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Introduction

“Mathematics is the Queen of the Sciences and Number Theory is the Queen of
Mathematics” - Gauss.

Mechanics is a branch of Science which deals with the action of forces on bodies. Mechanics
has two branches called Statics and Dynamics.

Statics is the branch of Mechanics which deals with bodies remain at rest under the influence
of forces.

Dynamics is the branch of Mechanics which deals with bodies in motion under the action of
forces.

Definitions:
Space: The region where various events take place is called a space.

Body: A portion of a matter is called a body.
Rigid body: A body consists of innumerable particles in which the distance between any two
particles remains the same in all positions of the body is called a rigid body.

Particle: A particle is a body which is very small whose position at any time coincides with a
point.

Motion: If a body changes its position under the action of forces, then it is said to be in
motion.

Path of a particle: It is the curve joining the different positions of the particle in space while
in motion.

Speed: The rate at which the body describes its path. It is a scalar quantity.

Displacement (vector quantity): It is the change in the positions of a particle in a certain
interval.
Velocity (vector quantity): It is the rate of change of displacement.

Acceleration (vector quantity): It is the rate of change of velocity.

Equilibrium: A body at rest under the action of any number of forces on it is said to be in
equilibrium.

Equilibrium of two forces

Qe > P

If two forces P, Q act on a body such that they have equal magnitude, opposite directions,
same line of action then they are in equilibrium.

Force (vector): Force is any cause which produces or tends to produce a change in the
existing state of rest of a body or of its uniform motion in a straight line. Force is represented
by a straight line (through the point of application) which has both magnitude and direction.

Types of forces: Weight, attraction, repulsion, tension, thrust, friction etc.
By Newton’s third law, action and reaction are always equal and opposite.



Directions of Normal Reaction ‘R’ at the point of contact.

1. When arod AB is in contact with a

R
smooth plane, R is perpendicular to the B
plane at the point of contact A. od

Smooth A Plane

2. When arod AB is resting on a R
smooth peg P, R is perpendicular to
the rod at the point of contact P. %5’9
A

3. When arod AB is resting on a
smooth sphere, R is normal to the

sphere at the point of contact C.

4. When a rod AB is resting on
the rim of a hemisphere, with

R
B
C
A
R1
one end A in contact with the R
inner surface and C in contact B
with the rim. Then the normal
reactions R at A is normal to

the spherical surface and passes

through the centre O, Ry at C is
perpendicular to the rod.

Regular polygon is a polygon with equal sides. Its vertices lie on a

circle.



UNIT |
Forces Acting at a Point

Introduction

Forces are represented by straight lines with magnitude and direction. Forces acting on a
rigid body may be represented by straight lines with magnitude and direction passing through the

same point and we say the forces are acting at a point. If P, P, ,P5........ are the forces acting

on a rigid body it is easy to find a single force whose effect is same as the combined effect of
P,P,P . Then the single force is called the resultant. P;,P,,P; ..... are called the
components of the resultant. In this section we study some theorems and methods to find the
resultant of two or more forces acting at a point.
1.1 Parallelogram law of forces (Fundamental theorem in statics)

If two forces acting at a point be represented in magnitude and direction by the sides of a
parallelogram drawn from the point, their resultant is represented both in magnitude and
direction by the diagonal of the parallelogram drawn through that point.

D C
Q
— —> —>
AB+ AD=A
A P B ie)P+Q=R
The resultant of two forces acting at a point
D C
R
Q
¢ R a [
A P B E

Let the two forces P and Q acting at A be represented by AB and AD. Let « be the angle
between them.

ie. ZBAD =«

Complete the parallelogram ABCD.

Then the diagonal AC will represent the resultant.



Let Z/CAB = ¢

Draw CE Lr toAB. Now BC=AD =Q.
From the right angled A CBE,

A
SinCBE :E i.e. sina:E
BC Q

..CE = Qsina........ Q)
_ BE BE
COSox = —_— =
BC Q
~.BE = Qcosa ... .. .. (i)
R? = AC? = AE? + CE? = (AB + BE)? +CE®

= (P+Qcos @) +(Qsina)?

= P2 + 2PQcosa + Q 2

"R = 3(P2+2PQcosa +Q?)
tan g = E: Qsina
AE P+Qcosa

Result 1 If the forces P and Q are at right angles to each other, then « = 90°;

R:\/P2+Q2 tan¢:%

Result 2 If the forces are equal (i.e.) Q =P, then

R =vP2+2P2cosa+ P2 = \/2P2(1+c03a)

= \/ZPZ.ZCOSZg = 2PcosZ
2 2
Psi . Zsingcosg
_ sin o sin o 2 2
P T B iPeosa 1 - o
+Pcosa 1+cosa 2c0s2 &

o
= tan —




Thus the resultant of two equal forces P, P at an anglea is 2 P cos % in a direction

bisecting the angle between them.
Result 3 Resultant R is greatest when cos & is greatest.
i.e. whencosa=1or a=0"
ie) Greatest value of RisR =P +Q.
R is least when cos « is least.
i.e. whencosa = —1 or o = 180% Least value of R is P~Q.
Problem 1
The resultant of two forces P, Q acting at a certain angle is X and that of P, R acting at
the same angle is also X. The resultant of Q, R again acting at the same angle is Y, Prove that.
Q°+R°-Y
Prove also that, if P+ Q+R=0,Y =X,

Solution:
Let o be the angle between P and Q
Given
X? = P2+ Q*+2PQcosa  ......... (1)
xX? = P2+ R*+2PRCOSQ  .oveee.n. (2)
Y2 = Q*+R?*+20QRCOS @ covvveen.. (3)

(1) - (2) gives 0 = Q2—R2 +2Pcos a (Q—R)

i.e.0 = (Q-R)(Q+R+2Pcosa)
ButQ # RandsoQ—-R =0

42 Q+R+2Pcosa =0

cos o = —Q+R ........ 4
2P

Substitute (4) in (1),

P2+Q2+2PQ {_(Q+R

2P

>
I

ﬂ=P2+Q2 Q*-QR

p2 = x2+QR.i.e.P:(x2+QR)%



Substitute (4) in (3),

2 _ 2 2 (Q+R
Y = Q°+R +2QR{(2P ﬂ
_ 2, 2 QRQ+R)
= Q°+R >
.'.—QR(%JrR) = Q*+R?-Y?
- QR(Q+R)
Q2 +R? _Y?2
IfP+Q+R = 0,thenQ+R= —-P,
..From (4),cosa = —Q+R:i:1
2P 2P 2
1
COSo=— =
2
X? = PP+R®+PR.. .. .. (5)
Y2 = Q°+R*+QR.. .. .. (6)
(5) — (6) gives
X2 -Y? = P?-Q*+PR-0QR
=P-Q(FP+Q+R)
= (P-Q).0=0
S X=Y
Problem 2

Two forces of given magnitude P and Q act at a point at an angle & . What will be the

maximum and minimum value of the resultant?

Solution:

i. Maximum value of the resultant

P+Q

ii. Minimum value of the resultant

P~ Q.



Problem 3

The greatest and least magnitudes of the resultant of two forces of constant magnitudes
are R and S respectively. Prove that, when the forces act at an angle 2 ¢, the resultant is of

magnitude \/R2 cos? @+ $?sin? Q

Solution:
Given,R=P + Q, S = P-Q, where P and Q are two forces.
When P and Q are acting at an angle 2¢

Resultant= P2 +Q2 1 2PQ.c0s2¢

VP2 +Q? )+ 2PQlcos? p-sin? o)
\/(PZ +szsin2 (p+C032 (/))—}— 2|:’Q(COS2 (p—SinZ (P)

JP2+Q% +2PQeos? p + (P2 +Q2 - 2PQ)sin?

S

\/R20052¢)+stin2 Q
Problem 4

The resultant of two forces P and Q is at right angles to P. Show that the angle between

the forces is cos_l(— gj

Solution:

Let « be the angle between the two forces P and Q. Given ¢ = 90”

D c
Q AR
a
\ -
A P B
We know, tang = _Qsina
P+Qcosa
Qsina

ie. tan90° = <> 7
P+Qcosa



1 _ Qsina
0 P+Qcosa
S P+Qcosa = 0

P
.. COSax = -—

Q
L= cos_l(— EJ

Q
Problem 5

The resultant of two forces P and Q is of magnitude P. Show that, if P be doubled, the

new resultant is at right angles to Q and its magnitude will be \/4P2 —Q2 :

Solution:
Let o be the angle between P and Q
D €
p
¢ >
A Q B

Given, P? = P2+Q2 +2PQcos «x .
. Q (Q+2Pcos &) =0

5. COSar = _Q
2P
If P is doubled, let R be the new resultant, and ¢ be the angle between Q and R.
~RZ = (2P} +Q?+2(2P)Q.coscx
= 4P? + Q2% +4P —gj
a2

4P? +Q% -2Q%2 =4P? -Q?

- R=4/4P% -Q?




10

_ (2P)sine _  2Psina

tangp = ZP) = Q
Q+(2P)cosa Q+2P[_J
2P
. 2Psina
l.e. tang =
0
.COS ¢ = 0 = ¢=90

~ Qisatright angles to R.

Problem 6
Two equal forces act on a particle, find the angle between them when the square of their

resultant is equal to three times their product.

Solution:

A P B

Let o be the angle between the two equal forces P, P, and let R be their resultant.
-~ R? = P2+ P2 4 2P.P.cosa

2P?(1+cosa) = 2P2 x 2cos? %

ie R? = 4chosZg
2
R =2prcosZ
Given, R2 = 3x Px P =3p?2
~.3p? = 4p?% cos? &
oa 3 a V3
S.COS™ — = — = COS— = —
4 2 2
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£ =30

= a=060"

Problem 7
If the resultant of forces 3P, 5P is equal to 7P find
I. the angle between the forces

ii. the angle which the resultant makes with the first force.

Solution:
Let o be the angle between 3P, 5P
i Given (7TP)> = (3P)*+ (5P)*+ 2 (3P) (5P) .cos
49P° = 9P? + 25P*+ 30P°cos &
. 15P? = 30P? cosa
. Cos = L

- = o= 60°
2

ii. Let ¢ be the angle between the resultant and 3P.

P+Qcosa
5P.sina

3P +5P.cosa

5P.sin 60°
3P +5P.cos60°

5><l/g
2

3+(5x1j
2
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53
tan = SALS
¢ 11
L@ = tan—* ﬂ
11

1.2 Triangle of forces
If three forces acting at a point can be represented in magnitude and
direction by the sides of a triangle taken in order, they will be in

equilibrium.

N
Let the forces, P,Q,R act at a point O and be represented in

magnitude and direction by the sides AB,BC,CA of the triangle ABC.

To prove : They will be in equilibrium.
Complete the parallelogram BADC.

ie) The resultant of the forces P, Q at O is represented in magnitude

and direction by AC.
The third force R acts at O and it is represented in magnitude and

direction by CA.

Hence P+Q+R=AC + CA=0
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Principle

If two forces acting at a point are represented in magnitude and direction

by two sides of a triangle taken in the same order, the resultant will be

represented in magnitude and direction by the third side taken in the

reverse order.
1.3 Lami’s Theorem

If three forces acting at a point are in equilibrium, each force is proportional to the
sine of the angle between the other two.
X

Proof:

By converse of the triangle of forces, the sides of the triangle OAD
represent the forces P,Q,R in magnitude and direction.

By sine rule in AOAD , we have
OA AD DO

- - 1
sin Z/ODA sin Z/DOA sin ZLOAD M
But ZOAD = alt.~/BOD =180° - /MON

-.sin ZODA=sin(180° — ZMON )=sin ZMON —....... @)

Also /DOA=180°% — /NOL

..sin ZDOA =sin (1800 - ANOL):sin ZNOL ... (3)



And ~OAD =180° — /BOA=180° — ~/LOM

- sin ZOAD =sin(180° -~ ZLOM )=sin ZLOM
Substitute (2), (3), (4) in (1),

OA  AD DO

sin /MON sin Z/NOL sin ZLOM

o P _ Q _ R
sin ZMON sin ZNOL sin ZLOM
P Q R

sin(Q.R) _sin(R,P) sin(P,Q)

Problem 8

14

Two forces act on a particle. If the sum and difference of the forces are at right angles to

each other, show that the forces are of equal magnitude.

Solution:

A P B

Let the forces P and Q acting at A be represented in magnitude and direction by the lines

AB and AD. Complete the parallelogram BAD.

Then P+Q= AB+ AD = AC
P-Q =AB-AD
= AB+ DA
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Given AC and DB are at right angles.
The diagonals AC and BD cut at right angles.

.. ABCD must be a rhombus.
..AB = AD.
P=Q.

Problem 9

Let A and B two fixed points on a horizontal line at a distance ¢ apart. Two fine light
strings AC and BC of lengths b and a respectively support a mass at C. Show that the tensions of

the strings are in the ratiob(a® + ¢z —b?): a(b? + ¢ —a?)

Solution

Forces Ty, T, W are acting at C.
By Lami’s theorem,

h T
sin ZECB sin LECA
Now sin ~ECB =sin(180° — ~DCB)

=sin «DCB
=sin (90° — ZABC)= cos ZABC

sin ZECA=sin(180° — Z/ACD)
=sin ZACD
= sin (90° — ZBAC)=cos /BAC
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¢ +a%-b?
n 0T . T1 _cosB _ 2ca
cos/ABC cos/BAC Ty COSA (p2,c2_52
2bc
T, _[c®+a®-b? X[ 2bc jb(02+a2b2)
T 2ca b2 +c?-a? a(b2+c2—a2)
Problem 10

ABC is a given triangle. Forces P,Q,R acting along the lines OA,0OB,0C are in
equilibrium. Prove that

()P : Q : R=a%(b? +c? —a?):b?(c? +a? —b?): c*(a® +b? —c?) if O is the cicumcentre of the
triangle.

(i)P:Q:R== cosg : cos% : cos% if O is the incentre of the triangle.

(iii) P : Q : R=a:b:c if O is the ortho centre of the triangle.
(iv)P:Q:R=0A:0OB:OC if Ois the centroid of the triangle,

Solution:

By Lami’s theorem,

P Q R

sin ZBOC N sin LCOA N sin ZAOB

(i) O is the circumcentre of the A ABC

/BOC =2/BAC =2A; Z/COA=2B and ZAOB=2C



P B Q B R
sin2A sin2B  sin 2C
e~ - _ R
" 2sin AcosA  2sinBcosB  2sin CcosC

Q) =

2 2 2
But cos A:b+c—a and sin A:2—A
2bc bc

Where A is the area of the triangle ABC

2A@2+02—a2)
bc 2bc

c.2sin AcosA=2

2A(b2 +c2 - a2)
) b2c?

2A(c2 +a? —bZ)

Similarly 2sin BcosB = )
ca

2A(a2 +b? —cz)

2sinCcosC = 2b2

a
Substitute in (2)
Ph2c? B Qc?a? B RaZb?
2A(b2 +c? —az) ZA(CZ +a’ —b2) 2A(a2 +b? —cz)

2122
Divide by 2 2-C

P _ Q _ R
az(b2 +c? —az) bz(c2 +a? —b2) cz(a2 +b? —c2)

(i1) O is the in-centre of the triangle,
OB and OC are the bisectors of ZBand £C

17



- sBoC =180° - B _C _1g00 —(E+9j
2 2 2 2

= 180" —(900 —5j:900 LA
2 2

Similarly ZCOA = 90° +% /AOB =90° +%

1) = P _ Q _ R

sin 900+é sin 900+E sin 900+9
2 2 2

P Q _ R
A~ B __C
COSs — COSs — COS —
2 2 2

(iii) O is the ortho-centre of the triangle
AD, BE, CF are the altitudes of the triangle
AFOE is a cyclic quadrilateral.

.. /FOE +A=180° , . /FOE =180° - A
- Z/BOC =180 — A
Similarly, ZCOA=180° - B, ZAOB =180° -C

Hence (1) becomes

P _ Q _ R
sin(180° — A) sin{180° -B) sin{180° —C|
P Q R

i.e

"SinA sinB _ sinC

o P_Q_R ( a b c j

a b cl snA snB sinC

18



(iv) O is the centroid of the triangle

ABOC= ACOA= AAOB= %AABC

ABOC = %OB.OC sin /BOC = % AABC
-.sin /BOC = 2AABC
30B.0OC
Similarly, sin Z/COA = 2AABC , sin ZAOB = 2AABC
30C.0A 30A0B

Hence (1) becomes P.30B.OC _ Q.30C.0A _ R.30A0B

2AABC 2AABC 2AABC

i.e. P.OB.OC = Q.0C.0OA=R.0A.0B

Dividing by OA.OB.OC, we get P = Q = R .
OA OB OC

1.4 Parallel forces:

19

Forces acting along parallel lines are called parallel forces. There are two types of parallel

forces known as like and unlike parallel forces. Since the parallel forces do not meet at a point, in

this chapter we study methods to find the resultant of two like parallel and unlike parallel forces.

Parallel forces acting on a rigid body have a tendency to rotate it about a fixed point. Such

tendency is known as moment of the parallel forces. Here we study the theorem on moments of

forces about a point.

Definition:

Two parallel forces are said to be like if they act in the same direction, they

are said to be unlike if they act in opposite parallel directions.
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The resultant of two like parallel forces acting on a rigid body

Proof:
Let P and Q be two like parallel forces acting at A and B along the lines AD and BL.At A
and B, introduce two equal and opposite forces F along AG and BN. These two forces F balance

each other and will not affect the system.

Now, R is the resultant of P and F at A and R 5 is the resultant of Q and F at B as in the
diagram.

Produce EA and MB to meet at O. At O, draw YOY! parallel to AB and draw OX
parallel to the direction of P.

Resolve R1 and R o at O into their original components. R4 at O is equal to F along ov!l
and P along OX. R at O is equal to F along OY and Q along OX.

The two forces F, F at O cancel each other. The remaining two forces P and Q acting

along OX have the resultant P+Q (sum) along OX.
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Find the position of the resultant
Now, AB and OX meet at C.

Triangles, OAC and AED are similar.
- 0C AC . ; OC AC
. = e =
AD ED P F
FOC =P.AC .. (1)

Triangles OCB and BLM are similar.

OC CB ) OC CB
= ie =
BL LM Q F

FOC=QCB ... (2)
1) &(2) = P.AC=Q.CB
_AC Q
ie) — = —
CB P

ie) ‘C’ divides AB internally in the inverse ratio of the forces.

The resultant of two unlike and unequal parallel forces acting on a rigid body:

O

A
7
-7
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Proof:

Let P and Q at A and B be two unequal unlike parallel forces acting along AD and BL.

LetP > Q.
At A and B introduce two equal and opposite forces F along AG and BN. These two balances
each other and will not affect the system.
Let Rq be the resultant of F and P at A and R, be the resultant of F and Q at B. as in the
diagram.
Produce EA and MB to meet at O. At O, draw Y ' QY parallel to AB and draw OX parallel to the
direction of P.
Resolve R1 and R » at O into their components. Ry at O is equal to F along QY ' and P along
XO. R at Oisequal to F along OY and Q along OX.
The two forces F, F at O cancel each other. Now, the remaining forces are P and Q along the
same line but opposite directions.
Hence the resultant is P ~ Q (difference) along XO.
Find the position of the resultant

Now, AB and OX meet at C.

Triangles OCA and EGA are similar.

OoC CA . OC CA
EG GA P F

Triangles OCB and BLM are similar.

OC CB - OC CB
BL LM’ Q F

LFOC=QCB ... (2)
(and(2) = | pAC=0Q.CB

o CA _Q
CB P

ie) ‘C’ divides AB externally.

Note : The effect of two equal and unlike parallel forces can not be replaced by a single force.
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The condition of equilibrium of three coplanar parallel forces

P P+Q Q
A cl B
R

Let P, Q, R be the three coplanar parallel forces in equilibrium. Draw a line to meet the
forces P, Q, R at the points A, B, C respectively.
Equilibrium is not possible if all the three forces are in the same direction.
Let P + Q be the resultant of P and Q parallel to P. Hence R must be equal and opposite
toP + Q.
- R=P+Q (in magnitude, opposite in direction)
.. P.AC=Q.CB

P Q P+Q R

CB AC CB+AC  AB

H , = =
enee CB _AC _ AB

ie) If three parallel forces are in equilibrium then each force is proportional to the distance

between the other two.

Note: The centre of two parallel forces is a fixed point through which their resultant
always passes.
Problem 11
Two men, one stronger than the other, have to remove a block of stone weighing 300 kgs.
with a light pole whose length is 6 metre. The weaker man cannot carry more than 100 Kkgs.
Where the stone be fastened to the pole, so as just to allow him his full share of weight?
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Solution:

v

100 300 200

Let A be the weaker man bearing 100 kgs., B the stronger man bearing 200 kgs. Let C be
the point on AB where the stone is fastened to the pole, such that AC = x. Then the weight of the
stone acting at C is the resultant of the parallel forces 100 and 200 at A and B respectively.

. 100.AC = 200.BC

i.e. 100x =200 (6-x) = 1200 — 200x
. 300x = 1200 or x=4
Hence the stone must be fastened to the pole at the point distant 4 metres from the weaker
man.

Problem 12
Two like parallel forces P and Q act on a rigid body at A and B respectively.
2
a) If Q be changed to 6 , show that the line of action of the resultant is the same as it would

be if the forces were simply interchanged.
b) If P and Q be interchanged in position, show that the point of application of the resultant will

be displayed along AB through a distance d, where d = E_g .AB .
+

Solution:

Pa 40
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Let C — be the centre of the two forces.
ThenP. AC=Q.CB ............. (1)

P
(@) If Q is changed to —, (P remaining the same), let D be the new centre of parallel

forces.
P2
ThenP.AD=—DB........ ..... (2)
Q
QAD=PDB................ 3)

Relation (3) shows that D is the centre of two like parallel forces, with Q at A and P at B.
(b) When the forces P and Q are interchanged in position, D is the new centre of parallel

forces.

LetCD=d
From (3), Q. (AC+CD) =P. (CB - CD)
i.e. QAC+Qd=P.CB-P.d
(Q+P).d=P.CB-Q.AC
=P (AB-AC)-Q (AB-CB)
=(P-Q).AB[--P.AC =Q.CB from (1)]

d =P_QAB
P+0O

Problem 13

The position of the resultant of two like parallel forces P and Q is unaltered, when the position of

P and Q are interchanged. Show that P and Q are of equal magnitude.

Solution:

p
A
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Let C be the centre of two like parallel forces P at A and Q at B.

LPAC=QCB......ceeeeenee (1)
When P and Q are interchanged, the centre C is not altered (given)
S QAC=PCB.......evvnennnn. ()
W_P_Q
(2 Q P
. p2 =2
P=+ Q
Problem 14

P and Q are like parallel forces. If Q is moved parallel to itself through a distance x, prove that

: X
the resultant of P and Q moves through a distance Q
P+Q
Solution:
'z P 'z Q A Q
| | X
A 'C 'D B B’

Let C be the centre of P and Q at A and B.
~P.AC=QCB ............ (1)

Let D be the new centre of P at A and Q at B’ such that BB’ = x
S~ P.AD=QDB’ ........................ (2)

ie) P(AC +CD)=Q[DB +BB'] = Q[(CB-CD)+ x]
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(P + Q)CD =Q.X using (1)

~CcD=_X
P+Q

Problem 15

Two unlike parallel forces P and Q (P>Q) acting on a rigid body at A and B
respectively be interchanged in position, show that the point application of the resultant in AB

will be displayed along AB through a distance E+ Q AB.

Solution:

Let C be the centre of two unlike parallel forces P at A and Q at B.
~PAC=QCB ..................... (1)

Let D be the new centre when P and Q are interchanged in position.
~QAD=PDB .................... (2)

ie) Q(AC-CD)=P.(DA+AB)

i.e.) Q[(CB—AB)-CD]=P|(AC-CD)+ AB]

QCB-Q.AB-QCD=P.AC-P.CD+P.AB

~.(P-Q)CD =(P+Q).AB using (1)

_P+Q
_P—Q

-.CD .AB




28

Problem 16

A light rod is acted on by three parallel forces P, Q, and R, acting at three points distant
2, 8 and 6 ft. respectively from one end. If the rod is in equilibrium, show that P: Q: R = 1:2:3.
Solution

A P AQ

P, Q, R are parallel forces acting on the rod AD at B, D, C respectively.
Given, AB = 2 ft, AD = 8ft, AC = 6ft.
.. BC = 4ft, CD = 2ft, BD = 6ft.
For equilibrium of the rod, each force should be proportional to the distance between the other

two.

.'.E=9=E:>P:Q:R:2:4:6
2 4 6

S P:Q:R=1:2:3

1.5 Moment of a force (or) Turning effect of a force
Definition:
The moment of a force about a point is defined as the product of the force and the

perpendicular distance of the point from the line of action of the force.
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Moment of F about O =Fx ON =F x p.
Note: Moment of F about O is zero if either F = O (or) ON = O.
i.e.) F =0 (or) AB passes through O.
Hence, moment of a force about any point is zero if either
the force itself is zero (or) the force passes through that point.

Physical significance of the moment of a force
It measures the tendency to rotate the body about the fixed point.

Geometrical Representation of a moment

0] )
> [ > |
A F B N A F N B

Let AB represent the force F both in magnitude and direction and O be any given point.
.". the moment of the force F about O
=FXON=ABxON=2. A AOB
= Twice the area of the triangle AOB
Sign of the moment
If the force tends to turn the body in the anticlockwise direction, moment is positive.
If the force tends to turn the body in the clockwise direction, moment is negative.

Varignon’s Theorem of Moments

The algebraic sum of the moments of two forces about any point in their plane is
equal to the moment of their resultant about that point.
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Proof:
Case 1 Let the forces be parallel and O lies i) Outside AB
P+Q =R
A
P Q
A
A
|
0 A C B

Let P and Q be the two parallel forces acting at A and B. P + Q be their resultant R acting at C.
such that

PAC=Q.CB ...c..ccoeeer (1)
Algebraic sum of the moments of P and Q about O
=P.OA+Q.0OB

=P x (OC-AC)+Qx (0OC +CB)
= (P +Q).0C -P.AC +Q.CB
= (P+Q).0C using (1)
=R.0C
= moment of R about O.
i) P and Q are parallel and O lies within AB
A C 0] B

P R=P+Q Q

Algebraic sum of the moments of P and Q about O
=P.OA-Q.0OB
=P. (OC+CA)-Q. (CB-CO)
= (P+Q).0C+P.CA-Q.CBhy (1)
=R.0C
= moment of R about O.
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Case 11 iii) P and Q meet at a point and O any point in their plane. O lies outside the angle
BAD
0 D C
|
Q R
A >
P B

Through O, draw a line parallel to the direction of P, to meet the line of action of Q at D.
Complete the parallelogram ABCD such that AB, AD represent the magnitude of P and Q and
the diagonal AC represents the resultant R of P and Q.

Algebraic sum of the moments of P and Q about O
=2. A AOB+2.A AOD
=2 A ACB+2. AAOD[ ' AAOB= A ACB]
=2 AADC+2 AAOD
=2 (A ADC + A AOD)
=2. AAOC
= Moment of R about O.
iv) O lies inside the angle BAD
Algebraic sum of the moments of P and Q about O:
=2 AAOB-2 AAOD

=2 AACB-2 AAOD D 0 <
=2 AADC-2 A AOD Q R

=2 (A ADC - A AOD)

=2. AAOC A - 8

= moment of R about O.
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Problem 17
Two men carry a load of 224 kg. wt, which hangs from a light pole of length 8 m. each end of
which rests on a shoulder of one of the men. The point from which the load is hung is 2m. nearer
to one man than the other. What is the pressure on each shoulder?
Solution

Rl A ARZ

224

AB is the light pole of length 8m. C is the point from which the load of 224 kgs. is hung.
Let AC =x. Then BC =8 —x. given (8—Xx) —x =2

i.e) 8-2x=20r2x =6.

S.x=3.i.e. AC=3and BC =5.

Let the pressures at A and B be Rq and R kg. wt. respectively. Since the pole is in

equilibrium, the algebraic sum of the moments of the three forces R1, R, and 224 kg. wt. about

any point must be equal to zero.
Taking moments about B,
224CB-R1.AB=0
i.e.224 x5—-R; x8=0.

_ 224 x5

“ R =140.

Taking moments about A,
Ro.AB—-224.AC=0.

ie.8R, —224 x3=0.

| 224x3

- R
278

84




33

Problem 18
A uniform plank of length 2a and weight W is supported horizontally on two vertical

props at a distance b apart. The greatest weight that can be placed at the two ends in succession

without upsetting the plank are W, and W, respectively. Show that
W, W, b

+ =—,
W+W, W+W, a

Solution

Let AB be the plank placed upon two vertical props at C and D. CD = b. The weight W of
the plank acts at G, the midpoint of AB,

AG=GB=a
When the weight W is placed at A, the contact with D is just broken and the upward reaction at

D is zero.

«—
Fe—o

W,

There is upward reaction Ry at C.
Take moments about C, we have

W;. AC = W.CG
i.e. Wy (AG - CG) = W.CG
W1.AG = (W +W,).CG

ie.Wpa = (W+W,) CG
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When the weight W , is attached at B, there is loose contact at C. The reaction at C becomes

zero. There is upward reaction R , about D.
Take moments about D, we get

W.GD =W, (GB-GD)

GD (W+W2):W2.GB:W2 .a

Gp= W22 2)
W +W2
CG+GD=CD=b

L Ma | Wea

W +W1 W +W2

W, N W, _9
W +W1 W +W2 a

Problem 19

The resultant of three forces P, Q, R, acting along the sides BC, CA, AB of a triangle
ABC passes through the orthocentre. Show that the triangle must be obtuse angled.

If #/A=120°, and B = C, show that Q+R =P /3.

Solution:




Let AD, BE and CF be the altitudes of the triangle intersecting at O, the orthocentre.
As the resultant passes through O, moment of the resultant about O = O.
.. Sum of the moments of P, Q, R about O =0

P.OD+Q.OE+R.OF =0 ........... (1)
Inrt. £/dABOD, ZOBD = Z/EBC =90°-C.
~.tan(90°-C) = ob
BD

. oD
i.e)cotC= —

BD
OD=BDcotC............. (2)

From rt. ZdAABD, cosB = E
AB

cosC
.. From(2),0D =ccosB.cotC = ccosB.——
sinC
C
= ——.cosBcosC
sinC

= 2R'cosBcosC(- LC =2R’, R’ is the circumradius of the A)
sin

Similarly OE = 2R’cosC cosA
and OF = 2R'cosAcosB

Hence (1) becomes
P.2R'cosBcosC +Q.2R'cosCcos A+R.2R'cos AcosB =0
Dividing by 2R’cos AcosBcosC,

P N Q N R _
cosA cosB cosC
Now, P, Q, R being magnitudes of the forces, are all positive.
(3) may hold good, if at least one of the terms must be negative.
Hence one of the cosines must be negative.

i.e) the triangle must be obtuse angled.
If A =120° and the other angles equal, then B=C = 30°
Hence (3) becomes
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P Q R
+ + =

cos120° cos30° co0s30°
. P Q+R
i.e. + =0

-3 (3

2 2

ie.Py/3=Q+R

1.6 Couples: Definition

Two equal and unlike parallel forces not acting at the same point are said to constitute a
couple.

Examples of a couple are the forces used in winding a clock or turning tap. Such forces acting
upon a rigid body can have only a rotator effect on the body and they can not produce a motion
of translation.

The moment of a couple is the product of either of the two forces of the couple and the
perpendicular distance between them,

The perpendicular distance (p) between the two equal forces P of a couple is called the
arm of the couple. A couple each of whose forces is P and whose arm is p is usually denoted by

(P, p).

A couple is positive when its moment is positive i.e., if the forces of the couple tend to
produce rotation in the anti-clockwise direction and a couple is negative when the forces tend to
produce rotation in the clockwise direction.

1.7 Equilibrium of three forces acting on a Rigid Body.

In the previous sections we have studied theorems and problems involving parallel forces
and forces acting at a point. Here we study three important theorems and solved problems on
forces acting on a rigid body and their conditions of equilibrium.

Theorem

If three forces acting on a rigid body are in equilibrium, they must be coplanar.
Proof:
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Let the three forces be P,Q,R
Given : They are acting on a rigid body and in equilibrium.
Take ‘A’ on the force P, and B on the force Q such that AB is not parallel to R.

.. Sum of the moments of P, Q, R about AB=0[.". P,Q, R are in equilibrium]
Now, moment of P and Q about AB =0 [*.* P and Q intersect AB].
.. Moment of R about AB =0, Hence R must intersect AB at a point C

Similarly if D is another point on Q such that AD is not parallel to R, we prove, R must
intersect AD at a point E.

Since BC and DE intersect at A, BD, CE, A lie on the same plane. i.e) ‘A’ lies on the
plane formed by Q and R. Since A is an arbitrary point on the force P, every point on the force P
lie on the same plane.
ie) P, Q, R lie on the same plane.

Three Coplanar Forces — theorem
If three coplanar forces acting on a rigid body keep it in equilibrium, they must be either
concurrent or all parallel.
Proof:
Let P, Q, R be the three forces acting on a rigid body keep it in equilibrium.
.". One force must be equal and opposite to the resultant of the other two.
.". they must be parallel or intersect.
Case 1: If P and Q are parallel (like or unlike)
Then the resultant of P and Q is also parallel. Hence R must be parallel to P and Q.
Case 2: If P and Q are not parallel: (intersect)
They meet at O. Therefore, by parallelogram law, the third force R must pass through O.
i.e) the three forces are concurrent.
Note: A couple and a single force can not be in equilibrium
Conditions of equilibrium
1. If three forces acting at a point are in equilibrium, then each force is proportional to the
sine of the angle between the other two.
2. If three forces in equilibrium are parallel, then each force is proportional to the distance

between the other two
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Two Trigonometrical theorems
. . : BD m
If D is any point on BC of a triangle ABC such that E:_ and ZADC =46,
n

Z/BAD =, Z/DAC = f3 then

1) (m+n)cot@ = m.cota —n.cot B 2) (m+n)coté = n.cotB—m.cotC.
Proof:
A
)
B m D n C

. m BD BD DA
1. Given, — = = .
n DC DA DC
Using, sine formulain A ABD, A ADC,
m _sin ZBAD _ sin ZACD

= X
n sin ZABD sin ZDAC

m__sina  sin(0+p)

n sin(@-a) sing

_sina (sin @.cos S +cos B.sin B)
sin 8 (sin @cos a —cos 6.sin o)

Divide by sin a.sin 8.sin g

m _cotpB+cotd

N cota—cotd
-.m(cot & —cot @) = n(cot B +cot §)

(m-n)cot & =m.cota —n.cot B
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m_BD DA
'n DA DC
_ sin ABADXsin ZACD

sin ZABD sin ZDAC

__ sin(@-B)sinC  _ sinC.sin(9-B)
sin B.sin[180°—~(#+C)] sinB.sin(¢+C)

_ sin C x(sin 6.cos B —cos @sin B)

sin B(sin C cos @ +cosCsin )
Divide by sin B sin C sin&@
m _ cotB-cotd

N cotd+cotC
-.m(cot @+ cotC)=n(cot B—cot &)

~.(m+n)cotd =ncotB—-mcotC

Problem 20

A uniform rod, of length a, hangs against a smooth vertical wall being supported by
means of a string, of length I, tied to one end of the rod, the other end of the string being attached
to a point in the wall: show that the rod can rest inclined to the wall at an angle & given by

What are the limits of the ratio of a: | in order that equilibrium may be possible?
Solution:

C
7
L
A ‘\ » R
90°
AN/
GV
w
|




AB is the rod of length a, with G its centre of gravity and BC is the string of length .

The forces acting on the rod are:

(i). Its weight W acting vertically downwards through G.

(ii). The reaction R at A which is normal to the wall and therefore horizontal.
iii) The tension T of the string along BC.

These three forces in equilibrium not being all parallel, must meet in a point L.
Let the string make an angle « with the vertical.

.. ZACB =a = ZGLB.

/LGB =180°-6 andZALG =90°, AG:GB=1:1,
Using the trigonometrical theorem in A ALB
(1+1)cot(180° — #) =1.cot90° —1.cotxr
i.e) —2cotd = —cotax

2cotéd=cotar ........c.one.nnl. (1)
Draw BD Lto CA.
From rt. ZdACDB,BD = BC.sina =l.sin«
rt. ZdAABD,BD = ABsing=asiné
slsina=asing ............ (2)

Eliminate « between (1) and (2).

We know that c0seC?a =1+COt2 & oovvvivveeeeii, 3)

_ asin
(2) =sin @ =——— ..coseca = I ........................ 4)
| asin @

Substitute (4) and (1) in (3)
|2 2
75 =1+4cot“ @
a“sin“@
12
ie. — =sin0+4cos’d=1+3cos’0

a2

2 2 .2
.'.300329:|——1:| a

a’ a’

40
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Equilibrium position is possible, if cos’ 0 positive and less than 1

12 _a?>0ie 12>a%ra%<1? ... (6)
2.2
Also > <lie. 12 -a% <3aor 12 < 4a?
3a
|2
. 2
Le.ad” >— . (7)
4
2
~_<a’<|?
4

1 a2 1 a
By (6) & (7 —<—<l==<—<1.
(BY®&M] < z<l=35<

Problem 21
A beam of weight W hinged at one end is supported at the other end by a string so that

the beam and the string are in a vertical plane and make the same angle @ with the horizon.

W [
Show that the reaction at the hinge is 7 8+ cosec?d

Solution:
0 Let AB be the beam of weight W and G its centre of
N L gravity.
AN BC is the string
The force acting on the beam are:
: T i) Its wt. W acting vertically
° down wards at G
R 30-6 ii) the tension T along BC
. iii) the reaction R at the hinge A.
A 90°
v




For equilibrium (i) , (ii) and (iii) must meet at L.

BC and AB make the same angle @ with the horizon.
.. They make 90° — & with the vertical LG,

i.e. ZBLG=90°-0= /LGB

Let ZALG =«

Using trigonometrical theorem in A ALB, AG:GB =1:1
(1+1)cot(90° — ) =1.cotar —1.cot(90° - 8)

i.e. 2 tand =cota —tan @

dtand=cota ................... (1)

Applying Lami’s theorem at L,

R W
sin(90°-0) sin(90°- 0+ )

R W W

" Cos0 sin[0°—0-a) cos(0—a)

‘R= Wcoso W cos &
" cos(@—a) cos@cosa+sin Gsin

_ W cosé
sina(cosécota +sind)

B W cos @
sin cr(cos 6.3tan @ + sin 6)

[By (1)]

_ Wcos&coseca W cotd

= = .COSECO{=VZVCOI67 1+cot2a

3sin @+sin @

= V%.cot@ 1+9tan? @
=VZV\/cot20+ :VZV\/cot20+1+8
= V%\/cose029+8

42
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Problem 22

A solid cone of height h and semi-vertical angle « is placed with its base flatly against a

smooth vertical wall and is supported by a string attached to its vertex and to a point in the wall.

Show that the greatest possible length of the string is h /1+%tan2 a.

(The centre of gravity of a solid cone lies on its axis and divides it in the ratio 3 : 1 from the

vertex.)
Solution: 0’
O/T/
R < C
v B

3
Wall

Let A be the vertex, & height AD = h.

A
Semi-vertical angle DAC =« .

G divides AD in the ratio 3: 1
Length AQ' is greatest, when the cone is just in the point of turning about C.
At that time, normal reaction R must be perpendicular to the wall.

Since, the cone is in equilibrium, the three forces T, W, R must be concurrent at O.

AAOG & AAO'D are similar.

AO"_AD_ h 4 .4 (1)
20 AG (th 3 ,_AOZEAO .....................
4
Now, OG =CD.
From AACD,tanazgzg ..CD=htan«
AD h

..OG=htana
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From AAOG, AO? = AG? +GO?
2
= Ghj +(h.tana )

2
9h +h?.tana

_9h? +16h%tan’ o
16

AO%=h ( +tan2aj

- AO = h‘/—+tan a
():>AO’——><h>< /—+tan a
h,/1+—tan o
Problem 23

A heavy uniform rod of length 2a lies over a smooth peg with one end resting on a smooth

vertical wall. If ¢ is the distance of the peg from the wall and @ the inclination of the rod to the

wall, show that c=a sin3(9

Solution:
R,
O | -
A 7 g R1
0
° A 4
D
\
G
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Forces acting on the rod AB are
) WeightwatG ({)
i) Reaction Rq at A ( L to the wall)
iii) Reaction R » at the peg P ( L to the rod)

For equilibrium, W, Rq,R o must be concurrent at O.

From rightangled triangle ADP (DP =¢)
SiNf=—.......c...coeeinnnl (1)
From AAOP,sin 8 = A ()
AO
From AOGA,sin 8 = A (3)
AG
Ox(2)x(@)=sin30= S P OA_ ¢ ¢
AP AO AG AG a

c=asin®e@

Problem 24
A heavy uniform sphere rests touching two smooth inclined planes one of which is inclined
at 60° to the horizontal. If the pressure on this plane is one-half of the weight of the sphere,
prove that the inclination of the other plane to the horizontal is 30°

Solution:
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Let the sphere centre C rest on the inclined planes AM and BN. MA makes 60° with the
horizontal and let NB make an angle & with the horizon.
The forces acting are

)] Reaction R 5 at A perpendicular to the inclined plane AM and to the sphere and

hence passing through C.

i) Reaction Rg at B which is normal to the inclined plane BN and to the sphere and
hence passing through C.

iii) W, the weight of the sphere acting vertically downwards at C along CL.

Clearly the above three forces meet at C.

Also ZACL =60°and ZBCL=«a
Applying Lami’s theorem,
Ra W

sina sin(60+a)

W sin

Ry —_ o0&
A sin(60°+ a)

From (1) and (2), we have
W sin« W

sin(60°+a) 2

i.e. 2sin a =sin(60°+ &) = sin 60° coser + c0s60°sin o

] ) 3 1. . .
i.e.2sin o = —COSO!+ESIn o or 4sihga = \/§c03a+sm o

i.e.3sin a=+3cosa or % :ﬁzi
cosa 3 /3

ietanoz—ioroc—ieoo

L. NG
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Problem 25

A uniform solid hemisphere of weight W rests with its curved surface on a smooth
horizontal plane. A weight w is suspended from a point on the rim of the hemisphere. If the plane

8w
base of the rim is inclined to the horizontal at an angle @, prove that tan @ = W

Solution:

Draw GL perpendicular to OC and BD perpendicular to OC. Base AB is inclined at an angle
6 with the horizontal BD. Forces acting are i) Reaction R ii) Weight W at G iii) Weight w

at B.
Since these three forces are parallel, and in equilibrium each force is proportional to the distance
between the other two.

W w
Now, AOBD = BD =0OBco0sé =rcosé

3r
Here, OG = E r — radius

GL =0G. sin 0 = %sin 2

_ W w
”(1):rc050_(3r. j

—siné@
8

tan0:8—W
3W
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UNIT I
2.1 Friction

In the previous sections we have studied problems on equilibrium of smooth bodies.
Practically no bodies are perfectly smooth. All bodies are rough to a certain extent. Friction is the
force that opposes the motion of an object. Only because of this friction we are able to travel
along the road by walking or by vehicles. So friction helps motion. It is a tangential force acting
at the point on contact of two bodies. To stop a moving object a force must act in the opposite
direction to the direction of motion. Such force is called a frictional force. For example if you
push your book across your desk, the book will move. The force of the push moves the book. As
the books slides across the desk, it slows down and stops moving. When you ride a bicycle the
contact between the wheel and the road is an example of dynamic friction.

Definition

If two bodies are in contact with one another, the property of the two bodies, by means of
which a force is exerted between them at their point of contact to prevent one body from sliding
on the other, is called friction; the force exerted is called the force of friction.

Types of Friction

There are three types of friction
1) Statical Friction 2) Limiting Friction 3) Dynamical friction.

1. When one body in contact with another is in equilibrium, the friction exerted is just
sufficient to maintain equilibrium is called statical friction.

2. When one body is just on the point of sliding on another, the friction exerted attains its
maximum value and is called limiting friction; the equilibrium is said to be limiting equilibrium.

3. When motion ensues by one body sliding over another, the friction exerted is called
dynamical friction.

2.2 Laws of Friction

Friction is not a mathematical concept; it is a physical reality.

Law 1 When two bodies are in contact, the direction of friction on one of them at the point of
contact is opposite to the direction in which the point of contact would commence to move.
Law 2 When there is equilibrium, the magnitude of friction is just sufficient to prevent the body

from moving.
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Law 3 The magnitude of the limiting friction always bears a constant ratio to the normal reaction
and this ratio depends only on the substances of which the bodies are composed.

Law 4 The limiting friction is independent of the extent and shape of the surfaces in contact, so
long as the normal reaction is unaltered.

Law 5 (Law of dynamical Friction)

When motion ensues by one body sliding over the other the direction of friction is
opposite to that of motion; the magnitude of the friction is independent of the velocity of the
point of contact but the ratio of the friction to the normal reaction is slightly less when the body
moves, than when it is in limiting equilibrium.

Friction is a passive force: Explain
1) Friction is only a resisting force.
2) It appears only when necessary to prevent or oppose the motion of the point of contact.
3) It can not produce motion of a body by itself, but maintains relative equilibrium.
4) ltis a self-adjusting force.
5) It assumes magnitude and direction to balance other forces acting on the body.

Hence, friction is purely a passive force.
Co-efficient of friction
The ratio of the limiting friction to the normal reaction is called the co-efficient of

friction. It is denoted by

F
ie) | R Y| = | F=4R
Note: 1) x depends on the nature of the materials in contact.

2) Friction is maximum when it is limiting. 4R is the maximum value of friction.

3) When equilibrium is non-limiting, F < /R i.e.) R <u
4) Friction ‘F’ takes any value from zero upto 4R.
Angle of Friction

B C B C

RA

=

\ 4
\
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Let OA = F(Friction), OB =R (Normal reaction) &(Yf be the resultant of F and R.

If B6C=¢9, tam9=§:%:E ........... (1)
OB OB R
As F increases, @ - increases until F reaches its maximum value uR. In this case,
equilibrium is limiting.
Definition
“When one body is in limiting equilibrium over another, the angle which the resultant reaction

makes with the normal at the point of contact is called the angle of friction and is denoted by 4~

VAN
In the limiting equilibrium, BOC = A = angle of friction.

ctana=BC _OA_ MR _
OB OB R
u=tanAi

i.e.) The co-efficient of friction is equal to the tangent of the angle of friction.

Cone of Friction

A
\ 4

LR o uR
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We know, the greatest angle made by the resultant reaction with the normal is A (angle

of friction) where A = tan_l(,u). Consider the motion of a body at O (its point of contact) with
another. When two bodies are in contact, consider a cone drawn with O as vertex, common
normal as the axis of the cone, A - be the semi-vertical angle of the cone. Now, the resultant
reaction of R and R will have a direction which lies within the surface or on the surface of the

cone. It can not fall outside the cone. This cone generated by the resultant reaction is called the

cone of friction.

2.3 Equilibrium of a particle on a rough inclined plane.

£

Let @ - be the inclination of the rough inclined plane, on which a particle of weight W, is

placed at A. Forces acting on the particle are,
1) Weight W vertically downwards
2) Normal reaction R, _Lr to the plane.
3) Frictional force F, along the plane upwards (Since the body tries to slip down).

Resolving the forces along and perpendicular to the plane,

F=Wsing, R=W cosé

.’.E:tane
R
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But%<,u stand < u

i.e) tanfd <tan A
SO< A

When H:Z,g:tan/lz,u

Hence, it is clear that “when a body is placed on a rough inclined plane and is on the point of
sliding down the plane, the angle of inclination of the plane is equal to the angle of friction.”
Now A is called as the angle of repose.

Thus the angle of repose of a rough inclined plane is equal to the angle friction when

there is no external force act on the body.

2.4 Equilibrium of a body on a rough inclined plane under a force parallel to
the plane.

A body is at rest on a rough plane inclined to the horizon at an angle greater than the angle of

friction and is acted on by a force parallel to the plane. Find the limits between which the force

must lie.

Proof:
Let & be the inclination of the plane, W be the weight of the body& R be the normal
reaction.

Case 1: Let the body be on the point of slipping down. Therefore @R acts upwards along the

plane.

W sin o
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Let P be the force applied to keep the body at rest.
Resolving the forces along and perpendicular to the plane,
P+R=Wsina .................... (1)

R=W.cosa ..................... (2)

S P=W.sina— uW cosa

=W (sin & —tan A.cos ]

= W [sin ce.cos A —cosarsin ]
cos A

W )
- sin(e-2
- sin(a— A1)

W.sin(a — 1)
cos A
Case ii Let the body be on the point of moving up. Therefore limiting frictional force /R acts

Let P]_ =

downward along the plane.

Let P be the external force applied to keep the body at rest.
Resolving the force,
R=Wcosa; P=R+Wsin«

S P=uWcosa+Wsin o

= W [sin 2cosa + cos A.sin a]
cos A
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S (a@+A)
cos A

Let P, = C;Nq.sin (a+A)

If P <P, body will move down the plane. If P > P,, body will move up the plane.

.". For equilibrium P must lie between P, and P, .

le) | p>P>PR

2.5 Equilibrium of a body on a rough inclined plane under any force.

Theorem: A body is at rest on a rough inclined plane of inclination & to the horizon, being
acted on by a force making an angle @ with the plane; to find the limits between which the
force must lie and also to find the magnitude and direction of the least force required to

drag the body up the inclined plane.

“aW cosa

Let a be the inclination of the plane, W be the weight of the body, P — be the force acting at an
angle @ with the inclined plane and R — be the normal reaction.

Case i: The body is just on the point of slipping down. Therefore the limiting friction 4R acts
upwards.

Resolving the forces along and _L r to the inclined plane,

PcosO+ R=Wsina ................... (1)
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Psin@+R=WcCoSc&x ....................... (2)
-.R=Wcosa—Psing

~.(1)= Pcos@+ u(W cos o — Psin 8) =W sin «
P(cos@ — usin ) =W (sin a — ucosa)

b ~ W(sina—ucosa)
h cos @ — usin

We have u=tanA

o W (sin o —tan A.cos )
cos@—tan A.sin @

(sin czcos A —cosa.sin 1)
cos#.cos A —sin 6.sin A
W sin(o— 1)

cos(6+ 1)

sin(a— 1)

Let P, =W.
! cos(6+A4)
Case ii: The body is just on the point of moving up the plane. Therefore ,uR acts downwards.

Resolving the forces along and _L I' to the plane.
PcosO— R=W.sina .................... (3)
Psin@+R=W.coSx ...................... (€))
R=Wcosa—Psin 6

(3)= Pcosé — (W cosa — Psin 8)=W.sin «
P(cos@+ usin @) =W (sin a + pcosc)

_W(sina +tanA.cosa)
(cos@+tan A.sin @)

_ W(sin @.cos 4 +sin A.cos @)
(cos@cos A +sin 6.sin 1)
_W.sin(a +4)
cos(@— 1)
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Let P _Wsin(a+4)
27 cos(0-1)

To keep the body in equilibrium, P, and P, are the limiting values of P.

Find the least force required to drag the body up the inclined plane
We have, P = W.M
cos(@-A4)

P is least when cos(@— 1) is greatest.
i.e.) When cos(@—1)=1
i.e.) When 6-1=0
i.e) When =1

~. Least value of P =W.sin(a+1)

Hence the force required to move the body up the plane will be least when it is applied in a
direction making with the inclined plane an angle equal to the angle of friction.
i.e.) “The best angle of traction up a rough inclined plane is the angle of friction”
Problem 1

A particle of weight 30 kgs. resting on a rough horizontal plane is just on the point
motion when acted on by horizontal forces of 6kg wt. and 8kg. wt. at right angles to each other.
Find the coefficient of friction between the particle and the plane and the direction in which the
friction acts.

Solution:
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Let AB =8 and AC = 6 represent the directions of the forces, A being the particle.
The resultant force = V82 +6° = 10kg. wt. and this acts along AD, making an angle

Cos_l(gj with the 8kg force.

Let F be the frictional force. As motion just begins, magnitude of F is equal to that of the
resultant force.

F=10.................. (1)
If R is the normal reaction on the particle,
R=30..cccciiiiiinn (2)
If 1 is the coefficient of friction as the equilibrium is limiting, F = /R
10 1

Problem 2
A body of weight 4 kgs. rests in limiting equilibrium on an inclined plane whose
inclination is 30°. Find the coefficient of friction and the normal reaction.

Solution:

W sin 300
W cos 300

30°

wW=4kg

Since the body is in limiting equilibrium on the inclined plane, it tries to move in the

downward direction along the inclined plane.
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.". Frictional force xR acts in the upward direction along the inclined plane. Resolving
along and L r to the plane,
LR=Wsin30° ..................... (1)

A =30°

Problem 3
A uniform ladder is in equilibrium with one end resting on the ground and the

other against a vertical wall; if the ground and wall be both rough, the coefficients of friction

being 1 and 4 respectively, and if the ladder be on the point of slipping at both ends, show

o . .. 1— ' .
that @, the inclination of the ladder to the horizon is given by tané = HE Find also the

2u
reactions at the wall and ground.
Solution:
l{
S
ﬂﬂ
B S
G R
)
C R E A
v
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AB is the uniform ladder, whose weight W is acting at G such that AG = GB.
Forces acting are,

1. Weight W
Normal reaction R at A
Normal reaction S at B

LR

H'S

When the ladder is on the point of slipping at both ends, frictional forces 'S, 4R act along
CB, AC respectively.

Since the ladder is in equilibrium resultant is zero.
.". Resolving horizontally and vertically,

o~ wbn

S=iR ... (1)

R+uS=W ... )

R+ 4/ (1R)=W

RA+m)=W= | o W g MW

1+t
By Varigon’s theorem on moments, taking moments about A

S.BC + 4'S.AC =W.AE
S.ABsin 8 + 1'S.ABcos @ =W.AG.cos &

S.sin @+ u'S.cosd :W.%.cos@ [ AG = %}

~.S.sin @ = {V?V—y’s}cosﬁ

.'.tanﬁzﬂ—y’ = \W 1:1+,uy -y
2S M 2u
HW
2
Lﬂwl}
_ v -2 !
- 2 tan9=1 HE
H 24
Problem 4

In the previous problem, when =z show that @ =90° — 21, where A is the angle
of friction.
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Solution:
. 1— !
In the previous problem, we have proved tané = 2,uu
y7i

Put 1= u', we get
2 2
1—/1 :w,[la:tanﬂ]

n =
tan ¢ 2,1 2tan A
-1 _cot2a- tan(90°—24)
tan24
ie) tand=tan(90°-21) .. | #=90°-22
Problem 5

A uniform ladder rests in limiting equilibrium with its lower end on a rough horizontal

plane and its upper end against an equally rough vertical wall. If @ be the inclination of the

ladder to the vertical, prove that tan 8 = 24 5 where u is the coefficient of friction.
1-u

Solution:
!
Y7 S/,\L
"v’ \‘
PA \
B| &4 LR
o » R’
\
\\
1}
A\
C TR A
W v

When the ladder AB is in limiting equilibrium, five forces are acting as marked in the figure.



1) Weight of the ladder W
2) Normal reaction R at A
3) Normal reaction S at B
4) Frictional force 4R
5) frictional force 1S

Let R',S" be the resultant reactions of R, tR and S, 4S respectively.

.". We have 3 forces R’,S’,W . For equilibrium, they must be concurrent at L.

N N
In ALAB,LGA=180°-6;ALG =1

VAN
BLG=90-4,AG:GB=1:1
.". By trigonometrical theorem in A LBA,
(1+1) cot(180°—6)=1.cot(90°— 1)—1.cot A

2
—2.cotd =tan A —cotA :tan—/”t—l
tan A
2
.'.coté’zw
2tan A
1 1-4°
ie.) _H stan@ = 24
tanéd  2u 1—/12

Problem 6
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A uniform ladder rests with its lower end on a rough horizontal ground its upper end

against a rough vertical wall, the ground and the wall being equally rough and the angle of

friction being A. Show that the greatest inclination of the ladder to the vertical is 24 .

Solution
In the previous problem, we have proved, tané@ = Zﬂz But u=tan A
1-u
.'.tanezm—nfztanu = | - 9=21
1-tan“ 4 =
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Problem 7
A ladder which stands on a horizontal ground, leaning against a vertical wall, is so loaded

that its C. G. is at a distance a and b from its lower and upper ends respectively. Show that if the

ladder is in limiting equilibrium, its inclination & to the horizontal is given by tangzw
(a+b)u

where u, 1’ are the coefficients of friction between the ladder and the ground and the wall

respectively.

Solution:

As in problem 5, five forces are acting on the ladder

Here, AG:GB=a:b

.". By Trigonometrical theorem in ALBA,

(b +a).cot(90 + #)=b.cot(90 — 1')—a.cot A

i.e.) (a+b)—tan@)=b.tan ' —a.coti

o) oe
—b.u ,
S tan@ = 2 = a-buu

a+b (a+b)u

Problem 8

A ladder AB rests with A on a rough horizontal ground and B against an equally rough
vertical wall. The centre of gravity of the ladder divides AB in the ratio a: b. If the ladder is on

the point of slipping, show that the inclination € of the ladder to the ground is given by

a—bu?
tand =" where 4 is the coefficient of friction.
u(a+h)

Solution:

In the previous problem,

Put =1 in tané':m a—bu

(a+b)u .'.tanezﬂ(aer)
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Problem 9
A ladder AB rests with A resting on the ground and B against a vertical wall, the

coefficients of friction of the ground and the wall being x and 4 respectively. The centre of
gravity G of the ladder divides AB in the ratio 1: n. If the ladder is on the point of slipping at

1-nuy

both ends, show that its inclination to the ground is given by tan 8 =
(n+1)u

Solution:
Puta:b=1:nin problem?7.

tanezl_nﬂﬂ’
(L+n)u

Problem 10
A ladder of length 2l is in contact with a vertical wall and a horizontal floor, the angle of
friction being A at each contact. If the weight of the ladder acts at a point distant k|l below the
middle point, prove that its limiting inclination € to the wvertical is given by

cotd =cot21 -k cosec2.

Solution:

Forces are acting as marked in the figure. For equilibrium, the three forces R’,S’\W
must be concurrent at L, where W — be the weight of the ladder.
In ALAB,BC =CA=1;CG =KI.

~.BG=BC+CG =1+kl=(1+k)I
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N AN
BLG=90°-4,LGA=180°-6

ALG = 4;GA=CA—CG = K| =(1-k).
BG:GA=(1+k):(1-k)
.". By Trigonometrical theorem in  ALBA,
[(1+k)+(@—k)].cot(180° — @) = (1+k).cot(90° — 1) — (1—k).cot A.
2(~cotd)=(L+k)tan 2 —(1—k).cotd
~.2cotd = (1-k)cotA —(1+k)tan A

(1-k)cot® 21 —(1+k)

cotA

_ {cot? 2-1)—klcot? 1 +1)
) cot A

(cot2 A —1)— k.cosec?A
2.cotA

cotd =

1- tan2 A 3 l{ljt cot2 ﬂ,}

2cotA.tan? A 2.coti
- 1 | 1+tan?2
[Ztan/ij 2.tan2 J.cot A
1—tan2/1

_ 1,1
tan24  sin2A

ie) cotd =cot24 —k.cosec24

Problem 11
A uniform ladder rests in limiting equilibrium with its lower end on a rough horizontal
plane and with the upper end against a smooth vertical wall. If & be the inclination of the ladder

to the vertical, prove that, tan@ =2, where p is the coefficient of friction.
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Solution:

los]

Since the wall is smooth, there is no frictional force. Forces acting on the ladder are i) its weight

W, i) Frictional force 1R li) Rat A iv) S at B. For equilibrium, the three forces

W,R’,S must be concurrent at L. where Rlis the resultant of R and UR . Intriangle LAB,

A A A A
LGA=180°-60,ALG=4,BLG=90°BG:GA=1:1.ABC =4
By Trigonometrical theorem in ALAB,

(1+1)cot(180° — #)=1.cot90° —1.cot A

—2.cotd=0-cotA

2 1
tand tanA

~tangd=2tan 1 i.e) tand =2u

Problem 12

A particle is placed on the outside of a rough sphere whose coefficient of friction is /.

Show that it will be on the point of motion when the radius from it to the centre makes an angle

tan 4 with the vertical.
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Solution:

Let O be the centre, A the highest point of the sphere and B the position of the particle
which is just on the point of motion. Let Z/AOB =6
The forces acting at B are:
1) the normal reaction R
2) limiting friction 4R
3) Its weight W,
Since the particle at B is in limiting equilibrium,
Resolving along the normal OB,

R=Wcos@ ...................... (1)
Resolving along the tangent at B,
MR=Wsin@ ................... ()

(2)

—~= u=tanf =

®

2.6 Equilibrium of Strings

When a uniform string or chain hangs freely between two points not in the same vertical
line, the curve in which it hangs under the action of gravity is called a catenary. If the weight
per unit length of the chain or string is constant, the catenary is called the uniform or common

catenary.

2.7 Equation of the common catenary:

A uniform heavy inextensible string hangs freely under the action of gravity; to find the

equation of the curve which it forms.



Let ACB be a uniform heavy flexible cord attached to two points A and B at the same
level, C being the lowest, of the cord. Draw CO vertical, OX horizontal and take OX as X axis
and OC as Y axis. Let P be any point of the string so that the length of the are CP =s

Let o be the weight per unit length of the chain.

Consider the equilibrium of the portion CP of the chain.

The forces acting on it are:

Q) Tension Ty acting along the tangent at C and which is therefore horizontal.

(i)  Tension T acting at P along the tangent at P making an angle ¥ with OX.

(iii)  Its weight ws acting vertically downwards through the C.G. of the arc CP.

For equilibrium, these three forces must be concurrent.
Hence the line of action of the weight ws must pass through the point of the
intersection of T and T,.
Resolving horizontally and vertically, we have
TcosW=T,... ... (@)

Dividing (2) by (1), tan ¥ ===
0

Now it will be convenient to write the value of T, the tension at the lowest point,
asTo=wc ... ... (3) where c is a constant. This means that we assume T,, to be equal to the

weight of an unknown length c of the cable.

67
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Thentan ¥ =2 =2
wc

~S=ctan¥ ... ... ... (4)
Equation (4) is called the intrinsic equation of the catenary.
It gives the relation between the length of the area of the curve from the lowest point to
any other point on the curve and the inclination of the tangent at the latter point.
To obtain the certesian equation of the catenary,
We use the equation (4) and the relations

dy . d .

% = sin ¥ and % = tan P which are true for any curve.
b _dy ds

Now dy  ds’ d¥

=sin¥ ﬁc tan ¥

= sin csec®¥ = csec ¥ tan W
~y=fcsecWtanP d¥Y + A
=csecY +S

If y = ¢ when ¥ = 0, then ¢ = csecO + A

~A=0
Hencey=csecV¥ ... ... ... (5)
~y?=c?sec W =c? (1 +tan’ V)
=c?+s?... .. (6)
2_p2

2 —tan ==
d c c

dy _dx

yZ—cZ ¢

. 1 Y\ _x
Integrating, cos h (?) ==+ B
Whenx=0,y=c¢
ie.cosh’1=0+BorB=0
~cosh™ (X) ==

[ c

i - X
i.e.y=ccosh (C) ...... (7)
(7) is the Cartesian equation to the catenary.

We can also find the relation connecting s and x.
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Differentiating (7).

d . 1.
2 =¢sinh %, = =sinhZ
dx c ¢ c

From (4), s =ctan ¥ =c. Z—Z =csinh % ... (8)
Definitions:
The Cartesian equation to the catenary is y = ccosh f . cosh f is an even function of x. Hence

the curve is symmetrical with respect to the y-axis i.e. to the vertical through the lowest point.

This line of symmetry is called the axis of the catenary.

Since c is the only constant, in the equation, it is called the parameter of the catenary and
it determines the size of the curve.
The lowest point C is called the vertex of the catenary. The horizontal line at the depth ¢

below the vertex (which is taken by us the x — axis) is called the directrix of the catenary.

If the two points A and B from where the string is suspended are in a horizontal line, then
the distance AB is called the span and the distance CD (i.e. the depth of the lowest point C below
AB) is called the sag.

2.8 Tension at any point:

We have derived the equations

TcosW=To... ... ... ... (1)

And TsinW=ws... ... ... ... (2)

We have also put To=wc ... ... ... (3)

Equation (3) shows that the tension at the lowest point is a constant and is equal to the
weight of a portion of the string whose length is equal to the parameter of the catenary. From the
equation (1), we find that the horizontal component of the tension at any point on the curve is
equal to the tension at the lowest point and hence is a constant.

From equation (2), we deduce that the vertical component of the tension at any point is
equal to ws i.e. equal to the weight of the portion of the string lying between the vertex and the
point. (-- s = are CP)



70

Squaring (1) and (2) and then adding,
-|-2 — TZO + WZSZ
=wc’+w’a’
=w?(c*+s?)
=w?y? using equation (6) of page 377
ST=wy o oo (4)
Thus the tension at any point is proportional to the height of the point above the origin. It is

equal to the weight of a portion of the string whose length is equal to the height of the point
above the directrix.

Important Corollary:

Suppose a long chains is thrown over two smooth pegs A and B and is in equilibrium

with the portions AN and BN’ hanging vertically. The potion BCA of the chain will from a
catenary.

sowa

Z o

The tension of the chain is unaltered by passing overt the smooth peg A. The
tension at A can be calculated by two methods.

On one side (i.e. from the catenary portion), Tension at A = w.y where y is the height of
A above the directrix.
On the other side, tension at A = weight of the free part AN hanging down
=w. AN
~y=AN
In other words, N is on the directrix of the catenary.

Similarly N’ is on the directrix.

Hence if a long chain is thrown over two smooth pegs and is in equilibrium, the free ends
must reach the directrix of the catenary formed by it.
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Important Formulae:

The Cartesian coordinates of a point P on the catenary are (x, y) and its intrinsic
coordinates are (S, ¥). Hence there are four variable quantities we can have a relation connecting
any two of them. There will be 4C, = 6 such relations, most of them having been already
derived. We shall derive the remaining. It is worthwhile to collect these results for ready
reference.

Q) The relation connecting x and y is
y = ccosh % ...... (1)
and this is the Cartesian equation to the catenary.

(i) The relation connecting s and ¥ is

s=ctan¥ ... ... (2)

(ili)  The relation connecting y and ¥ is
y=csec¥ ... ... ... 3)

(iv)  The relation connecting y and s is
V= CPHs? (4)

(v)  The relation connecting s and X is
s=csinh =
[
(vi)  We havey = ccosh f and y = csec P,
~ sec ¥ = cosh %
% = cosh -1(sec'?)

= log(sec¥ + Vsec’¥ — 1

= log(sec¥ + tan¥)
~x =clog (sec¥ + tan¥) ... ... (6)
This relation can also be obtained thus:
dx _dx ds
d¥  ds’ d¥

d . dx
=cos V. o (ctan ¥ ) since -~ cos Y for any curve

=cos V. Csec2¥ — csecV
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Integrating, x = [ csec ¥ d¥ + D

= clog (sec¥ +ran¥) + D
At the lowest point, ¥ =0 and x =0
~ 0 =clog (secO+tan0 + D

i.e.0=D
~ x= clog (sec¥ + tan V)

(vii)  The tension at any point =wy ... ... (7), where y is the distance of the point from the
directrix.

(viii) The tension at the lowest point =wc ... ... (8)

sinh™ x = log(x+vx2 + 1)
cosh™ x = log(x+VxZ — 1)

2.9 Geometrical Properties of the Common catenary:

i ol

Let P be any point on the catenary y = ccosh % .

PT is the tangent meeting the directrix (i.e. the x axis) at T.
angle PTX =¥
PM (=y) is the ordinate of P and PG is the normal at P.
Draw MN 1 to PT.
From APMN. MN =PMcos¥
=ycos¥V
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=csec¥ cos ¥
=c=constant
i.e. The length of the perpendicular from the foot of the ordinate on the tangent at any point of

the catenary is constant.

) PN PN
Agamtan ¥ =— = —
gan ta MN C

~PN=ctan¥ =S arc CP
PM? = NM? + PN?
~y? = c?+s?, arelation already obtained.

If is the radius of curvature of the catenary at P,

—4s _ 4 — csec?
P= = I (ctan ¥) = csec™V

Let the normal at P cut the x axis at G.

Then PG. cos ¥ =PM =y

~ PG =—L— = csec?. sec? = csec?¥
cos¥
Lop = PG

Hence the radius of curvature at any point on the catenary is numerically equal to the
length of the normal intercepted between the curve and the directrix, but they are drawn in
opposite directions.

Problem 13
A uniform chain of length | is to be suspended from two points in the same horizontal

line so that either terminal tension is n times that at the lowest point. Show that the span must be

1 2 —
W log(n+ Vn 1
Solution:

Tension at A = wya
And tension at C = w.yc since T = wy at any point
Now w.ya = n.w.yc
~Ya = Nyc =nc

Butya = ccosh%’* = nc

coshXC—A =n



or =% = cosh™n = log (n+VnZ 1)

“Xa = clog(n+vn2 —1)......... (1)
We have to find c.

y?a = c%+5%s, sa denoting the length of CA.

2
= ¢*+ < (as total length = 1)

. 12
i.e.n’c® = C2+Z

orc’® =

S C =
Substituting (2) in (1),
12
Xa = Znﬁ |Og (n+ vn? — 1)
~span AB = 2xa = %_1) log (n+vn? —1)

Problem 14
A box kite is flying at a height h with a length | of wire paid out, and with the vertex of
the catenary on the ground. Show that at the kite, the inclination of the wire to the ground is

12+h? 12—h?
W(—)and W(—

2 tan™ % and that its tensions there and at the ground are — ) where w is the

weight of the wire per unit of length.

Solution:
ty A
h
C I L
C
%
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C is the vertex of the catenary CA, A being the kite. The origin O is taken at a depth c
below C.
Thenya = c+handsa = arc CA=1
Since y* = ¢+ 5%, we have (c+h)? = ¢? + I?
i.e.h®+2ch = I

_ lZ_hZ
orc= ——......... Q)
We know thats=ctan¥ ... ... ........ ... (2)
Applying (2) at the point A, we have
| =c. tan Wa
s Tan Wa = % = lzz_hll]z substituting for ¢ from (1)
2(3)
= — ... .. 3
-2 ®
2tan7
But tan¥ = T oo e (4)
—tan2—

Comparing (3) and (4), we find that

YAt

tan;atA—l
Y~ fanh
a3 =fan l

or ¥atA= 2tan*

k=2

The tension at A = wW.ya

= w.(c+h)

_ 12—h? _ w(l%+h?)

B W( 2h T h) T 2h
Problem 15

A uniform chain of length I is to have its extremities fixed at two points in the same
horizontal line. Show that the span must be \/1_@ log (3+/8 ) in order that the tension at each

support shall be three times that at the lowest point.
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Solution:

Put n =3 in problem number 13.

Problem 16

A uniform chain of length | is suspended from two points A, B in the same horizontal

line. If the tension A is twice that at the lowest point, show that the span AB is VL? log (2++/3)
Solution:

Put n =2 in problem number 13.

Problem 17
A uniform chain of length 2l hangs between two points A and B on the same level. The
tension both at A and B is five times that at the lowest point. Show that the horizontal distance

between A and B is \/l—g log (5+2/3)

Solution:
Put n =5 and length = 2l in problem number 13.
Problem 18

If T is the tension at any point P and Ty is the tension at the lowest point C then prove
that T2 — To? = W? where W is the weight of the arc CP of the string.
Solution:

Given T is the tension at P. Let w be the weight per unit length and y is the ordinate of P.
Then T = wy.
Also Tg = wc
AT T8 = why? — wAe?
=W (y* - ¢)
— WZSZ

:W2
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2 Kinematics

An object (eg. ball, planet,...) is idealized as a point particle (zero size)
with a quantity of matter called mass.

Good approx if size of object < trajectory, and rotation not important.

A point particle has position vector r(t) at time ¢, given a chosen origin O.
Write down the equation of motion for r(¢) (ODE) and solve it to find the
trajectory r(t) ie. a curve in space.

2.1 Definitions

Definitions of some quantities.

velocity
dr

\%
is tangent to the trajectory.
speed, v =|v|> 0, magnitude of the velocity.
momentum, p = mv.

acceleration
dv .
a=-—=r
dt

. . . 1 2
kinetic energy, T = smuv~.

2.2 Cartesian coordinates

r=xi+yj+ zk

where i, j,k are fixed orthogonal unit vectors iei-i = 1,i-j = 0, etc, eg.
i=(1,0,0).

In mechanics do not write just the components, r = (x,y, z), but include the
basis vectors ie. r = xi + yj + zk.



This is because sometimes the basis vectors are not constant, and then we
would get the wrong answer for the velocity if we just differentiated the
components.

If r = ae, then r = de + aé # ae if € # 0.

eg. r = ti + j + t’k with m = 2.

v=r=1i+2tk, v =|v]=+vV1+4t2, p=mv =2v = 2i+ 4tk,
a=v=2k, T =smv’=(1+4¢).

Note: Acceleration can be non-zero even if the speed is constant, since the
direction of the velocity might not be constant.

Given the acceleration at all times and initial position and velocity, the po-
sition can be found by integration.

eg. a=2k, r(0)=j+k v(0) =i

v = 2tk + ¢, but v(0) = ¢ =i therefore v = 2tk +i.

r = t’k + ti +d, but r(0) = d = j + k, therefore r = (#* + 1)k + #i + j.

2.3 Polar coordinates and vectors

Consider motion in a plane, using polar coordinates r,#, where x = r cos6
and y = rsinf.

r = xi+ yj = r(cos i+ sin 6j).

The radial unit vector e, is a vector in the direction of r,

e, = = = cos i + sin 6].

The tangential unit vector ey is a vector perpendicular to e,, and is

eg = —sinfi+ cosfj, (increasing 6 is anti-clockwise).

If the particle is moving then r and 6 can depend on time.
e, =W de — f(—sinbi+ cosbj) = ey.

e .
€y = 5 p€ = 0(—cos 0i — sin0j) = —0Oe,.

Note: e, -e, =eyp-eg =1 and e, - g = 0 for all time.

r = re, therefore r = re, + ré, = re, + rfey.

6



i = i'e, + ré, + rheg + rleg + roég = (i — r6>)e, + (210 + r6)ey

v = re, + rfey, a= (i —7r6%e, + (270 + rf)ey

Eg. Motion in a circle with constant speed

r = p with p constant.

v =r1=re, + rfe, = peeg

Note that for circular motion v - r = 0 since ey - e, = 0.

v = |v| = |oflles] = |ofl.

Hence for constant speed 6 = w with w constant (choose w > 0.)
v = wp hence w =v/p.

Since 6 is constant then 6 = 0, so

a = —pw?e,. Hence a = |a] = pw? = v?/p.

The acceleration is directed radially inwards.

This is called centripetal (centre-seeking) acceleration.

Warning: do not confuse with centrifugal (centre-fleeing) — see later.

2.4 Units and dimensions

Generally use SI units (often drop units altogether).
Mass kg, length m, time s. Remember to convert eg. mins to seconds.

Dimensions are similar to units but more significant.

Quantity | Dimension
Mass M
Length L
Time T
Write [mass] = M etc
[velocity] = [%] =LT"!, [acceleration] = [Vetll(;glety] =LT2

Correct equations must have the same dimensions on each side.
Can check consistency using dimensional analysis.



Eq. Period of a pendulum
Pendulum of length [ and mass m swings under gravity (acceleration due to
gravity g). Its period is 2m/l/g. Check this has the correct dimensions

R

An expression like mg/[ is obviously wrong, since

[mg/l] = MLT2L™' = MT > #T.

Can calculate the dimensions of constants in expressions.
Eg. suppose a force is given by kA, where A is the surface area of an object.

[force] = [mass x acceleration] = MLT * = [kA] = [r]L?

hence [k] = ML™'T™2, so could be given in units of kg/m/s>

2.5 Relative motion

Figure 1: Relative position

r is the position of an object with respect to a fixed origin O. Let an observer
(possibly moving) have position R. Then the relative position of the object
to the observer is

r=r—R.

Relative velocity T = 1 — R, relative acceleration r = ¥ — R,



Eg. Bart is going north (direction j) on his skateboard at 10mph and feels
a headwind of 25mph. What is the windspeed (velocity) relative to the ground?

R is Bart’s position, and r is the position of an air particle.
(Units are miles and hours).

R=10j, 7r=-25j=r—R

r = —25j+ 10j = —15j

Windspeed relative to the ground is 15mph southward.

[f Bart now goes east at 15mph what wind does he feel?

R = 15i, r = —15j, sor—r—R——15J—151

r| = 15\/_, so feels a wind of 15v/2mph in the direction —(i + j)/v/2 ie.
southwest.

Centrifugal acceleration

This is a result of viewing centripetal acceleration in rotating coordinates.
Let R be the position of an observer moving in circular motion with radius
p and constant speed v eg. child on a roundabout.

R——?eR hencet =% — R =1 + “ eR,

so even for an object with no forces actmg in this plane ¥ = 0,

eg. ball released by the child, then T = %eR, so observer sees a relative
acceleration directed radially outwards.

This is centrifugal (centre-fleeing) acceleration.

eg. Child sees the ball flying outwards.

2.6 Inertial frames

The above example appears to contradict N1 — no forces, no acceleration.
In fact N1 defines the type of observer (or better reference frame) for which
N2 holds.

An 1nert1al frame is one which is not accelerating ie. R = 0,
then F = ¥ — R = ¥ so see the ‘true’ acceleration.



Velocity of a body is defined as the time rate ofidplacement, where as acceleration is defined as
the time rate of change of velocity. Acceleratiorsia vector quantity. The motion may be
uniformly accelerated motion or it may be non-unifamly accelerated, depending on how the
velocity changes with time.

Uniform Acceleration

The acceleration of a body is said to be uniform its velocity changes by equal amounts in equal
intervals.

Non-Uniform Acceleration

The acceleration of a body is said to be non-unifan if its velocity changes by unequal amounts
in equal intervals of time.

Average velocity

it
. . .J[{' vt
[t Uguggt: = =
Jo @t
Average acceleration
't
. . .J[{' erclt
[T (g gt = —
Jo @t
lllustration:

A particle moves with a velocity v(t) = (1/2)kf along a straight line. Find the average speed of
the particle in time T.

Solution:

T

1 . Lo, I
Ift: '!-Ir[l'_l.‘j'.,gt: = ? 1o l!ll_‘t]l:.ft = E J rI.."t lf.ft = EFTI..T

lllustration:

A particle having initial velocity is moving with a constant acceleration 'a’ for a time t.
(a)Find the displacement of the particle in the lasl second.

(b)Evaluate it foru =2 m/s, a=1 mfsand t = 5 sec.

Solution:

(a) The displacement of a particle at time t is gen s = ut + 1/24k

At time (t - 1), the displacement of a particle igiven by

S'=u (t-1) + 1/2a(t-15

So, Displacement in the last 1 second is,

$=S-8



= ut + 1/2 af — [u(t-1)+1/2 a(t-1F ]

= ut + 1/2af - ut + u - 1/2a(t - 1j

=1/2af + u - 1/2 a (t+1-2t) = 1/2&t+ u - 1/2af - a/2 + at
S=u+al2(2t-1)

(b) Putting the values of u = 2 m/s, a =1 nfland t = 5 sec, we get
S=2+1/22x5-1)=2+1/2x9

=2+45=65m

lllustration:

Position of a particle moving along x-axis is giveby x = 3t - 4 + t3, where x is in meters and t in
seconds.

(a)Find the position of the particle att =2 s.

(b)Find the displacement of the particle in the tine interval fromt=0tot=4s.
(c)Find the average velocity of the particle in théime interval from t = 2s to t=4s.
(d)Find the velocity of the particle att =2 s.

Solution:

(@) Xy = 3t- 4 + 2

=>X2=3x2-4x(J+(2P=6-4x4+8=-2m.

(b) X0y =0

Xay=3x4-4x B+ @F=12m.

Displacement = X - X0y = 12 m.

(€) <V >=XaXeya-2= (12-(-2))/2 m/s =7 m/s

(d) dx/dt = 3 - 8t + 3¢

Vi) (dx/dt), =3 -8 x 2 + 3 x (D)= -1m/s

lllustration:

Two trains take 3 sec to pass one another when ggim the opposite direction but only 2.5 sec if
the speed of the one is increased by 50%. The timmae would take to pass the other when going
in the same direction at their original speed is

(a) 10 sec (b) 12 sec
(c) 15 sec (d) 18 sec
Solution:

Using the equation,



t=d/v;

We have,

3 =dvtvy

2.5 = d/1.5y+v,

Solving we get,

v1=2d/15 and ¢ = d/5

When they are going in same direction,
Vi =Vo— vy =d/15

Thus, t=d/v =d/(d/15)=15s

From the above observation we conclude that, optioft) is correct.
Analysis of Uniformly Accelerated Motion

ay

Case-l:
For uniformly accelerated motion with initial velocity u and initial position Xo.

Velocity Time Graph

¥ ) Vv 1
/
8 ’ o, f "

ifu=0 lfu>0 Ifu<0

In every case ta® = g

Position Time Graph

X 1 Xt X
= :x.u - -j. - ‘:'1 ‘-‘1 \__/
Xg X o

ifu=0 fu>0 fu<0Q

Initial position x of the body in every case is (> 0)



Case ll:

For uniformly retarded motion with initial velocity u and initial position Xo.

Velocity Time Graph

i v b'] 1-_'- vT
X I\\H =) -
t Jox ! 1\ |

Ifu=0 fu>0 ifu<0

In every case ta® = -

Position Time Graph

fu=0 ifu>0 fu<0

Initial position x of the body in every case is (> 0)
lllustration:

(m/s”)
a




A patrticle is moving rectilinearly with a time varying acceleration a = 4 - 2t, where a is in
m/s? and t is in sec. If the particle is starting its mtion with a velocity of -3 m/s from x = 0. Draw
a-t, v-t and x-t curve for the particle.

Solution:
a=4-2t
V t
[ dy = [ acdt
J-3 Jo
v = 4t-t-3
T t
[ dr = [ il
Jo Jo
x = 2 — 33— 3t

Acceleration

Acceleration is the rate of change of velocity witime. The concept of acceleration is
understood in non-uniform motion. It is a vector quantity.

Average acceleration is the change in velocity pemit time over an interval of time.

. AU 1y — 1
MTA T -4
Instantaneous acceleration is defined as
B AT dr
=T w
dr dueg - rfe.-y - du. . . . .
= At dt ' dt J T it k=021 +ayj +a:k

Acceleration Vector in Non Uniform Motion
A

Velocity
vh

a>xao

Timet —=



Suppose that at the instantta particle as in figure above, has velocitﬁle andt &,, velocity is 1’2

. The average acceleratior{t: gt during the motion isafined as
It: @t AU _ 0
gL, = = —
q Al -t

_“_i

Variable Acceleration

The acceleration at any instant is obtained from th average acceleration by shrinking the time

interval closer zero. AsAt tends to zero average acceleration approachinglianiting value, which

is the acceleration at that instant called instantaeous acceleration which is vector quantity.
AU dr

n= lim — = —
At—0 At dt

i.e. the instantaneous acceleration is the derivag of velocity.

Hence instantaneous acceleration of a particle ahg instant is the rate at which its velocity is
changing at that instant. Instantaneous acceleratimat any point is the slope of the curve v (t) at
that point as shown in figure above.

Equations of Motion

The relationship among different parameter like diplacement velocity, acceleration can be
derived using the concept of average acceleratioma concept of average acceleration and
instantaneous acceleration.

When acceleration is constant, a distinction betwe@eaverage acceleration and instantaneous
acceleration loses its meaning, so we can write

v—upy  du
t—ty dt

1=

where U0 is the velocity att = 0 ana’ is the veldgiat some time t
Now,

it — 7 — 1y

This is the first useful equation of motion.
Similarly for displacement
T =)+ tvgt:t 3)

in which 0 is the position of the particle at § and [t Ugt: s the average velocity betweep and
later time t. If at to and t the velocity of particle is



. |
It: E.':fﬁl.: = SI‘“{] + ) = E[“{J - Up +— {I!l.]

&

lt:vgti=vg+ d

2 (4)

From equation (3) and (4), we get,
SR 1 =42
Tr— Tp = Upl +— —at”

e (5)

This is the second important equation of motion.
Now from equation (2), square both side of this ecation we get

at

2 2,2 . 5 ~
vg + a’t” + 2wodt = vy + 2dt + [vo + ]

()

vy = vy + 2dtlt: vgt:  [Using equation (4)]
Using equation (3), we get,
2 = ot + 2a(7 — 7p)

This is another important equation of motion.

Caution:The equation of motion derived above are pssible only in uniformly accelerated
motion i.e. the motion in which the acceleration isonstant.

Refer this Simulation for Motion in a Straight Line
lllustration:

The nucleus of helium atom (alpha-particle) travelsnside a straight hollow tube of length 2.0
meters long which forms part of a particle accelertor. (a) If one assumes uniform acceleration,
how long is the particle in the tube if it enters aa speed of 1000 meter/sec and leaves at 9000
meter/sec? (b) What is its acceleration during thisterval?

Solution:

(a) We choose x-axis parallel to the tube, its pdisie direction being that in which the particle is
moving and its origin at the tube entrance. We argiven x and \ and we seek t. The acceleration
ax is not involved. Hence we use equation 3, X g X <v> 1.

We get

X =Vo+ Y2 (o) + W) t, with xo =0 or

t = 2x/(VxotVy),

t = ((2)(2.0 meters))/((L000+9000)meters/sec) =/A0" sec Ans.
(b) The acceleration follows from equation 2, y= vy + adt

=> ax = (W-Vyo)/t = ((9000-1000)meters/sec)/(4.0x1D sec)



= 2.0 x 10 meter/seé Ans.

Pause: The above equations of motion are, howevemiversal and can be derived by using
differential calculus as given below:

dir

—
At

= v = ddt

= /{fﬁ':{?/{ft

Or,

Letatt=0, UV = U0
then, C' = g

Or, U = df + g

Further we know that,

dr

dat "

or dr = it

Integrating,

/{f.?': [a?dt—f-’

Or,

— I — 0 g — L 2 J
T = [ (v +dt)dt +c¢ =gt + St +«

At,t=0,x=xthenc =x
Hence,
1

— — 2
= ap + vt + —at”
0 0 5

i

Thus, we have derived the same equation of motiorsing calculus.

To understand the use of calculus in solving the Rematics problems we can look into the
following illustrations.

[llustration:

The displacement x of a particle moving in one dimmesion, under the action of a constant force is
related to the time t by the equation t =Vx + 3 where x is in meter and t is in seconds. Firitie
displacement of the particle when its velocity isexo.



Solution:

Heret=Vx+3=>Vx=1t-3

Squaring both sides, we get x =% - 6t + 9,

As we know velocity, v = dx/dt

Hence we getv = dx/dt = 2t - 6

Putv=0,weget, 2t-6=0

So,t=3s

Whent=3s,x=f-6t+9=9-6(3)+9=0

Hence the displacement of the particle is zero whats velocity is zero
lllustration:

A particle starts from a point whose initial velocty is v, and it reaches with final velocity *, at
point B which is at a distance 'd' from point A. The path is straight line. If acceleration is
proportional to velocity, find the time taken by paticle from A to B.

Solution:

Here acceleration a is proportional o velocity v.
Hence aa v

=> a = kv, where k is constant

=>dv/dt = kv ... (1)

=> (dv/ds)(ds/dt) = kv => (dv/ds) v = k

12 il
[ dv = .u"c[ ds
Sl 410

From equation (1),

dv/v = kdt

v dy ‘
[ - = ;," / {-{!L
or, /v U Jo

Or, In (va/va) = kt
Or, t=1In (va/vy) /k
= [d In (V2/V1)/ (V2'V1)]

Did You Know?




« The displacement remains unaffected due to shiftingf origin from one
point to the other.

« The displacement can have positive, negative or zevalue.

« The displacement is never greater than the actualistance travelled.

« The displacement has unit of length.

« Velocity can be considered to be a combination opsed and direction.

« A change in either speed or direction of motion rasts in a change in
velocity.

« Itis not possible for a particle to possess zer@sed with a non-zero
velocity.

« A particle which completes one revolution, along aircular path, with
uniform speed is said to possesss zero velocity anon-zero speed.

« In case a body moves with uniform velocity, along atraight line, its
average speed is equal to its instantaneous speed

Revision Notes on Kinematics

* Inertial frame of reference:- Reference frame in which Newtonian mechanics holds are called
inertial reference frames or inertial frames. Reference frame in which Newtonian mechanics does
not hold are called non-inertial reference frames or non-inertial frames.

e The average speed v,, and average velocity Var ofa body during a time interval ?t is defined as,

V,y= average speed

=?s/?t

Vs = average velocity
_A4r
At

» Instantaneous speed and velocity are defined at a particular instant and are given by

Note:
(a) A change in either speed or direction of motion results in a change in velocity

(b) A particle which completes one revolution, along a circular path, with uniform speed is said to possess
zero velocity and non-zero speed.

(c) It is not possible for a particle to possess zero speed with a non-zero velocity.



* Average acceleration is defined as the change in velocity AT over a time interval ?t.

> AV
a, =—
At

The instantaneous acceleration of a particle is the rate at which its velocity is changing at that instant.
- A 47
= =
= di=0 At dt
» The three equations of motion for an object with constant acceleration are given below.
(a) v=u+at
(b) s= ut+1/2 at?

(c) v’=u+2as

Here u is the initial velocity, v is the final velocity, a is the acceleration, s is the displacement travelled by
the body and t is the time.

Note: Take ‘+ve’ sign for a when the body accelerates and takes ‘—ve’ sign when the body decelerates.
«  The displacement by the body in n second is given by,
sp=u+a/2(2n-1)

« Position-time (x vs t), velocity-time (v vs t) and acceleration-time (a vs t) graph for motion in one-
dimension:

(i) Variation of displacement (x), velocity (v) and acceleration (a) with respect to time for different types
of motion.

Displacement(x) Velocity(v) Acceleration (a)

(a) At rest X

" ¥ ¥

¥=const.
-

o ] : 0 :
(b) Motion
with 3
constant
velocity




lI'II:I
CEEEEE—
0 t

(c) Motion
with constant i
acceleration a = constant

a.

— 1
8]

(d) Motion X
with constant x =y it-(1/2)ar y 3

L
Vo 3 = constant

ob——mmm— t

deceleration

t % >

e Scalar Quantities:- Scalar quantities are those quantities which require only magnitude for their
complete specification.(e.g-mass, length, volume, density)

e Vector Quantities:- Vector quantities are those quantities which require magnitude as well as
direction for their complete specification. (e.g-displacement, velocity, acceleration, force)

* Null Vector (Zero Vectors):- It is a vector having zero magnitude and an arbitrary direction.

When a null vector is added or subtracted from a given vector the resultant vector is same as the given
vector.

Dot product of a null vector with any arbitrary is always zero. Cross product of a null vector with any other
vector is also a null vector.

e Collinear vector:- Vectors having a common line of action are called collinear vector. There are two
types.

Parallel vector (9=0°):- Two vectors acting along same direction are called parallel vectors.

Anti parallel vector (8=180°):-Two vectors which are directed in opposite directions are called anti-parallel
vectors.

e Co-planar vectors- Vectors situated in one plane, irrespective of their directions, are known as co-
planar vectors.

» Vector addition:-

Vector addition is commutative- -A+B8=5+.4



Vector addition is associative-

Vector addition is distributive- mAd+mB =m(4+5)

e Triangles Law of Vector addition:- If two vectors are represented by two sides of a triangle, taken
in the same order, then their resultant in represented by the third side of the triangle taken in
opposite order.

>
B .a,jk“'ﬁ

>

A

=]
Il
i |
+
B

Magnitude of resultant vector R.

R=V(A*+B*+2ABcos?)

Here ¥ is the angle between 4 and 5.

If B is the angle between R and —E,

then,

B = tant Bsinf
- e {H+BCDSH

» If three vectors acting simultaneously on a particle can be represented by the three sides of a
triangle taken in the same order, then the particle will remain in equilibrium.

so, ATB+C=0
+ Parallelogram law of vector addition:-
R=4+8B
R=V(A*+B*+2ABcos?),

_ -1 Bsinf
ﬁ =tan E.¢1+E' cos E}

Cases 1:- When, 9=0°, then,
R= A+B (maximum), 8=0°
Cases 2:- When, 9=180°, then,
R= A-B (minimum), 8=0°

Cases 3:- When, 9=90°, then,



R=V(A%+B?), B = tan™ (B/A)

e The process of subtracting one vector from another is equivalent to adding, vectorially, the
negative of the vector to be subtracted.

A-B=3+(-B)|
* Resolution of vector in a plane:-

A+ A, = A

A, = Acosé X
*  Product of two vectors:-

(a) Dot product or scalar product:-
AB = 4B cos# )

AB=4B +4B +4z

Here A is the magnitude of 4 , B is the magnitude of B and ¢ is the angle between A and E.

(i) Perpendicular vector:-
AB=0
(ii) Collinear vector:-

When, Parallel vector (9=0°), 1-B = A8

When, Anti parallel vector (6=180°), AB=-4B

(b) Cross product or Vector product:-

Or,
E T
.HXE = .r‘i_x .r‘iJ_. .r‘iz [
E, B B



Here A is the magnitude of «1, B is the magnitude of B 9isthe angle between <1 and B and 7 is the

unit vector in a direction perpendicular to the plane containing <1 and B,
(i) Perpendicular vector (6=90°):-
AxB=AB

(i) Collinear vector:-
When, Parallel vector (6=0°), (null vector)

When, 6=180°, (null vector)

e Unit Vector:- Unit vector of any vector is a vector having a unit magnitude, drawn in the direction
of the given vector.

In three dimension,

- _ _:1
T4
Af+AF+Ak
NECEERE
* Area:-
1,- -
A=—[4dx B|
Area of triangle:- 2
A= ;1 . E|
Area of parallelogram:-
T=4(BxC|

Volume of parallelepiped:-

. Equation of Motion in an Inclined Plane:

(i) Perpendicular vector :- At the top of the inclined
plane (t=0,u=0and a =g sing ), the equation of motion will be,



(a) v= (g sinB)t
(b) s =% (g sinB) t*
(c) v’=2(g sinB)s
(ii) If time taken by the body to reach the bottom is t, then s =% (g sind) t*
t=V(2s/g sin9)
But sind =h/s or s= h/sind
So, t =(1/sind) V(2h/g)
(iii) The velocity of the body at the bottom
v=g(sind)t
=V2gh
« The relative velocity of object A with respect to object B is given by
Vas=Va-Vs
Here, V;is called reference object velocity.

» Variation of mass:- In accordance to Einstein’s mass-variation formula, the relativistic mass of body
is defined as,

m= my/V(1-v*/c?)
Here, myis the rest mass of the body, v is the speed of the body and c is the speed of light.

« Projectile motion in a plane:- If a particle having initial speed u is projected at an angle ¢ (angle of
projection) with x-axis, then,

v

A

1 s {1‘
i

HH.}I
&y >\

AN

ucos

Time of Flight, T = (2u sina)/g
Horizontal Range, R = uzsinZa/g
Maximum Height, H = u’sin’a/2g
Equation of trajectory, y = xtana-(gx*/2u*cos’a)
* Motion of a ball:-
(a) When dropped:- Time period, t=V(2h/g) and speed, v=v(2gh

(b) When thrown up:- Time period, t=u/g and height, h = u?/2g



» Condition of equilibrium:-

F=-(h+F]
(a) - -

(b) [Fi+Fa | 2| F3| =] Fi-F;|
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UNIT IV
NEWTON'S LAW OF MOTION
https://chx.org/contents/UYPplaH7 @29.25:0R0Da3iU @&&ica-motior-under-gravity

Newton's laws of motion are of fundamental impoc&am classical physics. Newton gave three |
connected with motion and are, popularly, knowiNeagton’s laws of mdon.

Newton’s First Law of motion

To study Newton'’s first law afotion the concept of equilibrium should be clear toWseneve a number of forces
act on a body and they neutralzact other’s effect, the body is said to be in equilibr. In such a case there is no
change in the state of rest ormbtion If however, the system of forces have a resultie state of rest or that of
motion undergoes a change. Thigexplainecby Newton'’s first law of motion.

It states that,Every body continues in its state of rest or of uniform motion in a straight line unless it is
compelled by some external forcéo change that state. Therefore, every objeqtersists in its natural state of
motion i.e. continues to be at resbr moves in a straight line with uniform (constant)velocity, in the absence of

a net external force acting(impressed on it.
Law of Inertia

Inertia is the property of all bodies by virtue ofwhich they are unable to change thei
state of rest or of uniform motion in a straight line without the help of an external force
In other words inertia can also be termed as a resiance to change the state of motion
a body.

Inertia can be classified into following three caiges
(a) Inertia of Rest:-

It is the property of a body by virtue which it is unable to change its state of rest outt
the help of an external force.

(b) Inertia of Motion:-

It is the property of a body by virtue of whichgtnot able to change its speed without
help of an external force.

(c) Inertia of Direction:-

It is the property of a body by virtue of whichstunable to change its direction of mot
without the help of an external for



Qualitative definition of force from first law:-

Newton’s first law states that there cannot be @mnge in the state of rest or that of motion
of a body unless some external force acts updn d@ther words force is an agent which is
capable of producing any change in state of regtairof motion (including direction). This
provides a qualitative definition of force.

Some Conceptual Questions

Question 1:-

A carmoving at constant speed is suddenly braked. Thepamnts, all wearing seat belts, are
thrown forward. The instant the car stops, howeter occupants are all jerked backward.
Why? Is it possible to stop an automobile withibug ‘jerk’?

Solution:-

Newton’s first law states that, without any extérieace, if a body is at rest, it will remain at
rest and if the body is moving with constant vetjpdt will continue to do so. When the car
is suddenly braked, due to the inertia, the occtgoarthe car will tend to move in the
forward direction of car. When the car stops thdsit in the car will produce backward
momentum on the occupants. Since the all the ocdsipeearing seat belts, therefore the
occupants are all jerked backward.

Yes, it is possible to stop an automobile withdg jerk. This can be done by slowing down
the car a little longer time.

Newton’s second law of motion

Momentum
DSy
_

¥
g} —_—
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Momentum of a body is defined as the amount of main contained in a body.
Quantity of motion or the momentum of the body awfseupon,




(a) mass of the body.

(b) velocity of the body.

Therefore momentum of a body of mass ‘m’ and véydwi will be,
p = mu

Definition of Quantitative

Momentum of a body is equal to the product of its rass and velocity. Momentum is a
vector quantity and possesses the direction of velity.

Units:-

S.-kgm &

C.G.S:-gcm’s

Momentum can be put into following two categories.
Dimension:-

[MLT ]

(a) Non-Relativistic Momentum

According to classical physics (or non-relativigittysics) which is based upon the concepts
of Newton’s laws of motion, mass of a body is cdeséd to be a constant quantity,

independent of the velocity of body. In that casemantum? is given by,
p=mu,

Thus, momentum of a body is a linear function sflocity.

(b) Relativistic Momentum

In accordance to Einstein’s special theory of reilgt mass of a body depends upon the
relative velocity ‘v’ of the body with respect tioet observer. If ‘rsi is the mass of body
observed by an observer at rest with respect tg,btsdrelativistic mass ‘m’ is given by,

T
m =

Thus, relativistic momentum is not a linear funitif v.

Newton’s Second Law



—> Applied Force (F)

The rate of change of momentum of a body is diregtlproportional to the impressed
force and takes place in the direction of the forc

Newton’s first law provides a qualitative definiti@f the force while second law pides a
guantitative definition of the forc

Let ©' be the instantaneous velocity of the body. Mome! P of the body is given b
p = mv
According to second law,
F « (rate of change of momentu
Or,
~ dp

FHE

Or,
~ d(mv)
)
dt

Or,
ed(mi)

F = lrt'
di

Here ‘K’ is the constant giroportionality. Mas ‘m’ of a body is considered to be a const
guantity.

. (1
F =km d(v)
elt
or,
F = kmd

The units of force are also selected that ‘k’ beesmne

Thus, if a unit force is chosen to be the forcechlproduces a unit acceleration in a 1
mass,



e, F=1, m=1anda=1.
Then, k=1

So, Newton’s second law can be written , in matheralaform, as

F=ma
i.e., Force = (mass) (acceleration)
This provides us a measure of the force.

Here, if F = 0 then we find a = 0. This remind@ifirst law of motion. That is, if net
external force is absent, then there will be nanglean state of motion, that means its
acceleration is zero.

Further we can extend second law of motion, (it itgcdecomposition) to three mutually
perpendicular directions as per our coordinateesyst

If components in X, y and z direction arg F, & F, respectively, the three acceleration
produced whenf F, & F;, act simultaneously) in the body are, Now,

= 5 =

-
F.=md, E =md, E=md,
If we add three forces then resultant is calledenéernal force.
Similarly,

a=d,+d,+a.

is called net acceleration produced in the body.
Unit of Force:-

S.I:- Newton [kg.m/set

C.G.S:- Dyne [g.cm/sét

Dimension:-

[MLT 7

Impulse

Impulse of a force is defined as the change in momigim produced by the force and it is
equal to the product of force and the time for whit it acts. Therefore, a large force acting
for a short time to produce a finite change in motam which is called impulse of this force
and the force acted is called impulsive force ocdmf impulse.




According to Newton’s second law of motion,

§o—

_ - (77 — )
F =md=m r '

or,

Ft=mi—mi=.J
So, Impulse of a force = change in momentum.
If the force acts for a small duration of time, thece is called impulsive force.

As force is a variable quantity, thus impulse \w#|,

ta
.I=/ Fdt
Jt,

The area under F - t curve gives the magnitudenpfilse.

Impulse is a vector quantity and its directiondame as the direction cF
Unit of Impulse:- The unit in S.1. system is kgm/sec or newton -sdco
Dimension:- MLT*

Problem 1:-

The Sun yacht Diana, designed to negative in the sgstem using the pressure of the
sunlight, has a sail area of 3.1%and a mass of 930 kg. Near Earth’s orbit, thecswid

exert a radiation force of 29 N on its sail. (a) &Whcceleration would such a force impart to
the craft? (b) A small acceleration can producgdasffects if it acts steadily for a long
enough time. Starting from rest then, how far wdulel craft have moved after 1 day under
these conditions? (c) What would then be its sp¢8de “The Wind from the Sun,” a
fascinating science fiction account by Arthur Cr&aof a Sun yacht race.)

Solution:-

(a)

Given Data:-

Mass of the yacht Dianaj = 930 kg
Force exerted by the sun light= 29 N

Force acting on the bod¥)is equal to the product of mas of the boohy &nd acceleration
of the body &).

So,F=ma  ...... (1)



From equation (1), the acceleration (a) of the beduld be,
a=Fm ... (2)

Putting the value aih anda in equation (2), the acceleration such force imfmathe craft
would be,

a=F/m

=29 N /930 kg

= (3.1x10° N/kg) (1 kg. m/8/1 N)

=3.1x10°m/§ ... (3)

Thus acceleration such force impart to the crafilvde, 3.1x18 m/<.

(b)

Given Data:-

Time,t = 1 day

= (1day) (24 h/1 day) (60 min/1 h) (60 s/1 min)

= 86400 s

Initial velocity,vi =0

Acceleration, a = 3.1x1dm/<

From equation of motion, we know that,

Distance travelled by the body) E v; + Ysat?

So,x =vit+ Yeat® ... (4)

Putting the value of;, a andt in equation (4), the distance travelled by thdtevél be,
X = Vit+ Ysat®

= 0+ (3.1x10 m/<) (86400 )  (Sincea = 3.1x10* m/s andt = 86400 s)
=1.1571x186 ...... (5)

Rounding off to two significant figures, the distanwill be 1.2x18m.

Thus from the above observation we conclude thatctaft have movedl.2x%m after 1
day under these conditions.

(c)

Given data:

Accelerationa = 3.1x10° m/&
Time,t = 86400 s

Acceleration of an object is equal to the velooityhe object divided by time.



a=\Vvlt
So,v=at ...... (6)
Putting the value od andt in equation (6), velocity would be,
v=at

= (3.1x19 m/<’) (86400 s)

= 2678.4 m/s
Rounding off to two significant figures, speed viaé 2700 m/s.
Thus from the above observation we conclude tipaed will be 2700 m/s.
Problem 2:-

A car travelling at 53 km/h hits a bridge abutménpassenger in the car moves forward a
distance of 65 cm (with respect to the road) whéeng brought to rest by an inflated air bag.
What force (assumed constant) acts on the passengger torso, which has a mass of 39
kg?

Concept:-

Force actingK) on the body is equal to the mass of the bod\times deceleration of the
body @).

Solution:-
First we have to find out the deceleratiah ¢f the car.

If Vo is the initial speed of car ands the final speed of the car, then the averagedg.,)
of the car will be,

Vav, = %2 V) ... (2)

To obtain the average speed ) while the car is decelerating, substitute 53 kfoftvy and 0O
m/s forv in the equatiow,, = %2 {(+ vo),

Vav = Y2 i+ Vo)
=% ((53 km/h)+ (0 m/s))
= (Y2 x53 km/h) (1,000 m/1 km) (1 h/60 min)ntin/60 s)

=74mls ... 3)
But average speed,() is equal to the rate of change of displacement (
Vay =X/ t
So,t=xVay ...... 4)

To obtain the time of deceleratibnsubstitute 0.65 m forand 7.4 m/s fov,, in the
equationt =X/ Vay,



t =X Vay
=0.65m /7.4 m/s
=8.8x10°s ... (5)
Decelerationd) is equal to rate of change of velocity.
So,a=Avit
= ((0) - (53 km/h))/ 8.8x10s
= (-53 km/h)/ 8.8x10s
= ((-53 km/h) (1,000 m/1 km) (1 h/60 mid)rin/60 s))/ 8.8x18s
= (-14.7 m/s)/ (8.8x10s)
=-1.7x1dm/ig ... (6)

To obtain the forceN) acting on the passengers upper torso having 8takg, substitute 39
kg for massnand -1.7x1&m/< for deceleratior in the equationF = ma,

F=ma
= (39 kg) (-1.7xF0m/s)
=-6630 kg. mfs
= -(6630 kg. mf3 (1 N/1 kg. m/§)
=-6630N ... 7)

Rounding off to two significant figures, the magmwié of the force will be 6600 N.

Newton’s third law of motion
It states that,

“To every action there is an equal and opposite rezion”.

& O

ég
Whenever one force acts on a body, it gives rissntuther force calledeaction. A single

isolated force is an impossibility. The two for@egolved in any interaction between two
bodies are calledgttion” and ‘teaction”. But this does not imply any difference in their




nature, or that one force is the ‘cause’ and therois the ‘effect’. Either force may be
considered as ‘action’ and the other ‘reactiontto

It may be noted that action and reaction neveoacame body.

Note: The most important fact to notice here is thatéhgspositely directed equal action and
reaction can never balance or cancel each othaubethey always act, on two different
point (broadly on two different objects) For balemgcany two forces the first requirement is
that they should act one and the same object.diot,pf object can be treated as a point
mass, which is a common practice)

Few Examples on Newton’s third Law of Motion

(a) Book Kept on a Table

A book lying on a table exerts a force on the tatfiéch is equal to the weight of the book. This isfibree of action.
The table supports the book, by exerting an equakefon the book. This is the force of reactionslaswn in the
below figure. As the system is at rest, net forcatas zero. Therefore, forces of action and reactinust be equal

and opposite.

(b) Walking on the ground:-

While walking a person presses the ground in théwa direction (action) by his feet. The ground hpss the
person in forward direction with an equal force (teen). The component of reaction in the horizordakction
makes the person move forward.

(c) Process oSwimming:-

A swimmer pushes the water backwards (action). The vpateied the swimmer forward (reaction) with the same
force. Hence the swimmer swims.

(d) Firing from a gun:-

When a gun is fired, the bullet moves forward (agtidhe gun recoils backwards (reaction).



(e) Fight of jet planes and rockets:-

The burnt fuel which appears in the form of hot &ighly compressed gases escapes through the n@eztien) in
the backward direction. The escaping gases puglettpéane or rocket forward (reaction) with the sdoree, hence,
the jet or rocket moves.

(f) Rubber ball re-bounds from a wall:-

When a rubber ball is struck against a wall or flb@xerts a force on a wall (action). The ball rebds with an equal
force (reaction) exerted by the wall or floor on bzl

(9) It is difficult to walk on sand or ice:-

This is because on pushing, sand gets displacedeaction from sandy ground is very little. In ca$éce, force of
reaction is again small because friction betweendpé ice is very small.

(h) Driving a nail in to a wooden block without holding the block is difficult:-

This is because when the wooden block is not restgajnst a support, the block and nails both moverdrd on
being hit with a hammer. However, when the block igdHamly against a support, and the nail is hit, equal
reaction of the support drives the nail into theckl

(i) A tea cup breaks on falling on the ground:-

Tea cup exerts certain force (action) on ground evtiie ground exerts an equal and opposite reaotiothe cup.
Ground is able to withstand the action of cup, batdhp being relatively more delicate breaks dueaation.
Problem 1:-

Two blocks, with masses.m 4.6 kg and m= 3.8 kg, are connected by a light spring on dzbaotal frictionless
table. At a certain instant, when, hms an acceleration a 2.6 m/$, (a) what is the force on,mand (b) what is the
acceleration of n?

Concept:-

Force acting on the bod¥)is equal to the product of mas of the bodly &nd acceleration of the bod).(

So,F =ma

From equatior = ma, the acceleration (a) of the body would be,

a=F/m

Solution:-

(a) The net force’ F, on the second box having masswill be,

> Fe=ma,

Herea,, is the acceleration of the second block.

To obtain the net forc& F, on the second box having mass substitute 3.8 kg mass and 2.6 m/Afor a,, in the
equationy. F, = m,ay,

> Fe=ma,

= (3.8 kg) (2.6 mR=19.9 kg .m/%

=(9.9kg.m3§ (1 N/1kg.m4d=9.9N

From the above observation we conclude that, théonet¢ > F, on the second box having masswould be 9.9 N.
There is only one (relevant) force on the block, fibrce of block 1 on block 2.

(b) There is only one (relevant) force on block 1,fibree of block 2 on block 1. By Newton’s third lawnigtiorce has
a magnitude of 9.9 N.



So the Newton’s second law gives,

> F=ma,=-9.9N

But, may,, = (4.6 kg) &) (Sincem, = 4.6 kg)

(4.6 kg) ) =-9.9N

So,a, =-9.9 N/4.6 kg

= (- 2.2 N/kg) (2 kg.mA/ 1 N) =-2.2 m/5

From the above observation we conclude that, thel@etion ofm, will be -2.2 m/&

Problem 2:-

A meteor of mass 0.25 kg is falling vertically thghuEarth’s atmosphere with an acceleration of 9. im' addition
to gravity, a vertical retarding force (due to fiomal drag of the atmosphere) acts on the metseshawn in the
below figure. What is the magnitude of this retagdiorce?

Solution:-
Given Data:
Mass of the meteom = 0.25 kg
Acceleration of the meteos,= 9.2 m/$
The net force exertedr() on the meteor will be,
Free = ma
=(0.25kg) (9.2 mA=(2.30kg. mA (L N/1kg. m/§=2.30N ... (1)
If g (g =9.80 m/§ is the free fall acceleration of meteor, thenwheght of the meteoM) will be,
W=mg = (0.25 kg) (9.80 m#s
=(245kg. mB (1 N/1kg. m§=2.45N ... (2)
The vertical retarding force would be equal to tleé force exerted on the meteét.§ minus weight of the meteor
(W).
So, vertical retarding force E.-W ... 3)
Putting the value of.. andW in equation (3), the vertical retarding force vaid,
Vertical retarding force #,,-W =2.30N-245N=-0.15N  ...... (4)
From equation (4) we observed that, magnitude ofi¢ngcal retarding force would be, -0.15 N.

Problem 3:-



Suppose in figure shown above we put one more &k kg mass adjacent to 10 kg and a force of 15tN as
shown in the figure below, then find the forces agtin the interface.
1308
—p
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Solution:-
The combined acceleration of the two bodies when tddea as one is

a = F/((10+5))=150/15=10/sec

So each one moves with a = 10m7dexeping their contact established.
Here you can feel that due to 150N force the body kf feels as if it is being pushed by the 10 lass There is
force acting on 5kg called;Ro oppose it by third law this body exerts a &R on 10kg. The interface is as shown
in Figure given below.

LS0N Ra

—p| 10 +R+5

Also, third law tells us that,R R. in magnitude and is opposite in direction.

150N 1 E R
ol 47

R=R=R
Here since 150 N force acts on the 10kg mass ang roatts on the 5kg mass. For motion in 5kg onlysR

responsible. We can write the initial equation as:

F=150=(10+5)a

150 = 10a + 5a

Here 10a is force experienced by 10kg mass. And &gpisrienced by 5kg mass.

R =5a a=10m/séc

So,R =50N

Thus,Net force experienced by 10kg block is (156=RPa 150-R = 1010 = 100 N

Therefore, R =50

Therefore we get R = 50N for both blocks. Hence we faction and reaction are equal and opposite"”. Netforce
on the body of 10kg mass is 100N & Net force onhtibdy of 5kg mass is 50N and on the interface aciiod
reaction are both equal and also are equal to fxperienced by second body.

It states that,

“In an isolated system (no external force), the akgpraic some of the momenta of bodies,
along any straight line, remains constant and is nahanged due to their mutual action
and reaction on each other”.

This can be verified by a following simple experimhe

Consider a body ‘A’ of mass ‘thmoving with a velocityﬂ_i strike against anothexdly ‘B’
of mass mamoving with velocity in same direction as showrthie below figure. Two bodies



remain in contact with each other for small time. "Phey get separated and move w
velocitied'1 and2 after collison.

A A B
B A 8
s, U2 N Vi, V2
Faa Fas
maz
ms mz ma m mg

2o During Collision -
Before Collision 6 After Collision

Let F 15 be the force exerted by ‘A’ upon ‘B’ a F'B.1 be its reaction. Since the systen
isolated, i.e., no external force is th

Figp+ Fpi=0
So,
Fig = —Fpa

This is in accordance with Newton’s third law of toa that ‘action and reaction are eq
and opposite’.

Considering the momenta of the bodies before ated ebllision

Body A Body B
Momentum of A before collisio Momentum of A before collision 1712183
= m'l't{_'i

Momentum of B after coldiion = 1313

Momentum of A after collisiol _
- Change in momentum of B

= M - ~
= Moty — TNals
Change in momentum of A

L o Time taken for the change of moment
My — 1ty

=7t
Time taken for the change

TR =7 Rate of change of momentum of B (=Fo

Matly — Matln

Rate of change of momeim of A on B)= At
mqv] — mqil B .
/ - Mgty — MMigplly
(=Force on A) = At Fop o 2tz 219
So, AR AL
So,

Substituting forF1z and” B4 in equation (1),

mMatly — Moty Myt — My
At AN




Or, My + Matly = MUy + Moty

Thus, the total momentum of the system beforesiohiis equal to the total momentum of
the system after collision.

This verifies the law of conservation of momentum.

It may be noted that the conservation of momentioidsely connected with the validity of
Newton’s third law of motion, since we have usedatmpn (1) [which is nothing but third
law] to prove it.

Alternative Method

According to Newton’s second law of motion,
— - dir d

F=ma= m.a = El‘mﬂ

Since™U =P (momentum of body),

- d

== P
Incase of an isolated system,
F=10

Thus,

dp

i

or, P = constant

Therefore, momentum (in vector form) of an isolagggdtem remains constant. This is in
accordance with the law of conservation of momentum

IMPORTANT NOTE:-

While applying law of conservation of momentum tsyatem following
consideration must be kept in mind:

(a) The system must be isolated.

(b) While finding the algebraic sum of momenta it musbe ensured that all of
them are along a particular straight line.

Applications of Conservation of Momentum
Following few examples with illustrate the law anservation of momentum.

(a) Recoll of Gun



Accelerating Force on
the Bullet

Recoil Force on the

A gun and a bullet constitute one isolated systemfiring the gun, bullet moves out with a
very high velocityr' . The gun experiences a redbihoves in the opposite direction as

shown in the below figure. Velocity? ' of the retgun can be calculated by the application
of law of conservation of momentum.

Before Firing After Firing
Momentum of bullet =0 Momentum of bullet =/
Momentum of gun =0 Momentum of gun =1/

Total momentum of the system = Total momentum of the system™ V' + mi

Here ‘m’ and ‘M’ are the masses of bullet and gespectively. According to the law of
conservation of momentum, momentum before collisiod after collision must be same.

MV +mi=0
or, MV = —miv
or,

— mi
M

Negative sign indicates that direction of motiorgah is in opposite direction.
(b) Rocket and Jet Plane

Fuel and oxygen is burnt in the ignition chambes.hdt gases escape from a rear opening,
with some momentum, the rocket moves in the forvaarelction with the same momentum.



(c) Explosion of a Bomb

Momentum of a bomb before explosion is zero. Aéxplosion different fragments fly i
various directions. It will be observed that theiomenta, when represented by the slide
polygon, from a closedolygon, indicating that net momentum after exgoss also zerc
Thus, if the bomb exploded into o fragments, they must move in opposite direct

—
ACTION REACTION
—

(d) A man Jumping from a Boai

When a man jumps from the boat to the shore, tia¢ ibgpushed backward. It can, exac
be explained as in the case of recoil of

Some Conceptual Questior
Question 1:-

Figure below shows a popular carnival device, incWithe contestant tries to see how hi¢
weighted marker can be raised by hitting a targtt avsledge hammer. What physi
guantity does the device measure? Is it the avdoage, the maximurforce, the work done
the impulse, the energy transferred, the momentansterred, or something else? Disc
your answer.



Answer:-

The device will measure impulse. The impulse ofrtaeforce acting on a particle during a
given time interval is equal to the change in momenof the particle during that interval.
Since the contestant is hitting the target withedge hammer the change in momentum is
large and the time of collision is small, therefargignifies that the average impulsive force
will relatively large. Suppose two persons bring barmer from the same height, but they
are hitting with different forces. The person whis kwith greater force for the short time
interval the impulse will be more and this restitis height of the mark will be more. Thus
the device will measure impulse.

Question 2:-

Can the impulse of a force be zero, even if thedas not zero? Explain why or why not?
Answer:-

Yes, the impulse of a force can be zero, evereiffithce is not zero.

Impulse of a force is defined as the change in nmbume produced by the force and it is
equal to the product of force and the time for whtcacts. The impulse of a force can be
zero, if the net force acting on the particle dgrihat time interval is constant. Since the
force is constant (both magnitude and directiom;lsgange in momentum produced by the
force will be zero. Therefore impulse of the foradl be zero.

From the above observation we conclude that, ingpods force can be zero, even if the
force is not zero.

Question 3:-
Explain how conservation of momentum applies taadiall bouncing off a wall.

Answer:-



Law of conservation of linear momentum states tinaén isolated system (no external
force), the algebraic sum of momenta of bodiesy@kmny straight line, remains constant and
is not changed due to their mutual action and i@acin each other.

The momentum of particle (p) is equal to the mdgsadicle (m) times the velocity of
particle (v).

Sop=mv ... (2)

Let us considem is the mass of the ball ands the velocity of the ball when the ball is
collides with wall.

So using equation (1), the momentum of the balbtgetollision p,) will be,
p=mv ... (2)

After collision, when the ball re bounces, the edlpof the ball will be, v.

So again using equation (1), the momentum of thieakiar collision @) will be,
p=-mv ... (3)

Conservation of linear momentum states that, thekahic sum of momenta of bodies, along
any straight line, remains constant and is not gedrue to their mutual action and reaction
on each other.

Pp+p2=0
So,mv+ (-mv) =0 ... 4)

From equation (4) we observed that, linear momerdtithe hand ball is conserved.

Question 4:-

Give a plausible explanation for the breaking obaen boards or bricks by a karate punch.
(See “Karate Strikes.” by Jearl D. Walker, Ameridamrnal of Physics, October 1975,
p.845.)



Answer:-

In the process, breaking of wooden boards or biigka karate punch, the collision between
the hand and brick is only for a few milliseconBiscause the applied external force is large
and the time of collision is small therefore theage impulsive force is relatively large.
Thus when you break a wooden board or bricks bgratk punch you have to apply large
force for the minimum time which is impulse. Thenef the impact force on the brick or
wooden boards will be high.

Some Solved Problems
Problem 1:-

A 75.2-kg man is riding on a 38.6-kg cart travejlex a speed of 2.33 m/s. He jumps off in
such a way as to land on the ground with zero bata speed. Find the resulting change in
the speed of the cart.

Concept-
Momentum of the bodp is equal to the mass of the badyimes velocity of the body.
So,p=nv

In accordance to the principle of conservationrargy, the final momentum of the system is
equal to the initial momentum of the system.

Consider the initial momentum of the mamiig, initial momentum of the cart @, final
momentum of the man B, and final momentum of the cartpg.

We define, prm = MnVim
Prc = McVic
Pi,m = MmVim
Pic = MVic

Here, mass of the manns,, mass of the cart i®, initial velocity of the man is; , and cart
IS Vic, and final velocity of the man 1, and cart is .

Solution:-

So applying conservation of momentum to this systémsum of the initial momentum of
the man and cart will be equal to the sum of thalfmomentum of the man and cart.



Pim * Pre = Pim T Pic

Substitute mmVvt m for prm, MoV ¢ for prc, MmVim for pim andmyy; ¢ for pic ijn the
equationprm + Prc = Pim + Pic

Prm * Prc = Pim *+ Pic

MnVim + MeVie = MyVim + MeVic
Ve Vie = (MmVim = MaVem)/ Me
AVe = (MnVim = MinVem)/ Me

To obtain the resulting change in the speed ot#mAv,, substitute 75.2 kg fan,,, 2.33 m/s
for vim and 0 m/s fox m, in the equatiom v = (MyVim - MV m)/ M,

AVe = (MkVi,m = MV m)/ Me
= (75.2 kg) (2.33 m/s) — (75.2 kg) (0 m3Y6 kg)
=4.54 m/s

As the sign of the change in the speed of the/oaris positive, this signifies that, the cart
speed increases.

From the above observation we conclude that, thaltreg change in the speed of the cart
Av; would be 4.54 m/s.

Collision of Elastic Bodies
A solid body has a definite shape. When a forap@ied at any point of it tending to

change its shape, in general, all solids which wetrwith in nature yields slightly and get
more

or less deformed near the point. Immediately, rdkforces come into play tending to
restore

the body to its original form and as soon as tiséudbing force is removed, the body regains
its

original shape. The internal force which acts, whdiody tends to recover its original shape
after a deformation or compression is called thiedmf restitution. Also, the properly which

causes a solid body to recover its shape is calbsticity. If a body does not tend to recover
its

shape, it will cause no force of restitution andrsa body is said to be inelastic. When a
body

completely regains its shape after a collisiors #aid to be perfectly elastic. If it does not
come

to its original shape, it is said to be perfectiglastic.



Definitions:

Two bodies are said to impinge directly when threation of motion of each before
impact is along the common normal at the point wlikey touch.

Two bodies are said to impinge obliquely, if theedtion of motion of either body or
both is not along the common normal at the poinenetihey touch.

The common normal at the point of contact is catlexlline of impact. Thus, in the
cause of two spheres, the line of impact is the jioning their centres.
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3.8. Fundamental Laws of Impact:

1. Newtori‘s Experimental Law (NEL):

When two bodies impinge directly, their relative velocity after impact bears a

constant ratio to their relative velocity before impact and isin the opposite direction. If
two bodies impinge obliquely, their relative velocity resolved along their common normal
after impact bears a constant ratio to their relative velocity before impact, resolved in the
same direction, and is of opposite sign.

The constant ratio depends on the material of wthietbodies are made and is
independent of their masses. It is generally dehbyee, and is called theefficient (or
modulus) of elasticity (or restitution or resilience).

This law can be put symbolically as follows: If w® are the components of the velocities

of two impinging bodies along their common normeldse impact and v1, v2 their
component

velocities along the same line after impact, athponents being measured in the same
direction

and e is the coefficient of restitution, then
v2-vl=-e(u2-ul)
The quantity e, which is a positive number, is meyreater than unity. It lies between 0

and 1. Its value differs widely for different bosgjdor two glass balls, one of lead and the
other

of iron, its value is about 0.13. Thus, when oneath the bodies are altered, e becomes
different but so long as both the bodies remairstrae, e is constant. Bodies for which e =0

are said to be inelastic. For perfectly elasticibsde=1. Probably, there are no bodies in
nature



coming strictly under wither of these headings. ks law is purely empirical and is true
only approximately, like many experimental laws

2. Motion of two smooth bodies perpendicular to thdéine of Impact:

When two smooth bodies impinge, the only force leetwthem at the time of impact is

the mutual reaction which acts along the commomabrThere is no force acting along the

common tangent and hence there is no change dfitxeio that direction. Hence the velocity
of

either body resolved in a direction perpendicutethie line of impact is not altered by
impact.
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3. Principle of Conservation of Momentum (PCM) :
We can apply the law of conservation of momentunimécase of two impinging bodies.

The algebraic sum of the momenta of the impingiodids after impact is equal to the
algebraic

sum of their moments before impact, all momentadpeieasured along the common normal.
3.9. Impact of a smooth sphere on a fixed smoothaie:

A smooth sphere, or particle whose mass is m arabevhoefficient of restitution is e,
impinges obliquely on a smooth fixed plane; to fitsdvelocity and direction of motion after
impact.

Let AB be the plane and P the point at which theesp strikes it. The common

normal at P is the vertical line at P passing tgtotihe centre of the sphere. Let it be PC.
This is the line of impact. Let the velocity of thehere before impact be u at an angle
with CP and v its velocity after impact at an angjl@ith CN as shown in the figure.

Since the plane and the sphere are smooth, thdanely acting during impact is

the impulsive reaction and this is along the commoamal. There is no force parallel to
the plane during impact. Hence the velocity ofgspbere, resolved in a direction parallel

to the plane is unaltered by the impact.

vsinB=usim

By Newtori's experimental law, the relative velocity of théege along the common
normal after impact is (-e) time its relative vaetg@along the common normal before

impact. Hence



veosB-0 = -e(-ucosa-0)
1e veos B =encosa _.(2)
Squaring (1) and (2). and adding. we have

v =0 (sin° @ + e’ cos a )

te. v = uvsin’m + eZcos’a . (3)
Dividing (2) by (1). we havecot @ =ecota . (4)
Hence the (3) and (4) give the velocity and direction of motion after impact.

Corollary 1: If e = 1. we find that from (3) v =u and from (4) # = @. Hence if a
perfectly elastic sphere mmpinges on a fixed smooth plane, its velocity 1s not altered by
mmpact and the angle of reflection 15 equal to the angle of incidence.

Cor. 2: If e = 0_ then from (2). v cos # = 0 and from (3). v=u sin @. Hence cos #
=01e 8=90". Hence the melastic sphere slides along the plane with velocity u sin a

Cor. 3: If the impact is direct we have @ = 0. Then 8 = 0 and from (3) v=cu.
Hence if an elastic sphere strikes a plane normally with velocity u. 1t will rebound 1 the
same direction with velocity en.

Cor. 4: The impulse of the pressure on the plane is equal and opposite to the
impulse of the pressure on the sphere. The mmpulse T on the sphere is measured by the
change 11 momentum of the sphere along the common normal.

I = mvcos8-{-mucos a)

= m(vcos 8 +ucos a)
= m{cucosa+ucos a)
= mucosee(l +e)

Cor. 5: Loss of kinetic energy due to the impact

S Qe b LTho. B R HE TR e M (PR iy TS |
= ST - MV S ot - - (sin“o +e“cos~a)

1 - 7 3
== *(1-sin" @ +e& cos” @)

1 5 5 a3 F
= Eﬂm‘{ms‘a -e cosa)

= %(1 — &) mu’cos” @

If the sphere 1s perfectly elastic_ e = 1 and the loss of kinetic energy is zero.

Problems

1. A particle falls from a height h upon a fixedrizontal plane: if e be the
coefficient of restitution, show that the wholetdrsce described before the particle
has



1+e2) 1+e IIE
" Show also that the whoteetiaken is'™® ¥ ¢

ih| —=
finished rebounding i 1( L1-e

Solution

Let u the velocity of the particle on first hittinkge plane. Thenar 2gh. After

the first impact, the particle rebounds with a eélpeu and ascends a certain height,
retraces its path and makes a second impact vathléme with velocity eu. After the
second impact, it rebounds with a velocity and the process is repeated a number of
times. The velocities after the third, fourth etapacts are 1 exu etc.

{welocity p2

The height ascended after the first impact with velocity en 1s =

The height ascended after the second impact with velocity e *u is e*u’/2g and so

on.
. Total distance travelled before the particle stops rebounding
G S il S
=]1__-5{E“ +E1J. L, B B }
2g 2g 2z
:h—z'j;uﬂilfe:+e4+ ......... to 0o )
e “u 1
=h+ 5
g 1—e
e <.2gh 1
h+ = >
g 1—-e
2e?
=h(1l+
1+
1+e?
= h. %
(1—e=)

Considering the motion before the first impact, vawe the initial velocity = 0,
acceleration = g, final velocity = u and so if the time taken, u =0 + gt.

u velocity
I=-=
o o
= =

Time interval between the first and second impacts

= 2 x time taken for gravity to reduce the velgctt O.

= 2. velocity / g

=2¢€/qg.

Similarly time interval between the second anddtimnpacts
= 2 eéul/g and so on.



So total time taken

u eu eju e"u
= —+2(—+ —+ —+ c0)
g g E
2 9
=g+ e (l1+e+e + sve B} 50)
u Zeu 1 u 2e
g g 1-e l—e
_u i:1-'.-@_- '
g 1—e
_ J2gh 1+e 1+e 2h
= ( )iEs =t
g l-e l-e g

Direct impact of two smooth spheres:

A smooth sphere of mass ml impinges directly with velocity ul on another smooth
sphere

of mass m2, moving in the same direction with velocity u2. If the coefficient of
restitution is e, to find their velocities after the impact:

||l.l "‘. / \\
{ Ui A Vi 'l'n'l Uz B Va I'|
| » » »

- {
> L L

NPANY

AB is the line of impact, i.e. the common normalielxo the impact there is no
tangential

force and hence, for either sphere the velocitpglbe tangent is not altered by
impact. But before impact, the spheres had beenngmnly along the line AB (as
this is a case of direct impact). Hence for eigprere tangential velocity after impact

= its tangent velocity before impact = 0. So, aitepact, the spheres will move only
in the direction AB. Let their velocities be v1 avi2i



By Newtori‘'s experimental law, the relative velocity of m2twiespect to m1 after
impact

Is (-e) times the corresponding relative velociydse impact.
~v2—-vl=-e(uU2-ul)....... (1)

By the principle of conservation of momentum, th&k momentum along the
common

normal after impact is equal to the total momeniaitine same direction before
impact.

~smlvli+m2v2=mlul+m2u2....... (2)
(2) — (1) x m2 gives
vli(ml+ m2)=mlul+m2u2+em2(u2-ul)

=m2u2 (1 +e)+(ml-em2)ul

mauz (l1+e)+(mj-emsa)ug

vy = e

n11+m3

(1) x mj +(2) gives

v2 (mp +m) = - emy (up—ug) + myug + moup
=mju; (1 +e) + (my —em;) u

my Uy (l+e)+(my-emyju;

(@

S WV =
&

1'I:'3|_1+ m

Equations (3) and (4) give the velocities of theesps after impact.

Note: If one sphere say m2 is moving originally in a diren opposite to that of m1,
the

sign of u2 will be negative. Also it is most impanmt that the directions of vl and v2
must be specified clearly. Usually we take the gpesidirection as from left to right
and then assume that both v1 and v2 are in thestitn. If either of them is actually
in the opposite direction, the value obtained favill turn to be negative.

In writing equation (1) corresponding to Newfteraw, the velocities must be
subtracted

in the same order on both sides. In all problenssbetter to draw a diagram showing
clearly the positive direction and the directiomshe velocities of the bodies.

Corollary 1. If the two spheres are perfectly elastic and ofabquass, then e = 1 and
ml



= m2. Then, from equations (3) and (4), we have

mjuz 2+0 mjuy. 2+0

vy = =, and v,= =1y.

2my 2mjy
l.e. If two equal perfectly elastic spheresimpinge directly, they interchange their
velocities.

Cor: 2. The impulse of the blow on the sphere A of masssmhange of momentum
of

A=ml (vl —-ul).

m 3 5] I:L+E' :|+ ]111—Et'112}'|.l]_
= 14 — 1y

m1+1n2

mapUz (1+e)+mquy— €Mz U3—mq uy— m3 ug ]

= m
- |: ]11_1+ ma

mypm2 Uz (1+€)—mp Uy (1+e)]

mj+ms

my ma(1+e) (uz—uy)

my+ms
The impulsive blow on m2 will be equal and opposit¢he impulsive blow on m1.

Loss of kinetic energy due to direct impact of tw@mooth spheres:

Two spheres of given masses with given velocities impinge directly; to show that there
IS

a loss of kinetic energy and to find the amount:

Let m1 m2 be the masses of the spheres, ul and @hd v2 be their velocities
before and

after impact and e the coefficient of restitution.
By Newtori‘s law, v2 —vl = -e (U2 —ul) ... (1)
By the principle of conservation of momentum,

mlvl + m2v2 = mlul + m2u2 ....(2)



Total kinetic energy before impact

= %ﬂli 11 # 33 % 1_‘|:111|_132
and total kinefic energy afier impact

= % ﬂ11v1] G E % 11131,-'31

Change m KE =mitial KE —final K E.

1 Fiy A 2 1 2, % v
=5 mjug +:1:[13ug —Emrﬂ —Emgvz

1 1
S my (u1-v1) (up+vi)+ 1 (u2-v2) (ua+v2)

1 1
5 mj (u1-vy) (w1 +vi) + = m (vi—up) (ua+vy)

[+ ma(ur-v2) = my (vi-uy) from (2) ]

1
= Smy(u-vy) [ui—w - (v—-vi) |

= %nu (u1-vi) [uy—wa+e (u2—uy)] usmng (1)

%m1(U1—1-'1)(111—u:){l—E‘) SE)

Now, from (2), m; (u;— v1) =mp (v2 +ug)

u; — vi vz—uz ujy — Vi+vz—uz
2L = =2 and each =—1 =
ma Im my+ms
; uy, — uz )+ (v,—vi )
1.e. each =—1 =
my+ms
(u, — uz)—e (u,—uq ) B
= —1 = using (1)
mi+msz =
_ (uy; — s ) (1+e}
my+ms
msz{u, —uz) (1+e) . B .
w - Vi= L and substituting this in (3),
1 mij+ma

mymy (U —ugl(l+e)(ug—uzljl—¢e)

Changem K E = %

mij+mz

_1lm mj (uy —uy) 2 (1- e?)

~(4)

2 mj+mgy

As e < 1, the expression (4) is always positive smthe initial K.E. of the system is
greater than the final K.E. So there is actuallyss of total K.E. by a collision. Only in the



case, when e=1, i.e. only when the bodies are gbrfelastic, the expression (4) becomes
zero
and hence the total K.E. is unchanged by impact.
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UNIT V

5.1 Projectiles.
Definitions:
i. A particle projected into the air in any direction with any velocity is called a projectile.
Ii.  The angle of projection is the angle made by the initial velocity with the horizontal
plane through the point of projection.
iii.  The velocity of projection is the velocity with which the particle is projected.
iv.  The trajectory is the path described by the projectile.
v.  The range on a plane through the point of projection is the distance between the point of
projection and the point where the trajectory meets that plane.
vi.  The time of flight is the interval of time that elapses from the instant of projection till the

instant when the particle again meets the horizontal plane through the point of projection.

Two fundamental principles
i.  The horizontal velocity remains constant throughout the motion.

ii.  The vertical component of the velocity will be subjected to retardation g.

5.2 Equation of the path of the projectile
Y

Let a particle be projected from O, with initial velocity u and « be the angle of projection. Take
OX and OY as x and y axes respectively. Let P (x,y) be the position of the particle in time t secs.
Now u can be divided into two components as u cos« in the horizontal direction and usina in

the vertical direction.
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Now, horizontal velocity ucos « is constant throughout the motion.

~x=(ucosa)t (1)

Vertical velocity is subjected to retardation ‘g’

~y=(usina) t —% gt> )

Eliminate ‘t’ using (1) and (2)

X
ucos o

(1):>t:

) X 1 X 2
(2)= y=usina ->g.
ucosa 2 \ucosa

2
ox
——— s 3)

y=Xxtana — 5
2U° Ccos” o

2

xtan a.2u? cos? a — gx2

2u2 cos? o
2u? cos? ay = X.2u2 sin ¢z cos a — gx2

gx2 —2u? sin ez cos a.x = —2u? cos? a.y

Xg_2u25ina005ax_—2u2c052a
g g
X2_2uzsinacosax+u4sin2acosza_u4sin2acosza_2u2cosza
g g2 g2 g
2 2 2 2 2 i 2
. u“sin a cos a 2U° cos“ a ucsin‘ o«
ie) | X— =— y——— | 4)
g g 29
2 o 202
- . in in
Shifting the origin to us aCOSa’u Sh_a
g 29
2u® cos® «
X2=-22 Y (5)

g



(5) is the equation of a parabola of the form X 2= _ 4ay,

_2u%cos’a 2
whose latus-rectum is =0~ > % — —(u Ccos a)2
g g
2 . .
= —|horizontal velocity
g
_(u?sina.cosa u?sin?a
Vertex is ,
g 29

5.3 Characteristics of the motion of the projectile
1. Greatest height attained by a projectile.

2. Time taken to reach the greatest height.

3. Time of flight.

4. The range on the horizontal plane through the point of projection.
Derive formula for the characteristics

5.3.1 Greatest height h

When the particle reaches the highest point at A, its direction is horizontal.

.. At A, vertical velocity =0
Let AB =h.

Consider the vertical motion and using the formula “y2 =y? +2aS”
_u®sin®a

29
% Highest point of the path is the vertex of the parabola.

O = (usin &)? —2g.h ~h

5.3.2 Timetaken toreach thegreatest height T

Let T be the time taken to travel from O to reach the greatest height at A.

At A final vertical velocity is zero
At O initial vertical velocity is usin &

Using the formula “v =u + at”

O=usina—gT .. | 1 =usina
g

80
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5.3.3 Timeof flight t
Let t be the time taken to travel from O to C along its path. At C, vertical distance

. i . . 1
traveled is zero. Consider the vertical motion and by the formula S=ut+5at2 :

O =usina .t—%gt2

ie) t (usina—%gtjzo
. 1
~t=0 or usma—Egt:O

ie) t =0 or  t=2usna :Z(US:;“J:ZT
g

t = 0 gives the time of projection.

2usin o

.. Time of flight t=

% Time of flight = 2 x time taken to reach the greatest height.

5.3.4 Therangeon the horizontal planethrough the point of projection R
Range R = OC = horizontal distance traveled during the time of flight.
= horizontal velocity x time of flight
2usina _ 2u®sinacosa  u®sin 2a
g g g
. 2(ucosa)usinar) _ 2UV

% Horizontal range R = =
g g

Where U — initial horizontal velocity, V — initial vertical velocity.

= UCOS o X




82

Problem 1

A body is projected with a velocity of 98 metres per sec. in a direction making an angle tan 13
with the horizon; show that it rises to a vertical height of 441 metres and that its time of flight is

about 19 sec. Find also horizontal range through the point of projection (g=9.8 metres / sec?)

Solution:
Givenu=98; o =tan '3i.etan o =3
.'.sina:‘c’in—a-COSa: tne __tna _ 3

cosa seca \1itan2eq V10

oS g — sina 1
tana 10

u?sina  98x98x9
29 10x2x9.8

Time of flight = 2USN & _ 2x98x3 _ g a4
g /10 x9.8

= 6x3.162 =18.972 =19 secs. nearly

= 441 metres

Greatest height =

2u2 sin & cos &
g
= 29898 3 1 = 588 metres

X X
9.8 V10 V10

Horizontal range =

Problem 2
If the greatest height attained by the particle is a quarter of its range on the horizontal plane

through the point of projection, find the angle of projection

Solution
Let u be the initial velocity and « the angle of projection

usin? o

Greatest height =
29
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2u2 sin & cos a
g

Horizontal range =

2u? sin ¢ cos a
g

. u%sin?a 1
Given — =—x
29 4

. u?sin®a _ u®sin acosa
2 29

iesing =cos ¢ = tan a=1 .. a =45°

Problem 3
A particle is projected so as to graze the tops of two parallel walls, the first of height ‘a’
at a distance b from the point of projection and the second of height b at a distant ‘a’ from the
point of projection. If the path of particle lies in a plane perpendicular to both the walls, find the
range on the horizontal plane and show that the angle of projection exceeds tan™3.
Solution:

Let u be the initial velocity, « be the angle of projection.

ox°
Equation to the path is y = Xtana — 7 3
2U° cos” «
2
ie y=xt—g—X2(1+t2) where t=tana ....... (1)
2u
The tops of the two walls are (b, a) and (a, b) lie on (1)
2
C oA gb 2
s.a=bt— 1+t<) ... )
96 02)
2
b=at—92 (14+¢2) 3)
2u
2
From (2), a— bt = — 9b2 (1+t2) .......... @)
2u
2
From (3), b— at=—£(1+t2) .......... )

2u?
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a—bt b?
Dividing (4) by (5), —— =—
9(4)by 6), | — =
i.eb®—ab®t=a’—a’ht = t@b-ab)=a’-b
_ a%-b® _(a-b)a® +ab+b?) a®+ab+p?
"~ a’b-ab? ab(a-b) ab
2 2 2 2 ITRY)
g d +ab+b :(a 2ab+b )+3ab:(a b) £3....(6)
ab ab ab
(6) = tana >3 or ¢ >tan 13
g(1+t2) a-bt bt-a
From (4), = =
) 2u® —b? b?
bla2 +ab+b?)
: ab _az+ab+b2—a2
b? ab?
b(a+b) a+b
= =— .. 7
ab® ab @
2 a3 2
Horizontal range = u'sinZa _ _2u tz in2a——2tan?
g glt+t?) 1+tan” a
= t.a—b from (7)
a+b
(a2+ab+b2). ab _ a’+ab+b’
ab a+b a+b
Problem 4

A particle is thrown over a triangle from one end of a horizontal base and grazing the
vertex falls on the other end of the base. If A, B are the base angles, and « the angle of
projection, show that tana =tan A +tan B
Solution:

LN
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Let u be the velocity of projection and « the angle of projection and let t secs be the time
taken from Ato C. Draw CD L AB and let CD = h.

Consider the vertical motion, h = vertical distance described in time t
) 1
=usin a-t—= gt?
2
AD = horizontal distance described intimet=ucos « -t

. 1 .,
u sin a-t—Egt

CD h
From ACAD,tan A= = =
AD AD ucos o -t
= tan o e+ (1)
2U COS

. 2u” sin cr cosa
AB = horizontal range = ———

2u? sin a cos a

..DB=AB-AD= —ucoso-t
g
CcD h
From ACDB, tan B = =
202 sin a cos &
—ucosa-t
g
usin et 1gt2
al——
_ 2
2u? sin & cos a
—ucos at
g
gt(u sin 1 gtj
3 2
u cos ar(2u sin a — gt)
t(2usin o — gt t
S L @ _ e @)

2u cos a(2u sin o — gt) - 2ucos«

(1) +(2) = tanA + tanB = tan«
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Problem 5
Show that the greatest height which a particle with initial velocity v can reach on a vertical wall

2 2
. . N a .
at a distance ‘a’ from the point of projection is v._ga Prove also that the greatest height

29 2v?

above the point of projection attained by the particle in its fight is v6/29(v4 + gzaz)

Solution:
ox°
Equation to the path is y=Xtana — 5 o e (1)
2V Cos” o
2
Putx =ain (1), y=atana — Zga 5
2V° Cos“ a
2
y =at —%(1+t2) wheret=tan ¢  ........ )
2V
. . . _ dy d?y . .
y is a function of t. .. y is maximum when — = 0 and —— s negative.
dt
Differentiating (2) with respect to t,
2 2
dy _, ga® . gat
dt 2v? v2
2 2
d_zy = —% = negative
dt Vv
2 2
Vv
So y is maximum when a—&zt =Qort=— ... 3)
Vv ga
2

Put t="— in (2)
ga

2 2 4
Maxvalueofyza-v——ga 1+ v
ga 2v? 92 2

Greatest height during the flight
vZsin? o B v2 1 v?
29 29 cosec’a 29(1+ cot? a)
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Problem 6

a. A projectile is thrown with a velocity of 20 m/sec. at an elevation 30°. Find the greatest
height attained and the horizontal range.
b. A particle is projected with a velocity of 9.6 metres at an angle of 30°. Find
i. The time of flight
ii. the greatest height of the particle.

Solution:
Given u = 20m/sec; « = 30°

2 2 2(.: An0 P
sin 20°1sin 30
Greatest height = ush o _ (I ) =5.1m

29 2x9.8
2 o 2 0
Horizontal range = u”sin 2a = 207 -sin 60 =35.35m
g 9.8
Problem 7

(a) A particle is projected under gravity in a vertical plane with a velocity u at an angle
a to the horizontal. If the range on the horizontal be R and the greatest height attained by h,

2 2

show that u—=h+— and tana=4—h.
29 16h R

(b) A particle is projected so that on its upward path, it passes through a point x feet
horizontally and y feet vertically from the point of projection. Show that, if R be the horizontal

range, the angle of projection is tan _1[X . Lj

X R—=x



Solution:

5 . 2
2Uu°sin ¢ cosa
R? _uzsinza 9

= +
16h 29 2 ¢in2

16[“ sin a}

29

a) h+

_ uzsinzonruzcoszoz_u2

29 29 29

gx°

2u2 cos? o

b) Equation of the path is, y = Xtana —

gx’

SoXtana = Y+ — —5—
2U° Ccos” «

X
.'.tana:X—lr% ............ (1)
X 2u°cos” o

2u2 sin & - cos o 2u2 sin a cos o
—g=
g R

We have R =

2 «
- () —tang =2 + X L 2uT-sinacosa _ y  xtana
X 2u?cos’a R xR

cotan a(l— ij = y
R X

ie tana(ﬂjzz or tana = J._R
R X

X R—x

a= tan‘{xlj
X R-—X
Problem 8

If the time of flight of a shot is T seconds over a range of x metres, show that the

gT?

elevation is tan _1{—] and determine the maximum height and the velocity of projection.

2X

88
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Solution:
Given, horizontal range R = x metres

2usina

Time of flight T =

where « -is the angle of projection

L _ 2u’sinacosa

g
() = gT=2sina. = U= g7
2sin o
212 i
x=2 g T- :lnaCOSa:lng_Cota
4sin“ a - g 2
2 2
4l aT
tanoc:L = a =tan 1{9—J
2X 2X

u?sina  g%T? sin’a _ gT?

Maximum height = 5
29 4sin“a 29 8

Problem 9
A particle is projected from a point P with a velocity of 32m per second at an

angle of 30° with the horizontal. If PQ be its horizontal range and if the angles of elevation from

1
P and Q at any instant of its flight be « and g respectively, show that tan o +tan S = E
Solution:
Yt u=32
C
h
30°
¢ a R



Given, initial velocity u = 32 m/sec, 30° is the angle of projection.

‘t> — be the time taken from P to C.

LetCD=h= usinoz.t—%gt2

h =(32.sin 300) t—%gt2 = vertical distance described in t secs

1 -
=16t——qgt
> g
PD = horizontal distance described in t secs = ucosa.t
= [32c0s30%) t = 32-§t =16+/3t.
From A PCD, tanazzlzL ........
PD 16+/3t
From A QCD, tan B = h _ h PQ = range
’ DQ PQ-PD’
ie tan g = 0o h 5
2(32)“sin30" -cos30 1643t
g
hg

51243 -164/3gt

h |1 g
SO+ (@2)=>tana+tan p = ~+
0@ / 16\/§L 32—gt}

(16t—1gt2j
2 {32—gt+gt}

16+/3 t(32 - gt)

tBo-gt ) a2 1

3243 tB2-g) 3

1
tanag +tan f=—

NE
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P-be the point of projection.
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Problem 10
A particle is projected and after time t reaches a point P. If t is the lime it takes to move
from P to the horizontal plane through the point of projection, prove that the height of P above

the plane is %gt t

Solution:

v

Let u be the velocity of projection, & be the angle of projection, P be the position of the particle

after t secs. Let t be the time taken to travel from P to A

. Wehave t +t =time of flight = 2using Sousing = ﬂt;—t)
g

Now, y = vertical distance described in t secs = (usin &) t—%gt2
_ glt+t t—lgtz _gtt

2 2 2
.". Height of P above the plane = = gt
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5.4 Rangeon an inclined Plane:

Let P be the point of projection on a plane of inclination /£, u be the velocity of projection at an

angle o with the horizontal. The particle strikes the inclined plane at Q. Then PQ = r is the
range on the inclined plane. Take PX and PY as x and y axes.
Draw QN L PX.

From APQN, PN=rcosf, QN =rsin S

2

Q(rcos,rsin ) lies on the path. y = xtan & —%
2u° cos” o
2
~.rsin f= rcosﬁ.tana—w
2U° Cos” a

2 -
Dividing by r we get M =CO0S ﬂ.sm—a —sin g
2U° Ccos” cos o

e 2u? cos® & {sin o Cos f—Ccos asin ﬂ}
gcoszﬁ cosa

2u?cosa .
r=2 2%

gcos® f (e -p)
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5.5 Maximum range on theinclined plane, given u the velocity of projection and S the
inclination of the plane:

Range r on the inclined plane is

e 2u2 cosasin(a — ) B 2

g cos2 y’) g cos2 p

Now u and £ are given, g constant.

[sin(2a - B)—sin g] ... (1)

So r is maximum when [sin(2¢ — £)—sin 3] is maximum.
i.e. when sin (2 — ) is maximum.

i.e.when. 2a - =%

T p :
o =—+2L | for maximum range.

From (1), maximum range on the inclined plane

) 2 . U2
B gcoszﬂ(l_SIrI p)= g(L+sin B)

3.5.1 Time of flight T (up an inclined plane):
From the figure in 6.11, the time taken to travel from P to Q is the time of flight.
Consider the motion perpendicular to the inclined plane. At the end of time T, the distance

u

travelled perpendicular to the inclined plane S = 0, component of g perpendicular to the inclined

plane is g cos £, initial velocity perpendicular to the inclined plane is usin(a—ﬂ).

0=usin(a—ﬂ)|’—%gcosﬂ.T2 using "S=ut+%at2"

_2usin(a-p)
~ gcosp

=T
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55.2 Greatest distance S of theprojectile from the inclined plane and show that it is
attained in half the total time of flight:

Consider the motion perpendicular to the inclined plane. The initial velocity

perpendicular to the plane is u sin (« - £) and this is subjected to an acceleration gcos £ in the

same direction but acting downwards. Let S be the greatest distance travelled by the particle
perpendicular to the inclined plane. At the greatest distance the velocity becomes parallel to the
inclined plane and hence the velocity perpendicular to the plane is zero.

n 2

Using the formula "v* = u? +2as"

0=[usin(az— B)]* —2gcos B.S

S u®.sin“(c - B)
2.gcos

5.5.3 Timetaken to reach the greatest distancet :
When the particle is at the greatest distance from the inclined plane, its velocity becomes
parallel to the inclined plane and the velocity perpendicular to the inclined plane is zero. So, if t

is the time taken to reach the greatest distance, using the formula

“v=u+at”
-.0=[usin(a—pB)|-gcosg-t
i.e. t:w
gcosp
2usin(a - B)

Note : Time of flight T = = 2.t =2 x time taken to reach the greatest distance.

gcosp

Problem 11

Show that, for a given velocity of projection the maximum range down an inclined plane of

1+sin o

inclination « bears to the maximum range up the inclined plane the ratio s
—Sin
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Solution

Let u be the given velocity of projection and & the inclination of the direction of projection with
the plane. u has two components ucosé along the upward inclined plane and usinéd
perpendicular to the inclined plane. g has two components, g sin « along the downward
inclined plane and gcosa perpendicular to the inclined plane and downwards.

Consider the motion perpendicular to the inclined plane. Let T be the time of flight.

Distance travelled perpendicular to the inclined plane intime T =0
i 1
.'.O:ust-T—%gcosz2 ('.'S:ut+§at2j

_2usin 6
gcosa

ie. T

Range up the plane = R;
R1

distance travelled along the plane intime T

ucos@-T—%gsin a-T2
= ucosfg-————gsina

2u? sin @ cosd B 2u2sin asin? @
gCosx gcosza

2 .-
2u©sin @ . :
= ——— —(cosacos & —sin asin 0)
gcos‘ o



96

5 2
= Zu—s"znecos(g+ a) = u—2-2cos(¢9+ «)sin @
gcos” « gcos” «
2
= —I[sin(20+a) -sina]
gcos“ &

R; is maximum, when sin(20+«) =1

.. Maximum range up the plane

2 2
=Y a-sing)=—Y% .. (1)

gcos? o g(l+sina)

When the particle is projected down the plane from B at the same angle @ to the plane,

. . 2usin 6 I .
the time of flight T has the same value . The component of the initial velocity along the

gcosa

inclined plane is u cos@ downwards and the component of acceleration g sin « is also
downwards.

Range down the plane = R,
R, = distance travelled along the plane in time T

=ucosd-T +%gsin a-T2

2 -
:2”—3'29(coswcose+sin asin 0)
gcos® a
2 . 2
_ 8'29 coS(0 ) = ———[sin(20 — ) +sin a]
gcos & gcos- «

R, is maximum, when sin (260 - «) = 1.
Maximum range down the plane

2 2

u . u
=——(@A+sina)=— ... )
gcos® g(d-sin )
. Max-range down the plane_  u®  g(l+sina) l+sina

Max-range up the plane  9(-sina) w2 1-sina
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Problem 12
A particle is projected at an angle « with a velocity u and it strikes up an inclined plane
of inclination £ at right angles to the plane. Prove that (i) cot # = 2tan(a - ) (ii) cot f = tan
o —2tan . If the plane is struck horizontally, show that tan o = 2 tan S.
Solution:
The initial velocity and acceleration are split into components along the plane and
perpendicular to the plane.

2usin(a — )

Y - (D)

The time of flightis T =

Since the particle strikes the inclined plane normally, its velocity parallel to the inclined
plane at the end of time T is = 0.

i.e.0=ucos(a-B)-gsin B-T

T :M e (2)
gsinpg
2usin(a — f) _ ucos(a — f) from (1) and (2)
gcosp gsin g
ie.cot # =2tan(¢—-p) ... (i)

2(tan @ —tan )
1+tanatan g

i.e. cotf = , Simplifying we get

cot f +tan ¢ =2tan a—2tan

cot f = tan ¢—2tan S R (1))

If the plane is struck horizontally, the vertical velocity of the projectile at the end of time
T =0. Initial vertical velocity = u sin«, and acceleration in this direction = g (downwards).

Vertical velocity intime T=usin o — gT



usina

sousina—gT=0 or T=

2usin(a — f) _ usin o
gcosp g

Simplifying we get
2sin (a— ) =sin acos B
2(sinacos f—cosasin f) =sinacos 3.

sing cos f=2cosa sin f or tana = 2tan

- 3)

from (1) and (3)

Problem 13
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The greatest range with a given velocity of projection on a horizontal plane is

3000 metres. Find the greatest ranges up and down a plane inclined at 30° to the horizon.

Solution:

30

v

Let u be the velocity of projection, € be the inclination of direction of projection with the

2

plane. Given UE =3000m = u? = 3000 x g

At the end of time t, distance travelled perpendicular to the inclined plane is zero.

~0=using-T —%gcosao0 T2



O=usin H-T—lg-ﬁ-T2
27 2
LT 4u sin €
g+/3

Range up the inclined plane, S=ucos@-T —% g-sin 300 .72

qusing 1 16u®sin’g

X
g3 40 3g?

|
c
o
o
72}
D

4u? sin 6?cos<9_4u2 sin? 6

g3 39
2 .
S= 4u—smg[\/§cos¢9—sin 9]

39
Max. range is got when sin( 20+300) =1

ie. 20+30°=90° - 9=30°

Max. range up the inclined plane

2 o 0
= Simax :%[ﬁcossoo ~sin30°]

4% x> B3 1] 2
= 2|:\/§x——§}:§><3000 Smax =2000m

39 2
2
. Range down the inclined plane = -—[sin(20-a)+sin o]
gCcos” a
Max. range down the inclined plane
2 2
u . o| 4u
— Y hysin300|= ho
g - cos? 30° b ] 39 [ %]

2
_ 2 53000 = 6000m

g

99
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Problem 14
An inclined plane is inclined at an angle of 30° to the horizon. Show that, for a given

velocity of projection, the maximum range up the plane is 1/3 of the maximum range down the
plane.

Solution:

Max. range up the plane =

42
g-cos?30°

Max. range down the plane = [1+ sin 300]
a? 3_2u°

39 2 g

2

2U

Max. range up the plane = %x

= %xmax-range down the plane

Problem 15
If the greatest range down an inclined plane is three times its greatest range up the plane
then show that the plane is inclined at 30° to the horizon..
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Solution

Greatest range down the inclined plane Ry
2
u i
Ry = —[1+ sin a]

gcos? o

Greatest range down the inclined plane R,
2

R, = u—z[l—sin o]
gCcos‘ o
Given, R; = 3R,
u2 2
ie. ———[L+sin a]=3- —[1-sina]
gcos” a gCcos‘ a
) 1
sinag== - a=30°
2
Problem 16

A particle is projected in a vertical plane at an angle « to the horizontal from the foot of a plane
whose inclination to the horizon is 45°. Show that the particle will strike the plane at right angles

if tan o =3.
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Solution:
usin &

A

usin( @ -45°)

cos( -4%°)

gsi
g gcos450

o

45
(0] ucosax

When the particle strikes the plane at right angles, velocity parallel to the plane is zero.
0= ucos(a—450) —g-sin 450 .7

B ucos(a—450) B ucos(a—450)

B B e T (1)

gsin 459 g.i

J2

‘(a0

Also, time of flight, T = 2 sin o %5 ) @)
g-cos45
ucos(a—450)_ 2u 'sin(a—450)
J2 V2

:>cos(a—45°)= 2-sin(a—45°) :>2-tan(a—450)=1

_ 0
9 tan o tan45O 1
1+tan g« -tan45

l+tana

ie. 2(tana—1) =1+tanx

stana =3



