom- posed into cycles.

Proof Let G(V, E) be a connected graph and let G be decomposed into cycles. If k of
these cycles are incident at a particular vertex v, then d(v) = 2k. Therefore the degree of
every vertex of G is even and hence G is Eulerian. Conversely, let G be Eulerian. We
show G can be decomposed into cycles. To prove this, we use induction on the number of
edges. Since d(v) > 2 for each v € V, G has a cycle C. Then G—E(C) is possibly a
disconnected graph, each of whose components C1, C2, ..., Ck is an even degree graph
and hence Eulerian. By the induction hypothesis, each Ci is a disjoint union of cycles.
These together with C provide a partition of E(G) into cycles.

Theorem 2.3 If W is a walk from vertex u to vertex v, then W contains an odd
number of u—v paths.

Proof Let W be a walk which we consider as a graph in itself, and not as a subgraph
of some other graph. Let u and v be initial and final vertices of the walk W. Clearly,
d(u|wW) and d(v|W) are odd, and d(w|W) is even, for every w eV(W)— {u, v}. We
count the number of distinct u—v walks in W. These walks are the subgraphs of W.
When we take a u — v walk by successively selecting the edges e, €y, ..., &, initial
vertex of elbeing u and terminal vertex of es being v, for each edge there are an odd
number of choices. The total number of such edges is the product of these odd
numbers and is therefore odd. Now from these walks, we find the u—v paths. If a u—v
walk W1 is not a path, then it contains one or more cycles. The traversal of these
cycles in the two possible alternative directions (clockwise and anticlockwise)
produces in all an even number of walks, all with the same edge set as W1. Omitting
these even number of walks which are not paths from the total odd collection of u—v
walks, gives an odd number of u—v paths. 4

Toida [244] proved the necessity part and McKee [157] the sufficiency part of the
next characterisation. The second proof of this result can be found in Fleischner [79],
[80].
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Theorem 2.4 A connected graph is Eulerian if and only if each of its edges lies on an

odd number of cycles.

Proof

Necessity Let G be a connected Eulerian graph and let e = uv be any edge of G. Then
G—e is au—v walk W, and so G—e = W contains an odd number of u—v paths. Thus each of
the odd number of u—v paths in W together with e gives a cycle in G containing e and these
are the only such cycles. Therefore there are an odd number of cycles in G containing e.

Sufficiency Let G be a connected graph so that each of its edges lies on an odd number of
cycles. Let v be any vertex of G and Ev = {el, ..., ed } be the set of edges of G incident on v,
then |[Ev| = d(v) = d. For each i, 1 <i<d, let ki be the number of cycles of G containing ei .
By hypothesis, each ki is odd. Let c(v) be the number of cycles of G containing v. Then
clearly c(v) =12 d ) i=1 ki implying that 2c(v) =d | i=1 ki . Since 2¢(v) is even and each ki
is odd, d is even. Hence G is Eulerian.

Corollary 2.1 The number of edge—disjoint paths between any two vertices of an
Euler graph is even.

A consequence of Theorem 3.4 is the result of Bondy and Halberstam [37], which
gives yet another characterisation of Eulerian graphs.

Corollary 2.2 A graph is Eulerian if and only if it has an odd number of cycle decom-
positions.

Proof In one direction, the proof is trivial. If G has an odd number of cycle
decompositions, then it has at least one, and hence G is Eulerian. Conversely, assume
that G is Eulerian. Let e € E(G) and let C1, ..., Cr be the cycles containing e. By
Theorem 3.4, r is odd. We proceed by induction on m = |E(G)|, with G being Eulerian.
If G is just a cycle, then the result is true. Now assume that G is not a cycle. This
means that for each i, 1 <i <r, by the induction assumption, Gi = G—E(Ci) has an odd
number, say si , of cycle decompositions. (If Gi is disconnected, apply the induction
assumption to each of the nontrivial components of Gi). The union of each of these
cycle decompositions of Gi and Ci yields a cycle decomposition of G. Hence the
number of cycle decompositions of G containing Ci is si, 1 <1 <r. Let s(G) denote
the number of cycle decompositions of G. Then s(G) =r ) 1=1 si = r(mod 2) (since si
= 1(mod 2)) = 1(mod 2).

Unicursal Graphs

An open walk that includes (or traces) all edges of a graph without retracing any edge
is called a unicursal line or open Euler line. A connected graph that has a unicursal
line is called a unicursal graph. Figure 3.6 shows a unicursal graph.

Unicursal graph

Clearly by adding an edge between the initial and final vertices of a unicursal line,

5
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we get an Euler line.

The following characterisation of unicursal graphs can be easily derived from Theorem
3.1

Theorem 2.5 A connected graph is unicursal if and only if it has exactly two vertices
of odd degree.

Proof Let G be a connected graph and let G be unicursal. Then G has a unicursal line,
say from u to v, where u and v are vertices of G. Join u and v to a new vertex w of G to
get a graph H. Then H has an Euler line and therefore each vertex of H is of even
degree. Now, by deleting the vertex w, the degree of vertices u and v each get reduced
by one, so that u and v are of odd degree.

Conversely, let u and v be the only vertices of G with odd degree. Join u and v to a
new vertex w to get the graph H. So every vertex of H is of even degree and thus H is
Eulerian.

Therefore, G =H —w has a u—v unicursal line so that G is unicursal. u
The following result is the generalisation of Theorem 3.5.

Theorem 2.6 In a connected graph G with exactly 2k odd vertices, there exists k edge
disjoint subgraphs such that they together contain all edges of G and that each is a
unicursal graph.

Proof Let G be a connected graph with exactly 2k odd vertices. Let these odd vertices
be named v1, v2, ..., vk ; wl, w2, ..., wk in any arbitrary order. Add k edges to G
between the vertex pairs (v1, wl), (v2, w2), ..., (vk , wk) to form a new graph H, so
that every vertex of H is of even degree. Therefore H contains an Euler line Z. Now, if
we remove from Z the k edges we just added (no two of these edges are incident on
the same vertex), then Z is divided into k walks, each of which is a unicursal line. The
first removal gives a single unicursal line, the second removal divides that into two
unicursal lines, and each successive removal divides a unicursal line into two
unicursal lines, until there are k of them. Hence the result.

Arbitrarily Traceable Graphs

An Eulerian graph G is said to be arbitrarily traceable (or randomly Eulerian) from a
vertex v if every walk with initial vertex v can be extended to an Euler line of G. A
graph is said to be arbitrarily traceable if it is arbitrarily traceable from every vertex
(Fig. 3.7).

d e

b) Arbitrarily traccable (¢) Euler graph, not

e T ) (
(a) Arbitrarily traceable graph graph from all vertices

from ¢ arbitrarily traceable

The following characterisation of arbitrarily traceable graphs is due to Ore [174]. Such
graphs were also characterised by Chartrand and White [56] .
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Theorem 2.7 An Eulerian graph G is arbitrarily traceable from a vertex v if and only
if every cycle of G passes through v.

Proof

Necessity Let the Eulerian graph G be arbitrarily traceable from a vertex v. Assume there
is a cycle C not passing through v. Let H = G—E(C). Then every vertex of H has an even
degree and the component of H containing v is Eulerian. This component of H can be
traversed as an Euler line Z, starting and ending with v and contains all those edges of G
which are incident at v. Clearly, this v—v walk cannot be extended to contain the edges of
C also, contradicting that G contains v. Thus every cycle in G contains v. Sufficiency Let
every cycle of the Eulerian graph G pass through the vertex v of G. We show that G is
arbitrarily traceable from v. Assume, on the contrary, that G is not arbitrarily traceable
from v. Then there is a v — v closed walk W of G containing all the edges of G incident
with v and yet not containing all the edges of G. Let one such edge be incident at a vertex
uon W. So every vertex of H=G — E(W) is of even degree and v is an isolated vertex of
H and u is not. The component of H containing u is therefore Eulerian subgraph of G not
passing through v, contradicting the assumption. Hence the result follows.

Corollary 2.3 Cycles are the only arbitrarily traceable graphs.

Sub-Eulerian Graphs
A graph G is said to be sub-Eulerian if it is a spanning subgraph of some Eulerian
graph. The following characterisation of sub-Eulerian graphs is due to Boesch,
Suffel and Tin-
dell [28].
Theorem 2.8 A connected graph G is sub-Eulerian if and only if G is not spanned by
a complete bipartite graph.

Proof

Necessity We prove that no spanning supergraph H of an odd complete bipartite graph
G is Eulerian. Let V3 UV, be the bipartition of the vertex set of G. Since degree of each
vertex of G is odd, and G is complete bipartite, therefore |Vi| and |V| are odd. If H; is
the induced subgraph of H on Vy, then at least one vertex, say v, of V; has even degree
in Hy, since|V,|

is odd. But then d(v|H) = d(v|H) + [V2|, which is odd. Therefore H is not Eulerian.
Sufficiency Refer Boesch et. al., [28]. U

Super-Eulerian graphs

A non-Eulerian graph G is said to be super-Eulerian if it has a spanning Eulerian
subgraph.
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The following sufficient conditions for super-Eulerian graphs are due to Lesniak-
Foster and Williams [148].
Theorem 2.9

If a graph G is such that n > 6, 6 > 2 and d(u)+d(v) > n—1, for every pair of non-
adjacent vertices u and v, then G is super-Eulerian.

The following result is due to Balakrishnan and Paulraja [12].

Theorem 2.10 If G is any connected graph and if each edge of G belongs to a triangle
in G, then G has a spanning Eulerian subgraph.

Proof Since G has a triangle, G has a closed walk. Let W be the longest closed walk in
G. Then W must be a spanning Eulerian subgraph of G. If not, there exists a vertex v & W
and v is adjacent to a vertex u of W . By hypothesis, uv belongs to a triangle, say uvw.
If none of the edges of this triangle is in W, then W u {uv, vw, wu} yields a closed walk
longer

than W (Fig. 3.8). If uw €W, then (W —uw) U {uv, vw} would be a closed walk longer
than

W. This contradiction proves that W is a spanning closed walk in G. U

Hamiltonian Graphs

A cycle passing through all the vertices of a graph is called a Hamiltonian cycle. A
graph containing a Hamiltonian cycle is called a Hamiltonian graph. A path passing
through all the vertices of a graph is called a Hamiltonian path and a graph containing
a Hamiltonian path is said to be traceable. Examples of Hamiltonian graphs are given
in Figure .

Hamiltonian Graphs

If the last edge of a Hamiltonian cycle is dropped, we get a Hamiltonian path.
However, a non-Hamiltonian graph can have a Hamiltonian path, that is, Hamiltonian
paths cannot always be used to form Hamiltonian cycles. For example, in Figure 3.10,
G has no Hamil- tonian path, and so no Hamiltonian cycle; G, has the Hamiltonian
path vivovavs, but has no Hamiltonian cycle, while Gz has the Hamiltonian cycle
V1VoV3V4V1.
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V2 Y] V2 4! V2 L

Hamiltonian graphs are named after Sir William Hamilton, an Irish Mathematician
(1805—1865), who invented a puzzle, called the Icosian game, which he sold for 25
guineas to a game manufacturer in Dublin. The puzzle involved a dodecahedron on
which each of the 20 vertices was labelled by the name of some capital city in the
world. The aim of the game was to construct, using the edges of the dodecahedron a
closed walk of all the cities which traversed each city exactly once, beginning and
ending at the same city. In other words, one had essentially to form a Hamiltonian
cycle in the graph corresponding to the dodecahedron. Figure 3.11 shows such a cycle.

(a) (b)
Dedecahedron and its graph shown with the Hamiltonian cycle

Clearly, the n-cycle C, with n distinct vertices (and n edges) is Hamiltonian. Now,
given any Hamiltonian graph G, the supergraph G’ (obtained by adding in new edges
between non-adjacent vertices of G) is also Hamiltonian. This is because any
Hamiltonian cycle in G is also a Hamiltonian cycle of G’. For instance, K, is a
supergraph of an n-cycle and so K, is Hamiltonian.

A multigraph or general graph is Hamiltonian if and only if its underlying graph is
Hamiltonian, because if G is Hamiltonian, then any Hamiltonian cycle in G remains a
Hamiltonian cycle in the underlying graph of G. Conversely, if the underlying graph
of a graph G is Hamiltonian, then G is also Hamiltonian.

Let G be a graph with n vertices. Clearly, G is a subgraph of the complete graph K.
From G, we construct step by step supergraphs of G to get K,, by adding an edge at
each step between two vertices that are not already adjacent (Fig. 3.12).

N

4

Now, let us start with a graph G which is not Hamiltonian. Since the final outcome
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of the procedure is the Hamiltonian graph K,, we change from a non-Hamiltonian
graph to a Hamiltonian graph at some stage of the procedure. For example, the non-
Hamiltonian.

graph G; above is followed by the Hamiltonian graph G,. Since supergraphs of
Hamilto- nian graphs are Hamiltonian, once a Hamiltonian graph is reached in the
procedure, all the subsequent supergraphs are Hamiltonian.

Definition: A simple graph G is called maximal non-Hamiltonian if it is not
Hamiltonian and the addition of an edge between any two non-adjacent vertices of it
forms a Hamilto- nian graph. For example, G; above is maximal non-Hamiltonian.
Figure 3.13 shows a maximal non-Hamiltonian graph.

It follows from the above procedure that any non-Hamiltonian graph with n-vertices
is a subgraph of a maximal non-Hamiltonian graph with n vertices.

The above procedure is used to prove the following sufficient conditions due to
Dirac [68].

Theorem 2.11 (Dirac) If G is a graph with n vertices, where n > 3 and d(v) > n/2, for
every vertex v of G, then G is Hamiltonian. Hamiltonian graph H in which d(v) >
n/2, for every vertex of H.

Proof Assume that the result is not true. Then for some value n > 3, there is a non-
graph K (i.e., with the same vertex set) of H, d(v) > n/2 for every vertex of K, since
any

non-Hamiltonian graph G with n vertices and d(v) > n/2 for every v in G. Using this G,
we proper supergraph of this form is obtained by adding more edges. Thus there is a
maximal obtain a contradiction.

Clearly, G f= Ky, as K, is Hamiltonian. Therefore there are non-adjacent vertices u
and v in G. Let G + uv be the supergraph of G by adding an edge between u and v.
Since G is maximal non-Hamiltonian, G + uv is Hamiltonian. Also, if C is a
Hamiltonian cycle of G + uv, then C contains the edge uv, since otherwise C is a
Hamiltonian cycle of G, which is not possible. Let this Hamiltonian cycle C be u = v,
V2, .oy Vn =V, UL

Now, let S = {v; € C : there is an edge from u to vi41 in G} and T = {v; € C : there is an

edge fromvtov;in G}.

Then v, € T, since otherwise there is an edge from v to v, = v, that is a loop, which is
impossible.

10
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Also v, € S, (taking vp+1 as Vi), since otherwise we again get a loop from u to v; = u.

Therefore, v, € SU T.

Let|S|, [T |and |S U T | be the number of elements in S, T and S U T respectively. So

Therefore, S| = d(u). Similarly, [T | = d(v).
ISU T | <n. Also, for every edge incident with u, there corresponds one vertex v;
inS.

Now, if v is a vertex belonging to both S and T, there is an edge e joining u to vi.; and
an edge f joining v to vi. This implies that C’ = vy, Vis1, Vis2, « -, Vo, Vi, Vkety - - ., V2, V1
is that there is no wvertex v in S N T , so that S N T = .
a Hamiltonian cycle in G, which is a contradiction as G is non-Hamiltonian. This
shows

Thus [SUT|=|S|+|T|—|SNT|gives |S|+|T|=|SUT]|, so that d(u)+d(v)<n. Thisis
a contradiction, because d(u) >n/2 for all u in G, and so d(u)+d(v) >n/2+n/2 giving
d(u)+d(v) >n. Hence the theorem follows. Q

The following result is due to Ore [176].

vertices in G such that d(u)+d(v)>n. Let G +uv denote the super graph of G obtained
by joining u and v by an edge. Then G is Hamiltonian if and only if G + uv is
Hamiltonian.

Theorem 2.12 (Ore) Let G be a graph with n vertices and let u and v be non-
adjacent

in G such that d(u)+d(v) >n. Let G +uv be the super graph of G obtained by adding
the Proof Let G be a graph with n vertices and suppose u and v are non-adjacent
vertices edge uv. Let G be Hamiltonian. Then obviously G +uv is Hamiltonian.
Conversely, let G+uv be Hamiltonian. We have to show that G is Hamiltonian. Then,
asin Theorem 3.11, we get d(u)+d(v) <n, which contradicts the hypothesis that
d(u)+d(v)>n. Hence G is Hamiltonian.

The following is the proof of Bondy [35] of Theorem 2.12, and this proof bears a
close resemblance to the proof of Dirac’s theorem given by Newman [170], but is
more direct.

Proof (Bondy [35]) Consider the complete graph K on the vertex set of G in which the
edges of G are coloured blue and the remaining edges of K are coloured red. Let C be

11
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a Hamiltonian cycle of K with as many blue edges as possible. We show that every
edge of, in other words, that C is Hamiltonian cycle of G.

Suppose to the contrary, C has a red edge uu (where u is the successor of u on C).
Consider the set S of vertices joined to u by blue edges (that is, the set of neighbours of
u in G). The successor u~ of u on C must be joined by a blue edge to some vertex v of
S, because if u is adjacent in C only to vertices V —(S'U {u}), dg(u)+ dg(u) =
ING(u)| +|N(u)| < |S|+(V |—|S | —1) =|V (G)| — 1, contradicting the hypothesis that
dg(u)+dg(u)>|V(G)|, uand u being non-adjacent in G. But now the cycle C obtained
from C by exchanging the edges uu and v has more blue edges than C, which isa
contradiction. Q
and vy in G such that d(u;) + d(v1 ) > n, join u; and v; by an edge to form the super
graph G;. Now, if there are two non-adjacent vertices u, and v, in G; such that d(u,) +
d(v2) = n,

Definition: Let G be a graph with n vertices. If there are two non-adjacent vertices
U join u, and v, by an edge to form supergraph G,. Continue in this way, recursively
joining. The final supergraph thus obtained is called the closure of G and is denoted
by ¢(G). pairs of non-adjacent vertices whose degree sum is at least n until no such
pair remains.

The example in Figure 3.15 illustrates the closure operation.

iy Viy \

Nl

vertices u and v with d(u) +d(v) > n. Therefore the closure procedure can be carried
out nWe observe in this example that there are different choices of pairs of non-
adjacent several different ways and each different way gives the same result.

In the graph shown in below Figure,n =7 and d(u)+ d(v) < 7, for any pair u, v of
adjacent vertices. Therefore, ¢(G) =G.

G

The importance of ¢(G) is given in the following result due to Bondy and Chvatal
[36].

Theorem 2.13 A graph G is Hamiltonian if and only if its closure c(G) is

12



SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY GRAPH THEORY SMT1505

Hamiltonian. Proof Let ¢(G) be the closure of the graph G. Since c¢(G) is a supergraph
of G, therefore, if G is Hamiltonian, then ¢(G) is also Hamiltonian.
Conversely, let c(G) be Hamiltonian. Let G, Gi, Go, ..., Gk-1, Gk =¢(G) be the sequence

of graphs obtained by performing the closure procedure on G. Since ¢(G) = Gy is
obtained from Gy-; by setting Gy = Gy-1 + uv, where u, v is a pair of non adjacent
vertices in Gy-1 with d(u)+ d(v) > n, therefore it follows that Gy—; is Hamiltonian.
Similarly Gy-2, s0 Gy-3,

..., G1 and thus G is Hamiltonian. a

Corollary 2.4 Let G be a graph with n vertices with n > 3. If ¢(G) is complete, then G
is Hamiltonian.

There can be more than one Hamiltonian cycle in a given graph, but the interest lies in
the edge-disjoint Hamiltonian cycles. The following result gives the number of edge-
disjoint Hamiltonian cycles in a complete graph with odd number of vertices.

The next result involving degrees give the sufficient conditions for a graph to be Hamil-
tonian.

Theorem 2.14 (Nash-Williams) Every k-regular graph on 2k + 1 vertices is Hamilto-
nian.

Proof Let G be a k-regular graph on 2k + 1 vertices. Add a new vertex w and join it

by an edge to each vertex of G. The resulting graph H on 2k + 2 vertices has 6 =k + 1.
Thus by Theorem 3.15 (A), H is Hamiltonian. Removing w from H, we get a
Hamiltonian path,

say VoVi . . .V . then viqvy € E, since d(vg) = d(vak) = k. Assume that G is not
Hamiltonian, so that (a) if vov; € E, then vi_yjv € E, (b) if vovi € E,

The following cases arise.
Case (i) Vo is adjacent to vy, Vo, . . ., Vk, and vy is adjacent to Vg, Vk+1, , Vok-1. Thenthere is
-r [-‘/\

I [

v, v,
. VD/
Hh i

an i with 1 <i <k such that v; is not adjacer{t tosomev; forO<j<k(j# 1). Butd(vi) =
k. So v; is adjacent to v j for some j with k + 1 < j <2k — 1. Then the cycle C given by
ViVi-1 . . .VoVis1 . . .V j1VokVoks1 V j IS @ Hamiltonian cycle of G (Fig 3.18).

Case (ii) Thereisani with 1 <i<2k—1 such that vi.1vo € E, butvivo € E. Then
by (b), vi-1vok € E. Thus G contains the 2k-cycle vi-1vi—s . . .VoVi+1. Renaming the
2k-cycle C as uiu; . . .uy and let ug be the vertex of G not on C. Then ug cannot be

13
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adjacent to two consecutive vertices on C and hence u, is adjacent to every second
vertex on C, say Ui, Us, ..., Ux-1. Replacing u, by uo, we obtain another maximum
cycle C’ of G and hence uy must be adjacent to uy, us, ..., Ux-1. But then u; is adjacent
to up, Uz, ..., Ux, implying d(ui) > k + 1. This is a contradiction and hence G is
Hamiltonian. Q

Pancyclic Graphs

Definition: A graph G of order n(> 3) is pancyclic if G contains all cycles of lengths
from 3 to n. G is called vertex-pancyclic if each vertex v of G belongs to a cycle of
every length A,3 <A <n.

Example Clearly, a vertex-pancyclic graph is pancyclic. However, the converse is
not true. Figure displays a pancyclic graph that is not vertex-pancyclic.

The result of pancyclic graphs was initiated by Bondy [34], who showed that Ore’s

sufficient condition for a graph G fp be Hamiltonian (Theorem 6.2.5) actual%implies much

more. Note that if 6 >, then'm > "™ . The proof of the following result due to Thomassen

can be found in Bollobas [29].
Exercises

Prove that the wheel W, is Hamiltonian for every n > 2, and n-cube Q, is Hamiltonian
foreach n >2.

If G is a k-regular graph with 2k —1 vertices, then prove that G is Hamiltonian.
Show that if a cubic graph G has a spanning closed walk, then G is Hamiltonian.

If G =G(X, Y)is a bipartite Hamiltonian graph, then show that [X|=Y].
Prove that for each n > 1, the complete tripartite graph Ky, 2n, 30 IS Hamiltonian, but

Kn, 2n, 3n+1 1S NOt Hamiltonian.

Prove that a graph G with n > 3 vertices is randomly traceable if and only if it is
randomly Hamiltonian.

Find the closure of the graph given in Figure 3.2. Is it Hamiltonian?
Does there exist an Eulerian graph with

i. an even number of vertices and an odd number of edges,
ii. and odd number of vertices and an even number ofedges.

Draw such a graph if it exists.

Characterise graphs which are both Eulerian and Hamiltonian.

14



SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY GRAPH THEORY SMT1505

Characterise graphs which possess Hamiltonian paths but not Hamiltonian cycles.
Characterise graphs which are unicursal but not Eulerian.

Give an example of a graph which is neither pancyclic nor bipartite, but whose n-
closure is complete.

15
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UNIT 11
TREES

INTRODUCTION

Kirchhoff developed the theory of trees in 1847, in order to solve the system of simultaneous
linear equations which give the current in each branch and arround each circuit of an electric network.

In 1857, Cayley discovered the important class of graphs called trees by considering the changes
of variables in the differential calculus. Later, he was engaged in enumerating the isomers of saturated
hydro carbons C, H,, ., , with a given number of » of carbon atoms as

LEEE

Methane Ethane Propane Rutang Isobutane

Fig. 3.1.

3.1 TREE
3.1.1. Acyclic graph

A graph 1s acyclic if 1t has no cycles.
3.1.2. Tree

A tree is a connected acyclic graph.

3.1.3. Forest
Any graph without cycles 1s a forest, thus the components of a forest are trees.
The tree with 2 points, 3 points and 4-points are shown below :

VYU

Fig. 3.2.
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TREES

Note :
(1) Every edge of a tree 1s a bridge.
ie., every block of G is acyclic.
Conversely, every edge of a connected graph G is a bridge, then G is a tree.
(2) Every vertex of G (tree) which 1s not an end vertex is neccessarily a cut-vertex.
(3) Every nontrivial tree G has at least two end vertices.

3.2 SPANNING TREE
A spanning tree is a spanning subgraph. that is a tree.

3.2.1. Branch of tree
An edge in a spanning tree T 1s called a branch of T.

3.2.2. Chord
An edge of G that 15 not 1n a given spanming tree is called a chord.
Note :
(1) The branches and chords are defined only with respect to a given spanmng tree.

(2) An edge that 1s a branch of one spanning tree T; (in a graph G) may be chord, with respect to
another spanmng tree T,

3.3 ROOTED TREE

A rooted tree T with the vertex set V 15 the tree that can be defined recursively as follows :

T has a specially designated vertex v; € V. called the root of T. The subgraph of T, consisting of
the vertices V — {v} 1s partitionable into subgraphs.

T,. Ty, ....... T, each of which 15 itself a rooted tree. Each one of these r-rooted tree 1s called a
subtree of v,.

Fiz. 3.3. A rooted tree.
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3.3.1. Cao tree

The cotree T* of a spanning tree T in a connected graph G 1s the spanning subgraph of G contaiming
exactly those edges of G which are not 1n T. The edges of G which are not m T* are called 1ts twigs.

For example

Al

Fig. 3.4.

3.4 BINARY TREES

A bmary tree 15 a rooted tree where each vertex v has atmost two subtrees : 1f both subtrees are
present, one 15 called a left subtree of v and the other right-subtree of v. If only one subtree 15 present, 1t
can be designated either as the left subtree or right subtree of v.

In other words, a bmary tree 15 a 2-ary tree m which each child 1s designated as a left child or
right child.

In a binary tree e very vertex has two children or no children.
Properties : (Binary trees) :
(1) The number of vertices » in a complete binary tree 15 always odd. This 1s because there 15

exactly one vertex of even degree. and remaining » — | vertices are of odd degree. Since from
theorem (i.e., the number of vertices of odd degree 1s even), n — 1 1s even. Hence » 15 odd.

(2) Let P be the number of end vertices n a binary tree T. Then n —p — 1 1s the number of vertices
of degree 3. The number of edgesmn T 15
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1 n+l
;[p+3(n—p—l)+2]=n—l or p="; (1)

(3) A non end vertex 1 a binary tree 1s called an internal vertex. It follows from equation (1) that
the number of internal vertices 11 a binary 1s one less than the number of end vertices.

(4) In a bmary tree, a vertex v, 1s said to be at level [; if v; 1s at a distance [, from the root. Thus the
root 1s at level O.

Fig. 3.5. 13-vertices, 4-level binary tree.

The maximum numbers of vertices possible 1n a i-level binary tree 1s 20428427 42k
The maximum level. [ _, of any vertex m a binary tree 1s called the height of the tree.

On the other hand. to construct a binary tree for a given » such that the farthest vertex 1s as for as
possible from the root, we must have exactly two vertices at each level. except at the O level.

n—1
Hence max [ . = 3
For example,
e Lewal D
Fig. 3.6.
-1
Max [ . = = 4

The mimmum possible height of n-vertex binary tree 1s min [, = [log;(n + 1) — 1]

In analysis of algorithm, we are generally interested in computing the sum of the levels of all end
vertices. This quantity, known as the path length (or external path length) of a tree.
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3.4.1. Path length of a binary tree
It can be defined as the sum of the path lengths from the root to all end vertices.

For example,

- Ll 3

Fig. 3.7.

Here the sumis 2 +2 + 3 + 3 + 3 + 3 = 16 1s the path length of a given above bmary tree.
The path length of the binary tree 1s often directly related to the executive time of an algorithm.

3.4.2. Binary tree representation of general trees

There 15 a straight forward technique for converting a general tree to a binary tree form. The
algorithm has two easy steps :

Step 1:

Insert edges connecting siblings and delete all of a parents edges to its children except to its left
most off spring.

Step 2 :

Rotate the resulting diagram 45° to distingmish between left and night subtrees.

For example,

— Genaral frap

Fig. 3.8.

Here v,. vy and v, are siblings to the parent v|. now apply the steps given above we have a binary
tree as shown here.
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Here v,. v; and v, are siblings to the parent v, now apply the steps given above we have a binary
tree as shown here.

Fig. 3.

Theorem 3.1. A(p, g) graph is a tree if and onlv if it is acyclicandp =g+ 1 or g =p— 1.
Proof. If G 1s a tree, then 1t 1s acyclic.

By definition to venfy the equality p=g + 1.

We employ induction on p.

For p=1. the result 1s trivial.

Assume, then that the equality p = ¢ + 1 holds for all (p. g) trees with p 2 1 vertices.

Let Gy be a tree with p + 1 verfices.

Let v be an end-vertex of G

The graph G, =G, — v s a tree of order p. and so p = | E(G,) |+ 1.

Since G, has one more vertex and one more edge than that of G,.

l'lrg v, 'U'g L'

Vy G,i1G,-v! Vy

Fig. 3.10.
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fage enu
V(G)|=p+1=(EG)|+1)+1
=|EGy)|*1
V(G [=]EGy [+1.
Conversely : Let G be an acyclic (p. g) graph with p=¢ + 1.
To show G 15 a tree. we need only venfy that G 1s connected. Denote by G;. G,. ..., Gy, the
components of G, where k2 1.
Furthermore, let G; be a (p, g;) graph.
Since each G;1satree, p, = g; + 1.

k
Hence p—1=g=zf}s
izl

k

= E(_P,_l} :P_'{'

i=1
= p-l=p-kt = k=1andG s connected.
Hence, (p. g) graph 15 a tree.
Hence the proof.
Corollary : A forest G of vertices p has p — k edges where £ 15 the number of components.
Theorem 3.2. A (p, g) graph G is a tree if and only if G is connected and p =g + 1.
Proof. Let Gbea (p. g) tree.

By definition of G, 1t 15 connected and by theorem - i.e., A(p. ¢) graph 15 a tree if and only 1f 1t 15
acyclicandp=g+1). p=g+1.
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Conversely : We assume G 1s connected (p. ¢) graph with p =g + 1.

It 15 sufficient to show that G 1s acyclic.

If G contawms a cycle C and e 1s an edge of C, then G - ¢ 15 a connected graph with p vertices
having p -2 edges.

Ths 15 1mpossible by the defimtion (i.e., A(p. g) graph has ¢ < p - 1 then G 15 disconnected).

This contradicts our assumption.

Hence G 1s connected.

Theorem 3.3. A complete n-ary tree with m internal nodes contains n * m + 1 nodes.

Proof. Since there are m internal nodes. and each mnternal node has n descendents. there are n * m
nodes 1n three other than root node.

Since there 15 one and only one root node in a tree, the total number of nodes in the tree will n
xm+

Problem 3.1. A tree has five vertices of degree 2, three vertices of degree 3 and four vertices of
degree 4. How many vertices of degree | does it have ?

Solution. Let x be the number of nodes of degree one.
Thus, total number of vertices
=5+3+4+x=12+x
The total degree of thetree =3 x 2+ 3 x3+4x4+x=33+x
Therefore number of edges in the three 1s half of the total degree of the tree.
If G=(V.E) be the tree, then, we have

P+x
|V|=12+xand |E|= 3
Inany tree, |E|=| V|- 1.
S+x
Therefore. we have ) =12+x-1
= H+tx=MU+2%-2

= x=13
Thus, there are 13 nodes of degree one in the tree.

SMT1505

Problem 3.2. A free has 2n vertices of degree 1, 3n vertices of degree 2 and n vertices of degree

3. Determine the number of vertices and edges in the tree.
Solution. It 15 given that total number of vertices in the tree 15 2n + 3In + n=6n.
The total degree of the tree s 2n x 1 +3n =2+ n = 3=11n
The number of edges in the tree will be half of 11n.
If G=(V_ E) be the tree then, we have

1n
V|=6n and |E|:T

Inany tree, |[E|=| V|- 1.
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Therefore, we have

1ln

T =fn-1
= lln=12n-2
= n=2

Thus, there are 6 = 2 = 12 nodes and 11 edges m the tree.

Theorem 3.4. There are at the most n" leaves in an n-ary tree of height h.

Proof. Let us prove this theorem by mathematical induction on the height of the tree.
As basis step take i1 =0, i.e, tree consists of root node only.

Smce n® =1, the basis step 1s true.

Now let us assume that the above statement 1s true for =&

i.e, ann-ary tree of height k has at the most n leaves.

If we add »n nodes to each of the leaf node of n-ary tree of height £, the total number of leaf nodes
will be at the most n" x n=n""1.

Hence mductive step 1s also true.

This proves that above statement 1s true forall h = 0.

Theorem 3.5.  In a complete n-ary tree with m internal nodes, the number of leaf node | is given
by the formula

- (n—Dx-1)
= —.

where, x is the total number of nodes in the free.

Proof. It 1s given that the tree has m mnternal nodes and 1t 1s complete n—ary, so total number of
nodes

x=nxm+1.

(-1

n

Thus, we have m=

It 15 also given that [ 1s the number of leaf nodes in the tree.
Thus, we have x=m+i+1
Substituting the value of m 1 this equation, we get

x=1
x=[ ]+I+l
n

_ (r=Dx-1)
I= M

or

Theorem 3.6. If I = (V, E) be a rooted tree with v, as its root then
(1) Tis aacyclic
(if) vpis the only rootin T

(iif) Each node other than root in T has in degree 1 and vy has indegree zero.
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Proof. We prove the theorem by the method of contradiction.

()

(i7)

(iii)

Let there 15 a cycle m in T that begins and end at a node v.

Since the m degree of root 15 zero. v # v

Also by the defimition of tree. there must be a path from v to v, let 1t be p.
Then mp 1s also a path, distinct from p, from v to v.

This contradicts the defimition of a tree that there 15 umique path from root to every other
node.

Hence T cannot have a cycle 1n 1t.

i.e., a tree is always acyclic.

Let v; 15 another root n T.

By the defimition of a tree_ every node 1s reachable from root.

This vy 1s reachable from v, and vy 1s reachable from v, and the paths are ; and T, respec-
trvely.

Then 1,7, combination of these two paths 1s a cycle from v, and v

Since a tree 1s always acyclic, v; and v; cannot be different.

Thus, v; 15 a unique root.

Let w be any non-root node in T.

Thus, dapath w: vy vy, ..., vyw from vyto win T.

Now let us suppose that indegree of w 1s two.

Then 3 two nodes w, and w, in T such that edges (w,. v) and (w-. vy) are n E.

Let m; and 1, be paths from v, to w; and w;, respectively.

Then m; vy ... vpww and T D Vgl o VW, are two possible paths from v to w.
This 1s in contradiction with the fact that there i1s unique path from root to every other
nodes m a tree.

Thus indegree of w cannot be greater than 1.
Next, let indegree of vy = 0. Then d a node v in T such that (v, vy) € E.
Let it be a path from v, to v. thus (v, vy) 1s a path from v;, to v, that 15 a cycle.

This 15 again a contradiction with the fact that any tree 15 acyclic.

Thus indegree of root node v; cannot be greater than zero.

Problem 3.3. Let T = (¥, E) be a rooted tree. Obviously E is a relation on set V. Show that

(i) E is irreflexive

(ii) E is asymmetric
(i1) If(a, b) € Eand (b, c) € Ethenfa, c) £ E, ¥a,bce V.

Solution. Since a tree 1s acyclic. there 1s no cycle of any length m a tree.

This implies that there 15 no loop mn T.
Thus. (v.v) 2 E¥ac V.

Thus E 15 an irreflexive relation on V.

10
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Let (x,y) € E. If (v. x) € E. then there will be cycle at node x as well as on node y.

Since no cycle is permissible in a tree, either pair (x, ¥) or (v, ) can be in E but never both.
This implies that presence of (x, ¥) excludes the presence of (v. x) i E and vice versa.
Thus E 15 a asymmetric relation on V.

Let(a.c) e E.

Thus presence of pairs (b, ¢) and (a. ¢) in E mmplies that ¢ has indegree = 1.

Hence (a.c) € E.

Problem 3.4. Frove that a tree T is always separable.

Solution. Let w be any internal node in T and node v 1s the parent of w.

By the definition of a tree, in degree of w 15 one.

If w 1s dropped from the tree T, the mcoming edge from v to w 15 also removed.

Therefore all children of w will be unreachable from root and tree T will become disconnected.

See the forest of the Figure (3.11), which has been obtamed after removal of node F from the tree
of Figure (3.12).

Fig. 3.11 Fig. 3.12

Problem 3.5. Let A = {v}, vy, vy vy V5 VeV5 Vg Vi, Vit and let
T={vy, v3), (v, V), (v v3), (Vg Vgl (Vs Vg (Vs Vol (Ve V), (V7 V), (V5 vy
Show that T is a rooted tree and identify the root.

Solution. Since no paths begin at vertices v|. v;, v;. vy and vy, these vertices cannot be roots of
a tree.

There are no paths from vertices vg, v4, v; and v to vertex v,. so we must eliminate these vertices
as possible roots.

Thus, 1f T 15 a rooted tree. 1ts root must be vertex v,

It 15 easy to show that there 15 a path from v, to every other vertex.

For example. the path v, v;, v;. vy leads from v, and vy, since (v, vg). (v v7) and (v, w) arealln T.

We draw the digraph of T, beginning with vertex v,, and with edges shown downward.

The result 15 shown m Fig. (3.13). A quick inspection of this digraph shows that paths from
vertex v, to every other vertex are umique. and there are no paths from v, and v,.

Thus T 15 a tree with root v,

11
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Fig. 3.13

Theorem 3.7. There is one and only one path between every pair aof vertices in a tree I.

Proof. Since T 15 a connected graph. there must exist atleast one path between every pair of
vertices in T.

Let there are two distinct paths between two vertices u and v of T.
But union of these two paths will contain a cycle and then T cannot be a tree.

Theorem 3.8. Ifin a graph G there is one and only one path between every pair af vertices, G
is a tree.

Proof. Since there exists a path between every pair of vertices then G 1s connected.

A cycle in a graph (with two or more vertices) implies that there is atleast one pair of vertices
1, v such that there are two distinct paths between u and v.

Since G has one and only one path between every pair of vertices. G can have no cycle.

Therefore, G 15 a tree.
Theorem 3.9. A tree T with n vertices has n — I edges.
Proof. The theorem 15 proved by mduction on 7. the number of vertices of T.

Basis of Inductive : When n =1 then T has only one vertex. Since it has no cycles, T can not
have any edge.
ie, tthase=0=n-1

Induction step : Suppose the theorem 1s true for n = k 2 2 where k 15 some positive mteger.

We use this to show that the result 1s true forn =%+ 1.

Let T be a tree with k + 1 vertices and let wv be edge of T. Let uv be an edge of T. Then 1f we
remove the edge wv from T we obtain the graph T — wv. Then the graph 1s disconnected since T — wv
contamns no (u, v) path.

If there were a path, say . vy, vy ... v from u to v then when we added back the edge uv there
would be a cycle w, vy v, ... v,umT.

Thus. T — uv 1s disconnected. The removal of an edge from a graph can disconnected the graph
into at most two components. S0 T — uv has two components. say. T, and T,.

12
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cycles.

Since there were no cycles in T to begin with, both components are connected and are without

Thus. T, and T, are trees and each has fewer than n vertices.
This means that we can apply the induction hypothesis to T; and T, to give
e(T))=w(T;) -1
e(Ty) =w(T,) -1
But the construction of T, and T, by removal of a single edge from T gives that
e()=eT)+e(T)+1
and that v(T) =wT;) + v(T,)
1t follows that
e(M)=vT))-1+vT,)-1+1
=D -1
=k+1-1=k
Thus T has & edges. as required.
Hence by principle of mathematical induction the theorem 1s proved.
Theorem 3.10. For any positive integer n, if G is a connected graph with n vertices and n— 1

edges, then (7 is a free.

Proof. Letn be a positive integer and suppose G 1s a particular but arbitrarily chosen graph that

1s connected and has n vertices and n — 1 edges.

We know that a tree 1s a connected graph without cycles. (We have proved in previous theorem

that a tree has n — 1 edges).

We have to prove the converse that if G has no cycles and »n — 1 edges. then G 1s connected.
We decompose G mto k components, ¢;. ¢;. ...... Cp

Each component 1s connected and it has no cycles since G has no cycles.

Hence. each C; 1s a tree.

k k
Now e; =n; — 1 and Z‘%‘ = Z(n,-—l) =n—k

i=1 i=1

= e=n—=k

Then 1t follows that £ = 1 or G has onlv one component.

Hence G 15 a tree.

Problem 3.6. Consider the rooted tree in Figure (3.14).

13
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(a) What is the roor af T ?

(b) Find the leaves and the internal vertices of I.

(c) What are the levels of c and e.

(d) Find the children of ¢ and e.

(e) Find the descendants of the vertices a and c.

Solution. (a) Vertex a 1s distingushed as the only vertex located at the top of the tree.
Therefore a 1s the root.

(b) The leaves are those vertices that have no children. These b. f, g and k. The internal vertices
are ¢, d and e.

(c) The levels of ¢ and e are 1 and 2 respectively.

() The children of ¢ are d and e and of e are g and h.

(€) The descendants of aare b. c. d. e. f g. I

The descendants of care d. e. f. g. h.

Theorem 3.11. A full m-ary tree with i internal vertex has n = mi + 1 vertices.

Proof. Since the tree i1s a full m-ary, each mternal vertex has m children and the number of
internal vertex is i. the total number of vertex except the root 1s mi.

Therefore, the tree has 7 = mi + 1 vertices.

Since 1 15 the number of leaves, we have n =+ 7 using the two equalities n=mi+ land n=1+1,
the following results can easily be deduced.

A full m-ary tree with

leaves.

1 [(n —D(n +1)]
m

(i) n vertices has i = 2 internal vertices and [ =
m
(17) 1 internal vertices has n=mi + 1 vertices and / = (m — 1) + 1 leaves.
(i7) i internal vertices has n = mi + 1 vertices and [ = (m — 1)i + 1 leaves.

(mi-1) (=D
= vertices and 1 = =

(i) I leaves has n = mternal vertices.

Theorem 3.12. There are at most m” leaves in an m-ary tree of height h.

Proof. We prove the theorem by mathematical induction.

Basis of Induction :

For h = 1. the tree consists of a root with no more than m children, each of which 15 a leaf
Hence there are no more than m' = m leaves in an m-ary of height 1.

Induction hypothesis :

We assume that the result is true for all m-ary trees of heights less than /.

Induction step :

Let T be an m-arv tree of height . The leaves of T are the leaves of subtrees of T obtained by
deleting the edges from the roots to each of the vertices of level 1.

Each of these subtrees has at most m" ~ ! leaves. Since there are at most m such subtrees. each

with a maximum of " ~! leaves. there are at most m . "~ = m".

14
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Problem 3.7. Find all spanming trees of the graph G shown in Figure 3.135.

Fig. 3.15.
Solution. The graph G has four vertices and hence each spanning tree must have 4 — 1 =3 edges.
Thus each tree can be obtained by deleting two of the five edges of G.
This can be done in 10 ways, except that two of the ways lead to disconnected graphs.

Thus there are eight spanning trees as shown m Figure (3.16).

N SV
NN N

Fig. 3.16.

Problem 3.8. Find all spanning trees for the graph G shown in Figure 3.17, by removing the
edges in simple circuits.

d
L

2 i C

Fig. 3.17.

Solution. The graph G has one cycle cbec and removal of any edge of the cycle gives a tree.

There are three trees which contain all the vertices of G and hence spanning trees.
f 8 o f g i I il g
m I I \. m
2 b c 2 b c ] b c

Fig. 3.18.

15
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Theorem 3.13. A4 simple graph G has a spanning tree if and only if G is connected.

Proof. First, suppose that a simple graph G has a spanning tree T. T contains every vertex of G.
Let a and b be vertices of G. Since a and b are also vertices of T and T 15 a tree_ there 15 a path P between
a and b.

Since T 1s subgraph, P also serves as path between a and b G.
Hence G 15 connected.
Conversely, suppose that G 1s connected.

I[f G 1s not a tree, 1t must contain a stmple circuit. Remove an edge from one of these simple circuits.
The resulting subgraph has one fewer edge but still contains all the vertices of G and 1s connected.

If this subgraph 1s not a tree, 1t has a simple circuit, so as before, remove an edge that 15 1 a
stmple circuat.

Repeat this process until no simple circuit remain.
This 15 possible because there are only a finite number of edges 1n the graph, the process termi-
nates when no simple circuits remain.

Thus we eventually produce an acyclic subgraph T which 1s a tree.
The tree 15 a spanning tree since 1t contains every vertex of G.

P
d; =2g=2(p—1)=2p— 2 which contradicts in equality (1).

i=1

Hence T contains atleast two end vertices.

Theorem 3.16. [fGis a tree and if any two non adjacent vertices of G are joined by an edge e,
then G + e has exactly one cycle.

Proof. Suppose G is a tree. Then there 1s exactly one path joining any two vertices of G.

If we add an edge of G, that edge together with unique path joining « and v forms a cycle.

Theorem 3.17. A graph G is connected if and only if it confains a spanning free.

Proof. It 1s immediate that. if a graph contains a spanming tree, then 1t must be connected.

Conversely, if a connected graph does not contain any cycle then it 1s a tree.

For a connected graph containing one or more cycles, we can remove an edge from one of the
cycles and still have a connected subgraph. Such removal of edges from cycles can be repeated until we
have a spanning tree.

Theorem 3.18. [fu and v are distinct vertices of a free T contfains exactly one u — v path.

Proof. Suppose. to the contrary that T contains two u — v paths say P and Q are different & — v,
paths there must be a vertex x (7.e., x = &) belonging to both P and Q such that the vertex immediately
following x on Q. See Figure 3.19.

16
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Let y be the first vertex of P following x that also belongs to Q (v could be v).
Then this produces to x —y paths that have only x and y in common.

These two paths produces a cycle m T, which contradicts the fact that T 1s a tree.
Therefore, T has only one u — v path.

Problem 3.9. Construct two non-isemorphic trees having exactly 4 pendant vertices or
verfices.

Solution. @ L L \I—‘/

Fig. 3.20.
Problem 3.10. Construct three distinct trees with exactly

(i) one central vertex (ii) rtwo central vertices.

Solution. (i) The following trees contain only one central vertex.

K A< <

Fig. 3.21.

(i) The following trees contain exactly two central vertices.

Fig. 3.22.

3.5 ALGORITHMS FOR CONSTRUCTING SPANNING TREES

An algorithm for finding a spanning tree based on the proof of the theorem : A simple graph
G has a spanning tree if and only if G is connected, would not be very efficient, it would
involve the time- consuming process of finding cycles. Instead of constructing spanning trees
by removing edges, spanning tree can be built up by successively adding edges. Two
algorithms based on this principle for finding a spanning tree are Breath-first search (BFS)
and Depth-first search (DFS).

3.5.1 BFS algorithm

In this algorithm a rooted tree will be constructed, and underlying undirected graph of this
rooted

17
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forms the spanning tree. The idea of BFS is to visit all vertices on a given level before going
into the next

level.

Procedure :

(i) Arbitrarily choose a vertex and designate it as the root. Then add all edges incident to this
verteX, such that the addition of edges does not produce any cycle.

(if) The new vertices added at this stage become the vertices at level 1 in the spanning tree,
arbitrarily order them.

(iii) Next, for each vertex at level 1, visited in order, add each edge incident to this vertex to
the

tree as long as it does not produce any cycle.

(iv) Arbitrarily order the children of each vertex at level 1. This produces the vertices at level
2 in the tree.

(v) Continue the same procedure until all the vertices in the tree have been added.

(vi) The procedure ends, since there are only a finite number of edges in the graph.

(vii) A spanning tree is produced since we have produced a tree without cycle containing
every

vertex of the graph.

3.5.2 DFS algorithm

An alternative to Breath-first search is Depth-first search which proceeds to successive levels
in

a tree at the earliest possible opportunity.

DFS is also called back tracking.

Procedure :

(i) Arbitrarily choose a vertex from the vertices of the graph and designate it as the root.

(if) Form a path starting at this vertex by successively adding edges as long as possible where
each new edge is incident with the last vertex in the path without producing any cycle.

(iii) If the path goes through all vertices of the graph, the tree consisting of this path is a
spanning tree.

Otherwise, move back to the next to last vertex in the path, and, if possible, form a new

path starting at this vertex passing through vertices that were not already visited.

(iv) If this cannot be done, move back another vertex in the path, that is two vertices back in
the

path, and repeat.

(v) Repeat this procedure, beginning at the last vertex visited, moving back up the path one
vertex at a time, forming new paths that are as long as possible until no more edges can be
added.

(vi) This process ends since the graph has a finite number of edges and is connected. A
spanning

18
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tree IS produced.
Problem 3.48. Use BES algorithm to find a spanning tree of graph G of Fig. (3.35).

Fig. 3.55.
Solution. (i) Choose the vertex a to be the root.

(if) Add edges mcident with all vertices adjacent to a, so that edges {a. b}. {a. ¢} are added.
The two vertices b and ¢ are in level 1 in the tree.

(7if) Add edges from these vertices at level 1 to adjacent vertices not already in the tree.
Hence the edge {c. d} 1s added. The vertex d 15 1n level 2.

(iv) Add edge from d in level 2 to adjacent vertices not already in the tree. The edge {d. e} and
{d. g} are added.

Hence e and g are m level 3.
(v) Add edge from e at level 3 to adjacent vertices not already in the tree and hence {e. [} 15
added. The steps of Breath first procedure are shown mn Fig. (3.36).

b b

a2 @ B -3 d

[

(@) (&) i)
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Problem 3.49. Find a spanning tree of the graph of Fig. (3.57) using Depth-first search
algorithm.

Fig. 3.57.
Solution. Choose the vertex a.

Form a path by successively adding edges incident with vertices not already in the path as long as
possible.

This produces the patha—c—d—e—f— 2.

Now back track of £ There is no path beginning at f containing vertices not already visited.
Similarly, after backtrack at e. there 1s no path. So move back track at d and form the path 4 — 5.
This produces the required spanning tree which 1s shown in Fig. (3.58).
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UNIT IV
OPTIMIZATION AND MATCHING
Cut vertex cut set and bridge

Sometimes the removal of a vertex and all edges incident with it produces a subgraph with more
connected components. A cut vertex of a connected graph G is a vertex whose removal increases the
number of components. Clearly if v is a cut vertex of a connected graph G, G — v is disconnected.

A cut vertex is also called a cut point.

Analogously, an edge whose removal produces a graph with more connected components then
the original graph is called a cut edge or bridge.

The set of all mimnimum number of edges of G whose removal disconnects a graph G 1s called a
cut set of G. Thus a cut set S of a satisfy the following :

(i) 5 15 a subset of the edge set E of G.
(i) Removal of edges from a connected graph G disconnects G.
(iff) No proper subset of G satisfy the condition.

& d

&

c a

In the graph in Figure below, each of the sets {{b, d}, {c. &}, {c. e} } and {{e, f}} 15 2 cut set. The
edge {e, f} is the only bridge. The singleton set consisting of a brdge 1= always a cut of set of G.
4.3.10. Connected or weakly connected

A directed graph is called connected at weakly connected if it is connected as an undirected
graph in which each directed edge 15 converted to an undirected graph.
4.3.11. Unilaterally connected

A simple directed graph is said to be unilaterally connected if for any pair of vertices of the graph
atleast one of the vertices of the pair is reachable from other vertex.

4.3.12. Strongly connected

A directed graph 15 called strongly connected if for any pair of vertices of the graph both the
vertices of the pair are reachable from one another.

For the diagraphs is Fig. (4.61) the digraph in {a) is strongly connected, inoa (&) it s weakly
connected, while in () 1t is umlaterally connected but not strongly connected.

(1) )
9 ()
1 2
) 3 (4 3 4
() Strpngly canneipd (8 Wegkly connectpd {ch Unilmegraly
conngeied
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Note that a unilaterally connected digraph is weakly connected but a weakly connected digraph
15 not necessanly unilateraly connected. A strongly connected digraph 15 both umlaterally and weakly
connected.

4.3.13, Connectivity

To study the measure of connectedness of a graph G we consider the mimnmmum number of verti-
ces and edges to be removed from the graph in order to disconnect it.

4.3.14. Edge connectivity
Let G be a connected graph. The edge connectivity of G is the minimum number of edges whose

removal results in a disconnected or invial graph. The edge connectivity of a connected graph G is
denoted by L(G) or E(G).

4.3.15. Vertex connectivity

Let G be a connected graph. The vertex connectivity of G is the minimum number of vertices

whose removal results in a disconnected or a trivial graph. The vertex connectivity of a connected graph
1s denoted by £(G) or V(G)

(i) If G 1s a disconnected graph. then A(G) or E(G) = (.

(i) Edge connectivity of a connected graph G with a bridge is 1.

(iif) The complete graph &, cannot be disconnected by removing any number of vertices, but the
removal of n — | vertices results in a trivial graph. Hence k(k,) = n - 1.

(iv) The vertex connectivity of a graph of order atleast there is one if and only if it has a cut
veriex.

(v) Vertex connectivity of a path is one and that of cycle C, (n 2 4) is two.
Problem 4.26.  Find the (i) vertex sets of components
{ii) cut-vertices and (iii) cut-edges of the graph given below.

Fig. 4.62.

Solution. The graph has three components. The vertex set of the components are {g. r}. {s. 1. u.
v, w} and {x, y, z}. The cut vertices of the graph are f and y.
Its cut-edges are gr, st. xy and yz.

Problem 4.27.  Is the directed graph given below strongly connected ?

Fig. 4.63.

Solution. The possible pairs of vertices and the forward and the backward paths between them
are shown below for the given graph.
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Pairs of Vertices Forward path Backward path
(1,2) -2 2-3-1
(1,3) 1-2-3 3
(1.4) [-4 431
(2,3) 23 3-1-2
2,4) 2-3-14 4-3-1-2
3.4) 43 43

Therefore, we see that between every pair of distct vertices of the given graph there exists a
forward as well as backward path, and hence it 1s strongly connected.

Theorem 4.7, Lef v be @ point a connected graph . The following statements are equivalent

1) v iz a cutpoint af

(2) There exist points u and v distinct from v such that v is on every u—w path.

3} There exists a partition of the set aof points V=-{v} into subsets U and W such that for any
points u & U and w e W, the point v is on every u—w path.

Proof. (1) implies (3)

Since v is a cutpoint of G, G—v 15 disconnected and has atleast two components. Form a partition
of W—{v} by letting U consist of the points of one of these components and W the points of the others.

The any two points & € U and w & W lie in different components of G-

Therefore every u—w path in G contains v.

(3) implies (2)

This 15 immediate since (2) is a special case of (3).

(2) imphes (1)

If v is on every path in G joining & and w, then there cannot be a path joining these points in G-v.

Thus G—v 15 disconnected, so v is a cutpoint of G.

Theorem 4.8.  Every non trivial conmected graph has atleast two points which are mot cufpoints.

Proof. Let i and v be points at maximum distance in G, and assume v is a cut point.

Then there is a point w in a different component of G—v than .

Hence v is in every path joining w and w, so d{u, w) > dlu, v) which is impossible.

Therefore v and similarly w are not cut pomnts of G.

Theorem 4.9.  Let x be a fine of g comnected graph . The following statements are equivalent

(1) x iz a bridge of

{2 x is not on any cycle of G

(3} There exist points w and v of 7 such that the line x is on every path joining wand v

{4} These exists a partition of V into subsets U and W such that for any points w & U and w e W,
the line x ix on every path joining u and w

Theorem 4.100 A graph / is the block graph of some graph i and only i every block of H is
complete.

Proof. Let H = B(G), and assume there is a block H, of H which is not complete.

Then there are two points in H, which are non adjacent and lie on a shortest common cycle Z of
length atleast 4.

But the union of the blocks of G comresponding to the poinis of H; which lie on £ is then con-
nected and has no cut point, so it is itself contaimed in a block, contradicting the maximality property of
a block of a graph.

On the otherhand, let H be a given graph in which every block is complete.

From B(H), and then form a new graph G by adding to each point H, of B{(H) 2 number of end
lines equal to the number of points of the block H; which are not cut points of H. Then it 1s casy to see
that B{() is isomorphic to H.
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Theorem 4.11.  Let G be a connected graph with atleast three points. The following statements
are equivalent :

(1) G is a block
(2) Every two points of (r lie on a common cycle
(3) Every point and fine of G lie on a common cycle.
(4) Every two lines of (; lie on a commaon cycle
(5) Criven two points and one fine of G, there is a path joining the points which contains the line.
(6) For every three distinct points of G, there is a path joining any two of them which contains
the third.
(7} For every three distinct points of G, there is a path joining any two of them which does not
contain the third.
Proof. (1) implics (2)
Let u and v be distinct points of G and let U be the set of points different from « which lic on a
cycle containing u.
Since G has atleast three points and no cutpoints, it has no brdges.

Therefore, every point adjacent to u is in U, so U is not empty.

P,
. w Py v
P,
(a)
Fig. 4.64. Pahs in blocks.

Suppose v is not in U. Let w be a point in U for which the distance d{w, v) is minimum.

Let Py, be a shortest w—v path, and let P, and P, be the two u-w paths of a cycle containing u and w
(sec Fig. 4.64(a)).

Since w is not a cutpoint, there is a u-v path P” not containing w (see Fig. 4.64(h)).

Letw” be the point nearest u in P* which is also in Py and let u be the last point of the u—w subpath
of P’ in cither P, or P,. Without loss of generality, we assume o’ is in P,.

Let Q, be the u—w" path consisting of the u—u" subpath of P, and the &/’ subpath of P”.
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Let Q, be the u-w path consisting of P, followed by the w—w" subpath of P Then Q) and Q,
are disjoint u-w" paths. Together they form a cycle, so w" 1s in U. Since w” 15 on a shortest w—v path,
dw', v) < dw, v). This contradicts our choice of w, proving that u and v do lie on a cycle.

(2) mplies (3)

Let u be a pomnt and vw a line of G.

Let = be a cycle contaming u and v. A cycle =* contaming u and vw can be formed as follows.

If w is on = then =" consists of v together with the v—w path of = contaning w.

If w 1s not on = there 15 8 w—u path P not containing v, since otherwise v would be a cutpoint

Letu’ be the first point of P in =. Then " consists of viv followed by the w—u" subpath of P and the
i~ path in = containmng u.

(3) implics (4)

This proof 1s analogous to the preceding one, and the details are omitted.

(4) implics (5)

Any two points of G are meident with one line each, which lie on a cycle by (4).

Hence any two pomts of G lie on a cycle, and we have (2) so also (3).

Let uand v be distinet pomts and x a lme of G.

By statement (3), there are cycles =, contaiming u and x, and =, containing v and x.

Ifvisonz oruisonz,, there is clearly a path joming v and v containing x.

Thus we need only consider the case where v 15 not on z; and u is not on z,.

Begm with u and proceed along =, until reaching the first point w of z,, then take the path on =,
joming w and v which contains x.

Thas walk constitutes a path joining 1 and v that contams x.

(5) implics (6)

Let u, v and w be distinct points of G and let x be any line meident with w. By (5), there 15 a path
joming u and v which contains x and hence must contam w.

(6) implies (7)

Let w, v and w be distinct pomts of G. By statement (6] there 1s a u-w path P containing v. The
u—v subpath of P does not contam w.

(7) implies (1)

By statement (7), for any two pomts u and v, no point lies on every u-v path.

Hence, G must be a block.
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MATCHING THEORY

A matching in a graph is a set of edges wath the property that no vertex is incident with more than
one edge in the set. A vertex which 1s incident with an edge in the set 1s said to be saturated. A matching
is perfect if and only if every vertex is saturated, that is ; if and only if every vertex 15 incident with
precisely one edge of the matching.

Let G = (V, E) be a bipartite graph with V partitioned as X u Y. (each edge of E has the form
fx,y}withxe Xandye Y).

(/) A matching in G is a subset of E such that no two edges share a common vertex in X or Y.

{if) A complete matching of X into Y 15 a matching in G such that every x & X is the end pomt of
an edge.

Let G =(V, E) be bipartite with V partitioned as X u Y. A maximal matching in G 15 one that
malches as many vertices in X as possible with the vertices in Y.

Let G = (V, E) be a bipartite graph where V is partitioned as X U Y. If A £ X, then 8(A) = |
A |-|R{A)| is called the deficiency of A. The deficiency of graph G, denoted 8(G), is given by
8(G) = max [S(A)VA £ X].

For example, in the graph shown on the left in Fig. (4.85)

(i) the single edge br 15 a matching which saturates b and ¢, but neither a nor d ;

(if) the set {he, bd} 15 not a matching because vertex b belongs to two edges ;

{iii) the set {ah, cd} 15 a perfect matching.

i;;EfiT ﬁﬁjﬁgzgéiffihhh
& @) d Vg Wy &) Wy Vg

Fig. 4.85.

Edge set {ah, od} is a perfect matching in the graph on the lefi. In the graph on the nght, edge set
{uey, ¥, 2svy, iy | 15 @ matching which is not perfect.

Mote that, if a matching is perfect, the vertices of the graph can be partiioned into two sets of
equal size and the edges of the matching provide a one-to-one commespondence between these sets. In the
graph on the left in Fig. (4.85), for instance, the edges of the perfect matching {ab, cd} establish a one-
to-one correspondence between {a, ¢} and {b,d} :a = b c — d.

In the graph on the nght of Fig. (4.85).

(i) the set of edges {w, vy, usvy, wyv,} 15 a matching which is not perfect but which saturates
vy = {uy, i, iy},

(if) mo matching can saturate va = {v, 2, ¥3, ¥y} since such a matching would require four edges
but then at least one u; would be incident with more than one edge.

In the figure to the nght, if X = {a,, s, wy}, then A(X) = vy, vy}

Since | X | £ | A(X) |, the workers in X cannot all find jobs for which they are qualified. There is
no matching in this graph which saturates V.

u, 1] Uy Ly v,
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The bipartite graph shown in Fig. (4.87) has no complete matching. Any attempt to construct
such a matchmg must mclude {x. y,} and either {x,. v,} or {x;, »}.

If {xy. yy} 15 included, there is no match for x,. Likewise, if {x,, ¥} 15 included, we are not able
to match x..

If A = {x;, x, xy} = X, then R{A) = {y. vy}. With | A |=3>2=|R(A) [, it follows that no
complete matching can exist.

X v
LN ¥
L. ¥
L ¥a
Hy "
Yo

4.7 HALL'S MARRIAGE THEOREM (4.20)

If (s is a bipartite graph with bipartition sets V; and V. then there exists a matching which
saturates V; if and only if, for every subset X af V,, | X | | A7) |.

Proof. It remaims to prove that the given condition 1s sufficient, so we assume that | X | <] A(X) | for
all subsets X of V.

In particular, this means that every vertex in V', 15 joined to at least one vertex in V', and also that
| Vi =] Vsl.

Assume that there is no matching which saturates all vertices of V. We derive a contradiction.

We turn G into a directed network in exactly the same manner as with the job assignment

application.

Specifically, we adjoin two vertices 5 and ¢ to G and draw directed arcs from s to each vertex in
V, and from each vertex in V, to .

Assign a weight of | to each of these new arcs. Orient each edge of G from its vertex in V, 1o its
vertex i Vs, and assign a large integer | > |V, | to each of these edges.

As noted before, there is a one-to-one correspondence between matchings of G and (s, £)-fllows
in this network, and the value of the flow equals the number of edges in the matching.

Since we are assuming that there is no matching which saturates V. it follows that every
flow has value less than | V| | and hence by Max-Flow-Mincut theorem, there exists an (s, f)-cut

I8 THise §re T
Whose capacity 15 less than |V, |.
Now every onginal edge of G has been given a weight larger than | V| |.
Since the capacity of our cut is less than |V, |, no edge of G can join a vertex of 5 to a vertex of T.
Letting X =V m §, we have A(X) 5.

Since each vertex in A(X) 15 joined to ¢ € T, each such vertex contnibutes | to the capacity of
the cut.
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Similarly, since s is joined to cach vertex in V,\X, each such vertex contnibutes [. Since

| X | = | A(X) |, we have a contradiction to the fact that the capacity is less than | V, |.

Problem 4.39.  Let (¢ be a bipartite graph with bipartition sets v, v, in which every vertex has
the same degree k. Show that (r has @ maiching which saturates vy.

Solution. Let X be any subset of v, and let A{X) be as defined earlier.

We count the number of edges joining vertices of X to vertices of A(X).

On the one hand (thinking of X), this number 15 k | X |.

On the otherhand {thinking of A{X)), this number 15 atmost & | A(X) | since & | A(X) | 15 the total
degree of all vertices m A(X).

Hence, k| X |2 k| A(X) |, 50| X |2 AX)|.
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In this section we will study the question of whether a graph can be drawn in the plane without
edges crossing. In particular, we will answer the houses-and-utilities problem. There are always many
ways to represent a graph. When is it possible to find atleast one way to represent this graph in a plane
without any edges crossing. Consider the problem of joining three houses to each of three separate
utilities. as shown in figure below. Is it possible to join these houses and utilities so that none of the
connections cross ? This problem can be modeled using the complete bipartite graph K ;. The original
question can be rephrased as : can K; 3 be drawn in the plane so that no two of its edges cross ?

Fig. 2.1. Three houses and three uftilities.

21 COMBINATORIAL AND GEOMETRIC GRAPHS (REPRESENTATION)

An abstract graph G can be defined as G = (V. E., W) where the set V consists of the five objects
named a. b, c. d and e. that is, V= {a. b, ¢, d, ¢} and the set E consists of seven objects (none of which

is in set V) named 1. 2. 3. 4. 5. 6 and 7. that is.
E=1{1.2.3.4.5.6.7}

and the relationship between the two sets is defined by the mapping ¥, which consists of combinatorial

representation of the graph.

F 1——(a.0)
2——= (e d
53— (a, d)

Y= 4—>(a b —— Combinatorial representation of a graph

5— (b d
6—(d e)

7 (b, e

Here. the symbol 1 —— (a. ¢) says that object 1 from set E is mapped onto the (unordered) pair

(a. ¢) of objects from set V.

It can be represented by means of geometric figure as shown below. It is true that graph can be

represented by means of such configuration.

Fig. 2.2. Geometric representation of a graph.
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2.2 PLANAR GRAPHS

A graph G is said to be planar if there exists some geometric representation of G which can be
drawn on a plane such that no two of'its edges intersect. The points of intersection are called crossovers.

A graph that cannot be drawn on a plane without a crossover between its edges crossing is called
a plane graph. The graphs shown in Figure 2.3(«a) and are planar graphs.

(a) (b)

Fig. 2.3.

A drawing of a geometric representation of a graph on any surface such that no edges mtersect is
called embedding.

Note that if a graph G has been drawn with crossing edges, this does not mean that G 1s non
planar, there may be another way to draw the graph without crossovers. Thus to declare that a graph G

is non planar. We have fo show that all possible geometric representations of G none can be embedded
in a plane.

Equivalently, a graph G is planar is there if there exists a graph isomorphic to G that is embedded
in a plane, otherwise G is non planar.

For example, the graph in Figure 2.4(«) is apparently non planar. However, the graph can be

redrawn as shown in Figure (2.4)(b) so that edges don’t cross. it is a planar graph, though its appearance
is non coplanar.

() (5

Fig. 2.4.

2.3 KURATOWSKI'S GRAPHS

For this we discuss two specific non-planar graphs. which are of fundamental importance, these
are called Kuratowski’s graphs. The complete graph with 5 vertices is the first of the two graphs of
Kuratowski. The second is a regular, connected graph with 6 vertices and 9 edges.

Fig. 2.5.
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Observations
(i) Both are regular graphs
(77) Both are non-planar graphs
(7ii) Removal of one vertex or one edge makes the graph planar

(i) (Kuratowski’s) first graph is non-planar graph with smallest number of vertices and
(Kuratowski’s) second graph is non-planar graph with smallest number of edges. Thus
both are simplest non-planar graphs.

The first and second graphs of Kuratowski are represented as Ky and K; ;. The letter K
being for Kuratowski (a polish mathematician).

2.4 HOMEOMORPHIC GRAPHS

Two graphs are said to be homeomorphic if and only if each can be obtained from the same graph
by adding vertices (necessarily of degree 2) to edges.

The graphs G, and G, in Figure (2.6) are homeomorphic since both are obtainable from the graph
G in that figure by adding a vertex to one of its edges.

SHags

Fig. 2.6. Two homeomorphic graphs obtained from G by adding vertices to edges.

In Figure 2.7. we show two homeomorphic graphs, each obtained from K; by adding vertices to
edges of K (In each case. the vertices of K; are shown with solid dots).

s

Fig. 2.7. Two homeomorphic graphs obtained from K-.

2,5 REGION

A plane representation of a graph divides the plane into regions (also called windows. faces. or
meshes) as shown in figure below. A region is characterized by the set of edges (or the set of vertices)
forming its boundary.

Note that a region is not defined in a non-planar graph or even in a planar graph not embedded in
a plane.
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Fig. 2.8. Plane representation (the numbers stand for regions).

For example. the geometric graph in figure below does not have regions.

2.6 MAXIMAL PLANAR GRAPHS

SMT1505

A planar graph is maximal planar if no edge can be added without loosing planarity. Thus in any
maximal planar graph with p = 3 vertices. the boundary of every region of G is a friangle for this
maximal planar graphs (or plane graphs) are also refer to as triangulated planar graph (or plane graph).

2.7 SUBDIVISION GRAPHS

A subdivision of a graph is a graph obtained by inserting vertices (of degree 2) into the edges of G.
For the graph G of the figure below, the graph H is a subdivision of G. while F is not a subdivision of G.

Fig. 2.10.

2.8 INNER VERTEX SET

A set of vertices of a planar graph G is called an inner vertex set I(G) of G. If G can be drawn on
the plane in such a way that each vertex of I(G) lies only on the interior region and I(G) contains the
minimum possible vertices of G. The number of vertices #(G) of I(G) is said to be the inner vertex

number if they lie in interior region of G.

K- A i(K)=1, K3 @ Ky 3)=1

Fig. 2.11.

For any cycle C,. i(C,) = 0.
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29 OUTER PLANAR GRAPHS

A planar graph is said to be outer planar if 7(G) = 0. For example. cycles. trees, K, — x.

2.9.1. Maximal outer planar graph

An outer planar graph G is maximal outer planar if no edge can be added without losing outer
planarity.

For example,

<
T

2.9.2. Minimally non-outer planar graphs

A planar graph G is said to be minimally non outer planar if /(G) = 1

For example, Kj: A K, 3: @

210 CROSSING NUMBER

The crossing number C(G) of a graph G is the minimum number of crossing of its edges among
all drawings of G in the plane.

A graph is planar if and only if C(G) = 0. Since K, is planar C(K4) = 0 for p < 4. On the other
hand C(Ks) = 1. Also K; 3 is non planar and can be drawn with one crossing.
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2.12 EULER’S FORMULA

The basic results about planar graph known as Euler’s formula is the basic computational tools
for planar graph.

Theorem 2.1. Euler’s Formula

If a connected planar graph G has n vertices, e edges and 1 region, thenn —e + 1 = 2.

Proof. We prove the theorem by induction on e, number of edges of G.

Basis of induction : If ¢ = 0 then G must have just one vertex.
i.e.,, n=1 and one infinite region. i.e., r =1

Thenn—e+r=1-0+1=2.

If ¢ = 1 (though it is not necessary). then the number of vertices of G is either 1 or 2. the first
possibility of occurring when the edge is a loop.

bel These two possibilities give rise to two regions and one region respectively. as shown in Figure

clOW,

In the case of loop. w—e+r=1-1+2=2and in case of non-loop. —e+r=2-1+1=2.
Hence the result is true.

Induction hypothesis :
Now. we suppose that the result is true for any connected plane graph G with ¢ — 1 edges.

Induction step :
We add one new edge K to G to form a connected supergraph of G which is denoted by G + K.
There are following three possibilities.
(/) K s aloop. m which case a new region bounded by the loop is created but the number of
vertices remains unchanged.
(il) K joins two distinct vertices of G. in which case one of the region of G is split into two. so
that number of regions is increased by 1. but the number of vertices remains unchanged.
(7ii7) K is incident with only one vertex of G on which case another vertex must be added.
increasing the number of vertices by one. but leaving the number of regions unchanged.
If let ", €' and 77 denote the number of vertices. edges and regions in G and ». e and 7 denote the
same in G + K. Then
Incase (N n—e+r=n"—(+ 1D+ +1)=n" - +7.
Incase (iyn—e+r=n"—(+ 1)+ +1)=n"—-¢e"+1’
Incase (iiiyn—e+r=n+1)=(+1)+i'=n"-& +/".
But by our induction hypothesis. n" — &’ + 77 = 2.
Thus in each case n —e +r=2.
Now any plane connected graph with e edges is of the form G + K. for some connected graph G
with ¢ — 1 edges and a new edge K.
Hence by mathematical induction the formula is true for all plane graphs.
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Corollary (1)

If a plane graph has K components then# —e+r=K + 1.

The result follows on applying Euler’s formula to each component separately. remembering not
to count the infinite region more than once.

Corollary (2)

If G is connected simple planar graph with # (= 3) vertices and e edges, then e < 3n — 6.

Proof. Each region is bounded by atleast three edges (since the graphs discussed here are
simple graphs, no multiple edges that could produce regions of degree 2 or loops that could produce
regions of degree 1, are permitted) and edges belong to exactly two regions.

2ez3r

If we combine this with Euler’s formula. 7 — e + 7= 2. we get 3r = 6 — 3n + 3¢ < 2¢ which is

equivalent to ¢ < 31 — 6.

Corollary (3)

If G is connected simple planar graph with n (= 3) vertices and e edges and no circuits of length
3.thene<2n-4.

Proof. If the graph is planar. then the degree of each region is atleast 4.

Hengce the total number of edges around all the regions is atleast 47

Since every edge borders two regions, the total number of edges around all the regions is 2e. so
we established that 2e = 47, which is equivalent to 2r < e.

If we combine this with Euler’s formula # — e + 7= 2, we get

2r=4-2n+2e<e

which is equivalent to e < 2n — 4.

Problem
Show that K, is a planar graph for n <4 and non-planar for n 2 5.

Solution. A K, graph can be drawn in the way as shown in the Figure (2.18). This does not
contain any false crossing of edges.

Thus. it is a planar graph.

Graphs K;. K, and K; are by construction a planar graph, since they do not contain a false
crossing of edges.

K is shown in the Figure (2.19)

Fig. 2.18. Fig. 2.19.
It is not possible to draw this graph on a 2-dimentional plane without false crossing of edges.
Whatever way we adopt. at least one of the edges, say e. must cross the other for graph to be completed.

Hence K; is not a planar graph.
For any » = 5. K,, must contain a subgraph isomorphic to Ks.

Since K is not planar, any graph containing Ks as its one of the subgraph cannot be planar.

7
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Problem

Show that K; ; is a non-planar graph.

Solution. Graph K; 5 is shown in the Figure (2.20) below.

A B c
D E F
Fig. 2.20.

It is not possible to draw this graph such that there is no false crossing of edges. This is classic
problem of designing direct lanes without intersection between any two houses. for three houses on
each side of a road.

In this graph there exists an edge, say e, that cannot be drawn without crossing another edge.
Hence K; 5 is a non-planar graph.

It is easy to determine that the chromatic number of this graph is 2.
Theorem 2.2.  Sum of the degrees of all regions in a map is equal to twice the number of edges
in the corresponding graph.

Proof. As discussed earlier, a map can be drawn as a graph. where regions of the map is
denoted by vertices in the graph and adjoining regions are connected by edges.

Degree of a region in a map is defined as the number of adjoining region.
Thus. degree of a region in a map 1s equal to the degree of the corresponding vertices in the graph.

We know that the sum of the degrees of all vertices in a graph is equal to the twice the number of
edges in the graph.

Therefore, we have 2e = Zdeg(R,).
Problem 2.9. Prove that Ky and K, , are planar.
Solution. In K,. we have v=4 and e = 6
Obviously, 6 £3*4-6=6
Thus this relation is satisfied for K.
ForK, . we have v=4 and e = 4.
Again in this case, the relation ¢<3v-6
Le., 4<3%4-6=61s satisfied.

Hence both Ky and K, , are planar.
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Theorem 2.3, KURATOWSKI'S
K; 5 and K; ave non-planar.
Proof. Suppose first that K 5 is planar.

Since K ;hasacyclew—v—w—x—y -2 - uof length 6, any plane drawing must confain
this cycle drawn in the form of hexagon. as in Figure (2.23).

Fig. 223, Fig. 2.4,

Now the edge 1z must Lie either wholly inside the hexagon or wholly outside 1t, We deal with the
case 1n which 17 lies mside the hexagon, the other case is similar,

Since the edge ix must not cross the edge wz, 1t must lie outside the hexagon ; the situation is now
as m Figure (2.24).

It 15 then impossible to draw the edge vv. as it would cross either ux or wz.

This gives the required contradiction.

Now suppose that K 1s planar

Since Ks hasa cycle v = w— 1=y - 2= vof length 5, any plane drawing must contain this
cycle drawn m the form of a pentagon as in Figure (2.25).
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Fig. 2.25. Fig. 2.26.

Now the edge 1z must lie either wholly inside the pentagon or wholly outside it.

We deal with the case in which w2 lies inside the pentagon. the other case is similar.

Since the edges vx and vv do not cross the edge vz, they must both lie outside the pentagon. the
situation is now as in Figure (2.26)

But the edge xz cannot cross the edge vy and so must lie inside the pentagon.

Similarly the edge wy must lie inside the pentagon, and the edges wy and xz must then cross.

This gives the required contradiction.

Theorem 2.4. Let G be a simple connected planar (p, q)-graph having at least K edges in a
boundary of each region. Then (k—2)q < k(p - 2).

Proof : Every edge on the boundary of G, lies in the boundaries of exactly two regions of G.
Further G may have some pendent edges which do not lie in a boundary of any region of G.
Thus, sum of lengths of all boundaries of G is less than twice the number of edges of G.

ie., kr<2q (1)
But, G is a connected graph, therefore by Euler’s formula
Wehave r=2+¢g-p (2)
Substituting (2) in (1), we get

K2+q-p)<2q

= (k—2)g<kp-2).

Problem 2.13. Suppose G is a graph with 1000 vertices and 3000 edges. Is G planar ?
Solution. A graph G is said to be planar if it satisfies the mequality. ie, ¢<3p-6
Here P =1000. ¢ =3000 then

3000€3p -6
ie., 3000 £ 3000 - 6
or 3000 £2994  which is impossible.

Hence the given graph is not a planar.

10
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Problem 2.14. A4 connected graph has nine vertices having degrees 2, 2, 2,3, 3, 3, 4, 4 and 5.
How many edges are there ? How many faces are there ?

Solution. By Handshaking lemma.

H
Zdegr‘,-:Zr_f
i=1

ie., 20=2+2+2+3+3+3+4+4+5=28
= g=24
Now by Euler’s formula p—-g+r=2 or 9-14+r=2 = 7

1
-1

Hence there are 14 edges and 7 regions in the graph.

2.12.2. Kuratowski’s Theorem
A graph is planar if and only if it has no subgraph homeomorphic to K; or K; 5.

Proof. LetH be the inner piece guaranteeed by lemma (2) which is both uy — v separating and
uy — vy separating. In addition, let 1wy, wy’". wy and 1w, be vertices at which H meets Z(u. vy). Z(vy. 1p)
Z(uy. vy) and Z(v,. u;) respectively.

There are now four cases to consider. depending on the relative position on Z of these four
vertices.

Case 1. One of the vertices 1w, and w;" is on Z(uy. v) and the other is on Z(vy. up).

We can then take. say. 1wy =w; andw, =1,", in which case G contains a subgraph homeomorphic
to K; 5 as indicated in Figure (2.44)(a) in which the two sets of vertices are indicated by open and
closed dots.

Case 2. Both vertices w; and w;” are on either Z(u. vg) or Z(vy, ug).

Without loss of generality we assume the first situation. There are two possibilities : either
vy #wy or vy =y

If v; # 11y, then G contains a subgraph homeomorphic to K; ; as shown in Figure (2.44)( or ¢).
dependending on whether ;" lies on Z(u;. v;) or Z(vy, u;) respectively.

If v; = wy (see Figure 2.44), then H contains a vertex 7 from which there exist disjoint paths to
wy. ;" and vy, all of whose vertices (except wy. ;" and v;) belong to H.

In this case also. G contains a subgraph homeomorphic to Kj ;.

Case 3. w; = vy and ;" # uy,

Without loss of generality. letwy” be on Z(uy. v). Once again G contains a subgraph homeomorphic
to K3 3-

If 1" is on (1. ). then G has a subgraph K; 5 as shown in Figure 2.44(e).

If, on the other hand, wy" is on Z(vy, 1), there is a K; 5 as indicated in Figure 2.44().
This Figure is easily modified to show G contains K 5 if w," = v,.

Case 4. 1wy = vy and wy" = uy,

Here we assume 1w, = 2; and wy" = v,. for otherwise we are in a situation covered by one of the
first 3 cases.

We distinguish between two subcases.
Let P, be a shortest path in H from u; to v,. and let P; be such a path from u; to v,
The paths P and P; must intersect.

If Py and P, have more than one vertex in common. then G contains a subgraph homeomorphic to
K; 3 as shown in Figure 2.44(g).

Otherwise, G contains a subgraph homeomorphic to K5 as in Figure 2.44(h).

Since these are all possible cases. the theorem has been proved.

11
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213 DETECTION OF PLANARITY OF A GRAPH :

If a given graph G is planar or non planar is an important problem. We must have some simple
and efficient criterion. We take the following simplifying steps :

Elementary Reduction :

Step 1: Since a disconnected graph is planar if and only if each of its components is planar, we
need consider only one component at a time. Also. a separable graph 1s planar if and only
if each of its blocks is planar. Therefore, for the given arbitrary graph G, determine the set.

G={G,.Gy. ..... Gy}
where each G; 1s a non separable block of G.
Then we have to test each G; for planarity.
Step 2 : Since addition or removal of self-loops does not affect planarity. remove all self-loops.

Step 3 : Since parallel edges also do not affect planarity. eliminate edges in parallel by removing
all but one edge between every pair of vertices.

Step 4 : Elimination of a vertex of degree two by merging two edges in series does not affect
planarity. Therefore, eliminate all edges in series.

Repeated application of step 3 and 4 will usually reduce a graph drastically.
For example, Figure (2.46) illustrates the series-parallel reduction of the graph of Figure (2.45).

Let the non separable connected graph G, be reduced to a new graph H; after the repeated appli-
cation of step 3 and 4. What will graph H; look like ?

Graph H; 1s
1. A single edge. or
2. A complete graph of four vertices, or

3. A non separable. simple graph withn =25 and e > 7.

12
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(252)

.

=24
L
=1 gy
8g (5152:' =2

(8) Series Reduced {b) Parzlel Reguced
(&27)
=5 /
(c) Serles Raduced (d) Farallel Reduced

Problem

Carrvout the elementary reduction process for the following graph :

By
Sa
- 0
g
[+

Fig. 2.55.

Solution. The given graph G 1s a single non separable block. Therefore, the set A of step 1
contains only G. As per step 2. we have to remove the self loops. In the graph. there is one self-loop
consisting of the edge ey, Let us remove if.

As per step 3, we have to remove one of the two parallel edges from each vertex pair having such
edges. In the given graph. e,. eg are parallel edges. Let us remove eg from the graph.

The graph left-out after the first three steps is as shown below :

13
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-

As per step 4. we have to eliminate the vertices of degree 2 by merging the edges incident on
these vertices.

Thus. we merge (7) the edges ¢; and e, into an edge e;, (say) and (7/) the edges e4 and e, into an
edge e (say).

The resulting graph will be as shown below :

2y
£y
S

Fig. 2.57.

As per step 3. let us remove one of the parallel edges es and e, and one of the parallel edges e;
and e;;. The graph got by removing e;; and e;; will be as shown below :

B4
=5 ; =0

As per step 4, we merge the edges e; and e4 into an edge e, (say) to get the following graph.

el?
&

Fig. 2.59.

As per step 3. we remove one of the two parallel edges. say e;,. Thus. we get the following

graph :
\

This graph is the final graph obtained by the process of elementary reduction applied to the graph
i Figure (1). This final graph which is a single edge is evidently a planar graph.

Therefore, the graph in Figure (1) is also planar.
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2.14.1. Uniqueness of the dual

Given a planar graph G, we can construct more than one geometric dual of G. All the duals so
constructed have one important property. This property is stated in the following result :

All geometric duals of a planar graph G are 2-isomorphic. and every graph 2-isomorphic to a
geometric dual of G is also a geometric dual of G.
2.14.2. Double dual

Given a planar graph G. suppose we construct its geometric dual G* and the geometric dual G**
of G*.

Then G** is called a double geometric dual of G.

If G is a planar graph, then G** and G are 2-isomorphic.

2.14.3. Self-dual graphs

A planar graph G is said to be self-dual if G is isomorphic to its geometric dual G*, i.e., if
G = G*.

Consider the complete graph K, of four vertices show in Figure (2.61)(a). Its geometric dual K *
can be constructed. This is shown in Figure (2.61)(b).

2.14.4. Dual of a subgraph

Let G be a planar graph and G* be its geometric dual. Let e be an edge in G and e* be its dual in
G*. Consider the subgraph G — e got by deleting e from G. Then. the geometric dual of G — e can be
constructed as explained in the two possible cases.

Case (1) :

Suppose ¢ is on a boundary common to two regions in G.

Then the removal of e from G will merge these two regions into one.

Then the two corresponding vertices in G* get merged into one. and the edge e* gets deleted
from G*.

Thus, in this case. the dual of G — e can be obtained from G* by deleting the edge e* and then
fusing the two end vertices of e* in G* — e*.

Case (2) :

Suppose ¢ is not on a boundary common to two regions in G.

Then e is a pendant edge and e* is a self-loop.

The dual of G — e 1s now the same as G* — e*.

Thus. the geometric dual of G — e can be constructed for all choices of the edge e of G.

Since every subgraph H of a graph is of the form G — s where s is a set edges of G.

2.14.5. Dual of a homeomorphic graph
Let G be a planar graph and G* be its geometric dual.
Let ¢ be an edge in G and e* be its dual in G*.

Suppose we create an additional vertex in G by introducing a vertex of degree 2 in the edge e.
This will simply add an edge parallel to e* in G*. If we merge two edges in series in G then one of the
corresponding parallel edges in G* will be eliminated. The dual of any graph homeomorphic to G can be
obtained from G*.

15
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2.14.7. Combinatorial dual

Given two planar graphs G; and G,. we say that they are combinatorial duals of each other if
there is a one-to-one correspondence between the edges of G; and G, such that if H; is any subgraph of
G, and H, is the corresponding subgraph of G,. then

Rank of (G, — H,) = Rank of G, — Nullity of H;

G, G,

Consider the graph G; and G, shown in Figure (2.62) above, and their subgraphs H; and H,
shown in Figure (2.64)(a. D).

H1 Hz Gz - Hz
() (b ()

rag. s
Note that there is one-to-one correspondence between the edges of G, and G, and that the subgraphs
H, and H, correspond to each other.
The graph of G, — H, is shown in Figure (2.64)(c).
This graph is disconnected and has two components.
Rankof G, =5-1=4, RankofH;=4-1=3
Nullityof Hy=4-3=1
Rank of (G, — H,) =5-2=3.
=  Rank of (G, — H,) = 3 = Rank of G, — Nullity of H;.

Hence. G, and G, are combinatorial duals of each other.

Theorem 2.23. 4 graph has a dual if and only if it is planar.
Proof. Suppose that a graph G is planar.

Then G has a geometric dual in G*.

Since G* is a geometric dual. it is a dual.

Thus G has a dual.

Conversely. suppose G has a dual.

Assume that G is non planar. Then by Kuratowski’s theorem. G confains K5 and K5 ; or a graph
homeomorphic to either of these as a subgraph.

But K5 and K5 5 have no duals and therefore a graph homeomorphic fo either of these also has no
dual.

Thus. G contains a subgraph which has no dual.
Hence G has no dual. This is a contradiction.

Hence G is planar if it has a dual.

16
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2.15 GRAPH COLORING
Coloring problem

Suppose that you are given a graph G with n vertices and are asked to paint its vertices such that
no two adjacent vertices have the same color. What is the minimum number of colors that you would
require. This constitutes a coloring problem.

2.15.1. Partitioning problem
Having painted the vertices, you can group them into different sets—one set consisting of all red
vertices. another of blue, and so forth. This is a partitioning problem.

For example. finding a spanning tree in a connected graph is equivalent to partitioning the edges
mnto two sets—one set consisting of the edges included in the spanning tree, and the other consisting of
the remaining edges. Identification of a Hamiltonian circuit (if it exists) is another partitioning of set of
edges in a given graph.

2.15.2. Properly coloring of a graph

Painting all the vertices of a graph with colours such that no two adjacent vertices have the same
colour is called the proper colouring (or simply colouring) of a graph.

A graph in which every vertex has been assigned a colour according to a proper colouring is
called a properly coloured graph.

Usually a given graph can be properly coloured in many different ways. Figure (2.69)(a) shows
three different proper colouring of a graph.

v, @ Rad v, @ Had v, @ Rer

v, @ Blug
v, @ Blug v, @ Blus

\E Vs Va Vs Vg Vs
Grgan Yallow Grzgn Yellow Yallow Yallow
V4 Pink

4 Fin V4 Red

(a) (& v, Red

(c)

The K-colourings of the graph G is a colouring of graph G using K-colouss. If the graph G has
colouring, then the graph G 1s said to be K-colourable.

17



SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY GRAPH THEORY SMT1505

2.15.3. Chromatic number
A graph G is said to be K-colourable if we can properly colour it with K (number of) colours.
A graph G which is n-colourable but not (K — 1)-colourable is called a K-chromatic graph.

In other words. a K-chromatic graph is a graph that can be properly coloured with K-colours but
not with less than K colours.

If a graph G is K-chromatic. then K is called chromatic number of the graph G. Thus the
chromatic number of a graph is the smallest number of colours with which the graph can be properly
coloured.The chromatic number of a graph G is usually denoted by %(G).

We list a few rules that may be helpful :

1. y(G) 2|V A%

2. A triangle always requires three colours, that is ¥(K;) = 3 ; more generally. ¥(K,) = n. where

K, is the complete graph on » vertices.

. where is the number of vertices of G.

3. If some subgraph of G requires K colors then ¥(G) 2 K.

4. If degree (v) = d. then atmost d colours are required to colour the vertices adjacent to v.

Lh

¥(G) = maximum {y(C)/C is a connected component of G}
Every K-chromatic graph has at least K vertices v such that degree (v) 2 k- 1.
For any graph G. ¥(G) £ 1 + A(G). where A(G) is the largest degree of any vertex of G.

ol S

When building a K-colouring of a graph G. we may delete all vertices of degree less than K
(along with their incident edges).

In general. when attempting to build a K-colouring of a graph. it is desirable to start by K-
colouring a complete subgraph of K vertices and then successively finding vertics adjacent to
K — 1 different colours, thereby forcing the color choice of such vertices.

9. These are equivalent :
(i) A graph G is 2-colourable (if) G 1s bipartite
(7ii) Every cycle of G has even length.

. . \Y
10. If 8(G) is the minimum degree of any vertex of G, then ¥(G) 2 :T — 8(G) where | V

is the

number of vertices of G.

2.16 CHROMATIC POLYNOMIAL

A given graph G of »n vertices can be properly coloured in many different ways using a suffi-
ciently large number of colours. This property of a graph is expressed elegantly by means of a polyno-
mial. This polynomial is called the chromatic polynomial of G.

The value of the chromatic polynomial P, (A) of a graph with 7 vertices gives the number of ways
of properly colouring the graph, using A of fewer colours. Let C; be the different ways of properly

A
colouring G using exactly 7 different colours. Since 7 colours can be chosen out of A colours in [
i

different ways. there are c; [ ] ] different ways of properly colouring G using exactly 7 colours out of A
i

colours.
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Since 7 can be any positive integer from 1 to # (it 1s not possible to use more than » colours on »
vertices). the chromatic polynomial is a sum of these terms. that is.

n A
P, (k)= EC;( ]
i=1

o ke, Mo
1!

+c, MA—1(h—2) |
21 3!

AMA=Dh=2) .. (h=n+1)

H

+C

Each C; has to be evaluated individually for the given graph.

For example. any graph with even one edge requires at least two colours for proper colouring.
and therefore C; = 0.

A graph with » vertices and using » different colours can be properly coloured i 1 ! ways.
that is. C,=n!

Problem 2.44. Find the chromatic polvnomial of the graph given in Figure (2.70).

Va

Va

V4
Fig. 2.70. A 3-chromatic graph.

MA -1 AA-D(A-2
Solution. P5(A) = C,A + C, (31 )_C-"%

A =D)AL —2)(A —3) A =)A= 2)(h—3)(A —4)
S 41 *+Cs 51

Since the graph in Figure 2.70 has a triangle, it will require at least three different colours for
proper colourings.

Therefore, C;=C,=0 and C;=35!

Moreover, to evaluate C;. suppose that we have three colours x. y and =.

These three colours can be assigned properly fo vertices vy, v, amd vy in 3 ! = 6 different ways.

Having done that, we have no more choices left. because vertex v5 must have the same colour as
vy and v, must have the same colour as v,.

Therefore. C;=6.

Similarly, with four colours. vy. v, and v3 can be properly coloured in 4 + 6 = 24 different ways.
The fourth colour can be assigned to v, or vs. thus providing two choices.

The fifth vertex provides no additional choice.

Therefore, Cy=24 + 2 = 48.

Substituting these coefficients in P5(A). we get. for the graph in Figure (2.70).
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Ps(A)=Ah—1)(A—2) + 2AA - D)(A = 2)(A—3) + AMA — 1)}(A - 2)(A - 3)(A—4)
=MA-DA-2A2=5L+7)
The presence of factors A — 1 and A — 2 indicates that G is at least 3-chromatic.

Problem 2.45. Find the chromatic polvnomial and chromatic number for the graph K; ;.

Solution. Chromatic polynomial for K5 5 is given by A(A — 1.

Thus chromatic number of this graph is 2.

Since A(A—1)° > 0 first when A = 2.

Here. only two distinct colours are required to colour Kj ;.

The vertices @. b and ¢ may have one colours. as they are not adjacent.

Similarly. vertices d. e and f can be coloured in proper way using one colour.

But a vertex from {a. b. ¢} and a vertex from {d. e. f} both cannot have the same colour.

In fact every chromatic number of any bipartite graph is always 2.
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