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One	of	the	simplest	and	most	basic	of	all	algebraic	structures	is	the	group.	A	group	is	defined	to	be	a	set
with	an	operation	(let	us	call	it	*)	which	is	associative,	has	a	neutral	element,	and	for	which	each	element
has	an	inverse.	More	formally,

By	a	group	we	mean	a	set	G	with	an	operation	*	which	satisfies	the	axioms:
(G1) *	is	associative.
(G2) There	is	an	element	e	in	G	such	that	a	*	e	=	a	and	e	*	a	=	a	for	every	element	a	in	G.
(G3) For	every	element	a	in	G,	there	is	an	element	a−l	in	G	such	that	a	*	a−1	=	e	and	a−1	*	a	=	e.

The	group	we	have	 just	defined	may	be	 represented	by	 the	 symbol	 〈G,	 *〉.	 This	 notation	makes	 it
explicit	 that	 the	group	consists	of	 the	set	G	and	 the	operation	 *.	 (Remember	 that,	 in	general,	 there	 are
other	possible	operations	on	G,	so	it	may	not	always	be	clear	which	is	the	group’s	operation	unless	we
indicate	it.)	If	there	is	no	danger	of	confusion,	we	shall	denote	the	group	simply	with	the	letter	G.

The	groups	which	come	to	mind	most	readily	are	found	in	our	familiar	number	systems.	Here	are	a
few	examples.

	is	the	symbol	customarily	used	to	denote	the	set

{…,	−3,	−2,	−1,	0,	1,	2,	3,	…}

of	the	integers.	The	set	 ,	with	the	operation	of	addition,	 is	obviously	a	group.	It	 is	called	 the	additive
group	of	the	integers	and	is	represented	by	the	symbol	〈 ,	+〉.	Mostly,	we	denote	it	simply	by	the	symbol	
.

	designates	the	set	of	the	rational	numbers	(that	is,	quotients	m/n	of	integers,	where	n	≠	0).	This	set,
with	the	operation	of	addition,	is	called	the	additive	group	of	the	rational	numbers,	〈 ,	+〉.	Most	often
we	denote	it	simply	by	 .

The	symbol	 	represents	the	set	of	the	real	numbers.	 ,	with	the	operation	of	addition,	is	called	the
additive	group	of	the	real	numbers,	and	is	represented	by	〈 ,	+〉,	or	simply	 .

The	set	of	all	 the	nonzero	rational	numbers	 is	 represented	by	 *.	This	 set,	with	 the	operation	of
multiplication,	 is	 the	group	〈 *,	 ·〉,	or	simply	 *.	Similarly,	 the	set	of	all	 the	nonzero	real	numbers	 is
represented	by	 *.	The	set	 *	with	the	operation	of	multiplication,	is	the	group	〈 *,	·〉,	or	simply	 *.

Finally,	 pos	denotes	the	group	of	all	the	positive	rational	numbers,	with	multiplication.	 pos	denotes
the	group	of	all	the	positive	real	numbers,	with	multiplication.

Unit-I      Introduction



Groups	occur	abundantly	in	nature.	This	statement	means	that	a	great	many	of	the	algebraic	structures
which	can	be	discerned	 in	natural	phenomena	 turn	out	 to	be	groups.	Typical	examples,	which	we	shall
examine	 later,	 come	 up	 in	 connection	with	 the	 structure	 of	 crystals,	 patterns	 of	 symmetry,	 and	 various
kinds	 of	 geometric	 transformations.	 Groups	 are	 also	 important	 because	 they	 happen	 to	 be	 one	 of	 the
fundamental	building	blocks	out	of	which	more	complex	algebraic	structures	are	made.

Especially	 important	 in	 scientific	 applications	 are	 the	 finite	 groups,	 that	 is,	 groups	 with	 a	 finite
number	of	elements.	It	is	not	surprising	that	such	groups	occur	often	in	applications,	for	in	most	situations
of	the	real	world	we	deal	with	only	a	finite	number	of	objects.

The	easiest	finite	groups	to	study	are	those	called	the	groups	of	integers	modulo	n	(where	n	is	any
positive	 integer	 greater	 than	 1).	These	 groups	will	 be	 described	 in	 a	 casual	way	 here,	 and	 a	 rigorous
treatment	deferred	until	later.

Let	us	begin	with	a	specific	example,	say,	the	group	of	integers	modulo	6.	This	group	consists	of	a
set	of	six	elements,

{0,	1,	2,	3,	4,	5}

and	an	operation	called	addition	modulo	6,	which	may	be	described	as	follows:	Imagine	the	numbers	0
through	5	as	being	evenly	distributed	on	the	circumference	of	a	circle.	To	add	two	numbers	h	and	k,	start
with	h	and	move	clockwise	k	additional	units	around	the	circle:	h	+	k	is	where	you	end	up.	For	example,
3	+	3	=	0,	 3	+	5	=	2,	 and	 so	on.	The	 set	 {0,	 1,	 2,	 3,	 4,	 5}	with	 this	operation	 is	 called	 the	group	 of
integers	modulo	6,	and	is	represented	by	the	symbol	 6.

In	general,	the	group	of	integers	modulo	n	consists	of	the	set

{0,	1,	2,	…,	n	−	1}

with	 the	 operation	 of	 addition	modulo	 n,	 which	 can	 be	 described	 exactly	 as	 previously.	 Imagine	 the
numbers	0	 through	n	−	1	 to	be	points	on	 the	unit	circle,	each	one	separated	 from	the	next	by	an	arc	of
length	2π/n.

To	add	h	and	k,	 start	with	h	 and	go	clockwise	 through	an	arc	of	k	 times	2π/n.	The	 sum	h	 +	k	will,	 of



course,	be	one	of	the	numbers	0	through	n	−	1.	From	geometrical	considerations	it	is	clear	that	this	kind	of
addition	 (by	 successive	 rotations	 on	 the	 unit	 circle)	 is	associative.	 Zero	 is	 the	 neutral	 element	 of	 this
group,	and	n	−	h	is	obviously	the	inverse	of	h	[for	h	+	(n	−	h)	=	n,	which	coincides	with	0].	This	group,
the	group	of	integers	modulo	n,	is	represented	by	the	symbol	 n.

Often	when	working	with	finite	groups,	it	is	useful	to	draw	up	an	“operation	table.”	For	example,	the
operation	table	of	 6	is

The	basic	format	of	this	table	is	as	follows:

with	one	row	for	each	element	of	the	group	and	one	column	for	each	element	of	the	group.	Then	3	+	4,	for
example,	is	located	in	the	row	of	3	and	the	column	of	4.	In	general,	any	finite	group	〈G,	*〉	has	a	table

The	entry	in	the	row	of	x	and	the	column	of	y	is	x	*	y.
Let	 us	 remember	 that	 the	 commutative	 law	 is	 not	 one	 of	 the	 axioms	 of	 group	 theory;	 hence	 the

identity	a	*	b	=	b	*	a	is	not	true	in	every	group.	If	the	commutative	law	holds	in	a	group	G,	such	a	group	is
called	a	commutative	group	or,	more	commonly,	an	abelian	group.	Abelian	groups	are	named	after	 the
mathematician	 Niels	 Abel,	 who	 was	 mentioned	 in	 Chapter	 1	 and	 who	 was	 a	 pioneer	 in	 the	 study	 of
groups.	All	the	examples	of	groups	mentioned	up	to	now	are	abelian	groups,	but	here	is	an	example	which
is	not.

Let	G	be	the	group	which	consists	of	the	six	matrices



with	the	operation	of	matrix	multiplication	which	was	explained	on	page	8.	This	group	has	the	following
operation	table,	which	should	be	checked:

In	linear	algebra	it	is	shown	that	the	multiplication	of	matrices	is	associative.	(The	details	are	simple.)	It
is	clear	that	I	is	the	identity	element	of	this	group,	and	by	looking	at	the	table	one	can	see	that	each	of	the
six	matrices	in	{I,	A,	B,	C,	D,	K}	has	an	inverse	in	{I,	A,	B,	C,	D,	K}.	(For	example,	B	is	the	inverse	of
D,	A	is	the	inverse	of	A,	and	so	on.)	Thus,	G	is	a	group!	Now	we	observe	that	AB	=	C	and	BA	=	K,	so	G
is	not	commutative.

EXERCISES

A.	Examples	of	Abelian	Groups
Prove	that	each	of	the	following	sets,	with	the	indicated	operation,	is	an	abelian	group.

Instructions	Proceed	as	in	Chapter	2,	Exercise	B.
1	x	*	y	=	x	+	y	+	k (k	a	fixed	constant),	on	the	set	 	of	the	real	numbers.
2	 ,	on	the	set	{x	∈	 :	x	≠	0}.
3	x	*	y	=	x	+	y	+	xy,	on	the	set	{x	∈	 :	x	≠	−1}.
4	 ,	the	set	{x	∈	 :	−1	<	x	<	1}.

B.	Groups	on	the	Set	 	×	
The	symbol	 	×	 	represents	the	set	of	all	ordered	pairs	(x,	y)	of	real	numbers.	 	×	 	may	 therefore	be
identified	with	 the	 set	of	all	 the	points	 in	 the	plane.	Which	of	 the	 following	subsets	of	 	×	 ,	with	 the
indicated	operation,	is	a	group?	Which	is	an	abelian	group?

Instructions	Proceed	as	in	the	preceding	exercise.	To	find	the	identity	element,	which	in	these	problems
is	an	ordered	pair	(e1,	e2)	of	real	numbers,	solve	the	equation	(a,	b)	*	(e1,	e2)	=	(a,	b)	for	e1	and	e2.	To



find	the	inverse	(a′,	b′)	of	(a,	b),	solve	the	equation	(a,	b)	*	(a′,	b′)	=	(e1,	e2)	for	a′	and	b′.	[Remember	that
(x,	y)	=	(x′,	y′)	if	and	only	if	x	=	x′	and	y	=	y′.]
1	(a,	b)*(c,	d)	=	(ad	+	bc,	bd),	on	the	set	{(x,	y)	∈	 	×	 :	y	≠	0}.
#	2	(a,	b)*(c,	d)	=	(ac,	bc	+	d),	on	the	set	{(x,	y)	∈	 	×	 :	x	≠	0}.
3	Same	operation	as	in	part	2,	but	on	the	set	 	×	 .
4	(a,	b)*(c,	d)	=	(ac	−	bd,	ad	+	bc),	on	the	set	 	×	 	with	the	origin	deleted.
5	Consider	the	operation	of	the	preceding	problem	on	the	set	 	×	 .	Is	this	a	group?	Explain.

C.	Groups	of	Subsets	of	a	Set
If	A	and	B	are	any	two	sets,	their	symmetric	difference	is	the	set	A	+	B	defined	as	follows:

A	+	B	=	(A	−	B)	∪	(B	−	A)

NOTE:	A	−	B	represents	the	set	obtained	by	removing	from	A	all	the	elements	which	are	in	B.

It	is	perfectly	clear	that	A	+	B	=	B	+	A;	hence	this	operation	is	commutative.	It	is	also	associative,	as
the	accompanying	pictorial	 representation	suggests:	Let	 the	union	of	A,	B,	and	C	 be	divided	 into	 seven
regions	as	illustrated.

A	+	B	consists	of	the	regions	1,	4,	3,	and	6.

B	+	C	consists	of	the	regions	2,	3,	4,	and	7.

A	+	(B	+	C)	consists	of	the	regions	1,	3,	5,	and	7.

(A	+	B)	+	C	consists	of	the	regions	1,	3,	5,	and	7.



Thus,	A	+	(B	+	C)	=	(A	+	B)	+	C.
If	D	is	a	set,	then	the	power	set	of	D	is	the	set	PD	of	all	the	subsets	of	D.	That	is,

PD	=	{A:	A	⊆	D}

The	operation	+	is	to	be	regarded	as	an	operation	on	PD.

1	Prove	that	there	is	an	identity	element	with	respect	to	the	operation	+,	which	is	_________.
2	Prove	every	subset	A	of	D	has	an	 inverse	with	respect	 to	+,	which	 is	_________.	Thus,	〈PD,	+〉	 is	a
group!
3	Let	D	be	the	three-element	set	D	=	{a,	b,	c}.	List	the	elements	of	PD.	(For	example,	one	element	is	{a},
another	is	{a,	b},	and	so	on.	Do	not	forget	the	empty	set	and	the	whole	set	D.)	Then	write	the	operation
table	for	〈PD,	+〉.

D.	A	Checkerboard	Game

Our	checkerboard	has	only	four	squares,	numbered	1,	2,	3,	and	4.	There	is	a	single	checker	on	the	board,
and	it	has	four	possible	moves:

V: Move	vertically;	that	is,	move	from	1	to	3,	or	from	3	to	1,	or	from	2	to	4,	or	from	4	to	2.
H: Move	horizontally;	that	is,	move	from	1	to	2	or	vice	versa,	or	from	3	to	4	or	vice	versa.
D: Move	diagonally;	that	is,	move	from	2	to	3	or	vice	versa,	or	move	from	1	to	4	or	vice	versa.
I: Stay	put.

We	 may	 consider	 an	 operation	 on	 the	 set	 of	 these	 four	 moves,	 which	 consists	 of	 performing	 moves
successively.	For	example,	if	we	move	horizontally	and	then	vertically,	we	end	up	with	the	same	result	as
if	we	had	moved	diagonally:

H	*	V	=	D

If	we	perform	two	horizontal	moves	in	succession,	we	end	up	where	we	started:	H	*	H	=	I.	And	so	on.	If
G	=	{V,	H,	D,	I},	and	*	is	the	operation	we	have	just	described,	write	the	table	of	G.



Granting	associativity,	explain	why	〈G,	*〉	is	a	group.

E.	A	Coin	Game

Imagine	two	coins	on	a	table,	at	positions	A	and	B.	In	this	game	there	are	eight	possible	moves:
M1: Flip	over	the	coin	at	A.
M2: Flip	over	the	coin	at	B.
M3: Flip	over	both	coins.
M4: Switch	the	coins.
M5: Flip	coin	at	A;	then	switch.
M6: Flip	coin	at	B;	then	switch.
M7: Flip	both	coins;	then	switch.
I: Do	not	change	anything.

We	may	consider	an	operation	on	the	set	{I,	M1,	…,	M7},	which	consists	of	performing	any	two	moves	in
succession.	For	example,	if	we	switch	coins,	then	flip	over	the	coin	at	A,	this	is	the	same	as	first	flipping
over	the	coin	at	B	then	switching:

M4	*	M1	=	M	2	*	M4	=	M6

If	G	=	{I,	M1,	…,	M7}	and	*	is	the	operation	we	have	just	described,	write	the	table	of	〈G,	*〉.

Granting	associativity,	explain	why	〈G,	*〉	is	a	group.	Is	it	commutative?	If	not,	show	why	not.

F.	Groups	in	Binary	Codes
The	most	basic	way	of	transmitting	information	is	to	code	it	into	strings	of	Os	and	Is,	such	as	0010111,
1010011,	etc.	Such	strings	are	called	binary	words,	and	 the	number	of	0s	and	Is	 in	any	binary	word	 is
called	its	length.	All	information	may	be	coded	in	this	fashion.

When	 information	 is	 transmitted,	 it	 is	 sometimes	 received	 incorrectly.	One	 of	 the	most	 important
purposes	of	coding	theory	is	to	find	ways	of	detecting	errors,	and	correcting	errors	of	transmission.

If	a	word	a	=	a1a2	…	an	is	sent,	but	a	word	b	=	b1b2	…	bn	is	received	(where	the	ai	and	the	bj	are	0s



or	1s),	then	the	error	pattern	is	the	word	e	=	e1e2	…	en	where

With	this	motivation,	we	define	an	operation	of	adding	words,	as	follows:	If	a	and	b	are	both	of	length	1,
we	add	them	according	to	the	rules

0	+	0	=	0 1	+	1	=	0 0	+	1	=	1 1	+	0	=	1

If	a	and	b	are	both	of	 length	n,	we	add	 them	by	adding	corresponding	digits.	That	 is	 (let	us	 introduce
commas	for	convenience),

(a1,	a2,	…,	an)	+	(b1,	b2,	…,	bn)	=	(a1	+	b1	a2	+	b2,	…,	an	+	bn

Thus,	the	sum	of	a	and	b	is	the	error	pattern	e.
For	example,

The	 symbol	 	will	 designate	 the	 set	 of	 all	 the	 binary	words	 of	 length	n.	We	will	 prove	 that	 the
operation	of	word	addition	has	the	following	properties	on	 :

1. It	is	commutative.
2. It	is	associative.
3. There	is	an	identity	element	for	word	addition.
4. Every	word	has	an	inverse	under	word	addition.

First,	we	verify	the	commutative	law	for	words	of	length	1:

0	+	1	=	1	=	1	+	0

1	Show	that	(a1,	a2,	…,	an)	+	(b1,	b2,	…,	bn)	=	(b1,	b2,	…,	bn)	+	(a1,	a2,	…,	an).
2	To	verify	the	associative	law,	we	first	verify	it	for	words	of	length	1:

1	+	(1	+	1)	=	1	+	0	=	1	=	0	+	1	=	(1	+	1)	+	1

1	+(1	+	0)	=	1	+	1	=	0	=	0	+	0	=	(l	+	l)	+	0

Check	the	remaining	six	cases.
3	Show	that	(a1,	…,	an)	+	[(b1,	…,	bn)	+	(c1,	…,	cn)]	=	[(a1,	…,	an)	+	(b1,	…,	bn)]	+	(c1,	…,	cn).
4	The	identity	element	of	 ,	that	is,	the	identity	element	for	adding	words	of	length	n,	is	__________.
5	The	inverse,	with	respect	to	word	addition,	of	any	word	(a1,	…,	an)	is	__________.
6	Show	that	a	+	b	=	a	−	b	[where	a	−	b	=	a	+	(−b*)].
7	If	a	+	b	=	c,	show	that	a	=	b	+	c.



G.	Theory	of	Coding:	Maximum-Likelihood	Decoding
We	continue	the	discussion	started	in	Exercise	F:	Recall	that	 	designates	the	set	of	all	binary	words	of
length	n.	By	a	code	we	mean	a	subset	of	 .	For	example,	below	is	a	code	in	 5.	The	code,	which	we
shall	call	C1,	consists	of	the	following	binary	words	of	length	5:

00000
00111
01001
01110
10011
10100
11010
11101

Note	that	there	are	32	possible	words	of	length	5,	but	only	eight	of	them	are	in	the	code	C,.	These	eight
words	 are	 called	 codewords;	 the	 remaining	 words	 of	 B5	 are	 not	 codewords.	 Only	 codewords	 are
transmitted.	 If	 a	word	 is	 received	which	 is	not	 a	 codeword,	 it	 is	 clear	 that	 there	has	been	an	error	 of
transmission.	In	a	well-designed	code,	it	is	unlikely	that	an	error	in	transmitting	a	codeword	will	produce
another	codeword	(if	that	were	to	happen,	the	error	would	not	be	detected).	Moreover,	in	a	good	code	it
should	be	fairly	easy	to	locate	errors	and	correct	 them.	These	ideas	are	made	precise	in	the	discussion
which	follows.

The	weight	of	a	binary	word	is	the	number	of	Is	in	the	word:	for	example,	11011	has	weight	4.	The
distance	 between	 two	 binary	 words	 is	 the	 number	 of	 positions	 in	 which	 the	 words	 differ.	 Thus,	 the
distance	between	11011	and	01001	is	2	(since	these	words	differ	only	in	their	first	and	fourth	positions).
The	minimum	 distance	 in	 a	 code	 is	 the	 smallest	 distance	 among	 all	 the	 distances	 between	 pairs	 of
codewords.	For	the	code	C1,	above,	pairwise	comparison	of	the	words	shows	that	the	minimum	distance
is	 2.	What	 this	 means	 is	 that	 at	 least	 two	 errors	 of	 transmission	 are	 needed	 in	 order	 to	 transform	 a
codeword	 into	 another	 codeword;	 single	 errors	will	 change	 a	 codeword	 into	 a	noncodeword,	 and	 the
error	will	therefore	be	detected.	In	more	desirable	codes	(for	example,	the	so-called	Hamming	code),	the
minimum	distance	is	3,	so	any	one	or	 two	errors	are	always	detected,	and	only	 three	errors	 in	a	single
word	(a	very	unlikely	occurrence)	might	go	undetected.

In	practice,	a	code	is	constructed	as	follows:	in	every	codeword,	certain	positions	are	information
positions,	and	the	remaining	positions	are	redundancy	positions.	For	 instance,	 in	our	code	C1,	 the	 first
three	positions	of	every	codeword	are	the	information	positions:	if	you	look	at	the	eight	codewords	(and
confine	 your	 attention	 only	 to	 the	 first	 three	 digits	 in	 each	 word),	 you	 will	 see	 that	 every	 three-digit
sequence	of	0s	and	Is	is	there	namely,

000,	 001,	 010,	 011,	 100,	 101,	 110,	 111

The	numbers	in	the	fourth	and	fifth	positions	of	every	codeword	satisfy	parity-check	equations.
#	1	Verify	that	every	codeword	a1a2a3a4a5	in	C1	satisfies	the	following	two	parity-check	equations:	a4	=
a1	+	a3;	a5	=	a1	+	a2	+	a3.

2	Let	C2	be	 the	following	code	in	 .	The	first	 three	positions	are	 the	 information	positions,	and	every
codeword	a1a2a3a4a5a6	satisfies	the	parity-check	equations	a4	=	a2,	a5	=	a1	+	a2,	and	a6	=	a1	+	a2	+	a3.



#	(a) List	the	codewords	of	C2.
(b) Find	the	minimum	distance	of	the	code	C2.
(c) How	many	errors	in	any	codeword	of	C2	are	sure	to	the	detected?	Explain.

3	 Design	 a	 code	 in	 	 where	 the	 first	 two	 positions	 are	 information	 positions.	 Give	 the	 parity-check
equations,	list	the	codewords,	and	find	the	minimum	distance.

If	a	and	b	are	any	two	words,	let	d(a,	b)	denote	the	distance	between	a	and	b.	To	decode	a	received
word	x	(which	may	contain	errors	of	transmission)	means	to	find	the	codeword	closest	to	x,	 that	is,	 the
codeword	a	such	that	d(a,	x)	is	a	minimum.	This	is	called	maximum-likelihood	decoding.
4	Decode	the	following	words	in	C1:	11111,	00101,	11000,	10011,	10001,	and	10111.

You	may	 have	 noticed	 that	 the	 last	 two	words	 in	 part	 4	 had	 ambiguous	 decodings:	 for	 example,
10111	may	be	decoded	as	either	10011	or	00111.	This	 situation	 is	 clearly	unsatisfactory.	We	shall	 see
next	what	conditions	will	ensure	that	every	word	can	be	decoded	into	only	one	possible	codeword.

In	the	remaining	exercises,	let	C	be	a	code	in	 ,	let	m	denote	the	minimum	distance	in	C,	and	let	a
and	b	denote	codewords	in	C.
5	Prove	that	it	is	possible	to	detect	up	to	m	−	1	errors.	(That	is,	if	there	are	errors	of	transmission	in	m	−
1	or	fewer	positions	of	a	codeword,	it	can	always	be	determined	that	the	received	word	is	incorrect.)
#	6	By	the	sphere	of	radius	k	about	a	codeword	a	we	mean	the	set	of	all	words	in	 	whose	distance	from
a	is	no	greater	than	k.	This	set	is	denoted	by	Sk(a);	hence

Sk(a)	=	{x:	d(a,	x)	≤	k}

If	 ,	prove	that	any	two	spheres	of	radius	t,	say	St(a)	and	St(b),	have	no	elements	in	common.
[HINT:	Assume	there	is	a	word	x	such	that	x	∈	St(a)	and	x	∈	St,(b).	Using	the	definitions	of	t	and	m,	show
that	this	is	impossible.]
7	Deduce	from	part	6	that	if	there	are	t	or	fewer	errors	of	transmission	in	a	codeword,	the	received	word
will	be	decoded	correctly.
8	Let	C2	be	the	code	described	in	part	2.	(If	you	have	not	yet	found	the	minimum	distance	in	C2,	do	so
now.)	Using	the	results	of	parts	5	and	7,	explain	why	two	errors	in	any	codeword	can	always	be	detected,
and	why	one	error	in	any	codeword	can	always	be	corrected.



CHAPTER

FOUR

ELEMENTARY	PROPERTIES	OF	GROUPS

Is	 it	possible	 for	a	group	 to	have	 two	different	 identity	elements?	Well,	 suppose	e1	 and	e2	 are	 identity
elements	of	some	group	G.	Then

e1	*	e2	=	e2 because	e1	is	an	identity	element,	and

e1	*	e2	=	e1 because	e2	is	an	identity	element

Therefore

e1	=	e2

This	shows	that	in	every	group	there	is	exactly	one	identity	element.
Can	an	element	a	in	a	group	have	two	different	inverses!	Well,	if	a1	and	a2	are	both	inverses	of	a,

then

a1	*	(a	*	a2)	=	a1*	e	=	a1

and

(a1	*	a)*a2	=	e*a2	=	a2

By	the	associative	law,	a1	*	(a	*	a2)	=	(a1	*	a)	*	a)	*	a2;	hence	a1	=	a2.	This	shows	that	in	every	group,
each	element	has	exactly	one	inverse.

Up	to	now	we	have	used	the	symbol	*	to	designate	the	group	operation.	Other,	more	commonly	used
symbols	are	+	and	·	(“plus”	and	“multiply”).	When	+	is	used	to	denote	the	group	operation,	we	say	we	are
using	additive	notation,	and	we	refer	to	a	+	b	as	the	sum	of	a	and	b.	(Remember	that	a	and	b	do	not	have
to	 be	 numbers	 and	 therefore	 “sum”	 does	 not,	 in	 general,	 refer	 to	 adding	 numbers.)	When	 ·	 is	 used	 to
denote	the	group	operation,	we	say	we	are	using	multiplicative	notation’,	we	usually	write	ab	instead	of
a-b,	and	call	ab	the	product	of	a	and	b.	(Once	again,	remember	that	“product”	does	not,	in	general,	refer



to	multiplying	numbers.)	Multiplicative	notation	is	the	most	popular	because	it	is	simple	and	saves	space.
In	 the	remainder	of	 this	book	multiplicative	notation	will	be	used	except	where	otherwise	 indicated.	In
particular,	when	we	represent	a	group	by	a	letter	such	as	G	or	H,	it	will	be	understood	that	the	group’s
operation	is	written	as	multiplication.

There	 is	common	agreement	 that	 in	additive	notation	 the	 identity	element	 is	denoted	by	0,	and	 the
inverse	of	a	is	written	as	−a.	(It	is	called	the	negative	of	a.)	In	multiplicative	notation	the	identity	element
is	e	and	the	inverse	of	a	is	written	as	a−1	(“a	inverse”).	It	is	also	a	tradition	that	+	is	to	be	used	only	for
commutative	operations.

The	most	basic	rule	of	calculation	in	groups	is	the	cancellation	law,	which	allows	us	to	cancel	the
factor	a	in	the	equations	ab	=	ac	and	ab	=	ca.	This	will	be	our	first	theorem	about	groups.

Theorem	1	If	G	is	a	group	and	a,	b,	c	are	elements	of	G,	then

(i) 	ab	=	ac implies b	=	c 	and
(ii) 	ba	=	ca implies b	=	c

It	is	easy	to	see	why	this	is	true:	if	we	multiply	(on	the	left)	both	sides	of	the	equation	ab	=	ac	by	a
−1,	we	get	b	=	c.	In	the	case	of	ba	=	ca,	we	multiply	on	the	right	by	a−1.	This	is	the	idea	of	the	proof;	now
here	is	the	proof:

Part	(ii)	is	proved	analogously.
In	general,	we	cannot	cancel	a	in	the	equation	ab	=	ca.	(Why	not?)

Theorem	2	If	G	is	a	group	and	a,	b	are	elements	of	G,	then

ab=e implies a=b−1 and b	=	a−l

The	proof	is	very	simple:	if	ab	=	e,	then	ab	=	aa−1	so	by	the	cancellation	law,	b	=	a−1.	Analogously,
a	=	b−l.

This	theorem	tells	us	that	if	the	product	of	two	elements	is	equal	to	e,	these	elements	are	inverses	of
each	other.	In	particular,	if	a	is	the	inverse	of	b,	then	b	is	the	inverse	of	a.

The	next	theorem	gives	us	important	information	about	computing	inverses.
Theorem	3	If	G	is	a	group	and	a,	b	are	elements	of	G,	then

(i) 	(ab−1	=	b−1a−1 and
(ii)	(a−1)−1=a

The	first	formula	tells	us	that	the	inverse	of	a	product	is	the	product	of	the	inverses	in	reverse	order.
The	next	formula	tells	us	that	a	is	the	inverse	of	the	inverse	of	a.	The	proof	of	(i)	is	as	follows:



Since	 the	 product	 of	ab	 and	b−1a−1	 is	 equal	 to	 e,	 it	 follows	 by	 Theorem	 2	 that	 they	 are	 each	 other’s
inverses.	Thus,	(ab)−1	=	b−1a−1.	The	proof	of	(ii)	is	analogous	but	simpler:	aa−l	=	e,	so	by	Theorem	2	a
is	the	inverse	of	a−1,	that	is,	a	=	(a−1)−1.

The	 associative	 law	 states	 that	 the	 two	 products	 a(bc)	 and	 (ab)c	 are	 equal;	 for	 this	 reason,	 no
confusion	can	result	if	we	denote	either	of	these	products	by	writing	abc	(without	any	parentheses),	and
call	abc	the	product	of	these	three	elements	in	this	order.

We	may	next	define	the	product	of	any	four	elements	a,	b,	c,	and	d	in	G	by

abcd	=	a(bcd)

By	successive	uses	of	the	associative	law	we	find	that

a(bc)d	=	ab(cd)	=	(ab)(cd)	=	(ab)cd

Hence	 the	product	abed	 (without	 parentheses,	 but	without	 changing	 the	 order	 of	 its	 factors)	 is	 defined
without	ambiguity.

In	general,	any	two	products,	each	involving	the	same	factors	in	the	same	order,	are	equal.	The	net
effect	of	the	associative	law	is	that	parentheses	are	redundant.

Having	made	this	observation,	we	may	feel	free	to	use	products	of	several	factors,	such	as	a1a2	 ···
an,	 without	 parentheses,	 whenever	 it	 is	 convenient.	 Incidentally,	 by	 using	 the	 identity	 (ab)−l	 =	 b−la−l

repeatedly,	we	find	that

If	G	is	a	finite	group,	the	number	of	elements	in	G	is	called	the	order	of	G.	It	is	customary	to	denote
the	order	of	G	by	the	symbol

|G|

EXERCISES

Remark	on	notation	In	the	exercises	below,	the	exponential	notation	an	is	used	in	the	following	sense:	if
a	 is	any	element	of	a	group	G,	 then	a2	means	aa,	a3	means	aaa,	and,	 in	general,	a1	 is	 the	product	of	n
factors	of	a,	for	any	positive	integer	n.

A.	Solving	Equations	in	Groups
Let	a,	b,	c,	and	x	be	elements	of	a	group	G.	In	each	of	the	following,	solve	for	x	in	terms	of	a,	b,	and	c.
Example	Solve	simultaneously:	 x2	=b 	and 	x5	=	e



From	the	first	equation,	 b	=	x2

Squaring,	 b2	=	x4

Multiplying	on	the	left	by	x,	xb2	=	xx4	=	x5	=	e.	(Note:	x5	=	e	was	given.)
Multiplying	by	(b2)−1,xb2(b2)−1.	Therefore,	x	=	(b2)−1.
Solve:
1	axb	=	c
2	x2b	=	xa−1c
Solve	simultaneously:
3	x2a	=	bxc−1 	and	 acx	=	xac
4	ax2	=	b	 and 	x3	=	e
5	x2	=	a2 and x5	=	e
6	(xax)3	=	bx and 	x2a	=	(xa)−l

B.	Rules	of	Algebra	in	Groups
For	each	of	the	following	rules,	either	prove	that	it	is	true	in	every	group	G,	or	give	a	counterexample	to
show	 that	 it	 is	 false	 in	 some	groups.	 (All	 the	 counterexamples	you	need	may	be	 found	 in	 the	group	of
matrices	{I,	A,	B,	C,	D,	K}	described	on	page	28.)
1	If	x2	=	e,	then	x	=	e.
2	If	x2	=	a2,	then	x	=	a.
3	(ab)2	=	a2b2

4	If	x2	=	x,	then	x	=	e.
5	For	every	x	∈	G,	there	is	some	y	∈	G	such	that	x	=	y2.	(This	is	the	same	as	saying	that	every	element	of
G	has	a	“square	root.”)
6	For	any	two	elements	x	and	y	in	G,	there	is	an	element	z	in	G	such	that	y	=	xz.

C.	Elements	That	Commute
If	a	and	b	are	in	G	and	ab	=	ba,	we	say	that	a	and	b	commute.	Assuming	that	a	and	b	commute,	prove	the
following:
#	1	a−1	and	b−1	commute.
2	a	and	b−1	commute.	(HINT:	First	show	that	a	=	b−1ab.)
3	a	commutes	with	ab.
4	a2	commutes	with	b2.
5	xax−1	commutes	with	xbx−1,	for	any	x	∈	G.
6	ab	=	ba 	iff 	aba∈1	=	b.

(The	abbreviation	iff	stands	for	“if	and	only	if.”	Thus,	first	prove	that	 if	ab	=	ba,	 then	aba−1	=	b.
Next,	prove	that	if	aba−1	=	b,	then	ab	=	ba.	Proceed	roughly	as	in	Exercise	A.	Thus,	assuming	ab	=	ba,
solve	for	b.	Next,	assuming	aba−1	=	b,	solve	for	ab.)
7	ab	=	ba iff aba−1b−1	=	e.



†	D.	Group	Elements	and	Their	Inverses1

Let	G	be	a	group.	Let	a,	b,	c	denote	elements	of	G,	and	let	e	be	the	neutral	element	of	G.

1	Prove	that	if	ab	=	e,	then	ba	=	e.	(HINT:	See	Theorem	2.)
2	Prove	that	if	abc	=	e,	then	cab	=	e	and	bca	=	e.
3	State	a	generalization	of	parts	1	and	2
Prove	the	following:
4	If	xay	=	a−1,	then	yax	=	a−1.
5	Let	a,	b,	and	c	each	be	equal	to	its	own	inverse.	If	ab	=	c,	then	bc	=	a	and	ca	=	b.
6	If	abc	is	its	own	inverse,	then	bca	is	its	own	inverse,	and	cab	is	its	own	inverse.
7	Let	a	and	b	each	be	equal	to	its	own	inverse.	Then	ba	is	the	inverse	of	ab.
8	a	=	a−1 iff aa	=	e.	(That	is,	a	is	its	own	inverse	iff	a2	=	e.)
9	Let	c	=	c−1.	Then ab	=	c 	iff xy2	abc	=	e.

†	E.	Counting	Elements	and	Their	Inverses
Let	G	be	a	 finite	group,	and	 let	S	be	 the	set	of	all	 the	elements	of	G	which	are	not	 equal	 to	 their	own
inverse.	That	is,	S	=	{x	∈	G	:	x	≠	x−1}.	The	set	S	can	be	divided	up	into	pairs	so	 that	each	element	 is
paired	off	with	its	own	inverse.	(See	diagram	on	the	next	page.)	Prove	the	following:

1	In	any	finite	group	G,	the	number	of	elements	not	equal	to	their	own	inverse	is	an	even	number.
2	 The	 number	 of	 elements	 of	G	 equal	 to	 their	 own	 inverse	 is	 odd	 or	 even,	 depending	 on	whether	 the
number	of	elements	in	G	is	odd	or	even.
3	If	the	order	of	G	is	even,	there	is	at	least	one	element	x	in	G	such	that	x	≠e	and	x	=	x−1.
In	parts	4	to	6,	let	G	be	a	finite	abelian	group,	say,	G	=	{e,	a1,	a2,…,	an}.	Prove	the	following:

4	(a1a2	⋯	an)2	=	e

5	If	there	is	no	element	x	≠	e	in	G	such	that	x	=	x−1,	then	a1a2	⋯	an	=	e.

6	If	there	is	exactly	one	x	≠	e	in	G	such	that	x	=	x−1,	then	a1a2	⋯	an	=	x.

†	F.	Constructing	Small	Groups
In	each	of	the	following,	let	G	be	any	group.	Let	e	denote	the	neutral	element	of	G.
1	If	a,	b	are	any	elements	of	G,	prove	each	of	the	following:
(a)	If	a2	=	a,	then	a	=	e.



(b)	If	ab	=	a,	then	b	=	e.
(c)	If	ab	=	b,	then	a	=	e.
2	Explain	why	every	row	of	a	group	table	must	contain	each	element	of	 the	group	exactly	once.	(HINT:
Suppose	jc	appears	twice	in	the	row	of	a:

Now	use	the	cancellation	law	for	groups.)
3	There	is	exactly	one	group	on	any	set	of	three	distinct	elements,	say	the	set	{e,	a,	b}.	Indeed,	keeping	in
mind	parts	1	and	2	above,	there	is	only	one	way	of	completing	the	following	table.	Do	so!	You	need	not
prove	associativity.

4	There	is	exactly	one	group	G	of	four	elements,	say	G	=	{e,	a,	b,	c},	satisfying	 the	additional	property
that	xx	=	e	for	every	x	∈	G.	Using	only	part	1	above,	complete	the	following	group	table	of	G:

5	There	is	exactly	one	group	G	of	four	elements,	say	G	=	{e,	a,	b,	c},	such	that	xx	=	e	for	some	x	≠	e	in	G,
and	yy	≠	e	for	some	y	∈	G	(say,	aa	=	e	and	bb	≠	e).	Complete	the	group	table	of	G,	as	in	the	preceding
exercise.
6	 Use	 Exercise	 E3	 to	 explain	 why	 the	 groups	 in	 parts	 4	 and	 5	 are	 the	 only	 possible	 groups	 of	 four
elements	(except	for	renaming	the	elements	with	different	symbols).

G.	Direct	Products	of	Groups
If	G	and	H	are	any	two	groups,	their	direct	product	 is	a	new	group,	denoted	by	G	×	H,	and	defined	as
follows:	G	×	H	consists	of	all	the	ordered	pairs	(x,	y)	where	x	is	in	G	and	y	is	in	H.	That	is,

G	×	H	=	{(x,	y)	:	x	∈	G and y	∈	H}

The	operation	of	G	×	H	consists	of	multiplying	corresponding	components:



(x,	y)	·	(x′	y′)	=	(xx′,	yy′)

If	G	and	H	are	denoted	additively,	it	is	customary	to	denote	G	×	H	additively:

(x,	y)	+	(x′	y′)=(x+x′,y+y′)

1	Prove	that	G	×	H	is	a	group	by	checking	the	three	group	axioms,	(Gl)	to	(G3):
(G1) 	(x1,y1)[(x2,y2)(x3,y3)]	=	( , )

[(x1,y1)(x2,y2)](x3,y3)	=	( , )
(G2) 	Let	eG	be	the	identity	element	of	G,	and	eH	the	identity	element	of	H.

The	identity	element	of	G	×	H	is	(,).	Check
(G3)	For	each	(a,	b)	∈	G	×	H,	the	inverse	of	(a,	b)	is	(,).	Check.

2	List	the	elements	of	 2	×	 3,	and	write	its	operation	table.	(NOTE:	There	are	six	elements,	each	of	which
is	an	ordered	pair.	The	notation	is	additive.)
#	3	If	G	and	H	are	abelian,	prove	that	G	×	H	is	abelian.
4	Suppose	the	groups	G	and	H	both	have	the	following	property:

Every	element	of	the	group	is	its	own	inverse.

Prove	that	G	×	H	also	has	this	property.

H.	Powers	and	Roots	of	Group	Elements
Let	G	be	a	group,	and	a,	b	∈	G.	For	any	positive	integer	n	we	define	an	by

If	there	is	an	element	x	∈	G	such	that	a	=	x2,	we	say	that	a	has	a	square	root	in	G.	Similarly,	if	a	=	y3	for
some	y	∈	G,	we	say	a	has	a	cube	root	in	G.	In	general,	a	has	an	nth	root	in	G	if	a	=	zn	for	some	z	∈	G.
Prove	the	following:
1	 (bab−l)n	=	banb−l,	 for	every	positive	 integer	Prove	by	 induction.	 (Remember	 that	 to	prove	a	 formula
such	as	this	one	by	induction,	you	first	prove	it	for	n	=	l;	next	you	prove	that	if	it	is	true	for	n	=	k,	then	it
must	 be	 true	 for	n	 =	k	 +	 1.	You	may	 conclude	 that	 it	 is	 true	 for	 every	 positive	 integer	n.	 Induction	 is
explained	more	fully	in	Appendix	C.)
2	If	ab	=	ba,	then	(ab)n	=	anbn	for	every	positive	integer	n.	Prove	by	induction.
3	If	xax	=	e,	then	(xa)2n	=	an.
4	If	a3	=	e,	then	a	has	a	square	root.
5	If	a2	=	e,	then	a	has	a	cube	root.
6	If	a∈1	has	a	cube	root,	so	does	a.
7	If	x2ax	=	a−1,	then	a	has	a	cube	root.	(HINT:	Show	that	xax	is	a	cube	root	of	a−1.)
8	If	xax	=	b,	then	06	has	a	square	root.



	
1	When	the	exercises	in	a	set	are	related,	with	some	exercises	building	on	preceding	ones	so	that	they	must	be	done	in	sequence,	this	is

indicated	with	a	symbol	t	in	the	margin	to	the	left	of	the	heading.
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SUBGROUPS

Let	G	be	a	group,	and	S	a	nonempty	subset	of	G.	It	may	happen	(though	it	doesn’t	have	to)	that	the	product
of	every	pair	of	elements	of	S	is	in	S.	If	it	happens,	we	say	that	S	is	closed	with	respect	to	multiplication.
Then,	it	may	happen	that	the	inverse	of	every	element	of	S	is	in	S.	In	that	case,	we	say	that	S	is	closed	with
respect	to	inverses.	If	both	these	things	happen,	we	call	S	a	subgroup	of	G.

When	 the	 operation	 of	G	 is	 denoted	 by	 the	 symbol	 +,	 the	 wording	 of	 these	 definitions	 must	 be
adjusted:	 if	 the	 sum	 of	 every	 pair	 of	 elements	 of	 S	 is	 in	 S,	 we	 say	 that	 S	 is	 closed	 with	 respect	 to
addition.	If	the	negative	of	every	element	of	S	is	in	S,	we	say	that	S	is	closed	with	respect	to	negatives.	If
both	these	things	happen,	S	is	a	subgroup	of	G.

For	example,	the	set	of	all	the	even	integers	 is	a	subgroup	of	the	additive	group	 	of	 the	 integers.
Indeed,	the	sum	of	any	two	even	integers	is	an	even	integer,	and	the	negative	of	any	even	integer	is	an	even
integer.

As	 another	 example,	 *	 (the	 group	 of	 the	 nonzero	 rational	 numbers,	 under	 multiplication)	 is	 a
subgroup	of	 *	(the	group	of	the	nonzero	real	numbers,	under	multiplication).	Indeed,	 *	⊆	 *	because
every	rational	number	is	a	real	number.	Furthermore,	the	product	of	any	two	rational	numbers	is	rational,
and	the	inverse	(that	is,	the	reciprocal)	of	any	rational	number	is	a	rational	number.

An	important	point	to	be	noted	is	this:	if	S	is	a	subgroup	of	G,	the	operation	of	S	is	the	same	as	the
operation	of	G.	In	other	words,	if	a	and	b	are	elements	of	S,	the	product	ab	computed	in	S	is	precisely	the
product	ab	computed	in	G.



For	example,	it	would	be	meaningless	to	say	that	〈 *,	·〉	is	a	subgroup	of	〈 ,	+〉;	for	although	it	is	true
that	 *	is	a	subset	of	 ,	the	operations	on	these	two	groups	are	different.

The	importance	of	the	notion	of	subgroup	stems	from	the	following	fact:	if	G	is	a	group	and	S	is	a
subgroup	of	G,	then	S	itself	is	a	group.

It	 is	easy	to	see	why	this	 is	 true.	To	begin	with,	 the	operation	of	G,	 restricted	 to	elements	of	S,	 is
certainly	an	operation	on	S.	It	is	associative:	for	if	a,	b,	and	c	are	in	S,	they	are	in	G	(because	S	⊆	G);	but
G	is	a	group,	so	a(bc)	=	(ab)c.	Next,	the	identity	element	e	of	G	is	in	S	(and	continues	to	be	an	identity
element	in	S)	for	S	is	nonempty,	so	S	contains	an	element	a;	but	S	is	closed	with	respect	to	inverses,	so	S
also	contains	a–1;	thus,	S	contains	aa–1	=	e,	because	S	 is	closed	with	respect	 to	multiplication.	Finally,
every	element	of	S	has	an	inverse	in	S	because	S	is	closed	with	respect	to	inverses.	Thus,	S	is	a	group!

One	reason	why	the	notion	of	subgroup	is	useful	is	that	it	provides	us	with	an	easy	way	of	showing
that	certain	things	are	groups.	Indeed,	if	G	is	already	known	to	be	a	group,	and	S	is	a	subgroup	of	G,	we
may	conclude	 that	S	 is	 a	group	without	having	 to	check	all	 the	 items	 in	 the	definition	of	“group.”	This
conclusion	is	illustrated	by	the	next	example.

Many	 of	 the	 groups	 we	 use	 in	 mathematics	 are	 groups	 whose	 elements	 are	 functions.	 In	 fact,
historically,	the	first	groups	ever	studied	as	such	were	groups	of	functions.

( )	represents	the	set	of	all	functions	from	 	to	 ,	that	is,	the	set	of	all	real-valued	functions	of	a
real	variable.	In	calculus	we	learned	how	to	add	functions:	if	f	and	g	are	functions	from	 	to	 ,	their	sum
is	the	function	f	+	g	given	by

[f	+	g](x)	=	f(x)	+	g(x)	 for	every	real	number	x

Clearly,	f	+	g	is	again	a	function	from	 	to	 ,	and	is	uniquely	determined	by	f	and	g.
( ),	with	the	operation	+	for	adding	functions,	is	the	group	〈 ( ),+〉,	or	simply	 ( ).	The	details	are

simple,	but	first,	let	us	remember	what	it	means	for	two	functions	to	be	equal.	If	f	and	g	are	functions	from
	to	 ,	then	f	and	g	are	equal	(that	is,	f	=	g)	if	and	only	if	f(x)	=	g(x)	for	every	real	number	x.	 In	other
words,	to	be	equal,	f	and	g	must	yield	the	same	value	when	applied	to	every	real	number	x.

To	check	that	+	is	associative,	we	must	show	that	f	+	[g	+	h]	=	[f	+	g]	+	h,	for	every	three	functions,
f,	g,	and	h	in	 ( ).	This	means	that	for	any	real	number	x,	{f	+	[g	+	h]}(x)	=	{[f	+	g]	+	h}(x).	Well,

{f	+	[g	+	h]}(x)	=	f(x)	+	[g	+	h]	(x)	=	f(x)	+	g(x)	+	h(x)

and	{[f	+	g]	+	h}(x)	has	the	same	value.
The	neutral	element	of	 ( )	is	the	function	 	given	by

(x)	=	0	 for	every	real	number	x

To	show	that	 	+	f	=	f,	one	must	show	that	[ 	+	f](x)	=	f(x)	for	every	real	number	x.	This	is	true	because	[
	+	f](x)	=	 (x)	+	f(x)	=	0	+	f(x)	=	f(x).

Finally,	the	inverse	of	any	function	f	is	the	function	–f	given	by

[–f](x)	=	–f(x)	 for	every	real	number	x

One	perceives	immediately	that	f	+	[–f]	=	 ,	for	every	function	f.
( )	represents	the	set	of	all	continuous	functions	from	 	to	 .	Now,	 ( ),	with	the	operation	+,	is	a

subgroup	 of	 ( ),	 because	 we	 know	 from	 calculus	 that	 the	 sum	 of	 any	 two	 continuous	 functions	 is	 a



continuous	function,	and	the	negative	–f	of	any	continuous	function	f	is	a	continuous	function.	Because	any
subgroup	of	a	group	is	itself	a	group,	we	may	conclude	that	 ( ),	with	the	operation	+,	is	a	group.	It	is
denoted	by	〈 ( ),	+〉,	or	simply	 ( ).

( )	 represents	 the	 set	 of	 all	 the	 differentiable	 functions	 from	 	 to	 .	 It	 is	 a	 subgroup	 of	 ( )
because	the	sum	of	any	two	differentiable	functions	is	differentiable,	and	the	negative	of	any	differentiable
function	is	differentiable.	Thus,	 ( ),	with	the	operation	of	adding	functions,	is	a	group	denoted	by	〈 ( ),
+〉,	or	simply	 ( ).

By	 the	way,	 in	 any	group	G	 the	 one-element	 subset	 {e},	 containing	 only	 the	 neutral	 element,	 is	 a
subgroup.	It	is	closed	with	respect	to	multiplication	because	ee	=	e,	and	closed	with	respect	to	inverses
because	e–1	=	e.	At	 the	other	extreme,	 the	whole	group	G	 is	obviously	a	subgroup	of	 itself.	These	 two
examples	are,	respectively,	the	smallest	and	largest	possible	subgroups	of	G.	They	are	called	the	trivial
subgroups	of	G.	All	the	other	subgroups	of	G	are	called	proper	subgroups.

Suppose	G	 is	 a	 group	 and	a,	b,	 and	 c	 are	 elements	 of	G.	 Define	 S	 to	 be	 the	 subset	 of	G	 which
contains	all	the	possible	products	of	a,	b,	c,	and	their	inverses,	in	any	order,	with	repetition	of	factors
permitted.	Thus,	typical	elements	of	S	would	be

abac–1

c–1a–1bbc

and	so	on.	It	is	easy	to	see	that	S	is	a	subgroup	of	G:	for	if	two	elements	of	S	are	multiplied	together,	they
yield	an	element	of	S,	and	the	inverse	of	any	element	of	S	is	an	element	of	S.	For	example,	the	product	of
aba	and	cb–1ac	is

abacb–1ac

and	the	inverse	of	ab–1c–1a	is

a–1cba–1

S	is	called	the	subgroup	of	G	generated	by	a,	b,	and	c.
If	a1,	…,	an	are	any	finite	number	of	elements	of	G,	we	may	define	the	subgroup	generated	by	a1,

…,	an	 in	 the	 same	 way.	 In	 particular,	 if	 a	 is	 a	 single	 element	 of	G,	 we	 may	 consider	 the	 subgroup
generated	by	a.	This	subgroup	is	designated	by	the	symbol	〈a〉,	and	is	called	a	cyclic	subgroup	of	G;	a	is
called	its	generator.	Note	that	〈a〉	consists	of	all	the	possible	products	of	a	and	a−1,	for	example,	a–1aaa–
1	and	aaa–1aa–1.	However,	since	factors	of	a–1	cancel	factors	of	a,	there	is	no	need	to	consider	products
involving	both	a	and	a–1	side	by	side.	Thus,	〈a〉	contains

a,	aa,	aaa,.	.	.,

a–1,	a–1a–1,	a–1a–1a1,	…,

as	well	as	aa–1	=	e.
If	 the	 operation	 of	G	 is	 denoted	 by	 +,	 the	 same	 definitions	 can	 be	 given	with	 “sums”	 instead	 of

“products.”



In	the	group	of	matrices	whose	table	appears	on	page	28,	the	subgroup	generated	by	D	is	〈D〉	=	{I,	B,
D}	and	the	subgroup	generated	by	A	is	〈A〉	=	{I,	A}.	(The	student	should	check	the	table	to	verify	this.)	In
fact,	the	entire	group	G	of	that	example	is	generated	by	the	two	elements	A	and	B.

If	a	group	G	is	generated	by	a	single	element	a,	we	call	G	a	cyclic	group,	and	write	G	−	 〈a〉.	For
example,	the	additive	group	 6	is	cyclic.	(What	is	its	generator?)

Every	finite	group	G	 is	generated	by	one	or	more	of	 its	 elements	 (obviously).	A	set	of	 equations,
involving	 only	 the	 generators	 and	 their	 inverses,	 is	 called	 a	 set	 of	 defining	 equations	 for	G	 if	 these
equations	completely	determine	the	multiplication	table	of	G.

For	example,	let	G	be	the	group	{e,	a,	b,	b2,	ab,	ab2}	whose	generators	a	and	b	satisfy	the	equations

a2	=	e	 b3	=	e	 ba	=	ab2	 (1)

These	 three	equations	do	 indeed	determine	 the	multiplication	 table	of	G.	To	see	 this,	note	 first	 that	 the
equation	ba	=	ab2	allows	us	to	switch	powers	of	a	with	powers	of	b,	bringing	powers	of	a	to	the	left,	and
powers	of	b	to	the	right.	For	example,	to	find	the	product	of	ab	and	ab2,	we	compute	as	follows:

But	by	Equations	(1),	a2	=	e	and	b4	=	b3b	=	b;	so	finally,	(ab)(ab2)	=	b.	All	the	entries	in	the	table	of	G
may	be	computed	in	the	same	fashion.

When	 a	 group	 is	 determined	 by	 a	 set	 of	 generators	 and	 defining	 equations,	 its	 structure	 can	 be
efficiently	represented	in	a	diagram	called	a	Cayley	diagram.	These	diagrams	are	explained	in	Exercise
G.

EXERCISES

A.	Recognizing	Subgroups
In	parts	1–6	below,	determine	whether	or	not	H	is	a	subgroup	of	G.	(Assume	that	the	operation	of	H	is	the
same	as	that	of	G.)

Instructions	If	H	is	a	subgroup	of	G,	show	that	both	conditions	in	the	definition	of	“subgroup”	are
satisfied.	If	H	is	not	a	subgroup	of	G,	explain	which	condition	fails.

Example	G	=	 *,	the	multiplicative	group	of	the	real	numbers.

H	=	{2n	:	n	∈	 }	 H	is	 	 is	not	□	 a	subgroup	of	G.

(i)	If	2n,	2m	∈	H,	then	2n2m	=	2n+m.	But	n	+	m	∈	 ,	so	2n+m	∈	H.
(ii)	If	2n	∈	H,	then	1/2n	=	2–n.	But	–n	∈	 ,	so	2n+m	∈	H.
(Note	 that	 in	 this	 example	 the	 operation	 of	G	 and	H	 is	 multiplication.	 In	 the	 next	 problem,	 it	 is

addition.)
1	G	=	〈 ,	+〉,	H	=	{log	a	:	a	∈	 ,	a	>	0}.	 H	is	□	 is	not	□	 a	subgroup	of	G.
2	G	=	〈 ,	+〉,	H	=	{log	n	:	n	∈	 ,	n	>	0}.	 H	is	□	 is	not	□	 a	subgroup	of	G.
3	G	=	〈 ,	+〉,	H	=	{x	∈	 	:	tan	x	∈	 }.	 H	is	□	 is	not	□	 a	subgroup	of	G.



HINT:	Use	the	following	formula	from	trigonometry:

4	G	=	〈 *,	·〉,	H	=	{2n3m	:	m,	n	∈	 }.	 H	is	□	 is	not	□	 a	subgroup	of	G.
5	G	=	〈 	×	 ,	+〉,	H	=	{(x,	y)	:	y	=	2x}.	 H	is	□	 is	not	□	 a	subgroup	of	G.
6	G	=	〈 	×	 ,	+〈,	H	=	{(x,	y)	:	x2	+	y2	>	0}.	 H	is	□	 is	not	□	 a	subgroup	of	G.
7	Let	C	and	D	be	sets,	with	C	⊆	D.	Prove	that	PC	is	a	subgroup	of	PD.	(See	Chapter	3,	Exercise	C.)

B.	Subgroups	of	Functions
In	each	of	the	following,	show	that	H	is	a	subgroup	of	G.

Example	G	=	〈 ( ),	+〉,	H	=	{f	∈	 ( )	:	f(0)	=	0}
(i)	Suppose	f,	g	∈	H;	then	f(0)	=	0	and	g(0)	=	0,	so	[f	+	g](0)	=	f(0)	+	g(0)	=	0	+	0	=	0.	Thus,	f	+	g	∈

H.
(ii)	If	f	∈	H,	then	f(0)	=	0.	Thus,	[–f](0)	=	–f(0)	=	–0	=0,	so	–f	∈	H.

1	G	=	〈 ( ),	+〉,	H	=	{f	∈	 ( )	:	f(x)	=	0	for	every	x	∈	[0,1]}
2	G	=	〈 ( ),	+〉,	H	=	{f	∈	 ( )	:	f(–x)	=	–f(x)}
3	G	=	〈 ( ),	+〉,	H	=	{f	∈	 ( )	:	f	is	periodic	of	period	π}
REMARK:	A	function	f	is	said	to	be	periodic	of	period	a	if	there	is	a	number	a,	called	the	period	of	f,	such
that	f(x)	=	f(x	+	na)	for	every	x	∈	 	and	n	∈	 .
4	G	=	〈 	( ),	+〉,	H	=	{f	∈	 ( )	:	
5	G	=	〈 ( ),+〉,	H	=	{f∈ ( )	:	df/dx	is	constant}
6	G	=	〈 ( ),+〉,	H	=	{f	∈	 ( )	:	f(x)∈	 	for	every	x∈ }

C.	Subgroups	of	Abelian	Groups
In	the	following	exercises,	let	G	be	an	abelian	group.
1	If	H	=	{x	∈	G	:	x	=	x–1},	that	is,	H	consists	of	all	the	elements	of	G	which	are	their	own	inverses,	prove
that	H	is	a	subgroup	of	G.
2	Let	n	be	a	fixed	integer,	and	let	H	=	{x	∈	G	:	xn	=	e}.	Prove	that	H	is	a	subgroup	of	G.
3	Let	H	=	{x	∈	G	:	x	=	y2	for	some	y	∈	G};	that	is,	let	H	be	the	set	of	all	the	elements	of	G	which	have	a
square	root.	Prove	that	H	is	a	subgroup	of	G.
4	Let	Hbe	a	subgroup	of	G,	and	let	K	=	{x	∈	G	:	x2	∈	H}.	Prove	that	K	is	a	subgroup	of	G.
#	5.	Let	H	be	a	subgroup	of	G,	and	let	K	consist	of	all	the	elements	x	in	G	such	that	some	power	of	x	is	in
H.	That	is,	K	=	{x	∈	G	:	for	some	integer	n	>	0,	xn	∈	H).	Prove	that	K	is	a	subgroup	of	G.
6	Suppose	H	and	K	are	subgroups	of	G,	and	define	HK	as	follows:

HK	=	{xy	:	x	∈	H	and	y	∈	K}

Prove	that	HK	is	a	subgroup	of	G.
7	Explain	why	parts	4–6	are	not	true	if	G	is	not	abelian.



D.	Subgroups	of	an	Arbitrary	Group
Let	G	be	a	group.
1	If	H	and	K	are	subgroups	of	a	group	G,	prove	that	H	∩	K	is	a	subgroup	of	G.	(Remember	that	x	∈	H	∩	K
iff	x	∈	H	and	x	∈	K.)
2	Let	H	and	K	be	subgroups	of	G.	Prove	that	if	H	⊆	K,	then	H	is	a	subgroup	of	K.
3	By	the	center	of	a	group	G	we	mean	the	set	of	all	the	elements	of	G	which	commute	with	every	element
of	G,	that	is,

C	=	{a	∈	G	:	ax	=	xa	for	every	x	∈	G)

Prove	that	C	is	a	subgroup	of	G.
4	Let	C′	=	{a	∈	G:	(ax)2	=	(xa)2	for	every	x	∈	G).	Prove	that	C′	is	a	subgroup	of	G.
#	5	Let	G	be	a	 finite	group,	and	 let	S	be	a	nonempty	subset	of	G.	Suppose	S	 is	closed	with	respect	 to
multiplication.	 Prove	 that	S	 is	 a	 subgroup	 of	G.	 (HINT:	 It	 remains	 to	 prove	 that	S	 contains	 e	 and	 is
closed	with	respect	to	inverses.	Let	S	=	{a1,	…,	an}.	If	ai	∈	S,	consider	the	distinct	elements	aia1,	aia2,
…,	aian.)

6	Let	G	be	a	group	and	f	:	G	→	G	a	function.	A	period	of	f	is	any	element	a	in	G	such	that	f(x)	=	f(ax)	for
every	x	∈	G.	Prove:	The	set	of	all	the	periods	of	f	is	a	subgroup	of	G.
#	7	Let	H	be	a	subgroup	of	G,	and	let	K	=	{x	∈	G	:	xax−1	∈	H	iff	a	∈	H}.	Prove:

(a)	K	is	a	subgroup	of	G.
(b)	H	is	a	subgroup	of	K.

8	Let	G	and	H	be	groups,	and	G	×	H	their	direct	product.
(a)	Prove	that	{(x,	e)	:	x	∈	G}	is	a	subgroup	of	G	×	H.
(b)	Prove	that	{(x,	x)	:	x	∈	G}	is	a	subgroup	of	G	×	G.

E.	Generators	of	Groups
1	List	all	the	cyclic	subgroups	of	〈 10,	+〉.
2	Show	that	 10	is	generated	by	2	and	5.
3	Describe	the	subgroup	of	 12	generated	by	6	and	9.
4	Describe	the	subgroup	of	 	generated	by	10	and	15.
5	Show	that	 	is	generated	by	5	and	7.
6	Show	that	 2	×	 3	is	a	cyclic	group.	Show	that	 3	×	 4	is	a	cyclic	group.
#	7	Show	that	 2	×	 4	is	not	a	cyclic	group,	but	is	generated	by	(1,	1)	and	(1,	2).
8	Suppose	a	group	G	is	generated	by	two	elements	a	and	b.	If	ab	=	ba,	prove	that	G	is	abelian.

F.	Groups	Determined	by	Generators	and	Defining	Equations
#	1	Let	G	be	the	group	{e,	a,	b,	b2,	ab,	ab2}	whose	generators	satisfy	a2	=	e,	b3	=	e,	ba	=	ab2.	Write	the
table	of	G.

2	Let	G	be	the	group	{e,	a,	b,	b2,	b3,	ab,	ab2,	ab3}	whose	generators	satisfy	a2	=	e,	b4	=	e,	ba	=	ab3.	Write
the	table	of	G.	(G	is	called	the	dihedral	group	D4.)



CHAPTER

THIRTEEN

COUNTING	COSETS

Just	as	there	are	great	works	in	art	and	music,	there	are	also	great	creations	of	mathematics.	“Greatness,”
in	mathematics	 as	 in	 art,	 is	 hard	 to	 define,	 but	 the	basic	 ingredients	 are	 clear:	 a	great	 theorem	 should
contribute	substantial	new	information,	and	it	should	be	unexpected!.	That	is,	it	should	reveal	something
which	 common	 sense	 would	 not	 naturally	 lead	 us	 to	 expect.	 The	 most	 celebrated	 theorems	 of	 plane
geometry,	as	may	be	recalled,	come	as	a	complete	surprise;	as	the	proof	unfolds	in	simple,	sure	steps	and
we	reach	the	conclusion—a	conclusion	we	may	have	been	skeptical	about,	but	which	is	now	established
beyond	a	doubt—we	feel	a	certain	sense	of	awe	not	unlike	our	reaction	to	the	ironic	or	tragic	twist	of	a
great	story.

In	 this	 chapter	 we	 will	 consider	 a	 result	 of	 modern	 algebra	 which,	 by	 all	 standards,	 is	 a	 great
theorem.	It	is	something	we	would	not	likely	have	foreseen,	and	which	brings	new	order	and	simplicity	to
the	relationship	between	a	group	and	its	subgroups.

We	begin	by	 adding	 to	our	 algebraic	 tool	 kit	 a	 new	notion—a	conceptual	 tool	 of	 great	 versatility
which	will	serve	us	well	in	all	the	remaining	chapters	of	this	book.	It	is	the	concept	of	a	coset.

Let	G	be	a	group,	and	H	a	subgroup	of	G.	For	any	element	a	in	G,	the	symbol

aH

denotes	the	set	of	all	products	ah,	as	a	remains	fixed	and	h	ranges	over	H.	aH	is	called	a	left
coset	of	H	in	G.
In	similar	fashion

Ha

denotes	the	set	of	all	products	ha,	as	a	remains	fixed	and	h	ranges	over	H.	Ha	is	called	a	right
coset	of	H	in	G.

In	practice,	it	will	make	no	difference	whether	we	use	left	cosets	or	right	cosets,	just	as	long	as	we
remain	consistent.	Thus,	from	here	on,	whenever	we	use	cosets	we	will	use	right	cosets.	To	simplify	our



sentences,	we	will	say	coset	when	we	mean	“right	coset.”
When	we	deal	with	cosets	in	a	group	G,	we	must	keep	in	mind	that	every	coset	in	G	is	a	subset	of	G.

Thus,	when	we	need	to	prove	that	two	cosets	Ha	and	Hb	are	equal,	we	must	show	that	they	are	equal	sets.
What	this	means,	of	course,	is	that	every	element	x	∈	Ha	is	in	Hb,	and	conversely,	every	element	y	∈	Hb
is	in	Ha.	For	example,	let	us	prove	the	following	elementary	fact:

If	a	∈	Hb,	then	Ha	=	Hb (1)

We	are	given	that	a	∈	Hb,	which	means	that	a	=	h1b	for	some	h1	∈	H.	We	need	to	prove	that	Ha	=	Hb.
Let	x	∈	Ha;	this	means	that	x	=	h2a	for	some	h2	∈	H.	But	a	=	h1b,	so	x	=	h2a	=	(h2h1)b,	and	the	latter

is	clearly	in	Hb.	This	proves	that	every	x	∈	Ha	is	in	Hb;	analogously,	we	may	show	that	every	y∈	Hb	is
in	Ha,	and	therefore	Ha	=	Hb.

The	first	major	fact	about	cosets	now	follows.	Let	G	be	a	group	and	let	H	be	a	fixed	subgroup	of	G:

Theorem	1	The	family	of	all	the	cosets	Ha,	as	a	ranges	over	G,	is	a	partition	of	G.

PROOF:	First,	we	must	show	that	any	two	cosets,	say	Ha	and	Hb,	are	either	disjoint	or	equal.	If	they
are	disjoint,	we	are	done.	If	not,	let	x	∈	Ha	∩	Hb.	Because	x	∈	Ha,	x	=	hxa	for	some	h1	∈	H.	Because	x
∈	Hb,	x	=	h2b	for	some	h2	∈	H.	Thus,	h1a	=	h2b,	and	solving	for	a,	we	have

Thus,

a	∈	Hb

It	follows	from	Property	(1)	above	that	Ha	=	Hb.
Next,	we	must	 show	 that	 every	 element	c	∈	G	 is	 in	 one	 of	 the	 cosets	 of	H.	 But	 this	 is	 obvious,

because	c	=	ec	and	e	∈	H;	therefore,

c	=	ec	∈	Hc

Thus,	the	family	of	all	the	cosets	of	H	is	a	partition	of	G.	■
Before	going	on,	it	is	worth	making	a	small	comment:	A	given	coset,	say	Hb,	may	be	written	in	more

than	one	way.	By	Property	(1)	if	a	is	any	element	in	Hb,	then	Hb	is	the	same	as	Ha.	Thus,	for	example,	if
a	coset	of	H	contains	n	different	elements	a1,	a2,	…,	an,	 it	may	be	written	 in	n	different	ways,	namely,
Ha1,	Ha2,	…,	Han.

The	 next	 important	 fact	 about	 cosets	 concerns	 finite	 groups.	 Let	 G	 be	 a	 finite	 group,	 and	 H	 a
subgroup	of	G.	We	will	show	that	all	the	cosets	of	H	have	the	same	number	of	elements!	This	fact	is	a
consequence	of	the	next	theorem.



Theorem	2	If	Ha	is	any	coset	of	H,	there	is	a	one-to-one	correspondence	from	H	to	Ha.

PROOF:	The	most	obvious	function	from	H	to	Ha	is	the	one	which,	for	each	h	∈	H,	matches	h	with
ha.	Thus,	let	f:	H	→	Ha	be	defined	by

f(h)	=	ha

Remember	that	a	remains	fixed	whereas	h	varies,	and	check	that	f	is	injective	and	surjective.
f	is	injective:	Indeed,	if	f(h1)	=	f(h2),	then	h1a	=	h2a,	and	therefore	h1	=	h2.

f	is	surjective,	because	every	element	of	Ha	is	of	the	form	ha	for	some	h	∈	H,	and	ha	=	f(h).
Thus,	f	is	a	one-to-one	correspondence	from	H	to	Ha,	as	claimed.	■

By	Theorem	2,	any	coset	Ha	has	the	same	number	of	elements	as	H,	and	therefore	all	the	cosets	have
the	same	number	of	elements!

Let	us	take	a	careful	look	at	what	we	have	proved	in	Theorems	1	and	2.	Let	G	be	a	finite	group	and
H	 any	 subgroup	of	G.	G	 has	 been	partitioned	 into	 cosets	 of	H,	 and	 all	 the	 cosets	 of	H	 have	 the	 same
number	of	elements	(which	is	the	same	as	the	number	of	elements	in	H).	Thus,	the	number	of	elements	in
G	 is	 equal	 to	 the	 number	 of	 elements	 in	H,	multiplied	 by	 the	 number	 of	 distinct	 cosets	 of	 H.	 This
statement	is	known	as	Lagrange’s	theorem.	(Remember	that	the	number	of	elements	in	a	group	is	called	the
group’s	order.)

Theorem	3:	Lagrange’s	theorem	Let	G	be	a	finite	group,	and	H	any	subgroup	of	G.	The	order	of
G	is	a	multiple	of	the	order	of	H.

In	other	words,	the	order	of	any	subgroup	of	a	group	G	is	a	divisor	of	the	order	of	G.
For	example,	if	G	has	15	elements,	its	proper	subgroups	may	have	either	3	or	5	elements.	If	G	has	7

elements,	it	has	no	proper	subgroups,	for	7	has	no	factors	other	than	1	and	7.	This	last	example	may	be
generalized:

Let	G	be	a	group	with	a	prime	number	p	of	elements.	If	a	∈	G	where	a	≠	e,	then	the	order	of	a	 is
some	integer	m	≠	1.	But	then	the	cyclic	group	〈a〉	has	m	elements.	By	Lagrange’s	theorem,	m	must	be	a
factor	 of	p.	 But	p	 is	 a	 prime	 number,	 and	 therefore	m	 =	 p.	 It	 follows	 that	 〈a〉	 has	p	 elements,	 and	 is
therefore	all	of	G!	Conclusion:

Theorem	 4	 If	 G	 is	 a	 group	 with	 a	 prime	 number	 p	 of	 elements,	 then	 G	 is	 a	 cyclic	 group.
Furthermore,	any	element	a	≠	e	in	G	is	a	generator	of	G.

Theorem	 4,	 which	 is	merely	 a	 consequence	 of	 Lagrange’s	 theorem,	 is	 quite	 remarkable	 in	 itself.
What	 it	 says	 is	 that	 there	 is	 (up	 to	 isomorphism)	only	 one	 group	 of	 any	 given	 prime	 order	 p.	 For
example,	the	only	group	(up	to	isomorphism)	of	order	7	is	 7,	the	only	group	of	order	11	is	 11,	and	so	on!
So	we	now	have	complete	information	about	all	the	groups	whose	order	is	a	prime	number.

By	the	way,	if	a	 is	any	element	of	a	group	G,	 the	order	of	a	 is	 the	same	as	the	order	of	 the	cyclic



subgroup	〈a〉,	and	by	Lagrange’s	theorem	this	number	is	a	divisor	of	the	order	of	G.	Thus,

Theorem	5	The	order	of	any	element	of	a	finite	group	divides	the	order	of	the	group.

Finally,	if	G	is	a	group	and	H	is	a	subgroup	of	G,	the	index	of	H	in	G	is	the	number	of	cosets	of	H	in
G.	We	denote	it	by	(G:H).	Since	 the	number	of	elements	 in	G	 is	equal	 to	 the	number	of	elements	 in	H,
multiplied	by	the	number	of	cosets	of	H	in	G,

EXERCISES

A.	Examples	of	Cosets	in	Finite	Groups
In	each	of	the	following,	H	is	a	subgroup	of	G.	In	parts	1–5	list	the	cosets	of	H.	For	each	coset,	list	the
elements	of	the	coset.

Example	G	=	 4,	H	=	{0,	2}.
(REMARK:	If	the	operation	of	G	is	denoted	by	+,	it	is	customary	to	write	H	+	x	for	a	coset,	rather	than

Hx.)	The	cosets	of	H	in	this	example	are

H	=	H	+	0	=	H	+	2	=	{0,	2} and H+	1	=	H	+	3	=	{1,	3}

1 G	=	S3,	H	=	{ε,	β,	δ}.
2 G	=	S3,	H	=	{ε,	α}.
3 G	=	 15,	H	=	〈5〉.
4 G	=	D4,	H	={R0,	R4}.(For	D4,	see	page	73.)
5 G	=	S4,	H	=	A4.(For	A4,	see	page	86.)
6 Indicate	the	order	and	index	of	each	of	the	subgroups	in	parts	1	to	5.

B.	Examples	of	Cosets	in	Infinite	Groups
Describe	the	cosets	of	the	subgroups	described	in	parts	1–5:
1 The	subgroup	〈3〉	of	 .
2 The	subgroup	 	of	 .
3 The	subgroup	H	=	{2n:	n	∈	 }	of	 *.
4 The	subgroup	〈 〉	of	R*;	the	subgroup	〈 〉	of	 .
5 The	subgroup	H	=	{(x,	y):	x	=	y}	of	( 	×	 .
6 For	any	positive	integer	m,	what	is	the	index	of	〈m〉	in	 ?
7 Find	a	subgroup	of	 *	whose	index	is	equal	to	2.

C.	Elementary	Consequences	of	Lagrange’s	Theorem
Let	G	be	a	finite	group.	Prove	the	following:
1	If	G	has	order	n,	then	xn	=	e	for	every	x	in	G.
2	Let	G	have	order	pq,	where	p	and	q	are	primes.	Either	G	 is	cyclic,	or	every	element	x	≠	e	 in	G	has



order	p	or	q.
3	Let	G	have	order	4.	Either	G	is	cyclic,	or	every	element	of	G	is	its	own	inverse.	Conclude	that	every
group	of	order	4	is	abelian.
4	If	G	has	an	element	of	order	p	and	an	element	of	order	q,	where	p	and	q	are	distinct	primes,	 then	the
order	of	G	is	a	multiple	of	pq.
5	 If	G	has	an	element	of	order	k	and	an	element	of	order	m,	 then	 |G|	 is	a	multiple	of	 lcm(k,	m),	where
lcm(k,	m)	is	the	least	common	multiple	of	k	and	m.
#	6	Let	p	be	a	prime	number.	In	any	finite	group,	the	number	of	elements	of	order	p	is	a	multiple	of	p	−	1.

D.	Further	Elementary	Consequences	of	Lagrange’s	Theorem
Let	G	be	a	finite	group,	and	let	H	and	K	be	subgroups	of	G.	Prove	the	following:
1	Suppose	H	⊆	K	(therefore	H	is	a	subgroup	of	K).	Then	(G:	H)	=	(G:	K)(K:	H).
2	The	order	of	H	∩	K	is	a	common	divisor	of	the	order	of	H	and	the	order	of	K.
3	Let	H	have	order	m	and	K	have	order	n,	where	m	and	n	are	relatively	prime.	Then	H	∩	K	=	{e}.
4	Suppose	H	and	K	are	not	equal,	and	both	have	order	the	same	prime	number	p.	Then	H	∩	K	=	{e}.
5	Suppose	H	has	index	p	and	K	has	index	p,	where	p	and	g	are	distinct	primes.	Then	the	index	of	H	∩	K	is
a	multiple	of	pq.
#	6	If	G	is	an	abelian	group	of	order	n,	and	m	is	an	integer	such	that	m	and	n	are	relatively	prime,	then	the
function	f(x)	=	xm	is	an	automorphism	of	G.

E.	Elementary	Properties	of	Cosets
Let	G	be	a	group,	and	H	a	subgroup	of	G.	Let	a	and	b	denote	elements	of	G.	Prove	the	following:
1	Ha	=	Hb	iff	ab−1	∈	H.
2	Ha	=	H	iff	a	∈	H.
3	If	aH	=	Ha	and	bH	=	Hb,	then	(ab)H	=	H(ab).
#	4	If	aH	=	Ha,	then	a−1H	=	Ha−1.
5	If	(ab)H	=	(ac)H,	then	bH	=	cH.
6	The	number	of	right	cosets	of	H	is	equal	to	the	number	of	left	cosets	of	H.
7	If	J	is	a	subgroup	of	G	such	that	J	=	H	∩	K,	then	for	any	a	∈	G,	Ja	=	Ha	∩	Ka.	Conclude	that	if	H	and	K
are	of	finite	index	in	G,	then	their	intersection	H	∩	K	is	also	of	finite	index	in	G.

Theorem	5	of	this	chapter	has	a	useful	converse,	which	is	the	following:
Cauchy’s	theorem	If	G	is	a	finite	group,	and	p	is	a	prime	divisor	of	|G|,	then	G	has	an	element	of

order	p.
For	example,	a	group	of	order	30	must	have	elements	of	orders	2,	3,	and	5.	Cauchy’s	theorem	has	an

elementary	proof,	which	may	be	found	on	page	340.
In	the	next	few	exercise	sets,	we	will	survey	all	possible	groups	whose	order	is	≤10.	By	Theorem	4

of	 this	chapter,	 if	G	 is	a	group	with	a	prime	number	p	of	elements,	 then	G	≅	 p.	This	 takes	care	of	all
groups	of	orders	2,	3	5,	and	7.	In	Exercise	G6	of	Chapter	15,	it	will	be	shown	that	if	G	is	a	group	with	p2
elements	(where	p	is	a	prime),	then	G	≅ p2	or	G	≅	 p	×	 p.	This	will	take	care	of	all	groups	of	orders	4
and	9.	The	remaining	cases	are	examined	in	the	next	three	exercise	sets.



†	F.	Survey	of	All	Six-Element	Groups
Let	G	be	any	group	of	order	6.	By	Cauchy’s	theorem,	G	has	an	element	a	of	order	2	and	an	element	b	of
order	3.	By	Chapter	10,	Exercise	E3,	the	elements

e,	a,	b,	b2,	ab,	ab2

are	all	distinct;	and	since	G	has	only	six	elements,	these	are	all	the	elements	in	G.	Thus,	ba	is	one	of	the
elements	e,	a,	b,	b2,	ab,	or	ab2.
1	Prove	that	ba	cannot	be	equal	to	either	e,	a,	b,	or	b2.	Thus,	ba	=	ab	or	ba	=	ab2.

Either	of	these	two	equations	completely	determines	the	table	of	G.	(See	the	discussion	at	the	end	of
Chapter	5.)
2	If	ba	=	ab,	prove	that	G	≅	 6.
3	If	ba	=	ab2,	prove	that	G	≅	S3.

It	follows	that	 6	and	S3	are	(up	to	isomorphism),	the	only	possible	groups	of	order	6.

†	G.	Survey	of	All	10-EIement	Groups
Let	G	be	any	group	of	order	10.
1	Reason	as	in	Exercise	F	to	show	that	G	=	{e,	a,	b,	b2,	b3,	b4,	ab,	ab2,	ab3,	ab4},	where	a	has	order	2
and	b	has	order	5.
2	Prove	that	ba	cannot	be	equal	to	e,	a,	b,	b2,	b3,	or	b4.
3	Prove	that	if	ba	=	ab,	then	G	≅	 10.

4	If	ba	=	ab2,	prove	that	ba2	=	a2b4,	and	conclude	that	b	=	b4.	This	is	impossible	because	b	has	order	5;
hence	ba	≠	ab2.	(HINT:	The	equation	ba	=	ab2	tells	us	that	we	may	move	a	factor	a	from	the	right	to	the
left	of	a	factor	b,	but	in	so	doing,	we	must	square	b.	To	prove	an	equation	such	as	the	preceding	one,	move
all	factors	a	to	the	left	of	all	factors	b.)
5	If	ba	=	ab3,	prove	that	ba2	=	a2b9	=	a2b4,	and	conclude	that	b	=	b4.	This	is	impossible	(why?);	hence	ba
≠	ab3.
6	Prove	that	if	ba	=	ab4,	then	G	≅	D5	(where	D5	is	the	group	of	symmetries	of	the	pentagon).

Thus,	the	only	possible	groups	of	order	10	(up	to	isomorphism),	are	 10	and	D5.

†	H.	Survey	of	All	Eight-Element	Groups
Let	G	be	any	group	of	order	8.	If	G	has	an	element	of	order	8,	then	G	≅	 8.	Let	us	assume	now	that	G	has
no	element	of	order	8;	hence	all	the	elements	≠	e	in	G	have	order	2	or	4.
1	If	every	x	≠	e	in	G	has	order	2,	let	a,	b,	c	be	three	such	elements.	Prove	that	G	=	{e,	a,	b,	c,	ab,	bc,	ac,
abc}.	Conclude	that	G	≅	 2	×	 2	×	 2.

In	the	remainder	of	this	exercise	set,	assume	G	has	an	element	a	of	order	4.	Let	H	=	〈a〉	=	{e,	a,	a2,
a3}.	If	b	∈	G	is	not	in	H,	then	the	coset	Hb	=	{b,	ab,	a2b,	a3b}.	By	Lagrange’s	theorem,	G	is	the	union	of
He	=	H	and	Hb;	hence

G	=	{e,	a,	a2,	a3,	b,	ab,	a2b,	a3b}



2	Assume	there	is	in	Hb	an	element	of	order	2.	(Let	b	be	this	element.)	If	ba	=	a2b,	prove	that	b2a	=	a4b2,
hence	a	=	a4,	which	is	impossible.	(Why?)	Conclude	that	either	ba	=	ab	or	ba	=	a3b.
3	Let	b	be	as	in	part	2.	Prove	that	if	ba	=	ab,	then	G	≅	 4	×	 2.

4	Let	b	be	as	in	part	2.	Prove	that	if	ba	=	a3b,	then	G	≅	D4.

5	Now	assume	the	hypothesis	in	part	2	is	false.	Then	b,	ab,	a2b,	and	a3b	all	have	order	4.	Prove	that	b2	=
a2.	(HINT:	What	is	the	order	of	b2?	What	element	in	G	has	the	same	order?)
6	Prove:	If	ba	=	ab,	then	(a3b)2	=	e,	contrary	to	the	assumption	that	ord(a3b)	=	4.	If	ba	=	a2b,	then	a	=	b4a
=	e,	which	is	impossible.	Thus,	ba	=	a3b.
7	The	equations	a4	=	b4	=	e,	a2	=	b2,	and	ba	=	a3b	completely	determine	the	table	of	G.	Write	this	table.
(G	is	known	as	the	quarternion	group	Q.)

Thus,	the	only	groups	of	order	8	(up	to	isomorphism)	are	 8,	 2	×	 2	×	 2,	 4	×	 2,	D4,	and	Q.

†	I.	Conjugate	Elements
If	a	∈	G,	a	conjugate	of	a	is	any	element	of	the	form	xax−1,	where	x	∈	G.	(Roughly	speaking,	a	conjugate
of	a	is	any	product	consisting	of	a	sandwiched	between	any	element	and	its	inverse.)	Prove	each	of	the
following:
1	The	relation	“a	 is	equal	 to	a	conjugate	of	b”	 is	an	equivalence	relation	 in	G.	 (Write	a	∼	b	 for	“a	 is
equal	to	a	conjugate	of	b.”)

This	relation	∼	partitions	any	group	G	into	classes	called	conjugacy	classes.	(The	conjugacy	class
of	a	is	[a]	=	{xax−1:	x	∈	G}.)

For	any	element	a	∈	G,	the	centralizer	of	a,	denoted	by	Ca,	is	the	set	of	all	the	elements	in	G	which
commute	with	a.	That	is,

Ca	=	{x	∈	G:	xa	=	ax}	=	{x	∈	G:	xax−1	=	a}

Prove	the	following:
2	For	any	a	∈	G,	Ca	is	a	subgroup	of	G.
3	x−1ax	=	y−1ay	iff	xy−1	commutes	with	a	iff	xy−1	∈	Ca.
4	x−1ax	=	y−1ay	iff	Cax	=	Cay.	(HINT:	Use	Exercise	El.)
5	There	is	a	one-to-one	correspondence	between	the	set	of	all	the	conjugates	of	a	and	the	set	of	all	 the
cosets	of	Ca.	(HINT:	Use	part	4.)
6	The	number	of	distinct	conjugates	of	a	is	equal	to	(G:	Ca),	the	index	of	Ca	in	G.	Thus,	the	size	of	every
conjugacy	class	is	a	factor	of	|G.

†	J.	Group	Acting	on	a	Set
Let	A	be	a	set,	and	let	G	be	any	subgroup	of	SA.	G	is	a	group	of	permutations	of	A;	we	say	it	is	a	group
acting	on	the	set	A.	Assume	here	that	G	is	a	finite	group.	If	u	∈	A,	the	orbit	of	u	(with	respect	to	G)	is	the
set

O(u)	=	{g(u):	g	∈	G}
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CHAPTER

SEVEN
GROUPS	OF	PERMUTATIONS

In	this	chapter	we	continue	our	discussion	of	functions,	but	we	confine	our	discussions	to	functions	from	a
set	to	itself.	In	other	words,	we	consider	only	functions	f	:	A	→	A	whose	domain	is	a	set	A	and	whose
range	is	in	the	same	set	A.

To	begin	with,	we	note	that	any	two	functions	f	and	g	(from	A	to	A)	are	equal	 if	and	only	if	f(x)	=
g(x)	for	every	element	x	in	A.

If	f	and	g	are	functions	from	A	to	A,	their	composite	f	∘	g	is	also	a	function	from	A	to	A.	We	recall	that
it	is	the	function	defined	by

[f	∘	g](x)	=	f(g(x))	 for	every	x	in	A	 (1)

It	is	a	very	important	fact	that	the	composition	of	functions	is	associative.	Thus,	if	f,	g,	and	h	are	 three
functions	from	A	to	A,	then

f	∘	(g	∘	h)	=	(f	∘	g)	∘	h

To	prove	that	the	functions	f	∘	(g	∘	h)	and	(f	∘	g)	∘	h	are	equal,	one	must	show	that	for	every	element	x	in
A,

{f	∘	[g	∘	h]}(x)	=	{[f	∘	g]	∘	h}(x)

We	get	this	by	repeated	use	of	Equation	(1):

By	 a	 permutationof	 a	 set	 A	 we	 mean	 a	 bijective	 function	 from	 A	 to	 A,	 that	 is,	 a	 one-to-one
correspondence	between	A	and	itself.	In	elementary
algebra	we	learned	to	think	of	a	permutation	as	a	rearrangement	of	the	elements	of	a	set.	Thus,	for	the	set
{1,2,3,4,5},	 we	 may	 consider	 the	 rearrangement	 which	 changes	 (1,2,3,4,5)	 to	 (3,2,1,5,4);	 this
rearrangement	may	be	identified	with	the	function

Unit-II   Homomorphism



which	 is	 obviously	 a	 one-to-one	 correspondence	 between	 the	 set	 {1,2,3,4,5}	 and	 itself.	 It	 is	 clear,
therefore,	that	there	is	no	real	difference	between	the	new	definition	of	permutation	and	the	old.	The	new
definition,	however,	is	more	general	in	a	very	useful	way	since	it	allows	us	to	speak	of	permutations	of
sets	A	even	when	A	has	infinitely	many	elements.

In	Chapter	6	we	saw	that	the	composite	of	any	two	bijective	functions	is	a	bijective	function.	Thus,
the	composite	of	any	 two	permutations	of	A	 is	a	permutation	of	A.	 It	 follows	 that	we	may	 regard	 the
operation	∘	of	composition	as	an	operation	on	the	set	of	all	 the	permutations	of	A.	We	have	just	seen
that	composition	is	an	associative	operation.	Is	there	a	neutral	element	for	composition?

For	any	set	A,	the	identity	function	on	A,	symbolized	by	εA	or	simply	ε,	is	the	function	x	→	x	which
carries	every	element	of	A	to	itself.	That	is,	it	is	defined	by

ε(x)	=	x	 for	every	element	 x	∈	A

It	is	easy	to	see	that	ε	is	a	permutation	of	A	(it	is	a	one-to-one	correspondence	between	A	and	itself);	and
if	f	is	any	other	permutation	of	A,	then

f	∘	ε	=	f	 and	 ε	∘	f	=	f

The	first	of	these	equations	asserts	that	[f	∘	ε](x)	=	f(x)	for	every	element	x	in	A,	which	is	quite	obvious,
since	[f	∘	ε](x)=	f(ε(x))=	f(x).	The	second	equation	is	proved	analogously.

We	saw	in	Chapter	6	that	the	inverse	of	any	bijective	function	exists	and	is	a	bijective	function.	Thus,
the	inverse	of	any	permutation	of	A	is	a	permutation	of	A.	Furthermore,	if	f	is	any	permutation	of	A	and	f
−1	is	its	inverse,	then

f−1	∘	f=	ε	 and	 f	∘	f−1	=	ε

The	first	of	these	equations	asserts	that	for	any	element	x	in	A,

[f−1	∘	f](x)	=	ε(x)

that	is,	f−1(f(x))	=	x:

This	 is	 obviously	 true,	 by	 the	 definition	 of	 the	 inverse	 of	 a	 function.	 The	 second	 equation	 is	 proved
analogously.

Let	us	recapitulate:	The	operation	∘	of	composition	of	functions	qualifies	as	an	operation	on	the	set
of	all	the	permutations	of	A.	This	operation	is	associative.	There	is	a	permutation	ε	such	that	ε	∘	f	=	f	and	f



∘	ε	=	f	for	any	permutation	f	of	A.	Finally,	for	every	permutation	f	of	A	there	is	another	permutation	f−1	of
A	such	that	f	∘	f−1	=	ε	and	f−1	∘	f	=	ε.	Thus,	the	set	of	all	the	permutations	of	A,	with	the	operation	∘	of
composition,	is	a	group.

For	any	set	A,	 the	group	of	all	 the	permutations	of	A	 is	called	the	symmetric	group	on	A,	and	 it	 is
represented	by	the	symbol	SA.	For	any	positive	integer	n,	the	symmetric	group	on	the	set	{1,	2,	3,.	.	.,	n}	is
called	the	symmetric	group	on	η	elements,	and	is	denoted	by	Sn.

Let	us	take	a	look	at	S3.	First,	we	list	all	the	permutations	of	the	set	{1,2,3}:

This	notation	for	functions	was	explained	on	page	57;	for	example,

is	the	function	such	that	β(1)	=	3,	β(2)	=	1,	and	β(3)	=	2.	A	more	graphic	way	of	representing	the	same
function	would	be

The	operation	on	elements	of	S3	is	composition.	To	find	α	∘	β,	we	note	that

Thus

Note	that	in	α	∘	β,	β	is	applied	first	and	α	next.	A	graphic	way	of	representing	this	is

The	other	combinations	of	elements	of	S3	may	be	computed	in	the	same	fashion.	The	student	should



check	the	following	table,	which	is	the	table	of	the	group	S3:

By	a	group	of	permutations	we	mean	any	group	SA	or	Sn,	or	any	subgroup	of	one	of	these	groups.
Among	the	most	interesting	groups	of	permutations	are	the	groups	of	symmetries	of	geometric	figures.	We
will	see	how	such	groups	arise	by	considering	the	group	of	symmetries	of	the	square.

We	may	think	of	a	symmetry	of	the	square	as	any	way	of	moving	a	square	to	make	it	coincide	with	its
former	position.	Every	time	we	do	this,	vertices	will	coincide	with	vertices,	so	a	symmetry	is	completely
described	by	its	effect	on	the	vertices.

Let	us	number	the	vertices	as	in	the	following	diagram:

The	most	obvious	symmetries	are	obtained	by	rotating	 the	square	clockwise	about	 its	center	P,	 through
angles	of	90°,	180°,	and	270°,	respectively.	We	indicate	each	symmetry	as	a	permutation	of	the	vertices;
thus	a	clockwise	rotation	of	90°	yields	the	symmetry

for	 this	 rotation	 carries	 vertex	 1	 to	 2,2	 to	 3,	 3	 to	 4,	 and	4	 to	 1.	Rotations	 of	 180°	 and	270°	 yield	 the
following	symmetries,	respectively:

The	remaining	symmetries	are	flips	of	the	square	about	its	axes	A,	B,	C,	and	D:



For	 example,	when	we	 flip	 the	 square	 about	 the	 axis	A,	 vertices	 1	 and	3	 stay	 put,	 but	 2	 and	4	 change
places;	so	we	get	the	symmetry

In	the	same	way,	the	other	flips	are

and

One	last	symmetry	is	the	identity

which	leaves	the	square	as	it	was.
The	operation	on	symmetries	is	composition:	Ri	∘	Rj	is	the	result	of	first	performing	Rj,	and	then	Ri.

For	example,	R1	∘	R4	is	the	result	of	first	flipping	the	square	about	its	axis	A,	then	rotating	it	clockwise
90°:

Thus,	the	net	effect	is	the	same	as	if	the	square	had	been	flipped	about	its	axis	C.
The	eight	 symmetries	of	 the	square	 form	a	group	under	 the	operation	∘	 of	 composition,	 called	 the

group	of	symmetries	of	the	square.
For	 every	 positive	 integer	 n	 ≥	 3,	 the	 regular	 polygon	 with	 n	 sides	 has	 a	 group	 of	 symmetries,

symbolized	by	Dn,	which	may	be	found	as	we	did	here.	These	groups	are	called	the	dihedral	groups.	For
example,	the	group	of	the	square	is	D4,	the	group	of	the	pentagon	is	D5,	and	so	on.



Every	plane	figure	which	exhibits	regularities	has	a	group	of	symmetries.	For	example,	the	following
figure,	 has	 a	 group	of	 symmetries	 consisting	of	 two	 rotations	 (180°	 and	360°)	 and	 two	 flips	 about	 the
indicated	axes.	Artificial	as	well	as	natural	objects	often	have	a	surprising	number	of	symmetries.

Far	more	complicated	than	the	plane	symmetries	are	the	symmetries	of	objects	in	space.	Modern-day
crystallography	 and	 crystal	 physics,	 for	 example,	 rely	 very	 heavily	 on	 knowledge	 about	 groups	 of
symmetries	of	three-dimensional	shapes.

Groups	of	symmetry	are	widely	employed	also	in	the	theory	of	electron	structure	and	of	molecular
vibrations.	In	elementary	particle	physics,	such	groups	have	been	used	to	predict	the	existence	of	certain
elementary	particles	before	they	were	found	experimentally!

Symmetries	 and	 their	 groups	 arise	 everywhere	 in	 nature:	 in	 quantum	 physics,	 flower	 petals,	 cell
division,	the	work	habits	of	bees	in	the	hive,	snowflakes,	music,	and	Romanesque	cathedrals.

EXERCISES

A.	Computing	Elements	of	S6
1	Consider	the	following	permutations	f,	g,	and	h	in	S6:

Compute	the	following:

2	f	°(g	∘	h)	=
3	g	∘	h−1	=



4	h	∘	g−1°	f−1	=
5	g	∘	g	∘	g	=

B.	Examples	of	Groups	of	Permutations
1	Let	G	be	the	subset	of	S4	consisting	of	the	permutations

Show	that	G	is	a	group	of	permutations,	and	write	its	table:

2	List	the	elements	of	the	cyclic	subgroup	of	S6	generated	by

3	Find	a	four-element	abelian	subgroup	of	S5.	Write	its	table.
4	The	subgroup	of	S5	generated	by

has	six	elements.	List	them,	then	write	the	table	of	this	group:

C.	Groups	of	Permutations	of	



In	each	of	the	following,	A	is	a	subset	of	 	and	G	is	a	set	of	permutations	of	A.	Show	that	G	is	a	subgroup
of	SA,	and	write	the	table	of	G.
1	A	is	the	set	of	all	x	∈	 	such	that	x	≠	0,1.	G	=	{ε,	f,	g},	where	f(x)	=	1	/(1	−	x)	and	g(x)	=	(x	−	1)	/x.
2	A	is	the	set	of	all	the	nonzero	real	numbers.	G	=	{ε,	f,	g,	h},	where	f(x)	=	1/x,	g(x)	=	−x,	and	h(x)	=	–
1/x.
3	A	is	the	set	of	all	the	real	numbers	x	≠	0,	1.	G	=	{ε,	f,	g,	h,	k},	where	f(x)	=	1	−	x,	g(x)	=	1/x,	h(x)	=
1/(1	−	x),	j(x)	=	(x	−	1)/x,	and	k(x)	=	x/(x	−	1).
4	A	is	the	set	of	all	the	real	numbers	x	≠	0,1,2.	G	is	the	subgroup	of	SA	generated	by	f(x)	=	2	−	x	and	g(x)
=	2/x.	(G	has	eight	elements.	List	them,	and	write	the	table	of	G.)

†	D.	A	Cyclic	Group	of	Permutations
For	each	integer	n,	define	fn	by	fn(x)	=	x	+	n.
1	Prove:	For	each	integer	n,	fn	is	a	permutation	of	 ,	that	is,	fn	∈	SR.
2	Prove	that	fn	∘	fm	=	fn	+	m	and	 .
3	Let	G	=	{fn	:	n	∈	 }.	Prove	that	G	is	a	subgroup	of	SR.
4	Prove	that	G	is	cyclic.	(Indicate	a	generator	of	G.)

†	E.	A	Subgroup	of	S
For	any	pair	of	real	numbers	a	≠	0	and	b,	define	a	function	fa,b	as	follows:

fa,b	(x)	=	ax	+	b

1	Prove	that	fa,	b	is	a	permutation	of	 ,	that	is,	fa,b	∈	S .
2	Prove	that	fa,b	∘	fc,d	=	fac,	ad	+	b.
3	Prove	that	 .
4	Let	G	=	{fa,b	:	a	∈	 ,	b	∈	 ,	a	≠	0}.	Show	that	G	is	a	subgroup	of	SR.

F.	Symmetries	of	Geometric	Figures
1	Let	G	be	the	group	of	symmetries	of	the	regular	hexagon.	List	the	elements	of	G	(there	are	12	of	them),
then	write	the	table	of	G.



2	Let	G	be	the	group	of	symmetries	of	the	rectangle.	List	the	elements	of	G	(there	are	four	of	them),	and
write	the	table	of	G.
3	List	the	symmetries	of	the	letter	Z	and	give	the	table	of	this	group	of	symmetries.	Do	the	same	for	the
letters	V	and	H.
4	List	the	symmetries	of	the	following	shape,	and	give	the	table	of	their	group.

(Assume	that	the	three	arms	are	of	equal	length,	and	the	three	central	angles	are	equal.)

G.	Symmetries	of	Polynomials
Consider	the	polynomial	p	=	(x1	−	x2)2	+	(x3	−	x4)2.	It	is	unaltered	when	the	subscripts	undergo	any	of	the
following	permutations:

For	example,	the	first	of	these	permutations	replaces	p	by

(x2	−	x1)2	+	(x3	−	x4)2

the	second	permutation	replaces	p	by	(x1	−	x2)2	+	(x4	−	x3)2;	and	so	on.	The	symmetries	of	a	polynomial
ρ	are	all	the	permutations	of	the	subscripts	which	leave	ρ	unchanged.	They	form	a	group	of	permutations.

List	the	symmetries	of	each	of	the	following	polynomials,	and	write	their	group	table.
1 p	=	x1x2	+	x2x3
2 p	=	(x1	−	x2)(x2	−	x3)(x1	−	x3)
3 p	=	x1x2	+	x2x3	+	x1x3
4 p	=	(x1	−	x2)(x3	−	x4)

H.	Properties	of	Permutations	of	a	Set	A
1	Let	A	be	a	set	and	a	∈	A.	Let	G	be	the	subset	of	SA	consisting	of	all	the	permutations	f	of	A	such	that	f(a)
=	a.	Prove	that	G	is	a	subgroup	of	SA.
#	2	If	f	is	a	permutation	of	A	and	a	∈	A,	we	say	that	f	moves	a	if	f	(a)	≠	a.	Let	A	be	an	infinite	set,	and	let



G	be	the	subset	of	SA	which	consists	of	all	the	permutations	f	of	A	which	move	only	α	finite	number	of
elements	of	A.	Prove	that	G	is	a	subgroup	of	SA.

3	Let	A	be	a	finite	set,	and	B	a	subset	of	A.	Let	G	be	the	subset	of	SA	consisting	of	all	the	permutations	f	of
A	such	that	f(x)	∈	B	for	every	x	∈	B.	Prove	that	G	is	a	subgroup	of	SA.
4	Give	an	example	to	show	that	the	conclusion	of	part	3	is	not	necessarily	true	if	A	is	an	infinite	set.

I.	Algebra	of	Kinship	Structures	(Anthropology)
Anthropologists	have	used	groups	of	permutations	to	describe	kinship	systems	in	primitive	societies.	The
algebraic	model	for	kinship	structures	described	here	is	adapted	from	An	Anatomy	of	Kinship	by	H.	C.
White.	The	model	is	based	on	the	following	assumptions,	which	are	widely	supported	by	anthropological
research:
(i) The	entire	population	of	the	society	is	divided	into	clans.	Every	person	belongs	tö	one,	and	only	one,

clan.	Let	us	call	the	clans	k1,	k2,...,	kn.
(ii) In	every	clan	ki,	all	the	men	must	choose	their	wives	from	among	the	women	of	a	specified	clan	kj.

We	symbolize	this	by	writing	w(ki)	=	kj.
(iii) Men	from	two	different	clans	cannot	marry	women	from	the	same	clan.	That	is,	if	ki	≠	kj,	then	w(ki)

≠	w(kj).
(iv) All	the	children	of	a	couple	are	assigned	to	some	fixed	clan.	So	if	a	man	belongs	to	clan	ki,	all	his

children	belong	to	a	clan	which	we	symbolize	by	c(ki).
(v) Children	whose	fathers	belong	to	different	clans	must	themselves	be	in	different	clans.	That	is,	if	ki	≠

kj,	then	c(ki)	≠	c(kj).
(vi) A	man	cannot	marry	a	woman	of	his	own	clan.	That	is,	w(ki)	≠	ki.

Now	let	K	=	{k1,k2,.	.	.,	kn}	be	the	set	of	all	the	distinct	clans.	By	(ii),	w	is	a	function	from	K	to	K,
and	by	(iv),	c	 is	a	function	from	K	to	K.	By	(iii),	w	 is	an	 injective	function;	hence	(see	Exercise	F2	of
Chapter	6)	w	is	a	permutation	of	K.	Likewise,	by	(v),	c	is	a	permutation	of	K.

Let	G	be	the	group	of	permutations	generated	by	c	and	w;	that	is,	G	consists	of	c,	w,	c−1,	w−1,	and	all
possible	composites	which	can	be	formed	from	these	—for	example,	c	∘	w	∘	w	∘	c−1	∘	w−1.	Clearly	 the
identity	function	ε	is	in	G	since,	for	example,	ε	=	c	∘	c−1.	Here	are	two	final	assumptions:
(vii) Every	person,	in	any	clan,	has	a	relation	in	every	other	clan.	This	means	that	for	any	ki	and	kj	in	K,

there	is	a	permutation	α	in	G	such	that	α(ki)	=	kj
(viii) Rules	of	kinship	apply	uniformly	to	all	clans.	Thus,	for	any	α	and	β	in	G,	if	α(kj)	=	β(kj)	for	some

specific	clan	kj,	it	necessarily	follows	that	α(ki)	=	β(ki)	for	every	clan	ki
Prove	parts	1–3:

1	Let	α	∈	G.	If	α(ki)	=	ki	for	any	given	ki,	then	α	=	ε.
2	Let	a	α	G.	There	is	a	positive	integer	m	≤	n	such	that	αm	=	ε.
[αm	=	α	∘	α	∘	···	∘	α	(m	factors	of	α).	HINT:	Consider	α(k1),	α2(k1),	etc.]
3	The	group	G	consists	of	exactly	n	permutations.
Explain	parts	4–9.
4	If	a	person	belongs	to	clan	ki,	that	person’s	father	belongs	to	clan	c−1(ki).	If	a	woman	belongs	to	clan	kj,



her	husband	belongs	to	clan	w−1(kj).
5	If	any	man	is	in	the	same	clan	as	his	son,	then	c	=	ε.	If	any	woman	is	in	the	same	clan	as	her	son,	then	c	=
w.
6	 If	 a	 person	belongs	 to	 clan	ki,	 the	 son	 of	 his	mother’s	 sister	 belongs	 to	 clan	 c	∘	w−1	 ∘	w	 ∘	 c−1(ki).
Conclude	that	marriage	between	matrilateral	parallel	cousins	(marriage	between	a	woman	and	the	son	of
her	mother’s	sister)	is	prohibited.
7	Marriage	between	a	man	and	the	daughter	of	his	father’s	sister	is	prohibited.
8	If	matrilateral	cross-cousins	may	marry	(that	is,	a	woman	may	marry	the	son	of	her	mother’s	brother),
then	c	∘	w	=	w−1	∘	c.
9	If	patrilateral	cross-cousins	may	marry	(a	woman	may	marry	the	son	of	her	father’s	sister),	then	c	and	w
−1	commute.



CHAPTER

EIGHT

PERMUTATIONS	OF	A	FINITE	SET

Permutations	 of	 finite	 sets	 are	 used	 in	 every	 branch	 of	 mathematics—for	 example,	 in	 geometry,	 in
statistics,	 in	 elementary	 algebra—and	 they	 have	 a	 myriad	 of	 applications	 in	 science	 and	 technology.
Because	 of	 their	 practical	 importance,	 this	 chapter	 will	 be	 devoted	 to	 the	 study	 of	 a	 few	 special
properties	of	permutations	of	finite	sets.

If	n	is	a	positive	integer,	consider	a	set	of	n	elements.	It	makes	no	difference	which	specific	set	we
consider,	just	as	long	as	it	has	n	elements;	so	let	us	take	the	set	{1,2,…,	n).	We	have	already	seen	that	the
group	of	all	the	permutations	of	this	set	is	called	the	symmetric	group	on	η	elements	and	is	denoted	by	Sn.
In	the	remainder	of	this	chapter,	when	we	say	“permutation”	we	will	invariably	mean	a	permutation	of	the
set	{1,2,…,	n}	for	an	arbitrary	positive	integer	n.

One	 of	 the	 most	 characteristic	 activities	 of	 science	 (any	 kind	 of	 science)	 is	 to	 try	 to	 separate
complex	 things	 into	 their	 simplest	 component	 parts.	This	 intellectual	 “divide	 and	 conquer”	helps	 us	 to
understand	complicated	processes	and	solve	difficult	problems.	The	savvy	mathematician	never	misses
the	chance	of	doing	this	whenever	the	opportunity	presents	itself.	We	will	see	now	that	every	permutation
can	be	decomposed	into	simple	parts	called	“cycles,”	and	these	cycles	are,	in	a	sense,	the	most	basic	kind
of	permutations.

We	begin	with	an	example:	take,	for	instance,	the	permutation

and	look	at	how	f	moves	the	elements	in	its	domain:



Notice	how	f	decomposes	its	domain	into	three	separate	subsets,	so	that,	in	each	subset,	the	elements	are
permuted	 cyclically	 so	 as	 to	 form	 a	 closed	 chain.	 These	 closed	 chains	 may	 be	 considered	 to	 be	 the
component	parts	of	the	permutation;	they	are	called	“cycles.”	(This	word	will	be	carefully	defined	in	a
moment.)	Every	permutation	breaks	down,	just	as	this	one	did,	into	separate	cycles.

Let	a1,	a2,	…,	as	be	distinct	elements	of	the	set	{1,2,…,	n}.	By	the	cycle	(a1a2	…	as)	we	mean	the
permutation

of	{1,2,…,	n}	which	carries	a1	to	a2,	a2	to	a3,…,	as−1	to	as,	and	as	to	a1,	while	leaving	all	the	remaining
elements	of	{1,2,…,n}	fixed.

For	instance,	in	s6,	the	cycle	(1426)	is	the	permutation

In	S5,the	cycle	(254)	is	the	permutation

Because	cycles	are	permutations,	we	may	form	the	compositeof	two	cycles	in	the	usual	manner.	The
composite	 of	 cycles	 is	 generally	 called	 their	 productand	 it	 is	 customary	 to	 omit	 the	 symbol	 °.	 For
example,	in	S5,

Actually,	it	is	very	easy	to	compute	the	product	of	two	cycles	by	reasoning	in	the	following	manner:	Let	us
continue	with	the	same	example,

Remember	that	the	permutation	on	the	right	is	applied	first,	and	the	permutation	on	the	left	is	applied	next.



Now,

β	carries	1	to	2,	and	α	carries	2	to	4;	hence	αβ	carries	1	to	4.
β	carries	2	to	4,	and	α	carries	4	to	5;	hence	αβ	carries	2	to	5	.
β	leaves	3	fixed	and	so	does	α	;	hence	αβ	leaves	3	fixed.
β	carries	4	to	1	and	α	leaves	1	fixed,	so	αβ	carries	4	to	1.
β	leaves	5	fixed	and	α	carries	5	to	2;	hence	αβ	carries	5	to	2.

If	(a1a2…as)	is	a	cycle,	the	integer	s	is	called	its	length;	thus,	(a1a2…as)	is	a	cycle	of	length	s.	For
example,	(1532)	is	a	cycle	of	length	4.

If	two	cycles	have	no	elements	in	common	they	are	said	to	be	disjoint.	For	example,	(132)	and	(465)
are	disjoint	cycles,	but	(132)	and	(453)	are	not	disjoint.	Disjoint	cycles	commute:	that	is,	if	(a1…ar)	and
(bl…bs)	are	disjoint,	then

It	is	easy	to	see	why	this	is	true:	α	moves	the	a’s	but	not	the	fc’s,	while	β	moves	the	ft’s	but	not	the	a’s.
Thus,	if	β	carries	bi	to	bj,	then	αβ	does	the	same,	and	so	does	βα	Similarly,	if	a	carries	ah	to	ak	then	βα
does	the	same,	and	so	does	αβ.

We	are	now	ready	 to	prove	what	was	asserted	at	 the	beginning	of	 this	chapter:	Every	permutation
can	be	decomposed	into	cycles—in	fact,	into	disjoint	cycles.	More	precisely,	we	can	state	the	following:

Theorem	1	Every	permutation	is	either	the	identity,	a	single	cycle,	or	a	product	of	disjoint	cycles.
We	begin	with	an	example,	because	the	proof	uses	the	same	technique	as	the	example.	Consider	the

permutation

and	let	us	write	f	as	a	product	of	disjoint	cycles.	We	begin	with	1	and	note	that

We	have	come	a	complete	circle	and	found	our	first	cycle,	which	is	(135).	Next,	we	take	the	first	number
which	hasn’t	yet	been	used,	namely,	2.	We	see	that

Again	 we	 have	 come	 a	 complete	 circle	 and	 found	 another	 cycle,	 which	 is	 (24).	 The	 only	 remaining
number	is	6,	which/leaves	fixed.	We	are	done:

f	=	(135)(24)

The	proof	for	any	permutation	f	follows	the	same	pattern	as	the	example.	Let	a1	be	the	first	number
in	{1,…,	n)	such	that	f(a1)≠	a1.	Let	a2	=	f(a1),	a3	=	f(a2),	and	so	on	in	succession	until	we	come	to	our
first	repetition,	that	is,	until	f(ak)	is	equal	to	one	of	the	numbers	a1,	a2,…,	ak−1.	Say	f(ak)	=	ai	If	ai	is	not



a1,we	have

so	ai	is	the	image	of	two	elements,	ak	and	ai−1,	which	is	impossible	because	f	is	bijective.	Thus,	ai	=	a1,
and	therefore	f(ak)	=	a1.We	have	come	a	complete	circle	and	found	our	first	cycle,	namely,	(a1a2	···	ak).

Next,	let	b1	be	the	first	number	which	has	not	yet	been	examined	and	such	that	f(b1)	≠	b1.	We	let	b2	=
f(b1),	b3	=	 f(b2),	 and	proceed	as	before	 to	obtain	 the	next	cycle,	 say	 (b1	 ···	bt).	Obviously	(b1	 ···	bt)	 is
disjoint	from	(a1	…,	ak).	We	continue	this	process	until	all	the	numbers	in	{1,	…,	n)	have	been	exhausted.
This	concludes	the	proof.

Incidentally,	it	is	easy	to	see	that	this	product	of	cycles	is	unique,	except	for	the	order	of	the	factors.
Now	our	curiosity	may	prod	us	to	ask:	once	a	permutation	has	been	written	as	a	product	of	disjoint

cycles,	has	it	been	simplified	as	much	as	possible?	Or	is	there	some	way	of	simplifying	it	further?
A	cycle	of	length	2	is	called	a	transposition.	In	other	words,	a	transposition	is	a	cycle	(ai,	aj)	which

interchanges	 the	 two	numbers	ai	 and	aj.It	 is	 a	 fact	 both	 remarkable	 and	 trivial	 that	 every	 cycle	 can	be
expressed	as	a	product	of	one	or	more	transpositions.	In	fact,

(a1a2	…	ar)	=	(arar−1)(arar−2)	…	(ara3)(ara2ara1)

which	may	be	verified	by	direct	computation.	For	example,

(12345)	=	(54)(53)(52)(51)

However,	 there	 is	more	 than	one	way	 to	write	 a	given	permutation	as	 a	product	of	 transpositions.	For
example,	(12345)	may	also	be	expressed	as	a	product	of	transpositions	in	the	following	ways:

as	well	as	in	many	other	ways.
Thus,	 every	 permutation,	 after	 it	 has	 been	 decomposed	 into	 disjoint	 cycles,	may	 be	 broken	 down

further	 and	 expressed	 as	 a	 product	 of	 transpositions.	 However,	 the	 expression	 as	 a	 product	 of
transpositions	is	not	unique,	and	even	the	number	of	transpositions	involved	is	not	unique.

Nevertheless,	when	a	permutation	π	 is	written	as	a	product	of	 transpositions,	one	 property	of	 this
expression	is	unique:	the	number	of	transpositions	involved	is	either	always	even	or	always	odd.	 (This
fact	 will	 be	 proved	 in	 a	 moment.)	 For	 example,	 we	 have	 just	 seen	 that	 (12345)	 can	 be	 written	 as	 a
product	of	four	transpositions	and	also	as	a	product	of	six	transpositions;	it	can	be	written	in	many	other
ways,	but	always	as	a	product	of	an	even	number	of	transpositions.	Likewise,	(1234)	can	be	decomposed
in	many	ways	into	transpositions,	but	always	an	odd	number	of	transpositions.

A	permutation	is	called	even	if	it	is	a	product	of	an	even	number	of	transpositions,	and	odd	if	it	is	a
product	of	an	odd	number	of	transpositions.	What	we	are	asserting,	therefore,	is	that	every	permutation	is
unambiguously	either	odd	or	even.

This	may	seem	like	a	pretty	useless	fact—but	actually	the	very	opposite	is	true.	A	number	of	great
theorems	of	mathematics	 depend	 for	 their	 proof	 (at	 that	 crucial	 step	when	 the	 razor	 of	 logic	makes	 its



decisive	cut)	on	none	other	but	the	distinction	between	even	and	odd	permutations.
We	begin	by	showing	that	the	identity	permutation,	ε,	is	an	even	permutation.

Theorem	 2	 No	 matter	 how	 ε	 is	 written	 as	 a	 product	 of	 transpositions,	 the	 number	 of
transpositions	is	even.

PROOF:	Let	t1,	t2,	…,	tm	be	m	transpositions,	and	suppose	that

ε	=	t1t2	…	tm	 (1)

We	aim	to	prove	that	ε	can	be	rewritten	as	a	product	of	m	−	2	transpositions.	We	will	then	be	done:	for
if	ε	were	equal	to	a	product	of	an	odd	number	of	transpositions,	and	we	were	able	to	rewrite	this	product
repeatedly,	 each	 time	with	 two	 fewer	 transpositions,	 then	 eventually	we	would	get	 ε	 equal	 to	 a	 single
transposition	(ab),	and	this	is	impossible.

Let	x	be	any	numeral	appearing	in	one	of	the	transpositions	t2,	…,	tm.	Let	tk	=	(xa),	and	suppose	tk	is
the	last	transposition	in	Equation	(1)	(reading	from	left	to	right)	in	which	x	appears:

Now,	 tk−1	 is	 a	 transposition	which	 is	 either	 equal	 to	 (xa),	 or	 else	 one	 or	 both	 of	 its	 components	 are
different	from	χ	and	a.	This	gives	four	possibilities,	which	we	now	treat	as	four	separate	cases.

Case	I 	tk−1	=	(xa).
Then	 tk−1tk	 =	 (xa)(xa),	 which	 is	 equal	 to	 the	 identity	 permutation.	 Thus,	 tk−1tk	may	 be	 removed

without	changing	Equation	(1).	As	a	result,	ε	is	a	product	of	m	−	2	transpositions,	as	required.
Case	II	 tk−1	=	(xb)	where	b	≠	x,a.
Then	 tk−1)tk	=	(xb)(xa)

But	 (xb)(xa)	=	(xa)(ab)
We	replace	tk−1	tk	by	(xa)(ab)	in	Equation	(1).	As	a	result,	the	last	occurrence	of	x	is	one	position	further
left	than	it	was	at	the	start.

Case	III	tk−1	=	(ca),where	c	≠x,a.
Then	 tk−1	tk	=	(ca)(xa)

But	 (ca)(xa)	=	(xc)(ca)
We	replace	tk−1	tk	by	(xa)(bc)	in	Equation	(1),	as	in	Case	II.

Case	IV	tk−1	=	(bc),	where	b	≠	x,	a	and	c	≠	x,	a
Then	 tk−tk	=	(bc)(xa)

But	 (bc)(xa)	=	(xa)(bc)
We	replace	tk−1	tk	by	(xa)(bc)	in	Equation	(1),	as	in	Cases	II	and	III.

In	Case	I,	we	are	done.	In	Cases	II,	III,	and	IV,	we	repeat	the	argument	one	or	more	times.	Each	time,
the	last	appearance	of	χ	is	one	position	further	left	than	the	time	before.	This	must	eventually	lead	to	Case
I.	For	otherwise,	we	end	up	with	the	last	(hence	the	only)	appearance	of	x	being	in	t1.This	cannot	be:	for



if	t1	=	(xa)	and	x	does	not	appear	in	t2,	…,	tm,	then	ε	(x)	=	a,	which	is	impossible!	■
(The	box	■	is	used	to	mark	the	ending	of	a	proof.)
Our	conclusion	is	contained	in	the	next	theorem.
Theorem	3	If	π	∈	Sn,	then	π	cannot	be	both	an	odd	permutation	and	an	even	permutation.
Suppose	π	can	be	written	as	the	product	of	an	even	number	of	transpositions,	and	differently	as	the

product	of	an	odd	number	of	 transpositions.	Then	the	same	would	be	 true	for	π−1	But	ε	=	π°	π−1:	 thus,
writing	π−1	 as	 a	 product	 of	 an	 even	number	of	 transpositions	 and	π	 as	 a	product	of	 an	odd	number	of
transpositions,	 we	 get	 an	 expression	 for	 ε	 as	 a	 product	 of	 an	 odd	 number	 of	 transpositions.	 This	 is
impossible	by	Theorem	2.

The	set	of	all	the	even	permutations	in	Sn	is	a	subgroup	of	Sn.	It	is	denoted	by	An,	and	is	called	the
alternating	group	on	the	set	{1,	2,	…,	n}.

EXERCISES

A.	Practice	in	Multiplying	and	Factoring	Permutations
1	Compute	each	of	the	following	products	in	S9.	(Write	your	answer	as	a	single	permutation.)

(a)	(145)(37)(682)
(b)	(17)(628)(9354)
(c)	(71825)(36)(49)
(d)	(12)(347)

#	(e)	(147)(1678)(74132)
(f)	(6148)(2345)(12493)

2	Write	each	of	the	following	permutations	in	s9	as	a	product	of	disjoint	cycles:

(a)

(b)

(c)

(d)

3	Express	each	of	the	following	as	a	product	of	transpositions	in	S8:
(a)	(137428)
(b)	(416)(8235)
(c)	(123)(456)(1574)
(d)	

4	If	α	=	(3714),	β	=	(123),	and	γ	=	(24135)	in	s7,	express	each	of	the	following	as	a	product	of	disjoint
cycles:

(a)	α−1	β
(b)	γ−l	α
(c)	α2β
(d)	β2αγ



(e)	γ4

#	(f)	γ3α−1

(g)	β−1γ
(h)	α−1γ2α

(NOTE:	α2	=	α	∘	α,	γ3	=	γ	∘	γ	∘	γ,	etc.)
5	 In	 S5,	 write	 (12345)	 in	 five	 different	 ways	 as	 a	 cycle,	 and	 in	 five	 different	 ways	 as	 a	 product	 of
transpositions.
6	In	S5,	express	each	of	the	following	as	the	square	of	a	cycle	(that	is,	express	as	α2	where	α	is	a	cycle):

(a)	(132)
(b)	(12345)
(c)	(13)(24)

B.	Powers	of
If	 π	 is	 any	permutation,	we	write	 π	∘	 π	=	π2,	π	∘	 π	∘	π	 =	π3,	 etc.	 The	 convenience	 of	 this	 notation	 is
evident.
1	Compute	α−1,	α2,	α3,	α4,	α5	where

(a)	α	=	(123)
(b)	α	=	(1234)
(c)	α	=	(123456).

In	the	following	problems,	let	α	be	a	cycle	of	length	s,	say	α	=	(α1α2	…αs).

#	2	 Describe	 all	 the	 distinct	 powers	 of	 α.	 How	many	 are	 there?	 Note	 carefully	 the	 connection	 with
addition	of	integers	modulo	s	(page	27).

3	Find	the	inverse	of	a,	and	show	that	α−1	=	αs

Prove	each	of	the	following:
#	4	α2	is	a	cycle	iff	s	is	odd.
5	If	s	is	odd,	α	is	the	square	of	some	cycle	of	length	α.	(Find	it.	HINT:	Show	α	=	αs+1.)
6	If	s	is	even,	say	s	=	2t,	then	α2	is	the	product	of	two	cycles	of	length	t.	(Find	them.)
7	If	s	is	a	multiple	of	k,	say	s	=	kt,	then	αk	is	the	product	of	k	cycles	of	length	t.
8	If	s	is	a	prime	number,	every	power	of	α	is	a	cycle.

C.	Even	and	Odd	Permutations
1	Determine	which	of	the	following	permutations	is	even,	and	which	is	odd.

(a)	

(b)	(71864)
(c)	(12)(76)(345)
(d)	(1276)(3241)(7812)
(e)	(123)(2345)(1357)

Prove	each	of	the	following:
2	(a)	The	product	of	two	even	permutations	is	even.



(b)	The	product	of	two	odd	permutations	is	even.
(c)	The	product	of	an	even	permutation	and	an	odd	permutation	is	odd.

3	(a)	A	cycle	of	length	l	is	even	if	l	is	odd.
(b)	A	cycle	of	length	l	is	odd	if	l	is	even.

4	(a)	If	α	and	β	are	cycles	of	length	/	and	ra,	respectively,	then	aß	is	even	or	odd	depending	on	whether	l
+	m	−	2	is	even	or	odd.
(b)	If	π	=	β1	…	βr	where	each	βi	is	a	cycle	of	length	li,	then	π	is	even	or	odd	depending	on	whether	l1	+

l2	+	…	+	lr	−	r	is	even	or	odd.

D.	Disjoint	Cycles
In	each	of	the	following,	let	α	and	β	be	disjoint	cycles,	say

α	=	(a1a2	…	as) 	and 	β	=	(b1b2	…	br)

Prove	parts	1−3:
1	For	every	positive	integer	n,	(αβ)n	=	αnβn.
2	If	αβ	=	ε,	then	α	=	ε	and	β	=	ε.
3	If	(αβ)t	=	ε,	then	αt	=	ε	and	βt	=	ε	(where	t	is	any	positive	integer).	(Use	part	2	in	your	proof.)
4	Find	a	transposition	γ	such	that	αβγ	is	a	cycle.
5	Let	γ	be	the	same	transposition	as	in	the	preceding	exercise.	Show	that	ay	β	and	γαβ	are	cycles.
6	Let	α	and	β	be	cycles	of	odd	length	(not	disjoint).	Prove	that	if	a2	=	β2,	then	α	=	β.

†	E.	Conjugate	Cycles
Prove	each	of	the	following	in	Sn:

1	Let	α	=	 (a1,	…,	as)	be	a	cycle	and	 let	π	be	a	permutation	 in	Sn.	Then	παπ−1	 is	 the	cycle	 (π(a1),	…,
π(as)).

If	α	 is	any	cycle	and	π	any	permutation,	παπ−1	 is	called	a	conjugate	of	α.	 In	 the	following	parts,	 let	π
denote	any	permutation	in	Sn.
#	2	Conclude	from	part	1:	Any	two	cycles	of	the	same	length	are	conjugates	of	each	other.
3	If	α	and	β	are	disjoint	cycles,	then	παπ−1	and	πβπ−1	are	disjoint	cycles.
4	Let	σ	be	a	product	α1	…	αt	of	t	disjoint	cycles	of	lengths	l1	…,	lt,	respectively.	Then	πσπ−1	 is	also	a
product	of	t	disjoint	cycles	of	lengths	l1,	…,	lt
5	Let	α1	and	α2	be	cycles	of	the	same	length.	Let	β1	and	β2	be	cycles	of	the	same	length.	Let	α1	and	β1	be
disjoint,	and	let	α2	and	β2	be	disjoint.	There	is	a	permutation	π	∈	Sn	such	that	α1β1	=	πα2β2π−1

†	F.	Order	of	Cycles
1	Prove	in	Sn:	If	α	=	(a1	…	as)	is	a	cycle	of	length	s,	then	αs	=	ε,	α2s	=	ε,	and	α3s	=	ε.	Is	αk	=	ε	for	any
positive	integer	k	<	s?	(Explain.)
If	α	is	any	permutation,	the	least	positive	integer	n	such	that	αn	=	ε	is	called	the	order	of	α.



2	Prove	in	Sn:	If	α	=	(α1	…	as)	is	any	cycle	of	length	s,	the	order	of	α	is	s.
3	Find	the	order	of	each	of	the	following	permutations:

(a)	(12)(345)
(b)	(12)(3456)
(c)	(1234)(56789)

4	What	is	the	order	of	αβ,	if	a	and	β	are	disjoint	cycles	of	lengths	4	and	6,	respectively?	(Explain	why.
Use	the	fact	that	disjoint	cycles	commute.)
5	What	is	the	order	of	αβ	if	α	and	β	are	disjoint	cycles	of	lengths	r	and	s,	respectively?	(Venture	a	guess,
explain,	but	do	not	attempt	a	rigorous	proof.)

†	G.	Even/Odd	Permutations	in	Subgroups	of	Sn
Prove	each	of	the	following	in	Sn	:
1	Let	α1,	…,	αr	be	distinct	even	permutations,	and	β	an	odd	permutation.	Then	α1β,	…,	αr	β	are	r	distinct
odd	permutations.	(See	Exercise	C2.)
2	If	β1,	…,βr	are	distinct	odd	permutations,	then	β1βl,	β1β2,	…,	βlβr	are	r	distinct	even	permutations.
3	In	Sn,	there	are	the	same	number	of	odd	permutations	as	even	permutations.	(HINT:	Use	part	1	to	prove
that	the	number	of	even	permutations	≤	is	the	number	of	odd	permutations.	Use	part	2	to	prove	the	reverse
of	that	inequality.)
4	 The	 set	 of	 all	 the	 even	 permutations	 is	 a	 subgroup	 of	 Sn.	 (It	 is	 denoted	 by	 An	 and	 is	 called	 the
alternating	group	on	n	symbols.)
5	Let	H	be	any	subgroup	of	Sn.	H	either	contains	only	even	permutations,	or	H	contains	the	same	number
of	odd	as	even	permutations.	(Use	parts	1	and	2.)

†	H.	Generators	of	An	and	Sn
Remember	that	in	any	group	G,	a	set	S	of	elements	of	G	is	said	to	generate	G	if	every	element	of	G	can	be
expressed	as	a	product	of	elements	in	S	and	inverses	of	elements	in	S.	(See	page	47.)
1	Prove	that	the	set	T	of	all	the	transpositions	in	Sn	generates	Sn.
#	2	Prove	that	the	set	T1	=	{(12),	(13),	…,	(1n)}	generates	Sn.
3	Prove	 that	every	even	permutation	 is	a	product	of	one	or	more	cycles	of	 length	3.	 [HINT:	 (13)(12)	=
(123);	(12)(34)	=	(321)(134).]	Conclude	that	the	set	U	of	all	cycles	of	length	3	generates	An.
4	Prove	that	the	set	U1	=	{(123),	(124),	…,(12n)}	generates	An.	[HINT:	(abc)	=	(1ca)(1ab),	(1ab)	=	(1b2)
(12a)(12b),	and	(1b2)	=	(12b)2.]
5	The	pair	of	cycles	(12)	and	(12	···	n)	generates	Sn.	[HINT:	(1	···	n)(12)(1…	n)−1	=	(23);	(12)(23)(12)	=
(13).]



CHAPTER

NINE

ISOMORPHISM

Human	perception,	as	well	as	the	“perception”	of	so-called	intelligent	machines,	is	based	on	the	ability	to
recognize	 the	same	structure	 in	different	guises.	 It	 is	 the	faculty	 for	discerning,	 in	different	 objects,	 the
same	relationships	between	their	parts.

The	dictionary	tells	us	that	two	things	are	“isomorphic”	if	they	have	the	same	structure.	The	notion
of	isomorphism—of	having	the	same	structure—is	central	to	every	branch	of	mathematics	and	permeates
all	of	abstract	reasoning.	It	is	an	expression	of	the	simple	fact	that	objects	may	be	different	in	substance
but	identical	in	form.

In	geometry	 there	are	 several	kinds	of	 isomorphism,	 the	simplest	being	congruence	and	similarity.
Two	geometric	figures	are	congruent	if	there	exists	a	plane	motion	which	makes	one	figure	coincide	with
the	other;	they	are	similar	if	there	exists	a	transformation	of	the	plane,	magnifying	or	shrinking	lengths	in	a
fixed	ratio,	which	(again)	makes	one	figure	coincide	with	the	other.

We	do	not	even	need	to	venture	into	mathematics	to	meet	some	simple	examples	of	isomorphism.	For
instance,	the	two	palindromes

are	different,	but	obviously	isomorphic;	indeed,	the	first	one	coincides	with	the	second	if	we	replace	M



by	R,	A	by	O,	and	D	by	T.
Here	is	an	example	from	applied	mathematics:	A	flow	network	is	a	set	of	points,	with	arrows	joining

some	 of	 the	 points.	 Such	 networks	 are	 used	 to	 represent	 flows	 of	 cash	 or	 goods,	 channels	 of
communication,	electric	circuits,	and	so	on.	The	flow	networks	(A)	and	(B),	below,	are	different,	but	can
be	shown	to	be	isomorphic.	Indeed,	(A)	can	be	made	to	coincide	with	(B)	if	we	superimpose	point	1	on
point	6,	point	2	on	point	5,	point	3	on	point	8,	and	point	4	on	point	7.	(A)	and	(B)	 then	coincide	 in	 the
sense	of	having	the	same	points	joined	by	arrows	in	the	same	direction.	Thus,	network	(A)	is	transformed
into	network	(B)	if	we	replace	points	1	by	6,	2	by	5,	3	by	8,	and	4	by	7.	The	one-to-one	correspondence
which	carries	out	this	transformation,	namely,

is	called	an	isomorphism	from	network	(A)	to	network	(B),	for	it	transforms	(A)	into	(B).
Incidentally,	the	one-to-one	correspondence

is	 an	 isomorphism	 between	 the	 two	 palindromes	 of	 the	 preceding	 example,	 for	 it	 transforms	 the	 first
palindrome	into	the	second.

Our	next	and	final	example	is	from	algebra.	Consider	the	two	groups	G1	and	G2	described	below:

Table	of	G1



Table	of	G2

G1	and	G2	are	different,	but	isomorphic.	Indeed,	if	in	G1	we	replace	0	by	e,	1	by	a,	and	2	by	b,	then	G1
coincides	with	G2,	the	table	of	G1	being	transformed	into	the	table	of	G2.	In	other	words,	the	one-to-one
correspondence

transforms	 G1	 to	 G2.	 It	 is	 called	 an	 isomorphism	 from	 G1	 to	 G2.	 Finally,	 because	 there	 exists	 an
isomorphism	from	G1	to	G2,	G1	and	G2	are	isomorphic	to	each	other.

In	general,	by	an	isomorphism	between	two	groups	we	mean	a	one-to-one	correspondence	between
them	which	 transforms	one	of	 the	groups	 into	 the	other.	 If	 there	exists	 an	 isomorphism	 from	one	of	 the
groups	to	the	other,	we	say	they	are	isomorphic.	Let	us	be	more	specific:

If	G1	and	G2	are	any	groups,	an	isomorphism	from	G1	to	G2	is	a	one-to-one	correspondence	f	 from
G1	to	G2	with	the	following	property:	For	every	pair	of	elements	a	and	b	in	G1,

If	f(a)	=	a′	and	f(b)	=	b′	then	f(ab)	=	a′b′	 (1)

In	other	words,	if/matches	a	with	a′	and	b	with	b′	it	must	match	ab	with	a′b′.

It	is	easy	to	see	that	if	/has	this	property	it	transforms	the	table	of	G1	into	the	table	of	G2:

There	is	another,	equivalent	way	of	looking	at	this	situation:	If	two	groups	G1	and	G2	are	isomorphic,
we	can	say	the	two	groups	are	actually	the	same,	except	that	the	elements	of	G1	have	different	names	from
the	 elements	 of	G2.	G1	 becomes	 exactly	G2	 if	 we	 rename	 its	 elements.	 The	 function	 which	 does	 the
renaming	is	an	isomorphism	from	G1	to	G2.	Thus,	in	our	last	example,	if	0	is	renamed	e,	1	is	renamed	a,



and	2	is	renamed	6,	G1	becomes	exactly	G2,	with	 the	same	 table.	 (Note	 that	we	have	also	renamed	 the
operation:	it	was	called	+	in	G1	and	·	in	G2.)

By	the	way,	property	(1)	may	be	written	more	concisely	as	follows:

f(ab)	=	f(a)f(b)	 (2)

So	we	may	sum	up	our	definition	of	isomorphism	in	the	following	way:
Definition	Let	G1	and	G2	be	groups.	A	bijective	 function	 f	 :	G1	→	G2	with	 the	property	 that	 for

any	two	elements	a	and	b	in	G1,

f(ab)	=	f(a)f(b)	 (2)

is	called	an	isomorphism	from	G1	to	G2.
If	there	exists	an	isomorphism	from	G1	to	G2,	we	say	that	G1	is	isomorphic	to	G2.
If	 there	 exists	 an	 isomorphism	 f	 from	G1	 to	G2,	 in	 other	 words,	 if	G1	 is	 isomorphic	 to	G2,	 we

symbolize	this	fact	by	writing

G1	≅	G2

to	be	read,	“G1	is	isomorphic	to	G2.”
How	does	one	recognize	if	two	groups	are	isomorphic?	This	is	an	important	question,	and	not	quite	so
easy	to	answer	as	it	may	appear.	There	is	no	way	of	spontaneously	recognizing	whether	two	groups	G1
and	G2	are	isomorphic.	Rather,	the	groups	must	be	carefully	tested	according	to	the	above	definition.

G1	and	G2	are	 isomorphic	 if	 there	exists	an	 isomorphism	from	G1	 to	G2.	Therefore,	 the	burden	of
proof	 is	 upon	 us	 to	 find	 an	 isomorphism	 from	G1	 to	G2,	 and	 show	 that	 it	 is	 an	 isomorphism.	 In	 other
words,	we	must	go	through	the	following	steps:
1. Make	an	educated	guess,	and	come	up	with	a	function	f	:	G1	 	G2	which	looks	as	though	it	might	be	an

isomorphism.
2. Check	that	f	is	injective	and	surjective	(hence	bijective).
3. Check	that	f	satisfies	the	identity

f(ab)	=	f(a)f(b)

Here’s	 an	example:	 	 is	 the	 group	of	 the	 real	 numbers	with	 the	 operation	 of	addition.	 pos	 is	 the
group	of	the	positive	real	numbers	with	the	operation	of	multiplication.	It	is	an	interesting	fact	that	 	and	
pos	are	isomorphic.	To	see	this,	let	us	go	through	the	steps	outlined	above:

1. The	educated	guess:	The	exponential	function	f(x)	=	ex	is	a	function	from	 	to	 pos	which,	if	we	recall
its	properties,	might	do	the	trick.

2. f	is	injective:	Indeed,	if	f(a)	=	f(b),	that	is,	ea	=	eb,	then,	taking	the	natural	log	on	both	sides,	we	get	a
=	b.

f	is	surjective:	Indeed,	if	y	∈	 pos,	that	is,	if	y	is	any	positive	real	number,	then	y	=	eln	y	=	f(ln	y);
thus,	y	=	f(x)	for	x	=	ln	y.



3. It	is	well	known	that	ea+b	=	ea	·	eb,	that	is,

f(a	+	b)	=	f(a)	·	f(b)

Incidentally,	 note	 carefully	 that	 the	 operation	 of	 	 is	 +,	whereas	 the	 operation	 of	 pos	 is	 ·.	 That	 is	 the
reason	we	have	to	use	+	on	the	left	side	of	the	preceding	equation,	and	·	on	the	right	side	of	the	equation.

How	does	one	recognize	when	two	groups	are	not	isomorphic?	In	practice	it	is	usually	easier	to	show
that	two	groups	are	not	isomorphic	than	to	show	they	are.	Remember	that	if	two	groups	are	isomorphic
they	are	replicas	of	each	other;	their	elements	(and	their	operation)	may	be	named	differently,	but	in	all
other	respects	they	are	the	same	and	share	the	same	properties.	Thus,	if	a	group	G1	has	a	property	which
group	G2	does	not	have	(or	vice	versa),	they	are	not	isomorphic!	Here	are	some	examples	of	properties	to
look	out	for:

1. Perhaps	G1	is	commutative,	and	G2	is	not.
2. Perhaps	G1	has	an	element	which	is	its	own	inverse,	and	G2	does	not.
3. Perhaps	G1	 is	generated	by	 two	elements,	whereas	G2	 is	not	generated	by	any	choice	of	 two	of	 its

elements.
4. Perhaps	 every	 element	 of	G1	 is	 the	 square	 of	 an	 element	 of	G1,	 whereas	G2	 does	 not	 have	 this

property.

This	 list	 is	 by	 no	 means	 exhaustive;	 it	 merely	 illustrates	 the	 kind	 of	 things	 to	 be	 on	 the	 lookout	 for.
Incidentally,	the	kind	of	properties	to	watch	for	are	properties	which	do	not	depend	merely	on	the	names
assigned	to	individual	elements;	for	instance,	in	our	last	example,	0	∈	G1	and	0	∉	G2,	but	nevertheless	G1
and	G2	are	isomorphic.

Finally,	let	us	state	the	obvious:	if	G1	and	G2	cannot	be	put	in	one-to-one	correspondence	(say,	G1
has	more	elements	that	G2),	clearly	they	cannot	be	isomorphic.

In	the	early	days	of	modern	algebra	the	word	“group”	had	a	different	meaning	from	the	meaning	it
has	today.	In	those	days	a	group	always	meant	a	group	of	permutations.	The	only	groups	mathematicians
used	 were	 groups	 whose	 elements	 were	 permutations	 of	 some	 fixed	 set	 and	 whose	 operation	 was
composition.

There	 is	 something	 comforting	 about	 working	 with	 tangible,	 concrete	 things,	 such	 as	 groups	 of
permutations	of	a	set.	At	all	times	we	have	a	clear	picture	of	what	it	is	we	are	working	with.	Later,	as	the
axiomatic	method	reshaped	algebra,	a	group	came	to	mean	any	set	with	any	associative	operation	having
a	neutral	element	and	allowing	each	element	an	inverse.	The	new	notion	of	group	pleases	mathematicans
because	it	is	simpler	and	more	lean	and	sparing	than	the	old	notion	of	groups	of	permutations;	it	is	also
more	 general	 because	 it	 allows	many	 new	 things	 to	 be	 groups	which	 are	 not	 groups	 of	 permutations.
However,	it	is	harder	to	visualize,	precisely	because	so	many	different	things	can	be	groups.

It	was	therefore	a	great	revelation	when,	about	100	years	ago,	Arthur	Cayley	discovered	that	every
group	is	isomorphic	to	a	group	of	permutations.	Roughly,	this	means	that	the	groups	of	permutations	are
actually	all	 the	groups	there	are!	Every	group	is	(or	is	a	carbon	copy	of)	a	group	of	permutations.	This
great	result	is	a	classic	theorem	of	modern	algebra.	As	a	bonanza,	its	proof	is	not	very	difficult.

Cayley’s	Theorem	Every	group	is	isomorphic	to	a	group	of	permutations.
PROOF:	Let	G	be	a	group;	we	wish	 to	 show	 that	G	 is	 isomorphic	 to	 a	group	of	permutations.	The	 first
question	to	ask	is,	“What	group	of	permutations?	Permutations	of	what	set?”	(After	all,	every	permutation



must	be	a	permutation	of	some	fixed	set.)	Well,	the	one	set	we	have	at	hand	is	the	set	G,	so	we	had	better
fix	our	attention	on	permutations	of	G.	The	way	we	match	up	elements	of	G	with	permutations	of	G	 is
quite	interesting:

With	each	element	a	in	G	we	associate	a	function	πa	:	G	→	G	defined	by

πa(x)	=	ax

In	other	words,	πa	is	the	function	whose	rule	may	be	described	by	the	words	“multiply	on	the	left	by	a,”
We	will	now	show	that	πa	is	a	permutation	of	G:

1. πa	is	injective:	Indeed,	if	πa(x1)	=	πa(x2),	then	ax1	=	ax2,	so	by	the	cancellation	law,	x1	=	x2.
2. πa	is	surjective:	For	if	y	∈	G,	then	y	=	a(a−1	y)	=	πa(a−1	y).	Thus,	each	y	in	G	is	equal	to	πa(x)	for	x

=	a−1	y.
3. Since	πa	is	an	injective	and	surjective	function	from	G	to	G,	πa	is	a	permutation	of	G.

Let	us	remember	that	we	have	a	permutation	πa	for	each	element	a	in	G;	for	example,	if	b	and	c	are	other
elements	in	G,	πb	is	the	permutation	“multiply	on	the	left	by	b,”	πc	is	the	permutation	“multiply	on	the	left
by	c,”	 and	 so	 on.	 In	 general,	 let	G*	denote	 the	 set	 of	all	 the	 permutations	πa	 as	a	 ranges	 over	 all	 the
elements	of	G:

G*	=	{πa	:	a	∈	G}

Observe	 now	 that	 G*	 is	 a	 set	 consisting	 of	 permutations	 of	 G—but	 not	 necessarily	 all	 the
permutations	of	G.	In	Chapter	7	we	used	the	symbol	SG	to	designate	the	group	of	all	the	permutations	of
G.	We	must	show	now	that	G*	is	a	subgroup	of	SG,	for	that	will	prove	that	G*	is	a	group	of	permutations.

To	prove	that	G*	is	a	subgroup	of	SG,	we	must	show	that	G*	is	closed	with	respect	to	composition,
and	closed	with	respect	to	inverses.	That	is,	we	must	show	that	if	πa	and	πb	are	any	elements	of	G*,	their
composite	πa	∘	πb	is	also	in	G*;	and	if	πa	is	any	element	of	G*,	its	inverse	is	in	G*.

First,	we	claim	that	if	a	and	b	are	any	elements	of	G,	then

πa	∘	πb	=	πab	 (3)

To	show	that	πa	∘	πb	and	πab	are	the	same,	we	must	show	that	they	have	the	same	effect	on	every	element
x:	that	is,	we	must	prove	the	identity	[πa	∘	πb](x)	=	πab(x).	Well,	[πa	∘	πb](x)	=	πa(πb(x))	=	πa(bx)	=	a(bx)
=	(ab)x	=	πab(x).	Thus,	πa	∘	πb	=	πab;	this	proves	that	the	composite	of	any	two	members	Za	and	πb	of	G*
is	another	member	πab	of	G*.	Thus,	G*	is	closed	with	respect	to	composition.

It	is	each	to	see	that	πe	is	the	identity	function:	indeed,

πe(x)	=	ex	=	x

In	other	words,	πe	is	the	identity	element	of	SG.
Finally,	by	Equation	(3),



πa	∘	πa	−	1	=	πaa	−	1	=	πe

So	by	Theorem	2	of	Chapter	4,	the	inverse	of	πa	is	πa−1.	This	proves	that	the	inverse	of	any	member	πa	of
G*	is	another	member	πa−1	of	G*.	Thus,	G*	is	closed	with	respect	to	inverses.

Since	G*	is	closed	with	respect	to	composition	and	inverses,	G*	is	a	subgroup	of	SG.
We	are	now	in	the	final	lap	of	our	proof.	We	have	a	group	of	permutations	G*,	and	it	remains	only	to

show	 that	G	 is	 isomorphic	 to	G*.	To	do	 this,	we	must	 find	 an	 isomorphism	 f	 :	G	→	G*.	Let	 f	 be	 the
function

f(a)	=	πa

In	other	words,	f	matches	each	element	a	in	G	with	the	permutation	πa	in	G*.	We	can	quickly	show	that	f
is	an	isomorphism:

1. f	is	injective:	Indeed,	if	f(a)	=	f(b)	then	πa	=	πb.	Thus,	πa(e)	=	πb(e),	that	is,	ae	=	be,	so,	finally,	a	=	b.
2. f	is	surjective:	Indeed,	every	element	of	G*	is	some	πa,	and	πa	=	f(a).
3. Lastly,	f(ab)	=	πab	=	πa	∘	πb	=	f(a)	∘	f(b).

Thus,	f	is	an	isomorphism,	and	so	G	≅	G*.	■

EXERCISES

A.	Isomorphism	Is	an	Equivalence	Relation	among	Groups
The	following	three	facts	about	isomorphism	are	true	for	all	groups:

(i)	Every	group	is	isomorphic	to	itself.
(ii)	If	G1	≅	G2,	then	G2	≅	G1.
(iii)	If	G1	≅	G2	and	G2	≅	G3,	then	G1	≅	G3.

Fact	(i)	asserts	that	for	any	group	G,	there	exists	an	isomorphism	from	G	to	G.
Fact	(ii)	asserts	 that,	 if	 there	is	an	isomorphism	 f	from	G1	to	G2,	 there	must	be	some	 isomorphism

from	G2	to	G1.	Well,	the	inverse	of	f	is	such	an	isomorphism.
Fact	 (iii)	 asserts	 that,	 if	 there	are	 isomorphisms	 f	 :	G1	→	G2	and	g	 :	G2	→	G3,	 there	must	 be	 an

isomorphism	from	G1	to	G3.	One	can	easily	guess	that	g	∘	f	is	such	an	isomorphism.	The	details	of	facts
(i),	(ii),	and	(iii)	are	left	as	exercises.

1	Let	G	be	any	group.	If	ε	:	G	→	G	is	the	identity	function,	ε(x)	=	x,	show	that	ε	is	an	isomorphism.
2	Let	G1	and	G2	be	groups,	and	f	:	G1	→	G2	an	isomorphism.	Show	that	f−1:	G2	→	G1	is	an	isomorphism.
[HINT:	Review	the	discussion	of	inverse	functions	at	the	end	of	Chapter	6.	Then,	for	arbitrary	elements	c,
d	∈	G2,	there	exist	a,	b	∈	G1,	such	that	c	=	f(a)	and	d	=	f(b).	Note	that	a	=	f−1(c)	and	b	=	f−1(d).	Show
that	f−1(cd)	=	f−1(c)f−1(d).]
3	Let	G1,	G2,	and	G3	be	groups,	and	let	f:	G1	→	G2	and	g	:	G2	→	G3	be	isomorphisms.	Prove	that	g	∘	f	:



G1	→	G3	is	an	isomorphism.

B.	Elements	Which	Correspond	under	an	Isomorphism
Recall	that	an	isomorphism	f	from	G1	to	G2	is	a	one-to-one	correspondence	between	G1	and	G2	satisfying
f(ab)	=	f(a)f(b).	f	matches	every	element	of	Gl	with	a	corresponding	element	of	G2.	It	is	important	to	note
that:

(i) f	matches	the	neutral	element	of	G1	with	the	neutral	element	of	G2.
(ii) If	f	matches	an	element	x	in	G1	with	y	in	G2,	then,	necessarily,	f	matches	x−l	with	y−1	That	is,	if	x	↔

y,	then	x−l	↔	y−1.
(iii) f	matches	a	generator	of	G1	with	a	generator	of	G2.

The	details	of	these	statements	are	now	left	as	an	exercise.	Let	G1	and	G2	be	groups,	and	let	f	:	G1	→	G2
be	an	isomorphism.
1	If	e1	denotes	the	neutral	element	of	G1	and	e2	denotes	the	neutral	element	of	G2,	prove	that	f(e1)	=	e2.
[HINT:	In	any	group,	there	is	exactly	one	neutral	element;	show	that	f(e1)	is	the	neutral	element	of	G2.]

2	Prove	that	for	each	element	a	in	G1	f(a−l)	=	[f(a)]−1.	(HINT:	You	may	use	Theorem	2	of	Chapter	4.)
3	If	G1	is	a	cyclic	group	with	generator	a,	prove	that	G2	is	also	a	cyclic	group,	with	generator	f(a).

C.	Isomorphism	of	Some	Finite	Groups
In	each	of	the	following,	G	and	H	are	finite	groups.	Determine	whether	or	not	G	≅	H.	Prove	your	answer
in	either	case.

To	 find	 an	 isomorphism	 from	G	 to	H	will	 require	 a	 little	 ingenuity.	For	 example,	 if	G	 and	H	 are
cyclic	groups,	it	is	clear	that	we	must	match	a	generator	a	of	G	with	a	generator	b	of	H;	that	is,	f(a)	=	b.
Then	f(aa)	=	bb,	f(aaa)	=	bbb,	and	so	on.	If	G	and	H	are	not	cyclic,	we	have	other	ways:	for	example,	if
G	 has	 an	 element	which	 is	 its	 own	 inverse,	 it	must	be	matched	with	 an	 element	of	H	 having	 the	 same
property.	Often,	the	specifics	of	a	problem	will	suggest	an	isomorphism,	if	we	keep	our	eyes	open.

To	prove	that	a	specific	one-to-one	correspondence	f	:	G	→	H	is	an	isomorphism,	we	may	check	that
it	transforms	the	table	of	G	into	the	table	of	H.

#	1	G	is	the	checkerboard	game	group	of	Chapter	3,	Exercise	D.	H	is	the	group	of	the	complex	numbers
{i,	−i,	1,	−1}	under	multiplication.

2	G	is	the	same	as	in	part	1.	H	=	 4.
3	G	is	the	group	P2	of	subsets	of	a	two-element	set.	(See	Chapter	3,	Exercise	C.)	H	is	as	in	part	1.
#	4	G	is	S3,	H	is	the	group	of	matrices	described	on	page	28	of	the	text.



5	G	is	the	coin	game	group	of	Chapter	3,	Exercise	E.	H	is	D4,	the	group	of	symmetries	of	the	square.
6	G	is	the	group	of	symmetries	of	the	rectangle.	H	is	as	in	part	1.

D.	Separating	Groups	into	Isomorphism	Classes
Each	of	the	following	is	a	set	of	four	groups.	In	each	set,	determine	which	groups	are	isomorphic	to	which
others.	Prove	your	answers,	and	use	Exercise	A3	where	convenient.
1	 4	 2	×	 2	 P2	 V
[P2	denotes	the	group	of	subsets	of	a	two-element	set.	(See	Chapter	3,	Exercise	C.)	V	denotes	the	group	of
the	four	complex	numbers	{i,	−i,	1,	−1}	with	respect	to	multiplication.]
2	S3	 6	 3	×	 2	
( 	denotes	the	group	{1,2,3,4,5,6}	with	multiplication	modulo	7.	The	product	modulo	7	of	a	and	b	is	the
remainder	of	ab	after	division	by	7.)
3	 8	 P3	 2	×	 2	×	 2	 D4

(D4	is	the	group	of	symmetries	of	the	square.)
4	The	groups	having	the	following	Cayley	diagrams:

E.	Isomorphism	of	Infinite	Groups
#	1	Let	E	designate	the	group	of	all	the	even	integers,	with	respect	to	addition.	Prove	that	 	≅	E.
2	Let	G	be	the	group	{10n	:	n	∈	 }	with	respect	to	multiplication.	Prove	that	G	≅	 .	(Remember	that	the
operation	of	 	is	addition.)
3	Prove	that	 	=	 	×	 .
4	 We	 have	 seen	 in	 the	 text	 that	 	 is	 isomorphic	 to	 pos.	 Prove	 that	 	 is	 not	 isomorphic	 to	 *	 (the
multiplicative	group	of	the	nonzero	real	numbers).	(HINT:	Consider	the	properties	of	the	number	−1	in	 *.
Does	 	have	any	element	with	those	properties?)
5	Prove	that	 	is	not	isomorphic	to	 .
6	We	have	seen	that	 	≅	 pos.	However,	prove	that	 	is	not	isomorphic	to	 pos.	( pos	is	the	multiplicative
group	of	positive	rational	numbers.)

F.	Isomorphism	of	Groups	Given	by	Generators	and	Defining	Equations
If	a	group	G	is	generated,	say,	by	a,	b,	and	c,	then	a	set	of	equations	involving	a,	b,	and	c	is	called	a	set	of
defining	equations	for	G	if	these	equations	completely	determine	the	table	of	G.	(See	end	of	Chapter	5.)
If	G′	is	another	group,	generated	by	elements	a′,	b′,	and	c′	satisfying	the	same	defining	equations	as	a,	b,
and	c,	then	G′	has	the	same	table	as	G	(because	the	tables	of	G	and	G′	are	completely	determined	by	the
defining	equations,	which	are	the	same	for	G	as	for	G′).

Consequently,	if	we	know	generators	and	defining	equations	for	two	groups	G	and	G′,	and	if	we	are



able	 to	match	the	generators	of	G	with	 those	of	G′	 so	 that	 the	defining	equations	are	 the	same,	we	may
conclude	that	G	≅	G′.

Prove	that	the	following	pairs	of	groups	G,	G′	are	isomorphic.

#	1	G	=	the	subgroup	of	S4	generated	by	(24)	and	(1234);	G′	=	{e,	a,	b,	b2,	b3,	ab,	ab2,	ab3}	where	a2	=	e,
b4	=	e,	and	ba	=	ab3.

2	G	=	S3;	G′	=	{e,	a,	b,	ab,	aba,	abab}	where	a2	=	e,	b2	=	e,	and	bab	=	aba.

3	G	=	D4;	G′	=	{e,	a,	b,	ab,	aba,	(ab)2,	ba,	bab}	where	a2	=	b2	=	e	and	(ab)4	=	e.

4	G	=	 2	×	 2	×	 2;	G′	=	{e,	a,	b,	c,	ab,	ac,	bc,	abc}	where	a2	=	b2	=	c2	=	e	and	(ab)2	=	(bc)2	=	(ac)2	=	e.

G.	Isomorphic	Groups	on	the	Set	
1	G	 is	 the	 set	 {x	∈	 	 :	x	 ≠	−1}	with	 the	operation	x	 *	y	 =	x	 +	y	 +	xy.	Show	 that	 f(x)	=	x	−	 1	 is	 an
isomorphism	from	 *	to	G.	Thus,	 *	≅	G.
2	G	is	the	set	of	the	real	numbers	with	the	operation	x	*	y	=	x	+	y	+	l.	Find	an	isomorphism	f	:	 	→	G	and
show	that	it	is	an	isomorphism.
3	G	is	the	set	of	the	nonzero	real	numbers	with	the	operation	x	*	y	=	xy/2.	Find	an	isomorphism	from	 *	to
G.
4	Show	that	f(x,	y)	=	(−1)y	x	is	an	isomorphism	from	 pos	×	 2	to	 *.	(REMARK:	To	combine	elements	of	
pos	×	 2,	one	multiplies	first	components,	adds	second	components.)	Conclude	that	 *	≅	 pos	×	 2.

H.	Some	General	Properties	of	Isomorphism
1	Let	G	and	H	be	groups.	Prove	that	G	×	H	≅	H	×	G.
#	2	If	G1	≅	G2	and	H1	≅	H2,	then	G1	×	H1	≅	G2	×	H2.

3	Let	G	be	any	group.	Prove	that	G	is	abelian	iff	the	function	f(x)	=	x−1	is	an	isomorphism	from	G	to	G.
4	Let	G	be	any	group,	with	its	operation	denoted	multiplicatively.	Let	H	be	a	group	with	the	same	set	as	G
and	let	its	operation	be	defined	by	x	*	y	=	y	·	x	(where	·	is	the	operation	of	G).	Prove	that	G	≅	H.
5	Let	c	be	a	fixed	element	of	G.	Let	H	be	a	group	with	the	same	set	as	G,	and	with	the	operation	x	*	y	=
xcy.	Prove	that	the	function	f(x)	=	c−lx	is	an	isomorphism	from	G	to	H.

I.	Group	Automorphisms
If	G	is	a	group,	an	automorphism	of	G	is	an	isomorphism	from	G	to	G.	We	have	seen	(Exercise	A1)	that
the	identity	function	ε(x)	=	x	is	an	automorphism	of	G.	However,	many	groups	have	other	automorphisms
besides	this	obvious	one.

1	Verify	that

is	an	automorphism	of	 6.
2	Verify	that



and

are	all	automorphisms	of	 5.

3	If	G	is	any	group,	and	a	is	any	element	of	G,	prove	that	f(x)	=	axa’−1	is	an	automorphism	of	G.
4	Since	each	automorphism	of	G	is	a	bijective	function	from	G	to	G,	it	is	a	permutation	of	G.	Prove	the
set

Aut(G)

of	all	the	automorphisms	of	G	is	a	subgroup	of	SG.	(Remember	that	the	operation	is	composition.)

J.	Regular	Representation	of	Groups
By	Cayley’s	 theorem,	every	group	G	is	 isomorphic	to	a	group	G*	of	permutations	of	G.	Recall	 that	we
match	each	element	a	in	G	with	the	permutation	πa	defined	by	πa	=	ax,	that	is,	the	rule	“multiply	on	the	left
by	a.”	We	let	G*	=	{πa	:	a	∈	G};	with	the	operation	∘	of	composition	it	is	a	group	of	permutations,	called
the	left	regular	representation	of	G.	(It	is	called	a	“representation”	of	G	because	it	is	isomorphic	to	G.)

Instead	of	using	the	permutations	πa,	we	could	just	as	well	have	used	the	permutations	ρa	defined	by
ρa(x)	=	xa,	that	is,	“multiply	on	the	right	by	a.”	The	group	Gρ	=	{ρa:	a	∈	G}	is	called	the	right	regular
representation	of	G.

If	G	is	commutative,	there	is	no	difference	between	right	and	left	multiplication,	so	G*	and	Gρ	are	the
same,	and	are	simply	called	the	regular	representation	of	G.	Also,	if	the	operation	of	G	is	denoted	by	+,
the	permutation	corresponding	to	a	is	“add	a”	instead	of	“multiply	by	a.”

Example	The	regular	representation	of	 3	consists	of	the	following	permutations:

The	regular	representation	of	 3	has	the	following	table:

The	function



is	easily	seen	to	be	an	isomorphism	from	 3	to	its	regular	representation.
Find	the	right	and	left	regular	representation	of	each	of	the	following	groups,	and	compute	their	tables.	(If
the	group	is	abelian,	find	its	regular	representation.)

1	P2,	the	group	of	subsets	of	a	two-element	set.	(See	Chapter	3,	Exercise	C.)
2	 4.
3	The	group	G	of	matrices	described	on	page	28	of	the	text.



CHAPTER

FOURTEEN

HOMOMORPHISMS

We	have	seen	that	if	two	groups	are	isomorphic,	this	means	there	is	a	one-to-one	correspondence	between
them	which	transforms	one	of	the	groups	into	the	other.	Now	if	G	and	H	are	any	groups,	it	may	happen	that
there	is	a	function	which	transforms	G	into	H,	although	this	function	is	not	a	one-to-one	correspondence.
For	example,	 6	is	transformed	into	 	3	by

as	we	may	verify	by	comparing	their	tables:

If	G	and	H	are	any	groups,	and	there	is	a	function	f	which	transforms	G	into	H,	we	say	that	 if	 is	a
homomorphic	 image	 of	 G.	 The	 function	 f	 is	 called	 a	 homomorphism	 from	 G	 to	 f.	 This	 notion	 of
homomorphism	 is	 one	of	 the	 skeleton	keys	of	 algebra,	 and	 this	 chapter	 is	 devoted	 to	 explaining	 it	 and



defining	it	precisely.
First,	let	us	examine	carefully	what	we	mean	by	saying	that	“f	transforms	G	into	H.”	To	begin	with,	f

must	be	a	function	from	G	onto	H;	but	that	is	not	all,	because	f	must	also	transform	the	table	of	G	into	the
table	of	H.	To	accomplish	this,	f	must	have	the	following	property:	for	any	two	elements	a	and	b	in	G,

if	 f(a)	=	a′	 and	 f(b)	=	b′, 	then	 f(ab)	=	a′	b′	 (1)

Graphically,

Condition	(1)	may	be	written	more	succinctly	as	follows:

f(ab)	=	f(a)f(b)	 (2)

Thus,
Definition	if	G	and	H	are	groups,	a	homomorphism	from	G	to	H	is	a	function	f:	G	→H	such	that

for	any	two	elements	a	and	b	in	G,

f(ab)	=	f(a)f(b)

If	there	exists	a	homomorphism	from	G	onto	H,	we	say	that	H	is	a	homomorphic	image	of	G.
Groups	 have	 a	 very	 important	 and	 privileged	 relationship	with	 their	 homomorphic	 images,	 as	 the

next	few	examples	will	show.
Let	P	denote	the	group	consisting	of	two	elements,	e	and	o,	with	the	table

We	call	this	group	the	parity	group	of	even	and	odd	numbers.	We	should	think	of	e	as	“even”	and	o	as
“odd,”	and	the	table	as	describing	the	rule	for	adding	even	and	odd	numbers.	For	example,	even	+	odd	=
odd,	odd	+	odd	=	even,	and	so	on.

The	function	f:	 	→P	which	carries	every	even	integer	to	e	and	every	odd	integer	to	o	 is	clearly	a
homomorphism	from	 	to	P.	This	is	easy	to	check	because	there	are	only	four	different	cases:	for	arbitrary
integers	r	and	s,	r	and	s	are	either	both	even,	both	odd,	or	mixed.	For	example,	if	r	and	s	are	both	odd,
their	sum	is	even,	so	f(r)	=	0,	f(s)	=	o,	and	f(r	+	s)	=	e.	Since	e	=	o	+	o,

f(r+	s)	=	f(r)+f(s)

This	equation	holds	analogously	in	the	remaining	three	cases;	hence	f	is	a	homomorphism.	(Note	that	the
symbol	 +	 is	 used	 on	 both	 sides	 of	 the	 above	 equation	 because	 the	 operation,	 in	 	 as	well	 as	 in	P,	 is
denoted	by	+.)



It	follows	that	P	is	a	homomorphic	image	of	 !
Now,	 what	 do	 P	 and	 	 have	 in	 common?	 P	 is	 a	 much	 smaller	 group	 than	 ,	 therefore	 it	 is	 not

surprising	that	very	few	properties	of	the	integers	are	to	be	found	in	P.	Nevertheless,	one	aspect	of	 the
structure	of	 	is	retained	absolutely	intact	in	P,	namely,	the	structure	of	the	odd	and	even	numbers.	(The
fact	of	being	odd	or	even	 is	called	 the	parity	of	 integers.)	 In	other	words,	as	we	pass	 from	 	 to	P	 we
deliberately	lose	every	aspect	of	the	integers	except	their	parity	;	their	parity	alone	(with	its	arithmetic)	is
retained,	and	faithfully	preserved.

Another	example	will	make	this	point	clearer.	Remember	that	D4	is	the	group	of	the	symmetries	of
the	square.	Now,	every	symmetry	of	the

square	either	interchanges	the	two	diagonals	here	labeled	1	and	2,	or	leaves	them	as	they	were.	In	other
words,	every	symmetry	of	the	square	brings	about	one	of	the	permutations

of	the	diagonals.
For	each	Ri	∈	D4,	let	f(Ri)	be	 the	permutation	of	 the	diagonals	produced	by	Ri	Then	 f	 is	clearly	a

homomorphism	 from	D4	 onto	S2.	 Indeed,	 it	 is	 clear	 on	 geometrical	 grounds	 that	when	we	 perform	 the
motion	Ri	followed	by	the	motion	Rj	on	the	square,	we	are,	at	the	same	time,	carrying	out	the	motions	f(Ri)
followed	by	f(Rj)	on	the	diagonals.	Thus,

f(RjºRi)	=	f(Rj)ºf(Ri)

It	follows	that	52	is	a	homomorphic	image	of	D4.	Now	S2	is	a	smaller	group	than	D4,	and	therefore
very	few	of	 the	features	of	D4	are	 to	be	found	 in	S2.	Nevertheless,	one	aspect	of	 the	structure	of	D4	 is
retained	 absolutely	 intact	 in	 S2,	 namely,	 the	 diagonal	 motions.	 Thus,	 as	 we	 pass	 from	D4	 to	 52,	 we
deliberately	 lose	 every	 aspect	 of	 plane	 motions	 except	 the	 motions	 of	 the	 diagonals;	 these	 alone	 are
retained	and	faithfully	preserved.

A	final	example	may	be	of	some	help;	it	relates	to	the	group	 	described	in	Chapter	3,	Exercise	E.
Here,	briefly,	is	the	context	in	which	this	group	arises:	The	most	basic	way	of	transmitting	information	is
to	code	it	into	strings	of	Os	and	Is,	such	as	0010111,	1010011,	etc.	Such	strings	are	called	binary	words,
and	the	number	of	0s	and	Is	in	any	binary	word	is	called	its	length.	The	symbol	 	designates	the	group
consisting	of	all	binary	words	of	length	n,	with	an	operation	of	addition	described	in	Chapter	3,	Exercise
E.

Consider	the	function	f:	 	→ 	which	consists	of	dropping	the	last	two	digits	of	every	seven-digit



word.	This	kind	of	function	arises	in	many	practical	situations:	for	example,	it	frequently	happens	that	the
first	five	digits	of	a	word	carry	the	message	while	the	last	two	digits	are	an	error	check.	Thus,	f	separates
the	message	from	the	error	check.

It	is	easy	to	verify	that	f	is	a	homomorphism;	hence	 	is	a	homomorphic	image	of	 .	As	we	pass
from	 	 to	 ,	 the	 message	 component	 of	 words	 in	 	 is	 exactly	 preserved	 while	 the	 error	 check	 is
deliberately	lost.

These	examples	illustrate	the	basic	idea	inherent	in	the	concept	of	a	homomorphic	image.	The	cases
which	arise	in	practice	are	not	always	so	clear-cut	as	these,	but	the	underlying	idea	is	still	the	same:	In	a
homomorphic	 image	 of	 G,	 some	 aspect	 of	 G	 is	 isolated	 and	 faithfully	 preserved	 while	 all	 else	 is
deliberately	lost.

The	next	theorem	presents	two	eleirientary	properties	of	homomorphisms.

Theorem	1	Let	G	and	H	be	groups,	and	f:	G	→	H	a	homomorphism.	Then

(i) f(e)	=	e,	and
(ii) f(a−l)	=	[f(a)]−l	for	every	element	a	∈	G.
In	the	equation	f(e)	=	e,	the	letter	e	on	the	left	refers	to	the	neutral	element	in	G,	whereas	the	letter	e	on	the
right	refers	to	the	neutral	element	in	H.

To	prove	(i),	we	note	that	in	any	group,

if yy	=	y 	then 	y	=	e

(Use	the	cancellation	law	on	the	equation	yy	=	ye.)	Now,	f(e)f(e)	=	f(ee)	=	f(e);	hence	f(e)	=	e.
To	 prove	 (ii),	 note	 that	 f(a)f(a−1)	=	 f(aa−1)	=	 f(e).	But	 f(e)	=	e,	 so	 f(a)f(a−1)	 =	 e.	 It	 follows	 by

Theorem	2	of	Chapter	4	that	f(a−1)	is	the	inverse	of	f(a),	that	is,	f(a−l)	=	[f(a)]−1.
Before	 going	 on	 with	 our	 study	 of	 homomorphisms,	 we	must	 be	 introduced	 to	 an	 important	 new

concept.	If	a	is	an	element	of	a	group	G,	a	conjugate	of	α	is	any	element	of	the	form	xax−l,	where	x	∈G.
For	example,	the	conjugates	of	α	in	S3	are

as	well	as	a	itself,	which	may	be	written	in	two	ways,	as	ε	∘	α	∘	ε	−1	or	as	α	∘	α	∘	α	−1.	if	H	is	any	subset
of	a	group	G,	we	say	that	H	is	closed	with	respect	to	conjugates	if	every	conjugate	of	every	element	of	H
is	in	H.	Finally,

Definition	Let	H	be	a	subgroup	of	a	group	G.	H	is	called	a	normal	subgroup	of	G	if	it	is	closed
with	respect	to	conjugates,	that	is,	if

for	any a	∈	H and x	∈	G 	xax−l	∈	H

(Note	 that	 according	 to	 this	 definition,	 a	 normal	 subgroup	of	G	 is	 any	 nonempty	 subset	 of	G	 which	 is
closed	with	respect	to	products,	with	respect	to	inverses,	and	with	respect	to	conjugates.)



We	now	return	to	our	discussion	of	homomorphisms.
Definition	Let	f	:	G	→	H	be	a	homomorphism.	The	kernel	of	f	is	the	set	K	of	all	the	elements	of	G

which	are	carried	by	f	onto	the	neutral	element	of	H.	That	is,

K	=	{x	∈	G:	f(x)	=	e}

Theorem	2	Let	f	:	G	→	H	be	a	homomorphism.
(i) The	kernel	of	f	is	a	normal	subgroup	of	G,	and
(ii) The	range	of	f	is	a	subgroup	of	H.

PROOF:	Let	K	denote	the	kernel	of	f.	If	a,	b	∈	K,	this	means	that	f(a)	=	e	and	f(b)	=	e.	Thus,	f(ab)	=
f(a)f(b)	=	ee	=	e;	hence	ab	∈	k.

If	a	∈	k,	then	f(a)	=	e.	Thus,	f(a−l)	=	[f(a)]−1	=	e−1	=	e,	so	a−1	∈	K.
Finally,	if	a	−	K	and	x	∈	G,	then	f(xax−l)	=	f(x)f(a)f(x−l)	=	f(x)f(a)[f(x)]−1	=	e,	which	shows	that	xax

−l	∈	K.	Thus,	K	is	a	normal	subgroup	of	G.
Now	we	must	prove	part	(ii).	If	f(a)	and	f(b)	are	in	the	range	of	f,	then	their	product	f(a)f(b)	=f(ab)

is	also	in	the	range	of	f.
If	f(a)	is	in	the	range	of	 f,	 its	 inverse	is	[f(a)]−l	=	f(a−l),	which	is	also	 in	 the	range	of	 f.	Thus,	 the

range	of	f	is	a	subgroup	of	H.	■
If	f	is	a	homomorphism,	we	represent	the	kernel	of	f	and	the	range	of	f	with	the	symbols

ker(f) and ran(f)

EXERCISES

A.	Examples	of	Homomorphisms	of	Finite	Groups
1	Consider	the	function	f	:	 8	→	 4	given	by

Verify	that	f	is	a	homomorphism,	find	its	kernel	K,	and	list	the	cosets	of	K.	[REMARK:	To	verify	that	f	is	a
homomorphism,	you	must	show	that	f(a	+	b)	=	f(a)	+	f(b)	 for	all	choices	of	a	and	b	 in	 8;	 there	are	64
choices.	This	may	be	accomplished	by	checking	that	f	transforms	the	table	of	 8	to	the	table	of	 4,	as	on
page	136.]
2	Consider	the	function	f	:	S3	→	 2	given	by

Verify	that	f	is	a	homomorphism,	find	its	kernel	K,	and	list	the	cosets	of	K.
3	 Find	 a	 homomorphism	 f: 15	 →	 5,	 and	 indicate	 its	 kernel.	 (Do	 not	 actually	 verify	 that	 f	 is	 a
homomorphism.)
4	Imagine	a	square	as	a	piece	of	paper	lying	on	a	table.	The	side	facing	you	is	side



A.	The	side	hidden	from	view	is	side	B.	Every	motion	of	the	square	either	interchanges	the	two	sides	(that
is,	 side	B	becomes	visible	and	side	A	 hidden)	or	 leaves	 the	 sides	as	 they	were.	 In	other	words,	 every
motion	Ri	of	the	square	brings	about	one	of	the	permutations

of	the	sides;	call	it	g(Ri).	Verify	that	g:	D4	 	S2	is	a	homomorphism,	and	give	its	kernel.
5	Every	motion	of	the	regular	hexagon	brings	about	a	permutation	of	its	diagonals,	labeled	1,	2,	and	3.	For
each	Ri	∈	D6,	let	f(Ri)	be	the	permutation	of

the	diagonals	produced	by	Ri	Argue	informally	(appealing	to	geometric	intuition)	to	explain	why	f:	D6∈
S3	is	a	homomorphism.	Then	complete	the	following:

(That	is,	find	the	value	of	f	on	all	12	elements	of	D6.)

#	6	Let	B	⊂	A.	Let	h	 :	PA	→	PB	 be	 defined	by	h(C)	=	C	 =	C	 	B.	 For	A	 =	 {1,2,3}	 and	B	 =	 {1,	 2},
complete	the	following:

For	any	A	and	B	⊂	A,	show	that	h	is	a	homomorphism.

B.	Examples	of	Homomorphisms	of	Infinite	Groups
Prove	that	each	of	the	following	is	a	homomorphism,	and	describe	its	kernel.
1	The	function	ϕ	:	 ( )→	 	given	by	ϕ(f)	=	f(0).
2	The	function	ϕ	:	 ( )	→	 ( )	given	by	ϕ(f)	=	f	′.	 	(R)	is	the	group	of	differentiable	functions	from	 	to	
	f′	is	the	derivative	of	f.
3	The	function	f: 	×	 	→	 	given	by	f(x,	y)	=	x	+	y.



4	The	function	f	: *	→	 pos	defined	by	f(x)	=	|x|.
5	The	function	f	:	 *	→	 pos	defined	by	f(a	+	bi)	=	 .
6	Let	G	be	the	multiplicative	group	of	all	2	×	2	matrices

satisfying	ad	−	bc	≠	0.	Let	f:	G	→	 *	be	given	by	f(A)	=	determinant	of	A	=	ad	−	bc.

C.	Elementary	Properties	of	Homomorphisms
Let	G,	H,	and	K	be	groups.	Prove	the	following:
1	If	f	:	G	→	G	and	g	:H	→K	are	homomorphisms,	then	their	composite	gº	f:	G→	K	is	a	homomorphism.
#	2	If	f	:	G	→	H	is	a	homomorphism	with	kernel	K,	then	f	is	injective	iff	K	=	{e}.
3	If	f	:	G	→	H	is	a	homomorphism	and	is	any	subgroup	of	G,	then	f(K)	=	{f(x)	:	x	∈	K}	is	a	subgroup	of
H.
4	If	f	:	G	→	H	is	a	homomorphism	and	j	is	any	subgroup	of	H,	then

f−1(J)	=	{x	∈G:	f(x)∈J}

is	a	subgroup	of	G.	Furthermore,	ker	f	⊆	f−1(J).
5	If	f	:	G	→	H	is	a	homomorphism	with	kernel	K,	and	J	is	a	subgroup	of	G,	letfJ	designate	the	restriction
of	f	to	J.	(In	other	words	fJ	is	the	same	function	as	f,	except	that	its	domain	is	restricted	to	J.)	Then	ker	fJ
=	J	 	K.
6	For	any	group	G,	the	function	f:	G	→	G	defined	by	f(x)	=	e	is	a	homomorphism.
7	For	any	group	G,	{e}	and	G	are	homomorphic	images	of	G.
8	The	function	f:	G→G	defined	by	f(x)	=	x2	is	a	homomorphism	iff	G	is	abelian.
9	The	functions	f1(x,	y)	=	x	and	f2(x,	y)	=	y,	from	G	×	H	to	G	and	H,	respectively,	are	homomorphisms.

D.	Basic	Properties	of	Normal	Subgroups
In	the	following,	let	G	denote	an	arbitrary	group.
1	Find	all	the	normal	subgroups	(a)	of	S3	and	(b)	of	D4.
Prove	the	following:
2	Every	subgroup	of	an	abelian	group	is	normal.
3	The	center	of	any	group	G	is	a	normal	subgroup	of	G.
4	Let	H	be	a	subgroup	of	G.	H	is	normal	iff	it	has	the	following	property:	For	all	a	and	b	in	G,	ab	∈	H	iff
ba	∈	H.
5	Let	H	be	a	subgroup	of	G.	H	is	normal	iff	aH	=	Ha	for	every	a	∈	G.
6	Any	intersection	of	normal	subgroups	of	G	is	a	normal	subgroup	of	G.

E.	Further	Properties	of	Normal	Subgroups
Let	G	denote	a	group,	and	H	a	subgroup	of	G.	Prove	the	following:



#	1	If	H	has	index	2	in	G,	then	H	is	normal.	(HINT:	Use	Exercise	D5.)
2	Suppose	an	element	a	∈	G	has	order	2.	Then	(〈a〉)	is	a	normal	subgroup	of	G	iff	a	is	in	the	center	of	G.
3	If	a	is	any	element	of	G,	(〈a〉)	is	a	normal	subgroup	of	G	iff	a	has	the	following	property:	For	any	x	∈
G,	there	is	a	positive	integer	k	such	that	xa	=	akx.
4	In	a	group	G,	a	commutator	is	any	product	of	the	form	aba−1b−1,	where	a	and	b	are	any	elements	of	G.
If	a	subgroup	H	of	G	contains	all	the	commutators	of	G,	then	H	is	normal.
5	If	H	and	K	are	subgroups	of	G,	and	K	is	normal,	then	HK	is	a	subgroup	of	G.	(HK	denotes	the	set	of	all
products	hk	as	h	ranges	over	H	and	k	ranges	over	K.)
#	6	Let	S	be	 the	union	of	all	 the	cosets	Ha	 such	 that	Ha	=	aH.	Then	S	 is	 a	 subgroup	of	G,	and	H	 is	 a
normal	subgroup	of	S.

F.	Homomorphism	and	the	Order	of	Elements
If	f	:	G	→	H	is	a	homomorphism,	prove	each	of	the	following:
1	For	each	element	a	∈G,	the	order	of	f(a)	is	a	divisor	of	the	order	of	a.
2	The	order	of	any	element	b	≠	e	in	the	range	of	f	is	a	common	divisor	of	|G|	and	|H|.	(Use	part	1.)
3	If	the	range	of	f	has	n	elements,	then	xn	∈	ker	f	for	every	x	∈	G.
4	Let	m	be	an	integer	such	that	m	and	|H|	are	relatively	prime.	For	any	x	∈	G,	if	xm	∈	ker	f,	then	x	∈	ker	f.
5	Let	the	range	of	f	have	m	elements.	If	a	∈	G	has	order	n,	where	m	and	n	are	relatively	prime,	then	a	is
in	the	kernel	of	f.	(Use	part	1.)
6	Let	p	be	a	prime.	If	ran	f	has	an	element	of	order	p,	then	G	has	an	element	of	order	p.

G.	Properties	Preserved	under	Homomorphism
A	property	of	 groups	 is	 said	 to	be	 “preserved	under	homomorphism”	 if,	whenever	 a	 group	G	 has	 that
property,	every	homomorphic	 image	of	G	does	also.	 In	 this	exercise	 set,	we	will	 survey	a	 few	 typical
properties	preserved	under	homomorphism.	If	f	:	G	→	H	is	a	homomorphism	of	G	onto	H,	prove	each	of
the	following:
1	If	G	is	abelian,	then	H	is	abelian.
2	If	G	is	cyclic,	then	H	is	cyclic.
3	If	every	element	of	G	has	finite	order,	then	every	element	of	H	has	finite	order.
4	If	every	element	of	G	is	its	own	inverse,	every	element	of	H	is	its	own	inverse.
5	If	every	element	of	G	has	a	square	root,	then	every	element	of	H	has	a	square	root.
6	If	G	is	finitely	generated,	then	H	is	finitely	generated.	(A	group	is	said	to	be	“finitely	generated”	if	it	is
generated	by	finitely	many	of	its	elements.)

†	H.	Inner	Direct	Products
If	G	is	any	group,	let	H	and	K	be	normal	subgroups	of	G	such	that	H	 K	=	{e}.	Prove	the	following:
1	Let	h1	and	h2	be	any	two	elements	of	H,	and	k1	and	k2	any	two	elements	of	K.

h1k1	=	h2k 	implies h1	=	h2 and k1	=	k2

(HINT:	If	h1k1	=	h2k2,	then	 h1	∈	H	 	K	and	k2 	∈	H	 	K.	Explain	why.)



2	For	 any	h	∈	H	 and	k	∈	K,	hk	 =	kh.	 (HINT:	hk	 =	kh	 iff	hkh−lk−l	 =	e.	Use	 the	 fact	 that	H	 and	K	 are
normal.)
3	Now,	make	the	additional	assumption	that	G	=	HK	that	is,	every	x	in	G	can	be	written	as	x	=	hk	for	some
h	∈	H	and	k	∈	K.	Then	the	function	ϕ(h,k)	=	hk	is	an	isomorphism	from	H	×	K	onto	G.

We	have	thus	proved	the	following:	If	H	and	K	are	normal	subgroups	of	G,such	that	H	 	K=	{e}
and	G	=	HK,	then	G	≅	H	×	K.	G	is	sometimes	called	the	inner	direct	product	of	H	and	K.

†	I.	Conjugate	Subgroups
Let	H	be	a	subgroup	of	G.	For	any	a	∈	G,	let	aHa−l	=	{axa−l	:x	∈H};	aHa−l	is	called	a	conjugate	of	H.
Prove	the	following:
1	For	each	a	∈	G,	aHa−l	is	a	subgroup	of	G.
2	For	each	a	∈	G,	H	≅	aHa−1.
3	H	is	a	normal	subgroup	of	G	iff	H	=	aHa−1	for	every	a	∈	G.
In	the	remaining	exercises	of	this	set,	let	G	be	a	finite	group.	By	the	normalizer	of	H	we	mean	the	set	N(H)
=	{a	∈G:	axa−1	∈	H	for	every	x	∈	H}.

4	If	a∈	N(H),	then	aHa−1	=	H.	(Remember	that	G	is	now	a	finite	group.)
5	N(H)	is	a	subgroup	of	G.
6	H	⊆	N(H).	Furthermore,	H	is	a	normal	subgroup	of	N(H).
In	parts	7–10,	let	N	=	N(H).

7	For	any	a,b	∈G,	aHa−1	=	bHb−1	iff	b−1a∈N(H).
#	8	There	is	a	one-to-one	correspondence	between	the	set	of	conjugates	of	H	and	the	set	of	cosets	of	N.
(Thus,	there	are	as	many	conjugates	of	H	as	cosets	of	N.)

9	H	has	exactly	(G	:N)	conjugates.	In	particular,	the	number	of	distinct	conjugates	of	if	H	is	a	divisor	of
|G|.
10	Let	K	be	any	subgroup	of	G,	let	K*	=	{Na	:	a	∈	K},	and	let

XK	=	{aHa−l:	a	∈	K}

Argue	as	in	part	8	to	prove	that	XK	is	in	one-to-one	correspondence	with	K*.	Conclude	that	the	number	of
elements	in	XK	is	a	divisor	of	|K|.



CHAPTER

FIFTEEN
QUOTIENT	GROUPS

In	Chapter	14	we	learned	to	recognize	when	a	group	H	is	a	homomorphic	image	of	a	group	G.	Now	we
will	make	 a	 great	 leap	 forward	 by	 learning	 a	method	 for	 actually	 constructing	 all	 the	 homomorphic
images	of	any	group.	This	is	a	remarkable	procedure,	of	great	importance	in	algebra.	In	many	cases	this
construction	will	allow	us	to	deliberately	select	which	properties	of	a	group	G	we	wish	to	preserve	in	a
homomorphic	image,	and	which	other	properties	we	wish	to	discard.

The	most	 important	 instrument	 to	 be	 used	 in	 this	 construction	 is	 the	 notion	 of	 a	 normal	 subgroup.
Remember	that	a	normal	subgroup	of	G	is	any	subgroup	of	G	which	is	closed	with	respect	to	conjugates.
We	begin	by	giving	an	elementary	property	of	normal	subgroups.

Theorem	1	If	H	is	a	normal	subgroup	of	G,	then	aH	=	Ha	for	every	a	∈	G.

(In	other	words,	there	is	no	distinction	between	left	and	right	cosets	for	a	normal	subgroup.)

PROOF:	Indeed,	if	x	is	any	element	of	aH,	then	x	=	ah	for	some	h	∈	H.	But	H	is	closed	with	respect
to	 conjugates;	hence	aha−1	∈	H.	Thus,	x	=	ah	 =	 (aha−1)a	 is	 an	 element	of	Ha.	 This	 shows	 that	 every
element	of	aH	is	in	Ha;	analogously,	every	element	of	Ha	is	in	aH.	Thus,	aH	=	Ha.	■

Let	G	be	a	group	and	let	H	be	a	subgroup	of	G.	There	 is	a	way	of	combining	cosets,	called	coset
multiplication,	which	works	as	follows:	the	coset	of	a,	multiplied	by	the	coset	of	b,	is	defined	to	be	the
coset	of	ab.	In	symbols,

Ha	·	Hb	=	H(ab)

This	definition	is	deceptively	simple,	for	it	conceals	a	fundamental	difficulty.	Indeed,	it	is	not	at	all	clear
that	 the	 product	 of	 two	 cosets	 Ha	 and	 Hb,	 multiplied	 together	 in	 this	 fashion,	 is	 uniquely	 defined.
Remember	that	Ha	may	be	the	same	coset	as	Hc	(this	happens	iff	c	is	in	Ha),	and,	similarly,	Hb	may	be
the	same	coset	as	Hd.	Therefore,	the	product	Ha	·	Hb	is	the	same	as	the	product	He	·	Hd.	Yet	it	may	easily
happen	that	H(ab)	is	not	the	same	coset	as	H(cd).	Graphically,

For	example,	if	G	=	S3	and	H	=	{ε,	α},	then



and	yet

H(β	∘	δ)	=	Hε	≠	Hβ	=	H(γ	∘	κ)

Thus,	coset	multiplication	does	not	work	as	an	operation	on	the	cosets	of	H	=	{ε,	α}	in	S3.	The	reason	is
that,	although	H	 is	a	subgroup	of	S3,	H	 is	not	a	normal	subgroup	of	S3.	 If	H	were	a	normal	 subgroup,
coset	multiplication	would	work.	The	next	theorem	states	exactly	that!

Theorem	2	Let	H	be	a	normal	subgroup	of	G.	If	Ha	=	He	and	Hb	=	Hd,	then	H(ab)	=	H(cd).

PROOF:	If	Ha	=	Hc,	then	a	∈	Hc;	hence	a	=	h1c	for	some	h1	∈	H.	If	Hb	=	Hd,	then	b	∈	Hd;	hence	b	=
h2d	from	some	h2	∈	H.	Thus,

ab	=	h1ch2d	=	h1(ch2)d

But	ch2	∈	cH	=	Hc	(the	last	equality	is	true	by	Theorem	1).	Thus,	ch2	=	h3c	for	some	h3	∈	H.	Returning	to
ab,

ab	=	h1(ch2)d	=	h1(h3c)d	=	(h1h3)(cd)

and	this	last	element	is	clearly	in	H(cd).
We	have	shown	that	ab	∈	H(cd).	Thus,	by	Property	(1)	in	Chapter	13,	H(ab)	=	H(cd).	■
We	are	now	ready	to	proceed	with	the	construction	promised	at	the	beginning	of	the	chapter.	Let	G

be	a	group	and	let	H	be	a	normal	subgroup	of	G.	Think	of	the	set	which	consists	of	all	the	cosets	of	H.
This	set	is	conventionally	denoted	by	the	symbol	G/H.	Thus,	if	Ha,	Hb,	He,.	.	.	are	cosets	of	H,	then

G/H	=	{Ha,	Hb,	Hc,.	.	.}

We	have	just	seen	that	coset	multiplication	is	a	valid	operation	on	this	set.	In	fact,

Theorem	3	G/H	with	coset	multiplication	is	a	group.

PROOF:	Coset	multiplication	is	associative,	because

The	identity	element	of	G/H	is	H	=	He,	for	Ha	·	He	=	Ha	and	He	·	Ha	=	Ha	for	every	coset	Ha.
Finally,	the	inverse	of	any	coset	Ha	is	the	coset	Ha−1,	because	Ha	·	Ha−1	=	Haa−1	=	He	and	Ha−1	·

Ha	=	Ha−1	a	He.
The	group	G/H	is	called	the	factor	group,	or	quotient	group	of	G	by	H.
And	now,	the	pièce	de	résistance:



Theorem	4	G/H	is	a	homomorphic	image	of	G.

PROOF:	The	most	obvious	function	from	G	to	G/H	is	the	function	f	which	carries	every	element	to	its
own	coset,	that	is,	the	function	given	by

f(x)	=	Hx

This	function	is	a	homomorphism,	because

f(xy)	=	Hxy	=	Hx	·	Hy	=	f(x)f(y)

f	 is	 called	 the	natural	homomorphism	 from	G	onto	G/H.	 Since	 there	 is	 a	 homomorphism	 from	G	 onto
G/H,	G/H	is	a	homomorphic	image	of	G.	■

Thus,	when	we	construct	quotient	groups	of	G,	we	are,	in	fact,	constructing	homomorphic	images	of
G.	The	quotient	group	construction	is	useful	because	it	is	a	way	of	actually	manufacturing	homomorphic
images	of	any	group	G.	 In	fact,	as	we	will	soon	see,	 it	 is	a	way	of	manufacturing	all	 the	homomorphic
images	of	G.

Our	first	example	is	intended	to	clarify	the	details	of	quotient	group	construction.	Let	 	be	the	group
of	the	integers,	and	let	〈6〉	be	the	cyclic	subgroup	of	 	which	consists	of	all	the	multiples	of	6.	Since	 	is
abelian,	and	every	subgroup	of	an	abelian	group	is	normal,	〈6〉	is	a	normal	subgroup	of	 .	Therefore,	we
may	form	the	quotient	group	 /〈6〉.	The	elements	of	this	quotient	group	are	all	the	cosets	of	the	subgroup
〈6〉,	namely:

These	are	all	the	different	cosets	of	〈6〉,	for	it	is	easy	to	see	that	〈6〉	+	6	=	〈6〉	+	0,	〈6〉	+	7	=	〈6〉	+	1,	〈6〉	+
8	=	〈6〉	+	2,	and	so	on.

Now,	the	operation	on	 	is	denoted	by	+,	and	therefore	we	will	call	the	operation	on	the	cosets	coset
addition	rather	than	coset	multiplication.	But	nothing	is	changed	except	the	name;	for	example,	the	coset
〈6〉	+	1	added	to	the	coset	〈6〉	+	2	is	the	coset	〈6〉	+	3.	The	coset	〈6〉	+	3	added	to	the	coset	〈6〉	+	4	is	the
coset	〈6〉	+	7,	which	is	the	same	as	〈6〉	+	1.	To	simplify	our	notation,	let	us	agree	to	write	the	cosets	in	the
following	shorter	form:

Then	 /〈6〉	 consists	 of	 the	 six	 elements	 	 and	 ,	 and	 its	 operation	 is	 summarized	 in	 the
following	table:



The	reader	will	perceive	immediately	the	similarity	between	this	group	and	 6.	As	a	matter	of	 fact,	 the
quotient	group	construction	of	 /〈6〉	is	considered	to	be	the	rigorous	way	of	constructing	 6.	So	from	now
on,	we	will	consider	 6	to	be	the	same	as	 /〈6〉;	and,	in	general,	we	will	consider	 n	to	be	the	same	as	 /
〈n〉.	In	particular,	we	can	see	that	for	any	n,	 n	is	a	homomorphic	image	of	 .

Let	us	 repeat:	The	motive	 for	 the	quotient	group	construction	 is	 that	 it	 gives	us	 a	way	of	 actually
producing	all	the	homomorphic	images	of	any	group	G.	However,	what	is	even	more	fascinating	about	the
quotient	group	construction	 is	 that,	 in	practical	 instances,	we	can	often	choose	H	 so	 as	 to	 “factor	 out”
unwanted	 properties	 of	 G,	 and	 preserve	 in	 G/H	 only	 “desirable”	 traits.	 (By	 “desirable”	 we	 mean
desirable	within	the	context	of	some	specific	application	or	use.)	Let	us	look	at	a	few	examples.

First,	we	will	need	two	simple	properties	of	cosets,	which	are	given	in	the	next	theorem.

Theorem	5	Let	G	be	a	group	and	H	a	subgroup	of	G.	Then

(i) Ha	=	Hb	 iff	 ab−1	∈	H	 and
(ii) Ha	=	H	 iff	 a	∈	H

PROOF:	If	Ha	=	Hb,	then	a	∈	Hb,	so	a	=	hb	for	some	h	∈	H.	Thus,

ab−1	=	h	∈	H

If	ab−1	∈	H,	 then	ab−1	=	h	 for	h	∈	H,	 and	 therefore	a	=	hb	∈	Hb.	 It	 follows	by	Property	 (1)	 of
Chapter	13	that	Ha	=	Hb.

This	proves	(i).	It	follows	that	Ha	=	He	iff	ae−1	=	a	∈	H,	which	proves	(ii).	■
For	our	first	example,	 let	G	be	an	abelian	group	and	let	H	consist	of	all	 the	elements	of	G	which

have	 finite	 order.	 It	 is	 easy	 to	 show	 that	H	 is	 a	 subgroup	 of	G.	 (The	 details	may	 be	 supplied	 by	 the
reader.)	Remember	that	in	an	abelian	group	every	subgroup	is	normal;	hence	H	is	a	normal	subgroup	of	G,
and	therefore	we	may	form	the	quotient	group	G/H.	We	will	show	next	that	in	G/H,	no	element	except	the
neutral	element	has	finite	order.

For	suppose	G/H	has	an	element	Hx	of	finite	order.	Since	the	neutral	element	of	G/H	is	H,	this	means
there	is	an	integer	m	≠	0	such	that	(Hx)m	=	H,	that	is,	Hxm	=	H.	Therefore,	by	Theorem	5(ii),	xm	∈	H,	so
xm	has	finite	order,	say	t:

(xm)t	=	xmt	=	e

But	then	x	has	finite	order,	so	x	∈	H.	Thus,	by	Theorem	5(ii),	Hx	=	H.	This	proves	that	in	G/H,	the	only
element	Hx	of	finite	order	is	the	neutral	element	H.

Let	us	 recapitulate:	 If	H	 is	 the	subgroup	of	G	which	consists	of	all	 the	elements	of	G	which	have



finite	order,	 then	in	G/H,	no	element	 (except	 the	neutral	element)	has	 finite	order.	Thus,	 in	a	sense,	we
have	“factored	out”	all	the	elements	of	finite	order	(they	are	all	in	H)	and	produced	a	quotient	group
GIH	whose	elements	all	have	infinite	order	(except	for	the	neutral	element,	which	necessarily	has	order
1).

Our	 next	 example	may	 bring	 out	 this	 idea	 even	more	 clearly.	 Let	G	 be	 an	 arbitrary	 group;	 by	 a
commutator	of	G	we	mean	any	element	of	the	form	aba−1b−1	where	a	and	b	are	in	G.	The	reason	such	a
product	is	called	a	commutator	is	that

aba−1b−1	=	e	 iff	 ab	=	ba

In	other	words,	aba−1b−1	 reduces	 to	 the	neutral	 element	whenever	a	and	b	 commute—and	only	 in	 that
case!	Thus,	in	an	abelian	group	all	the	commutators	are	equal	to	e.	 In	a	group	which	is	not	abelian,	 the
number	of	distinct	commutators	may	be	regarded	as	a	measure	of	the	extent	to	which	G	departs	from	being
commutative.	(The	fewer	the	commutators,	the	closer	the	group	is	to	being	an	abelian	group.)

We	will	see	in	a	moment	that	if	H	is	a	subgroup	of	G	which	contains	all	the	commutators	of	G,	then
G/H	is	abelian!	What	this	means,	in	a	fairly	accurate	sense,	is	that	when	we	factor	out	the	commutators
of	G	we	 get	 a	 quotient	 group	which	 has	 no	 commutators	 (except,	 trivially,	 the	 neutral	 element)	 and
which	is	therefore	abelian.

To	say	that	G/H	is	abelian	is	to	say	that	for	any	two	elements	Hx	and	Hy	in	G/H,	HxHy	=	HyHx;	that
is,	Hxy	=	Hyx.	But	by	Theorem	5(ii),

Hxy	=	Hyx	 iff	 xy(yx)−1	∈	H

Now	xy(yx)−1	is	the	commutator	xyx−1y−1;	so	if	all	commutators	are	in	H,	then	G/H	is	abelian.

EXERCISES

A.	Examples	of	Finite	Quotient	Groups
In	each	of	the	following,	G	is	a	group	and	H	is	a	normal	subgroup	of	G.	List	the	elements	of	G/H	and	then
write	the	table	of	G/H.

Example	G	=	 6	 and	 H	=	{0,	3}

The	elements	of	G/H	are	the	three	cosets	H	=	H	+	0	=	{0,	3},	H	+	1	=	{1,	4},	and	H	+	2	=	{2,	5}.	(Note
that	H	+	3	is	the	same	as	H	+	0,	H	+	4	is	the	same	as	H	+	1,	and	H	+	5	is	the	same	as	H	+	2.)	The	table	of
G/H	is

1	G	=	 10,	H	=	{0,5}.	(Explain	why	G/H	≅	Z5.)
2	G	=	S3,	H	=	{ε,	β,	δ}.



3	G	=	D4,	H	=	{R0,	R2}.	(See	page	73.)
4	G	=	D4,	H	=	{R0,	R2,	R4,	R5}.
5	G	=	 4	×	 2,	H	=	〈(0,1)〉	=	the	subgroup	of	 4	×	 2	generated	by	(0,1).
6	G	=	P3,	H	=	{ø,	{1}}.	(P3	is	the	group	of	subsets	of	{1,	2,	3}.)

B.	Examples	of	Quotient	Groups	of	 	×	
In	each	of	the	following,	H	is	a	subset	of	 	×	 .
(a)	Prove	that	H	 is	a	normal	subgroup	of	 	×	 .	(Remember	that	every	subgroup	of	an	abelian	group	is

normal.)
(b)	In	geometrical	terms,	describe	the	elements	of	the	quotient	group	G/H.
(c)	In	geometrical	terms	or	otherwise,	describe	the	operation	of	G/H.
1	H	=	{(x,0):x	∈	 }
2	H	=	{(x,	y):y	=	−x}
3	H	=	{(x,	y):y	=	2x}

C.	Relating	Properties	of	H	to	Properties	of	G/H
In	parts	1-5	below,	G	is	a	group	and	if	is	a	normal	subgroup	of	G.	Prove	the	following	(Theorem	5	will
play	a	crucial	role):

1	If	x2	∈	H	for	every	x	∈	G,	then	every	element	of	G/H	is	its	own	inverse.	Conversely,	if	every	element	of
G/H	is	its	own	inverse,	then	x2	∈	H	for	all	x	∈	G.
2	Let	m	be	a	fixed	integer.	If	xm	∈	H	for	every	x	∈	G,	then	the	order	of	every	element	in	G/H	is	a	divisor
of	m.	Conversely,	if	the	order	of	every	element	in	G/H	is	a	divisor	of	m,	then	xm	∈	H	for	every	x	∈	G.
3	Suppose	that	for	every	x	∈	G,	 there	 is	an	 integer	n	 such	 that	xn	∈	H;	 then	every	element	of	G/H	has
finite	order.	Conversely,	if	every	element	of	G/H	has	finite	order,	then	for	every	x	∈	G	there	is	an	integer
n	such	that	xn	∈	H.
#	4	Every	element	of	G/H	has	a	square	root	iff	for	every	x	∈	G,	there	is	some	y	∈	G	such	that	xy2	∈	H.
5	G/H	is	cyclic	iff	there	is	an	element	a	∈	G	with	the	following	property:	for	every	x	∈	G,	there	is	some
integer	n	such	that	xan	∈	H.
6	If	G	is	an	abelian	group,	let	Hp	be	the	set	of	all	x	∈	H	whose	order	is	a	power	of	p.	Prove	that	Hp	is	a
subgroup	of	G.	Prove	that	G/Hp	has	no	elements	whose	order	is	a	nonzero	power	of	p
7	 (a)	If	G/H	is	abelian,	prove	that	H	contains	all	the	commutators	of	G.
(b)	Let	K	be	a	normal	subgroup	of	G,	and	H	a	normal	subgroup	of	K.	If	G/H	is	abelian,	prove	that	G/K

and	K/H	are	both	abelian.

D.	Properties	of	G	Determined	by	Properties	of	G/H	and	H
There	are	some	group	properties	which,	 if	 they	are	 true	 in	G/H	and	 in	H,	must	be	 true	 in	G.	Here	 is	a
sampling.	Let	G	be	a	group,	and	H	a	normal	subgroup	of	G.	Prove	the	following:

1	If	every	element	of	G/H	has	finite	order,	and	every	element	of	H	has	finite	order,	then	every	element	of
G	has	finite	order.



2	If	every	element	of	G/H	has	a	square	root,	and	every	element	of	H	has	a	square	root,	then	every	element
of	G	has	a	square	root.	(Assume	G	is	abelian.)
3	Let	p	be	a	prime	number.	If	G/H	and	H	are	p-groups,	then	G	is	a	p-group.	A	group	G	is	called	a	p-group
if	the	order	every	element	x	in	G	is	a	power	of	p.
#	 4	 If	G/H	 and	H	 are	 finitely	 generated,	 then	G	 is	 finitely	 generated.	 (A	 group	 is	 said	 to	 be	 finitely
generated	if	it	is	generated	by	a	finite	subset	of	its	elements.)

E.	Order	of	Elements	in	Quotient	Groups
Let	G	be	a	group,	and	H	a	normal	subgroup	of	G.	Prove	the	following:

1	For	each	element	a	∈	G,	the	order	of	the	element	Ha	in	G/H	is	a	divisor	of	the	order	of	a	in	G.	(HINT:
Use	Chapter	14,	Exercise	F1.)
2	If	(G:	H)	=	m,	the	order	of	every	element	of	G/H	is	a	divisor	of	m.
3	If	(G:	H)	=	p,	where	p	is	a	prime,	then	the	order	of	every	element	a	∉	H	in	G	is	a	multiple	of	p.	(Use
part	1.)
4	If	G	has	a	normal	subgroup	of	index	p,	where	p	is	a	prime,	then	G	has	at	least	one	element	of	order	p.
5	If	(G:	H)	=	m,	then	am	∈	G	for	every	a	∈	G.
#	6	In	 / ,	every	element	has	finite	order.

†	F.	Quotient	of	a	Group	by	Its	Center
The	 center	 of	 a	 group	G	 is	 the	 normal	 subgroup	C	 of	G	 consisting	 of	 all	 those	 elements	 of	G	 which
commute	with	every	element	of	G.	Suppose	the	quotient	group	G/C	is	a	cyclic	group;	say	it	is	generated
by	the	element	Ca	of	G/C.	Prove	parts	1-3:

1	For	every	x	∈	G,	there	is	some	integer	m	such	that	Cx	=	Cam.
2	For	every	x	∈	G,	there	is	some	integer	m	such	that	x	=	cam,	where	c	∈	C.
3	For	any	two	elements	x	and	y	in	G,	xy	=	yx.	(HINT:	Use	part	2	to	write	x	=	cam,	y	=	c′an,	and	remember
that	c,	c′	∈	C.)
4	Conclude	that	if	G/C	is	cyclic,	then	G	is	abelian.

†	G.	Using	the	Class	Equation	to	Determine	the	Size	of	the	Center
{Prerequisite:	Chapter	13,	Exercise	I.)

Let	G	be	a	finite	group.	Elements	a	and	b	in	G	are	called	conjugates	of	one	another	(in	symbols,	a	~
b)	iff	a	=	xbx−1	for	some	x	∈	G	(this	is	the	same	as	b	−	x−1ax).	The	relation	~	is	an	equivalence	relation
in	G;	 the	equivalence	class	of	any	element	a	 is	called	 its	conjugacy	class.	Hence	G	 is	partitioned	 into
conjugacy	classes	(as	shown	in	the	diagram);	the	size	of	each	conjugacy	class	divides	the	order	of	G.	(For
these	facts,	see	Chapter	13,	Exercise	I.)



“Each	element	of	the	center	C	is	alone	in	its	conjugacy	class.”

Let	S1,	S2,.	.	.,	St	be	the	distinct	conjugacy	classes	of	G,	and	let	k1,	k2,..	.,	kt	be	their	sizes.	Then	|G|	=
k1	+	k2	+	…	+	kt	(This	is	called	the	class	equation	of	G.)

Let	G	be	a	group	whose	order	is	a	power	of	a	prime	p,	say	|G|	=	pk.	Let	C	denote	the	center	of	G.
Prove	parts	1-3:

1	The	conjugacy	class	of	a	contains	a	(and	no	other	element)	iff	a	∈	C.
2	Let	c	be	the	order	of	C.	Then	|G|	=	c	+	ks	+	ks	+	1	+	···	+	kt,	where	ks,.	.	.,	kt	are	the	sizes	of	all	the	distinct
conjugacy	classes	of	elements	x	∉	C.
3	For	each	i	∈	{s,	s	+	1,...,	t},	ki	is	equal	to	a	power	of	p.	(See	Chapter	13,	Exercise	I6.)
4	Solving	the	equation	|G|	=	c	+	ks	+	·	·	·	+	kt	for	c,	explain	why	c	is	a	multiple	of	p
We	may	conclude	from	part	4	that	C	must	contain	more	than	just	the	one	element	e;	in	fact,	|C|	is	a	multiple
of	p.
5	Prove:	If	|G|	=	p2,	G	must	be	abelian.	(Use	the	preceding	Exercise	F.)
#	6	Prove:	If	|G|	=	p2,	then	either	G	≅	 p2	or	G	≅	∈p	×	∈p.

†	H.	Induction	on	|G|:	An	Example
Many	theorems	of	mathematics	are	of	the	form	“P(n)	is	true	for	every	positive	integer	n.”	[Here,	P(n)	is
used	as	a	symbol	 to	denote	some	statement	 involving	n.]	Such	 theorems	can	be	proved	by	 induction	as
follows:
(a)	Show	that	P(n)	is	true	for	n	=	1.
(b)	For	any	fixed	positive	integer	k,	show	that,	if	P(n)	is	true	for	every	n	<	k,	then	P(n)	must	also	be	true

for	n	=	k.
If	we	can	show	(a)	and	(b),	we	may	safely	conclude	that	P(n)	is	true	for	all	positive	integers	n.

Some	theorems	of	algebra	can	be	proved	by	induction	on	the	order	n	of	a	group.	Here	is	a	classical
example:	Let	G	be	a	finite	abelian	group.	We	will	show	that	G	must	contain	at	least	one	element	of	order



p,	for	every	prime	factor	p	of	|G|.	If	|G|	=	1,	this	is	true	by	default,	since	no	prime	p	can	be	a	factor	of	1.
Next,	let	|G|	=	k,	and	suppose	our	claim	is	true	for	every	abelian	group	whose	order	is	less	than	k.	Let	p
be	a	prime	factor	of	k.

Take	any	element	a	≠	e	in	G.	If	ord(a)	=	p	or	a	multiple	of	p,	we	are	done!

1	If	ord(a)	=	tp	(for	some	positive	integer	t),	what	element	of	G	has	order	p?
2	Suppose	ord(a)	is	not	equal	to	a	multiple	of	p.	Then	G/〈a〉	 is	a	group	having	fewer	 than	k	elements.
(Explain	why.)	The	order	of	G/〈a〉	is	a	multiple	of	p.	(Explain	why.)
3	Why	must	G/(a)	have	an	element	of	order	p?
4	Conclude	that	G	has	an	element	of	order	p.	(HINT:	Use	Exercise	El.)
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CHAPTER

SEVENTEEN
RINGS:	DEFINITIONS	AND	ELEMENTARY	PROPERTIES

In	presenting	scientific	knowledge	it	is	elegant	as	well	as	enlightening	to	begin	with	the	simple	and	move
toward	the	more	complex.	If	we	build	upon	a	knowledge	of	the	simplest	things,	it	is	easier	to	understand
the	more	 complex	ones.	 In	 the	 first	 part	 of	 this	 book	we	dedicated	 ourselves	 to	 the	 study	of	 groups—
surely	one	of	 the	 simplest	 and	most	 fundamental	 of	 all	 algebraic	 systems.	We	will	 now	move	on,	 and,
using	 the	 knowledge	 and	 insights	 gained	 in	 the	 study	 of	 groups,	 we	 will	 begin	 to	 examine	 algebraic
systems	which	have	two	operations	instead	of	just	one.

The	most	basic	of	the	two-operational	systems	is	called	a	ring:	it	will	be	defined	in	a	moment.	The
surprising	 fact	 about	 rings	 is	 that,	 despite	 their	 having	 two	 operations	 and	 being	 more	 complex	 than
groups,	 their	 fundamental	 properties	 follow	 exactly	 the	 pattern	 already	 laid	 out	 for	 groups.	 With
remarkable,	almost	compelling	ease,	we	will	find	two-operational	analogs	of	the	notions	of	subgroup	and
quotient	 group,	 homomorphism	 and	 isomorphism—as	 well	 as	 other	 algebraic	 notions—	 and	 we	 will
discover	that	rings	behave	just	like	groups	with	respect	to	these	notions.

The	two	operations	of	a	ring	are	traditionally	called	addition	and	multiplication,	and	are	denoted	as
usual	by	+	and	·,	respectively.	We	must	remember,	however,	that	the	elements	of	a	ring	are	not	necessarily
numbers	(for	example,	there	are	rings	of	functions,	rings	of	switching	circuits,	and	so	on);	and	therefore
“addition”	 does	 not	 necessarily	 refer	 to	 the	 conventional	 addition	 of	 numbers,	 nor	 does	multiplication
necessarily	refer	to	the	conventional	operation	of	multiplying	numbers.	In	fact,	+	and	·	are	nothing	more
than	symbols	denoting	the	two	operations	of	a	ring.

By	a	ring	we	mean	a	set	A	with	operations	called	addition	and	multiplication	which	satisfy	 the
following	axioms:

(i) A	with	addition	alone	is	an	abelian	group.
(ii) Multiplication	is	associative.
(iii) Multiplication	is	distributive	over	addition.	That	is,	for	all	a,	b,	and	c	in	A,

a(b	+	c)	=	ab	+	ac

and

(b	+	c)a	=	ba	+	ca

Since	A	with	addition	alone	is	an	abelian	group,	there	is	in	A	a	neutral	element	for	addition:	it	is	called
the	zero	 element	 and	 is	written	0.	Also,	 every	element	has	 an	additive	 inverse	called	 its	negative;	 the
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negative	of	a	is	denoted	by	−a.	Subtraction	is	defined	by

a−b	=	a	+	(−b)

The	 easiest	 examples	 of	 rings	 are	 the	 traditional	 number	 systems.	 The	 set	 	 of	 the	 integers,	with
conventional	addition	and	multiplication,	is	a	ring	called	the	ring	of	the	integers.	We	designate	this	ring
simply	 with	 the	 letter	 .	 (The	 context	 will	 make	 it	 clear	 whether	 we	 are	 referring	 to	 the	 ring	 of	 the
integers	or	the	additive	group	of	the	integers.)

Similarly,	 	is	the	ring	of	the	rational	numbers,	 	the	ring	of	the	real	numbers,	and	 	the	ring	of	the
complex	numbers.	In	each	case,	the	operations	are	conventional	addition	and	multiplication.

Remember	 that	 ( )	 represents	 the	 set	of	 all	 the	 functions	 from	 	 to	 ;	 that	 is,	 the	 set	 of	 all	 real-
valued	functions	of	a	real	variable.	In	calculus	we	learned	to	add	and	multiply	functions:	if	f	and	g	are	any
two	functions	from	 	to	 ,	their	sum	f	+	g	and	their	product	fg	are	defined	as	follows:

[f	+	g](x)	=	f(x)	+	g(x)	 for	every	real	number	x

and

[fg](x)	=	f(x)g(x)	 for	every	real	number	x

( )	with	these	operations	for	adding	and	multiplying	functions	is	a	ring	called	the	ring	of	real	functions.
It	is	written	simply	as	 ( ).	On	page	46	we	saw	that	 ( )	with	only	addition	of	functions	 is	an	abelian
group.	 It	 is	 left	 as	 an	 exercise	 for	 you	 to	 verify	 that	 multiplication	 of	 functions	 is	 associative	 and
distributive	over	addition	of	functions.

The	rings	 ,	 ,	 , ,	and	 ( )	are	all	infinite	rings,	that	is,	rings	with	infinitely	many	elements.	There
are	also	finite	rings:	rings	with	a	finite	number	of	elements.	As	an	important	example,	consider	the	group	
n,	and	define	an	operation	of	multiplication	on	 n	by	allowing	the	product	ab	to	be	the	remainder	of	the
usual	product	of	integers	a	and	b	after	division	by	n.	(For	example,	in	 5,	2	·	4	=	3,	3	·	3	=	4,	and	4·3	=	2.)
This	operation	is	called	multiplication	modulo	n.	 n	with	addition	and	multiplication	modulo	η	is	a	ring:
the	details	are	given	in	Chapter	19.

Let	A	be	any	ring.	Since	A	with	addition	alone	is	an	abelian	group,	everything	we	know	about	abelian
groups	applies	 to	 it.	However,	 it	 is	 important	 to	 remember	 that	A	with	 addition	 is	 an	 abelian	group	 in
additive	notation	 and,	 therefore,	 before	 applying	 theorems	 about	 groups	 to	A,	 these	 theorems	must	 be
translated	into	additive	notation.	For	example,	Theorems	1,	2,	and	3	of	Chapter	4	read	as	follows	when
the	notation	is	additive	and	the	group	is	abelian:

a	+	b	=	a	+	c	 implies	 b	=	c	 (1)

a	+	b	=	0	 impliesa	=	−b	 and	 b	=	−a	 (2)

−(a	+	b)	=	−(a)	+	−(b)	 and	−	(−a)	=	a	 (3)

Therefore	Conditions	(1),	(2),	and	(3)	are	true	in	every	ring.
What	 happens	 in	 a	 ring	 when	 we	 multiply	 elements	 by	 zero?	 What	 happens	 when	 we	 multiply

elements	by	the	negatives	of	other	elements?	The	next	theorem	answers	these	questions.

Theorem	1	Let	a	and	b	be	any	elements	of	a	ring	A.



(i) a0	=	0	 and	 0a	=	0
(ii) a(−b)	=	−	(ab) 	and	 (−a)b	=	−(ab)
(iii) (−a)(−b)	=	ab
Part	 (i)	asserts	 that	multiplication	by	zero	always	yields	zero,	and	parts	 (ii)	and	 (iii)	 state	 the	 familiar
rules	of	signs.

PROOF:	To	prove	(i)	we	note	that

Thus,	aa	 +	 0	=	aa	 +	a0.	By	Condition	 (1)	 above	we	may	 eliminate	 the	 term	aa	 on	 both	 sides	 of	 this
equation,	and	therefore	0	=	a0.

To	prove	(ii),	we	have

Thus,	a(−b)	+	ab	=	0.	By	Condition	(2)	above	we	deduce	that	a(−b)	=	−	(ab).	The	twin	formula	(−a)b	=
−	(−ab)	is	deduced	analogously.

We	prove	part	(iii)	by	using	part	(ii)	twice:

(−a)(−b)	=	−[a(−b)]	=	−[	−	(ab)]	=	ab	■

The	 general	 definition	 of	 a	 ring	 is	 sparse	 and	 simple.	 However,	 particular	 rings	 may	 also	 have
“optional	features”	which	make	them	more	versatile	and	interesting.	Some	of	these	options	are	described
next.

By	definition,	 addition	 is	 commutative	 in	 every	 ring	but	mutiplication	 is	 not.	When	multiplication
also	is	commutative	in	a	ring,	we	call	that	ring	a	commutative	ring.

A	 ring	A	 does	 not	 necessarily	 have	 a	 neutral	 element	 for	multiplication.	 If	 there	 is	 in	A	 a	 neutral
element	for	multiplication,	it	is	called	the	unity	of	A,	and	is	denoted	by	the	symbol	1.	Thus,	a	.	1	=	a	and	1
.	a	=	a	for	every	a	in	A.	If	A	has	a	unity,	we	call	A	a	ring	with	unity.	The	rings	 , ,	 ,	 ,	and	 ( )	are	all
examples	of	commutative	rings	with	unity.

Incidentally,	 a	 ring	 whose	 only	 element	 is	 0	 is	 called	 a	 trivial	 ring;	 a	 ring	 with	 more	 than	 one
element	is	nontrivial.	In	a	nontrivial	ring	with	unity,	necessarily	1	≠	0.	This	is	true	because	if	1	=	0	and	x
is	any	element	of	the	ring,	then

x	=	x1	=	x0	=	0

In	other	words,	if	1	=	0	then	every	element	of	the	ring	is	equal	to	0;	hence	0	is	the	only	element	of	the	ring.
If	A	 is	 a	 ring	with	 unity,	 there	may	 be	 elements	 in	A	 which	have	 a	multiplicative	 inverse.	 Such

elements	are	said	to	be	invertible.	Thus,	an	element	a	is	invertible	in	a	ring	if	there	is	some	x	in	the	ring
such	that

ax	=	xa	=	1



For	example,	in	 	every	nonzero	element	is	invertible:	its	multiplicative	inverse	is	its	reciprocal.	On	the
other	hand,	in	 	the	only	invertible	elements	are	1	and	−1.

Zero	 is	 never	 an	 invertible	 element	 of	 a	 ring	 except	 if	 the	 ring	 is	 trivial;	 for	 if	 zero	 had	 a
multiplicative	inverse	x,	we	would	have	0x	=	1,	that	is,	0	=	1.

If	A	 is	a	commutative	ring	with	unity	in	which	every	nonzero	element	is	 invertible,	A	 is	called	a
field.	Fields	are	of	the	utmost	importance	in	mathematics;	for	example,	 , ,	and	 	are	fields.	There	are
also	 finite	 fields,	 such	as	 5	 (it	 is	 easy	 to	 check	 that	 every	nonzero	 element	of	 5	 is	 invertible).	 Finite
fields	have	beautiful	properties	and	fascinating	applications,	which	will	be	examined	later	in	this	book.

In	elementary	mathematics	we	learned	the	commandment	that	if	the	product	of	two	numbers	is	equal
to	zero,	say

ab	=	0

then	one	of	 the	 two	 factors,	 either	a	 or	b	 (or	 both)	must	 be	 equal	 to	 zero.	This	 is	 certainly	 true	 if	 the
numbers	are	real	(or	even	complex)	numbers,	but	the	rule	is	not	inviolable	in	every	ring.	For	example,	in	
6,

2·3	=	0

even	though	the	factors	2	and	3	are	both	nonzero.	Such	numbers,	when	they	exist,	are	called	divisors	of
zero.

In	any	ring,	a	nonzero	element	a	is	called	a	divisor	of	zero	if	there	is	a	nonzero	element	b	in	the
ring	such	that	the	product	ab	or	ba	is	equal	to	zero.

(Note	carefully	that	both	factors	have	to	be	nonzero.)	Thus,	2	and	3	are	divisors	of	zero	in	 6;	4	is	also	a
divisor	 of	 zero	 in	 6,	 because	 4·3	 =	 0.	 For	 another	 example,	 let	 2( )	 designate	 the	 set	 of	 all	 2	 ×	 2
matrices	of	real	numbers,	with	addition	and	multiplication	of	matrices	as	described	on	page	8.	The	simple
task	of	checking	that	 2( )	satisfies	the	ring	axioms	is	assigned	as	Exercise	C1	at	the	end	of	this	chapter.	
2( )	is	rampant	with	examples	of	divisors	of	zero.	For	instance,

hence

are	both	divisors	of	zero	in	 2( ).
Of	course,	there	are	rings	which	have	no	divisors	of	zero	at	all!	For	example,	 , ,	 ,	and	 	do	not

have	any	divisors	of	zero.	It	is	important	to	note	carefully	what	it	means	for	a	ring	to	have	no	divisors	of
zero:	it	means	that	if	the	product	of	two	elements	in	the	ring	is	equal	to	zero,	at	least	one	of	the	factors
is	zero.	(Our	commandment	from	elementary	mathematics!)

It	is	also	decreed	in	elementary	algebra	that	a	nonzero	number	a	may	be	canceled	in	the	equation	ax
=	ay	to	yield	x	=	y.	While	undeniably	true	in	the	number	systems	of	mathematics,	this	rule	is	not	true	in
every	ring.	For	example,	in	 6,



2.5	=	2.2

yet	we	cannot	 cancel	 the	common	 factor	2.	A	similar	 example	 involving	2×2	matrices	may	be	 seen	on
page	9.	When	cancellation	is	possible,	we	say	the	ring	has	the	“cancellation	property.”

A	ring	is	said	to	have	the	cancellation	property	if

ab	=	ac	 or	 ba	=	ca	 implies	 b	=	c

for	any	elements	a,	b,	and	c	in	the	ring	if	a	≠	0.
There	is	a	surprising	and	unexpected	connection	between	the	cancellation	property	and	divisors	of	zero:

Theorem	2	A	ring	has	the	cancellation	property	iff	it	has	no	divisors	of	zero.

PROOF:	 The	 proof	 is	 very	 straightforward.	 Let	 A	 be	 a	 ring,	 and	 suppose	 first	 that	 A	 has	 the
cancellation	property.	To	prove	that	A	has	no	divisors	of	zero	we	begin	by	letting	ab	=	0,	and	show	that	a
or	b	is	equal	to	0.	If	a	=	0,	we	are	done.	Otherwise,	we	have

ab	=	0	=	a0

so	by	the	cancellation	property	(cancelling	a),	b=0.
Conversely,	assume	A	has	no	divisors	of	zero.	To	prove	that	A	has	the	cancellation	property,	suppose

ab	=	ac	where	a	≠	0.	Then

ab	−	ac	=	a(b	−	c)	=	0

Remember,	there	are	no	divisors	of	zero!	Since	a	≠	0,	necessarily	b	−	c	=	0,	so	b	=	c.■
An	integral	domain	is	defined	to	be	a	commutative	ring	with	unity	having	the	cancellation	property.

By	 Theorem	 2,	 an	 integral	 domain	 may	 also	 be	 defined	 as	 a	 commutative	 ring	 with	 unity	 having	 no
divisors	of	zero.	 It	 is	easy	 to	see	 that	every	 field	 is	an	 integral	domain.	The	converse,	however,	 is	not
true:	for	example,	 	is	an	integral	domain	but	not	a	field.	We	will	have	a	lot	to	say	about	integral	domains
in	the	following	chapters.

EXERCISES

A.	Examples	of	Rings
In	each	of	 the	 following,	 a	 set	A	with	operations	of	 addition	 and	multiplication	 is	 given.	Prove	 that	A
satisfies	all	the	axioms	to	be	a	commutative	ring	with	unity.	Indicate	the	zero	element,	the	unity,	and
the	negative	of	an	arbitrary	a.
1	A	is	the	set	 	of	the	integers,	with	the	following	“addition”	⊕	and	“multiplication”	 :

a	⊕	b	=	a	+	b−1	 a	 	b	=	ab	−	(a	+	b)	+	2

2	A	is	the	set	 	of	the	rational	numbers,	and	the	operations	are	⊕	and	 	defined	as	follows:

a	⊕	b	=	a	+	b	+	1	 a	 	b	=	ab	+	a	+	b

#	3	A	is	the	set	 	×	 	of	ordered	pairs	of	rational	numbers,	and	the	operations	are	the	following	addition



⊕	and	multiplication	 :

4	 	with	conventional	addition	and	multiplication.
5	Prove	that	the	ring	in	part	1	is	an	integral	domain.
6	Prove	that	 the	ring	in	part	2	is	a	field,	and	indicate	the	multiplicative	inverse	of	an	arbitrary	nonzero
element.
7	Do	the	same	for	the	ring	in	part	3.

B.	Ring	of	Real	Functions
1	Verify	that	 ( )	satisfies	all	the	axioms	for	being	a	commutative	ring	with	unity.	Indicate	the	zero	and
unity,	and	describe	the	negative	of	any	f.
#	2	Describe	the	divisors	of	zero	in	 ( ).
3	Describe	the	invertible	elements	in	 ( ).
4	Explain	why	 ( )	is	neither	a	field	nor	an	integral	domain.

C.	Ring	of	2	×	2	Matrices
Let	 2( )	designate	the	set	of	all	2	×	2	matrices

whose	entries	are	real	numbers	a,	b,	c,	and	d,	with	the	following	addition	and	multiplication:

and

1 Verify	that	 2( )	satisfies	the	ring	axioms.
2 Show	that	 2( )	is	not	commutative	and	has	a	unity.
3 Explain	why	 2( )	is	not	an	integral	domain	or	a	field.

D.	Rings	of	Subsets	of	a	Set
If	D	is	a	set,	then	the	power	set	of	D	is	the	set	PD	of	all	the	subsets	of	D.	Addition	and	multiplication	are
defined	as	follows:	If	A	and	B	are	elements	of	PD	(that	is,	subsets	of	D),	then

A	+	B	=	(A	−	B)∪(B	−	A)	 and	 AB	=	A	∩	B

It	was	shown	in	Chapter	3,	Exercise	C,	that	PD	with	addition	alone	is	an	abelian	group.



#	1	Prove:	PD	 is	a	commutative	ring	with	unity.	 (You	may	assume	∩	is	associative;	 for	 the	distributive
law,	use	the	same	diagram	and	approach	as	was	used	to	prove	that	addition	is	associative	in	Chapter	3,
Exercise	C.)

2	Describe	the	divisors	of	zero	in	PD.
3	Describe	the	invertible	elements	in	PD.
4	Explain	why	PD	is	neither	a	field	nor	an	integral	domain.	(Assume	D	has	more	than	one	element.)
5	Give	the	tables	of	P3,	that	is,	PD	where	D	=	{a,	b,	c}	.

E.	Ring	of	Quaternions
A	quaternion(in	matrix	form)	is	a	2	×	2	matrix	of	complex	numbers	of	the	form

1	Prove	that	the	set	of	all	the	quaternions,	with	the	matrix	addition	and	multiplication	explained	on	pages
7	and	8,	is	a	ring	with	unity.	This	ring	is	denoted	by	the	symbol	 .	Find	an	example	to	show	that	 	is	not
commutative.	 (You	 may	 assume	 matrix	 addition	 and	 multiplication	 are	 associative	 and	 obey	 the
distributive	law.)
2	Let

Show	that	the	quaternion	a,	defined	previously,	may	be	written	in	the	form

α	=	al	+	bi	+	cj	+	dk

(This	is	the	standard	notation	for	quaternions.)
#	3	Prove	the	following	formulas:

i2	=	j2	=	k2	=	−l	 ij	=	−ji	=	k	 jk=−kj	=	i	 ki=−ik=j

4	The	conjugate	of	α	is

The	norm	of	α	is	a2	+	b2	+	c2	+	d2,	and	is	written	∥α∥.Show	directly	(by	matrix	multiplication)	that

Conclude	that	the	multiplicative	inverse	of	α	is	(1/t)	ᾱ.
5	A	skew	field	 is	a	(not	necessarily	commutative)	ring	with	unity	in	which	every	nonzero	element	has	a
multiplicative	inverse.	Conclude	from	parts	1	and	4	that	 	is	a	skew	field.

F.	Ring	of	Endomorphisms



Let	G	be	an	abelian	group	in	additive	notation.	An	endomorphism	of	G	is	a	homomorphism	from	G	to	G.
Let	 End(G)	 denote	 the	 set	 of	 all	 the	 endomorphisms	 of	G,	 and	 define	 addition	 and	 multiplication	 of
endomorphisms	as	follows:

1	Prove	that	End(G)	with	these	operations	is	a	ring	with	unity.
2	List	the	elements	of	End( 4),	then	give	the	addition	and	multiplication	tables	for	End( 4).

REMARK:	The	endomorphisms	of	 4	are	easy	to	find.	Any	endomorphisms	of	 4	will	carry	1	to	either
0,	1,	2,	or	3.	For	example,	take	the	last	case:	if

then	necessarily

hence	f	is	completely	determined	by	the	fact	that

G.	Direct	Product	of	Rings
If	A	and	B	are	rings,	their	direct	product	is	a	new	ring,	denoted	by	A	×	B,	and	defined	as	follows:	A	×	B
consists	of	all	the	ordered	pairs	(x,	y)	where	x	is	in	A	and	y	is	in	B.	Addition	in	A	×	B	consists	of	adding
corresponding	components:

(x1,	y1)	+	(x2,	y2)	=	(x1+x2,	y1+y2)

Multiplication	in	A	×	B	consists	of	multiplying	corresponding	components:

(x1,	y1)	·	(x2,	y2)	=	(x1x2,	y1y2)

1	If	A	and	B	are	rings,	verify	that	A	×	B	is	a	ring.
2	If	A	and	B	are	commutative,	show	that	A	×	Bis	commutative.	If	A	and	B	each	has	a	unity,	show	that	A	×	B
has	a	unity.
3	Describe	carefully	the	divisors	of	zero	in	A	×	B.
#	4	Describe	the	invertible	elements	in	A	×	B.
5	Explain	why	A	×	B	can	never	be	an	integral	domain	or	a	field.	(Assume	A	and	B	each	have	more	than
one	element.)

H.	Elementary	Properties	of	Rings
Prove	parts	1−4:
1	In	any	ring,	a(b	−	c)	=	ab	−	ac	and	(b	−	c)a	=	ba	−	ca.
2	In	any	ring,	if	ab	=	−ba,	then	(a	+	b)2	=	(a	−	b)2	=	a2	+	b2.



3	In	any	integral	domain,	if	a2	=	b2,	then	a	=	±b.
4	In	any	integral	domain,	only	1	and	−1	are	their	own	multiplicative	inverses.	(Note	that	x	=	x−1	iff	x2	=
1.)
5	Show	that	the	commutative	law	for	addition	need	not	be	assumed	in	defining	a	ring	with	unity:	it	may	be
proved	from	the	other	axioms.	[HINT:	Use	the	distributive	law	to	expand	(a	+	b)(1	+	1)	in	two	different
ways.]
#	6	Let	A	be	any	ring.	Prove	that	if	the	additive	group	of	A	is	cyclic,	then	A	is	a	commutative	ring.
7	Prove:	In	any	integral	domain,	if	an	=	0	for	some	integer	n,	then	a	=	0.

I.	Properties	of	Invertible	Elements
Prove	that	parts	1−5	are	true	in	a	nontrivial	ring	with	unity.
1	If	a	is	invertible	and	ab	=	ac,	then	b	=	c.
2	An	element	a	can	have	no	more	than	one	multiplicative	inverse.
3	If	a2	=	0	then	a	+	1	and	a	−	1	are	invertible.
4	If	a	and	b	are	invertible,	their	product	ab	is	invertible.
5	The	set	S	of	all	the	invertible	elements	in	a	ring	is	a	multiplicative	group.
6	By	part	5,	the	set	of	all	the	nonzero	elements	in	a	field	is	a	multiplicative	group.	Now	use	Lagrange’s
theorem	to	prove	that	in	a	finite	field	with	m	elements,	xm−1	=	1	for	every	x	≠	0.
7	If	ax	=	1,	x	is	a	right	inverse	of	a;	if	ya	=	1,	y	is	a	left	inverse	of	a.	Prove	that	if	a	has	a	right	inverse	y
and	a	left	inverse	y,	then	a	is	invertible,	and	its	inverse	is	equal	to	x	and	to	y.	(First	show	that	yaxa	=	1.)
8	Prove:	In	a	commutative	ring,	if	ab	is	invertible,	then	a	and	b	are	both	invertible.

J.	Properties	of	Divisors	of	Zero
Prove	that	each	of	the	following	is	true	in	a	nontrivial	ring.
1	If	a	≠	±1	and	a2	=	1,	then	a	+	1	and	a	−	1	are	divisors	of	zero.
#	2	If	ab	is	a	divisor	of	zero,	then	a	or	b	is	a	divisor	of	zero.
3	In	a	commutative	ring	with	unity,	a	divisor	of	zero	cannot	be	invertible.
4	Suppose	ab	≠	0	in	a	commutative	ring.	If	either	α	or	is	a	divisor	of	zero,	so	is	ab.
5	Suppose	a	is	neither	0	nor	a	divisor	of	zero.	If	ab	=	ac,	then	b	=	c.
6	A	×	B	always	has	divisors	of	zero.

K.	Boolean	Rings
A	ring	A	is	a	boolean	ring	if	a2	=	a	for	every	a	∈	A.	Prove	that	parts	1	and	2	are	true	in	any	boolean	ring
A.
1 For	every	a	∈	A,	a	=	−a.	[HINT:	Expand	(a	+	a)2.]
2 Use	part	1	to	prove	that	A	is	a	commutative	ring.	[HINT:	Expand	(a	+	b)2.]
In	parts	3	and	4,	assume	A	has	a	unity	and	prove:
3 Every	element	except	0	and	1	is	a	divisor	of	zero.	[Consider	x(x	−	1).]
4 1	is	the	only	invertible	element	in	A.
5 Letting	a	∨	b	=	a	+	b	+	ab	we	have	the	following	in	A:



a	∨	bc	=	(a	∨	b)(a	∨	c)	 a∨	(1	+	a)	=	1	 a∨a	=	a	 a(a	∨	b)	=	a

L.	The	Binomial	Formula
An	important	formula	in	elementary	algebra	is	the	binomial	expansion	formula	for	an	expression	(a	+	b)n.
The	formula	is	as	follows:

where	the	binomial	coefficient

This	theorem	is	true	in	every	commutative	ring.	(If	K	is	any	positive	integer	and	a	is	an	element	of	a	ring,
ka	 refers	 to	 the	sum	a	+	a	+	⋯	+	a	with	k	 terms,	as	 in	elementary	algebra.)	The	proof	of	 the	binomial
theorem	in	a	commutative	 ring	 is	no	different	 from	the	proof	 in	elementary	algebra.	We	shall	 review	 it
here.

The	proof	of	the	binomial	formula	is	by	induction	on	the	exponent	n.	The	formula	is	trivially	true	for
n	=	1.	In	the	induction	step,	we	assume	the	expansion	for	(a	+	b)n	is	as	above,	and	we	must	prove	that

Now,

Collecting	terms,	we	find	that	the	coefficient	of	an	+	1	−kbk	is

By	direct	computation,	show	that

It	will	follow	that	(a	+	b)n	+	1	is	as	claimed,	and	the	proof	is	complete.

M.	Nilpotent	and	Unipotent	Elements

An	element	a	of	a	ring	is	nilpotent	if	an	=	0	for	some	positive	integer	n.
1	In	a	ring	with	unity,	prove	that	if	a	is	nilpotent,	then	a	+1	and	a	−	1	are	both	invertible.	[HINT:	Use	the



factorization

1	−	an	=	(1	−	a)(1	+	a	+	a2	+	⋯	+	a	n−1)

for	1	−	a,	and	a	similar	formula	for	1	+	a.]
2	In	a	commutative	ring,	prove	that	any	product	xa	of	a	nilpotent	element	a	by	any	element	x	is	nilpotent.
#	3	In	a	commutative	ring,	prove	that	the	sum	of	two	nilpotent	elements	is	nilpotent.	(HINT:	You	must	use
the	binomial	formula;	see	Exercise	L.)

An	element	a	of	a	ring	is	unipotent	iff	1	−	a	is	nilpotent.

4	In	a	commutative	ring,	prove	that	the	product	of	two	unipotent	elements	a	and	b	is	unipotent.	[HINT:	Use
the	binomial	formula	to	expand	1	−	ab	=	(1	−	a)	+	a(1	−	b)	to	power	n	+	m.]
5	In	a	ring	with	unity,	prove	that	every	unipotent	element	is	invertible.	(HINT:	Use	Part	1.)



CHAPTER

EIGHTEEN
IDEALS	AND	HOMOMORPHISMS

We	have	already	seen	several	examples	of	smaller	rings	contained	within	larger	rings.	For	example,	 	is	a
ring	 inside	 the	 larger	 ring	 ,	and	 	 itself	 is	a	 ring	 inside	 the	 larger	 ring	 .	When	a	 ring	B	 is	part	of	a
larger	ring	A,	we	call	B	a	subring	of	A.	The	notion	of	subring	is	the	precise	analog	for	rings	of	the	notion
of	subgroup	for	groups.	Here	are	the	relevant	definitions:

Let	A	be	a	ring,	and	B	a	nonempty	subset	of	A.	If	the	sum	of	any	two	elements	of	B	is	again	in	B,	then
B	is	closed	with	respect	to	addition.	If	the	negative	of	every	element	of	B	is	in	B,	then	B	is	closed	with
respect	to	negatives.	Finally,	if	the	product	of	any	two	elements	of	B	is	again	in	B,	then	B	is	closed	with
respect	 to	 multiplication.	 B	 is	 called	 a	 subring	 of	 A	 if	 B	 is	 closed	 with	 respect	 to	 addition,
multiplication,	and	negatives.	Why	is	B	then	called	a	subring	of	A?	Quite	elementary:

If	a	nonempty	subset	B	⊆	A	is	closed	with	respect	to	addition,	multiplication,	and	negatives,	then
B	with	the	operations	of	A	is	a	ring.

This	fact	is	easy	to	check:	If	a,	b,	and	c	are	any	three	elements	of	B,	then	a,	b,	and	c	are	also	elements	of	A
because	B	⊆	A.	But	A	is	a	ring,	so

Thus,	in	B	addition	and	multiplication	are	associative	and	the	distributive	law	is	satisfied.	Now,	B	was
assumed	to	be	nonempty,	so	there	is	an	element	b	∈	B	but	B	is	closed	with	respect	to	negatives,	so	−b	is
also	in	B.	Finally,	B	is	closed	with	respect	to	addition;	hence	b	+	(−b)	∈	B.	That	is,	0	is	in	B.	Thus,	B
satisfies	all	the	requirements	for	being	a	ring.

For	example,	 	is	a	subring	of	 	because	the	sum	of	two	rational	numbers	is	rational,	the	product	of
two	rational	numbers	is	rational,	and	the	negative	of	every	rational	number	is	rational.

By	 the	way,	 if	B	 is	 a	nonempty	 subset	of	A,	 there	 is	 a	more	 compact	way	of	 checking	 that	B	 is	 a
subring	of	A	:

B	is	a	subring	of	A	if	and	only	if	B	is	closed	with	respect	to	subtraction	and	multiplication.



The	reason	is	that	B	is	closed	with	respect	to	subtraction	iff	B	is	closed	with	respect	to	both	addition
and	negatives.	This	last	fact	is	easy	to	check,	and	is	given	as	an	exercise.

Awhile	 back,	 in	 our	 study	 of	 groups,	 we	 singled	 out	 certain	 special	 subgroups	 called	 normal
subgroups.	We	will	 now	 describe	 certain	 special	 subrings	 called	 ideals	 which	 are	 the	 counterpart	 of
normal	subgroups:	that	is,	ideals	are	in	rings	as	normal	subgroups	are	in	groups.

Let	A	be	a	ring,	and	B	a	nonempty	subset	of	A.	We	will	say	that	B	absorbs	products	in	A	(or,	simply,
B	absorbs	products)	if,	whenever	we	multiply	an	element	in	B	by	an	element	in	A	(regardless	of	whether
the	latter	is	inside	B	or	outside	B),	their	product	is	always	in	B.	In	other	words,

for	all	b	∈	B	and	x	∈	A,	xb	and	bx	are	in	B.

A	nonempty	subset	B	of	a	ring	A	is	called	an	ideal	of	A	if	B	is	closed	with	respect	to	addition	and
negatives,	and	B	absorbs	products	in	A.

A	simple	example	of	an	ideal	is	the	set	 	of	the	even	integers.	 	is	an	ideal	of	 	because	the	sum	of
two	even	integers	 is	even,	 the	negative	of	any	even	integer	 is	even,	and,	finally,	 the	product	of	an	even
integer	by	any	integer	is	always	even.

In	a	commutative	ring	with	unity,	the	simplest	example	of	an	ideal	is	the	set	of	all	the	multiples	of	a
fixed	element	a	by	all	the	elements	in	the	ring.	In	other	words,	the	set	of	all	the	products

xa

as	a	remains	fixed	and	x	ranges	over	all	the	elements	of	the	ring.	This	set	is	obviously	an	ideal	because

and

y(xa)	=	(yx)a

This	ideal	is	called	the	principal	ideal	generated	by	a,	and	is	denoted	by

〈a〉

As	in	the	case	of	subrings,	if	B	is	a	nonempty	subset	of	A,	there	is	a	more	compact	way	of	checking
that	B	is	an	ideal	of	A	:

B	is	an	ideal	of	A	if	and	only	if	B	is	closed	with	respect	to	subtraction	and	B	absorbs	products	in
A.
We	shall	see	presently	that	ideals	play	an	important	role	in	connection	with	homomorphism
Homomorphisms	are	almost	the	same	for	rings	as	for	groups.
A	homomorphism	from	a	ring	A	to	a	ring	B	is	a	function	f	:	A	→	B	satisfying	the	identities

f(xl	+	x2)	=	f(x1)	+	f(x2)

and



f(x1x2)	=	f(x1)f(x2)

There	is	a	longer	but	more	informative	way	of	writing	these	two	identities:

1.	If	f(x1)	=	y1	and	f(x2)	=	y2	then	f(x1	+	x2)	=	y1	+	y2.
2.	If	f(x1)	=	y1	and	f(x2)	=	y2	then	f(x1	x2)	=	y1	y2

In	other	words,	if	f	happens	to	carry	xl	to	y1	and	x2	to	y2,	then,	necessarily,	it	must	carry	x1	+	x2	to	y1	+	y2
and	x1x2	to	y1y2.	Symbolically,
If	 	and	 ,	then	necessarily

One	 can	 easily	 confirm	 for	 oneself	 that	 a	 function	 f	with	 this	 property	will	 transform	 the	 addition	 and
multiplication	 tables	 of	 its	 domain	 into	 the	 addition	 and	 multiplication	 tables	 of	 its	 range.	 (We	 may
imagine	infinite	rings	to	have	“nonterminating”	tables.)	Thus,	a	homomorphism	from	a	ring	A	onto	a	ring	B
is	a	function	which	transforms	A	into	B.

For	example,	the	ring	 6	is	transformed	into	the	ring	 3	by

as	we	may	verify	by	comparing	their	tables.	The	addition	tables	are	compared	on	page	136,	and	we	may
do	the	same	with	their	multiplication	tables:

If	 there	 is	 a	 homomorphism	 from	 A	 onto	 B,	 we	 call	 B	 a	 homomorphic	 image	 of	 A.	 If	 f	 is	 a
homomorphism	from	a	ring	A	to	a	ring	B,	not	necessarily	onto,	the	range	of/is	a	subring	of	B.	(This	fact	is
routine	to	verify.)	Thus,	the	range	of	a	ring	homomorphism	is	always	a	ring.	And	obviously,	the	range	of	a
homomorphism	is	always	a	homomorphic	image	of	its	domain.

Intuitively,	 if	B	 is	 a	 homomorphic	 image	 of	A,	 this	means	 that	 certain	 features	 of	A	 are	 faithfully



preserved	 in	 B	 while	 others	 are	 deliberately	 lost.	 This	 may	 be	 illustrated	 by	 developing	 further	 an
example	described	in	Chapter	14.	The	parity	ring	P	consists	of	two	elements,	e	and	o,	with	addition	and
multiplication	given	by	the	tables

We	 should	 think	of	e	 as	 “even”	 and	o	 as	 “odd,”	 and	 the	 tables	 as	 describing	 the	 rules	 for	 adding	 and
multiplying	odd	and	even	integers.	For	example,	even	+	odd	=	odd,	even	times	odd	=	even,	and	so	on.

The	function	f:	 	→	P	which	carries	every	even	integer	to	e	and	every	odd	integer	to	o	is	easily	seen
to	be	a	homomorphism	from	 	to	P	this	is	made	clear	on	page	137.	Thus,	P	is	a	homomorphic	image	of	 .
Although	 the	ring	P	 is	very	much	smaller	 than	 the	 ring	 ,	 and	 therefore	 few	of	 the	 features	of	 	 can	be
expected	to	reappear	in	P,	nevertheless	one	aspect	of	the	structure	of	 	is	retained	absolutely	intact	in	P,
namely,	the	structure	of	odd	and	even	numbers.	As	we	pass	from	 	to	P,	the	parity	of	the	integers	(their
being	even	or	odd),	with	its	arithmetic,	is	faithfully	preserved	while	all	else	is	lost.	Other	examples	will
be	given	in	the	exercises.

If	f	is	a	homomorphism	from	a	ring	A	to	a	ring	B,	the	kernel	of	f	 is	the	set	of	all	 the	elements	of	A
which	are	carried	by	f	onto	the	zero	element	of	B.	In	symbols,	the	kernel	of	f	is	the	set

K	=	{x	∈	A	:	f(x)	=	0}

It	is	a	very	important	fact	that	the	kernel	of	f	is	an	ideal	of	A.	(The	simple	verification	of	this	fact	is	left	as
an	exercise.)

If	 A	 and	 B	 are	 rings,	 an	 isomorphism	 from	 A	 to	 B	 is	 a	 homomorphism	 which	 is	 a	 one-to-one
correspondence	from	A	to	B.	In	other	words,	it	is	an	injective	and	surjective	homomorphism.	If	there	is	an
isomorphism	from	A	to	B	we	say	that	A	is	isomorphic	to	B,	and	this	fact	is	expressed	by	writing

A	≅	B

EXERCISES

A.	Examples	of	Subrings
Prove	that	each	of	the	following	is	a	subring	of	the	indicated	ring:

1	{x	+	 y	:	x,	y	≅	 }	is	a	subring	of	 .
2	{x	+	21/3	y	+	22/3	z	:	x,	y,	z	∈	 }	is	a	subring	of	 .
3	{x2y	:	x,	y	∈	 }	is	a	subring	of	 .
#	4	Let	 ( )	be	the	set	of	all	the	functions	from	 	to	 	which	are	continuous	on	(−∞,	∞)	and	let	 ( )	be
the	set	of	all	 the	 functions	from	 	 to	 	which	are	differentiable	on	 (−∞,	∞).	Then	 ( )	and	 ( )	 are
subrings	of	 ( ).

5	Let	 ( )	be	the	set	of	all	functions	from	 	to	 	which	are	continuous	on	the	interval	[0,1].	Then	 ( )	is	a
subring	of	 ( ),	and	 ( )	is	a	subring	of	 ( ).
6	The	subset	of	 2( )	consisting	of	all	matrices	of	the	form



is	a	subring	of	 2( ).

B.	Examples	of	Ideals
1	Identify	which	of	the	following	are	ideals	of	 	×	 ,	and	explain:	{(n,	n)	:	n	∈	 };	{(5n,	0)	:	n	∈	 };	{(n,
m)	:	n	+	m	is	even};	{(n,	m)	:	nm	is	even};	{(2n,	3m)	:	n,	m	∈	 }.
2	List	all	the	ideals	of	 12.
#	3	Explain	why	every	subring	of	 n	is	necessarily	an	ideal.
4	Explain	why	the	subring	of	Exercise	A6	is	not	an	ideal.
5	Explain	why	 ( )	is	not	an	ideal	of	 ( ).
6	Prove	that	each	of	the	following	is	an	ideal	of	 ( ):
(a)	The	set	of	all	f	such	that	f(x)	=	0	for	every	rational	x.
(b)	The	set	of	all	f	such	that	f(0)	=	0.
7	List	all	the	ideals	of	P3.	(P3	is	defined	in	Chapter	17,	Exercise	D.)
8	Give	an	example	of	a	subring	of	P3	which	is	not	an	ideal.
9	Give	an	example	of	a	subring	of	 3	×	 3	which	is	not	an	ideal.

C.	Elementary	Properties	of	Subrings
Prove	parts	1–6:

1	A	nonempty	subset	B	of	a	ring	A	 is	closed	with	respect	to	addition	and	negatives	iff	B	 is	closed	with
respect	to	subtraction.
2	 Conclude	 from	 part	 1	 that	 B	 is	 a	 subring	 of	 A	 iff	 B	 is	 closed	 with	 respect	 to	 subtraction	 and
multiplication.
3	If	A	is	a	finite	ring	and	B	is	a	subring	of	A,	then	the	order	of	B	is	a	divisor	of	the	order	of	A.
#	4	 If	a	subring	B	of	an	 integral	domain	A	contains	1,	 then	B	 is	an	 integral	domain.	 (B	 is	 then	called	a
subdomain	of	A.)

#	5	Every	subring	containing	the	unity	of	a	field	is	an	integral	domain.
6	If	a	subring	B	of	a	field	F	is	closed	with	respect	to	multiplicative	inverses,	then	B	is	a	field.	(B	is	then
called	a	subfield	of	F.)
7	Find	subrings	of	 18	which	illustrate	each	of	the	following:
(a)	A	is	a	ring	with	unity,	B	is	a	subring	of	A,	but	B	is	not	a	ring	with	unity.
(b)	A	and	B	are	rings	with	unity,	B	is	a	subring	of	A,	but	the	unity	of	B	is	not	the	same	as	the	unity	of	A.
8	Let	A	be	a	ring,	f	:	A	→	A	a	homomorphism,	and	B	=	{x	∈	A	:	f(x)	=	x}.	Prove	that	B	is	a	subring	of	A.
9	The	center	of	a	ring	A	is	the	set	of	all	the	elements	a	∈	A	such	that	ax	=	xa	for	every	x	∈	A.	Prove	that
the	center	of	A	is	a	subring	of	A.

D.	Elementary	Properties	of	Ideals
Let	A	be	a	ring	and	J	a	nonempty	subset	of	A.



1	Using	Exercise	C1,	 explain	why	 J	 is	 an	 ideal	 of	A	 iff	J	 is	 closed	with	 respect	 to	 subtraction	 and	 J
absorbs	products	in	A.
2	 If	A	 is	 a	 ring	with	unity,	 prove	 that	J	 is	 an	 ideal	of	A	 iff	J	 is	 closed	with	 respect	 to	 addition	 and	J
absorbs	products	in	A.
3	Prove	that	the	intersection	of	any	two	ideals	of	A	is	an	ideal	of	A.
4	Prove	that	if	J	is	an	ideal	of	A	and	1	∈	J,	then	J	=	A.
5	Prove	that	if	J	is	an	ideal	of	A	and	J	contains	an	invertible	element	a	of	A,	then	J	=	A.
6	Explain	why	a	field	F	can	have	no	nontrivial	ideals	(that	is,	no	ideals	except	{0}	and	F).

E.	Examples	of	Homomorphisms
Prove	that	each	of	the	functions	in	parts	1–6	is	a	homomorphism.	Then	describe	its	kernel	and	its	range.

1	ϕ	:	 ( )→ 	given	by	ϕ(f)	=	f(0).
2	h	:	 	×	 →	 	given	by	h(x,	y)	=	x.
3	h	:	 	→	 2( )	given	by

4	h	:	 	×	 	→	 2( )	given	by

#	5	Let	A	be	the	set	 	×	 	with	the	usual	addition	and	the	following	“multiplication”:

(a,	b)	 	(c,	d)	=	(ac,	bc)

Granting	that	A	is	a	ring,	let	f	:	A	→	 2( )	be	given	by

6	h	:	Pc	→	Pc	given	by	h(A)	=	A	 	D,	where	D	is	a	fixed	subset	of	C.
7	List	all	the	homomorphisms	from	 2	to	 4;	from	 3	to	 6.

F.	Elementary	Properties	of	Homomorphisms
Let	A	and	B	be	rings,	and	f	:	A	→	B	a	homomorphism.	Prove	each	of	the	following:

1	f(A)	=	{f(x):	x	∈	A}	is	a	subring	of	B.
2	The	kernel	of	f	is	an	ideal	of	A.
3	f(0)	=	0,	and	for	every	a	∈	A,	f(−a)	=	−f(a).
4	f	is	injective	iff	its	kernel	is	equal	to	{0}.
5	If	B	is	an	integral	domain,	then	either	f(l)	=	1	or	f(l)	=	0.	If	f(l)	=	0,	then	f(x)	=	0	for	every	x	∈	A.	If	f(1)
=	1,	the	image	of	every	invertible	element	of	A	is	an	invertible	element	of	B.



6	Any	homomorphic	 image	of	a	commutative	ring	 is	a	commutative	ring.	Any	homomorphic	 image	of	a
field	is	a	field.
7	If	the	domain	A	of	the	homomorphism	f	is	a	field,	and	if	the	range	of	f	has	more	than	one	element,	then	f
is	injective.	(HINT:	Use	Exercise	D6.)

G.	Examples	of	Isomorphisms
1	Let	A	be	the	ring	of	Exercise	A2	in	Chapter	17.	Show	that	the	function	f(x)	=	x	−	1	is	an	isomorphism
from	 	to	A	hence	 	≅	A.
2	Let	 	be	the	following	subset	of	 2( ):

Prove	that	the	function

is	an	isomorphism	from	 	to	 .	[REMARK:	You	must	begin	by	checking	that	f	is	a	well-defined	function;
that	is,	if	a	+	bi	=	c	+	di,	then	f(a	+	bi)	=	f(c	+	di).	To	do	this,	note	that	if	a	+	bi	=	c	+	di	then	a	−	c	=	(d	−
b)i;	this	last	equation	is	impossible	unless	both	sides	are	equal	to	zero,	for	otherwise	it	would	assert	that
a	given	real	number	is	equal	to	an	imaginary	number.]
3	Prove	that	{(x,	x)	:	x	∈	 }	is	a	subring	of	 	×	 ,	and	show	{(x,	x)	:	x	∈	 }	≅	 .
4	Show	that	the	set	of	all	2	×	2	matrices	of	the	form

is	a	subring	of	 2( ),	then	prove	this	subring	is	isomorphic	to	 .
For	any	integer	k,	let	k 	designate	the	subring	of	 	which	consists	of	all	the	multiples	of	k.
5	Prove	that	 	∉	2 	then	prove	that	2 	∉	3 .	Finally,	explain	why	if	k	≠	l,	then	k 	∉	l .	(REMEMBER:	How
do	you	show	that	two	rings,	or	groups,	are	not	isomorphic?)

H.	Further	Properties	of	Ideals
Let	A	be	a	ring,	and	let	J	and	K	be	ideals	of	A.
Prove	parts	1-4.	(In	parts	2-4,	assume	A	is	a	commutative	ring.)

1	If	J	 	K	=	{0},	then	jk	=	0	for	every	j	∈	J	and	k	∈	K.
2	For	any	a	∈	A,	Ia	=	{ax	+	j	+	k	:	x	∈	A,	j	∈	J,	k	∈	K}	is	an	ideal	of	A.
#	3	The	radical	of	J	is	the	set	rad	J	=	{a	∈	A	:	an	∈	J	for	some	n	∈	 }.	For	any	ideal	J,	rad	J	is	an	ideal
of	A.

4	For	any	a	∈	A,	{x	∈	A	:	ax	=	0}	is	an	ideal	(called	the	annihilator	of	a).
Furthermore,	{x	∈	A	:	ax	=	0	for	every	a	∈	A}	is	an	ideal	(called	the	annihilating	ideal	of	A).	If	A	is	a
ring	with	unity,	its	annihilating	ideal	is	equal	to	{0}.
5	Show	that	{0}	and	A	are	ideals	of	A.	(They	are	trivial	ideals;	every	other	ideal	of	A	is	a	proper	ideal.)



A	proper	ideal	J	of	A	is	called	maximal	if	it	is	not	strictly	contained	in	any	strictly	larger	proper	ideal:
that	is,	if	J	⊆	K,	where	K	is	an	ideal	containing	some	element	not	in	J,	then	necessarily	K	=	A.	Show	that
the	following	is	an	example	of	a	maximal	ideal:	In	 ( ),	the	ideal	J	=	{f	:	f(0)	=	0}.	[HINT:	Use	Exercise
D5.	Note	that	if	g	∈	K	and	g(0)	≠	0	(that	is,	g	∉	J),	then	the	function	h(x)	=	g(x)	−	g(0)	is	in	J	hence	h(x)
−	g(x)	∈	K.	Explain	why	this	last	function	is	an	invertible	element	of	 ( ).]

I.	Further	Properties	of	Homomorphisms
Let	A	and	B	be	rings.	Prove	each	of	the	following:

1	If	f	:	A	→	B	is	a	homomorphism	from	A	onto	B	with	kernel	K,	and	J	is	an	ideal	of	A	such	that	K	 	J	then
f(J)	is	an	ideal	of	B.
2	If	f	:	A	→	B	is	a	homomorphism	from	A	onto	B,	and	B	is	a	field,	then	the	kernel	of	f	is	a	maximal	ideal.
(HINT:	Use	part	1,	with	Exercise	D6.	Maximal	ideals	are	defined	in	Exercise	H5.)
3	There	are	no	nontrivial	homomorphisms	from	 	to	 .	[The	trivial	homomorphisms	are	f(x)	=	0	and	f(x)	=
x.]
4	If	n	is	a	multiple	of	m,	then	 m	is	a	homomorphic	image	of	 n.
5	If	n	is	odd,	there	is	an	injective	homomorphism	from	 2	into	 2n.

†	J.	A	Ring	of	Endomorphisms
Let	A	be	a	commutative	ring.	Prove	each	of	the	following:

1	For	each	element	a	in	A,	the	function	πa	defined	by	πa(x)	=	ax	satisfies	the	identity	πa(x	+	y)	=	πa(x)	+
πa(y).	(In	other	words,	πa	is	an	endomorphism	of	the	additive	group	of	A.)
2	πa	is	injective	iff	a	is	not	a	divisor	of	zero.	(Assume	a	≠	0.)
3	πa	is	surjective	iff	a	is	invertible.	(Assume	A	has	a	unity.)
4	Let	 	denote	the	set	{πa	:	a	∈	A}	with	the	two	operations

[πa	+	πb](x)	=	πa(x)	+	πb(x)	 and	 πa	πb	=	πa	∘	πb

Verify	that	 	is	a	ring.
5	If	ϕ	:	A	→	 	is	given	by	ϕ(a)	=	πa,	then	ϕ	is	a	homomorphism.
6	 If	 A	 has	 a	 unity,	 then	 ϕ	 is	 an	 isomorphism.	 Similarly,	 if	 A	 has	 no	 divisors	 of	 zero	 then	 ϕ	 is	 an
isomorphism.



CHAPTER

NINETEEN

QUOTIENT	RINGS

We	continue	our	 journey	into	the	elementary	theory	of	rings,	 traveling	a	road	which	runs	parallel	 to	 the
familiar	landscape	of	groups.	In	our	study	of	groups	we	discovered	a	way	of	actually	constructing	all	the
homomorphic	 images	 of	 any	 group	G.	 We	 constructed	 quotient	 groups	 of	G,	 and	 showed	 that	 every
quotient	 group	 of	G	 is	 a	 homomorphic	 image	 of	G.	We	will	 now	 imitate	 this	 procedure	 and	 construct
quotient	rings.

We	begin	by	defining	cosets	of	rings:

Let	A	be	a	ring,	and	J	an	ideal	of	A.	For	any	element	a	∈	A,	the	symbol	J	+	a	denotes	the	set	of	all
sums	j	+	a,	as	a	remains	fixed	and	j	ranges	over	J.	That	is,

J	+	a	=	{j	+	a	:	j	∈	J}

J	+	a	is	called	a	coset	of	J	in	A.

It	 is	 important	 to	 note	 that,	 if	we	provisionally	 ignore	multiplication,	A	with	 addition	 alone	 is	 an
abelian	 group	 and	 J	 is	 a	 subgroup	 of	 A.	 Thus,	 the	 cosets	 we	 have	 just	 defined	 are	 (if	 we	 ignore
multiplication)	precisely	the	cosets	of	the	subgroup	J	in	the	group	A,	with	the	notation	being	additive.
Consequently,	everything	we	already	know	about	group	cosets	continues	 to	apply	 in	 the	present	case—
only,	care	must	be	taken	to	translate	known	facts	about	group	cosets	into	additive	notation.	For	example,
Property	(1)	of	Chapter	13,	with	Theorem	5	of	Chapter	15,	reads	as	follows	in	additive	notation:

We	also	know,	by	the	reasoning	which	leads	up	to	Lagrange’s	theorem,	that	the	family	of	all	the	cosets	J	+
a,	as	a	ranges	over	A,	is	a	partition	of	A.



There	is	a	way	of	adding	and	multiplying	cosets	which	works	as	follows:

In	other	words,	the	sum	of	the	coset	of	a	and	the	coset	of	b	is	the	coset	of	a	+	b;	the	product	of	the	coset	of
a	and	the	coset	of	b	is	the	coset	of	ab.

It	 is	 important	 to	know	 that	 the	sum	and	product	of	cosets,	defined	 in	 this	 fashion,	are	determined
without	ambiguity.	Remember	that	J	+	a	may	be	the	same	coset	as	J	+	c	[by	Condition	(1)	this	happens	iff
c	 is	an	element	of	J	+	a],	and,	likewise,	J	+	b	may	be	the	same	coset	as	J	+	d.	Therefore,	we	have	 the
equations

Obviously	we	must	be	absolutely	certain	 that	J	+	(a	+	b)	=	J	+	 (c	+	d)	and	J	+	ab	=	J	+	cd.	The	next
theorem	provides	us	with	this	important	guarantee.

Theorem	1	Let	J	be	an	ideal	of	A.	If	J	+	a	=	J	+	c	and	J	+	b	=	J	+	d,	then

(i) J	+	(a	+	b)	=	J	+	(c	+	d),	and
(ii) J	+	ab	=	J	+	cd.

PROOF:	We	are	given	that	J	+	a	=	J	+	c	and	J	+	b	=	J	+	d;	hence	by	Condition	(2),

a	–	c	∈	J	 and	 b	–	d	∈	J

Since	J	 is	closed	with	respect	to	addition,	(a	−	c)	+	(b	−	d)	=	(a	+	b)	−	 (c	+	d)	 is	 in	J.	 It	 follows	by
Condition	(2)	that	J	+	(a	+	b)	=	J	+	(c	+	d),	which	proves	(i).	On	the	other	hand,	since	J	absorbs	products
in	A,

and	therefore	(ab	−	cb)	+	(cb	−	cd)	=	ab	−	cd	is	in	J.	It	follows	by	Condition	(2)	that	J	+	ab	=	J	+	cd.
This	proves	(ii).	■

Now,	think	of	the	set	which	consists	of	all	the	cosets	of	J	in	A.	This	set	is	conventionally	denoted	by
the	symbol	A/J.	For	example,	if	J	+	a,	J	+	b,	J	+	c,…	are	cosets	of	J,	then

A/J	=	{J	+	a,	J	+	b,	J	+	c,…}

We	have	just	seen	that	coset	addition	and	multiplication	are	valid	operations	on	this	set.	In	fact,



Theorem	2	A/J	with	coset	addition	and	multiplication	is	a	ring.

PROOF:	 Coset	 addition	 and	 multiplication	 are	 associative,	 and	 multiplication	 is	 distributive	 over
addition.	(These	facts	may	be	routinely	checked.)	The	zero	element	of	A/J	is	the	coset	J	=	J	+	0,	for	if	J	+
a	is	any	coset,

(J	+	a)	+	(J	+	0)	=	J	+	(a	+	0)	=	J	+	a

Finally,	the	negative	of	J	+	a	is	J	+	(–a),	because

(J	+	a)	+	(J	+	(–a))	=	J	+	(a	+	(–a))	=	J	+	0	■

The	ring	A/J	is	called	the	quotient	ring	of	A	by	J.
And	now,	the	crucial	connection	between	quotient	rings	and	homomorphisms	:

Theorem	3	A/J	is	a	homomorphic	image	of	A.

Following	the	plan	already	laid	out	for	groups,	 the	natural	homomorphism	 from	A	onto	A/J	 is	 the
function	f	which	carries	every	element	to	its	own	coset,	that	is,	the	function	f	given	by

f(x)	=	J	+	x

This	function	is	very	easily	seen	to	be	a	homomorphism.
Thus,	when	we	construct	quotient	rings	of	A,	we	are,	in	fact,	constructing	homomorphic	images	of	A.

The	 quotient	 ring	 construction	 is	 useful	 because	 it	 is	 a	 way	 of	 actually	 manufacturing	 homomorphic
images	of	any	ring	A.

The	quotient	ring	construction	is	now	illustrated	with	an	important	example.	Let	 	be	the	ring	of	the
integers,	and	let	〈6〉	be	the	ideal	of	 	which	consists	of	all	the	multiples	of	the	number	6.	The	elements	of
the	quotient	ring	 /〈6〉	are	all	the	cosets	of	the	ideal	(6),	namely:

We	will	represent	these	cosets	by	means	of	the	simplified	notation	 	 .	The	rules	for	adding
and	multiplying	cosets	give	us	the	following	tables:



One	cannot	fail	to	notice	the	analogy	between	the	quotient	ring	 /〈6〉	and	the	ring	 6.	In	fact,	we	will
regard	them	as	one	and	the	same.	More	generally,	for	every	positive	integer	n,	we	consider	 n	 to	be	the
same	as	 /〈n〉.	In	particular,	this	makes	it	clear	that	 n	is	a	homomorphic	image	of	 .

By	 Theorem	 3,	 any	 quotient	 ring	A/J	 is	 a	 homomorphic	 image	 of	 A.	 Therefore	 the	 quotient	 ring
construction	is	a	way	of	actually	producing	homomorphic	images	of	any	ring	A.	In	fact,	as	we	will	now
see,	it	is	a	way	of	producing	all	the	homomorphic	images	of	A.

Theorem	4	Let	f	:	A	→	B	be	a	homomorphism	from	a	ring	A	onto	a	ring	B,	and	let	K	be	the	kernel
of	f.	Then	B	≅	A/B.

PROOF:	To	show	that	A/K	 is	 isomorphic	with	B,	we	must	 look	for	an	 isomorphism	from	A/K	 to	B.
Mimicking	the	procedure	which	worked	successfully	for	groups,	we	let	ϕ	be	the	function	from	A/K	 to	B
which	matches	each	coset	K	+	x	with	the	element	f(x);	that	is,

ϕ(K	+	x)	=	f(x)

Remember	 that	 if	 we	 ignore	 multiplication	 for	 just	 a	 moment,	 A	 and	 B	 are	 groups	 and	 f	 is	 a	 group
homomorphism	from	A	onto	B,	with	kernel	K.	Therefore	we	may	apply	Theorem	2	of	Chapter	16:	ϕ	 is	a
well-defined,	bijective	function	from	A/K	to	B.	Finally,

Thus,	ϕ	is	an	isomorphism	from	A/K	onto	B.	■
Theorem	4	is	called	the	fundamental	homomorphism	theorem	for	rings.	Theorems	3	and	4	together

assert	 that	every	quotient	 ring	of	A	 is	a	homomorphic	 image	of	A,	and,	conversely,	every	homomorphic
image	 of	 A	 is	 isomorphic	 to	 a	 quotient	 ring	 of	 A.	 Thus,	 for	 all	 practical	 purposes,	 quotients	 and
homomorphic	images	of	a	ring	are	the	same.

As	in	the	case	of	groups,	there	are	many	practical	instances	in	which	it	is	possible	to	select	an	ideal
J	of	A	so	as	to	“factor	out”	unwanted	traits	of	A,	and	obtain	a	quotient	ring	A/J	with	“desirable”	features.

As	a	simple	example,	let	A	be	a	ring,	not	necessarily	commutative,	and	let	J	be	an	ideal	of	A	which
contains	all	the	differences

ab	–	ba



as	a	and	b	range	over	A.	It	is	quite	easy	to	show	that	the	quotient	ring	A/J	is	then	commutative.	Indeed,	to
say	that	A/J	is	commutative	is	to	say	that	for	any	two	cosets	J	+	a	and	J	+	b,

(J	+	a)(J	+	b)	=	(J	+	b)(J	+	a)	 that	is	 J	+	ab	=	J	+	ba

By	Condition	(2)	this	last	equation	is	true	iff	ab	−	ba	∈	J.	Thus,	if	every	difference	ab	−	ba	is	in	J,	then
any	two	cosets	commute.

A	number	of	important	quotient	ring	constructions,	similar	in	principle	to	this	one,	are	given	in	the
exercises.

An	ideal	J	of	a	commutative	ring	is	said	to	be	a	prime	ideal	if	for	any	two	elements	a	and	b	in	the
ring,

If	 ab	∈	J	 then	 a	∈	J	 or	 b	∈	J

Whenever	 J	 is	 a	 prime	 ideal	 of	 a	 commutative	 ring	 with	 unity	A,	 the	 quotient	 ring	A/J	 is	 an	 integral
domain.	(The	details	are	left	as	an	exercise.)

An	ideal	of	a	ring	is	called	proper	if	it	is	not	equal	to	the	whole	ring.	A	proper	ideal	J	of	a	ring	A	is
called	a	maximal	ideal	if	there	exists	no	proper	ideal	K	of	A	such	that	J	⊆	K	with	J	≠	K	(in	other	words,
J	is	not	contained	in	any	strictly	larger	proper	ideal).	It	is	an	important	fact	that	if	A	is	a	commutative	ring
with	unity,	then	J	is	a	maximal	ideal	of	A	iff	A/J	is	a	field.

To	prove	this	assertion,	let	J	be	a	maximal	ideal	of	A.	If	A	is	a	commutative	ring	with	unity,	it	is	easy
to	see	that	A/J	is	one	also.	In	fact,	it	should	be	noted	that	the	unity	of	A/J	is	the	coset	J	+	1,	because	if	J	+
a	is	any	coset,	(J	+	a)(J	+	1)	=	J	+	a1	=	J	+	a.	Thus,	to	prove	that	A/J	is	a	field,	it	remains	only	to	show
that	if	J	+	a	is	any	nonzero	coset,	there	is	a	coset	J	+	x	such	that	(J	+	a)(J	+	x)	=	J	+	1.

The	zero	coset	is	J.	Thus,	by	Condition	(3),	to	say	that	J	+	a	is	not	zero,	is	to	say	that	a	∉	J.	Now,	let
K	be	the	set	of	all	the	sums

xa	+	j

as	x	ranges	over	A	and	j	ranges	over	J.	It	is	easy	to	check	that	K	is	an	ideal.	Furthermore,	K	contains	a
because	a	=	1a	+	0,	and	K	contains	every	element	j	∈	J	because	j	can	be	written	as	0a	+	j.	Thus,	K	is	an
ideal	which	contains	J	and	 is	 strictly	 larger	 than	J	 (for	 remember	 that	a	∈	K	 but	a	∉	J).	But	J	 is	 a
maximal	ideal!	Thus,	K	must	be	the	whole	ring	A.

It	follows	that	1	∈	K,	so	1	=	xa	+	j	for	some	x	∈	A	and	j	∈	J.	Thus,	1	–	xa	=	j	∈	J,	so	by	Condition
(2),	J	+	1	=	J	+	xa	=	(J	+	x)(J	+	a).	In	the	quotient	ring	A/J,	J	+	x	is	therefore	the	multiplicative	inverse	of
J	+	a.

The	 converse	 proof	 consists,	 essentially,	 of	 “unraveling”	 the	 preceding	 argument;	 it	 is	 left	 as	 an
entertaining	exercise.

EXERCISES

A.	Examples	of	Quotient	Rings
In	each	of	 the	following,	A	 is	a	ring	and	J	 is	an	ideal	of	A.	List	 the	elements	of	A/J,	and	 then	write	 the
addition	and	multiplication	tables	of	A/J.

Example	A	=	 6,	J	=	{0,	3}.



The	elements	of	A/J	are	the	three	cosets	J	=	J	+	0	=	{0,3},	J	+	1	=	{1,4},	and	J	+	2	=	{2,5}.	The
tables	for	A/J	are	as	follows:

1	A	=	 10,	J	=	{0,5}.
2	A	=	P3,	J	=	{0,	{a}}.	(P3	is	defined	in	Chapter	17,	Exercise	D.)
3	A	=	 2	×	 6;	J	=	{(0,0),	(0,2),	(0,4)}.

B.	Examples	of	the	Use	of	the	FHT
In	each	of	the	following,	use	the	FHT	(fundamental	homomorphism	theorem)	to	prove	that	the	two	given
groups	are	isomorphic.	Then	display	their	tables.

Example	 2	and	 6/〈2〉.
The	following	function	is	a	homomorphism	from	 6	onto	 2:

(Do	not	prove	that	J	is	a	homomorphism.)
The	kernel	of	f	is	{0,	2,	4}	=	(2).	Thus:

It	follows	by	the	FHT	that	 2	≅	 6/〈2〉.

1	 5	and	 20/〈5〉.
2	 3	and	 6/〈3〉.
3	P2	and	P3/K,	where	K	=	{0,	{c}}.	[HINT:	See	Chapter	18,	Exercise	E6.	Consider	the	function	f(X)	=	X
∩	{a,	b}.]
4	 2	and	 2	×	 2/K,	where	K	=	{(0,	0),	(0,1)}.

C.	Quotient	Rings	and	Homomorphic	Images	in	 ( )
1	Let	ϕ	be	the	function	from	 ( )	to	 	×	 	defined	by	ϕ(f)	=	(f(0),	f(1)).	Prove	that	ϕ	is	a	homomorphism
from	 ( )	onto	 	×	 ,	and	describe	its	kernel.
2	Let	J	be	 the	subset	of	 ( )	consisting	of	all	 f	whose	graph	passes	 through	 the	points	 (0,0)	and	 (1,0).
Referring	to	part	1,	explain	why	J	is	an	ideal	of	 ( ),	and	 ( )/J	≅	 	×	 .
3	Let	ϕ	be	the	function	from	 ( )	to	 ( ,	 )	defined	as	follows:

ϕ(f)	=	f 	=	the	restriction	of	J	to	



(NOTE:	 The	 domain	 of	 f 	 is	 	 and	 on	 this	 domain	 f 	 is	 the	 same	 function	 as	 f.)	 Prove	 that	 ϕ	 is	 a
homomorphism	from	 ( )	onto	 ( ,	 ),	and	describe	the	kernel	of	ϕ.	[ ( ,	 )	is	the	ring	of	functions	from
	to	 .]

4	Let	J	be	the	subset	of	 ( )	consisting	of	all	f	such	that	f(x)	=	0	for	every	rational	x.	Referring	to	part	3,
explain	why	J	is	an	ideal	of	 ( )	and	 ( )/J	≅	 ( ).

D.	Elementary	Applications	of	the	Fundamental	Homomorphism	Theorem
In	each	of	the	following	let	A	be	a	commutative	ring.	If	a	∈	A	and	n	is	a	positive	integer,	the	notation	na
will	stand	for

a	+	a	+	⋯	+	a	 (n	terms)

1	Suppose	2x	=	0	for	every	x	∈	A.	Prove	that	(x	+	y)2	=	x2	+	y2	for	all	x	and	y	 in	A.	Conclude	 that	 the
function	h(x)	=	x2	is	a	homomorphism	from	A	to	A.	If	J	=	{x	∈	A	:	x2	=	0}	and	B	=	{x2	:	x	∈	A),	explain
why	J	is	an	ideal	of	A,	B	is	a	subring	of	A,	and	A/J	≅	B.
2	Suppose	6x	=	0	for	every	x	∈	A.	Prove	that	the	function	h(x)	=	3x	is	a	homomorphism	from	A	to	A.	If	J	=
{x	:	3x	=	0}	and	B	=	{3x	:	x	∈	A},	explain	why	J	is	an	ideal	of	A,	B	is	a	subring	of	A,	and	A/J	≅	B.
3	If	a	is	an	idempotent	element	of	A	(that	is,	a2	=	a),	prove	that	the	function	πa(x)	=	ax	is	a	homomorphism
from	A	into	A.	Show	that	the	kernel	of	πa	is	Ia,	the	annihilator	of	a	(defined	in	Exercise	H4	of	Chapter	18).
Show	that	the	range	of	πa	is	〈a〉.	Conclude	by	the	FHT	that	A/Ia	=	〈a〉.
4	 For	 each	 a	 ∈	 A,	 let	 πa	 be	 the	 function	 given	 by	 πa(x)	 =	 ax.	 Define	 the	 following	 addition	 and
multiplication	on	 	=	{πa	:	a	∈	A}:

πa	+	πb	=	πa+b	and	πa	πb	=	πab
( 	is	a	ring;	however,	do	not	prove	this.)	Show	that	the	function	ϕ(a)	=	πa	is	a	homomorphism	from	A	onto
.	Let	 I	 designate	 the	 annihilating	 ideal	of	A	 (defined	 in	Exercise	H4	of	Chapter	18).	Use	 the	 FHT	 to

show	that	A/I	≅	 .

E.	Properties	of	Quotient	Rings	A/J	in	Relation	to	Properties	of	J
Let	A	be	a	 ring	and	J	an	 ideal	of	A.	Use	Conditions	(1),	 (2),	and	(3)	of	 this	chapter.	Prove	each	of	 the
following:

#	1	Every	element	of	A/J	has	a	square	root	iff	for	every	x	∈	A,	there	is	some	y	∈	A	such	that	x	–	y2	∈	J.
2	Every	element	of	A/J	is	its	own	negative	iff	x	+	x	∈	J	for	every	x	∈	A.
3	A/J	is	a	boolean	ring	iff	x2	–	x	∈	J	for	every	x	∈	A.	(A	ring	S	is	called	a	boolean	ring	iff	s2	=	s	for	every
s	∈	S.)
4	If	J	is	the	ideal	of	all	the	nilpotent	elements	of	a	commutative	ring	A,	then	A/J	has	no	nilpotent	elements
(except	zero).	 (Nilpotent	elements	are	defined	in	Chapter	17,	Exercise	M;	by	M2	and	M3	they	form	an
ideal.)
5	Every	element	of	A/J	is	nilpotent	iff	J	has	the	following	property:	for	every	x	∈	A,	there	is	a	positive
integer	n	such	that	xn	∈	J.
#	6	A/J	has	a	unity	element	iff	there	exists	an	element	a	∈	A	such	that	ax	–	x	∈	J	and	xa	–	x	∈	J	for	every
x	∈	A.



F.	Prime	and	Maximal	Ideals
Let	A	be	a	commutative	ring	with	unity,	and	J	an	ideal	of	A.	Prove	each	of	the	following:

1	A/J	is	a	commutative	ring	with	unity.
2	J	is	a	prime	ideal	iff	A/J	is	an	integral	domain.
3	Every	maximal	 ideal	of	A	 is	 a	prime	 ideal.	 (HINT:	Use	 the	 fact,	proved	 in	 this	chapter,	 that	 if	J	 is	 a
maximal	ideal	then	A/J	is	a	field.)
4	If	A/J	is	a	field,	then	J	is	a	maximal	ideal.	(HINT:	See	Exercise	I2	of	Chapter	18.)

G.	Further	Properties	of	Quotient	Rings	in	Relation	to	Their	Ideals
Let	A	be	a	ring	and	J	an	ideal	of	A.	(In	parts	1–3	and	5	assume	that	A	is	a	commutative	ring	with	unity.)

#	1	Prove	that	A/J	is	a	field	iff	for	every	element	a	∈	A,	where	a	∉	J,	there	is	some	b	∈	A	such	that	ab	–	1
∈	J.

2	 Prove	 that	 every	 nonzero	 element	 of	A/J	 is	 either	 invertible	 or	 a	 divisor	 of	 zero	 iff	 the	 following
property	holds,	where	a,	x	∈	A:	For	every	a	∉	J,	there	is	some	x	∉	J	such	that	either	ax	∈	J	or	ax	–	1	∈
J.
3	An	ideal	J	of	a	ring	A	is	called	primary	iff	for	all	a,	b	∈	A,	if	ab	∈	J,	then	either	a	∈	J	or	bn	∈	J	for
some	positive	integer	n.	Prove	that	every	zero	divisor	in	A/J	is	nilpotent	iff	J	is	primary.
4	An	ideal	J	of	a	ring	A	is	called	semiprime	iff	it	has	the	following	property:	For	every	a	∈	A,	if	an	∈	J
for	 some	positive	 integer	n,	 then	necessarily	a	∈	J.	Prove	 that	J	 is	 semiprime	 iff	A/J	 has	 no	 nilpotent
elements	(except	zero).
5	Prove	 that	an	 integral	domain	can	have	no	nonzero	nilpotent	elements.	Then	use	part	4,	 together	with
Exercise	F2,	to	prove	that	every	prime	ideal	in	a	commutative	ring	is	semiprime.

H.	Zn	as	a	Homomorphic	Image	of	Z
Recall	that	the	function

f(a)	=	ā

is	the	natural	homomorphism	from	 	onto	 n.	If	a	polynomial	equation	p	=	0	is	satisfied	in	 ,	necessarily
f(p)	=	f(0)	is	true	in	 n.	Let	us	take	a	specific	example;	there	are	integers	x	and	y	satisfying	11x2	−	8y2	+
29	=	0	(we	may	take	x	=	3	and	y	=	4).	It	follows	that	there	must	be	elements	 	and	 	in	 6	which	satisfy	

	 in	 6,	 that	 is,	 .	 (We	 take	 	 and	 .)	 The	 problems	 which
follow	are	based	on	this	observation.

1	Prove	that	the	equation	x2	–	7y2	−	24	=	0	has	no	integer	solutions.	(HINT:	If	there	are	integers	x	and	y
satisfying	this	equation,	what	equation	will	 	and	 	satisfy	in	 7?)

2	Prove	that	x2	+	(x	+	1)2	+	(x	+	2)2	=	y2	has	no	integer	solutions.
3	Prove	that	x2	+	10y2	=	n	(where	n	is	an	integer)	has	no	integer	solutions	if	the	last	digit	of	n	is	2,	3,	7,	or
8.
4	Prove	that	the	sequence	3,	8,	13,	18,	23,…	does	not	include	the	square	of	any	integer.	(HINT:	The	image



of	each	number	on	this	list,	under	the	natural	homomorphism	from	 	to	 5,	is	3.)
5	Prove	that	the	sequence	2,	10,	18,	26,…	does	not	include	the	cube	of	any	integer.
6	Prove	that	the	sequence	3,	11,	19,	27,…	does	not	include	the	sum	of	two	squares	of	integers.
7	Prove	that	if	n	is	a	product	of	two	consecutive	integers,	its	units	digit	must	be	0,	2,	or	6.
8	Prove	that	if	n	is	the	product	of	three	consecutive	integers,	its	units	digit	must	be	0,	4,	or	6.
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CHAPTER

TWENTY

INTEGRAL	DOMAINS

Let	us	recall	that	an	integral	domain	is	a	commutative	ring	with	unity	having	the	cancellation	property,	that
is,

if	 a	≠	0			and	 ab	=	ac			then	 b	=	c	 (1)

At	the	end	of	Chapter	17	we	saw	that	an	integral	domain	may	also	be	defined	as	a	commutative	ring	with
unity	having	no	divisors	of	zero,	which	is	to	say	that

if	 ab	=	0	 then	 a	=	0	 or	 b	=	0	 (2)

for	as	we	saw,	(1)	and	(2)	are	equivalent	properties	in	any	commutative	ring.
The	 system	 	 of	 the	 integers	 is	 the	 exemplar	 and	 prototype	 of	 integral	 domains.	 In	 fact,	 the	 term

“integral	domain”	means	a	system	of	algebra	(“domain”)	having	integerlike	properties.	However,	 	is	not
the	only	integral	domain:	there	are	a	great	many	integral	domains	different	from	 .

Our	 first	 few	 comments	 will	 apply	 to	 rings	 generally.	 To	 begin	with,	 we	 introduce	 a	 convenient
notation	for	multiples,	which	parallels	the	exponent	notation	for	powers.	Additively,	the	sum

a	+	a	+	···	+	a

of	n	equal	terms	is	written	as	n	·	a.	We	also	define	0	·	a	to	be	0,	and	let	(-n)	·	a	=	−(n	·	a)	for	all	positive
integers	n.	Then

m	·	a	+	n	·	a	=	(m	+	n)·a	 and	 m	·	(n	·	a)	=	(mn)	·	a

for	every	element	a	of	a	ring	and	all	integers	m	and	n.	These	formulas	are	the	translations	into	additive
notation	of	the	laws	of	exponents	given	in	Chapter	10.

If	A	is	a	ring,	A	with	addition	alone	is	a	group.	Remember	that	in	additive	notation	the	order	of	an
element	a	in	A	is	the	least	positive	integer	n	such	that	n	·	a	=	0.	If	there	is	no	such	positive	integer	n,	then	a
is	 said	 to	have	order	 infinity.	To	emphasize	 the	 fact	 that	we	are	 referring	 to	 the	order	of	a	 in	 terms	of
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addition,	we	will	call	it	the	additive	order	of	a.
In	a	ring	with	unity,	if	1	has	additive	order	n,	we	say	the	ring	has	“characteristic	n.”	In	other	words,

if	A	is	a	ring	with	unity,
the	characteristic	of	A	is	the	least	positive	integer	n	such	that

If	there	is	no	such	positive	integer	n,	A	has	characteristic	0.
These	concepts	are	especially	simple	in	an	integral	domain.	Indeed,

Theorem	1	All	the	nonzero	elements	in	an	integral	domain	have	the	same	additive	order.

PROOF:	That	is,	every	a	≠	0	has	the	same	additive	order	as	the	additive	order	of	1.	The	truth	of	this
statement	becomes	transparently	clear	as	soon	as	we	observe	that

n	·	a	=	a	+	a	+	·	·	·	+	a	=	1a	+	·	·	·	+	1a	=	(1	+	·	·	·	+	1)a	=	(n	·	1)a

hence	n	·	a	=	0	iff	n	·	1	=	0.	(Remember	that	in	an	integral	domain,	if	the	product	of	two	factors	is	equal	to
0,	at	least	one	factor	must	be	0.)	■

It	follows,	in	particular,	that	if	the	characteristic	of	an	integral	domain	is	a	positive	integer	n,	then

n	·	x	=	0

for	every	element	x	in	the	domain.
Furthermore,

Theorem	 2	 In	 an	 integral	 domain	 with	 nonzero	 characteristic,	 the	 characteristic	 is	 a	 prime
number.

PROOF:	If	the	characteristic	were	a	composite	number	mn,	then	by	the	distributive	law,

Thus,	either	m	·	1	=	0	or	n	·	1	=	0,	which	is	impossible	because	mn	was	chosen	to	be	the	least	positive
integer	such	that	(mn)	·	1	=	0.	■

A	very	interesting	rule	of	arithmetic	is	valid	in	integral	domains	whose	characteristic	is	not	zero.

Theorem	3	In	any	integral	domain	of	characteristic	p,

(a	+	b)p	=	ap	+	bp	 for	all	elements	a	and	b

PROOF:	This	formula	becomes	clear	when	we	look	at	the	binomial	expansion	of	(a	+	b)p.	Remember
that	by	the	binomial	formula,



where	the	binomial	coefficient

It	is	demonstrated	in	Exercise	L	of	Chapter	17	that	the	binomial	formula	is	correct	in	every	commutative
ring.

Note	that	if	p	is	a	prime	number	and	0	<	k	<	p,	then

because	every	factor	of	the	denominator	is	less	than	p,	hence	p	does	not	cancel	out.	Thus,	each	term	of	the
binomial	 expansion	 above,	 except	 for	 the	 first	 and	 last	 terms,	 is	 of	 the	 form	 px,	 which	 is	 equal	 to	 0
because	the	domain	has	characteristic	p.	Thus,	(a	+	b)p	=	ap	+	bp.	■

It	 is	 obvious	 that	 every	 field	 is	 an	 integral	 domain:	 for	 if	a	 ≠	 0	 and	ax	 =	ay	 in	 a	 field,	we	 can
multiply	both	sides	of	 this	equation	by	 the	multiplicative	 inverse	of	a	 to	 cancel	a.	However,	not	 every
integral	domain	is	a	field:	for	example,	 	is	not	a	field.	Nevertheless,

Theorem	4	Every	finite	integral	domain	is	a	field.

List	the	elements	of	the	integral	domain	in	the	following	manner:

0,	1,	a1,	a2,	…,	an

In	this	manner	of	listing,	there	are	n	+	2	elements	in	the	domain.	Take	any	ai,	and	show	that	it	is	invertible:
to	begin	with,	note	that	the	products

ai0,	ai1,	aia1,	aia2,	…,	aian

are	all	distinct:	for	if	aix	=	aiy,	then	x	=	y.	Thus,	there	are	n	+	2	distinct	products	aix;	but	there	are	exactly
n	 +	 2	 elements	 in	 the	 domain,	 so	 every	 element	 in	 the	 domain	 is	 equal	 to	 one	 of	 these	 products.	 In
particular,	1	=	aix	for	some	x;	hence	ai	is	invertible.

OPTIONAL

The	integral	domain	 	is	not	a	field	because	it	does	not	contain	the	quotients	m/n	of	integers.	However,	
can	be	enlarged	to	a	field	by	adding	to	it	all	the	quotients	of	integers;	the	resulting	field,	of	course,	is	 ,
the	 field	of	 the	rational	numbers.	 	consists	of	all	quotients	of	 integers,	and	 it	contains	 	 (or	 rather,	an
isomorphic	copy	of	 )	when	we	identify	each	integer	n	with	the	quotient	n/1.	We	say	that	 	is	the	field	of
quotients	of	 .

It	 is	 a	 fascinating	 fact	 that	 the	 method	 for	 constructing	 	 from	 	 can	 be	 applied	 to	 any	 integral
domain.	Starting	from	any	integral	domain	A,	it	is	possible	to	construct	a	field	which	contains	A:	a	field
of	quotients	of	A.	This	is	not	merely	a	mathematical	curiosity,	but	a	valuable	addition	to	our	knowledge.	In
applications	it	often	happens	that	a	system	of	algebra	we	are	dealing	with	lacks	a	needed	property,	but	is
contained	in	a	larger	system	which	has	that	property—and	that	is	almost	as	good!	In	the	present	case,	A	is
not	a	field	but	may	be	enlarged	to	one.



Thus,	 if	A	 is	 any	 integral	 domain,	 we	 will	 proceed	 to	 construct	 a	 field	A*	 consisting	 of	 all	 the
quotients	of	elements	in	A;	and	A*	will	contain	A,	or	rather	an	isomorphic	copy	of	A,	when	we	 identify
each	element	a	of	A	with	the	quotient	a/1.	The	construction	will	be	carefully	outlined	and	the	busy	work
left	as	an	exercise.

Given	A,	let	S	denote	the	set	of	all	ordered	pairs	(a,	b)	of	elements	of	A,	where	b	≠	0.	That	is,

S	=	{(a,	b):	a,b	∈	A			and			b	≠	0}

In	 order	 to	 understand	 the	 next	 step,	we	 should	 think	 of	 (a,	 b)	 as	a/b.	 [It	 is	 too	 early	 in	 the	 proof	 to
introduce	 fractional	 notation;	 nevertheless	 each	ordered	 pair	 (a,	b)	 should	 be	 thought	 of	 as	 a	 fraction
a/b.}	Now	a	problem	of	representation	arises	here,	because	it	is	obvious	that	the	quotient	xa/xb	is	equal
to	the	quotient	a/b;	to	put	the	same	fact	differently,	the	quotients	a/b	and	c/d	are	equal	whenever	ad	=	bc.
That	is,	if	ad	=	bc,	then	a/b	and	c/d	are	two	different	ways	of	writing	the	same	quotient.	Motivated	by	this
observation,	we	define	(a,	b)	~	(c,	d)	 to	mean	 that	ad	=	bc,	and	easily	verify	 that	~	 is	an	equivalence
relation	on	the	set	5.	(Equivalence	relations	are	explained	in	Chapter	12.)	Then	we	let	[a,	b]	denote	 the
equivalence	class	of	(a,	b),	that	is,

[a,b]	=	{(c,d)	∈	S	:	(c,	d)	~	(a,	b)}

Intuitively,	all	 the	pairs	which	represent	a	given	quotient	are	 lumped	together	 in	one	equivalence	class;
thus,	each	quotient	is	represented	by	exactly	one	equivalence	class.

Let	us	recapitulate	the	formal	details	of	our	construction	up	to	this	point:	Given	the	set	S	of	ordered
pairs	of	elements	in	A,	we	define	an	equivalence	relation	—	in	S	by	letting	(a,	b)	~	(c,	d)	iff	ad=	bc.	We
let	 [a,	 b]	 designate	 the	 equivalence	 class	 of	 (a,	 b),	 and	 finally,	we	 let	 A*	 denote	 the	 set	 of	 all	 the
equivalence	classes	[a,	b].	The	elements	of	A*	will	be	called	quotients.

Before	going	on,	observe	carefully	that

[a,b]	=	[r,s]	 iff	 (a,	b)~(r,s)	 iff	 as	=	br	 (3)

As	our	next	step,	we	define	operations	of	addition	and	multiplication	in	A*:

[a,	b]	+	[c,	d]	=	[ad	+	bc,	bd]

and

[a,	b]	·	[c,	d]	=	[ac,	bd]

To	understand	these	definitions,	simply	remember	the	formulas

We	must	make	certain	these	definitions	are	unambiguous;	that	is,	if	[a,	b]	=	[r,	s]	and	[c,	d]	=	[t,	u],	we
have	equations



and	we	must	therefore	verify	that	[ad	+	bc,	bd]	=	[ru	+	st,	su]	and	[ac,	bd]	=	[rt,	su].	This	 is	 left	as	an
exercise.	 It	 is	 also	 left	 for	 the	 student	 to	 verify	 that	 addition	 and	 multiplication	 are	 associative	 and
commutative	and	the	distributive	law	is	satisfied.

The	zero	element	is	[0,1],	because	[a,	b]	+	[0,1]	=	[a,	b].	The	negative	of	[a,	b]	is	[-a,	b],	for	[a,	b]
+	[-a,	b]	=	[0,	b2]	=	[0,1].	[The	last	equation	is	true	because	of	Equation	(3).]	The	unity	is	[1,1],	and	the
multiplicative	inverse	of	[a,	b]	is	[b,a],	for	[a,	b]	·	[b,	a]	=	[ab,	ab]	=	[1,1].	Thus,	A*	is	a	field!

Finally,	if	A′	 is	 the	subset	of	A*	which	contains	every	[a,	1],	we	let	ϕ	be	the	function	from	A	 to	A′
defined	by	ϕ(a)	=	[a,	1].	This	function	is	injective	because,	by	Equation	(3),	if	[a,	1]	=	[b,	1]	then	a	=	b.	It
is	obviously	surjective	and	is	easily	shown	to	be	a	homomorphism.	Thus,	ϕ	is	an	isomorphism	from	A	to	A
′	so	A*	contains	an	isomorphic	copy	A′	of	A.

EXERCISES

A.	Characteristic	of	an	Integral	Domain
Let	A	be	a	finite	integral	domain.	Prove	each	of	the	following:

1	Let	a	be	any	nonzero	element	of	A.	If	n	·	a	=	0,	where	n	≠	0,	then	n	is	a	multiple	of	the	characteristic	of
A.
2	If	A	has	characteristic	zero,	n	≠	0,	and	n	·	a	=	0,	then	a	=	0.
3	If	A	has	characteristic	3,	and	5	·	a	=	0,	then	a	=	0.
4	If	there	is	a	nonzero	element	a	in	A	such	that	256	·	a	=	0,	then	A	has	characteristic	2.
5	If	there	are	distinct	nonzero	elements	a	and	b	in	A	such	that	125	·	a	=	125	·	b,	then	A	has	characteristic	5.
6	If	there	are	nonzero	elements	a	and	in	A	such	that	(a	+	b)2	=	a2	+	b2,	then	A	has	characteristic	2.
7	If	there	are	nonzero	elements	a	and	b	in	A	such	that	10a	=	0	and	14b	=	0,	then	A	has	characteristic	2.

B.	Characteristic	of	a	Finite	Integral	Domain
Let	A	be	an	integral	domain.	Prove	each	of	the	following:

1	If	A	has	characteristic	q,	then	q	is	a	divisor	of	the	order	of	A.
2	If	the	order	of	A	is	a	prime	number	p,	then	the	characteristic	of	A	must	be	equal	to	p.
3	If	the	order	of	A	is	pm,	where	p	is	a	prime,	the	characteristic	of	A	must	be	equal	to	p.
4	If	A	has	81	elements,	its	characteristic	is	3.
5	If	A,	with	addition	alone,	is	a	cyclic	group,	the	order	of	A	is	a	prime	number.

C.	Finite	Rings
Let	A	be	a	finite	commutative	ring	with	unity.

1	Prove:	Every	nonzero	element	of	A	 is	 either	 a	divisor	of	 zero	or	 invertible.	 (HINT:	Use	an	argument
analogous	to	the	proof	of	Theorem	4.)
2	Prove:	If	a	≠	0	is	not	a	divisor	of	zero,	then	some	positive	power	of	a	is	equal	to	1.	(HINT:	Consider	a,
a2,	a3,....	Since	A	is	finite,	there	must	be	positive	integers	n	<	m	such	that	an	=	am.)
3	Use	part	2	to	prove:	If	a	is	invertible,	then	a−1	is	equal	to	a	positive	power	of	a.



D.	Field	of	Quotients	of	an	Integral	Domain
The	following	questions	refer	to	the	construction	of	a	field	of	quotients	of	A,	as	outlined	on	pages	203	to
205.

1	If	[a,	b]	=	[r,	s]	and	[c,	d]	=	[t,	u],	prove	that	[a,	b]	+	[c,	d]	=	[r,	s]	+	[t,	u].
2	If	[a,	b]	=	[r,	s]	and	[c,	d]	=	[t,	u],	prove	that	[a,	b][c,	d]	=	[r,	s][t,	u].
3	If	(a,	b)	~	(c,	d)	means	ad	=	bc,	prove	that	~	is	an	equivalence	relation	on	S.
4	Prove	that	addition	in	A*	is	associative	and	commutative.
5	Prove	that	multiplication	in	A*	is	associative	and	commutative.
6	Prove	the	distributive	law	in	A*.
7	Verify	that	ϕ:	A	→	A′	is	a	homomorphism.

E.	Further	Properties	of	the	Characteristic	of	an	Integral	Domain
Let	A	be	an	integral	domain.	Prove	parts	1-4:

1	Let	a	∈	A.	If	A	has	characteristic	p,	and	n	·	a	=	0	where	n	is	not	a	multiple	of	p,	then	a	=	0.
2	If	p	is	a	prime,	and	there	is	a	nonzero	element	a	∈	A	such	that	p	·	a	=	0,	then	A	has	characteristic	p.
3	If	p	is	a	prime,	and	there	is	a	nonzero	element	a	∈	A	such	that	pm	·	a	=	0	for	some	integer	m,	then	A	has
characteristic	p.
4	If	A	has	characteristic	p,	then	the	function	f(a)	=	ap	is	a	homomorphism	from	A	to	A.
#	5	Let	A	have	order	p,	where	p	is	a	prime.	Explain	why

A	=	{0,1,2·1,3·1,...,(p	−	1).1}

Prove	that	A	≅	 p.
#	6	If	A	has	characteristic	p,	prove	that	for	any	positive	integer	n,

(a)	(a	+	b)pn	=	apn	+	bpn

(b)	
7	Let	A	⊆	B	where	A	and	B	are	integral	domains.	Prove:	A	has	characteristic	p	iff	B	has	characteristic	p.

F.	Finite	Fields
By	Theorem	4,	“finite	integral	domain”	and	“finite	field”	are	the	same.

1	Prove:	Every	finite	field	has	nonzero	characteristic.
2	Prove	that	if	A	is	a	finite	field	of	characteristic	p,	the	function	f(a)	=	ap	is	an	automorphism	of	A;	that	is,
an	isomorphism	from	A	to	A.	(HINT:	Use	Exercise	E4	above	and	Exercise	F7	of	Chapter	18.	To	show	that
f	is	surjective,	compare	the	number	of	elements	in	the	domain	and	in	the	range	of	f.)

The	function	f(a)	=	ap	is	called	the	Froebenius	automorphism.
3	Use	part	2	to	prove:	In	a	finite	field	of	characteristic	p,	every	element	has	a	p-th	root.



CHAPTER

TWENTY-ONE

THE	INTEGERS

There	are	two	possible	ways	of	describing	the	system	of	the	integers.
On	the	one	hand,	we	may	attempt	to	describe	it	concretely.
On	the	other	hand,	we	may	find	a	list	of	axioms	from	which	it	is	possible	to	deduce	all	the	properties

of	the	integers,	so	the	only	system	which	has	all	these	properties	is	the	system	of	the	integers.
The	second	of	these	two	ways	is	the	way	of	mathematics.	It	is	elegant,	economical,	and	simple.	We

select	as	axioms	only	those	particular	properties	of	the	integers	which	are	absolutely	necessary	in	order
to	prove	further	properties	of	the	integers.	And	we	select	a	sufficiently	complete	 list	of	axioms	so	that,
using	them,	one	can	prove	all	the	properties	of	the	integers	needed	in	mathematics.

We	 have	 already	 seen	 that	 the	 integers	 are	 an	 integral	 domain.	 However,	 there	 are	 numerous
examples	of	integral	domains	which	bear	little	resemblance	to	the	set	of	the	integers.	For	example,	there
are	finite	integral	domains	such	as	 5,	fields	(remember	that	every	field	is	an	integral	domain)	such	as	
and	 ,	and	others.	Thus,	in	order	to	pin	down	the	integers	—	that	is,	in	order	to	find	a	list	of	axioms	which
applies	to	the	integers	and	only	the	integers—we	must	select	some	additional	axioms	and	add	them	to	the
axioms	of	integral	domains.	This	we	will	now	proceed	to	do.

Most	 of	 the	 traditional	 number	 systems	have	 two	 aspects.	One	 aspect	 is	 their	 algebraic	 structure:
they	are	integral	domains	or	fields.	The	other	aspect—which	we	have	not	yet	touched	upon—is	that	their
elements	can	be	ordered.	That	is,	if	a	and	b	are	distinct	elements,	we	can	say	that	a	is	less	than	b	or	b	is
less	than	a.	This	second	aspect—the	ordering	of	elements—will	now	be	formalized.

An	ordered	integral	domain	is	an	integral	domain	A	with	a	relation,	symbolized	by	<,	having	the
following	properties:

1. 	For	any	a	and	b	in	A,	exactly	one	of	the	following	is	true:

a	=	b 	a	<	b	 or	 b	<	a

Furthermore,	for	any	a,	b,	and	c	in	A,
2. 	If	a	<	b	and	b	<	c,	then	a	<	c.
3. 	If	a	<	b,	then	a	+	c	<	b	+	c.



4. 	If	a	<	b,	then	ac	<	bc	on	the	condition	that	0	<	c.
The	relation	<	is	called	an	order	relation	on	A.	The	four	conditions	which	an	order	relation	must	fulfill
are	familiar	to	everyone.	Properties	1	and	2	require	no	comment.	Property	3	asserts	that	we	are	allowed
to	add	any	given	c	to	both	sides	of	an	inequality.	Property	4	asserts	that	we	may	multiply	both	sides	of	an
inequality	by	any	c,	on	the	condition	that	c	is	greater	than	zero.

As	usual,	a	>	b	has	the	same	meaning	as	b	<	a.	Furthermore,	a	≤	b	means	“a	<	b	or	a	=	b,”	and	b	≥	a
means	the	same	as	a	≤	b.

In	an	ordered	integral	domain	A,	an	element	a	is	called	positive	if	a	>0.	If	a	<0	we	call	a	negative.
Note	 that	 if	a	 is	 positive	 then	−a	 is	 negative.	 (Proof:	Add	−a	 to	 both	 sides	 of	 the	 inequality	 a	 >	 0.)
Similarly,	if	a	is	negative,	then	−a	is	positive.

In	 any	 ordered	 integral	 domain,	 the	 square	 of	 every	 nonzero	 element	 is	 positive.	 Indeed,	 if	 c	 is
nonzero,	then	either	c	>	0	of	c	<0.	If	c	>0,	then,	multiplying	both	sides	of	the	inequality	c	>0	by	c,

cc	>	c0	=	0

so	c2>0.	On	the	other	hand,	if	c<0,	then

(−c)	>	0

hence

(−c)(−c)	>	0(−c)	=	0

But	(−c)(−c)	=	c2,	so	once	again,	c2	>	0.
In	particular,	since	1	=	l2,	1	is	always	positive.
From	the	fact	 that	1	>0,	we	 immediately	deduce	 that	1	+	1	>	1,	1	+	1	+	1	>	1	 +	1,	 and	 so	on.	 In

general,	for	any	positive	integer	n,

(n	+	1)·	1	>	n	·	1

where	n	·	1	designates	the	unity	element	of	the	ring	A	added	to	itself	n	times.	Thus,	 in	any	ordered
integral	domain	A,	the	set	of	all	the	multiples	of	1	is	ordered	as	in	 :	namely

⋯	<(−2)·1	<(−1)·1	<0<1<2·1<3·1<	⋯

The	set	of	all	the	positive	elements	of	A	is	denoted	by	A+.	An	ordered	integral	domain	A	is	called	an
integral	system	if	every	nonempty	subset	of	A+	has	a	least	element.	In	other	words,	if	every	nonempty	set
of	positive	elements	of	A	has	a	least	element.	This	property	is	called	the	well-ordering	property	for	A+.

It	is	obvious	that	 	is	an	integral	system,	for	every	nonempty	set	of	positive	integers	contains	a	least
number.	For	example,	the	smallest	element	of	the	set	of	all	the	positive	even	integers	is	2.	Note	that	 	and	
	are	not	integral	systems.	For	although	both	are	ordered	integral	domains,	they	contain	sets	of	positive
numbers,	such	as	{x:0	<x<l},	which	have	no	least	element.

In	any	integral	system,	there	is	no	element	between	0	and	1.	For	suppose	A	is	an	integral	system	in
which	there	are	elements	χ	between	0	and	1.	Then	the	set	{x	∊	A:	0<x<	1}	is	a	nonempty	set	of	positive
members	of	A,	so	by	the	well-ordering	property	it	has	a	least	element	c.	That	is,



0	<c	<	1

and	c	is	the	least	element	of	A	with	this	property.	But	then	(multiplying	by	c),

0	<	c2	<	c

Thus,	c2	is	between	0	and	1	and	is	less	than	c,	which	is	impossible.
Thus,	there	is	no	element	of	A	between	0	and	1.
Finally,	in	any	integral	system,	every	element	is	a	multiple	of	1.	If	that	were	not	the	case,	we	could

use	the	well-ordering	principle	to	pick	the	least	positive	element	of	A	which	is	not	a	multiple	of	1	:	call	it
b.	Now,	b>0	and	there	are	no	elements	of	A	between	0	and	1,	so	b>l.	(Remember	that	b	cannot	be	equal	to
1	because	b	is	not	a	multiple	of	1.)	Since	b	>	1,	it	follows	that	b	−	1	>0.	But	b	−	1	<	b	and	b	is	the	least
positive	element	which	is	not	a	multiple	of	1,	so	b	−	1	is	a	multiple	of	1.	Say

b	−	1	=	n	·	1

But	then	b	=	n	·	1	+	1	=	(n	+	1)·	1,	which	is	impossible.
Thus,	in	any	integral	system,	all	the	elements	are	multiples	of	1	and	these	are	ordered	exactly	as	in	 .

It	is	now	a	mere	formality	to	prove	that	every	integral	system	is	isomorphic	to	 	This	is	left	as	Exercise
Dat	the	end	of	this	chapter.

Since	 every	 integral	 system	 is	 isomorphic	 to	 ,	 any	 two	 integral	 systems	 are	 isomorphic	 to	 each
other.	Thus	 	 is,	up	 to	 isomorphism,	 the	only	 integral	 system.	We	have	 therefore	 succeeded	 in	giving	a
complete	axiomatic	characterization	of	

Henceforward	we	consider	 	to	be	defined	by	the	fact	that	it	is	an	integral	system.
The	theorem	which	follows	is	 the	basis	of	proofs	by	mathematical	 induction.	It	 is	 intuitively	clear

and	easy	to	prove.

Theorem	1	Let	K	represent	a	set	of	positive	integers.	Consider	the	following	two	conditions’.

(i)	1	is	in	K.
(ii)	For	any	positive	integer	k,	if	k∈	K,	then	also	k	+	1	∈	K.
If	K	is	any	set	of	positive	integers	satisfying	these	two	conditions,	then	K	consists	of	all	the	positive
integers.

PROOF:	Indeed,	if	K	does	not	contain	all	 the	positive	integers,	 then	by	the	well-ordering	principle,
the	set	of	all	the	positive	integers	which	are	not	in	K	has	a	least	element.	Call	it	b;	b	is	the	least	positive
integer	not	in	K.	By	Condition	(i),	b	≠	1,	hence	b	>	1.

Thus,	b	−	1	>	0,	and	b	−	1	∈	K.	But	then,	by	Condition	(ii),	b	∈	K,	which	is	impossible.	■
Let	the	symbol	Sn	represent	any	statement	about	the	positive	integer	n.	For	example,	Sn	might	stand

for	“n	is	odd,”	or	“n	is	a	prime,”	or	it	might	represent	an	equation	such	as	(n	−	1)(n	+	1)	=	n2	−	1	or	an
inequality	such	as	n	≤	n2.	If,	let	us	say,	Sn	stands	for	n	≤	n2,	then	S1	asserts	that	1	≤	12,	S2	asserts	that	2	≤
22,	S3	asserts	that	3	≤	32,	and	so	on.

Theorem	2:	Principle	of	mathematical	induction	Consider	the	following	conditions	:

(i) S1	is	true.



(ii) For	any	positive	integer	k,	if	Sk	is	true,	then	also	Sk+1	is	true.
If	Conditions	(i)	and	(ii)	are	satisfied,	then	Sn	is	true	for	every	positive	integer	n.

PROOF:	Indeed,	if	K	is	the	set	of	all	the	positive	integers	k	such	that	Sk	is	true,	then	K	complies	with
the	conditions	of	Theorem	1.	Thus,	K	 contains	 all	 the	 positive	 integers.	This	means	 that	Sn	 is	 true	 for
every	n.	■

As	 a	 simple	 illustration	 of	 how	 the	 principle	 of	mathematical	 induetion	 is	 applied,	 let	Sn	 be	 the
statement	that

that	is,	the	sum	of	the	first	n	positive	integers	is	equal	to	n(n	+	1)/2.	Then	S1	is	simply

which	is	clearly	true.	Suppose,	next,	that	k	is	any	positive	integer	and	that	Sk	is	true.	In	other	words,

Then,	by	adding	k	+	1	to	both	sides	of	this	equation,	we	obtain

that	is,

However,	this	last	equation	is	exactly	Sk+1.	We	have	therefore	verified	that	whenever	Sk	is	true,	Sk+1	also
is	true.	Now,	the	principle	of	mathematical	induction	allows	us	to	conclude	that

for	every	positive	integer	n.
A	variant	of	the	principle	of	mathematical	induction,	called	the	principle	of	strong	induction,	asserts

that	Sn	is	true	for	every	positive	integer	n	on	the	conditions	that
(i) S1	is	true,	and
(ii) For	any	positive	integer	k,	if	Si	is	true	for	every	i	<	k,	then	Sk	is	true.
The	details	are	outlined	in	Exercise	H	at	the	end	of	this	chapter.

One	 of	 the	 most	 important	 facts	 about	 the	 integers	 is	 that	 any	 integer	 m	may	 be	 divided	 by	 any
positive	integer	n	to	yield	a	quotient	q	and	a	positive	remainder	r.	(The	remainder	is	less	than	the	divisor
n.)	For	example,	25	may	be	divided	by	8	to	give	a	quotient	of	3	and	a	remainder	of	1:



This	process	is	known	as	the	division	algorithm.	It	is	stated	in	a	precise	manner	as	follows:
Theorem	 3:	 Division	 algorithm	 If	 m	 and	 n	 are	 integers	 and	 n	 is	 positive,	 there	 exist	 unique

integers	q	and	r	such	that

m	=	nq	+	r and 0	≤	r	<	n

We	call	q	the	quotient,	and	r	the	remainder,	in	the	division	of	m	by	n.
PROOF:	We	begin	by	showing	a	simple	fact:

There	exists	an	integer	x	such	that	xn≤	m. 	(*)

Remember	that	n	is	positive;	hence	n	≥	1.	As	for	m,	either	m≥	0	or	m	<	0.	We	consider	these	two	cases
separately:

Suppose	m	≥	0.	Then

Suppose	m	<	0.	We	may	multiply	both	sides	of	n	≥	1	by	the	positive	integer	−m	to	get	(−m)n≥	−m.
Adding	mn	+	m	to	both	sides	yields

Thus,	regardless	of	whether	m	is	positive	or	negative,	there	is	some	integer	x	such	that	xn	≤	m.
Let	W	be	the	subset	of	 	consisting	of	all	the	nonnegative	integers	which	are	expressible	in	the	form

m	−	xn,	where	x	is	any	integer.	By	(*)	W	is	not	empty;	hence	by	the	well-ordering	property,	W	contains	a
least	integer	r.	Because	r	∈	W,	r	is	nonnegative	and	is	expressible	in	the	form	m	−	nq	for	some	integer	q.
That	is,

r	≥0

and

r	=	m	−	nq

Thus,	we	already	have	m	=	nq	+	r	and	0	≤	r.	It	remains	only	to	verify	that	r<n.	Suppose	not:	suppose
n≤	r,	that	is,	r−n≥	0.	But

r	−	n	=	(m	−	nq)	−	n	=	m	−	n(q	+1)

and	clearly	r	−	n	<	r.	This	means	that	m	−	n(q	+	1)	is	an	element	of	W	less	than	r,	which	is	impossible
because	r	is	the	least	element	of	W.	We	conclude	that	n≤	r	is	impossible;	hence	r<n.

The	verification	that	q	and	r	are	unique	is	left	as	an	exercise.	■



EXERCISES

A.	Properties	of	Order	Relations	in	Integral	Domains
Let	A	be	an	ordered	integral	domain.	Prove	the	following,	for	all	a,	b,	and	c	in	A:

1 	If	a	≤	b	and	b	≤	c,	then	a	≤	c.
2 	If	a	≤	b,	then	a	+c	≤	b	+	c.
3 	If	a	≤	b	andc	≥	0,	then	ac	≤	bc.
4 	If	a	<	b	andc	<	0,	then	bc	<	ac.
5 	a	<	b	iff	−	b	<−a.
6 	If	a	+c<b	+	c,	then	a	<	b.
7 	If	ac	<	bc	and	c	>	0,	then	a	<	b.
8 	If	a	<	b	andc<	d,	then	a	+c	<	b	+	d.

B.	Further	Properties	of	Ordered	Integral	Domains
Let	A	be	an	ordered	integral	domain.	Prove	the	following,	for	all	a,	b,	and	c	in	A:

1 	a2	+	b2	≥	2ab
2 	a2	+	b2	≥	ab	and	a2	+	b2	≥	−	ab
3 	a2	+b2	+	c2	≥	ab	+	bc	+	ac
4 	a2	+	b2	>,if	a2	+	b2	≠	0
5 	a	+	b	<	ab	+	1,if	a,b	>	1
6 	ab	+	ac	+	bc	+1	<	a	+	b	+	c	+	abc,	if	a,	b,	c	>	1

C.	Uses	of	Induction
Prove	parts	1−7,	using	the	principle	of	mathematical	induction.	(Assume	n	is	a	positive	integer.)

1 	1	+	3	+	5	+	⋯	+	(2n	−	1)	=	n2	(The	sum	of	the	first	n	odd	integers	is	n2.)
2 	13	+	23	+	⋯	+	n3	=	(1	+	2	+	⋯	+	n)2

3 	12	+	22	+	⋯	+	(n	−	1)2	<	 	<	12	+	22	+	⋯	+	n2

4 	13	+	23	+	⋯	+	(n	−	1)3	<	 	<	13	+	23	+	⋯	+	n3

5 	12	+	22	+	⋯	+	n2	=	 	n(n	+	1)(2n	+	1)
6 	13	+	23	+	⋯	+	n3	=	 	n2(n	+	1)2

7 	

8	The	Fibonacci	sequence	 is	the	sequence	of	integers	F1,	F2,	F3,…defined	as	 follows:	F1	=	1;	F2	=	1;
Fn+2	=	Fn+1	+	Fn	for	all	positive	integers	n.	(That	is,	every	number,	after	the	second	one,	is	the	sum	of
the	two	preceding	ones.)	Use	induction	to	prove	that	for	all	n	>	0,

Fn	+	1	Fn	+	2	−FnFn	+	3	=	(−l)n



D.	Every	Integral	System	Is	Isomorphic	to	
Let	A	be	an	 integral	system.	Let	h: →A	be	defined	by:	h(n)	=	n	 ·	1.	The	purpose	of	 this	 exercise	 is	 to
prove	that	h	is	an	isomorphism,	from	which	it	follows	that	A	≅	

1 	Prove:	For	every	positive	integer	n,	n	·	1	>	0.	What	is	the	characteristic	of	A
2 Prove	that	h	is	injective	and	surjective.
3 	Prove	that	h	is	an	isomorphism.

E.	Absolute	Values
In	any	ordered	integral	domain,	define	|a|	by

Using	this	definition,	prove	the	following:

1 	|−a|	=	|a|
2 	a	≤	|a|
3 	a	≤	−|a|
4 	If	b	>0,	|a|≤	b	iff	−b	≤	a	≤	b
5 	|a+b|	≤|a|	+|b|
6 	|a−b|≤|a|	+|b|
7 	|ab|	=	|a|·|b|
8 	|a|−|b|≤	|a	−	b|
9 	||a|−|b||≤	|a	−	b|

F.	Problems	on	the	Division	Algorithm
Prove	parts	1−3,	where	k,	m,	n,	q,	and	r	designate	integers.

1 	Let	n	>	0	and	k	>	0.	If	q	is	the	quotient	and	r	is	the	remainder	when	m	is	divided	by	n,	then	q	is	the
quotient	and	kr	is	the	remainder	when	km	is	divided	by	kn.
#	2	Let	n	>	0	and	k	>	0.	 If	q	 is	 the	quotient	when	m	 is	divided	by	n,	and	q1	 is	 the	quotient	when	q	 is
divided	by	k,	then	q1	is	the	quotient	when	m	is	divided	by	nk.

3	If	n	≠	0,	there	exist	q	and	r	such	that	m	=	nq	+	r	and	0	≤	r	<	|n|.	(Use	Theorem	3,	and	consider	the	case
when	n	<	0.)
4 	In	Theorem	3,	suppose	m	=	nq1	+	r1	=	nq2	+	r2	where	0	≤	r1,	r2	<	n.	Prove	 that	 r1	−	 r2	=	0.	 [HINT:
Consider	the	difference	(nq1	+	r1	−	(nq2	+	r2).]
5 	 Use	 part	 4	 to	 prove	 that	 q1	−	 q2	 =	 0.	 Conclude	 that	 the	 quotient	 and	 remainder,	 in	 the	 division
algorithm,	are	unique.
6 	If	r	is	the	remainder	when	m	is	divided	by	n,	prove	that	m	=	r	in	 n.

G.	Laws	of	Multiples



The	purpose	of	this	exercise	is	to	give	rigorous	proofs	(using	induction)	of	the	basic	identities	involved	in
the	 use	 of	 exponents	 or	multiples.	 If	A	 is	 a	 ring	 and	a	∈	A,	we	 define	 n	 ·	a	 (where	 n	 is	 any	 positive
integer)	by	the	pair	of	conditions:

(i)	1	·	a	=	a,	 and	 (ii)	(n	+	1)·	a	=	n	·	a	+	a

Use	mathematical	induction	(with	the	above	definition)	to	prove	that	the	following	are	true	for	all	positive
integers	n	and	all	elements	a,	b	∈	A:

1 	n	·(a	+	b)	=	n	·	a	+	n	·	b
2 	(n	+	m)·	a	=	n	·	a	+	m	·	a
3 	(n	·	a)b	=	a(n	·	b)	=	n	·	(ab)
4 	m	·	(n	·	a)	=	(mn)	·	a
5 	n	·	a	=	(n	·	1)a	 where	1	is	the	unity	element	of	A
6 (n	·	a)(m	·	b)	=	(nm)	·	ab (Use	parts	3	and	4.)

H.	Principle	of	Strong	Induction
Prove	the	following	in	 :

1 	Let	K	denote	a	set	of	positive	integers.	Consider	the	following	conditions:
(i)	I∈K.
(ii)	For	any	positive	integer	k,	if	every	positive	integer	less	than	k	is	in	K,	then	k	∈	K.
If	K	satisfies	these	two	conditions,	prove	that	K	contains	all	the	positive	integers.
2 	Let	Sn	represent	any	statement	about	the	positive	integer	n.	Consider	the	following	conditions:
(i)	S1	is	true.
(ii)	For	any	positive	integer	k,	if	Si	is	true	for	every	i	<	k,	Sk	is	true.
If	Conditions	(i)	and	(ii)	are	satisfied,	prove	that	Sn	is	true	for	every	positive	integer	n.



CHAPTER

TWENTY-FOUR

RINGS	OF	POLYNOMIALS

In	elementary	algebra	an	important	role	is	played	by	polynomials	in	an	unknown	x.	These	are	expressions
such	as

whose	 terms	 are	 grouped	 in	 powers	 of	 x.	 The	 exponents,	 of	 course,	 are	 positive	 integers	 and	 the
coefficients	are	real	or	complex	numbers.

Polynomials	are	involved	in	countless	applications—applications	of	every	kind	and	description.	For
example,	polynomial	functions	are	the	easiest	functions	to	compute,	and	therefore	one	commonly	attempts
to	approximate	arbitrary	functions	by	polynomial	functions.	A	great	deal	of	effort	has	been	expended	by
mathematicians	to	find	ways	of	achieving	this.

Aside	from	their	uses	in	science	and	computation,	polynomials	come	up	very	naturally	in	the	general
study	of	rings,	as	the	following	example	will	show:

Suppose	we	wish	to	enlarge	the	ring	 	by	adding	to	it	the	number	π.	It	is	easy	to	see	that	we	will	have
to	adjoin	 to	 	other	new	numbers	besides	 just	π;	 for	 the	 enlarged	 ring	 (containing	π	 as	well	 as	 all	 the
integers)	will	also	contain	such	things	as	−	π,	π	+	7,	6π2	−	11,	and	so	on.

As	a	matter	of	fact,	any	ring	which	contains	 	as	a	subring	and	which	also	contains	the	number	π	will
have	to	contain	every	number	of	the	form

aπn	+	bπn”1	+	⋯	+	kπ	+	l

where	a,	b,	…,	k,	l	are	integers.	In	other	words,	it	will	contain	all	the	polynomial	expressions	in	π	with
integer	coefficients.

But	the	set	of	all	the	polynomial	expressions	in	π	with	integer	coefficients	is	a	ring.	(It	is	a	subring	of
	because	it	is	obvious	that	the	sum	and	product	of	any	two	polynomials	in	π	is	again	a	polynomial	in	π.)
This	ring	contains	 	because	every	integer	a	is	a	polynomial	with	a	constant	term	only,	and	it	also	contains
π.

Thus,	if	we	wish	to	enlarge	the	ring	 	by	adjoining	to	it	the	new	number	π,	it	turns	out	that	the	“next



largest”	ring	after	 	which	contains	 	as	a	subring	and	includes	π,	is	exactly	the	ring	of	all	the	polynomials
in	π	with	coefficients	in	 .

As	this	example	shows,	aside	from	their	practical	applications,	polynomials	play	an	important	role
in	the	scheme	of	ring	theory	because	they	are	precisely	what	we	need	when	we	wish	to	enlarge	a	ring	by
adding	new	elements	to	it.

In	elementary	algebra	one	considers	polynomials	whose	coefficients	are	 real	numbers,	or	 in	some
cases,	complex	numbers.	As	a	matter	of	fact,	the	properties	of	polynomials	are	pretty	much	independent	of
the	exact	nature	of	their	coefficients.	All	we	need	to	know	is	that	the	coefficients	are	contained	in	some
ring.	For	convenience,	we	will	assume	this	ring	is	a	commutative	ring	with	unity.

Let	A	be	a	commutative	ring	with	unity.	Up	to	now	we	have	used	letters	to	denote	elements	or	sets,
but	now	we	will	use	 the	 letter	x	 in	 a	 different	way.	 In	 a	polynomial	 expression	 such	 as	ax2	 +	bx	 +	c,
where	a,	b,	c	∈	A,	we	do	not	consider	x	to	be	an	element	of	A,	but	rather	x	is	a	symbol	which	we	use	in	an
entirely	formal	way.	Later	we	will	allow	the	substitution	of	other	things	for	x,	but	at	present	x	is	simply	a
placeholder.

Notationally,	 the	terms	of	a	polynomial	may	be	listed	in	either	ascending	or	descending	order.	For
example,	4x3	–	3x2	+	x	+	1	and	1	+	x	 –	 3x2	 +	 4x3	 denote	 the	 same	polynomial.	 In	 elementary	 algebra
descending	order	is	preferred,	but	for	our	purposes	ascending	order	is	more	convenient.

Let	A	be	a	commutative	ring	with	unity,	and	x	an	arbitrary	symbol.	Every	expression	of	the	form

a0	+	a1x	+	a2x2	+	⋯	+	anxn

is	called	a	polynomial	in	x	with	coefficients	in	A,	or	more	simply,	a	polynomial	in	x	over	A.	The
expressions	akxk,	for	k	∈	{1,	…,	n},are	called	the	terms	of	the	polynomial.
Polynomials	in	x	are	designated	by	symbols	such	as	a(x),	b(x),	q(x),	and	so	on.	If	a(x)	=	a0	+	a1x	+

⋯	+	anxn	 is	any	polynomial	and	akxk	 is	any	one	of	 its	 terms,	ak	 is	 called	 the	coefficient	of	xk.	By	 the
degree	of	a	polynomial	a(x)	we	mean	the	greatest	n	such	that	the	coefficient	of	xn	is	not	zero.	In	other
words,	 if	a(x)	has	degree	n,	 this	means	 that	an	≠	0	but	am	=	0	 for	every	m	>	n.	The	degree	of	a(x)	 is
symbolized	by

deg	a(x)

For	example,	1	+	2x	−	3x2	+	x3	is	a	polynomial	degree	3.
The	 polynomial	 0	 +	 0x	 +	 0x2	 +	⋯	 all	 of	whose	 coefficients	 are	 equal	 to	 zero	 is	 called	 the	 zero

polynomial,	and	is	symbolized	by	0.	It	is	the	only	polynomial	whose	degree	is	not	defined	(because	it	has
no	nonzero	coefficient).

If	 a	 nonzero	 polynomial	a(x)	 =	a0	 +	a1x	 +	⋯	 +	anxn	 has	 degree	n,	 then	an	 is	 called	 its	 leading
coefficient:	it	is	the	last	nonzero	coefficient	of	a(x).	The	term	anxn	is	then	called	its	leading	term,	while
a0	is	called	its	constant	term.

If	a	polynomial	a(x)	has	degree	zero,	 this	means	 that	 its	constant	 term	a0	 is	 its	only	nonzero	 term:
a(x)	 is	 a	 constant	 polynomial.	 Beware	 of	 confusing	 a	 polynomial	 of	 degree	 zero	 with	 the	 zero
polynomial.

Two	 polynomials	 a(x)	 and	 b(x)	 are	 equal	 if	 they	 have	 the	 same	 degree	 and	 corresponding
coefficients	are	equal.	Thus,	if	a(x)	=	a0	+	⋯	+	anxn	is	of	degree	n,	and	b(x)	=	b0	+	⋯	+	bmxm	is	of	degree



m,	then	a(x)	=	b(x)	iff	n	=	m	and	ak	=	bk	for	each	k	from	0	to	n.
The	familiar	sigma	notation	for	sums	is	useful	for	polynomials.	Thus,

with	the	understanding	that	x0	=	1.
Addition	and	multiplication	of	polynomials	is	familiar	from	elementary	algebra.	We	will	now	define

these	 operations	 formally.	 Throughout	 these	 definitions	 we	 let	 a(x)	 and	 b(x)	 stand	 for	 the	 following
polynomials:

Here	 we	 do	 not	 assume	 that	 a(x)	 and	 b(x)	 have	 the	 same	 degree,	 but	 allow	 ourselves	 to	 insert	 zero
coefficients	if	necessary	to	achieve	uniformity	of	appearance.

We	add	polynomials	by	adding	corresponding	coefficients.	Thus,

a(x)	+	b(x)	=	(a0	+	b0)	+	(a1,	+	b1)x	+	⋯	+	(an	+	bn)xn

Note	that	the	degree	of	a(x)	+	b(x)	is	less	than	or	equal	to	the	higher	of	the	two	degrees,	deg	a(x)	and	deg
b(x).

Multiplication	is	more	difficult,	but	quite	familiar:
a(x)b(x)

=	a0b0	+	(a0b1	+	b0a1)x	+	(a0b2	+	a1	b1	+	a2	b0)x2	+	⋯	+	an	bn	x2n

In	other	words,	the	product	of	a(x)	and	b(x)	is	the	polynomial

c(x)	=	c0	+	c1x	+	⋯	+	c2n	x2n

whose	kth	coefficient	(for	any	k	from	0	to	2n)	is

This	is	the	sum	of	all	the	aibj	for	which	i	+	j	=	k.	Note	that	deg	[a(x)b(x)]	≤	deg	a(x)	+	deg	b(x).
If	A	is	any	ring,	the	symbol

A[x]

designates	the	set	of	all	the	polynomials	in	x	whose	coefficients	are	in	A,	with	addition	and	multiplication
of	polynomials	as	we	have	just	defined	them.

Theorem	1	Let	A	be	a	commutative	ring	with	unity.	Then	A[x]	is	a	commutative	ring	with	unity.

PROOF:	To	prove	this	 theorem,	we	must	show	systematically	that	A[x]	satisfies	all	 the	axioms	of	a



commutative	 ring	 with	 unity.	 Throughout	 the	 proof,	 let	 a(x),	 b(x),	 and	 c(x)	 stand	 for	 the	 following
polynomials:

The	 axioms	which	 involve	only	 addition	 are	 easy	 to	 check:	 for	 example,	 addition	 is	 commutative
because

The	associative	law	of	addition	is	proved	similarly,	and	is	left	as	an	exercise.	The	zero	polynomial	has
already	been	described,	and	the	negative	of	a(x)	is

–	a(x)	=	(–	a0)	+	(–	a1)x	+	⋯	+	(–	an)xn

To	prove	that	multiplication	is	associative	requires	some	care.	Let	b(x)c(x)	=	d(x),	where	d(x)	=	d0
+	d1x	+	⋯	+	d2nx2n.	By	the	definition	of	polynomial	multiplication,	the	kth	coefficient	of	b(x)c(x)	is

Then	a(x)[b(x)c(x)]	=	a(x)d(x)	=	e(x),	where	e(x)	=	e0	+	e1x	+	⋯	+	e3nx3n.	Now,	 the	 lth	coefficient	of
a(x)d(x)	is

It	is	easy	to	see	that	the	sum	on	the	right	consists	of	all	the	terms	ah	bi	cj	such	that	h	+	i	+	j	=	l	Thus,

For	each	l	from	0	to	3n,	el	is	the	lth	coefficient	of	a(x)[b(x)c(x)].
If	we	repeat	this	process	to	find	the	lth	coefficient	of	[a(x)	b(x)]c(x),	we	discover	that	it,	too,	is	el

Thus,

a(x)[b(x)c(x)]	=	[a(x)b(x)]c(x)

To	prove	the	distributive	law,	let	a(x)[b(x)	+	c(x)]	=	d{x)	where	d(x)	=	d0	+	d1x	+	⋯	+	d2nx2n.	By
the	definitions	of	polynomial	addition	and	multiplication,	the	kth	coefficient	a(x)[b(x)	+	c(x)]	is



But	Σi+j	 =	 k	aibj.	 is	 exactly	 the	 kth	 coefficient	 of	a(x)	b(x),	 and	 Σi	 +	 j	 =	 k	aicj	 is	 the	 kth	 coefficient	 of
a(x)c(x),	hence	dk	is	equal	to	the	kth	coefficient	of	a(x)	b(x)	+	a(x)c(x).	This	proves	that

a(x)[b(x)	+	c(x)]	=	a(x)b(x)	+	a(x)c(x)

The	commutative	law	of	multiplication	is	simple	to	verify	and	is	left	to	the	student.	Finally,	the	unity
polynomial	is	the	constant	polynomial	1.	■

Theorem	2	If	A	is	an	integral	domain,	then	A[x]	is	an	integral	domain.

PROOF:	If	a(x)	and	b(x)	are	nonzero	polynomials,	we	must	show	that	their	product	a(x)	b(x)	 is	not
zero.	Let	an	be	the	leading	coefficient	of	a(x),	and	bm	the	leading	coefficient	of	b(x).	By	definition,	an	≠	0,
and	 bm	 ≠	 0.	Thus	 anbm	 ≠	 0	 because	A	 is	 an	 integral	 domain.	 It	 follows	 that	 a(x)	 b(x)	 has	 a	 nonzero
coefficient	(namely,	an	bm),	so	it	is	not	the	zero	polynomial.	■

If	A	is	an	integral	domain,	we	refer	to	A[x]	as	a	domain	of	polynomials,	because	A[x]	is	an	integral
domain.	Note	that	by	the	preceding	proof,	if	an	and	bm	are	the	leading	coefficients	of	a(x)	and	b(x),	 then
anbm	is	the	leading	coefficient	of	a(x)	b(x).	Thus,	deg	a(x)b(x)	=	n	+	m:	In	a	domain	of	polynomials	A[x],
where	A	is	an	integral	domain,

deg[a(x)	·	b(x)]	=	deg	a(x)	+	deg	b(x)

In	 the	 remainder	 of	 this	 chapter	 we	 will	 look	 at	 a	 property	 of	 polynomials	 which	 is	 of	 special
interest	when	all	the	coefficients	lie	in	a	field.	Thus,	from	this	point	forward,	let	F	be	a	field,	and	let	us
consider	polynomials	belonging	to	F[x].

It	would	be	tempting	to	believe	that	if	F	is	a	field	then	F[x]	also	is	a	field.	However,	this	is	not	so,
for	 one	 can	 easily	 see	 that	 the	 multiplicative	 inverse	 of	 a	 polynomial	 is	 not	 generally	 a	 polynomial.
Nevertheless,	by	Theorem	2,	F[x]	is	an	integral	domain.

Domains	of	polynomials	over	 a	 field	 do,	 however,	 have	 a	 very	 special	 property:	 any	 polynomial
a(x)	may	be	divided	by	any	nonzero	polynomial	b(x)	to	yield	a	quotient	q(x)	and	a	remainder	r(x).	The
remainder	is	either	0,	or	if	not,	its	degree	is	less	than	the	degree	of	the	divisor	b(x).	For	example,	x2	may
be	divided	by	x	–	2	to	give	a	quotient	of	x	+	2	and	a	remainder	of	4:

This	kind	of	polynomial	division	is	familiar	to	every	student	of	elementary	algebra.	It	is	customarily	set
up	as	follows:



The	process	of	polynomial	division	is	formalized	in	the	next	theorem.
Theorem	3:	Division	algorithm	for	polynomials	If	a(x)	and	b(x)	are	polynomials	over	a	 field	F,

and	b(x)	≠	0,	there	exist	polynomials	q(x)	and	r(x)	over	F	such	that

a(x)	=	b(x)q(x)	+	r(x)

and

r(x)	=	0	 or	 deg	r(x)	<	deg	b(x)

PROOF:	Let	b(x)	 remain	 fixed,	 and	 let	 us	 show	 that	 every	 polynomial	a(x)	 satisfies	 the	 following
condition:

There	exist	polynomials	q(x)	and	r(x)	over	F	such	that	a(x)	=	b(x)	q(x)	+	r(x),	and	r(x)	=	0	or	deg
r(x)	<	deg	b(x).

We	will	assume	there	are	polynomials	a(x)	which	do	not	fulfill	 the	condition,	and	from	this	assumption
we	will	 derive	 a	 contradiction.	 Let	 a(x)	 be	 a	 polynomial	 of	 lowest	 degree	 which	 fails	 to	 satisfy	 the
conditions.	Note	that	a(x)	cannot	be	zero,	because	we	can	express	0	as	0	=	b(x)	 ·	0	+	0,	whereby	a(x)
would	satisfy	the	conditions.	Furthermore,	deg	a(x)	≥	deg	b(x),	for	if	deg	a(x)	<	deg	b(x)	then	we	could
write	a(x)	=	b(x)	·	0	+	a(x),	so	again	a(x)	would	satisfy	the	given	conditions.

Let	a(x)	=	a0	+	⋯	+	anxn	and	b(x)	=	b0	+	⋯	+	bmxm.	Define	a	new	polynomial

This	expression	is	the	difference	of	two	polynomials	both	of	degree	n	and	both	having	the	same	leading
term	anxn.	Because	anxn	cancels	in	the	subtraction,	A(x)	has	degree	less	than	n.

Remember	that	a(x)	is	a	polynomial	of	least	degree	which	fails	to	satisfy	the	given	condition;	hence
A(x)	does	satisfy	it.	This	means	there	are	polynomials	p(x)	and	r(x)	such	that

A(x)	=	b(x)p(x)	+	r(x)

where	r(x)	=	0	or	deg	r(x)	<	deg	b(x).	But	then



If	we	 let	p(x)	+	 (an/bm)xn	 –	m	 be	 renamed	q(x),	 then	a(x)	=	b(x)q(x)	 +	 r(x),	 so	 a(x)	 fulfills	 the	 given
condition.	This	is	a	contradiction,	as	required.	■

EXERCISES

A.	Elementary	Computation	in	Domains	of	Polynomials
REMARK	ON	NOTATION:	In	some	of	the	problems	which	follow,	we	consider	polynomials	with	coefficients
in	 n	for	various	n.	To	simplify	notation,	we	denote	the	elements	of	 n	by	1,	2,	…,	n	–	1	rather	than	the
more	correct	 .

#	1	Let	a(x)	=	2x2	+	3x	+	1	and	b(x)	=	x3	+	5x2	+	x.	Compute	a(x)	+	b(x),	a(x)	–	b(x)	and	a(x)b(x)	in	 [x],	
5[x],	 6[x],	and	 7[x].

2	Find	the	quotient	and	remainder	when	x3	+	x2	+	x	+	1	is	divided	by	x2	+	3x	+	2	in	 [x]	and	in	 5[x].
3	Find	the	quotient	and	remainder	when	x3	+	2	is	divided	by	2x2	+	3x	+	4	in	 [x],	in	 3[x],	and	in	 5[x].

We	call	b(x)	a	factor	of	a(x)	if	a(x)	=	b(x)q(x)	for	some	q(x),	that	is,	if	the	remainder	when	a(x)	is
divided	by	b(x)	is	equal	to	zero.

4	Show	that	the	following	is	true	in	A[x]	for	any	ring	A:	For	any	odd	n,
(a)	x	+	1	is	a	factor	of	xn	+	1.
(b)	x	+	1	is	a	factor	of	xn	+	xn–1	+	⋯	+	x	+	1.

5	Prove	the	following:	In	 3[x],	x	+	2	is	a	factor	of	xm	+	2,	for	all	m.	In	 n[x],	x	+	(x	–	1)	is	a	factor	of	xm	+
(n	−	1),	for	all	m	and	n.
6	Prove	that	there	is	no	integer	m	such	that	3x2	+	4x	+	m	is	a	factor	of	6x4	+	50	in	 [x].
7	For	what	values	of	n	is	x2	+	1	a	factor	of	x5	+	5x	+	6	in	 n[x]?

B.	Problems	Involving	Concepts	and	Definitions

1	Is	x8	+	1	=	x3	+	1	in	 5[x]?	Explain	your	answer.
2	Is	there	any	ring	A	such	that	in	A[x],	some	polynomial	of	degree	2	is	equal	to	a	polynomial	of	degree	4?
Explain.
#	3	Write	all	the	quadratic	polynomials	in	 5[x].	How	many	are	there?	How	many	cubic	polynomials	are
there	in	 5[x]?	More	generally,	how	many	polynomials	of	degree	m	are	there	in	 n[x]?

4	Let	A	be	an	integral	domain;	prove	the	following:



If	(x	+	1)2	=	x2	+	1	in	A[x],	then	A	must	have	characteristic	2.
If	(x	+	1)4	=	x4	+	1	in	A[x],	then	A	must	have	characteristic	2.

If	(x	+	1)6	=	x6	+	2x3	+	1	in	A[x],	then	A	must	have	characteristic	3.
5	 Find	 an	 example	 of	 each	 of	 the	 following	 in	 8[x]:	 a	 divisor	 of	 zero,	 an	 invertible	 element.	 (Find
nonconstant	examples.)
6	Explain	why	x	cannot	be	invertible	in	any	A[x],	hence	no	domain	of	polynomials	can	ever	be	a	field.
7	There	are	rings	such	as	P3	 in	which	every	element	≠0,1	is	a	divisor	of	zero.	Explain	why	this	cannot
happen	in	any	ring	of	polynomials	A[x],	even	when	A	is	not	an	integral	domain.
8	Show	that	in	every	A[x],	there	are	elements	≠0,1	which	are	not	idempotent,	and	elements	≠0,1	which	are
not	nilpotent.

C.	Rings	A[x]	Where	A	Is	Not	an	Integral	Domain
1	Prove:	If	A	is	not	an	integral	domain,	neither	is	A[x].
2	Give	examples	of	divisors	of	zero,	of	degrees	0,	1,	and	2,	in	 4[x].

3	In	 10[x],	(2x	+	2)(2x	+	2)	=	(2x	+	2)(5x3	+	2x	+	2),	yet	(2x	+	2)	cannot	be	canceled	in	this	equation.
Explain	why	this	is	possible	in	 10[x],	but	not	in	 5[x].
4	Give	examples	in	 4[x],	in	 6[x],	and	in	Z9[x]	of	polynomials	a(x)	and	b(x)	such	that	deg	a(x)b(x)	<	deg
a(x)	+	deg	b(x).
5	If	A	is	an	integral	domain,	we	have	seen	that	in	A[x],

deg	a(x)b(x)	=	deg	a(x)	+	deg	b(x)

Show	that	 if	A	 is	not	 an	 integral	domain,	we	can	always	 find	polynomials	a(x)	 and	b(x)	 such	 that	 deg
a(x)b(x)	<	deg	a(x)	+	deg	b(x).
6	Show	that	if	A	is	an	integral	domain,	the	only	invertible	elements	in	A[x]	are	the	constant	polynomials
with	inverses	in	A.	Then	show	that	in	 4[x]	there	are	invertible	polynomials	of	all	degrees.

#	7	Give	all	the	ways	of	factoring	x2	into	polynomials	of	degree	1	in	 9[x];	in	 5[x].	Explain	the	difference
in	behavior.

8	Find	all	the	square	roots	of	x2	+	x	+	4	in	 5[x].	Show	that	in	 8[x],	there	are	infinitely	many	square	roots
of	1.

D.	Domains	A[x]	Where	A	Has	Finite	Characteristic
In	each	of	the	following,	let	A	be	an	integral	domain:

1	Prove	that	if	A	has	characteristic	p,	then	A[x]	has	characteristic	p.
2	Use	part	1	to	give	an	example	of	an	infinite	integral	domain	with	finite	characteristic.
3	Prove:	 If	A	has	characteristic	3,	 then	x	+	2	 is	 a	 factor	of	xm	+	2	 for	 all	m.	More	generally,	 if	A	 has
characteristic	p,	then	x	+	(p	–	1)isa	factor	of	xm	+	(p	−	1)	for	all	m.
4	Prove	that	if	A	has	characteristic	p,	then	in	A[x],	(x	+	c)p	=	xp	+	cp.	(You	may	use	essentially	the	same
argument	as	in	the	proof	of	Theorem	3,	Chapter	20.)



5	Explain	why	the	following	“proof	of	part	4	is	not	valid:	(x	+	c)p	=	xp	+	cp	in	A[x]	because	(a	+	c)p	=	ap
+	cp	for	all	a,	c	∈	A.	(Note	the	following	example:	in	 2,	a2	+	1	=	a4	+	1	for	every	a,	yet	x2	+	1	≠	x4	+	1	in	
2[x].)

#	6	Use	the	same	argument	as	in	part	4	to	prove	that	if	A	has	characteristic	p,	then	[a(x)	+	b(x)]p	=	a(x)p	+
b(x)p	for	any	a(x),	b(x)	∈	A[x].	Use	this	to	prove:

E.	Subrings	and	Ideals	in	A[x]
1	Show	that	if	B	is	a	subring	of	A,	then	B[x]	is	a	subring	of	A[x].
2	If	B	is	an	ideal	of	A,	B[x]	is	an	ideal	of	A[x].
3	Let	S	be	the	set	of	all	the	polynomials	a(x)	in	A[x]	for	which	every	coefficient	ai	for	odd	i	 is	equal	to
zero.	Show	that	S	is	a	subring	of	A[x].	Why	is	the	same	not	true	when	“odd”	is	replaced	by	“even”?
4	Let	J	consist	of	all	the	elements	in	A[x]	whose	constant	coefficient	is	equal	to	zero.	Prove	that	J	is	an
ideal	of	A[x].
#	5	Let	J	consist	of	all	the	polynomials	a0	+	a1x	+	⋯	+	anxn	in	A[x]	such	that	a0	+	a1	+	⋯	+	an	=	0.	Prove
that	J	is	an	ideal	of	A[x].

6	Prove	that	the	ideals	in	both	parts	4	and	5	are	prime	ideals.	(Assume	A	is	an	integral	domain.)

F.	Homomorphisms	of	Domains	of	Polynomials
Let	A	be	an	integral	domain.

1	Let	h	:	A[x]→	A	map	every	polynomial	to	its	constant	coefficient;	that	is,

h(a0	+	a1x	+	⋯	+	anxn)	=	a0

Prove	that	h	is	a	homomorphism	from	A[x]	onto	A,	and	describe	its	kernel.
2	Explain	why	the	kernel	of	h	in	part	1	consists	of	all	the	products	xa(x),	for	all	a(x)	∈	A[x].	Why	is	this
the	same	as	the	principal	ideal	〈x〉	in	A[x]?
3	Using	parts	1	and	2,	explain	why	A[x]/〈x〉	≅	A.
4	Let	g	 :	A[x]	→	A	 send	 every	 polynomial	 to	 the	 sum	 of	 its	 coefficients.	 Prove	 that	g	 is	 a	 surjective
homomorphism,	and	describe	its	kernel.
5	If	c	∈	A,	let	h	:	A[x]	→	A[x]	be	defined	by	h(a(x))	=	a(cx),	that	is,

h(a0	+	a1x	+	⋯	+	anxn)	=	a0	+	a1cx	+	a2c2x2	+	⋯	+	ancnxn

Prove	that	h	is	a	homomorphism	and	describe	its	kernel.
6	If	h	is	the	homomorphism	of	part	5,	prove	that	h	is	an	automorphism	(isomorphism	from	A[x]	to	itself)
iff	c	is	invertible.

G.	Homomorphisms	of	Polynomial	Domains	Induced	by	a	Homomorphism	of	the
Ring	of	Coefficients



Let	A	and	B	be	rings	and	let	h	:	A	→	B	be	a	homomorphism	with	kernel	K.	Define	 	:	A[x]	→	B[x]	by

(a0	+	a1x	+	⋯	+	anxn)	=	h(a0)	+	h(a1)x	+	⋯	+	h(an)xn

(We	say	that	 	is	induced	by	h.)

1	Prove	that	 	is	a	homomorphism	from	A[x]	to	B[x].
2	Describe	the	kernel	 	of	 .
#	3	Prove	that	 	is	surjective	iff	h	is	surjective.
4	Prove	that	 	is	injective	iff	h	is	injective.
5	Prove	that	if	a(x)	is	a	factor	of	b(x),	then	 (a(x))	is	a	factor	of	 (b{x)).
6	If	h	 :	 	→	 n	 is	 the	natural	homomorphism,	 let	 	 :	 [x]	→	 n[x]	be	 the	homomorphism	induced	by	h.
Prove	that	 (a(x))	=	0	iff	n	divides	every	coefficient	of	a(x).
7	Let	 	be	as	in	part	6,	and	let	n	be	a	prime.	Prove	that	if	a(x)b(x)	∈	ker	 ,	then	either	a(x)	or	b(x)	is	in
ker	 .	(HINT:	Use	Exercise	F2	of	Chapter	19.)

H.	Polynomials	in	Several	Variables
A[x1,	 x2]	 denotes	 the	 ring	 of	 all	 the	 polynomials	 in	 two	 letters	 x1	 and	 x2	 with	 coefficients	 in	A.	 For
example,	x2	–	2xy	+	y2	+	x	−	5	is	a	quadratic	polynomial	in	 [x,	y].	More	generally,	A[x1,	…,	xn]	is	the
ring	of	the	polynomials	in	n	letters	x1,	…,	xn	with	coefficients	in	A.	Formally	it	is	defined	as	follows:	Let
A[x1]	be	denoted	by	A1;	then	A1[x2]	is	A[x1,	x2].	Continuing	in	this	fashion,	we	may	adjoin	one	new	letter	xi
at	a	time,	to	get	A[x1,	…,	xn].

1	Prove	that	if	A	is	an	integral	domain,	then	A[x1,	…,	xn]	is	an	integral	domain.
2	Give	 a	 reasonable	 definition	 of	 the	degree	 of	 any	polynomial	p(x,	y)	 in	A[x,	y]	 and	 then	 list	 all	 the
polynomials	of	degree	≤	3	in	Z3[x,	y].

Let	us	denote	an	arbitrary	polynomial	p(x,	y)	in	A[x,	y]	by	Σ	aijxiyj	where	Σ	ranges	over	some	pairs	i,	j	of
nonnegative	integers.

3	Imitating	the	definitions	of	sum	and	product	of	polynomials	in	A[x],	give	a	definition	of	sum	and	product
of	polynomials	in	A[x,	y].
4	Prove	that	deg	a(x,	y)b(x,	y)	=	deg	a(x,	y)	+	deg	b(x,	y)	if	A	is	an	integral	domain.

I.	Fields	of	Polynomial	Quotients
Let	A	be	an	integral	domain.	By	the	closing	part	of	Chapter	20,	every	integral	domain	can	be	extended	to	a
“field	of	quotients.”	Thus,	A[x]	can	be	extended	to	a	field	of	polynomial	quotients,	which	is	denoted	by
A(x).	Note	that	A(x)	consists	of	all	the	fractions	a(x)/b(x)	for	a(x)	and	b(x)	≠	0	in	A[x],	and	these	fractions
are	added,	subtracted,	multiplied,	and	divided	in	the	customary	way.

1	Show	that	A(x)	has	the	same	characteristic	as	A.
2	Using	part	1,	explain	why	there	is	an	infinite	field	of	characteristic	p,	for	every	prime	p.
3	 If	 A	 and	 B	 are	 integral	 domains	 and	 h	 :	 A	 →	 B	 is	 an	 isomorphism,	 prove	 that	 h	 determines	 an



isomorphism	 	:	A(x)	→	B(x).

J.	Division	Algorithm:	Uniqueness	of	Quotient	and	Remainder
In	 the	 division	 algorithm,	 prove	 that	 q(x)	 and	 r(x)	 are	 uniquely	 determined.	 [HINT:	 Suppose	 a(x)	 =
b(x)q1(x)	+	r1(x)	=	b(x)q2(x)	+	r2(x),	and	subtract	these	two	expressions,	which	are	both	equal	to	a(x).]



CHAPTER

TWENTY-FIVE
FACTORING	POLYNOMIALS

Just	as	every	integer	can	be	factored	into	primes,	so	every	polynomial	can	be	factored	into	“irreducible”
polynomials	which	 cannot	be	 factored	 further.	As	 a	matter	of	 fact,	 polynomials	behave	very	much	 like
integers	when	 it	 comes	 to	 factoring	 them.	 This	 is	 especially	 true	when	 the	 polynomials	 have	 all	 their
coefficients	in	a	field.

Throughout	this	chapter,	we	let	F	represent	some	field	and	we	consider	polynomials	over	F.	It	will
be	 found	 that	F[x]	 has	 a	 considerable	 number	 of	 properties	 in	 common	with	 .	 To	 begin	with,	 all	 the
ideals	of	F[x]	are	principal	ideals,	which	was	also	the	case	for	the	ideals	of	 .

Note	 carefully	 that	 in	F[x],	 the	 principal	 ideal	 generated	by	 a	 polynomial	a(x)	 consists	 of	 all	 the
products	a(x)s(x)	as	a(x)	remains	fixed	and	s(x)	ranges	over	all	the	members	of	F[x].

Theorem	1	Every	ideal	of	F[x]	is	principal.

PROOF:	Let	J	be	any	ideal	of	F[x].	If	J	contains	nothing	but	the	zero	polynomial,	J	 is	 the	principal
ideal	generated	by	0.	If	there	are	nonzero	polynomials	in	J,	let	b(x)	be	any	polynomial	of	lowest	degree	in
J.	We	will	show	that	J	=	〈(b(x)〉,	which	is	to	say	that	every	element	of	J	is	a	polynomial	multiple	b(x)q(x)
of	b(x).

Indeed,	if	a(x)	is	any	element	of	J,	we	may	use	the	division	algorithm	to	write	a(x)	=	b(x)q(x)	+	r(x),
where	r(x)	=	0	or	deg	r(x)	<	deg	b(x).	Now,	r(x)	=	a{x)	−b(x)q(x);	but	a(x)	was	chosen	in	J,	and	b(x)	∈
J;	hence	b(x)q(x)	∈	J.	It	follows	that	r(x)	is	in	J.

If	 r(x)	 ≠	 0,	 its	 degree	 is	 less	 than	 the	 degree	 of	 b(x).	 But	 this	 is	 impossible	 because	 b(x)	 is	 a
polynomial	of	lowest	degree	in	J.	Therefore,	of	necessity,	r(x)	=	0.

Thus,	finally,	a(x)	=	b(x)q(x);	so	every	member	of	J	is	a	multiple	of	b(x),	as	claimed.	■
It	follows	that	every	ideal	J	of	F[x]	is	principal.	In	fact,	as	the	proof	above	indicates,	J	is	generated

by	any	one	of	its	members	of	lowest	degree.

Throughout	the	discussion	which	follows,	remember	that	we	are	considering	polynomials	in	a	fixed
domain	F[x]	where	F	is	a	field.

Let	a(x)	and	b(x)	be	in	F[x].	We	say	that	b(x)	is	a	multiple	of	a(x)	if

b(x)	=	a(x)s(x)

for	some	polynomial	s(x)	in	F[x].	If	b(x)	is	a	multiple	of	a(x),	we	also	say	that	a(x)	is	a	factor	of	b(x),	or



that	a(x)	divides	b(x).	In	symbols,	we	write

a(x)∣b(x)

Every	nonzero	constant	polynomial	divides	every	polynomial.	For	if	c	≠	0	is	constant	and	a(x)	=	a0+
…+anxn,	then

hence	c	∣	a(x).	A	polynomial	a(x)	is	invertible	iff	it	is	a	divisor	of	the	unity	polynomial	1.	But	if	a(x)b(x)
=	1,	this	means	that	a(x)	and	b(x)	both	have	degree	0,	that	is,	are	constant	polynomials:	a(x)	=	a,	b(x)	=	b,
and	ab	=	1.	Thus,

the	invertible	elements	of	F[x]	are	all	the	nonzero	constant	polynomials.
A	 pair	 of	 nonzero	 polynomials	 a(x)	 and	 b(x)	 are	 called	 associates	 if	 they	 divide	 one	 another:

a(x)∣b(x)	and	b(x)∣a(x).	That	is	to	say,

a(x)	=	b(x)c(x)	 and	 b(x)	=	a(x)d(x)

for	some	c(x)	and	d(x).	If	this	happens	to	be	the	case,	then

a(x)	=	b(x)c(x)	=	a(x)d(x)c(x)

hence	d(x)c(x)	=	1	because	F[x]	is	an	integral	domain.	But	then	c(x)	and	d(x)	are	constant	polynomials,
and	therefore	a(x)	and	b(x)	are	constant	multiples	of	each	other.	Thus,	in	F[x],

a(x)	and	b(x)	are	associates	iff	they	are	constant	multiples	of	each	other.
If	a(x)	=	a0	+	⋯	+	anxn,	 the	associates	of	a(x)	are	all	 its	nonzero	constant	multiples.	Among	 these

multiples	is	the	polynomial

which	is	equal	to	(1/an)a(x),	and	which	has	1	as	its	leading	coefficient.	Any	polynomial	whose	leading
coefficient	 is	 equal	 to	 1	 is	 called	monk.	 Thus,	 every	 nonzero	 polynomial	 a(x)	 has	 a	 unique	 monic
associate.	For	example,	the	monic	associate	of	3	+	4x	+	2x3	is	 .

A	polynomial	d(x)	 is	 called	a	greatest	common	divisor	 of	a(x)	 and	b(x)	 if	d(x)	 divides	a(x)	 and
b(x),	and	is	a	multiple	of	any	other	common	divisor	of	a(x)	and	b(x);	in	other	words,
(i) d(x)∣a(x)	and	d(x)∣b(x),	and
(ii) For	 any	u(x)	 in	F[x],	 if	u(x)∣a(x)	 and	u(x)∣b(x),	 then	u(x)∣d(x).	According	 to	 this	 definition,	 two
different	gcd’s	of	a(x)	and	b(x)	divide	each	other,	 that	is,	are	associates.	Of	all	 the	possible	gcd’s	of
a(x)	and	b(x),	we	select	the	monic	one,	call	it	the	gcd	of	a(x)	and	b(x),	and	denote	it	by	gcd[a(x),	b(x)].
It	is	important	to	know	that	any	pair	of	polynomials	always	has	a	greatest	common	divisor.

Theorem	2	Any	two	nonzero	polynomials	a(x)	and	b(x)	in	F[x]	have	a	gcd	d(x).Furthermore,	d(x)
can	be	expressed	as	a	“linear	combination”



d(x)	=	r(x)a(x)	+	s(x)b(x)

where	r(x)	and	s(x)	are	in	F[x].
PROOF:	The	proof	is	analogous	to	the	proof	of	the	corresponding	theorem	for	integers.	If	J	is	the	set

of	all	the	linear	combinations

u(x)a(x)	+	υ(x)b(x)

as	u(x)	and	υ(x)	range	over	F[x],	then	J	is	an	ideal	of	F[x],	say	the	ideal	〈d(x)〉	generated	by	d(x).	Now
a(x)	=	 la(x)	+	0b(x)	 and	b(x)	=	0a(x)	+	1b(x),	 so	a(x)	 and	b(x)	 are	 in	J.	But	 every	 element	 of	 7	 is	 a
multiple	of	d(x),	so

d(x)∣a(x)	 and	 d(x)∣b(x)

If	k(x)	is	any	common	divisor	of	a(x)	and	b(x),	this	means	there	are	polynomials	f(x)	and	g(x)	such
that	a(x)	=	k(x)f(x)	and	b(x)	=	k(x)g(x).	Now,	d(x)	∈	J,	so	d(x)	can	be	written	as	a	linear	combination

hence	k(x)∣d(x).	This	confirms	that	d(x)	is	the	gcd	of	a(x)	and	b(x).	■
Polynomials	a(x)	and	b(x)	in	F[x]	are	said	to	be	relatively	prime	if	their	gcd	is	equal	to	1.	(This	is

equivalent	to	saying	that	their	only	common	factors	are	constants	in	F.)
A	polynomial	a(x)	of	positive	degree	 is	said	 to	be	reducible	over	F	 if	 there	are	polynomials	b(x)

and	c(x)	in	F[x],	both	of	positive	degree,	such	that

a(x)	=	b(x)c(x)

Because	b(x)	 and	c(x)	 both	have	positive	degrees,	 and	 the	 sum	of	 their	 degrees	 is	 deg	a(x),	 each	 has
degree	less	than	deg	a(x).

A	 polynomial	 p(x)	 of	 positive	 degree	 in	 F[x]	 is	 said	 to	 be	 irreducible	 over	 F	 if	 it	 cannot	 be
expressed	as	the	product	of	two	polynomials	of	positive	degree	in	F[x].	Thus,	p(x)	is	irreducible	iff	it	is
not	reducible.

When	we	say	that	a	polynomial	p(x)	is	irreducible,	it	is	important	that	we	specify	irreducible	over
the	field	F.	A	polynomial	may	be	irreducible	over	F,	yet	reducible	over	a	larger	field	E.	For	example,
p(x)	=	x2	+	1	is	irreducible	over	 ;	but	over	 	it	has	factors	(x	+	i)(x	−	i).

We	 next	 state	 the	 analogs	 for	 polynomials	 of	 Euclid’s	 lemma	 and	 its	 corollaries.	 The	 proofs	 are
almost	identical	to	their	counterparts	in	 ;	therefore	they	are	left	as	exercises.

Euclid’s	 lemma	 for	 polynomials	 Let	 p(x)	 be	 irreducible.	 If	 p(x)∣	 a(x)b(x),	 then	 p(x)∣a(x)	 or
p(x)∣b(x).

Corollary	1	Let	p(x)	be	 irreducible.	 If	 p(x)	∣a1(x)a2(x)	⋯	an(x),	 then	p(x)	∣	ai(x)	 for	 one	 of	 the
factors	ai(x)	among	a1(x),.	.	.,	an(x).

Corollary	2	Let	q1(x),	…,	qr(x)	and	 p(x)	be	monic	 irreducible	 polynomials.	 If	 p(x)	 ∣	q1	 (x)	…
qr(x),	then	p(x)	is	equal	to	one	of	the	factors	q1(x),...,qr(x).



Theorem	3:	Factorization	into	irreducible	polynomials	Every	polynomial	a(x)	of	positive	degree
in	F[x]	can	be	written	as	a	product

a(x)	=	kp1(x)p2(x)	…	pr(x)

where	k	is	a	constant	in	F	and	p1(x),	…,	pr(x)	are	monic	irreducible	polynomials	of	F[x].
If	this	were	not	true,	we	could	choose	a	polynomial	a(x)	of	lowest	degree	among	those	which	cannot

be	factored	into	irreducibles.	Then	a(x)	is	reducible,	so	a(x)	=	b(x)c(x)	where	b(x)	and	c(x)	have	lower
degree	than	a(x).	But	this	means	that	b(x)	and	c(x)	can	be	factored	into	irreducibles,	and	therefore	a(x)
can	also.

Theorem	 4:	 Unique	 factorization	 If	 a(x)	 can	 be	 written	 in	 two	 ways	 as	 a	 product	 of	 monic
irreducibles,	say

a(x)	=	kp1(x)	⋯	pr(x)	=	lq1(x)	⋯	qs(x)

then	k	=	l,	r	=	s,	and	each	pi(x)	is	equal	to	a	qJ(x).
The	 proof	 is	 the	 same,	 in	 all	 major	 respects,	 as	 the	 corresponding	 proof	 for	 	 ;	 it	 is	 left	 as	 an

exercise.
In	the	next	chapter	we	will	be	able	to	improve	somewhat	on	the	last	two	results	in	the	special	cases

of	 [x]	and	 [x].	Also,	we	will	learn	more	about	factoring	polynomials	into	irreducibles.

EXERCISES

A.	Examples	of	Factoring	into	Irreducible	Factors
1	Factor	x4	−	4	into	irreducible	factors	over	 ,	over	 ,	and	over	 .
2	Factor	x6	−	16	into	irreducible	factors	over	 ,	over	 ,	and	over	 .
3	Find	all	the	irreducible	polynomials	of	degree	≤	4	in	 2[x].

#	4	 Show	 that	 x2	 +	 2	 is	 irreducible	 in	 5[x].	 Then	 factor	 x4	−	 4	 into	 irreducible	 factors	 in	 5[x].	 (By
Theorem	3,	it	is	sufficient	to	search	for	monic	factors.)

5	Factor	2x3	+	4x	+	1	in	 5[x].	(Factor	it	as	in	Theorem	3.)
6	In	 6[x],	 factor	each	of	 the	following	into	 two	polynomials	of	degree	1	 :	x,	x	+	2,	x	+	3.	Why	is	 this
possible?

B.	Short	Questions	Relating	to	Irreducible	Polynomials
Let	F	be	a	field.	Explain	why	each	of	the	following	is	true	in	F[x]:
1	Every	polynomial	of	degree	1	is	irreducible.
2	If	a(x)	and	b(x)	are	distinct	monic	polynomials,	they	cannot	be	associates.
3	Any	two	distinct	irreducible	polynomials	are	relatively	prime.
4	If	a(x)	is	irreducible,	any	associate	of	a(x)	is	irreducible.
5	If	a(x)≠,	a(x)	cannot	be	an	associate	of	0.
6	In	 p[x],	every	nonzero	polynomial	has	exactly	p	−	1	associates.



7	x2	+	1	is	reducible	in	 p[x]	iff	p	=	a	+	b	where	ab	≡	1	(mod	p).

C.	Number	of	Irreducible	Quadratics	over	a	Finite	Field
1	Without	finding	them,	determine	how	many	reducible	monic	quadratics	there	are	in	 5[x].	[HINT:	Every
reducible	monic	quadratic	can	be	uniquely	factored	as	(x	+	a)(x	+	b).]
2	How	many	reducible	quadratics	are	there	in	 5[x]?	How	many	irreducible	quadratics?
3	Generalize:	How	many	irreducible	quadratics	are	there	over	a	finite	field	of	n	elements?
4	How	many	irreducible	cubics	are	there	over	a	field	of	n	elements?

D.	Ideals	in	Domains	of	Polynomials
Let	F	be	a	field,	and	let	J	designate	any	ideal	of	F[x].	Prove	parts	1−4.
1	Any	two	generators	of	J	are	associates.
2	J	has	a	unique	monic	generator	m(x).	An	arbitrary	polynomial	a(x)	∈	F[x]	is	in	J	iff	m(x)	∣	a(x).
3	J	is	a	prime	ideal	iff	it	has	an	irreducible	generator.
#	4	If	p(x)	is	irreducible,	then	〈p(x)〉	is	a	maximal	ideal	of	F[x].	(See	Chapter	18,	Exercise	H5.)
5	Let	S	be	the	set	of	all	polynomials	a0	+	a1x	+	⋯	+	anxn	in	F[x]	which	satisfy	a0	+	a1	+	⋯	+	an	=	0.	It	has
been	shown	(Chapter	24,	Exercise	E5)	that	S	is	an	ideal	of	F[x].	Prove	that	x	−	1	∈	S,	and	explain	why	it
follows	that	S	=	〈−	1〉.
6	Conclude	from	part	5	that	F[x]/〈x	−	1〉	≅	F.	(See	Chapter	24,	Exercise	F4.)
7	Let	F[x,	y]	denote	the	domain	of	all	the	polynomials	Σ	aijxiyj	in	two	letters	x	and	y,	with	coefficients	in
F.	Let	J	be	 the	 ideal	of	F[x,	y]	which	 contains	 all	 the	polynomials	whose	 constant	 coefficient	 in	 zero.
Prove	that	J	is	not	a	principal	ideal.	Conclude	that	Theorem	1	is	not	true	in	F[x,	y].

E.	Proof	of	the	Unique	Factorization	Theorem
1	Prove	Euclid’s	lemma	for	polynomials.
2	Prove	the	two	corollaries	of	Euclid’s	lemma.
3	Prove	the	unique	factorization	theorem	for	polynomials.

F.	A	Method	for	Computing	the	gcd
Let	a(x)	and	b(x)	be	polynomials	of	positive	degree.	By	the	division	algorithm,	we	may	divide	a(x)	by
b(x):

a(x)	=	b(x)ql(x)	+	r1,(x)

1	Prove	that	every	common	divisor	of	a(x)	and	b(x)	is	a	common	divisor	of	b(x)	and	r1(x).
It	 follows	 from	part	1	 that	 the	gcd	of	a(x)	and	b(x)	 is	 the	same	as	 the	gcd	of	b(x)	and	r1(x).	 This

procedure	can	now	be	repeated	on	b(x)	and	r1(x);	divide	b(x)	by	r1(x):

b(x)	=	r1(x)q2(x)r2(x)



Next

r1(x)	=	r2(x)q3(x)	+	r3(x)

Finally,

rn−1(x)	=	rn	(x)qn+1(x)	+	0

In	other	words,	we	continue	to	divide	each	remainder	by	the	succeeding	remainder.	Since	the	remainders
continually	decrease	in	degree,	there	must	ultimately	be	a	zero	remainder.	But	we	have	seen	that

gcd[a(x),b(x)]	=	gcd[b(x),	r1(x)]	=	⋯	=	gcd[rn−1(x),	rn(x)]

Since	rn(x)	is	a	divisor	of	rn−1(x),	it	must	be	the	gcd	of	rn(x)	and	rn−.1.	Thus,

rn(x)	=	gcd[a(x),	b(x)]

This	method	is	called	the	euclidean	algorithm	for	finding	the	gcd.
#	2	Find	the	gcd	of	x3	+	1	and	x4	+	x3	+	2x2	+	x	−	1.	Express	this	gcd	as	a	linear	combination	of	the	two
polynomials.

3	Do	the	same	for	x24	—	1	and	x15	−	1.
4	Find	the	gcd	of	x3	+	x2	+	x	+	1	and	x4	+	x3	+	2x2	+	2x	in	 3[x].

G.	A	Transformation	of	F[x]
Let	G	be	the	subset	of	F[x]	consisting	of	all	polynomials	whose	constant	term	is	nonzero.	Let	h	:	G	→	G
be	defined	by

h(a0	+	a1x	+	⋯	+	anxn)	=	an	+	an−1x	+	⋯	+	a0xn

Prove	parts	1−3:
1	h	preserves	multiplication,	that	is,	h[a(x)b(x)]	=	h[a(x)]h[b(x)].
2	h	is	injective	and	surjective	and	h	∘	h	=	ε.
3	a0	+	a1x	+	⋯	+	anxn	is	irreducible	iff	an	+	an−lx	+	⋯	+	a0xn	is	irreducible.

4	Let	a0	+	a1x	+	⋯	+anxn	=	(b0	+	⋯	+bmxm)(c0+	⋯	+cqxq).	Factor

an	+	an−1x	+	⋯	+	a0xn

5	Let	a(x)	=	a0	+	a1x	+	⋯	+	anxn	and	â(x)	=	an	+	an	−	1x	+	⋯	+	a0xn.	If	c	∈	F,	prove	that	a(c)	=	0	iff	â(1/c)
=	0.
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CHAPTER 5

Advanced ring theory

5.1. Unique factorization domains

In this section, we investigate the role that prime numbers play in the integers in greater
generality. Recall that every nonzero integer can be written as plus or minus a product of distinct
prime powers, and these prime powers are unique. Note that the units in Z are ±1, so we can
say that every nonzero integer can be written as a product of prime powers times a unit. In this
section, we investigate this property for a larger class of integral domains.

First, we introduce an analogue of prime numbers.

DEFINITION 5.1.1. Let R be an integral domain. A nonunit and nonzero element p ∈ R is
said to be an irreducible element if for every a,b ∈ R with p = ab, either a or b is a unit.

DEFINITION 5.1.2. Two elements a and b of a nonzero commutative ring R with unity are
said to associates if a = ub with u ∈ R×.

Of course, the property of being associate is an equivalence relation on an integral domain R.
The equivalence class of 0 is {0} and that of 1 is R×. We have the following simple lemma, which
tells us that the equivalence class of an irreducible element consists of irreducible elements.

LEMMA 5.1.3. If R is an integral domain, and p ∈ R is irreducible, then so is every associate
of p.

PROOF. That is, if u ∈ R× and up = ab for a,b ∈ R, then p = (u−1a)b. As p is irreducible,
either u−1a ∈ R× or b ∈ R×. Finally, if u−1a ∈ R×, then a ∈ R×. �

EXAMPLES 5.1.4.
a. The irreducible elements of Z are ±p for prime numbers p. The elements p and −p are

associates.

b. The irreducible elements of F [x], for a field F , are the irreducible polynomials of F , since
the units of F [x] are the nonzero constant polynomials. Every nonzero polynomial has a unique
associate with leading coefficient equal to 1.

c. In the subring of C that is

Z[
√
−2] = {a+b

√
−2 | a,b ∈ Z},

a number of prime integers are no longer irreducible. For instance 2 = −(
√
−2)2, and

√
−2 is

not a unit. Also, 3 = (1+
√
−2)(1−

√
−2), and neither 1+

√
−2 nor 1−

√
−2 is a unit, for if,

e.g., u ∈ Z[
√
−2] with u(1+

√
−2) = 1, then 3u = 1−

√
−2, which is clearly impossible. On the

other hand, it turns out that 5 is irreducible, though we do not prove this now.
139
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DEFINITION 5.1.5. An integral domain R is a unique factorization domain, or a UFD, if
every nonzero, nonunit element a ∈ R can be written as a product

a = p1 p2 · · · pr

with p1, p2, . . . , pr irreducible elements of R for some r ≥ 1, and moreover, this expression is
unique in the sense that if

a = q1q2 · · ·qs

with q1,q2, . . . ,qs irreducible for some s ≥ 1, then s = r and there exists a permutation σ ∈ Sr
such that qσ(i) and pi are associates for all 1≤ i≤ r.

REMARK 5.1.6. If one wants to allow units, one can rephrase Definition 5.1.5 to read that
every nonzero element a ∈ R can be written as a = up1 · · · pr with u ∈ R× and p1, p2, . . . , pr
irreducible in R for some r = 0 in a unique manner such that any such decomposition of a =
vq1 · · ·qs has s = r and, after a reordering of the irreducibles, each qi is an associate of pi.

EXAMPLE 5.1.7. The ring Z is a unique factorization domain.

As we shall see later, F [x] for a field F is a unique factorization domain as well.

EXAMPLE 5.1.8. Consider the subring F [x2,xy,y2] of F [x,y]. It consists exactly of the poly-
nomials in F [x,y] that can be written as polynomials in x2, xy, and y2. These latter three elements
are irreducible in F [x2,xy,y2], but we have

x2 · y2 = xy · xy,

so factorization is not unique.

A more standard example is the following.

EXAMPLE 5.1.9. Consider the subring Z[
√
−5] of C. We have

6 = 2 ·3 = (1+
√
−5)(1−

√
−5).

The element 2 divides only elements of the form a+ b
√
−5 with a,b ∈ Z even, so it does not

divide 1+
√
−5 or 1−

√
−5. On the other hand, 2 is irreducible since if a+ b

√
−5 divides 2,

then so does its complex conjugate, and then

(a+b
√
−5)(a−b

√
−5) = a2 +5b2

divides 2, which happens only if a = ±1 and b = 0. Therefore, Z[
√
−5] is not a unique factor-

ization domain.

One advantage of unique factorization domains is that they allow us to define a concept of
greatest common divisor.

DEFINITION 5.1.10. Let R be a UFD. Let a1,a2, . . . ,ar ∈ R be nonzero. A principal ideal (d)
for d ∈ R is said to be the greatest common divisor, or GCD, of a1,a2, . . . ,ar if d divides ai for
each 1≤ i≤ r and if d′ also divides each ai, then d′ divides d.

The element d in the definition of GCD, if it exists, is only defined up to unit. On the other
hand, (d) is independent of this choice.
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LEMMA 5.1.11. Let R be a UFD. Then every collection a1,a2, . . . ,ar of nonzero elements of
R has a GCD.

PROOF. We sketch the proof. Factor each ai into a unit times a product of irreducibles.
If there exists an irreducible element p1 that divides each ai, an associate of it is one of the
irreducibles appearing in the factorization of ai. We then have bi ∈ R with ai = pbi for each
i, and the factorization of bi has one fewer irreducible element than that of ai. We repeat this
process until the collection no longer has a common irreducible divisors, obtaining irreducibles
p1, p2, . . . , pk such that d = p1 p2 · · · pk divides every ai.

We claim that (d) is the GCD of a1,a2, . . . ,ak. If not, then there exists d′ that does not divide
d which divides every ai. This means that there exists an irreducible element q ∈ R and some
n ≥ 1 such that qn divides d′ but not d. Then qn divides every ai, which means since qn does
not divide d that q actually divides each ci such that ai = dci, in contradiction to the definition of
d. �

One advantage of having the notion of a GCD is that in quotient fields, it allows us to talk
about fractions being in lowest terms.

DEFINITION 5.1.12. Let R be a UFD, and let a,b ∈ R with b 6= 0. We say that the fraction a
b

is reduced, or in lowest terms, if the GCD of a and b is (1).

LEMMA 5.1.13. Let R be a UFD. Every fraction in Q(R) may be written in lowest terms.

PROOF. Let a,b ∈ R with b 6= 0. Let (d) be the GCD of a and b. Then there exist a′,b′ ∈ R
with a = da′ and b = db′, and we have that the GCD of a′ and b′ is (1). We therefore have that
a′
b′ =

a
b , and the former form of the fraction is in lowest terms. �

Let us study factorization in principal ideal domains.

DEFINITION 5.1.14. Let X be a set, and let ≤ be a partial ordering on X .
a. An ascending chain in X is a sequence (ai)i≥1 of elements of X such that ai ≤ ai+1 for all

i≥ 1.

b. We say that X satisfies the ascending chain condition, or ACC, if every ascending chain
(ai)i≥1 in X is eventually constant: i.e., there exists j ≥ 1 such that ai = a j for all i≥ j.

The following is an equivalent characterization of the ACC.

PROPOSITION 5.1.15. A nonempty set X with a partial ordering ≤ satisfies the ACC if and
only if every subset of X contains a maximal element.

PROOF. If every subset of X contains a maximal element, then clearly ascending chains are
eventually constant: i.e., their underlying sets are finite. For the other direction, it suffices to
show that if X satisfies the ACC, then it contains a maximal element. Let C be a nonempty chain
in X , and suppose it does not have an upper bound. For each x ∈C, there exists y ∈C with y > x,
as otherwise x would be an upper bound. We may therefore recursively pick ai ∈ X with ai < ai+1
for each i, but this is impossible. Thus C has an upper bound, and therefore X has a maximal
element by Zorn’s lemma. �
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DEFINITION 5.1.16. We say that a commutative ring R is noetherian if the set of its ideals
satisfies the ascending chain condition with respect to containment of ideals.

REMARK 5.1.17. We may rephrase the condition that R be noetherian by saying that if
(In)n≥1 is an ascending chain of ideals, then there exists m ≥ 1 such that the union I of the
In with n≥ 1 equals Ii for all i≥ m.

REMARK 5.1.18. One may define a noncommutative ring to be left noetherian (resp., right
noetherian rings) if it satisfies the ACC on left ideals (resp., right ideals). In general, a noetherian
ring is taken to be one that is both left and right noetherian.

THEOREM 5.1.19. A commutative ring R is noetherian if and only if every ideal of R is finitely
generated.

PROOF. Suppose that every ideal of R is finitely generated. Let (In)n≥1 be a chain of ideals of
R. Let I be the union of the In for n≥ 1, which is an ideal by Lemma 3.11.10. Since I is finitely
generated, I = (a1,a2, . . . ,ar), with ak ∈ I with 1≤ k≤ r for some r ≥ 1. For each k, there exists
mk ≥ 1 with ak ∈ Imk , and if we let m be the maximum of the mk, then ak ∈ Im for every ak. Since
I is the smallest ideal of R containing each ak, we have I ⊆ Im, which forces I = Im.

Conversely, suppose R is noetherian, and let I be an ideal of R. Let x1 ∈ I, and sup-
pose inductively that we have constructed x1,x2, . . . ,xn ∈ R with the property that if we set
Ik = (x1,x2, . . . ,xk) for every 1 ≤ k ≤ n, then Ik ⊆ Ik+1 for every 1 ≤ k ≤ n− 1. If In 6= I, then
let xn+1 ∈ I with xn+1 /∈ In. Then In+1 = (x1,x2, . . . ,xn+1) properly contains In. If this process
repeats indefinitely, then we have constructed an ascending chain (In)n≥1 that is not eventually
constant, which would contradict the assumption that R is noetherian. Therefore, there exists
m≥ 1 such that Im = I, and so I = (a1,a2, . . . ,am) is finitely generated. �

COROLLARY 5.1.20. Every principal ideal domain is noetherian.

PROPOSITION 5.1.21. Let R be a principal ideal domain. Then every nonzero, nonunit a ∈ R
may be written as a = p1 p2 · · · pr with the pi ∈ R irreducible for all 1≤ i≤ r and some r ≥ 1.

PROOF. We claim first that every nonunit a ∈ R is divisible by an irreducible element of R. If
a is not irreducible, set a0 = a and write a = a1b1 with a1,b1 /∈ R×. Suppose that ai divides ai−1
for some i≥ 1, which implies recursively that ai divides a. If ai is irreducible, then we have the
claim. If not, then write ai = ai+1bi+1 for some nonunits ai+1,bi+1 ∈ R×. Since ai+1 properly
divides ai, we have that (ai) ( (ai+1). By Corollary 5.1.20, this process must terminate, which
is to say that some am is eventually irreducible, and therefore a is divisible by an irreducible
element.

Next, we construct another sequence out of our reducible element a. That is, we write a =
a1b1 with a1 irreducible, and assume inductively that we have written

a = a1a2 . . .anbn

with a1,a2, . . . ,an ∈ R irreducible and nonunit bn ∈ R for some n ≥ 0. If bn is irreducible for
any n, we are done. Otherwise, we obtain a sequence of elements (bi)i≥1 with bi = ai+1bi+1 for
all i ≥ 1, which means that (bi) ( (bi+1) for each i. Again this would contradict the fact that R
is noetherian, so eventually the process does terminate, and we have written a as a product of
irreducible elements. �
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LEMMA 5.1.22. Let R be a PID, and let a ∈ R be nonzero. Then (a) is maximal if and only if
a is an irreducible element.

PROOF. Clearly, a cannot be a unit for either condition to hold. If a = bc with b and c
non-units, then (a) ( (b) ( R, so (a) is not maximal. And if (a) is not maximal, then there
exists an proper ideal I = (c) of R properly containing (a), so we may write a = bc with b ∈ R.
Since the containment is proper, b is not a unit, and c is not a unit by definition. Therefore, a is
reducible. �

In a principal ideal domain, irreducible elements play the role that prime numbers play in Z.

LEMMA 5.1.23. Let R be a PID, and let p ∈ R be irreducible. If a,b ∈ R are such that p | ab,
then p | a or p | b.

PROOF. Let a,b∈ R with p | ab. Then ab∈ (p), and (p) is maximal by Lemma 5.1.22. Since
every maximal ideal of R is prime, we have that (p) is prime, and therefore either a ∈ (p) or
b ∈ (p). �

We now prove a key theorem.

THEOREM 5.1.24. Every principal ideal domain is a unique factorization domain.

PROOF. Let a ∈ R be a nonzero, nonunit element. By Proposition 5.1.21, we may write

a = p1 p2 · · · pr

with p1, p2, . . . , pr irreducible. We have only to show that this decomposition is unique in the
appropriate sense. So, suppose that

a = q1q2 · · ·qs

with q1,q2, . . . ,qs irreducible. If r = 1, then a is irreducible, so s = 1 and p1 = q1. Suppose by
induction we have proven uniqueness whenever there is a decomposition of a with fewer than
r ≥ 2 irreducibles. In particular, we may assume that s≥ r.

As a consequence of Lemma 5.1.23, we have that pr divides some qi for some 1 ≤ i ≤ s.
Since qi is irreducible, this means that qi = wpr with w ∈ R×. Since R is an integral domain, we
then have

p1 p2 · · · pr−1 = wq1q2 · · ·qi−1qi+1 · · ·qs.

As s ≥ 2 by assumption, note that wq1 is an associate to q1 and the expression on the right is a
product of s− 1 irreducible elements. By induction, we have r = s, and there exists a bijective
function

σ : {1,2, . . . ,r−1}→ {1,2, . . . , i−1, i+1, . . . ,r}
with qσ(i) and pi associates for each 1 ≤ i ≤ r− 1. We may extend σ to an element of Sr by
setting σ(r) = i, and then qσ(r) = qi is an associate of pr as well, proving uniqueness. �

Given that every polynomial ring over a field is a PID, we have the following corollary. It is
an interesting exercise to prove it directly.

COROLLARY 5.1.25. For any field F, the ring F [x] is a unique factorization domain.
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Corollary 3.10.2 tells us what we may already have known from experience, that we can
factor one-variable polynomials into irreducible factors over a field, and there is only one way to
do this.

5.2. Polynomial rings over UFDs

Now that we know that every PID is a UFD, the question arises: is every UFD also a PID?
The answer, in fact, is no. For this, let us examine polynomial rings over integral domains in a
bit more detail.

DEFINITION 5.2.1. Let R be an integral domain. A polynomial f ∈R[x] is said to be primitive
if the only elements of R that divide all of the coefficients of f are units.

In a UFD, we can actually talk about the GCD of the coefficients of a polynomial.

DEFINITION 5.2.2. Let R be a UFD. The content of the a polynomial in R[x] is the GCD of
its coefficients.

REMARK 5.2.3. If R is a UFD, then a polynomial in R[x] is primitive if and only if the GCD
of its coefficients is (1).

DEFINITION 5.2.4. A polynomial in R[x] for a nonzero ring R with unity is said to be monic
is its leading coefficient is 1.

REMARK 5.2.5. Monic polynomials in R[x], where R is a UFD, are primitive.

LEMMA 5.2.6. Let R be a UFD. If (c) is the content of f ∈ R[x] for, then there exists a
primitive polynomial g ∈ R[x] with f = cg.

PROOF. By definition, c divides each coefficient of f , so f = cg for some g ∈ R[x]. Let d ∈ R
be such that (d) is the content of g. Then g = dh for some h ∈ R[x], so we have f = cdh. But this
implies that cd divides every coefficient of f , so cd divides the content c, forcing d to be a unit.
Therefore, g is primitive. �

EXAMPLE 5.2.7. The polynomial f = 25x2 +10x−15 in Z[x] has content 5, and so it is not
primitive. In fact, f = 5g, where g = 5x2 +2x−3, and g is primitive.

LEMMA 5.2.8 (Gauss’s Lemma). Let R be a UFD. Then the product of any two primitive
polynomials in R[x] is primitive.

PROOF. Let

f =
n

∑
i=0

aixi and g =
m

∑
j=0

b jx j

be primitive polynomials in R[x]. The kth coefficient of f g is ck = ∑
k
i=0 aibk−i. If p is an irre-

ducible element of R, then since f and g are primitive, there exist minimal nonnegative integers
r and s such that p - ar and p - bs. Since p | ai for i < r and p | b j for j < s, which is to say that
p | br+s−i for r < i≤ r+ s, we have that p divides every term of cr+s except arbs, which it does
not divide. Therefore, p does not divides cr+s. Since p was arbitrary, f g is primitive. �
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Note that we can speak about polynomials being irreducible in R[x] for any integral domain
R, since we have a notion of irreducible element in such a ring. For a field F , this coincides with
the usual notion of an irreducible polynomial.

PROPOSITION 5.2.9. Let R be an integral domain, and let F = Q(R).
a. If f ∈ R[x] is a primitive polynomial that is irreducible as an element of F [x], then f

is irreducible in R[x]. In particular, if f cannot be written as a product of two nonconstant
polynomials in R[x], then it is irreducible in R[x].

b. Suppose that R is a UFD. If f ∈ R[x] is irreducible, then it is irreducible as an element of
F [x] as well. In fact, if f ∈ R[x] and f = gh for nonconstant g,h ∈ F [x], then there exists α ∈ F×

such that g′ = αg and h′ = α−1h are in R[x] and therefore f = g′h′ in R[x].

PROOF. First, we treat part a. If f ∈ R[x] is primitive and f ∈ R[x] is reducible (which is to
say, not irreducible and not a unit or zero), then we can write f = gh for nonunits g,h ∈ R[x]. If
g or h is constant, then f is not primitive, so neither is constant, and therefore f is reducible in
F [x].

Next, we turn to part b. Suppose that f ∈ R[x] can be written as f = gh with g,h ∈ F [x]
nonconstant. Let (d) (resp., (e)) be a multiple of all of the denominators of the coefficients of
g (resp., h), written in lowest terms. Then de f = g′h′, where g′,h′ ∈ R[x] are nonconstant. The
content of de f is contained in (de), so the content of g′h′ is as well. By unique factorization in
R, we may write de = d′e′, where d′ ∈ R divides the content of g′ and e′ divides the content of
h′, and we may then divide g′ by d′ and h′ by e′ to obtain g′′ and h′′ in R[x] such that f = g′′h′′.
Therefore, f is reducible in R[x], and the remaining statement of the lemma holds as well. �

We are now ready to prove the following.

THEOREM 5.2.10. If R is a UFD, then R[x] is a UFD as well.

PROOF. Let f ∈ R[x] be a nonzero element that is not a unit. Write

f = f1 f2 . . . fr

with fi ∈ R[x] nonconstant, where r is maximal such that this can be done. Note that such a
maximal r exists as the degree of f is finite. For 1 ≤ i ≤ r, let (ci) be the content of fi, and
define gi ∈ R[x] by fi = cigi. Set c = c1c2 · · ·cr, and set g = g1g2 · · ·gr. Now, if any gi were not
irreducible in F [x] for F = Q(R), then it would not be irreducible in R[x] by Proposition 5.2.9b.
Moreover, since gi is primitive, it would then be written as a product of two nonconstant poly-
nomials in R[x], which would contradict the maximality of r. Therefore, each gi is irreducible.
Since R is a UFD, we may also write c = p1 p2 · · · pk with pi ∈ R irreducible for 1 ≤ i ≤ k and
some k ≥ 0, and so

f = p1 p2 · · · pkg1g2 · · ·gr

is a factorization of f into irreducibles in R[x].
Now, if

f = q1q2 · · ·qlh1h2 · · ·hs
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with qi ∈ R irreducible and hi ∈ R[x] irreducible and nonconstant, then (q1q2 · · ·ql) is the content
of f by Gauss’s lemma, and so q1q2 · · ·ql agrees with c up to unit in R. Since R is a UFD, it
follows that l = k and there exists σ ∈ Sk such that each qσ(i) is an associate of pi. Next, we have

g1g2 · · ·gr = uh1h2 · · ·hs

for some unit u ∈ R×, and by uniqueness of factorization in F [x], we have that s = r, and there
exists τ ∈ Sr such that hτ(i) = vigi for some vi ∈ F× for each 1≤ i≤ r. But the content of each gi
and each h j is (1), since these elements are irreducible in R[x], and therefore writing vi =

ai
bi

with
ai,bi ∈ R, the fact that bihτ(i) = aigi implies that (ai) = (bi), since both sides must have the same
content. In other words, vi ∈ R×, and so hτ(i) and gi are associates in R[x], finishing the proof of
uniqueness. �

EXAMPLES 5.2.11.
a. Since Z is a UFD, so is Z[x]. However, Z[x] is not a PID, since (p,x) is not principal.

b. Since Q[x] is a UFD, so is Q[x,y]. Again, Q[x,y] is not a PID, since (x,y) is not principal.

c. If R is any UFD, then R[x1,x2, · · ·xn] is a UFD for any n≥ 1.

5.3. Irreducibility of polynomials

In this section, we investigate criteria for determining if a polynomial is irreducible or not.

DEFINITION 5.3.1. Let R be an integral domain. We say that a polynomial f = ∑
n
i=0 aixi be

a polynomial in R[x] that satisfies an /∈ p, ai ∈ p for all 0≤ i≤ n−1, and a0 /∈ p2 for some n≥ 1
and prime ideal p in R is an Eisenstein polynomial (with respect to p).

THEOREM 5.3.2 (Eistenstein criterion). Let R be an integral domain, and let f ∈ R[x] be an
Eiseinstein polynomial.

a. If R is a UFD, then f is irreducible in Q(R)[x].

b. If f is primitive, then it is irreducible in R[x].

PROOF. Suppose f = ∑
n
i=0 aixi is of degree n and Eisenstein with respect to a prime ideal

p of R. By Proposition 5.2.9, it suffices for each part to show that f is not a product of two
nonconstant polynomials in R[x]. So, let g = ∑

s
i=0 bixi and h = ∑

t
j=0 c jx j be polynomials in R[x]

with f = gh, where s+ t = n. We then have

ak =
k

∑
i=0

bick−i

for all 0≤ k ≤ n. In particular, a0 = b0c0 is an element of p but not p2. Since p is prime, at least
one of b0 and c0 lies in p, but as a0 /∈ p2, at least one does not lie in p as well.

Without loss of generality, suppose that b0 ∈ p and c0 /∈ p. As an = bsct /∈ p, we have bs /∈ p.
Let k ≥ 1 be minimal such that bk /∈ p. If k < n, then ak ∈ p and bi ∈ p for i < k, so we have
bkc0 ∈ p, which therefore forces c0 ∈ p by the primality of p. Therefore, k = n, which means that
h is constant, proving the result. �
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We will most commonly be concerned with the Eisenstein criterion in the case that R = Z.

EXAMPLE 5.3.3. For any prime number p and integer n ≥ 1, the polynomial xn− p is irre-
ducible by the Eisenstein criterion. That is, we take our prime ideal to be (p) in the ring Z.

EXAMPLE 5.3.4. For a prime number p, set

Φp =
xp−1
x−1

= xp−1 + xp−2 + · · ·+1.

This polynomial has as its roots in C the distinct pth roots of unity that are not equal to 1. Over
Q, we claim it is irreducible. For this, consider the polynomial

Φp(x+1) =
(x+1)p−1

x
=

p−1

∑
i=0

(
p

i+1

)
xi,

which has coefficents divisible by p but not p2 except for its leading coefficient ap−1, which is 1.
Therefore, Φp(x+1) is Eisenstein, hence irreducible. But if Φp were to factor into g and h, then
Φp(x+1) would factor into g(x+1) and h(x+1), which have the same leading coefficients as g
and h, and hence are nonconstant if and only if g and h are. In other words, Φp is irreducible as
well.

REMARK 5.3.5. The condition in the Eisenstein criterion that the constant coefficient not lie
in the square of the prime ideal is in general necessary. For instance, x2− p2 ∈ Z[x] is never
irreducible for a prime p.

Often, we can tell if a polynomial is irreducible by considering its reductions modulo ideals.

PROPOSITION 5.3.6. Let R be an integral domain, and let p be a prime ideal of R. Let
f ∈ R[x] with leading coefficient not in p. Let f̄ denote the image of f in (R/p)[x] given by
reducing its coefficients modulo p.

a. If R is a UFD and f̄ is irreducible in Q(R/p)[x], then f is irreducible in Q(R)[x].

b. If f is primitive and f̄ is irreducible in R/p[x], then f is irreducible in R[x].

PROOF. If R is a UFD and f is reducible in Q(R)[x], then by Proposition 5.2.9, we have
that f = gh for some nonconstant g,h ∈ R[x]. Similarly, if f is primitive and reducible in R[x],
then f = gh for nonconstant g,h ∈ R[x]. In either case, since the leading coefficient of f is not
in p and p is prime, we have that the leading coefficients of g and h are not in p as well. That
is, the images of g and h in (R/p)[x] are nonconstant, which means that f̄ is a product of two
nonconstant polynomials, hence reducible in Q(R/p)[x]. �

REMARK 5.3.7. For R = Z, Proposition 5.3.6 tells us in particular that if f ∈ Z[x] is monic
and its reduction f̄ ∈ Fp[x] modulo p is irreducible for any prime p, then f is irreducible.

EXAMPLE 5.3.8. Let f = x4 + x3 +1001 ∈ Z[x]. We claim that f is irreducible in Q[x]. For
this, consider its reduction modulo 2. The polynomial f̄ = x4 + x3 + 1 ∈ (Z/2Z)[x] is either
irreducible, has a root in (Z/2Z)[x], or is a product of two irreducible polynomials of degree 2.
But f̄ (0) = f̄ (1) = 1, and x2+x+1 is the only irreducible polynomial of degree 2 in (Z/2Z)[x],
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and (x2 + x+1)2 = x4 + x2 +1 6= f̄ , so f̄ is irreducible. By Proposition 5.3.6, f is irreducible in
Q[x].

EXAMPLE 5.3.9. The converse to Proposition 5.3.6 does not hold. For instance, x2+x+1 is
irreducible in Q[x], but it has a root in (Z/3Z)[x].

We also have the following simple test for the existence of roots of polynomials over UFDs.

PROPOSITION 5.3.10. Let R be a UFD and f = ∑
n
i=0 aixi ∈ R[x] with a0,an 6= 0. Suppose

that α ∈ Q(R) is a root of f , and write α in reduced form as α = c
d for some c,d ∈ R. Then c

divides a0 and d divides an in R.

PROOF. Since x− c
d divides f in Q(R)[x] and c

d is in reduced form, it follows from Proposi-
tion 5.2.9 that f = (dx− c)g for some g ∈ R[x]. Writing g = ∑

n−1
i=0 bigi, we see that a0 = −cb0

and an = dbn−1. �

EXAMPLE 5.3.11. Let f = 2x3−3x+5 ∈ Z[x]. We check that f (1) = 4, f (−1) = 6, f (5)≡
−10 mod 25, f (−5) ≡ 20 mod 25, and f (1

2), f (−1
2), f (5

2), and f (−5
2) are all represented by

reduced fractions with denominators equal to 4. Proposition 5.3.10 therefore tells us that f has
no roots in Q, hence is irreducible, being of degree 3.

5.4. Euclidean domains

DEFINITION 5.4.1. A norm f on an ring R is a function f : R→ Z≥0 with f (0) = 0. We say
that f is positive if the only a ∈ R for which f (a) = 0 is a = 0.

DEFINITION 5.4.2. Let R be an integral domain. A Euclidean norm ν on R is a norm on R
such that for all nonzero a,b ∈ R, one has

i. ν(a)≤ ν(ab), and

ii. there exist q,r ∈ R with a = qb+ r and either ν(r)< ν(b) or r = 0.

REMARK 5.4.3. Property (ii) of Definition 5.4.2 is known as the division algorithm.

DEFINITION 5.4.4. A Euclidean domain R is an integral domain such that there exists a
Euclidean norm on R.

EXAMPLES 5.4.5.
a. The integers Z are a Euclidean domain with Euclidean norm ν(a) = |a| for any nonzero

a ∈ Z.

b. Every polynomial ring F [x] over a field F is a Euclidean domain, the degree function
providing a Euclidean norm on F [x].

LEMMA 5.4.6. In a Euclidean domain R with Euclidean norm ν , the minimal value of ν on
all nonzero elements of R is ν(1), and ν(u) = ν(1) for u ∈ R if and only if u ∈ R×.

PROOF. By the definition of a Euclidean norm, we have ν(1)≤ ν(a ·1)= ν(a) for all nonzero
a ∈ R. If u ∈ R×, then ν(u) ≤ ν(u · u−1) = ν(1), so ν(u) = ν(1). Conversely, if b ∈ R with
ν(b) = ν(1), then we may write 1 = qb+ r for some q,r ∈ R with either ν(r) < ν(1) or r = 0.
By what we have shown, the latter holds, so qb = 1, and b is a unit. �
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EXAMPLE 5.4.7. In F [x], the units are exactly the nonzero constant polynomials, i.e., those
with degree 0.

While we will explain below that not every PID is a Euclidean domain, it is the case that
every Euclidean domain is a PID.

THEOREM 5.4.8. Every Euclidean domain is a PID.

PROOF. Let I be a nonzero ideal in a Euclidean domain R with Euclidean norm ν . We must
show that I is principal. Let b ∈ I be a nonzero element with minimal norm among all elements
of I. For any a ∈ I, we may write a = qb+ r with q,r ∈ R and either ν(r) < ν(b) or r = 0.
Note that a,b ∈ I, so r ∈ I as well, which precludes the possibility of ν(r)< ν(b), since ν(r) is
minimal among norms of elements of I. Therefore, we have r = 0, so a ∈ (b). As a was arbitrary
and b ∈ I, we have I = (b). �

The key property of Euclidean domains is the ability to perform the Euclidean algorithm,
which we see in the following.

THEOREM 5.4.9 (Euclidean algorithm). Let R be a Euclidean domain with Euclidean norm
ν , and let a,b ∈ R be nonzero elements. Let r−1 = a and r0 = b. Suppose recursively that we are
given elements r j ∈ R for −1≤ j ≤ i and some i≥ 0. If ri 6= 0, write

(5.4.1) ri−1 = qi+1ri + ri+1

with qi+1,ri+1 ∈ R and either ν(ri+1) < ν(ri) or ri+1 = 0. If ri+1 6= 0, repeat the process with i
replaced by i+1. The process terminates with d = rn 6= 0 and rn+1 = 0 for some n≥ 1, and (d)
is the GCD of a and b. Moreover, we may use the formulas in (5.4.1) and recursion to write d as
d = xa+ yb for some x,y ∈ R.

PROOF. We note that the process must terminate, as the values of the ν(ri) for i ≥ 0 are
decreasing. Moreover, the result d = rn satisfies rn−1 = qn+1rn, so it divides rn−1 by definition,
and then we see by downward recursion using (5.4.1) that d divides every ri−1. Finally, if c is
any common divisor of a and b, then it again recursively divides each ri (this time by upwards
recursion and (5.4.1)), so c divides d. Therefore, (d) is the GCD of a and b.

Note that d = rn−2−qnrn−1, and suppose that we may write d = zr j +wr j+1 for some −1≤
j ≤ n−2. If j =−1, we are done. Otherwise, note that r j+1 = r j−1−q j+1r j, so

d = zr j +w(r j−1−q j+1r j) = wr j−1 +(z−q j+1w)r j,

and we have written d as an R-linear combination of r j−1 and r j. Repeat the process for j− 1.
The final result is the desired R-linear combintation of a and b. �

EXAMPLE 5.4.10. Take Z and its usual Euclidean norm. We take a = 550 and b = 154. Then
550 = 3 ·154+88, so we set r1 = 88. Then 154 = 88+66, so we set r2 = 66, and 88 = 66+22,
so we set r3 = 22, and 66 = 3 · 22, so we stop at d = r3 = 22, which is therefore the greatest
common divisor of a and b. Working backwards, we obtain

22 = 88−66 = 88− (154−88) = 2 ·88−154 = 2 · (550−3 ·154)−154 = 2 ·550−7 ·154.

That is, we have written d as a+(−4)b.
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Often Euclidean norms come in the form of multiplicative norms.

DEFINITION 5.4.11. A multiplicative norm N : R→Z≥0 on a commutative ring R with unity
is a positive norm such that for all N(ab) = N(a)N(b) for all a,b ∈ R.

REMARK 5.4.12. Note that the existence of a multiplicative norm N on a commutative ring
R with unity forces R to be an integral domain, for if ab = 0, then N(a)N(b) = N(ab) = 0, so
either N(a) = 0 or N(b) = 0, and therefore either a = 0 or b = 0.

EXAMPLE 5.4.13. The absolute value on Z is a multiplicative norm, as well as a Euclidean
norm.

EXAMPLE 5.4.14. The function N on the Gaussian integers Z[i] given by N(a+bi) = a2+b2

is a multiplicative norm. Clearly, a2 + b2 = 0 if and only if a+ bi = 0. Given a,b,c,d ∈ Z, we
have

N((a+bi)(c+di)) = (ac−bd)2 +(ad +bc)2 = (ac)2 +(bd)2 +(ad)2 +(bc)2

= (a2 +b2)(c2 +d2) = N(a+bi)N(c+di).

PROPOSITION 5.4.15. The ring Z[i] of Gaussian integers is a Euclidean domain with respect
to the Euclidean norm N(a+bi) = a2 +b2 for a,b ∈ Z.

PROOF. Since N is a multiplicative norm, we need only check the division algorithm. Extend
N to a function on C by defining N(a+bi) = a2 +b2 for a,b ∈R. Let a,b,c,d ∈ Z with (c,d) 6=
(0,0). Then we have

a+bi
c+di

= s+ ti

for some s, t ∈Q, and let e, f ∈ Z be integers with |s−e| ≤ 1/2 and |t− f | ≤ 1/2. Then we have

N(a+bi− (e+ f i)(c+di)) = N(c+di)N((s− e)+(t− f )i)

≤ N(c+di)

((
1
2

)2

+

(
1
2

)2
)

= N(c+di)/2 < N(c+di),

so the division algorithm is satisfied: a+bi = q(c+di)+ r with q = e+ f i and N(r)< N(c+di)
if r 6= 0. �

COROLLARY 5.4.16. The units in Z[i] are exactly 1,−1, i,−i.

PROOF. Since N is a Euclidean norm on Z[i], the units are exactly those nonzero elements of
norm N(1) = 1. We have a2 +b2 = 1 if and only if (a,b) = (±1,0) or (a,b) = (0,±1). �

LEMMA 5.4.17. If a,b,c,d ∈ Z and c+di divides a+bi in Z[i], then c−di divides a−bi in
Z[i].

PROOF. Write a+bi = (c+di)(e+ f i) for some e, f ∈Z. Then a = ce−d f and b = cd+de,
so

(c−di)(e− f i) = (ce−d f )− (c f +de)i = a−bi.
�
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We can completely determine the irreducible elements in Z[i] as follows.

PROPOSITION 5.4.18. The irreducible elements in Z[i] are, up to multiplication by a unit,
1+ i, primes p ∈ Z with p ≡ 3 mod 4, and a+ bi for a,b ∈ Z such that p = a2 + b2 ≡ 1 mod 4
is a prime in Z. Moreover, the primes in Z that can be written in the form a2 +b2 are exactly 2
and those that are 1 modulo 4.

PROOF. First, note that if a+ bi divides c+ di in Z[i] for integers a,b,c,d, then N(a+ bi)
divides N(c+di), since N is multiplicative. So, 1+ i is irreducible since N(1+ i) = 2.

Let p be an odd prime in Z. If p is divisible by some irreducible element π = a+ bi with
a,b ∈ Z, then since p is prime, only one of two things can happen. Either ab = 0, or a and b
are relatively prime in Z, noting Corollary 5.4.16. Suppose ab 6= 0. By Lemma 5.4.17, we have
that a−bi divides p, and π̄ = a−bi is irreducible. If π̄ were associate to π , then π would divide
2a= (a+bi)+(a−bi) and 2b=−i((a+bi)−(a−bi)). Then π divides 2, but that is impossible.
Thus, π and π̄ both dividing p implies that p is divisible by N(π) = a2 +b2. As p is prime, we
have p = a2 +b2.

So, we have shown that either our odd prime p is irreducible in Z[i] or p = a2 +b2 for some
a,b ∈ Z. Note that the squares in Z/4Z are 0 and 1, so any integer of the form a2 +b2 is 0, 1, or
2 modulo 4. In particular, if p≡ 3 mod 4, then p is irreducible in Z[i].

If p ≡ 1 mod 4 is prime in Z, then (Z/pZ)× has order divisible by 4. As Z/pZ contains
only two roots of x2− 1, which are −1 and 1, so (Z/pZ)× contains an element of order 4. In
particular, there exists n ∈ Z such that n2 ≡−1 mod p, which is to say that p divides n2+1. If p
were irreducible in Z[i], then p would divide either n+ i or n− i, but then it would divide both,
being an integer. Thus p would divide 2i, which it does not. So, p is reducible, which means
equals a2 +b2 for some a,b ∈ Z. �

LEMMA 5.4.19. Let N be a multiplicative norm on an integral domain R. Then N(u) = 1 for
all u ∈ R×.

PROOF. We have N(1) = N(1)2, and R is an integral domain, so N(1) = 1. Moreover, since

N(u−1)N(u) = N(1) = 1,

we have that N(u−1) = N(u)−1, and therefore N(u) = 1. �

EXAMPLE 5.4.20. Consider the multiplicative norm N on Z[
√
−5] given by

N(a+b
√
−5) = |a2 +5b2|.

We have a2 + 5b2 = 1 if and only if a = ±1 and b = 0, so the only units in Z[
√
−5] are ±1.

Now, if 2 = αβ for some nonunits α,β ∈ Z[
√
−5], then 4 = N(2) = N(α)N(β ), so N(α) = 2,

but 2 is clearly not a value of N. Therefore, 2 is irreducible, and so is 3. Also, we have that
N(1±

√
−5) = 6, and since 2 and 3 are not values of N, we have that 1±

√
−5 is irreducible as

well. As these elements are all non-associates, the existence of the two factorizations

6 = 2 ·3 = (1+
√
−5)(1−

√
−5)

proves that Z[
√
−5] is not a UFD.
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Not all principal ideal domains are Euclidean. We give most of the outline of how one
produces an example.

DEFINITION 5.4.21. An nonzero, non-unit element b of an integral domain R is called a
universal side divisor if every element a ∈ R may be written in the form a = qb+ r for some
q,r ∈ R with r = 0 or r ∈ R×.

LEMMA 5.4.22. Let R be a Euclidean domain with Euclidean norm ν . Let b∈R be a nonzero,
non-unit element such that ν(b) is minimal among nonzero, non-unit elements of R. Then b is a
universal side divisor of R.

PROOF. Let a ∈ R. By definition of ν , we may write a = qb+ r with ν(r) < ν(b) or r = 0.
By the minimality of ν(b), we must have that r is a unit or 0. �

EXAMPLE 5.4.23. We claim that the ring R = Z[(1+
√
−19)/2] is not Euclidean. Suppose

by contradiction that it is a Euclidean domain, and let ν be a Euclidean norm on R. We also have
the multiplicative norm N on R given by

(5.4.2) N

(
a+b

1+
√
−19

2

)
=

(
a+b

1+
√
−19

2

)(
a+b

1−
√
−19

2

)
= a2 +ab+5b2.

Note that if α ∈ R−Z, then N(α)≥ 5, so the only units in R are ±1.
Let β ∈ R be a universal side divisor, which exists as R is Euclidean, and write 2 = qβ + r

for q ∈ R and r ∈ {0,1,−1}. We then have that N(β ) divides N(2− r) as N is multiplicative, so
N(β ) divides 4 or 9, and this implies β ∈ {±2,±3} by the formula for N. Now take α = (1+√
−19)/2, and set α = q′β + r′ with q′ ∈ R and r′ ∈ {0,1,−1}. We have N(α) = N(α−1) = 5

and N(α +1) = 7, which are not multiples of N(β ) ∈ {4,9}, so we obtain a contradiction.

DEFINITION 5.4.24. A Dedekind-Hasse norm on an integral domain R is a positive norm µ

on R such that for every a,b ∈ R, either a ∈ (b) or there exists a nonzero element c ∈ (a,b) such
that µ(c)< µ(b).

PROPOSITION 5.4.25. An integral domain R is a PID if and only if there exists a Dedekind-
Hasse norm on R.

PROOF. Suppose first that µ is a Dedekind-Hasse norm on R. Let I be a nonzero ideal of R,
and let b∈ I−{0} with minimal norm under µ . If a∈ I, then since there does not exist a nonzero
element c ∈ (a,b) ⊆ I with µ(c) < µ(b) by the minimality of µ(b), we have by definition of a
Dedekind-Hasse norm that a ∈ (b). Thus I = (b).

Suppose on the other hand the R is a PID. Define µ : R→ Z≥0 by µ(0) = 0, µ(u) = 1 for
u ∈ R×, and µ(p1 p2 · · · pk) = 2k if p1, . . . , pk are irreducible elements of R. This is well-defined
as R is a UFD. Given a,b ∈ R, we have (a,b) = (d) for some d ∈ R, since R is a PID. Since d
divides b, we have µ(d)≤ µ(b). If µ(d) = µ(b), then a and b have the same number of divisors
as d and therefore are associates, so a ∈ (b). Thus, µ is a Dedekind-Hasse norm. �

EXAMPLE 5.4.26. We have already seen that R = Z[(1+
√
−19)/2] is not a Euclidean do-

main. To see that R is a PID, it suffices to show that the multiplicative norm N on R given by
(5.4.2) is a Dedekind-Hasse norm on R. We outline the standard unenlightening verification.
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Let α,β ∈ R with α /∈ (β ). We claim that there exist s, t ∈ R with 0 < N(sα− tβ ) < N(β ).
Note that we can extend N to a map N : Q(R)→ Z≥0 by the formula (5.4.2), allowing a,b ∈ Q.
Our condition that N on R be a Dedekind-Hasse norm is then that 0 < N(sα

β
− t) < 1. We will

find s and t. For this, write
α

β
=

a+b
√
−19

c
for a,b,c ∈ Z with no common divisor and c > 1.

First one considers the cases with c ≥ 4. If c = 2, then either a or b is odd, then take s = 1
and t = ((a− 1)+ b

√
−19)/2. If c = 3, then a2 + 19b2 6≡ 0 mod 3, so a2 + 19b2 = 3q+ r with

r ∈ {1,2}. Take s = a−b
√
−19 and t = q. If c = 4, then again either a or b is odd. If only one

is, then write a2 +19b2 = 4q+ r with 1≤ r ≤ 4, and take s = a−b
√
−19 and t = q. If both are,

write a2 +19b2 = 8q+4, and take s = 1
2(a−b

√
−19) and t = q.

Now suppose that c≥ 5. Since (a,b,c) = (1), we have x,y,z ∈ Z such that xa+ yb+ zc = 1.
Write ay− 19bx = qc+ r, with q ∈ Z and |r| ≤ c/2. Take s = y+ x

√
−19 and t = q− z

√
−19.

The reader will check that

N
(

s
α

β
− t
)
= c−2N

(
s(a+b

√
−19)− tc

)
=

r2 +19
c2 ,

which is at most 1
4 +

19
36 = 7

9 if c≥ 6 and at most 4
25 +

19
25 = 23

25 if c = 5.

5.5. Vector spaces over fields

In this section, we give a very brief discussion of the theory of vector spaces over fields, as it
shall be subsumed by the sections that follow it.

DEFINITION 5.5.1. Let F be a field. A vector space V over F is an abelian group under
addition that is endowed with an operation · : F ×V → V of scalar multiplication such that for
all a,b ∈ F and v,w ∈V , one has

i. 1 · v = v,

ii. a · (b · v) = (ab) · v,

iii. (a+b) · v = a · v+b · v,

iv. a · (v+w) = a · v+a ·w.

REMARK 5.5.2. In a vector space V over a field F , we typically write av for a ·v, where a∈ F
and v ∈V .

EXAMPLE 5.5.3. If F is a field, then Fn is a vector space over F under the operation

a · (α1,α2, . . . ,αn) = (aα1,aα2, . . . ,aαn)

for a,α1,α2, . . . ,αn ∈ F .

DEFINITION 5.5.4. An element of a vector space V over a field F is called a vector, and the
elements of F under in the operation · are referred to as scalars.
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EXAMPLE 5.5.5. In every vector space V , there is an element 0, and it is called the zero
vector.

DEFINITION 5.5.6. The zero vector space 0 is the vector space over any field F that is the set
{0} with the operation a ·0 = 0 for all a ∈ F .

EXAMPLE 5.5.7. If F is a field, then F [x] is a vector space over F with a · f for a ∈ F and
f ∈ F [x] defined to be the usual product of polynomials in F [x]. I.e., the operation of scalar
multiplication is just multiplication by a constant polynomial.

EXAMPLE 5.5.8. The field C is an R-vector space, as well as a Q-vector space. The field
R is a Q-vector space. The operations of scalar multiplication are just restrictions of the usual
multiplication map on C.

The reader will easily check the following.

LEMMA 5.5.9. If V is a vector space over a field F, then for a ∈ F and v ∈V , we have
a. 0 · v = 0,

b. a ·0 = 0,

c. −(av) = (−a)v = a(−v).

DEFINITION 5.5.10. Let V be a vector space over a field F . A subspace W of V is a subset that
is closed under the operations of addition and scalar multiplication to W (i.e., to maps W×W→V
and F×W →V , respectively) and is a vector space with respect to these operations.

The following is easily proven.

LEMMA 5.5.11. A subset W of a vector space V is a subspace if and only if it is a subgroup
under addition and closed under scalar multiplication.

EXAMPLES 5.5.12.
a. The zero subspace {0} and V are both subspaces of any vector space V .

b. The field F is a subspace of F [x].

DEFINITION 5.5.13. Let V be a vector space over a field F , and let S be a subset of V . A
linear combination of elements of S is any sum

n

∑
i=1

aivi

with v1,v2, . . . ,vn distinct vectors in S and a1,a2, . . . ,an ∈ F for some n≥ 0. We say that such a
linear combination is nontrivial if there exists a j with 1≤ j ≤ n and a j 6= 0.

DEFINITION 5.5.14. Let V be a vector space over a field F and S be a set of vectors in V .
The subspace spanned by S, also known as the span of V , is the set of all linear combinations of
elements of S, or simply the zero subspace if S is empty.

EXAMPLE 5.5.15. For any vector space V , the set V spans V .



5.5. VECTOR SPACES OVER FIELDS 155

DEFINITION 5.5.16. We say that a set S of vectors in a vector space V over a field F spans
V if V equals the subspace spanned by S.

That is, S spans an F-vector space V if, for every v ∈V , there exist n≥ 0, vi ∈V , and ai ∈ F
for 1≤ i≤ n such that

v =
n

∑
i=1

aivi.

DEFINITION 5.5.17. We say that a set of S of vectors in a vector space V over a field F is
linearly independent if every nontrivial linear combination of vectors in S is nonzero. Otherwise,
S is said to be linearly dependent.

That is, a set S of vectors in an F-vector space V is linearly independent if whenever n ≥ 1,
vi ∈V and ai ∈ F for 1≤ i≤ n and

n

∑
i=1

aivi = 0,

then ai = 0 for all 1≤ i≤ n.

LEMMA 5.5.18. Let S be a linearly independent subset of a vector space V over a field F,
and let W be the span of F. If v0 ∈V −W, then S∪{v0} is also linearly independent.

PROOF. Let v1,v2, . . . ,vn ∈ S and c0,c1, . . . ,cn ∈ F for some n≥ 1, and suppose that
n

∑
i=0

civi = 0.

We cannot have c0 6= 0, as then

v0 =−c−1
0

n

∑
i=1

civi ∈W.

On the other hand, the fact that c0 = 0 implies that ci = 0 for all 1≤ i≤ n by the linear indepen-
dence of V . Thus, S∩{v0} is linearly independent. �

EXAMPLE 5.5.19. In any vector space V , the empty set is linearly independent. If v ∈ V is
nonzero, then {v} is also a linearly independent set.

DEFINITION 5.5.20. A subset B of a vector space V over a field F is said to be a basis of V
over F if it is linearly independent and spans V .

EXAMPLE 5.5.21. The set {e1,e2, . . . ,en} of Fn, where ei is the element of Fn that has a 1 in
its ith coordinate and 0 in all others, is a basis of Fn.

EXAMPLE 5.5.22. The set {xi | i ≥ 0} is a basis of F [x]. That is, every polynomial can be
written as a finite sum of distinct monomials in a unique way.

REMARK 5.5.23. For a field F , it is very hard to write down a basis of ∏
∞
i=0 F . In fact, the

proof that it has a basis uses the axiom of choice.

DEFINITION 5.5.24. A vector space V is said to be finite dimensional if it has a finite basis
(i.e., a basis with finitely many elements). Otherwise V is said to be infinite dimensional.



156 5. ADVANCED RING THEORY

The following theorem employs Zorn’s lemma.

THEOREM 5.5.25. Let V be a vector space over a field F. Every linearly independent subset
of V is contained in a basis of V .

PROOF. Let S be a linearly independent subset of V , and let X denote the set of linearly
independent subsets of V that contain S. We order X by containment of subsets. If C is a chain
in X , then its union U =

⋃
T∈C T is linearly independent since if v1,v2, . . . ,vn ∈U for some n≥ 1,

then each vi is contained in some Ti ∈ X for each 1 ≤ i ≤ n, and one of the sets Tj contains the
others, since C is a chain. Since Tj is linearly independent, any nontrivial linear combination
of the elements vi with 1 ≤ i ≤ n is nonzero. Therefore, U is linearly independent as well, so is
contained in X .

By Zorn’s Lemma, X now contains a maximal element B, and we want to show that B spans
V , so is a basis of V containing S. Let W denote the span of B. If v0 ∈V −W , then B′ = B∪{v0}
is linearly independent by Lemma 5.5.18, so an element of X , which contradicts the maximality
of B. That is, V =W , which is to say that B spans V . �

In particular, the empty set is contained in a basis of any vector space, so we have the follow-
ing:

COROLLARY 5.5.26. Every vector space over a field contains a basis.

A similar argument yields the following.

THEOREM 5.5.27. Let V be a vector space over a field F. Every subset of V that spans V
contains a basis of V .

PROOF. Let S be a spanning subset of V . Let X denote the set of linearly independent subsets
of S, and order X by containment. As seen in the proof of Theorem 5.5.25, any union of a chain
of linearly independent subsets is linearly independent, so has an upper bound. Thus, Zorn’s
lemma tells us that X contains a maximal element B. Again, we want to show that B spans V , so
is a basis. If it were not, then there would exist some element of V which is not in the span of B,
but is in the span of S. In particular, there exists an element v0 ∈ S that is not in the span of B.
The set B∪{v0} is linearly independent, contradicting the maximality of B. �

We also have the following, which can be generalized to a statement on cardinality.

THEOREM 5.5.28. Let V be a vector space over a field F. If V is finite dimensional, then
every basis of V contains the same number of elements, and otherwise every basis of V is infinite.

PROOF. Let B1 = {v1,v2, . . . ,vn} be a basis of V with a minimal number n of elements, and
let B = {w1,w2, . . . ,wm} be another basis of V with m≥ n. Then B1 spans V , so w1 is a nontrivial
linear combination of the vi for 1≤ i≤ n:

(5.5.1) w1 =
n

∑
i=1

aivi
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for some ai ∈ F . Letting j be such that a j 6= 0, we may write v j as a linear combination of w1
and the vi with i 6= j. In other words, B2 = (B1−{v j})∪{w1} spans V . Suppose

(5.5.2) c jw1 +
n

∑
i=1
i 6= j

civi = 0

for some ci ∈ F . Using (5.5.1), we may rewrite the sum in (5.5.2) as a linear combination of the
vi, the coefficient of v j in which is a jc j, which forces c j = 0 as B1 is a linearly independent set.
But then we see from (5.5.2) that all ci = 0 as B−{v j} is linearly independent. So, B2 is a basis
of V .

Suppose by recursion that, for k ≤ m, we have found a basis Bk of order n of V that contains
only w1, . . . ,wk−1 and elements of B. Then wk is a nontrivial linear combination of the elements
of Bk, and the coefficient of some vl is nonzero in this linear combination by the linear indepen-
dence of B. We therefore have that Bk+1 = (Bk−{vl})∪{wk} spans V , and a similar argument
to the above shows that it is a basis. Finally, we remark that the basis Bm+1 must be B1 itself,
since it contains B1, so we have m = n, as desired. �

DEFINITION 5.5.29. The dimension of a finite-dimensional vector space V over a field F is
the number of elements in a basis of V over F . We write dimF(V ) for this dimension.

EXAMPLE 5.5.30. The space Fn is of dimension n over F .

The maps between vector spaces that respect the natural operations on the spaces are called
linear transformations.

DEFINITION 5.5.31. A linear transformation T : V →W of F-vector spaces is a function
from V to W satisfying

T (v+ v′) = T (v)+T (v′) and T (av) = aT (v)

for all a ∈ F and v,v′ ∈V

REMARK 5.5.32. In other words, a linear transformation is a homomorphism of the underly-
ing groups that “respects scalar multiplication.”

DEFINITION 5.5.33. A linear transformation T : V →W of F-vector spaces is an isomor-
phism of F-vector spaces if it is there exists an linear transformation T−1 : W →V that is inverse
to it.

Much as with group and ring homomorphisms, we have the following:

LEMMA 5.5.34. A linear transformation is an isomorphism if and only if it is a bijection.

EXAMPLES 5.5.35. Let V and W be F-vector spaces.
a. The identity map idV : V →V is an F-linear transformation (in fact, isomorphism).

b. The zero map 0: V →W is an F-linear transformation.
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5.6. Modules over rings

DEFINITION 5.6.1. Let R be a ring. A left R-module, or left module over R, is an abelian
group M together with an operation · : R×M→M such that for all a,b ∈ R and m,n ∈M, one
has

i. 1 ·m = m,

ii. (a ·b) ·m = (ab) ·m,

iii. (a+b) ·m = a ·m+b ·n,

iv. a · (m+n) = a ·m+a ·n.

DEFINITION 5.6.2. Let R be a commutative ring. We refer more simply to a left R-module as
a R-module, or module over R.

REMARK 5.6.3. When one speaks simply of a module over a ring R, one means by default a
left R-module.

NOTATION 5.6.4. When an abelian group M is seen as a left module over a ring R via the
extra data of some operation R×M→M, we say that this operation endows M with the additional
structure of a left R-module.

EXAMPLE 5.6.5. The definition of a module over a field coincides with the definition of a
vector space over a field. In other words, to say that M a module over a field F is exactly to say
that M is a vector space over F .

EXAMPLE 5.6.6. The modules over Z are exactly the abelian groups. That is, suppose that A
is a Z-module, which by definition is an abelian group with an additional operation · : Z×A→ A.
We show that this additional operation satisfies n · a = na for n ∈ Z and a ∈ A, where na is the
usual element of the abelian group A. So, let a ∈ A. By axiom (i), we have 1 ·a = a, and then the
distributivity of axiom (iii) allows us to see that n · a = na for all n ≥ 1. Using axioms (iv) and
(ii), we have

0 ·a = 0 · (2a−a) = 0 ·2a−0 ·a = (0 ·2) ·a−0 ·a = 0 ·a−0 ·a = 0,

and then finally we have

(−n) ·a+n ·a = (n−n) ·a = 0 ·a = 0,

so (−n) ·a =−na for n≥ 1.

EXAMPLE 5.6.7. For a ring R and n ≥ 1, the direct product Rn is a left Mn(R)-module via
matrix multiplication (A,v) 7→ A · v for A ∈Mn(R) and v ∈ Rn,viewing elements of Rn as column
vectors.

We also have the notion of a right R-module.

DEFINITION 5.6.8. Let R be a ring. A right R-module, or right module over R, is an abelian
group M together with an operation · : M×R→ R such that for all a,b ∈ R and m,n ∈ M, one
has

i. m ·1 = m,



5.6. MODULES OVER RINGS 159

ii. m · (a ·b) = m · (ab),

iii. m · (a+b) = m ·a+n ·b,

iv. (m+n) ·a = m ·a+n ·a.

EXAMPLE 5.6.9. Every left ideal I over a ring R is a left R-module with respect to the restric-
tion R× I→ I of the multiplication on R. Every right ideal over R is a right module with respect
to the restriction I×R→ I of the multiplication on R.

DEFINITION 5.6.10. Let R be a ring. The opposite ring Rop to R is the ring that is the abelian
group R together with the multiplication ·op : R×R→ R given by a ·op b = ba, where the latter
product is taken in R.

REMARK 5.6.11. The identity map induces an isomorphism R→ (Rop)op of rings.

The reader will easily check the following.

LEMMA 5.6.12. A right module M over R also has the structure of a left module over Rop,
where the latter operation ·op : Rop : M→M is given by a ·op m = ma, where the latter product is
that given by the right R-module structure of M.

EXAMPLE 5.6.13. For a field F , the map T : Mn(F)→ Mn(F) given by transpose (that is,
A 7→ AT for A ∈Mn(F)) is a ring isomorphism between Mn(F) and Mn(F)op.

We also have the notion of a bimodule.

DEFINITION 5.6.14. Let R and S be rings. An abelian group M that is a left R-module and a
right S-module is called an R-S-bimodule if

(r ·m) · s = r · (m · s)
for all r ∈ R, s ∈ S, and m ∈M.

EXAMPLES 5.6.15.
a. Any left R-module M over a commutative ring R is an R-R-bimodule with respect to given

left operation and the (same) right operation m · r = rm for m ∈M and r ∈ R.

b. A two-sided ideal of a ring R is an R-R-bimodule with respect to the operations given by
the usual multiplication on R.

c. For m,n≥ 1, the abelian group Mmn(R) of m-by-n matrices with entries in R is an Mm(R)-
Mn(R)-bimodule for the operations of matrix multiplication.

Let us return our focus to R-modules, focusing on the case of left modules, as right modules
are just left modules over the opposite ring by Lemma 5.6.12.

DEFINITION 5.6.16. An R-submodule (or, submodule) N of a left module M over a ring R
is a subset of N that is closed under addition and the operation of left R-multiplication and is an
R-module with respect to their restrictions + : N×N→ N and · : R×N→ N to N.

LEMMA 5.6.17. Let R be a ring, M be a left R-module, and N be a subset of M. Then N is
an R-submodule of M if and only if it is nonempty, closed under addition, and closed under left
R-multiplication.
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PROOF. Clearly, it suffices to check that if N is nonempty and closed under addition and
left R-multiplication, then it is an R-submodule. The condition of being closed under left R-
multiplication assures that 0 and inverses of elements of N lies in N, so N is an abelian group
under + on M. The axioms for N to be an R-module under · are clearly satisfied as they are
satisfied by elements of the larger set M. �

EXAMPLES 5.6.18.
a. The subspaces of a vector space V over a field F are exactly the F-submodules of V .

b. The subgroups of an abelian group are the Z-submodules of that group.

c. Any left ideal I of R is a left R-submodule of R viewed as a left R-module.

d. Any intersection of R-submodules is an R-submodule as well.

e. For an R-module M and a left ideal I, the abelian group

IM =
{ n

∑
i=1

aimi | ai ∈ I,mi ∈M for 1≤ i≤ n
}

is an R-submodule of M.

We also have the following construction.

DEFINITION 5.6.19. Let M be an R-module and {Ni | i ∈ I} be a collection of submodules
for an indexing set I. The sum of the submodules Ni is the submodule ∑i∈I Ni of M with elements
∑i∈I ni for ni ∈ Ni and all but finitely many ni equal to 0.

If M is an R-module and N is a submodule, we may speak of the quotient abelian group
M/N. It is an R-module under the action r · (m+N) = rm+N for r ∈ R and m ∈ M. This
is well-defined, as a different representative m+ n of the coset m+N for n ∈ N will satisfy
r(m+n)+N = rm+ rn+N = rm+N.

DEFINITION 5.6.20. Let M be a left R-module and N be an R-submodule of M. The quotient
module M/N of M by N is the abelian group of cosets together with the multiplication R×
M/N→M/N given by r · (nN) = (rn)N.

EXAMPLE 5.6.21. For an R-module M and a left ideal I, we have the quotient module M/IM.
In particular, note that R/I is a left R-module with respect to r(s+ I) = rs+ I, even if it is not a
ring (i.e., if I is not two-sided).

We can also speak of homomorphisms of R-modules.

DEFINITION 5.6.22. Let M and N be left modules over a ring R. A left R-module homomor-
phism φ : M→ N is a function such that φ(r ·m) = rφ(m) and φ(m+ n) = φ(m)+φ(n) for all
r ∈ R and m,n ∈M.

NOTATION 5.6.23. If R is commutative (or it is understood that we are working with left
modules), we omit the word “left” and speak simply of R-module homomorphisms.

REMARK 5.6.24. A right R-module homomorphism φ : M → N is just a left Rop-module
homomorphism.
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DEFINITION 5.6.25. Let M and N be left modules over a ring R.
a. An isomorphism f : M→ N of left R-modules is a bijective homomorphism.

b. An endomorphism of a left R-module M is a homomorphism f : M→M of left R-modules.

c. An automorphism of a left R-modules M is an isomorphism f : M→M of left R-modules.

NOTATION 5.6.26. Sometimes, we refer to an R-module homomorphism as an R-linear map,
and an endomorphism of R-modules as an R-linear endomorphism.

EXAMPLES 5.6.27.
a. The zero map 0: M → M and the identity map id : M → M are endomorphisms of an

R-module M, with id being an automorphism.

b. Let V and W be vector spaces over a field F . A left F-module homomorphism φ : V →W
is just an F-linear transformation.

c. Let N be an R-submodule of a left R-module M. The inclusion map ιN : N → M is an
R-module homomorphism, as is the quotient map πN : M→M/N.

d. If M is an R-S-bimodule, then right multiplication ψs : M→M by an element s∈ S defines
a left R-module endomorphism. In particular, if R is a commutative ring, then multiplication by
r ∈ R defines an R-module endomorphism. Note that if R is noncommutative, then the condition
that left multiplication by r ∈ R be a left module homomorphism M→M is that r(sm) = s(rm)
for all r,s ∈ R and m ∈M, which need not hold.

e. The identity map Fn→ Fn provides an isomorphism between Fn viewed as a left Mn(F)-
module via (A,v) 7→ Av for A ∈Mn(F) and v ∈ Fn (viewing v as a column vector) and Fn viewed
as a left Mn(F)op-module via (A,v) 7→ vT A.

Note that we may speak of the kernel and the image of a left R-module, as an R-module ho-
momorphism is in particular a group homomorphism. The reader will easily verify the following.

LEMMA 5.6.28. Let φ : M→ N be a left R-module homomorphism. Then kerφ and imφ are
R-submodules of M and N, respectively.

We also have analogues of all of the isomorphism theorems for groups. Actually, these
are virtually immediate consequences of said isomorphism theorems, as the fact that one has
isomorphisms of groups follows immediately from them, and then one need only note that these
isomorphisms are actually homomorphisms of R-modules.

THEOREM 5.6.29. Let R be a ring. Let φ : M→ N be an homomorphism of left R-modules.
Then there is an isomorphism φ̄ : M/kerφ → imφ given by φ̄(m+kerφ) = φ(m).

THEOREM 5.6.30. Let R be a ring, and let N and N′ be left R-submodules of an R-module N.
Then there is an isomorphism of R-modules

M/(M∩N) ∼−→ (M+N)/N, m+(M∩N) 7→ m+N.

THEOREM 5.6.31. Let R be a ring, let M be an R-module, and let Q ⊆ N be R-submodules
of M. Then there is an isomorphism

M/N ∼−→ (M/Q)/(N/Q), m+N 7→ (m+Q)+(N/Q).
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We also have the following analogue of Theorems 2.13.10 and 3.8.23.

THEOREM 5.6.32. Let R be a ring, let M be an R-modules, and let N be an R-submodule
of M. Then the map P 7→ P/N gives a bijection between submodules P of M containing N and
submodules of M/N. This bijection has inverse Q 7→ π

−1
N (Q) on submodules Q of M/N, where

πN : M→M/N is the quotient map.

5.7. Free modules and generators

DEFINITION 5.7.1. Let S be a subset of an R-module M.
a. The submodule of M generated by S is the intersection of all submodules of M containing

S.

b. We say that S generates M, or is a set of generators or generating set of M, if no proper
R-submodule of M contains S.

REMARK 5.7.2. The R-submodule of M generated by S consists of the elements ∑
n
i=1 aimi

with mi ∈ S and ai ∈ R for 1≤ i≤ n and some n≥ 1. The proof is much as before.

REMARK 5.7.3. The sum ∑i∈I Ni of submodules Ni of M is the submodule generated by
∪i∈INi.

NOTATION 5.7.4. The R-submodule of an R-module M generated by for a single element
m ∈M (or, more precisely, by {m}) is denoted R ·m.

DEFINITION 5.7.5. We say that an R-module is finitely generated if it has a finite set of
generators.

DEFINITION 5.7.6. We say that an R-module is cyclic if it can be generated by a single
element.

EXAMPLE 5.7.7. A cyclic R-submodule of R is just a principal left ideal.

We can define direct sums and direct products of modules.

DEFINITION 5.7.8. Let (Mi)i∈I be a collection of left modules over a ring R.
a. The direct product ∏i∈I Mi is the R-module that is the direct product of the abelian groups

Mi together with the left R-multiplication r · (mi)i∈I = (rmi)i∈I for r ∈ R and mi ∈Mi for all i ∈ I.

b. The direct sum
⊕

i∈I Mi is the R-module that is the direct sum of the abelian groups Mi
together with the left R-multiplication r · (mi)i∈I = (rmi)i∈I for r ∈ R and mi ∈ Mi for all i ∈ I
with all but finitely many mi = 0.

REMARK 5.7.9. If I is a finite set, then the canonical injection⊕
i∈I

Mi→∏
i∈I

Mi

is an isomorphism. In this case, the two concepts are often used interchangeably.

NOTATION 5.7.10. A direct sum (resp., product) of two R-modules M and N is denoted
M⊕N.
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DEFINITION 5.7.11. We say that an R-submodule A of an R-module B is a direct summand
of C if there exists an R-module C such that B = A⊕C. In this case, C is called a complement to
A in B.

DEFINITION 5.7.12. Let R be a ring.
a. An R-module M is free on a subset X of M if for any R-module N and function φ̄ : X→N of

elements of N, there exists a unique R-module homomorphism φ : M→ N such that φ(x) = φ̄(x)
for all x ∈ X .

b. A basis of an R-module M is a subset of M on which it is free.

REMARK 5.7.13. An abelian group A is free on a set X if and only if it is a free Z-module on
X , as follows from Proposition 4.4.11.

In fact, we have the following alternative definition of a free R-module. The proof is nearly
identical to Proposition 4.4.11, so omitted.

PROPOSITION 5.7.14. An R-module M is free on a basis X if and only if the set X generates
M and, for every n≥ 1 and x1,x2, . . . ,xn ∈ X, the equality

n

∑
i=1

cixi = 0

for some c1,c2, . . . ,cn ∈ R implies that ci = 0 for all i.

REMARK 5.7.15. We might refer to the property that a set X generates an R-module M as
saying that M is the R-span of X . The property that ∑

n
i=1 cixi = 0 implies ci = 0, where ci ∈ R

and xi ∈ X for 1≤ i≤ n and some n≥ 1 can be referred to as saying that the set X is R-linearly
independent.

COROLLARY 5.7.16. For any set X, the R-module
⊕

x∈X R is free on the standard basis
{ex | x ∈ X}, where ex for x ∈ X is the element which is nonzero only in its x-coordinate, in which
it is 1.

PROOF. The ex span
⊕

x∈X R by its definition and are clearly R-linearly independent. �

COROLLARY 5.7.17. Every R-module is a quotient of a free R-module.

PROOF. Let M be an R-module, and choose a generating set X of M (e.g., M itself). Take the
unique R-module homomorphism

ψ :
⊕
x∈X

R→M

which satisfies ψ(ex) = x for all x ∈ X . It is onto as X generates M. �

Noting Corollary 5.5.26, we also have the following.

COROLLARY 5.7.18. Every vector space over a field F is a free F-module.

The following is also a consequence of the universal property. Though we restrict to the finite
case, it can be improved to a statement on cardinality.
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THEOREM 5.7.19. Let R be a commutative ring. A free module M on a set X is isomorphic
to a free module N on a set Y if and only if X and Y have the same cardinality.

PROOF. If X and Y have the same cardinality, then any bijection f : X→Y gives an injection
X → N which extends uniquely to a homomorphism φ : M → N. Similarly, the inverse of f
extends uniquely to a homomorphism ψ : N → M, and ψ ◦ φ (resp., φ ◦ψ) is then the unique
extension to a homomorphism of the inclusion X → M (resp., Y → N), therefore the identity.
That is, φ and ψ are inverse isomorphisms.

For the converse, we first suppose that Y is infinite and that there is an isomorphism M→ N.
Let B denote the image of X in N, which is then necessarily an R-basis of N. Each element y ∈Y
is contained in the span of a finite subset By of B. The union B′ of these sets By spans Y . For any
v ∈ B−B′, the set B′∪{v} is R-linearly dependent, which cannot happen as B is a basis. Thus,
B = B′. Now, the cardinality |B| of B is at most the cardinality of the disjoint union of the sets By
for y ∈ Y , each of which is finite. In particular, we have

|X |= |B| ≤ |Y ×Z|= |Y |,
the latter equality holding as Y is infinite. If X is also infinite, then by reversing the roles of X
and Y , this forces |X |= |Y |.

Finally, suppose that Y is finite, without loss of generality. Let m be a maximal ideal of R.
Consider the field F = R/m, and observe that

M/mM ∼=

(⊕
x∈X

R

)
/m

(⊕
x∈X

R

)
∼=
⊕
x∈X

F,

and similarly for Y . An isomorphism M ∼−→ N induces an isomorphism of F-vector spaces
M/mM ∼−→ N/mN, which by the above isomorphisms have bases of cardinality |X | and |Y |
respectively. Since Y is finite, Theorem 5.5.28 tells us that X must be finite of order |Y |. �

The following is immediate.

COROLLARY 5.7.20. Let R be a commutative ring, and let M be a free R-module on a set of
n elements. Then every basis of M has n elements.

By Theorem 5.7.22, we may make the following definition.

DEFINITION 5.7.21. The rank of a free module M over a commutative ring R is the unique
n≥ 0 such that M ∼= Rn if it exists. Otherwise, M is said to have infinite rank.

For an integral domain, we can do somewhat better with a bit of work. In fact, the following
result does not require this assumption, but the proof we give does.

THEOREM 5.7.22. Let R be an integral domain. Let M be a free R-module on a set of n
elements, and let Y be a subset of M. Then:

i. if Y generates M, then Y has at least n elements,

ii. if Y is R-linearly independent, then Y has at most n elements, and

iii. Y is a basis if and only if it generates M and has exactly n elements.
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Moreover, a free module on an infinite set cannot be generated by a finite set of elements.

PROOF. Suppose that M is free on n elements. A choice of basis defines an isomorphism
M ∼−→ Rn of R-modules, so we may assume that M = Rn. Note that Rn is contained in the Q(R)-
module Q(R)n via the canonical inclusion, and any generating set Y of Rn spans Q(R)n. But by
Theorems 5.5.28 and 5.5.27, this forces Y to have at least n elements. If Y has n elements, then
Y would similarly be a basis of Q(R)n. So, if we had ∑

n
i=1 ciyi = 0 for some ci ∈ R and distinct

yi ∈ Y , then each ci = 0, which means that Y is an R-basis of Rn.
On the other hand, if Y has more than n elements, then by Theorem 5.5.25, the set Y cannot

be linearly independent in Q(R)n. That is, there exist αi ∈Q(R)n and distinct yi ∈Y for 1≤ i≤m
and m≥ 1 with ∑

m
i=1 αiyi = 0 and not all αi = 0. For each i, write αi = cid−1

i with ci,di ∈ R and
di 6= 0. Taking d to be the product of the di, we then have ai = dαi ∈ R and not all ai = 0. Since
∑

m
i=1 aiyi = 0, it follows that Y is not a basis.

Finally, if N is a free module on an infinite set X , then N ∼=
⊕

x∈X R, and so we take N to be
the latter module. We then have that

⊕
x∈X Q(R) is a Q(R)-vector space with an infinite basis.

But then Theorem 5.5.28 tells us that every basis is infinite, which by Theorem 5.5.27 tells us
that a finite set cannot span. �

REMARK 5.7.23. The full analogues of Theorems 5.5.25 and 5.5.27 do not hold for modules
over arbitrary rings, over even abelian groups. That is, take the free Z-module Z. The set {2}
does not span it and is not contained in a basis of Z, and the set {2,3} does span it and does not
contain a basis.

EXAMPLE 5.7.24. The polynomial ring R[x] is a free R-module on the basis {xi | i ∈ Z≥0}.

REMARK 5.7.25. Consider the ideal I = (2,x) of Z[x]. It is not a free Z[x]-module. To
see this, first note that it is not a principal ideal so cannot be generated by a single element.
As I can be generated by the two elements 2 and x, if I were free, then it would follow from
Theorem 5.7.22 that {2,x} would be a basis for I. On the other hand, x · 2− 2 · x = 0, which
would contradict Proposition 5.7.14.

PROPOSITION 5.7.26. Let M be an R-module, and let π : M→ F be a surjective R-module
homomorphism, where F is R-free. Then there exists an injective R-module homomorphism
ι : F →M such that π ◦ ι = idF . Moreover, we have M = ker(π)⊕ ι(F).

PROOF. Let X be an R-basis of F , and for each x ∈ X , choose mx ∈M with π(mx) = x. We
take ι : F →M to be the unique R-module homomorphism with ι(x) = mx for all x ∈ X , which
exists as F is free. Then π ◦ ι(x) = x for all x ∈ X , so π ◦ ι = idF by uniqueness, and ι must be
injective.

Finally, let A = kerπ . Note that any m ∈M satisfies m− ι ◦π(m) ∈ A, so M = A+ ι(F). If
m ∈ A∩ ι(F), then m = ι(n) for some n ∈ F and n = π ◦ ι(n) = π(m) = 0, so m = 0. In other
words, we have M = A⊕ ι(F). �

In particular, every free quotient of an R-module M is isomorphic to a direct summand of M.
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5.8. Matrix representations

We work in this section with (nonzero) homomorphisms of free modules over a ring R. Most
of the time, the case of interest is that of linear transformations of vector spaces over fields, but
there is no additional restriction caused by working is full generality.

LEMMA 5.8.1. Let R be a ring. Let A ∈Mmn(R) be a matrix for some m,n≥ 1. Then there is
a unique R-module homomorphism T : Rn→ Rm satisfying T (v) = Av for all v ∈ Rn, where Av is
matrix multiplication, viewing elements of Rm and Rn as column vectors.

PROOF. Define T (e j) = ∑
m
i=1 ai j fi, where e j (resp., fi) is the jth (resp., ith) standard basis

element of Rn (resp., Rm). If v = ∑
n
j=1 c je j for some c j ∈ F with 1≤ j ≤ n, then

T (v) =
n

∑
j=1

c jT (e j) =
m

∑
i=1

( n

∑
j=1

ai jc j

)
fi = Av.

The uniqueness follows from the fact that Rn is free, so any R-module homomorphism from it is
determined by its values on a basis �

DEFINITION 5.8.2. An ordered basis is a basis of a free R-module together with a total
ordering on the basis.

REMARK 5.8.3. We refer to a finite (ordered) basis on a free R-module as a set {v1,v2, . . . ,vn}
and take this implicitly to mean that the set has cardinality n and that the basis is ordered in the
listed order (i.e., by the ordering vi ≤ vi+1 for all 1≤ i < n).

EXAMPLE 5.8.4. The standard basis {e1,e2, . . . ,en} on Rn is ordered in the order of positions
of the nonzero coordinate of its elements.

NOTATION 5.8.5. If B = {v1,v2, . . . ,vn} is an ordered basis of a free R-module V , then we
let ϕB : Rn→V denote the R-module isomorphism satisfying ϕB(ei) = vi for all i.

Given ordered bases of free R-modules V and W , an R-module homomorphism T : V →W
can be described by a matrix.

DEFINITION 5.8.6. Let V and W be free modules over a ring R with ordered bases B =
{v1,v2, . . . ,vn} and C = {w1,w2, . . . ,wm}, respectively. Let T : V →W be an R-module homo-
morphism. We say that a matrix A = (ai j) ∈ Mnm(R) represents T with respect to the bases B
and C if

T (v j) =
m

∑
i=1

ai jwi

for all 1≤ j ≤ n.

REMARK 5.8.7. Given ordered bases B= {v1, . . . ,vn} of a free module V and C = {w1, . . . ,wm}
of a free module W , the composition

ϕ
−1
C ◦T ◦ϕB : Rn ϕB−→V T−→W

ϕ
−1
C−−→ Rm,

is given by multiplication by a matrix A by Lemma 5.8.1. This A is the matrix representing T
with respect to B and C.
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TERMINOLOGY 5.8.8. Let V be a free R-module with finite basis B, and let T : V → V be
an R-module homomorphism. We say say that a matrix A represents T with respect to B if A
represents T with respect to B and B. If V = Rn and B is the standard basis, we simply say that A
represents T .

LEMMA 5.8.9. Let T ′ : U → V and T : V →W be homomorphisms of finite rank free R-
modules. Let B, C, and D be bases of U, V , and W, respectively. Suppose that A′ represents T ′

with respect to B and C and that A represents T with respect to C and D. Then AA′ represents
T ◦T ′ : U →W with respect to B and D.

PROOF. We have that A represents ϕ
−1
D ◦ T ◦ϕC and A′ represents ϕ

−1
C ◦ T ′ ◦ϕB. In other

words, the maps are left multiplication by the corresponding matrices. The map

ϕ
−1
D ◦T ◦T ′ ◦ϕB = (ϕ−1

D ◦T ◦ϕC)◦ (ϕ−1
C ◦T ′ ◦ϕB),

is then left multiplication by AA′, which is to say that it is represented by AA′. �

DEFINITION 5.8.10. Let B = {v1, . . . ,vn} and B′ = {v′1, . . . ,v′n} be ordered bases of a free
R-module V . The change-of-basis matrix from B to B′ is the matrix QB,B′ = (qi j) that represents
the R-module homomorphism TB,B′ : V →V with TB,B′(vi) = v′i for 1≤ i≤ n with respect to B.

REMARK 5.8.11. If v′j = ∑
n
i=1 qi jvi for all i, then the change-of-basis matrix QB,B′ of Defini-

tion 5.8.10 is the matrix (qi j). It is invertible, and QB′,B = Q−1
B,B′ .

REMARK 5.8.12. Let V be free of rank n with bases B and B′. By definition, the change-
of-basis matrix QB,B′ represents ϕ

−1
B ◦ TB,B′ ◦ ϕB. On the other hand, we also have that that

ϕB′ = TB,B′ ◦ϕB. Thus, see that

ϕ
−1
B ◦ϕB′ = ϕ

−1
B ◦TB,B′ ◦ϕB,

is represented by QB,B′ .

THEOREM 5.8.13 (Change of basis theorem). Let T : V →W be a linear transformation of
free R-modules of finite rank. Let B and B′ be ordered bases of V and C and C′ be ordered bases
of W. If A is the matrix representing T with respect to B and C, then Q−1

C,C′AQB,B′ is the matrix
representing T with respect to B′ and C′.

PROOF. We have that A represents ϕ
−1
C ◦T ◦ϕB, and we wish to compute the matrix repre-

senting ϕ
−1
C′ ◦T ◦ϕB′ . We have

ϕ
−1
C′ ◦T ◦ϕB′ = (ϕ−1

C′ ◦ϕC)◦ (ϕ−1
C ◦T ◦ϕB)◦ (ϕ−1

B ◦ϕB′),

and these three matrices are represented by Q−1
C,C′ , A, and QB,B′ , respectively. �


