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UNIT I- LOGIC

Statements and Notations,Connectives,Negation,Conjunction,Disjunction, statement, Formulae
and TruthTables ,Conditional and Bi-conditional,Well-formed Formulae, Tautologies,
EquivalenceofFormulae,DualityLaw, Tautological Implications.

Definition: Propositional Logic

A proposition is a collection of declarative statements that has either a truth value
"true” or a truth value "false". A propositional consists of propositional variables
and connectives. We denote the propositional variables by capital letters (A, B, C
etc). The connectives connect the propositional variables.

Some examples of Propositions are given below:

e "Man is Mortal", it returns truth value“TRUE” as T.
e "12 49 =3 - 2" it returns truth
value “FALSE” as F.

The following is not a Proposition

e "Ais less than 2". It is because unless we give a specific value of A, we

cannot say whether the statement is true orfalse.

Connectives

In propositional logic generally we use five connectives which are OR (v) AND

(/\), Negation/ NOT (=), Conditional or Implication / if-then (—), Bi conditional or
If and only if (<>).

Negation (=) — The negation of a proposition A (written as =A) is false when A is
true and is true when A is false.

The truth table is as follows —

A -A

True False



False True

AND (A) — The AND operation of two propositions A and B (written as A A B) is
true if both the propositional variable A and B is true.

The truth table is as follows —

A B AA B
True True False
True False False
False True False
False False True

OR (v)— The OR operation of two propositions A and B (written as A v B) is true
if at least any of the propositional variable A or B is true.

The truth table is as follows —

A B Av B
T T T
-

F T T
F F

Implication / if-then (—) — An implication A—B is False if A is true and B is false. The rest

cases are true.



The truth table is as follows —

A B A—B
True True True
True False False
False True True
False False True

If and only if («<>)— A <>B is bi-conditional logical connective which is true when
p and g are both false or both are true.

The truth table is as follows —

A B A B
True True True
True False False
False True False
False False True

Well Formed Formulas(WFFs)

The well formed formulas(WFFs) or statement formulas or logic formulas are defined
recursively (or inductively) as below.
1. Propositional variables p,q.r,... and propositional constants F,T are well formed
formulas. They are known as primitive WFFs.



2. IfPand Q are WFFs then —P,—Q,PAQ,PVvQ,P —>Qand P <> Q are also WFFs.

3. All WFFs are obtained by the above procedures applied a finite number of times.
For example, the following are WFFs

p.pAG P—>0 pAald—>r)=(pag)—r,(p—>a)—>(q—p)

Note: In order to avoid excessive use of parenthesis, we adopt an order of precedence for
logical Operators.

— A, Vv, = and &

Tautologies

A Tautology is a formula which is always true for every value of its propositional variables.
Example — Prove [(A — B) A A] — B is a tautology

The truth table is as follows —

A B A—-B (A—-B)AA [(A—B) A~ A] > B
True True True True True
True False False False True
False True True False True
False  False True False True

As we can see every value of [(A — B) A A] — B is “True”, it is a tautology.

Contradictions

A Contradiction is a formula which is always false for every value of its propositional
variables.

Example — Prove (A VB) A[(-=A) A (=B)] is a contradiction

The truth table is as follows —



A B Av -A -B (-A) A (AVB) A [(-A) A
B (=B) (=B)]
True True True False False False False
True False True False True False False
False True True True False False False
False False False True True True False

As we can see every value of (A v B) A [(-A) A (—B)] is “False”, itis a
Contradiction.

Contingency
A Contingency is a formula which has both some true and some false values for

every value of its propositional variables.

Example — Prove (A v B) A (-=A) a contingency

The truth table is as follows —

A

True

True

False

False

As we can see every value of (A v

True

False

True

False

iS a contingency.

Av B

True

True

True

False

Propositional Equivalences

-A

False

False

True

True

B) A (—A) has both “True” and “False”, it

(A v B) A (RA)

False

False

True

False



Two statements X and Y are logically equivalent if any of the following two conditions —

e The truth tables of each statement have the same truthvalues.

e The bi-conditional statement X <>Y is a tautology.
Example—Prove—(A v B)and[(-A) A (-B)]areequivalent
Testing by 1st method (Matching truth table)

A B Av -(AvB) -A -B [(-A) A (-B)]

B
True  True  True False False False False
True False  True False False  True False
False  True  True False True  False False
False False False True True  True True

Here, we can see the truth values of = (A v B) and [(-A) A (=B)] are same, hence
the statements are equivalent.

Testing by 2nd method (Bi-conditionality)

A B -(A v [(=A) A [= (A v B)]l< [(-A) A
B) (=B)] -B
True  True False False True
True False False False True
False True False False True
False False True True True

As[- (A v B)] & [(mA) A (=B)] is a tautology, the statements are equivalent.



Laws of Propositional Logic:

S.No | Name of Laws Primal Form Dual Form

1 Idempotent Law Pvp=p PAP=DP

2 Identity Law pvFE=p pAT=p

3 Dominant Law pvT =T pAF=F

4 Complement Law pv—-p=T par—-p=F

5 Commutative Law Pvg=qvp PAQ=QgAp

6 Associative Law pv(gvr)=(pva)vr pA(gar)=(pAag)ar
7 Distributive Law pv(gar)=(pva)a(pvr) | pa(gvr)=(pag)a(par)
8 Absorption Law pv(pag)=p pAa(pva)=p

9 De Morgan’s Law —~pva)=—pr—q —~pArg)=—pv—q

10 | Double Negation Law | —(—p)=p -

Logical Equivalences involving Conditional Statements

pP—>q=-pVqg
P—>q=—q—>—p
pPVg=—p—4q
pAg=—(p——q)

-(p—=q)=pAr—g

(p—=q@)A(p—=r)=p—=(gAr)
(p—=2r)A(g—=r)=(pVg)—r
(p—=q)Vvip—r)=p—(gVr)
(p—=r)vVig—=r)=(pAg)—r

Logical Equivalences involving Biconditional Statements

peg=(p—>q)Alg— p)
P> qd =S=p:xr—9q
Pog=(pAgq)Vi—pA—g)

peg)=p e —q

Inverse, Converse, and Contra-positive

A conditional statement has two parts — Hypothesis and Conclusion.

Example of Conditional Statement — “If you do your homework, you will not

be punished.” Here, "you do your homework" is the hypothesis and "you will




not be punished" is the conclusion.

Inverse —An inverse of the conditional statement is the negation of both the
hypothesis and the conclusion. If the statement is “If p, then q”, the inverse will
be “If not p, then not q”. The inverse of “If you do your homework, you will not

be punished” is “If you do not do your homework, you will be punished.”

Converse—The converse of the conditional statement is computed by interchanging the
hypothesis and the conclusion. If the statement is “If p, then q”, the inverse willbe “If q,
thenp”. The converse of "If you do your homework, you will not be punished" is "If you
will

not be punished, you do not do your homework”.

Contra-positive —The contra-positive of the conditional is computed by
interchanging the hypothesis and the conclusion of the inverse statement. If the
statement is “If p, then q”, the inverse will be “If not g, then not p”. The Contra-
positive of "If you do your homework, you will not be punished” is "If you will

be punished, you do yourhomework”.

Duality Principle

Duality principle set states that for any true statement, the dual statement
obtained by interchanging unions into intersections (and vice versa) and
interchanging Universal set into Null set (and vice versa) is also true. If dual of
any statement is the statement itself, it is said self-dualstatement.

DUALITY LAW

The dual of a compound proposition that contains only the logical operators v,
A and T is the proposition obtained by replacing each v by A, each A by' Vv,
each 7'by F and each F by T, where 7 and F are special variables 1'epres§nt1ng
compound propositions that are tautologies and contradictions respectively.
The dual of a proposition A is denoted by A*.



DUALITY THEOREM

If A(py, Pgs ---» Pp) = B@1 P2 -+ p,), where A and B are compound proposi-
tions, then A*(p,, Pa» ---» Pp) = B (01 P2 -5 Pn)-
Proof

In Table (1.7), we have proved that
’I(qu)s’IpA"IqorquE'l(’IpA*[q) (1
Similarly we can prove that
prgq=T1CIpv1q) (2)
_ (1) and (2) are known as De Morgan's laws.

Using (1) and (2), we can show that ‘ 4
’]A(pl’ P2s -+ pn) = A*(rlp,. FIpz,o..., 1p,,)

Equation (3) means that the negation of a proposition is equivalent to its
dual in which every variable (primary proposition) is replaced by its negation.
From Eq. (3), it follows that

A(pla P2 ooy Pn) = '-[A*('-Iph FIp2s iy 'Ipn) (4)
Now since A(py, pa, -+ Pu) = By, Py, ..., p,), we have A(p,, p,, ..., p,) ©
B(p,, p,, ..., p,) is tautology

~ AQpy Tpy - 1py) © B(Ipy, TIpyy)..., Tp,) is also a tautology ~ (5)
Using (4) in (5), we get ‘

TAX Py, Pos oos D) © TBX(py, py, ..., p,) is a tau
2. A* & B* is a tautology. i ey
. A*¥ = B* '

Examples

NAND OPERATOR
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NOR OPERATOR




Functionally Complete set of Connectives
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UNIT I1- INFERENCE THEORY

Normal Forms, Disjunctive Normal Forms, Conjunctive Normal Forms, Principal
Disjunctive Normal Forms, Principal Conjunctive Normal Forms, Rules of Inference,

the Predicate Calculus, Predicates, Variables and Quantifiers, Predicate Formula,
Free and Bound Variables.

Elementary Product: A product of the variables and their negations in a
formula is called an elementary product. If p and q are any two atomic
variables, then p, —=p A g, —q A p, —p A—q are some examples of
elementary products.

Elementary Sum: A sum of the variables and their negations in a formula is
called an elementary sum. If P and Q are any two atomic variables, then
p, =PV Q,—qVv p, —p Vv —qare some examples of elementary sums.

Normal Forms: We can convert any proposition in two normal forms —

1. Conjunctive Normal Form (CNF) 2.Disjunctive Normal Form (DNF)
Conjunctive Normal Form

A compound statement is in conjunctive normal form if it is obtained by

operating AND among variables (negation of variables included) connected
with ORs.

Examples: 1. (pv g)Aa(gvr)

2. (ﬁpvq\/ r)/\(Sv r)
Disjunctive Normal Form

A compound statement is in disjunctive normal form if it is obtained by

operating OR among variables (negation of variables included) connected with
ANDs.

Example: (p A q)v (ﬁp /\—|q)\/ (p AN—(q /\—.r)

Functionally Complete set

A set of logical operators is called functionally complete if every compound
proposition is logically equivalent to a compound proposition involving only
this set of logical operators. A,v,— form a functionally complete set of
operators.

Minterms: For two variables p and q there are 4 possible formulas which
consist of conjunctions of p,q or it’s negation given by
p/\q,ﬁp/\q, p/\—|q, —|p/\—|q



Maxterms: For two variables p and q there are 4 possible formulas which
consist of disjunctions of p,q or its negation given by
qu,ﬁqu, pV—|q, —|pV—|q

Principal Disjunctive Normal Form: For a given formula an equivalent
formula consisting of disjunctions of minterms only is known as principal
disjunctive normal form (PDNF).

Principal Conjunctive Normal Form: For a given formula an equivalent
formula consisting of conjunctions of maxterms only is known as principal
conjunctive normal form (PCNF).

Problems:

ObtainDNFof @ v (P A R)a - ((Pv R)A Q).

S olution:

OwiPaR)na(Pv Bynld)
S wi(FPARNA(RIFwRIAD (Demorgan law)
= (@ w(PAaRNA(RFPA-aRva( (Demotgan law)

S G AP AaaRNwi@a-Mvw(FARASF AR w((FaRlna(
(E xtended distributed law)

S (AP A0 A RIvFwiFaARAaRIw(Faa0aR) (NHegation law)
S AP A AR vw(Faa@d AR (Negation law)

Obtain Penf and Pdnf of the formula (-2 v-0)= (P & - 0)

Solution:
LEtS:(-lPVﬂQ)—) (P = ﬂQ)

PIQ| ~-P|-Q| 2Pv-Q | Peag|S| Mntem | Maxtem

T[T| F | F F F[T] Pap
T[F| F | T T T |T| Pnap
FIT| T | F T T [T|aPag
FIF| T | T T F |F Py

PCNF: Pv @ and PDNF: (PAQ)v(P A -Q)v(~PAQ)



Consistency and Inconsistency of Premises

A set of formular HlWI;I&H is said to be inconsistent if their conjunction implies

m
Contradiction.
A set of formular HWI;IQH is said to be comsistent if their conjunction implies
DA & m
Tautology.

Rules of Inference

Rule P: A premise may be introduced at anypoint in the derivation

Rule T: A formula S mav be introduced at anv point in a derivation if S is tautologically
implied bv any one or more of the preceedingformula.

Rule CP: If S can be derived from R and set of premises . then K. 5 can be derived from the

set ofpremises alone.

Inference Theory

The theory associated with checking the logical validity of the conclusion of
the given set of premises by using Equivalence and Implication rule is called
Inference theory

Direct Method

When a conclusion is derived from a set of premises by using the accepted
rules of reasoning is called direct method.

Indirect method

While proving some results regarding logical conclusions from the set of
premises, we use negation of the conclusion as an additional premise and try to
arrive at a contradiction is called Indirect method



Rules of Inference

TABLE 1 Rules of Inference.
Rule of Inference Taurology Name
P [prip—=qll—+gq Modus ponens
P—q
S
=g [—t“r A {P . ';T}] i Modus tollens
F—q
—p
F—q [lp—=ginig—=ril—=ip—r) Hypothetical syllogism
q—=r
p - F
pvyg [(pvagin—pl—aq Disjunctive syllogism
—-p
Soq
P p—ipvql Addition
Pvg
phg (prgl—p Simplification
R
P [(p) A (g)] = (p A g) Conjunction
q
S PpAg
Pvyg [(pvagdal=pvr)]—lgvr) Resolution
—|p W F
gV

Rule of inference to build arguments:

RuleP: A premise may be introduced at point in the derivation

Rule T: A formula S may be introduced in a derivation if S is a tautologically
implied by any one or more of the preceeding formulas in the derivation.

Rule CP: If we can derive S from R and a set of premises, then we can derive
R — S from the set of premises alone. Rule CP is also called deduction theoem.




Examples:

1. It is not sunny this afternoon and it is colder than yesterday.
2. If we go swimming it is sunny.
3. If we do not go swimming then we will take a canoe trip.
4. If we take a canoe trip then we will be home by sunset.
5. We will be home by sunset
p Itis sunny thus afternoon l. =png
q Ttis colder than yesterday 2. r->p
o Wegoswunming

- X 3. —ar—os
s We will take a canoe tup
t Wewil be home by sunset (the conclusion) 4. §—>1

3, r

(Fypotheses

Example 1.Show that R is logically derived fomP — Q. Q — R and P

Soltion. {1} () P—Q RuleP
{2} ) P Rule P
1.2} 3) Q Rule (1). (2) and I11
4} 4) Q—R RuleP
1.2.4) (5) R Rule (3). (4) and I11.

Example 2 Show that S V R tautologically implied by (PV Q) A (P—R) A (Q—S).

Soltion. {1} (1) PVQ Rule P
mn 2) TP—Q T.(1). E1 and E16
{3} (3) Q—3 P
1.3} (4 7P—S T.(2). (3). and I13
1.3} (5 78S—P T.(4). E13 and E1
{6} (6 P—R P
1.3.6} (1) 7S—R T. (5). (6). and I13
1.3.6) (8 SVR T. (7). E16 and E1



Example 3. Show that 7Q, P— Q== TP
Solution . {1} (1) P—Q Rule P
1} () TP —=T70Q T and E 18
3} (3) 7Q P
1.3y 7P T.(2),(3), and I11 .

Example 4 Prove that R A (P V Q) is a valid conclusion from the premises PVQ) |

Q—RP—Mand ™M

Solution. {1} (1) P—M P
{2} () ™ P
(1.2} (3) 7P T. (1). (2). and 112
{4} 4 PVQ p
.2.4 (5) Q T. 3). (4). and T10.
{6} (6) Q—R P
1.2.4.6} () R T. (5). (6) and 11

{1.2.4.6) (8 RAPVQ) T.(4).(7).andIo.

Example 5 Show that R — S can be derived from the premises
P—(Q—S).,7RVP and Q.

Solution. {1} (1) 7RVP P
{2} 2) R P, assumed premise
{1,2} 3)P T.(1). (2). and I10
{4} @P—=(@Q—9) P
{1.2.4} 5)Q—S T.(3).(4).and I11
6} ©6) Q P
{1,246 (NS T. (5).(6). and I11
{1.4.6} ®R—S CP.



Example 6.Show that P — 5 can be derived from the premises, TPV Q. 7QV

FEandR—5.
Solution.
{1} (1) TPVQ P
{2} 2y P P. assumed premise
L2 (3) Q T.(1).(2) and 111
{4} 4) TQVER P
11,2 4} 3) R T.(3),(4)and I11
{6} @) R—5 P
L2486 (M S T. (3), (6) and I11
2.7} (8 P—S CP
Predicate Logic

A predicate is an expression of one or more variables defined on some specific
domain. A predicate with variables can be made a proposition by either
assigning a value to the variable or by quantifying the variable.

Eg.
“xisa Man”
Here Predicate is “ is a Man™ and it is denoted by M and subject “x” is
denoted by x.
Symbolic form is M(x).

Quantifiers:

The variable of predicates is quantified by quantifiers. There are two types of quantifier in

Predicate logic — Universal Quantifier and Existential Quantifier.
Universal Quantifier:

Universal quantifier states that the statements within its scope are true for every
value of the specific variable. It is denoted by the symbol V.

vx P(x) is read as for every value of x, P(x) is true.

Example: "Man is mortal” can be transformed into the propositional form vx
P(x) where P(x) is the predicate which denotes x is mortal and the universe of
discourse is all men.

Existential Quantifier:

Existential quantifier states that the statements within its scope are true for some
values of the specific variable. It is denoted by the symbol 3.3x P(x) is read as
for some values of x, P(X) is true.



Example: "Some people are dishonest” can be transformed into the
propositional form 3Ix P(x) where P(x) is the predicate which denotes x is
dishonest and the universe of discourse is some people.

Nested Quantifiers:

If we use a quantifier that appears within the scope of another quantifier, it is
called nested quantifier.

Eg.2.
“Every apple is red”.
The above statement can be restated as follows
For all x, if x is an apple then x is red
Now, we will translate it into symbolic form using univer:)
quantifier.
Define A (x) : xisan apple.
R(x) : xisred.
We write (*) into symbolic form as

(Vx) (Ax)—>R(X)

Egd. “Some men are clever”.
The above statement can be restated as
“there is an x such that x is a man and Xx is clever”.

We will translate it into symbolic form using Existential
quantifier, \

Let M (x) : xisaman
and C(x): xisclever

We write (B) into symbolic form as

(3 x) (M (x) A C (x))



Problem :

Rule of Inference

Yz P(x)
-~ P(y)

P(c) for any c
S VzP(z)

JdzP(x)

.. P(e) for any ¢

P(c) for any c
o dzP(z)

Show that (3Ax) M(x)

premises (x) (H(x) —> M(x)) and (3x) H(x)

Solution : 1)
2)
3)
4)
5)
6)

(3x) Hx)

H(O)

) HE > M)
H(O) — MO

M(O)

(3x) M(x)

Symbolize the following statements:
(@) All men are mortal
(b) All the world loves alover

(c) X is the father of
mother of Y (d)No cats

has atail

(e) Some people who trust others are rewarded

Solution:

10

Name

Rule US: Universal Specification

Rule UG: Universal Generalization

Rule ES: Existential Specification

Rule EG: Existential Generalization

follows logically from the

rule P
ES

P

uUsS
T:8)
EG



{a) Let Mi(x): x 15 a man Hix): x is Mortal
(7 ) (Mix) — Hix)

(b) Let P(x): x is a person Lix): x is a lover Roy): x lovesy
(x) (P(x) — (y) (P(y) ~ Liy) — ROLYD

(c) Let P(x): x is a person Fix,y): x is the father of y

Mix.y): x is the mother of y { 3 2) (P(z) » Fixz) ~ Miz.y))
(d) Let C(x): x is a cat T(x): x has a tail
(7 1) (C(x) = = T(x))
(e) Let P(x): x is a person T(x): x trust others R(x): x is rewarded

(3P A T ~ RN

Use the indirect method to prove that the conclusion 3;9( 7 follows from the premises
Yx(Plx)— @(x)and IpP(y)

S olution:
-3z0(z) Plassumed)

2 Yz-0(z) T, (1)

3 iy P

4 F(a) E3, (3)

S| -2 U, @

6 | Pa)n-0G) T, @05

1 -(Pla)— Q(a)) T, (6

& | ¥x(P(x)— Q(x) P

9 Pla) = Q(a) 78, (8)

10 Pla) = Qla)n ~(FPla) = Q) T, (7,09 contradiction
Showthat (3%) PXAQE) = AN PEA (3IX)QX)
Solution:

(32 (P A QD RuleP

2)Play n Qla) EZ 1

3 Pla) FuleT, 2
4) Qfa) RuleT, 2
N(IXPE EG, 3

&) (3 %) Q) EG,4
AP A (3K Q) RuleT, 5,6
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UNIT-111-SEMIGROUPS AND MONOIDS

Semigroups, Monoids, Homomorphism of Semigroups and Monoids, Subsemigroups and
Submonoid.

Semigroup:Let S be a non- empty set with a binary operation * defined on it. The algebraic
system (S, *) is called a semigroup if * is associative.

(ie)ax(b*c)=(a*b)*c Vvab,ceS
Examples:

1. (2z, +) and (22, .)aresemigroups.

2. If S is the set of all nxn matrices with real entries, then (S, +) and (S, .) are
semigroups, where + is matrix addition and . is matrix multiplication.

3. (Z, -) is not a semigroup because ¢ —  is not associative, since 2 — (3— 4) #* (2 —3)— 4

Monoid:A semigroup(M, *) with identity element e is called a monoid. Sometimes a
monoid is denoted as (M, *, e) indicating the fact that e is the identity element.

Examples:

1. (N,x)ia a monoid with identity elementl. But (N, +) is not a monoid, since identity
for +is 0, which is not in N.
2. The set of non negative integers S = N {0} is the monoid under + and x. (i.) (S, +)

and (S, x) are monoids with identity 0 and 1.
3. Let S be the non-empty set and let S° denote the set of all mappings from Sto S. Let .
denote the composition of functions operation.

If f,geS°, then f and g are functions from S —S. Their composite

(fog)x)=f(g(x))¥xeS. Then fog is a function from S —S and fogeS*®.
We know composition function is associative.

The identity function | :S — S defined by I(x)= X VX e Sis the identity element of
SS.For (1o f)x)=1(f(x))= f(x)¥xeSand (fo1)x)= f(I(x))= f(x)vxeS
“lof=fol=fWvfeS® - (S°0)isamonoid with identity I.

Sub semigroups: Let (S, *) be a semigroup and let T < S be a noe-empty subset. If T is
closed under *, then (T, *) is called a sub semigroup.

Submonoid: Let (M, *) be monoid and e be the identity. If T be a non-empty subset of M
and if T is closed under * withe e T , then (T, *) is called a submonoid of (M, *).

Examples:

L (Nx)igq semigroup. Let T = 3N then T =S, if x,y €T then x =3r, y = 3s for some
positive integers r and s. Now x+y = 3rx3s=3(3rs) e3N =T. .. T isclosed underx.

2



Hence (T, x) is a sub semigroup of (N, x). More generally, if S = mN, where m is a
fixed positive integer, then (S, x) is a sub semigroup.

2. For the semigroup (N, +), (2N, +) is a sub semigroup.
3. (Z, +) is monoid with identity 0. If T = the set of all non-negative integers = {0, 1, 2,
3, ...}, then (T, +) is a submonoid with identity 0.

Cyclic Monoid: A monoid (M, *) having identity is said to be cyclic if there exists an
element a€ M such that every element x € M can be written as a" = e for somene N.
Then ‘a’ is called a generator of M. Any cyclic monoid is commutative.

Problems:

1. For any commutative monoid (M, *), prove that the set of all idempotent elements of
M forms a submonoid.

Solution: Given (M, *) be a commutative monoid.
Let e be its identity element.

Let S be the set of all idempotent elements of M. (i.e) S ={xeM /x*x = x}

Since e*e = e, e is an idempotent element of M.
. e e Sand hence S is non-empty.
Let a,b e S be any two elements. They are idempotent elements.
s.a*a=aand b*b =bh.
We have to prove a*b is idempotent.
Now (a*b)*(a*b) = a*(b*a)*b [Since * is associative
= a*(a*b)*b [Since * is commutative
= (a*a)*(b*b) [Since * is associative
=a*b
Hence a*b is idempotent and so S is closed under *and e S..
So (S, *) is a submonoid of (M, *).
2. Show that every finite semigroup has an idempotent element.

Solution: Let (S, *) be a finite semigroup.
Let ae S, then by closure a,a®,a*,a*,...are all elements of S.
Since S is finite, these elements are not all different. So we have repetitions.

Let a™ =a", wherer > m. Letr = m+n.

m+n

~a"=a"=a

m+n m+2n

Then a™ *a" =a™" *a" = a™" =a



And a™" xa" =a™?" xa" = a™?*" =a™*" and so on.

m+2n m+3n _ A M+mn

a"=a""=a =a =..=a

m+mn

Since a™ =a

We have a"™ =a"™"™ [ Replacing m by nm]

nm mn

=a"=*a
This proves that a™ is an idempotent element of S.
.. Every finite semigroup has an idempotent element.

3. Show that the set of all invertible elements of a monoid form a group under the same
operation as that of the monoid.

Solution: Let (M, *) be a monoid having the identity e.
Let G be the set of all invertible elements of M.
Since el=¢, we havee € G. So G is non- empty. Further inverse is unique.

Leta,b e G, then aand b have inverse. Let a*, b be their inverses.

We have to prove thata*b e G.
S we have to prove that it is invertible.
Now consider (a *b)*(b*a?) = a*(b*b1)*a?
- a*(e)*a—l
=a*a!
=e
And (b'**al)* (a *b) = b*(a*a)*b
= bl*(e)*b
=b™*b=e
.-. b*alis the inverse of a*b.
(i.e) a*b is invertible.
Hence a*b eG. So G is closed under *.
Associativity: Since G is a subset of M, associativity is inherited in G.
Identity: e € Gis the identity. Since a*e =e*a=a, VaeG.
Inverse: Let a e G be any element. So ‘a’ is invertible.
soarat=alta=e (@)t *at =al*(@@h)t =e[Since (@)’ =a

Since alisinvertibleandso ateG.



Hence inverse exists for every ae S. So (G,*) is a group.

4. If Zs is the set of equivalence classes generated by the equivalence relation
“Congruence modulo 6”, prove that (Z,x ) is a monoid where the operation x, on Zs

is defined as [j]x, [K] = [(j xK) mod 6] for any [j], [K] € Zs.

Solution: We know Zs = {[0], [1], [2], [3], [4], [5]}. We shall form the composition table.

%, [0] [l [2] [8] [4] [8]

[o] [o] [o] [o] [o] [o] [o]
o] [o] ] [2] [8] [4] [s]
2] [o] [2] [4] [o] [2] [4]
[3] [o] [8] [o] [3] [o] [3]
[4] o] [4] 2] [o] [4] [2]
5] [o] [5] [a] 3] [2] M

-. Zs is closed under x,.
Associativity: Since [a] x, [b] %, [c] = [a] x,[bc]
= [a(bc) mod 6]
x, depends on associativity of usual multiplication. .-. x, is associative.
Identity: From the table we find, [1] x,[a] = [a] for all [a] € Zs.
.. [1] is the identity element. Hence (Z,,x, ) is a monoid.

Homomorphism: Homomorphism is a structure preserving map between two algebraic
systems of same type. Homomorphisms of semigroups and monoids are useful in the
economical design of sequential machines and in formal languages.

Homomorphism of semigroups: Let (S, *) and (T, .) be two semigroups. A mapping
f :S — Tis called homomorphism if f(axb)= f(a)f(b) vabeS.

The homomorphism of semigroups f is called a monomorphism if f is one-one.
f is called epimorphism if f is onto.

f is called an isomorphism if f is one-one and onto.
If f isanisomorphism of S onto T, we say S is isomorphic to T as semigroups.

Example: Consider the semigroups (N, +) amd (Zm, +m). Define f :N — Z_by f(a)= [a]
then f(a+b)=[a+b]=[a]+, [b]= f(a)+, f(b).

.. f isa semigroup homomorphism.



Monoid Homomorphism: Let (M,*) be a monoid with identity e and (T, .) be a monoid with
identity e'. Amapping f :M — T is called a homomorphism of monoids if

f(axb)=f(a)f(b) VabeMand f(e)=
The homomorphism of monoids £ is called

Q) a monomorphism if f is one-one
(i) anepimorphism if f isonto
(iii))  anisomorphism if f is one-one and onto.

Theorem 1: Let (S,*) be a semigroup and (T, .) be an algebraic system. If f :S —> T isan
onto homomorphism, then (T, .) is also a semigroup.

Proof: Given (S,*) is asemigroup and f :S — T is an onto homomorphism.
(i.e) f(axb)=f(a)f(b)
To prove (T, .) is a semigroup, we have to prove (. ) is associative.

Let x,y,z €T be any three elements. Since f is onto, we can find pre images a,b,c e S
such that f(a)=x, f(b)=y, f(c)=z2

Now flax(b*c)|=f(a)f(bxc)=f(a)(f(b)f(c)=x
fllaxb)*c]=f(a*b)f(c)=(f(a) f (D)) f(c)=(xy)z
)

Since ax(b*c)=(axb)xc, flax(b*c)= f[(axb)=

(y.z)and

c|.
x(y.z)=(xy)z,V x,y,zeT.
Hence (T, .) is a semigroup.

Theorem 2: Let (S, *) and (T, .) be semigroups and g : S — T be a homomorphism. If ae S
is an idempotent element. Prove that g(a)is an idempotent element of T.

Proof: Given g :S — T is a homomorphism of semigroups and a S is an idempotent
element.

- a*a=a = g(a*a)=g(a) = g(a).g(a) = g(a) [Since g is a homomorphism
-. g(a) is an idempotent element of T.

Theorem 3: If (M, *) is a monoid having identity e and g is an epimorphism from (M, *) to
an algebraic system (T, .), then (T, .) is a monoid.

Proof: Given (M, *) is a monoid with identity e.
. (M, *) isa semigroup and g : M — T is an epimorphism.
(i.e) an onto homomorphism.

-. (T, .) isalso a semigroup. [By theorem 1



We have to only prove (T, .) has identity.
Let a € M be any element and e € M is the identity.

.axe=a=e*xa

Now axe=a=>g(a+e)=g(a)= g(a)g(e)=g(a)and
exa=a=g(era)=g(a)=gle)g(a)=g(a)

g(a)g(e)=g(e)g(a)= g(a)= gl(e)is the identity of (T, .) and hence (T, .) is a monoid.

Theorem 4: Let (S, *), (T, .) and (V,@) be semigroupsand g:S —>T,h:T —>V be
semigroup homomorphism such that their composite ho g : S — V is defined. Prove that
hog is asemigroup homomorphism of (S, *) to (V,®).

Proof: Given g:S —» T, h:T —V are semigroup homomorphisms.
We have to prove hog:S —V isa homomorphism.
Let a,b € S be any two elements.
. (hog)a*b)=h(g(axb))=h(g(a)g(b))=h(g(a))@h(g(b))
= (h.g)a)®(h.g)b)
-. ho g is a homomorphism of semigroups.

Theorem 5: The set of all semigroup endomorphisms of a semigroup is a semigroup under
the operation of composition.

Proof: Let G be the set of all endomorphisms of the semigroup (S,*).

An endomorphism is a homomorph ism of S — S and so G is the set of all homomorphisms
fromSto S.

We have to prove (G, .) is a semigroup where . is composition of functions.

Let g,,9, € G be any two elements. (i.e) g,,9,are endomorphisms of S.

- (0109, )axb)=0,(0,(a*b))=0,(g.(a)* g, (b)) = 0,(9.(a))* 9:(0, (b))
= (29, fa)*(0, 9 Jb)
. (g, 29, )is a homomorphism of S — S and hence an endomorphism.
*. (g,°9,)eG. Hence G is closed under the operation (o).
Next we shall prove that (o) is associative.

Let 9,,0,,09, €G be any three endomorphisms of s.

To prove g, o(9,°9;)=(9,°9,)° 0,



Now fora e S, we have,

(9, (92 > 9:))@) = 6, (a)*(g; ° 9, Xa) = 9,(a) *[g, (a) * g, (@)] and
((9:°9,)°9:Xa)=(g, > 9, Ja)* g;(a) = 9,(a) *[g.(a) * g; (a)]

Since g,(a), g,(a), g,(a)are elements of S and * is associative, we have
0,()*[g,(a)* 9;(a)]= 9,(a) *[9.(a) * g, (a)]

< (8:°(9,°9:))@)=((9, 2 9)°9:)a), forany aes.
=9,°(9,°09;)=(9,°9,)° g,. Hence (o) is associative and so (G,o)is a semigroup.

Theorem 6: Let (S. *) be a semigroup and S® be the set of all functions from S to S. Then
(SS, .) is a semigroup under composition of functions. Prove that there is a homomorphism

g:S—S°.

Proof: Foreachae S, we shall identify a function f, : S — S, defined by
f.(x)=axxvxeS

- f,es®
Define g:S — S°by g(a)=f, Vae$S
Let a,b € S be any two elements, then a*b e S
. glaxb)=f,,
Butforany xeS, ., (x)=(axb)xx=ax(b*x)= f, (b*x)=f, (f,(x))=(f,.f, Xx)

- faw = fofy

Hence g(a*b)=f,, = f,.f, = g(a)g(b)
.-. g is a homomorphism of (S, *) into (S5, .).
Theorem 7: Show that monoid homomorphism preserves the property of invertibility.

Proof: Let (M, *) and (M, .) be two monoids with identity e and e’ respectively.
Let g:M — M be a homomorphism.
Let a e M be an element with inverse a™.

We have to prove g(a*)=[g(a)]™. Since a*is the inverse of a, we have
a*a'=a‘'*a=e.

Now a*a*=e=gla*a™)=g(e)=e = g(a)gla?)=e

Similarly, a**a=e=g(a*+*a)=g(e)=¢ = gla*)g(a)=¢
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Hence g(a™) s the inverse of g(a)

(ie) gla?)=[g(@)] ™
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Definition: The relation f defined on a nonempty set X is called an anti-symmetric relation if and
only if, v X, y € X, the property (x, y) € fand (y, xX) € f implies that x = y.

It is possible to interpret an anti-symmetric relation using the arrow diagrams of relations.

In this context, a relation is called anti-symmetric if, whenever there is an arrow going from one
element to an element different from it, there does not exist an arrow going back from the second
element to the first.

Example: LetR1 = {(x,y) € Z+ x Z + | x divides y} and R2 = {(x, y) € Z\ {0} x Z | x divides y}.
(a) Show that R1 is an anti-symmetric relation on the set of positive integers. (b) Show that R2 is
not an anti-symmetric relation on the set of integers by giving a counter example.

There are two relations which play a prominent role in mathematics. One of them is the equivalence
relation, which we have already seen is a relation which is reflexive, symmetric and transitive.

We now introduce the other relation called a partial order.

Definition: A relation f on a nonempty set X is called a partial order if f is reflexive, transitive and
anti-symmetric. Here (X, f) is a partially ordered set and is colloquially referred to as a poset.

The relation less than or equal to on the set of real numbers and the relation subset on the set of sets
are two fundamental partial orders. These can be thought of as models for the general partial order.
It is common practice to use the symbol to denote a partial order.

Further, if (X, ) is a poset and x y, then we read this as x is less than or equal to y.

Definition: Let (X, ) be a poset. It there exist elements x and y in X, such that either (X, y) € or (y,
X) € holds, then x and y are said to be comparable. In neither (x, y) nor (y, X) belongs to , then x
and y are said to be incomparable.

Examplel: Let X ={1, 2, 3, 4, 5}.

() The identity relation Id on X is reflexive, transitive and anti-symmetric and is therefore a partial
order. However, no two elements of X are comparable.

(b) The relation Id U {(1, 2)} is also a partial order on X. Here 1 and 2 are comparable.

(c) The relation = Idu{(1, 2),(2, 1)} is both reflexive and transitive, but not anti-symmetric.
Observe that (1, 2), (2, 1) €eand 1 6= 2.

(d) The relation Id U {(1, 2),(3, 4)} is a partial order on X. Here, 1 and 2 are comparable and so are
3and 4.

Example: Let X = N. The relation = {(a, b) : a divides b} is a partial order on X.

Example: Let X be a nonempty collection of sets. Here, = {(A, B) : A, B € X, A € B} is a partial
order on X. 4. On R the set = {(a, b) : a < b} is a partial order. It is called the usual partial order on
R.



Definition: Let (X, ) be a poset. 1. If any two elements in the poset (X, ) are comparable, then is
called a linear order and (X, ) is called a linearly ordered set.

Often a linear order is also referred to as a total order or a complete order.

A subset, C of X, is called a chain if and only if induces a linear order on C. If C is a finite set, then
the length of C is equal to the number of elements if C. If C is not a finite set, then the length of C
is said to be infinite.

A subset, A of X, is called an antichain if and only if no two elements of A are comparable. The
length of an antichain is defined in precisely the same manner as that of the chain.

The maximum of the lengths of the chains of X is called the height of X and the maximum of the
lengths of the antichains of X is called the width of X.

Let X be a nonempty set and let f be a relation on X. Then, recall from Definition, that f is reflexive
if (x, x) € fforall x € X; fis transitive if (X, y) € fand (y, z) € fimply (x, z) € fforall x, y, z € X;
and f is anti-symmetric if (X, y) € f and x 6=y implies (y, X) €/ f, i.e., for all distinct elements X, y
of X both (x, y) and (y, x) cannot be in f. Relations which are simultaneously reflexive, transitive
and anti-symmetric play an important role in mathematics; and we give a name to such relations.
Definition: Let X be a nonempty set. A relation f on X is called a partial order if f is reflexive,
transitive and anti-symmetric. Let f be a partial order on X and let a, b € X. Then, a and b are said
to be comparable (with respect to the partial order f) if either (a, b) € f or (b, a) € f. When a partial
order satisfies some other desirable properties, they are given different names. We fix some of these
in the following definition.

Definition: Let X be a nonempty set.
1. The pair (X, f) is called a partially ordered set (in short, poset) if f is a partial order on X.

2. A partial order f on X is called a linear order if either (x,y) € for (y, x) € fforall x,y € X, i.e.,
when any two elements of X are comparable. A linear order is also called a total order, or a
complete order.

3. The poset (X, f) is said to be a linearly ordered set if f is a linear order on X.

4. A linearly ordered subset of a poset is called a chain in the poset. The maximum size of a chain
in a poset is called the height of a poset.

5. Let (X, f) be a poset and let A < X. A is called an anti-chain in the poset if no two elements of A
are comparable.

The maximum size of an anti-chain in a poset is called the width of the poset. You may imagine the
elements of a linearly ordered set as points on a line. The height of a poset is the maximum of the
cardinalities of all chains in the poset. The width of a poset is the maximum of the cardinalities of
all anti-chains in the poset.

Examples:

1. The poset in Examplel has height 1 (size of the chain {1}) and width 5 (size of the anti-chain {1,
2,3,4,5}).



2. The poset in Examplel has height 2 (respective chain is {1, 2}) and width 4 (respective anti-
chains are {2, 3, 4,5} and {1, 3, 4, 5}).

3. The poset in Examplel has height 2 (respective chains are {1, 2} and {3, 4}) and width 3 (a
respective anti-chain is {1, 3, 5}).

4. The usual order (usual <) in N is a linear/complete/total order. The same holds for the usual order
inZ, QandR.

5. If (X, f) is a finite linearly ordered set then the singleton subsets of X are the only anti-chains.
In this case, the height of X is the number of elements in X and the width of X is 1.

6. The set N with the partial order f defined by “(a, b) € f if a divides b” is not linearly ordered.
However, the set {1, 2, 4, 8, 16} is a chain. This is just a linearly ordered subset of the poset.

There are larger chains, for example, {2 k : k=0, 1, 2, .. .}. The set of all primes is an anti-chain
here. The poset (N, f) has infinite height and infinite width.

7. The poset (P({1, 2, 3, 4, 5}), <) is not linearly ordered. However, {@, {1, 2}, {1, 2, 3,4, 5}} isa
chainin it. Also, {@, {2}, {2, 3}, {2, 3, 4}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}} is a chain. The height of this
poset is 6.

That is, if f is a partial order on a nonempty set X we write x < y to mean that (x, y) € f.
Accordingly, the poset (X, f) is written as (X, <). Also, instead of writing (X, f) is a poset’ we will
often write ‘X is a poset with the partial order f°. Following custom, by x >y we mean y < x; by x <
y we mean that x <y and x 6=y; by x >y we mean y < x. Also, we read x <y as X is less than or
equal to y; x <y as x is less than y; x >y as x is greater than or equal to y; and x >y as x is larger
thany.

Definition: Let (X, <) be a finite linearly ordered set (like the English alphabet witha<b<c<- - -

< z) and let Xx be the collection of all words formed using the elements of X. Fora=ala2 - - - an, b
=blb2 - - -bme X xform,n €N, definea<bif(a)al <bl,or(b)ai=bifori=1,...,kfor
some k < min{m, n} and ak+1 < bk+1, or (c)ai =bifori=1,2,...,n=min{m, n}. Then (* , <)

is a linearly ordered set. This ordering is called the lexicographic or dictionary ordering. Sometimes
¥ is called the alphabet and the linearly ordered set X* is called the dictionary.

A directed graph representation of the poset (A, <) with A = {1, 2, 3, 9, 18} Given a set, X, we can
order the subsets of X by the subset relation: A € B, where A, B are any subsets of X.

For example, if X = {a, b, c}, we have {a} < {a, b}.

However, note that neither {a} is a subset of {b, c} nor {b, c} is a subset of {a}.
We say that {a} and {b, c} are incomparable.

Definition:

A binary relation, <, on a set, X, is a partial order (or partial ordering) iff it is reflexive, transitive
and antisymmetric,

that is: (1) (Reflexivity): a < a, for all a € X

(2) (Transitivity): Ifa<band b<c,thena<c, forall a,b, c € X.



(3) (Antisymmetry): [fa<band b <a,thena=b, forall a, b € X.

A partial order is a total order (ordering) (or linear order (ordering)) iff for all a, b € X, eithera<b
or b <a. When neither a <b nor b < a, we say that a and b are incomparable.

A subset, C € X, is a chain iff < induces a total order on C (so, for all a, b € C, eithera<b or
b <a).

The strict order (ordering), < is the strict order associated with a partial order, <, then < is transitive
and antireflexive, which means that (4) a &< a, for all a € X.

Conversely, let < be a relation on X and assume that < is transitive and anti-reflexive.

If confusion may arise, for example when we are dealing with several posets, we denote the partial
order on X by <X.

The trick is to draw a picture consisting of nodes and oriented edges, where the nodes are all the
elements of X and where we draw an oriented edge from a to b iff a is an immediate predecessor of
b. Such a diagram is called a Hasse diagram for (X ,<).

The Hasse diagram of a finite poset (X, <) is a picture drawn in the following way:
1. Each element of X is represented by a point and is labeled with the element.

2. If a < b then the point labeled a must appear at a lower height than the point labeled b and further
the two points are joined by a line.

3. If a<b and b < ¢ then the line between a and c is removed.
Example: Hasse diagram for the poset (A, <) with A = {1, 2, 3, 9, 18} and < as the ‘divides’

relation is given below.

1

Definition:
Let (X, <) be a poset and let A € X.

1. We say that an element x € X is an upper bound of A if for each z € A, z < x; or equivalently,
when each element of A is less than or equal to x. An element y € X is called a lower bound of A if
for each z € A, y < z; or equivalently, when y is less than or equal to each element of A.

2. An element x € A is called the maximum of A, if x is an upper bound of A. Thus, maximum of A
is an upper bound of A which is contained in A. Such an element is unique provided it exists. In
this case, we denote x = max{z : z € A}. Similarly, minimum of A is an element y € A which is a
lower bound of A. If minimum of A exists, then it is unique; and we write y = min{z : z € A}.
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3. An element x € X is called the least upper bound (lub) of A in X if x is an upper bound of A and
for each upper bound y of A, we have x <y; i.e., when x is the minimum (least) element of the set
of all upper bounds of A. Similarly, the greatest lower bound (glb) of A is a lower bound of A
which is greater than or equal to all upper bounds of A, it is the maximum (largest) of the set of all

lower bounds of A.

4. An element X € A is a maximal element of A if x < z for some z € A implies X = z; or
equivalently, when no element in A is larger than x. An elementy € A is called a minimal element
of A if z <y for some z € A implies y = z; or equivalently, when no element in A is less than vy.
Example: Consider the two posets X = {a, b, c} and Y = {a, b, ¢, d} described by the following

Hasse diagrams:

.!Ij\/'f.

il

X
Let A = X. Then,
(a) the maximal elements of A are b and c,
(b) the only minimal element of A is a,
(c) a is the lower bound of A in X,
(d) A has no upper bound in X,
(e) A has no maximum element,
(f) a is the minimum element of A,
(9) no element of X is the lub of A, and
(h) ais the glb of Ain X.

Example:

] (&

LI



The following table illustrates the definitions by taking different subsets 4 of X, and also con-

sidering the same 4 as a subset of ¥,

A={bec}C X | A={a,c} CX | A={b e} CY
Maximal element(s) of 4 b C b, o
Minimal element(s) of A b e i b, e
Lower bound(s) of 4 in X | a i v
Lower bound{s) of AinY | a a a
Upper bound(s) of 4 in X | does not exist | ¢ d
Upper bound(s) of 4 in ¥ | does not exist | e d

Maximum element of A

does not exist

does not exist

Minimum element of 4

does not exist

does not exist

lub of 4 in X

does not exist

i

lbof AinY

does not exist

i

glbhof Ain X

(F

L

il

glhof Ain ¥

ik

i

L

Definition: A linear order < on a nonempty set X is said to be a well order if each nonempty subset
of X has minimum. We call (X, <) a well ordered set to mean that <is a well order on X.

Often we use the phrase ‘X is a well ordered set with the ordering as <’ to mean ‘(X, <) is a well
ordered set’.

Lattice: A poset (L, <) is called a lattice if each pair x, y € L has an lub and also a glb. A lub of x,
y is also written as x V y (read as ‘x or y’ / ‘join of x and y’) and a glb of X, y as x Ay (read as ‘x
and y’ / ‘meet of x and y”). A lattice is a poset in which any two elements have a meet and a join.

A complete lattice is a poset in which any subset has a greatest lower bound and a least upper
bound.

It is easy to show that any finite lattice is a complete lattice and that a finite poset is a lattice iff it
has a least element and a greatest element.

The poset N+ under the divisibility ordering is a lattice!

A lattice is called a distributive lattice if for all pairs of elements x, y the following conditions,
called distributive laws, are satisfied: XV (yAzZ) = (XVY)A(XVZ),XA(YVZ)=(XAY)V (XAZ).

Indeed, it turns out that the meet operation corresponds to greatest common divisor and the join
operation corresponds to least common multiple.

However, it is not a complete lattice. The power set of any set, X, is a complete lattice under the
subset ordering.



Fix a positive integer n and let IMn) denote the set of all divisors of n. For elements x, y € DN{n),
define & < y if @ divides y. Then (Di{n), <) is a distributive lattice, where v = lem and A = ged.

For n = 12,30 and 36, the corresponding lattices are shown below.

12 30
1 i 6 > I 15
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To check the first distributive law, let a,b.e € D(n). p a prime, and let & € M. Further, let
p*|lem{a, ged{b, ¢}}. Then, either p*|a or p*|b,e. In that ease, p*|lem{a,b} and p*|lem{a,c}.
So, p*|ged{lem{a, b}, lem{a,c}}.

Now, let us assume that p""|gt:tl{lcm{u.f)}.lcm{u.r.'}}. Then, p“"||cm{u.b} and p""'||cm{ﬂ_f.'}.
Then, either p¥la or (p*|b and p*|e). So, p*|lem{a, ged{b, e}}.

Thus, any power of a prime divides av (b A e) if and only if it divides (av b) A (aV ¢). Therefore,

aV(bAe)=laVb)AlaVe). Similarly, the second distributive law can be verified.

Proposition: If X is a lattice, then the following identities hold for all a, b, ¢ € X:
Llavb=bvaaAb=bAa
L2(avb)vc=av(bvc),(@arnb)ac=an(bAac)

L3ava=a,ana=a

L4(avb)ana=a (aAb)va=a.

Properties (L1) correspond to commutativity,

properties (L2) to associativity,

properties (L3) to idempotence and

properties (L4) to absorption.

Furthermore, forall a, b € X, we have a<biffav b =Db iffa A b =a, called consistency.
Properties (L1)-(L4) are algebraic properties.

Properties: In a lattice (L, <), the following are true:

1. [ldempotence] :ava=a,ana=a

2. [Commutativity] ;tavb=bvaaAnb=bAa

3. [Associativity] :av (bvc)=(avb)vc,an(bAac)=(@Ab)Ac



4, a<bo aVvb=b.Similarly,a<b< aAb=a
5. [Absorption] :av (aAb)=a=aA(avb)
6. [Isotonicity] :b<c=avb<avec,b<c=aAb<aAc
7.a<b,c<d=>aVvc<bvd,as<b,c<d=aAc<bAd
8. [Distributive Inequality] :av (bAc)<(avb)A(avc),an(bvc)>(@aAb)v(anc)
9. [Modularity] :a<ce aV(bAc)<(avb)Ac
Proof. We prove only the first parts of all assertions; the second parts can be proved similarly.
(1) a Vv ais an upper bound of {a, a}.
Hence a vV a > a. On the other hand, a is an upper bound of {a, a}.
So, a V a being the least of all upper bounds of {a, a}, is less than or equal to a.
Henceava=a.
(2) a<bva, b<bva.
So, bva is an upper bound of a, b.
Since avb is the least of all upper bounds of a, b, we haveavb<bV a.
Exchanging aand b, we getbva<avhb.
Henceavb=bva.
(3) Letd=av (b Vvc).
Then,d>a,d>bVcsothatd>a,d>bandd>c.So,d>aVvbandd>c.
That is, d > (a v b) v c. Similarly,e=(aVv b) vV cimpliese>a V (b v c).
Thus, the first part of the result follows.

(4) Let a <b. As b is an upper bound of {a, b}, and a v b is the least of all upper bounds of {a,
b}, we haveaVv b <b.

Also, a v b is an upper bound of {a, b} and hence av b >b.
So,wegetavb=h.

Conversely, letav b =Dh.

As a V b is an upper bound of {a, b}, we havea<aVv b=h.
Therefore,a<b & aVvb=h.

(5) By definitionaAb<a.So,aV (aAb)<aVva=ausing (1).
Also, by definitiona Vv (a A b) > a.

Hence,aVv (aAb) =a.



(6) Letb<c.NotethataVc>aandaVc>c>b.

So, a Vv cis an upper bound of {a, b}.

Thus,aV c>1Ilub{a,b} =aVvh.

(7) Using (6), we haveaVvVc<bVvc<bvd.

Again, using (6), wegetaAc<bAc<bAd.

(8) Notethata<avbanda<avVc.
Thus,a=aAa<(avb)A(avec).
Asb<aVbandc<avecby(7),wegetbAac<(avb)Aa(avec).
So, by definitionav (b Ac)<(avb)A(aVc).

(9) Leta<c. Then, a VvV ¢ =c and hence by (8), we haveaVv (b Ac)<(avb)A(avc)=(aVvh)
A c. Conversely, letav (b Ac)<(avb)Ac.

Thena<av(bAc)<(avb)Ac<c.
Theorem:

The direct product of two distributive lattices is a distributive lattice. Proof. Let (al, bl), (a2,
b2), (a3, b3) be elements in the direct product of two distributive lattices. Then [(al, bl) v (a2,
b2)] A (@3, b3) =(al v a2, bl v b2) A (a3, b3)=(alva2)Aa3,(blvb2)Ab3 =(al Aa3)V (a2
A a3), (b1 A Db3) v (b2 A b3) = (al A a3),(b1 A b3) Vv (a2 A a3),(b2 A b3) == (al, bl) A (a3,
b3) v (a2, b2) A (a3, b3).

This verifies one of the distributive laws. Similarly, the other one can be verified.

Definition: Let (L1, <1) and (L2, <2) be lattices. A function f: L1 — L2 satisfying f(av1b) =
f(a)v2f(b) and f(anlb) = f(a)A2f(b) is called a lattice homomorphism.

Further, if f is a bijection, then it is called a lattice isomorphism.
Definition:

Let (L, <) be a lattice. It is called a bounded lattice if there exist elements o, § € L such that for

each x € L, we have x < o and < x. Such an element a is called the largest element of L, and is
denoted by 1. The element B € L satisfying B < x for all x € L is called the smallest element of L,
and is denoted by 0.

Notice that if a lattice is bounded, then 1 is the lub of the lattice and 0 is the glb of the lattice.

Definition: A lattice (L, <) is said to be complete if each nonempty subset of L has lub and glb

in L. For A € L, we write lub of A as VA, and glb of A, as AA. It follows that each complete lattice
is a bounded lattice.

Examples:

1. The set [0, 5] with the usual order is a lattice which is both bounded and complete. So, is the
set [0, 1) U [2, 3].
2. The set (0, 5] with the usual order is a lattice which is neither bounded nor complete.
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3. Theset [0, 1) U (2, 3] with the usual order is a lattice which is bounded but not complete.

4. Every finite lattice is complete, and hence, bounded.

5. The set R with the usual order is a lattice. It is not a complete lattice. Observe that the
completeness property of R, i.e., “for every bounded nonempty subset a glb and an lub
exist” is different from the completeness in the lattice sense.

(1,1.1) 30 {a.b,c}
(1.1,0) : (0,1,1) 6« 10 15 {a.b} b, )
[l_ll.'[]} | [n_{l_l} 2 3 5 {r:} | {:’.‘}
(0, 0.0) 1 i

Definition:Let (L, <) be a bounded lattice. We say that (L, <) is a complemented lattice if for
each x € L, there exists y € L such that xvy = 1 and xAy = 0. Such an element y corresponding
to the element x is called a complement of x, and is denoted by -x.

Theorem: Let (L, <) be a lattice and let a, b, ¢ € L. The following table lists the properties that
hold (make sense) in the specified type of lattices.

Properties Lattice type
V. A are idempolent Any lattice
V. A are commutative Any lattice
V. A are associalive Any lattice
a=<~bhb=saprb=asaVvb="h Any lattice
[Absorption] af(aVvbh)=a=aV (a/b) Any lattice
[Isotomicity] b<e={avb<avVearb<ahe} Any lattice

avibarel <(avb)Alave)

Any lattice
a M [f;‘-_.-' c) = (anb)v [u Ae) ny lattice

[Distributive inequalities]

[Modular inequality] a <c<aVv (bie) < (avh) re Any lattice

0 is unigue; 1 i3 winique Bounded latlice

If a is a complement of b, then b is also a complement of o | Bounded latlice

=0 15 wnigue and if 15 1; =1 45 unique and if is 0 Bownded lattice

An element a has o unigue complement Distributive complemented laftice

ave=bWvVe aVv-oe=0v —'E’.’} =a==h

Distributive complemented laftice
afe=hbhe al—e= ﬂl.-"x—-f:} =a=h

[Cancellation] i

=(aVb)==aA=h o .
[De-Morgan] (a A D) " Distributive complemented laftice
=la Ab)=—aV =

v bhb=1<avh=a o .
Distributive complemented laftice
af-b=0&aflb=a

11



Proof. We will only prove the properties that appear in the last three rows; others are left as
exercises.

Cancellation property:b=bvO0O=bv(cA-c)=(bvc)aA(bv-c)=(@avc)a(av-c)=aVv(c
A-c)=avO0=a.b=bAl=bA(cvac)=(bAac)v(bAa-c)=(@Ac)v(@aAr-c)=aA(cV
-Cc)=aAl=a.

De-Morgan’s property: (aVb)V (-aA-b)=(@vbv-a)A(@avbv-b)=1A1l=1(avb)A
(ran-b)=(@A-an-b)v(bAa-an-b)=0v0=0.

(@Anb)v(-rav-b)=(av-av-b)A(bv-av-b)=1A1=1
(@nb)a(-av-b)=(aAbAa-a)v(@aAnba-b)=0A0=0.

Using Definition, on the first two equalities, we get =(a vV b) = =a A =b; and using it again on
the last two equalities, we obtain =(a A b) = (-a v —=b).

To prove the next assertion, note thatifav -b=1,thena=av (bA-b)=(avb)A(av-b)=
(avb)yal=avh.

Conversely, ifa=avb,thenav-b=(avb)v-b=1.

Similarly, the second part is proved.
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UNIT -V - BOOLEAN ALGEBRA
Boolean Algebra, Basic properties, Sub algebra, Direct Product, and Homomorphism,

Boolean Functions.

Definition:

A Boolean algebra is a nonempty set S which is closed under the binary operations Vv (called join),
A (called meet), and the unary operation — (called inverse or complement) satisfying the following
properties for all x,y, z € S:

1. [Commutativity] : XxVy=yVvXxand XAy =y AX.

2. [Distributivity] : XxV(yAZ)=(XVY)A(XVZ)andXA(YyVZ)=(XAY)V (XA2Z).
3. [Identity elements] : There exist elements 0, 1 € Ssuchthatx vO=xand x A 1 = X.
4. [Inverse] : xv-x=21and X A -x =0.

When required, we write the Boolean algebra S as (S, Vv, A, =) showing the operations explicitly.
Notice that the fourth property in the definition above uses the two special elements 0 and 1, whose
existence has been asserted in the third property.

This is meaningful when these two elements are uniquely determined by the third property.
Theorem:

Let S be a Boolean algebra. Then the following statements are true:

1. Elements 0 and 1 are unique.

2. Corresponding to each s € S, —s is the unique element in S that satisfies the property: sv-s = 1
andsA-s=0.

3.Foreachs €S, -—s=s.

Proof. (1) Let 01, 02 € S be such that for each x € S, xv01 = x and xv02 = x.

Then, in particular, 02 v 01 =02 and 01 v 02 = 01.

By Commutativity, 02 v 01 = 01 v 02.

So, 02 =01. That is, 0 is the unique element satisfying the property that for each x € S, Ovx = x.

A similar argument shows that 1 is the unique element that satisfies the property that for each x € S,
XAL=X.

(2) Let s € S. By definition, —s satisfies the required properties.
For the converse, suppose t,r € Saresuchthatsvt=1,sAt=0,svr=1andsAr=0.

Thent=tA1=tA(SVIN=FCAAS)VEAN=0VEAD)=GCANVEAN=(VI)Ar=1Ar=r.
(3) It directly follows from the definition of inverse, due to commutativity.



Examples:

1. Let S be a nonempty set. Then P(S) is a Boolean algebrawithv =uU, A=N,~A=Ac, 0= 0 and
1 =S. This is called the power set Boolean algebra. So, we have Boolean algebras of finite size as
well as of uncountable size.

2. Take D(30) ={n e N :n| 30} withav b=1Icm(a, b),aAb=gcd(a b)and -a=30a.ltisa
Boolean algebra with 0 = 1 and 1 = 30.

3. Let B = {T, F}, where v, A and - are the usual connectives. It is a Boolean algebra with 0 = F
and1=T.

4. Let B be the set of all truth functions involving the variables p1, . . ., pn, with usual operations v,
A and —. Then B is a Boolean algebra with 0 = 1L and 1 = >. This is called the free Boolean algebra
on the generators p1, . .., pn.

5. The set of all formulas (of finite length) involving variables p1, p2, . . . is a Boolean algebra with
usual operations. This is also called the free Boolean algebra on the generators p1, p2, . . .. Here
also 0 = L and 1 =>. So, we have a Boolean algebra of denumerable size.

Remark: The rules of Boolean algebra treat (v, 0) and (A, 1) equally. Notice that the second parts
in the defining conditions of Definition 8.3.1 can be obtained from the corresponding first parts by
replacing v with A, A with v, 0 with 1, and 1 with 0 simultaneously. Thus, any statement that one
can derive from these assumptions has a dual version which is derivable from the same
assumptions. This is called the principle of duality.

Theorem: [Laws]

Let S be a Boolean algebra. Then the following laws hold for all s, t € S:

1. [Constants] : =0=1,-1=0,sv1=1sAl=ssv0=ssA0=0.

2. [ldempotence] :sVs=s,SAS=S.

3. [Absorption] : sV (sAt)=s,sA(SVL)=s.

4. [Cancellation] :svt=rvtsv-at=rv-at=s=r.

5. [Cancellation] :sSAt=rAt,SA-t=rA-t=s=r.

6. [Associativity] : (svt)vr=sv (tVvr),SAY)ATr=sA(tAT).

Proof. We give the proof of the first part of each item and that of its dual is left for the reader.
(1) 1=0V (-0) = 0.
sv1i=(sv1)Al=(sVI)A(sV-s)=sV(LA-S)=sV-s=1.
SVO=sV(SA-S)=(SVS)A(SV-S)=sAl=s.
(2)s=sv0=sV(SA-S)=(SVS)A(SV-S)=(SVS)AL1l=(sV5S).
B)sv(isAat)y=(sAl)v(sant)=sA(lvt)=sAl=s.

(4) Suppose thatsvt=rvtandsv-t=rv-t. Thens=svO0=sVvV ({tA-t)=(SVI)A(SV t) =
rvoA(rv-t)=rv(tAa-t)=rvO0=r.



(5) This is the dual of (4) and left as an exercise.

(6) Using distributivity and absorption, we have sV (tvr) A=s=(SA-S)V(tVI) A-s =0V (t
VI)A=S =(tVIA=S =(tA=S)V (rA=sS).

sv)vr A-=s=(SV)A-S V(IIA-S)=(SA-S)VHtA-S) VIA-S)=0OV({A-S) V(rA-s)
=(tA=S)V (rA-s).

Hence,sVv (tvr) A=s=(svt)vr A-s.
Also, (svVt)Vr As=(SVI)AS V(rAS)=sV(rAs)=s=sV (tVr) As.
Now, apply Cancellation law to obtain the required result.

Isomorphisms between two similar algebraic structures help us in understanding an unfamiliar
entity through a familiar one. Boolean algebras are no exceptions.

Definition: Let (B1, v1, Al, =1) and (B2, V2, A2, =2) be two Boolean algebras.

A function f : Bl — B2 is a Boolean homomorphism if it preserves 0, 1, V, A, and —. In such a
case, f(01) = 02, f(11) = 12, f(a v1 b) = f(a) v2 f(b), f(a AL b) = f(a) A2 f(b), f(-1a) = -2f(a).

A Boolean isomorphism is a Boolean homomorphism which is a bijection.

Unless we expect an ambiguity in reading and interpreting the symbols, we will not write the
subscripts with the operations explicitly as is done in Definition.

Examples: Recall the notation [n] = {1, 2, . . ., n}. The function f : P([4]) — P([3]) defined by
f(S) = S\ {4} is a Boolean homomorphism.

We check two of the properties and leave others as exercises. f(A v B) =f(A U B) = (A U B) \ {4}
= (A\{4}) u (B\{4}) =f(A) v f(B). f(1) = f([4]) = [4]\ {4} = [3] = 1.

Theorem: Let (B, Vv, A, —) be a Boolean algebra. Define the relation < on B by a < b if and only if
aAb=aforall a b € B. Then (B, <) is a distributive complemented lattice in which lub{a, b} = a
v bandglb{a, b} =aAbforalla b eB.

Proof: We first verify that (B, <) is a partial order.
Reflexive: s <s if and only if s A s = s, which is true.
Antisymmetry: Let s <tand t <s. Then we haves =s At =t.
Transitive: Let s <tandt<r. Thens At=sandtAr=t.
Using associativity, SATr=(SAt) Ar=sA(tAr)=sAt=s;
consequently, s <r. Now, we show that a vV b = lub{a, b}.

Since B is a Boolean algebra, using absorption, we get (a V b) A a = a and hence a < a Vv b.
Similarly,b<aVvb.

So, a Vv b is an upper bound for {a, b}. Now, let x be any upper bound for {a, b}.
Then, by distributive property, (@vb)Ax=(@AXx)Vv (bAx)=aVh.
So,aV b <x. Thus, aV bisthe lub of {a, b}.



Analogous arguments show that a A b = glb{a, b}.

Since for all a, b € B, avb and aAb are in B, we see that lub{a, b} and glb{a, b} exist.
Thus (B, <) is a lattice.

Further, if a € B, then —a € B. This provides the complement of a in the lattice (B, <).
Further, both the distributive properties are already satisfied in B.

Hence (B, <) is a distributive complemented lattice.

Definition: Let (B, v, A, ) be a Boolean algebra. The relation < on B given by a <b if and only if
aAb=aforall a b €Bis called the induced partial order.

A minimal element of B with respect to the partial order <, which is different from 0 is called an
atom in B.

Examples:

1. In the power set Boolean algebra, singleton sets are the only atoms.
2. In Example atoms of D(30) are 2, 3 and 5.

3. The {F, T} Boolean algebra has only one atom, namely T.
Proposition: Each finite Boolean algebra has at least one atom.
Proof:

Let B be a finite Boolean algebra.

Assume that no element of B is an atom.

Now, 0 <1 and 1 is not an atom.

Then there exists bl € B such that 0 < bl < 1.

Since bl is not an atom, there exists b2 € B such that 0 < b2 <bl < 1.

By induction it follows that we have a sequence of elements (bi) such that 0 <- - - <bi<bi—1 <- -
-<bl<1l

As B is finite, there exist k > j such that bk = bj .

We then have bk <bk—1 < - - - <bj = Dbk.

This is impossible. Hence B has at least one atom.

Proposition: Let p and q be atoms in a Boolean algebra B. If p 6=q, thenp A g = 0.
Proof:

Suppose thatp A q 6= 0.

We know thatp A q <p.

IfpAQ6=p,thenpAq<p.



But this is not possible since p is an atom.
So, pAQ = p. Similarly, gAp = g.
By commutativity, p = pAq = gAp = Q.

Theorem: [Representation] Let B be a finite Boolean algebra. Then there exists a set X such that B
Is isomorphic to P(X).

Proof: Let X be the set of all atoms of B.

By Proposition, X 6= @.

Define f: B — P(X) by f(b) ={X € B : x is an atom and x <b} for b € B.
We show that f is the required Boolean isomorphism.

Injection: Suppose bl 6= b2.

Then, either b1 b2 or b2 b1.

Without loss of generality, let b1 b2.

Note that bl = b1 A(b2 v =b2) = (b1 Ab2)Vv(b1 A =b2).

Also, the assumption b1 b2 implies bl Ab2 6=Db1 and hence bl A =b2 6= 0.
So, there exists an atom x < (bl A =b2) and hence x = X A b1 A =b2.
Thenx Abl=(XADblA=b2) Abl=xAblA=b2=x.

Thus, x <bl.

Similarly, x <—b2. Asx 6=0,

we cannot have x < b2 (for, x <—b2 and x <b2 imply x <b2 A =b2 = 0).
Thus there is an atom in f(b1) which is not in f(b2).

Therefore, f(b1) 6= f(b2).

Surjection: Let A= {x1, ..., xk} € X.

Writea=x1V - - -V xk (if A= 0@, take a=0).

Clearly, A c f(a). We show that A = f(a). So, lety € f(a).
ThenyisanatominBandy=yAa=yA(X1lV:--VXK)=(yAxL) V-V (yAxk).
Since y 6= 0, by Proposition, y A xi 6= 0 forsomei € {1, 2,. .., k}.

As xi and y are atoms, we have y =y A xi = xi and hence y € A.

That is, f(a) € A so that f(a) = A.

Thus, f is a surjection. Preserving 0, 1 : Clearly f(0) = @ and f(1) = X. Preserving Vv, A : By
definition, x € f(b1 A b2) © x <bl Ab2 © x<bl and x <b2 & x € f(bl) and x € f(b2) & x €
f(b1) N f(b2).



For the other one, let x € f(b1 v b2). Then, x =x A (b1 v b2) = (X A bl) V (X A b2).
So,x Abl16=0o0rxAb26=0.

Without loss of generality, suppose x A b1 6= 0.

As x is an atom, x <bl and hence x € f(b1) < f(b1) U f(b2).

Conversely, let x € f(b1) U f(b2). Without loss of generality, let x € f(b1).

Thus, x <bl and hence x <bl Vv b2 which in turn implies that x € f(b1 v b2).
Therefore, x € f(b1 v b2) & x € f(bl) U f(b2).

Preserving - : Let x € B. Then f(x)Uf(-x) = f(xv—x) = f(1) = X and f(x)Nf(—x) = f(xA-x) = f(0) =
@.

Thus f(=x) = f(x) c.
As immediate consequences of the representation theorem, we obtain the following results.

Corollary: Let B be a finite Boolean algebra.

1. If B has exactly k atoms then B is isomorphic to P({1, 2, . . ., k}). Hence, B has exactly 2 ¥
elements.
2. FixbeB. Ifpy, ..., pnarethe only atoms less than or equal to b, thenb =p1 Vv - - - V pn.



