SCHOOL OF MECHANICAL ENGINEERING
DEPARTMENT OF MECHANICAL ENGINEERING

UNIT - I -Engineering Thermodynamics- SMEA1302

I. Basic Concepts and First Law of Thermodynamics

THERMODYNAMICS

Thermodynamics is a branch of Science that deals with the relationship among heat, work and properties of system which are in equilibrium with one another.

MACROSCOPIC AND MICROSCOPIC VIEW POINT

Macroscopic thermodynamics deals with the effects of action of many molecules concerned.

Eg. Pressure.

Pressure is the average rate of change of momentum due to all the molecular collisions made on a unit area.

Microscopic thermodynamics deals with the study of the behavior of the system by summing up the behavior of each molecule.

Eg. Air in a cylinder contains number of identical particles but moving with independent velocities.

THERMODYNAMIC SYSTEMS

i) Closed system.
ii) Open system.
iii) Isolated system.

(i) Closed system.

A system in which only energy transfer takes place but there is no mass transfer across it, is called as closed system.

Eg.piston, and cylinder without valves

Figure 1.1

(ii) Open system.

A system in which both mass transfer and energy transfer takes place is called as open system.

Eg. Steam turbines.

Figure 1.2

(iii) Isolated system.

A system in which neither mass transfer nor energy transfer takes place is called as Isolated system .
ie. The system is isolated from its surroundings
Eg. Thermo flask

Figure 1.3

Homogeneous and Heterogeneous systems

A system, which contains only a single phase, is called as Homogeneous system.
Eg. Mixture of air and water vapour.
A system, which consists of more than one phase, is called as Heterogeneous system.
Eg. Mixture of water and steam.

Pure substance

A Substance with homogeneous and invariable chemical composition even though change of phase takes place is called as pure substance.

Eg. Water.

Thermodynamic Equilibrium

If there is no Spontaneous change in the properties of a system after small disturbance, then the system is said to be in Thermodynamic equilibrium.

Eg. Temperature and pressure at all points of a system are same means that the system exist in thermodynamic equilibrium.

Properties of Steam.

Certain characteristics which describe the physical condition of a system are called properties of a system.

Eg. Volume, Pressure.

Intensive properties

Properties which are independent of mass are called Intensive properties.

Extensive properties

Properties which depend on mass are called Extensive properties.
Eg. Volume, energy, entropy.

State

State is one which describes the condition of a system at an instant of time.

Process

The succession of states passed through during a change of state is called path.
Process is nothing but the complete specification of path.

Figure 1.4

Cycle

It is defined as a series of state changes such that final state is identical with the initial state.

Figure 1.5

Quasi static process

When a process proceeds in a slow manner that the system remains infinitesimally close to an equilibrium state all times, it is called quasi static process.

Figure 1.6

Cycle Efficiency

$$
\eta_{\mathrm{CY}}=\quad \text { Work Output }
$$

Heat supplied.

Point and path functions

When a point on the graph is located by means of two properties these are caused point functions.

Eg. Pressure, temperature, volume.

$$
{ }_{1} \int^{2} \mathrm{dT}=\mathrm{T}_{2}-\mathrm{T}_{1}
$$

Properties which cannot be located on a graph by a point are path functions.
Eg. Heat, work

$$
{ }_{1} 1^{2} \mathrm{dw} \neq \mathrm{w}_{2}-\mathrm{w}_{1}
$$

Energy work and heat

Energy is the capacity to do work. It may be stored energy or energy in transition.

Work

Form of energy in transit resulting from a force acting through a given distance.

W -ve

Heat

Heat is the internal energy transferred from one body to another due to temperature difference.

Q+ve

system

Q-ve

Temperature

It is defined as the degree of intensity of heat or measure of hotness or coldness of a body.

Zeroth law of Thermodynamics

When a body A is in thermal equilibrium with a body B and also separately with a body C then B and C will be thermal equilibrium with each other.

It is a basis of temperature measurement.
Thermometer is used for this purpose.

Methods to find the temperature

i) The thermometer is made to contact with a system whose temperature $\mathrm{T}(\mathrm{x})$ is to be measured, and also in contact with an arbitatriously chosen standard system in an easily reproducable state where the temperature is $T(x 1)$.

$$
\text { then } \begin{aligned}
{[\mathrm{T}(\mathrm{x} 1)] /[\mathrm{T}(\mathrm{x})] } & =\mathrm{x}_{1} / \mathrm{x} \\
{[\mathrm{~T}(\mathrm{x} 2)] /[\mathrm{T}(\mathrm{x})] } & =\mathrm{x}_{2} / \mathrm{x}
\end{aligned}
$$

$$
[\mathrm{T}(\mathrm{X} 1)-\mathrm{T}(\mathrm{X} 2)] / \mathrm{T}(\mathrm{x})=\left(\mathrm{X}_{1}-\mathrm{X}_{2}\right) / \mathrm{X}
$$

$$
\left(T\left(x_{1}\right)-T(X)\right) X
$$

$$
\mathrm{X}_{1}-\mathrm{X}_{2}
$$

ii) Designating the triple point of water as $\mathrm{T}(\mathrm{t} 1)$ and with X_{t} be the value of thermodynamic property.

When the body whose temperature T is to be measured is placed in contact with water at its triple point,

Then, $\mathrm{T}=273.16 \mathrm{X} / \mathrm{X}_{\mathrm{t}}$

Pdv-work in various Quasi-static processes.

i) constant pressure process
this is also called as Isobaric process.

$$
\mathrm{W}_{1-2}={ }^{\mathrm{v} 2} \int_{\mathrm{v} 1} \mathrm{Pdv}=\mathrm{P}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)
$$

Eg. 1. Diesel cycle works on constant pressure process.
2. Heating of Ideal gas in a piston cylinder assembly

Figure 1.7

ii) Constant volume process

This is also called as Isochoric Process.

$$
W_{1-2}={ }^{v 2} \int_{\mathrm{v} 1} \mathrm{pdv}=0 \text { here } \mathrm{v}_{1}=\mathrm{v}_{2}
$$

Hence, there is no work transfer.

Figure 1.8

iii) Constant temperature process.

This is also called as Isothermal process.

$$
\begin{aligned}
& \mathrm{pv}=\mathrm{p}_{1} \mathrm{v}_{1}=\mathrm{p}_{2} \mathrm{v}_{2}=\mathrm{c} \\
& \mathrm{p}=\mathrm{p}_{1} \underline{\mathrm{v}}_{1} \\
& \mathrm{v} \\
& \mathrm{w}_{1-2}={ }^{\mathrm{v} 2} \int_{\mathrm{v} 1} \mathrm{pdv}={ }^{\mathrm{v} 2} \int_{\mathrm{v} 1} \underline{p}_{1} \mathrm{v}_{1} \mathrm{dv}
\end{aligned}
$$

$$
=p_{1} \mathrm{v}_{1} \quad \mathrm{v} 2_{\mathrm{v} 2} \mathrm{dv} / \mathrm{v}=\mathrm{p}_{1} \mathrm{v}_{1} \ln \left(\mathrm{v}_{2} / \mathrm{v}_{1}\right)=\mathrm{p}_{1} \mathrm{v}_{1} \ln \left(\mathrm{p}_{1} / \mathrm{p}_{2}\right)
$$

Eg. Condensation of steam takes place at constant temperature.
Isothermal compression of perfect gas in a cylinder.
iv) process in which $\mathrm{pv}^{\mathrm{n}}=\mathbf{c}$

(Polytropic, isentropic, adiabatic)

for adiabatic process $\mathrm{pv}^{\mathrm{v}}=\mathrm{c}$
Where,

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{p}}=1.005 \mathrm{kj} / \mathrm{KgK} \\
& \mathrm{C}_{\mathrm{v}}=0.718 \mathrm{kj} / \mathrm{kgK} \\
& C_{p} / C_{v}=1.4 \text { for air. } \\
& P v^{n}=p_{1} v_{1}{ }^{n}=p_{2} v_{2}=c \\
& \mathrm{P}=\mathrm{p}_{1} \underline{\mathrm{~V}}_{1} \underline{\mathrm{n}}^{\mathrm{n}} \\
& v^{n} \\
& \vee-->
\end{aligned}
$$

Eg. Compression, expansion processes of gas.

Specific heat and Latent heat

Specific heat of a substance is defined as the quantity of heat required to raise a unit mass of the substance through a unit raise in temperature.

For solids and liquids specific heat is independent of the process.
For gases if depends on the process C_{p} - specific heat at constant pressure $\mathrm{C}_{\mathrm{v}}-$ specific heat at constant Volume.

Latent heat

It is the quantity of heat required to cause a phase change in unit mass of a substance.

First law of Thermodynamics

When a system executes a cyclic process the algebraic sum of heat transfer equals to the algebraic sum of work transfer.

Consider the condition of the system
as represented by point 1 on pv diagram.
Q_{1}--> heat added to the system.

Q_{2}--> heat rejected from the system.
The system executes a cycle by following the path
$1-\mathrm{a}-2$ and returning back by the path $2-\mathrm{b}-1$.
$\mathrm{W}_{1} \rightarrow$ work done by the system (1-a-2-3-4-1)
$\mathrm{W}_{2} \rightarrow$ work done on the system (2-3-4-2-b-2)

$$
\begin{aligned}
\ldots \int \mathrm{dQ} & =\int \mathrm{dw} \\
\mathrm{Q}_{1-2} & =\mathrm{W}_{1-2}
\end{aligned}
$$

If " w " is in work unit, then $\int d v / J=\int d q$
$\mathrm{J} \rightarrow$ Mechanical equivalent of heat
When the system executes a process, $\mathrm{Q}-\mathrm{W}=\mathrm{E}$.

Corollary of I law of Thermodynamics

The energy of the system remains constant if the system is isolated from its surroundings as regards heat and work interactions.

Perpectual Motion Machine of Kind I (PMMKI)

The device which working in a cycle delivers work continuously without the addition of any heat. The only interaction with the surroundings is the delivering of work.

It violates the First law of Thermodynamics and hence it is impossible.

Steady Flow Energy Equation

Steady flow means that rate of flow of mass and energy across the control surface are constant with respect to time

Figure 1.9

According the law of conservation of mass, the mass flow rate entering must equal to the mass flow rate leaving. ie. $\mathrm{m}_{1=} \mathrm{m}_{2}$.

$$
\text { ie. } A_{1} V_{1} / v_{1}=A_{2} V_{2} / v_{2} \quad \text { (Continuity equation) }
$$

According to the law of conservation of energy the total rate of flow of all energy streams entering the control volume must equal to the total rate of flow all energy streams leaving the control volume.

$$
\text { ie. } \mathrm{m}_{1} \mathrm{e}_{1}+\mathrm{dQ} / \mathrm{dt}=\mathrm{m}_{2} \mathrm{e}_{2}+\mathrm{dw} / \mathrm{dt}
$$

where,

$$
\mathrm{dw} / \mathrm{dt}=\mathrm{dw} / \mathrm{dt}-\mathrm{p}_{1} \mathrm{v}_{1} \mathrm{dm}_{1} / \mathrm{dt}+\mathrm{p}_{1} \mathrm{v}_{1} \mathrm{dm}_{2} / \mathrm{dt},
$$

where,
dwx/dt $-\rightarrow$ Shaft work
$\mathrm{p}_{1} \mathrm{v}_{1} \mathrm{dm}_{1} \rightarrow$ displacement workdone by the fluid of mass dm , at inlet. (-ve indicates workdone on the system.)
$\mathrm{p}_{2} \mathrm{~V}_{2} \mathrm{dm}_{2} \rightarrow$ displacement workdone by the fluid of mass dm_{2} at outlet. (+ ve indicates work is done by the system)
$\mathrm{e} \quad \rightarrow$ Specific energy
$\mathrm{e} \quad \rightarrow \mathrm{v}^{2} / 2+\mathrm{zg}+\mathrm{u}$

$$
\begin{aligned}
& \quad \therefore \mathrm{m}_{1}\left(\mathrm{v}_{1}^{2} / 2+\mathrm{z}_{1} \mathrm{~g}+\mathrm{u}_{1}\right)+\mathrm{m}_{1} \mathrm{p}_{1} \mathrm{v}_{1}+\mathrm{dQ} / \mathrm{dt} \\
& \quad=: . \mathrm{m}_{2}\left(\mathrm{v}_{2}^{2} / 2+\mathrm{z}_{2} g+\mathrm{u}_{2}\right)+\mathrm{m}_{2} \mathrm{p}_{2} \mathrm{v}_{2}+\mathrm{dwx} / \mathrm{dt} \\
& \mathrm{~m}_{1}\left(\mathrm{~h}_{1}+\mathrm{v}_{1}^{2} / 2+\mathrm{z}_{1} \mathrm{~g}\right)+\mathrm{dQ} / \mathrm{dt}=\mathrm{m}_{2}\left(\mathrm{~h}_{2}+\mathrm{v}_{2}^{2} / 2+\mathrm{z}_{2} \mathrm{~g}\right)+\mathrm{dwx} / \mathrm{dt} \\
& \text { where, } \\
& \text { enthalpy } \quad \mathrm{h}=\mathrm{u}+\mathrm{pv}
\end{aligned}
$$

since, $\mathrm{m}_{1}=\mathrm{m}_{2}=\mathrm{m}=\mathrm{dm} / \mathrm{dt}$.

$$
\mathrm{h}_{1}+\mathrm{v}_{1}^{2} / 2+\mathrm{z}_{1} \mathrm{~g}+\mathrm{dQ} / \mathrm{dm}=\mathrm{h}_{2}+\mathrm{v}_{2}^{2} / 2+\mathrm{z}_{2} \mathrm{~g}+\mathrm{dwx} / \mathrm{dm}
$$

This is known as S.F.E.E.

Problems.

1. Air at 5 bar and $30^{\circ} \mathrm{C}$ is expanded till its volume is doubled adiabatically. Calculate the work done during the process.

Given : $p_{1}=5 \mathrm{bar}=5 * 10^{5} \mathrm{~N} / \mathrm{m}^{2}$

$$
\mathrm{T}_{1}=30^{\circ} \mathrm{C}=303 \mathrm{~K} .
$$

For air $\mathrm{R}=287 \mathrm{~J} / \mathrm{Kg} \mathrm{K}$.

$$
\text { Specific Volume } \mathrm{v}_{1}=\mathrm{RT}_{1} / \mathrm{p}_{1}=287 \times 303 / 5 \times 10^{5}=0.174 \mathrm{~m}^{3} / \mathrm{kg} .
$$

Pressure ratio.

$$
\mathrm{p}_{2} / \mathrm{p}_{1}=\left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)^{\gamma}=(1 / 2)^{\gamma} \Rightarrow \mathrm{p}_{2}=(1 / 2)^{\gamma} \times 5=1.89 \mathrm{bar} .
$$

work done

$$
\begin{aligned}
\mathrm{w} & =\gamma / \gamma-1 \mathrm{p}_{1} \mathrm{v}_{1}\left[1-\left(\mathrm{p}_{2} / \mathrm{p}_{2}\right)^{\gamma-1 / \gamma}\right] \\
& =1.4 / 0.4 \times 5 \times 100 \times 0.174\left[1-(1.89 / 5)^{0.4 / 1.4}\right] \\
& =73.89 \mathrm{~kJ} / \mathrm{kg} .
\end{aligned}
$$

2. A perfect gas for which ratio of specific heat is 1.4 occupies a volume of $0.3 \mathrm{~m}^{3}$ at 100 Kpa and $27^{\circ} \mathrm{C}$. The gas undergoes compression to $0.06 \mathrm{~m}^{3}$. Find the heat transfer during compression for the following methods of compression.
(a) $\mathrm{PV}=\mathrm{C}$
(b) isentropic. Compare the compression work. Molecular weight of gas is 28.

Given : $\mathrm{p}_{1}=100 \mathrm{kpa}, \mathrm{v}_{1}=0.3 \mathrm{~m}^{3}, \quad \mathrm{~T}_{1}=27^{\circ} \mathrm{C}=300 \mathrm{~K}$

$$
\mathrm{v}_{2}=0.06 \mathrm{~m}^{3}, \quad \gamma=\mathrm{c}_{\mathrm{p}} / \mathrm{c}_{\mathrm{v}}=1.4
$$

$\mathrm{pv}=\mathrm{c}$ isothermal compression
$\mathrm{w}_{1}=\mathrm{p}_{1} \mathrm{v}_{1} \ln \left(\mathrm{v}_{2} / \mathrm{v}_{1}\right)$
$=100 * 0.3 \ln (0.06 / 0.3)$
$=-48.28 \mathrm{~kJ}$
$p v^{y}=c$ isentropic compression

$$
\begin{gathered}
\mathrm{w}_{2}=\gamma / \gamma-1 \mathrm{p}_{1} \mathrm{v}_{1}\left[1-\left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)^{\gamma-1 / \gamma}\right. \\
\mathrm{p}_{2} / \mathrm{p}_{1}=\left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)^{\gamma}=\mathrm{p}_{2}=\mathrm{p}_{1}\left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)^{\gamma}=100(0.3 / 0.06)^{1.4}=951.8 \mathrm{kPa} \\
\mathrm{w}_{2}=1.4 / 0 / 4 \times 100 \times 0.3\left[1-(951.8 / 100)^{0.4 / 1.4}\right] \\
=-67.77 \mathrm{~kJ}
\end{gathered}
$$

comparison of work

$$
=\mathrm{w}_{1} / \mathrm{w}_{2}=48.28 / 67.77=0.712
$$

3. An ideal gas initially in a piston cylinder assembly at 1.5 bar and $0.2 \mathrm{~m}^{3}$. The gas is first heated at constant pressure until the volume is doubled. It is then allowed to expand isothermally until the volume is again doubled. Determine the work done by the gas during the process and plot the process on a p-v diagram. The initial temperature is 300 K for the gas.

Given :

$$
\mathrm{p}_{1}=1.5 \mathrm{bar} ; \mathrm{v}_{1}=0.2 \mathrm{~m}^{3} ; \mathrm{T}_{1}=300 \mathrm{k}
$$

work done by the gas during constant pressure process

$$
\begin{aligned}
\mathrm{w}={ }^{\mathrm{v} 2} \int_{\mathrm{v} 1} \mathrm{pdv} & =\mathrm{p}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right) \\
& =1.5 \times 100(2 \times 0.2-0.2)
\end{aligned}
$$

$$
=30 \mathrm{~kJ}
$$

Work done by the gas during isothermal process.

$$
\begin{aligned}
\mathrm{w}=\mathrm{p}_{1} \mathrm{~V}_{1}{ }^{\mathrm{v} 2} \int_{\mathrm{v} 1} \mathrm{dv} / \mathrm{v} & =\mathrm{p}_{1} \mathrm{v}_{1} \ln \mathrm{v}_{2} / \mathrm{v}_{1} \\
& =1.5 \times 100 \times 20.2 \times \ln (2) \\
= & 41.59 \mathrm{~kJ}
\end{aligned}
$$

4. An ideal gas is compressed through a pressure ratio of 10 and the temperature is increased from $30^{\circ} \mathrm{C}$ to $240^{\circ} \mathrm{C}$.

Find (1) Polytropic index
(2) work of compression/unit mass.

Given : $\mathrm{p}_{2} / \mathrm{p}_{1}=10, \mathrm{~T}_{1}=30^{\circ} \mathrm{C}=303 \mathrm{~K}, \mathrm{~T}_{2}=240^{\circ} \mathrm{C}=573 \mathrm{~K}$
(i) Polytropic index of compression

$$
\begin{aligned}
& \mathrm{T}_{2} / \mathrm{T}_{1}=\left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)^{\mathrm{n}-1 / \mathrm{n}} \\
& \ln \left(\mathrm{~T}_{2} / \mathrm{T}_{1}\right)=\mathrm{n}-1 / \mathrm{n} \ln \left(\mathrm{p}_{2} / \mathrm{p}_{1}\right) \\
& \mathrm{n}-1 / \mathrm{n}=\ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right) / \ln \left(\mathrm{p}_{2} / \mathrm{p}_{1}\right) \\
& \quad=\ln (573 / 303) / \ln (10)=0.229 \\
& \quad \mathrm{n}=1.3
\end{aligned}
$$

(ii) work of compression /unit mass

$$
\begin{aligned}
\mathrm{W} & =\mathrm{RT}_{1} \times \mathrm{n} / \mathrm{n}-1\left[1-\left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)^{\mathrm{n}-1 / \mathrm{n}}\right] \\
& =0.287 \times 303 \times 1.3 / 0.3\left[1-(10)^{0.3 / 1.3}\right] \\
& =-264.25 \mathrm{~kJ} / \mathrm{kg} .
\end{aligned}
$$

5. 1 kg of ideal gas is heated from $18^{\circ} \mathrm{C}$ to $93^{\circ} \mathrm{C}$. Assuming $\mathrm{R}=267 \mathrm{~J} / \mathrm{kg} \mathrm{K}$. Ratio of specific heats 1.18 . Heat transfer of 160 kJ . Find
(a) the specific heats
(b) change in internal energy
(c) change in enthalpy
(d) work transfer.

Given: $\mathrm{T}_{1}=18^{\circ} \mathrm{C}=291 \mathrm{k} \quad \mathrm{T}_{2}=93^{\circ} \mathrm{C}=366 \mathrm{k} \quad \mathrm{m}=1 \mathrm{~kg} \quad \mathrm{R}=264 \mathrm{~J} / \mathrm{kgK}$ $\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}=1.18 \quad \mathrm{Q}_{1-2}=160 \mathrm{~kJ}$.
(a) Specific heats C_{p} and C_{v}

$$
\mathrm{R}=\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=264
$$

$$
\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}=1.18
$$

$$
\mathrm{C}_{\mathrm{p}}=1.18 \mathrm{C}_{\mathrm{v}} .
$$

$1.18 \mathrm{C}_{\mathrm{v}}-\mathrm{C}_{\mathrm{v}}=264$
$\therefore \mathrm{C}_{\mathrm{v}}=1466.67 \mathrm{~J} / \mathrm{kgK}$.
$\mathrm{C}_{\mathrm{p}}=1.18 \mathrm{C}_{\mathrm{v}}=1730 \mathrm{~J} / \mathrm{kgK}$.
(b) change in internal energy

$$
\begin{aligned}
\Delta u & =m C_{v}\left(T_{2}-T_{1}\right) \\
& =1 \times 1.46(366-291) \\
& =109.5 \mathrm{~kJ} / \mathrm{kg} .
\end{aligned}
$$

(c) Change in enthalpy ($\Delta \mathrm{h}$)

$$
\begin{aligned}
\Delta \mathrm{h} & =\mathrm{m}_{\mathrm{p}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \\
& =1 \times 1.73(93-18) \\
& =129.75 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

(d) work transfer $\left(\mathrm{w}_{1-2}\right)$

$$
\begin{aligned}
\mathrm{w}_{1-2} & =\mathrm{Q}_{1-2}-\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right) \\
& =160-109.5=50.5 \mathrm{~kJ} / \mathrm{kg} .
\end{aligned}
$$

6. Calculate the change in internal energy, heat transfer and change in enthalpy for 0.5 kg of air expanding according to the law $\mathrm{pv}^{1-2}=\mathrm{C}$ from 1 Mpa and $300^{\circ} \mathrm{c}$ to 100 Mpa . What will be the workdone by air $\mathrm{R}=287 \mathrm{~J} / \mathrm{kgK}$.

$$
\text { Given : } \quad \mathrm{m}=0.5 \mathrm{~kg} \quad \mathrm{p}_{1}=1 \mathrm{Mpa} \quad \mathrm{~T}_{1}=300^{\circ} \mathrm{C}=573 \mathrm{~K} \quad \mathrm{p}_{2}=100 \mathrm{Mpa} .
$$

$$
\begin{aligned}
& \mathrm{R}=\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=287 \\
& \mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}=1.2 \Rightarrow \mathrm{C}_{\mathrm{p}}=1.25 \mathrm{C}_{\mathrm{v}} \\
& 1.25 \mathrm{C}_{\mathrm{v}}-\mathrm{C}_{\mathrm{v}}=287 \\
& \mathrm{C}_{\mathrm{v}}=1435 \mathrm{~J} / \mathrm{kgK} \\
& \mathrm{C}_{\mathrm{p}}=1722 \mathrm{~J} / \mathrm{kgK}
\end{aligned}
$$

$$
\mathrm{T}_{2} / \mathrm{T}_{1}=\left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)^{\mathrm{n}-1 / \mathrm{n}} \Rightarrow \mathrm{~T}_{2}=300(100 / 1)^{0.2 / 1.2}=646.3^{\circ} \mathrm{C}
$$

Change in internal Energy : $\Delta \mathrm{u}=\mathrm{mC}_{\mathrm{v}} \Delta \mathrm{T}$

$$
\begin{aligned}
& =0.5 \times 1.435(646.3-300) \\
& =248.47 \mathrm{KJ} .
\end{aligned}
$$

Change in enthalpy.

$$
\begin{aligned}
\Delta \mathrm{h} & =\mathrm{mC}_{\mathrm{p}} \Delta \mathrm{~T} \\
& =0.5 \times 1.722(646.3-300) \\
& =298.16 \mathrm{~kJ} .
\end{aligned}
$$

Work done by air

$$
\begin{aligned}
\mathrm{w} & =\mathrm{n} / \mathrm{n}-1 \mathrm{mRT}_{1}\left[1-\left(\mathrm{p}_{2} / \mathrm{p}_{1}\right)^{\mathrm{n}-1 / \mathrm{n}}\right] \\
& =1.2 / 0.2 \times 0.5 \times 2.87 \times 573\left[1-(100 / 1)^{0.2 / 1.2}\right]
\end{aligned}
$$

$$
=-569.5 \mathrm{~kJ} .
$$

Heat transferred

$$
\begin{aligned}
\mathrm{Q} & =\Delta \mathrm{u}+\mathrm{w} \\
& =248.47-569.5=-321.03 \mathrm{~kJ} .
\end{aligned}
$$

7. Calculate the power required by a compressor if air flowing at the rate of $0.9 \mathrm{~kg} / \mathrm{s}$ enters at $1.01 \mathrm{bar}, 25^{\circ} \mathrm{C}$ with a velocity of $70 \mathrm{~m} / \mathrm{s}$ and leaves at $2.02 \mathrm{bar}, 75^{\circ} \mathrm{C}$ with a velocity of $140 \mathrm{~m} / \mathrm{s}$. heat transferred from the air to the cooling water circulating around the compressor casing amounts to $16 \mathrm{~kJ} / \mathrm{kg}$ of air.

Given: $\quad \mathrm{p}_{1}=1.01 \mathrm{bar} \quad \mathrm{p}_{2}=2.02 \mathrm{bar} \quad \mathrm{T}_{1}=25^{\circ} \mathrm{C} \quad \mathrm{T}_{2}=75^{\circ} \mathrm{C}$
$\mathrm{m}=0.9 \mathrm{~kg} / \mathrm{s} \quad \mathrm{v}_{1}=70 \mathrm{~m} / \mathrm{s} \quad \mathrm{v}_{2}=140 \mathrm{~m} / \mathrm{s}$
by S.F.E.E.

$$
\begin{aligned}
& m_{1}\left(h_{1}+v_{1}{ }^{2} / 2+z_{1} g\right)+d Q / d t=m_{2}\left(h_{2}+v_{2}^{2} / 2+z_{2} g\right)+d w / d t \\
& d w / d t=-m\left[\left(h_{2}-h_{1}\right)+\frac{v_{2}{ }^{2}-v_{1}{ }^{2}}{2}+\left(z_{2}-z_{1}\right) g\right]+d Q / d t \\
& =-0.9\left[1.005(75-25)+\left(\frac{\left.\left.140^{2}-70^{2}\right) \times 10^{3}\right)-16}{2}\right.\right. \\
& =-63.89 \mathrm{~kW} .
\end{aligned}
$$

8. In a Steam power station, steam flows steadily through a 0.2 m diameters pipeline from the boiler to the turbine, at the boiler end, the steam conditions are found to be $\mathrm{p}=4 \mathrm{Mpa}$;
$\mathrm{t}=400^{\circ} \mathrm{C} ; \mathrm{h}=3213.6 \mathrm{~kJ} / \mathrm{kg}$ and $\mathrm{v}=0.073 \mathrm{~m}^{3} / \mathrm{kg}$. At the turbine and, the conditions are found to be $\mathrm{p}=35 \mathrm{Mpa} ; \mathrm{t}=392^{\circ} \mathrm{C}, \mathrm{h}=3202.6 \mathrm{~kJ} / \mathrm{kg}$. And $\mathrm{v}=0.084 \mathrm{~m}^{3}$. There is a heat loss of 8.5 $\mathrm{kJ} / \mathrm{kg}$ from the pipeline. Calculate steam flow state.

Given: $\quad d_{1}=0.2 \mathrm{~m}, \quad \mathrm{p}_{1}=4 \mathrm{Mpa}, \mathrm{t}_{1}=400^{\circ} \mathrm{C}, \mathrm{h}_{1}=3213.6 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{v}_{1}=0.073 \mathrm{~m}^{3} / \mathrm{kg} \quad \mathrm{p}_{2}=3.5 \mathrm{Mpa}, \quad \mathrm{t}_{2}=392^{\circ} \mathrm{C}, \quad \mathrm{h}_{2}=3202.6 \mathrm{~kJ} / \mathrm{kg}, \quad \mathrm{v}_{2}=0.084 \mathrm{~m}^{3} / \mathrm{kg}$
$\mathrm{dQ} / \mathrm{dt}=-8.5 \mathrm{~kJ} / \mathrm{kg}$ (Heat loss)
by S.F.E.E.

$$
\mathrm{h}_{1}+\mathrm{v}_{1}^{2} / 2+\mathrm{z}_{1} \mathrm{~g}+\mathrm{dQ} / \mathrm{dt}=\mathrm{h}_{2}+\mathrm{v}_{2}^{2} / 2+\mathrm{z}_{2} \mathrm{~g}+\mathrm{dw} / \mathrm{dt}
$$

Applying Continuity equation

$$
\begin{aligned}
{\mathrm{A} 1 \mathrm{~V}_{1} / \mathrm{v}_{1}}= & \mathrm{A}_{2} \mathrm{~V}_{2} / \mathrm{V}_{2} \\
\mathrm{~V}_{2} & =\mathrm{A}_{4} \times \mathrm{x} \quad \mathrm{~V}_{2} \times \mathrm{xV}_{1}=\frac{0.084}{\mathrm{~A}_{2}-} \quad \overline{\mathrm{v}_{1}} \quad \overline{0.073}=1.15 \mathrm{~V}_{1} .
\end{aligned}
$$

Here $\mathrm{A}_{1}=\mathrm{A}_{2}$ since cross-section of pipeline is same from boiler to turbine
And $\quad \mathrm{dw} / \mathrm{dm}=0 \mathrm{~h}_{1}+\mathrm{V}_{1}{ }^{2} / 2+\mathrm{dQ} / \mathrm{dm}=\mathrm{h}_{2}+\mathrm{V}_{2}{ }^{2} / 2+\mathrm{dw} / \mathrm{dm}$

$$
\frac{\mathrm{V}_{2}^{2}-\mathrm{V}_{1}^{2} \quad 10-3=\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right)+\mathrm{dQ} / \mathrm{dm}}{2}
$$

$$
=(3213.6-3202.6)-8.5
$$

$$
=2.5 \mathrm{~kJ} / \mathrm{kg} \text {. }
$$

$$
1.15 \mathrm{~V}_{1}^{2}-\mathrm{V}_{1}^{2}=5 \times 10^{-3}
$$

$$
\mathrm{V}_{1}^{2} \quad=15650 \mathrm{~m}^{2} / \mathrm{s}^{2}
$$

$$
\mathrm{V}_{1} \quad=125.1 \mathrm{~m} / \mathrm{s}
$$

Mass flow rate

$$
\begin{gathered}
\frac{\mathrm{m}=\underline{\mathrm{A}_{1} \mathrm{~V}_{1}}=}{\mathrm{v}_{1}} \frac{\Pi / 4(0.2)^{2} \times 125.1}{0.073} \\
\mathrm{~m}=53.8 \mathrm{~kg} / \mathrm{s}
\end{gathered}
$$

9. In many real processes, it is found that gases at low pressures fulfill the relationship pv^{n} $=\mathrm{C}$, where n and c are constants. If n is taken as 1.3. determine the work done by the air in
a piston cylinder arrangement when it expands from $0.05 \mathrm{~m}^{3}$ and 4 bar to a final pressure of 1bar, in kNm . Also prove the formula you have used.

$$
\begin{aligned}
& \text { Given : } \mathrm{pv}^{\mathrm{n}}=\mathrm{C}, \quad \mathrm{v}_{1}=0.05 \mathrm{~m}^{3}, \quad \mathrm{p}_{1}=4 \mathrm{bar}, \quad \mathrm{p}_{2}=1 \mathrm{bar}, \\
\mathrm{n} & =1.3 \\
\mathrm{p}_{1} \mathrm{v}_{1}{ }^{1.3}= & \mathrm{p}_{2} \mathrm{v}_{2}{ }^{1.3} \\
\mathrm{v}_{2}= & \left(\mathrm{p}_{1} / \mathrm{p}_{2}\right)^{1.3} \mathrm{xv}_{1} \\
= & 0.05(4 / 1)^{1.3}=0.14 \mathrm{~m}^{3}
\end{aligned}
$$

Work done by the gas and derivation of formula

$$
\begin{aligned}
& \mathrm{w}={ }^{\mathrm{v} 2} \int_{\mathrm{v} 1} \mathrm{pdv} \\
& \mathrm{pv}^{\mathrm{n}}=\mathrm{p}_{1} \mathrm{~V}_{1}{ }^{\mathrm{n}}=\mathrm{p}_{2} \mathrm{~V}_{2}{ }^{\mathrm{n}} \\
& \mathrm{p}=\mathrm{p}_{1} \mathrm{v}_{1} / \mathrm{v}^{\mathrm{n}} \\
& \mathrm{w}={ }^{\mathrm{v} 2} \int_{\mathrm{v} 1} \mathrm{p}_{1} \mathrm{v}_{1} / \mathrm{v}^{\mathrm{n}} \\
& =p_{1} v_{1}{ }^{n} v_{2} \int_{v 1} 1 / v^{n} d v \\
& =p_{1} v_{1}{ }^{n}\left[v^{-n+1} /-n+1\right]^{v 2}{ }_{v 1} \\
& =\mathrm{p}_{1} \mathrm{v}_{1}{ }^{\mathrm{n}} / 1-\mathrm{n}\left[\mathrm{v}_{2}{ }^{1-\mathrm{n}}-\mathrm{v}_{1}{ }^{1-\mathrm{n}}\right] \\
& =\mathrm{p}_{2} \mathrm{v}_{2}-\mathrm{p}_{1} \mathrm{v}_{1}=\mathrm{p}_{1} \mathrm{v}_{1}-\mathrm{p}_{2} \mathrm{v}_{2} \\
& \text { 1-n } n-1 \\
& =\underline{(4 \times 0.005-1 \times 0.145) 100} \\
& \text { 1.3-1 } \\
& =18.3 \mathrm{kNm} \text {. }
\end{aligned}
$$

10. Determine the ratio of work done during a quasi-static adiabatic process to that done during an isothermal process when the pressure ratio is 6 . The system contains an ideal gas which behaves as a simple substance, and the specific heat ratio is 1.67 . Also prove the formula you have used.

Given: $\quad \mathrm{p}_{1} / \mathrm{p}_{2}=6 ; \quad \mathrm{n}=\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}=1.67$

Work done
Adiabatic process

Isothermal process

$$
\begin{aligned}
\mathrm{w} & =\mathrm{p}_{1 \mathrm{v}_{1}}^{\mathrm{n} \mathrm{v} 2} \int_{\mathrm{v} 1} \mathrm{dv} / \mathrm{v} . \\
& =\mathrm{p}_{1} \mathrm{v}_{1} \ln \left(\mathrm{v}_{2} / \mathrm{v}_{1}\right) \\
& =\mathrm{p}_{1} \mathrm{v}_{1} \ln \left(\mathrm{p}_{1} / \mathrm{p}_{2}\right) \\
& =\mathrm{p}_{1} \mathrm{v}_{1} \ln 6 \\
& =1.79 \mathrm{p}_{1} \mathrm{v}_{1}
\end{aligned}
$$

$$
\mathrm{w}_{1}=0.765 \mathrm{p}+\mathrm{w}_{1}=0.427
$$

$$
\overline{\mathrm{w}_{2}}=\overline{1.79 \mathrm{p} \mathrm{w}_{1}}
$$

Internal Energy as Property

Internal energy is the energy stored within the body itself.

Consider a system executes a cycle by following the path a from state 1 to state 2 and the path b from state 2 to 1 .

$$
\mathrm{Qa}=\Delta \mathrm{Ea}+\mathrm{Wa}
$$

$$
\begin{aligned}
& \mathrm{w}={ }^{\mathrm{v} 2} \int_{\mathrm{v} 1} \mathrm{p}_{1} \mathrm{v}_{1}{ }^{\mathrm{n}} / \mathrm{v}^{\mathrm{n}} \mathrm{dv} . \\
& =p_{1} v_{1}\left[v^{-n+1} / n+1\right]^{\mathrm{v} 2}{ }_{v 1} \\
& =p_{1} \mathrm{v}_{1}{ }^{\mathrm{n}}\left[\mathrm{v}_{2}^{1-\mathrm{n}}-\mathrm{v}_{1}{ }^{1 \mathrm{n}}\right] \\
& \overline{1-n} \\
& \mathrm{w}_{1}=\mathrm{p}_{1} \mathrm{v}_{1}-\mathrm{p}_{2} \mathrm{v}_{2} \\
& \text { n-1 } \\
& =\underline{p_{1} \mathrm{~V}_{1}} \quad\left[1-(1 / 6)^{0.67 / 1.6}\right] \\
& \text { 1.67-1 } \\
& \mathrm{w}_{1}=0.765 \mathrm{p}_{1} \mathrm{v}_{1}
\end{aligned}
$$

For path $\mathrm{B} \quad \mathrm{Qb}=\Delta \mathrm{Eb}+\mathrm{Wb}$

As per the first law of thermodynamics

$$
\begin{gathered}
\left(\sum \mathrm{w}\right)_{\mathrm{cy}}=\left(\sum \mathrm{Q}\right)_{\mathrm{cy}} \\
\mathrm{Wa}+\mathrm{Wb}=\mathrm{Qa}+\mathrm{Qb} \\
\mathrm{Qa}-\mathrm{Qb}=\mathrm{Wb}-\mathrm{Qb} \\
\Delta \mathrm{Ea}+\mathrm{Wa}-\mathrm{Wa}=\mathrm{Wb}-\Delta \mathrm{Wb}-\mathrm{Wb}
\end{gathered}
$$

$$
\Delta \mathrm{Ea}=-\Delta \mathrm{Eb}
$$

Similarly considering the path b \& c

$$
\Delta \mathrm{Eb}=\Delta \mathrm{Ec} .
$$

Hence it is proved that the change in energy between two states of a is same irrespective of the path of the system it follows.

Energy has a definite value at each state of the system. Hence it is a property of the system.

Internal Energy is a function of temperature only.

Enthalpy

It is the sum of internal energy and the flow work.

$$
\mathrm{h}=\mathrm{u}+\mathrm{pv}
$$

It is heat transfer during constant pressure process

$$
\mathrm{dQ}=\mathrm{dE}+\mathrm{W}
$$

$$
=\mathrm{du}+\mathrm{pdv}
$$

At constant pressure

$$
\begin{aligned}
& \mathrm{pdv}=\mathrm{d}(\mathrm{pv}) \\
& \begin{aligned}
(\mathrm{dQ}) \mathrm{p} & = \\
& d u+\mathrm{d}(\mathrm{pu}) \\
& =\mathrm{d}(\mathrm{u}+\mathrm{pu})
\end{aligned} \\
&(\mathrm{dQ}) \mathrm{p}=\mathrm{dh} .
\end{aligned}
$$

For ideal gas $\mathrm{dh}=\mathrm{Cp}\left(\mathrm{T}_{2}-\mathrm{T}_{2}\right)$
It is a property of a system.

For ideal gas it is a function of temperature only.

Specific heat at constant pressure.

It is defined as the rate of change of enthalpy with respect to temperature when pressure is constant.

$$
\mathrm{Cp}=(\mathrm{dh} / \mathrm{dT})_{\mathrm{p}}
$$

For ideal gas

$$
(\mathrm{dh})_{\mathrm{p}}={ }^{\mathrm{T} 2} \int_{\mathrm{T} 2} \mathrm{Cp} \mathrm{dT} .
$$

From the I law of thermodynamics

$$
\begin{aligned}
& d \mathrm{Q}=\mathrm{du}+\mathrm{pdv} \\
& \mathrm{~h}=\mathrm{u}+\mathrm{pv} \\
& \mathrm{dh}=\mathrm{du}+\mathrm{pdv}+\mathrm{vdp}
\end{aligned}
$$

$$
\begin{aligned}
& \text { dh }=d Q+v d p \\
& \text { so, } \quad d \mathrm{Q}=\mathrm{dh}-\mathrm{vdp} \\
& (\mathrm{dQ})_{\mathrm{p}}=\mathrm{dh} \\
& \left(\mathrm{Q}_{\mathrm{p}}\right)=\mathrm{B}(\Delta \mathrm{~h})_{\mathrm{p}} \\
& \quad \mathrm{Qp}={ }^{\mathrm{T} 2} \int_{\mathrm{T} 1} \mathrm{Cp} \mathrm{dT} .
\end{aligned}
$$

Cp is the property of the systm.

Specific Heat at constant Volume

It is defined as the rate of change of specific internal energy with respect to temperature when the volume is constant.

$$
\mathrm{Cv}=(\mathrm{du} / \mathrm{dT})_{\mathrm{v}}
$$

For ideal gas

$$
\mathrm{du}={ }^{\mathrm{T} 2} \mathrm{~J}_{\mathrm{T} 1} \mathrm{CvdT} .
$$

From the I Law of thermodynamics

$$
\begin{aligned}
& d Q=d u+p d v \\
& (d Q)_{v}=d u \\
& (d Q)_{v}={ }^{\mathrm{T} 2} \int_{\mathrm{T} 1} \mathrm{CvdT}
\end{aligned}
$$

Cv is the property of the system.

Problems

1. Air at 0.8 bat and $20^{\circ} \mathrm{C}$, enters a compressor of a jet plane with a velocity of $200 \mathrm{~m} / \mathrm{s}$ and leaves the compressor at a pressure of 3.2 bar , a temperature of $200^{\circ} \mathrm{C}$ and velocity of $250 \mathrm{~m} / \mathrm{s}$. The cross-sectional area of the inlet to the compressor is $0.18 \mathrm{~m}^{2}$. Determine the power required to derive the compressor if the process adiabatic.

$$
\begin{aligned}
& \text { Given : } \quad \mathrm{p}_{1}=0.8 \mathrm{bar}, \mathrm{~T}_{1}=20^{\circ} \mathrm{C}=293 \mathrm{~K}, \quad \mathrm{~V}_{1}=200 \mathrm{~m} / \mathrm{s} \\
& \mathrm{p}_{2}=3.2 \mathrm{bar}, \mathrm{~T}_{2}=200^{\circ} \mathrm{C}=473 \mathrm{~K}, \mathrm{~V}_{2}=250 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~A}_{1}=0.08 \mathrm{~m}^{2} . \quad \text { Power }=\text { ? } \\
& \mathrm{p}_{1} \mathrm{v}_{1}=\mathrm{RT}_{1} \\
& \mathrm{v}_{1}=\mathrm{RT}_{1}=287 \times 293=1.05 \mathrm{~m}^{3} \mathrm{~kg} . \\
& \mathrm{p}_{1} \quad 0.85 \times 10^{5} \\
& \text { Mass flow rate } \\
& \mathrm{m}=\mathrm{A} 1 \mathrm{~V}_{1}=0.08 \times 200=15.238 \mathrm{~kg} / \mathrm{s} . \\
& \overline{\mathrm{v}_{1}} \xlongequal[1.05]{ } \\
& \mathrm{p}_{2} \mathrm{~V}_{2}=\mathrm{RT}_{2} \\
& \mathrm{v}_{2}=\mathrm{RT}_{2}=287 \times 473=0.424 \mathrm{~m}^{3} / \mathrm{kg} . \\
& \mathrm{p}_{2} \quad 3 . \overline{25 \times 10^{5}}
\end{aligned}
$$

Applying S.F.E.E to find power.

$$
\begin{aligned}
& \mathrm{m}\left(\mathrm{~h}_{1}+\mathrm{v}_{1}^{2} / 2+\mathrm{z}_{1} \mathrm{~g}\right)+\mathrm{dQ} / \mathrm{dt}=\mathrm{m}\left(\mathrm{~h}_{2}+\mathrm{v}_{2}^{2} / 2+\mathrm{z}_{2} \mathrm{~g}\right)+\mathrm{dw} / \mathrm{dt} \\
& \mathrm{~m}\left(\mathrm{u}_{1}+\mathrm{p}_{1} \mathrm{v}_{1}+\mathrm{V}_{1}^{2} / 2+\mathrm{z}_{1} \mathrm{~g}\right)=\mathrm{m}\left(\mathrm{u}_{2}+\mathrm{p}_{2} \mathrm{v}_{2}+\mathrm{V}_{2}^{2} / 2+\mathrm{z}_{2} \mathrm{~g}\right)+\mathrm{dw} / \mathrm{dt} \\
& \mathrm{dw} \quad=\mathrm{m}\left[\mathrm{u}_{1}+\mathrm{p}_{1} \mathrm{v}_{1}-\mathrm{u}_{2}-\mathrm{p}_{2} \mathrm{v}_{2}+\frac{\left.\left(\mathrm{V}_{1}^{2}-\mathrm{V}_{2}^{2}\right) \times 10^{-3}\right]}{2}\right. \\
& \overline{\mathrm{dt}} \\
& =15.238\left[0.718(293-473)+(0.8 \times 100 \times 1.05)-(3.2 \times 100 \times 0.424)+\left(200^{2}-50^{2}\right) / 2 \times 10^{-3}\right]
\end{aligned}
$$

Power dw/dt =-192.17kW.
2. A closed system undergoes an application adiabatic process during which 90 kJ are transferred from the surroundings to the system and the internal energy change by $200 \mathrm{~J} / \mathrm{kg}$. Find the mass of fluid in the system.

$$
\text { Given: } \quad d Q=0, \quad d w=-90 \mathrm{~kJ} . \quad d u=20 \mathrm{~kJ} / \mathrm{kg} .
$$

By I law of Thermodynamics

$$
\begin{aligned}
& d Q=d u+w \\
& d u=-w / \mathrm{m}^{\circ} \\
& \quad \mathrm{m}=90 / 20=4.5 \mathrm{~kg} .
\end{aligned}
$$

3. Steam flows through a turbine the rate of $4000 \mathrm{~kJ} / \mathrm{kg}$. With inlet and outlet enthalpy values of 2800 and $2100 \mathrm{~kJ} / \mathrm{kg}$ respectively. Inlet and outlet velocities are 20 and $300 \mathrm{~m} / \mathrm{s}$, respectively. Heat loss to the surroundings amounts to $300000 \mathrm{~kJ} / \mathrm{hr}$. Calculate the power outlet.

$$
\begin{aligned}
\text { Given : } \mathrm{Q} / \mathrm{m}=4000 \mathrm{~kJ} / \mathrm{kg}, & \mathrm{~h}_{1}=2800 \mathrm{~kJ} / \mathrm{kg} \quad \mathrm{~h}_{2}=2100 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{~V}_{1}=20 \mathrm{~m} / \mathrm{s}, & \mathrm{~V}_{2}=300 \mathrm{~m} / \mathrm{s}, \quad \mathrm{Q} / \mathrm{s}=300000 \mathrm{~kJ} / \mathrm{hr} .=83.33 \mathrm{kj} / \mathrm{s}
\end{aligned}
$$

$$
\text { Mass } \mathrm{m}=83.33 / 4000=0.021 \mathrm{~kg} / \mathrm{s} \text {. }
$$

Applying Continuity equation

$$
\begin{aligned}
& \mathrm{m}\left(\mathrm{~h}_{1}+\mathrm{V}_{1}{ }^{2} / 2+\mathrm{z}_{1} \mathrm{~g}\right)+\mathrm{dQ} / \mathrm{dt}=\mathrm{m}\left(\mathrm{~h}_{2}+\mathrm{V}_{2}^{2} / 2+\mathrm{z}_{2} \mathrm{~g}\right)+\mathrm{dw} / \mathrm{dt} \\
& \begin{aligned}
\mathrm{dw} / \mathrm{dt} & =\mathrm{m}\left[\left(\mathrm{~h}_{1}-\mathrm{h}_{2}\right)+\left(\mathrm{V}_{1}{ }^{2}-\mathrm{V}_{2}^{2}\right) / 2 \times 10^{-3}\right]+\mathrm{dQ} / \mathrm{dt} \\
& =0.21\left[(2800-2100)+\left(20^{2}-300^{2}\right) \times 10^{-3}\right]-83.33 \\
& =-69.6 \mathrm{~kW} .
\end{aligned}
\end{aligned}
$$

SCHOOL OF MECHANICAL ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

UNIT - II- Engineering Thermodynamics - SMEA1302

II. Second Law of Thermodynamics and Entropy

Distinction between Heat and Work

Figure 2.1

The complete conversion of heat into work is impossible.

Heat Engine Cycle

A heat engine cycle is a thermodynamic cycle in which there is a net heat transfer to the system and a net work transfer from the system. Here the heat engine is the system.

Figure 2.2

Consider,
$\mathrm{Q}_{1} \rightarrow$ heat transfer to the engine
$\mathrm{w}_{1} \rightarrow$ work done by the system
$\mathrm{Q}_{2} \rightarrow$ heat transfer from the system
$\mathrm{W}_{2} \rightarrow$ work done on the system.
Net heat transfer

$$
\mathrm{Q}_{\mathrm{net}}=\mathrm{Q}_{1}-\mathrm{Q}_{2}
$$

Net work transfer

$$
\mathrm{W}_{\text {net }}=\mathrm{w}_{1}-\mathrm{W}_{2}
$$

As per I law of Thermodynamics

$$
\begin{aligned}
& \int \mathrm{dQ}=\int \mathrm{dw} \\
& \mathrm{Q}_{\mathrm{net}}=\mathrm{w}_{\mathrm{net}} \\
& \mathrm{Q}_{1}-\mathrm{Q}_{2}=\mathrm{w}_{1}-\mathrm{w}_{2}
\end{aligned}
$$

Efficiency of engine

$$
\eta=\text { Net workdone of the engine }
$$

Total heat input to the cylce
$=\mathrm{w}_{\text {net }} / \mathrm{Q}_{1}$

Kelvin-Planck Statement of Second Law

It is impossible for a heat engine to produce net work in a complete cycle if it exchanges heat only with bodies at a single fixed temperature.

Efficiency $\eta=w_{\text {net }} / Q_{1}$
η is always less than unity because heat transfer to the system cannot be completely converted into work transfer.

So, $\eta \neq 100 \%$. There is always heat rejection.

Figure 2.3
The thermal energy reservoir from which heat is transferred to the system is called source.
The thermal energy reservoir to which heat is rejected from the system is called sink.
To produce net work, heat engine has to exchange heat with two reservoir.

Perpetual Motion Machine of second kind

Heat engine which will produce net work in a complete cycle by exchanging heat with only one reservoir is called PMMK. It violates Kelvin-Plank statement.

Figure 2.4

Clasius Statement

It is impossible to construct a device which, operating in a cycle, will produce no effect other than the transfer of heat from a cooler to a hotter body.

Refrigerator

Refrigeration is the process of maintaining the temperature of a body below that of its surroundings.

The working fluid used for this purpose is called Refrigerant the equipment used is called Refrigerator.

The refrigerant is compressed to high pressure and high temperature in the compressor and it gets cooled in the condenser at constant pressure.

Figure 2.5
The high pressure refrigerant vapour is expanded in the expander and the required quantity of refrigerant evaporates in the evaporator by absorbing heat from the space to be cooled and the cycle is repeated.

Co-efficient of Performance (C.O.P)

Figure 2.6
$\operatorname{COP}=\frac{\mathrm{Q}_{2}}{\mathrm{Q}_{1-}-\mathrm{Q}_{2}}$
COP is always greater than Unity.

Heat Pump

Heat pump is a device which maintains temperature of a body greater that of its surroundings.

Figure 2.7
$(\mathrm{COP})_{\text {H.P }}=(\mathrm{COP})_{\text {ref }}+1$

Thermal Energy Reservoir (TER)

It is a large body of infinite heat capacity capable of absorbing or rejecting an unlimited quantity of heat without suffering appreciable changes in its thermodynamics coordinates.

Mechanical Energy Reservoir (MER)

It is a large body enclosed by an adiabatic impermeable wall capable storing work as potential energy or kinetic energy.

Reversibility

A reversible process is one which performed in a manner that at the conclusion of the process, the system and surroundings are return to their initial states without producing any change in the rest of the universe.

It is an ideal process.

Figure 2.8

Irreversibility

A irreversible process is one which is preformed in a manner that at the conclusion of the process, the system and surroundings are not return back to their initial states.

Causes. 1) lack of equilibrium
2) Dissipative effects.

Carnot Cycle

It Is a reversible cycle. Hence it is ideal only. It consists of two isentropic process and two isothermal p

Figure 2.9

$1-2 \rightarrow$ Reversible isothermal process

consider a cylinder is made to contact with a diathermic cover. Hence Q_{1} enters the system at T_{1}.

$$
\mathrm{Q}=\mathrm{u}_{2}-\mathrm{u}_{1}+\mathrm{w}_{1-2}
$$

2-3 $\boldsymbol{\rightarrow}$ Isentropic process.

Diathermic cover is replaced by an adiabatic cover,
Hence $\mathrm{Q}_{1}=0$

$$
0=u_{3}-u_{2}+w_{2-3}
$$

3-4 \rightarrow Reversible isothermal process

Diathermic cover is placed in place of adiabatic cover. Hence Q_{2} is rejected from the system.

$$
-Q=u_{4}-u_{3}-w_{3-4}
$$

4-1 $\boldsymbol{\rightarrow}$ Isentropic process

Adiabatic cover is placed in place of diathermic cover.

$$
0=u_{1-} u_{4^{-}} w_{4-1}
$$

By adding all the equations, we get

$$
\begin{aligned}
\mathrm{Q}_{1}-\mathrm{Q}_{2} & =\mathrm{u}_{2}-\mathrm{u}_{1}+\mathrm{w}_{1-2}+\mathrm{u}_{3}-\mathrm{u}_{2}+\mathrm{w}_{2-3}+\mathrm{u}_{4}-\mathrm{u}_{3}-\mathrm{w}_{3-4}+\mathrm{u}_{1}-\mathrm{u}_{4}-\mathrm{w}_{4-1} . \\
\mathrm{Q}_{1}-\mathrm{Q}_{2} & =\left(\mathrm{w}_{1-2}+\mathrm{w}_{2-3}\right)-\left(\mathrm{w}_{3-4}-\mathrm{w}_{4-1}\right) \\
& \text { ie. } \quad \sum_{\mathrm{cy}} \mathrm{Q}_{\mathrm{n}}=\sum_{\mathrm{cy}} \mathrm{w}_{\mathrm{n}}
\end{aligned}
$$

Carnot Heat Engine

A cycle heat engine operating on Carnot cycle is called Carnot heat engine.
Flow diagram of Carnot cycle

Carnot heat engine
Reversed Carnot heat engine.
Figure 2.10

Carnot's Theorem

All heat engines operating between a given constant temperature source and a given constant temperature sink, none has a higher efficiency than a reversible engine.

Proof:-

Consider (H.E) $)_{A}$ and $(\mathrm{H} . \mathrm{E})_{\mathrm{B}}$ are the heat engines operating between T_{1} and T_{2}.

Figure 2.11

Consider $(\mathrm{HE})_{A}$ as any heat engine and $(\mathrm{HE})_{\mathrm{B}}$ as reversible heat engine. For a reversible the efficiency should be high ie. $\mathrm{D}_{\mathrm{A}}>\mathrm{D}_{\mathrm{B}}$. For proof assume $\mathrm{D}_{A}<\mathrm{D}_{\mathrm{B}}$ forsame heat absorption ie. $Q_{1 A}=Q_{1 B}$.

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{A}}>\mathrm{D}_{\mathrm{B}} \\
& \mathrm{w}_{\mathrm{A}}>\mathrm{w}_{\mathrm{B}} \\
& \overline{\mathrm{Q}_{1 \mathrm{~A}}}>\overline{\mathrm{Q}_{1 \mathrm{~B}}} \\
& \\
& \\
& \mathrm{w}_{\mathrm{B}}<\mathrm{w}_{\mathrm{A}}
\end{aligned}
$$

Now assume $(\mathrm{HE})_{\mathrm{B}}$ be reversed. Hence through the magnitudes remain same, the directions are changed.
$w_{A}>w_{B}:$ Remaining part of w_{n} is used to drive the reversed (HE) $)_{B}$

Where, $\mathrm{Q}_{1 \mathrm{~A}}=\mathrm{Q}_{2 \mathrm{~B}}$

Figure 2.12
Since $\mathrm{Q}_{1 \mathrm{~A}}=\mathrm{Q}_{2 \mathrm{~B}}$, the source maybe be eliminated It violates the Kelvin-planck statement. Hence it is impossible.

Figure 2.13

$$
\mathrm{y}_{\mathrm{B}}>\mathrm{y}_{\mathrm{A}}
$$

Hence the proof.

$$
\begin{aligned}
& \operatorname{Rev}=\mathrm{y}_{\max }= \\
& \frac{\mathrm{Q}_{1}-\mathrm{Q}_{2}}{\mathrm{Q}_{1}}=\quad \frac{\mathrm{T}_{1}-\mathrm{T}_{2}=}{\overline{\mathrm{T}_{1}}} \quad \overline{\mathrm{Q}_{1}}
\end{aligned}
$$

For a reversible refrigerator

$$
\begin{gathered}
\frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \\
(\mathrm{COP})_{\mathrm{ref}}=\begin{array}{c}
\mathrm{Q}_{2} \\
\overline{\mathrm{Q}_{1}-\mathrm{Q}_{2}} \\
=\mathrm{T}_{2} \\
\overline{\mathrm{~T}_{1}-\mathrm{T}_{2}}
\end{array}(\mathrm{COP})_{\mathrm{HP}}= \\
\overline{\mathrm{Q}_{1}-\mathrm{Q}_{2}} \\
\overline{\mathrm{~T}_{1}-\mathrm{T}_{2}}
\end{gathered}
$$

Problems.

1. An inventor claims that an engine opening between 1000 k and 600 K develops 400 kJ work while 1200 kJ are transferred during heat addition. Prove that the engine is irreversible.

Given : $T_{1}=1000 K, \quad T_{2}=600 K, \quad w=400 \mathrm{~kJ}, \quad \mathrm{Q}_{1}=1200 \mathrm{~kJ}$.

For a reversible heat engine

Here,
$\mathrm{y}=\underline{\mathrm{Q}_{1}-\mathrm{Q}_{2} \neq \underline{\mathrm{T}_{1}-\mathrm{T}_{2}}}$

Q1 T_{1}

Hence the engine is irreversible.
2. A heat engine is supplied with $278 \mathrm{~kJ} / \mathrm{s}$ of heat constant fixed temperature of $283^{\circ} \mathrm{C} .130 \mathrm{~kJ} / \mathrm{s}$ of heat is rejected to a sink at temperature of $5^{\circ} \mathrm{C}$. Identify whether the cycle is reversible or irreversible or impossible one.

Given : $\mathrm{Q}_{1}=278 \mathrm{~kJ} / \mathrm{s}, \mathrm{Q}_{2}=130 \mathrm{~kJ} / \mathrm{s}, \mathrm{T}_{1}=283^{\circ} \mathrm{c}$,

Hence it is a irreversible engine.
3. The efficiency of a carnot engine discharging to a cooling pond at $27^{\circ} \mathrm{C}$ is 40%. If the cooling pond receives $1515 \mathrm{~kJ} / \mathrm{min}$. What is the temperature of source and power rating of the engine.

$$
\begin{gathered}
\eta=\frac{T_{1}-T_{2}}{T_{1}} \\
0.4=T_{1}-300 \Rightarrow T_{1}=500 \mathrm{~K} . \\
\eta=\frac{\mathrm{Q}_{1}-\mathrm{Q}_{2}}{\overline{Q_{1}}}=\frac{\mathrm{w}}{\mathrm{Q}_{1}} \\
0.4=\frac{\mathrm{Q}_{1}-1515}{\frac{Q_{1}}{Q_{1}}}=\mathrm{Q}_{1}=2625 \mathrm{~kJ} / \mathrm{min} .
\end{gathered}
$$

Temperature of Source $\mathrm{T}_{1}=500 \mathrm{~K}$.
Power rating of the engine $\mathrm{w}=\mathrm{Q}_{1}-\mathrm{Q}_{2}$

4. (i) A reversible heat engine operates between systems at constant temperature of $150^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$. Evaluate the efficiency of the engine. (ii) The work output from the engine is 2000 Nm . Evaluate the heat transfer from the system at $150^{\circ} \mathrm{C}$ and the heat rejected to the system at $10^{\circ} \mathrm{C}$. (iii) The above engine is reversed and operates as a heat pump between the same system. Evaluate the power input required when the heat transfer rate from the system at $10^{\circ} \mathrm{C}$ is 40 kJ .
(i) For a reversible heat engine.

$$
\begin{aligned}
& \eta_{\text {н.E }}=1-\mathrm{T}_{2}=1-283=33 \% \text {. } \\
& \mathrm{T}_{1} \quad 423 \\
& \text { (ii) } \eta_{\text {H.E }}=\mathrm{w}=0.33 \Rightarrow \mathrm{Q}_{1}=2000=6060.6 \mathrm{Nm} \text {. } \\
& \mathrm{Q}_{1} \\
& 0.33
\end{aligned}
$$

Heat transfer from the system at $150^{\circ} \mathrm{C}$

$$
\mathrm{Q}_{1}=6060.6 \mathrm{Nm} .
$$

Heat rejected to the system at $10^{\circ} \mathrm{C}$

$$
\mathrm{Q}_{2}=\mathrm{Q}_{1}-\mathrm{w}=6060.6-2000=4060.6 \mathrm{Nm} .
$$

(iii) operates as a heat pump.

$$
\begin{gathered}
(\mathrm{COP})_{\mathrm{H} . \mathrm{P}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{1}-\mathrm{T}_{2}} \frac{423}{423-203}=3.02 . \\
(\mathrm{COP})_{\mathrm{H} . \mathrm{P}}=\mathrm{Q}_{1}
\end{gathered}
$$

$$
3.02=\frac{\mathrm{Q}_{1}-\mathrm{Q}_{2}}{\frac{\mathrm{Q}_{1}-40}{}} \Rightarrow \mathrm{Q}_{1}=59.8 \mathrm{kw}
$$

Power i / p to the system $\mathrm{w}=\mathrm{Q}_{1}-\mathrm{Q}_{2}$

$$
=59.8-40=19.8 \mathrm{~kW}
$$

5. Two reversible heat engine A and B are arranged in series. A rejecting heat directly to B. Engine A receives 200 kJ at temperature of $421^{\circ} \mathrm{C}$. From a hot source while engine B is in communication, with a cold sink at temperature of $4.4^{\circ} \mathrm{C}$. If the work output of A is twice that of B. Find(i) the intermediate temperature between A and B (ii) the η of each engine and (iii) heat rejected to cold sink.

Given : $\mathrm{T}_{1}=421^{\circ} \mathrm{C}, \mathrm{Q}_{1}=200 \mathrm{~kJ} . \mathrm{T}_{2}=4.4^{\circ} \mathrm{C} . \mathrm{w}_{\mathrm{a}}=2 \mathrm{~W}_{\mathrm{b}}$
Work done of engine A
$\mathrm{W}_{\mathrm{A}}=\mathrm{Q}_{1}-\mathrm{Q}_{3}=2\left(\mathrm{Q}_{3}-\mathrm{Q}_{2}\right)$
ie. $3 \mathrm{Q}_{3}-2 \mathrm{Q}_{2}=\mathrm{Q}_{1}=200$
For reversible engine

$$
\begin{gathered}
\mathrm{T}_{1}-\mathrm{T}_{3}=2\left(\mathrm{~T}_{3}-\mathrm{T}_{2}\right) \\
3 \mathrm{~T}_{3}-2 \mathrm{~T}_{2}=\mathrm{T}_{1} \\
3 \mathrm{~T}_{3}-2(4.4)=421
\end{gathered}
$$

(i) $\Rightarrow>T_{3}=143.26^{\circ} \mathrm{C}$
(ii) Efficiency of engine ' A '

$$
\eta_{\mathrm{a}}=\frac{\mathrm{T}_{1}-\mathrm{T}_{3}}{\mathrm{~T}_{1}}=\frac{694-426.26}{694}=0.4=\frac{\mathrm{Q}_{1}-\mathrm{Q}_{3}}{\mathrm{Q}_{1}}
$$

$\Rightarrow \mathrm{Q}_{1}-0.4 \mathrm{Q}_{1}=\mathrm{Q}_{3}=>0.6 \times 200=120 \mathrm{~kJ}$.

Efficiency of engine "B"
$\eta_{\mathrm{B}}=\frac{\mathrm{T}_{3}-\mathrm{T}_{2}}{\overline{\mathrm{~T}_{3}}}=\frac{416.26-277.4}{\frac{416.26}{}}=0.335=\quad \frac{\mathrm{Q}_{3}-\mathrm{Q}_{2}}{\overline{\mathrm{Q}_{3}}}$

$$
120-\mathrm{Q}_{2}=0.335
$$

$$
120
$$

(iii) $\mathrm{Q}_{2}=79.8 \mathrm{~kJ}$.
6. A house hold refrigerator is maintained at a temperature of 2°. Every time the door is opened, warm material is placed inside, introducing an average of 420 kJ . But making only a small change in the temperature of the refrigerator. The door is opened 20 times a day, and the refrigerator operates at 15% of ideal COP. The cost of work is 32 paise per $k W h r$. What is the monthly bill for this refrigerator? The atmosphere is at $30^{\circ} \mathrm{C}$.

Given : $\mathrm{T}_{1}=303 \mathrm{~K} . \mathrm{T}_{2}=275 \mathrm{~K} . \mathrm{Q}_{2}=420 \mathrm{~kJ}$.

$$
(\text { COP }) \mathrm{id}=\frac{\mathrm{T}_{2}}{\frac{\mathrm{~T}_{1}-\mathrm{T}_{2}}{303-275}}=\underline{275}=9.82
$$

$(\mathrm{COP})_{\mathrm{AC}}=0.15 \mathrm{x}(\mathrm{COP}) \mathrm{id}$

$=1.47$.
$(\mathrm{COP})_{\mathrm{AC}}=\frac{\mathrm{Q}_{2}}{\frac{\mathrm{Q}_{1}-\mathrm{Q}_{2}}{}}$
$1.47=\underline{420} \Rightarrow \mathrm{Q}_{1}-\mathrm{Q}_{2}=285.7 \mathrm{~kJ}$.
$\mathrm{Q}_{1}-\mathrm{Q}_{2}$
Cost of work is 32 paise per kWhr .
The monthly bill for the refrigerator

$$
\begin{aligned}
& =285.7 \times 0.32 \times 20 \times 30=\text { Rs. } 15.23 /- \\
& \overline{3600}
\end{aligned}
$$

7. A reversible heat engine operates between two systems at constant temperatures of $600^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{c}$. The engine drives a reversible refrigerator which operates between systems of constant temperatures of $40^{\circ} \mathrm{C}$ and $-20^{\circ} \mathrm{C}$. The heat transfer to the heat engine is 2000 kJ and the net work output of the combined engine -refrigerator plant is $350 \times 10^{3} \mathrm{Nm}$. Evaluate the heat transfer to the refrigerant and the net heat transfer to the system at $40^{\circ} \mathrm{C}$. If the efficiency of the engine and the co-efficient of performance of the refrigerator are each 40% of their maximum possible values. What would be the heat transfer to the refrigerant and the net heat transfer to the system at $40^{\circ} \mathrm{C}$?

The maximum efficiency of the reversible heat engine cycle is given by

$$
\eta_{\max }=\frac{1-\mathrm{T}_{2}}{\overline{\mathrm{~T}}_{1}}=\frac{1-313}{873}=0.642
$$

Also $\eta_{\max }=\mathrm{w}_{1} / \mathrm{Q}_{1}=>\mathrm{w}_{1}=\mathrm{Q}_{1} \mathrm{x} \eta_{\max }=2000 \times 0.642=1284$
The maximum Cop of the refrigerator is given by

For a reversible refrigerator,

$$
(\mathrm{Cop})_{\max }=\frac{\mathrm{Q}_{4}}{\mathrm{w}_{1}}=4.22
$$

work output of combined cycle $\mathrm{w}=\mathrm{w}_{1}-\mathrm{w}_{2}=350 \mathrm{~kJ}$.

$$
\begin{aligned}
& \mathrm{w}_{2}=1284-350=934 \mathrm{~kJ} . \\
& \mathrm{Q}_{4}=\mathrm{W}_{2} \times(\mathrm{Cop})_{\max }=934 \times 4.22=3941.48 \mathrm{~kJ} . \\
& \mathrm{Q}_{3}=\mathrm{Q}_{4}+\mathrm{w}_{2}=3941.48+934=4875.48 \mathrm{~kJ} . \\
& \mathrm{Q}_{2}=\mathrm{Q}_{1-} \mathrm{w}_{1}=2000-1284=716 \mathrm{~kJ} .
\end{aligned}
$$

Heat rejection to the sink at $40^{\circ} \mathrm{C}$.

$$
=\mathrm{Q}_{2}+\mathrm{Q}^{3}=716+4875.48=5591.48 \mathrm{~kJ} .
$$

Now, the $\eta_{A C}$ of heat engine cycle,

$$
\begin{gathered}
\eta=40 \% \quad \eta_{\max }=0.2568 \\
w_{1}=\eta Q_{1}=0.256 \times 2000=573.6 \mathrm{Kj}
\end{gathered}
$$

power i / p to the refrigerator

$$
\mathrm{w}_{2}=\mathrm{w}_{1}-\mathrm{w}=513.6-350=163.6 \mathrm{~kJ} .
$$

Actual COP of refrigerator

$$
\begin{aligned}
& (\mathrm{COP})_{\mathrm{AC}}=\mathrm{Q}_{4} / \mathrm{W}_{2}=40 \%(\mathrm{COP})_{\max } \\
& \quad=0.4 \times 4.22=1.69 \\
& \mathrm{Q}_{4}=\mathrm{w}_{2} \times(\mathrm{COP})_{\mathrm{AC}}=1.69 \times 163.6=276.48 \mathrm{~kJ} \\
& \mathrm{Q}_{3}=\mathrm{Q}_{4}+\mathrm{w}_{2}=276.48+163.6=440.08 \mathrm{~kJ}
\end{aligned}
$$

Now, $\mathrm{Q}_{2}=\mathrm{Q}_{1}-\mathrm{w}_{1}=2000-573.6=1486.4 \mathrm{~kJ}$.
Heat rejected to the sink at $40^{\circ} \mathrm{C}$.

$$
\begin{aligned}
=\mathrm{Q}_{2}+\mathrm{Q}_{3} & =1486.4+440.08 \\
& =1926.48 \mathrm{~kJ} .
\end{aligned}
$$

ENTROPY

Tropee means "Transformation" it is a Greek word
Entropy is an extensive property of a system.
It is unit is J / K.
The inequality of clauius

Consider AB a reversible (or) irreversible process.
Let $\mathrm{BC}, \mathrm{CD} \& \mathrm{DA}$ are reversible process.

Divide the cycle into infinitesimal elementary cycles.

$$
\eta=\frac{1-\mathrm{dQ}_{2}}{\mathrm{dQ}}
$$

where, $\mathrm{dQ} \rightarrow$ heat supplied at T
$\mathrm{dQ}_{2} \rightarrow$ heat rejected at T_{2}.
The efficiency of a cycle will be less than or equal to the efficiency of reversible process.
I (ie) $\left(1-\mathrm{dQ}_{2}\right) \leq\left(1-\mathrm{dQ}_{2}\right)_{\mathrm{rev}}$
$\overline{\mathrm{dQ}} \quad \overline{\mathrm{dQ}}$

$$
\begin{aligned}
& \frac{\mathrm{dQ}_{2}}{\mathrm{dQ}} \geq \frac{\left(\mathrm{dQ}_{2}\right)_{\mathrm{rev}}}{\mathrm{dQ}} \\
& \\
& \frac{\mathrm{dQ}_{2} \leq}{\mathrm{dQ}_{2}} \quad \frac{(\mathrm{dQ})_{\mathrm{rev}}}{\mathrm{dQ}_{2}}
\end{aligned}
$$

W.K.T

$$
\begin{aligned}
\frac{(d Q)_{\mathrm{rev}}}{\mathrm{dQ}_{2}}= & \frac{\mathrm{T}}{\mathrm{~T}_{2}} \\
\frac{(\mathrm{dQ})_{\mathrm{rev}}}{\mathrm{dQ}_{2}} & \leq \frac{T}{\mathrm{~T}_{2}}
\end{aligned}
$$

$$
\text { (or) } \frac{\mathrm{dQ}}{\mathrm{~T}} \leq \frac{\mathrm{dQ}_{2}}{\mathrm{~T}_{2}}
$$

For reversible process

$$
\mathrm{Ds}=\frac{\mathrm{dQ} \text { rev }}{\mathrm{T}}>\frac{\mathrm{dQ}_{2}}{\mathrm{~T}_{2}}
$$

For any process AB

$$
\frac{\mathrm{dQ}}{\mathrm{~T}} \leq \mathrm{ds}
$$

For any cycle $\int \mathrm{dQ} / \mathrm{T} \leq \int \mathrm{ds}$.
Since Entropy is a property and cyclic integral of any property is zero.
$\int \mathrm{dQ} / \mathrm{T} \leq 0$.
This Equation is called inequality of Clausius.

Case(i)
$\int \mathrm{dQ} / \mathrm{T}=0$ (Reversible)
$\int \mathrm{dQ} / \mathrm{T}<0$ (Irreversible)
$\int \mathrm{Dq} / \mathrm{T}>0($ In possible $)$

Principle of Increase of Entropy.

Consider A, B are reversible and C as irreversible process.
For a reversible cycle A \& B

$$
\int_{\mathrm{R}} \mathrm{dQ} / \mathrm{T}={ }^{2} \int_{\mathrm{A} 1} \mathrm{dQ} / \mathrm{T}+{ }^{1} \int_{\mathrm{B} 1} \mathrm{dQ} / \mathrm{T}=0
$$

$$
{ }^{2} \int_{\mathrm{A} 1} \mathrm{dQ} / \mathrm{T}=-{ }^{1} \int_{\mathrm{B} 1} \mathrm{dQ} / \mathrm{T}
$$

For irreversible process A \& C

$$
\int_{\mathrm{dQ}} / \mathrm{T}={ }^{2} \int_{\mathrm{A} 1} \mathrm{dQ} / \mathrm{T}+{ }^{1} \int_{\mathrm{C} 2} \mathrm{dQ} / \mathrm{T}<0
$$

$$
-{ }^{1} \int_{\mathrm{B} 2} \mathrm{dQ} / \mathrm{T}+{ }^{1} \int_{\mathrm{C} 2} \mathrm{dQ} / \mathrm{T}<0
$$

$$
{ }^{1} \int_{\mathrm{B} 2} \mathrm{dQ} / \mathrm{T}>{ }^{1} \int_{\mathrm{C} 2} \mathrm{dQ} / \mathrm{T}
$$

Where,
Path B is reversible
${ }^{1} \int_{\mathrm{B} 2} \mathrm{dQ} / \mathrm{T}={ }^{1} \int_{\mathrm{C} 2} \mathrm{ds}$.

Since, entropy is a property, the change in entropy for paths B\&C is same.

$$
{ }^{1} \int_{\mathrm{B} 2} \mathrm{ds}={ }^{1} \int_{\mathrm{C} 2} \mathrm{ds} .
$$

$$
{ }^{1} \int_{\mathrm{B} 2} \mathrm{ds}>{ }^{1} \int_{\mathrm{C} 2} \mathrm{dQ} / \mathrm{T}
$$

For any irreversible process

$$
\mathrm{ds}>\mathrm{dQ} / \mathrm{T}
$$

For reversible process

$$
\mathrm{ds}=\mathrm{d} \mathrm{Q}_{\mathrm{rev}} / \mathrm{T}
$$

In general,

$$
\begin{aligned}
& \text { ds } \quad \geq \mathrm{dQ} / \mathrm{T} \\
& \quad \text { ie. } \mathrm{S}_{2}-\mathrm{S}_{1} \geq{ }^{2} \int_{1} \mathrm{dQ} / \mathrm{T}
\end{aligned}
$$

When the system is isolated from its surroundings $d Q=0$

```
ie. ds iso }\geq
```

For a reversible process $d_{S}=0$. ie. $S=C$
For an irreversible process $\mathrm{dS}_{\text {iso }}>0$
From this it is known than entropy of an isolated system can never decreases, $\mathrm{S}=$ constant, when the process is reversible and increases when the process is irreversible.

This known as principle of increase of entropy.

$$
\begin{aligned}
& \mathrm{dS}_{\text {univ }} \geq 0 \\
& \mathrm{dS}_{\text {sys }}+\mathrm{dS}_{\text {surr }} \geq 0
\end{aligned}
$$

Entropy of an isolated system may decrease at same region but there is a increase if entropy at the remaining part of the system .

The entropy of universe increases by the thermodynamic process namely irreversible adiabatic.

Problem.

1. A Fluid undergoes a reversible adiabatic compression from $0.5 \mathrm{Mpa}, 0.2 \mathrm{~m}^{3}$ according to the law, $\mathrm{PV}^{\mathrm{n} 3}=\mathrm{C}$. Determine the change in Enthalpy, internal energy and entropy and the heat transfer and work transfer during the process.

$$
\begin{aligned}
& \text { Given : } \mathrm{P}_{1}=0.5 \mathrm{Mpa}, \mathrm{~V}_{1}=0.2 \mathrm{~m}^{3}, \quad \mathrm{~V}_{2}=0.05 \mathrm{~m}^{3}, \mathrm{P}_{1} \mathrm{~V}_{1}{ }^{\mathrm{n}}=\mathrm{P}_{2} \mathrm{~V}_{2}{ }^{\mathrm{n}} \quad \mathrm{n}=1.3 \\
& \\
& \mathrm{P}_{2}=\mathrm{P}_{1}\left(\mathrm{~V}_{1} / \mathrm{V}_{2}\right)^{\mathrm{n}} \\
&=0.5(0.2 / 0.05)^{1.3} \\
&=3.0305 \mathrm{MPa},
\end{aligned}
$$

Change in Enthalpy,

$$
\begin{aligned}
& \text { Enthalpy, } \\
& \begin{aligned}
\mathrm{H}_{2}-\mathrm{H}_{1} & = \\
& \frac{\mathrm{n}}{\mathrm{n}-1}
\end{aligned}\left[\begin{array}{ll}
\mathrm{P}_{1} \mathrm{~V}_{1} & -\mathrm{P}_{2} \mathrm{~V}_{2}
\end{array}\right] \\
& \\
& \\
& =\frac{1.3}{0.3}[3.0305 \times 0.05-500 \times 0.2] \\
& \\
& \\
& =2233 \mathrm{~kJ} .
\end{aligned}
$$

Change in internal energy

$$
\begin{aligned}
\mathrm{u}_{2}-\mathrm{u}_{1} & =\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right)-\left(\mathrm{P}_{2} \mathrm{~V}_{2}-\mathrm{P}_{1} \mathrm{~V}_{1}\right) \\
& =223.3-(57-53) \\
& =171.77 \mathrm{~kJ} .
\end{aligned}
$$

SCHOOL OF MECHANICAL ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

UNIT - III- Engineering Thermodynamics - SMEA1302

III. Properties of Pure Substances

FORMATION OF STEAM:-

Consider water of 1 kg mass at $25^{\prime} \mathrm{c}$ is heated in a piston cylinder assembly at atmospheric pressure.

Water is heated till its temperature reaches $100^{\prime} \mathrm{c}$. Volume of water increases due to expansion. At this stage, water is converted into vapour.

Figure 3.1
Saturation temperature:
The temperature at which vaporization takes place at a given pressure is called the saturation temperature. The given pressure is called the saturation pressure.

Sub cooled (or) compressed liquid.
A liquid is said to be sub cooled when the temperature of liquid on cooling becomes lower than the saturation temperature for the given pressure.
Superheated vapour:-
Vapour is called super heated when the temperature increases above the saturation temperature.

The temperature at this state is called super heated temperature.
Degree of super heat.
The difference between super heated temperature and saturation temperature at given pressure is called degree of super heat.

Figure 3.2

Triple point:

The state at which solid, liquid and vapour phases co-exist in equilibrium.

Critical point:-

The point at which latent heat is zero is called critical point.
Steam:
It is the water in vapour form . It is used as a working substance in steam engines and steam turbines.

Wet steam:-
Steam containing moisture is called wet steam.
Dry saturated steam:
Steam does not containing any water particles in suspension is called Dry saturated steam.

Super heated steam:
The steam produced by increasing the temperature of dry steam at constant pressure is called superheated steam.

Dryness fraction or quality.
It is the ratio of mass of dry steam to the mass of wet steam.
It is denoted by ' x '

$$
\mathrm{x}=\mathrm{m}_{\mathrm{g}} /\left(\mathrm{m}_{\mathrm{f}}+\mathrm{m}_{\mathrm{g}}\right)
$$

where
$\mathrm{m}_{\mathrm{g}} \quad=\quad$ mass of dry steam
$\mathrm{m}_{\mathrm{f}} \quad=\quad$ mass of water in suspension.

Steam tables:-
The table which shows the properties of the steam at various conditions is called stem table. Various thermodynamics processes:

1. Isochoric or reversible constant volume process from the law of thermodynamics.

$$
\begin{array}{ll}
d q & =d u+p d v \\
v & =c, \\
d v & =0 \\
d q=d u
\end{array}
$$

Heat transfer $\mathrm{q}_{1-2}=\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right) \mathrm{kj} / \mathrm{kg}$
work done $\quad \mathrm{w}_{1-2} \quad=\int \mathrm{pdv}=0$ (since volume is constant)
for perfect gasq ${ }_{1-2}=c_{V}\left(T_{2}-T_{1}\right) \mathrm{kj} / \mathrm{kg}$
$\mathrm{s}_{2}-\mathrm{s}_{1}=\int \mathrm{dQ} / \mathrm{t}$
$=\mathrm{C}_{\mathrm{V}} \mathrm{l}_{\mathrm{n}}\left(\mathrm{T}_{2} / \mathrm{T}_{1}\right) \mathrm{kJ} / \mathrm{kgK}$.
2.Isobaric or reversible constant pressure process

Figure 3.3

$$
\mathrm{q}_{1-2} \quad=\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right) \mathrm{kj} / \mathrm{kg}
$$

Work transfer

$$
\mathrm{W}_{1-2}=\mathrm{P}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \mathrm{kj} / \mathrm{kg}
$$

Change in entropy $\Delta \mathrm{s}=\left(\mathrm{S}_{2}-\mathrm{S}_{1}\right) \mathrm{Kj} / \mathrm{kgk}$

For a perfect gas,

$$
\begin{aligned}
\mathrm{q}_{1-2} & =\mathrm{C}_{\mathrm{p}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \mathrm{kj} / \mathrm{kg} \\
\mathrm{~W}_{1-2} & =\mathrm{R}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) \mathrm{kj} / \mathrm{kg} \\
\Delta \mathrm{~s} & =\mathrm{C}_{\mathrm{p}} \mathrm{l}_{\mathrm{n}}\left(\mathrm{~T}_{2} / \mathrm{T}_{1}\right) \mathrm{kj} / \mathrm{kgK}
\end{aligned}
$$

Figure 3.4
When heat is added to the System, to keep the temperature constant there should be some amount of work done by the system. When work is done on the system, to keep the temperature constant, there should be some amount of heat rejected by the system. $\quad \mathrm{q}_{1-2}=\quad\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right)+\mathrm{W}_{1-2}$

$$
=\quad\left(u_{2}-u_{1)}+P_{1} V_{1} l_{n} P_{1} / P_{2}\right.
$$

For the perfect gas,

$$
\begin{array}{rll}
\mathrm{q}_{1-2}= & \mathrm{W}_{1-2} \\
= & \mathrm{P}_{1} \mathrm{~V}_{1} 1_{n} \mathrm{P}_{1} / \mathrm{P}_{2} \mathrm{~kJ} / \mathrm{kg}(\text { since } \mathrm{du}=0)
\end{array} \quad \begin{aligned}
& \text { change in EntropyS } \mathrm{S}_{2}-\mathrm{S}_{1}= \\
& \mathrm{R} \ln \mathrm{P}_{1} / \mathrm{P}_{2} \mathrm{~kJ} / \mathrm{kgK}
\end{aligned}
$$

Figure 3.5
3. Reversible hyperbolic process

In this, the pressure multiplied by the volume is constant.

$$
\begin{aligned}
\mathrm{q}_{1-2} & =\left(\mathrm{u}_{2}-\mathrm{u}_{1)}+\mathrm{P}_{1} \mathrm{~V}_{1} 1_{\mathrm{n}} \mathrm{P}_{1} / \mathrm{P}_{2} \mathrm{kj} / \mathrm{kg}\right. \\
\Delta \mathrm{s} & =\left(\mathrm{S}_{2}-\mathrm{S}_{1}\right) \mathrm{kj} / \mathrm{kg} \mathrm{k}
\end{aligned}
$$

For the perfect gas, Reversible hyperbolic process is also called as isothermal process.

Figure 3.6
4. Reversible poly tropic process

The process which follows the law $\mathrm{pv}^{\mathrm{n}}=\mathrm{c}$

$\mathrm{n} \quad=\quad$ Poly tropic index
Work Transfer $\mathrm{W}_{1-2}=\mathrm{p}_{1} \mathrm{v}_{1}-\mathrm{p}_{2} \mathrm{v}_{2} / \mathrm{n}-1 \mathrm{kj} / \mathrm{kg}$
Heat transfer $\quad Q_{1-2}=\left(u_{2}-u_{1}\right)+p_{1} v_{1}-$

$$
\mathrm{p}_{2} \mathrm{v}_{2} / \mathrm{n}-1 \mathrm{kj} / \mathrm{kg}
$$

Figure 3.7
Change the entropy $\Delta \mathrm{s}=\left(\mathrm{S}_{2}-\mathrm{S}_{1}\right) \mathrm{kj} / \mathrm{kgk}$
Throttling process
Enthalpy at inlet and outlet are constant

$$
\mathrm{h}_{1}=\mathrm{h}_{2}
$$

If steam is the working substance the properties are taken from the steam tables and mollier diagram. If the air is used standared values of $\mathrm{c}_{\mathrm{p}}, \mathrm{c}_{\mathrm{v}}$, and R are taken for the solving problems.

1. Steam at 7 bar and $250^{\circ} \mathrm{C}$ has a volume of $0.5046 \mathrm{~m}^{3}$ in the frictionless constant volume process the pressure changes to 3.5 bar. Find the final temperature and heat transferred. Also, determine the change in entropy,

Solution :-

$$
\begin{aligned}
\mathrm{p}_{1} & =7 \mathrm{bar} \\
\mathrm{~T}_{1} & =250{ }^{\circ} \mathrm{C} \\
\mathrm{~V}_{1} & =0.5046 \mathrm{~m}^{3} \\
\mathrm{P}_{2} & =3.5 \mathrm{bar}
\end{aligned}
$$

From superheated steam tables at $\mathrm{p}_{1} \quad=7 \mathrm{bar}, \quad \mathrm{T}_{1} \quad=250{ }^{\circ} \mathrm{C} \quad \mathrm{V}_{1}=0.3364 \mathrm{~m}^{3} / \mathrm{kg}$, $u_{1}=2720 \mathrm{~kJ} / \mathrm{kg}$.

$$
\begin{aligned}
& \text { At } \mathrm{p}_{2}=3.5 \text { bar, from the steam tables, } \\
& \mathrm{T}_{\mathrm{s}}=138.9^{\circ} \mathrm{C} \\
& \mathrm{Vg}_{2}=0.5241 \mathrm{~m}^{3} / \mathrm{kg} \\
& \mathrm{Sf}_{2}=1.727 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{Sfg}_{2}=5.214 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Here $\mathrm{v}_{2}<\mathrm{vg}_{2}$
So the Steam is in wet region.
Dryness fraction at the end.

$$
\mathrm{x}_{2}=\mathrm{v}_{2} / \mathrm{vg}_{2}=0.3364 / 0.5241=0.642 .
$$

Internal energy $\mathrm{u}_{2}=\mathrm{u}_{\mathrm{f} 2}+\mathrm{x}_{2} \mathrm{u}_{\mathrm{fg} 2}$

$$
\begin{aligned}
& =584+0.642 \times 2148 \\
& =1963 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Heat transfer

$$
\begin{aligned}
\mathrm{q}_{1-2} & =\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right) \mathrm{kJ} / \mathrm{kKg} \\
& =1963-2720 \\
& =-757 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

But mass flow rate of steam

$$
\mathrm{m}=\mathrm{v}_{1 / \mathrm{vg}}=0.5046 / 0.3364=1.5 \mathrm{Kg}
$$

Total heat transfer

$$
\begin{aligned}
\mathrm{Q}_{1-2} & =\mathrm{mxq} \\
& =1.5 \times(-757)=-1135.5 \mathrm{kKJ} \\
\mathrm{~S}_{2} & =\mathrm{S}_{\mathrm{f} 2}+\mathrm{x}_{2} \mathrm{~S}_{\mathrm{fg} 2} \\
& =1.727+0.642 \times 5.214 \\
& =5.0744 \mathrm{~kJ} / \mathrm{kgK}
\end{aligned}
$$

Change in entropy

$$
\begin{aligned}
\Delta \mathrm{S}=\mathrm{S}_{2}-\mathrm{S}_{1}= & 5.0744-7.106 \\
& =\quad-2.0316 \mathrm{~kJ} / \mathrm{kgK}
\end{aligned}
$$

2. Steam at pressure of 10 bar and $250^{\circ} \mathrm{C}$ in a closed vessle of volume $0.14 \mathrm{~m}^{3}$ is cooled so that pressure falls to 3.5 bar. Determine the final temperature and change in entropy. Assume the volume as constant.

Given: $\mathrm{P}_{1}=10 \mathrm{bar} \quad \mathrm{T}_{1}=250^{\circ} \mathrm{C} \quad \mathrm{V}=0.14 \mathrm{~m}^{3}$

$$
\mathrm{P}_{2}=3.5 \mathrm{bar} \quad \mathrm{v}_{1}=\mathrm{v}_{2}=0.2328 \mathrm{~m}^{3} / \mathrm{kg}
$$

from superheated steam table at $\mathrm{P}_{1}=10 \mathrm{bar} \& \mathrm{~T}_{1}=250^{\circ} \mathrm{C}$

$$
\mathrm{s}_{1}=6.926 \mathrm{KJ} / \mathrm{kgk}
$$

from saturated steam table, At $\mathrm{P}_{2}=3.5 \mathrm{bar}$

$$
\mathrm{vg}_{2}=0.52397 \mathrm{~m}^{3} / \mathrm{kg}^{2} \quad \mathrm{sf}_{2}=1.727 \mathrm{Kj} / \mathrm{kgk} \quad \mathrm{sfg}_{2}=5.21 \mathrm{Kj} / \mathrm{kgk}
$$

$\mathrm{T} 2=138.9^{\circ} \mathrm{C}$
Since $\mathrm{v}_{2}<\mathrm{vg}_{2}$. The steam is in wet region.
Dryness fraction at the end
$\mathrm{x}_{2}=\mathrm{v}_{2} / \mathrm{vg}_{2}=0.2328 / 0.52397=0.44$
$\mathrm{S}_{2}=\mathrm{sf}_{2}+\mathrm{x}_{2} \mathrm{sfg}_{2}=1.727+(0.44 \times 5.212)$

$$
=4.02 \mathrm{Kj} / \mathrm{kgk}
$$

Final temperature $\mathrm{T}_{2}=138.9^{\circ} \mathrm{C}$
Change in entropy $\Delta \mathrm{s}=\mathrm{s}_{2}-\mathrm{s}_{1}=\quad 4.02-6.926=-2.906 \mathrm{~kJ} / \mathrm{kgK}$
3. 2 kg of a gas at a temperature of $17^{\circ} \mathrm{C}$ is heated at constant volume to a temperature of $89^{\circ} \mathrm{C}$. The specific heat at constant volume is $0.5150 \mathrm{~kJ} / \mathrm{kg}$. Find heat supplied, Change in entropy.

Given $\mathrm{T}_{1}=17^{\circ} \mathrm{C}, \quad \mathrm{T}_{2}=89^{\circ} \mathrm{C}, \quad \mathrm{C}_{\mathrm{v}}=0.515 \mathrm{~kJ} / \mathrm{kgK}$
Heat transfer $\mathrm{Q}_{1-2} \quad=\mathrm{mC}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$

$$
=2 \mathrm{X} 0.5150(89-17)
$$

$$
=79.3 \mathrm{~kJ} / \mathrm{kg}
$$

Change in entropy $\Delta \mathrm{s}=\mathrm{mc}_{\mathrm{v}} \ln \left(\mathrm{T}_{2} / \mathrm{T}_{1}\right)$

$$
\begin{aligned}
& =2 \times 0.575 \ln (362 / 290) \\
& =0.2284 \mathrm{~kJ} / \mathrm{K}
\end{aligned}
$$

4. 0.5 kg of steam at a pressure of 6.5 bar and a quality of 60% is heated at constant pressure until a quality of 100% achieved. Find change in enthalpy, change in internal energy, heat transferred, work transferred and change in entropy.

Given: $\mathrm{m}=0.5 \mathrm{~kg} \quad \mathrm{P}_{1}=6.5 \mathrm{bar} \quad \mathrm{x}_{1}=0.6 \mathrm{x}_{2}=1$

$$
\mathrm{P}_{1}=\mathrm{p}_{2}
$$

From saturated steam tables at $\mathrm{P}_{1}=6.5 \mathrm{bar}=\mathrm{P}_{2}$

$$
\begin{array}{ll}
\mathrm{h}_{\mathrm{f} 1}=683.5 \mathrm{~kJ} / \mathrm{kg} & \mathrm{~h}_{\mathrm{fg} 1}=2077 \mathrm{~kJ} / \mathrm{kg} \\
\mathrm{u}_{\mathrm{f} 1}=682.5 \mathrm{~kJ} / \mathrm{kg} & \mathrm{u}_{\mathrm{fg} 1}=1888 \mathrm{~kJ} / \mathrm{kg}
\end{array}
$$

Change in enthalpy

$$
\begin{aligned}
& =\quad \mathrm{h}_{2}-\mathrm{h}_{1} \\
& =\quad \mathrm{hg}_{2}-\left(\mathrm{hf}_{1}+\mathrm{x} 1 \mathrm{hf}_{\mathrm{g} 1}\right) \\
& =\quad 2760.5-(683.5+0.6 \times 2077) \\
& =\quad 2760.5-(683.5+0.6 \times 2077) \\
& =\quad 830.8 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

$\mathrm{H}_{2}-\mathrm{H}_{1}=\mathrm{m} * \Delta \mathrm{~h}=0.5 \times 830.8=415.4 \mathrm{~kJ} / \mathrm{K}$

Change in internal energy
$\Delta u=m\left(u_{2}-u_{1}\right)=m\left[u g_{2}-\left(u f_{1}+x_{1} u f g_{1}\right)\right]$
$=0.5[2570.5-(6825(0.6 \times 1888)]$
$=\quad 377.6 \mathrm{~kJ}$.

Heat transferred $=\Delta \mathrm{H}=$ 415.4 kJ

Work transferred $U_{1}-2=\operatorname{mp}\left(v_{2}-v_{1}\right)$
$=\quad 0.5 \times 6.5 \times 100[0.2942 \times 0.6 \times 0.2942]$
$=\quad 38.25 \mathrm{~kJ}$

Change in entropy $\Delta \mathrm{s}=$

$$
\begin{aligned}
& \mathrm{m}\left(\mathrm{~s}_{2}-\mathrm{S}_{1}\right)=\mathrm{m}\left[\mathrm{sg}_{2}-\left(\mathrm{sf}_{1}+\mathrm{x}_{1} \mathrm{sfg}_{1}\right)\right] \\
& =\quad 0.5[6.735-(1.962+0.6 \times 4.773)] \\
& =\quad 0.9545 \mathrm{~kJ} / \mathrm{kgK}
\end{aligned}
$$

5. 0.5 kg of steam at 7 bar and $200^{\circ} \mathrm{C}$ is compressed during a reversible non-flow constant pressure process until its volume is halved. Find (i) Work transfer
(ii) Heat transfer (iii) Final condition of steam (iv) Change in internal energy

Given: - $\mathrm{m}=0.5 \mathrm{~kg}$

$$
\begin{aligned}
& \mathrm{P}_{1}=\mathrm{P}_{2}=7 \mathrm{bar}, \mathrm{~T}_{1}=200^{\circ} \mathrm{C} \\
& \mathrm{v}_{2}=\mathrm{v}_{1} / 2
\end{aligned}
$$

From superheated steam table, at $P_{1}=7$ bar, $T_{1}=200^{\circ}{ }^{\circ} \mathrm{v}_{1}=0.2999 \mathrm{~m}^{3} / \mathrm{kg} \quad \mathrm{h}_{1}=2844 \mathrm{KJ} / \mathrm{kgk}$

$$
\mathrm{s}_{1}=6.886 \mathrm{~kJ} / \mathrm{kgK}
$$

From saturated steam table at $\mathrm{P}_{2}=7$ bar
$\operatorname{vg} 2=0.27268 \mathrm{~m}^{3} / \mathrm{kg} \mathrm{hf}_{2} \quad=697.1 \mathrm{~kJ} / \mathrm{kg}$

$$
\mathrm{hfg}_{2}=2064.9 \mathrm{~kJ} / \mathrm{kg}
$$

$\mathrm{sf}_{2}=1.992 \mathrm{~kJ} / \mathrm{kgK}$
$\operatorname{sfg}_{2}=4.713 \mathrm{~kJ} / \mathrm{kgK}$
Since volume is halved

$$
\mathrm{v}_{2}=\mathrm{v}_{1} / 2=0.2999 / 2=0.14995 \mathrm{~m}^{3} / \mathrm{kg}
$$

$\mathrm{v}_{2}<\mathrm{vg}_{2}$ steam is in wet region.

$$
x_{2}=v_{\mathrm{g}} / \mathrm{v}_{\mathrm{g} 2}=0.14995 / 0.27268=0.55
$$

(i) Work transfer

$$
\begin{aligned}
\mathrm{w}_{1}-2 & =\mathrm{mP}\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right) \\
& =0.5 \times 700(0.14995-0.2999) \\
& =-52.48 \mathrm{~kJ}
\end{aligned}
$$

Heat transfer

$$
\text { Qt2 } \quad=\quad \mathrm{m}\left(\mathrm{~h}_{2}-\mathrm{h}_{1}\right)
$$

$$
\begin{aligned}
& =\quad \mathrm{m}\left(\mathrm{~h}_{\mathrm{f} 2} \times \mathrm{X}_{2} \mathrm{~h}_{\mathrm{fg} 2}-\mathrm{h}_{1}\right) \\
& =\quad 0.5[697.1+(0.55 \times 2064.9)-2844.2] \\
& =\quad-505.7 \mathrm{~kJ}
\end{aligned}
$$

(ii) Final condition of steam $\mathrm{x}_{2}=0.55$
(iii) Change in internal energy

$$
\begin{array}{rlrl}
\Delta \mathrm{u} & = & \mathrm{m}\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right) \\
& = & \left.\mathrm{m}\left[\left(\mathrm{~h}_{2}-\mathrm{h}_{1}\right)-\mathrm{w}_{1-2}\right)\right] \\
& = & \mathrm{Q}_{1-2}-\mathrm{w}_{1-2} \\
& = & & -505.7+52.48 \\
& = & & -453.22 \mathrm{~kJ} / \mathrm{K}
\end{array}
$$

6. 2 kg of gas at a temperature of $20^{\circ} \mathrm{C}$ undergoes a reversible constant pressure process until the temperature is 100° C.Find the heat transferred during the process. C_{p} for the gas is $0.6448 \mathrm{kj} / \mathrm{kgK}$. $\mathrm{C}_{\mathrm{v}}=0.515 \mathrm{kj} / \mathrm{kgk}$. Find $\& \& \mathrm{R}$. Also find work transfer and change in entropy

Given: $\mathrm{m}=2 \mathrm{~kg} \quad \mathrm{~T}_{1}=20^{\circ} \mathrm{C} \quad \mathrm{T}_{2}=100^{\circ} \mathrm{C} \quad \mathrm{C}_{\mathrm{p}}=0.6448 \mathrm{~kJ} / \mathrm{kgK}$
$\mathrm{Cv}=0.575 \mathrm{~kJ} / \mathrm{kgK}$

Heat transfer $\mathrm{Q}_{1-2}=\mathrm{mc}_{\mathrm{p}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$

$$
\begin{aligned}
& =2 \times 0.6448(100-20) \\
& =103.2 \mathrm{~kJ}
\end{aligned}
$$

$\forall=C_{p} / C_{v}=0.6448 / 0.5150=0.1298 \mathrm{~kJ} / \mathrm{kg}$
Work transfer $\mathrm{w}_{1-2}=\operatorname{mR}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$

$$
\begin{aligned}
& =2 \times 0.1298(100-20) \\
& =20.77 \mathrm{~kJ}
\end{aligned}
$$

Change in entropy

$$
\begin{aligned}
& \begin{aligned}
\begin{aligned}
& \Delta \mathrm{s}=\mathrm{s}_{2}-\mathrm{s}_{1}= \\
& \mathrm{mc}_{\mathrm{p}} \ln \left(\mathrm{~T}_{2} / \mathrm{T}_{1}\right) \\
&=2 \times 0.6448 \ln (373 / 293)
\end{aligned} \\
\Delta \mathrm{s}=0.3113 \mathrm{~kJ} / \mathrm{K}
\end{aligned}
\end{aligned}
$$

7. 3 kg of steam initially saturated at 6 MPa expands reversibly and isothermally to 1 MPa in a cylinder. Find the heat transferred and the work done. Find also the change of entropy.

Given

$$
\mathrm{m}=3 \mathrm{~kg} \quad \mathrm{P}_{1}=6 \mathrm{MPa} \quad \mathrm{X}_{1}=1 \quad \mathrm{P}_{2}=1 \mathrm{MPa}
$$

from steam tables, at $\mathrm{P}_{1}=6$ bar

$$
\begin{aligned}
& \mathrm{t}_{\text {sat } 1}=275.6^{0} \mathrm{C}=\mathrm{T}_{1}=\mathrm{T}_{2} \\
& \mathrm{v}_{1}=\mathrm{v}_{\mathrm{g}}=0.032433 \mathrm{~m}^{3} / \mathrm{kg} \\
& \mathrm{~h}_{1}=\mathrm{hg}=2785 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~S}_{1}=\mathrm{S}_{\mathrm{g}}=5.891 \mathrm{~kJ} / \mathrm{kgK}
\end{aligned}
$$

$$
\text { Since } x=1
$$

from steam tables

$$
\text { At } \mathrm{P}_{2}=1 \mathrm{MPa} \quad \mathrm{~T}_{\text {sat } 2}=179.9^{\circ} \mathrm{C}
$$

But $\mathrm{T}_{1}=\mathrm{T}_{2} \quad$ Hence $\mathrm{T}_{2}=275.6^{\circ} \mathrm{C}>\mathrm{T}_{\text {sat2 }}$
Hence steam is in superheated region
from superheated steam table at $\mathrm{P}_{2}=1 \mathrm{MPa} \& \mathrm{~T}_{2}=275.6^{\circ} \mathrm{C}$
specific volume $\mathrm{v}_{2}=0.2328+(0.258-0.2328)(275.6-250) /(50)$

$$
=299.886 \mathrm{~m}^{3} / \mathrm{kg}
$$

entropy $S_{2}=6.926+(7.125-6.926) 25.6 / 50$

$$
=7.0279 \mathrm{~kJ} / \mathrm{kgK}
$$

Work transferred $\mathrm{w}_{1-2}=\quad \mathrm{p}_{1} \mathrm{v}_{1} \mathrm{l}_{\mathrm{n}} \mathrm{p}_{1} / \mathrm{p}_{2}$

$$
\begin{aligned}
& =\quad 6 \times 10^{3} \times 0.032433 \ln (6 / 1) \\
& =\quad 348.67 \mathrm{~kJ} / \mathrm{kg} .
\end{aligned}
$$

Heat transferred $=T\left(\mathrm{~s}_{2}-\mathrm{s}_{1}\right)$
$=\quad 548.6(7.0279-5.891)$
$=\quad 624.31 \mathrm{~kJ} / \mathrm{kg}$

$$
\begin{aligned}
\text { Change in entropy } & =\mathrm{S}_{2}-\mathrm{S}_{1} \\
& =7.0279-5.891 \\
& =1.1369 \mathrm{KJ} / \mathrm{Kg} .
\end{aligned}
$$

(8) Stream expands hyperbolically from 30 bar and $300^{\circ} \mathrm{C}$ to 5 bar. Find the final condition of steam. Also determine the work of expansion, heat transferred and change of entropy.

Given

$$
\begin{aligned}
& \mathrm{P}_{1}=30 \mathrm{bar} \\
& \mathrm{P}_{2}=5 \mathrm{bar} \\
& \mathrm{~T}_{1}=300^{\circ} \mathrm{C}
\end{aligned}
$$

From super Heated stream tables, at $\mathrm{P}_{1}=30$ bar and $\mathrm{T}_{1}=300{ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{v}_{1}=0.0813 \mathrm{~m}^{3} / \mathrm{kg} \\
& \mathrm{U}_{1}=2757 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~S}_{1}=6.541 \mathrm{~kJ} / \mathrm{kg} \mathrm{~K}
\end{aligned}
$$

W.K.T

$$
\begin{aligned}
\mathrm{P}_{1} \mathrm{~V}_{1} & =\mathrm{P}_{2} \mathrm{~V}_{2} \\
\mathrm{~V}_{2} & =\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{P}_{2} \\
& =30 \times 0.0812 / 5 \\
& =0.4872 \mathrm{~m}^{3} / \mathrm{kg} .
\end{aligned}
$$

From super heated steam table, at $\mathrm{P}_{2}=5 \mathrm{bar}, \mathrm{V}_{2}=0.4872 \mathrm{~m}^{3} / \mathrm{kg}$.

$$
\mathrm{T}_{2}=250+50\left(\underline{0.4872-0.4745)}=263.2^{\circ} \mathrm{C}\right.
$$

$$
\begin{aligned}
& \text { for } 0.5226-0.4745 \text {) } \quad \mathrm{P}_{2}=5 \mathrm{bar}, \\
& \\
& \mathrm{~T}_{2}=263.2^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{u}_{2}=2745.9 \mathrm{~kJ} / \mathrm{kg}, \\
& \mathrm{~S}_{2}=7.321 \mathrm{~kJ} / \mathrm{kgK},
\end{aligned}
$$

Work of expansion

$$
\begin{aligned}
\mathrm{W}_{1-2} & =\mathrm{P}_{1} \mathrm{~V}_{1} \ln \left(\mathrm{~V}_{2} / \mathrm{v}_{1}\right) \\
& =30 \times 10^{2} \times 0.0812 \ln (0.4872 / 0.0813) \\
& =436.5 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

From the I. law of thermodynamics,

$$
\begin{aligned}
\text { Heat transfer } \mathrm{q}_{1-2} & =\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right)+\mathrm{W}_{1-2} \\
& =(2745.1-2751)+436.5 \\
& =431.4 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Change in entropy, $\mathrm{s}_{2}-\mathrm{s}_{1}=7.321-6.541$

$$
=\quad 0.780 \mathrm{~kJ} / \mathrm{kgK}
$$

9) Steam at 5 bar and 0.95 dry is expanded to 2 bar by a hyperbolic process. Find out the workdone and change in entropy during the process using steam tables only.
Given:

$$
\begin{aligned}
& \mathrm{P}_{1}=5 \mathrm{bar} \\
& \mathrm{X}_{1}=0.95 \\
& \mathrm{P}_{2}=2 \mathrm{bar}
\end{aligned}
$$

From steam tabels, at $\mathrm{P}_{1}=5$ bar

$$
\begin{aligned}
\mathrm{T}_{1} & =151.9^{0} \mathrm{C} \\
\mathrm{v}_{\mathrm{g}} & =0.37466 \mathrm{~m}^{3} / \mathrm{kg}, \\
\mathrm{~s}_{\mathrm{f}} & =1.86 \mathrm{~kJ} / \mathrm{kgK}, \\
\mathrm{~s}_{\mathrm{fg}} & =4.959 \mathrm{~kJ} / \mathrm{kgK} \\
\text { at } \mathrm{P}_{2} & =2 \text { bar }
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{v}_{\mathrm{g}}= & 0.88540 \mathrm{~m}^{3} / \mathrm{kg}, \\
\mathrm{~s}_{\mathrm{f}}= & 1.53 \mathrm{~kJ} / \mathrm{kgK}, \\
\mathrm{~s}_{\mathrm{fg}}= & 5.597 \mathrm{~kJ} / \mathrm{kgK}
\end{array}
$$

for a hyperbolic process,

$$
\begin{aligned}
\mathrm{p}_{1} \mathrm{v}_{1} & =\mathrm{P}_{2} \mathrm{v}_{2} \\
\mathrm{v}_{1} & =\mathrm{xv}_{\mathrm{g} 1} \\
& =0.95 \times 0.37466 \\
& =0.355927 \mathrm{~m}^{3} / \mathrm{kg} \\
\mathrm{v}_{2} & =\quad \mathrm{P}_{1} \mathrm{v}_{1} / \mathrm{p}_{2} \\
& =5 \times 0.355927 / 2 \\
& =0.8398 \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

Here $\mathrm{v}_{2}>\mathrm{v}_{\mathrm{g} 2}$, the steam is in wet condition.

$$
\begin{gathered}
\mathrm{v}_{2}=\quad \mathrm{x}_{2} \mathrm{v}_{\mathrm{g} 2} \\
0.839818= \\
\mathrm{x}_{2}=0.948 \\
\mathrm{x}_{2} \times \mathrm{sf}_{1}+\mathrm{x}_{1} \mathrm{sfg}_{1}=1.86+(0.95 \mathrm{x} 4 \times 4.959)=6.571 \mathrm{~kJ} / \mathrm{kgK} \\
\mathrm{~s}_{2}=\mathrm{sf}_{2}+\mathrm{x}_{2} \mathrm{sfg}_{2}=1.53+(0.948 \times 5.597)=6.836 \mathrm{~kJ} / \mathrm{kgK} \\
\text { workdone }={\mathrm{p} 1 \mathrm{v}_{1}} \ln \left(\mathrm{v}_{2} / \mathrm{v}_{1}\right) \\
\\
=500 \times 0.355927 \ln (0.8398 / 0.355927) \\
\\
=152.77 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

change in entropy $=\mathrm{s}_{2}-\mathrm{s}_{1}=6.836-6.571=0.265 \mathrm{~kJ} / \mathrm{kgK}$
10. 1 kg of superheated steam at 30 bar and $400^{\circ} \mathrm{C}$, contained in a cylinder - piston assembly is allowed to expand reversibly and adiabatically (isentropic) to a pressure of 1 bar. Determine the final condition of steam and the workdone.

Given: $\quad \mathrm{P}_{1}=3$ bar

$$
\begin{aligned}
& \mathrm{T}_{1}=400^{\circ} \mathrm{C} \\
& \mathrm{P}_{2}=1 \mathrm{bar} \\
& \mathrm{~s}_{1}=\mathrm{s}_{2} \text { (isentropic) }
\end{aligned}
$$

soln: From superheated steam tables at $\mathrm{P}_{1}=30 \mathrm{bar}, \mathrm{T}_{1}=400^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{V}_{1}=0.09931 \mathrm{~m}^{3} / \mathrm{kg}, \\
& \mathrm{~s}_{1}=6.925 \mathrm{~kJ} / \mathrm{kgK}
\end{aligned}
$$

From the saturated steam taller, at $\mathrm{P}_{2}=1$ bar

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{g}} & =1.6937 \mathrm{~m}^{3} / \mathrm{kg} \\
\mathrm{~s}_{\mathrm{f}} & =1.203 \mathrm{~kJ} / \mathrm{kgK} \\
\mathrm{~s}_{\mathrm{fg}} & =6.057 \mathrm{~kJ} / \mathrm{kgK} \\
\mathrm{~s}_{1} & =\mathrm{s}_{2} \\
6.925 & =1.303+(22 \times 6.057) \\
\mathrm{x}_{2} & =0.93(\text { Steam is in wet region })
\end{array}
$$

Specific Volume

$$
\begin{aligned}
\mathrm{V}_{2} & =\mathrm{x}_{2} \mathrm{~V}_{\mathrm{g} 2} \\
& =0.93 \times 1.6937 \\
& =1.575 \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

Work done $\quad=\quad \mathrm{P}_{1} \mathrm{~V}_{1}-\mathrm{P}_{2} \mathrm{~V}_{2} / \mathrm{Z}-1$
$=\quad 30 \times 100 \times 0.09931-100 \times 1.575 / 1.4-1$
$=\quad 357.08 \mathrm{~kg}$

PVT surface
The 3D surface which gives the relations among pressure, volume and temperature is called PVT surface.

Water Expands on Freezing

Figure 3.8

SCHOOL OF MECHANICAL ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

UNIT - IV - Engineering Thermodynamics - SMEA1302

Iv. Ideal and Real gases, Gas mixtures and Thermodynamic relations

Equation of state of a gas
The equation which relates the properties, pressure, specific volume and Temperature is known as equation of state.
$\mathbf{P v}=\mathbf{R T}$
where p - Pressure
v - specific volume
R - universal gas constant
T-Temperature
Ideal gas
The gas which obeys the law $\mathrm{PV}=\mathrm{mRT}$ at all temperatures and pressures is called as an ideal gas.

Real gas
The gas which does not satisfy this equation of state is known as Real gas.
Vander walls equation
When pressure is is low and temperature is high, the intermolecular attraction and the volume of molecules compared to the total volume of gas are very small, the real gas obeys as ideal gas.

But when pressure increases, the real gases deviate from the ideal gas equation.
Vander walls introduced two correction terms in the equation of state, as

$$
\left(\mathrm{p}+\mathrm{a} / \mathrm{v}^{2}\right)(\mathrm{v}-\mathrm{b})=\mathrm{RT}
$$

a - account for existence of mutual attraction between the molecules.
$\mathrm{a} / \mathrm{v}^{2}=$ force of cohesion
b- account for volumes of molecules
Berthelot equation

$$
\mathrm{P}=\mathrm{RT} / \mathrm{v}-\mathrm{b} \cdot \mathrm{a} / \mathrm{TV}^{2}
$$

Dietrici equation

$$
\mathrm{P}=\mathrm{RT} / \mathrm{v}-\mathrm{b} \cdot \mathrm{e}^{-\mathrm{e} / R T \mathrm{v}}
$$

Redlich - kwong equation
 $\mathrm{P}=\mathrm{RT} / \mathrm{v}-\mathrm{b}-\mathrm{a} / \mathrm{T}^{1 / 2} \mathrm{v}(\mathrm{v}+\mathrm{b})$

Redlick-kwong equation gives accurate results at high pressures and temperature

VIRIAL EXPANSIONS

Kammerlingh onnes a Dutch physicist introduced some coefficients to express the equation of state in power series known as virial coefficients.

The expression is given as

$P v=A\left(1+B P^{1}+C P^{2}+D P^{3}+\ldots \ldots\right)$
$\operatorname{Limpv}=A=R T$
$P \rightarrow 0$
$\mathrm{Pv} / \mathrm{RT}=1+\mathrm{Bp}+\mathrm{C}^{\prime} \mathrm{P}^{2}+\mathrm{D}^{\prime} \mathrm{P}^{3}+\ldots . . \quad$ (or)
$\mathrm{Pv} / \mathrm{RT}=1+\mathrm{B}^{\prime} \mathrm{P}+\mathrm{C}^{\prime} \mathrm{P}^{2}+\mathrm{D}^{\prime} \mathrm{P}^{3}+\ldots$.
These are known as Virial equations of state.
$\mathrm{B}^{\prime}, \mathrm{C}^{\prime}, \mathrm{B}, \mathrm{C}$ are known as virial coefficients.

Where, PV/ RT is called compressibility factor and is denoted as " Z "

$$
\mathrm{Z}=1+\mathrm{B} / \mathrm{v}+\mathrm{C} / \mathrm{v}^{2}+\mathrm{D} / \mathrm{v}^{3}+\ldots \ldots
$$

B/v,C/vere etc are the virial expression arise on account of molecular interactions.

If there is no interactions (ie. At low pressure $\mathrm{B}=0, \mathrm{C}=0, \mathrm{Z}=1$ and

$$
\mathrm{Pv}=\mathrm{RT} \text { (ideal gas equation) }
$$

Compressibility Factor Chart

Figure 4.1
It is used to find the values of Z at any value of P and T
Then the volume by using the relation $\mathrm{pv}=\mathrm{ZRT}$ can be find out.

Reduced properties

The general shape of this remains same for all substances but the scales may be different. This similarity is exploited by the dimensionless properties called reduced properties.

Reduced temperature is the ratio of existing temperature to the critical temperature of the substance
ie, $\operatorname{Tr}=\mathrm{T} / \mathrm{T}_{\mathrm{c}}, \mathrm{Pr}=\mathrm{P} / \mathrm{P}_{\mathrm{c}} \& \mathrm{u} / \mathrm{V}_{\mathrm{c}}$ critical compressibility factor

$$
\mathrm{ZC}=\mathrm{P}_{\mathrm{c}} \mathrm{~V}_{\mathrm{C}} / \mathrm{RT}_{\mathrm{c}}
$$

Generalized compressibility chart

Figure 4.2
It is that in which T_{r} is plotted as a function of reduced pressure and compressibility factor.
Law of corresponding states
It is the relation among the reduced properties P_{r}, T_{r} and U_{r}
It is expressed as
$\left(\mathrm{Pr}+3 / \mathrm{Ur}^{2}\right)(3 \mathrm{Ur}-1)=8 \mathrm{Tr}$

If any two gases have equal values of reduced pressure and reduced termperature, then have same values of reduced volume.

Dalton's law of partial pressures
It states that the total pressure of a mixture of ideal gases is equal to the sum of the partial pressures.
consider a mixture of ideal gases at a temperature T,
pressure p and volume v
Assume
n_{1}-> moles of gas A_{1}
n_{2}-> moles of gas A_{2}
$\mathrm{n}_{\mathrm{i}}=$ moles of gas Ac
$\left.\mathrm{Pv}=\mathrm{Cn}_{1}+\mathrm{n}_{2}+\ldots \ldots . .+\mathrm{nc}\right) \mathrm{RT}$
where $\mathrm{R}=8.314 \mathrm{KJ} / \mathrm{kg}$ molk

$$
\mathrm{p}=\mathrm{n}_{1} \mathrm{AT} / \mathrm{vn} 2 \mathrm{RT} / \mathrm{v}+\ldots \mathrm{ncRT} / \mathrm{v}
$$

The expression $n * R T / v$ represents the pressure that the $\mathrm{k}^{\text {th }}$ gas would exist if it occupied the volume at temperature T .
$\mathrm{p}=\mathrm{P}_{1}+\mathrm{P}_{2}+\ldots \ldots \ldots . . \mathrm{P}_{\mathrm{c}}$
where $P_{1}=n_{1} R T_{1} / v, P_{2}=n_{2} R T / v \ldots \ldots . P_{C}=n c \quad R T / V$
volume

$$
\begin{aligned}
\mathrm{V} & =\left(\mathrm{n}_{1}+\mathrm{n}_{2}+\ldots . . . \mathrm{n}_{\mathrm{c}}\right) \mathrm{RT} / \mathrm{P} \\
& =\sum \mathrm{nk} \mathrm{RT}^{*} \mathrm{p}
\end{aligned}
$$

where $\sum \mathrm{n}_{\mathrm{k}}=\mathrm{n}_{1}+\mathrm{n}_{2}+\ldots \ldots \ldots \ldots . . \mathrm{n}_{\mathrm{k}}$
$=$ Total number of moles of gas.
mole fraction of a gas
it is denoted as $\mathrm{nk} / \sum \mathrm{nk}$ for k_{th} gas
ie, $\mathrm{x}_{1}=\mathrm{n}_{1} / \sum \mathrm{nk}, \mathrm{x}_{2}=\mathrm{n}_{2} / \sum \mathrm{n}_{\mathrm{k}}$

$$
\text { ie, } x_{1}+x_{2}+\ldots x c=1
$$

In terms of masses
$\mathrm{pv}=\left(\mathrm{m}_{1} \mathrm{R}_{1}+\mathrm{m}_{2} \mathrm{R}_{2+} \mathrm{m}_{\mathrm{c}} \mathrm{R}_{\mathrm{c}}\right) \mathrm{T}$
where $\mathrm{p}=\mathrm{P}_{1}+\mathrm{P}_{2}+\ldots+\mathrm{P}_{\mathrm{c}}$
For the gas mixture
$\mathrm{pv}=\left(\mathrm{m}_{1+} \mathrm{m}_{2}+\ldots \ldots+\mathrm{m}_{\mathrm{c}}\right) \mathrm{R}_{\mathrm{m}} \mathrm{T}$
where R_{m} is the gas constant for the mixture

$$
\mathrm{R}_{\mathrm{m}}=\left(\mathrm{m}_{1} \mathrm{R}_{1}+\mathrm{m}_{2} \mathrm{R}_{2}+\ldots \ldots \ldots . \mathrm{m}_{\mathrm{c}} \mathrm{R}_{\mathrm{c}}\right) / \mathrm{m}_{1}+\mathrm{m}_{2}+\ldots \ldots \ldots \mathrm{m}_{\mathrm{c}}
$$

Equivalent molar weight

$$
\mu_{\mathrm{m}}=\quad \sum \mathrm{x}_{\mathrm{k}} \mu_{\mathrm{k}}
$$

Partial volume of a component is the volume that the component alone would occupy at the same pressure and temperature of the mixture.
specific volume of the mixture
$\mathrm{V}=\mathrm{v} / \mathrm{m}=\mathrm{v} / \mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{\mathrm{c}}$
(or) $1 / v=1 / v_{1}+1 / v_{2}+\ldots1 / v_{c}$

Density of the mixture

$$
\rho=\rho_{1}+\rho_{2}+\ldots+\rho_{c}
$$

Internal energy of mixture

$$
\mathrm{u}_{\mathrm{m}}=\mathrm{m}_{1} \mathrm{u}_{1}+\mathrm{m}_{2} \mathrm{u}_{2}+\ldots \ldots \ldots . . . \mathrm{m}_{\mathrm{c}} \mathrm{u}_{\mathrm{c}} / \mathrm{m}_{1}+\mathrm{m}_{2}+\ldots \ldots . . . \mathrm{m}_{\mathrm{c}}
$$

Enthapy of gas mixture

$$
\mathrm{h}_{\mathrm{m}}=\mathrm{m}_{1} \mathrm{~h}_{1}+\mathrm{m}_{2}+\mathrm{h}_{2}+\mathrm{m}_{\mathrm{c}} \mathrm{hc} / \mathrm{m}_{1}+\mathrm{m}_{2}+\ldots \mathrm{m}_{\mathrm{c}}
$$

specific heats of mixture

$$
\mathrm{C}_{\mathrm{vm}=}=\mathrm{m}_{1} \mathrm{cv}_{1}+\mathrm{m}_{2} \mathrm{Cv}_{2}+\ldots \mathrm{m}_{\mathrm{c}} \mathrm{cv}_{\mathrm{c}} / \mathrm{m}_{1}+\mathrm{m}_{2}+\ldots \ldots . . . \mathrm{mc}
$$

$$
\mathrm{C}_{\mathrm{pm}}=\mathrm{m}_{1} \mathrm{c}_{\mathrm{v} 1}+\mathrm{m}_{2} \mathrm{c}_{\mathrm{v} 2}+\ldots \ldots . . \mathrm{m}_{\mathrm{c}} \mathrm{c}_{\mathrm{vc}} / \mathrm{m}_{1}+\mathrm{m}_{2}+\ldots \ldots . .+\mathrm{m}_{\mathrm{c}}
$$

Entropy of Gas mixtures

Gibbs theorem

It states that the total entropy of a mixture of gases is the sum of the partial entropies.
$\mathrm{S}_{\mathrm{f}}-\mathrm{S}_{\mathrm{i}}=-\left(\mathrm{m}_{1} \mathrm{R}_{1} \ln \mathrm{P}_{1} / \mathrm{p}+\mathrm{m}_{2} \mathrm{R}_{2} \ln \mathrm{P}_{2} / \mathrm{P}+\ldots \ldots \ldots \ldots . . . \mathrm{m}_{\mathrm{c}} \mathrm{R}_{\mathrm{c}} \ln \mathrm{P}_{\mathrm{c}} / \mathrm{P}\right)$

Relation between $\mathbf{C p}, \mathbf{C v}$ and R

The specific heat capacity at constant volume of any substance is given by $\mathrm{C}_{\mathrm{v}}=(\mathrm{du} / \mathrm{dt}) \mathrm{v}$

$$
\text { Joule's law states } u=f(T)
$$

$$
\text { Hence } \mathrm{C}_{\mathrm{v}}=\mathrm{du} / \mathrm{dt}
$$

$$
\text { similarly } h=f(T)
$$

specific heat at constant pressure
$\mathrm{C}_{\mathrm{p}}=\mathrm{dh} / \mathrm{dT}$
We know that $\mathrm{h}=\mathrm{u}+\mathrm{pv}$ (or) $\mathrm{h}=\mathrm{u}+\mathrm{RT}$

$$
\mathrm{dh} / \mathrm{dT}=\mathrm{du} / \mathrm{dT}+\mathrm{R}
$$

substituting the values of c_{p} and C_{v}

$$
\mathrm{C}_{\mathrm{p}}=\mathrm{C}_{\mathrm{v}}+\mathrm{R}
$$

(N) $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{V}}=\mathrm{R}$

1. $1 \mathrm{~kg} \mathrm{co}_{2}$ has a volume of $1 \mathrm{~m}^{3}$ at 100 'c compute the pressure by vander waal's equation Take $\left.\mathrm{a}=362850 \mathrm{Nm}^{4} / \mathrm{kg}-\mathrm{m} 0 \mathrm{le}\right)^{2}$ perfect gas equation, $\mathrm{b}=0.0423 \mathrm{~m}^{3} / \mathrm{kg}$-mole

Given

$$
\text { molar specific volume }=1 * 44=44 \mathrm{~m}^{3} / \mathrm{kg} \text {-mole }
$$

$$
\mathrm{T}=373 \mathrm{~K}
$$

(i) vander waal's quation

$$
\begin{aligned}
&\left(\mathrm{p}+\mathrm{a} / \mathrm{v}^{2}\right)(\mathrm{v}-\mathrm{b})=\mathrm{R}_{\mathrm{o}} \mathrm{~T} \\
& \mathrm{p}=\left(\mathrm{RoT} / \mathrm{v}-\mathrm{b}-\mathrm{a} / \mathrm{v}^{2}\right) \\
& \mathrm{p}=\left(8314 * 373 / 44-0.0423-362850 / 44^{2}\right) \\
& \mathrm{P}=70361 \mathrm{~N} / \mathrm{m}^{2} \\
&=0.7036 \text { bar }
\end{aligned}
$$

(ii) perfect gas equation

$$
\mathrm{pv}=\mathrm{RoT}
$$

$$
\begin{aligned}
\mathrm{P}=\operatorname{RoT} / \mathrm{v}=8314 * 373 / 44= & 70480 \mathrm{~N} / \mathrm{m}^{2} \\
& =0.7048 \mathrm{bar}
\end{aligned}
$$

2. It is necessary to strore one kmole of methane at a temperature of 300 k and pressure of 60 Mpa. Determine the volume of the cylinder that is required for storage by each of the following laws.
a. ideal gas equation
b. vander waal's equation

The vander waal's constants for methane are

$$
\mathrm{a}=228.5 \mathrm{kpa}\left(\mathrm{~m}^{3} / \mathrm{kmole}\right)^{2} 1 \mathrm{~b}=0.0427 \mathrm{~m}^{3} / \mathrm{kgmol}
$$

Given

$$
\mathrm{T}=300 \mathrm{~K}
$$

$$
\mathrm{p}=60 \mathrm{Mpa}
$$

(i) ideal gas equation

$$
\begin{aligned}
& \mathrm{PV}=\operatorname{RoT} \mathrm{v} \\
& \begin{aligned}
\mathrm{V} & =\mathrm{R}_{\mathrm{o}} \mathrm{~T} / \mathrm{p}=8314 * 300 / 60 * 10^{6} \\
& =0.04157 \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~mole}
\end{aligned}
\end{aligned}
$$

(ii) vander waal's equation

$$
\begin{aligned}
& \quad\left(P+a / v^{2}\right)(v-b)=R_{o} T \\
& p+a / v^{2}=R_{o} T / v-b \\
& (v-b)\left(p v^{2}+a\right)=v^{2} R O T \\
& p v^{3}-v^{2}(p b+R O T)+a v=a b \\
& 60 * 10^{6} v^{3}-u^{-2}\left(60 * 10^{6} * 0.0427+8314 * 300\right)+228500 * v \\
& =228500 * 0.0427
\end{aligned}
$$

$\mathrm{v}=0.069 \mathrm{~m}^{3} / \mathrm{kgmole}$
3. For a substance described by the equation of state

$$
\mathrm{p}(\mathrm{v}-\mathrm{b})=\mathrm{RT}
$$

and whose internal energy is given by
$\mathrm{du}=\mathrm{C}_{\mathrm{v}} \mathrm{dt}$
Where C_{V} is the constant determine an expression for the entropy difference between the states defined by $\mathrm{T}_{1}, \mathrm{~V}_{1}$ and $\mathrm{T}_{2}, \mathrm{~V}_{2}$ in terms of these quantities.

$$
\begin{aligned}
& \mathrm{P}(\mathrm{v}-\mathrm{b})=\mathrm{RT} \\
& \mathrm{P} / \mathrm{T}=\mathrm{R} / \mathrm{v}-\mathrm{b}=>(\partial \mathrm{p} / \partial \mathrm{T})_{\mathrm{v}}=\mathrm{R} / \mathrm{v}-\mathrm{b} \\
& \mathrm{Tds}=\mathrm{du}+\mathrm{T}(\partial \mathrm{p} / \partial \mathrm{T})_{\mathrm{v}} \mathrm{dv} \\
& =\mathrm{C}_{\mathrm{v}} \mathrm{dT}+\mathrm{RT} / \mathrm{v}-\mathrm{b} d \mathrm{v} \\
& \mathrm{ds}=\mathrm{C}_{\mathrm{v}} \mathrm{dt} / \mathrm{T}+\mathrm{R} / \mathrm{v}-\mathrm{b} d \mathrm{v} \\
& \mathrm{~S}_{2}-\mathrm{S}_{1}=\mathrm{C}_{\mathrm{v}} \ln \mathrm{~T}+\mathrm{R} \ln \mathrm{v}_{2}-\mathrm{b} / \mathrm{v}_{1}-\mathrm{b}
\end{aligned}
$$

4. Compute the specific volume of steam at 10 bar, 450C, by means of (i) The ideal- gas equation of state. (ii) a compressibility factor. Compare These results to the steam -table value and give the \% error for each method.

Given
$\mathrm{P}=10$ bar, $\mathrm{T}=450^{\prime} \mathrm{C}$ (superheated steam ie, air)
(i) Heat gas equation

PV=RT
Where $\mathrm{R}=\mathrm{T} / \mathrm{m}=8314 / 28.97=287 \mathrm{~J} / \mathrm{kgk}$

$$
\mathrm{V}=\mathrm{RT} / \mathrm{P}=287 * 723 / 10 * 10^{5}=0.207 \mathrm{~m}^{3}
$$

(ii) Compressibility factor

$$
\mathrm{PV}=\mathrm{zRT}
$$

Where $\mathrm{z}=0.284$
Hence $V=0.284 * 287 * 723 / 10 * 10^{5}=0.059 \mathrm{~m}^{3}$
From Superheated steam table,

$$
\begin{aligned}
& \text { At } \mathrm{P}=10 \mathrm{bar}, \mathrm{~T}=450 \mathrm{C} \\
& \text { Volume }=0.325 \mathrm{~m}^{3}
\end{aligned}
$$

\% error in ideal gas equation of state

$$
=0.325-0.207 / 0.207=57 \%
$$

\% error in compressibility fractor method

$$
=0.325-0.059 / 0.059=
$$

1. A vessel of $0.35 \mathrm{~m}^{3}$ capacity contains 0.4 kg of $\mathrm{Co}(\mu=28)$ and 1 kg of air at $20^{\circ} \mathrm{C}$ calculate
(i) The partial pressure of each constituent
(ii) The total pressure in the vessel and
(iii) The gravimetric analysis of air is to be taken as $23.3 \% \mathrm{o}_{2}(\mu=32) \& 76.7 \%$ $\mathrm{N}_{2}(\mu=28)$
(iv) Given volume $\mathrm{v}=0.35 \mathrm{~m}^{3}$

Mass of $\mathrm{Co}=0.4 \mathrm{~kg}$
Mass of air $=1 \mathrm{~kg}$

$$
\mathrm{T}=293 \mathrm{k} .
$$

Mass of O_{2} pressed in 1 kg of air $=23.3 / 100 * 1=0.233 \mathrm{~kg}$
Mass of N_{2} Present in kg of air $=76.7 / 100 * 1=0.767$

$$
\mathrm{PV}=\mathrm{mRT}
$$

(i) Partial Pressure

$$
\begin{aligned}
\mathrm{P}_{02} & =\mathrm{m}_{02} \mathrm{RT} / \mathrm{M}_{02} * \mathrm{~V}_{0} \\
& =0.233 * 8314 * 293 / 32 * 0.35 * 10^{5} \\
& =1.9065 \mathrm{bar}
\end{aligned}
$$

(ii) Total pressure in the vessel

$$
\begin{aligned}
\mathrm{P} & =\mathrm{P}_{02}+\mathrm{P}_{\mathrm{N} 2}+\mathrm{P}_{\mathrm{CO}} \\
& =0.5068+1.9065+0.9443 \\
\mathrm{P} & =3.4076 \text { bar }
\end{aligned}
$$

MAXWELL'S EQUATIONS

Equations used to express any one property of a pure substance as a function of any two others are called Maxwell's equations

$$
\mathrm{du}=\mathrm{Tds}-\mathrm{pdv}
$$

Consider $\mathrm{S}=\mathrm{f}(\mathrm{T}, \mathrm{v})$

$$
\mathrm{ds}=(\mathrm{ds} / \mathrm{dt})_{\mathrm{v}} \mathrm{dT}+(\mathrm{ds} / \mathrm{dV})_{\mathrm{T}} \mathrm{dV}
$$

$\mathrm{Tds}=\mathrm{T}(\mathrm{ds} / \mathrm{dt})_{\mathrm{v}} \mathrm{dt}+\mathrm{T}(\mathrm{ds} / \mathrm{dv})_{\mathrm{T}} \mathrm{dv}$
we know that $\mathrm{T}(\mathrm{ds} / \mathrm{dt})_{\mathrm{v}}=\mathrm{C}_{\mathrm{v}} \&(\mathrm{ds} / \mathrm{dv})_{\mathrm{T}}=(\mathrm{dp} / \mathrm{dt})_{\mathrm{v}}$
Hence $T d s=C_{v} d T+T(d p / d t)_{v} d v$
This is known as first Tds equation.
2. $S=f(T, p)$

$$
\mathrm{ds}=(\mathrm{ds} / \mathrm{dt})_{\mathrm{p}} \mathrm{dt}+(\mathrm{ds} / \mathrm{dp})_{\mathrm{T}} \mathrm{dp}
$$

we know that $T(\mathrm{ds} / \mathrm{dt})_{\mathrm{p}}=\mathrm{c}_{\mathrm{p}} \&(\mathrm{ds} / \mathrm{dp})_{\mathrm{T}}=-(\mathrm{dv} / \mathrm{dt})_{\mathrm{p}}$

$$
\text { Hence Tds }=C_{p} d T-T(d v / d t)_{p} d p
$$

This is known as Second Tds equation

Show that C_{p} is always greater Than C_{v}

From I\& II Tds equations
$\mathrm{Tds}=\mathrm{C}_{\mathrm{p}} \mathrm{dT}-\mathrm{T}(\mathrm{dv} / \mathrm{dT}) \mathrm{p} \mathrm{dp}=\mathrm{C}_{\mathrm{V}} \mathrm{dT}+(\mathrm{dP} / \mathrm{dT})_{\mathrm{v}} \mathrm{dv}$
$\left(\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}\right) \mathrm{dt}=\mathrm{T}(\mathrm{dp} / \mathrm{dT})_{\mathrm{v}} \mathrm{dv}+\mathrm{T}(\mathrm{dv} / \mathrm{dt})_{\mathrm{p}} \mathrm{dp}$
$\mathrm{dT}=\mathrm{T}(\mathrm{dp} / \mathrm{dT})_{\mathrm{v}} \mathrm{dv} /(\mathrm{cp}-\mathrm{cv})+\mathrm{T}(\mathrm{dv} / \mathrm{dT})_{\mathrm{p}} \mathrm{dp} / \mathrm{c}_{\mathrm{p}} \cdot \mathrm{C}_{\mathrm{v}}$
but $\quad d T=(d T / d v)_{P} d v+(d T / d p) v d p$
$T(d p / d t)_{v} d v=(d T / d v)_{p} d v$
$\& T(d v / d t)_{p} d p=(d T / d p)_{v} d . P$
Hence $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{T}(\mathrm{dp} / \mathrm{d} / \mathrm{T})_{\mathrm{v}}(\mathrm{dv} / \mathrm{dT})_{\mathrm{p}}$
But $(d p / d T)_{v}(d T / d V)_{p}(d v / d p)_{T}=-1$
Hence $C p-C_{4}=-T(d v / d T)_{p}^{2}(d p / d v)_{T}$
$(\mathrm{dv} / \mathrm{dT})_{\mathrm{p}}^{2}$ is always $+\mathrm{ve} \&(\mathrm{dp} / \mathrm{dp})_{\mathrm{T}}$ is -ve

Hence ${ }_{C p}>\mathrm{C}_{\mathrm{v}}$

Joule-Thomson Coefficient
The numerical value of the slope of an isenthalpe on a T-P diagram at any point is called the Joule- kelvin coefficient (or) Joule Thomson Coefficient

Figure 4.3

$$
\begin{aligned}
& \text { It as denoted by } \cdots--\mu_{\mathrm{J}} \\
& \mu_{\mathrm{J}}=(|\mathrm{dT} /| \mathrm{dp})_{\mathrm{h}} \\
& \text { The Joudle Thomson coefficient of an ideal gas zero }
\end{aligned}
$$

Clausius - clapeyron equation

Whenever there is a change of phase, there is a change in entropy and volume
$\mathrm{dp} / \mathrm{dT}=\mathrm{S}^{(\mathrm{f})}-\mathrm{S}^{(\mathrm{i})} / \mathrm{V}^{(\mathrm{f})}-\mathrm{V}^{(\mathrm{i})}$
1.A certain gas follows the equation of state $\mathrm{p}(\mathrm{v}-\mathrm{b})=\mathrm{RT}$. Show that for a reversible adiabatic process of this gas $\mathrm{T}(\mathrm{v}-\mathrm{b})^{\mathrm{R} / \mathrm{Cv}}=$ Constant

$$
\mathrm{P}(\mathrm{v}-\mathrm{b})=\mathrm{RT} \quad-1
$$

from the first Tds equations
$T d s=C_{v} d T+T(d p / d T)_{v} d v$
$\mathrm{ds}=\mathrm{C}_{\mathrm{v}} \mathrm{dT} / \mathrm{T}+(\mathrm{dp} / \mathrm{dT})_{\mathrm{v}} \mathrm{dv} \quad-2$
from equation 1
$\mathrm{P} / \mathrm{T}=\mathrm{R} / \mathrm{v}-\mathrm{b}$
$(\mathrm{dp} / \mathrm{dT})_{\mathrm{v}}=\mathrm{R} / \mathrm{v}-\mathrm{b} \quad-3$
substituting the value of $(\mathrm{dp} / \mathrm{dT})_{\mathrm{v}}$ in equation 2
$\mathrm{ds}=\mathrm{CvdT} / \mathrm{T}+\mathrm{R} / \mathrm{v}-\mathrm{b} \mathrm{dv}$

In a reversible adiabatic process ds=0
$\mathrm{C}_{\mathrm{v}} \mathrm{dT} / \mathrm{T}+\mathrm{R} / \mathrm{v}-\mathrm{b}=0$
$\mathrm{Cv} \ln \mathrm{T}+\mathrm{R} \ln (\mathrm{v}-\mathrm{b})=\operatorname{lnc}$
$\ln \mathrm{T}+\ln (\mathrm{v}-\mathrm{b})^{\mathrm{R} / \mathrm{cv}}=\operatorname{lnc}$
$\mathrm{T}(\mathrm{v}-\mathrm{b})^{\mathrm{R} / \mathrm{cv}}=\mathrm{C}$

Hence the proof.
2. Find the increase in entropy when 2 kg of oxygen at $60^{\prime} \mathrm{C}$ mixed with 6 kg of nitrogen at the same temperature. The initial pressure of each constituent is 103 kpa and is the same as that of the mixture?

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{O} 2}=\mathrm{P}_{\mathrm{O} 2} / \mathrm{p}=(2 / 32) /(2 / 32+6 / 28)=0.225 \\
& \mathrm{X}_{\mathrm{N} 2}=1-0.225=0.775
\end{aligned}
$$

Increase in entropy
ds $\quad=-\mathrm{mo}_{2} \mathrm{R}_{02} \ln \mathrm{x}_{02}-\mathrm{m}_{\mathrm{N} 2} \mathrm{R}_{\mathrm{N} 2} \ln \mathrm{x}_{\mathrm{N} 2}$
$=-2(8.3143 / 32) \ln (0.225)-6(8.3143 / 28) \ln (0.775)$
$=1.2314 \mathrm{KJ} / \mathrm{kgk}$
3. Following shows gravimetric analysis of air $23.14 \% \mathrm{o}_{2}, 75.53 \% \mathrm{~N}_{2}, 1.28 \% \mathrm{Ar} \& 0.05 \% \mathrm{Co}_{2}$.

Calculate the analysis by volume and partial pressure of each constituent when the total pressure is 1bar.

constituent	mi	Mi	$\mathrm{ni}=\mathrm{mi} / \mathrm{Mi}$	$\mathrm{n} 1 / \mathrm{n} \times 100 \%$
02	0.2314	32	0.00723	20.94%
N 2	0.7553	28	0.02697	78.10%
Ar	0.0128	40	0.00032	0.93%
Co 2	0.0005	44	0.00001	0.03%
		$\mathrm{n}=\sum \mathrm{ni}=0.03453$		
$\mathrm{Po}_{2}=\mathrm{ni} / \mathrm{n} \mathrm{x} \mathrm{P}=0.2094 \times 1$	$=0.2094$ bar			
$\mathrm{P}_{\mathrm{N} 2}=0.7810$ bar				
$\mathrm{P}_{\mathrm{Ar}}=0.0093$ bar				
$\mathrm{Pco}_{2}=0.003$ bar				

GIBBS FUNCTION:

From the I law of Thermodynamics,

$$
\text { dQ = du + pdv --------- } 1
$$

From the II law of thermodynamics

$$
\mathrm{ds} \geq \mathrm{dQ} / \mathrm{T} \quad------2
$$

from $1 \& 2$

$$
\begin{aligned}
& d u+p d v-d Q=0 \\
& d u+p d v-T d s \leq 0
\end{aligned}
$$

since $P \& T$ are constants,
$\mathrm{d}(\mathrm{u}+\mathrm{pv}-\mathrm{Ts})_{\mathrm{T}, \mathrm{P}} \leq 0$
$(\mathrm{dG})_{\mathrm{T} . \mathrm{P}} \leq 0$
(or) $\mathrm{G}=\mathrm{u}+\mathrm{pv}-\mathrm{Ts}=\mathrm{H}-\mathrm{Ts}$

G is called Gibbs function. Its significance is to knowing the concept of vapour phase equilibrium and chemical reactions.

Helmholtz function

From the I law of Thermodynamics,

$$
\mathrm{du}=\mathrm{dQ}-\mathrm{dw}
$$

Consider the closed system at constant temperature and volume

$$
\text { du = dQ ------ } 1
$$

From the II law of Thermodynamics,
$\mathrm{ds}=\mathrm{d}(\mathrm{Q} / \mathrm{T})+\mathrm{dI}-----2$

Where dI is the irreversibility term to define the direction of change.
from $1 \& 2$
$\mathrm{ds}=\mathrm{du} / \mathrm{T}+\mathrm{dI}$

Tds $-\mathrm{du}=\mathrm{dI} \mathrm{x}$ T
$\mathrm{TdI}=-\mathrm{d}(\mathrm{u}-\mathrm{Ts})$
for stable equilibrium
dI >0
$\mathrm{d}(\mathrm{u}-\mathrm{Ts})_{\mathrm{T}, \mathrm{u}} \geq 0$
(d A)T, $\mathrm{v} \geq 0$
where $\mathrm{A}=\mathrm{u}-\mathrm{Ts}$.

A is called Helmholtz function. Its significance is to analyse the chemical processes at constant T and V

Amagat Ludac law

It states that the volume of a mixture of ideal gases is equal to the sum of the partial volumes which the constituent gases would occupy if each existed alone at the pressure and temperature of the Mixture.

Gibb's law

It states that the internal energy, enthalpy and entropy of a mixture of perfect gases are respectively equal to sum of internal energies, enthalpies and entropies that each constituent would have if it alone occupied the volume of the mixture at the temperature of the mixture.

SCHOOL OF MECHANICAL ENGINEERING
DEPARTMENT OF MECHANICAL ENGINEERING

UNIT - V - Engineering Thermodynamics - SMEA1302

V. Psychrometry

PSYCHROMETRY

The science which deals about the behaviour of mixtures of dry air and water vapour is called psychrometry.

Mixtures of air:-
(i) Unsaturated air mixture

It is a mixture of dry air and superheated water vapour, the partial pressure of water vapour, being less then its saturation pressure corresponding to the temperature of the mixture.
(ii) Saturated air mixture

It is the mixture of dry air and water vapour in which the partial pressure of water vapour is equal to its saturation pressure corresponding to the temperature of the mixture.
(iii) Super heated air mixture

It is a mixture of dry air and water vapour in which the partial pressure of of water vapour grater is than its saturation pressure corresponding to the temperature of the mixture.

Specific humidity (or) humidity ratio
It is the ratio of mass of water vapour to the mass of dry air in a specified volume of the mixture at the mixture temperature.

$$
\mathrm{W} \quad=\quad \mathrm{M}_{\mathrm{v}} / \mathrm{M}_{\mathrm{a}} \text { or } \mathrm{W}=\quad 0.622 \mathrm{P}_{\mathrm{v}} / \mathrm{p}-\mathrm{P}_{\mathrm{v}}
$$

Where

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{v}}=\text { Partial pressure of water vapour. } \\
& \mathrm{P}_{\mathrm{a}} \quad=\quad \text { Partial pressure of dry air. }
\end{aligned}
$$

Saturation Ratio
It is the ratio of absolute humidity of the moist air to the absolute humidity of saturated air at the same temperature and total pressure.

$$
\Psi \quad=\quad \mathrm{W} / \mathrm{W}_{\mathrm{s}}
$$

Relative humidity

It is the ratio of the partial pressure of water vapour in the mixture at a given temperature to the saturation temperature of the vapour at the same temperature.

$$
\varphi=\quad P_{v} / P_{g}
$$

Casi (i)
$\phi=0$ (for dry air)
Casi (ii)
$\phi \quad=\quad 100 \%$ (for saturated air)

Dew point temperature :
It is the temperature at which unsaturated air becomes saturated, that is vapur begins to condensate at constant pressure and specific humidity

Dry bulb temperature :
It is the temperature recorded by a thermometer with a dry bulb.
Wet bulb temperature.
It is the temperature recorded by a thermometer when the bulb is enveloped by a cotton wick saturated with water.

Adiabatic saturation temperature

When unsaturated air flows over a long sheet of water in an insulated chamber, the water evaporates, and the specific humidity of air increases.

Both the air and water are cooled, as evaporation takes place. The process continues until the energy transferred from the air to the water is equal to the energy required to vapourize the water.

At this point, thermal equilibrium exits between water- air and water -vapour. This equilibrium temperature is called adiabatic saturation temperature.

It is called as thermodynamic wet bulb temperature.

Psychometric chart

Chart which shows the specific humidity and partial pressure of water as ordinates and DBT as abscissa is called as Psychrometric chart.

Figure 5.1

Psychometric processes:-

1. sensible heating (or) cooling

Heating (or) cooling of air at constant specific humidity is called sensible heating or sensible cooling.

Figure 5.2

1. Cooling and Dehumidification

The process of removing water vapour from air is called dehumidification, cooling of air is the removal of heat from air. It is the used in summer air conditioning.

Figure 5.3

4.Adiabatic mixing of air streams

In air conditioning systems, the room air and ventilation air are mixed to the desired state and supplied to the conditioned space.

1. Chemical Dehumidification:

The process of removing water vapour from the air by passing the air through a bed of silica gel is called chemical dehumidification. The DBT of air increases by releasing the latent heat of condensation.

Figure 5.4

1. The readings from a sling psychomotor are as follows DBT $=30^{\circ} \mathrm{c}$ WBT $=20^{\circ} \mathrm{C}$, Barometer reading $=740 \mathrm{~mm}$ of Hg ,

Using steam tables, determine 1. DPT, 2. Relative humidity 3. specific humidity, 4. Degree of saturation, 5. vapour density and 6 . Enthalpy of mixture $/ \mathrm{kg}$ of air.
given:-

$$
\mathrm{T}_{1} \quad=30^{\circ} \mathrm{C}
$$

$\mathrm{T}_{\mathrm{w}} \quad=20^{\circ} \mathrm{C}$
$\mathrm{P}_{\mathrm{b}}=740 \mathrm{~mm}$ of Hg
From steam tables for $\mathrm{T}_{\mathrm{w}}=20^{\circ} \mathrm{c}, \mathrm{p}_{\mathrm{w}}=0.02337$ bar
$\mathrm{P}_{\mathrm{b}} \quad=\quad 740 \times 133.3$
$=\quad 98642 \mathrm{~N} / \mathrm{m}^{2}$
$=\quad 0.98642 \mathrm{bar}$

Figure 5.5

Partial pressure of water vapor

$$
\begin{aligned}
\mathrm{P}_{\mathrm{v}} & =\mathrm{P}_{\mathrm{w}}-\left(\left(\mathrm{P}_{\mathrm{b}}-\mathrm{P}_{\mathrm{w}}\right)\left(\mathrm{T}_{\mathrm{d}}-\mathrm{T}_{\mathrm{w}}\right) / 1547-1.44 \mathrm{~T}_{\mathrm{w}}\right) \\
& =0.02337-((0.98462-0.02337)(30-20) / 1547-(1.44 \times 20)) \\
& =0.01703 \mathrm{bar}
\end{aligned}
$$

DPT from steam tables at $\mathrm{p}_{\mathrm{v}}=0.01703$ bar

$$
\mathrm{T}_{\mathrm{DP}}=15^{\circ} \mathrm{C}
$$

2.Relative humidity
from steam tables at

$$
\begin{aligned}
\mathrm{T}_{\mathrm{b}} & =30^{\circ} \mathrm{c} \\
\mathrm{p}_{\mathrm{s}} & =0.04242 \mathrm{bar} \\
\Phi= & \mathrm{p}_{\mathrm{v}} / \mathrm{p}_{\mathrm{s}}=0.01703 / 0.4242=40.15 \%
\end{aligned}
$$

3.Specific humidity

$$
\begin{aligned}
\mathrm{w} & =0.622 \mathrm{p}_{\mathrm{v}} / \mathrm{p}_{\mathrm{b}}-\mathrm{p}_{\mathrm{v}} \\
& =0.622 \times 0.01703 / 0.98642-0.01703 \\
& =10.924 \mathrm{~g} / \mathrm{kg} \text { of dryer. }
\end{aligned}
$$

4. Degree of saturation

Sp. humity of saturation
$\mathrm{W}_{\mathrm{s}} \quad=\quad 0.622 \mathrm{ps} / \mathrm{P}_{\mathrm{b}^{-}} \mathrm{P}_{\mathrm{s}}$
$=\quad 0.622 \times 0.04242 / 0.98642-0.04242$
$=\quad 0.027945 \mathrm{~kg} / \mathrm{kg}$ of dry again.
$\mu=\mathrm{w} / \mathrm{w}_{\mathrm{s}}=0.016924 / 0.027945=39.1 \%$
5. Vapour density

$$
\begin{aligned}
\rho_{\mathrm{v}} \quad & =\mathrm{w}\left(\mathrm{P}_{\mathrm{b}}-\mathrm{P}_{\mathrm{v}}\right) / \mathrm{Ra} \mathrm{~T}_{\mathrm{d}} \\
& =0.010924(0.98642-0.01703) / 287 \times 303 \\
& =0.01218 \mathrm{~kg} / \mathrm{m}^{3} \text { of dry air. }
\end{aligned}
$$

6.Enthalpy of mixture / kg of dry air.

$$
\mathrm{h} \quad=\quad 1.022 \mathrm{~T}_{\mathrm{d}}+\mathrm{W}\left(\mathrm{~h}_{\mathrm{fg}} \mathrm{dp}+2.3 \mathrm{~T}_{\mathrm{dp}}\right]
$$

where $\mathrm{h}_{\mathrm{fg}} \quad=\quad$ latent heat of vapour saturation

$$
\mathrm{h}_{\mathrm{fg}}=2466.1 \mathrm{~kg} / \mathrm{kg}
$$

$$
\mathrm{h}=1.002 \times 30+0.01924(2466.1+2.3 \times 15)
$$

```
= 57.98 kj/kg of dry air.
```

(i) Atmospheric air has a DBT of $32{ }^{\circ} \mathrm{c}$ and WBT of $29^{\circ} \mathrm{c}$. Determine Specific humidity
(ii) Dew point
(iii) Enthalpy
(iv) specific volume
(v) relative humidity
3. Specific humidity
4. $\mathrm{W}=0.622 \mathrm{P}_{\mathrm{v}} / \mathrm{P}_{\mathrm{b}}-\mathrm{P}_{\mathrm{v}}$
5. $\quad \mathrm{P}_{\mathrm{b}} \quad=\quad 760 \mathrm{~mm}$ of Hg
$\mathrm{H}_{\mathrm{g}} \quad=\quad 760 \times 133.32$
$=101325 \mathrm{~N} / \mathrm{m}^{2}$
$=\quad 1.01325$ bar.
P_{w} from steam tables, at $\mathrm{T}_{\mathrm{w}}=19^{\circ} \mathrm{C}$

$$
\mathrm{P}_{\mathrm{w}}=0.04004 \mathrm{bar} .
$$

Partial pressure of vapour
$\mathrm{P}_{\mathrm{v}}=\mathrm{P}_{\mathrm{w}}-\left(\mathrm{P}_{\mathrm{b}}-\mathrm{P}_{\mathrm{w}}\right)\left(\mathrm{T}_{\mathrm{d}}-\mathrm{T}_{\mathrm{w}}\right) / 1547-1.44 \mathrm{~T}_{\mathrm{w}}$
$=0.04004-((1.01325-0.04404)(32-29) / 1547-1.44 \times 29)$
$=0.0381$ bar.

Specific humidity

$$
\begin{aligned}
\mathrm{W} & =0.622 \mathrm{P}_{\mathrm{V}} / \mathrm{P}_{\mathrm{b}}-\mathrm{P}_{\mathrm{V}} \\
& =0.622 \times 0.0381 / 1.01325-0.0381 \\
& =0.0243 \mathrm{~kg} / \mathrm{kg} \text { of dry air. }
\end{aligned}
$$

(ii) Dew point temperature:-

Dpt at $\mathrm{P}_{\mathrm{v}}=0.0381$ bar,

$$
\mathrm{T}_{\mathrm{dp}} \quad=28^{\circ} \mathrm{C}
$$

(iii) Enthalpy
$\mathrm{h}=1.022 \mathrm{~T}_{\mathrm{d}}+\mathrm{w}\left[\mathrm{h}_{\mathrm{fg}}+2.3 \mathrm{~T}_{\mathrm{dp}}\right]$
h_{fg} at $\mathrm{T}_{\mathrm{dp}}=28^{\circ} \mathrm{C}$
$\mathrm{h}_{\mathrm{fg}}=\quad 2435.4 \mathrm{~kJ} / \mathrm{kg}$
$\mathrm{h}=1.022 \times 32+0.0243[2435.4+2.3 \times 28]$
$=\quad 93.45 \mathrm{kJj} / \mathrm{kg}$ of dry air
(iii) Specific volume

$$
\begin{aligned}
\mathrm{V}_{\mathrm{r}} & =\mathrm{R}_{\mathrm{a}} \mathrm{~T}_{\mathrm{d}} / \mathrm{w}\left(\mathrm{p}_{\mathrm{b}}-\mathrm{p}_{\mathrm{v}}\right) \\
& =287 \times 305 / 0.0243(1.01325-0.0381) \times 10^{5} \\
& =36.9 \mathrm{~m}^{3} / \mathrm{kg} \text { of dry air. }
\end{aligned}
$$

6. The air enters a duct at $10^{\circ} \mathrm{C}$ and $80 \% \mathrm{RH}$ at the rate of $150 \mathrm{~m}^{3} / \mathrm{min}$ and is heated at $30^{\circ} \mathrm{C}$ without adding or removing any moisture. The pressure remains constant at 1.013bar. Determine the relative humidity of air at exit from the duct and the rate of heat transfer.

Solution:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{d} 1} & =10^{\circ} \mathrm{C} \\
\phi_{1} & =80 \% \\
\mathrm{~V}_{1} & =150 \mathrm{~m}^{3} / \mathrm{min} \\
\mathrm{~T}_{\mathrm{d} 1} & =30^{\circ} \mathrm{C} \\
\mathrm{p} & =\mathrm{p}_{\mathrm{b}}=1.013 \text { bar. }
\end{aligned}
$$

From the psychometric chart,

$$
\phi_{2}=23.5 \%
$$

To find rate of heat transfer
Rate of heat transfer

$$
\mathrm{Q}=\mathrm{m}_{\mathrm{a}}\left(\mathrm{~h}_{2}-\mathrm{h}_{1}\right)
$$

Amount of air supplied $m_{a}=\quad V_{1} / V_{s 1}$

$$
=\quad 150 / 0.81
$$

$$
=\quad 185.2 \mathrm{~m}^{3} / \mathrm{min}
$$

From psychometric chart, $\quad \mathrm{v}_{\mathrm{sl}} \quad=\quad 0.81 \mathrm{~m}^{3} / \mathrm{kg}$ of dry air

$$
\mathrm{h}_{1}=26 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{h}_{2} \quad=\quad 46 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\mathrm{Q} \quad=\quad 185.2(46-26)
$$

$=\quad 3704 \mathrm{~kJ} / \mathrm{min}$.
4. Atmospheric air at a pressure of 1.013 bar and $32.2^{\circ} \mathrm{C}$ has a specific humidity of $0.0096 \mathrm{~kg} / \mathrm{kg}$ of dry air. Using psychrometric chart, calculate the relative humidity, vapour pressure, total enthalpy, the specific volume and DPT.
Given:-

$$
\mathrm{P}_{\mathrm{b}}=1.013 \mathrm{bar}, \quad \mathrm{~T}_{\mathrm{d}}=32.2^{\circ} \mathrm{C} \quad \mathrm{~W}_{\mathrm{b}}=0.0096 \mathrm{~kg} / \mathrm{kg} \text { of dryair }
$$

From psychrometric chart

$$
\text { Retative humidity } \Phi=33 \%
$$

$$
\mathrm{WBT}=20^{\circ} \mathrm{C}
$$

From steam tables, at $\mathrm{T}_{\mathrm{w}}=20^{\circ} \mathrm{C} \quad \mathrm{p}_{\mathrm{w}}=0.02337$ bar
Vapour pressure $\mathrm{p}_{\mathrm{v}}=\mathrm{p}_{\mathrm{w}}-\left(\mathrm{p}_{\mathrm{b}}-\mathrm{p}_{\mathrm{w}}\right)\left(\mathrm{T}_{\mathrm{d}-} \mathrm{T}_{\mathrm{w}}\right) / 1547-1.44 \mathrm{~T}_{\mathrm{w}}$

$$
=0.02337-(1.013-0.02337)(32.2-20) / 1547-1.44 * 20
$$

=0.015417bar.

Total enthalpy $\quad=57.5 \mathrm{~kJ} / \mathrm{kg}$
Specific volume $\quad=0.87 \mathrm{~m}^{3} / \mathrm{kg}$ of dry air.

DPT at $p_{v}=0.015417 \mathrm{bar}$, from steam tables

$$
\mathrm{DPT}=13^{\circ} \mathrm{C}
$$

5. In a heating application moist air enters a steam heating coil at $10^{\circ} \mathrm{C}, 50 \% \mathrm{RH}$ and leaves at $30^{\circ} \mathrm{c}$. Determine the heat flow, if the mass flow rate of air is $100 \mathrm{~kg} / \mathrm{s}$

From Psychrometric chart
$\mathrm{h}_{1}=19.3 \mathrm{~kJ} / \mathrm{kg}$ of dry air
$\mathrm{h}_{2}=39.8 \mathrm{~kJ} / \mathrm{kg}$ of dryair

$$
\begin{aligned}
\mathrm{Q} & =\mathrm{m}_{\mathrm{a}}\left(\mathrm{~h}_{2}-\mathrm{h}_{1}\right) \\
& =100(39.8-19.3)=2050 \mathrm{~kJ} / \mathrm{s}
\end{aligned}
$$

6. $200 \mathrm{~m}^{3}$ of air/min is passed through the adiabatic humidifier, the condition of air at inlet is $40^{\circ} \mathrm{C}$ DBT 15% R.H and the outlet condition is $25^{\circ} \mathrm{C}$ DBT \& $20^{\circ} \mathrm{C}$ WBT. Find DPT and amount of water vapour added to the air/minute.

Given :-

$$
\mathrm{V}_{1=}=200 \mathrm{~m}^{3} / \mathrm{min} \quad \mathrm{~T}_{\mathrm{d} 1}=40^{\circ} \mathrm{C} \quad \Phi_{1}=15 \% \quad \mathrm{~T}_{\mathrm{d} 2}=25^{\circ} \mathrm{C} \quad \mathrm{~T}_{\mathrm{w} 2}=20^{\circ} \mathrm{C}
$$

From the psychrometric chart,

$$
\mathrm{T}_{\mathrm{dp} 2}=17.6^{\circ} \mathrm{C}
$$

Amount of water vapour added to air

$$
=\mathrm{m}_{\mathrm{a}}\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right)
$$

Mass of air supplied

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{a}}=\mathrm{v}_{1} / \mathrm{v}_{\mathrm{s} 1}=200 / 0.896=223.2 \mathrm{~kg} / \mathrm{min} \\
& \mathrm{~W}_{1}=0.007 \mathrm{~kg} / \mathrm{kg} \text { of dry air }
\end{aligned}
$$

$\mathrm{W}_{1}=0.1026 \mathrm{~kg} / \mathrm{kg}$ of dryair
Amount of water vapour added
$=\mathrm{m}_{\mathrm{a}}\left(\mathrm{w}_{2}-\mathrm{W}_{1}\right)$
$=223.3(0.1026-0.007)$
$=1.25 \mathrm{~kg} / \mathrm{min}$

Text / Reference Books

1. Nag.P.K, Engineering Thermodynamics, 6th Edition, Tata McGraw-Hill, 2017.
2. R.K.Rajput, A Textbook of Engineering Thermodynamics, 5th Edition, Laxmi Publications, 2016.
3. Onkar Singh, Applied Thermodynamics, 4th Edition, New Age International Private Limited, 2018.
4. Chattopadhyay, P, "Engineering Thermodynamics", Oxford University Press, 2016.
5. Yunus A Cengel and Michael A Boles, Thermodynamics: An Engineering Approach, 8th Edition, McGraw Hill, 2017.
6. Claus Borgnakke, Richard E. Sonntag, Fundamentals of Thermodynamics, 8th Edition, Wiley, 2016.
7. Lynn D. Russell, George A. Adebiyi, Engineering Thermodynamics, 6th Edition, Oxford University Press, New Delhi, 2008.
8. J.P. Holman. Thermodynamics, $2^{\text {nd }}$ Edition, McGraw-Hill, 2011.
