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 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 

 

 When an external force acts on a body, the body tends to undergo some deformation. 

Due to cohesion between the molecules, the body resists deformation. This resistance by 

which material of the body opposes the deformation is known as strength of material, within 

a certain limit (i.e., in the elastic stage). Whenever a load is attached to a thin hanging wire, it 

elongates and the load moves downwards (sometimes through a negligible distance). The 

amount, by which the wire elongates, depends upon the amount of load and the nature as well 

as cross-sectional area of the wire material. 

Elasticity 

 Whenever a force acts on a body, it undergoes some deformation and the molecules 

offer some resistance to the deformation. It will be interesting to know that when the external 

force is removed, the force of resistance also vanishes; and the body springs back to its 

original position. But it is only possible, if the deformation, caused by the external force, is 

within a certain limit. Such a limit is called elastic limit. 

 The property of certain materials of returning back to their original position, after 

removing the external force, is known as elasticity. 

Stress 

 The force of resistance per unit area, offered by a body against deformation is known 

as stress. The external force acting on the body is called the load or force. The load is applied 

on the body while the stress is induced in the material of the body. A loaded member remains 

in equilibrium when the resistance offered by the member against the deformation and the 

applied load are equal. 

 

 

 

    where     F = Load or force acting on the body, and 

     A = Cross-sectional area of the body. 

 The unit of stress depends upon the unit of load (or force) and unit of area. In M.K.S. 

units, the force is expressed in kgf and area in metre square (i.e., m2). Hence unit of stress 

becomes as kgf/m2. In the S.L units, the force is expressed in newtons (written as N) and area 

is expressed as m2. Hence unit of stress becomes as N/m2. 

Strain  

 Whenever a single force (or a system of forces) acts on a body, it undergoes some 

deformation. This deformation per unit length is known as strain. Mathematically strain may 

be defined as the deformation per unit length. i.e., strain 

 

 

 

 

Types of Stresses 

 Though there are many types of stresses, yet the following two types of stresses are 

important from the subject point of view: 1. Tensile stress, 2. Compressive stress. 

1. Tensile Stress 

 When a section is subjected to two equal and opposite pulls and the body tends to 

increase its Length. The stress induced is called tensile stress. The corresponding strain is 
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called tensile strain. As a result of the tensile stress, the *cross-sectional area of the body gets 

reduced. 

 
2. Compressive Stress 

 When a section is subjected to two equal and opposite pushes and the body tends to 

shorten its Length. The stress induced is called compressive stress. The corresponding strain 

is called compressive strain. As a result of the compressive stress, the cross-sectional area of 

the body gets increased. 

 
Hooke’s Law 

 It states, “When a material is loaded, within its elastic limit, the stress is proportional 

to the strain.”  

 
Modulus of Elasticity or Young’s Modulus (E) 

 Whenever a material is loaded, within its elastic limit, the stress is proportional to 

strain 

      
Where,  σ = Stress, 

  ε = Strain, and 

  E = A constant of proportionality known as modulus of elasticity or Young’s 

modulus. 

 Numerically, it is that value of tensile stress, which when applied to a uniform bar 

will increase its length to double the original length if the material of the bar could remain 

perfectly elastic throughout such an excessive strain. 

 
 

 

Deformation of a Body Due to Force Acting on it 

 Consider a body subjected to a tensile stress. 

 Let   P  = Load or force acting on the body, 

         l  = Length of the body, 

  A = Cross-sectional area of the body,  

  σ  = Stress induced in the body, 
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  E = Modulus of elasticity for the material of the body, 

  ε  = Strain, and 

  δl = Deformation of the body. 

 
Example: A steel rod 1 m long and 20 mm × 20 mm in cross-section is subjected to a tensile 

force of 40 kN. Determine the elongation of the rod, if modulus of elasticity for the rod 

material is 200 GPa. 

Given: 

 Length (l) = 1 m = 1 × 103 mm   

 Cross-sectional area (A) = 20 × 20 = 400 mm2 

 Tensile force (P) = 40 kN = 40 × 103 N  

 Modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2 

 

Example A hollow steel tube 3.5 m long has external diameter of 120 mm. In order to 

determine the internal diameter, the tube was subjected to a tensile load of 400 kN and 

extension was measured to be 2 mm. If the modulus of elasticity for the tube material is 200 

GPa, determine the internal diameter of the tube. 

Given:  

 Length (l) = 3.5 m = 3.5 × 103 mm  

 External diameter (D) = 120 mm  

 Load (P) = 400 kN = 400 × 103 N 

 Extension (δl) = 2 mm  

 Modulus of elasticity E = 200 GPa = 200 × 103 N/mm2 

 

 
 

Example: Two wires, one of steel and the other of copper, are of the same length and are 

subjected to the same tension. If the diameter of the copper wire is 2 mm, find the diameter of 

the steel wire, if they are elongated by the same amount. Take E for steel as 200 GPa and 

that for copper as 100 GPa.  

Given:  

 Diameter of copper wire (dC) = 2 mm 
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 Modulus of elasticity for steel (ES) = 200 GPa = 200 × 103 N/mm2 

 Modulus of elasticity for Copper (EC) = 100 GPa = 100 × 103 N/mm2 

Let  dS = Diameter of the steel wire, 

 l = Lengths of both the wires and 

 P = Tension applied on both the wires. 

 

Deformation of a Body Due to Self Weight 

 Consider a bar AB hanging freely under its own weight as shown. 

Let  l  = Length of the bar. 

 A  = Cross-sectional area of the bar. 

 E  = Young’s modulus for the bar material, 

    and w  = Specific weight of the bar material. 

 Now consider a small section dx of the bar at a distance x from B. We know that 

weight of the bar for a length of x, 

P = wAx 

 Elongation of the small section of the bar, due to weight of the bar for a small section 

of length x, 

 
 Total elongation of the bar may be found out by integrating the above equation 

between zero and l. Therefore total elongation, 
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Example A steel wire ABC 16 m long having cross-sectional area of 4 mm2 weighs 20N as 

shown in Fig. If the modulus of elasticity for the wire material is 200 GPa, find the 

deflections at C and B. 

Given:  

 Length (l) = 16 m = 16 × 103 mm  

 Cross-sectional area (A) = 4 mm2  

 Weight of the wire ABC (W) = 20 N  

 Modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2 

Deflection of wire at C due to self-weight of the wire AC, 

 
Deflection at B consists of deflection of wire AB due to self-weight plus deflection due to 

weight of the wire BC. We also know that deflection of the wire at B due to self-weight of 

wire AB 

 
and deflection of the wire at B due to weight of the wire BC. 

 

Principle of Superposition 

 A body is subjected to a number of forces acting on its outer edges as well as at some 

other sections, along the length of the body. In such a case, the forces are split up and their 

effects are considered on individual sections. The resulting deformation, of the body, is equal 

to the algebraic sum of the deformations of the individual sections. Such a principle, of 

finding out the resultant deformation, is called the principle of superposition. The relation for 

the resulting deformation may be modified as: 

 
 

Example A steel rod ABCD 4.5 m long and 25 mm in diameter is subjected to the forces as 

shown in Fig. If the value of Young’s modulus for the steel is 200 GPa, determine its 

deformation.  

 

 

 

 

Given:  

 Diameter (D) = 25 mm and  

 Young’s modulus (E) = 200 GPa = 200 kN/mm2 

We know that cross-sectional area of the steel rod. 
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 For the sake of simplification, the force of 60 kN acting at A may be split up into two 

forces of 50 kN and 10 kN respectively. Similarly the force of 20 kN acting at C may also be 

split up into two forces of 10 kN and 10 kN respectively. 

 
 Now it will be seen that the bar AD is subjected a tensile force of 50 kN, part AC is 

subjected to a tensile force of 10 kN and the part BC is subjected to a tensile force of 10 kN 

as shown in Fig. We know that deformation of the bar, 

www.cgaspirants.com 

www.cgaspirants.com 

 

 

 

 

 

Stresses in the Bars of Different Sections 

 A bar is made up of different lengths having different cross-sectional areas 

 
 In such cases, the stresses, strains and hence changes in lengths for each section is 

worked out separately as usual. The total change in length is equal to the sum of the changes 

of all the individual lengths. It may be noted that each section is subjected to the same 

external axial pull or push. 

Let  

 P = Force acting on the body, 

 E = Modulus of elasticity for the body, 

 l1 = Length of section 1, 

 A1 = Cross-sectional area of section 1, 

 l2, A2 = Corresponding values for section 2 and so on. 

We know that the change in length of section 1. 
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Example A compound bar ABC 1.5 m long is made up of two parts of aluminium and steel 

and that cross-sectional area of aluminium bar is twice that of the steel bar. The rod is 

subjected to an axial tensile load of 200 kN. If the elongations of aluminium and steel parts 

are equal, find the lengths of the two parts of the compound bar. Take E for steel as 200 GPa 

and E for aluminium as one-third of E for steel.  

Given:   

 Total length (L) = 1.5 m = 1.5 × 103 mm  

 Cross-sectional area of aluminium bar (AA) = 2 AS 

 Axial tensile load (P) = 200 kN = 200 × 103 N  

 Modulus of elasticity of steel (ES) = 200 GPa = 200 × 103 N/mm2 

 Modulus of elasticity of aluminium (EA) = 
𝐸𝑠

3
=  

200 𝑥 103

3
𝑁/𝑚𝑚2 

Let,  lA  = Length of the aluminium part, 

 and lS = Length of the steel part. 

We know that elongation of the aluminium part AB, 

 

 

 

 
 

Example A circular steel rod ABCD of different cross-sections is loaded as shown in Fig. 

Find the maximum stress induced in the rod and its deformation. Take E = 200 GPa. 

Given:   

 Length of first part AB (l1)  = 1 m = 1 × 103 mm  

 Diameter of first part AB (D1)  = 70 mm  

 Length of second part BC (l2)  = 2 m = 2 × 103 mm  

 Diameter of second part BC (D2)  = 50 mm  

 Length of third part CD (l3)  = 1 m = 1 × 103 mm 

 Diameter of third part CD (D3)  = 50 mm  

 Internal diameter of hole (d3)  = 30 mm. 
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Maximum stress induced in the rod 

         
 For simplification, the force of 100 kN acting at B-B may be split up into two forces 

of 75 kN and 25 kN. Similarly the force of 50 kN acting at C-C may be split up into two 

forces of 25 kN and 25 kN respectively as shown in Fig.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Now it will be seen that the bar AB is subjected to a tensile load of 75 kN, part BC is 

subjected to a compressive load of 25 kN and the part CD is subjected to a tensile load of 25 

kN as shown in Fig. We know that tensile stress in part 1,  
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Stresses in the Bars of Uniformly Tapering Circular Sections 

 Consider a circular bar AB of uniformly tapering circular section as shown in Fig.  

 Let  P = Pull on the bar. 

  l = Length of the bar, 

  d1 = Diameter of the bigger end of the bar, and 

  d2 = Diameter of the smaller end of the bar. 

 Now consider a small element of length dx of the bar, at a distance x from the bigger 

end as shown in Fig. We know that diameter of the bar at a distance x, from the left end A, 
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Example If the tension test bar is found to taper from (D + a) diameter to (D – a) diameter, 

prove that the error involved in using the mean diameter to calculate Young’s modulus is 

(
10𝑎

𝐷
)2per cent. 

Given: 

 Larger diameter (d1) = (D + a)  

 Smaller diameter (d2) = (D – a). 

Let  P = Pull on the bar, 

 l = Length of the bar, 

 E1 = Young’s modulus by the tapering formula, 

 E2 = Young’s modulus by the mean diameter formula and 

 δl = Extension of the bar. 

 First of all, let us find out the values of Young’s modulus for the test bar by the 

tapering formula and then by the mean diameter formula. We know that extension of the bar 

by uniformly varying formula 
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Example A steel plate of 20 mm thickness tapers uniformly from 100 mm to 50 mm in a 

length of 400 mm. What is the elongation of the plate, if an axial force of 80 kN acts on it? 

Take E = 200 Gpa. 

Given :   

 Plate thickness  = 20 mm ;   

 Width at A  = 100 mm ;  Width at B = 50 mm;   

 Length (l)  = 400 mm ;   

 Axial force (P)  = 80 kN = 80 × 103 N 

 Modulus of elasticity (E)  = 200 GPa = 200 × 103 N/mm2 

 Now consider a small element of length dx, of the bar, at a distance x from A as shown 

in Fig. From the geometry of the figure, we find that the width of the plate at a distance x 

from A. 
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Stresses in the Bars of Composite Structures 

 A bar made up of two or more different materials, joined together is called a 

composite bar. The bars are joined in such a manner, that the system extends or contracts as 

one unit, equally, when subjected to tension or compression. Following two points should 

always be kept in view, while solving example on composite bars: 

1. Extension or contraction of the bar is equal.  

2. The total external load, on the bar, is equal to the sum of the loads carried by the 

different materials. 

Consider a composite bar made up of two different materials as shown in Fig.  

Let P = Total load on the bar, 

 l1 = Length of the bar 1 

 l2 = Length of the bar 2 

 A1 = Area of bar 1, 

 E1 = Modulus of elasticity of bar 1. 

 P1 = Load shared by bar 1, and 

 A2, E2, P2= Corresponding values for bar 2, 

 Total load on the bar, 
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Example A reinforced concrete circular column of 400 mm diameter has 4 steel bars of 20 

mm diameter embedded in it. Find the maximum load which the column can carry, if the 

stresses in steel and concrete are not to exceed 120 MPa and 5 MPa respectively. Take 

modulus of elasticity of steel as 18 times that of concrete. 

 

Given:   

 Diameter of column (D)  = 400 mm  

 No. of reinforcing bars  = 4  

 Diameter of bars (d)  = 20 mm  

 Maximum stress in steel (σS(max))  = 120 MPa = 120 N/mm2 

 Maximum stress in concrete (σC(max))  = 5 MPa = 5 N/mm2 

 Modulus of elasticity of steel (ES)  = 18 EC 

Total area of the circular column. 
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Stresses and Strains in Statically Indeterminate Structures 

 Simple equations of statics were sufficient to solve the examples. But, sometimes, the 

simple equations are not sufficient to solve such problems. Such problems are called 

statically indeterminate problems and the structures are called statically indeterminate 

structures. For solving statically indeterminate problems, the deformation characteristics of 

the structure are also taken into account along with the statical equilibrium equations. Such 

equations, which contain the deformation characteristics, are called compatibility equations. 

Types of Statically Indeterminate Structures 

 1. Simple statically indeterminate structures. 

 2. Indeterminate structures supporting a load. 

 3. Composite structures of equal lengths. 

 4. Composite structures of unequal lengths. 

Stresses in Simple Statically Indeterminate Structures 

Example A square bar of 20 mm side is held between two rigid plates and loaded by an axial 

force P equal to 450 kN as shown. Find the reactions at the ends A and C and the extension 

of the portion AB. Take E = 200 Gpa 

 Given:   

Area of bar (A) = 20 × 20 = 400 mm2 

Axial force (P) = 450 kN = 450 × 103 N 

Modulus of elasticity (E) = 200 GPa  

        = 200 × 103  N/mm2 

Length of AB (lAB) = 300 mm and 

length of BC (lBC) = 200 mm. 

RA = Reaction at A, and 

RC = Reaction at C. 

Since the bar is held between the two rigid plates A and C, therefore, the upper portion will 

be C subjected to tension, while the lower portion will be subjected to compression as shown 
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Stresses in Indeterminate Structures Supporting a Load 

Example A block weighing 35 kN is supported by three wires. The outer two wires are of 

steel and have an area of 100 mm2 each, whereas the middle wire of aluminium and has an 

area of 200 mm2. If the elastic modulii of steel and aluminium are 200 GPa and 80 GPa 

respectively, then calculate the stresses in the aluminium and steel wires.  

Given: 

 Total load (P)  = 35 kN  

  = 35 × 103 N  

 Total area of steel rods (A)  = 2 × 100 

  = 200 mm2 

 Area of aluminium rod (AA)  = 200 mm2 

 Modulus of elasticity of steel (E)  = 200 Gpa  

  = 200 × 103 N/mm2 

 Modulus of elasticity of aluminium (EA) = 80 GPa  

  = 80 × 103 N/mm2  

 Load supported by wires (P)  = 35 kN = 35 × 103 N 

 

Stresses in Composite Structures of Equal Lengths 

Example A mild steel rod of 20 mm diameter and 300 mm long is enclosed centrally inside a 

hollow copper tube of external diameter 30 mm and internal diameter 25 mm. The ends of the 

rod and tube are brazed together, and the composite bar is subjected to an axial pull of 40 kN 

as shown. If E for steel and copper is 200 GPa and 100 GPa respectively, find the stresses 

developed in the rod and the tube. 
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Given :   

 Diameter of steel rod  = 20 mm;   

 External diameter of copper tube  = 30 mm; 

 Internal diameter of copper tube  = 25 mm;   

 Total load (P)  = 40 kN = 40 × 103 N;   

 Modulus of elasticity of steel (ES)  = 200 GPa and  

 Modulus of elasticity of copper (EC)  = 100 GPa 

Let  σs = Stress developed in the steel rod and 

 σc= Stress developed in the copper tube. 

 

 

 

 

 

Stresses in Composite Structures of Unequal Lengths 

Example A composite bar ABC, rigidly fixed at A and 1 mm above the lower support, is 

subjected to an axial load of 50 kN at B as shown. If the cross-sectional area of the section 

AB is 100 mm2 and that of section BC is 200 mm2, find the reactions at both the ends of the 

bar. Also find the stresses in both the section. Take E = 200 GPa. 

Given:  

 Length of AB (lAB)  = 1 m = 1 × 103 mm  

 Area of AB (AAB)  = 100mm2 

 Length of BC (lBC)  = 2 m = 2 × 103 mm  

 Area of BC (ABC)  = 200 mm2 

 Axial load (P)  = 50 kN = 50 × 103 N  

 Modulus of elasticity (E)  = 200 GPa = 200 × 103 N/mm2 

Reactions at both the ends of the bar 

The bar is rigidly fixed at A and loaded at B, therefore,  

upper portion AB is subjected to tensions. We also know that  

increase in length of the portion AB due to the load at B 
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 We find that of increase in the length of the portion AB would have been less than 1 

mm (i.e., gap between C and lower support), then the lower portion of the bar BC should not 

have been subjected to any stress. Now it will be interesting to know that as the increase in 

length AB is 2.5 mm, therefore, first action of the 50 kN load will be to increase the length 

AB by 1 mm, till the end C touches the lower support. And a part of the load will be required 

for this increase. Then the remaining load will be shared by both the portions of the bar AB 

and BC of the bar.  

Let  P = Load required to increase 1 mm length of the bar AB, 

 We know that increase in length 

 

 

Stresses in Nuts and Bolts 

 Nuts and bolts to tighten the components of a machine or structure. It is generally 

done by placing washers below the nuts as shown. A nut can be easily tightened, till the space 

between the two washers becomes exactly equal to the body placed between them. It will be 

interesting to know that if we further tighten the nut, it will induce some load in the assembly. 

As a result of this, bolt will be subjected to some tension, whereas the washers and body 

between them will be subjected to some compression. And the induced load will be equally 

shared between the bolt and the body. Now consider an assembly consisting of two nuts and a 

bolt along with a tube as shown 
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Let P = Tensile load induced in the bolt as a result of tightening the nut, 

 l = Length of the bolt, 

 A1= Area of the bolt, 

 σ1 = Stress in the bolt due to induced load, 

 E1 = Modulus of elasticity for the bolt material. 

 A2, σ2, E2 = Corresponding values for the tube 

The tensile load on the bolt is equal to the compressive load on the tube, therefore 

 

Example A solid copper rod 300 mm long and 40 mm diameter passes axially inside a steel 

tube of 50 mm internal diameter and 60 mm external diameter. The composite bar is 

tightened by using rigid washers of negligible thickness. Determine the stresses in copper rod 

and steel tube, when the nut is tightened so as to produce a tensile load of 100 kN in the 

copper rod.  

Given:  

 Length of copper rod (l )  = 300 mm  

 Diameter of copper rod (DC)  = 40 mm 

 Internal diameter of steel tube (dS)  = 50 mm  

 External diameter of steel tube (DS)  = 60 mm  

 Tensile load in copper rod (P)  = 100 kN = 100 × 103 N 
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Thermal Stresses and Strains 

 Whenever there is some increase or decrease in the temperature of a body, it causes 

the body to expand or contract. A little consideration will show that if the body is allowed to 

expand or contract freely, with the rise or fall of the temperature, no stresses are induced in 

the body. But if the deformation of the body is prevented, some stresses are induced in the 

body. Such stresses are called thermal stresses or temperature stresses. The corresponding 

strains are called thermal strains or temperature strains. 

Thermal Stresses in Simple Bars 

 The thermal stresses or strains, in a simple bar, may be found out as discussed below: 

 1. Calculate the amount of deformation due to change of temperature with the 

assumption that bar is free to expand or contract. 

 2. Calculate the load (or force) required to bring the deformed bar to the original 

length. 

 3. Calculate the stress and strain in the bar caused by this load. 

 The thermal stresses or strains may also be found out first by finding out amount of 

deformation due to change in temperature, and then by finding out the thermal strain due to 

the deformation. The thermal stress may now be found out from the thermal strain as usual. 

Now consider a body subjected to an increase in temperature. 

 Let  l = Original length of the body, 

  t = Increase of temperature and 

  α = Coefficient of linear expansion. 

We know that the increase in length due to increase of temperature 

 
 

Example Two parallel walls 6 m apart are stayed together by a steel rod 25 mm diameter 

passing through metal plates and nuts at each end. The nuts are tightened home, when the 

rod is at a temperature of 100°C. Determine the stress in the rod, when the temperature falls 

down to 60°C, if (a) the ends do not yield, and (b) the ends yield by 1 mm. Take E = 200 GPa 

and α = 12 × 10–6 /°C 

Given:  

 Length (l) = 6 m = 6 × 103 mm  
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 Diameter (d) = 25 mm 

 Decrease in temperature (t) = 100° – 60° = 40°C  

 Amount of yield in ends (∆) = 1 mm 

 Modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2 

 Coefficient of linear expansion (α) = 12 × 10–6/°C. 

 

Thermal Stresses in Bars of Circular Tapering Section 

 Consider a circular bar of uniformly tapering section fixed at its ends A and B and 

subjected to an increase of temperature as shown  

 
Let  l = Length of the bar. 

 d1= Diameter at the bigger end of the bar, 

 d2= Diameter at the smaller end of the bar, 

 t = Increase in temperature and 

 a = Coefficient of linear expansion. 

 The increase in temperature, the bar AB will tend to expand. But since it is fixed at 

both of its ends, therefore it will cause some compressive stress. We also know that the 

increase in length due to increase in temperature, 
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Example A circular bar rigidly fixed at its both ends uniformly tapers from 75 mm at one end 

to 50 mm at the other end. If its temperature is raised through 26 K, what will be the 

maximum stress developed in the bar. Take E as 200 GPa and α as 12 × 10–6 /K for the bar 

material. 

Given:   

 Diameter at end 1 (d1) = 75 mm  

 Diameter at end 2 (d2) = 50 mm  

 Rise in temperature (t) = 26 K  

 E = 200 GPa = 200 × 103 N/mm2 

  α = 12 × 10–6 /K 

  

Thermal Stresses in Bars of Varying Section 

 Consider a bar ABC fixed at its ends A and C and subjected to an increase of 

temperature as shown 

Let  

 l1 = Length of portion AB, 

 σ1 = Stress in portion AB, 

 A1 = Cross-sectional area of portion AB, 

 l2, σ2, A2 = Corresponding values for the portion BC, 

 α= Coefficient of linear expansion and 

 t = Increase in temperature 

 We know that as a result of the increase in temperature, the bar ABC will tend to 

expand. But since it is fixed at its ends A and C, therefore it will cause some compressive 

stress in the body. Moreover, as the thermal stress is shared equally by both the portions, 

therefore 

 
 

Example A composite bar made up of aluminium and steel, is held between two supports as 

shown. The bars are stress-free at a temperature of 38°C. What will be the stresses in the two 

bars, when the temperature is 21°C, if (a) the supports are unyielding, (b) the supports come 

nearer to each other by 0.1 mm? It can be assumed that the change of temperature is uniform 

all along the length of the bar. Take E for steel as 200 GPa; E for aluminium as 75 GPa and 

coefficient of expansion for steel as 11.7 × 10–6 per °C and coefficient of expansion for 

aluminium as 23.4 × 10-6 per °C. 
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Given:   

 Length of steel bar (lS) = 600 mm  

 Area of steel bar (AS) = 1000 mm2 

 Length of aluminium bar (lA) = 300 mm  

 Area of aluminium bar (AA) = 500 mm2 

 Decrease in temperature (t) = 38 – 21 = 17°C  

 Modulus of elasticity of steel (ES) = 200 GPa = 200 × 103 N/mm2 

 Modulus of elasticity of aluminium (EA) = 75 GPa = 75 x 103 N/mm2 

 Coefficient of expansion for steel (αS) = 11.7 × 10–6/°C  

 Coefficient of expansion for aluminium (αA) = 23.4 × 10–6/°C. 
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Superposition of Thermal Stresses 

Example A rigid slab weighing 600 kN is placed upon two bronze rods and one steel rod 

each of 6000 mm2 area at a temperature of 15°C as shown in Fig. Find the temperature, at 

which the stress in steel rod will be zero. Take: Coefficient of expansion for steel = 12 × 10-6 

/°C, Coefficient of expansion for bronze = 18 × 10-6/°C 

Young’s modulus for steel = 200 Gpa, Young’s modulus for bronze = 80 GPa. 

Given:   

 Weight = 600 kN = 600 × 103 N  

 Area of bronze rod (AB) = AS = 6000mm2 

 Coefficient of expansion for steel (αs) = 12 × 10–6 /°C 

 Coefficient of expansion for bronze (αB) = 18 × 10–6 /°C  

 Modulus of elasticity of steel (ES)  = 200 GPa  

      = 200 × 103 N/mm2 

 Modulus of elasticity of bronze (EB)  = 80 GPa  

      = 80 × 103 N/mm2 

Let  t = Rise in temperature, when the stress in the steel rod will be zero. 

 Due to increase in temperature all the three rods will expand. The expansion of bronze 

rods will be more than the steel rod (because αB is greater than αS). If the stress in the steel 

rod is to be zero, then the entire load should be shared by the two bronze rods. Or in other 

words, the decrease in the length of two bronze rods should be equal to the difference of the 

expansion of the bronze rods and steel rod. We know that free expansion of the steel rod 

 

 
Thermal Stresses in Composite Bars 

 Whenever there is some increase or decrease in the temperature of a bar, consisting of 

two or more different materials, it causes the bar to expand or contract. The different 

coefficients of linear expansions the two materials do not expand or contract by the same 

amount, but expand or contract by different amounts. The steel and brass could have been 

free to expand, and then no internal stresses would have induced. The two members are 

rigidly fixed, therefore the composite bar, as a whole, will expand by the same amount. 
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 We know that the brass expands more than the steel (because the coefficient of linear 

expansion of the brass is greater than that of the steel).  Therefore the free expansion of the 

brass will be more than that of the steel. But since both the members are not free to expand, 

therefore the expansion of the composite bar, as a whole, will be less than that of the brass; 

but more than that of the steel as shown. It is thus obvious that the brass will be subjected to 

compressive force, whereas the steel will be subjected to tensile force as shown. 

 

 

Example A gun metal rod 20 mm diameter, screwed at the ends, passes through a steel tube 

25 mm and 30 mm internal and external diameters respectively. The nuts on the rod are 

screwed tightly home on the ends of the tube. Find the intensity of stress in each metal, when 

the common temperature rises by 200°F. Take. Coefficient of expansion for steel = 6 × 10–

6/°F Coefficient of expansion for gun metal = 10 × 10 –6 /°F Modulus of elasticity for steel = 

200 Gpa, Modulus of elasticity for gun metal = 100 GPa. 

Given:   

 Diameter of gun metal rod = 20 mm  

 Internal diameter of steel tube = 25 mm 

 External diameter of steel tube = 30 mm  

 Rise in temperature (t) = 200°F  

 Coeff of expansion for steel (αS) = 6 × 10–6 /°F  

 Coeff of expansion for gun metals (αG) = 10 × 10–6 /°F 

 (ES) = 200 GPa = 200 × 103 N/mm2 

 (EG) = 100 GPa = 100 × 103 N/mm2 

  

 

 

 

 

The temperature of the gun metal rod and steel tube will increase; the free expansion of gun 

metal rod will be more than that of steel tube. Thus the gun metal rod will be subjected to 

compressive stress and the steel tube will be subjected to tensile stress.  
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Elastic constant 

 The axial deformation of a body, when it is subjected to a direct tensile or 

compressive stress. But we have not discussed the lateral or side effects of the pulls or 

pushes. It has been experimentally found, that the axial strain of a body is always followed by 

an opposite kind of strain in all directions at right angle to it. Thus, in general, there is always 

a set of the following two types of strains in a body, when it is subjected to a direct stress. 

• Primary or linear strain, and 

• Secondary or lateral strain 

Whenever some external force acts on a body, it undergoes some deformation. Now consider 

a circular bar subjected to a tensile force as shown. Let  

  l = Length of the bar, 

  d = Diameter of the bar, 

  P = Tensile force acting on the bar, and 

  dl = Increase in the length of the bar 

  The deformation of the bar per unit length in the direction of the force is known as 

linear strain. The linear deformation of a circular bar of length l and diameter d subjected to 

a tensile force P. The deformation of the bar, we will find that bar has extended through a 

length dl, which will be followed by the decrease of diameter from d to (d – δd) as shown. 

Similarly, if the bar is subjected to a compressive force, the length of the bar will decrease by 

dl which will be followed by the increase of Diameter from d to (d + δd). It is thus obvious 

that every direct stress is always accompanied by a strain in its own direction and an opposite 

kind of strain in every direction at right angles to it. Such a strain is known as secondary or 

lateral strain. 
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Poisson's ratio 

 If a body is stressed within its elastic limit, the lateral strain bears a constant ratio to 

the linear strain. 

 
 

Example A steel bar 2 m long, 40 mm wide and 20 mm thick is subjected to an axial pull of 

160 kN in the direction of its length. Find the changes in length, width and thickness of the 

bar. Take E = 200 GPa and Poisson’s ratio = 0.3. 

Given:  Length (l ) = 2 m = 2 × 103 mm  

               Width (b) = 40 mm ;   

 Thickness (t) = 20 mm; 

 Axial pull (P) = 160 kN = 160 × 103 N ;   

 Modulus of elasticity (E) = 200 GPa = 200 × 103 N/mm2 

  poisson’s ratio (1/m) = 0.3 

 
Volumetric strain 

 Whenever a body is subjected to a single force (or a system of forces), it undergoes 

some changes in its dimensions. The change in dimensions of a body will cause some 

changes in its volume. The ratio of change in volume, to the original volume, is known as 

volumetric strain 
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The following are important from the subject point of view: 

 1. A rectangular body subjected to an axial force. 

 2. A rectangular body subjected to three mutually perpendicular force 

 
Volumetric Strain of a Rectangular Body Subjected to an Axial Force 
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Example A steel bar 2 m long, 20 mm wide and 15 mm thick is subjected to a tensile load of 

30 kN. Find the increase in volume, if Poisson’s ratio is 0.25 and Young’s modulus is 200 

GPa. 

Given:  Length (l ) = 2 m = 2 × 10 3 mm ;  Width (b) = 20 mm ;  Thickness (t) = 15 mm 

 
 

Volumetric Strain of a Rectangular Body Subjected to Three Mutually Perpendicular 

Forces 

 Consider a rectangular body subjected to direct tensile stresses along three mutually 

perpendicular axes as shown 

 

 

 

 

 

 

 

 

 

 

The resulting strains in the three directions may be found out by the principle of 

superposition, i.e., by adding algebraically the strains in each direction due to each 

individual stress. For the three tensile stresses shown. (taking tensile strains as +ve and 

compressive strains as –ve) the resultant strain in x-x direction, 
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Example A steel cube block of 50 mm side is subjected to a force of 6 kN (Tension), 8kN 

(Compression) and 4 kN (Tension) along x, y and z direction respectively. Determine the 

change in volume of the block. Take E as 200 GPa and m as 10/3. 

Given:   

 Side of the cube = 50 mm ;   

 Force in x- direction (Px) = 6 kN = 6 × 103 N (Tension) ;   

 Force in y-direction(Py) = 8 kN = 8 × 103 N (Compression) ;   

 Force in z-direction (Pz) = 4 kN = 4 × 103 N (Tension) and  

 modulus of elasticity (E) = 200GPa = 200 × 103 N/mm2 

  and m = 10 / 3 
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Shear Stress 

 When a section is subjected to two equal and opposite forces, acting tangentially 

across the resisting section, as a result of which the body tends to shear off across the section 

as shown. The stress induced is called shear stress. The corresponding strain is called shear 

strain. 

 

 

 

   
Principle of Shear Stress 

 It states, “A shear stress across a plane, is always accompanied by a balancing shear 

stress across the plane and normal to it.  

  

 

 Consider a rectangular block ABCD, subjected to a shear  

stress of intensity t on the faces AD and CB as shown. Now consider  

a unit thickness of the block. Therefore force acting on the faces AD  

and CB, 

 These forces will form a couple, whose moment is equal to τ × AD × AB i.e., force × 

distance. If the block is in equilibrium, there must be a restoring couple, whose moment must 

be equal to this couple. Let the shear stress of intensity t be set up on the faces AB and CD as 

shown. Therefore forces acting on the faces AB and CD,. 

 

 

 

Relation between Modulus of Elasticity and Modulus of Rigidity 

 Consider a cube of length l subjected to a shear stress of τ as shown. due to these 

stresses the cube is subjected to some distortion, such that the diagonal BD will be elongated 

and the diagonal AC will be shortened. Let this shear stress t cause shear strain φ as shown. 

We see that the diagonal BD is now distorted to BD1. 

 

 

 

 

 

Linear strain of the diagonal BD 
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Example  An alloy specimen has a modulus of elasticity of 120 GPa and modulus of rigidity 

of 45 GPa. Determine the Poisson’s ratio of the material.  

Given:   

 Modulus of elasticity (E) = 120 GPa  

 Modulus of rigidity (C) = 45 GPa. 

 
Strain Energy and Impact Loading 

 When the load moves downwards, it loses its *potential energy. This energy is 

absorbed (or stored) in the stretched wire, which may be released by removing the load. On 

removing the load, the wire will spring back to its original position. 

Resilience 

 It is a common term used for the total strain energy stored in a body. Sometimes the 

resilience is also defined as the capacity of a strained body for doing work (when it springs 

back) on the removal of the straining force. 

Proof Resilience 

 It is also a common term, used for the maximum strain energy, which can be stored in 

a body. (This happens when the body is stressed up to the elastic limit). The corresponding 

stress is known as proof stress. 

Modulus of Resilience 

 The proof resilience per unit volume of a material, is known as modulus of resilience 

and is a important property of the material. 

 A load may act in either of the following three ways:   

 1. Gradually  2. suddenly   3. with impact 

Strain Energy Stored in a Body, when the Load is Gradually Applied 

 When loading a body, in which the loading starts from zero and increases gradually 

till the body is fully loaded. e.g., when we lower a body with the help of a crane, the body 

first touches the platform on which it is to be placed. On further releasing the chain, the 
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platform goes on loading till it is fully loaded by the body. This is the case of a gradually 

applied load. Now consider a metallic bar subjected to a gradual load. 

Let  P = Load gradually applied, 

 A = Cross-sectional area of the bar, 

 l = Length of the bar, 

 E = Modulus of elasticity of the bar material and 

 d = Deformation of the bar due to load. 

Since the load applied is gradual, and varies from zero to P, therefore the average load is 

equal to P/2 

  ∴  Work done  = Force × Distance 

             = Average load × Deformation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example Calculate the strain energy stored in a bar 2 m long, 50 mm wide and 40 mm thick 

when it is subjected to a tensile load of 60kN. Take E as 200 GPa. 

Given:  

 Length of bar (l ) = 2 m = 2 × 103  mm  

 Width of bar (b) = 50 mm  

 Thickness of bar (t) = 40 mm  

 Tensile load on bar (P) = 60 kN = 60 × 103 N and  

 Modulus of elasticity (E) = 200GPa = 200 × 103 N/mm2 

We know that stress in the bar 

 
Strain Energy Stored in a Body when the Load is Suddenly Applied 

 The load is suddenly applied on a body. e.g., when we lower a body with the help of a 

crane, the body is, first of all, just above the platform on which it is to be placed. If the chain 

breaks at once at this moment the whole load of the body begins to act on the platform. This 

is the case of a suddenly applied load. Now consider a bar subjected to a sudden load. 
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Example An axial pull of 20 kN is suddenly applied on a steel rod 2.5 m long and 1000 mm2 

in cross-section. Calculate the strain energy, which can be absorbed in the rod. Take E = 200 

GPa. 

Given:  

 Axial pull on the rod (P)  = 20 kN = 20 × 103 N;   

 Length of rod (l)  = 2.5 m = 2.5 × 103 mm  

 Cross-sectional area of rod (A)  =1000 mm2 

 and modulus of elasticity (E)  = 200GPa = 200 × 103 N/mm2 

We know that stress in the rod, when the load is suddenly applied 

 
Strain Energy Stored in a Body, when the Load is applied with Impact 

 The impact load is applied on a body e.g., when we lower a body with the help of a 

crane, and the chain breaks while the load is being lowered the load falls through a distance, 

before it touches the platform. This is the case of a load applied with impact. Now consider a 

bar subject to a load applied with impact as shown. 
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Example A copper bar of 12 mm diameter gets stretched by 1 mm under a steady load of 4 

kN. What stress would be produced in the bar by a weight 500 N, the weight falls through 80 

mm before striking the collar rigidly fixed to the lower end of the bar? Take Young’s modulus 

for the bar material as 100 GPa.  

Given :  

 Diameter of bar (d) = 12 mm 

 Change in length of bar (dl) = 1 mm  

 Load on bar (P1) = 4 kN = 4 × 103 N  

 Weight falling on collar (P2) = 500 N  

 Height from which weight falls (h) = 80 mm  

 Modulus of elasticity (E) = 100 GPa = 100 × 103 N/mm2 
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Strain Energy Stored in a Body of Varying Section 

 Sometimes, we come across bodies of varying section. The strain energy in such a 

body is obtained by adding the strain energies stored in different parts of the body. 

Mathematically total strain energy stored in a body. 

 U = U1 + U2 + U3 + ....... 

Where  U1 = Strain energy stored in part 1, 

 U2 = Strain energy stored in part 2, 

 U3 = Strain energy stored in part 3 

Example A non-uniform tension bar 5 m long is made up of two parts as shown. Find the 

total strain energy stored in the bar, when it is subjected to a gradual load of 70 kN. Also find 

the total strain energy stored in the bar, when the bar is made of uniform cross-section of the 

same volume under the same load. Take E = 200 GPa. 

Given:  

 Total length of bar (L) = 5 m = 5 × 103 mm  

 Length of part 1 (L1) = 3 m = 3 × 103 mm  

 Length of part 2 (L2) = 2 m = 2 × 103 mm  

 Area of part 1 (A1) = 1000 mm2 

 Area of part 2 (A2) = 2000 mm2 

 Pull (P) = 70 kN = 70 × 103 N  

 Modulus of elasticity (E) = 200 Gpa = 200 × 103 N/mm2 
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Strain Energy Stored in a Body due to Shear Stress 
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Example A rectangular body 500 mm long, 100 mm wide and 50 mm thick is subjected to a 

shear stress of 80 MPa. Determine the strain energy stored in the body. Take N = 85 GPa.  

Given:   

 Length of rectangular body (l ) = 500 mm  

 Width of rectangular body (b) = 100 mm  

 Thickness of rectangular body (t) = 50 mm  

 Shear stress (t) = 80 MPa = 80 N/mm2  and  

 modulus of rigidity (N) = 85  N/mm2 

 
Principal Stresses and Strains 

 At a time one type of stress, acting in one direction only. But the majority of 

engineering, component and structures are subjected to such loading conditions (or 

sometimes are of such shapes) that there exists a complex state of stresses; involving direct 

tensile and compressive stress as well as shear stress in various directions. 

 At any point in a strained material, there are three planes, mutually perpendicular to 

each other, which carry direct stresses only, and no shear stress. These three direct stresses 

one will be maximum, the other minimum, and the third and intermediate between the two. 

These particular planes, which have no shear stress, are known as principal planes. 

 The magnitude of direct stress, across a principal plane, is known as principal stress. 

The determination of principal planes, and then principal stress is an important factor in the 

design of various structures and machine components. 

 The following two methods for the determination of stresses on an oblique section of 

a strained body are important from the subject point of view: 1. Analytical method and     2.  

Graphical method. 

Analytical Method for the Stresses on an Oblique Section of a Body  

 The analytical method for the determination of stresses on an oblique section in the 

following cases, which are important from the subject point of view: 

1. A body subjected to a direct stress in one plane. 

2. A body subjected to direct stresses in two mutually perpendicular directions 

 In the element shown, the shear stress on the vertical faces (or x-x axis) is taken as 

positive, whereas the shear stress on the horizontal faces (or y-y axis) is taken as negative 
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Stresses on an Oblique Section of a Body Subjected to a Direct Stress in One Plane 

 Consider a rectangular body of uniform cross-sectional area and unit thickness 

subjected to a direct tensile stress along x-x axis as shown. Now let us consider an oblique 

section AB inclined with the x-x axis. 

 

 
The face AC will carry the maximum direct stress. Similarly, the shear stress across the 

section AB will be maximum when sin 2θ = 1 or 2θ = 90° or 270°. Or in other words, the 

shear stress will be maximum on the planes inclined at 45° and 135° with the line of action of 

the tensile stress. Therefore maximum shear stress when θ is equal to 45°, 
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NOTE : The planes of maximum and minimum normal stresses (i.e. principal planes) may 

also be found out by equating the shear stress to zero. This happens as the normal stress is 

either maximum or minimum on a plane having zero shear stress. Now equating the shear 

stress to zero, σ sin θ cos θ =0 

Example Two wooden pieces 100 mm × 100 mm in cross-section are joined together along a 

line AB as shown. Find the maximum force (P), which can be applied if the shear stress along 

the joint AB is 1.3 MPa. 

Given:  

 Section = 100 mm × 100 mm ;   

 Angle made by section with the  

 Direction of tensile stress (θ) = 60° and 

 Permissible shear stress (t) = 1.3 MPa = 1.3 N/mm2 

 
Stresses on an Oblique Section of a Body Subjected to Direct Stresses in Two Mutually 

Perpendicular Directions 

 Consider a rectangular body of uniform cross-sectional area and unit thickness 

subjected to direct tensile stresses in two mutually perpendicular directions along x-x and y-y 

axes as shown. Now let us consider an oblique section AB inclined with x-x axis 
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Example: The stresses at point of a machine component are 150 MPa and 50 Mpa both 

tensile. Find the intensities of normal, shear and resultant stresses on a plane inclined at an 

angle of 55° with the axis of major tensile stress. Also find the magnitude of the maximum 

shear stress in the component. 

Given: Tensile stress along x-x axis (sx) = 150 MPa;   

 Tensile stress along y-y axis (sy) = 50 MPa and  

 Angle made by the plane with the major tensile stress (θ) = 55°. 

Normal stress on the inclined plane 

We know that the normal stress on the inclined plane 

 
 

Stresses on an Oblique Section of a Body Subjected to a Simple Shear stress 

 Consider a rectangular body of uniform cross-sectional area and unit thickness 

subjected to a positive (i.e., clockwise) shear stress along x-x axis as shown. Now let us 

consider an oblique section AB inclined with x-x axis on which we are required to find out 

the stresses as shown. 

Let  τxy = Positive (i.e., clockwise) shear stress along x-x axis, and 

 θ = Angle , which the oblique section AB makes with x-x axis in the anticlockwise 

direction. 

 First of all, consider the equilibrium of the wedge ABC. We know that as per the 

principle of simple shear, the face BC, of the wedge will be subjected to an anticlockwise 

shear stress equal to τxy as shown. We know that vertical force acting on the face AC, 
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Stresses on an Oblique Section of a Body Subjected to a Direct Stress in One Plane and 

Accompanied by a Simple Shear Stress 

 Consider a rectangular body of uniform cross-sectional area and unit thickness 

subjected to a tensile stress along x-x axis accompanied by a positive (i.e. clockwise) shear 

stress along x-x axis as shown. Now let us consider an oblique section AB inclined with x-x 

axis on which we are required to find out the stresses as shown in the figure. 
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Example An element in a strained body is subjected to a tensile stress of 150 MPa and a 

shear stress of 50 MPa tending to rotate the element in an anticlockwise direction. Find (i) 

the magnitude of the normal and shear stresses on a section inclined at 40° with the tensile 

stress; and (ii) the magnitude and direction of maximum shear stress that can exist on the 

element.  

Given:  

 Tensile stress along horizontal x-x axis (σx) = 150 MPa  

 Shear stress (τxy) – 50 MPa (Minus sign due to anticlockwise) and angle made by 

section with the tensile stress (θ) = 40°. 

Normal and Shear stress on the inclined section 

 We know that magnitude of the normal stress on the section 
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Stresses on an Oblique Section of a Body Subjected to Direct Stresses in Two Mutually 

Perpendicular Directions Accompanied by a Simple Shear Stress 
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Example A point is subjected to a tensile stress of 250 MPa in the horizontal direction and 

another tensile stress of 100 MPa in the vertical direction. The point is also subjected to a 

simple shear stress of 25 MPa, such that when it is associated with the major tensile stress, it 

tends to rotate the element in the clockwise direction. What is the magnitude of the normal 

and shear stresses on a section inclined at an angle of 20° with the major tensile stress? 

Given:  

 Tensile stress in horizontal x-x direction (σx) = 250 MPa 

 Tensile stress in vertical y-y direction (σy) = 100 MPa  

 Shear stress (τxy) = 25 MPa and angle made by section with the major tensile stress 

(θ) = 20°. 

 
Graphical Method for the Stresses on an Oblique Section of a Body 

The Mohr’s Circle of Stresses for the following cases: 

 1. A body subjected to a direct stress in one plane. 

 2. A body subjected to direct stresses in two mutually perpendicular directions. 

 3. A body subjected to a simple shear stress. 

 4. A body subjected to a direct stress in one plane accompanied by a simple shear 

stress. 
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 5. A body subjected to direct stresses in two mutually perpendicular directions 

accompanied by a simple shear stress. 

 
 

Mohr’s Circle for Stresses on an Oblique Section of a Body Subjected to a Direct Stress 

in One Plane 

 

    
 

 
 

Mohr’s Circle for Stresses on an Oblique Section of a Body Subjected to Direct Stresses 

in Two Mutually Perpendicular Direction 
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Example The stresses at a point of a machine component are 150 MPa and 50 MPa both 

tensile. Find the intensities of normal, shear and resultant stresses on a plane inclined at an 

angle of 55° with the axis of major tensile stress. Also find the magnitude of the maximum 

shear stresses in the component.  

Given:  

 Tensile stress along horizontal x-x axis (sx) = 150 MPa   

 Tensile stress along vertical y-y axis (sy) = 50 MPa and  

 Angle made by the plane with the axis of major tensile stress (θ) = 55°. 

The given stresses on the planes AC and BC in the machine component are shown. 
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Mohr’s Circle for Stresses on an Oblique Section of a Body Subjected to a Direct 

Stresses in One Plane Accompanied by a Simple Shear Stress 
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Example A plane element in a body is subjected to a tensile stress of 100 MPa accompanied 

by a clockwise shear stress of 25 MPa. Find (i) the normal and shear stress on a plane 

inclined at an angle of 20° with the tensile stress; and (ii) the maximum shear stress on the 

plane. 

Given:  

 Tensile stress along horizontal x-x axis (σx) = 100 MPa  

 Shear stress (τxy) = 25 MPa and  

 angle made by plane with tensile stress (θ) = 20° 

 

 
 

Mohr’s Circle for Stresses on an Oblique Section of a Body Subjected to Direct Stresses 

in Two Mutually Perpendicular Directions Accompanied by a Simple Shear Stress 
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Example A point is subjected to a tensile stress of 250 MPa in the horizontal direction and 

another tensile stress of 100 MPa in the vertical direction. The point is also subjected to a 

simple shear stress of 25 MPa, such that when it is associated with the major tensile stress, it 

tends to rotate the element in the clockwise direction. What is the magnitude of the normal 

and shear stresses inclined on a section at an angle of 20° with the major tensile stress? 

Given:  

 Tensile stress in horizontal direction (σx) = 250 MPa  

 Tensile stress in vertical direction (σy) = 100 MPa  

 Shear stress (τ) = 25 MPa and  

 angle made by section with major tensile stress (θ) = 20° 
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UNIT 2 BENDING MOMENT IN BEAMS AND TORSION OF SHAFTS 



 

 

 

 

BEAM  

  
 

Classification of Beams:  
 

Beams are classified on the basis of their geometry and the manner in which they are 

supported. 
 

Cantilever Beam: A beam which is supported on the fixed support is termed as a cantilever 

beam: Now let us understand the meaning of fixed support. Such a support is obtained by 

building a beam into a brick wall, casting it into concrete or welding the end of the beam. 

Such a support provides both the translational and rotational constrainment to the beam, 

therefore the reaction as well as the moments appears, as shown in the figure below 
 

Simply Supported Beam: The beams are said to be simply supported if their supports creates 

only the translational constraints. 
 

Some times the translational movement may be allowed in one direction with the help of 

rollers and can be represented like this 

 

 

 

 
Fig 2.1 Classification of Beams 

 

 
 

Supports and Loads   

 Types of beams: Supports and Loads  

 

In many engineering structures members are required to resist forces that are applied laterally 

or transversely to their axes. These type of members are ter ed as beam. There are various 

ways to define the beams such as 
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Fig 2.2 Types of Supports 

 

Definition I: A beam is a laterally loaded member, wh se cr ss-sectional dimensions are small 

as compared to its length.  
Definition II: A beam is nothing simply bar which is subjected to forces or couples that lie in a 

plane containing the longitudnal axis of the bar. The forces are understood to act 

perpendicular to the longitudnal axis of the b r. 
 

Definition III: A bar working under bending is generally termed as a beam. 
 

2.3 Materials for Beam: 
 

The beams may be made from several usable engineering materials such commonly among 

them are as follows: 
 

Metal 
 

Wood 
 

Concrete 
 

Plastic 

 
 

Types of loads acting on beams: 

 

A beam is normally horizontal where as he ex ern l loads acting on the beams is generally in 

the vertical directions. In order to study he behaviors of beams under flexural loads. It 

becomes pertinent that one must be f mili r with the various types of loads acting on the beams 

as well as their physical manifestations. 

 

A. Concentrated Load: It is a kind of oad which is considered to act at a point. By this we 

mean that the length of beam over wh ch the force acts is so small in comparison to its total 

length that one can model the force as though applied at a point in two dimensional view of 

beam. Here in this case, force or load may be made to act on a beam by a hanger or though 

other means 
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B. Distributed Load: The distributed load is a kind of load which is made to spread over a 

entire span of beam or over particular portion of the beam in some specific manner 

 

In the above figure, the rate of loading „q' is a function of x i.e. span of the beam, hence this 

is a non uniformly distributed load. 

 

 
Fig 2.3 Types of Loads 

 

 

The rate of loading „q' over the length of the beam may be uniform over the entire span of 

beam, then we cell this as a uniformly distributed load (U.D.L). The U.D.L may be represented 

in either of the way on the beams 

 

some times the load acting on the beams may be the uniformly varying as in the case of dams 

or on inclind wall of a vessel containing liquid, then this may be represented on the beam as 

below: 

 

The U.D.L can be easily realized by making idealization of the ware house load, where the 
 
  

 Shear force and Bending Moment in beams 
 

Concept of Shear Force and Bending moment in beams: 

 

When the beam is loaded in some arbitrarily manner, the internal forces and moments are 

developed and the terms shear force and bending moments come into pictures which are 

helpful to analyze the beams further. Let us define these terms 

 

Now let us consider the beam as shown in fig 1(a) which is supporting the loads P1, P2, P3 

and is simply supported at two points creating the reactions R1 and R2respectively. Now let 

us assume that the beam is to divided into or imagined to be cut into two portions at a section 

AA. Now let us assume that the resultant of loads and reactions to the left of AA is „F' 

vertically upwards, and since the entire beam is to remain in equilibrium, thus the 
 

resultant of forces to the right of AA must also be F, a ting downwards. This forces „F' is as a 
shear force. The shearing for ceat any x-section of a beam represents the tendency for the portion 
of the beam to one side of the section to lide or hear laterally relative to the other 
portion. 

 

Therefore, now we are in a position to define  he shear force „F' to as follows: 

 

At any x-section of a beam, the she r force „F' is the algebraic sum of all the lateral components 

of the forces cting on either si e of the x-section. 

 

http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/


 
Fig 2.4 Shear force and Bending Moment Diagram 

 
 

 

Bending Moment and Shear Force Diagrams: 

 

The diagrams which illustrate the variations in B.M and S.F values along the length of the 

beam for any fixed loading conditions would be helpful to analyze the beam further. 

 

Thus, a shear force diagram is a graphical plot, which depicts how the internal shear force „F' 

varies along the length of beam. If x dentotes the length f the beam, then F is function x i.e. 

F(x).  
Similarly a bending moment diagram is a graphical plot which depicts how the internal bending 

moment „M' varies along the length of the beam Again M is a function x i.e. M(x). 
 

 

Construction of shear force and bending moment diagrams: 

 

A shear force diagram an be constructed from the loading diagram of the beam. In order to 

draw this, first the reactions must be determined always. Then the vertical components of 

forces and reactions are successively summed from the left end of the beam to preserve the 

mathematical sign conventions adopted. The shear at a section is simply equal to the sum of 

all the vertical forces to the left of the section. 

It may also be observed that a constant shear force produces a uniform change in the bending 

moment, resulting in straight line in the moment diagram. If no shear force exists along a 

certain portion of a beam, then it indicates that there is no change in moment takes place. It 

may also further observe that dm/dx= F therefore, from the fundamental theorem of calculus 

the maximum or minimum moment occurs where the shear is zero. In order to check the 

validity of the bending moment diagram, the terminal conditions for the moment must be 

satisfied. If the end is free or pinned, the computed sum must be equal to zero. If the end is 

built in, the moment computed by the summation must be equal to the one calculated initially 

for the reaction. These conditions must always be satisfied. 
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Cantilever beams – problems 

 

 
 

Cantilever with a point load at the free end:  
 

 Mx = - w.x            
                   

W.K.T  M = EI. d
2 

          
                         

           dx
2 

         

EI. d
2
y = - w.x                   

                         

dx
2 

                       
on integrating we get           

  EI. dy =  -wx
2 

+  1       

   dx 2           

Integrating again           

  EI.y =  - wx
3 

+  1x + c2  

       6           

Boundary conditions           

   i)            when x = L , slope dy/dx = 0  

   ii)            when x = L, deflection y = 0  

Applying the first B C to eqn (1)  

   0 = -  l
2 + c1  c1 = wl

2    

Applying the second B.C to eqn (2)  

  0 = -  l3 + c1l + c2  

       6                

  C2 = -wl3            

       3                

Sub c1,c2 values in slope eqn we get  

  EI.dy = -wx
2
 + wl

2 
 

                 

   dx 2    2       

Max. slope eqn can be obtained by x = 0  

  EI. dy = 0 + wl
2   ?B = wl

2   

   dx         2    2EI  

                    

                    

Sub c1,c2 values in deflection eqn we get 

EI.y = -wx
3
+ wl

2
.x – wl

3 

 2  2   6    

Max. deflection can be obtained by x = 0 

EI.yB  = 0 – 0 – wl
3   yB = wl

3  

  3    3EI 
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Cantilever with a point load at a distance of ‘a’ from free end: 
 

?B = ?c = w(l-a)
2 

 

  2EI   

yB = w(l-a)
3 

+ w(l-a)
2 
.a yc = w(l-a)

3 

 3EI   2EI 3EI  

 

When the load acts at mid span: 
 

yB = 5wl
3 

 

 48EI   

Cantilever with UDL:   

?B = wl
3 
 yB  = wl

4 

2EI 8EI 

 

Cantilever with UDL from f xed end: 

 

?B = ?c = w(l-a)
3 

 

6EI 
 

yB = w(l-a)
4 

+ (l-a)
3 

.a yc = w(l-a)
4 

 8EI 6EI 8EI 

 

When a = l/2  ie. UDL acting half of the length 
 

yB = 7 l
3 

 

384EI 

 

Cantilever with UDL from free end: 
 

?B = wl
3
 _ w(l-a)

3 
 

6EI 6EI 
 
  

 

yB = wl
4
 _ w(l-a)

4
  + w(l-a)

3
  . a 

 

8EI 8EI 6EI 
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A cantilever of length carries a concentrated load ‘W' at its free end. 

 

Draw shear force and bending moment.  

 

Solution:  
At a section a distancecivildatasxfromfreeendconsiderthe forces to the left, then F = -

W (for all values of x) -ve sign means the shear force to the left of the x-section are in 

downward 

direction and therefore negative 

 

Taking moments about the section gives (obviously to the left of the section) 

 

M = -Wx (-ve sign means that the moment on the left hand side of the portion is in the 

anticlockwise direction and is therefore taken as –ve according to the sign convention) 

 

so that the maximum bending moment occurs at the fixed end i.e. M = -W l 
 
 

Simplysupported beam -problems 
 

Simply supported beam subjected to central load (i.e. load acting at the mid-way) 

 

By symmetry the reactions at the two supports would be W/2 and W/2. now consider 

any section X-X from the left end then, the beam is under the action of following 

forces. 

 

.So the shear force at any X-section would be = W/2 [Which is constant upto x < l/2] 

 

If e consider another section Y-Y which is beyond l/2 then 

 

for all values greater = l/2 

 

SSB with central point load: 
 

?B = -wl
3 

yB  = wl
4 

 
 

 

Cantilever with UVL:   

?B = wl
3 

 yB  = wl
4 

24EI 30EI 
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16EI 30EI 

 

SSB with eccentric point load: 
 

?B = -wab  (b+2a) ymax  =  -wa (b
2
 + 2ab)

3/2 

6EIL 9v3 EIL  

 

If a >b then 

ymax  =  -wb (a
2
 + 2ab)

3/2 
 

9v3 EIL 

 

SSB with UDL:    

?B = wl
3 

 yB  = 5wl
4 
 

24EI 
 civildat as  

384EI   

Overhanging beams - problems 
 

In the problem given below, the intensity of loading varies from q1 kN/m at 

one end to the q2 kN/m at the other end.This problem c n be treated by considering a 

U.d.i of intensity q1 kN/m over the entire span and a uniformly varying load of 0 to ( 

q2- q1)kN/m over the entire span and then super impose teh two loadings. 

 

Point of Contraflexure: 

 

Consider the loaded beam a shown be ow along with the shear force and Bending 

moment diagrams for It may be observed that this case, the bending moment diagram is 

completely positive so that the cur ature of the beam varies along its length, but it is 

always concave upwards or sagging.However f we consider again a loaded beam as 

shown below along with the S.F and B.M diagrams, then 

 

It may be noticed that for the beam loaded in this case, 

 

The bending moment diagram is partly positive and partly negative.If we plot the 

deflected shape of the beam just below the bending moment 

 

This diagram shows that L.H.S of the beam „sags' while the R.H.S of the beam „hogs' 

 

The point C on the beam where the curvature changes from sagging to hogging is a 

point of contraflexure. 

 

OR 
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It corresponds to a point where the bending moment changes the sign, hence in order to 

find the point of contraflexures obviously the B.M would change its sign when it cuts 

the X-axis 

 

therefore to get the points of contraflexure equate the bending moment equation equal 

to zero.The fibre stress is zero at such sections 

 

 

Bending Stresses in Beams or Derivation of Elastic Flexural formula : 

 

In order to compute the value of bending stresses developed in a loaded beam, let us 

consider the two cross-sections of a beam HE and GF , originally parallel as shown in 

fig 1(a).when the beam 

 

is to bend it is assumed that these sections remain parallel i.e. H'E' and G'F' , the final 
 
 

position of the sections, are still straight lines, they then subtend some angle q. 

 

Consider now fiber AB in the material, at adistance y from the N.A, when the beam 

bends this will stretch to A'B' 

 

Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the neutral 

axis zero. Therefore, there won't be any strain on the neutral axis 

 

Consider any arbitrary a cross-section of beam, as shown above now the strain on a fibre 

at a distance „y' from the N.A, is given by the expression 

 

Now the termis the property of the material and is called as a sec nd moment of area of 

the cross-section and is denoted by a symbol I. 
  

Therefore M/I = sigma/y = E/R 

This equation is known as the Bending Theory Equation. The above proof has involved 

the assumption of pure bending without any she r force being present. Therefore this termed 

 

as the pure bending equation. This equa ion gives distribution of stresses which are 

normal to cross-section i.e. in x-direction. 
 

 

Stress variation along the length and in the beam 

section Bending Stress and Deflection Equation 

 

In this section, we consider the case of pure bending; i.e., where only bending stresses 

exist as a result of applied bend ng moments. To develop the theory, we will take the 

phenomenological approach to de elop what is called the “Euler-Bernoulli theory of 

beam bending.” Geometry: Cons der long slender straight beam of length L and cross-
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sectional area A. We assume the beam is prismatic or nearly so. The length dimension 

is large compared to the dimensions of the cross-section. While the cross-section may 

be any shape, we will assume that it is symmetric about the y axis 

 

Loading: For our purposes, we will consider shear forces or distributed loads that are 

applied in the y direction only (on the surface of the beam) and moments about the z-

axis. We have consider examples of such loading in ENGR 211 previously and some 

examples are shown belo : 

 

Kinematic Observations: In order to obtain a “feel” for the kinematics (deformation) of 

a beam subjected to pure bending loads, it is informative to conduct an experiment. 

Consider a rectangular lines have been scribed on the beam’s surface, which are parallel 

to the top and bottom surfaces (and thus parallel to a centroidally placed x-axis along 

the length of the beam). Lines are also scribed around the circumference of the beam so 

that they are perpendicular to the longitudinals (these circumferential lines form flat 

planes as shown). The longitudinal and circumferential lines form a square grid on the 

surface. The beam is now bent by moments at each end as shown in the lower 

photograph. After loading, we note 
 

that the top line has stretched and the bottom line has shortened (implies that there is 

strain exx). If measured carefully, we see that the longitudinal line at the center has not 

changed length (implies that exx = 0 at y = 0). The longitudinal lines now appear to form 

concentric circular lines. 

 

We also note that the vertical lines originally perpendicular to the longitudinal lines 

remain straight 

 

and perpendicular to the longitudinal lines. If measured carefully, we will see that the 

vertical lines remain approximately the same length (implies eyy = 0). Each of the 

vertical lines (as well as the planes they form) has rotated and, if extended downward, 

they will pass through a common point that forms the center of the concentric l 

ngitudinal lines (with some radius ?). The flat planes originally normal to the 

longitudinal axis remain essentially flat planes and remain normal to the deformed 

longitudinal lines. The squares on the surface are 
 

now quadrilaterals and each appears to have tension (or compression) stress in the 
longitudinal direction (since the horizontal lines of a quare have changed length). 
However,  

in pure bending we make the assumption that. If the x-axis is along the length of beam 

and the y-axis is normal to the beam, this suggests th t we have an axial normal stress 

sxx that is tension above the x-axis and compression below the y-axis. The remaining 

normal stresses syy and szz will generally be negligible for pure bending about the z-

axis. For pure bending, all shear stresses are assumed to be zero. Consequently, for pure 

bending, the stress matrix reduces to zero. 
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 Effect of shape of beam section on stress induced 
 

CIRCULAR SECTION : 

 

For a circular x-section, the polar moment of inertia may be computed in the following 

manner 

 

Consider any circular strip of thickness dr located a radius 'r'. 

 

Than the area of the circular strip would be dA = 2pr. dr 

 

Thus 

 

Parallel Axis Theorem: 

 

The moment of inertia about any axis is equal to the moment of inertia about a parallel 

axis through the centroid plus the area times the square of the distance between the 

axes. 

 

If „ZZ' is any axis in the plane of cross-section and „XX' is a parallel axis through the 

centroid G, of the cross-section, then 

 

Rectangular Section: 

 

For a rectangular x-section of the beam, the second moment of area may be computed 

as below : 

 

Consider the rectangular beam cross-section as shown above and an element of area dA 

, thickness dy , breadth B located at a distance y from the neutral axis, which by 

symmetry passes through the centre of section. The second moment of area I as defined 

earlier would be 

 

Thus, for the rectangular section the second moment of area about the neutral axis i.e., 

an axis through the centre is given by 

 

Similarly, the second moment of area of the rectangular secti n about an axis through 

the lower edge of the section would be found using the same pr cedure but with integral 

limits of 0 to D . 
  

Therefore  
 

These standards formulas prove very convenient in the determination of INA for build 

up sections which can be conveniently divided in o rect ngles. For instance if we just 

want to find out the Moment of Inertia of an I - sec ion, hen we can use the above 

relation. 

 

Let us consider few examples to determaine the sheer stress distribution in a given 

X-sections 
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Rectangular x-section: 

 

Consider a rectangular x-section of dimension b and d 

 

A is the area of the x-sect on cut off by line parallel to the neutral axis. is the distance 

of the centroid of A from the neutral axis 

 

This shows that there is a parabolic distribution of shear stress with y. 

 

The maximum value of shear stress would obviously beat the location y = 0. 

 

Therefore the shear stress distribution is shown as below. 

 

It may be noted that the shear stress is distributed parabolically over a rectangular cross-

section, it is maximum at y = 0 and is zero at the extreme ends. 

 

I - section : 

 

Consider an I - section of the dimension shown below. 
 
 

The shear stress distribution for any arbitrary shape is given as 

 

Let us evaluate the quantity, thequantity for this case comprise the contribution due to 

flange area and web area 

 

Flange area 

 

Web Area 

 

To get the maximum and minimum values of t substitute in the above relation. 

 

y = 0 at N. A. And y = d/2 at the tip. 

 

The maximum shear stress is at the neutral axis. i.e. for the ondition y = 0 at N. A.  
Hence, ..........(2)  

 

The minimum stress occur at the top of the web, the term bd 2 goes off and shear stress 

is given by the following expression 

 

............(3) 

 

The distribution of shear stress may be rawn as below, which clearly indicates a 

parabolic distribution 
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Note: from the above distribut on we can see that the shear stress at the flanges is not 

zero, but it has some value, this can be analyzed from equation (1). At the flange tip or 

flange or web interface y = d/2.Ob ously than this will have some constant value and 

than onwards this will have parabol c str bution. 

 

In practice it is usually found that most of shearing stress usually about 95% is carried 

by the web, and hence the shear stress in the flange is neglible however if we have the 

concrete analysis i.e. if e analyze the shearing stress in the flange i.e. writing down the 

expression for shear stress for flange and web separately, we will have this type of 

variation. 

 

This distribution is known as the "top – hat" distribution. Clearly the web bears the most 

of the shear stress and bending theory we can say that the flange will bear most of the 

bending stress. 

 

Shear stress distribution in beams of circular cross-section: 

 

Let us find the shear stress distribution in beams of circular cross-section. In a beam of 

circular cross-section, the value of Z width depends on y. 

 

Using the expression for the determination of shear stresses for any arbitrary shape or 

a 
 

arbitrary section. 

 

Where òy dA is the area moment of the shaded portion or the first moment of area. 

 

Here in this case „dA' is to be found out using the Pythagoras theorem 

 

The distribution of shear stresses is shown below, which indicates a parabolic 

distribution 

 

 

 

Principal Stresses in Beams 

 

It becomes clear that the bending stress in beam sx is not a principal stress, since at any 

distance y from the neutral axis; there is a shear stress t ( r txy we are assuming a plane 

stress situation) 
 

 

In general the state of stress at a distance y from the neutral axis will be as 

follows. At some point „P' in thecivildatasbeam,thevalueofbendingtre es is 

given as 
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After substituting the appropriate values in he bove expression we may get the 

inclination of the principal planes. 

 

Illustrative examples: Let us study some illustrative examples, pertaining to 

determination of principal stresses in beam 

 

1. Find the principal stress at a po nt A in a uniform rectangular beam 200 mm deep and 

100 mm wide, simply supported at each end over a span of 3 m and carrying a uniformly 

distributed load of 15,000 N/m. 

 

Solution: The reaction can be determined by 

symmetry R1 = R2 = 22,500 N 

 
consider any cross-section X-X located at a distance x from the left end. 

 

Hence, 

 

S. F at XX =22,500 – 15,000 x 

 

B.M at XX = 22,500 x – 15,000 x (x/2) = 22,500 x – 15,000 . x2 / 2 

 

Therefore, 

 

S. F at X = 1 m = 7,500 N 
 

 

B. M at X = 1 m = 15,000 N 

 

Now substituting these values in the principal stress equation, 

 

We get s1 = 11.27 MN/m2 

 

s2 = - 0.025 MN/m2 

 

 

Bending Of Composite or Flitched Beams 

 

A composite beam is defined as the one which is constructed from a combination of 

materials. If such a beam is formed by rigidly bolting t gether two timber joists and a 

reinforcing steel plate, then it is termed as a flitched beam.  
The bending theory is valid when a constant value of Young's modulus applies across a 

section it cannot be used directly to solve the compo ite-beam problems where two different 
 

materials, and therefore different values of E, exi ts. The method of solution in such a 

case is to replace one of the materials by an equivalent section of the other. 
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Consider, a beam as shown in figure in which a s eel plate is held centrally in an 

appropriate recess/pocket between two blocks of wood .Here it is convenient to replace 

the steel by an equivalent area of wood, retaining the same bending strength. i.e. the 

moment at any section must be the same in the equivalent section as in the original 

section so that the force at any given dy in the equivalent beam must be equal to that at 

the strip it replaces. 

 

Hence to replace a steel strip by an equivalent wooden strip the thickness must be 

multiplied by the modular ratio E/E'. 

 

The equivalent section s then one of the same materials throughout and the simple 

bending theory applies. The stress in the wooden part of the original beam is found 

directly and that in the steel found from the value the same point in the equivalent 

material as follows by utilizing the given relations. 

 

Stress in steel = modular ratio x stress in equivalent wood 

 

The above procedure of course is not limited to the two materials treated above but 

applies well for any material combination. The wood and steel flitched beam was nearly 

chosen as a just for the sake of convenience. 

 

Assumption 

 

In order to analyze the behavior of composite beams, we first make the assumption that 

the materials are bonded rigidly together so that there can be no relative axial movement 

between them. This means that all the assumptions, which were valid for homogenous 

 

beams are valid except the one assumption that is no longer valid is that the Young's 

Modulus is the same throughout the beam. 

 

The composite beams need not be made up of horizontal layers of materials as in the 

earlier example. For instance, a beam might have stiffening plates as shown in the figure 

below. 

 

Again, the equivalent beam of the main beam material can be formed by scaling the 

breadth of the plate material in proportion to modular ratio. Bearing in mind that the 

strain at any level is same in both materials, the bending stresses in them are in 

proportion to the Young's modulus. 
 

Shear stresses in beams 
 

When a beam is subjected to non uniform bending, both bending moments, M, and 

shear forces, V, act on the cross section. The normal stresses, sx, associated with the 

bending  
moments are obtained from the flexure formula. We will now consider the distribution of 
shear stresses, t, associated with the shear force, V Let us begin by examining a beam of 
rectangular cross section. We can reasonably a ume that the shear stresses t act parallel to  
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the shear force V. Let us also assume that the distribution of shear stresses is uniform 

across the width of the beam. 

 

Solved Problems  

 

Problem 1  

 

A Beam of Total length 8m is freely supported at a left end & at a point 6m from left end. 

It carries 2 points floats of 15KN & 18KN. In which one is at the free end and another is 

3m from the left support. Draw the shear force and bending moment diagram. Locate the 

point of contraflexture. 

 Solution : 

To fine the support reactions:                    

Taking moment about A,                         

(Rc                                                           6) –(18  3) –(10  8) = 0     

6 Rc                                                          =          54+120       

Rc                                                             =          174/6 

Rc                                                             =          29 KN         

RA + Rc                                                   =          18+15                   

RA + 29                                                   =          33               

RA                                                           =          4 KN           

To fine Shear force:                                                       

Shear force at D                                       =          15 KN         

Shear force at C                                       =          29 KN +15 = -14 KN 

Shear force at B                                       =          -14+18        = 4 KN 

Shear force at A                                       =          4 KN 

To find bending moment                                                

Bending Moment at D =                           0                    

Bending Moment at C =                           -(15      2)      =       - 30 KNm 

Bending Moment at B =                           -(15      5)+(29         3)      

Bending Moment at A =                           -(15      8) +(29        6)-(18          3) 

   

=                   -120-54+174 

  

=                   0 
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Problem-2: 

 The cross section of the beam is shown is beam is cantiliver type &carries a UDL of 

16KN/m. If the span of beam is 2.5m. Determine the maximum tension & Compressible 

stress in the beam. 

 

 solution: Section (1) :

 

 

  



 

 

 

  

Problem-3: 

  The cast iron bracket subjected to bending has a cross section of I-shaped with unequal 

flanges as shown. If the compressive force on the top of the flanges is not to exceed 17mega 

pa. What is the bending moment of the section can take if the section is subjected to a 

shear force of 90KN. Draw the shear stress distribution over the depth of the section. 

  

Solution: 

  



Area of section     (1)     =       lb 

  

=                   250  50 

  

 

 

 







 

 

Torsion 

 

In solid mechanics, torsion is the twisting of an object due to an applied torque. In 

sections perpendicular to the torque axis, the resultant shear stress in this section is 

perpendicular to the radius. 

 

http://en.wikipedia.org/wiki/Solid_mechanics
http://en.wikipedia.org/wiki/Torque
http://en.wikipedia.org/wiki/Shear_stress


For solid shafts of uniform circular cross-section or hollow circular shafts with constant 

wall thickness, the torsion relations are: 

where:
 R is the outer radius of the shaft. e.m,ft.s 

 t is the maximum shear stress at the ou er surface. 

 

 f is the angle of twist in radians. 

 

 T is the torque (N·m or ft·lbf). 

 

 l is the length of the object the torque is being applied to or over. 

 

 G is the shear modulus or more commonly the modulus of rigidity and is usually 

given in gigapascals (GPa), bf/in
2
 (psi), or lbf/ft

2
. 

 J is the torsion constant for the section. It is identical to the polar moment of 

inertia for a round shaft or concentric tube only. For other shapes J must be 

determined by other means. For solid shafts the membrane analogy is useful, 

and for thin walled tubes of arbitrary shape the shear flow approximation is fairly 

good, if the section is not re-entrant. For thick walled tubes of arbitrary shape 

there is no simple solution, and finite element analysis (FEA) may be the best 

method. 

 The product GJ is called the torsion. 

 

Stepped shaft ,Twist and torsion stiffness – Compound shafts – Fixed and 
 

simply supported shafts 
 

Shaft: The shafts are the machine elements which are used to transmit power in 

machines. 

 

Twisting Moment: The twisting moment for any section along the bar / shaft is 

defined to be the algebraic sum of the moments of the applied couples that lie to one 

side of the section under consideration. The choice of the side in any case is of course 

arbitrary. 

 

Shearing Strain: If a generator a ?? b is marked on the surface of the unloaded bar, 

then after the twisting moment 'T' has been applied this line moves to ab'. The angle ???' 
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measured in radians, between the final and original positions of the generators is defined 

as the shearing strain at the surface of the bar or shaft. The same definition will hold at 

any interior point of the bar. 

 

Modulus of Elasticity in shear: The ratio of the shear stress to the shear strain is called 

the modulus of elasticity in shear OR Modulus of Rigidity and in represented by the 

symbol 

 

Angle of Twist: If a shaft of length L is subjected to a c nstant twisting moment T along 

its length, than the angle ? through which one end of the bar will twist relative to the 

other is known is the angle of twist.  
Despite the differences in the forms of loading, we that there are number of similarities 

between bending and torsion, including for example, a linear variation of stresses and strain 

with position. 

 

In torsion the members are subjected to momen s (couples) in planes normal to their 

axes. 

 

For the purpose of desiging a circular shaft to withstand a given torque, we must develop 

an equation giving the relation between twisting moment, maximum shear stress 

produced, and a quantity representing the size and shape of the cross-sectional area of 

the shaft. 

 

Not all torsion problems, involve rotating machinery, however, for example some types 

of vehicle suspension system employ torsional springs. Indeed, even coil springs are 

really curved members in tors on shown in figure. 

 

Many torque carrying engineering members are cylindrical in shape. Examples are drive 

shafts, bolts and screw drivers. 

 

Simple Torsion Theory or Development of Torsion Formula : Here we are basically 

interested to derive an equation between the relevant parameters 

 

Assumption: 

(i) The materiel is homogenous of uniform elastic properties exists throughout the 

material. 
 

(ii) The material is elastic, follows Hook's l w, with shear stress proportional to shear 
strain. 

 

(iii) The stress does not exceed the elastic limit. 

 

(iv) The circular section remains circular 

 

(v) Cross section remain plane. 
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(vi) Cross section rotate as if r g .e. every diameter rotates through the same angle. 

 

Consider now the sol d c rcular shaft of radius R subjected to a torque T at one end, the 

other end being fixed Under the act on of this torque a radial line at the free end of the 

shaft twists through an angle , point A moves to B, and AB subtends an angle ' at the 

fixed end. This is then the angle of distortion of the shaft .e the shear strain. 

 

Since angle in radius = arc / Radius 

 

arc AB = R? 

 

= L ? [since L and ? also constitute the 

arc AB] Thus, ? = R? / L (1) 

 
From the definition of Modulus of rigidity or Modulus of elasticity in shear. 

 

T = applied external Torque, which is cons ant over Length L; 

J = Polar moment of Inertia   

[ D = Outside diameter ; d = insi  e iameter ]  

 

G = Modules of rigidity (or Modulus of elasticity in shear) 

 

? = It is the angle of tw st  n radians on length L. 

 

 
 

Problem 1  

 

A stepped solid circular shaft is built in at its ends and subjected to an externally applied 

torque. T0 at the shoulder as shown in the figure. Determine the angle of rotation ?0 of 

the shoulder section where T0 is applied ? 

 

Solution: This is a statically indeterminate system because the shaft is built in at both 

ends. All that e can find from the statics is that the sum of two reactive torque TA and 

TB at the built ?? in ends of the shafts must be equal to the applied torque T0 

 

Thus TA+ TB = T0 ------ (1) 

 

[from static principles] 

 

Where TA ,TB are the reactive torque at the built in ends A and B. wheeras T0 is the 

applied torque 
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From consideration of consistent deformation, we see that the angle of twist in each 

portion of the shaft must be same. 

 

i.e ?a = ? b = ? 0 

 

using the relation for angle of twist 

 

N.B: Assuming modulus of rigidity G to be same for the two p rti  ns  

 

So the defines the ratio of TA and TB So by 

solving (1) & (2) we get 

Non Uniform Torsion: The pure torsion refers o torsion of a prismatic bar subjected to 

torques acting only at the ends. While the non uniform torsion differs from pure torsion 

in a sense that the bar / shaft need not to be prism tic and the applied torques may vary 

along the length. 

 

Here the shaft is made up of two ifferent segments of different diameters and having 

torques applied at several cross sect ons. Each region of the bar between the applied 

loads between changes in cross sect on n pure torsion, hence the formula's derived 

earlier may be applied. Then form the internal torque, maximum shear stress and angle 

of rotation for each region can be calculated from the relation 

 

The total angle to twist of one end of the bar with respect to the other is obtained by 

summation using the formula 

 

If either the torque or the cross section changes continuously along the axis of the bar, 

then the ? (summation can be replaced by an integral sign ( ? ). i.e We will have to 

consider a differential element. 

 

After considering the differential element, we can write 

 

Substituting the expressions for Tx and Jx at a distance x from the end of the bar, and 

then integrating between the limits 0 to L, find the value of angle of twist may be 

determined. 
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1. FLUID PROPERTIES FLUID PROPERTIES – SMEA1306 

Fluid Properties: Density - Specific Weight - Specific Gravity - Viscosity - Surface 

tension - Capillarity - compressibility. Fluid Statics: Hydrostatic Law - Pressure 

Variation in static fluid - Hydrostatic force on a submerged plane surface - Location of 

hydrostatic force. Manometers - Simple U tube and differential manometers - Buoyancy 

- Meta-centric height - determination of stability of floating bodies and submerged 

bodies.  

 

Fluids: Substances capable of flowing are known as fluids. Flow is the continuous 

deformation of substances under the action of shear stresses. 

Fluids have no definite shape of their own, but confirm to the shape of the containing vessel. 

Fluids include liquids and gases. 

Fluid Mechanics: 

Fluid mechanics is the branch of science that deals with the behavior of fluids at rest as well 

as in motion. Thus, it deals with the static, kinematics and dynamic aspects of fluids. 

The study of fluids at rest is called fluid statics. The study of fluids in motion, where pressure 

forces are not considered, is called fluid kinematics and if the pressure forces are also 

considered for the fluids in motion, that branch of science is called fluid dynamics. 

1. Density (or) Mass Density: 

Density or mass density of a fluid is defined as the ratio of the mass of the fluid to its volume. 

Thus, Mass per unit volume of a fluid is called density. 

                          

                  S.I unit of density is kg/m3. The value of density for water is 1000 kg/m3 

2. Specific weight (or) Weight Density (w): 

Specific weight or weight density of a fluid is the ratio between the weights of a fluid to its 

volume. 

                                

S.I unit of specific weight is N/m3 .  

The value of specific weight or weight density of water is 9810N/m3 or 9.81 kN/m³.  
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3. Specific Volume (ʋ): 

Specific volume of a fluid is defined as the volume of a fluid occupied by unit mass. 

Volume per unit mass of a fluid is called Specific volume. 

 

              

                 Thus specific volume is the reciprocal of mass density. S.I unit: m3 /kg  

 

                                                                                                                                   

4.Specific Gravity (s): 

Specific gravity is defined as the ratio of the specific weight of a fluid to the specific weight 

of a standard fluid. 

 

                                

5.Viscosity: 

Viscosity is defined as the property of a fluid which offers resistance to the movement of one 

layer of fluid over adjacent layer of the fluid. When two layers of a fluid, at distance ‘dy’ 

apart, move one over the other at different velocities, say u and u+du as shown in figure. The 

viscosity together with relative velocity causes a shear stress acting between the fluid 

layers.The top layer causes a shear stress on the adjacent lower layer while the lower layer 

causes a shear stress on the adjacent top layer.This shear stress is proportional to the rate of 

change of velocity with respect to y. 

                                  

           Fig.3.1 Velocity distribution curve 
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6. Newtons law of viscosity: The shear stress between two layers is proportional to the rate 
of change of velocity with respect to y.  

 
                                                                                                                              

6. Compressibility: Compressibility is the reciprocal of the bulk modulus of elasticity, K, 

which is defined as the ratio of compressive stress to volumetric strain.  

                                           

Cohesion is due to the force of attraction between molecules of same liquid  

Adhesion is defined as the force of attraction between the molecules of two different liquids 

or between the molecules of the liquid and molecules of the solid boundary surface.  

7. Surface tension: Surface tension is defined as the tensile force acting on the surface of a 

liquid in contact with a gas or on the surface between two immiscible liquids such that the 

contact surface behaves like a membrane under tension.  

 

 

                 Fig.3.2 Forces on droplet 

Surface Tension on Liquid Droplet: 

Consider a small spherical droplet of a liquid of diameter ‘d’. On the entire surface of the 
droplet, the tensile force due to surface tension will be acting. 
Let σ = Surface tension of the liquid,p = Pressure intensity inside the droplet (in excess of 

the outside pressure intensity) d = Dia. of droplet.Let the droplet is cut into two halves. The 

forces acting on one half will be i) Tensile force (FT)due to surface tension acting around 

the circumference of the cut portion as shown in fig. and this is equal to = σ x 

Circumference = σ x π d Pressure force (Fp) on the area C= p x (π/4) d2 as shown in the 
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figure. These two forces are equal under equilibrium conditions. i.e 

Surface Tension on a Hollow Bubble: 

A hollow bubble like a soap bubble in air has two surfaces in contact with air, one inside 

and other outside. Thus two surfaces arc subjected to surface tension. In that case,     

 
 

8. Capillarity: 

Capillarity is defined as a phenomenon of rise or fall of a liquid surface in a small tube 

relative to the adjacent general level of liquid when the tube is held vertically in the liquid. 

The rise of liquid surface is known as capillary rise while the fall of the liquid surface is 

known as capillary depression. It is expressed in terms of cm or mm of liquid. Its value 

depends upon the specific weight of the liquid, diameter of the tube and surface tension of the 

liquid. 

Expression for Capillary Rise: 

Consider a glass tube of small diameter‘d' opened at both ends and is inserted in a liquid. The 

liquid will rise in the lube above the level of the liquid. 

 

 

 

 

 

 

               

                     Fig.3.3 Capillary Rise 

                

 

9. Vapour pressure: 

Vapour pressure is the pressure of the vapor over a liquid which is confined in a closed vessel 

at equilibrium. Vapour pressure increases with temperature. All liquids exhibit this 

phenomenon. 

10. Types of fluid 
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i. Ideal Fluid: A fluid, which is incompressible and is having no viscosity, is known as an 

ideal fluid.  

ii. Real Fluid: A fluid, which possesses viscosity, is known as real fluid. All the fluids, are 

real fluids in actual practice.  

 

 

 

 

 

 

 

                                                                      Fig.3.4 Types of fluid 

iii. Newtonian Fluid: A real fluid, in which the shear stress is directly proportional to the rate 

of shear strain (or) velocity gradient, is known as a Newtonian fluid  

iv. Non-Newtonian Fluid: A real fluid, in which the shear stress is not proportional to the 

rate of shear strain (or) velocity gradient, is known as a Non-Newtonian fluid.  

v. Ideal Plastic Fluid: A fluid, in which shear stress is more than the yield value and shear 

stress is proportional to the rate of shear strain (or) velocity gradient, is known as ideal plastic 

fluid 

Fluid pressure  

Fluid pressure is the force exerted by the fluid per unit area. Fluid pressure is transmitted with 

equal intensity in all directions and acts normal to any plane.  

                                                                      

S.I unit of fluid pressure are N/m² or Pa,  

where 1 N/m² = 1 Pa.  

Many other pressure units are commonly used: 

 1 bar = 105 N/m²  

1 atmosphere = 101325 N/m² = 101.325kN/m² = 1.01325 bar= 760mm of mercury = 

10.336m of water  

Pressure Head: The pressure intensity exerted at the base of a column of homogenous fluid 

of a given height in metres.  

Atmospheric Pressure: The pressure at the surface of the earth exerted by the head of air 

above the surface  

Gauge Pressure: The pressure measured by a pressure gauge above or below atmospheric 

pressure  
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Vacuum pressure: The gauge pressure less than atmospheric is called Vacuum pressure or 

negative pressure                                                                                                                        

Absolute Pressure: The pressure measured above absolute zero or vacuum.  

 

                                
                         Fig.3.5 Barometer, Atmospheric, Gauge and Absolute Pressure 

Fluid Pressure 

Fluid pressure is the force exerted by the fluid per unit area. 

Fluid pressure or Intensity of pressure or pressure, = Fluids exert pressure on surfaces with 

which they are in contact. 

Fluid pressure is transmitted with equal intensity in all directions and acts normal to any 

plane. In the same horizontal plane the pressure intensities in a liquid are equal. 

Hydrostatic law 

The hydrostatic law is a principle that identifies the amount of pressure exerted at a specific 

point in a given area of fluid. 

It states that, “The rate of increase of pressure in the vertically downward direction, at a point 

in a static fluid, must be equal to the specific weight of the fluid.” 

Pressure Variation in static fluid 

Consider a small vertical cylinder of static fluid in equilibrium. 

Pressure Variation in static fluid 

Consider a small vertical cylinder of static fluid in equilibrium. 
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                                            Fig 3.6 Pressure variation in static fluid 

Assume that the sectional area is “A” and the pressure acting upward on the bottom surface 

is p and the pressure acting downward on the upper surface (dz above bottom surface) is (p 

+ dp)dz. 
Let the free surface of the fluid be the origin, i.e., Z = 0. Then the pressure variation at a depth Z = - 

h below the free surface is governed by 

(p + dp) A + W = pA 

dpA + ρgAdz = 0 [W= w x volume = ρg Adz] dp = -ρgdz 
= - ρg = - w 

 

Therefore, the hydrostatic pressure increases linearly with depth at the rate of the specific weight, w 
= ρg of the fluid. 

If fluid is homogeneous, ρ is constant.  By simply integrating the above equation, ʃdp = - ʃρg dz =>

 p = - ρg Z + C Where C is constant of integration. 
When z = 0 (on the free surface), p = C = po = the atmospheric pressure. Hence, p = - ρgZ + po 

Pressure given by this equation is called absolute pressure, i.e., measured above perfect vacuum. 

However, it is more convenient to measure the pressure as gauge pressure by setting atmospheric 

pressure as datum pressure. By setting po = 0, 
p = -ρgz+0 = -ρgz = ρgh 

p = wh 

The equation derived above shows that when the density is constant, the pressure in a liquid at rest 
increases linearly with depth from the free surface. 

Here, h is known as pressure head or simply head of fluid. 

In fluid mechanics, fluid pressure is usually expressed in height of fluids or head of fluids. 

 

Hydrostatic force 

Hydrostatic pressure is the force exerted by a static fluid on a plane surface, when the static 

fluid comes in contact with the surface. This force will act normal to the surface. It is also 

known as Total Pressure. 

The point of application of the hydrostatic or total pressure on the surface is known as Centre 

of pressure. 

The vertical distance between the free surface of fluid and the centre of pressure is called 

depth of centre of pressure or location of hydrostatic force. 

 

 

Total Pressure on a Horizontally Immersed Surface 

Consider a plane horizontal surface immersed in a liquid as shown in figure. 
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Let, w = Specific weight of the liquid, kN/m³ A = Area of the immersed surface in m² 

= Depth of the horizontal surface from the liquid level in m We know that, 

Total pressure on the surface, P = Weight of the liquid above the immersed surface 

P = Specific weight of liquid x Volume of liquid 

= Specific weight of liquid x Area of surface x Depth of liquid P = wA kN 

Fig:3.7  Horizontal Plane surface submerged in liquid 

Total Pressure and depth of centre of pressure on a Vertically Immersed Surface 

Consider an irregular plane vertical surface immersed in a liquid as shown in figure. Let, 

w = Specific weight of liquid 

A = Total area of the immersed surface 

= Depth of the center of gravity of the immersed surface from the liquid surface 

Now. consider a strip of width ‘b’, thickness ‘dx’ and at a depth x from the free surface of 

the liquid 

                               
                                 Fig: 3.8 Vertical Plan immersed in liquid 

Moment of pressure on the strip about the free surface of liquid =   x b dx X x =  x² b dx Total 

moment on the entire plane immersed surface = ∫   x² b dx 

M = ∫ ² 

But, ∫  ² = second moment of area about free liquid surface = Io 

therefore, M =  Io 
Io = IG + A x², according to parallel axis theorem. 

 
                                                                                                                                      
 

Therefore, M =  (IG  + A x²) (1) 
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Also = x h =Ax xh (2) 
Since equations 1 & 2 are equal, 

           

A   x h = (IG + A x²) 

Depth of centre of pressure, h= (IG  + A x²) / A 

Total Pressure and depth of Centre of Pressure on an Inclined Immersed Surface 

Consider a plane inclined surface, immersed in a liquid as shown in figure. Let, 

w = Specific weight of the liquid 
A = Total area of the immersed surface 

x = Depth of the centroid of the immersed plane surface from the free surface of liquid. θ = Angle at 

which the immersed surface is inclined with the liquid 
Surface h= depth of centre of pressure from the liquid surface 

b = width of the considered thin strip dx = thickness of the strip 

O = the reference point obtained by projecting the plane surface with the free surface of liquid 

x = distance of the strip from O 

                                       

                        
 

Fig: 3.10  Inclined Immersed Plain 
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                              Table: M.I and Geometric Properties of some plane surfaces 
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Pascal's law 

The basic property of a static fluid is pressure. 

Pressure is the surface force exerted by a fluid against the walls of its container. Pressure also 

exists at every point within a volume of fluid. 

For a static fluid, as shown by the following analysis, pressure turns to be independent 

direction. 

    Fig: 3.11. Pascal Law 
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Consider a triangular prism of small fluid element ABCDEF in equilibrium. Let Px is the 

intensity of pressure in the X direction acting at right angle on the face ABFE, Py is the 

intensity of pressure in the Y direction acting at right angle on the face CDEF, and Ps is the 

intensity of pressure normal to inclined plane at an angle θ as shown in figure at right angle to 

ABC .. 

For a fluid at rest there will be no shear stress, there will be no accelerating forces, and 

therefore the sum of the forces in any direction must be zero. 

Thus the forces acting on the fluid element are the pressures on the surrounding and the 

gravity force. Force due to px = px x Area ABFE = px dydz 

Horizontal component of force due to pN = - (pN x Area ABC ) sin(θ) = - pNdNdz dy/ds = -

PNdydz As Py has no component in the x direction, the element will be in equilibrium, if 

px dydz + (-pNdydz) = 0 

i.e. px = pN 

Similarly in the y direction, force due to py = pydxdz 

Component of force due to pN = - (pN x Area ABC ) cos(θ) = - pNdsdz dx/ds = - pNdxdz 

Force due to weight of element is negligible and the equation reduces to, py = pN 

Therefore, px = py = pN 

Thus, Pressure at a point in a fluid at rest is same in all directions. 

Manometers: 

Manometer is an instrument for measuring the pressure of a fluid, consisting of a tube filled 

with a heavier  gauging liquid, the level of the liquid being determined by the fluid pressure 

and the height   of the liquid being indicated on a scale. A U-tube manometer consists of a 

glass tube bent in U-Shape, one end of which is connected to gauge point and the other end is 

exposed to atmosphere. 

Manometric liquids: 

1. Manometric liquids should neither mix nor have any chemical reaction 

with the liquid whose pressure intensity is to be measured. 

2. It should not undergo any thermal variation. 

3. Manometric liquid should have very low vapour pressure. 

4. Manometric liquid should have pressure sensitivity depending upon the 

magnitude of pressure to be measured and accuracy requirement. 

Simple U-Tube Manometer: It consist of glass tube in U shape one end of which is 

connected to a point at which pressure is to be measured and other end remains open to the 

atmosphere as shown in fig. The tube generally contains mercury or any other liquid whose 

specific gravity is greater than the specific gravity of the liquid whose pressure is to be 

measured. 

 
Fig: 3.12 Simple U tube Manometer 

                                                                                                                           



15 
 

For Gauge Pressure. Let B is the point at which pressure is to be measured, whose value is p. 

The datum line is A-A  Let,H1 = Height of light liquid above the datum line 

H2 = Height of heavier liquid above the datum line S1 = Specific gravity of light liquid 

ρ1 = Density of light liquid = 1000 x S1 S2 = Specific gravity of heavy liquid 

ρ2 = Density of heavy liquid = 1000 x S2 

 

Differential U-Tube Manometer: 

Let, A and B are the two pipes carrying liquids of specific gravity s1 

and s3 & s2 = specific gravity of manometer liquid. 

 Fig:3.13 Differential U-tube Manometer 

Let two point A & B are at different level and also contains liquids of different sp.gr. These points are connected 

to the U-tube differential manometer. Let the pressure at A and B are PA and PB 
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Buoyant force: The upward force exerted by a liquid on a body when the body is immersed 

in the liquid is known as buoyancy or buoyant force. 

The point through which force of buoyancy is supposed to act is called centre of  buoyancy.  

The buoyant force acting on a body is equal to the weight of the liquid displaced by the body. 

For a fluid with constant density, the buoyant force is independent of the distance of the body 

from the free surface. It is also independent of the density of the solid body. 

Archimedes principle: The buoyant force acting on a body immersed in a fluid is equal to 

the weight of the fluid displaced by the body, and it acts upward through the centroid of the 

displaced volume. For floating bodies, the weight of the entire body must be equal to the 

buoyant force, which is the weight of the fluid whose volume is equal to the volume of the 

submerged portion of the floating body. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig:3.14. Floating Body 

 Stability of immersed and floating bodies 

 A floating body possesses vertical stability, while an immersed neutrally buoyant 
body is neutrally stable since it does not return to its original position after a 
disturbance. 

                    

Fig:3.15. An immersed neutrally buoyant body is (a) stable if the 

center of gravity G is directly below the center of buoyancy 

B of the body, (b) neutrally stable if G and B are coincident, 

and (c) unstable if G is directly above B. 

Metacentre: The point about which a body starts oscillating when the body is tilted is known 

meta- centre. 
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Metacentric height GM: The distance between the center of gravity G and the metacenter M 

is known as Meta centric height. It is the point of intersection of line of action of buoyant 

force with the line passing through centre of gravity, when the body is slightly tilted. 

Fig.3.16. Metacentric Height 

 

The length of the metacentric height GM above G is a measure of the stability: If the metacentric 

height increases, then the floating body will be more.. The meta-centric height (GM) is.given by, GM 

= V - BGWhere, I = Moment of Inertia of the floating body (in plan) at water surface about the axis 

Y- Y V = Volume of ihe body sub merged in waterBG = Distance between centre of gravity and 

centre of buoyancy. Conditions of equilibrium of a floating and submerged body are : 

                                   Table.2. Condition of Equilibrium of a Floating bodies 

Equilibrium Floating Body Sub-merged Body 

(i) Stable Equilibrium 

(a) Unstable Equilibrium 

(Hi) Neutral Equilibrium 

M is above G 
M is below G 
Af and G coincide 

B is above G 
B is below G 
B and G coincide 

 
 

Stability of floating bodies .A floating body is stable if the body is bottom-heavy and thus 

the center of gravity G is below the centroid B of the body, or if the metacentre M is above 

point G. However,  the body is unstable if point M is below point G. 

Fig.3.17.Stability of Floating Bodies 
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Problems: 

1.Calculate the sp.weight, density and sp.gravity of one litre of liquid which weights 7N. 

 

2.Calculate the density, sp.weight and weight of one litre of petrol of specific gravity = 0.7 

 

3.A plate 0.023 mm distant from a fixed plate moves at 60 cm/s and requires a force of 2N 

per unit area i.e 2 N/m2 to maintain this speed. Determine the fluid viscosity between the 

plates. 
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4.The dynamic viscosity of oil used for lubrication between a shaft and sleeve is 6 poise. The 

shaft is of diameter 0.4 m and rotates at 190 rpm. Calculate the power lost in the bearing for a 

sleeve length of 90mm. The thickness of the oil film is 1.5mm. 

 

 

 

5.The surface tension of water in contact with air at 20◦C is 0.0725N/m. The pressure 

inside a droplet of water is to be 0.02 N/cm2 greater then the outside pressure. 

Calculate the diameter of the droplet of water. 
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6.Calculate the capillary rise in a glass tube of 2.5mm diameter when immersed vertically in 

a) water b) Mercury. Take surface tension of 2.5 mm diameter when immersed vertically in 

contact with air. The specific gravity for mercury is given as 13.6 and angle of contact = 130◦ 

 

7.The right limb of a single U-tube manometer containing mercury is open to the atmosphere 

while the left limb is connected to a pipe in which a fluid of sp.gravity is 0.9 is flowing. The 

centre of the pipe is 12cm below the level of mercury in the right limb. Find the pressure of 

fluid in the pipe if the difference of mercury in the two limbs is 20cm. 

 

 

 

 

 



21 
 

8.A differential manometer is connected at the two points A and B of two pipes as shown in 

fig. The pipe A contains a liquid of Sp.gravity = 1.5 while pipe B contains a liquid of 

sp.gravity = 0.9. The pressure at A and B are 1 Kgf/cm2 and1.80 Kgf/cm2 respectively. Find 

the difference in mercury level in the differential manometer. 
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9.A rectangular plane surface is 2m wide and 3m deep. It lies in vertical plane in water. 

Determine the total pressure and position of centre of pressure on the plane surface when its 

upper edge is horizontal and a) coincide with water surfaceb) 2.5 m below the free water surface. 

10.A rectangular plane surface 2m wide and 3m deep lies in water in such a way that its 

plane makes an angle of 30◦ with the free surface of water. Determine the total surface and 

position of centre of pressure when the upper edge is 1.5m below the free water surface. 
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11.Find the volume of the water displaced and position of centre of buoyancy for a wooden 

block of width 2.5m and depth 1.5m. When it floats horizontally in water. The density of 

wooden block is 650 kg/m3 and its length 6m. 
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12.A rectangular pontoon is 5m long, 3m wide and 1.20m high. The depth of immersion of 

the position is 0.80 m in sea water. If the centre of gravity is 0.6m above the bottom of the 

position, determine the meta centric height. The density for sea water is 1025 kg/m3. 
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4. EQUATIONS OF MOTION  

Basic equations of motion: Types of fluid flow-Concept of Control Volume- Control 

Volume Analysis of mass, momentum and energy. Differential equation of continuity 

and momentum - Euler’s and Bernoulli’s Equation and its applications. Flow 

Measurement: Orifice meter, Venturimeter, Piezometer.  

Types of Fluid Flow 

• Steady and Unsteady. 

• Uniform and Non-Uniform. 

• Laminar and Turbulent. 

• Compressible and In-compressible. 

• Rotational and Irrotational Flow. 

• One, Two, and Three -dimensional Fluid Flow. 

Steady flow  

A steady flow is one in which all conditions at any point in a stream remain constant with 

respect to time. Or A steady flow is the one in which the quantity of liquid flowing per 

second through any section, is constant. This is the definition for the ideal case. True steady 

flow is present only in Laminar flow. In turbulent flow, there are continual fluctuations in 

velocity. Pressure also fluctuates at every point. But if this rate of change of pressure and 

velocity are equal on both sides of a constant average value, the flow is steady flow. The 

exact term use for this is mean steady flow. Steady flow may be uniform or non-uniform. 

Uniform flow 

 A truly uniform flow is one in which the velocity is same at a given instant at every point in 

the fluid. This definition holds for the ideal case. Whereas in real fluids velocity varies across 

the section. But when the size and shape of cross section are constant along the length of 

channels under consideration, the flow is said to be uniform. 

Unsteady Flow  

A flow, in which quantity of liquid flowing per second is not constant, is called unsteady 

flow. Unsteady flow is a transient phenomenon. It may be in time become steady or zero 

flow. For example when a valve is closed at the discharge end of the pipeline. Thus, causing 

the velocity in the pipeline to decrease to zero. 

One, Two and Three Dimensional Flows  

Term one, two or three dimensional flow refers to the number of space coordinated required 

to describe a flow. It appears that any physical flow is generally three-dimensional. But these 

are difficult to calculate and call for as much simplification as possible. This is achieved by 

ignoring changes to flow in any of the directions, thus reducing the complexity. It may be 

possible to reduce a three-dimensional problem to a two-dimensional one, even an one 

dimensional one at times. 
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                                       Figure 4.1.Laminar and Turbulent. 
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Rate of Flow or Discharge (Q) 

It is defined as the quantity of a fluid flowing per second through a section of a pipe or a 

channel. For an incompressible fluid (or liquid) the rate of flow or discharge is expressed as 

the volume of fluid flowing across the section per second.  

For compressible fluids, the rate of flow is usually expressed as the weight of fluid flowing 

across the section. Thus (i) For liquids the units of Q are m3 /s or litres/s (ii) For gases the 

units of Q are kgf/s or Newton/s 

Consider a fluid flowing through a pipe in which A= Cross-sectional area of pipe. V= 

Average area of fluid across the section Then discharge Q=A  V 

Continuity Equation 

The equation based on the principle of conservation of mass is called continuity equation. 

Thus for a fluid flowing through the pipe at all the cross-section, the quantity of fluid per 

second is constant. Consider two cross-sections of a pipe as shown in Figure 4.2. 

                              

                                                     Figure 4.2.Flow through Pipe  

According to law of conservation of mass  

Rate of flow at section 1-1 =Rate of flow at section 2-2  

                                          

The above equation is applicable to the compressible as well as incompressible fluids is 

called Continuity Equation.  

If the fluid  is incompressible ρ1= ρ2and continuity equation reduces to   

                                                        

Equation of motion 

   The dynamics of fluid flow is the study of fluid motion with forces causing flow. The 

dynamic behaviours of the fluid flow is analyzed by the Newton’s law of motion (F=ma), 

which relates the acceleration with the forces. The fluid is assumed to be incompressible and 

non-viscous. 

Mathematically, Fx = m.ax                                         
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In the fluid flow, following forces are present: 

 • Pressure force ‘Fp’  

• Gravity force ‘Fg’  

• Viscous force ‘Fv’  

• Turbulent flow ‘Ft’  

 • Compressibility force ‘Fe’ 

• The pressure force ‘Fp’ is exerted on the fluid mass, if there exists a pressure gradient 

between the 2 parts in the direction of flow. 

• The gravity force ‘Fg’ is due to the weight of the fluid and it is equal to ‘Mg’. The 

gravity force for unit volume is equal to ‘ρg’. 

•  The viscous force ‘Fv’ is due to the viscosity of the flowing fluid and thus exists in 

the case of all real fluid.  

• The turbulent flow ‘Ft’ is due to the turbulence of the flow. In the turbulent flow, the 

fluid particles move from one layer to other and therefore, there is a continuous 

momentum transfer between adjacent layer, which results in developing additional 

stresses(called Reynolds stresses) for the flowing fluid.  

• The compressibility force ‘Fe’ is due to elastic property of fluid and it is important 

only either for compressible fluids or in the cases of flowing fluids in which the 

elastic properties of fluids are significant.  

 

 

 



7 
 

 

Euler’s Equation of motions 

In an ideal incompressible fluid, when the flow is steady and continuous, sum of the velocity 

head, pressure head and datum head along a stream line is constant. 

Assumptions:  

• The fluid is ideal and incompressible.  

• Flow is steady and continuous. 

 • Flow is along streamline and it is 1-D.  

• The velocity is uniform across the section and is equal to the mean velocity. 

 • Flow is Irrotational.   

 • The only forces acting on the fluid are gravity and the pressure forces. 

                                        

                                              Figure 4.3. Euler’s Equation of motions 
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 This is the required Euler’s equation for motion. 

 Bernoulli’s Equation from Euler’s equation for motion: 

  

 

 

 

Problem 1: 
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Problem 2: 
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Problem 3: 
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Problem 4: 
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Practical applications of Bernoulli’s equation: 

Although Bernoulli’s equation is applicable in all problems of incompressible flow where 

there is involvement of energy considerations. But we shall consider its application to the 

following measuring devices. 1) Venturimeter 2) Orifice meter 3) Pitot tube 

Venturimeter: is a device used for measuring the rate of flow of a fluid flowing through a 

pipe. It consists of three parts: 

• A short converging part  

• Throat  

• Diverging part 
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                                                Figure 4.4. Venturimeter 
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Problem 5: 
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Problem 6: 
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 Problem 7: 
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 Problem 8: 
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Orifice Flow Measurement – History: 

The first record of the use of orifices for the measurement of fluids was by Giovanni 

B.Venturi, an Italian Physicist, who in 1797 did some work that led to the development of the 

modern Venturi Meter by Clemons Herschel in 1886. It has been reported that an orifice 

meter, designed by Professor Robinson of Ohio State University was used to measure gas 

near Columbus, Ohio, about 1890. About 1903 Mr. T.B. Weymouth began a series of tests in 

Pennsylvania leading to the publication of coefficients for orifice meters with flange taps. At 

the same time Mr. E.O. Hickstein made a similar series of tests at Joplin, Missouri, from 

which he developed data for orifice meters with pipe taps. An orifice in a pipeline is shown in 

Figure 4.5 with a manometer for measuring the drop in pressure (differential) as the fluid 

passes thru the orifice. The minimum cross sectional area of the jet is known as the “vena 

contracta.”  

 

                                                  Figure 4.5.Orificemeter 
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What is an Orifice Meter?  

An orifice meter is a conduit and a restriction to create a pressure drop. An hour glass is a 

form of orifice. A nozzle, venturi or thin sharp edged orifice can be used as the flow 

restriction. In order to use any of these devices for measurement it is necessary to empirically 

calibrate them. That is, pass a known volume through the meter and note the reading in order 

to provide a standard for measuring other quantities. Due to the ease of duplicating and the 

simple construction, the thin sharp edged orifice has been adopted as a standard and extensive 

calibration work has been done so that it is widely accepted as a standard means of measuring 

fluids. Provided the standard mechanics of construction are followed no further calibration is 

required.  

Major Advantages of Orifice Meter Measurement  

Flow can be accurately determined without the need for actual fluid flow calibration. Well 

established procedures convert the differential pressure into flow rate, using empirically 

derived coefficients. These coefficients are based on accurately measurable dimensions of the 

orifice plate and pipe diameters as defined in standards, combined with easily measurable 

characteristics of the fluid, rather than on fluid flow calibrations. With the exception of the 

orifice meter, almost all flow meters require a fluid flow calibration at flow and temperature 

conditions closely approximating service operation in order to establish accuracy. 

Problem 9: 
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Problem 10: 
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 Pitot tube for Flow Measurement Construction:  

The principle of flow measurement by Pitot tube was adopted first by a French Scientist 

Henri Pitot in 1732 for measuring velocities in the river. A right angled glass tube, large 

enough for capillary effects to be negligible, is used for the purpose. One end of the tube 

faces the flow while the other end is open to the atmosphere as shown in Fig.4.6. 

                             

                                              Figure 4.6. Pitot tube 
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                                  Figure 4.7. Velocity of flow in a pipe by Pitot tube 

Problem 11: 

 

 Problem 12: 



30 
 

 

 

 

Problem 13: 
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                                                   Figure4.8. Forces on bend 
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Problem 14: 
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UNIT 5 FLOW THROUGH ORIFICE, NOTCHES AND WEIR AND PIPES  
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1. Flow through Orifice, Notches and Weir and Pipes POPERTI306 

Hydraulic co-efficient-Flow through orifice, Notches and weirs. Laminar and Turbulent 

flow-Reynolds experiment-laminar flow through circular pipe (Hagen poiseulle’s)-

Major and minor losses in pipes-Darcy weisbach’s equation, chezy’s formula-friction 

factor- moody diagram-pipes in series and pipes in parallel-total energy line-hydraulic 

gradient line-Equivalent pipe. Concept of Boundary Layer-Types of boundary layer 

thickness-drag on flat plate.  

 

 

Orifice 

Orifice is a small opening on the side or at the bottom of a tank, through which a fluid is 

flowing. The orifices are classified according to the size, shape, nature of discharge and shape 

of the edge. 

1. According to the size of orifice and head of liquid from the centre 

of the orifice: Small orifice and Large orifice. 

Small Orifice: If the head of liquid from the centre of orifice is more than five times the depth 

of orifice, the orifice is called small orifice. 

Large Orifice: If the head of liquid is less than five times the depth of orifice, it is known as 

large orifice. 

2. According to shape of orifice: (i) Circular orifice, (ii) Triangular 

orifice,( iii) Rectangular orifice and (iv) Square orifice 

3. According to their cross-sectional area or edge: (i) Sharp-edged 

orifice and (ii) Bell mouthed orifice 

According to the discharge condition: (i) Free discharging orifices (ii) Fully drowned or 

submerged orifices and (iii) Partially submerged orifices 

Flow through a Small Orifice 
Flow from a tank through a hole in the side. 

 

Fig.5.1. Flow through a small Orifice 

The edges of the hole are sharp to minimize frictional losses by minimizing the contact 

between the hole and the liquid. The streamlines at the orifice contract reducing the area of 

flow. This contraction is called the vena contracta. 

The amount of contraction must be known to calculate the flow. 

Applying Bernoulli’s equation along the streamline joining point 1 on the surface to point 2 

at the centre of the orifice. 

At the surface velocity is negligible (v1 = 0) and the pressure atmospheric (p1 = 0). At the 

orifice the jet is open to the atmosphere so again the pressure is atmospheric (p2 = 0). 
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If we take the datum line through the orifice then Z1 = H and Z2 = 0 leaving h = 2Z2 = h=√2 

This theoretical value of velocity is an overestimate as friction losses have not been taken 

into account.  

Each orifice has its own coefficient of velocity, they usually lie in the range 0.97 - 0.99 

The discharge through the orifice = jet area X jet velocity 

The area of the jet is the area of the vena contracta and not the area of the orifice. We use a 

Coefficient of contraction to get the area of the 

jet,Aa. 

Aa = Cc x area of orifice 

                                                                                                                                
Discharge through the Orifice Q = Area x Velocity Actual Discharge Qa = Cd x Qth 

Qth = Area of Orifice x Vth Hydraulic Coefficient 

The following three coefficients are known as hydraulic coefficients or orifice coefficient 

 Coefficient of Contraction 

Coefficient of Velocity  

Coefficient of Discharge  

Coefficient of Contraction: 

The ratio of the area of the jet, at vena-contracta, to the area of the orifice is known as 

coefficient of contraction. Mathematically coefficient of contraction,The value of Coefficient 

of contraction varies slightly with the available head of theliquid, size and shape of the 

orifice. The average value ofis 0.64. 

 

 

Coefficient of Velocity: 

The ratio of actual velocity of the jet, at vena-contracta, to the theoretical velocity is known 

as coefficient of velocity. 

The theoretical velocity of jet at vena-contracta is given by the relation, ℎ = √2 

, where H is the head of water at vena-contracta. Mathematically coefficient of velocity. 

 

The difference between the velocities is due to friction of the orifice. The value of Coefficient 

of velocity varies slightly with the different shapes of the edges of the orifice. This value is 

very small for sharp-edged orifices. For a sharp edged orifice, the value of increases with the 

head of water. 

Coefficient of Discharge: 

The ratio of a actual discharge through an orifice to the theoretical discharge is known as 

coefficient of discharge. Mathematically coefficient of discharge, 

 

 

 

 

 



5 | P a g e  
 

Determination of Coefficient of Discharge (Cd): 

The water is allowed to flow through an orifice provided in a tank under a constant head H. 

The water is collected in a collecting tank for a known height. The time of collection of water 

in the collecting tank is noted down 

 

 

                                                                                                                                

          
Determination of Coefficient of Velocity (Cv): Let C-C represents the vena – contracta of a 

jet water coming out from an orifice under constant head H as shown in fig. Consider a liquid 

particle which is at vena contracta at any time and takes the position at P along the jet time t. 
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Determination of Coefficient of Contraction (CC): 

The coefficient of contraction is determined from the 

equation Cd = CV x CC CC = Cd / Cv 

                                                                                                                                      
 
Flow through Large Orifices: 

 

Discharge through Large Rectangular Orifice: 

Consider a large rectangular orifice in one side of the tank discharging freely in to 

atmosphere under a constant head H as shown in fig 
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Discharge through Fully Sub-Merged Orifice: 

Fully sub-merged orifice is one which has its whole of the outlet side sub merged under 

liquid so that it discharges a jet of liquid in to the liquid of the same kind. It is also called 

totally drowned orifice as shown in Fig. Consider two points (1) & (2). Point 1 being in the 

reservoir on the upstream side of the orifice and point 2 being at vena contracta. 

                                             Fig.4.Fully Sub-merged Orifice 
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Discharge through Partially Sub-Merged Orifice: 

Partially sub-merged orifice is one which has its outlet side partially sub-merged under liquid 

as shown in Fig. It is also known as partially drowned orifice. Thus the partially sub-merged 

orifice has two portions. The upper portion behaves as an orifice discharging free while the 

lower portion behaves as a sub-merged orifice. Only a large orifice can behave as a partially 

sub-merged orifice. The total discharge Q through partially sub-merged orifice is equal to the 

discharges through free and the sub-merged portions. 

 

 

                                                           
                                                        Fig.5.2 Partially sub-merged orifice  

Time of Emptying a Tank through an Orifice at its Bottom: 

Consider a tank containing some liquid up to a height of H1. Let an orifice is fitted at the 

bottom of the tank. It is required to find the time for the liquid surface to fall from the height 

H1 to a height H2. 
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Fig5.3.Time of Emptying a Tank 
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Time of Emptying a Hemispherical Tank 

Consider a hemispherical tank of radius R fitted with an orifice of area “a” at its bottom as 

shown in Fig. The tank contains some liquid whose initial height is H1 and in time T, the 

height of liquid falls to H2. It is required to find the time T. 

                                             

                                           

                                                      Fig.7. Hemispherical Tank 
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Classification of Mouthpieces: 
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NOTCHES: 

 

Classification of Notches and Weirs: 

 

                                 
                                                       Fig.5.11.RectangulaNotch and Weir 
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Discharge over a Triangular Notch or Weir: 

 

                                                Fig.5.12.Triangular Notch or 

Weir 
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Discharge over a Trapezoidal Notch or Weir: 
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                                                                 Fig  5.13. Trapezoidal Notch 

 

Viscous Flow 

Flow of Viscous Fluid through Circular Pipe: 
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                                                 Fig.5.16.Viscous flow through a pipe 

 

 

                               Fig.5.17.Shear stress and velocity distribution across a section 
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Flow in Pipes: 

In this chapter, however, a method of expressing the loss using an average flow velocity is 

stated. Studies will be made on how to express losses caused by a change in the cross 

sectional area of a pipe, a pipe bend and a valve, in addition to the frictional loss of a pipe. 

Consider a case where fluid runs from a tank into a pipe whose entrance section is fully 

rounded. At the entrance, the velocity distribution is roughly uniform while the pressure head 

is lower by  V2/2g./The section from the entrance to just where the boundary layer develops 

to the tube centre is called the inlet or entrance region, whose length is called the inlet or 

entrance length. For steady flow at a known flow rate, these regions exhibit the following: 

Laminar flow: A local velocity constant with time, but which varies spatially due to viscous 

shear and geometry. Turbulent flow: A local velocity which has a constant mean value but 
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also has a statistically random fluctuating component due to turbulence in the flow. Typical 

plots of velocity time histories for laminar flow, turbulent flow, and the region of transition 

between the two are shown below. 

V- Flow velocity 

D – Flow dimension 

µ - Dynamic Viscosity Ʋ – Kinematic Viscosity 

Frictional Loss in Pipe flow 

 

Expression for Loss of Head due to friction in pipes: 

Consider a uniform horizontal pipe having steady flow as shown in fig 18. Let 1-1 and 2-2 

are two sections of pipe. 

Let P1 = pressure intensity at section 1-1 V1 = Velocity of flow at section 1-1 

 

 

 

                                                Fig.5.18.Uniform Horizontal 
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Pipe 
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Loss of Energy in Pipes: 

Loss of Energy due to friction: 
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Minor Energy Losses 
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                                                Fig.519. Sudden Enlargement 

 

                                                                Fig.20.Sudden Contraction  
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                                                                                       Fig.21. Obstruction in a pipe 
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Equivalent Pipe 
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    Flow through Parallel Pipes: 
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                                                          Fig.24.Parallel Pipes 

 

 

Flow through Branched Pipes: 
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                                                        Fig.25.Branched Pipes 

 

 

Water Hammer in Pipes: 

 

                                                    Fig.28.Water Hammer 
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Practice Problems: 
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