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1. Introduction

1.1 CHARACTERISTIC EQUATION:
The equation |A — AI| = 0 is called the characteristic equation of the matrix A
Note:

1. Solving |A — AIl = 0, we get n roots for A and these roots are called characteristic roots
or eigen values or latent values of the matrix A

2. Corresponding to each value of 4, the equation AX = AX has a non-zero solution vector
X
If X, be the non-zero vector satisfying AX = AX, when A = A1, X,. is said to be the latent

vector or eigen vector of a matrix A corresponding to A,
1.2 CHARACTERISTIC POLYNOMIAL:

The determinant |A — AI| when expanded will give a polynomial, which we call as

characteristic polynomial of matrix A
1.3 Working rule to find characteristic equation:

1.3.1 For a 3 x 3 matrix:

Method 1:
The characteristic equationis |[A —AI| =0

Method 2:
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Typewritten text
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Its characteristic equation can be written as 13 — 5;1% + S,A — S; = 0 where
S1 = sum of the main diagonal elements,

S, = Sum of the minors of the main diagonal elements ,
S3 = DeterminantofA = |A|

1.3.2 For a 2 X 2 matrix:

Method 1:
The characteristic equationis |[A —AI| =0
Method 2:

Its characteristic equation can be written as 12 — S;1 + S, = 0 where

S1 = sum of the main diagonal elements, S, = Determinant of A = |A|
Problems:

12)

1. Find the characteristic equation of the matrix (0 .

1 2
0 2

sumofthemaindiagonalelements =1+ 2 = 3,

Solution: Let A= ( ) Its characteristic equation is A2 — S;1 + S, = Owhere §; =

S, = DeterminantofA = |A| = 1(2) - 2(0) = 2

Therefore, the characteristic equationis 12 —31+2 =0

8 -6 2
2. Find the characteristic equation of (—6 7 —4)
2 -4 3

Solution: Its characteristic equation is A3 — S;4% + S,A — S; = 0, where
S1 = sumofthemaindiagonalelements =8 + 7 + 3 = 18,

_6|

=5+

S, = Sumoftheminorsofthemaindiagonalelements = |_74 _34| + |g §| + |—86

20 + 20 = 45, S3 = DeterminantofA = |A| = 8(5)+6(-10)+2(10) =40 -60 + 20 =0
Therefore, the characteristic equation is A3 — 1812 + 451 =0

31)

3. Find the characteristic polynomial of (_1 2



Solution: Let A= (_31 %)

The characteristic polynomial of A is A2 — S;1 + S, where S; = sumofthemaindiagonalelements
=3+2=5and S, = DeterminantofA = |A| =3(2)-1(-1) =7
Therefore, the characteristic polynomial is A2 — 51 + 7

2.1 CAYLEY-HAMILTON THEOREM:
Statement: Every square matrix satisfies its own characteristic equation
2.2 Uses of Cayley-Hamilton theorem:

(1) To calculate the positive integral powers of A
(2) To calculate the inverse of a square matrix A

Problems:

1. Show that the matrix [1

2 _12] satisfies its own characteristic equation

Solution:Let A = B _12] The characteristic equation of A is 12—-S5,1+S, =0 where

S1 = Sum of the main diagonal elements = 1+1 =2
S;= Al =1-(4=5
The characteristic equation is 22 —21+5 =10

To prove A2 —2A+51 =0

a=aw=[ 710G F=17 4

a—zaxsi= 70 T=[p F1+[ sl=lo ol =0

Therefore, the given matrix satisfies its own characteristic equation
2. IfA= [(1) (5)] write A% interms of A and I, using Cayley — Hamilton theorem

Solution:Cayley-Hamilton theorem states that every square matrix satisfies its own
characteristic equation.

The characteristic equation of A is A2 — S;A + S, = 0 where

S; = Sum of the main diagonal elements = 6

Sz |A| =5



Therefore, the characteristic equation is A> —6A+5 =0
By Cayley-Hamilton theorem, A2 — 6A + 51 = 0

e., A? = 6A —5I

2 -1 2
3. Verify Cayley-Hamilton theorem, find A*and A-when A=|-1 2 —1]
1 -1 2

Solution: The characteristic equation of A is A3 — $;4% + S,4 — S; = 0 where
S1 = Sum of the main diagonal elements =2+2+2 =6

S, = Sum of the minirs of the main diagonal elements =3 +2+3 =8
S;= 4] =20 -1 +1(-2+1D+2(1-2)=2B)-1-2=3
Therefore, the characteristic equation is 2> — 612 + 81 —3 =0

To prove that: A3 — 642 + 84 — 3] = 0--------—----- (1)

R L

el 3 E M

A2 =

5 -5 7 —22 29
A3 — 64% + 84 — 31
29 -—-28 38 42 —-36 54 16 -8 16 3 0 0
= |-22 23 -=-28]—|-30 36 -36|+]|— 16 —-8|—]0 3 O
22 =22 29 30 =30 42 8 -8 16 0 0 3
0 0 O
=0 0 0|=0
0 0 O
To find A%:
(1) = A3 — 642 + 84— 31 =0 = A% = 642 — 8A + 3] ----wrmemm- )

Multiply by A on both sides, A* = 643 — 842 + 34 = 6(6A% —8A + 31) — 8A4% + 34
Therefore, A* = 364%2 — 48A + 18] — 8A% + 3A = 28A4% — 454 + 18I

1 0 0
010]

0 0 1

7 —-6 9 2 -1 2
Hence,A4=28[—5 6 —6]—45[—1 2 —-1|+18

5 -5 7 1 -1 2




18 0
0 0 18

—140 168 —168(—|—45 90 —45(+

140 —140 196 45 —45 90
124 —-123 162]

[196 —168 252] [90 —45 90 18 0 0]

-95 96 —123
95 95 124

To find A~ 1:
Multiplying (1) by A=, A%2 — 64+ 8] =341 =0

=341 =A4%2—-64+8I

7 -6 9 2 -1 2 1 0 0
=341 = [—5 6 —6] 6[ 1 2 -1]+8]0 1 O]
5 -5 2 0 01
7 -6 9 -12 6 -12 8 0 0 0 -3
=[—5 6 —6] [6 —12 6 0 8 0] [ 2 0]
5 =5 7 6 —-12 0 0 8 1 3

0 -3
> A 1=C [1 2 ]
11

4. Verify that A = [1

2 ] satisfies its own characteristic equation and hence find A*

1 2
2 -1
Sum of the main diagonal elements = 0

Solution:Given A =[ ] The characteristic equation of A is A2 — S;A + S, = 0 where S =

S, =|Al=-1-4=-5

Therefore, the characteristic equationis A> —0A—5=0i.e.,A> —5=10

To prove: A% — 5] = 0---------- (1)
=l Al A1=L13 253=0 o
w-ai-f; Y-sly - 96 912 Y-

To find A%:

From (1), we get, A2 — 51 = 0 = A% = 5]

Multiplying by A% on both sides, we get, A* = A%(51) =542 =5 [(5) (5)] = [205 205]

1 -1 4
5. FindA lifA=(3 2 -1/, using Cayley-Hamilton theorem
2 1 -1




Solution:The characteristic equation of A is A3 — §;12 + S,1 — S; = 0 where
S1 = Sum of the main diagonal elements =1+2—-1=2

S, = Sum of the minors of the main diagonal elements = (=2+ 1)+ (-1 —-8) + (2 + 3)
=—1-945=-5

S;=]Al=1(-2+1) +1(-3+2)+4B-4)=-1-1-4=-6
The characteristic equation of Ais A3 — 212 —= 51+ 6 =0

By Cayley- Hamilton theorem, 43 — 242 — 54 4 6] = 0 ------------ 1)
To find A7L:

Multiplying (1) by A™%, we get, A2 —2A —5471A+ 64711 =0=> A> —2A—-51+6471=0

6A7L = A2 + 24+ 51 > AL = 2 (=A% + 24 + 5]) ---ememnees ()
1 -1 411 -1 4 1-34+8 —1-2+4 4+1—4 6 1 1
A*=13 2 -1||3 2 -1|=|3+6-2 -3+4-1 12-2+1|=|7 0 11
2 1 -1lz2 1 -1 2+3-2 —-2+2-1 8-1+1 3 -1 8
-6 -1 -1 2 -2 8 5 00 1 -3 7
—A?+2A+51=|-7 0 -11|+|6 4 =2|+|o 5 o|=|-1 9 -13
-3 1 -8 4 2 =21 lo o 5 1 3 -5
Jr -3 7
From (2), A7 = -|-1 9 -13
1 3 -5
_M27 4. n
6. IfA—[0 5 ,find A™ interms of A

Solution:The characteristic equation of A is 22 — 5;1+ S, = 0 where
S1 = Sum of the main diagonal elements =1+ 2 =3

S,=|A|=2-0=2

The characteristic equation of Ais 12 —31+2=0ie,1= %21_)4(1)(2) = STil =21

To find A™:

When A" is divided by 1?2 — 31 + 2, let the quotient be Q(4) and the remainder be al + b

M=% -32+2)QD) +ar+ b - (1)
WhenA=1,1"=a+b WhenA1=2,2"=2a+b
2a+b = 2" e (2)



Solving (2) and (3), we get, (2) - ()= a =2"-1"
(2)-2x(3)= b =—2"+2(1)"
ie.,a=2"—-1"
b=2(1)"—2"
Since A%2 — 34 + 21 = 0 by Cayley-Hamilton theorem, (1) = A™ = aA + bl

10]
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7. Use Cayley-Hamilton theorem for the matrix A = [; g] to express as a linear
polynomial in A (i) A5 —4A4* — 743 + 114%2 — A — 101 (jii) A* — 443 — 542 + A+ 2I

Solution: Given A = B ;L] The characteristic equation of A is 22 — S;1 + S, = 0 where
S1 = Sum of the main diagonal elements =1+ 3 =4
S,=]A|=3-8=-5

The characteristic equation is 22 — 41 —5=10

By Cayley-Hamilton theorem, we get, A> — 44 — 5] = 0 ------------ Q)
A3 —21+3
N2 —4) — 515 —42* =723 + 1142 - 1 - 10
A5 —42* — 523
=223 +1122 -2
(-)— 223+ 822+ 101
314 —=111-10

(=) 342 —121—15

A+5

A5 —4A* —7A3 + 11A2 — A — 101 = (A2 —4A—5)) (A3 —2A+3) + A+ 51 =0+ A + 5l
= A + 5I (by (1)) which is a linear polynomial in A

() 22

A2 — 42— 52 =423 — 522 + 1+ 2




At — 423 — 522
) A+2

A* —4A3 —5A2 + A+ 21 =A?(A2 —4A—-5D)+A+21=0+A+2I=A+2l (by (1)) whichisa
linear polynomial in A

1 0 3
8. Using Cayley-Hamilton theorem, find A~'when A=|2 1 —1]
1 -1 1

Solution:The characteristic equation of A is A3 — §;12 + S,1 — S; = 0 where
S1 = Sum of the main diagonal elements =1+1+1=3

S, = Sum of the minors of the main diagonal elements = (1—-1)+ (1 —-3)+ (1 —-0)
=0-2+1=-1

S;=1Al=11-1)+02+1)+3(-2—-1)=1(0)+0—-9 = -9
The characteristic equation is A3 =312 —=1+9 =10

By Cayley-Hamilton theorem, A3 —342 —A+91 =0

Pre-multiplying by A™%, we get, A2 —34A—1+94 1 =0=>A4"1 = %(—A2 +34+1)

1 0 371 o0 3 1+0+3 0+0—-3 34+0+3 4 -3 6
A2=2 1 -1l{2 1 -1|=12+2-1 0+1+1 6-1-1|=|3 2 4
1 -1 1111 -1 1 1-2+1 0—-1—-1 3+1+1 0 -2 5
-4 3 -6 3 0 9 1 0 0
—-A*=|-3 -2 -—-4;34=[6 3 =35I=10 1 0
0 2 =5 3 =3 3 0 0 1
1/[-4 3 -6 3 0 9 1 0 0 1[0 3 3
A‘1=§ -3 =2 —-4|+|6 3 -=3|+]0 1 0 =§3 2 =7
0 2 =5 3 -3 3 0 0 1 3 -1 -1
1 3 7
9. Verify Cayley-Hamilton theorem for the matrix A= (4 2 3]
1 2 1
1 3 7
Solution: Given A=14 2 3]
1 2 1

The Characteristic equation of A is 13 — §;1? + S,A — S; = 0 where
S; = Sum of the main diagonal elements = 1+2+1 =4

S, = Sum of the minors of the main diagonal elements = (2—-6)+ (1 —-7) + (2 —-12)
= —4-6-10=—20



S;=|Al=12-6)—3(4—-3)+7(8—-2)=—-4—3+42=235
The characteristic equation is A3 — 44? — 201 — 35 =0

To prove that: A3 —44% —204A—-351=0

1 3 7111 3 7 1+12+7 34+46+14 7+4+9+7 20 23 23
A>=|4 2 3[|4 2 3|=[4+8+3 12+4+6 28+6+3|=|15 22 37
1 2 1l 2 1 1+84+41 34442 7+46+1 10 9 14

20 23 23111 3 7 204+92+23 60+46+46 140+ 69 + 23

A3 =A%A=1|15 22 37||4 2 =[15+88+37 45+44+74 105+ 66+ 37

10 9 14111 2 1 10+36+14 30+18+28 70+27+14

=1140 163 208

[135 152 232]
60 76 111

135 152 232 20 23 23 1 3 7 1 0 0

A3 —4A% —20A—351 =140 163 208 15 22 37 —2014 2 3|/-35|10 1 0
60 76 111 1 2 1 0 0 1

[135 152 232] [ 0 92 ] [20 60 140] [35 0 o0

=1140 163 208|— |60 88 148 80 40 0 35 0
60 76 111 40 36 20 40 0 0 35
0 0 O

=10 0 0|=0
0 0 O

Therefore, Cayley-Hamilton theorem is verified.

10. Verify Cayley-Hamilton theorem for the matrix (i) A = [ 1] (iD)A = [2

Solution:(i) Given A = [_31 ‘51]

The characteristic equation of A is 22 — 5;1 + S, = 0 where
S1 = Sum of the main diagonal elements =3 +5 =8

S, =4l =15-1= 14

The characteristic equation is 2> —81+ 14 =0

To prove that: A2 -84+ 141 =0

=5 S0 1150 sl



ea=s =[5 Gl

141 = 14[(1) (1)] - [104 104]

R e Mo IR B

Hence Cayley-Hamilton theorem is verified.
oy _M 4
(i) Given A= [2 3]

The characteristic equation of A is A2 — §;1 + S, = 0 where
S1 = Sum of the main diagonal elements =1+ 3 =4
S,=|A|=3-8=-5

The characteristic equation is 22 — 41 —5=10

To prove that: A2 —4A—-5I=0

AZ:[1 4[1 4_[1+8 4+12]:[9 16]

2 3llz 317246 8491718 17
w=aly =l wlisi=sl =1 s

A2_4A_51=[9 16]_[4 16]_[5 0 _[0 0]=o

8 17 8 12 o 51 1o o

Hence Cayley-Hamilton theorem is verified.

3.EIGEN VALUES AND EIGEN VECTORS OF A REAL MATRIX:
3.1 Working rule to find eigen values and eigen vectors:

1. Find the characteristic equation [A — AI| =0
2. Solve the characteristic equation to get characteristic roots. They are called eigen values

3. Tofind the eigen vectors, solve [A — AI1X = 0 for different values of 1
Note:

1. Corresponding to n distinct eigen values, we get n independent eigen vectors
2. If 2 or more eigen values are equal, it may or may not be possible to get linearly

independent eigen vectors corresponding to the repeated eigen values

10



3. If X; is a solution for an eigen value 4;, then cX; is also a solution, where c is an arbitrary
constant. Thus, the eigen vector corresponding to an eigen value is not unique but may
be any one of the vectors cX;

4. Algebraic multiplicity of an eigen value A is the order of the eigen value as a root of the
characteristic polynomial (i.e., if 1 is a double root, then algebraic multiplicity is 2)

5. Geometric multiplicity of 4 is the number of linearly independent eigen vectors

corresponding to A
3.2 Non-symmetric matrix:

If a square matrix A is non-symmetric, then A # AT
Note:

1. In a non-symmetric matrix, if the eigen values are non-repeated then we get a linearly
independent set of eigen vectors

2. In a non-symmetric matrix, if the eigen values are repeated, then it may or may not be
possible to get linearly independent eigen vectors.
If we form a linearly independent set of eigen vectors, then diagonalization is possible

through similarity transformation
3.3 Symmetric matrix:

If a square matrix A is symmetric, then A = AT
Note:

1. In a symmetric matrix, if the eigen values are non-repeated, then we get a linearly
independent and pair wise orthogonal set of eigen vectors

2. In a symmetric matrix, if the eigen values are repeated, then it may or may not be
possible to get linearly independent and pair wise orthogonal set of eigen vectors
If we form a linearly independent and pair wise orthogonal set of eigen vectors, then

diagonalization is possible through orthogonal transformation

Problems:

1. Find the eigen values and eigen vectors of the matrix (; _11)

11



Solution: Let A= (é _11) which is a non-symmetric matrix

To find the characteristic equation:

The characteristic equation of A is A2 — §;1 + S, = 0 where

S1 = sumofthemaindiagonalelements =1 -1 =0,

S, = DeterminantofA = |A| =1(-1)-1(3)=-4

Therefore, the characteristic equationis 2> —4 =0i.e., 22 =40ri1 =42
Therefore, the eigen values are 2, -2

A is a hon-symmetric matrix with non- repeated eigen values

To find the eigen vectors:

[A—AIX =0
G 202G Dl=61=1G 2)-G Dkl=[
CRTNIIN ] I R—
Case 1: If 1= -2, [1 _?5_2) 4 _1(_2) [iﬂ = [8] [From (1)]
e [3 allal = [o]
ie,3x;+x,=0
3x1+x, =0

i.e., we get only one equation 3x; +x, = 0= 3x; = —x, = % = ’_‘—Z

Therefore X; = [_13]

Case2: IfA=2, [1 _3(2) » ! (2)] 2] = [o]From (1)

12



S e | N R
ie,—x+x,=0=>x—x,=0

3% = 3x,=0=>x; —x, =0

i.e., we get only one equation x; —x, =0

X1 X
= = = — = —
X1 Xy 1 1
_1
Hence, X, = [1]
2 2 1
2. Find the eigen values and eigen vectorsof |1 3 1
1 2 2
2 2 1
Solution: LetA=|1 3 1| whichis a non-symmetric matrix
1 2 2

To find the characteristic equation:

Its characteristic equation can be written as 13 — ;1% + S,4 — S; = 0 where

S1 = sumofthemaindiagonalelements =2 +3+2 =7,
_ . L _13 1 2 1 2 2| _ _
S, = Sumoftheminorsofthemaindiagonalelements = |2 2| + |1 2| + |1 3| =4+3+4=

11,
S3 = DeterminantofA = |A| = 2(4)-2(1)+1(-1) =5
Therefore, the characteristic equation of Ais 23 — 712 + 111 - 5= 0

1 1 -7 11 -5

A-—1DA2-61+5)=0=>1=1,

_ 6+ J(=6)2-4()(5) _6+V16 6+4 6+46-4
B 2(1) 2 2 22

51

13



Therefore, the eigen values are 1, 1, and 5
A is a nhon-symmetric matrix with repeated eigen values

To find the eigen vectors:

[A—A]X =0

[EnN

2—-1 2 1 X1 0
2 2 —A1X3 0

2—5 2 1 X1 0
Casel:lf/1=5,[ 1 3-5 1 ”x]=[0]
0

[EnN

2
1 2 2 —5]|lx3
-3 2 171r* 0
i.e., [ 1 -2 1 ] [le = H
1 2 =31lx3 0
= —3x; +2x, + x3 = 0 --—-—---- 1)
X1 —2x; +x3 =0 ---emoeoooee- 2)
X1 + 2%y — 3x3 = 0 =------me- (3)

Considering equations (1) and (2) and using method of cross-multiplication, we get,

X1X2X3
XXX
-2 1 1 -2
X1 Xz X3 _ X1 Xz X3
4 4 4 71 1 1
1
Therefore, X; = 1]
1
2—1 2 1 X1 0
Case2:|f1:1,[ 1 3—-1 1 ”x2]=[0]
1 2 2—111x3 0

14



1 2 11[* 0
e, 1 2 1f[x2[=]0
1 2 111x3 0

3xl+2x2+X3:O
x1+2x2+x3=0
x1+2x2+x3=0

All the three equations are one and the same. Therefore, x; + 2x, + x3 =0

Putx; =0 = 2x, +x3 = 0= 2x, = —x3.Takingx; = 2 ,x, = —1
0
Therefore, X, = |—-1
2
Putx, =0=2x;+x3=0= x3 = —x;.Takingx; = 1,x3 = —1
1
Therefore, X; = | 0
-1
2 -2 2
3. Find the eigen values and eigen vectorsof |1 1 1
1 3 -1
2 -2 2
Solution: LetA=|1 1 1 |which is a non-symmetric matrix
1 3 -1

To find the characteristic equation:

Its characteristic equation can be written as 13 — 5;1% + S,4 — S; = 0 where

S1 = sumofthemaindiagonalelements =2 +1—-1 = 2,
_2| _

_ . o 11 1 2 2 2
S, = Sumoftheminorsofthemaindiagonalelements = |3 _1| + |1 _1| + |1 1

—4 -4+ 4= —4,
S; = DeterminantofA = |A| = 2(-4)+2(-2)+2(2) =-8-4+4=-8

Therefore, the characteristic equation of Ais 23 —212 — 41 +8 =0

2 1 -2 —4 8

15



Q-2 -4)=0=21=2, A=2-2
Therefore, the eigen values are 2, 2, and -2
A is a non-symmetric matrix with repeated eigen values

To find the eigen vectors:

[A—AIX=0
2 - A _2 2 1 Xl 0
1 3 -1 — A_ X3 0
2 - (_2) _2 2 'x1 0
Case 1: If A = -2, 1 1-(-2) 1 le _ [0]
1 3 —1—(=2)|lxs 0
4 =2 21* 0
ie., 11 3 1]|x2|= |0
1 3 111X 0
= 4x, — 2%y + 2x3 = 0 ---—-—--- 1)
X1+ 3x, +x3=0 --ommmmmeeee- 2)
X1+ 3% + X3 = 0 oo (3) . Equations (2) and (3) are one and the same.

Considering equations (1) and (2) and using method of cross-multiplication, we get,

X1XpX3

Therefore, X; =

16



2—2 -2 2 X1 0
Case 2: IfA =2, 1 1-2 1 X2 =10
—1-211%3 0

1 3
e, |1 -1 1 [|x[=]0
= 0x; — 2x, + 2x3 = 0--—----——- 1)
Xp = Xz + x3 = 0----mmm-mmomoe- (2)
X1 + 3x, — 3x3 = 0------------ (3)

Considering equations (1) and (2) and using method of cross-multiplication, we get,

X1X2X3
XXX
-1 1 1 -1
X1 X3 X3 X1 X X3
—_——=— e — S — = — = —
0 2 2 0
0
Therefore, X, = |1
1

We get one eigen vector corresponding to the repeated root A, = A3 =2

1 1 3
4. Find the eigen values and eigen vectors of [1 5 1]
31 1
1 1 3
Solution: Let A=|1 5 1] which is a symmetric matrix
3 1 1

To find the characteristic equation:

Its characteristic equation can be written as 13 — ;1% + S,1 — S; = 0 where

17



S1 = sumofthemaindiagonalelements =1+5+1 =7,

3 . . 15 17,1 31,11 1

S, = Sumoftheminorsofthemaindiagonalelements = |1 1| + |3 1| + |1 5|

8+4=0,

S; = DeterminantofA = |A| = 1(4)-1(-2)+3(-14) =-4 + 2-42 =- 36

Therefore, the characteristic equation of Ais 23 — 712+ 01 —-36 =0
-2 1 -7 0 36
0 -2 18 — 36
1 -9 18 0
A=(-2))(A2-91+18)=0=> 1= -2,
Lo 2EV(9°—4((8) _9+VBI-72 943 943 9-3
B 2(1) B 2 2 22

Therefore, the eigen values are -2, 3, and 6
A is a symmetric matrix with non- repeated eigen values

To find the eigen vectors:

[A-AI]X=0
1-1 1 3 X1 [0

IERERE R

3 1 1—-Allx3 10

1-(-2) 1 3 X1 0]
Case 1l: If A= -2, 1 5-(-2) 1 [xz] = [0
1- X3 0l

3 1 (-2)
3 1 3% 0
i.e., [1 7 1] [XZ] = [0]
3 1 3Ixs 0
$3x1+xZ+3X3:0 _________ (l)
Xg+7x +x3 =0 --mmmmmmmeee- 2)
3%, + %2 +3x3 = 0 v (3)

18



Considering equations (1) and (2) and using method of cross-multiplication, we get,

X1 Xz X3

-1
Therefore, X; = | 0 ]
1
1-3 1 3 X1 0
Case2:1fA=3,| 1 5-3 1 X21=10
3 1 1-311x3 0
-2 1 31" 0
e, |1 2 1[|*|= |0
3 1 -=-21Ix3 0
= —le + Xy + 3X3 =0 -—-------- (1)
X1+ 2%; + x3 = 0 --mmmmmmmmmemee- (2)
3x1 + x5 — 2x3 = 0 ----mmmmeee- (3)

Considering equations (1) and (2) and using method of cross-multiplication, we get,

X1 X2 X3

YXOXOX
2 1 1 2
X1 X2 X3 Xy Xz X3 X X2 X3
-5 5 -5 -1 1 -1 1 -1 1
1
Therefore, X, = —1]
1

1-6 1 3 X1 0
Case 3: IfA = 6, 1 5—-6 1 ”Xz] = [0]
1 1—611x%3 0

19



-5 1 37[* 0
S Rt
3 1 —=511x3 0

= —5x1 + xz + 3x3 = 0 “““““ (1)
xl_xZ+X3—0 """""""" (2)
3x; + x5 — 5x3 = 0 ----mm-mmm- (3)

Considering equations (1) and (2) and using method of cross-multiplication, we get,

X1X2X3
XXX
-1 1 1 -1
X1 X2 X3 X1 X2 X3
48 4 1 2 1
1
Therefore, X; = 2]
1
0 1 1
5. Find the eigen values and eigen vectors of the matrix{[1 0 1{. Determine the
1 1 0

algebraic and geometric multiplicity

01 1
1 0 1
1 1 0

Solution: Let A= which is a symmetric matrix

To find the characteristic equation:

Its characteristic equation can be written as 13 — 5;1% + S,4 — S; = 0 where

S1 = sum of the main diagonal elements =0+ 0+ 0 = 0,

0 1y _

_ . o _ 10 1 0 1
S, = Sum of the minors of the main diagonal elements = |1 0|+ 1 0|+ 1 ol =

-1-1-1= -3,
S; = Determinant of A= |A|=0-1(-1)+ 1(1)=0+1+1=2

Therefore, the characteristic equation of Ais 23 — 012 =31 -2 =0
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A—(1))A2-21-2)=0=>1=—1,

/_l_li\/(—1)2—4(1)(—2)_1i\/1+8_1i3_1+3 1—3_2
B 2(1) B 2 2 2 2 "

Therefore, the eigen values are 2, -1, and -1
A is a symmetric matrix with repeated eigen values. The algebraic multiplicity of 1 = —1is 2

To find the eigen vectors:

[A—A]X =0

[UnN

0-1 1 1 X1 0
1 0—AllXs3 0

0-2 1 1 X1 0
Casel:lf/lzz,[ 1 0-2 1 ”X]=[0]
0

[UnN

2
1 1 0—211x3
-2 1 171M™ 0
i.e.,[l -2 1”x2]=H
1 1 -211x3 0
= —2x; +x, +x3 =0 --------- (1)
X1 —2Xy + X3 =0 —-mmmmmmmeee- 2)
X1+ x3 — 2x3 = 0 --mmmmoeees (3)

Considering equations (1) and (2) and using method of cross-multiplication, we get,

X1 X 5 X3
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1
Therefore, X; = 1]
1
0—-(-1 1 1 X1 0
Case 2: IfA = -1, 1 0—-(-1) 1 [le = H
1 1 0—(—1)|Lx3 0
1 1 11* 0
1 1 11L*3 0
> x1+x; +x3 =0 ----mm-me- (1)
x1+x2+x3—0 """""""" (2)
X1+ x5 + x3 =0 —----mo-- (3). All the three equations are one and the same.
Therefore, x; +x, +x3=0.Putx; =0 = x, +x3 =0 = x3 = —x; =>x—12= f—i
0
Therefore, X, = | 1
-1

l
m
n

Since the given matrix is symmetric and the eigen values are repeated, let X3 = . X3 1S

orthogonal to X; and X, .

l
1 1 1][m]=0=>l+m+n=0 ------------ Q)
n
l
[0 1 —1][m]=0 =>0l+m—n=0--—-- 2
n

Solving (1) and (2) by method of cross-multiplication, we get,

| m n
NCOXOX
1 -1 0 1
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!
—=2=2Therefore, X5 =
2 1 1

-2
1
1

Thus, for the repeated eigen value 1 = —1, there corresponds two linearly independent eigen

vectors X, and X5. So, the geometric multiplicity of eigen value A = —1is 2

Problems under properties of eigen values and eigen vectors.

-1 1 1
1. Find the sum and product of the eigen values of the matrix [ 1 -1 1 ]
1 1 -1

Solution: Sum of the eigen values = Sum of the main diagonal elements = -3

Product of the eigen values = |A| =-1(1-1)-1(-1-1) + 1(1- (-1)) =2+ 2 =4

6 -2 2
2. Product of two eigen values of the matrix A=|-2 3 —1‘ is 16. Find the third eigen
2 -1 3

value

Solution: Let the eigen values of the matrix be 1,,1,, 15.
Given 4,1, =16

We know that ;1,45 = |A | (Since product of the eigen values is equal to the determinant of

the matrix)
6 -2 2

MAA3 = [-2 3 —1| =6(9-1)+2(-6+2) +2(2-6) = 48-8-8 = 32
2 -1 3

There fore,A{A,A3 =32 = 1613 =32 =13 =2

a b

3. Find the sum and product of the eigen values of the matrix A = (C d) without

finding the roots of the characteristic equation
Solution:We know that the sum of the eigen values = Trace of A=a+d

Product of the eigen values = |A| =ad - bc
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8 -6 2
-6 7 —4], find | A|, without
2 -4 3

4. If 3and 15 are the two eigen values of A =

expanding the determinant
Solution:Given 1; = 3 and 1, = 15,13 =?
We know that sum of the eigen values = Sum of the main diagonal elements
>M+A+1;=8+7+3
23+154+1;=18= 1, =0

We know that the product of the eigen values = | A |

= (3)(15)(0) = | 4]

= |A| =0
3 10 5

5. If 2,2, 3arethe eigen values of A=|—-2 —3 —4/, find the eigen values of AT
3 5 7

Solution:By the property “A square matrix A and its transpose A”have the same eigen

values”, the eigen values of A are 2,2,3

2 00
6. Find the eigen valuesof A=|1 3 0
0 4 4
2 00
Solution:Given A=|1 3 0] .Clearly, A is a lower triangular matrix. Hence, by the
0 4 4

property “the characteristic roots of a triangular matrix are just the diagonal elements of the

matrix”, the eigen values of A are 2, 3, 4

3 -1 1
7. Two of the eigen values of A=|-1 5 —1] are 3 and 6. Find the eigen values of
1 -1 3

A—l
Solution:Sum of the eigen values = Sum of the main diagonal elements = 3 +5+3 =11

Given 3,6 are two eigen values of A. Let the third eigen value be k.
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Then,3+6+k=11=>k=2
Therefore, the eigen values of A are 3, 6, 2

By the property “If the eigen values of A arel;, 1,, A5, then the eigen values of A™1
111

i 1 1, . _
=", the eigen values of A~! are =

% % 2’3’6

8. Find the eigen values of the matrix[_1 —2

5 4 ] Hence, form the matrix whose eigen

values are% and — 1
Solution: Let A =[_15 _42] The characteristic equation of the given matrix is A2 — $;1 +

S, = 0 where S; = Sum of the main diagonal elements = 5 and S, = |A | =—6

—B)2 _ —
Therefore, the characteristic equationis 2> =51 —6=0= A1 = SO 4(O) _ 547

2(1) 2
6,—1
Therefore, the eigen values of A are 6, -1
Hence, the matrix whose eigen values are % and —1is A1
1
Al=——adj A
| 4]
— — peadipa—[4 2
|A] =4-10=-6;adiA=[; {]
-1 _ i 4 2
Therefore, A=t = —~ [5 1
2 10
9. Find the eigen values of the inverse of the matrix A={0 3 4]
0 0 4

Solution:We know that A is an upper triangular matrix. Therefore, the eigen values of A are

2, 3, 4. Hence, by using the property “If the eigen values of A arel, 1,, 13, then the eigen

values of A~ are—, >, 27, the eigen values of A~ are 111
2’2" As 2’3’4
1 2 3
10. Find the eigen values of 43 given A=[0 2 -7
0 O 3
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1 2 3
Solution:Given A=|0 2 —7]|. Ais an upper triangular matrix. Hence, the eigen values of
0 0 3

Aarel, 2,3
Therefore, the eigen values of 43 are 13,23,3% i.e., 1,8,27

11.1f 1 and 2 are the eigen values of a 2 x 2 matrix A, what are the eigen values of
A% and A~ 1?

Solution:Given 1 and 2 are the eigen values of A.

Therefore, 12 and 22 i.e., 1 and 4 are the eigen values of 4% and 1 and % are the eigen
values of 471

2 2 1

1 3 1], find the eigen values of 5A
1 2 2

12.1f 1,1,5 are the eigen values of A =

Solution:By the property “If 1,,1,, 15 are the eigen values of A, then kA4, kA,, kA5 are the
eigen values of kA, the eigen values of 5A are 5(1), 5(1), 5(5) ie., 5,5,25

13. Find the eigen values of A, A%, 43,4% 34,471, A~ 1,34% + 54> —6A + 21if A= 2 3]

0 5

Solution:Given A = [3 g] A is an upper triangular matrix. Hence, the eigen values of A are

2,5

The eigen values of A2 are 22,5% i.e., 4, 25
The eigen values of A3 are 23,53 i.e., 8, 125
The eigen values of A* are 2%,5% i.e., 16, 625

The eigen values of 3A are 3(2), 3(5) i.e., 6, 15

. _ 11
The eigen values of A™! are 3'c

A-i=lo -l 1=l 3l
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Since A - | is an upper triangular matrix, the eigen values of A- | are its main diagonal

elementsi.e., 1,4

Eigen values of 343 + 542 — 64 + 21 are 3A3 + 512 — 61, + 2 and 323 + 513 — 61, + 2 where
Al == 2 and AZ == 5

First eigen value = 313 + 542 — 61, + 2
=3(2)°+ 5(2)?-6(2) + 2 =24 + 20 -12 + 2=34
Second eigen value = 313 + 513 — 64, + 2
= 3(5)*+ 5(5)* 6(5) + 2

=375+ 125-30+ 2 =472

3 2 1
14. Find the eigen values of adj Aif A=[0 4 2
0 01
3 21
Solution:Given A=|0 4 2|. Ais an upper triangular matrix. Hence, the eigen values of A
0 0 1
are 3,4,1
We know that A~ = ﬁ adj A
AdjA=|Al47?

. _ 11
The eigen values of A™! are S 1

| A| =Product of the eigen values = 12

Therefore, the eigen values of adj A is equal to the eigen values of 12 A7t i.e., %% 12 i.e.,
4,3, 12
1 2 3 1 0 0 1 0 0
Note: A=|0 4 5|,B= [2 4 OI,C = [0 4 0]. Here, A is an upper triangular matrix,
0 0 6 3 5 6 0 0 6

B is a lower triangular matrix and C is a diagonal matrix. In all the cases, the elements in the

main diagonal are the eigen values. Hence, the eigen values of A, Band C are 1, 4, 6
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2 2 1
1 3 1] are equal and they are%times the third. Find
1 2 2

15. Two eigen values of A =

them
Solution:Let the third eigen value be A5

We know that A; + A, + A3 =2+3+2=7
. A3
Given 4; = 1,= <

A3 A3
=242 =7
5 +5 + 13

1 1 7

Therefore, A; = 1, = 1 and hence the eigen values of Aare 1,1, 5

2 0 1
16.If 2, 3 are the eigen values of [0 2 Ol,find the value of a
a 0 2
2 0 1
Solution:Let A=|0 2 0]. Let the eigen values of A be 2, 3, k
a 0 2

We know that the sum of the eigen values = sum of the main diagonal elements
Therefore, 2 +3 +k=2+2+2=6=>k =1

We know that product of the eigen values = | A|

=2(3)(k) = | Al

2 0 1
0 2 0
a 0 2

>6= 56=2(4)-0+1(-2a)>6=8—-2a=>2a=2=a=1

1 1 3
151]are

311

17. Prove that the eigen vectors of the real symmetric matrix A =

orthogonal in pairs
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Solution:The characteristic equation of A is

A3 — 85,22 + S,A — S; = Owhere S; = sum of the main diagonal elements = 7,

S, = Sum of the minors of the main diagonal elements =4+ (—8)+4 =0

1 1 3
1 51
31 1

S;=|A| = =1(4) — 1(=2) + 3(-14) = —36

The characteristic equation of Ais A3 — 712 + 36 = 0

3 1-7 0 36
0 3 -12 -36
1 -4 -12 0

Therefore, 1 = 3,12 — 41 — 12 = 0 = 1 = 3,1 = R/ -4(12) _ 448

2(D)
Therefore, the eigen values of A are -2, 3, 6

To find the eigen vectors:

A-ADX=0
3 1 31[* 0
Case 1: When 1 = -2, [1 7 1] [xz] = [0
3 1 3llx3 0
3x1 + Xy + 3x3 =0 - (1)
X1+ 7x5 +x3 = 0 ----mm-m- (2)
3x; + x5 +3x3 =0 -----—- (3)

Solving (1) and (2) by rule of cross-multiplication, we get,

X1X2X3
1 3 3 1
L1 L1 L
R ERED
1
1 _%2_ X% -
—20-0 20 % (1)]

29

2

=6,—2



1 371[*% 0
Case 2:When 1 = 3, [ 1 2 1/|[*|=]0
3 1 -211%3 0

_le + Xy + 3x3 =0 - (1)
x1+2x2+x3:0 _________ (2)
3x1 + Xy — ZX3 E N | — (3)

Solving (1) and (2) by rule of cross-multiplication, we get,

X1X2X3
1 3 -2 1
[ I
SV V1V ViV Vs
X1 X2 X3 _
55 -5 M27
-5 1 3 1[*1 0
Case3:When/’l:6,[1 -1 1 []|*2|=]0
3 1 —=511x%3 0
_le+xZ+3x3:0 """"" (1)
X1 =Xz +x3 =0 ----mmmmv (2)
3x1 +x, — 5x3 = 0 -------m- (3)

Solving (1) and (2) by rule of cross-multiplication, we get,

X1X2X3
1 3 -5 1
A I
qY Y1V V1V +_1
X1 X2 3
4~ 8 4 3
-1 1 1
Therefore, X, =0 |, X, =|-1| ., X3 =| 2
1 1 1

To prove that: XTX, = 0,XIX; =0,XIXx;, =0

1
XTx,=[-1 0 1][-1]:—1+0+1=0
1
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1
XIX;=[1-1 1] 2]=1—2+1=0
1

-1
XIx,=[1 2 1] o]=—1+0+1:0
[ 1

Hence, the eigen vectors are orthogonal in pairs

1 2 3
2 2 4]lsthe
1 2 7

18. Find the sum and product of all the eigen values of the matrix A =

matrix singular?
Solution:Sum of the eigen values = Sum of the main diagonal elements =Trace of the matrix
Therefore, the sum of the eigen values = 1+2+7=10
Product of the eigen values = |A| =1(14 - 8) -2(14 - 4) + 3(4 - 2) = 6-20+ 6= - 8

| A| #0. Hence the matrix is non-singular.

1 2 -2
19. Find the product of the eigen valuesof A=|1 0 3 ]
-2 -1 -3
1 2 =2
Solution:Product of the eigen values of A= |A|=|1 0 3 [=1(3)-23)-2(-1) =
-2 -1 -3

3—-6+2=-1
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Definition 1. Differentiation

The rate at which a function changes with respect to the independent variable is called the
derivative of the function.

(i.e) If y= f(x) be a function, where x and y are real variables which are independent and

dependent variables respectively, then the derivative of y with respect to x is %.

Definition 2. Derivative of addition or subtraction of functions

If f(x) and g(x) are two functions of x, then d[f(x)di g0l _ d[g(;‘)] + d[iix)]

Definition 3. Product rule

If y = uv, where u and v are functions of x, then dlwv] _ vM + uM
dx dx dx
Definition 4. Quotient rule
du dv

, d Vax ~Yax
If vy = % , where u and v are functions of x, then — [%] = dx__dx
Important Derivatives Formulae

1 di (c)=0 where ‘¢’ is any constant.
X

2. %(x”): nx""

3 —(logex)—l.
X X

4, %(ax)zaxloga

5. %(e‘):e)C

6. %(sin X)=COsX.

7. i(cosx): —sin x.
dx

8. i(tan x)=sec’ x.
dx



9. i(cot)c): —cosec’x.
dx

10. —(secx): secxtan x.

dx
11. = (cosecx)=—cosecxcot x.
dx
12. L (sin " x)=
dx 1-x7
13. i(cos*1 x)z 1
dx 1-x?
d 4 1
14, — = )
dx (tan x) 1+ x*
d _ -1
15. a(cot lx)zlerz .
16. i(sec*1 x):;.
dx xV1-x"
17. i(cosec‘lx)z -1
X xv1=x?

1.1. Ordinary Differentiation Problems

1. Differentiate x +§
Solution Let y = x +i

dy _d(x+3) 4, dxH . 1
Then&_ dx _K-I_ dx _1_X2
2. Differentiate 3tanx+2cosx—e*+5
Solution:
Lety =3tanx+2cosx—e*+5
dy _ d(3tanx+2cosx—e*+5) _ , d(tanx) d(cosx) d(e¥) d(5)
Then dx dx =3 dx +2 dx dx +dx
= 3sec?x — 2sinx — e¥

3. Differentiate y = e**cos3x

d d(e?*cos3x d(e?* d(cos3x
dy _ d(eeossn)  _ oz AET) | ax dlcos3n)
d dx dx dx

= 2cos3x e?* — 3e%%sin3x

Solution:

4. Differentiate y = eSi"*x?
d(eSinXXZ)

L dy
Solution: ol =



d(esinx) \ d(Xz)

— 2 sinx

=X Cdx te dx
= x2e5I"X(cosx) + 2xeSNX

5. Differentiate y = x3e *tanx

d(x3e *tanx)

dx .
_ d(x
=e Xtanx% + x3 tanx

. d
Solution: =¥ =
dx

_y d(tanx
4 x3e—xdttany)
dx

= 3x%e *tanx — x3e *tanx + x3e ¥sec?x

6. Differentiate y = —

COSsXx

d(e™)
dx

X

d(=— .

.o dy (cosx) cosx eX —eX (—sinx)
Solution: it —
cosx eX +e* (sinx)

bcoszx
7. Differentiate y = ==
. dy (cx+d)c;j((:1x+b)c .
SO|UTIOI’1.& = i (by quotient rule)
2
8. Differentiate *X*>
VX
. VR (2x+2)— (2 +2x+3) 2% /2 2VX (x+1)—(x2+2x+3)—=
Solution: & = YxxrR(Craca)x B ( _ oz
dx (Vx) (Vx)
2VX X2VX (x+1)—(x2+2x+3)  4x(x+1)—(x%+2x+3)
- 2vx (VX)* - 2x°/2
_ 4x*+4x-x*-2x-3 _ 3x%+2x-3
= 3 = 3
2x°/2 2x°/2

9. Differentiate y = (3x%* — 1)3
Solution: Giveny = (3x% — 1)3
Differentiating w.r.to x, we get
- % = 3(3x2 — 1)%6x
=309x*—6x%2+1) =27x*—18x? +3
10. Differentiate: log (1+Sinx)

1-sinx
1+sinx)

1-sinx

Solution: Lety = log(

= y = log(1 + sinx) — log(1 — sinx)
Differentiate y w.r.to x, we get
LA — COSX —
dx 1+sinx 1-sinx

(—cosx)

__ (1—sinx)cosx+cosx(1+sinx)
- (1+sinx)(1-sinx)

COSX—Sinx cosx+cosx+ cosx sinx

1-sin2x

2 cosx
= = = 2 secx

" cos?x ~ “cosx
2.1. Differentiation Problems on Logarithmic Functions

1. Differentiate x5"*
Solution: Let y = x5inx
Taking log on both sides, we get logy = sinx logx



Now differentiating with respect to x

ly% = logx(cosx) + sinxi (Using product rule)

= % =y (logx( cosx) + sinx i)
dy _ y(xcosxlogx+sinx)
dx X
dy _ _sinx (Xcosxlogx+sinx
e = ()

— dy logx
y = X y —_—=
2. Ifx¥Y =e*7, prove that —- Ttlog?

Solution: Given x¥ = XY
Taking log on both sides, we get logx¥y = loge*™

= ylogx = (x — y)log.e
= ylogx = (xd— V)eeuns c.l..(1)

1 y _dy

=<y ;l— lOg;(E =1
Y, y_4_Y

:>l;)gxdx+dx_1 X
y _ Xy

dy _ _x7y

dx x(1+logx)

ﬂ _ ylogx ( )

dx  x(1+logx)" """

Again from (1) y + ylogx = x

N A 1
= y(1+logx) = X2 = Trioes

ﬂ _ logx
dx = (1+logx)?
3. lty=x"", then find <L
Solution:
Giveny =x¥ =xVY
Taking log on both sides
logy = ylogx

Differentiating w. r. to x we get
1dy _ 1 dy

1-yl
o (Lom)dy _y
y dx x
d 2
=>_y_z( y )_ y

dx ~ x 1-ylogx - x(1-ylogx)

2
4. Differentiate y = log (izti)
Solution:

y =log(x? + 1) —log(x? — 1)
dy _ 1

= X
dx  x%2+1 x2

=>d——2x( L2 )
dx X2+1  x2-1

1
2X
-1




:ﬂ — 2% (xz—l—(x2+1)) - 2x (Xz—l—xz—l)) — 2x (—_2)) _ o

dx (x2+1)(x2-1) x*—1 x*-1 x*—1
5. Differentiate y = 3%" +2x+3
Solution:% = 3 +2x+3(6y 4 )
3.1. Differentiation of Implicit functions
If two variables x and y are connected by the relation f(x, y) = 0 and none of the variable is
directly expressed in terms of the other, then the relation is called an implicit function.
Problems

1. Find % ,if x3+y% = 3axy

Solution:
Differentiating w.r.to x, we get
2 2dy _ dy
= 3x“ + 3y T Ba[xdx+y]

= 3y2% — 3ax% = 3ay — 3x?

= % (3y? — 3ax) = 3ay — 3x2
dy _ (3ay—-3x*) _ 3(ay—x*) _ (ay-x?)
dx 3y2-3ax 3(y2-ax) (y%-ax)

2. Find<X,if x? +y? = 16
Solution:
Given x? +y%? =16
= y? =16 —x?

=>y=vV16 —x?
Y_lig—x2) Y2 x (=
=2 =516—-x%) 72 x(-2x)

by _ __x X

= dx Vie-x2 y
3. Find 2, ifx=at?y = 2at
Solution: Given x = at?,y = 2at
KL Zat,ﬂ = 2a
dt

dt
d dy ,d 2 1
Now & — & jdx_ 2a 1

. dx ~ dt/ dt  2at  t

4. Findd—i,ify2+x3—xy+cosy=0

Solution:
Given y? + x3 — xy + cosy = 0
=>2y%+3x2—%(xy)—siny%=0
N 2 dy —

:>(2y—smy)&+3x _(X&-I_YXI)_O
:>(2y—siny—x)%+3x2—y=0
=>(2y—siny—x)%=y—3x2

dy _ y-3%
dx ~ 2y-siny—x



4.1 Equations of Tangent and Normal

According to Leibniz, tangent is the line through a pair of very close points on the curve.

[ Definition

<

The tangent line (or simply tangent) to a
plane curve at a given point is the straight Curve —
line that just touches the curve at that point. \

Normal

Definition

The normal at a point on the curve is the
straight line which is perpendicular to the
tangent at that point.

« Tangent

The tangent and the normal of a curve at

apoint areillustrated in Fig. 1 Fig.1

Consider the given curve y = f(x).
The equation of the tangent to the curve at the point, say (a,b), is given by
dy ,
y—b=(x—-a)x| = or y—b=f'(a)-(x—a).
Aax ), n

In order to get the equation of the normal to the same curve at the same point, we observe that
normal is perpendicular to the tangent at the point. Therefore, the slope of the normal at (a,b) is the

dy

. : L 1
negative of the reciprocal of the slope of the tangent which is —(—] .
a5 /(ab)

Hence, the equation of the normal is ,

(y—b):—(dly] x(x—a) or (y—b)x(d—yj =—(x—a).
(@b) A J o)

dx

Remark

(1) If the tangent to a curve is horizontal at a point, then the derivative at that point is 0. Hence,
at that point (xl, yl) the equation of the tangent is y =y, and equation of the normal is x = x,.
(i1) If the tangent to a curve is vertical at a point, then the derivative exists and infinite (oo) at

the point. Hence, at that point (xl, yl) the equation of the tangent is x = x, and the equation
of the normal is y=vy, .



Example

Find the equations of tangent and normal to the curve y = x> +3x—2 at the point (1,2).

Solution
We have, & =2x+3. Hence at (1, 2),Q =5.
dx dx

1,2

Therefore, the required equation of tangent is

(y—=2)=5(x-1)=5x—y-3=0.

. . 1
The slope of the normal at the point (1,2) is 5

Therefore, the required equation of normal is

(y—2):—§(x—l):>x+5y—1120-

Example

Find the points on the curve y = x” —3x* + x—2 at which the tangent is parallel to the line y = x.
Solution

The slope of the line y = x is 1. The tangent to the given curve will be parallel to the line, if the
slope of the tangent to the curve at a point is also 1. Hence,

D _ 3% _ex+l=1
dx

which gives 3x* —6x = 0.

Hence, x = 0and x = 2.

Therefore, at (0, —2) and (2, —4) the tangent is parallel to the line y =x.

Example

Find the equation of the tangent and normal at any point to the Lissajous curve given by
x=2cos3¢t and y=3sin2t,teR.

Solution
Observe that the given curve is neither a circle nor an ellipse.

dy _ d%t

Now, —

dx d%’t

6cos2t  cos2t

" 6sin3t  sin3t

Therefore, the tangent at any point is

y—3sin2t = — Cészt (x—2cos3¢)
sin 3¢

That is, xcos2t+ ysin3t = 3sin2tsin3t+2cos2tcos3t.



The slope of the normal is the negative of the reciprocal of the tangent which in this case is

sin 3t

. Hence, the equation of the normal is
cos 2t

sin 3¢
cos 2t

y—3sin2¢ = (x—2cos3r).

That is, xsin3¢— ycos 2t = 2sin 3¢ cos 3¢ —3sin 2¢ cos 2¢ = sin 6¢ — % sin4t

4.2 Angle between two curves

Angle between two curves, if they intersect, is defined as the acute angle between the tangent lines to
those two curves at the point of intersection.

For the given curves, at the point of intersection using the slopes of the tangents, we can measure
the acute angle between the two curves. Suppose y =m,x +¢, and y = m,x+c, are two lines, then the
acute angle 6 between these lines is given by,

m —m,
1+mm,

tan@ =

where m, and m, are finite.

Remark

(1) If the two curves are parallel at (xl, y,).then m =m,.

(i) If the two curves are perpendicular at (x,,»,) and if m_and m, exists and finite then
mm, =-1.

Example
Find the angle between y =x* and y =(x—-3).

Solution
Let us now find the point of intersection of the two given curves. Equating X* = (x—3)> we get,

X = % Therefore, the point of intersection is (%,%j Let 6 be the angle between the curves. The

slopes of the curves are as follows :

For the curvey = X°, y
& = 2X. .
dx = 4 &
d 39 - 4 'dl
Let 1:_y at| —,— | = =
dx 24 2
For the curve y = (x—3)% X
P -4 -2 0 2 4
)y
— = 2(x-3).
e (x=3)
Let mzzﬂ at 3,2 -
dx 2 4



Using (1), we get
3-(3)|_3

tan0 =
‘ 1-9 4

Hence, 6 = tan™ (%j

Example

Find the angle between the curves y=x” and x = y* at their points of intersection (0,0) and
(1,1).
Solution

Let us now find the slopes of the curves.
Let m, be the slope of the curve y = x?,

then m, = @=2x.

dx

Let m, be the slope of the curve x = y°,
then m, = Y _ i
dx 2y

Let 6, and 6, be the angles at (0,0) and (1,1) respectively.
At (0,0), we come across the indeterminate form of Oxocoin the denominator of

2x— 21
tan 0, = —yl and so we follow the limiting process.
1+(2x) (j
2y
2x— 21 s
tan6, = lim |——=Y
(x,)(0,0) 1 1
1+(2x) (J
2y 0.8
Axy-1 "
= llm xy _ 04
x)=0.0|2(y + x)

0.2

= O

-08 -06 -04 -02 0 0.2 06 08 1
. . -1 T (O’O)
which gives 6, = tan™ (00) =—. -2
1 2 -04
At (L1), m =2, m, = 5 00
P
tan0, = 2 7
1+(2)| -
[}
_3
4

which gives 0, = tan™' (%) :



5. MAXIMA AND MINIMA

5.1. Introduction

Here, we show how differentiation can be used to find the maximum and minimum values

of a function. Because the derivative provides information about the gradient or slope of the
graph of a function we can use it to locate points on a graph where the gradient is zero. We
shall see that such points are often associated with the largest or smallest values of the function,
at least in their immediate locality. In many applications, a scientist, engineer, or economist for
example, will be interested in such points for obvious reasons such as maximising power, or profit,
or minimising losses or costs.

5.2 . Stationary points

When using mathematics to model the physical world in which we live, we frequently express
physical quantities in terms of variables. Then, functions are used to describe the ways in which
these variables change. A scientist or engineer will be interested in the ups and downs of a
function, its maximum and minimum values, its turning points. Drawing a graph of a function
using a graphical calculator or computer graph plotting package will reveal this behaviour, but if
we want to know the precise location of such points we need to turn to algebra and differential
calculus. In this section we look at how we can find maximum and minimum points in this way.

Consider the graph of the function, y(x), shown in Figure 1. If, at the points marked A, B and
C, we draw tangents to the graph, note that these are parallel to the x axis. They are horizontal.
This means that at each of the points A, B and C the gradient of the graph is zero.

A A

local —
maximum

-y

local
minimum

B

Figure 1. The gradient of this graph is zero at each of the points A, B and C.

: o d d :
We know that the gradient of a graph is given by d—y Consequently, d—y = 0 at points A, B and
xr x
C. All of these points are known as stationary points.

Key Point

Any point at which the tangent to the graph is horizontal is called a stationary point.

. . . . .o d
We can locate stationary points by looking for points at which d_y =0.
x

10



5.3. Turning points

Refer again to Figure 1. Notice that at points A and B the curve actually turns. These two
stationary points are referred to as turning points. Point C is not a turning point because,
although the graph is flat for a short time, the curve continues to go down as we look from left
to right.

So, all turning points are stationary points.

But not all stationary points are turning points (e.g. point C).

. . d _ . .
In other words, there are points for which d—y = 0 which are not turning points.
x

Key Point

d
At a turning point Y _ 0.
dz

Not all points where d—y = 0 are turning points, i.e. not all stationary points are turning points.
x

Point A in Figure 1 is called a local maximum because in its immediate area it is the highest
point, and so represents the greatest or maximum value of the function. Point B in Figure 1 is
called a local minimum because in its immediate area it is the lowest point, and so represents
the least, or minimum, value of the function. Loosely speaking, we refer to a local maximum as
simply a maximum. Similarly, a local minimum is often just called a minimum.

5. 4. Distinguishing maximum points from minimum points

Think about what happens to the gradient of the graph as we travel through the minimum turning
point, from left to right, that is as x increases. Study Figure 2 to help you do this.

dy . )
— 1S negative

dx

dy . .
— 18 positive
dx

dy .
—_— 1S Zero

dx

. d . . :
Figure 2. d—y goes from negative through zero to positive as x increases.
x

11



Notice that to the left of the minimum point, d_y IS negative because the tangent has negative
x
. . . d . . . dy . .
gradient. At the minimum point, d—y = 0. To the right of the minimum point d—y IS positive,
X xr

. . d . .
because here the tangent has a positive gradient. So, d—y goes from negative, to zero, to positive
x

. d
as x increases. In other words, &
z

must be increasing as x increases.

In fact, we can use this observation, once we have found a stationary point, to check if the point

IS a minimum. |If I IS increasing near the stationary point then that point must be minimum.
x

Now, if the derivative of d—y is positive then we will know that d—y IS increasing; so we will know
a X

that the stationary point is a minimum. Now the derivative of d—y called the second derivative,
x

2 2

is written d—g We conclude that if d—g Is positive at a stationary point, then that point must
xr x
be a minimum turning point.

Key Point

2

. d . . d . .
if d—y = (0 at a point, and if d—g > 0 there, then that point must be a minimum.
a X

It is important to realise that this test for a minimum is not conclusive. It is possible for a
2

. : . . d .
stationary point to be a minimum even if &y equals 0, although we cannot be certain: other

da?
. . . L d%y .
types of behaviour are possible. (However, we cannot have a minimum if d—g is negative. )
x
To see this consider the example of the function y = x*. A graph of this function is shown in
Figure 3. There is clearly a minimum point when z = 0. But d—y = 42° and this is clearly zero
x

2

when z = 0. Differentiating again d—z = 1222 which is also zero when z = 0.
x

A
S >
Figure 3. The function y = z* has a minimum at the origin where x = 0, but
d? .
€y _ 0 and so is not greater than 0.
dx?

12



Now think about what happens to the gradient of the graph as we travel through the maximum
turning point, from left to right, that is as x increases. Study Figure 4 to help you do this.

dy . .
— 1S positive

dx

— is negative

: d . : :
Figure 4. d_y goes from positive through zero to negative as x increases.
x

Notice that to the left of the maximum point, d—y Is positive because the tangent has positive
x
. . . d . . . dy . .
gradient. At the maximum point, d—y = 0. To the right of the maximum point d—y IS negative,
x x

: . d . :
because here the tangent has a negative gradient. So, d—y goes from positive, to zero, to negative
x
as x increases.

In fact, we can use this observation to check if a stationary point is a maximum. If & IS

x
decreasing near a stationary point then that point must be maximum. Now, if the derivative of
dy dy

I is negative then we will know that I is decreasing; so we will know that the stationary point
x x
. . L dy .. d%y
is a maximum. As before, the derivative of I the second derivative is 2 We conclude that
xr x
d2

if d—z IS negative at a stationary point, then that point must be a maximum turning point.
x

Key Point

2

. d . . d . .
if d—y = (0 at a point, and if d—z < 0 there, then that point must be a maximum.
a X

It is important to realise that this test for a maximum is not conclusive. It is possible for a

. : . . d .
stationary point to be a maximum even if d—z = 0, although we cannot be certain: other types
x
. . . . d?
of behaviour are possible. But we cannot have a maximum if d—z > 0, because, as we have
xr
already seen the point would be a minimum.

13




Key Point

The second derivative test: summary

. . . . _ d
We can locate the position of stationary points by looking for points where d_y =0.
x

As we have seen, it is possible that some such points will not be turning points.

We can calculate % at each point we find.

If % Is positive then the stationary point is a minimum turning point.

If % IS negative, then the point is a maximum turning point.

If % = 0 it is possible that we have a maximum, or a minimum, or indeed other sorts of
behaviour. So if % = 0 this second derivative test does not give us useful information and we

must seek an alternative method (see Section 5).

Example

Suppose we wish to find the turning points of the function y = 2* — 3z + 2 and distinguish
between them.

We need to find where the turning points are, and whether we have maximum or minimum points.

. . . d o
First of all we carry out the differentiation and set d—y equal to zero. This will enable us to look
x
for any stationary points, including any turning points.

y = a°—3x+2

dy
—~ = 32> -3
dz o
. . dy
At stationary points, — = 0 and so
dx
32° -3 = 0
322 —1) = 0 ( factorising)
3(z—1)(zx+1) = 0 ( factorising the difference of two squares)
It follows that either t — 1 =0o0or £ +1 =0 and so either x =1 or x = —1.

We have found the x coordinates of the points on the graph where % = 0, that is the stationary
points. We need the y coordinates which are found by substituting the = values in the original
function y = 2% — 3z + 2.

when o = 1: y=1-3(1)+2=0.

when x = —1: y= (=172 -3(-1)+2=4.

14



To summarise, we have located two stationary points and these occur at (1,0) and (—1,4).

Next we need to determine whether we have maximum or minimum points, or possibly points
such as C in Figure 1 which are neither maxima nor minima.

We have seen that the first derivative d_y = 32% — 3. Differentiating this we can find the second
x
derivative:

2
% = 6x
We now take each point in turn and use our test.
when z = 1: iz = 62 = 6(1) = 6. We are not really interested in this value. What is
important is its sigﬁ{.x Because it is positive we know we are dealing with a minimum point.
when x = —1: % = 6z = 6(—1) = —6. Again, what is important is its sign. Because it is

negative we have a maximum point.

Finally, to finish this off we produce a quick sketch of the function now that we know the precise
locations of its two turning points (See Figure 5).

y A
(_1’ 4)
N 5
™
5 D %)

Figure 5. Graph of y = 2% — 3z + 2 showing the turning points

5.5 An example which uses the first derivative to distinguishmaxima and minima

Example

. . . . _ —1)? .
Suppose we wish to find the turning points of the function y = M and distinguish between
x

them.

First of all we need to find %
dzx

In this case we need to apply the quotient rule for differentiation.

dy z-2x—1)—(z—-1)7°-1
de x2

15



This does look complicated. Don't rush to multiply it all out if you can avoid it. Instead, look
for common factors, and tidy up the expression.

dy r-2z—1)—(z—1)>%*-1

dx x2
(x—1)(2x— (xz—1))
(= 1)(z+1)
= "
We now set I equal to zero in order to locate the stationary points including any turning points.
x
(x —1)(z+1)
2 =0
X

When equating a fraction to zero, it is the top line, the numerator, which must equal zero.
Therefore
(r—1)(x+1)=0
from which z — 1 =0 or x +1 = 0, and from these equations we find that z =1 or x = —1.
(z—1)
pa

The y co-ordinates of the stationary points are found from y =

when x = 1: y=0.

when z = —1: y = :

We conclude that stationary points occur at (1,0) and (—1, —4).

We now have to decide whether these are maximum points or minimum points. We could cal-

d?y

culate 2 and use the second derivative test as in the previous example. This would involve
x
. L z—1)(x+1 o .
differentiating ( )g ) which is possible but perhaps rather fearsome! Is there an alter-
x

: . d
native way 7 The answer is yes. We can look at how d—y changes as we move through the
x

2

. . . d7y . .

stationary point. In essence, we can find out what happens to 12 without actually calculating
xr

it.

First consider the point at + = —1. We look at what is happening a little bit before the point
where x = —1, and a little bit afterwards. Often we express the idea of ‘a little bit before’ and
‘a little bit afterwards’ in the following way. We can write —1 — € to represent a little bit less
than —1, and —1 + € to represent a little bit more. The symbol € is the Greek letter epsilon. It
represents a small positive quantity, say 0.1. Then —1 — € would be —1.1, just a little less than
—1. Similarly —1 + € would be —0.9, just a little more than —1.

d . L
We now have a look at d—y; not its value, but its sign.
x

dy . "
When z = —1 — ¢, say —1.1, d—y IS positive.
X

When x = —1 we already know that %:O.
x

16



dy . .
When z = —1 + ¢, say —0.9, d—y IS negative.
x

We can summarise this information as shown in Figure 6.

r=—1—¢ z=-1 x=-1+4c¢

. d

sign of &y + 0 —
dx

shape of graph s N\

Figure 6. Behaviour of the graph near the point (—1, —4)

Figure 6 shows us that the stationary point at (—1, —4) is a maximum turning point. Then we

. . . . . d
turn to the point (1,0). We carry out a similar analysis, looking at the sign of d—y atx =1 —k¢,
x
r =1, and x =1+ €. The results are summarised in Figure 7.

r=1—-¢ z=1 z=1+¢

. d

sign of d—y — 0 +
x

shape of graph ~ . /

Figure 7. Behaviour of the graph near the point (1,0)

We see that the point is a minimum.
. . . : o d¥y . .
This, so-called first derivative test, is also the way to do it if d—y IS zero in which case the

72
(z— 1)
x

second derivative test does not work. Finally, for completeness a graph of y = is shown

in Figure 8 where you can see the maximum and minimum points.

Y
C1\2
Y= (x Il)
(1,0)
o
5T 3 2 1 T 2 3 4 57
/
(71374)
. (x —1)? _ . :
Figure 8. A graph of y = ——— showing the turning points
x
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1.1 Standard results

n+l

n X
1. J'x dx_n+l

+¢c (n=-1)

2. j% dx=log x+c

3. J.exdx:ex+c

4. _[sinxdx=—cos X+C

5. J'cosxdx: sin X+cC

6. [tan x dx= logsec x+c

7. [cotx dx=log sin x+c

8. '[secx tan x dx= sec x+c

9. '[cosec X cot x dx = —cosec x+C
10. jsec2 x dx= tan x+c

11. Icosec2 X dx= —cot X+c¢

1
12. '[ dx=tan*x+c¢C
1+ %2

1 ]
13._[ dx=sin*x+c

N1-x?

dx=sec* x+c

1

1.2 INTEGRATION BY PARTS:
J.u dv=uv — J.vdu

1. Find J'xcosxdx

Solution:
Let u =x, dv =cosx dx

Then integration by parts gives,



jxcosxdx:xsin x—J' sin x dx

= XSIN X+COSX+C

2. Find jlog X dx

Solution:
Let u = logx, dv = dx

Then,jlog xdx = (log x)x— jlx dx
X

= X(log x)-x+c
3. Find I xe* dx
Solution:
Let u=x, dv=e*dx

I xe* dx = xeX—J' le* dx - xe*

xsin * x

1—x?

dx

4. Find j

Solution:
Let u=sinlx, dv= x/N(1-x3)dx

For finding v,

Put t=1—-x? thendt= -2x dx

Thenv = I ;_jft = —\/f=—\/l—X2

I xsin dx = sin‘lx(—\/l—T)— j

1—x2
— 2 = -1
= —yJ1-Xx°sih™ X + X +¢C

2.1 BERNOULLI'S FORMULA

_[u dv = uv — U V,+U Vz + -

—€

X

+C



Problems
1. Solve J. x%e* dx
Solution:

szexdx: x2eX- 2x(eX) + 2e*+C

2. Solve f X sin ax dx

Solution:

Ixsin axdx = X(—cosax]_(—SInzaxj+C
a

a

3. Solve J. (ax® +bx+c) cos xdx
Solution:

j(ax2+bx+c) cosxdx= (ax*+bx+c)(sinx) +(2ax + b) (-cosx)+2a(-sinx)+c



3 Definite Integrals

Definite Integrals is defined as
b b
[ f00dx =[F(0L, = F(b)-F(a)

3.1 Properties of Definite

Integrals Property:1
b b b
L f (x)dx = j f(y)dy = j f (t)dt
Property: 2
b a
L f (x)dx = — jb f (x)dx
Property: 3

[t e0dx =[x+ [ f (x)dx ira<csh

Property : 4
“f(x)dx = [ f(a—x)dx
Io %) J‘0 ( ) . a: any real constant.
Proof : joa f (a—x)dx
Let
a-x=t
dx = —dt

whenx=0;t=a
whenx=a;t=0

0 dt 0
=[f (== ~ [ f ()t
:joa f (t)dt (by prop 1)

= joa f (x)dx



Property : 5

j:a f(x)dx = [[f () +  (2a-x)]dx

Property : 6
b b
[ f00dx = [ (a+b—x)dx
Property: 7
- T fegdx=2{" f(x)d
@nf T =10 Even Function) then La (x) ax .[o (x) dx

iyt T == (©0dd Function) ~ then [, feodx =0

Solved Problems

Z asin x+bcosx
Evaluatej2 - dx
1. 0 sin X+ COSX
Z asin x+bcosx
I :IZ - dx
Solution Let ¢ sinx+cosx . )

Applying property 4 in (1),we have

z asin(ﬁ—x)+bcos(5—x)
| :JZ 2 2 dx
sin(z —X)+ cos(E —X)
2 2

2 acosx+bsin x
I =I - dx
0 sInX+COoSsX ()

Adding (1)and (2),we have

21 =F (a+b)s!n X+ (a+b)cosx
0 SIn X 4+ COSX

dx



T

91 :F (sin x_+ cosx)(a+b) dx
0 Sin X +cosx

T

21 :E (a+b)dx
T
21 =— b
5 (a+b)
T
| =— b
2 (a+b)
2.Showthatj'0E log(sin x)dx = —% log 2
Let.| = IOE log(sin X)dX ............. (1)
z . T
| = _[02 log sm(z—x)dx
| = J‘OE log cos(x)dx
(1)+(2) implies 21 :LZ log(sin x)dx+J'02 log(cos x)dx

s
21 = J;Z log sin xcosxdx

sin 2X dx

21 =J?Iog

21 :J?Iogsiandx—J?Iogde ()

ConsiderJ'oE log sin 2xdx

Let 0=2x then dx =d0/2

x=0then =0 and x:%then O=r

x . do
= jo log(sin 6’)7



(sincej: f(x)dx = 2[03 f(x) dx)
= ZJOZ log(sin 9)d70

_ [2log(sin x)dx = |
jo og(sin x)dx (by prop 1)

Subsuiting in I,we have

_i_[z
21 =1 L log 2dx
__[>
I = IO log 2dx
| =—log ijdx
T
| =—=log2
2 9 )
3.Show that joz log.(1+ tan x)dx = %Iog 2
Let | = .[flog.(lthan x)dx
= IZ Iog[.1+ tan(Z - x)}dx
0 4
tan ”* — tan x

:J‘Ozlog. 1r— 4 l4x
1+tan%tanx

= Flog. 14 178X gy
0 1+tan x



:I4Iog{ 2 }dx
0 1+tan x

| = J'OZ [(log 2 - log(1+ tan x) Jdx
= .LZ log 2dx —LZ log.(1+ tan x)dx
I :Lzlogde— I
21 =log Zj'ozdx
21 = % log 2
| = %Iog 2
. Evaluate J‘Oﬂ log(1+ cos x)dx
Letl = _[0” log(1+ cos x)dx
| = J: log(1+ cos(7z — x)dx
| = J'O” log(1— cos x)dx
21 = _[Oﬂ log(1+ cos x)dx + J: log(1+ cos x)dx

(1)+(2) implies

21 = J'O” log(1 - cos x)(1+ cos x)dx
2l = J': log(1—cos? x)dx = L” log sin? x dx = 2j0” log sin x dx
I =L log sin x dx

2a a
f(2a-x)= f(x)then| f(2a-x)dx=2| f(x)dx
By the property ( )=1() J.O ( ) J.O ()

= 21.02 log sin x dx



T
——IogZ}
:2|: 2

I—;zlog1
2

4. Gamma Function
Definition :

Gamma function is defined as follows

_ © on-1,-x
F(n)_jox e dx;n>0

1.T(n+2) =nI"(n)
2. =1

3.I'(n+1) =n!n>0

4.T(N)Il-n)=—"0<n<1
sinnzx

5.r(%) =z
Proof :

WKT T'(n) = '[Owt”‘le‘tdx

r@) = jmt;etdt

2 0
put t = x> dt =2x dx
No changein lim its

1 _[*/y2 - -x?
F(E)_jo (x2) 2e™ 2x dx
1 v 1
r(E)zsz (e x dx

1 o
r(E)=2j0e dx

Similarly ,we have 1“(%) = 2_|‘:e’y2 dx



r(%) —|2[ e dx}[Zfe‘yz dy}

r(%) =:4j: [ e dy}

Transfor min g int o polar coordinates

{x=rcos€} s o
= xiryi=r
y=rsing

dxdy=rdrdd
r:-0->ow

0:05%
2

{F(%)T ={4L§ J:O e rdr de}
:4j02 [ e d(;) de}

z_zjoz [ e de?) dﬁ}
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6.T°(n) = 2 jo“’ x> e~ dx

Proof :
Sub x =t* in the formula I'(n) = J:x”’le’xdx

then dx =2t dt

r(n) = [t (2t dt)
r(n)=2 j:tZ”‘le‘tz dt

r'(n)=2 J.: x2" e dx (by property 1)

5. Beta Function

Definition
1
B(m,n) = jo X" (1-x)"*dx,m>0&n >0

Results:
1. g(m,n) = g(n,m)

Proof :

By definition of beta function, #(m,n) = _Ex'“’l (1—x)""dx
Using property 4 of definite integral

Am.n) = [ @-0" - @- ] dx

£(m,n) = j:(l— x)™ " x"dx

A(m,n) = j:x“-l(l— X)™dx

A(m,n) = g(n, m)

2. 4(m,n) = Zj:sin "1 gcos®"t ado

Proof:

11



WKT g(m,n) = J':xm‘l(l— )" dx

Take x =sin’@ dx=2sindcosH do
if x=0thend8 =0
T

if x=1then 8 =—
2

B(m,n) = .[05 (sin? @)™ *(cos® G} 2 sin@ cos @ dO

£(m,n) = ZJ:sin L gcos™"t ado

n-1

3ﬂ(m, n) = J‘:(:L:(de

6. Relation between Beta and Gamma function

Proof :WKT T'(n) = 2j0°° x2" e dx
_ © o 2m-1,-x? © o 2n-1,-y?
r(mIo(n)= [2_[0 x"e dx} [2_[0 y“" e dx}

r(m)I(n) = 4”e’(xz*y2’xzm’lyzn’ldxdy
00

Transforming into polar coordinates

X =rcosé
{y =rsind
dxdy = rdrd@
r.-0-ow

}:>x2+y2:r2

0:0 =%
2

r(mo(n)=4

O | N

o0 , ) B
J.e’r r2m22 cos®™ ! @sin > 9(rdrd 0)
0

12



rmr(m)=4

O v | N

© s ) B
J.e‘r r2™2 1 cos®™ ! 9sin®"* edrd @
0

4

2
r(m)r(n)= ZIsin 2019 0 og2mt ado) [ZJ‘O rz(m+n)1er2dr}
0

I'mIT n=g(mn)I m+n

I'mIn
I'm+n

A(m,n) =

We can also prove I'1/2 using the beta gamma relation

Put m=n=1/2

I'mI'n
I’ m+n

A(m,n) =

1.7 11 2 2ty
I'=)| =p(=,=)=|2sin # @cos 2 £ dag
{ <2)} A=

= F[%} =Jr

Problems :

1.Eva|uateI:x6(1— x)° dx
WKT B(m, n) = j:xm-l(l— X)"dx,m>0&n > 0

Taking m-1=6 and n-1=5 we get m=7 and n=6

13



776  6Ix5!  (6x5x4x3x2x1)(5x4x3x2x1) 1

7,6) = = -
p(7.6) I'13 131 13x12x11x10x9x8x7x6x5x4x3x2x1 72072

2. Evaluateﬁ(g,%) = J‘:Xm*l(l— X)"tdx,m>0&n >0

r2pf 3115311
2 2 22 2222 2 3

e ol 256

z 7 1 531_1_1
2z 71 Y505 155,050, 15
I5|n60d9=ﬂ(—,—): == -
0 2 2 r4 2 3 96
4.Eva|uate.|'055in6 @cos’ o
Take2m -1=6and2n-1=5
thenm=%andn=3
1 7
== B(-3
2ﬁ(z )
7 7
_31“51“3_1 rors 12 8
2 13 21197 7 2[693] 693
2 222 2 8
2
5.Eva|uateI\/tan 0do
0
z 1 -1
Givenl :jozsin2 gcos? (o
3.1
181 104
274747 2 1
1.3.1 1 « T
OIr(n)Id-n)= .
2 4 4 257 \/E{ (n-Ld=n) sinnzz}

14



1 n-1
6..Eva|uate.[£log ij dy=I'n,n>0
y

0

Put Iogi =t
y

Iy
y
y=e"

dy = —e'dt
Limits:y=0=t=oandy=1=1t=0

1

aﬂméde{®“@NNWWmm

0

(t)"etdt=Tn

ot—38

7.Eva|uateje‘(hx’2dx
0

put(hx)® =t
1
hx =t2
1
dx = =t 2qt
2h

2 2
J'e‘(“x’ dx
0

whenx=0=1t=0
whenx=ow =t =w

-1

) , © ?
then.[e‘(“x’ dx = J.e“ t—dt
0 0 2h

)

% 2
=1.|.e‘tt—dt
2%



2

8.Prove that I 1

+t4 22
Put t=+/tan@

-1

dt = %tan2 O(sec® 6)do

tan 6d 6

1
2

i tnd(L+tan*0) -
* (1+tan? 6)2y/tan @

O 0 | N

1 -1

- 1J‘EsinE 0cos? o
2 0

)

N

1 3
2P

N

3
1FZF
4 TI1

0 Xa
9.Eva|uate'|'0 —de where a>1
a

16



Let a¥ =¢'

t =xloga ,by definitionof logarithm
loga loga

when x=0=1t=0

when x=wo=t=w

SoX

t a
Xt w(log a] dt
-[0 ?dx _-[0 et loga
1

-~ [Tetadt
(lOg a)a+1 J.O

1
_Wr(aﬂ).

17



(m+Ln) A(mn+1) AB(m,n)
m n  m+n
I'mI'n
'(m+n)
I'm+1In mI'mI'n

Then g(m+1n)= r(m+n+1) B r'(m+n+1)

10.Prove that B

WKTg(m,n) =

p(m+1n)  I'mIn
B m C(m+n+1)

- I'mIn+1 I'm nI'n
similarly g(m,n+1) = =
I'm+n+1) T'(m+n+1)

pmn+1)  I'mIn

= 2
n '(m+n+1)
also multiplyby L on both sidesing(m,n) = Imin
m+n C(m+n)

A(m,n) I'mI'n
m+n (m+n)["(m+n)

£(m,n) I'mI'n
m+n '(m+n+1)
fromequation 1,2,3 we have

pm+1n) _ pmn+l)  A(m,n)

m n m+n

s

11.Provethat 5 2 = f(n.n) and hence deducethe duplication formula

.................. 3

2n-1

WKT ,B(m,n)=2.[)Esin2m’l.9cosz“’10 do

T

1. 2.
n,=)=2|sin>"*@ do
A(n.) j

Also we have £(n,n) = ZJOESin 1gcos™t 6 do

B(n,n) = 2j05(sin 6cos0)>"* do

18



ﬂ(n’n)zzjf(sinzze) - do

254£f9n“420d9

B(n,n) =
1
let ¢ =20 :.do="dg

2
22n—1

d¢

%-Zn—l b
'[Osm @ >

p(n.n) =

B(n,n) = #L’;sinz"% de

1 1
B(n,n) :Wﬂ(”’?

B(n é) ~ 22" g(n,n)

l“nl"1

2 — 22n—1ﬂ(n’ n)
F(n +;)

2 o2 rnn

F(n +1j I2n
2
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1 LINEAR EQUATIONS OF HIGHER ORDER

A linear equation of n™ order with constant coefficients is of the form

d n d n-1 d n-2
dx}‘/+al dx"¥+a2—y+ ..... ay=Xx (1)

where a;, a,....... a, are constants and X is a function of x. This equation can also be written in the form

d d? d"
D"+aD"*+a,D"?+....+a Jy=Xwhere D=— D’ =—,........ D"
( % 2 ”)y dx dx? dx"

Consider (D" +a,D"" +a,D"% +...+a, )y =0 2)

Y is called the complementary function (C.F) of equation (1).

Suppose u is a particular solution (particular integral) of equation (1)

Then the general solution of equation (1) is of the form y=Y+u where Y is the complementary function

and u is a particular integral (P.I).



Thus y=C.F + P.I

To find Complementary functions

Case (1)

Roots of the A.E are real and distinct say m; and m;
y=c,e™ +c,e™"

Case (2)

Roots of the A.E are imaginary then

y=e(c, cos X + ¢, sin px)

Case (3)

Roots of the A.E are real and equal say m; = m, then

y=e™(c,x+c,)

2

1.sove 3 2% 43y
dx dx

Put i= D
dx

(D?y - 2Dy +3y)=0
(D2 -2D +3)y=0

The auxiliary equation is m* —2m+3=0

o~ (2= 2F ~90E)
@W

J-8

m=2+——
2

2+i242
m:T

m=1+iv/2



CF=¢" [cl COS(\/EX)-F C, sin(\/Ex)J
The general solution is y = C.F+P.|

y=e* lcl cos(\/ix)+ C, sin(\/ix)J+0

To find Particular integral

When the R.H.S of the given differential equation is a function of x , we have to find particular

Integral.
Case (i)
If f(x)=e%,then P.l = F(lD) e® . Replace D by a in F(D), provided F(D)# 0.
X
If F(a) = 0 then P.I = e® provided F'(a) =0
(@) (D) p (a)

If F’'(a) = 0 then P.I =

e® provided F"(a) #0 and so on

X
F"(D)

Case (ii)

If f(xX) = sinax or cosax then P.l = sin axor cosax

Replace D’by —a?in F(D), provided F(D)# 0.
If F(D) = 0, when we replace D? by —a® then proceed as case (i)
Case (iii)

If f(x) =a" then P.l = X"

F(D)

P.1 =[F(D)]'x" , Expand [F(D)]" by using binomial theorem and then operate on x".
Case (iv)
If f(x)=e™x, where X is sinax (or) cosax (or) x then

1 Ay _ g 1

Pl=—"o¢ — - X
F(D) F(D +a)



Here ; X can be evaluated by using anyone of the first three types.
F(D+a)

Problems

1.Solve (D2 +6D +9)y =5e*
m’+6m+9=0

(m+3)* =0

m=-3,-3

C.F=(c,x+c,)e™

1

Pl = - 5e*
iD +6D +9i

-
(3)* +6(3)+9

5

_e3x

36

The general solutionisy = C.F + P.I

2. Solve (D2 +6D + 5)y =g
m? +6m+5=0
(m+5)m+1)=0

m=-1,-5

CF=ce ™ +c,e™

1

P.I = e’
[iDZ +6D +5iJ

i {(—1)2 +2(—1)+ 5]e_x



The general solutionisy = C.F + P.I

—-X

. sy, X
y= ce " +c e 5X+Ze

2.Solve (D2 +D+ 1)y =sin2x
Solution:

The auxiliary equation is m? +m+1=0

_1+i43
2

C.F= e_z)(|:c1 cos{@J +C, sin{@ﬂ
2 2

P.l = 1 sin2x
(D2 +D +1ij

= ; sin2x
(-4+D+1)

= ! sin2x
=

D+3 .
== Sin2x
D -9

D+3

jsian

_ 2cos2x  3sin2x
13 13




The general solutionisy = C.F + P.I

> \/_ \/_x _2cos2x  3sin2x
y=e?|c,co +C, sin
13 13

3.Solve (D? +3D + 2y = X
Solution:

The auxiliary equationis m* +3m+2=0
(mM+2)(m+1)=0
Hence m=-2, -1

—X

CF=ce ™ +c,e

P.I = L x?
iDZ +3D+2i

2 -1
_1(,,3D+D%) ,
2 2

The general solutionisy = C.F + P.I

1 7
=ce?+ce+ = x?-3x+—
y 1 2 2( 2]
4. Solve (D2 —4D +3)y =e* cos2x

Solution:

The auxiliary equation is m* —4m+3=0

Mm-1)(m-3)=0



Hencem=1,3
C.F=ce* +c,e*

1

P.l = 5 e’ cos2x
iD - 4D + 3i

eX
) (D +1)° —4(D+1)+3JCOSZX

ex
= = C0S2X
D°-2D

= _¢ CO0S2X
-4-2D

_ e {(D—Z)COSZX}

2 ~8

X

= € (~2sin2x - 2cos2x)
16

X

= —%(sin2x+0052x)

The general solution is y =C.F+ P.|

X

er .
y = c,e* +c,e® — ——(sin2x + cos2x)
8

5. Solve (D? —2D +2)y = e* sinx
The auxiliary equation is m* —2m+2 =0
m=1+i

C.F=e*[c,cosx +c, sinx]



1

P.I = e” sinx
(D2 -2D + 2’]

X

| (D+1 -2(D+1)+ 2}“

[ ex .
= sinx
| D? +J

B X

e

= e* Imaginary part of —}e‘x

= e* Imaginary part of 2—1_xeix}
' 2i

N 1 o
= e* Imaginary part of —Elx(cosx+|smx)}

1. .«
= — = xe* cosx
2
The general solutionisy = C.F + P.I
x - 1. .«
y = e*[c, cosx +c, sinx] — 5 Xe’ cosx

6. Solve (D° —3D? +3D —1)y = x%e”

The auxiliary equation is m® —3m? +3m—-1=0

(m-1° =0

m=1 (thrice)

CF = ex(c1+c2x+03x2)

P.1 = 1 2@X

X
D®-3D*+3D-1

e” )
= X
(D+1°-3D+1}° +3(D+1)-1




X
= 50 ( By integrating x* thrice with respect to x )

The general solutionisy = C.F + P.I

e*x®

60

y=e*(C, +C,X +C,x° )+

2. Linear Differential Equations with variable coefficients

An equation of the form

n n-1 n-2
" M+alx”*1 ay y+a2x“’2 d 73’
dx" dx"

a, X N

Where ag , a3 ,....... an are constants and X is a function of x is called Euler's homogeneous linear
differential equation.

Equation can be reduced to constant coefficient by means of transformation z = log x.Then

xD=6, x’D?=6(0-1), x*D* =6(8 -1)0 - 2) where 0:;—2.

1.Solve x?y" —xy’+ 4y = cos(logx) + x sin(log x)

Solution:

Put z = log x and 9:1
dz

The given equation reduces to
[0(6 —1)- 0 + 4]y =cosz +e” sin z
62 —20 + 4ly=cosz +e?sinz
The auxiliary equation is m? -2m + 4=0
m=1+i/3

Hence C.F =e’ (c1 C0s+/3z +C, sin \/§z)



= x[c1 cos(\/é log x)+ c, sin(\/é log X)J

1 1 L
P.I = I:z—:| COSZ + I:z—:|(e Sin Z)
0% —20 + 4 0% —20+4

=l lcosz+er _ L (sinz)
| 3-20 | (0+1)° -2(0+1) + 4
1] J 1 .
=| ——— |cosz +e*| ——— |(sin z)
13-26 | |02 +3
_3+29} e’sinz
= oSz +
9 - 46° (-1+3)
] L 1 . 1,
3+20 e’sinz _—(3cosz—2sinz)+=e’sinz
| 13 COSZ + =13 2

= % [3cos(log x) - 2sin(log x)] + % xsin(log x)
The solutionisy =C.F + P.I

y= x[cl cos(\/é log x)+ c, sin(\/§ log X)J+%[3COS(|OQ x) - 2sin(log x)] + % xsin(log x)

2.Solve (x*D? +2xD +4)y = x* + 2log x

Solution:

Put z = log x and 9:1
dz

The given equation reduces to
[60(6 1)+ 20 + 4]y =e** + 2z
62 + 0+ 4ly=e? + 22
The auxiliary equation is m*+m+4=0

o_—lxV1-16 | -1xi15
2 2

10



CF = e {cl co{—“lSJz +c, sin(—“lSJz}
2 2
- V15 (/15
=X ? {cl CO{TJ log x +c, sm[TJ log z}

1 2
Pl=|—— |le* +2z)=P.l, + P.l
{92+0+4}( ) ! 2

The general solution is y= C.F+P.l, + P.1,

- V15 . (15 x? 1 1
Y=x 2| ¢, co§ — |logx+c,sin|—|logz|+—+=logx—=
2 2 10 2 8

11



3. METHOD OF VARIATION OF PARAMETERS

Example:1
Use the method of variation of parameter to solve (D?+4)y = cot2x.

Solution:
AE is m*+4=0; m=+2i
The C. F = e”[Acos2x+Bsin2x]
Now,
f, = cos2x f, =sin2x
f, =—2sin2x f, = 2cos2x
f f, — f, f, = 2(cos® 2x +sin® 2x)= 2
PI=Pf+Qf,

S LS
f1f2 - 1:1 fz
sin 2x cot 2x

- - [EmEXOE gy

P = —lj'cos 2xdx
2

=—lsin 2X
4

f.X
ff,—ff

127 1 t2

COS2X cot2x
= [ C082X COL2X g

2

_J-cos 2x

sm2x

=__[1 sin? 2x
sin 2x

= EJ'(cos ec2x —sin 2x)dx

= %{—% log(cosec2x + cot 2x) + % cos2x |

12



P.|=Pf1+Qf2

= %sin 2x[cos 2x —log(cosec2x + cot 2x)] —% C0S 2X Sin 2X

=- —%sin 2x log(cosec2x + cot 2x)

. The complete solution is

y = (Acos 2x + Bsin 2x) —%sin 2x log(cosec2x -+ cot 2x)

Examples :2
Solve (D?*+a?y = secax by the method of variation of parameters.

Solution:
Given (D*+ a®)y = secax
AEism®+a’=0
m=+al

.. C.F = A cosax + Bsinax

f, = cosax f, =sinax
f, =-asinax f, =acosax

f f,—f f,=acos’ ax+asin’ax=a

S5 S
f1 f2 - fl f2
:_Isin ax secax
a

dx

:—E'[sinax dx

cos ax
B J- sinax |

B cos ax

= — Iog[cos ax]

£ X
= [—C—dx
Q Iff—ff

J' COS ax secax

1 1
== cosax—dx:—x
a COoS ax a

13



~PI=P f,+0f, =izlog(cosax)cosax+£xsin ax
a a

..Complete solution y=C.F+P.I.

Example :3
d’y _dy . . -
Solve o 2d— +y=¢e" log X by using method of variation of parameter.
X X
Solution:

A.E is m?-2m+1=0

C.Fis (Ax+B)e*
Where f, = xe* f, = e

f = xe* +e" floe

f f,— f f, = xe? —(xe* +e*)e* = -
P.1=Pf;+Qf, Where

LY, S
fl fz - f1 fz

e*e” log x
=[x
:Jlog X dx
=X logx—x
f,X

Q= | —"——

.[fle_fle

:j%zlxogxdx:—jxlogx dx

X2

=—|log xd| —
oo %)
x? x?
=—-—Ilog X+—
2 J 4

14



- Pl =Pf, +Qf,

2 2
= (x log x — x )xe* +(M+X—jeX

2 4

x’e*logx x%e*
+
2 4

= x%e* log x — x*e* —

2% 2ax
_x e2I09><_3><4e :%XZeX(zlogx—S)

The complete solution is

x2e*

y=(Ax+B)e" + 2

(2logx-3)

Example:4
Use the method of variation of parameter to solve (D2 +a’ ) y =cotax .

Solution:

AE is m*+a’=0 m=+ ai
Then C.F =™ [Acosax + Bsinax]

Now,
f, = cosax f, =sinax
f, =—a sinax f, =acosax
f f,— f, f, =a(cos’ ax+sin’ ax)=a
PI=Pf+Qf,
o[ X g,
f1 fz - fl fz

sin ax cotax
——j—dx
a

1
P = ——jcos axdx
a
1 .
=——sinax
a

X
ff,—ff

2

o

cosax cotax
- [eosax cotax g,

a

15



cos’ ax
_I smax
1 1-sin? ax 4
__I sin ax

- —I (cosecax —sin ax)dx
a

1

P.|=Pf1+Qf2

1 1
=—4J—=—log(cosecax+ cot ax) + —cos ax }
al a a

1 . 1 .
= — sinax[cos ax —log(cos ecax + cot ax)] — —; cosax sinax
a a

1 .
=-—— sinax log(cosecax + cot ax)
a

. The complete solution is

. 1 .
y = (Acosax + Bsinax) — —-sinax log(cosecax + cot ax)
a

Example:5

Solve (D*-1)y= 1% by using method of variation of parameter.
+e

Solution:
A.E is m*-1=0

C.Fis Ae*+Be™*

—X

Where f, =¢” f,=e

—X

f, =¢* f,=—e

! ' X=X —XaX
ff,-ff,=—%¢"—-e"e" =

P.1=Pf;+Qf, Where

f1f2_ fl fz
-2(1+¢€")
put e* =t=e*dx =dt

[t
29 t°(1+1)

-2

16



1¢-1 1 1
=—|(—+5+—)dt
j(t t? 1+t)

1 1
= 2| —logt—=+log(1+t
2{ gt—o+ g(+)}

:%[— x—e " +log(1+ ex)]

f,X

=] -1,

= J‘e—dx
-2(1+¢€%)

put 1+e* =t=e*dx =dt

€ log(1+e”)

P.l = Pfi+Qf, = e?[—x—eX +Iog(1+ex)]- 5

y(x)=Ae" +Be ™ + %[— x—e * +log(l+ ex)] - e; log(1+e*)

The complete solution is

17



MORE PROBLEMS

d’y _ dy
dx?>  dx

Solution: Given (D2 —5D+6) y=0

Solve +6y=0

The Auxiliary equation (A.E) is m?—5m+6=0
(m-2)(m-3)=0
my =2, my, =3 The roots are real and distinct.
Complementary function is (C.F) = Ae™* + Be™* = Ae?* + Be®*,  Since RH.S=0 ..P.I.=0
~. The general solution is y = Ae?* + Be¥

Solve (D3 +D?% - D—1)y= 0

Solution: The AE.is m®+m?-m—-1=0
m?(m+1)-1(m+1)=0

(m2 —1)(m+1)=0

m’=lLm=-1 m=+Lm=-1 m=1m=my=-1

Roots are real, distinct and equal
o C.F.= Ae™ +(Bx+C)e™* = Ae* +(Bx+C)e™™

*RHS.=0,..P.l.=0 .. y=Ae‘+(Bx+C)e™*
d’y .dy

Solve —--6—+13y=0
dx?  dx d

Solution: Given (D2 -6D +13)y=0

The Auxiliary equation (A.E) is m? —6m+13=0
m=3+2i (a+ip) .. Theroots are complex (o =3, 8=2)

C.F.=e(Acos fx+Bsin gx)=e*(Acos2x+Bsin2x), -~ RHS=0 ..P.1.=0

.y =e¥(Acos2x + Bsin 2x)

Find the solution of x from % = X, dx_ y

Solution: Given Dy =x, Dx=y

18



Eliminate y from (1) and (2), we get

(D*-1)x=0
AE. ism?-1=0 m=x1
C.F.= Ae' +Be™ Since RH.S.=0=P..1.=0 . x(t)=
d2y
Solve by the method of variation of parameters d_2 +4y =sec2x
X
SOLUTION:
Given (D2 +4)y = Sec 2x
The A.E. is
m?+4=0 m = +2i

C.F.=c  cos2x+c, sin2x
f; =cos2x, f, =sin2x
fi'=-2sin2x, f'=2c0s2x

fLfy—f'fy = 2(cos2 2X +5in? 2x) =2

P:-jflf—

_ Istxsech
= ',

= —%Itan 2xdx = —%Iog [sec2x]

costsech 1 X
v B A

P.l.=fP+f,Q= —%cos 2xlog[sec 2x]+sin 2x (g)

=€, C0S2X +C, Sin 2x—%costIog [sec2x]+sin 2x (%)

2
Solve by the method of variation of parameters j—z+ y =tan x
X

SOLUTION:
Given (D2 +1)y=tanx
The AE.is m* +1=0
m = i
C.F.=c;cosx+C,sinx
f; =cosx, f, =sinx
fi'=-sinx, f5'=cosx

f, f,'— ;' f, =cos® x+sin® x =1

P:_J’fz—de:_J-—sinxtande:_Jsinzx :_Il cos” Xd
fpf,=f'f; 1 COS X COS X

=—j(secx—cosx)dx:—Iog(secx+tan X)+sin x

19
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1X dx='[cosxtanxdx:jsinxdx:—cosx
1

f
Q-] fifa= 1" f
P.I.= f;P+ f,Q =cos x| —log(sec X+ tan x) +sin x | —sin x.cos x

Y =€, COS X +C, Sin X +Cos X[ —log (sec X +tan x) +sin x | —sin x.cos x
d%y

Solve by the method of variation of parameters el + y = Xsin X
X

SOLUTION:

Given (D2 +1)y = Xsin X

The AE.is

m* +1=0

m = i

C.F.=¢; cosx+C,sinx
fy =cosx, f, =sinx
fi'=-sinx, fo'=cosx

fif'—f'f, = cos® x+sin® x =1

P:—j f,X X=_J-S|nx Xsmxdx=—jxsin2xdx:—jx(l_coszxjdx
f ot 1 2

=_~%j(x—xcoszx)dx:__%{%;}+”%{X[925Xj_%1)(—c352xJ}

2
:—X—+§sin 2x+1c032x
4 4 8

Q= [ X g [LOSX XSG L1 gin oxan
ff,— ' f, 1 2

_1 X 052X -(1) —sin2x :—5c032x+lsin2x
2 2 4 4 8

X2 X . 1 : X 1.
P.l.= P+ f,Q = cos x| —— + —sin 2x + =Cc0s 2X |+ Sin X| ——C0S 2X + =Sin 2X
4 4 8 4 8

2
. XT X . 1 . X 1.
Y = C; COS X + C, SiN X 4+ COS X 7 +Zsm2x+§c032x +sin x —ZCOSZX+§SII‘12X

Solve (D2 +4D+3)y=e‘x sin x
SOLUTION:
Given (D2+4D+3)y=e‘xsinx

The AE.is m?> +4m+3=0
(m+1)(m+3)=0
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m=-1,-3
CF.= Ae ¥ +Be X

P.I.=2;(e‘xsinx):e‘X > 1 sin x
D”+4D+3 (D-1)" +4(D-1)+3
=e % 5 1 sinx:e‘xz—sinx:e‘X sinx:e_XZD—:lsinx
D°-2D+1+4D-4+3 D° +2D -1+2D (2D)" -1
 2D+1 . (2D +1 . 2D +1 .
=X sinx=e ¥ =——sinx=¢ sin x
4D?% -1 -4-1 -5
e—X
P.I.:—?[Zcosx+sinx]
e—X
y:C.F.+P.I.=Ae‘X+Be‘3x—?[2cosx+sinx]
9. Solve(D2—4D+4)y=e2X+x2
Solution:
The AE.is m* —4m+4=0
(m-2)°=0
m=2,2
C.F.=(Ax+B)e*
P.|1=2;e2X
D?-4D+4
_ 1 e2X _ y 1 ezxzxiew:ﬁer
4-8+4 2D -4 4-4
1
2
T S R 1[1¥j &

2
2 _ 2 _ 2 4 2 _an3
:% 1_[D 4D]+[D 4D] L Xzzl(l_DT+D+D +16D2 - 8D —~~-]x2

4 4 4 16
2 2
=1 1+D—D—+D2 x2=1 1+D+3l x2=1 x2+2x+E
4 4 4 4 4 2
Pl =Pl +P.l,

2

. y:(Ax+B)e2X+X—e2X+1 X2 4245

2 4 2
2
10.  Solve d—y—4d—y+3y=sin3x COS2X
dx?>  dx
SOLUTION:
Given (D2 —4D+3)y = 5in3x oS 2X
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11.

The AE.is m?> —4m+3=0
(m-3)(m-1)=0

m=13
C.F.= Ae* + Be*

P.l :%(sinchost):Z—E(Sin5x+sin X)
D?-4D+3 D2-4D+32
1 1. 1 1.
= —————=SiN5x+————=sinx
D? 4D +32 D? -4D+32
:P.|1+P.|2
F>|1=1;sin5x_1 Sin5x = =— - __sin5x = =
2D%2-4D+3 2-25-4D+3 2 -4D-22 42D +11
1 1 (2D- 1) 1 2D-11 . 1 2D-11 .
- _= N5Xx =—=———sinbx = —— ———sin5x
4(2D+11)(2D-11) " 44D 121 4 4(-25)-121
__12b- 11sm5x—i[100035x —11sin5x]
4 221 884
1 1 . 1 1 . 1 .
Pl,=————sinX=—————sinx=— sin X
2D%-4D+3 2-1-4D+3 22-4D
_12+4D sin _12sinx+4cosx _sinXx+2cos X
2 4-16D?2 2 20 20
Sin X + 2¢0s X

y=C.F+P.l +P.l, = Ae* + Be** +$[10c055x—1lsin5x]+

Solve OI—X+ 2y = —sint,d—y—2x = cost
dt dt

SOLUTIO N:

%+2y=—sint,ﬂ—2x=cost

dt dt

(ie)Dx+2y=—sint...... (1); Dy — 2x = cost.......(2)
()x2 =2Dx+4y =-2sint........... 3

(2)x D = —2DX + D%y = —Sint............ (4)

(3)+(4) = (D* +4)y = 3sint

The AE.is m? +4=0
m = +2i
C.F.= Acos2t +Bsin 2t

P.l.= (—33int)=—3%=—sint

D2 +4
y = Acos2t + Bsin 2t —sint
Dy = —2Asin 2t + 2B cos 2t — cost
. (2) = 2x=Dy—cost
=—2Asin 2t + 2B cos 2t —cost —cost
X =—Asin 2t + Bcos 2t —cost

22
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12. Solve (jj_)t(_?X+y=0’ dy 2x—-5y=0

SOLUTION: .

(D=7)X+y=0.ceerreene. 1)

-2x+(D-5)y =0......... (2)

Dx2= 2(D-7)x+2y=0...... ©))
(2)x(D=7)= —2(D=7)x+(D=5)(D=7)y =0..cocerccc.. (4)

3) + (4) = (D2 —12D+37)y:0

AE.is m?-12m+37=0
m2 —12m+36+1=0

(m-6)" +1=0

(m-6)" =—1
m=6=i
y =e® (Acost + Bsint)
(2) = -2x=—(D-5)y
1 5

Xx==Dy—>
2 VoY

= %[em (—Asint + Bcost) +6e (Acost + Bsint)} —geﬁt (Acost + Bsint)

x:%[(A+ B)e® cost+(B—A)e6tsint}

dx dy ¢ dx dy .
. Solve —+—= =10e",———= —y=0given x(0)=2, y(0)=3
13 dt+dt+x+y e o Olt+x y g x() y()

SOLUTION:
Given %+d—y+x+y:10et,%—d—y+x—y:0

dt dt dt dt
(ie) Dx+Dy+x+y=10e"....... (1); Dx-Dy+x—y=0... (2)
@) +(2) = 2Dx + 2x =10¢"

Dx + X = 5e'
(D+1)x =5€"......(3)

AE.ism+1=0; m=-1

C.F.=Ae™
1 et

5e' =5—

P.l.=
D+1 2

S X=C.F+P.l =Ae"' +get

1) - (2) = 2Dy + 2y =10¢"
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14.

15.

Dy + y = 5¢'
(D+1)y =5€"
AE. ism+1=0; m=-1
C.F.=Be™
1 et

5el =5—
D+1 2

P.l.=

Given x(0)=2, y(0)=3
A)=2= A+g

A=2-2-_1
2 2

(5):>3=B+g
B=3-2=1

2 2

4 5

(4):>x=_—1e + ¢t
2 2

1 + 5
5 =>y=—e" +—¢
OG)=y > >

Solve (x2 D? —3xD+4) y = x* cos(log x)
SOLUTION:
Put x=e’ = logx = z
xD=D'
x*D? =D'(D'-1)
Q= [D'(D'—l)—3D'+4Jy=e22 oSz
[D'2—4D'—|—4]y:e22 CoS Z

[D'—Z]Z y =e? cosz

The A.E. is

(m-2)° =0 m=2,2

C.F.=(Az+B)e*

P.I.= ;zeZZ cos z = e%? lecosz = g?? i,(—sin z) = —e?? cosz
o-2) >

- y=CF+P.I =(Az+B)e* —e* cosz =(Alog x+B) x> — x* cos(log x)
Solve (X2D2 —2xD—4)y= x? + 2log x
SOLUTION:
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16.

Given (x2D2—2xD—4)y:x2+2Iogx .............. @
Put x =€’ = log x = z
xD=D'
x*D* =D'(D'-1)
()= |D'(D'-1)-2D"-4]y =e* +2z
[D'Z—SD'—4}y=e22+22
The A.E. is m? —3m—-4=0
m?2 —4m+m—-4=0
m(m—4)+(m-4)=0
(m—-4)(m+1)=0

m=4,-1
C.F.= Ae7? + Be*?
P-|1=—.2_1 ~ e?? = _1_ e2? = L2z
D “-3D -4 4-6-4 6
_ |2_ 1
S S S| NS S MO -1 -
D'?-3D'—4 4 1_D'2_3D' 2 4
4
AN 3]da
2 4 2 8
. y=Ae % +Be* Llew 1,03
6 2 8

_ Aeflogx n Be4|ogx _EEZIogx —llog X+§
6 2 8

y:é+ Bx‘l—lxz—llogx+§
X 6 2 8
2
Solve d_y+£d_y= 12log X
dx?  xdx x°
SOLUTION:
2 2
Given d—y+1ﬂ=12|ﬂ (i.e) xzu+xﬂzlzlogx
dx? xdx  x? dx2  dx

[XZDZ +xD}y:12Iogx .......... @

Put x=e> = logx =z
xD=D'
x*D? =D'(D'-1)
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17.

(W) =[D'(D'-1)+D'|y =12z
[D'Z}yzﬂz

The AE.is m* =0
C.F.=(Az+B)e” = Az+B

2 3
Pl=—t (122)=121| & | =122 =273
D'?2 D'| 2 6

Ly=(Az+ B)+223 = Alog x + B+2(Iogx)3

2

Solve le(—;/—ij—i+4y=(l+ x)°

SOLUTION:

Given ng—SxﬂJAy:(H x)2 (ie) (XZDZ —3xD+4)y =(1+ x)2
dx dx

Put x=e” = logx =1z

xD=D'

x*D? =D'(D'-1)
(1):>[D'(D'—1)—:3D'+4]y=(1+ez)2
[D'2—D'—3D'+4}y:1+e22+2eZ
[D'—Z]zy:eoz+ezz+2eZ
TheAEis  (m—2)° =0
m=2,2
C.F.:(Az+B)e22 =(Alog x+ B)x2
1 eOz zleOZ _ 1
(D'-2)° 4 4
P.1, S .

(0-2)°

P.Il =

1
_ eZz

(2-2)°

1
=7——e?*

2(D'-2)

Eie22
22-2
2
ieﬂ:(logx) x?
2
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18.

19.

1

Ply=————
(D-2)° (1-2)°

log x)* x?
y=C.F +P.l +P.l, + P.ly = (Alog x + B) x* +%+%+2x
Solve (3x+2)2 y"+3(3x+2)y' —36y =3x* +4x+1
SOLUTION:
Given (3x+2)° y" +3(3x+2)y’ —36y = 3% +4x+1
Put 3x+2=¢e” = log(3x+2) =z

el 2
X=———
3 3

Let (3x+2)D=3D"
(3x+2)° D? =9D'(D'-1)

- z 2 z
[9D'(D'~1)+3(3D")-36]y =3 €2 4¥_ 21,
783 3 3
12 ' 'V oop] (622 4 4 4 8
[9D'2-9D"+9D"-36 |y =3 Z—+ = - Ze* |+ Ze* -2 +1
17779 "9 9 3 3
- 2z
[9D'2-36 y=2 1
1773 3
1 1
D'?2-4|y=—ge?? - —
[ I 27 27

The AE.is m?* —4=0
m=+2

CF.= Ae? +Be? = A(3x+2)" +B(3x+2)

1 (e?) 1 1 5, 1 1 5, ze* 2% log(3x+2)
Pl,=—— e =

e (3x+2)?
D'2-4\ 27 ) 274-4 277 2D 54 2 108 108

log (3x +2)

—CF+P.l, —P.l,=A(3x+2)* +B(3x+2) 3x+2)2 + o
y=CF+P.l —P.l,=A(3x+2)"+B(3x+2) "+ 108 (x+)+108

2
Solve (1+ x)2 OI—;/+(1+ x)d—y+ y=2sin[ log(1+x)]

dx dx
SOLUTION:
2
(1+x) %+(1+ x)%+ y = 2sin[log(1+x)]
Put 1+ x = e’
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z=log(1+x)
Then (x+1)D=D'
(x+1)°D*=D'(D'-1)
[D'(D'—1)+ D'+l]y=25inz
[D'2+1]y:2sinz

The AE.is m? +1=0
m = =i

C.F.=Acosz+Bsinz = Acos| log(1+x) |+ Bsin| log(1+X) |

P.l.= 2sinz=2 sinz =2

D'24+1 D'2+1 -1+1

sinz

. 1 .
= ZZEsm z=2 ysinz = z(—cosz) =—log(1+ x)cos| log (1+x)]
. y=CF.+Pl
= Acos| log(1+x) |+ Bsin[ log(1+ x) |- log (1+ x)cos| log (1+ X) |
2 d2y dy
20.  Solve (2+ x) dx—z—(2+x)d—x+y=2+x
SOLUTION:
Put 2+x=e” = log(2+x) =12
x=e?-2
Let (2+x)D=D"
(2+x)*D?*=D'(D'-1)
Then
|D'(D'-1)-D'+1]y=¢’
[D'Z—ZD'—i—l}y:ez

[D'—l]2 y =e’
The AE.is
(m—l)2 =0
m=11

C.F.=(Az+B)e’ =(Alog(2+x)+B)(2+Xx)

z

P.l.= [D'il]z el =7 2;, el = Z; :%[Iog(2+x)](2+x)

y :(Alog(2+x)+ B)(2+x)+%[log(2+x)](2+x)
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1. Introduction to Probability

Probabilities are associated with experiments where the outcome is not known in advance or
cannot be predicted. For example, if you toss a coin, will you obtain a head or tail? If you roll
a die will obtain 1, 2, 3, 4, 5 or 6? Probability measures and quantifies "how likely" an event,
related to these types of experiment, will happen. The value of a probability is a number
between 0 and 1 inclusive. An event that cannot occur has a probability (of happening) equal
to 0 and the probability of an event that is certain to occur has a probability equal to 1.(see
probability scale below).

In order to quantify probabilities, we need to define the sample space of an experiment and
the events that may be associated with that experiment.

2. Sample space and Events

The sample space is the set of all possible outcomes in an experiment. We define an event as
some specific outcome of an experiment. An event is a subset of the sample space.

Examples :
(i) Ifa die is rolled, the sample space S is given by S ={1,2,3,4,5,6}.

(ii) If two coins are tossed, the sample space S is given by S = {HH,HT,TH,TT} , where
H =head and T = tail.

(iii) 1f two dice are rolled, the sample space S is given by
S={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)

(2,2),(2,2),(2,3),(2,4),(2,5),(2,6)

(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)

(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)

(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)

(6,1).(6.2),(6,3).(6,4).(6,5),(6,6) }
Probability theory is based on some axioms that act as the foundation for the theory, so let us

state and explain these axioms.

3. Axioms of Probability:
Axiom 1: For any event A, P(A) > 0.
Axiom 2: Probability of the sample space S is P(S) = 1.



Axiom 3: If A, Ay, As, are disjoint events, then
P (A1UA2UA3"') = P(Al) + P(Az) + P(Ag) + ..

4. Mutually Exclusive Events

Two events are mutually exclusive if they cannot occur at the same time. Example, A die is
rolled. The event of getting an even number on the face of the die and the event of getting an
odd number are mutually exclusive events.

Independent events

Two events A and B are independent if P(ANB) = P(A)P(B).
Example 1:

Two coins are tossed, find the probability that two heads are obtained.
Solution:

The sample space S is given by S = {(H,T),(H,H),(T,H),(T,T)}
Let E be the event "two heads are obtained” E = {(H,H)}
_n(E) _1
P(E) = e
A card is drawn at random from a deck of cards. Find the probability of getting the 3 of
diamond.

Example 2:

A card is drawn at random from a deck of cards. Find the probability of getting the 3 of
diamond.

Solution:

Let E be the event "getting the 3 of diamond”. An examination of the sample space shows
that there is one "3 of diamond™ so that n(E) = 1 and n(S) = 52. Hence the probability of

event E occurring is given by P(E) = = :g = 5i

Example 3:

A jar contains 3 red marbles, 7 green marbles and 10 white marbles. If a marble is drawn
from the jar at random, what is the probability that this marble is white?

Solution:

Total number of marbles in the jar is n(S) = 20
Let E be the event "getting a white marble” is n(E) = 10.

—nE _ 10 _1
P(E) = n(8) 20 2

Example 4:

Two dice are rolled, find the probability that the sum is equal to 5.
Solution:



Two dice are rolled, the sample space S is given by
S={(1,1),(1,2),1,3),(1,4),(1,5),(1,6)

(2,2),(2,2),(2,3),(2,4),(2,5),(2,6)

(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)

(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)

(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)

(6,1).(6.2),(6,3).(6,4).(6,5),(6,6) }
Let E be the event "getting a sum equal to 5”. Then n(E) = 4 and Then n(S) = 36.

P(E):ng}z 2 =£.

¢
nis) 36 5

Example 5:

A committee of 5 people is to be formed randomly from a group of 10 women and 6 men.
Find the probability that the committee has

a) 3 women and 2 men.

b) 4 women and 1men.

c) 5 women.

d) at least 3 women

Solution:

There are 16Cs ways to select 5 people (committee members) out of a total of 16 people (men
and women). There are 10C3 ways to select 3 women out of 10. There are 6C, ways to select
2 men out of 6. There are 10C5 X 6C, ways to select 3 women out of 10 and 2 men out of 6.

(@) P(3women AND 2 men) = 10C, %6, _ 0.412087
=1

(b) P(4 women AND 1 men) = —2¢X%1 _ ¢ 78461
=]

(c) P(5 women ) = ~252%5% _ ( 0576923

=1
(d) P(at least 3 women) = P(3 women or 4 women or 5 women).

Since the events "3 women", "4 women" and "5 women™ are all mutually exclusive, then P(at
least 3 women) = P(3 women or 4 women or 5 women) = P(3 women) + P(4 women) + P(5
women) = 0.412087 + 0.288461 + 0.0576923 = 0.758240

Example 6:

In a presidential election, there are four candidates. Call them A, B, C, and D. Based on our
polling analysis, we estimate that A has a 2020 percent chance of winning the election, while
B has a 4040 percent chance of winning. What is the probability that A or B win the election?

Solution:



The events that {A wins}, {B wins}, {C wins}, and {D wins} are disjoint since more than
one of them cannot occur at the same time. For example, if A wins, then B cannot win. From
the third axiom of probability, the probability of the union of two disjoint events is the
summation of individual probabilities. Therefore,
P(A wins or B wins) =P({A wins}u{B wins})
= P({A wins})+P({B wins})=P({A wins})+P({B wins})
=0.2+0.4=0.2+0.4
=0.6

5. Conditional Probability

In this section, we discuss one of the most fundamental concepts in probability theory. Here
is the question: as you obtain additional information, how should you update probabilities of
events? For example, suppose that in a certain city, 23 percent of the days are rainy. Thus, if
you pick a random day, the probability that it rains that day is 23 percent:
P(R) = 0.23, where R is the event that it rains on the randomly chosen day.

Now suppose that we pick a random day, but we also tell that it is cloudy on the chosen day.
Now that we have this extra piece of information, how do we update the chance that it rains
on that day? In other words, what is the probability that it rains given that it is cloudy?
If C is the event that it is cloudy, then we write this as P(R|C), the conditional probability of
R given that C has occurred. It is reasonable to assume that in this example, P(R|C) should be
larger than the original P(R), which is called the prior probability of R. For calculating
P(R|C) we have a general formula which is given below.

If A and B are two events in a sample space S, then the conditional probability of A given B

. . P(ANB)
is defined as P(A|B) = “pE) when P(B) > 0.

Example 7:

A fair die is rolled. Let A be the event that the outcome is an odd number and let B be the
event that the outcome is less than or equal to 3. What is P(A) and P(A|B)?

Solution

Giventhat S={1,2,3,4,5,6}, A ={1,3,5} and B ={1,2,3}.
_nmgH_3_1

PA) =20 =2=7%

AnB]:

P(AIB) = =2,

Example 8:

In a factory there are 100 units of a certain product, 5 of which are defective. We pick three
units from the 100 units at random. What is the probability that none of them are defective?

Solution

Let us define A; as the event that the ith chosen unit is not defective, for i=1,2,3. We are
interested in P(A1NA2NA3). Note that P(A;) = %



Given that the first chosen item was good, the second item will be chosen from 94 good units
and 5 defective units, thus P(Az|A1) = %

Given that the first and second chosen items were okay, the third item will be chosen from 93
good units and 5 defective units, thus P(As|Az, A1) = E

Thus, we have P(A1NA2NAz) = P(Ar) X P(AglA1) X P(AglAp, A1) = = = x 2 = 0.8560

100

6. BAYE’S THEOREM

Let S be a sample space.

Let Al, A2, ... An be disjoint events in S and B be any arbitrary event in S with

P(B) = 0. Then Baye’s theorem says

P(A_)P(B/A,)

P(A,/B) = §1 P(A,)P(B/A,)

EXAMPLE :1



There are two identical boxes containing respectively 4 white and 3
red balls, 3 white and 7 red balls. A boxX is chosen at random and a ball is
drawn from it. Find the probability that the ball is white. If the ball is white,
what is the probability that it is from first box?

Solution:

Let A, A, be the boxes containing 4 white and 3 red balls, 3 white
and 7 red balls.

1.e A, A,
4 White 3 White
3 Red 7 Red
Total 7 Balls Total 10 balls

One box 1s chosen at random out of two boxes.

~ P(A) = P(A) =é

One ball 15 drawn from the chosen box. Let B be the event that the
drawn ball 1s white._

- P(B/A,) = P(that the drawn ball 15 white from the Ist Box)
P(B/A) =4

~. P(B/A,) =P (that the white ball drawn from the IInd Box)

= P(B/A,) = %

P(B) = P (that the drawn ball 1s white)
= P[Alj P(B;"Al) +P {Az) P(B.:'—Lz)

E S
10

|q|n—-

=5t
7

I\-)|h-~

61

140



Now by Baye's Theorem, probability that the white ball comes
from the Ist Box is,

-— P(A,)P(B/A,)
P(B/A)= Ba,)PBIA )+ PA;) P(B/A)
T 4
__ 27 __ T _40
1 4 1 3 4 3 61
777210 7710
EXAMPLE: 2

A factory has 3 machines A A, A, producing 1000, 2000, 3000
bolts per day respectively. A, produces 1% defectives, A, produces
1.5% and A, produces 2% defectives. A bolt is chosen at random at
the end of a dav and found defective. What is the probability that it
comes from machine A ?

Solution:
P(A,) = P(that the machine A produces bolts)
.. 1000 1
6000 6
P(A,) = P(that the machine A, produces bolts)
11 I
6000 3
P(A,) = P(that the machine A, produces bolts)
_ 3000 _ 1
6000 2

Let B be the event that the chosen bolt 15 defective

. P(B/A,)= P(that defective bolt from the machine A )
=01



Similarly P(B/A,) = P(that the defective bolt from the machine A,)
= .015 and
P(B/A;) = P(that the defective bolt from the machine A.)
= 02
We haev to find P(A,/B)
Hence by Baye’s theorem, we get

ek g P(A)P(B/A;)
e 0 M P(A;) P(B/A; )+ P(A,) P(B/A,)+P(A3;)P(B/A3)

é—x (.01)

%rx (.01) +%§X (.015) +lfx[.ﬂ2]

01 i -
01 +.03 +.06 b | 10

EXAMPLE:3

Inabolt factorymachines A 1 A A, manufacture respectively 25%,
35% and 40% of the total output. Of these 5, 4, 2 percent are defective
bolts. A boltis drawn at random from the product and is found to be defective.

What is the probability that it was manufactured by machine A,?

Solution:

P(A,) = P(that the machine A, manufacture the bolts)

- -
100 23
Similarly P(A,) = 2> = 35 and
P(A.) == % =4

Let B be the event that the drawn bolt 1s defective.
~. P(B/A,)= P(that the defective bolt from the machine A )

=3 =
00 "



Similarly P(B/A,) = ﬁ = .04 and P(B/A;) = % — 2

we have to find P(A,/B)
Hence by Baye’s theorem, we get

P(A,)P(B/A,)
P(A; )P(B/A;) + P(A)P(B/A, )+ P(A;)P(B/A3)

P(A,/B) =

(35) (.04)
(25)(.05) +(.35) (.04) + (4) (.02)

_ 28
69

EXERCISE PROBLEMS

1. There are 3 boxes containing respectively 1 white, 2 red, 3 black balls;
2white, 3 red, 1 black ball : 2 white, 1 red, 2 black balls. A box is
chosen at random and from it two balls are drawn at random. The two
balls are 1 red and 1 white. What is the probability that they come

from the second box?

2. In a company there are three machines A;, A; and As. They produce 20%,
35% and 45% of the total output respectively. Previous experience shows
that 2% of the products produced by machines A; are defective. Similarly
defective percentage for machine A, and Az are 3% and 5% respectively. A
product is chosen at random and is found to be defective. Find the probability

that it would have been produced by machine A3?



3. Let Uy, Uy, Uz be 3 urns with 2 red and 1 black, 3 red and 2 black, 1 red and
1 black ball respectively. One of the urns is chosen at random and a ball is
drawn from it. The colour of the ball is found to be black. What is the

probability that it has been chosen from Us3?

10



7. Random Variables

Introduction: Consider an experiment of throwing a coin twice. The outcomes {HH,
HT, TT} constitute the sample space. Each of these outcomes can be associated with
a number by specifying a rule of association (e g. the number of heads). Such a rule
of association is called a random variable. We denote random variable by a capital
letter (X,Y) and any particular value of the random variable by x or y.

Discrete Random Variable:

A discrete random variable is a random variable X whose possible values constitute
finite set of values count ably infinite set of values.

Continuous Random Variable:

A random variable X which takes all possible values in a given interval is called
continuous random variable.

Probability Mass Function (or) Probability Function:
The numbers p; =p (X;) satisfies the following conditions

(i) p(xx)=0
(i) X p(x)=0

The function p satisfying the above two conditions is called the probability
mass function (or) probability function.
Probability Density Function
The p .d .f f(x) of a random variable X has the following properties
(i) fx)>0, -o<x<owo©

m)jfumle

(iii) If E is any event, then P(E) = j f (x)dx
E
Moment Generating Function
The moment generating function (m.g.f.) of a random variable X (about
origin) whose probability function f(x) is given by
M x (t) = E (€%

= J'e‘x f(x) dx, for continuous probability distribution

= ZetX p(x), for discrete probability distribution

Example 1: A random variable X has the following probability function

Values of | O 1 2 3 4 5 6 7 8
X

Probability | a 3a 5a 7a 9a 1la 13a 15a 17a
P(x)

11
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(i) Determine the value of a
(i) Find P (X<3), P(X>3), P(0<X<5)
Solution:  We know that if P(x) is the probability mass function, then

ZP(Xi) =1
i=1
a+3a+b5a+7a+9a+1la+13a+15a+ 17a=1

81a:1:>a:i

81

1 3 5 _9

P(X<3)=P(0)+P(1)+P(2)=a+3a+5a= - + > + > = >

(X<3)=P(0)+P (1) +P (2 TR
P(X23)=1-P(X<3)=1->='2
81 81

PO<X<B5)=P(1)+P(2)+P(3)+P(4)=3a+ba+7a+9a
3 5 7 9 24
== + 4+ —+ ===
81 81 81 81 81
Example 2: If the random variable X takes the value 1, 2, 3 and 4 such that
2P(X =1) = 3P(X=2) = P(X=3) = 5P(X=4). Find the probability distribution.
Solution: Let 2P(X=1) = 3P(X=2) = P(X=3) = 5P(X=4)

P(X=1):g P(x:2):§ P(X:3)=kP(X=4):§

We know that > p, =1

ie., E+E+E+k =1 = 15k +10k + 30k + 6k =1 =61k =30
5 30
ie k= @
61

.. The probability distribution of X is given by the following table.

Xi 1 2 3 4
Py [ 15 10 30 6
61 61 61 61

Example 3:The diameter of an electric cable is assumed to be a continuous random
variable with p.d.f f(x)=6x (1-x),0<x<1

(i) Check that above is a p.d.f.

(if) Determine a number “b” such that P( X< b) = P(X > b)

Solution: We know that _[f(x)dx =1

Q) _1[ f(xX)dx = ijx(l— x)dx = 6[x42 -x%3] =6 [ -1/3] =1 ..f(x)is ap.d.f.

12



(i)Given P( X< b) = P(X > b)
I6x(1— X)dx = j6x(1— X)dx

[6x(L—x)]s =[6x(L—%)];

gL _ D (l_lj b b
2 3 2 3 2 3
4b°—6b* +1=0
Solving , b=1/2, (1xi) /2 where b =% lies in (0 ,1)

Example 4: If a random variable X has the probability density function
f(x) :%(x+1), if -1 <x <1

0, otherwise Find the mean and variance of X

Solution: Mean = Jl.xf (X)dx = E'lfx(x +1)dx = 1Jl.(x2 +X)dx = l[X—3+X—]l
. a 2° 27 2 3 2t

11 1 1 1, 1
_[_+_+___] ==
2'372°3 20 3
. Mean = l
Variance = j [x——] [X—”]d == j (9% +1—6X)(x +1)dx
i 4 3 5 2

2
= 9x3+3x2—5x+1dx:—— +x3 -4 x =
( ) 18[ > I'= 9

18°

Le—r

.. Variance = é

Example 5: A continuous random variable X that can assume any value between
x=2 and x=5 has a density function given by f(x) = k (1+x). Find P (x<4)

5
Solution: We know that [ f (x)dx =1
2

5
ie. jk(1+ x)dx =1
2

2
k(0 2 k=2
2 27

P (X<4)=P (2<X<4) = jk(1+ x)dx = 16

13



Example 6:A random variable X has the density function :

1
fix) = K.
) 1+ X

in -0 <x<ow

2
=0 otherwise. Find K and the distribution function F (x)

Solution: Since f(x) is a p.d.f. ,we have j f(x)dx =1

[k L ax=1
1+x

—00

k(tan* x)", =1
K(m/2 +n/2) =1,.. k =l/n

TofindF(x): F(X)= Jx‘f(x)dx =l/n JX'

—00

T dx =1/ (tan " x)",

=l/n [tan X + /2]

Example 7: Find the moment generating function of a random variable X having
the p.d.f f(x) :% 1<x<2

=0, otherwise
Solution: We know that the m.g.f. for a continuous random variable X is
7 t 1 1.e*, 1e*—g"
Mx (t)= [e*f(x)dx = |e®* Zdx= =[]} ==
x (0 j (%) j L Bl P Sy
1.e*—e™
S My ()= =
x (1) 3[ " ]

8. Some special Distributions:

1. Binomial Distribution
2. Poisson Distribution
3. Normal Distribution

Binomial Distribution:

A random variable X is said to follow a discrete binomial distribution
if its probability mass function is given by P(X=x) = nc,p*q"™ where p+g=1
Mean of Binomial Distribution:

The mean of Binomial distribution is np
Variance of Binomial Distribution:

14



The variance of Binomial distribution is npq

Poisson distribution:

A random variable X is said to follow a discrete poisson distribution

-A 19X

if its probability mass function is given by P(X=x) = e A ,x=0,1,2,...... , 00

= 0, otherwise
Mean of Poisson distribution:
The mean of Poisson distribution is A

Variance of Poisson distribution:
The variance of Poisson distribution is A

Normal Distribution:

A random variable X is said to follow a continuous normal distribution

with mean 4 and variance o if its probability density function is given by
~(x=p)?
e 22° -wu<x<w,o0>0, -0< y<w

f(x) =

1
o217
The total area bounded by the curve is 1.

Mean, Median and Mode of the normal distribution coincide

Example 1: Find the binomial distribution for which the mean is 4 and variance is 3.

Solution: We know that, for binomial distribution
Mean = np, Variance = npq

Given mean =4 i.e. np=4variance =3i.e.npq=3
g _3_ 3
np 4 4
3_1
Lp=l-q=1-—==
p q 17

Substituting p :% in mean we getn =16

P() =16Cx(5) (%)“-*

Example 2: 6 dice are thrown 729 times. How times do you expect at least three
dice to show a five or a six?

Solution: p = probability of getting 5 or 6 with one die = % :%
1 2
q=l-g=1-===
q q 373

P (at least three dice showing five or six) = p (x>3)

15



=p@)+p@#)+p () +p((6)
— 1 3 2 3 1 4 2 2 1 5 2 1 6
—6C3(§) (5) +6C4(§) (5) +6C5(§) (§)+6Ca(§)

_160+60+12+1 _ 233
- 36 - 3_6
For 729 times, the expected number of times at least 3 dice showing 5 or 6
_ 233
=729 x %
= 233 times

Example 3:Ten coins are thrown simultaneously.Find the chance of obtaining
at least 7 heads

Solution: Given p:% ,q:% ,n=10

The probability of getting x successes =p (X) = nc,p*q"™™>
(1)Probability of getting at least 7 heads = p(x>7)
=p (7) +p (8)+p (9)+p (10)

, ; . ) 9 1 10 0
:10C7(Ej (lj +10C8(1j [lj +1OC9[EJ (lj +10C10(Ej (Ej
2 )2 2)\2 2)\2 2) \2
1\
:(Ej [10C7+10C3+10Cy+10C10]
=0.171875

Example 4: If X is a Poisson variate P(X= 2) = 9 P(X=4) + 90 P(X=6), find mean
and variance of X.
-1 19X

Sqution:P(X:x):e : ,Xx=0,1,2...
X

Given  P(X=2)= 9 P(X=4) + 90 P(X=6)

—1 12 -1 14 -1 16
e e A :ge A +90e A
2! 4 6!
2 2
:e—uZ(%Jr 90’1)
4 6!
Lo_or o
2 4 6!
2 4
L o3 A e ae3—4-0
2 8 8
/12_—3i\/9+16 315
2 2

A =1orA* =-1 = A ==1orA =i

16



S Mean= 4=1
Variance = A =1 Standard deviation =1
Example 5: Find the probability that at most 5 defective fuses will be found in a box
of 200 fuses if experiences show that 2% of such fuses are defective.

Solution: Given n =200, p =2% = 2 =0.02
100

~Mean A=nxp=200x0.02=4 = 1=4
efl/lx B e74 4)(

X X
P (at most 5 defective fuses) =p(x<5)

=p(0) +p(1) +p(2) + p(3) +P(4) +p(5)
e—4 40 e—4 41 e—4 42 e—4 43 e—4 44 e—4 45
+ + + + +
0] 1 21 3 4l 5

The Poisson distribution is p(x) =

2 3 4 5
=e'[1+4+ L 4—+4—+4—] = e *[42.866]=0.785
20 3 4 5l
Example 6:A manufacturer of cotterpins knows that 5% of his product is defective.If
he sells cotterpins in boxes of 100 and guarantees that not more than 10 pins will be
defective,what is the approximate probability that a box will fail to meet the
guaranteed quality?
Solution: n=100, p =5% =0.05, A =nxp =100x0.05 =5
e—l/rix _ e—55X
Y

The Poisson distribution = P(X=x) =

P(a box will fail to meet the guaranteed quality) = p(x > 10)
=1 - p(x<10)
=1-[p0)+p()+...p(10)]

e®5% e85l @®52 g7°5® @’5% g°5°
= + + + + + +

o 1 2! 3 4 5!
e7556 e7557 e7558 e7959 e710510
+ + + +
6! 7! 8l 9l 10!
2 3 4 10
=1- e[ 1+ 5e2 42 2, O ]

213 4 10!
= 1- [ 146.36]
=0.014

Example 7: If X is normally distributed and the mean of X is 12 and the S.D. is 4.
Find out the probability of the following. (i) x > 20, (ii) x < 20, (iii) 0 <x <12

Solution: Given y=12, 0 =4
Q) To find p (x > 20)

17



Whenx =20, z= X~#-20-12_,
o 4
e, Whenx=20,2=2 ..p(x>20)=p (z>2)
=05 p (0< z<2)

= 0.5 0.4772 = 0.0228---- (1)

(ii) To find p (x < 20)
Whenx =20 z= X=# = 20-12_,
o 4
AP(x<20)=p(z<2)=1—-p(z2=2)=1—0.0228 (from(1)
=0.9772
(iii) Tofindp (0<x<12)
When x =0, z = X_ﬂ:ﬂ:—B
o 4
When x =12, z = X_ﬂ:12_12:0
o 4

Sp(0<x<12)=p(-3<z<0)=p (0<z<3)=0.4987 (from table)
Example 8: In a distribution exactly normal, 7% of the items are under 35 and 89%
are under 63. What are the mean and standard deviation of the distribution?

Solution: Let the mean and standard deviation of the given normal distribution be p
and o . The area lying to the left of the ordinate at x = 35 is 0.07. The corresponding
value of z is negative.

The area lying to the right of the ordinates at x = 63 up to the mean is
0.5-0.07=0.43.

The value of z corresponding to the area 0.43 is 1.4757

ie. PTH_ 44757
O
H=35 1 4757
O
1 -351.47570 oo (1)

Similarly the area lying to the left of the ordinate at x = 63 upto the

mean is 0.39 (39%)
The value of z corresponding to the area 0.39 is 1.2263

63— u

i.e. =1.2263
O
63- 4 =12263 0 ..o ()
Solving (1) and (2) we get mean u = 50.288

S.D 0 =10.36
Example 9:Assume that mean height of soldiers to be 68.22 inches with a variance of
10.8 inches. How many soldiers in a regiment of 1000 would you expect to e over 6

feet tall?

Solution: Given p=68.22, o ?=10.8, o =3.286
p (X > 6feet) = p (x > 72 inches)

18



X—u _72-68.22
o 3.286
p (x>72)=p(z>1.1503)

=0.5-p (0 < z <1.1503)
=0.5 - 0.3749
=0.1251

For 1000 soldiers, the number of soldiers greater than 6 feet = 1000x 0.1251

= 125 soldiers

When x =72, z = =1.1503
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