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UNIT1 FLUID PROPERTIES

Fluids: Substances capable of flowing are known as fluids. Flow is the continuous deformation of
substances under the action of shear stresses.

Fluids have no definite shape of their own, but confirm to the shape of the containing vessel. Fluids
include liquids and gases.
Fluid Mechanics:

Fluid mechanics is the branch of science that deals with the behavior of fluids at rest as well as in
motion. Thus,it deals with the static, kinematics and dynamic aspects of fluids.

The study of fluids at rest is called fluid statics. The study of fluids in motion, where pressure
forces are not considered, is called fluid kinematics and if the pressure forces are also considered for
the fluids in motion, that branch of science is called fluid dynamics.

Fluid Properties:
1.Density (or YMass Density:

Density or mass density of a fluid is defined as the ratio of the mass of the fluid to its volume.
Thus, Mass per unit volume of a fluid is called density.

Mass of fluid

Volume of fluid

Mass density, p=

3
S.1 unit of density is kg/m . 2

The value of density for water is 1000 kg/m .
2.Specific weight (or) Weight Density (w ):

Specific weight or weight density of a fluid is the ratio between the weight of a fluid to its

volume.

The weight per unit volume of a fluid is called specific weight or weight density.
= Weight of fluid
Weight density

Volume of fluid

= Mass of fluid X g
w

Volume of fluid
W= g

3
S.1 unit of specific weight is N/m . 2
The value of specific weight or weight density of water is9810N/m or 9.81 kN/m83.

3. Specific Volume (v):

Specific volume of a fluid is defined as the volume of a fluid occupied by unit mass.
Volume per unit mass of a fluid is called Specific volume.
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o Volume of a fluid 1
Specific volume = =

N ) Mass of fluid __ ) 2
Thus specific volume is the reciprocal of mass density. S.1 unit: m® /kg.

4. Specific Gravity (s):
Specific gravity is defined as the ratio of the specific weight of a fluid to the specific weight of
a standard fluid.

Specific gravity = Spe_c_lflc Welght of liquid
Specific weight of water
Specific gravity is also equal to Relative density. Relative density =

5. Viscosity:
Viscosity is defined as the property of a fluid which offers resistance to the movement of one
layer of fluid over adjacent layer of the fluid.

When two layers of a fluid, at distance ‘dy’ apart, move one
over the other at different velocities, say u and u+du as shown in
figure. The viscosity together with relative velocity causes a shear
stress acting between the fluid layers.

The top layer causes a shear stress on the adjacent lower layer
while the lower layer causes a shear stress on the adjacent top
layer.

This shear stress is proportional to the rate of change of
velocity with respect to y.

e T

T adu
dy VELOCITY PROFILE

Velocity variation near a solid boundary.

Fig.1. Velocity distribution curve

Thus the viscosity is also defined as the shear stress required to produce unit rate of shear
strain.
S.1 unit: Ns/mz2. It is still expressed in poise (P) as well as centipoises (cP).

.1 Ns 1
One poise = o0, | centipoise = T poise

Kinematic Viscosity (v): It is defined as the ratio between the dynamic viscosity and density of fluid. It is
denoted by the nu.
V = Viscosity/Density = p/p

In MKS and SI unit of kinematic viscosity is metre?/sec or m/sec while CGs units it is written as cm2/s.
In CGS units kinematic viscosity is also known as stoke.

One stoke = cm?/s = (1/100)? m%/s = 10* m%s and centistokes means = 1/100 stoke
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Newton's Law of Viscosity:
It states that the shear stress (1) on a fluid element layer is directly proportional to the rate of shear
strain. The constant of proportionality is called the co-efficient of viscosity.

T=pdu
dy
6.Compressibility:
Compressibility is the reciprocal of the bulk modulus of elasticity, K, which is defined as the
ratio of compressive stress to volumetric strain.
Compression of fluids gives rise to pressure with the decrease in volume.

If dv is the decrease in volume and dp is the increase in pressure, Volumetric Strain = _Ci/—v

(- ve sign indicate the volume decreases with increase of pressure)
Increase of pressure

Bulk modulus, K = L :
Volumetric Strain

e

—av
1
Compressibility= "~
K
7.Surface tension:
Surface tension is defined as the tensile force acting on the surface of a liquid in contact with a

gas or on the surface between two immiscible liquids such that the contact surface behaves like a
membrane under tension.

MIEET7]

(a) DROPLET  (b) SURFACE TENSION

(¢) PRESSURE FORCES

Forces on droplet.
Fig.2. Forces on droplet

Surface Tension on Liquid Droplet:
Consider a small spherical droplet of a liquid of diameter ‘d’. On the entire surface of the droplet,
the tensile force due to surface tension will be acting.
Let 6 = Surface tension of the liquid
p = Pressure intensity inside the droplet (in excess of the outside pressure
intensity) d = Dia. of droplet.
Let the droplet is cut into two halves. The forces acting on one half will be
i) Tensile force (Ft)due to surface tension acting around the circumference of the cut portion
as shown in fig. and this is equal te=o x Circumference = ¢ x n d
Pressure force (Fp) on the area C= p x (w/4) d as shown in the figure.
These two forces are equal under equilibrium conditions. i.e.,
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px (nw4)d®=ocxnd
P=(xnd)/(oxnd)=4c/d

Surface Tension on a Hollow Bubble:
A hollow bubble like a soap bubble in air has two surfaces in contact with air, one inside and other
outside. Thus two surfaces arc subjected to surface tension. In that case,

p (n/4) d*=2(c x d)
P=Qond) (w4) d*=8c/d

8. Capillarity:
Capillarity is defined as a phenomenon of rise or fall of a liquid surface in a small tube relative to the

adjacent general level of liquid when the tube is held vertically in the liquid.

The rise of liquid surface is known as capillary rise while the fall of the liquid surface is known as
capillary depression. It is expressed in terms of cm or mm of liquid. Its value depends upon the
specific weight of the liquid, diameter of the tube and surface tension of the liquid.

Expression for Capillary Rise:
Consider a glass tube of small diameter ‘d' opened at both ends and is inserted in a liquid. The liquid
will rise in the lube above the level of the liquid.

Let, h = height of the liquid in the tube. Under
a state of equilibrium,
the weight of liquid of height h is balanced by
the force at the surface of
the liquid in the tube. But the force at
the surface of the liquid in the tube is
due to surface tension.
Capillary rise Let, 6 = Surface tension of liquid
0= Angle of contact between liquid and
glass lube.

Fig.3. Capillary Rise

The weight of liquid of height ‘h’ in the tube = (Area of tube x h)x px g
where, p = density of liquid
Vertical component of the surface tensile force
= ¢ x Circumference x cos 0
=oxndxcos 6

Weight of liquid of height ‘h’ in the tube = Vertical component of the surface tensile force
T xhxpxg=0xmndxcos®

W= gxmd xcos0

Tl xpxg
4

9.Vapour pressure:
Vapour pressure is the pressure of the vapor over a liquid which is confined in a closed vessel at

equilibrium. Vapour pressure increases with temperature. All liquids exhibit this phenomenon.



Types of fluid:

i Ildeal Fluid: A fluid, which is an®©
incompressible and is having no viscosity, is 2 *'DEALSOUZ»Q&“C’
known as an ideal fluid. Ideal fluid is only an & 2 S
imaginary fluid as all the fluids, which exist, § “o‘;»g‘&o o
have some viscosity. b 5 “\,;«?\"‘
i. Real Fluid: A fluid, which possesses T =
viscosity, is known as real fluid. All the fluids HIDENLFIAND
are real fluids in actual practice. — VELOCITY GRADIENT (-9
Types of fluids.

Fig.4. Types of Fluid

ii. Newtonian Fluid: A real fluid, in which the shear stress is directly proportional to the rate of
shear strain (or) velocity gradient, is known as a Newtonian fluid.

V. Non-Newtonian Fluid: A real fluid, in which the shear stress is not proportional to the rate of
shear strain (or) velocity gradient, is known as a Non-Newtonian fluid.

v. ldeal Plastic Fluid: A fluid, in which shear stress is more than the yield value and shear stress is
proportional to the rate of shear strain (or) velocity gradient, is known as ideal plastic fluid

Fluid Pressure
Fluid pressure is the force exerted by the fluid per unit area.

aFrIeufﬁ gr%%ggre or Intensity of pressure or pressure, = Fluids exert pressure on surfaces with which they

Fluid pressure is transmitted with equal intensity in all directions and acts normal to any plane.
In the same horizontal plane the pressure intensities in a liquid are equal.

S.1 unit of fluid pressure are N/m2 or Pa, where 1 N/m2 =1 Pa.

Many other pressure units are commonly used:

1 bar =10 N/m2
1 atmosphere = 101325 N/m2 = 101.325kN/m2

Some Terms commonly used in static pressure analysis include:
Pressure Head: The pressure intensity exerted at the base of a column of homogenous fluid of a
given height in metres.

Vacuum: A perfect vacuum is a completely empty space in which, therefore the pressure is zero.
Atmospheric Pressure: The pressure at the surface of the earth exerted by the head of air above
the surface.
At sea level the atmospheric pressure = 101.325 kN/m2 = 101325 N/m? or pa

=1.01325 bar

=760 mm of mercury

=10.336 m of water
Atmospheric pressure is measured by a device called a barometer; thus, the atmospheric pressure is
often referred to as the barometric pressure.

Gauge Pressure: The pressure measured by a pressure gauge above or below atmospheric pressure.
Vacuum pressure: The gauge pressure less than atmospheric is called VVacuum pressure or negative
pressure.

Absolute Pressure: The pressure measured above absolute zero or vacuum.

Absolute Pressure = Atmospheric Pressure + Gauge Pressure
Absolute Pressure = Atmospheric Pressure — Vacuum pressure
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Fig.5. Barometer, Atmospheric, Gauge and Absolute Pressure

Hydrostatic law

The hydrostatic law is a principle that identifies the amount of pressure exerted at a
specific point in a given area of fluid.

It states that, “The rate of increase of pressure in the vertically downward direction, at a point
in a static fluid, must be equal to the specific weight of the fluid.”

Pressure Variation in static fluid
Consider a small vertical cylinder of static fluid in equilibrium.

ptdp

cross sectional
: d;:[ area= A
P

Fig.6. Pressure variation in static fluid
Assume that the sectional area is “A” and the pressure acting upward on the bottom surface is
p and the pressure acting downward on the upper surface (dz above bottom surface) is (p +
dp)dz.

Page | 6



Let the free surface of the fluid be the origin, i.e., Z = 0. Then the pressure variation at a
depth Z = - h below the free surface is governed by
(p+dp) A+W=pA
= dpA + pgAdz =0 [W=w x volume = pg Adz] dp = -pgdz
=

=-pg=-w

Therefore, the hydrostatic pressure increases linearly with depth at the rate of the specific
weight, w = pg of the fluid.

If fluid is homogeneous, p is constant.

By simply integrating the above equation,

Jdp=-Jpgdz => p=-pgZ+C

Where C is constant of integration.

When z = 0 (on the free surface), p = C = po = the atmospheric pressure.

Hence, p = - pgZ + po

Pressure given by this equation is called ABSOLUTE PRESSURE, i.e., measured above
perfect vacuum.

However, it is more convenient to measure the pressure as gauge pressure by setting
atmospheric pressure as datum pressure. By setting po= 0,

p = -pgz+0=-pgz = pgh

p =wh

The equation derived above shows that when the density is constant, the pressure in a liquid at
rest increases linearly with depth from the free surface.

Here, h is known as pressure head or simply head of fluid.
In fluid mechanics, fluid pressure is usually expressed in height of fluids or head of fluids.

Hydrostatic force

Hydrostatic pressure is the force exerted by a static fluid on a plane surface, when the static
fluid comes in contact with the surface. This force will act normal to the surface. It is also known as
Total Pressure.

The point of application of the hydrostatic or total pressure on the surface is known as Centre of
pressure.

The vertical distance between the free surface of fluid and the centre of pressure is called depth of
centre of pressure or location of hydrostatic force.

Total Pressure on a Horizontally Immersed Surface
Consider a plane horizontal surface immersed in a liquid as shown in figure.
Let, w = Specific weight of the liquid, KN/m3
A = Area of the immersed surface in m?
= Depth of the horizontal surface from the liquid level n
m We know that,
Total pressure on the surface, P = Weight of the liquid above the immersed surface
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P = Specific weight of liquid x Volume of liquid
= Specific weight of liquid x Area of surface x Depth of
liquid P = wA kN

0O Free surface of liquid 0O

s e A S

Specific weight. w

X (depth of centroid)

Area A

Horizontally immersed Plane
Surface

Fig:7. Horizontal Plane surface submerged in liquid
Total Pressure and depth of centre of pressure on a Vertically Immersed Surface

Consider an irregular plane vertical surface immersed in a liquid as shown in figure .
Let,
w = Specific weight of liquid
A = Total area of the immersed surface
= Depth of the center of gravity of the immersed surface from the liquid surface
Now. consider a strip of width ‘b’, thickness ‘dx’ and at a depth x from the free surface of the liquid

Free surface of liquid
T 11 b
2 X - depth of centroid
— | _ h = depth of centre of
h - dx pressure
_______ 0 G - Centroid
| C.P - centre of
— LA - = —— - CP
P pressure
SRS A Vertically immersed
plane surface
Fig: 9. Vertical Plan immersed in liquid
Moment of pressure on the strip about the free surface of liquid = @' x b dx X x = ' x2 b dx Total
mon|\1/¢|ent on}hg entire plane immersed surface = [ ' X2y
= w
But, [ 2 = second moment of area about free liquid surface = lo
therefore, M = ' lo
lo=lc + A x?, according to parallel axis theorem.
Therefore, M = w (lc + A X?) @
Also = Xh =AXXh ----mmrm e 2

Since equations 1 & 2 are equal,
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A xh= (lc+tAxR
epth of centre of pressure, = (e + Ax?3) /w A

h* = [ (Ig + AR?)/AR] + h
Total Pressure and depth of Centre of Pressure on an Inclined Immersed Surface

Consider a plane inclined surface, immersed in a liquid as shown in figure. Let,

w = Specific weight of the liquid

A = Total area of the immersed surface

x = Depth of the centroid of the immersed plane surface from the free surface of liquid.
0 = Angle at which the immersed surface is inclined with the liquid

surface h= depth of centre of pressure from the liquid surface

b = width of the considered thin
strip dx = thickness of the strip
O = the reference point obtained by projecting the plane surface with the free surface of liquid
x = distance of the strip from O

Free sutface of Liquid

w - Specific weight of fluid

i)
|ll' cP 4
'.1 Total Aren A/
\ P
%H&Ml .

Fig: 10. Inclined Immersed Plain
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Let the plane of the surface, if produced meet the free liquid surface at (). Then O-0 is the axis
perpendicular to the plane of the surface.

Let y = distance of the C.G. of the inclined surface from 0-0

v¥ = distance of the centre of pressure from O-0.

Consider a small sirip of area &4 at a depth */° from free surface and at a distance y from the axis
0-0 as shown in Fig. 3.18.

Pressure intensity on the strip, p=pgh
Pressure force, dF, on the strip, dF = p % Area of strip = pgh % dA

Total pressure force on the whole area, F = Idf-'z nghd&

h  h k*

But from Fig. 3.18, L Tr=—* = &in O
y ¥y ¥
h=ysinB

F= JF"S X yxsin B'de=pg5inﬂjy¢m
But J.}ﬂ"";"l}
where ; = Distance of C.G. from axis (-0
F=pgsinB ; ® A

= pgAh (~= h=y sin8)..(3.6)
Centre of Pressure (h*)
Pressure force on the strip.dF = pghdA

= pgy sin @ 44
Moment of the force, dF, about axis O-0

=dF x y = pgy sin 0 dA x y = pg sin 8 y'dA
Sum of moments of all such forces about Q-0

[h = v sin 8]

= jpgsinﬁy: dA = pg sin BJ}': dA

But I}'z dA = M.0.1. of the surface about 0-0 = [

Sum of moments of all forces about 0-0 = pg sin 8 I,
Moment of the total force, F, about O-0) is also given by
= F o y®
where y* = Distance of centre of pressure from O-0.
Equating the two values given by equations (3.7) and (3.8)
Fxy*=pgsin 8 I,

or = pg sin B I
) F
I —
Now Vi —— F=pgAh
sin B

and I, by the theorem of parallel axis = I, + A y°.
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Table: M.l and Geometric Properties of some plane surfaces

Moment of inertia
about an axis passing
Plane surface C.G. from the Area through C.G. and
base parallel to base (Ig)
l. Rectangle
|
T ]
]
_'le-""a d bd®
r ' X=— bd —_—
X 2 12
¢ X
i
2. Triangle
Gk bi bi
"3 2 36

2
5
| &
=&
2|8

Pascal’s law

The basic property of a static fluid is pressure.

Pressure is the surface force exerted by a fluid against the walls of its container.

Pressure also exists at every point within a volume of fluid.

For a static fluid, as shown by the following analysis, pressure turns to be independent direction.

Fig:11. Pascal Law
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Consider a triangular prism of small fluid element ABCDEF in equilibrium. Let Px is the
intensity of pressure in the X direction acting at right angle on the face ABFE, Py is the intensity of
pressure in the Y direction acting at right angle on the face CDEF, and Ps is the intensity of pressure
normal to inclined plane at an angle 6 as shown in figure at right angle to ABC ..

For a fluid at rest there will be no shear stress, there will be no accelerating forces, and
therefore the sum of the forces in any direction must be zero.

Thus the forces acting on the fluid element are the pressures on the surrounding and the gravity force.
Force due to px= pxx Area ABFE = pxdydz
Horizontal component of force due to pn=- (pn X Area ABC ) sin(0) = - pndNdz dy/ds = -Pndydz
As Py has no component in the x direction, the element will be in equilibrium, if
px dydz + (-pndydz) =0
i.e. pX = pN
Similarly in the y direction, force due to py = pydxdz
Component of force due to pn= - (pn X Area ABC ) cos(8) = - pndsdz dx/ds = -
pndxdz Force due to weight of element is negligible and the equation reduces to,
Py = PN
Therefore, px = py = pn
Thus, Pressure at a point in a fluid at rest is same in all directions.
Manometers:
Manometer is an instrument for measuring the pressure of a fluid, consisting of a tube filled with a
heavier gauging liquid, the level of the liquid being determined by the fluid pressure and the height

of the liquid being indicated on a scale. A U-tube manometer consists of a glass tube bent in U-Shape,
one end of which is connected to gauge point and the other end is exposed to atmosphere.

Manometric liquids:
1. Manometric liquids should neither mix nor have any chemical reaction with the liquid whose
pressure intensity is to be measured.
2. It should not undergo any thermal variation.
3. Manometric liquid should have very low vapour pressure.
4. Manometric liquid should have pressure sensitivity depending upon the magnitude of pressure
to be measured and accuracy requirement.

Convert all vertical columns of liquids to meters of water by multiplying them by
corresponding specify gravity.

To write the manometric equation:

1. Convert all given pressure to meters of water and assume unknown pressure in meters of waters.
2. Proceeding from one end towards the other the following points must be considered.

Any horizontal movement inside the same liquid will not cause change in pressure.

[
Vertically downward movement causes increase in pressure and upward motion cause
decrease’in pressure.

Convert all vertical columns of liquids to meters of water by multiplying them by
corresponding specify gravity.

Take atmospheric pressure as zero (gauge pressure computation).
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Simple U-Tube Manometer: It consist of glass tube in U shape one end of which is connected to a point
at which pressure is to be measured and other end remains open to the atmosphere as shown in fig. The
tube generally contains mercury or any other liquid whose specific gravity is greater than the specific
gravity of the liquid whose pressure is to be measured.

(a) For gauge pressure (b) For vacuum pressure

Fig: 12. Simple U tube Manometer

For Gauge Pressure. Let B is the point at which pressure is to be measured, whose value is p. The datum line is
A-A Let, Hj;=Heightof light liquid above the datum line

H, = Height of heavier liquid above the datum line

S1 = Specific gravity of light liquid

p1 = Density of light liquid = 1000 x S;

S, = Specific gravity of heavy liquid

p2 = Density of heavy liquid = 1000 x S,

As the pressure is the same for the horizontal surface. Hence pressure above the horizontal datum
ling A-A in the left column and in the right column of U-tube manometer should be same.

Pressure above A-A in the left column =p+p xgxh
Pressure above A-A in the right column =P, Xgxh,
Hence equating the two pressures p+pgh, = pagh,

P=(paghy = ppx g xhy).
(#) For Vacuum Pressure. For measuring vacuum pressure, the level of the heavy liquid in the
manometer will be as shown in Fig. 2.9 (b). Then

Pressure above A-A in the left column = poghy + pgh, +p
Pressure head in the right column above A-A =0

Pagh; + pighy +p=0
p=—(pghy + pyghy).

Differential U-tube manometer

Let, A and B are the two pipes carrying liquids of specific gravity s1and s3 & s2 = specific gravity of
manometer liquid.

1
X s
Ag
+
{
Pipe A x Datum
l — J\ Manometer liquid

Fig:13. Differential U-tube Manometer
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Let two point A & B are at different level and also contains liquids of different sp.gr. These points
are connected to the U-tube differential manometer. Let the pressure at A and B are Pa and Pg

Let h = Difference of mercury level in the U-tube.
v = Distance of the centre of 8, from the mercury level in the right limb.
x = Distance of the centre of A, from the mercury level in the right limb.
P = Density of liguid at A.
P2 = Density of liquid at B.
P, = Density of heavy liquid or mercury.
Taking datum line at X-X.
Pressure above X-X in the left limb = pglh + x) + p,
where p, = pressure at A,
Pressure above X-Xin the right limbh = p,xgx i+ pyxgxy+ pg
where py = Pressure at B.
Equating the two pressure, we have

Pigth+x)+p,=p,xgxh+pgy+pg
Pa—Pp=PXegxXh+pgy-pelh+x)
=hxglp,—p)+ Pagy - pi8x
Difference of pressure at A and B = h = glp, — p)) + pogy — pygx
In Fig. 2.18 (&), the two points A and B are at the same level and contains the same liquid of density
;- Then
Pressure above X-X in right limb = p*g Kh+pxgxx+pg
Pressure above X-X in left limb =p xgx{(h+x)+ p,
Equating the two pressure
pexe “h+pax+pg=p g xih+x)+p,
Pa=Pp=Py %8 xh+pgr-pglh+x
=g X h(p - py).

Buoyant force: The upward force exerted by a liquid on a body when the body is immersed in the
liquid is known as buoyancy or buoyant force.

The point through which force of buoyancy is supposed to act is called centre of buoyancy.

The buoyant force acting on a body is equal to the weight of the liquid displaced by the body.

For a fluid with constant density, the buoyant force is independent of the distance of the body from the
free surface. It is also independent of the density of the solid body.

Archimedes principle: The buoyant force acting on a body immersed in a fluid is equal to the weight
of the fluid displaced by the body, and it acts upward through the centroid of the displaced volume.

For floating bodies, the weight of the entire body must be equal to the buoyant force, which is the
weight of the fluid whose volume is equal to the volume of the submerged portion of the floating body.
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Floatinge
< £ bods
U TS p - density of body; ps— density of fluid
Ui

Suspended boudy A solid body dropped into a fluid will sink,

tneuteally buoyane float, or remain at rest at any point in the fluid,
depending on its average density relative to the
density of the fluid.

Sinking

7 =Py body:

Fig:14. Floating Body

Stability of Immersed and Floating Bodies
A floating body possesses vertical stability, while an immersed neutrally buoyant body is neutrally
stable since it does not return to its original position after a disturbance.

weight -
7 o R

weight Stability of submerged bodies
(i) stable (ii) Neutrally stable (iii) Unstable

Fig:15. An immersed neutrally buoyant body is (a) stable if the center of gravity G is directly below the center of
buoyancy B of the body, (b) neutrally stable if G and B are coincident, and (c) unstable if G is directly
above B.

Stability of floating bodies: A floating body is stable if the body is bottom-heavy and thus the center
of gravity G is below the centroid B of the body, or if the metacentre M is above point G. However,
the body is unstable if point M is below point G.

Metacentre

| 4
f M

Overturning
moment

! Restoring
| | moment /
0) (i) ()

Stable condnditions of floating bodies Unstable condition of floating body

Fig.16.Stability of Floating Bodies
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Metacentre: The point about which a body starts oscillating when the body is tilted is known meta-
centre.

Metacentric height GM: The distance between the center of gravity G and the metacenter M is
known as Meta centric height. It is the point of intersection of line of action of buoyant force with
the line passing through centre of gravity, when the body is slightly tilted.

Centre of grvity & centre of
buoyancy - Lying T same axis

Metacentre

l

Body ﬂoaJing - Normal Body floating - Tilted
Fig.17. Metacentric Height

The length of the metacentric height GM above G is a measure of the stability: If the
metacentric height increases, then the floating body will be more.. The meta-centric height
(GM) is.given by, GM =V - BG
Where, | = Moment of Inertia of the floating body (in plan) at water surface about the axis Y-
Y V = Volume of ihe body sub merged in water
BG = Distance between centre of gravity and centre of buoyancy.
Conditions of equilibrium of a floating and submerged body are :

Table.2. Condition of Equilibrium of a Floating bodies

Equilibrium Floating Body Sub-merged Body
(i) Stable Equilibrium M is above G B isabove G

(a) Unstable Equilibrium  [M is below G B is below G

(Hi) Neutral Equilibrium  [Af and G coincide B and G coincide

Problems:
1. Calculate the sp.weight, density and sp.gravity of one litre of liquid which weights 7N.
Sol:

. 1, . 3 . : ]
Volume = 1 lirte= ——m” w1 lire = m® or 1 litre = 1000 cm?
1000 (
Weight=T N
Weight TN
(i) Specific weight (w) = — 20 o = 7000 N/m". Ans.
Volume ( | ] 3
— | m
1000
7000
(if) Density (p) =2 = 20 oim® = 713.5 kg/m®. Ans.
g 981
Density of liquid 713
(iif) Specific gravity = m]_[}r g - L 3 {+  Density of water = 1000 kg.n'm:‘j
Density of water 10040
= U-TI?‘S& Al'l.‘i.
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2.

or

3.

4,

Calculate the density, sp.weight and weight of one litre of petrol of specific gravity = 0.7
1000

Solution. Given :  Volume = 1 litre = 1 x 1000 cm”’ = Tk m® = 0.001 m*
Sp. gravity §=07
() Density (p)
Using equation (1.14),
Density (p) = § % 1000 kg/m® = 0.7 x 1000 = 700 kg/m>. Ans.
(i) Specific weight (w)
Using equation (1.1), w=pxg=T00x9.81 N/m* = 6867 N/m". Ans.
(i) Weight (W)
We know that specific weight = Weight

Volume

W W
= 6867 = ——
0.001 " 0.001

W= 6867 x 0.001 = 6.867 N. Ans.

A plate 0.023 mm distant from a fixed plate moves at 60 cm/s and requires a force of 2N per unit area i.e 2 N/m? to
maintain this speed. Determine the fluid viscosity between the plates.
Solution. Given :

Distance between plates,  dy = .25 mm

=.025% 107 m
Velocity of upper plate, =60 cm/s = 0.6 m/s
N FIXED PLATE
Force on upper plate, F=20—.
)

This 15 the value of shear stress i.e., T
Let the fluid viscosity between the plates is .
. . du
Using the equation (1.2), we have 1= .
¥
where  du = Change of velocity = u - 0 = u = 0.60 m/s

dy = Change of distance = 025 % 107 m

T = Force per unit area = 2.0 1}_
m
0.60 2.0 % .025%107° 5 Ns
20=p ——— = =833 x 10 1
H 025 %107 " 0.60 m’

= 8.33 x 107 % 10 poise = 8.33 x 107* poise. Ans.

The dynamic viscosity of oil used for lubrication between a shaft and sleeve is 6 poise. The shaft is of diameter 0.4 m
and rotates at 190 rpm. Calculate the power lost in the bearing for a sleeve length of 90mm. The thickness of the ail
filmis 1.5mm.

Solution. Given : 1.5 mm
Viscosity | = 6 poise
N N kD
=£_25_0_6_2S A 04m
10 m m v
Dia. of shaft, D=0.4m ) ?‘EHAFT
Speed of shaft, N =190 r.p.m - 90 mm
4 SLEEVE
Sleeve length, L=90mm=90x10"m
Thickness of oil film, t=1.5mm=15x10"m
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TDN _ mx0.4x190

Tangential velocity of shaft, u = =3.98 m/s
60 60
Using the relation T=U d_u
dy
where du = Change of velocity = u— 0 =u=3.98 m/s
dy = Change of distance = r= 1.5x 10> m
T=10x LSJ = 1592 N/m*
1.5x 10

This is shear stress on shaft

Shear force on the shaft, F' = Shear stress x Area
=1592 XD XL=1592 Xt x.4%x90x 10 2= 180.05 N

Torque on the shaft, T = Force x g = 180.05 x % = 36.01 Nm

bt X N
= 2TNT _2mx190X36.01 _ 416 48 W. Ans.
60 60

*Power lost

5. The surface tension of water in contact with air at 20°C is 0.0725N/m. The pressure inside a droplet
of water is to be 0.02 N/cm? greater then the outside pressure. Calculate the diameter of the droplet

of water.
Solution. Given :
Surface tension, c = 0.0725 N/m

Pressure intensity, p in excess of outside pressure is

p =0.02 N/em? = 0.02 x 10* 12
m
Let d = dia. of the droplet
we getp = %5 or 0.02 x 10* = 4x00725
= Lﬁni =.00145 m = .00145 x 1000 = 1.45 mm. Ans.
0.02 x(10)

6. Calculate the capillary rise in a glass tube of 2.5mm diameter when immersed vertically in a) water b) Mercury. Take
surface tension of 2.5 mm diameter when immersed vertically in contact with air. The specific gravity for mercury is

given as 13.6 and angle of contact = 130

Solution. Given :

Dia. of tube, d=2.5mm=2.5x 10> m
Surface tension. ¢ for water = 0.0725 N/m

o for mercury = 0.52 N/m

Sp. gr. of mercury = 13.6
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Density = 13.6 x 1000 kg/m>.
(a) Capillary rise for water (0 = 0%
46 4 % 00725
pxgxd 1000x981x25x103
=.0118 m = 1.18 cm. Ans.

Using equation (1.20), we get i =

() For mercury

Angle of contact between mercury and glass tube, 8 = 130°

40 cos® 4 x0.52 x cos 130°
pxgxd 13.6x1000%9.81x2.5x10

= —.004 m = — 0.4 cm. Ans.
The negative sign indicates the capillary depression.

Using equation (1.21), we get i =

7. The right limb of a single U-tube manometer containing mercury is open to the atmosphere while the left limb is
connected to a pipe in which a fluid of sp.gravity is 0.9 is flowing. The centre of the pipe is 12cm below the level of
mercury in the right limb. Find the pressure of fluid in the pipe if the difference of mercury in the two limbs is 20cm.

Solution. Given :

Sp. gr. of fluid, 5 =09
Density of fluid, P, =8, x 1000 = 0.9 x 1000 = 900 kg/m’ [}

Sp. gr. of mercury, 5,=13.6 T
Density of mercury, p, = 13.6 x 1000 kg/m>

Difference of mercury level, h,=20cm =0.2m

Height of fluid from A-A, hy=20-12=8cm=0.08 m

Let p = Pressure of fluid in pipe
Equating the pressure above A-A, we get
P+ pghy = pogh,y
p + 900 x9.81 x0.08 = 13.6 x 1000 x 9.81 x .2
p=13.6 x 1000 x 9.81 x .2 — 900 x 9.81 x 0.08
= 26683 — 706 = 25977 N/m” = 2.597 N/cm’. Ans.

8. A differential manometer is connected at the two points A and B of two pipes as shown in fig. The pipe A contains a
liquid of Sp.gravity = 1.5 while pipe B contains a liquid of sp.gravity = 0.9. The pressure at A and B are 1 Kgf/cm? and

1.80 Kgf/cm? respectively. Find the difference in mercury level in the differential manometer.
Sp.gr=1.5 2
p, =1 kaf/cm

Solution. Given :

Sp. gr. of liquid at 4, §, = 1.5 .. p,; = 1500
Sp. er. of liquid at B, S, = 0.9 - p, =900 S =40
Pressure at A, pa=1 kgf:'cm2 =1 x10* kgf;’m2

=10*x 9.81 N/m? ("~ 1 kgf = 9.81 N) >
Pressure at B, pp= 1.8 kgflcm? 8 kgt fom?

1.8 x 10* kgf/m?
1.8 x 10*x 9.81 N/m” (- 1 kgf =9.81 N)
13.6 x 1000 kg/m>

Density of mercury
Taking X-X as datum line.
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Pressure above X-X in the left limb
= 13.6 x 1000 x 9.81 x h + 1500 X 9.81 X (2 + 3) + p,
= 13.6 x 1000 x 9.81 x A + 7500 x 9.81 + 9.81 x 10*
Pressure above X-X in the right limb = 900 x 9.81 x (h + 2) + pg
=900 x 9.81 x (h + 2) + 1.8 x 10* x 9.81
Equating the two pressure, we get
13.6 x 1000 x 9.81A + 7500 x 9.81 + 9.81 x 10*
=900 % 9.81 x (h + 2) + 1.8 x 10* x 9.81
Dividing by 1000 x 9.81, we get
136h+75+10=(h+20)x.9+ 18
13.6h + 17.5=09h + 1.8 + 18 = 0.9h + 19.8
(13.6 — 0.9h = 19.8 — 17.5 or 12.7h = 2.3

h= ﬁ = 0.181 m = 18.1 em. Ans.
12.7

A rectangular plane surface is 2m wide and 3m deep. It lies in vertical plane in water. Determine the total pressure and
position of centre of pressure on the plane surface when its upper edge is horizontal and a) coincide with water surface
b) 2.5 m below the free water surface.

Solution. Given :

Width of plane surface, b=2m

Depth of plane surface, d=3m

(a) Upper edge coincides with water surface

F = pgAE - -
1000 kg/m>, g = 9.81 m/s> REE WATER SURFACE

where P — 1 e

A=3x2=6m2,5=i(3)=1.5m.
2 e

- | —
W
3

£ = 1000 x 9.81 x 6 X 1.5 Ge
= 88290 N. Ans. Y pe
Depth of centre of pressure is given by equation (3.5) as
h* = I—G_ + 7 X
Ah I 2m 1

where [;= M.O.I. about C.G. of the arca of surface

bd®>  2x3° a

= =4.5m
12 12
h* = 4.5 +1.5=0.5+ 1.5 = 2.0 m. Ans.
6% L5
(b) Upper edge is 2.5 m below water surface
F = pgAh WATER SURFACE
_ - === r=r=="
where A= Distance of C.G. from free surface of water | | = —== ===
2.5
—25+>=40m "
2 B
F = 1000 x 9.81 x 6 x 4.0 0| 'y
= 235440 N. Ans.
. . 1 — X 1 e 3.0m
Centre of pressure is given by h*= A_GE +h Y op
where I;=4.5,A =6.0, h = 4.0 - ¥

he= 23140
6.0 x 4.0

0.1875 + 4.0 = 4.1875 = 4.1875 m. Ans.
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10. A rectangular plane surface 2m wide and 3m deep lies in water in such a way that its plane makes an angle of 30 with
the free surface of water. Determine the total surface and position of centre of pressure when the upper edge is 1.5m
below the free water surface.

Solution. Given : FREE WATER SURFACE
Width of plane surface, b/ =2m S A
Depth, d=3m

Angle, 6 = 30°

Distance of upper edge from free water surface = 1.5 m
(i) Total pressure force is given by equation

F = pgAh
where p = 1000 kg/m?
A=bxd=3x2=6m>

h Depth of C.G. from free water surface

1.5 + 1.5 sin 30°

{~ h=AE+ EB= 1.5+ BCsin 30° = 1.5 + 1.5 sin 30°}

Il
W
+
—
¥
X
=
Il
]
[Re]
Lh
=

F=1000x981 x6 x2.25=132435 N. Ans.

(ii) Centre of pressure (h¥)

Using equation (3.10), we have
I;sin®®  — bd>  2x3’

h*=-9"_ —4+h, wherel;= = = 4.5 m*
Ah 12 12
1
=2 o 4.5 % —
pr = d2Xsin" 307 o0 T4 505
6 %225 6 % 2.25

0.0833 + 2.25 = 2.3333 m. Ans.

11. Find the volume of the water displaced and position of centre of buoyancy for a wooden block of width 2.5m and depth
1.5m. When it floats horizontally in water. The density of wooden block is 650 kg/m® and its length 6m.
Solution. Given :

Width =2.5m WATER

Depth =1.5m SURFACE =

Length =6.0m —— . w i

Volume of the block = 2.5x 1.5 x 6.0 = 22.50 m* BTF m

Density of wood, p = 650 kg/m? g J_l
Weight of block = p x g X Volume = 25m =|

=650 x9.81 x22.50 N = 143471 N

For equilibrium the weight of water displaced = Weight of wooden block
= 143471 N

Volume of water displaced
_ Weight of water displaced 143471

Weight density of water 1000 x 9.81
(*.- Weight density of water = 1000 x 9.81 N/m?)
Position of Centre of Buoyancy. Volume of wooden block in water
= Volume of water displaced
2.5 x h x 6.0 = 14.625 m>, where & is depth of wooden block in water
_ 14.625
T 25x%6.0

Centre of Buoyancy = % = 0.4875 m from base. Ans.

= 14.625 m>. Ans.

=0975m
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12. A rectangular pontoon is 5m long, 3m wide and 1.20m high. The depth of immersion of the position is 0.80 m in sea
water. If the centre of gravity is 0.6m above the bottom of the position, determine the meta centric height. The density
for sea water is 1025 kg/m?®.

Solution. Given :

Dimension of pontoon =5mx>x3mx1.20m
Depth of immersion = 0.8 m
Distance AG=0.6m f— 3"|1 —
Distance AB = % x Depth of immersion | | T v
=1 x8=04m e 304?1_'6m Emo.sm
Density for sea water = 1025 kghn3 A4 T
Meta-centre height GM, given by equation e -
1
GM = — - BG
v
where I = M.O. Inertia of the plan of the pontoon about Y-} axis 50m
1
= — ><5><3?’m4=£m4
12 4
V = Volume of the body sub-merged in water . < X

=3x0.8%x50=12.0m>
BG=AG -AB=06-04=0.2m

PLAN AT WATER SURFACE

oM=L _02-2 _02-09375-02=0.7375 m. Ans.
4 120 48
Questions for practice:
PART - A

Define fluid and fluid mechanics.

Define real and ideal fluids.

Define mass density and specific weight.
Distinguish between fluid statics and kinematics.
Define viscosity.

Define specific volume.

Define specific gravity.

Distinct b/w capillarity and surface tension.

© 0N ks WD E

Calculate the specific weight, density and specific gravity of 1 liter liquid which
weighs 7N.

10. State Newton’s law of viscosity.

11. Name the types of fluids.

12. Define compressibility.

13. Define kinematic viscosity.

14.Find the kinematic viscosity of oil having density 981 kg/m3' The shear stress at a point
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in oil is 0.2452N/m and velocity gradient at that point is 0.2/sec.
15. Determine the specific gravity of a fluid having 0.05 poise and kinematic viscosity 0.035
stokes.

16. Find out the minimum size of glass tube that can be used to measure water level if the
capillary rise is restricted to 2 mm. Consider surface tension of water in contact with air
as 0.073575 N/m.

17. Write down the expression for capillary fall.

18. Explain vapour pressure .

19. Two horizontal plates are placed 1.25 cm apart. The space between them is being
filled with oil of viscosity 14 poises. Calculate the shear stress in oil if upper plateis
moved with a velocity of 2.5 m/s.

20. State Pascal’s law.

21. What is mean by absolute and gauge pressure and vacuum pressure?

22. Define Manometer and list out its types.

23. Define centre of pressure and total pressure.

24. Define buoyancy and centre of buoyancy.

25. Define Meta centre.

26. Define Hydro static Pressure.
27. What is stable equilibrium of floating bodies?
28. What is stable equilibrium of submerged bodies?

PART —B

Calculate the capillary effect in a glass tube of 4.5 mm diameter, when immersed in (a) water

(o]
(a) mercury. The temperature of the liquid is 20 Cand the values of the surface tension of
water and mercury at 20  Cin contact with air are 0.073573 N/m and 0.51 N/m respectively.

The angle é)f contact for water is zero that for mercury 130 | Take specific weight of water as
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9800 N/m .

2.  If the velocity profile of a liquid over a plate is a parabolic with the vertex 202
cm from the plate, where the velocity is 120 cm/sec. calculate the velocity
gradients and shear stress at a distance of 0, 10 and 20 cm from the plate, if the
viscosity of the fluid is 8.5 poise.

3. The dynamic viscosity of oil, used for lubrication between a shaft and sleeve is 6
poise. The shaft is of diameter 0.4 m and rotates at 190 rpm. Calculate the power lost
in the bearing for a sleeve length of 90mm. the thickness of the oil film is 1.5 mm.

4. |If the velocity distribution over a plate is given by u=2/3 y —y in which u is the
velocity in
m/s at a distance y meter above the plate, determine the shear stressaty =0 and y
=0.15m.

5. The velocity distribution of flow is given by u = ly? + my+c with vertex 30 cm
from the plate, where velocity is 1.8 m/s. If u = 0.9 Ns/m?, find the velocity
gradients and shear stresses at y =0, 15 and 30 cm from the plate.

6. Derive Pascal’s law.
Derive expression for capillary rise and fall.
Two large plane surfaces are 2.4 cm apart. The space between the gap is filled
with glycerin. What force is required to drag a thin plate of size 0.5 m between
two large plane surfaces at a speed of 0.6 m/sec. if the thin plate is (i) in the
middle gap (ii) thin plate is 0.8 cm from one of the plane surfaces? Take
dynamic viscosity of fluid is 8.1 poise.

9. Calculate the capillary rise in a glass tube of 2.5 mm diameter when immersed vertically in
(a) water

(b) mercury. Take surface tension = 0.0725 N/m for water and = 0.52 N/m for
mercury in contact with air. The specific gravity for mercury is given as 13.6 and
angle of contact of mercury with glass =

130 degree.

10. A U - Tube manometer is used to measure the pressure of water in a pipe line,
which is in excess of atmospheric pressure. The right limb of the manometer
contains water and mercury is in the left limb. Determine the pressure of
water in the main line, if the difference in level of mercury in the limbs of U

tube is 10 cm and the free surface of mercury is in level with over

the centre of the pipe. If the pressure of water in pipe line is reduced to 9810 N/m?,
Calculate the new difference in the level of mercury. Sketch the arrangement in
both cases.

11. Calculate the total hydrostatic force and location of centre of pressure for a
circular plate of 2.5 m diameter when immersed vertically in an oil of specific gravity 0.8
with its top edge 1.5 m below the oil.

13. Arectangular plate 2.5m x 3.5 m is submerged in water and makes an angle
of 60° with the horizontal, the 2.5m sides being horizontal. Calculate the total
force on the plate and the location of the point of application of the force,
when the top edge of the plate is 1.6m below the water surface.



14. A rectangular plate 1.5 m x 3 m is immersed in an oil of specific gravity 0.82
such that its upper and lower edge is at depths 1.5 m and 3 m respectively.
Determine the total pressure acting on the plate and its location.

15. In an open container water is filled to a height of 2.5m and above that an oil
of Specific gravity 0.85 is filled for a depth of 1.4 m. Find the intensity of
pressure at the interface of two liquids and at the bottom of the tank.

16. The pressure Intensity at a point is 40kPa. Find corresponding pressure
head in (a) water(b) Mercury (c) oil of specific gravity 0.9.
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UNIT - 2 Equations of Motion

Fluid flow is described by two methods: Lagrangian method & Eulerian method In the
Lagrangian method a single particle is followed over the flow field with the co ordinate
system following the particle. The flow description is particle based and not space based.
A moving coordinate system has to be used. In the Eulerian method, the description of
flow is based on fixed coordinate system and the description of the velocity is with
reference to location and time. Hence, Eulerian approach is easily adoptable to describe
fluid motion mathematically.

Control Volume:

A fixed volume in space whose size and shape is entirely arbitrary, through which a
fluid is continuously flowing is known as control volume. The boundary of a control
volume is termed as the control surface. The size and shape is arbitrary and normally
chosen such that it encloses part of the flow of particular interest.

Types of Fluid Flow:

1)Steady flow: The flow in which the fluid characteristics like velocity, pressure,

density etc. at a point do not change with time is defined as steady flow.
Mathematically, for steady flow,

av dp> o op .
(a: . _O’(ar L ,_O’(az , =0
Xoe ¥p e Zo K Moo= o Lps M= o

Unsteady Flow: The flow, in which the velocity, pressure and density at a point changes
with respect to time is defined as unsteady flow.
Mathematically, for unsteady flow

(av
ar
2. Uniform flows: The flow in which the velocity at any given time does not change

with respect to distance is defined as Uniform flow.
Mathematically, for uniform flow

[av — 0

aS = constant

o
= 0, a_p) = 0 etc.
Fo+¥pr <o r Xge Mo+ To

Non-uniform flow: The flow in which the velocity at any given time changes with
respect to distance is defined as non uniform flow.
Mathematically, for non-uniform flow,

(a—v == .
o5 § = constant

3. Laminar flow: The flow in which the fluid particles move along well-defined paths
which are straight and parallel is defined as laminar flow. Thus the particles move in
layers and do not cross each other.

Turbulent flow: The flow in which the fluid particles do not move in a zig-zag way

4. Compressible flow: The flow in which the density of fluid changes from point to
point ie., p is not constant for the fluid, is defined as compressible flow.



Incompressible flow: The flow in which the density of fluid is constant is defined as
incompressible flow.
Liquids are generally incompressible while gases are compressible.

Mathematically, for incompressible flow, p = Constant

5.Rotational flow: The flow in which the fluid particles while flowing along stream-
lines, also rotate about their own axes, that type of flow is known as rotational flow.
Irrotational flow: The flow in which the fluid particles while flowing along
stream-lines, do not rotate about their own axes, that type of flow is called
irrotational flow.

6. One Dimensional Elow:

One dimensional flow is that type of flow in which the fluid velocity is a
function of one- space-co-ordinate only. The variation of velocities in other two
mutually perpendicular directions is assumed negligible.

Mathematically, for one-dimensional flow

U:f(x),v=0 andw=0

where u, v and w are velocity components in x, y and z directions respectively.
Two-dimensional flow:

It is that type of flow in which the velocity is a function of two space co-
ordinates only. Thus, mathematically for two dimensional flow

u=fi(xy), v=fa(xy)andw=0

Three-dimensional flow:

It is the type of flow in which the velocity is a function of three space co-
ordinates (x, y and z). Mathematically for three dimensional flow,

u=fi(xy,z), v=fa(xy,2), w=fs(xyz2).

Path Line:
A path line is the trajectory of an individual element of fluid.

Streamline:
A streamline is an imaginary continuous line within a moving fluid such that the
tangent at each point is the direction of the flow velocity vector at that point.

Stream Tube:

An imaginary tube (need not be circular) formed by collection of neighboring
streamlines through which the fluid flows is known as stream tube.

Stream lines -

Stream tube

Fig.2.Conservation of mass: Integral Form



Let us consider a control volume V bounded by the control surface S. The efflux of
mass across the control surface S is given by

[[ o
5

where ¥ is the velocity vector at an elemental area(which is treated as a vector by
considering its positive direction along the normal drawn outward from the
surface).

Mass flow in

5 Control )
—- i
( volume V o
\e —
S~

Control surface,S__*" Mass fl.;w out

Fig.3.A Control Volume for integral form of derivation
The rate of mass accumulation within the control volume becomes

e

where dV is an elemental volume, p is the density and V is the total volume bounded
by the control surface S. Hence, the continuity equation becomes

0

2 ([ oar+[orai
v b

The second term of the Equation can be converted into a volume integral by the use of
the Gauss divergence theorem as

[[ o7 dd=[[[ v.comrar

5 ¥

Since the volume V does not change with time, the sequence of differentiation and
integration in the first term of Equation (1) can be interchanged and it can be written as

] ] — e

Equation (2) is valid for any arbitrary control volume irrespective of its shape and
size. So we can write

do
—_—+V. =0
= (o)



Conservation of Energy:

The law of conservation of energy says “energy cannot be created or be destroyed; One
form of energy can be changed into another form only”.

Consider the Control Volume shown in Figure as a thermodynamic system. Let
amount of heat d¢g be added to the system from the surrounding. Also let ow be the
work done on the system by the surroundings. Both heat and work are the forms of
energy. Addition of any form of the energy to the system, changes the amount of
internal energy of the system. Lets denote this change of internal energy by de. As per
the principle of energy conservation,

dq + 0w =de
Therefore in terms of rate of change, the above equation changes to

ciq+@=d—_éa ----------------- (1)
& & dt

For an open system there will be a change in all the forms of energies possessed by the
system, like internal energy and kinetic energy. The right hand side of the equation (1)
is representing change in the content of energy of the system.

If q is the amount of heat added per unit mass, then the rate of heat addition for any
elemental volume will be g(pdv) . The total external volumetric heat addition on the
entire control volume and heat got added by viscous effects like conduction can be,

The main source of work transfer is due to the surface forces like pressure, body force
etc. Consider an elemental area ds of the control surface. The pressure force on this
elemental area is -Pds and the rate of work done on the fluid passing through ds with
velocity V is (-Pds).V. Integrating over the complete control surface, rate of work done
due to pressure force is,

. ﬁ (PRI  ecubseuinied 3)

In addition, consider an elemental volume dv inside the control volume, as shown in
Figure.

volume due to body force is
(pFodu).V. Here Fb is the body
force per unit mass. Summing
over the complete control
volume, we obtain, rate of work
done on fluid inside v due to
body forces is

ﬂ{ (PFdu)V

Mass flow out



The rate of work done on the elemental

If the flow is viscous, the shear stress on the control surface will also do work on the
fluid as it passes across the surface. Let Wviscous denote the work done due to the
shear stress. Therefore, the total work done on the fluid inside the control volume is
the sum of terms given by (3) and (4) and Wviscous, that is

3— —H}PI ds+{ﬂp(]~" Ydv+Wiscous  ____________ (5)

For the open system considered, the changes in internal energy as well as kinetic
energy need to be accounted. Therefore, right hand side of equation (1) should deal
with total energy (sum of internal and kinetic energies) of the system. Let, e be the
internal energy per unit mass of the system and kinetic energy per unit mass due to
local velocity V be V?/.

Total energy in the control volume might also change due to influx and outflux of the
fluid. The elemental mass flow across ds is (pV.ds). Therefore the elemental flow of
total energy across the ds is (pV.ds)(e+V?/2).

Hence the net energy change of the control volume is,

———{:& |e+—|du+H(pr ds)le+— [ — 6)

dt ot-

Thus, substituting Equations (2), (5) and (6) in equation (1), we have

This is the energy equation in the integral form. It is essentially the first law
thermodynamics applied to fluid flow or open system.

One dimensional form of Conservation of Energy
Consider the control volume shown in Figure for steady inviscid flow without
body force, Then the equatlon (9) reduces to,

f#q,odu—ﬁPP.a ﬁﬁpl e——ILf ds

Let us denote the first term on left hand side of above equation by € to represent
the total external heat addition in the system. Thus, above equation becomes

Evaluating the surface mtegrals over the control volume in Figure, we obtain

3
O-(—Ru, A+ Pu, A)_—pll e + z Iul.-1+p | e, +u—}1u A

a- -
/ M 7



or

0 ( ul‘\‘u ( u )
=+Pu,+p|le+—lu, =Pu, + pyl e; +— lu,
A ' 2 ) " % c REC I YK M
2 '\ 2 /) \ /“
or
0 V<o ul ) u;
=—+—teo+t—=—"+o+—
pu A p 2 p, 2
or
] ul i
~ +Pute+—=Pu,+e, +—
oA 2 2

0

Here, /p1u1A is the external heat added per unit mass, g. Also, we know e + Pu = h.
Hence, above equation can be re-written as,

3 2
<

U, 7.
h ek +g=h,+—
2 > 2

This is the energy equation for steady one-dimensional flow for inviscid flow

Conservation of Momentum (Integral Form)

Momentum is defined as the product of mass and velocity, and represents the energy
of motion stored in the system. It is a vector quantity and can only be defined by
specifying its direction as well as magnitude.

The conservation of momentum is defined by Newton’s second law of motion.
Newton's Second Law of Motion

"The rate of change of momentum is proportional to the net force acting, and

takes place in the direction of that force".

This can be expressed as

d
—(ml)=F
)

Consider the same Control Volume shown in Figure for deriving the momentum
conservation equation. Right hand side of equation (1) is the summation of all forces
like surface forces and body forces. Let Fo and P be the net body force per unit mass
and pressure exerted on control surface respectively. The body force on the elemental
volume dv is therefore p Fb dv and the total body force exerted on the fluid in the
control volume is

{ﬁp]ﬁdv

The surface force due to pressure acting on the element of area ds is —Pds, where the
negative sign indicates that the force is in the opposite direction of ds.
The total pressure force over the entire control surface

- §{ Pds
isexpressed as 3)
Let Fuiscousbe the total viscous force exerted on the control surface. Hence, the resultant



force
experienced by the fluid is given by

F=—{{Pds + {ff oFdv+ F,,.,..

The left hand side term of the Equation (1) gives the time rate of change of
momentum following a fixed fluid element or substantial derivative of the momentum.
It can be evaluated using equation (2) by evaluating the sum of net flow of momentum
leaving the control volume through the control surface S and time rate of change of
momentum due to fluctuations of flow properties inside the control volume.

The mass flow across the elemental area ds is (pV.ds). Therefore, the flow of
momentum per second across ds is (pV.ds)V

The net flow of momentum out of the control

Hov dsy
volume through sis, = 5)
The momentum of the fluid in the elemental volume dv is (p du)V. The momentum
contained at any
instant inside the control volume is

{:ﬂ pVdv

v
and its time rate of change due to unsteady flow fluctuation

% {:ﬁ pVdu
is v (6)

f‘nmhinim Fruatinne (RY and (R) tn nbtain the left hand side of equation (1), we get
—(mV) = {:ﬂ pVdv + &(pr’ ds)V

Thus, substituting Equations (4) and (7) into (1), we have
= (aﬁ pVdv+ H (pV ds)V = —{:13 Pds + {:f;& PEAU+F,, .

This is the momentum equation in mtegral form.

It is a general equation, applies to the unsteady, three-dimensional flow of any fluid,
compressible or incompressible, viscous or non viscous.

One dimensional form of Momentum conservation equation

For the steady and non viscous flow with no body forces, the Equation (8) reduces
to

H (pV.ds)V = —{:5 Pds

Above equation is a vector equation. However, since we are dealing with the one-
dimensional flow, we need to consider only the scalar x component of equation.

Hov dsyu =~ (Pds),

Considering the control volume shown in Figure, above equation



transforms to, p1(-utA)ui + p2(-u2A)uz = -(-P1A + P2A)
or

B+ ot =Py + Pylly c oo e oo

This is the momentum equation for steady,non viscous one-dimensional
One Dimensional flow — forces of fluid in a curved pipe

In the case where fluid flows in a curved pipe as shown in figure, let ABCD be the
control volume, A1, A2 the areas, vi, v2 the velocities, and p1,p2 the pressures of sections
AB and CD respectively. Let F be the force of fluid acting on the pipe; the force of the
pipe acting on the fluid is -F. This force and the pressures acting on sections AB and
CD act on the fluid, increasing the fluid momentum by such a combined force
(Increase in momentum = momentum going out - momentum coming in).

Fig.4. One dimensional flow

If Fxand Fyare the component forces in the x and y directions of F respectively, then
from the equation of momentum,
Fx+ A1pi cos ai-A2p2 cos a2 = m (vzcos
a2- vicos ai) Fy+ Azpzsinaz - Azpz sinaz

=m(vzsinaz-visinai)

From the above equations , Fxand Fyare given by

In these equations, m is the mass flow rate. If Q is the volumetric flow rate, then
the following relation exists:

m = pA1vi= pAzv2=pQ

If the curved pipe is a pipe bend in a horizontal plane, then ai= 0. Therefore
Rate of Flow (or) Discharge Q

It is defined as the quantity of a fluid flowing per second through a section of a
pipe or a channel. For an incompressible flow of liquid, the rate of flow or discharge is
expressed as the volume of fluid flowing across the section per second. For
compressible fluids, the rate of flow is usually expressed as the weight of fluid flowing
across the section. Thus

(9)



(i) For liquids the units of Q are m 2 /s or litres/s
(ii)For gases the units of Q are kgf/s or
Newton/s Consider a fluid flowing
through a pipe in which A=
Cross-sectional area of pipe.

V= Average area of fluid across the section Then, discharge Q = A

xVm’/s

Continuity Equation:

The equation based on the principle of conservation of mass is called continuity
equation. Thus for a fluid flowing through the pipe at all the cross-section, the quantity
of fluid per second is constant. Consider two cross-sections of a pipe as shown in
figure

i T
DIRECTION ““T““ !
—
S W
- Fluid flowing through
a pipe.

Fig.5. Continuity Equation

Let Vi=Average velocity at cross-section at 1-1
p 1=Density at
section 1-1 Ai1=Area
of pipe at section 1-
1and
V2, p2, A2 are corresponding values at section 2-2
Then rate of flow at section
1-1 = p 1A1 V1 Rate of flow at
section 2-2 = p 2A2 V2
According to law of
conservation of mass,

Rate of flow at section 1-1 = Rate of flow at section 2-2
P1A1V1=p2A2Va.rrrrn, (1)

The above equation applicable to the compressible as well as incompressible
fluids is called Continuity Equation. If the fluid is incompressible, then p 1= p 2and
continuity equation (1) reduces to

A1Vi=A2V2

Energy Equations: This is equation of motion in which the forces due to gravity and
pressure are taken into consideration. The common fluid mechanics equations used
in fluid dynamics are given below
Let, Gravity force Fg, Pressure force Fp, Viscous force Fv, Compressibility
force Fc, and Turbulent force Ft.

Fret= Fg+ Fp+ Fv+ Fc+ Ft
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1. If fluid is incompressible, then Fc=0
This is known as Reynolds equation of motion.
2. If fluid is incompressible and turbulence is negligible, then
This equation is called as Navier-Stokes equation.
3. If fluid flow is considered ideal then, viscous effect will also be negligible. Then

Fnet= Fg+ Fp
This equation is known as Euler’s equation.

Euler's Equation:

This is equation of motion in which the forces due to gravity and pressure are taken
into consideration. This is derived by considering the motion of a fluid element
along a stream-line. Consider a stream-line in which flow is taking place in S-
direction as shown in figure. Consider a cylindrical element of cross-section dA and
length dS. The forces acting on the cylindrical element are:

1. Pressure force pdA in the direction of flow,

9,
2. Pressure force [p + a—p ds) dA opposite to the direction of flow.
s

3. Weight of element pgdAds.

Let 0 is the angle between the direction of flow and the line of action of the weight of element.

The resultant force on the fluid element in the direction of s must be equal to the mass of fluid
element x acceleration in the direction s.

pdA — [p + g—p ds) dA - pgdAds cos 0
s

= pdAds X a, ..(6.2)
where a, is the acceleration in the direction of s.

dv : .
Now a,= T where v is a function of s and ¢.
' 1

_Ovds dv_vov v {..ﬁ_v}
s dt ot 9s o |

dit
_ av
If the flow is steady, — =0
ot ~
vav
a,=—
5 as
Substituting the value of a, in equation and simplify-
ing the equation, we get
- % dsdA — pg dAds cos © = pdAds x g—:
Dividing by pdsdA, — f?gs — g cos O = "aa:
ap av
or pas+gcos€l+vas_0
But from Fig. 6.1 (#)., we have cos 8 = %
5
1 d_p+gd_z+vdv =0 or £+gdz+ vdyv = 0
p ds ds ds P
or %+gdz+vdv=0

is known as Euler’s equation of motion.
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Bernoulli's Equation: is obtained by integrating the above Euler’s equation of motion. If the
flow is incompressible, p is a constant and

d,
j_p + jgdz + j vdv = constant
P

If flow is incompressible, p is constant and

2

P v
—+gz+ > = constant
p v’
or —+ z +— = constant
P8 28
p v
or —+— + z = constant
Pg 28
is a Bernoulli’s equation in which
L - pressure energy per unit weight of fluid or pressure head.
pg

vza"Zg = kinetic energy per unit weight or kinetic head.
Z = potential energy per unit weight or potential head.

Assumptions made in deriving Bernoulli's Equation:

The following are the assumptions made in the derivation of Bernoulli’s equation:
0] The fluid is ideal,
(i) The flow is steady
(iii) The flow is frictionless
(iv) The flow is incompressible
(v) The flow is irrotational

Statement of Bernoulli's Theorem:

In a steady, frictionless, incompressible and irrotational flow of an ideal fluid, the
total energy at any point of the fluid is constant”.
The total energy consists of pressure energy, kinetic energy and potential energy or

datum energy. o
Thus mathematically, Bernoulli’s theorem Is written as

2 v
— + — 4+ z = constant
[ F=4 2g

Application of Bernoulli’s Equation:

1. Venturimeter 2, Orificemeter 3. Pitot Tube

Flow Measurement Devices:

Venturimeter and Orifice meter are the devices used for measurement of
flow rate or actual discharge through pipes.
Pitot tube is used to measure the velocity of flow in open canals, pipes as well as

measurement of speed of ships, Aircrafts.
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Venturimeter:

A venturimeter is a device used for measuring the rate of a flow of a fluid flowing through
a pipe. It is based on the principle of Bernoulli’s equation. The Venturimeter has a
converging conical section from the initial pipe diameter, followed by a throat, ended with
a diverging conical section back to the original pipe diameter.

As the inlet area of the venturimeter is larger than the throat area, the velocity at the throat
increases resulting in decrease of pressure. By this, a pressure difference is created between
the inlet and the throat of the venturimeter. The pressure difference is measured by using a
differential U-tube manometer. This pressure difference helps in the determination of rate of
flow of fluid or discharge through the pipe line.

Let D1 and D2 — Diameter at inlet and throat

P1 and P2 — Pressure at inlet and throat

V1 and V2 — Velocity at inlet and throat

Q >
Pipe liquid
Manometer Liquid
w2 v2
ﬂ+_]+zl =‘p_2.|._2 + 2z,
pg  2g pg  2g
As pipe is horizontal, hence z;, =2,
2 2 2
v W - P2 v v
P Y _ P2 Y2 . PiTP Vo Vi
pg 28 pg 28 Pg 2g 2g
But b= P is the difference of pressure heads at sections 1 and 2 and it is equal to h or PP h
Pg Pg
Substituting this value of Pr=P2 i the above equation, we get
P8
_vi_vi
2g 28

Now applying continuity equation at sections 1 and 2

a v,
av, =da,v, or vy =-—3=
a,

Substituting this value of v, in equation (6.6)

2
Vs
2 2 2 2 2 2
P S _ W [l az]_vz |ia1_azi|

2g 2g 2g aj 2g aj
2
or v22 =2gh azai e
1 2
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J2gh

a, —a Jal?‘ -a:

Discharge, 0 = a,v,
a4 )
= a, —————X ,/2gh = —2—x,[2gh
[2_ 2 [2_ 2
{Il - a2 al - a2
Equation gives the discharge under ideal conditions and is called, theoretical discharge. Actual

discharge will be less than theoretical discharge.

Q4 = Cy % %x J2gh

ay —a,

where C, = Co-efficient of venturimeter and its value is less than 1.

1

Value of ‘h’ given by differential U-tube manometer

Case I. Let the differential manometer contains a liquid which is heavier than the liquid flowing
through the pipe. Let
S, = Sp. gravity of the heavier liquid
S, = Sp. gravity of the liquid flowing through pipe
x = Difference of the heavier liquid column in U-tube

Then h=x|ib—h— }
S

o
Case II. If the differential manometer contains a liquid which is lighter than the liquid flowing
through the pipe, the value of A is given by

h=x l—i
SO

where S; = Sp. gr. of lighter liquid in U-tube
S, = Sp. gr. of fluid flowing through pipe
x = Difference of the lighter liquid columns in U-tube.
Case III. Inclined Venturimeter with Differential U-tube manometer. The above two cases are
given for a horizontal venturimeter. This case is related to inclined venturimeter having differential
U-tube manometer. Let the differential manometer contains heavier liquid then £ is given as

Py P Sh
h=|—+z |-|—+2 =x |—-
v Gs) 2]

Case IV. Similarly, for inclined venturimeter in which differential manometer contains a liquid
which is lighter than the liquid flowing through the pipe, the value of f is given as

(e )-8
pg pg S

Orifice Meter or Orifice Plate. It is a device used for measuring the rate of flow of a
fluid through a pipe. It is a cheaper device as compared to venturimeter. It also works on the same
principle as that of venturimeter. It consists of a flat circular plate which has a circular sharp edged
hole called orifice, which is concentric with the pipe. The orifice diameter is kept generally 0.5 times
the diameter of the pipe, though it may vary from 0.4 to (.8 times the pipe diameter.

A differential manometer is connected at section (1), which is at a distance of about 1.5 to 2.0 times
the pipe diameter upstream from the orifice plate, and at section (2), which is at a distance of about half
the diameter of the orifice on the downstream side from the orifice plate.

14



Let p,
Vi

pressure at section (1),
velocity at section (1),
a, = area of pipe at section (1), and

DIRECTION OF FLOW(

—_—

—

4
|
.’
®

- FIRS.
e N
—_—

«— DIFFERENTIAL MANOMETER

Das Vo, G, are corresponding values at section (2). Applying Bernoulli’s equation at sections (1) and
(2), we get

2 2

Vv vV

pg 28 pg 28

2 2

v v
o (ﬂﬂl)_(&ﬂz):_z__l
P8 P8 28 2

But [ﬂ+zl)—[&+z2) = h = Differential head
Pg Pg

2 2

v vV

“a2g 2 O hTvow0

or vy = +[2gh + v,2

Now section (2) is at the vena-contracta and a, represents the area at the vena-contracta. If a, is
the area of orifice then, we have

a,
C.=
ag
where C_. = Co-efficient of contraction
a,=agx C,
By continuity equation, we have

a C,
av, =a,, or v, =-—%vy,= Lo Ze v
a, a,
Substituting the value of v, in equation (i), we get
22 2
a,Clv
v, = !2gh + 2
a,
a2 a2
or va2=2gh + ( 0] C.2v,% or vy? |:l - [—0] Ccz] =2gh
a a

2gh

2
Gy 2
1-|—| C
(al ] ‘
The discharge Q = v, X a, =v, %X g, C,

_ agC 4[2gh

- 2
1-| %o | ¢?
a, ‘

Vy =

woay = agC.
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The above expression is simplified by using

2;{1? 7 C, aya Zgh

ey

where C, = Co-efficient of discharge for orifice meter.
The co-efficient of discharge for orifice meter is much smaller than that for a venturimeter.

Pitot-tube. It is a device used for measuring the
velocity of flow at any point in a pipe or a channel. It is based on
the principle that if the velocity of flow at a point becomes zero,
the pressure there is increased due to the conversion of the kinetic
energy into pressure energy. In its simplest form, the pitot-tube
consists of a glass tube, bent at right angles as shown in Fig.

The lower end, which is bent through 90° is directed in the up-
stream direction as shown in Fig. The liquid rises up in the
tube due to the conversion of kinetic energy into pressure energy.
The velocity is determined by measuring the rise of liguid in the tube.

Consider two points (1) and (2) at the same level in such a way that point (2) is just as the inlet of
the pitot-tube and point (1) is far away from the tube.

Let P, = intensity of pressure at point (1)

v, = velocity of flow at (1)
P» = pressure at point (2)
v, = velocity at point (2), which is zero
H = depth of tube in the liquid
h = rise of liquid in the tube above the free surface.
Applying Bernoulli’s equation at points (1) and (2), we get

2 2
v v
ﬂ+7|+zl_&+_2+22

pg 28 pg 2g

But z, = z, as points (1) and (2) are on the same line and v, = 0.

Po_ pressure head at (1) = H
pPg
P2 _ pressure head at (2) = (h + H)
Pg
Substituting these values, we get
2 2
v v oy
H+—I=h+ - h=—1 or v,= ./2eh

This is theoretical velocity. Actual velocity is given by

16



(vl)act = Cv Vzgh

where C, = Co-efficient of pitot-tube

Velocity at any point v=0C, 2gh

Velocity of flow in a pipe by pitot-tube. For finding the velocity at any point in a pipe by pitot-
tube, the following arrangements are adopted :

1. Pitot-tube along with a vertical piezometer tube as shown in Fig.

2. Pitot-tube connected with piezometer tube as shown in Fig.

3. Pitot-tube and vertical piezometer tube connected with a differential U-tube manometer as
shown in Fig.

PIEZOMETER
TUBE

4. Pitot-static tube, which consists of two circular concentric tubes one inside the other with some
annular space in between as shown in Fig. . The outlet of these two tubes are connected to the
differential manometer where the difference of pressure head ‘4’ is measured by knowing the

S
difference of the levels of the manometer liquid say x. Then h = x [—g - 1:|.

o

Solved Problems:

1. The diameter of a pipe at the section 1 and 2 are 10cm and 15cm
respectively. Find the discharge through the pipe if the velocity of water flowing
through the pipe at sectionl is 5m/s. Determine the velocity at section 2.

Solution. Given : o)

At section 1, D;=10cm=0.1m @
A, =; D =% (.1)? = 0.007854 m> __ |p.-10cm 'D,=150m
V=5 m/s.

At section 2, D,=15cm =0.15m Vit Smfsec 3

A, =; (.15)? = 0.01767 m?

(i) Discharge through pipe is given by equation

or Q=A xV,
= 0.007854 x 5 = 0.03927 m*/s. Ans.
Using equation , we have A\V, = A,V,
(i) -~ V, = AV, _ 0.007854 X 5.0 = 2.22 m/s. Ans.
A, 001767
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2. A 30cm diameter pipe conveying water branches in to two pipes of
diameters 20cm and 15cm respectively. If the average velocity in the 30cm diameter
pipe is 2.5m/s. find the discharge in this pipe. Also determine the velocity in 15cm
pipe if the average velocity in 20cm diameter pipe is 2m/s.

Solution. Given :
=
/ 0’1?
V4= 2.5m/sec

Dy = 30cm e B

®

D;=30cm=030m

A=2 D=L x 37=0.07068 m?
4 4
V=25 m/s

D,=20cm =020 m
A, =2 (22 =L x 400314 m?,
4 4
2 = 2 me
Dy=15¢cm =0.15m
A, =; (.15) =g x 0.225 = 0.01767 m?
Find (i) Discharge in pipe 1 or Q,
(if) Velocity in pipe of dia. 15 cm or V,

Let Q,, O, and (), are discharges in pipe 1, 2 and 3 respectively.
Then according to continuity equation

Q=0+ 03
(/) The discharge Q, in pipe 1 is given by
Q,=A,V, = 0.07068 x 2.5 m%s = 0.1767 m%/s. Ans.

(7f) Value of V,
0, = AV, = 0.0314 x 2.0 = 0.0628 m*/s
Substituting the values of Q, and @, in equation (1)
0.1767 = 0.0628 + O,
Qs = 0.1767 — 0.0628 = 0.1139 m’/s

But 03=A;x Vy=0.01767 x V; or 0.1139 = 0.01767 x V,
3= 01139 = 6.44 m/s. Ans.
0.01767

The water is flowing through a pipe having diameters 20cm and 10cm
at section 1 and 2 respectively. The rate of flow through pipe is 35 litres/sec. The
section 1 is 6m above datum and section 2 is 4m above datum. If the pressure at

section 1 is 39.24N/cm?. Find the intensity of pressure at section 2.
Solution:
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l DATUM LINE

At section 1, D;=20cm =02 m
A, = g (2)*=.0314 m?

p1 = 39.24 N/cm®
=39.24 x 10* N/m?
z;=6.0m
At section 2, D,=0.10m

A, = g (0.1)% = .00785 m®

i3 = 4 m
p2="7
. 35
Rate of flow, Q=35Ilit/s= —— = .035m
1000
Now Q=A,V,=A,V,
vV, = o = 035 =1.114 m/s
A, 0314
and v,= 2 = 035 _ 4456 mis
A, 00785
Applying Bernoulli’s equation at sections 1 and 2, we get
V2 2
ﬂ+L+Z| = &+V—2+22
pg 28 pg  2g
4 2 2
o 024100 114’ o py | (4456)
1000 x9.81 2 x98l1 1000 x9.81 2x981
or 40 + 0.063 + 6.0 = P +1.012 + 4.0
9810
or 46.063 = 22— 4+ 5012
9810
P2 _ 46.063 - 5.012 = 41.051
9810
p, =41.051 x 9810 N/m*

_ 41.051x 9810
B 10*

N/em? = 40.27 N/em?. Ans.

4. Water is flowing through a pipe having diameter 300mm and 200mm at the bottom and

upper end respectively. The intensity of pressure at the bottom end is 24.525 N/cm? and

the pressure at the upper end is 9.81 N/cm?. Determine the difference in datum head if the

rate of flow through pipe is 40 lit/sec.
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Solution. Given : - D, =200 mm
Section 1, D, =300 mm=0.3m ' P =ie1 Nicm
p, = 24.525 N/em? = 24.525 x 10* N/m?
Section 2, D, =200 mm = 0.2 m
p» = 9.81 N/em® = 9.81 x 10* N/m? “2 %) 300 mm
Rate of flow = 40 lit/s Py = 24.525 N/om”
1
40 3 - -
Q= 1500 = Q04 ms DATUM LINE
Now AV, = A,V, = rate of flow = 0.04
04 . 04
V] = A— = Em = RO 0 = (0.5658 m/s
L EDr 2(03)°
PR
= 0.566 m/s
y,= 0% 00 s s
A?

T2 Eny?
S0 [02)

Applying Bernoulli’s equation at sections (1) and (2), we get
2 2

s W oY
pg 28 Pg
24.525x10* | .566 x .566 9.81x10*  (1.274)
+ = + <2

1000x981 © 2x981 ' 1000x981 = 2x9.81
25+ 3242, =10+ 1.623 + z,
2532 +z,=11.623 + z,
25, —2;=2532-11.623=13.697 = 13.70 m
Difference in datum head =2z, -z, =13.70 m. Ans.

5. The water is flowing through a taper pipe of length 100m having diameters 600mm at the
upper end and 300mm at the lower end at the rate of 50lit/sec. The pipe has a slope of sec 1 in
30. Find the pressure at the lower end if the pressure at the higher level is 19.62 N/cm?.
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Solution. Given :

Length of pipe, L=100m o dq\"f{‘ucr“
Dia. at the upper end, D, =600 mm=0.6m E g—e
Area, A=Lp2=T (62
4 4 V)
= 0.2827 m® « WG _DATUM LINE
P, = pressure at upper end o'f'sﬁ“/-/\,/;
= 19.62 N/em?
= 19.62 x 10* N/m?
Dia. at lower end, D, =300 mm=03m
~. Area, A,=L p2= ; (:3)2 = 0.07068 m
. 50 3
Q = rate of flow = 50 litres/s = —— = 0.05 m”/s
1000
Let the datum line passes through the centre of the lower end.
Then z,=0
L. 1 10
As slope is 1 in 30 means 7z, = 0 x 100 = 3 m
Also we know 0=A,V,=A,V,
Q 0.05
— = —— = 0.1768 m/sec = 0.177 m/s
T AT 2827
05
and V, = Q = = 0.7074 m/sec = 0.707 m/s
- A 07068

Applying Bernoulli’s equation at sections (1) and (2), we get

Vz VZ
RN R

_+z2
pg 2g pg 28

19.62x104+ 1777 Lo p 707° .
1000x9.81 2x981 3 pg 2x98I

20 + 0.001596 + 3.334 = £2 4+ 0.0254
P8

23335 - 0.0254 = — P2
1000 x 9.81

P> =23.3 x 9810 N/m” = 228573 N/m” = 22.857 N/em”. Ans.
6.A pipe of diameter 400mm carries water at a velocity of 25m/s. The pressure at the points

A and B are given as 29.43 N/cm? and 22.563 N/cm? respectively while the datum head at A
and B are 28m and 30m. Find the loss of head between A and B.
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Solution. Given :

2
Dia. of pipe, D =400 mm = 0.4 m 0«‘«\ Qe
2 ) ]
Velocity, V=25 m/s Oe _o
At point A, pa=29.43 N/em? = 29.43 x 10* N/m> B
Zy =28 m
vy=v=25m/s
Zg
Pa , Vi
= £A L "A Za
Total energy at A, E, s + 2y + 24 x DATUM{LINE
4 2
_ 2943x10 & 25 +28
1000 x9.81 2x9.81
=30+ 31.85 + 28 = 89.85 m
At point B, pp = 22.563 N/cm? = 22.563 x 10* N/m?
ip = 30 m
vpg=v=v, =25 m/s
Total energy at B, Ep= L5 Y5 Z5
pg  2g8
22. 10* 257
= 563 <10 + > +30=23+31.85+30=84.85m
1000 %< 9.81 2 % 9.81
Loss of energy =E,—-Ep=89.85- 84.85 = 5.0 m. Ans.

7.A horizontal venturimeter with inlet and throat diameters 30cm and 15cm respectively is
used to measure the flow of water. The reading of differential manometer connected to the
inlet and the throat is 20cm of mercury. Determine the rate of flow take C4 = 0.98.

Solution. Given :

Dia. at inlet, d, =30 cm
Area at inlet, a, = ; d2= ; (30)* = 706.85 cm’
Dia. at throat, d,=15cm

a, = r x 157 = 176.7 cm?
4

C,=0098
Reading of differential manometer = x = 20 cm of mercury.
Difference of pressure head is given by

or h:x|:b—”—l}
St)

where S, = Sp. gravity of mercury = 13.6, S, = Sp. gravity of water = 1

=20 [?— l} =20x 12.6 cm = 252.0 cm of water.



The discharge through venturimeter is given by eqn.

0=Cy

C;laz X f2gh

\ar — “22
= 0.98 x 10085 xX1767 53 981%252

J(706.85)% — (176.7)>

_ 86067593.36 _ 86067593.36
.J499636.9 —312229 684.4
125756

125756 cm?/s = ———"~" lit/s = 125.756 lit/s. Ans.
1000

8.A horizontal venturimeter with inlet diameter 20cm and throat diameter 10cm is used to
measure the flow of oil of sp.gravity 0.8. The discharge of oil through venturimeter is 60
lit/sec. Find the reading of the oil — mercury differential manometer take C4 = 0.98.

Solution. Given : dy =20 cm
a = g 20° = 314.16 cm’

dy =10 cm

a, = % »x 107 = 78.54 cm”
C,= 0.98
Q = 60 litres/s = 60 x 1000 cm?/s

a,a,

Using the equation 0=C, > = X 2gh

ay —day

or 60 x 1000 = 9.81 x —— 16X 7834 5 ogixh = 1071068.78vh
J(314.16)* - (78.54)° 304

304 x 60000

Jho= 2220
1071068.78
h=(17.029)% = 289.98 cm of oil

But h= J{S"— l]
So

where S, = Sp. gr. of mercury = 13.6
S, = Sp. gr. of oil = 0.8
x = Reading of manometer

or = 17.029

28998 = x I:ﬁ— 1] = 16x
0.8

289.98
xX=
16
Reading of oil-mercury differential manometer = 18.12 cm. Ans.

= 18.12 cm.
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9.A horizontal venturimeter with inlet diameter 20cm and throat diameter 10cm is used to
measure the flow of water. The pressure at inlet is 17.658 N/cm2 and the vacuum pressure at
the throat is 30cm of mercury. Find the discharge of water through veturimeter take Cq4 =
0.98.

Solution. Given :
Dia. at inlet, d, =20 cm

a, = = x (20)2 = 314.16 cm?
4

Dia. at throat, d, =10 cm

a, T % 10% = 78.74 cm?
4

17.658 N/cm?” = 17.658 x 10* N/m?

Py =
4
p for water = 1000 k—% and . 2L= 17658 %10 = 18 m of water
m pg  981x1000
P2 _ _ 30 cm of mercury
(24
= — (.30 m of mercury = — 0.30 X 13.6 = — 4.08 m of water
. . TR P2 _
Differential head =h=-"—--—==18- (- 4.08)
Pg P&

=18 + 4.08 = 22.08 m of water = 2208 cm of water
The discharge Q is given by equation (6.8)

a, d-
Q=Cy——2—x.2gh
vai —a;

= 0.98 x 02107858 59812208

J(314.16)% - (78.74)

_50328837.21
B 304

x 165555 cm’/s = 165.555 lit/s. Ans.

10.An orifice meter with orifice diameter 10cm is inserted in a pipe of 20cm diameter. The
pressure gauges fitted upstream and downstream of the orifice meter gives readings of 19.62
N/cm2 and 9.81 N/cm2 respectively. Coefficient of discharge for the orifice meter is given as
0.6. Find the discharge of water through pipe.
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Solution. Given :

Dia. of orifice, dy= 10 cm
Area, ag = E (10)? = 78.54 cm?
Dia. of pipe, d, =20 cm
Area, a, = % (20)? = 314.16 cm?
Py = 19.62 N/em? = 19.62 x 10* N/m?
ﬂ=M=20mofwmer
pg 1000 x9.81
Similarly P _ M = 10 m of water

pg 1000 x9.81

h= P _ P2 20.0 — 10.0 = 10 m of water = 1000 ¢m of water
pg  pg

Cd = 06
The discharge, ( is given by equation

&
:C (1 |
Q AT

V& —dg

=06 x X310 5 o8Tx 1000

J(314.16)> — (78.54)’

X Af28h

_ 20736838.09
304

= 68213.28 cm/s = 68.21 litres/s. Ans.

11.An orifice meter with orifice diameter 15cm is inserted in a pipe of 30cm diameter. The
pressure difference measured by a mercury oil differential manometer on the two sides of the
orifice meter gives a reading of 50cm of mercury. Find the rate of flow of sp.gravity 0.9 when
the co-efficient of discharge of the orifice meter is 0.64.

Solution. Given :

Dia. of orifice, dy=15cm

Area, ay = % (15)% = 176.7 cm?
Dia. of pipe, d; =30 cm

Area, a, = ; (30)* = 706.85 cm>
Sp. gr. of oil, S,=09

Reading of diff. manometer, x = 50 cm of mercury

. . S, 13.6 .
Differential head, h=ux S_ -1|=350 W —1| cm of oil

o
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=50 x 14.11 = 705.5 cm of oil
C,=0.64
The rate of the flow, 0 is given by equation

4

0=C,. X 42gh

a4 “IS

_0.64x —TOTXT0685 5 o81x 7055
J(706.85)° - (176.7)°

9404631778
T 6844

= 137414.25 cm’/s = 137.414 litres/s. Ans.

12.A pitot tube placed in the centre of a 300mm pipe line has one orifice pointing upstream
and other perpendicular to it. The mean velocity in the pipe is 0.80 of the central velocity.
Find the discharge through the pipe if the pressure difference between the two orifice is
60mm of water. Take the coefficient of pitot tube as C, = 0.98.

Solution. Given :

Dia. of pipe, d =300 mm = 0.30 m

Diff. of pressure head, h = 60 mm of water = .06 m of water
C,=0.98

Mean velocity, V =0.80 x Central velocity

Central velocity is given by equation (6.14)
=C, \J2gh =0.98 X /2 x9.81x.06 = 1.063 m/s

V =0.80 x 1.063 = 0.8504 m/s
Discharge, @ = Area of pipe x v

- Edz XV = E (.30)% x 0.8504 = 0.06 m/s. Ans.

Questions for practice

Define Control Volume and control surface continuity equation, Rate of Flow
List the types of fluid flow.

Define Steady and Unsteady flow.

Define Uniform and Non-uniform flow.

Compare Laminar and Turbulent flow.
What is the variation of viscosity with temperature for fluids?
Define Compressible and incompressible flow
Define Rotational and Irrotational flow.
Define One, Two and Three dimensional flow.
. State the Bernoulli’s equation and its applications.
. State the assumptions used in deriving Bernoulli’s equation.
. State Momentum Equation.
. What is the use of an orifice meter?
. What is the use of a Venturimeter?
. State the difference between Venturimeter and Orificemeter.
. What is the use of Pitot tube?

CoNoOl AL E

e ol
O WNE O
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Part B

1. Derive Euler’s equation of motion along the stream line for an ideal fluid and
thereby deduce Bernoulli’s equation stating clearly the assumptions

2. What is venturimeter? Derive an expression for the discharge through a venturimeter.

3. Derive differential form of continuity equation.

4. Differentiate between Venturimeter and Orificemeter.

5.Water is flowing through a pipe having diameters 20 cm and 15 cm at sections 1 and 2
respectively. The rate of flow through pipe is 40 liters/sec. The section 1 is 6m above datum
line and section 2 is 3m above the datum. If pressure at section 1is 29.43 N/cm2. Find the
intensity pressure at section 2.

6.An oil of sp. gr. 0.8 is flowing through a venturimeter having inlet diameter 20 cm and
throat diameter 10cm. The oil-mercury differential manometer shows a reading of 25 cm.
Calculate the discharge of oil through the horizontal venturimeter. Take Cv=0.98.

7.A 300mm diameter pipe carries water under a head of 20m with a velocity of 3.5 m/s. If the
axis of the pipe turns through 45°. Find the magnitude and direction of resultant force at the
bend of the pipe turns through 45° , find the magnitude and direction of resultant force at the
bend.

8.An orifice meter with orifice diameter 10 cm is inserted in a pipe of 20 cm diameter. The
pressure gauges fitted on upstream and downstream of the orifice meter give readings of
19.62 N/cm? and 9.81 N/cm? respectively. Co-efficient of discharge for the meter is 0.6.
Find the discharge of water through the pipe.

9.A horizontal venturimeter with inlet and throat diameter 300mm and 100mm respectively
is used to measure the flow of water. The pressure intensity at inlet is 1I30KN/m while the
vacuum pressure head at throat is 350mm of mercury. Assuming 3% head lost between
inlet and the throat find the value of co-efficient of discharge for the venturimeter and also
determine the rate of flow.

10.A pipe of 300 mm diameter inclined at 30° to the horizontal is carrying gasoline
(specific gravity =0.82). A Venturimeter is fitted in the pipe to find out the flow rate whose
throat diameter is 150 mm. The throat is 1.2 m from the entrance along its length. The
pressure gauges fitted to the Venturimeter read 140 kN/m2 and 80 kN/m? respectively. Find
out the coefficient of discharge of Venturimeter if the flow is 0.20 m?/s.

11. Find the velocity of flow of an oil through a pipe when the difference of mercury level in
a differential U tube manometer connected to the two tappings of pitot tube is 10cm.Take the
co- efficient of of pitot tube as 0.98and Specific gravity of oil is 0.8.Find the discharge
through the pipe if the diameter is 30 cm.

12. Water is flowing through a pipe having diameters 20 cm and 15 cm at sections 1 and 2
respectively. The rate of flow through pipe is 40 liters/sec. The section 1 is 6m above datum
27



line and section2 is 3m above the datum If pressure at section 2 is 3m above the datum. If
pressure at section 1 is 29.43 N/cm?. Find the intensity of pressure at section 2.

13.Water flows upwards in a vertical pipe line of gradually varying section from point 1 to
point 2, which is 1.5m above point 1, at the rate of 0.9 m3/s. At section 1 the pipe dia is 0.5m
and pressure is 300 kPa. If pressure at section 2 is 600 kPa, determine the pipe diameter at
that location. Neglect losses.

14 Water flows up a conical pipe 450 mm diameter at the lower end and 250 mm diameter
at 2.3 m above the lower end. If the pressure and velocity at the lower end are 63 KN/m2 (gauge) and
4.1 m/s, assuming a head loss in the pipe to be 10% of the pressure head at the lower end, calculate
the discharge through the pipe. Also calculate the pressure and velocity at the upper end.

15.Water is flowing through a tapering pipe of length 200 m having diameters 500 mm at
the upper end and 250 mm at the lower end, the pipe has a slope of 1 in 40. The rate of flow
through the pipe is 250 lit/ sec. the pressure at the lower end and the upper end are 20 N/cm?
and 10 N/cm? respectively. Find the loss of head and direction of flow.

16.Water at 36 m above sea level has a velocity of 18 m/s and a pressure of 350 KN/mz2,
Determine the potential, kinetic and pressure energy of the water in metres of head. Also
determine the total head.

17.A liquid with specific gravity 0.8 flows at the rate of 3 I/s through a venturimeter of
diameters 6 cm and 4 cm. If the manometer fluid is mercury, determine the value of
manometer reading.
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UNIT 3 Flow through Orifice, Notches and Weir and Pipes

Orifice
Orifice is a small opening on the side or at the bottom of a tank, through which a fluid
is flowing. The orifices are classified according to the size, shape, nature of discharge
and shape of the edge.
1. According to the size of orifice and head of liquid from the centre of the orifice:
Small orifice and Large orifice.
Small Orifice: If the head of liquid from the centre of orifice is more than five times
the depth of orifice, the orifice is called small orifice.
Large Orifice: If the head of liquid is less than five times the depth of orifice, it is known
as large orifice.
2. According to shape of orifice: (i) Circular orifice, (ii) Triangular orifice,( iii)
Rectangular orifice and (iv) Square orifice
3. According to their cross-sectional area or edge: (i) Sharp-edged orifice and (ii)
Bell mouthed orifice

According to the discharge condition: (i) Free discharging orifices (ii) Fully drowned or submerged
orifices and (iii) Partially submerged orifices.

Flow through a Small Orifice
Flow from a tank through a hole in the side.

"1 actual area of jet

A3

e

Vena Contracta

|

Fig.1. Flow through a small Orifice

The edges of the hole are sharp to minimize frictional losses by minimizing the contact
between the hole and the liquid. The streamlines at the orifice contract reducing the area of
flow. This contraction is called the vena contracta.

The amount of contraction must be known to calculate the flow.

Applying Bernoulli’s equation along the streamline joining point 1 on the surface to point 2
at the centre of the orifice.

At the surface velocity is negligible (vi1 = 0) and the pressure atmospheric (p1 =8). At the
orifice the jet is open to the atmesphere so again the pressure is atmospheric (p2=0).

If we take the datum line through the orifice then Z1 = H and Z2 = 0 leaving h = 2Z2 = h=12
This theoretical value of velocity is an overestimate as friction losses have not been taken
into account. A coefficient of velocity is used to correct the theoretical velocity,

Each orifice has its own coefficient of velocity, they usually lie in the range 0.97 - 0.99
The discharge through the orifice = jet area X jet velocity

The area of the jet is the area of the vena contracta and not the area of
the orifice. We use a Coefficient of contraction to get the area of the



jet,Aa.
Aa= Ccx area of orifice

Discharge through the Orifice Q = Area x Velocity

Actual Discharge Qa = Cd x Qth

Qth = Area of Orifice x Vth

Hydraulic Coefficient

The following three coefficients are known as hydraulic coefficients or orifice coefficient
Coefficient of Contraction

Coefficient of Velocity

Coefficient of Discharge

Coefficient of Contraction:

The ratio of the area of the jet, at vena-contracta, to the area of the orifice is known
as coefficient of contraction. Mathematically coefficient of contraction,
The value of Coefficient of contraction varies slightly with the available head of the

Area of jet at vena contracta
Area of the orifice
liquid, size and shape of the orifice. The average value of Cc is 0.64.
Coefficient of Velocity:

C:=

The ratio of actual velocity of the jet, at vena-contracta, to the theoretical
velocity is known as coefficient of velocity.

The theoretical velocity of jet at vena-contracta is given by the relation, h = /2
, Where H is the head of water at vena-contracta. Mathematically coefficient of
velocity.

Actual velocity of the jet at vena contracta
= Theoretical velocity of the jet

The difference between the velocities is due to friction of the orifice. The value
of Coefficient of velocity varies slightly with the different shapes of the edges
of the orifice. This value is very small for sharp-edged orifices. For a sharp
edged orifice, the value of increases with the head of water.

Coefficient of Discharge:

The ratio of a actual discharge through an orifice to the theoretical discharge is known as
coefficient of discharge. Mathematically coefficient of discharge,

C Actual dischar ge
“™ Theoretical discharge

Actual velocity = Actual area

" Theoretical velocity < T heoretical area
= ', = ',



Thus the value of coefficient of discharge varies with the values of and . An average

of coefficient of discharge varies from 0.60 to 0.64.

Determination of Coefficient of Discharge (Cad):

The water is allowed to flow through an orifice provided in a tank under a constant head H.
The water is collected in a collecting tank for a known height. The time of collection of
water in the collecting tank is noted down.

Then
0= Area of measuring tank = Height of water in measuring tank
- Time ()
and theoretical discharge = arca of orifice x J2gH
—_— 1
SUPPLY
WATER %
H c
- b 4 -
| I s
T —ep ¥
c N
MEASURING | ——om |
TANK —
c-_ @
47 ax W 2eH

Determination of Coefficient of Velocity (Cv): Let C-C represents the vena — contracta of a jet
water coming out from an orifice under constant head H as shown in fig. Consider a liquid particle
which is at vena contracta at any time and takes the position at P along the jet time t.



Let  x = horizontal distance travelled by the particle in time *F
v = vertical distance between P and C-C
V = actual velocity of jet at vena-contracta.

Then horizontal distance, xr= V=1

1
and vertical distance, y== gt
s C X
From equation (i), = F

Substituting this value of "1 in (i), we get

y=—g x=
28 Ty
V= o’
2y
vy
2y
But theoretical velocity,
Vi = J28H
.. Co-efficient of velocity, C,= = [E5 x_ 1 __ [ X
- A 2y  2gH 4yH
_ X
JavH

Determination of Coefficient of Contraction (Cc):

The coefficient of contraction is determined from the equation Cq= Cy x Cc
Cc=Cq4/Cv

Flow through Large Orifices:

If the head of liquid is less than 5 times the depth of the orifice, the orifice is called large orifice. In
case of small orifice, the velocity in the entire cross-section of the jet is considered o be constant and

discharge can be calculated by @ = C; x a x /2gh. But in case of a large orifice, the velocity is not
constant over the entire cross-section of the jet and hence ' cannot be calculated by 0= C xa x J2eh
Discharge through Large Rectangular Orifice:

Consider a large rectangular orifice in one side of the tank discharging freely in to atmosphere
under a constant head H as shown in fig.



Let H| = height of liquid above top edge of orifice
H, = height of liquid above bottom edge of orifice
B = breadth of orifice
d = depth of orifice = H, - H|
, = co-efficient of discharge.
Consider an elementary horizontal strip of depth *dh” at a depth of *f" below the free surface of the
ligquid in the tank as shown in Fig.

—

1 E.I: |

e 5 5 }

/ ! 2 hieb

# H HEL= I _4+ +I+
4 ——— = ' =
z = dh
«d J‘_"_'_l_;_ d ¥
g ¥y 2= &

2

Z E (b)
'J..-f’ ol b

(a)

Large rectangular orifice.

Area of strip = b = dh

and theoretical velocity of water through strip = M
Discharge through elementary strip is given
d() = C % Area of strip x Velocity
= Cyx bxdh x \[2gh = C b x \[2gh dh
By integrating the above equation between the limits /| and H,, the total discharge through the
whole orifice is obtained

i
Q= ["c,xbx.aghdh
m,

—
H, a2
=C, xbx ,.fng'H Jhdh = €, x bx \[2g [’uz]
! - H

L]

¢, xb 3g [H2" - "]

| b2

Discharge through Fully Sub-Merged Orifice:

Fully sub-merged orifice is one which has its whole of the outlet side sub merged under liquid so
that it discharges a jet of liquid in to the liquid of the same kind. It is also called totally drowned
orifice as shown in Fig. Consider two points (1) & (2). Point 1 being in the reservoir on the
upstream side of the orifice and point 2 being at vena contracta.

s o e e

. 4 =
1fff.'.':!f!.'ff{.’!}?h’li.’27".'4'-'.

Fully sub-merged orifice.

Fig.4.Fully Sub-merged Orifice



Let H, = Height of water above the top of the orifice on
the upstream side,
H, = Height of water above the bottom of the orifice,
H = Difference in water level,
b = Width of orifice,
', = Co-efficient of discharge.
Height of water above the centre of orifice on upstream side

H2_HI - H]""Hz

=H +
2 2
Height of water above the centre of orifice on downstream side
_ H+H, H

2
Applying Bernoulli's equation at (1) and (2), we get

2 2

nL Y _p Y

pe 28 ps 28

pl _ ffl'l'ffx Pa H-|+H2

Now = = H and V| is negligible
F 2 Pg 2
HL+H2+']= H,+H1_H+£
2 2g
V2
2 =N
2g
|,,.r2 = EEH
|,,.r2 = EEH
Area of orifice =bx(H,- H))

Discharge through orifice = €, x Area x Velocity
=Cyxb(H,= H))» J2gH
Q=C,xb(H,— H)x \2gH .

Discharge through Partially Sub-Merged Orifice:

Partially sub-merged orifice is one which has its outlet side partially sub-merged under liquid as
shown in Fig. It is also known as partially drowned orifice. Thus the partially sub-merged orifice
has two portions. The upper portion behaves as an orifice discharging free while the lower portion
behaves as a sub-merged orifice. Only a large orifice can behave as a partially sub-merged orifice.
The total discharge Q through partially sub-merged orifice is equal to the discharges through free
and the sub-merged portions.
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Partially sub-merged
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Fig.5. Partially sub-merged orifice
Discharge through the sub-merged portion is given by equation.
Q,=Cyxbx(Hy, - H) % [2gH

Discharge through the free portion is given by equation (7.8) as

0, = % C, xbx 2g [H™ - H'™

Total discharge Q=0+
=C,xbx(H,— H x \J2gH
2
+§ Cyx b x |f2g [H" - HM). ..

Time of Emptying a Tank through an Orifice at its Bottom:

Consider a tank containing some liquid up to a height of H;. Let an orifice is fitted at the bottom of
the tank. It is required to find the time for the liquid surface to fall from the height H; to a height
H,.

2 o
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L |/
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“ORIFICE

Fig.6.Time of Emptying a Tank



Let A = Area of the tank
a = Area of the orifice
H| = Initial height of the liquid
H, = Final height of the liquid
I' = Time in seconds for the liquid to fall from H, to H,.

Let at any time, the height of liquid from orifice is & and let the
liquid surface fall by a small height dh in time 4T, Then
Volume of liquid leaving the tank in time, dT = A » dh

Also the theoretical velocity through orifice, V = [2gh

Discharge through orifice/sec,

d() = C, = Area of orifice % Theoretical velocity = C,. a . 4/2gh
o Discharge through orifice in time interval

dlf=C,.a. . 2gh .dT

As the volume of liquid leaving the tank is equal to the volume of liquid flowing through orifice in
time T, we have

Al—dh)y=C,.a. . 2gh .dT
— ve sign is inserted because with the increase of time, head on orifice decreases,
—A dh —A(R)"

Cy.a.2gh N C,.a.42g
By integrating the above equation between the limits H| and H,, the total time, T is obtained as

—Adh=C,.a.|2gh .dT or dT = dh

err =_rz AR R A (g,
b i Cy.a.4f28 C,.a..2g /8
H} H!
L
~A h? -A Jh
or T= T = T
C,.a.,2g L Cy.a.y2g| L
2 H, 2 ly,

For emptying the tank completely, H, = 0 and hence

T=—2Aﬁ .
Cd.ﬂ.-drz_g

Time of Emptying a Hemispherical Tank

Consider a hemispherical tank of radius R fitted with an orifice of area “a” at its bottom as shown

in Fig. The tank contains some liquid whose initial height is H; and in time T, the height of liquid
falls to H2. It is required to find the time T.



Fig.7. Hemispherical Tank

Let at any instant of time, the head of liquid over the orifice is

f and at this instant let x be the radius of the liquid surface. Then
Area of liquid surface, A =

and theoretical velocity of liquid = 2gh .

Let the ligquid level falls down by an amount of dh in time 4T
Yolume of liguid leaving tank in time Jd7T = A x dh

= n’ % dh

Also volume of liquid flowing through orifice

= C,; x area of orifice x velocity = C,.a. \/2gh second
Volume of liguid flowing through orifice in time 4T

= Cpa. 4f2gh = dT

From equations (i) and (i), we get
n’ (- dh) = Cpa. f2gh . dT
—ve sign is introduced, because with the increase of T, k will decrease
— ' dh = Cpa. f2gh . dT

But from Fig. for AOCD, we have OC = R
DO=R-h

CD =x=.0C* —0D* = [R* = (R-h)*

- =R - (R-h¥ =R~ (R*+h* - 2Rh)=2Rh - k*
Substituting in equation (i), we get

— m(2Rh - hHdh = Cpa. 2gh . dT

—m(2Rh—h*)dh -
or dT = E( ' } = T [ERh—ﬂz}h W2 g
C;.a.\2gh C,.a.42g
-n

= e (2RK"? — 1*)ath

C,.a.\2g
The total time T required to bring the liguid level from H| to H, is obtained by integrating the above
equation between the limits H, and H,.

J'! -1t
T= _f L — ] L
HCyoa.af2g }

= -n s
- C,.a.2g JH,

10
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For completely emptying the tank, H, = 0 and hence

RHJJI Hlﬁf‘! ]1

Cy-a. ﬁllr_[
Time of Emptying a Circular Horizontal Tank:

Consider a circular horizontal tank of length L and radius R, containing liquid upto a height of H,.
Let an orifice of area “a’ is fitted at the bottom of the tank. Then the time required to bring the liquid
level from H, to H, is obtained as :

Let at any time, the height of liquid over orifice is *h" and in time 4T, let the height falls by an height
of "dhk’. Let at this time, the width of liguid surface = AC as shown in Fig.

Fig.8. Time of Emptying a Circular Horizontal Tank

Surface area of liguid = L = AC

But AC=2xAB= 2[1|'A()2 - 0B* I = 2[,“!&2 —(R-h) |

= 2[R - (R* + h* - 2Rh) = 22Rh -

11



Surface area, A=Lx22Rh- h*

Volume of liquid leaving tank in time 4T

= Axdh=2LJ2Rh—h* % dh

Also the volume of liquid flowing through orifice in time T
= C,x Area of orifice x Velocity x dT

But the velocity of liquid at the time considered = f2gh
Volume of liquid flowing through orifice in time 4T
=sCyxax j2gh =dT
Equating (i} and (i}, we get

2L \2Rh = h* x (- dh) = C; % a % |[2gh x dT

— ve sign is introduced as with the increase of T, the height & decreases,

2Ly 2Rh—-h*dh 2L J(2R—-h) dh

Cyxax,2gh  —  Cyxax,2g

o —2L(2R- )" dh
C,xax,2g

Total time, T = J.

dh

gorread R

i,
_ar [ER-P:]”'%[

= =1
CanxJE_g l+] *E=D
2

H,
2L
Cd X f2g
_ 4L
3C, xax.f2g
For completely emptying the tank, H, = () and hence
4L

B 3C, xax\2g

Classification of Mouthpieces:

[ 2R - h]‘”]H}

H,

[{zm” —(2R - Hl}”].

el i)

(1)

[Taking -.."’E commaon |

[[ZR ~ H, }3.'1 —I[ER ~ H, :Is.rzl

12



1. The mouthpieces are classified as (i) External mouthpiece or (#f) Internal mouthpicce depend-
ing upon their position with respect to the tank or vessel to which they are fitted.

2. The mouthpiece are classified as (/) Cylindrical mouthpiece or (ii) Convergent mouthpiece or
(i) Convergent-divergent mouthpiece depending upon their shapes.

3. The mouthpieces are classified as (/) Mouthpieces running full or {if) Mouthpieces running free,
depending upon the nature of discharge at the outlet of the mouthpiece. This classification is only for
internal mouthpieces which are known Borda’s or Re-entrant mouthpieces. A mouthpiece is said to be
running free if the jet of liguid after contraction does not touch the sides of the mouthpiece. But if the
jet after contraction expands and fills the whole mouthpiece it is known as running full.

Flow through an External Cylindrical Mouthpiece:

A mouthpiece is a short length of a pipe which is two or three Z
times its diameter in length. If this pipe is fitted externally to the TIES AT
orifice, the mouthpiece is called external cylindrical mouthpiece and e
the discharge through orifice increases. H
Consider a tank having an external cylindrical mouthpiece of Z !
cross-sectional area a,, attached to one of its sides as shown in / T
Fig. 7.13. The jet of liquid entering the mouthpiece contracts to form
a vena-contracia at a section C-C. Beyond this section, the jet again é TN

expands and fill the mouthpiece completely.

Fig.9. External Cylindrical Mouthpiece

Let H = Height of liquid above the centre of mouthpicce
v. = Velocity of liquid at C-C section
a, = Area of flow at vena-coniracta
v, = Velocity of liquid at outlet
iy = Area of mouthpiece at outlet
C. = Co-efficient of contraction.
Applying continuity equation at C-C and (1)-(1), we get

a, % v, = dpny

A _ M
Ye="a T a_ja,
a . .
But — = €, = Co-efficient of contraction
a

Taking C.= 0.62, we get fe =062

@)
p o= !
Co0.62
The jet of liquid from section C-C suddenly enlarges at section (1)=(1). Due to sudden enlargement,

2

v, — ¥
there will be a loss of head, i, * which is given as hy = {"Az—'}

g
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M hence h; = = —
0.62 2g 2g

Applying Bernoulli’s equation to point 4 and (1)-(1)

But v =

2
Mo,
({}.62 L') v [L_]T_ﬂj?s v
0.62 T 2

2 2
v |5
Ba g la g, =800 g why

pe 2z pg 2g
where z,=2z,, v, is negligible,
LN atmospheric pressure = 0
P&

2 2

H+0=0+ 2L 4 375 7L

2g 2g
H=1375 ‘L
2z

2gH
= |—=— =().855 ./ 2¢H
1Ty 1375 V8

Theoretical velocity of liquid at outlet is v, = 2gH
Co-efficient of velocity for mouthpiece

_ Actual velocity  0.855 J2gH — 0.855
" Theoretical velocity J2gH B

C. for mouthpiece = 1 as the area of jet of liquid at outlet is equal to the area of mouthpiece at outlet.
Thus C,=C.x C,= 1.0x .855 = 0.855

Thus the value of C, for mouthpiece is more than the value of C; for orifice, and so discharge
through mouthpiece will be more.

Flow through a Convergent — Divergent Mouthpiece:

If a mouthpiece converges upto vena-contracta and then diverges as shown in Fig. then that
type of mouthpiece is called Convergent-Divergent Mouthpiece. As in this mouthpiece there is no
sudden enlargement of the jet, the loss of energy due to sudden enlargement is eliminated. The co-
efficient of discharge for this mouthpiece is unity. Let H is the head of liquid over the mouthpiece.

Applying Bernoulli's equation to the free surface of water in tank and section C-C, we have

2 2
i + V_ +z= & + 1-‘_( +z
pg 2z pg 2

o
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Fig.10.Convergent — Divergent Mouthpiece

Taking datum passing through the centre of orifice, we get

L _Hv=0z=HL -H 7-0
Pe pg
2
H,+0+H=H + - +0 D)
2z
l’?
Y —H +H-H. i)
28
or v.= JZg[:H, +H-H_)

MNow applying Bernoulli's equation at sections C-C and (1)-(1)

F] 2
P Ye +7. = M v

EatE S =+ 4
pg 2 ° pg 28
But zr=z|andﬂ=ﬁ-fH
pg
2 2
Ht.+—"=Ha+p—'
2g 2

Also from (i}, H. +v'Rg=H+H,
: H, + v]2f2|g=H+ H,
vy = /2gH
Now by continuity equation, a.v. = v| ¥ a,
a v, _y2s(H+H-H) [H,
a v J2eH H

&

H - H.
=1‘1+—
H

The discharge, (2 is given as 0 = a, x 2gH

where a_ = area at vena-contracta.

NOTCHES:

+1-

H

£

H



A notch is a device used for measuring the rate of flow of a liguid through a small channel or a
tank. It may be defined as an opening in the side of a tank or a small channel in such a way that the
liquid surface in the tank or channel is below the top edge of the opening.

A weir i5 a concrete or masonary structure, placed in an open channel over which the flow occurs.
It is generally in the form of vertical wall, with a sharp edge at the top, running all the way across the
open channel. The notch is of small size while the weir is of a bigger size. The notch is generally made
of metallic plate while weir is made of concrete or masonary structure.

1. Nappe or Vein. The sheet of water flowing through a notch or over a weir is called Nappe or Vein.

2. Crest or Sill. The bottom edge of a notch or a top of a weir over which the water flows, is known
as the sill or crest.

Classification of Notches and Weirs:

The notches are classified as :
1. According to the shape of the opening :
{a) Rectangular noich,
() Triangular notch,
() Trapezoidal notch, and
(d) Stepped notch.
2. According to the effect of the sides on the nappe :
(a) MNotch with end contraction.
() Notch without end contraction or suppressed notch.

Weirs are classified according to the shape of the opening, the shape of the crest, the effect of the
sides on the nappe and nature of discharge. The following are important classifications.

(a) According to the shape of the opening :
({) Rectangular weir, (éf) Triangular weir, and
(iii) Trapezoidal weir (Cipollewi weir)
(b) According to the shape of the crest :
() Sharp-crested weir, (i) Broad-crested weir,
(iii) Narrow-crested weir, and (iv) Ogee-shaped weir.

(¢) According to the effect of sides on the emerging nappe :
(1) Weir with end contraction, and (1) Weir without end contraction.

Discharge over a Rectangular Notch or Weir:

The expression for discharge over a rectangular notch or weir is the same.

fe—1L —
{c) SECTION AT
CREST

(@) RECTAMGLULAR NOTCH (b} RECTANGULAR WEIR

OR SILL
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Fig.11.Rectangulat Notch and Weir

Consider a rectangular notch or weir provided in a channel carrying water as shown in Fig.
Let H = Head of water over the crest

L = Length of the notch or weir

For finding the discharge of water flowing over the weir or notch, consider an elementary horizontal
strip of water of thickness df and length L at a depth # from the free surface of water as shown in
Fig.

The area of strip =L xdh
and theoretical velocity of water flowing through strip = \Irm

The discharge (), through strip is

d( = C, % Area of strip ® Theoretical velocity

=C, % Lxdhx|2gh i)

where C,; = Co-efficient of discharge.
The total discharge, (0, for the whole notch or weir is determined by integrating equation (i) between
the limits () and H.

i) i)
Q:jﬁ C,. L. 2gh .dﬁ:c‘:dxz.x,f:gj; W2 dh

H

pir 1#
=Cdex@[ ]

32

.F!”2+]

=C,x Lx\2g ]
—+1
o

2
=3 CaxLx J2e [H"

Discharge over a Triangular Notch or Weir:

The expression for the discharge over a triangular notch or weir is the same. It is derived as @
Let H = head of water above the V- notch
8 = angle of notch
Consider a horizontal strip of water of thickness “dh’ at a depth of f from the free surface of water
as shown in Fig.

Fig.12.Triangular Notch or Weir
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From Fig. we have

B AC AC
tan — = =

2 0C (H-h)

]
= (H - h)tan —
( Lllnt2

Width of strip =AB=2AC=2(H - i) tan g

S Area of strip =2 (H-#)tan g » i

The theoretical velocity of water through strip = [2gk
Discharge, through the strip,

d0 = C, x Area of strip x Velocity (theoretical)

=Cd><2{H—h}tangxdh>-:...l'2_gk

=2C,(H - h) tan g ® o 2gh x dh

s, Total discharge,

" ]
0= L 2C, (H — k) tan Ex,;’l‘gﬁ = dh
b Z "
= 2C, x tan Ex-.."?gj; (H — hyh'™ dh

i
=2 % C,  tan gx ,,.I'EL (HR' — 1*?) dh

3z 52 M
=2xCd><tangxﬁ[Hh _'I'_:|

32 502,

=2 x C, % tan E><,.r'ﬂ[EH.Hm 2 Hf”l]
2 3 5
—ZxCdxtan—x,.r'_[ HY? - SHM}

=2xC,xtan — x..,rr_[ Hm}

5] 543
= — C,xtan —X (2g »x H
75 Coxtan X428
For a right-angled V-notch, if C,;= (.6

8
B=00° - tan — =1
"2
Discharpe, 0= % 2 0.6 % 13 f2x98] x H*

= 1417 H".

Discharge over a Trapezoidal Notch or Weir:
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As shown in Fig, a trapezoidal notch or weir is a
combination of a rectangular and triangular notch or weir.
Thus the total discharge will be equal to the sum of
discharge through a rectangular weir or notch and discharge
through a triangular notch or weir.

Let H = Height of water over the notch

L = Length of the crest of the notch

Fig.13. Trapezoidal Notch

C;, = Co-efficient of discharge for rectangular portion ABCD of Fig.
C,, = Co-efficient of discharge for triangular portion [FAD and BCE]
The discharge through rectangula.r portion ABCD is given by

or Q|- xCdex 2g x H**?
The discharge through two triangular noiches FDA and BCE is equal to the discharge through a

single triangular notch of angle 8 and it is given by equation

&
15

Discharge through trapezoidal notch or weir FDCEF = 0, + 0,

:%CdlLﬁxH”1+l—iCdj><tanﬂﬂx.J2_ngm‘

Cdlxmngx 2g x H"

Q,=

Discharge over a Broad — Crested Weir:

A weir having a wide crest is known as broad-crested weir.
Let A = height of water above the crest
L = length of the crest

Fig.14. Broad — Crested Weir
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If 2L > H, the weir is called broad-crested weir
If 2L < H, the weir is called a narrow-crested weir
Fig. 8.10 shows a broad-crested weir.
Let i = head of water at the middle of weir which is constant
v = velocity of tlow over the weir
Applying Bernoulli's equation to the still water surface on the upstream side and running water at

the end of weir,

v :

2g

O0+0+H=0+ +h

y
2g

v=\2g(H-h)

. The discharge over weir ) = C; % Area of flow x Velocity

=C,xLxhx 2g(H-h)
= Cyx Lx 28 (HI® - 1)

The discharge will be maximum, if (Hh* - /') is maximum

=H-h

or %{H}F—h3}=ﬂor2th—3h2={}ur2H=3h
2
h=—H
3

2 pax Will be obtained by substituting this value of & in equation

2 3
Qmu:: C;JKLX JEE[HX[h%H] _(éH] :|

- 3
=C,xLx2g JHKEKH' LI

27
4 8 12 - 8)H*
=C,x Lx 42 EHJ—EH3=Cdex,fZg %

4
=C, xLx.2g ’EH?‘ =Cyx Lx \2g % 03849 x "

3849 x 2% 981 x Cyx Lx H = 1.7047 x C,x L x H"*
1.705 % C,x Lx H*".

Discharge over a Narrow — Crested Weir:

For a narrow-crested weir, 2L < H, It is similar to a rectangular weir or notch hence, @ is given by

Q:%xcdxi,xﬁxh'm

Discharge over an OGEE weir:
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Fig. shows an Ogee weir, in which the crest of the weir
rises upto maximum height of 0.115 x K (where H is the height of
wiater above inlet of the weir) and then falls as shown in Fig. SHARP
The discharge for an Ogee weir is the same as that of a rectangular e
weir, and it is given by

Q:%xlﬁ'ﬁxLxﬁme

Fig.15. OGEE Weir
Viscous Flow:

This chapter deals with the flow of fluids which are viscous and flowing at very low velocity. At
low velocity the fluid moves in layers. Each layer of luid slides over the adjacent layer. Due to relative

velocity between two layers the velocity gradient du exists and hence a shear stress T=Q1 du acts on
the layers. &y Ay
The following cases will be considered in this chapter :
Flow of viscous fluid through eircular pipe.
Flow of viscous fluid between two parallel plates,
Kinetic energy correction and momentum correction factors.
Power absorbed in viscous flow through

(a) Journal bearings, (b) Foot-step bearings, and  (¢) Collar bearings.

Bl b=

Flow of Viscous Fluid through Circular Pipe:

For the flow of viscous fluid through circular pipe, the velocity distribution across a section, the
ratio of maximum velocity to average velocity, the shear stress distribution and drop of pressure for a
given length is to be determined. The flow through the circular pipe will be viscous or laminar, if the
Reynolds number (R,*} is less than 2000. The expression for Reynold number is given by

R, = pvD
1}
where p = Density of fluid flowing through pipe
V' = Average velocity of fluid
[y = Diameter of pipe and
U = Viscosity of fluid.

T X 2rv Ax
DIRECTION T

OF FLOW R | R
:ﬁc to +‘°rw1f Q&

/ 2 -— AX ->1
prr

(a) ()

Fig.16.Viscous flow through a pipe
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Consider a horizontal pipe of radius R. The viscous fluid is flowing from left to right in the pipe as
shown in Fig. 9.1 {a). Consider a fluid element of radius r, sliding in a cylindrical fluid element of

radius (r + dr). Let the length of fluid element be Ax. If *p° is the intensity of pressure on the face AR,

g
then the intensity of pressure on face CD will be (p+£ﬁx]. Then the forces acting on the fluid

element are :
I. The pressure force, p % T on face AB.

d
2. The pressure force, [ p+ iﬁx] nr on face CD.

3. The shear force, T * 2mrAx on the surface of fluid element. As there is no acceleration, hence the
summation of all forces in the direction of flow must be zero i.e.,

prr - [p+§—pﬁerJ—TX2ErK&x=ﬂ
x

d
or -—PW-TXZErxﬁx=G
dr
or - @ r=2t=0
dx
dp r
="
dx 2
. , . dp _
The shear stress T across a section varies with *r as EI'— across a section is constant. Hence shear
X

stress distribution across a section is linear as shown in Fig,

SHEAR STRESS VELOCITY
DISTRIBUTION DISTRIBUTION

v
(
T

(a)

Fig.17.Shear stress and velocity distribution across a section

(i} Velocity Distribution. To obtain the velocity distribution across a section, the value of shear

stress T= |l %‘ is substituted in equation (9.1).

But in the relation T= j—u.y is measured from the pipe wall. Hence
¥

y=R-r and dy=-dr
o e du
u—d‘r- udr

Substituting this value in cwe get



dr dx 2 dr 2u dx
Integrating this above equation w.r.t. ‘r', we get
u= L% 2. ¢
4u dr

where C is the constant of integration and its value is obtained from the boundary condition that at
r=R, u=10.

1 dp
4u dx

1
N 4 dx
Substituting this value of C in equation (9.2}, we get
dp dr 4!.1 ax

0=—-—L R+ C

=—— " [R"-F)

In equation values of u, ﬂ £ and R are constant, which means the velocity, & varies with the

square of r. Thus equation is a equation of parabola. This shows that the velocity distribution
across the section of a pipe is parabolic. This velocity distribution is shown in Fig.

(if) Ratio of Maximum Velocity to Average Velocity. The velocity is maximum, when r = () in

equation . Thus maximum velocity, U is obtained as
1 dp 2
max = T £ R*
du dx

The average velocity, u, is obtained by dividing the discharge of the fluid across the section by the
area of the pipe (mR”). The discharge () across the section is obtained by considering the flow through
a circular ring element of radius r and thickness Jr as shown in Fig. (). The fuid flowing per
second through this elementary ring

dQ = velocity at a radius r % area of ring element

=ux2mr dr
=- 13;; [R? — P % 2 dr
4u dx
1 dp
o= I d{ = J a ax R—r}xlm‘dr

- i [%J % 2 J': (R = ) rdr
—dp




Average velocity, u= @ _8u B‘x1
Area nR’
-_1(- Elp] 2
or u=—|——|R
Su[ dx
Dividing equation (9.4) by equation (9.5),
1 ap 2
— R
Unn: — 4'1 &I

== ['_ap)ﬁ,z =2.0
Su o dx

Ratio of maximum velocity to average velocity = 2.0,
(fii) Drop of Pressure for a given Length (L) of a pipe
From equation (9.5), we have

L ‘_E'P] 2 [—_E‘PJ_@
“_Ep.l[ax ool "

Integrating the above equation w.r.t. x, we get

- 1dp= L%ﬁir
J-z -[': Rl

Suu S
- pal = % [x, = x2] oF (py — pa) = % [ - x,]

_ 8|4qu I
PE
Spul D
_ _Spul { R:_}
(D72)° 2
32uul .
or Py —pad= ;f +  where p, — p, is the drop of pressure.
Loss of pressure head =B P
pg
p-pr _, _ 320l
== ?
Pg pzD

Equation (9.6) is called Hagen Poiseuille Formula.

Flow in Pipes:

In this chapter, however, a method of expressing the loss using an average flow velocity is
stated. Studies will be made on how to express losses caused by a change in the cross sectional
area of a pipe, a pipe bend and a valve, in addition to the frictional loss of a pipe. Consider a
case where fluid runs from a tank into a pipe whose entrance section is fully rounded. At the
entrance, the velocity distribution is roughly uniform while the pressure head is lower by V2/2g
. The section from the entrance to just where the boundary layer develops to the tube centre is
called the inlet or entrance region, whose length is called the inlet or entrance length. For steady
flow at a known flow rate, these regions exhibit the following: Laminar flow: A local velocity
constant with time, but which varies spatially due to viscous shear and geometry. Turbulent
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flow: A local velocity which has a constant mean value but also has a statistically random
fluctuating component due to turbulence in the flow. Typical plots of velocity time histories for
laminar flow, turbulent flow, and the region of transition between the two are shown below.

Principal parameter used to specify the type of flow regime is the Reynolds number :

_pVD VD
u %

Re

V- Flow velocity

D — Flow dimension

M - Dynamic Viscosity
U — Kinematic Viscosity

Frictional Loss in Pipe flow

When a liquid is flowing through a pipe, the velocity of the liguid layer adjacent to the pipe wall is
zero, The velocity of liguid goes on increasing from the wall and thus velocity gradient and hence
shear stresses are produced in the whole liquid due to viscosity. This viscous action causes loss of
energy which is usnally known as frictional loss.

On the basis of his experiments, William Froude gave the following laws of fluid fraction for
turbulent flow.

The frictional resistance for turbulent flow is :

(i) proportional to V", where n varies from 1.5 to 2.0,

(i) proportional to the density of fluid,

(iif) proportional to the area of surface in contact,
(iv) independent of pressure,

(v) dependent on the nature of the surface in contact.

Expression for Loss of Head due to friction in pipes:

Consider a uniform horizontal pipe having steady flow as shown in fig 18. Let 1-1 and 2-2 are
two sections of pipe.

Let P, = pressure intensity at section 1-1
V1 = Velocity of flow at section 1-1

L = length of the pipe between sections 1-1 and 2-2,

d = diameter of pipe,

f’ = frictional resistance per unit wetted area per unit velocity,
hy = loss of head due to friction,

and p,, V, = are values of pressure intensity and velocity at section 2-2.

® ®
e —
s P4 [ A P> \ /
_>',"‘__‘ o _’T— ______ i Y.l
) . B J
|
@ @

Fig.18.Uniform Horizontal Pipe
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Applying Bernoulli’s equations between sections 1-1 and 2-2,
Total head at 1-1 = Total head at 2-2 + loss of head due to friction between 1-1 and 2-2

2

V2
L] +— 4z = p—2+V—2+zz+hf

or — I
pg  2g pe  2g
But ) = Z as pipe is horizontal
V, =V, as dia. of pipe is same at 1-1 and 2-2
ﬂ=ﬂ+hf or f;f:ﬂ_ﬁ i)
PE P8

pg  pg

But A is the head lost due to friction and hence intensity of pressure will be reduced in the direction
of flow by frictional resistance.
Now frictional resistance = frictional resistance per unit wetted area per unit velocity x wetted area

F,=f"xmdlL x v? [ wetted area = md X L, velocity = V=V, =V,]
| .+ md = Perimeter = P] ...(if)

4 VEIDC:'III}-'I
or
=f'xPxLxV
The forces acting on the fluid between sections 1-1 and 2-2 are :
1. pressure force at section 1-1=p, x A

where A = Area of pipe
2. pressure force at section 2-2=p, X A

3. frictional force F| as shown in Fig. 10.3.
Resolving all forces in the horizontal direction, we have
PA-pA-F =0 ~(10.1)
or (Py-pPA=F =f xPxLxV [ -+ From (i), F, = f'PLV*]
FxPxLxV*
or Py—pa= 1

But from equation (i), p| - p,= pghy

Equating the value of (p, - p,), we get
fxXPxLxV?

h,=
pghy A
* P
or hjzf—x—xLxV"
pg A
Welte e 4
In equation (iif), £ = stted perimoter = rd =—
A Area rpr d
4
‘4 *  4LV?
J:sz—x—xLszzix
pg d pg  d

(iii)

i)
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Putting I =
P

ta =,

, where fis known as co-efficient of friction.

4.f LV® 4f.L.V?
26 d dx2g
is known as Darcy-Weisbach equation. This equation is commonly used for finding

loss of head due to friction in pipes.
Sometimes equation (10.2) is written as

Equation (iv), becomes as hjr:

Then fis known as friction factor.

Loss of Energy in Pipes:

When a fluid is flowing through a pipe, the fluid experiences some resistance due to which some of
the energy of fluid is lost. This loss of energy is classified as :

Energy Losses

'
1. Major Energy Losses 2. Minar Enslgy Losses
This is due to friction and it is This is due to
calculated by the following (&) Sudden expansion of pipe
formulas : (B) Sudden contraction of pipe
(a) Darcy-Weisbach Formula (c) Bend in pipe
{B) Chezy's Formula (d) Pipe fittings etc.

(&) An obstruction in pipe.
Loss of Energy due to friction:

{a) Darcy-Weisbach Formula. The loss of head (or energy) in pipes due o friction is calculated
from Darcy-Weisbach equation which has been derived in chapter  and is given by
A fLV?
g x2g
where  h,= loss of head due to friction

[ = co-efficient of friction which is a function of Reynolds number

= 28 for R, < 2000 (viscous flow)

L3

- OOZ? for R, varying from 4000 to 10°
R

L = length of pipe,
V = mean velocity of flow,
d = diameter of pipe.
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(&) Chezy's Formula for loss of head due to friction in pipes. Refer to chapter  article
in which expression for loss of head due to friction in pipes is derived. Equation (iif) of article

.ﬁf:‘f—xﬂxLx V2
A

pg
where  hiy = loss of head due 1o friction, P = wetted perimeter of pipe,
A = area of cross-section of pipe, L = length of pipe,

and ¥ = mean velocity of flow.

Area of flow
Perimeter (wetted )

A
MNow the ratio of — [z ] is called hydraulic mean depth or hydraulic radius and

is denoted by m.

LE
. A 4 d
. Hydraulic mean depth, m=—= =—
F md 4
— A P 1
Substituting — =mor —=— in equation . we get
r A4 m
! h
he= ‘f—xLxV‘x—lm 'L"z-h = p.g: :ncr.r.c;-c:L=F’—%;«cn’rx;{—Jr
L f L

e

Let P_.% C, where Cis a constant known as Chezy’s constant and .L = i, where i is loss of head

per unit length of pipe.

h
Substituting the values of {p—‘sf and .,||IT’F in equation (11.3), we get

V=0C+/mi

Equation is known as Llu..cy 5 formula Thus the loss of head due to friction in pipe from
Chezy's formula can be obtained if the velocity of flow through pipe and also the value of C is known.
The value of m for pipe is always equal w 474,

Minor Energy Losses

The loss of head or energy due to friction in a pipe is known as major loss while the loss of energy
due to change of velocity of the following fluid in magnitude or direction is called minor loss of
energy. The minor loss of energy (or head) includes the following cases @

Loss of head due to sudden enlargement,
Loss of head due to sudden contraction,
Loss of head at the entrance of a pipe,

Loss of head at the exit of a pipe,

Loss of head due to an obstruction in a pipe,
Loss of head due to bend in the pipe,

Loss of head in various pipe fittings.

In case of long pipe the above losses are small as compared with the loss of head due to friction and
hence they are called minor losses and even may be neglected without serious error. But in case of a
short pipe, these losses are comparable with the loss of head due to friction.

U
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Loss of Head Due to Sudden Enlargement. Consider a liquid flowing through a pipe
which has sudden enlargement as shown in Fig. Consider two sections (1)-(1) and (2)-(2) before
and after the enlargement.

Fig.19. Sudden Enlargement

(V,-va)
2g '

h, =

[

Loss of Head due to Sudden Contraction. Consider a liquid flowing in a pipe which
has a sudden contraction in area as shown in Fig. Consider two sections 1-1 and 2-2 before and
after contraction. As the liquid flows from large pipe to smaller pipe, the area of flow goes on
decreasing and becomes minimum at a section C-C as shown in Fig. This section C-C is called
Vena-contracta. After section C-C, a sudden enlarpement of the area takes place. The loss of head due
to sudden contraction is actually due to sudden enlargement from Vena-contracta to smaller pipe.

PrAy ._._._.ﬁ_,__..:,.?i?_
e o
@
Fig.20.Sudden Contraction
2
h.=0.5 Lo
2z
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Loss of Head at the Entrance of a Pipe. This is the loss of energy which occurs
when a liguid enters a pipe which is connected to a large tank or reservoir. This loss is similar to the
loss of head due to sudden contraction. This loss depends on the form of entrance. For a sharp edge

entrance, this loss is slightly more than a rounded or bell mouthed entrance. In practice the value of
z

loss of head at the entrance (or inlet) of a pipe with sharp cornered entrance is taken = 0.5 Ey where

V = velocity of liquid in pipe. &

This loss is denoted by h;
V:
hy=05 —
28

Loss of Head at the Exit of Pipe. This is the loss of head (or energy) due to the
velocity of liquid at outlet of the pipe which is dissipated either in the form of a free jet (if outlet of the

pipe is free} or it is lost in the t:;rik or reservoir (it the outlet of the pipe is connected to the tank or
reservodr). This loss is equal w E where Vis the velocity of ligquid at the outlet of pipe. This loss is
denoted f,.

2g
where V = velocity at outlet of pipe.

Loss of Head Due to an Obstruction in a Pipe. Whenever there is an obstruction
in a pipe, the loss of energy takes place due to reduction of the area of the cross-section of the pipe at
the place where obstruction is present. There is a sudden enlargement of the area of flow beyond the
obstruction due to which loss of head takes place as shown in Fig.

Consider a pipe of area of cross-section A having an
ohstruction as shown in Fig.
Let a = Maximum area of obstruction
A = Area of pipe
V= Velocity of liguid in pipe [
Then (A — a) = Area of flow of liquid at section 1-1.

@ @

|

As the liguid flows and passes through section _ | % l

1-1, a vena-contracta is formed beyond section 1-1, [V !

after which the stream of liquid widens again and r|

velocity of flow at section 2-2 becomes uniform and J
equal to velocity, Vin the pipe. This situation is similar to

the flow of liquid through sudden enlargement. @ @

Fig.21. Obstruction in a pipe

- 2
Ve A
Head loss due to obstruction = 2g [{: (A-a) B I]
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Loss of Head due to Bend in Pipe. When there is any bend in a pipe, the velocity of
flow changes, due to which the separation of the flow from the boundary and also formation of eddies
takes place. Thus the energy is lost. Loss of head in pipe due to bend is expressed as

2
hy = kV
2g

where f;, = loss of head due to bend, V' = velocity of flow, & = co-efficient of bend

The value of & depends on
(i) Angle of bend, (i) Radius of curvature of bend, (iif) Diameter of pipe.

Loss of Head in Various Pipe Fittings. The loss of head in the various pipe fittings
such as valves, couplings ete., is expressed as

_ kv

= 2%
where V = velocity of flow, k = co-efficient of pipe fitting.

HYDRAULIC GRADIENT AND TOTAL ENERGY LINE

The concept of hydraulic gradient line and total energy line is very useful in the study of flow of
fluids through pipes. They are defined as :

Hydraulic Gradient Line. Itis defined as the line which gives the sum of pressure head

[E] and datum head (z) of a flowing fluid in a pipe with respect to some reference line or it is the line
W

which is obtained by joining the top of all vertical ordinates, showing the pressure head (p/w) of a
flowing fluid in a pipe from the centre of the pipe. It is briefly written as H.G.L. (Hydraulic Gradient
Line).

Total Energy Line. It is defined as the line which gives the sum of pressure head, datum
head and kinetic head of a flowing fluid in a pipe with respect to some reference line. It is also defined as
the line which is obtained by joining the tops of all vertical ordinates showing the sum of pressure head
and kinetic head from the centre of the pipe. [t is briefly written as T.E.L. (Total Energy Line).

FLOW THROUGH S5YPHON

Syphon is a long bent pipe which is used to transfer ligquid from a reservoir at a higher elevation to
another reservoir at a lower level when the two reservoirs are separated by a hill or high level ground
as shown in Fig.

e SPHON G SUMMIT
[} AT
h L\
AL N
= M
LA N\ -

| [ LN ——
v"'.'f.",'i'mn'f"’fmrn “»

Fig.22.Flow through Syphon
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The point C which is at the highest of the syphon is called the summit. As the point C is above the free
surface of the water in the tank A, the pressure at C will be less than atmospheric pressure. Theoretically,
the pressure at C may be reduced to — 10.3 m of water but in actual practice this pressure is only — 7.6 m
of water or 10.3 — 7.6 = 2.7 m of water absolute. If the pressure at C becomes less than 2.7 m of water
absolute, the dissolved air and other pases would come out from water and collect at the summit. The
flow of water will be obstructed. Syphon is used in the following cases :

l. To carry water from one reservoir to another reservoir separated by a hill or ridge.

2. To take out the liquid from a tank which is not having any outlet,

3. To empty a channel not provided with any outlet sluice.

FLOW THROUGH PIPES IN SERIES OR FLOW THROUGH COMPOUND PIPES

Pipes in series or compound pipes are defined as the pipes of different lengths and different diam-
eters connected end to end (in series) to form a pipe line as shown in Fig.

Let, L, L,, Ly = length of pipes 1, 2 and 3 respectively
dy, dy, dy = diameter of pipes 1, 2, 3 respectively
V. V., V5 = velocity of flow through pipes 1, 2, 3
i+ 2 5 = co-efficient of frictions for pipes 1, 2, 3
H = difference of water level in the two tanks.

;& H
U2 "'.d;
F— N
LA
% e AL”’, ! ¢
; J .
2 ) -\

Fig.23.Pipes in series
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- —————

The discharge passing through each pipe is same.
G=AV, =AV,= AV,
The difference in ligquid surface |E'|-'E|'» is equal to the sum of the total head loss in the pipes.

H= 0.5V N af LV N 05V + 4f, LV
2g d, %x2g 2g d, x2g

2 "
USSR A
2g d, ®x2g  2g

If minor losses are neglected, then above equation becomes as

_ANLVE  ARLVY 4ALVY
d x2g d,x2g d,x2g
If the co-cfficient of friction is same for all pipes
ie., [y =f:=Jf, = then equation becomes as
o= 7LV LAY 1LV
dy x2g d,x2g dyx2g

2 2 2
_Af LY +L:'r"z +f-q'r".1
2g d, d, d;

Equivalent Pipe

This is defined as the pipe of uniform diameter having loss of head and discharge equal to the loss
of head and discharge of a compound pipe consisting of several pipes of different lengths and diam-
eters. The uniform diameter of the equivalent pipe is called equivalent size of the pipe. The length of
cquivalent pipe is cqual to sum of lengths of the compound pipe consisting of different pipes.

Let L, =length of pipe | and d, = diameter of pipe |

L, = length of pipe 2 and o, = diameter of pipe 2
Ly = length of pipe 3 and d, = diameter of pipe 3
H = total head loss
I. = length of equivalent pipe
d = diameter of the equivalent pipe
Then L=L;+ 1L+ L,
Total head loss in the compound pipe, neglecting minor losses

2 2 2
_AALYV ALLV] | 4fLY,
d, = 2g d, ®x2g dy % 2g
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Assuming h=h=Ha=f

Discharge, Q=A,V,= AV, = AV, = E d2v, = % 4,2V, = % 52V,
40 40 40
Vi=—5.V,= and Vy =
"Twd? T mdl T nd?

Substituting these values in equation

(] ] i)

H= 1 Ry md;
- d, x2g d, x2g dy x2g
_4x1ef0* | L, L, L Ls
=S T, |ttt s
n-x2g |d 4 d
4f. L.v?
Head loss in the equivalent pipe, H = “dx2e [Taking same value of fas in compound pipe]
®oE
where V = £=—Q = 40
A T omd
4
40
oo 4T L(2) - dx100/ (1]
- dx2g T omix2g L4

Head loss in compound pipe and in equivalent pipe is same hence equating equations

4><lﬁf.:f[, L Lj} 4XIEQI[£§}

nix2g |45 4 dP ' x2g
L L L
or e A e
a4 d;  d 4 d & d
Equation ris known as Dupuit’s equation. In this equation L= L, + L, + Ly and 4, d, and d;

are known. Hence the equivalent size of the pipe, i.e., value of @ can be obtained.

Flow through Parallel Pipes:

Consider a main pipe which divides into two or more branches as shown in Fig. and again join
together downstream o form a single pipe, then the branch pipes are said 1o be connected in parallel.
The discharge through the main is increased by connecting pipes in parallel.

BRANCH PIPE 2
14

L4, .V,

L,.d, .V,

'BRANCH PIPE 1

Fig.24.Parallel Pipes
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The rate of flow in the main pipe is equal (o the sum of rate of flow through branch pipes. Hence
from Fig.

=0+,
In this, arrangement, the loss of head for each branch pipe is same.
.. Loss of head for branch pipe 1 = Loss of head for branch pipe 2

ALV _ 4hHLV
d; x2g d, »x2g

LY: _ LV;
dy»x2g d,x2g

fi =1 then

Flow through Branched Pipes:

When three or more reservoirs are connected by means of pipes, having one or more junctions, the
system is called a branching pipe system. Fig. shows three reservoirs at different levels con-
nected to a single junction, by means of pipes which are called branched pipes. The lengths, diameters
and co-efficient of friction of each pipes is given. It is required to find the discharge and direction of
flow in each pipe. The basic equations used for solving such problems are :

1. Continuity equation which means the inflow of fluid at the junction should be equal to the
outflow of fluid.

2. Bernoulli’s equation, and

3. Darcy-Welsbach equation

Also it is assumed that reservoirs are very large and the water surface levels in the reservoirs are
constant so that steady conditions exist in the pipes. Also minor losses are assumed very small, The
flow from reservoir A takes place to junction D. The flow from junction [? is towards reservoirs C.
MNow the flow from junction D towards reservoir 8 will take place only when piezometric head at [

[which is equal to Fo +Z5 ] is more than the piezometric head at B (i.e., Zg). Let us consider that flow
pg

is from [ 1o reservoir B,

_4_
T
A
- Vv v B
C . = 7'7 A
Z, o LN '
(, ey ZB
g, T
Zs DG
E o \*_’\} C ZC
Al [P AR R A e ST Bt Y ek BRI OO e et S L A S

ATUM LINE

Fig.25.Branched Pipes
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For flow from A to D from Bernoulli’s equation

Zy=Zp+ L0 4y
P8

For flow from D to B from Bernoulli’s equation

i

P ..
En+ —=Zp+ h i)
T pg TP

For flow from D2 to C from Bermoulli’s equation

Pr

ED+ p_g = ZC‘ + h.f.a L)

From continuity equation,
Discharge through AD = Discharge through DB + Discharge through DC

T 3 h1! 3 T,z
—_ V=2 = d" ® Vo + — d 7V
4 (| 4 2 2 4 33

or 42V, = d,"V, + d;*V, i)

There are four unknowns i.e., V|, V,, V; and Po and there are four equations (i), (i), (i) and (iv).

Psg
Hence unknown can be calculated.

Power Transmission through Pipes

Power is transmitted through pipes by flowing water or other liguids flowing through them. The
power transmitted depends upon (1) the weight of liguid flowing through the pipe and (i) the total head
available at the end of the pipe. Consider a pipe AB connected to a tank as shown in Fig. The

power available at the end 5 of the pipe and the condition for maximum transmission of power will be
obtained as mentioned helow

H
A ! B
I
' T

Fig.26.Power transmission through pipes
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Let L = length of the pipe,
d = diameter of the pipe,
H = total head available at the inlet of pipe,
V = velocity of flow in pipe,
.F:J,: loss of head due to friction, and f= co-efficient of friction.
The head available at the outlet of the pipe, if minor losses are neglected
= Total head at inlet — loss of head due o friction

o Ho= g XXV o p, 2 Y XLXVE
d=2g dx2p
Weight of water flowing through pipe per sec,
W = pg x volume of water per sec = pg x Area x Velocity

— L]
=pg X de= vV
£ {

The power transmitted at the outlet of the pipe
= weight of water per sec x head at outlet

4f = LxV?

Watts
d =2

= (pgxgdz xi—’)x[H
. Power transmitted at outlet of the pipe,

4fLV?
X xv| a2 w
4 dx2a

ps

= L2 5
1000

Efficiency of power transmission,

Power available at outlet of the pipe

Power supplied at the inlet of the pipe

Weight of water per sec = Head available at outlet
Weight of water per sec x Head at inlet

WX{H—IEIII H-h,

WxH H

Flow through Nozzle:

Fig. shows a nozzle fitted at the end of a long pipe. The total energy at the end of the pipe
consists of pressure energy and kinetic energy. By fitting the nozzle at the end of the pipe, the total
energy is converted into kinetic energy. Thus nozzles are used, where higher velocities of flow are
required. The examples are :



H DiA=D BASE OF
. fNOZZLE
__L___,,"'L__! S :_“_E_H
] 3
fplpE NOZZLE
e L -

Fig.27.Flow through Nozzle

. In case of Pelton turbine, the nozzle is fitted at the end of the pipe (called penstock) to increase
velocity.

. In case of the extinguishing fire, a nozzle is fitted at the end of the hose pipe to increase velocity.
Let D = diameter of the pipe, L = length of the pipe,

A = area of the pipe = % D?,

V = velocity of flow in pipe,

H = total head at the inlet of the pipe,
d = diameter of nozzle at outlet,

v = velocity of flow at outlet of nozzle,

n
a = area of the nozzle at outlet = — d2,

[ = co-efficient of friction for pipe.
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2

Loss of head due to friction in pipe, ﬂf: ; D
X

. Head available at the end of the pipe or at the base of nozzle
= Head at inlet of pipe — head lost due to friction

4fLV*
2= D

Meglecting minor losses and also assuming losses in the nozzle negligible, we have
Total head at inlet of pipe = total head (energy) at the outlet of nozzle + losses

2
v
But total head at outlet of nozzle = Kinetic head = —

28
2 A 2 2
Helyp =t ULV -.-hf=—4ﬂ'v (i)
28 28 2gD 2gD
From continuity equation in the pipe and outlet of nozzle,
AV =av
V= av
A

Substituting this value in equation (1), we get

2 32 2 1 2 2 z
H=v_+ﬂx[ﬂ] Y, Aay v Afla
2g 2D

A) T2 2pxDxA’ 2

~. Discharge through nozzle = a = v,
Water Hammer in Pipes:

Consider a long pipe AB as shown in Fig, connected at one end o a tank containing water at
a height of H from the centre of the pipe. At the other end of the pipe, a valve to regulate the flow of
water is provided. When the valve is completely open, the water is flowing with a velocity, Vin the
pipe. If now the valve is suddenly closed, the momentum of the flowing water will be destroyed and
consequently a wave of high pressure will be set up. This wave of high pressure will be transmitted
along the pipe with a velocity equal to the velocity of sound wave and may create noise called knock-
ing. Also this wave of high pressure has the effect of hammering action on the walls of the pipe and
hence it is also known as water hammer.

B VALVE

= r

~— T —

Fig.28.Water Hammer
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The pressure rise due to water hammer depends upon @ (i) the velocity of flow of water in pipe,
(i) the length of pipe, (iii) time taken to close the valve, (iv) elastic properties of the material of the
pipe. The following cases of water hammer in pipes will be considered :

1. Gradual closure of valve,

2. Sudden closure of valve and considering pipe rigid, and

Practice Problems:

Problem .1 The head of water over an orifice of diameter 40 mm is 10 m. Find the actual dis-
charge and actual velocity of the jet at vena-contracta. Take C; = 0.6 and C, = 0.98.

Solution. Given :

Head, H=10cm
Dia. of orifice, d =40 mm = 0.04 m
; n 2 ]
o Area, as E{,ﬂé‘r} = .001256 m
C,=006
C,=0098

Actoal discharge

(i} =0.6

Theoretical discharge
But Theoretical discharge = V), x Area of orifice
V,, = Theoretical velocity, where V,, = [2gH = /2% 9.81x 10 =14 m/s

2

Theoretical discharge = 14 x .001256 = 0.01758 2
5

Actual discharge = 0.6 ® Theoretical discharge
= 0.6 x .01758 = 0.01054 m’/s. Ans.

Acmal velocity
Theoretical velocity

(if) =C,=0598
Actual velocity = 0.98 = Theoretical velocity
=198 = 14 = 13.72 m/s. Ans.
Problem .2 The head of water over the centre of an orifice of diameter 200 mm is { m. The actual
discharge through the orifice is 0.83 litreds, Find the co-efficient of discharge.
Solution. Given :

Dia. of onfice, d= 20 mm = 0.02 m

- Area, a= ;({}.02}1 = 0.000314 m?

Head, H=1lm

Actual discharge, O = 0.85 litre/s = 0.00085 m/s
Theoretical velocity, Vi = ..Jl'ZgH = .,.,1'2 X981 x1=4429 m/s

<. Theoretical discharge, @, =V}, x Area of orifice
= 4.429 x 0.000314 = 0.00139 m*/s
Actual discharge _ 0.00085

= = (61. Ans.
Theoretical discharge  0.00139

Co-cfficient of discharge =
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Problem .3 A jer of water, issuing from a sharp-edged vertical orifice under a constant head of

10.0 ¢cm, ar a certain point, has the horizontal and vertical co-ordinates measured from the vena-contracia

as 20.0 cm and 10.5 cm respectively. Find the value of C,. Also find the value of C_if C ;= 0.60.
Solution. Given :

Head, H= 101 cm
Horizonial distance, x=20,0cm
WVertical distance, y=10.5cm
C,=06
The value of C is given by equation (7.6) as
x 20,0 20

= (.9759 = 0.976. Ans.

O JAyH  Jax105x100 20493
The value of C_is given by equation (7.7) as

_C;_ 06

= = = (L6147 = 0.615. Ans.
=T 976 O "

Problem .4 The head of water over an orifice of diameter 100 mm is 10 m. The water coming out
from orifice is collected in a circular tank of diameter 1.5 m. The rise of water level in this tank is
1.0 m in 25 seconds. Also the co-ordinates of a point on the jet, measured from vena-contracta are
4.3 m horizontal and 0.5 m vertical. Find the co-gfficients, C,, C, and C..

Solution. Given :

Head, H=10m
Dia. of orifice, d =100 mm = 0.1 m
5 b9 o

. Area of orifice, a= E.|:.1:r = 0.007853 m*®
Dia. of measuring tank, D=15m

T 2 2
- Area, A= E“'j) = 1.767T m
Rise of water, h=1m
Time, t =25 seconds
Horizontal distance, x=43m
Yertical distance, yv=105m

Now theoretical velocity, V= 2gH =42 x981x10 = 140 m/s
Theoretical discharge, 0, = V,, % Area of orifice = 14.0 % 0.007854 = 0.1099 m™/s
Axh _1.767x1.0

Actual discharge, = = (LOT06E
ctual di e 2 ; 35
Q  0.07068
= —=—"— = 0L.643. Ans.
1= 0. 0.1099 ns
The value of C, is given by equation (7.6) as
=2 33 _ 43 _ 496 Ans.
JAH  J4x05x10 4472
L . C, 0643
C, is given by equation (7.7) as C, = ?':z o9c - 0.669. Ans.

41



Problem .5 Warter discharge at the rate of 98.2 litres/s through a 120 mm diameter vertical
sharp-edged orifice placed under a constant head of 10 metres. A point, on the jet, measured from the

vena-contracta af the jet has co-ordinates 4.5 metres horizontal and 0.34 metres vertical. Find the
co-gfficient C,, C. and C; of the orifice.

Solution. Given :

Discharge, 0 = 98.2 lit/s = 0.0982 m*/s
Dia. of orifice, d=120mm=0.12m

~. Area of orifice, a= gfﬂ.lzf = 0.01131 m
Head, H=10m

Horizontal distance of a point on the jet from vena-contracta, x = 4.5 m
and vertical distance, v = .54 m

Now theoretical velocity, V,, = 2g x H =2 x981x10 = 14.0 m/s
Theoretical discharge, Oy =V, % Area of orifice

= 14.0 x 0.01131 = 0.1583 m’/s
The value of C, is given by, C,= Thﬁl’:llliril {ilh:;ha;g:: - Q£ = ?}?2:; = 62, Ans.
eoretical discharge i Bk

The value of C, is given by equation (7.6),

= 0.968. Ans.

C = x 4.5
ToJayH 4 %054 %10

The value of C, is given by equation (7.7) as

C = C—‘f= 062 _ 0.64. Ans.
C, 0968

Problem Find the discharge through a rectangular orifice 2.0 m wide and 1.5 m deep fitred 1o

a water tank. The water level in the tank is 3.0 m above the top edge of the orifice. Take C, = 0.62.
Solution. Given :

Width of orifice, b=2.0m
Depth of orifice, d=15m

Height of water above top edge of the orifice, H, = 3m

Height of water above bottom edge of the orifice,
Hy=H +d=3+15=45m
C,= 0.62

Discharge O is given by equation (7.8) as

Q=% C, xbx2g [H; - H|

Wk e |

% 0.62 % 2.0 % 2+981[4.5"" - 3" m*fs

3.66[9.545 — 5.196] m*/s = 15.917 m’/s. Ans.

42



Problem A rectangular orifice, 1.5 m wide and [.0 m deep is discharging water from a tank.
If the water level in the tank is 3.0 m above the top edge of the orifice, find the discharge through the
orifice. Take the co-efficient of discharging for the orifice = 0.6,

Solution. Given :

Width of orifice, b=15m

Depth of orifice, d=1.0m
H,=30m
Hy=H,+d=30+10=40m
Ed= 0.6

Discharge, ( is given by the equation (7.8) as
g:% x Cyxbx J2g [H;" - H'™

- % x0.6%1.5% J2+981 [4.0"° - 30" mYs

= 2,657 [8.0 — 5.196] m’/s = 7.45 m’/s. Ans.



Problem A rectangular orifice, 1.5 m wide and [.0 m deep is discharging water from a rank.
If the water level in the tank is 3.0 m above the top edge of the orifice, find the discharge through the
orifice. Take the co-efficient of discharging for the orifice = 0.6,

Solution. Given :

Width of orifice, b=15m

Depth of orifice, d=1.0m
H,=30m
Hy=H,+d=3.0+10=40m
C,=06

Discharge, ( is given by the equation (7.8) as

Q=2 xCyxbx g (H3~ H™)

- % %x0.6%1.5% J2+981 [4.0"-3.0" 1 mYs

= 2.657 [8.0 — 5.196) m’/s = 7.45 m’/s. Ans.

Problem Find the discharge through a fully sub-merged orifice of width 2 m if the difference
of water levels on both sides of the orifice be 50 cm. The height of waler from top and bottom of the
orifice are 2.5 m and 2.75 m respectively. Take C,; = 0.6

Solution. Given :

Width of orifice, b=2m
Difference of water level, H=50cm=05m
Height of water from top of orifice, H/=25m
Height of water from bottom of orifice, H, = 2.5 m
C,=086
Discharge through fully sub-merged orifice is given by equation (7.9)
or Q=Cyxbx(H,—H)x 2gH

=06 x2.0x(275-2.5) % J2=x081=x05 m/s
= 0.9396 m/s. Ans.

Problem Find the discharge through a iofally drowned orifice 2.0 m wide and | m deep, if the

difference of water levels on both the sides of the orifice be 3 m. Take C,; = 0.62,
Solution. Given :

Width of orifice, b=20m
Depth of orifice, d=1m.
Difference of water level on both the sides
H=3m
C,=0.62
Discharge through orifice is Q = C; % Area % /2gH
=0.62 % bxdx [ 2gH

=0.62%2.0%1.0% J2%981%3 m’/s = 9.513 m*/s. Ans.
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Problem A rectangular orifice of 2 m width and 1.2 m deep is fitted in one side of a large
tank. The water level on one side of the orifice iy 3 m above the top edge of the orifice, while on the

other side of the orifice, the water level is 0.5 m below ity top edge. Calculate the discharge through
the orifice if C; = 0.64.

Solution. Given : Width of orifice, b =2 m

Depth of orifice, d = 1.2 m

Height of water from top edge of orifice, H, =3 m

Dvifference of water level on both sides, H=3+05=3.5m

Height of water from the bottom edge of orifice, Hy=H, +d=3+12=42m
The orifice is partially sub-merged. The discharge through sub-merged portion,

Q= Cyx b x (Hy~ H) x |2gH

=064 x 2.0 x (4.2 - 3.5) x {[2x 9.81 x 3.5 = 7.4249 m*/s
The discharge through free portion is

Q2=%C‘,xbx J2e [H? - H™

[]

- % % 0.64 x 2.0 x JZ %981 [3.5"7 - 3.0"
=3.779 [6.5479 — 5.1961] = 5.108 m*/s

Total discharge through the orifice is
Q=0+ (@y=T74249 + 5.108 = 12.5329 m/s. Ans.

Problem A circular tank of diameter 4 m containg water upto a height of 5 m. The fank iy
provided with an arifice of diameter 0.3 m at the bottom. Find the time taken by water (i) to fall from

S m to 2 m (ii) for completely emptyving the tank, Take C, = 0.6,
Solution. Given :

Dia. of tank, D=4m

- Area, A= E (4)> = 12.566 m
Dia. of orifice, d=05m

.. Area, a= ; (.5)* = 0.1963 m’

Initial height of water, H, =5m
Final height of water, (i) H,=2m (i) H,=0

First Case. When Hy=2m
24
Usi ti h T —m H -JH
sing equation we have T [m" L= 1]
2x12.566

= 5 - +/2.0] second
0.6 %.1963 x /2 X 9.81 [V5 - 20] seconds

= 20653 = 39,58 seconds. Ans.
0.5217
Second Case. When H, = ()
24 212566 % 5
- - 66 % /5

"¢, a2

= 107.7 seconds. Ans.

0.6 x 1963 x /2 x9.81
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Problem A hemispherical tank of diameter 4 m contains water upto a height of 1.5 m. An
orifice of diameter 30 mm is provided at the bottom. Find the time required by waler (i) to fall from
1.5 m 1o 1.0 m {ii) for completely emptyving the tank. Tank C,; = 0.6,

Solution. Given :

Dia. of hemispherical tank, [ =4 m

.. Radius, R=20m
Dia. of orifice, d = 50 mm = 0,05 m
- Area, a= g(.nsﬁ = 0.001963 m>
Initial height of water, H=15m
C,=0.6

First Case, H,=1.0
Time T is given by equation

T H Hg”*}—%{h'f’z _ ngzﬂ

b4 4
=—x|-R
Cy xax,/2g [3 {

= - x [i x20 (152 - 10" )~ 2 (1592 10" ﬂ
0.6x.001963x 2x981 3 5

602189 [2.2323 - (0.7022] = 921 .4 second
15 min 21.4 sec. Ans.
Second Case. H, = () and hence time T is given by equation

T [i RH™ - 2 Hl.-s.lli|
3 3

n
-Cd-ﬂ-m

- L [i %20x15% ~ 2 1.5’”}
0.6 001963 J2 X 981 | 3 5

= 602189 [4.8989 - 1.1022] sec = 2286.33 sec
= 38 min 6.33 sec. Ans.

Problem An orifice of diameter 150 mm is fitted at the bottom of a boiler drum of length 8 m
and af diameler 3 metres. The drum is horizonial and conlaing water uplo a height of 2.4 m. Find the
time required to empiy the boiler, Take C; = 0.6,

Solution. Given :

Dia. of orifice, d =150 mm=0.15m

Area, a= E{.ljﬁ = 0.01767 m>

Length, L=80m
Dia. of boiler, D=30m
. Radius, E=15m
Initial height of water, H =24m
Find height of water, H,=0

C,=06.



For completely emptying the tank, T is given by equation
4L
T=—— = [(2R)*? - (2R - H)*"
3(::1 % g X ‘u@ [{ } ( I} ]
_ 4x 8.0
3%.6 x.01767 x /2 x9.81
= 227.14 [5.196 - 0.4647] = 1074.66 sec
= 17 min 54.66 sec. Ans.

[(2 % 1.5 — (2 x 1.5 - 2.4)™7)

Problem Find the discharge from a 100 mm diameter external mouthpiece, fitted to a side of
a large vessel if the head over the mouthpiece is 4 metres.
Solution. Given :

Dia. of mouthpiece = 100 m = 0.1 m

. Area, a= gtﬂ-lf’* = 0.007854 m?
Head, H=40m
C, for mouthpiece = ().855
. Discharge = C,; ¥ Area ¥ Velocity = 0.855 ® a =,/2gH

= .855 x 007854 x \[2 x 9.81x 4.0 = .05948 m’/s. Ans.

Problem A convergent-divergent mouthpiece having throat diameter of 4.0 cm iy discharging

waler under a constan? head of 2.0 m, determineg the maximunt ouler diameter for maximum discharge,

Find maximum discharge also. Take H, = 10.3 m of water and H,,, = 2.5 m of water (absolute).
Solution. Given :

Dia. of throat, d.= 4.0 cm
L3 :
<. Area, a= (4)* = 12.566 cm’
Constant head, H=20m
Find max. dia. at outlet, d; and Q.
H,= 103 m

H. =25 m (absolute)

s
The discharge, 0 in convergent-divergent mouthpiece depends on the area at throat.

Qe = @, % 2gH = 12.566 » /2 x9.81 %200 = 7871.5 em’/s. Ans.

MNow ratio of areas at outlet and throat is given by equation

H - H 10.3- 2.
i:JH#:JHM ( H. =H,_ =25
a H 2.0 P

C

2.2135

2
d
22135 or [d_]] =72.2135

Ly

T i
iefie

j—l = 4/2.2135 = 14877

dy = 14877 x d, = 1.4877 = 4.0 = 5.95 cm. Ans.
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Problem Find the discharge of water flowing over a rectangular notch of 2 m length when the
constant head over the notch is 300 mm. Take C,; = 0.60.
Solution. Given :

Length of the notch, L=20m
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Head over notch, H=300m =030 m
Cd = 0.60

C,x Lx\2¢ [Hm]

Discharge, 0=

k| bt el | B2

= Z % 0.6 %2.0x 2x981 = [0.30]"% m*s

= 3.5435 % 0.1643 = 0.582 m’/s. Ans.
Problem Determine the height of a rectangular weir of length 6 m to be built across a reclan-
gular channel, The maximum depth of water on the upstream side of the weir is 1.8 m and discharge is
20600 litresds, Take C; = 0.6 and neglect end contractions.
Solution. Given :

Length of weir, L=6tm

Depth of water, H=18m

Discharge, 0 = 2000 lit/s = 2 m%/s
C,=06

Let His height of water above the crest of weir, and M5 = height of weir
The discharge over the weir is given by the equation

Q=%Cd:-<f_.x,jﬂ H*?

of 20 = %x 0.6 % 6.0 % /2 X981 x H"?
= 10.623 H*”
v 20
10.623
243
He= (_1:} ] =0.328 m
10,623
Height of weir, H,=H-H

= Depth of water on upstream side — H
= 1. - 328 = 1.472 m. Ans.
Problem Find the discharge over a triangular notch of angle 60° when the head over the
Venotch is 0.3 m. Assume C, = 0.6,
Solution. Given :

Angle of V-notch, 8 =60°
Head over notch, H=03m
Cﬂl - [.]-.6

Discharge, & over a Venotch is given by equation

4] =%x£',,><mngx 2g x H"

o

60
= % * (1.6 tan > X 2% 981 x(0.3)"
= 0.8182 x 0.0493 = 0.040 m*/s. Ans.
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Problem Water flows over a rectangular weir | m wide at a depth of 150 mm and afterwards
passes through a wiangular right-angled weir, Taking C, for the rectangular and triangular weir as
(.62 and 0.59 respectively, find the depth over the triangular weir.

Solution. Given :
For rectangular weir, length, L =1m

Diepth of water, H =150 mm = 0.15m
C; =062

For triangular weir, 8 =90°
C, =059

Let depth over triangular weir = H|

The discharge over the rectangular weir is given by equation
Q:% wCymLx\f2g x B2

= % x 0.62 % 1.0 % 2% 981 x (.15/*” m¥s = 0.10635 m*/s
The same discharge passes through the triangular right-angled weir. But discharge, {J, is given by
equation for a riangular weir as
)
¢=

; xc{,xmngx@xh’m

90"
0.10635 = % » .59 % tan > % 2g x H" [~ 8=90"and H=H )}

= l_i x .59 x | x 4.429 x H,** = 1.3936 H**

s 010635
1.3936
H, = (.07631)"* = 0.3572 m. Ans.

=0.07631

Problem Find the discharge through a trapegoidal notch which is 1 m wide at the top and
(.40 m at the bottom and is 30 cm in height. The head of water on the notch is 20 cm. Assume C, for
rectangular portion = 0.62 while for triangular portion = (L.60,

Solution. Given :

Top width, AE=1m -""-.;--:?5_53'5_5_;;::"'I_.-':E T
Base width, CD=L=04m /}I%E,\ — i
Head of water, H=020m \".\' J_
For rectangular portion, Cdl = (.62 L -
For triangular portion, Cy, = 0.60 e

From AABC, we have

8 AB (AE-CD)/2

tan - = —=————

2 BC H
_(L0-04)/2 _06/2 03 _
a 0.3 03 03

1
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Discharge through trapezoidal notch is given by equation

Q:%Cdlx.f,x 2g xHj"z+%{?d1><tangx 2g x H?

2 5062 x 04 x JTXIBT X (02 + %x.ﬁﬂx 1 % JZX081 x (0.2

= 0.06549 + 0.02535 = 0.09084 m*/s = 90.84 litres/s. Ans.

L

Problem {a) A broad-crested weir of 50 m length, has 50 cm height of water above its crest,
Find the maximum discharge. Take C, = 0.60. Neglect velocity of approach. (b) If the velocity of
approach iy to be taken into consideration, find the maximum discharge when the channel has a cross-
sectional area of 50 m® on the upstream side.

Solution. Given :

Lengih of weir, L=50m
Head of water, H=50cm=05m
C,=0.60

(i} Neglecting velocity of approach. Maximum discharge is given by equation
Qe = 1.705 % €y % L x HY?

= 1.705 x 0.60 % 50 x (.5)*" = 18.084 m"/s. Ans.
{if) Taking velocity of approach into consideration

Area of channel, A=50m>
. 18.084
Velocity of approach, = %= 0 =0.36 m/s
Vz . . .
- Head due toV,, p, = Yo 2 036X36 _ e m
2g  2x9.31
Maximum discharge, {0, is given by
Qo = 1.705 % Cy % L X [(H + )" — 1,

1.705 x 0.6 x 50 x [(.50 + .0066)"° - (.0066)"7]
51.15[03605 — .000536] = 18.412 m’/s. Ans.

Problem Find the head lost due to friction in a pipe of diameter 300 mm and length 50 m,
through which water is flowing at a velocity of 3 m/s using (i) Darcy formula, (i) Chezy's formula for
which C = a0,

Take v for water = 0.00 stoke.

Solution. Given :

Dia. of pipe, d =300 mm = (.30 m
Length of pipe, L=5m

Velocity of flow, V=3mis

Chezy's constant, C =60

Kincmatic viscosity, v= 0.01 stoke = 0.01 cm?¥/s

= 0.01 = 107* m?s.
(i) Darcy Formula is given by equation
NSNS
= dx 2g
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where °f " = co-efficient of friction is a function of Reynolds number, R,

Vxd I ,
But R, is given by R, = : :il?::]ﬂ%? =9 x 10°
. Value of f= D'E:TE . 200 o = 00256
R {9x10%)
2
*. Head lost, hy= 4X 00256 % 30 %3 = 7828 m. Ans.

03x2.0=981

{ii) Chezy’s Formula. Using equation

V= mi
whemf=ﬁﬂ,m=£=@=ﬂﬂ75m
4 4
- (3
3=60 JOT5xiori=|—| x— =0.0333
6l A5
i
But fz;—‘r:h—f
L 50

h
Equating the two values of i, we have ‘S_g = .0333

sz= 50 x 0333 = 1.665 m. Ans.

Problem Find the diameter of a pipe of length 2000 m when the rate of flow of water through
the pipe is 200 litres/s and the head lost due to friction is 4 m. Take the value of C = 50 in Chezy's
SJormulae.



Solution. Given :

Length of pipe, L = 2000 m

Discharge, 0 = 200 litre/s = 0.2 m*fs
Head lost due io friction, .Fr},: 4m

Value of Chezy's constant, C = 50

Let the diameter of pipe = d

_ Discharge Q0 02 02x4

Velocity of flow, Vv = =

d Arca L L md’

d o
4 4

. d
Hydraulic mean depth, m= 1
Loss of head it length, i = L =2 _ 002

550 ed er unit len yl=—5—=,
P . L 2000

Chezy's formula is given by equation as V= C «/mi

Substituting the values of V, m, i and C, we get

02x4 _ 4 \/ﬂ % 002 or JE %002 = 02x4 _ .{}{}{UQ
mad © 4 4

mad® % 50 d?

00509° 0000259 op o = 4%.0000259

at 002
d = 3/0.0518=(0518)"" = 0.553 m = 553 mm. Ans.

= (.0518

Squaring both sides, ; #0002 =

Problem An oil of sp. gr. 0.7 iy flowing through a pipe of diameter 300 mm at the rate of
500 litres/s. Find the head lost due to friction and power required to maintain the flow for a length of
TNy m. Take v = .29 stokes.

Solution. Given :

Sp. gr. of oil, S=07

Dia. of pipe, d=30 mm=03m
Discharge, Q = 500 litres/s = 0.5 m*/s
Length of pipe, L= 100 m

Velocity, V= Q _ 0.5 - 0.5x4
Area Edz T % 0.3°

4

v x

079 _ 0.79 = 0048

R (7316 x10%)

=7.073 m/s

= 7.316 x {10)*

Co-efficient of friction, [

4x fxLxV'  4x.0048 x 1000 x 7.073°

Head lost due to friction, f, = = 163.18 m
dx2g 0.3 x2 x9.81
O
Power required = ﬁ kW
1000
where p = density of oil = 0.7 x 1000 = 700 kg/m’
Power required = 700 >981x 0.5 x 16318 _ 560.28 kW. Ans.
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Problem
diameter of 400 mm. The rate of flow of water through the pipe is 250 litres/s.

Solution. Given :
Dia. of smaller pipe, D= 200 mm = (.20 m

- Area, A, = % D= E (2)*= 003141 m
Dia. of large pipe, ;=400 mm = 0.4 m
- Area, A, = % % (0.4)" = 0.12564 m’
Discharge, 0 = 250 litres/s = 0.25 m®/s
Velocity, V= Q = 0.25 = 7.96 mfs

A, 03141
Velocity, V,= Q = 023 = 1.99 m/s

A, 12564

Loss of head due to enlargement is given by equation

(V,-v,)"  (7.96 - 199)

h, = = = 1.816 m of water. Ans.

2g 2g

Find the loss af head when a pipe of diameter 200 mm is suddenly enlarged 1o a
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Problem The rate of flow of water through a horizontal pipe is 0.25 m’/s. The diameter of the
pipe which is 200 mm is suddenly enlarged to 400 mm. The pressure intensity in the smaller pipe is
11.772 Nfcm”. Determine :
(1) fosy of head due to sudden enlargement, (I0) pressure intensity in the large pipe,
(iif) power lost due fo enlargement,
Solution. Given :

Discharge, 0 =0.25ms
Dia. of smaller pipe, Dy =200 mm = (.20 m
m 2 2
Area, A= 7 (.2)" = 003141 m
Dia. of large pipe, D, = 400 mm = 0.40 m
- Area, A, = % (0.4)% = 0.12566 m’
Pressure in smaller pipe, p, = 11.772 Nfem” = 11.772 x 10* N/m*
Now velocity, Vv, = g = 0-25 = 7.96 m/s
A 03141
. g 0325
Velocity, Vo= = = 1.99 m/
elocity 4 A, 12566 m/s

(i) Loss of head due to sudden enlargement,

(v -w)’ ) (7.96 — 1.99)°
2p 2 %981

h=

r

= 1.816 m. Ans.

(ii) Let the pressure intensity in large pipe = p,.
Then applying Bernoulli’s equation before and after the sudden enlargement,
2

V2
ﬂ+_l+ 4 = &+V—2 +Is4+
pg  2g pg 2
But =2 {(Given horizontal pipe)

2 2 2 2
ﬂ+v_|:p_2+v_z+h£ OfﬁZﬂ‘l'—F] _v_z_h
pe 2z pg 28 pg  pg 28 2

&

1772 x10°  7.96° 1.99°
= + - - 1.816
1000 x 981 2x981 2x981

12.0 + 3.229 - 0.2018 - 1.8160

15220 - 20178 = 13.21 m of water

13.21 x pg = 13.21 x 1000 x 9.81 N/m’

13.21 x 1000 = 9.81 x 107" Nfem® = 12.96 N/em®. Ans.
(fii) Power lost due to sudden enlargement,

po P8-Q.h _ 1000x981x0.25x 1816
1000 1000

2

= 4.453 KW. Ans.
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Problem A horizontal pipe of diameter 5300 mm is suddenly contracted to a diameter
af 250 mm. The pressure intensities in the large and smaller pipe is given ax 13.734 N/em® and
11.772 Nfem® respectively, Find the loss of head due to contraction if C. = 0.62. Also determine the
rate of flow of water.

Solution. Given :

Dia. of large pipe, D, =500 mm=0.5m

Area, A, = E (0.5)? = 0.1963 m’
Dia. of smaller pipe, Dy = 250 mm = (.25 m
- Area, A, = ; (.25)* = 0.04908 m?

13.734 N/em?® = 13.734 x 10* N/'m?

Pressure in large pipe,
11.772 Nfem® = 11.772 x 10° N/m*

P
Pressure in smaller pipe, p,
C.

0.62
SR v : vy
Head lost due to contraction = -2 | — — 10| = 22 |:— - l,{]:| =0.375 =
2 | C. 2g [0.62 2g

From continuity equation, we have A V|, = AV,

m 4 .
or V—AZVE—EDEKVE— D, IKV_(ﬂzﬁj_P’—E
A mp D, *Tl0s0) T 4
1
4
Applying Bernoulli’s equation before and after contraction,
2 2
Pg 28 pg 28
But =D (pipe is horizontal)
2 2
P_|+ i = &.‘. V_z + h‘_
pe 28 pg g
2
But k. =0.375 Y2 and V| = ¥
2g
Substituting these values in the above equation, we get
2
-l|| i V. f4 . 4 2 2
13734 x10° (V2 /4) _ 11772 %10 Vi oas Ve
981 x 1000 2z 1000 =981 2g 2g
2 2
or 140 + —2 = 12,0+ 1375 2
lax2g 2g
z Iy 2
or d-12=1375 2 LY 315512
2¢ 16 2g 2z

or 20= 13125 x Y or vy = [20X2X98L _ 5 467 s,
2g 13125

Vi 0375%(5467)°
(i) Loss of head due to contraction, _= (.375 - = 0375 (5467)" = 0.571 m. Ans.
2z 2x9.81

(i) Rate of flow of water, ¢} = A,V, = 0.04908 = 5467 = (.2683 m*/s = 268.3 lit/s. Ans.



Problem A syphon of diameter 200 mm connects twao reserveirs having a difference in
elevation of 15 m. The total lengih of the syphon is 600 m and the summit is 4 m above the water level
in the upper reservair. If the separation takes place ar 2.8 m of water absolute, find the maximum lengrh
aof syphon from upper reservoir to the summit, Take £ = 004 and atmospheric pressure = 10.3 m

of water,

Solution. Given :

Dia. of syphon, d=200mm=02m

Difference of level in two reservoirs =15m

Total length of pipe = 60} m

Height of summit from upper reservoir =4m

Pressure head at summit, P 2.8 m of water absolute
Ps

Atmospheric pressure head, Pc = 10.3 m of water absolute
Pz

Co-efficient of friction, f 004

Applying Bernoulli’s equation to points A and C and taking the datum line passing through, A,
2

Pa Vi, z, =P Ve, 7, + Loss of head due to friction between A and C
Py 2z pg 2g
Substituting the values of pressures in terms of absolute, we have
y?
10.3+0+0=2.8+ e +4.0+ h [ V.= velocity in pipe = V]
g
Vv v?
hy=103-28-40-—=35-— i)
' g 2g

Applying Bernoulli’s equation to points A and B and taking datum line passing through B,

VZ VZ
Pa Ya 7y = L R T zg + Loss of head due to friction from A to B
Pe 22 pg 2g
But £a_Ps_ atmospheric pressure
pe  pg

Vo= 0,Vg=0,z,=152;,=0
0+0+15=04+0+0+h

4% fxLxv’
by = 15 op AXSXLXVE
dx2g

=15

= 2.47 m/fs

4x.ﬂﬂ4xﬁmxvl_15 yo [15%02x2x981
02x2x981 T\ 4x.004 x 600

Substituting this value of ¥ in equation (i), we gel
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2477

'ﬁf =35- —=35-0311=3189m
! 2x 981
2
But hj1:4><fx£1><'i"
! d=xg

where L, = inlet leg of syphon or length of syphon from upper reservoir to the summit.

_4%.004 % L, x(2.47)°

p = 0.0248 x L,
: 02x2=981
Substituting this value in equation (i),
0.0248 L, = 3.189
1= m = 128.58 m. Ans.
0248
Problem - The difference in water surface levels in two tanks, which are connected by three

pipes in series of lengths 300 m, 170 m and 210 m and of diameters 300 mm, 200 mm and 400 mm
respectively, is 12 m. Determine the rate of flow of waler if co-efficient of friction are (0035, 0052 and
0048 respectively, considering : (i) minar losses also (i) neglecting minor losses.

Solution. Given :

Difference of water level, H=12m

Length of pipe 1, L, =300 m and dia., ¢, = 300 mm= 0.3 m
Length of pipe 2, L. =170 m and dia., d5 = 200 mm = (.2 m
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Length of pipe 3, Ly=210 m and dia., dy = 400 mm = 0.4 m

Also, fi= 005, f; = 0052 and f; = 0048

(i} Considering Minor Losses. Let V|, V, and V; are the velocities in the 1st, 2nd and 3rd pipe
respectively,

From continuity, we have AV, = 4.V, = AV,

—a‘lz 2 2
=2 _4 y|="',;q=[ﬂ] XV, =225V,
A T 4 2
2
2 2
and V1: ﬂ = J—LVI :[E] Vl = ﬂ.S’EIES 'l"l|
A 4 04

Now using equation (11.12), we have

H

2 -
_0s v . 4LV L 05 vy + 4hLVy N (V, - Vi) L ALLYS +1’i
2p d, x2¢g 2g d, x2g 2g dy x2g 2g

0.5V | 4x.005x300xV? 0.5x(225V7)
2z 03x2g 2z

Substituting V, and V,, 12.0 =

] a 3 3
225V, (225V, - 562V,)  4x.0048x210%(5625V,)° {5625V,
% 0.0052x 170 x 22N (225 ), { )| )

0.2x2g g O4x2g 2g
2
120= ;—' [0.5 + 20.0 + 2.53 + 89505 + 2.847 + 3.189 + 0.316]
b4
II"IZ

= — [118.887
28 [ |

12%2x981
s V.= |—————— = 1407 m/
R TS s

Rate of flow, J = Area x Velocity = A x V|
= g @ xV, = % (.3)% x 1.407 = 0.09945 m’s

= 99.45 litres/s. Ans.
(i) Meglecting Minor Losses. Using equation we have

o MLV ALLVY 4ALYY
d, ®x2g d, x2g dy x2g

2

4 5005 x 300 . 43 0052 % 170 x [2,25}2 . 4 %0048 % 210 % (.5625)
03 0.2 04

2
or ]lﬂ': i|:
2g

v v
= —L [20.0 + 89.505 + 3.189] = - x 112.694
2g 2g

v, = ||2x9.81 #1200 = 1.445 m/s
112.694

Discharge, 0 = V, x A, = 1.445 x E (:3)% = 0.1021 m%/s = 102.1 litres/s. Ans.
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Problem Three pipes of lengths 800 m, 300 m and 400 m and of diameiers 500 mm, 400 mm
and 300 mm respectively are connected in series, These pipes are to be replaced by a single pipe of
length 1700 m. Find the diameter of the single pipe.

Solution. Given :

Length of pipe 1, L, =800 m and dia., d, = 500 mm = 0.5 m
Length of pipe 2, [, =500 m and dia., d, = 400 mm = 0.4 m
Length of pipe 3, Ly =400 m and dia., d; = 300 mm = 0.3 m
Length of single pipe, L=1700m

Let the diameter of equivalent single pipe = d

Applying equation L_ L + L + L

R R R

1700 _ 800 500 | 400 _ 55600 + 48828.125 + 164609 = 239037

or — =t —+—=
d’ 5 40 03
=9 07118

239037

d=(007188)"2 = 03718 = 371.8 mm. Ans.

Problem 11.32 A main pipe divides into two parallel pipes which again forms one pipe as shown in
Fig. The length and diameter for the first parallel pipe are 2000 m and 1.0m respectively, while
the length and diameter of 2nd parallel pipe are 20000 m and 0.8 m. Find the rate of flow in each
parallel pipe, if total flow in the main is 3.0 m’/s. The co-efficient of friction for each parallel pipe is
same and egual o 005,
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Solution. Given :

Length of pipe 1, Ly =2000 m
Dia. of pipe 1, d; =1.0m
Length of pipe 2, L, =2000 m
Dia. of pipe 2, dy=0.8m
Total flow, 0 =30m's
fi=f=f=.005
Let @}, = discharge in pipe |
(), = discharge in pipe 2
From equation O=0,+0,=30 Ll )
Using equation . we have

afLV: _AnLVY
d ®2g dy, ®2g

4%.005%2000xV, _ 4x.005 % 2000 x V5

1.Ox2 x9.81 0.8x2x98l
2 2 2
or "’r#:l'}r—"‘4::-r'|i~“'11:l"r2
Lo 0.8 (1.8
V. V.
Vi= ==L i)
' Jos 894
FLO ™ 2 v Vz i|
N =—d Vy=— (1) = V=
o Q=g dixhi= i [’394
m 7 n 9 T
and =—d, XV, = — (B xV,=—x.6d 2V
0, 3 2 xh=g (8)" x V¥ 3 2
Substituting the value of {} and {J, in equation (f), we get
T2 T 64V,=30 or 0.8785 V,+0.5026 V, = 3.0
4 0894 4 "
V,[8785 + 5026] = 3.0 or V= —C =217 m/s
- ' o s
Substituting this value in equation (i),
A7
| = Yo 2T 2427 m/s
A94 (894
Hence 0, = % dixV, = ; x 12 x 2.427 = 1.906 m’/s. Ans.
=0 -0, =30-1906 = 1.094 m’/s. Ans.
Problem A pipe of diameter 0.4 m and of length 2000 m is connecled fo a reservoir al one

end. The other end of the pipe is connected to a junction from which two pipes of lengths 1000 m and
diameter 300 mm run in parallel. These parallel pipes are connected to another reservair, which is
having level of water 10 m below the water level of the above reservoir. Determine the total discharge
if f= 0,015, Neglect minor losses,

Solution. Given :

Dia. of pipe, d=04m

Length of pipe, L= 2000 m
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Dia. of parallel pipes, d =dy=300mm=0.30m

Length of parallel pipes, L, =L,=1000m

Difference of water level in two reservoir, H = 10 m, f= .015

Applying Bernoulli’s equation to points E and F. Taking flow through ABC.

_4fLV? LArxL x V2
T dx2g d, x2g

_ 4x.015 %2000 x V* +4><.015><1000><v,2
T 04x2x98] 03x2x981

=1529 V> 4+ 10.19 V2 ()
E
A L 10m
“‘-—(;;_5?_0\09," L=1 000}% d -"-'—'.-'.-%:-?
amy g My J
™Md=0.3 0P

From continuity equation
Discharge through AB = discharge through BC + discharge through BD

or ;dzxv=§dﬁxv]+%dﬁvz

But o, = d, and also the lengths of pipes BC and BD are equal and hence discharge through BC and
BD will be same. This means V| = V; also

FL kL 2 kL )
Ed‘r’=idlxvj+zdlxi"l [r'.'dl:dZ‘Vl:VE]

T
=2x —d %V, or d°V=2dV,
4

or (0.4)7 % V=2x%(0.3)°V, or.16V=0.18 V,
0.16
V,=—— V=0888 V
Y008

Substituting this value of V| in equation (i), we get
10 = 15.29 V* + (10.19)(.888)"V* = 15.29 V" + 8.035 V" = 23.325 V*

0
V= I'— = 0.654 m/
23325 g

~ Discharge = V= Arca

= 0.654 x ; 4% = 0.654 % ; (0.4) = 0822 m*/s. Ans.
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Problem Three reservoirs A, B and C are connected by a pipe system shown in Fig,
Find the discharge into or from the reservoirs B and C if the rate of flow from reserveirs A is
60 litresds. Find the height of water level in the reservoir C. Take f= 006 for all pipes.

Solution. Given :

Length of pipe AD, L, =1200m

Dia. of pipe AD, d; =30 cm=030m

Discharge through AD, 0, = 60 litres/s = 0.06 ms

Height of water level in A from reference line, Z, =40 m

For pipe DB, length Ly =600 m, dia., ds=20cm = 0.20 m, Z5 = 38.0
For pipe DC, length Ly =800 m, dia., &5 = 30 cm = 0.30 m
S m F
T 1
A Ry =
(S *D::%;’ . B
oen, "‘f%
40m Wiy
“ﬁe"’ b1 G 3Bm
S [
DATUM LINE g*‘?”zf? € ZEJ
B ST it 4

2
where = f-4L.V ,where V) = Q = 0.06 = (1.848 m/sec
: d =2g Area T2
! —(.3)
4
4 % .006 % 1200 » .848°
= =3518m
! 03=2 =951

Z,=Zp+ L2 13518 0r 400 = Z, + £2 4 3518
Pg Pg

[zp +ﬂ] = 40.0 - 3.518 = 36.482 m
P8

Hence piezometric head at D = 36.482. But Z; = 38 m. Hence water flows from B to D.
Applying Bernoulli’s equation to poinis 8 and D

Zy= [zﬂ +ﬁ]+hJrz or 38 = 36.482 +
pg
hy, = 38 - 36.482 = 1.518 m

AL f L Ve 4% 006600 %V

But h, =
: d, % 2g 02x2=x981
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2
1518 = 4 006 = 600 = V)

02%2x98l
v [BS18X02x2x081 _ o0
. 4 % 006 X 600
. Discharge, 0, =V, x % (d,)* = 0.643 x g x (2)°

= 0,0202 m'fs = 20.2 litres/s. Ans.

Applying Bemoulli’s equation to points D and C

Zo+ £ =z 4 n,
" .

. where V; =

or 36.482 = +
Zc dy x2g T d?

But from continuity (2, + (0, = 0
’ Q5= 0, + 0, = 0.06 + 0.0202 = 0.0802 m*/s

0, 00802

v, = = 1.134 mis
’ b 2 i
—(.3 09
4{ ) 4 (-:09)
2
36.482 = 7, + 2RO XBO XL _ 5 4 104
03x2 %981
Zpo=36482 - 4.194 = 32.288 m. Ans.

Problem Find the maximum power transmitted by a jet of water discharging freely oul of

nazzle fitted to a pipe = 300 m long and 100 mm diameter with co-efficient of friction as 0.01. The
available head at the nozzle is 90 m.
Solution. Given :

Length of pipe, L=300m
Dia. of pipe, D=100mm=0.1m
Co-efficient of friction, =0
Head available at nozzle, =80 m
For maximum power transmission through the nozzle, the diameter at the outlet of nozzle is given
by equation
5 4114 5 114
0= (2] - [ | - aastm

8L 8x.01=300

8 T 2 2
s Area at the nozzle, d= 1 d* = ry (.0254)° = 005067 m-,

The nozzle at the outlet, discharges water into atmosphere and hence the total head available at the
nozzle is converted into kinetic head.

Head available at outlet = v}/2g or 90 = 1/2g
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v=2x981x90 =42.02 m/s

Discharge through nozzle, 0= a = v = AHH05067 = 4202 = 0.02129 m¥s

d= pg * ¥ Head at outlet of nozzle
1000

_ 1000 »= 981 = 0,02129 = 90
- 1000

s Maximum power transmitte

= 18.796 kW. Ans.

Problem The water is flowing with a velocity of 1.5 m/s in a pipe of length 2500 m and of
diameter 300 mm. At the end af the pipe, a valve is provided. Find the rise in pressure if the valve is
closed in 25 seconds. Take the value of C = 1460 m/fs,

Solution. Given :
Velocity of water, V=15mfs
Lengih of pipe, L =2500 m
Diameter of pipe, D=500mm=05m
Time to close the valve, T =25 seconds
Walue of, C = 1460 m/s
Let the rise in pressure =p
The ratio, E = w = 3.42
C 1460
. . 2L . .
From equation we have if T > ? the closure of valve is said o be gradual.
Here T =25 sec and 2—; =342

T= % and hence valve is closed gradually.

For gradually closure of valve, the rise in pressure is given by equation

= "Tﬁ = 1000 x 2500 x ; = 150000 N/m*

_ liﬂﬂiﬂﬂ ME —15.0 I"«Iz
10 om cm

« Ans.
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Hydraulic Pump

A hydraulic pump is a mechanical source of power that converts mechanical power
into hydraulic energy. It generates flow with enough power to overcome pressure induced by
the load at the pump outlet. When a hydraulic pump operates, it creates a vacuum at the pump
inlet, which forces liquid from the reservoir into the inlet line to the pump and by mechanical
action delivers this liquid to the pump outlet and forces it into the hydraulic system.

]

Y

Classifications of Pump

! |
Positive ;
Displacement Dynamic

Reciprocating Centrifugal

Single Multiple ; ;
i Diaphragm Piston, Plunger

Centrifugal Pump

The main components of a centrifugal pump are:
i) Impeller
i) Casing
iii) Suction pipe
iv) Foot valve with strainer,
v) Delivery pipe
vi) Delivery valve.

Impeller is the rotating component of the pump. It is made up of a series of curved vanes.
The impeller is mounted on the shaft connecting an electric motor.

Casing is an air tight chamber surrounding the impeller. The shape of the casing is designed
in such a way that the kinetic energy of the impeller is gradually changed to potential energy.
This is achieved by gradually increasing the area of cross section in the direction of flow.

GUIDE VANES

VORTEX

CHAMBER /~ --"77~ % T Yolute casing

Dizcharge line

IMPELLER \\ ““““ '/ IMPELLER ' Suetion line | = e

Impeler
(a) VORTEX CASING (b) CASING WITH GUIDE BLADES

Fig. 1 Types of Casing

Suction pipe: It is the pipe connecting the pump to the sump, from where the liquid has to be
lifted up.



Foot valve with strainer: The foot valve is a non-return valve which permits the flow of the
liquid from the other words the foot valve opens only in the upward direction. The strainer is
a mesh surrounding the valve, it p debris and silt into the pump.

Delivery pipe is a pipe connected to the pump to the overhead tank. Delivery valve is a valve
which can regulate the pump.

A
)
e Pipe

Fig. 2 Main parts of a centrifugal pump
Working

A centrifugal pump works on the principle that when a certain mass of fluid is rotated
by an external source, it is thrown away from the central axis of rotation and a centrifugal
head is impressed which enables it to rise to a higher level.

Working operation of a centrifugal pump is explained in the following steps:

Close the delivery valve and prime the pump.

2. Start the motor connected to the pump shaft, this causes an increase in the impeller

pressure.

Open the delivery valve gradually, so that the liquid starts flowing into the deliver pipe.

4. A partial vacuum is created at the eye of the centrifugal action, the liquid rushed from the
sump to the pump due to pressure difference at the two ends of the suction pipe.

5. As the impeller continues to run, move & more liquid are made available to the pump at
its eye. Therefore impeller increases the energy of the liquid and delivers it to the
reservoir.

6. While stopping the pump, the delivery valve should be closed first; otherwise there may
be back flow from the reservoir.

=

w

It may be noted that a uniform velocity of flow is maintained in the delivery pipe.
This is due to the special design of the casing. As the flow proceeds from the tongue of the
casing to the delivery pipe, the area of the casing increases. There is a corresponding change
in the quantity of the liquid from the impeller. Thus a uniform flow occurs in the delivery
pipe.

Centrifugal pump converts rotational energy, often from a motor, to energy in a
moving fluid. A portion of the energy goes into kinetic energy of the fluid. Fluid enters
axially through eye of the casing, is caught up in the impeller blades, and is whirled
tangentially and radially outward until it leaves through all circumferential parts of the
impeller into the diffuser part of the casing. The fluid gains both velocity and pressure while
passing through the impeller. The doughnut-shaped diffuser, or scroll, section of the casing



decelerates the flow and further increases the pressure. The negative pressure at the eye of the
impeller helps to maintain the flow in the system. If no water is present initially, the negative
pressure developed by the rotating air, at the eye will be negligibly small to suck fresh stream
of water. As a result the impeller will rotate without sucking and discharging any water
content. So the pump should be initially filled with water before starting it. This process is
known as priming.

Use of the Casing

From the illustrations of the pump so far, one speciality of the casing is clear. It has an
increasing area along the flow direction. Such increasing area will help to accommodate
newly added water stream, and will also help to reduce the exit flow velocity. Reduction in
the flow velocity will result in increase in the static pressure, which is required to overcome
the resistance of pumping system.

NPSH - Overcoming the problem of Cavitation

If pressure at the suction side of impeller goes below vapour pressure of the water, a
dangerous phenomenon could happen. Water will start to boil forming vapour bubbles. These
bubbles will move along with the flow and will break in a high pressure region. Upon
breaking the bubbles will send high impulsive shock waves and spoil impeller material
overtime. This phenomenon is known as cavitation. More the suction head, lesser should be
the pressure at suction side to lift the water. This fact puts a limit to the maximum suction
head a pump can have. However Cavitation can be completely avoided by careful pump
selection. The term NPSH (Net Positive Suction Head) helps the designer to choose the right
pump which will completely avoid Cavitation. NPSH is defined as follows:

P 1__:3 F:,
NPSH=|—+— -
g 23 suction P9

Where Py is vapour pressure of water
V is speed of water at suction side
Work done by the centrifugal pump (or by impeller) on water

Velocity triangles at inlet and outlet
Let,

_U2—>|

VW2 _>’

Dy : Diameter of impeller ot inlet = 2 x Ry
Dy : Diameter of impeller ot outlet = 2 x Ry

N : Speed ofimpeller in rpm

u; : Tangential blade velocity at inlet = wR; = {%}Rl ...............
ug 1 Tangential blade velocity at outlet = wRy = (%)Rz
V' : Absolute velocity

V. 1 Relaiive velocity

Vi : Velocity of flow

Vi Velocity of whirl

ay : Angle mode by ebsolute velocity V_1 at inlet
6 : Inlet angle of vane

¢ : Qutlet angle of vane

3 : Discharge angle of absolute velocity at outlet



Angular momentum = mass x tangentialvelocity x Radius
Angular momentum entering the impeller per sec = m. V. Ry

Angular momentum leaving the impeller per sec = m. Vo, Ry

Torque transmitted = rate of change of angular momentum
=m. V. By —m.Vy By
= Y(Vya. Ry — V1. By)
Since the work done in unit time is given by the product of torque and angular velocity
W.D per sec =Torque x W
= %(ng. Row — V1. Riw)
But Ryw = ug and Ryw = 1y
W.D per sec = %(ngw. Vi1 tt1)
Work done by impeller per N weight of liquid per sec,
w.D= —;(VWQUQ — Vi)
But V,,;; = 0since entry is radial

Vaz.ua

W.D per N weight per sec=

Definitions of Heads and Efficiencies of a centrifugal pump

1. Suction Head (h,). It is the vertical height of the centre line of the centrifugal pump above the
water surface in the tank or pump from which water is to be lifted as shown in Fig. This height
is also called suction lift and is denoted by ‘A;’.

2. Delivery Head (hg). The vertical distance between the centre line of the pump and the water
surface in the tank to which water is delivered is known as delivery head. This is denoted by ‘A,.
3. Static Head (H,). The sum of suction head and delivery head is known as static head. This is
represented by ‘H;’ and is written as
H =h,+ h,

4. Manometric Head (H ). The manometric head is defined as the head against which a centrifugal
pump has to work. It is denoted by ‘H,’. It is given by the following expressions :

(a) H, = Head imparted by the impeller to the water — Loss of head in the pump
Vit . .

= —2— — Loss of head in impeller and casing
8
vy U2 . :

= —2— __.if loss of pump is zero
8

(b) H,, = Total head at outlet of the pump — Total head at the inlet of the pump

2 2
=[5+V_O+ZOJ_(&+L+_;]
pg  2¢ pg 28



Vz
c) H =h+h,+h +h +—
( m s d T Ta 28
where  h = Suction head, h, = Delivery head,

hf = Frictional head loss in suction pipe, hf = Frictional head loss in delivery pipe,
V, = Velocity of water in delivery pipe.

(a) Manometric Efficiency (n,,,,)-

Manometric head
Head imparted by impeller to water
H _ gH

- m m

[szuz ] szuz
8

The power at the impeller of the pump is more than the power given to the water at outlet of the
pump. The ratio of the power given to water at outlet of the pump to the power available at the
impeller, is known as manometric efficiency.

(b) Mechanical Efficiency (n,).

n man

Power at the impeller
Power at the shaft

m=

Work done by impeller per second

The power at the impeller in kW
1000

_ W Tt
g 1000 ie pump to the power input to

w szu2
g (1000
"7 S.P.

where S.P. = Shaft power. or
= 3.P. of the pump.

[WH,,, ]

, _\ 1000

" o= "¢,
Also No = Npyan * Npye

S[5F



PRIMING OF A CENTRIFUGAL PUMP

Priming of a centrifugal pump is defined as the operation in which the suction pipe, casing of the
pump and a portion of the delivery pipe upto the delivery valve is completely filled up from outside
source with the liquid to be raised by the pump before starting the pump. Thus the air from these parts
of the pump is removed and these parts are filled with the liquid to be pumped.

CAVITATION

Cavitation includes formation of vapour bubbles of the flowing liquid and collapsing of the vapour
bubbles. Formation of vapour bubbles of the flowing liquid take place only whenever the pressure in
any region falls below vapour pressure. When the pressure of the flowing liquid is less than its vapour
pressure, the liquid starts boiling and vapour bubbles are formed. These vapour bubbles are carried
along with the flowing liquid to higher pressure zones where these vapours condense and bubbles
collapse. Due to sudden collapsing of the bubbles on the metallic surface, high pressure is produced
and metallic surfaces are subjected to high local stresses. Thus the surfaces are damaged.

\ Cavitation in Centrifugal Pumps. In centrifugal pumps the cavitation may occur at
the inlet of the impeller of the pump, or at the suction side of the pumps, where the pressure is consid-
erably reduced. Hence if the pressure at the suction side of the pump drops below the vapour pressure
of the liquid then the cavitation may occur. The cavitation in a pump can be noted by a sudden drop in
efficiency and head. In order to determine whether cavitation will occur in any portion of the suction
side of the pump, the critical value of Thoma’s cavitation factor (o) is calculated.

Precaution Against Cavitation.

(i) The pressure of the flowing liquid in any part of the hydraulic system should not be allowed to
fall below its vapour pressure. If the flowing liquid is water, then the absolute pressure head should not
be below 2.5 m of water.

(it) The special materials or coatings such as aluminium-bronze and stainless steel, which are

cavitation resistant materials, should be used.

Effects of Cavitation.

(i) The metallic surfaces are damaged and cavities are formed on the surfaces.

(i) Due to sudden collapse of vapour bubble, considerable noise and vibrations are produced.

(zif) The efficiency of a turbine decreases due to cavitation. Due to pitting action, the surface of the
turbine blades becomes rough and the force exerted by water on the turbine blades decreases. Hence,
the work done by water or output horse power becomes less and thus efficiency decreases.



Example The internal and external diameters of the impeller of a centrifugal pump are
200 and 400 mm respectively. The pump is running at 1200 rpm. The vane angles of the
impeller at inlet and outlet are 20 and 30 respectively. The water enters the impeller
radially and velocity of flow is constant. Determine the work done by the impeller per unit
weight of water.

Given:

Internal diameter of impeller, D, =200 mm = 0.20 m
External diameter of impeller, D, = 400 mm = 0.40 m

Speed, N =1200 r.p.m.
Vane angle at inlet, 0=20°
Vane angle at outlet, ¢ =30°
Water enters radially* means, o=90°and V, =0
Velocity of flow, Vh = sz
Tangential velocity of impeller at inlet and outlet are,
DN x020x12
ul:n' - 0.20 C'(}':12.56m;"s
60 60 V
X 0.4 x
1 = nD, N _T 0.4 %1200 = 25.13 m/s.
60 60
Vi o Va

From inlet velocity triangle, tan 6 = =
7 12.56

Vf1 =12.56tan 8 = 12.56 X tan 20° = 4.57 m/s
sz = Vfu =4.57 m/s.

V., 457
w,-V, — 2513-V,

2513-V, = ﬂ = 4.57 . =7915
* tan¢d tan 30

R le =25.13 -7915=17.215 m/s.
The work done by impeller per kg of water per second is given by equation (
1 17.215%25.13

==V, uy= ——2 "7~ 44.1 NmN,
g 9.81

From outlet velocity triangle,tan ¢ =

Example A centrifugal pump is to discharge 0.118 m®/s at a speed of 1450 rpm against a
head of 25m. the impeller diameter is 250 mm, its width at outlet is 50 mm and
manometric efficiency is 75%. Determine the vane angle at the outer periphery of the
impeller.

Given:
Discharge, Q0 =0.118 m’/s
Speed, N = 1450 r.p.m.
Head, H, =25m
Diameter at outlet, D, =250 mm = 0.25m
Width at outlet, B, =50 mm = 0.05 m
Manometric efficiency, 1, =75% = 0.75.
Let vane angle at outlet =¢

Tangential velocity of impeller at outlet,




gy TN BXO025XIAS0 o o0
60 60

Discharge is given by Q= Ich_B2 X sz
o 0118

Vf = = = 3.0 m/s.
* mD,B, mwx025x.05

noo= gH,  981x25
"V, uy, V, x1898
9.81x25 9.81x25

v, = = =17.23.
2 My X 1898  0.75x18.98
From outlet velocity triangle, we have
Vv
tan ¢ = L - 30 =1.7143

(u2 —vV, ) (18.98 - 17.23)
¢ =tan"' 1.7143 = 59.74° or 59° 44’. Ans.

Example A centrifugal pump delivers water against a net head of 14.5 m and a design
speed of 1000 rpm. The vanes are curved back at an angle of 30° with the periphery. The
impeller diameter is 300 mm and outlet width is 50 mm. determine the discharge of the
pump if manometric efficiency is 95%.

Given:
Net head, H,=145m
Speed, N = 1000 r.p.m.
Vane angle at outlet, ¢ = 30°
Impeller diameter means the diameter of the impeller at outlet
Diameter, D, =300 mm = 0.30 m
Outlet width, B, =50 mm = 0.05 m

Manometric efficiency, 1, =95% =0.95
Tangential velocity of impeller at outlet,

tD,N _ 7 x0.30 x 1000

Uy = = 15.70 m/s.
60 60
_ _8H,
Mman = Vi, XU,
0.95 = 9.81x14.5
V., X1570
0.95x14.5

b= —— = =954 m/s.
27 095 x15.70




From outlet velocity triangle, we have

— % ortan 30°= 2 = 2
(u; - V,.) (1570-9.54) 6.16
V,, = 6.16 X tan 30° = 3.556 m/s.
Q = TEDsz X sz
=1t X 0.30 X 0.05 X 3.556 m°/s = 0.1675 m>/s. Ans.

Example A centrifugal pump having outer diameter equal to two times the inner diameter
and running at 1000 rpm works against a total head of 40 m. the velocity of flow through
the impeller is constant and equal to 2.5 m/s. the vanes are set back at an angle of 40° at
outlet. If the outer diameter of the impeller is 500 mm and width at the outlet is 50 mm,
determine: i) Vane angle at inlet, ii) work done by impeller on water per second
iii) manometric efficiency

tanq)=

Given:
Speed, N = 1000 r.p.m.
Head, H,=40m
Velocity of flow, Vf| =V, =25m/s
Vane angle at outlet, o = 40°
Outer dia. of impeller, D, = 500 mm = 0.50 m
Inner dia. of impeller, D = % = ?: 0.25 m
Width at outlet, B, =50 mm = 0.05 m
4, = DN _ mx025x1000 _ 13.09 m/s
60 60
and 4y = TDN _ RX0S0X1000 _ oo
60 60
Discharge is given by, Q=1D,B, X V, =1 x 0.50 X .05 X 2.5 = 0.1963 m’s.
(i) Vane angle at inlet (0).
v 2.5
From inlet velocity triangle tan 0 = = = —— = (0.191
u,  13.09

0 =tan"! .191 = 10.81° or 10° 48".

(if) Work done by impeller on water per second is given by equation

W pXgxQ

= — X V}‘.2u2= g X sz X uz

_ 1000 x 9.81 % 0.1963 X V. x 26.18

9.81 2
But from outlet velocity triangle, we have
Vv
tan ¢ = f2 = 2.5
=V, (2618-V, )
2. 2.5
2618-V, = > = . =2.979
2 tan¢ tan 40

V.., =26.18 — 2.979 = 23.2 m/s. 0




Substituting this value of Vw2 in equation (i), we get the work done by impeller as

_ 1000 x 99.,8;: 01963 _ 525 o 76 13

119227.9 Nm/s. Ans.

(zii) Manometric efficiency (1,,,,). Using equation (19.8), we have

gH, _ 981x40

= = 0.646 = 64.4%.
Vi u,  232%26.18

Nman =

Example The outer diameter of an impeller of a centrifugal pump is 400 mm and outlet
width is 50 mm. the pump is running at 800 rpm and is working against a total head of 15
m. the vanes angle at outlet is 40° and manometric efficiency is 75%. Determine:
i) Velocity of flow at outlet, ii) velocity of water leaving the vane, iii) angle made by the
absolute velocity at outlet with the direction of motion at outlet and iv) discharge

Given:

Outer diameter, D, =400 mm= 0.4 m
Width at outlet, B, =50 mm = 0.05 m
Speed, N =800 r.p.m.

Head, H,=15m

Vane angle at outlet, ¢ = 40°

Manometric efficiency, 1,,,,=75% =0.75
Tangential velocity of impeller at outlet,

D, N  mx04x800

Uy = = = 16.75 m/s.
60 60
gH,,
Nman = Vi
Wy L)
075 = 0.81x15
V,, x16.75
v, = —SX0S g1 s,
2 0.75x16.75
From the outlet velocity triangle, we have
Vv Vv Vv
tal'l ¢ - f? _ fZ - fZ
u =V, (16.75-11.71) 504
@) .. sz = 5.04 tan ¢ = 5.04 x tan 40° = 4.23 m/s.

(ii) Velocity of water leaving the vane (V).
Vy= (V2 +V2 = 4232 +1170
= /17.89 +137.12 = 12.45 m/s.

(i) Angle made by absolute velocity at outlet (),

v
A2 g3
V,, 1171

B =tan"' 0.36 = 19.80° or 19° 48"..23 = 0.265 m’/s.

tan B =

11




Example The internal diameter and external diameter of an impeller of a centrifugal
pump which is running at 1000 rpm are 200 and 40 mm respectively. The discharge
through pump is 0.04 m3/s and velocity of flow is constant and equal to 2.0 m/s. the
diameter of the suction and delivery pipes are 150 and 100 mm respectively and suction
and delivery heads are 6 m (abs.) and 30 m (abs.) of water respectively. If the outlet vane
angle is 45° and power required to drive the pump is 16.168 kW, determine: i) Vane angle
of the impeller at inlet, ii) the overall efficiency of the pump and iii) manometric efficiency
of the pump

Given:
Speed, N = 1000 r.p.m.
Internal dia., D, =200 mm = 0.2 m
External dia., D, =400 mm = 0.4 m
Discharge, Q = 0.04 m%/s
Velocity of flow, VJ,rl = sz =2.0m/s
Dia. of suction pipe, D, =150 mm = 0.15m
Dia. of delivery pipe, D, =100 mm = 0.10 m
Suction head, hy=6 m (abs.)
Delivery head, h,; =30 m (abs.)
QOutlet vane angle, o =45°
Power required to drive the pump, P = 16.186/ kW
V. 2. nDN wx02xl
From inlet velocity, we have tan 8 = e/ —0, where u, = = ©x0 000 =10.47 m/s
U, U, 60 60
2.0 -1 o ’
tan 0 = —— =0.191 or 6 = tan™ .191 = 10° 48’. Ans.
1047
(ii) Overall efficiency of the pump (n,).
(WH," )
Using equation (19.10), we have 1, = ISO—OPO
where S.P. = Power required to drive the pump and equal to P here.
(p xgxQxH, j
n, = 1000 _PgxQxH,
° P 1000 x P
_ 1000 x9.81x.04 x H, _ 0.02424 H, (D)
1000 x16.186
Now H,, is given by equation (19.6) as
2 2
H =|PeyYe 17 |- ﬁ+‘i+z,] ...(i)
pg 22 pg  2g
2 2
H, = [30 + V—d] - {6+ V—SJ ...(iii)
2g 2g
= Dlsch‘arge . RO.04 - n.04 = 5.09 m/s
Area of delivery pipe _(Dd) T 12
4
.= 04 . — = 1;04 == 04 _ 2.26 m/s.
Area of suction pipe T 2 T 52



5.092 2.26°
H,=|30+ -6+
2x9.81 2 x9281
= (30 + 1.32) — (6 + .26) = 31.32 — 6.26 = 25.06 m.

Substituting the value of ‘H,’ in equation (i), we get
N, =.02424 x 25.06 = 0.6074 = 60.74%.

(iii) Manometric efficiency of the pump (M,,0n)-
Tangential velocity at outlet is given by
_mD,xN _ mx0.4x1000

U, = = 20.94 m/s.
60 60

From outlet velocity triangle, we have
Vv

tan 6 = f _ 20

uy =V, 20.94 - Vw2
2094-v, =2 - 20 __,
> tan¢ tan45

V,, =20.94 - 2.0 = 18.94.

gH, _ 981x2506 _ 192 - 61.98%

V, u, 1894 %2094
2

n man =

MULTISTAGE CENTRIFUGAL PUMPS
If a centrifugal pump consists of two or more impellers, the pump is called a multistage centrifugal
pump. The impellers may be mounted on the same shaft or on different shafts. A multistage pump is

having the following two important functions :

1. To produce a high head, and 2. To discharge a large quantity of liquid.

If a high head is to be developed, the impellers are connected in series (or on the same shaft) while
for discharging large quantity of liquid, the impellers (or pumps) are connected in parallel.

Multistage Centrifugal Pumps for High Heads.

TO DELIVERY

f,/’/;’t—\ A

‘o v PIPE
D

) A 4
| 1
| 1

FROM LR
SUCTION PIPE .

V

i
SHAFT e
b ) Then total head developed
IMPELLER vy /4
NUMBER1 1 \___/ /
NN ./ IMPELLER =n X Hm

“=--"_ NUMBER 2

PIPE CONNECTING . . . .
OUTLET OF 1st IMPELLER TO The discharge passing through each impeller is same
INLET OF 2nd IMPELLER

n = Number of identical impellers mounted on the same shaft,
H, = Head developed by each impeller.
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Multistage Centrifugal Pumps for High Discharge.

COMMON PIPE
—= Q —» Qi+ Q,
DELIVERY
f PIPE NO.2 f
Q; | DELIVERY
PIPE NO.1
[~
PUMP p—
PUMP
NO. 1 1 NO. 2
SUMP
Let n = Number of identical pumps arranged in parallel.
@ = Discharge from one pump.
Total discharge =nxQ

CHARACTERISTIC CURVES OF CENTRIFUGAL PUMPS

Main Chan;acl;eristic Curves.

P(Q AND H CONSTANTS)
o :

~5y HeN
v E
Qe
Sug H(@ = CONSTANT)
€-a PN

N Q=N

Q
(H, = CONSTANT)

— = SPEED(N)

Operating Characteristic Curves.

=3 HEAD (H)
5
o EFFICIENCY,
iz L
oug
£ 23
wacz<T
INPUT POWER, P
' ] T SPEED = CONSTANT
OUTPUT POWER

— DISCHARGE, Q
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Constant Efficiency Curves.

s —— HV,Q
& ____ CONSTANT
< EFFICIENCY
i CURVE
| :

N3

NZ

\N1
(a)
>.
O
pd
w
O
(TR
L
w CONSTANT
I EFFICIENCY
LINE
ANB\C\D\
7 R
N, N, N;

v)

— DISCHARGE, Q

MAXIMUM SUCTION LIFT (or SUCTION HEIGHT)

Applying Bernoulli’s equation at the free surface of liquid in the sump and section 1 in the suction
pipe just at the inlet of the pump and taking the free surface of liquid as datum line, we get

V2 :
p_“+_9+za=ﬂ V_1+Z]+hL (I)
pg 28 pg  2g
2
p_“+0+0=ﬂ+v—‘+hs+hfs
Pg pg 28
2
&:ﬂ+v—s+hs+hf
pg P8 2 :
2
P _ Pa v—5+hs+hf (i)
Pg P8 \2¢ ’
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For finding the maximum suction lift, the pressure at the inlet of the pump should not be less than
the vapour pressure of the liquid. Hence for the limiting case, taking the pressure at the inlet of pump
equal to vapour pressure of the liquid, we get

p, = p,, Where p, = vapour pressure of the liquid in absolute units.

Now the equation (ii) becomes as

2
Lr _ P —(;—’+hs+hﬂ}

Pg Pg 8
2
Pa o Pry % ypoan (o Py =py) i)
Pg P8 28
Pa _ Atmospheric pressure head = H, (meter of liquid)
pPg
by _ Vapour pressure head = H, (meter of liquid)
P8

Now, equation (iif) becomes as
v?.
H,=H,+ g +hg+ hy
s
hy=H,—H,— 2¢ - hf‘
Equation (19.31) gives the value of maximum suction lift (or maximum suction height) for a
centrifugal pump. Hence, the suction height of any pump should not be more than that given by
equation (19.31). If the suction height of the pump is more, then vaporization of liquid at inlet of pump
will take place and there will be a possibility of cavitation.

NET POSITIVE SUCTION HEAD (NPSH)

The term NPSH ( Net Positive Suction Head) is very commonly used in the pump industry. Actually
the minimum suction conditions are more frequently specified in terms of NPSH.
The net positive suction head (NPSH) is defined as the absolute pressure head at the inlet to the
pump, minus the vapour pressure head ( in absolute units) plus the velocity head.
NPSH = Absolute pressure head at inlet of the pump — vapour pressure head (absolute units) +
velocity head

2

_p_ P v

— (" Absolute pressure at inlet of pump = p,) .
pPg P8 28

the absolute pressure head at inlet of the pump is given by as

2
14 Pa Vs
—L——[——+m+hﬁ

pg  pg \28
2 2
NPSH = | £« [3L+h +hf]._£L+£L
pg \2g )| P8 28
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RECIPROCATING PUMP

If the mechanical energy is converted into hydraulic energy by sucking the liquid into
a cylinder in which a piston is reciprocating, which exerts the thrust on the liquid and
increases its hydraulic energy is known as reciprocating pump. A reciprocating pump is a
positive displacement pump. It is often used where relatively small quantity of liquid is to be
handled and where delivery pressure is quite large.

Reciprocating pump consists of following parts.

1. A cylinder with a piston 5. suction pipe

2. piston rod 6. delivery pipe
3. connecting rod 7. suction valve
4. crank 8. delivery valve

WORKING OF A SINGLE-ACTING RECIPROCATING PUMP

Single acting reciprocating pump:-

A single acting reciprocating pump, which consists of a piston which moves forwards
and backwards in a close fitting cylinder. The movement of the piston is obtained by
connecting the piston rod to crank by means of a connecting rod. The crank is rotated by
means of an electric motor. Suction and delivery pipes with suction valve and delivery valve
are connected to the cylinder. The suction and delivery valves are one way valves or non-
return valves, which allow the water to flow in one direction only. Suction valve allows water
from suction pipe to the cylinder which delivery valve allows water from cylinder to delivery
pipe.

The rotation of the crank brings about an outward and inward movement of the piston
in the cylinder. During the suction stroke the piston is moving towards right in the cylinder,
this movement of piston causes vacuum in the cylinder. The pressure of the atmosphere
acting on the sump water surface forces the water up in the suction pipe. The forced water
opens the suction valve and the water enters the cylinder. The piston from its extreme right
position starts moving towards left in the cylinder. The movement of the piston towards left
increases the pressure of the liquid inside the cylinder more than atmospheric pressure. Hence
suction valve closes and delivery valve opens. The liquid is forced into the delivery pipe and
is raised to a required height.

For one revolution of the crank, the quantity of water raised up in the delivery pipe is
equal to the stroke volume in the cylinder in the single acting pump and twice this volume in
the double acting pump. Discharge through a single acting reciprocating pump.

D = diameter of the cylinder
A = cross section are of the piston or cylinder
r = radius of crank
N =r.p.m of the crank
L = Length of the stroke =2 xr
s = Suction head or height of axis of the cylinder from water surface in sump.
hq = Delivery head or height of the delivery outlet above the cylinder axis.
Discharge of water in one revolution = Area x Length of stroke
=AXL
Number of revolution per second = N/60
Discharge of the pump per second
Q = Discharge in one revolution x No.of revolution per second

= AdAxL x i = _‘ﬂN m*/sec

&0
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DELIVERY PIPE
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Fig.3
Double acting reciprocating pump
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Fig.4
Discharge Through a Reciprocating Pump.

Let D = Diameter of the cylinder
A = Cross-sectional area of the piston or cylinder
=Ip
4
r = Radius of crank
N = r.p.m. of the crank
L = Length of the stroke =2 X r
h, = Height of the axis of the cylinder from water surface in sump.

h, = Height of delivery outlet above the cylinder axis (also called delivery head)
18



Volume of water delivered in one revolution or discharge of water in one revolution
= Area X Length of stroke = A X L

Number of revolution per second, = ﬁi

Discharge of the pump per second,
Q = Discharge in one revolution x No. of revolution per second

—axLx Y oAV .20.1)
60 60
Weight of water delivered per second,
pgALN
W=pxgx(Q-= .
pxgxQ@=—r0

Work done by Reciprocating Pump.
Work done per second = Weight of water lifted per second X Total height through which water is lifted
=Wx (hs+ hy) ()
where (h, + h,) = Total height through which water is lifted.
From equation (20.2), Weight, W, is given by
W= P8X ALN '
60
Substituting the value of W in equation (i), we get

Work done per second = % X (hy +hy,) (20.3)

Power required to drive the pump, in kW

Work done per second _ pg X ALN X (h, + ;)

P=
1000 60 x 1000

X ALN X (h_ +h
- pg (hy +hy) KW .(20.4)

60,000
Discharge, Work done and Power Required to Drive a Double-acting Pump.

Let D = Diameter of the piston,
d = Diameter of the piston rod
Area on one side of the piston,

A=T p
4

Area on the other side of the piston, where piston rod is connected to the piston,

A=2p T pr_ g
4 4" 4
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Volume of water delivered in one revolution of crank
= A X Length of stroke + A; x Length of stroke

=AL+AL=(A+A)L= EDZ +%(D2 —dg)]xL

Discharge of pump per second
= Volume of water delivered in one revolution X No. of revolution
per second

- FDZ + (D —dz)} «Lx ¥
107y 60

If “d’ the diameter of the piston rod is very small as compared to the diameter of the piston, then it
can be neglected and discharge of pump per second,

} LXN T
X

—ax T piy LxN _ 2ALN
60 4 60 60

Work done by double-acting reciprocating pump
Work done per second = Weight of water delivered x Total height

Q= [EDz +Xp? .20.5)

4 4

= pg X Discharge per second X Total height

2ALN
= pg X

Power required to drive the double-acting pump in kW,

X (hs+ hy) = 2pg X Aﬁ% X (hs + h,)

_ Work done per second « ALN « (kg +hy )

= 2

1000 PEX 60 " 1000

2pg X ALN X (hy + hy)
B 60,000
—|—>—
D%lg/EEsR i CONNECTING
l ROD

|~ s

SUCTION
L~ PIPES N | sumPp LEVEL
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SLIP OF RECIPROCATING PUMP

The actual discharge of the pump is always less than theoretical discharge. The
difference between theoretical discharge and actual discharge is known as Slip of the
reciprocating pump

Shp = th - Qac'r
But slip is mostly expressed as percentage slip which is given by,

Percentage slip = O = Qo x 100 = {1 - %J x 100

th Qm

Qac:‘
=(1-Cp)x100 ['-'Q_mzcd]

where C,; = Co-efficient of discharge.

Negative Slip of the Reciprocating Pump.

Negative Slip of the Reciprocating Pump. Slip is equal to the difference of
theoretical discharge and actual discharge. If actual discharge is more than the theoretical discharge,
the slip of the pump will become —ve. In that case, the slip of the pump is known as negative slip.

Negative slip occurs when delivery pipe is short, suction pipe is long and pump is running at high
speed.

Example A single acting reciprocating pump, running at 50 rpm, delivers 0.01m3/s of
water. The diameter of the piston is 200 mm and stroke length 400 m. Determine:
i) theoretical discharge of the pump ii) Co — efficient of discharge and iii) Slip and the
percentage of slip of the pump.

Given:
Solution. Given :
Speed of the pump, N =50r.p.m.
Actual discharge, Qe = 01 m%s
Dia. of piston, D =200 mm=.20m
Area, A= % (2)* = .031416 m*
Stroke, L =400 mm = 0.40 m.
(i) Theoretical discharge for single-acting reciprocating pump is given by equation (20.1) as
X LX . 416 x.40 x
Q= AXLXN _ 031416 X40X30 _ 4 41047 m%s. Ans.
60 60
(ii) Co-efficient of discharge is given by
.01
= Lo _ OO1 _ 0.955. Ans.
Q, 01047

(iif) Using equation (20.8), we get
Slip = Qy — Quer = 01047 — .01 = 0.00047 m*/s. Ans.

- .01047 - .01
And percentage slip = M x 100 = (01047 -.01)
01047

th
00047
01047

x 100

X 100 = 4.489%. Ans.
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' Example A double-acting reciprocating pump, running at 40 r.p.m., is discharging 1.0 m’ of
water per minute. The pump has a stroke of 400 mm. The diameter of the piston is 200 mm. The
delivery and suction head are 20 m and 5 m respectively. Find the slip of the pump and power required
fo drive the pump.

Speed of pump, N=40rp.m.

1.0
Actual discharge, Q4 = 1.0 m*/min = @ m’/s = 0.01666 m’/s
Stroke, L =400 mm =040 m
Diameter of piston, D=200mm=0.20m
.. Area, A= T D= T (2)*=0.031416 m?

4 4

Suction head, h,=5m
Delivery head, hy =20 m.

Theoretical discharge for double-acting pump is given by equation (20.5) as,

_2ALN  2x.031416 x 0.4 x 40
" 60 60
Using equation (20.8),  Slip= Q,, - Q,., = 01675 - .01666 = .00009 m’/s. Ans.

Power required to drive the double-acting pump is given by equation (20.7) as,

pe 2Xpg X ALN X (hg +h;)  2x1000 x9.81x.031416 x.4 x40 X (5+20)
) 60,000 B 60,000

= 4.109 KW. Ans.

= 01675 m’/s.

INDICATOR DIAGRAM
indicator diagram is a graph between pressure head and stroke length of the piston for one complete
revolution. The pressure head is taken as ordinate and stroke length as abscissa.

A DELIVERY STROKE Let H

arm = Atmospheric pressure head

D % T = 10.3 m of water,

[m]
<[
T h
m d L = Length of the stroke,
2 T | P 'f__l— h, = Suction head, and
@ :
7 A sl M h, = Delivery head.
T H,,, SUCTION STROKE T 10.3m
—_—
| STROKELENGTH _, l
| 1

— STROKE LENGTH
Fig. 6  Ideal indicator diagram.
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we know that the work done by the pump per second

X ALN
= PR (b +hy)

60
= K x L(h, + h) [whcre K= % = Constant]
o L (h, + hy) D)

Work done by pump o Area of indicator diagram.

SEPARATION OF LIQUID

If the pressure in the cylinder is below the vapour pressure, dissolved gasses will be
liberated from the liquid and cavitation will takes place. The continuous flow of liquid will
not exist which means separation of liquid takes place. The pressure at which separation takes
place is called separation pressure and head corresponding to the separation pressure is called
separation pressure head.

The ways to avoid cavitation in reciprocating pumps:

1. Design: Ensure that there are no sharp corners or curvatures of flow in the system while

designing the pump.

Material: Cavitation resistant materials like Bronze or Nickel can be used.

Model Testing: Before manufacturing, a scaled down model should be tested.

4. Admission of air: High pressure air can be injected into the low pressure zones of
flowing liquid to prevent bubble formation.

AIR VESSELS

An air vessel is a closed chamber containing compressed air in the top portion and liquid (or water)
at the bottom of the chamber. At the base of the chamber there is an opening through which the liquid
(or water) may flow into the vessel or out from the vessel. When the liquid enters the air vessel, the air
gets compressed further and when the liquid flows out the vessel, the air will expand in the chamber.

An air vessel is fitted to the suction pipe and to the delivery pipe at a point close to the cylinder of
a single-acting reciprocating pump :

wmn

(1) to obtain a continuous supply of liquid at a uniform rate,

(i7) to save a considerable amount of work in overcoming
friction in suction and delivery pipes
(7it) to run the pump at a high speed without separation.

AIR e
VESSEL [===

I,

< = ¥

he AR [= T
VESSEL [

= ks
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COMPARISON BETWEEN CENTRIFUGAL

PUMPS AND RECIPROCATING

PUMPS
Centrifugal pumps Reciprocating pumps

1. The discharge is continuous and smoath. 1. The discharge is fluctuating and pulsating.

2. It can handle large quantity of liquid. 2. It handles small quantity of liquid only.

3. Itcan be used for lifting highly viscous liquids. 3. It is used only for lifting pure water or less

viscous liquids.

4. It is used for large discharge through smaller 4. It is meant for small discharge and high heads.
heads.

5. Cost of centrifugal pump is less as compared 5. Cost of reciprocating pump is approximately
to reciprocating pump. four times the cost of centrifugal pump.

6. Centrifugal pump runs at high speed. They can 6. Reciprocating pump runs at low speed. Speed
be coupled to electric motor. is limited due to consideration of separation

and cavitation.

7. The operation of centrifugal pump is smooth 7. The operation of reciprocating pump is
and without much noise. The maintenance cost complicated and with much noise. The
is low. maintenance cost is high.

8. Cenftrifugal pump needs smaller floor area and 8. Reciprocating pump requires large floor area
installation cost is low. and installation cost is high.

9. Efficiency is high. 9. Efficiency is low.

TEXT / REFERENCE BOOKS

1.

2.

Bansal.R.K, Fluid Mechanics & Hydraulics Machines,

Publications, 2015.

9th Edition, Laxmi

Modi P.N., Seth S.M., Hydraulics and Fluid Mechanics Including Hydraulic
Machines, 21st Edition, Standard Book House, 2017.
Goyal, Manish Kumar, Fluid Mechanics and Hydraulic Machines, PHI Learning Pvt.

Ltd., 2015.

Kumar K.L., Engineering Fluid Mechanics, 8thEdition, Eurasia Publication House (P)

Ltd, 2014.

R. K. Rajput, Fluid Mechanics & Hydraulics Machines, 4th Edition, S. Chand

Limited, 2008.
NPTEL

24



SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF MECHANICAL ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

UNIT - 5 - Fluid Mechanics and Machinery— SMEA1303




TURBINES

Hydraulic machines are defined as those machines which convert either hydraulic energy
(energy possessed by water) into mechanical energy (which is further converted into
electrical energy) or mechanical energy into hydraulic energy. The hydraulic machines,
which convert the hydraulic energy into mechanical energy, are called turbines while the
hydraulic machines which convert the mechanical energy into hydraulic energy. The study of
hydraulic machines consists of turbines and pumps.

Turbines are defined as the hydraulic machines which convert hydraulic energy into
mechanical energy. This, mechanical energy is used in running an electric generator which is
directly coupled to the shaft of the turbine. Thus the mechanical energy is converted into
electrical energy. The electric power which is obtained from the hydraulic energy (energy of
water) is known as Hydroelectric power. At present the generation of hydroelectric power is
the cheapest as compared by the power generated by other sources such as oil, coal etc.

General Layout of a Hydroelectric Power Plant

1. A dam constructed across a river to store water.
2. Pipes of large diameters called penstocks, which carry water under pressure from the
storage reservoir to the turbines. These pipes are made of steel or reinforced concrete.

3. Turbines having different types of vanes fitted to the wheels.

4. Tail race, which is a channel which carries water away from the turbines after the water
has worked on the turbines. The surface of water in the tail race channel is also known as
tail race.

HEADRACE 777

7

_
) HPm
/7/%//////, PENSTOCK

[

N\ NOZZLE
NN N

TURBINE

GROSS HEAD
(Hg)

\ \
| NN
’ ~

S

Fig. Layout of hydroelectric power plant
Definitions of Heads and Efficiencies of a Turbine

1. Gross Head. The difference between the head race level and tail race level when no water
is flowing is known as Gross Head. It is denoted by 'Hg".

2. Net Head. It is also called effective head and is defined as the head available at the inlet
of the turbine, when water is flowing from head race to the turbine, a loss of head due to
friction between water and penstock occurs. Though there are other losses also such as
loss due to bend, Pipes, fittings, loss at the entrance of penstock etc., yet they are having
small magnitude as compared to head loss due to friction. In ‘hf’ is the head loss due to
friction between penstocks and water then net heat on turbine is given by

H= Hg - hf



4% fx LxV?
Dx2g

where H, = Gross head, hy=
in which V = Velocity of flow in penstock,
L = Length of penstock,

D = Diameter of penstock.
Efficiencies of a Turbine

(a) Hydraulic Efficiency (1,;,).

n, = Power delivered to runner _ R.P.
=

Power supplied atinlet ~ W.P.

Power supplied at the inlet of turbine in S.I.units is known as water power. It is given by
_PpXgXQOxH K
1000

R.P. = Power delivered to runner i.e., runner power

W.P.

w [V, £V, |xu
—L t 2zl kW ...for Pelton Turbine

g 1000

W :leul - szuz]

= ————* kW ...for a radial flow turbine
g 1000
() Mechanical Efficiency (1n,,).
Power at the shaft of the turbine _ S.P.

M = Power delivered by water to the runner " R.P.

(c) Volumetric Efficiency (1,)

_ Volume of water actually striking the runner

v

Volume of water supplied to the turbine
(d) Overall Efficiency (1,)

_ Volume available at the shaft of the turbine _ Shaft power
? Power supplied at the inlet of the turbine Water power

S.P.
W.P.

nmxnh




CLASSIFICATION OF HYDRAULIC TURBINES
1.

According to the type of energy at inlet :

(a) Impulse turbine, and (b) Reaction turbine.

2. According to the direction of flow through runner :
(a) Tangential flow turbine, (b) Radial flow turbine,
(¢) Axial flow turbine, and (d) Mixed flow turbine.
3. According to the head at the inlet of turbine :
(a) High head turbine, (b) Medium head turbine, and
(c) Low head turbine.
4. According to the specific speed of the turbine :
(a) Low specific speed turbine, (b) Medium specific speed turbine, and
(c) High specific speed turbine.
Impulse Turbine Reaction Turbine

1. All the available energy of the fluid is converted 1. Only a portion of the fluid energy is transformed
into kinetic energy by an efficient nozzle that into kinetic energy before the fluid enters the
forms a free jet. turbine runner.

2. The jet is unconfined and at atmospheric pres- 2. Water enters the runner with an excess pressure,
sure throughout the action of water on the runner, and then both the velocity and pressure change
and during its subsequent flow to the tail race. as water passes through the runner.

3. Blades are only in action when they are in front 3. Blades are in action all the time,
of the nozzle,

4. Water may be allowed to enter a part or whole of 4, Water is admitted over the circumference of the
the wheel circumference. wheel.

5. The wheel does not run full and air has free ac- 5. Water completely fills the vane passages
cess to the buckets. throughout the operation of the turbine.

6. Casing has no hydraulic function to perform; it 6. Pressure at inlet to the turbine is much higher
only serves to prevent splashing and to guide the than the pressure at outlet ; unit has to be sealed
water to the tail race. from atmospheric conditions and, therefore, cas-

ing is absolutely essential.

7. Unit is installed above the tail race. 7. Unit is kept entirely submerged in water below

the tail race.

8. Flow regulation is possible without loss. 8. Flow regulation is always accompanied by loss,

9. When water glides over the moving blades, its 9. Since there is continuous drop in pressure dur-
relative velocity either remains constant or reduces ing flow through the blade passages, the rela-
slightly due to friction. tive velocity does increase.




PELTON WHEEL (OR TURBINE)

The Pelton wheel or Pelton turbine is a tangential flow impulse turbine. The water strikes the bucket
along the tangent of the runner. The energy available at the inlet of the turbine is only kinetic energy.
The pressure at the inlet and outlet of the turbine is atmospheric. This turbine is used for high heads
and is named after L.A. Pelton, an American Engineer.

— Runner
Pitch circle

. Casing

Hand wheel
:[ AN
, ":-,&
| Support / N
Spear
Spear Rod

Fig. : Pelton Turbine

Main parts of Pelton Wheel

1. Nozzle and Flow Regulating Arrangement. The amount of water striking the buckets (vanes)
of the runner is controlled by providing a spear in the nozzle as shown in Fig. 18.2. The spear is a
conical needle which is operated either by a hand wheel or automatically in an axial direction
depending upon the size of the unit. When the spear is pushed forward into the nozzle the amount of
water striking the runner is reduced. On the other hand, if the spear is pushed back, the amount of water
striking the runner increases.

2. Runner with Buckets. Fig. 18.3 shows the runner of a Pelton wheel. It consists of a circular disc
on the periphery of which a number of buckets evenly spaced are fixed. The shape of the buckets is of
a double hemispherical cup or bowl. Each bucket is divided into two symmetrical parts by a dividing
wall which is known as splitter.

The jet of water strikes on the splitter. The splitter divides the jet into two equal parts and the jet
comes out at the outer edge of the bucket. The buckets are shaped in such a way that the jet gets
deflected through 160° or 170°. The buckets are made of cast iron, cast steel bronze or stainless steel
depending upon the head at the inlet of the turbine.

3. Casing. Fig. 18.4 shows a Pelton turbine with a casing. The function of the casing is to prevent
the splashing of the water and to discharge water to tail race. It also acts as safeguard against accidents.
It is made of cast iron or fabricated steel plates. The casing of the Pelton wheel does not perform any
hydraulic function.

4. Breaking Jet.

Velocity Triangles and Work done for Pelton Wheel.
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(b)

Let H = Net head acting on the Pelton wheel
=H, - hy
4fLV?
where  H, = Gross head and /= ALV
D*x2g
where  D* = Dia. of Penstock, N = Speed of the wheel in r.p.m.,
D = Diameter of the wheel, d = Diameter of the jet.
Then V, = Velocity of jet at inlet = \/2gH
U=Up=Uy= DN
1= U 60
The velocity triangle at inlet will be a straight line where
V'rl =Vl_ul= Vl_u
V, =V,

Wy
oo=0° and 6=0°
From the velocity triangle at outlet, we have
V. =V, and V, =V, cos - u,.
2 1 2 2
The force exerted by the jet of water in the direction of motion is given by equation
Fe=paV, [V, +V, 1



As the angle B is an acute angle, +ve sign should be taken.
a = Area of jet = %dz.

Now work done by the jet on the runner per second
=F . xXu=paV, [V, +V, ] xuNm/s

Power given to the runner by the jet

i pavi[V,, +V,, |xu

1000
Work done/s per unit weight of water striking/s

kW

paV, [V + sz] X il

- Weight of water striking/s

|t)alf’1[\'»/'w + sz])(u 1
= ' =—[Vw +Vw1]><u
paVy x g g
The energy supplied to the jet at inlet is in the form of kinetic energy and is equal to %m V2
K.E. of jet per second = % (paV;) x 1/32

Work done per second

Hydraulic efficiency, =
y Y> M K.E. of jet per second

i pav[V,, +V,, |xu . 2[Vv,, +V,, |xu

2
%(paVl)fo Y
Now Vi =V V= Vi—u = (V- u)
V, =(V, - )
and V,,=V,cosd-u,=V, coso—u=(V,—u)cosd—u

Substituting the values of V|, and V, in equation

_ 2[1/1 +(Vl—u)cos¢—u]><u
V2

MNx

2[‘!/l —u+(V, —u)COS¢]><u _2(Vi—u)[1+cos ¢p]u
v? ) 4 |



The efficiency will be maximum for a given value of V, when

£[2u(V] ~u)(1+ cos ¢)] “0

d
L m)=0
» M) or

du V?
1+
o LEOSY 4 oy iy o 4wy, —21=0 |20
Vi u du V
2, -4u=0 or u="1
2
V

substituting the value of u = o

Vi Vi
Z[VI —?](l+cos¢)x?

Max. N, = V2
1

V Vi
2x?1(1+cos¢»)?] _ (1+cos 9)

W’ 2
Points to be Remembered for Pelton Wheel
(i) The velocity of the jet at inlet is given by V| = C,./2gH
where C, = Co-efficient of velocity = 0.98 or 0.99
H = Net head on turbine

(ii) The velocity of wheel (u) is given by u = ¢.y2gH
where ¢ = Speed ratio. The value of speed ratio varies from 0.43 to 0.48.

(iii) The angle of deflection of the jet through buckets is taken at 165° if no angle of deflection is
given.

(iv) The mean diameter or the pitch diameter D of the Pelton wheel is given by

DN 60u
U= —orPD=——.
60 N

(v) Jet Ratio. It is defined as the ratio of the pitch diameter (D) of the Pelton wheel to the diameter
of the jet (d). It is denoted by ‘m’ and is given as

m= g ( = 12 for most cases)

.

(vi) Number of buckets on a runner is given by
Z=15+£= 15+05m
2d
where m = Jet ratio
(vii) Number of Jets. It is obtained by dividing the total rate of flow through the turbine by the rate
of flow of water through a single jet.

Example A Pelton wheel has a mean bucket speed of 10 metres per second with a jet of water
flowing at the rate of 700 litres/s under a head of 30 metres. The buckets deflect the jet through an
angle of 160°. Calculate the power given by water to the runner and the hydraulic efficiency of the
turbine. Assume co-efficient of velocity as 0.98.




Speed of bucket, u=u =u,=10m/s

Discharge, Q = 700 litres/s = 0.7 m>/s, Head of water, H= 30 m
Angle of deflection = 160°
Angle, ¢ = 180° - 160° = 20°

Co-efficient of velocity, C,=0.98.

The velocity of jet, V,=C,J2gH =098 /2 x9.81x30 =23.77 m/s

SE—V %

Vj,I =V, -u;=23.77-10
= 13.77 m/s

Ve, =V =2377T m/s

w
From outlet velocity triangle,
V, =V, =13.7T m/s

r

V,, =V, cos0—u,

= 13.77 cos 20° — 10.0 = 2.94 m/s
Work done by the jet per second on the runner is given by equation (18.9) as
= paV, [le +V,, ] Xu
= 1000 x 0.7 x [23.77 + 2.94] x 10 (v aV;=0=07 m*/s)
= 186970 Nm/s

_ 186970
1000
The hydraulic efficiency of the turbine is given by equation (18.12) as

- 2[V,, +V,, ]xu  2[23.77+2.94]x10
=

Power given to turbine = 186.97 kW. Ans.

v? 2377 X 23.77
= 09454 or 94.54%. Ans.



( Example A Pelton wheel is to be designed for the following specifications :

diameter is not to exceed one-sixth of the wheel diameter. Determine :
(i) The wheel diameter, (ii) The number of jets required, and
(iii) Diameter of the jet.
\_ Take K, = 0.985 and K, = 0.45

Shaft power = 11,772 kW ; Head = 380 metres ; Speed = 750 r.p.m. ; Overall efficiency = 86% ; Jet

\

J

Shaft power, S.P.=11,772 kW
Head , H =380 m
Speed, N =750 r.p.m.
Overall efficiency, No = 86% or 0.86
Ratio of jet dia. to wheel dia. = i = l

D 6
Co-efficient of velocity, K, = C,=0.985
Speed ratio, Ku, =045

The velocity of wheel, U=1Uy;= Uy

= Speed ratio X ,2gH = 0.45 X 4/2x 9.81x 380 = 38.85 m/s

DN DN
u="0 . 38385=""1
60 60
D= 60 x 38.85 _ 60 x 38.85 — 0.989 m.
T XN Tt X750
But i = l
D 6
1 989
Dia. of jet, d= E xD= % = 0.165 m. Ans.
Discharge of one jet, q = Area of jet X Velocity of jet
= % LxV, = %(.165) x 85.05 m¥/s = 1.818 m%s
Now _S.P. 11772
M= Wp. ~ pgx0OxH
1000
0.86 = 11772 x 1000 , where Q = Total discharge
1000 x9.81x Q x 380
11772 x 1
Total discharge, 0= x 1000 =3.672 m*/s
1000 x9.81 x 380 x 0.86
Number of jets _ _ Totaldischarge _ O _ 3672 _, .\ Ans.

- Discharge of one jet ¢ 1818

10



4 Example The penstock supplies water from a reservoir to the Pelton wheel with a gross head
of 500 m. One third of the gross head is lost in friction in the penstock. The rate of flow of water
through the nozzle fitted at the end of the penstock is 2.0 m’/s. The angle of deflection of the jet is 165°.
Determine the power given by the water to the runner and also hydraulic efficiency of the Pelton

\wheel. Take speed ratio = 0.45 and C, = 1.0. )
Solution. Given :
Gross head, Hg =500 m
H
Head lost in friction, he= —£ = 667 m
3 3
Net head, H=H,- hy=500-166.7 = 333.30 m
Discharge, 0=2.0 m3/s
Angle of deflection = 165°
Angle, ¢ = 180° — 165° = 15°
Speed ratio = 0.45
Co-efficient of velocity, C,=1.0
Velocity of jet, Vi=C,2gH = 1.0 x /2 x9.81x333.3 = 80.86 m/s
Velocity of wheel, u = Speed ratio X J2gH
or u=u;=uy=045x ,/2x9.81x3333 = 36.387 m/s
V., =V, —u =80.86 - 36.387
=44.473 m/s
Also V,, =V, =280.86 m/s
From outlet velocity triangle, we have
V, =V, =44.473
V,cos0=u,+V,
44.473 cos 15° = 36.387+ V,
or V,, =44.473 cos 15° - 36.387 = 6.57 m/s.
Work done by the jet on the runner per second is given by equation (18.9) as
paVi[V, +V, Ixu=pQ[V, +V, Ixu (v aV;=0Q)

= 1000 x 2.0 x [80.86 + 6.57] x 36.387 = 6362630 Nm/s

11



p >

Power given by the water to the runner in kW

_ Work done per second _ 6362630
1000 1000

= 6362.63 kW

Hydraulic efficiency of the turbine is given by equation (18.12) as

2 [le +V, ] Xu  2[80.86 + 6.57] x 36.387
Vv 80.86 x 80.86
= 0.9731 or 97.31%. Ans.

Ny

Example A Pelton wheel is to be designed for a head of 60 m when running at 200 r.p.m. The
Pelton wheel develops 95.6475 kW shaft power. The velocity of the buckets = 0.45 times the velocity of
the jet, overall efficiency = 0.85 and co-efficient of the velocity is equal to 0.98.

Head,

Speed

Shaft power,

Velocity of bucket,
Overall efficiency,
Co-efficient of velocity,

(f) Velocity of jet,
Bucket velocity,

But

(i) Diameter of the jet (d)
Overall efficiency

But

H=60m
N =200 r.p.m

S.P.=95.6475 kW

u = 0.45 X Velocity of jet
n, = 0.85
C,=098

V,=C,x 2gH =098 x /2x9.81x 60 = 33.62 m/s

u=u,=uy,=045xV, =0.45x33.62=15.13 m/s

= % where D = Diameter of wheel
15.13=w or D=M=l.44m. Ans.
60 7 % 200
n, = 0.85

N = S.P. 95.6475 _ 95.6475 %1000
" W.P. [W.P.] PXgXQxH
1000

(~+ W.P.=pgQH)

12



_ 956475 x1000
1000 x 9.81 x Q x 60

95.6475 x 1000 _ 95.6475 %1000
N, Xx1000 x9.81 x60  0.85x1000x 9.81 x60

=0.1912 m’/s
But the discharge, Q = Area of jet X Velocity of jet

0.1912 = %dz XV, = ;dz x 33.62

d= [AXO12 ) es m = 85 mm.
X 3362

(iii) Size of buckets

Width of buckets =5Xd=5%x85=425 mm
Depth of buckets =12xd=12x85=102 mm.
(iv) Number of buckets on the wheel is given by equation (18.17) as
D 1.44

Z=15+E=15+ =15 + 8.5 = 23.5 say 24.

2 x.085
FRANCIS TURBINE

The Francis turbine is a mixed flow reaction turbine. This turbine is used for medium
heads with medium discharge. Water enters the runner and flows towards the center of the
wheel in the radial direction and leaves parallel to the axis of the turbine.

Turbines are subdivided into impulse and reaction machines. In the impulse turbines,
the total head available is converted into the kinetic energy. In the reaction turbines, only
some part of the available total head of the fluid is converted into kinetic energy so that the
fluid entering the runner has pressure energy as well as kinetic energy. The pressure energy is
then converted into kinetic energy in the runner.

The Francis turbine is a type of reaction turbine that was developed by James B.
Francis. Francis turbines are the most common water turbine in use today. They operate in a
water head from 40 to 600 m and are primarily used for electrical power production. The
electric generators which most often use this type of turbine have a power output which
generally ranges just a few kilowatts up to 800 MW.

Main components of Francis turbine
1. Spiral Casing

The water flowing from the reservoir or dam is made to pass through this pipe with
high pressure. The blades of the turbines are circularly placed, which means the water
striking the blades of the turbine should flow in the circular axis for efficient striking. So, the
spiral casing is used, but due to the circular movement of the water, it loses its pressure.

To maintain the same pressure, the diameter of the casing is gradually reduced, to
maintain the pressure uniformly, thus uniform momentum or velocity striking the runner
blades.

13



2. Stay Vanes

This guides the water to the runner blades. Stay vanes remain stationary at their
position and reduces the swirling of water due to radial flow and as it enters the runner
blades. Hence, makes the turbine more efficient.

Main Shaft Operating Ring

Water Inlet Water Guiding Device

Spiral case

Guide Vane

4 N
/' Stay Ring  Guide Vane

Draft Tube N

Runner

Francis Turbine

3. Guide Vanes

Guide vanes are also known as wicket gates. The main function or usages of the guide
vanes are to guide the water towards the runner and it also regulates the quantity of water
supplied to runner. It also guides the water to flow at an angle and that is appropriate for the
design.

-, STAY VANES

GUIDE VANES

4. Runner Blades:

Absorbs the energy from the water and converts it to rotational motion of the main
shaft. The runner blades design decides how effectively a turbine is going to perform. The
runner blades are divided into two parts. The lower half is made in the shape of a small
bucket so that it uses the impulse action of water to rotate the turbine.

The upper part of the blades uses the reaction force of water flowing through it. These
two forces together make the runner rotate.

Draft Tube

The draft tube is an expanding tube which is used to discharge the water through the
runner and next to the tailrace. The main function of the draft tube is to reduce the water
velocity at the time of discharge. Its cross-section area increases along its length, as the water
coming out of runner blades, is at considerably low pressure, so its expanding cross-section
area helps it to recover the pressure as it flows towards the tailrace.

14



To regulating rod

,:‘.,-.'"—‘
4
Gudgr vane : Scroll casing
Wicket gate | \ To regulating rod
Teil race & Dr%ﬂ tdbe Bunneg
,:_:_:__t_:::__:_;i: T
— Water inlet
from penstock
< Spiral casing
— Link
Guide vane

Working principles of Francis turbine

» The water is admitted to the runner through guide vanes or wicket gates. The opening
between the vanes can be adjusted to vary the quantity of water admitted to the turbine.
This is done to suit the load conditions.

» The water enters the runner with a low velocity but with a considerable pressure. As the
water flows over the vanes the pressure head is gradually converted into velocity head.

» This kinetic energy is utilized in rotating the wheel Thus the hydraulic energy is
converted into mechanical energy.

» The outgoing water enters the tailrace after passing through the draft tube. The draft tube
enlarges gradually and the enlarged end is submerged deeply in the tailrace water.

> Due to this arrangement a suction head is created at the exit of the runner.

Velocity Triangle

velocity of whirl at outlet (i.e., V) will be zero. Hence the work done by water on the runner per
second will be '

= POV, 1]

1
And work done per second per unit weight of water striking/s = —[leu,]
8

V., u
Hydraulic efficiency will be given by, 1, = ;Hl
8

15



( Example A Francis turbine with an overall efficiency of 75% is required to produce\
148.25 kW power. It is working under a head of 7.62 m. The peripheral velocity = 0.26 \J2gH and the

radial velocity of flow at inlet is 0.96/2¢H . The wheel runs at 150 r.p.m. and the hydraulic losses in
the turbine are 22% of the available energy. Assuming radial discharge, determine :

(i) The guide blade angle, (ii) The wheel vane angle at inlet,
\(Eii) Diameter of the wheel at inlet, and (iv) Width of the wheel at inlet. )
Overall efficiency N, =75% =0.75
Power produced, S.P. = 148.25 kW
Head, H=7.62m
Peripheral velocity, u, =0.26 \J2gH =0.26 X \[2 X981x7.62 =3.179 m/s
Velocity of flow atinlet,  V, =0.96 ~2gH =0.96 x J2 X 981%x7.62 =11.738 m/s.
Speed, N =150 r.p.m.
Hydraulic losses = 22% of available energy
Discharge at outlet = Radial
V,, =0and V, =V,

Hydraulic efficiency is given as
_ Total head at inlet — Hydraulic loss
- Head at inlet

un

16



_H-22H 0J8H

=0.78
H H
B leul
ut =—
Ny oH
W ul
— =0.78
gH
v, = 078xgx H
Hy
_ 0.78 x 9.81x 7.62 = 1834 mis.
3179
(i) The guide blade angle, i.e., o.. From inlet velocity triangle,
Vv
tan o= 2 = 11738 _ 64
V. 18.34

Wi
o = tan"' 0.64 = 32.619° or 32° 37". Ans.
(ii) The wheel vane angle at inlet, i.e., ©

Vi, 11738
V, —u,  1834-3179

w

tan O = 0.774

0 =tan”' .774 = 37.74 or 37° 44.4". Ans.
(iiif) Diameter of wheel at inlet (D,).

Using the relation, U, = DN
60
D, = 60 u = 00 x 3179 = 0.4047 m. Ans.
TXN 7 % 50
(iv) Width of the wheel at inlet (B,)
_ S.P. 14825
No=We = wr.
But p. WH _pXgxQxH _1000x981xQx762
1000 1000 1000
148.25 148.25 x 1000

Mo = 7000 x 981X O x 7.62

1000 x9.81 x Q x 7.62

1000
0= 148.25 X 1000 _ 148.25 X 1000
1000 x9.81x7.62xm, 1000 x9.81x7.62 x0.75
Q=nD,xB; XV,
2.644 =t X .4047 X B; X 11.738
= 2644 =0.177 m.

Tt X.4047 x11.738

=2.644m’/s

17



( Example  The following data is given for a Francis Turbine. Net head H = 60 m ; Spee%
N =700 r.p.m.; shaft power = 294.3 kW ; 1, = 84% ; n, = 93%; flow ratio = 0.20 ; breadth ratio
n = 0.1; Outer diameter of the runner = 2 x inner diameter of runner. The thickness of vanes occupy
5% of circumferential area of the runner, velocity of flow is constant at inlet and outlet and discharge
is radial at outlet. Determine :

(i) Guide blade angle, (ii) Runner vane angles at inlet and outlet,
\(iii ) Diameters of runner at inlet and outlet, and (iv) Width of wheel at inlet. /

Net head, H=60m

Speed, N =700 r.p.m.

Shaft power = 2943 kW

Overall efficiency, N, = 84% = 0.84

Hydraulic efficiency, N, =93% =0.93

. Vi
Flow ratio, =0.20

J2gH

V, =0.20 x 2¢H
= 0.20 X /2X9.81X 60 = 6.862 m/s

Breadth ratio, B =0.1
DI
Outer diameter, D, =2 X Inner diameter = 2 X D,
Velocity of flow, Vf. = sz = 6.862 m/s.
Thickness of vanes = 5% of circumferential area of runner
Actual area of flow =0.95 D, X B,
Discharge at outlet = Radial
sz = 0 and sz = V2
S.P.
Using relation, 0= ——
£ o= Wp.
294,
0.84 = 2243
W.P.
294,
W.P.= 2243 = 350.357 kW.
0.84
But WP = WH =pxngxH:1000><9.81><Q><60
1000 1000 1000
1000 x9.81 x Q x 60 — 350357
1000
0= 350.357 1000 _ 0.5952 ms.
60 %1000 x9.81
Using equation (18.21), Q = Actual area of flow x Velocity of flow
=095 D, x B, x V,
=0.95xn x D, x0.1D; XV, (- B;=0.1D))

18



or 0.5952 =0.95 x T x D, x 0.1 X D, X 6.862 = 2.048 D/

D= [0 _ocum
V2048

But —=0.1

R B, =0.1xD;=0.1x.54=.054 m = 54 mm
Tangential speed of the runner at inlet,

_ DN mx0.54 %700

U = =19.79 m/s.

60 60
Using relation for hydraulic efficiency,

o Uy v, x19.79

n,=——o0r093=—"———
gH 9.81x 60

vV, = 0.93x981X60 _ o7 c6 s,

‘ 19.79
(i) Guide blade angle (o)

ﬁ _ 6.862

From inlet velocity triangle, tan o = =0.248

27.66

Wy

o = tan"' 0.248 = 13.928° or 13° 55.7". Ans.
(i) Runner vane angles at inlet and outlet (6 and @)

V., 6862

= =0.872
-, 27.66-19.79

tan 6 =

wy

0 =tan"' 0.872 = 41.09° or 41° 5.4’. Ans.

4 V
From outlet velocity triangle, tan ¢ = MU RS 6362 ..(0)
U, u, u,
But Uy = LN _nxD N [ D, = —lgiven]
60 2 60
=T X Exm = 9.896 m/s.
2 60

Substituting the value of u, in equation (i),

tan ¢ = w =0.6934
9.896
AR o= tan"' .6934° = 34.74 or 34° 44.4’. Ans.
(iii) Diameters of runner at inlet and outlet
D, =0.54 m, D, = 0.27 m. Ans.
(iv) Width of wheel at inlet
B, = 54 mm. Ans.
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AXIAL FLOW REACTION TURBINE

If the water flows parallel to the axis of the rotation of the shaft, the turbine is known as axial flow
turbine. And if the head at the inlet of the turbine is the sum of pressure energy and kinetic energy and
during the flow of water through runner a part of pressure energy is converted into kinetic energy, the
turbine is known as reaction turbine.

For the axial flow reaction turbine, the shaft of the turbine is vertical. The lower end of the shaft is
made larger which is known as *hub’ or ‘boss’. The vanes are fixed on the hub and hence hub acts as a
runner for axial flow reaction turbine. The following are the important type of axial flow reaction
turbines :

1. Propeller Turbine, and 2. Kaplan Turbine.

When the vanes are fixed to the hub and they are not adjust-
able, the turbine is known as propeller turbine. But if the vanes
on the hub are adjustable, the turbine is known as a Kaplan
Turbine, after the name of V Kaplan, an Austrian Engineer.
This turbine is suitable where a large quantity of water at low
head is available. Fig. 18.25 shows the runner of a Kaplan
turbine, which consists of a hub fixed to the shaft. On the hub,
the adjustable vanes are fixed as shown in Fig. 18.25.

The main parts of a Kaplan turbine are :

1. Scroll casing,

2. Guide vanes mechanism,

3. Hub with vanes or runner of the turbine, and

4. Draft tube.

Main components of Kaplan turbine

Fig. 18.25 Kaplan turbine runner.

INLET OF RUNNER VANES
i - OUTLET OF VANE
TAIL RACE

0= (D} - D})xv,

where D, = Outer diameter of the runner,
D, = Diameter of hub, and

V; = Velocity of flow at inlet.
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Some Important Point for Propeller (Kaplan Turbine)

1. The peripheral velocity at inlet and outlet are equal

nD,N

Uy =iy =
2. Velocity of flow at inlet and outlet are equal
Vi=V..

3. Area of flow at inlet = Area of flow at outlet

= g(oj -D}).

, where D, = Outer dia. of runner

\_ (it) Speed of the turbine.

4 Example A Kaplan turbine working under a head of 20 m develops 11772 kW shaft power.\
The outer diameter of the runner is 3.5 m and hub diameter is 1.75 m. The guide blade angle at the
extreme edge of the runner is 35°. The hydraulic and overall efficiencies of the turbines are 88% and
84% respectively. If the velocity of whirl is zero at outlet, determine :

(i) Runner vane angles at inlet and outlet at the extreme edge of the runner, and

J

Solution. Given :

Head, H=20m
Shaft power, S.P. = 11772 kW
Outer dia. of runner, D,=35m
Hub diameter, D,=175m
Guide blade angle, o = 35°
Hydraulic efficiency, n, = 88%
Overall efficiency, n,=84%
Velocity of whirl at outlet =0.
S.P.
Using the relation, =
sing the relation Mo WP,
where W.P. = W.P. = PXgxXOXH , we get
1000 1000
11772
0.84 = SxgxOxH

1000
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11772 %1000

= (.‘. Pp= 1000)
1000 x 9.81x @ %20
0= 11772 x 1000 = 71.428 mYs.
0.84 x 1000 x 9.81x 20
Using equation (18.25), Q= %(Dj - D})xV,
n T
or 71428 =7 (35 - 1759 x V, = 7 (1225-3.0625) V;
=7.216 V,
= 71428 = 9.9 m/s.
' 7216
Vs
From inlet velocity triangle, tan ot = —=%
v
S TR VRPN
' tano tan35 .7
Using the relation for hydraulic efficiency,
Vit
- v V. =0
U gH ( Wa )
0.88 = 14.14 x u,
9.81x20
(7) Runner vane angles at inlet and outlet at the extreme edge of the runner are given as :
V 9.9
tan @ = — =5.13

V, —u,  (1414-1221)

"

0 =tan'5.13 = 78.97° or 78° 58’. Ans.

For Kaplan turbine, uy=u,=1221mfsand V, =V, =99 m/s
. — Ve _ 99 _
.. From outlet velocity triangle, tan ¢ = =_27 =0.38I11
U, 1221

0 = tan"' .811 = 39.035° or 39° 2. Ans.

(if) Speed of turbine is given by u, = u, = ﬂ?"ON
12.21 = TX35XN
60
N = S0x12.21 = 66.63 r.p.m. Ans.
7 %X 3.50

Example A Kaplan turbine runner is to be designed to develop 9100 kW. The net available
head is 5.6 m. If the speed ratio = 2.09, flow ratio = 0.68, overall efficiency = 86% and the diameter of
the boss is 1/3 the diameter of the runner. Find the diameter of the runner, its speed and the specific
speed of the turbine.

22



Power, P =9100 kW

Net head, H=56m
Speed ratio =2.09
Flow ratio =0.68
Overall efficiency, N, = 8% = 0.86
Diameter of boss = 1 of diameter of runner
1
or D,=—=D,
3
. u
Now, speed ratio =
2gH
=209 x /2x981%x56 =21.95m/s
i

Flow ratio =

~2gH
Vf. =0.68 X \/2x981%x56 =7.12m/s

The overall efficiency is given by, n, = W

1000

__ Px1000  _ 9100 x 1000
pxgxHxmn, 1000x981x5.6x0.86

(v pg=1000%9.81 N/m?)

or

= 192.5 m’/s.
The discharge through a Kaplan turbine is given by

T 2 2
Q=Z[D0—Db]><1/}1

_
O
o
n
I

or

&(a &|a

[ B —
T o
| D
O | = I
| I P
w|o
S—
[

D,= M =6.21 m. Ans.
TxX8x712

DN
60
_60xu;  60x21.95

= = 67.5 r.p.m. Ans.
nxD 7 x6.21

NP _ 67.5%+/9100

HSM - 5'6514

The speed of turbine is given by, u, =

N

= 746. Ans.

The specific speed is given by, N, =
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Example A Kaplan turbine runner is to be designed to develop 7357.5 kW shaft power. The
net available head is 5.50 m. Assume that the speed ratio is 2.09 and flow ratio is 0.68, and the overall

1
efficiency is 60%. The diameter of the boss is Erd of the diameter of the runner. Find the diameter of

the runner, its speed and its specific speed.

Shaft power, P =7357.5kW
Head, H=550m
u
Speed ratio = ——=2.09
2gH
u; =2.09 % 4/2x981x550 =21.71 m/s
. Vf
Flow ratio = 2—IH = (.68
8
o Vfu =2.68 X 4/2x9.81x5.50 =7.064 m/s
Overall efficiency, N, =60% = 0.60
Diameter of boss, D, = % xD,
, . _ Shaftpower 73575
Using relation, °” Water power PX8XQXH
1000
or 0.60 = 7357.5x1000 _ 7357.5 x 1000
' pXgXQXH 1000x9.81xQx5.5
0= —T3XN000 55759 ms.
1000 x 9.81x 5.5 X 0.60
T
Q= E(Dj - D;)xV;
2
227.27 = E[Dj - (&] } X 7.064 [ D, = &]
4 3 3
=T 8 D2 % 7.064 = 4.9316 D
4 9
_ 22727 6788 m. A
°= V49316 ~ 00 M AN
1
And D, = 3 % 6.788 = 2.262 m. Ans.
Using the relation, Hy = %
N = 60 X u, _ 60 x21.71 = 61.08 r.p.m. Ans.
D T X 6.788

a

The specific speed (N,) is given by,

_ NJP _ 6108 x+/7357.5
NS_ H5|’4 - 5-50514

=622 r.p.m. Ans.



Dimensional analysis

Dimensional analysis is a method of dimensions. It is a mathematical technique used
in research work for design and for conducting model tests. It deals with the dimensions of
the physical quantities involved in the phenomenon. All physical quantities are measured by
comparison, which is made with respect to an arbitrarily fixed value. Length L, mass M and
time T are three fixed dimensions which are of importance in Fluid Mechanics. If in any
problem of fluid mechanics, heat is involved then temperature is also taken as fixed
dimension. These fixed dimensions are called fundamental dimensions or fundamental
quantity.

Secondary or derived quantities are those quantities which possess more than one
fundamental dimension. For example, velocity is denoted by distance per unit time (L/T),
density by mass per unit volume| (M/L%) and acceleration distance per second Square (L/T?).
Then velocity, density, deceleration become as secondary or derived quantities. The
expressions (L/T), (M/L®) and (L/T?) are called the dimensions of velocity, density and
acceleration respectively. The dimensions of mostly used physical quantities in Fluid
Mechanics.

Dimensional Homogeneity

If an equation truly expresses a proper relationship among variables in a physical
process, then it will be dimensionally homogeneous. The equations are correct for any system
of units and consequently each group of terms in the equation must have the same
dimensional representation. This is also known as the law of dimensional homogeneity.
Dimensional variables

These are the quantities, which actually vary during a given case and can be plotted
against each other. Dimensional constants: These are normally held constant during a given
run. But, they may vary from case to case.

Pure constants
They have no dimensions, but, while performing the mathematical manipulation, they

can arise.
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Buckingham pi Theorem

The dimensional analysis for the experimental data of unknown flow problems leads
to some non-dimensional parameters. These dimensionless products are frequently
referred as pi ferms. Based on the concept of dimensional homaogeneity, these
dimensionless parameters may be grouped and expressed in functional forms. This
idea was explored by the famous scientist Edgar Buckingham (1867-1940) and the
theorem is named accordingly.

Buckingham pi theorem, states that if an equation involving & variables is

dimensionally homogeneous, then it can be reduced to a relationship among (k—r}

independent dimensionless products, where r is the minimum number of reference
dimensions required to describe the variable. For a physical system, involving &

variables, the functional relation of variables can be written mathematically as,

y= f{x,,xz..........,xk}

It should be ensured that the dimensions of the variables on the left side of the
equation are equal to the dimensions of any term on the right side of equation. Now, it is
possible to rearrange the above equation into a set of dimensionless products (pi terms), so
that

Here, ¢(I1,,11;.......... ,I1,_.) is a function of I1, through I1,_, . The required number
of pi terms is less than the number of original reference variables by r. These
reference dimensions are usually the basic dimensions M, L and T (Mass, Length

and Time).

Determination of pi Terms

Several methods can be used to form dimensionless products or pi terms that arise in
dimensional analysis. But, there is a systematic procedure called method of repeating
variables that allows in deciding the dimensionless and independent pi ferms. For a

given problem, following distinct steps are followed.
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Step I: List out all the variables that are involved in the problem. The ‘variable’ is any
quantity including dimensional and non-dimensional constants in a physical situation
under investigation. Typically, these variables are those that are necessary to describe
the “geometry” of the system (diameter, length etc.), to define fluid properties
(density, viscosity etc.) and to indicate the external effects influencing the system
(force, pressure etc.). All the variables must be independent in nature so as to
minimize the number of variables required to describe the complete system.

Step II: Express each variable in terms of basic dimensions. Typically, for fluid

mechanics problems, the basic dimensions will be either M, L and T or F, L and T.

Dimensionally, these two sets are related through Newton’s second law (F = m.a) S0

that F=MLT > e;g. p=ML" or p=FL*T". It should be noted that these basic
dimensions should not be mixed.
Step IlI: Decide the required number of pi terms. It can be determined by using

Buckingham pi theorem which indicates that the number of pi terms is equal to

(k—r), where k is the number of variables in the problem (determined from Step I)

and r is the number of reference dimensions required to describe these variables
(determined from Step II).

Step IV: Amongst the original list of variables, select those variables that can be
combined to form pi terms. These are called as repeating variables. The required
number of repeating variables is equal to the number of reference dimensions. Each
repeating variable must be dimensionally independent of the others, i.e. they cannot
be combined themselves to form any dimensionless product. Since there is a
possibility of repeating variables to appear in more than one pi term, so dependent
variables should not be chosen as one of the repeating variable.

Step V: Essentially, the pi terms are formed by multiplying one of the non-repeating

variables by the product of the repeating variables each raised to an exponent that will

make the combination dimensionless. It usually takes the form of x, x{ x; x; where
the exponents a, b and ¢ are determined so that the combination is dimensionless.

Step VI: Repeat the ‘Step V’ for each of the remaining non-repeating variables. The

resulting set of pi terms will correspond to the required number obtained from Step
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I11.
Step VII: After obtaining the required number of pi terms, make sure that all the pi

terms are dimensionless. It can be checked by simply substituting the basic dimension

(M, L and T) of the variables into the pi terms.

Step VIII: Typically, the final form of relationship among the pi ferms can be written

in the form of Eq. (6.1.2) where, Il, would contain the dependent variable in the

numerator. The actual functional relationship among pi terms is determined from
experiment.

Non Dimensional numbers in Fluid Dynamics

Forces encountered in flowing fluids include those due to inertia, viscosity, pressure,

gravity, surface tension and compressibility. These forces can be written as follows;

i dv
Inertia force: m.a = p V.E- « pVr?

Viscousforce: 74 =u A ?nc uv L
Ay

Pressure force: (Ap) Ao (Ap) L

Gravity force: mg oc gpf

Surface tension force: o L

Compressibility force: E, Ao E, I
The notations used in Eq. (6.2.1) are given in subsequent paragraph of this section. It
may be noted that the ratio of any two forces will be dimensionless. Since, inertia
forces are very important in fluid mechanics problems, the ratio of the inertia force to
each of the other forces listed above leads to fundamental dimensionless groups.

Some of them are defined as given below;
Reynolds number (Re): It is defined as the ratio of inertia force to viscous force.

Mathematically,

Re=—=

J7i

where ¥ is the velocity of the flow, L is the characteristics length, o, and v are

pVL E
v

the density, dynamic viscosity and kinematic viscosity of the fluid respectively. If

Re is very small, there is an indication that the viscous forces are dominant compared
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to inertia forces. Such types of flows are commonly referred to as “creeping/viscous
flows™. Conversely, for large Re, viscous forces are small compared to inertial effects
and such flow problems are characterized as inviscid analysis. This number is also

used to study the transition between the laminar and turbulent flow regimes.

Euler number (E, ]: In most of the aerodynamic model testing, the pressure data are

usually expressed mathematically as,

where Ap 1s the difference in local pressure and free stream pressure, V 1is the
velocity of the flow, p is the density of the fluid. The denominator in Eq. (6.2.3) 1s

called “dynamic pressure”. E is the ratio of pressure force to inertia force and many

a times the pressure coefficient (cp) is a also common name which is defined by same
manner. In the study of cavitations phenomena, similar expressions are used where,
Ap is the difference in liquid stream pressure and liquid-vapour pressure. This
dimensional parameter is then called as “cavitation number”.

Froude number (F,): It is interpreted as the ratio of inertia force to gravity force.

Mathematically, it is written as,

v
F=——

JeL

where V' is the velocity of the flow, L is the characteristics length descriptive of the
flow field and g is the acceleration due to gravity. This number is very much
significant for flows with free surface effects such as in case of open-channel flow. In
such types of flows, the characteristics length is the depth of water. F less than unity
indicates sub-critical flow and values greater than unity indicate super-critical flow. It
is also used to study the flow of water around ships with resulting wave motion.

Weber number (W ): It is defined as the ratio of the inertia force to surface tension

e

force. Mathematically,
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where V is the velocity of the flow, L is the characteristics length descriptive of the

flow field, p is the density of the fluid and o is the surface tension force. This

number is taken as an index of droplet formation and flow of thin film liquids in

which there is an interface between two fluids. The inertia force is dominant

compared to surface tension force when, W [ 1 (e.g. flow of water in a river).

Mach number (M) It is the key parameter that characterizes the compressibility

effects in a fluid flow and is defined as the ratio of inertia force to compressibility

yr__rv _r
c [dp [E,
dp \p

where V' is the velocity of the flow, ¢ is the local sonic speed, p is the density of the

force. Mathematically,

fluid and E, is the bulk modulus. Sometimes, the square of the Mach number is

called “Cauchy number” (C,) i.e.

C =M= PV2
a EP

Both the numbers are predominantly used in problems in which fluid compressibility
1s important. When, M is relatively small (say, less than 0.3), the inertial forces
induced by fluid motion are sufficiently small to cause significant change in fluid
density. So, the compressibility of the fluid can be neglected. However, this number is
most commonly used parameter in compressible fluid flow problems, particularly in

the field of gas dynamics and aerodynamics.

Strouhal number (S,] : It 1s a dimensionless parameter that is likely to be important in

unsteady, oscillating flow problems in which the frequency of oscillation is @ and is

defined as,

where V' is the velocity of the flow and L is the characteristics length descriptive of
the flow field. This number is the measure of the ratio of the inertial forces due to

unsteadiness of the flow (local acceleration) to inertia forces due to changes in
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Parameter Mathematical expression Qualitative definition Importance

- Dissiati .
Prandtl number P = HEy M Heat convection
k Conduction
2 . .
Kinet e

Eckert number E = v s eTerEy Dissipation

c, T Enthalpy

i i c Enthal )
Specific heat ratio y=-"L mha'py Compressible flow
c, Internal energy
Roughness ratio £ Wall roughness Turbulent rough walls
L Body length

AT)gLp’ B
Grashof number G =’3 { )g £ buoyancy

" 1 Viscosity

Natural onvection

Wall temperature

&

Temperature ratio Heat transfer

T, Stream temperature

p—p, Static pressure

Pressure coefficient C =

= Hydrodynamics,
? (1/2)pV’ Dynamic pressure yarody

Aerodynamics
Lift coefficient = L . Lift f.'c-rce Hydrodynamics,Aero
(1/'2)14,017“ Dynamic force
dynamics
Drag coefficient C,= D Drag force Hydrodynamics,

(1/2) A pV? Dynamic force

Aero dynamics

Flow Similarity

In order to achieve similarity between model and prototype behavior, all the
corresponding pi terms must be equated to satisfy the following conditions.
Geometric similarity

A model and prototype are geometric similar if and only if all body dimensions in all
three coordinates have the same linear-scale ratio. In order to have geometric similarity
between the model and prototype, the model and the prototype should be of the same shape,
all the linear dimensions of the model can be related to corresponding dimensions of the
prototype by a constant scale factor. Usually, one or more of these pi terms will involve ratios

of important lengths, which are purely geometrical in nature.
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Kinematic similarity

The motions of two systems are kinematically similar if homogeneous particles lie at
same points at same times. In a specific sense, the velocities at corresponding points are in
the same direction (i.e. same streamline patterns) and are related in magnitude by a constant
scale factor.

Dynamic similarity

When two flows have force distributions such that identical types of forces are
parallel and are related in magnitude by a constant scale factor at all corresponding points,
then the flows are dynamic similar. For a model and prototype, the dynamic similarity exists,
when both of them have same length-scale ratio, timescale ratio and force-scale (or mass-
scale ratio).

In order to have complete similarity between the model and prototype, all the
similarity flow conditions must be maintained. This will automatically follow if all the
important variables are included in the dimensional analysis and if all the similarity
requirements based on the resulting pi terms are satisfied. For example, in compressible
flows, the model and prototype should have same Reynolds number, Mach number and
specific heat ratio etc. If the flow is incompressible (without free surface), then same

Reynolds numbers for model and prototype can satisfy the complete similarity.
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