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I. INTRODUCTION 

Basic Concepts – Security Architecture, Attacks, Services, Mechanisms, Model - Cryptography 

Basics - Symmetric Ciphers – Transposition, Substitution, Rotor Machines – Block Cipher – Data 

Encryption Standard – Confidentiality using Symmetric Encryption 

 

1.1 Introduction to Cyber Security 

• Cyber Security is a process that's designed to protect networks and devices from external 

threats. Businesses typically employ Cyber Security professionals to protect their confidential 

information, maintain employee productivity, and enhance customer confidence in products 

and services. Cyber security is the protection of Internet-connected systems, including 

hardware, software, and data from cyber-attacks.  

• It is made up of two words one is cyber and other is security. 

• Cyber is related to the technology which contains systems, network and programs or data. 

• Whereas security related to the protection which includes systems security, network security 

and application and information security. 

1.2 Need of Cyber Security 

• Cyber security becomes so important in our predominant digital world 

• Cyber-attacks can be extremely expensive for businesses to endure.  

• In addition to financial damage suffered by the business, a data breach can also inflict untold 

reputational damage.   

• Cyber-attacks these days are becoming progressively destructive. Cybercriminals are using 

more sophisticated ways to initiate cyber-attacks. 

• Regulations such as GDPR are forcing organizations into taking better care of the personal 

data they hold. 

1.3 Security Goals 
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Fig. 1 Security Goals 

1.3.1 Confidentiality 

• Confidentiality is about preventing the disclosure of data to unauthorized parties. 

•  It also means trying to keep the identity of authorized parties involved in sharing and holding 

data private and anonymous. 

• Often confidentiality is compromised by cracking poorly encrypted data, Man-in-the-middle 

(MITM) attacks, disclosing sensitive data 

• Standard measures to establish confidentiality include: 

• Data encryption  

• Two-factor authentication 

• Biometric verification  

• Security tokens  

1.3.2 Integrity 

• Integrity refers to protecting information from being modified by unauthorized parties. 

Standard measures to guarantee integrity include:  

- Cryptographic checksums  

- Using file permissions  

- Uninterrupted power supplies  

- Data backups  

1.3.3 Availability 

• Availability is making sure that authorized parties are able to access the information when 

needed.  

o Standard measures to guarantee availability include:  

Security Goals

Confidentiality Integrity Availability
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o Backing up data to external drives 

o Implementing firewalls 

o Having backup power supplies  

o Data redundancy 

Table 1: CIA Comparison 

 

1.4 History of Cyber Security 

1940s: The time before crime 

• For nearly two decades after the creation of the world’s first digital computer in 1943, 

carrying out cyberattacks was tricky.  

• Access to the giant electronic machines was limited to small numbers of people and they 

weren’t networked. 

• Only a few people knew how to work them so the threat was almost non-existent. 

1950s: The phone phreaks 

• Fraudulent manipulation of telephone signaling in order to make free phone calls. 

1960s: All quiet on the Western Front 

1970s: Computer security is born 

• Cybersecurity proper began in 1972 with a research project on ARPANET (The Advanced 

Research Projects Agency Network), a precursor to the internet. 

• Researcher Bob Thomas created a computer program called Creeper that could move across 

ARPANET’s network, leaving a breadcrumb trail wherever it went.  

• It read: ‘I’m the creeper, catch me if you can’. Ray Tomlinson – the inventor of email – wrote 

the program Reaper, which chased and deleted Creeper. 

https://www.computerhistory.org/timeline/computers/
https://www.ifsecglobal.com/cyber-security/a-history-of-information-security/
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•  Reaper was not only the very first example of antivirus software, but it was also the first self-

replicating program, making it the first-ever computer worm. 

1980s: From ARPANET to internet 

• The 1980s brought an increase in high-profile attacks, including those at National CSS, 

AT&T, and Los Alamos National Laboratory 

• Despite this, in 1986, German hacker Marcus Hess used an internet gateway in Berkeley, CA, 

to piggyback onto the ARPANET. He hacked 400 military computers, including mainframes 

at the Pentagon, intending to sell information to the KGB. 

1987: The birth of cybersecurity 

• 1987 was the birth year of commercial antivirus, although there are competing claims for the 

innovator of the first antivirus product. 

• Andreas Luning and Kai Figge released their first antivirus product for the Atari ST – which 

also saw the release of Ultimate Virus Killer (UVK) 

Three Czechoslovakians created the first version of NOD antivirus 

In the U.S., John McAfee founded McAfee (then part of Intel Security), and released 

VirusScan. 

1990s: The world goes online 

• The first polymorphic viruses were created (code that mutates while keeping the 

original algorithm intact to avoid detection) 

• British computer magazine PC Today released an edition with a free disc that ‘accidentally’ 

contained the DiskKiller virus, infecting tens of thousands of computers 

• EICAR (European Institute for Computer Antivirus Research) was established towards the 

end of the 1990s, email was proliferating and while it promised to revolutionize 

communication, it also opened up a new entry point for viruses. 

2000s: Threats diversify and multiply 

2010s: The next generation 

• 2012: Saudi hacker 0XOMAR publishes the details of more than 400,000 credit cards online 

• 2013: Former CIA employee for the US Government Edward Snowden copied and leaked 

classified information from the National Security Agency (NSA) 

https://www.avast.com/c-computer-worm
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• 2013-2014: Malicious hackers broke into Yahoo, compromising the accounts and personal 

information of its 3 billion users. Yahoo was subsequently fined $35 million for failing to 

disclose the news 

• 2017: WannaCry ransomware infects 230,000 computers in one day 

• 2019: Multiple DDoS attacks forced New Zealand's stock market to temporarily shut down 

• According to a security research firm, 81 global firms from 81 countries reported data 

breaches in the first half of 2020 alone.  

• 80% of firms have seen an increase in cyber-attacks this year. Coronavirus is alone blamed 

for a 238% rise in cyber-attacks on banks. Phishing attacks have seen a dramatic increase of 

600% since the end of February.  

• Due to pandemic, ransomware attacks rose 148% in March and the average ransomware 

payment rose by 33% to $111,605 as compared to Q4 2019. 

1.5 Layers of Cyber Security 

 

Fig. 2 Layers of Cyber Security 

1: Mission Critical Assets – This is the data you need to protect  

2: Data Security – Data security controls protect the storage and transfer of data. 

3: Application Security – Applications security controls protect access to an application, an 

application’s access to your mission critical assets, and the internal security of the application.  

4: Endpoint Security – Endpoint security controls protect the connection between devices and the 

network.  

5: Network Security – Network security controls protect an organization’s network and prevent 

unauthorized access of the network.  

https://www.avast.com/c-wannacry
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6: Perimeter Security – Perimeter security controls include both the physical and digital security 

methodologies that protect the business overall. 

 7: The Human Layer – Humans are the weakest link in any cyber security posture. Human security 

controls include phishing simulations and access management controls that protect mission critical 

assets from a wide variety of human threats, including cyber criminals, malicious insiders, and 

negligent users 

 

1.6 Taxonomy of Attacks with respect to Security Goals 

 

 

Fig.3 Taxonomy of Attacks 

1.6.1 Attacks Threatening Confidentiality 

(a) Snooping 

 - It refers to unauthorized access to or interception of data. 

 - The file transferred through the internet may contain confidential information. 

 - Unauthorized entity may intercept the transmission.  

 - To prevent this, the data can be made unintelligible using encipherment techniques 
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Fig.4 Snooping 

(b) Traffic Analysis 

• Although encipherment of data may make it non-intelligible for the interceptor, she can obtain 

some other type information by monitoring online traffic.  

• For example, she can find the electronic address (such as the e-mail address) of the sender or the 

receiver. She can collect pairs of requests and responses to help her guess the nature of transaction. 

 

Fig.5 Traffic Analysis 

1.6.2 Attacks Threatening Integrity 

• The integrity of data can be threatened by several kinds of attacks: modification, 

masquerading, replaying, and repudiation. 

(a) Modification 
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❑  After intercepting or accessing information, the attacker modifies the information to make 

it beneficial to herself.  

❑  For example, a customer sends a message to a bank to do some transaction.  

❑  The attacker intercepts the message and changes the type of transaction to benefit herself. 

 

Fig. 6 Modification 

(b) Masquerading  

➢  Masquerading, or spoofing, happens when the attacker impersonates somebody else.  

➢  For example, an attacker might steal the bank card and PIN of a bank customer and pretend 

that she is that customer.  

➢  Sometimes the attacker pretends instead to be the receiver entity.  

➢  For example, a user tries to contact a bank, but another site pretends that it is the bank and 

obtains some information from the user.  

 

Fig.7 Masquerading 
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(c) Replaying  

➢  Replaying is another attack.  

➢  The attacker obtains a copy of a message sent by a user and later tries to replay it.  

➢  For example, a person sends a request to her bank to ask for payment to the attacker, who 

has done a job for her.  

➢  The attacker intercepts the message and sends it again to receive another payment from the 

bank.  

 

Fig.8 Replay 

(d) Repudiation  

➢  This type of attack is different from others because it is performed by one of the two parties 

in the communication: the sender or the receiver.  

➢  The sender of the message might later deny that she has sent the message; the receiver of the 

message might later deny that he has received the message.  

➢  An example of denial by the sender would be a bank customer asking her bank to send some 

money to a third party but later denying that she has made such a request.  

➢  An example of denial by the receiver could occur when a person buys a product from a 

manufacturer and pays for it electronically, but the manufacturer later denies having received 

the payment and asks to be paid 

1.6.3 Attacks Threatening Availability 

 

(a) Denial of Service  
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✓  Denial of service (DoS) is a very common attack. It may slow down or totally interrupt the 

service of a system.  

✓  The attacker can use several strategies to achieve this. She might send so many bogus 

requests to a server that the server crashes because of the heavy load.  

✓  The attacker might intercept and delete a server’s response to a client, making the client to 

believe that the server is not responding.  

✓  The attacker may also intercept requests from the clients, causing the clients to send requests 

many times and overload the system. 

 

Fig. 9 Denial of Service 

1.7 Passive Vs Active Attacks 

(a) Passive Attacks 

▪ In a passive attack, the attacker’s goal is just to obtain information. This means that the 

attack does not modify data or harm the system.  

▪  The system continues with its normal operation.  

▪  However, the attack may harm the sender or the receiver of the message.  

▪  Attacks that threaten confidentiality, snooping and traffic analysis are passive attacks.  

▪  The revealing of the information may harm the sender or receiver of the message, but the 

system is not affected.  

▪  For this reason, it is difficult to detect this type of attack until the sender or receiver finds 

out about the leaking of confidential information.  
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▪  Passive attacks, however, can be prevented by encipherment of the data. 

(b) Active Attacks 

▪ An active attack may change the data or harm the system.  

▪  Attacks that threaten the integrity and availability are active attacks.  

▪  Active attacks are normally easier to detect than to prevent, because an attacker can launch 

them in a variety of ways. 

Table 2. Passive Vs Active Attacks 

 

1.8 Security Services 

❖ Authentication 

❖  Access Control 

❖  Data Confidentiality 

❖  Data Integrity 

❖  Non-repudiation 

 

Fig.10 Security Services 

(a) Authentication 

• Authentication is the process of verifying whether someone (or something) is, in fact, who 

(or what) it is declared to be. 
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• Authentication: Verifying the identity of a user, process, or device, often as a prerequisite to 

allowing access to resources in an information system. 

• This process for establishing your identity to gain access to a system is typically two-steps: 

you must first identify yourself (i.e. user ID, account number or email address), and then you 

have to prove that you are who you say you are (authenticate yourself). 

(b) Access Control 

• The prevention of unauthorized use of a resource (i.e., this service controls who can have 

access to a resource, under what conditions access can occur, and what those accessing the 

resource are allowed to do). 

(c) Confidentiality 

o The protection of data from unauthorized disclosure. 

o The other aspect of confidentiality is the protection of traffic flow from analysis. This 

requires that an attacker not be able to observe the source and destination, frequency, length, 

or other characteristics of the traffic on a communications facility. 

(d) Integrity 

• An integrity service deals with a stream of messages and assures that messages are received 

as sent with no duplication, insertion, modification, reordering, or replays. 

(e) Nonrepudiation 

• Nonrepudiation prevents either sender or receiver from denying a transmitted message.  

• Thus, when a message is sent, the receiver can prove that the alleged sender in fact sent the 

message.  

• Similarly, when a message is received, the sender can prove that the alleged receiver in fact 

received the message. 

1.9 Security Mechanisms 

• Encipherment, hiding or covering data, can provide confidentiality. It can also be used to 

complement other mechanisms to provide other services. Today two techniques 

cryptography and steganography are used for enciphering. 

• Data integrity mechanism appends to the data a short check value that has been created by a 

specific process from the data itself. The receiver receives the data and the check value. He 

creates a new check value from the received data and compares the newly created check 

value with the one received. If the two check values are the same, the integrity of data has 

been preserved. 
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• A digital signature is a means by which the sender can electronically sign the data and the 

receiver can electronically verify the signature. The sender uses a process that involves 

showing that she owns a private key related to the public key that she has announced publicly. 

The receiver uses the sender’s public key to prove that the message is indeed signed by the 

sender who claims to have sent the message. 

• Authentication Exchange In authentication exchange, two entities exchange some messages 

to prove their identity to each other. For example, one entity can prove that she knows a secret 

that only she is supposed to know. 

• Traffic padding means inserting some bogus data into the data traffic to thwart the adversary’s 

attempt to use the traffic analysis. 

• Routing control means selecting and continuously changing different available routes 

between the sender and the receiver to prevent the opponent from eavesdropping on a 

particular route. 

• Notarization means selecting a third trusted party to control the communication between two 

entities. This can be done, for example, to prevent repudiation. The receiver can involve a 

trusted party to store the sender request in order to prevent the sender from later denying that 

she has made such a request. 

• Access control uses methods to prove that a user has access right to the data or resources 

owned by a system. Examples of proofs are passwords and PINs.  

 

Fig. 11 Security Mechanisms 

1.10 Model of Network Security 
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Fig.12 Model of Network Security 

Basic Tasks 

This general model shows that there are four basic tasks in designing a particular security service: 

1. Design an algorithm for performing the security-related transformation. The algorithm should 

be such that an opponent cannot defeat its purpose. 

2. Generate the secret information to be used with the algorithm. 

3. Develop methods for the distribution and sharing of the secret information. 

4. Specify a protocol to be used by the two principals that makes use of the security algorithm 

and the secret information to achieve a particular security service. 

Network Access Security Model 

 

Fig.13 Network Access Security Model 
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1.11 Symmetric Encryption 

A symmetric encryption scheme has five ingredients  

• Plaintext: This is the original message or data that is fed into the algorithm as input. 

•Encryption algorithm: The encryption algorithm performs various substitutions and 

transformations on the plaintext. 

• Secret key: The secret key is also input to the algorithm. The exact substitutions and transformations 

performed by the algorithm depend on the key. 

• Ciphertext: This is the scrambled message produced as output. It depends on the plaintext and the 

secret key. For a given message, two different keys will produce two different ciphertexts. 

• Decryption algorithm: This is essentially the encryption algorithm run in reverse. It takes the 

ciphertext and the same secret key and produces the original plaintext. 

 

Fig.14 Simplified Model of Symmetric Encryption 

Encryption, is the process of changing information in such a way as to make it unreadable by 

anyone except those possessing special knowledge (usually referred to as a "key") that allows 

them to change the information back to its original, readable form.  

(a) Basic Terms 

▪ Plaintext - original message 

▪  Ciphertext - coded message 

▪  Cipher - algorithm for transforming plaintext to cipher text 

▪  Key - info used in cipher known only to sender/receiver info used in cipher known only to 

sender/receiver  
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▪  Encipher (encrypt) Encipher (encrypt) - converting plaintext to ciphertext  

▪  Decipher (decrypt) - recovering ciphertext from plaintext  

▪  Cryptography  - study of encryption principles/methods study of encryption 

principles/methods  

▪  Cryptanalysis (code breaking) - study of principles/ methods of deciphering ciphertext 

without knowing key 

▪  Cryptology - field of both cryptography and cryptanalysis 

(b) Cryptography – Classification 

1. By type of encryption operations used: 

➢ Substitution  

➢ Transposition  

➢ Product 

2. By number of keys used By number of keys used: 

➢ Single-key or private key  

➢ Two-key or public 

3. By the way in which plaintext is processed: 

➢ Block  

➢ Stream 

1.12 Substitution 

❑ A substitution technique is one in which the letters of plaintext are replaced by other letters 

or by numbers or symbols.  

❑  If the plaintext is viewed as a sequence of bits, then substitution involves replacing 

plaintext bit patterns with cipher text bit patterns. 

❑  Caesar Cipher.  

❑  Playfair Cipher.  

❑  One-Time Pad. 

❑ Hill Cipher 

❑ Monoalphabetic Ciphers 
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❑ Polyalphabetic Ciphers 

1.12.1 Caesar Cipher: 

The earliest known use of a substitution cipher and the simplest was by Julius Caesar. 

 

 

If n=3 

 

Plain Text: meet me after the toga party 

Considering n=3 

Cipher Text: PHHW PH DIWHU WKH WRJD SDUWB 

Weakness: Total 26 keys 

Brute Force Cryptanalysis 

• If it is known that a given ciphertext is a Caesar cipher, then a brute-force cryptanalysis is 

easily performed: simply try all the 25 possible keys. 

• Three important characteristics of this problem enabled us to use a bruteforce cryptanalysis: 

1. The encryption and decryption algorithms are known. 

2. There are only 25 keys to try. 

3. The language of the plaintext is known and easily recognizable. 
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Fig.15 Brute Force Cryptanalysis 

1.12.2 Playfair Cipher 

➢ The best-known multiple letter encryption cipher is the Playfair, which treats digrams in the 

plaintext as single units and translates these units into cipher text digrams.  

➢ The Playfair algorithm is based on the use of 5x5 matrix of letters constructed using a 

keyword. 

➢ Let the keyword be “monarchy‟.  

➢ The matrix is constructed by filling in the letters of the keyword (minus duplicates) from left 

to right and from top to bottom, and then filling in the remainder of the matrix with the 

remaining letters in alphabetical order. 

➢ The letter „i‟ and „j‟ count as one letter.  

Rules: 

Plaintext is encrypted two letters at a time according to the following rules: 

❑  Repeating plaintext letters that would fall in the same pair are separated with a filler letter 

such as „x‟. 
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❑  Plaintext letters that fall in the same row of the matrix are each replaced by the letter to the 

right, with the first element of the row following the last. 

❑  Plaintext letters that fall in the same column are replaced by the letter beneath, with the top 

element of the column following the last. 

❑  Otherwise, each plaintext letter is replaced by the letter that lies in its own row and the column 

occupied by the other plaintext letter. 

(Ex): 

Keyword : MONARCHY 

M O N A R 

C H Y B D 

E F G I/J K 

L P Q S T 

U V W X Z 

 

Plaintext = meet me at the school house 

Splitting two letters as a unit =>  

me et me at th es ch ox ol ho us ex  

Corresponding cipher text =>  

CL KL CL RS PD IL HY AV MP HF XL IU 

Since there are 26 letters, 26x26 = 676 diagrams are possible, so identification of individual digram 

is more difficult. Frequency analysis is much more difficult. 
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1.12.3 Hill Cipher 

• The Hill Cipher was invented by Lester S. Hill in 1929. 

• The encryption algorithm takes ‘m’ successive plain text letters and substitutes for them ‘m’ 

ciphertext letters. 

Steps: 

• Select a message to encrypt 

•  Select a key 

• If we encrypt 2 letters at a time, then key size is 4. 

• Assign a numerical equivalent to each letter. 

• Convert the key to matrix 

• Convert the message to a ‘n’ component vector 

• Encryption - Ciphertext = K * P mod 26 

• Decryption Plaintext = K-1 * C mod 26 

Example : 

 

Hill Cipher 

Plain Text  : welcome 

we lc om ex 

Group the plain text as digrams ( 2 letter combinations) 

Key : dbgf 

K = ⌈
𝑑 𝑏
𝑔 𝑓

⌉ = ⌈
3 1
6 5

⌉ 

Represent the plaintext in matrix form 

⌈
𝑤
𝑒

⌉ ⌈
𝑙
𝑐

⌉ ⌈
𝑜
𝑚

⌉ ⌈
𝑒
𝑥

⌉ 
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⌈
22
4

⌉ ⌈
11
2

⌉ ⌈
14
12

⌉ ⌈
4

23
⌉ 

Encryption 

C = K * P mod 26 

1. For 
22
4

 

C = ⌈
3 1
6 5

⌉ * ⌈
22
4

⌉  mod 26 

   = ⌈
3 ∗ 22 + 1 ∗ 4
6 ∗ 22 + 5 ∗ 4

⌉ mod 26 

   =⌈
70

152
⌉ mod 26 

 = ⌈
18
22

⌉ = ⌈
𝑠
𝑤

⌉ 

2. For 
11
2

 

C = ⌈
3 1
6 5

⌉ * ⌈
11
2

⌉  mod 26 

   = ⌈
3 ∗ 11 + 1 ∗ 2
6 ∗ 11 + 5 ∗ 2

⌉ mod 26 

   = ⌈
35
76

⌉ mod 26 

   = ⌈
9

24
⌉ = ⌈

𝑗
𝑦

⌉ 

3. For 
14
12

 

C = ⌈
3 1
6 5

⌉ * ⌈
14
12

⌉  mod 26 

  = ⌈
3 ∗ 14 + 1 ∗ 12
6 ∗ 14 + 5 ∗ 12

⌉ mod 26 

 = ⌈
54

144
⌉ mod 26 

 = ⌈
2

14
⌉ = ⌈

𝑐
𝑜

⌉ 

4. For 
4

23
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C = ⌈
3 1
6 5

⌉ * ⌈
4

23
⌉  mod 26 

         = ⌈
3 ∗ 4 + 1 ∗ 23
6 ∗ 4 + 5 ∗ 23

⌉ mod 26 

         = ⌈
35

139
⌉ mod 26 

         = ⌈
9
9

⌉ = ⌈
𝑗
𝑗
⌉ 

 

 Cipher Text : swjycojj 

 

Decryption 

Plain Text = K-1 * C mod 26 

To compute K-1 

K-1 = 
𝟏

|𝑲|
 𝒂𝒅𝒋(𝑲) 

 

 

|K|  = ⌈3 1
6 5

⌉ = 3*5 – 6*1 = 15-6 = 9 

 

Determine the multiplicative inverse 

9 * mod 26 = 1 

Find the multiplicative inverse of 9 w.r.t mod 26, such that the outcome 

is 1. 

9 * 1  mod 26 = 9 

9 * 2 mod 26 = 18 

9 * 3 mod 26 = 1 
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Ans : 3 

𝟏

|𝑲|
 = 3 

𝐾 =  ⌈
3 1
6 5

⌉ 

adj (K) = ⌈5   − 1
−6     3

⌉ 

 

K-1 = 
𝟏

|𝑲|
 𝒂𝒅𝒋(𝑲) 

     = 3 * ⌈5   − 1
−6     3

⌉ 

      =  ⌈
15   − 3
−18     9

⌉ 

In order to eliminate the negative sign, add 26 to the negative numbers 

K-1    = ⌈15   23
8     9

⌉ 

 

Cipher Text : swjycojj 

Represent the given ciphertext as pairs in matrix form 

⌈
𝑠
𝑤

⌉ ⌈
𝑗
𝑦

⌉ ⌈
𝑐
𝑜

⌉ ⌈
𝑗
𝑗
⌉ 

1. For ⌈ 𝑠
𝑤

⌉ =  ⌈
18
22

⌉ 

Plain Text = K-1 * C mod 26 

   = ⌈
15   23
8     9

⌉ * ⌈
18
22

⌉ mod 26 

                        = ⌈
15 ∗ 18 + 23 ∗ 22

8 ∗ 18 + 9 ∗ 22
⌉ mod 26 

                       = ⌈
776
342

⌉ mod 26 
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                       = ⌈
22
4

⌉ = ⌈
𝑤
𝑒

⌉ 

2. For ⌈
𝑗
𝑦

⌉ =  ⌈
9

24
⌉ 

Plain Text = K-1 * C mod 26 

= ⌈
15   23
8     9

⌉ * ⌈
9

24
⌉ mod 26 

  = ⌈
687
288

⌉ mod 26 

  = ⌈
11
2

⌉ = ⌈
𝑙
𝑐

⌉ 

 

 

3. For ⌈𝑐
𝑜

⌉ = ⌈
2

14
⌉ 

Plain Text = K-1 * C mod 26 

                   = ⌈15   23
8     9

⌉ * ⌈
2

14
⌉ mod 26 

        = ⌈352
142

⌉ mod 26 

                   = ⌈14
12

⌉ = ⌈
𝑜
𝑚

⌉ 

4. For ⌈
𝑗
𝑗
⌉ = ⌈

9
9

⌉ 

 

Plain Text = K-1 * C mod 26 

  =  ⌈15   23
8     9

⌉ * ⌈
9
9

⌉ mod 26 

  = ⌈ 4
23

⌉ = ⌈
𝑒
𝑥

⌉ 

Plaintext : welcome 
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3 letter combinations 

Consider the plaintext =”Act” 

Select a 3 X 3 matrix as the key. 

K= 
6 24 1

13 16 10
20 17 15

 

Represent the plain text in numerical form 

P = 
0
2

19
 

Encryption 

C = K * P mod 26 

    =
6 24 1

13 16 10
20 17 15

    * ⌈
0
2

19
⌉    mod 26 

 

=  ⌈
6 ∗ 0 + 24 ∗ 2 + 1 ∗ 19

13 ∗ 0 + 16 ∗ 2 + 10 ∗ 19
20 ∗ 0 + 17 ∗ 2 + 15 ∗ 19

⌉ mod 26 

 

= ⌈
67

222
319

⌉    mod 26 

 

= ⌈
15
14
7

⌉ = ⌈
𝑃
𝑂
𝐻

⌉ 

 

 

Decryption 

Plain Text = K-1 * C mod 26 

To compute K-1 
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K-1 = 
𝟏

|𝑲|
 𝒂𝒅𝒋(𝑲) 

|𝐾| =  ⌈
6 24 1

13 16 10
20 17 15

⌉ 

    

      = 6 (16*15 – 17*10) – 24(13*15 – 20*10) + 1(13*17 – 20*16) 

      = 6 (240-170) – 24(195-200) +1(221-320) 

      = 6(70) -24(-5) +1(-99) 

      = 420 + 120 – 99 

      = 441 

𝒂𝒅𝒋(𝑲) 

 

K = ⌈
6 24 1

13 16 10
20 17 15

⌉ 

 

 KT = ⌈
6 13 20

24 16 17
1 10 15

⌉ 

     

       = ⌈

16 ∗ 15 − 10 ∗ 17 −(24 ∗ 15 − 1 ∗ 17) 24 ∗ 10 − 1 ∗ 16
−(13 ∗ 15 − 10 ∗ 20) 6 ∗ 15 − 1 ∗ 20 −(6 ∗ 10 − 1 ∗ 13)

13 ∗ 17 − 16 ∗ 20 −(6 ∗ 17 − 24 ∗ 20) (6 ∗ 16 − 24 ∗ 13)
⌉ 

 

adj(K)   =  ⌈
70 −343 224
5 70 −47

−99 378 −216
⌉ 
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Plain Text = K-1 * C mod 26 

 

 

K-1     = 1

441
  ⌈

70 −343 224
5 70 −47

−99 378 −216
⌉ 

 

P = 
1

441
  ⌈

70 −343 224
5 70 −47

−99 378 −216
⌉ ∗ ⌈

15
14
7

⌉ mod 26 

 

    =  
1

441
  ⌈

−2184
726

2295
⌉ mod 26 

 

 

Multiplicative inverse for 
1

441
 

 

441 *1 mod 26 = 25 

… 

441 *25 mod 26 =1 

Ans : 25 

 

= 25  ⌈
−2184

726
2295

⌉ mod 26 
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= ⌈
−54600
18150
57375

⌉ mod 26 

⌈
0
2

19
⌉  = ⌈

𝐴
𝐶
𝑇

⌉ 

 

1.12.4 One-Time Pad 

▪ It is an unbreakable cryptosystem. It represents the message as a sequence of 0s and 1s.  

▪ This can be accomplished by writing all numbers in binary, for example, or by using ASCII. 

The key is a random sequence of 0‟s and 1‟s of same length as the message. 

▪ Once a key is used, it is discarded and never used again. The system can be expressed as 

follows: 

▪ Thus the cipher text is generated by performing the bitwise XOR of the plaintext and the 

key. Decryption uses the same key.  

▪ Because of the properties of XOR, decryption simply involves the same bitwise operation 

 

 

Advantage: 

 Encryption method is completely unbreakable for a ciphertext only attack. 

 Disadvantages 

 It requires a very long key which is expensive to produce and expensive to transmit. 

 Once a key is used, it is dangerous to reuse it for a second message; any knowledge on the first 

message would give knowledge of the second. 

1.12.5 Monoalphabetic Ciphers 

• With only 25 possible keys, the Caesar cipher is far from secure. 
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• A dramatic increase in the key space can be achieved by allowing an arbitrary substitution. 

• A permutation of a finite set of elements is an ordered sequence of all the elements of, with 

each element appearing exactly once. For example, if, there are six permutations of : 

 

• In general, there are ! permutations of a set of elements, because the first element can be 

chosen in one of n ways 

• If, instead, the “cipher” line can be any permutation of the 26 alphabetic characters, then there 

are 26! or greater than     possible keys. 

• This is 10 orders of magnitude greater than the key space for DES and would seem to 

eliminate brute-force techniques for cryptanalysis.  

• Such an approach is referred to as a monoalphabetic substitution cipher, because a single 

cipher alphabet (mapping from plain alphabet to cipher alphabet) is used per message. 

1.12.6 Polyalphabetic Ciphers 

• Vigenere Cipher is a method of encrypting alphabetic text. It uses a simple form 

of polyalphabetic substitution.  

• A polyalphabetic cipher is any cipher based on substitution, using multiple substitution 

alphabets.  

• The encryption of the original text is done using the Vigenère square or Vigenère table. 

• The table consists of the alphabets written out 26 times in different rows, each alphabet shifted 

cyclically to the left compared to the previous alphabet, corresponding to the 26 

possible Caesar Ciphers. 

• At different points in the encryption process, the cipher uses a different alphabet from one of 

the rows. 

• The alphabet used at each point depends on a repeating keyword. 

1.13 Transposition (Permutation) Ciphers 

➢ Rearrange the letter order without altering the actual letters. 

Rail Fence Cipher: 

Meet me after the toga party 

https://en.wikipedia.org/wiki/Polyalphabetic_cipher
https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher#/media/File:Vigen%C3%A8re_square_shading.svg
https://www.geeksforgeeks.org/caesar-cipher/
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➢ Write message out diagonally as, 

 

Ciphertext:  

MEMATRHTGPRYETEFETEOAAT 

Row Transposition Ciphers: 

Write letters in rows, reorder the columns according to the key before reading off .  

• Key: 4312567 

 

Product Ciphers 

❑ Use several ciphers in succession to make harder, but: 

➢ Two substitutions make a more complex substitution 

➢ Two transpositions make more complex transposition 

➢  But a substitution followed by a transposition makes a new much harder cipher 

❑ This is a bridge from classical to modern ciphers 
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1.14 Block Cipher Vs Stream Cipher 

• A stream cipher is one that encrypts a digital data stream one bit or one byte at a time. 

Examples of classical stream ciphers are the autokeyed Vigenère cipher and the Vernam 

cipher. 

• A block cipher is one in which a block of plaintext is treated as a whole and used to 

produce a ciphertext block of equal length. Typically, a block size of 64 or 128 bits is used. 

Block Cipher 

• A block cipher is an encryption/decryption scheme in which a block of plaintext is treated 

as a whole and used to produce a ciphertext block of equal length. 

• Many block ciphers have a Feistel structure.  

• Such a structure consists of a number of identical rounds of processing.  

• In each round, a substitution is performed on one half of the data being processed, followed 

by a permutation that interchanges the two halves.  

• The original key is expanded so that a different key is used for each round. 
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Fig. 16 Stream Cipher 

 

Fig. 17 Block Cipher 

1.15 Feistel Cipher Structure 

• A block cipher operates on a plaintext block of n bits to produce a ciphertext block of n bits. 

There are 2n possible different plaintext blocks and, for the encryption to be reversible (i.e., 

for decryption to be possible), each must produce a unique ciphertext block. Such a 

transformation is called reversible, or nonsingular. 

• The following examples illustrate nonsingular and singular transformations for n=2. 

 

Fig. 18 Reversible vs Irreversible Mapping 
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• Feistel proposed the use of a cipher that alternates substitutions and permutations, where 

these terms are defined as follows: 

• Substitution: Each plaintext element or group of elements is uniquely replaced by a 

corresponding ciphertext element or group of elements. 

• Permutation: A sequence of plaintext elements is replaced by a permutation of that 

sequence. That is, no elements are added or deleted or replaced in the sequence, 

rather the order in which the elements appear in the sequence is changed 

• In fact, Feistel’s is a practical application of a proposal by Claude Shannon to develop a 

product cipher that alternates confusion and diffusion functions 

• The terms diffusion and confusion were introduced by Claude Shannon to capture the two 

basic building blocks for any cryptographic system. 

• In diffusion, the statistical structure of the plaintext is dissipated into long-range statistics of 

the ciphertext. This is achieved by having each plaintext digit affect the value of many 

ciphertext digits; generally, this is equivalent to having each ciphertext digit be affected by 

many plaintext digits. 

• confusion seeks to make the relationship between the statistics of the ciphertext and the 

value of the encryption key as complex as possible, again to thwart attempts to discover the 

key. 

• The inputs to the encryption algorithm are a plaintext block of length 2W bits and a key. 

• The plaintext block is divided into two halves, L0 and R0  

• The two halves of the data pass through rounds of processing and then combine to produce 

the ciphertext block 

• Each round has as inputs Li-1 and Ri-1 derived from the previous round, as well as a subkey 

Ki derived from the overall K. 

• 16 rounds are used, although any number of rounds could be implemented. 

• A substitution is performed on the left half of the data. This is done by applying a round 

function F to the right half of the data and then taking the exclusive-OR of the output of that 

function and the left half of the data. 
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• Permutation is performed that consists of the interchange of the two halves of the data 

• This structure is a particular form of the substitution-permutation network (SPN) proposed 

by Shannon 

 

Fig.18 Fiestel Cipher Structure 

Design Features 

• The exact realization of a Feistel network depends on the choice of the following parameters 

and design features: 

• Block size: Larger block sizes mean greater security (all other things being equal) but reduced 

encryption/decryption speed for a given algorithm 

• Key size: Larger key size means greater security but may decrease encryption/ decryption 

speed. 
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• Number of rounds: The essence of the Feistel cipher is that a single round offers inadequate 

security but that multiple rounds offer increasing security. A typical size is 16 rounds. 

• Subkey generation algorithm: Greater complexity in this algorithm should lead to greater 

difficulty of cryptanalysis. 

• Round function F: Again, greater complexity generally means greater resistance to 

cryptanalysis. 

Feistel Decryption Algorithm 

• The process of decryption with a Feistel cipher is essentially the same as the encryption 

process.  

• The rule is as follows:  

• Use the ciphertext as input to the algorithm, but use the subkeys Ki  in reverse order. 

1.16 Data Encryption Standard (DES) 

• The Data Encryption Standard (DES) has been the most widely used symmetric encryption 

algorithm until recently. It exhibits the classic Feistel structure.  

• DES uses a 64-bit block and a 56-bit key. 

• Two important methods of cryptanalysis are differential cryptanalysis and linear 

cryptanalysis.  

• DES has been shown to be highly resistant to these two types of attack. 

DES Encryption 

• As with any encryption scheme, there are two inputs to the encryption function: the plaintext 

to be encrypted and the key. In this case, the plaintext must be 64 bits in length and the key is 

56 bits in length. 

• With the exception of the initial and final permutations, DES has the exact structure of a 

Feistel cipher, 
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Fig. 19 Data Encryption Standard 

Single Round of DES Algorithm 

 

Fig. 20 Single Round of DES Algorithm 
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Fig. 21 Calculation of F(R,K) 
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Fig. 22 Definition of S-Boxes 
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Fig. 23 DES Example 

The Avalanche Effect 



42 
 

• A desirable property of any encryption algorithm is that a small change in either the plaintext 

or the key should produce a significant change in the ciphertext.  

• In particular, a change in one bit of the plaintext or one bit of the key should produce a change 

in many bits of the ciphertext.  

• This is referred to as the avalanche effect.  

• If the change were small, this might provide a way to reduce the size of the plaintext or key 

space to be searched. 

 

Fig. 24 Avalanche Effect in DES (Change in Plaintext) 

 

Fig. 25 Avalanche Effect in DES (Change in Key) 
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Strength of DES 

• The Use of 56-Bit Keys 

• With a key length of 56 bits, there are 256 possible keys, which is approximately 7.2 

X 1016 keys 

• Thus, on the face of it, a brute-force attack appears impractical 

• Assuming that, on average, half the key space has to be searched, a single machine 

performing one DES encryption per microsecond would take more than a thousand 

years to break the cipher. 

• The Nature of the DES Algorithm 

• Another concern is the possibility that cryptanalysis is possible by exploiting the 

characteristics of the DES algorithm. The focus of concern has been on the eight 

substitution tables, or S-boxes, that are used in each iteration. Because the design 

criteria for these boxes, and indeed for the entire algorithm, were not made public, 

there is a suspicion that the boxes were constructed in such a way that cryptanalysis 

• For most of its life, the prime concern with DES has been its vulnerability to brute-

force attack because of its relatively short (56 bits) key length. However, there has 

also been interest in finding cryptanalytic attacks on DES. With the increasing 

popularity of block ciphers with longer key lengths, including triple DES, brute- force 

attacks have become increasingly impractical. 

Confidentiality using Symmetric Encryption 

• Placement of Encryption Function 

• What to encrypt and where to place the encrypted function 

• Encryption placement – end to end encryption and link encryption 

• There are number of locations where attacks can occur. 

• And, it is not under the physical control of the end user. 
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Fig. 26 Packet Switching Network 

Table 3 :  Difference Between Link Encryption and End-to-End Encryption 

 

Traffic Confidentiality 

• The following types of information can be derived from a traffic analysis attack. 

• Identities of partners 

• How frequently the partners are communicating 

• Message pattern, message length, quantity of messages that suggest important 

information being exchanged. 

• The events that correlate with special conversations between particular partners. 
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Covert Channel 

• A covert channel is any communication channel that can be exploited by a process to transfer 

information in a manner that violates the systems security policy.  

• In short, covert channels transfer information using non-standard methods against the system 

design. 

• The main purpose of covert channels is to protect privacy or to increase security of critical 

communication. 

Symmetric Key Distribution 

• For symmetric encryption to work, the two parties to an exchange must share the same key, 

and that key must be protected from access by others.  

• Furthermore, frequent key changes are usually desirable to limit the amount of data 

compromised if an attacker learns the key.  

• Therefore, the strength of any cryptographic system rests with the key distribution technique, 

a term that refers to the means of delivering a key to two parties who wish to exchange data 

without allowing others to see the key. 

For two parties A and B, key distribution can be achieved in a number of ways, as follows: 

1. A can select a key and physically deliver it to B. 

2. A third party can select the key and physically deliver it to A and B. 

3. If A and B have previously and recently used a key, one party can transmit the new key to the 

other, encrypted using the old key. 

4. If A and B each has an encrypted connection to a third party C, C can deliver a key on the 

encrypted links to A and B. 

• Options 1 and 2 call for manual delivery of a key.  

• For link encryption, this is a reasonable requirement, because each link encryption device is going 

to be exchanging data only with its partner on the other end of the link.  

• However, for end-to-end encryption over a network, manual delivery is not good. In a distributed 

system, any given host or terminal may need to engage in exchanges with many other hosts and 

terminals over time. 

• Thus, each device needs a number of keys supplied dynamically. The problem is especially 

difficult in a wide-area distributed system. 

 



46 
 

• The scale of the problem depends on the number of communicating pairs that must be 

supported. If end-to-end encryption is done at a network or IP level, then a key is needed for 

each pair of hosts on the network that wish to communicate. 

• Thus, if there are N hosts, the number of required keys is [N(N-1)]/2. 

• If encryption is done at the application level, then a key is needed for every pair of users or 

processes that require communication. 

• The use of a key distribution center is based on the use of a hierarchy of keys. At a minimum, 

two levels of keys are used.  

• Communication between end systems is encrypted using a temporary key, often referred to 

as a session key. 

• Each session key is obtained from the key distribution center over the same networking 

facilities used for end-user communication. Accordingly, session keys are transmitted in 

encrypted form, using a master key that is shared by the key distribution center and an end 

system or user. 

 

Fig. 27 The Use of Key Hierarchy 

A Key Distribution Scenario 

• The key distribution concept can be deployed in a number of ways. 

• The scenario assumes that each user shares a unique master key with the key distribution 

center (KDC). 
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Fig.28 Symmetric Key Distribution Scenario 

• Let us assume that user A wishes to establish a logical connection with B and requires a one-

time session key to protect the data transmitted over the connection. 

• A has a master key, Ka  known only to itself and the KDC. similarly, B shares the master key 

Kb with the KDC. 

The following steps occur, 
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Hierarchical Key Control 

• It is not necessary to limit the key distribution function to a single KDC. Indeed, for very 

large networks, it may not be practical to do so. 

• As an alternative, a hierarchy of KDCs can be established. For example, there can be local 

KDCs, each responsible for a small domain of the overall internetwork, such as a single LAN 

or a single building. 

• For communication among entities within the same local domain, the local KDC is 

responsible for key distribution. If two entities in different domains desire a shared key, then 

the corresponding local KDCs can communicate through a global KDC. In this case, any one 

of the three KDCs involved can actually select the key. 

Session Key Lifetime 

• The more frequently session keys are exchanged, the more secure they are, because the 

opponent has less ciphertext to work with for any given session key.  

• On the other hand, the distribution of session keys delays the start of any exchange and places 

a burden on network capacity. 

• A security manager must try to balance these competing considerations in determining the 

lifetime of a particular session key. 
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Decentralized Key Control 

• The use of a key distribution center imposes the requirement that the KDC be trusted and 

be protected from subversion.  

• This requirement can be avoided if key distribution is fully decentralized.  

• Although full decentralization is not practical for larger networks using symmetric 

encryption only, it may be useful within a local context. 

 

 

Fig. 29 Decentralized Key Control 

 

References: 

• William Stallings, “ Cryptography and Network Security”, 4th Edition, Pearson, 2009. 

• Behrouz A. Forouzan, “ Cryptography and Network Security”, Tata McGraw-Hill, 2008. 
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II. Public Key Cryptography 

Principles – RSA algorithm – Key Management – Diffie Hellman Key Exchange 

–Message Authentication Requirements, Functions, Message Authentication – 

Hash Functions – Digital Signatures – Authentication Protocols 

2.1 Introduction 

When the two parties communicate to each other to transfer the intelligible or sensible message, 

referred to as plaintext, is converted into apparently random nonsense for security purpose 

referred to as ciphertext.  

Encryption: 

The process of changing the plaintext into the ciphertext is referred to as encryption.  

The encryption process consists of an algorithm and a key. The key is a value independent of the 

plaintext.  

The security of conventional encryption depends on the major two factors:  

1. The Encryption algorithm 

2. Secrecy of the key 

Once the ciphertext is produced, it may be transmitted. The Encryption algorithm will produce a 

different output depending on the specific key being used at the time. Changing the key changes the 

output of the algorithm. Once the ciphertext is produced, it may be transmitted. Upon reception, the 

ciphertext can be transformed back to the original plaintext by using a decryption algorithm and the 

same key that was used for encryption.  

Decryption:  

The process of changing the ciphertext to the plaintext that process is known as decryption.  

Public Key Encryption :  Asymmetric is a form of Cryptosystem in which encryption and decryption 

are performed using different keys-Public key (known to everyone) and Private key (Secret key). 

This is known as Public Key Encryption. 

2.2 Principles of Public-Key Cryptosystems 

The concept of public-key cryptography evolved from an attempt to attack two of the most difficult 

problems associated with symmetric encryption. The first problem is that of key distribution, and the 

second one related to digital signature. key distribution under symmetric encryption requires either 

(1) that two communicants already share a key, which somehow has been distributed to them; or (2) 
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the use of a key distribution center. The second problem is "digital signatures." If the use of 

cryptography was to become widespread, not just in military situations but for commercial and 

private purposes, then electronic messages and documents would need the equivalent of signatures 

used in paper documents.  

Asymmetric algorithms rely on one key for encryption and a different but related key for decryption.  

These algorithms have the following important characteristic: 

● It is computationally infeasible to determine the decryption key given only knowledge of the  

cryptographic algorithm and the encryption key. 

● Either of the two related keys can be used for encryption, with the other used for decryption. 

A public-key encryption scheme has six ingredients  

● Plaintext: This is the readable message or data that is fed into the algorithm as input. 

● Encryption algorithm: The encryption algorithm performs various transformations on the  

plaintext. 

● Public and private keys: This is a pair of keys that have been selected so that if one is used for  

encryption, the other is used for decryption. The exact transformations performed by the  

algorithm depend on the public or private key that is provided as input. 

● Ciphertext: This is the scrambled message produced as output. It depends on the plaintext and  

the key. For a given message, two different keys will produce two different ciphertexts. 

● Decryption algorithm: This algorithm accepts the ciphertext and the matching key and  

produces the original plaintext.  
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Fig: Process of Encryption and Decryption 

 

 

Difference between Symmetric encryption and Asymmetric encryption 

 

 

 

The essential steps are the following: 

1. Each user generates a pair of keys to be used for the encryption and decryption of messages.  

2. Each user places one of the two keys in a public register or other accessible file. This is the public  

key. The companion key is kept private. As Figure 9.1a suggests, each user maintains a collection  

of public keys obtained from others.  

S.No Symmetric encryption  Asymmetric encryption  

1. It uses a single shared key (secret key) to 

encrypt and decrypt the message. 

It uses two different keys for encryption and 

decryption. 

2. The size of cipher text is same or smaller 

than the original plain text. 

The size of cipher text is same or larger than the 

original plain text. 

3. The encryption process is very fast. The encryption process is slow. 

4. It is used when a large amount of data is 

required to transfer. 

It is used to transfer small amount of data. 

5. It only provides confidentiality. It provides confidentiality, authenticity and non-

repudiation. 

6. It is less secured as there is a use of a 

single key for encryption. 

It is safer as there are two keys used for 

encryption and decryption. 

7. The algorithms used in symmetric 

encryption are 3DES, AES, DES, and 

RC4. 

RSA, DSA, Diffie-Hellman, ECC, ElGamal. 



54 
 

3. If Bob wishes to send a confidential message to Alice, Bob encrypts the message using Alice's  

public key.  

4. When Alice receives the message, she decrypts it using her private key. No other recipient can  

decrypt the message because only Alice knows Alice's private key. 

 

With this approach, all participants have access to public keys, and private keys are generated 

locally by each participant and therefore need never be distributed. As long as a user's private key 

remains protected and secret, incoming communication is secure. 

 

Table 1:  summarizes some of the important aspects of symmetric and public-key encryption. 

 

 
 

Requirements for Public-Key Cryptography 

 

1. It is computationally easy for a party B to generate a pair (public key PUb, private key PRb). 

2. It is computationally easy for a sender A, knowing the public key and the message to be  

encrypted, M, to generate the corresponding ciphertext:  

  C = E(PUb, M) 

3. It is computationally easy for the receiver B to decrypt the resulting ciphertext using the private  

key to recover the original message: 

M = D(PRb, C) = D[PRb, E(PUb, M)] 

4. It is computationally infeasible for an adversary, knowing the public key, PUb, to determine the  

private key, PRb. 

5. It is computationally infeasible for an adversary, knowing the public key, PUb, and a ciphertext,  

C, to recover the original message, M. 

 

We can add a sixth requirement that, although useful, is not necessary for all public-key  



55 
 

applications: 

6. The two keys can be applied in either order: 

M = D[PUb, E(PRb, M)] = D[PRb, E(PUb, M)] 

 

 

 

2.3 RSA Algorithm: 

Diffie and Hellman challenged cryptologists to come up with a cryptographic algorithm that 

met the requirements for public-key systems. 

One of the first successful responses to the challenge was developed in 1977 by Ron Rivest, Adi 

Shamir, and Len Adleman at MIT and first published in 1978. The Rivest-Shamir-Adleman (RSA) 

scheme has since that time reigned supreme as the most widely accepted and implemented general-

purpose approach to public-key encryption. 

The RSA scheme is a block cipher in which the plaintext and ciphertext are integers between 0 and 

n - 1 for some n. A typical size for n is 1024 bits, or 309 decimal digits. That is, n is less than 21024. 

We examine RSA in this section in some detail, beginning with an explanation of the algorithm. Then 

we examine some of the computational and cryptanalytical implications of RSA. 

2.3.1 Description of the Algorithm 

RSA makes use of an expression with exponentials. Plaintext is encrypted in blocks, with each block 

having a binary value less than some number n. That is, the block size must be less than or equal to 

log2(n) + 1; in practice, the block size is i bits, where 2i < n ≤ 2i+1. Encryption and decryption are 

of the following form, for some plaintext block M and ciphertext block C. 

 

Both sender and receiver must know the value of n. The sender knows the value of e, and 

only the receiver knows the value of d. Thus, this is a public-key encryption algorithm with a 

public key of PU = {e, n} and a private key of PR = {d, n}. 

For this algorithm to be satisfactory for public-key encryption, the following requirements 

must be met. 

1. It is possible to find values of e, d, n such that Med mod n = M for all M < n. 

2. It is relatively easy to calculate Me mod n and Cd mod n for all values of M < n. 

3. It is infeasible to determine d given e and n. 

We need to find a relationship of the form 

Med mod n = M 

The preceding relationship holds if e and d are multiplicative inverses modulo φ(n), where 

φ(n) is the Euler totient function. 

For p,q prime, φ (pq) = (p - 1)(q - 1). The relationship between e and d can be expressed as 
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ed mod φ(n) = 1 
 

This is equivalent to saying 

 

 

That is, e and d are multiplicative inverses mod  (n). Note that, according to the rules of modular 

arithmetic, this is true only if d (and therefore e) is relatively prime to  (n). Equivalently, gcd(  (n), 

d) = 1.  

The ingredients are the following:  

 

The private key consists of {d, n} and the public key consists of {e, n}. Suppose that user A has 

published its public key and that user B wishes to send the message M to A. Then B calculates C = 

Me mod n and transmits C. On receipt of this ciphertext, user A decrypts by calculating M = C d mod 

n. 

Table :2  RSA Algorithm 

 

 



57 
 

 

Fig.1  Example of RSA Algorithm 

 

2.4 Key Management 

One of the major roles of public-key encryption has been to address the problem of key distribution. 

There are actually two distinct aspects to the use of public-key cryptography in this regard: 

● The distribution of public keys 

● The use of public-key encryption to distribute secret keys 

2.4.1 Distribution of Public Keys 

Several techniques have been proposed for the distribution of public keys. Virtually all these 

proposals can be grouped into the following general schemes: 

● Public announcement 

● Publicly available directory 

● Public-key authority 

● Public-key certificates 

2.4.1.1 Public Announcement of Public Key 

On the face of it, the point of public-key encryption is that the public key is public. Thus, if there is 

some broadly accepted public-key algorithm, such as RSA, any participant can send his or her public 

key to any other participant or broadcast the key to the community at large 
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Fig: 2 Uncontrolled Public-Key Distribution 

Publicly Available Directory 

A greater degree of security can be achieved by maintaining a publicly available dynamic directory 

of public keys. Maintenance and distribution of the public directory would have to be the 

responsibility of some trusted entity or organization (Figure 3). Such a scheme would include the 

following elements: 

 

Fig : 3 Public-Key Publication 

 

1. The authority maintains a directory with a {name, public key} entry for each participant. 

2. Each participant registers a public key with the directory authority. Registration would have to be  

in person or by some form of secure authenticated communication. 
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3. A participant may replace the existing key with a new one at any time, either because of the  

desire to replace a public key that has already been used for a large amount of data, or because  

the corresponding private key has been compromised in some way. 

4. Participants could also access the directory electronically. For this purpose, secure, authenticated  

communication from the authority to the participant is mandatory. 

2.4.1.2 Public-Key Authority 

Stronger security for public-key distribution can be achieved by providing tighter control over the  

distribution of public keys from the directory. A typical scenario is illustrated in Figure 4 As before, 

the scenario assumes that a central authority maintains a dynamic directory of public keys of all 

participants. In addition, each participant reliably knows a public key for the authority, with only the 

authority knowing the corresponding private key.  

 

1. A sends a timestamped message to the public-key authority containing a request for the current  

public key of B.  

2. The authority responds with a message that is encrypted using the authority's private key, PRauth 

Thus, A is able to decrypt the message using the authority's public key. Therefore, A is assured  

that the message originated with the authority. The message includes the following:  

● B's public key, PUb  which A can use to encrypt messages destined for B 

● The original request, to enable A to match this response with the corresponding earlier  

request and to verify that the original request was not altered before reception by the  

authority 
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● The original timestamp, so A can determine that this is not an old message from the  

authority containing a key other than B's current public key 

3. A stores B's public key and also uses it to encrypt a message to B containing an identifier of A  

(IDA) and a nonce (N1), which is used to identify this transaction uniquely.  

4. B retrieves A's public key from the authority in the same manner as A retrieved B's public key.  

At this point, public keys have been securely delivered to A and B, and they may begin their  

protected exchange. However, two additional steps are desirable:  

6. B sends a message to A encrypted with PUa  and containing A's nonce (N1) as well as a new nonce  

generated by B (N2) Because only B could have decrypted message (3), the presence of N1 in  

message (6) assures A that the correspondent is B.  

7. A returns N2, encrypted using B's public key, to assure B that its correspondent is A.  

2.4.1.3 Public-Key Certificates 

The public key certificate relies on certificates that can be used by participants to exchange keys 

without contacting a public-key authority, in a way that is as reliable as if the keys were obtained 

directly from a public-key authority. In essence, a certificate consists of a public key, an identifier of 

the key owner, and the whole block signed by a trusted third party. 

 Typically, the third party is a certificate authority, such as a government agency or a financial 

institution that is trusted by the user community. A user can present his or her public key to the 

authority in a secure manner and obtain a certificate. The user can then publish the certificate. Anyone 

needing this user’s public key can obtain the certificate and verify that it is valid by way of the 

attached trusted signature. 

We can place the following requirements on this scheme: 

1.Any participant can read a certificate to determine the name and public key of the certificate’s 

owner. 

2.Any participant can verify that the certificate originated from the certificate authority and is not 

counterfeit. 

3.Only the certificate authority can create and update certificates. 

4.Any participant can verify the currency of the certificate. 

A certificate scheme is illustrated in Figure 5. Each participant applies to the certificate authority,  

supplying a public key and requesting a certificate. 
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Fig: 6 Exchange of Public-Key Certificates 

 

Application must be in person or by some form of secure authenticated communication. For 

participant A, the authority provides a certificate of the form 

CA = E(PRauth, [T||IDA||PUa]) 

where PRauth is the private key used by the authority and T is a timestamp. A may then pass this  

certificate on to any other participant, who reads and verifies the certificate as follows: 

D(PUauth, CA) = D(PUauth, E(PRauth, [T||IDA||PUa])) = (T||IDA||PUa) 

The recipient uses the authority's public key, PUauth to decrypt the certificate. Because the certificate 

is readable only using the authority's public key, this verifies that the certificate came from the 

certificate authority. The elements IDA and PUa provide the recipient with the name and public key 

of the certificate's holder. The timestamp T validates the currency of the certificate. The timestamp 

counters the following scenario. A's private key is learned by an adversary. A generates a new 

private/public key pair and applies to the certificate authority for a new certificate. Meanwhile, the 

adversary replays the old certificate to B. If B then encrypts messages using the compromised old 

public key, the adversary can read those messages. 

2.4.2 Distribution of Secret Keys Using Public-Key Cryptography 

Once public keys have been distributed or have become accessible, secure communication that 

thwarts eavesdropping, tampering, or both is possible. However, few users will wish to make 

exclusive use of public-key encryption for communication because of the relatively slow data rates 

that can be achieved. Accordingly, public-key encryption provides for the distribution of secret keys 

to be used for conventional encryption. 

2.4.2.1 Simple Secret Key Distribution 

If A wishes to communicate with B, the following procedure is employed: 
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1. A generates a public/private key pair {PUa , PRa} and transmits a message to B consisting of PUa 

and an identifier of A, IDA.  

2. B generates a secret key, Ks, and transmits it to A, encrypted with A's public key.  

3. A computes D(PRa , E(PUa , Ks)) to recover the secret key. Because only A can decrypt the  

message, only A and B will know the identity of Ks.  

4. A discards PUa and PRa and B discards PUa. 

 

Fig: 6 Simple Use of Public-Key Encryption to Establish a Session Key 

A and B can now securely communicate using conventional encryption and the session key Ks. At 

the completion of the exchange, both A and B discard Ks. Despite its simplicity, this is an attractive 

protocol. No keys exist before the start of the communication and none exist after the completion of 

communication. Thus, the risk of compromise of the keys is minimal. At the same time, the 

communication is secure from eavesdropping. 

2.4.2.2 Secret Key Distribution with Confidentiality and Authentication 

It provides protection against both active and passive attacks. 

 

Fig: 7 Public-Key Distribution of Secret Keys 

 

Then the following steps occur:  

1. A uses B's public key to encrypt a message to B containing an identifier of A (IDA) and a nonce 

(N1), which is used to identify this transaction uniquely.  
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 2. B sends a message to A encrypted with PUa and containing A's nonce (N1) as well as a new nonce 

generated by B (N2) Because only B could have decrypted message (1), the presence of N1 in message 

(2) assures A that the correspondent is B. 

 3. A returns N2 encrypted using B's public key, to assure B that its correspondent is A.  

4. A selects a secret key Ks and sends M = E(PUb , E(PRa , Ks )) to B. Encryption of this message 

with B's public key ensures that only B can read it; encryption with A's private key ensures that only 

A could have sent it. 

 5. B computes D(PUa , D(PRb , M)) to recover the secret key. 

2.4.3 A Hybrid Scheme 

This scheme retains the use of a key distribution center (KDC) that shares a secret master key with 

each user and distributes secret session keys encrypted with the master key. A public key scheme is 

used to distribute the master keys. The following rationale is provided for using this three-level 

approach: 

● Performance: There are many applications, especially transaction-oriented applications, in which 

the session keys change frequently. Distribution of session keys by public-key encryption could 

degrade overall system performance because of the relatively high computational load of public-key 

encryption and decryption. With a three-level hierarchy, public-key encryption is used only 

occasionally to update the master key between a user and the KDC. 

● Backward compatibility: The hybrid scheme is easily overlaid on an existing KDC scheme, with  

minimal disruption or software changes 

2.5 Diffie-Hellman Key Exchange 

The purpose of the algorithm is to enable two users to exchange a key securely that can then be used 

for subsequent encryption of messages. The algorithm itself is limited to the exchange of secret 

values. 

The Diffie-Hellman algorithm depends for its effectiveness on the difficulty of computing discrete  

logarithms. we define a primitive root of a prime number p as one whose powers modulo p generate 

all the integers from 1 to p 1. That is, if a is a primitive root of the prime number p, then the numbers 

a mod p, a2 mod p,..., ap1 mod p 

are distinct and consist of the integers from 1 through p-1 in some permutation. 

For any integer b and a primitive root a of prime number p, we can find a unique exponent i such that 

 

The exponent i is referred to as the discrete logarithm of b for the base a, mod p. 

2.5.1 The Algorithm 

Figure 8 .summarizes the Diffie-Hellman key exchange algorithm. For this scheme, there are two  
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publicly known numbers: a prime number q and an integer that is a primitive root of q. Suppose the  

users A and B wish to exchange a key. User A selects a random integer XA < q and computes YA = 

αXA mod q. Similarly, user B independently selects a random integer XA < q and computes YB = α 

XB mod q. Each side keeps the X value private and makes the Y value available publicly to the other 

side. User A computes the key as K = (YB) X
A mod q and user B computes the key as K = (YA)X

B  

mod q. These two calculations produce identical results 

Figure 8 The Diffie-Hellman Key Exchange Algorithm 

 

The security of the Diffie-Hellman key exchange lies in the fact that, while it is relatively easy to  

calculate exponentials modulo a prime, it is very difficult to calculate discrete logarithms. For large  

primes, the latter task is considered infeasible. 

2.5.2 Key Exchange Protocols 

Fig : 9 shows a simple protocol that makes use of the Diffie-Hellman calculation. Suppose that user  

A wishes to set up a connection with user B and use a secret key to encrypt messages on that  
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connection. User A can generate a one-time private key XA, calculate YA, and send that to user B. 

User B responds by generating a private value XB calculating YB, and sending YB to user A. Both 

users can now calculate the key. The necessary public values q and α would need to be known ahead 

of time. Alternatively, user A could pick values for q and α and include those in the first message. 

 

 

Fig : 9 Diffie-Hellman Key Exchange 

2.6 Message Authentication 

Authentication Requirements 

Authentication Functions 

Message Encryption 

Message Authentication Code 

Hash Function 

2.6.1 Authentication Requirements 

In the context of communications across a network, the following attacks can be identified: 

1. Disclosure: Release of message contents to any person or process not possessing the  

appropriate cryptographic key. 

2. Traffic analysis: Discovery of the pattern of traffic between parties. In a connection-oriented  

application, the frequency and duration of connections could be determined. In either a  

connection-oriented or connectionless environment, the number and length of messages between  

parties could be determined. 

3. Masquerade: Insertion of messages into the network from a fraudulent source. This includes  



66 
 

the creation of messages by an opponent that are purported to come from an authorized entity.  

Also included are fraudulent acknowledgments of message receipt or nonreceipt by someone  

other than the message recipient. 

4. Content modification: Changes to the contents of a message, including insertion, deletion,  

transposition, and modification. 

5. Sequence modification: Any modification to a sequence of messages between parties,  

including insertion, deletion, and reordering. 

6. Timing modification: Delay or replay of messages. In a connection-oriented application, an  

entire session or sequence of messages could be a replay of some previous valid session, or  

individual messages in the sequence could be delayed or replayed. In a connectionless  

application, an individual message (e.g., datagram) could be delayed or replayed. 

7. Source repudiation: Denial of transmission of message by source. 

8. Destination repudiation: Denial of receipt of message by destination. 

2.6.2 Authentication Functions 

Any message authentication or digital signature mechanism has two levels of functionality. At the 

lower level, there must be some sort of function that produces an authenticator: a value to be used to 

authenticate a message. This lower-level function is then used as a primitive in a higher-level 

authentication protocol that enables a receiver to verify the authenticity of a message 

The types of functions that may be used to produce an authenticator that are grouped into three 

classes, as follows: 

● Message encryption: The ciphertext of the entire message serves as its authenticator 

● Message authentication code (MAC): A function of the message and a secret key that  

produces a fixed-length value that serves as the authenticator 

● Hash function: A function that maps a message of any length into a fixed-length hash 

value,  

which serves as the authenticator 

2.6.2.1 Message Encryption 

Message encryption by itself can provide a measure of authentication. The analysis differs for 

symmetric and public-key encryption schemes. 

2.6.2.1.1 Symmetric Encryption 

Consider the straightforward use of symmetric encryption (Figure 11.1a). A message M transmitted 

from source A to destination B is encrypted using a secret key K shared by A and B. If no other party 
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knows the key, then confidentiality is provided: No other party can recover the plaintext of the 

message 

 

Figure 9 Basic Uses of Message Encryption 

 

In addition, we may say that B is assured that the message was generated by A. The message must 

have come from A because A is the only other party that possesses K and therefore the only other 

party with the information necessary to construct ciphertext that can be decrypted with K. 

Furthermore, if M is recovered, B knows that none of the bits of M have been altered, because an 

opponent that does not know K would not know how to alter bits in the ciphertext to produce desired 

changes in the plaintext. Symmetric encryption provides authentication as well as confidentiality.  

2.6.2.1.2 Public-Key Encryption 

The straightforward use of public-key encryption Figure 9b provides confidentiality but not 

authentication. The source (A) uses the public key PUb of the destination (B) to encrypt M. Because 

only B has the corresponding private key PRb , only B can decrypt the message. This scheme provides 

no authentication because any opponent could also use B's public key to encrypt a message, claiming 

to be A. 
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To provide authentication, A uses its private key to encrypt the message, and B uses A's public key 

to decrypt (Figure 9c). This provides authentication using the same type of reasoning as in the 

symmetric encryption case: The message must have come from A because A is the only party that 

possesses PRa and therefore the only party with the information necessary to construct ciphertext that 

can be decrypted with PUa.  

2.6.2.2 Message Authentication Code 

An alternative authentication technique involves the use of a secret key to generate a small fixed-size  

block of data, known as a cryptographic checksum or MAC that is appended to the message. This  

technique assumes that two communicating parties, say A and B, share a common secret key K. When 

A has a message to send to B, it calculates the MAC as a function of the message and the key:MAC 

= C(K, M), where 

M = input message 

C = MAC function 

K = shared secret key 

MAC = message authentication code 

The message plus MAC is transmitted to the intended recipient. The recipient performs the same  

calculation on the received message, using the same secret key, to generate a new MAC. The received  

MAC is compared to the calculated MAC (Figure 10a). If we assume that only the receiver and the  

sender know the identity of the secret key, and if the received MAC matches the calculated MAC, 

then 

1. The receiver is assured that the message has not been altered. If an attacker alters the message  

but does not alter the MAC, then the receiver's calculation of the MAC will differ from the  

received MAC. Because the attacker is assumed not to know the secret key, the attacker cannot  

alter the MAC to correspond to the alterations in the message. 

2. The receiver is assured that the message is from the alleged sender. Because no one else knows  

the secret key, no one else could prepare a message with a proper MAC. 

3. If the message includes a sequence number, then the receiver can be assured of the proper sequence 

because an attacker cannot successfully alter the sequence number. 
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Fig :10 Basic Uses of Message Authentication Code (MAC) 

2.6.2.3 Hash Function 

A variation on the message authentication code is the one-way hash function. As with the message 

authentication code, a hash function accepts a variable-size message M as input and produces a fixed 

-size output, referred to as a hash code H(M). Unlike a MAC, a hash code does not use a key but is a 

function only of the input message. The hash code is also referred to as a message digest or hash 

value. The hash code is a function of all the bits of the message and provides an error-detection 

capability: A change to any bit or bits in the message results in a change to the hash code. 

Fig 11 illustrates a variety of ways in which a hash code can be used to provide message 

authentication, as follows 
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Figure 11. Basic Uses of Hash Function 

a. The message plus concatenated hash code is encrypted using symmetric encryption. This is  

identical in structure to the internal error control strategy shown in Figure 11.2a. The same line  

of reasoning applies: Because only A and B share the secret key, the message must have come  

from A and has not been altered. The hash code provides the structure or redundancy required  

to achieve authentication. Because encryption is applied to the entire message plus hash code,  

confidentiality is also provided. 

b. Only the hash code is encrypted, using symmetric encryption. This reduces the processing  

burden for those applications that do not require confidentiality. 

c. Only the hash code is encrypted, using public-key encryption and using the sender's private key.  

As with (b), this provides authentication. It also provides a digital signature, because only the  

sender could have produced the encrypted hash code. In fact, this is the essence of the digital  

signature technique. 

d. If confidentiality as well as a digital signature is desired, then the message plus the private-key 

encrypted hash code can be encrypted using a symmetric secret key. This is a common technique. 
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e. It is possible to use a hash function but no encryption for message authentication. The technique  

assumes that the two communicating parties share a common secret value S. A compute the  

hash value over the concatenation of M and S and appends the resulting hash value to M.  

Because B possesses S, it can recompute the hash value to verify. Because the secret value itself  

is not sent, an opponent cannot modify an intercepted message and cannot generate a false  

message. 

f. Confidentiality can be added to the approach of (e) by encrypting the entire message plus the  

hash code. 

 

2.7 Hash Functions 

A hash value h is generated by a function H of the form 

h = H(M) 

where M is a variable-length message and H(M) is the fixed-length hash value. The hash value is  

appended to the message at the source at a time when the message is assumed or known to be correct.  

The receiver authenticates that message by recomputing the hash value. Because the hash function  

itself is not considered to be secret, some means is required to protect the hash value. 

Requirements for a Hash Function 

The purpose of a hash function is to produce a "fingerprint" of a file, message, or other block of data. 

To be useful for message authentication, a hash function H must have the following properties 

1. H can be applied to a block of data of any size. 

2. H produces a fixed-length output. 

3. H(x) is relatively easy to compute for any given x, making both hardware and software  

implementations practical. 

4. For any given value h, it is computationally infeasible to find x such that H(x) = h. This is  

sometimes referred to in the literature as the one-way property. 

5. For any given block x, it is computationally infeasible to find y≠x such that H(y) = H(x). This  

is sometimes referred to as weak collision resistance. 

6. It is computationally infeasible to find any pair (x, y) such that H(x) = H(y). This is sometimes  

referred to as strong collision resistance. 

The first three properties are requirements for the practical application of a hash function to message 

authentication. The fourth property, the one-way property, states that it is easy to generate a code given a 
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message but virtually impossible to generate a message given a code. The fifth property guarantees that an 

alternative message hashing to the same value as a given message cannot be found. This prevents forgery 

when an encrypted hash code is used. The sixth property refers to how resistant the hash function is to a 

type of attack known as the birthday attack. 

2.7.1 Simple Hash Functions 

All hash functions operate using the following general principles. The input (message, file, etc.) is  

viewed as a sequence of n-bit blocks. The input is processed one block at a time in an iterative fashion  

to produce an n-bit hash function. 

One of the simplest hash functions is the bit-by-bit exclusive-OR (XOR) of every block. This can be  

expressed as follows: 

 

This operation produces a simple parity for each bit position and is known as a longitudinal 

redundancy check. It is reasonably effective for random data as a data integrity check. Each n-bit 

hash value is equally likely. Thus, the probability that a data error will result in an unchanged hash 

value is 2n. With more predictably formatted data, the function is less effective. For example, in most 

normal text files, the high-order bit of each octet is always zero. So if a 128-bit hash value is used, 

instead of an effectiveness of 2128, the hash function on this type of data has an effectiveness of 

2112. 

A simple way to improve matters is to perform a one-bit circular shift, or rotation, on the hash value  

after each block is processed. The procedure can be summarized as follows: 

1. Initially set the n-bit hash value to zero. 

2. Process each successive n-bit block of data as follows: 

a. Rotate the current hash value to the left by one bit. 

b. XOR the block into the hash value. 

Fig .12 illustrates these two types of hash functions for 16-bit hash values. 
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Fig. 12 Two types of hash Functions 

Although the second procedure provides a good measure of data integrity, it is virtually useless for 

data security when an encrypted hash code is used with a plaintext message, as in Figures 11.5b and 

c.  

Given a message, it is an easy matter to produce a new message that yields that hash code: Simply 

prepare the desired alternate message and then append an n-bit block that forces the new message 

plus block to yield the desired hash code. 

Although a simple XOR or rotated XOR (RXOR) is insufficient if only the hash code is encrypted, 

you may still feel that such a simple function could be useful when the message as well as the hash 

code are encrypted (Figure 11.5a). But you must be careful. A technique originally proposed by the 

National Bureau of Standards used the simple XOR applied to 64-bit blocks of the message and then 

an encryption of the entire message that used the cipher block chaining (CBC) mode. We can define 

the scheme as follows: Given a message consisting of a sequence of 64-bit blocks X1, X2,..., XN, 
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define the hash code C as the block-by-block XOR of all blocks and append the hash code as the final 

block: 

 

Next, encrypt the entire message plus hash code, using CBC mode to produce the encrypted message Y1, 

Y2,..., YN+1. 

 

 

Because the terms in the preceding equation can be XORed in any order, it follows that the hash code  

would not change if the ciphertext blocks were permuted. 

2.7.2 Birthday Attacks 

Suppose that a 64-bit hash code is used. One might think that this is quite secure. For example, if an 

encrypted hash code C is transmitted with the corresponding unencrypted message M, then an 

opponent would need to find an M' such that H(M') = H(M) to substitute another message and fool 

the receiver. A different sort of attack is possible, based on the birthday paradox. 

1. The source, A, is prepared to "sign" a message by appending the appropriate m-bit hash code  

and encrypting that hash code with A's private key. 

2. The opponent generates 2m/2 variations on the message, all of which convey essentially the  

same meaning. The opponent prepares an equal number of messages, all of which are variations  

on the fraudulent message to be substituted for the real one. 

3. The two sets of messages are compared to find a pair of messages that produces the same hash  

code. The probability of success, by the birthday paradox, is greater than 0.5. If no match is  

found, additional valid and fraudulent messages are generated until a match is made. 

4. The opponent offers the valid variation to A for signature. This signature can then be attached to  
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the fraudulent variation for transmission to the intended recipient. Because the two variations  

have the same hash code, they will produce the same signature; the opponent is assured of  

success even though the encryption key is not known. 
 

Thus, if a 64-bit hash code is used, the level of effort required is only on the order of 232. 

2.7.3 Block Chaining Techniques 

A number of proposals have been made for hash functions based on using a cipher block chaining 

technique, but without the secret key. 

Divide a message M into fixed-size blocks M1, M2,..., MN and use a symmetric encryption system to 

compute the hash code G as follows: 

 

There is no secret key in this scheme. As with any hash code, this scheme is subject to the birthday 

attack, and if the encryption algorithm is DES and only a 64-bit hash code is produced, then the 

system is vulnerable. the opponent intercepts a message with a signature in the form of an encrypted 

hash code and that the unencrypted hash code is m bits long: 

1. Use the algorithm defined at the beginning of this subsection to calculate the unencrypted hash  

code G. 

2. Construct any desired message in the form Q1, Q2,..., QN2. 

3. Compute for Hi = E(Qi, Hi1) for 1 i (N 2). 

4. Generate 2m/2 random blocks; for each block X, compute E(X, HN2). Generate an additional 2m/2 

random blocks; for each block Y, compute D(Y, G), where D is the decryption function  

corresponding to E. 

5. Based on the birthday paradox, with high probability there will be an X and Y such that E(X, HN2)  

= D(Y, G). 

6. Form the message Q1, Q2,..., QN2, X, Y. This message has the hash code G and therefore can be 

used with the intercepted encrypted signature. 

2.8 Digital Signatures 

Message authentication protects two parties who exchange messages from any third party. However, 

it does not protect the two parties against each other. Several forms of dispute between the two are 

possible. 
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2.8.1 Requirements 

For example, suppose that John sends an authenticated message to Mary. Consider the following 

disputes that could arise: 

1. Mary may forge a different message and claim that it came from John. Mary would simply have  

to create a message and append an authentication code using the key that John and Mary share. 

2. John can deny sending the message. Because it is possible for Mary to forge a message, there is  

no way to prove that John did in fact send the message. 

In situations where there is not complete trust between sender and receiver, something more than 

authentication is needed. The most attractive solution to this problem is the digital signature. The 

digital signature is analogous to the handwritten signature. It must have the following properties: 

● It must verify the author and the date and time of the signature. 

● It must to authenticate the contents at the time of the signature. 

● It must be verifiable by third parties, to resolve disputes. 

Thus, the digital signature function includes the authentication function. 

On the basis of these properties, we can formulate the following requirements for a digital signature: 

● The signature must be a bit pattern that depends on the message being signed. 

● The signature must use some information unique to the sender, to prevent both forgery and  

denial. 

● It must be relatively easy to produce the digital signature. 

● It must be relatively easy to recognize and verify the digital signature. 

● It must be computationally infeasible to forge a digital signature, either by constructing a new  

message for an existing digital signature or by constructing a fraudulent digital signature for a  

given message. 

● It must be practical to retain a copy of the digital signature in storage. 

A variety of approaches has been proposed for the digital signature function. These approaches fall 

into two categories: direct and arbitrated. 

1. Direct Digital Signature 

2. Arbitrated Digital Signature 

2.8.2 Direct Digital Signature 

The direct digital signature involves only the communicating parties (source, destination). It is 

assumed that the destination knows the public key of the source. A digital signature may be formed 

by encrypting the entire message with the sender's private key or by encrypting a hash code of the 

message with the sender's private key 
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Confidentiality can be provided by further encrypting the entire message plus signature with either 

the receiver's public key (public-key encryption) or a shared secret key (symmetric encryption). 

The validity of the scheme depends on the security of the sender's private key. If a sender later wishes 

to deny sending a particular message, the sender can claim that the private key was lost or stolen and 

that someone else forged his or her signature. Administrative controls relating to the security of 

private keys can be employed to thwart or at least weaken this ploy, but the threat is still there, at 

least to some degree. One example is to require every signed message to include a timestamp (date 

and time) and to require prompt reporting of compromised keys to a central authority. 

Another threat is that some private key might actually be stolen from X at time T. The opponent can 

then send a message signed with X's signature and stamped with a time before or equal to T. 

2.8.3 Arbitrated Digital Signature 

The problems associated with direct digital signatures can be addressed by using an arbiter. 

Every signed message from a sender X to a receiver Y goes first to an arbiter A, who subjects the 

message and its signature to a number of tests to check its origin and content. The message is then 

dated and sent to Y with an indication that it has been verified to the satisfaction of the arbiter. The 

presence of A solves the problem faced by direct signature schemes: that X might disown the 

message. 

In the first, symmetric encryption is used. It is assumed that the sender X and the arbiter A share a 

secret key Kxa and that A and Y share secret key Kay. X constructs a message M and computes its 

hash value H(M). Then X transmits the message plus a signature to A. The signature consists of an 

identifier IDX of X plus the hash value, all encrypted using Kxa. A decrypts the signature and checks 

the hash value to validate the message. Then A transmits a message to Y, encrypted with Kay. The 

message includes IDX, the original message from X, the signature, and a timestamp. Y can decrypt 

this to recover the message and the signature. The timestamp informs Y that this message is timely 

and not a replay. Y can store M and the signature. In case of dispute, Y, who claims to have received 

M from X, sends the following message to A: 
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Table 3. Arbitrated Digital Signature Techniques 

The arbiter uses Kay to recover IDX, M, and the signature, and then uses Kxa to decrypt the signature 

and verify the hash code. In this scheme, Y cannot directly check X's signature; the signature is there 

solely to settle disputes. Y considers the message from X authentic because it comes through A. In 

this scenario, both sides must have a high degree of trust in A: 

● X must trust A not to reveal Kxa and not to generate false signatures of the form E(Kxa, [IDX||H 

(M)]). 

● Y must trust A to send E(Kay, [IDX||M||E(Kxa, [IDX||H(M)])||T]) only if the hash value is correct  

and the signature was generated by X. 

● Both sides must trust A to resolve disputes fairly. 

If the arbiter does live up to this trust, then X is assured that no one can forge his signature and Y is  

assured that X cannot disavow his signature. 

2.9 Authentication Protocols 

Two general areas involved in authentication protocol. 

1. Mutual authentication 

2. One-way authentication 

2.9.1 Mutual Authentication 

This protocol enables communicating parties to satisfy themselves mutually about each other's 

identity and to exchange session keys. 
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Central to the problem of authenticated key exchange are two issues: confidentiality and timeliness. 

To prevent masquerade and to prevent compromise of session keys, essential identification and 

session key information must be communicated in encrypted form. This requires the prior existence 

of secret or public keys that can be used for this purpose. The second issue, timeliness, is important 

because of the threat of message replays. Such replays, at worst, could allow an opponent to 

compromise a session key or successfully impersonate another party. At minimum, a successful 

replay can disrupt operations by presenting parties with messages that appear genuine but are not. 

• Simple replay: The opponent simply copies a message and replays it later. 

● Repetition that can be logged: An opponent can replay a timestamped message within the  

valid time window. 

● Repetition that cannot be detected: This situation could arise because the original message  

could have been suppressed and thus did not arrive at its destination; only the replay message  

arrives. 

● Backward replay without modification: This is a replay back to the message sender. This  

attack is possible if symmetric encryption is used and the sender cannot easily recognize the  

difference between messages sent and messages received on the basis of content. 

One approach to coping with replay attacks is to attach a sequence number to each message used in 

an authentication exchange. A new message is accepted only if its sequence number is in the proper 

order. The difficulty with this approach is that it requires each party to keep track of the last sequence 

number for each claimant it has dealt with. Because of this overhead, sequence numbers are generally 

not used for authentication and key exchange. Instead, one of the following two general approaches 

is used: 

● Timestamps: Party A accepts a message as fresh only if the message contains a timestamp  

that, in A's judgment, is close enough to A's knowledge of current time. This approach requires  

that clocks among the various participants be synchronized. 

● Challenge/response: Party A, expecting a fresh message from B, first sends B a nonce  

(challenge) and requires that the subsequent message (response) received from B contain the correct 

nonce value. 

Two-level hierarchy of symmetric encryption keys can be used to provide confidentiality for 

communication in a distributed environment. In general, this strategy involves the use of a trusted 

key distribution center (KDC). Each party in the network shares a secret key, known as a master key, 

with the KDC. The KDC is responsible for generating keys to be used for a short time over a 

connection between two parties, known as session keys, and for distributing those keys using the 

master keys to protect the distribution.  

 Needham and Schroeder protocol can be summarized as follows: 
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Secret keys Ka and Kb are shared between A and the KDC and B and the KDC, respectively. The 

purpose of the protocol is to distribute securely a session key Ks to A and B. A securely acquires a 

new session key in step 2. The message in step 3 can be decrypted, and hence understood, only by B. 

Step 4 reflects B's knowledge of Ks, and step 5 assures B of A's knowledge of Ks and assures B that 

this is a fresh message because of the use of the nonce N2. The purpose of steps 4 and 5 is to prevent 

a certain type of replay attack. 

Denning proposes to overcome this weakness by a modification to the Needham/Schroeder protocol 

that includes the addition of a timestamp to steps 2 and 3. Her proposal assumes that the master keys, 

Ka and Kb are secure, and it consists of the following steps: 
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T is a timestamp that assures A and B that the session key has only just been generated. Thus, both 

A and B know that the key distribution is a fresh exchange. A and B can verify timeliness by checking 

that 

 

where ∆t1 is the estimated normal discrepancy between the KDC's clock and the local clock (at A or 

B) and ∆t2 is the expected network delay time. Each node can set its clock against some standard 

reference source. Because the timestamp T is encrypted using the secure master keys, an opponent, 

even with knowledge of an old session key, cannot succeed because a replay of step 3 will be detected 

by B as untimely. 

One way to counter suppress-replay attacks is to enforce the requirement that parties regularly check 

their clocks against the KDC's clock. The other alternative, which avoids the need for clock 

synchronization, is to rely on handshaking protocols using nonces. This latter alternative is not 

vulnerable to a suppress-replay attack because the nonces the recipient will choose in the future are 

unpredictable to the sender. 

an improved strategy was presented in 

 

Let us follow this exchange step by step. 

1. A initiates the authentication exchange by generating a nonce, Na, and sending that plus its  

identifier to B in plaintext. This nonce will be returned to A in an encrypted message that includes  

the session key, assuring A of its timeliness.  

2. B alerts the KDC that a session key is needed. Its message to the KDC includes its identifier and a  

nonce, Nb This nonce will be returned to B in an encrypted message that includes the session key,  

assuring B of its timeliness. B's message to the KDC also includes a block encrypted with the  

secret key shared by B and the KDC. This block is used to instruct the KDC to issue credentials to  

A; the block specifies the intended recipient of the credentials, a suggested expiration time for the  

credentials, and the nonce received from A. 

The KDC passes on to A B's nonce and a block encrypted with the secret key that B shares with  

the KDC. The block serves as a "ticket" that can be used by A for subsequent authentications, as  

will be seen. The KDC also sends to A a block encrypted with the secret key shared by A and the  

KDC. This block verifies that B has received A's initial message (IDB) and that this is a timely  
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message and not a replay (Na) and it provides A with a session key (Ks) and the time limit on its  

use (Tb).  

4. A transmits the ticket to B, together with the B's nonce, the latter encrypted with the session key.  

The ticket provides B with the secret key that is used to decrypt E(Ks, Nb) to recover the nonce.  

The fact that B's nonce is encrypted with the session key authenticates that the message came  

from A and is not a replay. 

This protocol provides an effective, secure means for A and B to establish a session with a secure  

session key.  Furthermore, the protocol leaves A in possession of a key that can be used for subsequent 

authentication to B, avoiding the need to contact the authentication server repeatedly. Suppose that 

A and B establish a session using the aforementioned protocol and then conclude that session. 

Subsequently, but within the time limit established by the protocol, A desires a new session with B. 

The following protocol ensues: 

 

When B receives the message in step 1, it verifies that the ticket has not expired. The newly generated  

nonces N'a and N'b assure each party that there is no replay attack. 

2.9.2 One-Way Authentication 

With some refinement, the KDC strategy is a candidate for encrypted electronic mail.  

Because we wish to avoid requiring that the recipient (B) be on line at the same time as the sender 

(A), steps 4 and 5 must be eliminated. 

 For a message with content M, the sequence is as follows: 

 

This approach guarantees that only the intended recipient of a message will be able to read it. 

 It also provides a level of authentication that the sender is A. 

References: 

• William Stallings, “ Cryptography and Network Security”, 4th Edition, Pearson, 2009. 

• Behrouz A. Forouzan, “ Cryptography and Network Security”, Tata McGraw-Hill, 2008. 



83 
 

 

 

SCHOOL OF COMPUTING 

DEPARTMENT OF INFORMATION TECHNOLOGY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT – III SYSTEM SECURITY – SITA1602 



84 
 

 

UNIT 3 SYSTEM SECURITY  

Intruders – Detection – Password Management – Malicious Software – Virus – 

Countermeasures – Distributed Denial of Service Attacks – Firewalls – Design 

Principles – Trusted Systems 

3.1 Intruders 

One of the two most publicized threats to security is the intruder (the other is 

viruses), generally referred to as a hacker or cracker. There are three classes of intruders: 

• Masquerader: An individual who is not authorized to use the computer and who 

penetrates a system's access controls to exploit a legitimate user's account 

● Misfeasor: A legitimate user who accesses data, programs, or resources for which such 

access is not authorized, or who is authorized for such access but misuses his or her 

privileges 

● Clandestine user: An individual who seizes supervisory control of the system and uses 

this control to evade auditing and access controls or to suppress audit collection 

An analysis of previous attack revealed that there were two levels of hackers: 

·       The high levels were sophisticated users with a thorough knowledge of the 

technology.   

·       The low levels were the „foot soldiers‟ who merely use the supplied cracking 

programs with little understanding of how they work.   

In addition to running password cracking programs, the intruders attempted to 

modify login software to enable them to capture passwords of users logging onto the 

systems. 

3.1.1 Intrusion techniques 

The objective of the intruders is to gain access to a system or to increase the range of 

privileges accessible on a system. Generally, this requires the intruders to acquire 

information that should be protected.  

The password files can be protected in one of the two ways: 

One way encryption – the system stores only an encrypted form of user‟s password. 

In practice, the system usually performs a one way transformation (not reversible) in 

which the password is used to generate a key for the encryption function and in which a 

fixed length output is produced.   

 Access control – access to the password file is limited to one or a very few accounts.   

The following techniques are used for learning passwords. 

1.  Try default passwords used with standard accounts that are shipped with the 

system.  Many administrators do not bother to change these defaults. 
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2.  Exhaustively try all short passwords. 

3. Try words in the system’s online dictionary or a list of likely passwords. 

4.  Collect information about users such as their full names, the name of their spouse and 

children, pictures in their office and books in their office that are related to hobbies. 

5. Try user’s phone number, social security numbers and room numbers. 

6. Try all legitimate license plate numbers. 

7. Use a torjan horse to bypass restriction on access. 

8. Tap the line between a remote user and the host system. 

 3.2 Intrusion Detection 

Inevitably, the best intrusion prevention system will fail. A system's second line of 

defense is intrusion detection, and this has been the focus of much research in recent 

years. This interest is motivated by a number of considerations, including the following: 

 ·    If an intrusion is detected quickly enough, the intruder can be identified and ejected 

from the system     before any damage is done or any data are compromised 

·    An effective intrusion detection system can serve as a deterrent, so acting to prevent 

intrusions. 

.    Intrusion detection enables the collection of information about intrusion techniques 

that can be used to strengthen the intrusion prevention facility. 

Intrusion detection is based on the assumption that the behavior of the intruder differs 

from that of a legitimate user in ways that can be quantified. 

Figure 3.1 suggests, in very abstract terms, the nature of the task confronting the 

designer of an intrusion detection system. Although the typical behavior of an intruder 

differs from the typical behavior of an authorized user, there is an overlap in these 

behaviors. Thus, a loose interpretation of intruder behavior, which will catch more 

intruders, will also lead to a number of "false positives," or authorized users identified as 

intruders.  
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Fig :3.1 Profiles of Behavior of Intruders and Authorized Users 

The approaches to intrusion detection: 

1. Statistical anomaly detection: Involves the collection of data relating to the behavior of 

legitimate users over a period of time. Then statistical tests are applied to observed 

behavior to determine with a high level of confidence whether that behavior is not 

legitimate user behavior.  

Threshold detection: This approach involves defining thresholds, independent of user, 

for the frequency of occurrence of various events.  

Profile based: A profile of the activity of each user is developed and used to 

detect changes in the behavior of individual accounts. 

2. Rule-based detection: Involves an attempt to define a set of rules that can be used to 

decide that a given behavior is that of an intruder.  

Anomaly detection: Rules are developed to detect deviation from previous 

usage patterns.  

Penetration identification: An expert system approach that searches for suspicious 

behavior.  

3.2.1 Audit Records 

 A fundamental tool for intrusion detection is the audit record. Some record of ongoing 

activity by users must be maintained as input to an intrusion detection system. Basically, 

two plans are used: 

• Native audit records: Virtually all multiuser operating systems include accounting 

software that collects information on user activity. The advantage of using this 

information is that no additional collection software is needed. The disadvantage is that 

the native audit records may not contain the needed information or may not contain it in 

a convenient form. 



87 
 

● Detection-specific audit records: A collection facility can be implemented that 

generates audit records containing only that information required by the intrusion 

detection system. One advantage of such an approach is that it could be made vendor 

independent and ported to a variety of systems. The disadvantage is the extra overhead 

involved in having, in effect, two accounting packages running on a machine. 

Each audit record contains the following fields: 

• Subject: Initiators of actions. A subject is typically a terminal user but might also be a 

process  

acting on behalf of users or groups of users. All activity arises through commands issued 

by  

subjects. Subjects may be grouped into different access classes, and these classes may 

overlap. 

● Action: Operation performed by the subject on or with an object; for example, login, 

read,  

perform I/O, execute. 

● Object: Receptors of actions. Examples include files, programs, messages, records, 

terminals, printers, and user- or program-created structures. When a subject is the 

recipient of an action, such as electronic mail, then that subject is considered an object. 

Objects may be grouped by type. Object granularity may vary by object type and by 

environment. For example, database actions may be audited for the database as a whole 

or at the record level. 

● Exception-Condition: Denotes which, if any, exception condition is raised on return. 

● Resource-Usage: A list of quantitative elements in which each element gives the 

amount used of some resource (e.g., number of lines printed or displayed, number of 

records read or written, processor time, I/O units used, session elapsed time). 

● Time-Stamp: Unique time-and-date stamp identifying when the action took placeMost 

user operations are made up of a number of elementary actions. For example, a file copy 

involves the execution of the user command, which includes doing access validation and 

setting up the copy, plus the read from one file, plus the write to another file. Consider 

the command 

COPY GAME.EXE TO <Library>GAME.EXE 

issued by Smith to copy an executable file GAME from the current directory to the 

<Library> directory. The following audit records may be generated: 
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In this case, the copy is aborted because Smith does not have write permission to 

<Library> The decomposition of a user operation into elementary actions has three 

advantages: 

1. Because objects are the protectable entities in a system, the use of elementary actions 

enables an audit of all behavior affecting an object.  

2. Single-object, single-action audit records simplify the model and the implementation. 

3. Because of the simple, uniform structure of the detection-specific audit records, it may be 

relatively easy to obtain this information or at least part of it by a straightforward mapping 

from existing native audit records to the detection-specific audit records. 

3.2.2 Statistical Anomaly Detection 

As was mentioned, statistical anomaly detection techniques fall into two broad categories:  

Threshold detection involves counting the number of occurrences of a specific event type 

over an interval of time. If the count surpasses what is considered a reasonable number 

that one might expect to occur, then intrusion is assumed. 

Profile-based anomaly detection focuses on characterizing the past behavior of individual 

users or related groups of users and then detecting significant deviations. A profile may 

consist of a set of parameters, so that deviation on just a single parameter may not be 

sufficient in itself to signal an alert.Examples of metrics that are useful for profile-based 

intrusion detection are the following: 

• Counter: A nonnegative integer that may be incremented but not decremented until it is 

reset by management action. Examples include the number of logins by a single user 

during an hour, the number of times a given command is executed during a single user 

session, and the number of password failures during a minute. 

● Gauge: A nonnegative integer that may be incremented or decremented. Typically, a 

gauge is used to measure the current value of some entity. Examples include the number 

of logical connections assigned to a user application and the number of outgoing 

messages queued for a user process. 

● Interval timer: The length of time between two related events. An example is the 

length of time between successive logins to an account. 

● Resource utilization: Quantity of resources consumed during a specified period. 

Examples include the number of pages printed during a user session and total time 
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consumed by a program execution. Given these general metrics, various tests can be 

performed to determine whether current activity fits within acceptable limits. 

● Mean and standard deviation 

● Multivariate 

● Markov process 

● Time 

● Operational 

The simplest statistical test is to measure the mean and standard deviation of a parameter 

over some historical period. This gives a reflection of the average behavior and its 

variability. 

A multivariate model is based on correlations between two or more variables. Intruder 

behavior may be characterized with greater confidence by considering such correlations 

(for example, processor time and resource usage, or login frequency and session elapsed 

time). 

 A Markov process model is used to establish transition probabilities among various 

states. As an example, this model might be used to look at transitions between certain 

commands. 

 A time series model focuses on time intervals, looking for sequences of events that 

happen too rapidly or too slowly. A variety of statistical tests can be applied to 

characterize abnormal timing. Finally, an operational model is based on a judgment of 

what is considered abnormal, rather than an automated analysis of past audit records.  

3.2.3 Rule-Based Intrusion Detection 

Rule-based techniques detect intrusion by observing events in the system and applying a 

set of rules that lead to a decision regarding whether a given pattern of activity is or is 

not suspicious.  

Rule-based anomaly detection is similar in terms of its approach and strengths to 

statistical anomaly detection. With the rule-based approach, historical audit records are 

analyzed to identify usage patterns and to generate automatically rules that describe those 

patterns. Rules may represent past behavior patterns of users, programs, privileges, time 

slots, terminals, and so on. Current behavior is then observed, and each transaction is 

matched against the set of rules to determine if it conforms to any historically observed 

pattern of behavior. 

Rule-based penetration identification takes a very different approach to intrusion 

detection, one based on expert system technology. The key feature of such systems is the 

use of rules for identifying known penetrations or penetrations that would exploit known 

weaknesses 

 Example heuristics are the following: 
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1. Users should not read files in other users' personal directories. 

2. Users must not write other users' files. 

3. Users who log in after hours often access the same files they used earlier. 

4. Users do not generally open disk devices directly but rely on higher-level operating 

system  

utilities. 

5. Users should not be logged in more than once to the same system. 

 3.2.4 The Base-Rate Fallacy 

      To be of practical use, an intrusion detection system should detect a substantial 

percentage of intrusions while keeping the false alarm rate at an acceptable level. If only 

a modest percentage of actual intrusions are detected, the system provides a false sense 

of security. On the other hand, if the system frequently triggers an alert when there is no 

intrusion (a false alarm), then either system managers will begin to ignore the alarms, or 

much time will be wasted analyzing the false alarms. 

     3.2.5 Distributed Intrusion Detection 

Until recently, work on intrusion detection systems focused on single-system stand-

alone facilities. The typical organization, however, needs to defend a distributed 

collection of hosts supported by a LAN Porras points out the following major issues in 

the design of a distributed intrusion detection system 

✓ A distributed intrusion detection system may need to deal with different audit 

record formats. In a heterogeneous environment, different systems will employ different 

native audit collection systems and, if using intrusion detection, may employ different 

formats for security-related audit records.   

✓ One or more nodes in the network will serve as collection and analysis points 

for the data from the systems on the network. Thus, either raw audit data or summary 

data must be transmitted across the network. Therefore, there is a requirement to assure 

the integrity and confidentiality of these data.  

✓ Either a centralized or decentralized architecture can be used. With a centralized 

architecture, there is a single central point of collection and analysis of all audit data. This 

eases the task of correlating incoming reports but creates a potential bottleneck and single 

point of failure. With a decentralized architecture, there are more than one analysis 

centers, but these must coordinate their activities and exchange information. 

A good example of a distributed intrusion detection system is developed. Figure 3.2  

shows the overall architecture, which consists of three main components:  

● Host agent module: An audit collection module operating as a background process on 

a monitored system. Its purpose is to collect data on security-related events on the host 

and transmit these to the central manager.  
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● LAN monitor agent module: Operates in the same fashion as a host agent module 

except that it analyzes LAN traffic and reports the results to the central manager. 

 ● Central manager module: Receives reports from LAN monitor and host agents and 

processes and correlates these reports to detect intrusion 

 

Fig 3.2. Architecture for Distributed Intrusion Detection 

The scheme is designed to be independent of any operating system or system auditing 

implementation.  
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•        The agent captures each audit record produced by the native audit collection system. 

•        A filter is applied that retains only those records that are of security interest. 

•        These records are then reformatted into a standardized format referred to as the host 

audit record (HAR). 

•        Next, a template-driven logic module analyzes the records for suspicious activity. 

•        At the lowestlevel, the agent scans for notable events that are of interest independent 

of any past events. 

•        Examples include failed file accesses, accessing system files, and changing a file's 

access control. 

•        At the next higher level, the agent looks for sequences of events, such as known attack 

atterns (signatures). 

•        Finally, the agent looks for anomalous behavior of an individual user based on a 

historical profile of that user, such as number of programs executed, number of files 

accessed, and the like. 

•        When suspicious activity is detected, an alert is sent to the central manager. 
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•        The central manager includes an expert system that can draw inferences from received 

data. 

•        The manager may also query individual systems for copies of HARs to correlate with 

those from other agents. 

•        The LAN monitor agent also supplies information to the central manager. 

•        The LAN monitor agent audits host-host connections, services used, and volume of 

traffic. 

•        It  searches  for  significant  events,  such  as  sudden  changes in 

network  load,  the  use  of 

•        security-related services, and network activities such as rlogin. 

 3.2.6 Honeypots 

A relatively recent innovation in intrusion detection technology is the honeypot. 

Honeypots are designed to 

● divert an attacker from accessing critical systems 

● collect information about the attacker's activity 

● encourage the attacker to stay on the system long enough for administrators to respond 

3.2.7 Intrusion Detection Exchange Format 

To facilitate the development of distributed intrusion detection systems that can 

function across a wide range of platforms and environments, standards are needed to 

support interoperability.  

 The outputs of this working group include the following: 

1. A requirements document, which describes the high-level functional requirements for 

communication between intrusion detection systems and requirements for 

communication between intrusion detection systems and with management systems, 

including the rationale for those requirements. Scenarios will be used to illustrate the 

requirements. 

2. A common intrusion language specification, which describes data formats that satisfy 

the requirements. 

3. A framework document, which identifies existing protocols best used for 

communication between intrusion detection systems, and describes how the devised data 

formats relate to them. 

3.3 Password Management 

3.3.1 Password Protection 

The front line of defense against intruders is the password system. Virtually all 

multiuser systems require that a user provide not only a name or identifier (ID) but also 



94 
 

a password. The password serves to authenticate the ID of the individual logging on to 

the system. In turn, the ID provides security in the following ways: 

• The ID determines whether the user is authorized to gain access to a system.  

•  The ID determines the privileges accorded to the user.  

•  The ID is used in what is referred to as discretionary access control. For example, by 

listing the IDs of the other users, a user may grant permission to them to read files owned 

by that user. 

3.3.1.1 The Vulnerability of Passwords 

To understand the nature of the threat to password-based systems, let us consider a 

scheme that is widely used on UNIX, the following procedure is employed in figure 3.3. 

• Each user selects a password of up to eight printable characters in length.  

• This is converted into a 56-bit value (using 7-bit ASCII) that serves as the key input to 

an encryption routine.  

• The encryption routine, known as crypt(3), is based on DES. The DES algorithm is 

modified using a 12-bit "salt" value. 

• Typically, this value is related to the time at which the password is assigned to the user.  

• The modified DES algorithm is exercised with a data input consisting of a 64-bit block 

of zeros.  

• The output of the algorithm then serves as input for a second encryption.  

• This process is repeated for a total of 25 encryptions. 

• The resulting 64-bit output is then translated into an 11-character sequence.  

• The hashed password is then stored, together with a plaintext copy of the salt, in the 

password file for the corresponding user ID.  

• This method has been shown to be secure against a variety of cryptanalytic attack 

The salt serves three purposes: 

● It prevents duplicate passwords from being visible in the password file. Even if two 

users choose the same password, those passwords will be assigned at different times. 

Hence, the "extended" passwords of the two users will differ. 

● It effectively increases the length of the password without requiring the user to 

remember two additional characters.  

● It prevents the use of a hardware implementation of DES, which would ease the 

difficulty of a brute-force guessing attack. 

When a user attempts to log on to a UNIX system, the user provides an ID and a password. 

The operating system uses the ID to index into the password file and retrieve the plaintext 
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salt and the encrypted password. The salt and user-supplied password are used as input 

to the encryption routine. If the result matches the stored value, the password is accepted. 

The encryption routine is designed to discourage guessing attacks. Software 

implementations of DES are slow compared to hardware versions, and the use of 25 

iterations multiplies the time required by 25. 

 

 

Fig 3.3 : UNIX Password Scheme 

 

 

Thus, there are two threats to the UNIX password scheme. First, a user can gain 

access on a machine using a guest account or by some other means and then run a 

password guessing program, called a password cracker, on that machine. 
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As an example, a password cracker was reported on the Internet in August 1993. 

Using a Thinking Machines Corporation parallel computer, a performance of 1560 

encryptions per second per vector unit was achieved. With four vector units per 

processing node (a standard configuration), this works out to 800,000 encryptions per 

second on a 128-node machine (which is a modest size) and 6.4 million encryptions per 

second on a 1024-node machine. 

Password length is only part of the problem. Many people, when permitted to 

choose their own password, pick a password that is guessable, such as their own name, 

their street name, a common dictionary word, and so forth. This makes the job of 

password cracking straightforward. 

The following strategy was used: 

1. Try the user's name, initials, account name, and other relevant personal information. In 

all, 130 different permutations for each user were tried. 

2. Try words from various dictionaries.  

3. Try various permutations on the words from step 2.  

4. Try various capitalization permutations on the words from step 2 that were not 

considered in step 3. This added almost 2 million additional words to the list. 

3.3.1.2 Access Control 

One way to thwart a password attack is to deny the opponent access to the password file. 

If the encrypted password portion of the file is accessible only by a privileged user, then 

the opponent cannot read it without already knowing the password of a privileged user. 

 3.3.2 Password Selection Strategies 

Four basic techniques are in use: 

• User education  

• Computer-generated passwords 

• Reactive password checking  

• Proactive password checking 

 Users can be told the importance of using hard-to-guess passwords and can be 

provided with guidelines for selecting strong passwords. This user education strategy 

is unlikely to succeed at most installations, particularly where there is a large user 

population or a lot of turnover. Many users will simply ignore the guidelines 

Computer-generated passwords also have problems. If the passwords are quite random 

in nature, users will not be able to remember them. Even if the password is 

pronounceable, the user may have difficulty remembering it and so be tempted to write it 

down. 
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A reactive password checking strategy is one in which the system periodically runs its 

own password   cracker to find guessable passwords. 

 The most promising approach to improved password security is a proactive 

password checker. In this scheme, a user is allowed to select his or her own password. 

However, at the time of selection, the system checks to see if the password is allowable 

and, if not, rejects it. Such checkers are based on the philosophy that, with sufficient 

guidance from the system, users can select memorable passwords from a fairly large 

password space that are not likely to be guessed in a dictionary attack. 

The first approach is a simple system for rule enforcement. For example, the following 

rules could be enforced: 

● All passwords must be at least eight characters long. 

● In the first eight characters, the passwords must include at least one each of uppercase, 

lowercase, numeric digits, and punctuation marks. 

There are two problems with this approach: 

● Space: The dictionary must be very large to be effective.  

● Time: The time required to search a large dictionary may itself be large.  

Two techniques for developing an effective and efficient proactive password checker that 

is based on rejecting words on a list show promise. One of these develops a Markov 

model for the generation of guessable passwords. Figure 3.4 shows a simplified version 

of such a model. This model shows a language consisting of an alphabet of three 

characters. The state of the system at any time is the identity of the most recent letter. The 

value on the transition from one state to another represents the probability that one letter 

follows another. Thus, the probability that the next letter is b, given that the current letter 

is a, is 0.5. 
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Figure 3.4. An Example Markov Model 

 In general, a Markov model is a quadruple [m, A, T, k], where m is the number of 

states in the model, A is the state space, T is the matrix of transition probabilities, and k 

is the order of the model. For a kth-order model, the probability of making a transition to 

a particular letter depends on the previous k letters that have been generated. 

 The authors report on the development and use of a second-order model. To begin, a 

dictionary of guessable passwords is constructed. Then the transition matrix is calculated 

as follows: 

1. Determine the frequency matrix f, where f(i, j, k) is the number of occurrences of the 

trigram  

consisting of the ith, jth, and kth character. For example, the password parsnips yields the  

trigrams par, ars, rsn, sni, nip, and ips. 

2. For each bigram ij, calculate f(i, j, ) as the total number of trigrams beginning with ij. 

For  

example, f(a, b, ) would be the total number of trigrams of the form aba, abb, abc, and so 

on. 

3. Compute the entries of T as follows: 
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The result is a model that reflects the structure of the words in the dictionary. 

A quite different approach has been reported by Spafford [SPAF92a, SPAF92b]. It is 

based on the use of a Bloom filter [BLOO70]. To begin, we explain the operation of the 

Bloom filter. A Bloom filter of order k consists of a set of k independent hash functions 

H1(x), H2(x),..., Hk (x), where each function maps a password into a hash value in the 

range 0 to N - 1 That is, 

 

D = number of words in password dictionary 

The following procedure is then applied to the dictionary: 

1. A hash table of N bits is defined, with all bits initially set to 0. 

2. For each password, its k hash values are calculated, and the corresponding bits in the 

hash table are set to 1. Thus, if Hi(Xj) = 67 for some (i, j), then the sixty-seventh bit of 

the hash table is set to 1; if the bit already has the value 1, it remains at 1.When a new 

password is presented to the checker, its k hash values are calculated. If all the 

corresponding bits of the hash table are equal to 1, then the password is rejected. 

 

3.4 Malcious Software 

3.4.1 Malicious Programs 

 Malicious software can be divided into two categories: those that need a host 

program, and those that are independent. The former, referred to as parasitic, are 

essentially fragments of programs that cannot exist independently of some actual 

application program, utility, or system program. Viruses, logic  bombs, 
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Table 3.1 Terminology of Malicious Programs 

and backdoors are examples. Independent malware is a self-contained program that can 

be scheduled and run by the operating system. Worms and bot programs are examples. 

 3.4.1.1 Backdoor 

 A backdoor, also known as a trapdoor, is a secret entry point into a program that 

allows someone who is aware of the backdoor to gain access without going through the 

usual security access procedures. Programmers have used backdoors legiti- mately for 

many years to debug and test programs; such a backdoor is called a maintenance hook. 

This usually is done when the programmer is developing an application that has an 

authentication procedure, or a long setup, requiring the user to enter many different values 

to run the application. To debug the program, the developer may wish to gain special 

privileges or to avoid all the necessary setup and authentication.  

 Backdoors become threats when unscrupulous programmers use them to gain 

unauthorized access. The backdoor was the basic idea for the vulnerability portrayed in 

the movie War Games. Another example is that during the develop- ment of Multics, 

penetration tests were conducted by an Air Force “tiger team” (simulating adversaries).  



101 
 

 It is difficult to implement operating system controls for backdoors. Security 

measures must focus on the program development and software update activities. 

 

3.4.1.2 Logic Bomb 

 

 The logic bomb is code embedded in some legitimate program that is set to “explode” 

when certain conditions are met. Examples of conditions that can be used as triggers for 

a logic bomb are the presence or absence of certain files, a particular day of the week or 

date, or a particular user running the appli- cation. Once triggered, a bomb may alter or 

delete data or entire files, cause a machine halt, or do some other damage.  

 

3.4.1.3 Trojan Horses 

 

A Trojan horse1 is a useful, or apparently useful, program or command procedure 

containing hidden code that, when invoked, performs some unwanted or harmful 

function. 

 

Trojan horse programs can be used to accomplish functions indirectly that an 

unauthorized user could not accomplish directly. For example, to gain access to the files 

of another user on a shared system, a user could create a Trojan horse program that, when 

executed, changes the invoking user’s file permissions so that the files are readable by 

any user. The author could then induce users to run the program by placing it in a common 

directory and naming it such that it appears to be a useful utility program or application. 

An example is a program that ostensibly produces a listing of the user’s files in a desirable 

format. After another user has run the program, the author of the program can then access 

the information in the user’s files. An example of a Trojan horse program that would be 

difficult to detect is a compiler that has been modified to insert additional code into 

certain programs as they are compiled, such as a system login program. The code creates 

a backdoor in the login program that permits the author to log on to the system using a 

special password. This Trojan horse can never be discovered by reading the source code 

of the login program. 

 

3.4.1.4 Zombie  

A zombie is a program that secretly takes over another Internet-attached computer and 

then uses that computer to launch attacks that are difficult to trace to the zombie's creator. 

Zombies are used in denial-of-service attacks, typically against targeted Web sites. The 

zombie is planted on hundreds of computers belonging to unsuspecting third parties, and 

then used to overwhelm the target Web site by launching an overwhelming onslaught of 

Internet traffic.  

 

3.4.2 The nature of viruses 

A computer virus is a piece of software that can “infect” other programs by modifying  

hem; the modification includes injecting the original program with a routine to make 

copies of the virus program, which can then go on to infect other programs. The typical 
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virus becomes embedded in a program on a computer. Then, whenever the 

infected computer comes into contact with an uninfected piece of software, a fresh copy 

of the virus passes into the new program. Thus, the infection can be spread from computer 

to computer by unsuspecting users who either swap disks or send programs to one another 

over a network. During its lifetime, a typical virus goes through the following 

four phases: 

 • Dormant phase: The virus is idle. The virus will eventually be activated by some 

event, such as a date, the presence of another program or file, or the capacity of the disk 

exceeding some limit. Not all viruses have this stage. 

• Propagation phase: The virus places a copy of itself into other programs or into certain 

system areas on the disk. The copy may not be identical to 

the propagating version; viruses often morph to evade detection. Each infected program 

will now contain a clone of the virus, which will itself enter a propagation phase. 

• Triggering phase: The virus is activated to perform the function for which it was 

intended. As with the dormant phase, the triggering phase can be caused  by a variety of 

system events, including a count of the number of times that   this copy of the virus has 

made copies of itself. 

 • Execution phase: The function is performed. The function may be harmless, such as a m

essage on the screen, or damaging, such as the destruction of programs and data files. 

3.4.2.1 virus  Structure                                                                                   

 A virus can be prepended or postpended to an executable program, or it can be 

embedded in some other fashion. The key to its operation is 

that the infected program, when invoked, will first execute the virus code and then 

execute the original code of the program. 

A very general depiction of virus structure is shown in Figure3.5  In this case, the virus c

ode, is prepended to infected programs, and it 

is assumed that the entry point to the program, when invoked, is the first line of the 

program. 

The infected program begins with the virus code and works as follows. The first 

line of code is a jump to the main virus program. The second line is a special marker 

that is used by the virus to determine whether or not a potential victim program has 

already been infected with this virus. When the program is invoked, control is imme- 

diately transferred to the main virus program. The virus program may first seek out uninf

ected executable files and infect them. 

Next, the virus may perform some action, usually detrimental to the system. This action c

ould be performed every time 

the program is invoked, or it could be a logic bomb that triggers only under certain 

conditions. Finally, the virus transfers control to the original program. If the infection 
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Fig 3.5. Simple virus 

 

Fig 3.6. Logic for a Compression Virus 
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Fig : 3.6 A compression Virus 

 

phase of the program is reasonably rapid, a user is unlikely to notice any difference 

between the execution of an infected and an uninfected program. 

A virus such as the one just described is easily detected because an infected version of a 

program is longer than the corresponding uninfected one. A way to 

thwart such a simple means of detecting a virus is to compress the executable file so that 

both the infected and uninfected versions are of identical length. Figure 3.6 

shows in general terms the logic required. The key lines in this virus are numbered, and 

Figure 3.7 illustrates the operation. We assume that program P1 is infected with the 

virus CV. When this program is invoked, control 

passes to its virus, which performs the following steps: 

1.                        For each uninfected file P2 that is found, the virus first compresses that 

file to produce P2 , which is shorter than the original program by the size of the virus. 

2.                        A copy of the virus is prepended to the compressed program. 

3.                        The compressed version of the original infected program, P1¿ , is uncom

pressed. 

4.                        The uncompressed original program is executed. 

In this example, the virus does nothing other than propagate. As in the previous example, 

the virus may  

include a logic bomb. 
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Fig 3.7 A Compression Virus 

In this example, the virus does nothing other than propagate. As previously mentioned, 

the virus may include a logic bomb. 

 Initial Infection 

 Once a virus has gained entry to a system by infecting a single program, it is in a 

position to infect some or all other executable files on that system when the infected 

program executes. Thus, viral infection can be completely prevented by preventing the 

virus from gaining entry in the first place. Unfortunately, prevention is extraordinarily 

difficult because a virus can be part of any program outside a system.  

3.4.3 Types of Viruses 

The following the most significant types of viruses: 

● Parasitic virus: The traditional and still most common form of virus. A parasitic virus 

attaches itself to executable files and replicates, when the infected program is executed, 

by finding other executable files to infect. 

● Memory-resident virus: Lodges in main memory as part of a resident system program. 

From that point on, the virus infects every program that executes. 

● Boot sector virus: Infects a master boot record or boot record and spreads when a 

system is booted from the disk containing the virus. 

● Stealth virus: A form of virus explicitly designed to hide itself from detection by 

antivirus  

software. 

● Polymorphic virus: A virus that mutates with every infection, making detection by 

the  

"signature" of the virus impossible. 

● Metamorphic virus: As with a polymorphic virus, a metamorphic virus mutates with 

every infection.  
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 One example of a stealth virus was discussed earlier: a virus that uses compression 

so that the infected program is exactly the same length as an uninfected version. Far more 

sophisticated techniques are possible. For example, a virus can place intercept logic in 

disk I/O routines, so that when there is an attempt to read suspected portions of the disk 

using these routines, the virus will present back the original, uninfected program.  

A polymorphic virus creates copies during replication that are functionally equivalent 

but have distinctly different bit patterns. As with a stealth virus, the purpose is to defeat 

programs that scan for viruses. A more effective approach is to use encryption. A portion 

of the virus, generally called a mutation engine, creates a random encryption key to 

encrypt the remainder of the virus. The key is stored with the virus, and the mutation 

engine itself is altered.  

3.4.4 Macro Viruses 

Macro viruses are particularly threatening for a number of reasons: 

1. A macro virus is platform independent. Virtually all of the macro viruses infect 

Microsoft Word documents. Any hardware platform and operating system that supports 

Word can be infected. 

2. Macro viruses infect documents, not executable portions of code. Most of the 

information  

introduced onto a computer system is in the form of a document rather than a program. 

 3. Macro viruses are easily spread. A very common method is by electronic mail. 

 Macro viruses take advantage of a feature found in Word and other office applications 

such as Microsoft Excel, namely the macro. In essence, a macro is an executable program 

embedded in a word processing document or other type of file. Typically, users employ 

macros to automate repetitive tasks and thereby save keystrokes.  

 Successive releases of Word provide increased protection against macro viruses. For 

example, Microsoft offers an optional Macro Virus Protection tool that detects suspicious 

Word files and alerts the customer to the potential risk of opening a file with macros.  

3.4.5 E-mail Viruses 

 A more recent development in malicious software is the e-mail virus. The first rapidly 

spreading e-mail viruses, such as Melissa, made use of a Microsoft Word macro 

embedded in an attachment. If the recipient opens the e-mail attachment, the Word macro 

is activated. Then 

1. The e-mail virus sends itself to everyone on the mailing list in the user's e-mail package. 

2. The virus does local damage. 

 Thus we see a new generation of malware that arrives via e-mail and uses e-mail 

software features to replicate itself across the Internet. The virus propagates itself as soon 

as activated (either by opening an e-mail attachment of by opening the e-mail) to all of 

the e-mail addresses known to the infected host. As a result, whereas viruses used to take 

months or years to propagate, they now do so in hours.  

3.4.6 Worms 
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 A worm is a program that can replicate itself and send copies from computer to 

computer across network connections. Upon arrival, the worm may be activated to 

replicate and propagate again. In addition to propagation, the worm usually performs 

some unwanted function. An e-mail virus has some of the characteristics of a worm, 

because it propagates itself from system to system.  

 Network worm programs use network connections to spread from system to system. 

Once active within a system, a network worm can behave as a computer virus or bacteria, 

or it could implant Trojan horse programs or perform any number of disruptive or 

destructive actions. 

To replicate itself, a network worm uses some sort of network vehicle. Examples include 

the following: 

• Electronic mail facility: A worm mails a copy of itself to other systems. 

● Remote execution capability: A worm executes a copy of itself on another 

system. 

● Remote login capability: A worm logs onto a remote system as a user and then 

uses  

commands to copy itself from one system to the other. 

3.4.6.1 The Morris Worm 

 The Morris worm was designed to spread on UNIX systems and used a number of 

different techniques for propagation. When a copy began execution, its first task was to 

discover other hosts known to this host that would allow entry from this host. The worm 

performed this task by examining a variety of lists and tables, including system tables 

that declared which other machines were trusted by this host, users' mail forwarding files, 

tables by which users gave themselves permission for access to remote accounts, and 

from a program that reported the status of network connections. For each discovered host, 

the worm tried a number of methods for gaining access: 

1. It attempted to log on to a remote host as a legitimate user. In this method, the worm 

first attempted to crack the local password file, and then used the discovered passwords 

and corresponding user IDs. The assumption was that many users would use the same 

password on different systems. To obtain the passwords, the worm ran a password-

cracking program that tried 

a. Each user's account name and simple permutations of it 

b.  All the words in the local system directory  

2. It exploited a bug in the finger protocol, which reports the whereabouts of a remote 

user. 

 3. It exploited a trapdoor in the debug option of the remote process that receives and 

sends mail.  

 3.4.6.2 Recent Worm Attacks 

    Code Red exploits a security hole in the Microsoft Internet Information Server 

(IIS) to penetrate and spread. It also disables the system file checker in Windows. The 

worm probes random IP addresses to spread to other hosts. During a certain period of 
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time, it only spreads. It then initiates a denial-of-service attack against a government Web 

site by flooding the site with packets from numerous hosts.  

  The worm then suspends activities and reactivates periodically. In the second 

wave of attack, Code Red infected nearly 360,000 servers in 14 hours. In addition to the 

havoc it causes at the targeted server, Code Red can consume enormous amounts of 

Internet capacity, disrupting service. 

 In late 2001, a more versatile worm appeared, known as Nimda. Nimda spreads by 

multiple  

mechanisms: 

● from client to client via e-mail 

● from client to client via open network shares from Web server to client via 

browsing of compromised Web sites 

● from client to Web server via active scanning for and exploitation of various 

Microsoft IIS 4.0 / 5.0 directory traversal vulnerabilities 

● from client to Web server via scanning for the back doors left behind by the "Code 

Red II" worms The worm modifies Web documents (e.g., .htm, .html, and .asp files) and 

certain executable files found on the systems it infects and creates numerous copies of 

itself under various filenames. 

3.4.7 State of Worm Technology 

     The state of the art in worm technology includes the following: 

● Multiplatform: Newer worms are not limited to Windows machines but can attack a variety 

of  

platforms, especially the popular varieties of UNIX. 

● Multiexploit: New worms penetrate systems in a variety of ways, using exploits against 

Web  

servers, browsers, e-mail, file sharing, and other network-based applications. 

● Ultrafast spreading: One technique to accelerate the spread of a worm is to conduct a prior  

Internet scan to accumulate Internet addresses of vulnerable machines. 

● Polymorphic: To evade detection, skip past filters, and foil real-time analysis, worms adopt 

the  

virus polymorphic technique. Each copy of the worm has new code generated on the fly using  

functionally equivalent instructions and encryption techniques. 

● Metamorphic: In addition to changing their appearance, metamorphic worms have a 

repertoire  

of behavior patterns that are unleashed at different stages of propagation. 

● Transport vehicles: Because worms can rapidly compromise a large number of systems, 

they  

are ideal for spreading other distributed attack tools, such as distributed denial of service  

zombies. 

● Zero-day exploit: To achieve maximum surprise and distribution, a worm should exploit 

an  

unknown vulnerability that is only discovered by the general network community when the 

worm  

is launched. 

3.5 Virus Countermeasures 
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3.5.1 Antivirus Approaches 

The ideal solution to the threat of viruses is prevention: Do not allow a virus to get into the 

systemin  

the first place. This goal is, in general, impossible to achieve, although prevention can reduce 

the  

number of successful viral attacks. The next best approach is to be able to do the following: 

● Detection: Once the infection has occurred, determine that it has occurred and locate the 

virus. 

● Identification: Once detection has been achieved, identify the specific virus that has 

infected a  

program. 

● Removal: Once the specific virus has been identified, remove all traces of the virus from 

the  

infected program and restore it to its original state. Remove the virus from all infected 

systems  

so that the disease cannot spread further. 

Four generations of antivirus software: 

● First generation: simple scanners 

● Second generation: heuristic scanners 

● Third generation: activity traps 

● Fourth generation: full-featured protection 

A first-generation scanner requires a virus signature to identify a virus. The virus may 

contain  

"wildcards" but has essentially the same structure and bit pattern in all copies. Such 

signature-specific scanners are limited to the detection of known viruses. Another type 

of first-generation scanner maintains a record of the length of programs and looks for 

changes in length. 

A second-generation scanner does not rely on a specific signature. Rather, the 

scanner uses heuristic rules to search for probable virus infection. One class of such 

scanners looks for fragments of code that are often associated with viruses. For example, 

a scanner may look for the beginning of an encryption loop used in a polymorphic virus 

and discover the encryption key. Once the key is discovered, the scanner can decrypt the 

virus to identify it, then remove the infection and return the program to service. 

Third-generation programs are memory-resident programs that identify a virus by 

its actions rather than its structure in an infected program. Such programs have the 

advantage that it is not necessary to develop signatures and heuristics for a wide array of 

viruses. Rather, it is necessary only to identify the small set of actions that indicate an 

infection is being attempted and then to intervene. 

 Fourth-generation products are packages consisting of a variety of antivirus 

techniques used in conjunction. These include scanning and activity trap components. In 

addition, such a package includes access control capability, which limits the ability of 

viruses to penetrate a system and then limits the ability of a virus to update files in order 

to pass on the infection. 
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3.5.2 Advanced Antivirus Techniques 

More sophisticated antivirus approaches and products continue to appear.  

Generic Decryption 

  Generic decryption (GD) technology enables the antivirus program to easily detect even 

the most complex polymorphic viruses, while maintaining fast scanning speeds 

[NACH97]. Recall that when a file containing a polymorphic virus is executed, the virus 

must decrypt itself to activate. In order to detect such a structure, executable files are run 

through a GD scanner, which contains the following elements: 

● CPU emulator: A software-based virtual computer. Instructions in an executable 

file are interpreted by the emulator rather than executed on the underlying processor. The 

emulator  

includes software versions of all registers and other processor hardware, so that the 

underlying processor is unaffected by programs interpreted on the emulator. 

● Virus signature scanner: A module that scans the target code looking for known 

virus  

signatures. 

● Emulation control module: Controls the execution of the target code 

Digital Immune System 

The digital immune system is a comprehensive approach to virus protection 

developed by IBM. The motivation for this development has been the rising threat of 

Internet-based virus propagation. Two major trends in Internet technology have had an 

increasing impact on the rate of virus propagation in recent years: 

• Integrated mail systems: Systems such as Lotus Notes and Microsoft Outlook 

make it very simple to send anything to anyone and to work with objects that are received. 

● Mobile-program systems: Capabilities such as Java and ActiveX allow programs 

to move on their own from one system to another. 

In response to the threat posed by these Internet-based capabilities, IBM has 

developed a prototype digital immune system.The objective of this system is to provide 

rapid response time so that viruses can be stamped out almost as soon as they are 

introduced. When a new virus enters an organization, the immune system automatically 

captures it, analyzes it, adds detection and shielding for it, removes it, and passes 

information about that virus to systems running IBM AntiVirus so that it can be detected 

before it is allowed to run elsewhere. Figure 3.8 illustrates the typical steps in digital 

immune system operation: 
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Figure 3.8. Digital Immune System 

Fig 3.8 illustrates the typical steps in digital immune system operation: 

1. A monitoring program on each PC uses a variety of heuristics based on system 

behavior, suspicious changes to programs, or family signature to infer that a virus may 

be present.  

2. The administrative machine encrypts the sample and sends it to a central virus 

analysis machine.  

3. This machine creates an environment in which the infected program can be safely 

run for analysis. Techniques used for this purpose include emulation, or the creation of a 

protected environment within which the suspect program can be executed and monitored.  

4. The resulting prescription is sent back to the administrative machine.  

5. The administrative machine forwards the prescription to the infected client.  

6. The prescription is also forwarded to other clients in the organization.  

7. Subscribers around the world receive regular antivirus updates that protect them 

from the new virus. 

The success of the digital immune system depends on the ability of the virus analysis 

machine to detect new and innovative virus strains. 

 

3.5.3 Behavior-Blocking Software 

Behavior-blocking software integrates with the operating system of a host computer 

and monitors program behavior in real-time for malicious actions. The behavior blocking 

software then blocks potentially malicious actions before they have a chance to affect the 

system. Monitored behaviors can include the following: 

● Attempts to open, view, delete, and/or modify files; 

● Attempts to format disk drives and other unrecoverable disk operations; 

● Modifications to the logic of executable files or macros; 

● Modification of critical system settings, such as start-up settings; 

● Scripting of e-mail and instant messaging clients to send executable content; and 

● Initiation of network communications. 
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If the behavior blocker detects that a program is initiating would-be malicious 

behaviors as it runs, it can block these behaviors in real-time and/or terminate the 

offending software. This gives it a fundamental advantage over such established antivirus 

detection techniques as fingerprinting or heuristics.  

The ability to watch software as it runs in real time clearly confers a huge benefit to 

the behavior blocker; however, it also has drawbacks. Since the malicious code must 

actually run on the target machine before all its behaviors can be identified, it can cause 

a great deal of harm to the system before it has been detected and blocked by the behavior 

blocking system. For instance, a new virus might shuffle a number of seemingly 

unimportant files around the hard drive before infecting a single file and being blocked.  

3.6 Distributed Denial of Service Attacks 

 Distributed denial of service (DDoS) attacks present a significant security threat to 

corporations, and the threat appears to be growing . In one study, covering a three-week 

period in 2001, investigators observed more than 12,000 attacks against more than 5000 

distinct targets, ranging from well-known ecommerce companies such as Amazon and 

Hotmail to small foreign ISPs and dial-up connections. DDoS attacks make computer 

systems inaccessible by flooding servers, networks, or even end user systems with useless 

traffic so that legitimate users can no longer gain access to those resources.  

  A denial of service (DoS) attack is an attempt to prevent legitimate users of a service 

from using that service. When this attack comes from a single host or network node, then 

it is simply referred to as a DoS attack. A more serious threat is posed by a DDoS attack. 

In a DDoS attack, an attacker is able to recruit a number of hosts throughout the Internet 

to simultaneously or in a coordinated fashion launch an attack upon the target. This 

section is concerned with DDoS attacks.  

3.6.1 DDoS Attack Description 

 A DDoS attack attempts to consume the target's resources so that it cannot provide 

service. One way to classify DDoS attacks is in terms of the type of resource that is 

consumed. Broadly speaking, the resource consumed is either an internal host resource 

on the target system or data transmission capacity in the local network to which the target 

is attacked. 

A simple example of an internal resource attack is the SYN flood attack. Figure 19.5a 

shows the steps involved: 

1. The attacker takes control of multiple hosts over the Internet, instructing them to 

contact the target Web server.  

2. The slave hosts begin sending TCP/IP SYN (synchronize/initialization) packets, with 

erroneous return IP address information, to the target. 

3. Each SYN packet is a request to open a TCP connection. For each such packet, the 

Web server responds with a SYN/ACK (synchronize/acknowledge) packet, trying to 

establish a TCP connection with a TCP entity at a spurious IP address. The Web server 

maintains a data structure for each SYN request waiting for a response back and becomes 

bogged down as more traffic floods in. The result is that legitimate connections are denied 

while the victim machine is waiting to complete bogus "half-open" connections. 
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Figure 3.9. Examples of Simple DDoS Attacks 

The TCP state data structure is a popular internal resource target but by no means the 

only one. Examples are the following: 

1. In many systems, a limited number of data structures are available to hold process 

information (process identifiers, process table entries, process slots, etc.). An intruder 

may be able to consume these data structures by writing a simple program or script that 

does nothing but repeatedly create copies of itself. 

2. An intruder may also attempt to consume disk space in other ways, including 

• generating excessive numbers of mail messages 

• placing files in anonymous ftp areas or network-shared areas 

• intentionally generating errors that must be logged 

Fig 3.9  illustrates an example of an attack that consumes data transmission resources. 

The  

following steps are involved: 

1. The attacker takes control of multiple hosts over the Internet, instructing them to send 

ICMP  

ECHO packets with the target's spoofed IP address to a group of hosts that act as 

reflectors, as described subsequently.  

2. Nodes at the bounce site receive multiple spoofed requests and respond by sending 

echo reply packets to the target site. 
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3. The target's router is flooded with packets from the bounce site, leaving no data 

transmission  capacity for legitimate traffic. 

Another way to classify DDoS attacks is as either direct or reflector DDoS attacks. In a 

direct DDoS attack (Figure 3.10 a), the attacker is able to implant zombie software on a 

number of sites distributed throughout the Internet. Often, the DDoS attack involves two 

levels of zombie machines: master zombies and slave zombies. The hosts of both 

machines have been infected with malicious code. The attacker coordinates and triggers 

the master zombies, which in turn coordinate and trigger the slave zombies. The use of 

two levels of zombies makes it more difficult to trace the attack back to its source and 

provides for a more resilient network of attackers 
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Figure 3.10 Types of Flooding-Based DDoS Attacks 

 

A reflector DDoS attack adds another layer of machines (Figure 310 b). In this type of 

attack, the slave zombies construct packets requiring a response that contain the target's 

IP address as the source IP address in the packet's IP header. These packets are sent to 

uninfected machines known as reflectors. The uninfected machines respond with packets 

directed at the target machine. A reflector DDoS attack can easily involve more machines 

and more traffic than a direct DDoS attack and hence be more damaging.  

3.6.2 Constructing the Attack Network 
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 The first step in a DDoS attack is for the attacker to infect a number of machines with 

zombie software that will ultimately be used to carry out the attack. The essential 

ingredients in this phase of the attack are the following: 

1. Software that can carry out the DDoS attack. The software must be able to run on a 

large  

number of machines, must be able to conceal its existence, must be able to communicate 

with the attacker or have some sort of time-triggered mechanism, and must be able to 

launch the intended attack toward the target. 

2. A vulnerability in a large number of systems. The attacker must become aware of a 

vulnerability that many system administrators and individual users have failed to patch 

and that enables the attacker to install the zombie software. 

3. A strategy for locating vulnerable machines, a process known as scanning 

 In the scanning process, the attacker first seeks out a number of vulnerable machines 

and infects them. Then, typically, the zombie software that is installed in the infected 

machines repeats the same scanning process, until a large distributed network of infected 

machines is created. The followings are types of scanning strategies: 

● Random: Each compromised host probes random addresses in the IP address space, 

using a different seed. This technique produces a high volume of Internet traffic, which 

may cause generalized disruption even before the actual attack is launched. 

● Hit-list: The attacker first compiles a long list of potential vulnerable machines. This 

can be a slow process done over a long period to avoid detection that an attack is 

underway. Once the list is compiled, the attacker begins infecting machines on the list. 

Each infected machine is provided with a portion of list to scan. This strategy results in a 

very short scanning period, which may make it difficult to detect that infection is taking 

place. 

● Topological: This method uses information contained on an infected victim machine 

to find more hosts to scan. 

● Local subnet: If a host can be infected behind a firewall, that host then looks for targets 

in its own local network. The host uses the subnet address structure to find other hosts 

that would otherwise be protected by the firewall. 

3.6.3 DDoS Countermeasures 

In general, there are three lines of defense against DDoS attacks 

• Attack prevention and preemption (before the attack): These mechanisms enable the  

victim to endure attack attempts without denying service to legitimate clients. Techniques  

include enforcing policies for resource consumption and providing backup resources 

available on demand. In addition, prevention mechanisms modify systems and protocols 

on the Internet to reduce the possibility of DDoS attacks. 

● Attack detection and filtering (during the attack): These mechanisms attempt to 

detect the attack as it begins and respond immediately. This minimizes the impact of the 

attack on the target. Detection involves looking for suspicious patterns of behavior. 

Response involves filtering out packets likely to be part of the attack. 

• Attack source traceback and identification (during and after the attack): This is an  
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attempt to identify the source of the attack as a first step in preventing future attacks. 

However, this method typically does not yield results fast enough, if at all, to mitigate an 

ongoing attack. 

3.7 Firewall Design Principles 

Information systems in corporations, government agencies, and other organizations have 

undergone a steady evolution: 

● Centralized data processing system, with a central mainframe supporting a number of 

directly connected terminals 

● Local area networks (LANs) interconnecting PCs and terminals to each other and the 

mainframe 

● Premises network, consisting of a number of LANs, interconnecting PCs, servers, and 

perhaps a mainframe or two 

● Enterprise-wide network, consisting of multiple, geographically distributed premises 

networks interconnected by a private wide area network (WAN) 

● Internet connectivity, in which the various premises networks all hook into the Internet 

and may or may not also be connected by a private WAN. 

3.7.1 Firewall Characteristics 

The following are design goals for a firewall: 

1. All traffic from inside to outside, and vice versa, must pass through the firewall. This 

is achieved by physically blocking all access to the local network except via the firewall. 

Various configurations are possible. 

2. Only authorized traffic, as defined by the local security policy, will be allowed to pass. 

Various types of firewalls are used, which implement various types of security policies, 

as explained later. 

3. The firewall itself is immune to penetration. This implies that use of a trusted system 

with a secure operating system.  Originally, firewalls focused primarily on service 

control, but they have since evolved to provide all four: 

● Service control: Determines the types of Internet services that can be accessed, 

inbound or outbound. The firewall may filter traffic on the basis of IP address and TCP 

port number; may provide proxy software that receives and interprets each service request 

before passing it on; or may host the server software itself, such as a Web or mail service. 

● Direction control: Determines the direction in which particular service requests may 

be initiated and allowed to flow through the firewall. 

● User control: Controls access to a service according to which user is attempting to 

access it. This feature is typically applied to users inside the firewall perimeter (local 

users). It may also be applied to incoming traffic from external users; the latter requires 

some form of secure authentication technology, such as is provided in IPSec. 

● Behavior control: Controls how particular services are used. For example, the firewall 

may filter e-mail to eliminate spam, or it may enable external access to only a portion of 

the information on a local Web server. 

The following capabilities are within the scope of a firewall: 

1. A firewall defines a single choke point that keeps unauthorized users out of the 

protected  
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network, prohibits potentially vulnerable services from entering or leaving the network, 

and provides protection from various kinds of IP spoofing and routing attacks.  

2. A firewall provides a location for monitoring security-related events. Audits and 

alarms can be implemented on the firewall system. 

3. A firewall is a convenient platform for several Internet functions that are not security 

related.  

4. A firewall can serve as the platform for IPSec. Using the tunnel mode capability 

described in the firewall can be used to implement virtual private networks. 

Firewalls have their limitations, including the following: 

1. The firewall cannot protect against attacks that bypass the firewall. Internal systems 

may have dial-out capability to connect to an ISP. An internal LAN may support a modem 

pool that provides dial-in capability for traveling employees and telecommuters. 

2. The firewall does not protect against internal threats, such as a disgruntled employee 

or an employee who unwittingly cooperates with an external attacker. 

3. The firewall cannot protect against the transfer of virus-infected programs or files.  

3.7.2 Types of Firewalls 

Fig 3.11 illustrates the three common types of firewalls: packet filters, application-level 

gateways, and circuit-level gateways.  
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Figure 3.11. Firewall Types 

3.7.2.1 Packet-Filtering Router 

A packet filtering firewall applies a set of rules to each incoming and outgoing IP 

packet and then forwards or discards the packet (Figure 22.1b). The firewall is typically 

configured to filter packets going in both directions (from and to the internal network). 

Filtering rules are based on information contained in a network packet: 

 •  Source IP address: The IP address of the system that originated the IP packet (e.g., 19

2.178.1.1) 

•  Destination IP address: The IP address of the system the IP packet is trying to reach (e.

g., 192.168.1.2) 

•   Source and destination transport-level address: The transport-

level (e.g., TCP or UDP) port number, which defines applications such as SNMP or TEL

NET 

•   IP protocol field: Defines the transport protocol 
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•  Interface: For a firewall with three or more ports, which interface of the fire- 

wall the packet came from or which interface of the firewall the packet is des- tined for 

 • Default = discard: That which is not expressly permitted is prohibited. 

• Default = forward: That which is not expressly prohibited is permitted. 

 The default discard policy is more conservative. Initially, everything is blocked, and 

services must be added on a case-by-case basis. This policy is more visible to users, who 

are more likely to see the firewall as a hindrance. However, this is the policy likely to be 

preferred by businesses and government organizations.  

In each set, the rules are applied top to bottom. The “*” in a field is a wildcard 

designator that matches everything. We assume that the default = discard policy is in 

force
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Fig 3.12 Types of Firewalls 

 

Table 3.2 . Packet-Filtering Examples 
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A.       Inbound mail is allowed (port 25 is for SMTP incoming), but only to a gateway host. 

However, packets from a particular external host, SPIGOT, are blocked because that host 

has a history of sending massive files in e-mail  messages. 

B.     This is an explicit statement of the default policy. All rulesets include this rule implici

tly as the last rule. 

C.     This ruleset is intended to specify that any inside host can send mail to the out- side. A 

TCP packet with a destination port of 25 is routed to the SMTP server on the destination ma

chine.  

D.This ruleset achieves the intended result that was not achieved in C. The rules take adv

antage of a feature of TCP connections. Once a connection is set up, the ACK flag of a TCP 

segment is set to acknowledge segments sent from the other side. Thus, this ruleset states tha

t it allows IP packets where the source IP address is one of a list of designated internal hosts 

and the destination TCP port number is 25 

E.   This ruleset isone approach to handling FTP connections. With FTP, two TCP 

connections are used: a control connection to set up the file transfer and a data 

connection for the actual file transfer.  Thus, this ruleset allows 

—  Packets that originate internally 

— Reply packets to a connection initiated by an internal machine 

— Packets destined for a high-numbered port on an internal machine 

This scheme requires that the systems be configured so that only the appropriate port 

numbers are in use. 

 Rule set E points out the difficulty in dealing with applications at the packet-

filtering level. Another way to deal with FTP and similar applications is either state- 

ful packet filters or an application-level gateway, both described subsequently in this 

section. 

One advantage of a packet filtering firewall is its simplicity. Also, packet filters typically 

are transparent to users and are very fast. [WACK02] lists the following weaknesses of 

packet filter firewalls:  

•   Because packet filter firewalls do not examine upper-layer data, they cannot prevent 

attacks that employ application-specific vulnerabilities or 

functions.  For example, a packet filter firewall cannot block 

specific application commands; if a packet filter firewall allows a given application, all 

functions available within that application will be   permitted. 

•   Because of the limited information available to the firewall, the logging func- 

tionality present in packet filter firewalls is limited. Packet filter logs normally contain the 

same information used to make access control decisions (source 

address, destination address, and traffic type). 

•  Most packet filter firewalls do not support advanced user authentication schemes. 

Once again, this limitation is mostly due to the lack of upper-layer 

functionality by the firewall. 
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•  Packet filter firewalls are generally vulnerable to attacks and exploits that take 

advantage of problems within the TCP/IP specification and protocol stack, 

such as network layer address spoofing. Many packet 

filter firewalls cannot detect a network packet in which the OSI Layer 3 addressing infor

ma- tion has been altered. Spoofing attacks are generally employed by intruders to 

bypass the security controls implemented in a firewall platform. 

Some of the attacks that can be made on packet filtering firewalls and the appropriate 

countermeasures are the following: 

 •  IP address spoofing: The intruder transmits packets from the outside with a 

source IP address field containing an address of an internal host. The attacker 

hopes that the use of a spoofed address will allow penetration of systems that 

employ simple source address security, in which packets from specific trusted internal 

hosts are accepted. The countermeasure is to discard packets with an 

inside source address if the packet arrives on an external interface. In fact, this 

countermeasure is often implemented at the router external to the firewall. 

•  Source routing attacks: The source station specifies the route that a packet 

should take as it crosses the Internet, in the hopes that this will bypass security measures 

that do not analyze the source routing information. The counter- 

measure is to discard all packets that use this option. 

•  Tiny fragment attacks: The intruder uses the IP fragmentation option to create 

extremely small fragments and force the TCP header information into a separate packet f

ragment. This attack is designed to circumvent filtering rules that depend on TCP header 

information. Typically, a packet filter will make a fil- 

tering decision on the first fragment of a packet. All subsequent fragments of that packet 

are filtered out solely on the basis that they are part of the packet 

whose first fragment was rejected.  

3.7.2.2 Stateful Inspection Firewalls 

A traditional packet filter makes filtering decisions on an individual packet basis and does 

not take into consideration any higher layer context. To understand what is meant by 

context and why a traditional packet filter is limited with regard to context, a little 

background is needed. Most standardized applications that run on top of TCP follow a 

client/server model. For example, for the Simple Mail Transfer Protocol (SMTP), e-mail 

is transmitted from a client system to a server system.  

A simple packet-filtering firewall must permit inbound network traffic on all these high-

numbered ports for TCP-based traffic to occur. This creates a vulnerability that can be 

exploited by unauthorized users.  

A stateful inspection packet filter tightens up the rules for TCP traffic by creating a 

directory of outbound TCP connections, as shown in Table 3.3. There is an entry for each 

currently established connection. The packet filter will now allow incoming traffic to 

high-numbered ports only for those packets that fit the profile of one of the entries in this 

directory 
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Table 3.3. Example Stateful Firewall Connection State Table 

Application-Level Gateway 

An application-level gateway, also called a proxy server, acts as a relay of application-

level traffic. 

 The user contacts the gateway using a TCP/IP application, such as Telnet or FTP, and 

the gateway asks the user for the name of the remote host to be accessed. When the user 

responds and provides a valid user ID and authentication information, the gateway 

contacts the application on the remote host and relays TCP segments containing the 

application data between the two endpoints. If the gateway does not implement the proxy 

code for a specific application, the service is not supported and cannot be forwarded 

across the firewall. Further, the gateway can be configured to support only specific 

features of an application that the network administrator considers acceptable while 

denying all other features.  

 Application-level gateways tend to be more secure than packet filters. Rather than trying 

to deal with the numerous possible combinations that are to be allowed and forbidden at 

the TCP and IP level, the application-level gateway need only scrutinize a few allowable 

applications. In addition, it is easy to log and audit all incoming traffic at the application 

level.  

A prime disadvantage of this type of gateway is the additional processing overhead on 

each connection. In effect, there are two spliced connections between the end users, with 

the gateway at the splice point, and the gateway must examine and forward all traffic in 

both directions. 

3.7.2.3 Circuit-Level Gateway 

A third type of firewall is the circuit-level gateway (Figure 20.1c). This can be a 

stand-alone system or it can be a specialized function performed by an application-level 

gateway for certain applications. A circuit-level gateway does not permit an end-to-end 
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TCP connection; rather, the gateway sets up two TCP connections, one between itself 

and a TCP user on an inner host and one between itself and a TCP user on an outside 

host. Once the two connections are established, the gateway typically relays TCP 

segments from one connection to the other without examining the contents.  

An example of a circuit-level gateway implementation is the SOCKS package; 

version 5 of SOCKS is defined in RFC 1928. The RFC defines SOCKS in the following 

fashion:  

SOCKS consists of the following components:  

● The SOCKS server, which runs on a UNIX-based firewall. 

 ● The SOCKS client library, which runs on internal hosts protected by the 

firewall.  

● SOCKS-ified versions of several standard client programs such as FTP and 

TELNET. The implementation of the SOCKS protocol typically involves the 

recompilation or relinking of TCP based client applications to use the appropriate 

encapsulation routines in the SOCKS library. 

 3.7.2.4 Bastion Host 

A bastion host is a system identified by the firewall administrator as a critical 

strong point in the network's security. Common characteristics of a bastion host include 

the following: 

● The bastion host hardware platform executes a secure version of its operating 

system, making it a trusted system. 

● Only the services that the network administrator considers essential are installed 

on the bastion host.  

● The bastion host may require additional authentication before a user is allowed 

access to the proxy services.  

● Each proxy is configured to support only a subset of the standard application's 

command set. 

● Each proxy is configured to allow access only to specific host systems. This 

means that the limited command/feature set may be applied only to a subset of systems 

on the protected network. 

● Each proxy maintains detailed audit information by logging all traffic, each 

connection, and the duration of each connection. The audit log is an essential tool for 

discovering and terminating intruder attacks. 

● Each proxy module is a very small software package specifically designed for 

network security. Because of its relative simplicity, it is easier to check such modules for 

security flaws. For example, a typical UNIX mail application may contain over 20,000 

lines of code, while a mail proxy may contain fewer than 1000. 
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● Each proxy is independent of other proxies on the bastion host. If there is a 

problem with the operation of any proxy, or if a future vulnerability is discovered, it can 

be uninstalled without affecting the operation of the other proxy applications.  

● A proxy generally performs no disk access other than to read its initial 

configuration file.  

● Each proxy runs as a nonprivileged user in a private and secured directory on 

the bastion host. 

3.7.3 Firewall Configurations 

In addition to the use of a simple configuration consisting of a single system, such 

as a single packet filtering router or a single gateway, more complex configurations are 

possible and indeed more common. Figure 3.13 illustrates three common firewall 

configurations. We examine each of these in turn. 

 

Figure 3.13  Firewall Configurations 
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In the screened host firewall, single-homed bastion configuration (Figure 3.13 a), the 

firewall consists of two systems: a packet-filtering router and a bastion host. Typically, 

the router is configured so that 

1. For traffic from the Internet, only IP packets destined for the bastion host are allowed 

in. 

2. For traffic from the internal network, only IP packets from the bastion host are allowed 

out. 

The bastion host performs authentication and proxy functions. This configuration 

has greater security than simply a packet-filtering router or an application-level gateway 

alone, for two reasons.  

This configuration also affords flexibility in providing direct Internet access. For 

example, the internal network may include a public information server, such as a Web 

server, for which a high level of security is not required. In that case, the router can be 

configured to allow direct traffic between the information server and the Internet. 

The screened host firewall, dual-homed bastion configuration physically 

prevents such a security breach (3.13 b). The advantages of dual layers of security that 

were present in the previous configuration are present here as well. Again, an information 

server or other hosts can be allowed direct communication with the router if this is in 

accord with the security policy. 

The screened subnet firewall configuration of Figure 20.2c is the most secure of 

those we have considered. In this configuration, two packet-filtering routers are used, one 

between the bastion host and the Internet and one between the bastion host and the 

internal network. This configuration offers several advantages: 

● There are now three levels of defense to thwart intruders. 

● The outside router advertises only the existence of the screened subnet to the 

Internet; therefore, the internal network is invisible to the Internet. 

● Similarly, the inside router advertises only the existence of the screened subnet 

to the internal network; therefore, the systems on the inside network cannot construct 

direct routes to the Internet. 

3.8 Trusted Systems 

One way to enhance the ability of a system to defend against intruders and malicious 

programs is to implement trusted system technology. 

3.8.1 Data Access Control 

Following successful logon, the user has been granted access to one or a set of 

hosts and applications. This is generally not sufficient for a system that includes sensitive 

data in its database. Through the user access control procedure, a user can be identified 

to the system. Associated with each user, there can be a profile that specifies permissible 
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operations and file accesses. The operating system can then enforce rules based on the 

user profile.  

 A general model of access control as exercised by a file or database management 

system is that of an access matrix (3.14 a). The basic elements of the model are as 

follows:  

● Subject: An entity capable of accessing objects. Generally, the concept of 

subject equates with that of process. Any user or application actually gains access to an 

object by means of a process that represents that user or application.  

● Object: Anything to which access is controlled. Examples include files, 

portions of files, programs, and segments of memory. 

 ● Access right: The way in which an object is accessed by a subject. Examples 

are read, write, and execute.  
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Figure 3.14  Access Control Structure 

One axis of the matrix consists of identified subjects that may attempt data access. 

Typically, this list will consist of individual users or user groups, although access could 

be controlled for terminals, hosts, or applications instead of or in addition to users. The 

other axis lists the objects that may be accessed.  

Decomposition by rows yields capability tickets (Figure 3.14 c). A capability 

ticket specifies authorized objects and operations for a user. Each user has a number of 

tickets and may be authorized to loan or give them to others. Because tickets may be 

dispersed around the system, they present a greater security problem than access control 

lists. In particular, the ticket must be unforgeable. One way to accomplish this is to have 

the operating system hold all tickets on behalf of users. These tickets would have to be 

held in a region of memory inaccessible to users. 

3.8.2 The Concept of Trusted Systems  

Much of what we have discussed so far has been concerned with protecting a 

given message or item from passive or active attacks by a given user. A somewhat 

different but widely applicable requirement is to protect data or resources on the basis of 

levels of security. This is commonly found in the military, where information is 

categorized as unclassified (U), confidential (C), secret (S), top secret (TS), or beyond. 

This concept is equally applicable in other areas, where information can be organized 

into gross categories and users can be granted clearances to access certain categories of 

data.  

When multiple categories or levels of data are defined, the requirement is referred 

to as multilevel security. The general statement of the requirement for multilevel security 

is that a subject at a high level may not convey information to a subject at a lower or 

noncomparable level unless that flow accurately reflects the will of an authorized user. A 

multilevel secure system must enforce the following: 

 ● No read up: A subject can only read an object of less or equal security level. 

This is referred to in the literature as the Simple Security Property.  

● No write down: A subject can only write into an object of greater or equal 

security level.  

Fig 3.15 illustrates reference monitor. The reference monitor is a controlling 

element in the hardware and operating system of a computer that regulates the access of 

subjects to objects on the basis of security parameters of the subject and object. The 

reference monitor has access to a file, known as the security kernel database, that lists the 

access privileges (security clearance) of each subject and the protection attributes 

(classification level) of each object. The reference monitor enforces the security rules (no 

read up, no write down) and has the following properties:  
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● Complete mediation: The security rules are enforced on every access, not just, 

for example, when a file is opened.  

● Isolation: The reference monitor and database are protected from unauthorized 

modification.  

● Verifiability: The reference monitor's correctness must be provable. That is, it 

must be possible to demonstrate mathematically that the reference monitor enforces the 

security rules and provides complete mediation and isolation. 

 

 

Figure 3.15 Reference Monitor Concept 

These are stiff requirements. The requirement for complete mediation means that 

every access to data within main memory and on disk and tape must be mediated. Pure 

software implementations impose too high a performance penalty to be practical; the 

solution must be at least partly in hardware. The requirement for isolation means that it 

must not be possible for an attacker, no matter how clever, to change the logic of the 

reference monitor or the contents of the security kernel database.  

A final element illustrated in Figure 3.15 is an audit file. Important security 

events, such as detected security violations and authorized changes to the security kernel 

database, are stored in the audit file. In an effort to meet its own needs and as a service to 

the public, the U.S. Department of Defense in 1981 established the Computer Security 

Center within the National Security Agency (NSA) with the goal of encouraging the 

widespread availability of trusted computer systems. This goal is realized through the 

center's Commercial Product Evaluation Program.  
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3.8.3 Trojan Horse Defense  

One way to secure against Trojan horse attacks is the use of a secure, trusted 

operating system. Figure 3.16 illustrates an example. In this case, a Trojan horse is used 

to get around the standard security mechanism used by most file management and 

operating systems: the access control list. In this example, a user named Bob interacts 

through a program with a data file containing the critically sensitive character string 

"CPE170KS." User Bob has created the file with read/write permission provided only to 

programs executing on his own behalf: that is, only processes that are owned by Bob may 

access the file.  

 

 

Figure 3.16 Trojan Horse and Secure Operating System 

The Trojan horse attack begins when a hostile user, named Alice, gains legitimate 

access to the system and installs both a Trojan horse program and a private file to be used 

in the attack as a "back pocket." Alice gives read/write permission to herself for this file 

and gives Bob write-only permission (Figure 3.16 a). Alice now induces Bob to invoke 

the Trojan horse program, perhaps by advertising it as a useful utility. When the program 

detects that it is being executed by Bob, it reads the sensitive character string from Bob's 

file and copies it into Alice's back-pocket file (Figure 3.16 b). Both the read and write 

operations satisfy the constraints imposed by access control lists. Alice then has only to 

access Bob's file at a later time to learn the value of the string. Now consider the use of a 

secure operating system in this scenario (Figure 3.16 c). Security levels are assigned to 

subjects at logon on the basis of criteria such as the terminal from which the computer is 

being accessed and the user involved, as identified by password/ID. Alice's file and 

processes are restricted to public. If Bob invokes the Trojan horse program (Figure 3.16 

d), that program acquires Bob's security level. It is therefore able, under the simple 
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security property, to observe the sensitive character string. When the program attempts 

to store the string in a public file (the back-pocket file), however, the is violated and the 

attempt is disallowed by the reference monitor. Thus, the attempt to write into the back-

pocket file is denied even though the access control list permits it:  
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• William Stallings, “ Cryptography and Network Security”, 4th Edition, Pearson, 2009. 

• Behrouz A. Forouzan, “ Cryptography and Network Security”, Tata McGraw-Hill, 2008. 
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4. Operations and Physical Security 

Origin – Process – Laws –Physical Security – Controls – Protecting People – Protecting Data – 

Protecting Equipment 

4.1 Operations Security 

• Operations security, known in military and government circles as OPSEC, is, at a high level, 

a process that we use to protect our information.  

• The entire process involves not only putting countermeasures in place, but before doing so, 

carefully identifying what exactly we need to protect, and what we need to protect it against. 

• It is important to remember when putting security measures in place that we should be 

implementing security measures that are relative to the value of what we are protecting. If we 

evenly apply the same level of security to everything, we may be overprotecting some things 

that are not of high value and under protecting things of much greater value. 

4.1.1 Origins of operations Security 

• Operations security may be a fairly recent idea, as far as the specific implementation of 

OPSEC by the U.S.  government is concerned, but the concepts comprising it are truly ancient 

indeed.  

• We can see such ideas put forth in the works of Sun Tzu thousands of years ago, and in the 

words of the founders of the United States, such as George Washington and Benjamin 

Franklin.  

• While we can point to nearly any period in history, and nearly any military or large 

commercial organization, and find the principles of operations security present, a few specific 

occasions present themselves as being particularly influential in the development and use of 

operations security. 

4.1.1.1 Sun Tzu 

• Sun Tzu was a Chinese military general who lived in the sixth century BC.  

• Among those of a military or strategic bent, Sun Tzu’s work The Art of War is considered to 

be somewhat of a bible for conducting such operations.  

• The Art of War has spawned countless clones and texts that apply the principles it espouses 

to a variety of situations, including, but not limited to, information security.  

• The text provides some of the earliest examples of operations security principles that are 

plainly stated and clearly documented.  
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• We can point out numerous passages within The Art of War as being related to operations 

security principles.  

• The first passage is “If I am able to determine the enemy’s dispositions while at the same 

time, I conceal my own, then I can concentrate and he must divide”.  

• This is a simple admonition to discover information held by our opponents while protecting 

our own. This is one of the most basic tenets of operations security. 

4.1.1.2 George Washington 

• George Washington, the first president of the United States, was well known for being an 

astute and skilled military commander and is also well known for promoting good operational 

security practices.  

• He is known in the operations security community for having said, “Even minutiae should 

have a place in our collection, for things of a seemingly trifling nature, when enjoined with 

others of a more serious cast, may lead to valuable conclusion”, meaning that even small items 

of information, which are valueless individually, can be of great value in combination.  

• We can see an example of exactly this in the three main items of information that constitute 

an identity: a name, an address, and a Social Security number.  

• Individually, these items are completely useless. We could take any one of them in isolation 

and put it up on a billboard for the world to see, and not be any worse for having done so. In 

combination, these three items are sufficient for an attacker to steal our identity and use it for 

all manners of fraudulent activities. 

4.1.1.3 Vietnam War 

• During the Vietnam War, the United States came to realize that information regarding troop 

movements, operations, and other military activities was being leaked to the enemy.  

• Clearly, in most environments, military or otherwise, having our opponents gain 

foreknowledge of our activities is a bad thing, particularly so when lives may be at stake.  

• In an effort to curtail this unauthorized passing of information, a study, codenamed Purple 

Dragon, a symbol of OPSEC that persists to this day Ultimately, the study brought about two 

main ideas: first, in that particular environment, eavesdroppers and spies abounded; and 

second, a survey was needed to get to the bottom of the information loss.  

• The survey asked questions about the information itself, vulnerability analysis, and other 

items. The team conducting these surveys and analyses also coined the term operations 

security and the acronym OPSEC. 
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4.1.1.4 Business 

• In the late 1970s and early 1980s, some of the operations security concepts that were used in 

the world of the military and government were beginning to take root in the commercial 

world.  

• The ideas of industrial espionage and spying on our business competition in order to gain a 

competitive advantage have been around since the beginning of time, but as such concepts 

were becoming more structured in the military world, they were becoming more structured in 

the business world as well.  

• In 1980, Michael Porter, a professor at Harvard Business School, published a book titled 

Competitive Strategy: Techniques for Analyzing Industries and Competitors.  

• This text, now nearing its sixtieth printing, set the basis for what is referred to as competitive 

intelligence.  

• Competitive intelligence is generally defined as the process of intelligence gathering and 

analysis in order to support business decisions.  

• The counterpart of competitive intelligence, competitive counterintelligence, correlates in a 

fairly direct manner to the operations security principles that were laid out by the government 

only a few years previously, and is an active part of conducting business to this day. 

4.1.2 The operations security Process 

• The operations security process, as laid out by the U.S. government, will look very familiar 

to anyone who has worked with risk management.  

• In essence, the process is to identify what information we have that needs protection, analyze 

the threats and vulnerabilities that might impact it, and develop methods of mitigation for 

those threats and vulnerabilities. 

 

Fig. 1 Operation Security Process 
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4.1.2.1 Identification of Critical Information 

• The initial step, and, arguably, the most important step in the operations curity process, is to 

identify our most critical information assets.  

• Although we could spend a great deal of time identifying every little item of information that 

might even remotely be of importance, this is not the goal in this step of the operations security 

process.  

• For any given business, individual, military operation, process, or project, there are bound to 

be at least a few critical items of information on which everything else depends.  

• For a soft drink company, it might be our secret recipe, for an application vendor it might be 

our source code, for a military operation it might be our attack timetable, and so on.  

• These are the assets that most need protection and will cause us the most harm if exposed, 

and these are the assets we should be identifying.  

4.2.2.2 Analysis of Threats  

• In the case of analyzing threats to our information assets, we would start with the critical 

information we identified in the previous step.  

• With the list of critical information, we can then begin to look at what harm might be caused 

by critical information being exposed, and who might exploit the exposure.  

• This is the same process used by many military and government organizations to classify 

information and determine who is allowed to see it.  

• For instance, if we are a software company that has identified the proprietary source code of 

one of our main products as an item of critical information, we might determine that the chief 

threats of such an exposure could be exposure to attackers and exposure to our competition.  

• If the source code were exposed to attackers, they might be able to determine the scheme we 

use to generate license keys for our products in order to prevent piracy, and use access to the 

source code to develop a utility that could generate legitimate keys, thus costing us revenue 

to software piracy.  

• In the case of our competition, they might use access to our source code to copy features for 

use in their own applications, or they might copy large portions of our application and sell it 

themselves.  

• This step in the process needs to be repeated for each item of information we have identified 

as being critical, for each party that might take advantage of it if it were exposed, and for each 

use they might make of the information.  
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4.2.2.3 Analysis of Vulnerabilities 

• Vulnerabilities are weaknesses that can be used to harm us.  

• In the case of analyzing the vulnerabilities in the protections we have put in place for our 

information assets, we will be looking at how the processes that interact with these assets are 

normally conducted, and where we might attack in order to compromise them.  

• When we looked at threats, we used the source of a software company as an example of an 

item of critical information that might cause us harm if it were to find its way into the hands 

of our competition.  

• When we look at vulnerabilities, we might find that our security controls on the source code 

with which we are concerned are not very rigorous, and that it is possible to access, copy, 

delete, or alter it without any authorization beyond that needed to access the operating system 

or network shares.  

• This might make it possible for an attacker who has compromised the system to copy, tamper 

with, or entirely delete the source code, or might render the files vulnerable to accidental 

alteration while the system is undergoing maintenance.  

4.2.2.4 Assessment of Risks 

• Assessment of risks is where the proverbial rubber meets the road, in terms of deciding what 

issues we really need to be concerned about during the operations security process.  

• Risk occurs when we have a matching threat and vulnerability, and only then. To go back to 

our software source code example, we had determined that we had seen a threat in the 

potential for our application source code being exposed in an unauthorized manner.  

• Furthermore, we found that we had a threat in the poor controls on access to our source code, 

and a lack of policy in how exactly it was controlled.  

• These two matching issues could potentially lead to the exposure of our critical information 

to our competitors or attackers. It is important to note again that we need a matching threat 

and vulnerability to constitute a risk.  

• If the confidentiality of our source code was not an issue—for instance, if we were creating 

an open source project and the source code was freely available to the public—we would not 

have a risk in this particular case. 

4.2.2.5 Application of Countermeasures  

• Once we have discovered what risks to our critical information might be present, we would 

then put measures in place to mitigate them. Such measures are referred to in operations 



139 
 

security as countermeasures. As we discussed, in order to constitute a risk, we need a 

matching set of threats and vulnerabilities.  

• When we construct a countermeasure for a particular risk, in order to do the bare minimum, 

we need only to mitigate either the threat or the vulnerability.  

• In the case of our source code example, the threat was that our source code might be exposed 

to our competitors or attackers, and the vulnerability was the poor set of security controls we 

had in place to protect it. 

• In this instance, there is not much that we can do to protect ourselves from the threat itself 

without changing the nature of our application entirely, so there is really not a good step for 

us to take to mitigate the threat.  

• We can, however, put measures in place to mitigate the vulnerability. In the case of our source 

code example, we had a vulnerability to match the threat because of the poor controls on  he 

handling of the code itself.  

• If we institute stronger measures on controlling access to the code and also put policy in place 

to lay out a set of rules for how it is to be handled, we will largely remove this vulnerability.  

• Once we have broken the threat/vulnerability pair, we will likely no longer be left with much 

in the way of a serious risk.  

• It is important to note that this is an iterative process; once we reach the end of the cycle, we 

will, in all likelihood, need to go through the cycle more than once in order to fully mitigate 

any issues.  

• Each time we go through the cycle, we will do so based on the knowledge and experience we 

gained from our previous mitigation efforts, and we will be able to tune our solution for an 

even greater level of security.  

• In addition, when our environment changes and new factors arise, we will need to revisit this 

process.  

4.1.2 Laws of operations security 

• As a somewhat different, and briefer, viewpoint on the operations security process, we can 

look at the Laws of OPSEC, developed by Kurt Haas while he was employed at the Nevada 

Operations Office of the DOE.  

• These laws represent a distillation of the operations security process we discussed earlier and, 

while we might not necessarily call them the most important parts of the process, they do 

serve to highlight some of the main concepts of the overall procedure.  
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(a) First Law 

• The first law of operations security is “If you don’t know the threat, how do you know what 

to protect?”. This law refers to the need to develop an awareness of both the actual and 

potential threats that our critical data might face.  

• This law maps directly to the second step in the operations security process.  

• Ultimately, as we discussed earlier, we may face many threats against our critical information.  

• Each item of information may have a unique set of threats and may have multiple threats, 

each from a different source.  

• Particularly as we see the surge of services that are cloud based, it is also important to 

understand that threats may be location dependent.  

• We may have enumerated all the threats that face our critical data for a particular location, 

but if we have our data replicated across multiple storage areas in multiple countries due to a 

cloud-based storage mechanism, threats may differ from one storage location to another. 

Different parties may have better or easier potential access in one particular area, or the laws 

may differ significantly from one location to another and pose entirely new threats.  

(b) Second Law 

• “If you don’t know what to protect, how do you know you are protecting it?”  This law of 

operations security discusses the need to evaluate our information assets and determine what 

exactly we might consider to be our critical information.  

• This second law equates to the first step in the operations security process. In the vast majority 

of government environments, identification and classification of information is mandated.  

• Each item of information, perhaps a document or file, is assigned a label that attests to the 

sensitivity of its contents, such as classified, top secret, and so forth.  

• Such labeling makes the task of identifying our critical information considerably easier, but 

is, unfortunately, not as frequently used outside of government.  

• In the business world, we may see the policy that dictates the use of such information 

classification, but, in the experience of the author, such labeling is usually implemented 

sporadically, at best. A few civilian industries, such as those that deal with data that has 

federally mandated requirements for protection (financial data, medical data), do utilize 

information classification, but these are the exception rather than the rule. 

(c) Third Law  

• The third and last law of operations security is “If you are not protecting it (the information), 

… THE DRAGON WINS!”.  
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• This law is an overall reference to the necessity of the operations security process.  

• If we do not take steps to protect our information from the dragon (our adversaries or 

competitors), they win by default. The case of the “dragon” winning—from the constant 

appearance of security breaches reported by the news media and on Web sites that track 

breaches, such as www.datalossdb.org—appears to be unfortunately common.  

• In many cases, we can examine a breach and find that it was the result of simple carelessness 

and noncompliance with the most basic security measures and due diligence.  

• We can see an example of exactly this in a breach announced by Louisiana’s Tulane 

University in January 2011. In this case, the university exposed a database containing the 

names, addresses, Social Security numbers, and tax documents for every employee of the 

school, more than 10,000 individuals all told.  

• Although we might assume that a wily band of hackers had subverted the university’s 

stringent security measures and managed to steal a copy of the database from a protected 

system on the university network, this is sadly not the case.  

• The employee data was located on an unencrypted laptop, which was placed in a briefcase 

and left in a car by a university employee that had gone out of town. 

 

4.2 Physical Security  

• Physical security is largely concerned with the protection of three main categories of assets: 

people, equipment, and data. Our primary concern, of course, is to protect people.  

• People are considerably more difficult to replace than equipment or data, particularly when 

they are experienced in their particular field and are familiar with the processes and tasks they 

perform.  

• Next in order of priority of protection is our data. If we have sufficiently planned and prepared 

in advance, we should be able to easily protect our data from any disaster that is not global in 

scale.  

• If we do not prepare for such an issue, we can very easily lose our data permanently.  

• The threats we face when we are concerned with physical security generally fall into a few 

main categories, as listed here and shown in Figure 2 
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Fig.2 Major Categories of Physical Threats 

4.2.1 Physical security controls  

• Physical security controls are the devices, systems, people, and other methods we put in place 

to ensure our security in a physical sense.  

• There are three main types of physical controls: deterrent, detective, and preventive, as shown 

in Figure 3.  

• Each has a different focus, but none is completely distinct and separate from the others, as we 

will discuss shortly.  

• Additionally, these controls work best when used in concert. Any one of them is not sufficient 

to ensure our physical security in most situations. 

 

Fig. 3 Types of Security Controls 

 

(a) Deterrent  

• Deterrent controls are designed to discourage those who might seek to violate our security 

controls from doing so.  

• A variety of controls might be considered to be a deterrent, including, as we discussed earlier 

in this section, several that overlap with the other categories.  
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• In the sense of pure detective controls, we can point to specific items that are intended to 

indicate that other controls may be in place.  

• Examples of this include signs in public places that indicate that video monitoring is in place, 

and the yard signs with alarm company logos that we might find in residential areas.  

• The signs themselves do nothing to prevent people from acting in an undesirable fashion, but 

they do point out that there may be consequences for doing so.  

• Such measures, while not directly adding to what we might think of as physical security, do 

help to keep honest people honest.  

(b) Detective 

• Detective controls serve to detect and report undesirable events that are taking place. The 

classic example of a detective control can be found in burglar alarms and physical intrusion 

detection systems.  

• Such systems typically monitor for indicators of unauthorized activity, such as doors or 

windows opening, glass being broken, movement, and temperature changes, and also can be 

in place to monitor for undesirable environmental conditions such as flooding, smoke and 

fire, electrical outages, excessive carbon dioxide in the air, and so on.  

• We may also see detective systems in the form of human or animal guards, whether they are 

physically patrolling an area or monitoring second hand through the use of technology such 

as camera systems.  

• This type of monitoring has both good and bad points, in that a living being may be technically 

less focused than an electronic system, but does have the potential to become distracted and 

will need to be relieved for meals, bathroom breaks, and other similar activities.  

• Additionally, we can scale such guards from the lowliest unarmed security guard to highly 

trained and well-armed security forces, as is appropriate for the situation.  

(c) Preventive 

• Preventive controls are used to physically prevent unauthorized entities from breaching our 

physical security.  

• An excellent example of preventive security can be found in the simple mechanical lock. 

Locks are nearly ubiquitous for securing various facilities against unauthorized entry, 

including businesses, residences, and other locations.  

• In addition to locks, we can also see preventive controls in the form of high fences, bollards 

(the brightly painted and cement-filled posts that are placed to prevent vehicles from driving 

into buildings), and, once again, guards and dogs.  
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• We may also see preventive controls focused specifically on people, vehicles, or other 

particular areas of concern, depending on the environment in question.  

4.2.2 How We Use Physical Access Controls 

• Preventive controls are generally the core of our security efforts, and in some cases, they may 

be the only effort and the only physical security control actually in place.  

• We can commonly see this in residences, where there are locks on the doors, but no alarm 

systems or any other measures that might deter a criminal from gaining unauthorized entry.  

• In commercial facilities, we are much more likely to see all three types of controls 

implemented, in the form of locks, alarm systems, and signs indicating the presence of the 

alarm systems.  

• Following the principles of defense in depth, the more layers we put in place for physical 

security, the better-off we will be.  

• Another important consideration in implementing physical security is to only put security in 

place that is reasonably consistent with the value of what we are protecting.  

• If we have an empty warehouse, it does not make sense to put in high-security locks, alarm 

systems, and armed guards.  

• Likewise, if we have a house full of expensive computers and electronics, it does not make 

sense to equip it with cheap locks and forgo an alarm system entirely. 

(a) Protecting people  

• The primary concern of physical security is to protect the individuals on which our business 

depends and those that are close to us.  

• While we put security measures and backup systems in place to ensure that our facilities, 

equipment, and data remain in functional condition, if we lose the people we depend on to 

work with the equipment and data, we have a rather difficult problem to solve.  

• In many cases, we can restore our data from backups, we can build new facilities if they 

become destroyed or damaged, and we can buy new equipment; but replacing experienced 

people beyond the one or two at a time that we find with normal turnover is difficult, if not 

impossible, within any reasonable period of time.  

(b) Physical Concerns for People 

• As people are rather fragile in comparison to equipment, they can be susceptible to nearly the 

entire scope of threats.  

• Extreme temperatures, or even not so extreme temperatures, can quickly render a person very 

uncomfortable, at best.  



145 
 

• In the case of liquids, gases, or toxins, the absence, presence, or incorrect proportion of a 

variety of them can be harmful to individuals.  

• We can very clearly see how a liquid such as water, in excessive quantities, might be an 

undesirable thing, as we saw in the case of the massive flooding that took place in the southern 

United States during Hurricane Katrina in 2005.  

• Likewise, the lack of a gas such as oxygen, or too much of the same, can become deadly to 

people very quickly.  

• Although we can see where harm might come from a toxin being introduced to an 

environment very clearly, a number of common substances may already be present, but are 

not toxic in the quantities or mixtures in which they are commonly used.  

• We might see certain chemicals as being beneficial when they are used to filter the water in 

our facilities, but the same might not be true if the chemical ratios or mixtures are changed. 

Any variety of living organisms can be dangerous to people, from larger animals, to insects, 

to nearly invisible molds, fungi, or other microscopic organisms.  

• People can suffer from contact with living organisms in a variety of ways, from being bitten 

or stung by various critters, to developing breathing problems from inhaling mold.  

• Movement can be very harmful to people, particularly when said movement is the result of 

an earthquake, mudslide, avalanche, building structural issue, or other similar problems.  

• In most cases, such threats can be both very harmful and very difficult to protect against. 

(c) Safety  

• The safety of people is the first and foremost concern on our list when we plan for physical 

security. Safety of people falls above any other concern and must be prioritized above saving 

equipment or data, even when such actions will directly cause such items to be damaged. 

• We might find an example of this in the fire suppression systems in use in some data centres.  

• In many cases, the chemicals, gases, or liquids that are used to extinguish fires in such 

environments are very harmful to people and may kill them if used in such an environment.  

• For this reason, fire suppression systems are often equipped with a safety override that can 

prevent them from being deployed if there are people in the area.  

• If we were to prevent the suppression system from extinguishing the fire because we knew a 

person was still in the data centre, we might lose all the equipment in the data centre, and 

potentially data that we could not replace.  

(d) Evacuation 

• Evacuation is one of the best methods we can use to keep our people safe.  
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• In almost any dangerous situation, an orderly evacuation away from the source of danger is 

the best thing we can do.  

• There are a few main principles to consider when planning an evacuation: where, how, and 

who.  

(i) Where 

• Where we will be evacuating to is an important piece of information to consider in advance, 

whether we are evacuating a commercial building or a residence.  

• We need to get everyone to the same place to ensure that they are at a safe distance and that 

we can account for everyone.  

• If we do not do this in an orderly and consistent fashion, we may end up with a variety of 

issues. In commercial buildings, evacuation meeting places are often marked with signs, and 

on evacuation maps. 

(ii) How  

• Also of importance is the route we will follow to reach the evacuation meeting place. When 

planning such routes, we should consider where the nearest exit from a given area can be 

reached, as well as alternate routes if some routes are impassable in an emergency.  

• We should also avoid the use of areas that are dangerous or unusable in emergencies, such as 

elevators or areas that might be blocked by automatically closing fire doors. 

(iii) Who  

• The most vital portion of the evacuation, of course, is to ensure that we actually get everyone 

out of the building, and that we can account for everyone at the evacuation meeting place. 

• This process typically requires at least two people to be responsible for any given group of 

people: one person to ensure that everyone he or she is responsible for has actually left the 

building and another at the meeting place to ensure that everyone has arrived safely.  

(iv) Practice  

• Particularly in large facilities, a full evacuation can be a complicated prospect. In a true 

emergency, if we do not evacuate quickly and properly, a great number of lives may be lost.  

• As an unfortunate attestation to this, we can look to the example of the 2001 attacks on the 

World Trade Center in the United States.  

• A study conducted in 2008 determined that only 8.6 percent of the people in the buildings 

actually evacuated when the alarms were sounded. The rest remained in the buildings, 

gathering belongings, shutting down computers, and performing other such tasks. It is 



147 
 

important that we train our personnel to evacuate safely, and to respond quickly and properly 

when the signal to evacuate has been given. 

(e) Administrative Controls 

• We may, and likely will, also have a variety of administrative controls in place to protect 

people, in addition to the physical measures we put in place.  

• Administrative controls are usually based on rules of some variety.  

• More specifically, they may be policies, procedures, guidelines, regulations, laws, or similar 

bodies, and may be instituted at any level from informal company policies to federal laws.  

• Companies put several common practices in place specifically to protect our people and our 

interests in general. One of the most common is the background check.  

• When an individual has made it far enough through the hiring process that it seems likely he 

or she will be hired, the hiring company will often institute a background check.  

• A number of companies globally carry out such background checks, including AccuScreen 

and LexisNexis.  

• Such investigations will typically involve checks for criminal history, verification of previous 

employment, verification of education, credit checks, drug testing, and other items, depending 

on the position being pursued.  

• We may also conduct a variety of reoccurring checks on those in our employ.  

• One of the more common and well-known examples can be seen in the drug tests conducted 

by certain employers. We may also see any of the checks we discussed as being common at 

the initiation of employment repeated in a similar fashion.  

• Whether such checks occur or not often depends on the specific employer in question, and 

some employers may not conduct them at all.  

4.2.3 Protecting data  

• Second only to the safety of our personnel is the safety of our data. One of our primary means 

of protecting data is the use of encryption. Although this is a reasonably sure solution, certain 

attacks may render it useless, such as those that break the encryption algorithm itself, or use 

other means to obtain the encryption keys.  

• Another layer of security we need to ensure is the physical element. If we keep our physical 

storage media physically safe against attackers, unfavourable environmental conditions, or 

other threats that might harm them, we place ourselves on a considerably more sound security 

footing. 

(a) Physical Concerns for Data 
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• Depending on the type of physical media on which our data is stored, any number of adverse 

physical conditions may be problematic or harmful to their integrity.  

• Such media are often sensitive to temperature, humidity, magnetic fields, electricity, impact, 

and more, with each type of media having its particular strong and weak points.  

• Magnetic media, whether we refer to hard drives, tapes, floppy disks, or otherwise, generally 

involves some variety of movement and magnetically sensitive material on which the data is 

recorded.  

• The combination of magnetic sensitivity and moving parts often makes such storage media 

fragile in one way or another. In most cases, strong magnetic fields can harm the integrity of 

data stored on magnetic media, with media outside of metal casing, such as magnetic tapes, 

being even more sensitive to such disruption.  

• Additionally, jolting such media while it is in motion, typically while it is being read from or 

written to, can have a variety of undesirable effects, often rendering the media unusable. 

• Flash media, referring to the general category of media that stores data on non-volatile 

memory chips, is actually rather hardy in nature.  

• If we can avoid impacts that might directly crush the chips on which the data is stored and we 

do not expose them to electrical shocks, they will generally withstand conditions that many 

other types of media will not.  

• They are not terribly sensitive to temperature ranges below what would actually destroy the 

housing, and will often survive brief immersion in liquid, if properly dried afterward.  

• Some flash drives are designed specifically to survive extreme conditions that would normally 

destroy such media, for those that might consider such conditions to be a potential issue.  

• Optical media, such as CDs and DVDs, is fairly fragile, as those with small children can attest 

to. Even small scratches on the surface of the media may render it unusable.  

• It is also very temperature sensitive, being constructed largely of plastic and thin metal foil. 

Outside of a protected environment, such as a purpose- built media storage vault, any of a 

variety of threats may destroy the data on such media. 

(b) Availability  

• One of our larger concerns when we discuss protecting data is to ensure that the data is 

available to us when we need to access it.  

• The availability of our data often hinges on both our equipment and our facilities remaining 

in functioning condition, as we discussed earlier, and the media on which our data is stored 

being in working condition.  



149 
 

• Any of the physical concerns we discussed earlier can render our data inaccessible, in the 

sense of being able to read it from the media on which it is stored Although we are specifically 

discussing access to data here, and we talked about some of the potential hardware issues in 

accessing certain types of media earlier there is also a fairly substantial equipment and 

infrastructure component to consider when discussing availability.  

• Not only can we experience issues in reading the data from the media, but we may also have 

problems in getting to where the data is stored.  

• If we are experiencing an outage, whether it is related to network, power, computer systems, 

or other components, at any point between our location and a remote data location, we may 

not be able to access our data remotely.  

• Many businesses operate globally today, and it is possible that the loss of ability to access 

data remotely, even temporarily, will be a rather serious issue.   

(c) Residual Data  

• When we look at the idea of keeping data safe, we not only need to have the data available 

when we need access to it, but we also must be able to render the data inaccessible when it is 

no longer required.  

• In some cases, this need is relatively obvious; for instance, we might not overlook the need 

to shred a stack of paper containing sensitive data before we throw it away. But the data stored 

on electronic media may not present itself so clearly to everyone that might be handling it or 

disposing of it. 

• In many cases, we can find stored data in several computing-related devices, such as 

computers, disk arrays, portable media devices, flash drives, backup tapes, CD or DVD 

media, and similar items.  

• We would hope that the relatively computer savvy people would realize the media or device 

might contain some sensitive data, and that they should erase the data before they dispose of 

it.  

• Unfortunately, this is not always the case. In the early 2000s, a study was conducted on more 

than 150 used hard drives purchased from a variety of different sources, with a large number 

of them being purchased from eBay.  

• When the contents of the disks were analyzed, it was discovered that many of them still 

contained data, to include medical data, pornography, e-mail messages, and several disks that 

appeared to have been used for financial data containing more than 6,500 credit card numbers.  

In many cases, no attempt had been made to erase the data from the disks  
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(d) Backups  

• In order to ensure that we can maintain the availability of our data, we will likely want to 

maintain backups.  

• Not only do we need to back up the data itself, but we also need to maintain backups of the 

equipment and infrastructure that are used to provide access to the data. We can perform data 

backups in a number of ways.  

• We can utilize redundant arrays of inexpensive disks (RAID) in a variety of configurations to 

ensure that we do not lose data from hardware failures in individual disks, we can replicate 

data from one machine to another over a network, or we can make copies of data onto backup 

storage media, such as DVDs or magnetic tapes.  

4.2.4 Protecting equipment  

• Last on the list of our concerns for physical security, although still very important and 

significant, is protecting our equipment, and, to a certain extent, the facilities that house it.  

• This category falls last on the list because it represents the easiest and cheapest segment of 

our assets to replace.  

• Even in the case of a major disaster that completely destroys our facility and all the computing 

equipment inside it, as long as we still have the people needed to run our operation and are 

able to restore or access our critical data, we can be back in working order very shortly.  

• Replacing floor space or relocating to another area nearby can generally be accomplished 

with relative ease, and computing equipment is both cheap and plentiful.  

• Although it may take us some time to be back to the same state we were in before the incident, 

getting to a bare minimum working state technology-wise is often a simple, if arduous, task. 

 

(a) Physical Concerns for Equipment 

• The physical threats that might harm our equipment, although fewer than those we might find 

harmful to people, are still numerous.  

• Extreme temperatures can be very harmful to equipment. We typically think of heat as being 

the most harmful to computing equipment, and this is largely correct.  

• In environments that contain large numbers of computers and associated equipment, such as 

in a data centre, we rely on environmental conditioning equipment to keep the temperature 

down to a reasonable level, typically in the high-60s to mid-70s on the Fahrenheit scale, 

although there is some debate over the subject.  
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• Liquids can be very harmful to equipment, even when in quantities as small as those that can 

be found in humid air.  

• Depending on the liquid in question, and the quantity of it present, we may find corrosion in 

a variety of devices, short circuits in electrical equipment, and other harmful effects.  

• Clearly, in extreme cases, such as we might find in flooding, such equipment will often be 

rendered completely unusable after having been immersed.  

• Living organisms can also be harmful to equipment, although in the environments with which 

we will typically be concerned, these will often be of the smaller persuasion.  

• Insects and small animals that have gained access to our equipment may cause electrical 

shorts, interfere with cooling fans, chew on wiring, and generally wreak havoc.  

• Movement in earth and in the structure of our facilities can be a very bad thing for our 

equipment. One of the more obvious examples we can look at is an earthquake.  

• Not only can earthquakes cause structural damage to our facilities, but the resultant shaking, 

vibrations, and potential for impacts due to structural failures can cause a large amount of 

damage.  

• Energy anomalies can be extremely harmful to any type of electrical equipment in a variety 

of ways.  

• If we see issues with power being absent or temporarily not sending the expected amount of 

voltage, our equipment may be damaged beyond repair as a result.  

• Good facility design will provide some measure of protection against such threats, but we 

generally cannot completely mitigate the effects of severe electrical issues, such as lightning 

strikes. Smoke and fire are very bad for our equipment, as they introduce a number of harmful 

conditions. With smoke or fire, we might experience extreme temperatures, electrical issues, 

movement, liquids, and a variety of other problems.  

• Efforts to extinguish fires, depending on the methods used, may also cause as much harm as 

the fire itself.  

(b) Site Selection 

• When we are planning a new facility, or selecting a new location to which to move, we should 

be aware of the area in which the facility will be located.  

• A number of factors could cause us issues in terms of protecting our equipment and may 

impact the safety of our people and data as well.  
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• If the site is located in an area prone to natural disasters such as floods, storms, tornadoes, 

mudslides, or similar issues, we may find our facility to be completely unusable or destroyed 

at some point.  

• Similar issues might include areas that have the potential for civil unrest, unstable power or 

utilities, poor network connectivity, extreme temperature conditions, and so forth.  

• With the proper facility design, we may be able to compensate for some problems without 

great difficulty, by installing power filtering and generators in order to compensate for power 

problems, for instance, but others, such as the local temperature, we may ultimately not be 

able to mitigate to any great extent.   

• Although potential site selection issues may not completely preclude our use of the facility, 

we should be aware that they may cause us problems and plan for such occurrences. For 

certain types of facilities, such as data centres, for instance, it may be very important for us 

to have as problem-free of an environment as we can possibly select, and, in the case of such 

site issues, we may want to look elsewhere.  

(c) Securing Access  

• When we discuss securing access to our equipment or our facility, we return again to the 

concept of defense in depth.  

• There are multiple areas, inside and outside, where we may want to place a variety of security 

measures, depending on the environment.  

• A military installation may have the highest level of security available, whereas a small retail 

store may have the lowest level. We can often see measures for securing physical access 

implemented on the perimeter of the property on which various facilities sit.  

• Very often, we will at least see minimal measures in place to ensure that vehicle traffic is 

controlled and does not enter undesirable places. Such measures may take the form of security 

landscaping. For example, we may see trees, large boulders, large cement planters, and the 

like placed in front of buildings or next to driveways in order to prevent vehicle entry.  

• At more secure facilities, we might see fences, concrete barriers, and other more obvious 

measures.  

• Such controls are generally in place as deterrents, and may be preventive in nature as well.  

• At the facility itself, we will likely see some variety of locks, whether mechanical or electronic 

with access badges, in place on the doors entering the building.  

• A typical arrangement for non-public buildings is for the main entrance of the building to be 

unlocked during business hours and a security guard or receptionist stationed inside.  
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• In more secure facilities, we are likely to see all doors locked at all times, and a badge or key 

required to enter the building.  

• Typically, once inside the building, visitors will have limited access to a lobby area, and, 

perhaps, meeting and restrooms, whereas those authorized to enter the rest of the building 

will use a key or badge to access it.  

• Once inside the facility, we will often see a variety of physical access controls, depending on 

the work and processes being carried out.  

• We may see access controls on internal doors or individual floors of the building in order to 

keep visitors or unauthorized people from freely accessing the entire facility.  

• Very often, in the case where computer rooms or data centers are present, access to them will 

be  estricted to those that specifically need to enter them for business reasons.  

• We may also find more complex physical access controls in place in such areas, such as 

biometric systems.  

(d) Environmental Conditions 

• For the equipment within our facilities, maintaining proper environmental conditions can be 

crucial to continued operations. Computing equipment can be very sensitive to changes in 

power, temperature, and humidity, as well as electromagnetic disturbances.  

• Particularly in areas where we have large quantities of equipment, such as we might find in a 

data center, maintaining the proper conditions can be challenging, to say the least When 

facilities that will contain equipment sensitive to such conditions are  constructed, they are 

often equipped with the means to provide emergency electrical power, often in the form of 

generators, as well as systems that can heat, cool, and moderate the humidity, as required.  

• Outside of locations that are so equipped, our equipment will be at considerably greater risk 

of malfunction and damage. Unfortunately, such controls can be prohibitively expensive and 

we may not find smaller facilities appropriately equipped. 
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5. Application Security 

 

 

Software Development Vulnerabilities – Buffer Overflow – Race Condition – Web Security – 

Database Security - Tools 

Equally important to ensuring that we can keep attackers from interacting with our networks in an 

unauthorized manner and subverting our operating system security is ensuring that our applications 

are not misused. 

5.1 Software development vulnerabilities  

• A number of common software development vulnerabilities can lead to security issues in our 

applications.  

• These issues are all well known as being problematic from a security perspective, and the 

reasons the development practices that lead to them should not be used are a frequent topic of 

discussion in both the information security and software engineering communities. 

• The main categories of software development vulnerabilities include buffer overflows, race 

conditions, input validation attacks, authentication attacks, authorization attacks, and 

cryptographic attacks.  

• All these vulnerabilities can be avoided with relative ease when developing new software by 

simply not using the particular programming techniques that enable them to exist. 

 

Fig. 1 Main Software Development Vulnerabilities 

5.2 Buffer Overflows 

• Buffer overflows, also referred to as buffer overruns, occur when we do not properly account 

for the size of the data input into our applications.  
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• If we are taking data into an application, most programming languages will require that we 

specify the amount of data we expect to receive, and set aside storage for that data.  

• If we do not set a limit on the amount of data we take in, called bounds checking, we may 

receive 1,000 characters of input where we had only allocated storage for 50 characters.  

• In this case, the excess 950 characters of data may be written over other areas in memory that 

are in use by other applications, or by the operating system itself.  

• An attacker might use this technique to allow him to tamper with other applications, or to 

cause the operating system to execute his own commands.  

• Proper bounds checking can nullify this type of attack entirely. Depending on the language 

we choose for the development effort, bounds checking may be implemented automatically, 

as is the case with Java and C#. 

5.3 Race Conditions  

• Race conditions occur when multiple processes or multiple threads within a process control 

or share access to a particular resource, and the correct handling of that resource depends on 

the proper ordering or timing of transactions.  

• For example, if we are making a $20 withdrawal from our bank account via an ATM, the 

process might go as follows: 

1. Check the account balance ($100) 2. Withdraw funds ($20) 3. Update the account balance ($80) 

If someone else starts the same process at roughly the same time and tries to make a $30 withdrawal, 

we might end up with a bit of a problem:  

1. User 1: Check the account balance ($100) 2.  

2. User 2: Check the account balance ($100) 

3. 3. User 1: Withdraw funds ($20)  

4. 4. User 2: Withdraw funds ($30) 

5. 5. User 1: Update the account balance ($80) 6. User 2: Update the account balance ($70) 

• Because access to the resource, our bank account, is shared, we end up with a balance of $70 

being recorded, where we should see only $50.  

• In reality, our bank will have implemented measures to keep this from happening, but this 

illustrates the idea of a race condition. Our two users “race” to access the resource, and 

undesirable conditions occur.  

• Race conditions can be very difficult to detect in existing software, as they are hard to 

reproduce.  
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• When we are developing new applications, careful handling of the way we access resources 

to avoid dependencies on timing can generally avoid such issues.  

5.4 Web security 

Attackers can use an enormous variety of techniques to compromise our machines, steal 

sensitive information, and trick us into carrying out activities without our knowledge. These types of 

attacks divide into two main categories: client-side attacks and server-side attacks. 

5.4.1 Client-Side Attacks 

Client-side attacks take advantage of weaknesses in the software loaded on our clients, or those 

attacks that use social engineering to trick us into going along with the attack. There are a large 

number of such attacks that use the Web as an attack vehicle. 

5.4.1.1 Cross-Site Scripting 

Cross-site scripting (XSS) is an attack carried out by placing code in the form of a scripting 

language into a Web page, or other media, that is interpreted by a client browser, including Adobe 

Flash animation and some types of video files. When another person views the Web page or media, 

he or she executes the code automatically, and the attack is carried out.  

5.4.1.2 Cross-Site Request Forgery 

A cross-site request forgery (XSRF) attack is similar to XSS, in a general sense. In this type 

of attack, the attacker places a link, or links, on a Web page in such a way that they will be 

automatically executed, in order to initiate a particular activity on another Web page or application 

where the user is currently authenticated. For instance, such a link might cause the browser to add 

items to our shopping cart on Amazon, or transfer money from one bank account to another. If we 

are browsing several pages and are still authenticated to the same page the attack is intended for, we 

might execute the attack in the background and never know it.  

5.4.1.3 Clickjacking 

Clickjacking is an attack that takes advantage of the graphical display capabilities of our 

browser to trick us into clicking on something we might not otherwise. Clickjacking attacks work by 

placing another layer over the page, or portions of the page, in order to obscure what we are actually 

clicking. For example, the attacker might hide a button that says “buy now” under another layer with 

a button that says “more information.” 

5.4.1.4 Defense 



158 
 

These types of attacks are, for the most part, thwarted by the newer versions of the common 

browsers, such as Internet Explorer, Firefox, Safari, and Chrome. In many cases, however, new attack 

vectors are simply variations of old attacks. Additionally, there are innumerable vulnerable clients 

running on outdated or unpatched software that are still vulnerable to attacks that are years old. 

5.4.2 Server-Side Attacks 

On the server side of the Web transaction, a number of vulnerabilities may cause us problems 

as well. Such threats and vulnerabilities can vary widely depending on our operating system, Web 

server software, various software versions, scripting languages, and many other factors.  

5.4.2.1 Lack of Input Validation 

SQL injection gives us a strong example of what might happen if we do not properly validate 

the input of our Web applications. Structured Query Language (SQL) is the language we use to 

communicate with many of the common databases on the market today. In the case of databases 

connected to Web applications, entering specially crafted data into the Web forms that interact with 

them can sometimes produce results not anticipated by the application developers.  

5.4.2.2 Improper or Inadequate Permissions 

Inadequate permissions can often cause us problems with Web applications, and Internet-

facing applications of most any kind. Particularly with Web applications and pages, there are often 

sensitive files and directories that will cause security issues if they are exposed to general users. One 

area that might cause us trouble is the exposure of configuration files.  

For example, in many Web applications that make use of a database (that is a vast majority 

of them), there are configuration files that hold the credentials the application uses to access the 

database. If these files and the directories that hold them are not properly secured, an attacker may 

simply read our credentials from the file and access the database as he or she pleases. For applications 

that hold sensitive data, this could be disastrous.  

5.4.2.3 Extraneous Files 

When we move a Web server from development into production, one of the tasks often missed 

in the process is that of cleaning up any files not directly related to running the site or application, or 

that might be artifacts of the development or build process. 

If we leave archives of the source code from which our applications are built, backup copies 

of our files, text files containing our notes or credentials, or any such related files, we may be handing 
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an attacker exactly the materials he or she needs in order to compromise our system. One of the final 

steps when we are rolling out such a server should be to make sure all such files are cleaned up, or 

moved elsewhere if they are still needed.  

5.5 Database security 

In some cases, applications may hold very sensitive data, such as tax returns, medical data, or 

legal records; or they may contain only the contents of a discussion forum on knitting. In either case, 

the data such applications hold is important to the owners of the application and they would be 

inconvenienced, at the very least, if it were damaged or manipulated in an unauthorized manner. A 

number of issues can cause trouble in ensuring the security of our databases. The canonical list 

includes the following:  

• Unauthenticated flaws in network protocols  

• Authenticated flaws in network protocols 

• Flaws in authentication protocols 

• Unauthenticated access to functionality 

 

Fig 2 Categories of Database Security Issues 

 

• Arbitrary code execution in intrinsic SQL elements 

• Arbitrary code execution in securable SQL elements 

• Privilege escalation via SQL injection 

• Local privilege escalation issues 
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5.5.1 Protocol Issues  

 

We might find a number of issues in the protocols in use by any given database. In either case, there 

is often a steady stream of vulnerabilities for most any major database product and version we might 

care to examine. Such vulnerabilities often involve some of the more common software development 

issues. Defending against presently unknown network protocol issues often revolves around limiting 

access to our databases, either in the sense of actually limiting access to who is able to connect to the 

database over the network, using some of the methods or, in the case of authenticated protocol 

problems, by limiting the privileges and accounts make available for the database itself, following 

the principle of least privilege. 

 

5.5.2 Unauthenticated Access  

 

When we give a user or process the opportunity to interact with our database without supplying a set 

of credentials, we create the possibility for security issues. Such issues may be related to simple 

queries to the database through a Web interface, in which we might accidentally expose information 

contained in the database; or we might expose information on the database itself, such as a version 

number, giving an attacker additional material with which to compromise our application. If the user 

or process is forced to send us a set of credentials to begin a transaction, we can monitor, or place 

limits on, what the user or process is allowed to do, based on those credentials.  

 

Generally, these are concentrated on SQL, as it is the most common database language in use. In the 

default SQL language, a number of builtin elements are possible security risks, some of which we 

can control access to and some of which we cannot. In these language elements, we may find a 

number of issues related to bugs in the software we are using, or issues spawned by not using secure 

coding practices, that might allow us to execute arbitrary code within the application. For example, 

a flaw allowing us to conduct a buffer overflow might enable us to insert attack code into the memory 

space used by the database or the operating system, and compromise either or both of them.  

 

5.5.3 Arbitrary Code Execution 

In the default SQL language, a number of builtin elements are possible security risks, ome of which 

we can control access to and some of which we cannot.For example, a flaw allowing us to conduct a 

buffer overflow, as we discussed earlier in this chapter, might enable us to insert attack code into the 

memory space used by the database or the operating system, and compromise either or both of them. 
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Our best defenses against such attacks are twofold. From the consumer side, we should stay current 

on the version and patch levels for our software. From the vendor side, we should mandate secure 

coding practices, in all cases, in order to eliminate the vulnerabilities in the first place, as well as 

conducting internal reviews to ensure that such practices are actually being followed. 

 

5.5.4 Privilege Escalation 

  

 Privilege escalation is a category of attack in which we make use of any of a number of methods to 

increase the level of access above what we are authorized to have, or have managed to gain on the 

system or application through attack. Privilege escalation is aimed at gaining administrative access 

to the software in order to carry out other attacks without needing to worry about not having the 

access required. SQL injection can be used to gain information from the database in an unauthorized 

manner, modify data contained in the database, and perform many other similar activities. SQL 

injection can also be used to gain or escalate privileges in the database.  

 

5.6 Application security tools 

 

 There are number of tools in an attempt to assess and improve the security of our applications.  

5.6.1 Sniffers 

 

     Sniffers can be of great use in a variety of security situations. We can use them at a very high level 

to examine all the traffic traveling over the portion of the network to which we are attached, 

presuming we can get our sniffer placed properly to see the traffic in question. Such tools can be used 

very specifically in order to watch the network traffic being exchanged with a particular application 

or protocol. In Figure 3, we are using Wireshark to examine Hypertext Transfer Protocol (HTTP) 

traffic specifically. 
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Fig 3 Wireshark Examining HTTP Traffic 

A good example of this is the Microsoft Network Monitor tool, which will enable us to not only sniff 

the network traffic but also easily associate the traffic we are seeing with a particular application or 

process running on the system. This allows us to very specifically track information we see on the 

network interface of the system back to a certain process, as shown in Figure 4 
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Fig 4 Microsoft Network Monitor Examining Traffic from an application 

 

5.6.2 Web Application Analysis Tools 

 For purposes of analyzing Web pages or Web-based applications, a great number of tools exist, some 

of them commercial and some of them free. Most of these tools perform the same general set of tasks 

and will search for common flaws such as XSS or SQL injection flaws, as well as improperly set 

permissions, extraneous files, outdated software versions, and many more such items. 

 

5.6.2.1 Nikto and Wikto 

 

 Nikto is a free and open source Web server analysis tool that will perform checks for many of the 

common vulnerabilities. Nikto will index all the files and directories it can see on the target Web 

server, a process commonly referred to as spidering, and will then locate and report on any potential 

issues it finds. 

Nikto is a command-line interface tool that runs on Linux. For those of us who are in a Windows-

centric environment, or prefer to use a graphical interface, SensePost has produced a Windows 

version of Nikto called Wikto, as shown in Figure 5. Wikto is very similar in functionality to Nikto 

and provides us with a GUI.  
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Fig 5 Wikto 

 

5.6.2.2 Burp Suite  

Quite a few commercial Web analysis tools are also available, and they vary in price from several 

hundred dollars to many thousands of dollars. Burp Suite is one such tool, tending toward the lower 

end of the cost scale for the professional version but still presenting a solid set of features. Burp Suite 

runs in a GUI interface, as shown in Figure 6, and, in addition to the standard set of features we might 

find in any Web assessment product, includes several more advanced tools for conducting more in-

depth attacks.  
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Fig 6 : Burb Suite 

 

Burp Suite is also available in a free version that allows the use of the standard scanning and 

assessment tools but does not include access to the more advanced features 
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