SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited "A” Grade by NAAC | 12B Status by UGC lApproved by AICTE

‘www.sathyabama.ac.in

SCHOOL OF MECHANICAL ENGINEERING
DEPARTMENT OF AERONAUTICAL ENGINEERING

UNIT - I -FINITE ELEMENT ANALYSIS - SME1308




UNIT -1
1D FINITE ELEMENT METHOD

1. Introduction to Finite Element Analysis
1.1 Lecture Introduction

1.1.1 Introduction
The Finite Element Method (FEM) is a numerical technique to find approximate solutions of partial
differential equations. It was originated from the need of solving complex elasticity and structural
analysis problems in Civil, Mechanical and Aerospace engineering. In a structural simulation, FEM
helps in producing stiffness and strength visualizations. It also helps to minimize materialweight and
its cost of the structures. FEM allows for detailed visualization and indicates the distribution of stresses
and strains inside the body of a structure. Many of FE software are powerful yet complex tool meant
for professional engineers with the training and education necessary to properly interpret the results.
Several modern FEM packages include specific components such as fluid, thermal,
electromagnetic and structural working environments. FEM allows entire designs to be constructed,
refined and optimized before the design is manufactured. This powerful design tool has significantly
improved both the standard of engineering designs and the methodology of the design process in many
industrial applications. The use of FEM has significantly decreased the time to take products from
concept to the production line. One must take the advantage of the advent of faster generation of
personal computers for the analysis and design of engineering product with precision level of accuracy.

1.1.2 Background of Finite Element Analysis
The finite element analysis can be traced back to the work by Alexander Hrennikoff (1941)and Richard
Courant(1942). Hrenikoff introduced the framework method, in which a plane elastic medium was
represented as collections of bars and beams.These pioneers share one essential characteristic: mesh
discretization of a continuous domain into a set of discrete sub-domains, usually called elements.
» In 1950s, solution of large number of simultaneous equations became possible because of the
digitalcomputer.
* In 1960, Ray W. Clough first published a paper using term “Finite Element Method”.
¢ In 1965, First conference on “finite elements” was held.
* In 1967, the first book on the “Finite Element Method” was published by Zienkiewicz and
Chung.
» Inthe late 1960s and early 1970s, the FEM was applied to a wide variety of engineering
problems.



* In the 1970s, most commercial FEM software packages (ABAQUS, NASTRAN, ANSYS,
etc.) originated.Interactive FE programs on supercomputer lead to rapid growth of CAD
systems.

» Inthe 1980s, algorithm on electromagnetic applications, fluid flow and thermal analysis were
developed with the use of FE program.

* Engineers can evaluate ways to control the vibrations and extend the use of flexible,
deployablestructures in space using FE and other methods in the 1990s. Trends to solve fully
coupled solution of fluid flows with structural interactions, bio-mechanics related problems
with a higher level of accuracy were observed in this decade.

With the development of finite element method, together with tremendous increases in computing
power and convenience, today it is possible to understand structural behavior with levels of accuracy.
This was in fact the beyond of imagination before the computer age.

1.1.3 Numerical Methods

The formulation for structural analysis is generally based on the three fundamental relations:
equilibrium, constitutive and compatibility. There are two major approaches to the analysis: Analytical
and Numerical. Analytical approach which leads to closed-form solutions is effective in case of simple
geometry, boundary conditions, loadings and material properties. However, in reality, such simple
cases may not arise. As a result, various numerical methods are evolved for solving such problems
which are complex in nature. For numerical approach, the solutions will be approximate when any of
these relations are only approximately satisfied. The numerical method depends heavily on the
processing power of computers and is more applicable to structures of arbitrary size and complexity.
It is common practice to use approximate solutions of differential equations as the basis for structural
analysis. This is usually done using numerical approximation techniques. Few numerical methods
which are commonly used to solve solid and fluid mechanics problems are given below.

* Finite Difference Method

* Finite Volume Method

* Finite Element Method

» Boundary Element Method
* Meshless Method

The application of finite difference method for engineering problems involves replacing the
governing differential equations and the boundary condition by suitable algebraic equations. For



example in the analysis of beam bending problem the differential equation is reduced to be solution of
algebraic equations written at every nodal point within the beam member. For example, the beam
equation can be expressed as:
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Thus, eq. (1.1.1) can be expressed with the help of eq. (1.1.5) and can be written in finite difference
form as:
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Fig. 1.1.2 Finite difference equation at node i

Thus, the displacement at node i of the beam member corresponds to uniformly distributed load can
be obtained from eq. (1.1.6) with the help of boundary conditions. It may be interesting to note that,
the concept of node is used in the finite difference method. Basically, this method has an array of grid
points and is a point wise approximation, whereas, finite element method has an array of small
interconnecting sub-regions and is a piece wise approximation.

Each method has noteworthy advantages as well as limitations. However it is possible to solve
various problems by finite element method, even with highly complex geometry and loading
conditions, with the restriction that there is always some numerical errors. Therefore, effective and
reliable use of this method requires a solid understanding of its limitations.

1.1.4 Concepts of Elements and Nodes

Any continuum/domain can be divided into a number of pieces with very small dimensions. These
small pieces of finite dimension are called ‘Finite Elements’ (Fig. 1.1.3). A field quantity in each
element is allowed to have a simple spatial variation which can be described by polynomial terms.
Thus the original domain is considered as an assemblage of number of such small elements. These
elements are connected through number of joints which are called ‘Nodes’. While discretizing the
structural system, it is assumed that the elements are attached to the adjacent elements only at the
nodal points. Each element contains the material and geometrical properties. The material properties
inside an element are assumed to be constant. The elements may be 1D elements, 2D elements or 3D
elements. The physical object can be modeled by choosing appropriate element such as frame



element, plate element, shell element, solid element, etc. All elements are then assembled to obtain
the solution of the entire domain/structure under certain loading conditions. Nodes are assigned at a
certain density throughout the continuum depending on the anticipated stress levels of a particular
domain. Regions which will receive large amounts of stress variation usually have a higher node
density than those which experience little or no stress.

Typical Element

Nodal Point

Fig. 1.1.3 Finite element discretization of a domain

1.1.5 Degrees of Freedom

A structure can have infinite number of displacements. Approximation with a reasonable level of
accuracy can be achieved by assuming a limited number of displacements. This finite number of
displacements is the number of degrees of freedom of the structure. For example, the truss member
will undergo only axial deformation. Therefore, the degrees of freedom of a truss member with respect
to its own coordinate system will be one at each node. If a two dimension structure is modeled by truss
elements, then the deformation with respect to structural coordinate system will be two and therefore
degrees of freedom will also become two. The degrees of freedom for various types of element are

shown in Fig. 1.1.4 for easy understanding. Here ( u,v, W) and (Gx , Oy ,92)

represent displacement and rotation respectively.
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Fig. 1.1.4 Degrees of Freedom for Various Elements



1.2. Basic Concepts of Finite Element Analysis

1.2.1 Idealization of a Continuum
A continuum may be discretized in different ways depending upon the geometrical configuration of

the domain. Fig. 1.2.1 shows the various ways of idealizing a continuum based on the geometry.

General Solid

Regular Solid
(Orthogonal dimensions)

Beam
~ (M, B much less than L)

(Thickness small
compared to Lengths)

oow

Shell
(In-Plane and Bending)

Membrane Plate
(In-Plane, Only Axial) (Out of Plane, Only)

Fig. 1.2.1 Various ways of Idealization of a Continuum
1.2.2 Discretization of Technique

The need of finite element analysis arises when the structural system in terms of its either geometry,

material properties, boundary conditions or loadings is complex in nature. For such case, the whole



structure needs to be subdivided into smaller elements. The whole structure is then analyzed by the
assemblage of all elements representing the complete structure including its all properties.

The subdivision process is an important task in finite element analysis and requires some
skill and knowledge. In this procedure, first, the number, shape, size and configuration of elements
have to be decided in such a manner that the real structure is simulated as closely as possible. The
discretization is to be in such that the results converge to the true solution. However, too fine mesh
will lead to extra computational effort. Fig. 1.2.2 shows a finite element mesh of a continuum using
triangular and quadrilateral elements. The assemblage of triangular elements in this case shows better
representation of the continuum. The discretization process also shows that the more accurate
representation is possible if the body is further subdivided into some finer mesh.

(b) Quadrilateral mesh

Fig. 1.2.2 Discretization of a continuum

1.2.3 Concepts of Finite Element Analysis

FEA consists of a computer model of a continuum that is stressed and analyzed for specific results. A
continuum has infinite particles with continuous variation of material properties. Therefore, it needs
to simplify to a finite size and is made up of an assemblage of substructures, components and members.
Discretization process is necessary to convert whole structure to an assemblage of members/elements
for determining its responses. Fig. 1.2.3 shows the process of idealization of actual structure to a finite
element form to obtain the response results. The assumptions are required to be made by the
experienced engineer with finite element background for getting appropriate response results. On the
basis of assumptions, the appropriate constitutive model can be constructed.



For the linear-elastic-static analysis of structures, the final form of equation will be made in the form
of F=Kdwhere F, K and d are the nodal loads, global stiffness and nodal displacements respectively.

Classical
Actual Structure
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(Partial Differential Equations)
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Assumptions
Equilibrium Equations
Stress-Strain Law
Compatibility Conditions
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Fig. 1.2.3Fromclassical to FE solution



Varieties of engineering problem like solid and fluid mechanics, heat transfer can easily be solved by
the concept of finite element technique. The basic form of the equation will become as follows where
action, property and response parameter will vary for case to case as outlined in Table 1.2.1.

(£} =[x Hg) oR )= K™ )
o

Table 1.2.1 Response parameters for different cases

Property Action Response
Solid Stiffness Load Displacement
Fluid Viscosity Body force Pressure/Velocity
Thermal Conductivity Heat Temperature

1.2.4 Advantages of FEA
1. The physical properties, which are intractable and complex for any closed bound solution,
can be analyzed by this method.
It can take care of any geometry (may be regular or irregular).
It can take care of any boundary conditions.
Material anisotropy and non-homogeneity can be catered without much difficulty.
It can take care of any type of loading conditions.
This method is superior to other approximate methods like Galerkine and Rayleigh-Ritz
methods.
In this method approximations are confined to small sub domains.
In this method, the admissible functions are valid over the simple domain and have nothing
to do with boundary, however simple or complex it may be.
9. Enable to computer programming.

o gk~ w

1.2.5 Disadvantages of FEA
1. Computational time involved in the solution of the problem is high.
2. For fluid dynamics problems some other methods of analysis may prove efficient than the
FEM.

1.2.6 Limitations of FEA



Proper engineering judgment is to be exercised to interpret results.
It requires large computer memory and computational time to obtainintend results.

3. There are certain categories of problems where other methods are more effective, e.g., fluid
problems having boundaries at infinity are better treated by the boundary element method.

4. For some problems, there may be a considerable amount of input data. Errors may creep up in
their preparation and the results thus obtained may also appear to be acceptable which indicates
deceptive state of affairs. It is always desirable to make a visual check of the input data.

5. In the FEM,many problems lead to round-off errors. Computer works with a limited number
of digits and solving the problem with restricted number of digits may not yield the desired
degree of accuracy or it may give total erroneous results in some cases. For many problems
the increase in the number of digits for the purpose of calculation improves the accuracy.

1.2.7 Errors and Accuracy in FEA

Every physical problem is formulated by simplifying certain assumptions. Solution to the problem,
classical or numerical, is to be viewed within the constraints imposed by these simplifications. The
material may be assumed to be homogeneous and isotropic; its behavior may be considered as linearly
elastic; the prediction of the exact load in any type of structure is next to impossible. As such the true
behavior of the structure is to be viewed with in these constraints and obvious errors creep in
engineering calculations.

1. The results will be erroneous if any mistake occurs in the input data. As such, preparation of
the input data should be made with great care.

2. When a continuum is discretised, an infinite degrees of freedom system is converted into a
model having finite number of degrees of freedom. In a continuum, functions which are
continuous are now replaced by ones which are piece-wise continuous within individual
elements. Thus the actual continuum is represented by a set of approximations.

3. The accuracy depends to a great extent on the mesh grading of the continuum. In regions of
high strain gradient, higher mesh grading is needed whereas in the regions of lower strain, the
mesh chosen may be coarser. As the element size decreases, the discretisation error reduces.

4. Improper selection of shape of the element will lead to a considerable error in the solution.
Triangle elements in the shape of an equilateral or rectangular element in the shape of a square
will always perform better than those having unequal lengths of the sides. For very long shapes,
the attainment of convergence is extremely slow.

5. Inthe finite element analysis, the boundary conditions are imposed at the nodes of the element

whereas in an actual continuum, they are defined at the boundaries. Between the



nodes, the actual boundary conditions will depend on the shape functions of the element
forming the boundary.

6. Simplification of the boundary is another source of error. The domain may be reduced to the
shape of polygon. If the mesh is refined, then the error involved in the discretized boundary
may be reduced.

7. During arithmetic operations, the numbers would be constantly round-off to some fixed
working length. These round—off errors may go on accumulating and then resulting accuracy
of the solution may be greatly impaired.

1.4. Steps in FEA:
1.4.1 Loading Conditions
There are multiple loading conditions which may be applied to a system. The load may be internal
and/or external in nature. Internal stresses/forces and strains/deformations are developed due to the
action of loads.Most loads are basically “Volume Loads” generated due to mass contained in a volume.
Loads may arise from fluid-structure interaction effects such as hydrodynamic pressure of reservoir
on dam, waves on offshore structures, wind load on buildings, pressure distribution on aircraft etc.
Again, loads may be static, dynamic or quasi-static in nature. All types of static loads can be
represented as:

3. Point loads

4. Line loads

5. Area loads

6. Volume loads
The loads which are not acting on the nodal points need to be transferred to the nodes properly using

finite element techniques.

1.4.2 Support Conditions
In finite element analysis, support conditions need to be taken care in the stiffness matrix of the
structure. For fixed support, the displacement and rotation in all the directionswill be restrained and
accordingly, the global stiffness matrix has to modify. If the support prevents translation only in one
direction, it can be modeled as ‘roller’ or ‘link supports’. Such link supports are commonly used in
finite element software to represent the actual structural state. Sometimes, the support itself undergoes
translation under loadings. Such supports are called as ‘elastic support’ and are modeled with ‘spring’.
Such situation arises if the structures are resting on soil. The supports may be represented in finite
element modeling as:

6. Point support

7. Line support

8. Area support

9. Volume support



1.4.3 Type of Engineering Analysis
Finite element analysis consists of linear and non-linear models. On the basis of the structural system
and its loadings, the appropriate type of analysis is chosen. The type of analysis to be carried out
depends on the following criteria:

6. Type of excitation (loads)

7. Type of structure (material and geometry)

8. Type of response

Considering above aspects, types of engineering analysis are decided. FEA is capable of using
multiple materials within the structure such as:
Isotropic (i.e., identical throughout)
Orthotropic (i.e., identical at 900)
General anisotropic (i.e., different throughout)
The Equilibrium Equations for different cases are as follows:
8. Linear-Static:

Ku=F (1.4.1)
2.Linear-Dynamic

Mu(t) + Cu(t) +Ku (t) =F (t) (1.4.2)
3.Nonlinear - Static

Ku+FnL=F (1.4.3)
1. Nonlinear-Dynamic

Mu(t)+Cu(t)+Ku(t)+F ()N =F(t) (1.4.4)

Here, M, C, K, F and U are mass, damping, stiffness, force and displacement of the structure
respectively. Table 1.4.1 shows various types of analysis which can be performed according to
engineering judgment.



Table 1.4.1 Types of analysis

Excitation | Structure |Response | Basic analysis type

Static Elastic Linear Linear-Elastic-Static Analysis

Static Elastic Nonlinear | Nonlinear-Elastic-Static Analysis
Static Inelastic Linear Linear-Inelastic-Static Analysis

Static Inelastic Nonlinear | Nonlinear-Inelastic-Static Analysis
Dynamic Elastic Linear Linear-Elastic-Dynamic Analysis
Dynamic Elastic Nonlinear | Nonlinear-Elastic-Dynamic Analysis
Dynamic Inelastic Linear Linear-Inelastic-Dynamic Analysis
Dynamic Inelastic Nonlinear | Nonlinear-Inelastic-Dynamic Analysis

1.4.4 Basic Steps in Finite Element Analysis

The following steps are performed for finite element analysis.
Discretisation of the continuum: The continuum is divided into a number of elements by
imaginary lines or surfaces. The interconnected elements may have different sizes and shapes.
Identification of variables: The elements are assumed to be connected at their intersecting
points referred to as nodal points. At each node, unknown displacements are to be prescribed.
Choice of approximating functions: Displacement function is the starting point of the
mathematical analysis. This represents the variation of the displacement within the element.
The displacement function may be approximated in the form a linear function or a higher-order
function. A convenient way to express it is by polynomial expressions. The shape or geometry
of the element may also be approximated.
Formation of the element stiffness matrix: After continuum is discretised with desired
element shapes, the individual element stiffness matrix is formulated. Basically it is a
minimization procedure whatever may be the approach adopted. For certain elements, the form
involves a great deal of sophistication. The geometry of the element is defined in reference to
the global frame. Coordinate transformation must be done for elements where it is necessary.
Formation of overall stiffness matrix: After the element stiffness matrices in global
coordinates are formed, they are assembled to form the overall stiffness matrix. The assembly
is done through the nodes which are common to adjacent elements. The overall stiffness matrix
is symmetric and banded.



Formation of the element loading matrix: The loading forms an essential parameter in any
structural engineering problem. The loading inside an element is transferred at the nodal points
and consistent element matrix is formed.

Formation of the overall loading matrix: Like the overall stiffness matrix, the element
loading matrices are assembled to form the overall loading matrix. This matrix has one column
per loading case and it is either a column vector or a rectangular matrix depending on the
number of loading cases.

Incorporation of boundary conditions: The boundary restraint conditions are to be imposed
in the stiffness matrix. There are various techniques available to satisfy the boundary
conditions. One is the size of the stiffness matrix may be reduced or condensed in its final
form. To ease computer programming aspect and to elegantly incorporate the boundary
conditions, the size of overall matrix is kept the same.

Solution of simultaneous equations:The unknown nodal displacements are calculated by
the multiplication of force vector with the inverse of stiffness matrix.

Calculation of stresses or stress-resultants: Nodal displacements are utilized for the
calculation of stresses or stress-resultants. This may be done for all elements of the continuum
or it may be limited to some predetermined elements. Results may also be obtained by
graphical means. It may desirable to plot the contours of the deformed shape of the continuum.

The basic steps for finite element analysis are shown in the form of flow chart below:
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Fig. 1.4.1 Flowchart for steps in FEA

1.4.5 Element Library in FEA Software
A real structure can be modeled with various ways with appropriate assumptions. The structure may
be divided into following categories:

Cable or tension structures

Skeletal or framed structures

Surface or spatial structures

Solid structures

Mixed structures



The configuration of structural elements depends upon the geometry of the structural system and the
number of independent space coordinates (i.e., X, y and z) required to describe the problem. Thus, the
element can be categorized as one, two or three dimensional element. One dimensional element can
be represented by a straight line whose ends will be nodal points. The skeletal structures are generally
modeled by this type of elements. The pin jointed bar or truss element is the simplest structural
element. This element undergoes only axial deformation. The beam element is another type of element
which undergoes in-plane transverse displacements and rotations. The frame element is the
combination of truss and beam element. Thus, the frame element has axial and in-plane transverse
displacements and rotations. This element is generally used to model 1D, 2D and 3D skeletal structural
systems. Two-dimensional elements are generally used to model 2D and 3D continuum. These
elements are of constant thickness and material properties. The shapes of these elements are triangular
or rectangular and it consists of 3 to 9 or even more nodes. These elements are used to solve many
problems in solid mechanics such as plane stress, plane strain, plate bending. Three-dimensional
element is the most cumbersome which is generally used to model the 3-D continuum. The elements
have 6 to 27 numbers of nodes or more. Because of large degrees of freedom, the analysis is time
consuming using 3-D elementsand difficult to interpret its results. However, for accurate analysis of
the irregular continuum, 3-D elements are useful. To analyze any real structure, appropriate elements
are to be assigned for the finite element analysis. In standard FEA software, following types of element
library are used to discretize the domain.

Truss element

Beam element

Frame element

Membrane/ Plate/Shell element

Solid element

Composite element

Shear panel

Spring element

Rigid/Link element

Viscous damping element
The different types of elements available in standard finite element software are shown in Fig. 1.4.2.
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Fig. 1.4.2Varioustypes of elements for computer modeling



Module: 2 Finite Element Formulation Techniques
Lecture 1: Virtual Work and Variational Principle

1.1.1 Intreduction

Finite element fornmlation can be constructed from governing differential equations over a domain.
This can be formmlated by various ways like Virtual Worl: Method, VariationalMethod, Weighted
Residual Method etc.

1.1.2 Principle of Virtual Work
The principle of virtual work is a very useful approach for solving vaneties of structural mechames
problem. When the force and displacement are unrelated to the cavse and effect relation, the work 15
called virtual wotk. Therefore, the virtual work may be caunsed by tme force mowving through
imaginary displacements or vice versa. Thus, the principle of virtnal work can be divided into two
categornies: (a) principle of virtual forces and (b) principle of virtual displacements. The principle of
virtual forces establishes the compatibility conditions. The principle of virtual displacements
establishes the conditions of equilibrium and is vsed in the displacement model of the finite element
technigue.

The external vatual work 15 the work done by real load mowving through imaginary
displacements in a structure. These loads inchude both the load distributed over the entire swrface and
volume. Thus, the virtual work done by the external force is:

E. Fos
EW = ‘I {Eu v Ew} E}, + J: {E“ v E’w} iﬂf Q (2.1.1)
- nz

Where, &u, &v and 5w are the components of the viriual displacements in x v and z direction
respectively. Frx, Fry and Fr; are the surface forces and Fo., Foyand Fo. are the body forces in x, v
and z direction respectively. In the above equation the mmtegration is camied out over the entire
surface in the first term and over the entire volume in the second term The above expression can be

rewritten as:
EW, = f §{d} {E.}dr + f s{d} {E,}Ja0
r n (2.1.2)

Here,{d}-T={u v W}Icur the three dimensional stress-strain conditon there are =i
components of stresses (0,.0,.0,.T_. T, T, ) and six components of strains in virtual
displacement fields (i=,. E‘.zﬁ-‘az,ﬁﬁxf,ﬁqﬂ,frﬁm}.ﬁﬂefure, the virtual internal work can be

expressed as follows:
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According to principle of virtual work the work done by external forces due to the virtual
isplacement of a structure in equalibrnum is to the work done by the internal forces for the
q 3

virtual internal displacement. Therefore EWy = U Thus eqs. (2.1.2) and (2.1.4) can be made
equal and can be related as follows:

[ e+ [o{a) (= o) oo

@.15)

1.1.3 Variational Principle

Variational fornmlation 15 the generalized method of fornmlating the element stiffness matrix and
load vector using the variational principle of solid mechanies. The strain energy in a structural body
15 given by the relation

Lo
-3{[jte) tejan ore

For a 3D structural problem. stress has six components: {CF}-T {GI,G‘,G!,TIY, T e Tu}.

Similarly, there are six components of strains: {E}T ={EI,E}.,EI._"1'I_‘.,”‘|'}1-_"'|'E} . Now the strain-
displacement relationship can be expressed as { 2] =[B]{d}. where {d} is the displacement vector in
x. v and z directions and [B] is called as the strain displacement relationship matrix Again the stress
can be represented in terms of its constitutive relationship matrix: {J} = [D] {3} . Here [.D]

called as the constifuent relationship matnx Using the above relationslup in the stran energy
equali-:un one cafn arrive

Jfl[[B 1T [D]{BHd}der

Applying the vanational principle one can express

(2.1.7)
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(218)
Now, from the relationship of {F} = [R]{d} . one can arrive at the element stiffness matrix as:

[ﬂi@“gf[ﬂﬂﬂ]m 2.19)

Thus, by the use of vanational principle, the shffness matnx of a structural element can be obtamed
as expressed in the above equation.

1.1.4Weighted ResidualMethod
Virtual work and Vanational method are applicable and adequate for most of the problems.
However, in some cases functional analogous to potential energy cannot be wintten because of not
having clear physical meaming For some applications, such as in flmd mechanics problem,
functional needed for a vanational approach cannot be expressed. For some types of flmud flow
problems. only differential equations and boundary conditions are available. For Such problems
weighted residual method can be used for obtaiming the sclutions. Approximate solutions of
differential equation satisfy only part of condibions of the problem For example a differential
equation may be satisfied only at few points, rather than at each. The strategy unsed in weighted
residual method 15 to first take an approximate solution and then its validity is assessed. The
different methods 1n weighted Residual Method are
Collocation method

¢ Least square method

¢ Method of moment

¢ Galerin method
The mathematical statement of a physical problem can be defined as:
In domam(}.

Du—f=0 (2.1.10)

Where,
D 15 the differential operator
v =u{x) = dependent vanables such as displacement, pressure, velocity,
potential function
x = independent variables such as coordinates of a point

f=a fonction of x which may be constant or zero

If U is an approximate solution then residual in domainG),
E=Du-f (2.1.11)
According to the weighted residual method, the weak form of above equation will become



[w,Rd0=0 fori=123 .n
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or (2.1.12)
[w.(De—fgo=0
{1

Where weighting function w;= w;(x) 15 chosen from the approximate basis function nsed for
constructing approximated solutionl .



Lecture 2: Galerkin Method

1.2.1 Introduction
Galerlan method is the most widely vsed among the vanious weighted residual methods. Galerlan
method incorporates differential equations in thewr weak form 1e.. before starting integration by
parts it 13 in strong form and after by parts it will be in weak form so that they are satisfied over a
domain in an ntegral Thus, in case of Galerkin method, the equations are satisfied over a domam n
an integral or average sense, rather than at every point. The solution of the equations must satisfy the
boundary conditions. There are two types of boundary conditions:

# Essenfial or kinematic boundary condition

s Non essential or nateral boundary condition

4

For example, in case of a beam problem ( E %— q =0 differential equation is of fourth order.
As a result, displacement and slope will be essential boundary condition where as moment and shear
will be non-essential boundary condition.

1.1.1 Galerkin Method for2D Elasticity Problem
For a two dimensional elasticity problem. equation of equilibrivm can be expressed as

B, Oty

E.=0 21
3:;_'_::?} + @2.1)
Ory +BT+F =0 (222
5x | Oy =3

Where, E,,_ and Fyare the body forces in X and Y direction respectively. Let assume.

[, and I are surface forces in X and Y direction and o as angle made by normal to surface with

X— axis (Fig. 2.2.1). Therefore, force equilibrium of element can be written as:
E.(PQ)t=0c,(OP)t+ 7 _(OQ]t

OP :
F.=o, PO + Ty 33 =g, cosa+ T sina=a, cosa+7,Cos(90— o)
Thus, E =0 f+7,m (223)

Where, { and m are direction cosines of normal to the surface. Similarly,
E,=7,f+ocm (2.2.4)
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Fig. 1.1.1 Elemental stresses in 1D

Ada:pﬁﬂgﬁ-alerhn:sappmach psing eq. (2.2.2 and 2.2.3)
at do
‘n."f Y ¥ -
Iff —+ Eu+ff[—+—. +FP_,.]h

Where &u and ivare weighting functions ie elemental displacements in X and Y directions
respectively. Now one can expand above equation by using Green’s Theorem.

Green Theorem states that if 1:1(3.,}'}3&(1-1](‘[:{, ‘_'..f]a.tE continuous functions then their first and
second partial dervatives are also contimious. Therefore,

ffi:iii i;’i;%m fffbl“ 2ty [o[220+ Somles @29

dxdy =0 (22.5)

31 —43 1 E_ () one can rewrite with the use of above relationas
ffa‘:r“ dx dy = —ffcr O(Cu)y, dy+ [o,f tu ds 227)
Sinﬁlarl}gasmunjﬂg(b:u'},;%_ﬂmd%:

f —u"i.'d.}[d} ffﬁ d}—|—fcr m v ds (2.2.8)



o Gy
Again assuming) =7, — = vi—=10
I a.x a}r
ff “"“1; dx dY__ffT d‘j’+f ey OV ds (22.9)
And assunung. & = 7, E:ﬂ;%:ml

ff ey dx dy = —fj’rw d}r+f =y b ds

Putting values of eqs.(2.2.7), (2.2.8) and (2.2.9), in eq. (2.2.5), one can get the following relation:

o m) + 0y (00) 7 ) 7y )

+1 cr,ifﬁu+ﬂ',fmﬁv+ﬂ'5}.fﬁv+Twﬂlﬁu]ds+ | f Fnft dx dy + [ [ Fpfov dx dy=0

(22.10)
Rf-m:mﬂgiﬂg the terms of above expression, the f-::-]lming relations are obtained.

—ff 2 (su)+ B}'{Eﬂ_'_lr’&x )+ Eu]dudwfjrrauwh dy

+ [I:_GEE +T,&_,|.1.'|1 5uds+ [I:_T.@i +c;},m]|£vd5= 0 (22.11)

Here E,,, and E,y are the body forces and Cu & IV are virtual displacements in X and Ydirections
respectively.

Considering firstterm of eq. (2.2.11), virtual displacement &u iz given to the element of umit
thickness. Dotted posttion in Fig. 2.2.2 shows the virtual displacement. Thus, work done by o :
o dy

Eu+£[ﬁu}dx —cxd}fﬁu=cr,&%|:£u_‘]dxd}f (2.2.12)

Smularly, considenng secondterm of eq. (2.2.11), virtual work done by body forces 1s



[ [ (Exbu+ E,ov)dx dy

Putting eqs.(2.2.3) &(2.24) in third term of eq. (2.2.11) we get the virtual work done by surface
forces as:

[ F._tuds + [ . fvds
¥ .
du
t+ —(duhdx
A | ol “_[ i
o ¥ o *| *
T+ LT,
Ty
) - ax - i
» X

Fig. 1.1.1 Element subjected to stresses

Due to virtual displacement {1 , change in strain § £ 1s given by:

a
i+ g(ﬁu}d:‘ —&n 5
=—»u) 213
= el (2213)
The virtual work doneby o 15 o,.€ £, dxdy. Similarly all the individual term in the first term of
eq. (2.2.11) can be denived from eq. (2.2.13) which will be as follows:

[
0, =

f cuitiu]dxdy=ffcxﬁ£ud:dy
f f J?%{Etfjdxd}’= f f oyf €, dxdy 2.2.14)

[[~ {—{Ev Em} [ rotrrgaxdy



Now, the work done by mternal forces will be
U= | [ (040 € +0,8 €, +Tglrygy ) dxdy 2215

If external work done 15 represented by W and U is the internal work done then,
— U 4wy =0 or iU =0wg 2.2.16)

Thus in elasticity problems, Galerlan’s method turns out to be the principle of virfual work, which
can be stated that “A Deformable body is said to be in equilibrioum if the total work: done by external
forces is equal to the total work done by internal forces.” The wotk done above 13 virtual as erther
forces or deformations are also virtual. Thus, Galerkan’sapproach can be followed in all problems
mvelving solution of a set of equations subjected to specified boundary values.

2.1.3 Galerkin Method for 1D Fluid Flow Problem
Let consider the two dimensional incompressible fluid equation which can be expressed by pressure
vaniable only as follows.

Vip=0 (22.17)
Where p is the pressure inside the fluud domam . The above equation can be expressed in 2D form as:
ap p 0
ax_] a},]
or (2.2.18)
P:ii= D
Applying weighted residual method, the weak form of the above equation will become
fw,. p, d2=0 2.2.19)

Integrating by parts of the above expression. the following relation can be obtamed.
f“‘i P dr—fwi,i p; d02=0
T n

T

m‘fﬁ-u p; d ﬂsz,- p; dI (2.2.20)

If the nodal pressure and interpolation functions are denoted by Pand N respectively, then the
pressure at any pomt inside the fluid domain can be expressed as

p=[N|{p}

Smularly, the weighted function can also be wnitten with the help of interpolation function as

w=[N[{w}



Thes, p,, =[L){p} =[L]N{5} =[BI{}. where. [L] = iil differential operator.

st i = L}{W} = LN (¥} =[B}{¥)
Thus. I w, p, d0= f w|"[B]'[B][F0 2.221)

f w, p, dT= f (W) [N]T%dr (2222)
T T

Here, I'denotes the surface of the flud domaimn and n represents the direction normal to the surface.
Thus, from eq. (2.2.20), one can write the expression as:

Thus, [ )8 [8l{p}a0= [ () ar
or. [6l{p}={s} (2.2.23)
fol- [ 181 Bld= [ TN+ 2T e
and{E-.} I[N T ép [ (22.24)

Here, n 1s the direction normal to the swrface. Thus, solving the above equationwith the prescribed
boundary conditions, one can find out the pressure distnbuhion mside the fhud domain by the nse of
finite element technigue.
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UNIT - 11
2D FINITE ELEMENT METHOD

2.2.1 Choice of Displacement Function

Displacement function is the beginning powmnt for the structural analysis by finite element method.
This fonction represents the vanation of the displacement within the element. On the bass of the
problem to be solved, the displacement function needs to be approximated in the form of esther
Linear or lhigher-order function A convenient way to express it is by the wse of polynomual
EXPIressions.

2.3.1.1 Convergence criteria
The convergence of the fimte element solution can be achieved if the following three conditions are
fulfilled by the assumed displacement function.

a. The displacement fonction nmmst be contiomons within the elements. This can be ensured by
choosing a sutable polynonual For example, for an n degrees of polynomual displacement
function in [ dimensional problem can be chosen as:

U=, +a Xy oy +ax + e x” (23.1)

b. The displacement function mmst be capable of rigid body displacements of the element. The
constant terms used in the polynonual (o to o) ensure this condition.

c. The displacement fonction mmst include the constant strams states of the element As

element becomes nfinitely small, stran should be constant in the element Hence, the
displacement function should include terms for representing constant stramn states.

2.3.1.2 Compatibility
Displacement should be compatible between adjacent elements. There should not be any
discontinuity or overlapping while deformed. The adjacent elements nmst deform without cansing
opemngs, overlaps or discontinmons between the elements.

Elements which satisfy all the three convergence requirements and compatibility condition
are called Compatible or Conforming elements.

2.3.1.3 Geometric invariance

Dhisplacement szhape should not change with a change m local coordinate system. This can be
achieved if polynomual is balanced in case all terms cannot be completed This “balanced’
representation can be achieved with the help of Pascal tnangle mn case of two-dmmensional



polynomial. For example, for a polynonual having four terms, the mvanance can be obtained if the
following expression is selected from the Pascal tnangle.

=0+ GX+ 0V + XY (23.2)
The geometric vanance can be ensured by the selection of the corresponding order of terms on
etther side of the axis of symmetry.

¥ oxy ooty

L} 4

X' xy xy w oy

Fig. 2.2.1 Pascal’sTriangle

2.3.2 Shape Function

In finite element analysis, the vanations of displacement within an element are expressed by its
nodal displacement (g = 3" Nu, ) with the help of interpolation function since the true variation of
displacement inside the element is not known Here u 15 the displacement at any point inside the
element and w; are the nodal displacements. This interpolating fimnction 15 generally a polynomual
with n degree which automatically provides a single-valoed and continmouns field. In finite element
literature, this interpolation function (N)) 15 referred to “Shape function™ as well For linear
mterpolation n will be 1 and for quadratic interpolation n will become 2 and so on There are two
types of interpolation fonctions namely (1) Lagrange mterpolationand (11) Hermtian mterpolation.
Lagrange interpolation function 13 widely used in practice. Here the assumed finction takes on the
same values as the given function at specified points. In case of Hermutian mterpolation function, the
slopes of the function also take the same values as the given function at specified poimts. The
derivation of shape function for vaneties of elements will be discussed in subsequent lectures.

2.3.3 Degree of Continuity

Let consider das an interpolation function in a piecewise fashion over finite element mesh Whle
such mterpolation function ¢ can be ensured to vary smoothly within the element, the transition
between adjacent elements may not be smooth. The term " is considered to define the continnity of
a precewise displacement. A function € 1s continmouns if its derivative up to and mcluding degree m
are inter-element continnous. For example, for one dimensional problem . §=dyx) 13 ¢’ continuous if
& is continuous, but é,,ds not. Similarly, $=d¢v) is C' contimuous if dand &, are continuous, but §,.is
not. In general, C” element is used to model plane and sclid body and € element is used to model



beam plate and shell like structure, where mter-element contimuty of slope is necessary to
ensure Let assume a linear function for bar like element: ¢ =y +ax This function is ¢
continmous as §y,.is discontimuous. If the mterpolation function is considered as ¢ = o, +a,x + ar,x”
then ¢, =&, +2a,x is also continuous but ¢, , = 2a, is discontinuous. As a result. this function ¢

will become € continuons.

1.12.4 Isoparametric Elements
If the shape functions (IN;) used to represent the vanation of geometry of the element are the same as
the shape functions (N';) used to represent the vanation of the displacement then the elements are
called 1soparametric elements. For example, the coordinates (xy) inside the element are defined by
the shape functions (N;) and displacement (u.v) mside the element are defined by the shape functions
{N';) as below.

x=Nx, p=NBe o4 s 3 s & & (233)
y=Niy; v=Nyv;

If N, = N, then the element 15 called isroparametnic. Fig. 2.3.2(a) shows the two dimensional 8 node
1soparametric element.

If the geometry of element 15 defined by shape fiunctions of order higher than that for representing
the vanation of displacements, then the elements are called superparametric (Fig. 2.3.2(b)).

If the geometry of element 15 defined by shape finctions of order lower than that for representing the
vanation of displacements then the elements are called subparametric (Fig. 2.3.2(c)).

LA

(&) Izoparamatric {b) Superparamatric ic] Subparamatric

(-paints defining geometry
[[]- points defining displacement

Fig. 1.3.15hape functions for geometry and displacements



21.2.5 Various Elements

Selection of the order of the polynomial depends on the type of elements. For example, in case of
one dimensional element having single degrees of freedom with two nodes, the displacement

function can be chosen as ¥ =&, +&;X. However, if the same has two degrees of freedom at each
node, then the chosen displacement function shouldben = &, + & x+a,x" +a.x’ . Various types of
elements used in finite element analysis are given below:

1. One dimensional elements.
{a) Two node element
(b) Three node element

L - » i &
1 2 1 3 2
(2} 2 node element (b)) 3 node element

Fig. 2.3.30ne dimensional elements

2. Two dimensional elements
(a) Trangular element
() Rectangular element
(¢) Quadnlateral element
{(d) Quadnlateral formed by two triangles
(&) Quadrilateral formed by four triangles

Few of the elements with oumber of nodes are shownin Fig 23 4.



4 3 3

. 2 2

4
{a) 4 node rectangular element 1

(9} 6 node tnangular element

4 3
1
1 : 2 .
{¢) 8 node Quadrilateral element (d) Quadrilateral formed by two triangles
4
3
1 2

(e) Quadrilateral formed by four triangular elements

Fig. 2.3.4Two dimensional elements

3. Three dimensional elements.
(a) Tetrahedron
(b) Rectangular brick element
Few of the three dimensional solid elements are shown m Fig. 2.3.5.



(a) Tetrahedron 2
(b) Rectangular Brick

2
(c)Arbitrary hexahedron

Fig. 2.3.5Three dimensional elements



2 4. 1Element Stiffness Matrix
The stiffness matrix of a structwal system can be derived by vanous methods like
variationalpninciple, Galerkin method etc. The derivation of an element stiffness matrix has already
been discussed in earhier lecture. The stiffness matrix 15 an mherent property of the structure.
Element stiffness i3 obtamned with respect to its axes and then transformed thus stiffness to structure
axes. The properties of stiffness matnx are as follows:

« Stiffness matnix issymmetnic and square.

+ In stiffness matrix, all diagonal elements are positive.

e Stiffness matnix 1s positive defimite
For example, ifK is a symmetric n x n real matrix and x is non-zero column vector, thenk will
bepositive definitewhilex”Kxis positive.

2.4.2Global Stiffness Matrix

A structural system 15 an assemblage of mumber of elements. These elements are interconnected
together to form the whole structure. Therefore, the element stiffness of all the elementsarefirst need
to be calculated and then assembled together in systematic manner. It may be noted that the stiffness
at a joint 15 obtained by adding the stiffness of all elements meeting at that jount.

To start with, the degrees of freedom of the structure are nmumberedfirst. This numbermg will
start from 1 to n where n 1s the total degrees of freedom. These numbenngs are referred to as degrees
of freedom corresponding to global degrees of freedom The element stiffness matnx of each
element should be placed in their proper position in the overall stiffness matrix The following steps
may be performed to calculate the global stiffness matrix of the whole structure.

a. Initialize global stiffness matrix [K] as zero. The size of global stiffness matrix will be equal
to the total degrees of freedom of the stmcture.
b. Compute individual element properties and calculate local stiffness matrix [k] of that

element.
c. Add local stiffness matrix [k ] to global stiffness matrix [K] using proper locations
d. Repeat the Step b. and c. t11] all local stiffness matrices are placed globally.

The steps to be followed m the computer program are shown in the form of flow chart in Fig. 241
for assembling the local stiffness matiix to global stiffness matrix
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Fig. 1.4.1Assembly of stffness matrix from local to global



2.4.3Boundary Conditions

Under this section procedure to mclude the effect of boundarycondition in the stiffness matnx for
the finite element analysis will be discussed. The solution cannot be obtained unless support
conditions are included in the stiffness matrix. This is because, if all the nodes of the stmchwe are
mcluded m displacement vector, the stiffness matrx becomes singular and cannot be solved if the
structure 13 not supported amply, and 1t cannot resist the applied loads A solution cannot be achieved
until the boundary conditions i.e.. the known displacements are introdoced.

In finmite element analysis, the partitioning of the global matrix 15 carmed out in a systematic
way for the hand calculation as well as for the development of computer codes. In partitiomng,
normally the equilibrmumn equations can be partitioned by rearranging corresponding rows and
colummns, so that prescribed displacements are grouped together. For example let considerthe
equation of equulibrium 15 expressed in compact form as:

(Fi=[x]{4] (24.1)
Where,

[K] 1= the global stiffness matrix,

{d} 1s the displacement vector consisting of global degrees of freedom, and
1F} 1s the load vector corresponding to degrees of freedom
By the method of partitioning the above equation can be partitioned in the followmg manner.

[{Fg}} [K.m] [K.z,ﬂ] j{d.z}]
_ 242)
17} [0ma] [ee]flee)]

Where subscrnipts a refers to the displacements free to move andf refers to the prescribed support
displacements As the prescribed displacements {d;} are kmowneq. (2.4.2) may be wniten n
expanded form as:

{Fol =Ko [ld}+[ Ko 114, (243)
Thus it 15 possible to obtain the free displacement of the structure {d,;} as
{da} = [I":cm]-J {{Fa'} - {Km?]{dﬁ'}} (24.4)

If the displacements at supports {dg}are zero, then the above equation can be simplified to the
following expression.
-1
{d.} = [Ka] {F} (24.5)
Thus, by rearranging assembled matnix, the portion comresponding to the unlmown displacements in
eq.{2.4.4) can be taken out for the solution purpose. This 15 possible as the known displacements

{da }are restramned, 1e., displacementsare zero. If the support has some known displacements, then
eq. (2.4.4) can be used to find the solution. If the few suppotts of the structures yield, then the above
method may be modified by partitioning the stiffness matrix mto three parts as shown below:



{E.} l[Km.] K] K. [{4.}
(E}= |[K R ]| (.}
£l & & e (2.4.6)

Here, o refers to unknown displacement; [ refers to known displacement (=0) and y refers to zero
displacement. Thus, the above equation can be separated and solved mmdependently to find required
unknown results as shown below.

(E}=K (e} +[K e} +K. ) )
or. [K, ]{d,}={E}-[K ]{d} as{a }=(0)

" .
T]:I“S_. {du } = [K-.m] {{Fﬁ } _’Kﬁ-’l_.{d’l}} {24_7}

For computer programming several techmques are available for handling boundary conditions. One

of the approachesis to male the diagonal element of stiffness matnx corresponding to zero

displacement as nmty and comresponding all off-diagonal elements as zero. For example let consider

a 3x3 stiffness matrix with following force-displacement relationship.
[FL B Ry By dl]

For=|ky kn Fy|id
L:i J' by by kg ]ld; J) (2.4.8)
Now, if the third node has zero displacement (i.e., d= 0) then the matrix will be modified as follows

to mcorporate the boundary condition
[Fl] by by O ['“'1

F,i=|ky ky, 0|qd,
1 [}J' 0 0 1 L:‘a (2.4.9)
Thus, while mnverting whole matrix. ds will become zero automatically.

To incorporate known support displacement in computer progranmuing following procedure may be
adopted. Considering the displacement d-has known value of &, 1% row of eq (2.4.8) can be written
as:
F =k xd +k,xd, + 1k <d,
(2.4.10)

ﬁ“'ﬁ:xig:k]lxd]"'kuxda (24.11)

Now the 2** row of eq. (2.4.8) has to become:



{6} ={d.} 24.12)
Sinularly 3™ row will be:
Thus above three equations can be wnitten in a combined form as

'Fi _kIEE Jk-ll 0 E-]..:l' |'::‘lrl l
e =0 1 0|4,
at ) (2.4.14)

Another approach may also be followed to take care the Imown restrained displacementsby assigming
a higher value &(say & =10°") in the diagonal element corresponding to that displacement.

Fi kll k]! kl] [d]]
Sxl0®xky t=|ky knx10® ky|did,
FS kﬂ] kﬂ kjj de)

(2.4.15)
5 8x10% xkyy =kyd, +kyy 107 xdy +kyy % d,

As dy 15 comresponding to zero displacement, the above equation can be simplified to the following.
- 8x107 x kyy =k d; +kyy x 107 xd,

or §x10% xk,, =k,, x10% x d,

= d, ={— known displacement 1s ensured

If the overall stiffness matrix 1s to be formed in half band form then the mumbening of nodes should
be such that the bandwidth 15 nunwmum For this the labels are put in a systematic manner
urespective of whether the joint displacements are vnlmowns or restraints. However, if the unknown
displacements are labeled first then the matnx operations can be restnicted up to unknown
displacement labels and beyond that the overall stiffness matrix may be ignored.



Natural coordinate system is basically a local coordinate system which allows the specification of a
point within the element by a set of dimensionless numbers whose magnitude never exceeds unity.
This coordmate system 1s found to be very effective in formulating the element properties m finite
element formulation. This system is defined in such that the magnitude at nodal points will have
unity or zero or a convenient set of fractions. It also facilitates the mtegration to calculate element

stiffness.

3.1.1 One Dimensional Line Elements
The line elements are used to represent spring, truss, beam like members for the finite element
analysis purpose. Such elements are quite useful in analyzing truss, cable and frame structures. Such
structures tend to be well defined in terms of the number and type of elements used. For example. to
represent a truss member, a two node linear element 1s sufficient to get accurate results, However,
three node line elements will be more suitable in case of analysis of cable structure to capture the
nonlinear effects. The natural coordinate system for one dimensional line element with two nodes 1s
shown in Fig. 3.1.1. Here, the natural coordinates of any point P can be defined as follows.

N =1-> and N,== (3.1.1)

I I

Where, x 1s represented i Cartesian coordinate system. Similarly. x/Jcan be represented as  in
natural coordinate system. Thus the above expression can be rewritten in the form of natural
coordinate system as given below.

N,=1—¢ and N, =¢ (3.1.2)

Now, the relationship between natural and Cartesian coordinates can be expressed from eq. (3.1.1) as

U= )

Here, Ni and Nois termed as shape function as well. The variation of the magnitude of two linear
shape functions (N} and N) over the length of bar element are shown in Fig. 3.1.2. This example
displays the simplest form of interpolation function. The linear interpolation used for field variable ¢

can be written as

P(&)= AN, + N, (3.1.4)
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(b) Natural Coordinate System

Fig. 3.1.1 Two node line element

Fig. 3.1.2 Linear interpolation function for two node line element

Similarly. for three node line element, the shape function can be derived with the help of natural

coordinate system which may be expressed as follows:
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N. 138 +2¢7
3 I 4x 4x° : (3-1.5)
{.N}: .'N’2 =<T—l—2 3= 4&—4&’
N, —& + 267
_x, 2 S
S

The detailed derivation of the interpolation function will be discussed in subsequent lecture. The
variation of the shape functions over the length of the three node element are shown mn Fig. 3.1.3

. ® -
1 2 3
1
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Ny
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N2
/‘ 1
\/
N3

Fig. 2.1.3 Variation of interpolation function for three node line element

Now, if § 1s considered to be a function of L] and L. the differentiation of ¢with respect to xfor two
node line element can be expressed by the chain rule formula as

dx JdL, ox JL, Ix
Thus, eq.(3.1.4) can be written as

oL _ 1 .9L_1 G.1.7)
Ox ! o




(p+g+1)!
Here, p! is the factorial product p(p-1)(p-2)....(1) and 0! is defined as equal to vnity.

d 18 8]
— == 3.1.7
dc I|OL, @ ] ( )
The integration over the length lin natoral coordinate system can be expressed by
ler!
[Lrreda= 7T (3.1.9)
!

1.1.2 Two Dimensional Triangular Elements
The natural coordinate system for a triangular element is generally called as triangular coordinate
system. The coordinate of any point Pinside the triangle is x,y in Cartesian coordinate system. Here,
three coordinates, L), Ly and L; can be vsed to define the location of the point in terms of natoral
coordinate system. The point P can be defined by the following set of area coordinates:

Ly=22 i L= =22 (3.1.10)
Where,

A,= Area of the triangle P23

A,= Area of the triangle P13

A= Area of the triangle P12

A=Area of the triangle 123
Thus,

A=4,+ A2+ 4;

and

Liy+L.+L;=1 (3.1.11)
Therefore, the natural coordinate of three nodes will be: node 1 (1,0.0); node 2 (0,1,0); and node 3
(0.0.1).



> X

Fig. 3.1.4 Triangular coordinate system

The area of the triangles can be written using Cartesian coordinates considering x, v as coordinates
of an arbitrary point P inside or on the boundaries of the element:

. 1 = »n
A=I1 x; ¥
2
1 x3 ¥
1 x vy
A1 = % 1 x5 ¥y
1 x3 ¥,
1 x vy
4= 21 x
1 ©m o wn
1 x vy
A3 = %1 X N
"1 Xz ¥

The relation between two coordinate systems to define point P can be established by their nodal

coordinates as

1 1 1 1q7L,

x| = kl X x;l ’lf.:] (3.1.12)
¥ 1 ¥z Yalllz

Where,

x=DLyx) + Laxs + Lax,



¥ =Ly + Lays + Lays
The inverse between natural and Cartesian coordinates from eq.(3.1.12) may be expressed as
L, Xz¥3—Xz¥z Yz — — Xz
[Lzl =ﬁ XaV1—% ¥z ¥Ya— _Ia][ l (3.1.13)
Ly X ¥a—Xz¥1 Y1 — Xz — X1
The derivatives with respect to glﬂbal coordinates are necessary to determine the properties of an
element. The relationship between two coordinate systems may be computed by using the chain rule
of partial differentiation as
£=5_5L1+ &_5L3+ !li"_ii::'L_1
gx oL, ox OL, ox OL, &x
bl & e85 b, & +£ i
T 2A° 8L, 2A 8L, 2A 8L, (3.1.14)

Where, by = y2—yi; by =y3 —y1 and b; = y; — 3. Similarly, following relation can be obtained.

_$5 0
1 2A 8L, (3.1.15)

&
Where, ¢ = x3 — x30 €2 = x1 — x3 and ¢3 = x3 — x1. The above expressions are locked
However, the main advantage is the ease with which polynonual terms can be

cumbersome.

mtegrated vsing following area integral expression.

lglr!
fL,PL,“LfdA= —PAT  _)a (3.1.16)
“ - (p+q4r+2)

Where 0! 15 defined as nty.

3.1.3 Shape Function using Area Coordinates

The interpolation fonctions for the triangular element are algebraically complex if expressed in
Cartesian coordinates. Moreover, the integration required to obtain the element stiffness matrix is
quite cumbersome. This will be discussed in details in next lecture. The interpolation function and
subsequently the required integration can be obtained in a simplified manner by the concept of area



coordinates. Considering a linear displacement variation of a triangular element as shown in Fig.

3.1.5, the displacement at any point can be written in terms of its area coordinates.

u=o,L, +a,L, +a.L;

or, u={o} {a} (3.1.17)
where, {c}}r =[L1 L, L3] and {&}I = {:::1 o, i::,;}
And  Li=2t L= L= (3.1.18)

Here, A is the total area of the triangle_ It 15 important to note that the area coordinates are dependent
as Ly + Lo+ Lz =1 . It may be seen from figure that at node 1, L1 = 1 while Ly = L3= 0. Similarly
for other two nodes: at mode 2, Ly = 1 while Iy = L3 = 0, andl: = | while Iz = L1 = 0. Now,
substituting the area coordinates for node 1, 2 and 3, the displacement components at nodes can be

written as
w] [1 00
[u}=1u,i=10 1 0{{a} (3.1.19)
u| [0 0 1
Thus, from the above expression, one can obtain the unknown coefficient &x :
1 0 0]fy
[a}=10 1 0{u, (3.1.20)
0 0 1{|u
Y
N 1(L,0,0)
P
2(0,1,0)
3(0,0.1)

Fig. 3.1.5 Area coordinates for triangular element



Now, eq.(3.1.17) can be written as:

1 0 0fy 10 0
ful={6}l0 1 01u,t={s}'10 1 0O{u} (3.1.21)
0 0 1, 00 1

T
The above expression can be written in terms of interpelation function as 1= {N} {u-l}

Where,

1 00
(N}'=[L, L, Lo 1 o|=[L, L, L] (3.122)
0 01
Similarly, the displacement varation v in Y direction can be expressed as follows.
v={N}'{v,} (3.1.23)

Thus, for two displacement components u and v of any point inside the element can be written as:

NY oY |[u

{d}={u}= { }T { }I [H"} (3.1.24)
oy oyl

Thus, the shape function of the element will become

[Ll L, L, 0 0 0]

0 0 0 L, L, L

It 15 important to note that the shape function N; become unity at node i and zero at other nodes of

[N|= (3.125)

the element. The displacement at any point of the element can be expressed in terms of its nodal
displacement and the interpolation function as given below.

u=Nu, +Nu,+Nu,

3.1.26



The triangular element can be used to represent the arbitrary geometry much easily. On the other
hand, rectangular elements, in general. are of limited use as they are not well suited for representing
curved boundaries. However, an assemblage of rectangular and triangular element with triangular
elements near the boundary can be very effective (Fig. 3.2.1). Triangular elements may also be used
in 3-dimensionalaxi-symmetric problems, plates and shell structures. The shape function for
tnangular elements (linear, quadratic and cubic) with vanious nodes (Fig. 3.2.2) can be formulated.

An internal node will exist for cubic element as seen in Fig. 3.2.2(c).

Fig. 3.2.1 Finite element mesh consisting of triangular and rectangular element

AVAVAN

(@) 3-node linear (b B-node quadralic (€] 10-node cubic

Fig. 3.2.2 Triangular elements

In displacement formulation, it is very important to approximate the variation of displacement in the
element by suitable function. The interpolation fonction can be denived either wsing the Cartesian

coordinate system or by the area coordinates.



3.2.1 Shape function nsingCartesiancoordinates
Polynomials are easiest way of mathematical operation for expressing vanation of displacement. For
example, the displacement variation within the element can be represented by the following fiunction
in case of two dimensional plane stress/strain problems.
u=ag T oyX oy (3.2.1)
V=g T agX T gy (3.2.2
where g, gy, a3 ..... are vnknown coefficients. Thus the displacement vectors at any point P,in the
element (Fig.3.2.3) can be expressed with the following relation.

oy
1 0 0 0])=
@={}=lo 0 0 1 x y @ (3-23)
o
U
Or. {d}=[¢]{a} (3:24)

2(x,0 1)

1(*"”1"| )

L

Fig. 3.1.3 Triangular element in Cartesian Coordinates

Similarly, for “m” node element having three degrees of freedom at each node, the displacement
function can be expressed as

u=ay+a,x+ay+ax+axyvtasyit.. ooy V"

O S S - S U S S o B S U S @y V" (3.2.5)

W=y T Gamey X T GamypaV T GamepX™ + Tameg V... tazm_ y"

Hence in such case,



uy [@F 0 0
{d} = {1:.!} =0 {¢f 0 |{a} (3.2.6)
w0 0 (ef
Where, {a}" = [aga; -..azm_y]and. [¢]" =[1 x ¥y x* xy.... y"]
Now, for a linear triangular element with 2 degrees of freedom, eq. (3.2.3) can be written in terms of
the nodal displacements as follows.

Ty 'l xy Y1 0o 0 I s
Lis 1 X2 ¥a 0 0 0 4]
=100 0 0 1 x 3/|)as G-2.7)

Where, {d} is the nodal displacements. To simplify the above expression for finding out the shape
function, the displacements in X durection can be separated out which will be as follows:

iy 1 x w)(%
{ug]=[1¢3] = [1 X2 V2 {ﬂl} (3.2.8)
Uz 1 x; yglloz

To obtain the polynomial coefficients, {a} the matrnix of the above equation are to be inverted. Thus,

oy 1 % M| (g XV — XYy XV EY: XV, X)W
o p=|1 %2 W2 u,r= E ¥1—¥F; Y:—¥ =Y 1,
S R D E T I X, —X, X, — X, X, —X, ||u;
1 a; a; a3
:E bl bE b3 112 i {319}
C] EE ES 11}

Where, A is the area of the tnangle and can be obtained as follows.

. 1 Xy '_'!|-"_'|_
A=Zl1 % (3.2.10)
1 x3 ¥

Now, eq. (3.2.1) can be wntten from the above polynomial coefficients.



1

u T (X.7; _Kﬁ’:}‘i"{}’: _}r3}1;-|-{33 _32}3’]“1
-+ (=3 )+ )y G211

+L-[':l; =% ) (v — e )x +(x, —x, ) vlu
ALl 1¥2 —E N )T\ N — Yy 2 — % J¥]0,

Thus, the interpelation fisnction can be obtained from the abowe as:

A {E::ﬁ _-";3?:}"‘{3": —¥; ]E +{33 —K:}'}']

1
{N}T= Nyp= «JA[{ Vi — XY ) (¥ — v )X+ (% - }}]

3

Z 2 7

[{EL} —xy1)+(%— }’::]K"‘{K:_xt]'}'l

(3.2.12)
Such three node triangular element is commonly known as constant strain triangle (C5T) as its strain
15 assumed to be constant inside the element. This property may be derived from eq. (3.2.1) and
eq.(3.2.2). For example, in case of 2-D plane stress/strain problem. one can express the strain inside
the triangle with the help of eq.(3.2.1) and eq.(3.2.2):
Gu _ Olog +oyX +o,¥) —a
A% 1

g, .5;, =a, (3.2.13)
v bBu
v T ay

CST 1is the simplest element to develop mathematically. As there 15 no vanation of strain inside the
element, the mesh size of the triangular element should be small enough to get correct results. This
element produces constant temperature gradients ensuring constant heat flow within the element for

heat transfer problems.

3.2.2 Higher Order Triangular Elements

Higher order elements are useful if the boundary of the geometry 13 curve in nature. For curved case,
higher order triangular element can be suited effectively while generating the finite element mesh.
Moreover, in case of flexural action in the member, higher order elements can produce more
accurate results compare fo those using linear elements. Various types of higher order triangular



elements are used m practice. However, most commonly used triangular element 15 the six node

element for which development of shape functions are explained below.

3.2.2.15hape function for six node element

Fig. 3.2 4 shows a triangular element with six nodes. The additional three nodes (4, 5, and 6) are
sifuated at the midpoints of the sides of the element. A complete polynomial representation of the
field variable can be expressed with the help of Pascal triangle:

Px. V)=, +oqx+ey+ax +axy+a)y’ 3214

3 (0,0,1)

* . L=}
l 4 :

(1,0,0) (01,00

{a) ih)
Fig. 3.1.4 (a) 5ix node triangular element (b) Lines of constant values of the area coordinates

Using the above field variable function, one can reach the following expression using interpolation

function and the nodal values.

]
bo(xy)=> _Ni(x.y)o, (3213)
i=l

Here, the every shape function must be such that its value will be unity if evaluated at its related
node and zero if evalpated at any of the other five nodes. Moreover. as the field variable
representation is quadratic. each interpolation function will also become guadratic. Fig. 3.2.4(a)
shows the six node element with node numbering convention along with the area coordinates at three
corners. The six node element with lines of constant values of the area coordinates passing through
the nodes 13 shown in Fig. 3 2 4(b). Now the interpolation functions can be constructed with the help
of area coordinates from the above diagram. For example, the interpolation function N; should be
unity at node 1 and zero at all other five nodes. According to the above diagram, the value of L; is 1



at node 1 and 2 at node 4 and 6. Again L; will be 0 at nodes 2, 3 and 5. To satisfy all these

conditions, one can propose following expression:

. . . 1]
Nl(E,F}=N]{L]-.L:-.L3}=LJIL]—;| (3.2.16)
Evaluating the above expression, the value of N is becoming % at node 1 though it must become
unity. Therefore, the above expression is slightly modified satisfying all the conditions and will be as

follows:

N1=1T~1[L1 _%]=L1{2L’1_1} (3.2.17)

Eq. (3.2.17) assures the required conditions at all the six nodes and 15 a quadraticfunction, asl) 15 a
linear fonction of x and y. The remaining five interpolationfonctions can also be obtained in similar
fashion applying the required nodal conditions. Thuos, the shape function for the six node triangle

element can be written as given below.

N, =L,(2L,—1)

N, =L,(2L,-1)

N, =L,(1L,-1] (3.2.18)
N,=4LL,

Ny=4L,L;

N, =4L,L,

Such six node triangular element is commonly known as linear strain friangle (LST) as its strain is
assumed to vary linearly inside the element. In case of 2-D plane stress/strain problem, the element
displacement field for such quadratic triangle may be expressed as

U(X.Y) =0+ X+ Y+ 06X + XY+ )

F{I-..}']=ars+ﬁfﬁ'x+as}'+ﬂnf+%nly+wn}': (3-2.19)
So the element strain can be derived from the above displacement field as follows.

- ﬂl" r

T =E=u1 +2|DE]E +'|1-4j'

o
EI=E=ag+umE+1n”}F (3.2.20)
v fu .
Ty = e + oy =0, + oK + 2oy + o+ 20X oV

The above expression shows that the strain components are linearly varying inside the element.
Therefore, this six node element 15 called linear strain tnangle. The main advantage of this element 15

that it can capture the variation of strains and therefore stresses of the element.



3.2.3Construction of Shape Function by Degrading Technique

Sometimes, the geometry of the structure or its loading and boundary conditions are such that the
stresses developed in few locations are quite high On the other hand, variations of stresses are less
in some areas and as a result, refinement of finite element mesh is not necessary. It would be
economical in terms of computation if higher order elements are chosen where stress concentration
15 high and lower order elements at area away from the critical area. Fig.3.2.5 shows graphical
representationswhere various order of triangular elements are used for generating a finite element

mesh.

Fig. 1.1.5 Triangular elements with different nnumber of nodes

Fig. 3.2 5contains four types of element. Type 1 has only three nodes, type 2 element has five nodes,
type 3 has four nodes and type 4 has six nodes. The shape function for 3-node and 6-node triangular
elements has already been derived. The shape functions of 6-node element can suitably be degraded
to dertve shape functions of other two types of triangular elements.

31.2.3.1 Five node triangular element

Let consider a six node triangular element as shown in Fig. 3.2.6(a) whose shape functions and nodal
displacements are (N7, N1, N3, Nz, N5, Ng) and (u), wa., us, us, us, ug) respectively. Sumilarly, for a five
node triangular element as shown in Fig. 3.2.6(b). the shape functions and nodal displacements are
considered as (N1, N, N5, Ny, N%5) and (uh, uw™, u’s, w4, u’s) respectively. Thus, the

displacementat any point in a six node triangular element will become



u=Npu, +Nu,+Nu, +Nu, +N.u, +Nu, (3.2.21)

Where, N7, N3, ..., Nj are the shape functions and i3 given in eq.(3.2.18) If there is no node between
1 and 3, the displacement along line 1-315 considered to vary linearly. Thus the displacement at an

assumed noded” may be written as

e —+ 1,
i 9 (3.2.22)
Substituting, the value of u’s for vs in eq.(3.2.21) the following expression will be obtained.
u +u,

FE

(a)

Fig. 1.1.6 Degrading for five node element

Thus. the displacement function can be expressed by five nodal displacements as:
[ e Moo N, 4[N, + N, 4 N, 4§
=N T 1, 3T u, 4%y 55 (3.2.24)

However, the displacement function for the five node triangular element can be expressed as

u=Nu, +Niu, +Nju; +Nu, + N, (3225)

Comparing eq.(3.2.24) and eq.(3.2.25) and observing node 6 of six node triangle comresponds to

node 5 of five node trniangle, we can write

/ N ' a N :
N =N+t N, =N, Nj=N,+=% N, =N, and N; =N, (3.2.26)

Hence, the shape function of a five node triangular element will be



v N 4L L
N, =N1+TE=L1{2L1_1}+#=L1'{1_3L:]

N, =L,(2L,-1)

N AL L

N =N, + £ =L, (2L, —1}+=2 -1 {1—2L, _
3 3 7 3[ 3 :I 2 .1[ _}' {3.1.2..}

N, =4LL,

N, =4L,L,

Thus, for a five node triangular element, the above shape function can be used for finite element
analysis.



Rectangplar elements are suitable for modelling regular geometries. Sometimes. it 15 nsed along with
triangular elements to represent an arbitrary geometry. The simplest element in the rectangular
family is the four node rectangle with sides parallel to x and v axis. Fig. 3.3.1 shows rectangular
elements with varying nodes representing linear. quadratic and cubic variation of function.

f"‘L:' :;;‘1'“5 b) 8-node [ ¢ ) S-node (d) 12-node (e} 16-node
{Linear) {Quadralic) [Quadratic) {Cubic) (Cubic)

Fig. 3.3.1 Rectangular elements

3.1.1 Shape Funcdon for Four Node Element

Shape functions of a rectangular element can be derived using both Cartesian and natural coordinate
systems. A four term polynomial expression for the field variable will be required fora rectangular
element with four nodes having four degrees of freedom Since there is no complete four term
polynonual 1n two dimensions, the incomplete, symmetric expression from the Pascal’s triangle may

be chosen to ensure geometric isotropy.

3.1.1.1 Shape function using Cartesian coordinates
For the derivation of interpolation function, the sides of the rectangular element (Fig. 3.3.2) are
assumed to be parallel to the global Cartesian axes. From the Pascal’s tnangle, a linear variation may

be assumed to define filed vanable to ensure inter-element continuity.

d(xy)=ag+ax+ayy+ayy (33.1)



(x,.%,) 4 rw)
L

*—=x
(x.2) 2b
)
1., 2a :2 '1
(x.0) (%, ;)
> X

Fig. 3.3.2 Rectangular element in Cartesian coordinate

Applying nodal conditions, the above expression may be written in matrix form as
al 1 x »n wnlle
| !1 x M x:}::! =
Py - |1 5 00 -"'3}:5| -
@, ll X Y 141':4J 0
The unlmown polynomual coefficients may be obtained from the above equation with the use of
nodal field variables.

(33.2)

L

%y P R L x:l}'ll &
| =|-l Y Y NN P (333)
ol L%y %y |9
O3 Uoxy ye xays] (s

Thus, the field vanable at any point inside the element can be described 1n terms of nodal values as
1

ay | ll X, W x]_-yll &
| \ 6‘1 |1 .1'2 _'_|.-'2 XV, t,D!
o=l x 3 )| *|=l * ¥ w) ) |
Q:-: |1 .1'_1 _'_|.-'3 x3:|_J3| m]
o) LA S A (X 334)
%
@
=M N N N—1]
4,

From the above expression, the shape function Nican be derived and will be as follows.



N, =[ X—X [[ Y-V

LT e LY Rl Y

N.=| X"h [J"—}'a

Tl An-y
- &Y LY {335}
X=X )\ ¥s— ¥ )

N =| X% [J’—}'l

1.4_

Xy — Xy
Now, substituting the nodal coordmates in terms of (x1. y1) as (—a, —b) at node 1; (x2, ¥2) as (a. —b) at

node 2; (x3, ¥3) as (a, b) at node 3 and (x4 y4) as (—a, b) at node 4 the above expression can be re-
written as:

N, =i[x—fr}[.1-'—b}

4ab
N, =—[x+a}|:_1:—£:r]

4‘1"5’ (3.3.6)
.h3=ﬁ[r+a][.1-'+b}
N, =E{I—ﬁ'}[.}'+b]

Thus, the shape function N can be found from the above expression in Cartesian coordinate system.

3.2.1.2 Shape function using natural coordinates

The derivation of interpelation fonction in terms of Cartesian coordinate system is algebraically
complex as seen from earlier section. However, the complexity can be reduced by the use of natural
coordinate system, where the natural coordinates will vary from -1 to +1 in place of —a to +a or —b to
+b. The transformation of Cartesian cocrdinates to Natural coordinates are shown 1n Fig. 3.3.3.



3 4(-1.1) 3(1.1)

: I . ,

g

2 1{-1,-1) 2{(1.-1)

{a) Transformation of Cartasian to natural coordinate (b Nafural coardinates al nodaes

Fig. 3.3.3F our node rectangular element

From the figure, the relation between two coordinate systems can be expressed as

§=E and r3=u (3.3.7)
a b
Here 2a and 2bare the width and height of the rectangle. The coordinate of the center of the
rectangle can be written as follows:
L Rt
2

Thus, from eq. (3.3.7) and eq.(3.3.8), the nodal values in natural coordinate systems can be denived
which 1s shown mn Fig. 3.3 4(b). With the above relations vanations of £ & n will be from -1 to +1.

Now the interpolation function can be derived in a similar fashion as done in section 3.3.1.1. The

X +X,

T=T* and ¥ (3-3.8)

filed variable can be written in natural coordinate system ensuring inter-element continuity as:
d(En) = +af +amt+eayén (339)

The coordinates of four nodes of the element in two different systems are shown in Table 3.3.1 for
ready reference for the derivation purpose. Applying the nodal values in the above expression one

can get
f |l1 -1 -1 1l[ay
Y I S S B ] 33.10
¢ 11 1 1f|ay o
) 1 -1 1 =1f|e



Table 3.3.1 Cartesian and natural coordinates for four node element

Node Cartesian Coordinate Natural Coordinate
x ¥ = 1
1 x] ¥ -1 -1
2 X7 ¥2 1 -1
3 X3 ¥3 1 1
4 X Vi -1 1

Thus, the unknown polynomial coefficients can be found as

a] 1 =1 -1 17 11 1 ll-ﬂ
1 1 -1 -1 |¢ -1 1 1 —1|¢
o | el L el (3.3.11)
oy 1 1 1 1 iy 4 -1 -1 1 1 ||%
o, ll -1 1 -1 | i1 -11 —l‘ Py
The field variable can be written as follows using eq.(3.3.9) and eq.(3.3.11).
a, (1 1 1 1][a
. ey -1 11 —1f|e
alEni=1 £ E =1 £ Enl—
o(En)=[l £ n & . 1 & n .??_4|_1 11 o1e,
o 1 -1 1 —1j|¢
’ | T (3.3.12)
P
- |
=[N N, N; N i._
1::"_1_

Where Nare the interpolation function of the element in natural coordinate system and can be found

a5

[(1—£)(1=n)
4
Nl J(+£)(1-m)
N = Naf _ | 4 | (3.3.13)
N, (1+£)i1+n)
N, 4
(1—£)(1+n)
4




3.1.2 Shape Functon for Eight Node Element

The shape fuonction of eight node rectangular element can be derived in similar fashion as done in
case of four node element. The only difference will be on choosing of polynomial as this element 13
of guadratic in nature. The denvation will be algebraically complex in case of uwsing Cartesian
coordinate system. However, use of the natural coordinate system will make the process simpler as
the natural coordinates vary from -1 to +1 in the element The variation of filed variable ¢ can be
expressed in natural coordinate system by the following polynomial.

B(En)= 0y Tl +am+ag’ tadntan +adn+aly (33.14)
It may be noted that the cubic terms E_F and 11331'& omifted and geometric invariance is ensured by

choosing the abowve expression. Fig. 3.3.4 shows the natwral nodal coordinates of the eight node
rectangle element in natural coordinate system.

The nodal field variables can be cbtained from the above expression after putting the coordinates at
nodes.

] -1 -11 1 1 =1 —1lfa
o 11 -1 1 =11 -1 1|y
Bl 11 111 1 1 1fa
1 -1 1 1 -11 1 -ljja
{.;'5}:?*.: 1=[4]{a,} (3.3.15)
és| 1 0 =10 0 1 0 0ffay '
| 1 1 0 1 0 0 0 0ffay
e 110 1 0 0 1 0 0ffag
) 1 -1 0 1 0 0 0 0jffa
]
i=+1 z 3
T"IT_.
n=0 He 3 6
n=-1 t n
Ee=] &0 o+l

Fig. 3.2.4 Natural coordinates of eight node rectangular element

Replacing the unknown coefficient o in eq.(3.3.14) from eq.(3.3.15), the following relations will be
obtained.



s(En)=[1&ng & 7 En &' 4] {8}
-1 -1 -1 -1

2 2 2 2][e
0o 0 0 0 0 2 —2l|
0 0 0 0 -2 0 2 0|le
=[1ene &0 &y gt b1 -2 0 =2 0le,
441 -1 1 -1 0 0 0 0|l
1 1 1 1 0 -2 0 -=2|¢
-1 -1 1 1 2 0 =2 0||#
-1 1 1 -1 0 -2 0 2||&
4:]1-
@
s
=|N, Ny N; Ny N; N; N; }-.,rs] ?" A
P
E.'lﬁ
P
! (3.3.16)

Thus, the interpolation function will become

T

_(1=8)0-n)(t-n-1) . (+&)1-n)(E—n-1)

| 4 Ny 1
v e n)(E+n=1) . (1=£){+n)(-E+n-1)

=T33 4 24y = 4 :

v L E)1-&)1-n) . _(1+£)(1+n)1—n)

R 2 2 Vg = 3 :

y 1+ =8)1+n) o (1=£)1+n)(1=n)

- ’ o : (33.17)

The shape functions of rectangular elements with higher nodes can be derived in similar manner
using appropriate polynomial satisfring all necessary criteria. However, difficulty arises due to the
mversion of large size of the matrix because of higher degree of polynomial chosen. In next lecture,
the shape functions of rectangular element with higher nodes will be derived in a much simpler way.



In last lecture note, the interpolation functions are derived on the basis of assumed polynomial from
Pascal’s triangle for the filed variable. As seen, the inverse of the large matrix is quite cumbersome
if the element is of higher order.

3.4.1 Lagrange Interpolation Function
An alternate and simpler way to derive shape functions is to use Lagrange interpolation polynomials.
This method i1s swtable to derive shape function for elements having higher order of nodes. The
Lagrange interpolation function at node iis defined by
£(8)= 1__[ *E % .| I:.#-._#'al.:;l{f-_s-i}““l:;#u_#'-i LHE-_E-:-I}"_“":#:-_#-....1"
|F - # (A ) ()R R )-8 —%.)

(34.1)
The function f{Z) produces the Lagrange interpelation function for i® node. and L; denotes
coordinate |:|:IE_}'ml node in the element. In the above equation if we put £ = &;, and j # 1, the value of the
function f{Z) will be equal to zero. Similarly, putting £ = &; the numerator will be equal to
denominator and hence f{Z) will have a value of unity. Since. Lagrange interpolation function for i
node inclodes product of all terms em:eprjmterm:_ for an element with n nodes, f{Z) will have n-1
degrees of freedom. Thus, for one-dimensional elements with n-nodes we can define shape function

s N,() =£(5).

3.4.1.15hape function for twe node bar element

Consider the two node bar element discwpssed as in section 3.1.1. Let us consider the natoral
coordinate of the center of the element as 0, and the natural coordinate of the nodez 1 and 2 are -1
and +1 respectively. Therefore, the natural coordinate £ at any point x can be represented by,

£_ 2(x—x%) 1

’ I (3.42)

]

A
]
I
I

Fig. 3.4.1 Natural coordinates of bar element



The shape function for two node bar element as shown in Fig_ 3 4.1 can be denived fromeq.(3.4.1) as
follows:

I B s N T
AR R
fﬁ—h]_ja+1y_%“+ﬁ}

(e,—8,) 1-(I) 2

N, =f '[H

(3.4.3)

N, =1, fF]-:

Graphically. these shape fonctions are represented in Fig.3.4.2.

N, :
— S B
: T : |
| e T |
I e m—— [
1i_-=-—'—' —— .2 + ';-E_‘
=] E=tl

Fig.2.4.2 Shape functions for two node bar element

3.4.1.2 Shape function for three node bar element
For a three node bar element as shown in Fig 3.4 3, the shape function will be gquadratic in nature.

These can be derived in the similar fashion using eq.(3.4.1) which will be as follows:

(E—E,0E—E,) =) E—1
N, () =f(5) = elit) _OED 1., )
. I:.FI _F-.z H ;1 _-F-_.i} ':_1]'{—2) 2 !

(e—&)E—£,) (E+1)(E—=1) .. ..
£ — £ —=_t= al MY ad — L= A F— £l
B TR T e Rl G
e E-E)E-E)  EH)E 1
er;:l_i;{;}_ [F-G_F-.LHF-G_F-.J_ {E}El:l _EEIE-'_IJ
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Fig.3.4.3 Quadratic shape functions for three node bar element

3.4.1.2 Shape function for two dimensional elements

We can derive the Lagrange interpolation fonction for two or three dimensional elements from one

dimensional element as discussed above. Those elements whose shape functions are derived from

the products of one dimensional Lagrange iterpolation functions are called Lagrange elements. The

Lagrange interpolation fuonction for a rectangular element can be obtamned from the product of

appropriate interpolation functions in the £ direction [fi(E )] and v direction [fi(n)]. Thus,
N,(f.n)=f(£)f (n) Where.i= 123, ... nnode (3.4.3)

The procedure is described in details in following examples.

Four node rectangular element

The shape functions for the four node rectangular element as shown in the Fig 3. 4 4 can be derived
by applying eq.(3.4.3) eq.(3.4.5)which will be as follows.

[’: —F,:.] {ﬂ_ )

{El_ﬁij{ﬂ] _'ll"llllII {3_4_5}

_ =1 (n-) Li—t)i=n)

N, (E.n)=1£(£)f(n)=

= Y L=
—1—() —1—-() 4

Similarly, other interpolation functions can be derived which are given below.
) ) . 1 . .
N, (Em)=1£ {F".]'Ifll:.“} =1{1+EH1_ ul
N, (£.0) =, ()8 (n) =5 (1+£)(1+n) (347)

Ny(Em) =L (E)f(n) = 3(1-5)1+n)

These shape functions are exactly same as eq.(3.3.13) which was denivedearlier by choosing
polynomials.
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Fig. 3.4.4Four node rectangular element

Nine node rectangular element

In a similar way, to the denvation of four node rectangular element, we can denive the shape
functions for a nine node rectangular element. In this case, the shape functions can be denived using
eqﬁddjaﬂﬂeqﬁ-iﬁ}

(En)=E(E)(n)=ZE(E—1)x lﬂ('n 1) =~£n(£ —1)(n—1)
4 (3.4.8)
In a similar way, all the other shape functions of the element can be derived. The shape functions of
nine node rectangular element will be:

1., 1
Ny=2tn(E-1)n=1).  Ny=-£n(E+1)n-1)

l ) i l F F
N, =1E*nllﬁ+1_]£fn+1)- N,=ZEn(E-1)(n+1)

1 1 2
E”{I_F Jin— Ne=58E+1)1-n) (349
B 1, :
=3n(1-87)(n+1). }J3=Eaga—1][1—n‘}l

N, =(1-£%)(1—7n)
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Fig.1.4.5 Nine node rectangular element

Thus. it is observed that the two dimensional Lagrange element contains internal nodes (Fig. 3.4.6)

which are not connected to other nodes.

Linear element

Quadratic alemant

Cubic alemant

Fig. 3.4.6Two dimensional Lagrange elements and Pascal triangle

3.4.1 Serendipity Elements

Higher order Lagrange elements contains infternal nodes, which do not contribuote to the infer-
element connectivity. However, these can be eliminated by condensation procedure which needs
extra computation. The elimination of these mternal nodes results in reduction in size of the element
matrices Alternatively, one can develop shape functions of two dimensional elements which contain
nodes only on the boundaries. These elements are called serendipity elements (Fig. 3.4.7) and their
integrpolation functions can be derived by inspection or the procedure described in previous lecture



{(Module 3, lecture 3). The mterpolation fonction can be derived by mspection in terms of natoral
coordinate system as follows:

{(a) Linear element

. 1 Y ;
N, (En) =7 (1+85)(1+m;) (3.4.10)

(b) Quadratic element
(1) Fornodesat £ = £1 n==1

| .

N; (En) = (128, )(1+m, (58, +mm, —1) (3.4.11a)
(u) Fornodesatf==£1n=0

. 1 )

N-L{E._-n}=5[1+’-:._’-:._1.]f_l—ﬂl,:' (3.4.11b)

(1) Fornodesats =0, n= =1
1 2
N_L{l_:____.,-l}z;f_l—!:__ J'||:1+T1'ni} (3.4.11c)

{(c) Cubic element
(1) Fornodesat § = £1, n==1

1 2 21 |
N (Em)=g(1+Es )(1+m,)|9(¢* +n*)-10| (3.4.12a)
(i) Fornodesat £ =41 'r|=:|:%
0 2
N, (£.m)= ﬁ[1 +££,)(1—n7 {1+ 9mm;) (3.4.12b)

And so0 on for other nodes at the boundaries.



L

Linear element

Quadratic elemeant

Cubic element

Fig. 3.4.7 Two dimensional serendipity elements and Pascal triangle

Thus, the nodal conditions must be satisfied by each interpolation function to obtain the functions
serendipitously. For example, let us consider an eight node element as shown m Fig. 3.4.8 to derive
its shape fuonction. The interpolation function N7 must become zerc at all nodes except node 1, where
its valoe mmst be voity. Similarly, at nodes 2, 3, and 6, £ = 1, so including the term £~ 1 satisfies the
zero condition at those nodes. Similarly, at nodes 3. 4 and 7, 5y = 1 so the term » — 1 ensures the zero
condition at these nodes.

4
n=+1 '.'lr 3
n
n=0 g T—.}__ *
I'|—-] 5 2
] 0 E—+1

Fig. 3.4.8 Two dimensional eight node rectangular element

Again atnode 5, (£, ) = (0, —1), and at node & (£, 1) = (-1, 0). Hence. at nodes 3 and 8, the term (£
+ n + 1) 15 zero. Using this reasoning, the equation of lines are expressed in Fig. 3.49. Thus,



theinterpolation function associated with node 1 is to be of the form N, = (n—1)(£—1)(£+n+1)

where, y is unknown constant. As the value of Ny 15 1 at node 1, the magnitude unknown constant
y; will become -1/4. Therefore, the shape function for nede 1 will become
1 . .
N =—E'[1—ﬁ':| (1-£)(£+n+1).
Similarly, w; will become -1/4 considering the value of N3 at node 2 as unity and the shape function
. 1 .

for node 2 will be N,=uq4(p—1)(£+1)(E—n—1) =—:1|:1+E] (1—-p)(£—n—1]. In a similar
fashion one can find out other mterpolation functions from Fig. 3.4.9 by puthing the respective values
at various nodes. Thus, the shape function for 8-node rectangular element is given below.

Fig. 2.4.9 Equations of lines for two dimensional eight node element

N, =—%{1— )1-n)1+£+m).  Ns= %{I—E:]{I— n).

1L L.
Ny=—Z(1+8)(1-n)1-E+n).  Ny=S(1+5)(1-n").

1

X | (3.4.13)
N, =+ )l n)i-E=n). N, =(1-€)1+n)

N == {(1=)(1+ n)(1+£ —n) and N, = (1-2)(1—1")



3.6.1 Necessity of Isoparametric Formulation

The two or three dimensional elements discussed till now are of regular geometry (e.g. triangular
and rectangular element) having straight edge. Hence. for the analysis of any irregular geometry, it is
difficult to use such elements directly. For example. the continuum having curve boundary as shown
in the Fig. 3.6.1(a) has been discretized into a mesh of finite elements in three ways as shown.

() ()

(a) The Continuum to be discritized (b) Discritization using Triangular Elements (c)
Discritization using rectangular elements (d) Discritization using a combination of

rectangular and quadrilateral elements

Fig 3.6.1 Discretization of a continuum using different elements



Figure 3.6.1(b) presents a possible mesh nsing triangular elements. Though triangular elements can
suitable approximate the circular boundary of the continuum, but the elements close to the center
becomes slender and hence affect the accuracy of finite element solutions. One possible solution to
the problem is to reduce the height of each row of elements as we approach to the center. But.
unnecessary refining of the continmm generates relatively large number of elements and thus
increases computation time. Alternatively, when meshing iz done using rectangular elements as
shown i Fig 3.6.1(c), the area of continoum exclnded from the finite element model is
significantlyadequate to provide incorrect results. In order to improve the accuracy of the result one
can generate mesh wsing very small elements. But, this will significantly increase the computation
time. Another possible way is to use a combination of both rectangular and triangular elements as
discussed in section 3.2. But such types of combination may not provide the best solution in terms of
accuracy, since different order polynomials are used to represent the field vanables for different
types of elements. Also the friangular elements may be slender and thus can affect the accuracy. In
Fig.3.6.1(d), the same contmmuom 15 discrifized with rectangplar elements near center and with four-
node quadrilateral elements near boundary. This four-node quadrilateral element can be derived
from rectangular elements vsing the concept of mapping. Using the concept of mapping regular
trianpular, rectangular or solid elements in natural coordinate system (known as parent element) can
be transformed into global Cartesian coordinate system having arbitrary shapes (with curved edge or
surfaces). Fig 3.6.2 shows the parent elements in natural coordinate system and the mapped elements
in global Cartesian system.
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{a) WNatural Coordinate System (b) Global Coordinate System

Fig. 3.6.2 Mapping of isoparametric elements in global coordinate system

3.6.2 Coordinate Transformation
The geometry of an element may be expressed in terms of the interpolation functions as follows.

x=Nx +Nx,+.+Nx =Y Nx
y=Ny+Ny,+.+N3, =Y Ny, (3.6.1)

-

[z, + Nz, +..+Nz,=% Nz,

o=

[

Wherte.
n=No.of Nodes

N;=Interpolation Functions
X,.¥;.z,=Coordmates of Nodal Points of the Element

One can also express the field vanable variation in the element as



#(ens) =Y N(anc)g (36.2)

As the same shape functions are used for both the field vanableand descniption of element geometry,
the method is known as 1soparametricmapping. The element defined by such a method is known as
an 1soparametric element. This method can be used to transform the natoral coordinates of a point to

the Cartesian coordinate system and vice versa.

Example 3.6.1
Determine the Cartesian coordinate of the point P (Z= 0.8, n=0.9) as shown in Fig. 3.6.3.

3(3.5.4.0)

7

e
-
Pegn) 21525
¢
i

5.- ¥ |
/ II
_—,_/—'_'j.. -i H| -.-5‘|

110,00

-

Fig. 3.6.3 Transformation of Coordinates

Solution:
As described above, the relation between fwo coordinate systems can be represented through their
interpolation functions. Therefore, the valuesof the interpolation function at point P will be

V= (1-&Ml-n) _ (1-0.8)1-0.9) 0,005

o 4 3

N ={1—,:z]1{1—n] ={1+n.s;:|:1-n.9) 005
N ={1+r§];(1—n} _ {1+ﬂ_3):1+u_9) 0.5
N, ={1—,:§1+n] ={1—ﬂ.8):1(1+ﬂ.9} 0005

Thus the coordinate of point P in Cartesian coordinate system can be caleunlated as



x=% Nx =0005x1+0.045%3+0835=3.5+0.095x1.5=3.275

¥=3 Ny =0005x1+0.045x1 5+ 0.855x4.0+0.0052x25=3.73

Thus the coordinate of point P (5= 0.8, = 0.9) in Cartesian coordinate system will be 3 275, 3.73.

Solid 1soparametric elements can easily be formulated by the extension of the procedure followed for
2-D elements. Regardless of the number of nodes or possible curvature of edges, the solid element is
just like a plane element which i1s mapped mto the space of natural co-ordinates, 1e
E=%ln=310=1%1.

31.6.2 Concept of Jacobian Matrix

A vanety of derivatives of the interpolationfinctions with respect to the global coordinates are
necessary to formmlate the element stiffness matrices. As the both element geometry andvanation of
the shape functions are represented in terms of the naturalcoordinates of the parent element some
additional mathematical obstacle arises. For example, in case of evaluation of the stramn vector, the

operator matrix is with respect to x and v, but the interpolation function is with# and 7. Therefore,
the operator matrix is to be transformed for talang denivative with £ and 1. The relationship between

two coordinate systems may be computed by using the chain rule of partial differentiation as
d @ 3:-: a 3}' g ddx 4 By

-—= —+= 363
gf  ox EF ay EF Er} S dn oy G-h"“ ( )
The above equations can be expressed in matrix form as well.
a [ dr avl|[ @8 5
9| |3s ar ax
St f| ax _r] (3.6.4)
a gx oy
dn) 18n ﬂwJ 5‘?
2 &
df  of —
The matnx [J] is denoted as Jacobian matnix which is: 3‘ 3_]: As we know, I_E.for‘
i i=l
(8n  on
oy N
) . 61' tl.- .'II A IE';?"-"
where_ nis the number of nodes in an element. Hence, J,; =—= =% —x
a; ek  Fer

Similarly one can calculate the other terms Jy;, Jajand J3; of the Jacobian matrix. Hence,



Fpkis ]
S| aN, . =N, | o
T Ly i
Eat
From eq. (3.6.4), one can write
5 )
N ¢
5 (=1 5 (3.6.6)
5 (o
NP A _ _ o .
Considening e .-i"; are the elements of inverted [J] matrix. we may arise into the following
¥n m
relations.
a8 a . O
a= 11'E+Ju E
: (3.6.7)
a . 8 . 08
5=J:1'ﬁ_:+jn'a

Similarly, for three dimensional case, the following relation exists between the derivative operators
in the global and the natural cocrdinate system.

.
|
4
il
4

2| [&x & &][e 2
ec| |ec e @ f|ax ax
1|y Elel e (3.6.8)
én| |8n én én||dy v
8 & v é|lé 8

Where,



& gy &
8k a8k ar
SR
n 7o
g &y 4
(8¢ o, o

(3.6.9)

[1] is known as the Jacobian Matrix for three dimensional case. Putting eq. (3.6.1) in eq. (3.6.9) and

after simplifying one can get
(6N, 8N, 8N, |
ey X Y. ¥i B !

= oN, o,
[I=2|—x —» —=
e L an on
éN, &N, &N
X 1 b
ac ' a¢ 8

From eq. (3.6.8). one can find the following expression.

N 2
o 8¢
=T
&y an
2 <
K4 | 8¢ ]
[
Considering [J’]_ = J;] J'ﬂ J;a we can arrived at the following relations.
o J;z T2
8 g g a
A A A
8 . 8 . 8 8
— =Ty =T —t T =
g a a g
A I -
B M EE Ry TRy

(3.6.10)

(3.6.11)

(3.6.12)



1.7.1 Evaluation of Stiffness Matrix of 2-D Isoparametric Elements

For two dimensional plane stress/strain formulation, the strain vector can be represented as

(h=1s, =1

Ty

"le'_

S T

o

L

ay B
dv  du . Ov
-4 J .
R

Ju
aE

The above expression can be rewritten in matrix form

=~
1

—h—
L]
[
Il
=]

.
=
1o

Hu |
3
0|2
ALy

e

3|ES
1 ﬂE
v
o)

P

T 3

+ T

du
dn
Bv

an

Au

. (3.7.1)

Fid aﬂ

(3.7.2)

For an n node element the displacementu can be represented as, u = Z Nu, and smmilarly for v&ow.

Thns,

EAREL N,
ge| | OF el

du| |aN, aN,
on| | 8n on

av| ™ 8N
— | 0 0 '
o o
gv| | g,
Yol 0 =5
dn| | an

0

8N ||

o
an,
dn

=1

(3.7.3)

As a result, eq.(3.7.2) can be written using eq. (3.7.3) which will be as follows.



% ) 'aNn 0 0 Lt
| &% oF :
oo o] a;qﬂ 0o - o |l (3.7.4)

gp=| 0 0 J‘ll ﬂ| n i,
e l.l,:.l S J:J 0 0 9N aN, [1vy
) ] ot 2 ||

0 0 1 n
L dn an ||v,

{=}=[Bl{d] (3.75)

Where {d} is the nodal displacement vector and [B] 1s known as strain displacement relationship

matrix and can be obtained as

% o BNE 0 - 0
%, o,

|[JL I 0 n‘% “?ﬂ 0 - 0 (3.76)
[B]=|[} T J*ﬂ| " i N .
L, I, I J“ 0 o N =
l_l n 11 12 aa af
0 0 % oN,
an dn

It 15 necessary to transform integrals from Cartesian tothe natural coordinates as well for caleulation
of the elemental stiffness matnix in 1soparametric formulation. The differential area relationship can
be established from advanced calculus and the elemental area in Cartesian coordinate can be

represented in terms of area in natural coordinates as:

dA=dx dy= |J|dF.‘ dn (3.7.7)

Here |J| 15 the determunant of the Jacobian matrix. The stiffness matrix for a two dimensional

element may be expressed as

k= [[[ Bl [P][Blac =1 [[B] [D][B|asdy 379)

Here, [B] is the strain-displacement relationship matrix and f 15 the thickness of the element. The
above expression in Cartesian coordinate system can be changed to the natural coordinate system as
follows to obtain the elemental stiffness matrix



41+l
l=t[ [ 1B D]B]rjecar 679
—1-1
Though the isoparametric formulation 13 mathematically straightforward, the algebraic difficulty is

significant.

Example 3.7.1:
Calculate the Jacobian matrix and the strain displacement matrix for four nodetwo dimensional
quadrilateral elements corresponding to the gauss point (0.57735, 0.57735) as shown in Fig 3.6 4.

(s, 40

115,15}

110 (5 1.5)

Fig.3.7.1 Two dimensional quadrilateral element

Solution:
The Jacobian matrix for a four node element 1s given by,

(8N, 6N, |
L L
[J]:| 1 w =1 -
" AN, <8N,
235 oy

A |
.
For the four node element one can find the following relations.

(1-£)(1-m) &N, _ 1-q &N, 1-£

N = L —
' 4 T 4 7 an 4
N UFHE)(I-n) 8N, 1-n &8N, _ 1+%
= 4 &, T 47 8q 4
N =[:1+E]|[:1+n]| &N3=1+rr|_ &N3=1+1‘-,
. 4 . = 4 dn 4



_(1=8)(1+n) AN, 1+n 8N, 1-f

T 4 o8 T 47 dn 4
Now, for a four node quadrilateral element, the Jacobian matnx will become
9N, 8N, &N, &N,|[x W
[ J] _ o, o, 9k 9% |[x1 ¥
dN, OIN, IN; IN,(x; ¥;
[dn O In  Inlx, v,

1-n l-n 14n 14qff N
_| 4 4 n 4 ||X2 ¥
1-F£ 1+%5 1+F8  1—% |Ix; ¥,
4 4 4 4 Xy Va

Putting the values of £ & 1 as 0.57735 and 0.37735 respectively. one will obtain the following.

N _ _0.10566 A 010566
ot &n
AN, ] AN,
N, _ 010566 N, _ 030434
3 Bn
N _ 030434 Ny _ 30434
o8 &n
N, _ _p30434 B _ 010566
] Bn
AN
Hence, J;, =3 Sp % = 0105661+ 0.10566x3+0.39434x3.5 039434 x1.5=10
=1 =
Similarly Jj2=0.64632, Jy; =0.25462 and Joy=1.14962.
Hence

2

1.00000 0.64632
023462 1.14962

Thus, the inverse of the Jacobian matrix will become:

Ju] [L16T1 —0.6561
o] 102585 1.0152

Hence strain displacement matrix 1s given by,



8N, N
= = 0
3 gt
' AN N
T T o o . 2 0
+og |l én &
Bl=lo o Tu T o o~
'IJZI Iy T JIIJ' 0 0 aal =
'] 'aNl I:F"-'.:N.n.
an an
11671 —0.6561 0 0 1|
= 0 0 —0.2585 1.{]151|x
|—0.2585 10152 11671 —0.6561
—0.10566 0.10566 039434 —0.30434 0 0 0 0
—0.10566 —039434 039434 0.10566 0 0 0 0
0 0 0 0 —0.10566 0.10566 0.309434 —0.30434
l 0 0 0 0 _0.10566 —039434 030434 0.10566
[—0.0540 03820 02015 —05294 0O 0 0 0
- 0 0 0 0  —0.0800 —0.4276 020984 0.2002

;_—l].{]El:IU —0.4276 02984 02092 00540 03320 02015 -0.5294

1.7.1 Evaluation of Stiffness Matrix of 3-D Isoparametric Elements

Stiffness matrix of 3-D solid isoparametric elements can easily be formulated by the extension of the
procedure followed for plane elements. For example, the eight node solid element is analogous to the
four node plane element. The strain vector for solid element can be written in the following form.
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For an 8 node brick element u can be represented as, u = Z Nu, and similarly for vSow.
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Hence eq. (3.7.11) can be rewritten as

JooJ, J, 0 0 0 0 0 0
0o 0 0 J, J,J. 0 0 0
(e)= o 0 0 0 0 0 J, T T
o o L A, S 0000
U 0 'I::L "‘F;E Ex "I;1 J:: "‘F'E
_"r;l J}! “I:-E ':I U D 111 "'irll "'rl3_

N,
an

0

an,

L g

aN,
az
N,
ag

0

Thu, the strain-displacement relationship matrix [B] for 8 node brick element is

J
{

]

V,

W

(3.7.12)

(3.7.13)



N0 o
as
éN
T * T 0 : 0
Ju Jp Sy O 0 0 O 0O O én
o 0 0 Jy; J, J, 0 0 0 o o N
0o 0 0 0 0 0 Jy; J, J,| & ac
[B]=] . . el £ IR B € 2 )
Jo Jn Ju Ty Ty 7y 00 0| iF|aN, &N,
0 0 0 J, J, Jn Jy Jn Jn én 8L
_“ril J]l "'rjj 0 0 0 “rll J]I "'rli_ 0 a'hf DL-'
a, én
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The stiffness matnix may be found by vsing the following expression in natural coordinate system.
#1 41
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3.8. NUMERICAL INTEGRATION

The integrations, we generally encounter in finite element methods. are quite complicated and it 1s
not possible to find a closed form solutions to those problems. Exact and explicit evaluation of the
mtegral associated to the element matrices and the loading vector is not always possible because of
the algebraic complexity of the coefficient of the different equation (i.e., the stiffness influence
coefficients, elasticity matnx loading functions etc). In the finite element analysis, we face the
problem of evaluating the following types of integrations in one, two and three dimensional cases

respectively. These are necessary to compute element stiffness and element load vector.
Jo(e)as: [ofen)dsan: [o(En.c)dsdndc; (3.8.1)

Approximate solutions to such problems are possible nsing cerfain numerical techmiques. Several
mumerical technigues are available, in mathematics for solving definite integration problems,
including, mid-point mle, trapezoidal-mle, Simpson’s 1/5rd mle, Simpson’s 3/8th mle and Gauss
Quadrature formula. Among these, Ganss Quadrature technique is most useful one for solving
problems in finite element method and therefore will be discussed in details here.

3.3.1 Gauss Quadratre for One-Dimensional Integrals

The concept of Gauss Quadrature 15 first illustrated in one dimension in the context of an integral in

1 X,
the form of Izj &% )ds from f f(x)dx . To transform from an arbitrary interval of x)= x = x3
1 x

to an mterval of -1 = £ = 1, we need to change the integration function from fix) to ¢(£) accordingly.
Thus. for a linear variation m one dimension, one can write the following relations.

1—-# 1+¢#
5 X+

x= K.: = lel + N:I:

1—(-1 1-1
so for f =—1lx= IIL :Ix]+ Xy =X

£E=+1 =x=x,

.'_I=L=:f[xjdx=fll]-nlzﬁ]dﬁ

Numerical integration based on Gauwss Quadrature assumes that the fonction $(Z) will be evaloated
over an interval -1 = £ = 1. Considering an one-dimensional integral, Gauss Quadrature represents
the integral ¢(Z) in the form of

I= f ;10 (&)dE == iw,-d:-{ﬁdj w8 |+ walf )+ w0 [flj (3.8.2)
il
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Where, the L;, &3, L3 ..., & represents n numbers of pomnts known as Gauss Points and the
comesponding coefficients wy, wi, w3, ..., Wy are known as weights. The location and weight
coefficients of Gauss points are caleunlated by Legendre polynonuals. Hence this method is also
sometimes referred as Gawss-Legendre Quadrature method. The sommation of these values at n
sampling points gives the exact solution of a polynomial integrand of an order up to 2n-1. For
example. considering sampling at two Gaupss points we can get exact solution for a pelynomial of an
order (2x2-1) or 3. The use of more number of Gauss points has no effect on accuracy of results but

takes more computation time.

3.5.20ne- Point Formula

Considering n = 1, eq.(3.8.2) can be written as

[ o) = wiate) (383)
Since there are two parameters W, and £, . we need a first order polynomial for ¢(Z) to evaluate the
eq.(3.8.3) exactly. For example, considering, &(%)=a; +af,

1

Eor= [ (ag+a£ ) —wio(5,) =0

= Ian_“"](“u"'“ﬁl]:ﬂ

=a,(2—w,)—waf, =0 (3.84)
Thus, the error will be zero if W, =2 and £, =0 Putting these in eq.(3.8.3), for any general ¢, we
have

I= 1 £ )dE =20(0 385

= [ o(£)dE=20(0) (3.8.5)

This is exactly similar to the well known midpoint mle.

3.5.2 Two-Point Formula
If we consider n = 2, then the eq.(3.8.2) can be written as

fllo{ﬁjdg Wb (5, )+ Wb (5,) (3.8.6)

This means we have four parameters to evaluate. Hence we need a 3™ order polynomual for ¢(Z) to
exactly evaluate eq.(3.8.6).

Considering. (%) =a, +af+a,f’ +a,f’

Error =ifl] [_3[, +3-LE.+3:E: +E|-3E.3_] dE.l_[wl'DI:F*l }+WED l:j:": ].



2 2 { 5
= 2a, '*'Ea: =W (ao +a8,+a% + a3"5.13)_ W) (ao +afy+ak, + 33-‘-.:3) =0

= (2—w—w,)a,—(wE +wyF, )a, +

=

2 : 3 ~
P ‘W:ﬁ:']a: — (Wi + Wity )a; =0

¢(x)

Appraximare =2 (0)

A
¢(0)
Exact area = _" A .\')d.\' —
/// !
-1 0 1
Fig 3.8.1 One-point Gauss Quadrature
Requiring zero error yields
w,+w,=2
Wi+ Wi =
2 2 2 387

Wk +W,E, == (3.8.7)

Wi} + w3 =0
These nonlinear equations have the unique solution as
W, =W, =1 £, =—£, =—1/3=-05773502691 (3.8.8)

From this solution, we can conclude that n-point Gaussian Quadrature will provide an exact solution

if (%) is a polynomial of order (2n-1) or less. Table 3.8.1 gives the values of w, and £, for Gauss
Quadrature formulas of orders n = 1 through n = 6. From the table it can be observed that the gauss



points are symmetrically placed with respect to origin and those symmetrical points have the same
weights. For accuracy in the caleulation maximum number digits for ganss point and gauss weights
should be taken. The Location and weights given in the Table 3.8.1 mmust be used when the limits of
integration ranges from -1 to 1. Integration limits other than [-1, 1], should be appropriately changed
to [-1, 1] before applying these values.

Table 3.8.1 Gauss peints and corresponding weights

Number of Gauss points, n | Gauss Point Location, £, | Weight, ]

1 0.0 20

2 +0.5773502602 (=+1/4f3) |10

3 0.0 0.88888E8E8Y (=8/9)
+0 77459666092 {=:Hﬁ} 0.3555555556 (=3/%)

4 +0.3399810436 0.6521451549
+0.861363116 03478548451

5 0.0 0.5688888889
+0.53846093101 0.4786286705
=0 9061798459 02369268851

& +0.2386191861 0.4679139346
+0 6612093865 03607615730
+0.9324605142 0.1713244924

Example 1:

1
Evaluate [ = f

. i
X : :
[e' S — Idx using one, two and three point gauss Quadrature.
0 .

x =2

Soluntion:

Before applying the Ganss Quadrature formula, the existing limits of integration should be changed
from [0, 1] to [-1. +1]. Assuming & — a 4 bx, the upper and lower limit can be changed. 1e atx =
0f=-land atx=1, £=+1. Thus, putting these conditions and solving for a & b, we geta=-1 and
b =2. The relation between two coordinate systems will become £, = 2x —land df =2dx .

Therefore the initial equation can be written as



1 2 £+1]
szl e’ 2—.
: [.f_,+1]'_1
5 2
[ (E+]) )y
C'I’, I=lf1['ﬂ 2 _:”:E—_L_ljl}jﬁ
21| (E+17 -8

Using one point gauss Quadrature:
w,=2 £, =0 and
I=20(0)

Or I= 1'% et +§J]= 2.22015

Using two point ganss Quadrature:

W, =W, =1
£, =—0.5773502692
£, =0.5773502692

Putting these values and calculating, I=2 39831

Using three point ganss Quadrature:
W, = 0.553555356
& =—0.774596669
w, = (.888888880

-
E

& = 0.000000000

_____

w, = 0.553555356
& = 0.774506669
andl = 241024
This may be compared with the exact soluticn as I__ =241193



Numerical imntegrations using Gauss Quadrature method can be extended fo two and three
dimensional cases in a similar fashion Such integrations are necessary to perform for the analysis of
plane stress/strain problem. plate and shell structures and for the three dimensional stress analysis.

31.9.1 Gauss Quadrature for Two-Dimensional Integrals
For two dimensional integration problems the above mentioned method can be extended by first
evaluating the inner mtegral, keeping v constant, and then evaluating the outer integral Thus,

[=I1Lfllgfa,'“]dﬂdﬂ mfll{il widj(ﬁd:ﬂ]}dﬂﬂ:iw'[f‘wiuiﬁpﬂjﬂ

il |

O,

IS 5 wywo(5.n;) (3.9.1)
i=1 -l

In a matnix form we can rewrite the above expression as

‘.’r*"{flsf?l] 'Fﬁ'l:":)-:l--'h} ?':?1-.’?"} L]

]5:5'{‘-'.{:]-’?[} Ef‘{f:-.’?:] glSam) || W

Iﬁ[w] Wy ... W, (3.9.2)

5:5{‘—{:"?!?[] &{‘fﬂ:"?l] ".:a'(‘:.ﬂ"'?n} w.l'l_.

Example 1:
ke
Evaluate the integral: I = [ [ {1 —x) [2 —y ) dxdy

n L

_'\"=|:=—4 x=a=1

Solution:

Before applying the Gauss Quadrature formmla, the above integral should be converted in terms of
# and n and the existing linits of ¥ should be changed from [-4.4] to [-1, 1] and that of x 15 from
[2.3] to [-1.1].



xz(b—a}a+l[b+a_]='{ﬁ+5.]; ax= 3

2 2 2 2
leid—c}ﬂ+|[d+r::|=¢m dy = 4dn

2 2

“=_1 Yy ﬂ=+1=_—|

n _

2 [ ][_J —anf dedn= [ [ o(€.njEdn

= 15=—1 2 le=-1

1 T=i%

3+£

where d‘;{E 'r]}

[_ 13 ' 13) sz 1,'? [ % %]
1 1 . " [l—— l—]
S I * |\

{

] (2—4n) =2(3+£) (1—2n)

Fig. 3.9.1 Gauss points for two-dimensional integral



1 z
1 2
OlE,. ]:z[z——i [1+— = 54 40857
R VI R e
i 1

3+— 2
Al
. 2+—| =115.583018
(£2 "11] 7 3
t
34— 2
45
= 2——| =0061254
(£2.m2) 3 : w.lll_
3__ b
)= | J =0.28093
Iz{wl ‘W:} d*'[ﬁt:ﬂl} dlE.m ) {“’1}
olE2m) olErm ]| (w,

}54 49857  0.28093)
lllB 33018 DﬁlES-iJ

= 17422222 agrees with the exact value 17422222



3.9.3 Numerical Integration of Element Stiffness Matrix
As discossed earlier notes, the element stiffness matnix for three dimensional analyses 1n natoral

coordinate system can be written as
#1 41 +1

x]= [[[B]'[D]Blaa= [ JI" [B]'[D]|Blaxdydz= [ [ [[BI[DI[Blézanas|y

1 =1

(3.9.4)

Here, [B] and [D] are the strain displacement relationship matnix and constifutive matrix respectively
and integration is performed over the domain. As the element stiffness matrix will be calculated in
natural coordinate system, the strain displacement matrix [B] and Jacobian matrix [J] are functions
of £.nand. In case of two dimensional isoparametric element. the stiffness matrix will be
simplified to

1 41

[k]=t1 f f [BI'[D][B]d=dn|J| (3.9.5)
1=1

This 15 actually an 8=8 matrix containing the integrals of each element. We do not need to integrate
elements below the main diagonal of the stiffness matrix as it is symmetric. Considering.
(£, 11]. — t[B]T[D][B”Il . the element stiffness matrix will become after numerical integration as

=2 waw b(sn,) (95)
=l el
Using a 2x2 rule, we get
K] = with(£r. T ) + W Woh (£1. M2 )+ Wowy [F-.:J'I]]"‘“';HT'I::TI:\J (3.9.7)
Where w,=w,=10f =n=-057735_.and £, =1, =+0.57735.... Here, w, is the weight
factor at mtegration pomt n. A swiable computer program can be written to calculate the element

stiffness matrix through the numerical integration. The process of obtaining stiffness matrix nsing
Gauss Quadrature integration will be demonstrated through a numerical example in module 5.

3.10.4 Gauss Quadrature for Triangular Elements
The procedure described for the rectangular element will not be applicable directly. The Gauss
Quadrature 15 extended to include triangular elements in terms of triangular area coordinates.

I=£IDITL]-.I_3._L3]M Fs;wfa[ LT (3.9.8)

Where, L terms are the triangular area coordinates and the w; terms are the weights associated with

those coordinates. The locations of integration points are shown in Fig. 3.9.2.



{ip Limear triangle {1i) Quadrasc rangle {iii} Cuhic triangle

-
7

n=I n=3 il

Fig. 3.9.2 Gauss points for triangles

The sampling points and their associated weights are described below:
For sampling pomnt =1 (Linear triangle)
1

w, =1 L, =1, =1} =3 (3.9.9)
For sampling points =3 (Quadratic triangle)
1 1 1 o
“’1=§ L1=I_:=E,I_3=£}
1 2 2 _y2_ 1
Wy =§ L1=|:|'_. L: =L3=? {391{')
1 3 _ 1 .3 3 _ 1
W, =— L=—.01.=01,=—
173 1= 5 31T
For sampling point = 7 (Cubic triangle)
27 1 1 11
W, =— L' =L.=L.=—
160 T3
1.‘i.f-.=i ]_:L=I_‘-.=l,]'_.:;=ﬂ
- 60 -2
60 . 2
8 4_q4_1 -4
3 3 3 5
60
3 & __16 5
3 T T e
W, =— L,=L,=0L;=1

oh
o



Worked out Examples
Example 3.1 Calculation of displacement using area coordinates
The coordinates of a three node triangular element is given below. Calculate the displacement at

point P if the displacements of nodes 1, 2 and 3 are 11 mm_ 14mun and 17mm respectively vsing the

concepts of area coordinates.

1 x ¥ 1 2 3

= wm|=i1 5 4| =i[B012)-(12:9)+@E15)]=2=
I oxy v, 1 3 6 )

Ll oy L34 1 4

Ay == |1 x yf=7(1 5 4|=-[(30-12)-(18-12) +(12-20)] =-=2
M ox vl Tl 3 6 )

3(3.6)
1{2,3) 2(3,4)
Fig.Ex.3.1 Nodal coordinates of a triangular element

N B R .

A, = 3 I x3 ya|=-|1 3 6| =-[(9-12)-(9-8)+(18-12)]=-=1
1 x, wl "l1 2 3 ) )



l1 x ¥ 1 3 4
Aa__zl X =zl 2 3|=2

1 Xa Va - 1 5 4 -
NJ.:%:%:'D-E
Ng:“‘_i:i:[}_gj
Ny=22=21=0p25

=05x11+025x14+025x17=

[(8-15) - (12-20) + (9-8)] == =1

13.25 mum



Example 2.2 Derivation of shape function of four node triangular element
Derive the shape function of a four node triangular element.

1 1

-ri/\ﬁ- 4 &'
AN /\\

Fizg.Ex.3.2Degrading for four node element

The procedure for four node triangular element is the same as five node triangular element to derive
its interpolation functions. Here, node 5 and 6 are omitted and therefore displacements in these

nodes can be expressed in terms of the displacements at their comer nodes. Hence,

u, +u,
and vy=—1-—2
2 2 (3.11.1)
Substituting the values of u's and u’s in eq.(3.3.8), the following relations can be cbtained.

v=Nup +Nu, +Nu,+Nu,+N, (u, ;-u3 ) 4N, (uy+1u,)

- +u,

(=]

. C nen (3.11.2)
N, +TEI“: +IN3 +%I“3 +N,u,

N 1

Now, the displacement at any point mside the four node element can be expressed by 1ts nodal
displacement with help of shape function.

Companng eq. (3.11.2) and eq. (3.11.3). one can find the following relations.
Ny

, . 4L,L
N1=N1+T=LIQEL1—1]+ ; *=1,(1-2L,)
N . . 4L,L .
N::N..-I——j:]-_m 2L, -1+ I —1.(1-2L
=T =R T a2 ) (3.11.4)
Nj =N, + NN =L,(2L,-1)+ e B o L,

N.=N,=4L]L,
Thus. the shape functions for the four node triangular element are



N;=1,(1-2L,)
Ni=L1,(1-2L,)
Nj=L,

N, =4L1,

(3.11.5)

Example 2.2 Numerical integration for two dimensional problems
} L

Evaluate the integral: / = [ Isz +11x— 32) dxusing one. two and three point gauss Quadrature.
—2

Also, find the exact solution for comparison of accuracy.

Solution:

The existing limits of integration should be changed from [-2. +3] to [-1, +1]. Assuming, £ —a~bx.
the upper and lower limit can be changed i1e at x;y=—2 f, =—1 and at x, =3 ¢, =+1. Thus,
putting these limits and solving for a&hb, we get a = -0.2 and b = 0.4. The relation between two

coordinate systems will become:

56 +1
f=—02+04x0rx= ,:r

and dx = 2.5d¢

Thus, the initial equation can be written as

3 10+ 43 .
v 2 - [(se+17 . (s6+1)
f:!(_r +11x—32)dx 2.5!1 [T +11[~ - ] 1le

"

(1) Exact Sclution:
3
I=[(¥* +11x=32)dx

£]

11
—[Z 4= 3
30 2
99 8
—[04+2"_96|—|—Z+22+64
B N ey

=—37.5—83.33333=—-120.83333
Thus, Lagae =-120.83333



{11) One Point Formmla:
+1

I= [o(£)de =wo(%)

For one point formula in Gauss Quadrature integration. W, = 2 F_J =0 Thus,

-

\2

L=2%25 5xﬂ+1] +11[5>¢D+1]_32
1 11

=5E+E—32]=—131_25

Thus, % of error = (120.83333-131.25)=100/120.83333 = 8.62%

(1) Two Point Formmla:

Here, for two point formula in Gaunss Quadrature mtegration,

“']_:-ﬁ"z:l-n E‘I.ﬂd-El:—F‘E:— ll,- .'I‘h.us,
Vv 3
I, =wd(E )+ wd(F, )
s - 5 . 5
21 241 2 41 =+l
v 3 v 3 _

10%25% % +11 —32|+1.0%25x % 11 12

—(0.88996 —10.37713—32) x 2.5+(3.77671+21.3771—32)x 2.5
=—483333x2.5
=—120.83325

Thus, % of error = (120.83333-120.83325)=100/120.83333 = 6.62x10™

(1v)  Three Point Formula:
Here, for three point formula in Gauss Quadrature mtegration,

w,=08889. £=00

w, =0.5556. £, =+0.7746
w,=05556, &, =—0.7746
Thus,

I =wio(£ ) +wid(£,) +wid(E;)




<0+l 4,

i

[5xﬂ+1

I, =08889x25x J +11x

—32

5}{[}.??454—1] L 11x 5x0.7746 +1

+0.5556x2.5x

2 2

i

055562 5[ 73 D_?MG—I—I] L T3X07746+1 _32]

1, =0.88892.5x[0.25+5.5—32]
+0.5556 % 2.5[5.9365 +26.8015 — 32]
+0.55562.5%[2.0635—15.8015—32]

=2.5(—23.3336+0.4100— 25.4120)

=—235x483356=—120839
Thus, % of error = (120.83333-120.839)=100/120.83333 = 4.69x10". However, difference of
results will approach to zero, if few more digits after decimal points are taken in calculation.

Example 2.4 Numerical integration for three dimensional problems

1 pl opl 5 " N
Evaluate the integral:l:f]flf]u—zaj‘(l—n;r (30 —2) dedndc

Solution:
Using two point ganss Quadrature formula for the evaluation of three dimensional integration, we

have the following sampling points and weights.

W, =w,=1

£, =—0.5773502692

£, =05773502692

m = —0.5773502692

n, = 0.5773502692

£, =—0.5773502692

{, =0.5773502692

-

Putting the above values. in ¢(5.n.0)= [:I—EF_‘}: (1—n) (3'.:_—2]: one can find the following valves
in 8 (ie. 2 =2 =2)sampling points.



Now, 1 =ZZZW1“'J-WL¢' [Fu- le":‘:li]

il 1 k=l
Thus, I=wwwb [El,"l]l,i:;] W W, Wo b (8 . Gy )W W Wb [Fﬂ_. ;-G :| = 174222 where
Aslaga = 174.222.



SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited "A” Grade by NAAC | 12B Status by UGC lApproved by AICTE

‘www.sathyabama.ac.in

SCHOOL OF MECHANICAL ENGINEERING
DEPARTMENT OF AERONAUTICAL ENGINEERING

UNIT - 111 —=FINITE ELEMENT ANALYSIS - SME1308




UNIT -3
SOLUTIONS TO PLANE ELASTICITY PROBLEMS

Lecture 3: Introduction to Elasticity

1.3.1 Stresses and Equilibrium

Let consider an infimtesimal element of sides dx. dy and dz as shown in Fig. 1.3.1. The stresses are
acting on the elemental volume dV because of external and or body forces. These stresses can be

represented by six independent components as given below.

{G}:[Gp Gy Cpn Ty T f_,l]'l (13.1)
Here, o,. o0, and o, are pormal stresses and 7,7, and 7, are shear stresses. Applymg the
conditions of static equilibrivm for forces along the direction of X axis (e, 3 F, =0). following
expression will be obtained.

80, o, 8T

= dudyds + — dxdyds +=_= dxdydz + Fdudydz = 0 (13.2)

=

Fig. 1.2.15¢tresses on an infinitesimal element



Where, F.is the component of body force along x direction. Now, dividing dxdydz on the above
expression, followimng equilibrivm condition 15 obtained.

C'F, T, +|:'T__: _

et e (133)

Sinularly, applying equilibrum condition along 1 and £ directions, one can find the following
relations.

o c c

oT,, N o, N ¥y =_J1:qr {13_4}

& &y éx ‘

ér, éa
= e 69 __F 135
& & & = (132)

Here, Fgand Fp, are the component of body forces along I and Zdirections respectively. Satisfying
moment equations (ie, M, =0:3 M =0 and 3 M,=0; ). one can obtain the following
relations.

Ty =Ty T,=T,and T, =T, (13.6)
Using eq. (1.3.6). the equalibrum equations (1.3.3 to 1.3.5), can be rewntten in the following form.

da, or_ or,,

+ + =
tx oy &k

ot oo &r

_Fu_-_;._L

=y e e (137
8

s T +£=—F@

& & é

Eq. (1.3.7) 15 known as equation of equilibnium

Let assume an element of area A" on the surface of the solid m equilibriom (Fig.1.3.2) and Fry, Fry
and Fp, are the components of external forces per umt area and are acting on the surface.
Consideration of equilibrinm along the three axes directions gives the following relations.

cl+r m+r n=F_

rd+emer n=F_ (13.8)

r i+t m+on=F,

Here, [, m and n are the direction cosines of the normal to the boundary surface. Eq. (1.3.8) 15 known
as static boundary condition



-

5. ds

5 ds

X
Fig. 1.3.2 Forces acting on an element on the boundary

1.2.1 Strain-Displacement Relations
The displacement at any point of a deformable body may be expressed by the components of u, v
and w parallel to the Cartesian coordinate’s axes. The components of the displacements can be
described as functions of x, y and z. Dhsplacementsbasically the change of position dunng
deformation. If pomnt P (x.y.z) 15 displaced to P (x",y".z"). then the displacement along X, Y and Z
direction (Fig. 1.3.3) will become

X =x+tporu=x —x

YV =y+tvoav=y —¥y

F=ztwow=z —z
Therefore, the normal strain can be written as:
g, = Lt E=Hﬂ[ﬂs £=%fmu.ﬂjfﬂnnstmjninaxialmnber}

om0 Ay Gx

Similarly, £ =2 and £, =%



)
L

Fig. 1.1.3 Deformation of an elastic body

Let consider points P,Q) and B. are before deformation and points P°.Q7 and B are after deformation
as shown in Fig. 1.3.4 below. Now for small deformation, rotation of PQ will become

& = lim e

M0 A Bx
Similarly, rotation of PR. due to deformation will be: &, = h'mnil = z}_”
&0 Ay ]

Thus, the total change of angle between PQ) and PR. after deformation is as follows which 1z defined
as shear strain in X-Y plane.

&V 2l
Vo =Fu=G+8=""%+_—
&x &y



R{x,p+Ar) R(x+an,p+Ar)

y ‘H'“"L..‘ﬁ A
A :
i, r-l
Ay :

E'{.l.‘--.u\'l‘.lr + Av ]

-a "_I__'_.-_I'“I I :l.'l

Py )P 0") Qx+Ax, v )

> X

Fig. 1.2.4 Derivation of shear strain

Sumlarly, shear strains in Y-Z and X-Z plane will become

The strain can be expressed as partial derivatives of the displacements u, v and w. The above
expressions for strain-displacement relationship are true only for small amplitude of deformation.
However, the strain-displacement relations are expressed by the following equations for large
magnitude of deformation

(o Wt o w2 g 1
o ou 1 El+i L (13.9)
S oo 2|l éx) £ &x
[ w2 Y T
= —E+l [E + & + o (1.3.10)
o 2iley) e e
. w2 . _'.._3 e w2
£__=%+% f@| +[% +[a—“’| ] (13.11)
Z A LW LA = 4

v o é‘ué"u ov v ow ow

Fo=7+—+ + (13.12)
dr gy |oxdy éxé} & &y
é‘w é"v ci o c"‘v&v oW 0w
—_—— (13.13)
é} E‘E :':"m é"? 5_‘;):':"- é"'p i‘



(13.14)
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o ik & i

The eqs (139 to 1.3.14) are known as Green-Lagrange stramn displacement equation. The
components of the stramn &, §. &, j, }- and }. define the state of strains in the deformed body, and

can be written m a matrx form as

e} =l = = v o ] (1.3.15)

The relations given in eqs.(1.3.9 to 1.3.14) are non-linear partial differential equations in the
unknown component of the displacements. In case of small deformations, the products and squares
of the first derivatives are assumed to be negligible compared with the denivatives themselves in

many problems of stress analysis. Thus the strain-displacement relations m eqs. (1.3.9 to 1.3.14 )
reduce to linear relations as follows.
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Eq.{1.3.16}s known as Von-Earman strain displacement equation The above equation can be
expressed in a matrix form as given below.



L 0 0
ar
, 8
0 = ¢
-E-" .[-:.3}.'
2,
Jllo o % J”]
itele o ) ﬂ) (13.17)
rel | & ‘f;‘ 5 *
oo = 2
L 3 & G-'j..'
g 5 £
E o

The above assumption will be incorrect in case of large deformation problems. In these cases,
geometric nonlinearity has to be considered.

1.3.3 Linear Constitutive Relations
Hooke’s law states that the six component of stress may be described as linear function of six

components of strain. The relation for a linear elastic. amsotropic and homogeneous matenal are

expressed as follows.
I.‘;: ] _CI'I Cl.l - . . {:IG-_ Il':"ll:| ]
crr 21 Cﬂ le\- Ey
1% - JE (13.18)
r:r - " |}I.J.I
rr: - - |}I.I'.'
) G Ca - - - Gullra
or  {o}=[Clie} (13.19)

Where [C] 15 constiivfrve matrix. If the matenial has three orthogonal planes of synmmetry, it 15 said
to be orthotropic. In this case only nine constants are required for describing constitutive relations as
given below.



o) [, C G 0 0 0]fe]
T, ., C., 0 0 0|fe
le | _ G, 0 0 0 |]e. ! (13.20)
T, Co 0 0 ||r.
T Symmetry Cﬂ- 0 Ve
.] | Cos || 7e

The inverse relation for strains and stresses may be expressed as
=]=[c"|{s}=[D{s} (1321)

An isotropic is one for which every plane is a plane of symmetry of material behavior and only two
constants (Young Modulus, E and Poisson ratiop) are required to describe the constitutive relation.
The following equaticn mcledes the effect due to temperature changes as may be necessary in
certain cases of stress analysis.

g, 1 — —H 0 0 0 o, 1

g 1 —l 0 0 0 a, 1

i 1 0 0 0 g 1
o 1 o 1% el b (322

Tyl E 2{14-p) 0 0 T 0

e Symmetry 21+p) 0 |7, 0

e 2(14p)| |7, 0
T and o i eq.(1.3.22) denote the difference of temperature and coefficient of thermal expansion
respectively.
The inverse relation of stresses mn terms of strain components can be expressed as

(1— ) T, s 0 0 0 |
& (1— pe) H 0 0 0 ] (1]
o, l-g) 0 0 0 ||g 1
— 1-2u 1
o, £,
L= 3 0 0 (J%1_EaT J*1 4 393

rl.l-' - l 4 .:I"r‘:l. 1_2.“. ﬂ

T Symmetry __: £ o ¥y 0

Tl 1-2u Ve J 0]

i 2

where E = E

1+ el —2p)



1.3.4 Two-Dimensional Stress Distribution
The problems of solid mechanics may be formmlated as three-dimensional problems and fimite
element technique may be nsed to solve them In many practical stiuations, the geometry and loading
will be such that the problems may be formmlated to two-dimensional or cne-dimensional problems
without nmich loss of accuracy. The relation between strain and displacement for two dimensional
problems can be simplified from eq_ (1.3.16) and can be written as follows.

_£u

e

£ == (13.24)

_31.' ZN
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The above expression can be written in a combined form:

¥

&e, &e, o'y,

o & ad
Eq. (1.3.25) 1s the compatibility equation since it states the geometric requirements. This condition
will ensure adjacent elements to remain free from discontinmities such as gaps and overlaps.

(1.3.25)

1.2.4.1 Plane stress problem

The plane stress problem is characterized by very small dimensions in cne of the normal directions.
Some typical examples are shown m Fig. 135 In these cases it is assumed that no stress
component varies across the thickness and the stress components G;. T, and 1, are zero. The state of
stress 15 specified by o,. G, and 1., only and 1s called plane stress.

Y
a

Fig. 1.2.5 Plane stress example: Thin plate with in-plane loading



The stress components may be expressed in terms of strain which is as follows.

a, £ 1 p O o 1

o f=r—=p 1 0 iz, —lil (1.3.26)
1= . —u

Tay 0o o ZH 2"‘ 0

The strain components can also be expressed in terms of the stress, which 13 given below.

- ) 1 —p 0 o, 1
5 :E—p 1 0 o, r+alil (13.27)
Nay 0 0 21+p)i|r, 0
It can also be shown that
= e, +£,:]+#ar.md y o=y =0 (1.3.28)
- —H
1.3.4.2 Plane strain problem

Problems mvelving long bodies whose geometry and loadng do not vary sigmficantly mn the
longitudinal direction are referred to as plane strain problems. Some typical examples are given in
Fig. 136, In these cases, a constant lengimdinal displacement comesponding to a rizid body
translation and displacements linear in z corresponding to rigid body rotation do not result in strain.
As a result. the following relations arise.

g, =F.=Fa=0 (1.3.29)

The constitutive relation for elastic isotropic material for this case may be given by,

[ﬂ: l-u  w 0 |le [1]

o, b= E u 1-u 0 P -2l (1.3.30)

‘l; 1+ ul1-24) o o l- v-' 1-2F1D[ 3
J.}'__ 2 4 OEN )

Also o,=pio,+0,)-EoTand r, =17,=0 (1.3.31)

The strain components can be expressed in terms of the stress as follows.



g (1—p) - 0lfs, 1
g =T — (1—p) l:l_ g, t+(1+p)aT{l (13.32)
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Fig. 1.2.6 Plane strain examples

1.3.4. 2 Axisymmetric Problem

Many problems in stress analysis which are of pracfical interest mvolve solids of revolution subject
to axially symumetric loading. A circular cylinder loaded by a vniform internal or external pressuge,
cucular footing resting on soil mass, pressure vessels, rotating wheels, flywheels etc. The stramn-
displacement relations i these type of problems are given by

&u
E’l =
oy
i
E'g =—
X
2 (13.33)
E‘F = —_—
a}:
du v
?"1‘ =+t —
oy ox

The two components of displacements in any plane section of the body along 1ts axis of symmetry
define comypletely the state of strain and therefore the state of stress. The constitutive relations are
given below for such types of problems.
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3.5. CST:

The triangular elements with different numbers of nodes are used for solving two dimensional solid
members. The linear triangular element was the first type of element developed for the finite element
analysis of 2D solids. However, it 1s observed that the linear trangular element is less accurate
compared to linear quadnlateral elements. But the triangular element 15 still a very useful element for
its adaptivity to complex geometry. These are used if the geometry of the 2D model is complex in
nature. Constant strain triangle (CST) is the simplest element to develop mathematically. In CST,
strain inside the element has no vanation (Ref module 3, lecture 2) and hence element size should
be small enough to obtamn accurate results. As indicated earlier, the displacement is expressed in two
orthogonal directions in case of 2D solid elements. Thus the displacement field can be written as

{d}={il (5.1.1)

Here, u and v are the displacements parallel to x and y directions respectively.

5.1.1 Element Stffness Matrix for CST
A typical tnangnlar element assumed to represent a subdomain of a plane body under plane
stress/strain condition 1s represented in Fig. 5.1.1. The displacement (u, v) of any pomt P is
represented m terms of nodal displacements
u=Nu +Nu,+Nu, (5.12)
v=Npy +Nv, + Ny,

Where, N;, N5, N; are the shape functions as described in module 3, lecture 2.

v
A
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I * " AEayy
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Fig. 5.1.1 Linear triangular element for plane stress/strain



The strain-displacement relationship for two dimensional plane stress/stramn problem can be
sumplified mn the following form from three dimensional cases (eq.1.3.9t0l.3.14).

=33 {5
-3ia ]
=l

In case of small amplitude of displacement, one can ignore the nonlinear term of the above equation
and will reach the following expression.

&
g, =—
&x
av
g, =— 514
= (5.1.4)
dv  cu
IPI.J.I. =_+_
&x oy
Hence the element strain components can be represented as
fu an &8N, e,
g, =—=—lu+—2u, + Uy
dr ox e &
v _aN, &N, e,
g=q8 =—=—1~Lw Ly, +—2v,
& o o
du &v éan, aN. &N, én, N, aN;
Fo =—+—=—u + u, + y ¥, Lv, + ¥,
i v ox oy oy av ox & &
Or,
N, AN, o, o o "
& & &x i,
- AN, I, &N,
e=lel=l 0 0o o 0 &% &% ni (5.1.5)
; & & ||y
o gN, éN, &N, &N, aN, &N, ||w
&y & &y & & & ||w|

Or. e=[B]{d} (5.1.6)



In the above equation [B] is called as strain displacement relationship matnix. The shape functions
for the 3 node triangular element in Cartesian coordinate is represented as,

| . .
N E[[xﬁs —XV,)+H(Va—va) X+ (x5 — x4 h’]
1
1 .
Ny = A (x5 — %3 + (¥ — 7 )2+ (% _xJ}Y] [
oo
ﬁ[( XV, — X,y )+ (v — vy Jx+(x, — xl}'.'r’]
DI-!
i['3‘°| + B+,
N |2A
1
Ny =1 E[“’] +B8x +y]p (3.1.7)
E[ 3 +B8:x+ "r}}']
Where,
oy =(Xy¥; — X3V, oy = (X;¥; —%¥3 ). oy =Xy, — %31
3 =(v,—V3)- By=(v;— ) B=(n—%) (518
=% —x,). =% —x). =% -x).
Hence the requred partial dermvatives of shape functions are,
o _A o, _h N, _A
& 24 & 24 & 24
N _n N, _ 1 N, _ ¥
gy 24 & 24 & 24
Hence the value of [B] becomes:
&N, an, @, ]
= & 0 0 0
_ &N, éN, &N,
[E] =| 0 0 0 5 & &
éN, &@n, &N, &N, &N, &N,
v & & &x o x|
. g & & 0 0 0
O [B]l=03/0 0 0 » n n (5.1.9)

nororB B B A



According to Variational principle described in module 2, lecture 1. the stiffness matrix 15
represented as,
[]=[[[[8] [D][B]4e (5.1.10)

0

Smce, [B] and [D)] are constant matrices; the above expression can be expressed as

[k]=[B]'[D][B] j’Jj-ﬂ’=[B]“’[D][B]F (5.1.11)

For a constant thickness (f), the volume of the element will become 4 ¢ . Hence the above equation
becomes,

[k]=[B] [D][B] 4¢ (5.1.12)
For plane stress condition. [D] matrix will become:

1 uw 0
E
[}:-]=1 a1 0 (5.1.13)
0 o 12
| 2
Therefore, for a plane stress problem  the element stiffness matrix becomes,
B0 x ]
b ':' ¥
Eﬂ-ﬂf-l;:uﬁﬁz;@uun
o ¥,
[k]=——r| “le1 oo o o » 5 »n (5.1.14)
441-7)| 0 B . Py .-'5'_ 4
: 0 0 —Hilh B K ]
0 rn A& i 2
0 A
Or,
[ . 1+ ) )
& +Cn BE+Crry BEAE+ChR 3 ~@n  mfrn+CEy w8rn+CAaR
Fi+Cr;  BE+Cry whn+Chr [I—Z'"l.f":n ulr, +CEr, |(5.1.15)
Et
[k]'-u[l—#’} & +Cyi  wBy+CAr mer.+CEY [I—J;'“l.ﬁ.h
n+CH  rR+CAGE nn+CAS
Sm. n+CE  rn+CEA
B ¥+ O
(1-
‘i.‘.-‘here,ﬂ=%

Sumlarly for plane strain condition [D] matrix 15 equal to,



= (l-p) w0
D=——— i (1- 0 5.1.1
[D] oz © ¢ #) o (5.1.16)
0 0 £
| 2
Hence the element stiffness matrx will become:
MG+, MEA+¥y, MBA+ry, (W+DAx m6r+0)  MEK+EN ]
H.ﬂ':"'":: ME&GL+rrm #mhn+8rn |:."-"+I:'.ﬂ:."": A+ R 51.17
[.i']— Er ‘u-'ﬁ:ll:"'-rf -'c‘-ﬂlrl+'al-?.1 m-":"’tﬁzﬂ ':-":"""1]-31-?1 { o _}
24(1+ 1) M+ Mpp.+88  Mry+8E
Sym. My;+8&  Mpn+#8.8
L My +& |
Where M =(1- x|
5.1.2 Nodal Load Vector for CST
From the principle of virtual worke
T 11T 1T
[efe} {c)an= [e{o} {EJr+ [e{u} {E,Jao (5.118)
o] T o

Where, Fr, and Fy, are the surface and body forces respectively. Using the relationship between
stress-stain and strain displacement, one can derive the following expressions:

{o}=[D][B]{d}, &{e}=[B|6{d} and &{u}=[N]5{d) (5.1.19)
Hence eq. (5.1.18) can be rewritten as,

J{ay B PIB{dpn= [o{ay [N {<Jar+ [efay’ V] {Fojao ©-120)
Or, - (5.121)

[T DBIaYn = [ [N (£ Jar + [ INT {F,Jao

Here, [N] is the shape function along the boundary where forces are prescribed Eq.(5.1.21) is
equivalent to[k|{d} = {F}. and thus. the nodal load vector becomes

{F}= [N {E)ar + [InT {5 Joo
For a constant thickness of the tnangnlar element eq.(3.1.22) can be rewntten as

£ = [T {8 Jos o 1N {5 o

For the a three node triangular two dimensional element. one can represent F and F_ as.

(5.1.22)

(5.1.23)



{Fﬂ}z{ij and {Fr}=[§:}

: . E. 0
For example, in case of gravity load on CST element, {E.,} = E =
oy —PE

For this case, the shape functions in terms of area coordinates are:

I, L, Ly 0 0 0O
IN|= (5.1.24)
As a result, the force vector on the element considering only gravity load, will become,

0 0 0 L, L, L,

a

L 0 0 0
L 0 0 0
L,  0Of| 0 -1 0 -1 0
{F}=t| =t | ; dA =—pgt [{_ fdA (5.1.25)
\.I. ﬂ l.I _PE l..'l _Llp'g I.'i LI
0 L, —L pz L,
0 L] |—L.pg) L]
The integration in terms of area coordinate 15 given by,
e plgir!
FIS T dAd = 24 512
;[IJ?I? (p+g+r+2)! (>-126)
Thus, the nodal load vector will finally become
0 0 ]
0 0 0
. ° 0 512
1m LAY
100l L, 0| et oAt |0 (3.1.27)
{Fr=-pgtj0+0+0+2! =1 "3 =—71,
onio! sal |_pEi 1
O+1+0+2) 3 i
oron! A _ pght
0+0+1+2) 3




5.1.1 Element Stiffness Matrix for LST

In case of CST, it is observed that the strain within the element remains constant. Though these
elements are able to provide enough information about displacement pattern of the element. but 1t 1s
unable to provide adequate information about stress mmside an element This boutation will be
significant enough in regions of high strain gradients. The use of a ligher order tnangular element
called Linear Stramn Tnangle (LST) significantly improves the results at these areas as the stnn
mside the element is varying. The LST element has six nodes (Fig. 5.2.1) and hence_ twelve degrees
of freedom Thus the displacement function can be chosen as follows.

w=g, oy + o, Ve Fay+a,)’

. 5 (52.1)

v=a, ta,x+ay+ax +a,y+a,y

Y

A

¥
IfxLpl H
- X
Fig. 5.1.1 Linear strain triangle element
Therefore, the element strain matrix is obtained as
&
=g =t 2Jax+o,y
. 522
i =%=Qt+ﬂmx+"&u1‘ { }
gv bfu

"1“ = E-'-E: l:l'.:lu.E . D;!} + |:l1+ B En‘,}i + I:Enj - E"II:I:I:I"



In the area coordinate system as discussed m module 3, lecture 3 we can write the shape function for
the six node tniangular element as
N1=LL|{2LL—1:| N:=Lz[:1L:—1;|- N, =L3[:EL.j -1
N,=4LL, N, =4L,L, N, =4L.,L,
The displacement (u,v) of any pomt within the element can be represented in terms of their nodal
displacements with the use of mterpolation finction.

(5.2.3)

6
u=> Ny
- (5.2.4)
v=> Ny
im]
Using eq.(3.2.4) we can rewrite eq.(5.2.2) as,
-
H.'
H{
[ i AJ HJ N N AJ -H
N, N N M AN . o o o o ol
d&x & & dx & ty
AN AN, N, &N, &N, &
o 0 0 o0 o o oA A N W |
¢ & d& & v & ||v
v & & & & & & & & & & & ||y
vy
\-':_
-.I-r\'
Or,
g=[B]{d} (5.2.5)
Where,
__;- N AT I“'r A HN' T
N, & N AN A g g g 0 0 0
lax & & & & &
M ,..‘ ."__ ,..‘ T1 n‘ .". n;jli'r ;-_
B]=f 0 0o o o o o &N A & N N AN (5126
d & & & & &
|éN, &N, &N, &N, &N, &N, &N, &N, &N, aN, aN. &N,
o & & & & & & & & & e ax
Using Chain mule.

aN,_aN, aL , aN éL, ,aN, L,
é&x ad, &x oL, &x &L, &x
As discussed mn module 3, lecture 1, we can write the above expression as,



aN_b &N b N b aN
& 247al 24’a, 24 8L

eN, b
4L -1
3 2:!* L=y
Smularly we can evaluate expressions for other terms and can be written as,
éaN, B éN, b éN, b
-1 L=_2 (4L -1 *=—_[(4L -1
&rl{‘ ) ch IA{IE} -:?:tl‘L’}
jl.‘-T o . I r
—*=4(Lp+Lb) —2=4(Lb, +Lb,) —£=4(Lb,+Lb)
And,
D3 (41,-1) D & (a1, -1) E_d (ar-1)
gy 24 gy 24 gy 24
S T T 1
N, _A(La +La,) N, _4(La,+La,) N 4(La,+La)
av &y
Where,
a, =X, — X, a, =X;—X, d; =X, —X,
b=y:-¥ by =p-3 b=y-1

The stiffness matrix of the element is represented by,
[K] = J[l[B] [B]d (532.7)

The, [D] matrix is the constitutive matrix which will be taken according to plane stress or plane
strain condition The nodal strain and stress vectors are given by,

{Eu}={*‘-’ﬂ Eg €3 fp Fa Fa Fa Voo ?’;_-fa}r (5.2.8)

{ﬂ'n}={ﬂ'ﬂ Op O O Tp O T, Ty f;_-fa}-r (5.2.9)
[B.] [0]

te.t=| [0] [B.]|ld} (5.2.10)
[B.] [B.]

Beferning to section 3.3.1, using proper values of area coordinates in [B] matrix, one can find
3 b, b 4 0 4h
[B.]=55|h 3, -5 4 4 0 (52.11a)
-5 b 3 0 4b 45
And,



| Ja, —a, —a, 4a, 0 da
=ﬁ -a, 3a, —a, 4a, 4a, 0 (3.2.11b)

-, —-a 3a, 0 4da, 4a
Thus, the element stiffness can be evaluated by putting the values fromeq. (5.2.11) mneq. (5.2.7).

[B..]

5.1.1 Nodal Load Vector for LST
Similar to 3-node triangular element, the load will be hunped at each node which can be computed
using the earlier expression,

{F}= (] {8 Jar + [IN] {E Joo (5212)
And for element with constant th.icl:':uess,
{F}=t [[W]{E}as+1 [ [N {E Jaa (5.2.13)

5.1.3 Numerical Example nsing CST
Determine the displacements at the nodes for the following 2D solid contimmum considening a
constant thickness of 25 mm_ Poisson’s ratio, s as 0.25 and modulus of elasticity E as 2 x 10°

N/mm'. The continmum is discritized with two CST plane stress elements.

Y
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25 KM
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ik
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I 1 ) Z
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‘__.-"a - 2
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14 1500 num -

Fig. 5.2.2 Geometry and discretization of the contimmm

The element 1 is connected with node 1. 3 and 4 and let assume its Cartesian coordinates are (x1. y1),
(x3. v3) and (%4, ys) respectively. If we consider nodes 1. 3 and 4 are similar tonode 1, 2 and 3 in
eq.(5.1.9) then the [B] can be wntten as



[A B A 0 0 0
74 00 0 ”n n oK
hrhon BB A
By introducing values of £ & p discussed in previous lecture note, we can get value of [B] as
01 -1 0 0 0
0 0 0 30 3
-3 0 3 01 -1

For plain stress problem. putting the values of E and p one can find the following values.

[8]=

e 0 1640
[Dl=——|ux 1 0 |= “3 4 16 0
1—u 0 0 o
3

0 0

Therefore the stiffness matrix for the element 1 will be
[¥], =t4[B] [D][B]
Pufimg values of §, 4, [B] & [Dfwe will get.

[750 i =750 0 -230 250
] 222 3312 22222137 -166.666T i] la6.6667
[K] = 4x 10 -150 2222132 9722323 la6 6667 250 416.6667
' ] -166.6667 1666667 2000 i] -2000
{250 ] 2350 0 §3.3333 -83.3333
230 166.6667 -416.6667 -2000 -83.3333 2083.3333 |

Smularly element 2 15 connected with nedes 1. 2 and 3 and global coordinates of these nodes are (x;,
vi), (%2, v2) and (x3, v3) respectively. For this element, by proceeding in a similar manner to element
1 we can calculate [B] matrix as,
| -1 1 0 0 0 O
[B]=ﬁﬂ 0 0 0 -3 3
0 -3 3 -11 0
Hence, the elemental stiffness matrix becomes,



[222 2222 -223 222 1] 0 166.6667 -166.6667

R | R =750 250 4166667 166 6667
el T0 T I m

166.6667 -416.6667 250 -53.3333 20833333 =2000

| -166.6667 166.6667 0 0 -2000 2000 )

By assembling the stiffness matnices into global stiffness matrix [K],

9722072 207 0 730 i la6.6a67 Ala6667 250

-xnoaam onnn 150 0 250 4166667 1666667 0

0 =750 Ry Ry AdleessT 25 0 lab.6067
[K]=4x10'x -150 0 2nnm gnym l666s6T 0 250 A16.6667

0 50 4166667 1666667 ME3I3333  B33333 0 2000

1666667 Ala6667 150 i] 833333 MNE35333 -0 0

4166667 1666667 0 50 0 2000 MN@E33333 B335

| 250 0 166.6667 “AlepesT -0 0 833333 20833333

Now, applying emlahun[F] = [Kl{d} . the following expression can be written.

F, R R o b o B | -750 0 166.6667 4166667 250 i ]
F. MTm emun 350 0 250 4166667 1666667 O B,
F, ] 750 9712217 IMIYM 4166667 250 ] 166.6667 ||u,
Ful _yo1gial ™0 0 NI BT 1666667 O 250 4166667 | |u,
F, ] 250 4166667 1666667 20833333 833333 0 2000 ¥,
F, 1666667 4166667 250 0 £33333 20833333 2000 0 v,
F, 4166667 1666667 O 250 0 2000 20833333 33333 ||y
F, 250 0 1666657 4166667 2000 0 £33333 20833333 ||y,

Putting boundary conditions w=w=u, =uy=v;=0 and adopting ehnunation techmicue for
applying boundary condition we get expression

t’ o 9722222 250 0 (1,
{0 1=4x10%x|250 2083.3333 -2000 ¥y
[—ziﬂnn 0 -2000 2083.3333 mJ

Solving the above expression, the unknown nodal displacements may be obtamned as follows.
v, ==0.0606 mm, u, =0.0156 mm and v, =—0.0612mm



Denvation of element stiffness for a four node rectangle element has been demonstrated in last
lecture. The stiffness matrix of each element can be calculated easily by developing a suitable
computer algonthm To help students for developing their own computer code, a numerical example
has been solved and demonstrated here.

5.4.1 Numerical Example

Calculate the stiffness matrix for the given four node rectanpular element by the Gauss Quadrature
mtegration rule using one point and fwo point formmla assuming plane stress formmlation. Consider,
the thickness of element = 20 cm, F=2 x 10° kN/cm” and 1 =0.

l“‘"
I’y
4 3
50 cm > X
1 70 cm <

Fig. 5.4.1 Element Dimension

5.4.2 Evaluation of Stiffness nsing One Point Gaunss Quadrature

For the calculation of stiffness matrix first, 1%1 Ganss Quadrature integration procedure has been
camed out. Thus, the natural coordinate of the sampling pomnt will become 0.0 and weight will
become 2.0 which is shown in the figure below.

]
[=1.1) T i1.11

-1.-1) .-}

Fig. 5.4.2 Natural coordinates for one point Gauss Quadrature
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For a four node quadrilateral element the shape functions and thewr denvatives are as follows.

N _0-00-m) o _@+0-m) o _(+DA+n) o (-804

1 4 B 1 4 3 4 4 4
aN, _—(l-m) . &N, _(-n) . _m. aN, _—(1+nm)
2E 4 8 4 E.J: T4 a2k 4
&N, _-(1-9. N, _—(1+8). &N, _(1+8). eN, _(1-9)
an 4 an 4 an 4 & 4

The Jacobian matnx can be found from the following relations.

N N, N AN fE v [-n) xl-p) #Hrm) (ep] T T
ju| 9 8 65 85 xm x| | 4 4 4 4 {|x »
&N, 8N, 8N, &N, llx 3| |1-4) —(1+8) +Hl+8 +H1-Hlix
én én én onx, 3, 4 4 4 oAy,

Considering the sampling point, (=0 and y=0), the value of the Jacobian, [J] is

-1 +1 1 -11°% ©
T

_1 4 4 4 4
[/1= -1 -1 1 1{70 50
4 4 440 s0

I ':' L] L]
35 0 T
Thus. [J]=[ﬂ Iji|a.ud[..i"]"= 305 N [;'*1 I} and |J| = 875

5 25
Mow, the strain vector for the element will become
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éN, 0 &N, 0 &N,
at ok ok
J, |'1 J |'3 0 0 eN, 0 &N, 0 éN,
& & a a a
A
"'ir.ll "'T.!] I‘r'll. "'r'l.! aé é‘g
ol oN.
0 . 0 E 0
| cn an
.J’:l J’,'z 0 0
[g1=| 0 0 7, J.|x[Bld}=[Bl{d}
I"irl'l "'irll "irl.l "'irl.l
[ 1 1 1 1 ]
— 0 - 0 - — 0
AR T
7030303 °
[B]= and [B] =
0 —-1 0 1 ul 0 _1
4 4 4 4
0o Lo lolygl
| 4 4 4 4 |
[—7.143 0 7.143 0 7.143
[B]l= © —10 0 —10 0
—-10 —=T143 —-10 7.143 10
For plane stress condition
£ 1 w O 1 0 0
[l:']=l '] w1 0 |=2x10°M0 1 0O
Hlo o L& 00 1/2
5

aj'."T
0o == 0
o5
N,
on
aN, o, N,
B 8k
aN, 0 én,
an on
1
— 0 0 0
35
0o 0 0 —
25
0o L L o
25 35
0 —7.143
10 0
7143 10 -—

5]

0
10
71.143



10 0
[CI[B]=2x10°0 1 O

00 12

—7.143 0 7.143
0 10 0
~10 -7.143 —10

x
0 7143 0

—10 0 10

7143 10 7143

—7.143 0
0 10
10 -7.143

=107

Assume the values of gauss weight. w - 2, the stiffness matnx [k] at this sampling point 1s
[k]=tww{B]'[C] [B] | J|. Where f is thickness of the element. Thus,

[.ir]=2{]x 2x2%873x2x10° x

—7.143
0
—-10

:-C

=2x10°

—7.143

0
-10

[ 7.071

25
—0.0714
-21.5
-7.071
-25

0.0714

2.5

—
[}
Fa

-10

143
0

25
8.785
25
5.214
-25
—8.785
-2.5

-3.214

[-7.143

7.143

7.143

-7.143

0

-10
7.143

0
-10
0
-10

0
10
0
10
7.143
0
10

0

0

0

0

—0.0714
25
7.071
-2.5

0.0714
-25
—7.071
25

10 ]

~7.143

10

7.143 L oo

o 100 1 IIII
143 00 1/2

4

~7.143 |

0 -7.143 0

10 0 10
7143 10 -7.143
25 7071 =25
5214 25 -8.785
—25 00714 25
8785 25 5214
25 7071 25
5214 25  B8.785
25 00714 25
-8785 -25 5214

54.3 Evaluadon of Stiffness nsing Two Point Gauss Quadrature

0.0714
25
-7.071
2.5
—0.0714
25
7.071
2.5

-5214

25 ]

25
—8.785
25
5214
25
8.785 |




In this case, 2x2 Gaunss Quadrature integration procedure has been camed out to the calculate the
stiffness matrix of the same element for a compansen The natural coordinate of the sampling point
15 shown i the fisure below.

i-1,1 (1.1}

3= '..54

i-1,-1) (1.-1}

Fig. 5.4.3 Natural Coordinates for Two Points Gauss Quadrature

The natural co-ordinates of the sampling points for 2=2 Ganss Quadrature integration are
1 +0.57735 +H0.57735
2 057735 +H0.57735
3 -0.57735 0.57735
4 057735 -0.57735

For a four node quadrilateral element. the shape functions and thewr denvatives are as follows.

S L N T, R T2 P o (L.

4 T 1
éN, _—(l-m) éN, _(1-n) . éN, _(+m. éN, _l+n)
a& 4 8 4 8 4 2 4
éN, _ (-9 éN, _“+g)  eN, _(+4). éN, _(1-£)
an 4 aén 4 an 4 &n 4
The Jacobian matnx will be
N, aN, N, NN V| [-m) #l-m) Htn) Qep] T
T 8; & o8& of |[x » _ 4 4 4 4 5
éN, eN, aN, N || y| (Z-g) (+g) HI+S) Hl-) x4
én dn én On|x, y, 4 4 4 4 X ¥




fa) At sampling point 1, ($=0.37733, y=0.357733)
The value of the Jacobian [J] at sampling pomt 1 will become

[_(1-057735) +(1-0.57735) +(1+057735) —(+057135)7 9% ©
[7]= 4 ] 4 ] 00
—(1-057735) —(1+0.57735) +(1+0.57735) +(1-057735) 70 s0
i 4 4 4 4 0 350
1
e, 0112 == |5 %] ey e
- 0 25 T 0 1 - To Ja] s
25
=
ég
* . &4!
5, T, 0 0] |8
* = o
R
"'ir]'l "'ir!] "'irl.l "'rl.] a_:
v
| &
&N, o, W, oW &N,
@z "% "= "z
J:I. J'l’! ':. {] C;'I. ':I' a! ':. G-‘ : {J Gﬂ 4 ':'
_ - 7 7 én
[£] E: ':f J-::.l "riz b 0 &N, 0 &, o an, an,
"'ir]'l "'ir!] "'II.I "'rl.] _I:‘: a; c-;" aé
o Mo, A, & aN,
i én en én én
Jp Jp 00
[el=| 0 0 Ty Ty |x[Bld)=[Blid}
LA




15T 1-057735 o  xSTBS 405735 o]
4 4 4 4
105735 1+057735 1-+05735 1-057735 0
m= ¢ 4 4 4
0 105735 105735 o BOSTS 1405775
4 4 4 4
0 105735 1405735 LOSTS 1-0.57735
I 4 4 4 4
-0.1057 0 01057 0 03943 0 03043 0
gy 01057 0 03043 0 0343 0 01057 0
0 —01057 0 01057 0 03943 0  -03943
0 -01057 0 -03943 0 03943 0  0.1057
Thus,
L o 0 o] . .
35 -0.1057 0 0.1057 0 03943 0 -03943 0
Bl=|0 o o L0057 0 03943 0 03943 0 02057 0
25 0 01057 0 01057 0 03943 0  -03943
o L 1 4 0 -01057 0  -03943 0 03943 0 01057
25 35
-0.003 0 0.003 0 00113 0 -00113 0
[B]=| 0 -00042 0 -00158 0 00158 O 0.0042
-0.0042 -0003 -00158 0003 00158 00113 00042 -0.0113
For plane stress condition
1L w 0 1 0 0
[C]= E: g 10 [=2x10°70 1 O
S PR C 00 1/2

2



10 0
[CIB]=2x10°(0 1 0 |x
00

—0.003 0 0.003 0 0.0113 0 —0.0113 0
0 —0.0042 0 —0.0158 0 0.0158 0 0.0042
-00042 -0003 -00158 0003 00158 00113 00042 -00113

The values of ganss weights are w,=w,=1.0. Therefore. the stiffness matnx [k] at this sampling powmt
iz [k]= M'WI[E]:I[C]-'I[BI? ||, where f is thickness of the element. Thus at sampling point 1,

[ —0.003 0 —0.0042
0 —0.0042 -0.003

0.003 0 —0.0158 Lo o
[k ]=20x1x1x875x 210" x 0 0018 0.003 =0 1 0 =
0.0113 0 0.0158 00 1/2

0 0.0158 00113
—0.0113 0 0.0042

0 0.0042 —0.0113 |
—0.003 0 0.003 0 0.0113 0 -0.0113 0

0 —0.0042 0 —0.0158 0 0.0158 0 0.0042
—0.0042 0003 -00158 0003 00158 00113 00042 -00113




[0.0632

[k]=10"x

0.0223
0.0785

0.0848 -0.0223 -0.2358
0.0834 02174 -0.0834
04672 —00834 03162
0.8866 0.0834
0.8795

sy

(b) At sampling point 2, (¢=-0.57733, n=0.57733)

The value of the Jacobian [J] at sampling powmnt 2 can be calenlated in a similar way and finally the
stramn-displacement relationship matrix and then the stiffness matnx [k;] can be evaluated and 1s

shown below.

—0.0834
—0.2929

0.0878
—0.0223
03109 02358
-0.8111 00223

03109 03275

1.0927  0.0834
04755

0.0834 7
~0.0030
03109
~0.2920
~03109
0.0113
—0.0834
02847 |

—0.0113 0 —0.0042]
0 00042 00113
0.0113 0 —0.0138
[k,]=20x1x1x875x 2x10° 0 00158 0.0113 x
0.003 0 0.0158
0 00158 0.003
—0.003 0 0.0042
0 00042 —-0.0030]
—0.0113 0 0.0113 0 0.0030 0 —0.0030 0
] —0.0042 ] —0.0138 0 0.0158 0 0.0042
—0.0021 00056 —-00079 00056 00079 00015 00021 00015
04756 0.0833 03276 —0.0833 —02357 —00223 00878 0.0223 ]
02847 03110 00112 03110 02020 00833 —0.0030
08797 03110 03184 -00833 023357 00833
[jl'._.] _10% x 1.0930 03110 -08113 00833 02929
: 04673 00833 00848 -0.0833
sym 08868 00223 02174
00632 00223

0.0785 |



() At sampling point 3, (§=-0.57733, n=-0.57733)
The value of the strain-displacement relationship matnx and then the stiffness matrix [k;] can be
evaluated and 15 shown below.

T-0.0113 0 -0.0158]

0  -00158 —0.0113

| 00113 0 —00M2
[k1]=3{llx1x1x5'i'ﬁxlxlﬂ": ﬂ.ﬂ{é}l} _D'{DHEE EEH;E "
0 0.0042 00030

(00030 0 0.0158

| o 0.0158 -0.0030]

r-00030 0 0.0113 0 00030 0 —00030 0
0 -DO0I1S8 O 00042 0 00M2 O 0.0158

i_—ﬂ.ﬂﬂ?? 00036 00021 00056 00021 00015 00079 -0.0015

08797 03110 03276 —03110 —02357 —00833 —03164 00833 ]
10030 00833 00112 —00833 —02929 —03110 —08113
04756 -00833 00878 —00223 —02357 0.0223
02847 00833 —0.0030 03110 —02929

0.0632 00223 00848 —00223

sm 00785 00833 02174

. 04673 —0.0833
i 0.8368 |

[k]=10°

(d) At sampling point 4, {§=0.57733, n=-0.57733)
The value of the strain-displacement relationship matnx and then the stiffness matrix [k;] can be
evaluated and is shown below.



[k,]=20=1x1=875%2x10°

[—0.0030 0 —0.01587
0 —0.0158 -0.0030
0.0030 0 —0.0042

0 —0.0042  0.0030

0.0113 0 0.0042
0 0.0042 00113
-00113 0 0.0158
|0 0.0158 —0.0113]
r-00030 0 0.0030 0 00113 0 00113 0
0 00138 0 00042 0 00042 O 0.0158
|-0.0079 -0.0015 -0.0021 00015 00021 00056 00079 -0.0056
(04673 00833 00848 —0.0833 02357 —03110 —03164 03110
08868 00223 02174 00223 02929 —0.0833 —0.8113
0.0632 —0.0223 00878 00833 —02357 00833
[k ]=10° = 0.0783 1}.:12’_5 00030 00833 02029
: 04756 00833 -03276 —0.0833
sm 02847 03110 00112
08797 -03110
I 1.0930 |

The stiffiess matrix of the element can be computed as the sum of the values at the four sampling
powts: [k]=[k ]+[k,]+[k]+[Fk;]- Thos, the final value of the stiffness matrox will become

1.8857 05000 —04857 —0.5000 —09429 —0.5000 —04571 031107

23420 05000 04571 —0.5000 -1.1714 —0.5000 -1.6286

18857 —0.5000 —04571 —0.5000 —0.9429 0.5000

[k]=1[]l"x 23420 05000 16286 05000 -11714
18857 05000 —0.4857 —0.5000

sm 23420 05000 04571

18857 —0.5000

I 23429 |




5.6. AXISYMMETRIC ELEMENT

5.6.1 Introduction
Many three-dimensional problems show symmetry about an axis of rotation If the problem
geometry 13 symmetric about an axis and the loading and boundary conditions are symmetric about
the same axis, the problem is said to be ausymmetric. Such three-dimensional problems can be
solved using two-dimensional finite elements. The axisymmetric problem are most conveniently
defined by polar coordmate system with coordinates (r, 8, z) as shown in Fig. 5.6.1. Thus, for
axisynumetric analysis, following conditions are to be satisfied.
1. The domain should have an axis of symmetry and is considered as 7 axis.
2. The loadmngs on the domain has to be symmetric about the axis of revolution, thus they are
independent of circumferential coordinate 6.
3. The boundary condition and matenial properties are symmetric about the same axis and will
be independent of circumferential coordimate.

¢ "; = .
"‘*"-"._‘-__r_-‘.‘-]'_:r
!
!
.
P(r.z.0)
s
r' B
{1.:"' _— - -"_:r.-' "..

Fig. 5.6.1 Cylindrical coordinates

Axisymmetric solids are of total symmetry about the axis of revolution (ie, z-axis), the field
variables, such as the stress and deformation 15 independent of rotational angle 8. Therefore, the field
vanables can be defined as a function of (rz) and hence the problem becomes a two dimensional
problem similar to those of plane stress/strain problems. Axisymmetric problems inchdes, circular
cyhnder loaded with nmiform external or internal pressure, circular water tank pressure vessels,
chimney, boiler. circular footing resting on soil mass, etc.

5.6.2 Relation between Strain and Displacement
An aisymmetric problem is readily descnbed in cylindrical polar coordinate system: #, z and 6.
Here, 6 measures the angle between the plane containing the pomnt and the axis of the cocrdinate



system. At & = 0, the radial and axial coordinates coimncide with the global Cartesian X and ¥
coordinates. Fig 5.6.2 shows a cylindrical coordinate system and the defimition of the position
vectors. Let 1,Z and 8 be unit vectors in the radial, axial and circumferential directions at a point in
the cylindrical coordinate system.

Fig. 5.6.1 Cylindrical Coordinate System

If the loading consists of radial and axial components that are independent of 8 and the matenal is
either 1sotropic or crthotropic and the material properties are independent of 8, the displacement at
any point will only have radial (u,) and axial (u;) components. The only stress components that wall
be nonzero are g,,., T, Ogg and T, .

.:.I'.l'

v

{a) Element in r-z plane  (b) Element in r-8 plane



Fig. 5.6.2 Deformaton of the axisvimmetric element
A differential element of the body i the r—z plane 15 shown mn Fig. 5.6.3(a). The element undergoes
deformation in the radial direction. Therefore, it initiates increase in circumference and associated
circumferential strain. Let denote the radial displacement as u, the circumferential displacement as v,
and the axial displacement as w. Dashed line represents the deformed positions of the body m Fig.
5.6.3(b). The radial stramn can be calculated from the above diagram as
1 S Ju
-3 _E[H Exa‘r -1 o
Since the rz plane 15 effectively the same as a rectangular coordinate system, the axial stramn will
become

(5.6.1)

i[w_%xi__w':% (5.62)

"

g, =

Considering the original arc length versus the deformed arc length the differential element
undergoes an expansion in the circemferential dwection. Before deformation, let the arc length 1s
assumed as ds = rd8. After deformation, the arc length will become ds = (r~+u) dB. Thms, the

tangential strain will be
+u |d9-rdb
e —(rtu)dd-rdd u (5.6.3)
) rdg r
Simularly, the shear strain will be
Lo dw
=g & (5.6.4)
“'_I,, ID' ﬂ.ﬂ.d- “ﬂ_ﬂ Z'D
Thus, there are four strain components present in this case and 15 given by
_ o i _i . -
cr cr
.i_‘..'r .
c > 0o 2 [u
g}=1 " =1 T = s (5.6.5)
2. 7 1 w
— - 0
Fr_' F ¥
a @&
_+_ [— [R—
- l Léz arl

5.0.3 Eelation between Siress and Sirain



The stress strain relation for axisymmetric case can be denived from the three dimensional
constitutive relations. We kmow the stress-strain relation for a three-dimensional solid 13

Ox
Oy
O _ E
TJ,.;
Tzr

e TR e T e R = |

2 a2 a =2 =2

(5.6.6)

The stresses acting on a differential volume of an axisymmetric solid nnder axisymmetric loading 15

shown in Fig 5.6 4.

Fig. 5.6.4 Stresses acting on a differential volune

Now, comparing the stress-stram components present in the axisymmetric case, the stress-strain
relation can be expressed from the above expression as follows

Ty

T, - .

Ta (L+pp1—2p)
Ty

1—p
i

i
0

6
l—u

u

T

u

0
0

(5.6.7)



Thus, the constitutive matrix [D] for the axisymmetric elastic solid will be
1= A [ 0
B l-p 0

o
Ui B (5.6.8)

0 0 g =%

5.6.4 Axisymmetric Shell Element

A cylindrical lLiqud storage container like structures (Fig. 5.6.5) may be idealized using
axisymmetnc shell element for the finite element analysis. It may be noted that the liquid in the
container may be idealized with two dimensional axisymmetric elements. Let us consider the radius.
height and, thickness of the circular tank are R, H and h respectively.

Fig. 5.6.5 Thin wall cylindrical container

The strain energy of the axisymmetric shell element (Fig. 5.6.6) including the effect of both
stretching and bending are expressed as

H . 3
U=l’ [(N,e, +N,e,~M, y, ) 2xRdy (3.6.9)



Here, N, and N; are the membrane force resultants and M, 1s the bending moment resultant. The
shell 13 assumed to be linearly elastic, homogeneons and i1sotropic. Thus the force and moment
resultants can be expressed in terms of the mmd-surface change m curvature y, as follows.

v,

_jl"-uj

W,

Fig 5.6.6 Axisvimmetric plate element

Here, the strain-displacement relation is given by

{o}= [D] {e} (5.6.10)
In which,
N, ] [E\ 1 w0
(o}=IN, L. fel=le, ! and [D]=15’3 w1l 0 (5.6.11)
M f ] s :
' A 0 0
| 12 ]
The generalized strain vector can be expressed in terms of the displacement vectors as follows.
{e}=[B]{d} (5.6.12)

Where,



» %
{d}={:}aﬂd [B]= % 0 (5613)
i

Here, u and v are the displacement components in two perpendicular directions. With the use of
stress and strain vectors, the potential energy expression are written in terms of displacement vectors
as

1 i :
U=2x2aR|({d}" [B] [D][B]{d} v (5.6.14)
- a
Thms=, the element stiffness are denved as
H
[k]= IJ'IRJ- [B]r [D][B]ay (3.6.13)
o
Sumilarly, neglecting the rotary inertia, the kinetic energy can be expressed as
H o
r=1x 2aR|({d} [N] m[N] {&}]dy (5.6.16)
2 4
Where, m denotes the mass of the shell element per unit area and {d} represents the velocity vector.
Thus, the element mass matrix 15 given by

[M]= IJT.RJJ'JI.- [NT [N]dy (5.6.17)

Lecmure 7: Finite Element Formulation of Adsvinmetric Element

Finite element formulation for the axisymmmetric problem will be smular to that of the two
dimensional solid elements. As the field vanables, such as the stress and strain 15 independent of
rotational angle B, curcumferential displacement will not appear. Thuos, the displacement field
variables are expressed as

u(rz)= Zn:ﬁ(r z)u;

(5.7.1)

Here, u, and w, represent radial and axial displacements respectively at nodes. N, (r, ) are the shape
functions. As the geometry and field variables are independent of rotational angle 8. the interpolation
function N, (r, 2) can be expressed similar to 2-dimensional problems by replacing the x and y terms
with » and = terms respectively.



5.7.1 Sdffness Matrix of a Triangular Element
Fig_ 5.7.1 shows the cylindncal coordinates of a three node tnangular element. Hence the analysis of
the axisymmetric element can be approached in a similar way as the CST element. Thus the field
variables of such an element can be expressed as

u=a, tar+a,z

W=, + o, r+ &,z G-72)
Or,

td} =[#]la} (5.7.3)
Where,

' 1 000

{.::'}={:J=[.]—.D 0 - ﬂﬂd{ﬂ’}I:{% QG & 4 o ﬁ's}
Using end conditions. )

(w,] [1 £ z 0 0 0]]g,

u, 1 r z, 00 0|

w| {1 z 00 0|} -

wl?_ 00 01 r z|la (5-74)

W, o0 o0 0 1 rooz (e,

wy 100 0 1 n z||e
Dr!

dl=[Al{a

{d}=[4]{e} 573

= {a} =[] (3)

Here {E} are the nodal displacement vectors.



Fig. 5.7.1 Axsymmeiric three node triangle in cvlindrical coordinates

Putting above values m eq.(5.7.3), the following relations will be cbtained.

{a}=[4ll4]" {a}-11{d} (576)
Or.

u N N N 0 0 0]||r
dl= N 4 k 3 3.7,
{ } {‘I-I-} |: 0 0 0 N N, N, ] G717

-~ -

Using a similar approach as in case of CST elements, the three shape functions [N, N,.N,] can be
assnmed as,
, 1
I"'1'|:r=:}=ﬁﬂ":fs_r:fz}"'{:z_fa}r"'l:ra_r:jzj
. 1
I'-.'J(r,z]=ﬁ[{r,z,—q23]+{23—:1]r+{:1—rﬂz]

I"'"Jl{r-. :}=ﬁ[l{?‘,_‘1 _"1311""":—_1 _EJ:I"'H{FJ _rljl:]



. 1
N, z} =ﬂ{‘ﬂ. +rfg + :;-'III

N, I:r,zjl =ﬁ[ﬂ'l +rg, +zy, }I

- & 1
N,(r.z) =ﬂ{”¢ +rf, +z¥,)

o

Where,
@ =1z, —hzI @, =nz —Iz, o, =rz
B=z-z B,=2—z b=z -z
Yi=n—r Yi=h—h Vi=h—h

1 )
2.-!=;[.‘r;z}_ +1,2, + 52 —HZ, — N5 —RE )

Putting the valoe of {np.w} mneq. (3.7.7) from eq. (3.6.3),

-

!.-:-‘ I'\.ll-t

[} [
=

-1

;)

N N N 5 g o
&r dr or
N N, N,
N L N 0 0 0
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| & & & & o o
Thus, the stramn displacement matrix can be expressed as,
8 B, A 0 0 0
T _Li"."" Jr
1 NN o 0 0
[B]=ﬂ Foorr
1000 xR
v o o n B B B

+r +
Where, r=r' r::l; rt.'I'husmesliﬂfuessmatrixuﬂlhecm

[k]=J[[8] [D][B]ac

Or.  [k]=[] [[B] [D][B] rd6d4 =2x] [[B] [D][B]rdrd:

Ir

2

(5.7.8)

(5.7.9)

(5.7.10)

(5.7.11)

(5.7.12)



Since, the term [B] is dependent of " terms; the term [B] [D][B]cannct be taken out of
mtegration Yet, a reasonably accurate solution can be obtained by evaluating the [B] (denoted as
[B]) matrix at the centroad.
Hence, [k]=2xr[B] [D][B] .[ J‘ dr d=
Or,

[k]=[B] [D][B]27r4 (5.7.13)

5.7.12 Siiffness Matrix of a Quadrilateral Element
The stramn-displacement relation for axisymmetric problem derived earlier (eq.(3.6.5)) can be
rewntien as

rl

. [ Bu
o >
or 1000 0]|au
‘ o o001 0{|a
fel=i o) @ 11w (5.7.14)
] u 0000 |7
F
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Applying cham mle of differentiation equation we get,
[8u) [&u ]
ar| NS
cu L I, 0 0 0flédu
Z| [T Y. 0 0 of|én
(Gwe= 00 I, T, Ofdw (5.7.15)
cr 0 0 I, I, 0|
&l lo 0o 0 0 1)|éw
oz én
[ B 1_1_|

Hence, the stramn components are calculated as
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With the nse of interpolation function and nodal displacements, [

for a four node quadrilateral element as
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Putting eq. (5.7.17) in eq. (5.7.16) we get,

§3|E*

..%I ¥
&"I ¥

(5.7.16)

l can be expressed

(5.7.17)



dN, &N, &N, &N,
- 0 0 0 0 |{u
L Y S u‘
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(5.7.18)
Thus, the strain displacement relationship matrix [B] becomes
8N, 8N, &N, &N, s o0 o
88 O  B8F 8
T 00 0] &N, &N, 'ﬁH.a oN, 0 0 0
0 0 I, I, 0|8 &y &n & (5.7.19)
B=l0 0 0 o Yo o o o M N N N
T 5 & oE of
I;l 'T'z: J;l 'T:z D_" 0 0 0 gN, &N, &N, &N,
dn 8n dn by
N, N, N, N, N, N, N, N,
For a four node quadrilateral element.
1-E)il- i1- -
N GRAW A a-w , & (1-8)
3 &t 3 a 3
1+E)1—m) - f1+&
NEJ W N, -0 pg (45 (5.7.20)
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Na={1+-:_]|“1+11; - N, _(+n) g 8N _(1+8)
- 4 & 4 a4
N, =080 @, (Atn) L AN (1-F)
4 az 4 & 4

Thus, the [B] matrix will become
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= x
= 0 0 ok
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(5.7.21)

The stiffness matrix for the axisymmetnic element finally can be found from the following
expression after ommerical integration.

F1- 2] [D][B]dﬂ{[i (5]' [D][B] 2m|].d2dn 5722



Finite element formulation for the axisymmetric problem will be similar to that of the two
dimensicnal solid elements. As the field variables, such as the stress and strain is independent of
rotational angle B, circumferential displacement will not appear. Thus, the displacement field

wvariables are expressed as

n
u(r,z)= Z?"u' (72 ),
- (5.7.1)
w(rz)= ZN (r,2)w,
=l
Here, wjand wrepresent radial and axial displacements respectively at nodes. N; (. z) are the shape
functions. As the geometry and field variables are independent of rotational angle . the interpolation
function N; (r, £) can be expressed similar to 2-dimensional problems by replacing the x and y terms
with r and = terms respectively.

5.7.1 5tiffness Matrix of a Triangular Element
Fig. 5.7.1 shows the cylindrical coordinates of a three node triangplar element. Hence the analysis of
the axisymmetric element can be approached in a similar way as the CS5T element. Thus the field
wariables of such an element can be expressed as

U=y +ar+a,2

(5.7.2)
W=ty + 0+ 0 2

(d}=[¢]{a} (5.7.3)
Where,
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Using end conditions,

=

i 1l n zz 0 0 0||a
i, 1 r, I, 0 0 0||g

| U, _ 1 n z, o 0 0 ) o, (5.7.4)
W, 00 0 1 r z|la

W, 00 0 1 rooZ || e

| W, 00 0 1 r z||a




(@) =[4]){a}
= {a}=[4]" (@}

Here {(7 } are the nodal displacement vectors.

(5.7.5)

o~
/ o —
/

Fig. 5.7.1Axisymmetric three node triangle in cylindrical coordinates

Putting above values i eq.(5.7.3), the following relations will be obtained.
(@) =[o][4]" {a}=1\nfa} (57.6)

01',
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n
W] [N, NN N, 0 0 o0]|n
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td} {w} [o 0 0 N, N, N,]‘:l> G117
%)

Using a similar approach as in case of CST elements, the three shape functions [4\'1,N2,N3] can be

assumed as.
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Putting the value of {u.w} in eq. (5.7.7) from eq. (5.6.5),
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Thus, the strain displacement matrix can be expressed as,

6 B, B 0 0 0]
N N, N

1 N NN 0 0 0 ~

[Bl=57| r r (5.7.11)
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n+r+n ) o
Where, r= 3 . Thus the stiffness matrix will become

[¥]=[][[2] [P][B]40

Or. ” q [B] [D][B] rded4 =2z [[B] [D][B]rdrd: (57.12)

Since, the term [B] 15 dependent of *»” terms; the 1':.=:11:|:1[.Ei]I [D] [B] cannot be taken out of integration.

Yet, a reasonably accurate solution can be obtained by evaluating the [B] (denoted as [B]) matrix at
the centroid.

Hence, [¥] =277 (] [D][B]] | dre:
Or,
[k]=[2] [D][B]27r4 (5.7.13)

5.7.2 Stiffness Matrix of a Quadrilateral Element
The stramn-displacement relation for axisymmetric problem derived earlier (eq.(3.6.3)) can be
rewritten as
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&
ow (5.7.14)
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Applying chain rele of differentiation equation we get,
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Hence, the strain components are calculated as

With the use of interpolation function and nodal displacements,
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for a four node gquadrilateral element as
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(5.7.16)

— |can be expressed
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Putting eq. (3.7.17) in eq. (3.7.16) we get,
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Thus, the strain displacement relationship matrix [B] becomes
[N, &8N, &N, OJN,
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For a four node quadrilateral element.
N L[ VIS QL C VIO
- &z = &n 4
N:=(1+5}ﬂ—ﬂi - N, _(d-m) N _ (1+8) (3.7.20)

4 & 4 an 4




N.=I:1+E'M+W _ N, _(4n) N _(1+E)
: 4 ot 4 & 4
X _(1=E)1+n) N, (1+n) &N, _(1-5)
! 4 a 4 an 4
Thus, the [B] matrix will become
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(5.7.21)

The stiffness matrix for the axisymumetric element finally can be found from the following

expression after numerical integration.
414

[]=[[8] [D][B]dq= | [[B] [D][B] 2nr.|J].-dzan

0 =-1-1

(5.7.22)
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UNIT - IV
APPLICATIONS IN HEAT TRANSFER & FLUID MECHANICS

7.1.1 Governing Fluid Equations

The fluid mechanics topic covers a wide range of problems ofinterest in engineering applications.
Basically fluid iz a material that conforms to the shape of its container. Thus, both the liguids and gases
are considered as fluid. Howewver, the physical behaviour of liguids and gases is very different The
differences inbehaviour lead to a variety of subfields in flnid mechanics. In case of constant density of
ligquid. the flow is generally referredto as incompressible flow. The density of gases not constant and
therefore, their flow is compressible flow. The Navier—Stokes equations are the fundamental basis of
almost all fload dynamies related problems. Any single-phase fluid flow can be defined by this
expression. The general form of motion of a two dimensional viscows Newtonian fluid may be expressed
as

1 :
—Py TV, TV UV = f, (7.2.1)
P
Here
v = kinematic viscosity
p=mass density of fluid
vi = Velocity components
f, = Body forces
p = fluid pressure
The suffix j and ji are the derivatives along j and j & i direction respectively. The dot represents the
derivative with respect to time Neglecting non linear convective terms, viscosity and body forces, eq.
(7.2.1) can be simplified as:

p.i ‘|‘I:"'I~'i =0 (722)
Now, the continnity equation of the flnid is expressed by

. 2

Ptpc v, =0 (7.23)

Here, ¢ is the acoustic wave speed in fluid. In the above expression, two sets of variables, the velocity
and the pressure are wsed to describe the behaviour of fluid. Now it is possible to combine equation
(7.2.2) and (7.2.3) to obtain a single variable formulation For the small amplitude of fluid motion, cne

can assume
"i-"i = 'Lli (7.24)
Where W, is the displacement component of fluid To obtain single variable formulation, eq. (7.2.4) may
be substituted into eq. (7.2.3) and cne can get
. 2. .
p+pcu,, =0 (7.2.5)

Integrating eq. (3) w.r.t. time we have



P=— chut,t (7.2.6)

Now differentiating the above expression w.rt. % following expression will be arrived:

2
P = 7PC Uy (7.27)
Substituting the above in to eq.(7.2.2) cne can have
. 2 -
PV =PC Uy = (7.2.8)

Thus, eq. (7.2.8) is expressed in terms of displacement variables only and kmown as displacement based
equation.

Siumilarly, it i3 possible to obtain the fluid equation n terms of pressure variable only. Differentiating eq.
(7.2.3) wr.t.Time, the following expression can be obtained.

am 2 . _
PFpeV, =0 (7.2.9)
Again differentiating eq. (7.2.2) wrt x; we have
Py Tpvi; =0 (7.2.10)
From eqs. (7.2.9) and (7.2.10), the pressure based single variable expression can be arrived as given

below.

s 2
p—cp;=0 (7.2.11)

The above expression 1s basically the Helmholtz wave equation for a compressible fluid having acounstic
speed ¢

T]P—C—;ﬁ=ﬂ (7.2.12)

Thus, the general form of fluid equations of 2D linear steady state problems can be expressed by the
Helmholtz equation For incompressible fluid ¢ becomes infinitely large. Hence for incompressible fluid,
eq. (7.2.12)can be written as

Vip=0 (7.2.13)

For the ideal, irrotational fluid flow problems, the field variables are the streamline, ¢ and potential &
functions which are governed by Laplace’s equations

&y o _
3}1] a}r]
5‘-::r+ &b _0

=1 a1
ox°  dy (7.2.14)



Derivation of the above expressionand many other related equations can be found in details in fluid
mechanics related text books.

7.2.1 Finite Element Formulation

The equation of motion of floid can be expressed in varions ways and some of those are shown in
previous section. Finite element form of those expressions can be derived using various methods
considering pressure, displacement, velocity, wvelocity potential, stream functions and their
combinations. Here, displacement and pressure based formulations will be derived using finite element
method.

7.1.1.1 Displacement based finite element formulation
Consider the equation (7.2.8) which can be expressed only in terms of displacement variables.

an 2 . {:}
PU; —pC Uy = (7.2.15)
Here. u is the displacement vector. Now. the weak form of the above equation will become

[ wi(pii,—pc’u, ;) d2=0 (7.2.16)

Performing integration by parts en the second terms, one can arrive at the following expression:

_I-“rl pii, dQ—_I-TNl pﬂzuk:kdr-l-I".Wj:ipczuhtdﬂz 0

: .. ) ) 1217
or, I w, pii, dO+ ’ W,;; peuy d0= " w,pe’u, dT (7217
.f'! .!". Il"
2
Now from earlier relation (eq.7.2.6) we have, P = — PC Uy Thus, the above equation may be
written as:
0 0 r

In case of fluid filled rigid tank, the weighting fonction wamnst satisfy the condition w,n, = Oon its rigid
boundary. Therefore, the above eq. will become
ve 7
f(wipui +w,pcu, }dﬂ = —f w, n, pI'

L r
F

(7.2.19)

For finite element implementation of the above expression, let consider the interpolation function as NV
and T as the nodal displacement vector. Thus,



u=NUandw=Nw (7.220)
Now the divergence of the displacement vector can be expressed as:

v, =Lu=LNu=Bu (7.2.21)

Where 7 _ 15 the differential operator. Thos eq. (7.2.19) may be wriften as

w' ] [N oNU +BTpc BuldQ = —w™ ] ‘Nnp dT

0

(7.222)

P

M[{u}+[K]{m}={F} (7.2.23)

Or,

Where,
M) [oIN]'[N]ao

17

:K:=fPEI[B:T[B]dﬂ (7.2.24)
{F}=—f[N]Tn {p} ar

Using eq. (7.2.23), the displacements in fluid domain can be determuned under external forces applying
proper boundary conditions.

7.12.1.2 Pressure based finite element formulation
The Helmholtz equation (7.2.12) for a compressible fluid in two dimension can be used to determine the
pressure distribution in the fluid domain vsing finite element technique.

1

pii——f=0 (7.2.25)
c

The weak form of the above expression can be written as
fn [p,u—— Jd_'-’l_l] (7.2.26)
Now, performing integration by parts on the first term, the following expression can be obtained.

I“Ti p.1dl _‘_!:“'i.i

; pd02=0 7227)

Thus,
C—lsz.jdﬂ+fwilipiif?=f‘wi pdl (7.2.28)
i

r



Aszsuming interpolation function as N and pas the nodal pressure vector, the pressure (p) at any point
can be written as: p=Np and simularly, w=N® . The divergence of the pressure can be expressed

as:p.i=Lp=1LNp=Dbp, where, L:_% % Again,

w,; =Lw=ILNw=Bw

w,p=|Nw|" [Np|= #"NNp (7-2.29)
Thus, eq. (7.2 28) will become:

1 T . . T . T

':_2‘£w N'NpdQ +Jf W EIdeﬂ=‘! W NT%dI‘ (7230)
Or,

El{e}+[c]{r}=1{B} (7231)
Where,

1 T
1= [ INjao
°
[G]=I[B] [BldO (7.232)

(B}= 1] har

Applying boundary conditions, eg. (7.2.31) can be solved to calculate the dynamic pressure developed in
the fluid under applied accelerations on the domain.

7.2.3 Finite Element Formulation of Infinite Reservoir

Let consider an infinite reservoir adjacent to a dam like structure. In such case, if the dam is vibrated, the
hydrodynamic pressure will be developed in the reservoir which can be caleulated using above method.
For finite element analysis. itis necessaty to truncate such infinite domain at a certain distance away from
structure to have a manageable computational domain. The reservoir has four sides (Fig. 7.2.1) and as a
result four types of boundary conditions need to be specified.

{B}Z{B}l +{B}z +{B}3 +{E}4 (7.2.33)
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Fig. 7.2.1 Reservoir and its boundary conditions

(i) At the free surface (I j)
Neglecting the effects of surface waves of the water, the boundary condition of the free surface may be
expressed as
p(x.H.t)=0 (7.2.34)
Here, H iz the depth of the reservoir. However, sometimes, the effect of surface waves of the water

needs to be considered at the free surface. This can be approximated by assuming the actual surface to
be at an elevation relative to the mean surface and the following linearised free surface condition may be

adopted.

1Py (7.2.35)
E’ H
Thus, the above expression may be written in finite element form as
dp 1
Bj=—=——E,|{p 7236
(B} == Ri]{p} (236)
In which,

[R;]= [[N] [Ngr (7.237)

rI
(ii) At the dam-reservoir interface (I ;)
At the dam-reservoir interface, the pressure should satisfy

@rﬂ, 1= pae™ (7.2.38)
cH



whereae™" is the horizontal component of the ground acceleration in which, @ is the circular frequency

of vibration and i=+/—1, n is the outwardly directed normal to the elemental surface along the interface.
In case of vertical dam-reservoir interface &p/ch may be written as ¢p /2t as both will represent normal to the

element surface. For an inclined dam-reservoir interface &p/cv cannot represent the normal to the element
surface. Therefore, to generalize the expressions &p/dn is used in eq. (7.2.38)If {a} is the vector of nodal
accelerations of generalized coordinates, {B2} may be expressed as

{B,}=-p[R,]{a} (7.2.39)

where,

[Ra]=X [[N,][T][N, ]ar (7.2.40)

Here, [T] is the transformation matrix for generalized accelerations of a point on the dam reservoir
interface and [Nj] is the matrix of shape functions of the dam used to interpolate the generalized
acceleration at any point on their interface in terms of generalized nodal accelerations of an element.

(iii) At the reservoir bed interface (I'3)

At the interface between the reservoir and the elastic foundation below the reservoir, the accelerations
should not be specified as rigid foundation becanse they depend on the interaction between the reservoir
and the foundation However, for the sake of simplicity, the reservoir bed can be assumed as rigid and
following boundary condition may be adopted.

{33}=;£;(x_ 0.t)=0 (7.2.41)

(iv) At the truncation boundary (1)

The specification of the far boundary condition is one of the most important features in the finite
element analysis of a semi-infinite or infinite reservoir. This is due to the fact that the developed
hydrodynamic pressure, which affects the response of the structure, is dependent on the trunecation
boundary condition. The infinite fluoid domain may troncated at a finite distance away from the structure
for finite element analysis satisfying Sommerfeld radiation boundary condition Application of
Semmerfeld radiation condition at the truncation boundary leads to

{ 4}——{L}' = (7.2.42)

Here, L represents the distance between the structure and the trunecation boundary. Thus, the
hydrodynamic pressure developed on the dam-reserveir interface can be calculated under external
excitation by the nse of finite element technique.



2.25. HEAT TRANSFER

Heat transfer can be defined as the transmission of energy from one regmn w0 aflﬂ!htr
region due 1o temperatare difference, A knowledge of the temperature distribution within a
body is importast in many enginesring problems. There are three modes of heat transfer.

They are: (f) Conduction
(i) Convection
(#if) Radiation
(i) Conduction .
Heat condustion is a mechanism of heat transfer from a region of high temperature 1o a

region of low temperature within a medium (solid, liquid or gases) or betwesn different
medium in direct physical contact,

In conduction, energy exchange takes place by the kinematic motion or direct impact of
molecules, Pure conduction is found only in solids,
(i)} Comveciion

Convection is a provess of heat transfer that will oceur between a solid surface and a fluid
medium when they are at different temperatures.

Convection is possible only in the presence of fluid medium,
{fi} Radigeion

The heat transfer from one body o another without any transmitting medivm is known as
radiation, It is an eleciromagnetic wave phenomenon,



2.26. DERIVATION OF TEMPERATURE FUNCTION (T} AND SHAPE FUNCTION. tH}an
"OME HMENEIDHAL HEAT GWTI-DH ELEMENT

Consider a bar clement with nodes | and 2 as shown in Fig2.34. T and T, are the

temperatures at the respective nodes, So, T, and T, are considersd as degrees of freedom of
this bar element.

Fig. 2.34.

Since the clement has got two degrees of freedom, it will have two generalized
co-ordinates.

= T = aptax - (2,121}
where, @, and 4, are global or generalized co-ordinates,



Writing the equation (2.121) in matrix form,

: ag
T=1[1 x) . (2.122)
ay
Atnodel, T =T, x=0
Atnode2, T =T, x={

Substitute the above values in equation (2.121),
= Ty = & .- (2.123)
= T, = agt+a,l .- (2.124)

Assembling the equarions (2.123) and (2.124) in matrix form,

(2}-[3 9]

-1
[Note ap ap |
N K - b
@3y @y (@ an—ay; ay)

- [de t1Y]

a9
Substitute { 4 } values in equation (2,122)
1

= T=

|
u—
"
[o—
~1
| — |
1
—
i —d
_—
e
Yy
\_w__.l

1]

-!. 0+ TJ.
I[IAx x) T,

[+ Matrix multiplication {1 x 2) x(2x2) = (1x2)]
!



i—x =1 [T '
L5 410

T
Ny Rl {n}

Temperﬂurn: fun':-tiﬁﬂ, T = NI TI + HI Tz . H.Im

T

I -
where, Shape functions, N, = —

x
NI:T

2.27. DERSVATION OF STIFFNESS MATRIX. FOR ONE Dluﬁnslom BEAT,'
CONDUCTION ELEMENT
Consider a one dimensional bar element with nodes I and 2 as shovm in F!gz 35 Lct Tl
and T, be the temperatures at the respective nodes and & be the thermal conduetivity of the
material.

pr— ¥
14 ¥ 42
T T2
; , |
Fig. 235
We know that,
Stiffvess matrix [K] = f[B]T[D][B]

in one dimensional efement,

Temperature function, T = N, T,+N, T,
where, N, = 'i:y}'
X i
N, = 7

We know thar,

BE
5|2

Strain-Displacement matrix, [B] =



= [B] < (12T

1l
1
-..||
T | =
| M

= [B] 2128)

In one dimensional heat conduction problems,
[D] = [K] =k = Thermal conductivity of the material
Substituie [B ), [B]T and [ D ] values in stiffness matrix equation

=1

{

.. .Suffnessmainxfﬂr}[Kc]=f : x_r;.xltTl :];j]r#..

heat conduction
L
]
A 7
= g |k
Ll BRI

[Matrix muktiplication (2 & 1) = (1 x 2) = (2% 2]]
I

P |
! IH] 12 4
= [}, | |kad [rdv=axan .
‘L' R
S
s 2
=ARE [dx
N
I"l '__L-
1 P ’
= AR [
L2
S
it !
= Akl a-0
CLE B




1l -1

E

= Akl 1
VT

_AH' l-q
- -1 ]
A.t [ -1

[Ke] = [ ] e (2.129)

where, A = Apegof the element, m?
k = Thermal conductivity of the element, W/mK,
{ = Length of the element, m

m FHITEILEHEHT EQUATIOHE F'[_.'Iﬂ ONE DIMENSIONAL. HEAT CONDUCTION
" PRQBLEMS: : .

We know tha,

General force equation is, {F} = [K-)(T} e {2,130}

where. {F} is a element force vector [Column matrix]

[ K¢ ] is a stiffiiess matrix [Row matrix]

i T'} is a nodal temperature [Column matrix]
For one dimenstonal heat conduction problems, stiffness matrtx [ K | is given by

=55

Consider a two noded element as shown Fig.2.36.
F
Force {F}={I} Ty ®1 E o2eT:
F,
T,
Nodal temperature { T ] = . Fig. 2.36.
z .

Substitute [ K1 {Fland { T i values in equation {2.130).

F, Al’[ 1 -1 T .
- {ﬁ}= 1, ']{E} (2131



Case (i): One dimensional heat conduciion with fre¢
end convection F

h
=" Canvection
Consider a one dimensional element with nodes 1 3 Conduction [~ a
and 2 as shown in Fig2.37 T, and T, are the & —r
lemperatures  af the respective nodes. Assume | ' @1 2@_1_11
convection oceurs only from the risht end of the -
¢lement as shown in Fig.2.37, -
' {—
Stiffness matrix [ K. ] for one dimensiona! heat
conduction element is given by Fig. 2,17,
Ak | 1 -1 :
[Ke] = e 1 [From equatica no.(2.129)]

The convection term contribution to the stiffness mairix is miven by

[Kylwg = I BENTT [N144 . (2132)
A
where, k= Heat transfer coefficient, W/mZK
N = Shape factor
We kmow that,
f-x x
Shape factor, [N] = [N, N;] = T
- [From equation no.(2.125)]
Al node 2, x = | .
= [N] = [N, Np]= [01]
0
= [NTF = []}

Substitute [N ] and [N |7 values in equation (2.132)

= [K,,]W=Ifh{':}[nnda
A
[2=Dh=i{l=2)=(2x2)
00
[Ki g = F’[n 1]"#‘

0 ¢
[Kids = kA | o . (2133)



Stiffness matrix (K] = [Ke] + [K,]

-1 00
= IK]=ATE[_{ J+-fm[“!} o (2.134)

The convection force from the free end of the element is obtained from the following

re [atiomn,
N, r;xwf}}
{Fk}mﬂ-hT\nA NE{_'!,‘.:I}
il
{Fpday = AT A ll} ooe (2,135}
We know that, General force squation is
PPy = [KI{T}

Substitute | F | and [ K values,

= 0] - [88 (5 nale S
- [f"T” [_: ':]Hm[g ?] ] {E} = BT A {?} . (2.136)

where, A = Area of the elemeni, mé
b = Thermal conductivity of the element, WimK
{ = Length of the element
i = Heat transfer coefficient, WimiK
T, Fluid temperature, K
T = Temperature, K

This is a finite etement equation for one dimensional heat conduction element with free
end convection.

Case fil): One dimensional element with cenduction, convection and internal heat
generation:
Consider a rod with nodes } and 2 as shown in Fig.2.38. This rod is subjected to
conduction, convection and internal heat generation.

Comyection

3 1 Iy b E
/ L
Ta —;{-—u._. — Ai- A Tz
| ! .
ey \ I
Thamal conductivity  Internal heat ganeration

Fig. 238

[ —



We know that, heat conduction part of the stiffness matrix [ K1 for the one dimensional

element is

Ak 1 -1 |
(K] = A [“1 ]] (From equation no.(2.129)]

Heat convection part of the stiffness matrix [ K ] for the one dimensional element is given by

(K1 = J] #INJT [N} ds
S

]

I

"

{
hPf[N]T[N]dx

0

hP

[ dS=Pxdx where P = Perimeter of the element]
(1-x
! I-x x
4 : ["T' T ]dx [From equation no.(2.125)]
L

(,-_-‘)2 (’_'_f) x
<l Y X
dx
x (1_-5.) I x
v S I~
r(t 1)’ x 2
7 T 8
5 dax
x -




("l I Y
-3 "3 21"3r"
= kP Tk i
7P B
T Tt S
P BN
3 25743
e
L2 3 3
B
3 6
= hP )
L6 3
LM '] @
[Kh]- 6 []‘2 I -..(. )
Stiffness matrix K] = [Kc1+ [K;]
Ak [ | —l] Pl [2 I]
= (K] = 7 [_] N MR

Force matrix due to heat generation is given by,

(Foy = Jif INTT Q av

v

i
= I[N]T xQxAxdx [ dV =Axdx]
0

!
= QxA f[N]T dx
0

—-.r]
Idx

S

=QxA}
0

] Lo} -..I



_—_QxA<

=QxA<

~ 0D
—
(SR S T ) L

il

;
(Fol QxAxé[ } L (2139)

Force matrix due to convection is given by

(Fp} = {[ AT, [NIT as
§

= [[ &7, (NTT Pxax [ dS=Pxdi]
S

f

i
PhT,,f[N]T dx

O
{=x 7
M
= PhT, | mhi
fa X P
Xy
BT,
=PhT.y L




2

2
PAT, Y

T
tEg b = 3 {

Adding equations (2.139) and (2,140},
Force matrix, {F} = | Fod+{F,}

e[} 25 [

2 ] 2 1

f-25-0

—

= PAT

=

b~ 2~

PAT, I

e (21400

e —

DATLPRET] [
(F) = ~—— H e (2.141)

We know that, General force equation i3

vFy = [KJIT)
Substitute { F } and [ K ] values,

_ QAHEPW“} - [84 [ Ll ¢ ;]HE}

Akl 1 =17 8pi72 1)11fT] QAZ+PAT.I |1 )
= [_f_ |:-] l]+T[1 z]]{n}: 2 {I} ve (2,142)

where,

Area of the elerent, ;n?

= Thermal conductivity of the element, Wmk
= Length of the element, m

= Hea transfer coefficient, Wim2K

= Perimeter, m

Temperature, K

= Heat genetation, W

= Fluid temperature, K

D = M e e O

—]

E

This is a finite element equation for one dimensional element which is subjected to
conduction, convection and internal heat generation,



315, HEAT TRANSFER N 2.DIMENSION - (THERMAL PROBLEMS) - -

3.16.1. Shape Function Derivation for Heat Transfer in 2D Element

We begin this section with the development of the shape ﬁmchm for o I:a.su: two
dimensional triangular element.

We consider this triasngular element because its derivation is the simplest among the
available two dimensional elements,



-
o)

Fig. 1.16. Three noded triangular clement _
Consider a typical triangular element with nedes 1, 2 and 3 as shown in Fig.3.16. Let the
nodal displacemnents be u;, Uy, iy, ¥y, Wy and vy

Displacement {2} = 1.~ 7

¥

L V3
Since the triangular element has got two degrees of freedom at each node (i, v), the total
degrees of freedom 15 6. Hence it has 6 generalized coordinates.
Let, M= ooy togxtogy e (331
V= agtagxrtogy .. (3.52)
where, o, &, &0y, oy, & and o are globat or generalized to-ordinates,
=. Hp = oy +ogpx g
By = Oy tayxtagpy
My S oty tag
Write the above equations in matrix form,
Hy 1 X % a;
=Tl nnl|iq
! oy 0ty



@y BET NN
= o p o= 1 x5 »n ¥y
o3 L1 % » #
e -
] x. yl
- 4 -—
Let D = | xz yz
. +
] Xy s
CT
We know, Dl = I'B"!
Find the co-factors of matrix D. -
X V2 :
ey =+ % W = (B -0
Iy,
0!2 = 1 y3 = ‘(Y}")"z)' y2—y3
l xfz
€3 =+ 1, % = (- xy)
o N
Cyy ™= x5 ¥, = = Y=Fn) = Y -X N
l yt
et | yi THTA
(I
R R R R
LI 4|
¢y =+ X s =X =%
by
g i FIEY ~-m)=n-n
boxy
e =+ - = Xy=3X




Lz vy —x3 ) Oa—ps) (x-x)
= C= |iny-xnun (-0 x-x)
fﬁ}’z‘xgh]' I -n) m-x)

T =2 ) mp=my) (g p-xp)

= CT = =) 3=y 0y =) ... (3.55)
(x; - 23) ¥ -x) (% —x))
I3 o»
Weknowthat, D= |1 x p
boxy
B = Ty =xnml=-n -1+ pn-n) . (3.56)

Substitute CT and D values in equation (3.54),
_ ]
(xpy3 =% 3) =% (ry =y + 3, Dy —x3)
Cayy=x3 ) (oyp—x p) (-5 )

= p-1

Fa=¥y ¥i=n ¥~V
Xy =Xy X=Xy - x
Substitute D' value in equation (3.53),
(o Ly n 7 (m
¥ % ﬂz - ] II }'1 "2
L oty b oxy p by,
f‘ul
]
< =
= HEE I T s i
L, Tty
(a3 =Xa ) (apy=x 1) () -3 9)) "
Y1—F Yi=F =k ... (3.57)
X1—% Tp=5 =X t

The area of the triangle can be expressed as a funclion of the x, y co-ardinates of the
nodes 1, 2 and 2, .



I x ¥

= A= 3 I Xy »
I x5 »
|
[ AL =3 [Ty —xapad=x (a—pad + 3y (1 - x))
= 2A = (¥ -x ) -x n -+ (g -x) o (3.58)
Subatitute 2A values tn equation (3.57),
(o) 1 wy=ny) Wy-ny Grn-ay)] (m)
I R n-n Yi-» wr L (350)
| O Xy =Xy o ¥y =X !
[ ) : ap &y )
=y% [ = 5% &y by by | x9m 1 . {3.60)
\aj.' € (-‘2 cj H’a
where, a = yi-x3vy, & = f;]’l——"‘fl}"a; 4y = Yyp=-X )
by = p- by = »=¥i by = »-m
€ = IT3=Xp o SR s T G = H-x

From equation (3.51), we know that,
W=ty tay
We can write this eguation in matrix form,
bl
¥ =[lxyp]y e
ay
oy o
. Substitute 7 @7 ¢ value, from equation no.(3.60)
x3
1 e e I By
=u#=[lxy]xs5% ﬁlbzlﬁ*a by
€ € A by



a @ aq|fn
=‘f};[lxy]_hﬁzba “:
€ €3 o3 Iy
Hy
ﬁ[ﬂr*ﬁnﬁcn}* MEhyxde;y @mrbixtoy] xq
' Hs
[~ “*311_1553-!3] Ex3]

. : u
["I"'bl:""l? Htbyxteyy a;+b,x+cj}l] :
= — N A A (13

¥
The above equation is in the form of

= iy 3

wo= [Ny Ny Ny) {% 0 - 461)

IN; Ny NyJ 4 ¥a .. (3.62)

Similarly, »

#I'F&l'r--'l_cl.'l"

where, Shape function, M, = A

N | ai--;lr.!la_1:+sz}l
N, = 2A

ﬂ';'i' b;.‘-‘ ‘l'f,-'!_'li'

Asssmbling the equations IJﬁl)lﬂl-j-é}iﬂ matrmﬁmn, .
&5

| [N, 0 N, 0 N, 0
Displacement function, w = v, 1) —[' ? ’ 1:-:

veant L0 N 0N, 0N,




3.15.2. Stiffness Matrin and Load Vector for Heat Transfer in Two-dimansional
Element

Y
Ta 3 (%3 ¥3)

e b 17 2 (% ¥2)

1 Ts

- X

Fiz. 3.17. Trianguiar slement with nodal wemperasure

c f
Triangular gloméns is the basic element for solution of two-dimensional heat transfer
problems. Consider the three-noded triangular element with nodal temperatures Ty, T and
T as shown tn Fig.d.17.

The termperature function 'isgii.:'unhy,
We know that,
. aitbyx+e,y |
Shlpeﬁnﬂlm. Nl - 1A
ay+ by x+ey ¥
Nt — _L._IEI'L_L b .“{155]
+hyx+e
and N, = “3 ;A “3F
We know that,
Stiffhess matrix (Kc] = I[B]' [D} [B] dv .- {3.66)
We know that
N, ﬂth oM,
Strain - Disp : trix,[B] ¢x &éx Ox 66
train ~ lacement ma = . (3
_ N, 2N, N,

Bx dy &y



By partial differentiation,

aN b
o Nk BN e
dx A7 oy 24"
L A
8xr T IA* @y T 2A
SNy by ANy g
Bx A" 2y  2A
Substitule the equation (3.68) in equation (3.67)
R Py
A 2A A
[(B] =
T
A 2A 2A
67 = L [ 8y by by
WMo o o
by e
|
[P]T = T by oy
by o

We know that,
j:#

Stress-strain matrix, [D] = [ o

"
k)‘

oos (3.68)

v (1.70)

371

- {3.72)

Assuming a unit thickness, the elemental volume can be expressed as dv = gA

Substitute the (3.70), (3.71}, (3.72), (3.73) in equation (3.66)

by e

I kI ﬂ '| bl ﬁ] &3
= |—| & LI
s R e Y| S ] el

by oy

. A3.73)

aA



1 k. 0008 &, b,
d"‘zf P [“ ﬂ?y][ﬁ e o]

&1 ﬂ}
B e 01 e b b
1 : g i s 3
= — vﬁ ' dﬁl
. 3
B oo ] - -
R I PR B LR TR
4 A EII ? 'ﬂ 'E.'l’ L ) € &3
L 93 & -
T bk, 0 D+ kT
1 j YT e 8 by
- H bzk!'l'u ﬂ+c;ky . : .
R T 5
_bik:'l"u n"'l.'."]_k?_

U hrel k) bk teigk) (b by ke ok)
(Kl = 77 | Bibskoreak) Gl h+d k) (bbyhtook)

[y bykete o k) (Brbikoteyok) (2 ko+el k)
Fﬂranisutmpicnmtﬂialwim.k,=kj'k.

+u

Stiffness matrix for conduction,
|:EI'12 + C':i} {bl bl + ey l:l} (b'. E"_{ +C| (:3}
= iKC] = 'i'% {bl bl+¢] Cz] {bg +c§} (bl 'b]-l-‘cl cﬂ-} '(3'?‘1}
Bybyteiey) (byhy*ezey) (B2 +el)

To determine the stiffoess matrix for convection,

KD = J'J:[N]‘f [N] g5 .. (3.75)
5
‘N,
= J:J‘* Ny » [Ny N, Ny ods
[ Ny

[ N NN, NN, .
i ] NN, N7 NNy | o . (3.76)
| NN, N3N, N




Let the edge 1-2 of element lies on the boundary as shown in Fig.3.18. So that Ny = 0
. along this edge.

Wi

Fig. 3.18. Heat loss by convection froms sides 1-2

Substitute N, * 0 in cquation (3.76),

N} N;N, 0
(Kel =& (1 NN, N0 [as
0 0 9

Substitute Ny =L, N, =L and Ny = L,, along the edge 1-2, N, =L, =0.
s [ LT Ll o

Hence, = [K,] = % f LiL, L} o |das (37
5 0 0 o0

Where, s-denotes the direction along the edge 1-2.

o! B!
We know that JL‘:Lgd; = m%]—)!s
2!
@2+ip®
1 x2
1x2x3 ¢

Therefore, [Lf ds =

§
Jid ds = 5 - (3.78)

11
(+1+1)7

|
I x2x3

Similarly, {L,L,ds =

¥

fLiLyds = £ . (3.79)



£

Simitarly, Jias = 55 s

1 =2
lwdx3

.. (3.80)

-t e

Jias =
Substitute the squation (3.78), (3.79) and (3.30) in equation {1.77),

CSi_r fip T
7 ¢ Y

= [Klig = By | 5122 812 0 r
6 3 .

0 0 | =

[Direstion along the edge (1 - 2))

podilt 210

1-2 %12

[Kp)i-z = 7 L 20 ... (3.81)
0 00

MNow, consider the edge 2 - 3 of giement lies on the boundary.
HE[IU-’B, N]:Li=ﬂ, N2=L13 NJ_=L1.

o
i

Substitute the N, N, and N values in equation {3.76), we get
B[00 0
2
Kz =k [0 T2 Ll fg (34D
Substitute the equation (3.78), (3.79) and (3.80) in equation {3.82), we get
-0 0 0
2-3 %13
6
$1-3
3 -
[Direction along the edge (2 —3)]

000

By 3433 002 1

== .. (3.83)
ontr 2

Similarly, let the edge 3 | of elemems lies on the boundary.

[ 3

0
[Kalios = By 5

1=
e
=21 ek
[



Hence, MNy=L,, N,=I,=0, N,=1,
Substittte the Ny, N, and M, values in equation (3.78), we pet
s [ o Lo,

(Kho=hf] 0 0 o |d .. (3.84)
s Ll 0 Li

Substitute the equation (3,78), (3.79) and {2.80) in equation (3.84), we get

R $3-
3 0 7
LK D30y = By L
S3_) 134
TS~ 3

fy 1 834 2ad
(Bl = — [t 4a 'J'J o (3.83)

102

Stiffness mairix for convection,
(K = TK o + [Kphos + [Kphae,

o Ilﬂhls bl 2017
[Ryl= ==y 20 h 2222y g =0 000 s
(V) d 12 102
Stiffness matrix for 2-dimensional heat transfer element is given by,
[K] = [Kp]1+[K,]
(b7 +el) (b byt ) (By By+eyoy)
k
(K] = g7 | tibareye) (B +c3)  (Bybyteyey |+
(Bidyteiest (Bybstaycy) (b +e)

000
——%‘3’;1'3 [n 2 |]+

012

=
—
|
[
mﬁh
i
[ 5]
e —
- =
= = S
[ —
+

l
2
1]
hy_i 834 {E 3 {]}]
AR . (33T
|



3.15.2.1. Force Vector or Load Vector, {F)

The force vector for 2-dimensional heat transfer element is given by

Nl
[F)) = [gqNI"dv =g [ { N2 pda
Ny
Ly
[F,] = quf Ly ¢ dA
L

L

L

By using area co-ordinates system,

; L alpy!
frefiras = TEE G o g gy LA

. Sl

We know that, ILIJA. = {I+2}!H2A_]u2x332ﬁ
JL, da =%

Similar] fLydA = o= x2A = —

imilarly, 244 S (g ¥EA T g XA
{L,2a -‘-.}

imilarly, 3 T T 1x2x3
[Lyda -*;‘-

Substitute the equations (3.90), (3.91) and (3.92) values in equation (3.89), ‘

1
A
LTRSS H
!

{any as

f

Similarly, R

o {(188)

——

gu ]-2 an ['," dv=dA [unii thich’lm}] _"'{3.39]

- (3.90)

e (301}

. (392)

e §3.93)

. (3.94)



I"J]
= [ga N pas ... {3.95)
N,

If the edge | — 2 lies on s, , substitute N| = L, Ny = L, and N, = L, along the edpe
1_2, H3=L3=0+

n [l .
{(F2} = ¢ [{Lafds ... (3.96)
5 4]
By using surface edpes,
[ _ G!E!
IL‘:‘L2 ds = Grpi®
We know that,
i i - 1 3
Jlle.r=(]+”!s=is=§ - (3.97)
Similarl [Lyds = —— ;=2 (3.98)
H ]ar}r’ 2 {l"‘l]l 5 1 e =
Substitute the equation (3.97) and (3.98) in equation (3.96),
1
di-2 8.2
{F,} = g [|} . A3.99)
it
Similarly, the vector { F; } can be obtained as,
(By) = [RT, [N ds ... (3.100)
If the edges 1 -2 lies on sy, substitnte Ny =1, , N, = L,, N3 = Ljalong the edge [ - 2,
Nj = sz
N,
{F;} = KT, J'< My ¢ ds (310D
LNy
(L,
= .FrTWJ‘1 Ly ¢ ds
Ly
1,

= hTwI]L;. ds v (3.102)



Substitute the equation (3.97) and (3.98) in equation (3.102),

|
B2 T. s
[F3) = ”;’3'?[1}
0
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UNIT -V
SPECIAL TOPICS

2.30.2. Fundamentals of Vibration
v Ary motion which repeais liself afier an interval of time is called vibration or
osciflation or periodic motion.
¥ All bodies possessing mass and elasticity are capable of producing vibrations.
¥ Vibration problems, in practice, occur wherever there are rotating of moving parts in a
machinery. The study of vibration is concerned with oscillatory motions of the bodies

and the forces associated with them.
¥ Ilustration: Consider a spring-mass system ﬂf-f-f
constrained to move in a rectilinear manner along -3
the axis of the spring, as shown in Fig 2.39. C T Cxmeme
m When the mmass is displaced from s
equilibrium position A, the imemal forces in A E:ﬂuizlm
the form of elastic or strain engrgy are present i
in the body; and hence the mass reaches B [T Exvema
position B, posilion
m At release, these forces bring the mass to its At A PE or S.E = KE

original pesition. At the equilibrium position MBLCKE =pPEwSE
A, the whole of the elastic or sirain energy is

converted into kinetic energy due to which the Fig, 2.3% Vibration of a
mass continues fo move in the opposite sprivg-mass syster
direction 1o pasition C.

M At C, the whols of the kinetic energy is again converted into elastic or strain
etiergy due to which the body again retums to the equilibrium position A.

m In this way, vibratory mation is repeated indefinitely and exchange of energy
takes place. -
v Similarly, the swinging of simple pendulum is an another example of vibration a3 the
motion of ball is to and fro from its mean position repeatedly .

2.30.3. Causes of Vibrations
The main causes of vibration are as foliows:

1. Unbalenced forces in the machine. These forces are produced from within the
machine itself. ' '

2. Efostic natere of the system.
3. Self excitations produced by the dry friction between the two mating surfaces,



. Externaf exeitations applied on the system.

Winds may cause the vibrations in certain systems such as transmission and
relephone lines under certain conditions.

Earthquakes also cause vibrations and are greatly raspons;bh for the failure of
dams, many buildings, etc.

2.20.4, Effects of Vibrations

(i) Negative effects: The existence of vibrating elements in sny mochanical system
produces unwanted noise, high stresses, wear, poor reliability and premature failure of one or
more of the parts. In addition to this, vibrations are a great source of human discomfort in the
fort of pliysical and mental sirains.

(i) Posirive ¢ffects: Inspite of the harmful effects, the vibratory systems are built into the
machines. Examples are almost all musical instruments, vibrating COonveyors, ﬁbmlmg
screens, shakers, stress relwwrs, ele.

2.30.5. Methods of Elimination/Reduction of the Undesirable Vibrations

The undesirable vibrations can be eliminated or reduced by one or more of the following
methods.

By removing the causes of vibration.

By resting the machinery on proper type of isolators.
By using shock absorbers.

By using dynamic vibration absorbers. .

By using the sereens (if noise is the objection).

2.30.6. Terminclogy Used in Vibratary Motion
The terms commonly used in the study of vibrations are presented in Table 2.2,

- _Periogic motion: A motion which repeats itself after equal interval of time,

Table 1.2, Terms used in vifratory motion

» Time perigd (i ): 1t i the fime taken by a motion to repeat itself, It is also called a5 period

ﬂif;vibrﬂhm ond is measured in seconds,

Cyole: 1tis the motion completed during one time period.

Frequency (£): It is the rumber of cycles completed i one second, It is expressed in hertz
{Hz). It js 2 reciprocal of time period, Mathematically, f = rL Hz.
P

Matwral frequency: Frequency of free vibration of the system. '

Amplitude (X }; The maximum displacament of a vibrating body from the mean position.

Resonance: When the frequency of the exteral force is equal to the nafural frequency of a

vibrating body, the amplitude of vibration becomes excessively Jarge, This phtnumﬁum is
KIWOW D a5 resonance.

Dramping: 1t is the resistance to the maolion of 8 vibrating body.




2.30.7, ANote on Simple Harmonic Motion

¥ Since most of the vibrating systems follow simple harmonic motion {SHM), therefore
T itis essential to have proper understanding of SHM related basic concepts. :
¥ A body is said to have simple harmonic motion (SHM), if it moves or vibrates about a
mean position such that its acceleradion is always proportional fo its distance from the
inean pasition and it directed towards the mean position or equilibrium pogition,

Differential Equation of SHM

Comsider a particle ‘P’ rmmg around a cirele with a umfmm angular velocity @ rad’s as
shown in Fig.2.40.

Fig. 2.40. Simple farmonic motion of a particle moving around a crcle
Displacement of particle “P* from mear position after time °f*, as shown in Fig2.40, is
given by
X sin @

x
where X = Mnmuunduplanm{wamphtude}nfpnrmh ﬁunmunpmm
Velocity of particle after time °#" is given by

dx
v i X cos o

Acceleration of particle after time *1° is

%--mzxsﬁnmr=—m=x ' [ x =X sin car)
or §3+m1x = : .. (2.143)

ThtabweequnﬁmisMaaMMmfmwmq
SHM.



Thwe period and frequency:

Time period, t = Eﬂ o (2144
. . 1 [l]
and Frequency, f = . S ™= . [2.145)
p

2.30.8. Types of Vibrations
Vibrations may be classified according to:
{a) the actuating force on the body, and
() the stresses in the supporting medium, as shown in Fig2.41.

Yibration Yibratlon
{according to e acirabing force) (2ceording to the sireszes i the
T ELipporifng medivm)
H 1
Froe ar natimal Faresd Jr
vibration vibration 14 [

i — e N N s
Damped ”‘“"“'“_fj Damped Ilﬁmu .
fia) 1))

Fig. 241 Types of vibratious

L According to the Actuating Force

L Free or Natural Vibrations

v If the periodic motion continues after the cause of original disturbance {ie., initial
displacement) is removed, then the bady is said to be under free or natieral vibrations.

¥ The frequency of the free vibrations is called free or natural frequency.
¥ Example: Oscillation of a simple pendulum
2. Forced Vibrations '

¥ When the body vibrates under the influence of external force, then the body is said to
be under forced vibrarions.

¥ The vibrations have the same frequency as the applied force. :
¥ Exampiles: Vibrations in machine tools, electric bells, vibratory mnwym;g, ele,
3. Damped Vibrations | |
¥ When there is & reduction in amplitude over every cycle of vibration, the motion is said
to bF damped vibration,

-



¥ That is, if the vibratory system has a damper, the motion of the system will be opposed
by it and the energy of the system will be dissipated in friction.

¥ On the contrary, the system having no damper is known as andamped vibration.
m If the damper is connected with free vibrating body to control vibrations, then it is
called free damped vibrations.
w If the damper is commected with forced vibrating body to control vibrations, then it
is called forced datnped vibrations.
v Examples: Vibrations in all machinery in actual use are damped in nature.
4. Undampeil vibrations

¥ 1f no energy is tost or dissipated in friction or afher resisting force during vibration,
then such vibration is known as sndamped vibradom

¥ In other words, the system having no damper produces undamped vibrations.

¥ In the vibratory system, if the amount of external excitation is known in magnitude, it
causes deferminisiic vibration.

Il. According to Motion of System with Respect to Axis

Consider a vibrating body, e.g., a rod, shaft or spring. Fig.2.92 shews a heavy disc carried
on one end of a weightless shaft, the other end being fixed. This system ean exccute any one
of the following types of vibrations.

Shaft~~, A1
d 'i/ ",
,"'} & 1i ‘I"\ s, -~
hiass r .\H'\ . II.--" "'-__ '."1_,.-"" 1'\__

M= kizan position
E and & = Extreme pos/lions

fa) Longitndinal vibrofion fB) Transverse vibration ¢} Torsionad vibration

Fig. 2.42. Tppes of vibration



1. Longitudinat Vibrations

When the particles of the shaft or disc moves parallel to the axis of the shaft, then the
vibrations are known as longitndinal vibrations, as shown in Fig.2.42(a).

2. Transverse Vibrarions

When the particles of the shaft or dise move approximatzly perpendicular to the axis of
the shaft, then the vibrations are known as transverse ibratlons, as shown in Fig.2.42({b}.

3. Torsional Vibrations

When the porticles of the shaft or disc move in a civele about the axis of the shaft, then the
vibrations are knowr as torsionad vibrations, as shown in Fig.2.42{c).

2.31. EQUATIONS OF MOTION BASED ON WEAK FORM
2.31.1. Longitudinal Vibration of Bars or Axial Vibration of a Rod
Consider a free body diagram of a differential elemen of length x as shiown in Fig.2.43.

2
-— pAdx i
it

“*F%—baﬁ% (o) di

s
Fig. 2.43. Free body diagram of a differential efement

Let, © = Siress induced in M/m?
m = Massofbody m N
a = Aceceleration due to gravity in m/s

dx = Elemental length in m
Applying Newton's Second Law,
8 iy
(EA+E; {u.ﬂ.}dx) -aA-{p A dx) i 0 oo (2146)
a é*
E(ﬁﬂ)dx-pﬁdx—a'ﬁ =0
du
% aA-p .ﬂu'é:_;, =0 .e (2.147)
du
Weknowthat, o = E-— .o (2.148)



Substitute the equation (2.148) in (2.147),

du diy
Bx[E"" ] p“'&rl =0

i at
AET; = pasﬁ . {2.149)
Using the technique of .wpmhun ﬂf wnublm and assuming harmonic vibration, we have,
uGr, 1) = dix)e | _ . {2150)
Equation (2.150), by using partial differentiation,
3
= %‘T;r = w{x}. &7 —in)x (- in)
a2 : )
ﬁ = u- (- wd) T LIS

[ =ix=i=i = 2= _1]

Equation (2.150) = oF = %% -tes

EI dx
B _ & ;
> o aa e [ i very small, e, 1=0]
&iu d%u
2y, £ L(2152)

Substituting equations (2.151)and (2.152) in equation (2.149), we obtain,

ﬁde; = —pAoly

""Ejii +pAwiy = 0 _ - (2.153)

Weighted-Residual statement for the above equation is

-

fw{x][uf—;; +p mlu)dx =0 | o (2154
4 |

Integrating the above equation, the weak form of the Weighted-Residual statement can be
rewritten as, -

!
[w{x}AEj ] fﬁE‘h o dx+f’w[;]pm1u{x}_.:fx'-_= 0 .. (2.155)
i



Bar element: Consider a one dimensional har element with nodes 1 and 2 as shown in
Fig2.44. Let n, and u, be the nodal displacement paramerers or otherwise known as degrees
of freedom.

b —= Uz

¢ i

x=0 x=]
Fig. L44. Bar element

The shape functions arz given by equation,
ulx) = Ny +Npm,

. [1 -%‘ )\u,+(%‘]u2 e (2.156)

In the Galarkin formation, the weight functions are the same as the shape functions. So we
have,

I
wile) = 1-7,

walz) = 7 (2157
Mow differentiating with respect to x,
dwy 1o
= EI = [T) . o (2.158)

Substitute the equation (2.156) , (4.15) and (2.158) in oqlmt[m {2.155).

=[[1- ]AE,“T;] J'ade( ]d:r+
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Similarly, wlz) =7 =7 T 71 0 (2.160)

Suhstihrt: the equation (2.156), (2.157) and {2.160} in equation (2,135},

[AE—] J‘ﬂE ()
J(Hoac (-5} ar(F)a] oo



[P,—&E[ﬂ-;ﬂ] +:E' (ﬂ > ﬁ.mi[[] -3, +G—‘]u1]dx ]-u ~@16)

Uy - i
[ ey PJ-J!L E (_I_I_l)]
Writing equations (2.159) and (2.161) in matrix form,

B I [




> L (e

[~ I3 , =
-1 & P i)
=3 23| br-iE-o {u;}
.f: B I E =
GRS
. LA
AE [ 1 =17 = -Py " 3 6 {lﬂ}
=7 1_{1&]'{Pr}+pﬁm i flw]
6 3
AET 1 -1]m]  [~F] 5ale [il] “l}
Flanhal- e ) e

' . B AE [}
where, Elm:nlsnfﬁmmm[K]-T e

Element mass matrix, [m] = F%'r [T ;]

"PI_'I
[(Ki(u) = p ' [+o?(m){x)

-p
[(K]-Im]wt]ia} = { P:} .. (2.163)

In free vibration problems, external forces are zero. So, the above equation reduces to
[[[K]-[m]a?){«} = 0




|l. Basic Concepts

The finite element method (FEM). or finite element analysis
(FEA). 1s based on the idea of building a complicated object with
simple blocks. or. dividing a complicated object into small and
manageable pieces. Application of this simple idea can be found
everywhere in everyday life, as well as in engineering.

Examples:

e Lego (kids’ play)

¢ Buildings

. 1 :
Area of one triangle: S; = ERE sin &;

N \
1 . w
Area of the circle: Sy = 2.5, = ;RENSHI( ,Hl — 7R asN -
ful = :
where N = total number of triangles (elements).

Observation: Complicated or smooth objects can be
represented by geometrically simple pieces (elements).

27




Why Finite Element Method?

Design analysis: hand calculations. experiments. and
computer simulations

FEM/FEA is the most widely applied computer simulation
method in engineering

e Closely integrated with CAD/CAM applications

Applications of FEM in Engineering

e Mechanical/Aerospace/Civil/Automobile Engineering

Structure analysis (static/dynamic. linear/nonlinear)

e Thermal/fluid flows

Electromagnetics

Geomechanics

e Biomechanics

e
Modeling of gear coupling

Examples:



A Brief History of the FEM

e 19043 ----- Courant (Variational methods)

® 1956 ----- Turner. Clough. Martin and Topp (Stiffness)
e 1960 ----- Clough (“Finite Element”. plane problems)
e 1970s ----- Applications on mainframe computers

e 1980s ----- Microcomputers. pre- and postprocessors

e 19905 ----- Analysis of large structural systems

Can Drop Test (Click for more information and an amimation)




FEM in Structural Analysis (The Procedure)

¢ Divide structure into pieces (elements with nodes)

e Describe the behavior of the physical quantities on each
element

e Connect (assemble) the elements at the nodes to form an
approximate system of equations for the whole structure

e Solve the system of equations involving unknown
quantities at the nodes (e.g.. displacements)

e (Calculate desired quantities (e.g.. strains and stresses) at
selected elements

Example:

FEM model for a gear tooth (From Cook’s book. p.2).



Computer Implementations

¢ Preprocessing (build FE model. loads and constraints)
e FEA solver (assemble and solve the system of equations)

¢ Postprocessing (sort and display the results)

Available Commercial FEM Software Packages

¢ ANSYS (General purpose, PC and workstations)

e SDRC/I-DEAS (Complete CAD/CAM/CAE package)
o NASTRAN (General purpose FEA on mainframes)

¢ ABAQUS (Nonlinear and dynamic analyses)

¢ COSMOS (General purpose FEA)

¢ ALGOR (PC and workstations)

e PATRAN (Pre/Post Processor)

* HyperMesh (Pre/Post Processor)

Dyna-3D (Crash/impact analysis)

A Link to CAE Software and Companhnies




Il. Substructures (Superelements)

Substructuring is a process of analyzing a large structure as
a collection of (natural) components. The FE models for these
components are called substructures or superelements (SE).

Physical Meaning:
A finite element model of a portion of structure.

Mathematical Meaning:

Boundary matrices which are load and stiffness matrices
reduced (condensed) from the inferior points to the exterior or
boundary points.

l \\ BT

!./

Lal =

Fig. 4.11-1. i) Possibic substruciures la. 1&, . 5 of & hypothedes) slrcrai. (b) Castellawed
heam. with typical repeting substrucoure ABCT. Elemenis of the substnsctures are not ko,



Advantages of Using Substructures/Superelements:

Large problems (which will otherwise exceed your
computer capabilities)

Less CPU time per run once the superelements have
been processed (1.e.. matrices have been saved)

Components may be modeled by different groups

Partial redesign requires only partial reanalysis (reduced
cost)

Efficient for problems with local nonlinearities (such as
confined plastic deformations) which can be placed in
one superelement (residual structure)

Exact for static stress analysis

Disadvantages:

e Increased overhead for file management

¢ Matrix condensation for dynamic problems introduce

New approximations



IV. Nature of Finite Element Solutions

¢ FE Model — A mathematical model of the real structure.
based on many approximations.

¢ Real Structure -- Infinite number of nodes (physical
points or particles). thus infinite number of DOF’s.

¢ FE Model — finite number of nodes. thus finite number
of DOF’s.

= Displacement field is controlled (or constrained) by the
values at a limited number of nodes.

A\

\ Recall that on an element :

4
u=> N_u,

a=l

Stiffening Effect:

e FE Model 1s stiffer than the real structure.

¢ In general, displacement results are smaller in
magnitudes than the exact values.



Hence. FEM solution of displacement provides a lower
bound of the exact solution.

i A (Duplacemant)

* Exact Solution

+ FEM Solutions

No. gf DOF =

The FEM solution approaches the exact solution from
below.

This is true for displacement based FEA!



V. Numerical Error

Error #Mistakes in FEM (modeling or solution).

TIype of Errors:
¢ Modeling Error (beam. plate ... theories)
¢ Discretization Error (finite, piecewise ...)

¢ Numerical Error ( in solving FE equations)

Example (numerical error):

FE Equations:

k, —ky |fu, | |P
—k, Kk +ky | U, o
and Det K = kk,.

The system will be singular if k> 1s small compared with kj.



oy =<k (two lines close):
= System ill-conditioned.

- k
<y =——i—u
R T
k; == ky (two line apart):
= System well conditioned.

o Large difference in stiffness of different parts in FE
model may cause ill-conditioning in FE equations.
Hence giving results with large errors.

¢ Ill-conditioned system of equations can lead to large
changes in solution with small changes in input
(right hand side vector).



VI. Convergence of FE Solutions

As the mesh in an FE model is “refined” repeatedly, the FE
solution will converge to the exact solution of the mathematical
model of the problem (the model based on bar. beam. plane
stress/strain. plate. shell. or 3-D elasticity theories or
assumptions).

Type of Refinements:

h-refinement:  reduce the size of the element (**h " refers to the
typical size of the elements);

p-refinement:  Increase the order of the polynomials on an
element (linear to quadratic, etc.; *“*h” refers to
the highest order in a polynomial):

r-refinement.  re-arrange the nodes in the mesh:

hp-refinement: Combination of the h- and p-refinements
(better results!).

Examples:



VIl. Adaptivity (h-, p-, and hp-Methods)

¢ Future of FE applications

¢ Automatic refinement of FE meshes until converged
results are obtained

e User’s responsibility reduced: only need to generate a
good initial mesh

Error Indicators:
Define.

o --- element by element stress field (discontinuous).
= "
o --- averaged or smooth stress (continuous).

*
o= -o --- the error stress field.

Compute strain energy.

M

U=>U,. U, = J%GIE_lﬁdrl
i=1 r, s
¥ M £ ¥ ]. £ ¥
U =>U,. U'=[-¢"E7cdV:
ful ’ ¥, 2
M 1
Uy =3 Uy, Ug; = [-06zE76,dV:

iml ;.:; s

where M is the total number of elements. ¥, is the volume of the
element 7.



One error indicator --- the relative energy error:

172
U, ,
=|——1 . 0<p<l
n [U+U£} (0=p=1)

The indicator n is computed after each FE solution. Refinement
of the FE model continues until. say

n < 0.05.

== converged FE solution.



