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STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

When an external force acts on a body, the body tends to undergo some deformation.
Due to cohesion between the molecules, the body resists deformation. This resistance by
which material of the body opposes the deformation is known as strength of material, within
a certain limit (i.e., in the elastic stage). Whenever a load is attached to a thin hanging wire, it
elongates and the load moves downwards (sometimes through a negligible distance). The
amount, by which the wire elongates, depends upon the amount of load and the nature as well
as cross-sectional area of the wire material.

Elasticity

Whenever a force acts on a body, it undergoes some deformation and the molecules
offer some resistance to the deformation. It will be interesting to know that when the external
force is removed, the force of resistance also vanishes; and the body springs back to its
original position. But it is only possible, if the deformation, caused by the external force, is
within a certain limit. Such a limit is called elastic limit.

The property of certain materials of returning back to their original position, after
removing the external force, is known as elasticity.

Stress

The force of resistance per unit area, offered by a body against deformation is known
as stress. The external force acting on the body is called the load or force. The load is applied
on the body while the stress is induced in the material of the body. A loaded member remains
in equilibrium when the resistance offered by the member against the deformation and the
applied load are equal.

Force F
Stress = o = =—

Area A

where F =Load or force acting on the body, and
A = Cross-sectional area of the body.

The unit of stress depends upon the unit of load (or force) and unit of area. In M.K.S.
units, the force is expressed in kgf and area in metre square (i.e., m?). Hence unit of stress
becomes as kgf/m?. In the S.L units, the force is expressed in newtons (written as N) and area
is expressed as m?. Hence unit of stress becomes as N/m?.

Strain

Whenever a single force (or a system of forces) acts on a body, it undergoes some
deformation. This deformation per unit length is known as strain. Mathematically strain may
be defined as the deformation per unit length. i.e., strain

Strain=¢ = X
L

Types of Stresses
Though there are many types of stresses, yet the following two types of stresses are
important from the subject point of view: 1. Tensile stress, 2. Compressive stress.

1. Tensile Stress
When a section is subjected to two equal and opposite pulls and the body tends to
increase its Length. The stress induced is called tensile stress. The corresponding strain is



called tensile strain. As a result of the tensile stress, the *cross-sectional area of the body gets
reduced.

Pe—fo oo oo

2. Compressive Stress

When a section is subjected to two equal and opposite pushes and the body tends to
shorten its Length. The stress induced is called compressive stress. The corresponding strain
is called compressive strain. As a result of the compressive stress, the cross-sectional area of
the body gets increased.

P—ff - —————- — fle—r

Hooke’s Law
It states, “When a material is loaded, within its elastic limit, the stress is proportional
to the strain.”
Stress
Strain

Modulus of Elasticity or Young’s Modulus (E)
Whenever a material is loaded, within its elastic limit, the stress is proportional to

= F = Constant

strain
G o< g
= Exg
- g
F=e
Where, o = Stress,
€ = Strain, and
E = A constant of proportionality known as modulus of elasticity or Young’s
modulus.

Numerically, it is that value of tensile stress, which when applied to a uniform bar
will increase its length to double the original length if the material of the bar could remain
perfectly elastic throughout such an excessive strain.

S. No. Material Modulus of elasticity (E)
in GPa i.e. GNfi* or kNfmm’®

1. Steel 200 to 220

2. ‘Wrought iron 190 to 200

3. Cast iron 100 to 160

4. Copper 20 to 110

5. Brass 80 to 90

6. Aluminium 60 to 80

h Timber 10

Deformation of a Body Due to Force Acting on it
Consider a body subjected to a tensile stress.
Let P =Load or force acting on the body,
I = Length of the body,
A = Cross-sectional area of the body,
o = Stress induced in the body,



E = Modulus of elasticity for the material of the body,
¢ = Strain, and
ol = Deformation of the body.

- L Strain _o_F

G =1} ‘ €= ETAE
c.l_pi
8l = el= £ = AE

Example: A steel rod 1 m long and 20 mm x 20 mm in cross-section is subjected to a tensile
force of 40 kN. Determine the elongation of the rod, if modulus of elasticity for the rod
material is 200 GPa.

Given:
Length (I) =1 m =1 x 10°* mm
Cross-sectional area (A) = 20 x 20 = 400 mm?
Tensile force (P) =40 kN =40 x 10° N
Modulus of elasticity (E) = 200 GPa = 200 x 10 N/mm?
elongation of the road,

Pl (A0x10%)x(1x10°)

= — =05mm
A.E 400x (20x107)

ol =

Example A hollow steel tube 3.5 m long has external diameter of 120 mm. In order to
determine the internal diameter, the tube was subjected to a tensile load of 400 kN and
extension was measured to be 2 mm. If the modulus of elasticity for the tube material is 200
GPa, determine the internal diameter of the tube.

Given:
Length (1) =3.5m = 3.5 x 103 mm
External diameter (D) = 120 mm
Load (P) =400 kN = 400 x 10° N
Extension (1) =2 mm
Modulus of elasticity E = 200 GPa = 200 x 10° N/mm?
area of the tube,

120 !
A = g [(120) — 7] = 0.7854 [(120) — 4]
extension of the tube (8/),
5 _ P @400x10)x@.5x10°) 8913
A.E 07854 [(120)° — &7 (200x10°) 14400 — o
28800 — 247 = 8913 or 24" = 28800 — 8913 = 19887
or d* = # =90943.5 or d=99.71 mm Ans.

Example: Two wires, one of steel and the other of copper, are of the same length and are
subjected to the same tension. If the diameter of the copper wire is 2 mm, find the diameter of
the steel wire, if they are elongated by the same amount. Take E for steel as 200 GPa and
that for copper as 100 GPa.

Given:
Diameter of copper wire (dc) =2 mm



Modulus of elasticity for steel (Es) = 200 GPa = 200 x 10° N/mm?

Modulus of elasticity for Copper (Ec) = 100 GPa = 100 x 10° N/mm?
Let  ds= Diameter of the steel wire,

| = Lengths of both the wires and

P = Tension applied on both the wires.

i T z 2
Ao = Ex{dc) =7 % (2)"=3.142 mm
and area of steel wire, A; = % X (dy *=0.7854 a'; mm’”
We also know that increase in the length of the copper wire
Pl Pl Pl
3l (i)

© T AcE. 3.182x(100x10°) 3142x10°
and increase in the length of the steel wire,
5L = id) _ Iif _ Pl
s AgEs 0.7854 d, x (200x10%)  157.1x10° x d;
Since both the wires are elongated by the same amount, therefore equating equations () and (7).
Pl _ P o ar32
3142x10°  157.1x10°xd; T 1571

i)

d

ﬁ =1.41 mm Ans.

Deformation of a Body Due to Self Weight A
Consider a bar AB hanging freely under its own weight as shown. _1_
Let | = Length of the bar. f dx
A = Cross-sectional area of the bar. T
E = Young’s modulus for the bar material, A
andw = Specific weight of the bar material. r B _L

Now consider a small section dx of the bar at a distance x from B. We know that
weight of the bar for a length of x,
P = wAX
Elongation of the small section of the bar, due to weight of the bar for a small section
of length x,

Pl (wAx).dx wx.dx
AE AE  E

Total elongation of the bar may be found out by integrating the above equation
between zero and I. Therefore total elongation,
i

wx.dx
A
0o
!
_ M ox.dx
0
A
_ 1[\_}
E| 2 0
ol = ‘;fE_ =% ..(> W= wAl = Total weight)



Example A steel wire ABC 16 m long having cross-sectional area of 4 mm? weighs 20N as
shown in Fig. If the modulus of elasticity for the wire material is 200 GPa, find the
deflections at C and B.

Given: ——
Length (1) = 16 m = 16 x 103 mm A
Cross-sectional area (A) = 4 mm? 8 m
Weight of the wire ABC (W) =20 N
Modulus of elasticity (E) = 200 GPa = 200 x 102 N/mm? + T8

Deflection of wire at C due to self-weight of the wire AC,

" W 20 (16 % 10%) 02 mm A
= = — = UL MM ARDS.
€ 2AE 2x4x(200%10%) x> lg¢

Deflection at B consists of deflection of wire AB due to self-weight plus deflection due to
weight of the wire BC. We also know that deflection of the wire at B due to self-weight of
wire AB

s _ WI2xa/y)_ 10x@x10%)
1= 2AE 2x4 % (200 10%)

=0.05 mm (i)

and deflection of the wire at B due to weight of the wire BC.

3
5. = WIpx) on(smoz ol mm @
2 AE 4% (200 10%)

Total deflection of the wire at B.
o, = 8, +81,=0.05+0.1=0.15mm Ans.

Principle of Superposition

A body is subjected to a number of forces acting on its outer edges as well as at some
other sections, along the length of the body. In such a case, the forces are split up and their
effects are considered on individual sections. The resulting deformation, of the body, is equal
to the algebraic sum of the deformations of the individual sections. Such a principle, of
finding out the resultant deformation, is called the principle of superposition. The relation for
the resulting deformation may be modified as:

ol = %=ﬁ (P L, +P, L+P, 1 +..)
P, = Force acting on section 1,
!, = Length of section 1,
P,, I, = Corresponding values of section 2, and so on.

Example A steel rod ABCD 4.5 m long and 25 mm in diameter is subjected to the forces as
shown in Fig. If the value of Young’s modulus for the steel is 200 GPa, determine its
deformation.

A B c D
60KN 4—F — - ——-10kN 4— | —— — | »2DkN- — —+—» S50kN
I‘ 2m }‘ Im '*|L 1.5m ‘I

Given:

Diameter (D) = 25 mm and

Young’s modulus (E) = 200 GPa = 200 kN/mm?
We know that cross-sectional area of the steel rod.



T 2_T 2 _ 2
A = El[.D']I _4><{25] 491 mm

For the sake of simplification, the force of 60 kN acting at A may be split up into two
forces of 50 kN and 10 kN respectively. Similarly the force of 20 kN acting at C may also be
split up into two forces of 10 kN and 10 kN respectively.

A B c fa}
G0N —F+ ——— = 10KkN #—|— - — =4 » 20kN — = ——» 50 kN

I 2m : Im I L5m ]

A D
OKkN-—f — ——————— —————— ——— ——»> S0kN

A C
IOKN ¢—f ——————— —— ——— > 10kN

B c

wkN+—fF—-—F—» 10k

Now it will be seen that the bar AD is subjected a tensile force of 50 kN, part AC is
subjected to a tensile force of 10 kN and the part BC is subjected to a tensile force of 10 kN
as shown in Fia. We know that deformation of the bar.

1
&l = g Pl + P+ P

1
= 491200
1

= 191% 200 > (265 % 10°) =2.70 mm Ans.

[[50 % (4.5 x 109] +[10 % 3 x 10*)] +[10 x (1 X 10-‘)]mm

Stresses in the Bars of Different Sections
A bar is made up of different lengths having different cross-sectional areas

In such cases, the stresses, strains and hence changes in lengths for each section is
worked out separately as usual. The total change in length is equal to the sum of the changes
of all the individual lengths. It may be noted that each section is subjected to the same
external axial pull or push.

Let

P = Force acting on the body,

E = Modulus of elasticity for the body,

I: = Length of section 1,

A1 = Cross-sectional area of section 1,

I2, A> = Corresponding values for section 2 and so on.

We know that the change in length of section 1.
P L Pi,
o, = AE Similarly o, = AE
Total deformation of the bar,
&f = &I + 08I, + 60, + ..........
P Py Pl
AE TAE T AE T

_P(Ah L E
ELA A A

and so on




NoTe. Sometimes, the modulus of elasticity is different for different sections. In such cases, the total deformation,

Example A compound bar ABC 1.5 m long is made up of two parts of aluminium and steel
and that cross-sectional area of aluminium bar is twice that of the steel bar. The rod is
subjected to an axial tensile load of 200 kN. If the elongations of aluminium and steel parts
are equal, find the lengths of the two parts of the compound bar. Take E for steel as 200 GPa
and E for aluminium as one-third of E for steel.

Given:
Total length (L) = 1.5 m=1.5 x 103 mm
Cross-sectional area of aluminium bar (Aa) =2 As
Axial tensile load (P) = 200 kN = 200 x 103 N
Modulus of elasticity of steel (ES) = 200 GPa =200 x 103 N/mm2

3
Modulus of elasticity of aluminium (EA) = % = %N/mm2
Let, Ia = Length of the aluminium part,
and Is = Length of the steel part. kR A
We know that elongation of the aluminium part AB,
5 _ Deda __(200x 10°) %1, L Alyminium
AT AVE, 200 10°
P24 x[ 3 4+
151, L5m
Y weld) N
and elongation of the steel part BC,

Py (200x10%)xIs I

o, = = =—
S A;.Es A x(200x10%)  Ag
. . . : 200 kN
Since elongations of aluminium and steel parts are equal, therefore equating Cyuauias 4oy w e,
1.51, Ig
A_s = A or I,=151,

We also know that total length of the bar ABC (L)
1L5x10° =1, +1, =1, +151,=251,
1.5%10°
I, = 55 = 600 mm Ans.

and I, = (1L3x 10%) — 600 = 900 mm Ans,

Example A circular steel rod ABCD of different cross-sections is loaded as shown in Fig.
Find the maximum stress induced in the rod and its deformation. Take E = 200 GPa.

Given:
Length of first part AB (l1) =1m=1x10°mm {2 y
Diameter of first part AB (D1) =70 mm Im 70 mm ¢
Length of second part BC (I,) =2m=2x10mm 4 ; B
Diameter of second part BC (D2) =50 mm
Length of third part CD (1) =1m=1x10*mm 10N
Diameter of third part CD (Ds) =50 mm m 50 mm ¢
Internal diameter of hole (ds) =30 mm. e
C C
9 Im
Aoy
30 mm

25kN



Maximum stress induced in the rod
We know that area of the first part (AB) of the rod,

n 2 I 2 p
A = 1 (D)) = 1 (70)" mm
= 3848.5 mm’
Similarly area of the second part (5C) of the rod,
A, = g (D, % (50)°=1963.5 mm’
and area of the third part €D of the rod,
n 2 2
A; = E [D_.,_)_ - f';_z_]

For simplification, the force of 100 kN acting at B-B may be split up into two forces
of 75 kN and 25 kN. Similarly the force of 50 kN acting at C-C may be split up into two
forces of 25 kN and 25 kN respectively as shown in Fig.

75kN

A A —T—A ! A
!
|
I'm E 25 kN
B B i B B
B 2 i
100kN 75 KN !
1
2m \
50 kN i
! 25 kN
c c : [af T C
[a [of 1
e [T T
25 kN i |1m
»LLLo 11NN
l n ¢ D
25 kN 25 kN

(@) ®

Now it will be seen that the bar AB is subjected to a tensile load of 75 kN, part BC is

subjected to a compressive load of 25 kN and the part CD is subjected to a tensile load of 25
kN as shown in Fig. We know that tensile stress in part 1,

_ Py T5x10° -
o, = A ETITE = 1949 N/mm™ = 19.49 MPa
Poe  25x10° )
Similarly, 0, = = og35 = 1273 N/mm” = 12.73 MPa
P, 25x10° .
and O = 4= T3566 = 1989 Nimm® = 19.89 MPa

From the above three values of the stresses, we find that maximum stress induced in the rod is in
CpD and is equal to 19.89 MPa. Ans.

10



We also know that elongation of the part AB, due to tensile load of 75 kN,

AL _(I5x10%) x(1x107)
' AE 3848.5x%(200x10%)

Similarly shortening of the part BC due to compressive load of 25 kN.

o =0.097 mm

Al (25x10°)x(2x10%)

&1, = = =0.127
2 = WE  19635x(200x10%) i
and elongation of the part CD due to tensile load of 25 kN.
Pl (25x107)x(1x10°
o, = == ( L ) _ 0.099 mm

A E 1256.6 % (200 10%)

Deformation of the rod,
of &t — 81, + 81, = 0.097 - 0.127 + 0.099 = 0.069 mm

Stresses in the Bars of Uniformly Tapering Circular Sections
Consider a circular bar AB of uniformly tapering circular section as shown in Fig.
Let P =Pull on the bar.
| = Length of the bar,
d1 = Diameter of the bigger end of the bar, and
d2 = Diameter of the smaller end of the bar.
Now consider a small element of length dx of the bar, at a distance x from the bigger
end as shown in Fig. We know that diameter of the bar at a distance x, from the left end A,

e

| & |
| ! |
- d—d
dx = d,—(d, - d,) fi =d, —kx, ... where k= 'Tl)
and cross-sectional area of the bar at this section,
Ay = 7 (d—ke)
St P _ 4P
Iess, o, = i 32
X g (d,—kv)® T(d,—kx)
__4r
and strain £, = Stress = md, —k) = ar
’ X E E n(d, — k)’ E
Elongation of the elementary length
" 4P . dx
= B n(d, — ko’ E

Total extension of the bar may be found out by integrating the above equation between the limit
0 and /. Therefore total elongation,

; j‘ 4P . dx
Tb (d, — kXY E

11



4P dx

- mE 'E(ff] — kx)?
i
_ sp [tk
T omE| -lx—k
0
!
_4p | 1
T nEk|d —kx |,

_ 4r 1 1
T mEk|d —-H 4

7

. d . .
Substituting the value of k ==1—=2 in the above equation,

[

51 - 4P 1 1
= ;-:E-(J]_dz)' dl__(dl—dz)f_ d,
/ !
_ L{L_L}_ 4l [dy—d,
T mEl —dy) | dy d |7 nE(d, —d,)| dd,
51— 4Pl

. TEd,d,

Example If the tension test bar is found to taper from (D + a) diameter to (D — a) diameter,

prove that the error involved in using the mean diameter to calculate Young’s modulus is

(1%“)2per cent.

Given:

Larger diameter (d1) = (D + a)

Smaller diameter (d2) = (D — a).
Let P =Pull on the bar,

| = Length of the bar,

E1 = Young’s modulus by the tapering formula,

E2 = Young’s modulus by the mean diameter formula and

ol = Extension of the bar.

First of all, let us find out the values of Young’s modulus for the test bar by the
tapering formula and then by the mean diameter formula. We know that extension of the bar
by uniformly varying formula

51 = 4Pl 4P _ 4 p!
- .T[.Eld|d2 _TEEI (D+ﬂ) {D—ﬂ)_TEEl (Dz—ﬂ'z)
£ 4 Pl ]
or 1= j‘[(DZ —ﬁz}_ﬁj (!J
and extension of the bar by mean diameter (D) formula,
§ _ PL__ Pl 4P
- AR g (D’xE, ®D'E,
or E - 4Pl @)
2 = T[Dj . 5‘, a1

12



Percentage error involved (in using the mean diameter to calculate the Young's modulus)

( 4Pl ) ( 4P
[E,—Eg}ximan(Dj—nj)ﬁfJ LTED EIJ
1

= 17 100
n(Dz—azjﬁf
IR D - (D~
2 2 2
_ mea +)(D}x100
(IUGJ A
= D ns.

Example A steel plate of 20 mm thickness tapers uniformly from 100 mm to 50 mm in a
length of 400 mm. What is the elongation of the plate, if an axial force of 80 kN acts on it?
Take E = 200 Gpa.

Given :
Plate thickness =20 mm ;
Width at A =100 mm ; Width at B =50 mm;
Length (1) =400 mm ;
Axial force (P) =80 kN =80 x 10° N
Modulus of elasticity (E) =200 GPa =200 x 10° N/mm?
Now consider a small element of length dx, of the bar, at a distance x from A as shown
in Fig. From the geometry of the figure, we find that the width of the plate at a distance x
from A.
= 100 - (100 -3530) x == 4{]0 =100-0.125 x mm
Cross-sectional area of the plate at this section.
A, = 20 x(100-0.125 x)
P 80x10° 4x10°
and stress, Cx = A, T 20x(100-0.125x)  100—0.125x
4x10°
6y 100—0.125x _ 1

Strain, & = TE T 200x10°  50(100—0.125%)

and increase in the length of the small element

dx

x-F = 550000-0.125)

Now total elongation of the plate may be found out by integrating the above equation between 0
and 400.

5 0o dx
= 50(100—0.125x)

1 00 dx
50 (100 -0.125x)

! L1400
= 50(_{1]25} [log, (100-0.125x)]

= “535 25 ——[log, (50 —log, 100)]

13



0.16 [log, 100 — log, 50] ...(Taking minus sign outside)

0.16 x lugf(%) ~0.16 x log, 2= 0.16 x 2.3 log 2

ol log, =23 log,,)
0.16 x2.3x03010=0.11 mm Ans.

Stresses in the Bars of Composite Structures
A Dbar made up of two or more different materials, joined together is called a
composite bar. The bars are joined in such a manner, that the system extends or contracts as
one unit, equally, when subjected to tension or compression. Following two points should
always be kept in view, while solving example on composite bars:
1. Extension or contraction of the bar is equal.
2. The total external load, on the bar, is equal to the sum of the loads carried by the
different materials.
Consider a composite bar made up of two different materials as shown in Fig.
Let P = Total load on the bar,
I, = Length of the bar 1 B ———
I> = Length of the bar 2
A1 = Area of bar 1,
E: = Modulus of elasticity of bar 1. () (2]
Py = Load shared by bar 1, and
Az, E2, P>= Corresponding values for bar 2,

Total load on the bar, ¥
P =P +PF (i)
: A
Stress in bar 1, G =
1
P
and strain in bar 1, g = % = ﬁ
1 | £
. I Bl
Elongation, 8 =g =S _a0 L)
1 11 E| A[ E]
Similarly, elongation of bar 2,
P,
8l,=g,1, = %:ﬁ i)
1 2 =2

Since both the elongations are equal, therefore equating (ii) and (i), we get &= 81,

Al Bl A £ .
1 = = or — = i)
J'dl'l E] Al ‘EE Al E] Al EE
P, = P x 252
or , = LX AlEl
But P o= P +P,=P +P x 252
u = _—— =
1 2 1 1 AI‘EI
A E, AE +AE,
=P |l+—=—7=|=R| +—"1—"—=
! AI‘EI A] EI
or , = FPX AE + A E v)
AZ‘EE

Similarly, P, =P

K v
2 AE+AE, (vi)

From these equations we can find out the loads shared by the different materials. We have also
seen in equation (iv) that

14



A E A, E,
o, o,
—— — — P
or = oo | = =@ = Stress
£ 2 A °
E, .
o, = EXU: (Vi)
. - E’l
Similarly, o, = ?‘X(Fl - (viii)

From the above equations, we can find out the stresses in the different materials. We also know
that the total load,

P = P +P,=0,A, +0,4,

Example A reinforced concrete circular column of 400 mm diameter has 4 steel bars of 20
mm diameter embedded in it. Find the maximum load which the column can carry, if the
stresses in steel and concrete are not to exceed 120 MPa and 5 MPa respectively. Take
modulus of elasticity of steel as 18 times that of concrete.

Given:

Diameter of column (D) =400 mm

No. of reinforcing bars =4

Diameter of bars (d) =20 mm

Maximum stress in steel (csmax)) =120 MPa = 120 N/mm?

Maximum stress in concrete (Gcmax) =5 MPa =5 N/mm?

Modulus of elasticity of steel (Es) =18 Ec 00 o
Total area of the circular column,

= gx(ml =% x (400)" = 125660 mm”

and area of reinforcement (i.e., steel),

A

S 4% % ® (df =4 x % ® (2[!)1 mm°

1257 mm”

Area of concrete,
A. = 125660 — 1257 = 124 403 mm”

First of all let us find out the maximum stresses developed in the steel and concrete. We know
that if the stress in steel is 120 N/mm?, then stress in the concrete.
6. = Z£x05=-L x 120 = 6.67 Nimm® (i)
c E 18
It is more than the stress in the concrete (i.e., 5 N/mm°). Thus these stresses are not accepted.
Now if the stress in concrete is 5 N/mm-, then stress in steel,
ES 2 oy
g, = E_.-:' X .-= 18 x5 =90 N/mm (i)
It is less than the stress is steel (i.e., 120 N/mm®). It is thus obvious that stresses in concrete and
steel will be taken as 5 N/mm” and 90 N/mm” respectively. Therefore maximum load, which the
column can carry.

P

(Gp-AQ) + (0. A = (5 x 124 403) + (90 x 125T) N
735 150N =735.15kN  Ans.

15



Stresses and Strains in Statically Indeterminate Structures

Simple equations of statics were sufficient to solve the examples. But, sometimes, the
simple equations are not sufficient to solve such problems. Such problems are called
statically indeterminate problems and the structures are called statically indeterminate
structures. For solving statically indeterminate problems, the deformation characteristics of
the structure are also taken into account along with the statical equilibrium equations. Such
equations, which contain the deformation characteristics, are called compatibility equations.

Types of Statically Indeterminate Structures
1. Simple statically indeterminate structures.
2. Indeterminate structures supporting a load.
3. Composite structures of equal lengths.
4. Composite structures of unequal lengths.

Stresses in Simple Statically Indeterminate Structures

Example A square bar of 20 mm side is held between two rigid plates and loaded by an axial
force P equal to 450 kN as shown. Find the reactions at the ends A and C and the extension
of the portion AB. Take E = 200 Gpa

Given: .,
Area of bar (A) = 20 x 20 = 400 mm? - 4
Axial force (P) = 450 kN = 450 x 10°N | [ | .
Modulus of elasticity (E) = 200 GPa 300mm | | 300mm | |

= 200 x 10° N/mm? | # | e
Length of AB (lag) = 300 mm and -I—E B -I- _____ Y -
length of BC (lzc) = 200 mm. 200mm | 200mm | R,
Ra = Reaction at A, and L ,C_L ,,,,,,,

Rc = Reaction at C. L A
Since the bar is held between the two rigid plates A and C, therefore, the upper portion will
be C subjected to tension, while the lower portion will be subjected to compression as shown

Moreover, the increase of portion AB will be equal to the decrease of the portion BC.
We know that sum of both the reaction is equal to the axial force, i.e.,
£ o
R,+R. = 450 x 10 (i)
Increase in the portion AB,

5 _ Ralis _ Rix300
AB T AFE AE

and decrease in the portion BC,

Relge Rex200 )
BC T TAE | AE i)
Since the value &/, , is equal to that of &, therefore equating the equations (i) and (iii),

R,X300  R.x200

&

AE - AE
R, %300
R. = ~555 =13R,

Now substituting the value of R in equation (if),
R,+15R, = 450 or 25R, =450

R, = PJ-180kN  Ans
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and R. = 15R,=15x180=270kN Ans.
Extension of the portion AB
Substituting the value of R, in equation (i)

5 R, %300 (180x10%)x300
AB T AE 400 x (200 x 10%)
Stresses in Indeterminate Structures Supporting a Load

=0.675 mm Ans,

Example A block weighing 35 kN is supported by three wires. The outer two wires are of
steel and have an area of 100 mm? each, whereas the middle wire of aluminium and has an
area of 200 mm?. If the elastic modulii of steel and aluminium are 200 GPa and 80 GPa
respectively, then calculate the stresses in the aluminium and steel wires.

Given: S— :
Total load (P) =35KkN
=35x 103N | E _
Total area of steel rods (A) =2 x 100 2l E 3
=200 mm? “H 5 “
Area of aluminium rod (Ax) =200 mm? <
Modulus of elasticity of steel (E) =200 Gpa 35 kN
=200 x 103 N/mm? >
Modulus of elasticity of aluminium (Ea) = 80 GPa
=80 x 10% N/mm?
Load supported by wires (P) =35kN=35x10°N
Let O, = Stress in steel wires,

o, = Stress in aluminium wire and
!
‘We know that increase in the length of steel wires,

Length of the wires.

O, Xl B o, xl

T =
: E; " 200x10°
Similarly, &l = GAEX Ly = S(EEIA T [‘; .
A * -

Since increase in the lengths of steel and aluminium wires is equal, therefore equating equations
(i) and (i), we get
o, xl o, %l 200

o G = e—
200x10°  80x10° o 57730

We also know that load supported by the three wires (),
33 x10° = (05-49 +(0,.A,) = (2.5 5, x 200) + (5, x 200) = 700 G,

35x%10° 3
G, = 00 - 50 N/fmm~ = 50 MPa Ans.

and o, = 250,=25%x50=125MPa Ans.

X0, = 2.5 T,

Stresses in Composite Structures of Equal Lengths

Example A mild steel rod of 20 mm diameter and 300 mm long is enclosed centrally inside a
hollow copper tube of external diameter 30 mm and internal diameter 25 mm. The ends of the
rod and tube are brazed together, and the composite bar is subjected to an axial pull of 40 kN
as shown. If E for steel and copper is 200 GPa and 100 GPa respectively, find the stresses
developed in the rod and the tube.
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Given :

Diameter of steel rod =20 mm;

External diameter of copper tube =30 mm;

Internal diameter of copper tube =25 mm;

Total load (P) =40 kN =40 x 103 N;
Modulus of elasticity of steel (Es) = 200 GPa and

Modulus of elasticity of copper (Ec) = 100 GPa
os = Stress developed in the steel rod and
oc= Stress developed in the copper tube.

Let

Copper
tube

40kN 40kN

We know that area of steel rod,

A, = % % (20)* = 314.2 mm’
and area of copper tube,
Ap = % [(30)° = (25))] = 216 mm’

We also know that stress in steel,

E
o, = E_EXGC=% XC.=20.
and total load (P), 40x 10° = (0,Ay) +(GAL)
= (206, % 3142) + (6. x 216) = 844.4 o
o = 435;1.3 —474N/mm®>=474MPa  Ans.
and 0, = 20-,=2x474=948 MPa Ans.

Stresses in Composite Structures of Unequal Lengths

Example A composite bar ABC, rigidly fixed at A and 1 mm above the lower support, is
subjected to an axial load of 50 kN at B as shown. If the cross-sectional area of the section
AB is 100 mm? and that of section BC is 200 mm?, find the reactions at both the ends of the
bar. Also find the stresses in both the section. Take E = 200 GPa.

Given:

Length of AB (lag) =1m=1x10>mm

T

Area of AB (Aas) = 100mm? Im A= 100 rom?
Length of BC (Isc) =2m=2x10>mm i e

Area of BC (Agc) =200 mm? 5

Axial load (P)

Modulus of elasticity (E) =200 GPa =200 x 10° N/mm? 2m
Reactions at both the ends of the bar
The bar is rigidly fixed at A and loaded at B, therefore,
upper portion AB is subjected to tensions. We also know that
increase in length of the portion AB due to the load at B

Pl (00X 10%) x (1% 10°)
Ap-E 100 (200 107)

Age =200 mm*

|
|
|
|
=50 kN =50 x 10° N !
|
|
|
|

1 mm —= C

e

ol =

=25 mm
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We find that of increase in the length of the portion AB would have been less than 1
mm (i.e., gap between C and lower support), then the lower portion of the bar BC should not
have been subjected to any stress. Now it will be interesting to know that as the increase in
length AB is 2.5 mm, therefore, first action of the 50 kN load will be to increase the length
AB by 1 mm, till the end C touches the lower support. And a part of the load will be required
for this increase. Then the remaining load will be shared by both the portions of the bar AB
and BC of the bar.
Let P = Load required to increase 1 mm length of the bar AB,

We know that increase in length
Bxly  Rx(1x10%)

-3
' = N E 10x@oxioy oA
P, = mﬂw 10°N=20kN
and the remaining loas, which will be shared by the portion A5 and CD
= 50-20=30kN
Let R, = Reaction at A due to 30 kN load, and
R. = Reaction at C due to 30 kN load.
Thus, R,+R. = 30kN=30x 10°N (i)

We know that increase in length AB due to reaction R, (beyond 1 mm),

Ryl  R,x(1x10%)

—3 P
ol = A E  100x(200%10°) =005 x107 R, i)
and decrease in length BC due to reaction R,
Rl x (2x10°
8, = = Re X 005107 R, (i)

27 Age.E 200%(200%10%)
Since 8/, is equal to &1,, therefore equating equations (7) and (i),
005x10° R, = 0.05x 107 R, or R,=R_
Now substituting the value of ®_ in equation (i)

R, +R, =30 or RA=RC=3—;=151(N
Total reaction at A = (20+15)=35kN Ans.
and total reaction at C = 15kN Ans.
Stresses in both the sections
We know that stress in the bar AB,
3
O = 3 51’3(1)0 =350 N/mm”° =350 MPa  Anms.
3
and Oy = 15;}:}0 =75Nimm>=75MPa  Ans.

Stresses in Nuts and Bolts

Nuts and bolts to tighten the components of a machine or structure. It is generally
done by placing washers below the nuts as shown. A nut can be easily tightened, till the space
between the two washers becomes exactly equal to the body placed between them. It will be
interesting to know that if we further tighten the nut, it will induce some load in the assembly.
As a result of this, bolt will be subjected to some tension, whereas the washers and body
between them will be subjected to some compression. And the induced load will be equally
shared between the bolt and the body. Now consider an assembly consisting of two nuts and a
bolt along with a tube as shown
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Let P =Tensile load induced in the bolt as a result of tightening the nut,
| = Length of the bolt,
A:1= Area of the bolt,
o1 = Stress in the bolt due to induced load,
E1 = Modulus of elasticity for the bolt material.
Az, o2, E2 = Corresponding values for the tube
The tensile load on the bolt is equal to the compressive load on the tube, therefore
G,.A, = 0,.4,

o, = %%  Similly o j—l X0,

and the total toad (P) = 0,4, +0,4,
We also know that increase in the length of the bolt due to tensile stress in it,
o,.1

of, = ?I )
and decrease in the length of the tube due to compressive stress in it,

o, = % i)

Axial advancement (i.e., movement) of the nut
= &, + 81,

Example A solid copper rod 300 mm long and 40 mm diameter passes axially inside a steel
tube of 50 mm internal diameter and 60 mm external diameter. The composite bar is
tightened by using rigid washers of negligible thickness. Determine the stresses in copper rod
and steel tube, when the nut is tightened so as to produce a tensile load of 100 kN in the
copper rod.

Given:
Length of copper rod (1) 300 mm
Diameter of copper rod (DC) =40 mm
Internal diameter of steel tube (dS) =50 mm
External diameter of steel tube (DS) = 60 mm
Tensile load in copper rod (P) =100 kN =100 x 10° N

Let G = Stress in the copper rod and

G, = Stress in the steel rod.
We know that area of the copper rod,

T 2 I 2 2
A = T (D) = 1 x (40y =400 T mm

C

and area of the stee] tube,

L4 2 2 n 2 2 2
A, = Tx Dy —d 1= 1x [(60) —(30) =275 n mm
We also know that tensile load on the copper rod is equal to the compressive load on the steel
tube. Therefore stress in steel rod,
A 400m _léo,

c
Oy = 7 X0c=

A, 7755 ¢ T

= 1455 o,
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and load (P) 100 x 10° = (0. Ap) + (05 - Ag) = (6 X 400 1) + (1.455 6 x 275 7)

800 1t o,

100 10 R )
Oc = “goop = 29-8 N/mm” = 39.8 MPa (tension) Ans.

and o, = L1455 0,.=1.455 x39.8 N/fmm® = 57.9 Nfmm”® Ans.
= 57.9 MPa (compression) Ans.

Thermal Stresses and Strains

Whenever there is some increase or decrease in the temperature of a body, it causes
the body to expand or contract. A little consideration will show that if the body is allowed to
expand or contract freely, with the rise or fall of the temperature, no stresses are induced in
the body. But if the deformation of the body is prevented, some stresses are induced in the
body. Such stresses are called thermal stresses or temperature stresses. The corresponding
strains are called thermal strains or temperature strains.

Thermal Stresses in Simple Bars

The thermal stresses or strains, in a simple bar, may be found out as discussed below:

1. Calculate the amount of deformation due to change of temperature with the
assumption that bar is free to expand or contract.

2. Calculate the load (or force) required to bring the deformed bar to the original
length.

3. Calculate the stress and strain in the bar caused by this load.

The thermal stresses or strains may also be found out first by finding out amount of
deformation due to change in temperature, and then by finding out the thermal strain due to
the deformation. The thermal stress may now be found out from the thermal strain as usual.
Now consider a body subjected to an increase in temperature.

Let | =Original length of the body,

t = Increase of temperature and
o = Coefficient of linear expansion.
We know that the increase in length due to increase of temperature
of = Lot
If the ends of the bar are fixed torigid supports, so that its expansion is prevented, then compressive
strain induced in the bar.

& Lot
€= =" =
Stress o = &.E=@.iLE
Cor. If the supports yield by an amount equal to A, then the actual expansion that has taken place,
81 = lot-A
and strain, £ = % = y = (m‘ %)

£.E= (w—%]E

Stress, o

Example Two parallel walls 6 m apart are stayed together by a steel rod 25 mm diameter
passing through metal plates and nuts at each end. The nuts are tightened home, when the
rod is at a temperature of 100°C. Determine the stress in the rod, when the temperature falls
down to 60°C, if (a) the ends do not yield, and (b) the ends yield by 1 mm. Take E = 200 GPa
and a =12 x 10°%/°C

Given:
Length (I) =6 m =6 x 103 mm
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Diameter (d) =25 mm

Decrease in temperature (t) = 100° — 60° = 40°C
Amount of yield in ends (A) = 1 mm

Modulus of elasticity (E) = 200 GPa = 200 x 10° N/mm?

Coeftficient of linear expansion (a) = 12 x 107%/°C.
(@) Stress in the rod when the ends do not yield

We know that stress in the rod when the ends do not yield,
G, = aLE=(12x 107°) x 40 % (200 x 10%) Nfmm”
= 96 N/mm* =96 MPa  Ans.
(b) Stress in the rod wien the ends yield by I mmn
We also know that stress in the rod when the ends yield,

a,

A _ —6 _ 1 3 2
[m JE—[(UXIU )40 6“03} 200 x 10° N/mm
= 62.6 N/mm” = 62.6 MPa Ans.

Thermal Stresses in Bars of Circular Tapering Section

Consider a circular bar of uniformly tapering section fixed at its ends A and B and
subjected to an increase of temperature as shown

Let | = Length of the bar.

d;= Diameter at the bigger end of the bar,

d»= Diameter at the smaller end of the bar,

t = Increase in temperature and

a = Coefficient of linear expansion.

The increase in temperature, the bar AB will tend to expand. But since it is fixed at
both of its ends, therefore it will cause some compressive stress. We also know that the
increase in length due to increase in temperature,

S = Lot (i)
Now let P = Load (or force) required to bring the deformed bar to the
original length.
We know that decrease in the length of the circular bar due to load P
S = Lout o)
Now let P = Load (or force) required to bring the deformed bar to the
original length.
We know that decrease in the length of the circular bar due to load P

4p1 .y
o = TEad, -(f0)
Equating equations (7) and (ii),
— 4Pl TCEdl dz.au"
lLo.t = nEd, d or P:T
. P _mEdd,or «atEd,
*Max. stress, GO = T g = PEIS = 4,
4772 4772
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Note.  If we substitute d, = d,, the above relation is reduced to
C = O.L.E ...(Same as for simple bars)

Example A circular bar rigidly fixed at its both ends uniformly tapers from 75 mm at one end
to 50 mm at the other end. If its temperature is raised through 26 K, what will be the
maximum stress developed in the bar. Take E as 200 GPa and o as 12 x 10-6 /K for the bar
material.

Given:
Diameter at end 1 (d1) = 75 mm
Diameter at end 2 (d2) = 50 mm
Rise in temperature (t) =26 K
E = 200 GPa = 200 x 10° N/mm?
0a=12x10°/K
maximum stress developed in the bar,

at.E.dy  (12x107°)x 26 x (200x10) x 75
amm‘ = dz - 50
= 936 N/mm”=93.6 MPa  Ans.

N/mm?

Thermal Stresses in Bars of Varying Section

Consider a bar ABC fixed at its ends A and C and subjected to an increase of
temperature as shown
Let

I: = Length of portion AB,

o1 = Stress in portion AB,

A1 = Cross-sectional area of portion AB,

I2, 62, A2 = Corresponding values for the portion BC,

a= Coefficient of linear expansion and

t = Increase in temperature

We know that as a result of the increase in temperature, the bar ABC will tend to
expand. But since it is fixed at its ends A and C, therefore it will cause some compressive
stress in the body. Moreover, as the thermal stress is shared equally by both the portions,
therefore

G A = 0,4,
Moreover, the total deformation of the bar (assuming it to be free to expand),
o, ©,l
8 = 81, +8l,= 2L+ 22~ (0,1, +0, 1)

Note. Sometimes, the modulus of elasticity is different for different sections. In such cases, the total deformation.

8 = [Gé—j' +—0§2]
1 2

( Example A composite bar made up of aluminium and steel, is held between two supports as
shown. The bars are stress-free at a temperature of 38°C. What will be the stresses in the two
bars, when the temperature is 21°C, if (a) the supports are unyielding, (b) the supports come
nearer to each other by 0.1 mm? It can be assumed that the change of temperature is uniform
all along the length of the bar. Take E for steel as 200 GPa; E for aluminium as 75 GPa and
coefficient of expansion for steel as 11.7 x 10-6 per °C and coefficient of expansion for
. aluminium as 23.4 x 10-6 per °C.
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Given:
Length of steel bar (Is) = 600 mm
Area of steel bar (As) = 1000 mm?
Length of aluminium bar (la) = 300 mm
Area of aluminium bar (Aa) = 500 mm?
Decrease in temperature (t) =38 -21=17°C
Modulus of elasticity of steel (Es) = 200 GPa = 200 x 10° N/mm?
Modulus of elasticity of aluminium (Ea) = 75 GPa = 75 x 10° N/mm?
Coefficient of expansion for steel (as) = 11.7 x 10°%/°C
Coefficient of expansion for aluminium (o) = 23.4 x 107%/°C.

Steel bar Aluminium bar
Ag = 1000 mm? A, =500 mm?

600
nim

300
mim

Let c Stress in the steel bar, and

tn
Il

Stress in the aluminium bar.

:9
1l

(a) Stresses when the supports are unyielding
Cg.Ag = G, . A, or og % 1000 = 6, x 500

o = 0, x500/1000=05 o,
We know that free expansion of steel bar due to increase in temperature,

8l = Igog.t=600x (11.7 % 10°) x 17 =0.119 mm
and 8, = l,.00.0=300x (23.4 x 10°) x 17 =0.119 mm

Total contraction of the bar,
8 = Olg+8l,=0.119 +0.119 = 0.238 mm

Now let us assume a tensile force to be applied at A and C, which will cause an expansion of
0.238 mm of the rod (i.e., equal to the total contraction). Therefore

0.238 = + = + =55x10" 0
Eg E, 200x 10° 75%10° A
0.238 2
G, = SSXT =43.3 N/mm"” = 43.3 MPa Ans.
and 6, = 056,=05x% 43.3=21.65 MPa Ans.

(b) Stresses when the supports come nearer to each other by 0.1 mm

In this case, there is an expansion of composite bar equal to 0.238 — 0.1 = 0.138 mm. Now let us
assume a tensile force, which will cause an expansion of 0.138 mm. Therefore

0.138 = Os.lg N Cy-ly _ (05 GA)x(z(lD +GAX30§) 55y 10_35,4
Eg E, 200% 10° 75%10
0.138 ”
O4 = 55%10° =25.1 N/mm~ = 25.1 MPa Ans.
and 6, = 0506,=0.5%x25.1=12.55MPa Ans.

24



Superposition of Thermal Stresses

Example A rigid slab weighing 600 kN is placed upon two bronze rods and one steel rod
each of 6000 mm? area at a temperature of 15°C as shown in Fig. Find the temperature, at
which the stress in steel rod will be zero. Take: Coefficient of expansion for steel = 12 x 10°®
/°C, Coefficient of expansion for bronze = 18 x 10°%/°C

Young’s modulus for steel = 200 Gpa, Young’s modulus for bronze = 80 GPa.

Given:

Weight = 600 kN = 600 x 10° N

Area of bronze rod (As) = As = 6000mm?

Coeftficient of expansion for steel (as) = 12 x 1076 /°C

Coefticient of expansion for bronze (ag) = 18 x 107 /°C

Modulus of elasticity of steel (Es) =200 GPa

=200 x 10% N/mm?

Modulus of elasticity of bronze (Eg) =80 GPa

=80 x 103 N/mm?
Let t=Rise intemperature, when the stress in the steel rod will be zero.

Due to increase in temperature all the three rods will expand. The expansion of bronze
rods will be more than the steel rod (because ag is greater than as). If the stress in the steel
rod is to be zero, then the entire load should be shared by the two bronze rods. Or in other
words, the decrease in the length of two bronze rods should be equal to the difference of the
expansion of the bronze rods and steel rod. We know that free expansion of the steel rod

= It =300x 12X 10° xr=3.6x 10" 1
Similarly, free expansion of the bronze rods,
= L0pf=250x 18 x 10° x 1 =4.5x 10" 1

600 kN

Bronze

Bronze
Steel

fe—— 300 mm —=

Err,

Difference in the expansion of the two rods
= (45x10°)-(3.6x107)r=09x 10" ¢ (i)
We also know that the contraction of the bronze rods due to load of 600 kN
Pl (600x10%)x 250 )
= AE  (2x6000)x (80x 107) ~ 0130 mm (i)
Now equating equations (7) and (i7),

__0.156
9x107*

09% 107 xt = 0.156 or =173.3°C  Ans.

Thermal Stresses in Composite Bars

Whenever there is some increase or decrease in the temperature of a bar, consisting of
two or more different materials, it causes the bar to expand or contract. The different
coefficients of linear expansions the two materials do not expand or contract by the same
amount, but expand or contract by different amounts. The steel and brass could have been
free to expand, and then no internal stresses would have induced. The two members are
rigidly fixed, therefore the composite bar, as a whole, will expand by the same amount.

Brass Brass /- Brass

Steel Steel Steel

(@) @) @)
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We know that the brass expands more than the steel (because the coefficient of linear
expansion of the brass is greater than that of the steel). Therefore the free expansion of the
brass will be more than that of the steel. But since both the members are not free to expand,
therefore the expansion of the composite bar, as a whole, will be less than that of the brass;
but more than that of the steel as shown. It is thus obvious that the brass will be subjected to
compressive force, whereas the steel will be subjected to tensile force as shown.

G, = Stress in brass

€, = Strain in brass,

o, = Coefficient of linear expansion for brass,
A, = Cross-sectional area of brass bar,

O,, &, 0, A, = Corresponding values for steel, and
€ = Actual strain of the composite bar per unit length.

As the compressive load on the brass is equal to the tensile load on the steel, therefore
G.A, = CpA,
Now strain in brass,
g = O.I-¢€ (i)
and strain in steel, g, = 0,[—¢€ (i)
Adding equation (i) and (if), we get
g +g, = —t(og + 0y

Notes : 1. In the above equation the value of «, is taken as greater of the two values of «; and o,

Example A gun metal rod 20 mm diameter, screwed at the ends, passes through a steel tube
25 mm and 30 mm internal and external diameters respectively. The nuts on the rod are
screwed tightly home on the ends of the tube. Find the intensity of stress in each metal, when
the common temperature rises by 200°F. Take. Coefficient of expansion for steel = 6 x 10—
6/°F Coefficient of expansion for gun metal = 10 x 10 —6 /°F Modulus of elasticity for steel =
200 Gpa, Modulus of elasticity for gun metal = 100 GPa.

Given:
Diameter of gun metal rod =20 mm
Internal diameter of steel tube = 25 mm
External diameter of steel tube = 30 mm
Rise in temperature (t) = 200°F
Coeff of expansion for steel (as) = 6 x 107°/°F
Coeff of expansion for gun metals (ag) = 10 x 10 /°F

(Es) = 200 GPa = 200 x 10% N/mm? S Steel tube
(E) = 100 GPa = 100 x 103 N/mm? LN T | S :

L/

¥

f——— 300mm ————————]

The temperature of the gun metal rod and steel tube will increase; the free expansion of gun
metal rod will be more than that of steel tube. Thus the gun metal rod will be subjected to
compressive stress and the steel tube will be subjected to tensile stress.

n 2 2
A, = 1 % (20)" = 100 © mm

[(30)* — (25)"] = 68.75 ® mm”

&la

Ag =
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o, = i—jxcs :%XGG =145 0,

We know that strain in steel tube,
Os G5

= B 200x10°
S __ %
and 6 = E; 100x10°
We also know that total strain,

gs+e; = t(0g— 0Oy

Og Og -6 —6
+ = 200 [(10 x 10°) — (6 x 107%)]
200%x10°  100x10°
1450, 1]
< = 200x(4x10°
200%10°  100x 10
3456
——C¢- - 800x10°
200% 10
345 6G = (800 x 107°) x (200 x 10”) = 160
_ 160 _ 2 _
O; = 345 =464 N/fmm~ = 46.4 MPa Ans.
and 6, = 1456,;=145%x464 =673 MPa Ans.

Elastic constant
The axial deformation of a body, when it is subjected to a direct tensile or
compressive stress. But we have not discussed the lateral or side effects of the pulls or
pushes. It has been experimentally found, that the axial strain of a body is always followed by
an opposite kind of strain in all directions at right angle to it. Thus, in general, there is always
a set of the following two types of strains in a body, when it is subjected to a direct stress.
e Primary or linear strain, and
e Secondary or lateral strain

Whenever some external force acts on a body, it undergoes some deformation. Now consider
a circular bar subjected to a tensile force as shown. Let

| = Length of the bar,

d = Diameter of the bar,

P = Tensile force acting on the bar, and

dl = Increase in the length of the bar

The deformation of the bar per unit length in the direction of the force is known as

linear strain. The linear deformation of a circular bar of length | and diameter d subjected to
a tensile force P. The deformation of the bar, we will find that bar has extended through a
length dI, which will be followed by the decrease of diameter from d to (d — dd) as shown.
Similarly, if the bar is subjected to a compressive force, the length of the bar will decrease by
dl which will be followed by the increase of Diameter from d to (d + 8d). It is thus obvious
that every direct stress is always accompanied by a strain in its own direction and an opposite
kind of strain in every direction at right angles to it. Such a strain is known as secondary or
lateral strain.
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Poisson's ratio
If a body is stressed within its elastic limit, the lateral strain bears a constant ratio to

the linear strain.

Lateral strain

n - = (constant
Linear strain ( )

. . . . . 1 .
This constant is known as Poisson’s ratio and is denoted by o Or Mathematically,

. 1
Lateral strain = T XETUE

Example A steel bar 2 m long, 40 mm wide and 20 mm thick is subjected to an axial pull of
160 kN in the direction of its length. Find the changes in length, width and thickness of the
bar. Take E = 200 GPa and Poisson’s ratio = 0.3.

Given: Length (1) =2m =2 x 103 mm
Width (b) =40 mm ;
Thickness (t) = 20 mm;
Axial pull (P) =160 kN = 160 x 103 N ;
Modulus of elasticity (E) = 200 GPa = 200 x 103 N/mm?
poisson’s ratio (1/m) = 0.3
Change in length
We know that change in length,

Pl _ (160x10%) % (2x10%)
AE  (40%20)x(200x10%)

3 =

=2 mm Ans.

Change in width
We know that linear strain,

ol

__2
€= 17 2x10

3 =0.001

’—L xe=03x0.01 =0.0003

1

and lateral strain

Change in width,

1

ob b % Lateral strain = 40 x 0.0003 = 0.012 mm Ans.
Change in thickness
We also know that change in thickness,
&t = rx Lateral strain = 20 x 0.0003 = 0.006 mm Ans.

Volumetric strain

Whenever a body is subjected to a single force (or a system of forces), it undergoes
some changes in its dimensions. The change in dimensions of a body will cause some
changes in its volume. The ratio of change in volume, to the original volume, is known as

volumetric strain
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The following are important from the subject point of view:
1. A rectangular body subjected to an axial force.
2. A rectangular body subjected to three mutually perpendicular force

v
V
0V = Change in volume, and

Ey =

V = Original volume.
Volumetric Strain of a Rectangular Body Subjected to an Axial Force

Consider a bar, rectangular in section, subjected to an axial tensile force as shown in Fig. 6.2.
Let ! = Length of the bar,
b = Breadth of the bar,
t = Thickness of the bar,
P = Tensile force acting on the bar,
E = Modulus of elasticity and
1

el Poisson’s ratio.

‘We know that change in length,

Pl Pl )
ol = E = ﬁ (D)
a1 ¢ o = Force _ P
and linear stress, = Arca b7
. . 'S‘rress _ P
Linear strain = F  biE
. L 1 P
and lateral strain = oo X Linear strain= /% 7%
Change in thickness,
L1l P P
= I X—X——= i
o m btE mbE i)
and change in breadth,
Lol P P
= bX—X——=
ob m DbtE mtE (ait)
As a result of this tensile force, let the final length
= 1+dl
Final breadth = b — b ...(Minus sign due to compression)
and final thickness = r— &t ...(Minus sign due to compression)

We know that original volume of the body,
V = Lb.t
(I + &) (b— 6b) (r— 1)

(10 )(1-5)(1-%)
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and final volume
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= Ibt {1 + ol _3db _Q} ...(Ignoring other negligible values)

Change in volume,
OV = Final volume — Original volume

.’br(l+$—%—?]—wr:3br(g—ﬁ—b—g)

I

= Vx i [l _2]
m
and volumetric strain,

S_V B btE m :_(1_2)
v 14 btE m
2
-2) P
- E( m e E—S—Stram

Example A steel bar 2 m long, 20 mm wide and 15 mm thick is subjected to a tensile load of

30 kN. Find the increase in volume, if Poisson’s ratio is 0.25 and Young’s modulus is 200
GPa.

Given: Length (1) =2m =2 x 10 3 mm ; Width (b) =20 mm ; Thickness (t) = 15 mm
Tensile load () = 30 kN = 30 x 10°N ; Poisson’s ratio ( L ] =0.25 or m =4 and Young’s modulus

m
of elasticity (E) = 200 GPa = 200 x 10> N/mm”.
Let &V = Increase in volume of the bar.
We know that original volume of the bar,
V = Lbt=(2x10°) x 20 x 15 = 600 x 10° mm’

v P 2 30x10° 2
; o _(1__): (1——):0.00025
an 14 btE m]  20x15%(200x10°) 4
8V = 0.00025 x V=0.00025 x (600 x 10*)= 150 mm>  Ans.

Volumetric Strain of a Rectangular Body Subjected to Three Mutually Perpendicular
Forces

Consider a rectangular body subjected to direct tensile stresses along three mutually
perpendicular axes as shown

z
. L Y
Let G, = Stress in x-x direction, T A
G, = Stress in y-y direction, 1 I ¥
- : - S e T —;—>
G. = Stress in z-z direction and -~ : T
E = Young’s modulus of elasticity. Y/ ¢
.. L z
Strain in x-x direction due to stress G,
g,
&=
g, G.
Similarly, g = — and g ==
¥ v E z E

The resulting strains in the three directions may be found out by the principle of
superposition, i.e., by adding algebraically the strains in each direction due to each
individual stress. For the three tensile stresses shown. (taking tensile strains as +ve and
compressive strains as —ve) the resultant strain in x-x direction,
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and

ol G.l' GJ
mE E Toom m

e = G.t‘_G_“ _G~ _ 1
* " E mE mE E i
. S5, o, o, 1
= ———*_ < _—_—Il¢g,
Similarly, E E mE mE E|[ -
6. o, o 1]
8._ — —_—— —— — = = -
< E mE
The volumetric strain may then be found by the relation;
oV
E72 g teg tE

Example A steel cube block of 50 mm side is subjected to a force of 6 kN (Tension), 8kN
(Compression) and 4 kN (Tension) along X, y and z direction respectively. Determine the
change in volume of the block. Take E as 200 GPa and m as 10/3.

Given:

Side of the cube = 50 mm ;
Force in x- direction (Px) = 6 kN =6 x 10° N (Tension) ;

Force in y-direction(Py) = 8 kN = 8 x 103 N (Compression) :

Force in z-direction (Pz) = 4 kN = 4 x 10° N (Tension) and
modulus of elasticity (E) = 200GPa = 200 x 10 N/mm?
andm=10/3

OV = Change in volume of the
block.

original volume of the steel cube,

4 kN

50 mm

I TékN

V = 50 x50 x 50 = 125 x 10’ mm’
and stress in x-x direction,
P, 6x10° .
G, = 7“= 3500 = 2.4 N/mm® (Tension)
. P, _§x10’ :
Similarly O = T 3500 = 3.2 N/mm’ (Compression)
P ? .
and o, = 4= 4;;{1)‘3 = 1.6 N/mm” (Tension)

sion as negative,

and

We also know that resultant strain in x-x direction considering tension as positive and compres-
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o, O, o, 24 32%x3 16x3 288
& = E "mE mE E 10E 10E E
Similarl _ % o, o, 32 24x3 16X3_ 44
1miarty, & = E mE mE E I0E 00E  E
_ 9. _0O:, G, 16 24x3 32x3 1.384
& = E mE mE E 10E ' 10E E
volumetric strain,
v
v T ETEFE
8V. 288 44 184 _032__ 032
125x10° = E E E E  200x10°
3 703 3
oV = 125x 10° x 200%10° =0.2 mm Ans.



Shear Stress

When a section is subjected to two equal and opposite forces, acting tangentially
across the resisting section, as a result of which the body tends to shear off across the section
as shown. The stress induced is called shear stress. The corresponding strain is called shear

strain. s -
I_é_/—I—F P
P a— |

Deformation

Shear strain

Original length
cC
= =0
- £
YT 4B

Principle of Shear Stress
It states, “A shear stress across a plane, is always accompanied by a balancing shear
stress across the plane and normal to it.

P = 1TXx.AD=1XCB D — c
Consider a rectangular block ABCD, subjected to a shear 4 L '
stress of intensity t on the faces AD and CB as shown. Now consider
a unit thickness of the block. Therefore force acting on the faces AD T 5

and CB,

These forces will form a couple, whose moment is equal to T x AD x AB i.e., force x
distance. If the block is in equilibrium, there must be a restoring couple, whose moment must
be equal to this couple. Let the shear stress of intensity t be set up on the faces AB and CD as
shown. Therefore forces acting on the faces AB and CD,.

TX AD % AB 17" %X AD x AB

T=1
Relation between Modulus of Elasticity and Modulus of Rigidity
Consider a cube of length I subjected to a shear stress of z as shown. due to these
stresses the cube is subjected to some distortion, such that the diagonal BD will be elongated
and the diagonal AC will be shortened. Let this shear stress t cause shear strain ¢ as shown.
We see that the diagonal BD is now distorted to BD1.

. BD, — BD -~ Strai _al
Strain of BD — 8D [ rain ]

Dl .Dg _ DD] cos 45° _ DDJ ¢

BD ADJ2  2AD 2

Linear strain of the diagonal BD

b _ 1 T . D C
=2%3¢ g N S wa
\ N
T = Shear stress and . } LT 2 O

. L ~ (i

= Modulus of rigidity. 1 ‘“\\:‘T_ﬂ

\ 3y
(1 Tr B __f H
() Before distortion () After distortion
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Let us now consider this shear stress t acting on the sides AB, CD, CB and AD. We know that the

effect of this stress is to cause tensile stress on the diagonal BD and compressive stress on the diago-
nal AC. Therefore tensile strain on the diagonal 8D due to tensile stress on the diagonal BD

T

E

and the tensile strain on the diagonal BD due to compressive stress on the diagonal AC

1.
m E

The combined eftect of the above two stresses on the diagonal BD

T,1._1_ 1
= —+—x—=—|(1+
m E (

E m E

Equating equations () and (iv),

T T m+1
2c  E\l m

1
m

]—i m+1
“El m

_ mE
S 2(m+1)

i)

...(iii)

.[iv)

|

Example An alloy specimen has a modulus of elasticity of 120 GPa and modulus of rigidity

of 45 GPa. Determine the Poisson’s ratio of the material.

|

Given:
Modulus of elasticity (E) = 120 GPa
Modulus of rigidity (C) = 45 GPa.

Let 1 = Poisson’s ratio of the material.

1

We know that modulus of rigidity (C),

mx120  120m

45 — mE

00 m+90 = 120m
_ 0 _

m = 35=-

Strain Energy and Impact Loading

When the load moves downwards, it loses its *potential energy. This energy is
absorbed (or stored) in the stretched wire, which may be released by removing the load. On

2(m+1) 2 (m+1) 2m+2

or 30 m =00

1_1
or m 3

removing the load, the wire will spring back to its original position.

Resilience

It is a common term used for the total strain energy stored in a body. Sometimes the
resilience is also defined as the capacity of a strained body for doing work (when it springs

back) on the removal of the straining force.
Proof Resilience

It is also a common term, used for the maximum strain energy, which can be stored in
a body. (This happens when the body is stressed up to the elastic limit). The corresponding

stress is known as proof stress.
Modulus of Resilience

The proof resilience per unit volume of a material, is known as modulus of resilience

and is a important property of the material.

A load may act in either of the following three ways:

1. Gradually 2. suddenly 3. with impact

Strain Energy Stored in a Body, when the Load is Gradually Applied

When loading a body, in which the loading starts from zero and increases gradually
till the body is fully loaded. e.g., when we lower a body with the help of a crane, the body
first touches the platform on which it is to be placed. On further releasing the chain, the
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platform goes on loading till it is fully loaded by the body. This is the case of a gradually
applied load. Now consider a metallic bar subjected to a gradual load.

Let P =Load gradually applied,
A = Cross-sectional area of the bar,
| = Length of the bar,
E = Modulus of elasticity of the bar material and
d = Deformation of the bar due to load.

Since the load applied is gradual, and varies from zero to P, therefore the average load is

equal to P/2
~ Work done = Force x Distance

= Average load x Deformation

—

P P v B —
= Exﬁa':E{E.F) odl=gl D)

=5 g.eA.l ST P=0A)
= E ® Stress % Strain ¥ Volume
= LxoxSxar
2 E
= lxg—zxﬁ.{
2 E

Since the strain energy stored is also equal to the work done, therefore strain energy stored,

2

'3 - o’
U = SpxAl=5pX v
We also know that modulus of resilience
= Strain energy per unit volume

a

c
2E

w0 Al = Volume = V)

|

Example Calculate the strain energy stored in a bar 2 m long, 50 mm wide and 40 mm thick

when it is subjected to a tensile load of 60kN. Take E as 200 GPa.

|

Given:
Length of bar (1) =2m=2x 10® mm
Width of bar (b) =50 mm
Thickness of bar (t) = 40 mm
Tensile load on bar (P) = 60 kN = 60 x 10° N and

Modulus of elasticity (E) = 200GPa = 200 x 10° N/mm?

We know that stress in the bar

P _60x10° 2
C = AT 350%40 =30 N/mm
Strain energy stored in the bar,
U~ Sxv= L‘j‘
2E 2% (200107

0 % 10° N-mm = 9 kN-mm

x 4 x 10° N-mm

Ans.

Strain Energy Stored in a Body when the Load is Suddenly Applied

The load is suddenly applied on a body. e.g., when we lower a body with the help of a
crane, the body is, first of all, just above the platform on which it is to be placed. If the chain
breaks at once at this moment the whole load of the body begins to act on the platform. This
is the case of a suddenly applied load. Now consider a bar subjected to a sudden load.
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P = Load applied suddenly,
A = Cross-sectional area of the bar,
{ = Length of the bar,
E = Modulus of elasticity of the material,
& = Deformation of the bar, and

¢ = Stress induced by the application of the sudden load

Since the load is applied suddenly, therefore the load (P) is constant throughout the process of
deformation of the bar.

Work done = Force x Distance = Load x Deformation ()
= Pxdl

We know that strain energy stored,

i
[+3 .
= —xAl
u °E {if)
Since the strain energy stored is equal to the work done, therefore
2 ' :
G~ a
= = = =1 —81=Z
ZEXA.’ P x Ol Px = (GI_E!)
P
or o =2x n

Example An axial pull of 20 kN is suddenly applied on a steel rod 2.5 m long and 1000 mm2
in cross-section. Calculate the strain energy, which can be absorbed in the rod. Take E = 200
GPa.

Given:
Axial pull on the rod (P) =20 kN =20 x 10° N;
Length of rod (1) =25m=25x10>mm
Cross-sectional area of rod (A) =1000 mm?
and modulus of elasticity (E) = 200GPa = 200 x 10% N/mm?
We know that stress in the rod, when the load is suddenly applied
c = 2x§=2x% = 440 Nfmm”

and volume of the rod,
V = 1.A=(25%10%) x 1000 = 2.5 x 10" mm"
Strain energy which can be absorbed in the rod,

Sy WO
27 T 2% (200x10°)

= 10 x 10* N-mm = 10 kN-mm Ans.
Strain Energy Stored in a Body, when the Load is applied with Impact
The impact load is applied on a body e.g., when we lower a body with the help of a
crane, and the chain breaks while the load is being lowered the load falls through a distance,
before it touches the platform. This is the case of a load applied with impact. Now consider a
bar subject to a load applied with impact as shown.
Let £ = Load applied with impact,
A = Cross-sectional area of the bar,
E = Modulus of elasticity of the bar material,
! = Length of the bar,
8! = Deformation of the bar, as a result of this load,

U= % (2.5 % 10°) N-mm

¢ = Stress induced by the application of this load
with impact, and
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f = Height through which the load will fall, before impacting on the collar of the bar.
Work done = Load x Distance moved
= P (h+ 8l
7

o
- - =—xAl
and energy stored, U = 2E

Since energy stored is equal to the work done, therefore

O xAl = P(h+8l)= P(h+£,g’) [--81=9.1)
2E E -

o Pal
E xAl = Ph+ T Load

I
=

ﬁl(zﬂ—é}—c[?J Ph * ?44

Multiplying both sides by (f‘,)

7
o P PER h
—-0|—=|-——F+ =10
2z ° ( A] Al
This is a quadratic equation. We know that /(.'11Ilar

N EET O w
- f{u\j[ ME“J

Once the stress (o)is obtained, the corresponding instantancous deformation (&f) or the strain
energy stored may be found out as usual.

Cor. When 6 is very small as compared to A, then
Work done = Ph

’]

S_ Al = P
2E '
. 2EPh
or g = Al
_ [2EPH
¢ = Al

Example A copper bar of 12 mm diameter gets stretched by 1 mm under a steady load of 4
kN. What stress would be produced in the bar by a weight 500 N, the weight falls through 80

mm before striking the collar rigidly fixed to the lower end of the bar? Take Young’s modulus
or the bar material as 100 GPa

Given :
Diameter of bar (d) = 12 mm
Change in length of bar (dl) =1 mm
Load on bar (P1) =4 kN =4 x 10N
Weight falling on collar (P2) =500 N
Height from which weight falls (h) = 80 mm
Modulus of elasticity (E) = 100 GPa = 100 x 102 N/mm?
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Let I = Length of the copper bar.
We know that cross-sectional area of the bar,

A = g x (d)’ = % x (12)% = 113.1 mm>
and stretching of the bar (1),
P (4x10°) 1
AE 131 (100 x 10°)  2.83x 10°
-~ I = 1x(2.83x10%) =283 x 10° mm
We also know that stress produced in the bar by the falling weight.

P, 2AED
= 2|1+ {1+
¢ [ szJ

I =

113.1 500 (2.83x10%)

4.2 (1 +35.77) = 162.52 N/mm” = 162.52 MPa Ans.
Strain Energy Stored in a Body of Varying Section

Sometimes, we come across bodies of varying section. The strain energy in such a
body is obtained by adding the strain energies stored in different parts of the body.
Mathematically total strain energy stored in a body.

U=Ui+Ux+U3z+ ...
Where U; = Strain energy stored in part 1,

U, = Strain energy stored in part 2,

Uz = Strain energy stored in part 3

3
1500 [1+\/1+2x113.1x(100><10 )xsﬂ -

Example A non-uniform tension bar 5 m long is made up of two parts as shown. Find the
total strain energy stored in the bar, when it is subjected to a gradual load of 70 kN. Also find
the total strain energy stored in the bar, when the bar is made of uniform cross-section of the
same volume under the same load. Take E = 200 GPa.

Given:
Total length of bar (L) =5m =5 x 10° mm
Length of part 1 (L1) =3 m=3x 10> mm
Length of part 2 (L2) =2 m =2 x 10° mm
Area of part 1 (A1) = 1000 mm?
Area of part 2 (A2) = 2000 mm?
Pull (P) = 70 kN = 70 x 10° N
Modulus of elasticity (E) = 200 Gpa = 200 x 10® N/mm?

Total strain energy stored in the non-uniform bar
We know that stress in the first part,
70x10°

F 2
a, = E—W =70 N/mm

and volume of the first part,
v, = (3x10%) x 1000 =3 x 10° mm’
Strain energy stored in the first part,

o (705

Uy = 5pxVi=7————= x (3 x 10" =36.75 x 10° N-
S ax@onxiey <G x 10° N-mm

1 T 2E
i)

Similarly, stress in the second part,

P 70x10°

=000 = 35 N/mm”

0, = 4
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and volume of the second part,
v, = (2x10%) x 2000 = 4 x 10° mm’
Strain energy stored in the second part,

ﬁfg' {35}2 & 3
U, = 2xv,=— 0 4109 = 1225 x 10° N-
2 = 2872 T g ooxaoy <X X A Frmm
(i)

and total strain energy stored in the non-uniform bar,
U=U+U, = (3675x10°)+(1225% 10°)=49x 10°N=mm=49N-m  Ans.

Total strain energy in the uniform bar
We know that total volume of the bar,
V=V, +V,=03x10°+4x10° =7 x 10° mm’
and cross-sectional area of the circular bar,

Volume of the bar  7x10° \
A = Length of thebar  §x10° = 1400 mm

Stress in the bar

70x10° 2
and strain energy storad in the uniform bar,
U= Sxv=—O0 (7510 =4375 x 10° N-mm

2E7 7 2% (200x10°)
43.75 N-m Ans.

Strain Energy Stored in a Body due to Shear Stress

Consider a cube ABCD of length [ fixed at the bottom face AB as shown in Fig 8.5.

Let P = Force applied tangentially on the face DC,
D, (SR o p
- z M

T = Shear stress
¢ = Shear strain, and ! ,
N

= Modulus of rigidity or ; ;

shear modulus. / /

If the force P is applied gradually then the average force / /

is equal to P/2. ETJ
: f

Work done

Average force x A
Distance

B

Fig. 8.5. Strain energy due to

= = x DD, shear stress

XPXAD X { ol DD = AD X §)

XTXDCXIXAD XD LrP=TXDOXI

t2 = t2|— 2= ra|=

XTXOXDOXAD x|

(stress x strain x volume)

[SSTECC o1
Il

Z|a

—

T
HIx—xV
X [0
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,
2
= xV i r

= 3N ...(where V is the volume)

Since energy stored is also equal to the work done, therefore energy stored,

9

U= =X
- 2N

We also know that modulus of resilience

xV

= Strain energy per unit volume

-

T
- IN

Example A rectangular body 500 mm long, 100 mm wide and 50 mm thick is subjected to a
shear stress of 80 MPa. Determine the strain energy stored in the body. Take N = 85 GPa.

Given:

Length of rectangular body (1 ) =500 mm

Width of rectangular body (b) = 100 mm

Thickness of rectangular body (t) = 50 mm
Shear stress (t) = 80 MPa = 80 N/mm? and
modulus of rigidity (N) = 85 N/mm?

We know that volume of the bar,
V = Lb.t=500x 100 x 50 = 2.5 x 10° mm’

and strain energy stored in the body,

I xy=_ B0 _
2N 2% (85%10%)
94.1 x 10° N-mm = 94.1 N-m Ans.

U % 2.5 x 10° N-mm

Principal Stresses and Strains

At a time one type of stress, acting in one direction only. But the majority of
engineering, component and structures are subjected to such loading conditions (or
sometimes are of such shapes) that there exists a complex state of stresses; involving direct
tensile and compressive stress as well as shear stress in various directions.

At any point in a strained material, there are three planes, mutually perpendicular to
each other, which carry direct stresses only, and no shear stress. These three direct stresses
one will be maximum, the other minimum, and the third and intermediate between the two.
These particular planes, which have no shear stress, are known as principal planes.

The magnitude of direct stress, across a principal plane, is known as principal stress.
The determination of principal planes, and then principal stress is an important factor in the
design of various structures and machine components.

The following two methods for the determination of stresses on an oblique section of
a strained body are important from the subject point of view: 1. Analytical method and 2.
Graphical method.

Analytical Method for the Stresses on an Oblique Section of a Body

The analytical method for the determination of stresses on an oblique section in the

following cases, which are important from the subject point of view:
1. A body subjected to a direct stress in one plane.
2. A body subjected to direct stresses in two mutually perpendicular directions

In the element shown, the shear stress on the vertical faces (or x-x axis) is taken as
positive, whereas the shear stress on the horizontal faces (or y-y axis) is taken as negative
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Stresses on an Oblique Section of a Body Subjected to a Direct Stress in One Plane

Consider a rectangular body of uniform cross-sectional area and unit thickness
subjected to a direct tensile stress along x-x axis as shown. Now let us consider an oblique
section AB inclined with the x-x axis.

A A
i
i g,
G — G G+ l - o
i T
! A\
(i C B
)] (e)
Let o = Tensile stress across the face AC and

fas)
I

= Angle, which the oblique section AB makes with BC i.e. with
the x-x axis in the clockwise direction.

First of all, consider the equilibrium of an element or wedge ABC whose free body diagram is
shown in fig 7.2 () and (). We know that the horizontal force acting on the face AC,

P = G.AC(¢)

Resolving the force perpendicular or normal to the section AB

P, = Psin=0.ACsin® ()
and now resolving the force tangential to the section AR,
P, = Pcosi=g.ACcos 0 w(FE)

We know that normal stress across the section AB#,

P

 _0ACsin® _ o0.ACsin0 _osin20
% = AB  AB ~ AC
sin©
= % (I —cos20)= % - % cos 26 .. (§ii)

and shear stress (i.e., tangential stress) across the section AB,

B _0.ACcos® o.ACcosD

T = 15 vV = ic =gsinBcos6
sin B
- %sjn 26 i)

The face AC will carry the maximum direct stress. Similarly, the shear stress across the
section AB will be maximum when sin 20 = 1 or 20 = 90° or 270°. Or in other words, the
shear stress will be maximum on the planes inclined at 45° and 135° with the line of action of
the tensile stress. Therefore maximum shear stress when 0 is equal to 45°,
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. I 0_0,1_9C
T = sin 90 _2x1_2

AL 2

and maximum shear stress, when 0 is equal to 135°,

s o__B ¢ =8
Tor = 7 SN 270° = 5 (- = >

It is thus obvious that the magnitudes of maximum shear stress is half of the tensile stress. Now
the resultant stress may be found out from the relation :

Op = O, +T

NOTE : The planes of maximum and minimum normal stresses (i.e. principal planes) may
also be found out by equating the shear stress to zero. This happens as the normal stress is
either maximum or minimum on a plane having zero shear stress. Now equating the shear
stress to zero, o sin 6 cos 6 =0

Example Two wooden pieces 100 mm x 100 mm in cross-section are joined together along a
line AB as shown. Find the maximum force (P), which can be applied if the shear stress along
the joint AB is 1.3 MPa.

Given:
Section = 100 mm x 100 mm ;
Angle made by section with the
Direction of tensile stress (0) = 60° and

Permissible shear stress (t) = 1.3 MPa = 1.3 N/mm?
Let o = Safe tensile stress in the member

We know that cross- sectional area of the wooden member,
A = 100 x 100 = 10 000 mm”

and shear stress (1),

13 = %sin 26 = %sin{Z x 60°) = %sin 120° = % x 0.866

0433 ¢

or g = % = 3.0 N/mm”

Maximum axial force, which can be applied,
P =0cA=30x10000=30000N=30kN Ans,
Stresses on an Oblique Section of a Body Subjected to Direct Stresses in Two Mutually
Perpendicular Directions
Consider a rectangular body of uniform cross-sectional area and unit thickness
subjected to direct tensile stresses in two mutually perpendicular directions along x-x and y-y
axes as shown. Now let us consider an oblique section AB inclined with x-x axis

o e
e o [
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Let (4

Tensile stress along x-v axis (also termed as major tensile stress),

o, = Tensile stress along y-y axis (also termed as a minor fensile
stress), and
8 = Angle which the oblique section AB makes with x-x axis in

the clockwise direction.
First of all, consider the equilibrium of the wedge ABC. We know that horizontal force acting on
the face AC (or x-x axis).
P, = 0,.AC (&)

and vertical force acting on the face BC (or y-v axis),
P, =g,.Bc()

¥

Resolving the forces perpendicular or normal to the section AB,

P =P snb+P cosb=0,_.ACsinB+0g .BCcosb (1)
and now resolving the forces tangential to the section A5,
P, =P cosB—P sin=0,_.ACcosB—g, .BCsinb w.(Fi)

We know that normal stress across the section AB,

P 0,.ACsin®+¢_ BCcos
(4] = == z
" AB AB

0,-ACsin® 0,.BCcos8 o,.ACsin6 o,.BCcos

AB AB AC BC
sin @ cosH

- 2 G.
o, sin” 8+0, .cos” 6= % (1 —cos 26) + T‘ (1 + cos 26)

[+ 20 [+ 20
= %—%CDSEB‘+T}+T}CDSZE‘
G, +0, O,—-0,
= 7 = — 7 = cos 20 (i)

and shear stress (i.e., tangential stress) across the section AB,

P ©,.ACcosO—0,.BCsind

[

T Sl B
AB AB

o,.ACcos8 0,.BCsin® o .ACcos® 6,.BCsind

AB AE AC BC
sinf cos0

= ¢,.s5infcos®—o sinBcos B

= (0,—0,)sinBcos 6 = O ;G"' sin 26 (i)

It will be interesting to know from equation (ifi) the shear stress across the section AB will be
maximum when sin 20 = 1 or 20 = 90° or 8 = 45°. Therefore maximum shear stress,

G,—0G,

Tma.r - 2

Now the resultant stress may be found out from the relation :

Oy = JJoo+1°
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Example: The stresses at point of a machine component are 150 MPa and 50 Mpa both
tensile. Find the intensities of normal, shear and resultant stresses on a plane inclined at an
angle of 55° with the axis of major tensile stress. Also find the magnitude of the maximum
shear stress in the component.

Given: Tensile stress along x-x axis (sx) = 150 MPag;
Tensile stress along y-y axis (sy) = 50 MPa and
Angle made by the plane with the major tensile stress (0) = 55°.
Normal stress on the inclined plane
We know that the normal stress on the inclined plane
o, +0, O,—0,
g, = 7 5 cos 20

150;50 _ 1502—50 cos (2 55%) MPa

100 — 50 cos 110° = 100 - 50 (- 0.342) MPa
10+17.1=117.1 MPa Ans,

Shear stress on the inclined plane
We know that the shear stress on the inclined plane,

o, -0, 150 —50

T = — 5 sin 20 = 5 ® sin (2 x 55°) MPa

= 50sin 1107 = 50 x 0.9397 = 47 MPa Ans.

Resultant stress on the inclined plane

We know that resultant stress on the inclined plane,

Op = 02 +7 =yJ(117.1)2 +(47.0)* =1262MPa  Ans.
Maximum shear stress in the cemponent
We also know that the magnitude of the maximum shear stress in the component,
6,0, 15050

Tnm.r == 7 == 2 ==+ 50 MPa Ans,

Stresses on an Oblique Section of a Body Subjected to a Simple Shear stress

Consider a rectangular body of uniform cross-sectional area and unit thickness
subjected to a positive (i.e., clockwise) shear stress along x-x axis as shown. Now let us
consider an oblique section AB inclined with x-x axis on which we are required to find out
the stresses as shown.
Let 1y = Positive (i.e., clockwise) shear stress along x-x axis, and

0 = Angle , which the oblique section AB makes with x-x axis in the anticlockwise
direction.

First of all, consider the equilibrium of the wedge ABC. We know that as per the
principle of simple shear, the face BC, of the wedge will be subjected to an anticlockwise
shear stress equal to zxy as shown. We know that vertical force acting on the face AC,

Tar T—‘J' 4 4
] : | Ty

i i Gir
1 1
1 1
: i
: Ty ! N

C,. 1 Ty C B

C B v Tre
(a) (b) (c)
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and horizontal force acting on the face BC,
P, =1 BC(—)
Resolving the forces perpendicular or normal to the AB,
P,o=PeosB+Psinb=1, . ACcos 841, .8Csing
and now resolving the forces tangential to the section AB, . .
P,o= PosinB-PicosB=1_ . BOsin®—-1_,.ACcos 8
We know that normal stress across the section A, ' '

P 1,.ACcosB+1 .BCsin®
O = 4B~ AB
_ T ACcosB . 1,,.8C sin8
AB AR
T,.ACcos8 1, .BCsind
=~ Ac_ '~ BC
sing cos8

=1 _.sinBcosB+1_.sinBcosd
4 . U :
= 21, .sin Bcos 8= T, - Sin 2a

and shear stress (f.e. tangential stress) across the section AR

P t,.BCsing-1_ . ACcost

i

T T as” AB
Ty, -BCsin® 1, . ACcos® 1, BCsin® 1, .ACcosB
= AB ~  AB ~ BC T AC

sin @ cos
- 3 2
= 1, sin"8-1_cosH

3

|
|u| o

v T_n-
= (1 —cos 28) — - (1 + cos 268)

=

L L . L
2z

.
> cos 28
5

|

A 2

CO

v

2a ..(Minus sign means that normal stress
is opposite to that across AC)
MNow the planes of maximum and minimum normal stresses {F.e., principal planes ) may be found
out by equating the shear stress to zero f.e.

-1 cos28 =0
The above equation is possible only if 28 = 907 or 2707 (because cos 20° or cos 270° =0) or in
other words, 8 = 457 or 135°,

Stresses on an Oblique Section of a Body Subjected to a Direct Stress in One Plane and
Accompanied by a Simple Shear Stress

Consider a rectangular body of uniform cross-sectional area and unit thickness
subjected to a tensile stress along x-x axis accompanied by a positive (i.e. clockwise) shear
stress along x-x axis as shown. Now let us consider an oblique section AB inclined with x-x
axis on which we are required to find out the stresses as shown in the figure.

|

."I t‘.‘ '\-\ T g
T.Tl i \\_\ :‘ 4“&,{'- M1 r\ ﬁ“
o 1 G, O, i O, O

I L ] t
i E-kl::l"'\ TJ-I' E. E\l’\ {H-J.ﬂ

C A ' = =T, C —r

E T.n-
{er} (b {ch
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Leat o, = Tensile stress along x-v axis,
T, = Positive (f.e. clockwise) shear stress along x-r axis, and
8 = Angle which the oblique section AF makes with x-r axis in

clockwise direction.
First of all, consider the equilibrium of the wedge ABC. We know that as per the principle of
simple shear, the face AC of the wedge will be subjected to an anticlockwise shear stress equal to T
as shown in Fig. 7.7 (#). We know that horizontal force acting on the face AC, '

P, =g, AC(e) A1)
Similarly, vertical force acting on the face AC,
P =1 .AC(T) v (i)
and horizontal force acting on the face BC,
P =1 .BCi(—) AHi

Fesolving the forces perpendicular to the section AR,
P = P sinB—F cos8-FPsint
= g, .ACsin®-1_.ACcosB-1_.BCsin®
and now resolving the forces tangential to the section AB, '
P =P cosB+ P sinB-Pcos

=g, ACcosB+1_.ACsin8 -1 _.BCcos
We know that normal stress across the section AB, -

P o, ACsin®-1,, . ACcos8 -1 .BCsin®

% = AF " AB
G, ACsin8 T, AC cos8 Ty .BC=in@
= AR AR AR
o, . ACsin@ T1,.ACcos8 1, .BCsm8®
= AC ~~  AC BC
sing sin@ cos 8

- 3 - -
G, .5 8-t smBeosB-1,sinBeosB

% (1-cos28) -2 1 sinfBcos B

R in 7 .
5 3 ms._ﬂ'—'rn,sm 26 i)

and shear stress (f.e., tangential stress) across the section AR,
P g, ACcosB+1,, ACsnB-1, .BCcosB

T =

AB AB
o, ACcos® T, ACsin® 1,.BCcosB
=" AB '~ AB _ AB
.gI,AC cosf T, ACsin® . .BCcosB
= £ +— £ - BC
sin @ sin@ cos B

. . 3 2
= ¢, sinf@cos B+ 1, sin B—1,, cos @

Op . ) T Ty
= Ts:ln._E'+T'{1—m52El}—T'U+|:r.152EI]

=]

T T T, T
- AV ANV XV IV
Lsin 28+ —— — :0529—7'——'4:0528

2 2 2

Ly

rqlﬂ rq|

sin 28 — 1, cos 29 V)
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MNow the planes of maximum and minimum normal stresses (£, principal planes) may be found
out by equating the shear stress to zero i.e., from the above equation, we find that the shear stress on
any plane is a function of . T__and 8. A little consideration will show that the values of o _and t_ are
constant and thus the shear stress varies with the angle &. Now let 8, be the value of the un;:_cle for
which the shear stress is zero.

0 or % sin 28, =1, cos 28,
2T,
G,

From the above equation we find that the following two cases satisfy this condition as shown in
Fig 7.8 (a) and (b)

\ L m
._f.‘l_

o, .
—L ¥ ¥
5 sin 28, -1, cos 18,

tan EQF =

2Ty B

Eﬁx L \\33;\“

-6, o
[a} case 1 (b} case 2

Fig. 7.8
Thus we find that these are two principal planes at Aight angles to each other, their inclination
with x-x axis being EP. and EIP‘.

Mow for case 1,

2T,
sin 28 = m— and Cos EE
d :,;ﬁ;. +4t, ..llr.r +41:'

Similarly for case 2,

a
sin 28 and cos 28 = ———
(.8 |'ﬂ.3 +41:1 N +41'1.

MNow the values of principal stresses may be found out by substituting the above values of .'3_'9'
and EE] m equation (iv).

: o g, A -
Maximum principal stress, O, = 3 cos 28 -1, sin 26
-2
ﬁ SThy
T Y .T _w‘ 5 ; a. :
= +4'|: o, +41,
[ o, 215
3
= ‘Ul'G +4t“ ,Jﬁ +41:“

2 2 . 2
~ &4_ a, +—1-"E =&+'I||IGJ.'+4T_-{_|;
- 7 2 7

= t:s +-I-I = =

46



Minimum principal stress, g, =

P22
= %—Ex O 1 _x o
i 3 T 0 T 3
= o, +417, o, +41,
- )
g o 2Ty
= 7 1 2 b3 1
2oafaieadd, foleddd
T

Example An element in a strained body is subjected to a tensile stress of 150 MPa and a
shear stress of 50 MPa tending to rotate the element in an anticlockwise direction. Find (i)
the magnitude of the normal and shear stresses on a section inclined at 40° with the tensile
stress; and (ii) the magnitude and direction of maximum shear stress that can exist on the

element.

Given:
Tensile stress along horizontal x-x axis (oXx) = 150 MPa
Shear stress (txy) — 50 MPa (Minus sign due to anticlockwise) and angle made by
section with the tensile stress (0) = 40°.
Normal and Shear stress on the inclined section
We know that magnitude of the normal stress on the section
ﬁ]’ ﬁ.‘l:

G, = T—?cuslﬂ—Tn,sinZH
= @‘%ms (2 x 40%) — (- 50) =in (2 = 407) MPa

= 75— (75 = 0.1736) + (50 = 0.9548) MPa
= 751302 +4924=111.22 MPa Ans.
and shear stress on the section

[+ .
T = — sin28-1_cos2O

2
50 . .
= —5-sin (2 x 40%) = (= 50) cos (2 x 407) MPa

= (75 =% 0.9848) + (50 = 0.1736) MPa

= 73.86 + 8.68 = 8254 MPa Ans.

(i) Maximeem shear stress and its divection that can exist en the element
We know that magnitude of the maximum shear stress.

v o= % ["T] +2, =¢f[@)'+{—jnf =+90.14 MPa Ans.

Let 8 = Angle which plane of maximum shear stress makes with x-x
axis.
e __q, 150 _
We know that, tan 28, 3 " 3%50 =1.5 or 8 =56.3"

B = 28.15° or 118.15° Ans,
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Stresses on an Oblique Section of a Body Subjected to Direct Stresses in Two Mutually
Perpendicular Directions Accompanied by a Simple Shear Stress

'J_r G..l.
1t Tya 4
tl__l. i' :".‘"
|_'_-.LF
I‘-“.'I: E\ "]-.' ﬂ.T ﬁl.' E e e ':..Fr
1 i
N R X
Cy B + =Ty
Ty oy
) o
Fig. 7.9

Consider a rectangular body of uniform cross-sectional area and wnit thickness subjected to
tensile stresses along x-r and y-y axes and accompanied by a positive { i.e., clockwise) shear stress
along x-x axis as shown in Fig.7.9 (k). Now let us consider an obligue section AR inclined with x-x
axis on which we are required to find out the stresses as shown in the figure.

Leat g, = Tensile stress along x-v axis,
a, = Tensile stress along y-y axis,
T,, = FPositive (i.e. clockwise) shear stress along x-v axis, and

Angle, which the oblique section AB makes with x-v axis in
an anticlockwise direction.

First of all, consider the equilibrium of the wedge ABC. We know that as per the principle of
simple shear, the face BC of the wedge will be subjected to an anticlockwise shear stress equal to 1,

as shown in Fig. 7.9 (b). We know that horizontal force acting on the face AC,

P, =g, AC(+) - A1)
and vertical force acting on the face AC,
P, =1 _.AC(T) i)
Similarly, vertical force acting on the face BC,
P, =g, .BC() i
and horizontal force on the face BC,
P, = t,:,..BCt—:] i)

MNow resolving the forces perpendicular to the section AR,
P o= P sind-Pycos8+FPycos8—-Fysing
=g, .ACsin® -1 ACcos8+¢g, . BCcos®—1_ . BCsin@
and now resolving the forces tangential to AR, ' ' '
P, = Plcos@+FP,sin@—P sin9- P cos 8
=g, .ACcos+1_ .ACsin®—g, BCsin®-t_ .BCcosH
Normal Stress (across the inclined section AB) ' '

P o, ACsin®-1,,.ACcos8+0,.BCcos8—1,, .6Csinb

% = 4B AB
o, .ACsin8 tl_,,_.-'llf'msﬂ_'_ a,-BCcosB 1, .BCsin®
= AR AR AR AR
¢, . ACsin® 1, ACcos8 o BCcos® 1,,.BCsinb
S To A To A Ta BC
sin @ sin @ cos B cos @
:cr_t_sin:lil—t_“_sinﬁmsﬁ +GL..CESIH'—TH..5]'HB|:DSB
0, .
= % (1 —cos 28) + — (1 +cos28) -2 . sinBcos b
4] 0
= %—%cns EB""TF"'TFDDSEE—‘E”SJID 2a
g, +0o, a,—-0C, .
or 0, =——%— —— 5 C0S 26 — 1., sin 28 V)
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Shear Stress or Tangential Stress (across inclined the section AB)

P 6,.ACcosO+1 .ACsin0-¢ .BCsin®-1, BCcos®
T=

AB~ AB
G, ACcose 1,,.ACsin® ¢, .BCsin® 1t BCcos®
=7 AB AB~ AB ~ AB
o,.ACcos®  7,.ACsin® ¢ .BCsin® 1,.BCcosH
=" AC '~ AC__~ BC  BC
sin@ sin@ cos® cos®

=o_‘sinecose+t"sinze—o‘_sinecose—tncosze
=(0,-0)sin 8 cos 0 + %‘!_ (1 —cos 20) - 1;-"— (1 + cos 28)

o, —

= Oy . o
or Ti= 5 sin 29—1,,00529 (i)

Now the planes of maximum and minimum normal stresses (fLe. principal planes) may be found
out by equating the shear stress to zero, From the above equations, we find that the shear stress to any
plane is a function of 5. .. T, and 8. A little consideration will show that the valuesof o, o, and T
are constant and thus the shear stress varies in the angle 8. Now let 8, be the value of the nngIe for
which the shear stress is zero.

a, —a,
" M TG =
o 5 Sin 20, -1, cos28,=0
2t
G. _G'f . L
——LeinlB = 2
or 5 sin 28, = 1, cos28, or tan 28, = g.-0,

From the above equation, we find that the following two cases satisfy this condition as shown in
Fig 7.10 (a) and (b).

It By fe
T D
s 'r""' 2T 2y “q‘::.
20y, 200
-i(g, =,) (@,-a,)
(e} Case | by Case 2

Thus we find that there are two principal planes, at right angles to each other, their inclinations
with v-x axis being 'Eiﬁ and 8, .
Now for case 1,

-2ty 6,0,
sinlf, = 3 = and  cos28, a J
! -Jlﬁ,—uj-l +4v1, .j{-::r, a,) +-1r;I
Similarly for case 2,
2T, -
sin 26, and cos28, = ©.-3,)
" Jio -0, + 47, Jo. 0, +41),

Now the values of principal stresses may be found out by substituting the above values of 28,
and E'E;,z in equation (v
Maximum Principal Stress,

g,+0, O,—0

g, = R mszﬂ—t_vsiniﬁ
o.+6, lo.-6, —o,-0,) [ BT
3 2 - * BT - T x 2 B
l = J{ﬂ,—u;.}+4tiyj L .J{U_r—ﬁ_‘.} +4=:;_.fJ
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2
Lo i ] o, —ad, 1
or g = "2'r+[",JI 1]""':;_-;

Minimum Principal Stress

g, +0, (0,-0,)

cos 28 -1, sin 260

P = 7 2
o.+a. |06 -0y || 21 |
x ¥ r T x v i
= l - ¥ x B T - T'r."x ¥ .
= = .J[ﬁm—cs_,..}' +4d1,, .J(Gx—ﬁ_v}‘+4 T
2 z 2 2
_6,t0, (o, -6 ) +41, 5 g 1“{5,—{}'].]_ +41,
- b 2 * -
= Z.J(csx—ﬁj,]' +4t,, 2 2
2
o.+g, [o,-0,\"
or ﬁpl = 7 = L 7 J +T;|.

Example A point is subjected to a tensile stress of 250 MPa in the horizontal direction and
another tensile stress of 100 MPa in the vertical direction. The point is also subjected to a
simple shear stress of 25 MPa, such that when it is associated with the major tensile stress, it
tends to rotate the element in the clockwise direction. What is the magnitude of the normal
and shear stresses on a section inclined at an angle of 20° with the major tensile stress?
Given:

Tensile stress in horizontal x-x direction (ox) = 250 MPa

Tensile stress in vertical y-y direction (oy) = 100 MPa

Shear stress (txy) = 25 MPa and angle made by section with the major tensile stress
(6) =20°.

Magnitude of normal stress

We know that magnitude of normal stress,

o, +3, 0,-0, _
o, = 5 T 5 cos 20 -1, sin 28
250+ 100 _ 250 -100
= S~ T cos (2% 20°) - 25 sin (2 x 20°)

175 — 75 cos 40° — 25 sin 40° MPa
175 — (75 x 0.766) — (25 x 0.6428) MPa
175- 57451607 = 10148 MPa  Ans.

Magnitude of shear siress
We also know that magnitude of shear stress,

L T
— ! 7
T = = sin _9—'[_1__‘_{‘!:!5 28

= M sin (2 20%) - 23 cos (2 x 207)
= 75 sin 40° — 25 cos 40° MPa
= (75 x 0.6428) — (25 x 0.766) MPa
= 4821 -19.15=2906 MPa  Ans.
Graphical Method for the Stresses on an Oblique Section of a Body
The Mohr’s Circle of Stresses for the following cases:
1. A body subjected to a direct stress in one plane.
2. A body subjected to direct stresses in two mutually perpendicular directions.
3. A body subjected to a simple shear stress.
4. A body subjected to a direct stress in one plane accompanied by a simple shear

stress.
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5. A body subjected to direct stresses in two mutually perpendicular directions
accompanied by a simple shear stress.

r
~ +ve ——] —
e M -
= e N e

= Pri
(i) (£} l.'::r-".l

Mohr’s Circle for Stresses on an Oblique Section of a Body Subjected to a Direct Stress
in One Plane

a g S s L
\ y o g
B\
{ 8
Proof
From the geometry of the Mohr's Circle of Stresses, we find that,
OC = CI=CP=qa? ... (Radius of the circle)

Mormal Stress.

00 =0C-0C= [%) - (%] cos 28 {Same as in Art. 7.7)

A
I

and shear stress

T=@P=CPsin28= %sin 28 {5ame as in Art. 7.7)

We also find that maximum shear stress will be equal to the radius of the Mohr's Circle of

Stresses fe., % It will happen when 28 is equal to 90° or 270° f.e., B is egual to 457 or 135°.

However when & = 45° then the shear stress is equal to g.

And when 8 = 135° then the shear stress is equal to - %.

Mohr’s Circle for Stresses on an Oblique Section of a Body Subjected to Direct Stresses
in Two Mutually Perpendicular Direction

4 P—
| |
x_x\‘ |
T Y o o K el 29 l x
h, ¢ ¢
AE: - “ - | o
(: T4 ] |
[ # H |
a0, N
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Proof
From the geometry of the Mohr’s Circle of Stresses, we find that

a,— 0,
KC = O0I=CP= ——
-0, 26,+6, -0, O +aG,
or oC = OK+KC=g + —L=—2 % F__T X
! 2 2 2
o, — 0,
Normal stress, g, = 00=0C-00= 5 -~ CPcos 2B
g,t0, 0,0,
= 5 s 28 ..[Same as Art. T.8)
and shear stress, T = QP =CFsin28
0, +G, |
= 3 — 5in 26 [Same as Art. T.8)
We also find that the maximum shear stress will be equal to the radius of the Mohr’s Circle of
Gy =Gy . . - . -
Stresses. Le., 7 It will happen when 26 is equal to 90° or 270 f.e., when B is equal to 45° or
1357,
However when 8 = 457 then the shear stress is equal to 'I; !
. -5, —,) G, —
And when 8 = 1357 then the shear stress will be equal 1o (0, =, or =——=.

B

Example The stresses at a point of a machine component are 150 MPa and 50 MPa both
tensile. Find the intensities of normal, shear and resultant stresses on a plane inclined at an
angle of 55° with the axis of major tensile stress. Also find the magnitude of the maximum
shear stresses in the component.

Given:

Tensile stress along horizontal x-x axis (sx) = 150 MPa
Tensile stress along vertical y-y axis (sy) = 50 MPa and
Angle made by the plane with the axis of major tensile stress (0) = 55°.

The given stresses on the planes AC and BC in the machine component are shown.

[

(] ]

150 MPa -

55?\_ " K| ¥

S0 WP M 150

(&) (1)

First of all, take some suitable point £ and draw a horizontal line OX.

Cut off OJ and OK equal to the tensile stresses o, and ¢ respectively (i.e. 150 MPa and 50
MPa) to some suitable scale towards right. The point J represents the stress system on the plane
AC and the point X represents the stress system on the plane BC. Bisect KJF at C.

Mow with C as centre and radius equal to CF or CK draw the Mohr's Circle of Stresses.

Mow through C draw two lines CM and CN at right angles to the line OX meeting the circle at M
and . Also through C draw a line OF making an angle of 2 x 55% = 1107 with CK in clockwise
direction meeting the circle at P. The point P represents the stress system on the plane AB.
Through P, draw FQ perpendicular to the line OX. Join OF.

By measurement, we find that the normal stress (¢} = 00 = 117.1 MPa ; Shear stress (1) = QP
=470 MFa ; Resultant stress (Gg) = OF = 126.2 MPa and maximum shear stress (t, ) = CM
== 50 MPa Ans,

52



Mohr’s Circle for Stresses on an Oblique Section of a Body Subjected to a Direct
Stresses in One Plane Accompanied by a Simple Shear Stress

A P (_,--—~
T : A
N ’ E"'\ T j| } ;f \\ i >? T
Y / l."l \ E P \.I 1
ﬂ' E \ al ul"_'_ nﬂ Y II G-'.I (m 26}‘ :/{é | #_X
‘ i \ ! \\ A ‘ g \Vic JG
: ! Ty Y = H 1 .-'I
' A (PR \[& T 1/
] W T 1 L i /
fl q‘. '-H‘ 4 N I:.-\ _r H‘ }_ E\ : /
e
(a) )] N
Proof
From the geometry of the Mohr’s Circle of Stresses, we find that
oc = 5
and radius of the circle,
R = EC=CD=CP= :kET,! +1
MNow in the right angled triangle DCF,
o T 1 JC _o, O, 1 _O.
St = TpTR an CBSU=cpT 2R 2R
and similarly in right angled riangle CPQ,
LPCQ = (W -u)
CQ = CFcos (20— o) = K [cos (20 — )]

2R

2

R [cos ¢t cos 28 + sin o sin 28]
R cos ocos 20 + R sin o sin 28

Rx—msEﬂ+Rx—sm 28

R

a .
=% cos 28 + 1, sin 28

We know that normal stress across the section AB,

and shear stress,

o, = 00 =00-
_ﬁ
-2 2
T =

2R

a
|"\-'||_,_|

We also know that maximum stress,

¥

T

and minimum stress

T

G ,
—=t——=rcos 28— 1_sin 29

sin 28 —1_ cos 20

G = DC+CG_—"'

OH =00 -

cp= % —[% cosB+1,, siHEBJ

w[Same as in Art. 7.10)

QP = CPsin (28 — ) = R sin (20— o)
R {cos o sin 268 — sin o cos 26)
K cos o 5in 28 — K sin o cos 28

T'I'l'
Rx—sm”E Rx—cos28

2
[Same as in Art. 7.10)

(EELJ_ + ‘En

5] 6.} . 2
=== M= +*.
CH= 3 (2] xy

2

We also find that the maximum shear stress will be equal to the radius of the Mohr’s circle of
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SITesses i.e., [Ejl-] + Tf_,r . It will happen when (26 — ¢} is equal o 907 or 270",

[4) ¥
However when (28 — ¢} is equal to 907 then the shear stress is equal to + ['f] +Ty .

a0, : 2
And when (28 — ) = 2707 then the shear stress is equal to — [?J T, .

Example A plane element in a body is subjected to a tensile stress of 100 MPa accompanied
by a clockwise shear stress of 25 MPa. Find (i) the normal and shear stress on a plane
inclined at an angle of 20° with the tensile stress; and (ii) the maximum shear stress on the
plane.

Given:
Tensile stress along horizontal x-x axis (ox) = 100 MPa
Shear stress (txy) = 25 MPa and
angle made by plane with tensile stress (0) = 20°

i
/ B H\
/ W o
P2 ! __/"’f r'-l 15
X L8] B S il ¥ e
¥ H.c1 RS J| G
23 Hﬂ__;;.]ﬂu_-ln

L) (&) N

1. First of all, take some suitable point @, and through it draw a horizontal line XCXX.

Cut off OF equal to the tensile stress on the plane AC (ie., 100 MPa) to some suitable scale
towards nght.

[

3. NMNow erect a perpendicular at J above the line X-X and cut off JD equal to the positive shear
stress on the plane BC {Le., 25 MPa) to the scale. The point [ represents the stress system on
the plane AC, Similarly erect a perpendicular at @ below the line X-X and cut oft OF equal to the
negative shear stress on the plane BC (f.e., 25 MPa) to the scale. The point E represents the
stress system on the plane BC. Join DE and bisect it at C.

Now with € as centre and radius equal o CD or CE draw the Mohr's Cirele of Stresses.

5. Mow throngh C, draw two lines CM and C¥ ot right angle to the line OX meeting the circle at
M and N. Alse through C, draw a line CF making an angle of 2 % 207 = 407 with CE in
clockwise direction meeting the circle at P. The peint P represents the stress system on the
section A8,

6. Through P, draw P perpendicular to the line €.

By measurement, we find that the normal stress (g, ) = Q0 = 4.4 MPa (compression) : Shear
stress (1) = OF = 13.0 MPa and maximum shear stress (1 CM =539 MPa Ans.

I'th.'I:} =

Mohr’s Circle for Stresses on an Oblique Section of a Body Subjected to Direct Stresses
in Two Mutually Perpendicular Directions Accompanied by a Simple Shear Stress
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o, T
T, o
o,
5y
Proof
From the geometry of the Mohr’s Circle of Stresses, we find that
a,+a,
oc = 3

“and radius of the circle

R =EC=CD=CP=

Now in the right angled triangle DCJ

Slmllarl)' in right angled triangle CPQ
£ PCQ (20 — )
CQ = CPcos20 -«
R cos (26 - «)]
R [cos o cos 26 + sin « sin 20]
R cos ¢t cos 26 + R sin ¢t sin 26

-0, T
Rx "R cos 20 + R x — R sin 26

0,~0

~ cos 20+ 1_ sin 20

Normal Stress (across the inclined section AB)

o, = 00 =0C-CQ
o, +6, ©,-0, ;
or 0, = —5————5— c0s20-1 sin20 ..(SamcasinAn 711

Shear Stress or Tangential Stress (across the inclined section AK)

T =0P=CPsin[{20 —x)]=Rsin(28 )
R (cos ot sin 26 — sin @ cos 26)
R cos ¢osin 28— R sino cos 28

o, -0, T,
R 3 smlﬂ—R)-:—R-—cos}lﬂ

o, -

o, .
or T = —2-‘“— sin 28 —1_ cos 28 ..{Some os in Art. 7.11)

Maximum Principal Stress

Oz

g  =0G=0C+CG=

AT

Minimum Principal Stress

+o ’[ o,—0, 3
—ar = || L
7 7
2
a,+0, 0, — 0,
Gpin = OH=0C—CH = = | 6,
i 2 2 4
We also find the maximum shear stress will be equal to the radius of the Mohr's circle of Stresses.

+13, . Tt will happen when (26 — q) is equal to 90 or 2707,

2
O, —0, ]
However when (28 — ¢2) = 907 then the shear stress is equal to + [ J+1}

—a,
And when (28 — &) = 2707 then the shear stress is equal to — 2 ] +T
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Example A point is subjected to a tensile stress of 250 MPa in the horizontal direction and
another tensile stress of 100 MPa in the vertical direction. The point is also subjected to a
simple shear stress of 25 MPa, such that when it is associated with the major tensile stress, it
tends to rotate the element in the clockwise direction. What is the magnitude of the normal
and shear stresses inclined on a section at an angle of 20° with the major tensile stress?

Given:
Tensile stress in horizontal direction (oX) = 250 MPa
Tensile stress in vertical direction (cy) = 100 MPa
Shear stress (1) =25 MPa and
angle made by section with major tensile stress () = 20°

25 MPay T ? . D o4
T I o ] s
250 MPa — 0, + A =2

ZUF'?H.E s Hlg _—°¢C JIIIG ¥

s mpa ¢ T E a5 i

" - r

100 MPa 100 —+ \ /

e

(a) ()

The given stresses on the face AC of the point alongwith a tensile stress on the plane 8C and a
complimentary shear stress on the plane 8C are shown in Fig 7.27 (a). Now draw the Mohr's Circle
of Stresses as shown in Fig. 7.27 (b) and as discussed below :

1. First of all, take some suitable point @, and through it draw a horizontal line OX.

2. Cut off £ and OK equal to the tensile stresses ¢_and ¢,_respectively (f.e., 250 MPa and 100
MPa) to some suitable scale towards right. '

3. Mow erect a perpendicular at J above the line OX and cut off JD equal to the positive shear
stress on the plane AC (Le., 25 MPa) to the scale. The point D represents the stress system on
the plane AC. Similarly, erect a perpendicular at K below the OX and cut off KE equal to the
negative shear stress on the plane BC {f.e., 25 MPa) to the scale. The point £ represents the
stress system on the plane BC. Join DE and bisect it at C.

Mow with C as centre and radius equal to O or CF draw the Mohr's Circle of Stresses.

5. Mow through C draw a line CF making an angle of 2 » 207 = 4407 with CE in clockwise
direction meeting the circle at M. The point P represents the stress system on the section to AB.

6. Through P, draw PQ perpendicular to the line OX.

By measurement, we find that the normal stress, (5, ) = 00 = 101.5 MPa and shear stress t=(0F
=29.0 MPa Ans.

56



SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “Af' Grade by NA&C | 129 Statusﬁbryr UGC Iﬁ Approved bﬂy AICTEV

www.ééthyabama.ac.in

SCHOOL OF MECHANICAL ENGINEERING
DEPARTMENT OF MECHANICAL ENGINEERING

SMEA1306 SOLID AND FLUID MECHANICS




UNIT 2 BENDING MOMENT IN BEAMS AND TORSION OF SHAFTS




BEAM

Classification of Beams:

Beams are classified on the basis of their geometry and the manner in which they are
supported.

Cantilever Beam: A beam which is supported on the fixed support is termed as a cantilever
beam: Now let us understand the meaning of fixed support. Such a support is obtained by
building a beam into a brick wall, casting it into concrete or welding the end of the beam.
Such a support provides both the translational and rotational constrainment to the beam,
therefore the reaction as well as the moments appears, as shown in the figure below

Simply Supported Beam: The beams are said to be simply supported if their supports creates
only the translational constraints.

Some times the translational movement may be allowed in one direction with the help of
rollers and can be represented like this

1. Cantilever Beam 2.Simply supported Beam

3. Overhanging Beam 4, Fixed Beam

5. Continuous Beam

Fig 2.1 Classification of Beams

Supports and Loads
Types of beams: Supports and Loads

In many engineering structures members are required to resist forces that are applied laterally
or transversely to their axes. These type of members are ter ed as beam. There are various
ways to define the beams such as
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Roller
Fixed

—%

'-'.-."""'l/ T

Simple N
Pinned

—
— -
— -
—
2 -y

Support Types

Fig 2.2 Types of Supports

Definition I: A beam is a laterally loaded member, wh se cr ss-sectional dimensions are small
as compared to its length.

Definition I1: A beam is nothing simply bar which is subjected to forces or couples that lie in a
plane containing the longitudnal axis of the bar. The forces are understood to act

perpendicular to the longitudnal axis of the b r.

Definition I11: A bar working under bending is generally termed as a beam.
2.3 Materials for Beam:

The beams may be made from several usable engineering materials such commonly among
them are as follows:

Metal
Wood
Concrete

Plastic

Types of loads acting on beams:

A beam is normally horizontal where as he ex ern | loads acting on the beams is generally in
the vertical directions. In order to study he behaviors of beams under flexural loads. It
becomes pertinent that one must be f mili r with the various types of loads acting on the beams
as well as their physical manifestations.

A. Concentrated Load: It is a kind of oad which is considered to act at a point. By this we
mean that the length of beam over wh ch the force acts is so small in comparison to its total
length that one can model the force as though applied at a point in two dimensional view of
beam. Here in this case, force or load may be made to act on a beam by a hanger or though
other means
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B. Distributed Load: The distributed load is a kind of load which is made to spread over a
entire span of beam or over particular portion of the beam in some specific manner

In the above figure, the rate of loading ,,q' is a function of x i.e. span of the beam, hence this
is a non uniformly distributed load.

o l 2 @ P}
 J A 4 r Y ¥ ¥Yvry¥ Y r r h J
e
o R 27
I:Sj {4 Tﬁ_\_
'l' v - ,/,;/ﬂ ‘-}“H
1 A “

Fig 2.3 Types of Loads

The rate of loading ,,q' over the length of the beam may be uniform over the entire span of
beam, then we cell this as a uniformly distributed load (U.D.L). The U.D.L may be represented
in either of the way on the beams

some times the load acting on the beams may be the uniformly varying as in the case of dams
or on inclind wall of a vessel containing liquid, then this may be represented on the beam as
below:

The U.D.L can be easily realized by making idealization of the ware house load, where the

Shear force and Bending Moment in beams
Concept of Shear Force and Bending moment in beams:

When the beam is loaded in some arbitrarily manner, the internal forces and moments are
developed and the terms shear force and bending moments come into pictures which are
helpful to analyze the beams further. Let us define these terms

Now let us consider the beam as shown in fig 1(a) which is supporting the loads P1, P2, P3
and is simply supported at two points creating the reactions R1 and R2respectively. Now let
us assume that the beam is to divided into or imagined to be cut into two portions at a section
AA. Now let us assume that the resultant of loads and reactions to the left of AA is ,.F'
vertically upwards, and since the entire beam is to remain in equilibrium, thus the

resultant of forces to the right of AA must also be F, a ting downwards. This forces ,,F' is as a
shear force. The shearing for ceat any x-section of a beam represents the tendency for the portion
of the beam to one side of the section to lide or hear laterally relative to the other

portion.

Therefore, now we are in a position to define he shear force ,,F' to as follows:

Atany X-section of a beam, the she r force ,,F' is the algebraic sum of all the lateral components
of the forces cting on either si e of the x-section.
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Shear -

Moment

Fig 2.4 Shear force and Bending Moment Diagram

Bending Moment and Shear Force Diagrams:

The diagrams which illustrate the variations in B.M and S.F values along the length of the
beam for any fixed loading conditions would be helpful to analyze the beam further.

Thus, a shear force diagram is a graphical plot, which depicts how the internal shear force ,,F'
varies along the length of beam. If x dentotes the length f the beam, then F is function x i.e.
F(x).

Similarly a bending moment diagram is a graphical plot which depicts how the internal bending

moment ,,M' varies along the length of the beam Again M is a function x i.e. M(x).

Construction of shear force and bending moment diagrams:

A shear force diagram an be constructed from the loading diagram of the beam. In order to
draw this, first the reactions must be determined always. Then the vertical components of
forces and reactions are successively summed from the left end of the beam to preserve the
mathematical sign conventions adopted. The shear at a section is simply equal to the sum of
all the vertical forces to the left of the section.

It may also be observed that a constant shear force produces a uniform change in the bending
moment, resulting in straight line in the moment diagram. If no shear force exists along a
certain portion of a beam, then it indicates that there is no change in moment takes place. It
may also further observe that dm/dx= F therefore, from the fundamental theorem of calculus
the maximum or minimum moment occurs where the shear is zero. In order to check the
validity of the bending moment diagram, the terminal conditions for the moment must be
satisfied. If the end is free or pinned, the computed sum must be equal to zero. If the end is
built in, the moment computed by the summation must be equal to the one calculated initially
for the reaction. These conditions must always be satisfied.


http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/

Cantilever beams — problems

Cantilever with a point load at the free end:

Myx = - w.X

WKT  M=ELd®
_ dx?
El di\L =-W.X
dx?
on integrating we get
El.dy = -wx* + 1
dx 2
Integrating again
Ely= - W_x3 + 1X+C2

6
Boundary conditions
i) when x = L, slope dy/dx =0
i) when x = L, deflectiony =0
Applying the first B C to eqn (1)
0=- _I2+ c1 ci= wl

Applying the second B.C to egn (2)

0= - pp+cl+c
6

C2= w3
3

Sub c1,c2 values in slope eqn we get
El.dy = -wx* + wl*

dx 2 2
Max. slope egn can be obtained by x =0
El.dy =0+ wi 7B=wl®
dx 2 2EI

Sub c1,c2 values in deflection eqn we get
ELy = -wx*+ wl“.x — wl®

2 2 6
Max. deflection can be obtained by x =0
Elyg =0-0-wl yg = wl®

3 3El
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Cantilever with a point load at a distance of ‘a’ from free end:

2B = ¢ = w(l-a)
2|
yB =w(l-a)® +w(l-a).a ye =w(l-a)®
3E 2E| 3EI

When the load acts at mid span:

YB = 5wl
48E|

Cantilever with UDL:

%= Wl yg =wit
2El 8ElI

Cantilever with UDL from f xed end:

<B=7%= W(I-a)3
6El
yB = W(I-a)4 + (I-a)3 .a Ve =W(I-a)4
8EI 6El 8EI

When a =1/2 ie. UDL acting half of the length

yg=71
384E|

Cantilever with UDL from free end:

?B:W_|3 _ W(I—a)3
6El 6El

yg=wl* _ wi-a)* +w(-a)3 .a
8EI  SEI 6EI
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Cantilever with UVL:

7B =wi® YB =W_|4
24El 30El

A cantilever of length carries a concentrated load ‘W' at its free end.
Draw shear force and bending moment.

Solution:
At a section a distancecivildatasxfromfreeendconsiderthe forces to the left, then F = -

W (for all values of x) -ve sign means the shear force to the left of the x-section are in
downward

direction and therefore negative
Taking moments about the section gives (obviously to the left of the section)

M = -WXx (-ve sigh means that the moment on the left hand side of the portion is in the
anticlockwise direction and is therefore taken as —ve according to the sign convention)

so that the maximum bending moment occurs at the fixed end i.e. M = -W |

Simplysupported beam -problems
Simply supported beam subjected to central load (i.e. load acting at the mid-way)

By symmetry the reactions at the two supports would be W/2 and W/2. now consider
any section X-X from the left end then, the beam is under the action of following
forces.

.So the shear force at any X-section would be = W/2 [Which is constant upto x < 1/2]
If e consider another section Y-Y which is beyond /2 then

for all values greater = 1/2

SSB with central point load:

7B = wi® YB = wi?
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16EI 30El

SSB with eccentric point load:

?B = -wab (b+2a) Ymax = -wa (b2 + Zab)B/Z
6EIL 9v3 EIL

If a >b then
ymax = -wb  (a® + 2ab)®?
9v3 EIL

SSB with UDL:

7B =wi® yB = swl?
24EI 384El
Overhanging beams - problems

In the problem given below, the intensity of loading varies from g1 kN/m at
one end to the g2 kN/m at the other end.This problem ¢ n be treated by considering a
U.d.i of intensity g1 kN/m over the entire span and a uniformly varying load of 0 to (
g2- g1)kN/m over the entire span and then super impose teh two loadings.

Point of Contraflexure:

Consider the loaded beam a shown be ow along with the shear force and Bending
moment diagrams for It may be observed that this case, the bending moment diagram is
completely positive so that the cur ature of the beam varies along its length, but it is
always concave upwards or sagging.However f we consider again a loaded beam as
shown below along with the S.F and B.M diagrams, then

It may be noticed that for the beam loaded in this case,

The bending moment diagram is partly positive and partly negative.lf we plot the
deflected shape of the beam just below the bending moment

This diagram shows that L.H.S of the beam ,,sags' while the R.H.S of the beam ,,hogs'

The point C on the beam where the curvature changes from sagging to hogging is a
point of contraflexure.

OR
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It corresponds to a point where the bending moment changes the sign, hence in order to
find the point of contraflexures obviously the B.M would change its sign when it cuts
the X-axis

therefore to get the points of contraflexure equate the bending moment equation equal
to zero.The fibre stress is zero at such sections

Bending Stresses in Beams or Derivation of Elastic Flexural formula :

In order to compute the value of bending stresses developed in a loaded beam, let us
consider the two cross-sections of a beam HE and GF , originally parallel as shown in
fig 1(a).when the beam

is to bend it is assumed that these sections remain parallel i.e. H'E" and G'F", the final

position of the sections, are still straight lines, they then subtend some angle g.

Consider now fiber AB in the material, at adistance y from the N.A, when the beam
bends this will stretch to A'B'

Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the neutral
axis zero. Therefore, there won't be any strain on the neutral axis

Consider any arbitrary a cross-section of beam, as shown above now the strain on a fibre
at a distance ,,y' from the N.A, is given by the expression

Now the termis the property of the material and is called as a sec nd moment of area of
the cross-section and is denoted by a symbol I.

Therefore M/l = sigmaly = E/R
This equation is known as the Bending Theory Equation. The above proof has involved

the assumption of pure bending without any she r force being present. Therefore this termed

as the pure bending equation. This equa ion gives distribution of stresses which are
normal to cross-section i.e. in x-direction.

Stress variation along the length and in the beam
section Bending Stress and Deflection Equation

In this section, we consider the case of pure bending; i.e., where only bending stresses
exist as a result of applied bend ng moments. To develop the theory, we will take the
phenomenological approach to de elop what is called the “Euler-Bernoulli theory of
beam bending.” Geometry: Cons der long slender straight beam of length L and cross-


http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/
http://civildatas.com/

sectional area A. We assume the beam is prismatic or nearly so. The length dimension
is large compared to the dimensions of the cross-section. While the cross-section may
be any shape, we will assume that it is symmetric about the y axis

Loading: For our purposes, we will consider shear forces or distributed loads that are
applied in the y direction only (on the surface of the beam) and moments about the z-
axis. We have consider examples of such loading in ENGR 211 previously and some
examples are shown belo :

Kinematic Observations: In order to obtain a “feel” for the kinematics (deformation) of
a beam subjected to pure bending loads, it is informative to conduct an experiment.
Consider a rectangular lines have been scribed on the beam’s surface, which are parallel
to the top and bottom surfaces (and thus parallel to a centroidally placed x-axis along
the length of the beam). Lines are also scribed around the circumference of the beam so
that they are perpendicular to the longitudinals (these circumferential lines form flat
planes as shown). The longitudinal and circumferential lines form a square grid on the
surface. The beam is now bent by moments at each end as shown in the lower
photograph. After loading, we note

that the top line has stretched and the bottom line has shortened (implies that there is
strain exx). If measured carefully, we see that the longitudinal line at the center has not
changed length (implies that exx = 0 at y = 0). The longitudinal lines now appear to form
concentric circular lines.

We also note that the vertical lines originally perpendicular to the longitudinal lines
remain straight

and perpendicular to the longitudinal lines. If measured carefully, we will see that the
vertical lines remain approximately the same length (implies eyy = 0). Each of the
vertical lines (as well as the planes they form) has rotated and, if extended downward,
they will pass through a common point that forms the center of the concentric |
ngitudinal lines (with some radius ?). The flat planes originally normal to the
longitudinal axis remain essentially flat planes and remain normal to the deformed
longitudinal lines. The squares on the surface are

now quadrilaterals and each appears to have tension (or compression) stress in the
longitudinal direction (since the horizontal lines of a quare have changed length).
However,

in pure bending we make the assumption that. If the x-axis is along the length of beam
and the y-axis is normal to the beam, this suggests th t we have an axial normal stress
sxx that is tension above the x-axis and compression below the y-axis. The remaining
normal stresses syy and szz will generally be negligible for pure bending about the z-
axis. For pure bending, all shear stresses are assumed to be zero. Consequently, for pure
bending, the stress matrix reduces to zero.
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Effect of shape of beam section on stress induced
CIRCULAR SECTION :

For a circular x-section, the polar moment of inertia may be computed in the following
manner

Consider any circular strip of thickness dr located a radius 'r'.
Than the area of the circular strip would be dA = 2pr. dr

Thus

Parallel Axis Theorem:

The moment of inertia about any axis is equal to the moment of inertia about a parallel
axis through the centroid plus the area times the square of the distance between the
axes.

If ,,ZZ' is any axis in the plane of cross-section and ,,XX' is a parallel axis through the
centroid G, of the cross-section, then

Rectangular Section:

For a rectangular x-section of the beam, the second moment of area may be computed
as below :

Consider the rectangular beam cross-section as shown above and an element of area dA
, thickness dy , breadth B located at a distance y from the neutral axis, which by
symmetry passes through the centre of section. The second moment of area | as defined
earlier would be

Thus, for the rectangular section the second moment of area about the neutral axis i.e.,
an axis through the centre is given by

Similarly, the second moment of area of the rectangular secti n about an axis through
the lower edge of the section would be found using the same pr cedure but with integral
limitsof 0to D .

Therefore

These standards formulas prove very convenient in the determination of INA for build
up sections which can be conveniently divided in o rect ngles. For instance if we just
want to find out the Moment of Inertia of an | - sec ion, hen we can use the above
relation.

Let us consider few examples to determaine the sheer stress distribution in a given
X-sections
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Rectangular x-section:
Consider a rectangular x-section of dimension b and d

A is the area of the x-sect on cut off by line parallel to the neutral axis. is the distance
of the centroid of A from the neutral axis

This shows that there is a parabolic distribution of shear stress with y.
The maximum value of shear stress would obviously beat the locationy = 0.
Therefore the shear stress distribution is shown as below.

It may be noted that the shear stress is distributed parabolically over a rectangular cross-
section, it is maximum at 'y = 0 and is zero at the extreme ends.

| - section :

Consider an | - section of the dimension shown below.

The shear stress distribution for any arbitrary shape is given as

Let us evaluate the quantity, thequantity for this case comprise the contribution due to
flange area and web area

Flange area

Web Area

To get the maximum and minimum values of t substitute in the above relation.
y=0atN. A. Andy = d/2 at the tip.

The maximum shear stress is at the neutral axis. i.e. for the onditiony =0at N. A.
Hence, .......... (2

The minimum stress occur at the top of the web, the term bd 2 goes off and shear stress
is given by the following expression

The distribution of shear stress may be rawn as below, which clearly indicates a
parabolic distribution
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Note: from the above distribut on we can see that the shear stress at the flanges is not
zero, but it has some value, this can be analyzed from equation (1). At the flange tip or
flange or web interface y = d/2.0Db ously than this will have some constant value and
than onwards this will have parabol c str bution.

In practice it is usually found that most of shearing stress usually about 95% is carried
by the web, and hence the shear stress in the flange is neglible however if we have the
concrete analysis i.e. if e analyze the shearing stress in the flange i.e. writing down the

expression for shear stress for flange and web separately, we will have this type of
variation.

This distribution is known as the "top — hat™ distribution. Clearly the web bears the most
of the shear stress and bending theory we can say that the flange will bear most of the
bending stress.

Shear stress distribution in beams of circular cross-section:

Let us find the shear stress distribution in beams of circular cross-section. In a beam of
circular cross-section, the value of Z width depends on y.

Using the expression for the determination of shear stresses for any arbitrary shape or
a

arbitrary section.
Where 0y dA is the area moment of the shaded portion or the first moment of area.
Here in this case ,,dA' is to be found out using the Pythagoras theorem

The distribution of shear stresses is shown below, which indicates a parabolic
distribution

Principal Stresses in Beams

It becomes clear that the bending stress in beam sx is not a principal stress, since at any
distance y from the neutral axis; there is a shear stress t ( r txy we are assuming a plane
stress situation)

In general the state of stress at a distance y from the neutral axis will be as

follows. At some point ,,P' in thecivildatasbeam,thevalueofbendingtre es is

given as
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After substituting the appropriate values in he bove expression we may get the
inclination of the principal planes.

Illustrative examples: Let us study some illustrative examples, pertaining to
determination of principal stresses in beam

1. Find the principal stress at a po nt A in a uniform rectangular beam 200 mm deep and
100 mm wide, simply supported at each end over a span of 3 m and carrying a uniformly
distributed load of 15,000 N/m.

Solution: The reaction can be determined by

symmetry R1 =R2 =22,500 N

consider any cross-section X-X located at a distance x from the left end.

Hence,

S. Fat XX =22,500 — 15,000 x

B.M at XX = 22,500 x — 15,000 x (x/2) = 22,500 x — 15,000 . x2 / 2

Therefore,

S,FatX=1m=7,500N

B.Mat X=1m=15,000 N
Now substituting these values in the principal stress equation,
We get s1 = 11.27 MN/m2

s2 =-0.025 MN/m2

Bending Of Composite or Flitched Beams

A composite beam is defined as the one which is constructed from a combination of
materials. If such a beam is formed by rigidly bolting t gether two timber joists and a
reinforcing steel plate, then it is termed as a flitched beam.

The bending theory is valid when a constant value of Young's modulus applies across a

section it cannot be used directly to solve the compo ite-beam problems where two different

materials, and therefore different values of E, exi ts. The method of solution in such a
case is to replace one of the materials by an equivalent section of the other.
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Consider, a beam as shown in figure in which a s eel plate is held centrally in an
appropriate recess/pocket between two blocks of wood .Here it is convenient to replace
the steel by an equivalent area of wood, retaining the same bending strength. i.e. the
moment at any section must be the same in the equivalent section as in the original
section so that the force at any given dy in the equivalent beam must be equal to that at
the strip it replaces.

Hence to replace a steel strip by an equivalent wooden strip the thickness must be
multiplied by the modular ratio E/E'".

The equivalent section s then one of the same materials throughout and the simple
bending theory applies. The stress in the wooden part of the original beam is found
directly and that in the steel found from the value the same point in the equivalent
material as follows by utilizing the given relations.

Stress in steel = modular ratio x stress in equivalent wood

The above procedure of course is not limited to the two materials treated above but
applies well for any material combination. The wood and steel flitched beam was nearly
chosen as a just for the sake of convenience.

Assumption

In order to analyze the behavior of composite beams, we first make the assumption that
the materials are bonded rigidly together so that there can be no relative axial movement
between them. This means that all the assumptions, which were valid for homogenous

beams are valid except the one assumption that is no longer valid is that the Young's
Modulus is the same throughout the beam.

The composite beams need not be made up of horizontal layers of materials as in the
earlier example. For instance, a beam might have stiffening plates as shown in the figure
below.

Again, the equivalent beam of the main beam material can be formed by scaling the
breadth of the plate material in proportion to modular ratio. Bearing in mind that the
strain at any level is same in both materials, the bending stresses in them are in
proportion to the Young's modulus.

Shear stresses in beams

When a beam is subjected to non uniform bending, both bending moments, M, and
shear forces, V, act on the cross section. The normal stresses, sx, associated with the
bending
moments are obtained from the flexure formula. We will now consider the distribution of

shear stresses, t, associated with the shear force, V Let us begin by examining a beam of
rectangular cross section. We can reasonably a ume that the shear stresses t act parallel to
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the shear force V. Let us also assume that the distribution of shear stresses is uniform
across the width of the beam.

Solved Problems
Problem 1

A Beam of Total length 8m is freely supported at a left end & at a point 6m from left end.
It carries 2 points floats of 15KN & 18KN. In which one is at the free end and another is
3m from the left support. Draw the shear force and bending moment diagram. Locate the
point of contraflexture.

Solution :

To fine the support reactions:

Taking moment about A,

(Rc 6) —(18 3)—(10 8) =0

6 Rc = 54+120

Rc = 174/6

Rc = 29 KN

RA + Rc = 18+15

RA + 29 = 33

RA = 4 KN

To fine Shear force:

Shear force at D = 15 KN

Shear force at C = 29 KN +15 =-14 KN

Shear force at B = -14+18 =4 KN

Shear force at A = 4 KN

To find bending moment

Bending Moment at D = 0

Bending Moment at C = (15 2) = -30KNm

Bending Moment at B = -(15 5)+(29 3)

Bending Moment at A = -(15  8) +(29 6)-(18 3)
= -120-54+174
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Problem-2:
The cross section of the beam is shown is beam is cantiliver type &carries a UDL of
16KN/m. If the span of beam is 2.5m. Determine the maximum tension & Compressible

stress in the beam.

solution: Section (1)
Area (a;) = Ixb
= 500mm’
Section(2):
Area (as) = Ixb

To find the centroid distance:

Y1 = 35+7 = 40mm
Va2 = 3?5 = 17.5mm
— __ alyil+a2y2 _ 500(40)+(525)(17.5)
5 = | o i 1025
y = 28 47mm

To find the moment of inertia:

byd,? o bods> —
1 = [Pt o —y)? + 2t a, (7 —¥2)? |

[2242° + (500)(28.47 — 40)* + 1282 4 (525) +

(28.47—17.5)2

3
- [5"1"% + (6879.64) + % + (525)(1203409)]

187409.8392mm*”

To find moment (M):
M = 16x2.5x =
= SOKNm

w k. t,



~|=
~Ia

Mxyp

The maximum compressive bending stress is the topmost layer of the beam.

The distance from vy to top layer is

y 45-28.47

= 16.53mm

50%(16.53) (mm?)

Compressive stress g =
187409.83 (mm?)

to find the maximum tensile stress:

4410 x 10~3mm™>. KN

B = £
1 y
s = == y = 2847
= == = 7595x107KN
187409.83
= 7.59%10° KN/m?

Problem-3:

The cast iron bracket subjected to bending has a cross section of I1-shaped with unequal

flanges as shown. If the compressive force on the top of the flanges is not to exceed 17mega

pa. What is the bending moment of the section can take if the section is subjected to a

shear force of 90KN. Draw the shear stress distribution over the depth of the section.

Solution:



Area of section (1) = Ib
= 250 50
Solution:
Area of section (1) = Ib
= 25050
= 12750mm?
Area of section (2) = Ib
= 50%250 = 12500mm’
Area of section(3) = b
= 15050 = 7500mm?
To find centroid distance:
50
Vi - 50+250+? = 325mm
y = =50 = 175mm
y3 — 52—0 - 25mm
5 _ @1Y14Q2Y2+4a3y, L
y - a,a,0,

12500(325)+(12500)(175)+(7500)(25)
12500+

= o fLinly = 199.076mm
32500

To find moment of inertia:



1 =

byd;* bid;*

bydy? 2 =
[‘1 +a,(F-n)*+ 5 +a,(y — )2+ a3 T3

12

a3(v—y3)2

[ 1 (12500(199.08 — 325)% +

50(250)3
12 +

= (12500(199.08 —

175)2+150(50)3127500(199.08—25)2

= 2604166.667 + 198198080 + 65104166.67 + 7248080

+ 1562500 + 22727848

501995840.7
I = 5.01%10°mm*.

WK.T,

“ala

= ZxI
5

17
199.08

(5.01) x10°

0.4278% 10"

42.78%10*°Nmm

To find shear stress:
shear force  (7) at top of the
top flange = 0
shear force (1) at bottom of the
bottom flange = 0

7 at the bottom of the top flanges



where,

127mm

< 50
y 152- =
A-Area-12500, I-moment of inertia, B-breath

90x10*(12500)(127)
5.01x10%(250)

1.1407IN/mm?
7 at junction of flange and web:
= X =
o T ;

Where,B-breath, T-Thickness

= 114x 22 = 57N/mm?.
50
7 at the Neutral axis:
= 27 y o= 152-2 =127
Ib 2
(4) y (4) y
Ay = (250X50x 127)+ (102X 50x 51)
= 1847600 - 1.8x10°mm’
b = 50.
T at Neutral axis:
(90x10*)(1.8x10%)
(5.01x10%)(50)
= 6.4670N/mm?.

To find shear stress:



7 at the bottom of the bottom flange is 0.

7 at the top of the bottom flange

FAy
Ib

90x10* (7500)(173)

5.01x108(150)

7 at junction of flange & web:

ic

Ip

To find Centroid distance:

)f L‘

Torsion

= 1.55N/mm?.
B
= T x -
T
o i 150
= .55 — =
50
= A—1 = —
El 20
- Az i 2
== El == 20
13x1= 0.33m
0.33m
Ag . 5(0.33) _
El = 20

4 65N/mm”.

= 0.25 radians

= 0.25 radians

0.825m

In solid mechanics, torsion is the twisting of an object due to an applied torque. In

sections perpendicular to the torque axis, the resultant shear stress in this section is

perpendicular to the radius.
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For solid shafts of uniform circular cross-section or hollow circular shafts with constant

wall thickness, the torsion relations are:

where:
ere R is the outer radius of the shaft. e.m,ft.s

t is the maximum shear stress at the ou er surface.

f is the angle of twist in radians.

T is the torque (N-m or ft-1bf).

I is the length of the object the torque is being applied to or over.

G is the shear modulus or more commonly the modulus of rigidity and is usually
given in gigapascals (GPa), bffin? (psi), or bf/t2.

J is the torsion constant for the section. It is identical to the polar moment of
inertia for a round shaft or concentric tube only. For other shapes J must be
determined by other means. For solid shafts the membrane analogy is useful,
and for thin walled tubes of arbitrary shape the shear flow approximation is fairly
good, if the section is not re-entrant. For thick walled tubes of arbitrary shape
there is no simple solution, and finite element analysis (FEA) may be the best
method.

The product GJ is called the torsion.

Stepped shaft , Twist and torsion stiffness — Compound shafts — Fixed and
simply supported shafts

Shaft: The shafts are the machine elements which are used to transmit power in
machines.

Twisting Moment: The twisting moment for any section along the bar / shaft is
defined to be the algebraic sum of the moments of the applied couples that lie to one
side of the section under consideration. The choice of the side in any case is of course
arbitrary.

Shearing Strain: If a generator a ?? b is marked on the surface of the unloaded bar,
then after the twisting moment 'T' has been applied this line moves to ab'. The angle ???'
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measured in radians, between the final and original positions of the generators is defined
as the shearing strain at the surface of the bar or shaft. The same definition will hold at
any interior point of the bar.

Modulus of Elasticity in shear: The ratio of the shear stress to the shear strain is called
the modulus of elasticity in shear OR Modulus of Rigidity and in represented by the
symbol

Angle of Twist: If a shaft of length L is subjected to a ¢ nstant twisting moment T along
its length, than the angle ? through which one end of the bar will twist relative to the
other is known is the angle of twist.

Despite the differences in the forms of loading, we that there are number of similarities

between bending and torsion, including for example, a linear variation of stresses and strain
with position.

In torsion the members are subjected to momen s (couples) in planes normal to their
axes.

For the purpose of desiging a circular shaft to withstand a given torque, we must develop
an equation giving the relation between twisting moment, maximum shear stress
produced, and a quantity representing the size and shape of the cross-sectional area of
the shaft.

Not all torsion problems, involve rotating machinery, however, for example some types
of vehicle suspension system employ torsional springs. Indeed, even coil springs are
really curved members in tors on shown in figure.

Many torque carrying engineering members are cylindrical in shape. Examples are drive
shafts, bolts and screw drivers.

Simple Torsion Theory or Development of Torsion Formula : Here we are basically
interested to derive an equation between the relevant parameters

Assumption:
(i) The materiel is homogenous of uniform elastic properties exists throughout the

material.

(ii) The material is elastic, follows Hook's | w, with shear stress proportional to shear
strain.

(iii) The stress does not exceed the elastic limit.
(iv) The circular section remains circular

(v) Cross section remain plane.
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(vi) Cross section rotate as if r g .e. every diameter rotates through the same angle.

Consider now the sol d c rcular shaft of radius R subjected to a torque T at one end, the
other end being fixed Under the act on of this torque a radial line at the free end of the
shaft twists through an angle , point A moves to B, and AB subtends an angle ' at the
fixed end. This is then the angle of distortion of the shaft .e the shear strain.

Since angle in radius = arc / Radius
arc AB=R?

=L ? [since L and ? also constitute the
arc AB] Thus, ? =R?/L (1)

From the definition of Modulus of rigidity or Modulus of elasticity in shear.

T = applied external Torque, which is cons ant over Length L;
J = Polar moment of Inertia

[ D = Outside diameter ; d = insi e iameter ]

G = Modules of rigidity (or Modulus of elasticity in shear)

? = It is the angle of tw st nradianson length L.

Problem 1

A stepped solid circular shaft is built in at its ends and subjected to an externally applied
torque. TO at the shoulder as shown in the figure. Determine the angle of rotation ?0 of
the shoulder section where TO is applied ?

Solution: This is a statically indeterminate system because the shaft is built in at both
ends. All that e can find from the statics is that the sum of two reactive torque TA and
TB at the built ?? in ends of the shafts must be equal to the applied torque TO

Thus TA+ TB = TO ----- (1)

[from static principles]

Where TA ,TB are the reactive torque at the built in ends A and B. wheeras TO is the
applied torque
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From consideration of consistent deformation, we see that the angle of twist in each
portion of the shaft must be same.

.e?a=?b=70

using the relation for angle of twist

N.B: Assuming modulus of rigidity G to be same for the two p rti ns
So the defines the ratio of TA and TB So by

solving (1) & (2) we get

Non Uniform Torsion: The pure torsion refers o torsion of a prismatic bar subjected to
torques acting only at the ends. While the non uniform torsion differs from pure torsion
in a sense that the bar / shaft need not to be prism tic and the applied torques may vary
along the length.

Here the shaft is made up of two ifferent segments of different diameters and having
torques applied at several cross sect ons. Each region of the bar between the applied
loads between changes in cross sect on n pure torsion, hence the formula's derived
earlier may be applied. Then form the internal torque, maximum shear stress and angle
of rotation for each region can be calculated from the relation

The total angle to twist of one end of the bar with respect to the other is obtained by
summation using the formula

If either the torque or the cross section changes continuously along the axis of the bar,
then the ? (summation can be replaced by an integral sign ( ? ). i.e We will have to
consider a differential element.

After considering the differential element, we can write

Substituting the expressions for Tx and Jx at a distance x from the end of the bar, and
then integrating between the limits 0 to L, find the value of angle of twist may be
determined.
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UNIT 3 FLUID PROPERTIES —- SMEA1306



1. FLUID PROPERTIES

Fluid Properties: Density - Specific Weight - Specific Gravity - Viscosity - Surface
tension - Capillarity - compressibility. Fluid Statics: Hydrostatic Law - Pressure
Variation in static fluid - Hydrostatic force on a submerged plane surface - Location of
hydrostatic force. Manometers - Simple U tube and differential manometers - Buoyancy
- Meta-centric height - determination of stability of floating bodies and submerged
bodies.

Fluids: Substances capable of flowing are known as fluids. Flow is the continuous
deformation of substances under the action of shear stresses.

Fluids have no definite shape of their own, but confirm to the shape of the containing vessel.
Fluids include liquids and gases.

Fluid Mechanics:

Fluid mechanics is the branch of science that deals with the behavior of fluids at rest as well
as in motion. Thus, it deals with the static, kinematics and dynamic aspects of fluids.

The study of fluids at rest is called fluid statics. The study of fluids in motion, where pressure
forces are not considered, is called fluid kinematics and if the pressure forces are also
considered for the fluids in motion, that branch of science is called fluid dynamics.

1. Density (or) Mass Density:

Density or mass density of a fluid is defined as the ratio of the mass of the fluid to its volume.
Thus, Mass per unit volume of a fluid is called density.

Nass of fluid
Volume of fluid

Adass density, o —

S.1 unit of density is kg/m3. The value of density for water is 1000 kg/m?
2. Specific weight (or) Weight Density (w):

Specific weight or weight density of a fluid is the ratio between the weights of a fluid to its
volume.

Weighr of fluid
Volume of fluid
Mass of fluid X o
- Volume of fluid

w—pg

Weight density =

S.1 unit of specific weight is N/m? .
The value of specific weight or weight density of water is 9810N/m?® or 9.81 kN/m3.



3. Specific Volume (v):
Specific volume of a fluid is defined as the volume of a fluid occupied by unit mass.
Volume per unit mass of a fluid is called Specific volume.

: Vol < ’ Teeidd
Specific volume = oftmc qfﬁ a Jluic — L
Mass of fluid Yo,

Thus specific volume is the reciprocal of mass density. S.I unit: m® /kg

4.Specific Gravity (S):

Specific gravity is defined as the ratio of the specific weight of a fluid to the specific weight
of a standard fluid.

Specific weight or density of liquid

Specific gravity=

Specific weight or density of water

Specific gravity of water=1
Specific gravity of mercury=13.6

5.Viscosity:

Viscosity is defined as the property of a fluid which offers resistance to the movement of one
layer of fluid over adjacent layer of the fluid. When two layers of a fluid, at distance ‘dy’
apart, move one over the other at different velocities, say u and u+du as shown in figure. The
viscosity together with relative velocity causes a shear stress acting between the fluid
layers.The top layer causes a shear stress on the adjacent lower layer while the lower layer
causes a shear stress on the adjacent top layer.This shear stress is proportional to the rate of
change of velocity with respect to y.
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Velocity variation near a solid boundary.

Fig.3.1 Velocity distribution curve



6. Newtons law of viscosity: The shear stress between two layers is proportional to the rate
of change of velocity with respect to y.

o die
dyv
r— 42 dit
dyv

6. Compressibility: Compressibility is the reciprocal of the bulk modulus of elasticity, K,
which is defined as the ratio of compressive stress to volumetric strain.

Increase of pressure
Bulk modulus K = S I

Volumetric Strain
_dp
—dV

%

Compressibility =

1
K

Cohesion is due to the force of attraction between molecules of same liquid

Adhesion is defined as the force of attraction between the molecules of two different liquids
or between the molecules of the liquid and molecules of the solid boundary surface.

7. Surface tension: Surface tension is defined as the tensile force acting on the surface of a
liquid in contact with a gas or on the surface between two immiscible liquids such that the
contact surface behaves like a membrane under tension.

WYvyy

»

(a) DROPLET  (b) SURFACE TENSION

(¢) PRESSURE FORCES

Forces on droplet.

Fig.3.2 Forces on droplet
Surface Tension on Liquid Droplet:

Consider a small spherical droplet of a liquid of diameter ‘d’. On the entire surface of the
droplet, the tensile force due to surface tension will be acting.

Let o = Surface tension of the liquid,p = Pressure intensity inside the droplet (in excess of
the outside pressure intensity)}-d-= Dia. of droplet.Let the droplet is cut into two halves. The
forces acting on one half will be i) Tensile force (FT)due to surface tension acting around
the circumference of the cut portion as shown in fig. and this is equal to = o x
Circumference = 6 x © d Pressure force (Fp) on the area C= p x (n/4) d? as shown in the

5



figure. These two forces are equal under equilibrium conditions. i.e

Surface Tension on a Hollow Bubble:
A hollow bubble like a soap bubble in air has two surfaces in contact with air, one inside
and other outside. Thus two surfaces arc subjected to surface tension. In that case,

srd

pr=2x(Gxnd)

=
Therefore. o — Ta

8. Capillarity:

Capillarity is defined as a phenomenon of rise or fall of a liquid surface in a small tube
relative to the adjacent general level of liquid when the tube is held vertically in the liquid.
The rise of liquid surface is known as capillary rise while the fall of the liquid surface is
known as capillary depression. It is expressed in terms of cm or mm of liquid. Its value
depends upon the specific weight of the liquid, diameter of the tube and surface tension of the
liquid.

Expression for Capillary Rise:

Consider a glass tube of small diameter‘d' opened at both ends and is inserted in a liquid. The
liquid will rise in the lube above the level of the liquid.

a o
\\-ﬁ?'
_*_ —
; h :
LA
LIQUID
Capillary rise

Fig.3.3 Capillary Rise

Under a state of equilibrium,
The weight of liquid of height h = Vertical component of surface tension force

(Area of tube x h) x p x g = 0 x Circumference x cos ©
2

%xhxpxg =oxmdxcos 0

40 c0s 6 40 cos 6

~ pxgxa ~ wd

9. Vapour pressure:

Vapour pressure is the pressure of the vapor over a liquid which is confined in a closed vessel
at equilibrium. Vapour pressure increases with temperature. All liquids exhibit this
phenomenon.

10. Types of fluid



I. Ideal Fluid: A fluid, which is incompressible and is having no viscosity, is known as an
ideal fluid.

ii. Real Fluid: A fluid, which possesses viscosity, is known as real fluid. All the fluids, are
real fluids in actual practice.
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dy
Types of fluids.
Fig.3.4 Types of fluid

iii. Newtonian Fluid: A real fluid, in which the shear stress is directly proportional to the rate
of shear strain (or) velocity gradient, is known as a Newtonian fluid

iv. Non-Newtonian Fluid: A real fluid, in which the shear stress is not proportional to the
rate of shear strain (or) velocity gradient, is known as a Non-Newtonian fluid.

v. ldeal Plastic Fluid: A fluid, in which shear stress is more than the yield value and shear
stress is proportional to the rate of shear strain (or) velocity gradient, is known as ideal plastic
fluid

Fluid pressure

Fluid pressure is the force exerted by the fluid per unit area. Fluid pressure is transmitted with
equal intensity in all directions and acts normal to any plane.

F
p:

A

S.1 unit of fluid pressure are N/m2 or Pa,

where 1 N/m2 =1 Pa.

Many other pressure units are commonly used:

1 bar = 105 N/m?

1 atmosphere = 101325 N/m2 = 101.325kN/m2 = 1.01325 bar= 760mm of mercury =
10.336m of water

Pressure Head: The pressure intensity exerted at the base of a column of homogenous fluid
of a given height in metres.

Atmospheric Pressure: The pressure at the surface of the earth exerted by the head of air
above the surface

Gauge Pressure: The pressure measured by a pressure gauge above or below atmospheric
pressure



Vacuum pressure: The gauge pressure less than atmospheric is called VVacuum pressure or
negative pressure
Absolute Pressure: The pressure measured above absolute zero or vacuum.
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Fig.3.5 Barometer, Atmospheric, Gauge and Absolute Pressure

Fluid Pressure

Fluid pressure is the force exerted by the fluid per unit area.

Fluid pressure or Intensity of pressure or pressure, = Fluids exert pressure on surfaces with
which they are in contact.

Fluid pressure is transmitted with equal intensity in all directions and acts normal to any
plane. In the same horizontal plane the pressure intensities in a liquid are equal.

Hydrostatic law

The hydrostatic law is a principle that identifies the amount of pressure exerted at a specific
point in a given area of fluid.

It states that, “The rate of increase of pressure in the vertically downward direction, at a point
in a static fluid, must be equal to the specific weight of the fluid.”

Pressure Variation in static fluid

Consider a small vertical cylinder of static fluid in equilibrium.

Pressure Variation in static fluid

Consider a small vertical cylinder of static fluid in equilibrium.
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Fig 3.6 Pressure variation in static fluid
Assume that the sectional area is “A” and the pressure acting upward on the bottom surface
is p and the pressure acting downward on the upper surface (dz above bottom surface) is (p
+ dp)dz.
Let the free surface of the fluid be the origin, i.e., Z = 0. Then the pressure variation at a depth Z = -
h below the free surface is governed by
(p+dp) A+W=pA
dpA + pgAdz =0 [W=w x volume = pg Adz] dp = -pgdz
=-pg=-W

Therefore, the hydrostatic pressure increases linearly with depth at the rate of the specific weight, w

= pg of the fluid.

If fluid is homogeneous, p is constant. By simply integrating the above equation, [dp = - [pg dz =>
p = - pg Z + C Where C is constant of integration.

When z = 0 (on the free surface), p = C = po = the atmospheric pressure. Hence, p = - pgZ + po

Pressure given by this equation is called absolute pressure, i.e., measured above perfect vacuum.

However, it is more convenient to measure the pressure as gauge pressure by setting atmospheric

pressure as datum pressure. By setting po =0,

p = -pgzt0=-pgz = pgh

p =wh

The equation derived above shows that when the density is constant, the pressure in a liquid at rest

increases linearly with depth from the free surface.

Here, h is known as pressure head or simply head of fluid.

In fluid mechanics, fluid pressure is usually expressed in height of fluids or head of fluids.

Hydrostatic force

Hydrostatic pressure is the force exerted by a static fluid on a plane surface, when the static
fluid comes in contact with the surface. This force will act normal to the surface. It is also
known as Total Pressure.

The point of application of the hydrostatic or total pressure on the surface is known as Centre
of pressure.

The vertical distance between the free surface of fluid and the centre of pressure is called
depth of centre of pressure or location of hydrostatic force.

Total Pressure on a Horizontally Immersed Surface
Consider a plane horizontal surface immersed in a liquid as shown in figure.



Let, w = Specific weight of the liquid, kN/m3 A = Area of the immersed surface in m?2
= Depth of the horizontal surface from the liquid level in m We know that,

Total pressure on the surface, P = Weight of the liquid above the immersed surface
P = Specific weight of liquid x Volume of liquid

= Specific weight of liquid x Area of surface x Depth of liquid P = wA kN

0 Free surface of liquid 0

e T 4 S

Specific weight. w

% (depth of centroid)

Area A

Hotizontally immersed Plane
Sutface

Fig:3.7 Horizontal Plane surface submerged in liquid
Total Pressure and depth of centre of pressure on a Vertically Immersed Surface
Consider an irregular plane vertical surface immersed in a liquid as shown in figure. Let,
w = Specific weight of liquid
A = Total area of the immersed surface
= Depth of the center of gravity of the immersed surface from the liquid surface
Now. consider a strip of width ‘b’, thickness ‘dx’ and at a depth x from the free surface of
the liquid

Free surface of liquid

T =
2 X - depth of centroid
W | h = depth of centre of
h | X & pressure
________ o G - Centroid
| C.P - centre of
- ———— (oh 2
P pressure
A Vertically immersed
plane surface
Fig: 3.8 Vertical Plan immersed in liquid
Moment of pressure on the strip about the free surface of liquid = ' x bdx X x = ' x2 b dx Total
momer}tfon the entire plane immersed surface = | %' x2 b dx
M= 2
But, | 2= second moment of area about free liquid surface = lo
therefore, M = ! lo

lo = IG + A x?, according to parallel axis theorem.

Therefore, M = ' (IG + Ax?) (1)
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Also = xh=Axxh 2
Since equations 1 & 2 are equal,

A xh= (IG+AX?

Depth of centre of pressure, h= (IG +Axy)/ A

Total Pressure and depth of Centre of Pressure on an Inclined Immersed Surface
Consider a plane inclined surface, immersed in a liquid as shown in figure. Let,

w = Specific weight of the liquid

A = Total area of the immersed surface

x = Depth of the centroid of the immersed plane surface from the free surface of liquid. 8 = Angle at
which the immersed surface is inclined with the liquid

Surface h= depth of centre of pressure from the liquid surface

b = width of the considered thin strip dx = thickness of the strip

O = the reference point obtained by projecting the plane surface with the free surface of liquid
x = distance of the strip from O

Free sutface of Liquid
——

w - Spacific weight of f luid

Sfep |

Total Area A /
{,
Y.

N

Fig: 3.10 Inclined Immersed Plain
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Let the plane of the surface, if produced meet the free liquid surface at . Then O0-0 is the axis
perpendicular to the plane of the surface,

Let y = distance of the C.G. of the inclined surface from -0

v¥ = distance of the centre of pressure from 0-0.

Consider a small strip of area d4 at a depth *f° from free surface and at a distance y from the axis
O-0 as shown in Fig. 3.18.

Pressure intensity on the strip, P =pgh
Pressure force, dF, on the strip, dF = p x Area of strip = pgh x dA

Total pressure force on the whole arca, F = Isz nghd&

h h  h*

But from Fig. 3.18, S=-="=sing
y oy oy
h=ysin B

F= IPS ® y 2 sin 8 x dA = pg sin HIydA
But J-H._-L.q = A;
where y = Distance of C.G. from axis 0-0
F=pgsin®yxA

= pgAh (= =y sin 8) ..(3.6)
Centre of Pressure (h*)
Pressure force on the strip.dF = pghdA

= pgy sin B dA [f = v sin 8]
Moment of the force, dF, about axis O0-0

=dF » y=pgysin B dA x y = pg sin E}"zdﬂ
Sum of moments of all such forces about €-0

= jpg sin @ y* dA = pg sin BJ}*: dA

But J}'E dA = M.O.IL of the surface about O0-0 = I,

Sum of moments of all forces about -0 = pg sin 8 [
Moment of the total force, F, about -0 is also given by
= Fxy*
where y* = Distance of centre of pressure from -0,
Equating the two values given by equations (3.7) and (3.8)
Fxy*=pgsin8 I,

or o= pg sin B I,
. F
B ¥ —
Now yo=—— F=pgAh
sin B

and I, by the theorem of parallel axis = [, + Ay®,

Table: M.I and Geometric Properties of some plane surfaces
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Moment of inertia
about an axis passing
Plane surface C.G. from the Area through C.G. and
base parallel to base (Ig)
l. Rectangle
|
I }
I
_'le'""a d bd®
r ' X=— bd —
X 2 12
¥ X
e
2. Triangle
G bi bi
3 2 36

a2
W
(SR
- EIJ
28

Pascal’s law

The basic property of a static fluid is pressure.

Pressure is the surface force exerted by a fluid against the walls of its container. Pressure also
exists at every point within a volume of fluid.

For a static fluid, as shown by the following analysis, pressure turns to be independent
direction.

T ax L

B

Fig: 3.11. Pascal Law
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Consider a triangular prism of small fluid element ABCDEF in equilibrium. Let Px is the
intensity of pressure in the X direction acting at right angle on the face ABFE, Py is the
intensity of pressure in the Y direction acting at right angle on the face CDEF, and Ps is the
intensity of pressure normal to inclined plane at an angle 6 as shown in figure at right angle to
ABC ..
For a fluid at rest there will be no shear stress, there will be no accelerating forces, and
therefore the sum of the forces in any direction must be zero.
Thus the forces acting on the fluid element are the pressures on the surrounding and the
gravity force. Force due to px = px X Area ABFE = px dydz
Horizontal component of force due to pN = - (pN x Area ABC ) sin(0) = - pNdNdz dy/ds = -
PNdydz As Py has no component in the x direction, the element will be in equilibrium, if
px dydz + (-pNdydz) =0
i.e. px =pN
Similarly in the y direction, force due to py = pydxdz
Component of force due to pN = - (pN x Area ABC ) cos(0) = - pNdsdz dx/ds = - pNdxdz
Force due to weight of element is negligible and the equation reduces to, py = pN
Therefore, px = py = pN
Thus, Pressure at a point in a fluid at rest is same in all directions.
Manometers:
Manometer is an instrument for measuring the pressure of a fluid, consisting of a tube filled
with a heavier gauging liquid, the level of the liquid being determined by the fluid pressure
and the height of the liquid being indicated on a scale. A U-tube manometer consists of a
glass tube bent in U-Shape, one end of which is connected to gauge point and the other end is
exposed to atmosphere.
Manometric liquids:

1. Manometric liquids should neither mix nor have any chemical reaction

with the liquid whose pressure intensity is to be measured.

2. It should not undergo any thermal variation.
Manometric liquid should have very low vapour pressure.
4. Manometric liquid should have pressure sensitivity depending upon the

magnitude of pressure to be measured and accuracy requirement.

Simple U-Tube Manometer: It consist of glass tube in U shape one end of which is
connected to a point at which pressure is to be measured and other end remains open to the
atmosphere as shown in fig. The tube generally contains mercury or any other liquid whose
specific gravity is greater than the specific gravity of the liquid whose pressure is to be
measured.

w

(a) For gauge pressure (b) For vacuum pressure

Fig: 3.12 Simple U tube Manometer
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For Gauge Pressure. Let B is the point at which pressure is to be measured, whose value is p.
The datum line is A-A Let,H1 = Height of light liquid above the datum line

H> = Height of heavier liquid above the datum line S1 = Specific gravity of light liquid

p1 = Density of light liquid = 1000 x S1 S, = Specific gravity of heavy liquid

p2 = Density of heavy liquid = 1000 x S

As the pressure is the same for the horizontal surface. Hence pressure above the horizontal datum
line A-A in the left column and in the right column of U-tube manometer should be same.

Pressure above A-A in the left column =p+pXgXh
Pressure above A-A in the right column =P, Xgxh,
Hence equating the two pressures p+p,gh, = p.gh,

p=(pyghy = py X g X hy).
(b) For Vacuum Pressure. For measuring vacuum pressure, the level of the heavy liquid in the
manometer will be as shown in Fig. 2.9 (b). Then

Pressure above A-A in the left column = pPaghy + p,ghy + p
Pressure head in the right column above A-A =0
Paghy + pyghy +p =0

p =~ (paghy + pighy).

Differential U-Tube Manometer:

Let, A and B are the two pipes carrying liquids of specific gravity s1
and s3 & s2 = specific gravity of manometer liquid.

Pipe A X Datum
l — J‘»l\hnometer liquid

Fig:3.13 Differential U-tube Manometer

Let two point A & B are at different level and also contains liquids of different sp.gr. These points are connected
to the U-tube differential manometer. Let the pressure at A and B are P, and Pg

Let /1 = Difference of mercury level in the U-tube.
» = Distance of the centre of 2. from the mercury level in the right limb.
x = Distance of the centure of A, from the mercury level in the right limb.
£, = Density of ligquid at A.
P> = Density of liguid at B.

Density of heavy ligquid or mercury.
Taking datum linc at X-X.
Pressure above X-X in the left limb = p,e(fz + x) + p,

i)
w
I

where p, = pressure at A.
Pressure above X-X in the right limb = p,. X g <X 1 + P, X g X ¥ + pgp
where pgy = Pressure at B,

Equating the two pressurce. we have
P18t + X))+ Py =P XX NI+ Pogy + pp
Par—Pp=PegX XN+ prey — P, + x)
=h X g(P,— P,;) + P22y — P, 8X
Diffecrence of pressure at A and B = /1 < g(p, — P) + P28y — P 8%
In Fig. 2.18 (&), the two points A and B are at the same level and contains the same liquid of density

- Then
Pressure above X-X inright imb = p_X g < i + p;, X g X x + pg
Pressure above X-X in left limb =Py X2 <X (1 + x)+ p,

Equating the two pressure
PeX 8 Xh + P 18X +Pp=P; X8 X1+ x)+ p,
Pa—Pp=Pg>X2 X+ pgx — p,g(fi + x)
=& X A(p,.— Py)-
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Buoyant force:_The upward force exerted by a liquid on a body when the body is immersed
in the liquid is known as buoyancy or buoyant force.

The point through which force of buoyancy is supposed to act is called centre of buoyancy.
The buoyant force acting on a body is equal to the weight of the liquid displaced by the body.
For a fluid with constant density, the buoyant force is independent of the distance of the body
from the free surface. It is also independent of the density of the solid body.

Archimedes principle: The buoyant force acting on a body immersed in a fluid is equal to
the weight of the fluid displaced by the body, and it acts upward through the centroid of the
displaced volume. For floating bodies, the weight of the entire body must be equal to the
buoyant force, which is the weight of the fluid whose volume is equal to the volume of the
submerged portion of the floating body.

Fleatinge
<y bodys
v Fluid

Suspended baody
tneuteally buoyane)

Sinking

griz Py hody

Fig:3.14. Floating Body

Stability of immersed and floating bodies

A floating body possesses vertical stability, while an immersed neutrally buoyant
body is neutrally stable since it does not return to its original position after a
disturbance.

Stability of submerged bodies
(i) stable (ii) Neutrally stable (iii) Unstable

Fig:3.15. An immersed neutrally buoyant body is (a) stable if the
center of gravity G is directly below the center of buoyancy
B of the body, (b) neutrally stable if G and B are coincident,
and (c) unstable if G is directly above B.

Metacentre: The point about which a body starts oscillating when the body is tilted is known
meta- centre.
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Metacentric height GM: The distance between the center of gravity G and the metacenter M
is known as Meta centric height. It is the point of intersection of line of action of buoyant
force with the line passing through centre of gravity, when the body is slightly tilted.

Centre of grvity & centre of
buoyancy - Lying oln same axis

Metacentre

Body floaJing - Normal Body floating - Tilted
Fig.3.16. Metacentric Height

The length of the metacentric height GM above G is a measure of the stability: If the metacentric
height increases, then the floating body will be more.. The meta-centric height (GM) is.given by, GM
=V - BGWhere, | = Moment of Inertia of the floating body (in plan) at water surface about the axis
Y- Y V = Volume of ihe body sub merged in waterBG = Distance between centre of gravity and
centre of buoyancy. Conditions of equilibrium of a floating and submerged body are :

Table.2. Condition of Equilibrium of a Floating bodies

Equilibrium Floating Body Sub-merged Body
(i) Stable Equilibrium M is above G B is above G
(a) Unstable Equilibrium [M is below G B is below G
(Hi) Neutral Equilibrium |Af and G coincide B and G coincide

Stability of floating bodies .A floating body is stable if the body is bottom-heavy and thus
the center of gravity G is below the centroid B of the body, or if the metacentre M is above
point G. However, the body is unstable if point M is below point G.

Metacentre

fo

Overturning

| { Restoring
| xESOtng moment
] | moment
0) (i) (6)
Stable condnditions of floating bodies Unstable condition of floating body

Fig.3.17.Stability of Floating Bodies
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Problems:
1.Calculate the sp.weight, density and sp.gravity of one litre of liquid which weights 7N.

1 I
Volume = 1 litre = 1—m3 ( 1 litre = | m® or 1 litre = 1000 cm’)
Weight =7 N
Wei 7
(i) Specificweight (W) = —oient N~ 7000 N/m’. Ans.
Volume ( 1 J 3
— M
1000
;7000
(i) Density (p) =X T kg/m® = 713.5 kg/m®. Ans.
g ;

_ Density of liquid _ 7135
Density of water 1000

= 0.7135. Ans.

{*+ Density of water = 1000 kg/m*}

(iif) Specific gravity

2.Calculate the density, sp.weight and weight of one litre of petrol of specific gravity = 0.7

Solution. Given:  Volume = 1 litre = 1 x 1000 cm’ = llO'" m® = 0.001 m*
Sp. gravity §S=0.7
(i) Density (p)
Using equation (1.14),
Density (p) = § x 1000 kg/m®* = 0.7 x 1000 = 700 kg/m>. Ans.
(ii) Specific weight (w)
Using equation (1.1), w=pxg=700x9.81 N/m* = 6867 N/m>. Ans.
(iii) Weight (W)
We know that specific weight = JcIght
Volume
or w:l-or6867=L
0.001 0.001

W= 6867 x 0.001 = 6.867 N. Ans.

3.A plate 0.023 mm distant from a fixed plate moves at 60 cm/s and requires a force of 2N
per unit area i.e 2 N/m? to maintain this speed. Determine the fluid viscosity between the
plates.

Solution. Given : —L F
Distance between plates, dy = .025 mm PEmm=c=c:= U =60 cride
= .025% 10>m dy=025mm ===::=
Velocity of upper plate, u =60 cm/s = 0.6 m/s t
N FIXED PLATE
Force on upper plate, F=2.0 = .
2
This is the value of shear stress i.e., T
Let the fluid viscosity between the plates is p.
d
Using the equation (1.2), we have T= 1 l—“- 5
dy
where du = Change of velocity = u - 0 = 1 = 0.60 m/s
dy = Change of distance = .025 x 10> m
T = Force per unit area = 2.0 N,
m2
0.60 2.0 x.025x10° _s Ns
2P e = =833 x 10 =
H oasx10 = 0.60 .

= 8.33 x 107> x 10 poise = 8.33 x 10™* poise. Ans.
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4.The dynamic viscosity of oil used for lubrication between a shaft and sleeve is 6 poise. The
shaft is of diameter 0.4 m and rotates at 190 rpm. Calculate the power lost in the bearing for a
sleeve length of 90mm. The thickness of the oil film is 1.5mm.

Solution. Given : ) 1.5 mm
Viscosity K = 6 poise ¢ i a
= i& =0.6 & 04m
10 m? m? Y
Dia. of shaft, D=04m '? 2 éHAFT
Speed of shaft, N =190 r.p.m o
3 SLEEVE
Sleeve length, L=90mm=90x%x10"m
Thickness of oil film, t=1.5mm=15%x10"m
x0.4x19
Tangential velocity of shaft, u = KN o L 0 =3.98 m/s
60 60

; : du

Using the relation T=U —

dy
where du = Change of velocity = u— 0= u = 3.98 m/s
dy = Change of distance = r = 1.5 x 10> m
.9
T=10 % 3—83 = 1592 N/m?
1.5x 10

This is shear stress on shaft
Shear force on the shaft, F' = Shear stress X Area
=1592x DXL =1592x 7t x.4%x90x 10 >=180.05N

Torque on the shaft, T = Force X g = 180.05 X 02—4 =36.01 Nm

_2nNT _271tx190x36.01
60 60

*Power lost =716.48 W. Ans.

5.The surface tension of water in contact with air at 20°C is 0.0725N/m. The pressure
inside a droplet of water is to be 0.02 N/cm? greater then the outside pressure.

Calculate the diameter of the droplet of water.
Solution. Given :
Surface tension, o = 0.0725 N/m
Pressure intensity, p in excess of outside pressure is

p =0.02 N/ecm? = 0.02 x 10* %
m
Let d = dia. of the droplet
we getp = 470 or 0.02 x 10% = AXANS
d= X002 00145 m = 00145 x 1000 = 1.45 mm. Ans.
0.02 % (10)
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6.Calculate the capillary rise in a glass tube of 2.5mm diameter when immersed vertically in
a) water b) Mercury. Take surface tension of 2.5 mm diameter when immersed vertically in
contact with air. The specific gravity for mercury is given as 13.6 and angle of contact = 130

Density = 13.6 x 1000 kg/m>.
(a) Capillary rise for water (6 = 0°)
4 4 % 00725
pxgxd 1000x981x25x10>
=.0118 m = 1.18 cm. Ans.

Using equation (1.20), we get h =

(b) For mercury

Angle of contact between mercury and glass tube, 6 = 130°

40 cos® 4 %< 0.52 x cos 130°
pxgxd_ 13.6 x 1000 X 9.81 x 2.5 x 1073

= —-.004 m = — 0.4 cm. Ans.
The negative sign indicates the capillary depression.

Using equation (1.21), we get i =

7.The right limb of a single U-tube manometer containing mercury is open to the atmosphere
while the left limb is connected to a pipe in which a fluid of sp.gravity is 0.9 is flowing. The
centre of the pipe is 12cm below the level of mercury in the right limb. Find the pressure of
fluid in the pipe if the difference of mercury in the two limbs is20cm.

Solution. Given :

Sp. gr. of fluid, §;=09
Density of fluid, p, =S, % 1000 = 0.9 x 1000 = 900 kg/m’ T

Sp. gr. of mercury, §,=136 : T
Density of mercury, P, =13.6 x 1000 kg/m?

Difference of mercury level, £, =20 cm =02 m
Height of fluid from A-A, hy=20-12=8cm=0.08 m
Let p = Pressure of fluid in pipe

Equating the pressure above A-A, we get
P+ Pi8hy = paghy
p+900 x 9.81 x 0.08 = 13.6 x 1000 x 9.81 x .2
p=13.6 x 1000 x 9.81 x .2 - 900 x 9.81 x 0.08
= 26683 - 706 = 25977 N/im” = 2597 N/em’. Ans.
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8.A differential manometer is connected at the two points A and B of two pipes as shown in
fig. The pipe A contains a liquid of Sp.gravity = 1.5 while pipe B contains a liquid of
sp.gravity = 0.9. The pressure at A and B are 1 Kgf/cm? and1.80 Kgf/cm? respectively. Find
the difference in mercury level in the differential manometer.

Sp.gr=15
o Py =1 kgf/cm2

Solution. Given :
Sp. gr. of liquid at 4, §, = 1.5 = p, = 1500
Sp. gr. of liquid at B, $,=09 = p, =900
Pressure at A, py=1 kgf/cm2 =1x10* kgf/m2
= 10*x 9.81 N/m? (- 1 kgf = 9.81 N)
Pressure at B, pg= 1.8 keffem®
= 1.8 x 10* kef/m” _
=18 10'x 981 Nim® (= 1 kef =981 N)
Density of mercury = 13.6 x 1000 kg/m’
Taking X-X as datum line.

Pressure above X-X in the left limb
=13.6 x 1000 x 9.81 X h + 1500 x 9.81 X (2 + 3) + p,
= 13.6 x 1000 x 9.81 X / + 7500 x 9.81 + 9.81 x 10*
Pressure above X-X in the right limb = 900 x 9.81 X (h + 2) + pp
=900 x 9.81 x (h +2) + 1.8 x 10* x 9.81
Equating the two pressure, we get
13.6 X 1000 x 9.814 + 7500 x 9.81 + 9.81 x 10*
=900 x 9.81 x (h +2) + 1.8 x 10% x 9.81
Dividing by 1000 x 9.81, we get
136h+75+10=(h+2.0)x .9+ 18
13.6h + 17.5=092 + 1.8 + 18 =09k + 19.8
(136 -09)h=198-1750r 12.7Th = 2.3

h= zé— =(.181 m = 18.1 ¢cm. Ans.

12.7
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9.A rectangular plane surface is 2m wide and 3m deep. It lies in vertical plane in water.
Determine the total pressure and position of centre of pressure on the plane surface when its
upper edge is horizontal and a) coincide with water surfaceb) 2.5 m below the free water surface.

Solution. Given :

Width of plane surface, b=2m

Depth of plane surface, d=3m

(a) Upper edge coincides with water surface

F= pgAE FREE WATER SURFACE
where p = 1000 kg/m>, g = 9.81 m/s> — SURFACE
=3x2=6m2,l_z=l(3)=1.5m‘ h T

2 e

F = 1000 %< 9.81 x 6 x 1.5 G l 3m
= 88290 N. Ans. Y pe

Depth of centre of pressure is given by equation (3.5) as
h* = I—G_ +h
Ah |

where I; = M.O.I. about C.G. of the areca of surface

bd> _2x3°

=45 m*
12 12

4.5
6 < L5
(b)) Upper edge is 2.5 ma below water surface

Solution. Given :

h* =

+ 1.5=0.5+ 1.5 = 2.0 m. Ans.

FREE WATER SURFACE

Width of plane surface, b =2m = 2 P
Depth, d=3m ‘ 1.5
Angle, 8 = 30° —EL T Ao
Distance of upper edge from free water surface = 1.5 m ¥ AD
(i) Total pressure force is given by equation X
R F =pgAh o
where p = 1000 kg/m- X Q /
A=bxd=3x2=6m" > o<
h = Depth of C.G. from free water surface N /

= 1.5 + 1.5 sin 30°
{~ h=AE+ EB=1.5+ BCsin 30°= 1.5 + 1.5 sin 30°}

000 x 9.81 x 6 x 2.25 = 132435 N. Ans.

(ii) Centre of pressure (h¥)
Using equation (3.10), we have

G 3 A
h*:Lﬁe+h, whereIG=bd #%3
Ah 12 12

1
) o 4.5x
Ao xom 30 L oogs 4 4 o0
6 %225 6x2.25

= 0.0833 + 2.25 = 2.3333 m. Ans.
10.A rectangular plane surface 2m wide and 3m deep lies in water in such a way that its
plane makes an angle of 30- with the free surface of water. Determine the total surface and
position of centre of pressure when the upper edge is 1.5m below the free water surface.

=45m*

h*
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Solution. Given : FREE WATER SURKACE

Width of plane surface, b =2m >
Depth, d=3m
Angle, 6 = 30°

Distance of upper edge from free water surface = 1.5 m
(i) Total pressure force is given by equation

F = pgAh
where p = 1000 kg/m>
A=bxd=3x2=6m>
h = Depth of C.G. from free water surface

1.5 + 1.5 sin 30°
{~ h=AE+ EB= 1.5+ BC sin 30° = 1.5 + 1.5 sin 30°}

=15+15x4+=225m
F =1000 %< 9.81 X 6 X 2.25 = 132435 N. Ans.

(ii) Centre of pressure (h¥)

Using equation (3.10), we have
I; sin”©®  — bd>  2x3°

h* = — + A, where I = -
AR 12 12
1
T ) o 4.5 > —
v D X 307 pogie: o 4 205
6 <225 6 ><2.25

= 0.0833 + 2.25 = 2.3333 m. Ans.
11.Find the volume of the water displaced and position of centre of buoyancy for a wooden

block of width 2.5m and depth 1.5m. When it floats horizontally in water. The density of
wooden block is 650 kg/m? and its length 6m.

Solution. Given :

Width =25m NaTER
Depth =1.5m SURFACE =
Length =6.0m _—= o lW B
Volume of the block =2.5x 1.5 x 6.0 = 22.50 m?> BTF mp
Density of wood, p = 650 kg/m? 8 J_l
Weight of block = p X g X Volume = - 25m —=|

=650 x9.81 x22.50 N = 143471 N

For equilibrium the weight of water displaced = Weight of wooden block
= 143471 N

Volume of water displaced
_ Weight of water displaced 143471

"~ Weight density of water 1000 x 9.81
(*+ Weight density of water = 1000 x 9.81 N/m?)
Position of Centre of Buoyancy. Volume of wooden block in water
= Volume of water displaced
2.5x h x 6.0 = 14.625 m?, where / is depth of wooden block in water
_ 14625
T 25x6.0

= 14.625 m>. Ans.

=0975m

Centre of Buoyancy = % = 0.4875 m from base. Ans.
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12.A rectangular pontoon is 5m long, 3m wide and 1.20m high. The depth of immersion of
the position is 0.80 m in sea water. If the centre of gravity is 0.6m above the bottom of the
position, determine the meta centric height. The density for sea water is 1025 kg/m?®.

Solution. Given :

Dimension of pontoon =5mx3mx1.20m

Depth of immersion =08 m
Distance AG=0.6 m I 3 "|1 I
Distance AB = 1 x Depth of immersion — I i

=1 x.8=04m S}Ho.sm 12mogm
. 2 3 0.4 m ¥
Density for sea water = 1025 kg/m AT} 4 '
Meta-centre height GM, given by equation L -
GM = 4 BG
\vd |
where 7= M.O. Inertia of the plan of the pontoon about Y-Y axis 50m

=Lx5><33m4=£m4 |
12 4

V = Volume of the body sub-merged in water St B X
- _ 3
=3%lexa0=120m PLAN AT WATER SURFACE
BG=AG-AB=06-04=02m

GM = E X ; -02= E -0.2=0.9375-0.2 =0.7375 m. Ans.
4 12.0 48
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UNIT 4 EQUATIONS OF MOTION



4. EQUATIONS OF MOTION

Basic equations of motion: Types of fluid flow-Concept of Control Volume- Control
Volume Analysis of mass, momentum and energy. Differential equation of continuity
and momentum - Euler’s and Bernoulli’s Equation and its applications. Flow
Measurement: Orifice meter, Venturimeter, Piezometer.

Types of Fluid Flow

o Steady and Unsteady.

e Uniform and Non-Uniform.

e Laminar and Turbulent.

o Compressible and In-compressible.

« Rotational and Irrotational Flow.

e One, Two, and Three -dimensional Fluid Flow.
Steady flow

A steady flow is one in which all conditions at any point in a stream remain constant with
respect to time. Or A steady flow is the one in which the quantity of liquid flowing per
second through any section, is constant. This is the definition for the ideal case. True steady
flow is present only in Laminar flow. In turbulent flow, there are continual fluctuations in
velocity. Pressure also fluctuates at every point. But if this rate of change of pressure and
velocity are equal on both sides of a constant average value, the flow is steady flow. The
exact term use for this is mean steady flow. Steady flow may be uniform or non-uniform.

Uniform flow

A truly uniform flow is one in which the velocity is same at a given instant at every point in
the fluid. This definition holds for the ideal case. Whereas in real fluids velocity varies across
the section. But when the size and shape of cross section are constant along the length of
channels under consideration, the flow is said to be uniform.

Unsteady Flow

A flow, in which quantity of liquid flowing per second is not constant, is called unsteady
flow. Unsteady flow is a transient phenomenon. It may be in time become steady or zero
flow. For example when a valve is closed at the discharge end of the pipeline. Thus, causing
the velocity in the pipeline to decrease to zero.

One, Two and Three Dimensional Flows

Term one, two or three dimensional flow refers to the number of space coordinated required
to describe a flow. It appears that any physical flow is generally three-dimensional. But these
are difficult to calculate and call for as much simplification as possible. This is achieved by
ignoring changes to flow in any of the directions, thus reducing the complexity. It may be
possible to reduce a three-dimensional problem to a two-dimensional one, even an one
dimensional one at times.



Uniform and Non-uniform Flows. Uniform flow is defined as that type of flow in
which the velocity at any given time does not change with respect to space (i.e., length of direction of
the flow). Mathematically, for uniform flow

(B_V] -0
ds = constant

where  dV = Change of velocity
ds = Length of flow in the direction S.

Compressible and Incompressible Flows. Compressible flow is that type of flow in
which the density of the fluid changes from point to point or in other words the density (p) is not
constant for the fluid. Thus, mathematically, for compressible flow

p # Constant

Incompressible flow is that type of flow in which the density is constant for the fluid flow. Liquids
are generally incompressible while gases are compressible. Mathematically, for incompressible flow

p = Constant.

Rotational and Irrotational Flows. Rotational flow is that type of flow in which the
fluid particles while flowing along stream-lines, also rotate about their own axis. And if the fluid
particles while flowing along stream-lines, do not rotate about their own axis then that type of flow is
called irrotational flow.

Laminar and Turbulent Flows. Laminar flow is defined as that type of flow in which
the fluid particles move along well-defined paths or stream line and all the stream-lines are straight and
parallel. Thus the particles move in laminas or layers gliding smoothly over the adjacent layer. This
type of flow is also called stream-line flow or viscous flow.

Turbulent flow is that type of flow in which the fluid particles move in a zig-zag way. Due to the
movement of fluid particles in a zig-zag way, the eddies formation takes place which are responsible

for high energy loss. For a pipe flow, the type of flow is determined by a non-dimensional numberQ
v

called the Reynold number,
where D = Diameter of pipe

V = Mean velocity of flow in pipe
and v = Kinematic viscosity of fluid.

laminar flow

turbulent flow

S = —— =
- o < -

Figure 4.1.Laminar and Turbulent.



Rate of Flow or Discharge (Q)

It is defined as the quantity of a fluid flowing per second through a section of a pipe or a
channel. For an incompressible fluid (or liquid) the rate of flow or discharge is expressed as
the volume of fluid flowing across the section per second.

For compressible fluids, the rate of flow is usually expressed as the weight of fluid flowing
across the section. Thus (i) For liquids the units of Q are m3 /s or litres/s (ii) For gases the
units of Q are kgf/s or Newton/s

Consider a fluid flowing through a pipe in which A= Cross-sectional area of pipe. V=
Average area of fluid across the section Then discharge Q=A x V

Continuity Equation

The equation based on the principle of conservation of mass is called continuity equation.
Thus for a fluid flowing through the pipe at all the cross-section, the quantity of fluid per
second is constant. Consider two cross-sections of a pipe as shown in Figure 4.2.

@ @

/]41/ LA ELS
f
|

DIRECTION
—_—
OF FLOW

/J‘(}I[’f}f{(}j!/f’{)/!l

Figure 4.2.Flow through Pipe
According to law of conservation of mass

Rate of flow at section 1-1 =Rate of flow at section 2-2
P1AV = prAsV,
The above equation is applicable to the compressible as well as incompressible fluids is

called Continuity Equation.

If the fluid is incompressible p1= p.and continuity equation reduces to
AV, =45V,

Equation of motion

The dynamics of fluid flow is the study of fluid motion with forces causing flow. The
dynamic behaviours of the fluid flow is analyzed by the Newton’s law of motion (F=ma),
which relates the acceleration with the forces. The fluid is assumed to be incompressible and
non-viscous.

Mathematically, Fx= m.ax



In the fluid flow, following forces are present:

* Pressure force ‘Fp’

* Gravity force ‘Fg’

* Viscous force ‘Fy’

e Turbulent flow ‘F¢’

» Compressibility force ‘Fe’

The pressure force ‘Fp’ is exerted on the fluid mass, if there exists a pressure gradient
between the 2 parts in the direction of flow.

The gravity force ‘Fg’ is due to the weight of the fluid and it is equal to ‘Mg’. The
gravity force for unit volume is equal to ‘pg’.

The viscous force ‘Fv’ is due to the viscosity of the flowing fluid and thus exists in
the case of all real fluid.

The turbulent flow ‘Ft’ is due to the turbulence of the flow. In the turbulent flow, the
fluid particles move from one layer to other and therefore, there is a continuous
momentum transfer between adjacent layer, which results in developing additional
stresses(called Reynolds stresses) for the flowing fluid.

The compressibility force ‘Fe’ is due to elastic property of fluid and it is important
only either for compressible fluids or in the cases of flowing fluids in which the
elastic properties of fluids are significant.

In the fluid flow, the following forces are present :
(i) F e gravity force.
(if) F,, the pressure force.
(1ii) F,, force due to viscosity.
(iv) F,, force due to turbulence.
(v) F_, force due to compressibility.

the net force

Fo=(Fp) + (F)+ (F) + (F)+ (F),.

(i) If the force due to compressibility, F . is negligible, the resulting net force
Fi=Fp+ (Fp)+ (F) + (F),

and equation of motions are called Reynold’s equations of motion.



(if) For flow, where (F,) is negligible, the resulting equations of motion are known as

Navier-Stokes Equation.
(iif) If the flow is assumed to be ideal, viscous force (F,) is zero and equation of motions are

known as Euler’s equation of motion.
Euler’s Equation of motions

In an ideal incompressible fluid, when the flow is steady and continuous, sum of the velocity
head, pressure head and datum head along a stream line is constant.

Assumptions:

* The fluid is ideal and incompressible.

* Flow is steady and continuous.

* Flow is along streamline and it is 1-D.

* The velocity is uniform across the section and is equal to the mean velocity.
* Flow is Irrotational.

* The only forces acting on the fluid are gravity and the pressure forces.

S

Y
pgdAds

Figure 4.3. Euler’s Equation of motions



1. Pressure force pdA in the direction of flow.

J
2. Pressure force [p + i ds) dA opposite to the direction of flow.

M

3. Weight of element pgdAds.
Let 6 is the angle between the direction of flow and the line of action of the weight of element.
The resultant force on the fluid element in the direction of 5 must be equal to the mass of fluid

element X acceleration in the direction .

pdA — [p + g—p ds) dA — pgdAds cos 0
N

= pdAds X a;
where a, is the acceleration in the direction of s.

dv

a, = 0 where v is a function of s and 7.
_av ds+8v B v8v+av { d_s_v}
ds dt ot 9s ot | dr
, dv
If the flow is steady, — =0
ot
vav
. =—
b aS

Substituting the value of a;
op v
— — dsdA — pg dAds cos B = pdAds x 35

as
Dividing by pdsdA, — 2L~ — ¢ cos 0 = vov
pOs s
d
or a—p+gc059+v—v=0

pOs ds



d
we have cos 0 = g

ds
ld_p+gdz+vdv=0
p ds ds ds
or ap

— + gdz+vdv =10
P

This is the required Euler’s equation for motion.

Bernoulli’s Equation from Euler’s equation for motion:
Bernoulli’s equation is obtained by integrating the Euler’s equation of motion

Jd—p + jgdz + J vdv = constant
p

If flow is incompressible, p is constant and

p v?
— + g7 + — = conStant
p 2
2
p Vv
—+ 7 + — = constant
P8 8
p v
—+ — <+ 7z = constant
Pg 28
L _ pressure energy per unit weight of fluid or pressure head.
P8

vZIZg = kinetic energy per unit weight or kinetic head.
z = potential energy per unit weight or potential head.

Statement of Bernoulli’s Theorem. It states that in a steady, ideal flow of an incom-
pressible fluid, the total energy at any point of the fluid s constant. The total energy consists of
pressure energy, kKinetic energy and potential energy or datum energy. '

Problem 1:



A pipe, through which water is flowing, is having diameters, 20 cm and 10 cm at the
cross-sections 1 and 2 respectively. The velocity of water at section 1 is given 4.0 m/s. Find the velocity
head at sections 1 and 2 and also rate of discharge.

@ =)

D, =20 cm

D, = 10 cm
V4 = 40 misec

D, =20cm =0.2m

A, =2 D2=" (2)2=0.0314m?
4 4

V, = 4.0 m/s

D, =0.1m

A, = % (.1)2 = .00785 m?

(i) Velocity head at section 1

2
W _20x40 4815 m.
2g  2x9.81
(ii) Velocity head at section 2 = Vf/2g
To find V,, apply continuity equation at 1 and 2
AV, .
AV, =AV, or V,=—"1L= 0314 40=16.0 m/s
A, 00785
2
16.0 x16.
Velocity head at section 2 = Y, = 00 x169 = 83.047 m.
2g 2 x9381
(iii) Rate of discharge
- AIVI or Asz
= 0.0314 x 4.0 = 0.1256 m*/s
= 125.6 litres/s. Ans. {1 m>= 1000 litres}

Problem 2:

10



The water is flowing through a
pipe hav;ng diameters 20 cm and 10 cm at sections 1
and 2 respectively. The rate of flow through pipe
is 35 litres/s. The section I is 6 m above datum and
section 2 is 4 m above datum. If the pressure at sec-
tion I is 39.24 N/cm?, Jfind the intensity of pressure
at section 2.

P33

-2,
4 /V/C,h 2
\\A

ni-
6 m 9? S70
\ Cn)
4 m
$ DATUM LINE |

At section 1,
D/ =20cm =02 m
A, = % (2)% = .0314 m?

p; = 39.24 N/cm?
= 39.24 x 10* N/m?
ZI — 6-0 m

At section 2,

11



D,=0.10 m

A, = ; (0.1)> = .00785 m?

Z,=4m
P2 = ?
0 = 35 lit/s = 3 035m¥s
1000
V, = 0 _ 03 _ 111 m/s
A, 0314
0 035 _ 4.456 m/s

V2 = =
A, .00785
Applying Bernoulli’s equation at sections 1 and 2, we get

V2 V.2
AN NP - S TP
pg 24 pg 2g
4 2 2
3924 x10°  (1114)° 60 s , (4456)° 10
1000 X 9.81 2x9.81 1000 x9.81 2x9.81

p, =41.051 X 9810 N/m?
_ 41.051x 9810

o7 N/cm” = 40.27 N/em®,

Problem 3:

Water is flowing through a pipe having diameter 300 mm and 200 mm at the bottom
and upper end respectively. The intensity of pressure at the bottom end is 24.525 N/em* and the
pressure at the upper end is 9.81 N/em®. Determine the difference in datum head if the rate of flow
through pipe is 40 lit/s.

12



=

DO, — 200 rrmarrm
—T P — O . =1 IN/orv
——=24 a>
D, —= 300 rmxrm -
zx P, = =29 . S22 N/ aornm
-
h 4

CCoAAT URN LINE

Section 1,

D, =300 mm=0.3m
p, = 24.525 N/cm? = 24.525 x 10* N/m*

Section 2,

D, =200 mm=0.2m
p>=9.81 N/em® = 9.81 x 10* N/m”

Rate of flow = 40 lit/s

Q= 40 = 0.04 m’/s
1000

AV, =A,V, = rate of flow = 0.04
V, = dage 1;04 = EO'M = (0.5658 m/s
A JDf 03

~ 0.566 m/s

y,=2 04 _ 0% o7

AZ EDZ E[}zz
4(2) 4(-)

Applying Bernoulli’s equation at sections (1) and (2), we get

13



24.525%10*  .566 % .566 081x10* (1.274)°
= + + Zz

+ +Z,=
1000 x9.81 2 %981 1000 x9.81 2x9.8l1

25+ 32+2, =10+ 1623 + z,
2532 + 7, =11.623 + z,
=2, =2532-11.623=13.697 = 13.70 m
Difference in datum head =2z,-z, =13.70 m. Ans.

Problem 4:

The water is flowing through a taper pipe of length 100 m having diameters 600 mm

at the upper end and 300 mm at the lower end, at the rate of 50 litres/s. The pipe has a slope of 1 in 30.
Find the pressure at the lower end if the pressure at the higher level is 19.62 Nfcm®.

L=100m

D, =600 mm = 0.6 m
T 2 7T 2

A, = — D "= — < (.6
1= 4 D 1 (.6)
= 0.2827 m?

P, = pressure at upper end
= 19.62 N/cm?

D, =300 mm = 0.3 m

A= ; D, = g (.3)% = 0.07068 m

Q = rate of flow = 50 litres/s = i = 0.05 m>/s
1000

Let the datum line passes through the centre of the lower end.
Then =0

14
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As slope is 1 in 30 means  z, = 30 X100 = — m
Also we know Q=A,V,=A,V,
V= Q. 005 = 0.1768 m/sec = 0.177 m/s
A 2827
and V,= Q2 ._ 0 0.7074 m/sec = 0.707 m/s
A, 07068

Applying Bernoulli’s equation at sections (1) and (2), we get

V2 vV,
Py oy =242 4
pg  2g pg  2g

19.62x10* 177* 10 p, .707°
+ + + +0
1000x9.81 2x981 3 pg 2x981

20 + 0.001596 + 3.334 = £2 4+ 0.0254
Pg

23335 - 0.0254 = — P2
1000 x 9.81
P, = 23.3 x 9810 N/m? = 228573 N/m” = 22.857 N/cm?

Practical applications of Bernoulli’s equation:

Although Bernoulli’s equation is applicable in all problems of incompressible flow where
there is involvement of energy considerations. But we shall consider its application to the
following measuring devices. 1) Venturimeter 2) Orifice meter 3) Pitot tube

Venturimeter: is a device used for measuring the rate of flow of a fluid flowing through a
pipe. It consists of three parts:

* A short converging part
* Throat

* Diverging part

15
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Figure 4.4. Venturimeter

Let d, = diameter at inlet or at section (1),

p, = pressure at section (1)
v, = velocity of fluid at section (1),

: T
a = area at section (1) = E d,z

d,, p», V5, a, are corresponding values at section (2).

Applying Bernoulli’s equation at sections (1) and (2), we get

2
v
Py =242 g
P8 28 pg 28
As pipe is horizontal, hence z, =2,
P|+"12=P2+V§ or P1‘P2=£_ﬁ
Pg 28 pg 28 P8 28 28
But hth is the difference of pressure heads at sections 1 and 2 and it is equal to h or Wl h
P8 P&
Substituting this value of 22— 2 in the above equation, we get
Pg
2 2
h = Y2 _ ¥

S 2g 2g

16



Now applying continuity equation at sections 1 and 2

d.V
a
Substituting this value of v,
2
a,V,
2 2 2 2 2 2
h=V2 _ al =V2 l_a_z =V2 al_az
2¢ 26 28| 4| 2| af
22
vy,© =2gh )
a, —4a,
a’ a
_ 1 _ 1
Vy = [28h——— = = = \28h
a; —d, a; — a,
Discharge, 0 = a,v,

‘\f _“1 d, —a,

Equation gives the discharge under ideal conditions and is called, theoretical discharge. Actual
discharge will be less than theoretical discharge.

Qact = Ca’ X

xZg

a ‘“2

where C, = Co-efficient of venturimeter and its value is less than 1.

Value of ‘h’ given by differential U-tube manometer

17



Case I. Let the differential manometer contains a liquid which is heavier than the liquid flowing
through the pipe. Let
S, = Sp. gravity of the heavier liquid
S, = Sp. gravity of the liquid flowing through pipe
x = Difference of the heavier liquid column in U-tube

Then h:x{ﬁ— ]

o

Case II. If the differential manometer contains a liquid which is lighter than the liquid flowing
through the pipe, the value of 4 is given by

h=x _3

where  §;, = Sp. gr. of lighter liquid in U-tube
S, = Sp. gr. of fluid flowing through pipe
x = Difference of the lighter liquid columns in U-tube.

Case III. Inclined Venturimeter with Differential U-tube manometer. The above two cases are
given for a horizontal venturimeter. This case is related to inclined venturimeter having differential
U-tube manometer. Let the differential manometer contains heavier liquid then A is given as

h= (ﬂ-l-zlj_(&-'- ZZJ =X {Sh—l]
P8 P8 5o

Case IV. Similarly, for inclined venturimeter in which differential manometer contains a liquid
which is lighter than the liquid flowing through the pipe, the value of # is given as

e
pg pg S,

A horizontal venturimeter with inlet and throat diameters 30 cm and 15 cm respec-
tively is used to measure the flow of water. The reading of differential manometer connected to the
inlet and the throat is 20 cm of mercury. Determine the rate of flow. Take C, = 0.98.

Problem 5:

18



Dia. at inlet, d, =30 cm

Area at inlet, a, = E d? = ; (30) = 706.85 cm?
Dia. at throat, d, =15 cm

a4, = = x 152 = 176.7 cm?
4

Cﬂr - 098

Reading of differential manometer = x = 20 cm of mercury.
Difference of pressure head is given by (6.9)

or h:x{s—“—l]
SO

where §, = Sp. gravity of mercury = 13.6, S, = Sp. gravity of water = 1

=20 [%— l} =20x12.6 cm = 252.0 cm of water.

a,a,

2 2
a, —d,

Q = Cd X Zgh

= 0.98 x —10085 X 176.7 X 4/2 X 9.81 X 252

J(706.85)% — (176.7)°

~ 8606759336 86067593.36
J499636.9 —31222.9 684.4

125756

= 125756 cm>/s = lit/s = 125.756 lit/s.

Problem 6:
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A horizontal venturimeter with inlet diameter 20 cm and throat diameter 10 cm is
used to measure the flow of il of sp. gr. 0.8. The discharge of oil through venturimeter is 60 litres/s.
Find the reading of the oil-mercury differential manometer. Take C, = 0.98.

d, =20 cm

a, = ; 202 = 314.16 cm®
d, = 10 cm
a, = g x 10° = 78.54 cm?

Cﬂr - [}.98
Q = 60 litres/s = 60 x 1000 cm?/s

0=C, ‘21”2 — % [2gh

a, —da,

60 X 1000 = 9.81 x 1416 X854 peger _ 1071068.78Vh

J314.16)* - (78.54)* 304

= 17.029

304 x 60000

h =
Vh 1071068.78
h=(17.029)> = 289.98 c¢m of oil

289.98 =x [13—6— 1} = 16x
0.8

h:{*"ﬂ_h_ } 28998

S = 18.12 cm.

Reading of oil-mercury differential manometer = 18.12 cm.
Problem 7:
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The inlet and throat diameters of a horizontal venturimeter are 30 cm and
10 cm respectively. The liquid flowing through the meter is water. The pressure intensity at inlet is
13.734 Nicm® while the vacuum pressure head at the throat is 37 cm of mercury. Find the rate of flow.
Assume that 4% of the differential head is lost between the inlet and throat. Find also the value of C,
for the venturimeter.

Dia. at inlet, d, =30 cm
T
a=g (30)* = 706.85 cm”
Dia. at throat, d, =10 cm

a, = % (10)? = 78.54 cm?

Pressure, p, = 13.734 N/em? = 13.734 x 10* N/m?

4
Pressure head, p_ 13734 %107 14 m of water

pg 1000 x9.81

P2 __ 37 cm of mercury
Pg
-37x13.6
= m of water = — 5.032 m of water
100
Differential head, h=p,/pg—-p./pg
= 14.0 - (- 5.032) = 14.0 + 5.032
= 19.032 m of water = 1903.2 cm
Head lost, hf= 4% of h = % >x 19.032 = 0.7613 m
h—h 19.032 — .7613
Ca= \f A - = \{ 19.032 = 0.98
_ a,a,+/2gh
.+ Discharge =Cy —
a, —a,
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a,a,+/2gh

2

Discharge =Cy -
a, —a,

_ 098 X706.85 X 78.54 X /2 x 981 x 1903.2
J(706.85)° — (78.54)°

_ 10513224738
/499636.9 — 6168

= 149692.8 cm>/s = 0.14969 m?/s.

Problem 8:

A 30 cm x 15 cm venturimeter is provided in a vertical pipe line carrying oil of
specific gravity 0.9, the flow being upwards. The difference in elevation of the throat section and
entrance section of the venturimeter is 30 cm. The differential U-tube mercury manometer shows a
gauge deflection of 25 cm. Calculate :

(i) the discharge of oil, and
(ii) the pressure difference between the entrance section and the throat section. Take the
co-efficient of discharge as 0.98 and specific gravity of mercury as 13.6.

*
30
¥ :
@ ‘
: 25
1
Dia. at inlet, d, = 30 cm
.. Area, a, = % (30)? = 706.85 cm?
Dia. at throat, d, =15 cm
s Area, a, = E (15)2 = 176.7 cm?
Sp. gr. of oil, S,=0.9
Sp. gr. of mercury, S, = 13.6

Reading of diff. manometer, x = 25 cm
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S
= x {—3- 1} =25 [%— 1] = 352.77 ¢m of oil

(i) The discharge, Q of oil

a,d,

a; — azz
_ 0.98 x 706.85 x176.7 _ JZ <981 < 35277
J(706.85)* — (176.7)*
= 1018322199 = 148790.5 cm>/s
684.4

= 148.79 litres/s. Ans.

(ii) Pressure difference between entrance and throat section

h= (ﬂ+ zlj—[&+ zgj = 352,77
P8 P8

[ﬂ— &) + 2, — 2, = 352.77
Ps P8

ZE_ZI = 30 cm

[ﬂ - &) ~30 = 352.77
Pg P8

P _ P2 _ 35777 4+ 30 = 382.77 cm of oil = 3.8277 m of oil.
pg  Pg
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= Sp. gr. of oil x 1000 l{g;’m3
= 0.9 x 1000 = 900 kg/cm’

3.8277 x 900 x 9.81 12

m

(Py— P2

379
% N/cm? = 3.3795 N/cm?>.

Orifice Flow Measurement — History:

The first record of the use of orifices for the measurement of fluids was by Giovanni
B.Venturi, an Italian Physicist, who in 1797 did some work that led to the development of the
modern Venturi Meter by Clemons Herschel in 1886. It has been reported that an orifice
meter, designed by Professor Robinson of Ohio State University was used to measure gas
near Columbus, Ohio, about 1890. About 1903 Mr. T.B. Weymouth began a series of tests in
Pennsylvania leading to the publication of coefficients for orifice meters with flange taps. At
the same time Mr. E.O. Hickstein made a similar series of tests at Joplin, Missouri, from
which he developed data for orifice meters with pipe taps. An orifice in a pipeline is shown in
Figure 4.5 with a manometer for measuring the drop in pressure (differential) as the fluid
passes thru the orifice. The minimum cross sectional area of the jet is known as the “vena
contracta.”

PIPE ORIFICE METER
O
= : >
DIRECTION OF FLOW( _r . Q
_> X

—

|
W . )

Figure 4.5.0rificemeter

The discharge, Q is given by equation
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dnd
0=Cy ;} - > X +J28h

a, —dy

What is an Orifice Meter?

An orifice meter is a conduit and a restriction to create a pressure drop. An hour glass is a
form of orifice. A nozzle, venturi or thin sharp edged orifice can be used as the flow
restriction. In order to use any of these devices for measurement it is necessary to empirically
calibrate them. That is, pass a known volume through the meter and note the reading in order
to provide a standard for measuring other quantities. Due to the ease of duplicating and the
simple construction, the thin sharp edged orifice has been adopted as a standard and extensive
calibration work has been done so that it is widely accepted as a standard means of measuring
fluids. Provided the standard mechanics of construction are followed no further calibration is
required.

Major Advantages of Orifice Meter Measurement

Flow can be accurately determined without the need for actual fluid flow calibration. Well
established procedures convert the differential pressure into flow rate, using empirically
derived coefficients. These coefficients are based on accurately measurable dimensions of the
orifice plate and pipe diameters as defined in standards, combined with easily measurable
characteristics of the fluid, rather than on fluid flow calibrations. With the exception of the
orifice meter, almost all flow meters require a fluid flow calibration at flow and temperature
conditions closely approximating service operation in order to establish accuracy.

Problem 9:

An orifice meter with orifice diameter 10 cm is inserted in a pipe of 20 cm diameter.
The pressure gauges fitted upstream and downstream of the orifice meter gives readings of
19.62 N/em?* and 9.81 N/em® respectively. Co-efficient of discharge for the orifice meter is given as
0.6. Find the discharge of water through pipe.

Dia. of orifice, dg= 10 cm
T
.. Area, ay = 1 (10)* = 78.54 cm?
Dia. of pipe, d, =20 cm
Area, a, = % |[20)2 = 314.16 cm*

p, = 19.62 N/em” = 19.62 x 10* N/m’
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p_ 1962x10°
pg 1000 x9.81

= 20 m of water

4
P _ 981x10 = 10 m of water

pg 1000 x9.81

n=PL _ P2 _500-10.0= 10 m of water = 1000 cm of water
pg P8
Q = Cd G X ngl
a; - ag
78.54 x314.1
= 0.6 X 8.54 x314.16 x\/2><981><1000

J(314.16)% — (78.54)’

~ 20736838.09
304

= 68213.28 cm’/s = 68.21 litres/s.

Problem 10:

An orifice meter with orifice diameter 15 cm is inserted in a pipe of 30 cm diameter.
The pressure difference measured by a mercury oil differential manometer on the two sides of the
orifice meter gives a reading of 50 cm of mercury. Find the rate of flow of oil of sp. gr. 0.9 when the co-
efficient of discharge of the orifice meter = (.64.

Dia. of orifice, dy=15cm

Area, ay = % (15)* = 176.7 cm?
Dia. of pipe, d, =30 cm

Area, a, = % (30)% = 706.85 cm?
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Sp. gr. of oil, S,=09
Reading of diff. manometer, x = 50 cm of mercury

, , Sy 13.6 ,
Differential head, h=x S_ -1|=50 0—9 — 1| cm of oil

[

= 50 x 14.11 = 705.5 cm of oil

dnd
0=C,. 0%

X +f28h
ai —ag

= 0.64 % 176.7x 706.85 X /2 X 981 % 705.5

\/(?{]6.85)2 - (176.7)°

_ 94046317.78 _ 137414.25 cm>/s = 137.414 litres/s.
684.4

Pitot tube for Flow Measurement Construction:

The principle of flow measurement by Pitot tube was adopted first by a French Scientist
Henri Pitot in 1732 for measuring velocities in the river. A right angled glass tube, large
enough for capillary effects to be negligible, is used for the purpose. One end of the tube
faces the flow while the other end is open to the atmosphere as shown in Fig.4.6.

Figure 4.6. Pitot tube
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Consider two points (1) and (2) at the same level in such a way that point (2) is just as the inlet of
the pitot-tube and point (1) is far away from the tube.
Let p, = intensity of pressure at point (1)
v, = velocity of flow at (1)
D, = pressure at point (2)

v, = velocity at point (2), which is zero

H = depth of tube in the liquid

h = rise of liquid in the tube above the free surface.
Applying Bernoulli’s equation at points (1) and (2), we get

2
¥4l +v—1+z -&+—+z2
pg 28 pg 2
But z, = z, as points (1) and (2) are on the same line and v, = 0.
P pressure head at (1) = H
Pg
P2 _ pressure head at (2) = (h + H)
P8
Substituting these values, we get
2 2
Y Y
Hi-=(h+H . h=—- o v =20
2 2 1 8

This is theoretical velocity. Actual velocity is given by

(V)= C, 281

where C, = Co-efficient of pitot-tube
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Velocity of flow in a pipe by pitot-tube. For finding the velocity at any point in a pipe by pitot-
tube, the following arrangements are adopted :

1. Pitot-tube along with a vertical piezometer tube

2. Pitot-tube connected with piezometer tube

3. Pitot-tube and vertical piezometer tube connected with a differential U-tube manometer

PITOT-TUBE | h

PIEZOMETER -a l
TUBE

Figure 4.7. Velocity of flow in a pipe by Pitot tube
Problem 11:

- Find the velocity of the flow of an oil through a pipe, when the difference of mercury
level in a differential U-tube manometer connected to the two tappings of the pitot-tube is 100 mm.
Take co-efficient of pitot-tube 0.98 and sp. gr. of 0il = 0.8.

Diff. of mercury level, x=100mm=0.1m
Sp. gr. of oil, S,=0.8
Sp. gr. of mercury, S,=13.6
C,=098

, S 13.6 ,

Diff. of pressure head, h=x|—=1|=.1|——=1| =16 mof oil
S, 0.8
Velocity of flow =C, +2gh =098 \/2x9.81x1.6 =5.49 m/s. Ans.
Problem 12:
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A sub-marine moves horizontally in sea and has its axis 15 m below the surface of
water. A pitot-tube properly placed just in front of the sub-marine and along its axis is connected to the
two limbs of a U-tube containing mercury. The difference of mercury level is found to be 170 mm. Find
the speed of the sub-marine knowing that the sp. gr. of mercury is 13.6 and that of sea-water is 1.026
with respect of fresh water.

Diff. of mercury level, x=170 mm = 0.17 m
Sp. gr. of mercury, S,=13.6
Sp. gr. of sea-water, S, =1.026

136 _ 1] =2.0834m

S.E
h=x|—=%-1 =0.17[
S, 1.026

V=,2gh =,/2%x9.81x2.0834 =6.393 m/s

_ 6393x60x60 i = 23.01 km/hr. Ans.

1000

Problem 13:

A pitot-tube is inserted in a pipe of 300 mm diameter. The static pressure in pipe is
100 mm of mercury (vacuum). The stagnation pressure at the centre of the pipe, recorded by the
pitot-tube is 0.981 N/cm®. Calculate the rate of flow of water through pipe, if the mean velocity of
flow is 0.85 times the central velocity. Take C, = 0.98.

Dia. of pipe, d =300 mm=0.30m
Area, a= % d?= g (.3)% = 0.07068 m>
Static pressure head = 100 mm of mercury (vacuum)
100
=— —— X 13.6 = - 1.36 m of water
1000
Stagnation pressure =981 N/ecm” = .981 x 10* N/m?
. 981x10*  .981x10*
Stagnation pressure head = = =
pg 1000 x 9.81

h = Stagnation pressure head — Static pressure head
=1.0-(-1.36) = 1.0 + 1.36 = 2.36 m of water
Velocity at centre =C, +J2gh

= 0.98 x /2 X 9.81X2.36 = 6.668 m/s
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Mean velocity, V =0.85 x 6.668 = 5.6678 m/s

Rate of flow of water = V X area of pipe
= 5.6678 x 0.07068 m*/s = 0.4006 m*/s. Ans.

Force exerted by a flowing fluid on a pipe bend

V,sin 6

(b)
Figure4.8. Forces on bend

Let v, = velocity of flow at section (1),
p, = pressure intensity at section (1),
A, = area of cross-section of pipe at section (1) and
Vy, Py A, = corresponding values of velocity, pressure and area at section (2)

Net force acting on fluid in the direction of x = Rate of change of momentum in x-direction
P\A; = pA, cos 0 - F, = (Mass per sec) (change of velocity)
= pQ (Final velocity in the direction of x
— Initial velocity in the direction of x)

=pQ (V,cos0-V))
F,=pQ (V,-V,cos0)+pA, -p,A,cosH

Similarly the momentum equation in y-direction gives

0-p,A,sin 6 - F =pQ (V,sin 6 - 0)

Fy,=pQ (- V,sin 8) - p,A, sin 6
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Now the resultant force (Fy) acting on the bend

_ "Ecz"'F_f

And the angle made by the resultant force with horizontal direction is given by

F
tan 9 = =

X

Problem 14:

A 45° reducing bend is connected in a pipe line, the diameters at the inlet and outlet
of the bend being 600 mm and 300 mm respectively. Find the force exerted by water on the bend if the
intensity of pressure at inlet to bend is 8.829 Niem’ and rate of flow of water is 600 litres/s

=
P1A; i
i
|
Angle of bend, 0 = 45°
Dia. at inlet, D, =600 mm = 0.6 m
Area, A, = % D2 = ; (.6)>
= 0.2827 m’
Dia. at outlet, D, = 300 mm = 0.30 m
-. Area, A, =2 (3)* = 0.07068 m’
Pressure at inlet, p, = 8.829 N/ecm® = 8.829 x 10* N/m”
Q = 600 lit/s = 0.6 m’/s
0.6
y =L = 2.122 m/s
A 2827
0.6
V, = Q = = 8.488 m/s.
A, 07068
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Applying Bernoulli’s equation at sections (1) and (2), we get

V2 V2
pg  2g pg 2g
{ =4
noYW_n, v 3820x10*  2122° _ p, 8488’

or =
pg 28 pg 28 1000 x9.81 2x9.81 pg 2x9.81

9+ .2295 = p,/pg + 3.672

P2 _ 92295 — 3.672 = 5.5575 m of water
Pg

P, = 5.5575 x 1000 x 9.81 N/m? = 5.45 x 10* N/m?
Forces on the bend in x- and y-directions are given by equations

F.=pQ[V,-V,c0os0]+pA, - p,A,cosB
= 1000 x 0.6 [2.122 — 8.488 cos 45°]
+ 8.829 x 10* x .2827 — 5.45 x 10* x .07068 x cos 45°
— 2327.9 + 24959.6 — 2720.3 = 24959.6 — 5048.2

= 199114 N
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UNIT 5 FLOW THROUGH ORIFICE, NOTCHES AND WEIR AND PIPES
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1. Flow through Orifice, Notches and Weir and Pipes

Hydraulic co-efficient-Flow through orifice, Notches and weirs. Laminar and Turbulent
flow-Reynolds experiment-laminar flow through circular pipe (Hagen poiseulle’s)-
Major and minor losses in pipes-Darcy weisbach’s equation, chezy’s formula-friction
factor- moody diagram-pipes in series and pipes in parallel-total energy line-hydraulic
gradient line-Equivalent pipe. Concept of Boundary Layer-Types of boundary layer
thickness-drag on flat plate.

Orifice

Orifice is a small opening on the side or at the bottom of a tank, through which a fluid is
flowing. The orifices are classified according to the size, shape, nature of discharge and shape
of the edge.
1. According to the size of orifice and head of liquid from the centre
of the orifice: Small orifice and Large orifice.
Small Orifice: If the head of liquid from the centre of orifice is more than five times the depth
of orifice, the orifice is called small orifice.
Large Orifice: If the head of liquid is less than five times the depth of orifice, it is known as
large orifice.
2. According to shape of orifice: (i) Circular orifice, (ii) Triangular
orifice,( iii) Rectangular orifice and (iv) Square orifice
3. According to their cross-sectional area or edge: (i) Sharp-edged
orifice and (ii) Bell mouthed orifice
According to the discharge condition: (i) Free discharging orifices (ii) Fully drowned or
submerged orifices and (iii) Partially submerged orifices

Flow through a Small Orifice
Flow from a tank through a hole in the side.

1 1 actual area of jet

4

»

2 £ Vena Contracta

-

PSR YRS RS RN
o3
¥
oy
o3
. —erermrasereasreery:

i

Fig.5.1. Flow through a small Orifice
The edges of the hole are sharp to minimize frictional losses by minimizing the contact
between the hole and the liquid. The streamlines at the orifice contract reducing the area of
flow. This contraction is called the vena contracta.
The amount of contraction must be known to calculate the flow.
Applying Bernoulli’s equation along the streamline joining point 1 on the surface to point 2
at the centre of the orifice.
At the surface velocity is negligible (v1 = 0) and the pressure atmospheric (p1 = 0). At the
orifice the jet is open to the atmosphere so again the pressure is atmospheric (p2 = 0).
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If we take the datum line through the orifice then Z1 = H and Z2 = 0 leaving h = 272 = h=\2
This theoretical value of velocity is an overestimate as friction losses have not been taken
into account.

Each orifice has its own coefficient of velocity, they usually lie in the range 0.97 - 0.99

The discharge through the orifice = jet area X jet velocity

The area of the jet is the area of the vena contracta and not the area of the orifice. We use a
Coefficient of contraction to get the area of the

jet,Aa.

Aa = Cc x area of orifice

Discharge through the Orifice Q = Area x Velocity Actual Discharge Qa = CqX Qth

Qth = Area of Orifice x Vi Hydraulic Coefficient

The following three coefficients are known as hydraulic coefficients or orifice coefficient
Coefficient of Contraction

Coefficient of Velocity

Coefficient of Discharge

Coefficient of Contraction:

The ratio of the area of the jet, at vena-contracta, to the area of the orifice is known as
coefficient of contraction. Mathematically coefficient of contraction, The value of Coefficient
of contraction varies slightly with the available head of theliquid, size and shape of the
orifice. The average value ofis 0.64.

Area of jet at vena contracta

Clo— —
Area of the orifice
e,

Coefficient of Velocity:
The ratio of actual velocity of the jet, at vena-contracta, to the theoretical velocity is known
as coefficient of velocity.

The theoretical velocity of jet at vena-contracta is given by the relation, h =2

, Where H is the head of water at vena-contracta. Mathematically coefficient of velocity.

Actual velocity of the jet at vena contracta
= Theoretical velocity of the jet

The difference between the velocities is due to friction of the orifice. The value of Coefficient
of velocity varies slightly with the different shapes of the edges of the orifice. This value is
very small for sharp-edged orifices. For a sharp edged orifice, the value of increases with the
head of water.

Coefficient of Discharge:

The ratio of a actual discharge through an orifice to the theoretical discharge is known as
coefficient of discharge. Mathematically coefficient of discharge,

& Actual dischar ge
“™ Theoretical discharge

Actual velocity = Actual area

" Theoretical velocity < T heoretical area
= = O
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Determination of Coefficient of Discharge (Cd):

The water is allowed to flow through an orifice provided in a tank under a constant head H.
The water is collected in a collecting tank for a known height. The time of collection of water
in the collecting tank is noted down

Area of measuring tank x Height of water in measuring tank

Y=
< Time (f)
and theoretical discharge = arca of orifice X J2gH
—_— 1
SUPPLY
WATER &
iy c
| - x -
B el 3
I ——np ¥
(e N\
MEASURING | ——=— |
TANK —*
A
17 ax J2eH

Determination of Coefficient of Velocity (Cv): Let C-C represents the vena — contracta of a
jet water coming out from an orifice under constant head H as shown in fig. Consider a liquid

particle which is at vena contracta at any time and takes the position at P along the jet time t.
Let x = horizontal distance travelled by the particle in time ¢
v = vertical distance between P and C-C
V = actual velocity of jet at vena-contracta.

Then horizontal distance, x=Vxt
3 5 1

and vertical distance, ¥ gr
; 2 x
From equation (i), r= v

Substituting this value of ¢ in (i), we get

', L x X
W= > £ v2
vZ = g_rz
2y
3 V= gx”
2y
But theoretical velocity,
V,=J28H
% ® 1 .
. Co-efficient of velocity, C, = = |25 x =_[-=
V., 2y f2gH 4yH
_ X
4yH
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Determination of Coefficient of Contraction (Cc):
The coefficient of contraction is determined from the

equation Cg =Cv X Cc Cc =Cq/Cv

Flow through Large Orifices:

If the head of liquid is less than 5 times the depth of the orifice, the orifice is called large orifice. In
case of small orifice, the velocity in the entire cross-section of the jet is considered to be constant and

discharge can be calculated by Q = C, % a x ,/2gh. But in case of a large orifice, the velocity is not

H. pi2 ) by Q=C;xax J2zgh.
= ,,xbefgL‘JFdh:C‘,xhx,f?__E[ ]
' H

constant over the entire ¢r¢

3/2

= -i-cd x b \2g [H}? - H}?)

Discharge through Large Rectangular Orifice:

Consider a large rectangular orifice in one side of the tank discharging freely in to

atmosphere under a constant head H as shown in fig
Let H, = height of liquid above top edge of orifice
H, = height of liquid above bottom edge of orifice
b = breadth of orifice
d = depth of orifice = H, — H,
C, = co-efficient of discharge.

Consider an elementary horizontal strip of depth ‘dh’ at a depth of ‘& below the free surface of the
liquid in the tank as shown in Fig.

—

ks
SR BN A
==t *
7 H H2L1., [ "’;‘*b—ﬂi
5 = Fon
Z) L :{-_:ﬂ’—: ¥
a /E ”
Z
LA

Large rectangular orifice.

Area of strip = b xX dh

and theoretical velocity of water through strip = ,/2gh.
Discharge through clementary strip is given
dQ = C,x Area of strip X Velocity
=C,xbxdhx\[2gh = C,bx \[2gh dh
By integrating the above equation between the limits A, and H,, the total discharge through the
whole orifice is obtained

i,
Q= A "CyxbxJ2gh dh
,I
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H, a3 1
=c(,xbx,/’2_gJ'H Jh dh = Cdxbx\[2_g[;/2J
1 - H‘

W

Cy xb \2g [H}* - H"?],

Discharge through Fully Sub-Merged Orifice:

Fully sub-merged orifice is one which has its whole of the outlet side sub merged under
liquid so that it discharges a jet of liquid in to the liquid of the same kind. It is also called

- e
=
-
- =
I ET L LRI IR LTI IR IR T LI LTI I I L

Fully sub-merged orifice.
totally drowned orifice as shown in Fig. Consider two points (1) & (2). Point 1 being in the
reservoir on the upstream side of the orifice and point 2 being at vena contracta.

Fig.4.Fully Sub-merged Orifice

Let H, = Height of water above the top of the orifice on
the upstream side,
H, = Height of water above the bottom of the orifice,
H = Difference in water level,
b = Width of orifice,
C, = Co-efficient of discharge.
Height of water above the centre of orifice on upstream side

= H, + H, - H, 2 H,+H,
2 2
Height of water above the centre of orifice on downstream side
_H +H
2
Applying Bernoulli's equation at (1) and (2), we get

-H

P ol %
P 28 pg 28

p _H +H, p, H +H,

Now — H and V| is negligible
Pg 2 Pg
H+Hy o H+H, _, Vy
2 2 2g
28
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V,= 2¢H
Arca of orifice =bx(H,-H))
Discharge through orifice = C, x Area x Velocity

= Cyx b (Hy~ H)) % \J2gH
Q=Cyxb(H,~ H)x \[2gH .

Discharge through Partially Sub-Merged Orifice:

Partially sub-merged orifice is one which has its outlet side partially sub-merged under liquid
as shown in Fig. It is also known as partially drowned orifice. Thus the partially sub-merged
orifice has two portions. The upper portion behaves as an orifice discharging free while the
lower portion behaves as a sub-merged orifice. Only a large orifice can behave as a partially
sub-merged orifice. The total discharge Q through partially sub-merged orifice is equal to the
discharges through free and the sub-merged portions.

wwvﬂw
X -
| X

-

b

b

Partially sub-merged
orifice.

Fig.5.2 Partially sub-merged orifice

Discharge through the free portion is given by equation (7.8) as
” 2 y

Q= ’;“ Cq x b x 2 [H? - H?|

Total discharge Q= é, + 0,
=Cyxbx(H,— H) x \[2gH
2 ) 2
+§ Cyxbx 28 [H -H7). ..

Time of Emptying a Tank through an Orifice at its Bottom:

Consider a tank containing some liquid up to a height of Hi. Let an orifice is fitted at the
bottom of the tank. It is required to find the time for the liquid surface to fall from the height
H: to a height Ha.

2 2
7
==
2 I t/ §
7
Y .7 g
S rreereeeees 9 H
BEEEEESEEATE 7
gt
¥ “
’ 7
g M
1/ | #
\
ORIFICE
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Fig5.3.Time of Emptying a Tank

Let A = Area of the tank
a = Area of the orifice
H, = Initial height of the liquid
H, = Final height of the liquid
T' = Time in seconds for the liquid to fall from H, to H,.
Let at any time, the height of liquid from orifice is / and let the

liquid surface fall by a small height dh in time dT. Then
Volume of liquid leaving the tank in time, d7 = A X dh

Also the theoretical velocity through orifice, V = /2gh

Discharge through orifice/sec,
dQ = C, x Area of orifice x Theoretical velocity = C;. a . JZ?[:'
Discharge through orifice in time interval
dT=C,.a.[2gh .dT
As the volume of liquid leaving the tank is equal to the volume of liquid flowing through orifice in
time d7T, we have

A(-dh)=Cy.a.\|2gh .dT
— ve sign is inserted because with the increase of time, head on orifice decreases.

-Adh _ —An)"?

C,.a.\l2gh C,.a.42¢

By integrating the above equation between the limits H, and H,, the total time, T is obtained as

—Adh=C,.a.\2gh .dT or dT =

dh

T Jw; —Ah"* dh A (M,
[jar=}, C,.a. 4% C,.a.y2g '
1 ”: H;
-—+1
or T= -A i 2 . ﬂ
Cd-a-Jz_ _l+l Cd.a.\[z_g l
? H, 2 H,
24 [V, - A

6 .;Z.Alhg [VE: - /] = C,.a.28

For emptying the tank completely, H, = 0 and hence

o 24T
- C,,.a.JZ_g-.
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Time of Emptying a Hemispherical Tank

Consider a hemispherical tank of radius R fitted with an orifice of area “a” at its bottom as
shown in Fig. The tank contains some liquid whose initial height is H; and in time T, the
height of liquid falls to H2. It is required to find the time T.

ORIFICE‘}

Fig.7. Hemispherical Tank

Let at any instant of time, the head of liquid over the orifice is
h and at this instant let x be the radius of the liquid surface. Then
Area of liquid surface, A = mx’

and theoretical velocity of liquid = /2gh.

Let the liquid level falls down by an amount of dh in time dT.
Volume of liquid leaving tank in time d7T = A X dh

= e’ X dh
Also volume of liquid flowing through orifice

= C, x area of orifice X velocity = C,.a. \J2gh second
Volume of liquid flowing through orifice in time dT

= Cya. \[2gh x dT
From equations (i) and (i), we get

nx’ (- dh) = Cpa. \[2gh . dT
—ve sign is introduced, because with the increase of 7, i will decrease

—-mx* dh = Cya. \[2gh . dT
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But from Fig. for AOCD, we have OC = R
DO=R-h

CD = x=JoC? - 0D* = \/Rz ~(R=h)

X=R*~(R-h?=R*~(R*+ h - 2Rh) = 2Rh - k*
Substituting 2 in equation (iif), we get
- M(2Rh — hYdh = Cya. 2gh . dT
-t (2Rh - hz) dh -

or dT = .
Cy.a.. 2gh Cd.a.ﬁz

(2Rh—1*) 1" dh

- 12 _ 432
= (2R = h™")dh
C,.a.\2g
The total time T required to bring the liquid level from H, to H, is obtained by integrating the above
equation between the limits H, and H,.

T 1y ]
- Hx C‘, .a. J-Z;
- H,
- _"_J' (RK" - B¥)dh
H,

C,.a.2g

2Rh'? - ¥y

2Rhl/2+] h3/2 +l ”:

n
Cdxax,ﬂg 1+| §+|
2 2 g

- H,
.. 2 xg R _3/,5"2]
C,xax2gl 3 5 ,

-7
7 xax2g L

n
- C,xax\2g |3
For completely emptying the tank, H, = 0 and hence

e T [i RH,M _ZHISI‘.’]'
C,.a.\{2g L3 5

R( _ Hiuz)_%(ﬂislz _ H,m)]

| & Wl

R(H,m _ Hgfz)_%(ﬂlsfz _ H;/Z)]

T

Classification of Mouthpieces:
1. The mouthpieces are classified as (i) External mouthpiece or (i) Internal mouthpiece depend-

ing upon their position with respect to the tank or vessel to which they are fitted.

2. The mouthpiece are classified as (i) Cylindrical mouthpiece or (if) Convergent mouthpiece or
(iif) Convergent-divergent mouthpiece depending upon their shapes.

3. The mouthpieces are classified as (/) Mouthpieces running full or (i/) Mouthpieces running free,
depending upon the nature of discharge at the outlet of the mouthpiece. This classification is only for
internal mouthpicces which are known Borda’s or Re-entrant mouthpieces. A mouthpicce is said to be
running free if the jet of liquid after contraction does not touch the sides of the mouthpiece. But if the
jet after contraction expands and fills the whole mouthpiece it is known as running full.
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NOTCHES:

A notch is a device used for measuring the rate of flow of a liquid through a small channel or a
tank. It may be defined as an opening in the side of a tank or a small channel in such a way that the
liquid surface in the tank or channel is below the top edge of the opening.

A weir is a concrete or masonary structure, placed in an open channel over which the flow occurs.
It is generally in the form of vertical wall, with a sharp edge at the top, running all the way across the
open channel. The notch is of small size while the weir is of a bigger size. The notch is generally made
of metallic plate while weir is made of concrete or masonary structure.

1. Nappe or Vein. The sheet of water flowing through a notch or over a weir is called Nappe or Vein.

2. Crest or Sill. The bottom edge of a notch or a top of a weir over which the water flows, is known
as the sill or crest.

Classification of Notches and Weirs:

The notches are classified as :
1. According to the shape of the opening :
(a) Rectangular notch,
(b) Triangular notch,
(¢) Trapezoidal notch, and
(d) Stepped notch.
2. According to the effect of the sides on the nappe :
(a) Notch with end contraction.
(b) Notch without end contraction or suppressed notch.
Weirs are classified according to the shape of the opening, the shape of the crest, the effect of the
sides on the nappe and nature of discharge. The following are important classifications.
(a) According to the shape of the opening :
(/) Rectangular weir, (i7) Triangular weir, and
(itt) Trapezoidal weir (Cipolletti weir)
(b) According to the shape of the crest :

(1) Sharp-crested weir, (i) Broad-crested weir,
(ii1) Narrow-crested weir, and (iv) Ogee-shaped weir.
NAPPE
SIIioicsaoiin 4
CREST p—y, =]
OR SILL (c) SECTION AT

CREST
(a) RECTANGULAR NOTCH (b) RECTANGULAR WEIR

Fig.5.11.RectangulaNotch and Weir
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Consider a rectangular notch or weir provided in a channel carrying water as shown in Fig.
Let H = Head of water over the crest

L = Length of the notch or weir

For finding the discharge of water flowing over the weir or notch, consider an elementary horizontal
strip of water of thickness dh and length L at a depth & from the free surface of water as shown in
Fig.

The area of strip =L x dh
and theoretical velocity of water flowing through strip = ‘[?.g_h

The discharge dQ, through strip is

dQ = C, % Area of strip x Theoretical velocity

=CyxX Lxdhx\2gh ()

where C, = Co-efficient of discharge.
The total discharge, Q , for the whole notch or weir is determined by integrating equation (i) between
the limits 0 and H.

H H
Q=J0 C,.L. 2gh .dh:Cdex,/zgjo K2 dn

H
Rl e
= Cyx Lx \2g | =Cy,xLx |28
—+1 3/20
2 o

= % C,xLx2g [H*
Discharge over a Triangular Notch or Weir:

The expression for the discharge over a triangular notch or weir is the same. It is derived as :
Let H = head of water above the V- notch
6 = angle of notch
Consider a horizontal strip of water of thickness ‘dh’ at a depth of & from the free surface of water
as shown in Fig.

Fig.5.12.Triangular Notch or

Weir
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From Fig. we have

B AES AT
2 oCc (H—#n

AC=(H—h)tan—g—

Width of strip = AB =2AC =2 (H — /) tan %
.. Arca of strip =2 (H — /) tan % > dfz
The thecoretical velocity of water through strip = 2eh

e Discharge. through the strip,
dQ = C_, > Area of strip < Velocity (theoretical)

= C_,>x<2 (H — k) tan -g— =< dh >< ,/Zgh

= 2C_, (H — k) tan % < 1/2gh > dh

H )

. Total discharge, 0= j 2C, (H ~ h) tan = x \2gh x dh

0

H
= 2C, x tan gx,/zg I (H - h)h'™ dh

0

H
=2x C,x tan gx JEJD (HR'? - 1*?) dh

9 HRY? g2 "
=2XC,Xtan — X /2 -
g ‘/—g[ 372 5/2]0

4
=2xC,,xtanng2_§|:l—sH5"]

8 0 s
=— C,xtan —X2¢ x H'*
TG T b

For a right-angled V-notch, if C, = 0.6

0=90°, . tanl=1
2
Discharge, 0= % x 0.6 x 1 X \2x981 x H*?
= 1417 H,

Discharge over a Trapezoidal Notch or Weir:

As shown in Fig. a trapezoidal notch or weir is a
combination of a rectangular and triangular notch or weir.
Thus the total discharge will be equal to the sum of
discharge through a rectangular weir or notch and discharge
through a triangular notch or weir.

Let /M = Height of water over the notch

L. = Length of the crest of the notch
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Fig 5.13. Trapezoidal Notch

C4, = Co-efficient of discharge for rectangular portion ABCD of Fig.
C,, = Co-efficient of discharge for triangular portion [FAD and BCE]
The discharge through rectangular portion ABCD is given by
2
or Q= 3 X Cy XLX 2g x H"?

The discharge through two triangular notches FDA and BCE is equal to the discharge through a
single triangular notch of angle 6 and it is given by equation

8 6 5
=—XC, Xtan — X 42 X H°
Colis ™ S inis

Discharge through trapezoidal notch or weir FDCEF = Q, + Q,

=%cdiLJz_gxH"h%cd,xtane/zx\/z_ngm.

Viscous Flow

This chapter deals with the flow of fluids which are viscous and flowing at very low velocity. At
low velocity the fluid moves in layers. Each layer of fluid slides over the adjacent layer. Due to relative

velocity between two layers the velocity gradient L exists and hence a shear stress T= | ad acts on
the layers. dy dy

The following cases will be considered in this chapter :

1. Flow of viscous fluid through circular pipe.

2. Flow of viscous fluid between two parallel plates.

3. Kinetic energy correction and momentum correction factors,

4. Power absorbed in viscous flow through

(@) Journal bearings, (b) Foot-step bearings, and  (¢) Collar bearings.

Flow of Viscous Fluid through Circular Pipe:

For the flow of viscous fluid through circular pipe, the velocity distribution across a section, the
ratio of maximum velocity to average velocity, the shear stress distribution and drop of pressure for a
given length is to be determined. The flow through the circular pipe will be viscous or laminar, if the
Reynolds number (R,*) is less than 2000. The expression for Reynold number is given by

pVD
R,=—
1l
where p = Density of fluid flowing through pipe
V = Average velocity of fluid
D = Diameter of pipe and
W = Viscosity of fluid.
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DIRECTION

OF FLOW A - D ' ar
f(p + ‘.]Pl_y()nr‘
2 f— Ax |
prr

{a) (®)

Fig.5.16.Viscous flow throu?lh a pipe
Consider a horizontal pipe of radius R. The viscous fluid is flowing from left to right in the pipe as
shown in Fig. 9.1 (a). Consider a fluid element of radius r, sliding in a cylindrical fluid element of

radius (r + dr). Let the length of fluid element be Ax. If *p’ is the intensity of pressure on the face AB,

then the intensity of pressure on face CD will be ( p+%’Ax} Then the forces acting on the fluid

element are : 2
1. The pressure force, p X 1~ on face AB.

2. The pressure force, ( p+ %B Ax) nr” on face CD.
X

3. The shear force, T x 2rtrAx on the surface of fluid element. As there is no acceleration, hence the
summation of all forces in the direction of flow must be zero i.e.,

pnrz-(p+a—pAr) r -t x2r X Ax =0

ox
_dp
or At - TX2r X Ax =0
ox
or - a_p r=2t=0
ox
=P
ox 2
The shear stress T across a section varies with ‘r’ as %E across a section is constant. Hence shear
X

stress distribution across a section is linear as shown in Fig.

SHEAR STRESS VELOCITY
DISTRIBUTION /DISTRIBUTION
(a) (&)

Fig.5.17.Shear stress and velocity distribution across a section
(7) Velocity Distribution. To obtain the velocity distribution across a section, the value of shear

stress T= | % is substituted in equation (9.1).

But in the relation T= Z—“ v is measured from the pipe wall. Hence

y=R-r and dy=-dr

rep oy &
—dr dr
Substituting this value in ,we get
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du _ Odpr @ du_lap

dr ox 2 dr 2u ax
Integrating this above equation w.r.t. ‘r’, we get
= __l.. .a_g + C
4u ox

where C is the constant of integration and its value is obtained from the boundary condition that at
r=R,u=0.

In equation values of p, §£_ and R are constant, which means the velocity, « varies with the
X

square of r. Thus equation is a equation of parabola. This shows that the velocity distribution
across the section of a pipe is parabolic. This velocity distribution is shown in Fig.

(if) Ratio of Maximum Velocity to Average Velocity. The velocity is maximum, when r = 0 in

equation . Thus maximum velocity, U is obtained as
1 ap 2
e c—— R"

The average velocity, u, is obtained by dividing the discharge of the fluid across the section by the
area of the pipe (mR?). The discharge (Q) across the section is obtained by considering the flow through
a circular ring element of radius r and thickness dr as shown in Fig. (b). The fluid flowing per
second through this elementary ring

dQ = velocity at a radius r X area of ring element

=u X 2nrdr

=—41'1 g”[R2 ] % 2nr dr

s R« = / |aP 2 %

o= do=| - s (B xamrdr

1 2
=—(a XZRI (R°r r")dr

L(ﬁ) xzn [R2r2 _i:|R=L(__ap) x Zn [ﬁ_ﬁ}
4 2 4 4plax 2 4

1 dp R s
T(?)in.{o (R™—r) rdr
3p)
X
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()
Average velocity, A A =
Area nR*
or u= L(ﬂ) R’
8u\ ox
Dividing equation (9.4) by equation (9.5),
- 1 ap Rl'
U 4p ox

o sz'o
Su\ oJx

Ratio of maximum velocity to average velocity = 2.0.
(iif) Drop of Pressure for a given Length (L) of a pipe
From equation (9.5), we have

- 1(- ; - u
u =—( Op) R° or (ﬁ)=8_lj;{
8u \ ox dx R*
Integrating the above equation w.r.t. x, we get

1 I 8pu
- dp = — dx
L P I: R*

8 8w
~[p-pal= “5‘5‘ [x; = x)) or (p, = py) = :3 [x; = x]

)

R-
L D
= “uLﬂ {.'_ R =
(D/2)” 5

32uu )
= @y =Py = g::L where p, — p, is the drop of pressure.
Loss of pressure head Y
P8
PP 32uul
=hy= ——
P8 pgD

Equation (9.6) is called Hagen Poiseuille Formula.

Flow in Pipes:

In this chapter, however, a method of expressing the loss using an average flow velocity is
stated. Studies will be made on how to express losses caused by a change in the cross
sectional area of a pipe, a pipe bend and a valve, in addition to the frictional loss of a pipe.
Consider a case where fluid runs from a tank into a pipe whose entrance section is fully
rounded. At the entrance, the velocity distribution is roughly uniform while the pressure head
is lower by V2/2g./The section from the entrance to just where the boundary layer develops
to the tube centre is called the inlet or entrance region, whose length is called the inlet or
entrance length. For steady flow at a known flow rate, these regions exhibit the following:
Laminar flow: A local velocity constant with time, but which varies spatially due to viscous
shear and geometry. Turbulent flow: A local velocity which has a constant mean value but
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also has a statistically random fluctuating component due to turbulence in the flow. Typical
plots of velocity time histories for laminar flow, turbulent flow, and the region of transition
between the two are shown below.

V- Flow velocity

D — Flow dimension

M - Dynamic Viscosity U — Kinematic Viscosity
Frictional Loss in Pipe flow

When a liquid is flowing through a pipe, the velocity of the liquid layer adjacent to the pipe wall is
zero. The velocity of liquid goes on increasing from the wall and thus velocity gradient and hence
shear stresses are produced in the whole liquid due to viscosity. This viscous action causes loss of
energy which is usually known as frictional loss.

On the basis of his experiments, William Froude gave the following laws of fluid fraction for
turbulent flow.

The frictional resistance for turbulent flow is :

(i) proportional to V", where n varies from 1.5 to 2.0,

(ii) proportional to the density of fluid,

(111) proportional to the area of surface in contact,
(iv) independent of pressure,

(v) dependent on the nature of the surface in contact.

Expression for Loss of Head due to friction in pipes:

Consider a uniform horizontal pipe having steady flow as shown in fig 18. Let 1-1 and 2-2
are two sections of pipe.
Let P; = pressure intensity at section 1-1 V1 = Velocity of flow at section 1-1

L = length of the pipe between sections 1-1 and 2-2,
d = diameter of pipe,
f’ = frictional resistance per unit wetted area per unit velocity,
hy = loss of head due to friction,
and p,, V, = are values of pressure intensity and velocity at section 2-2.

Fig.5.18.Uniform Horizontal
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Pipe
Applying Bernoulli’s equations between sections 1-1 and 2-2,
Total head at 1-1 = Total head at 2-2 + loss of head due to friction between 1-1 and 2-2

2 2
or ﬂ-f-v—'-1r~z|= &+V—2+z2+hf
pg 28 Pg 28
But 2y = Z, as pipe is horizontal
V, =V, as dia. of pipe is same at 1-1 and 2-2
B P2 ypoor = BL_ B2 i)
Pg P8 Pg P8

But h[is the head lost due to friction and hence intensity of pressure will be reduced in the direction
of flow by frictional resistance.

Now frictional resistance = frictional resistance per unit wetted area per unit velocity X wetted area
X vc:locity2
or F,=f"xmdLx V? [ wetted area = nd X L, velocity = V=V, = V,]

=f'xPxLxV [ -+ md = Perimeter = P) ...(ii)

The forces acting on the fluid between sections 1-1 and 2-2 are :

1. pressure force at section 1-1 =p, X A
where A = Area of pipe

2. pressure force at section 2-2 = p, X A

3. frictional force F,; as shown in Fig. 10.3.

Resolving all forces in the horizontal direction, we have

PIA—-pA—F; =0 ..(10.1)

or (Py-PDA=F,=f"xPxLxV [ -+ From (ii), F, = f’PLV?]
f'xPxLxV?
°r Prepa=—4

Equating the value of (p, - p,), we get

f/xXPxLxV?
h= ———
pghy A
or hy= L ® ixv -..(iii)
Pg
W ime
In equation (iii), L = Shied per-motex = i = £
A Area *q 4
4
’ ’ 2
h,:inxLszzLx“‘V (V)
pg d pg d
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Putting Lo % where f is known as co-efficient of friction.
P

4.f LV 4f.L.V?

28 d dx2g

is known as Darcy-Weisbach equation. This equation is commonly used for finding
loss of head due to friction in pipes.
Sometimes equation (10.2) is written as

o7 TN

dx2g

Equation (iv), becomes as /i, =

hy=
Then fis known as friction factor.

Loss of Energy in Pipes:

When a fluid is flowing through a pipe, the fluid experiences some resistance due to which some of
the energy of fluid is lost. This loss of energy is classified as :

Energy Losses
I
Y
1. Major Energy Losses 2. Minor Energy Losses

This is due to friction and it is This is due to
calculated by the following (@) Sudden expansion of pipe
formulae : (b) Sudden contraction of pipe
(a) Darcy-Weisbach Formula (¢) Bend in pipe
(b) Chezy's Formula (d) Pipe fittings etc.

(@) An obstruction in pipe,
Loss of Energy due to friction:

(@) Darcy-Weisbach Formula, The loss of head (or energy) in pipes due to friction is calculated
from Darcy-Weishach equation which has been derived in chapter  and is given by

4.f.L.V
dx2g
where h,= loss of head due to friction

hl=
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[ = co-efficient of friction which is a function of Reynolds number

= :?_6 for R, < 2000 (viscous flow)

(4

= =079 for R, varying from 4000 to 10°

o 14
e

= length of pipe,
V = mean velocity of flow,
d = diameter of pipe.
(&) Chezy’s Formula for loss of head due to friction in pipes. Refer to chapter  article
in which expression for loss of head due to friction in pipes is derived. Equation (iif) of article

hy= xL xLx ¥
pg A
where /i, = loss of head due to friction, P = wetted perimeter of pipe,
A = area of cross-section of pipe, L = length of pipe,
and V = mean velocity of flow.
Area of flow

Now the ratio of % [= ] is called hydraulic mean depth or hydraulic radius and

Perimeter (wetted)
is denoted by m.

T ,»
A% a
‘. Hydraulic mean depth, m= —=-“—=—
P nd 4
g A £l
Substituting — = m or —=— in equation , we get
P A m
d h
h;_L xLxV‘xlor Vz-h,xp—g ><me= B‘5-><m><—f-
L ¢ L

-

‘(}g = C, where Cis a constant known as Chezy’s constant and T = i, where i is loss of head

per unit length of pipe.

f ,h
Substituting the values of %g;_ and Tf in equation (11.3), we get
V=CJmi

Minor Energy Losses
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The loss of head or energy due to friction in a pipe is known as major loss while the loss of energy
due to change of velocity of the following fluid in magnitude or direction is called minor loss of
energy. The minor loss of energy (or head) includes the following cases :

Loss of head due to sudden enlargement,
Loss of head due to sudden contraction,
Loss of head at the entrance of a pipe,

Loss of head at the exit of a pipe,

Loss of head due to an obstruction in a pipe,
Loss of head due to bend in the pipe,

Loss of head in various pipe fittings.

In case of long pipe the above losses are small as compared with the loss of head due to friction and
hence they are called minor losses and even may be neglected without serious error. But in case of a
short pipe, these losses are comparable with the loss of head due to friction.

A e al? et e g

~)

Loss of Head Due to Sudden Enlargement. Consider a liquid flowing through a pipe
which has sudden enlargement as shown in Fig. Consider two sections (1)-(1) and (2)-(2) before
and after the enlargement.

]
<

v, p,A,

poA; Vs
— v

t(’t,
»

Fig.519. Sudden Enlargement

(Vi -Va)
28

h,=

Loss of Head due to Sudden Contraction. Consider a liquid flowing in a pipe which
has a sudden contraction in area as shown in Fig. Consider two sections 1-1 and 2-2 before and
after contraction. As the liquid flows from large pipe to smaller pipe, the area of flow goes on
decreasing and becomes minimum at a section C-C as shown in Fig. This section C-C is called
Vena-contracta. After section C-C, a sudden enlargement of the area takes place. The loss of head due
to sudden contraction is actually due to sudden enlargement from Vena-contracta to smaller pipe.

Fig.20.Sudden Contraction
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Loss of Head Due to an Obstruction in a Pipe. Whenever there is an obstruction
in a pipe, the loss of energy takes place due to reduction of the area of the cross-section of the pipe at
the place where obstruction is present. There is a sudden enlargement of the arca of flow beyond the
obstruction due to which loss of head takes place as shown in Fig.

Loss of Head at the Exit of Pipe. This is the loss of head (or energy) due to the
velocity of liquid at outlet of the pipe which is dissipated either in the form of a free jet (if outlet of the

pipe is free) or it is lost in the tank or reservoir (if the outlet of the pipe is connected to the tank or
Vv
reservoir). This loss is equal o 22’ where V is the velocity of liquid at the outlet of pipe. This loss is
34
denoted £,

2

Vv
2

where V = velocity at outlet of pipe.
Loss of Head at the Entrance of a Pipe. This is the loss of energy which occurs
when a liquid enters a pipe which is connected to a large tank or reservoir. This loss is similar to the
loss of head due to sudden contraction. This loss depends on the form of entrance. For a sharp edge

hl} =

o)

entrance, this loss is slightly more than a rounded or bell mouthed entrance. In practice the’value of
loss of head at the entrance (or inlet) of a pipe with sharp cornered entrance is taken = 0.5 12/—, where
V = velocity of liquid in pipe.

This loss is denoted by A;

2

R L
2g
Fig.21. Obstruction in a pipe
Consider a pipe of area of cross-section A having an 0 ®
obstruction as shown in Fig. ‘

] 1

Let  a= Maximum area of obstruction 1
A = Area of pipe J
V= Velocity of liquid in pipe

|
Then (A - a) = Area of flow of liquid at section 1-1. ' |
As the liquid flows and passes through section t| Vv '

1-1, a vena-contracta is formed beyond section 1-1,
after which the stream of liquid widens again and
velocity of flow at section 2-2 becomes uniform and
equal to velocity, Vin the pipe. This situation is similar to
the flow of liquid through sudden enlargement. @ @

O SRS
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Loss of Head due to Bend in Pipe. When there is any bend in a pipe, the velocity of
flow changes, due to which the separation of the flow from the boundary and also formation of eddies
takes place. Thus the energy is lost. Loss of head in pipe due to bend is expressed as
P s

2g
where £, = loss of head due to bend, V = velocity of flow, k& = co-efficient of bend

The value of k& depends on
(i) Angle of bend, (i) Radius of curvature of bend, (iif) Diameter of pipe.
Loss of Head in Various Pipe Fittings. The loss of head in the various pipe fittings
such as valves, couplings etc., is expressed as
_ kV?
= 58
where V = velocity of flow, k& = co-efficient of pipe fitting.

HYDRAULIC GRADIENT AND TOTAL ENERGY LINE

The concept of hydraulic gradient line and total energy line is very useful in the study of flow of
fluids through pipes. They are defined as :

Hydraulic Gradient Line. Itis defined as the line which gives the sum of pressure head

(ﬂ) and datum head (z) of a flowing fluid in a pipe with respect to some reference line or it is the line
“,‘

which is obtained by joining the top of all vertical ordinates, showing the pressure head (p/w) of a
flowing fluid in a pipe from the centre of the pipe. It is briefly written as H.G.L. (Hydraulic Gradient
Line).

Total Energy Line. It is defined as the line which gives the sum of pressure head, datum
head and kinetic head of a flowing fluid in a pipe with respect to some reference line. Itis also defined as
the line which is obtained by joining the tops of all vertical ordinates showing the sum of pressure head
and kinetic head from the centre of the pipe. It is briefly written as T.E.L. (Total Energy Line).
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FLOW THROUGH PIPES IN SERIES OR FLOW THROUGH COMPOUND PIPES

Pipes in series or compound pipes are defined as the pipes of different lengths and different diam-
eters connected end to end (in series) to form a pipe line as shown in Fig.

Let, L, I, , I;= length of pipes 1, 2 and 3 respectively
d,, d,5, dy = diameter of pipes 1, 2, 3 respectively
V,. V,, V5 = velocity of flow through pipes 1, 2, 3
J1s 5. f3 = co-efficient of frictions for pipes 1, 2, 3
H = difference of water level in the two tanks.

—— e

The discharge passing through each pipe is same.
Q=A,V,=A,V,=A,V,
The difference in liquid surface levels is equal to the sum of the total head loss in the pipes.
05V}  4fLVE 0SVP 4nLV:
2g d, x2g 2g d, x2g

2 2 2
- (v, -W) " 4f;LVy +E
2g dyx2g 2g°

H=

If minor losses are neglected, then above equation becomes as
_ARLVE  ALLVY | ARLVY
d x2g d,x2g dyx2g
If the co-efficient of friction is same for all pipes
ie., fi =f> =f3 =/, then equation becomes as
G 5 4L,V i 4L,V
d x2g d,x2g dyx2g

T A P\ P\
2g d, d, d,

Equivalent Pipe
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This is defined as the pipe of uniform diameter having loss of head and discharge equal to the loss
of head and discharge of a compound pipe consisting of several pipes of different lengths and diam-
eters. The uniform diameter of the equivalent pipe is called equivalent size of the pipe. The length of
cquivalent pipe is equal to sum of lengths of the compound pipe consisting of different pipes
Let L, = length of pipe | and d, = diameter of pipe |

L, = length of pipe 2 and d, = diameter of pipe 2

Ly = length of pipe 3 and d; = diamcter of pipe 3

H = total head loss

L = length of equivalent pipe
d = diameter of the equivalent pipe
Then L=L +L,+ 1L,

Total head loss in the compound pipe, neglecting minor losses

_ARLVE ALLVY | AfLVS
d x2g d,x2g dyx2g

Assuming fizh=fi=f
Discharge, Q=AV,=A,V,=AV;= Z dv, = 7 X 4,2v,= % d2V,
Vl = 4—Q2—' V2= iQ—.,' and V3= iQ’;'
nd, nd; nd;
Substituting these values in equation

40 Y a0 Y 40
s x| 22| am| 22| 4
s 3 W = B =31

nd;

d, x2g d, x2g dyx2g
_ 4x16f0° | L, h+ﬂ
nix2g |d& & d

Head loss in the equivalent pipe, H = % |Taking same value of fas in compound pipe]
X g
where V = e__¢ ﬂ

Rp2 md

4

2
il (nd’ _ 4x16Q%f [L}
dx2g n’x2g |d°
Head loss in compound pipe and in equivalent pipe is same hence equating equations

4x16fQ [11 /54 __L_,_] 4xl6Qf[_L{|

H=

n’x2g |d) 4} 4 n’ x2g
o Loebo .l o o0 I h
d> 4} 4 d 4 d

d; 4

is known as Dupuit’s equation. In this equation L=L, + L, + Ly and d|, d, and d,
are known. Hence the equivalent size of the pipe, i.e., value of d can be obtained

Equation

Flow through Parallel Pipes:
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Consider a main pipe which divides into two or more branches as shown in Fig. and again join
together downstream to form a single pipe, then the branch pipes are said to be connected in parallel.
The discharge through the main is increased by connecting pipes in parallel.

BRANCH PIPE 2
L V. i

BRANCH PIPE 1

Fig.24.Parallel Pipes

The rate of flow in the main pipe is equal to the sum of rate of flow through branch pipes. Hence
from Fig.
0=0,+0,
In this, arrangement, the loss of head for each branch pipe is same.
.. Loss of head for branch pipe 1 = Loss of head for branch pipe 2

ALV _ ALLVY
d, x2g d, x2g

LY _ LV
d, x2g d,x2g

f1 =/ then

Flow through Branched Pipes:

When three or more reservoirs are connected by means of pipes, having one or more junctions, the
system is called a branching pipe system. Fig. shows three reservoirs at different levels con-
nected to a single junction, by means of pipes which are called branched pipes. The lengths, diameters
and co-efficient of friction of each pipes is given. It is required to find the discharge and direction of
flow in cach pipe. The basic equations used for solving such problems are :

1. Continuity equation which means the inflow of fluid at the junction should be equal to the
outflow of fluid.

2. Bernoulli’s equation, and

3. Darcy-Weisbach equation

Also it is assumed that reservoirs are very large and the water surface levels in the reservoirs are
constant so that steady conditions exist in the pipes. Also minor losses are assumed very small. The
flow from reservoir A takes place to junction D. The flow from junction D is towards reservoirs C.
Now the flow from junction D towards reservoir B will take place only when piezometric head at D

(which is equal to —g—‘l + Z,,) is more than the piezometric head at B (i.e., Zg). Let us consider that flow
g

is from D to reservoir B.

¥ sevenmomm s sl s gsagmea oo '_L s



Fig.25.Branched Pipes
For flow from A to D from Bernoulli’s equation

Zy=2Zp+ Z—" +hy, ()
g

For flow from D to B from Bernoulli's equation

Pp _ "
ZD+ p_g - ZB+ h]z .-.(”)

For flow from D to C from Bernoulli’s equation
Zp+ L =Z 4 by (i)
P8 '

From continuity equation,

Discharge through AD = Discharge through DB + Discharge through DC
T i3 T
7 d’v, = 7 dy: X Vy + = d;'v,

or d2V, = d) 'V, + dy 2V, V)

There are four unknowns i.e., V|, V,, V5 and Pp and there are four equations (i), (i), (iif) and (iv).
P8

Hence unknown can be calculated.

Water Hammer in Pipes:

Consider a long pipe AB as shown in Fig. connected at one end to a tank containing water at
a height of H from the centre of the pipe. At the other end of the pipe, a valve to regulate the flow of
water is provided. When the valve is completely open, the water is flowing with a velocity, Vin the
pipe. If now the valve is suddenly closed, the momentum of the flowing water will be destroyed and
consequently a wave of high pressure will be set up. This wave of high pressure will be transmitted
along the pipe with a velocity equal to the velocity of sound wave and may create noise called knock-
ing. Also this wave of high pressure has the effect of hammering action on the walls of the pipe and
hence it is also known as water hammer.

B VALVE

-\ »~

A

:
+

e

Fig.28.Water Hammer

The pressure rise due to water hammer depends upon : (1) the velocity of flow of water in pipe,
(if) the length of pipe, (i) time taken to close the valve, (iv) elastic properties of the material of the
pipe. The following cases of water hammer in pipes will be considered :

. Gradual closure of valve,

2. Sudden closure of valve and considering pipe rigid, and

29| Page



Practice Problems:

Problem .1 The head of water over an orifice of diameter 40 mm is 10 m. Find the actual dis-
charge and actual velocity of the jet at vena-contracta. Take C, = 0.6 and C, = 0.98.

Solution. Given :

Head, H=10cm

Dia. of orifice, d=40 mm = 0.04 m

. Area, a= %(.04)2 =.001256 m’
Cd = 0.6
C,=098

@ Actual discharge -06

Theoretical discharge

But Theoretical discharge = V|, x Area of orifice
V., = Theoretical velocity, where V,, = 2gH = {[2x 9.81x 10 =14 m/s

2

Theoretical discharge = 14 x .001256 = 0.01758 2
S

Actual discharge = 0.6 % Theoretical discharge
= 0.6 x .01758 = 0.01054 m'/s. Ans.

Actual velocity
Theoretical velocity
Actual velocity = 0.98 x Theoretical velocity
=0.98 x 14 = 13.72 m/s. Ans.
Problem .2 The head of water over the centre of an orifice of diameter 20 mm is | m. The actual

discharge through the orifice is 0.85 litre/s. Find the co-efficient of discharge.
Solution. Given :

(ii) =C,=098

Dia. of orifice, d=20mm=0.02m

- Area, a= %(0.02)2 = 0.000314 m’
Head, H=1m

Actual discharge, 0 = 0.85 litre/s = 0.00085 m*/s

Theoretical velocity, V= J2gH = 2x981x1=4429 m/s

. Theoretical discharge, Q, = V,, x Area of orifice
= 4.429 x 0.000314 = 0.00139 m*/s

Actual discharge _ 0.00085

= = 0.61. Ans.
Theoretical discharge  0.00139

Co-cfficient of discharge =
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Problem .3 A jer of water, issuing from a sharp-edged vertical orifice under a constant head of

10.0 cm, at a certain point, has the horizontal and vertical co-ordinates measured from the vena-contracta

as 20.0 cm and 10.5 cm respectively. Find the value of C,. Also find the value of C_ if C ;= 0.60.
Solution. Given :

Head, H=10.0 cm

Horizontal distance, x=20.0cm

Vertical distance, y=10.5cm
C,=06

The value of C, is given by equation (7.6) as

x 20,0 20
JhyH  Jix105x100 20493
The value of C_is given by equation (7.7) as

= Cy_ 06

=96 __ 06147 = 0:615. Ans.
<=7, = 0976 -

C,= = 0.9759 = 0.976. Ans.

Problem .4 The head of water over an orifice of diameter 100 mm is 10 m. The water coming out
from orifice is collected in a circular tank of diameter 1.5 m. The rise of water level in this tank is
1.0 m in 25 seconds. Also the co-ordinates of a point on the jet, measured from vena-contracta are
4.3 m horizontal and 0.5 m vertical. Find the co-efficients, C,, C, and C.,.

Solution. Given :

Head, H=10m

Dia. of orifice, d=100mm=0.1m

. Area of orifice, a= %(.l)’ = 0.007853 m?
Dia. of measuring tank, D=15m

- Area, A= %(1.5)’*’ = 1.767 m?
Rise of water, h=1m

Time, t = 25 scconds
Horizontal distance, x=43m

Vertical distance, y=05m

Now theoretical velocity, V,, = 2gH =2x981x10 = 14.0 m/s
Theoretical discharge, Q,, = V,;, X Area of orifice = 14.0 x 0.007854 = 0.1099 m’/s
Axh _L767x1.0

Actual discharge, Q= = (0.07068
t 25
Q 0.07068
=—= = 0.643. Ans.
=0, 0109 "
The value of C, is given by equation (7.6) as
Ot o i = D L
J4yH J4 x05x10 4472
C. is given by equation (7.7) as C, = L] = w = 0.669. Ans.
cC. 096

¥
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Problem .5 Water discharge at the rate of 98.2 litres/s through a 120 mm diameter vertical
sharp-edged orifice placed under a constant head of 10 metres. A point, on the jet, measured from the
vena-contracta of the jet has co-ordinates 4.5 metres horizontal and 0.54 metres vertical. Find the
co-efficient C,, C,. and C, of the orifice.

Solution. Given :

Discharge, Q = 98.2 lit/s = 0.0982 m’/s
Dia. of orifice, d=120mm=0.12m

+. Area of orifice, a= %(0.12)2 = 0.01131 m?
Head, H=10m

Horizontal distance of a point on the jet from vena-contracta, x = 4.5 m
and vertical distance, y = 0.54 m
Now theoretical velocity, V,, = {2gx H =,/2x981x10 = 14.0 m/s

Theoretical discharge, Q,, = V,, X Area of orifice
= 14.0 x 0.01131 = 0.1583 m”/s

The. valae oF €. is-given by Cym Actual discharge _ Q@ _ 0.0982
Theoretical discharge Q,,  0.1583

The value of C, is given by equation (7.6),
X 45

= 0.62. Ans.

C, = = = 0.968. Ans.
JayH 4 %054 x10
The value of C, is given by equation (7.7) as
.= &= ﬁ = 0.64. Ans.
C, 0968
Problem Find the discharge through a rectangular orifice 2.0 m wide and 1.5 m deep fitted to

a water tank. The water level in the tank is 3.0 m above the top edge of the orifice. Take C,; = 0.62.
Solution. Given :
Width of orifice, b=20m
Depth of orifice, d=15m
Height of water above top edge of the orifice, H, =3 m

Height of water above bottom edge of the orifice,
Hy=H +d=3+15=45m

C,= 0.62
Discharge Q is given by equation (7.8) as
Q=2 ¢, xbx 7z HY* - H"

- % x 0.62 x 2.0 X /2 +981[4.5"° - 3" 1 m?s

3.66[9.545 — 5.196] m’/s = 15.917 m’/s. Ans.
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Problem A rectangular orifice, 1.5 m wide and 1.0 m deep is discharging water from a tank.
If the water level in the tank is 3.0 m above the top edge of the orifice, find the discharge through the
orifice. Take the co-efficient of discharging for the orifice = 0.6.

Solution. Given :

Width of orifice, b=15m

Depth of orifice, d=10m
H, =30m
Hy=H,+d=30+1.0=40m
C;=06

Discharge, Q is given by the equation (7.8) as

Q=-§xcdxbeZ[H§"2—H;"2]

= % x 0.6 X 1.5 X 2+ 981 [4.0"° - 3.0"* 1 m*s

=2.657 [8.0 — 5.196] m*/s = 7.45 m"/s. Ans.

Problem A rectangular orifice, 1.5 m wide and 1.0 m deep is discharging water from a tank.
If the water level in the tank is 3.0 m above the top edge of the orifice, find the discharge through the
orifice. Take the co-efficient of discharging for the orifice = 0.6.

Solution. Given :

Width of orifice, b=15m

Depth of orifice, d=10m
H, =30m
Hy=H;+d=30+10=40m
C,=06

Discharge, Q is given by the equation (7.8) as
=§xCdxbe2_g (H;? - H

= % x 0.6 x 1.5 2+ 981 [4.0"* - 3.0"*) m¥s

=2.657 [8.0 — 5.196] m*/s = 7.45 m’/s. Ans.

Problem Find the discharge through a fully sub-merged orifice of width 2 m if the difference
of water levels on both sides of the orifice be 50 cm. The height of water from top and bottom of the
orifice are 2.5 m and 2.75 m respectively. Take C,; = 0.6.

Solution. Given :

Width of orifice, b=2m
Difference of water level, H=50cm=05m
Height of water from top of orifice, H/=25m
Height of water from bottom of orifice, H, = 2.5 m
C,=0.6
Discharge through fully sub-merged orifice is given by equation (7.9)
or Q=C, xbx(Hy,- H)x \J2gH

= 0.6 x 2.0 x (2.75 - 2.5) x /2x9.81x 0.5 m¥s
= 0.9396 m’/s. Ans.
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Problem Find the discharge through a totally drowned orifice 2.0 m wide and I m deep, if the
difference of water levels on both the sides of the orifice be 3 m. Take C, = 0.62.
Solution. Given :

Width of orifice, b=20m

Depth of orifice, d=1m.

Difference of water level on both the sides
H=3m
C,=0.62

Discharge through orifice is Q = C; X Area % ,fZgH
=0.62xbxdx 2gH
=0.62 %x2.0% 1.0 x 2x981%3 m’/s = 9.513 m*/s. Ans.

Problem A circular tank of diameter 4 m contains water upto a height of 5 m. The tank is
provided with an orifice of diameter 0.5 m at the bottom. Find the time taken by water (i) to fall from
S m to 2 m (ii) for completely emptying the tank. Take C, = 0.6.

Solution. Given :

Dia. of tank, D=4m

- Area, A= :1’5 (4)* = 12.566 m>
Dia. of orifice, d=05m

- Area, a= % (.5)* = 0.1963 m?

Initial height of water, H =5m
Final height of water, () H,=2m (i) H,=0
First Case. When Hy=2m

Using equation we have T = ﬁ[m- JH_3]

2 x12.566
= 5 - /2.0| seconds
0.6 x.1963 x /2 x 9.81 [J_ ]

. 20.653
5217

= 39.58 seconds. Ans.

<

Second Case. When H, =0

ro_ 24 T 2 x12.566 x /5
Cy.a.42g 0.6 %1963 x /2 x9.81

= 107.7 seconds. Ans.
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Problem A rectangular orifice of 2 m width and 1.2m deep is fitted in one side of a large
tank. The water level on one side of the orifice is 3 m above the top edge of the orifice, while on the
other side of the orifice, the water level is 0.5 m below its top edge. Calculate the discharge through
the orifice if C4 = 0.64.

Solution. Given : Width of orifice, b =2 m

Depth of orifice,d = 1.2 m

Height of water from top edge of orifice, H, =3 m

Difference of water level on both sides, H=3 +0.5=3.5m

Height of water from the bottom edge of orifice, H, = H +d=3+ 12=42m

The orifice is partially sub-merged. The discharge through sub-merged portion,

Q,=Cyxbx(H,— Hyx \J2gH
=0.64 x 2.0 X (4.2 - 3.5) X \[2x 9.81 X 3.5 = 7.4249 m*/s
The discharge through free portion is

Qr=% Cy xbx 2g [H*? - H)

W |

x 0.64 x 2.0 x 2% 981 [3.5*?-3.07)

=3.779 [6.5479 — 5.1961] = 5.108 m’/s
Total discharge through the orifice is

Q=Q, +Q,=74249 + 5.108 = 12.5329 m”/s. Ans.

Wi

Problem A hemispherical tank of diameter 4 m contains water upto a height of 1.5 m. An
orifice of diameter 50 mm is provided at the bottom. Find the time required by water (i) to fall from
1.5 m 1o 1.0 m (ii) for completely emptying the tank. Tank C, = 0.6.

Solution. Given :

Dia. of hemispherical tank, D =4 m

~. Radius, R=20m
Dia. of orifice, d=50 mm = 0.05m
. Area, a= %(.05)2 = 0.001963 m?
Initial height of water, H,=15m
C,= 0.6

First Case. H, = 1.0
Time T is given by equation

T 4 3/2 32 2 512 52 ]
e | R B2 (-
C, xax 28[3 (#i 2") 5(‘ )
= x x[ix 20 (15" = 1.0%2) = 2 (1.5%2 — 102 )]
0.6%.001963x,/2x9.81 3 5

= 602.189 [2.2323 — 0.7022] = 921.4 sccond
= 15 min 21.4 sec. Ans.
Second Case. H, = 0 and hence time 7 is given by equation

s 4 a2 2 5:2]
T=— — |\ “RH-ZH
C,.a.\2g [3 ! 5
- " [iszxl:s"Z —z-xl.S"z]
0.6 x.001963 \/2 x9.81| 3 5

= 602.189 [4.8989 — 1.1022] sec = 2286.33 sec
= 38 min 6.33 sec. Ans.
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Problem An orifice of diameter 150 mm is fitted at the bottom of a boiler drum of length 8 m
and of diameter 3 metres. The drum is horizontal and contains water upto a height of 2.4 m. Find the
time required to empty the boiler. Take C,; = 0.6.

Solution. Given:
Dia. of orifice, d=150 mm=0.15m
Area, a= %(.15)2 = 0.01767 m*
Length, L=80m
Dia. of boiler, D=30m
.. Radius, R=15m
Initial height of water, H =24m
Find height of water, H,=0
Cd = 0.6-

For completely emptying the tank, 7 is given by equation
P
3C, xax 2g
= 4x8.0
3%.6 x.01767 x 42 x9.81

=227.14 [5.196 - 0.4647] = 1074.66 sec
= 17 min 54.66 sec. Ans.

[(2R)*? - (2R - H))**)

(2 x 1.5)* - (2 x 1.5 - 2.4)*?

Problem Find the discharge from a 100 mm diameter external mouthpiece, fitted to a side of
a large vessel if the head over the mouthpiece is 4 metres.
Solution. Given :

Dia. of mouthpiece = 100 m = 0.1 m

- Area, a= g(o.n )? = 0.007854 m?

Head, H=40m

C, for mouthpiece = 0.855

. Discharge = C, % Area x Velocity = 0.855 x a x2gH

= .855 x .007854 x 2 x9.81x4.0 = .05948 m’/s. Ans.

Problem Find the discharge of water flowing over a rectangular notch of 2 m length when the
constant head over the notch is 300 mm. Take C, = 0.60.
Solution. Given :

Length of the notch, L=20m
Head over notch, H=300m=030m
C,= 0.60
Discharge, 0= % Cyx Lx\2g [H*?]
2

x 0.6 x 2.0 x {2981 x [0.30]" m*/s

3
= 3.5435 x 0.1643 = 0.582 m’/s. Ans.
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Problem Determine the height of a rectangular weir of length 6 m 1o be built across a rectan-
gular channel. The maximum depth of water on the upstream side of the weir is 1.8 m and discharge is
2000 litres/s. Take C, = 0.6 and neglect end contractions.

Solution. Given :

Length of weir, L=6m

Depth of water, H =18m

Discharge, Q = 2000 lit/s = 2 m’fs
C,=06

Let H is height of water above the crest of weir, and H, = height of weir
The discharge over the weir is given by the equation

Q=§C,,><L><J2_g H"

or 20= %x 0.6 X 6.0 x \/2x 981 x H*?
=10.623 H*"*
w_ 20
10.623
213
o (__10 ] =0328 m
10.623
Height of weir, H,=H,-H

= Depth of water on upstream side — H
= 1.8 - 328 = 1.472 m. Ans.

Problem Find the discharge over a triangular notch of angle 60° when the head over the
V-notch is 0.3 m. Assume C, = 0.6.
Solution. Given :

Angle of V-notch, 8 =60°
Head over notch, H =03m
C, =06

Discharge, Q over a V-notch is given by equation
8 0 si2
= —xCyxtan — X 2g x H™™
ol Tl Tl

o

60
185 X Y2 X981 x(0.3)*?

= — x 0.6 tan
=0.8182 x 0.0493 = 0.040 m’/s. Ans.

Problem Water flows over a rectangular weir 1 m wide at a depth of 150 mm and afterwards
passes through a triangular right-angled weir. Taking C, for the rectangular and triangular weir as
0.62 and 0.59 respectively, find the depth over the triangular weir.

Solution. Given :

For rectangular weir, length, L =1m

Depth of water, H =150 mm=0.15m
C, =0.62

For triangular weir, 6 =90°
c, =059

Let depth over triangular weir = H,

The discharge over the rectangular weir is given by equation
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Q=§ X Cyx L x 28 x H"?

= % % 0.62 x 1.0 x 2% 981 x (.15)*> m*/s = 0.10635 m¥s

The same discharge passes through the triangular right-angled weir. But discharge, Q, is given by
equation for a triangular weir as

Q=|—8s xC,,xtang-x\[ExH”2

o

8 90 52 o
0.10635 = = x .59 x tan —~ x /2g X H, (> 0=90°and H = H,)

= % x .59 x 1 x4.429 x H,** = 1.3936 H,*”

s 010635
: 13936
H, = (.07631)"* = 0.3572 m. Ans.

=0.07631

Problem Find the discharge through a trapezoidal notch which is 1 m wide at the top and
0.40 m at the bottom and is 30 cm in height. The head of water on the notch is 20 cm. Assume C, for
rectangular portion = 0.62 while for triangular portion = 0.60,

Solution. Given :

Top width, AE=1m
Base width, CD=L=04m
Head of water, H=020m

For rectangular portion, Cd| = (.62

For triangular portion, Ca, = 0.60
From AABC, we have
® AB (AE-CD)/2
tan —= —=-——"—
2 BC H
(L0-04)/2 _06/2_03 _
03 T 03 03

Discharge through trapezoidal notch is given by equation

Q:%cd‘xl,x 2g me+%Cd}><tangX 2g x H*?

- % X 0.62 X 04 x JZ X981 x (022 + % x 60 % 1 x JTX9BT x (02)2

= 0.06549 + 0.02535 = 0.09084 m’/s = 90.84 litres/s. Ans.
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Problem (a) A broad-crested weir of 50 m length, has 50 cm height of water above its crest.
Find the maximum discharge. Take C, = 0.60. Neglect velocity of approach. (b) If the velocity of
approach is to be taken into consideration, find the maximum discharge when the channel has a cross-
sectional area of 50 m® on the upstream side.

Solution. Given :

Length of weir, L=50m
Head of water, H=50cm=05m
C,=0.60

(i) Neglecting velocity of approach. Maximum discharge is given by equation
Qpui=1.705 X Cyx L X H*?

= 1.705 x 0.60 x 50 x (.57 = 18.084 m*/s. Ans.
(ii) Taking velocity of approach into consideration

Area of channel, A=50m’

Velocity of approach, V,= Lo L] =0.36 m/s
A 50

-, Head due toV,, h,= Yo = §36x 0 =.0066 m
28 2x9381

Maximum discharge, Q. is given by
Quoax = 1.705 X Cy x LX [(H + h,)*? - h,*]
= 1.705 % 0.6 x 50 x [(.50 + .0066)"* - (.0066)"]
= 51.15[0.3605 — .000536] = 18.412 m"/s. Ans.

Problem Find the head lost due to friction in a pipe of diameter 300 mm and length 50 m,
through which water is flowing at a velocity of 3 m/s using (i) Darcy formula, (ii) Chezy's formula for
which C = 60,

Take v for water = 0.01 stoke.

Solution, Given :

Dia. of pipe, d=300 mm = (.30 m
Length of pipe, L=50m

Velocity of flow, V=3mls

Chezy's constant, C=60

Kinematic viscosity, v= 0,01 stoke = 0.01 em?fs

= 0.01 x 107 m’s.
(i) Darcy Formula is given by equation

&;fil V2
hym ————
dx2g
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where *f’ = co-efficient of friction is a function of Reynolds number, R,

Vxd 30x030 _

But R, is given b R.= = =9 x 10°
vt * =7 v To1x10°
.. Value of = O'OZ? = Lo L i = 00256
R, (9x107)
2
.. Head lost, hye= 426 002363503 = .7828 m. Ans.
0.3 x2.0x981
(ii) Chezy’s Formula. Using equation
V==C~mi
where C = 60, m = %=04ﬁ = 0.075 m

2
3=60 J075x7 ori= (%) x—_ = 0.0333
But ;=h_f=h_f
L 50

h
Equating the two values of i, we have s—’ = .0333

O h/= 50 x .0333 = 1.665 m. Ans.

Problem Find the diameter of a pipe of length 2000 m when the rate of flow of water through

the pipe is 200 litres/s and the head lost due 1o friction is 4 m. Take the value of C = 50 in Chezy's
SJormulae.

Solution. Given :

Length of pipe, L= 2000 m

Discharge, Q = 200 litre/s = 0.2 m’/s
Head lost due to friction, hy=4m

Value of Chezy’s constant, C = 50

Let the diameter of pipe = d

Velocity of flow, Vo= DAschirge = o = L = 0'2);4
Arca T 2 T 2 ed
d d

2 d
Hydraulic mean depth, m = 5
Loss of head per unit length, i = h—l— 4 = .002

‘ % = T 2000 T

Chezy’s formula is given by equation as V= C /mi

Substituting the values of V, m, i and C, we get

PERT is0 ‘[ix.ooz or Jix.ooz i DA, JOU0D
md~ B B Td = =< S50 d-

2
005097 _ 0000259 = s _ 4X.0000259 _ ,51q

a* da* 002
d = 30.0518=(.0518)""° = 0.553 m = 553 mm. Ans.

Squaring both sides, ‘—:- x .002 =
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Problem An oil of sp. gr. 0.7 is flowing through a pipe of diameter 300 mm at the rate of
500 litres/s. Find the head lost due to friction and power required to maintain the flow for a length of
1000 m. Take v = .29 stokes.

Solution. Given :

Sp. gr. of oil, §$=0.7
Dia. of pipe, d=300 mm=03m
Discharge, Q = 500 litres/s = 0.5 m%s
Length of pipe, L= 1000 m
Velocity, e D U "42 =7.073 m/s
Area T 2 mx03
4

Reynolds number, R, = Vxd == (‘)7;'9” )1(3-::
v X

Co-efficient of friction, f = 2 072 7 = 0048

R™ (1316 x10%)

= 7.316 x (10)*

4x fxLxV® 4x.0048 x 1000 x 7.073°

Head lost due to friction, k= = 163.18 m
dx2g 0.3x2x9.381
Q.h
Power required = &-f- kW
1000
where p = density of oil = 0.7 x 1000 = 700 kg/m*
Power required = 700981 x93 <16318 = 560.28 kW. Ans.
1000
Problem Find the loss of head when a pipe of diameter 200 mm is suddenly enlarged to a
diameter of 400 mm. The rate of flow of water through the pipe is 250 litres/s.
Solution. Given :
Dia. of smaller pipe, D= 200 mm = 0.20 m
- Area, A, = % D}= % (:2)*= 0.03141 m?
Dia. of large pipe, D, =400 mm =04 m
. Area, A, = -;5 x (0.4)* = 0.12564 m*
Discharge, Q = 250 litres/s = 0.25 m*/s
Velocity, V,= g = & = 7.96 m/s
A, 03141
Velocity, V.= g = 0—25 = 1.99 m/s
T A, 12564
Loss of head due to enlargement is given by equation
Vi-V,) (796-199)
h,= (% - ¥5) = ( ) = 1.816 m of water. Ans.

2g 2g
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Problem * The rate of flow of water through a horizontal pipe is 0.25 m’/s. The diameter of the
pipe which is 200 mm is suddenly enlarged to 400 mm. The pressure intensity in the smaller pipe is
11.772 Nfem®. Determine :
(i) loss of head due to sudden enlargement, (it) pressure intensity in the large pipe,
(iit) power lost due to enlargement.
Solution. Given :

Discharge, 0 =0.25m’s
Dia. of smaller pipe, D, =200 mm= 020 m
Area, A= % (2)? = 0.03141 m?

Dia. of large pipe, D, = 400 mm = 0.40 m
- Area, A, = % (0.4)? = 0.12566 m?

Pressure in smaller pipe, p, = 11.772 Nfem” = 11.772 x 10* N/m*
Q 025

Now velocity, Vi=—= = 7.96 m/s
A 03141
2 025
Velocity, V,= U 1.99 m/s
A, 12566

(i) Loss of head due to sudden enlargement,

- V,)" (796 -199)°
T 2 2x98l

= 1.816 m. Ans.

(i) Let the pressure intensity in large pipe = p,.
Then applying Bernoulli’s equation before and after the sudden enlargement,

2 2

-Ei-+ﬂ-+zl = Lz_+_‘_/g_ +2Z,+ h,
pg  2g pg  2g
But y=2 (Given horizontal pipe)
2 2 2 2
—’i+ﬁ— = p—2+&—+h‘, or £2 = —IZ-’—+-V'—--V—2 -h,
P 28 pg 2 pg P8 28

_lm2xi0t | 796" 1997
T 1000x981  2x981 2x981

12.0 + 3.229 - 0.2018 - 1.8160

15.229 - 2.0178 = 13.21 m of water

13.21 x pg = 13.21 x 1000 x 9.81 N/m?

13.21 x 1000 x 9.81 x 10~* Nfem® = 12.96 N/em?®. Ans.
(iii) Power lost due to sudden enlargement,

p- P8-Q.h _ 1000x981x025x1816
1000 1000

- 1.816

P2

= 4.453 kW. Ans.
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Problem A horizontal pipe of diameter 500 mm is suddenly contracted to a diameter
of 250 mm. The pressure intensities in the large and smaller pipe is given as 13.734 N/em® and
11.772 Nfem? respectively. Find the loss of head due to contraction if C, = 0.62. Also determine the
rate of flow of water.

Solution. Given :

Dia. of large pipe, D, =500 mm=0.5m
Area, Ay = % (0.5)° = 0.1963 m
Dia. of smaller pipe, D, = 250 mm = 0.25 m
- Area, Ay=— (25)2 0.04908 m’
Pressure in large pipe, Py = 13 734 N/cm =13.734 x 10* N/m?

Pressure in smaller pipe,  p, = 11.772 N/fem” = 11.772 x 10* N/m?
=0.62

D

2 2 2 2
Head lost due to contraction = Y L -10| = % I:L - IO] =0.375 47
2g|C 2g [0.62 28

From continuity equation, we have AV, = A,V,

K _2 .
AV, ZDZXV [02] xV,=(025)-V2=V2

or V, = = —
7oA T D, 0.50 4
1
4
Applying Bernoulli's equation before and after contraction,
ﬂ+‘i+4 P2 +V—+z2+h
pg 28 pg 2
But =2 (pipe is horizontal)
2 2
ﬂ 4+ i = &. + V_2 + h(
PE 28 pg8 2g
But h.=0. =
2g 4

Substituting these values in the above equation, we get

13734 x10*  (V,/4) 11772 x10* A
+ -

= + 0. 375
9.81 %1000 2g 1000 x 9.81 2g 2g
2 2
or 14.0 + L - 12.0 + 1.375 V2
16 x2g 22
or 14-12 =1.375 V2 ——I—-‘—/l- Vi
22 16 2g 28

2
or 20=13125x 2 or v, = JM = 5.467 m/s.
2¢ 13125

Vi _0375x (5.467)°
g 2 x9.81
(ii) Rate of flow of water, Q = A,V, = 0.04908 x 5.467 = 0.2683 m*/s = 268.3 lit/s. Ans.

(i) Loss of head due to contraction, i, = 0.375 — = 0.571 m. Ans.
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Problem ° The difference in water surface levels in two tanks, which are connected by three
pipes in series of lengths 300 m, 170 m and 210 m and of diameters 300 mm, 200 mm and 400 mm
respectively, is 12 m. Determine the rate of flow of water if co-efficient of friction are .005, .0052 and
.0048 respectively, considering : (i) minor losses also (ii) neglecting minor losses.

Solution. Given :

Difference of water level, H=12m

Length of pipe 1, L, =300 m and dia., d;, = 300 mm= 0.3 m

Length of pipe 2, L, =170 m and dia., d, = 200 mm = 0.2 m
Length of pipe 3, Ly =210 m and dia., dy = 400 mm = 0.4 m
Also, fi1 =005, f; = .0052 and f; = .0048

(i) Considering Minor Losses. Let V|, V, and V; are the velocities in the 1st, 2nd and 3rd pipe
respectively.

From continuity, we have A,V, = A,V, = AV,

ﬂdz
A e, 2 3Y
L v,:"l,y,:(ﬁ) XV, =225V,
A, Ed? d; 2
3
2 2
and V.‘z A]VI = d_lzvl :(%) Vl = 0.5625 V|
. A, d; 04

Now using equation (11.12), we have

5 5 2 2
g2 05V anLv? osvi anLyv? (V.-V) 4pLve v
2g d, x2g 22 d, x2g 2g dyx2g 2

Substituting V, and V5, 12.0=

05V7 | 4x.005x300x V7 0.5x(225V7)
22 03 x2g 2g

2

225v )Y (225V - 562V, 4x.0048x210%(.5625V.)" (.5625V,
+4><0.0052><l70><( 1) +( . ) + ( ) +( )
02x2g 2g 0.4x2g 2g

12x2x981
V, = J—— =1407 m/
= 118887 s

Rate of flow, Q = Area x Velocity = A, x V,

2

= 3— @)%V, = % (.3)? X 1.407 = 0.09945 m/s

= 99.45 litres/s. Ans.
(if) Neglecting Minor Losses. Using cquation we have

g MLVE AGRLVY  ARLVY
d x2g d,x2g dyx2g

2 ] 5
& 120 W [4x.005%300 4 %.0052 x 170 x (2.25) " 4 x 0048 x 210 x (.5625)
2 03 0.2 04
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V7 i
= — [20.0 + 89.505 + 3.189] = —— x 112.694
2g 2g
v |oX0Stx120 xl9l.22516>9<;2.0 = 1.445 m/s

Discharge, 0 = V, X A, = 1.445 x {‘5 (:3)* = 0.1021 m*/s = 102.1 litres/s. Ans.

Problem Three pipes of lengths 800 m, 500 m and 400 m and of diameters 500 mm, 400 mm
and 300 mm respectively are connected in series. These pipes are to be replaced by a single pipe of
length 1700 m. Find the diameter of the single pipe.

Solution. Given :

Length of pipe 1, L, =800 m and dia., d; = 500 mm = 0.5 m
Length of pipe 2, L, =500 m and dia., d; = 400 mm = 0.4 m
Length of pipe 3, Ly =400 m and dia., dy =300 mm = 0.3 m
Length of single pipe, L=1700 m

Let the diameter of equivalent single pipe = d

Applying equation L i + L

— =—+
& & 4 4
1700 800 500 = 400

or —3 = —5+—5+_5 = 25600 + 48828.125 + 164609 = 239037
d 5 4 03
5. 1900 noriin
239037

d=(.007188)"? = 0.3718 = 371.8 mm. Ans.

Problem 11.32 A main pipe divides into two parallel pipes which again forms one pipe as shown in
Fig. The length and diameter for the first parallel pipe are 2000 m and 1.0 m respectively, while
the length and diameter of 2nd parallel pipe are 2000 m and 0.8 m. Find the rate of flow in each
parallel pipe, if total flow in the main is 3.0 m’/s. The co-efficient of friction for each parallel pipe is
same and equal to .005.

Solution. Given :

Length of pipe 1, L, =2000m
Dia. of pipe 1, d,=1.0m
Length of pipe 2, L, =2000m
Dia. of pipe 2, d, =0.8m
Total flow, O =3.0m’s
Ji =f>=f=.005
Let Q, = discharge in pipe 1
Q, = discharge in pipe 2
From equation Q=0,+ 0,=3.0 (D)
Using equation . we have
ANLVY _ ALLVS
d, x2g d, x2g
4 .005 %2000 XV, _ 4 x.005 x 2000 x V5
1.0 x 2 x9.81 08 x2 =981
2 2 2
or Yiow¥2 orV,z—V—2
1.0 0.8 038
V. V., -
vV, = = = -==(£5)
1= Jos 804 o
T 2 T > Vs V., ]
N =—d V,=— Q1 L= -V, =
ow Q=3 hxVi=g (I xgoa [ '~ 8oa
7T - 7T > 7T
and a=—d,y "X Vo, = — (8)y XV, = — x.64 %XV,
Q=4 42 2= g 82 2= 3 2

Substituting the value of Q, and O, in equation (¢), we get

T Y2 T . 64aV,=3.0 or 0.8785 V, + 0.5026 V, = 3.0
470894 a
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V,[.8785 + .5026] =3.0 or V= 3 =2.17 m/s.

1.3811

Substituting this value in equation (i),

Hence

V, 217
V= —2-= 17, = 2.427 m/s
894 0.894

0, = % 42XV, = g x 12 X 2.427 = 1.906 m¥/s. Ans.

Q,= Q- Q,=3.0-1.906 = 1.094 m"/s. Ans.
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