
 

 
 

SCHOOL OF SCIENCE AND HUMANITIES  

DEPARTMENT OF MATHEMATICS 

UNIT – I  

DIRECT AND ITERATIVE METHODS 
 

 

Gauss Elimination method 

 

To solve the system of equation represented by matrix form AX=B, A is a square matrix 

of order ‘n’ and X and B are column matrices with n elements. The coefficient matrix is 

reduced to upper triangular matrix by means linear transformation thereby the values of the 

variable are found one after other by back substitution methods. 

We consider the system of n linear equations in n unknowns 

a11x1 +a12x2 + …. + a1nxn = b1 

a21x1 +a22x2 + …. + a2nxn = b2 

⁞ 

an1x1 +an2x2 + …. + annxn = bn 

There are two steps in the solution viz., the elimination of unknowns and back substitution 

 

Problem 1. Solve the following system of equations using Gaussian elimination. 

x1 + 3x2 − 5x3 = 2 
3x1 + 11x2 − 9x3 = 4 
−x1 + x2 + 6x3 = 5 

 
Solution : 

An augmented matrix is given by 
 

We use the boxed element to eliminate any non-zeros below it. 

This involves the following row operations 

 

And the next step is to use the 2 to eliminate the non-zero below it. This requires the final row 



 

operation 
 

This is the augmented form for an upper triangular system, writing the system in extended form 

we 



 

 

 

 

This gives x3 = -1; x2 = 2; x1 = -9. 

 
Problem 2: Solve the system of equation   2x + 4y +6z = 22 

3x + 8y + 5x = 27 

-x + y +2z = 2 

Solution 

𝑹𝟏 ‘= 𝟏/𝟐𝑹1 

 

𝑹𝟐’ = 𝑹𝟐 – 𝟑𝑹1 ; 𝑹𝟑’ = 𝑹𝟑 + 𝑹1 

𝑹𝟐’ = 𝟏/𝟐𝑹2 ; 𝑹𝟏’ = 𝑹𝟏 – 𝟐𝑹2 ; 𝑹𝟑’ = 𝑹𝟑 − 𝟑𝑹𝟐 

 
𝑹𝟑’ = 𝟏/𝟏𝟏𝑹1 ; 𝑹𝟏’ = 𝑹𝟏 – 𝟕𝑹3 ; 𝑹𝟏’ = 𝑹𝟏 – 𝟕𝑹3 ; 𝑹𝟐’ = 𝑹𝟐 + 𝟐𝑹3 

Thus the solution to the system is x = 3, y = 1, z = 2. 

 
Problem 3. Using Gauss-Elimination method solve 2x + y + 4z = 12, 8x – 3y + 2z = 20, 

4x + 11y – z = 33. 

 

Solution: Given system of equations in Matrix form AX = B 

Consider the Augmented Matrix 

 
 

 

 



 

 

 
 

-27Z=-27, Z=1, -7Y-14Z=-28, Y = 2, 2X + Y + 4Z =12, X=3 

X = 3, Y = 2, Z = 1 

 

Problem 4. Solve 2x + y + 4z = 4, x – 3y – z = -5, 3x – 2y + 2z = -1 by Gauss Elimination 

method 

 

Solution: Given system of equations in Matrix form AX = B 

Consider the Augmented Matrix 

 
 

 

By back substitution methods -2z = 0 , z = 0, -7y-6z=-14, y = 2, 2x + y + 4z = 12 , x=1 

X = 1, Y = 2, Z = 0 
 

Problem 5. Solve x + 2y + 3z = 6, 2x +4y + z = 7, 3x + 2y + 9z = 14 by Gauss Elimination 

method 

 

Solution: Given system of equations in Matrix form AX = B 

Consider the Augmented Matrix 

 
 

 

By back substitution methods -5z = -5 , z = 1, -4y= -4, y = 1, x +2 y + 3z = 6 , x=1 

X = 1, Y = 1, Z = 1 



 

 

ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS 

 
As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, a 

solution is obtained after a single application of Gaussian elimination. Once a “solution” has 

been obtained, Gaussian elimination offers no method of refinement. The lack of refinements 

can be a problem because, as the previous section shows, Gaussian elimination is sensitive to 

rounding error. Numerical techniques more commonly involve an iterative method. For 

example, in calculus you probably studied Newton’s iterative method for approximating the 

zeros of a differentiable function. In this section you will look at two iterative methods for 

approximating the solution of a system of n linear equations in n variables. 

 
 Gauss-Jacobi method 

 
The Jacobi Method The first iterative technique is called the Jacobi method, after Carl Gustav 
Jacob Jacobi (1804–1851). This method makes two assumptions: (1) that the system given by 

a11x1 +a12x2 + …. + a1nxn = b1 

a21x1 +a22x2 + …. + a2nxn = b2 

⁞ 

an1x1 +an2x2 + …. + annxn = bn 

has a unique solution and (2) that the coefficient matrix A has no zeros on its main diagonal. If 

any of the diagonal entries are zero, then rows or columns must be interchanged to obtain a 

coefficient matrix that has nonzero entries on the main diagonal. A matrix A is diagonally 

dominated if, in each row, the absolute value of the entry on the diagonal is greater than the 

sum of the absolute values of the other entries. More compactly, A is diagonally dominated if 

To begin the Jacobi method, solve the first equation for the second equation for and so on, as 

follows 

x1 = 1/ a11[b1 - a12x2 - … - a1nxn] 

x2 =1/ a22[ b2 - a21x1 - … - a2nxn] 

⁞ 

xn =1/ann[ bn - an1x1 - an2x2 - …] 

Then make an initial approximation of the solution, Initial approximation and substitute these 

values of into the right-hand side of the rewritten equations to obtain the first approximation. 

After this procedure has been completed, one iteration has been performed. In the same way, 

the second approximation is formed by substituting the first approximation’s x-values into the 

right-hand side of the rewritten equations. By repeated iterations, you will form a sequence of 

approximations that often converges to the actual solution. 

 
Problem 1:Use the Jacobi method to approximate the solution of the following system of linear 

equations. 

Solution 

To begin, write the system in the form 



 

 
 

 

Let x1 = 0, x2 = 0, x3 = 0 

as a convenient initial approximation. So, the first approximation is 

 
Continuing this procedure, you obtain the sequence of approximations shown in Table 

 
n 0 1 2 3 4 5 6 7 

x1 0.000 -0.200 0.146 0.192 0.181 0.185 0.186 0.186 

x2 0.000 0.222 0.203 0.328 0.332 0.329 0.331 0.331 

x3 0.000 -0.429 -0.517 -0.416 -0.421 -0.424 -0.423 -0.423 

 

Because the last two columns in the above table are identical, you can conclude that to three 

significant digits the solution is x1= 0.186 , x2 = 0.331 , x3 = -0.423. 

 
Problem 2. Solve the system of equation using Gauss-Jacobi method 4x-10y+3z= - 3, 

x+6y+10z= - 3, 10x-5y-2z = 3 

 
Sol. Given equation can be rearranged such that they are diagonally dominant as follows. 

10x-5y-2z = 3 →x = 1/10[3+5y+2z] 

4x-10y+3z= - 3 →y= -1/10[3+4x+3z] 

x+6y+10z= - 3 →z= -1/10[3x+x+6y] 

 

By iteration process, the values are tabulated as follows 

 

Iteration x = 1/10[3+5y+2z] y= -1/10[3+4x+3z] z= -1/10[3x+x+6y] 

0 0 0 0 

1 0.3 0.3 -0.3 

2 0.39 0.33 -0.51 

3 0.363 0.303 -0.537 

4 0.344 0.284 -0.518 

5 0.338 0.282 -0.505 



 

 

6 0.34 0.284 -0.503 

7 0.341 0.285 -0.504 

8 0.342 0.285 -0.505 

9 0.342 0.285 -0.505 

 

Solution is x = 0.342,  y = 0.285, z = -0.505 
 

GAUSS SEIDEL METHOD 

 
Intuitively, the Gauss-Seidel method seems more natural than the Jacobi method. If the solution 

is converging and updated information is available for some of the variables, surely it makes 

sense to use that information! From a programming point of view, the Gauss-Seidel method is 

definitely more convenient, since the old value of a variable can be overwritten as soon as a 

new value becomes available. With the Jacobi method, the values of all variables from the 

previous iteration need to be retained throughout the current iteration, which means that twice 

as much as storage is needed. On the other hand, the Jacobi method is perfectly suited to 

parallel computation, whereas the Gauss-Seidel method is not. Because the Jacobi method 

updates or ‘displaces’ all of the variables at the same time (at the end of each iteration) it is 

often called the method of simultaneous displacements. The Gauss-Seidel method updates the 

variables one by one (during each iteration) so its corresponding name is the method of 

successive displacements. 

 
Problem 1 

Solve the following system of equations by Gauss – Seidel method 

28x +4y –z = 32 

x + 3y + 10z = 24 

2x + 17y + 4z = 35 

 

Solution: Since the diagonal element in given system are not dominant, we rearrange the 

equation as follows 

28x +4y – z = 32 

2x + 17y + 4z = 35 

x + 3y + 10z = 24 

Hence 

x =1/28[32 – 4y +z] 

y = 1/17[35-2x -4z] 

z = 1/10[24 –x – 3y] 

Setting y = 0 and z = 0, we get, 

First iteration 

x(1) = 1/28 [ 32- 4(0) +(0)] = 1.1429 

y(1) = 1/17 [ 35 – 2(1.1429) -4(0)] = 1.9244 

z(1) = 1/10 [ 24 – 1.1429 – 3(1.9244)] = 1.8084 

Second Iteration 

x(2) = 1/28 [ 32- 4(1.9244) +(1.8084)] = 0.9325 



 

 

y(2) = 1/17 [ 35 – 2(0.9325) -4(1.8084) ] = 1.5236 

z(2) = 1/10 [ 24 – 0.9325 – 3(1.5236)] = 1.8497 

Third Iteration 

x(3) = 1/28 [ 32- 4(1.5236) +(1.8497)] = 0.9913 

y(3) = 1/17 [ 35 – 2(0.9913) -4(1.8497)] = 1.5070 

z(3) = 1/10 [ 24 –0.9913– 3(1.5070)] = 1.8488 

Fourth Iteration 

x(4) = 1/28 [ 32- 4(1.5070 ) +(1.8488)] = 0.9936 

y(4) = 1/17 [ 35 – 2(0.9936) -4(1.8488)] = 1.5069 

z(4) = 1/10 [ 24 – 0.9936 – 3(1.5069)] = 1.8486 

Fifth Iteration 

x(5) = 1/28 [ 32- 4(1.5069) +(1.8486)] = 0.9936 

y(5) = 1/17 [ 35 – 2(0.9936) -4(1.8486)] = 1.5069 

z(5) = 1/10 [ 24 – 0.9936 – 3(1.5069)] =1.8486 

Since the values of x, y, z are same in the 4th and 5th Iteration, we stop the procedure here. 

Hence x = 0.9936, y = 1.5069, z = 1.8486. 

 
Problem 2. Solve the following system of equation by Gauss-Seidel method 4x+2y+z=14, x+5y- 

z=10, x+y+8z=20 

 

Here the diagonal elements are dominant. Hence we apply Gauss-Seidel method. 

Iteration X=1/4(14-2y-z) Y=1/5(10-x+z) Z=1/8(20-x-y) 

0 - 0 0 

1 3.5 1.3 1.9 

2 2.375 1.905 1.965 

3 2.05625 1.98175 1.99525 

4 2.0103125 1.9970 1.9991 

5 2.001734 1.99947 1.9998 

6 2.00030 1.99991 1.99997 

 

The values of solution correct to 4 decimal places are x=2.0000, y = 1.9999, z= 1.9999 

 
 

1.  Solve the system of equations using Gauss-Jacobi method, 8x-3y+2z=20, 

4x+11y-z=33, 6x+3y+12z=35 

Ans: x=3.0168, y=1.9858, z=0.9117 

 

2.  Solve by Gauss-Seidel method x+y+54z=110, 27x+6y-z=85,6x+15y+2z=72 
Ans: x=2.425, y = 3.573, z= 1.926 



 

 

Power method: To find the numerically largest eigenvalue called dominant eigenvalue and the 

corresponding eigen vector of a square matrix A. 
 

1.  Find the numerically largest eigenvalue of A =     by power 

method. 
 

Soln.: Let X0= 
 

 

Then Y1 = AX0= 
 

 

Y2 = AX1 = 
 

 

Y3 = AX2 = 
 

 

Y4 = AX3 = 
 

 

Y5 = AX4 = 
 

 

Y6 = AX5 = 
 

 

Y7 = AX6 = 
 

 

Y8 = AX7 = 
 

 

Y9 = AX8 = 
 

 

Y10= AX9 = 
 

 

Y11 =  AX10 = 
 
 

Convergence has occurred. The dominant eigen value is 6 and the corresponding eigen 

vector 
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NUMERICAL DIFFERENTIATION AND INTEGRATION 

 
 

2. Interpolation: Interpolation is the process of finding the intermediate values of a function 

(which is not explicitly known) from a set of values at specific points given in a tabulated form. 

The process of computing y corresponding to x where xi < x < xi+1 , I = 0, 1, 2, ….. (n-1), is 

interpolation. 

 
Extrapolation: If x < x0 or x > xn then the process is called extrapolation 

 
: Lagrange’s Interpolation Formula for Unequal intervals 

 
If y0, y1, y2, .................. Yn are the values of a function y=f(x) corresponding to the arguments x0, x1, 

x2, .................. Xn which are not necessarily equally spaced then 

Y = f(x) = y0 + ….+  yn 

Problem 1. Determine by Lagrange’s method the percentage number of patients over 40 years 

using the following data 

 
Age over x 

years 

30 x0 35 x1 45 x2 55 x3 

% number y of 

patients 

148 y0 96 y1 68 y2 34 y3 

 

Soln. By Lagrange’s polynomial 

Y = f(x) =  y0 +………… 

Y = 

 

2. Apply Lagrange’s interpolation formula to find f(x) if f(1) = 2, f(2) = 4, f(3) = 8, f(4) = 16 

Y = =74.7 



 

and f(7) =128. Hence find f(5) and f(6). 

 
Soln. Given data 

X 1 
x0 

2 
x1 

3 
x2 

4 
x3 

7 
x4 

Y= f(x) 2 y0 4 
y1 

8 
y2 

16 
y3 

128 
y4 

 
By Lagrange’s polynomial Y = f(x) = y0 +………… 



 

12 1 3 

 

f(x) = 

 

f(x) = 1/90 [11x4 – 80x3 + 295x2 – 310x + 264] 

f(5) = 32.93 and f(6) = 66.67 

 
Problem 3: Determine the value of     from the following data using Lagrange’s 

Interpolation 
 

 -1 0 2 3 
 

 -8 3 1 12 

 

Solution: given 
 

 x0  1 x1  0 x2  3 xn  3 
 

 y0  8 y1  3 y2  1 yn  12 

Since the intervals ere not uniform we cannot apply Newton’s interpolation. 

Hence by Lagrange’s interpolation for unequal intervals 

y(x)  
(x

  x1 )(x  x2 )(x  xn ) y
  

(x  x0 )(x  x2 )(x  xn ) y
 

  

(x  x )(x  x )(x  x )   0 (x  x )(x  x )(x  x ) 1 
0 1 0 2 0 n 1 0 1 2 1 n 

 
(x  x0 )(x  x1 )(x  xn ) y

 
 

(x  x0 )(x  x1 )(x  xn1 ) y
 

(x  x )(x  x )(x  x ) 2 (x  x )(x  x )(x  x ) n 
2 0 2 1 2 n n 0 n 1 n n1 

y(x)  
(x

  0)(x  2)(x  3) 
(8)  

(x 1)(x  2)(x  3) 
(3)

 
  

(1 0)(1 2)(1 3) (0 1)(0  2)(0  3) 

 
(x 1)(x  0)(x  3) 

(1)  
(x 1)(x  0)(x 

 2) 
(12)    (1) 

  

(2 1)(2  0)(2  3) (3 1)(3  0)(3  2) 

To compute  put in (1), we get 

y(x  1)  (1 0)(1 2)(1 3) 
(8)  

(11)(1 2)(1  3) 
(3)

 
  

(1 0)(1 2)(1 3) (0 1)(0  2)(0  3) 

 
(11)(1 0)(1 3) (1)  (11)(1 0)(1 2) 

(12)
 

 

(2 1)(2  0)(2  3) (3 1)(3  0)(3  2) 

 y(x  1)  2 

To find polynomial , from (1) we get 

y(x)  
2 

(x3  5x2  6x)  
1 

(x3  4x2  x  6) 
3 2 

 
1 

(x3  2x2  3x)  
1 

(x3  x2  2x)    (1) 
6 1 

y(x)  x3 ( 
2 
 

1 
 

1 
1)  x2 ( 

10 
 
4 

 
2 
1)  x (    2)  ( 

6
) 

3 2 6 3 2 6 3 2 6 2 

 y(x)  2x3  6x2  3x  3      (2) 

To compute  put in (2), we get y(x  1)  2  6  3  3  2 



 

 

Inverse interpolation 

For   a   given   set   of   values   of   and ,   the   process   of   finding    given

 is called Inverse interpolation 

x( y)  
( y

  y1 )( y  y2 )  ( y  yn ) x
  

( y  y0 )( y  y2 )  ( y  yn ) x
 

  

( y  y )( y  y )  ( y  y ) 0 ( y  y )( y  y )  ( y  y ) 1 
0 1 0 2 0 n 1 0 1 2 1 n 

 
( y  y0 )( y  y1)  ( y  yn ) x

      
( y

  y0 )( y  y1)  ( y  yn1 ) x
 

( y  y )( y  y )  ( y  y ) 2 ( y  y )( y  y )  ( y  y ) n 
2 0 2 1 2 n n 0 n 1 n n1 

Problem 4: Estimate the value of 

 ,   ,   , 

from the following data, 

Solution: given 
 

 x0  3 x1  5 x2  7 x3  9 xn  11 
 

 y0  6 y1  24 y2  58 y3  108 yn  174 

 

By applying Lagrange’s inverse interpolation 

x( y)  
( y

  y1 )( y  y2 )( y  y3 )( y  yn ) x
  

( y  y0 )( y  y2 )( y  y3 )( y  yn ) x
 

  

( y  x )( y  y )( y  y )( y  y ) 0 ( y  y )( y  y )( y  y )( y  y ) 1 
0 1 0 2 0 3 0 n 1 0 1 2 1 3 1 n 

 
( y  y0 )( y  y1 )( y  y3 )( y  yn ) x

 
 

( y  y0 )( y  y1 )( y  y2 )( y  yn ) x
 

  

( y  y )( y  y )( y  y )( y  y ) 2 ( y  y )( y  y )( y  y )( y  y ) 3 
2 0 2 1 2 3 2 n 3 0 3 1 3 2 3 n 

 
( y  y0 )( y  y1 )( y  y2 )( y  yn1 ) x

 

( yn  y0 )( yn  y1 )( yn  y2 )( y n  yn1 ) 

 x(100)  
(100  24)(100  58)(100 108)(100 174) 

(3)  
(100  6)(100  58)(100 108)(100 174) 

(5)
 

(6  24)(6  58)(6 108)(6 174) (24  6)(24  58)(24 108)(24 174) 

 
(100  6)(100  24)(100 108)(100 174) 

(7)  
(100  6)(100  24)(100  58)(100 174) 

(9)
 

(58  6)(58  24)(58 108)(58 174) (108  6)(108  24)(108  58)(108 174) 

 
(100  6)(100  24)(100  58)(100 108) 

(11)
 

(174  6)(174  24)(174  58)(174 108) 

 x(100)  0.35344 1.51547  2.88703  7.06759  0.13686  8.65573 
 

 Gregory Newton’s Interpolation: 

 
 Newton’s Forward Interpolation for equal intervals: 

 
If y0, y1, y2, .................. Yn are the values of a function y=f(x) corresponding to the arguments x0, x1, 

x2,…………. Xn which are equally spaced where xi – xi-1 = h, for i = 1 to n then 

   where u =  

 
Newton’s Backward Interpolation for equal intervals: 

given 

n 



 

 

If y0, y1, y2, .................. Yn are the values of a function y=f(x) corresponding to the arguments x0, x1, 

x2,…………. Xn which are equally spaced where xi – xi-1 = h, for i = 1 to n then 

   where v =  

 
Remark: 

(i) The process of finding the values of     outside the interval    is called 

extrapolation 

(ii) The interpolating polynomial is a function     through the data points 

   i=0,12,..n 

(iii) Gregory-Newton’s forward interpolation formula (a) can be applicable if the interval 

difference    is constant and used to interpolate the value of   nearer to beginning 

value of the data set 

(iv) If  is the exact curve and   is the interpolating polynomial then 

the 

Error in polynomial interpolation is                given 

hn1 y(n1) (c) 
Error 

by (n 1)! 
(x  x0 )(x  x1 )  (x  xn ): x0  x  xn , x0  c  xn    (c) 

(v) Error in Newton’s forward interpolation is 

hn1 y(n1) (c) 
Error 

(n 1)! 
u(u 1)(u  2)  (u  n): x0  x  xn , x0  c  xn    (d ) 

 

(vi) Error in Newton’s backward interpolation is 

hn1 y(n1) (c) 
Error 

(n 1)! 
v(v 1)(v  2)  (v  n): x0  x  xn , x0  c  xn    (e) 

 

 

Problem 1: If y(10) = 35.3, y(15) = 32.4, y(20) = 29.2, y(25) = 26.1, y(30) = 23.2 and y(35) = 

20.5, find y(12) using Newton’s forward interpolation formula. 

Solution: The difference table is 

 

 

 

 

 

 

 

 
 

By Newton’s forward interpolation formula 

where u = 

X Y 
 

 
 

 y 
 

 

 

 

10 35.3 - 2.9 

- 3.2 

- 3.1 

- 2.9 

- 2.7 

 

- 0.3 

0.1 

0.2 

0.2 

 
 

0.4 

0.1 

0.1 

 
 

- 0.3 

- 0.1 

 

 
 

0.2 

15 32.4 

20 29.2 

25 26.1 

30 23.2 

35 20.5 

 



 

 

 
 

 

 

Problem 2. The population of a town in the census is as given in the data. Estimate the 

population in the year 1996 using Newton’s (i) forward interpolation (ii) backward 

interpolation formula. 

 
Year(x) 1961 1971 1981 1991 2001 

Population 

(in 1000’s) 

46 66 81 93 101 

 

Solution: The difference table is 

X Y 
 

 
 

 y 
 

 

1961 46 20 

15 

12 

8 

 
-5 

-3 

-4 

 
 

2 

-1 

 
 

-3 

1971 66 

1981 81 

1991 93 

2001 101 

 

By Newton’s forward interpolation formula 

 

 
where u =  = 3.5 

 

 

 
 

 

 
By Newton’s backward interpolation formula 

 

 

where v = 



 

 
 

6796 
 

Problem 3. Find the interpolating polynomial for y from the following data using both 

Newton’s forward and backward formula 

 
X 4 6 8 10 

Y 1 3 8 16 

 

Solution: The difference table is 

X Y 
 

 
 

 y 

4 1  
2 

5 

8 

 
 

3 

3 

 
 

0 

6 3 

8 8 

10 16 

 

By Newton’s forward interpolation formula 

 
where u =  

 

 
 

which is the required interpolating polynomial for y. 

 
By Newton’s backward interpolation formula 

 

where v = 
 

, which is the required 

interpolating polynomial for y. 
 

Problem4: Estimate the number of students whose weight is between 60 lbs and 70 lbs from the 

following data 

 
Weight(lbs) 0-40 40-60 60-80 80-100 100-120 

No.Students 250 120 100 70 50 

 

Solution: let -Weight less than 40 lbs, -Number of Students, 

 Here all the intervals are equal with h=x1- 
x0=20 we apply Newton interpolation 



 

 

Difference Table: 
 

 
 

 

 

 
 

 

 

 

 

 

40 250  y0 y1  y0  120  y0    

60 370  y1 y2  y1  100  y1 20  2 y 
0 

10  3 y 
0 

 

80 470  y2 y3  y2  70  y2 30  
2 
y 

1 
10  2 y 

n 
20  4 y  4 y 

0 n 

100 540  y3 yn  yn1  50  yn 20  2 y 
n 

  

120 590  yn     

 

Case (i): to find the number of students whose weight less than 60 lbs (  
 

From the difference table the number of students whose weight less than 60 lbs 

(  
 

Case (ii): to find the number of students whose weight less than 70 lbs (  

Since is nearer to we apply Newton’s forward Interpolation 

y 2 y 3 y 4 y 
y(x)  y0   0 u   0 u(u 1)   0 u(u 1)(u  2) 0 u(u 1)(u  2)(u  3)      (1) 1

  2  6 24 

where u  
1 

(x  x )  
1 

(70  40)  
3 
 u 1  

3 
, u  2  

2 
, u  2  

1 
, u  3  

3 
     (2) 

       

h 0 20 2 2 2 2 2 

Substituting (2) in (1), we get 
y(x  70)  250  

120  3
 

 
  

20  3  1 
 

   

10  3  1 1 20  3  1 
 

       

1  3 
 (  )  (  )(  )  (  )(  )( )  (  )(  )( )( )  423.59 

1 2 2 2   2 6 2   2 2 24  2   2 2 2 

The number of students     whose weight less than 70 lbs (  =424 
 

   = 424-370 = 54 

NUMERICAL DIFFERENTIATION 

 
Consider a set of values (xi, yi), I = 0,1,12,….,n of a function. The process of comuputing the 

derivative of the function y at a particular value of x from the given set of values is called 

Numerical Differentiation. This maybe done by first approximating the function by a suitable 

interpolation formula and then differentiating it as many times as desired. Numerical 

diffentiation can be done for equal and unequal intervals. 

 
Gregory Newton’s Forward Difference Formula for Derivatives: 

 



 

 

 
 

And so on where u = , x is the value at which the derivative needs to be found. X0 is the 

first value of x, h is the common difference in x values. 

At particular case, x = X0, u = 0, then the derivative formula reduced to 

 

 

2.3.2. Gregory Newton’s Backward Difference Formula for Derivatives: 

 

 

And so on where u = , x is the value at which the derivative needs to be found. X0 is the 

first value of x, h is the common difference in x values. 

At particular case, x = X0, u = 0, then the derivative formula reduced to 

 

 

Problem 5: Find the rate of growth of population in the year 1941&1961 from the following 

table 

 
Year 1931 1941 1951 1961 1971 

Population 40.62 60.80 79.95 103.56 132.65 

 

Solution: Here all the intervals are equal with h=x1-x0=10 we apply Newton interpolation 

Difference Table: let -year, -Population 



 





 
 

 
 

 

 

 
 

 

 

 

 

  

 
 

 

 

 
yn 

1931 40.62  y0 y1  y0  20.18  y0    

1941 60.80  y1 y2  y1  19.15  y1 1.03  
2 
y 5.49  

3 
y 

0 0 
 

1951 79.95  y2 y3  y2  23.61  y2 4.46  
2
 y 1.02  2 y 

1 n 
4.47  

4 
y  

4
 

0 

1196 103.56  y3 yn  yn1  20.18  y 5.48  2 
n 

yn  

1971 132.65  yn     

 

Case (i): to find rate of growth of population (  in the year ( 

Since is nearer to we apply Newton’s forwarded formula for derivative 
dy 1  2 y 3 y 4 y 

y' (x)   y 
  

 0 (2u 1)  0 (3u2  6u  2)  0 (4u3 18u2  22u  6)     
dx h  

0
 2 6 24 

whereu  
1 

(x  x )  
1 

(19411931)  1 
  

h 0 10 
 y' (x  1941)  

dy 
 

1 
20.18  

1.03 
(2 1)  

5.49 
(3  6  2)  

4.47 
(4 18  22  6)     

dx 10 



2 6 24 

 

The rate of growth of population (  in the year ( =          

Case (ii): to find rate of growth of population ( in the year ( 

y' (1941)  2.36425 

Since is nearer to we apply Newton’s backward formula for derivative 
dy 1  2 y 3 y 4 y 

y' (x)   y 
  

 n (2v 1)  n (3v2  6v  2)  n (4v3 18v2  22v  6)     
dx h  

n
 2 6 24 

v  
1 

(x  x )  
1 

(19611971)  1 
  

h n 10 
 y' (x  1961)  

dy 
 

1  
29.09  

5.48 
(2 1)  

1.02 
(3  6  2)  

4.47 
(4 18  22  6)     

dx 10 



2 6 24 

The rate of growth of population ( in the year ( = y' (1961)  2.65525 

 

Problem 6 A rod is rotating in a plane, estimate the angular velocity and angular acceleration of 

the rod at time 6 secs from the following table 



 





 

Time-t(sec) 0 0.2 0.4 0.6 0.8 1.0 

Angle- (radians) 0 0.12 0.49 1.12 2.02 3.20 

 

Solution: Here all the intervals are equal with h=x1-x0=0.2 we apply Newton interpolation 

Difference Table: let - time (sec), -Angle (radians) 

 
 

 
 

 

 

 
 

 

 

 

 

 

0 0  y0 y1  y0  0.12  y0    

 0.12  y1 y2  y1  0.37  y1 0.25  2 y 
0 

0.01  3 y 
0 

 

 0.49  y2 y3  y2  0.63  y2 0.26  2 y 
1 

0.01  3 y 
1 

0  4 y 
0 

 1.12  y3 y4  y3  0.90  y3 0.27  2 y 
2 

0.01  2 y 
n 

0  4 y 
n 

 2.02  y4 yn  yn1  1.18  yn 0.28  2 y 
n 

  

 3.20  yn     

Case (i): to find Angular velocity (  in time ( 

Since is nearer to we apply Newton’s backward formula for derivative 
dy 1  2 y 3 y 4 y 

y' (x)   y 
  

 n (2v 1)  n (3v2  6v  2)  n (4v3 18v2  22v  6)     
dx h  

n
 2 6 24 

v  
1 

(x  x )  
1 

(0.6 1.0)  2 
  

h n 0.2 
y' (x  0.6)  

dy 
   

1 
1.18  

0.28 
(4 1)  

0.01 
(12 12  2) 


   

0 
(4v3 18v2  22v  6)     




dx 0.2 



2 6 24 

 Theangular velocity y' (x  0.6)  3.81665 radian / sec 

Case (ii): to find Angular acceleration (  in time ( 

Since is nearer to we apply Newton’s backward formula for derivative 
d 2 y 1  3 y 4 y 

y'' (x)  
dx2 


2 y 

h2 

 
n 
  n (v 1) n (12v2  36v 1

 24 
 22)     

where v  
1 

(x  x )  
1 

(0.6 1.0)  2 
  

h n 0.2 
 y'' (x  0.6)  

1 
0.28  

0.01 
(2 1)  0 

0.2
2  

1 

y'' (0.6)  6.75 radian / sec2 



 





1 

0 

2 n 

x 

 

 Numerical Integration 

 Trapezoidal rule 
x0 nh 

h 1
 

 y(x)dx  ( y0  yn )  2( y1  y2  y3  y4  ) whereh  (xn  x0 ), n  number of int ervals 
x0 

 Simpson’s rule 

x0 nh 


x0 

y(x)dx  
h 

( y  y )  2( y  y  y  )  4( y  y  y  ) 
3 

0 n 2 4 6 1 3 5 

whereh  
1 

(x  x ), n  number of int ervals 
 

n 
n 0 

 Simpson’s rule 

x0 nh 


x0 

 

y(x)dx 
3h 

( y  y )  2( y  y  y  )  3( y  y  y  y  ) 
8 

0 n 3 6 9 1 2 4 5 

whereh  
1 

(x  x ), n  number of int ervals 
 

n 
n 0 

Remarks: 

1) Geometrical interpretation of is approximated by the sum of area of the 

trapezium 

2) Simpson’s  rule is applicable when number of intervals are multiples of 2 and 

Simpson’s rule is applicable when number of intervals are multiples of 3 

3) The error in trapezoidal rule is  where which is of order 

4) The error in Simpson’s   rule rule is   where which 

is of order  

6 
1
 

 
Problem7: Evaluate 

1 x2 
dx

 
 
using (i) Trapezoidal rule (ii) Simpson’s rule (iii) 

Simpson’s rule and Compare your answer with actual value. 
 

6 
1 

x0 nh 
1
 

Solution: Given 
1 x

2 
dx    

0 

y(x)dx  y(x)  
1 x

2 
,x0  0, x0  nh  6    (1) 

Choose the number of interval (n)=6 so that we can apply all rules 

 
x x0  0 x1  x0  h  1 x2  x1  h  2 x3  3 x4  4 x5  5 xn  6 

y(x)   
1 

1 x2 

1 
 

1 

1 
 

2 

1 
 

5 

1 
 

10 

1 
 

17 

1 
 

26 

1 
 

37 



 





 
        

case(i) Trapezoidal rule 
x0 nh 


x0 

y(x)dx  
h 
( y  y )  2( y  y  y  y  ) 

2 
0 n 1 2 3 4 

6 1 1  1 1 1 1 1 1 
 1 x

2 
dx  

2 
(1 

37 
)  2(     )   1.410799 

0  2 5 10 17 26 

Case (ii) Simpson’s rule 

x0 nh 


x0 

y(x)dx  
h 

( y  y )  2( y  y  y  )  4( y  y  y  ) 
3 

0 n 2 4 6 1 3 5 

6 1 1  1 1 1 1 1 1 

1 x
2 
dx  

3 
(1 

37 
)  2(    )  4(   )   1.36617 

0  5 17 2 10 26 

Case(iii) Simpson’s rule 

x0 nh 


x0 

 

y(x)dx 
3h 

( y  y )  2( y  y  y  )  3( y  y  y  y  ) 
8 

0 n 3 6 9 1 2 4 5 

6 1 3  1 1 1 1 1 1 

1 x
2 
dx  

8 
(1 

37 
)  2( )  3(    )   1.35708 

0 

Comparison 

10 2 5 17 26 

1 
 1 

x6 
1 1 

 

Exact value 
1 x

2 
dx  tan   (x)x0 

 tan   (6)  tan   (0) 1.40565 
 

 

Hence trapezoidal rule gives better approximation than Simpson’s rule.  


sin x dx 

Problem 8: By dividing the range into 10 equal part Determine the value of   0 using (i) 

Trapezoidal rule (ii) Simpson’s   rule (iii) Simpson’s    rule and Compare your answer 

with actual value. 
 

 

 
Solution: Given 



sin x dx 
0 

x0 nh 


x0 

y(x)dx  y(x)  sin x,x0  0, x0  nh   and n  10    (1) 

givennumber of int ervals(n)  10, (1)  h  
1 

(x   x ) 


1 
(  0)  




 

n 
n 0 

10 10 

x x0  0 x  x  h 
 


1 0 
10

 
x  x  h  

2


2 1 
10

 x  
3

3 10 
x   

4
4 10 

x  
5

5 10 

y(x)  sin(x) sin(0) 

 0 
sin( 

 
) 

10 

 0.30901 

sin( 
2 

) 
10 

 0.58779 

sin(
3 

) 
10 

 0.80901 

sin( 
4 

) 
10 

 0.95106 

sin(
5 

) 
10 

 1.0 

0 

6 



 

0 

0 



0 



x0 

 

x  
x   

6
6 10 

x   
7

7 10 
x  

8
8 10 

x   
9

9 10 

xn  

y(x)  sin(x)  
sin( 

6 
) 

10 

 0.95106 

sin( 
7 

) 
10 

 0.80902 

sin(
8 

) 
10 

 0.58779 

sin(
9 

) 
10 

 0.30902 

10
sin(  ) 

10 

 0 

 

Case (i) Trapezoidal rule 
x0 nh 


x0 

y(x)dx  
h 
( y  y )  2( y  y  y  y  ) 

2 
0 n 1 2 3 4 

6 1 1 

 1 x
2 
dx  

2 
(0  0)  2(0.30901 0.58779  0.80901 0.95106 1.0  0.95106  0.80901 0.58779  0.30901) 

6 
1
 

 1 x
2 
dx  1.98352 

Case (ii) Simpson’s rule 

x0 nh 


x0 

y(x)dx  
h 

( y  y )  2( y  y  y  )  4( y  y  y  ) 
3 

0 n 2 4 6 1 3 5 

6 

 sin(x)dx  
30 
(0  0)  2(0.58779  0.95106  0.95106  0.58779)  4(0.30901 0.809011.0  0.80901 0.30901

6 

 sin(x)dx  2.00010 
0 

Case (iii) Simpson’s rule 

x0 nh 


x0 

 

y(x)dx 
3h 

( y  y )  2( y  y  y  )  3( y  y  y  y  ) 
8 

0 n 3 6 9 1 2 4 5 

This rulecannot beapplied sin ce n is not a multipoleof 3 

Comparison 


 sin(x)dx  cos(x)
x   

 cos( )  cos(0)  2.0 

Exact value 0 

Hence, Simpson’s  rule gives better approximation than trapezoidal rule 

 

1. Evaluate the integral   using 2 point and 3 point Gaussian Quadrature Formula 

Solution: Putting , 

2.4.4 Gausian Quadrature Formula: 

I = 

, 



 

 

 

we get 
 

By Gaussian 2-point formula = 

= 
2 


1 
 

2 
 5 

1 


3 3 3 

2 
2 
 5 

3 

=0.4786+0.3083 

I= 0.7869 
 

I  
5 
u   

8 
u   

5 
u 

  

By Gaussian 3-point formula 
9 

1 
9 

2 

5  3  8 
9 

3 

5  3 

I  9    0   5 9 9 5 
   

I = 5/9(0.4937288) + 8/9(0.4) + 5/9(0.2797518) = 0.785267 



 

 
 

 

SCHOOL OF SCIENCE AND HUMANITIES  

DEPARTMENT OF MATHEMATICS 

UNIT –III 

POLYNOMIAL APPROXIMATIONS 

 LEAST SQUARES APPROXIMATION 

 
To find an approximate function to the given set of values is called least squares regression. 

The approximating function is called least squares approximation. 

The sum of the squares of the residuals of the plotted points be assumed to be the least. This is 

the principle of least squares,  is least. 

 
Fitting the straight line y = ax + b 

 
The normal equations are  

 
Fitting a second degree parabola y = a  

 

 

Problem 1. Fit a straight line to the following data by the method of least squares: 

x 3.4 4.3 5.4 6.7 8.7 10.6 

y 4.5 5.8 6.8 8.1 10.5 12.7 

 

Soln. Let the equation of the best fitting straight line be y = ax + b --------- (1) 

The normal equations are  

X Y 
 

 
 

 

3.4 4.5 11.56 15.30 

By the principle of least squares, 

The normal equations are 

is least. 



 

4.3 5.8 18.49 24.94 

5.4 6.8 29.16 36.72 

6.7 8.1 44.89 54.27 

8.7 10.5 75.69 91.35 

10.6 12.7 112.36 132.62 

Total 39.1 48.4 292.15 357.20 

Substituting all the values in eqn (2) and (3) 39.1a+6b=48.4 ---------------------- (4) 

292.15a+39.1b=357.2 -------------- (5) 

By solving (4) and (5) we get a= 1.119, b = 0.7744, the required equation is y =1.119 x + 

0.7744 



 

 

Problem 2. Fit a second degree parabola to the following data by the method of least squares: 

x 0.5 1 2 3 5 

y 3.1 6 11.2 14.8 20 

 

Solution: Fitting a second degree parabola y = a  --------------------(1) 

---------(2) 
 

 

 
 

 
 

X Y 
 

 
 

 
 

 xy 
 

 

0.5 3.1 0.25 0.125 0.0625 1.55 0.775 

1 6 1 1 1 6 6 

2 11.2 8 8 16 22.4 44.8 

3 14.8 27 27 81 44.4 133.2 

5 20 125 125 625 100 500 

Total 11.5 55.1 39.25 161.125 723.0625 174.35 684.775 
 

Substituting all the values in eqn (2), (3) and (4) 

5a + 11.5b + 39.25c = 55.1 ----------------- (5) 

11.5a + 39.25b + 161.125c = 174.35----- (6) 

39.25a + 161.125b + 723.0625c = 684.775 ---- (7) 

By solving these equations a= 0.0882, b=6.4523, c= -0.4979 

The best fitting parabola y = y = 0.0882  
 

Chebyshev polynomial: 

 
is the iterative formula of Chebyshev method. 

 

Problem 1: Find the positive root of the equation x3- 4x + 1=0, correct to 4 places of decimals, 

using Chebyshev method. 

 
Soln.: Let f(x) = x3- 4x + 1. Then f ’(x) = 3x2-4, f ‘’(x) = 6x 

f(0) = 1>0, f(1) = - 4 < 0, The positive lies between 0 and 1 

Taking x0=0, f0=f(x0)=1, f ‘0=f ‘ (x0)=- 4, f’’0=f’’(x0)=0 

Chebyshev iterative formula  

 

Since x2 = x3 = 0.25410, the required root. 

= 0 – [1/(-4)] = 0.25, 

 

=0.25+ , 

=0.25410+ 

The normal equations are 



 

 

Problem 2: Find the root of the equation 2x3- 3x + 6=0, that lies between -2 and -1, correct to 4 

places of decimals, using Chebyshev method 

 
Soln.: Let f(x) =2x3- 3x + 6. Then f ’(x) = 6x2-3, f ‘’(x) = 12x 

x0=-2, f0=f(x0)=-4, f ‘0=f ‘ (x0)=21, f’’0=f’’(x0)=-24 

By Chebyshev iterative formula  

 
-1.78377, 

 

 

 

 

 

Since x2 = x3 = the required root. 

 
Piecewise Linear and Cubic Spine Interpolation: 

 
 Piecewise Linear Interpolation: Pi(x)= for  and 

i = 1,2,3,….n.  Then the interpolation polynomial is given by P(x) = 
 

Problem 1: Find the piecewise linear interpolating polynomial 

X 0 1 2 

Y 1 3 35 

YI 1 6 81 

 

Solution: The piecewise linear interpolating polynomial 

Y = for  

Thus if for  Y = 

if for Y = 

Hence the linear interpolating polynomial Y 
 

 Cubic   Spine   Interpolation: A   cubic   spline function S(x) with   respect   to 

is a polynomial of degree three in each interval ( ): I = 1,2,….n such 

that S(x), S’(x) and S’’(x) are continuous in ( ) 

S(x)= 

 

 
Where , i=1,2,…….(n-1) and  

= 



 

 

Problem 1. Obtain the cubic spline approximation for the function y = f(x) from the following 

data, given that . 

X: -1 0 1 2, y: -1 1 3 35 

 
Solution: Since the values of x are equally spaced with h = 1, we have 

, -----(1) i = 1,2 and 
 
 

Put i = 1 in (1)  = 6(-1-2+3)=0 

Put i = 2 in (1) 

i.e. 

 
since 

= 6(1-6+35)=180 

i.e.    

The Cubic Spine in 

y= 

Is given by 
 

 

 
---(2)  

putting i = 1 in (2) for -1 y = = 

 
putting i = 2 in (2) for 0 

 
y = 10x3-6x2-2x+1 

-2x3-6x2-2x+1 

putting i = 3 in (2) for 1 , y = -8x3+48x2-56x+19  

 
 

Hence the required cubic spline approximation 
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Numerical Solution of Ordinary Differential equations 

 
Numerical Solution to Ordinary Differential Equation 

Introduction 

An ordinary differential equation of order n in of the form , where 

. 

We will discuss the Numerical solution to first order linear ordinary differential equations by 

Taylor series method, Euler method and Runge - Kutta method, given the initial condition 

 . 
 

Taylor Series method 

 

Consider the first order differential equation of the form , . 

The solution of the above initial value problem is obtained in two types 

 Power series solution 

 Point wise solution 
 

(i) Power series solution 
 
 

 

(ii) Point wise solution 
 

Problems: 

 

1. Using Taylor series method find at if . 



 

 
Solution: 

 

Given  and 

Taylor series formula for  is 
 

, 



 

 
 

 
 

 

  

 

 
 

 

 
 

Substituting in the Taylor’s series expansion: 
 

 

 

 

2. Find the Taylor series solution with three terms for the initial 

value problem  

Solution: 

 

Given  

 

  

  

  

  

 
The Taylor’s series expansion about a point is given by 

 

Hence at 
 

 



 

 

 Runge-Kutta method 

 

Runge-kutta methods of solving initial value problem do not require the 

calculations of higher order derivatives and give greater accuracy. The Runge-Kutta 

formula possesses the advantage of requiring only the function values at some selected 

points. These methods agree with Taylor series solutions up to the term in   where   is 

called the order of that method. 
 

Fourth-order Runge-Kutta method 

 
 

Let   be given. 

Working rule to find 

The value of where   where h is the incremental value for x is 

obtained as below: 

Compute the auxiliary values 

Compute the incremental value for y 

 

The iterative formula to compute successive value of y is  

 

Problems 

1. Find the value of y at . Given , using R-K method of order 

IV. 

 
Sol: 

 

Here   , Choosing  
 

Then by R-K fourth order method, 



 

k 

k2 

k2 

 

y y 
1 

[k 2k 2k ] 
1 0 

6 
1 2 3 4 

 

k1 hf (x0 , y0 ) 0 

k2 hf (x0 

 
k hf (x 

h 
, y 

2 
0 

h 
, y 

 

) 0.00525 
2 

) 0.00525 
3 0 

2 
0 

2
 

k4 hf (x0 h, y0 k3 ) 0.0110050 

 
 

 

To find  given  
 

 
 

y2 y1 
1 

[k1 
6 

2k2 2k3 k4 ] 

k1 hf (x1, y1 ) 0.0110 

k2 hf (x1 
 

k3 hf ( x1 

k4 hf (x1 

h 
, y1 

2 
h 

, y1 
2 
h, y1 

k1 ) 
2 

2 
) 

k3 ) 

0.01727 
 

0.01728 

0.02409 
 

y(0.2)=1.0227 
 

 Euler’s Method: 

 

Let   be given 

 The simple Euler’s formula y(x+h) = y(x) + h f(x,y) 

 The improved Euler’s formula y(x+h) = y(x) + h/2 [f(x,y) + f{x+h, y+hf(x,y)}] 

 The modified Euler’s formula y(x+h) = y(x) + h f [x+h/2 , y + h/2f(x,y)] 

 

1. Given that  

Soln.: The given equation is  
Given  

The simple Euler’s formula y(x+h) = y(x) + h f(x,y) = y(x) + h 
 

By taking h=0.1,  

 

y( ) = y( )+0.1 

k1 



 

 

y(4.1) = 1 + 0.1 = 1.005,  

y( ) = y( )+0.1 

y(4.2) = 1.005 + 0.1 = 1.0098 ,  

 

 Predictor corrector method: 

 

To solve  , by knowing 4 consecutive values of  y namely 

and 

 

 Milne’s Predictor formula 
 

 

Milne’s Corrector formula 
 

 

 

Problem 1: Find y(2) if    given y(0) = 2, y(0.5)= 2.636, y(1) = 3.595 and y(1.5)= 

4.968 

Solution:Here 

  (1) 

 

Milne’s Predictor formula  

From (1) , = 2.2975, = 3.2340 

 

=4.4355, Milne’s Corrector formula 

 



 

 

Note: Suppose 

 

 

 

Problem 2: Determine the value of y(0.4) using Milne’s method given that y’ = xy + y2, y(0)=1, 
use Taylor’s method find y(0.1), y(0.2), y(0.3) 

 

Solution: Given y(0)=1,  
 

y’ = xy + y2 ’ = + 2 = 1 ’ = + 2 = 

1.3587 

’ = + 2 = 

1.8853 

y’’=xy’+y+2yy’ ’’= ’+ +2 ’ 

= 3 

’’= ’+ +2 ’ 

= 4.2871 

’’= ’+ +2 ’ 

= 6.4677 

y’’’= 

xy’’+2y’+2yy’’+2y’2 

’’’= 

’’+2 ’+2 ’’+ 

2 ’2= 10 

’’’= 

’’+2 ’+2 ’’+ 

2 ’2= 16.4131 

’’’= 

’’+2 ’+2 ’’+ 

2 ’2= 28.6875 

 

 

 

 

 

 

 

 
 

 
 

  

.1 
 

 

 

 

 

 
 

 

 

 

.3 
 

 

 

 



 

 

  
 

 

 

 

Milne’s Predictor formula  = 1.83297 

Milne’s Corrector formula   = 1.83698 

 Adam’s Bashforth Predictor Corrector formula: 
 

Adam’s Predictor formula 

 
 

Adam’s Corrector formula 
 

 

 

Problem 3: : Find y(2) by Adam’s method if   given y(0) = 2, y(0.5)= 2.636, y(1) = 

3.595 and y(1.5)= 4.968 

Solution: Here 

  (1) 
 

From (1) , = 2.2975, = 3.2340 

 

=4.4354, 

 



 

 

 Boundary value problems – by Finite Difference Method: 
 

When the differential equation is to be solved satisfying the conditions specified at the end 

points of an interval, the problem is called a boundary value problem. 
 

Problem 1. Solve, by finite difference method, the boundary value problem y’’(x)-y(x)=0,where 

y(0)=0 and y(1)=1,taking h=1/4 
 

Solution: The finite difference approximation of the given differential equation is 
 

, i.e.  

, i=1,2,3,…(1) 
 

The boundary conditions are y0= y(0) = 0, and y4= y(1) =1----- (2) 
From (1) and (2) we have 

0 – 2.0625 y1 + y2 = 0 --------- (3) 

y1 – 2.0625 y2 + y3 = 0 --------- (4) 

y2 – 2.0625 y3 + I = 0 ---------- (5) 
Solving the equations (3), (4) and (5), 

we get y1= y(0.25) = 0.2151, y2 = y(0.5) = 0.4437, y2= y(0.75)=0.7 

 
Problem 2. Solve the equation y’’(x) – [14/x] y’(x) + x3 y(x) = 2x3, for y(1/3) and y(2/3), given 

that y(0) = 2 and y(1) = 0. 

Soln.: The finite difference approximation of the given differential equation is 
 
 

 
Putting h = 1/3, we get 

, -----(1) 

 

---(2) 

Putting i = 1, 2 and using x1 = 1/3 and x2 = 2/3 in (2) , we have 

8y0 ----------------------------------------------------- (3) 

  (4) 

Using y0= y(0) = 2, and y3= y(1) =0 in (3) and (4), we have 

485 y1 + 1458y2 = 3886 ------ (5) 

2187 y1 -956 y2 = 36 ---------- (6) 

Solving (5) and (6) we get y1= y(1/3)=1.0315 and y2= y(2/3)=2.3222 
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Numerical Solution of Partial Differential equations 
 

 Solution of Laplace Equation and Poisson equation 

 

Partial differential equations with boundary conditions can be solved in a region by 

replacing the partial derivative by their finite difference approximations. The finite difference 

approximations to partial derivatives at a point  are given below: 

 

 
Graphical Representation 

 
The   -plane is divided into small rectangles of length   and breadth    by drawing the 

lines and , parallel to the coordinate axes. The points of intersection of these lines 

are called grid points or mesh points or lattice points. The grid points is denoted by  

and is surrounded by the neighbouring grid points   to the left,  to the right, 

 above and  below. 

 

Note 

The most general linear P.D.E of second order can be written as 
 

 

where A,B,C,D,E,F are in general functions of x and y. 



 

A partial differential equation in the above form is said to be 

Elliptic if  

Parabolic if  

Hyperbolic if  
 

Standard Five Point Formula (SFPF) 
 



 

b b u 

b b 

b b 

u b b 

u u b 

u b u 

b u 

u u b 

 

Diagonal Five Point Formula (DFPF) 
 

Solution of Laplace equation uxx+uyy=0 

Leibmann’s Iteration Process 

We compute the initial values of u1,u2,.....u9 by using standard five point formula and 

diagonal five point formula .First we compute u5 by standard five point formula (SFPF). 
 
 

 

We compute u1,u3,u7.u9 by using diagonal five point formula (DFPF) 
 

u 
1 

[b ] 
1 

4 
1 5 3 15 

 

u 
1 

[u 
3 

4 
5 

u 
1 

[b 

5 3 7 ] 

 
] 

7 
4 

13 5 15 11 

 

u 
1 

[b ] 
9 

4 
7 11 9 5 

 

Finally we compute u2 ,u4 ,u6 ,u8 by using standard five point formula. 
 

u 
1 

[u ] 
2 

4 
5 3 1 3 

 
u 

1 
[u ] 

4 
4 

1 5 15 7 

 

u 
1 

[u 
6 

4 
3 9 

 
u 

1 
[u  

5 7 ] 

 
     ] 

8 
4 

7 11 9 5 

 

Solve the system of simultaneous equations obtained by finite difference method to get the 

value at the interior mesh points. This process is called Leibmann’s method. 

b 

u 

u 



 

 

Problems 

 
1. Classify the PDE 

 
Solution: Here A=1, B=4, C = 

The equation is elliptic, if 

 
It is elliptic in the region outside the ellipse 

It is Hyperbolic inside the ellipse 

It is parabolic on the ellipse 
 

 

2. Solve for the following square mesh with boundary values as shown in 

the figure below. 

A 1 2 B 

   

1  4 

2  5 

D 4 5 C 

Solution: The boundary values are symmetrical about the diagonal AC but not 

about BD. Let the values at the interval grid points be 

By Symmetry,  
 

Assume 
 

3. Solve Uxx + Uyy = 0 over the square mesh of side 4 unit satisfying the boundary conditions: 

 

Solution: 

We divide the square mesh into 16 sub-squares of side 1 unit and calculate the 

Rough values =2. (SFPF). 



 

 

numerical values of u on the boundary 

using given analytical expressions. 

0 1 4 9 16 

  

U1 

 

U2 

 

U 

3 
15 

0  

U4 

 

U5 

 
U 

6 

14 

0  

U7 

 

U8 

 

U 

9 
13 

0  

3 

 

6 

 

9 
12 

 

Let the internal grid points be 
 

Rough values: U5 = 1/4(4+6+14+0) =6 (SFPF) 

U1   = 1/4 (0+6+4+0)=2.5 (DFPF) 

U3   = 1/4 (16+6+14+4)=10  (DFPF) 

U7   = 1/4 (0+6+6+0)=3 (DFPF) 

U9   = 1/4 (6+6+14+12)=9.5 (DFPF) 

 
We use SFPF to get the other values of u. 

 

U2 = 1/4 (2.5+6+4+10)=5.625 (SFPF) 

U4   = 1/4 (0+6+2.5+3)=3.125 (SFPF) 

U6 = 1/4 (10+6+14+9.5)=9.875 (SFPF) 

U8   = 1/4 (6+6+3+9.5)=6.125 (SFPF) 

Now we proceed for iteration using always SFPF. 

 

 

U1 
 

U2 
 

U3 
2.4375 5.6094 9.8711 
2.3672 5.5888 9.8652 



 

1000 

 

U4 
 

U5 
 

U6 
2.8594 6.1172 9.8721 

2.8698 6.1209 9.8731 

 
U7 

 
U8 

 
U9 

2.9948 6.153 9.5063 

3.0057 6.1582 9.5078 

Repeating one more iteration, we conclude, correct to 2 decimals, 

 

 
4. Solve the equation  for the following mesh, with boundary values as shown 

using Leibmann’s iteration process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sol: 

A 

 

 

 

 

 

 

 

 

 
1000 

 

 

 

 

 
1000 

 

 

 
D2000 

 

Let u1,u2 ……u9 be the values of u at the interior mesh points of the given region. By symmetry 

about the vertical lines AB and the horizontal line CD, we observe 

Hence it is enough to find 

Using SFPF  u5 =1500 
Using DFPF u1=1125 u2 =1187.5 u4 =1437.5 

 

 

u1 

 

 

u2 

 

 

u3 

 

 
 

C 
u4 

 

 

u5 

 

 

u6 

 

 

 

u7 

 

 

u8 

 

 

u9 

 

    

 



 

 

 

 

 

 Solution of Poisson equation 

 

An equation of the type  i.e., is called Poisson’s equation where  is a 

function of and . Substituting the finite difference approximations to the partial differential 

coefficients, we get  

 

 
Problem: 1 

Solve the poisson equation  over the square mesh with sides 

 

 
Applying the formula below at the interior point of the mesh we get a system of simultaneous 

equations  

 

 
 

2. Solve = 8 X2 Y2 
for square mesh given u=0 on the 4 boundaries dividing the square 

into 16 sub-squares of length 1 unit. 
 

Solution: 

    

 U1 U2 U3 

 U4 U5 U6 

 U7 U8 U9 

Take the coordinate system with origin at the center of the square. 

Since the boundary conditions are symmetrical about the x, y axes and x=y, we have 

U1= U3= U7= U9, U2= U4= U6= U8 

 
At i=-1, j=-1, we have, 

At i=0, j=1, we have, 

At i=0, j=0, we have, 



 

 

 Solution of One dimensional heat equation 

In this chapter, we will discuss the finite difference solution of one dimensional heat 

flow equation by Explicit and implicit method 

 

Explicit Method (Bender-Schmidt method) 

Consider the one dimensional heat equation .This equation is an example of parabolic 

equation. 

Implicit method (Crank-Nicholson 

method) 

 

 
 

This expression is called Crank-Nicholson’s implicit scheme. We note that Crank 

Nicholson’s scheme converges for all values of λ 

 
When λ=1, i.e., k=ah2 the simplest form of the formula is given by 

] 

4 

The use of the above simplest scheme is given below. 

 

The value of u at A=Average of the values of u at B, C, D, E 

 

 

Note 

In this scheme, the values of u at a time step are obtained by solving a system of linear 

equations in the unknowns ui. 
 

Solved Examples 
 

1. Solve uxx = 2ut when u(0,t)=0,u(4,t)=0 and with initial condition u(x,0)=x(4-x) . Assume 

h=1.Find the values of u up to t=5 by Bender-Schmidt recurrence equation. 

 

Solution: Here a=2. By Bender-Schmidt recurrence relation , Step -size in time =k=1. 

The values of are tabulated below 
 
 

i 
j 

0 1 2 3 4 

0 0 3 4 3 0 

1 0 2 3 2 0 

2 0 1.5 2 1.5 0 

3 0 1 1.5 1 0 

4 0 0.75 1 0.75 0 

5 0 0.5 0.75 0.5 0 



 

 

 

 

 

 

 

 

 

subject to the conditions u(0,t)=u(5,t)=0 and 

u(x,0) taking h=1 and k=1/2,tabulate the values of u 

upto t=4 sec. 
 

Sol: 
 

Here a=1,h=1 

 
For λ=1/2,we must choose k=ah2/2 

K=1/2 
 

The values of u upto 4 sec are tabulated as follows 

 

j\i 0 1 2 3 4 5 

 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

 

0 

0 

0 

0 

0 

0 

0 

0 

0 

 

24 

42 

42 

39 

30 

26.625 

19.875 

17.5312 

13.0312 

 

84 

84 

78 

60 

53.25 

39.75 

35.0625 

26.0625 

22.9687 

 

144 

144 

78 

67.5 

49.5 

43.5 

32.25 

28.4062 

21.0938 

 

144 

72 

57 

39 

33.75 

24.75 

21.75 

16.125 

14.2031 

 

0 

0 

0 

0 

0 

0 

0 

0 

0 

 

3. Using Crank-Nicholson scheme, solve UXX - 16 Ut =0, given u(x,0)=0, 
u(0,t)=0,u(1,t)=100t. Compute 

for one step in t direction taking h = 1/4 



 

Solution: Here a=16, h=1/4, k=ah2, 16(1/16)=1. 

 

4. Solve UXX    - 32 Ut =0 taking h=0.25 for t>0,0<x<1 and u(x,0)=0, u(0,t)=0, u(1,t)=t using 

Bender – 
 

Schmidt method. 

Solution: The range of x is (0, 1); h=0.25 
 

 
J i 0 0.25 0.5 0.75 1 

0 0 0 0 0 0 

1 0 0 0 0 1 

2 0 0 0 0.5 2 

3 0 0 0.25 1 3 

4 0 0.125 0.5 1.625 4 

5 0 0.25 0.875 2.25 5 

 
 

 Solution of One dimensional wave equation 

Introduction 

The one dimensional wave equation is of hyperbolic type. In this chapter, we discuss 

the finite difference solution of the one dimensional wave equation utt a 2uxx . 

 
Explicit method to solve u 

 

 

Problems 

1.Solve numerically ,4uxx Utt with the boundary conditions u(0,t)=0,u(4,t)=0 and the 

initial conditions ut (x,0)= 0 & u(x,0) x(4 -x), taking h=1.Compute u upto t=3sec. 

Sol: 

Here a2=4 

A=2 and h=1 

We choose k=h/ak=1/2 



 

 

 

The values of u for steps t=1,1.5,2,2.5,3 are calculated using (1) and tabulated below. 
 

j\i 0 1 2 3 4 

0 0 3 4 3 0 

1 0 2 3 2 0 

2 0 0 0 0 0 

3 0 -2 3 -2 0 

4 0 -3 -4 3 0 

5 0 -2 -3 -2 0 

6 0 0 0 0 0 

 

x(4 x) 

2.Solve uxx = 1/4utt Given u(0,t)=0,u(4,t)=0,u(x,0)=u(x,0) & ut (x,0)=0.Take h=1.Find 
the solution upto 5 steps 

in t-direction. 

Sol: 

Here a2=4 

A=2 and h=1 

We choose k=h/ak=1/2 

 

 

The values of u upto t=5 are tabulated below. 
 

j\i 0 1 2 3 4 

0 0 1.5 2 1.5 0 

1 0 1 1.5 1 0 

2 0 0 0 0 0 

3 0 -1 -1.5 -1 0 

4 0 -1.5 -2 -1.5 0 

5 0 -1 -1.5 -1 0 

 

3. Solve , 25Uxx = Utt for u at the pivotal points, given u (0, t)= u(5,t)=0, 

Ut(x,0) =0  and u(x,0)= 2x for 0<x<2.5,=10-2x, for 2.5<x<5 for one half 



 

period of vibration. 

Solution: a2 = =25, a=5 

Period of vibration=2l/a= 2 seconds. Half period=1 second. We want 

values up to t=1 second. Taking h=1, k= =1/5. Step-size in t- 

direction=1/5. 

The explicit scheme is, 
we have u(0,0)=0,u(1, 0)=2, u(2,0)=4, u(3,0)=4, u(4,0)=2, u(5,0)=0 

 
 

T x 0 1 2 3 4 5 

0 0 2 4 4 2 0 

1/5 0 2 3 3 2 0 

2/5 0 1 1 1 1 0 

3/5 0 -1 -1 -1 -1 0 

4/5 0 -2 -3 -3 -2 0 

1 0 -2 -4 -4 -2 0 

 

 
 

*********** 
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QUESTION BANK 

UNIT 1 DIRECT AND ITERATIVE METHODS 

PART – A 

1. Explaintwo indirect methods to solve simultaneous linear Algebraic equations. (1) 

2. Determine the principle used in Gauss Seidel Method.    (1) 

3. Solve the system of equations x – 2y = 0 and 2x + y = 5 by Gauss Elimination 

method.          (1) 

4. Using Gauss Jacobi method solve x – 3y = 1, 3x + y = 4 .    (1) 

 

5. Evaluate the dominant eigen value of 









43

21
A  by power method.                                

(1) 

6. By Gauss Elimination method 4x – 3y = 11, 3x + 2y = 4 estimate the value of x and y

            (1) 

7. Write any two direct methods in linear Algebraic equations    (1) 

8. Define Diagonally dominant        (1) 

9. Discuss power method to calculate dominant eigen value.    (1) 

10. 4x + 2y + z = 14, x + 5y – z = 10, x + y + 8z = 20 check the given system of equation   

            is diagonally dominant.                                                          

                                                                                                                                                (1) 

PART - B 

1. Estimate the following system of equations by Gauss Seidel method 

          28x+4y-z=32, x+3y+10z=24, 2x+17y+4z=35.      (1) 

2. Calculate following system of equation by using Gauss – Seidel Jacobi method  

 

301822

753230

48217







zyx

zyx

zyx

 

                                                                                         (1). 

3. Evaluate the following equation using Gauss-Jocobi method  

10x + y + z = 12, 2x+10y+z = 13, x+y+5z = 7       (1) 

4. By Gauss Elimination method solve 

x + 3y + 8z = 4; 

x + 4y + 3z = -2;        (1) 

x + 3y + 4z = 1. 

5. Examine the system of equations using Gauss Seidel method. 

163

3252

188







zyx

zyx

zyx

                      (1) 

6. Solve the following system of equations by using Gauss-Jocobi method and Gauss-

Seidel method: 

3x1 – x2 – x3 = 1,  

3x1 + 6x2 + 2x3 = 0,         (1) 

3x1 + 3x2 + 7x3 = 4  



7. Find the dominant Eigen value and Eigen vector of



















300

021

161

A
by Power method. (1) 

8. Manipulate the following system of equation by Gauss – Seidel  

method: 

  10x – 5y – 2z = 3 

  4x – 10y + 3z = -3       (1) 

  x + 6y + 10z = -3 

9. Recall the system of equation by Gaussian elimination method 

5452

6323

1

321

321

321







xxx

xxx

xxx

(1) 

10. By Gaussian elimination method evaluate:

1743

1332

145







zyx

zyx

zyx

 .    (1) 

UNIT 2   NUMERICAL DIFFERENTIATION AND INTEGRATION 

PART – A 

1. State Lagrange’s interpolation formula.      (2) 

2. Write Gregory-Newton forward interpolation formula.     (2) 

3. Listthe first and second derivative of  Newton’s backward formula.  (2) 

4. Form the difference table for the points (0,-1), (1,1), (2,1) and  (3,-2).  (2) 

5. From the following table, find the rate of growth of the population in 1931  (2) 

Year     x: 1931 1941 1951 1961 1971 

Population in thousands   y: 40.62 60.80 79.95 103.56 132.65 

6. Evaluate  

1

0

21 x

dx
 using Trapezoidal rule with h = 0.2    (2) 

7. Evaluate   
4.1

2.0
logsin dx

x
exx by Simpson’s 

3

1
rule.    (2) 

8. A river is 80 meters wide. The depth “d” in meters at a distance “x” meters from one 

bank is given by the following table.Calculate the area of cross-section of the river 

using Simpson’s rd










3

1 rule.        (2) 

x: 0 10 20 30 40 50 60 70 80 

d: 0 4 7 9 12 15 14 8 3 

9. Write down Trapezoidal rule to evaluate dxxf )(
6

1  with h = 0.5   (2) 

10. Recall  the errors in trapezoidal and Simpson’s rule of numerical integration. (2) 

11. Explain the order of errors in trapezoidal and Simpson’s rule of numerical integration.

          (2) 

PART – B 

1. Using Lagrange’s formula calculate  3f  from the following table.   (2) 

X 0 1 2 4 5 6 

f(x) 1 14 15 5 6 19 

2. Estimate  y(9.5) using Lagrange’s formula of interpolation    (2) 



X 7 8 9 10 

Y 3 1 1 9 

3. Infer the number of student whose weight is between 80 and 90   (2) 

Weight: 0-40 40-60 60-80 80-100 100-120 

Number of students: 250 120 100 70 50 

4. Discuss the age corresponding to the annuity value y = 13.6 given the table  

 (2) 

Age (x): 30 35 40 45 50 

Annuity Value (y): 15.9 14.9 14.1 13.3 12.5 

5. Form the parabola of the form y = ax2 + bx + c passing through the points (0,0), (1,1), 

(2,20).           (2) 

6. The following data are taken from the steam table. 

Temperature oC:  140  150  160  170  180 

Pressure kgf/cm2:  3.685 4.854 6.302 8.076 10.225 

Calculate the pressure at temperature t=142o and t=175o .  (2)  

       

7. By dividing the range into 10 equal parts, evaluate 


0
sin xdx by Simpson’s 1/3 th rule 

and Trapezoidal rule.         (2) 

8. Evaluate dxe x




1

0

2

 by dividing the range of integration into 4 equal parts using (a) 

Trapezoidal rule, (b) Simpson’s rule.       (2) 

9. Dividing the range into 10 equal parts, find the approximate value of 
2.5

4
log xdxe by 

(a) Trapezoidal rule   (b) Simpson’s rule.     (2) 

 

10. From the following table , Compute Θ at x = 43  and x = 84    (2) 

  x     ; 40     50     60     70     80      90 

 Θ    ; 184   204   226   250   276    304 

11. Estimate y’(10), y’’(5), y’’’(11)  from the following  data:    (2) 

X 5 6 9 11 

Y 12 13 14 16 

 

 

UNIT 3 POLYNOMIAL APPROXIMATION 

PART - A 

1. Define curve fitting       (3) 

2. State two categories of fitting a curve to a given set of data points. (3) 

3. Explain least-squares polynomials.     (3) 

4. Recollect piecewise polynomials      (3) 

5. Discuss the term ‘knots’ or ‘nodes’     (3) 

6. The conditions which satisfy the spline function s(x)---?   (3) 

7. The contribution of Russian mathematician Chebyshev in minimizing the 

truncation error in interpolation is --?     (3) 



8. Define the natural cubic spline      (3) 

9. Elaborate the term Chebyshev points.      (3) 

10. Various approaches for fitting a “best” line through the line.  (3) 

 

PART – B 

1. Examine whether the following piecewise polynomials are spline or not  

 

f(x)= 














21,4

10,12

01,1

xx

xx

xx

      (3) 

2. Check the polynomials are spline  

f(x)= 














32,95

21,3

10,13

3

23

2

xxx

xxx

xxx

      (3) 

3. Develop cubic splines for the data given below and predict f(1.5) (3) 

X 0 1 2 3 

f(x) 1 -1 -1 0 

4. Fit a straight line using method of least squares to the following data: 

 (3) 

x 1 2 3 4 5 

y 14 27 40 55 68 

 

5. Given the data points 

i 0 1 2 3 

xi 1 3 4 7 

f(xi) 1.5 4.5 9 25.5 

Estimate the function value at x = 1.5 using cubic splines.   (3) 

6. Frame a straight line to the following set of data    

 (3) 

x 1 2 3 4 5 

y 3 4 5 6 8 

7. Fit a second order polynomial to the data in the table below:  (3) 

x 1 2 3 4 

y 6 11 18 27 

 

8. Given the data points        (3) 

i 0 1 2 

xi 4 9 16 

f(xi) 2 3 4 

Estimate the function value f at x = 7 using cubic splines. 

 

9. The velocity distribution of a fluid near a flat surface is given below: (3) 

x 0.1 0.3 0.5 0.7 0.9 

y 0.72 1.81 2.73 3.47 3.98 



X is the distance from the surface (cm) and v is the velocity (cm/sec). Using a 

suitable interpolation formula obtain the velocity at x = 0.2, 0.4, 0.6 and 0.8 

10. Identify a second degree parabola by the method of least square to the 

following also estimate y at x = 3.5.       (3) 

X 1 2 3 4 5 

Y 5 12 26 60 97 

 

UNIT 4NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 

PART - A 

1. Using Euler’s method, calculate .1)0(,
2

)2.0(  yxy

dx

dy
ify    (4) 

2. Compute y(0.1) given that yy  1 , y(0)=0 by Taylor’s method    (4) 

3. Define Fourth order Runge-Kutta Method.      (4) 

4. Solve numerically
x

eyy  , y(0)=0 for x=0.2, 0.4 by Euler’s Method.  (4) 

5. Find y(0.1) given 1)0(),(
2

1
 yyxy by Modified Euler’s Method.   (4) 

6. State Taylor’s series formula for )( 1xy in solving ),( yxf
dx

dy
 with 00 )( yxy  . (4) 

7. Outline Adam’s Bashforth predictor corrector formula.    (4) 

8. Explain Milne’s predictor corrector formula.      (4) 

9. Write down the recurrence formula for Euler method.    (4) 

10. Discuss single step and multi-step methods.      (4) 

PART – B 

1. Apply Taylor’s series method, find y when x = 1.1 from (4 decimal places) 

1)1(,
3

1

 yxy

dx

dy
         (4) 

2. Estimate y (0.2) from y’ = y – x, y(0)=2 taking h = 0.1 by the fourth order 

Runge-Kutta method       (4) 

3. By Milne’s Predictor and Corrector Method, evaluate y (4.4) given

02
2

5  yyx  . Given y(4) = 1, y(4.1) = 1.0049, y(4.2) = 1.0097 and y(4.3) = 

1.0143.          (4) 

4. Discuss the equation  y
dx

dy
 1  , given y(0)=0 using Euler’s Method and 

tabulated the solutions at x=0.1, 0.2 and 0.3.  Compute your results with the Exact 

Solutions.           

 (4) 

5. Generate y(0.8) by solving 
yx

y



1

,y(0)=2 using Milne’s predictor-      

corrector given y(0.2)=2.0933,y(0.4)=2.1755,y(0.6)=2.2493.   (4) 

6. Estimate
22

xy

dx

dy
 with y(0) = 1       (4) 

(a) Use Taylor series at x = 0.2 and x = 0.4 and  

(b) Use Runge-Kutta method of order 4 at x = 0.6. 



7. Substitute Runge-Kutta method of 4th order, solve 22

22

xy

xy

dx

dy




 given y (0) = 1 at 

x = 0.2, 0.4. Take h = 0.2.                     

                                                                                                                         (4) 

8. Given that      00,10,0  yyyyxy  obtain y  for 3.02.0,1.0 andx                       

by Taylor’s series method and find the solution for  4.0y  by Milne’s Predictor 

and Corrector Method.          (4) 

9. Using Adams Bashforth method calculate y(0.4) given 
2

xy
y  , y(0.1)=1.01, 

Y(0.2)=1.022,y(0.3)=1.023,y(0)=1.      (4) 

10. The differential equation 2xy
dx

dy
  is satisfied by y(0) = 1, y(0.2) = 1.012186, 

y(0.4)=1.46820, y(0.6) = 1.7379. Compute the value of y(0.8) by Milne’s 

Predictor-Corrector formula.       

                                                                                                             (4) 

UNIT 5  NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS. 

PART – A 

1. Write down the Crank-Nicholson difference formula.    (5) 

2. Explain the Explicit scheme to solve one dimensional wave Equation.  (5) 

3. Define Poisson’s Equation.        (6) 

4. Discuss the Bender-Schmidt recurrence equation.     (5) 

5. Classify the Partial differential equation xuxx + uyy = 0 when (i) x > 0 (ii) x < 0 (iii) x 

= 0.           (5) 

6. State Diagonal five point formula for Laplace equation.                            (5) 

7. Discuss standard five point formula                              (5) 

8. Define period of oscillation                    (5) 

9. What are Lattice points                               (5) 

10. Classify the partial differential equation xfxx + yfyy = 0, x < 0,y< 0.  

                                             (5) 

PART – B 

1. Analyze 0 yyxx uu  over the square mesh of side 4 units satisfying the following 

boundary conditions. 

(i) u(0,y)=0 for 0y4 (iii) u(x,0)=3x for 0x4 

(ii) u(4,y)=12+y for 0y4 (iv) u(x,4)= 2x  for 0x4  (5) 

2. Estimate 025  ttxx uu  for u at the pivotal points given u(0,t)=u(5,t)=0, 0)0,( xut  

and                

u(x,0)=        








55.2,210

5.20,2

xx

xx
 for one half period of vibration.                 (5) 

3. Using Leibmann method, solve the equation 
0

2

2

2

2











y

u

x

u  for the following square 

mesh with boundary values as shown in given figure. Iterate until the maximum 

difference between successive values at any point is less than 0.001.  (5) 
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4. 
2

2

x

u

t

u








  subject to the conditions u(x,0)=0, 

u(0,t)=0, u(1,t)=t. Compute u for t = 

1/8 in two steps, using Crank-Nicolson formula.     (5) 

5. Evaluate using Crank-Nicholson’s scheme, solve uxx = 16 ut, 0 < x < 1, t > 0 given 

u(x,0) = 0, u(0,t) = 0, u(1,t) = 100 t. Compute u for one step in t direction taking h 

=1/4. (5) 

6. ApplyLiebmann’s method the values at the interior lattice points of a square region of 

the harmonic function u whose boundary values are as shown in the following figure.

                                (5) 

   11.1        17.0       19.7      

 

      8.7       12.1     12.8          9 

 

 

 

7. Determine2u = 0at all node point for the following square region using boundary 

conditions.      (5) 

 

 

 

 

8. Solve ut = uxx given u(0,t) = u(4,t) = 0 u(x, 0) = x
2

1
(4 – x), 

ut(x, 0) = 0 Taking h = 1, find the solutions upto 5 steps in t – direction.   (5) 

 

9. Calculate the Poisson equation Uxx + Uxx = -10(x2+y2+10) over the square mesh with 

sides x = 0, y = 0, x = 3, y = 3 with u = 0 on the boundary and mesh length 1unit, 

correct to one place of decimal.       (5) 

10. Interpret the pivotal value of the equation Utt = Uxx for x =0 (1) 4 and t = 0 (1) 4, 

given that u(0,t)=0, u(4,t)=0, u(x,0) = 0, Ut(x,0) = x(4-x)/10    (6) 
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