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SMEA1503-FINITE ELEMENT ANALYSIS 



UNIT 1 

 

ENGINEERING ANALYSIS  

Objectives of Analysis: 

 Engineering analysis is adopted for machineries and building structures before and after 

assembling their parts in order to determine 

i. The type and quality of load 

ii. Location of loading 

iii. Developed stress 

iv. Permissible deflection 

v. Vibration properties 

vi. Pressure and temperature variation 

Methods of Engineering Analysis: 

 The three methods adopted for analyzing engineering products to evaluate their mechanical 

and other properties are: 

1) Experimental methods 

2) Analytical methods 

3) Numerical methods or approximation methods  

Experimental methods: 

1) In these methods, the actual product or their prototype model are really tested 

by using testing equipment. 

2) If there is a need to change the dimensions of the prototype, the entire prototype is 

to be disassembled and to be reassembled and then testing should be carried out. 

3) It needs man power and materials. 

Analytical Methods: 

1) These methods are theoretically analyzing methods. 



2) Only simple and regular shaped products like beams, columns, shafts, plates can be 

analyzed by these methods 

3) The products and their loadings specified by mathematical expressions and they are 

analyzed. 

Numerical Methods: 

1) For the products of complicated sizes, shapes with complicated material properties 

and boundary conditions, getting solutions using analytical method is highly 

difficult. In such situation engineer prefers numerical methods that gives 

approximate but acceptable solutions. 

2) By this method, the approximate but acceptable solutions will be obtained. 

Three methods in Numerical methods 

i. Functional Approximating Method 

ii. Finite Difference Method (FDM). 

iii. Finite Element Method (FEM). 

Functional Approximation: 

1. In this method, the physical problems are first written in terms of differential equation or 

any possible mathematical expressions. 

2. Then the approximate solution can be obtained by integration and by applying boundary 

condition. 

3. The variation method specifically known as Rayleigh-Ritz methods and weighted residual 

methods are some of the functional approximating methods. 

Finite Difference Method (FDM): 

1. The finite difference method approximates the derivatives in the governing differential 

equation using difference equations. 

2. Finite difference method is useful for solving heat transfer and fluid mechanics problems.  

3. This method cannot be effectively used for regions having or irregular boundaries. 

Finite Element Method (FEM): 



1. In this method, the complex region defining the domain is divided into smaller elements 

called finite elements. 

2. The physical properties like shape, dimensions and other boundary conditions are imposed 

on the elements. 

3. Then these elements are assembled in a proper way and the solution for the entire system 

can be obtained. 

Steps in FEA 

1. Discretization of structure- Dividing the whole complex structure into finite elements by 

lines or surfaces. 

2. Numbering of nodes and elements- In FEM, physical problems are solved using matrices 

and the size of the matrix depends on the number of nodes of the element.  

3. Selection of displacement function- Linear, quadratic and cubic polynomials are used to 

evaluate the value of the field variable at any part of the element.  

4. Formation of element stiffness matrix and load vector- Based on equilibrium conditions 

or variational principles stiffness matrix is formulated.  

5. Formation of global stiffness matrix and load vector- The element stiffness matrices are 

assembled using the following formulae to get the global stiffness matrix 

 

 

6. Incorporation of boundary conditions 

7. Compute element stresses and strain 

8. Analysis and interpretation of results 

Classification of Functional Approximation Methods: 

1. Variational Methods 

2. Weighted residual methods 

Variational Method: 

Rayleigh-Ritz method: 



1. It is a typical variational method in which the principle of integral approach is adopted for 

solving mostly the complex structural problems. 

2. In this method, the potential energy π is considered as the function of Ritz parameters 

which are one to infinity. 

3. In practice, the displacement function y(x) can be expressed in terms of polynomial series 

or trigonometric series such as, 

  

y(x) = a1 + a2 x + a3 x
2 + a4 x

3 + ….       (1.1) 

 

or 

 

y(x) = a1 𝑠𝑖𝑛
𝜋𝑥

𝑙
 + a2 𝑠𝑖𝑛

3𝜋𝑥

𝑙
 + a3 𝑠𝑖𝑛

5𝜋𝑥

𝑙
 + …                                                                     (1.2) 

 

 

 where a1 , a2 , a3  … are known as Ritz parameters or Ritz coefficients.  

 

4. Selecting anyone of the above two functions appropriately as a trial function, the total 

potential energy can be formulated. 

5. The total potential energy is the algebraic sum of “Integral strain energy and external work 

done”.  

Mathematically, Total potential energy, π = U – W 

Where U – Internal strain energy and W – Work done by external force 

6. By making the total potential energy to reach minimum value (i.e., stationary condition), 

the approximate solution can be determined.  

7. The accuracy of the solution depends on the number of Ritz coefficients. 

 

Problem 1  

Find the deflection at the center of a simply supported beam of span length l, subjected to a 

concentrated load P at its mid-point. 



 

The total potential energy for a beam is given by, π = U – W 

 

Where E is the modulus of elasticity, I is the area moment of inertia of the beam section and y is 

the deflection which can be expressed as, 

             y = a1 + a2 x + a3 x
2 + a4 x

3 + ….                                                                                                      (1) 

to simplify the problem, consider the first three terms such as,  

y = a1 + a2 x + a3 x
2                      (2) 

The boundary conditions are  y = 0 at x = 0 and x = l 

Hence equations (2) becomes 0 = a1 and 0 = a2l + a3l
2 which gives a2= - a3 l 

Then y can be expressed as, 

y = - a3 lx + a3 x
2 = a3 (x

2-lx)                                  (3) 

Differentiating two times we get, 

 

Then strain energy is given by, 

   

Work done, W = P *  y at x=l/2 

  = P a3(x
2-lx) at x=l/2 (from equation (3)) 



    

The total potential energy is given by,  π = U – W 

  

For minimum potential energy condition, 

 

That is,  

 

Therefore,          

  

hence 

 

Substituting the value of a3 in Equation (3) we get,  

  

Maximum deflection occurs at x = l / 2 

Hence, 

  



Therefore  

  is the approximate solution. 

To get more accurate solution, the displacement function should contain more number of Ritz 

parameters. 

Problem 2  

 Find the deflection at the center of a simply supported beam of span length l subjected to a 

concentrated load P at its mid-point using trail function from trigonometric series. 

 

 

               y= a1 𝑠𝑖𝑛
𝜋𝑥

𝑙
 + a2 𝑠𝑖𝑛

3𝜋𝑥

𝑙
 + a3 𝑠𝑖𝑛

5𝜋𝑥

𝑙
 + …                               

To simply the problem, select one term function as, 

y = a1 𝑠𝑖𝑛
𝜋𝑥

𝑙
 = a 𝑠𝑖𝑛

𝜋𝑥

𝑙
                       (1) 

                                       

Now consider the potential energy as  π = U – W 

 

Differentiating the displacement function two times we get, 

𝑑𝑦

𝑑𝑥
= 𝑎 cos

𝜋𝑥

𝑙
∗  

𝜋

𝑙
=

𝑎𝜋

𝑙
 cos

𝜋𝑥

𝑙
 



 

 

 

 

   

  

Now the equation (2) implies  

   

 

Work Done, W = P * ymax 

 = P *  y at x=l/2                     

 

The total potential energy, π = U – W 

 



    

Maximum deflection occurs at x=l/2 

 

 

Weighted Residual Method 

The weighted residual method is employed to obtain approximate solutions to linear and non linear 

non structural problems whose characteristics are expressed in terms of differential equations. The 

required simultaneous equations to find the solution can be derived from the governing differential 

equation, without knowing the functional. The methods are 

1. Point Collocation method 

2. Sub domain collocation method 

3. Least square method 

4. Galerkin’s method. 

Steps 

1. Let ye(x) is the exact solution of the differential equation 

2. An approximate function called the trial function is considered y(x)= f(x,ai), i=1,2…. And 

is substituted in the differential equation to find the residual R. The trial function should 

satisfy the boundary conditions.  

3. This residual is further treated to evaluate the required solution. It is essential that the 

residual multiplied by a weighing function and the domain integral of the product should 

be zero.  

4. The number of weighing functions is equal to the number of unknown coefficients in the 

approximate function.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

  

 

  



Problem

 

 

         

     



 

In this method the residual is set to zero.  

 

 

                            

         

 

   

 

      

 



 

 

 

 

 

         

 

 

 

 

Solving we get 

            



Problems for practice 

1. Derive the expression for deflection and bending moment in a simply supported beam of 

span of length l, subjected to UDL over entire span using two term trigonometric trial 

function using Rayleigh Ritz method.  

 

2.  

 

3. Solve the following equation using a two parameter trial solution by (a) Point 

Collocation method and (b) Galerkin’s method 

𝒅𝒚

𝒅𝒙
+ 𝒚 = 𝟎, 𝟎 ≤ 𝒙 ≤ 𝟏, 𝒚(𝟎) = 𝟏 

  



UNIT-II 

ONE DIMENSIONAL ELEMENT 

Bar and beam elements are considered as One Dimensional elements. These elements 

are often used to model trusses and frame structures. Bar is a member which resists only 

axial loads. A beam can resist axial, lateral and twisting loads. A truss is an assemblage of 

bars with pin joints and a frame is an assemblage of beam elements. 

 

 

 

 

As shown in the figure, a one dimensional structure is divided into several elements and the 

each element has 2 nodes.   

Shape function 

N1N2N3  are usually denoted as shape function. In one dimensional problem, the 

displacement u = ∑ Ni ui =N1 u1 

For two noded bar element, the displacement at any point within the element is given by, u = 

∑ Ni ui =N1 u1 + N2 u2 

For three noded  triangular  element,  the displacement  at  any point within the element is 

given by, 

u = N1 u1 + N2 u2 + N3 u3 

v = N1 v1 + N2 v2 + N3 v3 

Shape function need to satisfy the following  

(a) First derivatives should be finite within an element;  

(b) Displacement should be continuous across the element boundary 

 



 Properties of Stiffness Matrix 

1. It is a symmetric matrix,  

2. The sum of elements in any column must be equal to zero,  

3. It is an unstable element. So the determinant is equal to zero.  

Assumptions 

Nodal Forces and Moments 

Forces and moments can only be applied at the nodes of the beam element, not between 

the nodes. The nodal forces and moments, , are related to the nodal displacements and 

rotations, through the ele ment stiffness matrix, . 

Constant Load 

The loads that are applied to the beam element are assumed to be static and not to vary 

over the time period being considered, this assumption is only valid if the r ate of change of the 

force is much less than the applied force (F >> dF/dt). If the loads vary significantly, (if the 

variation in load is not much less than the applied force) then the pro blem must be considered as 

dynamic. 

Weightless Member 

The weight (W) of the beam is neglected, if it is much less than the total resultant forces 

(F) acting on the beam. If the weight of the beam is not neglected, then its effects must be 

represented as vertical forces acting at the nodes, by dividing up the weight and lumping it at the 

nodes, proportionally according to it's placement along the beam. 

Prismatic Member 

The beam element is assumed to have a constant cross-section, which means that the 

cross-sectional area and the moment of inertia will both be constant (i.e., the be am element is a 

prismatic member). If a beam is stepped, then it must be divided up into sections of constant 

cross-section, in order to obtain an exact solution. If a beam is tape red, then the beam can be 

approximated by using many small beam elements, each having the same cross-section as the 



middle of the tapered length it is approximating. The more sections that are used to approximate 

a tapered be am, the more accurate the solution will be. 

The moment of inertia is a geometric property of a beam element, which describes the beams 

resistance to bending and is assumed to be constant through the length of the element. The 

moment of inertia can be different along different axes if the beam element is not symmetric, we 

use the moment of inertia (I) of the axis about which the bendin g of the beam occurs Where (Iz) 

refers to the moment of inertia, resisting bending about the "z" axis and (Iy) about the "y" axis. 

The Beam Element is a Slende r Member 

A beam is assumed to be a slender member, when it's length (L) is moree than 5 times as 

long as either of it's cross-sec tional dimensions (d) resulting in (d/L<.2). A beam must be 

slender, in order for the beam equations to apply, that were used to derive our FEM equations. 

 

 

 

 

The Beam Bends without Twisting. 

It is assumed that the c ross-section of the beam is symmetric about the plane of bending 

(x-y plane in this case) and will undergo symmetric bending (where no twisting of the beam 

occurs during the bending process). If the beam is not symmetric about this plane, then the beam 

will twist during bending and the situation will no longer be one-dimensional and must be 

approached as an unsymmetric bending problem (where the beam twists while bending) in order 

to obtain a correct solution. 

Cross Section Remains Plane 

When a beam element b ends, it is assumed that it will deflect uniformly, thus the cross 

section will move uniformly and remain plane to the beam centerline. In other words, plane 

sections remain plane and normal to the x axis before and after bending. 



Axially Rigid 

The one-dimensional bea m element is assumed to be axially rigid, meaning that there 

will be no axial displacement ( u) along the beams centroidal axis. This implies that forces will 

only be applied perpendicular to the beams centroidal axis. The one-dimensional beam element 

can be used only when the degrees of freedom are limited to vertical displacements 

(perpendicular to the beams centriodal axis) and rotations in one plane. If axial displacements are 

present then a one-dimensional bar element must be superimposed with the one-dimensional 

beam element in order to obtain a valid solution. 

Homogenous Material 

A beam element has the same material composition throughout and therefore the same 

mechanical properties at every position in the material. Therefore, the modulus of elasticity E is 

constant throughout the beam element. A member in which the material properties varies from 

one point to the next in the member is called inhomogenous (non-homogenous). If a beam is 

composed of different ty pes of materials, then it must be divide up into elements that are each of 

a single homogeneous material, otherwise the solution will not be exact. 

Isotropic Material 

A beam element has the same mechanical and physical properties in all directions, i.e., they 

are independent of direction. For instance, cutting out three tensile test specimens, one in the x-

direction, one in the y-direction and the other oriented 45 degrees in the x-y plane, a tension test on 

each specimen, will result in the same value for the modulus of elasticity (E), yield strength  and 

ultimate strength  . Most metals are considered isotropic. In contrast fibrous materials, such as 

wood, typically have properties that are directionaly dependant and are generally considered 

anisotropic (not isotropic). 

Rigid body motion occurs when forces and/or moments are applied to an unrestrained mesh 

(body), resulting in motion that occurs without any deformations in the entire mesh (body). Since 

no strains (deformations) occur during rigid body motion, there can be no stresses developed in 

the mesh. In order to obtain a unique FEM solution, rigid body motion must be constrained. If 

rigid body motion is not constrained, then a singular system of equations will result, since the 

determinate of the mesh stiffness matrix is equal to zero (i.e., ). 



There are two rigid body modes for the one-dimensional beam element , a translation 

(displacement) only and a rotation only. These two rigid body modes can occur at the same time 

resulting in a displacement and a rotation simultaneously. In order to eliminate rigid body motion 

in a 1-D beam elem ent (body), one must prescribe at least two no dal degrees of freedom (DOF), 

either two displacements or a displacement and a rotation. A DOF can be equal to zero or a non-

zero know n value, as long as the element is restrained from rigid body motion (deformation can 

take place when forces and moments are applied) . 

For simplicity we will introduce the rigid body modes using a mesh composed of a single 

element. If only translatio nal rigid body motion occurs, then the displacement at local node I 

will be equal to the displacement at local node J. Since the displacements are equal there is no 

strain developed in the element and the applied nodal forces cause the element to move in a rigid 

(non-deflected) vertical motion (which can be either up as shown below or it can be in the 

downward direction depending on the direction of the applied forces). 

Derivation of shape function and stiffness matrix for a 1 dimensional bar element 

Consider a bar element with nodes 1 and 2 as shown with displacements of u1 and u2 at the 

respective nodes                           

                 

 

 

      The displacement u can be given as u=a0+a1x ------(1) 

where a0 and a1 are generalised coordinates.  

u = [1 x] (𝑎0
𝑎1

)                             ----- (2) 

at node 1, u=u1, x=0 

at node 2, u=u2, x=l 

Substituting in (1) we get, u1=a0 and u2=a0+a1l 

u2 u1 

l 



In matrix form, (𝑢1
𝑢2

) = [
1 0
1 𝑙

] (𝑎0
𝑎1

) 

(
𝑎0

𝑎1
) = [

1 0
1 𝑙

]
−1

{(
𝑢1

𝑢2
)} 

(
𝑎0

𝑎1
) =  

1

𝑙
[

𝑙 0
−1 1

] (
𝑢1

𝑢2
) 

Substituting in eqn 2,  

𝑢 =  [1  𝑥]  
1

𝑙
[

1 0
−1 1

] (
𝑢1

𝑢2
) 

𝑢 =  [
𝑙 − 𝑥

𝑙

𝑥

𝑙
] 

u= [N1 N2] (
𝑢1
𝑢2

) where N1= l-x/l and N2= x/l 

N1 and N2are the shape functions 

We know that Stiffness matrix [K]= ∫ [𝐵]𝑇
𝑣

 [𝐷][𝐵]𝑑𝑣   ------(3) 

Where [B]- Strain displacement relationship matrix 

           [D]- Elasticity matrix 

[B]= [
𝑑𝑁1

𝑑𝑥

𝑑𝑁2

𝑑𝑥
]= [

−1

𝑙

1

𝑙
] and [B]T= {

−1

𝑙
1

𝑙

} 

In one dimensional problems, [D] = Youngs Modulus and dv= Adx 

Substituting the values in Eqn 3, we get 

[K]= 
𝐴𝐸

𝑙
[

1 −1
−1 1

] which is the stiffness matrix for a one dimensional bar element. 

Types of loading 

a) Body force (f)- Distributed force per unit volume (N/m3). Eg. Self weight due to gravity 

b) Traction force (T)- Force per unit area (N/m2). Eg. Frictional forces, viscous drag and 

surface shear 



c) Point load- Concentrated load at a point 

 

Steps in   Finite Element modelling of a one dimensional bar element 

 

(1) The  first  step is to subdivide the bar  called discretization. A non uniform bar is 

transformed to a uniform stepped bar. 

 

 

 

 

 

 

 

 

(2) Numbering  of nodes  



 

 

 

(3) Natural coordinate 

Consider a single element. Local node 1 is at a distance of x1 from datum and node 2 is x2 

measured from same datum point. 

 

 

 



 

 

(4) Shape functions  

 

Establish a linear interpolation function  to represent the linear  displacement field within the 

element. Linear shape functions are given by  

N ξ  
1 ξ 

and  N  ξ  
1 ξ 

 

 

2 

 
 

1 2 
 2 

 

   
 



Example 

A thin steel plate of uniform thickness 25mm is subjected to a point load of 420N at mid 

depth as shown. The plate is also subjected to self weight. If Young’s modulus, E=2 x 

105N/mm2 and unit weight density 0.8 x 10-4N/mm2. Calculate (i) Displacement at each 

nodal point (ii) Stresses in each element. 

 

                                                      100mm 

                                   1                                                200mm 

 

                                                       420N           

                                          2               80mm                  200mm                         

                                                                                                           

Thickness t=25mm, A1= 100 x 25=2500mm2, A2= 80x 25=2000mm2 

Point load p= 420N 

Young’s modulus E=2 x 105 N/mm2, Unit weight density= 0.8 x 10-4 N/mm3 

Body Force vector {𝐹} =
𝜌𝐴𝑙

2
(1

1
) 

(
𝐹1

𝐹2
) =  

𝜌1𝐴1𝑙1

2
 (

1

1
) 

{
𝐹1

𝐹2

𝐹3

} =  {
20
36
16

} 

A point load of 420N is acting at middepth at nodal point 2. Hence  

{
𝐹1

𝐹2

𝐹3

} =  {
20

456
16

} 

Finite element equation for 1st element is  

2500 × 2 × 105

200
{

1 −1
−1 1

} {
𝑢1

𝑢2
} =  {

𝐹1

𝐹2
} 

Finite element equation for 2nd element is  



2000 × 2 × 105

200
{

1 −1
−1 1

} {
𝑢1

𝑢2
} =  {

𝐹1

𝐹2
} 

Assembling the equations 

2 × 105 [
12.5 −12.5 0

−12.5 12.5 + 10 −10
0 −10 10

] {

𝑢1

𝑢2

𝑢3

} = {
𝐹1

𝐹2

𝐹3

} 

Apply boundary conditions at node 1 displacement is 0 and substituting the values of 

forces we get,  

 u2= 1.888 x 10-4mm , u3= 1.9688 x 10-4mm 

Stress 𝜎 = 𝐸
𝑑𝑢

𝑑𝑥
 

𝜎1 =
2 × 105 × 1.888 × 10−4

200
= 0.188𝑁/𝑚𝑚2 

𝜎2 =
2 × 105 × 1.968 × 10−4 − 1.888 × 10−4

200
= 0.008𝑁/𝑚𝑚2 

 

Temperature effects 

When the free expansion is prevented in the member, the change in temperature causes 

stress in the member. Let δT be the rise in temperature and α be the coefficient of thermal 

expansion. The nodal vector can be given by  

{𝐹} = 𝐸𝐴 ∝ 𝜕𝑇 {
−1
1

} 

Where E is the Young’s modulus, A is the area of the element.  

Thermal stress is given by  

{𝜎} = 𝐸
𝑑𝑢

𝑑𝑥
− 𝐸𝛼𝛿𝑇 

Problems for practice 

1. An axial load of 4 x 105N is applied at 30 degree centigrade to the rod as 

shown. The temperature is then raised to 60 degree centigrade. Calculate the 

following 

(i) Nodal displacements 

(ii) Stresses in each material 



(iii) Reactions at each nodal point 

  

                                             Al               p  

                                                          Steel    

                                     200mm                300mm                          

 

For Aluminium- Area = 1000mm2, E= 0.7 x105N/mm2, α=23 x 10-6/C 

For steel-  Area- 1500mm2, E= 2 x 105N/mm2, α=12 x10-6/C 

2. Calculate the nodal displacements, element stresses and support reactions.  

A1=300mm2, A2=500mm2, E=2 x105N/mm2 

 

                  1                                           2 

 

 

     200mm   200mm    200mm  200mm 

 

 

 

p q 



UNIT –III 

ISOPARAMETRIC FORMULATIONS 

The isoparametric concept brought out by Taig and latter on generalized by B.M. Irons  

revolutionized the finite elements analysis and it also helped in properly mapping the 

curved boundaries. They brought out the concept of mapping regular triangular and 

rectangular elements in natural coordinate system, to arbitrary shapes in global system as 

shown in Fig. The coordinate transformation of natural coordinates to global coordinate 

system is presented. The terms isoparametric, super parametric and subparametrics are 

defined.The basic theorems on which isoparametric concept is based are explained and 

need for satisfying uniqueness theorem of mapping is presented. Assembling of stiffness 

matrix is illustrated. For assembling stiffness matrix integration is to be carried out 

numerically. 

 

 

 
COORDINATE TRANSFORMATION 
 

So far we have used the shape functions for defining deflection at any point interms of the 

nodal displacement. Taig  suggested use of shape function for coordinate transformation 

form natural local coordinate system to global Cartesian system and successfully achieved 

in mapping parent element to required shape in global system. Thus the Cartesian 



coordinate of a point in an element may be expressed as or in matrix form where N are 

shape functions and (x) 

 

  

where N are shape functions and (x)e  are the coordinates of nodal points of the element. 

The shape functions are to be expressed in natural coordinate system. The shape function 

of this element is given as 

 

  
Noting that shape functions are such that at node i, Ni = 1 and all others are zero, it satisfy 

the coordinate value at all the nodes. 

 

ISOPARAMETRIC,SUBPARAMETRIC, AND SUPERPARAMETRIC 

 

 The finite element analysis with isoparametric elements, shape functions are used 

for defining the geometry as well as displacements. If the shape functions defining the 

boundary and displacements are the same, the element is called as isoparametric 
element. For example, in Fig.  all the eight nodes are used in defining the geometry and 

displacement.  

 



 
. 

Thus, in this case   
 

 where [N] is quadratic shape function of serendipity family. 

The element in which more number of nodes are used to define geometry 

compared to the number of nodes used to define displacement are known as 

superparametric element. One such element is shown in Fig.  in which 8 nodes are 

used to define the geometry and displacement is defined using only 4 nodes. In the stress 

analysis where boundary is highly curved but stress gradient is not high, one can use 

these elements advantageously. Figure shows a subparametric element in which less 

number of nodes are used to define geometry compared to the number of nodes used for 

defining the displacements. Such elements can be used advantageously in case of 

geometry being simple but stress gradient high. 

  

STIFFNESS MATRIX ASSEMBLY 

 Assembling element stiffness matrix is a major part in finite element analysis. 

Since it involves coordinate transformation from natural local coordinate system to 

Cartesian global system, isoparametric elements need special treatment. Here the  

assembling of element stiffness matrix for 4 noded quadrilateral element is explained in 

detail. The procedure can be easily extended to higher order elements by using suitable 

functions and noting the increased number of nodes. 

 

 
The shape functions are given as 



 

 
The displacement at any point is given as  

 
the relationship between the coordinates can be done by partial differentiation 

 

 
[J]= Jacobian matrix 

 

Jacobian matrix relates the local coordinates to global coordinate system. In case of three 

dimensional the jacobian matrix is given as 

 



 

 



 
 

J11, J12, J13, J14 are the elements of Jacobian inverse matrix. Since for a given point 

Jacobian matrix is known its inverse can be calculated and Jacobian inverse matrix is 

assembled. With this transformation relation known, we can expresses derivatives of the 

displacements as shown below 

 



 

 

 
 

NUMERICAL INTEGRATION 

 

In Gauss quadrature formula sampling points are cleverly placed. In this, both n sampling 

points and n weights are treated as variables to make exact 2n – 1 degree polynomial. This 

is an open quadrature formula, the function values need not be known at end points but 

they must be known at predetermined sampling points. The location of sampling points ε 

and weight function w are determined using Legendre polynomials. Hence this method is 

some times called as Gauss Legendre quadrature formula. Table  shows gauss sampling 

points 



 
For two dimensional problem n = 2 means 2 × 2 = 4 Gaussian points and for three 

dimensional problems it works out to be 2 × 2 × 2 = 8. Thus, 

 

 
 

Problems 
1. For the isoparametric four noded quadrilateral element show in fig determine the 

cartisian co-ordinates of point P which has local co-ordinates  ε= 0.5 and   η=0.5. 

 

 
Solution: 



 

 
 

 

 
 



The Cartesian co-ordinates of the point P are (4.5625,4.375} 

 

Problem 2 
For the isoparametric quadrilateral element shown in fig. determine the local co-

ordinates of the point P which has Cartesian co-ordinates (7,4). 

 
 

Solution: 

 

 

 

 



 

 

 



 
Local co-ordinates of the point P η=0.200557 

   ε=0.912545 

 

problem 3  

a four noded rectangular element is shown in fig. Determine the following (1) Jacobian 

matrix (2) strain displacement matrix (3) element stresses 

 
 

Solution:  

 

 
 



 
Jacobian matrix for quadrilateral element is  

 

 

 
Substitute x1,x2,x3,x4,y1,y2,y3,y4, and ε , η 



 

 
 

The strain displacement matrix is  

 



 

 

 



 

 
 

 



 



UNIT –III 

ISOPARAMETRIC FORMULATIONS 

The isoparametric concept brought out by Taig and latter on generalized by B.M. Irons  

revolutionized the finite elements analysis and it also helped in properly mapping the 

curved boundaries. They brought out the concept of mapping regular triangular and 

rectangular elements in natural coordinate system, to arbitrary shapes in global system as 

shown in Fig. The coordinate transformation of natural coordinates to global coordinate 

system is presented. The terms isoparametric, super parametric and subparametrics are 

defined.The basic theorems on which isoparametric concept is based are explained and 

need for satisfying uniqueness theorem of mapping is presented. Assembling of stiffness 

matrix is illustrated. For assembling stiffness matrix integration is to be carried out 

numerically. 

 

 

 
COORDINATE TRANSFORMATION 
 

So far we have used the shape functions for defining deflection at any point interms of the 

nodal displacement. Taig  suggested use of shape function for coordinate transformation 

form natural local coordinate system to global Cartesian system and successfully achieved 

in mapping parent element to required shape in global system. Thus the Cartesian 



coordinate of a point in an element may be expressed as or in matrix form where N are 

shape functions and (x) 

 

  

where N are shape functions and (x)e  are the coordinates of nodal points of the element. 

The shape functions are to be expressed in natural coordinate system. The shape function 

of this element is given as 

 

  
Noting that shape functions are such that at node i, Ni = 1 and all others are zero, it satisfy 

the coordinate value at all the nodes. 

 

ISOPARAMETRIC,SUBPARAMETRIC, AND SUPERPARAMETRIC 

 

 The finite element analysis with isoparametric elements, shape functions are used 

for defining the geometry as well as displacements. If the shape functions defining the 

boundary and displacements are the same, the element is called as isoparametric 
element. For example, in Fig.  all the eight nodes are used in defining the geometry and 

displacement.  

 



 
. 

Thus, in this case   
 

 where [N] is quadratic shape function of serendipity family. 

The element in which more number of nodes are used to define geometry 

compared to the number of nodes used to define displacement are known as 

superparametric element. One such element is shown in Fig.  in which 8 nodes are 

used to define the geometry and displacement is defined using only 4 nodes. In the stress 

analysis where boundary is highly curved but stress gradient is not high, one can use 

these elements advantageously. Figure shows a subparametric element in which less 

number of nodes are used to define geometry compared to the number of nodes used for 

defining the displacements. Such elements can be used advantageously in case of 

geometry being simple but stress gradient high. 

  

STIFFNESS MATRIX ASSEMBLY 

 Assembling element stiffness matrix is a major part in finite element analysis. 

Since it involves coordinate transformation from natural local coordinate system to 

Cartesian global system, isoparametric elements need special treatment. Here the  

assembling of element stiffness matrix for 4 noded quadrilateral element is explained in 

detail. The procedure can be easily extended to higher order elements by using suitable 

functions and noting the increased number of nodes. 

 

 
The shape functions are given as 



 

 
The displacement at any point is given as  

 
the relationship between the coordinates can be done by partial differentiation 

 

 
[J]= Jacobian matrix 

 

Jacobian matrix relates the local coordinates to global coordinate system. In case of three 

dimensional the jacobian matrix is given as 

 



 

 



 
 

J11, J12, J13, J14 are the elements of Jacobian inverse matrix. Since for a given point 

Jacobian matrix is known its inverse can be calculated and Jacobian inverse matrix is 

assembled. With this transformation relation known, we can expresses derivatives of the 

displacements as shown below 

 



 

 

 
 

NUMERICAL INTEGRATION 

 

In Gauss quadrature formula sampling points are cleverly placed. In this, both n sampling 

points and n weights are treated as variables to make exact 2n – 1 degree polynomial. This 

is an open quadrature formula, the function values need not be known at end points but 

they must be known at predetermined sampling points. The location of sampling points ε 

and weight function w are determined using Legendre polynomials. Hence this method is 

some times called as Gauss Legendre quadrature formula. Table  shows gauss sampling 

points 



 
For two dimensional problem n = 2 means 2 × 2 = 4 Gaussian points and for three 

dimensional problems it works out to be 2 × 2 × 2 = 8. Thus, 

 

 
 

Problems 
1. For the isoparametric four noded quadrilateral element show in fig determine the 

cartisian co-ordinates of point P which has local co-ordinates  ε= 0.5 and   η=0.5. 

 

 
Solution: 



 

 
 

 

 
 



The Cartesian co-ordinates of the point P are (4.5625,4.375} 

 

Problem 2 
For the isoparametric quadrilateral element shown in fig. determine the local co-

ordinates of the point P which has Cartesian co-ordinates (7,4). 

 
 

Solution: 

 

 

 

 



 

 

 



 
Local co-ordinates of the point P η=0.200557 

   ε=0.912545 

 

problem 3  

a four noded rectangular element is shown in fig. Determine the following (1) Jacobian 

matrix (2) strain displacement matrix (3) element stresses 

 
 

Solution:  

 

 
 



 
Jacobian matrix for quadrilateral element is  

 

 

 
Substitute x1,x2,x3,x4,y1,y2,y3,y4, and ε , η 



 

 
 

The strain displacement matrix is  

 



 

 

 



 

 
 

 



 



UNIT 5 
 

 
 

DYNAMIC ANALYSIS 
 

 
 
 

Nonlinear problems 
 

 

Various  non  linear  problems  in  finite  element  analysis  may  be  group  into  the 

following three categories. 

 

1. Material non linear problems 
 

 

2. Geometric non linear problems 
 

 

3. Non linear boundary or initial conditions 
 

 

Nonlinear Material Behavior 
 

 

This is one of the most common forms of nonlinearity, and would include 

nonlinear  elastic,  plastic,  and visco  elastic  behavior.    For  thermal  problems,  a 

temperature dependent thermal conductivity will produce nonlinear equations. 

 

Large Deformation Theory (Geometric Nonlinearity) 
 

 

If a continuum body under study undergoes large finite deformations,  the 

strain-displacement relations will become nonlinear.  Also for structural mechanics 

problems under large deformations, the stiffness will change with deformation thus 

making the problem nonlinear.  Buckling problems are also nonlinear. 

 

Nonlinear Boundary or Initial Conditions 
 

 

Problems   involving   contact   mechanics   normally   include   a   boundary 

condition   that  depends   on  the  deformation   thereby  producing   a  nonlinear 

formulation.   Thermal problems involving melting or freezing (phase change) also 

include such nonlinear boundary conditions. 



 
 

 
  
 

 
 

 
 

 
 

 
 

 
  

 

 
 

 

 
Non linearity in structural problem 

 
 
 

 
GEOMETRIC NONLINEARITY 

 

 

Relations  among  kinematic  quantities  (i.e.,  displacement,  rotation  and 

strains) are nonlinear 

 
 
 

 
 

 
 

 
 
 
 
 
 

 
 
 
 
 

 
Displacement-strain relation 

i.     E has a higher-order term 

ii.     (du/dx) << 1  e(x) ~ E(x). 



 
 

 
 

 
 

 
  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Domain of integration 
 

 

i.     Undeformed domain W0 
 

 

ii.     Deformed domain Wx 
 

 
 

a(u, u)  (u) : (u) d



MATERIAL NONLINEARITY 
 

 

Linear (elastic) material 
 

 

{   }    [ D ] {  } 
 

Only for infinitesimal deformation 
 

 

Nonlinear (elastic) material 

i.     [C] is not a constant but depends on deformation 

ii.     Stress by differentiating strain energy density U 

 
iii.     Linear material: 

 

U 





1 
E2 

2 
 

 

  
 dU 

 E
d







Stress is a function of strain (deformation): potential, path independent 
 
 
 
 
 

 
 
 
 

 



 
  

 
 

  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

 
 

 

 
 

Elasto-plastic material (energy dissipation occurs) 
 

 

i.     Friction plate only support stress up to sy 
 

 

ii.     Stress cannot be determined from stress alone 
 

 

iii.     History of loading path is required: path-dependent 
 

 
 

 
 

 
 

 

 
 
 

 

 
 

 

Visco-elastic material 
 

 

i.     Time-dependent behavior 

ii.     Creep, relaxation 

 
 
 

 

 
 
 
 

 
 

 

Boundary and Force Nonlinearities 
 

 

Nonlinear displacement BC (kinematic nonlinearity) 
 

 

Contact problems, displacement dependent conditions 
 
 
 
 
 
 

 
 

 
 
 

 



 
 

 
 

 
 

 
 

 
 

 
 

 
 

T 
d 



Nonlinear force BC (Kinetic nonlinearity) 
 

 

 
 

 
NON LINEAR ANALYSIS 

Newton-Raphson Method 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
i.     Most popular method 

 
ii.     Assume di at i-th iteration is known 

 
iii.     Looking for d

i+1 
from first-order Taylor series expansion 

 

i1   
 

i      i      i
 

 

   i  


P(d  ) P(d ) 
 

i 

KT (d )    d   F 

Ki (di ) 
 P 
      
      








iv.     Solve for incremental solution 

: Jacobian matrix or Tangent stiffness 

matrix 

 

i   i            i
 

KT   d   F  P(d ) 
 

v.     Update solution 

di1 

 
 

 di
 

 
 

 di
 



Consistent System Matrices 
 

 

To do dynamic and vibration finite element analysis, you need at least a 

mass matrix to pair with the stiffness matrix. As a general rule, the construction of 

the master mass matrix M largely parallels of the master stiffness matrix K. Mass 

matrices for individual elements are formed in local coordinates,  transformed  to 

global, and merged into the master mass matrix following exactly the same 

techniques  used for K. In practical  terms,  the assemblers  for K and M can be 

made identical. This procedural uniformity is one of the great assets of the Direct 

Stiffness Method. A notable difference with the stiffness matrix is the possibility of 

using a diagonal mass matrix based on direct lumping. A master diagonal mass 

matrix can be stored simply as a vector. If all entries are nonnegative, it is easily 

inverted,  since  the  inverse  of  a  diagonal  matrix  is  also  diagonal.  Obviously  a 

lumped mass matrix entails significant computational advantages for calculations 

that involve M−1. This is balanced by some negative aspects that are examined in 

some detail later. 

 
 

Mass Matrix Construction 
 

The master mass matrix is built up from element contributions, and we start 

at that level. The construction of the mass matrix of individual elements can be 

carried out through several methods. can be categorized into three groups: direct 

mass  lumping, variational  mass  lumping,  and template  mass  lumping.  The last 

group  is  more  general  in  that  includes  all  others.  Variants  of  the  first  two 

techniques  are by now standard  in the FEM literature,  and implemented  in all 

general purpose codes. 

 
 

Direct Mass Lumping 
 

The  total  mass  of  element  e  is  directly  apportioned  to  nodal  freedoms, 

ignoring any cross coupling. The goal is to build a diagonally lumped mass matrix 

or DLMM,  denoted  here by MeL .As the simplest  example,  consider  a 2-node 

prismatic bar element with length L, cross section area A, and mass density ρ, 

which can only move in the axial direction x,. The total mass of the element is Me 

= ρ AL. This is divided into two equal parts and assigned to each end 



 
 

 
 

Dynamic condensation 
 

The  accuracy  of  the  resulting  reduced  model  is  generally  very  low  for 

dynamic problems. To achieve reasonably accurate results, the masters must be 

chosen with great care and number of masters should be greater than the number 

of  modes  interested.  To  alleviate  the  limitations,  the  inertia  effects  could  be 

partially or fully included in the condensation.  The corresponding  condensation 

approaches are generally called dynamic condensation 

The equation of motion is cast as a shifted Eigen problem. A shift value, f, is 

introduced into the set of equations describing the dynamic system, thus 

 
 

 
The  terms  are rearranged  to group  the constant  term f times  the  mass 

matrix with the stiffness matrix to yield 

 
 

 
 

Then let a new  system  matrix  [D] be used to describe  the ‘effective’  stiffness 

matrix as 

 
 

 
This ‘effective’ stiffness equation 

 

 
 

can be partitioned into the ‘a’ active DOF and the ‘d’ deleted or omitted DOF to 

form two equations given as 

 
 

 
 

Assuming that the forces on the deleted DOF are zero, then the second equation 

can be written as 

 
 

which can be solved for the displacement at the deleted DOF as 
 

 
 

 



The first equation can be written as  

 
 

 
 

 
  

  
 

 
 

 
 

 
 

 
 

 
  

 

 
 

 
 

 
  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

and upon substituting for the ‘d’ deleted DOF this equation becomes 
 

 
 

 
 

This can be manipulated to yield the desired transformation to be 
 

 
 

Using this transformation, the reduced stiffness can be written as 
 

 
 

This same transformation can be applied to the mass matrix given by 
 

 
 

 
 

 
 
 

THERMAL ANALYSIS 
 

 

One dimensional conduction 
 

 
 
 

 

 
 

 
 

 
 

 
 
 
 
 

 
 

 

 
 

 

 
 

 
 

 



Two-Dimensional Conduction  
 
 
 
 

q
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 K 

xx
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q
inX  

 A  dt  q
inZ 

 A  dt  Q  A  dx  dt 

 U  qoutX   A  dt  qoutZ  A  dt 

 

Finite Element 2-D Conduction 
 

 

Select Element Type 
 

 
 
 
 

 
 

 
 
 
 

i.     1-d elements are lines 
 

 
ii.     2-d elements are either triangles, quadrilaterals, or a mixture as shown 



 

t  
     

iii.     Label the nodes so that the difference between two nodes on any element 

is minimized. 

 

Finite Element 2-D Conduction 
 

 

1. Assume (Choose) a Temperature Function 
 

 

 
 

 

Assume a linear temperature function for each element as: 
 

 
t ( x, y)  a1  a2 x  a3 y  

 

a
1 

  a
 
 a x  a y  1 x ya  


1          2             3   2 

   


a3 


Where u and v describe temperature gradients at (xi,yi). 
 

 

2.Assume (Choose) a Temperature Function 

 
T  N

i 
t
i  
 N 

j 
t 

j  
 N 

m
t

m
 

t
i  


T   N   N
 
 N     

i             j            m  t j  
   

tm 

T  temperature function 

N  shape function 

t  nodal temperature 
 

 

3.Define Temperature Gradient Relationships 
 

 T 
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 N j  N   


         i                        m  

                          i 
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  
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
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
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
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

          y   y y  

            1  i  j  m 


B  N  
x 

            
x     



 



L L 

 

1 

 x 

Q 



Analogous to strain matrix: {g}=[B]{t} 
 

 

[B] is derivative of [N] 
 

 

Heat flux/Temperature Gradient : 
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xx

 

 


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4. Derive Element Conduction Matrix and Equations 
 
 

Conduction Convection 

T
 

k    B
T DBdV   hN  N dS 

V                                                 S 
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
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
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5. Derive Element Conduction Matrix and Equations 
 

 
 

f   Q V 
T 

dV 
1

QV  
1 for constant heat source 

V                                   
3   

f   k t    

for each element 

 

Stiffness  matrix  is general  term for a matrix  of known  coefficients  being 

multiplied  by unknown  degrees  of freedom,  i.e., displacement  OR temperature, 

etc.   Thus,  the element  conduction  matrix  is often  referred  to as  the stiffness 

matrix. 

 

6. Assemble Element Equations, Apply BC’s 

 

F   K t



 

 
 

From    here  on  virtually  the  same  as  structural  approach.     Heat  flux 

boundary  conditions  already  accounted  for  in  derivation.    Just  substitute  into 

above equation and solve for the following: 

 

7. Solve for Nodal Temperatures 
 

 

8. Solve for Element Temperature Gradient & Heat Flux 
 
 

Dynamic equation of motion 
 

In dynamic  problems  the displacements,  velocities,  strains, stresses  and 

loads are all time dependent. The procedure involved in deriving the FE equations 

of a dynamic problem can be stated by the following steps: 

 
 

1. Idealize the body into E finite elements 
 

2. Assume the displacement model of element e as 
 

 
 

3. Derive the element characteristic (stiffness and mass) matrices and 

characteristic (load) vector. 

 

 
 
 

 
 

 
 
 
 

4. Assemble the element matrices and vectors and derive the overall system 

equations of motion. 

5. Solve the equation of motion by applying the boundary conditions. 
 

 
 

Consistent and lumped mass matrices 
 

The  above  mass  matrix  is  called  as  “consistent”  mass  matrix  of  the 

element.It is called consistent because the same displacement model that is used 

for  deriving  the  element  stiffness  matrix  is used  to for the  derivation  of  mass 

matrix. 

It is interest  to note  that several  dynamic  problems  have  been  and  are 

being solved with simpler forms of mass matrices.the simplest form of mass matrix 



 

that can be used is that obtained by placing point (concentrated) mass mi at node 

point I in the directions of assumed displacement degrees of freedom. 



 

 

 

The concentrated masses refer to translational and rotational inertia of the 

element  and  are  calculated  by  assuming  that  the  material  within  the  mean 

locations on either side of the particular displacement behaves like a rigid body 

while the remainder of the element does not participate in the motion. 

Thus, this assumption excludes the dynamic coupling that exists between 

the element displacements and hence the resulting element mass matrix is purely 

diagonal and is called the “lumped” mass matrix. 

 
 

Natural frequencies and mode shapes 
 

The oscillatory motion occurs at certain frequencies known as natural 

frequencies or characteristic values, and it follows well defined deformation 

patterns known as mode shapes and characteristic modes. 

 
 

AXIALLY LOADED BAR 
 

 



 

 
 

 
 

 



 

 
 

 
 
 

 



 

 
 

 

 



 

ANSYS 
 

h AND p METHOD 
 

Two types method are used to demonstrate the numerical convergence of the solution : 

1). h – method 

2). p – method 

The h- and p- versions of the finite element method are different ways of adding degrees of 
freedom (dof) to the model  

 

 

h-method –> The h-method improves results by using a finer mesh of the same type of element. 
This method refers to decreasing the characteristic length (h) of elements, dividing each existing 
element into two or more elements without changing the type of elements used. 

p-method –> The p-method improves results by using the same mesh but increasing the 
displacement field accuracy in each element. This method refers to increasing the degree of the 
highest complete polynomial (p) within an element without changing the number of elements used. 

The difference between the two methods lies in how these elements are treated. The h-method 
uses many simple elements, whereas the p-method uses few complex elements. 

H-Method 

More accurate information is obtained by increasing the number of elements.The name for the h-
method is borrowed from mathematics. The variable h is used to specify the step size in numeric 
integration. If a part is modeled with a very course mesh, then the stress distribution across the part 
will be very inaccurate. In order to increase the accuracy of the solution, more elements must be 
added. This means creating a finer mesh. As an initial run, a course mesh is used to model the 
problem. A solution is obtained. To check this solution, a finer mesh is created. The mesh must 
always be changed if a more accurate solution is desired. The problem is run again to obtain a 
second solution. If there is a large difference between the two solutions, then the mesh must be 
made even finer and then solve the solution again. This process is repeated until the solution is not 
changing much from run to run. 

 

 

 



 

P-Method 

The p in p-method stands for polynomial. Large elements and complex shape functions are used in 
p-method problems. In order to increase the accuracy of the solution, the complexity of the shape 
function must be increased. Increasing the polynomial order increases the complexity of the shape 
function.The mesh does not need to be changed when using the p-method. 

As an initial run, the solution might be solved using a first order polynomial shape function. A 
solution is obtained.  To check the solution the problem will be solved again using a more 
complicated shape function. For the second run, the solution may be solved using a third order 
polynomial shape function. A second solution is obtained.  The output from the two runs is 
compared. 

If there is a large difference between the two solutions, then the solution should be run using a third 
order polynomial shape function.  This process is repeated until the solution is not changing much 
from run to run. 

 


