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Chapter 1: Basics of Vibrationsfor Simple Mechanical Systems

I ntroduction:

The fundamentals of Sound and Vibrations are part of the broader field
of mechanics, with strong connections to classical mechanics, solid
mechanics and fluid dynamics. Dynamics is the branch of physics
concerned with the motion of bodies under the action of forces.
Vibrations or oscillations can be regarded as a subset of dynamics in
which a system subjected to restoring forces swings back and forth
about an equilibrium position, where a system is defined as an
assemblage of parts acting together as a whole. The restoring forces

are due to eladticity, or due to gravity.

The subject of Sound and Vibrations encompasses the generation of
sound and vibrations, the distribution and damping of vibrations, how
sound propagatesin afree field, and how it interacts with a closed space, as
well as its effect on man and measurement equipment. Technicd
goplications span an even wider field, from gpplied mathematics and
mechanics, to dectricd instrumentation and andog and digitd signd
processing theory, to machinery and building design. Most human
activities involve vibration in one form or other. For example, we hear
because our eardrums vibrate and see because light waves undergo
vibration. Breathing is associated with the vibration of lungs and walking
involves (periodic) oscillatory motion of legs and hands. Human spesk due
to the oscillatory motion of larynges (tongue).

In most of the engineering applications, vibration is sgnifying to and
fro motion, which is undesrable. Gdileo discovered the reationship
between the length of a pendulum and its frequency and observed the
resonance of two bodies that were connected by some energy transfer



medium and tuned to the same naturd frequency. Vibration may resultsin
the failure of machines or their critica components. The effect of vibration
depends on the magnitude in terms of displacement, veocity or
accelerations, exciting frequency and the total duration of the vibration. In
this chapter, the vibration of a single-degree-of-freedom (SDOF), Two
degree of freedom system with and without damping and introductory
multi-degree of freedom system will be discussed in this section.

1. LINEARSYSTEMS

Often in Vibrations and Acoustics, the calculation of the effect of a
certain physical quantity termed as the input signal on another physical
quantity, called the output signal; (Figure 1-1). An example is that of
calculating vibration velocity v(t), which is obtained in a structure
when it is excited by a given force F(t). That problem can be solved by
making use of the theory of linear time- invariant systems.
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Fig. 0-1 A linear time-invariant system describes the relationship
between an input signal and an output signal. For example, the input
signal could be a velocity v(t), and the output signal a force F(t), or
the input signal an acoustic pressure p(t) and the output signal an
acoustic particle velocity u’(t). [Sound and vibration book by KTH[1]]

From a purely mathematical standpoint, a linear system is defined as
one in which the relationship between the input and output signals can
be described by a linear differential equation. If the coefficients are,



moreover, independent of time, i.e., constant, then the system is also

timeinvariant. A linear system has several important features.

Example 0-1[1]

The figure below, from the introduction, shows an example in which
the forces that excite an automobile are inputs to a number of linear
systems, the outputs from which are vibration velocities at various
points in the structure. The vibration velocities are then, in turn, inputs
to a number of linear systems, the outputs from which are sound
pressures at various points in the passenger compartment. By adding
up the contributions from all of the significant excitation forces, the
total sound pressures at points of interest in the passenger
compartment can be found. The engine is fixed to the chassis via
vibration isolators. If the force F; that influences the chassis can be cut
in half, then, for alinear system, all vibration velocities v; — vy caused
by the force F; are also halved. In turn, the sound pressures p; — pn,
which are brought about by the velocities v, — vy, are halved aswell. In
this chapter, linear oscillations in mechanical systems are considered,
i.e., oscillations in systems for which there is a linear relation between
an exciting force and the resulting motion, as described by
displacements, velocities, and accelerations. Linearity is normally
applicable whenever the kinematic quantities can be regarded as small
variations about an average value, implying that the relation between
the input signal and the output signal can be described by linear

differential equations with constant coefficients.
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(Picture: Volvo Technology Report, nr 1 1988) [1]

1.1 SINGLE DEGREE OF FREEDOM SYSTEMS

In basic mechanics, one studies single degree-of-freedom systems
thoroughly. One might wonder why so much attention should be given
to such a ssimple problem. The single degree-of-freedom system is so
interesting to study because it gives us information on how a system’s
characteristics are influenced by different quantities. Moreover, one
can model more complex systems, provided that they have isolated

resonances, as sums of simple single degree-of-freedom systems.

1.2 Spring Mass System

Most of the system exhibit smple harmonic motion or oscillation.
These systems are said to have dastic restoring forces. Such systems can be
modeed, in some stuaions, by a spring-mass schematic, as illustrated in
Figure 1.2. This condtitutes the most basic vibration mode of a machine



structure and can be used successfully to describe a surprisng number of
devices, machines, and dructures. This system provides a smple
mathematical modd that seems to be more sophigticated than the problem
requires. This system is very useful to conceptudize the vibration problem
in different machine components. The single degree of freedom system is
indicating as:

m
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Fig.1.2 (a) Spring-mass schematic (b) free body diagram, (c) free body
diagram in static condition
If x = x(t) denotes the displacement (m) of the mass m (kg) from its

equilibrium position as a function of timet (s), the equation of motion for
this system becomes,

mX +k(x+xs)—mg=0 1.1
where k =the tiffness of the spring (N/m),
X¢ = Static deflection
m = the spring under gravity load,
g = the accd eration due to gravity (m/s2),
X = acceeration of the system
Applying gatic condition as shown in Fig. 1.2 (c) the equation of




motion of the system yields
mX +kx =0 1.2

This equation of motion of a single-degree-of-freedom system and isa
linear, second-order, ordinary differentid equation with congtant
coefficients. A smple experiment for determining the spring stiffness by
adding known amounts of mass to a spring and measuring the resulting
dtatic deflection x isshownin Fig. 1.3. Theresults of this static experiment
can be plotted as force (mass times acceleration) V/s x, the dope yidding
the vaue of spring stiffness k for the linear portion of the plot asillustrated
inFigure14.

Fig. 1.3 Measurement of the spring stiffness

Force (N)

v

Displacement (mm)

Fig. 1.4 Determunauon o uie spring suiiness




Once m and k are determined from gatic experiments, Equation (1.2)
can be solved to yidd the time history of the pogition of the massm, given
the initia pogtion and velocity of the mass. The form of the solution of
previous egquation is found from subgtitution of an assumed periodic motion

as,

x(t) = Asin(w,t + ) (1.3)

Where, w, = /k/m isthe natura frequency (rad/s).
Here, A=the amplitude
®= phase shift,

A and & are condants of integration determined by the initid
conditions.

If Xoisthe specified initid displacement from equilibrium of massm,
and vp is its specified initid veocity, smple subgtitution alows the
constants A and @ to be obtained. The unique displacement may be
expressed as,

wZxa + v}

X
x(t) = T—sin[mnt + tan™? (wso 0)] (1.4)

Or,

Up
x(t) = —sinw, t + xy cos wyt
Wn

Equation 1.2 can a0 be solved using a pure mathematical gpproach as
described follows.
Substituting x(t) = C e
mAZer + ker =0 (1.5)

HereC # 0and eM = 0,



Hence m\> +k =0
Or
1/2
A=4j (a) = twyj
where, j isan imaginary number = v/—1
Hence the generdized solution yields as,

x(t) = C,e“nlt 4 C e onlt (1.6)

where C; and C, are arbitrary complex conjugate constants of

integration.

The vaue of the congtants C ; and C, can be determined by applying
theinitial conditions of the system. Note that the equation 1.2 is valid only

aslong as springislinear.

1.3 Spring M ass Damper system

Most systems will not oscillate indefinitedly when disturbed, as
indicated by the solution in Equation (1.4). Typicaly, the periodic motion
damped out after sometime. The easiest way to modd this mathematicaly
is to introduce a new term, named as damping force term, into Equation
1.2).

Incorporating the damping term in equation (1.2) yield as

mX +cx+kx =0 (17)

Physically, the addition of a dashpot or damper results in the dissipation
of energy, as illustrated in Figure 1.5 the mass, damper and spring



arrangement is as.

m
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Fig. 1.5 (8) Schematic of the spring-mass-damper system, (b) free
body diagram of the systemin part (a), (c) free body diagram dueto satic

condition

If the dashpot exerts a disspative force proportiond to velocity on the
mass m, the equation (1.7) describes the eguation of the motion.
Unfortunately, the constant of proportiondity, ¢, cannot be measured by
gtatic methods as m and k are measured in spring mass system.

The congtant of proportionaity c is known as damping coefficient and
its unit in MKS is Nm. A generd mathematical approach can be used to
solve the equation 1.7 as described below.

Subdtituting, x(t) = a e’ in equation 1.7, get,

a(mA®e’t + cheM + keM) =0 (1.8)

here a# 0and eM =0

hence, m\ +cA+k=0



. C k
A +a7\+a=0 (1.9)

The solution of equation 1.8 yidds asfollows

c 1 [c? k

The quantity under the radica is caled the discriminant. The value of
the discriminant decides that whether the roots are red or complex.
Damping ratio: It is relaively convenient to define a non-dimensional
quantity named as damping ratio. The damping ratio is generdly given by
symbol Zeeta(z) and mathematically defined as

Substituting the value of k ,m and cinterms of z and w,,, the equation
(1.7) yidds as,

X +2Z 0px+ 02x =0 (1.10)
And equation (1.9) vields as

Mo =—-ZWw, + 0, }Qz—l =Zfw,+wj (L1

where, w isthe damped naturd frequency for (0< £ <1) the damped
natura frequency isdefinedas w = w, |1 — Z°

Clearly, the value of the damping ratio,(z), determines the nature of the
solution of Equation (1.6).

“Fundamentals of Sound and Vibrations” by KTH Sweden [1], this book is used
under IITR-KTH MOU for course devel opment.
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Two degree of freedom systems

*Equations of motion for forced vibration
*Free vibration analysis of an undamped system
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e Systems that require two independent coordinates to describe their
motion are called two degree of freedom systemes.

Number of
degrees of freedom = Number of masses x number of possible types
of the system In the system of motion of each mass
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There are two equations for a two degree of freedom system, one for each
mass (precisely one for each degree of freedom).

They are generally in the form of coupled differential equations-that is,
each equation involves all the coordinates.

If a harmonic solution is assumed for each coordinate,the equations of

motion lead to a frequency equation that gives two natural frequencies of
the system.
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If we give suitable initial excitation, the system vibrates at one of these
natural frequencies. During free vibration at one of the natural
frequencies, the amplitudes of the two degrees of freedom (coordinates)
are related in a specified manner and the configuration is called a normal
mode, principle mode, or natural mode of vibration.

Thus a two degree of freedom system has two normal modes of vibration
corresponding to two natural frequencies.

If we give an arbitrary initial excitation to the system, the resulting free
vibration will be a superposition of the two normal modes of vibration.
However, if the system vibrates under the action of an external harmonic
force, the resulting forced harmonic vibration takes place at the frequency
of the applied force.
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 Asis evident from the systems shown in the figures, the configuration of a
system can be specified by a set of independent coordinates such as
length, angle or some other physical parameters. Any such set of
coordinates is called generalized coordinates.

* Although the equations of motion of a two degree of freedom system are
generally coupled so that each equation involves all coordinates, it is
always possible to find a particular set of coordinates such that each
equation of motion contains only one coordinate. The equations of motion
are then uncoupled and can be solved independently of each other. Such
a set of coordinates, which leads to an uncoupled system of equations, is
called principle copordinates.




Equations of motion for forced
vibration

 Consider a viscously damped two degree of freedom spring-mass system
shown in the figure.

e The motion of the system is completely described by the coordinates xu(t)
and xz(t), which define the positions of the masses mi1 and mz at any time t
from the respective equilibrium positions.
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Equations of motion for forced
vibration

The external forces F1 and F2 act on the masses m:1 and mz, respectively.
The free body diagrams of the masses are shown in the figure.

The application of Newton’s second law of motion to each of the masses
gives the equation of motion:
mli"l ~+ (Cl + Cg) .1'71 - Cgi‘z + (.ICI + ki) X1 — kgxg = Fl

Fs
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Equations of motion for forced

vibration

It can be seen that the first equation contains terms involving x2, whereas
the second equation contains terms involving x1. Hence, they represent a
system of two coupled second-order differential equations. We can
therefore expect that the motion of the m: will influence the motion of

m2, and vica versa.

myX; + (ey + Co) X; — CaXg + (ky + ko) x1 — koxy = Fy

MaXn — CoXy + (Co + €3) Xp — kaxy + (ko + k3) x5 = Fsy
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Equations of motion for forced

vibration

 The equations can be written in matrix form as:

[m] 2(1) + [c] %(0) + [k 3(0) = F)
where [m], [c] and |K| are mass, damping and stittness matrices,
respectively and x(t) and F(t) are called the displacement and force
vectors, respectively.which are given by:
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Equations of motion for forced
vibration

It can be seen that the matrices [m], [c] and [k] are all 2x2 matrices whose
elements are the known masses, damping coefficienst, and stiffness of the
system, respectively.

Further, these matrices can be seen to be symmetric, so that:

mlT = [m], [c]? = [c], [k]T = [Kk]

Free vibration analysis of an undamped system

For the free vibration analysis of the system shown in the figure, we set
F1(t)=F2(t)=0. Further, if the damping is disregarded, ci=c2=c3=0, and the

equations of motion reduce to:
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Free vibration analysis of an
undamped system

* We are interested in knowing whether m: and m2 can oscillate
harmonically with the same frequency and phase angle but with different
amplitudes. Assuming that it is possible to have harmonic motion of m:
and m: at the same frequency ® and the same phase angle ¢, we take the
solutions to the equations

maxi(e) + (kg + kg)x() — koxo() = 0O
MmaXa(t) — koxi(2) + (kg + k3)xy(2) = 0O
x:(8) = X; cos(wt + ¢)

x.(t) = X, cos(wr + ¢)

as:

where X1 and Xz are constants that denote the maximum amplitudes of
x1(t) and x2(t) and ¢ is the phase angle.Substituting the above two
solutions into the first two equations, we have:



Free vibration analysis of an
undamped system

{{ -—fnicuz -+ (kl + kz)} Xl - kzXz]CUS(fdf + (;5)
[__kEXl + [ —QOz -+ (kz -+ kg)} XZ]COS(MI + ¢)

Since the above equations must be satisfied for all values of time t, the
terms between brackets must be zero. This yields, |
{_mlfﬂz + (kl + kz)} Xl — kzXz = 0

_kg.Xl -+ {'_’mzﬂ}z -+ (kz + ka}} Xz = 0

P P P N N G e Y Pe P a2 m omomes s omdet a2

which represents two simultaneous homogeneous algebraic equations in
the unknowns X1 and Xa. It can be seen that the above equation can be
satisfied by the trivial soution X1=X2=0, which implies that there is no
vibration. For a nontrivial solution of X1 and X2, the determinant of
coefficients of X1 and X2 must be zero.



Free vibration analysis of an
undamped system

: { -—mlmz -+ (kl -+ kg)} "“kg _
det [ _‘kz {mzfﬂz + (kz + ka)} =0

(mm,)o* —{(k, +k, )m, + (k, + k;)m }o® +{(k +k,)(k, +k;) —k’}=0

The above equation is called the frequency or characteristic equation
because solution of this equation yields the frequencies of the
characteristic values of the system. The roots of the above equation are
given by:

2 9 l{(kl + kp)my + (ky + ks)m1}

&) 5 =
L 2 2 m1m2

- ‘l'l:{{kl + ffg)mg + (kg T kg)ml}z

2 1, Mg

- 4 {(k1 + ky)(ky + ky) — k%}]lfz

mmsy



Free vibration analysis of an
undamped system

* This shows that it is possible for the system to have a nontrivial harmonic
solution of the form x,(2) = X, cos(wt + &)

x.(t) = X, cos(wt + o)

when w=m1 and ®o=m2 given by:
l]wcl + dp)my + (ke + ks)ml}

2 Mg

o}, f =

_ 1[{{k1 + kpdmy + (kp + ks)ml}z

2 1My Mg

— 4{(IC1 + ky)(ky + k) — k%}]ug

mnia

We shall denote the values of X1 and X2 corresponding to ®: as X$" and X§"

and those corresponding to w2 as X{ and X57..



Free vibration analysis of an
undamped system

e Further. since |
{—mlmz + (kl -+ kz)} Xl - kng = 0

—ngl + {_mzﬂ)g + (a‘r\'.'z + kg)} Xz = (

the above eguation is homogeneous, only the ratios r; = (x$9x% Yy and
r2: {X5/X?} can be found. For &? = } and w? = w3 the equations

{_mlmz + (kl + kz)} Xl - k?_XQ =
_kg.Xl + {—*mzwz -+ (k’g -+ kg}} XZ = ()

give: X —med + (ky k) ky
1= X - ko —mowi + (ky + k3)
XY mmed + (kg + k) ks
72T xe T ks —mpw? + (ky + ki)

* Notice that the two ratios are identical.



Free vibration analysis of an
undamped system

The normal modes of vibration corresponding to w? and w3 can be
expressed, respectively, as:

. x{ x (v 2y x@® _ ng)}
X = {X(ll) RS X = X roX
The vectors XM and X, which denote the normal modes of vibration are

known as the modal vectors of the system. The free vibration solution or

the motion in time can be expressed using
x1(t) = X, cos(wt + &)

x.(t) = X5 cos(wt + ¢)

V@) = MO0 _ [ X5 cos(ant + ¢1)
*#$P) riX{D cos(wit + ¢y)

(2) X(2) ( ; + ¢ )
Sy = 4 XL O 1 cosl@ 274 = gecond mode
x5 {xgg)(t) rgXﬁz) cos(awqt + ¢y)

Q)
wn

} = first mode

where the constants X", X{?, ¢;, and ¢, are determined by the initial
conditions.



Free vibration analysis of an
undamped system

Initial conditions:

Each of the two equations of motion,
myXy + (e + ) X — caXy + (kg + ko) x;p = koxo = Fy

sz'c'z - C?_j:l + (Cz + C3) 3.52 - kle + (k2 + kB) Xy = FZ

involves second order time derivatives; hence we need to specify two
initial conditions for each mass.

The system can be made to vibrate in its ith normal mode (i=1,2) by
subjecting it to the specific initial conditions.
x:(t =0) = X{¥ = some constant, X(t=0) =0,
(= 0) = X, H(r=0)=0
However, for any other general initial conditions, both modes will be
excited. The resulting motion, which is given by the general solution of the

equations myE(8) + (ky + kg)xy (1) — kaxa(£) = 0O
moXa(t) — kox1(1) + (ky + k3)xp(t) = 0

can be obtained by a linear superposition of two normal modes.



Free vibration analysis of an
undamped system

Initial conditions: %(t) = 6,%, (t) + ¢, %, (t)

where ¢, and c, are constants.

Since x$2(r) and x{?(z) already involve the unknown constants X§" and X{*

we can choose ci=c2=1 with no loss of generality. Thus, the components of the
vector X(t) can be expressed as:

(5 = x0@ + 2P0 = X cos(wyt + ¢1) + X1 cos(war + @)
() = 50 + x5
= rlX{l” cos(wyt + ¢y) + rEX{f} cos( wot + @q)

where the unknown X‘ln, X(lz}, @1, and @, can be determined from the initial
conditions

x,(r = 0) = x,(0), X (t 0) = %,(0),
x(t = 0) = x5(0), Xa(t = 0) = X(0)

I



Free vibration analysis of an
undamped system

(D) = 3P0 + 20 = X1V cos(wyr + ¢) + X3 cos(war + 5)
x(8) = x50 + x57(0)

= rIXE” cos(wit + ¢y) + rgX(f} cos({ wyt + @) (5.15)
Thus if the initial conditions are given by
x,(z = 0) = x,(0), X (t = 0) = x,(0),
x,(t = 0) = x,(0), Xq(r = 0) = x(0) (5.16)

the constants X$7, X, #,, and ¢, can be found by solving the following equations
(obtained by substituting Eqgs. 5.16 into Eqgs. 5.15):

2

x,(0) = XiP cos ¢y + X$P cos ¢,

. (0) = — o X D si — o X® s
%(0) = — X}’ sin ¢; — @,X)7 sin ¢,
x2(0) = rIXEU cos ¢ + X cos ¢,

i(0) = — X sin ¢y — wr, X1V sin ¢y (5.17)



Free vibration analysis of an
undamped system

Equations (5.17) can be regarded as four algebraic  equations in the unknownsg |
X cos ¢y, XP cos ¢y, X{P sin ¢, and X® sin ¢,. The solution of Egs. (5.17)
can be expressed as .

X cos ¢, = {rle(ﬂ) - JC2(O)}’ X® cos ¢, = { ~r1x1(0) + xz(O}}

Y — I'y Fa — I

X sin ¢, = { —r3%1(0) + %5(0) ] X® sin ¢, = {rlxl(fn - iz(oj}

wy (ry — ry) wy(ry = ry)

from which we obtain the desired solution
X = [(X{7 cos ¢ }? + {X{7 sin ¢,]2]"

. . 1/2
= ;[ (rax:(0) — xp(0))2 + {7200 1 -"zfm}z]

(rg — rp)

X$ = [{XP cos ¢,}7 + {X{® sin ¢,}71'72

i

= —I“I: { —rx;(0) + xg(O)]z +
(?'2 - ?1) -

{r3.(0) — #(0) }2] "

w3



Free vibration analysis of an
undamped system

from which we obtain the desired solution
X = [{X{V cos ¢1)7 + (X{" sin ¢,)7]'/2

~rp%,(0) + xg(o.)}i] .

wi

1
(rp = 1)

X = [{X{? cos $5}* + {X{ sin ¢, }71'2

il

[ (7221(0) — x,(0))2 +

= — [{—nxlcm + xy(0))7 + LB

(rg — 1)

B _):‘:E(U) }2] 1/2

®3

¢ = tan~! {X'i” sin_¢, ﬁ» = tan-! { —19%1(0) + X%,(0) }
X%i} COS (;51..« wl[rle({}) —_ xz({})}

X sin g, r#(0) ~ %,(0)
_ _1 1 2 -1 141 2
ﬁbz = lan {XEEJ cOS qsz tan { L't.]:{ - rlxl(U} + x?(o)] }
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Example: Find the natural frequencies and
mode shapes of a spring mass system , which ki =&
is constrained to move in the vertical
direction.
nm=m
Solution: The equations of motion are given l |
by: H‘Lfl + kal - kxz =0
¢
mi, — kxy + 2kx; = 0 =10 ky = nk
By assuming harmonic solution as:
x(f) = X;cos(wt + @);i =1,2 My = m
the frequency equation can be obtained by: |
(—mw? + 2k) (—k) _ x,(0)
(—k) (—mw? + 26)| = ° : ky=k

m2w* — dkme? + 3k* = 0
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(—mw? + 2k) (—k) 0
(—k) (—mw? + 2k)

m2w* — 4kme® + 3k = 0

 The solution to the above equation gives the natural frequencies:

1/2
) [ M~ (16Em? - 12mzk2]”2} _ [k
" 2 o
K\D dkm + [16k*m? — 12m2k2 7172 2 . [3k
U. = 2m? BRE
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From

XS mmel + (k) ka
1= X ko —mawt + (ky + k3)

o X  mmwi + (ky T k) ko
T2 = X‘iz) N kz - ‘““?7’12&}% -+ (kg + kg)

the amplitude ratios are given by:
x50 —-mwi + 2k _ k _
17 %M T k T —mao? + 2k
3 X®  -med + 2k k

e

2= X T 2 “mak + 2k
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e From E‘”(r)={i§;g§} ={

X5V cos(wyt + 1)
XY cos(w it + )

5 x(1) X cos(wyt + #2)
X®(r) = 2) = 2)
x5 (1) X7 cos(wat + ¢s)

* The natural modes are given by

. First mode = X(r) =

Second mode = X3)(r) =

dSS-S

'CS

} = first mode

O'Q

} = second mode

g>

§
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e The natural modes are ' First mode = #D(5)
given by:

Second mode = X¥3)(r)

(b) Second mode

(a) First mode
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* |t can be seen that when the system vibrates in its first mode, the
amplitudes of the two masses remain the same. This implies that the
length of the middle spring remains constant. Thus the motions of the
mass 1 and mass 2 are in phase.

~ First mode = X)) =
)

(a) First mode Second mode = X¥(r) =
. I + I}bz)
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e When the system vibrates in its second mode, the equations below show
that the displacements of the two masses have the same magnitude with
opposite signs. Thus the motions of the mass 1 and mass 2 are out of
phase. In this case, the midpoint of the middle spring remains stationary
for all time. Such a point is called a node.

D) =

. - 3k
X cos (\/:+f + t?f'z)
(b) Second mode n

22(r) =




D
O,
(D
(0p)
@)

* Using equations

I
It

(0 = xP@ + P = X{

x5(1)

_ First mode = X(1) =

o0Q
(0p)

<<
(0p)

dcos(w it + ¢,) + XEE) cos(wof + ;)

2
X0 + 20 = r X1 cos(wir + ¢1) + rX$? cos(wyt + ¢y)

fXﬁl) cos (\/%t + qbi)
hXS” cos (\/%r + qﬁl)}

( X§2>cos(\/%—z+ ¢2) ]

Second mode = X®(r) = { -
| - X§? cos ( 224 ¢2)
~ m

the motion (general solution) of the system can be expressed as:

x, () = XV cos (\/n%f + qf:l) + X{*) cos ('\EI + ¢ag)
x.(f) = X{1 cos (\/gr + cﬁi) — X{*) cos (\/%r + l;b-l)
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* The equation of motion of a general two degree of freedom system under
external forces can be written as:

— -4
niyy M2 X1 5 Ci1 Ci2 {xl}
myy Moo | | Xp | €12 Ca2 | [ X2

+ _kn klzj{-ﬁ} _ {F1}
| k2 ko2 [ X2 F

e \We shall consider the external forces to be harmonic:
Fit) = Fpe', j=1,2

where o is the forcing frequency. We can write the steady state solution

as: . .
x_,{t) = Xjf_?:mr, J = 1, 2

where X1 and Xz are, in general, complex quantities that depend on ® and
the system parameters. Substituting the above two equations into the first
one:



CAwv A viihhvratiam AarnAalvg
1 Ul U vibidlivull dlidl

VS

S

d

orce

* We obtain: (—w?myy + iwcyy + k) (—@?myy + iwey; + kig) X
(—w?myy + iwcyy + kig) (= oty + iwegyy + kop) X,

= {FW} . (
Fap |
* If we define a term called ‘mechanical impedance’ Zrs(i1w) as:

Z.(iw) = —&*m,, + iwc, + kg, r,s = 1,2

and write the first equation as:  [Z(iw)]X = Fy

where . Zulio) Zilio)
[Z(iw)] = [z;;(im) zzz(f“’)}

v — Xl ?‘ = {F]D}
x= {Xz} > o

= Impedance matrix
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The equation [Z(fm)}f = ?‘D

can be solved to obtain: X = [ZGiw)] " F

Where the inverse of the impedance matrix is given by:

R 1 Zoyp(iw) —Z(iw)
G N AT Z%ztzm)[—zuﬁiw) Zn(f“’}}
Therefore, the solutions are:

Za(lw)F g = Zia(fw)Fao
Zy(iw)Zy(iw) — Zi,(iw)

_Ziz(i&l)Flg + le(f(d)Fz_o
Z1(iw)Zyp(iw) — Zi(iw)

By substituting these into the below equation, the solutions can be
obtained. x() = X, j=1,2

Xi(iw) =

Xy(io) =




Multi-degree of freedom systems

*Modeling of continuous systems as multidegree of freedom systems
*Eigenvalue problem
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As stated before, most engineering systems are continuous and
have an infinite number of degrees of freedom. The vibration
analysis of continuous systems requires the solution of partial
differential equations, which is quite difficult.

In fact, analytical solutions do not exist for many partial differential
equations. The analysis of a multidegree of freedom system on the
other hand, requires the solution of a set of ordinary differential
equations, which is relatively simple. Hence, for simplicity of
analysis, continuous systems are often approximated as
multidegree of freedom systems.

For a system having n degrees of freedom, there are n associated
natural frequencies, each associated with its own mode shape.
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Different methods can be used to approximate a continuous system as a
multidegree of freedom system. A simple method involves replacing the
distributed mass or inertia of the system by a finite number of lumped masses or
rigid bodies.

The lumped masses are assumed to be connected by massless elastic and damping
members.

Linear coordinates are used to describe the motion of the lumped masses. Such
models are called lumped parameter of lumped mass or discrete mass systems.

The minimum number of coordinates necessary to describe the motion of the
lumped masses and rigid bodies defines the number of degrees of freedom of the
system. Naturally, the larger the number of lumped masses used in the model, the
higher the accuracy of the resulting analysis.
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Some problems automatically
indicate the type of lumped
parameter model to be used.

For example, the three storey
building shown in the figure
automatically suggests using a
three lumped mass model as
indicated in the figure.

In this model, the inertia of the
system is assumed to be
concentrated as three point
masses located at the floor
levels, and the elasticities of the
columns are replaced by the
springs.
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Another popular method of approximating a continuous system as a
multidegree of freedom system involves replacing the geometry of the
system by a large number of small elements.

By assuming a simple solution within each element, the principles of
compatibility and equilibrium are used to find an approximate solution to
the original system. This method is known as the finite element method.
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Using Newton’s second law to derive
equations of motion

The following procedure can be adopted to derive the equations of motion of
a multidegree of freedom system using Newton’s second law of motion.

Set up suitable coordinates to describe the positions of the various point
masses and rigid bodies in the system. Assume suitable positive directions
for the displacements, velocities and accelerations of the masses and rigid
bodies.

Determine the static equilibrium configuration of the system and measure

the displacements of the masses and rigid bodies from their respective static
equilibrium positions.

Draw the free body diagram of each mass or rigid body in the system.
Indicate the spring, damping and external forces acting on each mass or rigid

body when positive displacement or velocity are given to that mass or rigid
body.



Using Newton’s second law to derive
equations of motion

4. Apply Newton’s second law of motion to each mass or rigid body shown by
the free body diagram as:

m¥; = > Fj; (for mass m;)
J
Example: Derive the equations of motion of the spring-mass-damper system
shown in the figure.

Fi(r) Fy(1) F{r) Fn) Fa(6)
ky =———b k, —— ) —e— —— e, — | —

AAAA AT T AT AT A
§3:W — p e BN w1 o NN o B e IS S0 o B

nmy ms m; m; L

c c C; ¢ :

' Xy : X L L b yx,
Pomt1+—b Pomtz+—' Pﬂmt:+—b +—> Point ;+—-b Pmntn+—>
;—# +x;, + -.ti,.f‘.'

Fi(1)

k(i = X)) = m Kiv1(Xivy — x3)
I

ﬂf(i'i = Xjo)) +————p preees Cip 1 (X1 — X;)




Using Newton’s second law to derive
equations of motion

Draw free-body diagrams of masses and apply Newton’s second law of
motion. The coordinates describing the positions of the masses, Xi(t), are
measured from their respective static equilibrium positions, as indicated
in the figure. The application of the Newton’s second law of motion to

Mass Mi gives:  mi; = —k; (x; — x;-1) + Koy (X417 — %) — ¢; (& — %)
+ Civy (Xjuq — X)) + Fy i = 2,3, ..., n—1
or mi¥; = ¢y (€6 + Civy) Xp — Ciwy X — ki x4
+ (ky + ki )Xy = kjgy x50, = F; 0 1i=2,3, ..., n—1

The equations of motion of the masses mi1 and m2 can be derived from the
above equations by setting I=1 along with x.=0 and i=n along with xn+1=0,

respectively. b g
7] ir
|::Fs(f)

ki =~ xiq) +— m. * kivi(Xiay — X))
'-'-?f(i'i— i‘f-l} e ' ' - i+1(ii+1 - j—'i}
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Equ

The equations of motion in matrix form in the above example can be
expressed as: 3 R -
P [m] x + [elx + [k] X = F

where [m], [c], and [k] are called the mass, damping, and stiffness matrices,
respectively, and are given by

'm, 0 0 0 0

0 m2 0 O O

0 0 ms 0 0

[m] =
0 0 0 0 m,
-(cl-!-cg) —Cy 0 - 0 ]

= Ca (e + ¢3) —c5 - 0
0 —C3 (6‘3 + 04) - 0

[c]=

0 ' 0 0 - —¢, (cp + Chay)
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-Uﬁ + k) — ko 0 0 0 7
_kz (kg =+ k3) ""kg Lo {] 0
0 ‘_kg {kg + J[C4) c+ 0 0 0
[k] =
0 0 0 e _ku {kn + -‘I‘::H-l}_
and X, _’,i:, jt;, and F are the displacement, velocity, acceleration, and force vectors,
given by
(X, () (3%,())
xo(1) Xo(1)
3 = 3 ) T = 3 \
[ %a() [ £a()
[ #()) ((Fy(t)
Xa(2) Fa(t)
E = 4 ’ ’1 ﬁ = )

5,00 | 0
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 For an undamped system, the equations of motion reduce to:
m] 3 + K] =F

* The differential equations of the spring-mass system considered in the
example, can be seen to be coupled. Each equation involves more than
one coordinate. This means that the equations can not be solved
individually one at a time; they can only be solved simultaneously.

* In addition, the system can be seen to be statically coupled since
stiffnesses are coupled- that is the stiffness matrix has at least one
nonzero off-diagonal term. On the other hand, if the mass matrix has at
least one off-diagonal term nonzero, the system is said to be dynamically
coupled. Further, if both the stiffness and the mass matrices have nonzero
off-diagonal terms, the system is said to be coupled both statically and
dynamically.
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The equations of motion for a freely vibrating undamped system can be

obtained by omitting the damping matrix and applied load vector from:
mx+cx+kx=0

in which 0 is a zero vector. The problem of vibration analysis consists of
determining the conditions under which the equilibrium condition expressed
by the above equation will be satisfied.

By analogy with the behavour of SDOF systems, it will be assumed that the
free-vibration motion is simple harmonic (the first equation below), which

ﬂﬂﬂﬂﬂ 'F'F IJ f‘ AW N

IIICly IJC CAPICDDCd fUI a IIIUILI dCSICC o1 ireeadom DYDLCIII aDd.
x(t) = xsin(awt + 0)
X = —w’Xsin(aot + 0) = —w°x
In the above expressions, X represents the shape of the system (which does

not change with time; only the amplitude varies) and O is a phase angle. The
third equation above represents the accelerations in the free vibration.
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Substituting
x(t) = xsin(awt + 0)
X = —w’Xsin(awt + 6) = —w*x
in the equation et kx = 0
we obtain: — w*mxsin(ot + 0) + kxsin(ot +0) = 0
which (since the sine term is arbitrary and may be omitted) may be written:

[k—a)zm]ﬁ =0
The above equation is one way of expressing what is called an eigenvalue
or characteristic value problem. The quantities®’ are the eigenvalues or
characteristic values indicating the square of the free-vibration
frequencies, while the corresponding displacement vectors X express the

corresponding shapes of the vibrating system- known as the eigenvectors
or mode shapes.



@Y

ons

llnAA~ an'F AN \/
Jililuad IIIJ UuUilficc v

e
N

-~ 4
iAdl

It can be shown by Cramer’s rule that the solution of this set of
simultaneous equations is of the form:
.0
k—o’m|
Hence a nontrivial solution is possible only when the denominator
determinant vanishes. In other words, finite amplitude free vibrations are

possible only when Hk_a)zmH ~0

Y Tha ahAvn m ua +|r\n ic rallad +hoa 'F eqgquency egt itinn nf+thon VS ctnrm
111 AVJUVCT alivliil 1o Lalicu LIicC 11 \.1 CIliIu y qUGLIUII Ul LIIT LTI II
Expanding the determinant will give an algebraic equation of he Nth

degree in the frequency parameter o’ for a system having N degrees of

freedom.
e The N roots of this equation (wfw§w§w§,) represent the frequencies of

the N modes of vibration which are possible in the system.
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e The mode having the lowest frequency is called the first mode, the next
higher frequency is the second mode, etc.

 The vector made up of the entire set of modal frequencies, arranged in
sequence, will be called the frequency vector o.

Normalization: o

It was noted earlier that the vibration mode amplitudes obtained from the

eigenproblem solution are arbitrary; any amplitude will satisfy the basic
frequency equation
Hk—a)zmH =0

and only the resulting shapes are uniquely defined.
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In the analysis process described above, the amplitude of one degree of
freedom (the first actually) has been set to unity, and the other
displacements have been determined relative to this reference value. This
is called normalizing the mode shapes with respect to the specified
reference coordinate.

Other normalizing procedures also are frequently used; e.g., in many
computer programs, the shapes are normalized relative to the maximum
displacement value in each mode rather than with respect to any
particular coordinate. Thus, the maximum value in each modal vector is
unity, which provides convenient numbers for use in subsequent
calculations.
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The normalizing procedure most often used in computer programs for
structural vibration analysis, however, involves adjusting each modal
amplitude to the amplitude @, which satisfies the condition
$mg, =1

This can be accomplished by computing the scalar factor

i vimv_=M,
where V_ represents an arbitrarily determined modal amplitude, and then
computing the normalized mode shapes as follows:

~

¢n _ {’HM;UZ
By simple substitution, it is easy to show that this givs the desired result. A
consequence of this type of normalizing together with the modal
orthogonality relationships relative to the mass matrix is that

®,me, =|
where ¢ is the complete set of N normalized mode shapes and I is an NxN

identity matrix. The mode shapes normalized in this fashion are said to be
orthonormal relative to the mass matrix.
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e A model of a four-story three-bay frame can be evaluated to

determine the mode shapes. This 2 D model is from a typical
building from the Marmara region in Turkey.

Generally, the first mode of vibration is the one of primary
interest. The first mode usually has the largest contribution to
the structure's motion. The period of this mode is the longest
and the natural frequency is the lowest.

Please click on the movie to start!
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Example:

Determine the eigenvalues and eigenvectors of a vibrating system for which

Given: Mass and stiffness matrices.

Find: Eigenvalues and eigenvectors.
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Solution: The eigenvalue equation [[k] — A[m]] X = 0 can be written in the form

(1 —A) -2 1 X, 0
—2 22 -—A) =2 X, b =40
1 -2 (1= || X, 0

where A = «?. The characteristic equation gives

k] = Alml| = A% (A — 4) =
{8

1".120,./\2:0,1{3:4

Eigenvector for A; = 4: Using A3 = 4, Eq. (E.1) gives
~3X - 2XP + XP =0
22X - 4XP -2XP =0
X -2 X3 - 3 =0
If X1 is set equal to 1, Egs. (E.3) give the eigenvector X0,

1
¥OY = { —1
1
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Solution:

When the characteristic equation possesses repeated roots, the
corresponding mode shapes are not unique.

Eigenvector for Ay = Ay = 0: The value A; = 0 or A, = 0O indicates that the system is
degenerate (see Section 6.12). Using A; = 0 in Eq. (E.1), we obtain

X0 - 2x0 + XD =0
—2 XV +4x5 -2x0 =0
XV - 2xD 4+ x{P =0 (E.5)



Solution:

I

Evammnl
CXdmpie

All these equations are of the form o
XV = 2 xfV - x{V
Thus the eigenvector corresponding to A; = A, = 0 can be written

2 X5 - Xx§9
X0 = X0
b ¢S

If we choose X5V = 1 and X§ = 1. we obtain

If we select XtV = 1 and X§9 = —1, Eq. (E.6) gives

3
X0 =4 1
-1
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Rigid

An unrestrained system is one that has no restraints or supports and that
can move as a rigid body. It is not uncommon to see in practice systems
that are not attached to any stationary frame.

Such systems are capable of moving as rigid bodies, which can be
considered as modes of oscillation with zero frequency.

A semidefinite system such as this, has a singular stiffness matrix. In
systems that are not properly restrained, rigid-body displacements can
take place without the application of any force. Thus, denoting a possible
rigid-body displacement by ur, we have

f =Ku, =0

For a nonzero ur, the above equation can be satisfied provided only that K
is singular. In this case, the below equation can only be satisfied when

®=0. [K — a)ZM]ur =0
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Rigid

 Therigid body displacements are those displacement modes that the
element must be able to undergo as a rigid body without stresses being
developed in it.

e Rigid body displacement shapes are also referred to as rigid body modes.

e A system can, of course, have more than one rigid body mode. In the most
general case, up to six rigid body modes are possible. For example, a
spacecraft or an aeroplane in flight has all six possible rigid-body modes,
three translations and three rotations, one along each of the three axis.

-
F_-——— RN

| e e e g
/N

Rigid body modes of a plane stress element
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 The natural modes corresponding to different natural frequencies can be
shown to satisfy the following orthogonality conditions. When o, # o, :

T T

#Kkp, =0  glmg, =0
 Proof: The nth natural frequency and mode satisfy

2

k¢n — a)nm¢n

[ RO T I JR IAT
Lre dopove €cqudLiorlnt by (//r
#, k¢, = o, 4, mg,

Similarly the rth natural frequency and mode shape satisfy

k¢, = o/mg,
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Premultiplying k¢, =a)r2mg15r by ¢J gives:

4, k¢, = o ¢ym¢,

The transpose of the matrix on the left side of ¢ k¢ = @’d' md, will
equal the transpose of the matrix on the right side of the equation:

¢, ké, = w6, mg,

Subtracting the first equation from the second equation:

(@} —o? Jpimg, =0

The equation ¢Jm¢r =0 is true when o, = », which for systems with
positive natural frequencies implies that o, # o,



Modal equations for undamped
systems

e The equations of motion for a linear MDOF system without damping is:

mXx+kx=p (t
 The simultaneous solution of these coupled equations of motion that we
have illustrated before for a 2 dof system subjected to harmonic
excitation is not efficient for systems with more DOF, nor is it feasible for
systems excited by other types of forces. Consequently, it is advantegous
to transform these equations to modal coordinates.

 The displacement vector x of a MDOF system can be expanded in terms
of modal contributions. Thus, the dynamic response of a system can be
expressed as:

x(t) = Zczﬁrqr(t) = ¢q(t)



Modal equations for undamped
systems

N
e Using the equation x(t) = Zqﬁrqr(t) =@q(t), the coupled equations in xj(t)
given below =1
mX+kx=p (t

can be transformed to a set of uncoupled equations with modal
coordinates qgn(t) as the unknowns. Substituting the first equation into the

second:
Zm¢rdr(t )+ Zk¢rqr(t )=p ()

Premultiplying each termin this equation by ¢ gives:

> Am )+ D dkgat)=¢lp @)



Modal equations for undamped
systems

* Because of the orthogonality relations ¢ kg =0 g mg =0, all
terms in each of the summations vanish except the r=n term, reducing the

equation to:

(#Tm, Ja, () +(gTke, ) =gl )

or
MG, (1) + K, q,(t) = F,(t)
M,=¢mé, K,=¢ké P )=¢pQ)

e The above equation may be interpreted as the equation governing the
response gn(t) of the SDOF system with mass Mh, stiffness Kn, and exciting

force Pn(t).
e Therefore Mn is called the generalized mass for the nth natural mode, Kx

the generalized stiffness for the nth mode, and Px(t) the generalized force
for the nth mode. These parameters only depend on the nth mode.

where
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When damping is included, the equations of motion for a MDOF system
are:

mX+cxX+kx=p (t)

Using the transformation
x(t) = Z¢q (t) = 9q(t)

where ¢r are the natural modes of the system without damping, these
equations can be written in terms of the modal coordinates. Unlike the
case of undamped systems, these modal equations may be coupled
through the damping terms. However, for certain forms of damping that
are reasonable idealizations for many structures, the equations become
uncoupled, just as for undamped systems. Substituting the second
equation into the first, we obtain:

Zm¢r'q'r(t)+Zc¢rqr(t)+2k¢rqr(t)=p t)
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e Premultiplying each term in this equation by ¢nTgives:
S T S T S T T
D 4meG(t)+D dicad )+ dkaat)=dp (
r=1 r=1 r=1

which can be rewritten as:

M, g, (t )+Zcmqr(t )+ K,a,(t)=P,(t)

where

Cnr - ¢r-1rc¢r

The above N equations can be written in matrix form as:
Mq +Cq+Kq=P()

Here Cis a nondiagonal matrix of coefficients Cr.

«o
S



Modal equations for damped systems

The modal equations will be uncoupled if the system has classical
damping. For such systems Cnr=0 if n#r and Cn can be expressed as:

Cn — Zé/n M na)n
For such systems:

M.§,+C.qg,+K.g, =P,(t)
Dividing by Mn:

R®

i, +28,0,0, + 0P, =
qn é/n nqn nqn M

n

where £ is the damping ratio for the nth mode.
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CHAPTER 9
MULTI-DEGREE-OF-FREEDOM SYSTEMS
Equations of Motion, Problem Statement,
and Solution Methods

Two-story shear building

A shear building is the building whose floor systems are rigid
in flexure and several factors are neglected, for example, axial
deformation of beams and columns.

We will formulate the equations of motion of a simple 2-story
shear building whose mass are lumped at the floor.

[ =fo

(a) (b)

Figure 9.1.1 (a) Two-story shear frame: (b) forces acting on the two masses.

The equations of motion are formulated by considering
equilibrium of forces acting on each mass. Any of the two
approaches can be used

(1) Newton’s second law of motion
(2) D’Alembert’s principle of dynamic equilibrium
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Newton’s second law of motion
D> F=mi
For each floor mass (j=1 and 2)

p,—fy—fp=mu, or mu, +fg+f,=p, (t)

Two equations can be written in matrix form

5 el L)
mii +f, +f; =p(t)
where

SIS IR 0 i IR B R
u= m= f, = f, = p=
u2 O m2 fD2 fSZ p2

Because all beams are assumed rigid, the story shear force can
be directly related to the relative displacement between
stories.

12EI_
where A;=u,,—-u, and ki= >

3
columns h

The elastic force acting on the first story mass comes from
columns below ( ) and above ( f3) the floor.

f31 = bel + fsi
f31 — k1u1 + kz (ul - uz)

fsz = kz (uz _ul)
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fs1 _ k1 +k2 _kz U, or fs — Kku

fsz _kz kz U,
The elastic resisting force vector f, is related to displacement
vector u through the stiffness matrix k.

The damping forces f,, and f_, are related to floor velocities
u, and u,. The j™ story damping coefficient c, relates the story

shear Vv, due to the damping effects to the velocity A,
associated with the story deformation by

Vj :chj
We can derive

for =CU, +C, (U, —U,)

sz =G, (U2 _ul)

{fm}:{cﬁcz _CZHl.Jl} or f,=cu
sz —C, C, u,

The damping force vector f, and velocity vector u are related
through the damping matrix c.

Therefore, the equations of motion are
mii + ca + ku = p(t)

This matrix equation represents two ordinary differential
equations governing the displacements u,(t) and u,(t) of the

two-story frame subjected external dynamic forces p,(t) and

P, (t)-
Each equation contains both unknowns u, and u,, SO two
equations are coupled and must be solved simultaneously.
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Dynamic Equilibrium (D’Alembert’s principle)

For each of the mass in the system, the external force must be
in balance with

(1) inertia force (resisting acceleration) acting in the
opposite direction to acceleration

(2) damping force (resisting velocity) acting in the
opposite direction to velocity and

(3) elastic force resisting deformation

fIZ

p5(1) 47_'-——0—71
fs

2 Foy—2——
i

P (1) il fg‘[ “‘_fD] .
! ) ~ Figure 9.1.2 Free-body diagrams.
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Example 9.1a

Formulate the equations of motion for the two-story shear frame shown in Fig. E9.1a.

Solution Equation (9.1.11) is specialized for this system to obtain its equation of motion.
To do so, we note that
m; =2m my =m

5 12(2E1,) _48El, " 12(EI;)  24El.
K3 T 2= PE .. 18
Substituting these data in Eqgs. (9.1.2) and (9.1.7) gives the mass and stiffness marrices:

2 0] k—24EIC[ 3 —1]
0 1 T STgE oAl tnd

Substituting these m and k in Eq. (9.1.11) gives the governing equations for this system with-

out damping:
2 07 (i Elc[ 3 —1] ul}_{m(f)}
m[o 1]{ﬁ2}+24h_3 =T, Al {Mz L pa(®)
Observe that the stiffness matrix is nondiagonal, implying that the two equations are coupled,
and in their present form must be solved simultaneously.

I:

s

VA /A Figure E9.1a
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Example 9.1b

Formulate the equations of motion for the two-story shear frame in Fig. E9.1a using influence

coefficients.
Solution
The two DOFs of this system are shown in Fig. E9.1a; thus, u = (u; uy \,
u = 1, U, = 0
- k21 - k2
u = 1
- k“ - k] - k2
7 7 = ——
(a) (b)
u,=1,u,=0 | Uy =1
- k22 - kz
-k, - k,
VA7 VA7
(c) (d)

Figure E9.1b

1. Determine the stiffness matrix. To obtain the first column of the stiffness matrix, we
impose u; = 1 and up = 0. The stiffness influence coefficients are k;; (Fig. E9.1b). The forces
necessary at the top and bottom of each story to maintain the deflected shape are expressed
in terms of story stiffnesses k; and ks [part (b) of the figure], defined in Section 9.1.1 and
determined in Example 9.1a:

_48EL. | MEL

k= = .
1 I 2 3 (a)
The two sets of forces in parts (a) and (b) of the figure are one and the same. Thus,
T2EL 24E1,.
ki =k +ky = 3 kg = —ky = — 3 (b)
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The second column of the stiffness matrix is obtained in a similar manner by imposing
uz = 1 with u; = 0. The stiffness influence coefficients are k;, [part (c) of the figure] and the
forces necessary to maintain the deflected shape are shown in part (d) of the figure. The two
sets of forces in parts (c) and (d) of the figure are one and the same. Thus,

24E1, 24E1I.
ki =—ky = — 3 - kop = ky = 3 . (c)
With the stiffness influence cofficients determined, the stiffness matrix is
24EI. T 3 —1
== ] @

2. Determine the mass matrix. With the DOFs defined at the locations of the lumped
masses, the diagonal mass matrix is given by Eq. (9.2.10):

m=m[3 (1)] (e)

3. Determine the equations of motion. The governing equations are
mii + ku = p(z) (f)
where m and k are given by Egs. (e) and (d), and p(t) = ( p1(t) p2(t))7.
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General Approach for Linear Systems

Discretization

A frame structure can be idealized by an assemblage of
elements—beams, columns, walls—interconnected at nodal
points or nodes. Displacements of nodes are degrees of
freedom. A node in a planar two-dimension frame has 3
DOFs—two translations and one rotation.

ﬂ%}_,) Ug LN o LN Ug
L & e
Node
U U u
Ij Lﬁ1 4 21N 5‘z3¢-m

N
L/ J

Structural
elements

7z 27 757 77
(b)

Figure 9.2.1 Degrees of freedom: (a) axial deformation included, 18 DOFs; (b) axial deformation
neglected, 8 DOFs.

If axial deformations are neglected, the number of DOFs can
be reduced because some translational DOF are equal.

The external forces are applied at the nodes which correspond
to the DOFs.
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Elastic forces

The elastic forces are related to displacement through stiffness
matrix. The stiffness matrix can be obtained from stiffness

influence coefficient k;, which is the force required along

DOF i due to a unit displacement at DOF j and zero
displacement at all other DOFs.

For example, the force k,(i=12,..,8) are required to
maintain the deflected shape associated with u, =1 and all

other u; =0.

O Node;

Forces f
no lumped mass

Displacements u

P\km k?l o~
/' 7
(b)

Figure 9.2.3 (a) Stiffness component of frame: (b) stiffness influence coefficients for
ui = 1; (c) stiffness influence coefficients for ugy = I.

(c)

The force f; at DOF i associated with displacement u,
(j=1to N) is obtained by superposition:

fi =kiu, + KU, +...+ Kk, U,
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Such equation applies to each of f, where i=1to N, so

fSl kll k12 " klN ul

f ky, Kk, . K u
T L el S A

L fSN ) kNl kN2 " kNN a

where k is the stiffness matrix of the structure.

This approach can be cumbersome for complex
structures in order to visualize a deflected shape with a unit
displacement at DOF j and zero displacement at all other

DOFs.

The direct stiffness method must be used instead. It
involves assembling of stiffness matrices of structural
members into the stiffness matrix of the whole system. The
appropriate method should be used for a given problem.

Damping forces

Damping forces are related to velocities of nodes through
damping matrix. The method of damping influence coefficient
c; can be used to derive the damping matrix in a similar

manner as stiffness matrix relating elastic forces to
displacements.
However, it is impractical to compute the coefficient c;

of damping matrix directly from the size of the structural
elements. Instead, damping of a MDF system is usually
specified in term of damping ratio and the corresponding
damping matrix can be constructed accordingly.
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Inertia forces

Inertia forces are forces related to acceleration of the
mass. An approach to consider inertia forces acting at nodes is
to lump the mass of structural components to nodes.

Inertial forces are related to acceleration at nodes through
the mass matrix m. Mass matrix can be derived using mass
influence coefficient m; which is the external force in DOF i
due to unit acceleration along DOF j. For example, the force
m, (i=1,2,..8) are required in various DOF to equilibrate the
inertia forces assoclated with i, =1 and all other v, =0.

The force at DOF i due to acceleration at various nodes
can be obtained by superposition

f. =m,u +m,u, +...+m U,

Such inertia forces at all DOFs are written together in the
inertia force vector f,, which is equal to

fll mll ran mlN u1

f m m .. m U
J fz L — _21 _22 _2N J _2 > or  f =mi
L fIN ) _le mN2 " I’nNN _ \UN J

When lumped-mass model is used, the mass matrix will be
diagonal. Rotational inertia forces at the nodes are neglected,
so the mass associated with rotational DOFs are zero.

m, =0 If i+ ] m; =m, orQ
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Equations of motion

f, +f, +f, =p(t)

mii + cu +ku = p(t)

The off-diagonal terms in the coefficient matrices m, ¢, and k

are known as coupling terms. The coupling in a system also
depends on the choice of DOFs.

Example 9.2

A uniform rigid bar of total mass m is supported on two springs ki and k» at the two ends
and subjected to dynamic forces shown in Fig. E9.2a. The bar is constrained so that it can
move only vertically in the plane of the paper; with this constraint the system has two DOFs.

Rigid bar

(A, =0,uy=1

ks,
k u, =1 |
2:1[ . ;\5\7\

Figure E9.2
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Formulate the equations of motion with respect to displacements | and u; of the two ends as
the two DOFs.

Solution

1. Determine the applied forces. The external forces do not act along the DOFs and
should therefore be converted to equivalent forces p| and p; along the DOFs (Fig. E9.2b) us-
ing equilibrium equations. This can also be achieved by the principle of virtual displacements.
Thus if we introduce a virtual displacement du; along DOF 1, the work done by the applied
forces is

SW Suq Suq @)
DI il . a
Pt 5 Po 2
Similarly, the work done by the equivalent forces is
§W = p1duy + p2(0) (b)

Because the work done by the two sets of forces should be the same, we equate Eqs. (a) and
(b) and obtain

Pr Po

o pnll . 2a c

PL=7% 7 (c)

In a similar manner, by introducing a virtual displacement du>, we obtain

Pi Po

=2+ 2= d)

p=7+7 (
2. Determine the stiffness matrix. Apply a unit displacement u; = 1 with u; = 0

and identify the resulting elastic forces and the stiffness influence coefficients k1 and &y
(Fig. E9.2¢). By statics, k;; = k) and k;; = 0. Now apply a unit displacement uy = 1

with 1 = 0 and identify the resulting elastic forces and the stiffness influence coefficients
(Fig. E9.2d). By statics, k12 = 0 and k22 = k». Thus the stiffness matrix is
Tk 0
k=1 o] ©

In this case the stiffness matrix is diagonal (i.e., there are no coupling terms) because the two
DOFs are defined at the locations of the springs.

3. Determine the mass matrix. Impart a unit acceleration i = 1| with iy = 0, de-
termine the distribution of accelerations of (Fig. E9.2e) and the associated inertia forces, and
identify mass influence coefficients (Fig. E9.2f). By statics, m; = m/3 and ma; = m/6.
Similarly, imparting a unit acceleration ii; = 1| with ii = 0, defining the inertia forces and
mass influence coefficients, and applying statics gives m2 = m /6 and my2 = m/3. Thus the

mass matrix is
mrlr2 1
— f
m 6[1 2] (f)

The mass matrix is coupled, as indicated by the off-diagonal terms, because the mass is dis-
tributed and not lumped at the locations where the DOFs are defined.
4. Determine the equations of motion. Substituting Eqs. (¢)—(f) in Eq. (9.2.12) with

¢ = 0 gives
E[Q 1][ﬁl]+[f<1 ()][ul]=[(er/2)—(P9/L)] (@)
6 L1 21Li 0 kadluz (pe/2) + (po/L)
The two differential equations are coupled because of mass coupling due to the off-diagonal
terms in the mass matrix.
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Example 9.3

Formulate the equations of motion of the system of Fig. E9.2a with the two DOFs defined at
the center of mass O of the rigid bar: translation u, and rotation ug (Fig. E9.3a).

Solution

1. Determine the stiffness matrix. Apply a unit displacement u, = 1 with uy = 0 and
identify the resulting elastic forces and k,; and kg, (Fig. E9.3b). By statics, k;;y = ki + ko
and kg; = (kp — k1)L /2. Now, apply a unit rotation ug I with u, = 0 and identify the
resulting elastic forces and k¢ and kgg (Fig. E9.3c). By statics, kg = (ky — ki)L/2 and
koo = (ki + kp)L?/4. Thus the stiffness matrix is

" Lka—k))L/2 (ky +k2)L2/4
" A Rigid bar
AN /
(a)—f —/——= =]
Ekl 0 k,
© n 7
— ¢
(b)u’—l,ue=0 k
o @ =140
T/u.; =1 T Lf‘, =1
kiy v &
mi’f
A Inertia forces = m/L
(C)uf=0’u9=1 k Ug =1 T T T T /T/ 1
% 10 kL2 I [ I I [ I
L] = (e) Y Y "‘:}' Y y
klm / My,
(f) i, = 0, iy = 1

’/1
’,f/%frlb:l

Inertia forces = — (m/L)x

mg ‘
Moy 7
A S
/'—p X

Figure E9.3

(2)
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Observe that now the stiffness matrix has coupling terms because the chosen DOFs are not the
displacements at the locations of the springs.

2. Determine the mass matrix. Impart a unit acceleration ii; = 1 with iig = 0, deter-
mine the acceleration distribution (Fig. E9.3d) and the associated inertia forces, and identify
my; and mg; (Fig. E9.3e). By statics, m;; = m and mg; = 0. Now impart a unit rotational
acceleration g = 1 with i, = 0, determine the resulting accelerations (Fig. E9.3f) and
the associated inertia forces, and identify m;y and mgg (Fig. E9.3g). By statics, m;g = 0
and mgy = mL? /12. Note that mgg = [p, the moment of inertia of the bar about an
axis that passes through O and is perpendicular to the plane of rotation. Thus the mass

matrix is
- m 0
m= [0 mL2/12] ®)
Now the mass matrix is diagonal (i.e., it has no coupling terms) because the DOFs of this rigid
bar are defined at the mass center.
3. Determine the equations of motion. Substituting u = {(u; ug)
and Eqgs. (a) and (b) in Eq. (9.2.12) gives

m 0 iy ki + k2 (ko —kD)L/2 7 fus | _ [ pr
K mLZ/lz] Lio ]+ L e —k)L/2 +k2)L2/4] Lo | = {P9 | ©
The two differential equations are now coupled through the stiffness matrix.
We should note that if the equations of motion for a system are available in one set of
DOFs, they can be transformed to a different choice of DOF. This concept is illustrated for the
system of Fig. E9.2a. Suppose that the mass and stiffness matrices and the applied force vector

for the system are available for the first choice of DOF, u = {u; u> ). These displacements
are related to the second set of DOF, i = (u, ug)”, by

ur] _J1 —L/2]{ut] -
{uz}_[l L2 lugJ °° U5 @
where a denotes the coordinate transformation matrix. The stiffness and mass matrices and
the applied force vector for the u DOFs are given by

T'p={(p: po)7,

k=a’ka m=a'ma p=alp (e)

Substituting for a from Eq. (d) and for k, m, and p from Example 9.2 into Eq. (e) leads to k
and m, which are identical to Egs. (a) and (b) and to the p in Eq. (c).
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Example 9.4

A massless cantilever beam of length L supports two lumped masses mL /2 and mL /4 at the
midpoint and free end as shown in Fig. E9.4a. The flexural rigidity of the uniform beam is EI.
With the four DOFs chosen as shown in Fig. E9.4b and the applied forces pi(f) and pa(f).
formulate the equations of motion of the system. Axial and shear deformations in the beam
are neglected.

Solution

The beam consists of two beam elements and three nodes. The left node is constrained
and each of the other two nodes has two DOFs (Fig. E9.4b). Thus, the displacement vector
u=(u; wur wuz ug)l.

1. Determine the mass matrix. With the DOFs defined at the locations of the lumped
masses, the diagonal mass matrix is given by Eq. (9.2.10):

mL /4
mL/2

0

2. Determine the stiffness matrix. Several methods are available to determine the stiff-
ness matrix. Here we use the direct equilibrium method based on the definition of stiffness
influence coefficients (Appendix 1).

To obtain the first column of the stiffness matrix, we impose 1 = 1 and uy = u3z =
ug = 0. The stiffness influence coefficients are k;; (Fig. E9.4c¢). The forces necessary at the
nodes of each beam element to maintain the deflected shape are determined from the beam
stiffness coefficients (Fig. E9.4d). The two sets of forces in figures (¢) and (d) are one and the
same. Thus k1) = 96EI/L>, ko) = —96E1/L>, k3; = —24EI/L?, and k4) = —24E1/L>.

The second column of the stiffness matrix is obtained in a similar manner by imposing
up = 1 with uy = u3 = ug = 0. The stiffness influence coefficients are k;» (Fig. E9.4e)
and the forces on each beam element necessary to maintain the imposed displacements are
shown in Fig. E9.4f. The two sets of forces in figures (e) and (f) are one and the same.
Thus k12 = —96EI/L>, ks = 24EI/L*, ky» = 96EI/L3 + 96EI/L® = 192EI/L3, and
ks = —24E1/L* + 24E1/L? = 0.

The third column of the stiffness matrix is obtained in a similar manner by imposing
uy = 1 with uy = ur» = wg = 0. The stiffness influence coefficients k;3 are shown in
Fig. E9.4¢g and the nodal forces in Fig. E9.4h. Thus k13 = —24EI/L?, ko3 = 24EI/L>.
f(33 = BEI/L, and k43 = 4EI/L.

The fourth column of the stiffness matrix is obtained in a similar manner by imposing
ug = 1 with u;y = uz = uz = 0. The stiffness influence coefficients k;4 are shown in
Fig. E9.4i, and the nodal forces in Fig. E9.4j. Thus kjs = —24E1I/L?, k3s = 4EI/L, koy =
—24ET/L*> +24EI/L?> =0, and k44 = 8EI/L + 8EI/L = 16EI/L.

With all the stiffness influence coefficients determined, the stiffness matrix is

12 -12 -3L -3L
8EI | —12 24 3L 0

k=75 |30 3L 12 12p2 ®)
3L 0 L?/2 2L?
3. Determine the equations of motion. The governing equations are
mi + ku = p(7) (c)

where m and k are given by Egs. (a) and (b), and p(t) = ( p1(t) pa(t) 0 0)7.
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Uy U
Y, Uy Us

(a) (b)
Element (1) [ Element (2)
Node (2) Node (1)
k! 1 a
u=Lu,=u3=u;=0 uy=1l,u =u,=u,;=0 k
" k.'il " 13
21 23 =1
Z kyy u =1 Z kys ks /< "3
© % L i 4 ‘M (2)
96EI/1?
24EI /L2 24EI/ 12 24EI/ 17 T——
@ H (b
4EI/L 24EI /1
96EI/L* /
Uy=lLuy=u;=u,=0 ug=l,uy=u,=u;=0
k22
k42 k|2
Z u2= k32 .
e 7 ()
96EI / L?
24E] / [2 24EI1/I? 24E1/L*  ggr/1
® é@ G
4EI/L 21/ 12
- 24E1/1
96EI/L*
24E1/1? 24EI/L?

24EI / L*

96EI/ L*

'b? 4EI/ L
8EI/L 24EI /12

Figure E9.4
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Example 9.5

Derive the equations of motion of the beam of Example 9.4 (also shown in Fig. E9.5a) ex-
pressed in terms of the displacements # and u> of the masses (Fig. E9.5b).

Solution This system is the same as that in Example 9.4, but its equations of motion will
be formulated considering only the translational DOFs w1 and u> (i.e., the rotational DOFs u3
and u4 will be excluded).

1. Determine the stiffness matrix. In a statically determinate structure such as the one
in Fig. E9.5a, it is usually easier to calculate first the flexibility matrix and invert it to obtain

fo=1f5=0
A f51 =1
£l ﬁz(t) JPI(U S ?U
7; EI #

a L] i % c

@ miL/2 mL/A Z B ©
[ L2 | L2 |
T lf -1

Joo= Lfg=0

fp=1
| K “ | 20 4.

(b) ﬁ} L % f fo (g

Element (ETElement 2) i }

A

Node (2)  Node (1) I

Figure E9.5

the stiffness matrix. The flexibility influence coefficient ﬁ j 1s the displacement in DOF i due
to unit force applied in DOF j (Fig. E9.4¢ and d). The deflections are computed by standard
procedures of structural analysis to obtain the flexibility matrix:

o L [16 5]
C48EIL 5 2

The oft-diagonal elements flg and le are equal, as expected, because of Maxwell’s theorem
of reciprocal deflections. By inverting f, the stiffness matrix is obtained:
k= 18_12 [ 2 _5]
713 L-5 16

2. Determine the mass matrix, This is a diagonal matrix because the lumped masses
are located where the DOFs are defined:

[mL/4

(a)

(b)

mL/2 ]
3. Determine the equations of motion. Substituting m, k, and pP(t) = (p1(t) pr())7T
in Eq. (9.2.12) with ¢ = 0 gives

[ e ]+ 55 [ el =10 ©
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Example 9.6

Formulate the free vibration equations for the two-element frame of Fig. E9.6a. For both
elements the flexural stiffness is EZ, and axial deformations are to be neglected. The frame is
massless with lumped masses at the two nodes as shown.

Solution The two degrees of freedom of the frame are shown. The mass matrix is

m:[Sm m:’ | @

Note that the mass corresponding to ii; = 11is 2m-4m = 3m because both masses will undergo
the same acceleration singe the beam connecting the two masses is axially inextensible.

The stiffness matrix is formulated by first evaluating the flexibility matrix and then
inverting it. The flexibility influence coefficients are identified in Fig. E9.6b and c, and the

A
T 12
2m m l}_i‘{fst =] 1 -
T &= ?:w' "y WS!:I_EA
L El h -
Rl 77 o
s
(a) (b) (CJ
Figure E9.6

deflections are computed by standard procedures of structural analysis to obtain the flexibility
o L [3 3 ]
- 6EIL3 8

This matrix is inverted to determine the stiffness matrix:
K 6ET 8 — 3}
7l

Thus the equations in free vibration of the system (without damping) are

3m i1 651[8 3]'5:1]_I(}]
[ 1?1]|§2]+?L3 -5 2|l 0

matrix;
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Example 9.7

Formulate the equations of motion for the two-story frame in Fig. E9.7a. The flexural rigidity
of the beams and columns and the lumped masses at the floor levels are as noted. The dynamic
excitation consists of lateral forces pj(t) and p;(#) at the two floor levels. The story height is
h and the bay width 2k. Neglect axial deformations in the beams and the columns.

,—{5] k()l,‘\__ k r\kSJ kt’ﬁ;-\_ k
N 17 " » T "3
u = 1 i
LJ3 = "
ks, kf'_' k ’\L-l”k .
"t N7 T M3
13
7 77 7 7 77 7
. L=2h |
t t (b) (c)
(a)
Figure E9.7

Solution The system has six degrees of freedom shown in Fig. E9.7a: lateral displacements
u1 and uy of the floors and joint rotations u3, iy, us, and ug. The displacement vector is

u=(u; uy wus ug wus ug) (a)

The mass matrix is given by Eq. (9.2.10):

2
(b)

0

The stiffness influence coefficients are evaluated following the procedure of Example 9.4, A
unit displacement is imposed, one at a time, in each DOF while constraining the other five
DOFs, and the stiffness influence coefficients (e.g., shown in Fig. E9.7b and ¢ for u; = 1 and
u3 = 1, respectively) are calculated by statics from the nodal forces for individual structural
elements associated with the imposed displacements. These nodal forces are determined from
the beam stiffness coefficients (Appendix 1). The result is

72 24 6h 6h —6h —6h
24 24 6h 6h 6h 6h
w_ EI| 6h 6h 16K% 2n2 202 0
W en en 2m2 16n2 0 2m2 ©
—6h 6h 20 0 6h> h?
—6h  6h 0  2h? 2 6h?

The dynamic forces applied are lateral forces p(f) and pa(¢) at the two floors without
any moments at the nodes. Thus the applied force vector is

p@ 0 0 0 0) (d)

p() = (p1(1)
The equations of motion are
mii + ku = p(r) (e)

where u, m, k, and p(?) are given by Egs. (a), (b), (c), and (d), respectively.
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Static Condensation

Static condensation is a method to exclude the DOFs with no
force from dynamic analysis. Typically the formulation of
stiffness matrix in static analysis considers all unrestrained
DOFs at joints between structural members. Some of DOFs
may not be associated with any mass in dynamic analysis, for
example, rotation DOFs in a lumped-mass model, so they
should be excluded to simplify the dynamic analysis.

U u
2 r i [I—E> “2
u
2 “ “s U 1
1 i —3 —— U
7 7z 7 a7 7 2

(a)

(b)

Figure 9.3.1 (a) Degrees of freedom (DOFs) for elastic forces—axial deformations ne-
glected; (b) DOFs for inertia forces.

The equations of motion for a building shown above is

mtt O i'it + ktt kto ut — pt (t)

0 Ofli,| |k, kg ||lu, 0
It is partitioned into translation (u,) and rotation (u,) DOFs.
Each part involves vectors and sub-matrices.

Each group of partitioned equations are

m,ii, +k,u, +kou, =p, (t) and

to™o

k,u +k u =0
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Because no inertia terms and external forces are associated
with the rotations, u, can be solved.

_ 1
u, = _koo kotut

Then, we can substitute u, into the equation for translational

DOFs and obtain equations of motion which are simpler as
they involve only translation DOFs.

m, i, + l’;ttut =Pt (t)

where the condensed stiffness matrix iIs

N

ktt - ktt - ktoTk_lk

00" ot

Note that k,, =k_ because k is a symmetric matrix.
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Example 9.8

Examples 9.4 and 9.5 were concerned with formulating the equations of motion for a can-
tilever beam with two lumped masses. The degrees of freedom chosen in Example 9.5 were

the translational displacements #; and u> at the lumped masses; in Example 9.4 the four DOFs
were 11, >, and node rotations u3 and u4. Starting with the equations governing these four
DOQOFs, derive the equations of motion in the two translational DOFs.

Solution The vector of four DOFs is partitioned in two parts: w; = (u; u2 )T and up =
(u3 u4)7. The equations of motion governing u, are given by Eq. (9.3.4), where

mL /4 7
me =" o] RO=(m@ o) @
To determine f(,; ¢» the 4 x 4 stiffness matrix determined in Example 9.4 is partitioned:
- 2 =12 & ik ~BL
k=] |=% | =5 e ®)
kor koo B | BE 95 i B4 AR
| 3L O o LZ%72 212
Substituting these submatrices in Eq. (9.3.5) gives the condensed stiffness matrix:
~ 48ElT 2 -5 ©
“T T [—5 16] :

This stiffness matrix of Eq. (c) is the same as that obtained in Example 9.5 by inverting the
flexibility matrix corresponding to the two translational DOFs.

Substituting the stiffness submatrices in Eq. (9.3.3) gives the relation between the con-
densed DOF ug and the dynamic DOF u;:

17257 —343
up = Tu; T_Z[o.857 0.857]

The E:Aquations of motion are given by Eq. (9.3.4), where my, and p;(¢) are defined in
Eq. (a) and ky; in Eq. (¢). These are the same as Eq. (c¢) of Example 9.5.

(d)
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Equation of motion:
Planar systems subjected to translational ground motion

At each instant of time, displacement of each mass is
uj () =u; () +ug (1)
For N masses, the displacements can be written in compact

form as a vector.
u' (t)=u (t)+uy(t)1

where 1 is a vector of order N with each element equal to

unity.
Rigid-body u —{ ]
motion ’_D
" .

I
Rigid-body ——
motion j C

1€

(a) (b)

Figure 9.4.1 (a) Building frame; (b) tower.

The equations of motion previously derived for a MDF
system subjected to external for p(t) is still valid except that

the external force for this case (ground excitation) is zero.
f, +1f, +f, =0

Only relative displacements u between masses and the base
produce deformation and elastic and damping forces.
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The inertia forces f, are related to the total acceleration u'.
f, = mii'
Substituting f, =mii‘ in the equilibrium equation, we get
mii + cu + ku = -m10_ (1)

The right hand side is the effective earthquake forces due to
ground motion excitation.

Py (t)=-mli_ (t)

- -y il 1)
5/ » - il (1)
_ - -m, i1

= Mg(r) Stationary base

Figure 9.4.2 Effective earthquake forces.

This is valid when a unit ground displacement results in a unit
total displacement of all DOFs. In general, this is not always
the case. We introduce the influence vector 1 to represent the
influence of ground displacement on total displacement at

DOFs.
u' (t)=w, (t)+u(t)
The equations of motion are

mii + cu + ku = —muii (t)
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For example, vertical DOF u, is not displaced when the
ground moves horizontally. The influence vector is

1
1=+1
0
n13 k_b" '{2 =1 B
n, D——[?—t} u, 03 E{ o ] O -(:r'.*‘.'2 + m3)ug(r)
Uy 3
m; e U, H]—;} L= 1 - —m].iig(r}
T 7 7?? ) b
— tationar ase
l—c:-{ u, = 1 y
(a) (b) (c)

Figure 9.4.4 (a) L-shaped frame; (b) influence vector ¢: static displacements due to
uy = 1; (c) effective earthquake forces.

The effective earthquake force is

m, 1 m,
ey (1) =—mmli, (t) =t (t) m, +m, 1p=—, (t)ym, +m,
m, | |0 0

Note that the mass corresponding to u, =1 is m, + m, because

both masses will undergo the same acceleration since the
connecting beam is axially rigid.

The effective earthquake force is zero in the vertical DOF
because the ground motion is horizontal.
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Inelastic systems

For inelastic systems, the force resisting deformation is no
longer linear relationship and is described by a nonlinear
function

f, =f (uu)
The equation of motion becomes
mu +cu +f_ (u,l'l) = —mu]g (t)

Such equation has to be solved by numerical methods as
presented in Chapter 5.

Problem statement

Given a system with known, mass matrix m, damping matrix
¢, stiffness matrix k, and excitation p(t) or i (t), we want to

determine the response of the system.

Response can be any response quantity such as displacement
u(t), velocity, acceleration of masses or internal forces, which

IS closely related to the relative displacement.

By the concept of equivalent static force, internal forces can
be obtained by static analysis of structure subjected to a set of
equivalent static forces

fs (t)=ku(t)
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TORSIONAL VIBRATION

Single Rotor System

If a rigid body oscillates about a specific reference axis, the resulting motion is called
torsional vibration. In this case, the displacement of the body is measured in terms of an
angular coordinate. In a torsional vibration problem, the restoring moment may be due to the
torsion of an elastic member or to the unbalanced moment of a force or couple. Figure 1
shows a disc, which has a polar mass moment of inertia Jo mounted at one end of a solid
circular shaft, the other end of which is fixed. Let the angular rotation of the disc about the
axis of the shaft be @, 6 also represents the shaft’s angle of twist.
i

- 7\ __ @ /\
o

ey
PN “‘;';i?f<T~f')
N
T
| Dis
[

Figure 1 Torsional vibration of a disc
Let

6 = angular twist of the disc from its equilibrium position

T = torque required to produce the twist = GI—‘]H

J is the polar moment inertia of the rod = ﬂd%Z

d =rod dia.
| =rod length
Then the torsional spring constant can be defined as,

T _GJ
ot

Applying D’Alembert’s principle the equation of motion may be written as



10+k6=0

é+%0=o

So the natural frequency @, may written as

o, 1

And |f =—=—
2T  2r

k

Double Rotor System

Hz

Consider a torsional system consisting of two discs mounted on a shaft, as shown in Fig. 2.

The three segments of the shaft have rotational spring constants k,,,k,,,k, and as indicated

in the figure. Also shown are the discs of mass moments of inertia J; and J, and the applied

torques My and Mpand and the rotational degrees of freedom 6, and 6, and The differential

equations of rotational motion J; and J,for the discs and can be derived as:
L0y = —knby + ko0, — 6,) + My
hls = —kp(0 — 0;) — kpfly + My
which upon rearrangement become
WOy + (kg + kp)0) — kpby = M,
Sy — kbl + (kpy + ki3)05 = M,y
For the free-vibration analysis of the system, Eq. (5.19) reduces to
WOy + (kg + k)0 — knfy = 0

b0y — kbl + (kpp + ki3)0, = 0

M, o1 M, I‘\QL, NG . L\'i?
‘Q //-;\ Q!-\,"ﬁ. < p (/!\ /‘/ /_}J_):'#

{ ¥k 2 ( [ \ f 1A
\— G S o[ (1) ()
§ kr] ‘\A_/ ,F'] .I\.\;))IJ'Q Af & \\ II\—/"' \;/“

k(6 — 6y)

Figure 2 Torsional vibration of a two rotor system

Example



Find the natural frequencies and mode shapes for the torsional system shown in Fig. 5.9 for
J] = ..'il]. Jz = 2..!’[], and kﬂ = krz = kf.

Solution: The differential equations of motion, reduce to (with k3 = 0, k) = kpp = k,,
J’] = .f[]. and Jz = 2][]).

Jofly + 2kB; — kB =0
2000, =k, + ko, =0 (E1)
Rearranging and substituting the harmonic solution
0{t) = O;cos(wr + ¢); i=1,2 (E.2)
gives the frequency equation:
2043 — Sk, + k2 =0 (E.3)

The solution of Eq. (E.3) gives the natural frequencies

3
w = H—Jjﬂ(s ~V17)  and @ = \,“( (5 + V17) (E.4)

The amplitude ratios are given by

o) _, - V17)
(;)‘1) - 4

n =

Transverse vibration of beam with various boundary conditions

Consider the free-body diagram of an element of a beam shown in Fig. , where M(x, 1)
is the bending moment, V(x, ¢) is the shear force, and fx, r) is the external force per unit
length of the beam. Since the inertia force acting on the element of the beam is

d2u

pA(x) dx (x t)

the force equation of motion in the z direction gives

~(V +dV) + f(x0) dx +V = pA(x) dx "3 v = (x1)

where p is the mass density and A(x) is the cross-sectional area of the beam. The moment
equation of motion about the y-axis passing through point O in Fig. leads to

(M + dM) — (V + dV) dx + f(x, 1) d.r%— M =0

flx, 1)
M(x, 1) M(x, 1)+ dM(x, )

flx. 1) ﬁ
Wiﬂ ttmrg ‘O l

ny | _

u(xi | 4|L v wlxd) Vix, 1) |"_—_t;x—>|V(t 0+ dVix )
—«—x—-l dx |-— ‘

) —-x

Figure 3 Transverse vibration of beam



By writing

AV am
dv = & dx and dM = —dx
ax dx

and disregarding terms involving second powers in dx, Eqgs. can be written as

% 2
_:-)T (x.1) + flx, 1) = pA(x) %(_\-1 t)

dM

r,_(_\', I) — V(ux, ;) =0

dax

By using the relation V = aM /dx from Eg. becomes

2M

22
(x, 1) + flx, 1) = pA(x) %(\ r)

From the elementary theory of bending of beams (also known as the Euler-Bernoulli or
thin beam theory), the relationship between bending moment and deflection can be
expressed as

o*w

M(x,1) = El(x) Py (x,1)

where E is Young’s modulus and I(x) is the moment of inertia of the beam cross section
about the y-axis. Inserting Eq. we obtain the equation of motion for
the forced lateral vibration of a nonuniform beam:

Eizw

(x, r)] + pA(x) ?(\ t) = flx, 1)

r')2 d w

I(x)~

r')\

For a uniform beam, Eq. reduces to
o4
dw
El—(x,1) +pA (1 1) = flx 1)

ax

For free vibration, f(x, r) = 0, and so the equation of motion becomes

4 .2
Fdw Fw, _
C X, 1)+ xt) =0
ax* (x. 1) ot (x.1)
where
[ET
c=./
V pA

Since the equation of motion involves a second-order derivative with respect to time and a
fourth-order derivative with respect to x, two initial conditions and four boundary condi-
tions are needed for finding a unique solution for w(x, r). Usually, the values of lateral dis-
placement and velocity are specified as wg(x) and wy(x) at 1 = 0, so that the initial
conditions become



=

=N
=
-
I

=
Il

wo( x)

|
>
-
|
=
I

= il )

The free-vibration solution can be found using the method of separation of variables as
w(x, 1) = W(x)T(1)

Substituting and rearranging leads to
2 d*W(x) 1 d*1(1)

3 =dad = w

W(x) dax* 1) ar

2

where ¢ = @~ is a positive constant . Equation can be written as two equations:

d*W(x)
4
—— - B'W(x) =0
P B'W(x)
d*1(1)
+ &@®T(1) =0
di? @ 1)
where
,84 _ w? _ pz1(02
e El

The solution of Eq. can be expressed as
T(t) = Acos wt + B sin wt

where A and B are constants that can be found from the initial conditions. For the solution
of Eq., we assume
W(x) = Ce™

where C and s are constants, and derive the auxiliary equation as

st —pt=0
The roots of this equation are
s12 = £, $3.4 = L
Hence the solution of Eq. becomes

W(x) = C1eP* + Cre P* + C3e'P* + Che P~
where Cy, C,, C3, and Cy are constants. Equation can also be expressed as

W(x) = Cjcos Bx + Cysin Bx + Cicosh Bx + Cysinh Bx

or
W(x) = Cy(cos Bx + cosh Bx) + Cy(cos Bx — cosh Bx)
+ C4(sin Bx + sinh Bx) + C4(sin Bx — sinh Bx)

where C|, C5, C3, and Cy, in each case, are different constants. The constants C;, C», Cs,
and Cy4 can be found from the boundary conditions. The natural frequencies of the beam
are computed from Eq. as



[ET [EI
_ @2 [Z=f 2
© =B N\A N oAr

The function W(x) is known as the normal mode or characteristic finction of the beam and
w is called the natural fequency o fvibration. For any beam, there will be an infinite num-
ber of normal modes with one natural frequency associated with each normal mode. The
unknown constants C} to C4 in Eq. and the value of 5 in Eq. can be

determined from the boundary conditions of the beam as indicated below.

The common boundary conditions are as follows:

1. Free end:

2
: dw
Bending moment = E/ =10
ax?

a( . Pw
Shear force = —| EI— | = 0
0x ix

2. Simply supported ( pinned) end:

.2
. . dTw
Deflection = w = 0, Bending moment = E/ ) =0
ox

3. Fixed (clamped) end:

. w
Deflection = 0, Slope = T 0
ax

The frequency equations, the mode shapes (normal functions), and the natural fre-
quencies for beams with common boundary conditions are given in Fig.
We shall now consider some other possible boundary conditions for a beam.



4. End connected to a linear spring, damper, and mass » When the end of a
beam undergoes a transverse displacement w and slope dw/dx. with velocity dw/ dt
and acceleration azwf at>, the resisting forces due to the spring, damper, and mass are
proportional to w, dw/dr, and azwj ar?, respectively. This resisting force is balanced by
the shear force at the end. Thus

il ) a*w aw w
—\El—5 | =a kw +c— +m 5
dx dx dr ot

where @ = —1 for the left end and +1 for the right end of the beam. In addition, the

bending moment must be zero; hence
a*w

2

ET =0

dx

5. End connected to a torsional spring, torsional damper, and rotational inertia (Fig.
8.16(b)): In this case, the boundary conditions are

El

*w aw
5 = al kT + ¢
dx dx dxot

w Pw
— it

dxat

where a = +1 for the left end and —1 for the right end of the beam, and

Commonly used boundary conditions for the transverse vibration of beam are as shown in

Figure 4
Pinned- pinned sin B~ 0 W (x) = C Jsin B,x] Bl ==
+ + Bl =27
Bl = 37w
Byl = 47
Free-free cos B cosh B,J = 1 W(x) = C,[sin B,x + sinh B,x Bil= 4730041
+ a,(cos B,x + cosh 8,x)] Bl = 7.853205
where Bl = 10.995608
_ sin @,/ — sinh @,/ By = |4.13?1l{ﬁl
- (m) Sy o T
Fixed-fixed y mode)
. cos B4 cosh B0 = 1 W ix) = C Jsinh 8 x,x — sin B x Bl 4,730041
ﬁ:ﬁ- + o, (cosh B,x — cos B,x)] Bl = 7.853205
where Bsl = 10.995608
_ (sinh B ~ sin ]\ B,] = 14137165
i \cos B,/ — cosh Ja’n}",ll
[ Joed-free cos B cosh Bl = —1  Wx) = CJsin B,x — sinh B,x Bl = 1875104
— a,(cos 8,x — cosh 8,x)] Bul = 4.69400
where Byl 7.854757

Fixed-pinned

_— sin @,0 + sinh 3./
" \cos B, + cosh 8,1

Bal = 10.995541

tan B, — tanh g, = 0 W, (x) = C,[sin B,x — sinh 8, x Byl = 3.926602
+ e, (cosh Bx — cos B.x)]  Bal = T.068583
t where Byl =10.2100176
Y sin 8] — sinh B,] »,'I Byl = 13351768
" \cos B — cosh 81
Pinned-free . .
tan B, — tanh g,/ = 0 Wx) = C[sin Bx + a,sinh §,x] Bl = 3.926602
g where ol = 7.068583
{ sin gt ) Bl = 10.210176
e e Byl = 13351768
\sinh 4,/ (g = 0for rigid-
body mode)

Figure 4 Commonly used boundary conditions for transverse vibration of beam
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1 General comments

Vibration phenomena that might be modelled well using linear vibration theory include small am-
plitude vibrations of long, slender objects like long bridges, aeroplane wings, and helicopter blades;
small rocking motions of ships in calm waters; the simplest whirling motions of flexible shafts, and so
on. However, interactions between bridges and foundations, between wings/blades and air, between
ships and waves, between shafts and bearings, and so on, are all nonlinear.

Nonlinear systems can display behaviours that linear systems cannot. These include:

(a) multiple steady state solutions, some stable and some unstable, in response to the same inputs,

(b) jump phenomena, involving discontinuous and significant changes in the response of the system
as some forcing parameter is slowly varied,

(c) response at frequencies other than the forcing frequency,

(d) internal resonances, involving different parts of the system vibrating at different frequencies,
all with steady amplitudes (the frequencies are usually in rational ratios, such as 1:2, 1:3, 3:5,
etc.),

(e) self sustained oscillations in the absence of explicit external periodic forcing, and
(f) complex, irregular motions that are extremely sensitive to initial conditions (chaos).

Analytical intractability and limitations in computational resources make it difficult to system-
atically study the abovementioned phenomena in large systems (though harmonic balance is a useful
technique; see below). For the most part, detailed studies of nonlinear vibrations are conducted
using small systems (with perhaps just one or two degrees of freedom). A good qualitative under-
standing of the phenomena observed for the small system is invaluable when the same phenomena
are subsequently encountered in larger systems.

The utility of precise numerical solutions remains high where appropriate. However, in nonlinear
dynamics it is difficult to extract the qualitative essence from simulations alone. Therefore, an
essential complement to all-numerical studies of large nonlinear systems is the analytical/theoretical
study of simplified systems.



2 Analysis techniques

Three broad categories of techniques for analyzing nonlinear systems are:

(a) heuristic techniques like Galerkin methods, including harmonic balance
(b) asymptotic techniques, including the methods of averaging and multiple scales, and
(c) rigorous mathematical results about dynamical systems.

This introduction will concentrate on the first two categories.

2.1 Convergent, asymptotic, and heuristic

To make the later discussion more meaningful, let us distinguish between the terms convergent,
asymptotic, and heuristic.

A convergent series dependent on a parameter (say, €) is one where if we fix ¢ and take more
and more terms, the sum converges to the correct answer. An asymptotic series dependent on a
parameter (say, € “small”) is one where if we take a fixed number of terms and take e smaller and
smaller, the sum gets more and more accurate. Convergent series need not be asymptotic, and vice
versal.

In harmonic balance, there is a periodic solution we wish to approximate. That periodic solution
has a convergent Fourier series representation. However, in the application of harmonic balance with
many terms, we obtain equally many coupled, usually nonlinear, equations in terms of the coefficients
(see below). In practice, harmonic balance is often used with only a few harmonics, usually with
excellent results but never any formal advance guarantees of how accurate the solution will be with
a given number of terms included. In this sense, harmonic balance is a heuristic method.

We now discuss these methods in more detail.

2.2 Galerkin methods, and harmonic balance
The basic Galerkin method is now described using a simple boundary value problem,

Z+x—3t=0, with (0) = z(7/2) =0.

N
3T
The exact solution is z = 3t — > sint. As an approximation we assume, say, © & Z ay sin 2kt .
k=1
Substituting into the governing equation, we obtain a nonzero quantity r(¢) called the residual. We
make 7(t) orthogonal to the assumed basis functions, i.e., set

/2
/ r(t)sin2ktdt =0, for k=1,2,---,N.
0

The above process, called a Galerkin projection, yields N equations for the N unknown a;’s, which
upon solution give the approximate solution. The approximation to 3 terms is

1 1
TR —sin2t—|—1—osin4t— gsinﬁt,

which has an error < 0.024. More terms yield more accuracy.

'See, e.g., E. J. Hinch, Perturbation Methods, Cambridge University Press, 1991.



Note that for this linear ODE, the equations for the unknown aj’s are linear and algebraic,
while for general nonlinear ODE’s these will be nonlinear algebraic equations (see below). For

partial differential equations in time and space, the approximation will typically be of the form
N

Z ar(t)dr(x), where the ¢y, are functions of space chosen to suit the problem (e.g., satisfy boundary
k=1
conditions).

The technique of Harmonic Balance is a specialized application of the Galerkin method to find
periodic solutions in vibration problems. There are several slightly different versions of the method.
Here, we consider unforced, undamped, conservative problems, e.g.,

i+ax3=0. (1)

We start with, say, ¢ ~ Asinwt + B sin 3wt . Note that the unknown w appears in the functions
sinwt and sin 3wt, and so there are actually three unknowns in the two term approximation. Sub-
stituting into the differential equation, multiplying in turn by sinwt and sin 3wt, and integrating in
each case from 0 to 27 /w and then equating to zero (the Galerkin projection), we obtain:

—Aw?® +3A3/4 —3A°B/4 +3AB?*/2 =0,
—9Bw? — A3/4 +3A?B/2+3B%/4=0.

Treating the indeterminate A as a parameter, we obtain w = 0.8869A and B = —0.04482A.

Variations of the above method are used as the problem changes.

Harmonic balance with a few terms usually gives good approximations to periodic solutions. For
example, some numerical results for the above nonlinear oscillations of Eq. 1, as compared with the
two term harmonic balance calculation given above, are shown in Fig. 1. Oscillations at four different
amplitudes are shown, and the figure appears to have four different curves. Each of these curves is
in fact two superimposed and nearly indistinguishable curves (one solid, one dash-dot). The small
difference between the solid (numerical) and dash-dot (harmonic balance) is visible towards the right
side of the figure (for larger ¢).

The results show that the two term harmonic balance solution is very accurate. The strong
dependence of frequency on amplitude is also clearly seen.

2.3 A first look at asymptotic techniques

Asymptotic techniques depend on some parameter in the problem being very small (or very large,
which is the same thing on taking reciprocals). In the limit as the small parameter becomes zero, the
problem should be analytically tractable. The basic ideas can be demonstrated using the following
root-finding example:

ex®+z-1=0, (2)

where 0 < e < 1. If e =0, x = 1 is the only root. For nonzero ¢, that root is perturbed to

r=1—¢c+66—51 4+ O().

The O(e*) above represents a quantity that is no bigger than some finite constant times e*, as € goes

to zero.
For € # 0, Eq. 2 has five other “large” roots, obtainable via a singular perturbation scheme. One
of them is 1 3 Y
— s 225 R 25 g 3/5
ree stasc T TOE):

The two “asymptotic” approximations above are useful for sufficiently small e.
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Figure 1: Solutions for Eq. 1. Solid line: numerical. Dashdot: harmonic balance (can be viewed as
slightly distinct from solid line, for larger times).

2.4 Averaging and multiple scales

The method of averaging is a specialized asymptotic technique for systems of the form
i=ef(x,t), e< 1. (3)

Here, we assume f(x,t) = f(z,t +T) for all z,¢t. An approximation to the solution is found by
solving the simpler equation

1 T
& = efo(x), where fo(x) = f/o f(x,t)dt.

Nonlinear oscillators, e.g.,
i+r=ei(l—-2%)), (4)

are not directly amenable to averaging; but they can be put in that form via a change of variables to
x = A(t)sin(t + ¢(t)) , along with the added constraint equation & = A(t) cos(t + ¢(t)) . In this form,
the asymptotic method of averaging has been widely used to study a variety of weakly nonlinear
oscillators that are slightly perturbed versions of the harmonic oscillator (Z + x = 0).

For illustration, Eq. 4 yields the two equations

A= e (A)2— AP/8 + Acos(2t +26)/2 + A° cos(4t +49)/8) |

b=c¢ (— sin(2t + 2¢)/2 + A% sin(2t + 2¢) /4 — A%sin(4t + 4¢)/8) :



Finally, by first order averaging (higher order averaging is possible, but not done here), we get

A=e(A/2-A%/8), and ¢ =0,

The above two equations show that A = 0 is an unstable equilibrium; all other solutions slowly but
eventually approach A = 2 (assuming A > 0); and the phase of the oscillation remains steady, at
least at first order.

The method of multiple scales, also applicable to Eq. 3, involves an additional issue, namely the
identification and removal of secular terms, as illustrated below for Eq. 4 using two time scales.
Let ¢ be the actual time; and 7 = et be a slow time. Assume z = z(t,7). Now

Ox Ox . 0% 0%x 9
—a—f‘ﬁg, andCC—w—’—QEM—’—O(E)

z
Using subscripts ¢ and 7 to denote partial derivatives with respect to these quantities, we have
Ty +T=c¢ {—2x7t + 3 (1 — m2)} + 0(62) )
Assuming a solution of the form z = xg 4 exq1 + - - -, we obtain
Zopt + X0 =€ {—JUl,tt — 21 — 22074 + Toy (1 — x%)} + (9(62) .
Collecting terms, at leading order we obtain
o +x0 =0,

which has the general solution z¢g = A(7) sin(¢ + ¢(7)). Substituting this at the next order we obtain
(dropping the explicit dependence of A and ¢ on 7, and using primes to denote a 7-derivative)

2140+ 21 = A% cos(3t + 3¢) /4 + (24" + A — A%/4) cos(t + ¢) + 24¢ sin(t + ).

In the above equation, the solution for x; can contain tsin(t 4+ ¢) and ¢cos(t + ¢) (effectively the
same as tsint and tcost). These secular terms make the approximation break down by the time
t = O(1/€). The validity of the expansion can be extended by removing the secular terms, which
can be done here by requiring that the coefficients of the sine and cosine in the forcing be zero, i.e.,
—24" + A — A3/4 =0 and 2A¢" = 0. Noting that A = ¢A’, etc., we find the evolution of A and ¢
are governed, at this order of approximation, by the same equations as obtained by averaging:

A=e(A/2—A3/8), and ¢ = 0. (5)

3 The phase plane

Our study of entrainment in section 9 will involve the use of a popular and powerful idea from
nonlinear dynamics: the idea of the phase space. The essential idea is described below.
Consider a system of two equations

j::f(x,y), andy:g(xvy)‘

Sometimes, instead of plotting x and y individually versus t, we just plot x versus y. If, say, x rises
monotonically from 0 to 1 as ¢ increases, while y rises from —1 to 3 during the same time, then on
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Figure 2: (a) A linear, damped, forced system. (b) A nonlinear system. The spring has a free length
Lo > h. (¢) A nonlinear two degree of freedom system. Mass m is constrained to move frictionlessly
in the vertical direction, while mass mo moves in the horizontal direction. Gravity is neglected, for
simplicity.

the = versus y plane we have a single curve that goes from the point (0,—1) to (1,3). The (z,y)
plane is called the phase plane. In a more general case, with n dependent variables, we would have
an n-dimensional phase space.

Looking at solutions in the phase space has the disadvantage of losing detailed information about
the exact way in which x and y vary with time. However, it has the obvious advantage of reducing
the dimensionality of the system by one: the solution goes from a curve in the three-dimensional
(z,y,t) space to the two-dimensional (x,y) plane. In addition, there are other advantages involving
geometrical ideas about various types of solutions and how they behave. For example, if x and y
approach constant values, then the graphs of x and y versus ¢ are horizontal lines; but in the phase
plane, the graph of x versus y approaches a point. Similarly, if  and y are periodic functions with
some period T, and with some phase difference between them, then in the phase plane we see a
closed curve. Interested readers will find many excellent books available on nonlinear dynamics, and
topics touched upon in these notes are discussed properly in such books. A representative sample of
references is provided at the end.

4 Multiple solutions

A damped linear system, such as sketched in Fig. 2(a), governed by the linear differential equation
mi + ct + kx = f(t),
has a uniquely defined long term behaviour (after transients die out). For example, consider

¥4 0.32+x =sin3.2¢. (6)
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Figure 3: Solutions for Eq. 6 converge to the same long-time behaviour regardless of initial conditions.

Two different solutions, for two different initial conditions, are shown to converge to the same “long-
time” solution in Fig. 3.

In contrast, consider the system shown in Fig. 2(b), with the spring’s free length L greater than
h. Now it is clear that this nonlinear system will have three equilibrium positions: one at x = 0,
which will be unstable, while one stable position at some nonzero positive z, and another (reflected)
one for negative x. This simple example shows that it is possible for general deterministic nonlinear
systems to have more than one steady state solution in response to the same inputs (but, of course,
with different initial conditions).

This system is not analyzed here in detail; other examples of multiple solutions will soon be
analyzed.

In practical engineering, examples of multiple solutions are encountered in a variety of situations.
A few examples are provided below.

e Buckling. Beyond a certain load, the structure has more than one equilibrium; the nominal

equilibrium loses stability, and new stable equilibrium positions appear. This is related to the
system in Fig. 2(b).

o Whirling of shafts at, near and possibly beyond critical speed. A non-whirling solution still
exists, but is now unstable.

e Resonances in nonlinear systems. When the forcing frequency is near the linear natural fre-

quency, there can be more than one possible stable steady state solution. This example will be
covered again under “jumps”.



e Machine tool chatter. Under certain operating conditions, the cutting tool might chatter a lot
(poorer surface finish) or very little: there is more than one stable steady state solution.

e Systems with dry friction. Some systems with dry friction, for small forcing near resonance,
can have two solutions: one with large amplitude, and one without vibrations.

5 Forced vibrations (via harmonic balance)
Consider the damped nonlinear forced system given by
i+ct+ x4 ar® — Fsinwt =0. (7)

We will study this system using single term harmonic balance. Let us assume x ~ A sin wt+ B cos wt.
The assumption is that the solution is dominated by a response at the same frequency, though not
at the same phase, as the forcing. The assumption is exactly true for the linear system (with a = 0),
and approximately true for reasonable values of a and most values of w. This single harmonic
approximation is sufficient for the purposes of this section.

Substituting into the equation of motion and using some trigonometric identities such as sin® z =
(3sinx — sin 3z)/4, we obtain

—w2Asinwt — w?B coswt + cwA coswt — cwB sinwt + Asinwt + B coswt — iaA?’ sin 3wt
cee %aA3 sin wt + %aAQB cos wt — %aAQB cos 3wt + %CLAB2 sin 3wt + %aA sin wt B?
cee 4 %aB3 cos 3wt + %CLB?’ coswt — F'sinwt = negligible terms.

Multiplying by sinwt or coswt, integrating w.r.t. ¢ from 0 to 27 /w, and then setting them equal
to zero, is equivalent to simply picking out the coefficients of sin wt or cos wt, respectively, and setting
them equal to zero. This gives:

3 3
—Aw2—cBw+A+1aA3+ZaABQ—F:0,

3 3
—Buw? + cAw+ B + 1@/123 + ZCLB?) =0.

The solutions to the two simultaneous equations above provide a fairly accurate picture of the
dynamics of the system in Eq. 7.

5.1 Unforced, undamped case

If we put ¢ = 0 and F = 0, then we obtain an approximate solution to the unforced, undamped

system, for which
1
B=0, and w = 5\/4-%3@/12.

The above (approximate) result tells us that for undamped, unforced periodic oscillations the fre-
quency of oscillations depends on the amplitude. The graph of A versus w (i.e., with amplitude
along the vertical axis) is usually called a “backbone curve” because of its shape. In this system,
the strength of the nonlinearity is measured by the single quantity a, and so it is not surprising
that the amplitude dependence of the frequency (which happens only for nonlinear systems) involves
a-dependence as well. It is usual to call the case of a > 0 a stiffening nonlinearity, and the case
a < 0 a softening nonlinearity. In the presence of a stiffening nonlinearity, frequency increases with
amplitude; in the case of a softening nonlinearity, frequency decreases with amplitude.



5.2 Forced, damped case

In the general case, if we select a certain forcing amplitude F' and angular frequency w, then we
can in principle solve for A and B (and hence the response) in terms of a and ¢. In practice, it is
convenient to solve the equations numerically. Some specific results are shown in the three plots of
Fig. 4, where frequency w is plotted along the horizontal axes and amplitude of response (taken to
mean v/ A2 + B? from the harmonic balance equations) is plotted along the vertical axes.

Fig. 4(a) shows the effect of nonlinearity. For a = 0, we have the familiar linear resonance curve.
For increasing a while holding all other things constant, the resonance curve leans over to the right
(for a stiffening nonlinearity; if we took a < 0 it would lean over to the left).

Fig. 4(b) shows the effect of varying damping ¢, while holding all other things fixed. Since a is
fixed, the backbone curve is fixed. It is seen that the hump in the amplitude versus frequency curve
follows the backbone curve in each case — hence the importance of the backbone curve. All other
things held fixed, decreasing c raises the hump, i.e., raises the maximum response amplitude possible
with a given amplitude of harmonic forcing. If we allow both ¢ and F to become very small, the
amplitude-frequency curve follows the backbone curve even more closely (not surprising, because the
backbone curve is obtained by setting ¢ = 0, F' = 0).

Finally, Fig. 4(c) shows the effect of increasing forcing amplitude while holding other things
constant. It is seen that the amplitude versus frequency curve has a hump that leans over to the
right; it would lean to the left if the nonlinearity was of the opposite sense, i.e., a was negative. It is
seen that for relatively small damping, the hump in the amplitude versus frequency plot follows the
backbone curve. Larger F' leads to a higher hump.

A few further remarks may be made about the response of this simple nonlinear system. For
very high frequencies of forcing, inertia dominates and the amplitude of motion is very small; in such
cases, the 2% nonlinearity is insignificant because |z3| < ||, and the system behaves essentially like
a linear system. The most visible qualitative difference between the linear and nonlinear system is in
the leaning over of the hump near resonance; this is not surprising because large amplitude motions
are (in this system, though not for all systems) the reason for nonlinear terms to become important?.

It is also clear that for F' = 2 and w = 3, say, there are three different possible amplitudes of
response (thus, multiple solutions in response to the same input forcing). Of these, it is possible to
show that the smallest and largest amplitude solutions are stable, while the intermediate amplitude
solution is unstable (this stability issue will not be discussed fully in these lectures, but a limited
study will be presented below).

6 Jumps

Figure 4(a) also shows clearly the existence of multiple solutions for this problem. There are three
vertical lines in the figure, marked 1, 2 and 3. For the solid line (marked 2), we see that there are
three amplitudes possible (shown in the figure with heavy dots marked P, Q and R). Of these, the
point Q is unstable, while P and R are stable. Though an analysis of the stabilities of these points is
not conducted here, I mention that such stability analyses can be conducted using several techniques.
These include direct numerical simulation; Floquet theory (a topic not covered in these lectures); and,
under more limited circumstances (weak nonlinearity, light damping and small forcing), asymptotic
techniques like the method of averaging or the method of multiple scales.

2Consider a “simply supported” slender rod supported on pins at its two ends. A small clearance will exist in the pin
holes. For small amplitude vibrations, when the amplitude of vibrations is comparable to that clearance, the vibrations
will in fact be strongly nonlinear. For somewhat larger amplitudes, nonlinearities will be unimportant. Finally, for
very large amplitudes, nonlinearities will be important again.
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The figure also shows the phenomenon of jumps, which are discontinuous changes in the steady
state response of a system as a parameter (here, forcing frequency) is slowly varied. Imagine that
we start by forcing the system at a low frequency; there is a unique steady state periodic solution,
on which the system response settles. As we raise the frequency quasistatically (very slowly; so
slowly that there are no transients and we get a sequence of steady states), we eventually reach the
first vertical dashed line (marked 1). Beyond this frequency, there are three possible solutions, but
the system stays on the uppermost branch. Passing through point R, the system does not show
any awareness of the alternative solutions at P and Q. Eventually reaching the vertical dashed line
marked 3, the system response jumps to the lower branch, as indicated by the downward arrow. On
further increasing the forcing frequency, the system has a unique, stable solution. Finally, if we now
start decreasing the forcing frequency from some initially large value, then the system response stays
on the lower branch as we cross line 3, and jumps up, as shown by the arrow, when we reach line
1. For frequencies between line 1 and line 3, if we start the system from arbitrary initial conditions,
then which response the system chooses (upper or lower; not, for generic initial conditions, the
intermediate unstable one) depends on initial conditions.

7 Harmonics and subharmonics

It is possible for the response of a nonlinear system to contain frequencies other than that of the
forcing frequency. In fact, it is quite common for the response to have frequencies that are multiples
of the forcing frequency. To see this through simple examples, consider the following system:

i+ 0.055% + 2% = sinwt . (8)

Two values of w were chosen, based on a preliminary study using harmonic balance (details not
given here), for detailed numerical study: these values are w = 0.4 and w = 1.66. Numerical results
obtained are summarized in Fig. 5. In the figure, the numerically obtained power spectral density
of the forcing is plotted for each case, and shows a single peak in each case (see Figs. 5 (a) and
(d)). For both values of w, the time series (direct numerical solution) settles down to qualitatively
similar periodic solutions (see Figs. 5 (c) and (e)). For both cases, the power spectral density of
the system response shows multiple peaks, at frequencies in the proportion 1:3 :5: ---. In other
words, in the response in each case has content or “energy” at frequencies other than the forcing
frequency. This feature is common in nonlinear systems. Note that in the harmonic ratios above,
even numbers are missing. That is, no frequency component at twice the forcing frequency appears
in the response. This is because the system chosen here has only odd order nonlinearities (cubic
terms). In the presence of some even order nonlinear terms, even order harmonics would also be
expected.

Finally, note that for w = 0.4 the fundamental frequency of the response equals the forcing
frequency (compare the peaks in Figs. 5 (a) and (c¢)). This situation, with higher harmonics, is very
common in nonlinear vibrations. In contrast, for w = 1.66, the fundamental frequency of the response
is one third of the forcing frequency (compare the peaks in Figs. 5 (d) and (f)). The 1/3 frequency
response is called a subharmonic, and occurs somewhat less frequently than higher harmonics.

The above example provides a simple picture of a relatively simple nonlinear system. For more
general, higher dimensional systems under more complex forcing, many different modes as well as
harmonics can interact in complex ways to produce responses that are difficult to characterize and
understand. There is no simple yet general theory for such cases, and problems that arise need to
be tackled on a case by case basis.
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Figure 5: Numerical simulation results for Eq. 8. See text for details.
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Figure 6: Numerical simulation results for Eq. 9. See text for details.

Before concluding this section, it is worth looking at another system with a clearer and more
convincing subharmonic response. The equation

Z+ 1+ 42> = sin 6t

has the ezact solution
r = —sin2t,

a subharmonic resonance. In this solution, the response has no component at the forcing frequency.
The same system also has a solution that is dominated by the forcing frequency. By first order
harmonic balance, that solution is approximately A sin 6¢, with A satisfying

34 -35A4—-1=0, or A~ 343, —0.03, —3.40.

From our previous experience with forced vibrations (section 5), we can arrange the three solutions
by magnitude, to get
|A| = 0.03, 3.40, 3.43;

and we expect that the intermediate solution (3.40) will turn out to be unstable.
To see that these solutions are meaningful, we add a little damping, and numerically integrate
the equation
i+ 0.03% + x + 42° = sin 6t 9)

for different initial conditons. Partial numerical results are shown in Fig. 6. For initial conditions
that are sufficiently close to the steady state motion of interest, the numerical solution converges in
each case to a steady state solution approximately equal to that expected from the above calculations
(due to the introduction of small damping, the solutions are slightly different). In particular, Fig.
6(a) shows a solution at the forcing frequency, with an amplitude of roughly 3.4 (consistent with our
undamped estimate of 3.43); while Fig. 6(b) shows a solution at 1/3 of the forcing frequency, with
an amplitude of approximately 1.
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8 Limit cycles

Some systems have self-sustained vibrations. These include squealing door hinges, electric wires
whistling in the wind, and whirling shafts. These self-sustained vibrations are periodic motions that
are locally unique, and which occur in the absence of external periodic forcing.

To study limit cycles, we will again use the van der Pol equation (Eq. 4), reproduced here as

i+r—ei(l—2%)=0. (10)
Let us start with one-term harmonic balance,
x~ Asinwt. (11)

Note that the cosine is not explicitly included here, because time ¢ does not appear explicitly in the
equation, and so we can choose t = 0 in such a way as to make the coefficient of the cosine equal to
zero; however, for the same reasons, the cosine is implicitly included, i.e., the same solution form, on
shifting time, automatically includes the cosine.

Substituting Eq. 11 into Eq. 10, we obtain

A3 A3
(—wQA + A) sinwt + ew (4 — A) coswt — ew4 cos 3wt = negligibly small terms.

From the coefficient of sin wt, we find that either A =0 or w = 1. From the coefficient of coswt, we
find that A3/4 — A = 0, which means either A = 0 or A = 2 (we ignore the negative roots, which
provide no new physical information).

Thus, with one term harmonic balance, we have partly verified the information obtained from
first order averaging, or from the method of multiple scales, for the case 0 < ¢ < 1, in section
2.4, Eq. 5. However, Eq. 5 had in fact provided more information, which harmonic balance has not
provided. Harmonic balance can find periodic solutions, but it cannot say whether they are stable
or not. Equation 5, on the other hand, shows that A = 0 is unstable and A = 2 is stable, by the
following simple analysis:

1. For the A = 0 case, we linearize for small A, and obtain

Azl
2

which shows that solutions grow exponentially; thus, the A = 0 solution is unstable.

2. For the A = 2 case, we let A =2+ B, to obtain

: 332 B3
B=¢|l-B-"- - =

which we linearize for small B to obtain
B=—¢B ,

which in turn shows that provided B (or the deviation from A = 2) is sufficiently small to start
with, it decays exponentially to zero. Thus, the A = 2 solution is stable. (In fact, it is easy to
show that all initial conditions other than A = 0 eventually settle on A = 2, but we skip that
demonstration here.)

Note that the previous stability conclusions are exactly reversed if € is negative instead of positive;
while the harmonic balance results, blind to stability issues, remain unaffected.
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9 Entrainment
Recall the van der Pol equation encountered above:
i—i—x:ea}(l—xQ) , where 0 < e < 1.

As shown above, this equation has a stable limit cycle of amplitude about 2, and angular frequency
1+0 (62). Now consider a small perturbation where the “spring” is a little stiffer or a little softer,

¢+m:e[a§(1—x2)+m} ,

where the O(1) quantity A is called a detuning parameter. It may be expected that changing the
spring stiffness a little, just in itself, does nothing except change the angular frequency of the limit
cycle a little, so that it becomes 1 + O (¢). Indeed, on averaging the above equation, we find
. ) A
A=ce (A/2—A3/8) , and ¢ = —e —.
2
The above nonzero ¢ indicates that the period of the solution is now slightly different from 2.
Now, consider the equation

fé+x:e[i(1—x2)+Ax+Fsint}, (12)

which represents a van der Pol oscillator periodic with forcing at a frequency slightly different from
that of the unforced limit cycle?.

What sort of behaviour can we expect? If F' is small, then we expect the original limit cycle
with period slightly different from 27 because of the detuning. If F' is sufficiently large, perhaps the
forcing will overwhelm the unforced dynamics, and the oscillation will phase-lock with the forcing,
a phenomenon called entrainment. For intermediate values of F, perhaps some sort of transition
region might be observed.

By first order averaging, we obtain:

. A A3 F
A = € (2 — ? — C2OS¢> s and (13)
. A Fsi

It will be more convenient for us to study the above “slow flow” (or averaged equations) after
transforming to polar coordinates. Recall that the approximate solution is

Asin(t + ¢) = Acos ¢ sint + Asin ¢ cost = C'sint + D cost,

where

C=Acos¢p, D= Asing.
In terms of C and D, we get

. cC ¢* AD CD? F
Cc = 6(2—8+2—8—2>73nd (15)
3 2
S »
2 8 2 8
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Figure 7: Phase plane for Eqs. 15 and 16. See text for details.
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What do Egs. 15 and 16 say?
We begin by looking at the case A = 0, F' = 0. In this case, the equations reduce to

. C c? D?
C €5 < 1 1 ) , and (17)
: D c? D?
= e—[1-=——-=-1|. 1
D €5 ( , 1 > (18)
By temporarily calling
2 2
po (1O D)
4 4
we find
EC ED

0267, andD:€7.

Thus, if E > 0, then in the (C, D) phase plane points move radially outwards; while if E' < 0, points
move radially inwards. By the definition of E, we conclude that all points move radially until they
reach the circle C? 4+ D? = 4, or (in terms of the original quantity) A = 2.

Now consider F' = 0 but A # 0. This causes the trajectories to spiral out (or in) instead of
moving purely radially. The steady state solution now goes round and round on the circle with
radius 2 and centre at the origin. The situation is shown using the (C, D) phase plane in Fig. 7(a).

Now, as we increase F', we find that the circle is shifted and deformed into a smaller closed
curve; and the unstable equilibrium point shifts away from the origin as well. The situation is
depicted in Figs. 7(b) through 7(e). Finally, for even larger values of F', the closed curve shifts to a
point and merges with the unstable equilibrium point, which now becomes stable. The situation is
shown in 7(f). At this point, the solution is periodic, and completely phase locked with the solution
(entrained).

An interesting transition occurs at I’ =~ 1.446, when the origin leaves the closed curve. For F
below this critical value, the closed curve encloses the origin, and therefore as the point in the (C, D)
space slowly goes round and round the closed curve, the phase of the oscillations drifts further and
further away from the forcing (gaining or losing 27 with every encircling of the origin). For the
critical value of F' &~ 1.446, there is a point when the oscillation amplitude becomes zero (when
the (C, D) trajectory passes through the origin); and then as the oscillation grows again, there has
been a sudden change in the phase by 7. Finally, for £’ above this critical value, although the point
in (C, D) space goes round and round on its closed curve or limit cycle, the phase angle oscillates
between limits. For such F' values, there is weak phase locking and the phase does not drift away.
Finally, as mentioned above, for large enough F', the phase of the oscillation is exactly locked with
the forcing. The above situations are also seen in numerical solutions of the original Eq. 12, as shown
in Fig. 8. The figure shows the steady state solutions, after transients have died out, for the case
e = 0.1 (recall that the averaging procedure is based on e being small). A close look at the time
histories of the vibration response (z(t¢)) and the forcing (F'sint), for A = 1 and various F' values as
given in the figure, shows that the predictions from a study of the averaged Eq. 15 and 16 are borne
out completely. In particular, for F' = 1.446, it is seen that the oscillation amplitude periodically
comes to zero, as predicted; and, as shown by arrows towards the left of the figure, the response

3By getting a slightly slow or fast clock, as appropriate, we slightly change our definition of time so that the forcing
has a period of 27 while the van der Pol oscillator’s unperturbed limit cycle period is slightly different from 27. We
could have done the reverse, letting the unperturbed limit cycle period be 27 and the forcing period be slightly different
from 27. But the former is more convenient for averaging.
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changes from being about 7/2 behind the forcing to about 7/2 ahead, every time the amplitude
becomes small.

Note that harmonic balance, which only finds periodic solutions and says nothing about stability,
would have only found the steady periodic solution even for small F' values, and missed the stable,
modulated solutions shown in Fig. 8 (corresponding to the limit cycles or closed curves of Fig. 7).

10 Modal interactions

The term modal interaction refers to a situation in which energy is exchanged between modes in a
system. Thus, situations in which modal interactions occur are in distinction to the case for linear,
completely diagonalizable systems in which the normal modes do not exchange energy. Here we will
look at an example of modal interactions caused by nonlinear terms. Consider the system shown in
Fig. 2(c). Let the free length of spring ks be h, as shown; let the equilibrium positions of masses m;
and mo be at 1 = 0 and xo = 0 respectively.

We now take m1 =mo =1, ky = ko = k3 = 1, and h = 1. The equations of motion for the above
system are strongly nonlinear; however, for small displacements, we retain linear and quadratic terms
but drop third order and higher order terms. Then the equations of motion are

. 3
¥ = —2x1+ 5 and (19)

Ty = —To+ x1X2. (20)

Note that the linearized system is decoupled, and thus each degree of freedom by itself constitutes
one vibration mode. The natural frequencies are: /2 for z; and 1 for z5. Due to the presence of
nonlinearities, however, the modes are coupled and energy exchange can occur between them.

For simplicity, we now add small amounts of forcing and damping to these systems, writing

2
B o= 22 — i+ % + Fsin2t, and (21)
. C .

T9g = —T9— —T9+2T1X2. (22)

3

In the above, the choice of damping is not critical, but it is significant that the forcing frequency is
twice the natural frequency of the zo mode. Note that the forcing is applied to mass mq, and the
natural frequency of the z; mode is v/2, so the forcing frequency is not equal or close to the natural
frequency of the forced mode.

On numerically solving the above equations for ¢ = 0.04 and F' = 0.06, we obtain the steady
state responses shown in Fig. 9. It is seen that the response of 3, i.e., the unforced mode, is at its
natural frequency, which is one half of the forcing frequency; moreover, this response has a greater
amplitude than that of the forced mode itself; and finally, the forced mode responds at the forcing
frequency.

Since the unforced mode is damped, it dissipates energy; that energy comes from the forced mode,
showing that the two modes are interacting. This system also provides an example of a motion where
different parts of a system vibrate with different frequencies.
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