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Mechanics of solids (SMEA1305)   2019 – Regulations 

 

(B.E MECHANICAL ENGG / MECHATRONICS) 

 

 

UNIT 1: STRESS STRAIN DEFORMATION OF SOLIDS  

     

Rigid and Deformable bodies – Strength, Stiffness and Stability – Stresses; Tensile, 

Compressive and Shear – Deformation of simple and compound bars under axial load – 

Thermal stresses and strains. Elastic constants – Relation between Elastic constans- 

Strain energy and unit strain energy – Strain energy in uniaxial loads. 

                                  

 

INTRODUCTION 
The theory of strength of Materials was developed over several centuries by a judicious 

combination of mathematical analysis, scientific observations and experimental results. 

Ancient structures had been constructed based on thumb rules developed through experience 

and intuition of their builders.  

A structure designed to carry loads comprises various members such as beams, columns and 

slabs.  It is essential to know the load carrying capacity of various members of structure in 

order to determine their dimensions for the minimum rigidity and stability of isolated 

structural members such as beams and columns.  

The theory of strength of materials is presented in this book in a systematic way to enable 

students understand the basic principles and prepare themselves to the tasks of designing 

large structures and systems subsequently. It should be appreciated that even awe inspiring 

structures such as bridges, high rise towers tunnels and space crafts, rely on these principle of 

their analysis and design 

HISTORICAL REVIEW 

Though ancient civilizations could boast of several magnificent structures, very little 

information is available on the analytical and design principles adopted by their builders. 

Most of the developments can be traced to the civilizations of Asia, Egypt, Greece and Rome. 

Greek philosophers Aristotle (384-322 BC) and Archimedes (287 – 212) who formulated 

significant fundamental principles of statics. Though Romans were generally excellent 

builders, they apparently had little knowledge about stress analysis. The strength of materials 

were formulated by Leonardo da Vinci (AD 1452 – 1549, Italy) arguably the greatest 

scientist and artist of all times.  It was much later in the sixteenth century that Galileo Galilei 

( AD 1564 – 1642, Italy) commenced his studies on the strength of materials and behavior of 

structures. Robe Hooke (1635 – 1703) made one of the most significant observations in 1678 

that materials displayed a certain relation between the stress applied and the strain induced.  

Mariotte (1620 – 1684), Jacob Bernoulli (1667 – 1748), Daniel Bernoulli (1700 – 1782), 

Euler (1707 – 1783), Lagrange (1736 – 1813), Parent (1666 – 1748), Columb (1736 – 1806) 

and Navier (1785 – 1836), among several others made the most significant contributions. 
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The first complete elastic analysis for flexure of beams was presented by Columb in 1773 but 

his paper failed to receive the attention it deserved until 1825 when Navier published a book 

on strength of materials. Rapid industrial growth of the nineteenth century gave a further 

impetus to scientific investigations; several researchers and scientist advanced the frontiers of 

knowledge to new horizons. 

The simple theories formulated in the earlier centuries have been extended to complex 

structural configuration and load conditions. Engineers are expected not only to design but 

also to check the performance of structures under various limit states such a s collapse, 

deflection and crack widths. The emphasis is always on safety, economy, durability, 

nevertheless. 

SIMPLE STRESSES AND STRAINS 

 
INTRODUCTION 

Within elastic stage, the resisting force equals applied load. This resisting force per 

unit area is called stress or intensity of stress. 

STRESS 
The force of resistance per unit area, offered by a body against deformation is known as 

stress. The external force acting on the body is called the load or force. The load is applied on 

the body while the stress is induced in the material of the body. A loaded member remains in 

equilibrium when the resistance offered by the member against the deformation and the 

applied load are equal. 

Mathematically stress is written as, 
A

P
σ   

where  = Stress (also called intensity of stress), 

 P = Cross-Sectional or load, and 

 A = Cross-Sectional area. 

In the S.I. Units, the force is expressed in newtons (Written as N) and area is expressed as m2. 

Hence, unit stress becomes as N/m2. The area is also expressed in millimetre square then unit 

of force becomes as N/mm2. 

1 N/m2 = 1 N/(100cm)2 = 1 N/104 cm3 

  = 104 N/cm2 or 10-6N/mm2  









222 10

11

mmcm
 

STRAIN 

When a body is subjected to some external force, there is some change of dimension of the 

body. The ratio of change of dimension of the body to the original dimension is known as 

strain. Strain is dimensionless. 

 


s
e   Sl - Change in length in mm 

  l - original length in mm 
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 Strain may be:- 

1. Tensile strain,  2.  Compressive strain 

2. Volumetric strain, and 4.  Shear strain 

If there is some increase in length of a body due to external force, then the ratio of increase of 

length to the original length of body is known as tensile strain. But if there is some decrease 

in length of the body, then the ratio of decrease of the length of the body to the original length 

is known as compressive strain. The ratio of change of volume of the body to the original 

volume is known as volumetric strain. The strain produced by shear stress is known as shear 

strain. 

TYPES OF STRESSES 

The stress may be normal stress or a shear stress. 

Normal stress is the stress which acts in a direction perpendicular to the areas. It is 

represented by  (sigma). The normal stress is further divided into tensile stress and 

compressive stress. 

Tensile Stress. The stress induced in a body, when subjected to two equal and opposite pulls 

as shown in Fig.1.1 () as a result of which there is an increase in length, is known as tensile 

stress. The ratio of increase in length to the original length is known as tensile strain. The 

tensile stress acts normal to the area and it pulls on the area. 

 Let P = Full (or force) acting on the body. 

  A = Cross-sectional area of the body. 

  L = Original length of the body 

  dL = Increase in length due to pull P acting on the body  

 = Stress induced in the body, and 

  e = Strain (i.e., tensile strain) 

 

Fig. 1.1 Stress distributions during Tension 

Fig.1.1 () shown a bar subjected to a tensile force P as its ends. Consider -, which divides 

the bar into two parts. The part left to the section -, will be in equilibrium if P = resisting 

force (R). This is shown in Fig.1.1 (b). Similarly the part right to the sections -, will be in 

equilibrium if P = Resisting force as shown in Fig.1.1 (c). This relating force per unit area is 

known as stress or intensity of stress. 
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A

(P) Load Tensile

area sectional-Cross

(R) forceReisting
σTensile    (P= R) 

or 
A

P
        ... (1.1) 

And tensile strain is given by, 

L

dL

LengthOriginal

lengthinIncrease
e        ... (1.2) 

Compressive Stress 

The stress induced in a body, when subjected to two equal and opposite pushes as shown in 

Fig.1.2. () as a result of which there is a decrease in length of the body, is shown as 

compressive stress. And the ratio of decrease in length to the original length is known as 

compressive strain. The compressive stress acts normal to the area and it pushes on the area. 

Let an axial push P is acting on a body is cross-sectional area A. Due to external push P, let 

the original length L of the body decrease by dL. 

 

Fig. 1.2 Stress distributions during compression 

 

 The compressive stress is given by, 

 A

P

(A) Area

(P)Push 

(A) Area

(R) forceReisting
σ   

 And compressive strain is given by, 

 L

dL

length Original

lengthin  Decrease
e   

1.4.2 Shear stress. The  stress induced in a body, when subjected to two equal and opposite 

forces which are acting tangentially across the resisting section as shown in Fig.1.3 as a result 
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of which the body tends to shear off across the section, is known as shear stress. The 

corresponding strain is known as shear strain. The shear stress  is the stress which acts 

tangential to the area. It is represented by . 

 

Fig. 1.4 Lap Joint in Shear 

 As the bottom face of the block is fixed, the face ABCD will be distorted to ABC, D 

through an angle  as a result of force P as shown in Fig.1.4 (d). 

 And shear strain () is given by 

 
ADDistance

ntdisplacemelTransversa
  

 or 
AD

h

dl
DD1 

        ...(1.4) 

ELASTICITY AND ELASTIC LIMIT 

When an external force acts on a body tends to undergo some deformation. If the external 

force is removed and the body comes back to its origin shape and size (which means the 

deformation disappears completely), the body), the body is known as elastic body. The 

property by virtue of which certain materials return back to their original position after the 

removal of the external force, is called elasticity. 

The body will regain its previous shape and size only when the deformation caused by the 

external force, is within a certain limit. Thus there is a limiting value of force upto and within 

which, the deformation completely disappears on the removal of the force. The value of stress 

corresponding to this limiting force is known as the elastic limit  of the material. 

If the external force is so large that the stress exceeds the elastic limit, the material loses to 

some extent its property of elasticity. If now the force is removed, the material will not return 

to the origin shape and size and there will be residual deformation in the material. 

HOOKES LAW AND ELASTIC MODULII 

Hooke's Law states that when a material is loaded within elastic limit, the stress is 

proportional to the strain produced by the stress. This means the ratio of the stress to the 

corresponding strain is a constant within the elastic limit. This constant is known as Module 

of Elasticity or Modulus of Rigidity or Elastic Modulii. 
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MODULUS OF ELASTICITY (OR YOUNG'S MODULUS) 

The ratio of tensile or compressive stress to the corresponding strain is a constant. This ratio 

is known as Young's Modulus or Modulus of Elasticity and is denoted by E. 

  
StraineCompressiv

StresseCompressiv
or

StrainTensile

StressTensile
E  

 or 
e

E


        ... (1.5) 

Modulus of Rigidity or Shear Modulus. The ratio of shear stress to the corresponding shear 

strain within the elastic limit, is known as Modulus or Rigidity or Shear Modulus. This is 

denoted by C or G or N. 

  C (or G or N) 
φ

x

StrainShear

StressShear
    ... (1.6) 

 Let us define factor of safety also. 

FACTOR OF SAFETY 

It is defined as the ratio of ultimate tensile stress to the working (or permissible) stress. 

Mathematically it is written as  

 Factor of Safety = 
Stress Pemissible

StressUltimate
    ... (1.7) 

CONSTITUTIVE RELATION BETWEEN STRESS AND STRAIN 

For One Dimensional Stress System. The relationship between stress and strain for 

unidirectional stress (i.e., for normal stress in one direction only) is given by Hooke's law, 

which states that when a material is loaded within its elastic limit, the normal stress 

developed is proportional to the strain produced. This means that the ratio of the normal 

stress to the corresponding strain is a constant within the elastic limit. This constant is 

represented by E and is  known as modulus of elasticity or Young's modulus of elasticity. 

  Constant 
Strain ingCorrespond

StressNormal
  or E

e



 

where  = Normal stress, e = strain and E = Young's Modulus 

 or   
E

σ
e        ... [1.7 (A)] 

The above equation gives the stress and strain relation for the normal stress in one direction. 

For Two Dimensional Stress System. Before knowing the relationship between stress and 

strain for two-dimensional stress system, we shall have to define longitudinal strain, lateral 

strain, and Poisson's ratio. 
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Longitudinal Strain. When a body is subjected to an axial tensile load, there is an increase 

in the length of the body. But at the same time there is a decrease in other dimensions of the 

body at right angles to the line of action of the applied. Thus the body is having axial 

deformation and also deformation at right angles to the line of action of the applied load (i.e., 

lateral deformation). 

The ratio of axial deformation to the original length of the body is known as longitudinal (or 

linear) strain. The longitudinal strain is also defined as the deformation of the body per unit 

length in the direction of the applied load. 

 Let L =  Length of the body, 

  P =  Tensile force acting on the body. 

  L =  Increase in the length of the body in the direction of P. 

 Then, longitudinal strain = 
L

L
 

Lateral strain. The strain at right angles to the direction of applied load is known as lateral 

strain. Let a rectangular bar of length L, breadth b and depth  is subjected to an axial tensile 

load P as shown in Fig.1.6. The length of the bar will increase while the breadth and depth 

will decrease. 

 Let L =  Length of the body, 

  b =  Decrease in breadth, and 

  d =  Decrease in depth. 

 Then longitudinal strain = 
L

L
    ... [1.7 (B)] 

and  lateral strain = 
b

b
or 

d

d
     ... [1.7 (C)] 

Note:(i) If longitudinal strain is tensile, the lateral strains will be compressive. 

(ii) If longitudinal strain is compressive then lateral strains will be tensile. 

(iii) Hence every longitudinal strain in the direction of load is accompanied by lateral strains 

of the opposite kind in all directions perpendicular to the load. 

Poisson's Ratio. The ratio is lateral strain to the longitudinal strain is a constant for a given 

material, when the material is stressed within the elastic limit. This ratio is called Poisson's 

ratio and it is generally denoted by . Hence mathematically. 

 Poisson's ratio,  = 
strainalLongitudin

strainLateral
   ... [1.7 (D)] 

or Lateral strain =  x Longitudinal strain 

 As lateral strain is opposite in sign to longitudinal strain, t\hence algebraically, lateral 

strain is written as  
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Relation between and strain. Consider a two dimensional figure ABCD, subjected to two 

mutually perpendicular stress 1 and 2 

 Longitudinal strain and will be equal to 
E

1  whereas the strain in 

 the direction of y will be lateral strain and will be equal to -  x 
E

1 . ( Lateral strain 

= - x longitudinal strain) 

 The above two equations gives the stress and strain relationship for the two 

dimensional stress system. In the above equations, tensile stress is taken to be positive 

whereas the compressive stress negative. 

For Three Dimensional Stress System. Fig. 1.5 (b) shows a three-dimensional body 

subjected to three orthogonal normal stress 1, 2, 3 acting in the directions of x, y and z 

respectively. 

 Consider the strains produced by each stress separately 

 Similarly the stress 2  will produced strain 
E

2 in the direction of y and strain of -  

E

2 in the direction of x and y each. 

 Also the stress 2 will produce strain 
E

3 in the direction of z and strain of -  x 
E

3  in 

the direction of x and y. 

 
EEE

e 321
1








       ... [1.7 (H)] 

 
EEE

e 123
2








      ... [1.7 (J)] 

 
EEE

e 213
3








      ... [1.7 (J)] 

and The above three equations giver the stress and strain relationship for the three orthogonal 

normal stress system. 

Problem 1.1 A rod 150cm long and of diameter 2.0cm is subjected to an axial pull of 20 kN. 

If the modulus of elasticity of the material of the rod is 2 x 105 N/mm2, determine: 

(i) the stress 

(ii) the strain, and 

(iii) the elongation of the rods. 

 Sol. Given : Length the rod, L = 150 cm 

 Diameter of rod,   D =  2.0 cm = 20mm 
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  Area,    A = 
22 m100π(20)

4

π
m  

 Axial pull,    P = 20 kN = 20,000N 

 Modulus of elasticity E = 2.0 x 105 N/mm2 

(i) The stress () is given equation (1.1) as 

 = 
100

2000


A

P
 - 63.662 N/mm2, Ans. 

(ii) Using equation (1.5) the strain is obtained as  

  
e

E


 

 Strain, e = 
E

E


= 
610x2

63.662
= 0.000318. Ans. 

(iii) Elongation is obtained by using equation (1.2) as 

L

dL
e   

 Elongation, dL = e x L 

 = 0.000318 x 150 = 0.0477cm. Ans 

Problem 1.2. Find the minimum diameter of a steel wire, which is used to raise  load of 

4000 N if the stress in the rod is not to exceed 95MN/m2. 

 Sol. Given : Load,  P = 4000N 

 Stress,     = 95MN/m2 = 95 x 106 N/m2 ( M=Mega=106)  

       = 95N/mm2  ( 106 N/m2 = 1N/mm2) 

 Let   D = Diameter of wire in mm 

  Area,    A = 
2

4
D


 

 Now    Stress = 
A

P

Area

Load
  

 95 = 
2

2

4x4000

D
4

π

4000

D
  or D2 = 

95 x π

4x4000
= 53.61 

D =  7.32mm  Ans. 

Problem 1.3. A tensile test was conducted on a mild steel bar. The following data was 

obtained from the test: 

(i) Diameter of the steel bar  = 3cm 

(ii) Gauge length of the bar  = 20cm 

(iii) Load at elastic limit   = 250 kN 

(iv) Extension at a load of 150 kN = 0.21mm 

(v) Maximum load   = 380 kN 

(vi) Total extension   = 60mm 

(vii) Diameter of the rod at the failure = 2.25cm 
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Determine : (a) the Young's Modulus, (b) the stress elastic limit 

(c) the percentage elongation, and (d) the percentage decrease in area. 

Sol. Area of rod, A = 
2cm2(3)

4

π2D
4

π
  

 = 7.06835 cm2 = 7.0685 x 10-4 m2 





















2

2

100

1
mcm  

(a) To find Young's modulus, first calculate the value of stress and strain within elastic limit. 

The load at elastic limit it given but the extension corresponding to the load of elastic limit is 

not given. But a load 150 kN (which is within elastic limit) and corresponding extension of 

0.21mm are given. Hence these values are used for stress and strain within elastic limit  

 

2N/m
4-10 x 7.0685

1000 x 150

Area

Load
Stress 

  ( 1 kN = 1000 N) 

 = 21220.9 x 104 N/m2 

 
length) Guage(or Length Original

Extension)(or length inIncrease
Strain                  and    

 

00105.0
10mm x 20

0.21mm


 

  Young's  Modolus 

 

2N/m410 x 20209523
0.00105

421220.9x10
x

Strain

Stress
E 

 

 = 202.095 x 109 N/m2    ( 109 = Giga = G) 

 = 202.095 x GN/m2 Ans. 

 (b) The stress at the elastic limit is given by 

 
47.0685x10

250x1000

Area

limit elasticat  Load  Stress






 

 = 35368 x 104 N/m2 

 = 353.68 x 106 N/m2   ( 106 = Mega = M)

 

 = 353.68 MN/m2. Ans. 

 (c) The percentage decrease is obtained as, 

 percentage elongation 
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100x 
length) guage(or length  Original

lengthin  Increase Total


 

  

Ans.    30%100x 
10mm x 20

60mm


 

 (d) The percentage decrease in area is obtained as 

 percentage decrease in area. 

 

100x 
area Original

failure) at the Area - area (Original


 

 = 100   x 

3  x 
4

π

2.25 x 
4

π
3 x 

4

π

2

22










 

 = Ans.    43.75%100  x  
9

5.0625)-(9
 100 x 

3

2.253
2

2 2








 

 

ANALYSISZS OF BARS OF VARYING SECTIONS 

A bar of different lengths and of different diameters (and hence of different cross-sectional 

areas) is shown in Fig.1.4 (). Let this bar is subjected to an axial load P. 

 

Fig. 1.5 Bar with varied cross sections and Axial load 

Though each section is subjected to the same axial load P, yet the stresses, strains and change 

in length will be different. The total change in length will be obtained by adding the changes 

in length of individual section 

 Let P =  Axial load acting on the bar, 

  L1 =  Length of section 1, 

  A1 =  Cross-Sectional area of section 1, 

  L2, A2 =  Length and cross-sectional areas of section 2, 

  L3, A3 =  Length and cross-sectional areas of section 3, and 

  E   = Young's modulus for the bar. 

Problem 1.4. An axial pull of 35000 N is acting on a bar consisting of three lengths as shown 

in Fig.1.6 (b). If the Young's modulus = 2.1 x 105 N/mm2, determine. 

(i) Stresses in each section and 

(ii) total extension of the bar 
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Fig. 1.6 Bar with varied cross sections and Axial load as 35000N 

 

Sol. Given: 

Axial pull,    P = 35000 N 

Length of section 1,   L1 = 20cm = 220mm 

Dia. of Section 1,   D1 = 2cm = 20mm 

 Area of Section 1, A1 = 
22 mm  100  )(20

4

π
  

Length of section 2,   L2 = 25cm = 250mm 

Dia. of Section 2,   D2 = 3cm = 30mm 

 Area of Section 2, A2 = 
22 mm  225  )(30

4

π
  

Length of section 3,   L3 = 22cm = 220mm 

Dia. of Section 3,   D3 = 5cm = 50mm 

 Area of Section 2, A3 = 
22 mm  625  )(50

4

π
  

Young's Modulus, E = 2.1 x 105 N/mm2 

(i) Stress in each section 

 Stress in section 1, 1 = 
1Section  of Area

load Axial
 

     = 
100π

35000

A

P

1

 = 111.408N/mm2. Ans. 

 Stress in section 2, = 
 x π225

35000

A

P

2

 = 49.516N/mm2. Ans. 

 Stress in section 3, = 
 x π625

35000

A

P

3

 = 17.825 N/mm2. Ans. 

(ii) Total extension of the bar 

Using equation (1.8), we get 
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 Total Extension = 















3
A

3
L

2
A

2
L

1
A

1
L

E

P
 

 = 
510 x 2.1

35000
  










 x π625

230

 x π225

250

100π

200
 

 = 
510 x 2.1

35000
(6.366 + 3.536 + 1.120) = 0.183mm Ans. 

Problem 1.5. A member formed by connecting a steel bar to aluminium for bar is shown in 

Fig.1.7. Assuming that the bars are presented from buckling, sideways, calculate the 

magnitude of force P that will causes the total length of the member to decrease 0.25mm. The 

values of elastic modulus for steel and aluminium are 2.1 x 106 N/mm2 and 7 x 104 N/mm2 

respectively. 

Sol. Given 

 Length of Steel bar,   L1 = 30c m = 300mm 

 Area of Steel bar,   A1 = 5 x 5 = 25m2 = 250mm2 

 Elastic modulus for steel bar, E1 = 2.1 x 105 N/mm2 

 Length of Aluminium bar,  L2 = 38cm = 380mm 

 Area of Aluminium bar  A2 = 10 x 10 = 100cm2 = 1000mm2 

 Elastic modulus for aluminium bar E2 = 7 x 104 N/mm2 

 Total Decrease in length,    dL = 0.25mm 

 Let      P = Required force 

 

As both the bars are made of different materials, hence total change in the lengths of the bar 

is given by equation (1.9) 

 

 dL =  P 
22

2

11

1

AE

L

AE

L
  

or 

 0.25 = P 









1000 x 10 x 7

380

2500 x 10 x 2.1

300
45

  

 = P (5.714 x 10-7 + 5.428 x 10-7) = P x 11.142 x 10-7 

 

 P = 
11.142

10 x 0.25

10 x 11.142

0.25 7

7-
 = 2.2437 x 105 = 224.37 kN. Ans. 

 

Principle of Superposition. When a number of Loads are acting on a body, the resulting 

strain, according to principle of superposition, will be the algebraic sum of strains caused by 

individual loads. 

 

While, using this principle for an elastic body which is subjected to a number of direct forces 

(tensile or compressive) at different sections along the length of the body, first the free body 

diagram of individual section is drawn. Then the deformation of the each section is obtained. 
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The total deformation of the body will be then equal to the algebraic sum of deformation of 

the individual sections. 

 

Problem 1.6 A brass bar, having cross-sectional area of 1000 mm2 , is subjected to axial 

forces as shown in Fig. 

 

 
Fig. 1.7 Bar with same cross section and Axial loads 

 

Find the total elongation of the bar, Take E = 1.05 x 105 N/mm2 

 Sol. Given: 

 Area   A = 1000mm2 

 Value of  E = 1.05 x 105 N/mm2 

 Let   d = Total elongation of the bar 

 

The force of 80 kN acting at B is split up into three forces of 50 kN, 20 kN and 10 kN. Then 

the part AB of the bar will be subjected to a tensile load of 50 kN, part BC is subjected to a 

compressive load of 20 kN and part BD is subjected to a compressive load of 10 kN as shown 

in Fig. 

 

Part AB. This part is subjected to a tensile load of 50kN. Hence there will be increase in 

length of this part., 

  Increase in the length of AB 

  = 
1

1 x  
AE

P
L  = 600x  

10 x 1.05 x 1000

1000 x 500
5

  

 (P1=50,000 N,L1 = 600mm) 

  = 0.2857 

 

Part BC. This part is subjected to a compressive load of 20kN or 20,000 N. Hence there will 

be decrease in length of this part. 

 

  Decrease in the length of BC 

 = 
2

2 Lx  
AE

P
= 1000x  

10 x 1.05 x 1000

20,000
5

  (L2=1m = 1000mm) 

 = 0.1904 

 

Part BD. The part is subjected to a compressive load of 10kN or 10,000 N. Hence there will 

be decrease in length of this part. 

 Decrease in the length of BC 

 = 
3

3 Lx  
AE

P
= 2200x  

10 x 1.05 x 1000

10,000
5

 (L2=1.2 + 1.22m or 2200m) 

 = 0.2095 

  Total elongation of bar = 0.2857 – 0.1904 – 0.2095) 

(Taking +ve sign for increase in length and –ve sign for 

decrease in length 
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   =- 0.1142mm. Ans. 

 

Negative sign shows, that there will be decrease in length of the bar. 

 

Problem 1.7. A Member ABCD is subjected to point loads P1, P2, P and P4 as shown in Fig. 

 

 
Fig. 1.8 Bar with varied cross section and Axial loads 

 

Calculate the force P2 necessary for equilibrium, if P1 = 45 kN, P3 = 450 kN and P4 = 130 kN. 

Determine the total elongation of the member, assuming the modulus of elasticity to be 2.1 x 

105 N/mm2. 

 

 Set Given: 

 Part  AB : Area.  A1 = 625 mm2 and 

    Length L1 = 120cm = 1200mm 

 Part BC :  Area  A2 = 2500 mm2 and 

    Length L2 = 60cm = 600mm 

 Part CD :  Area  A3 = 12.0mm2 and 

    Length L3 = 90cm = 900mm 

 Value of     E = 2.1 x 105 N/mm2 

Value of P2 necessary for equilibrium 

Resolving the force on the rod along its (i.e., equating the forces acting towards right to those 

acting towards left) we get 

  

 P1 + P3 = P2 + P4 

 But    P1 = 45kN 

     P3 = 450 kN and P4 = 130kN 

 45 + 450 = P2 = 130 or P2 = 495 – 130 =, 365 kN 

The force of 365 kN acting at B is split into two forces of 45 kN and 320 kN (i.e., 365 – 45 = 

320 kN) 

The force of 450 kN acting at C is split into two forces of 320 kN and 130 kN (i.e., 450 – 320 

= 130 kN) as shown Fig. 

It is clear that part AB is subjected to a tensile load of 45kN, part BC is subjected to a 

compressive load of 320 kN and par CD is subjected to a tensile load 130 kN. 

 

Hence for  part AB, there will be increase in length; for part BC there will be decrease in 

length and for past CD there will be increase in length. 
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  Increase in length of AB 

 = 1

1

Lx  
EA

P
= 1200x  

10 x 2.1 x 625

45000
5

 (P = 45 kN = 45000 N) 

 = 0.4114 mm 

 Decrease in length of BC 

= 2

2

Lx  
EA

P
= 600x  

10 x 2.1 x 2500

320,000
5

 (P = 320 kN = 320000 N) 

 = 0.3657 mm 

 Increase in length of CD 

= 3

3

Lx  
EA

P
= 900x  

10 x 2.1 x 1250

130,000
5

 (P = 130 kN = 130000 N) 

Total change in the length of member 

 

  = 0.4114 – 0.3657 + 0.4457 

(Taking +ve for increase in length and  

–ve sign for decrease in length) 

  = 0.4914mm (extension) Ans. 

Problem 1.8. A rod, which tapers uniformly from 40mm diameter to 20mm diameter in a 

length of 400 mm is subjected to an axial load of 5000 N. If E = 2.1 x 106 N/mm2, find the 

extension of rod. 

 

 Sol.Given 

 

 Larger diameter  D1 = 40mm 

 Smaller diameter  D2  = 20mm 

 Length of rod,   L = 400mm 

 Axial load   P = 5000 N 

 Young's modulus E – 2.1 x 105 N/mm2 

 Let dL = Total extension of the rod 

 Using equation (1.10), 

 dL = 
2 1 DD πE

4PL
= 

20 x 40x 510 x 2.1 x π

400 x 5000 x 4
 

 = 0.01515mm Ans. 

 

Problem 1.9. Find the modulus  of elasticity for a rod, which tapers uniformly from 20mm, 

to 15mm diameter in a length of 350mm. The rod is subjected to an axial load of 5.5 kN and 

extension of the rod is 0.025mm. 

 

Sol.Given 

 

 Larger diameter  D1 = 30mm 

 Smaller diameter  D2  = 15mm 

 Length of rod,   L = 350mm 

 Axial load   P = 5.5 kN = 5500 N 

 Extension   dL = 0.025mm 

 Using equation (1.10), We get 
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 dL = 
2 1 DD πE

4PL
 

 or E = 
LdDD π

4PL

2 1

= 
0.025 x 15 x 30 x π

350 x 5000 x 4
 

 = 217865 N/mm2 or 2.17865 x 105 N/mm2. Ans. 

 

Problem 1.10. A rectangular bar made of steel is 2.8m long and  15mm thick. The rod is 

subjected to an axial tensile load of 40kN. The width of the rod varies from  75mm at one end 

to 30mm at the other. Find the extension of the rod if E = 2 x 105 N/mm2. 

 

Sol.Given 

 

 Larger      L1 = 2.8 m = 2800mm 

 Thickness    t  = 15mm 

 Axial load    P = 40 kN = 40,000 N 

 Width at bigger end  a = 75mm 

 Width at smaller end b = 30mm 

 Value of      E = 2 x 105 N/mm2 

 Let      dL = Extension of the rod 

 Using equation (1.    ), We get 

 dL = 
b)-Et(a

PL
log, 

b

a
 

 =  
30

75
log,

30)-15(75 x 510 x 2

2800 x 4000
  

 = 0.8296 x 0.9163 = 0.76mm Ans. 

Problem 1.11. The extension is a rectangular steel bar of length 400mm and thickness 

10mm, is found to be 0.21 mm. The bar tapers uniformly in width from 100mm to 50mm. If 

E for the bar is 2 x 105 N/mm2, determine the axial load on the bar. 

 

Sol.Given 

 

 Extension    dL = 0.21mm 

 Length       L = 400mm 

 Thickness      t = 10mm 

 Width at bigger end    a = 100mm 

 Width at smaller end   b = 50mm 

 Value of      E = 2 x 105 N/mm2 

 Let      P = axial load 

 Using equation (1.    ), We get 

 dL = 
b)-Et(a

PL
log, 









b

a
 

 or  0.21 =  
50

100
log,

50)-10(100 x 510 x 2

400 x P
  

 = 0.000004 P x 0.6931  

 

  P = N 75746
0.6931 x 0.000004

0.21
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 = 75.746 kN Ans. 

 

ANALYSIS OF BARS OF COMPOSITE SECTIONS 

A bar, made up two or more bars of equal lengths but of different materials rigidly fixed with 

each other and behaving as one unit for extension or compressive when subjected to an axial 

tensile or compressive loads, is called a composite bar. For the composite bar  the following 

two points are important: 

 

1. The extension or compression in each bar is equal. Hence determination per 

unit length i.e. strain in each bar is equal. 

2. The total external load on the composite bar is equal to the sum of the loads 

carried by each different material. 

  

Problem 1.12. A steel rod of 3cm diameter is enclosed centrally in a hollow copper tube of 

external diameter of 4cm. The composite bar is ten subjected to an axial pull of 45000 N. If 

the length of each bar is equal to 15cm, determine. 

(i) The stresses in the rod and tube, and 

(ii) Load carried by each bar 

Take E for steel = 2.1 x 105 N/mm2 and for copper = 1.1 x 105 N/mm2 

 
Fig. 1.9 Composite bar 

 

Sol Given: 

Dia of steel rod = 3cm = 30mm 

 Area of steel rod,  

 Ae = 
4


 (30)2 = 706.86mm2 

External dia. of copper tube 

 = 5cm = 50mm 

Internal dia. of copper tube 

 =  4cm = 40mm 

 Area of copper tube, 
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  Ae = 
4


 (502-402)mm2 = 706.86mm2 

Axial pull on composite bar,  P = 45000 N 

Length of each bar   L = 15cm 

Young's modulus for steel,  ES = 2.1 x 105 N/mm2 

Young's modulus for copper Ec = 1.1 x 105 N/mm2 

(i) The stress in the rod and tube 

Let  S  = Stress in steel 

  PS  = Load carried by steel rod 

  c  = Stress in copper, and 

  Pc  = Load carried by copper tube. 

Now strain in steel = Strain in copper  







 Strain

E

σ
  

or   
c

c

S

S

E

σ

E

σ
  

 S =  
106 x 11

10 x 2.1
σ x 

E

E 6

c

c

S  x c =- 1.900 c 

 

Now Stress = 
Area

Load
,  Load = Stress x Area 

Load on steel + load on copper = Total load   

S x  AS + c x Ac = P     P)  Load Total(   

or 1.909 c x 706.86 + 706.86 = 45000 

or c (1.909 x 706.86 + 706.86) = 45000 

or 2056.25 c = 45000 

 Ans21.88N/mm
2056.25

45000
σ 2

c   

Substituting the value of c in equation (i), we get 

 c = 1.909 x 21.88 N/mm2 

 = 41.77 N/mm2. Ans 

(ii) Load carried by each bar 

As Load    = Stress x Area 

 Load carried by steel rod 

 Ps = S x AS 

 = 41.77 x 706.86 = 29525.5 N. Ans 

Load Carried by copper tube, 

 Pc = 45000 – 29525.5 

 = 15474.5 N. Ans 

 

Problem 1.13. A compound tube consists of a steel tube 140mm internal diameter and 

160mm external diameter and an out brass tube 160mm internal diameter and 180mm 

external diameter. The two tubes are of the same length. The compound tube carries an axial 

load of 900 kN. Find the stresses and the load carried by each tube and the amount if 
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shortens. Length of each tube is 140mm. Take E for Steel as 2 x 105 N/mm2 and for brass as 1 

x 105 N/mm2. 

 

Sol Given: 

Internal dia. of steel tube = 140mm 

External dia. of steel tube = 160mm 

 Area of steel tube, Aa = )21402(160
4

π
 = 4712.4mm2 

Internal dia. of brass tube = 160mm 

External dia. of brass tube = 180mm 

 

 Area of steel tube, Ab = )21602(180
4

π
 = 5340.7.4mm2 

Axial load carried by compound tube, 

      P = 900 kN =  900 x 1000 = 900000N 

Length of each tube   L = 140mm 

E for steel      Ea = 2 x 105 N/mm2 

E for brass     Eb = 1 x 105 N/mm2 

Let    a  = Stress in steel in N/mm2 and 

    b  = Stress in brass in N/mm2 

Now strain in steel = Strain in brass  








E

Stress
Strain  

or   
b

b

S

S

E

σ

E

σ
  

 S =  
5

6

b

b

a

10 x 1

10 x 2
σ x 

E

E
 x b = 2b 

Now load on steel + Load on brass = Total load   

or  S x Aa + b x Ab     = 900000     (Load = Stress x Area) 

or 2b x 4712.4 + b x 5340.7 = 900000 (S = 2b) 

or 147655 b       = 900000 

    b =  .Ans260.95N/mm
14765.5

900000
  

Substituting the value of Pb in equation (i), we get 

 s = 2 x 60.95 = 121.9 N/mm2. Ans. 

Load carried by brass tube 

 = Stress x Area 

 = b x Ab = 60.95 x 5340.7N 

 = 325515 N = 325.515 kN Ans. 

Load carried by steel tube  

 = 900 – 325.515 = 574.485 kN. Ans. 

Decrease in the length of the compound tube 

  = Decrease in length of either of the tubes 

  = Decrease in length of brass tube 

  =  Strain in brass tube x original length 

 = Ans    mm. 0.0853140 x 
510 x 1

60.95
L x  

b
E

b
σ

  

Thermal Stresses 
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A solid structure is changes in original shape due to change in temperature its might expand 

or contract. 

  

Fig. 1.10 Thermal expansion and contraction 

Definition: A temperature change results in a change in length or thermal strain.  There is no 

stress associated with the thermal strain unless the elongation is restrained by the supports.   

Raise at temperature ∝ materials is expands (elongate) 

Decreases at temperature ∝ materials is contract (shorten) 

 
AE

PL
LT PT  

 

Thermal strain       e =  .T and thermal stress p=  .T.E 

coef.expansion   thermal T=Rise or fall of temperature E= young’s modulus 

Solved problem 

 

Problem: 1A steel rod of 50m long and 3cm diameter is connected to two grips and the rod is 

maintained at a temperature of 95oC. Find out the force exerted by the rod after it has been 

cooled to 30oC, if (a) the ends do not yield, and (b). The ends yield by .12cm. Take E = 2.1 x 

105 N/mm2; α = 12 x 10-6/ oC.  
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Diameter length T1 T2 T=T1-T2 E α

3cm 5m 95 30 65 2.00E+05 1.20E-05

30 5000

mm m ˚C ˚C ˚C N/mm^2 /˚C

To find I)when the ends do not yield

ii)when the ends  yield.12cm

Required formula

stress Area pi 4 d^2

α.T.E   (∏/4) d^2 3.14 4 900

stressXArea

stress 

(α.T.L-δ)/L

X  E

stressXArea

1.2 δ

α.T.E  (∏/4) d^2

1.56E+02 706.5 1.10E+05 N

(Ans)

α.T.L δ L E α.T.L-δ α.T.L-δ/L (α.T.L-δ/L)XE

3.90E+00 1.2 50 2.00E+05 2.70E+00 5.40E-04 1.08E+02

7.63E+04 N

(Ans)

The ends yield by 

0.12cm

stressXArea

Given Data

Sloution

The rod not yield

The ends yield by 

0.12cm

The rod not yield

stressXArea

 
 

Problem: 2    A copper rods of 10cm diameter and 1.5m long is connected to two grips and 

the rod is maintained at a temperature of 125oC. Find out the force exerted by the rod after it 

has been cooled to 45oC, if (a) the ends do not yield, and (b). The ends yield by 1.7mm.Take 

E = 120Gpa; α = 1.7 x 10-6/ oC.  
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Diameter length T1 T2 T=T1-T2 E α

10cm 1.5m 125 45 80 1.20E+05 1.70E-05

100 1500

mm m ˚C ˚C ˚C N/mm^2 /˚C

To find I)when the ends do not yield

ii)when the ends  yield.12cm

Required formula

stress Area pi 4 d^2

α.T.E   (∏/4) d^2 3.14 4 10000

stressXArea

stress 

(α.T.L-δ)/L

X  E

stressXArea

1.5 δ

α.T.E  (∏/4) d^2

1.63E+02 7850 1.28E+06 N

(Ans)

α.T.L δ L E α.T.L-δ α.T.L-δ/L (α.T.L-δ/L)XE

2.04E+00 1.5 50 1.20E+05 5.40E-01 3.60E-04 4.32E+01

3.39E+05 N

(Ans)

The ends yield by 

0.12cm

stressXArea

Given Data

Sloution

The rod not yield

The ends yield by 

0.15cm

The rod not yield

stressXArea

 

 

Thermal stress in composite bar 
In certain application it is necessary to use a combination of elements or bars made from 

different materials, each material performing a different function. Temperature remains the 

same for all the materials but strain rate is different due to thermal expansion of materials. 

The blow figure shows the thermal expansion on composite bar. 

 
Fig. 1.11 Thermal expansion on Composite bar 

The Expression for thermal stress is Load on the brass = load on the steel  

From the stress equation  

  =  

Thermal stress for copper  
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Thermal stress for steel  

Actual expansion of copper = Actual expansion of steel  

Free expansion of copper – contraction due to compressive stress     =   Free expansion of 

steel – expansion due to tensile stress 

x T x L  +      x L       = x T x L     +      x L        

“L” is the common for both the sides therefore rewriting the above equation  

 

x T  +          = x T  +    

 

Problem: A copper rod of 15 mm diameter passes centrally through a steel tube of 30 mm 

outer diameter and 20 mm internal diameter. The tube is closed at each end by rigid plates of 

negligible thickness. Calculate the stress developed in copper and steel when the temperature 

of the assembly is raised from 10oC to200oC. Take E for steel = 2 .1 x 105 N/mm2, E for 

copper = 1 x 105N/mm2,  αs = 11 x 10-6/ oC  , αc = 18 x 10-6/ oC   

 

Given 

Diameter of copper rod                          dc =15 mm 

Steel tube OD                                           do = 30 mm 

Steel tube ID                                             di   = 20 mm 

T1 and T2 respectively                          10 oC and 200 oC    {T = T2 - T1} 

Young’s modules for steel      Es = 2.1 x 105 N/mm2 

Young’s modules for copper   Ec = 1 x 105 N/mm2 

αs = 11 x 10-6/ oC  and αc = 18 x 10-6/ oC   

To find 

Thermal stress in copper [αc ]andsteel [α s ] 

Solution 

For temperature is the same for both the materials  

Compressive load on copper = tensile load on steel  

x T  +          = x T  +    

Area of Steel (hollow tube) = { 302 - 202} = 125  mm2 

Area of copper                       = 152 = 56.25  mm2 

= 2.22 σs 

= 2.22 σs 

 

x T  +          = x T  -    

11 x 10-6  x 190  +       =   18 x 10-6  x 190  -  

 

 +   =    18 x 10-6  x 190      -    11 x 10-6  x 190   

Substitute = 2.22 σs   

 +   =    5 x 10-6  x 190     

5.662   = 1.995 

35.235 N/mm2  and 78.22 N/mm2    
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Elastic constants 
 

When the structural stressed by axial load it’s under goes the deformation and it’s comes 

back to original shape or structural stressed by within the elastic limit then there is the 

changes in length along x-direction, y-direction and z - direction. 

 

Types of elastic constant related to isotropic materials  

 

1.Elasticity Modulus (E)0r Young’s Modulus 

2. Poisson’s Ratio ( ) 

3. Shear Modulus (G) 

4. Bulk Modulus (K) 

 

Elasticity Modulus or Young’s Modulus(E) 

 

 
 

 
= E 

 

                             Fig. Before applied load and after applied 

load 

2. Poisson’s Ratio (μ) 

 (μ) (or)     

=  

Lateral strain    (et)    

=  (or)  

                             Fig. 1.12 Load applied on rod     Fig. 1.13  linear change and lateral change 

Longitudinal strain (el)    =  

 

 

 Shear Modulus (G) 

Shear modulus G =  

G =  

 

                                                                                 Fig. Shear stress 

Volumetric Strain     

 =  

                                                                    Fig. 1.14 Shear force applied situation 

 

The volumetric strain is defined as materials tends to change in volume at three direction by 

external load within the elastic limit 
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Volume of uniform rectangular section = L X b X d 

Here b=d 

 

 
 X  = lateral strain 

 
Rewriting the above equation  

 
Volumetric strain of rectangular structural subjected to three forces which are mutually 

perpendicular 

 

 
     

Similarly for  and  

 

 
{ } 

                                                      { }  - {  

                                                      { }  - } 

Volumetric strain of cylindrical rod 

 

 
 

Bulk modulus [K] 

 

 
 

  

 

 

                     Fig. 1.15 Change in volume 
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Relation between young’s modulus and bulk modulus 

 

Volume = L x L x L  

            V   =   L3 =3 L2 x  

 

 

 
=3 L2 x  

=3 L2 x  

=  

 =  

 

 
 

 

 
E        From this equation 

 
 

Relationship between modulus of elasticity and modulus of rigidity {E and G} 

 
 

Easy to identify with the four elastic constant are calculated by single module as shown in 

fig. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relation between modulus of elasticity (E) and bulk modulus (K): 
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E =3 K (1 - 2 µ ) 
 
 
Relations between modulus of elasticity (E) and modulus of rigidity (G): 

 

 
 

 

E = 2G (1 +µ   ) 
 
 
 
 
Relation among three elastic constants: 

 

 
 

Problem:  

  

Determine the changes in length, breadth and thickness of a steel bar which 5cm long, 40mm 

wide and 30mm thick and is subjected to an axial pull of 35KN in the direction in length take 

the young ‘modulus and position’s ratio 200Gpa and 0.32 respectively . 

 

Given: 

L = 5cm=50mm 

b=40mm 

d=30mm 

E=200Gpa= 2 x 105N/mm2 

 = 0.32 

To find:  

 

 

Solultion: 

=  

=  

=  

= =  

 

(i) Change in length (  

                                 = =  = =   =7.29x103 mm 

         ii)  Change in breadth (  

 
 X  = lateral strain 
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 X  =  

=  X  X b = 0.32 x 40 x = 1.866 x 10 -3 mm 

ii)  Change in diameter (  

 X  =  

=  X  X d=0.32 x  x 40 =1.39 X10 -3 mm 

 

Problem: 

 

Calculate the modulus of rigidity and bulk modulus of cylindrical bar of diameter of 25mm 

and of length 1.6m. if the longitudinal strain in a bar during a tensile test is four times the 

lateral strain find the change in volume when the bar subjected to hydrostatic pressure of 100 

  the young’s modulus of  cylindrical bar E is 100 GPa 

 

Given: 

D=25 mm 

L=1.6m=1600 mm 

Longitudinal strain = 4 X lateral strain 

E=100Gpa=1 x 105N/mm2 

To find: 

(i) Modulus of Rigidity  (ii)  Bulk modulus (iii)  Change in volume  

 

(i) Modulus of Rigidity[G]    

                E= 2G (1+µ) ---------- Relationship between E, G & µ 

Longitudinal strain = 4 X lateral strain 

 
E= 2G (1+µ) =2G (1+ ) =2G (1+0.25) 

 

E=2G (1+0.25) 

G = =  = 4 x 10 4  N/mm2 

(ii) Bulk modulus [K]  

E = 3K [1-2 µ] 

   =   K x 3[ 1-0.5] 

1 x 105   = 1.5 x K 

 = K 

                        K = .666 X N/mm2 

(iii)Change in volume [dV] 

 

 

 

 

 = = =1.5 X 10 -3 
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V =  

V = = 785000 

 
 

 

Strain energy  

 

When material is deformed by external loading, energy is stored internally throughout its 

volume the stored energy is called strain energy. 

 

Strain energy = work done  

 

Resilience: the total strain energy stored in a volume or capacity of work after removing 

straining force is called Resilience 

 

Proof Resilience: 

The maximum strain energy stored in the volume or quantity of strain energy stored in 

volume in a body when strained up to elastic limit its called Proof Resilience. 

 

  
 

Modulus of Resilience  
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MECHANICS OF SOLIDS (SMEA1305) 

 

UNIT 2: ANALYSIS OF STRESSES IN TWO DIMENSIONS    

   

Principal planes and stresses – Mohr’s circle for biaxial stresses – Maximum shear 

stress - simple problems- Stresses on inclined plane 

Biaxial state of stresses – Thin cylindrical and spherical shells – Deformation in thin 

cylindrical and spherical shells – Efficiency of joint- Effect of Internal Pressure 

 

 

 

Introduction: Principal planes and stresses 
 

The planes, which have no shear stress, are known as principal planes. Hence principal planes 

are the planes of zero shear stress. These planes carry only normal stresses. The normal 

stresses, acting on a principal plane, are known as principal stresses.  

 

Methods for determining principal planes and stresses 

 

 Analytical method 

 Graphical method 

 

Analytical method on oblique section 

The following are the two cases considered  

1. A member subjected to a direct stress in one plane 

2. A member subjected to like direct stresses in two mutually perpendicular directions.  

 

Direct stress in one plane 

 

 
Fig. 2.1  Direct Stress in one plane 

Normal stress,  2cosn  

Tangential stress, 


 2sin
2

t

  
 

n  will be maximum, when 2cos (or) cos  is maximum.  

Cos θ will be maximum when θ = 0° as cos 0° = 1 

Therefore, max. normal stress =  σ cos2θ = σ 
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t will be max, when sin 2θ is maximum. 

Sin2θ be max. when sin2θ = 1 or 2θ = 90° (or) 270° 

θ = 45° (or) 135° 

Max. value of shear stress = 


2sin
2

 

                                           = 
2



 

 
Fig. 2.2  Position of planes 

 

 

Member subjected to direct stresses in two mutually perpendicular directions 

 

 
Fig. 2.3  Member subjected to Direct stress in two perpendicular directions 

 




 2cos
22

Stress,Normal 2121 



n

 
 




 2sin
2

)(
Stress,Tangential 21 t  

 

22Stress,Resultant
tnR  

  

n

t




 tanObliquity,
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Problem 

A small block is 4 cm long, 3 cm high and 0.5 cm thick. It is subjected to uniformly 

distributed tensile forces of resultants 1200 N and 500 N as shown in Fig. below. Compute 

the normal and shear stresses developed along the diagonal AB. 

Given 

Length = 4 cm, Height = 3 cm and Width = 0.5 cm 

Force along x-axis = 1200 N Force along y-axis = 500 N 

Area of cross-section normal to x-axis = 3 x 0.5 = 1.5 cm2 

Area of cross-section normal to y-axis = 4 x 0.5 = 2 cm2 

 

2x

1 N/cm800
F

axis,- xalong Stress 
xA



 

2y

2 N/cm250
F

axis,-y along Stress 
yA



 

33.1
3

4
θtan 

 
  06.53)33.1(tanθ 1

  

 
 

 

                                                                                      Fig. 2.4 Cube at loading condition

  




 2cos
22

Stress,Normal 2121 



n

 

                                 

)06.532cos(
2

250800

2

250800








 

                                 

2N/cm65.448

  




 2sin
2

)(
Stress,Tangential 21 t

 

                                     

)06.532sin(
2

250800





 

                                     

2N/cm18.264  

 

Members subjected to direct stresses in two mutually perpendicular directions accompanied 

by simple shear stress 
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Fig. 2.5 Principal Planes Identification diagram
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                                                                                           Fig. 2.6 Loaded Cube
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Problem 

A rectangular block of material is subjected to a tensile stress of 110 N/mm2 on one plane 

and a tensile stress of 47 N/mm2 on the plane at right angles to the former. Each of the above 

stresses is accompanied by a shear stress of 63 N/mm2 and that associated with the former 

tensile stress tends to rotate the block anticlockwise. Find: 

(i) The direction and magnitude of each of the principal stress and 

(ii) Magnitude of the greatest shear stress 

Given 

  

σ1 = 110 N/mm2
 

σ2 = 47 N/mm2
 

  τ = 63 N/mm2
 

 θ = 45° 

 

 

 

 

 

                                                              Fig. 2.7 Stress acting on Rectangular block 
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Mohr’s circle method 

It is a graphical method of finding normal, tangential and resultant stresses or an oblique 

plane. It is drawn for following cases 

1.

 A body subjected to two mutually perpendicular principal stresses of unequal 

intensities 

2.

 A body subjected to two mutually perpendicular stresses which are unequal and 

unlike (one is tension and other is compression) 

3.

 A body subjected to two mutually perpendicular tensile stresses accompanied by a 

simple shear stress. 

Case 1: A body subjected to two mutually perpendicular principal stresses of unequal 

intensities 

 

Let σ1= Major tensile stress 

     σ2 = Minor tensile stress 

      θ = Angle made by the oblique plane with the axis of minor tensile stress 

 

 

 

 

Mohr’s Circle procedure 
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 Take any point A and draw a horizontal line through A. Take AB = σ1 and AC = σ2 

towards right from A to some suitable scale. With BC as diameter draw a circle. Let O is the 

centre of circle.  Now through O, draw a line OE marking an angle 2θ with OB. From E, 

draw ED perpendicular on AB. Join AE. Then the normal and tangential stresses on the 

oblique plane are given by AD and ED respectively. The resultant stress on the oblique plane 

is given by AE.  

 

 

 

 

 

 

 

 

 

                                                                                                     Fig. 2.8 Mohr’s Circle 

From Figure, we have 

Length AD = Normal stress on oblique plane; Length ED = Tangential stress on oblique 

plane; Length AE =  Resultant stress on oblique plane; Angle φ = obliquity 

 

Case 2: Mohr’s circle when a body is subjected to two mutually perpendicular principal 

stresses which are unequal and unlike (one is tensile and other is compressive)  

 

 

 

 

 

 

 

 

 

 

                                                                                Fig. 2.9 Mohr Circle Position 

 

Take any point A and draw a horizontal line through A on both sides of A as shown in Fig. 

Take AB = σ1(+) towards right of A and AC = σ2(-) towards left of A to some suitable scale. 

Bisect BC at O. With O as centre and radius equal to CO or OB, draw a circle. Through O 
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draw a line OE making an angle 2θ with OB. From E, draw ED perpendicular to AB. Join AE 

and CE. Then normal and shear stress on the oblique plane are given by AD and ED. Length 

AE represents the resultant stress on the oblique plane. 

 

Case 3: Mohr’s circle when a body subjected to two mutually perpendicular tensile 

stresses accompanied by a simple shear stress. 

 

 

 

 

 

 

 

 

                                                                            Fig. 2.10 Mohr Circle 

 

Take any point A and draw a horizontal line through A. Take AB = σ1and AC = σ2 

towards right of A to some suitable scale. Draw perpendiculars at B and C and cut off BF and 

CG equal to shear stress to the same scale. Bisect BC at O. Now with O as centre and radius 

equal to OG or OF draw a circle. Through O, draw a line OE making an angle of 2θ with OF 

as shown in Fig. From E, draw ED perpendicular to CB. Join AE. Then length AE represents 

the resultant stress on the oblique plane. And lengths AD and ED represents the normal stress 

and tangential stress respectively.    

Problems 

1.

 A point in a strained material is subjected to stresses shown in Fig. Using Mohr’s circle 

method, determine the normal and tangential stress across the oblique plane. 

 

             Fig. 2.11 Rectangular bar Stress state 

Given: 
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                                                                           Fig. 2.12 Mohr Circle Diagram 

σ1 = 65 N/mm2
 

σ2 = 35 N/mm2
 

  τ = 25 N/mm2
 

 θ = 45° 

Let 1 cm = 10 N/mm2 

cm5.6
10

65
1 

 

cm5.3
10

35
2 

 

  

cm5.2
10

25


 

By measurements, Length AD = 7.5 cm and  

                               Length ED = 1.5 cm 

 

Normal stress (σn) = Length AD x Scale = 7.5 x 10 = 75 N/mm2 

 

Tangential stress (σt) = Length ED x Scale = 1.5 x 10 = 15 N/mm2 

 

2. An elemental cube is subjected to tensile stresses of 30 N/mm2 and 10 N/mm2 acting on 

two mutually perpendicular planes and a shear stress of 10 N/mm2 on these planes. Draw the 

Mohr’s circle of stresses and hence or otherwise determine the magnitudes and directions of 

principal stresses and also the greatest shear stress. 

Given: 

 

 

 

 

 

 

 

                                                                         Fig. 2.13 Mohr Circle diagram 

σ1 = 30 N/mm2
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σ2 = 10 N/mm2
 

  τ = 10 N/mm2 

Let 1 cm = 2 N/mm2  

cm15
2

30
1 

 

cm5
2

10
2 

 

   

cm5
2

10


 
By measurements,  

Length AM = 17.1 cm; Length AL = 2.93 cm; Length OH = Radius of Mohr’s circle 

= 7.05 cm;  
 452)( orFOB

  

 Major Principal stress = Length AM x Scale = 17.1 x 2 = 34.2 N/mm2 

 Minor principal stress = Length AL x Scale = 2.93 x 2 = 5.86 N/mm2 

                 

 5.22
2

45


 
 The second principal plane is given by θ+90° 

    = 22.5 + 90  

    = 112.5° 

 Greatest shear stress = Length OH x Scale 

             = 7.05 x 20  
             = 14.1 N/mm2  

BIAXIAL STRESS SYSTEMS 

A biaxial stress system has a stress state in two directions and a shear stress typically showing 

in Fig.. 

 
 

Fig. 2.14 Element of a structure showing a biaxial stress system 

 

When a Biaxial Stress state occurs in a thin metal, all the stresses are in the plane of the 

material. Such a stress system is called PLANE STRESS. We can see plane stress in pressure 

vessels, aircraft skins, car bodies, and many other structures. 
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THIN CYLINDERS AND SPHERICAL SHELLS 
 

The stresses set up in the walls of a thin cylinder owing to an internal pressure p are: 

circumferential or hoop stress = pd/2t and 

longitudinal or axial stress = pd/4t 

 

DEFORMATION  IN THIN CYLINDRICAL AND SPHERICAL SHELLS 

 

Hoop or circumferential stress 

 This is the stress which is set up in resisting the bursting effect of the applied pressure and 

can be most conveniently treated by considering the equilibrium of half of the cylinder as 

shown in Fig. 

 

 
Fig. 2.15 Hoop stress failure 

 

 
Longitudinal stress or axial stress 

Consider now the cylinder shown in the fig.. 

 

 
                                                    Fig. 2.16 Longitudinal failure. 
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Problem 1 

 

A thin cylindrical pipe of diameter 1.5 mm and thickness 1.5 cm is subjected to an internal 

fluid pressure of 1.2 N/mm2. Determine: 

i)Longitudinal stress developed in the pipe and 

ii)Circumferential stress developed in the pipe. 

 

Solution: 

Given: 

       Dia of pipe d=1.5 m 

       Thickness,  t=1.5 cm = 1.5x10-2m 

        Internal fluid pressure, p=1.2 N/mm2 

 

i) The longitudinal stress is given by 

                  σ =pd/2t 

                   = (1.2x1.5)/(4x1.5x10-2) 

                   =30 N/mm2 

ii) The circumferential stress is given by 

                                  σ =pd/4t 

                                    =(1.2x1.5) / (2x1.5x10-2) 

                                    =60 N/mm2 

Problem 2 

 

A cylinder of internal diameter 2.5 m and of thickness 5cm contains a gas.If the tensile stress 

in the material is not to exceed 80 N/mm2, determine the internal pressure of the gas. 

 

Solution:  

Given:  

         Internal dia of cylinder  d=2.5 cm 

         Thickness of cylinder  t= 5cm=5x10-2m 

         Maximum permissible stress =80 N/mm2 

As maximum permissible stress is given, hence this should be equal to circumferential stress 

σ 

   σ =80 N/mm2 

                  σ =pd/2t 

 

                P=(2t x σ)/d 
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               =(2x5x10-2x80) / 2.5 

 

             =3.2 N/mm2 

Efficiency of a joint 

 

The cylindrical shells are having two types of joints namely longitudinal joint and 

circumferential joint. 

Let   ɳ l = efficiency of a longitudinal joint and 

         ɳ c = efficiency of a circumferential joint…… 

the circumferential stress(σ1) is given by, 

                   σ1 = (p x d) / (2t x ɳ l)   and 

longitudinal stress(σ2) is given by., 

                             σ2 = (p x d) / (4t x ɳ c)    

 

In longitudinal joint, the circumferential stress is developed whereas in circumferential joint 

the longitudinal stress is developed. 

 

Problem 3: 

A boiler is subjected to an internal steam pressure of 2 N/mm2, the thickness of a boiler plate 

is 2cm and permissible tensile stress is 120 N/mm2 , find out the maximum diameter when 

efficiency of longitudinal joint is 90% and that of circumferential joint is 40%. 

 

Solution: 

Given  

        Internal steam pressure, p = 2 N/mm2 

        Thickness of boiler plate, t =2cm 

         Permissible tensile stress = 120 N/mm2 

In case of a joint, the permissible stress may be circumferential stress or longitudinal 

stress. 

      efficiency of longitudinal joint = ɳ l = 90% = 0.90 

     efficiency of circumferential joint = ɳ c = 40% = 0.40 

max. diameter for circumferential stress is given by,  

 

σ1 = (p x d) /(2t x ɳ l)    

where  σ1 = given Permissible tensile stress = 120 N/mm2 

 

                      120 = (2 x d) / (2x 0.90 x2) 

 

                          d= (120x2x0.9x2) / 2 

                            = 216 cm. 

    Max.diameter for longitudinal stress is given by, 

           σ2 = (p x d) / (4t x ɳ c)    

          where  σ2 = given Permissible tensile stress = 120 N/mm2 
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                                          120 = (2 x d) / (4x 0.40 x2) 

 

                                                   d= (120x4x0.4x2) / 2 

                                                    d=192 cm. 

the longitudinal or circumferential stresses included in the material are directly 

proportional to the diameter (d), and hence stress induced will be less if the value of d 

is less. Hence minimum value of d is taken…..so, max.diameter = 192 cm 

 

Effect of internal pressure on the dimensions of a thin cylindrical shell 

 

 
 

Then, circumferential strain, 

                                    e1 = (σ1 / E) – ( µ σ2 /E) 

 

                                     =  (1- µ/2) 

 

             

and longitudinal strain, 

                             e2 = (σ2 / E) – ( µ σ1 / E) 

 

                                =  (1/2 - µ) 

 

Change in diameter, δd/d =  (1- µ/2) 
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Change in length, δL/L    =  (1/2 - µ) 

 

Change in volume, δV/V = (2e1+ e2)  

 

                                         =V(2 δd/d + δL/L) 

 

Problem 4: 

Calculate change in diameter, change in length and change in volume of a thin cylindrical 

shell 100cm diameter, 1cm thickness and 5m long when subjected to internal pressure of  

3N/mm2, take the value of E = 2 x 105 N/mm2 and poisson’s ratio µ = 0.3 

 

Solution: 

 Given:   diameter of shell, d=100cm 

               Thickness of shell, t= 1cm 

               Length of shell, L= 5m= 500cm 

               Internal pressure, p = 3N/mm2 

                Young’s modulus, E=  2 x 105 N/mm2 

        And  Poisson’s ratio µ = 0.3 

         

 

          
 

    
 

                    
 

 

(iii) change in volume δV/V is given by, 
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Thin spherical shells 

 

The figure shows a thin spherical shell of internal diameter d and thickness t and subjected to 

internal fluid pressure p , the fluid inside the shell has a tendency to split the shell into two 

hemispheres along x-x axis. 

 

 
Fig. 2.17 Spherical shell 

Circumferential or hoop stress(σ1) is given by, 

                                     σ1 = pd/4t  

    circumferential stress when the joint efficiency  is given by, 

                                        σ1 = pd/4t. ɳ 

 

Problem 5 

 

A vessel in the shape of a spherical shell of 1.20m internal diameter and 12mm shell 

thickness is subjected to pressure of 1.6 N/mm2, determine the stress induced in the material 

of the vessel. 

 

Solution 

Given. 

        Internal diameter , d = 1.2m = 1200mm 

        Shell thickness, t = 12mm and 

         Fluid pressure, p = 1.6 N/mm2 

The stress induced in the material of the spherical shell is given by, 

                                                       σ1 = pd/4t  

                                                         = (1.6 x 1200) / (4x12) 

                                                        = 40 N/mm2 

Problem 6 
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 A spherical vessel 1.5m diameter is subjected to an internal fluid pressure of 2 N/mm2, find 

the thickness of the plate required if maximum stress is not to exceed 150 N/mm2 and joint 

efficiency is 75%  

  Solution 

         Given 

                 Diameter of shell, d = 1.5m = 1500mm, 

                  Fluid pressure, p = 2 N/mm2 

                          Stress in the material, σ1 = 150 N/mm2 

                   Joint efficiency, ɳ = 75% = 0.75 

                       Let t = thickness of the plate and  

                   Stress induced is given by, 

                                        σ1 = pd/4t. ɳ 

                                         t = (p x d) / (4 x ɳ x σ1) 

                                          = (2 x 1500) / (4 x 0.75 x 150) 

                                          = 6.67mm 

 

Change in dimension of a thin spherical shell due to an internal pressure 

 Strain in any direction is also noted as δd/d which is given by the equation 

                                                         δd/d =  (1- µ) 

                     

                  and volumetric strain δV/V is given by, 

                                                  δV/V = 3 x (δd/d) 

                                                            =  (1- µ) 

Problem 7 

A spherical shell of internal diameter 0.9m and of thickness 10mm is subjected to an internal 

pressure of 1.4 N/mm2, determine the increase in diameter and increase in volume, take               

E = 2 x 105 N/mm2 and µ = 0.33 

 

Solution. 

Given. 

 

Internal diameter, d = 0.9m=900mm  

Thickness of the shell, t=10mm 

Fluid pressure, p = 1.4 N/mm2 

And E = 2 x 105 N/mm2 

 µ = 0.33 

using the relation  

               δd/d =  (1- µ) 

                        =  (1-0.33) 

                        = 105 x 10-6 

                  increase in diameter, δd = 105 x 10-6 x 900 

                                                          = 94.5 x 10-3mm 

                                                          = 0.0945mm. 

          

  Now,  

                    Volumetric strain = δV/V = 3 x (δd/d) 

                                                 = 3 x 105 x 10-6 

                                           δV/V = 315 x 10-6 



19 

 

            increase in volume , δV = 315 x 10-6 x V 

                                                   = 315 x 10-6 x ( π/6 d3) 

                                                  = 315 x 10-6x (π/6 x 9003) 

                                                  = 12028.5 mm3 

 

Normal and shear stresses on inclined sections 

 

To obtain a complete picture of the stresses in a bar, we must consider the stresses acting on 

an “inclined” (as opposed to a “normal”) section through the bar. 

 

                 
Fig. 2.18 Normal and Shear stresses on inclined planes 

  

 

Because the stresses are the same throughout the entire bar, the stresses on the sections are 

uniformly distributed. 

 

        
Fig. 2.19 Normal and Shear stresses pattern 

 

2D view of the normal section 

 

 
Fig. 2.20 ‘2D’ view of Normal section 

2D view of the inclined section 

 
Fig. 2.21 ‘2D’ view of inclined section 
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MECHANICS OF SOLIDS (SMEA1305) 
 

UNIT 3: BEAMS  - LOADS AND STRESSES                                          

   

Types of beams - Supports and Loads – Shear force and Bending Moment in beams – 

Cantilever, Simply supported and Overhanging beams – SFD and BMD for inclined 

loads and couples 

 

Stresses in beams – Theory of simple bending – Stress variation along the length and in 

the beam section – Effect of shape of beam section on stress induced.  

 

Introduction: Types of beams 

 

There are 5 most important beams. They are 

 

 Simple supported beam 

 Cantilever beam 

 Overhanging beam 

 Fixed beam 

 Continuous beam 

Simple supported beam: A beam supported or resting freely on the supports at its both ends, 

is known as simply supported beam. 

                                                     
                                              Fig. 3.1 Simply Supported Beam 

Cantilever beam: A beam which is fixed at one end and free at the other end is known as 

cantiver beam. 

 

 

 

Fig. 3.2 Cantilever Beam 

 

Over hanging beam: If the end portion of a beam is extended beyond the support such beam 

is known as Overhanging beam 

                                             
Fig. 3.3 Over hanging Beam 

 

 

Fixed beam:  A beam whose both ends are fixed or built in walls is known as fixed beam. 
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Fig. 3.4 Fixed Beam 

 

Continuous beam: A beam which is provided more than two supports is known as 

continuous beam.         

                                                 
Fig. 3.5 Continuous Beam 

 

 

Types of supports 

 

There are 5 most important supports. They are 

 Simple supports or knife edged supports 

 Roller support 

 Pin-joint or hinged support 

 Smooth surface support 

 Fixed or built-in support 

Simple supports or knife edged support: in this case support will be normal to the surface 

of the beam. If AB is a beam with knife edges A and B, then RA and RB will be the reaction. 

 

 

 

 

 

 

 

Fig. 3.6 simple/Knife edge Support 

 

Roller support: here beam AB is supported on the rollers. The reaction will be normal to the 

surface on which rollers are placed.  

 

 

 

 

 

 

 

Fig. 3.7 Roller Support 
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Pin joint (or hinged) support: here the beam AB is hinged at point A. the reaction at the 

hinged end may be either vertical or inclined depending upon the type of loading. If load is 

vertical, then the reaction will also be vertical. But if the load is inclined, then the reaction at 

the hinged end will also be inclined. 

 

 

 

 

 

 

Fig. 3.8 Hinged Support 

  

 

Fixed or built-in support: in this type of support the beam should be fixed. The reaction will 

be inclined. Also the fixed support will provide a couple. 

 

Types of loading 

 

There are 3 most important type of loading: 

 Concentrated or point load 

 Uniformly distributed load 

 Uniformly varying load 

Concentrated or point load: A concentrated load is one which is considered to act at a 

point. 

 
Fig. 3.9Concentrated or point load 

 

 

Uniformly distributed load: A uniformly distributed load is one which is spread over a 

beam in such a manner that rate of loading is uniform along the length. 

 

 
Fig. 3.10 Uniformly distributed load 
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Uniformly varying load: A uniformly varying load is one which is spread over a beam in 

such a manner that rate of loading varies from point to point along the beam.  

 
Fig. 3.11 Uniformly varying load 

 

CONCEPT AND SIGNIFICANCE OF SHEAR FORCE AND BENDING MOMENT 

SIGN CONVENTIONS FOR SHEAR FORCE AND BENDING MOMENT 

  

(i) Shear force: Fig. 1 shows a simply supported beam AB. carrying a load of 1000 N at 

its middle point. The reactions at the supports will be equal to 500 N. Hence RA= RB= 500 

N.  

 

Now imagine the beam to be divided into two portions by the section X-X. The resultant of 

the load and reaction to the left of X-X  is 500 N vertically upwards. And the resultant of the 

load and reaction to the right of X-X is (1000↓ -500 ↑= 500↓N) 500 N downwards. The 

resultant force acting on any one of the parts normal to the axis of the beam is called the 

shear force at the section X-X is 500N. 

  

The shear force at a section will be considered positive when the resultant of the forces to 

the left to the section is upwards, or to the right of the section is downwards. Similarly the 

shear force at a the section will be considered negative if the resultant of the forces to the left 

of the section is downward, or to the right of the section is upwards. Here the resultant force 

to the left of the section is upwards and hence the shear force will be positive. 

  

 
                             Fig. 3.12 Shear force and Bending Moment Sign Convention 

 

(ii) Bending moment. The bending moment at a section is considered positive if the bending 

moment at that section is such that it tends to bend the beam to a curvature having 

concavity at the top as shown in Fig. 2. Similarly the bending moment at a section is 

considered negative if the bending moment at that section is such that it tends to bend the 

beam to a curvature haling convexity at the top. The positive B.M. is often called 

sagging moment and negative B.M. as hogging Moment. 
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IMPORTANT POINTS FOR DRAWING SHEAR FORCE AND BENDING 

MOMENT DIAGRAMS 

 

The shear force diagram is one which shows the variation of the shear force along the 

length of the beam. And a bending moment diagram is one which show the variation of 

the bending moment along the length of beam. In these diagrams, the shear force or 

bending moment are represented by ordinates whereas the length of the beam represents 

abscissa. 

  

The following are the important points for drawing shear force and bending moment 

diagrams  

 

1. Consider the left or the right portion of the section.  

2. Add the forces (including reaction) normal to the beam on one of the portion. If right 

portion of the section is chosen, a force on the right portion acting downwards is positive 

while force acting upwards is negative.  

If the left portion of the section is chosen, a force on the left portion acting upwards is 

positive while force acting downwards is negative. 

3. The positive values of shear force and bending moments are plotted above the base 

line, and negative values below the base line.  

4. The shear force diagram will increase or decrease suddenly i.e., by a vertical straight 

line at a section where there is a vertical point load.  

5. The shear force between any two vertical loads will be constant and hence the shear 

force diagram between two vertical loads will be horizontal. 

6. The bending moment at the two supports of a simply supported beam and at the free 

end of a cantilever will be zero. 

 

SHEAR FORCE AND BENDING MOMENT DIAGRAMS FOR A CANTILEVER 

BEAM WITH A POINT LOAD 

 

A cantilever beam of length 2m carries the point loads as shown in fig. draw the shear force 

and B.M diagrams for the cantilever beam. 

 

Shear force diagram: 

 

The shear force at D is +800N. this shear force remains constant between D and C. At C, due 

to point load the force becomes 1300N. between C  and D, the shear force remains 1300N. At 

B again, the shear force becomes 1600N. the shear force between B and A remains constant 

and equal to 1600N. hence the shear force at different points will be as follows: 

 

S.F. at D, FD= + 800 N  

S.F. at C. Fe.=+ 800 + 500= 1300N  

S.F. at B, Fa= + 800 + 500 +300 =1600N  
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S.F. at A, FA = + 1600 N.  

 

The shear force, diagram is shown in Fig. which is drawn as: Draw a horizontal line AD as 

base line. On the base line mark the points B and C below the point loads. Take the ordinate 

DE = 800 N in the upward direction. Draw a line EF parallel to AD. The point F is vertically 

above C. Take vertical line FG is 500 N. Through G, draw a horizontal line GH in which 

point H is vertically above B. Draw vertical line HI = 300 N. From I, draw a horizontal line 

IJ. The point J is vertically above A. This completes the shear force diagram.  

Bending Moment Diagram  

The bending moment at D is zero: 

 
Fig. 3.13 SF & BM Diagram 

(i) The bending moment at any section between C and Data  distance: and D is given by, 

Mx = - 800 X x which follows a straight line law.  

At C, the value of x = 0.8 m. B.M. at C, = - 800 X 0.8 = - 640 Nm.  

(ii) The B.M. at any section between B and C at a distance x from D is given by (At C, x 

= 0.8 and at B, x = 0.8 + 0.7 = 1.5 m. Hence here varies from 0.8 to 1.5). 

Mx = - 800x - 500(x- 0.8)  

Bending moment between B and C also varies by a straight line law.  

B.M. at B is obtained by substituting x = 1.5 m in equation (i).  

MB = -800 X 1.5 - 500 (1.5 - 0.8) 

= 1200 – 350 =  1550 Nm. 

 

(iii) The B.M. at any section between A and B at a distance x from D is given by  
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(At B, x = 1.5 and at A, x = 2.0 m. Hence here x  varies from 1.5m to 2.0 m 

  Mx = - 800x - 500 (x - 0.8) – 300 (x- 1.5)  

Bending moment between A and B varies by a straight line law.  

B.M. at A is obtained by substituting x = 2.0 m in equation (ii),  

MA = - 800 X 2 - 500 (2 - 0.8) - 300 (2 - 1.5)  

=  - 800 X 2 - 500 X 1.2 - 300 X 0.5  

= - 1600 - 600 - 160 = - 2350 Nm.  Hence the bending moments at different points 

will be as given below : MD = 0 Mc = - 640 Nm MB= - 1550 Nm, M A= - 2350 Nm 

 

SHEAR FORCE AND BENDING MOMENT DIAGRAMS FOR A CANTILEVER 

BEAM WITH A UNIFORMLY DISTRIBUTED LOAD 

 

A cantilever beam of length 2m carries a uniformly distributed load of 2kN/m length over the 

whole length and a point load of 3kN at the free end. draw the shear force and B.M diagrams 

for the cantilever beam. 

 

 
Fig. 3.14 SF & BM Diagram 

 

 

Shear Force diagram  

The shear force at B = 3 kN  

Consider any section at a distance x from the free end B. The shear force at the section is 

given by.  

Fx =  3.0 +  w.x  ( +ve sign is due to downward force on right portion of the section)  

= 3.0 +  2 X x   

 The above equation shows that shear force follows a straight line law. 

 At B, x = 0 hence FB = 3.0 kN  

At A. x = 2 m hence FA = 3 + 2 x 2 = 7 kN.  
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The shear force diagram is shown in Fig. 6.18 (b), in which FB = BC = 3 kN and FA = AD = 

7 kN. The points C and D are joined by a straight line.  

Bending Moment Diagram 

 The bending moment at any section at a distance x from the free end B is given by.  

Mx = - (  3x + wx . x/2) 

 = - (  3x + 2x2/2) 

 = - (3x + x2) 

( The bending moment will be negative as for the right portion of the section. the moment of 

loads at x is clockwise) 

Equation (i) shows that the B. M. varies according to the parabolic law. From equation (i) we 

have At B. x = 0 hence MB = -(3x0 + 02) = 0  

At A, x = 2 m hence MA = - ( 3 x 2 + 22) = - 10 kN/m  

Now the bending moment diagram is drawn In this diagram.  

AA' = 10 kNm and points A' and B are joined by a parabolic curve. 

 

SHEAR FORCE AND BENDING MOMENT DIAGRAMS FOR A CANTILEVER 

CARRYING A GRADUALLY VARYING LOAD 

 

A cantilever of length 4 m carries a gradually varying load, zero at the free end to 2 Kn/m. at 

the fixed end. Draw the S.F. and B.M. diagrams for the cantilever.  

 

Fig. 3.15 SF & BM Diagram 

 

 

Shear Force Diagram  
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The shear force is zero at B.  

The shear force at C will be equal to the area of load diagram ABC.  

Shear force at C = (4 x 2) / 2 = 4 kN  

The shear force between A and B varies according to parabolic law.  

Bending Moment Diagram  

The B.M. at B is zero.  

The bending moment at A is equal to MA =  – w. l2 / 6 = - 2 x 42 / 6  = - 5.33 kNm.  

The B.M. between A and B varies according to cubic law. 

 

SHEAR FORCE AND BENDING MOMENT DIAGRAMS FOR A SIMPLY 

SUPPORTED BEAM WITH POINT LOAD 

 

A simply supported beam of length 6 m, carries point load of 3 kN and 6 kN at distances of 2 

m and 4 m from the left end. Draw the shear force and bending moment diagrams for the 

beam.  

Sol.  

First calculate the reactions RA and RB.  

Taking moments of the force about A, we get 

RB X 6 = 3 X 2 + 6 X 4 = 30   

RB =  30/ 6 = 5 kN 

RA = Total load on beam - RB = (3 + 6) – 5 = 4 kN 

 
Fig. 3.16 SF & BM Diagram 

 

Shear Force Diagram  

Shear force at A, FA= + RA= + 4 kN  

Shear force between A and C is constant and equal to + 4 kN  

Shear force at C, Fc = + 4 - 3.0 = + 1 kN  
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Shear force between C and D is constant and equal to + 1 kN.  

Shear force at D, FD= + 1 - 6 = - 5 kN  

The shear force between D and B is constant and equal to - 5 kN.  

Shear force at B, FB= - 5 kN  

Bending Moment Diagram  

B.M. at A, MA = 0 

 B.M. at C, MC = RA X 2 = 4 X 2 = +8kNm  

B.M. at D, MD = RA X 4 -3 x 2 = 4 x 4 -3 x 2 =+ 10 kNm  

B.M. at B, MB= 0 

 

SHEAR FORCE AND BENDING MOMENT DIAGRAMS FOR A SIMPLY 

SUPPORTED BEAM WITH A UNIFORMLY DISTRIBUTED LOAD 

Draw the S.F. and B.M. diagrams of a simply supported beam of length 7 m carrying 

uniformly distributed load 

 

Sol. First calculate the reactions RA and RB, 

Taking moments of all forces about A, we get  

RB X 7 = 10 X 3 X (3/2) + 5 X 2 X ( 3+2+(2/2)  

= 45 + 60 = 105  

RB = 105 /7 = 15 kN 

and RA =Total load on beam - RB  

= ( 10X 3 +5 X 2) - 15 = 40- 15 = 25kN  

S.F. Diagram  

The shear force at A is + 25 kN  

The shear force at C = RA - 3 X 10 = + 25 - 30 = - 5 kN  

The shear force varies between A and C by a straight line law.  

The shear force between C and D is constant and equal to - 5 kN. 

The shear force at B is - 15 kN The shear force between D and B varies by a straight line law.  

The shear force is zero at point E between A and C. Let us find the location of E from A. Let 

the point E be at a distance x from A.  

The shear force at E = RA - 10 x = 25 - 10x  

But shear force at E = 0  

25-10x = 0 or  

10x =  25  

x = 2.5m 

B.M. Diagram  

B.M. at A is zero  

B.M. at B is zero  

B.M. at C,  

MC =  RA X 3 -10 X 3 x 3/2 

=  25 X 3 – 45 = 75 -45 = 30 kNm  

At E, x = 2.5 and hence  

B.M. at E,   ME =  RA  X 2.5 - 10 X 2.5 X (2.5 /2) =  25 X 2.5 - 5 X 6.25 = 62.5 - 31.25  

= 31.25 kNm  
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B.M. at D.  MD= 25(3 + 2) - 10 X 3 X ((3/2) + 2) =  125 - 105 = 20 kNm  

The B.M. between AC and between BD varies according to parabolic law. But B.M. between 

C and D varies according to straight line law.  

 

 
Fig. 3.17 SF & BM Diagram 

 

 

SHEAR FORCE AND BENDING MOMENT DIAGRAMS FOR OVER HANGING 

BEAM 

 

A beam of length 12 m is simply supported at two supports which are 8m apart, with an 

overhang of 2 m on each side as shown in Fig. The beam carries a concentrated load of 1000 

N at each end. Draw S.F. and B.M. diagrams. 
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Fig. 3.18 SF & BM Diagram 

 

As the loading on the beam is symmetrical. Hence reactions RA and RB will be equal and 

their magnitude will be half of the total load. 

  

RA = RB = (1000 + 1000)/2 = 1000N 

S.F. at C = -1000 N  

S.F. remains constant (i.e., = - 1000 N) between C and A  

S.F. at A   = 1000+RA = - 1000 + 1000 = 0  

S.F. remains constant (i.e., = 0) between A and B  

S.F. at B    =  0+ 1000 =+ 1000N  

S.F. remains constant (i.e., 1000 N) between B and D  

B.M. Diagram  

B.M. at C  = 0 

B.M. at A = - 1000 x 2 = - 2000 Nm  

B.M. between C and A varies according to straight line law.  

The B.M. at any section in AB at a distance of x from C is given by,  

MX =  - 1000  X x + RA (x - 2)  

=  - 1000 X x + 1000(x - 2) =  - 2000 Nm  

Hence B.M. between A and B is constant and equal to - 2000 Nm.  

B.M. at D = 0 
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STRESSES IN BEAMS 

 

When some external load acts on a beam, the shear force and bending moments are set up at 

all sections of the beam. Due to the shear force and bending moment, the beam undergoes 

certain deformation. The material of the beam will offer resistance or stresses against these 

deformations. These stresses with certain assumptions can be calculated. The stresses 

introduced by bending moment are known as bending stresses.  

If a length of a beam is subjected to a constant bending moment and no shear force (i.e., zero 

shear force), then the stresses will be set up in that length of the beam due to B.M. only and 

that length of the beam is said to be in pure bending or simple bending. The stresses set up in 

that length of beam are known as bending stresses. 

 
Fig. 3.19 SF & BM Diagram 

 

A beam simply supported at A and B and overhanging by same length at each support is 

shown in Fig. 7.1. A point load W is applied at each end of the overhanging portion. The S.F. 

and B.M. for the beam are drawn as shown in Fig. 7.1 (b) and Fig. 7.1 (c) respectively. From 

these diagrams, it is clear that there is no shear force between A and B but the B.M. between 

A and B is constant. This means that between A and B, the beam is subjected to a constant 

bending moment only. This condition of the beam between A and B is known as pure 

bending or simple bending. 

 

THEORY OF SIMPLE BENDING 

 

THEORY OF SIMPLE BENDING WITH ASSUMPTIONS MADE 

  

Before discussing the theory of simple bending, let us see the assumptions made in the theory 

of simple bending. The following are the important assumptions:  

 

1. The material of the beam is homogeneous* and isotropic**. 

 2. The value of Young's modulus of elasticity is the same in tension and compression.  
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3. The transverse sections which were plane before bending, remain plane after bending  

4. The beam is initially straight and all longitudinal filaments bend into circular arcs with a 

common centre of curvature.  

5. The radius of curvature is large compared with the dimensions of the cross-section. 6. Each 

layer of the beam is free to expand or contract, independently of the layer, above or below it. 

  

A beam subjected to simple bending. Consider a small length fit of this part of beam. 

Consider two sections AB and CD which are normal to the axis of the beam N - N. Due to the 

action of the bending moment, the part of length &x will be deformed as shown in Fig.(b). 

From this figure, it is clear that all the layers of the beam, which were originally of the same 

length, do not remain of the same length any more. The top layer such as AC has deformed to 

the shape NC. This layer has been shortened in its length. The bottom layer BD has deformed 

to the shape B'D'. This layer has been elongated. From the Fig. 7.2 (b), it is clear that some of 

the layers have been shortened while some of them are elongated. At a level between the top 

and bottom of the beam, there will be a layer which is neither shortened nor elongated. This 

layer is known as neutral layer or neutral surface. This layer in Fig.(b) is shown by N' — N' 

and in Fig.(a) by N — N. The line of intersection of the neutral layer on a cross-section of a 

beam is known as neutral axis (written as N.A.). 

 
Fig. 3.20 Before and after Bending of Beam 

 

The layers above N — N (or N' — N') have been shortened and those below, have been 

elongated. Due to the decrease in lengths of the layers above N— N, these layers will be 

subjected to compressive stresses. Due to the increase in the lengths of layers below N — N, 

these layers will be subjected to tensile stresses. We also see that the top layer has been 

shortened maximum. As we proceed towards the layer N— N, the decrease in length of the 

layers decreases. At the layer N— N, there is no change in length. This means the 

compressive stress will be maximum at the top layer. Similarly the increase in length will be 

maximum at the bottom layer. As we proceed from bottom layer towards the layer N — N, 

the increase in length of layers decreases. Hence the amount by which a layer increases or 

decreases in length, depends upon the position of the layer with respect to N - N. This theory 

of bending is known as theory of simple bending. 

 

Simple Bending Theory OR Theory of Flexure for Initially Straight Beams  

(The normal stress due to bending are called flexure stresses) 
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Preamble:  

When a beam having an arbitrary cross section is subjected to a transverse loads the beam 

will bend. In addition to bending the other effects such as twisting and buckling may occur, 

and to investigate a problem that includes all the combined effects of bending, twisting and 

buckling could become a complicated one. Thus we are interested to investigate the bending 

effects alone, in order to do so; we have to put certain constraints on the geometry of the 

beam and the manner of loading. 

  

Assumptions:   
The constraints put on the geometry would form the assumptions:  

1. Beam is initially straight, and has a constant cross-section.  

2. Beam is made of homogeneous material and the beam has a longitudinal plane of 

symmetry.  
3. Resultant of the applied loads lies in the plane of symmetry.  

4. The geometry of the overall member is such that bending not buckling is the primary cause 

of failure.  

5. Elastic limit is nowhere exceeded and ‘E' is same in tension and compression.  

6. Plane cross - sections remains plane before and after bending.  

 
Fig. 3.21 Before and after Bending to an arc 

 

Let us consider a beam initially unstressed as shown in fig 1(a). Now the beam is subjected to 

a constant bending moment (i.e. „Zero Shearing Force') along its length as would be obtained 

by applying equal couples at each end. The beam will bend to the radius R as shown in Fig 

1(b)  

 

As a result of this bending, the top fibers of the beam will be subjected to tension and the 

bottom to compression it is reasonable to suppose, therefore, that somewhere between the 

two there are points at which the stress is zero. The locus of all such points is known as 

neutral axis. The radius of curvature R is then measured to this axis. For symmetrical 

sections the N. A. is the axis of symmetry but whatever the section N. A. will always pass 

through the centre of the area or centroid. 

  

The above restrictions have been taken so as to eliminate the possibility of 'twisting' of 

the beam.  
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Concept of pure bending: Loading restrictions: 

  

As we are aware of the fact internal reactions developed on any cross-section of a beam may 

consists of a resultant normal force, a resultant shear force and a resultant couple. In order to 

ensure that the bending effects alone are investigated, we shall put a constraint on the loading 

such that the resultant normal and the resultant shear forces are zero on any cross-section 

perpendicular to the longitudinal axis of the member,  

That means F = 0 

Since or M = constant. 

Thus, the zero shear force means that the bending moment is constant or the bending is same 

at every cross-section of the beam. Such a situation may be visualized or envisaged when the 

beam  

 

 
Fig.3.22 Plane of Bending 

When a member is loaded in such a fashion it is said to be in pure bending. The 

examples of pure bending have been indicated in EX 1and EX 2 as shown below: 

 

 
Fig. 3.23 Pure bending State for SSB 
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Fig. 3.24 Pure bending State for Cantilever 

 

When a beam is subjected to pure bending are loaded by the couples at the ends, certain 

cross-section gets deformed and we shall have to make out the conclusion that,  

1. Plane sections originally perpendicular to longitudinal axis of the beam remain plane and 

perpendicular to the longitudinal axis even after bending , i.e. the cross-section A'E', B'F' ( 

refer Fig 1(a) ) do not get warped or curved.  

2. In the deformed section, the planes of this cross-section have a common intersection i.e. 

any time originally parallel to the longitudinal axis of the beam becomes an arc of circle.  

 

 
Fig. 3.25 Position of Neutral Surface/Axis 

 

We know that when a beam is under bending the fibers at the top will be lengthened while at 

the bottom will be shortened provided the bending moment M acts at the ends. In between 

these there are some fibers which remain unchanged in length that is they are not strained, 

that is they do not carry any stress. The plane containing such fibers is called neutral 

surface.The line of intersection between the neutral surface and the transverse exploratory 

section is called the neutral axis Neutral axis (N A). 

. 

Bending Stresses in Beams or Derivation of Elastic Flexural formula : 

  

In order to compute the value of bending stresses developed in a loaded beam, let us consider 

the two cross-sections of a beam HE and GF , originally parallel as shown in fig 1(a).when 

the beam is to bend it is assumed that these sections remain parallel i.e. H'E' and G'F' , the 

final position of the sections, are still straight lines, they then subtend some angle q.  
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Consider now fiber AB in the material, at a distance y from the N.A, when the beam bends 

this will stretch to A'B' 

 

 
Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the 

neutral axis zero. Therefore, there won't be any strain on the neutral axis 

 

 

 
Fig. 3.26 Area MI consideration 

 

Consider any arbitrary a cross-section of beam, as shown above now the strain on a fibre at a 

distance „y' from the N.A, is given by the expression 
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Now the term is the property of the material and is called as a second moment of area of the 

cross-section and is denoted by a symbol I.  

Therefore 

 
 

This equation is known as the Bending Theory Equation. 

 

The above proof has involved the assumption of pure bending without any shear force being 

present. Therefore this termed as the pure bending equation. This equation gives distribution 

of stresses which are normal to cross-section i.e. in x-direction.  

 

Section Modulus: 

  

From simple bending theory equation, the maximum stress obtained in any cross-section is 

given as 

 
For any given allowable stress the maximum moment which can be accepted by a particular 

shape of cross-section is therefore 

 
For ready comparison of the strength of various beam cross-section this relationship is 

sometimes written in the form 

 
Is termed as section modulus 

 

STRESSES IN BEAMS 

 

In previous chapter concern was with shear forces and bending moment in beams.  Focus in 

this chapter is on the stresses and strains associated with those shear forces and bending 

moments. 

 

Loads on a beam will cause it to bend or flex. 
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Fig. 3.27 Cantilever Beam with a point load at free end 

 

PURE BENDING AND NONUNIFORM BENDING 

 

Pure Bending = flexure of a beam under constant bending moment   

  shear force = 0 ( V = 0 = dM / dx );  no change in moment. 

 

Non uniform Bending = flexure of a beam in the presence of shear forces 

 bending moment is no longer constant 

 

Moment Diagram example: 

 

 

 
                                               Fig. 3.28 Moment diagram 
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    d  =  ds 

 

   For small deflections:   ds    dx 

 

     
dx

d


 

1
           (1) 

 

 
                                           Fig. 3.29 Sign Convention 

 

 

 

Somewhere between the top and bottom of the beam is a place where the fibers are neither in 

tension or compression. 

 

Neutral axis of the cross section 

 
Fig. 3.30 Neutral Axis and Neutral Layer 

 

dashed line  = neutral surface of the beam 

 

when bent: a b  lengthens 

  c d  shortens 
causes normal strains,  x 
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The normal strain is: y
y

x 


   ___________________ ( 2 ) 

      Where,  y = distance from neutral axis 

 

  From Eqn ( 2 ): 

     - y = + εx  (elongation) 

         for +    

     + y = - εx  (shortening)    

 

 

Transverse Strains: yxz    

      Where  = Poisson’s Ratio 

NORMAL STRESSES IN BEAMS 

 

If material is elastic with linear stress-strain diagram, THEN:   

 

 = E  (Hooke’s Law) 

 

x = Ex = - Ey ____________     ( 3 ) 

 

 

Where x is longitudinal axis of beam and        is the normal stresses in this direction acting on 

the cross section.  These stresses varies linearly with the distance y from the neutral surface.  

 

 
Fig. 3.31 Stress Distribution Diagram 

 

 

  0dAyEdAx      

 

 

 

     0dAy       ( 4 ) 

 

Eqn ( 4 ) is the 1st  Moment of the Area of the cross section w.r.t. z-axis and it is zero  

varies 

linearly 

 with y 

 

x 

+ y 
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 z-axis must pass thru the centroid of the cross section. 

  z-axis is also the neutral axis 

  neutral axis passes thru the centroid of the cross section 

 

Limited to beams where y-axis is the axis of symmetry. 

y, z –axes are the PRINCIPAL CENTROIDAL AXES. 

 

Consider the Moment Resultant of x : 

 

      



 









dAyI

IEM

dAyEdAyM

dAydM

xO

xO

2

2







 

 

 

      

y
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M
E

EI

M

x 




















1

 

 

 

 

       

     
I
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x    

 

 

 

 

 

 

 

 

 

Fig. 3.32 Stress Diagram 

 

MAXIMUM STRESSES: 

 

I

Mc1
1    

I

Mc2
2   

  where,  I = Moment of Inertia of  

      cross sectional area w.r.t.  

      z-axis ( neutral axis ) 

  EI = FLEXURAL  RIGIDITY 

  Flexure Formula 

      x = Bending Stress 

x 

M 

c2 

c1 
+ 

2 

1 

RECALL Eqn ( 3 ):   

                          
yEx  

 M = -M0 

  substitute into Eqn ( 3) 
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Text defines Section Moduli as: 

    
1

1
c

I
S    

2

2
c

I
S   

 

    
1

1
S

M
   

2

2
S

M
  

 

Section Modulus is handy to use when evaluating bending stress w.r.t. to moment which 

varies along length of a beam.  

 

If cross section is symmetrical w.r.t. z-axis, then: 

       c1 = c2 = c 

 

       
I

Mc
 21   

 

Moments of Inertia to know: 

 

 

 

 

 

 

 

 

 

12

3bh
I       

64

4d
I




 
                     Fig.3.33 Area MI for different section

 

 

Problems for Practice 

 

A high-strength steel wire of diameter d = 4 mm, modulus of elasticity E = 200 GPa, 

proportional limit pl = 1200 MPa is bent around a cylindrical drum of radius R0 = 0.5 m .   

 

FIND: 

a. bending moment, M 

b. maximum bending stress, max  

 
Fig. 3.34 Loading situation 

 

 

y 

b 

h 
2 

h 
2 

O 
z 

O d 
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Problems for Practice 

The beam shown which is constructed of glued laminated wood.  The uniform load includes 

the weight of the beam. 

FIND: 

a. Maximum Tensile Stress in the beam due to bending. 

b. Maximum compressive stress in the beam due to bending. 

 
Fig. 3.35 SSB with load 

 

 

DESIGN of BEAMS for BENDING STRESSES 

 

After all factors have been considered (i.e., materials, environmental conditions) it usually 

boils down to 

Allow > Beam 

 

I

cM
Allow

max  

Here is where the section modulus is useful. 

 

RECALL:    
S

M
  thus,   

allow

M
S


max  

 

Appendix E and F give properties of beams. 
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Fig. 3.36 I Section considerations 

Wood Beams  -  2 x 4      really is:   1.5”  x  3.5”  net dimensions  (should always use net 

dims.) 

 

 
     

For W Shapes;   S ≈ 0.35 Ah   

You want as much material as possible, as far from the neutral axis as possible because this is 

where the greatest stress is occurring. 

However, you have to be careful because if the web is too thin, it could fail by: 

1.) being overstressed in shear 

2.) buckling 
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UNIT – IV – TORSION – SMEA1305 



 

MECHANICS OF SOLIDS (SMEA1305) 

 
 

UNIT 4: TORSION         

Analysis of torsion of circular bars – Shear stress distribution – Bars of Solid and 

hollow circular section – Stepped shaft – Twist and torsion stiffness – Composite shafts  

 

Springs - Laminated springs, axial load and twisting moment acting simultaneously 

both for open and closed coiled springs– Deflection of helical coil springs under axial 

loads – stresses in helical coil springs under torsion. 

      

 

INTRODUCTION: TORSION 
In machinery, the general term “shaft” refers to a member, usually of circular cross section, 

which supports gears, sprockets, wheels, rotors, etc., and which is subjected to torsion and to 

transverse or axial loads acting singly or in combination. An “axle” is a rotating/non-rotating 

member that supports wheels, pulley and carries no torque. A “spindle” is a short shaft. 

Terms such as line shaft, head shaft, stub shaft, transmission shaft, countershaft, and flexible 

shaft are names associated with special usage. 

 

Analysis of torsion 

 

In a slender member under the action of a torsional moment (also called twisting moment or 

torque) shearing stresses appear, whose moment about the bar axis is equal to the applied 

torque. In the same way as the shearing stresses caused by the shear force, these stresses must 

be tangent to the contour in the points lying close the boundary of the cross-section. These 

two conditions are not sufficient to determine the distribution of shearing stresses in the 

cross-section. Furthermore, the twisting moment is not a symmetrical loading with respect to 

the middle cross-section of a piece of bar. 

 

 
Fig. 4.1 Shaft subjected to Torsion 



An idealized case of torsional loading is a straight bar supported at one end and loaded by 

two pairs of equal and opposite forces. The first pair consists of the forces P1 acting near the 

midpoint of the bar and the second pair consists of the forces P2 acting at the end. Each pair 

of forces forms a couple that tends to twist the bar about its longitudinal axis. As we know 

from statics, the moment of a couple is equal to the product of one of the forces and the 

perpendicular distance between the lines of action of the forces; thus, the first couple has a 

moment T1 = P1d1 and the second has a moment T2 = P2d2. 

 

Torsion refers to the twisting of a straight bar when it is loaded by moments (or torques) that 

tends to produce rotation about the longitudinal axis of the bar. For instance, when you turn a 

screwdriver, your hand applies a torque T to the handle and twists the shank of the 

screwdriver. Other examples of bars in torsion are drive shafts in automobiles, axles, 

propeller shafts, steering rods, and drill bits. 

 

The moment of a couple may be represented by a vector in the form of a double-headed 

arrow. The arrow is perpendicular to the plane containing the couple, and therefore in this 

case both arrows are parallel to the axis of the bar. The direction (or sense) of the moment is 

indicated by the right-hand rule for moment vectors—namely, using your right hand, let your 

fingers curl in the direction of the moment, and then your thumb will point in the direction of 

the vector. An alternative representation of a moment is curved arrow acting in the direction 

of rotation. The choice depends upon convenience and personal preference. Moments that 

produce twisting of a bar, such as the moments T1 and T2, are called torques or twisting 

moments. Cylindrical members that are subjected to torques and transmit power through 

rotation are called shafts; for instance, the drive shaft of an automobile or the propeller shaft 

of a ship. Most shafts have circular cross sections, either solid or tubular. In this chapter we 

begin by developing formulas for the deformations and stresses in circular bars subjected to 

torsion. We then analyze the state of stress known as pure shear and obtain the relationship 

between the moduli of elasticity E and G in tension and shear, respectively. Next, we analyze 

rotating shafts and determine the power they transmit. Finally, we cover several additional 

topics related to torsion, namely, statically indeterminate members, strain energy, thin-walled 

tubes of noncircular cross section, and stress concentrations. 

 

Torsional deformations of a circular bar 

 

A prismatic bar with a circular cross-section has a symmetrical geometry with respect to any 

plane passing through the bar axis. If, in addition, the material also has symmetrical 

rheological properties with respect to these planes, which happens if the material is isotropic 

or monotropic with the monotropy direction parallel to the bar axis, the bar is totally 

symmetric with respect to the bar axis, i.e., it is axisymmetric. As a consequence of this type 

of symmetry, all the points of a cross-section lying on a circumference with the centre in the 

bar axis, are in the same conditions with respect to the centre of the cross-section. If we 

consider a vector applied at the centre of the cross-section, representing the torque acting on 

the bar, all the points of that circumference are also in the same conditions with respect to 

that vector. As a consequence, all the points will undergo the same displacement in relation to 

the bar axis, i.e., the radial, circumferential and longitudinal components of the displacement 

will be the same in all points of the circumference. This means that the circumference will 

remain on a plane perpendicular to the bar axis and that its centre will remain on that axis. 

 

The shear strains in a circular bar in torsion, we are ready to determine the directions and 

magnitudes of the corresponding shear stresses. The directions of the stresses can be 



determined by inspection. We observe that the torque T tends to rotate the right-hand end of 

the bar counterclockwise when viewed from the right. The magnitudes of the shear stresses 

can be determined from the strains by using the stress-strain relation for the material of the 

bar. If the material is linearly elastic, we can use Hooke’s law in shear, in which G is the 

shear modulus of elasticity and γ is the shear strain in radians. Combining this equation with 

the equations for the shear strains, in which τ max is the shear stress at the outer surface of 

the bar (radius r), τ is the shear stress at an interior point (radius r), and θ is the rate of twist. 

(In these equations, θ has units of radians per unit of length.) 

 

 

 

 
Fig. 4.2 Torsion Analysis 

Equations show that the shear stresses vary linearly with the distance from the center of the 

bar, illustrated by the triangular stress diagram. This linear variation of stress is a 

consequence of Hooke’s law. If the stress-strain relation is nonlinear, the stresses will vary 

nonlinearly and other methods of analysis will be needed. 

 

The shear stresses acting on a cross-sectional plane are accompanied by shear stresses of the 

same magnitude acting on longitudinal planes. This conclusion follows from the fact that 

equal shear stresses always exist on mutually perpendicular planes. If the material of the bar 

is weaker in shear on longitudinal planes than on cross-sectional planes, as is typical of wood 

when the grain runs parallel to the axis of the bar, the first cracks due to torsion will appear 

on the surface in the longitudinal direction. The state of pure shear at the surface of a bar is 

equivalent to equal tensile and compressive stresses acting on an element oriented at an angle 

of 45. Therefore, a rectangular element with sides at 45° to the axis of the shaft will be 

subjected to tensile and compressive stresses. If a torsion bar is made of a material that is 

weaker in tension than in shear, failure will occur in tension along a helix inclined at 45° to 

the axis. 

 

Torsion of circular shafts 

 

Equation for shafts subjected to torsion "T" 

 

 
 

Torsion Equation 



Where J = Polar moment of inertia,τ = Shear stress induced due to torsion T. 

G = Modulus of rigidity,θ = Angular deflection of shaft, R, L = Shaft radius & length 

respectively. 

 

 
Polar moment of Inertia 

 

            
     Fig. 4.3 Hollow Shaft 

 

 
Polar section Modulus 

 



 
 

Polar Moment of Inertia and Section Modulus. 

 

The polar moment of inertia, J, of a cross-section with respect to a polar axis, that is, an axis 

at right angles to the plane of the cross-section, is defined as the moment of inertia of the 

cross-section with respect to the point of intersection of the axis and the plane. The polar 

moment of inertia may be found by taking the sum of the moments of inertia about two 

perpendicular axes lying in the plane of the cross-section and passing through this point. 

Thus, for example, the polar moment of inertia of a circular or a square area with respect to a 

polar axis through the center of gravity is equal to two times the moment of inertia with 

respect to an axis lying in the plane of the cross-section and passing through the center of 

gravity. The polar moment of inertia with respect to a polar axis through the center of gravity 

is required for problems involving the torsional strength of shafts since this axis is usually the 

axis about which twisting of the shaft takes place. 

The polar section modulus  
 

(also called section modulus of torsion), Zp, for circular sections may be found by dividing 

the polar moment of inertia, J, by the distance c from the center of gravity to the most remote 

fiber. This method may be used to find the approximate value of the polar section modulus of 

sections that are nearly round. For other than circular cross-sections, however, the polar 

section modulus does not equal the polar moment of inertia divided by the distance c. 

 

Power Transmission 

 

  

 
 

Safe diameter of a shaft (d) 

 



 
 

In Twisting 

 

 
  

Problems on Solid and hollow circular section 

 

1. What torque, applied to a hollow circular shaft of 25 cm outside diameter and 17.5 cm 

inside     

    diameter will produce a maximum shearing stress of 75 MN/m2 in the material. 

 

 
2. A ship's propeller shaft has external and internal diameters of 25 cm and 15 cm. What 

power can be  

    transmitted at 1 10 rev/minute with a maximum shearing stress of 75 MN/m2, and what 

will then      

    be the twist in degrees of a 10 m length of the shaft? G = 80 GN/m2 

 



 
 

 

3. A solid circular shaft of 25 cm diameter is to be replaced by a hollow shaft, the ratio of the 

external to internal diameters being 2 to 1. Find the size of the hollow shaft if the maximum 

shearing stress is to be the same as for the solid shaft. What percentage economy in mass will 

this change effect? 

 

 

 



 

 
 

4. A ship's propeller shaft transmits 7.5 x 106 W at 240 rev/min. The shaft has an internal 

diameter of 15 cm. Calculate the minimum permissible external diameter if the shearing 

stress in the shaft is to be limited to 150 MN/m2. 

 

  

 



 
 

 
Problems for practice 

1. A solid steel bar of circular cross section has diameter d =1.5 in., length L =54 in., and 

shear modulus of elasticity G = 11.5 x106 psi. The bar is subjected to torques T acting at the 

ends.  

(a) If the torques has magnitude T =250 lb-ft, what is the maximum shear stress in the bar? 

What is the angle of twist between the ends? 

(b) If the allowable shear stress is 6000 psi and the allowable angle of twist is 2.5°, what is 

the maximum permissible torque? 

 

2. A steel shaft is to be manufactured either as a solid circular bar or as a circular tube. The 

shaft is required to transmit a torque of 1200 N_m without exceeding an allowable shear 

stress of 40 MPa nor an allowable rate of twist of 0.75°/m. (The shear modulus of elasticity 

of the steel is 78 GPa.)  

(a) Determine the required diameter d0 of the solid shaft. 

(b) Determine the required outer diameter d2 of the hollow shaft if the thickness t of the shaft 

is specified as one-tenth of the outer diameter. 

(c) Determine the ratio of diameters (that is, the ratio d2/d0) and the ratio of weights of the 

hollow and solid shafts. 

 
Fig. 4.4 Solid and Hollow shaft 

 

3. A hollow shaft and a solid shaft constructed of the same material have the same length and 

the same outer radius R . The inner radius of the hollow shaft is 0.6R. (a) Assuming that both 

shafts are subjected to the same torque, compare their shear stresses, angles of twist, and 

weights. (b) Determine the strength-to-weight ratios for both shafts. 

 

Stepped shafts 

 



When a shaft is made of different lengths and of different diameters, it is termed as shaft as 

varying cross section. For such a shaft, the torque induced in its individual sections should be 

calculated first. The strength of the shaft is the minimum of all these torques. 

 

Problems 

 

A stepped shaft has the appearance as shown in figure. The region AB is aluminum, having G 

= 28 GPa, and the region BC is steel, having G = 84 GPa. The aluminum portion is of solid 

circular cross section 45 mm in diameter, and the steel region is circular with 60-mm outside 

diameter and 30-mm inside diameter. Determine the maximum shearing stress in each 

material as well as the angle of twist at B where a torsional load of 4000 N - m is applied. 

Ends A and C are rigidly clamped. 

 

SOLUTION: The free-body diagram of the system is shown. The applied load of 4000 N-m 

as well as the unknown end reactive torques are as indicated. The only equation of static 

equilibrium is 

 

 
Fig. 4.5 Stepped shaft subjected to Torque 

 

 
Since there are two unknowns TL and TR, another equation (based upon deformations) is 

required. This is set up by realizing that the angular rotation at B is the same if we determine 

it at the right end of AB or the left end of BC. We thus have 

 

 

 
 

Problems for practice 

 



 
Fig. 4.6 Stepped shaft 

 

 
 

Compound shafts – fixed and simply supported shafts 

 

A compound shaft is made of two or more different materials joined together in such a way 

that the shaft is elongated or compressed as a single shaft. The total torque transmitted by a 

compound shaft is the sum of the torques transmitted by each individual shaft and the angle 

of twist in each shaft will be equal. 

 

1. A compound shaft consisting of a steel segment and an aluminum segment is acted upon 

by two torques as shown. Determine the maximum permissible value of T subject to the 

following conditions: τst = 83 MPa, τal = 55 MPa, and the angle of rotation of the free end is 

limited to 6°. For steel, G = 83 GPa and for aluminum, G = 28 GPa. 

 

 
 

 
Fig. 4.7 Stepped shaft with Torque applied 

 

 



 
 

 

2. The compound shaft shown is attached to rigid supports. For the bronze segment AB, the 

diameter is 75 mm, τ ≤ 60 MPa, and G = 35 GPa. For the steel segment BC, the diameter is 

50 mm, τ ≤ 80 MPa, and G = 83 GPa. If a = 2 m and b = 1.5 m, compute the maximum torque 

T that can be applied. 

 
Fig. 4.8 Stepped shaft with Torque 

 

 

 

 

 



 

 

 
 

 

3. The compound shaft shown is attached to rigid supports. For the bronze segment AB, the 

maximum shearing stress is limited to 8000 psi and for the steel segment BC, it is limited to 

12 ksi. Determine the diameters of each segment so that each material will be simultaneously 

stressed to its permissible limit when a torque T = 12 kip·ft is applied. For bronze, G = 6 × 

106 psi and for steel, G = 12 × 106 psi. 

 



 
Fig. 4.9 Shaft with Torque applied 

 

 

 
Fig. 4.10 Stepped shaft 

 

 



 
 

 

4. A shaft composed of segments AC, CD, and DB is fastened to rigid supports and loaded as 

shown. For bronze, G = 35 GPa; aluminum, G = 28 GPa, and for steel, G = 83 GPa. 

Determine the maximum shearing stress developed in each segment. 

 

 
Fig. 4.11 Stress developed in each segment with respect to TA 

 

 
Fig. 4.12 Stress developed in each segment 

 

  



 

 

 
 

 

5. A hollow bronze shaft of 3 in. outer diameter and 2 in. inner diameter is slipped over a 

solid steel shaft 2 in. in diameter and of the same length as the hollow shaft. The two shafts 

are then fastened rigidly together at their ends. For bronze, G = 6 × 106 psi, and for steel, G = 

12 × 106 psi. What torque can be applied to the composite shaft without exceeding a shearing 

stress of 8000 psi in the bronze or 12 ksi in the steel? 

 
Fig. 4.13 Composite shaft 

 

 



 

 

 
 

6. The two steel shaft shown in Fig. P-325, each with one end built into a rigid support have 

flanges rigidly attached to their free ends. The shafts are to be bolted together at their flanges. 

However, initially there is a 6° mismatch in the location of the bolt holes as shown in the 

figure. Determine the maximum shearing stress in each shaft after the shafts are bolted 

together. Use G = 12 × 106 psi and neglect deformations of the bolts and flanges. 



 



Closed Coiled helical springs subjected to axial loads: 
 

Definition: A spring may be defined as an elastic member whose primary function is to 

deflect or distort under the action of applied load; it recovers its original shape when load is 

released. Also Springs are energy absorbing units whose function is to store energy and to 

restore it slowly or rapidly depending on the particular application. 

 

Important types of springs are: 

 

There are various types of springs such as 

 

(i) helical spring: They are made of wire coiled into a helical form, the load being applied 

along the axis of the helix. In these type of springs the major stresses is Torsional shear stress 

due to twisting. They are both used in tension and compression. 

 

 

 
Fig.4.14 Helical Spring 

(ii) Spiral springs: They are made of flat strip of metal wound in the form of spiral and 

loaded in torsion. 

In this the major stresses are tensile and compression due to bending. 

 

(iii) Leaf springs: They are composed of flat bars of varying lengths clamped together so as 

to obtain greater efficiency. Leaf springs may be full elliptic, semi elliptic or cantilever types, 

In these type of springs the major stresses which come into picture are tensile & compressive. 

 

Uses of springs: 

(a) To apply forces and to control motions as in brakes and clutches. 

(b) To measure forces as in spring balance. 

(c) To store energy as in clock springs. 

(d) To reduce the effect of shock or impact loading as in carriage springs. 

(e) To change the vibrating characteristics of a member as inflexible mounting of motors. 

 

Derivation of the Formula : 

In order to derive a necessary formula which governs the behaviour of springs, consider a 

closed coiled spring subjected to an axial load W. 



 
Fig.4.15 Helical Spring major notation 

Let 

W = axial load 

D = mean coil diameter 

d = diameter of spring wire 

n = number of active coils 

C = spring index = D / d For circular wires 

l = length of spring wire 

G = modulus of rigidity 

x = deflection of spring 

q = Angle of twist 

 

when the spring is being subjected to an axial load to the wire of the spring gets be twisted 

like a shaft. 

 

If q is the total angle of twist along the wire and x is the deflection of spring under the action 

of load W along the axis of the coil, so that 

 

x = D / 2 . q 

again l = p D n [ consider ,one half turn of a close coiled helical spring ] 

 

 
Fig.4.16 Helical Spring wire 

 

Assumptions: (1) The Bending & shear effects may be neglected 

 

(2) For the purpose of derivation of formula, the helix angle is considered to be so small that 

it may be neglected. 

 

Any one coil of a spring will be assumed to lie in a plane which is nearly perpendicular to the 

axis of the spring. This requires that adjoining coils be close together. With this limitation, a 

section taken perpendicular to the axis the spring rod becomes nearly vertical. Hence to 



maintain equilibrium of a segment of the spring, only a shearing force V = F and Torque T = 

F. r are required at any X – section. In the analysis of springs it is customary to assume that 

the shearing stresses caused by the direct shear force is 

uniformly distributed and is negligible 

so applying the torsion formula. Using the torsion formula i.e 

 

 
SPRING DEFLECTION 

 

 
 

Spring striffness: The stiffness is defined as the load per unit deflection therefore 

 
Shear stress 

 

 
WAHL'S FACTOR : 

 

In order to take into account the effect of direct shear and change in coil curvature a stress 

factor is defined, which is known as Wahl's factor 

 

K = Wahl' s factor and is defined as 

 

 



Where C = spring index 

= D/d 

 

if we take into account the Wahl's factor than the formula for the shear stress becomes 

 

 
Strain Energy : The strain energy is defined as the energy which is stored within a material 

when the work has been done on the material. 

 

In the case of a spring the strain energy would be due to bending and the strain energy due to 

bending is given by the expansion 

 

 
Worked examples: 

 

1. A close coiled helical spring is to carry a load of 5000N with a deflection of 50 mm and a 

maximum shearing stress of 400 N/mm2 if the number of active turns or active coils is 

8.Estimate the following: 

 

(i) wire diameter 

(ii) mean coil diameter 

(iii) weight of the spring. 

Assume G = 83,000 N/mm2 ; r = 7700 kg/m3 

 

solution : 

 

(i) for wire diametre if W is the axial load, then 

 
 

Further, deflection is given as 

 



 
 

Therefore, 

D = .0314 x (13.317)3mm 

=74.15mm 

D = 74.15 mm 

 

2. Determine the maximum shearing stress and elongation in a helical steel spring composed 

of 20 turns of 20-mm-diameter wire on a mean radius of 90 mm when the spring is 

supporting a load of 1.5 kN. G = 83 GPa. 

 
 

3. Determine the maximum shearing stress and elongation in a bronze helical spring 

composed of 20 turns of 1.0-in.-diameter wire on a mean radius of 4 in. when the spring is 

supporting a load of 500 lb. G = 6 × 106 psi. 

 

  
 

4. A helical spring is fabricated by wrapping wire ¾ in. in diameter around a forming 

cylinder 8 in. in diameter. Compute the number of turns required to permit an elongation of 4 

in. without exceeding a shearing stress of 18 ksi. G = 12 × 106 psi. 

 



 
Weight 

 
 

Close – coiled helical spring subjected to axial torque T or axial couple. 

 

 
Fig.4.17 Helical Spring wire under Torque ‘T’ 

In this case the material of the spring is subjected to pure bending which tends to reduce 

Radius R of the coils. In this case the bending moment is constant through out the spring and 

is equal to the applied axial Torque T. The stresses i.e. maximum bending stress may  

 

 
thus be determined from the bending theory. 

 



Springs in Series: If two springs of different stiffness are joined endon and carry a common 

load W, they are said to be connected in series and the combined stiffness and deflection are 

given by the following equation 

. 

 
Fig.4.18 Springs in Series 

Springs in parallel: If the two spring are joined in such a way that they have a common 

deflection ‘x' ; then they are said to be connected in parallel. In this care the load carried is 

shared between the two springs and total load W = W1 + W2 

 
Fig.4.19 Springs in Parallel 

 

 

1. Two steel springs arranged in series as shown supports a load P. The upper spring has 12 

turns of 25-mm-diameter wire on a mean radius of 100 mm. The lower spring consists of 10 

turns of 20-mmdiameter wire on a mean radius of 75 mm. If the maximum shearing stress in 

either spring must not exceed 200 MPa, compute the maximum value of P and the total 

elongation of the assembly. G = 83 GPa. Compute the equivalent spring constant by dividing 

the load by the total elongation. 



 

 
Fig.4.20 Helical Spring in Series 

 

 

 

 

 

Design of helical coil springs – stresses in helical coil springs under torsion loads 

Worked problems  

 



 

 

 

 



 

                                                                                                                                 Fig.4.21 Helical Spring 

 

 

 

 

 



 

 

 

 



 

 



 

 

 

 

 

 

 



 

 

 

 

 

 



  

                                                                                                               Fig.4.22 Helical Spring in parallel 
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UNIT – V – BEAM DEFLECTION – SMEA1305 



 
 

MECHANICS OF SOLIDS (SMEA1305) 

 

 

UNIT 5: BEAM DEFLECTION  

UNIT 5:        BEAM DEFLECTION                                                                         Columns – 

End conditions – Equivalent length of a column – Euler equation – Slenderness ratio – 

Rankine Gordon formula for columns 

Elastic curve of Neutral axis of the beam under normal loads – Evaluation of beam 

deflection and slope: Double integration method, Macaulay Method, and Moment-area 

Method 

Introduction: Elastic Stability of Columns 

Structural members which carry compressive loads may be divided into two broad categories 

depending on their relative lengths and cross-sectional dimensions. The analysis and design 

of compression members can differ significantly from that of members loaded in tension or in 

torsion. If you were to take a long rod or pole, such as a meter stick, and apply gradually 

increasing compressive forces at each end, nothing would happen at first, but then the stick 

would bend (buckle), and finally bend so much as to fracture. Try it. The other extreme 

would occur if you were to saw off, say, a 5-mm length of the meter stick and perform the 

same experiment on the short piece. You would then observe that the failure exhibits itself as 

a mashing of the specimen, that is, a simple compressive failure. For these reasons it is 

convenient to classify compression members according to their length and according to 

whether the loading is central or eccentric. The term column is applied to all such members 

except those in which failure would be by simple or pure compression. 

General comments 

 

The critical load of a column is proportional to the flexural rigidity EI and inversely 

proportional to the square of the length. Of particular interest is the fact that the strength of 

the material itself, as represented by a quantity such as the proportional limit or the The 

flexural rigidity can be increased by using a “stiffer” material (that is, a material with larger 

modulus of elasticity E) or by distributing the material in such a way as to increase the 

moment of inertia I of the cross section, just as a beam can be made stiffer by increasing the 

moment of inertia. The moment of inertia is increased by distributing the material farther 

from the centroid of the cross section. Hence, a hollow tubular member is generally more 

economical for use as a column than a solid member having the same cross-sectional area. 

Reducing the wall thickness of a tubular member and increasing its lateral dimensions (while 

keeping the cross-sectional area constant) also increases the critical load because the moment 

of inertia is increased. This process has a practical limit, however, because eventually the 

wall itself will become unstable. When that happens, localized buckling occurs in the form of 

small corrugations or wrinkles in the walls of the column. Thus, we must distinguish between 

overall buckling of a column, which is discussed in this chapter, and local buckling of its 

parts. yield stress, does not appear in the equation for the critical load. Therefore, increasing a 



strength property does not raise the critical load of a slender column. It can only be raised by 

increasing the flexural rigidity, reducing the length, or providing additional lateral support. 

 

we assumed that the xy plane was a plane of symmetry of the column and that buckling took 

place in that plane. The latter assumption will be met if the column has lateral supports 

perpendicular to the plane of the figure, so that the column is constrained to buckle in the xy 

plane. If the column is supported only at its ends and is free to buckle in any direction, then 

bending will occur about the principal centroidal axis having the smaller moment of inertia. If 

the cross section is square or circular, all centroidal axes have the same moment of inertia and 

buckling may occur in any longitudinal plane.  

 

Limitations 

In addition to the requirement of small deflections, the Euler buckling theory used in this 

section is valid only if the column is perfectly straight before the load is applied, the column 

and its supports have no imperfections, and the column is made of a linearly elastic material 

that follows Hooke’s law. 

Columns:  

Short, thick members are generally termed columns and these usually fail by crushing when 

the yield stress of the material in compression is exceeded. Columns can be categorized then 

as:  

 Long columns with central loading 

 Intermediate-length columns with central loading 

 Columns with eccentric loading 

 Struts or short columns with eccentric loading  

Struts:  

Long, slender columns are generally termed as struts; they fail by buckling some time before 

the yield stress in compression is reached. The buckling occurs owing to one the following 

reasons. A short bar loaded in pure compression by a force P acting along the centroidal axis 

will shorten in accordance with Hooke’s law, until the stress reaches the elastic limit of the 

material. At this point, permanent set is introduced and usefulness as a machine member may 

be at an end. If the force P is increased still more, the material either becomes “barrel-like” or 

fractures. When there is eccentricity in the loading, the elastic limit is encountered at smaller 

loads.  

(a) The strut may not be perfectly straight initially.  

(b) The load may not be applied exactly along the axis of the Strut.  

(c) One part of the material may yield in compression more readily than others owing to some 

lack of uniformity in the material properties throughout the strut.  

In all the problems considered so far we have assumed that the deformation to be both 

progressive with increasing load and simple in form i.e. we assumed that a member in simple 



tension or compression becomes progressively longer or shorter but remains straight. Under 

some circumstances however, our assumptions of progressive and simple deformation may 

no longer hold good and the member become unstable. The term strut and column are widely 

used, often interchangeably in the context of buckling of slender members. 

At values of load below the buckling load a strut will be in stable equilibrium where the 

displacement caused by any lateral disturbance will be totally recovered when the disturbance 

is removed. At the buckling load the strut is said to be in a state of neutral equilibrium, and 

theoretically it should than be possible to gently deflect the strut into a simple sine wave 

provided that the amplitude of wave is kept small.  

Theoretically, it is possible for struts to achieve a condition of unstable equilibrium with 

loads exceeding the buckling load, any slight lateral disturbance then causing failure by 

buckling, this condition is never achieved in practice under static load conditions. Buckling 

occurs immediately at the point where the buckling load is reached, owing to the reasons 

stated earlier.  

The resistance of any member to bending is determined by its flexural rigidity EI and is The 

quantity I may be written as I = Ak2,  

Where I = area of moment of inertia  

A = area of the cross-section  

k = radius of gyration.  

The load per unit area which the member can withstand is therefore related to k. There will be 

two principal moments of inertia, if the least of these is taken then the ratio  

 

is called the slenderness ratio. Its numerical value indicates whether the member falls into the 

class of columns or struts. 

   

Fig. 5.1 Slenderness ratio against Stress 



Euler's Theory: The struts which fail by buckling can be analyzed by Euler's theory. In the 

following sections, different cases of the struts have been analyzed.  

Case A: Strut with pinned ends:  

Consider an axially loaded strut, shown below, and is subjected to an axial load ‘P' this load 

‘P' produces a deflection ‘y' at a distance ‘x' from one end.  

Assume that the ends are either pin jointed or rounded so that there is no moment at either 

end.  

 

Fig. 5.2 Strut with Pinned Ends 

Assumption:  

The strut is assumed to be initially straight, the end load being applied axially through 

centroid.  

 

Fig. 5.3 Strut with Pinned Ends sign convention 

 

 

In this equation ‘M' is not a function ‘x'. Therefore this equation can not be integrated directly 

as has been done in the case of deflection of beams by integration method. 



 

Though this equation is in ‘y' but we can't say at this stage where the deflection would be 

maximum or minimum.  

 

So the above differential equation can be arranged in the following form  

Let us define a operator  

D = d/dx  

(D2 + n2) y =0 where n2 = P/EI  

This is a second order differential equation which has a solution of the form consisting of 

complimentary function and particular integral but for the time being we are interested in the 

complementary solution only[in this P.I = 0; since the R.H.S of Diff. equation = 0]  

Thus y = A cos (nx) + B sin (nx)  

Where A and B are some constants.  

 

In order to evaluate the constants A and B let us apply the boundary conditions,  

(i) at x = 0; y = 0  

(ii) at x = L ; y = 0  

Applying the first boundary condition yields A = 0 and applying the second boundary 

condition gives  

 



From the above relationship the least value of P which will cause the strut to buckle, and it is 

called the “ Euler Crippling Load ” Pe from which w obtain.  

 

The interpretation of the above analysis is that for all the values of the load P, other than 

those which make sin nL = 0; the strut will remain perfectly straight since 

y = B sin nL = 0  

For the particular value of 

 

Then we say that the strut is in a state of neutral equilibrium, and theoretically any deflection 

which it suffers will be maintained. This is subjected to the limitation that ‘L' remains 

sensibly constant and in practice slight increase in load at the critical value will cause the 

deflection to increase appreciably until the material fails by yielding.  

Further it should be noted that the deflection is not proportional to load, and this applies to all 

strut problems; like wise it will be found that the maximum stress is not proportional to load.  

The solution chosen of nL = p is just one particular solution; the solutions nL= 2p, 3p, 5p etc 

are equally valid mathematically and they do, infact, produce values of ‘Pe' which are equally 

valid for modes of buckling of strut different from that of a simple bow. Theoretically 

therefore, there are an infinite number of values of Pe , each corresponding with a different 

mode of buckling.  

The value selected above is so called the fundamental mode value and is the lowest critical 

load producing the single bow buckling condition.  

The solution nL = 2p produces buckling in two half – waves, 3p in three half-waves etc.  



 

Fig. 5.4 Member subjected with different modes 

 

 

If load is applied sufficiently quickly to the strut, then it is possible to pass through the 

fundamental mode and to achieve at least one of the other modes which are theoretically 

possible. In practical loading situations, however, this is rarely achieved since the high stress 

associated with the first critical condition generally ensures immediate collapse.  

struts and columns with other end conditions: Let us consider the struts and columns 

having different end conditions  

Case b: One end fixed and the other free:  

 

Fig. 5.5 One End fixed and other is free End condition 

 

writing down the value of bending moment at the point C  



 

Hence in operator form, the differential equation reduces to ( D2 + n2 ) y = n2a  

The solution of the above equation would consist of complementary solution and particular 

solution, therefore  

ygen = A cos(nx) + sin(nx) + P. I  

where 

P.I = the P.I is a particular value of y which satisfies the differential equation  

Hence yP.I = a  

Therefore the complete solution becomes  

Y = A cos(nx) + B sin(nx) + a  

Now imposing the boundary conditions to evaluate the constants A and B  

(i) at x = 0; y = 0  

This yields A = -a  

(ii) at x = 0; dy/dx = 0  

This yields B = 0  

Hence  

y = -a cos(nx) + a  

Futher, at x = L; y = a  

Therefore a = - a cos(nx) + a     or 0 = cos(nL)  

Now the fundamental mode of buckling in this case would be  



 

Case 3  

Strut with fixed ends: 

 

Fig. 5.6 Both Ends in fixed End condition 

 

Due to the fixed end supports bending moment would also appears at the supports, since this 

is the property of the support.  

Bending Moment at point C = M – P.y  

 

 



 

Case 4  

One end fixed, the other pinned  

 

 

Fig. 5.7 One end Fixed and oer pinned End conditions 

In order to maintain the pin-joint on the horizontal axis of the unloaded strut, it is necessary 

in this case to introduce a vertical load F at the pin. The moment of F about the built in end 

then balances the fixing moment.  

With the origin at the built in end, the B,M at C is given as  



 

Also when x = L ; y = 0  

Therefore  

nL Cos nL = Sin nL     or tan nL = nL  

The lowest value of nL ( neglecting zero) which satisfies this condition and which therefore 

produces the fundamental buckling condition is nL = 4.49radian  

 

Equivalent Strut Length:  

Having derived the results for the buckling load of a strut with pinned ends the Euler loads 

for other end conditions may all be written in the same form.  



 

Where L is the equivalent length of the strut and can be related to the actual length of the 

strut depending on the end conditions.  

The equivalent length is found to be the length of a simple bow(half sine wave) in each of the 

strut deflection curves shown. The buckling load for each end condition shown is then readily 

obtained. The use of equivalent length is not restricted to the Euler's theory and it will be 

used in other derivations later.  

The critical load for columns with other end conditions can be expressed in terms of the 

critical load for a hinged column, which is taken as a fundamental case.  

For case(c) see the figure, the column or strut has inflection points at quarter points of its 

unsupported length. Since the bending moment is zero at a point of inflection, the freebody 

diagram would indicates that the middle half of the fixed ended is equivalent to a hinged 

column having an effective length Le = L / 2.  

The four different cases which we have considered so far are:  

(a) Both ends pinned          (c) One end fixed, other free  

(b) Both ends fixed               (d) One end fixed and other pinned  

 

Fig. 5.8 Different End conditions loading 



Solved Problems on deflection of beams 

 

1. Determine the deflection at every point of the cantilever beam subject to the single 

concentrated force P, as shown in Figure shown below 

 

SOLUTION: The x-y coordinate system shown is introduced, where the x-axis coincides with 

the original unbent position of the beam. The deformed beam has the appearance indicated by 

the heavy line in Fig It is first necessary to find the reactions exerted by the supporting wall 

upon the bar, and these are easily found from statics to be a vertical force reaction P and a 

moment PL, as shown. 

 

             
Fig. 5.9 Cantilever beam subjected to a point load at free end. 

 

 
 

 



 
2. The cantilever beam AB is of uniform cross section and carries a load P at its free end A). 

Determine the equation of the elastic curve and the deflection and slope at A. 

 

 

  
Fig. 5.10 Cantilever beam subjected to a point load and reactions 

 

 



 
 

 

3. The simply supported prismatic beam AB carries a uniformly distributed load w per unit 

length. Determine the equation of the elastic curve and the maximum deflection of the beam. 

 

  

 

 



 
Fig. 5.11 Simply supported beam subjected to UDL                            

 

 
 

 

4. A steel rod 5 cm diameter protrudes 2 m horizontally from a wall. (i) Calculate the 

deflection due to a load of 1 kN hung on the end of the rod. The weight of the rod may be 

neglected. (ii) If a vertical steel wire 3 m long, 0.25 cm diameter, supports the end of the 

cantilever, being taut but unstressed before the load is applied, calculate the end deflection on 

application of the load. TakeE = 200GN/m2. 

 

The second moment of are of the cross-section is 

 

 

 



 

 
 

5. A steel beam rests on two supports 6 m apart, and carries a uniformly distributed load of 10 

kN per metre run. The second moment of area of the cross-section is 1 x 10-3 m4 and E = 

200 GN/m2. Estimate the maximum deflection. 

 

 
 

Solved Problems on columns 

 

1. A 2-m-long pin-ended column of square cross section is to be made of wood. 

Assuming E = 13 GPa, σ =12 MPa, and using a factor of safety of 2.5 in computing 

Euler’s critical load for buckling, determine the size of the cross section if the column 

is to safely support (a) a 100-kN load, (b) a 200-kN load. 

 
 



 
 

 

Deflection of Beams: Problems for practice 

 

1. A cantilever steel beam has a free length of 3m. The moment of inertia of the section 

is 30x106 mm4. A concentrated load of 50kN at the free end. Find the deflection at the 

free end using 

a. Double integration method 

b. Macauley’s Method 

c. Moment Area Method 

d. Conjugate Beam Method, Take E= 2x105 N/mm2 

 

2. A cantilever Beam of 8m carries a UDL of 5kN/m run and a load of W at the free end. 

If the deflection at the free end is 30mm, calculate the magnitude of the load W, and 

the slope at the free end. Take E= 2x105 N/mm2, I = 5x107 mm4. 

 

3. A cantilever beam of 6m long carries a UDL of 5kN/m throughout its length and a 

concentrated load of 80 kN. Determine the slope and deflection at the free eng by 

using moment area method. Take E= 2x105 N/mm2, I = 2x109 mm4. 

 

4. A SSB of 6m span carries a concentrated load of 50 kN at 3m from left support. Find 

the slope at the supports and deflection under the load. EI = 2000 kN-m2. 

 

5. A SSB of 10 m span carries a concentrated load of 10 kN at its center. It carries a 

UDL of 2 kN/m over its length. Find the maximum Deflection of beam by 

a. Double integration method 

b. Macauley’s Method 

c. Moment Area Method 

d. Conjugate Beam Method, Take E= 2x105 N/mm2, I = 200x106 mm4. 

 

6.  A beam is simply supported at its ends over a span of 10 m and carries two 

concentrated loads of 100 kN and 60 kN at a distance of 2 m and 5 m respectively 



from the left support. Calculate (i) slope at the left support (ii) slope and deflection 

under the 100 kN load. Assume EI = 36 × 104 kN-m2. 

 

7. (i) State Moment-Area Mohr’s theorem.  

(ii) A simply supported beam AB uniform section, 4 m span is subjected to a 

clockwise moment of 10 kNm applied at the right hinge B. Derive the equation to the 

deflected shape of the beam. Locate the point of maximum deflection and find the 

maximum deflection.  

 

 

Columns: Problems for practice 

 

1. Find the Euler critical load for a hollow cylindrical cast iron column 150mm external 

diameter, 20 mm wall thickness if it is 6 m long with hinged at both ends. Assume 

Young’s modulus of cast iron as 80 kN/mm2. Compare this load with that given by 

Rankine formula. Using Rankine constants α = 1/1600 and 567 N/mm2. 

 

2. A column of solid circular section, 12 cm diameter, 3.6 m long is hinged at both ends. 

Rankine’s constant is 1 / 1600, σc = 54 KN/cm2. Find the buckling load. ii) If another 

column of the same length, end conditions and rankine constant but of 12 cm X 12 cm 

square cross-section, and different material, has the same buckling load, find the value 

of σc of its material. 

 

3. Determine the section of a hollow C.I. cylindrical column 5 m long with ends firmly 

built in. The column has to carry an axial compressive load of 588.6 KN. The internal 

diameter of the column is 0.75 times the external diameter. Use Rankine’s constants.  

a = 1 / 1600, σc = 57.58 KN/cm2 and F.O.S = 6. 

 

4. Find the euler critical load for a hollow cylindrical cast iron column 150mm external 

diameter, 20mm wall thick ness if it is 6m long with hinged at both ends. Assume 

young’s modulus of cast iron as 80 KN/mm2.compare this load with that given by 

rankine constants. a=1/1600 and 567N/mm2. 

 

5. A 1.2m long column has a cross section of 45mm diameter one of the ends of the 

column is fixed in direction and position and other end is free. Taking factor of safety 

as 3, calculate the safe load using. I. Rankine’s formula, take yield stress=560N/mm2 

and a=1/1600 for pinned ends. II. Euler’s formula Young’s modulus for cast iron = 

1.2X105 N/mm2. 

 

6. The external and internal diameters of a hollow cast iron column are 50mm and 

40mm respectively. If the length of this column is 3m and both of its ends are fixed, 

determine the crippling load using Euler formula taking E=100Gpa. Also determine 

the rankine load for the column assuming fc=550Mpa and α=1/1600. 

 

7. An I section joists 400mmx200mmx20mm and 6m long is used as a strut with both 

ends fixed. What is Euler’s crippling load for the column? Take E=200Gpa. 



Deflection of Beams 

In all practical engineering applications, when we use the different components, normally we 

have to operate them within the certain limits i.e. the constraints are placed on the 

performance and behavior of the components. For instance we say that the particular 

component is supposed to operate within this value of stress and the deflection of the 

component should not exceed beyond a particular value. In some problems the maximum 

stress however, may not be a strict or severe condition but there may be the deflection which 

is the more rigid condition under operation. It is obvious therefore to study the methods by 

which we can predict the deflection of members under lateral loads or transverse loads, since 

it is this form of loading which will generally produce the greatest deflection of beams.  

Assumptions: The following assumptions are undertaken in order to derive a differential 

equation of elastic curve for the loaded beam  

1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid only for 

beams that are not stressed beyond the elastic limit.  

2. The curvature is always small.  

3. Any deflection resulting from the shear deformation of the material or shear stresses is 

neglected.  

It can be shown that the deflections due to shear deformations are usually small and hence 

can be ignored. 

Equation of the Elastic curve 

We first recall from elementary calculus that the curvature of a plane curve at a point Q(x,y) 

of the curve can be expressed as 

 
 

where dy/dx and d2y/dx2 are the first and second derivatives of the function y(x) represented 

by that curve. But, in the case of the elastic curve of a beam, the slope dy/dx is very small, 

and its square is negligible compared to unity. We write, therefore, 

 
 

 
It should be noted that, in this chapter, y represents a vertical displacement, while it was used 

in previous chapters to represent the distance of a given point in a transverse section from the 

neutral axis of that section. 

 



The equation obtained is a second-order linear differential equation; it is the governing 

differential equation for the elastic curve. The product EI is known as the flexural rigidity 

and, if it varies along the beam, as in the case of a beam of varying depth, we must express it 

as a function of x before proceeding to integrate. However, in the case of a prismatic beam, 

which is the case considered here, the flexural rigidity is constant. We may thus multiply both 

members of Equations by EI and integrate in x. We write 

 

 
Fig. 5.12 Deflection and Slope  

 

where C1 is a constant of integration. Denoting by u(x) the angle, measured in radians, that 

the tangent to the elastic curve at Q forms with the horizontal, and recalling that this angle is 

very small, we have 

 

 
where C2 is a second constant, and where the first term in the right hand member represents 

the function of x obtained by integrating twice in x the bending moment M(x). If it were not 

for the fact that the constants C1 and C2 are as yet undetermined, would define the deflection 

of the beam at any given point Q, and define the slope of the beam at Q. 

 

The constants C1 and C2 are determined from the boundary conditions or, more precisely, 

from the conditions imposed on the beam by its supports. Limiting our analysis in this section 

to statically determinate beams, i.e., to beams supported in such a way that the reactions at 

the supports can be obtained by the methods of statics, we note that only three types of beams 

need to be considered here (a) the simply supported beam, (b) the overhanging beam, and (c) 

the cantilever beam. 

 



 
Fig. 5.13 SSB with UDL 

 

In the first two cases, the supports consist of a pin and bracket at A and of a roller at B, and 

require that the deflection be zero at each of these points. Letting first x = xA, y = yA =0 in the 

Equation, and then x = xB, y = yB = 0 in the same equation, we obtain two equations that can 

be solved for C1 and C2. In the case of the cantilever beam, we note that both the deflection 

and the slope at A must be zero. Letting x = xA, y = yA = 0 in Equation and x = xA, u =uA = 0 

in Equation, we obtain again two equations that can be solved for C1 and C2.  

 

Fig. 5.14 Deflection pattern 

Consider a beam AB which is initially straight and horizontal when unloaded. If under the 

action of loads the beam deflects to a position A'B' under load or infact we say that the axis of 

the beam bends to a shape A'B'. It is customary to call A'B' the curved axis of the beam as the 

elastic line or deflection curve.  



In the case of a beam bent by transverse loads acting in a plane of symmetry, the bending 

moment M varies along the length of the beam and we represent the variation of bending 

moment in B.M diagram. Futher, it is assumed that the simple bending theory equation holds 

good.  

 

If we look at the elastic line or the deflection curve, this is obvious that the curvature at every 

point is different; hence the slope is different at different points. To express the deflected 

shape of the beam in rectangular co-ordinates let us take two axes x and y, x-axis coincide 

with the original straight axis of the beam and the y – axis shows the deflection.  

Futher,let us consider an element ds of the deflected beam. At the ends of this element let us 

construct the normal which intersect at point O denoting the angle between these two normal 

be di But for the deflected shape of the beam the slope i at any point C is defined,  

 

This is the differential equation of the elastic line for a beam subjected to bending in the 

plane of symmetry. Its solution y = f(x) defines the shape of the elastic line or the deflection 

curve as it is frequently called.  

Relationship between shear force, bending moment and deflection: The relationship 

among shear force, bending moment and deflection of the beam may be obtained as 

differentiating the equation as derived 



 

Therefore, the above expression represents the shear force whereas rate of intensity of 

loading can also be found out by differentiating the expression for shear force 

 

Methods for finding the deflection: The deflection of the loaded beam can be obtained 

various methods. The one of the method for finding the deflection of the beam is the direct 

integration method, i.e. the method using the differential equation which we have derived. 

Direct integration method: The governing differential equation is defined as  

 

Where A and B are constants of integration to be evaluated from the known conditions of 

slope and deflections for the particular value of x.  

Illustrative examples: let us consider few illustrative examples to have a familiarity with the 

direct integration method  



Case 1: Cantilever Beam with Concentrated Load at the end:- A cantilever beam is subjected 

to a concentrated load W at the free end, it is required to determine the deflection of the beam  

  

Fig. 5.15 Cantilever Beam with Concentrated Load at the free end 

In order to solve this problem, consider any X-section X-X located at a distance x from the 

left end or the reference, and write down the expressions for the shear force and the bending 

moment  

 

The constants A and B are required to be found out by utilizing the boundary conditions as 

defined below  

i.e at x= L ; y= 0          -------------------- (1)  

at x = L ; dy/dx = 0      -------------------- (2)  

Utilizing the second condition, the value of constant A is obtained as 



 

Case 2: A Cantilever with Uniformly distributed Loads:- In this case the cantilever beam is 

subjected to U.d.l with rate of intensity varying w / length. The same procedure can also be 

adopted in this case  

 

Fig. 5.16 Cantilever Beam with UDL 

 



Boundary conditions relevant to the problem are as follows:  

1. At x = L; y = 0  

2. At x= L; dy/dx = 0  

The second boundary conditions yields  

 

Case 3: Simply Supported beam with uniformly distributed Loads:- In this case a simply 

supported beam is subjected to a uniformly distributed load whose rate of intensity varies as 

w / length.  

 

Fig. 5.17 SSB with UDL 

In order to write down the expression for bending moment consider any cross-section at 

distance of x metre from left end support.  

 

Fig. 5.18 SSB  with UDL a section at X-X 



 

Boundary conditions which are relevant in this case are that the deflection at each support 

must be zero.  

i.e. at x = 0; y = 0 : at x = l; y = 0  

let us apply these two boundary conditions on equation (1) because the boundary conditions 

are on y, This yields B = 0.  

 

In this case the maximum deflection will occur at the centre of the beam where x = L/2 [ i.e. 

at the position where the load is being applied ].So if we substitute the value of x = L/2  

 

Conclusions  

(i) The value of the slope at the position where the deflection is maximum would be zero.  

(ii) The value of maximum deflection would be at the centre i.e. at x = L/2.  



The final equation which is governs the deflection of the loaded beam in this case is 

 

By successive differentiation one can find the relations for slope, bending moment, shear 

force and rate of loading.  

Deflection (y)  

 

 

Slope (dy/dx)  

 
 

              

Fig. 5.19 SSB with UDL Deflection and 

Slope 

 

Bending Moment  

 

 

So the bending moment diagram would be  

 

Fig. 5.20 SSB with UDL SF & BM 

Shear Force  

Shear force is obtained by 

taking third derivative.  

 



 

Rate of intensity of loading  

 

 

Case 4: The direct integration method may become more involved if the expression for entire 

beam is not valid for the entire beam.Let us consider a deflection of a simply supported beam 

which is subjected to a concentrated load W acting at a distance 'a' from the left end. 

 

Fig.5.21 SSB with a point load acting elsewhere in the beam 

Let R1 & R2 be the reactions then,  

 

Fig.5.22 SSB with a point load reaction marked diagram 

 

 

These two equations can be integrated in the usual way to find ‘y' but this will result in four 

constants of integration two for each equation. To evaluate the four constants of integration, 

four independent boundary conditions will be needed since the deflection of each support 

must be zero, hence the boundary conditions (a) and (b) can be realized.  



Further, since the deflection curve is smooth, the deflection equations for the same slope and 

deflection at the point of application of load i.e. at x = a. Therefore four conditions required 

to evaluate these constants may be defined as follows: 

(a) at x = 0; y = 0 in the portion AB i.e. 0 ≤ x ≤ a  

(b) at x = l; y = 0 in the portion BC i.e. a ≤ x ≤ l  

(c) at x = a; dy/dx, the slope is same for both portion  

(d) at x = a; y, the deflection is same for both portion  

By symmetry, the reaction R1 is obtained as  

 

Using condition (c) in equation (3) and (4) shows that these constants should be equal, hence 

letting K1 = K2 = K , Hence 

 



Now lastly k3 is found out using condition (d) in equation (5) and equation (6), the condition 

(d) is that,  

At x = a; y; the deflection is the same for both portion  

 

ALTERNATE METHOD: There is also an alternative way to attempt this problem in a 

simpler way. Let us considering the origin at the point of application of the load,  



 

Fig.5.23 SSB with a Mid-point load  

 

 

Boundary conditions relevant for this case are as follows  

(i) at x = 0; dy/dx= 0  

hence, A = 0  

(ii) at x = l/2; y = 0 (because now l / 2 is on the left end or right end support since we have 

taken the origin at the centre)  

 

Hence the integration method may be bit cumbersome in some of the case. Another limitation 



of the method would be that if the beam is of non uniform cross section,  

 

Fig.5.24 Member with varied cross section  

 

i.e. it is having different cross-section then this method also fails. So there are other methods 

by which we find the deflection like  

1. Macaulay's method in which we can write the different equation for bending moment for 

different sections.  

2. Area moment methods 

3. Energy principle methods 

THE AREA-MOMENT / MOMENT-AREA METHODS 

The area moment method is a semi graphical method of dealing with problems of deflection 

of beams subjected to bending. The method is based on a geometrical interpretation of 

definite integrals. This is applied to cases where the equation for bending moment to be 

written is cumbersome and the loading is relatively simple. 

The moment-area method provides a semigraphical technique for finding the slope and 

displacement at specific points on the elastic curve of a beam or shaft. Application of the 

method requires calculating areas associated with the beam’s moment diagram; and so if this 

diagram consists of simple shapes, the method is very convenient to use. Normally this is the 

case when the beam is loaded with concentrated forces and couple moments. To develop the 

moment-area method we will make the same assumptions we used for the method of 

integration: The beam is initially straight, it is 

elastically deformed by the loads, such that the slope and deflection of the elastic curve are 

very small, and the deformations are only caused by bending. The moment-area method is 

based on two theorems, one used to determine the slope and the other to determine the 

displacement at a point on the elastic curve.  

Let us recall the figure, which we referred while deriving the differential equation governing 

the beams.  



 

Fig.5.25 Area moment Method 

 

It may be noted that dq is an angle subtended by an arc element ds and M is the bending 

moment to which this element is subjected. We can assume, ds = dx [since the curvature is 

small]  

hence, R dq = ds  

 

The relation as described in equation (1) can be given a very simple graphical interpretation 

with reference to the elastic plane of the beam and its bending moment diagram  



 

Fig.5.26 Area moment Method 

 

Refer to the figure shown above consider AB to be any portion of the elastic line of the 

loaded beam and A1B1is its corresponding bending moment diagram.  

Let AO = Tangent drawn at A  

BO = Tangent drawn at B  

Tangents at A and B intersects at the point O.  

Futher, AA ' is the deflection of A away from the tangent at B while the vertical distance B'B 

is the deflection of point B away from the tangent at A. All these quantities are futher 

understood to be very small.  

Let ds ≈ dx be any element of the elastic line at a distance x from B and an angle between at 

its tangents be dq. Then, as derived earlier 

 

This relationship may be interpreted as that this angle is nothing but the area M.dx of the 

shaded bending moment diagram divided by EI.  

From the above relationship the total angle q between the tangents A and B may be 

determined as  



 

Since this integral represents the total area of the bending moment diagram, hence we may 

conclude this result in the following theorem  

Theorem I:  

 

Now let us consider the deflection of point B relative to tangent at A, this is nothing but the 

vertical distance BB'. It may be note from the bending diagram that bending of the element ds 

contributes to this deflection by an amount equal to x dq [each of this intercept may be 

considered as the arc of a circle of radius x subtended by the angle q 

Hence the total distance B'B becomes  

The limits from A to B have been taken because A and B are the two points on the elastic 

curve, under consideration]. Let us substitute the value of dq = M dx / EI as derived earlier  

 

[ This is infact the moment of area of the bending moment diagram]  

Since M dx is the area of the shaded strip of the bending moment diagram and x is its 

distance from B, we therefore conclude that right hand side of the above equation represents 

first moment area with respect to B of the total bending moment area between A and B 

divided by EI.  

Therefore, we are in a position to state the above conclusion in the form of theorem as 

follows: 

Theorem II:  

Deflection of point ‘B' relative to point A  

Futher, the first moment of area, according to the definition of centroid may be written as 

, where is equal to distance of centroid and a is the total area of bending moment  

 



Therefore,the first moment of area may be obtained simply as a product of the total area of 

the B.M diagram betweenthe points A and B multiplied by the distance to its centroid C.  

If there exists an inflection point or point of contreflexure for the elastic line of the loaded 

beam between the points A and B, as shown below,  

 

Fig.5.27 Contraflexure point 

 

Then, adequate precaution must be exercised in using the above theorem. In such a case B. M 

diagram gets divide into two portions +ve and –ve portions with centroids C1and C2. Then to 

find an angle q between the tangentsat the points A and B  

 

Illustrative Examples: Let us study few illustrative examples, pertaining to the use of these 

theorems  

Example 1:  

1. A cantilever is subjected to a concentrated load at the free end.It is required to find out the 

deflection at the free end.  

Fpr a cantilever beam, the bending moment diagram may be drawn as shown below  



 

Fig.5.28 Cantilever point load at free end BM diagram 

 

Let us workout this problem from the zero slope condition and apply the first area - moment 

theorem  

 

The deflection at A (relative to B) may be obtained by applying the second area - moment 

theorem 

NOTE: In this case the point B is at zero slope.  

 

Example 2: Simply supported beam is subjected to a concentrated load at the mid span 

determine the value of deflection.  

A simply supported beam is subjected to a concentrated load W at point C. The bending 

moment diagram is drawn below the loaded beam.  



 

Fig.5.29 SSB and Mid-point Load - BM diagram 

 

Again working relative to the zero slope at the centre C.  

 

Example 3: A simply supported beam is subjected to a uniformly distributed load, with a 

intensity of loading W / length. It is required to determine the deflection.  

The bending moment diagram is drawn, below the loaded beam, the value of maximum B.M 

is equal to Wl2 / 8  



 

Fig.5.30 SSB with UDL – SF & BM diagram 

 

So by area moment method,  

 

Macaulay's Methods  

If the loading conditions change along the span of beam, there is corresponding change in 

moment equation. This requires that a separate moment equation be written between each 

change of load point and that two integrations be made for each such moment equation. 

Evaluation of the constants introduced each integration can become very involved. 

Fortunately, these complications can be avoided by writing single moment equation in such a 

way that it becomes continuous for entire length of the beam in spite of the discontinuity of 

loading. 

Note : In Macaulay's method some author's take the help of unit function approximation (i.e. 



Laplace transform) in order to illustrate this method, however both are essentially the same.  

For example consider the beam shown in fig below:  

Let us write the general moment equation using the definition M = ( ∑ M )L, Which means 

that we consider the effects of loads lying on the left of an exploratory section. The moment 

equations for the portions AB,BC and CD are written as follows  

 

Fig.5.31 SSB with different load intensities 

 

 

It may be observed that the equation for MCD will also be valid for both MAB and MBC 

provided that the terms ( x - 2 ) and ( x - 3 )2are neglected for values of  x less than 2 m and 3 

m, respectively. In other words, the terms ( x - 2 ) and ( x - 3 )2 are nonexistent for values of 

x for which the terms in parentheses are negative.  

 

Fig.5.32 SSB with different loads 

As an clear indication of these restrictions,one may use a nomenclature in which the usual 

form of parentheses is replaced by pointed brackets, namely, ‹ ›. With this change in 



nomenclature, we obtain a single moment equation  

 

Which is valid for the entire beam if we postulate that the terms between the pointed brackets 

do not exists for negative values; otherwise the term is to be treated like any ordinary 

expression. 

As an another example, consider the beam as shown in the fig below. Here the distributed 

load extends only over the segment BC. We can create continuity, however, by assuming that 

the distributed load extends beyond C and adding an equal upward-distributed load to cancel 

its effect beyond C, as shown in the adjacent fig below. The general moment equation, 

written for the last segment DE in the new nomenclature may be written as:  

 

Fig.5.33 SSB with different loads  

 

It may be noted that in this equation effect of load 600 N won't appear since it is just at the 

last end of the beam so if we assume the exploratary just at section at just the point of 

application of 600 N than x = 0 or else we will here take the X - section beyond 600 N which 

is invalid.  

Procedure to solve the problems  

(i). After writing down the moment equation which is valid for all values of ‘x' i.e. containing 

pointed brackets, integrate the moment equation like an ordinary equation.  

(ii). While applying the B.C's keep in mind the necessary changes to be made regarding the 

pointed brackets.  



llustrative Examples :  

1. A concentrated load of 300 N is applied to the simply supported beam as shown in Fig. 

Determine the equations of the elastic curve between each change of load point and the 

maximum deflection in the beam.  

 

Fig.5.34 SSB with point load 

Solution : writing the general moment equation for the last portion BC of the loaded beam,  

 

              To evaluate the two constants of integration. Let us apply the following boundary 

conditions:  

1. At point A where x = 0, the value of deflection y = 0. Substituting these values in Eq. (3) 

we find C2 = 0.keep in mind that < x -2 >3 is to be neglected for negative values.  

2. At the other support where x  = 3m, the value of deflection y is also zero.  

substituting these values in the deflection Eq. (3), we obtain  

 

Having determined the constants of integration, let us make use of Eqs. (2) and (3) to rewrite 

the slope and deflection equations in the conventional form for the two portions.  



 

Continuing the solution, we assume that the maximum deflection will occur in the segment 

AB. Its location may be found by differentiating Eq. (5) with respect to x and setting the 

derivative to be equal to zero, or, what amounts to the same thing, setting the slope equation 

(4) equal to zero and solving for the point of zero slope.  

We obtain  

50 x2– 133 = 0 or x = 1.63 m (It may be kept in mind that if the solution of the equation does 

not yield a value < 2 m then we have to try the other equations which are valid for segment 

BC)  

Since this value of x is valid for segment AB, our assumption that the maximum deflection 

occurs in this region is correct. Hence, to determine the maximum deflection, we substitute x 

= 1.63 m in Eq (5), which yields  

 

The negative value obtained indicates that the deflection y is downward from the x axis.quite 

usually only the magnitude of the deflection, without regard to sign, is desired; this is denoted 

by d, the use of y may be reserved to indicate a directed value of deflection.  

              if E = 30 Gpa and I = 1.9 x 106 mm4 = 1.9 x 10 -6 m4 , Eq. (h) becomes  

 

Example 2:  

It is required to determine the value of EIy at the position midway between the supports and 

at the overhanging end for the beam shown in figure below. 



 

Fig.5.35 Overhanging Beam with different loads  

 

Solution:  

Writing down the moment equation which is valid for the entire span of the beam and 

applying the differential equation of the elastic curve, and integrating it twice, we obtain  

 

To determine the value of C2, It may be noted that EIy = 0 at x = 0,which gives C2 = 0.Note 

that the negative terms in the pointed brackets are to be ignored Next,let us use the condition 

that EIy = 0 at the right support where x = 6m.This gives  

 

Finally, to obtain the midspan deflection, let us substitute the value of x = 3m in the 

deflection equation for the segment BC obtained by ignoring negative values of the bracketed 

terms á x - 4 ñ4 and á x - 6 ñ3. We obtain  

 

Example 3:  

A simply supported beam carries the triangularly distributed load as shown in figure. 

Determine the deflection equation and the value of the maximum deflection.  



 

Fig.5.36 SSB with Triangular load  

 

Solution:  

Due to symmetry, the reactionsis one half the total load of 1/2w0L, or R1 = R2 = 

1/4w0L.Due to the advantage of symmetry to the deflection curve from A to B is the mirror 

image of that from C to B. The condition of zero deflection at A and of zero slope at B do not 

require the use of a general moment equation. Only the moment equation for segment AB is 

needed, and this may be easily written with the aid of figure(b).  

Taking into account the differential equation of the elastic curve for the segment AB and 

integrating twice, one can obtain  

 

In order to evaluate the constants of integration,let us apply the B.C'swe note that at the 

support A, y = 0 at x = 0.Hence from equation (3), we get C2 = 0. Also,because of symmetry, 

the slope dy/dx = 0 at midspan where x = L/2.Substituting these conditions in equation (2) we 

get  

 

Hence the deflection equation from A to B (and also from C to B because of symmetry) 

becomes  



 

Example 4: couple acting 

Consider a simply supported beam which is subjected to a couple M at adistance 'a' from the 

left end. It is required to determine using the Macauley's method.  

 

Fig.5.37 SSB with force and Couple 

To deal with couples, only thing to remember is that within the pointed brackets we have to 

take some quantity and this should be raised to the power zero.i.e. M á x - a ñ0 . We have 

taken the power 0 (zero) ' because ultimately the term M á x - a ñ0 Should have the moment 

units.Thus with integration the quantity á x - a ñ becomes either á x - a ñ1or á x - a ñ2  Or  

 

Fig.5.38 SSB with Couple 

 

Therefore, writing the general moment equation we get 



 

Example 5: 

A simply supported beam is subjected to U.d.l in combination with couple M. It is required to 

determine the deflection.  

 

Fig.5.39 Overhanging beam with different loads  

 

This problem may be attemped in the some way. The general moment equation my be written 

as  

 

Integrate twice to get the deflection of the loaded beam.  
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