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Introduction 
 

“Mathematics is the Queen of the Sciences and Number Theory is the Queen of 

Mathematics” - Gauss. 

 

Mechanics is a branch of Science which deals with the action of forces on bodies. Mechanics 

has two branches called Statics and Dynamics. 
 

Statics is the branch of Mechanics which deals with bodies remain at rest under the influence 

of forces. 

 

Dynamics is the branch of Mechanics which deals with bodies in motion under the action of 

forces. 
 

Definitions: 

Space: The region where various events take place is called a space. 
 

Body: A portion of a matter is called a body. 

Rigid body: A body consists of innumerable particles in which the distance between any two 

particles remains the same in all positions of the body is called a rigid body. 
 

Particle: A particle is a body which is very small whose position at any time coincides with a 

point. 
 

Motion: If a body changes its position under the action of forces, then it is said to be in 

motion. 
 

Path of a particle: It is the curve joining the different positions of the particle in space while 

in motion. 
 

Speed: The rate at which the body describes its path. It is a scalar quantity. 
 

Displacement (vector quantity): It is the change in the positions of a particle in a certain 

interval. 

Velocity (vector quantity): It is the rate of change of displacement. 
 

Acceleration (vector quantity): It is the rate of change of velocity. 

Equilibrium: A body at rest under the action of any number of forces on it is said to be in 

equilibrium. 

Equilibrium of two forces 
 

Q  P 
 

If two forces P, Q act on a body such that they have equal magnitude, opposite directions, 

same line of action then they are in equilibrium. 

 

Force (vector): Force is any cause which produces or tends to produce a change in the 

existing state of rest of a body or of its uniform motion in a straight line. Force is represented 

by a straight line (through the point of application) which has both magnitude and direction. 
 

Types of forces: Weight, attraction, repulsion, tension, thrust, friction etc. 

By Newton‟s third law, action and reaction are always equal and opposite. 
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Directions of Normal Reaction „R‟ at the point of contact. 
 

 

1.  When a rod AB is in contact with a 

smooth plane, R is perpendicular to the 

plane at the point of contact A. 

 

 

2.  When a rod AB is resting on a 

smooth peg P, R is perpendicular to 

the rod at the point of contact P. 

 

 

3. When a rod AB is resting on a 

smooth sphere, R is normal to the 

sphere at the point of contact C. 

 
 
 

R   
B 

 

rod 

 

Smooth A Plane 
 

 

R  
 

B 

O P -Peg 
 

A 

 

R   
B 

 

C 

 

A 

 

4. When a rod AB is resting on   

the rim of a hemisphere, with  R1 

one end A in contact with the  R 

inner surface and C in contact  B 

with the rim. Then the normal 
O C 

  

reactions  R at A is normal to A  

the spherical surface and passes   

through the centre O, R1 at C is   

perpendicular to the rod. 

     

Regular polygon is a polygon with equal sides. Its vertices lie on a 

circle. 
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UNIT I 
Forces Acting at a Point 

 Introduction 

 Forces are represented by straight lines with magnitude and direction. Forces acting on a 

rigid body may be represented by straight lines with magnitude and direction passing through the 

same point and we say the forces are acting at a point. If 32,1 , PPP ……..  are the forces acting 

on a rigid body it is easy to find a single force whose effect is same as the combined effect of 

321 ,, PPP  …….. Then the single force is called the resultant. 321 ,, PPP  ….. are called the 

components of the resultant. In this section we study some theorems and methods to find the 

resultant of two or more forces acting at a point. 

1.1 Parallelogram law of forces (Fundamental theorem in statics) 

 If two forces acting at a point be represented in magnitude and direction by the sides of a 

parallelogram drawn from the point, their resultant is represented both in magnitude and 

direction by the diagonal of the parallelogram drawn through that point. 

 D                                   C 

                            Q                  

                                                      R                          

                                                                       


 ACADAB   
 

 

                     A            P               B                  ie) P + Q = R 
 

The resultant of two forces acting at a point 
                                   D                                           C 

 

                                                         R 

                            Q                            

 
                       

                                                                           

                         A                             P             B              E 

Let the two forces P and Q acting at A be represented by AB and AD. Let   be the angle 

between them. 

 i.e.  BAD    

 Complete the parallelogram ABCD. 

 Then the diagonal AC will represent the resultant. 
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 Let CAB   

 Draw CE r    to AB. Now BC = AD = Q. 

 From the right angled CBE, 

 sin C


B E 
BC

CE
   i.e. sin

Q

CE
  

 CE  =  Q sin .... ... ... (i) 

 cos   = 
Q

BE

BC

BE
  

 BE  =  Q cos   .... ... ... (ii) 

 R
2
 = AC

2
 =  AE

2
 + CE

2
 = (AB + BE)

2
 +CE

2
 

   = (P + Q cos 2)   + (Q sin )
2
 

   =  P
2
 + 2PQcos + Q 

2 

       R  =  2 22 cos2 QPQP               

  tan  = 




cos

sin

QP

Q

AE

CE


  

 

Result 1 If the forces P and Q are at right angles to each other, then  = 90
o
 ; 

 R = 
22 QP        tan 

P

Q
   

Result 2  If the forces are equal (i.e.) Q = P, then 

 R     cos12cos2 2222  PPPP   

   = 
2

cos2.2 22 
P  = 2P

2
cos


 

 tan     = 

2
cos2

2
cos

2
sin2

cos1

sin

cos

sin

2 















 PP

P
 

  = 
2

tan


 

 ie)   
2


    
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 Thus the resultant of two equal forces P, P at an angle  is 2 P cos 
2


 in a direction 

bisecting the angle between them. 

Result 3 Resultant R is greatest when cos  is greatest.
 

 i.e. when cos = 1 or  = 0
o. 

 
ie) Greatest value of R is R = P +Q. 

 R is least when cos  is least. 

      i.e. when cos = 1  or   = 180
o.  

Least value of R is P~Q. 

Problem 1 

  The resultant of two forces P, Q acting at a certain angle is X and that of P, R acting at 

the same angle is also X. The resultant of Q, R again acting at the same angle is Y, Prove that. 

  P = (X
2
 + QR

 
222

2
1

)
YRQ

RQQR






  

  Prove also that, if P + Q + R = 0, Y = X. 

 

Solution: 

 Let   be the angle between P and Q 

 Given  

 X
2 

=  P
2
 + Q

2
 + 2PQ cos       …….... (1) 

 X
2 

=  P
2
 + R

2
 + 2PR cos        ........... (2) 

 Y
2 

=  Q
2
 + R

2
 + 2QR cos       ........... (3) 

 (1) – (2) gives 0 =  Q 2
R 2    + 2P cos  ( RQ  ) 

  i.e. 0      =  (Q – R) (Q+R+2P cos ) 

 

 But Q   R and so Q – R  0 

 

  Q + R + 2Pcos  = 0 

    cos   = 
P

RQ

2


   ........ (4) 

  Substitute (4) in (1),  

 X
2
 =  P

2
 + Q

2
 + 2PQ 















 


P

RQ

2
= P

2
 + Q

2 
–  Q

2
 – QR 

  P
2
 =  X

2
 + QR. i.e. P = (X

2
 + QR 2

1
)
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 Substitute (4) in (3),  

 Y
2
 =  Q

2
 + R

2
 + 2QR 















 


P

RQ

2
 

  =  Q
2
 + R

2
 

 
P

RQQR 
  

 
P

RQQR 
  =  Q

2
 + R

2
 – Y

2 

         P = 
 

222 YRQ

RQQR




 

If P + Q + R  =   0, then Q + R =  P , 

From (4), cos  = 
P

RQ

2


 = 

2

1

2


P

P
 

   cos 
2

1
    

  X
2
 =   P

2
 + R

2
 + PR... ...   ... (5) 

   Y
2
 =   Q

2
 + R

2
 + QR ... ...   ... (6) 

 (5) – (6) gives 

 X
2
 – Y

2
 =   P

2
 – Q

2
+ PR – QR 

   = (P – Q) (P + Q + R) 

   =   (P – Q).0 = 0 

       X = Y 

 

Problem 2 

  Two forces of given magnitude P and Q act at a point at an angle . What will be the 

maximum and minimum value of the resultant? 

 

Solution: 

i. Maximum value of the resultant   =  P + Q 

 

ii. Minimum value of the resultant   =  P~ Q. 
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Problem 3 

  The greatest and least magnitudes of the resultant of two forces of constant magnitudes 

are R and S respectively. Prove that, when the forces act at an angle 2 , the resultant is of 

magnitude  2222 sincos SR     

   

Solution: 

 Given, R = P + Q, S = P-Q, where P and Q are two forces. 

 When P and Q are acting at an angle 2  

Resultant = 2cos.222 PQQP    

      =     2222 sincos2  PQQP  

      =       222222 sincos2cossin  PQQP  

      =      222222 sin2cos2 PQQPPQQP   

      =  2222 sincos SR 
.
  

Problem 4 

  The resultant of two forces P and Q is at right angles to P. Show that the angle between 

the forces is 









Q

P1cos  

Solution: 

 Let be the angle between the two forces P and Q. Given   = 90
o. 

                                                         D                                          C 

 

                                                                                   Q                 R 

                                                                                                          

                                                                                                   A                 P                      B 

 We know, tan   = 




cos

sin

QP

Q


 

  i.e. tan 90
o
  = 





cos

sin

QP

Q


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0

1
  = 





cos

sin

QP

Q


  

   cosQP   = 0 

   cos  = 
Q

P
   

   







 

Q

P1cos  

 

Problem 5 

  The resultant of two forces P and Q is of magnitude P. Show that, if P be doubled, the 

new resultant is at right angles to Q and its magnitude will be
224 QP  . 

 

Solution: 

 Let   be the angle between P and Q 

                      D                                     C 

 

 

                                  P                 P 

 

                                             

                                                        

                                               A                      Q            B                                               

Given, 
2P   = 

2P +
2Q  + cos2PQ . 

 Q (Q+2Pcos )  = 0 

 
P

Q

2
cos    

If P is doubled, let R be the new resultant, and  be the angle between Q and R. 

 
2R  =     cos.222 22

QPQP   

  = 









P

Q
PQQP

2
44 22   

  = 22222 424 QPQQP   
 

   
224 QPR   
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     tan =      
 
  



cos2

sin2

PQ

P


 =  











P

Q
PQ

P

2
2

sin2 
  

 i.e. tan  = 
0

sin2 P

 
  

 cos   =        0        ⇒  φ = 90
0
 

  

 ∴ Q is at right angles to R.  

 

Problem 6  
  Two equal forces act on a particle, find the angle between them when the square of their 

resultant is equal to three times their product. 

Solution: 

                                       D                                C  

                                P                 R    

                               

              A                  P            B 
  

Let   be the angle between the two equal forces P, P, and let R be their resultant. 

 
2R   = cos..222 PPPP   

   =  
2

cos22cos12 222 
  PP  

 i.e.
2R   = 

2
cos4 22 

P   

  

     
  

Given, 2R   =  233 PPP   
 

 23P   = 
2

cos4 22 
P

 
  

 
2

cos2   = 
4

3
   

2
cos


 = 

2

3
 

R  = 2Pcos
2


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      
2


 =30

o
  

  

         α = 60
0
 

  

 

Problem 7 

  If the resultant of forces 3P, 5P is equal to 7P find 

  i. the angle between the forces 

  ii. the angle which the resultant makes with the first force.  

 

Solution: 

Let   be the angle between 3P, 5P 

 i. Given (7P)
2 

 =  (3P)
2
+ (5P)

2
+ 2 (3P) (5P) .cos  

  49P
2
  =  9P

2
 + 25P

2
+ 30P

2
cos  

  215P  = cos30 2P  

  cos  = 
2

1
  α = 60

0
 

 

 ii. Let   be the angle between the resultant and 3P. 

  tan  = 




cos

sin

QP

Q


 

     

                                                = 




cos.53

sin.5

PP

P


 

     

                                                = 




60cos.53

60sin.5

PP

P
 

    = 













2

1
53

2

3
5
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  tan   = 
11

35

 

 

     = 














11

35
tan 1  

 

1.2 Triangle of forces  

 

If three forces acting at a point can be represented in magnitude and 

direction by the sides of a triangle taken in order, they will be in 

equilibrium. 

 

M  D C  

   Q        R  Q 

Q  
A P B  

  

O  

R               P                         L    
 
                                            N 
                                         

Let the forces, P,Q,R act at a point O and be represented in 

magnitude and direction by the sides AB,BC,CA of the triangle ABC. 

 

To prove : They will be in equilibrium. 

Complete the parallelogram BADC. 

 

P+Q = AB  + AD  = AB + BC   

 

                             =  AC  
 

ie) The resultant of the forces P, Q at O is represented in magnitude 

and direction by AC. 

 

The third force R acts at O and it is represented in magnitude and 

direction by CA. 

 

Hence P+Q+R = AC + CA =0  
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Principle 

 

If two forces acting at a point are represented in magnitude and direction 

by two sides of a triangle taken in the same order, the resultant will be 

represented in magnitude and direction by the third side taken in the 

reverse order. 

1.3 Lami‟s Theorem    

 If three forces acting at a point are in equilibrium, each force is proportional to the 

sine of the angle between the other two. 

                                                                                          X 

 

                                                                          

                                                                               Y                     Z        

 

 

 

 

 

 

Proof: 

 

                   By converse of the triangle of forces, the sides of the triangle OAD 

represent the forces P,Q,R in magnitude and  direction. 

 

 By sine rule in OAD , we have 

 
OAD

DO

DOA

AD

ODA

OA







 sinsinsin
 ……………. (1) 

 But MONBODaltOAD  0180.  

   MONMONODA  sin180sinsin 0
 …….. (2) 

 Also NOLDOA  0180  

   NOLNOLDOA  sin180sinsin 0
 ……. (3) 

        M 
 
                    B                                 D 
              Q 
 
                         
 
 

            O                                                 
                                                                           A   P       L                            
                     R 
        
         N 
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 And LOMBOAOAD  00 180180  

  LOMLOMOAD  sin180sinsin 0
 ……. (4) 

Substitute (2), (3), (4) in (1),  

LOM

DO

NOL

AD

MON

OA







 sinsinsin
 

i.e. 
LOM

R

NOL

Q

MON

P







 sinsinsin
 

),sin(),sin().sin( QP

R

PR

Q

RQ

P
  

 

Problem 8 

  Two forces act on a particle. If the sum and difference of the forces are at right angles to 

each other, show that the forces are of equal magnitude. 

 

Solution: 

 

      D                               C 

 

                        Q 

                       

 

 

A              P                 B 

 
 Let the forces P and Q acting at A be represented in magnitude and direction by the lines 

AB and AD. Complete the parallelogram BAD. 

 

 Then P+Q= ACADAB    

P-Q = ADAB  

 = DAAB  

 

 = ABDA  

 = DB   
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Given AC  and DB  are at right angles. 

The diagonals AC and BD cut at right angles. 

 

ABCD must be a rhombus. 

AB = AD.  

P = Q. 

 

Problem 9 

  Let A and B two fixed points on a horizontal line at a distance c apart. Two fine light 

strings AC and BC of lengths b and a respectively support a mass at C. Show that the tensions of 

the strings are in the ratio    222222 : acbabcab   

 

  Solution                                       

                            A            c          D          B 

                                      

        

         T1                     T2                                              

                                               b          a 

                                                    C 

                                                             

  

                                                  E   W 
 

Forces T1, T2, W are acting at C. 

By Lami‟s theorem, 

)1........(
sinsin

21

ECA

T

ECB

T





 

Now sin  DCBECB  0180sin  

  = sin DCB  

  = sin   ABCABC  cos900

 

 

sin  ACDECA  0180sin  

 = sin ACD  

 = sin   BACBAC  cos900
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BAC

T

ABC

T




 coscos

21
 













 













 



bc

acb

ca

bac

A

B

T

T

2

2

cos

cos

222

222

2

1  

 


2

1

T

T  
 222

222

222

222 2

2 acba

bacb

acb

bc

ca

bac




























 
  

 

Problem 10 

  ABC is a given triangle. Forces P,Q,R acting along the lines OA,OB,OC are in 

equilibrium. Prove that            

(i)P : Q : R=    :: 22222222 bacbacba   2222 cbac   if O is the cicumcentre of the 

triangle.        

(ii) P : Q : R= 
2

cos:
2

cos:
2

cos
CBA

  if O is the incentre  of the triangle. 

(iii) P : Q : R= a:b:c  if O is the ortho centre of the triangle. 

(iv) P : Q : R=OA : OB : OC if O is the centroid of the triangle, 

 

Solution: 

 

 

 

 

 

                               By Lami‟s theorem,  

 
AOB

R

COA

Q

BOC

P







 sinsinsin
 …………… (1) 

 

 (i) O is the circumcentre of the  ABC 

 CAOBandBCOAABACBOC 22;22   

                                     A 
 
                                P 
 
                        O 
                Q             R 
                                      
     B                                            C 

 

                                                A 
 
                     
                            F 
 
                                                  O    E 
 
  B                                          
                                                D         C 
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C

R

B

Q

A

P

2sin2sin2sin
)1(      

 i.e. 
CC

R

BB

Q

AA

P

cossin2cossin2cossin2
  ……. (2) 

 

 But 
bc

acb
A

2
cos

222 
  and 

bc
A




2
sin  

   where   is the area of the triangle ABC 

 

 
bcbc

acb
AA

2

2
2cossin2

222 
  

  = 
 

22

2222

cb

acb 
 

Similarly 
 

22

2222
cossin2

ac

bac
BB


  

CCcossin2
 

22

2222

ba

cba 
 

Substitute in (2)  

 
     222

22

222

22

222

22

22

.

2

.

cba

bRa

bac

acQ

acb

cbP








 

Divide by 
2

222 cba
 

     222222222222 cbac

R

bacb

Q

acba

P








 

 

(ii) O is the in-centre of the triangle, 

OB and OC are the bisectors of B and C 
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









22
180

22
180 00 CBCB

BOC  

                 

                = 
2

90
2

90180 000 AA









  

Similarly COA = 
2

90,
2

90 00 C
AOB

B
  

(1) 



































2
90sin

2
90sin

2
90sin 000 C

R

B

Q

A

P
 

i.e. 

2
cos

2
cos

2
cos

C

R

B

Q

A

P
  

 

(iii) O is the ortho-centre of the triangle 

AD, BE, CF are the altitudes of the triangle 

AFOE is a cyclic quadrilateral. 

0180 AFOE  , AFOE  0180  

BOC  = A0180  

Similarly, BCOA  0180 , CAOB  0180  

Hence (1) becomes 

     C

R

B

Q

A

P







 000 180sin180sin180sin
 

i.e. 
C

R

B

Q

A

P

sinsinsin
  

i.e. 
c

R

b

Q

a

P
  










C

c

B

b

A

a

sinsinsin
  
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(iv) O is the centroid of the triangle 

 BOC =  COA = AOB = ABC
3

1
 

 BOC = ABCBOCOCOB 
3

1
sin.

2

1
 

OCOB

ABC
BOC

.3

2
sin


  

 

Similarly, 
OAOC

ABC
COA

.3

2
sin


  , 

OBOA

ABC
AOB

.3

2
sin


  

  

Hence (1) becomes 
ABC

OBOAR

ABC

OAOCQ

ABC

OCOBP







 2

.3.

2

.3.

2

.3.
 

  

i.e. P.OB.OC = Q.OC.OA = R.OA.OB 

 

 Dividing by OA.OB.OC, we get 
OC

R

OB

Q

OA

P
 . 

 

1.4 Parallel forces:  

 

        Forces acting along parallel lines are called parallel forces. There are two types of parallel 

forces known as like and unlike parallel forces. Since the parallel forces do not meet at a point, in 

this chapter we study methods to find the resultant of two like parallel and unlike parallel forces. 

Parallel forces acting on a rigid body have a tendency to rotate it about a fixed point. Such 

tendency is known as moment of the parallel forces. Here we study the theorem on moments of 

forces about a point.  

 Definition:   

   

  Two parallel forces are said to be like if they act in the same direction, they 

are said to be unlike if they act in opposite parallel directions. 
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The resultant of two like parallel forces acting on a rigid body   
   

   

 

                                                                        P 

                                                              Q 

                                

                                    1R        P                X 

                         E                 D                             Q   2R  

  L M 

 

Proof: 

Let P and Q be two like parallel forces acting at A and B along the lines AD and BL.At A 

and B, introduce two equal and opposite forces F along AG and BN. These two forces F balance 

each other and will not affect the system. 

 Now, R1 is the resultant of P and F at A and R 2  is the resultant of Q and F at B as in the 

diagram. 

           Produce EA and MB to meet at O. At O, draw YOY1  parallel to AB and draw OX 

parallel to the direction of P. 

 Resolve R1 and R 2  at O into their original components. R1 at O is equal to F along OY1  

and P along OX. R 2  at O is equal to F along OY and Q along OX. 

 The two forces F, F at O cancel each other. The remaining two forces P and Q acting 

along OX have the resultant P+Q (sum) along OX. 

 

 

G         F    A                         C                     B       F       N 

                    F                             O                       F 

Y                                                                    Y 
Y 
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Find the position of the resultant 

 Now, AB and OX meet at C. 

Triangles, OAC and AED are similar. 

ED

AC

AD

OC
  ie) 

F

AC

P

OC
  

 ACPOCF ..    ……………………… (1) 

Triangles OCB and BLM are similar. 

                 LM

CB

BL

OC
  ie) 

F

CB

Q

OC


 

 CBQOCF ..    ……………………….. (2) 

(1) & (2)     

 

 ie) 
P

Q

CB

AC


 

 

ie) „C‟ divides AB internally in the inverse ratio of the forces. 

 

The resultant of two unlike and unequal parallel forces acting on a rigid body: 

 

                               Y                                            Y 

                                      P 

                                        Q         E          D 

                                         C P      B F        N 

       X  

   L            M 

P.AC = Q.CB 

R1 

R2 
Q 

O 

    G             A 

F 

F  F 
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Proof: 

           Let P and Q at A and B be two unequal unlike parallel forces acting along AD and BL. 

            Let P > Q. 

At A and B introduce two equal and opposite forces F along AG and BN. These two balances 

each other and will not affect the system. 

Let R1 be the resultant of F and P at A and R 2  be the resultant of F and Q at B. as in the 

diagram. 

Produce EA and MB to meet at O. At O, draw Y OY parallel to AB and draw OX parallel to the 

direction of P. 

Resolve R1 and R 2  at O into their components. R1 at O is equal to F along  YO   and P along 

XO. R 2  at O is equal to F along OY and Q along OX. 

The two forces F, F at O cancel each other. Now, the remaining forces are P and Q along the 

same line but opposite directions. 

 Hence the resultant is P ~ Q (difference) along XO. 

Find the position of the resultant 

 Now, AB and OX meet at C. 

Triangles OCA and EGA are similar. 

,
GA

CA

EG

OC
  ie) 

F

CA

P

OC
  

   ACPOCF ..   …………………… (1) 

Triangles OCB and BLM are similar. 

,
LM

CB

BL

OC
  ie) 

F

CB

Q

OC
  

   CBQOCF ..   …………………… (2) 

(1) and (2)     

 

 ie) 
P

Q

CB

CA
  

ie) „C‟ divides AB externally. 

  

Note :  The effect of two equal and unlike parallel forces can not be replaced by a single force. 

P.AC = Q.CB 
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The condition of equilibrium of three coplanar parallel forces  

 

        P                                 P+Q Q 

 

 A                                C        B 
                                          
                                             R   
 

Let P, Q, R be the three coplanar parallel forces in equilibrium. Draw a line to meet the 

forces P, Q, R at the points A, B, C respectively. 

Equilibrium is not possible if all the three forces are in the same direction. 

Let P + Q be the resultant of P and Q parallel to P. Hence R must be equal and opposite 

to P + Q. 

 R = P + Q  (in magnitude, opposite in direction) 

CBQACP ..   

 

AB

R

ACCB

QP

AC

Q

CB

P







 

 

 

Hence,  

 

ie) If three parallel forces are in equilibrium then each force is proportional to the distance 

between the other two. 

 

Note: The centre of two parallel forces is a fixed point through which their resultant 

always passes. 

Problem 11 

           Two men, one stronger than the other, have to remove a block of stone weighing 300 kgs. 

with a light pole whose length is 6 metre. The weaker man cannot carry more than 100 kgs. 

Where the stone be fastened to the pole, so as just to allow him his full share of weight? 

 

AB

R

AC

Q

CB

P
  
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Solution: 

 x  6 – x  

            A C B 

 

 

 100    300                  200 

 

Let A be the weaker man bearing 100 kgs., B the stronger man bearing 200 kgs. Let C be 

the point on AB where the stone is fastened to the pole, such that AC = x. Then the weight of the 

stone acting at C is the resultant of the parallel forces 100 and 200 at A and B respectively. 

 100.AC = 200.BC 

   i.e. 100x = 200 (6-x) = 1200 – 200x 

      300x = 1200 or x=4 

Hence the stone must be fastened to the pole at the point distant 4 metres from the weaker 

man. 

Problem 12 

Two like parallel forces P and Q act on a rigid body at A and B respectively. 

a) If Q be changed to 
Q

P2

 , show that the line of action of the resultant is the same as it would 

be if the forces were simply interchanged.          

b) If P and Q be interchanged in position, show that the point of application of the resultant will 

be displayed along AB through a distance d, where AB
QP

QP
d .




 .               

Solution: 

  

P Q 

 

 

A C D B 
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 Let C – be the centre of the two forces. 

 Then P. AC = Q.CB …………. (1) 

(a) If Q is changed to 
Q

P2

, (P remaining the same), let D be the new centre of parallel 

forces. 

 Then P.AD = 
Q

P2

 DB …. ….  ….. (2) 

  Q.AD = P.DB ……………. (3) 

Relation (3) shows that D is the centre of two like parallel forces, with Q at A and P at B. 

(b) When the forces P and Q are interchanged in position, D is the new centre of parallel 

   forces. 

Let CD = d 

From (3), Q. (AC+CD) = P. (CB – CD) 

i.e. Q.AC + Q.d = P.CB – P.d 

                       (Q + P).d = P.CB – Q.AC  

                                       = P (AB – AC) – Q (AB – CB) 

                            = (P – Q).AB[P.AC = Q.CB from (1)] 

  

 

 

Problem 13 

The position of the resultant of two like parallel forces P and Q is unaltered, when the position of 

P and Q are interchanged. Show that P and Q are of equal magnitude.              

Solution:                                                                                                                                                                           

 

 

                       

 

d    = AB
QP

QP
.




  

P                                                                    Q 
 
 
 
 
 
 
A                                 C                               B 
 
 
 

Q                                                                   P 
 
 
 
 
 
 
A                                            C                     B 
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Let C be the centre of two like parallel forces P at A and Q at B. 

  P.AC = Q.CB ……………… (1) 

When P and Q are interchanged, the centre C is not altered (given) 

  Q.AC =P.CB ………………. (2) 

 

 
P

Q

Q

P


)2(

1
  

 

 
22 QP   

 

 

 

 

 

 

Problem 14 

               

    P and Q are like parallel forces. If Q is moved parallel to itself through a distance x, prove that 

the resultant of P and Q moves through a distance  
QP

Qx


. 

Solution: 

 

 P Q Q 

 

  

 A                     C          D               B B  

 

Let C be the centre of P and Q at A and B. 

 CBQACP ..   …………. (1) 

Let D be the new centre of P at A and Q at B  such that BB   = x  

BDQADP  ..  …………………… (2) 

ie)    BBDBQCDACP    =   xCDCBQ   

QP   

x  
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   xQCDQP . using (1) 

  

                                         

    

 

Problem 15 

 

                Two unlike parallel forces P and Q (P>Q) acting on a rigid body at A and B 

respectively be interchanged in position, show that the point application of the resultant in AB 

will be displayed along AB through a distance .AB
QP

QP




  

 

Solution:      

 P 

 

 

 B 

                       C D A 

 Q 

 

Let C be the centre of two unlike parallel forces P at A and Q at B. 

 CBQACP ..   ………………… (1) 

Let D be the new centre when P and Q are interchanged in position.  

 DBPADQ ..   ……………….. (2) 

i.e.)    ABDAPCDACQ  .  

i.e.)      ABCDACPCDABCBQ  .  

ABPCDPACPCDQABQCBQ ......   

   ABQPCDQP ..   using (1) 

 

QP

Qx
CD


  

AB
QP

QP
CD .




  
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Problem 16 

               A light rod is acted on by three parallel forces P, Q, and R, acting at three points distant 

2, 8 and 6 ft. respectively from one end. If the rod is in equilibrium, show that P: Q: R = 1:2:3. 

Solution   

 P Q 

 

 C 

 A B D 

 R  

 

P, Q, R are parallel forces acting on the rod AD at B, D, C respectively.  

Given, AB = 2 ft, AD = 8ft, AC = 6ft. 

  BC = 4ft, CD = 2ft, BD = 6ft. 

For equilibrium of the rod, each force should be proportional to the distance between the other 

two. 

6:4:2::
642

 RQP
RQP

 

  

 

1.5 Moment of a force (or) Turning effect of a force 

Definition:  

The moment of a force about a point is defined as the product of the force and the 

perpendicular distance of the point from the line of action of the force. 

 

 O 

    p  

 A F N B 

3:2:1::  RQP  
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Moment of F about O = F x ON = F x p. 

Note: Moment of F about O is zero if either F = O (or) ON = O. 

i.e.) F = 0 (or) AB passes through O.  

Hence, moment of a force about any point is zero if either  

        the force itself is zero (or) the force passes through that point.  

Physical significance of the moment of a force 

 It measures the tendency to rotate the body about the fixed point. 

 Geometrical Representation of a moment 

                                          O                                     O 

                                                                                                      

  

     

      A      F                     B         N            A          F      N            B 

 

Let AB represent the force F both in magnitude and direction and O be any given point. 

 the moment of the force F about O 

              = F x ON = AB x ON = 2.   AOB 

 = Twice the area of the triangle AOB 

Sign of the moment 

If the force tends to turn the body in the anticlockwise direction, moment is positive. 

If the force tends to turn the body in the clockwise direction, moment is negative. 

 

 Varignon‟s Theorem of Moments  

 

         The algebraic sum of the moments of two forces about any point in their plane is 

equal to the moment of their resultant about that point. 
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Proof:    

Case 1  Let the forces be parallel and O lies  i) Outside AB 

 P+Q =R 

                               P                                                 

                                                                                         

 

 

 

Let P and Q be the two parallel forces acting at A and B. P + Q be their resultant R acting at C. 

such that 

 P.AC = Q.CB     …………….. (1) 

Algebraic sum of the moments of P and Q about O 

 = P.OA + Q.OB 

 = P x (OC – AC) + Q x (OC + CB) 

 = (P +Q).OC – P.AC +Q.CB 

 = (P+Q).OC using (1) 

 = R.OC 

 = moment of R about O. 

ii) P and Q are parallel and O lies within AB 

 A  C O B 

 

   

 

 P                       R=P+Q                               Q 

Algebraic sum of the moments of P and Q about O  

 = P.OA – Q.OB  

 = P. (OC+CA) – Q. (CB – CO) 

 = (P+Q).OC + P.CA – Q.CB by     (1) 

 = R.OC 

 = moment of R about O. 

 Q 

   
O                           A                             C                                          B 
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Case II  iii) P and Q meet at a point and O any point in their plane. O lies outside the angle 

BAD 

 

  

 

         

   

Through O, draw a line parallel to the direction of P, to meet the line of action of Q at D. 

Complete the parallelogram ABCD such that AB, AD represent the magnitude of P and Q and 

the diagonal AC represents the resultant R of P and Q. 

 

Algebraic sum of the moments of P and Q about O 

 = 2.   AOB + 2. AOD 

 = 2   ACB + 2.  AOD [  AOB =  ACB] 

 = 2  ADC + 2  AOD 

 = 2 ( ADC +  AOD) 

 = 2.  AOC 

 = Moment of R about O. 

iv) O lies inside the angle BAD 

Algebraic sum of the moments of P and Q about O: 

 = 2  AOB – 2  AOD 

 = 2  ACB – 2  AOD 

 = 2  ADC – 2  AOD 

 = 2 ( ADC –  AOD) 

 = 2.  AOC 

 = moment of R about O. 

 

 

          D                O                    C                                           
 
   Q                       R    
               
                  
 
A                     P                   B 
 
 
 

  O                D                                                            C 
 
 
 
      Q                           R  
 
 
     A                 
                                        P                            B 
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Problem 17 

Two men carry a load of 224 kg. wt, which hangs from a light pole of length 8 m. each end of 

which rests on a shoulder of one of the men. The point from which the load is hung is 2m. nearer 

to one man than the other. What is the pressure on each shoulder?  

Solution 

             R1  R 2  

 

 x         C 

 A       B 

  

AB is the light pole of length 8m. C is the point from which the load of 224 kgs. is hung. 

Let AC = x. Then BC = 8 – x.  given ( 8 x) – x =2 

i.e) 8 – 2x = 2 0r 2x = 6. 

 x = 3. i.e. AC = 3 and BC = 5. 

Let the pressures at A and B be R1  and R 2  kg. wt. respectively. Since the pole is in 

equilibrium, the algebraic sum of the moments of the three forces R1 , R 2  and 224 kg. wt. about 

any point must be equal to zero. 

Taking moments about B, 

224 CB – R1 .AB = 0 

i.e. 224 .085 1  R  

.140
8

5224
1 


R  

Taking moments about A,  

R 2 .AB – 224.AC = 0. 

i.e. 8R 2  224 .03   

84
8

3224
2 


R  

 

224 
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Problem 18 

                 A uniform plank of length 2a and weight W is supported horizontally on two vertical 

props at a distance b apart. The greatest weight that can be placed at the two ends in succession 

without upsetting the plank are W1   and W 2  respectively. Show that   

.
2

2

1

1

a

b

WW

W

WW

W






  

 

Solution 

Let AB be the plank placed upon two vertical props at C and D. CD = b. The weight W of 

the plank acts at G, the midpoint of AB, 

AG = GB = a  

When the weight W1  is placed at A, the contact with D is just broken and the upward reaction at 

D is zero. 

 

 

 R1                                       R 2  

                    

                                                           

    

 

There is upward reaction R1  at C. 

Take moments about C, we have 

W1 . AC = W.CG 

i.e. W1  (AG – CG) = W.CG 

 W1 .AG = (W +W1).CG 

i.e. W a.1  = (W+W1 ) CG 

                                                                             
 
 
          
      A                  C                        G                                 D         B 
                
   
  
    W1               W                                          W2      
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CG = 

1

1

WW

aW


……………. (1) 

When the weight W 2  is attached at B, there is loose contact at C. The reaction at C becomes 

zero. There is upward reaction R 2  about D. 

 Take moments about D, we get 

 W.GD = W 2  (GB –GD) 

                   GD (W+W 2 ) = W 2 .GB = 2W  .a 

                  GD = 

2

2

WW

aW


 ………… (2) 

  

  

 b
WW

aW

WW

aW








2

2

1

1  

  
a

b

WW

W

WW

W





 2

2

1

1  

 

Problem 19 

                 The resultant of three forces P, Q, R, acting along the sides BC, CA, AB of a triangle 

ABC passes through the orthocentre. Show that the triangle must be obtuse angled. 

 If ,120A  and B = C, show that Q+R = P 3 .  

     

Solution:                         

   

    

   

  

     

 

CG + GD = CD = b 

                                                                   A   
                                       
                                                     F                 
                                                                               E 
                                    R                            O                                                          
                                                       
 
                                                                                        Q 
  
                  90-C 
  B                                     P                       D                        C 
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Let AD, BE and CF be the altitudes of the triangle intersecting at O, the orthocentre. 

As the resultant passes through O, moment of the resultant about O = O. 

 Sum of the moments of P, Q, R about O = O 

P.OD+Q.OE+R.OF = 0 ……….. (1) 

In rt. .90, CEBCOBDBODd   

 
BD

OD
C  )90tan(  

 i.e) cot C = 
BD

OD
 

 OD = BD cot C …………. (2) 

From rt. ,ABDd
AB

BD
B cos   

CBcODFrom cot.cos),2(   = 
C

C
Bc

sin

cos
.cos  

                            = CB
C

c
coscos.

sin
  

                           = R
C

c
CBR  2

sin
(coscos2  , R  is the circumradius of the  )  

Similarly OE = ACR coscos2   

and          OF = BAR coscos2   

Hence (1) becomes 

0coscos2.coscos2.coscos2.  BARRACRQCBRP  

Dividing by ,coscoscos2 CBAR   

0
coscoscos


C

R

B

Q

A

P
 …… (3) 

Now, P, Q, R being magnitudes of the forces, are all positive. 

 (3) may hold good, if at least one of the terms must be negative. 

Hence one of the cosines must be negative. 

i.e) the triangle must be obtuse angled. 

If A = 120  and the other angles equal, then B = C = 30  

Hence (3) becomes 
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0
30cos30cos120cos










RQP
 

i.e. 0

2

3

2

1





























RQP

 

 

i.e. P RQ3  

 

1.6 Couples: Definition 

 

  Two equal and unlike parallel forces not acting at the same point are said to constitute a 

couple. 

 

Examples of a couple are the forces used in winding a clock or turning tap. Such forces acting 

upon a rigid body can have only a rotator effect on the body and they can not produce a motion 

of translation. 

 The moment of a couple is the product of either of the two forces of the couple and the 

perpendicular distance between them, 

 

 The perpendicular distance (p) between the two equal forces P of a couple is called the 

arm of the couple.  A couple each of whose forces is P and whose arm is p is usually denoted by 

(P, p). 

 

 A couple is positive when its moment is positive i.e., if the forces of the couple tend to 

produce rotation in the anti-clockwise direction and a couple is negative when the forces tend to 

produce rotation in the clockwise direction.  
 

1.7 Equilibrium of three forces acting on a Rigid Body. 

 In the previous sections we have studied theorems and problems involving parallel forces 

and forces acting at a point. Here we study three important theorems and solved problems on 

forces acting on a rigid body and their conditions of equilibrium.     

Theorem 

If three forces acting on a rigid body are in equilibrium, they must be coplanar. 

Proof: 

 

 

 

 

 
 
        P      
               R 

 
                                      B                                C 
         A                     
                               
                                        D                        E 
                         
                                    Q 
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Let the three forces be P,Q,R 

Given : They are acting on a rigid body and in equilibrium. 

 Take „A‟ on the force P, and B on the force Q such that AB is not parallel to R. 

 Sum of the moments of P, Q, R about AB = 0 [ P,Q, R are in equilibrium] 

Now, moment of P and Q about AB = 0 [ P and Q intersect AB]. 

 Moment of R about AB = 0, Hence R must intersect AB at a point C 

 Similarly if D is another point on Q such that AD is not parallel to R, we prove, R must 

intersect AD at a point E. 

 Since BC and DE intersect at A, BD, CE, A lie on the same plane. i.e) „A‟ lies on the 

plane formed by Q and R. Since A is an arbitrary point on the force P, every point on the force P 

lie on the same plane. 

ie) P, Q, R lie on the same plane. 

 

Three Coplanar Forces – theorem  

 If three coplanar forces acting on a rigid body keep it in equilibrium, they must be either 

concurrent or all parallel. 

Proof: 

 Let P, Q, R be the three forces acting on a rigid body keep it in equilibrium. 

 One force must be equal and opposite to the resultant of the other two. 

 they must be parallel or intersect. 

Case 1: If P and Q are parallel (like or unlike) 

 Then the resultant of P and Q is also parallel. Hence R must be parallel to P and Q. 

Case 2: If P and Q are not parallel: (intersect) 

 They meet at O. Therefore, by parallelogram law, the third force R must pass through O. 

  i.e) the three forces are concurrent.  

Note: A couple and a single force can not be in equilibrium 

Conditions of equilibrium 

1. If three forces acting at a point are in equilibrium, then each force is proportional to the 

sine of the angle between the other two. 

2.  If three forces in equilibrium are parallel, then each force is proportional to the distance 

between the other two 
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Two Trigonometrical theorems 

 If D is any point on BC of a triangle ABC such that 
n

m

DC

BD
  and ADC , 

  DACBAD ,  then 

1)    cot.cot.cot nmnm             2)   .cot.cot.cot CmBnnm    

 

Proof:  

                                                  A 

                                                   

 

 

 

     

                                      )    

                      B     m     D         n               C 

 

1. Given, 
DC

DA

DA

BD

DC

BD

n

m
.  

Using, sine formula in  ABD,  ADC, 

 
DAC

ACD

ABD

BAD

n

m











sin

sin

sin

sin
 

 
 









sin

sin

sin

sin 





n

m
 

= 
 
 







sin.coscossin

sin.coscos.sin

sin

sin




  

Divide by   sin.sin.sin  





cotcot

cotcot






n

m
 

    cotcotcotcot  nm  

    cot.cot.cot nmnm   
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2. 
DC

DA

DA

BD

n

m
.  

 = 
DAC

ACD

ABD

BAD










sin

sin

sin

sin
 

 = 
 

  CB

CB









180sin.sin

sin.sin
 = 

 
 CB

BC









sin.sin

sin.sin
 

 = 
 
 



sincoscossinsin

sincoscos.sinsin

CCB

BBC




 

Divide by sin B sin C sin  

C

B

n

m

cotcot

cotcot









 

    cotcotcotcot  BnCm  

 

 

 

 

Problem 20 

A uniform rod, of length a, hangs against a smooth vertical wall being supported by 

means of a string, of length l, tied to one end of the rod, the other end of the string being attached 

to a point in the wall: show that the rod can rest inclined to the wall at an angle    given by 

.
3

cos
2

22
2

a

al 
  

 What are the limits of the ratio of a: l in order that equilibrium may be possible? 

Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

CmBnnm cotcotcot)(    

       
          C 
 

                

                   T 
 
                               L 
         A                                              R  

                    90
0  

                    1      

                          G        
                         
                          w  
                                            l 
 
           D                                       B     
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AB is the rod of length a, with G its centre of gravity and BC is the string of length l.  

The forces acting on the rod are: 

(i). Its weight W acting vertically downwards through G. 

(ii). The reaction R at A which is normal to the wall and therefore horizontal.   

iii) The tension T of the string along BC. 

These three forces in equilibrium not being all parallel, must meet in a point L.  

Let the string make an angle   with the vertical. 

.GLBACB    

 90180 ALGandLGB  ,  AG:GB = 1 :1, 

Using the trigonometrical theorem in   ALB  

   cot.190cot.1180cot)11(   

 i.e)  cotcot2   

  cotcot2    ……………… (1) 

Draw BD  to CA. 

From rt.  sin.sin., lBCBDCDBd    

rt.  sinsin, aABBDABDd   

 sinsin al   ………… (2) 

Eliminate   between (1) and (2). 

We know that  22 cot1cos ec   …………………… (3) 

(2)  sin 
l

a 


sin
  




sin
cos

a

l
ec  …………………… (4) 

Substitute (4) and (1) in (3) 




2

22

2

cot41
sin


a

l
 

i.e.  222

2

2

cos31cos4sin 
a

l
 

2

22

2

2
2 1cos3

a

al

a

l 
   
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2

22
2

3
cos

a

al 
   ………………… (5) 

 Equilibrium position is possible, if 2cos  positive and less than 1 

022  al  i.e. 
2222 loraal   ……………….. (6) 

Also 1
3 2

22




a

al
 i.e. 

22222 43 aloraal   

i.e. 
4

2
2 l

a      …………………… (7) 

22
2

4
la

l
    

[ By (6) & (7) ]    1
4

1
2

2


l

a
 = .1

2

1


l

a
 

Problem 21 

  A beam of weight W hinged at one end is supported at the other end by a string so that 

the beam and the string are in a vertical plane and make the same angle   with the horizon. 

Show that the reaction at the hinge is 2cos8
4

ec
W

        

   

Solution: 

Let AB be the beam of weight W and G its centre of 

gravity.  

BC is the string 

The force acting on the beam are: 

i) Its wt. W acting vertically  

down wards at G 

ii) the tension T along BC  

iii) the reaction R at the hinge  A. 

 

 

 

                  C 

                                 L 

                                

                              𝛼                                  
                                                           T 
                                                                         B                                             
                          
                                     90-𝜃 
          R 
                                
                            G                           

                                 

     A                     90
0
  

                                                                     
                                 W 

 90  
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For equilibrium (i) , (ii) and (iii) must meet at L. 

BC and AB make the same angle   with the horizon. 

 They make 90   with the vertical LG, 

i.e. LGBBLG  90  

Let ALG  

Using trigonometrical theorem in  ALB, AG:GB = 1:1 

       90cot.1cot.190cot11  

i.e. 2  tancottan   

 3  cottan   ………………. (1) 

Applying Lami‟s theorem at L,  

    


 90sin90sin

WR

 

i.e. 
    





cos90sincos

WWR

 

  







sinsincoscos

cos

cos

cos







WW
R  

                              = 
 



sincotcossin

cos



W
 

                              = 
 



sintan3.cossin

cos



W
  [By (1)] 

      = 




 2cot1cot
4

cos.
4

cot

sinsin3

coscos




W
ec

WecW
 

     =  2tan91cot.
4


W

 

     = 81cot
4

9cot
4

22  
WW

 

     = 8cos
4

2 ec
W
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Problem 22 

            A solid cone of height h and semi-vertical angle   is placed with its base flatly against a 

smooth vertical wall and is supported by a string attached to its vertex and to a point in the wall. 

Show that the greatest possible length of the string is 2tan
9

16
1h . 

(The centre of gravity of a solid cone lies on its axis and divides it in the ratio 3 : 1 from the 

vertex.) 

Solution:   

 

 

 

 

 

 

 

Let A be the vertex, & height AD = h. 

Semi-vertical angle 


ACD  . 

G divides AD in the ratio 3: 1 

Length OA   is greatest, when the cone is just in the point of turning about C. 

At that time, normal reaction R must be perpendicular to the wall. 

Since, the cone is in equilibrium, the three forces T, W, R must be concurrent at O. 

DOAAOG  &  are similar. 

3

4

4

3















h

h

AG

AD

AO

OA
                                     ………………… (1) 

Now, OG = CD. 

From 
h

CD

AD

CD
ACD  tan,    tanhCD  

 

AOOA
3

4
  

tan.hOG   

     

                O  

 
                                O          T 
     R                                                         C 

 
 A                           G                        D  

                                  
                                        
                                                              B 
                              W                       W

al
l 
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From 
222, GOAGAOAOG   

   =  2
2

tan.
4

3
hh 








 

   = 22
2

tan.
16

9
h

h
  

   = 
16

tan169 222 hh 
 

AO 







 222 tan

16

9
h  

2tan
16

9
.  hAO  

  2tan
16

9

3

4
1  hOA  

 

 

 

 

Problem 23 

        A heavy uniform rod of length 2a lies over a smooth peg with one end resting on a smooth 

vertical wall. If c is the distance of the peg from the wall and   the inclination of the rod to the 

wall, show that   c = a sin 3
 

Solution: 

 

 

 

 

 

 

 

 

2tan
9

16
1.  hOA  

                                        
       R2 

                                          O 

        A                                             R1 

                                 

                        90  

        D     c             P 
 

                       

                                           

                                         G 
                                          
                                          W       B 
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Forces acting on the rod AB are 

i) Weight W at G    

ii) Reaction R1  at A (   to the wall) 

iii) Reaction R 2  at the peg P (   to the rod) 

For equilibrium, W, R1 ,R 2  must be concurrent at O. 

From rightangled triangle ADP    (DP = c) 

 
AP

c
sin …………………. (1)  

From 
AO

AP
AOP  sin,  ………………….. (2) 

From 
AG

OA
OGA  sin,  ………………….. (3) 

     
AG

OA

AO

AP

AP

c
 3sin321  = 

a

c

AG

c
  

  

 

Problem 24 

        A heavy uniform sphere rests touching two smooth inclined planes one of which is inclined 

at 60  to the horizontal. If the pressure on this plane is one-half of the weight of the sphere, 

prove that the inclination of the other plane to the horizontal is 30  

Solution: 

 

 

 

 

                                         

 L 

 

3sinac   

RB                    RA       
          C 

         60
o
  

  
    
     B 
 
  

 

         
      A 
     
       60

o
 

M 
N 
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Let the sphere centre C rest on the inclined planes AM and BN. MA makes 60  with the 

horizontal and let NB make an angle   with the horizon. 

The forces acting are  

i) Reaction R A  at A perpendicular to the inclined plane AM and to the sphere and 

hence passing through C. 

ii) Reaction R B  at B which is normal to the inclined plane BN and to the sphere and 

hence passing through C. 

iii) W, the weight of the sphere acting vertically downwards at C along CL. 

Clearly the above three forces meet at C. 

Also  BCLandACL 60  

Applying Lami‟s theorem, 

  


60sinsin

WRA  

 





60sin

sinW
RA  …………………. (1) 

But 
2

W
RA   ……………… (2)  

From (1) and (2), we have  

  260sin

sin WW


 


 

i.e. 2 sin    sin60coscos60sin60sin   

i.e. 2 sin  sin
2

1
cos

2

3
  or  sincos3sin4   

i.e. 3 sin  cos3  or 
3

1

3

3

cos

sin





 

i.e. tan 
3

1
  or  30  
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Problem 25 

        A uniform solid hemisphere of weight W rests with its curved surface on a smooth 

horizontal plane. A weight w is suspended from a point on the rim of the hemisphere. If the plane 

base of the rim is inclined to the horizontal at an angle , prove that 
W

w

3

8
tan                

Solution: 

 

 

 

 

 

 

 

 

Draw GL perpendicular to OC and BD perpendicular to OC.  Base AB is inclined at an angle 

𝜃 with the horizontal BD.  Forces acting are  i) Reaction R c    ii) Weight W at G   iii) Weight w 

at B. 

Since these three forces are  parallel, and in equilibrium each force is proportional to the distance 

between the other two. 

GL

w

BD

W
  ………………… (1) 

Now,  coscos rOBBDOBD   

                 Here, OG = ,
8

3r
 r – radius  

      GL = OG. sin  sin
8

3r
   

     














sin
8

3cos
)1(

r

w

r

W
 

 

 W

w

3

8
tan    

                                   
 
                                            RC 
   
 
 
                            A         
 
                                           O 
                            

                            G                            B  

                   
                                          C    
                                  W                     w 
                                 

D 

  L 
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UNIT II 

2.1 Friction 

In the previous sections we have studied problems on equilibrium of smooth bodies. 

Practically no bodies are perfectly smooth. All bodies are rough to a certain extent. Friction is the 

force that opposes the motion of an object. Only because of this friction we are able to travel 

along the road by walking or by vehicles. So friction helps motion. It is a tangential force acting 

at the point on contact of two bodies. To stop a moving object a force must act in the opposite 

direction to the direction of motion. Such force is called a frictional force. For example if you 

push your book across your desk, the book will move. The force of the push moves the book. As 

the books slides across the desk, it slows down and stops moving. When you ride a bicycle the 

contact between the wheel and the road is an example of dynamic friction.      

Definition  

If two bodies are in contact with one another, the property of the two bodies, by means of 

which a force is exerted between them at their point of contact to prevent one body from sliding 

on the other, is called friction; the force exerted is called the force of friction. 

 Types of Friction 

 There are three types of friction   

1) Statical Friction 2) Limiting Friction  3) Dynamical friction. 

 1. When one body in contact with another is in equilibrium, the friction exerted is just 

sufficient to maintain equilibrium is called statical friction. 

 2. When one body is just on the point of sliding on another, the friction exerted attains its 

maximum value and is called limiting friction; the equilibrium is said to be limiting equilibrium. 

 3. When motion ensues by one body sliding over another, the friction exerted is called 

dynamical friction. 

2.2 Laws of Friction   

Friction is not a mathematical concept; it is a physical reality.  

Law 1 When two bodies are in contact, the direction of friction on one of them at the point of 

contact is opposite to the direction in which the point of contact would commence to move. 

Law 2 When there is equilibrium, the magnitude of friction is just sufficient to prevent the body 

from moving. 
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Law 3 The magnitude of the limiting friction always bears a constant ratio to the normal reaction 

and this ratio depends only on the substances of which the bodies are composed. 

Law 4 The limiting friction is independent of the extent and shape of the surfaces in contact, so 

long as the normal reaction is unaltered.  

Law 5 (Law of dynamical Friction) 

  When motion ensues by one body sliding over the other the direction of friction is 

opposite to that of motion; the magnitude of the friction is independent of the velocity of the 

point of contact but the ratio of the friction to the normal reaction is slightly less when the body 

moves, than when it is in limiting equilibrium. 

 

Friction is a passive force: Explain  

1) Friction is only a resisting force. 

2) It appears only when necessary to prevent or oppose the motion of the point of contact. 

3) It can not produce motion of a body by itself, but maintains relative equilibrium. 

4) It is a self-adjusting force. 

5) It assumes magnitude and direction to balance other forces acting on the body. 

Hence, friction is purely a passive force. 

Co-efficient of friction  

The ratio of the limiting friction to the normal reaction is called the co-efficient of 

friction. It is denoted by  

  

            i.e.)      

Note: 1)   depends on the nature of the materials in contact. 

 2) Friction is maximum when it is limiting. R  is the maximum value of friction. 

 3) When equilibrium is non-limiting, RF    i.e.) 
R

F
  

 4) Friction „F‟ takes any value from zero upto .R   

 

Angle of Friction 

    

                                                                      

                                            

                                                                                                     

 


R

F  

RF   

  B                                                     C                B                                                                    C 
 
 
 
R                                                                      R        
 

                                                                               

                               

  O                                   F             A                  O                                     R                         A                  
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Let OA = F(Friction), ROB   (Normal reaction) &OC  be the resultant of F and R. 

If 
R

F

OB

OA

OB

BC
COB 



 tan,  ……….. (1) 

 As F increases,   - increases until F reaches its maximum value .R  In this case, 

equilibrium is limiting. 

Definition  

“When one body is in limiting equilibrium over another, the angle which the resultant reaction 

makes with the normal at the point of contact is called the angle of friction and is denoted by ”  

 In the limiting equilibrium, 


COB = angle of friction. 




 
R

R

OB

OA

OB

BC
tan  

 

 

i.e.) The co-efficient of friction is equal to the tangent of the angle of friction. 

 

 

Cone of Friction 

 

 

 

 

 

 

 

                                             

 tan  

   
   
   
   
  R 
   
   
   
       
 

                            

    
 
                                                       

R                    O        R
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  We know, the greatest angle made by the resultant reaction with the normal is   (angle 

of friction) where  .tan 1    Consider the motion of a body at O (its point of contact) with 

another. When two bodies are in contact, consider a cone drawn with O as vertex, common 

normal as the axis of the cone,   - be the semi-vertical angle of the cone. Now, the resultant 

reaction of R and R  will have a direction which lies within the surface or on the surface of the 

cone. It can not fall outside the cone. This cone generated by the resultant reaction is called the 

cone of friction. 

 

2.3 Equilibrium of a particle on a rough inclined plane. 

 

 

 

 

 

 

 Let   - be the inclination of the rough inclined plane, on which a particle of weight W, is 

placed at A. Forces acting on the particle are, 

1) Weight W vertically downwards 

2) Normal reaction R,  r to the plane. 

3) Frictional force F, along the plane upwards (Since the body tries to slip down). 

Resolving the forces along and perpendicular to the plane, 

 F =  cos,sin WRW   

tan
R

F  

        
 
 
 
     R                    F        
  
               A         

                              

       

                W                  
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But 
R

F
  tan  

i.e)  tantan   

   

When   tan,
R

F
 

Hence, it is clear that “when a body is placed on a rough inclined plane and is on the point of 

sliding down the plane, the angle of inclination of the plane is equal to the angle of friction.” 

Now   is called as the angle of repose. 

 Thus the angle of repose of a rough inclined plane is equal to the angle friction when 

there is no external force act on the body. 

2.4 Equilibrium of a body on a rough inclined plane under a force parallel to 

the plane.  

A body is at rest on a rough plane inclined to the horizon at an angle greater than the angle of 

friction and is acted on by a force parallel to the plane. Find the limits between which the force 

must lie. 

   

Proof:  

        Let   be the inclination of the plane, W be the weight of the body& R be the normal 

reaction. 

Case 1: Let the body be on the point of slipping down. Therefore R  acts upwards along the 

plane. 

 

 

 

 

 

 

                                                  P 
 
             R                                                 

                               R  

    
    
                     

sinW   cosW
    

        W  
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Let P be the force applied to keep the body at rest. 

Resolving the forces along and perpendicular to the plane, 

 sinWRP   ……………….. (1) 

 cos.WR   ………………… (2) 

  cos.sin. WWP   

   cos.tansin W  

 =  


sincoscos.sin
cos


W

 

  


 sin.
cos

W
 

Let 
 




cos

sin.
1




W
P  

Case ii Let the body be on the point of moving up. Therefore limiting frictional force R  acts 

downward along the plane. 

 

 

 

 

 

                          

 

 Let P be the external force applied to keep the body at rest.  

Resolving the force, 

 sin;cos WRPWR    

 sincos. WWP   

=  


sin.coscossin
cos


W

 

                                                                      
             R                        P                            
                                                                                          
 
 
 
                                                                                       

sinW        cosW   

R   

                          W                                      
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=  


sin.
cos

W
 

Let  


 sin.
cos

2
W

P  

If 1PP  , body will move down the plane. If 2PP  , body will move up the plane. 

 For equilibrium P must lie between 1P  and 2P . 

i.e.)  

 

2.5 Equilibrium of a body on a rough inclined plane under any force. 

Theorem: A body is at rest on a rough inclined plane of inclination   to the horizon, being 

acted on by a force making an angle   with the plane; to find the limits between which the 

force must lie and also to find the magnitude and direction of the least force required to 

drag the body up the inclined plane. 

 

 

 

 

 

 α  

 

 

Let α be the inclination of the plane, W be the weight of the body, P – be the force acting at an 

angle   with the inclined plane and R – be the normal reaction. 

Case i: The body is just on the point of slipping down. Therefore the limiting friction R  acts 

upwards. 

Resolving the forces along and r  to the inclined plane, 

 sincos WRP   ……………….. (1) 

21 PPP   

                                                     
               P                                   
     
         
                       R                            µR 
                                          

                                                   
 

                                       
                   A                                 
                                         

     W sin  
 
 
 
 

         cosW          

         W    

    
                 P 
    
   R                
    
          

                                           

                        
              A                 

    sinW                                               

        R                       cosW

                W    
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 cossin WRP   ………………….. (2) 

  sincos PWR   

     sinsincoscos1 WPWP   

     cossinsincos  WP  

 
 





sincos

cossin






W
P  

We have  tan  

 




sin.tancos

cos.tansin






W
P  

 




sin.sincos.cos

sin.coscossin




W  

 
 








cos

sin
W  

Let 
 
 








cos

sin
.1 WP  

Case ii: The body is just on the point of moving up the plane. Therefore R  acts downwards. 

Resolving the forces along and r  to the plane. 

  sin.cos WRP   …………………. (3) 

  cos.sin WRP   …………………. (4) 

  sincos PWR    

     sin.sincoscos3 WPWP   

     cossinsincos  WP  

 
 
 



sin.tancos

cos.tansin






W
P  

 
 
 



sin.sincoscos

cos.sincos.sin






W
 

 
 
 








cos

sin.W
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Let 
 
 








cos

sin.
2

W
P  

To keep the body in equilibrium, 1P  and 2P  are the limiting values of P. 

Find the least force required to drag the body up the inclined plane 

 We have, P = 
 
 







cos

sin
.W  

P is least when   cos  is greatest. 

 i.e.) When   1cos   

 i.e.) When 0   

 i.e.) When    

 

 

Hence the force required to move the body up the plane will be least when it is applied in a 

direction making with the inclined plane an angle equal to the angle of friction. 

i.e.) “The best angle of traction up a rough inclined plane is the angle of friction” 

Problem 1 

  A particle of weight 30 kgs. resting on a rough horizontal plane is just on the point 

motion when acted on by horizontal forces of 6kg wt. and 8kg. wt. at right angles to each other. 

Find the coefficient of friction between the particle and the plane and the direction in which the 

friction acts. 

Solution:  

 

 

 

 

 

  

 Let AB (=8) and AC (=6) represent the  

   sin.WPofvalueLeast  

     C                                                        D
                                            
                       
 6      
                                                  10  
     
     
     
     
     
       
    A     8  B      
F      
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Let AB = 8 and AC = 6 represent the directions of the forces, A being the particle. 

 The resultant force = 
22 68   = 10kg. wt. and this acts along AD, making an angle 










5

4
cos 1

 with the 8kg force. 

 Let F be the frictional force. As motion just begins, magnitude of F is equal to that of the 

resultant force. 

 10F  ……………… (1) 

 If R is the normal reaction on the particle, 

 R = 30 ………………….. (2) 

 If   is the coefficient of friction as the equilibrium is limiting, RF   

10 = 30.           .
3

1

30

10
  

 

Problem 2 

  A body of weight 4 kgs. rests in limiting equilibrium on an inclined plane whose 

inclination is 30 . Find the coefficient of friction and the normal reaction. 

 

Solution: 

 

 

 

 

 

 

 

 

 

 Since the body is in limiting equilibrium on the inclined plane, it tries to move in the 

downward direction along the inclined plane. 

      
      

   R                                                R   

      
      
      
      
      

 W sin 30                   

    W cos 30  

          

                     30      

      
      
      
                W = 4 kg 
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  Frictional force R  acts in the upward direction along the inclined plane. Resolving 

along and r  to the plane, 

  30sinWR  ………………… (1) 

 = 32
2

3
.4   

 R = 30cos.W  …………………. (2) 

 = 2
2

1
4   

 
 
  3

1

2

1
   

 ,
3

1
tan     

 

Problem 3 

  A uniform ladder is in equilibrium with one end resting on the ground and the 

other against a vertical wall; if the ground and wall be both rough, the coefficients of friction 

being    and   respectively, and if the ladder be on the point of slipping at both ends, show 

that  , the inclination of the ladder to the horizon is given by 





2

1
tan


 . Find also the 

reactions at the wall and ground.            

Solution: 

 

 

 

 

 

 

 

 

 

 30  

   S                                                                                 

                                                  
   B                                         S               
  
 
                            
                                          G                      R 
 
                                                                           
      
                                                         θ 
   

        C           R       E                            A                 

       
                                  W         
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  AB is the uniform ladder, whose weight W is acting at G such that AG = GB. 

Forces acting are, 

1. Weight W 

2. Normal reaction R at A 

3. Normal reaction S at B 

4. R       

5. S  

When the ladder is on the point of slipping at both ends, frictional forces RS  ,  act along 

CB, AC respectively. 

 Since the ladder is in equilibrium resultant is zero. 

 Resolving horizontally and vertically, 

RS             ……….. (1)   

WSR   …………. (2) 

  WRR    

   WR 1   

 

By Varigon‟s theorem on moments, taking moments about A 

AEWACSBCS ...    

 cos..cos.sin. AGWABSABS   

 cos.
2

1
.cos.sin. WSS   










2

AB
AG  

 cos.
2

sin. 







 S

W
S  

 
S

W

2
tan   = 1

11
2



















W

W  = 







2

1
 

 = 




2

21 
 

 

 

Problem 4 

  In the previous problem, when     show that ,290    where   is the angle 

of friction. 

 


1

W
R  








1

W
S  






2

1
tan


  
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Solution: 

 In the previous problem, we have proved  





2

1
tan


  

Put     , we get 






2

1
tan

2
   =  




tan;

tan2

tan1 2




  

  =  


290tan2cot
2tan

1
  

i.e.)   290tantan      

 

Problem 5 

  A uniform ladder rests in limiting equilibrium with its lower end on a rough horizontal 

plane and its upper end against an equally rough vertical wall. If   be the inclination of the 

ladder to the vertical, prove that tan
21

2







  where   is the coefficient of friction.    

Solution: 

 

 

 

 

 

 

 

 

 

 

 

When the ladder AB is in limiting equilibrium, five forces are acting as marked in the figure. 

                                                                                   

      S        S         L          

 

B                        S           

 

                                        

 

                                           R                      
                     
                            G                               R              
 
                                              
 

                                                                                                  

 

C                                          R       A  

                     
                         W              

 290   
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1) Weight of the ladder W 

2) Normal reaction R at A 

3) Normal reaction S at B 

4) Frictional force R  

5) frictional force S  

Let SR ,  be the resultant reactions of R, R  and S, S  respectively. 

 We have 3 forces WSR ,,  . For equilibrium, they must be concurrent at L. 

In  


GLAAGLLAB ;180,  

1:1:,90 


GBAGGLB   

 By trigonometrical theorem in   LBA, 

(1+1)      cot.190cot.1180cot   

 cottancot.2   




tan

1tan2 
  






tan2

tan1
cot

2
  

i.e.) 




 2

1

tan

1 2
  

 

 

Problem 6 

  A uniform ladder rests with its lower end on a rough horizontal ground its upper end 

against a rough vertical wall, the ground and the wall being equally rough and the angle of 

friction being .  Show that the greatest inclination of the ladder to the vertical is 2 . 

Solution 

 In the previous problem, we have proved, 
21

2
tan







  But  tan  

 



 2tan

tan1

tan2
tan

2



   

21

2
tan







  

 2  



62 

 

 

Problem 7 

  A ladder which stands on a horizontal ground, leaning against a vertical wall, is so loaded 

that its C. G. is at a distance a and b from its lower and upper ends respectively. Show that if the 

ladder is in limiting equilibrium, its inclination   to the horizontal is given by 
 




ba

ba




tan  

where  ,  are the coefficients of friction between the ladder and the ground and the wall 

respectively.              

Solution: 

  As in problem 5, five forces are acting on the ladder  

Here, AG : GB = a: b 

 By Trigonometrical theorem in ,LBA  

       cot.90cot.90cot. abab   

i.e.)     cot.tan.tan 1 abba   

ba

b
a



















.

tan  = 
 



ba

ba



 .

 

 

Problem 8 

 

  A ladder AB rests with A on a rough horizontal ground and B against an equally rough 

vertical wall. The centre of gravity of the ladder divides AB in the ratio a: b. If the ladder is on 

the point of slipping, show that the inclination   of the ladder to the ground is given by 

)(
tan

2

ba

ba








  where   is the coefficient of friction. 

 

Solution: 

 

 In the previous problem,  

Put    in 
 




ba

ba




tan  

 

 ba

ba










2

tan  
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Problem 9 

  A ladder AB rests with A resting on the ground and B against a vertical wall, the 

coefficients of friction of the ground and the wall being   and   respectively. The centre of 

gravity G of the ladder divides AB in the ratio 1: n. If the ladder is on the point of slipping at 

both ends, show that its inclination to the ground is given by 
 

.
1

1
tan











n

n
 

Solution: 

 Put a : b = 1 : n in  problem7. 

 
 




n

n






1

1
tan

 

Problem 10 

  A ladder of length l2  is in contact with a vertical wall and a horizontal floor, the angle of 

friction being   at each contact. If the weight of the ladder acts at a point distant kl  below the 

middle point, prove that its limiting inclination   to the vertical is given by 

.2cos2cotcot  eck  

Solution: 

 

 

 

 

 

  

Forces are acting as marked in the figure. For equilibrium, the three forces WSR ,,   

must be concurrent at L, where W – be the weight of the ladder. 

In .;, klCGlCABCLAB   

 lkkllCGBCBG )1(   

                S                  L                         

               
1S    

         B                         S    

     

                                              
1R     

                             C      
                                   kl   G              R           

                                                          

                                                       

                    R                           A   

                                          
                                           W 



64 

 

 


180,90 AGLGLB  

  .1; lkkllCGCAGAGLA 


  

   kkGABG  1:1:  

 By Trigonometrical theorem in ,LBA  

            .cot.190cot.1180cot].11[  kkkk   

       cot.1tan.1cot2 kk   

     tan1cot1cot2 kk   

   




cot

1cot.1 2 kk 
  

= 
   





cot

1cot1cot 22  k
 

 





cot.2

cos.1cot
cot

22 eck
  

= 












 












cot.2

cot1

tan.cot2

tan1 2

2

2

k  

= 












 



















 cot.tan.2

tan1

tan1

tan2

1

2

2

2

k  

= 
 2sin

1
.

2tan

1
k  

ie)  2cos.2cotcot eck  

Problem 11 

  A uniform ladder rests in limiting equilibrium with its lower end on a rough horizontal 

plane and with the upper end against a smooth vertical wall. If   be the inclination of the ladder 

to the vertical, prove that, ,2tan    where   is the coefficient of friction.          
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Solution: 

 

 

 

 

 

 

 

 

Since the wall is smooth, there is no frictional force. Forces acting on the ladder are i) its weight 

W,  ii) Frictional force R   iii) R at A    iv) S at B. For equilibrium, the three forces 

SRW ,,   must be concurrent at L. where 
1R is the resultant of R and R . In triangle LAB,  

 


CBAGABGGLBGLAAGL .1:1:;90,,180  

By Trigonometrical theorem in ,LAB  

     cot.190cot.1180cot11   

 cot0cot.2   

 tan

1

tan

2
   tan2tan     i.e)  

 

Problem 12 

  A particle is placed on the outside of a rough sphere whose coefficient of friction is  . 

Show that it will be on the point of motion when the radius from it to the centre makes an angle 

1tan  with the vertical. 

 

 2tan   

 
 
                                            L    
          B                                                                             S 

                                   90            

                         

 

                                        G                 
1R        

                                                                           R 

                                                                  

                                                                              

 
 

         C                                         R              A      

 
                                          W 
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Solution: 

 

 

 

 

 

 

 Let O be the centre, A the highest point of the sphere and B the position of the particle 

which is just on the point of motion. Let AOB   

 The forces acting at B are: 

1) the normal reaction R  

2) limiting friction R   

3) Its weight W, 

Since the particle at B is in limiting equilibrium, 

Resolving along the normal OB, 

 cosWR   …………………. (1) 

Resolving along the tangent at B, 

 sinWR   ……………….. (2) 

 
 


1

2
 tan    

 

2.6 Equilibrium of Strings 

 
When a uniform string or chain hangs freely between two points not in the same vertical 

line, the curve in which it hangs under the action of gravity is called a catenary.  If the weight 

per unit length of the chain or string is constant, the catenary is called the uniform or common 

catenary. 

 

2.7 Equation of the common catenary: 

 A uniform heavy inextensible string hangs freely under the action of gravity; to find the 

equation of the curve which it forms. 

                                     

                                            R                 R    

                                  A                      
                                             
                                                          B 
                                         

                                                

                                     O           
                                                    W   

 1tan  
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 Let ACB be a uniform heavy flexible cord attached to two points A and B at the same 

level, C being the lowest, of the cord.  Draw CO vertical, OX horizontal and take OX as X axis 

and OC as Y axis.  Let P be any point of the string so that the length of the are CP = s 

 Let ω be the weight per unit length of the chain. 

 Consider the equilibrium of the portion CP of the chain. 

 The forces acting on it are: 

(i) Tension T0 acting along the tangent at C and which is therefore horizontal. 

(ii) Tension T acting at P along the tangent at P making an angle Ψ with OX. 

(iii) Its weight ws acting vertically downwards through the C.G. of the arc CP. 

For equilibrium, these three forces must be concurrent. 

 Hence the line of action of the weight ws must pass through the point of the 

intersection of T and To. 

 Resolving horizontally and vertically, we have  

   Tcos Ψ = To … …  (1) 

        and Tsin Ψ = ws … … (2) 

       Dividing (2) by (1), tan Ψ = 
𝐰𝐬

𝑇0
 

 Now it will be convenient to write the value of To the tension at the lowest point,  

as To = wc … … (3) where c is a constant.  This means that we assume To, to be equal to the 

weight of an unknown length c of the cable. 
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 Then tan Ψ = 
𝒘𝒔

𝒘𝒄 
 = 

𝒔

𝒄 
 

    ∴ S = ctanΨ … … … (4) 

 Equation (4) is called the intrinsic equation of the catenary. 

 It gives the relation between the length of the area of the curve from the lowest point to 

any other point on the curve and the inclination of the tangent at the latter point. 

 To obtain the certesian equation of the catenary,  

 We use the equation (4) and the relations 

 
𝑑𝑦

𝑑𝑠
 = sin Ψ and 

𝑑𝑦

𝑑𝑥
 = tan Ψ which are true for any curve. 

Now 
𝑑𝑦

𝑑𝛹
 = 

𝑑𝑦

𝑑𝑠
. 

𝑑𝑠

𝑑𝛹
 

= sin Ψ 
𝑑

𝑑Ψ 
c tan Ψ 

= sin csec
2
Ψ = csec Ψ tan Ψ 

∴ y = ʃ csec Ψ tan Ψ dΨ + A 

= csec Ψ + S 

If y = c when Ψ = 0, then c = csec0 + A 

∴ A = 0 

Hence y = csec Ψ … … … (5) 

∴ y2
 = c

2
 sec Ψ = c

2
 (1 + tan

2
 Ψ) 

= c 
2 

+ s 
2
 … … (6)   

𝑑𝑦

𝑑𝑥
 = tan Ψ = 

𝑠

𝑐
 = 

 𝑦2−𝑐2

c
 

∴  
dy

 𝑦2−𝑐2
 = 

dx

c
 

Integrating, cos h
-1

  
𝑦

𝑐
  = 

𝑥

𝑐
 + B 

When x = 0, y = c 

i.e. cos h
-1

 1 = 0 + B or B = 0 

∴ cos h
-1

  
𝑦

𝑐
  = 

𝑥

𝑐
 

i.e. y = ccos h  
x

𝑐
  … … (7) 

(7) is the Cartesian equation to the catenary. 

We can also find the relation connecting s and 𝑥. 
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Differentiating (7). 

𝑑𝑦

𝑑𝑥
 = csinh 

𝑥

𝑐
.   

1

𝑐
  = sinh 

𝑥

𝑐
  

From (4), s = ctan Ψ = c.  
𝑑𝑦

𝑑𝑥
 = csinh 

𝑥

𝑐
 … (8) 

Definitions: 

The Cartesian equation to the catenary is y = ccosh 
𝑥

𝑐
 .  cosh 

𝑥

𝑐
 is an even function of x.  Hence 

the curve is symmetrical with respect to the y-axis i.e. to the vertical through the lowest point.  

This line of symmetry is called the axis of the catenary. 

 

 Since c is the only constant, in the equation, it is called the parameter of the catenary and 

it determines the size of the curve. 

 The lowest point C is called the vertex of the catenary. The horizontal line at the depth c 

below the vertex (which is taken by us the x – axis) is called the directrix of the catenary. 

  

If the two points A and B from where the string is suspended are in a horizontal line, then 

the distance AB is called the span and the distance CD (i.e. the depth of the lowest point C below 

AB) is called the sag. 

 

2.8 Tension at any point: 

 We have derived the equations 

T cos Ψ = T0 … … … … (1) 

And T sin Ψ = ws … … … … (2)  

We have also put T0 = wc … … … (3) 

 Equation (3) shows that the tension at the lowest point is a constant and is equal to the 

weight of a portion of the string whose length is equal to the parameter of the catenary.  From the 

equation (1), we find that the horizontal component of the tension at any point on the curve is 

equal to the tension at the lowest point and hence is a constant. 

 From equation (2), we deduce that the vertical component of the tension at any point is 

equal to ws i.e. equal to the weight of the portion of the string lying between the vertex and the 

point. (∴ s = are CP) 
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Squaring (1) and (2) and then adding, 

T
2
 = T

2
0 + w

2
s

2
 

=w
2
c

2
+w

2
a

2
 

=w
2
(c

2
+s

2
) 

=w
2
y

2
 using equation (6) of page 377 

∴T = wy … … … (4) 

Thus the tension at any point is proportional to the height of the point above the origin.  It is 

equal to the weight of a portion of the string whose length is equal to the height of the point 

above the directrix. 

 

Important Corollary: 

 

Suppose a long chains is thrown over two smooth pegs A and B and is in equilibrium 

with the portions AN and BN‟ hanging vertically.  The potion BCA of the chain will from a 

catenary. 

 

 

 
 

  The tension of the chain is unaltered by passing overt the smooth peg A.  The 

tension at A can be calculated by two methods. 

 On one side (i.e. from the catenary portion), Tension at A = w.y where y is the height of 

A above the directrix. 

 On the other side, tension at A = weight of the free part AN hanging down  

                                                             = w. AN 

∴ y=AN 

In other words, N is on the directrix of the catenary. 

Similarly N‟ is on the directrix. 

Hence if a long chain is thrown over two smooth pegs and is in equilibrium, the free ends 

must reach the directrix of the catenary formed by it. 
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Important Formulae: 

 The Cartesian coordinates of a point P on the catenary are (x, y) and its intrinsic 

coordinates are (s, Ψ).  Hence there are four variable quantities we can have a relation connecting 

any two of them.  There will be 4C2 = 6 such relations, most of them having been already 

derived.  We shall derive the remaining.  It is worthwhile to collect these results for ready 

reference. 

(i) The relation connecting x and y is 

y = ccosh 
𝑥

𝑐
    … … (1) 

and this is the Cartesian equation to the catenary. 

(ii) The relation connecting s and Ψ is 

s = ctan Ψ … … (2) 

(iii) The relation connecting y and Ψ is 

y=csecΨ … … … (3) 

(iv) The relation connecting y and s is 

y
2
 = c

2
+s

2
 …. … … (4) 

 

(v) The relation connecting s and x is 

s = csinh 
𝑥

𝑐
 

(vi) We have y = ccosh 
𝑥

𝑐
 and y = csec Ψ,  

∴ sec Ψ = cosh 
𝑥

𝑐
 

 ∴  
𝑥

𝑐
  = cosh -1(secΨ) 

        = log(𝑠𝑒𝑐𝛹 +  𝑠𝑒𝑐2Ψ − 1 

        = log(𝑠𝑒𝑐𝛹 + tan 𝛹) 

 ∴ 𝑥 = 𝑐𝑙𝑜𝑔 (𝑠𝑒𝑐𝛹 + 𝑡𝑎𝑛𝛹) … … (6) 

This relation can also be obtained thus: 

𝑑𝑥

𝑑𝛹
 = 

𝑑𝑥

𝑑𝑠
. 

𝑑𝑠

𝑑𝛹
 

     = cos Ψ. 
𝑑

𝑑𝛹
 (ctan Ψ ) since 

𝑑𝑥

𝑑𝑠
 = cos Ψ for any curve 

     = cos Ψ. Csec2Ψ – csecΨ 
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Integrating, x = ʃ csec Ψ dΨ + D 

                       = clog (secΨ + ranΨ) + D 

At the lowest point, Ψ = 0 and x = 0 

∴ 0 = clog (sec0+tan0 + D 

i.e. 0 = D 

∴ x= clog (secΨ + tan Ψ)  

(vii) The tension at any point = wy … … (7), where y is the distance of the point from the 

directrix. 

(viii) The tension at the lowest point = wc … … (8) 

  

       sinh
-1

 x = log(x+ 𝑥2 + 1) 

cosh
-1

 x = log(x+ 𝑥2 − 1) 

 

2.9  Geometrical Properties of the Common catenary: 

 

 

 Let P be any point on the catenary y = ccosh 
𝑥

𝑐
 . 

 PT is the tangent meeting the directrix (i.e. the x axis) at T. 

angle PTX = Ψ 

PM (=y) is the ordinate of P and PG is the normal at P. 

Draw MN ⊥ to PT. 

From ΔPMN.      MN  = PMcosΨ 

=ycosΨ 
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=csecΨ cos Ψ 

=c=constant 

i.e. The length of the perpendicular from the foot of the ordinate on the tangent at any point of 

the catenary is constant. 

Again tan Ψ = 
𝑃𝑁

𝑀𝑁
=  

𝑃𝑁

𝐶
 

∴ PN = Ctan Ψ = S arc CP 

PM
2
 = NM

2
 + PN

2
 

∴ y2
 = c

2
+s

2
, a relation already obtained. 

If is the radius of curvature of the catenary at P, 

P= 
𝑑𝑠

𝑑𝛹
=  

𝑑

𝑑𝛹
 (ctan Ψ) = csec

2
Ψ 

Let the normal at P cut the x axis at G. 

Then PG. cos Ψ = PM = y 

 

∴ PG = 
𝑦

𝑐𝑜𝑠𝛹
=  csecΨ. secΨ = csec

2
Ψ 

∴  𝜌 = PG 

 Hence the radius of curvature at any point on the catenary is numerically equal to the 

length of the normal intercepted between the curve and the directrix, but they are drawn in 

opposite directions. 

Problem 13 

A uniform chain of length l is to be suspended from two points in the same horizontal 

line so that either terminal tension is n times that at the lowest point.  Show that the span must be 

l

 𝑛2−1
 log(n+  𝑛2 − 1 

Solution: 

Tension at A = wyA 

And tension at C  =  w.yC  since T = wy at any point 

Now w.yA  =  n.w.yC 

∴ yA  =  nyC  = nc 

But yA  =  ccosh 
𝑥𝐴

𝑐
   =   nc 

∴ cosh 
𝑥𝐴

𝑐
   =   n 
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or    
𝑥𝐴

𝑐
   =   cosh

-1
 n  =  log (n+  𝑛2 − 1) 

∴ xA  =  clog (n+  𝑛2 − 1 ) … … … (1)  

We have to find c. 

y
2

A    = c
2
+s

2
A, sA denoting the length of CA.  

=   c
2
 + 

l2

4
 (as total length = l) 

i.e. n
2
c

2
   =   c

2
+ 

l2

4
 

or c
2
   =   

l2

4(n2−1)
 

∴ c   =   
l2

2 𝑛2−1
 … … (2) 

Substituting (2) in (1), 

               xA   =   
l2

2 𝑛2−1
 log (n+  𝑛2 − 1) 

∴ span AB  =  2xA   =   
l

 𝑛2−1)
 log (n+  𝑛2 − 1) 

Problem 14 

A box kite is flying at a height h with a length l of wire paid out, and with the vertex of 

the catenary on the ground.  Show that at the kite, the inclination of the wire to the ground is 

 2 tan
-1

 
h

𝑙
 and that its tensions there and at the ground are 

w(l2+h2)

2h
 and  

w(l2−h2)

2h
 where w is the 

weight of the wire per unit of length. 

Solution: 

                                Y                          A 

 

                                                              h 

                             C               l              L 

                             

                                  c 

 

                               O                           M                       X 
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C is the vertex of the catenary CA, A being the kite.  The origin O is taken at a depth c 

below C. 

Then yA  =  c + h and sA  =  arc CA = l 

Since y
2  

=  c
2
 + s

2
, we have (c+h)

2
  =  c

2
 + l

2 

i.e. h
2
+2ch  =  l

2 

or c =  
l2−h2

2h
 … … … (1) 

We know that s = c tan Ψ … … …. …. …. (2) 

Applying (2) at the point A, we have 

l = c. tan ΨA 

∴ Tan ΨA  =  
l

𝑐
  =  

2hl

l2−h2   substituting for c from (1) 

                         =  
2(

h

𝑙
)

1−(
h

𝑙
)2

  … … (3) 

But tanΨ  =  
2𝑡𝑎𝑛

Ψ

2

1−tan 2Ψ

2

  … … (4) 

 Comparing (3) and (4), we find that 

 𝑡𝑎𝑛
Ψ

2
 at A =  

h

𝑙
 

                  ∴  
Ψ

2
  = tan

-1h

𝑙
 

or  Ψ at A =  2tan
-1

 
h

𝑙
 

The tension at A =  w.yA 

                                     =  w.(c + h) 

                      =  w  
𝑙2−ℎ2

2ℎ
+  ℎ   =  

w(𝑙2+ℎ2)

2ℎ
  

 

Problem 15 

A uniform chain of length l is to have its extremities fixed at two points in the same 

horizontal line.  Show that the span must be 
l

 8
 log (3+  8 ) in order that the tension at each 

support shall be three times that at the lowest point. 
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 Solution: 

  Put n = 3 in problem number 13. 

 

Problem 16 

A uniform chain of length l is suspended from two points A, B in the same horizontal 

line.  If the tension A is twice that at the lowest point, show that the span AB is 
l

 3
 log (2+  3 )  

 Solution: 

               Put n = 2 in problem number 13. 

 

Problem 17 

A uniform chain of length 2l hangs between  two points A and B on the same level.  The 

tension both at  A and B is five times that at the lowest point.  Show that the horizontal distance 

between A and B is 
𝑙

 6
 log (5+2  3 )  

 Solution: 

  Put n = 5 and length = 2l in problem number 13. 

Problem 18 

    If T is the tension at any point P and T0 is the tension at the lowest point C then prove 

that T
2
 – T0

2
 = W

2 
 where W is the weight of the arc CP of the string. 

Solution: 

  Given T is the tension at P.  Let w be the weight per unit length and y is the ordinate of P.   

Then T =  wy.  

 Also T0  =  wc 

 ∴ T
2 

– T0
2 

 =  w
2
y

2 
 –  w

2
c

2 

                                           
= w

2 
(y

2
 –  c

2
)   

     =  w
2
s

2
  

     =  W
2
 

 

 

 



 

 

 

SCHOOL OF SCIENCE AND HUMANITIES 

DEPARTMENT OF MATHEMATICS 

 

 

III YEAR B.SC MATHEMATICS 

 

SMT5103 MECHANICS 1 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Unit 3- Kinematics – SMT1503  

 



2 Kinematics

An object (eg. ball, planet,. . . ) is idealized as a point particle (zero size)
with a quantity of matter called mass.
Good approx if size of object � trajectory, and rotation not important.
A point particle has position vector r(t) at time t, given a chosen origin O.
Write down the equation of motion for r(t) (ODE) and solve it to find the
trajectory r(t) ie. a curve in space.

2.1 Definitions

Definitions of some quantities.

velocity

v =
dr

dt
= ṙ

is tangent to the trajectory.
speed, v = |v| ≥ 0, magnitude of the velocity.
momentum, p = mv.
acceleration

a =
dv

dt
= r̈

kinetic energy, T = 1
2mv

2.

2.2 Cartesian coordinates

r = xi + yj + zk
where i, j,k are fixed orthogonal unit vectors ie i · i = 1, i · j = 0, etc, eg.
i = (1, 0, 0).
In mechanics do not write just the components, r = (x, y, z), but include the
basis vectors ie. r = xi + yj + zk.
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This is because sometimes the basis vectors are not constant, and then we
would get the wrong answer for the velocity if we just differentiated the
components.
If r = αe, then ṙ = α̇e + αė 6= α̇e if ė 6= 0.

eg. r = ti + j + t2k with m = 2.
v = ṙ = i + 2tk, v = |v| =

√
1 + 4t2, p = mv = 2v = 2i + 4tk,

a = v̇ = 2k, T = 1
2mv

2 = (1 + 4t2).

Note: Acceleration can be non-zero even if the speed is constant, since the
direction of the velocity might not be constant.

Given the acceleration at all times and initial position and velocity, the po-
sition can be found by integration.
eg. a = 2k, r(0) = j + k, v(0) = i.
v = 2tk + c, but v(0) = c = i therefore v = 2tk + i.
r = t2k + ti + d, but r(0) = d = j + k, therefore r = (t2 + 1)k + ti + j.

2.3 Polar coordinates and vectors

Consider motion in a plane, using polar coordinates r, θ, where x = r cos θ
and y = r sin θ.
r = xi + yj = r(cos θi + sin θj).
The radial unit vector er is a vector in the direction of r,
er = r

r = cos θi + sin θj.
The tangential unit vector eθ is a vector perpendicular to er, and is
eθ = − sin θi + cos θj, (increasing θ is anti-clockwise).

If the particle is moving then r and θ can depend on time.
ėr = dθ

dt
d
dθer = θ̇(− sin θi + cos θj) = θ̇eθ.

ėθ = dθ
dt

d
dθeθ = θ̇(− cos θi− sin θj) = −θ̇er.

Note: er · er = eθ · eθ = 1 and er · eθ = 0 for all time.

r = rer therefore ṙ = ṙer + rėr = ṙer + rθ̇eθ.
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r̈ = r̈er + ṙėr + ṙθ̇eθ + rθ̈eθ + rθ̇ėθ = (r̈ − rθ̇2)er + (2ṙθ̇ + rθ̈)eθ.

v = ṙer + rθ̇eθ, a = (r̈ − rθ̇2)er + (2ṙθ̇ + rθ̈)eθ.

Eg. Motion in a circle with constant speed
r = ρ with ρ constant.
v = ṙ = ṙer + rθ̇eθ = ρθ̇eθ.
Note that for circular motion v · r = 0 since eθ · er = 0.
v = |v| = |ρθ̇||eθ| = |ρθ̇|.
Hence for constant speed θ̇ = ω with ω constant (choose ω > 0.)
v = ωρ hence ω = v/ρ.

Since θ̇ is constant then θ̈ = 0, so
a = −ρω2er. Hence a = |a| = ρω2 = v2/ρ.
The acceleration is directed radially inwards.
This is called centripetal (centre-seeking) acceleration.
Warning: do not confuse with centrifugal (centre-fleeing) – see later.

2.4 Units and dimensions

Generally use SI units (often drop units altogether).
Mass kg, length m, time s. Remember to convert eg. mins to seconds.

Dimensions are similar to units but more significant.

Quantity Dimension

Mass M

Length L

Time T

Write [mass] = M etc
[velocity] = [ length

time ] = LT−1, [acceleration] = [velocity
time ] = LT−2.

Correct equations must have the same dimensions on each side.
Can check consistency using dimensional analysis.
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Eg. Period of a pendulum
Pendulum of length l and mass m swings under gravity (acceleration due to
gravity g). Its period is 2π

√
l/g. Check this has the correct dimensions

[2π

√√√√ l
g

] =

√√√√√ [l]

[g]
=

√√√√ L

LT−2
= T

.
An expression like mg/l is obviously wrong, since

[mg/l] = MLT−2L−1 = MT−2 6= T.

Can calculate the dimensions of constants in expressions.
Eg. suppose a force is given by κA, where A is the surface area of an object.

[force] = [mass× acceleration] = MLT−2 = [κA] = [κ]L2

hence [κ] = ML−1T−2, so could be given in units of kg/m/s2.

2.5 Relative motion

Figure 1: Relative position

r is the position of an object with respect to a fixed origin O. Let an observer
(possibly moving) have position R. Then the relative position of the object
to the observer is

r̃ = r−R.

Relative velocity ˙̃r = ṙ− Ṙ, relative acceleration ¨̃r = r̈− R̈,
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Eg. Bart is going north (direction j) on his skateboard at 10mph and feels
a headwind of 25mph. What is the windspeed (velocity) relative to the ground?

R is Bart’s position, and r is the position of an air particle.
(Units are miles and hours).
Ṙ = 10j, ˙̃r = −25j = ṙ− Ṙ
ṙ = −25j + 10j = −15j
Windspeed relative to the ground is 15mph southward.

If Bart now goes east at 15mph what wind does he feel?
Ṙ = 15i, ṙ = −15j, so ˙̃r = ṙ− Ṙ = −15j− 15i
| ˙̃r| = 15

√
2, so feels a wind of 15

√
2mph in the direction −(i + j)/

√
2 ie.

southwest.

Centrifugal acceleration
This is a result of viewing centripetal acceleration in rotating coordinates.
Let R be the position of an observer moving in circular motion with radius
ρ and constant speed v eg. child on a roundabout.
R̈ = −v2

ρ eR hence ¨̃r = r̈− R̈ = r̈ + v2

ρ eR,
so even for an object with no forces acting in this plane r̈ = 0,
eg. ball released by the child, then ¨̃r = v2

ρ eR, so observer sees a relative
acceleration directed radially outwards.
This is centrifugal (centre-fleeing) acceleration.
eg. Child sees the ball flying outwards.

2.6 Inertial frames

The above example appears to contradict N1 – no forces, no acceleration.
In fact N1 defines the type of observer (or better reference frame) for which
N2 holds.

An inertial frame is one which is not accelerating ie. R̈ = 0,
then ¨̃r = r̈− R̈ = r̈ so see the ‘true’ acceleration.
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Velocity of a body is defined as the time rate of displacement, where as acceleration is defined as 
the time rate of change of velocity. Acceleration is a vector quantity. The motion may be 
uniformly accelerated motion or it may be non-uniformly accelerated, depending on how the 
velocity changes with time. 

Uniform Acceleration  

The acceleration of a body is said to be uniform if its velocity changes by equal amounts in equal 
intervals. 

Non-Uniform Acceleration 

The acceleration of a body is said to be non-uniform if its velocity changes by unequal amounts 
in equal intervals of time. 

Average velocity 

 

Average acceleration 

 

Illustration: 

A particle moves with a velocity v(t) = (1/2)kt2 along a straight line. Find the average speed of 
the particle in time T. 

Solution: 

 

Illustration: 

A particle having initial velocity is moving with a constant acceleration 'a' for a time t. 

(a)Find the displacement of the particle in the last 1 second. 

(b)Evaluate it for u = 2 m/s, a = 1 m/s2 and t = 5 sec. 

Solution: 

(a)  The displacement of a particle at time t is given s = ut + 1/2at2 

At time (t - 1), the displacement of a particle is given by 

S' = u (t-1) + 1/2a(t-1)2 

 So, Displacement in the last 1 second is, 

St = S - S' 



 

 

= ut + 1/2 at2 – [u(t-1)+1/2 a(t-1)2 ] 

= ut + 1/2at2 - ut + u - 1/2a(t - 1)2 

= 1/2at2 + u - 1/2 a (t+1-2t) =  1/2at2 + u - 1/2at2 - a/2 + at 

S = u + a/2(2t - 1) 

(b) Putting the values of u = 2 m/s, a = 1 m/s2 and t = 5 sec, we get 

S = 2 + 1/2(2 x 5 - 1) = 2 + 1/2 x 9 

= 2 + 4.5 = 6.5 m    

Illustration: 

Position of a particle moving along x-axis is given by x = 3t - 4t2 + t3, where x is in meters and t in 
seconds. 

(a)Find the position of the particle at t = 2 s. 

(b)Find the displacement of the particle in the time interval from t = 0 to t = 4 s. 

(c)Find the average velocity of the particle in the time interval from t = 2s to t=4s. 

(d)Find the velocity of the particle at t = 2 s. 

Solution: 

(a) x(t) = 3t - 4t2 + t3 

=> x(2) = 3 x 2 - 4 x (2)2 + (2)3 = 6 - 4 x 4 + 8 = -2m. 

 (b) x(o) = 0 

X(4) = 3 x 4 - 4 x (4)2 + (4)3 = 12 m. 

Displacement = x(4) - x(0) = 12 m. 

(c) < v > = X(4)X(2)/(4-2) = (12-(-2))/2 m/s = 7 m/s 

(d) dx/dt = 3 - 8t + 3t2 

v(2) (dx/dt)2 = 3 - 8 x 2 + 3 x (2)2 = -1m/s 

Illustration: 

Two trains take 3 sec to pass one another when going in the opposite direction but only 2.5 sec if 
the speed of the one is increased by 50%. The time one would take to pass the other when going 
in the same direction at their original speed is 

(a) 10 sec                 (b) 12 sec 

(c) 15 sec                 (d) 18 sec 

Solution: 

Using the equation, 



 

 

t = d/vr 

We have, 

3 = d/v1+v2 

2.5 = d/1.5v1+v2 

Solving we get, 

v1 = 2d/15 and v2 = d/5 

When they are going in same direction, 

vr = v2 – v1 = d/15 

Thus, t = d/vr = d/(d/15) = 15 s 

From the above observation we conclude that, option (c) is correct.  

Analysis of Uniformly Accelerated Motion 

 

Case-I: 
 For uniformly accelerated motion with initial velocity u and initial position x0. 

Velocity Time Graph 

               

In every case tanθ = a0 

Position Time Graph 

        

Initial position x of the body in every case is x0 (> 0) 



 

 

Case II: 

For uniformly retarded motion with initial velocity  u and initial position x0.     
                                     

Velocity Time Graph 

                   

In every case tanθ  = -a0 

Position Time Graph 

              

Initial position x of the body in every case is x0 (> 0) 

Illustration: 

 



 

 

A particle is moving rectilinearly with a time varying acceleration a = 4 - 2t, where a is in 
m/s2 and t is in sec. If the particle is starting its motion with a velocity of -3 m/s from x = 0. Draw 
a-t, v-t and x-t curve for the particle. 

Solution: 

a = 4-2t 

 

v = 4t-t2-3 

 

x = 2t2 – t3/3 – 3t  

Acceleration 

Acceleration is the rate of change of velocity with time. The concept of acceleration is 
understood in non-uniform motion. It is a vector quantity. 

Average acceleration is the change in velocity per unit time over an interval of time. 

 

Instantaneous acceleration is defined as 

 

 

Acceleration Vector in Non Uniform Motion 

 



 

 

Suppose that at the instant t1 a particle as in figure above, has velocity  and at t2, velocity is 
. The average acceleration   during the motion is defined as 

 

Variable Acceleration 

 

The acceleration at any instant is obtained from the average acceleration by shrinking the time 
interval closer zero. As ∆t tends to zero average acceleration approaching a limiting value, which 
is the acceleration at that instant called instantaneous acceleration which is vector quantity. 

 

i.e. the instantaneous acceleration is the derivative of velocity. 

Hence instantaneous acceleration of a particle at any instant is the rate at which its velocity is 
changing at that instant. Instantaneous acceleration at any point is the slope of the curve v (t) at 
that point as shown in figure above. 

Equations of Motion 

The relationship among different parameter like displacement velocity, acceleration can be 
derived using the concept of average acceleration and concept of average acceleration and 
instantaneous acceleration. 

When acceleration is constant, a distinction between average acceleration and instantaneous 
acceleration loses its meaning, so we can write 

 

where   is the velocity at t = 0 and  is the velocity at some time t 

Now, 

    

Hence, 

          …... (2) 

This is the first useful equation of motion. 

Similarly for displacement 

                …... (3) 

in which  is the position of the particle at t0 and  is the average velocity between t0 and 
later time t. If at t 0 and t the velocity of particle is 



 

 

 

             …... (4) 

From equation (3) and (4), we get, 

        …... (5) 

This is the second important equation of motion. 

Now from equation (2), square both side of this equation we get 

 

      [Using equation (4)] 

Using equation (3), we get, 

            …... (6) 

This is another important equation of motion. 

Caution:The equation of motion derived above are possible only in uniformly accelerated 
motion i.e. the motion in which the acceleration is constant. 

Refer this Simulation for Motion in a Straight Line 

Illustration: 

The nucleus of helium atom (alpha-particle) travels inside a straight hollow tube of length 2.0 
meters long which forms part of a particle accelerator. (a) If one assumes uniform acceleration, 
how long is the particle in the tube if it enters at a speed of 1000 meter/sec and leaves at 9000 
meter/sec? (b) What is its acceleration during this interval? 

Solution: 

(a) We choose x-axis parallel to the tube, its positive direction being that in which the particle is 
moving and its origin at the tube entrance. We are given x and vx and we seek t. The acceleration 
ax is not involved. Hence we use equation 3, x = x0 + <v> t. 

We get 

x = v0 + ½ (vx0) + vx) t, with x0 = 0 or 

t = 2x/(vx0+vx), 

t = ((2)(2.0 meters))/((1000+9000)meters/sec) = 4.0/10-4 sec    Ans. 

(b) The acceleration follows from equation 2, vx = vx0 + axt 

=> ax = (v0-vx0)/t = ((9000-1000)meters/sec)/(4.0×10(-4) sec) 



 

 

= 2.0 × 107 meter/sec2 Ans. 

Pause: The above equations of motion are, however, universal and can be derived by using 
differential calculus as given below: 

 

 

 

Or,  

Let at t = 0,  

then,  

Or,  

Further we know that,  

 

or  

Integrating, 

 

Or, 

 

At, t = 0, x = x0 then c' = x0 

 Hence, 

 

Thus, we have derived the same equation of motion using calculus. 

To understand the use of calculus in solving the kinematics problems we can look into the 
following illustrations. 

Illustration: 

The displacement x of a particle moving in one dimension, under the action of a constant force is 
related to the time t by the equation t = √x + 3 where x is in meter and t is in seconds. Find the 
displacement of the particle when its velocity is zero. 



 

 

Solution: 

Here t = √x + 3 => √x = t - 3 

Squaring both sides, we get x = t

As we know velocity, v = dx/dt 

Hence we get v = dx/dt = 2t - 6 

Put v = 0, we get, 2t - 6 = 0        

So, t = 3s 

When t = 3s, x = t2 - 6t + 9 = 9 -

Hence the displacement of the particle is zero when its velocity is zero.

Illustration: 

A particle starts from a point whose initial velocity is v
point B which is at a distance 'd' from point A. The path is straight line. If acceleration is 
proportional to velocity, find the time taken by particle from A to B.

Solution: 

Here acceleration a is proportional t

Hence a α v 

=> a = kv, where k is constant 

=> dv/dt = kv ............... (1) 

=> (dv/ds)(ds/dt) = kv => (dv/ds) v = kv

 

From equation (1), 

dv/v = kdt 

or,  

Or, ln (v2/v1) = kt 

Or, t = ln (v2/v1) /k 

=  [d ln (v2/v1)/(v2-v1)] 

Squaring both sides, we get x = t2 - 6t + 9, 

 

 

  

- 6(3) + 9 = 0 

Hence the displacement of the particle is zero when its velocity is zero.  

A particle starts from a point whose initial velocity is v1 and it reaches with final velocity v
point B which is at a distance 'd' from point A. The path is straight line. If acceleration is 
proportional to velocity, find the time taken by particle from A to B.  

Here acceleration a is proportional to velocity v. 

 

=> (dv/ds)(ds/dt) = kv => (dv/ds) v = kv 

 

and it reaches with final velocity v2, at 
point B which is at a distance 'd' from point A. The path is straight line. If acceleration is 



 

 

• The displacement remains unaffected due to shifting of origin from one 
point to the other. 

• The displacement can have positive, negative or zero value. 

• The displacement is never greater than the actual distance travelled.  

• The displacement has unit of length. 

• Velocity can be considered to be a combination of speed and direction. 

• A change in either speed or direction of motion results in a change in 
velocity. 

• It is not possible for a particle to possess zero speed with a non-zero 
velocity. 

• A particle which completes one revolution, along a circular path, with 
uniform speed is said to possesss zero velocity and non-zero speed. 

• In case a body moves with uniform velocity, along a straight line, its 
average speed is equal to its instantaneous speed 

 

Revision Notes on Kinematics 

• Inertial frame of reference:- Reference frame in which Newtonian mechanics holds are called 

inertial reference frames or inertial frames. Reference frame in which Newtonian mechanics does 

not hold are called non-inertial reference frames or non-inertial frames. 

• The average speed vav and average velocity  of a body during a time interval ?t is defined as, 

vav= average speed 

= ?s/?t 

     

• Instantaneous speed and velocity are defined at a particular instant and are given by 

 

Note: 

(a) A change in either speed or direction of motion results in a change in velocity 

(b) A particle which completes one revolution, along a circular path, with uniform speed is said to possess 

zero velocity and non-zero speed. 

(c) It is not possible for a particle to possess zero speed with a non-zero velocity. 



 

 

• Average acceleration is defined as the change in velocity  over a time interval ?t.   

 

  

  

The instantaneous acceleration of a particle is the rate at which its velocity is changing at that instant. 

 

• The three equations of motion for an object with constant acceleration are given below.  

(a) v= u+at 

(b) s= ut+1/2 at
2
 

(c) v
2
=u

2
+2as 

Here u is the initial velocity, v is the final velocity, a is the acceleration , s is the displacement travelled by 

the body and t is the time. 

Note: Take ‘+ve’ sign for a when the body accelerates and takes ‘–ve’ sign when the body decelerates. 

• The displacement by the body in n
th 

second is given by, 

sn= u + a/2 (2n-1) 

• Position-time (x vs t), velocity-time (v vs t) and acceleration-time (a vs t) graph for motion in one-

dimension:  

(i) Variation of displacement (x), velocity (v) and acceleration (a) with respect to time for different types 

of motion.   

  Displacement(x) Velocity(v) Acceleration (a) 

(a) At rest 

  

  

 

  

 

(b) Motion 

with  

constant 

velocity 

  

  

  



 

 

(c) Motion 

with constant 

acceleration 

  

(d) Motion 

with constant 

deceleration 

 

• Scalar Quantities:- Scalar quantities are those quantities which require only magnitude for their 

complete specification.(e.g

• Vector Quantities:- Vector quantities are those quantities which require magnitude as well as 

direction for their complete specification. (e.g

• Null Vector (Zero Vectors):

When a null vector is added or subtracted from a given vector the resultant vector is same as the given 

vector. 

Dot product of a null vector with any arbitrary is always zero. Cross product of a null vector with any other 

vector is also a null vector. 

• Collinear vector:- Vectors having a common line of action are called collinear vector. There are two 

types. 

Parallel vector (θ=0°):- Two vectors acting along same direction are called parallel vectors.

Anti parallel vector (θ=180°):-Two vectors which are

vectors. 

• Co-planar vectors- Vectors situated in one plane, irrespective of their directions, are known as co

planar vectors. 

• Vector addition:- 

Vector addition is commutative-

  

  

 

 

 

 

  

 

Scalar quantities are those quantities which require only magnitude for their 

complete specification.(e.g-mass, length, volume, density) 

Vector quantities are those quantities which require magnitude as well as 

direction for their complete specification. (e.g-displacement, velocity, acceleration, force)

Null Vector (Zero Vectors):- It is a vector having zero magnitude and an arbitrary direc

When a null vector is added or subtracted from a given vector the resultant vector is same as the given 

Dot product of a null vector with any arbitrary is always zero. Cross product of a null vector with any other 

Vectors having a common line of action are called collinear vector. There are two 

Two vectors acting along same direction are called parallel vectors.

Two vectors which are directed in opposite directions are called anti

Vectors situated in one plane, irrespective of their directions, are known as co

-   

 

 

Scalar quantities are those quantities which require only magnitude for their 

Vector quantities are those quantities which require magnitude as well as 

displacement, velocity, acceleration, force) 

It is a vector having zero magnitude and an arbitrary direction. 

When a null vector is added or subtracted from a given vector the resultant vector is same as the given 

Dot product of a null vector with any arbitrary is always zero. Cross product of a null vector with any other 

Vectors having a common line of action are called collinear vector. There are two 

Two vectors acting along same direction are called parallel vectors. 

directed in opposite directions are called anti-parallel 

Vectors situated in one plane, irrespective of their directions, are known as co-



 

 

Vector addition is associative-   

Vector addition is distributive-   

• Triangles Law of Vector addition:

in the same order, then their resultant in represented by the third side of the tria

opposite order. 

       Magnitude of resultant vector

       R=√(A
2
+B

2
+2ABcosθ) 

        Here θ is the angle between

        If β is the angle between 

 then, 

          

  

• If three vectors acting simultaneously on a particle can be represented by the three sides of a 

triangle taken in the same order, then the particle will remain in equilibrium.

So,   

• Parallelogram law of vector addition:

          

R=√(A
2
+B

2
+2ABcosθ), 

 

  

Cases 1:- When, θ=0°, then, 

 R= A+B (maximum), β=0° 

Cases 2:- When, θ=180°, then, 

R= A-B (minimum), β=0° 

Cases 3:- When, θ=90°, then, 

 

 

Triangles Law of Vector addition:- If two vectors are represented by two sides of a triangle, taken 

in the same order, then their resultant in represented by the third side of the tria

        

Magnitude of resultant vector :- 

is the angle between  and . 

 and , 

 

If three vectors acting simultaneously on a particle can be represented by the three sides of a 

triangle taken in the same order, then the particle will remain in equilibrium.

Parallelogram law of vector addition:- 

If two vectors are represented by two sides of a triangle, taken 

in the same order, then their resultant in represented by the third side of the triangle taken in 

If three vectors acting simultaneously on a particle can be represented by the three sides of a 

triangle taken in the same order, then the particle will remain in equilibrium. 



 

 

R=√(A
2
+B

2
), β = tan

-1
 (B/A) 

• The process of subtracting one vector from another is equivalent to adding, vectorially, the 

negative of the vector to be subtracted.

So,    

  

• Resolution of vector in a plane:

 

• Product of two vectors:

(a) Dot product or scalar product:

 ,  

  

Here A is the magnitude of , B

(i) Perpendicular vector:- 

 

(ii) Collinear vector:- 

When, Parallel vector (θ=0°),

When, Anti parallel vector (θ=180°),

(b) Cross product or Vector product:

    

    Or, 

   

The process of subtracting one vector from another is equivalent to adding, vectorially, the 

negative of the vector to be subtracted.  

Resolution of vector in a plane:- 

- 

(a) Dot product or scalar product:- 

B is the magnitude of  and θ  is the angle between

 

hen, Anti parallel vector (θ=180°),  

(b) Cross product or Vector product:- 

The process of subtracting one vector from another is equivalent to adding, vectorially, the 

is the angle between  and . 



 

 

   Here A is the magnitude of 

unit vector in a direction perpendicular to the plane containing

         (i) Perpendicular vector (θ=90°):

 

(ii) Collinear vector:- 

When, Parallel vector (θ=0°),

When, θ=180°, (null vector)

• Unit Vector:- Unit vector o

of the given vector. 

          In three dimension, 

           

• Area:- 

Area of triangle:-  

  Area of parallelogram:- 

  Volume of parallelepiped:-  

•   Equation of Motion in an Inclined Plane:

plane (t = 0, u = 0 and a = g sinq 

, B is the magnitude of ,θ is the angle between

unit vector in a direction perpendicular to the plane containing  and . 

(i) Perpendicular vector (θ=90°):- 

(null vector) 

(null vector) 

Unit vector of any vector is a vector having a unit magnitude, drawn in the direction 

 

 

 

Equation of Motion in an Inclined Plane: 

(i) Perpendicular vector :-  

  ), the equation of motion will be, 

is the angle between  and  and  is the 

f any vector is a vector having a unit magnitude, drawn in the direction 

 At the top of the inclined 



 

 

(a) v= (g sinθ)t                                

(b) s = ½ (g sinθ) t
2
 

(c) v
2 

= 2(g sinθ)s          

(ii) If time taken by the body to reach the bottom is

t = √(2s/g sinθ) 

But sinθ =h/s   or s= h/sinθ 

So, t =(1/sinθ) √(2h/g) 

(iii) The velocity of the body at the bottom

v=g(sinθ)t 

=√2gh 

• The relative velocity of object

VAB=VA-VB 

Here, VB is called reference object velocity.

• Variation of mass:- In accordance to Einstein’s mass

is defined as, 

m= m0/√(1-v
2
/c

2
) 

Here, m0 is the rest mass of the body,

• Projectile motion in a plane:

projection) with x-axis, then,

Time of Flight, T = (2u sinα)/g 

Horizontal Range, R = u
2
sin2α/g 

Maximum Height, H = u
2
sin

2
α/2g

Equation of trajectory, y = xtanα

• Motion of a ball:- 

(a) When dropped:-  Time period, t=

(b) When thrown up:- Time period, t=u/g and height, h = u

                            

(ii) If time taken by the body to reach the bottom is t, then   s = ½ (g sinθ) t
2
 

(iii) The velocity of the body at the bottom 

The relative velocity of object A with respect to object B is given by 

is called reference object velocity. 

In accordance to Einstein’s mass-variation formula, the relativistic mass of body 

is the rest mass of the body, v is the speed of the body and c is the speed of light.

Projectile motion in a plane:- If a particle having initial speed u is projected at an angle

axis, then, 

 

 

g 

α-(gx
2
/2u

2
cos

2
α) 

Time period, t=√(2h/g) and speed, v=√(2gh 

Time period, t=u/g and height, h = u
2
/2g 

variation formula, the relativistic mass of body 

is the speed of light. 

is projected at an angle θ (angle of 



 

 

• Condition of equilibrium:

(a)   

(b) |F1+F2|≥|F3|≥| F1-F2| 

 

 

 

 

 

 

Condition of equilibrium:- 
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Unit 4- Newton’s Law of Motion – SMT1503  
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Newton's laws of motion are of fundamental importance in classical physics. Newton gave three laws 
connected with motion and are, popularly, known as Newton’s laws of mot

Newton’s First Law of motion 

To study Newton’s first law of motion,

act on a body and they neutralize each

change in the state of rest or of motion.

motion undergoes a change. This is explained

It states that,” Every body continues

compelled by some external force to

motion i.e. continues to be at rest or

a net external force acting (impressed)
Law of Inertia  

Inertia is the property of all bodies by virtue of which they are unable to change their 
state of rest or of uniform motion in a straight line with
In other words inertia can also be termed as a resistance to change the state of motion of 
a body. 

Inertia can be classified into following three categories.

(a) Inertia of Rest:- 

It is the property of a body by virtue of
the help of an external force.  

(b) Inertia of Motion:-  

It is the property of a body by virtue of which it is not able to change its speed without the 
help of an external force.  

(c) Inertia of Direction:-  

It is the property of a body by virtue of which it is unable to change its direction of motion 
without the help of an external force.

UNIT IV 

NEWTON’S LAW OF MOTION 

https://cnx.org/contents/UYPplaH7@29.25:OR0Da3iU@12/Vertical-motion

Newton's laws of motion are of fundamental importance in classical physics. Newton gave three laws 
connected with motion and are, popularly, known as Newton’s laws of motion. 

motion, the concept of equilibrium should be clear to us. Whenever

each other’s effect, the body is said to be in equilibrium. In

motion. If however, the system of forces have a resultant, the

explained by Newton’s first law of motion.  

continues in its state of rest or of uniform motion in a straight

to change that state. Therefore, every object persists

or moves in a straight line with uniform (constant) velocity,

(impressed) on it. 

 

Inertia is the property of all bodies by virtue of which they are unable to change their 
state of rest or of uniform motion in a straight line without the help of an external force. 
In other words inertia can also be termed as a resistance to change the state of motion of 

Inertia can be classified into following three categories. 

It is the property of a body by virtue of which it is unable to change its state of rest without 
 

It is the property of a body by virtue of which it is not able to change its speed without the 

It is the property of a body by virtue of which it is unable to change its direction of motion 
without the help of an external force.  

motion-under-gravity 

Newton's laws of motion are of fundamental importance in classical physics. Newton gave three laws 

Whenever a number of forces 

In such a case there is no 

the state of rest or that of 

straight line unless it is 

persists in its natural state of 

velocity, in the absence of 

Inertia is the property of all bodies by virtue of which they are unable to change their 
the help of an external force. 

In other words inertia can also be termed as a resistance to change the state of motion of 

which it is unable to change its state of rest without 

It is the property of a body by virtue of which it is not able to change its speed without the 

It is the property of a body by virtue of which it is unable to change its direction of motion 



 

 

Qualitative definition of force from first law:- 

Newton’s first law states that there cannot be any change in the state of rest or that of motion 
of a body unless some external force acts upon it. In other words force is an agent which is 
capable of producing any change in state of rest or that of motion (including direction). This 
provides a qualitative definition of force.   

Some Conceptual Questions 

Question 1:- 

 

A car moving at constant speed is suddenly braked. The occupants, all wearing seat belts, are 
thrown forward. The instant the car stops, however, the occupants are all jerked backward. 
Why? Is it  possible to stop an automobile without this ‘jerk’?  

Solution:- 

Newton’s first law states that, without any external force, if a body is at rest, it will remain at 
rest and if the body is moving with constant velocity, it will continue to do so. When the car 
is suddenly braked, due to the inertia, the occupants in the car will tend to move in the 
forward direction of car. When the car stops the sit belt in the car will produce backward 
momentum on the occupants. Since the all the occupants wearing seat belts, therefore the 
occupants are all jerked backward. 

Yes, it is possible to stop an automobile without this jerk. This can be done by slowing down 
the car a little longer time. 

 

Newton’s second law of motion 

Momentum 

 

Momentum of a body is defined as the amount of motion contained in a body. 

Quantity of motion or the momentum of the body depends upon, 



 

 

(a) mass of the body. 

(b) velocity of the body. 

Therefore momentum of a body of mass ‘m’ and velocity ‘v’ will be, 

 
 

Definition of Quantitative  

Momentum of a body is equal to the product of its mass and velocity. Momentum is a 
vector quantity and possesses the direction of velocity. 

Units:- 

S.I:- kg m s-1 

C.G.S:- g cm s-1 

Momentum can be put into following two categories. 

Dimension:- 

[MLT -1] 

(a) Non-Relativistic Momentum 

According to classical physics (or non-relativistic physics) which is based upon the concepts 
of Newton’s laws of motion, mass of a body is considered to be a constant quantity, 

independent of the velocity of body. In that case momentum  is given by, 

. 

Thus, momentum of a body is a linear function of its velocity. 

(b) Relativistic Momentum 

In accordance to Einstein’s special theory of relativity, mass of a body depends upon the 
relative velocity ‘v’ of the body with respect to the observer. If ‘m0’ is the mass of body 
observed by an observer at rest with respect to body, its relativistic mass ‘m’ is given by, 

 

Therefore, momentum of a body according to the concepts of theory of relativity is given by, 

 

Thus, relativistic momentum is not a linear function of v. 

Newton’s Second Law 



 

 

The rate of change of momentum of a body is directly proportional to the impressed 
force and takes place in the direction of the force.

Newton’s first law provides a qualitative definition of the force while second law prov
quantitative definition of the force.

Let  be the instantaneous velocity of the body. Momentum

 

According to second law, 

∝ (rate of change of momentum)

Or, 

 

Or, 

 

Or, 

 

Here ‘k’ is the constant of proportionality. Mass
quantity. 

 

or, 

 

The units of force are also selected that ‘k’ becomes one.

Thus, if a unit force is chosen to be the force which produces a unit acceleration in a unit 
mass, 

 

The rate of change of momentum of a body is directly proportional to the impressed 
force and takes place in the direction of the force. 

Newton’s first law provides a qualitative definition of the force while second law prov
quantitative definition of the force. 

be the instantaneous velocity of the body. Momentum  of the body is given by,

(rate of change of momentum) 

proportionality. Mass ‘m’ of a body is considered to be a constant 

The units of force are also selected that ‘k’ becomes one. 

Thus, if a unit force is chosen to be the force which produces a unit acceleration in a unit 

The rate of change of momentum of a body is directly proportional to the impressed 

Newton’s first law provides a qualitative definition of the force while second law provides a 

of the body is given by, 

‘m’ of a body is considered to be a constant 

Thus, if a unit force is chosen to be the force which produces a unit acceleration in a unit 



 

 

i.e., F = 1, m = 1 and a = 1. 

Then, k = 1 

So, Newton’s second law can be written , in mathematical form, as 

 

i.e., Force = (mass) (acceleration) 

This provides us a measure of the force. 

Here, if F = 0 then we find a = 0. This reminds us of first law of motion. That is, if net 
external force is absent, then there will be no change in state of motion, that means its 
acceleration is zero. 

Further we can extend second law of motion, (in fact its decomposition) to three mutually 
perpendicular directions as per our coordinate system. 

If components in x, y and z direction are Fx, Fy & Fz respectively, the three acceleration 
produced when Fx, Fy & Fz act simultaneously) in the body are, Now, 

 

 If we add three forces then resultant is called net external force. 

  Similarly, 

  

 is called net acceleration produced in the body. 

Unit of Force:- 

S.I:- Newton [kg.m/sec2] 

C.G.S:- Dyne [g.cm/sec2] 

Dimension:- 

[MLT -2] 

Impulse 

Impulse of a force is defined as the change in momentum produced by the force and it is 
equal to the product of force and the time for which it acts. Therefore, a large force acting 
for a short time to produce a finite change in momentum which is called impulse of this force 
and the force acted is called impulsive force or force of impulse. 

 



 

 

  

  

  

According to Newton’s second law of motion, 

 

or,  

 

So, Impulse of a force = change in momentum. 

If the force acts for a small duration of time, the force is called impulsive force. 

As force is a variable quantity, thus impulse will be, 

 

The area under F - t curve gives the magnitude of impulse. 

Impulse is a vector quantity and its direction is same as the direction of   . 

Unit of Impulse:- The unit in S.I. system is kgm/sec or newton -second. 

Dimension:- MLT1 

Problem 1:- 

The Sun yacht Diana, designed to negative in the solar system using the pressure of the 
sunlight, has a sail area of 3.1 km2 and a mass of 930 kg. Near Earth’s orbit, the sun could 
exert a radiation force of 29 N on its sail. (a) What acceleration would such a force impart to 
the craft? (b) A small acceleration can produce large effects if it acts steadily for a long 
enough time. Starting from rest then, how far would the craft have moved after 1 day under 
these conditions? (c)  What would then be its speed? (See “The Wind from the Sun,” a 
fascinating science fiction account by Arthur C.Clarke of a Sun yacht race.) 

Solution:- 

(a) 

 Given Data:- 

Mass of the yacht Diana, m = 930 kg 

Force exerted by the sun light, F = 29 N 

Force acting on the body (F) is equal to the product of mas of the body (m) and acceleration 
of the body (a). 

So, F = ma        …… (1) 



 

 

From equation (1), the acceleration (a) of the body would be, 

a = F/m    …… (2) 

Putting the value of m and a in equation (2), the acceleration such force impart to the craft 
would be, 

a = F/m    

= 29 N /930 kg 

= (3.1×10-2 N/kg) (1 kg. m/s2 /1 N) 

= 3.1×10-2 m/s2     …… (3) 

Thus acceleration such force impart to the craft would be, 3.1×10-2 m/s2. 

(b) 

Given Data:- 

Time, t = 1 day 

= (1day) (24 h/1 day) (60 min/1 h) (60 s/1 min) 

= 86400 s 

Initial velocity, vi = 0 

Acceleration, a = 3.1×10-2 m/s2     

From equation of motion, we know that, 

Distance travelled by the body (x) = vi + ½ at2 

So, x = vit+ ½ at2     …… (4) 

Putting the value of vi, a and t in equation (4), the distance travelled by the craft will be, 

x = vit+ ½ at2     

= 0+½ (3.1×10-2 m/s2) (86400 s)2     (Since, a = 3.1×10-2 m/s2 and t = 86400 s) 

 =1.1571×108     …… (5) 

Rounding off to two significant figures, the distance will be 1.2×108 m. 

Thus from the above observation we conclude that, the craft have moved1.2×108 m after 1 
day under these conditions. 

(c) 

Given data: 

Acceleration, a = 3.1×10-2 m/s2 

Time, t = 86400 s 

Acceleration of an object is equal to the velocity of the object divided by time. 



 

 

a = v/t 

So, v = at    ……(6) 

Putting the value of a and t in equation (6), velocity would be, 

     v = at    

        = (3.1×10-2 m/s2) (86400 s) 

        = 2678.4 m/s    

Rounding off to two significant figures, speed will be 2700 m/s. 

Thus from the above observation we conclude that, speed will be 2700 m/s. 

Problem 2:- 

A car travelling at 53 km/h hits a bridge abutment. A passenger in the car moves forward a 
distance of 65 cm (with respect to the road) while being brought to rest by an inflated air bag. 
What force (assumed constant) acts on the passenger’s upper torso, which has a mass of 39 
kg?  

Concept:- 

Force acting (F) on the body is equal to the mass of the body (m) times deceleration of the 
body (a). 

F = ma   …… (1) 

Solution:- 

First we have to find out the deceleration (a) of the car. 

If v0 is the initial speed of car and v is the final speed of the car, then the average speed (vav) 
of the car will be, 

vav, = ½ (v+ v0)    …… (2) 

To obtain the average speed (vav) while the car is decelerating, substitute 53 km/h for v0 and 0 
m/s for v in the equation vav = ½ (v+ v0), 

vav = ½ (v+ v0)    

       = ½ ((53 km/h)+ (0 m/s)) 

      = (½ ×53 km/h) (1,000 m/1 km) (1 h/60 min) (1 min/60 s) 

      = 7.4 m/s          …… (3) 

But average speed (vav) is equal to the rate of change of displacement (x). 

vav = x/ t 

 So, t = x/ vav     …… (4) 

To obtain the time of deceleration t, substitute 0.65 m for x and 7.4 m/s for vav in the 
equation t = x/ vav, 



 

 

t = x/ vav    

     = 0.65 m /7.4 m/s 

    = 8.8×10-2 s       …… (5) 

Deceleration (a) is equal to rate of change of velocity. 

So, a = ∆ v /t 

         = ((0) - (53 km/h))/ 8.8×10-2 s 

        = (-53 km/h)/ 8.8×10-2 s 

        = ((-53 km/h) (1,000 m/1 km) (1 h/60 min) (1 min/60 s))/ 8.8×10-2 s 

        = (-14.7 m/s)/ (8.8×10-2 s) 

         = -1.7×102 m/s2      ……(6) 

To obtain the force (F) acting on the passengers upper torso having mass 39 kg, substitute 39 
kg for mass m and -1.7×102 m/s2 for deceleration a in the equation,  F = ma, 

F = ma 

        = (39 kg) (-1.7×102 m/s2) 

        = -6630 kg. m/s2 

       = -(6630 kg. m/s2) (1 N/1 kg. m/s2) 

       = -6630 N         …… (7) 

Rounding off to two significant figures, the magnitude of the force will be 6600 N. 

 

Newton’s third law of motion 

It states that, 

“To every action there is an equal and opposite reaction”.  

 

Whenever one force acts on a body, it gives rise to another force called reaction. A single 
isolated force is an impossibility. The two forces involved in any interaction between two 
bodies are called “action”  and “reaction”. But this does not imply any difference in their 



 

 

nature, or that one force is the ‘cause‘ and the other is the ‘effect’. Either force may be 
considered as ‘action’ and the other ‘reaction’ to it. 

It may be noted that action and reaction never act on same body. 

Note: The most important fact to notice here is that these oppositely directed equal action and 
reaction can never balance or cancel each other because they always act, on two different 
point (broadly on two different objects) For balancing any two forces the first requirement is 
that they should act one and the same object. (or point, if object can be treated as a point 
mass, which is a common practice) 

Few Examples on Newton’s third Law of Motion 
(a)  Book Kept on a Table 

A book lying on a table exerts a force on the table which is equal to the weight of the book. This is the force of action. 

The table supports the book, by exerting an equal force on the book. This is the force of reaction, as shown in the 

below figure. As the system is at rest, net force on it is zero. Therefore, forces of action and reaction must be equal 

and opposite. 

 

(b) Walking on the ground:-  

 

While walking a person presses the ground in the backward direction (action) by his feet. The ground pushes the 

person in forward direction with an equal force (reaction). The component of reaction in the horizontal direction 

makes the person move forward. 

(c) Process of Swimming:- 

A swimmer pushes the water backwards (action). The water pushed the swimmer forward (reaction) with the same 

force. Hence the swimmer swims. 

(d) Firing from a gun:-  

When a gun is fired, the bullet moves forward (action). The gun recoils backwards (reaction). 



 

 

 

(e) Fight of jet planes and rockets:- 

The burnt fuel which appears in the form of hot and highly compressed gases escapes through the nozzle (action) in 

the backward direction. The escaping gases push the jet plane or rocket forward (reaction) with the same force, hence, 

the jet or rocket moves. 

(f) Rubber ball re-bounds from a wall:- 

When a rubber ball is struck against a wall or floor it exerts a force on a wall (action). The ball rebounds with an equal 

force (reaction) exerted by the wall or floor on the ball. 

(g) It is difficult to walk on sand or ice:- 

This is because on pushing, sand gets displaced and reaction from sandy ground is very little. In case of ice, force of 

reaction is again small because friction between feet and ice is very small. 

(h) Driving a nail in to a wooden block without holding the block is difficult:- 

This is because when the wooden block is not resting against a support, the block and nails both move forward on 

being hit with a hammer. However, when the block is held firmly against a support, and the nail is hit, an equal 

reaction of the support drives the nail into the block. 

(i) A tea cup breaks on falling on the ground:- 

Tea cup exerts certain force (action) on ground while the ground exerts an equal and opposite reaction on the cup. 

Ground is able to withstand the action of cup, but the cup being relatively more delicate breaks due to reaction. 

Problem 1:- 
Two blocks, with masses m1 = 4.6 kg and m2 = 3.8 kg, are connected by a light spring on a horizontal frictionless 

table. At a certain instant, when m2 has an acceleration a2 = 2.6 m/s2, (a) what is the force on m2 and (b) what is the 

acceleration of m1? 

Concept:- 
Force acting on the body (F) is equal to the product of mas of the body (m) and acceleration of the body (a). 

So, F = ma        

From equation F = ma, the acceleration (a) of the body would be, 

a = F/m    

Solution:- 
(a) The net force ∑ Fx on the second box having mass m2 will be, 

∑ Fx = m2a2x 

Here a2x is the acceleration of the second block. 

To obtain the net force ∑ Fx on the second box having mass m2, substitute 3.8 kg mass m2 and 2.6 m/s2 for a2x in the 

equation ∑ Fx = m2a2x, 

∑ Fx = m2a2x 

= (3.8 kg) (2.6 m/s2)= 9.9 kg .m/s2 

= (9.9 kg .m/s2) (1 N/ 1 kg .m/s2)= 9.9 N 

From the above observation we conclude that, the net force ∑ Fx on the second box having mass m2 would be 9.9 N. 

There is only one (relevant) force on the block, the force of block 1 on block 2. 

(b) There is only one (relevant) force on block 1, the force of block 2 on block 1. By Newton’s third law this force has 

a magnitude of 9.9 N. 



 

 

So the Newton’s second law gives, 

∑ Fx = m1a1x = -9.9 N 

But, m1a1x = (4.6 kg) (a1x)       (Since, m1 = 4.6 kg) 

 (4.6 kg) (a1x) = -9.9 N 

So, a1x = -9.9 N/4.6 kg 

= (- 2.2 N/kg) (1 kg.m/s2 / 1 N) = -2.2 m/s2 

From the above observation we conclude that, the acceleration of m1 will be -2.2 m/s2. 

_______________________________________________________________________________________________ 

Problem 2:- 
A meteor of mass 0.25 kg is falling vertically through Earth’s atmosphere with an acceleration of 9.2 m/s2. In addition 

to gravity, a vertical retarding force (due to frictional drag of the atmosphere) acts on the meteor as shown in the 

below figure. What is the magnitude of this retarding force? 

 

  

Solution:- 
Given Data: 

Mass of the meteor, m = 0.25 kg 

Acceleration of the meteor, a = 9.2 m/s2 

The net force exerted (Fnet) on the meteor will be, 

Fnet = ma 

= (0.25 kg) (9.2 m/s2) = (2.30 kg. m/s2) (1 N/ 1 kg. m/s2) = 2.30 N      …… (1) 

If g (g = 9.80 m/s2) is the free fall acceleration of meteor, then the weight of the meteor (W) will be, 

W = mg = (0.25 kg) (9.80 m/s2) 

    = (2.45 kg. m/s2) (1 N/ 1 kg. m/s2) = 2.45 N        …… (2) 

The vertical retarding force would be equal to the net force exerted on the meteor (Fnet) minus weight of the meteor 

(W). 

So, vertical retarding force = Fnet –W          …… (3) 

Putting the value of Fnet and W in equation (3), the vertical retarding force will be, 

Vertical retarding force = Fnet –W = 2.30 N -2.45 N = -0.15 N        ……. (4) 

From equation (4) we observed that, magnitude of the vertical retarding force would be, -0.15 N. 

_______________________________________________________________________________________________

                 

Problem 3:- 



 

 

Suppose in figure shown above we put one more block of 5 kg mass adjacent to 10 kg and a force of 150 N acts as 

shown in the figure below, then find the forces acting on the interface. 

  

Solution:- 
The combined acceleration of the two bodies when treated as one is  

  a = F/((10+5))=150/15=10/sec2 

 So each one moves with a = 10m/sec2 keeping their contact established. 

Here you can feel that due to 150N force the body of 5 kg feels as if it is being pushed by the 10 kg mass. There is 

force acting on 5kg called R1, to oppose it by third law this body exerts a force R2 on 10kg. The interface is as shown 

in Figure given below. 

  

  Also, third law tells us that R1 = R2 in magnitude and is opposite in direction. 

  

R1 = R2 = R 

Here since 150 N force acts on the 10kg mass and only r acts on the 5kg mass. For motion in 5kg only R is 

responsible. We can write the initial equation as: 

F = 150 = (10 + 5) a 

150 = 10a + 5a 

Here 10a is force experienced by 10kg mass. And 5a is experienced by 5kg mass. 

R = 5a   a = 10m/sec2 

So,R = 50N 

Thus,Net force experienced by 10kg block is (150-R) = 10a 150-R = 1010 = 100 N 

Therefore, R = 50 

Therefore we get R = 50N for both blocks. Hence we find "action and reaction are equal and opposite". Now net force 

on the body of 10kg mass is 100N & Net force on the body of 5kg mass is 50N and on the interface action and 

reaction are both equal and also are equal to force experienced by second body. 
 

It states that, 

“In an isolated system (no external force), the algebraic some of the momenta of bodies, 
along any straight line, remains constant and is not changed due to their mutual action 
and reaction on each other”. 

This can be verified by a following simple experiment. 

Consider a body ‘A’ of mass ‘m1’ moving with a velocity   strike against another body ‘B’ 
of mass m2,moving with velocity  in same direction as shown in the below figure. Two bodies 



 

 

remain in contact with each other for small time ‘?t’. They get separated and move with 

velocities   and  after collisi

Let  be the force exerted by ‘A’ upon ‘B’ and
isolated, i.e., no external force is there,

 

So, 

        …... (1) 

This is in accordance with Newton’s third law of motion that ‘action and reaction are equal 
and opposite’. 

Considering the momenta of the bodies before and after collision.

Body A 

Momentum of A before collision 

=  

Momentum of A after collision 

=  

Change in momentum of A =

 

Time taken for the change of 
momentum =?t  

Rate of change of momentu

(=Force on A) = 

So,  

Substituting for  and 

remain in contact with each other for small time ‘?t’. They get separated and move with 

after collision.  

be the force exerted by ‘A’ upon ‘B’ and  be its reaction. Since the system is 
isolated, i.e., no external force is there, 

 

This is in accordance with Newton’s third law of motion that ‘action and reaction are equal 

Considering the momenta of the bodies before and after collision. 

Body B 

Momentum of A before collision 

Momentum of A after collision 

Change in momentum of A =

Time taken for the change of 

Rate of change of momentum of A 

 

Momentum of A before collision =

Momentum of B after collision =

Change in momentum of B 
=  

Time taken for the change of momentum 
=?t  

Rate of change of momentum of B (=Force 

on B)=  

So,  

 in equation (1),  

 

remain in contact with each other for small time ‘?t’. They get separated and move with 

 

be its reaction. Since the system is 

This is in accordance with Newton’s third law of motion that ‘action and reaction are equal 

Momentum of A before collision =  

sion =  

Time taken for the change of momentum 

Rate of change of momentum of B (=Force 

 



 

 

Or,  

Thus, the total momentum of the system before collision is equal to the total momentum of 
the system after collision. 

This verifies the law of conservation of momentum. 

It may be noted that the conservation of momentum is closely connected with the validity of 
Newton’s third law of motion, since we have used equation (1) [which is nothing but third 
law] to prove it. 
  

Alternative Method  

According to Newton’s second law of motion, 

 

Since  (momentum of body), 

 

Incase of an isolated system, 

 

Thus, 

  

or,  

Therefore, momentum (in vector form) of an isolated system remains constant. This is in 
accordance with the law of conservation of momentum. 

IMPORTANT NOTE:-  

While applying law of conservation of momentum to a system following 
consideration must be kept in mind: 

(a) The system must be isolated. 

(b) While finding the algebraic sum of momenta it must be ensured that all of 
them are along a particular straight line. 

 
Applications of Conservation of Momentum 

Following few examples with illustrate the law of conservation of momentum. 

(a) Recoil of Gun 



 

 

 

A gun and a bullet constitute one isolated system. On firing the gun, bullet moves out with a 

very high velocity . The gun experiences a recoil. It moves in the opposite direction as 

shown in the below figure. Velocity ‘ ’ of the recoil gun can be calculated by the application 
of law of conservation of momentum. 

Before Firing After Firing  

Momentum of bullet = 0  

Momentum of gun = 0 

Total momentum of the system = 0 

Momentum of bullet =  

Momentum of gun =  

Total momentum of the system =  

Here ‘m’ and ‘M’ are the masses of bullet and gun respectively. According to the law of 
conservation of momentum, momentum before collision and after collision must be same. 

 

or,  

or, 

 

Negative sign indicates that direction of motion of gun is in opposite direction. 

(b) Rocket and Jet Plane 

Fuel and oxygen is burnt in the ignition chamber. As hot gases escape from a rear opening, 
with some momentum, the rocket moves in the forward direction with the same momentum. 



 

 

(c)  Explosion of a Bomb 

Momentum of a bomb before explosion is zero. After e
various directions. It will be observed that their momenta, when represented by the slide of a 
polygon, from a closed polygon, indicating that net momentum after explosion is also zero. 
Thus, if the bomb exploded into tw

(d) A man Jumping from a Boat

When a man jumps from the boat to the shore, the boat is pushed backward. It can, exactly, 
be explained as in the case of recoil of gun.

Some Conceptual Questions

Question 1:- 

Figure below shows a popular carnival device, in which the contestant tries to see how high a 
weighted marker can be raised by hitting a target with a sledge hammer. What physical 
quantity does the device measure? Is it the average force, the maximum 
the impulse, the energy transferred, the momentum transferred, or something else? Discuss 
your answer. 

 

Momentum of a bomb before explosion is zero. After explosion different fragments fly in 
various directions. It will be observed that their momenta, when represented by the slide of a 

polygon, indicating that net momentum after explosion is also zero. 
Thus, if the bomb exploded into two fragments, they must move in opposite directions.

 

(d) A man Jumping from a Boat 

When a man jumps from the boat to the shore, the boat is pushed backward. It can, exactly, 
be explained as in the case of recoil of gun.  

Some Conceptual Questions 

Figure below shows a popular carnival device, in which the contestant tries to see how high a 
weighted marker can be raised by hitting a target with a sledge hammer. What physical 
quantity does the device measure? Is it the average force, the maximum force, the work done, 
the impulse, the energy transferred, the momentum transferred, or something else? Discuss 

xplosion different fragments fly in 
various directions. It will be observed that their momenta, when represented by the slide of a 

polygon, indicating that net momentum after explosion is also zero. 
o fragments, they must move in opposite directions. 

When a man jumps from the boat to the shore, the boat is pushed backward. It can, exactly, 

Figure below shows a popular carnival device, in which the contestant tries to see how high a 
weighted marker can be raised by hitting a target with a sledge hammer. What physical 

force, the work done, 
the impulse, the energy transferred, the momentum transferred, or something else? Discuss 



 

 

 

Answer:- 

The device will measure impulse. The impulse of the net force acting on a particle during a 
given time interval is equal to the change in momentum of the particle during that interval. 
Since the contestant is hitting the target with a sledge hammer the change in momentum is 
large and the time of collision is small, therefore it signifies that the average impulsive force 
will relatively large. Suppose two persons bring the harmer from the same height, but they 
are hitting with different forces. The person who hits with greater force for the short time 
interval the impulse will be more and this results the height of the mark will be more. Thus 
the device will measure impulse. 

___________________________________________________________________________
_____________________________________ 

Question 2:- 

Can the impulse of a force be zero, even if the force is not zero? Explain why or why not? 

Answer:- 

Yes, the impulse of a force can be zero, even if the force is not zero. 

Impulse of a force is defined as the change in momentum produced by the force and it is 
equal to the product of force and the time for which it acts. The impulse of a force can be 
zero, if the net force acting on the particle during that time interval is constant. Since the 
force is constant (both magnitude and direction), so change in momentum produced by the 
force will be zero. Therefore impulse of the force will be zero. 

From the above observation we conclude that, impulse of a force can be zero, even if the 
force is not zero. 

___________________________________________________________________________
_______________________________________ 

Question 3:- 

Explain how conservation of momentum applies to a handball bouncing off a wall. 

Answer:- 



 

 

Law of conservation of linear momentum states that, in an isolated system (no external 
force), the algebraic sum of momenta of bodies, along any straight line, remains constant and 
is not changed due to their mutual action and reaction on each other. 

 

The momentum of particle (p) is equal to the mass of particle (m) times the velocity of 
particle (v). 

So,p = mv    …… (1) 

Let us consider m is the mass of the ball and v is the velocity of the ball when the ball is 
collides with wall. 

So using equation (1), the momentum of the ball before collision (p1) will be, 

p1= mv          …… (2) 

After collision, when the ball re bounces, the velocity of the ball will be, -v. 

So again using equation (1), the momentum of the ball after collision (p2) will be, 

p2= -mv            …… (3) 

Conservation of linear momentum states that, the algebraic sum of momenta of bodies, along 
any straight line, remains constant and is not changed due to their mutual action and reaction 
on each other. 

p1 + p2 = 0 

So, mv + (-mv) = 0        …… (4) 

From equation (4) we observed that, linear momentum of the hand ball is conserved. 

___________________________________________________________________________
______________________________ 

Question 4:- 

Give a plausible explanation for the breaking of wooden boards or bricks by a karate punch. 
(See “Karate Strikes.” by Jearl D. Walker, American Journal of Physics, October 1975, 
p.845.) 



 

 

 

Answer:- 

In the process, breaking of wooden boards or bricks by a karate punch, the collision between 
the hand and brick is only for a few milliseconds. Because the applied external force is large 
and the time of collision is small therefore the average impulsive force is relatively large. 
Thus when you break a wooden board or bricks by a karate punch you have to apply large 
force for the minimum time which is impulse. Therefore the impact force on the brick or 
wooden boards will be high. 

Some Solved Problems 

Problem 1:- 

A 75.2-kg man is riding on a 38.6-kg cart travelling at a speed of 2.33 m/s. He jumps off in 
such a way as to land on the ground with zero horizontal speed. Find the resulting change in 
the speed of the cart. 

Concept:- 

Momentum of the body p is equal to the mass of the body m times velocity of the body v. 

So, p = mv 

In accordance to the principle of conservation of energy, the final momentum of the system is 
equal to the initial momentum of the system. 

Consider the initial momentum of the man is pi,m, initial momentum of the cart is pi,c, final 
momentum of the man is pf,m and final momentum of the cart is pf,c. 

We define,  pf,m = mmvf,m 

          pf,c = mcvf,c 

         pi,m = mmvi,m 

          pi,c = mcvi,c 

Here, mass of the man is mm, mass of the cart is mc, initial velocity of the man is vi,m and cart 
is vi,c, and final velocity of the man is vf,m and cart is vf,c. 

Solution:- 

So applying conservation of momentum to this system, the sum of the initial momentum of 
the man and cart will be equal to the sum of the final momentum of the man and cart. 



 

 

pf,m + pf,c = pi,m + pi,c 

Substitute, mmvf,m for pf,m, mcvf,c for pf,c, mmvi,m for pi,m and mcvi,c for pi,c ijn the 
equation pf,m + pf,c = pi,m + pi,c, 

pf,m + pf,c = pi,m + pi,c 

mmvf,m + mcvf,c = mmvi,m + mcvi,c 

vf,c- vi,c = (mmvi,m - mmvf,m)/ mc 

∆vc = (mmvi,m - mmvf,m)/ mc 

To obtain the resulting change in the speed of the cart ∆vc, substitute 75.2 kg for mm, 2.33 m/s 
for vi,m and 0 m/s for vf,m in the equation ∆ vc = (mmvi,m - mmvf,m)/ mc, 

∆vc = (mmvi,m - mmvf,m)/ mc 

       = (75.2 kg) (2.33 m/s) – (75.2 kg) (0 m/s)/(38.6 kg) 

       = 4.54 m/s 

As the sign of the change in the speed of the cart ∆vc is positive, this signifies that, the cart 
speed increases. 

From the above observation we conclude that, the resulting change in the speed of the cart 
∆vc would be 4.54 m/s. 

 

Collision of Elastic Bodies 

A solid body has a definite shape. When a force is applied at any point of it tending to 

change its shape, in general, all solids which we meet with in nature yields slightly and get 
more 

or less deformed near the point. Immediately, internal forces come into play tending to 
restore 

the body to its original form and as soon as the disturbing force is removed, the body regains 
its 

original shape. The internal force which acts, when a body tends to recover its original shape 

after a deformation or compression is called the force of restitution. Also, the properly which 

causes a solid body to recover its shape is called elasticity. If a body does not tend to recover 
its 

shape, it will cause no force of restitution and such a body is said to be inelastic. When a 
body 

completely regains its shape after a collision, it is said to be perfectly elastic. If it does not 
come 

to its original shape, it is said to be perfectly inelastic. 



 

 

Definitions: 

Two bodies are said to impinge directly when the direction of motion of each before 

impact is along the common normal at the point where they touch. 

Two bodies are said to impinge obliquely, if the direction of motion of either body or 

both is not along the common normal at the point where they touch. 

The common normal at the point of contact is called the line of impact. Thus, in the 

cause of two spheres, the line of impact is the line joining their centres. 
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3.8. Fundamental Laws of Impact: 

1. Newton‟s Experimental Law (NEL): 

When two bodies impinge directly, their relative velocity after impact bears a 

constant ratio to their relative velocity before impact and is in the opposite direction. If 

two bodies impinge obliquely, their relative velocity resolved along their common normal 

after impact bears a constant ratio to their relative velocity before impact, resolved in the 

same direction, and is of opposite sign. 

The constant ratio depends on the material of which the bodies are made and is 

independent of their masses. It is generally denoted by e, and is called the coefficient (or 

modulus) of elasticity (or restitution or resilience). 

This law can be put symbolically as follows: If u1, u2 are the components of the velocities 

of two impinging bodies along their common normal before impact and v1, v2 their 
component 

velocities along the same line after impact, all components being measured in the same 
direction 

and e is the coefficient of restitution, then  

v2-v1=-e(u2-u1) 

The quantity e, which is a positive number, is never greater than unity. It lies between 0 

and 1. Its value differs widely for different bodies; for two glass balls, one of lead and the 
other 

of iron, its value is about 0.13. Thus, when one or both the bodies are altered, e becomes 

different but so long as both the bodies remain the same, e is constant. Bodies for which e = 0 

are said to be inelastic. For perfectly elastic bodies, e=1. Probably, there are no bodies in 
nature 



 

 

coming strictly under wither of these headings. Newton‟s law is purely empirical and is true 

only approximately, like many experimental laws 

2. Motion of two smooth bodies perpendicular to the line of Impact: 

When two smooth bodies impinge, the only force between them at the time of impact is 

the mutual reaction which acts along the common normal. There is no force acting along the 

common tangent and hence there is no change of velocity in that direction. Hence the velocity 
of 

either body resolved in a direction perpendicular to the line of impact is not altered by 
impact. 
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3. Principle of Conservation of Momentum (PCM) : 

We can apply the law of conservation of momentum in the case of two impinging bodies. 

The algebraic sum of the momenta of the impinging bodies after impact is equal to the 
algebraic 

sum of their moments before impact, all momenta being measured along the common normal. 

3.9. Impact of a smooth sphere on a fixed smooth plane: 

A smooth sphere, or particle whose mass is m and whose coefficient of restitution is e, 

impinges obliquely on a smooth fixed plane; to find its velocity and direction of motion after 

impact. 

Let AB be the plane and P the point at which the sphere strikes it. The common 

normal at P is the vertical line at P passing through the centre of the sphere. Let it be PC. 

This is the line of impact. Let the velocity of the sphere before impact be u at an angle α 

with CP and v its velocity after impact at an angle � with CN as shown in the figure. 

Since the plane and the sphere are smooth, the only force acting during impact is 

the impulsive reaction and this is along the common normal. There is no force parallel to 

the plane during impact. Hence the velocity of the sphere, resolved in a direction parallel 

to the plane is unaltered by the impact. 

vsinθ=usinα 

By Newton‟s experimental law, the relative velocity of the sphere along the common 

normal after impact is (-e) time its relative velocity along the common normal before 

impact. Hence 



 

 

 

 

 

Problems 

1. A particle falls from a height h upon a fixed horizontal plane: if e be the 
coefficient of restitution, show that the whole distance described before the particle 
has 



 

 

finished rebounding is  Show also that the whole time taken is  
 

Solution 
Let u the velocity of the particle on first hitting the plane. Then u2 = 2gh. After 
the first impact, the particle rebounds with a velocity eu and ascends a certain height, 
retraces its path and makes a second impact with the plane with velocity eu. After the 
second impact, it rebounds with a velocity c2u and the process is repeated a number of 
times. The velocities after the third, fourth etc. impacts are e3u e4u etc. 

 

 

 

Considering the motion before the first impact, we have the initial velocity = 0, 
acceleration = g, final velocity = u and so if t is the time taken, u = 0 + gt. 

 

Time interval between the first and second impacts is 
= 2 x time taken for gravity to reduce the velocitiy to 0. 
= 2. velocity / g 
= 2 eu / g. 
Similarly time interval between the second and third impacts 
= 2 e2 u/g and so on. 



 

 

 

 

 

 

Direct impact of two smooth spheres: 

A smooth sphere of mass m1 impinges directly with velocity u1 on another smooth 
sphere 

of mass m2, moving in the same direction with velocity u2. If the coefficient of 
restitution is e, to find their velocities after the impact: 

 

AB is the line of impact, i.e. the common normal. Due to the impact there is no 
tangential 

force and hence, for either sphere the velocity along the tangent is not altered by 
impact. But before impact, the spheres had been moving only along the line AB (as 
this is a case of direct impact). Hence for either sphere tangential velocity after impact 
= its tangent velocity before impact = 0. So, after impact, the spheres will move only 
in the direction AB. Let their velocities be v1 and v2. 



 

 

By Newton‟s experimental law, the relative velocity of m2 with respect to m1 after 
impact 

is (-e) times the corresponding relative velocity before impact. 

∴ v2 – v1 = -e (u2 – u1) …….(1) 

By the principle of conservation of momentum, the total momentum along the 
common 

normal after impact is equal to the total momentum in the same direction before 
impact. 

∴ m1 v1 + m2 v2 = m1 u1 + m2 u2 …….(2) 

(2) – (1) x m2 gives 

v1 (m1 + m2) = m1 u1 + m2 u2 + em2 (u2 – u1) 

= m2 u2 (1 + e) + (m1 – em2) u1 

 

 

Equations (3) and (4) give the velocities of the spheres after impact. 

Note: If one sphere say m2 is moving originally in a direction opposite to that of m1, 
the 

sign of u2 will be negative. Also it is most important that the directions of v1 and v2 
must be specified clearly. Usually we take the positive direction as from left to right 
and then assume that both v1 and v2 are in this direction. If either of them is actually 
in the opposite direction, the value obtained for it will turn to be negative. 

In writing equation (1) corresponding to Newton‟s law, the velocities must be 
subtracted 

in the same order on both sides. In all problems it is better to draw a diagram showing 
clearly the positive direction and the directions of the velocities of the bodies. 

Corollary 1. If the two spheres are perfectly elastic and of equal mass, then e = 1 and 
m1 



 

 

= m2. Then, from equations (3) and (4), we have 

 

i.e. If two equal perfectly elastic spheres impinge directly, they interchange their 

velocities. 

Cor: 2. The impulse of the blow on the sphere A of mass m1 = change of momentum 
of 

A = m1 (v1 – u1). 

 

 

The impulsive blow on m2 will be equal and opposite to the impulsive blow on m1. 

Loss of kinetic energy due to direct impact of two smooth spheres: 

Two spheres of given masses with given velocities impinge directly; to show that there 
is 

a loss of kinetic energy and to find the amount: 

Let m1 m2 be the masses of the spheres, u1 and u2, v1 and v2 be their velocities 
before and 

after impact and e the coefficient of restitution. 

By Newton‟s law, v2 – v1 = -e (u2 – u1) … (1) 

By the principle of conservation of momentum, 

m1v1 + m2v2 = m1u1 + m2u2 ….(2) 



 

 

 

 

 

 

 

 

As e < 1, the expression (4) is always positive and so the initial K.E. of the system is 
greater than the final K.E. So there is actually a loss of total K.E. by a collision. Only in the 



 

 

case, when e=1, i.e. only when the bodies are perfectly elastic, the expression (4) becomes 
zero 
and hence the total K.E. is unchanged by impact. 
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Definitions: 

i. A particle projected into the air in any direction with any velocity is called a projectile. 

ii. The angle of projection is the angle made by the initial velocity with the horizontal 

plane through the point of projection. 

iii. The velocity of projection is the velocity with which the particle is projected. 

iv. The trajectory is the path described by the projectile.  

v. The range on a plane through the point of projection is the distance between the point of 

projection and the point where the trajectory meets that plane. 

vi. The time of flight is the interval of time that elapses from the instant of projection till the 

instant when the particle again meets the horizontal plane through the point of projection. 

 

Two fundamental principles 

i. The horizontal velocity remains constant throughout the motion. 

ii. The vertical component of the velocity will be subjected to  retardation g. 

 

 

 

 

 

 

 

  

 

Let a particle be projected from O, with initial velocity u and   be the angle of projection. Take 

OX and OY as x and y axes respectively. Let P (x,y) be the position of the particle in time t secs. 

Now u can be divided into two components as u cos  in the horizontal direction and sinu  in 

the vertical direction. 

         Y 
 
                   u 
                                   
                       P      A 
                       y      
                                    X 

            O    x       M    B               C         

5.2  Equation of the  path of the projectile

UNIT V

5.1 Projectiles.
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Now, horizontal velocity cosu  is constant throughout the motion. 

  tux cos     ………………… (1) 

Vertical velocity is subjected to retardation „g‟  

  2

2

1
sin gttuy       ………………. (2) 

Eliminate „t‟ using (1) and (2) 

 
cos

1
u

x
t   

 
2

cos
.

2

1

cos
sin2 













u

x
g

u

x
uy  

 



22

2

cos2
tan

u

gx
xy    ………………. (3) 

 = 



22

222

cos2

cos2.tan

u

gxux 
 

2222 cossin2..cos2 gxuxyu    

yuxugx .cos2.cossin2 2222    

y
g

u
x

g

u
x

 222
2 cos2cossin2 

  

y
g

u

g

u

g

u
x

g

u
x .

cos2cossincossincossin2 22

2

224

2

2242
2 

  

ie) 






























g

u
y

g

u

g

u
x

2

sincos2cossin 2222
2

2 
……… (4) 

Shifting the origin to 














g

u

g

u

2

sin
,

cossin 222 
  

Y
g

u
X .

cos2 22
2 

    ……………….. (5) 
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(5) is the equation of a parabola of the form ,42 aYX    

whose latus-rectum is  2
22

cos
2cos2




u
gg

u
   

      =  22
velocityhorizontal

g
 

Vertex is 














g

u

g

u

2

sin
,

cos.sin 222 
 

1. Greatest height attained by a projectile. 

2. Time taken to reach the greatest height. 

3. Time of flight. 

4. The range on the horizontal plane through the point of projection. 

Derive formula for the characteristics 

  When the particle reaches the highest point at A, its direction is horizontal. 

 At A, vertical velocity = 0 

Let AB = h. 

Consider the vertical motion and using the formula “ aSuv 222  ” 

  hguO .2sin
2
   

g

u
h

2

sin 22 
  

 Highest point of the path is the vertex of the parabola. 

  Let T be the time taken to travel from O to reach the greatest height at A.  

At A final vertical velocity is zero 

At O initial vertical velocity is sinu   

Using the formula “v = u + at” 

gTuO  sin    

 

  

g

u
T

sin
  

5.3   Characteristics of the motion of the projectile

5.3.1   Greatest height h

5.3.2  Time taken to reach the greatest height   T
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  Let t be the time taken to travel from O to C along its path. At C, vertical distance 

traveled is zero. Consider the vertical motion and by the formula  
2

2

1
atutS   , 

2

2

1
.sin gttuO    

ie) 0
2

1
sin 








 gtut   

0 t  or 0
2

1
sin  gtu   

ie) 0t  or 
g

u
t

sin2
  = T

g

u
2

sin
2 







 
 

t = 0 gives the time of projection. 

 Time of flight  
g

u
t

sin2
  

 

 Time of flight = 2 x time taken to reach the greatest height. 

 

Range R = OC  = horizontal distance traveled during the time of flight. 

     = horizontal velocity x time of flight 

     = 
g

u
u




sin2
cos     = 

g

u

g

u  2sincossin2 22

  

  Horizontal range R = 
  

g

uu  sincos2
 = 

g

UV2
 

 Where U – initial horizontal velocity, V – initial vertical velocity.  

 

 

 

 

 

5.3.3  Time of flight  t

5.3.4  The range on the horizontal plane through the point of projection R
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Problem 1 

A body is projected with a velocity of 98 metres per sec. in a direction making an angle 3tan 1
 

with the horizon; show that it rises to a vertical height of 441 metres and that its time of flight is 

about 19 sec.  Find also horizontal range through the point of projection (g=9.8 metres / sec
2
) 

 

Solution: 

 Given u = 98;   = tan 
-1

3 i.e tan   = 3 

 
10

3

tan1

tan

sec

tan
cos

cos

sin
sin

2

















  

  
10

1

tan

sin
cos 




  

Greatest height = 
8.9210

99898

2

sin 22






g

u 
 = 441 metres 

Time of flight = 106
8.910

3982sin2







g

u 
 

   = 19972.18162.36  secs. nearly 

Horizontal range = 
g

u  cossin2 2

 

    = 
10

1

10

3

8.9

98982



 = 588 metres 

 

Problem 2 

  If the greatest height attained by the particle is a quarter of its range on the horizontal plane 

through the point of projection, find the angle of projection       

Solution 

 Let u be the initial velocity and   the angle of projection 

  Greatest height   = 
g

u

2

sin 22 
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  Horizontal range = 
g

u  cossin2 2

 

  Given 
g

u

g

u  cossin2

4

1

2

sin 222

  

       i.e 
g

u

g

u

2

cossin

2

sin 222 
  

  i.e sin  = cos     tan  =1      = 45
0 

 

Problem 3 

   A particle is projected so as to graze the tops of two parallel walls, the first of height „a‟ 

at a distance b from the point of projection and the second of height b at a distant „a‟ from the 

point of projection.  If the path of particle lies in a plane perpendicular to both the walls, find the 

range on the horizontal plane and show that the angle of projection exceeds tan
-1

3.  

Solution:        

  Let u be the initial velocity,   be the angle of projection.  

Equation to the path is 



22

2

cos2
tan

u

gx
xy   

  i.e  2

2

2

1
2

t
u

gx
xty    where  tant ……. (1) 

 The tops of the two walls are (b, a) and (a, b) lie on (1) 

   a  =  2

2

2

1
2

t
u

gb
bt   ……… (2) 

         b =  2

2

2

1
2

t
u

ga
at   ………. (3) 

 From (2), a   2

2

2

1
2

t
u

gb
bt   ………. (4) 

 From (3), b  2

2

2

1
2

t
u

ga
at   ………. (5) 
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Dividing (4) by (5), 
2

2

a

b

atb

bta





 

i.e b
3
 – ab

2
 t = a

3
 – a

2
bt    t (a

2
b – ab

2
) = a

3
 – b

3 

        
 
  ab

baba

baab

bababa

abba

ba
t

2222

22

33 )( 










  


 

ab

abbaba

ab

baba 32
tan

2222 





 
3

2





ab

ba
…..(6) 

      (6)  3tan3tan 1  or  

 From (4), 
 

222

2

2

1

b

abt

b

bta

u

tg 








 

  = 

 

2

222

2

22

ab

ababa

b

a
ab

babab







 

     =
ab

ba

ab

bab 



2

)(
  ………… (7) 

Horizontal range =   
g

u 2sin2

 = 
 2

2

1

2

tg

tu


 






2tan1

tan2
2sin


  

       =   
ba

ab
t


.  from (7)  

       =   
 

ba

ab

ab

baba




 22

 =   
ba

baba



 22

 

 

Problem 4 

   A particle is thrown over a triangle from one end of a horizontal base and grazing the 

vertex falls on the other end of the base.  If A, B are the base angles, and   the angle of 

projection, show that      tan  = tan A + tan B  

Solution:      

 

 

 

 

 

   Y 
 
 
                                        C 
 
                                     h 
 
                                                              X 

      A                              D              B                                 
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 Let u be the velocity of projection and   the angle of projection and let t secs be the time 

taken from A to C.  Draw CD  AB and let CD = h. 

Consider the vertical motion, h = vertical distance described in time t 

         2

2

1
sin gttu    

AD = horizontal distance described in time t = u cos  t  

From CAD,
tu

gttu

AD

h

AD

CD
A










cos

2

1
sin

tan

2

 

             = 



cos2

tan
u

gt
   …… (1) 

      AB = horizontal range = 
g

u  cossin2 2

 

 DB = AB – AD = tu
g

u
 


cos

cossin2 2

 

From CDB,  

















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h
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

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   = 









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





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u

gttu

.cos
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2

1
.sin

2

2






 

   =   
 gtuu

gtugt

















sin2cos

2

1
sin

 

 

   =   




cos2)sin2(cos2

)sin2(

u

gt

gtuu

gtugt





……….. (2) 

                  

 (1) + (2)   tanA + tanB = tan  
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Problem 5 

Show that the greatest height which a particle with initial velocity v can reach on a vertical wall 

at a distance „a‟ from the point of projection is 
2

22

22 v

ga

g

v
  Prove also that the greatest height 

above the point of projection attained by the particle in its fight is  2246 2 agvgv    

Solution:      

Equation to the path is  



22

2

cos2
tan

v

gx
xy    …….. (1) 

 Put x = a in (1),      



22

2

cos2
tan

v

ga
ay   

    y  = at  2

2

2

1
2

t
v

ga
  where t = tan   …….. (2) 

y is a function of t.  y is maximum when 0
dt

dy
 and 

2

2

dt

yd
 is negative. 

Differentiating (2) with respect to t, 

 
2

2

2

2

2
2 v

tga
at

v

ga
a

dt

dy
  

 
2

2

2

2

v

ga

dt

yd
  = negative  

So y is maximum when 0
2

2


v

tga
a  or 
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v
t

2

   ……(3) 

Put 
ga

v
t

2

  in (2)  

Max value of 














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4

2

22

1
2 ag

v

v

ga

ga

v
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    = 
2
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2222 v
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g

v

g

v
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g

v
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Greatest height during the flight 

  =   
 


2

2

2
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cot12cos

1
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

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v

ecg

v
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  = 
















4

22

2

12
v

ag
g

v
 from (3) 

  = 
 224

6

2 agvg

v


 

 

Problem 6 

 

a. A projectile is thrown with a velocity of 20 m/sec. at an elevation 30
0
.  Find the greatest 

height attained and the horizontal range. 

b. A particle is projected with a velocity of 9.6 metres at an angle of 30
0
.  Find 

  i. The time of flight 

  ii. the greatest height of the particle. 

 

Solution: 

 Given u = 20m/sec;  = 30
0
 

 Greatest height = 
 

m
g

u
1.5

8.92

30sin20

2

sin
20222







 

 Horizontal range = m
g

u
35.35

8.9

60sin202sin 022







 

 

Problem 7 

  (a) A particle is projected under gravity in a vertical plane with a velocity u at an angle 

 to the horizontal.  If the range on the horizontal be R and the greatest height attained by h, 

show that 
h

R
h

g

u

162

22

  and 
R

h4
tan  . 

  (b) A particle is projected so that on its upward path, it passes through a point x feet 

horizontally and y feet vertically from the point of projection.  Show that, if R be the horizontal 

range, the angle of projection is 











xR

r

x

y1tan . 
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Solution: 

 a) 































g

u

g

u

g

u

h

R
h

2

sin
16

cossin2

2

sin

16 22

2
2

222






 

  = 
g

u

g

u

g

u

22

cos

2

sin 22222




 

b) Equation of the path is, 



22

2

cos2
tan

u

gx
xy   

 



22

2

cos2
tan

u

gx
yx   

 



22 cos2

tan
u

gx

x

y
    ………… (1) 

We have 
R

u
g

g

u
R

 cossin2cossin2 22




  

(1) 
R

u

u

x

x

y 




cossin2

cos2
tan

2

22


  = 

R

x

x

y tan
  

x

y

R

x









 1tan  

ie 
x

y

R

xR








 
tan   or 

xR

R

x

y


 .tan  











 

xR

R

x

y1tan  

Problem 8 

  If the time of flight of a shot is T seconds over a range of  x  metres, show that the 

elevation is 















x

gT

2
tan

2
1

and determine the maximum height and the velocity of projection. 
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Solution: 

 Given, horizontal range R = x metres 

 Time of flight 
g

u
T

sin2
    ………. (1) 

where  -is the angle of projection 

 
g

u
x

 cossin2 2

  

 )1(    gT = 2u sin .   

 

 



cot

2

1

sin4

cossin2 2

2

22





 gT

g

Tg
x   

 
x

gT

2
tan

2

        

 

 Maximum height = 
g

Tg

g

u

2

sin

sin42

sin 2

2

2222 




   = 

8

2gT
 

 

Problem 9 

   A particle is projected from a point P with a velocity of 32m per second at an 

angle of 30
0
 with the horizontal.  If PQ be its horizontal range and if the angles of elevation from 

P and Q at any instant of its flight be  and  respectively, show that 
3

1
tantan    

Solution: 

            Y 32u  

                                                      C 

 

 h 

                      30
0
 

             

                 P        D                Q                  X       

sin2

gT
u   














 

x

gT

2
tan

2
1  

    



90 

 

 

Given, initial velocity u = 32 m/sec, 30
0
 is the angle of projection.  P-be the point of projection.  

„t‟ – be the time taken from P to C. 

Let CD = h = 
2

2

1
.sin gttu   

20

2

1
)30sin.32( gtth  =  vertical distance described  in t secs 

  = 
2

2

1
16 gtt   

PD  = horizontal distance described in t secs = tu .cos  

 =   t030cos32  = t
2

3
32   = t316 . 

From  PCD ,  
t

h

PD

h

316
tan     …….. (1) 

From  QCD, ,tan
PDPQ

h

DQ

h


      PQ  =  range   

ie          

t
g

h

316
30cos30sin)32(2

tan
002














 
  

          = 
gt

hg

3163512 
  ………(2) 













gt

g

t

h

32

1

316
tantan)2()1(   

           =  





















)32(

32

316

2

1
16 2

gtt

gtgt
gtt

 

           =   
 

)32(

32

332

32

gtt

gtt





   =  

3

1
   

             

 3

1
tantan    
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Problem 10 

  A particle is projected and after time t reaches a point P.  If  t  is the lime it takes to move 

from P to the horizontal plane through the point of projection, prove that the height of P above 

the plane is 
'

2

1
tgt   

Solution: 

                                y 

 

 

                                         u 

 

 

                                        t    

                                               y                       t
'
 

                           

    

Let u be the velocity of projection,   be the angle of projection, P be the position of the particle 

after t secs.  Let 
't  be the time taken to travel from P to A 

 We have 
'tt   = time of flight = 

g

u sin2
  sinu  = 

 
2

'ttg 
 

Now, y = vertical distance described in t secs  =   2

2

1
sin gttu   

  = 
  2

'

2

1

2
gt

tttg



     

2

'gtt
  

 Height of P above the plane = 
2

'gtt
  

 

 

 

 

 yxP ,  

  

O         x        B                          A              X 
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Let P be the point of projection on a plane of inclination  , u be the velocity of projection at an 

angle   with the horizontal. The particle strikes the inclined plane at Q. Then PQ = r is the 

range on the inclined plane. Take PX and PY as x and y axes. 

Draw PXQN  . 

From  sin,cos, rQNrPNPQN     

  sin,cos rrQ  lies on the path. 



22

2

cos2
tan

u

gx
xy   

 





22

2

cos2

cos
tan.cossin

u

rg
rr   

Dividing by r we get 








sin

cos

sin
.cos

cos2

cos
22

2


u

gr
  








 










cos

sincoscossin

cos

cos2
2

22

g

u
r                        

 r =  



sin

cos

cos2
2

2

g

u
 

 

 

 

 
              y 
                                                        Q 
 
                    u 

                                                gcos  

                                      g 

                       

 
           P                                          N                            X 

5.4 Range on an inclined Plane:
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  the 

inclination of the plane: 

Range r on the inclined plane is  

 



sin)2sin(

coscos

)sin(cos2

2

2

2

2





g

u

g

u
r  ….. (1) 

 Now u and   are given, g constant.  

So r is maximum when    sin2sin   is maximum. 

 i.e. when sin (2   ) is maximum. 

  i.e.when. 
2

2


   

    

   for maximum range. 

 

 

From (1), maximum range on the inclined plane   

  =  
)sin1(

sin1
cos

2

2

2




 


g

u

g

u
 

3.5.1  Time of flight T (up an inclined plane):    

 From the figure in 6.11, the time taken to travel from P to Q is the time of flight. 

Consider the motion perpendicular to the inclined plane. At the end of time T, the distance 

travelled perpendicular to the inclined plane S = 0, component of g perpendicular to the inclined 

plane is cosg , initial velocity perpendicular to the inclined plane is   sinu . 

   2.cos
2

1
sin0 TgTu    using "

2

1
" 2atutS 

 

 

 
 




cos

sin2

g

u
T


  

 

 

24


    

5.5  Maximum range  on the inclined plane, given u the velocity of projection and
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attained in half the total time of flight: 

         

 Consider the motion perpendicular to the inclined plane.  The initial velocity 

perpendicular to the plane is u sin ( - ) and this is subjected to an acceleration gcos   in the 

same direction but acting downwards.  Let S be the greatest distance travelled by the particle 

perpendicular to the inclined plane. At the greatest distance the velocity becomes parallel to the 

inclined plane and hence the velocity perpendicular to the plane is zero. 

 Using the formula "2" 22 asuv   

    Sgu .cos2sin0
2    

 
 




cos.2

sin. 22

g

u
S


  

 

When the particle is at the greatest distance from the inclined plane, its velocity becomes 

parallel to the inclined plane and the velocity perpendicular to the inclined plane is zero.  So, if t 

is the time taken to reach the greatest distance, using the formula 

“ atuv  ”    

    tgu   cossin0  

 i.e. 
 





cos

sin

g

u
t


  

Note : Time of flight T = 
 




cos

sin2

g

u 
 = 2.t  = 2   time taken to reach the greatest distance. 

 

 

Problem 11 

Show that, for a given velocity of projection the maximum range down an inclined plane of 

inclination   bears to the maximum range up the inclined plane the ratio 




sin1

sin1




  

  

5.5.2   Greatest  distance  S  of  the projectile  from  the  inclined  plane  and  show  that  it  is

5.5.3 Time taken to reach the greatest distance t :
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Solution 

 

 

 

 

 

 

                                                                 

                                                                        g 

  

  

Let u be the given velocity of projection and   the inclination of the direction of projection with 

the plane.  u has  two components ucos along the upward inclined plane and usin  

perpendicular to the inclined plane.  g has two components, g sin   along the downward 

inclined plane and gcos  perpendicular to the inclined plane and downwards. 

 Consider the motion perpendicular to the inclined plane.  Let T be the time of flight.  

Distance travelled perpendicular to the inclined plane in time T = 0 

 2cos
2

1
sin0 TgTu     








 2

2

1
atutS  

 i.e. 




cos

sin2

g

u
T   

 Range up the plane = R1 

 R1= distance travelled along the plane in time T  

     = 
2sin

2

1
cos TgTu    

 = 










22

22

cos

sin4
sin

2

1

cos

sin2
cos

g

u
g

g

u
u   

 = 







2

222

cos

sinsin2

cos

cossin2

g

u

g

u
  

 = )sinsincos(cos
cos

sin2
2

2







g

u
 

u 


u 

B
u 

u
u 

u sin
 

 g cos α  

      g sin   

O 

u cos         

      
      
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 = 






sin)cos(2

cos
)cos(

cos

sin2

2

2

2

2


g

u

g

u
 

 =  


sin)2sin(
cos2

2


g

u
 

R1 is maximum, when 1)2sin(   

Maximum range up the plane  

= 
)sin1(

)sin1(
cos

2

2

2




 


g

u

g

u
   ………… (1) 

 When the particle is projected down the plane from B at the same angle   to the plane, 

the time of flight T has the same value 




cos

sin2

g

u
.  The component of the initial velocity along the 

inclined plane is u cos  downwards and the component of acceleration g sin   is also 

downwards. 

 

 Range down the plane = R2 

 R2 = distance travelled along the plane in time T 

 =
2sin

2

1
cos TgTu    

 = )sinsincos(cos
cos

sin2
2

2







g

u
 

 =  






sin)2sin(

cos
)cos(

cos

sin2
2

2

2

2


g

u

g

u
 

R2 is maximum, when sin (2    ) = 1. 

Maximum range down the plane  

= 
)sin1(

)sin1(
cos

2

2

2




 


g

u

g

u
   ………….. (2) 

planetheuprangeMax

planethedownrangeMax




 = 





 sin1

sin1)sin1(

)sin1( 2

2









 u

g

g

u
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Problem 12 

  A particle is projected at an angle   with a velocity u and it strikes up an inclined plane 

of inclination   at right angles to the plane.  Prove that (i) cot  = 2tan( - ) (ii) cot  = tan

 2tan . If the plane is struck horizontally, show that tan .tan2     

Solution:    

 The initial velocity and acceleration are split into components along the plane and 

perpendicular to the plane.   

The time of flight is 




cos

)sin(2

g

u
T


    ….. (1) 

 Since the particle strikes the inclined plane normally, its velocity parallel to the inclined 

plane at the end of time T is = 0. 

 i.e. 0 = u cos ( - ) – g sin T  

 
 





sin

cos

g

u
T


     ….. (2) 

 








sin

)cos(

cos

)sin(2

g

u

g

u 



 from (1) and (2) 

 i.e. cot   = 2 tan (   )   …… (i) 

 i.e. 





tantan1

)tan(tan2
cot




 , Simplifying we get 

 cot   + tan   = 2 tan  2 tan    

 cot   =  tan  2 tan      ….. (ii) 

 If the plane is struck horizontally, the vertical velocity of the projectile at the end of time 

T = 0.  Initial vertical velocity = u sin , and acceleration in this direction = g (downwards). 

 Vertical velocity in time T = u sin   gT    
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  u sin  gT = 0  or  T = 
g

u sin
  ….. (3) 

  
g

u

g

u 



 sin

cos

)sin(2



  from (1) and (3)  

 Simplifying we get 

2 sin (   ) = sin  cos  

2(sin cos  cos sin ) = sin cos . 

sin cos = 2cos sin  or  tan = 2tan  

 

Problem 13 

  The greatest range with a given velocity of projection on a horizontal plane is            

3000 metres.  Find the greatest ranges up and down a plane inclined at 30
0
 to the horizon. 

Solution: 

 

 

 

 

 

 

   

 

 

 Let u be the velocity of projection,   be the inclination of direction of projection with the 

plane.  Given gum
g

u
 30003000 2

2

 

At the end of time t, distance travelled perpendicular to the inclined plane is zero. 

 
2030cos

2

1
sin0 TgTu    

               y 
 
 
 
                                                            u 

                                                                             

                               u 
 
 
                                                           g 
                        

                      

                        30
0 

 

                                                                                                                                                                   X 
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2

2

3

2

1
sin0 TgTu    

 

  
3

sin4

g

u
T


  

   

Range up the inclined plane,  S = 2030sin
2

1
cos TgTu   

      = 
2

22

3

sin16

4

1

3

sin4
cos

g

u
g

g

u
u


   

      = 
g

u

g

u

3

sin4

3

cossin4 222 
  

 S =  


sincos3
3

sin4 2


g

u
 

Max. range is got when 1)302sin( 0   

  i.e. 
00 90302  030  

Max. range up the inclined plane  

=  00
02

max 30sin30cos3
3

30sin4


g

u
S  

= 3000
3

2

2

1

2

3
3

3

2

1
4 2













g

u

 mS 2000max   

 Range down the inclined plane =   


sin2sin
cos2

2


g

u
 

Max. range down the inclined plane 

    
2

11
3

4
30sin1

30cos

2
0

02

2





g

u

g

u
 

 m
g

u
600030002

2 2

  
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Problem 14 

  An inclined plane is inclined at an angle of 30
0
 to the horizon.  Show that, for a given 

velocity of projection, the maximum range up the plane is 1/3 of the maximum range down the 

plane. 

 

Solution: 

 

 

 

 

 

 

Max. range up the plane =  0

02

2

30sin1
30cos


g

u
  = 

g

u

3

2 2

 

Max. range down the plane =  0

02

2

30sin1
30cos


g

u
 

       = 
g

u

g

u 22 2

2

3

3

4
  

Max. range up the plane = 
g

u22

3

1
  

       = planethedownrangemax
3

1
 

 

 

Problem 15 

  If the greatest range down an inclined plane is three times its greatest range up the plane 

then show that the plane is inclined at 30
0
 to the horizon.. 

 

 

 

 
                                      u 
 
                                        
                                        g sin 30

0
 

                        

                      ucos                   g            g cos 30
0 

                     

               30
0
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Solution 

 

 

 

 

 

 

 

 

 

Greatest range down the inclined plane R1  

  


sin1
cos2

2

1 
g

u
R  

Greatest range down the inclined plane R2  

  


sin1
cos2

2

2 
g

u
R  

Given, R1 = 3R2 

 i.e.    3sin1
cos2

2


g

u  


sin1
cos2

2


g

u
 

 
2

1
sin     

030  

 

Problem 16 

A particle is projected in a vertical plane at an angle   to the horizontal from the foot of a plane 

whose inclination to the horizon is 45
0
.  Show that the particle will strike the plane at right angles 

if tan  =3. 

 

 

 

 

 
                                u 
 
                                                   g sin  
 

                                 u cos   

                                                    g              g cos  

                       
                     
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Solution: 

  

 

 

 

 

 

 

 

 

 

When the particle strikes the plane at right angles, velocity parallel to the plane is zero. 

 TguO  00 45sin)45cos(  

 

2

1

)45cos(

45sin

)45cos( 0

0

0









g

u

g

u
T


  ……. (1) 

Also, time of flight,  
 

0

0

45cos

45sin2






g

u
T


  ……. (2) 

 
   

2

1
.

45sin2

2

1

45cos
)2(&)1(

00

g

u

g

u 








 

   )45sin(245cos 00      145tan2 0    

  1
45tantan1

45tantan
2

0

0






















   

  1
tan1

1tan
2 

















 

   

                  i.e.  tan1)1(tan2      

                  3tan    

 

 

                    u sin   

 
 
u sin( -45

0
)      

 
                               u 
 
                                                               ucos( -45

0
) 

 
                                    gsin45

0 

                                                                    g             gcos45
0
 

                                            45
0
  

                       O                           u cos  

         


