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 The equation          is called the characteristic equation of the matrix A 

Note: 

1. Solving          , we get n roots for   and these roots are called characteristic roots 

or eigen values or latent values of the matrix A 

2. Corresponding to each value of  , the equation AX =    has a non-zero solution vector 

X 

If    be the non-zero vector satisfying AX =   , when     ,    is said to be the latent 

vector or eigen vector of a matrix A corresponding to    

The determinant         when expanded will give a polynomial, which we call as 

characteristic polynomial of matrix A 

Method 1: 

The characteristic equation is          

Method 2: 

ANCILLIARY

1.1 CHARACTERISTIC EQUATION: 

1.2 CHARACTERISTIC POLYNOMIAL: 

1.3 Working rule to find characteristic equation: 

1

1.3.1 For a 3 x 3 matrix: 

Hp
Typewritten text
1. Introduction



 

 Its characteristic equation can be written as       
           where                                       

                                     

                                                   ,  

                       

Method 1: 

The characteristic equation is          

Method 2: 

 Its characteristic equation can be written as             where 

                                    ,                         

Problems: 

1. Find the characteristic equation of the matrix (
  
  

) 

Solution:  Let A = (
  
  

). Its characteristic equation is            where    

                                  , 

                       = 1(2) – 2(0) = 2 

Therefore, the characteristic equation is            

2. Find the characteristic equation of (
    

     
    

) 

Solution:  Its characteristic equation is       
        

                               = 8 + 7 + 3 = 18, 

                                           |
   

   
|  |

  
  

|  |
   

   
|    

        ,                        = 8(5)+6(-10)+2(10) = 40 -60 + 20 = 0 

Therefore, the characteristic equation is               

3. Find the characteristic polynomial of (
  

   
) 

2

1.3.2 For a 2 x 2 matrix: 

  , where 

 



 

Solution: Let A = (
  

   
) 

The characteristic polynomial of A is           where                                 

= 3 + 2 = 5 and                         = 3(2) – 1(-1) = 7 

Therefore, the characteristic polynomial is         

Statement: Every square matrix satisfies its own characteristic equation 

(1) To calculate the positive integral powers of A 

(2) To calculate the inverse of a square matrix A 

Problems: 

1. Show that the matrix [
   
  

] satisfies its own characteristic equation  

           where 

                                                                  

                  

The characteristic equation is           

To prove            

        [
   
  

] [
   
  

] = [
    
     

] 

          [
    
     

]  [
   
  

]  [
  
  

]  [
  
  

]    

Therefore, the given matrix satisfies its own characteristic equation 

2. If A = [
  
  

]                                                            

Solution:Cayley-Hamilton theorem states that every square matrix satisfies its own 

characteristic equation.  

The characteristic equation of A is             where  

                                       

          

2.1 CAYLEY-HAMILTON THEOREM: 

3

2.2 Uses of Cayley-Hamilton theorem: 

   
Solution:Let A = [ ] . The characteristic equation of A is  

  



 

Therefore, the characteristic equation is           

By Cayley-Hamilton theorem,            

i.e.,          

3. Verify Cayley-Hamilton theorem, find            when A = [
    

     
    

] 

Solution: The characteristic equation of A is       
           where  

                                             

                                                            

                                          

Therefore, the characteristic equation is               

To prove that:               ------------- (1) 

   [
      

     
      

] [
    

     
    

]  [
    

     
    

] 

           [
    

     
    

] [
      

     
      

]   [
       

        
       

] 

            

  [
       

        
       

]  [
       

        
       

]  [
      
      
     

]  [
   
   
   

]        

 [
   
   
   

]    

To find   :  

                                  ------------- (2) 

Multiply by A on both sides,                                    

Therefore,                                     

Hence,      [
    

     
    

]    [
      

     
      

]    [
   
   
   

] 
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   [
               

              
              

]  [
           

            
           

]  [
    
    
    

]   

[
          
         
        

] 

To find      

Multiplying (1) by                     

               

       [
    

     
    

]   [
      

     
      

]   [
   
   
   

] 

 [
    

     
    

]  [
       
     

      
]  [

   
   
   

]  [
    
   

    
] 

     
 

 
[

    
   

    
] 

4. Verify that A = [
  
   

] satisfies its own characteristic equation and hence find    

Solution:Given A =[
  
   

]. The characteristic equation of A is             where            

                                     

               

Therefore, the characteristic equation is           i.e.,        

To prove:        ---------- (1) 

    [
  
   

] [
  
   

]  [
      
      

]  [
  
  

] 

      [
  
  

]   [
  
  

]   [
  
  

]  [
  
  

]  [
  
  

]    

To find     

From (1), we get,               

Multiplying by    on both sides, we get,                [
  
  

]  [
   
   

] 

5. Find     if A = [
    
    
    

], using Cayley-Hamilton theorem 
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           where  

                                             

                                                                      

           

                                        

The characteristic equation of A is               

By Cayley- Hamilton theorem,                ------------ (1) 

To find      

Multiplying (1) by      we get,                                      

                    
 

 
            ------------- (2) 

   [
    
    
    

] [
    
    
    

]  [
                
                 
                

]  [
   
    
    

] 

           [
      
      
     

]  [
    
    
    

]  [
   
   
   

]  [
    

      
    

] 

From (2),     
 

 
[

    
      
    

] 

6. If A = [
  
  

]                        

Solution:The characteristic equation of A is             where 

                                           

             

The characteristic equation of A is           i.e.,   
  √             

    
 

   

 
     

To find     

When    is divided by        , let the quotient be      and the remainder be      

                      ---------- (1) 

When                                                                When             

           ------------ (2) 

6

Solution:The characteristic equation of A is  



 

          ------------ (3) 

Solving (2) and (3), we get, (2) - (3)         

                                         (2) – 2 x (3)              

i.e.,         

           

Since            by Cayley-Hamilton theorem, (1)           

          [
  
  

]           ] [
  
  

] 

7. Use Cayley-Hamilton theorem for the matrix   [
  
  

] to express as a linear 

polynomial in A (i)                        (ii)                 

Solution: Given A = [
  
  

]. The characteristic equation of A is             where            

                                           

              

The characteristic equation is           

By Cayley-Hamilton theorem, we get,             ------------ (1) 

         

                            

                                                                          

              

(-)              

           

                

    

 

                                                       

       (by (1)) which is a linear polynomial in A 

(i)                                         
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(-)                      

                =                  = 0 + A + 2I = A +2I    (by (1)) which is a 

linear polynomial in A 

8. Using Cayley-Hamilton theorem, find     when A = [
   
    
    

] 

Solution:The characteristic equation of A is       
           where 

                                             

                                                                    

           

                                         

The characteristic equation is              

By Cayley-Hamilton theorem,               

Pre-multiplying by      we get,                    
 

 
           

   [
   
    
    

] [
   
    
    

]   [
               
               
               

]  [
    
   
    

] 

    [
     
      
    

];    [
   
    
    

]     [
   
   
   

] 

    
 

 
([

     
      
    

]  [
   
    
    

]  [
   
   
   

])  
 

 
[
   
    
     

] 

9. Verify Cayley-Hamilton theorem for the matrix    [
   
   
   

] 

Solution: Given A = [
   
   
   

] 

The Characteristic equation of A is       
           where  

    Sum of the main diagonal elements = 1+2+1 = 4 
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The characteristic equation is                 

To prove that:                  

   [
   
   
   

] [
   
   
   

]   [
                 
                 
               

]  [
      
      
     

] 

 

       [
      
      
     

] [
   
   
   

]  [
                         
                         
                        

] 

= [
         
         
       

] 

               [
         
         
       

]   [
      
      
     

]    [
   
   
   

]    [
   
   
   

] 

 = [
         
         
       

]   [
      
       
      

]  [
       
      
      

]   [
    
    
    

] 

                                       = [
   
   
   

]    

Therefore, Cayley-Hamilton theorem is verified. 

10. Verify Cayley-Hamilton theorem for the matrix (i) A = [
   

   
]       [

  
  

] 

Solution:(i) Given A = [
   

   
] 

The characteristic equation of A is             where 

                                           

                

The characteristic equation is            

To prove that:             

   [
   

   
] [

   
   

]  [
       

        
]   [

    
    

] 
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    [
   

   
]  [

    
    

] 

      [
  
  

]  [
   
   

] 

          [
    
    

]  [
    
    

]  [
   
   

]  [
  
  

]    

Hence Cayley-Hamilton theorem is verified. 

(ii)  Given A = [
  
  

] 

The characteristic equation of A is             where 

                                           

              

The characteristic equation is           

To prove that:            

   [
  
  

] [
  
  

]  [
       
      

]  [
   
   

] 

    [
  
  

]  [
   
   

];     [
  
  

]  [
  
  

] 

          [
   
   

]  [
   
   

]  [
  
  

]  [
  
  

]    

Hence Cayley-Hamilton theorem is verified. 

 

1. Find the characteristic equation          

2. Solve the characteristic equation to get characteristic roots. They are called eigen values 

3. To find the eigen vectors, solve      ]    for different values of   

Note: 

1. Corresponding to n distinct eigen values, we get n independent eigen vectors 

2. If 2 or more eigen values are equal, it may or may not be possible to get linearly 

independent eigen vectors corresponding to the repeated eigen values 

3.EIGEN VALUES AND EIGEN VECTORS OF A REAL MATRIX: 

3.1 Working rule to find eigen values and eigen vectors: 

10



 

3. If    is a solution for an eigen value   , then c   is also a solution, where c is an arbitrary 

constant. Thus, the eigen vector corresponding to an eigen value is not unique but may 

be any one of the vectors c   

4. Algebraic multiplicity of an eigen value   is the order of the eigen value as a root of the 

characteristic polynomial (i.e., if   is a double root, then algebraic multiplicity is 2) 

5. Geometric multiplicity of   is the number of linearly independent eigen vectors 

corresponding to   

 If a square matrix A is non-symmetric, then A ≠    

Note: 

1. In a non-symmetric matrix, if the eigen values are non-repeated then we get a linearly 

independent set of eigen vectors 

2. In a non-symmetric matrix, if the eigen values are repeated, then it may or may not be 

possible to get linearly independent eigen vectors.  

If we form a linearly independent set of eigen vectors, then diagonalization is possible 

through similarity transformation 

 If a square matrix A is symmetric, then A =    

Note: 

1. In a symmetric matrix, if the eigen values are non-repeated, then we get a linearly 

independent and pair wise orthogonal set of eigen vectors 

2. In a symmetric matrix, if the eigen values are repeated, then it may or may not be 

possible to get linearly independent and pair wise orthogonal set of eigen vectors 

If we form a linearly independent and pair wise orthogonal set of eigen vectors, then 

diagonalization is possible through orthogonal transformation 

Problems: 

1. Find the eigen values and eigen vectors of the matrix (
  
   

) 

3.2 Non-symmetric matrix: 

3.3 Symmetric matrix: 
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Solution: Let A = (
  
   

) which is a non-symmetric matrix 

To find the characteristic equation: 

The characteristic equation of A is             where 

                                     , 

                       = 1(-1) – 1(3) = - 4 

Therefore, the characteristic equation is        i.e.,      or      

Therefore, the eigen values are 2, -2  

A is a non-symmetric matrix with non- repeated eigen values 

 

To find the eigen vectors: 

      ]    

[(
  
   

)   (
  
  

)] [
  

  
]  [

 
 
]  [(

  
   

)  (
  
  

)] [
  

  
]   [

 
 
] 

[
    

     
] [

  

  
]   [

 
 
]--------------- (1)  

Case 1: If      [
       

        
] [

  

  
]   [

 
 
]  From (1)] 

i.e., [
  
  

] [
  

  
]   [

 
 
] 

i.e.,          

         

i.e., we get only one equation                    
  

 
  

  

  
 

Therefore    [
 

  
] 

Case 2: If     [
      

       
] [

  

  
]   [

 
 
]  From (1)] 
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i.e., [
   
   

] [
  

  
]   [

 
 
] 

i.e.,                  

                  

i.e., we get only one equation         

       
  

 
 

  

 
 

Hence,    [
 
 
] 

2. Find the eigen values and eigen vectors of [
   
   
   

] 

Solution:  Let A = [
   
   
   

] which is a non-symmetric matrix 

To find the characteristic equation:  

Its characteristic equation can be written as       
           where   

                                       , 

                                            |
  
  

|  |
  
  

|  |
  
  

|        

   , 

                       = 2(4)-2(1)+1(-1) = 5 

Therefore, the characteristic equation of A is                

                                         1                                                                     

                                                             

         1                 -6                    5              0 

                     

   
  √             

    
 

  √  
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Therefore, the eigen values are 1, 1, and 5 

A is a non-symmetric matrix with repeated eigen values 

To find the eigen vectors:  

      ]    

[
     

     
     

] [

  

  

  

]   [
 
 
 
] 

Case 1: If     [
     

     
     

] [

  

  

  

]   [
 
 
 
] 

i.e., [
    
    
    

] [

  

  

  

]   [
 
 
 
] 

               --------- (1) 

              ------------- (2)      

             ------------ (3)  

Considering equations (1) and (2) and using method of cross-multiplication, we get,  

       

2 1 -3 2 

-2 1 1 -2 

 
  

 
  

  

 
  

  

 
 

  

 
  

  

 
  

  

 
 

Therefore,     [
 
 
 
] 

Case 2: If    , [
     

     
     

] [

  

  

  

]   [
 
 
 
] 
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i.e., [
   
   
   

] [

  

  

  

]   [
 
 
 
] 

 

             

            

            

All the three equations are one and the same. Therefore,             

Put                                           

Therefore,     [
 

  
 

] 

Put                                      

Therefore,     [
 
 

  
] 

3. Find the eigen values and eigen vectors of [
    
   
    

] 

Solution:  Let A = [
    
   
    

] which is a non-symmetric matrix 

To find the characteristic equation:  

Its characteristic equation can be written as       
           where   

                                       , 

                                            |
  
   

|  |
  
   

|  |
   
  

|  

          , 

                       = 2(-4)+2(-2)+2(2) = - 8 – 4 + 4 = - 8 

Therefore, the characteristic equation of A is               
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            1                 0                    -4                   0 

                          

Therefore, the eigen values are 2, 2, and -2 

A is a non-symmetric matrix with repeated eigen values 

To find the eigen vectors:  

      ]    

[
      

     
      

] [

  

  

  

]   [
 
 
 
] 

Case 1: If      [

         
        
         

] [

  

  

  

]   [
 
 
 
] 

i.e., [
    
   
   

] [

  

  

  

]   [
 
 
 
] 

               --------- (1) 

              ------------- (2)      

            ------------ (3)  . Equations (2) and (3) are one and the same.  

Considering equations (1) and (2) and using method of cross-multiplication, we get,  

       

-1 1 2 -1 

3 1 1 3 

 
  

  
  

  

  
  

  

 
 

  

 
  

  

 
  

  

  
 

Therefore,     [
 
 

  
] 
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Case 2: If   , [
      

     
      

] [

  

  

  

]   [
 
 
 
] 

i.e., [
    
    
     

] [

  

  

  

]   [
 
 
 
] 

              ---------- (1) 

          ---------------- (2) 

            ------------ (3) 

Considering equations (1) and (2) and using method of cross-multiplication, we get,  

       

-2 2 0 -2 

-1 1 1 -1 

 
  

 
  

  

 
  

  

 
 

  

 
  

  

 
  

  

 
 

Therefore,     [
 
 
 
] 

We get one eigen vector corresponding to the repeated root         

4. Find the eigen values and eigen vectors of [
   
   
   

] 

Solution:  Let A =[
   
   
   

] which is a symmetric matrix 

To find the characteristic equation:  

Its characteristic equation can be written as       
           where   
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                                       , 

                                            |
  
  

|  |
  
  

|  |
  
  

|    

      , 

                       = 1(4)-1(-2)+3(-14) = - 4 + 2-42 = - 36 

Therefore, the characteristic equation of A is                

                                                                                                  

                                                                                                                      

  1                     -9                 18                    0 

                          

   
  √              

    
 

  √     

 
 

   

 
  

   

 
 
   

 
     

Therefore, the eigen values are -2, 3, and 6 

A is a symmetric matrix with non- repeated eigen values 

To find the eigen vectors:  

      ]    

[
     

     
     

] [

  

  

  

]   [
 
 
 
] 

Case 1: If      [

        
        
        

] [

  

  

  

]   [
 
 
 
] 

i.e., [
   
   
   

] [

  

  

  

]   [
 
 
 
] 

              --------- (1) 

              ------------- (2)      

                  ------------ (3)  
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Considering equations (1) and (2) and using method of cross-multiplication, we get,  

                 

1 3 3 1 

7 1 1 7 

 
  

   
  

  

 
  

  

  
 

  

  
  

  

 
  

  

 
  

  

  
  

  

 
  

  

 
 

Therefore,     [
  
 
 

] 

Case 2: If   ,[
     

     
     

] [

  

  

  

]   [
 
 
 
] 

i.e., [
    
   
    

] [

  

  

  

]   [
 
 
 
] 

               ---------- (1) 

            ---------------- (2) 

   3            ------------ (3) 

Considering equations (1) and (2) and using method of cross-multiplication, we get,  

                  

1 3 -2 1 

2 1 1 2 

 
  

  
  

  

 
  

  

  
 

  

  
  

  

 
  

  

  
   

  

 
  

  

  
  

  

 
 

Therefore,     [ 
 
 
 
] 

Case 3: If   , [
     

     
     

] [

  

  

  

]   [
 
 
 
] 
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i.e., [
    
    
    

] [

  

  

  

]   [
 
 
 
] 

               ---------- (1) 

           ---------------- (2) 

3            ------------ (3) 

Considering equations (1) and (2) and using method of cross-multiplication, we get,  

       

1 3 -5 1 

-1 1 1           -1 

 
  

 
  

  

 
  

  

 
 

  

 
  

  

 
  

  

 
 

Therefore,     [
 
 
 
] 

5. Find the eigen values and eigen vectors of the matrix[
   
   
   

]. Determine the 

algebraic and geometric multiplicity 

Solution:  Let A =[
   
   
   

] which is a symmetric matrix 

To find the characteristic equation:  

Its characteristic equation can be written as       
           where   

                                            , 

                                                    |
  
  

|  |
  
  

|  |
  
  

|  

          , 

                         = 0 -1(-1)+ 1(1) = 0 + 1 + 1 = 2 

Therefore, the characteristic equation of A is               

20



 

 

                                                            

                                                                                                               

                    1            -1              -2              0 

                        

   
  √              

    
 

  √   

 
 

   

 
  

   

 
 
   

 
      

Therefore, the eigen values are 2, -1, and -1 

A is a symmetric matrix with repeated eigen values. The algebraic multiplicity of      is 2 

To find the eigen vectors:  

      ]    

[
     

     
     

] [

  

  

  

]   [
 
 
 
] 

Case 1: If     [
     

     
     

] [

  

  

  

]   [
 
 
 
] 

i.e., [
      
    
    

] [

  

  

  

]   [
 
 
 
] 

              --------- (1) 

              ------------- (2)      

            ------------ (3)   

Considering equations (1) and (2) and using method of cross-multiplication, we get,  

            

1 1 -2 1 

-2 1 1           -2 
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Therefore,     [
 
 
 
] 

Case 2: If    , [

        
        
        

] [

  

  

  

]   [
 
 
 
] 

i.e., [
   
   
   

] [

  

  

  

]   [
 
 
 
] 

            ---------- (1) 

           ---------------- (2) 

           ------------ (3). All the three equations are one and the same.  

Therefore,             . Put                        
  

 
  

  

  
 

Therefore,     [
 
 

  
] 

Since the given matrix is symmetric and the eigen values are repeated, let     [
 
 
 

].    is 

orthogonal to             

    ] [
 
 
 

]            ------------ (1) 

     ] [
 
 
 

]             -------- (2) 

Solving (1) and (2) by method of cross-multiplication, we get,  

      l          m             

1 1 1           1 

1 -1 0           1 

22



 

 

  
 

 

 
 

 

 
 . Therefore,     [

  
 
 

] 

Thus, for the repeated eigen value       there corresponds two linearly independent eigen 

vectors          . So, the geometric multiplicity of eigen value      is 2 

Problems under properties of eigen values and eigen vectors. 

1. Find the sum and product of the eigen values of the matrix [
    
       
       

] 

Solution: Sum of the eigen values = Sum of the main diagonal elements = -3 

Product of the eigen values = │A│ = -1 (1 – 1) -1(-1 – 1) + 1(1- (-1)) = 2 + 2 = 4 

2. Product of two eigen values of the matrix A = [
      

        
        

] is 16. Find the third eigen 

value 

Solution: Let the eigen values of the matrix be         .  

Given         

We know that           (Since product of the eigen values is equal to the determinant of 

the matrix) 

        |
         
       
          

| = 6(9-1)+2(-6+2) +2(2-6) = 48-8-8 = 32  

                                   

3. Find the sum and product of the eigen values of the matrix A = (
  
  

) without 

finding the roots of the characteristic equation 

Solution:We know that the sum of the eigen values =  Trace of A = a + d 

                  Product of the eigen values = │A│ = ad – bc 
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4. If 3 and 15 are the two eigen values of A = [
      

        
      

], find │A│, without 

expanding the determinant 

Solution:Given                     

We know that sum of the eigen values = Sum of the main diagonal elements  

                

                  

                                                  

                 

       

5. If 2, 2, 3 are the eigen values of A = [
        

      
         

], find the eigen values of    

Solution:By the property “A square matrix A and its transpose   have the same eigen 

values”, the eigen values of              

6. Find the eigen values of A = [
   
   
   

] 

Solution:Given A = [
   
   
   

] .Clearly, A is a lower triangular matrix. Hence, by the 

property “the characteristic roots of a triangular matrix are just the diagonal elements of the 

matrix”, the eigen values of A are 2, 3, 4 

7. Two of the eigen values of A = [
       

       
       

] are 3 and 6. Find the eigen values of 

    

Solution:Sum of the eigen values = Sum of the main diagonal elements = 3 +5+3 = 11 

Given 3,6 are two eigen values of A. Let the third eigen value be k.  
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Then, 3 + 6 + k = 11      

Therefore, the eigen values of A are 3, 6, 2 

By the property “If the eigen values of A are        , then the eigen values of     

are
 

  
 

 

  
 

 

  
”,  the eigen values of     are 

 

 
 
 

 
 
 

 
 

8. Find the eigen values of the matrix[
   

   
]. Hence, form the matrix whose eigen 

values are 
 

 
       

Solution: Let A =[
   

   
]. The characteristic equation of the given matrix is        

     where                                         and            

Therefore, the characteristic equation is               
  √              

    
 = 

   

 
 

     

Therefore, the eigen values of A are 6, -1 

Hence, the matrix whose eigen values are 
 

 
       is     

    
 

   
       

│A│ = 4 -10 = - 6; adj A = [
  
  

] 

Therefore,     
 

  
[
  
  

] 

9. Find the eigen values of the inverse of the matrix A = [
   
   
   

] 

Solution:We know that A is an upper triangular matrix. Therefore, the eigen values of A are 

2, 3, 4. Hence, by using the property “If the eigen values of A are        , then the eigen 

values of     are
 

  
 

 

  
 

 

  
”, the eigen values of         

 

 
 
 

 
 
 

 
 

10. Find the eigen values of    given A = [
         
      
        

] 
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Solution:Given A = [
   
    
   

]. A is an upper triangular matrix. Hence, the eigen values of 

A are 1, 2, 3 

Therefore, the eigen values of    are          i.e., 1,8,27 

11. If 1 and 2 are the eigen values of a 2 x 2 matrix A, what are the eigen values of 

          ? 

Solution:Given 1 and 2 are the eigen values of A. 

Therefore,           i.e., 1 and 4 are the eigen values of    and 1 and 
 

 
 are the eigen 

values of     

12. If 1,1,5 are the eigen values of A = [
   
   
   

], find the eigen values of 5A 

Solution:By the property “If          are the eigen values of A, then             are the 

eigen values of kA, the eigen values of 5A are 5(1), 5(1), 5(5) ie., 5,5,25 

13. Find the eigen values of A,                                   if A = [
  
  

] 

Solution:Given A = [
  
  

]. A is an upper triangular matrix. Hence, the eigen values of A are 

2, 5 

The eigen values of    are       i.e., 4, 25 

The eigen values of    are       i.e., 8, 125 

The eigen values of    are       i.e., 16, 625 

The eigen values of 3A are 3(2), 3(5) i.e., 6, 15 

The eigen values of     are 
 

 
 
 

 
 

A – I = [
  
  

] - [
  
  

] = [
  
  

] 
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Since A - I  is an upper triangular matrix, the eigen values of A- I are its main diagonal 

elements i.e., 1,4 

Eigen values of                      
     

               
     

        where 

              

First eigen value =    
     

        

                            = 3(2)3+ 5(2)2 - 6(2) + 2 = 24 +  20 -12 + 2=34 

Second eigen value =    
     

        

                                 = 3(5)3+ 5(5)2- 6(5) + 2 

                                 = 375+ 125-30 + 2 = 472 

14. Find the eigen values of adj A if A = [
   
   
   

] 

Solution:Given A =[
   
   
   

]. A is an upper triangular matrix. Hence, the eigen values of A 

are     3, 4, 1 

We know that     
 

   
       

Adj A = │A│    

The eigen values of     are 
 

 
 
 

 
   

│A│=Product of the eigen values = 12 

Therefore, the eigen values of adj A is equal to the eigen values of 12     i.e., 
  

 
 
  

 
    i.e., 

4, 3, 12 

Note: A =[
   
   
   

]     [
   
   
   

]     [
   
   
   

]. Here, A is an upper triangular matrix, 

B is a lower triangular matrix and C is a diagonal matrix. In all the cases, the elements in the 

main diagonal are the eigen values. Hence, the eigen values of A, B and C are 1, 4, 6 
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15. Two eigen values of A = [
   
   
   

] are equal and they are 
 

 
 times the third. Find 

them 

Solution:Let the third eigen value be    

We know that          2+3+2 = 7 

Given      = 
  

 
 

  

 
 

  

 
      

[
 

 
 

 

 
  ]      

 

 
          

Therefore,          and hence the eigen values of A are 1,1, 5 

16. If 2, 3 are the eigen values of [
   
   
   

]                      

Solution:Let A =[
   
   
   

]. Let the eigen values of A be 2, 3, k 

We know that the sum of the eigen values = sum of the main diagonal elements 

Therefore, 2 +3 +k = 2+ 2+2 = 6      

We know that product of the eigen values = │A│ 

 2(3)(k) = │A│ 

    |
   
   
   

|                                  

17. Prove that the eigen vectors of the real symmetric matrix A = [
   
   
   

] are 

orthogonal in pairs 
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Solution:The characteristic equation of A is 

      
          where                                       ; 

                                                               

       |
   
   
   

|                        

The characteristic equation of A is             

 3              1-7 0 36 

               0             3         -12         -36 

 1           -4          -12          0 

 

Therefore,                       
  √               

    
  

   

 
      

Therefore, the eigen values of A are -2, 3, 6 

To find the eigen vectors: 

          

Case 1: When      [
   
   
   

] [

  

  

  

]   [
 
 
 
] 

             -------- (1) 

            ---------- (2) 

             --------- (3) 

Solving (1) and (2) by rule of cross-multiplication, we get, 

       

1 3 3 1 

7 1 1 7 

  

   
 

  

 
 

  

  
     [

  
 
 

] 
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Case 2:When     [
    
    
     

] [

  

  

  

]   [
 
 
 
] 

              --------- (1) 

                  --------- (2) 

                 --------- (3) 

Solving (1) and (2) by rule of cross-multiplication, we get, 

       

1 3 -2 1 

2 1 1 2  

  

  
 

  

 
 

  

  
     [

    
  
    

] 

Case 3:When     [
    
     
     

] [

  

  

  

]   [
 
 
 
] 

              --------- (1) 

                 --------- (2) 

                 --------- (3) 

Solving (1) and (2) by rule of cross-multiplication, we get, 

       

1 3 -5 1 

-1 1 1 -1  

  

 
 

  

 
 

  

 
     [

    
    
    

] 

Therefore,    [
  
 
 

],    [
    
  
    

]     [
    
    
    

] 

To prove that:   
        

        
      

  
                  ] [

 
  
 

]           
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            ] [

 
 
 
]          

  
                 ] [

  
 
 

]            

Hence, the eigen vectors are orthogonal in pairs 

18. Find the sum and product of all the eigen values of the matrix A = [
   
   
   

].Is the 

matrix singular? 

Solution:Sum of the eigen values = Sum of the main diagonal elements =Trace of the matrix 

Therefore, the sum of the eigen values = 1+2+7=10 

Product of the eigen values = │A│ = 1(14 - 8) -2(14 - 4) + 3(4 - 2) = 6-20+ 6= - 8 

│A│≠0. Hence the matrix is non-singular. 

19. Find the product of the eigen values of A = [
    
   

      
] 

Solution:Product of the eigen values of A = │A│=|
    
   

      
|                  

                  

ORTHOGONAL TRANSFORMATION OF A SYMMETRIC MATRIX TODIAGONAL FORM: 

Orthogonal matrices: 

A square matrix A (with real elements) is said to be orthogonal if           or        

Problems: 

1. Check whether the matrix B is orthogonal. Justify. B = [
           
            

   
] 

Solution: Condition for orthogonality is           

To prove that:           

B = [
           
            

   
];    [

          
         

   
] 
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UNIT - II - DIFFERENTIATION AND ITS APPLICATIONS - SMT1113 



The rate at which a function changes with respect to the independent variable is called the 
derivative of the function. 
(i.e) If y= f(x) be a function, where x and y are real variables which are independent and     

dependent variables respectively, then the derivative of y with respect to x is 
dydx.    

Definition 2.  Derivative of addition or subtraction of functions 

If f(x) and g(x) are two functions of x, then    d[f(x) ± g(x)]dx = d[f(x)]dx ± d[g(x)]dx  

Definition 3. Product rule 

If y =  uv, where u and v are functions of x, then   d[uv]dx = v d[u]dx + u d[v]dx  

Definition 4. Quotient rule 

If  𝑦 =  uv , where u and v are functions of x, then ddx [uv] = vdu dx −udvdx   v2                     
Important Derivatives Formulae 

1.   0c
dx

d
 where ‘c’ is any constant. 

2.   1 nn
nxx

dx

d
. 

3.  
x

x
dx

d

e

1
log  . 

4.
 

  aaa
dx

d xx log  

5.   xx
ee

dx

d
 . 

6.   xx
dx

d
cossin  . 

7.   xx
dx

d
sincos  . 

8.   xx
dx

d 2sectan  . 

                       

Definition 1.   Differentiation 

1



     9.   xecx
dx

d 2coscot  . 

     10.   xxx
dx

d
tansecsec  . 

     11.   xecxecx
dx

d
cotcoscos  . 

     12.  
2

1

1

1
sin

x

x
dx

d




. 

     13.  
2

1

1

1
cos

x

x
dx

d






. 

     14.  
2

1

1

1
tan

x
x

dx

d




. 

     15.  
2

1

1

1
cot

x
x

dx

d





. 

     16.  
2

1

1

1
sec

xx

x
dx

d




. 

     17.  
2

1

1

1
cos

xx

xec
dx

d






 

1. Differentiate  𝐱 + 𝟏𝐱     

Solution Let 𝑦 = x + 1x 

Then 
dydx = d(x + 1x)dx        = d(x)dx + d(x−1)dx  =1 − 1x2 

 
2. Differentiate  𝟑𝐭𝐚𝐧 𝐱 + 𝟐 𝐜𝐨𝐬 𝐱 − 𝐞𝐱 + 𝟓 

Solution: 

Let y = 3tan x + 2 cos x − ex + 5 

Then 
dydx = d(3tan x+2 cos x−ex+5)dx     = 3 d(tan x)dx + 2 d(cos x)dx − d(ex)dx  +

d(5)dx  

   = 3𝑠𝑒𝑐2x − 2 sin x − ex 
 

3. Differentiate  𝐲 = 𝐞𝟐𝐱𝐜𝐨𝐬𝟑𝐱 

Solution:      dydx = d(e2xcos3x)dx    = cos3x d(e2x)dx  + e2x   d(cos3x)dx   
                  = 2cos3x e2x − 3e2xsin3x 

4. Differentiate 𝐲 =  𝐞𝐬𝐢𝐧𝐱𝐱𝟐 

Solution: dydx =  d(esinxx2)dx  

1.1. Ordinary Differentiation Problems  

2



 = x2  d(esinx)dx + esinx d(x2)dx   

 = x2esinx(cosx) + 2xesinx 

5. Differentiate y = 𝐱𝟑𝐞−𝐱𝐭𝐚𝐧𝐱 

Solution: dydx =  d( x3e−xtanx)dx   
 = e−xtanx d( x3)dx +  x3 tanx d( e−x)dx +  x3e−x d(tanx)dx  

 = 3x2e−xtanx − x3e−xtanx + x3e−xsec2x 

6. Differentiate 𝐲 = 𝐞𝐱𝐜𝐨𝐬𝐱 
Solution:  dydx =  d( excosx)dx  = 

 cosx ex  −ex  (−sinx)cos2x      
 =    cosx ex  +ex  (sinx)cos2x  

7. Differentiate  𝐲 =  𝐚𝐱+𝐛𝐜𝐱+𝐝 

Solution:
dydx =  (cx+d)a−(ax+b)c(cx+d)2       (by quotient rule) 

8. Differentiate 
𝐱𝟐+𝟐𝐱+𝟑√𝐱  

Solution:  dydx =  √x (2x+2)−(x2+2x+3)12x−1 2⁄(√x)2  =      2√x (x+1)−(x2+2x+3) 12√x(√x)2          
                    =       2√x ×2√x (x+1)−(x2+2x+3)2√x (√x)2  =

4x(x+1)−(x2+2x+3)2x3 2⁄  

     = 4x2+4x−x2−2x−32x3 2⁄   =  
3x2+2x−32x3 2⁄  

9. Differentiate 𝐲 = (𝟑𝐱𝟐 − 𝟏)𝟑 
Solution:  Given y = (3x2 − 1)3 

Differentiating w.r.to x, we get ⇒ 
dy dx = 3(3x2 − 1)26x 

         = 3(9x4 − 6x2 + 1) = 27x4 − 18x2 + 3 

10. Differentiate: 𝐥𝐨𝐠 (𝟏+𝐬𝐢𝐧𝐱𝟏−𝐬𝐢𝐧𝐱) 

Solution: Let y = log (1+sinx1−sinx) ⇒ 𝑦 = log(1 + sinx) − log (1 − sinx) 
Differentiate y w.r.to x, we get dydx = 11+sinx cosx − 11−sinx (−cosx)  
       =  (1−sinx)cosx+cosx(1+sinx)(1+sinx)(1−sinx)   

 

      = 𝑐𝑜𝑠𝑥−𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑥+𝑐𝑜𝑠𝑥+ 𝑐𝑜𝑠𝑥 𝑠𝑖𝑛𝑥1−𝑠𝑖𝑛2𝑥  

     = 2 𝑐𝑜𝑠𝑥𝑐𝑜𝑠2𝑥 = 2 1𝑐𝑜𝑠𝑥 = 2 𝑠𝑒𝑐𝑥 

 

1. Differentiate 𝐱𝐬𝐢𝐧𝐱 

Solution: Let y = xsinx  
Taking log on both sides, we get logy =  sinx logx 

 

2.1. Differentiation Problems on Logarithmic Functions 

3



Now differentiating with respect to x  ⇒   
1 y dydx = logx(cosx) + sinx 1x   (Using product rule) ⇒  dy dx = y (logx( cosx) + sinx 1x)   ⇒  

dydx  =  y(xcosx logx+sinx)x  ⇒  
𝑑𝑦𝑑𝑥  = xsinx  (xcosx logx+sinxx ) 

2. If 𝐱𝐲 = 𝐞𝐱−𝐲, prove that 
𝐝𝐲  𝐝𝐱 = 𝐥𝐨𝐠𝐱(𝟏+𝐥𝐨𝐠𝐱)𝟐 

Solution: Given xy = ex−y 
Taking log on both sides, we get logxy = logex−y ⇒ ylogx = (x − y)logee ⇒ ylogx = (x − y)………(1) 

       ⇒ 
1x y + logx dydx = 1 − dydx 

     ⇒ logx dydx + dydx = 1 − yx  
     ⇒ 

 dydx (logx + 1) = x−yx     

     ⇒  dydx = x−yx(1+logx)    
      ⇒ dy   dx = ylogxx(1+logx)….(2) 

Again from (1) y + ylogx = x ⇒  y(1 + logx) = x, yx = 11+logx ⇒ 
dy  dx = logx(1+logx)2 

3. If y = 𝐱𝐱𝐱…∞  , then find 
𝐝𝐲  𝐝𝐱 

Solution: 

Given y = xxx…∞ = xy  
Taking log on both sides 
 logy =  ylogx 
Differentiating w. r. to x we get ⇒ 

1y dy  dx = y 1x +  logx dy  dx  ⇒(1y − logx) dydx = yx ⇒(1−ylogxy ) dydx = yx ⇒dydx = yx ( y1−ylogx) = y2x(1−ylogx) 
4. Differentiate  𝐲 = 𝐥𝐨𝐠 (𝐱𝟐+𝟏𝐱𝟐−𝟏) 

Solution: 
 y = log(x2 + 1) − log(x2 − 1) ⇒dydx = 1x2+1 2x − 1x2−1 2x ⇒dydx = 2x ( 1x2+1 − 1x2−1) 

4



⇒dydx = 2x (x2−1−(x2+1)(x2+1)(x2−1)) = 2x (x2−1−x2−1)x4−1 ) = 2x ( −2)x4−1)  =  −4xx4−1 

5. Differentiate 𝐲 = 𝐞𝟑𝐱𝟐+𝟐𝐱+𝟑 

Solution:
dy  dx = e3x2+2x+3(6x + 2) 

1. Find 
𝒅𝒚 𝒅𝒙   , if 𝒙𝟑+𝒚𝟑 = 𝟑𝒂𝒙𝒚 

Solution: 

Differentiating w.r.to x, we get ⇒ 3x2 + 3y2 dydx = 3a [x dydx + y]  ⇒ 3y2 dydx − 3ax dydx = 3ay − 3x2 ⇒ dydx (3y2 − 3ax) = 3ay − 3x2 ⇒ 
dydx = (3ay−3x2)3y2−3ax = 3(ay−x2)3(y2−ax) = (ay−x2)(y2−ax)  

2. Find 
𝐝𝐲 𝐝𝐱 , 𝐢𝐟  𝐱𝟐 + 𝐲𝟐 = 𝟏𝟔 

Solution: 

Given  x2 + y2 = 16 ⇒  y2 = 16 − x2  ⇒ y = √16 − x2   ⇒ dydx = 12 (16 − x2)−1 2 ⁄ × (−2x)  
 ⇒ dydx = − x√16−x2 = − xy 

3. Find   
𝒅𝒚𝒅𝒙, if 𝐱 = 𝐚𝐭𝟐, 𝐲 = 𝟐𝐚𝐭 

Solution: Given x = at2, y = 2at 
 
 dxdt = 2at, dydt = 2a   
Now 

dydx =  dydt / dxdt = 2a2at = 1t 
4. Find 

𝐝𝐲𝐝𝐱 , if 𝐲𝟐 + 𝐱𝟑 − 𝐱𝐲 + 𝐜𝐨𝐬𝐲 = 𝟎 

Solution: 

 Given y2 + x3 − xy + cosy = 0 

 ⇒ 2y dydx + 3x2 − ddx (xy) − siny dydx = 0 

 ⇒ (2y − siny) dydx + 3x2 − (x dydx + y × 1) = 0 

 ⇒ (2y − siny − x) dydx + 3x2 − y = 0 

 ⇒ (2y − siny − x) dydx = y − 3x2  ⇒ dy
dx

= y−3x2

2y−siny−x
  

 
 
 

3.1. Differentiation of Implicit functions 
If two variables x and y are connected by the relation f(x, y) = 0 and none of the variable is 
directly expressed in terms of the other, then the relation is called an implicit function. 
 
Problems 
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Applications of Differential Calculus9

	 According to Leibniz, tangent is the line through a pair of very close points on the curve.

	 The tangent line (or simply tangent) to a 
plane curve at a given point is the straight 

	 The normal at a point on the curve is the 
straight line which is perpendicular to the 
tangent at that point.

	 The tangent and the normal of a curve at 

	 Consider the given curve y f x= ( ) .

	 The equation of the tangent to the curve at the point, say ( , )a b , is given by

y b x a dy
dx a b

− = − ×





( )

( , )

 or y b f a x a− = ′ ⋅ −( ) ( ) .

	 In order to get the equation of the normal to the same curve at the same point, we observe that 
normal is perpendicular to the tangent at the point. Therefore, the slope of the normal at ( , )a b  is the 

negative of the reciprocal of the slope of the tangent which is −










1
dy
dx a b( , )

. 

	 Hence, the equation of the normal is ,

( ) ( )

( , )

y b x ady
dx a b

− = −








 × −

1  or ( ) ( )
( , )

y b dy
dx

x a
a b

− ×





 = − − .

	 (i)	If the tangent to a curve is horizontal at a point, then the derivative at that point is 0. Hence, 
at that point x y1 1,( )  the equation of the tangent is y y= 1  and equation of the normal is x x= 1 .

	 (ii)	If the tangent to a curve is vertical at a point, then the derivative exists and infinite ∞( )  at 

the point. Hence, at that point x y1 1,( )  the equation of the tangent is x x= 1  and the equation 
of the normal is y y= 1 .

0

Curve  →

← Tangent

← Normal

x

y
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line that just touches the curve at that point.

Definition

a point are illustrated in Fig. 1

Remark

Fig.1

Definition

 4.1 Equations of Tangent and Normal

6



10XII - Mathematics

	 Find the equations of tangent and normal to the curve y x x= + −2 3 2  at the point ( , )1 2 .

	 We have, dy
dx

x= +2 3 . Hence at ( , ),1 2 5
dy
dx

= . 

	 Therefore, the required equation of tangent is

	 ( ) ( )y x x y− = − ⇒ − − =2 5 1 5 3 0 .

	 The slope of the normal at the point ( , )1 2  is − 1

5
. 

	 Therefore, the required equation of normal is

	 ( ) ( )y x x y− = − − ⇒ + − =2
1

5
1 5 11 0 .

	 Find the points on the curve y x x x= − + −3 23 2  at which the tangent is parallel to the line y x= .

	 The slope of the line y x=  is 1. The tangent to the given curve will be parallel to the line, if the 
slope of the tangent to the curve at a point is also 1. Hence,

		  dy
dx

	= 	3 6 1 12x x− + =

		  which gives 3 62x x− 	= 	0 .

		  Hence, x 	= 	0 and x = 2.

	 Therefore, at (0, –2) and (2, –4) the tangent is parallel to the line y x= .

	 Find the equation of the tangent and normal at any point to the Lissajous curve given by 
x t= 2 3cos  and y t t= ∈3 2sin ,  .

	 Observe that the given curve is neither a circle nor an ellipse. For your reference the curve is 
shown in Fig. 7.9.

		  Now, dy
dx

	= 	
dy
dt

dx
dt

			  = 	− = −6 2

6 3

2

3

cos

sin

cos

sin

t
t

t
t

.

	 Therefore, the tangent at any point is

		  y t−3 2sin 	= 	− −
cos

sin
( cos )

2

3
2 3

t
t
x t

	 That is,	 x t y tcos sin2 3+ 	= 	3 2 3 2 2 3sin sin cos cost t t t+ . Fig.7.9
Lissajous curve

x t y t= =2 3 3 2cos ; sin

Fig.7.8

y
x

x
�

�
�

2
3

2

�1�2�3�4�5

�4

�3

�2

�1

(1, 2)

3210

1

2

3

4

5

5
3

0
x

y
−

−
=

x y+ − =5 1 1 0

y
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Example 7.11

Solution

Example 7.12

Solution

Example 7.13

Solution

7



Applications of Differential Calculus11

	 The slope of the normal is the negative of the reciprocal of the tangent which in this case is  
sin

cos

3

2

t
t

. Hence, the equation of the normal is

y t t
t
x t− = −3 2

3

2
2 3sin

sin

cos
( cos ) .

	 That is, x t y t t t t t t tsin cos sin cos sin cos sin sin3 2 2 3 3 3 2 2 6
3

2
4− = − = − .

	 Angle between two curves, if they intersect, is defined as the acute angle between the tangent 
lines to those two curves at the point of intersection.

	 For the given curves, at the point of intersection using the slopes of the tangents, we can measure 
the acute angle between the two curves. Suppose y m x c= +1 1  and y m x c= +2 2  are two lines, then the 
acute angle θ  between these lines is given by,

			   tanθ 	= 	 m m
m m

1 2

1 21

−
+

 	 ... (3)

	 where m1 and m2 are finite.

	 (i)	 If the two curves are parallel at x y1 1,( ) , then m m1 2= .

	 (ii)	 If the two curves are perpendicular at x y1 1,( )  and if m1  and m2  exists and finite then 
m m1 2 1= − .

	 Find the angle between y x= 2  and y x= −( )3 2 .

	 Let us now find the point of intersection of the two given curves. Equating x x2 23= −( )  we get, 

x = 3

2
. Therefore, the point of intersection is 3

2

9

4
,







 . Let θ be the angle between the curves. The 

slopes of the curves are as follows :
		  For the curve y  	= 	x2,

		  dy
dx

	= 	2x .

		  Let m dy
dx1 =   at 3

2

9

4
,







 	= 	3.

		  For the curve y 	= 	( )x −3 2,

		  dy
dx

	= 	2 3( )x − .

		  Let m dy
dx2 =   at 3

2

9

4
,







 	= 	−3.

Fig.7.10
0 2 4

2

4

x

y

–2–4

θ

y =
 (

x –
 3

)2

y =
 x2
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Definition 7.3

Remark

Example 7.14

Solution

................ (1)

Angle between two curves, if they intersect, is defined as the acute angle between the tangent lines to
those two curves at the point of intersection.

4.2 Angle between two curves

8
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		  tanθ 	= 	 3 3

1 9

3

4

− −
−

=
( )

		  Hence, θ 	= 	tan− 
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	 Find the angle between the curves y x= 2  and x y= 2  at their points of intersection (0,0) and 

(1,1).

	 Let us now find the slopes of the curves.
	 Let m1  be the slope of the curve y x= 2,

			   then m1 	= 	 dy
dx

x= 2 .

	 Let m2  be the slope of the curve x y= 2, 

			   then m2 	= 	 dy
dx y

=
1

2
.

	 Let θ1 and θ2 be the angles at (0,0) and (1,1) respectively.
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Example 7.15

Solution

Using (1), we get
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of a function. Because the derivative provides information about the gradient or slope of the
graph of a function we can use it to locate points on a graph where the gradient is zero. We
shall see that such points are often associated with the largest or smallest values of the function,
at least in their immediate locality. In many applications, a scientist, engineer, or economist for
example, will be interested in such points for obvious reasons such as maximising power, or profit,
or minimising losses or costs.

When using mathematics to model the physical world in which we live, we frequently express
physical quantities in terms of variables. Then, functions are used to describe the ways in which
these variables change. A scientist or engineer will be interested in the ups and downs of a
function, its maximum and minimum values, its turning points. Drawing a graph of a function
using a graphical calculator or computer graph plotting package will reveal this behaviour, but if
we want to know the precise location of such points we need to turn to algebra and differential
calculus. In this section we look at how we can find maximum and minimum points in this way.

Consider the graph of the function, y(x), shown in Figure 1. If, at the points marked A, B and
C, we draw tangents to the graph, note that these are parallel to the x axis. They are horizontal.
This means that at each of the points A, B and C the gradient of the graph is zero.

local

maximum

local

minimum

A

B

C

Figure 1. The gradient of this graph is zero at each of the points A, B and C.

We know that the gradient of a graph is given by
dy

dx
Consequently,

dy

dx
= 0 at points A, B and

C. All of these points are known as stationary points.

Key Point

Any point at which the tangent to the graph is horizontal is called a stationary point.

We can locate stationary points by looking for points at which
dy

dx
= 0.

www.mathcentre.ac.uk 2 c© mathcentre 2009

Here, we show how differentiation can be used to find the maximum and minimum values

5. MAXIMA AND MINIMA

5.1. Introduction

5.2 . Stationary points

10



Refer again to Figure 1. Notice that at points A and B the curve actually turns. These two
stationary points are referred to as turning points. Point C is not a turning point because,
although the graph is flat for a short time, the curve continues to go down as we look from left
to right.

So, all turning points are stationary points.

But not all stationary points are turning points (e.g. point C).

In other words, there are points for which
dy

dx
= 0 which are not turning points.

Key Point

At a turning point
dy

dx
= 0.

Not all points where
dy

dx
= 0 are turning points, i.e. not all stationary points are turning points.

Point A in Figure 1 is called a local maximum because in its immediate area it is the highest
point, and so represents the greatest or maximum value of the function. Point B in Figure 1 is
called a local minimum because in its immediate area it is the lowest point, and so represents
the least, or minimum, value of the function. Loosely speaking, we refer to a local maximum as
simply a maximum. Similarly, a local minimum is often just called a minimum.

Think about what happens to the gradient of the graph as we travel through the minimum turning
point, from left to right, that is as x increases. Study Figure 2 to help you do this.

dy

dx
is negative

dy

dx
is zero

dy

dx
is positive

Figure 2.
dy

dx
goes from negative through zero to positive as x increases.

www.mathcentre.ac.uk 3 c© mathcentre 2009

5.3. Turning points

5. 4. Distinguishing maximum points from minimum points
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Notice that to the left of the minimum point,
dy

dx
is negative because the tangent has negative

gradient. At the minimum point,
dy

dx
= 0. To the right of the minimum point

dy

dx
is positive,

because here the tangent has a positive gradient. So,
dy

dx
goes from negative, to zero, to positive

as x increases. In other words,
dy

dx
must be increasing as x increases.

In fact, we can use this observation, once we have found a stationary point, to check if the point

is a minimum. If
dy

dx
is increasing near the stationary point then that point must be minimum.

Now, if the derivative of
dy

dx
is positive then we will know that

dy

dx
is increasing; so we will know

that the stationary point is a minimum. Now the derivative of
dy

dx
, called the second derivative,

is written
d2

y

dx2
. We conclude that if

d2
y

dx2
is positive at a stationary point, then that point must

be a minimum turning point.

Key Point

if
dy

dx
= 0 at a point, and if

d2
y

dx2
> 0 there, then that point must be a minimum.

It is important to realise that this test for a minimum is not conclusive. It is possible for a

stationary point to be a minimum even if
d2y

dx2
equals 0, although we cannot be certain: other

types of behaviour are possible. (However, we cannot have a minimum if
d2y

dx2
is negative.)

To see this consider the example of the function y = x4. A graph of this function is shown in

Figure 3. There is clearly a minimum point when x = 0. But
dy

dx
= 4x3 and this is clearly zero

when x = 0. Differentiating again
d2y

dx2
= 12x2 which is also zero when x = 0.

O

Figure 3. The function y = x4 has a minimum at the origin where x = 0, but
d2

y

dx2
= 0 and so is not greater than 0.

www.mathcentre.ac.uk 4 c© mathcentre 2009
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Now think about what happens to the gradient of the graph as we travel through the maximum
turning point, from left to right, that is as x increases. Study Figure 4 to help you do this.

dy

dx
is negative

dy

dx
is zero

dy

dx
is positive

Figure 4.
dy

dx
goes from positive through zero to negative as x increases.

Notice that to the left of the maximum point,
dy

dx
is positive because the tangent has positive

gradient. At the maximum point,
dy

dx
= 0. To the right of the maximum point

dy

dx
is negative,

because here the tangent has a negative gradient. So,
dy

dx
goes from positive, to zero, to negative

as x increases.

In fact, we can use this observation to check if a stationary point is a maximum. If
dy

dx
is

decreasing near a stationary point then that point must be maximum. Now, if the derivative of
dy

dx
is negative then we will know that

dy

dx
is decreasing; so we will know that the stationary point

is a maximum. As before, the derivative of
dy

dx
, the second derivative is

d2y

dx2
. We conclude that

if
d2y

dx2
is negative at a stationary point, then that point must be a maximum turning point.

Key Point

if
dy

dx
= 0 at a point, and if

d2y

dx2
< 0 there, then that point must be a maximum.

It is important to realise that this test for a maximum is not conclusive. It is possible for a

stationary point to be a maximum even if
d2y

dx2
= 0, although we cannot be certain: other types

of behaviour are possible. But we cannot have a maximum if
d2y

dx2
> 0, because, as we have

already seen the point would be a minimum.

www.mathcentre.ac.uk 5 c© mathcentre 2009
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Key Point

The second derivative test: summary

We can locate the position of stationary points by looking for points where
dy

dx
= 0.

As we have seen, it is possible that some such points will not be turning points.

We can calculate
d2y

dx2
at each point we find.

If
d2y

dx2
is positive then the stationary point is a minimum turning point.

If
d2y

dx2
is negative, then the point is a maximum turning point.

If
d2y

dx2
= 0 it is possible that we have a maximum, or a minimum, or indeed other sorts of

behaviour. So if
d2y

dx2
= 0 this second derivative test does not give us useful information and we

must seek an alternative method (see Section 5).

Example

Suppose we wish to find the turning points of the function y = x3
− 3x + 2 and distinguish

between them.

We need to find where the turning points are, and whether we have maximum or minimum points.

First of all we carry out the differentiation and set
dy

dx
equal to zero. This will enable us to look

for any stationary points, including any turning points.

y = x
3
− 3x + 2

dy

dx
= 3x2

− 3

At stationary points,
dy

dx
= 0 and so

3x2
− 3 = 0

3(x2
− 1) = 0 ( factorising)

3(x − 1)(x + 1) = 0 ( factorising the difference of two squares)

It follows that either x − 1 = 0 or x + 1 = 0 and so either x = 1 or x = −1.

We have found the x coordinates of the points on the graph where
dy

dx
= 0, that is the stationary

points. We need the y coordinates which are found by substituting the x values in the original
function y = x3

− 3x + 2.

when x = 1: y = 13
− 3(1) + 2 = 0.

when x = −1: y = (−1)3
− 3(−1) + 2 = 4.

www.mathcentre.ac.uk 6 c© mathcentre 2009
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To summarise, we have located two stationary points and these occur at (1, 0) and (−1, 4).

Next we need to determine whether we have maximum or minimum points, or possibly points
such as C in Figure 1 which are neither maxima nor minima.

We have seen that the first derivative
dy

dx
= 3x2

− 3. Differentiating this we can find the second

derivative:
d2y

dx2
= 6x

We now take each point in turn and use our test.

when x = 1:
d2y

dx2
= 6x = 6(1) = 6. We are not really interested in this value. What is

important is its sign. Because it is positive we know we are dealing with a minimum point.

when x = −1:
d2y

dx2
= 6x = 6(−1) = −6. Again, what is important is its sign. Because it is

negative we have a maximum point.

Finally, to finish this off we produce a quick sketch of the function now that we know the precise
locations of its two turning points (See Figure 5).

1 2 3-1-2-3

5

y = x
3
− 3x + 2

y

x

(−1, 4)

(1, 0)

Figure 5. Graph of y = x3
− 3x + 2 showing the turning points

Example

Suppose we wish to find the turning points of the function y =
(x − 1)2

x
and distinguish between

them.

First of all we need to find
dy

dx
.

In this case we need to apply the quotient rule for differentiation.

dy

dx
=

x · 2(x − 1) − (x − 1)2
· 1

x2

www.mathcentre.ac.uk 7 c© mathcentre 2009

5.5 An example which uses the first derivative to distinguishmaxima and minima
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This does look complicated. Don’t rush to multiply it all out if you can avoid it. Instead, look
for common factors, and tidy up the expression.

dy

dx
=

x · 2(x − 1) − (x − 1)2
· 1

x2

=
(x − 1)(2x − (x − 1))

x2

=
(x − 1)(x + 1)

x2

We now set
dy

dx
equal to zero in order to locate the stationary points including any turning points.

(x − 1)(x + 1)

x2
= 0

When equating a fraction to zero, it is the top line, the numerator, which must equal zero.
Therefore

(x − 1)(x + 1) = 0

from which x − 1 = 0 or x + 1 = 0, and from these equations we find that x = 1 or x = −1.

The y co-ordinates of the stationary points are found from y =
(x − 1)2

x
.

when x = 1: y = 0.

when x = −1: y =
(−2)2

−1
= −4.

We conclude that stationary points occur at (1, 0) and (−1,−4).

We now have to decide whether these are maximum points or minimum points. We could cal-

culate
d2y

dx2
and use the second derivative test as in the previous example. This would involve

differentiating
(x − 1)(x + 1)

x2
which is possible but perhaps rather fearsome! Is there an alter-

native way ? The answer is yes. We can look at how
dy

dx
changes as we move through the

stationary point. In essence, we can find out what happens to
d2y

dx2
without actually calculating

it.

First consider the point at x = −1. We look at what is happening a little bit before the point
where x = −1, and a little bit afterwards. Often we express the idea of ‘a little bit before’ and
‘a little bit afterwards’ in the following way. We can write −1 − ǫ to represent a little bit less
than −1, and −1 + ǫ to represent a little bit more. The symbol ǫ is the Greek letter epsilon. It
represents a small positive quantity, say 0.1. Then −1 − ǫ would be −1.1, just a little less than
−1. Similarly −1 + ǫ would be −0.9, just a little more than −1.

We now have a look at
dy

dx
; not its value, but its sign.

When x = −1 − ǫ, say −1.1,
dy

dx
is positive.

When x = −1 we already know that
dy

dx
=0.

www.mathcentre.ac.uk 8 c© mathcentre 2009
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When x = −1 + ǫ, say −0.9,
dy

dx
is negative.

We can summarise this information as shown in Figure 6.

x = −1 − ǫ x = −1 x = −1 + ǫ

sign of
dy

dx
+ 0 −

shape of graph ր
−→

ց

Figure 6. Behaviour of the graph near the point (−1,−4)

Figure 6 shows us that the stationary point at (−1,−4) is a maximum turning point. Then we

turn to the point (1, 0). We carry out a similar analysis, looking at the sign of
dy

dx
at x = 1 − ǫ,

x = 1, and x = 1 + ǫ. The results are summarised in Figure 7.

x = 1 − ǫ x = 1 x = 1 + ǫ

sign of
dy

dx
− 0 +

shape of graph ց
−→

ր

Figure 7. Behaviour of the graph near the point (1, 0)

We see that the point is a minimum.

This, so-called first derivative test, is also the way to do it if
d2y

dx2
is zero in which case the

second derivative test does not work. Finally, for completeness a graph of y =
(x − 1)2

x
is shown

in Figure 8 where you can see the maximum and minimum points.

1 2 3 4 5-1-2-3-4-5

y =
(x − 1)2

x

y

x

(−1,−4)

(1,0)

Figure 8. A graph of y =
(x − 1)2

x
showing the turning points

Exercises

Locate the position and nature of any turning points of the following functions.

1. y = 1

2
x2

− 2x, 2. y = x2 + 4x + 1, 3. y = 12x − 2x2, 4. y = −3x2 + 3x + 1,

5. y = x4 +2, 6. y = 7−2x4, 7. y = 2x3
−9x2 +12x, 8. y = 4x3

−6x2
−72x+1,

9. y = −4x3 + 30x2
− 48x − 1, 10. y =

(x + 1)2

x − 1
.

www.mathcentre.ac.uk 9 c© mathcentre 2009
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3

10
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

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                       dx
xx

x

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65

1
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2

   =   dx
x

dx
x

dx 






3

10

2

5
 

                          =   x  -  5 log (x-2) +  10 log (x-3) + c.   

      3.  Find   dx
xx

x
 



)3()1(

23
2

 

           Solution: 

    
)3()1(

23
2 



xx

x
  =  

)3()1(1 2 





 x

C

x

B

x

A
 

    3x – 2  =   A ( x+1)(x+3)   +   B(  x+3)   +  C(x+1)2 

     Equating the coefficient of   x2  ,   x-term  and the constant term, we get 

    A +C = 0 , 4A + B +2C =3,  3A + 3B + C  =  -2.  Solving  these  equations  we get   

    A  =  
4

11
, B  = 

2

5
and  C =  

4

11
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23
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      1. Find  dxxxcos  

 
          Solution: 
     Let  u =x, dv =cosx dx 
 
              Then integration by parts gives, 
 

1. c
n

x
dxx

n
n 






 1

1

 1n  

2. cxdx
x

 log  
1

 

3. cedxe xx   

4. cxdxx  cos    sin  

5. cxdxx    sin    cos    

6. cxdxx  sec    log  tan    

7. cxdxx   log sin    cot   

8. cxdxxx    sec      tan  sec    

9. cxecdxxxec    cos      cot    cos  

10.  cxdxx    tan      sec2
 

11.  cxdxxec  cot        cos 2
 

12. cxdx
x







1

2
tan  

1

1
 

13. cxdx
x







1

2
sin  

1

1
 

14. cxdx
xx







1

2
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1
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1.1 Standard results 

      1.2 INTEGRATION BY PARTS:  

           u dv  u v   v du  

 

1



          dxxxcos =  dxxxx sinsin  

       

    cxxx  cossin  

 

     2. Find  dxxlog  

 
        Solution: 
 Let u = logx , dv = dx 
 

Then,  dxxlog   =  xx )(log  dxx
x

1
   

 

                   =   cxxx )(log   

     3.  Find  dxex x
 

          Solution: 
 Let  u = x , dv = exdx 
 

    dxex x
  =  dxexe xx 1     =    cexe xx   

 

      4.  Find  




dx
x

xx

2

1

1

sin
 

           Solution: 
 Let  u =sin-1x ,  dv =   x/√(1-x2)dx 
 
 For finding v,  
       

Put  t =1 – x 2  then dt =  -2x  dx 

Then v = 


t

dt

2
= 

21 xt   

 







dx
x

xx

2

1

1

sin
 =     dxx

x
xx 2

2

21 1
1

1
1sin 


 


      

 

=   cxxx  12 sin1  

''

1

'  vuvuvudvu  

      

 

 

       2.1 BERNOULLI’S FORMULA 

          2 ...

2



       Problems 

       1.  Solve  dxex x2
  

          Solution:   

                 dxex x2
=   x 2  e x  -    2x (  e x )   +   2  e x  +  C 

      2. Solve  dxaxx sin  

           Solution:   

             dxaxx sin   =  C
a

ax

a

ax
x 







 








 
2

sincos
 

3. Solve   dxxcxbxa cos)( 2
 

    Solution:   

   dxxcxbxa cos)( 2
= )( 2 cxbxa  ( sin x)  + ( 2 a x  +  b) ( -cos x) + 2a ( -sin x ) +c 

      DEFINITE INTEGRAL 

      PROPERTIES OF DEFINITE INTEGRALS:   

      1.    
b

a

a

b
dxxfdxxf )()(     

      2.    
a a

dxxafdxxf
0 0

)()(  

      3.  evenisxfifdxxfdxxf
a

a

a

)()(2)(
0 

  

                                oddisxfif )(0  

       4.    
b

c

b

a

c

a
dxxfdxxfdxxf )()()(   ,   a <  c  <  b 

       5.  )()2()(2)(
2

0 0
xfxafifdxxfdxxf

a a

   

           )()2(0 xfxafif   

       6.   
2

00

)(sin2)sin(





dxxfdxxf  
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Definite Integrals is defined as  

  )()()(dx)( aFbFxFxf
b

a

b

a
  

  
b

a

b

a

b

a
tfyfxf dt)(dy)(dx)(

. 

Property: 2    

   
a

b

b

a
xfxf dx)(dx)(

 

Property: 3  

dx)(dx)(dx)(  
b

a

c

a

b

c
xfxfxf

,if bca   

 

Property : 4 

   
aa

xafxf
00

dx)(dx)(
. a : any real constant. 

 Proof :   
a

xaf
0

dx)(  

 Let  

  

0;

;0









tawhenx

atwhenx

dtdx

txa

  

 



0

1
)(

a

dt
tf 

0

dt)(
a

tf  

= 
a

tf
0

dt)(   (by prop 1) 

= 
a

xf
0

dx)(  

3 Definite Integrals

3.1 Properties of Definite 
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
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4. Gamma Function 

Definition : 

Gamma function is defined as follows 
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 

1

0

11 )1(1()1(),( dxxxnm
nm  




1

0

11)1(),( dxxxnm nm  


 

1

0

11 )1(),( dxxxnm mn  

),(),( mnnm    
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Proof: 

 

5. Beta Function 

11



2
1

00

cossin2sin

)1(),(

2

1

0

11
















 


thenxif

thenxif

ddxxTake

dxxxnmWKT nm

 


 2

0

1212 cossin2}(cos)(sin),(



 dnm nm  





0

1212 cossin2),(  dnm nm
 

3. 









0

1

)1(
),( dx

x

x
nm

nm

n

  

nm

nm
nm




),(  

Proof :WKT 



0

12 2

2)( dxexn xn
 





 




0

12 2

2)()( dxexnm xm











0

12 2

2 dxey yn  

dxdyyxenm nmyx 1212

0 0

)( 22

4)()( 

 



   

Transforming  into polar coordinates  

2
0:

0:

sin

cos
222





























r

rdrddxdy

ryx
ry

rx

 

)(sincos4)()( 1212222
2

0 0

2





rdrdrenm nmnmr 





   

 

6. Relation between Beta and Gamma function 
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We can also prove 1/2 using the beta gamma relation 

Put m=n=1/2 

nm

nm
nm




),(  

1

2

1

2

1

)
2

1
,

2

1
(





  









 )

2

1
,

2

1
()

2

1
(

2

 


2

0

1)
2

1
(21)

2

1
(2

cossin



 d

 

    
  








  2

222 2
0

2

0






d
 

































2

1

2

1
2

 

Problems :
 

 
1

0

56 )1(.1 dxxxEvaluate  

0&0,)1(),(
1

0

11  
 nmdxxxnmWKT nm  

Taking m-1=6 and n-1=5 we get m=7 and n=6 
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thatove
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


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
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
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
0 log

log

a

dt

e

a

t

t

a

 

 
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UNIT - IV - ORDINARY DIFFERENTIAL EQUATIONS - SMT1113 



A linear equation of nth order with constant coefficients is of the form  

where a1, a2,…….an are constants and X is a function of x. This equation can also be written in the form 

Y is called the complementary function (C.F) of equation (1). 

Suppose u is a particular solution (particular integral) of equation (1) 

Then the general solution of equation (1) is of the form y=Y+u where Y is the complementary function 

and u is a particular integral (P.I). 

 
  1 LINEAR EQUATIONS OF HIGHER ORDER 

The general solution of equation (2) is given by nn ycycycY .......2211   

1   yaDaDaD n

nnn
      (2) 

1
Consider   0.....2

2

D   
dx

d n
nd

D  ,……..
ndx

2
2d

D  ,
21

where 
dx

2

1  XyaDaDaD n

nnn   .....2

1        (1)  

1

1 2

2

.....
2










n

n

n

n

n

n n

yd
a

dx dx

yd yd
a Xya

dx

cn  are arbitrary constants.  where y1 , y2 ,......yn  are n independent solutions and c1 , c2 ,.......

1



Thus y=C.F + P.I 

 

To find Complementary functions 

Case (1) 

Roots of the A.E are real and distinct say m1 and m2 

y=
xmxm

ecec 21

21   

Case (2) 

Roots of the A.E are imaginary then 

y=  xcxce x  sincos 21   

Case (3) 

Roots of the A.E are real and equal say m1 = m2 then 

 21
1 cxcey
xm

  

 

1.Solve 032
2

2

 y
dx

dy

dx

yd
 

Put D
dx

d
  

  0322  yDyyD  

  0322  yDD  

The auxiliary equation is 0322  mm  

 

)1)(2(

)3)(1)(4(2)2(
2


m  

2

8
2


m  

2

222 i
m


  

21 im   

2



C.F =     xcxce x 2sin2cos 21   

The general solution is y = C.F+P.I 

y=     xcxce x 2sin2cos 21  +0 

 

To find Particular integral 

 When the R.H.S of the given differential equation is a function of x , we have to find particular  

Integral. 

Case (i) 

If 
axexf )( , then 

axe
DF

IP
)(

1
.  . Replace D by a in F(D), provided F(D) 0. 

If F(a) = 0 then 
axe

DF

x
IP

)(
.


  provided 0)(  aF  

If F’(a) = 0 then 
axe

DF

x
IP

)(
.


  provided 0)(  aF  and so on 

Case (ii) 

If f(x) = sinax or cosax then axaxor
DF

IP cossin
)(

1
.   

Replace 
22 abyD  in F(D), provided F(D) 0. 

If F(D) = 0, when we replace D2 by –a2 then proceed as  case (i) 

Case (iii) 

If f(x) = an then 
nx

DF
IP

)(

1
.   

   nxDFIP
1

)(.


  , Expand   1
)(


DF  by using binomial theorem and then operate on xn. 

Case (iv) 

If f(x)=eaxx, where X is sinax (or) cosax (or) x then  

X
aDF

eXe
DF

IP axax

)(

1

)(

1
.


  

3



Here X
aDF )(

1


 can be evaluated by using anyone of the first three types. 

 

Problems 

1.Solve   xeyDD 32 596   

0962  mm  

  03
2
m  

m=-3,-3 

  xecxcFC 3

21.   

P.I  = 
 

xe
DD

3

2
5

96

1










 

 = 
   

xe3

2
5

9363

1















 

 = 
xe3

36

5
 

The general solution is y = C.F + P.I 

y=   xecxc 3

21

 +
xe3

36

5
 

2. Solve   xeyDD  562
 

0562  mm  

   015  mm  

m=-1,-5 

C.F = 
xx ecec 5

21

   

P.I  = 
 

xe
DD












 56

1
2

 

 = 
   

xe 















 5161

1
2

  

4



 = 
xe

D

x 

 62
 = 

xe
x 

 6)1(2
 

 = 
xe

x 

4
 

The general solution is y = C.F + P.I 

y= 
xx ecec 5

21

  +
xe

x 

4
 

 

 

2.Solve   xyDD 2sin12   

Solution: 

The auxiliary equation is 012 mm  

2

31 i
m


  

C.F=









































2

3
sin

2

3
cos 21

2
x

c
x

ce

x

 

 

P.I =
 

x
DD

2sin
1

1
2 












 

 =
 

x
D

2sin
14

1










 

 = x
D

2sin
3

1










 

 = x
D

D
2sin

9

3
2













 

 = x
D

2sin
13

3












 

 =-
13

2sin3

13

2cos2 xx
  

5



The general solution is y = C.F + P.I 

y = 









































2

3
sin

2

3
cos 21

2
x

c
x

ce

x

 -
13

2sin3

13

2cos2 xx
  

 

3.Solve   22 23 xyDD   

Solution: 

The auxiliary equation is 0232  mm  

(m + 2) ( m + 1) = 0 

Hence m = -2, -1 

C.F = 
xx ecec   2

2

1  

P.I =
 

2

2 23

1
x

DD 











 

 = 
2

1
2

2

3
1

2

1
x

DD











 
  

 =
2

2
22

2

3

2

3
1

2

1
x

DDDD






















 








 
  

 = 
2

2

4

7

2

3
1

2

1
x

DD








  

 = 









2

7
3

2

1 2 xx  

 The general solution is y = C.F + P.I 

y = 
xx ecec   2

2

1  + 









2

7
3

2

1 2 xx  

4. Solve   xeyDD x 2cos342   

Solution: 

The auxiliary equation is 0342  mm  

(m -1) ( m -3) = 0 

6



Hence m = 1, 3 

C.F = 
xx ecec 3

21   

P.I = 
 

xe
DD

x 2cos
34

1
2 












 

 = 
   

x
DD

e x

2cos
3141

2 














 

 = x
DD

e x

2cos
22 












 

 = x
D

e x

2cos
24 












 

 = x
D

e x

2cos
22

1












  

 = x
D

De x

2cos
4

2

2 2












  

 = 
 















8

2cos2

2

xDe x

 

 =  xx
e x

2cos22sin2
16

  

 =  xx
e x

2cos2sin
8

  

The general solution is y =C.F+ P.I 

y = 
xx ecec 3

21   xx
e x

2cos2sin
8

  

 

5. Solve   xeyDD x sin222   

The auxiliary equation is 0222  mm  

im  1  

C.F =  xcxce x sincos 21   

7



P.I = 
 

xe
DD

x sin
22

1
2 












 

 = 
   

x
DD

e x

sin
2121

2 









 

 = x
D

e x

sin
12 









 

 = 
  

x
iDiD

e x

sin









 

 = 
  

ixx e
iDiD

e 










1
 of partImaginary   

 = 






 ixx xe
i

e
2

1
 of partImaginary   

 =  







 xixixe x sincos

2

1
 of partImaginary   

 = xxe x cos
2

1
  

The general solution is y = C.F + P.I 

y =  xcxce x sincos 21   xxe x cos
2

1
  

6. Solve   xexyDDD 223 133   

The auxiliary equation is 0133 23  mmm  

  01
3
m  

m=1 (thrice) 

C.F =  2

321 xcxcce x   

P.I = 
xex

DDD

2

23 133

1


 

 = 
     

2

23
113131

x
DDD

e x











 

8



 = 
2

3

1
x

D
e x









 

 = 
60

5xe x

 ( By integrating x2 thrice with respect to x ) 

The general solution is y = C.F + P.I 

y=  2

321 xcxcce x  +
60

5xe x

 

 

An equation of the form 

Xya
dx

yd
xa

dx

yd
xa

dx

yd
xa nn

n
n

n

n
n

n

n
n 









 .....

2

2
2

21

1
1

10  

Where a0 , a1 ,…….an are constants and X is a function of x is called Euler’s homogeneous linear 

differential equation. 

Equation can be reduced to constant coefficient by means of transformation z = log x.Then 

xD  ,  122  Dx  ,   2133  Dx  where 
dz

d
 .  

 

1.Solve )sin(log)cos(log42 xxxyyxyx   

Solution: 

Put z = log x and 
dz

d
  

The given equation reduces to 

   zezy z sincos41    

  zezy z sincos422    

The auxiliary equation is m2 -2m + 4=0 

31 im   

Hence  zczceFC z 3sin3cos. 21   

2. Linear  Differential Equations with variable coefficients 

9



       xcxcx log3sinlog3cos 21   

 

P.I =  zez z sin
42

1
cos

42

1
22 




















 
 

 =
 

 zez z sin
4)1(21

1
cos

23

1
2 




















 
 

 =  zez z sin
3

1
cos

23

1
2 




















 
 

 =
 31

sin
cos

49

23
2 












 ze
z

z




 

 =
2

sin
cos

13

23 ze
z

z








  
  =

  zezz z sin
2

1
sin2cos3

13

1


 

 =       xxxx logsin
2

1
logsin2logcos3

13

1
   

The solution is y = C.F + P.I 

y     xcxcx log3sinlog3cos 21  +       xxxx logsin
2

1
logsin2logcos3

13

1
  

 

2.Solve xxyxDDx log2)42( 222   

Solution: 

Put z = log x and 
dz

d
  

The given equation reduces to 

   zey z 2421 2    

  zey z 24 22   

The auxiliary equation is m2+m+4=0 

 
2

1611 
m   = 

2

151 i
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 C.F  = 









































zczce

z

2

15
sin

2

15
cos 21

2  

 

    = 









































zcxcx log
2

15
sinlog

2

15
cos 21

2

1

 

P.I =   21

2

2
..2

4

1
IPIPze z 










 

 zeIP 2

21
4

1
. 













 

 =
1010

22 xe z

  

 zIP 2
4

1
.

22 












 

  z




























 




4
1

1

2

1
2

 

 = z

1
2

4
1

2

1









 



 = z










4
1

2

1 
 

 = 









4

1

2

1
z  

 =
8

1
log

2

1
x  

The general solution is y= C.F+ 21 .. IPIP   

 Y=









































zcxcx log
2

15
sinlog

2

15
cos 21

2

1

+
10

2x
+

8

1
log

2

1
x  

 

SIMULTANEOUS  FIRST  ORDER  EQUATIONS 
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Example:1 
Use the method of variation of parameter to solve (D2+4)y = cot2x. 

Solution: 

 A.E  is  m2+4=0 ; m= 2i  

The C. F = eox[Acos2x+Bsin2x] 

Now, 

 

1 2

' '

1 2

' ' 2 2

1 2 1 2

cos 2 sin 2

2 sin 2 2cos 2

2(cos 2 sin 2 ) 2

f x f x

f x f x

f f f f x x

 

  

   

 

        P.I = 1 2P f Q f  

P  = - 2

' '

1 2 1 2

f X
dx

f f f f  

P  

sin 2 cot 2

2

1
cos 2

2

1
sin 2

4

x x
dx

xdx

x

 

 

 



  

 

         

'

' '

1 2 1 2

f X
Q dx

f f f f


  

             =
cos 2 cot 2

2

x x
dx  

 



2

2

1 cos 2

2 sin 2

1 1 sin 2

2 sin 2

1
(cos 2 sin 2 )

2

1 1 1
log(cos 2 cot 2 ) cos 2

2 2 2

x
dx

x

x
dx

x

ec x x dx

ec x x x






 


   









 

 3. METHOD OF VARIATION OF PARAMETERS 
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P.I=Pf1+Qf2 

 
1 1

sin 2 [cos 2 log(cos 2 cot 2 )] cos 2 sin 2
4 4

x x ec x x x x     

 =-
1

sin 2 log(cos 2 cot 2 )
4

x ec x x   

 The complete solution is  

  
1

( cos 2 sin 2 ) sin 2 log(cos 2 cot 2 )
4

y A x B x x ec x x     

Examples :2 
 Solve (D2+a2)y = secax  by the method of variation of parameters.    

Solution: 

 Given (D2+ a2)y = secax 

 A.E is m2+ a2 = 0 

  m= ai  

 C.F A cosax Bsinax   

 

1 2

' '

1 2

' ' 2 2

1 2 1 2

cos sin

sin cos

cos sin

f ax f ax

f a ax f a ax

f f f f a ax a ax a

 

  

   

 

        P= 2

' '

1 2 1 2

f X
dx

f f f f


  

=-
sin secax ax

dx
a  

2

1 1
sin

cos

1 sin 1
log[cos ]

cos

ax dx
a ax

ax
dx ax

a ax a

 

  





 

           

1

' '

1 2 1 2

cos sec

1 1 1
cos

cos

f X
Q dx

f f f f

ax ax
dx

a

ax dx x
a ax a






 






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1 2 2

1 1
. log(cos )cos sinP I P f Qf ax ax x ax

a a
      

Complete solution y=C.F+P.I. 

Example :3 

Solve 

2

2
2 logxd y dy

y e x
dx dx

   by using method of variation of parameter.  

Solution: 

 A.E is m2-2m+1=0 

 C.F is (Ax+B)ex 

Where 
xxef 1   

xef 2  

 

' '

1 2

' ' 2 2

1 2 1 2 ( )

x x x

x x x x x

f xe e f e

f f f f xe xe e e e

  

     
 

P.I=Pf1+Qf2     Where 

P = 2

' '

1 2 1 2

f X
dx

f f f f


   

 










dxx

dx
e

xee
x

xx

log

log
2

 

logx x x   

Q= 1

' '

1 2 1 2

f X

f f f f  

 
2

. log
log

x x

x

xe e x
dx x x dx

e
  

   

4
log

2

2
log

22

2

x
x

x

x
xd











 
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)3log2(
4

1

4

3

2

log

42

log
log

42

log
)log(

.

2
22

22
22

22

21




















xex
exxex

exxex
exxex

e
xxx

xexxx

QfPfIP

x
xx

xx
xx

xx

s 

The complete solution is  

 )3log2(
4

)(
2

 x
ex

eBAxy
x

x
 

Example:4 

Use the method of variation of parameter to solve  2 2D a cotaxy  . 

Solution: 

 

2 2

ox

A.E  is  m a 0  m  

Then C.F e Acosax Bsinax

ai  

 
 

Now, 

 

1 2

' '

1 2

' ' 2 2

1 2 1 2

cos sin

sin cos

(cos sin )

f ax f ax

f a ax f a ax

f f f f a ax ax a

 

  

   

 

        P.I = 1 2P f Q f  

P  = - 2

' '

1 2 1 2

f X
dx

f f f f  

P  

2

sin cot

1
cos

1
sin

ax ax
dx

a

axdx
a

ax
a

 

 

 



  

'

' '

1 2 1 2

f X
Q dx

f f f f


  

      =
cos cotax ax

dx
a  
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

2

2

1 cos

sin

1 1 sin

sin

1
(cos sin )

1 1 1
log(cos cot ) cos

ax
dx

a ax

ax
dx

a ax

ecax ax dx
a

ecax ax ax
a a a






 


   









 

P.I=Pf1+Qf2 

 
2 2

1 1
sin [cos log(cos cot )] cos sinax ax ecax ax ax ax

a a
     

 =-
2

1
sin log(cos cot )ax ecax ax

a
   

 The complete solution is  

  
2

1
( cos sin ) sin log(cos cot )y A ax B ax ax ecax ax

a
     

Example:5 

Solve 2 1
( 1)

1 x
D y

e
 


by using method of variation of parameter.  

Solution: 

 A.E is m2-1=0 

 C.F is x xAe Be  

Where 
1

xf e   
2

xf e  

 

' '

1 2

' '

1 2 1 2 2

x x

x x x x

f e f e

f f f f e e e e



 

  

     
 

P.I=Pf1+Qf2     Where 

       P   = 2

' '

1 2 1 2

f X
dx

f f f f


   

 2(1 )

x

x

x x

e
dx

e

put e t e dx dt



 
 

  


 

2

1 1

2 (1 )
dt

t t


  
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2

1 1 1 1
( )

2 1
dt

t t t


  

  

= 







 )1log(

1
log

2

1
t

t
t  

=  )1log(
2

1 xx eex  
 

Q= 1

' '

1 2 1 2

f X

f f f f  

2(1 )

x

x

e
dx

e


 
 

1 x xput e t e dx dt   
 

1 1

2

1
log (1 )

2

x

dt
t

e

 

  


 

P.I = Pf1+Qf2     =  )1log(
2

xx
x

eex
e

 
- )1log(

2

x
x

e
e




 

The complete solution is  
 xx BeAexy )(  )1log(

2

xx
x

eex
e

 
 - )1log(

2

x
x

e
e



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1. Solve 

2

2
5 6 0

d y dy
y

dxdx
    

 

 
Solution: Given  2 5 6 0D D y    

The Auxiliary equation (A.E) is 2 5 6 0m m    

                                          2 3 0m m    

       1 22, 3m m    The roots are real and distinct.   

Complementary function is (C.F) 1 2 2 3m x m x x xAe Be Ae Be    ,        Since . . 0R H S      . . 0P I     

     The general solution is 2 3x xy Ae Be   
 
 

2. Solve  3 2
1 0D D D y     

 

 
Solution: The A.E. is 3 2 1 0m m m     

   2 1 1 1 0m m m     

  2 1 1 0m m    

2 1, 1m m          1, 1m m           1 2 31, 1m m m      

Roots are real, distinct and equal 

   1 2. .
m x m x x xC F Ae Bx C e Ae Bx C e        

. . . 0, . . 0R H S P I            x xy Ae Bx C e    
 

 

3. Solve 

2

2
6 13 0

d y dy
y

dxdx
    

 Solution: Given  2 6 13 0D D y    

The Auxiliary equation (A.E) is 2 6 13 0m m    

                                                  3 2m i i        The roots are complex  3, 2    

C.F.    3cos sin cos 2 sin 2x xe A x B x e A x B x      ,          . . 0R H S      . . 0P I     

        3 cos 2 sin 2xy e A x B x   

 

4. Find the solution of x from ,
dy dx

x y
dt dt

   

 Solution: Given ,Dy x Dx y   

0Dy x   -------- (1)    0y Dx    ------------  (2) 

UNIT I – ORDINARY DIFFERENTIAL EQUATIONS
Mathematics II (SMTA1201)Engineering

MORE PROBLEMS
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Eliminate y from (1) and (2), we get 

 2 1 0D x   

 A.E.  is 2 1 0m   ,             1m     

     . . t tC F Ae Be                            Since . . . 0 .. . 0R H S P I        t tx t Ae Be   

 

5. Solve by the method of variation of parameters 
2

2
4 sec 2

d y
y x

dx
   

 SOLUTION: 

Given  2 4 sec2D y x   

The A.E. is  
2 4 0m                 2m i   

1 2. . cos2 sin 2C F c x c x   

1 2cos2 , sin 2f x f x   

' 2sin 2 , ' 2cos 21 2f x f x    

 2 2
1 2 1 2' ' 2 cos 2 sin 2 2f f f f x x     

 2

1 2 1 2

sin 2 sec2 1 1
tan 2 log sec2

' ' 2 2 4

f X x x
P dx dx x dx x

f f f f
       

    

1

1 2 1 2

cos 2 sec2 1

' ' 2 2 2

f X x x x
Q dx dx dx

f f f f
   

    

 1 2

1
. . cos 2 log sec 2 sin 2

4 2

x
P I f P f Q x x x

 
      

 
 

 1 2

1
cos 2 sin 2 cos 2 log sec 2 sin 2

4 2

x
y c x c x x x x

 
     

 
 

 

6. Solve by the method of variation of parameters 
2

2
tan

d y
y x

dx
   

 SOLUTION: 

Given  2 1 tanD y x   

The A.E. is 
2 1 0m    

                            m i   

1 2. . cos sinC F c x c x   

             1 2cos , sinf x f x   

           
' sin , ' cos1 2f x f x    

   

2 2
1 2 1 2' ' cos sin 1f f f f x x     

               

2 2
2

1 2 1 2

sin tan sin 1 cos

' ' 1 cos cos

sec cos log sec tan sin

f X x x x x
P dx dx dx dx

f f f f x x

x x dx x x x


       



      

   


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1

1 2 1 2

cos tan
sin cos

' ' 1

f X x x
Q dx dx x dx x

f f f f
    

  
 

        

 1 2. . cos log sec tan sin sin .cosP I f P f Q x x x x x x        
 

             1 2cos sin cos log sec tan sin sin .cosy c x c x x x x x x x          

 

7. Solve by the method of variation of parameters 
2

2
sin

d y
y x x

dx
   

 SOLUTION: 

Given  2 1 sinD y x x   

The A.E. is  
2 1 0m    

m i   

1 2. . cos sinC F c x c x   

            1 2cos , sinf x f x   

           
' sin , ' cos1 2f x f x    

   

2 2
1 2 1 2' ' cos sin 1f f f f x x     

            

   

22

1 2 1 2

2

2

sin sin 1 cos 2
sin

' ' 1 2

1 1 1 sin 2 cos 2
cos 2 1

2 2 2 2 2 4

1
sin 2 cos 2

4 4 8

f X x x x x
P dx dx x x dx x dx

f f f f

x x x
x x x dx x

x x
x x

 
         

  

       
            

      

   

   


 

 

 

1

1 2 1 2

cos sin 1
sin 2

' ' 1 2

1 cos 2 sin 2 1
1 cos 2 sin 2

2 2 4 4 8

f X x x x
Q dx dx x x dx

f f f f

x x x
x x x

  


      
        

    

  

 

 
2

1 2

1 1
. . cos sin 2 cos 2 sin cos 2 sin 2

4 4 8 4 8

x x x
P I f P f Q x x x x x x

   
           

     

2

1 2

1 1
cos sin cos sin 2 cos 2 sin cos 2 sin 2

4 4 8 4 8

x x x
y c x c x x x x x x x

   
           

     

 
 

8. Solve  2
4 3 sin

x
D D y e x

     

 SOLUTION: 

Given  2 4 3 sinxD D y e x    

The A.E. is 
2 4 3 0m m    

  1 3 0m m    
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1, 3m     

3. . x xC F Ae Be    

 2

1
. . sin

4 3

xP I e x
D D


     

2

1
sin

1 4 1 3

xe x
D D


   

 

        
2

1
sin

2 1 4 4 3

xe x
D D D


     2

1
sin

2

xe x
D D




1
sin

1 2

xe x
D


   

2

2 1
sin

2 1

x D
e x

D

 



 

         
2

2 1
sin

4 1

x D
e x

D

 




2 1
sin

4 1

x D
e x 


 

2 1
sin

5

x D
e x 




 

 . . 2cos sin
5

xe
P I x x



    

 3. . . . 2cos sin
5

x
x x e

y C F P I Ae Be x x


        

 

9. Solve  2 2 2
4 4

x
D D y e x     

 Solution: 

The A.E. is 2 4 4 0m m    

 
2

2 0m   

             
2,2m   

  2. . xC F Ax B e   

2
1 2

1
.

4 4

xP I e
D D


 

 

           

2
2 2 2 21 1 1

4 8 4 2 4 4 4 2

x x x xx
e x e x e e

D
   

   
 

2
2 2

1
.

4 4
P I x

D D


 

2

2

1

4
4 1

4

x
D D


 
  

 

1
2

21 4
1

4 4

D D
x


 

   
 

 

          

2
2 2

21 4 4
1

4 4 4

D D D D
x

                    

2 4 2 3
21 16 8

1
4 4 16

D D D D
D x

  
      

 

 

           

2
2 21

1
4 4

D
D D x

 
     

 

2
2 21 3 1 3

1 2
4 4 4 2

D
D x x x

   
            

 

  1 2. . .P I P I P I   

   
2

2 2 21 3
2

2 4 2

x xx
y Ax B e e x x

 
      

 
 

 

10. Solve 
2

2
4 3 sin 3 cos 2

d y dy
y x x

dxdx
    

 SOLUTION: 

Given  2 4 3 sin3 cos2D D y x x    
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The A.E. is 
2 4 3 0m m    

  3 1 0m m    

                      
1,3m   

3. . x xC F Ae Be   

  

   
2 2

1 1 1
. sin 3 cos 2 sin 5 sin

24 3 4 3
P I x x x x

D D D D
  

   
 

         
2 2

1 1 1 1
sin 5 sin

2 24 3 4 3
x x

D D D D
 

   
 

         1 2. .P I P I   

1 2

1 1
. sin5

2 4 3
P I x

D D


 

1 1
sin 5

2 25 4 3
x

D


  

1 1
sin 5

2 4 22
x

D


 

1 1
sin 5

4 2 11
x

D
 


 

          
 

 

 

2 111 1
sin5

4 2 11 2 11

D
x

D D


 

  2

1 2 11
sin 5

4 4 121

D
x

D


 

  
1 2 11

sin5
4 4 25 121

D
x


 

 
 

          
1 2 11

sin 5
4 221

D
x


 


 

1
10cos5 11sin 5

884
x x   

 

2 2

2

1 1 1 1 1 1
. sin sin sin

2 2 1 4 3 2 2 44 3

1 2 4 1 2sin 4cos sin 2cos
sin

2 2 20 204 16

P I x x x
D DD D

D x x x x
x

D

  
    

  
  



 

   
 3

1 2

1 sin 2cos
. . . 10cos5 11sin 5

884 20

x x x x
y C F P I P I Ae Be x x


         

 

11. Solve 2 sin , 2 cos
dx dy

y t x t
dt dt

       

 SOLUTIO N: 

 

 

2

2

2 sin , 2 cos

. . 2 sin ........(1); 2 cos .......(2)

(1) 2 2 4 2sin ...........(3)

(2) 2 sin ............(4)

(3) (4) 4 3sin

dx dy
y t x t

dt dt

i e Dx y t Dy x t

Dx y t

D Dx D y t

D y t

    

    

    

     

    
 

The A.E. is 
2 4 0m    

                             2m i   

. . cos2 sin2C F A t B t   

 
2

1 sin
. . 3sin 3 sin

34

t
P I t t

D
     


 

   
cos 2 sin 2 siny A t B t t    

2 sin 2 2 cos 2 cosDy A t B t t     

(2) 2 cosx Dy t     

                           2 sin2 2 cos2 cos cosA t B t t t      

                       sin2 cos2 cosx A t B t t     

22



               

 

 

12. Solve 7 0, 2 5 0
dx dy

x y x y
dt dt

       

 SOLUTION: 

 

 

 

      

 2

7 0..............(1)

2 5 0..........(2)

(1) 2 2 7 2 0...........(3)

(2) 7 2 7 5 7 0..............(4)

(3) (4) 12 37 0

D x y

x D y

D x y

D D x D D y

D D y

  

   

    

        

    

 

A.E. is       
2 12 37 0m m    

            
2 12 36 1 0m m     

                        
2

6 1 0m    

                              
2

6 1m    

                                          6m i   

       6 cos sinty e A t B t   

 (2) 2 5x D y     

    
1 5

2 2
x Dy y   

            6 6 61 5
sin cos 6 cos sin cos sin

2 2

t t te A t B t e A t B t e A t B t       
 

 

      6 61
cos e sin

2

t tx A B e t B A t    
 

 

 
 

13. Solve 10 , 0
tdx dy dx dy

x y e x y
dt dt dt dt

        given    0 2, 0 3x y   

 SOLUTION: 

Given 10 , 0tdx dy dx dy
x y e x y

dt dt dt dt
         

 . . 10 .........(1); 0.........(2)ti e Dx Dy x y e Dx Dy x y         

(1) (2) 2 2 10 tDx x e     

                          5 tDx x e   

                       1 5 ......(3)tD x e   

A.E. is 1 0m  ;   1m     

         . . tC F Ae  

        
1

. . 5 5
1 2

t
t e

P I e
D

 
  

5
. . .......(4)

2

t tx C F P I Ae e      

(1) (2) 2 2 10 tDy y e     
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                            5 tDy y e    

                          1 5 tD y e   

A.E. is 1 0; 1m m     

         . . tC F Be  

        
1

. . 5 5
1 2

t
t e

P I e
D

 


 

   
5

...........(5)
2

t ty Be e   

Given    0 2, 0 3x y   

5
(4) 2

2
A    

            
5 1

2
2 2

A


    

5
(5) 3

2
B    

            
5 1

3
2 2

B     

   
1 5

(4)
2 2

t tx e e
    

        
1 5

(5)
2 2

t ty e e    

 

14. Solve    2 2 2
3 4 cos logx D xD y x x    

 SOLUTION: 

Put zx e  log x z  

              'xD D  

          2 2 1' 'x D D D   

(1)    21 3 4 cos' ' ' zD D D y e z    
 

2 24 4 cos' ' zD D y e z  
 


 

2 22 cos' zD y e z     
The A.E. is

 

 
2

2 0m                2, 2m   

  2. . zC F Az B e   

 
 2 2 2 2

2 2

1 1 1
. . cos cos sin cos

''' 2

z z z zP I e z e z e z e z
DDD

     


 

    2 2. . cosz zy C F P I Az B e e z         2 2log cos logA x B x x x    
 

15. Solve  2 2 2
2 4 2logx D xD y x x      

 SOLUTION: 
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Given  2 2 22 4 2log ..............(1)x D xD y x x     

Put zx e  log x z  

              'xD D  

          2 2 1' 'x D D D   

(1)    21 2 4 2' ' ' zD D D y e z        

                         
2 23 4 2' ' zD D y e z   

 
  

 The A.E. is          
2 3 4 0m m    

                     
2 4 4 0m m m     

                   4 4 0m m m     

                           4 1 0m m    

                                                  4, 1m    

4. . z zC F Ae Be   

      
2

1 2

1
.

3 4' '
zP I e

D D


 

2 21 1

4 6 4 6

z ze e


 
 

 

 2 2

1
. 2

3 4' '
P I z

D D


 

2

2

32 1 1
1 ...

4 2 43
1

4

' '

' '

D D
z z

D D

 
   
      
     
 

 

             
1 3 1 3

1
2 4 2 8

z z
 

      
 

 


4 21 1 3

6 2 8

z z zy Ae Be e z      

         
log 4log 2log1 1 3

log
6 2 8

x x xAe Be e x      

     
4 21 1 3

log
6 2 8

A
y Bx x x

x
      

 
 

16. Solve 
2

2 2

1 12logd y dy x

x dxdx x
   

 SOLUTION: 

Given 
2

2 2

1 12logd y dy x

x dxdx x
    

2
2

2
(i.e.) 12log

d y dy
x x x

dxdx
   

2 2 12log ..........(1)x D xD y x  
 

 

Put logzx e x z    

'xD D  

 2 2 1' 'x D D D   
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 (1) 1 12' ' 'D D D y z       

2 12'D y z  
 

 

The A.E. is 
2 0m   

  0. . zC F Az B e Az B     

 
2 3

3

2

1 1
. . 12 12 12 2

2 6''

z z
P I z z

DD

 
     

 

 

    
332 log 2 logy Az B z A x B x       

 
 

17. Solve  
2

22

2
3 4 1

d y dy
x x y x

dxdx
     

 SOLUTION: 

Given      
2

2 22 2 2

2
3 4 1 ( . .) 3 4 1 ..........(1)

d y dy
x x y x i e x D xD y x

dxdx
         

Put logzx e x z    

'xD D  

 2 2 1' 'x D D D   

   
2

(1) 1 3 1' ' ' 4 zD D D y e        

              
2 21 2' ' 3 ' 4 z zD D D y e e    

 
   

                              
2 0 22 2' z z zD y e e e       

 The A.E. is          
2

2 0m   

                                          2,2m   

   2 2. . logzC F Az B e A x B x     

 
0 0

1 2

1 1 1
.

4 4' 2

z zP I e e
D

  


 

 
2

2 2

1
.

' 2

zP I e
D




 

          

 

2

2

1

2 2

ze


 

          
 

21

2 ' 2
zz e

D



 

           
21

2 2 2

zz
e


 

           
 

2 22
2 log

2 2

z x xz
e   
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   
3 2 2

1 1
. 2 2 2 2

1 2' 2

z z zP I e e e x
D

   


 

    
 

2 2
2

1 2 3

log1
. . . . log 2

4 2

x x
y C F P I P I P I A x B x x          

 

18. Solve    
2 2

3 2 3 3 2 36 3 4 1x y x y y x x         

 SOLUTION: 

Given    
2 23 2 3 3 2 36 3 4 1x y x y y x x         

Put 3 2 zx e    log 3 2x z   

2

3 3

ze
x    

Let  3 2 3 'x D D   

   2 23 2 9 ' ' 1x D D D    

   
2

2 2
9 3 3 36 3 4 1

3 3 3 3
' ' 1 '

z ze e
D D D y

   
           

      

  

        

2
2 4 4 4 8

9 9 9 36 3 1
9 9 9 3 3

' ' '
z

z ze
D D D y e e

 
          

  

  

                             

2
2 1

9 36
3 3

'
ze

D y   
 

 

                                

2 21 1
4

27 27
' zD y e   

 
 

 

The A.E. is 2 4 0m    

                             2m    

   
2 22 2. . 3 2 3 2z zC F Ae Be A x B x

       

2

1 2

1
.

274'

ze
P I

D

 
     

21 1

27 4 4

ze


21 1

27 2 '
zz e

D


2

54 2

zz e
  

 
 

2
2log 3 2

3 2
108 108

z xze
x


    

0

2 2

1 1
.

27 1084'

ze
P I

D

 
      

 

1 2. . .y C F P I P I      
 

 
2 2 2log 3 2 1

3 2 3 2 3 2
108 108

x
A x B x x

 
        

 
 

19. Solve             

2
2

2
1 1 2sin log 1

d y dy
x x y x

dxdx
 

 SOLUTION: 

     
2

2

2
1 1 2sin log 1

d y dy
x x y x

dxdx
         

Put 1 zx e   

27



               

 

              log 1z x   

 Then  1 'x D D    

      2 21 ' ' 1x D D D    

         2sin' ' 1 ' 1D D D y z      

                                     
2 2sin' 1D y z  

 
  

The A.E. is 
2 1 0m    

                             m i   

   . . cos sin cos log 1 sin log 1C F A z B z A x B x             

2

1
. . 2sin

1'
P I z

D


 2

1
2 sin

1'
z

D



 

1
2 sin

1 1
z

 
 

             
1 1

2 sin sin cos log 1 cos log 1
2 ' '

z z z z z z x x
D D

           

   . . .y C F P I   

                  cos log 1 sin log 1 log 1 cos log 1A x B x x x                  

 

20. Solve    
2

2

2
2 2 2

d y dy
x x y x

dxdx
       

 SOLUTION: 

Put 2 zx e    log 2 x z   

2zx e   

Let  2 'x D D   

   2 22 ' ' 1x D D D  
 

Then  

 ' ' 1 ' 1 zD D D y e      

          

2 2' ' 1 zD D y e  
 


 

                     

2
' 1 zD y e   

 
The A.E. is  

      

 

     

2
1 0

1,1

C.F. Az B log 2 2z

m

m

e A x B x

 



     

 

   
2

1 1 1
. . log 2 2

2 2 2'' 1

z
z z ze

P I e z e x x
DD

       
  

 

     

       
1

log 2 2 log 2 2
2

y A x B x x x          
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UNIT - V - PROBABIBILITY AND DISTRIBUTIONS - SMT1113 



Probabilities are associated with experiments where the outcome is not known in advance or 
cannot be predicted. For example, if you toss a coin, will you obtain a head or tail? If you roll 
a die will obtain 1, 2, 3, 4, 5 or 6? Probability measures and quantifies "how likely" an event, 
related to these types of experiment, will happen. The value of a probability is a number 
between 0 and 1 inclusive. An event that cannot occur has a probability (of happening) equal 
to 0 and the probability of an event that is certain to occur has a probability equal to 1.(see 
probability scale below). 

In order to quantify probabilities, we need to define the sample space of an experiment and 
the events that may be associated with that experiment. 

The sample space is the set of all possible outcomes in an experiment. We define an event as 
some specific outcome of an experiment. An event is a subset of the sample space. 

Examples :  

(i) If a die is rolled, the sample space S is given by S = {1,2,3,4,5,6}. 

(ii) If two coins are tossed, the sample space S is given by S = {HH,HT,TH,TT} , where             

1. Introduction to Probability 

2. Sample space and Events 

H = head and T = tail. 

(iii) If two dice are rolled, the sample space S is given by  

S = { (1,1),(1,2),(1,3),(1,4),(1,5),(1,6)  

         (2,1),(2,2),(2,3),(2,4),(2,5),(2,6)  

         (3,1),(3,2),(3,3),(3,4),(3,5),(3,6)  

         (4,1),(4,2),(4,3),(4,4),(4,5),(4,6)  

         (5,1),(5,2),(5,3),(5,4),(5,5),(5,6)  

         (6,1),(6,2),(6,3),(6,4),(6,5),(6,6) } 

Probability theory is based on some axioms that act as the foundation for the theory, so let us 

state and explain these axioms. 

3. Axioms of Probability: 

Axiom 1: For any event A, P(A) ≥ 0. 

Axiom 2: Probability of the sample space S is P(S) = 1. 

1



Axiom 3: If A1, A2, A3, ⋯ are disjoint events, then                                                                         
P (A1∪A2∪A3⋯) = P(A1) + P(A2) + P(A3) + ⋯ 

Two events are mutually exclusive if they cannot occur at the same time. Example, A die is 
rolled. The event of getting an even number on the face of the die and the event of getting an 
odd number are mutually exclusive events. 

Independent events 

Two events A and B are independent if P(A∩B) = P(A)P(B).  

Example 1:   

Two coins are tossed, find the probability that two heads are obtained. 

Solution: 

The sample space S is given by S = {(H,T),(H,H),(T,H),(T,T)}   
Let E be the event "two heads are obtained" E = {(H,H)} 
 P(E) =  = . 

A card is drawn at random from a deck of cards. Find the probability of getting the 3 of 
diamond. 
 
Example 2:   

A card is drawn at random from a deck of cards. Find the probability of getting the 3 of 
diamond. 

Solution: 

Let E be the event "getting the 3 of diamond". An examination of the sample space shows 
that there is one "3 of diamond" so that n(E) = 1 and n(S) = 52. Hence the probability of 
event E occurring is given by P(E) =  . 

Example 3: 

A jar contains 3 red marbles, 7 green marbles and 10 white marbles. If a marble is drawn 
from the jar at random, what is the probability that this marble is white? 

Solution: 

Total number of marbles in the jar is n(S) = 20 
Let E be the event "getting a white marble” is n(E) = 10.                        
P(E) = . 

 
Example 4: 
 
Two dice are rolled, find the probability that the sum is equal to 5. 
Solution: 

4. Mutually Exclusive Events 

2



Two dice are rolled, the sample space S is given by  

S = { (1,1),(1,2),(1,3),(1,4),(1,5),(1,6)  

         (2,1),(2,2),(2,3),(2,4),(2,5),(2,6)  

         (3,1),(3,2),(3,3),(3,4),(3,5),(3,6)  

         (4,1),(4,2),(4,3),(4,4),(4,5),(4,6)  

         (5,1),(5,2),(5,3),(5,4),(5,5),(5,6)  

         (6,1),(6,2),(6,3),(6,4),(6,5),(6,6) }                

Let E be the event "getting a sum equal to 5”. Then n(E) = 4 and Then n(S) = 36.                        
P(E) = . 

 
Example 5: 
A committee of 5 people is to be formed randomly from a group of 10 women and 6 men. 
Find the probability that the committee has  
a) 3 women and 2 men.  
b) 4 women and 1men.  
c) 5 women.  
d) at least 3 women 
 
Solution: 

There are 16C5 ways to select 5 people (committee members) out of a total of 16 people (men 
and women). There are 10C3 ways to select 3 women out of 10. There are 6C2 ways to select 
2 men out of 6. There are  ways to select 3 women out of 10 and 2 men out of 6.                                                                                                                              

(a)  P(3 women AND 2 men) =  = 0.412087                                                                          

(b) P(4 women AND 1 men) =  = 0.288461                                                                           

(c) P(5 women ) =  = 0.0576923                                                                                              

(d) P(at least 3 women) = P(3 women or 4 women or 5 women).                                                          
Since the events "3 women", "4 women" and "5 women" are all mutually exclusive, then  P(at 
least 3 women) = P(3 women or 4 women or 5 women) = P(3 women) + P(4 women) + P(5 
women) = 0.412087 + 0.288461 + 0.0576923 = 0.758240 
 

Example 6:   

In a presidential election, there are four candidates. Call them A, B, C, and D. Based on our 
polling analysis, we estimate that A has a 2020 percent chance of winning the election, while 
B has a 4040 percent chance of winning. What is the probability that A or B win the election? 

Solution: 

3



The events that {A wins}, {B wins}, {C wins}, and {D wins} are disjoint since more than 
one of them cannot occur at the same time. For example, if A wins, then B cannot win. From 
the third axiom of probability, the probability of the union of two disjoint events is the 
summation of individual probabilities. Therefore, 
P(A wins or B wins)  = P({A wins}∪{B wins}) 
    = P({A wins})+P({B wins})=P({A wins})+P({B wins}) 

= 0.2+0.4=0.2+0.4 
= 0.6 
 

In this section, we discuss one of the most fundamental concepts in probability theory. Here 
is the question: as you obtain additional information, how should you update probabilities of 
events? For example, suppose that in a certain city, 23 percent of the days are rainy. Thus, if 
you pick a random day, the probability that it rains that day is 23 percent:                                   
P(R) = 0.23, where R is the event that it rains on the randomly chosen day. 

Now suppose that we pick a random day, but we also tell that it is cloudy on the chosen day. 
Now that we have this extra piece of information, how do we update the chance that it rains 
on that day? In other words, what is the probability that it rains given that it is cloudy?              
If C is the event that it is cloudy, then we write this as P(R|C), the conditional probability of 
R given that C has occurred. It is reasonable to assume that in this example, P(R|C) should be 
larger than the original P(R), which is called the prior probability of R. For calculating  
P(R|C) we have a general formula which is given below. 

If A and B are two events in a sample space S, then the conditional probability of A given B 

is defined as P(A|B) = , when P(B) > 0. 

Example 7: 

A fair die is rolled. Let A be the event that the outcome is an odd number and let B be the 
event that the outcome is less than or equal to 3. What is P(A) and P(A|B)? 

Solution  

Given that S = { 1,2,3,4,5,6}, A = {1,3,5} and B ={1,2,3}. 
P(A) =  = .  

P(A|B) =   = . 

 
Example 8: 

In a factory there are 100 units of a certain product, 5 of which are defective. We pick three 
units from the 100 units at random. What is the probability that none of them are defective? 

Solution  

Let us define Ai as the event that the ith chosen unit is not defective, for i=1,2,3. We are 
interested in P(A1∩A2∩A3). Note that P(A1) =  

5. Conditional Probability 

4



Given that the first chosen item was good, the second item will be chosen from 94 good units 
and 5 defective units, thus P(A2|A1) = . 

Given that the first and second chosen items were okay, the third item will be chosen from 93 
good units and 5 defective units, thus P(A3|A2, A1) = . 

Thus, we have P(A1∩A2∩A3) = P(A1)  P(A2|A1)  P(A3|A2,A1) =  = 0.8560 

 
 
 

P(B) 0. Then Baye’s theorem says 

 

 

 

EXAMPLE :1 

 

6. BAYE’S THEOREM 

 

Let S be a sample space. 

Let A1, A2, ... An be disjoint events in S and B be any arbitrary event in S with 
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EXAMPLE: 2 
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EXAMPLE:3 
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EXERCISE PROBLEMS 

 

1. There are 3 boxes containing respectively 1 white, 2 red, 3 black balls; 

    2white, 3 red, 1 black ball : 2 white, 1 red, 2 black balls. A box is 

    chosen at random and from it two balls are drawn at random. The two 

    balls are 1 red and 1 white. What is the probability that they come 

    from the second box? 

 

2. In a company there are three machines A1, A2 and A3. They produce 20%, 

    35% and 45% of the total output respectively. Previous experience shows 

    that 2% of the products produced by machines A1 are defective. Similarly 

    defective percentage for machine A2 and A3 are 3% and 5% respectively. A 

    product is chosen at random and is found to be defective. Find the probability 

    that it would have been produced by machine A3? 

 

9



3. Let U1, U2, U3 be 3 urns with 2 red and 1 black, 3 red and 2 black, 1 red and 

    1 black ball respectively. One of the urns is chosen at random and a ball is 

    drawn from it. The colour of the ball is found to be black. What is the 

    probability that it has been chosen from U3? 
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(i) p (xi) ≥ 0 

(ii) )(
1




i

ixp = 0 

The function p satisfying the above two conditions is called the probability 

mass function (or) probability function. 

Probability Density Function 

                 The p .d .f f(x) of a random variable X has the following properties 

(i) f (x) ≥ 0,    -∞ < x < ∞ 

(ii)  




dxxf )(  = 1 

(iii) If E is any event, then P(E) = 
E

dxxf )(     

Moment Generating Function 

                 The moment generating function (m.g.f.) of a random variable X (about 

origin) whose probability function f(x) is given by 

                 M X (t) = E (e
tX

)     

                           = 




txe f(x) dx, for continuous probability distribution 

                           = 


x

txe p(x),   for discrete probability distribution 

Example 1: A random variable X has the following probability function 

Values of 

X  

0 1 2 3 4 5 6 7 8 

Probability 

P(x)  

a 3a 5a 7a 9a 11a 13a 15a 17a 

Introduction:

Random Variable:

 Consider an experiment of throwing a coin twice. The outcomes {HH, 

HT, TT} constitute the sample space. Each of these outcomes can be associated with 

a number by specifying a rule of association (e g. the number of heads). Such a rule 

of association is called a random variable. We denote random variable by a capital 

letter (X,Y) and any particular value of the random variable by x or y. 

Discrete  

A discrete random variable is a random variable X whose possible values constitute 

finite set of values count ably  infinite set of values. 

Continuous Random Variable: 

A random variable X which takes all possible values in a given interval is called 

continuous random variable. 

       
 Probability Mass Function (or) Probability Function: 

               The numbers pi =p (xi) satisfies the following conditions 

11

Hp
Typewritten text
7. Random Variables



 2 

 

(i) Determine  the value of a 

(ii) Find P (X<3), P(X≥3), P(0<X<5) 

Solution:      We know that if P(x) is the probability mass function, then 

 )(
1




i

ixP   = 1 

       a + 3a+ 5a + 7a + 9a + 11a + 13a + 15a + 17a =1 

       81a = 1  a = 
81

1
 

  P (X < 3) = P (0) + P (1) + P (2) = a + 3a + 5a = 
81

1
 + 

81

3
 + 

81

5
 = 

81

9
 

  P (X ≥ 3) = 1 – P (X < 3) = 1 - 
81

9
 = 

81

72
 

  P (0 < X < 5) = P (1) + P (2) + P (3) + P (4) = 3a + 5a + 7a + 9a 

                        = 
81

3
   +  

81

5
 + 

81

7
 + 

81

9
 = 

81

24
 

Example 2: If the random variable X takes the value 1, 2, 3 and 4 such that  

  2P(X =1) = 3P(X=2) = P(X=3) = 5P(X=4). Find the probability distribution. 

Solution: Let 2P(X=1) = 3P(X=2) = P(X=3) = 5P(X=4)    

                  P(X = 1) = 
2

k
  P(X = 2) = 

3

k
    P(X = 3) = k P(X= 4) = 

5

k
 

                We know that  ip =1 

                  i.e., k
kkk


532
 = 1  

30

6301015 kkkk 
 =1 61k = 30 

                  i.e., k =  
61

30
 

                The probability distribution of X is given by the following table. 

                    

xi 1 2 3 4 

P(xi) 

61

15
 

61

10
 

61

30
 

61

6
 

 

Example 3:The diameter of an electric cable is assumed to be a continuous random 

variable with p.d.f  f (x ) = 6x  (1 – x) , 0 ≤ x ≤ 1 

(i) Check that above is a p.d.f. 

(ii) Determine a number “b” such that P( X< b) = P(X > b) 

 

Solution: We know that 




dxxf )(  = 1 

(i)  

1

0

1

0

)1(6)( dxxxdxxf  = 6[x
2
/2  -x

3
/3] =6 [ ½ -1/3] = 1  f(x) is a p.d.f. 
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 3 

(ii)Given P( X< b) = P(X > b) 

       

1

0

)1(6)1(6
b

b

dxxxdxxx  

 

                bb
xxxx

00
)1(6)1(6   

 

             



























323

1

2

1

32
6

3232 bbbb
 

              4b
3
 – 6b

2
  + 1 = 0   

 Solving  ,   b = 1/2, (1±i) / 2 where b = ½ lies in (0 ,1) 

 

Example 4: If a random variable X has the probability density function 

                   f (x) = )1(
2

1
x , if -1 < x <1 

                               0,          otherwise            Find the mean and variance of X 

Solution: Mean =   


1

1

)( dxxxf  = 




1

1

)1(
2

1
dxxx  = dxxx )(

2

1
1

1

2 


 = 
1

1

23

]
23

[
2

1


xx
      

             

                 ]
2

1

3

1

2

1

3

1
[

2

1
  = 

3

1
 

                 Mean =  
3

1
 

                     Variance = dx
x

x ]
2

1
[]

3

1
[ 2

1

1






 = dxxxx )1)(619(
18

1
1

1

2 


 

                       = dxxxx )1539(
18

1 2

1

1

3 


 = 
1

1

2
3

4

]
2

5

4

9
[

18

1
 x

x
x

x
=  

9

2
 

                      Variance = 
9

2
 

  Example 5: A continuous random variable X that can assume any value between 

x=2 and x=5 has a density function given by f(x) = k (1+x). Find P (x<4) 

 Solution: We know that  
5

2

)( dxxf  = 1 

                     i.e.   

5

2

)1( dxxk  =1 

                             k [
5

2

2

]
2

)1( x
 =1    k = 

27

2
 

                          P (X < 4) = P (2<X<4) =  

4

2

)1( dxxk  = 
27

16
 

 

13
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Example 6:A random variable X has the density function :  

   f(x)    =   K  . 
21

1

x
   in  -∞  < x < ∞ 

 

              =0      otherwise.  Find K and the distribution function F (x) 

Solution: Since f(x) is a p.d.f. ,we have 




dxxf )(  =1 

                                                  1
1

1
2








dx
x

k  

 

                                                    xk 1tan    =1 

                                                  k (π/2  +π/2)   =1,   k  =1/π 

                                  

To find F(x) :      F(x) = 


x

dxxf )(   =1/π 1
1

1
2






x

dx
x

/π  xx 

1tan  

 

                                       =1/π  [tan
-1

 x   + π/2] 

 

  Example  7: Find the moment generating function of a random variable X having 

the p.d.f f(x) =
3

1
, -1 < x < 2 

                 = 0,   otherwise 

Solution: We know that the m.g.f. for a continuous random variable X is   

                   MX (t) =  dxxfe tx )(




 = dxe tx

3

1
2

1




= 
3

1
[

2

1]
t

e tx

 = ][
3

1 2

t

ee tt 
 

                    MX (t) = ][
3

1 2

t

ee tt 
 

 

 

1. Binomial Distribution 

2. Poisson Distribution 

3. Normal Distribution 

 

Binomial Distribution: 

                  A random variable X is said to follow a discrete binomial  distribution 

if its probability mass function is given by P(X=x) = ncxp
x
q

n-x
  where p+q=1 

 

Mean of Binomial Distribution:  

                  The mean of Binomial distribution is np 

Variance of Binomial Distribution: 

8. Some special Distributions:  
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                   The variance of Binomial distribution is npq      

 

   Poisson distribution: 

                    A random variable X is said to follow a discrete poisson distribution 

if its probability mass function is given by P(X=x) =
!x

e x
, x= 0,1,2,……,  

                                                                                  = 0, otherwise 

Mean of Poisson distribution: 

                    The mean of Poisson distribution is   

 

Variance of Poisson distribution: 

                     The variance of Poisson distribution is  

 

 

Normal Distribution:  

 

                 A random variable X is said to follow a continuous normal distribution 

with mean   and variance 2  if its probability density function is given by 

                    f(x) =    
2

2

2

)(

2

1






 x

e  - < x <  ,  > 0,  - <  <  

      The total area bounded by the curve is 1. 

       Mean, Median and Mode of the normal distribution coincide  

 

Example 1: Find the binomial distribution for which the mean is 4 and variance is 3. 

 

Solution:  We know that, for binomial distribution 

                   Mean = np,   Variance = npq 

                   Given    mean = 4        i.e.  np = 4 variance = 3 i.e. npq = 3 

                     
4

3

4

3
 q

np

npq
 

                            p = 1 – q = 1 - 
4

3
 = 

4

1
        

        Substituting p =
4

1
 in mean we get n = 16 

                  p(x)  = 16Cx
xnx )

4

3
()

4

1
(    

  Example 2: 6 dice are thrown 729 times. How times do you expect at least three 

dice to show a five or a six? 

  Solution: p = probability of getting 5 or 6 with one die = 
3

1

6

2
  

                   
3

2

3

1
11  qq  

 P (at least three dice showing five or six) = p (x≥3)  

15
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                                                                                           = p (3) + p (4) + p (5) + p (6) 

                         = 6C3 (
6

6

5

5

24

4

33 )
3

1
(6)

3

2
()

3

1
(6)

3

2
()

3

1
(6)

3

2
()

3

1
CCC        

                         = 
63

11260160 
        = 

63

233
 

                  For 729 times, the expected number of times at least 3 dice showing 5 or 6 

                         = N x 
63

233
  

                         = 729 x  
63

233
 

                         = 233 times 

Example 3:Ten coins are thrown simultaneously.Find the chance of obtaining  

at least 7 heads 

Solution: Given p=
2

1
,q=

2

1
, n =10 

The probability of getting x successes =p (x) = ncxp
x
q

n-x
   

(1)Probability of getting at least 7 heads = p(x≥7) 

                                                                  =p (7) +p (8)+p (9)+p (10)    

                  =10C7

37

2

1

2

1
















+10C8

28

2

1

2

1
















+10C9

19

2

1

2

1
















+10C10

010

2

1

2

1
















 

                  =

10

2

1








[10C7+10C8+10C9+10C10] 

                  =0.171875 

 

Example 4: If X is a Poisson variate P(X= 2) = 9 P(X=4) + 90 P(X=6), find mean 

and variance of X. 

Solution: P(X= x) =
!x

e x
, x = 0, 1, 2… 

Given       P(X=2) =   9 P(X=4) + 90 P(X=6) 

      i.e.      
!6

90
!4

9
!2

642   


eee

  

                             = 

!4

9
(

2
2 

e  )
!6

90 2
 

 

                      
2

1
    =  

!6

90

!4

9 42 
  

                      
2

1
    =  

88

3 42 
      i.e. 043 24    

                       
2

53

2

16932 



   

                         11 22   or   ior   1                                       
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                       Mean = 1  

                           Variance = 1    Standard deviation = 1 

 Example 5: Find the probability that at most 5 defective fuses will be found in a box 

of 200 fuses if experiences show that 2% of such fuses are defective.  

Solution: Given n = 200, p = 2% = 02.0
100

2
  

                  Mean  n x p = 200 x 0.02 = 4   = 4 

                The Poisson distribution is p(x) = 
!

4

!

4

x

e

x

e xx 




 

                P ( at most 5 defective fuses) = p( x ≤ 5 ) 

                                              = p(0) + p(1) + p(2) + p(3) + P(4) + p(5) 

                    = 
!5

4

!4

4

!3

4

!2

4

!1

4

!0

4 544434241404 


eeeeee

 

 

                    = e
-4

[1 + 4 + 
!2

42

+ ]
!5

4

!4

4

!3

4 543

 = ]866.42[4e = 0.785 

Example 6:A manufacturer of cotterpins knows that 5% of his product is defective.If 

he sells cotterpins in boxes of 100 and guarantees that not more than 10 pins will be 

defective,what is the approximate probability that a box will fail to meet the 

guaranteed quality?  

Solution:  n=100, p =5% =0.05,  nxp =100x0.05 =5 

  The Poisson distribution = P(X= x) =
!

5

!

5

x

e

x

e xx 




 

 

P(a box will fail to meet the guaranteed quality)  = p(x > 10) 

                                                                               =1  - p(x≤10) 

                                                                               =1 – [p(0)+p(1)+…p(10)] 

                                                                

                                                =
!5

5

!4

5

!3

5

!2

5

!1

5

!0

5 554535251505 


eeeeee

+                                                                                                                                                                                                                                   

!10

5

!9

5

!8

5

!7

5

!6

5 101099857565 


eeeee

 

                                               =1- e
-5

[ 1+ 5+ ]
!10

5
...

!4

5

!3

5

!2

5
10432

  

                                               = 1- e
-5

[ 146.36] 

                                                =0.014  

 

Example 7: If X is normally distributed and the mean of X is 12 and the S.D. is 4. 

Find out the probability of the following. (i) x ≥ 20, (ii) x ≤ 20, (iii) 0 ≤ x ≤ 12 

 

Solution: Given  = 12,  = 4 

(i) To find p (x ≥ 20) 

17
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        When x = 20, z = 


x
= 

4

1220
=2 

i.e., When x = 20, z = 2 p (x ≥ 20) = p (z ≥ 2) 

                                                           = 0.5 – p (0≤ z≤2) 

                                                           = 0.5 – 0.4772 = 0.0228----- (1) 

(ii) To find p (x ≤ 20) 

      When x = 20, z = 


x
 = 2

4

1220



 

    p (x ≤ 20) = p (z ≤ 2) = 1 – p (z ≥ 2) = 1 – 0.0228 (from(1)) 

                                                                                         = 0.9772 

                      (iii)   To find p (0 ≤ x ≤ 12) 

                                When x = 0, z = 3
4

120









x
  

                                When x = 12, z = 0
4

1212









x
  

                       p (0 ≤ x ≤12) = p (-3 ≤ z ≤ 0) = p (0 ≤ z ≤ 3) = 0.4987 (from table) 

Example 8: In a distribution exactly normal, 7% of the items are under 35 and 89% 

are under 63. What are the mean and standard deviation of the distribution? 

 

Solution:  Let the mean and standard deviation of the given normal distribution be µ 

and  . The area lying to the left of the ordinate at x = 35 is 0.07. The corresponding 

value of z is negative. 

The area lying to the right of the ordinates at x = 63 up to the mean is 

 0.5 – 0.07 = 0.43. 

 The value of z corresponding to the area 0.43 is 1.4757 

                               i.e.     4757.1
35







 

                                          4757.1
35







 

                                             - 35 1.4757 ……………. (1) 

                      Similarly the area lying to the left of the ordinate at x = 63 upto the 

mean is 0.39 (39%) 

                       The value of z corresponding to the area 0.39 is 1.2263 

                             i.e. 2263.1
63







 

                                   63 -   = 1.2263  ……………… (2) 

                        Solving (1) and (2) we get mean  = 50.288 

                                                                    S.D  = 10.36 

Example 9:Assume that mean height of soldiers to be 68.22 inches with a variance of 

10.8 inches. How many soldiers in a regiment of 1000 would you expect to e over 6 

feet tall? 

 

 Solution:  Given  µ =68.22,  2
=10.8,  =3.286 

                   p (x > 6feet) = p (x > 72 inches) 
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When x =72,    z  =  


x
 = 1503.1

286.3

22.6872



 

          p  ( x > 72) = p ( z >1.1503) 

                            =0.5 – p (0  <  z  < 1.1503) 

                            =0.5  - 0.3749 

                            =0 .1251 

 For 1000 soldiers, the number of soldiers greater than  6 feet = 1000x 0.1251  

                                                                                                   = 125 soldiers   
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