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UNIT 1 INTRODUCTION                                                                                                          9 Hrs.  
Introduction to Big Data - Challenges of Conventional Systems - Nature of Data - Small data 
- Medium data - Big Data - Small data vs Big data - Sources of Big Data - Big Data 
Characteristics - Big Data Analytics - Importance of Big Data, Big Data in the Enterprise - 
Big Data Enterprise Model - Building a Big Data Platform - Big data in Social and 
Behavioral sciences. 

Introduction 

 

What is Data? 

Data can be defined as a representation of facts, concepts, or instructions in a formalized 
manner. 

Table 1.1 Characteristics of Data 

Accuracy Is the information correct in every detail? 

Completeness How comprehensive is the information? 

Reliability Does the information contradict other trusted resources? 

Relevance Do you really need this information? 

Timeliness How up- to-date is information? Can it be used for real-time 
reporting? 

 

Differences between Small Data, Medium Data and Big Data 

Data can be small, medium or big. 

Small data is data in a volume and format that makes it accessible, informative and 
actionable. 

Medium data refers to data sets that are too large to fit on a single machine but don’t require 
enormous clusters of thousands. 

Big data  is extremely large data sets that may be analysed computationally to reveal patterns, 
trends, and associations, especially relating to human behaviour and interactions. 

Table 1.2 Small Data and Big Data Comparison Table 

Basis of 
Comparison Small Data Big Data 

Definition 
Data that is ‘small’ enough for human 
.In a volume and format that makes it 
accessible, informative and actionable 

Data sets that are so large or complex 
that traditional data processing 
applications cannot deal with them 

Data Source ● Data from traditional enterprise 
systems like ●     Purchase data from point-of-sale 
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○  Enterprise resource planning ●     Clickstream data from websites 

○  Customer relationship 
management(CRM) 

●     GPS stream data – Mobility data 
sent to a server 

  ●     Social media – Facebook, Twitter 

Volume 
Most cases in a range of tens or 
hundreds of GB.Some case few TBs ( 1 
TB=1000 GB) 

More than a few Terabytes (TB) 

Velocity (Rate 
at which data 
appears) 

●     Controlled and steady data flow ●     Data can arrive at very fast 
speeds. 

●     Data accumulation is slow ●     Enormous data can accumulate 
within very short periods of time 

Variety 
Structured data in tabular format with 
fixed schema and semi-structured data 
in JSON or XML format 

High variety data sets which include 
Tabular data,Text files, Images, 
Video, Audio, 
XML,JSON,Logs,Sensor data etc. 

Veracity 
(Quality of 
data ) 

Contains less noise as data collected in 
a controlled manner. 

Usually, the quality of data not 
guaranteed. Rigorous data validation 
is required before processing. 

Value Business Intelligence, Analysis, and 
Reporting 

Complex data mining for prediction, 
recommendation, pattern finding, etc. 

Time 
Variance 

Historical data equally valid as data 
represent solid business interactions 

In some cases, data gets older soon(Eg 
fraud detection). 

Data Location Databases within an enterprise, Local 
servers, etc. 

Mostly in distributed storages on 
Cloud or in external file systems. 

Infrastructure Predictable resource allocation.Mostly 
vertically scalable hardware 

More agile infrastructure with a 
horizontally scalable architecture. 
Load on the system varies a lot. 

 

Introduction to Big Data  

Big data is data that exceeds the processing capacity of conventional database systems.  The 
data is too big, moves too fast, or doesn’t fit the strictures of your database architectures.  To 
gain value from this data, you must choose an alternative way to process it.  Big Data has to 
deal with large and complex datasets that can be structured, Semi-structured, or unstructured 
and will typically not fit into memory to be Processed. 

Big data is a field that treats ways to analyze, systematically extract information from, or 
otherwise deal with data sets that are too large or complex to be dealt with by traditional data-
processing application software.  – Wikipedia 
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Fig. 1.1 3Vs of Big Data 

 

Examples of Big Data: 

The New York Stock Exchange generates about one terabyte of new trade data per day. 

The statistic shows that 500+terabytes of new data get ingested into the databases of social 
media site Facebook, every day. This data is mainly generated in terms of photo and video 
uploads, message exchanges, putting comments etc. 

A single Jet engine can generate 10+terabytes of data in 30 minutes of flight time. With many 
thousand flights per day, generation of data reaches up to many Petabytes. 

Table 1.3 Examples of Data Volumes 

Unit Value Example 
Kilobytes (KB) 1,000 bytes a paragraph of a text document 
Megabytes (MB) 1,000 Kilobytes a small novel 
Gigabytes (GB) 1,000 Megabytes Beethoven’s 5th Symphony 
Terabytes (TB) 1,000 Gigabytes all the X-rays in a large hospital 

Petabytes (PB) 1,000 Terabytes half the contents of all US academic research 
libraries 

Exabytes (EB) 1,000 Petabytes about one fifth of the words people have ever 
spoken 

Zettabytes (ZB) 1,000 Exabytes as much information as there are grains of sand 
on all the world’s beaches 
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Yottabytes (YB) 1,000 Zettabytes as much information as there are atoms in 7,000 
human bodies 

 

Advantages of using Big Data     

1.  Improved business processes  

2. Fraud detection 

3.  Improved customer service 

4. Better decision-making 

5. Increased productivity 

6. Reduce costs 

7. Improved customer service 

8. Fraud detection 

9. Increased revenue 

10. Increased agility 

11.  Greater innovation 

12. Faster speed to market 

 

Disadvantages of Big Data   

1.  Privacy and security concerns 

2. Need for technical expertise 

3. Need for talent 

4.  Data quality 

5. Need for cultural change 

6. Compliance 

7. Cybersecurity risks 

8. Rapid change 

9. Hardware needs 

10. Costs 

11. Difficulty integrating legacy systems 
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Benefits of Using Big Data Analytics:    

• Identifying the 
root causes of failures and issues in real time 

• Fully 
understanding the potential of data-driven marketing 

• Generating 
customer offers based on their buying habits 

• Improving 
customer engagement and increasing customer loyalty 

• Reevaluating 
risk portfolios quickly 

• Personalizing 
the customer experience 

• Adding value 
to online and offline customer interactions 

• Big Data has 
to deal with large and complex datasets that can be structured, 

• Semi-
structured, or unstructured and will typically not fit into memory to be 

• Processed. 

 

 

Fig 1.2  Four Characteristics of Big Data 
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Characteristics of Big Data  (3 Vs of Big Data) 

3Vs of Big Data  = Volume, Velocity and Variety. 

1. Volume: 

Volume refers to the sheer size of the ever-exploding data of the computing world. It raises 
the question about the quantity of data collected from different sources over the Internet 

2. Velocity: 

Velocity refers to the processing speed. It raises the question of at what speed the data is 
processed. The speed is measured by the use of the data in a specific time period.In Big Data 
velocity data flows in from sources like machines, networks, social media, mobile phones 
etc.There is a massive and continuous flow of data. This determines the potential of data that 
how fast the data is generated and processed to meet the demands. 

3. Variety: 

Variety: Variety refers to the types of data.  In Big Data the raw data always collected in 
variety. The raw data can be structured, unstructured, and semi structured. This is because the 
data is collected from various sources.It also refers to heterogeneous sources. 

 

Fig. 1.3 Four Vs of Big Data 

4Vs of Big Data = Volume, Velocity, Variety, Veracity 

4.  Veracity:   

Veracity is all about the trust score of the data. If the data is collected from trusted or reliable 
sources then the data neglect this rule of big data.It refers to inconsistencies and uncertainty 
in data, that is data which is available can sometimes get messy and quality and accuracy are 
difficult to control.Big Data is also variable because of the multitude of data dimensions 
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resulting from multiple disparate data types and sources.Example: Data in bulk could create 
confusion whereas less amount of data could convey half or Incomplete Information. 

5Vs of Big Data = Volume, Velocity, Variety, Veracity,  

5. Value: 

Value refers to purpose, scenario or business outcome that the analytical solution has to 
address.Does the data have value, if not is it worth being stored or collected?The analysis 
needs to be performed to meet the ethical considerations. 

 

6Vs of Big Data = Volume, Velocity, Variety, Veracity, Variability 

6.  Variability 

This refers to establishing if the contextualizing structure of the data stream is regular and 
dependable even in conditions of extreme unpredictability.It defines the need to get 
meaningful data considering all possible circumstances. 

7Vs of Big Data =Volume, Velocity, Variety, Veracity, Variability, Visualization 

7.  Visualization:  

Visualization is critical in today’s world. Using charts and graphs to visualize large amounts 
of complex data is much more effective in conveying meaning than spreadsheets and reports 
chock-full of numbers and formulas. 

 

Challenges of Conventional System: 

Fundamental challenges 

–How to store  

–How to work with voluminous data sizes,  

–and more important, how to understand data and turn it into a competitive advantage. 

How about Conventional system technology? 

• CPU Speeds: 

– 1990 - 44 MIPS at 40 MHz 

– 2000 - 3,561 MIPS at 1.2 GHz 

– 2010 - 147,600 MIPS at 3.3 GHz 

• RAM Memory 

– 1990 – 640K conventional memory (256K extended memory recommended) 

– 2000 – 64MB memory 

– 2010 - 8-32GB (and more) 
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• Disk Capacity 

– 1990 – 20MB 

– 2000 - 1GB 

– 2010 – 1TB 

• Disk Latency (speed of reads and writes) – not much improvement in last 7-10 years, 
currently around 70 – 80MB / sec 

How long it will take to read 1TB of data? 

•1TB (at 80Mb / sec): 

• 1 disk - 3.4 hours 

• 10 disks - 20 min 

•100 disks - 2 min 

• 1000 disks - 12 sec 

 

What do we care about when we process data? 

• Handle partial hardware failures without going down: 

– If machine fails, we should be switch over to stand by machine 

– If disk fails – use RAID or mirror disk 

• Able to recover on major failures: 

– Regular backups 

– Logging 

– Mirror database at different site 

• Capability: 

– Increase capacity without restarting the whole system 

– More computing power should equal to faster processing 

• Result consistency: 

– Answer should be consistent (independent of something failing) and returned in reasonable 
amount of time 

Nature of Data 

Big data is a term thrown around in a lot of articles, and for those who understand what big 
data means that is fine, but for those struggling to understand exactly what big data is, it can 
get frustrating. There are several definitions of big data as it is frequently used as an all-
encompassing term for everything from actual data sets to big data technology and big data 
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analytics. However, this article will focus on the actual types of data that are contributing to 
the ever growing collection of data referred to as big data. Specifically we focus on the data 
created outside of an organization, which can be grouped into two broad categories: 
structured and unstructured. 

 

Fig. 1.4.  Nature of Data 

Structured Data 

1. Created: 

Created data is just that; data businesses purposely create, generally for market research. This 
may consist of customer surveys or focus groups. It also includes more modern methods of 
research, such as creating a loyalty program that collects consumer information or asking 
users to create an account and login while they are shopping online. 

2. Provoked: 

A Forbes Article defined provoked data as, “Giving people the opportunity to express their 
views.” Every time a customer rates a restaurant, an employee, a purchasing experience or a 
product they are creating provoked data. Rating sites, such as Yelp, also generate this type of 
data.   

 

3. Transacted: 

Transactional data is also fairly self-explanatory. Businesses collect data on every transaction 
completed, whether the purchase is completed through an online shopping cart or in-store at 
the cash register. Businesses also collect data on the steps that lead to a purchase online. For 
example, a customer may click on a banner ad that leads them to the product pages which 
then spurs a purchase. 

As explained by the Forbes article, “Transacted data is a powerful way to understand exactly 
what was bought, where it was bought, and when. Matching this type of data with other 
information, such as weather, can yield even more insights. (We know that people buy more 
Pop-Tarts at Walmart when a storm is predicted.)” 
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4. Compiled: 

Compiled data is giant databases of data collected on every U.S. household. Companies like 
Acxiom collect information on things like credit scores, location, demographics, purchases 
and registered cars that marketing companies can then access for supplemental consumer 
data. 

5. Experimental: 

Experimental data is created when businesses experiment with different marketing pieces and 
messages to see which are most effective with consumers. You can also look at experimental 
data as a combination of created and transactional data. 

Unstructured Data 

People in the business world are generally very familiar with the types of structured data 
mentioned above. However, unstructured is a little less familiar not because there’s less of it, 
but before technologies like NoSQL and Hadoop came along, harnessing unstructured data 
wasn’t possible. In fact, most data being created today is unstructured. Unstructured data, as 
the name suggests, lacks structure. It can’t be gathered based on clicks, purchases or a 
barcode, so what is it exactly? 

6. Captured: 

Captured data is created passively due to a person’s behavior. Every time someone enters a 
search term on Google that is data that can be captured for future benefit. The GPS info on 
our smartphones is another example of passive data that can be captured with big data 
technologies.   

7. User-generated: 

User-generated data consists of all of the data individuals are putting on the Internet every 
day. From tweets, to Facebook posts, to comments on news stories, to videos put up on 
YouTube, individuals are creating a huge amount of data that businesses can use to better 
target consumers and get feedback on products. 

Big data is made up of many different types of data. The seven listed above comprise types of 
external data included in the big data spectrum. There are, of course, many types of internal 
data that contribute to big data as well, but hopefully breaking down the types of data helps 
you to better see why combining all of this data into big data is so powerful for business. 

 

Sources of Big Data  

Classification of Types of Big Data 

The following classification was developed by the Task Team on Big Data, in June 2013.  
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Fig. 1.5 Sources of Big Data 

 

1. Social Networks (human-sourced information): this information is the record of human 
experiences, previously recorded in books and works of art, and later in photographs, audio 
and video. Human-sourced information is now almost entirely digitized and stored 
everywhere from personal computers to social networks. Data are loosely structured and 
often ungoverned. 

  1100. Social Networks: Facebook, Twitter, Tumblr etc. 

  1200. Blogs and comments 

  1300. Personal documents 

  1400. Pictures: Instagram, Flickr, Picasa etc. 

  1500. Videos: Youtube etc. 

  1600. Internet searches 

  1700. Mobile data content: text messages 

  1800. User-generated maps 

  1900. E-Mail 
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2. Traditional Business systems (process-mediated data): these processes record and 
monitor business events of interest, such as registering a customer, manufacturing a product, 
taking an order, etc. The process-mediated data thus collected is highly structured and 
includes transactions,reference tables and relationships, as well as the metadata that sets its 
context. Traditional business data is the vast majority of what IT managed and processed, in 
both operational and BI systems. Usually structured and stored in relational database systems. 
(Some sources belonging to this class may fall into the category of "Administrative data"). 

  21. Data produced by Public Agencies 

      2110. Medical records 

  22. Data produced by businesses 

      2210. Commercial transactions 

      2220. Banking/stock records 

      2230. E-commerce 

      2240. Credit cards 

 

3. Internet of Things (machine-generated data): derived from the phenomenal growth in 
the number of sensors and machines used to measure and record the events and situations in 
the physical world. The output of these sensors is machine-generated data, and from simple 
sensor records to complex computer logs, it is well structured. As sensors proliferate and data 
volumes grow, it is becoming an increasingly important component of the information stored 
and processed by many businesses. Its well-structured nature is suitable for computer 
processing, but its size and speed is beyond traditional approaches. 

  31. Data from sensors 

      311. Fixed sensors 

         3111. Home automation 

         3112. Weather/pollution sensors 

         3113. Traffic sensors/webcam 

         3114. Scientific sensors 

         3115. Security/surveillance videos/images 

      312. Mobile sensors (tracking) 

         3121. Mobile phone location 

         3122. Cars 

         3123. Satellite images 

  32. Data from computer systems 

      3210. Logs 
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      3220. Web logs 

 

BIG DATA ENTERPRISE ARCHITECTURE  

The 5 V’s of Big Data:  

Too often in the hype and excitement around Big Data, the conversation gets complicated 
very quickly. Data scientists and technical experts bandy around terms like Hadoop, Pig, 
Mahout, and Sqoop, making us wonder if we’re talking about information architecture or a 
Dr. Seuss book. Business executives who want to leverage the value of Big Data analytics in 
their organisation can get lost amidst this highly-technical and rapidly-emerging ecosystem. 
In an effort to simplify Big Data, many experts have referenced the “3 V’s”: Volume, 
Velocity, and Variety. In other words, is information being generated at a high volume (e.g. 
terabytes per day), with a rapid rate of change, encompassing a broad range of sources 
including both structured and unstructured data? If the answer is yes then it falls into the Big 
Data category along with sensor data from the “internet of things”, log files, and social media 
streams. The ability to understand and manage these sources, and then integrate them into the 
larger Business Intelligence ecosystem can provide previously unknown insights from data 
and this understanding leads to the “4th V” of Big Data – Value. 

 

There is a vast opportunity offered by Big Data technologies to discover new insights that 
drive significant business value. Industries are seeing data as a market differentiator and have 
started reinventing themselves as “data companies”, as they realise that information has 
become their biggest asset. This trend is prevalent in industries such as telecommunications, 
internet search firms, marketing firms, etc. who see their data as a key driver for monetisation 
and growth. Insights such as footfall traffic patterns from mobile devices have been used to 
assist city planners in designing more efficient traffic flows. Customer sentiment analysis 
through social media and call logs have given new insights into customer satisfaction. 
Network performance patterns have been analysed to discover new ways to drive efficiencies. 
Customer usage patterns based on web click-stream data have driven innovation for new 
products and services to increase revenue. The list goes on. 

Key to success in any Big Data analytics initiative is to first identify the business needs and 
opportunities, and then select the proper fit-for-purpose platform. With the array of new Big 
Data technologies emerging at a rapid pace, many technologists are eager to be the first to 
test the latest Dr. Seuss-termed platform. But each technology has a unique specialisation, 
and might not be aligned to the business priorities. In fact, some identified use cases from the 
business might be best suited by existing technologies such as a data warehouse while others 
require a combination of existing technologies and new Big Data systems. 

With this integration of disparate data systems comes the 5th V – Veracity, i.e. the 
correctness and accuracy of information. Behind any information management practice lies 
the core doctrines of Data Quality, Data Governance, and Metadata Management, along with 
considerations for Privacy and Legal concerns. Big Data needs to be integrated into the entire 
information landscape, not seen as a stand-alone effort or a stealth project done by a handful 
of Big Data experts. 
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Fig.  1.6 Enterprise Architects Information Management Framework 

In the excitement and hype around Big Data analytics, it’s easy to see this emerging 
technology as a “silver bullet” that can magically generate new insights solely through 
powerful technology and smart data scientists. As in any age of change, however, core 
principles still apply, and in order to gain insights from Big Data, you need to make sure your 
“little data” is correct. Many of the “golden nuggets” of discovery are obtained through an 
intersection of Big Data analytics with traditional sources such as a data warehouses or 
master data management hubs.  

 

Fig.1.7 The intersection of Big Data analytics with traditional sources such as a data 
warehouse 
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Customer sentiment analysis is a common use-case for Big Data analytics—i.e. what are our 
customers saying about our products in social media and/or call log records? And how can 
we leverage this information to improve our business? Unless you have a robust ‘single 
source of record’ for customer information, new discoveries from Big Data analytics will be 
of little use. Was it Jane R. Doe or Jane P. Doe complaining about the new luxury sedan 
model? With data properly managed within an information management framework, the full 
value of Big Data becomes apparent and “golden nuggets” of information can appear. For 
example, not only did Jane R. Doe complain about the new luxury sedan, but she had five 
service calls about her transmission. She has purchased five high-priced sedans from us in the 
past ten years and has an income of over $750,000. Jane R. Doe recently followed our 
competitor on Twitter and has asked several questions about new features. It might be worth 
having a representative call her personally. 

Big Data analytics is an exciting development in the field of information management and, if 
used properly, can generate a wealth of opportunity. In order to discover the “golden 
nuggets” in your organisation, remember these guiding principles: 

•Start with your business goals and drivers and align them to fit-for-purpose technologies (not 
the other way around) 

•Integrate your Big Data initiatives with core information management practices 

•Build your information management practice on a core framework that includes data 
governance, data quality management, data quality, and the other principles that create a 
trusted source of information 

Lastly, have fun—this is an exciting time to be in information management. New 
technologies are emerging almost daily that can add significant value to your organisation, 
particularly in the Big Data space. 

A big data architecture is designed to handle the ingestion, processing, and analysis of data 
that is too large or complex for traditional database systems.  The threshold at which 
organizations enter into the big data realm differs, depending on the capabilities of the users 
and their tools. For some, it can mean hundreds of gigabytes of data, while for others it means 
hundreds of terabytes.  Over the years, the data landscape has changed. What you can do, or 
are expected to do, with data has changed.  The cost of storage has fallen dramatically, while 
the means by which data is collected keeps growing.  Some data arrives at a rapid pace, 
constantly demanding to be collected and observed.  Other data arrives more slowly, but in 
very large chunks, often in the form of decades of historical data.  You might be facing an 
advanced analytics problem, or one that requires machine learning.  These are challenges that 
big data architectures seek to solve. 

Big data solutions typically involve one or more of the following types of workload: 

• Batch 
processing of big data sources at rest. 

• Real-time 
processing of big data in motion. 

• Interactive 
exploration of big data. 
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• Predictive 
analytics and machine learning. 

Consider big data architectures when you need to: 

• Store and 
process data in volumes too large for a traditional database. 

• Transform 
unstructured data for analysis and reporting. 

• Capture, 
process, and analyze unbounded streams of data in real time, or with low latency. 

 

Fig. 1.8 Components of a Big Data Architecture 

Components of a Big Data Architecture: Logical components that fit into a big data 
architecture 

Most big data architectures include some or all of the following components: 

Data sources: All big data solutions start with one or more data sources. Examples 
includeApplication data stores, such as relational databases.Static files produced by 
applications, such as web server log files.Real-time data sources, such as IoT devices. 

Data storage: Data for batch processing operations is typically stored in a distributed file 
store that can hold high volumes of large files in various formats. This kind of store is often 
called a data lake. Options for implementing this storage include Azure Data Lake Store or 
blob containers in Azure Storage. 

Real-time message ingestion:If the solution includes real-time sources, the architecture must 
include a way to capture and store real-time messages for stream processing. This might be a 
simple data store, where incoming messages are dropped into a folder for processing. 
However, many solutions need a message ingestion store to act as a buffer for messages, and 
to support scale-out processing, reliable delivery, and other message queuing semantics. This 
portion of a streaming architecture is often referred to as stream buffering. Options include 
Azure Event Hubs, Azure IoT Hub, and Kafka. 

Real-time message ingestion: 
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If the solution includes real-time sources, the architecture must include a way to capture and 
store real-time messages for stream processing. This might be a simple data store, where 
incoming messages are dropped into a folder for processing. However, many solutions need a 
message ingestion store to act as a buffer for messages, and to support scale-out processing, 
reliable delivery, and other message queuing semantics. This portion of a streaming 
architecture is often referred to as stream buffering. Options include Azure Event Hubs, 
Azure IoT Hub, and Kafka. 

Stream Processing: 

 After capturing real-time messages, the solution must process them by filtering, aggregating, 
and otherwise preparing the data for analysis. The processed stream data is then written to an 
output sink. Azure Stream Analytics provides a managed stream processing service based on 
perpetually running SQL queries that operate on unbounded streams. You can also use open 
source Apache streaming technologies like Storm and Spark Streaming in an HDInsight 
cluster. 

Analytical Data Store: 

 Many big data solutions prepare data for analysis and then serve the processed data in a 
structured format that can be queried using analytical tools. The analytical data store used to 
serve these queries can be a Kimball-style relational data warehouse, as seen in most 
traditional business intelligence (BI) solutions. Alternatively, the data could be presented 
through a low-latency NoSQL technology such as HBase, or an interactive Hive database that 
provides a metadata abstraction over data files in the distributed data store. Azure Synapse 
Analytics provides a managed service for large-scale, cloud-based data 
warehousing.HDInsight supports Interactive Hive, HBase, and Spark SQL, which can also be 
used to serve data for analysis. 

Analysis and Reporting: 

The goal of most big data solutions is to provide insights into the data through analysis and 
reporting. To empower users to analyze the data, the architecture may include a data 
modeling layer, such as a multidimensional OLAP cube or tabular data model in Azure 
Analysis Services. It might also support self-service BI, using the modeling and visualization 
technologies in Microsoft Power BI or Microsoft Excel. Analysis and reporting can also take 
the form of interactive data exploration by data scientists or data analysts. For these 
scenarios, many Azure services support analytical notebooks, such as Jupyter, enabling these 
users to leverage their existing skills with Python or R. For large-scale data exploration, you 
can use Microsoft R Server, either standalone or with Spark. 

Orchestration: 

Most big data solutions consist of repeated data processing operations, encapsulated in 
workflows, that transform source data, move data between multiple sources and sinks, load 
the processed data into an analytical data store, or push the results straight to a report or 
dashboard. To automate these workflows, you can use an orchestration technology such 
Azure Data Factory or Apache Oozie and Sqoop 
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BIG DATA ANALYTICS 

Big Data Analytics are the natural result of four major global trends 

 

Fig 1.9 Four Major Global Trends 

Moore’s Law – Basically says that technology always gets cheaper 

Mobile Computing – Smart Phone or Mobile Phone in your hand 

Social Networking – Facebook, Foursquare, Pinterest (American Image sharing social media 
service), etc. 

Cloud Computing – You don’t have to buy hardware or software. Just rent or lease it. 

Big data analytics is the use of advanced analytic techniques against very large, diverse data 
sets that include structured, semi-structured and unstructured data, from different sources, and 
in different sizes from terabytes to zettabytes. 

Big data is a term applied to data sets whose size or type is beyond the ability of 
traditional relational databases to capture, manage and process the data with low latency. Big 
data has one or more of the following characteristics: high volume, high velocity or high 
variety.  Artificial intelligence (AI), mobile, social and the Internet of Things (IoT) are 
driving data complexity through new forms and sources of data. For example, big data comes 
from sensors, devices, video/audio, networks, log files, transactional applications, web, and 
social media — much of it generated in real time and at a very large scale. 
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APPLICATIONS – Where it is used 

1. Life Sciences: 

Clinical research is a slow and expensive process, with trials failing for a variety of reasons. 
Advanced analytics, artificial intelligence (AI) and the Internet of Medical Things (IoMT) 
unlocks the potential of improving speed and efficiency at every stage of clinical research by 
delivering more intelligent, automated solutions. 

2. Banking: 

Financial institutions gather and access analytical insight from large volumes of unstructured 
data in order to make sound financial decisions. Big data analytics allows them to access the 
information they need when they need it, by eliminating overlapping, redundant tools and 
systems. 

3. Manufacturing: 

For manufacturers, solving problems is nothing new. They wrestle with difficult problems on 
a daily basis - from complex supply chains, to motion applications, to labor constraints and 
equipment breakdowns. That's why big data analytics is essential in the manufacturing 
industry, as it has allowed competitive organizations to discover new cost saving 
opportunities and revenue opportunities. 

4. Health Care: 

Big data is a given in the health care industry. Patient records, health plans, insurance 
information and other types of information can be difficult to manage – but are full of key 
insights once analytics are applied. That’s why big data analytics technology is so important 
to heath care. By analyzing large amounts of information – both structured and unstructured – 
quickly, health care providers can provide lifesaving diagnoses or treatment options almost 
immediately. 

5. Government: 

Certain government agencies face a big challenge: tighten the budget without compromising 
quality or productivity. This is particularly troublesome with law enforcement agencies, 
which are struggling to keep crime rates down with relatively scarce resources. And that’s 
why many agencies use big data analytics; the technology streamlines operations while 
giving the agency a more holistic view of criminal activity. 

6. Retail: 

Customer service has evolved in the past several years, as savvier shoppers expect retailers to 
understand exactly what they need, when they need it. Big data analytics technology helps 
retailers meet those demands. Armed with endless amounts of data from customer loyalty 
programs, buying habits and other sources, retailers not only have an in-depth understanding 
of their customers, they can also predict trends, recommend new products – and boost 
profitability. 
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Big Data Enterprise Model 

 

Fig. 1.10 Big Data Enterprise Model 

The requirements of traditional enterprise data models for application, database, and storage 
resources have  grown over the years, and the cost and complexity of these models has 
increased along the way to meet the needs of big data. This rapid change has prompted 
changes in the fundamental models that describe the way that big data is stored, analyzed, 
and accessed.  

The new models are based on a scaled-out, shared-nothing architecture, bringing new 
challenges to enterprises to decide what technologies to use, where to use them, and how. 
One size no longer fits all, and the traditional model is now being expanded to incorporate 
new building blocks that address the challenges of big data with new information processing 
frameworks purpose-built to meet big data’s requirements. However, these purpose-built 
systems also must meet the inherent requirement for integration into current business  
models, data strategies, and network infrastructures. 

Big Data Components 

Two main building blocks are being added to the enterprise stack to accommodate big data: 

● Hadoop: Provides storage capability through a distributed, shared-nothing file system, and 
analysis capability through MapReduce 

● NoSQL: Provides the capability to capture, read, and update, in real time, the large influx 
of unstructured data and data without schemas; examples include click streams, social media, 
log files, event data, mobility trends, and sensor and machine data 
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Building a Big Data Platform 

Big Data Platform - Hadoop System: 

New analytic applications drive the requirements for a big data platform  

•Integrate and manage the full variety, velocity and volume of data  

•Apply advanced analytics to information in its native form  

•Visualize all available data for ad-hoc analysis  

•Development environment for building new analytic applications  

•Workload optimization and scheduling  

•Security and Governance  

Augments open source Hadoop with enterprise capabilities: 

–Enterprise-class storage  

–Security  

–Performance Optimization  

–Enterprise integration  

–Development tooling  

–Analytic Accelerators  

–Application and industry accelerators  

–Visualization  

Workload Optimization: 

Adaptive MapReduce 

•Algorithm to optimize execution time of multiple small and large jobs  

•Performance gains of 30% reduce overhead of task startup 

 

Hadoop System Scheduler  

•Identifies small and large jobs from prior experience  

•Sequences work to reduce overhead  
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Fig. 1.11 Workload Optimization 

Big Data Platform - Stream Computing : 

Built to analyze data in motion  

•Multiple concurrent input streams  

•Massive scalability  

Process and analyze a variety of data  

•Structured, unstructured content, video, audio  

•Advanced analytic operators  

 

Fig 1.12  Connects different types of data 

Big Data Platform - Data Warehousing : 

Workload optimized systems 

–Deep analytics appliance  

–Configurable operational analytics appliance  

–Data warehousing software  

Capabilities  

•Massive parallel processing engine  

•High performance OLAP  
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•Mixed operational and analytic workloads 

 

Fig 1.13 Big Data Platform 

Big Data Platform - Information Integration and Governance 

Integrate any type of data to the big data platform  

–Structured  

–Unstructured  

–Streaming  

Governance and trust for big data  

–Secure sensitive data  

–Lineage and metadata of new big data sources  

–Lifecycle management to control data growth  

–Master data to establish single version of the truth  

 

Leverage purpose-built connectors for multiple data sources: 
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Massive volume of structured data movement  

•2.38 TB / Hour load to data warehouse  

•High-volume load to Hadoop file system  

 

Ingest unstructured data into Hadoop file system  

Integrate streaming data sources  

 

Big Data Platform - User Interfaces 

•Business Users  

•Visualization of a large volume and wide variety of data  

•Developers  

•Similarity in tooling and languages  

•Mature open source tools with enterprise capabilities  

•Integration among environments  

•Administrators  

•Consoles to aid in systems management  

 

Big Data Platform –Accelerators: 

Analytic accelerators  

–Analytics, operators, rule sets  

Industry and Horizontal Application Accelerators  

–Analytics  

–Models  

–Visualization / user interfaces  

–Adapters  

 

Big Data Platform - Analytic Applications : 

Big Data Platform is designed for analytic application development and integration  

BI/Reporting – Cognos BI, Attivio 

Predictive Analytics – SPSS, G2, SAS  
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Exploration/Visualization – BigSheets, Datameer 

Instrumentation Analytics – Brocade, IBM GBS  

 

Content Analytics – IBM Content Analytics  

Functional Applications – Algorithmics, Cognos Consumer Insights, Clickfox, i2, IBM GBS 

Industry Applications – TerraEchos, Cisco, IBM GBS 

 

Big Data Analytics for Social and Behavioral Sciences 

What Social &Behavioral Sciences Tell Us? 

•Social science networks have widespread application in various fields  

•Most of the analyses techniques have come from Sociology, Statistics and Mathematics  

•For a comprehensive introduction to social network analysis 

 

Fig 1.14 History of Social Network Analysis 

Why do we create and sustain networks? 

•Theories of self-interest  

•Theories of social and resource exchange  

•Theories of mutual interest and collective action 

•Theories of contagion  

•Theories of balance  

•Theories of homophily 

•Theories of proximity  

•Theories of co-evolution 
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Fig 1.15 “Structural Signatures” of Social Theories 

 

Application Successes 

• Numerous in 
Social Sciences 

• Google – 
PageRank 

• LinkedIn – 
expanding your Cognitive Social Network 

o Making you 
aware that you’re more connected and closer than you think you are  

• Expertise 
discovery in organizations 

o Knowledge 
experts, ‘authorities’ 

o Well-
connected individuals, ‘hubs’ 

• Rapid-
Response teams in emergency management 

• Information 
flow in organizations  

• Twitter – real 
time information dissemination Etc. 
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UNIT-II 

 

HDFS, HADOOP AND HADOOP INFRASTRUCTURE 

Hadoop 

• Big Data Technology 

• Distributed processing of large data sets 

• Open source 

• Map Reduce- Simple Programming model 

Why Hadoop? 

• Handles any data type 

➢ Structured/unstructured 

➢ Schema/no Schema 

➢ High volume/Low volume 

➢ All kinds of analytic applications 

• Grows with business 

• Proven with Petabyte scale 

• Capacity & Performance grows 

• Leverages commodity hardware to mitigate costs 

Hadoop Features 

• 100% Apache open source 

• No Vendor locking 

• Rich Eco system & community development 

• To Derive compute value of all data 

• More affordable cost-effective platform 

Hadoop and Databases 

RDMS (Relational Database Management System): RDBMS is an information management system, 

which is based on a data model. In RDBMS tables are used for information storage. Each row of the 

table represents a record and column represents an attribute of data. Organization of data and their 

manipulation processes are different in RDBMS from other databases. RDBMS ensures ACID 
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(atomicity, consistency, integrity, durability) properties required for designing a database. The purpose 

of RDBMS is to store, manage, and retrieve data as quickly and reliably as possible. 

Hadoop: It is an open-source software framework used for storing data and running applications on a 

group of commodity hardware. It has large storage capacity and high processing power. It can manage 

multiple concurrent processes at the same time. It is used in predictive analysis, data mining and 

machine learning. It can handle both structured and unstructured form of data. It is more flexible in 

storing, processing, and managing data than traditional RDBMS. Unlike traditional systems, Hadoop 

enables multiple analytical processes on the same data at the same time. It supports scalability very 

flexibly. Below in Table 2.1 of differences between Data Science and Data Visualization: 

Table 2.1 RDBMS Vs Hadoop 

S.NO. RDBMS HADOOP 

1. Structured database approach Structured and Unstructured database approach 

2. 

Traditional row-column based 

databases, basically used for data 

storage, manipulation and retrieval. 

An open-source software used for storing data 

and running applications or processes 

concurrently. 

3. It is best suited for OLTP environment. It is best suited for BIG data. 

4. Interactive OLAP analytics Scalability of storage/Compute 

5. Multistep ACID transactions Complex data processing 

6. Stored in the form of tables Distributed file system 

7. It is less scalable than Hadoop. It is highly scalable. 

8. SQL – Update and Access data MapReduce Programming model 

9. 100% SQL compliant Both SQL & NoSQL 

10. 
Data normalization is required in 

RDBMS. 
Data normalization is not required in Hadoop. 

11. 
It stores transformed and aggregated 

data. 
It stores huge volume of data. 

12. It has no latency in response. It has some latency in response. 

13. 
The data schema of RDBMS is static 

type. 
The data schema of Hadoop is dynamic type. 

14. High data integrity available. Low data integrity available than RDBMS. 

15. Cost is applicable for licensed software. Free of cost, as it is an open source software. 
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Typical Data Centre Architecture 

 Schema _on_write (RDBMS) 

 Schema must be created before any data can be loaded 

 An explicit load operation has to take place which transforms data into DB internal 

structure. 

 New columns must be added explicitly and loaded into the database. (Figure 2.1) 

 

Fig. 2.1 Traditional Data Centre Architecture 

Adding Hadoop to the Mix 

 Schema _on_write (Hadoop) 

 Data is simply copied to the storage, no transformation is needed 

 A serializer / Deserilalizer is applied during read time to extract the required columns. 

 New data can start flowing at any time and will appear. (Figure 2.2) 
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Fig. 2.2 Adding Hadoop Mix to the Traditional Data Centre Architecture 

Hadoop Key Benefits 

1. Scalable 

2. Cost effective 

3. Flexible 

4. Fast 

5. Resilient to failure 

1. Scalable 

Hadoop is a highly scalable storage platform, because it can store and distribute very large data sets 

across hundreds of inexpensive servers that operate in parallel. Unlike traditional relational database 

systems (RDBMS) that can't scale to process large amounts of data, Hadoop enables businesses to run 

applications on thousands of nodes involving thousands of terabytes of data. 

2. Cost effective 

Hadoop also offers a cost-effective storage solution for businesses' exploding data sets. The problem 

with traditional relational database management systems is that it is extremely cost prohibitive to scale 

to such a degree in order to process such massive volumes of data. In an effort to reduce costs, many 

companies in the past would have had to down-sample data and classify it based on certain assumptions 

as to which data was the most valuable. The raw data would be deleted, as it would be too cost-

prohibitive to keep. While this approach may have worked in the short term, this meant that when 

http://www.mapr.com/products/apache-hadoop
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business priorities changed, the complete raw data set was not available, as it was too expensive to 

store. Hadoop, on the other hand, is designed as a scale-out architecture that can affordably store all of 

a company's data for later use. The cost savings are staggering: instead of costing thousands to tens of 

thousands of pounds per terabyte, Hadoop offers computing and storage capabilities for hundreds of 

pounds per terabyte. 

3. Flexible 

Hadoop enables businesses to easily access new data sources and tap into different types of data (both 

structured and unstructured) to generate value from that data. This means businesses can use Hadoop to 

derive valuable business insights from data sources such as social media, email conversations or 

clickstream data. In addition, Hadoop can be used for a wide variety of purposes, such as log 

processing, recommendation systems, data warehousing, market campaign analysis and fraud detection. 

4. Fast 

Hadoop's unique storage method is based on a distributed file system that basically 'maps' data 

wherever it is located on a cluster. The tools for data processing are often on the same servers where 

the data is located, resulting in much faster data processing. If you're dealing with large volumes of 

unstructured data, Hadoop is able to efficiently process terabytes of data in just minutes, and petabytes 

in hours. 

5. Resilient to failure 

A key advantage of using Hadoop is its fault tolerance. When data is sent to an individual node, that 

data is also replicated to other nodes in the cluster, which means that in the event of failure, there 

is another copy available for use. 

The MapR distribution goes beyond that by eliminating the NameNode and replacing it with a 

distributed No NameNode architecture that provides true high availability. Our architecture provides 

protection from both single and multiple failures. 

When it comes to handling large data sets in a safe and cost-effective manner, Hadoop has the 

advantage over relational database management systems, and its value for any size business will 

continue to increase as unstructured data continues to grow. 

Flexibility: Complex Data processing 

 Java Map Reduce 

 Streaming Map Reduce 

 Crunch 

 Pig Latin 

 Hive 

 Oozie 
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 Java MapReduce 

 Most Flexible and well performed, but tedious development cycles 

 Streaming MapReduce 

 Develop using any programming language of your choice, but slightly lower 

performance and less flexibility than native Java MapReduce. 

 Crunch 

 A library for multi stage MapReduce pipelines in Java 

 Pig Latin 

 A High-level language suitable for batch data flow workloads developed by yahoo 

 Hive 

 Hive is a data warehouse infrastructure tool to process structured data in Hadoop. 

 Hive is an SQL Based tool that builds over Hadoop to process the data. 

 Oozie 

 Oozie is a workflow scheduler system to manage Apache Hadoop jobs.  

Hadoop Infrastructure 

The 2 infrastructure models of Hadoop are: 

 Data Model 

 Computing Model 

Traditional Database Model Vs Hadoop Data Model 

 

Table 2.2 Traditional Database Model Vs Hadoop Data Model 

DISTRIBUTED DATABASE MODEL HADOOP DATA MODEL 

Deals with tables and relations Deals with flat files in any format 

Must have a schema for data No schema 

Data fragmentation and partitioning Files are divided automatically into blocks 
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Fig. 2.3 Distributed Database Model 

A distributed database consists of a network of many interconnected physical databases that spread 

across various geographical locations. The separate databases are periodically synchronized for 

ensuring all have consistent data. (Figure 2.3) 

 

Fig. 2.4 Hadoop Data Model 

A Hadoop data model consists of a Blocks of Distributed File Systems under a specific Compute 

Cluster, where the DFS blocks are interconnected with communication channel. This makes sure that 

the centre is in one place for the data sent to be mapped and reduced. (Figure 2.4) 
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Traditional Vs Computing Model 

Table 2.3 Traditional Vs Computing Model 

DISTRIBUTED DATABASES HADOOP 

Notion of a transaction Notion of a job divided into tasks 

Distributed transaction with ACID properties MapReduce computing model where every 

task is either a map or reduce service 

 

 

Fig. 2.5 Distributer Databases 

 

 

Fig. 2.6 Hadoop – Computing Model 
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Hadoop Architecture 

What is Architecture of Hadoop? 

 Hadoop is the open-source framework of Apache Software Foundation, which is used to store 

and process large unstructured datasets in the distributed environment. 

 Data is first distributed among different available clusters then it is processed. 

 Hadoop biggest strength is that it is scalable in nature means it can work on a single node to 

thousands of nodes without any problem. 

 Hadoop framework is based on Java programming and it runs applications with the help of 

MapReduce which is used to perform parallel processing and achieve the entire statistical 

analysis on large datasets. 

 Distribution of large datasets to different clusters is done on the basis of Apache Hadoop 

software library using easy programming models. 

 Organizations are now adopting Hadoop for the purpose of reducing the cost of data storage. 

 It will lead to the analytics at an economical cost which will maximize the business 

profitability. 

 For a good Hadoop architectural design, you need to take in considerations – good computing 

power, storage, and networking. 

Hadoop Architecture 

 Hadoop ecosystem consists of various components such as Hadoop Distributed File System 

(HDFS), Hadoop MapReduce, Hadoop Common, HBase, YARN, Pig, Hive, and others. 

 Hadoop components which play a vital role in its architecture are- 

 Hadoop Distributed File System (HDFS) 

 Hadoop MapReduce 

 Hadoop works on the master/slave architecture for distributed storage and distributed 

computation. 

 NameNode is the master and the DataNodes are the slaves in the distributed storage. 

 The Job Tracker is the master and the Task Trackers are the slaves in the distributed 

computation. 

 The slave nodes are those which store the data and perform the complex computations. 

 Every slave node comes with a Task Tracker daemon and a DataNode synchronizes the 

processes with the Job Tracker and NameNode respectively. 

 In Hadoop architectural setup, the master and slave systems can be implemented in the cloud or 

on-site premise. (Figure 2.7, 2.8) 
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Fig. 2.7 Hadoop Architecture 

 

Fig. 2.8 Hadoop Ecosystem Components & its Architecture 

Hadoop Framework 

There are 2 Main layers: 

➢ HDFS 

➢ Execution Engineer 

HDFS 

Role of HDFS in Hadoop Architecture 
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 HDFS is used to split files into multiple blocks. Each file is replicated when it is stored in 

Hadoop cluster. 

 The default size of that block of data is 64 MB but it can be extended up to 256 MB as per the 

requirement. 

 HDFS stores the application data and the file system metadata on two different servers. 

 NameNode is used to store the file system metadata while and application data is stored by the 

DataNode. 

 To ensure the data reliability and availability to the highest point, HDFS replicates the file 

content many times. 

 NameNode and DataNode communicate with each other by using TCP protocols. 

 Hadoop architecture performance depends upon Hard-drives throughput and the network speed 

for the data transfer. (Figure 2.9) 

 

Fig. 2.9 HDFS 

What is HDFS in Hadoop 

 The Hadoop Distributed File System is a java-based file, developed by Apache Software 

Foundation with the purpose of providing versatile, resilient, and clustered approach to manage 

files in a Big Data environment using commodity servers. 

 HDFS used to store a large amount of data by placing them on multiple machines as there are 

hundreds and thousands of machines connected together. 

 The goal is to store a smaller number of larger files rather than the greater number of small 

files. 



HDFS, Hadoop and Hadoop Infrastructure 

13 

 

 HDFS provides high reliability of data because it used to replicate data into three different 

copies- two are saved in one group and third one in another. 

 HDFS is scalable in nature as it can be extended to 200 PB of storage where a single cluster 

contains 4500 servers, supporting billions of blocks and files. 

How HDFS Works 

 Hadoop works on a master node which is NameNode and multiple slave nodes which are 

DataNodes on a commodity cluster. 

 As all the nodes are present in the same rack in the data center, data is broken into different 

blocks that are distributed among different nodes for the storage. 

 These blocks are replicated across nodes to make data available in case of a failure. (Figure 

2.10) 

 

Fig. 2.10 HDFS Working 

 The NameNode is known as a smart node in the cluster. 

 NameNode knows which data node contains which blocks and where data node has been placed 

in the clusters. 

 The NameNode also contains the access authority which is given to files to perform read, write, 

create, delete and replication of various blocks between the data nodes. 

 The NameNode is connected with the data nodes in the loosely coupled fashion. 
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 This provides the feature of scalability in real time means it can add or delete nodes as per the 

requirement. 

 Data nodes used to communicate every time with the NameNode to check whether the certain 

task is completed or not. 

 Communication between these two ensures that NameNode knows the status of each data node 

all the time. 

 If one of the data nodes is not functioning properly then NameNode can assign that task to 

another node. 

 To operate normally, data nodes in the same block communicate with each other. 

 The NameNode is replicated to overcome system failure and is the most critical part of the 

whole system. 

 Data nodes are not considered to be smart, but flexible in nature and data blocks are replicated 

across various nodes and the NameNode is used to manage the access. 

 To gain the maximum efficiency, replication mechanism is used and all the nodes of the cluster 

are placed into a rack. Rack Id is used by the NameNode to track data nodes in the cluster. 

 A heartbeat message is put through to ensure that the data nodes and the NameNode are still 

connected. 

 When the heartbeat is no longer available, then the NameNode detach that data node from the 

cluster and works in the normal manner. 

 When the heartbeat comes, data node is added back to the cluster. 

 Transaction log and the checksum are used to maintain the data integrity. 

 Transaction log used to keep track of every operation and help them in auditing and rebuilding 

the file system, in case of an exception. 

 Checksum validates the content in HDFS. 

 When a user requests a file, it verifies the checksum of that content. 

 If checksum validation matches then they can access it. 

 If the checksum reports an error, then the file is hidden to avoid tampering. 

 The performance also depends on where the data is stored, so it is stored on local disk in the 

commodity servers. 

 To ensure that one server failure doesn’t corrupt the whole file, data blocks are replicated in 

various data nodes. 

 The degree of replication and the number of data nodes are managed at a time when the cluster 

is implemented. 
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Features of HDFS 

 Fault-Tolerant 

 Scalability 

 Data Availability 

 Data Reliability 

 Replication 

Description to Features of HDFS 

 Fault-Tolerant 

 HDFS is highly fault-tolerant.  

 HDFS replicates and stores data in three different locations. 

 So, in the case of corruption or unavailability, data can be accessed from the previous 

location. 

 Scalability 

 Scalability means adding or subtracting the cluster from HDFS environment. 

 Scaling is done by the two ways – vertical or horizontal. 

 In vertical scaling, you can add up any number of nodes to the cluster but there is some 

downtime. 

In horizontal scaling, there is no downtime; you can add any number of nodes in the 

cluster in real time. 

 Data Availability 

 Data is replicated and stored on different nodes due to which data is available all the 

time. 

 In case of network, node or some hardware failure, data is accessible without any 

trouble from a different source or from a different node. 

 Data Reliability 

 HDFS provides highly reliable data storage, as data are divided into blocks and each 

block is replicated in the cluster which made data reliable. 

 If one node contains the data is down, it can be accessed from others because HDFS 

creates three replicas of each block. 

 When there is no loss of data in case of failure then it is highly reliable. 

 Replication 
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 Data replication is one of the unique and important features of HDFS. 

 HDFS used to create replicas of data in the different cluster. 

 As if one node goes down it can be accessed from other because every data block has 

three replicas created. 

 This is why, there is no chance of data loss. 

Fig. 2.11 HDFS Layer 

Fig. 2.12 HDFC Communication 
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Components of HDFS 

NameNode 

• Single node in cluster 

• Brain of HDFS 

• Hadoop employs master/slave architecture for both distributed storage and distributed 

computation 

• Distributed Storage system is HDFS 

• NameNode is the master of HDFS that directs slave DataNode to perform low level tasks. 

(Figure 2.13) 

 

Fig. 2.13 Components of HDFS 

NameNode as book Keeper of HDFS 

• NameNode list of all blocks of file and list of all data nodes that contains the block 

• It keeps track of how files are stored into file blocks, which nodes store these blocks and overall 

health of HDFS 

• The function of NameNode is memory and IO intensive 

• The server hosting NameNode doesn’t store any user data or perform any computation 

Name node – Drawback 

• Name node is the Single point of failure in Hadoop cluster 

• For other data nodes, if their host node fails due to h/w or s/w reasons, the Hadoop cluster will 

continue smoothly 

Data Nodes 

• Each slave machine in the cluster will host a data node to perform grunt work of Distributed 

File System 

• Reading and writing HDFS blocks to actual files on local file system 
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• During r/w a HDFS file, the file is broken into blocks and NameNode will tell the client which 

data node each block resides in. 

• Client communicates directly with the DataNodes to process local files corresponding to the 

blocks 

• Data node may communicate with other DataNodes to replicate data blocks for redundancy 

Data Replication 

• HDFS is designed to reliably store very large files across machines in a large cluster. 

• It stores each file as a sequence of blocks; all blocks in a file except the last block are the same 

size. 

• The blocks of a file are replicated for fault tolerance.  

• The block size and replication factor are configurable per file. 

• An application can specify the number of replicas of a file.  

• The replication factor can be specified at file creation time and can be changed later. 

• Files in HDFS are write-once and have strictly one writer at any time. 

• The NameNode makes all decisions regarding replication of blocks. 

Heartbeat and Block report of data nodes 

• NameNode periodically receives a Heartbeat and a Block report from each of the DataNodes in 

the cluster 

• Receipt of a Heartbeat implies that the DataNode is functioning properly 

• A Block report contains a list of all blocks on a DataNode (Figure 2.14, 2.15) 

  Fig. 2.14 Block Replication 

    Fig. 2.15 DataNodes 
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Replication factor 

When the replication factor is three, HDFS’s placement policy is to put: 

1. one replica: 

• on the local machine if the writer is on a DataNode, 

• otherwise on a random DataNode, 

2. another replica on a node in a different (remote) rack, 

3. last on a different node in the same remote rack. 

This policy cuts the inter-rack write traffic which generally improves write performance. The chance of 

rack failure is far less than that of node failure. 

Replication factor >3 

• If the replication factor is greater than 3, the placement of the 4th and following replicas are 

determined randomly while keeping the number of replicas per rack below the upper limit 

(which is basically (replicas - 1) / racks + 2) 

DataNodes and NameNodes 

• DataNode constantly report to NameNode 

• Upon initialization, each DataNode informs NameNode of the blocks it is currently storing 

• After mapping, the DataNode continually poll the NameNode to provide information regarding 

local changes and receive instructions to create, move or delete blocks from local disk. 

Secondary Name Node (SNN) 

• SNN is an assistant daemon for maintaining the state of clusters HDFS 

• Like NameNode, each cluster has on SNN 

• SNN does not receive or record any real-time changes to HDFS 

• SNN communicates with NameNode to take snapshots of HDFS meta data at intervals defined 

by cluster configuration 

• NameNode is a single point of failure for Hadoop clusters and SNN snapshots help minimize 

the downtime and loss of data 

• NameNode failure requires human intervention to reconfigure the cluster to use SNN as 

primary NameNode (Figure 2.16) 
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Fig. 2.16 NameNode Interaction 

Job Tracker 

• Job tracker is a liaison between the client application and Hadoop 

• Once the client submits the code to the cluster the JobTracker determines the execution plan by 

determining which files to process 

• Assigns nodes to different tasks and monitors all tasks as they are running 

• If a task fails, the job tracker will automatically relaunch the task on a different node 

Task Tracker 

• Job tracker is the master overseeing the overall execution of MapReduce job 

• Task trackers manages the execution of individual tasks 

• Task tracker can spawn multiple JVMs to handle many map/reduce tasks in parallel 

• Main responsibility is to constantly communicate with Job tracker 

• If Job tracker fails to receive a heartbeat from TaskTracker within the specified amount of time, 

it will assume task tracker has crashed and will resubmit the corresponding tasks to other nodes 

in the cluster. (Figure 2.17) 
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Fig. 2.17 Task Tracker 

Topology of Hadoop cluster 

 

Fig. 2.18 Topology of Hadoop cluster 

HDFS 

• HDFS is the first building block of Hadoop cluster 

• HDFS breaks incoming files into blocks and stores them redundantly across the cluster 

• To efficiently process massive amounts of data, it is important to move 
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• A single large file splits into blocks and blocks are distributed among the nodes of Hadoop 

cluster 

• The blocks used in HDFS are large 128 MB or more compared to small blocks associated with 

traditional file systems 

• This allows the system to scale without increasing the size and complexity of HDFS metadata 

• Files in HDFS are write once files 

• Input data is loaded into HDFS and processed by MapReduce framework. (Figure 2.18) 

HDFS Files and Blocks 

• Files are stored as a collection of Blocks 

• Blocks: The minimum amount of data that can be read or written  

• Typically, 64MB of unit size is default 

• Block details are stored on 3 nodes 

➢ The Name node – Manages meta-data about files & Blocks 

➢ SNN – Holds backup of Name node data 

➢ Data Node – Store and serve blocks 

➢ Multiple copies of a block are stored 

Data Loading techniques 

HDFS READS 

 

Fig. 2.19 HDFS Reads 
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HDFS Writes 

 

Fig. 2.20 HDFS Write 

In conclusion, HDFS empowers Hadoop functionality. 

HDFS provides highly reliable data storage despite of any hardware failure. 

It is highly fault-tolerant, provides high data availability, and high scalability. (Figure 2.19, 2.20) 

MapReduce 

Role of MapReduce in Hadoop Architecture 

 The job is the top-level unit of MapReduce working and each job contains one or more Map or 

Reduce tasks. 

 The execution of a job starts when it is submitted to the Job Tracker of MapReduce which 

specifies the map, combines, and reduce functions along with the location of input and output 

data. 

 When the job is received, the job tracker searches the number of splits based on input path and 

select Task Trackers based on their network locality to the data sources. 

 Task Tracker extracts information from the splits as the processing begins in Map phase. 
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 Records are parsed by the “Input Format” and generate key-value pairs in the memory buffer 

when Map function is provoked. 

 Combine function is used to sort all the splits from the memory buffer. 

 After the completion of a map task, Task Tracker gives a message to the Job Tracker. 

 Job Tracker then gives a message to selected Task Tracker to start the reduce phase. 

 Now Task Tracker sorts the key-value pairs for each key after reading it. 

 At last reduce function is invoked and all the values are collected into one output file. 

MapReduce 

• Map reduce is a programming model for expressing distributed computations at a massive scale 

• It is an execution framework for organizing and performing such computation. (Figure 2.21) 

 

Fig. 2.21 MapReduce 

Typical Large Data Problem 

• Map 

➢ Iterate over large number of records 

➢ Extract data of interest 

➢ Shuffle and sort intermediate results 

▪ Reduce 

➢ Aggregate intermediate results 

➢ Generate final output 

Map Reduce model 
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• Basic notion of MapReduce is to divide a task into subtasks, handle subtasks in parallel and 

aggregate the results of sub tasks to form the final output 

• Programs written in MapReduce are automatically parallelized and programmers not need to be 

concerned about the implementation details of parallel processing 

MapReduce functions 

• Map() 

• Reduce() 

• Map Phase: 

➢ Reads input(in parallel) and distributes data to reducers 

➢ Auxiliary phase such as sorting partitioning and combining values can also take place 

between map and reduce phases. 

• Map Reduce programs are used to process large files 

• Input and Output for map and reduce functions are expressed in the form of (Key, Value) pairs 

• Hadoop MapReduce program has a component called Driver 

• Driver is responsible for initializing the job with its configuration details, specifying the mapper 

and reducer classes for the job informing the Hadoop platform to execute the code on the 

specified input file and controlling the location which the output files are placed.  

What is MapReduce in Hadoop? 

 The heart of Apache Hadoop is Hadoop MapReduce. 

 It’s a programming model used for processing large datasets in parallel across hundreds or 

thousands of Hadoop clusters on commodity hardware. 

 The framework does all the work, you just need to put the business logic into the MapReduce. 

 All the work is divided into the smaller works and assigned to the slave by a master who is 

submitted by the user. 

 Hadoop MapReduce is designed by using a different approach. 

 Different kinds of lists as input is presented to MapReduce for processing and it coverts those 

lists into output which is also in the form lists. 

 Hadoop MapReduce parallel processing has made Hadoop more efficient and powerful. 

 Jobs are divided into small parts by MapReduce and each of them resides in parallel on the 

cluster. 

 All the problems are divided into a larger number of small chunks and each of the chunks are 

processed individually for the output. 
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 For the final output, these are further processed. 

 Hadoop MapReduce can be scaled hundreds to thousands of computers across the clusters. 

 Different computers in the clusters used to process the jobs which could not be processed by a 

large one. 

 Map-Reduce is the component of Hadoop and used for processing the data. 

 These two transform the lists of input data elements by providing those key-pair values and then 

back into the lists of output data elements by combining the key pair values. 

 A small phase of Shuffle and Sort also come during the Map and Reduce phase in MapReduce. 

 Mapper and Reducer execution across a data set is known as MapReduce Job. 

 Mapper and Reducer is an execution of two processing layer. 

 Input data, the MapReduce program, and configuration information are what a MapReduce Job 

contains. 

 So, if the client wants a MapReduce Job to execute, he needs to provide input data, write a 

MapReduce program, and provide some configuration information. 

 Execution of a chunk of data in Mapper or Reducer phase is known as the Task or Task-In-

Progress. 

 The attempt of any instance to execute a task on a node is known as Task Attempt. 

 There’s possibility task cannot be executed due to machine failure. 

 Then the task is rescheduled another node. 

 Rescheduling of the task can only be done for 4 times. 

 If any job fails more than the 4 times then it is considered to be a failed job. 

Working Process of Map and Reduce 

 User-written function at mapper is used for processing of input data in mapper. 

 All the business logic is put into the mapper level because it is a place where all the heavy 

processing is done. 

 A number of mappers are always greater than the reducers. 

 The output which is produced by the mapper is intermediate data and it is input for the reducer. 

 User-written function at reducer is used to process the intermediate data and after this final 

output is generated. 

 The output generated in reducer phase is stored in HDFS and replication is done as per usual. 

(Figure 2.22) 
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Fig. 2.22 Working of MapReduce 

Dataflow in MapReduce 

 Mapper is the first phase where datasets are splits into chunks. 

 Mapper works on a one chunk at a time. 

 The output from the mapper phase is written to the local disk machine where it is running. 

 An output created by the mapper phase is known as Intermediate output. 

 Intermediate output by mapper phase is written to the local disk always. 

 When the mapper phase is done, the intermediate output is transferred to reducer node. 

 Hence, the transferring of intermediate data from the mapper to reducer is known as Shuffle. 

 If the shuffle phase will not happen then the reducer will not have any input to work on. 

 The entire keys which are generated during mapper are sorted by MapReduce. 

 It starts even before reducers and all the intermediate key-value pairs are generated by the 

mapper, are sorted by key and not by the value. 

 Sorting helps reducers to start a new reduce task at the right time. 
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 Reduce task is started by the reducers when the key is sorted and input data is different from the 

previous. 

 Key-value pairs are taken as input in very reduce task and key-value pairs as output are 

generated. 

 If reducers are specified as zero then no shuffling and sorting are performed and which makes 

the mapper phase faster. (Figure 2.24) 

Map Input 

• Map(inkey, invalue)-> list(intermediate key, intermediate value) 

• Purpose of map phase is to organize data in preparation for processing done in reduce phase 

• Input to map function is in the form of (key, value) pairs, even though the input to MapReduce 

program is a file or files.  

Map 

• Value:  data record 

• Key:  Offset of data record from the beginning of the file 

• Output: Collection of Key value pairs which are inputs for reduce function 

• E.g. Wordcount Problem 

• Mapper can run several identical mappers in parallel 

Reduce 

• Reduce function processes intermediate values for particular key generated by map function and 

generates the output 

• One to one mapping between keys and reducers 

• Several reducers can run in parallel. Independent of each other 

• No. of reducers decided by the user 

• Default no. of reducers is 1 (Figure 2.23) 
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Fig. 2.23 Reduce 

Map Reduce Example 

 

Fig. 2.24 MapReduce Example 

Conclusion 

 Hadoop MapReduce enables a high degree of parallelism, scalability, and fault tolerance. 

 It is a versatile tool for data processing and it will help enterprises to gain importance. 

 If you want to become a Hadoop administrator, it is mandatory to be familiar with the role and 

functionality of MapReduce. 
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Data Loading Techniques & Analysis 

 

Fig. 2.25 Data Loading Techniques & Analysis 

Data Loading using Flume 

Flume is a distributed, reliable and available service for efficiently collecting, aggregating and moving 

large amounts of streaming event data (Figure 2.26). 

 

Fig. 2.26 Data Loading using Flume 
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Hadoop Cluster Architecture 

• Cluster: Loosely/Tightly connected computers work together as a single system 

• Hadoop Cluster: Storing & analysing large amount of unstructured data in distributed 

environment 

• These clusters run on low cost on commodity computers 

 

Fig. 2.27 Hadoop Cluster Architecture 

Hadoop Cluster architecture as Share nothing systems 

• Nodes share only the networks that connects them 

• Large Hadoop clusters are arranged in several racks 

• Network traffic between different nodes in the same rack is much more desirable than network 

traffic across the racks 

• E.g. Hadoop cluster set up for 4500 nodes (Figure 2.27) 
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Fig. 2.28 Hadoop Cluster architecture as Share nothing systems 

• In this Hadoop cluster (Figure 2.28) 

➢ 110 different racks 

➢ Each rack has 40 slave machines 

Rack Description 

• At the top of each rack there is a rack switch 

• Each slave machine has cables coming out from both the ends 

• Cables are connected to rack switch at the top which means that top rack switch will have 

around 80 ports 

• There are global 8 core switches 

• The rack which has uplinks connected to core switches and hence connecting all other racks 

with uniform bandwidth forming the cluster 

• In the cluster, few machines act as NameNodes and JobTracker 
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• They are referred to as Masters 

• Masters have different configuration for more DRAM and CPU and less storage 

• The majority of machine acts as data node and Task trackers are referred as slaves 

• These slave nodes have lots of local disk storage and moderate amounts of DRAM and CPU 

 

Hadoop configuration files 

• Hadoop configuration is driven by two types of important configuration files: 

➢ Read-only default configuration - src/core/core-default.xml, src/hdfs/hdfs-

default.xml and src/mapred/mapred-default.xml. 

➢ Site-specific configuration - conf/core-site.xml, conf/hdfs-site.xml and conf/mapred-

site.xml. 

Configuring the Environment of the Hadoop Daemons 

Table 2.4 Hadoop Configuration Options 

Daemon Configuration Options 

NameNode HADOOP_NAMENODE_OPTS 

DataNode HADOOP_DATANODE_OPTS 

SecondaryNamenode HADOOP_SECONDARYNAMENODE_OPTS 

JobTracker HADOOP_JOBTRACKER_OPTS 

TaskTracker HADOOP_TASKTRACKER_OPTS 

 

Configuring the Hadoop Daemons 

Table 2.5 Specified in conf/core-site.xml 

Parameter Value 

fs.default.name URI of NameNode. 

 

Table 2.6 conf/hdfs-site.xml 

Parameter Description 

dfs.name.dir 
Path on the local filesystem where the NameNode stores the 

namespace and transactions logs persistently. 

dfs.data.dir 
Comma separated list of paths on the local filesystem of a 

DataNode where it should store its blocks. 

 

http://hadoop.apache.org/core/docs/current/core-default.html
http://hadoop.apache.org/core/docs/current/core-default.html
http://hadoop.apache.org/core/docs/current/hdfs-default.html
http://hadoop.apache.org/core/docs/current/hdfs-default.html
http://hadoop.apache.org/core/docs/current/hdfs-default.html
http://hadoop.apache.org/core/docs/current/hdfs-default.html
http://hadoop.apache.org/core/docs/current/hdfs-default.html
http://hadoop.apache.org/core/docs/current/mapred-default.html
http://hadoop.apache.org/core/docs/current/mapred-default.html
http://hadoop.apache.org/core/docs/current/mapred-default.html
http://hadoop.apache.org/core/docs/current/mapred-default.html


HDFS, Hadoop and Hadoop Infrastructure 

34 

 

Table 2.7 conf/mapred-site.xml 

Parameter Value 

mapred.job.tracker Host or IP and port of JobTracker. 

mapred.system.dir Path on the HDFS where the MapReduce framework stores 

system files e.g. /hadoop/mapred/system/. 

mapred.local.dir Comma-separated list of paths on the local filesystem where 

temporary MapReduce data is written. 

mapred.tasktracker.{map|reduce}. 

tasks.maximum 

The maximum number of MapReduce tasks, which are run 

simultaneously on a given TaskTracker, individually. 

dfs.hosts/dfs.hosts.exclude List of permitted/excluded DataNodes. 

mapred.hosts/mapred.hosts.exclude List of permitted/excluded TaskTrackers. 

mapred.queue.names Comma separated list of queues to which jobs can be submitted. 

mapred.acls.enabled Boolean, specifying whether checks for queue ACLs and job 

ACLs are to be done for authorizing users for doing queue 

operations and job operations 

 

Table 2.8 conf/mapred-queue-acls.xml 

Parameter Value 

mapred.queue.queue-name.acl-submit-job List of users and groups that can submit jobs to the 

specified queue-name. 

mapred.queue.queue-name.acl-

administer-jobs 

List of users and groups that can view job details, 

change the priority or kill jobs that have been 

submitted to the specified queue-name. 

 

Introduction to Apache Hadoop 

 With the continuous business growth and start-ups flourishing up, the need to store a large 

amount of data has also increased rapidly. 

 To meet the growth of business and gain profits the companies would fetch tools to analyse the 

Big Data. 

 To meet the growing demand, Apache Software Foundation launched Hadoop, a tool to store, 

analyse, and process Big Data. 

What is Hadoop? 

 Hadoop is an open source Java-based framework for big data processing. 
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 It is a tool used to store, analyse and process Big Data in the distributed environment. 

 The Hadoop is an open source project of Apache Software Foundation and was originally 

created by Yahoo in 2006. 

 Since then, this open source project has brought revolution in Big Data analytics and taken over 

the Big Data market. 

 In simple terms, Apache Hadoop is a tool used to handle big data. 

 It is used to work on large sets of data distributed over a number of computers using some 

programming languages. 

 Apache Hadoop is easily scalable and you can scale a number of machines through a single 

server. 

 Apache Hadoop runs on Java and is an open source framework used to process and store a large 

amount of data on a huge cluster. 

 Hadoop framework is composed of four main components (Figure 2.29): 

 Hadoop Common 

 Hadoop Distributed File System 

 YARN 

 MapReduce 

The Apache framework is composed of the following components: 

 

Fig. 2.29 Hadoop framework Components 
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 Hadoop Common: 

 It refers to the common Java utilities and libraries that support Hadoop modules. 

 Hadoop Distributed File Systems: 

 It is the primary storage system that Hadoop applications use. 

 It is a distributed file system that enables you to have an access to applications data. 

 Hadoop MapReduce: 

 Hadoop MapReduce is a software framework used for the parallel processing of big 

data. 

 Hadoop YARN: 

 YARN is the resource management technology used by Hadoop. 

 It is responsible for resource management and job scheduling 

How does Hadoop Work? 

 

Fig. 2.30 Working of Hadoop 
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 The working of Hadoop is a three-stage procedure. Let’s understand how exactly Hadoop works 

(Figure 2.30): 

 Stage 1: The job is submitted to the Hadoop job client for the required process with following 

details – 

 Input and Output file location in the distributed file system 

 The Java classes with the implementation of Map and Reduce functions 

 Job configuration with the different parameter set 

 Stage 2: 

 Hadoop job client transfers job along with job configuration to the JobTracker. 

 The JobTracker is then responsible to perform for configuration distribution to slaves, 

tasks scheduling, and monitoring, submitting status update back to the job client. 

 Step 3: 

 At different nodes, TaskTrackers then execute the tasks according to MapReduce 

implementation. 

 The output generated by the Reduce function is stored on the distributed file system in 

output files. 

Features of Apache Hadoop 

 Scalability: Apache Hadoop uses distributed processing of local data, this allows the data to be 

stored, processed, and analyzed at a large scale. 

 Reliability: In Apache Hadoop, the data is auto-replicated and hence can generate a redundant 

copy of data when it comes to system failures. Thus, Apache Hadoop has fault tolerance 

feature. 

 Flexibility: Apache Hadoop does not follow the traditional relational database rules. It can store 

information and data in any format such as structured, unstructured, and semi-structured. 

 Cost-effectiveness: Apache Hadoop is open source and is free of cost. This makes it cost-

effective and available for all. 

 Compatibility: Apache Hadoop, being a Java-based framework, is compatible with all the 

platforms. 

Hadoop Cluster Modes 

• Standalone mode 

• Single node cluster/Pseudo distributed mode 

• Multi node cluster/ Fully Distributed mode 
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Standalone mode 

• Default mode 

• HDFS is not utilized in this mode 

• Local file system is used for input and output 

• Used for debugging purpose 

• No custom configuration is required in 3 Hadoop files 

➢ mapred- site.xml 

➢ core-site.xml 

➢ hdfs-site.xml 

• Standalone mode is much faster than pseudo distributed mode 

Pseudo distributed mode 

• Configuration is required in given 3 files 

• Replication factor is one for HDFS 

• Here, one node is used as Master node/data node/Job tracker/Task tracker 

• Used for real code to test in HDFS 

• Pseudo distributed cluster is a cluster where all daemons are running on one node itself 

Fully Distributed mode/Multiple node cluster 

• Production phase 

•  This mode involves the code running on an actual Hadoop cluster.  

• It is mode in which you see the actual power of Hadoop, when you run your code against a very 

large input on 1000s of servers. 

• It is always difficult to debug a MapReduce program as you have Mappers running on different 

machine with different piece of input. 

•  You can never know where the Mappers are going to run eventually.  

• Also, with large inputs, it is likely that the data will be irregular in its format. 
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UNIT 3 HADOOP MAP REDUCE FRAMEWORK                                                                       9 Hrs.  
 Relationship between MapReduce and HDFS - Clients, Data Nodes, and HDFS Storage - 
MapReduce workloads. Hadoop framework - Hadoop data types - Hadoop map reduce 
Paradigm - Map and Reduce Tasks - Map reduce Execution framework - Partitioners and 
Combiners - Input formats (Input Splits and Records, Text Input, Binary Input, Multiple 
Inputs)- Output Formats (TextOutput, BinaryOutPut, Multiple Output)- Hadoop Mapreduce 
programming - Advanced Map reduce concepts - Counters, Custom Writables - Unit testing 
framework - Error Handling - Tuning - Advanced Map reduce.  

 

HADOOP MAPREDUCE FRAMEWORK 

MAPREDUCE 

 MapReduce is a programming framework of Hadoop that is used for parallel processing 

of data. MapReduce is the processing engine of Hadoop that processes and computes 

vast volumes of data. 

 It has 2 components: Map and Reduce phase which is shown in Fig. 3.1. 

 
Fig. 3.1 Components of Hadoop 

 The generalized workflow of MapReduce is shown in Fig. 3.2. 
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Fig. 3.2 Generalized Workflow of MapReduce 

 

 MapReduce performs parallel processing in the manner shown in Fig. 3.3. 

 
Fig. 3.3 Parallel Processing of MapReduce 

 The detailed workflow of MapReduce is shown in the Fig. 3.4: 
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Fig. 3.4 Detailed Workflow of MapReduce 

 So, to conclude, MapReduce does parallel processing of data in Hadoop. 

 

HDFS – HADOOP DISTRIBUTED FILE SYSTEM 

 HDFS provides high throughput access to application data and is suitable for applications 

that have large data sets. 

 The NameNode executes file system namespace operations like opening, closing, and 

renaming files and directories. 

 The DataNodes are responsible for serving read and write requests from the file system’s 

clients. 

 
Fig. 3.5 Hadoop Distributed File System 

Working of HDFS 
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Fig. 3.6 Working of HDFS 

RELATIONSHIP BETWEEN MAPREDUCE AND HDFS 

 We compare the Hadoop software framework as a computer, the MapReduce is the same 

as software, and the HDFS is the same as hardware. 

 MapReduce is a framework that is used by Hadoop to process the data residing with 

HDFS. 

 HDFS store data in each block which size is 64MB or 128MB and MapReduce can 

interaction with HDFS and operates the data in HDFS. 

 The configuration which we set when we set the environment of Hadoop. The below 

diagram will show the structure of Hadoop 

Fig. 3.7 Relationship between MapReduce and HDFS 
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 HDFS is a distributed file system that provides high throughput access to application 

data 

 MapReduce is a software framework that processes big data on large clusters reliably. 

 Hadoop supports distributed processing of large data sets across clusters of computers. 

 HDFS and MapReduce are two modules in Hadoop architecture. 

HDFS vs MapReduce 

 
Fig. 3.8 HDFS vs. MapReduce 

 Another difference between HDFS and MapReduce is that the HDFS provides high-

performance access to data across highly scalable Hadoop clusters while MapReduce 

performs the processing of big data. 

HDFS CLIENT 

 Client in Hadoop refers to the Interface used to communicate with the Hadoop 

Filesystem. 

 There are different types of Clients available with Hadoop to perform different tasks. 

 The basic filesystem client HDFS DFS is used to connect to a Hadoop Filesystem and 

perform basic file related tasks. 

 It uses the ClientProtocol to communicate with a NameNode daemon, and connects 

directly to DataNodes to read/write block data. 



Hadoop MapReduce Framework 
 

7 
 

 These Clients can be invoked using their respective CLI (Command Line Interface) 

commands from a node where Hadoop is installed and has the necessary configurations 

and libraries required to connect to a Hadoop Filesystem. Such nodes are often referred 

as Hadoop Clients. 

 For example, if I just write an HDFS command on the Terminal, is it still a "client”? 

 Technically, Yes. If you are able to access the FS using the HDFS command, then the 

node has the configurations and libraries required to be a Hadoop Client. 

HDFS DATANODE 

 A DataNode stores data in the Hadoop Filesystem. 

 A functional filesystem has more than one DataNode, with data replicated across them. 

 On startup, a DataNode connects to the NameNode; spinning until that service comes up. 

It then responds to requests from the NameNode for filesystem operations. 

 Client applications can talk directly to a DataNode, once the NameNode has provided the 

location of the data. 

 Similarly, MapReduce operations farmed out to TaskTracker instances near a DataNode, 

talk directly to the DataNode to access the files. 

 TaskTracker instances can be deployed on the same servers of the host DataNode 

instances, so that MapReduce operations are performed close to the data. 

 DataNode instances can talk to each other, which is what they do when they are 

replicating data. 

 Data is designed to replicate across multiple servers, rather than multiple disks on the 

same server. 

 An ideal configuration is for a server to have a DataNode, a TaskTracker, and then 

physical disks with one TaskTracker slot per CPU. 

 This will allow every TaskTracker 100% of a CPU, and separate disks to read and write 

data. 

Map Task (HDFS Data Localization): 

 The unit of input for a map task is an HDFS data block of the input file. The map 

taskfunctions most efficiently if the data block it has to process is available locally on the 

node on which the task is scheduled. This approach is called HDFS data localization. 

 An HDFS data locality miss occurs if the data needed by the map task is not available 

locally. In such a case, the map task will request the data from another node in the 
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cluster: an operation that is expensive and time consuming, leading to inefficiencies and, 

hence, delay in job completion. 

CLIENTS, DATA NODES, AND HDFS STORAGE: 

Input data is uploaded to the HDFS file system in either of following two ways: 

1. An HDFS client has a large amount of data to place intoHDFS.  

2. An HDFS client is constantly streaming data intoHDFS. 

 Both these scenarios have the same interaction with HDFS, except that in the streaming 

case, the client waits for enough data to fill a data block before writing to HDFS.  

 Data is stored in HDFS in large blocks, generally 64 to 128 MB or more in size.  

 This storage approach allows easy parallel processing of data. 

HDFS-SITE.XML 

<property> 

<name>dfs.block.size</name> 

<value>134217728</value> ç 128MB Block size 

</property> 

OR 

<property> 

<name>dfs.block.size</name> 

<value>67108864</value> ç 64MB Block size (Default is this value is not set) 

</property> 

Block Replication Factor: 

 During the process of writing to HDFS, the blocks are generally replicated to multiple 

data nodes for redundancy.  

 The number of copies, or the replication factor, is set to a default of 3 and can be 

modified by the cluster administrator as below: 

HDFS-SITE.XML 

<property> 

<name>dfs.replication</name> 

<value>3</value> 

</property> 

<property> 

When the replication factor is three, HDFS’s placement policy is to: 

- Put one replica on one node in the localrack, 
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- Another on a node in a different (remote)rack,  

- Last on a different node in the same remoterack. 

 When a new data block is stored on a data node, the data node initiates a replication 

process to replicate the data onto a second data node.  

 The second data node, in turn, replicates the block to a third data node, completing the 

replication of the block. 

 With this policy, the replicas of a file do not evenly distribute across the racks.  

 One third of replicas are on one node, two thirds of replicas are on one rack, and the 

other third are evenly distributed across the remaining racks.  

 This policy improves write performance without compromising data reliability or read 

performance. 

HADOOP DATA TYPES  

Serialization: 

 Serialization is the process of converting object data into byte stream data for 

transmission over a network across different nodes in a cluster or for persistent data 

storage. 

Deserialization: 

 Deserialization is the reverse process of serialization and converts byte stream data into 

object data for reading data from HDFS.  

 Hadoop provides Writables for serialization and deserialization purpose. 

Writable and WritableComparable Interfaces: 

 To provide mechanisms for serialization and deserialization of data, Hadoop provided 

two important interfaces Writable and WritableComparable.  

 Writable interface specification is as follows: 

package org.apache.hadoop.io; import java.io.DataInput; 

import java.io.DataOutput; import java.io.IOException; public interface Writable 

{ 

void write (DataOutput out) throws IOException; void readFields(DataInput in) 

throws IOException; 

} 

 WritableComparable interface is subinterface of Hadoop’s Writable and Java’s 

Comparable interfacesand its specification is shown below: 

public interface WritableComparable extends Writable, Comparable 
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{ 

} 

 The standard java.lang.Comparable Interface contains single method compareTo() 

method for comparing the operators passed to it. 

public interface Comparable 

{ 

public int compareTo(Object obj); 

} 

 The compareTo() method returns 1, 0 , or 1 depending on whether the compared object is 

less than, equal to, or greater than the current object. 

 The above two interfaces are provided in org.apache.hadoop.io package 

Constraints on Keyvalues in Mapreduce 

 Hadoop data types used in Mapreduce for key or value fields must satisfy two 

constraints.  

o Any data type used for a Value field in mapper or reducer input/output must 

implementWritable Interface. 

o Any data type used for a Key field in mapper or reducer input/output must implement 

WritableComparable interface along with Writable interface to compare the keys of 

this type with each other for sorting purposes 

Writable Classes – Hadoop Data Types 

 Hadoop provides classes that wrap the Java primitive types and implement the 

WritableComparableand Writable Interfaces. They are provided in the 

org.apache.hadoop.io package. 

 All the Writable wrapper classes have a get() and a set() method for retrieving and 

storing the wrapped value. 

Primitive Writable Classes 

 These are Writable Wrappers for Java primitive data types and they hold a single 

primitive value that can be set either at construction or via a setter method. 

 All these primitive writable wrappers have get() and set() methods to read or write the 

wrapped value. Below is the list of primitive writable data types available in Hadoop. 

o BooleanWritable 

o ByteWritable 

o IntWritable 
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o VIntWritable 

o FloatWritable 

o LongWritable 

o VLongWritable 

o DoubleWritable 

 In the above list VIntWritable and VLongWritable are used for variable length Integer 

types and variable length long types respectively. 

 Serialized sizes of the above primitive writable data types are same as the size of actual 

java data type. So, the size of IntWritable is 4 bytes and LongWritable is 8 bytes. 

Array Writable Classes 

 Hadoop provided two types of array writable classes, one for singledimensionaland 

another for twodimensional arrays.  

 But the elements of these arrays must be other writable objects like IntWritable or 

LongWritable only but not the java native data types like int or float. 

o ArrayWritable 

o TwoDArrayWritable 

Map Writable Classes 

 Hadoop provided below MapWritable data types which implement java.util.Map 

interface 

o AbstractMapWritable – This is abstract or base class for other MapWritable 

classes. 

o MapWritable – This is a general-purpose map mapping Writable keys to 

Writable values. 

o SortedMapWritable – This is a specialization of the MapWritable class that 

also implements the SortedMap interface. 

 

Other Writable Classes 

 NullWritable NullWritable is a special type of Writable representing a null value. No 

bytes are read or written when a data type is specified as NullWritable. So, in 

Mapreduce, a key or a value can be declared as a NullWritable when we don’t need to 

use that field. 

 ObjectWritable This is a generalpurposegeneric object wrapper which can store any 

objects like Java primitives, String, Enum, Writable, null, or arrays. 
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 Text Text can be used as the Writable equivalent of java.lang.String and It’s max size 

is 2 GB. Unlike java’s String data type, Text is mutable in Hadoop. 

 BytesWritable BytesWritable is a wrapper for an array of binary data. 

 GenericWritable It is similar to ObjectWritable but supports only a few types. User 

need to subclass this GenericWritable class and need to specify the types to support. 

Example Program to Test Writables 

 Let’s write a WritablesTest.java program to test most of the data types mentioned above 

in this post with get (), set (), getBytes(), getLength(), put(), containsKey(), keySet() 

methods. 

import org.apache.hadoop.io. * ;  

import java.util.* ; 

public class WritablesTest 

{ 

public static class TextArrayWritable extends ArrayWritable 

{ 

public TextArrayWritable() 

{ 

super (Text.class) ; 

} 

} 

public static class IntArrayWritable extends ArrayWritable 

{ 

public IntArrayWritable() 

{ 

super (IntWritable.class) ; 

} 

} 

public static void main (String [] args) 

{ 

IntWritable i1 = new IntWritable(2) ;  

IntWritable i2 = new IntWritable() ;  

i2.set (5) ; 

IntWritable i3 = new IntWritable () ; 
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i3.set (i2.get ()) ; 

System.out.printf("Int Writables Test I1: %d, I2: %d, I3: %d", i1.get (), i2.get (), i3.get ()) ; 

BooleanWritable bool1 = new BooleanWritable() ; 

bool1.set(true); 

ByteWritable byte1 = new ByteWritable((byte)7) ; 

System.out.printf("\n Boolean Value: %s Byte Value: %d", bool1.get (), byte1.get ()) ; Text t 

= new Text("hadoop”) ; 

Text t2 = new Text () ; t2.set("pig”) ; 

System.out.printf("\n t: %s, t.legth: %d, t2: %s, t2.length: %d \n", t.toString(), t.getLength(), 

t2.getBytes(), t2.getBytes().length); 

ArrayWritable a = new ArrayWritable(IntWritable.class) ; 

a.set(new IntWritable[]{new IntWritable(10), new IntWritable(20), new IntWritable(30)}); 

ArrayWritable b = new ArrayWritable(Text.class); 

b.set (new Text [] {new Text("Hello"), new Text("Writables"), new Text ("World !!!")}) ; 

for (IntWritable i: (IntWritable[]) a.get()) 

System.out.println(i) ; 

for (Text i: (Text []) b.get()) 

System.out.println(i) ; 

IntArrayWritableia = new IntArrayWritable(); 

ia.set (newIntWritable[]{new IntWritable(100), new IntWritable(300), new 

IntWritable(500)}) ;  

IntWritable[] ivalues = (IntWritable[])ia.get() ; 

for (IntWritablei:ivalues)  

System.out.println(i); 

MapWritable m = new MapWritable() ; IntWritable key1 = new IntWritable(1) ;  

NullWritable value1 = NullWritable.get() ;  

m.put(key1, value1) ; 

m.put(new VIntWritable(2), new LongWritable(163));  

m.put(new VIntWritable(3), new Text("Mapreduce"));  

System.out.println(m.containsKey(key1));  

System.out.println(m.get(new VIntWritable(3)));  

m.put(new LongWritable(1000000000), key1);  

Set<Writable> keys = m.keySet() ; 

For(Writable w: keys)  
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System.out.println(m.get(w)) ; 

} 

} 

MAPREDUCE PARADIGM 

 Splits input files into blocks (typically of 64MB each) 

 Operated on key/value pairs 

 Mapper filter & transform input data 

 Reducers aggregate mappers output 

 Efficient way to process the cluster: 

o Move code to data 

o Run code on all machines 

 
Fig. 3.9 MapReduce Paradigm 
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Fig. 3.10 Map and Reduce Phase 

 

Job Scheduling in Hadoop 

 One map task for each block of the input file 

o Applies user-defined map function to each record in the block 

o Record = <key, value> 

 User-defined number of reduce tasks 

o Each reduce task is assigned a set of record groups 

o For each group, apply user-defined reduce function to the record values in that 

group 

 Reduce tasks read from every map task 

o Each read returns the record groups for that reduce task 

 

Visual understanding of Dataflow in Hadoop 

 Map tasks write their output to local disk 

o Output available after map task has completed 

 Reduce tasks write their output to HDFS 

o Once job is finished, next job’s map tasks can be scheduled, and will read 

input from HDFS 

 Therefore, fault tolerance is simple: simply re-run tasks on failure 

o No consumers see partial operator output 
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Fig. 3.11 Step1 of Dataflow in Hadoop 

 
Fig. 3.12 Step2 of Dataflow in Hadoop 

 
Fig. 3.13 Step 3 of Dataflow in Hadoop 
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Fig. 3.14 Step 4 of Dataflow in Hadoop 

 Terms are borrowed from Functional Language (e.g., Lisp) 

Sum of Squares: 

 (map square ‘(1 2 3 4)) 

o Output: (1 4 9 16) 

o [processes each record sequentially and independently] 

 (reduce + ‘(1 4 9 16)) 

o (+16 (+9 (+4 1))) 

o Output: 30 

o [processes set of all records in batches] 

 Let’s consider a sample application: Wordcount 

o You are given a huge dataset and asked to list the count for each of the words 

in each of the documents therein 

o Process individual records to generate intermediate key/value pairs. 

 

Fig. 3.15 Individual Record Processing 
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o Parallelly process individual records to generate intermediate key/value pairs. 

 

Fig. 3.16 Parallel Processing of Individual Record 

o Parallelly process a large number of individual records to generate 

intermediate key/value pairs. 

 

Fig. 3.17 Parallel Processing of Large Number of Records 

o Reduce processes and merges all intermediate values associated per key 

 

Fig. 3.18 Reduce Process 

o Each key assigned to one Reduce 

o Parallelly processes and merges all intermediate values by partitioning keys 
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Fig. 3.19 Merge the Intermediate Values 

o Popular: Hash partitioning, i.e., key is assigned to reduce # - 

hash(key)%number of reduce servers 

Hadoop Code – Map 

 

Fig. 3.20 Hadoop Code - Map 
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Hadoop Code – Reduce 

 

Fig. 3.21 Hadoop Code - Reduce 

Hadoop Code – Driver 

 

Fig. 3.22 Hadoop Code - Driver 
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MAPREDUCE WITH COMBINER AND PARTITIONER 

 

Fig. 3.23 Combiner and Partitioners 

MAPREDUCE COMBINERS 

 A Combiner, also known as a semi-reducer, is an optional class that operates by 

accepting the inputs from the Map class and thereafter passing the output key-value pairs 

to the Reducer class. 

MapReduce with and without Combiner 

 
Fig. 3.24 MapReduce without Combiner 
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Fig. 3.25 MapReduce with Combiner 

 The main function of a Combiner is to summarize the map output records with the same 

key. The output key-value collection of the combiner will be sent over the network to the 

actual Reducer task as input. 

Combiner 

 The Combiner class is used in between the Map class and the Reduce class to reduce the 

volume of data transfer between Map and Reduce. Usually, the output of the map task is 

large and the data transferred to the reduce task is high. 

 The following MapReduce task diagram shows the COMBINER PHASE. 

 
Fig. 3.26 Combiner Phase 
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 Here is a brief summary on how MapReduce Combiner works − 

o A combiner does not have a predefined interface and it must implement the 

Reducer interface’s reduce method. 

o A combiner operates on each map output key. It must have the same output 

key-value types as the Reducer class.  

o A combiner can produce summary information from a large dataset because it 

replaces the original Map output. 

 Although, Combiner is optional yet it helps segregating data into multiple groups for 

Reduce phase, which makes it easier to process. 

MapReduce Combiner Implementation 

 The following example provides a theoretical idea about combiners. Let us assume we 

have the following input text file named input.txt for MapReduce. 

 
 The important phases of the MapReduce program with Combiner are discussed below. 

Record Reader 

 This is the first phase of MapReduce where the Record Reader reads every line from the 

input text file as text and yields output as key-value pairs. 

 Input − Line by line text from the input file. 

 Output − Forms the key-value pairs. The following is the set of expected key-value pairs. 

 
Map Phase 

 The Map phase takes input from the Record Reader, processes it, and produces the 

output as another set of key-value pairs. 
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 Input − The following key-value pair is the input taken from the Record Reader. 

 
 The Map phase reads each key-value pair, divides each word from the value using 

StringTokenizer, treats each word as key and the count of that word as value. 

 The following code snippet shows the Mapper class and the map function. 

public static class TokenizerMapper extends Mapper<Object, Text, Text, 

IntWritable> 

{ 

 private final static IntWritable one = new IntWritable(1); 

 private Text word = new Text(); 

 public void map(Object key, Text value, Context context) throws IOException, 

InterruptedException 

 { 

   StringTokenizer itr = new StringTokenizer(value.toString()); 

   while (itr.hasMoreTokens()) 

   { 

word.set(itr.nextToken()); 

context.write(word, one); 

   } 

 } 

} 

 Output − The expected output is as follows – 

 
Combiner Phase 
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 The Combiner phase takes each key-value pair from the Map phase, processes it, and 

produces the output as key-value collection pairs. 

 Input − The following key-value pair is the input taken from the Map phase. 

 
 The Combiner phase reads each key-value pair, combines the common words as key and 

values as collection. 

 Usually, the code and operation for a Combiner is similar to that of a Reducer. 

 Following is the code snippet for Mapper, Combiner and Reducer class declaration. 

job.setMapperClass(TokenizerMapper.class); 

job.setCombinerClass(IntSumReducer.class); 

job.setReducerClass(IntSumReducer.class);  

 Output − The expected output is as follows – 

 
Reducer Phase 

 The Reducer phase takes each key-value collection pair from the Combiner phase, 

processes it, and passes the output as key-value pairs. 

 Note that the Combiner functionality is same as the Reducer. 

 Input − The following key-value pair is the input taken from the Combiner phase. 

 
 The Reducer phase reads each key-value pair. Following is the code snippet for the 

Combiner. 

public static class IntSumReducer extends 

Reducer<Text,IntWritable,Text,IntWritable> 

{ 

private IntWritable result = new IntWritable(); 
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public void reduce(Text key, Iterable<IntWritable> values, Context context)throws 

IOException, InterruptedException 

{ 

     int sum = 0; 

     for (IntWritableval : values) 

     { 

       sum += val.get(); 

     } result.set(sum); 

context.write(key, result); 

   } 

} 

 Output − The expected output from the Reducer phase is as follows – 

 
Record Writer 

 This is the last phase of MapReduce where the Record Writer writes every key-value pair 

from the Reducer phase and sends the output as text. 

 Input − Each key-value pair from the Reducer phase along with the Output format. 

 Output − It gives you the key-value pairs in text format. Following is the expected 

output. 



Hadoop MapReduce Framework 
 

27 
 

 
MAPREDUCE –PARTITIONER 

 A partitioner works like a condition in processing an input dataset. 

 The partition phase takes place after the Map phase and before the Reduce phase. 

 The number of partitioners is equal to the number of reducers. 

 That means a partitioner will divide the data according to the number of reducers. 

 Therefore, the data passed from a single partitioner is processed by a single Reducer. 

Partitioner 

 A partitioner partitions the key-value pairs of intermediate Map-outputs. 

 It partitions the data using a user-defined condition, which works like a hash function. 

 The total number of partitions is same as the number of Reducer tasks for the job. 

 Let us take an example to understand how the partitioner works. 

MapReduce Partitioner Implementation 

 For the sake of convenience, let us assume we have a small table called Employee with 

the following data. 

 We will use this sample data as our input dataset to demonstrate how the partitioner 

works. 

Table 3.1 Employee Dataset 

Id Name Age Gender Salary 
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1201 gopal 45 Male 50,000 

1202 manisha 40 Female 50,000 

1203 khalil 34 Male 30,000 

1204 prasanth 30 Male 30,000 

1205 kiran 20 Male 40,000 

1206 laxmi 25 Female 35,000 

1207 bhavya 20 Female 15,000 

1208 reshma 19 Female 15,000 

1209 kranthi 22 Male 22,000 

1210 Satish 24 Male 25,000 

1211 Krishna 25 Male 25,000 

1212 Arshad 28 Male 20,000 

1213 lavanya 18 Female 8,000 

 We have to write an application to process the input dataset to find the highest salaried 

employee by gender in different age groups (for example, below 20, between 21 to 30, 

above 30). 

 The above data is saved as input.txt in the “/home/hadoop/hadoopPartitioner” directory 

and given as input. 

 Based on the given input, following is the algorithmic explanation of the program. 

 Map Tasks 

o The map task accepts the key-value pairs as input while we have the text data 

in a text file. The input for this map task is as follows − 

o Input − The key would be a pattern such as “any special key + filename + line 

number” (example: key = @input1) and the value would be the data in that 

line (example: value = 1201 \t gopal \t 45 \t Male \t 50000). 
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o Method − The operation of this map task is as follows – 

 Read the value (record data), which comes as input value from the 

argument list in a string. 

 Using the split function, separate the gender and store in a string 

variable. 

String [] str = value.toString().split("\t", -3);  

String gender=str[3];  

 Send the gender information and the record data value as output key-

value pair from the map task to the partition task 

context.write (new Text(gender), new Text(value));  

 Repeat all the above steps for all the records in the text file. 

o Output − You will get the gender data and the record data value as key-value 

pairs. 

 

 

 Partitioner Task 

o The partitioner task accepts the key-value pairs from the map task as its input. 
Partition implies dividing the data into segments. According to the given 
conditional criteria of partitions, the input key-value paired data can be 
divided into three parts based on the age criteria. 

o Input − The whole data in a collection of key-value pairs. 
 key = Gender field value in the record. 
 value = Whole record data value of that gender. 

o Method − The process of partition logic runs as follows. 
 Read the age field value from the input key-value pair 

o Check the age value with the following conditions. 

 Age less than or equal to 20 

 Age Greater than 20 and Less than or equal to 30. 

 Age Greater than 30. 

if(age<=20) 

{ 

     return 0; 

} 

else if(age>20 && age<=30) 

{ 
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     return 1 % numReduceTasks; 

} 

else 

{ 

     return 2 % numReduceTasks; 

}  

o Output − The whole data of key-value pairs are segmented into three 

collections of key-value pairs. The Reducer works individually on each 

collection. 

 Reduce Tasks 

o The number of partitioner tasks is equal to the number of reducer tasks. Here 

we have three partitioner tasks and hence we have three Reducer tasks to be 

executed. 

o Input − The Reducer will execute three times with different collection of key-

value pairs. 

 key = gender field value in the record. 

 value = the whole record data of that gender. 

o Method − The following logic will be applied on each collection. 

 Read the Salary field value of each record. 

 String [] str = val.toString ().split("\t", -3); 

 Note: str [4] have the salary field value.  

o Check the salary with the max variable. If str[4] is the max salary, then assign 

str[4] to max, otherwise skip the step. 

if(Integer.parseInt(str[4])>max) 

{ 

     max=Integer.parseInt(str[4]); 

} 

o Repeat Steps 1 and 2 for each key collection (Male & Female are the key 

collections). After executing these three steps, you will find one max salary 

from the Male key collection and one max salary from the Female key 

collection. 

context.write(new Text(key), new IntWritable(max));  
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o Output − Finally, you will get a set of key-value pair data in three collections 

of different age groups. It contains the max salary from the Male collection 

and the max salary from the Female collection in each age group respectively. 

o After executing the Map, the Partitioner, and the Reduce tasks, the three 

collections of key-value pair data are stored in three different files as the 

output. 

o All the three tasks are treated as MapReduce jobs. The following requirements 

and specifications of these jobs should be specified in the Configurations – 

 Job name 

 Input and Output formats of keys and values 

 Individual classes for Map, Reduce, and Partitioner tasks 

Configuration conf = getConf(); 

//Create Job Jobjob = new Job(conf, "topsal"); 

job.setJarByClass(PartitionerExample.class); 

// File Input and Output paths FileInputFormat.setInputPaths(job, new 

Path(arg[0])); 

FileOutputFormat.setOutputPath(job,new Path(arg[1])); 

//Set Mapper class and Output format for key-value pair. 

job.setMapperClass(MapClass.class); 

job.setMapOutputKeyClass(Text.class); 

job.setMapOutputValueClass(Text.class); 

//set partitioner statement 

job.setPartitionerClass(CaderPartitioner.class); 

//Set Reducer class and Input/Output format for key-value pair. 

job.setReducerClass(ReduceClass.class); 

//Number of Reducer tasks. 

job.setNumReduceTasks(3); 

//Input and Output format for data  

job.setInputFormatClass(TextInputFormat.class); 

job.setOutputFormatClass(TextOutputFormat.class); 

job.setOutputKeyClass(Text.class); 

job.setOutputValueClass(Text.class); 

o I/P Mapper: Data set 

o O/P  to Mapper   I/P  to Partioner: 
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 Female   record 

 Male  record 

o O/P Partioner  I/P  to Reducer 

 Age < 20  Female  Record 

 Age < 20  Male  Record 

 Age > 20 &&< 30  Female  Record 

 Age > 20 &&< 30  Male  Record 

 Age > 30  Female  Record 

 Age > 30  Male  Record 

o O/P Reducer 

 Max(Age < 20  Female  Record) 

 Max(Age < 20  Male  Record) 

 Max(Age > 20 &&< 30  Female  Record) 

 Max(Age > 20 &&< 30  Male  Record) 

 Max(Age > 30  Female  Record) 

 Max(Age > 30  Male  Record) 

HADOOP INPUT FORMATS 

Input Splits, Input Formats and Record Reader: 

 

Fig. 3.27 Input Splits and Record Reader 
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 On job startup, each input file is broken into splits and each map processes a single split. 

Each split is further divided into records of key/value pairs which are processed by map 

tasks one record at a time. 

 To get split details of an input file, Hadoop provides an InputSplit class 

in org.apache.hadoop.mapreduce package and its implementation is as follows. 

public abstract class InputSplit 

{ 

   public abstract long  getLength() throws IOException, InterruptedException; 

   public abstract String[] getLocations() throws IOException, InterruptedException; 

} 

Input Splits 

 From the above two methods, programmer can get length of a split and storage locations. 

 A good input split size is equal to the HDFS block size. 

 But if the splits are too smaller than the default HDFS block size, then managing splits 

and creation of map tasks becomes an overhead than the job execution time. 

 But these file splits need not be taken care by Mapreduce programmer because Hadoop 

provides InputFormat class in org.apache.hadoop.mapreduce package for the below 

two responsibilities. 

o To provide details on how to split an input file into the splits. 

o To create a RecordReader class that will generate the series of key/value 

pairs from a split. 

 To meet these two requirements, Hadoop provides below implementation for 

InputFormat class with two methods. 

public abstract class InputFormat<K, V> 

{ 

public abstract List<InputSplit>getSplits(JobContext context) throws 

IOException, InterruptedException; 

public abstract RecordReader<K, V>createRecordReader(InputSplit split, 

TaskAttemptContext context) throws IOException, InterruptedException; 

} 

Key value paring in Hadoop Mapreduce 
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Fig. 3.28 Key Value Paring in Hadoop MapReduce 

 Thus, Record reader creates key/value pairs from input splits and writes on to Context, 

which will be shared with Mapper class. Mapper class’s run () method retrieves these 

key/value pairs from context by calling getCurrentKey() and getCurrentValue() methods 

and passes onto map() method for further processing of the record. 

 Mapper’s run () method: 

public void run (Context context) throws IOException, InterruptedException 

{ 

  setup(context); 

  while (context.nextKeyValue())  

 { 

  map(context.getCurrentKey(), context.getCurrentValue(), context); 

 } 

cleanup(context); 

} 

 Thus, finally key/value pairs from each input record are sent to map() task. 

Built-in Hadoop Input Formats: 

 Hadoop provided some built in InputFormat implementations in 

the org.apache.hadoop.mapreduce.lib.input package: 

 FileInputFormat: Base class for all file-based InputFormat implementations. 

 Some of the important sub classes of the FileInputFormat class are: 

o TextInputFormat 

o KeyValueTextInputFormat 

o FixedLengthInputFormat 
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o NLineInputFormat 

o CombineFileInputFormat 

o MultiFileInputFormat 

o SequenceFileInputFormat 

o SequenceFileAsTextInputFormat 

o SequenceFileAsBinaryInputFormat 

o MultipleInputs 

o DBInputFormat 

 TextInputFormat : 

The default InputFormat class when no other class is specified. It treats the input files as 

text files. 

 KeyValueTextInputFormat :  

An InputFormat for plain text files. Files are broken into lines. Each line is divided into 

key and value parts by a separator byte. If no such a byte exists, the key will be the entire 

line and value will be empty. 

 

 

 FixedLengthInputFormat :  

An input format to read input files with fixed length records. These need not be text files 

and can be binary files. Users must configure the record length property by calling: 

FixedLengthInputFormat.setRecordLength(conf, recordLength); 

 NLineInputFormat : 

It splits N lines of input as one split which will be fed to a single map task. It can be used 

in applications, that splits the input file such that by default, one line is fed as a value to 

one map task, and key is the offset. i.e. (k,v) is (LongWritable, Text). 

 CombineFileInputFormat : 

This input file format is suitable for processing huge number of small files. 

CombineFileInputFormat packs many small files into each split so that each mapper has 

more to process. Thus it can improve the efficiency of mapreduce job by making less 

number of map tasks to process huge number of small files. 

 MultiFileInputFormat : 

An abstract InputFormat class that returns MultiFileSplit’s in getSplits() method from 

the files under the input paths. 
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 SequenceFileInputFormat : 

Hadoop specific Binary file format for efficient file processing. 

 SequenceFileAsTextInputFormat : 

SequenceFileAsTextInputFormat is a sub class of SequenceFileInputFormat. This class 

is similar to SequenceFileInputFormat, except it generates 

SequenceFileAsTextRecordReader which converts the input keys and values to their 

String forms by calling toString() method. 

 SequenceFileAsBinaryInputFormat : 

SequenceFileAsBinaryInputFormat is another sub class of SequenceFileInputFormat. It 

is an input format for reading keys, values from Sequence Files in binary (raw) format. 

 MultipleInputs : 

This class supports MapReduce jobs that have multiple input paths with a different 

InputFormat and Mapper for each path. 

 DBInputFormat : 

A InputFormat that reads input data from an SQL table. DBInputFormat 

emits LongWritables containing the record number as key and DBWritables as value. 

The SQL query, and input class can be using one of the two setInput() methods 

Prevent Input File Splitting 

 If we don’t want files to be split, so that a single mapper can process each input file in its 

entirety, we can override the isSplitable() method of FileInputFormat class to return 

false. 

 For example, here’s a non splittableFileInputFormat implementation. 

Import org.apache.hadoop.fs.Path; 

Import org.apache.hadoop,.mapreduce.JobContext; 

Import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 

public class NonSplittableFileInputFormat extends FileInputFormat   { 

@Override 

protected Boolean isSplitable(JobContext context, Path file)     { 

return false; 

} 
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} 

Input File Format Class Hierarchy 

 

Fig. 3.29 Class Hierarchy of Input File Format 

Hadoop Output Formats 

 Hadoop provides output formats that corresponding to each input format. All hadoop 

output formats must implement the interface 

org.apache.hadoop.mapreduce.OutputFormat. 

o OutputFormat describes the output-specification for a Map-Reduce job. Based 

on Output specification, Mapreduce job checks that the output directory 

doesn’t already exist. 

o OutputFormat provides the RecordWriter implementation to be used to write 

out the output files of the job. 
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Fig. 3.30 Output File Format 

 These two requirements of the OutputFormat are accomplished with below two methods 

in the interface. 

public abstract void checkOutputSpecs(JobContext context) throws 

IOException, InterruptedException 

{ 

} 

 This method checks that output directory doesn’t exist already and throws an exception 

when it already exists, so that output is not overwritten. 

public abstract RecordWriter<K,V> getRecordWriter(TaskAttemptContextcontext)throw

s IOException, InterruptedException 

{ 

} 

 This method Gets the RecordWriter for the given task. 

 org.apache.hadoop.mapreduce.RecordWriter<K,V> class implementations are used to 

write the output <key, value> pairs to an output file. 

Built-In Hadoop Output Formats 
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 Hadoop provided some built in InputFormat implementations in the 

org.apache.hadoop.mapreduce.lib.output package: 

 FileOutputFormat 

o Base class for all file-based OutputFormat implementations. Some of the 

important sub classes of the FileOutputFormat class are: 

 TextOutputFormat 

o The default output format provided by hadoop is TextOuputFormat and it 

writes records as lines of text. If file output format is not specified explicitly, 

then text files are created as output files. 

o Output Key-value pairs can be of any format 

because TextOutputFormat converts these into strings with toString() method. 

Output key-value pairs are tab delimited by default. 

o For reading these output text files as input, KeyValueTextInputFormat is best 

suitable, since it breaks input lines into key value pairs based on a separator 

character. 

 SequenceFileOutputFormat 

o This output format class is useful to write out sequence files which is a best 

option when the output files need to be fed into another mapreduce jobs as 

input files, since these are compressed and compact. 

 SequenceFileAsBinaryOutputFormat 

o SequenceFileAsBinaryOutputFormat is a direct subclass of 

SequenceFileOutputFormat and it is counterpart for 

SequenceFileAsBinaryInputFormat. It writes keys and values to Sequence 

Files in binary format. 

 MapFileOutputFormat 

o It is also a direct subclass of FileOutputFormat  and it is used to write output 

as Map files. 

 MultipleOutputs 

o The MultipleOutputs class is used to write output data to multiple outputs. 

Below are the two main use cases of MultipleOutputs. 

 Job output can be written to additional outputs other than the default 

output. Each additional output, or named output, may be configured 

with its own OutputFormat, with its own key class and value class. 
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 Write data to different files provided by user 

o MultipleOutputs supports counters to count the number records written to each 

output name. But these are disabled by default. 

Usage pattern for job submission: 

Job job = new Job(); 

FileInputFormat.setInputPath(job, InPath); 

FileOutputFormat.setOutputPath(job, OutPath); 

job.setMapperClass(MultipleOutputMap.class); 

job.setReducerClass(MultipleOutputReduce.class); 

... 

// Defines additional single text-based output 'text' for the job 

MultipleOutputs.addNamedOutput(job, "text", TextOutputFormat.class, LongWritable.class, 

Text.class); 

// Defines additional sequence-file based output 'sequence' for the job 

MultipleOutputs.addNamedOutput(job, "seq", SequenceFileOutputFormat.class, 

LongWritable.class, Text.class); 

... 

job.waitForCompletion(true); 

... 

Usage in Reducer: MultipleOutputs 

 

 

MultipleOutputFormat 

• It is an abstract class which is extended by 

MultipleTextOutputFormat and MultipleSequenceFileOutputFormat. This abstract 

class extends the FileOutputFormat, 

• The main advantage of this format is the ability to write the output data to different 

output files. Instead of the default output file convention part-m-xxxxx or part-r-

xxxxx , output files can be written with names of our choice. Below are the three 

scenarios where output file names can be changed. 

• If there is at least one reducer in the mapreduce job, output can be written to different 

files depending on the actual keys. 



Hadoop MapReduce Framework 
 

41 
 

• If the mapreduce job is a map only job, then job can use the output file name that 

is either a part of the input file name or any name derived from it. 

• If it is a map only job, job can use the output file name that depends on both the keys 

and the input file name. 

• MultipleSequenceFileOutputFormat 

This is also a sub class of MultipleOutputFormat class. Using this format, the 

output data can be written to different output files in Sequence file format. 

• MultipleTextOutputFormat 

This is also a sub class of MultipleOutputFormat class. Using this format, the 

output data can be written to different output files in Text output format. 

• LazyOutputFormat 

By Default, FileOutputFormat creates the output files even if a single output record 

is not emitted from reducers. Thus,Mapreduce jobs create empty output files some 

times. This can be avoided with LazyOutputFormat in which output files are created 

only when the first output is emitted from the reducers. It is used in conjunction 

with org.apache.hadoop.mapreduce.lib.output.MultipleOutputs to recreate the 

behavior of org.apache.hadoop.mapred.lib.MultipleTextOutputFormat  of the old 

Hadoop API. 

• DBOutputFormat 

This output format is used to write an output into SQL tables using mapreduce 

jobs. DBOutputFormat accepts <key,value> pairs, where key has a type 

extending DBWritable. Returned DBOutputFormat. DBRecordWriter writes only 

the key to the database with a batch SQL query. 

 

• NullOutputFormat 

NullOutputFormat writes nothing to output directory. It Consumes all outputs and put 

them in /dev/null. We can suppress the key or value in the output using a 

NullWritable type. Both can be suppressed if the output file format is 

NullOutputFormat. 

Hadoop Output Format Hierarchy 
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Fig. 3.31 Output File Format Hierarchy 

Input / Output Formats 
 

Table 3.2 Input Format vs. Output Format 

org.apache.hadoop.mapreduce.lib.input org.apache.hadoop.mapreduce.OutputFormat. 

InputSplit class 
in org.apache.hadoop.mapreduce 
  
getLength() 
getLocations() 

  

InputFormat provides the Record Reader 
class that will generate the series of 
key/value pairs from a split. 

OutputFormat provides 
theRecordWriter implementation to be used 
towrite out the output files of the job. 
  

Mapper class’s run () method retrieves 
these key/value pairs from context by 
callinggetCurrentKey() and 
getCurrentValue() methods and passes 
onto map() method for further processing 
of the record. 

checkOutputSpecs() - Based on Output 
specification, Mapreduce job checks that the 
output directory 
RecordWriter<K,V> - used to write out the 
output files of the job. 
  

TextInputFormat 
The default InputFormat class 

TextOutputFormat 
It writes records as lines of text. 

KeyValueTextInputFormat 
An InputFormat for plain text files. Files 
are broken into lines. Each line is divided 
into key and value parts by a separator 
byte 

MultipleOutputFormat class. Using this format 
the output data can be written to different 
output files in Text output format. 

FixedLengthInputFormat 
An input format to read input files with   
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fixed length records. 

NLineInputFormat 
It splits N lines of input as one split 
which will be fed to a single map task. 

NullOutputFormat 
NullOutputFormat writes nothing to output 
directory. 

CombineFileInputFormat 
This input file format is suitable for 
processing huge number of small files. 
CombineFileInputFormat packs many 
small files into each split so that each 
mapper has more to process. 

MapFileOutputFormat 
It is used to write output as Map files. 
  

SequenceFileInputFormat 
Hadoop specific Binary file format for 
efficient file processing 

SequenceFileOutputFormat 
This output format class is useful to write out 
sequence files 

SequenceFileAsTextInputFormat 
which converts the input keys and values 
to their String forms by 
calling toString() method 

MultipleTextOutputFormat 
This is also a sub class 
of MultipleOutputFormat class. Using this 
format the output data can be written to 
different output files in Text output format. 

SequenceFileAsBinaryInputFormat: It is 
an input format for reading keys, values 
from Sequence Files in binary (raw) 
format 

SequenceFileAsBinaryOutputFormat 
It writes keys and values to Sequence Files in 
binary format. 

MultipleInputs 
This class supports MapReduce jobs that 
have multiple input paths with a different 
InputFormat 

MultipleOutputs 
The MultipleOutputs class is used to write 
output data to multiple outputs 

DBInputFormat 
A InputFormat that reads input data from 
an SQL table 

DBOutputFormat 
This output format is used to write an output 
into SQL tables using mapreduce jobs. 
DBRecordWriter writes only the key to the 
database with a batch SQL query 

 
 
 
 
 
 
 
 
 
 
 
HADOOP COUNTERS 
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Fig. 3.32 Hadoop Counters 

 
 MapReduce is the core component of Hadoop which provides data processing. 

 MapReduce works by breaking the processing into two phases; Map phase 

and Reduce phase. 

 The map is the first phase of processing, where we specify all the complex logic/business 

rules/costly code, whereas the Reduce phase is the second phase of processing, where we 

specify light-weight processing like aggregation/ summation. 

 In Hadoop, MapReduce Framework has certain elements such as Counters, Combiners, 

and Partitioners, which play a key role in improving the performance of data processing. 

What are Hadoop Counters? 

http://data-flair.training/blogs/combiner-in-hadoop-mapreduce-advantages-disadvantages/
http://data-flair.training/blogs/partitioner-in-hadoop-mapreduce-hadoop-internals/
http://data-flair.training/blogs/partitioner-in-hadoop-mapreduce-hadoop-internals/
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 Hadoop Counters provides a way to measure the progress or the number of operations 

that occur within map/reduce job. 

 Counters in Hadoop MapReduce are a useful channel for gathering statistics about the 

MapReduce job: for quality control or for application-level. 

 They are also useful for problem diagnosis. 

 Counters represent Hadoop global counters, defined either by the MapReduce framework 

or applications. 

 Each Hadoop counter is named by an “Enum” and has a long for the value. 

 Counters are bunched into groups, each comprising of counters from a particular Enum 

class. 

 Hadoop Counters validate that: 

o The correct number of bytes was read and written. 

o The correct number of tasks was launched and successfully ran. 

o The amount of CPU and memory consumed is appropriate for our job and 

cluster nodes. 

 There are basically 2 types of MapReduce Counters: 

o Built-In Counters in MapReduce 

o User-Defined Counters/Custom counters in MapReduce 

Built-In Counters in MapReduce 

 Hadoop maintains some built-in Hadoop counters for every job and these report various 

metrics, like, there are counters for the number of bytes and records, which allow us to 

confirm that the expected amount of input is consumed and the expected amount of 

output is produced. 

 Hadoop Counters are divided into groups and there are several groups for the built-in 

counters. 

 Each group either contains task counters (which are updated as task progress) or job 

counter (which are updated as a job progress). 

 There are several groups for the Hadoop built-in Counters: 

a) MapReduce Task Counter in Hadoop 

b) FileSystem Counters 

c) FileInputFormat Counters in Hadoop 

d) FileOutputFormat counters in MapReduce 

http://data-flair.training/blogs/hadoop-mapreduce-flow/
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e) MapReduce Job Counters 

MapReduce Task Counter in Hadoop 

 Hadoop Task counter collects specific information (like number of records read and 

written) about tasks during its execution time. 

 For example, the MAP_INPUT_RECORDS counter is the Task Counter which counts 

the input records read by each map task. 

 Hadoop Task counters are maintained by each task attempt and periodically sent to 

the application master so they can be globally combined. 

FileSystem Counters 

 Hadoop FileSystem Counters in Hadoop MapReduce gather information like a 

number of bytes read and written by the file system. Below are the name and 

description of the file system counters: 

o FileSystem bytes read– The number of bytes read by the filesystem by map 

and reduce tasks. 

o FileSystem bytes written– The number of bytes written to the filesystem by 

map and reduce tasks. 

FileInputFormat Counters in Hadoop 

 FileInputFormat Counters in Hadoop MapReduce gather information of a number of 

bytes read by map tasks via FileInputFormat. 

FileOutputFormat counters in MapReduce 

 FileOutputFormat counters in Hadoop MapReduce gathers information of a number 

of bytes written by map tasks (for map-only jobs) or reduce tasks via 

FileOutputFormat. 

MapReduce Job Counters 

 MapReduce Job counter measures the job-level statistics, not values that change while 

a task is running. 

 For example, TOTAL_LAUNCHED_MAPS, count the number of map tasks that 

were launched over the course of a job (including tasks that failed). 

http://data-flair.training/blogs/apache-hadoop-hdfs-introduction-tutorial/
http://data-flair.training/blogs/apache-hadoop-hdfs-introduction-tutorial/


Hadoop MapReduce Framework 
 

47 
 

 Application master maintains MapReduce Job counters, so these Hadoop Counters 

don’t need to be sent across the network, unlike all other counters, including user-

defined ones. 

User-Defined Counters/Custom Counters in Hadoop MapReduce 

 In addition to MapReduce built-in counters, MapReduce allows user code to define a 

set of counters, which are then incremented as desired in the mapper or reducer. 

 For example, in Java, ‘enum’ is used to define counters. 

 A job may define an arbitrary number of ‘enums’, each with an arbitrary number of 

fields. 

 The name of the enum is the group name, and the enum’s fields are the counter 

names. 

Dynamic Counters in Hadoop MapReduce 

 Java enum’s fields are defined at compile time, so we cannot create new counters in 

Hadoop MapReduce at runtime using enums. 

 To do so, we use dynamic counters in Hadoop MapReduce, one that is not defined at 

compile time using java enum. 

MapReduce Counters: Conclusion 

 Counters check whether the correct number of bytes is read or written, the correct 

number of tasks are launched and successfully run. 

 Hence, Hadoop maintains built-in counters and user-defined counters to measure the 

progress that occurs within MapReduce job. 

Custom Writables in Hadoop 

HOW TO CREATE A CUSTOM WRITABLE FOR HADOOP 

 We have gone through other Hadoop MapReduce examples, we will have noticed the 

use of “Writable” data types such as LongWritable, IntWritable, Text, etc…  

 All values in used in Hadoop MapReduce must implement the Writable interface. 

 Although we can do a lot with the primitive Writables already available with Hadoop, 

there are often times when we want to transmit a variety of data and/or data types 

from Mapper to Reducer.  

http://data-flair.training/blogs/mapper-in-hadoop-mapreduce/
http://data-flair.training/blogs/reducer-in-hadoop-mapreduce/
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 Sometimes it is possible to convert all these data into strings and concatenate them to 

result in a single key or single value. However, this can get very messy, and is not 

recommended. 

 Implementing Writable requires implementing two methods, readFields(DataInput 

in) and write(DataOutput out).  

 Writables that are used as keys in MapReduce jobs must also implement Comparable 

(or simply WritableComparable).  

 Overriding the toString() method is not necessary, but can be very helpful when 

storing your output data as text in HDFS. 

 Below is an example of a custom Writable that is used to store both gender and login 

information.  

 An example of using this might be to calculate login statistics based on gender.  

 Notice that this custom class, GenderLoginWritable, does not implement Comparable 

or WritableComparable, so it can only be used as a value in the MapReduce 

framework, not as a key. 

package com.bigdatums.hadoop.mapreduce; 

 import org.apache.hadoop.io.IntWritable; 

import org.apache.hadoop.io.Writable; 

 import java.io.DataInput; 

import java.io.DataOutput; 

import java.io.IOException; 

  

public class GenderLoginWritable implements Writable { 

    private IntWritable male; 

    private IntWritable female; 

    private IntWritablemaleLogins; 

    private IntWritablefemaleLogins; 

  

    public GenderLoginWritable() { 

        male = new IntWritable(0); 

        female = new IntWritable(0); 

        maleLogins = new IntWritable(0); 

        femaleLogins = new IntWritable(0);    } 
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public GenderLoginWritable(IntWritable male, IntWritablemaleLogins, IntWritable female, 

IntWritablefemaleLogins) { 

        this.male = male; 

        this.female = female; 

        this.maleLogins = maleLogins; 

        this.femaleLogins = femaleLogins; 

    } 

public IntWritablegetMale() { 

        return male; 

    } 

  

    public IntWritablegetFemale() { 

        return female; 

    } 

  

    public IntWritablegetMaleLogins() { 

        return maleLogins; 

    } 

  

    public IntWritablegetFemaleLogins() { 

        return femaleLogins; 

    } 

  

    public void setMale(IntWritable male) { 

        this.male = male; 

    } 

  

    public void setFemale(IntWritable female) { 

        this.female = female; 

    } 

  

    public void setMaleLogins(IntWritablemaleLogins) { 

        this.maleLogins = maleLogins; 

    } 
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 public void setFemaleLogins(IntWritablefemalelogins) { 

        this.femaleLogins = femalelogins; 

    } 

  

    public void readFields(DataInput in) throws IOException { 

        male.readFields(in); 

        female.readFields(in); 

        maleLogins.readFields(in); 

        femaleLogins.readFields(in); 

    } 

 

public void write(DataOutput out) throws IOException { 

        male.write(out); 

        female.write(out); 

        maleLogins.write(out); 

        femaleLogins.write(out); 

    } 

  

@Override 

public String toString() { 

return male.toString() + "\t" + maleLogins.toString() + "\t" + female.toString() + "\t" + 

femaleLogins.toString(); 

} 

} 

 

Unit Testing Framework 

 Hadoop MapReduce jobs have a unique code architecture that follows a specific template 

with specific constructs.   

 This architecture raises interesting issues when doing test-driven development (TDD) 

and writing unit tests.    

 This is a real-world example using MRUnit, Mockito, and PowerMock.  It is  

o using MRUnit to write JUnit tests for hadoop MR applications,  

o using PowerMock& Mockito to mock static methods,  
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o mocking-out business-logic contained in another class,  

o verifying that mocked-out business logic was called (or not)  

o testing counters,  

o testing statements in a  log4j conditional block, and  

o handling exceptions in tests.   

 With MRUnit, you can craft test input, push it through your mapper and/or reducer, and 

verify it’s output all in a JUnit test.  As do other JUnit tests, this allows you to debug 

your code using the JUnit test as a driver.   

 A map/reduce pair can be tested using MRUnit’sMapReduceDriver.  A combiner can be 

tested using MapReduceDriver as well.  A PipelineMapReduceDriver allows you to test 

a workflow of map/reduce jobs.  Currently, partitioners do not have a test driver under 

MRUnit.   

 MRUnit allows you to do TDD and write light-weight unit tests which accommodate 

Hadoop’s specific architecture and constructs. 

 In the following example, we’re processing road surface data used to create maps.  The 

input contains both linear surfaces (describing a stretch of the road) and intersections 

(describing a road intersection).  This mapper takes a collection of these mixed surfaces 

as input, discards anything that isn’t a linear road surface, i.e., intersections, and then 

processes each road surface and writes it out to HDFS.   We want to keep count and 

eventually print out how many non-road surfaces are input.  For debugging purposes, we 

will additionally print out how many road surfaces were processed. 

public class MergeAndSplineMapper extends Mapper<LongWritable, BytesWritable, 

LongWritable, BytesWritable> { 

private static Logger LOG = Logger.getLogger(MergeAndSplineMapper.class); 

enumSurfaceCounters { 

ROADS, NONLINEARS, UNKNOWN 

} 

@Override 

public void map(LongWritable key, BytesWritable value, Context context) throws 

IOException, InterruptedException { 

// A list of mixed surface types 

LinkSurfaceMaplsm = (LinkSurfaceMap) BytesConverter.bytesToObject(value.getBytes()); 

List<RoadSurface>mixedSurfaces = lsm.toSurfaceList(); 
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for (RoadSurfacesurface :mixedSurfaces)  { 

Long surfaceId = surface.getNumericId(); 

Enums.SurfaceTypesurfaceType = surface.getSurfaceType(); 

if ( surfaceType.equals(SurfaceType.INTERSECTION)  )  { 

// Ignore non-linear surfaces. 

context.getCounter(SurfaceCounters.NONLINEARS).increment(1); 

continue; 

} 

else if ( !surfaceType.equals(SurfaceType.ROAD) ) { 

// Ignore anything that wasn’t an INTERSECTION or ROAD, ie any future additions. 

context.getCounter(SurfaceCounters.UNKNOWN).increment(1); 

continue; 

} 

PopulatorPreprocessor.processLinearSurface(surface); 

// Write out the processed linear surface. 

lsm.setSurface(surface); 

context.write(new LongWritable(surfaceId), new 

BytesWritable(BytesConverter.objectToBytes(lsm))); 

if (LOG.isDebugEnabled()) { 

context.getCounter(SurfaceCounters.ROADS).increment(1); 

} 

} 

} 

} 

We’ve written the following unit test for our class using MRUnit, Mockito, and PowerMock. 

@RunWith(PowerMockRunner.class) 

@PrepareForTest(PopulatorPreprocessor.class) 

public classMergeAndSplineMapperTest { 

privateMapDriver<LongWritable, BytesWritable, LongWritable, BytesWritable>mapDriver; 

@Before 

public voidsetUp() { 

MergeAndSplineMapper mapper = newMergeAndSplineMapper(); 
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mapDriver = newMapDriver<LongWritable, BytesWritable, LongWritable, 

BytesWritable>(); 

mapDriver.setMapper(mapper); 

} 

@Test 

public voidtestMap_INTERSECTION() throwsIOException { 

LinkSurfaceMaplsm = newLinkSurfaceMap(); 

RoadSurfacers = newRoadSurface(Enums.RoadType.INTERSECTION); 

byte[] lsmBytes = append(lsm, rs); 

PowerMockito.mockStatic(PopulatorPreprocessor.class); 

mapDriver.withInput(newLongWritable(1234567), newBytesWritable(lsmBytes)); 

mapDriver.runTest(); 

Assert.assertEquals("ROADS count incorrect.", 0, 

mapDriver.getCounters().findCounter(SurfaceCounters.ROADS).getValue()); 

Assert.assertEquals("NONLINEARS count incorrect.", 1, 

mapDriver.getCounters().findCounter(SurfaceCounters.NONLINEARS).getValue()); 

Assert.assertEquals("UNKNOWN count incorrect.", 0, 

mapDriver.getCounters(). findCounter(SurfaceCounters.UNKNOWN).getValue()); 

PowerMockito.verifyStatic(Mockito.never()); 

PopulatorPreprocessor.processLinearSurface(rs); 

} 

@Test 

public voidtestMap_ROAD() throwsIOException { 

LinkSurfaceMaplsm = newLinkSurfaceMap(); 

RoadSurfacers = newRoadSurface(Enums.RoadType.ROAD); 

byte[] lsmBytes = append(lsm, rs); 

// save logging level since we are modifying it. 

Level originalLevel = Logger.getRootLogger().getLevel(); 

Logger.getRootLogger().setLevel(Level.DEBUG); 

PowerMockito.mockStatic(PopulatorPreprocessor.class); 

mapDriver.withInput(newLongWritable(1234567), newBytesWritable(lsmBytes)); 

mapDriver.withOutput(newLongWritable(1000000), newBytesWritable(lsmBytes)); 

mapDriver.runTest(); 
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Assert.assertEquals("ROADS count incorrect.", 1, 

mapDriver.getCounters().findCounter(SurfaceCounters.ROADS).getValue()); 

Assert.assertEquals("NONLINEARS count incorrect.", 0, 

mapDriver.getCounters().findCounter(SurfaceCounters.NONLINEARS).getValue()); 

Assert.assertEquals("UNKNOWN count incorrect.", 0, 

mapDriver.getCounters().findCounter(SurfaceCounters.UNKNOWN).getValue()); 

PowerMockito.verifyStatic(Mockito.times(1)); 

PopulatorPreprocessor.processLinearSurface(rs); 

// set logging level back to it's original state so as not to affect other tests 

Logger.getRootLogger().setLevel(originalLevel); 

} 

Let’s take a look at the first test, testMap_INTERSECTION(). 

testMap_INTERSECTION 

Our objective is to verify 

1. SurfaceCounters.NONLINEARS is incremented. 

2. The for-loop 

continues,i.e., PopulatorPreprocessor.processLinearSurface(surface) is never called. 

3. SurfaceCounters.ROADS and SurfaceCounters.UNKNOWN are not incremented. 

Since this is a mapper, we start by defining and initializing a mapper driver.  Note that 

the four type-parameters defined for the MapDriver must match our class under test, 

i.e., MergeAndSplineMapper. 

private MapDriver<LongWritable, BytesWritable, LongWritable, BytesWritable>mapDriver; 

   

         @Before   

         public void setUp() {           

MergeAndSplineMapper mapper = new MergeAndSplineMapper(); 

mapDriver = new MapDriver<LongWritable, BytesWritable, LongWritable, 

BytesWritable>();            

mapDriver.setMapper(mapper);          

        } 

Throwing IOException on the unit test method signature 

The mapper could throw an IOException.  In JUnit tests you can handle exceptions thrown by 

the calling code by catching them or throwing them.  Keep in mind that we are not 
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specifically testing exceptions.  I prefer not to catch the exception and have the unit test 

method throw it.  If the unit test method encounters the exception, the test will fail.  Which is 

what we want. Trying to catch exceptions in unit tests, when you are not specifically testing 

exception handling, can lead to unnecessary clutter, logic, maintenance, when you can simply 

throw the exception to fail the test. 

@Test 

 public void testMap_INTERSECTION() throws IOException { 

Initialize the test input to drive the test.  In order to hit the if-block we want to test, we have 

to ensure the surface type is of RoadType.INTERSECTION. 

LinkSurfaceMaplsm = new LinkSurfaceMap(); 

           RoadSurfacers = new RoadSurface(Enums.RoadType.INTERSECTION); 

           byte[] lsmBytes = append(lsm, rs); 

We use PowerMock[3] to mock out a static call to the PopulatorPreprocessor 

class.  PopulatorPreprocessor is a separate class containing business logic and is tested by it’s 

own JUnit test.  At the class level, we set-up PowerMock with the @RunWith annotation and 

tell it which classes to mock; in this case one, PopulatorPreprocessor.  

With @PrepareForTest  we tell PowerMock which classes have static methods that we want 

to mock.  PowerMock supports both EasyMock and Mockito, since we’re using Mockito, 

you’ll see references to PowerMockito.  We mock the static class by 

calling PowerMockito.mockStatic. 

@RunWith(PowerMockRunner.class) 

@PrepareForTest(PopulatorPreprocessor.class) 

PowerMockito.mockStatic(PopulatorPreprocessor.class); 

Set the previously created test input and run the mapper: 

mapDriver.withInput(new LongWritable(1234567), new BytesWritable(lsmBytes)); 

           mapDriver.runTest(); 

Verify the output.  SurfaceCounters.NONLINEARS is incremented once, 

and SurfaceCounters.ROADS and SurfaceCounters.UNKNOWN are not incremented. A quick 

review – with JUnit’s assertEquals, the first parameter, a String, which is optional, is the 

assertion error message.  The second parameter is the expected value and the third parameter 

is the actual value.  assertEquals prints out a nice error message of the form “expected: <x> 

but was: <y>.“  So if the second assertion were to fire, e.g., we could get the error message 

“java.lang.AssertionError: NONLINEARS count incorrect. expected:<1> but was:<0>.” 

Assert.assertEquals("ROADS count incorrect.", 0, 
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mapDriver.getCounters().findCounter(SurfaceCounters.ROADS).getValue()); 

Assert.assertEquals("NONLINEARS count incorrect.", 1, 

mapDriver.getCounters().findCounter(SurfaceCounters.NONLINEARS).getValue()); 

Assert.assertEquals("UNKNOWN count incorrect.", 0, 

mapDriver.getCounters().findCounter(SurfaceCounters.UNKNOWN).getValue()); 

Verify that PopulatorPreprocessor.processLinearSurface(surface) has not been called, by 

using the following PowerMock/Mockito syntax. 

 PowerMockito.verifyStatic(Mockito.never()); 

           PopulatorPreprocessor.processLinearSurface(rs); 

testMap_ROAD 

In our second test, testMap_ROAD().  Our Objective is to verify: 

1. SurfaceCounters.ROADS is incremented. 

2. That PopulatorPreprocessor.processLinearSurface(surface) is called. 

3. SurfaceCounters.NONLINEARS and SurfaceCounters.UNKNOWN are not incremente

d. 

The setup is identical to the first test with a couple of exceptions. 

       1. Specifying a Road type in our input data. 

            RoadSurfacers = newRoadSurface(Enums.RoadType.ROAD); 

       2. Setting the log4j debug level. 

Interestingly, in our source code we only want to count road surfaces when debug level is set 

in the log4j logger.  To test this,first we save the original logging level, then we retrieve the 

Root logger and set the level to DEBUG . 

Level originalLevel = Logger.getRootLogger().getLevel(); 

Logger.getRootLogger().setLevel(Level.DEBUG) 

At the end of the test, we revert to the original logging level so as not to affect other tests 

Logger.getRootLogger().setLevel(originalLevel); 

Once again, let’s verify the output.  SurfaceCounters. ROADS is incremented once, 

and SurfaceCounters. NONLINEARS and SurfaceCounters.UNKNOWN are not incremented. 

Assert.assertEquals("ROADS count incorrect.", 1, 

mapDriver.getCounters().findCounter(SurfaceCounters.ROADS).getValue()); 

Assert.assertEquals("NONLINEARS count incorrect.", 0, 

mapDriver.getCounters().findCounter(SurfaceCounters.NONLINEARS).getValue()); 

Assert.assertEquals("UNKNOWN count incorrect.", 0, 



Hadoop MapReduce Framework 
 

57 
 

mapDriver.getCounters().findCounter(SurfaceCounters.UNKNOWN).getValue()); 

Verify that PopulatorPreprocessor.processLinearSurface(surface) has been called once, by 

using the following PowerMock/Mockito syntax. 

 PowerMockito.verifyStatic(Mockito.times(1)); 

            PopulatorPreprocessor.processLinearSurface(rs); 

Testing A REDUCER 

The same principles would apply as in testing a mapper.  The difference being that we would 

want to create a ReducerDriver, and populate it with our reducer class under test as shown 

below. 

privateReduceDriver<LongWritable, BytesWritable, LongWritable, 

BytesWritable>reduceDriver; 

     @Before 

public voidsetUp() { 

       MyReducer reducer = newMyReducer (); 

       reduceDriver = newReduceDriver<LongWritable, BytesWritable, LongWritable, 

BytesWritable>(); 

       reduceDriver.setReducer(reducer); 

     } 

MAVEN Pom Dependencies 

In addition to JUnit 4, you’ll have to include the following dependencies in your maven 

pom.xml.  On the PowerMock web page[3], take note of the supported versions of Mockito. 

 <dependency> 

                   <groupId>org.apache.mrunit</groupId> 

                   <artifactId>mrunit</artifactId> 

                   <version>0.8.0-incubating</version> 

                   <scope>test</scope> 

             </dependency> 

 <dependency> 

                   <groupId>org.mockito</groupId> 

                   <artifactId>mockito-all</artifactId> 

                   <version>1.9.0-rc1</version> 

                   <scope>test</scope> 

             </dependency> 
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 <dependency> 

                   <groupId>org.powermock</groupId> 

                   <artifactId>powermock-module-junit4</artifactId> 

                   <version>1.4.12</version> 

                   <scope>test</scope> 

             </dependency> 

 <dependency> 

                   <groupId>org.powermock</groupId> 

                   <artifactId>powermock-api-mockito</artifactId> 

                   <version>1.4.12</version> 

                   <scope>test</scope> 

</dependency> 

Running In Eclipse 

The test is run just as any other JUnit test would be run.  Here’s an example of the test 

running inside Eclipse. 

 
Summary 

MRUnit provides a powerful and light-weight approach to do test-driven development.  A 

nice side effect is that it helps move you to better code coverage than was previously 

possible. 

Exception Handling (Handling Failures in Hadoop, Mapreduce) 

 In the real world, user code is buggy, processes crash, and machines fail.  
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 One of the major benefits of using Hadoop is its ability to handle such failures and allow 

your job to complete successfully.  

 We need to consider the failure of any of the following entities the task, the application 

master, the node manager, and the resource manager. 

Task Failure 

 The most common occurrence of this failure is when user code in the map or reduce task 

throws a runtime exception.  

 If this happens, the task JVM reports the error back to its parent application master 

before it exits.  

 The error ultimately makes it into the user logs.  

 The application master marks the task attempt as failed, and frees up the container so its 

resources are available for another task.  

 Another failure mode is the sudden exit of the task JVM perhaps there is a JVM bug that 

causes the JVM to exit for a particular set of circumstances exposed by the MapReduce 

user code.  

 In this case, the node manager notices that the process has exited and informs the 

application master so it can mark the attempt as failed.  

 Hanging tasks are dealt with differently. The application master notices that it hasn’t 

received a progress update for a while and proceeds to mark the task as failed.  

 The task JVM process will be killed automatically after this period. The timeout period 

after which tasks are considered failed is normally 10 minutes and can be configured on 

a per-job basis (or a cluster basis) by setting the mapreduce.task.timeout property to a 

value in milliseconds.  

 Setting the timeout to a value of zero disables the timeout, so long-running tasks are 

never marked as failed.  

 In this case, a hanging task will never free up its container, and over time there may be 

cluster slowdown as a result. This approach should therefore be avoided, and making 

sure that a task is reporting progress periodically should suffice. 

 When the application master is notified of a task attempt that has failed, it will 

reschedule execution of the task. The application master will try to avoid rescheduling 

the task on a node manager where it has previously failed. Furthermore, if a task fails 

four times, it will not be retried again. This value is configurable. The maximum number 
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of attempts to run a task is controlled by the mapreduce.map.maxattempts property for 

map tasks and mapreduce.reduce.maxattempts for reduce tasks. By default, if any task 

fails four times (or whatever the maximum number of attempts is configured to), the 

whole job fails. 

 For some applications, it is undesirable to abort the job if a few tasks fail, as it may be 

possible to use the results of the job despite some failures. In this case, the maximum 

percentage of tasks that are allowed to fail without triggering job failure can be set for 

the job. Map tasks and reduce tasks are controlled independently, using the 

mapreduce.map.failures.maxpercent and mapreduce.reduce.failures.maxpercent 

properties. 

 A task attempt may also be killed, which is different from it failing. A task attempt may 

be killed because it is a speculative duplicate or because the node manager it was running 

on failed and the application master marked all the task attempts running on it as killed. 

 Killed task attempts do not count against the number of attempts to run the task (as set by 

mapreduce.map.maxattempts and mapreduce.reduce.maxattempts), because it wasn’t the 

task’s fault that an attempt was killed. 

 Application Master Failure 

 Just like MapReduce tasks are given several attempts to succeed (in the face of hardware 

or network failures), applications in YARN are retried in the event of failure. The 

maximum number of attempts to run a MapReduce application master is controlled by 

the mapreduce.am.max-attempts property. The default value is 2, so if a MapReduce 

application master fails twice it will not be tried again and the job will fail. 

 YARN imposes a limit for the maximum number of attempts for any YARN application 

master running on the cluster, and individual applications may not exceed this limit. The 

limit is set by yarn.resourcemanager.am.max-attempts and defaults to 2, so if you want to 

increase the number of MapReduce application master attempts, you will have to 

increase the YARN setting on the cluster, too. 

 The way recovery works is as follows. An application master sends periodic heartbeats to 

the resource manager, and in the event of application master failure, the resource 

manager will detect the failure and start a new instance of the master running in a new 

container which is managed by a node manager. 

 In the case of the MapReduce application master, it will use the job history to recover the 

state of the tasks that were already run by the application so they don’t have to be rerun. 
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Recovery is enabled by default, but can be disabled by setting 

yarn.app.mapreduce.am.job.recovery.enable to false. 

 Node Manager Failure 

 If a node manager fails by crashing or running very slowly, it will stop sending 

heartbeats to the resource manager (or send them very infrequently). The resource 

manager will notice a node manager that has stopped sending heartbeats if it hasn’t 

received one for 10 minutes (this is configured, in milliseconds, via the 

yarn.resourcemanager.nm.liveness-monitor.expiry-interval-ms property) and remove it 

from its pool of nodes to schedule containers on. 

 Any task or application master running on the failed node manager will be recovered 

using the mechanisms described in the previous two sections. In addition, the application 

master arranges for map tasks that were run and completed successfully on the failed 

node manager to be rerun if they belong to incomplete jobs, since their intermediate 

output residing on the failed node manager’s local filesystem may not be accessible to 

the reduce task. 

 Node managers may be blacklisted if the number of failures for the application is high, 

even if the node manager itself has not failed. Blacklisting is done by the application 

master, and for MapReduce the application master will try to reschedule tasks on 

different 

nodes if more than three tasks fail on a node manager. The user may set the threshold 

with the mapreduce.job.maxtaskfailures.per.tracker job property. 

 Note : Note that the resource manager does not do blacklisting across applications (at the 

time of writing), so tasks from new jobs may be scheduled on bad nodes even if they 

have been blacklisted by an application master running an earlier job. 

 Resource Manager Failure 

 Failure of the resource manager is serious, because without it, neither jobs nor task 

containers can be launched. In the default configuration, the resource manager is a single 

point of failure, since in the (unlikely) event of machine failure, all running jobs fail—

and can’t be recovered. 

 To achieve high availability (HA), it is necessary to run a pair of resource managers in an 

active-standby configuration. If the active resource manager fails, then the standby can 

take over without a significant interruption to the client. 
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 Information about all the running applications is stored in a highly available state store 

(backed by ZooKeeper or HDFS), so that the standby can recover the core state of the 

failed active resource manager. 

 

Tuning of Mapreduce program 

 Most important process of mapreduce program is shuffling of outputs produced by map 

function .So we need to concentrate mainly on map phase for better optimization of 

mapreduce programshence, We should do the following things for optimization :- 

 We should give as much as more memory to shuffle process , but also need to keep in 

mind that we also give sufficient memory to map and reduce function . 

 Amount of memory given to JVM for map reduce tasks is set by :- 

mapred.child.java.opts , we need to make this value more as much as we can. 

 Map Side optimization: - 

 optimization can be done by minimizing the multi spills ,, which can be controlled by 

io.sort.* 

 We can use counters to check about the count of spill records 

 We should increaseio.sort.mb :- which is used as amount of memory buffer used while 

sorting out the map output 

 io.sort.spill.percent :- threshold value for using memory buffer , afterwards records 

started to spill.Default value :- 0.80.  

 io.sort.factor :- property which help to merge output streams by map. We should increase 

this upto 100 for optimization.  

 mapred.compress.map.output :- we should compress the ouptput of mapper phase , it 

saves space as ell increase transfer of data between tasks. 
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5.1 Introduction to HBase 

HBase is a distributed column-oriented database built on top of the Hadoop file system. Base is a 

data model that is similar to Google’s big table designed to provide quick random access to huge 

amounts of structured data.It leverages the fault tolerance provided by the Hadoop File System 

(HDFS).It is a part of the Hadoop ecosystem that provides random real-time read/write access to 

data in the Hadoop File System.One can store the data in HDFS either directly or through 

HBase.Data consumer reads and accesses the data in HDFS randomly using HBase. 

Need for Hbase is as follows: 

• Hadoop can perform only batch processing 

• data will be accessed only in a sequential manner. 

• That means one has to search the entire dataset even for the simplest of jobs. 

• a new solution is needed to access any point of data in a single unit of time (random 

access) 

HBase sits on top of the Hadoop File System and provides read and write access. Figure 5.1 

shows the Hbase read and write 



 

Figure 5.1 Hbase Read/Write 

Relational DBMS Vs Column oriented database 

 In a row-oriented indexed system, the primary key is the rowid that is mapped from 

indexed data. In Hbase, HBase is built on top of HDFS where the HBase data is stored in HFiles 

and HFiles are stored on HDFS. The purpose for introducing HBase was to enable random 

access to data for interactive querying which was not supported by pure HDFS implementation. 

 

Column-oriented vs Row-oriented storages 

 

Column-oriented Database Row oriented Database 

When the situation comes to process 
and analytics we use this approach. 
Such as Online Analytical 
Processing and it's applications. 

Online Transactional process such as banking and 
finance domains use this approach. 
Online banking, Online airline ticket booking 
Sending a text message, Order entry 
Add a book to shopping cart 

The amount of data that can able to 
store in this model is very huge like 
in terms of petabytes 

It is designed for a small number of rows and 
columns. 



DB design is subject oriented. 
Example: Database design changes 
with subjects like sales, marketing, 
purchasing, etc. 

DB design is application oriented. Example: 
Database design changes with industry like Retail, 
Airline, Banking, etc. 

 

Storage Mechanism in HBase 

 The data storage model is shown on figure 5.2. 

 

Figure 5.2 Hbase Data model 

 HBase is a column-oriented database and the tables in it are sorted by row. The table 
schema defines only column families, which are the key value pairs. Table is a collection of 
rows. Row is a collection of column families and column family is a collection of columns. 
Column is a collection of key value pairs. 



 

Figure 5.3 Sample Hbase Column database 

Features of HBase 

The important feature of  Hbase is as follows: 

• HBase is linearly scalable :You can add any number of columns anytime. 

• It has automatic failure support. 

• Integrations with Map/Reduce framework: All the commands and java codes internally 
implement Map/ Reduce to do the task. 

• fundamentally, it's a platform for storing and retrieving data with random access. 

• It doesn't care about data types(storing an integer in one row and a string in another for 
the same column). 

• It doesn't enforce relationships within your data. 

• It provides consistent read and writes. 

• It integrates with Hadoop, both as a source and a destination. 

• It has easy java API for client. 

• It provides data replication across clusters. 

 
 

Applications of HBase 



 It is used whenever there is a need to write heavy applications. HBase is used whenever 

we need to provide fast random access to available data. Companies such as Facebook, Twitter, 

Yahoo, and Adobe use HBase internally. 

5.2HBase Architecture 

HBase is a column-oriented database and data is stored in tables.The tables are sorted by RowId. As 

shown below figure 5.5, HBase has RowId, which is the collection of several column families that are 

present in the table.The column families that are present in the schema are key-value pairs. If we observe 

in detail each column family having multiple numbers of columns.The column values stored into disk 

memory. Each cell of the table has its own Metadata like timestamp and other information. 

  

 

Figure 5.4 Sample Hbase database 

In the above table , two column families: PersonInfo and Sales are present. PersonInfo column 

family has two column qualifiers: Name and Address and Sales column family has two column 

qualifiers: Territory and SalesYTD. All values have a timestamp and Territory for row key 002 has 

multiple values that have changed over time (same for Address of row key 004) 

The above can be represented as this JSON -like map: 



 

key terms representing table schema 

Table: Collection of rows present. 

Row: Collection of column families. 

Column Family: Collection of columns. 

Column: Collection of key-value pairs. 

Namespace: Logical grouping of tables. 

Cell: A {row, column, version} tuple exactly specifies a cell definition in HBase. 

HBase Architecture and its Important Components are shown in figure 5.6. 

 

Figure 5.5Hbase Architecture 

HBase architecture consists mainly of four components 

• HMaster 



• HRegionserver 

• HRegions 

• Zookeeper 

• HDFS 

HMaster: 

HMaster is the implementation of a Master server in HBase architecture.It acts as a 

monitoring agent to monitor all Region Server instances present in the cluster and acts as an 

interface for all the metadata changes. In a distributed cluster environment, Master runs on 

NameNode. Master runs several background threads. 

Roles performed by HMaster in HBase. 

• provides admin performance and distributes services to different region servers. 

• assigns regions to region servers. 

• controlling load balancing and failover to handle the load over nodes present in the 

cluster. 

• When a client wants to change any schema and to change any Metadata operations, 

HMaster takes responsibility for these operations. 

Some of the methods exposed by HMaster Interface are primarily Metadata oriented methods. 

• Table (createTable, removeTable, enable, disable) 

• ColumnFamily (add Column, modify Column) 

• Region (move, assign) 

• The client communicates in a bi-directional way with both HMaster and ZooKeeper. 

• For read and write operations, it directly contacts with HRegion servers.  

• HMaster assigns regions to region servers and in turn, check the health status of region 
servers. 

Hbase Region Servers 

• receives writes , and read requests from the client 

• it assigns the request to a specific region, where the actual column family resides. 



• Client can directly communicates the region server. 

• The client requires HMaster help when operations related to metadata and schema 
changes are required. 

•  It is responsible for serving and managing regions or data that is present in a distributed 
cluster. 

• The region servers run on Data Nodes present in the Hadoop cluster. 

Hbase Region Servers 

HMaster can get into contact with multiple HRegion servers and performs the following 
functions. 

• Hosting and managing regions 

• Splitting regions automatically 

• Handling read and writes requests 

• Communicating with the client directly 

HBase Regions: 

HRegions are the basic building elements of HBase cluster that consists of the distribution 
of tables and are comprised of Column families.  It contains multiple stores, one for each column 
family. It consists of mainly two components, which are Memstore and Hfile. 

ZooKeeper: 

In HBase, Zookeeper is a centralized monitoring server which maintains configuration 
information and provides distributed synchronization. Distributed synchronization is to access 
the distributed applications running across the cluster with the responsibility of providing 
coordination services between nodes.  

Services provided by ZooKeeper 

• Maintains Configuration information 

• Provides distributed synchronization 

• Client Communication establishment with region servers 

• Provides ephemeral nodes for which represent different region servers 

• Master servers usability of ephemeral nodes for discovering available servers in the 
cluster 

• To track server failure and network partitions 

Master and HBase slave nodes ( region servers) registered themselves with ZooKeeper. The 
client needs access to ZK(zookeeper) quorum configuration to connect with master and region 



servers.During a failure of nodes that present in HBase cluster, ZKquoram will trigger error 
messages, and it starts to repair the failed nodes. 

HDFS:- 

HDFS is a Hadoop distributed file system, as the name implies it provides a distributed 
environment for the storage and it is a file system designed in a way to run on commodity 
hardware. It stores each file in multiple blocks and to maintain fault tolerance, the blocks are 
replicated across a Hadoop cluster.HDFS provides a high degree of fault –tolerance and runs on 
cheap commodity hardware. By adding nodes to the cluster and performing processing & storing 
by using the cheap commodity hardware, it will give the client better results as compared to the 
existing one. 

HBase Read and Write Data  

Hbase read and write operations are shown in figure 5.6 

 

Figure 5.6Hbase Read and Write operation 

Step 1) Client wants to write data and in turn first communicates with Regions server and then 
regions 

Step 2) Regions contacting memstore for storing associated with the column family 

Step 3) First data stores into Memstore, where the data is sorted and after that, it flushes into 
HFile. The main reason for using Memstore is to store data in a Distributed file system 
based on Row Key. Memstore will be placed in Region server main memory while 
HFiles are written into HDFS. 

Step 4) Client wants to read data from Regions 

Step 5) In turn Client can have direct access to Mem store, and it can request for data. 



Step 6) Client approaches HFiles to get the data. The data are fetched and retrieved by the 
Client. 

Memstore holds in-memory modifications to the store. The hierarchy of objects in HBase 
Regions is as shown from top to bottom in below table. 

Table HBase table present in the HBase cluster 

Region HRegions for the presented tables 

Store It stores per ColumnFamily for each region for the table 

Memstore • Memstore for each store for each region for the table 
• It sorts data before flushing into HFiles 
• Write and read performance will increase because of sorting 

StoreFile StoreFiles for each store for each region for the table 

Block Blocks present inside StoreFiles 

 

 

5.3 Client API's and their features 

HBase Client API – HTable,Put, Get, Delete, Result 

 In order to perform CRUD operations on HBase tables, we use Client API for Hbase. 

 

Figure 5.7Hbase Client API 

 To perform CRUD operations on HBase tables we use Java client API for HBase.Since 
HBase has a Java Native API and it is written in Java thus it offers programmatic access to DML 
(Data Manipulation Language). 

https://data-flair.training/blogs/java-tutorial/


Class  HBase Configuration 

• This class adds HBase configuration files to a Configuration. It belongs to 
the org.apache.hadoop.hbase package. 

Method 

• static org.apache.hadoop.conf.Configuration create() 

• To create a Configuration with HBase resources, we use this method. 

Class HTable in HBase Client API 

• An HBase internal class which represents an HBase table is HTable. 

• Basically, to communicate with a single HBase table, we use this implementation of a 
table. 

• It belongs to the org.apache.hadoop.hbase.client class. 

a. Constructors 

i. HTable() 

ii. HTable(TableNametableName, ClusterConnection connection, ExecutorService pool) 

• We can create an object to access an HBase table, by using this constructor. 

b. Methods 

i. void close() 

   Basically, to release all the resources of the HTable, we use this method. 

ii. void delete(Delete delete) 

   The method “void delete(Delete delete)” helps to delete the specified cells/row. 

iii. boolean exists(Get get) 

As specified by Get, it is possible to test the existence of columns in the table, 
with this method. 

iv. Result get(Get get) 

   This method retrieves certain cells from a given row. 

v. org.apache.hadoop.conf.ConfigurationgetConfiguration() 

It returns the Configuration object used by this instance. 

vi. TableNamegetName() 

This method returns the table name instance of this table. 



vii. HTableDescriptorgetTableDescriptor() 

It returns the table descriptor for this table. 

viii. byte[] getTableName() 

This method returns the name of this table. 

ix. void put(Put put) 

We can insert data into the table, by using this method. 

In order to perform put operations for a single row, we use this class. This class belongs to 
the org.apache.hadoop.hbase.client package. 

a. Constructors 

i. Put(byte[] row) 

ii. Put(byte[] rowArray, introwOffset, introwLength) 

However, to make a copy of the passed-in row key to keep local, we use it. 

iii. Put(byte[] rowArray, introwOffset, introwLength, long ts) 

We can make a copy of the passed-in row key to keep local, by using this 
constructor. 

iv. Put(byte[] row, long ts) 

Basically, to create a Put operation for the specified row, using a given timestamp, 
we use it. 

 

b. Methods 

i. Put add(byte[] family, byte[] qualifier, byte[] value) 

The method “Put add(byte[] family, byte[] qualifier, byte[] value)” adds the specified 

column and value to this Put operation. 

ii. Put add(byte[] family, byte[] qualifier, long ts, byte[] value) 
With the specified timestamp, it adds the specified column and value, as its version to 
this Put operation. 

iii. Put add(byte[] family, ByteBuffer qualifier, long ts, ByteBuffer value) 
This method adds the specified column and value, with the specified timestamp as its 
version to this Put operation. 

iv. Put add(byte[] family, ByteBuffer qualifier, long ts, ByteBuffer value) 
With the specified timestamp, it adds the specified column and value, as its version to 
this Put operation. 



To perform Get operations on a single row, we use this class. It belongs to the 
org.apache.hadoop.hbase.client package. 
 

a. Constructor 

i. Get(byte[] row) 

It is possible to create a Get operation for the specified row, by using this constructor. 

ii. Get(Get get) 

b. Methods 

i. Get addColumn(byte[] family, byte[] qualifier) 

To retrieves the column from the specific family with the specified qualifier, this method 
helps. 

ii. Get addFamily(byte[] family) 

Whereas this one helps to retrieves all columns from the specified family. 

In order to perform delete operations on a single row, we use this Class.  

Instantiate a Delete object with the row to delete, to delete an entire row. 

It belongs to the org.apache.hadoop.hbase.client package. 

a. Constructor 

i. Delete(byte[] row) 

To create a delete operation for the specified row, we use it. 

ii. Delete(byte[] rowArray, introwOffset, introwLength) 

This constructor creates a Delete operation for the specified row and timestamp. 

iii. Delete(byte[] rowArray, introwOffset, introwLength, long ts) 

Basically, the constructor “Delete(byte[] rowArray, introwOffset, introwLength, long ts)” 

creates a Delete operation. 

iv. Delete(byte[] row, long timestamp) 

Again the constructor “Delete(byte[] row, long timestamp)” also creates a Delete operation. 

b. Methods 

i. Delete addColumn(byte[] family, byte[] qualifier) 

This method helps to delete the latest version of the specified column. 

ii. Delete addColumns(byte[] family, byte[] qualifier, long timestamp) 



However, to delete all versions of the specified column we use this method, especially, With 
a timestamp less than or equal to the specified timestamp. 

iii. Delete addFamily(byte[] family) 

The method “Delete addFamily(byte[] family)”  deletes all versions of all columns of the 
specified family. 

iv. Delete addFamily(byte[] family, long timestamp) 

Again, with a timestamp less than or equal to the specified timestamp, this method also 
deletes all columns of the specified family. 

In order to get a single row result of a Get or a Scan query, we use class result HBase Client API. 

a. Constructors 

i.Result() 
With no KeyValue payload, it is possible to create an empty Result; returns null if you call 
raw Cells(), by using this constructor. 

b.Methods 
i. byte[] getValue(byte[] family, byte[] qualifier) 
Basically, in order to get the latest version of the specified column, we use this method. 
ii. byte[] getRow() 
Moreover, to retrieve the row key which corresponds to the row from which this Result was 
created, we use this method. 
So, this was all about HBase Client API. Hope you like our explanation. 

Client API Features:-Filters 

HBase filters are a powerful feature that can greatly enhance your effectiveness 

when working with data stored in tables. The two prominent read functions for HBase 

are get() and scan(), both supporting either direct access to data or the use of a start 

and end key, respectively. These include column families, column qualifiers, 

timestamps or ranges, as well as version number. 

https://hbase.apache.org/


 

setFilter(filter) 

 
Fig- 5.8 Shows the filters created on the client side, sent through the RPC, 

and executed on the server side 

 
 

The filter hierarchy 
 

The lowest level in the filter hierarchy is the Filter interface, and the 

abstractFilterBase class that implements an empty shell, or skeleton, that is used by the 
actual filter classes to avoid having the same boilerplate code in each ofthem. 

You define  a  new  instance  of  the  filter  you  want  to  apply  and  hand  it  to  

the Get or  Scan instances,using: 

 
 
Comparison operators 
 
As CompareFilter-based filters  add  one  more  feature  to  the  base FilterBaseclass,  
namely  the compare() operation, it has to have a user-supplied operator type that 

defines how the result of the comparison isinterpreted. 
 

Table5.1 The possible comparison operators for CompareFilter-based filters 

 
Operator 

 
Description 



 

 
LESS 

 
Match values less than the provided one. 

 
LESS_OR_EQUAL 

 
Match values less than or equal to the provided one. 

 
EQUAL 

 
Do an exact match on the value and the provided one. 

 
NOT_EQUAL 

 
Includeeverything that does not match the 
providedvalue. 

 
GREATER_OR_EQUAL 

 
Match values that are equal to or greater than the provided one. 

 
GREATER 

 
Only include values greater than the provided one. 

 
NO_OP 

 
Exclude everything. 



The comparison operators define what is included, or excluded, when the filter is 
applied. This allows you to select the data that you want as either a range, subset, or 
exact and single match. 
 
 
Comparators 
 

The second type that you need to provide to CompareFilter-related classes is a 
comparator, which is needed to compare various values and  keys  in  different  ways.  
They  are  derived from WritableByteArrayComparable, which implements Writable, 

and Comparable. You do not have to go into the details if you just want to use an 
implementation provided by HBase and listed in the Table .The constructors usually 
take the control value, that is, the one to compare each table valueagainst. 
 
Table-5.2 The HBase-supplied comparators, used with CompareFilter-based 
filters 

 
Comparator 

 
Description 

 
BinaryComparator 

 
Uses Bytes.compareTo() to compare the current with the 
provided value. 

 
 

BinaryPrefixComparator 

 
Similar to the above, but does a lefthand, prefix- based match 
usingBytes.compareTo(). 

 
 

NullComparator 

 
Does not compare against an actual value but whether a 
given one is null, or notnull. 

 

BitComparator 

 
Performs a bitwise comparison, providing a BitwiseOp 

class with AND,OR,and XOR operators. 

 
RegexStringComparator 

 
Given a regular expression at instantiation this comparator does a 
pattern match on the table data. 

 
SubstringComparator 

 
Treats the value and table data as Stringinstances and performs a 
contains()check. 
 

https://www.safaribooksonline.com/library/view/hbase-the-definitive/9781449314682/ch04.html#tbl_comparators


FILTERROW() AND BATCHMODE 
A filter using filterRow() to filter out an entire row, or filterRow(List) to modify 

the final list of included values, must also override the hasRowFilter() function to 
return true.Figure shows the logical flow of the filter methods for a single row. There 
is a more fine-grained process to apply the filters on a column level, which is not 
relevant in this context. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
5.4 Advanced Usage of HBASE: 

It is important to have a good understanding of how to design tables, row keys, 

column names, and so on, to take full advantage of the architecture. 

Key Design 

HBase has two fundamental key structures: the row key and the column key. Both 

can be used to convey meaning, by either the data they store, or by exploiting their 

sorting order. In the following sections, we will use these keys to solve commonly 

found problems when designing storage solutions. 

Concepts 

 

Figure 5.9 logical flow of the filter methods 
 



The first concept to explain in more detail is the logical layout of a table, compared to 

on-disk storage. HBase‘s main unit of separation within a table is the column family—

not the actual columns as expected from a column-oriented database in their traditional 

sense. 

Figure - shows the fact that, although you store cells in a table format logically, in 

reality these rows are stored as linear sets of the actual cells, which in turn contain all 

the vital information inside them. 

The top-left part of the figure shows the logical layout of your data—you have rows and 

columns. The columns are the typical HBase combination of a column family name and 

a column qualifier, forming the column key. The rows also have a row key so that you 

can address all columns in one logicalrow. 

 
 

Figure 5.10Hbase cell 

HBASE Design Schema 

With HBase, you have a ―query-first‖ schema design; all possible queries should be 

identified first, and the schema model designed accordingly. You should design your HBase 

schema to take advantage of the strengths of HBase. Think about your access patterns, and 

design your schema so that the data that is read together is stored together. Remember that 

HBase is designed for clustering. 

 

 

 

https://www.safaribooksonline.com/library/view/hbase-the-definitive/9781449314682/ch09.html#img_folding


 

 

 

 

 

 

 

• Distributed data is stored and accessedtogether 
• It is query-centric, so focus on how the data isread 
• Design for thequestions 

Parent-Child Relationship–Nested Entity 
Here is an example of denormalization in HBase, if your tables exist in aone-to-

manyrelationship, it‘s possible to model it in HBase as a single row. In the example below, 

theorder and related line items are stored together and can be read together with a get on the row 
key. This makes the reads a lot faster than joining tables together. 
 

 
 
 The rowkey corresponds to the parent entity id, the OrderId. There is one column family 

for the order data, and one column family for the order items. The Order Items arenested, the 

Order Item IDs are put into the column names and any non-identifying attributes are put into 

thevalue.This kind of schema design is appropriate when the only way you get at the childentities 

is via the parententity. 

 
Self-Join Relationship – HBase 

 

Figure 5.11 Data Access 



• A self-join is a relationship in which both match fields are defined in the sametable. 

• Consider a schema for twitter relationships, where the queries are: which users does userX 

follow, and which users follow userX? Here‘s a possible solution: The userids are put in a 

composite row key with the relationship type as a separator. For example, Carol follows 

Steve Jobs and Carol is followed by BillyBob. This allows for row key scans for everyone 

carol:follows or carol:followedby 

• Below is the example Twittertable: 
 
 
 

 
Schema Design Exploration: 

• Raw data from HDFS orHBase 

• MapReduce for data transformation and ETL from rawdata. 

• Use bulk import from MapReduce toHBase 

• Serve data for online reads fromHBase 
 

Designing for reads means aggressively de-normalizing data so that the data that is 

read together is stored together. 

Data Access Pattern 

The batch layer precomputes the batch views. In the batch view, you read the results from 

a precomputed view. The precomputed view is indexed so that it can be accessed quickly with 

random reads.The serving layer indexes the batch view and loads it up so it can be efficiently 

queried to get particular values out of the view. A serving layer database only requires batch 

updates and random reads. The serving layer updates whenever the batch layer finishes 

precomputing a batch view. 



You can do stream-based processing with Storm and batch processing with 

Hadoop. The speed layer only produces views on recent data, and is for functions 

computed on data in the few hours not covered by the batch. 

 

 
5.4 Advance Indexing In HBase 
 
In HBase, the row key provides the same data retrieval benefits as a primary index. So, when you 

create a secondary index, use elements that are different from the row key. Secondary indexes 

allow you to have a secondary way to read an HBase table. They provide a way to efficiently 

access records by means of some piece of information other than the primary key. Secondary 

indexes require additional cluster space and processing because the act of creating a secondary 

index requires both space and processing cycles to update. A method of index maintenance, 

called Diff-Index, can help IBM® Big SQL to create secondary indexes for HBase, maintain 

those indexes, and use indexes to speed up queries. 

 

Why is this important? 
With secondary indexing, I can either find a single row to find all of the rows that contain an 

attribute with a specific value. Like everything in HBase, its stored in sort order so it becomes 

rather trivial for the client to fetch several rows and join them in sort order, or to take the 

intersection if we are trying to find the records that meet a specific qualification. (e.g. find all of 

Bob's employees who live in Cleveland, OH. Or find the average cost of repairing a Volvo S80 

that was involved in a front end collision.)As more people want to use HBase like a database and 

apply SQL, using secondary indexing makes filtering and doing data joins much more efficient. 

One just takes the intersection of the indexed qualifiers specified, and then apply the unindexed 

qualifiers as filters further reducing theresulset 



 
Problems in Indexing 

This design appears to mimic the concept of the column families, where like data is stored in a 

column family file. So that like data can be accessed quickly. But like the column families, we 

run in to the same problem... too many column families can be a bad thing when it comes to 

compaction. Depending on the number of columns to be indexed, the size of the index table 

could easily be larger than the base table. (Especially when you add in geo-spatial indexing. ) 

 
Co-Processor 
 

The idea of HBase Coprocessors was inspired by Google‘s BigTable coprocessors. which 

Google developed to bring computing parallelism to BigTable. They have the following 

characteristics: 

• Arbitrary code can run at each tablet in tableserver 

• High-level call interface forclients 
• Calls are addressed to rows or ranges of rows and the coprocessor client library 

resolves them to actual locations; 
• Calls across multiple rows are automatically split into multiple parallelized RPC 
• Provides a very flexible model for building distributed services 
• Automatic scaling, load balancing, request routing for applications 

 
Back to HBase, we definitely want to support efficient computational parallelism as well, 

beyond what HadoopMapReduce can provide. In addition, exciting new features can be built on 

top of it, for example secondary indexing, complex filtering (push down predicates), and access 

control. Coprocessors can be loaded globally on all tables and regions hosted by the region 

server, these are known as system coprocessors; or the administrator can specify which 

coprocessors should be loaded on all regions for a table on a per-table basis, these are known as 

tablecoprocessors. In order to support sufficient flexibility for potential coprocessor behaviors, 

two different aspects of extension are provided by the framework. One is the observer, which are 

like triggers in conventional databases, and the other is the endpoint, dynamic RPC endpoints 

that resemble stored procedures. 

 
Observers 
 
The idea behind observers is that we can insert user code by overriding upcall methods 



provided by the coprocessor framework. The callback functions are executed from core 

HBase code when certain events occur.The coprocessor framework handles all of the 

details of invoking callbacks during various base HBase activities; the coprocessor need 

only insert the desired additional or alternate functionality. 

 
The RegionObserver interface provides callbacks for: 

• preOpen, postOpen: Called before and after the region is reported as online to themaster. 
• preFlush, postFlush: Called before and after the memstore is flushed into a new storefile. 

• preGet, postGet: Called before and after a client makes a Getrequest. 

• preExists, postExists: Called before and after the client tests for existence using aGet. 

• prePut and postPut: Called before and after the client stores avalue. 

• preDelete and postDelete: Called before and after the client deletes a value etc. 

 
Endpoint 
 As mentioned previously, observers can be thought of like database triggers. Endpoints, on 

the other hand, are more powerful, resembling stored procedures. One can invoke an endpoint at 

any time from theclient.The endpoint implementation will then be executed remotely at the target 

region or regions, and results from those executions will be returned to theclient.Endpoint is an 

interface for dynamic RPC extension. The endpoint implementation is installed on the server side 

and can then be invoked with HBase RPC. The client library provides convenience methods for 

invoking such dynamicinterfaces. 
In order to build and use your own endpoint, you need to: 

• Have a new protocol interface which extendsCoprocessorProtocol. 

• Implement the Endpoint interface. The implementation will be loaded into and 

executed from the regioncontext. 

• Extend the abstract class BaseEndpointCoprocessor. This convenience class hides 

some internal details that the implementer need not necessary be concerned about, 

such as coprocessor framework classloading. 

• On the client side, the Endpoint can be invoked by two new HBase clientAPIs: 

Executing against a singleregion: 

 
o HTableInterface.coprocessorProxy(Class<T> protocol, byte[]row) 



o HTableInterface.coprocessorExec(Class<T> protocol, byte[] 

startKey, byte[] endKey, Batch.Call<T,R> callable) 

<property> 

<name>hbase.coprocessor.region.classes</name> 

Executing over a range of regions 
 

Coprocessor Management 
 
After you have a good understanding of how coprocessors work in HBase, you can start to build 

your own experimental coprocessors, deploy them to your HBase cluster, and observe the new 

behaviors. 

 
Build Your Own Coprocessor 
 

We now assume you have your coprocessor code ready, compiled and packaged as a jar 
file. 
 
Coprocessor Deployment 
 

Currently we provide two options for deploying coprocessor extensions: load from 

configuration, which happens when the master or region servers start up; or load from table 

attribute, dynamic loading when the table is (re)opened. Because most users will set table 

attributes by way of the‗alter‘ command of the HBase shell, let‘s call this load from shell. 

 
Load from Configuration 

When a region is opened, the framework tries to read coprocessor class names supplied 

as the configuration entries: 

• hbase.coprocessor.region.classes: for RegionObservers andEndpoints 

• hbase.coprocessor.master.classes: for MasterObservers 

• hbase.coprocessor.wal.classes: forWALObservers 
 

Here is an example of the hbase-site.xml where one RegionObserver is configured for all the 

HBase tables: 
 



 
 

5.5 Hadoop 2.0 
 

Apache Hadoop 2.0 represents a generational shift in the architecture of Apache Hadoop. 

With YARN, Apache Hadoop is recast as a significantly more powerful platform – one that takes 

Hadoop beyond merely batch applications to taking its position as a ‗data operating system‘ 

where HDFS is the file system and YARN is the operating system.YARN is a re-architecture of 

Hadoop that allows multiple applications to run on the same platform. With YARN, applications 

run ―in‖ Hadoop, instead of ―on‖ Hadoop: 
 

 
The fundamental idea of YARN is to split up the two major responsibilities of the JobTracker 

and TaskTracker into separate entities. In Hadoop 2.0, the JobTracker and TaskTracker no longer 

exist and have been replaced by threecomponents: 

 
• ResourceManager: a scheduler that allocates available resources in the cluster amongst the 

competingapplications. 

• NodeManager: runs on each node in the cluster and takes direction from the 

ResourceManager. It is responsible for managing resources available on a singlenode. 

• ApplicationMaster: an instance of a framework-specific library, an ApplicationMaster runs 

a specific YARN job and is responsible for negotiating resources from theResourceManager 

and also working with the NodeManager to execute and monitor Containers. 

 

<value>org.apache.hadoop.hbase.coprocessor.AggregateImplementation</value> 

</property> 



 
The actual data processing occurs within the Containers executed by the ApplicationMaster. 

A Container grants rights to an application to use a specific amount of resources (memory, 

cpu etc.) on a specific host. 

 
YARN is not the only new major feature of Hadoop 2.0. HDFS has undergone a major 

transformation with a collection of new features that include: 

 
• NameNode HA: automated failover with a hot standby and resiliency for the 

NameNode masterservice. 

• Snapshots: point-in-time recovery for backup, disaster recovery and protection 

against useerrors. 

• Federation: a clear separation of namespace and storage by enabling generic block 
storagelayer. 

 
MRv2-YARN 
 
The new architecture introduced in hadoop-0.23, divides the two major functions of the 

JobTracker: resource management and job life-cycle management into separate components.The 

new ResourceManager manages the global assignment of compute resources to applications and 

the per-application ApplicationMaster manages the application‘s scheduling and coordination. 

An application is either a single job in the sense of classic MapReduce jobs or a DAG of such 

jobs.The ResourceManager and per-machine NodeManager daemon, which manages the user 

processes on that machine, form the computation fabric.The per-application ApplicationMaster 

is, in effect, a framework specific library and is tasked with negotiating resources from the 

ResourceManager and working with the NodeManager(s) to execute and monitor the tasks. The 

fundamental idea of YARN is to split up the functionalities of resource management and job 

scheduling/monitoring into separate daemons. The idea is to have a global ResourceManager 

(RM) and per-application ApplicationMaster (AM). An application is either a single job or a 

DAG ofjobs.The ResourceManager and the NodeManager form the data-computation 

framework. The ResourceManager is the ultimate authority that arbitrates resources among all 

the applications in the system.The NodeManager is the per-machine framework agent who is 

responsible for containers, monitoring their resource usage (cpu, memory, disk, network) and 



reporting the same to the ResourceManager/Scheduler.The per-application ApplicationMaster is, 

in effect, a framework specific library and is tasked with negotiating resources from the 

ResourceManager and working with the NodeManager(s) to execute and monitor the tasks. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ResourceManager has two main components: Scheduler and ApplicationsManager. 
The Scheduler is responsible for allocating resources to the various running applications subject 

to familiar constraints of capacities, queues etc. The Scheduler is pure scheduler in the sense that 

it performs no monitoring or tracking of status for the application. Also, it offers no guarantees 

about restarting failed tasks either due to application failure or hardware failures.The Scheduler 

performs its scheduling function based the resource requirements of the applications; it does so 

based on the abstract notion of a resource Container which incorporates elements such as 

memory, cpu, disk, network etc. 

 
5.6 NameNode High Availablity 
 
Prior to Hadoop 2.0.0, the NameNode was a single point of failure (SPOF) in an HDFS cluster. 

Each cluster had a single NameNode, and if that machine or process became unavailable, the 

 

Figure 5.12 YARN workflow 



cluster as a whole would be unavailable until the NameNode was either restarted or brought up 

on a separate machine. 

 
This impacted the total availability of the HDFS cluster in two major ways: 

 
• In the case of an unplanned event such as a machine crash, the cluster would be 

unavailable until an operator restarted theNameNode. 

• Planned maintenance events such as software or hardware upgrades on the NameNode 

machine would result in windows of cluster downtime. 

 
The HDFS High Availability feature addresses the above problems by providing the option of 

running two redundant NameNodes in the same cluster in an Active/Passive configuration with a 

hot standby.This allows a fast failover to a new NameNode in the case that a machine crashes, or 

a graceful administrator-initiated failover for the purpose of planned maintenance. 

Architecture 
In a typical HA cluster, two separate machines are configured as NameNodes. At any 

point in time, exactly one of the NameNodes is in an Active state, and the other is in a Standby 

state. The Active NameNode is responsible for all client operations in the cluster, while the 

Standby is simply acting as a slave, maintaining enough state to provide a fast failover if 

necessary.In order for the Standby node to keep its state synchronized with the Active node, the 

current implementation requires that the two nodes both have access to a directory on a shared 

storage device (eg an NFS mount from a NAS). This restriction will likely be relaxed in future 

versions.When any namespace modification is performed by the Active node, it durably logs a 

record of the modification to an edit log file stored in the shared directory. The Standby node is 

constantly watching this directory for edits, and as it sees the edits, it applies them to its own 

namespace.In the event of a failover, the Standby will ensure that it has read all of the edits from 

the shared storage before promoting itself to the Active state. This ensures that the namespace 

state is fully synchronized before a failover occurs. 

In order to provide a fast failover, it is also necessary that the Standby node have up-to-

date information regarding the location of blocks in the cluster. In order to achieve this, the 

DataNodes are configured with the location of both NameNodes, and send block location 

information and heartbeats toboth. 



Hardware resources 
In order to deploy an HA cluster, you should prepare the following: 
• NameNode machines - the machines on which you run the Active and Standby 

NameNodes should have equivalent hardware to each other, and equivalent 

hardware to what would be used in a non-HAcluster. 

• Shared storage - you will need to have a shared directory which both NameNode machines 

can have read/write access to. Typically this is a remote filer whichsupportsNFS and is 

mounted on each of the NameNode machines. Currently only a single shared edits 

directory is supported.Thus, the availability of the system is limited by the availability of 

this shared edits directory, and therefore in order to remove all single points of failure 

there needs to be redundancy for the shared edits directory. 

 
5.7HDFS Federation 
 

HDFS Federation improves the existing HDFS architecture through a clear 

separation of namespace and storage, enabling generic block storage layer. It 

enables support for multiple namespaces in the cluster to improve scalability and 

isolation 

 
This guide provides an overview of the HDFS Federation feature and how to 

configure and manage the federated cluster. 

 
Background 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

Figure 5.13 Block storage 



HDFS has two main layers: 

 
• Namespace 

o Consists of directories, files andblocks. 

o It supports all the namespace related file system operations such as 

create,delete, modify and list files anddirectories. 

• Block Storage Service, which has two parts: 

o Block Management (performed in theNamenode) 
▪ Provides Datanode cluster membership by handling registrations,and 

periodic heartbeats. 

▪ Processes block reports and maintains location ofblocks. 

▪ Supports block related operations such as create, delete, modify andget 

blocklocation. 

▪ Manages replica placement, block replication for under replicatedblocks, 

and deletes blocks that are over replicated. 

o Storage - is provided by Datanodes by storing blocks on the local file 

systemand allowing read/writeaccess. 

 
 The prior HDFS architecture allows only a single namespace for the entire cluster. In that 

configuration, a single Namenode manages the namespace. HDFS Federation addresses this 

limitation by adding support for multiple Namenodes/namespaces to HDFS. 

 
Key Benefits 
 

• Namespace Scalability - Federation adds namespace horizontal scaling. Large 

deployments or deployments using lot of small files benefit from namespace scaling by 

allowing more Namenodes to be added to thecluster. 

• Performance - File system throughput is not limited by a single Namenode. Adding more 

Namenodes to the cluster scales the file system read/writethroughput. 

• Isolation - A single Namenode offers no isolation in a multi user environment. For 

example, an experimental application can overload the Namenode and slow down 

production critical applications. By using multiple Namenodes, different categories of 

applications and users can be isolated to different namespaces. 



 
Federation configuration is backward compatible and allows existing single 

Namenode configurations to work without any change. The new configuration is 

designed such that all the nodes in the cluster have the same configuration without the 

need for deploying different configurations based on the type of the node in the cluster. 

Configuration: 
 
Step 1: Add the dfs.nameservices parameter to your configuration and configure it with a list of 

comma separated NameServiceIDs. This will be used by the Datanodes to determine the 

Namenodes in the cluster. 

 
Step 2: For each Namenode and Secondary Namenode/BackupNode/Checkpointer add the 

following configuration parameters suffixed with the corresponding NameServiceID into the 

common configuration file: 

 
Formatting Namenodes 
 
Step 1: Format a Namenode using the following command: 
 

[hdfs]$ $HADOOP_PREFIX/bin/hdfsnamenode -format [-clusterId<cluster_id>] 
 

Choose a unique cluster_id which will not conflict other clusters in your environment. If a 

cluster_id is not provided, then a unique one is auto generated. 

 
Step 2: Format additional Namenodes using the following command: 
 

[hdfs]$ $HADOOP_PREFIX/bin/hdfsnamenode -format -clusterId<cluster_id> 
 
Upgrading from an older release and configuring federation 
 

Older releases only support a single Namenode. Upgrade the cluster to newer release in 

order to enable federation During upgrade you can provide a ClusterID as follows: 

 
[hdfs]$ $HADOOP_PREFIX/bin/hdfs start namenode --config $HADOOP_CONF_DIR - 
upgrade -clusterId<cluster_ID> 

 
If cluster_id is not provided, it is auto generated. Adding a new Namenode to an existing 



HDFScluster Perform the followingsteps: 

• Add dfs.nameservices to theconfiguration. 
• Update the configuration with the NameServiceID suffix. Configuration key names 

changed post release 0.20. You must use the new configuration parameter names 

inorder to usefederation. 

• Add the new Namenode related config to the configurationfile. 

• Propagate the configuration file to the all the nodes in thecluster. 

• Start the new Namenode andSecondary/Backup. 

• Refresh the Datanodes to pickup the newly added Namenode by running 

thefollowing command against all the Datanodes in thecluster: 

 
[hdfs]$ $HADOOP_PREFIX/bin/hdfsdfsadmin -refreshNameNodes 

<datanode_host_name>:<datanode_rpc_port> 
 
Managing the cluster 
 
Starting and stopping cluster 

 
To start the cluster run the followingcommand: 

 
[hdfs]$ $HADOOP_PREFIX/sbin/start-dfs.sh To stop the cluster run the 

followingcommand: 

[hdfs]$ $HADOOP_PREFIX/sbin/stop-dfs.sh 
 
Balancer 
 

The Balancer has been changed to work with multiple Namenodes. The Balancer can be run 

using the command: 

 
[hdfs]$ $HADOOP_PREFIX/sbin/hadoop-daemon.sh start balancer [-policy <policy>] 

 
Decommissioning 
 

Decommissioning is similar to prior releases. The nodes that need to be decomissioned are 

added to the exclude file at all of the Namenodes. Each Namenode decommissions its Block 



Pool.When all the Namenodes finish decommissioning a Datanode, the Datanode is considered 

decommissioned. 

Step 1: To distribute an exclude file to all the Namenodes, use the following command: 

[hdfs]$ $HADOOP_PREFIX/sbin/distribute-exclude.sh <exclude_file> 

Step 2: Refresh all the Namenodes to pick up the new exclude file: 
 

[hdfs]$ $HADOOP_PREFIX/sbin/refresh-namenodes.sh 
 

The above command uses HDFS configuration to determine the configured Namenodes in 

the cluster and refreshes them to pick up the new exclude file. 

 
Cluster Web Console 
 

Similar to the Namenode status web page, when using federation a Cluster Web Console is 

available to monitor the federated cluster at http://<any_nn_host:port>/dfsclusterhealth.jsp. Any 

Namenode in the cluster can be used to access this web page. 

 

Migrating from MapReduce 1 (MRv1) to MapReduce 2 
 

MapReduce from Hadoop 1 (MapReduce MRv1) has been split into two components. The 

cluster resource management capabilities have become YARN (Yet Another Resource 

Negotiator), while the MapReduce-specific capabilities remainMapReduce.In the MapReduce 

MRv1 architecture, the cluster was managed by a service called the JobTracker. TaskTracker 

services lived on each host and would launch tasks on behalf of jobs. The JobTracker would 

serve information about completed jobs. 

 
In MapReduce MRv2, the functions of the JobTracker have been split between three 

services. The ResourceManager is a persistent YARN service that receives and runs applications 

(a MapReduce job is an application) on the cluster.It contains the scheduler, which, as 

previously, is pluggable. The MapReduce-specific capabilities of the JobTracker have been 

moved into the MapReduce Application Master, one of which is started to manage each 

MapReduce job and terminated when the jobcompletes.The JobTracker function of serving 

information about completed jobs has been moved to the JobHistory Server. The TaskTracker 



has been replaced with the NodeManager, a YARN service that manages resources and 

deployment on a host. It is responsible for launching containers, each of which can house a map 

or reduce task.Nearly all jobs written for MRv1 will be able to run without any modifications on 

an MRv2 cluster. 

 
 
 
 
 
 
 
 
 
 
 
 
The new architecture has its advantages. First, by breaking up the JobTracker into a few different 

services, it avoids many of the scaling issues faced by MapReduce in Hadoop 1.More 

importantly, it makes it possible to run frameworks other than MapReduce on a Hadoop cluster. 

For example, Impala can also run on YARN and share resourceswith MapReduce. 

 
Configuration Migration 
 

Since MapReduce 1 functionality has been split into two components, MapReduce cluster 

configuration options have been split into YARN configuration options, which go in yarn- 

site.xml, and MapReduce configuration options, which go in mapred-site.xml. Many have been 

given new names to reflect the shift. As JobTrackers and TaskTrackers no longer exist in MRv2, 

all configuration options pertaining to them no longer exist, although many have corresponding 

options for the ResourceManager, NodeManager, and JobHistoryServer. 

 
A minimal configuration required to run MRv2 

jobs on YARN is: yarn-site.xml 
configuration 
<?xml version="1.0" encoding="UTF-8"?> 
<configuration> 

 

Figure 5.14 MRV2 
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<property> 
<name>yarn.resourcemanager.hostname</name> 
<value>you.hostname.com</value> 

</property> 
 

<property> 
<name>yarn.nodemanager.aux-services</name> 
<value>mapreduce_shuffle</value> 

</property> 
</configuration> 

mapred-site.xml configuration 
<?xml version="1.0" encoding="UTF-8"?> 
<configuration> 
<property> 
<name>mapreduce.framework.name</name> 
<value>yarn</value> 

</property> 
</configuration> 
Below is a table with HA-related configurations used in MRv1 and their equivalents in 
YARN: 

MRv1 YARN / MRv2 Comment 
mapred.jobtrackers.name yarn.resourcemanager.ha.rm-ids  
mapred.ha.jobtracker.id yarn.resourcemanager.ha.id Unlike in MRv1, this 

must be configured in 
YARN. 

mapred.jobtracker.rpc- 
address.name.id 

yarn.resourcemanager.rpc-address.id YARN/ MRv2 has 
different RPC ports for 
different 
functionalities. Each 
port-related 
configuration must be 
suffixed with an id. 
Note that there is no 
<name> in YARN. 

mapred.ha.jobtracker.rpc- 
address.name.id 

yarn.resourcemanager.ha.admin.addres 
s 

 

mapred.ha.fencing.methods yarn.resourcemanager.ha.fencer Not required to be 
specified 

mapred.client.failover.* None Not required 
 yarn.resourcemanager.ha.enabled Enable HA 
mapred.jobtracker.restart.recove 
r 

yarn.resourcemanager.recovery.enable 
d 

Enable recovery of jobs 
after failover 

 yarn.resourcemanager.store.class org.apache 
.hadoop.yarn 



MRv1 YARN / MRv2 Comment 
  .server.resourcemanage 

r .recovery 
.ZKRMStateStore 

mapred.ha.automatic- 
failover.enabled 

yarn.resourcemanager.ha.automatic- 
failover.enabled 

Enable automatic 
failover 

mapred.ha.zkfc.port yarn.resourcemanager.ha.automatic- 
failover.port 

 

mapred.job.tracker yarn.resourcemanager.cluster.i  
 
 
5.8 Programming in YARN Framework  

Under Hadoop 2.0, MapReduce is but one instance of a YARN application, where YARN has 

taken center stage as the ―operating system‖ of Hadoop.  BecauseYARN allowsany application to 

run on equal footing with MapReduce, it opened the floodgates for a new generation of software 

applications with these kinds of features: 
 

More programming models.Because YARN supports any application that can divide itself into 

parallel tasks,they are no longer shoehorned into the palette of ―mappers,‖―combiners,‖and 

―reducers.‖   This  in  turn  supports  complex  data-flow  applications  like  ETL  and  ELT,  and 

iterative programs like massively-parallel machine learning and modeling. 

Integration of native libraries.Because YARN has robust support for any executable – not 

limited to MapReduce, and not even limited to Java – application vendors with a large mature 

code base have a clear path to Hadoop integration. 

Support for large reference data. YARN automatically ―localizes‖ and caches large reference 

datasets, making them available to all nodes for ―data local‖ processing.   This supports legacy 

functions like address standardization, which require large reference data sets that cannot be 

accessed from the Hadoop Distributed File System (HDFS) by the legacy libraries. Of course, 

MapReduce isn‘t the only option for processing data at scale using Hadoop. Toolslike Pig (a 

large scale query and analysis system), Hive (a data warehousing application) and others have 

been available for some time. These tools can express transforms and analysis using more 

accessible constructs: Hive uses HQL, a language similar to SQL. 



Pig provides a script language (Pig Latin) to create MapReduce jobs. Business analysts 

familiar with conventional tools like SQL and SAS should be able to use these tools to 

write programs to solve large data problems on Hadoop clusters 

The Value of Visual Application Development Tools 

A new generation of ―visual design‖application development tools could help solve 

thesecoding problems. By running as native YARN applications and side-stepping the 

need for MapReduce, some of these programs eliminate coding altogether.Other tools 

reduce coding by generating MapReduce code or by generating scripts like Pig. Visual 

designers are powerful for several reasons: 

• Increased level of abstraction: Instead of thinking about classes and methods, users see 

operations, data, and outcomes. 

• Fast―what-if‖:Thedrag-and-connectinterfacesupportsquicktry/observe/adjustcycles. 
• Automatic optimization: Scaling and efficiency arebuilt-in. 
• High-levelpalette:High-levelconstructslike―standardizeaddress‖,―deduplicateconsumers‖, 

or―parsenames‖ areoften directlyon thedesignerpalette. 
 

How does this look in practice? Here‘s an illustration that shows how three competing 
approaches differ: 

 
• MapReduce written inJava 
 
• Pig scripts developed fromscratch 
 
• A visually-designed process running a native YARN ETL application. The application 

is from RedPoint Global, but comparable approaches can be seen in Talend andActian. 
 

Using these three approaches, we conducted a ―Word Count‖ test on 30,000 files (20 gigabytes) 

of Project Gutenberg books. This test reads lines of text, breaks them into words, and creates a 

concordance (list of words and the number of times each occurs).Our Hadoop cluster was 

small—only four nodes—but was large enough to demonstrate the concepts and tradeoffs 

http://www.gutenberg.org/


MapReduce: 

Set-up time: While flexible, MapReduce had the longest learning curve and required significant 

coding skills—both as a Java programmer and a MapReduce specialist—to prepare the test. 

Performance: It took 3 hours 20 minutes to run the test initially due to the ―small files problem‖ 

that is familiar to seasoned MapReduce programmers.This problem occurs when reading large 

collections of small files, because MapReduce‘s default behavior is to assign a mapper task to 

each file. This results in a huge number of tasks.To address this issue, we created a custom 

InputFormat class to read multiple files at once. This reduced our run time to 58 minutes. Then 

we tuned the split sizes and mapper task limit appropriately, which dropped the run time to about 

six minutes. 

Comments: Each performance improvement came at a cost. Overall, nearly a full day of 

programmer time was spent optimizing the original code. 

Pig: 

Set-up time: Learning Pig was fairly easy. It was pretty natural to create the coding for 

this test. However to make a common adjustment in the code—changing the set of 

whitespace separators to include punctuation—required the addition of a ―User defined 

function‖ or UDF which had to be written in Java. 

Pig is generally easy enough to use by people who aren‘t professional programmers but 

who know how to write scripting languages like JavaScript or Visual Basic. 

Performance: The results were not stellar: run time was close to 15 minutes. 

Comments: While coding took less time, Java programming was ultimately required to 

meet the test requirements. 



YARN-enabled ETL/ELT designer: 

Set-up time: The tool is designed to have a shorter learning curve than even Pig scripting. 

Dragging  tools  like  ―Delimited  Input‖,  ―Summarize‖  and  ―Tokenize‖  from  the  palette  and 

configuring them is designed to be discoverable and intuitive, and the resulting diagram has a 

one-to-one correspondence between icons and operations. There‘s no need for coding or learning 

a language like Java or Pig. 

The visual design covers the input file format, tokenizing and counting steps. The resulting data 

flow graph contains seven icons along with a grouping construct that shows what executes 

―inside‖Hadoop.Each icon represents a stepin the data transformation. 

Performance: The run time for this data flow is just over three minutes with no tuning. 

Comments:Because there is no code to manage, and editing is done visually, running ―what if‖ 

scenarios is quick for non-programmers. 

Once the data flow is designed, it can be stored and saved for later use. In addition, the logic can 

be captured into a ―macro‖ for sharing and reuse between multiple data flows. 
 

 

5.9 Oozie workflow scheduler for Hadoop 

 
Oozieis a framework that helps automate this process and codify this work into repeatable 

units or workflows that can be reused over time without the need to write any new code or steps. 



Apache Oozie is an open source project based on Java™ technology that simplifies the process 

of creating workflows and managing coordination among jobs. In principle, Oozie offers the 

ability to combine multiple jobs sequentially into one logical unit ofwork.One advantage of the 

Oozie framework is that it is fully integrated with the Apache Hadoop stack and supports 

Hadoop jobs for Apache MapReduce, Pig, Hive, andSqoop. 

In addition, it can be used to schedule jobs specific to a system, such as Java programs.In 
practice, there are different types of Oozie jobs: 

• Oozie Workflow jobs — Represented as directed acyclical graphs to specify a sequence of 

actions to beexecuted. 

• Oozie Coordinator jobs — Represent Oozie workflow jobs triggered by time and data 

availability. 

• Oozie Bundle— Facilitates packaging multiple coordinator and workflow jobs, and makes it 

easier to manage the life cycle of those jobs. 

 
How does Oozie work? 

An Oozie workflow is a collection of actions arranged in a directed acyclic graph (DAG). 

This graph can contain two types of nodes: control nodes and action nodes. Control nodes, which 

are used to define job chronology, provide the rules for beginning and ending a workflow and 

control the workflow execution path with possible decision points known as fork and joinnodes. 

Action nodes are used to trigger the execution of tasks. In particular, an action node can be a 

MapReduce job, a Pig application, a file system task, or a Java application. (The shell and ssh 

actions have been deprecated).Oozie is a native Hadoop stack integration that supports all types 

of Hadoop jobs and is integrated with the Hadoop stack.Figure shown below illustrates a sample 

Oozie workflow that combines six action nodes (Pig scrip, MapReduce jobs,Java code,and 

HDFStask) andfive control nodes (Start, Decisioncontrol, Fork, Join, and End). Oozie workflows 

can be also parameterized. When submitting a workflow job, values for the parameters must be 

provided. If the appropriate parameters are used, several identical workflow jobs can 

occurconcurrently. 

 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 

In practice, it is sometimes necessary to run Oozie workflows on regular time intervals, but 

in coordination with other conditions, such as the availability of specific data or the completion 

of any other events or tasks. 

 
Oozie in action 
 

Use an Oozie workflow to run a recurring job. Oozie workflows are written as an 

XML file representing a directed acyclic graph. Let's look at the following simple 

workflow example that chains two MapReduce jobs. The first job performs an initial 

ingestion of the data and the second job merges data of a given type. 

Simple example of Oozie workflow 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16 :sample Oozie workflow 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<workflow-app xmlns='uri:oozie:workflow:0.1' name='SimpleWorkflow'> 
<start to='ingestor'/> 
<action name='ingestor'> 

</java> 
<job-tracker>${jobTracker}</job-tracker> 
<name-node>${nameNode}</name-node> 
<configuration> 

<property> 
<name>mapred.job.queue.name</name> 
<value>default</value> 

</property> 
</configuration> 

<arg>${driveID}</arg> 
</java> 
<ok to='merging'/> 
<error to='fail'/> 

</action> 
<fork name='merging'> 

<pathstart='mergeT1'/> 
<pathstart='mergeT2'/> 

</fork> 
<action name='mergeT1'> 

<java> 
    <job-tracker>${jobTracker}</job-tracker> 

<name-node>${nameNode}</name-node> 
<configuration> 

<property> 
<name>mapred.job.queue.name</name> 
<value>default</value> 

</property> 
</configuration> 
<arg>-drive</arg> 
<arg>${driveID}</arg> 
<arg>-type</arg> 
<arg>T1</arg> 
<ok to='completed'/> 
<error to='fail'/> 

</action> 
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<action name='mergeT2'> 
<java> 

<job-tracker>${jobTracker}</job-tracker> 
<name-node>${nameNode}</name-node> 
<configuration> 

<property> 
<name>mapred.job.queue.
name</name> 
<value>default</value> 

</property> 
</configuration> 
<main- 

class>com.navteq.assetmgmt.hdfs.mer
ge.MergerLoader</main-class> 

<arg>-drive</arg> 
<arg>${driveID}</arg> 
<arg>-type</arg> 
<arg>T2</arg> 

</java> 
<ok to='completed'/> 
<error to='fail'/> 

</action> 
<join name='completed' to='end'/> 
<kill name='fail'> 

<message>Java failed, 
error 
message[${wf:errorMessage(wf:lastErrorNo
de())}]</message> 

</kill> 
<end name='end'/> 

</workflow-app> 
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	 It has 2 components: Map and Reduce phase which is shown in Fig. 3.1.
	Fig. 3.1 Components of Hadoop
	 The generalized workflow of MapReduce is shown in Fig. 3.2.
	 MapReduce performs parallel processing in the manner shown in Fig. 3.3.
	 The detailed workflow of MapReduce is shown in the Fig. 3.4:
	Fig. 3.4 Detailed Workflow of MapReduce
	 So, to conclude, MapReduce does parallel processing of data in Hadoop.
	HDFS – HADOOP DISTRIBUTED FILE SYSTEM
	 HDFS provides high throughput access to application data and is suitable for applications that have large data sets.
	 The NameNode executes file system namespace operations like opening, closing, and renaming files and directories.
	 The DataNodes are responsible for serving read and write requests from the file system’s clients.
	Fig. 3.5 Hadoop Distributed File System
	Working of HDFS
	Fig. 3.6 Working of HDFS
	RELATIONSHIP BETWEEN MAPREDUCE AND HDFS
	 We compare the Hadoop software framework as a computer, the MapReduce is the same as software, and the HDFS is the same as hardware.
	Input data is uploaded to the HDFS file system in either of following two ways:
	Serialization:

	HOW TO CREATE A CUSTOM WRITABLE FOR HADOOP
	public class MergeAndSplineMapper extends Mapper<LongWritable, BytesWritable, LongWritable, BytesWritable> {
	private static Logger LOG = Logger.getLogger(MergeAndSplineMapper.class);
	enumSurfaceCounters {
	ROADS, NONLINEARS, UNKNOWN
	}
	@Override
	public void map(LongWritable key, BytesWritable value, Context context) throws IOException, InterruptedException {
	// A list of mixed surface types
	LinkSurfaceMaplsm = (LinkSurfaceMap) BytesConverter.bytesToObject(value.getBytes());
	List<RoadSurface>mixedSurfaces = lsm.toSurfaceList();
	for (RoadSurfacesurface :mixedSurfaces)  {
	Long surfaceId = surface.getNumericId();
	Enums.SurfaceTypesurfaceType = surface.getSurfaceType();
	if ( surfaceType.equals(SurfaceType.INTERSECTION)  )  {
	// Ignore non-linear surfaces.
	context.getCounter(SurfaceCounters.NONLINEARS).increment(1);
	continue;
	}
	else if ( !surfaceType.equals(SurfaceType.ROAD) ) {
	// Ignore anything that wasn’t an INTERSECTION or ROAD, ie any future additions.
	context.getCounter(SurfaceCounters.UNKNOWN).increment(1);
	continue;
	}
	PopulatorPreprocessor.processLinearSurface(surface);
	// Write out the processed linear surface.
	lsm.setSurface(surface);
	context.write(new LongWritable(surfaceId), new BytesWritable(BytesConverter.objectToBytes(lsm)));
	if (LOG.isDebugEnabled()) {
	context.getCounter(SurfaceCounters.ROADS).increment(1);
	}
	}
	}
	}
	We’ve written the following unit test for our class using MRUnit, Mockito, and PowerMock.
	@RunWith(PowerMockRunner.class)
	@PrepareForTest(PopulatorPreprocessor.class)
	public classMergeAndSplineMapperTest {
	privateMapDriver<LongWritable, BytesWritable, LongWritable, BytesWritable>mapDriver;
	@Before
	public voidsetUp() {
	MergeAndSplineMapper mapper = newMergeAndSplineMapper();
	mapDriver = newMapDriver<LongWritable, BytesWritable, LongWritable, BytesWritable>();
	mapDriver.setMapper(mapper);
	}
	@Test
	public voidtestMap_INTERSECTION() throwsIOException {
	LinkSurfaceMaplsm = newLinkSurfaceMap();
	RoadSurfacers = newRoadSurface(Enums.RoadType.INTERSECTION);
	byte[] lsmBytes = append(lsm, rs);
	PowerMockito.mockStatic(PopulatorPreprocessor.class);
	mapDriver.withInput(newLongWritable(1234567), newBytesWritable(lsmBytes));
	mapDriver.runTest();
	Assert.assertEquals("ROADS count incorrect.", 0,
	mapDriver.getCounters().findCounter(SurfaceCounters.ROADS).getValue());
	Assert.assertEquals("NONLINEARS count incorrect.", 1,
	mapDriver.getCounters().findCounter(SurfaceCounters.NONLINEARS).getValue());
	Assert.assertEquals("UNKNOWN count incorrect.", 0,
	mapDriver.getCounters(). findCounter(SurfaceCounters.UNKNOWN).getValue());
	PowerMockito.verifyStatic(Mockito.never());
	PopulatorPreprocessor.processLinearSurface(rs);
	}
	@Test
	public voidtestMap_ROAD() throwsIOException {
	LinkSurfaceMaplsm = newLinkSurfaceMap();
	RoadSurfacers = newRoadSurface(Enums.RoadType.ROAD);
	byte[] lsmBytes = append(lsm, rs);
	// save logging level since we are modifying it.
	Level originalLevel = Logger.getRootLogger().getLevel();
	Logger.getRootLogger().setLevel(Level.DEBUG);
	PowerMockito.mockStatic(PopulatorPreprocessor.class);
	mapDriver.withInput(newLongWritable(1234567), newBytesWritable(lsmBytes));
	mapDriver.withOutput(newLongWritable(1000000), newBytesWritable(lsmBytes));
	mapDriver.runTest();
	Assert.assertEquals("ROADS count incorrect.", 1,
	mapDriver.getCounters().findCounter(SurfaceCounters.ROADS).getValue());
	Assert.assertEquals("NONLINEARS count incorrect.", 0,
	mapDriver.getCounters().findCounter(SurfaceCounters.NONLINEARS).getValue());
	Assert.assertEquals("UNKNOWN count incorrect.", 0,
	mapDriver.getCounters().findCounter(SurfaceCounters.UNKNOWN).getValue());
	PowerMockito.verifyStatic(Mockito.times(1));
	PopulatorPreprocessor.processLinearSurface(rs);
	// set logging level back to it's original state so as not to affect other tests
	Logger.getRootLogger().setLevel(originalLevel);
	}
	testMap_INTERSECTION

	private MapDriver<LongWritable, BytesWritable, LongWritable, BytesWritable>mapDriver;
	@Before
	public void setUp() {
	MergeAndSplineMapper mapper = new MergeAndSplineMapper();
	mapDriver = new MapDriver<LongWritable, BytesWritable, LongWritable, BytesWritable>();
	mapDriver.setMapper(mapper);
	}
	Throwing IOException on the unit test method signature

	@Test
	public void testMap_INTERSECTION() throws IOException {
	Initialize the test input to drive the test.  In order to hit the if-block we want to test, we have to ensure the surface type is of RoadType.INTERSECTION.
	LinkSurfaceMaplsm = new LinkSurfaceMap();
	RoadSurfacers = new RoadSurface(Enums.RoadType.INTERSECTION);
	byte[] lsmBytes = append(lsm, rs);
	We use PowerMock[3] to mock out a static call to the PopulatorPreprocessor class.  PopulatorPreprocessor is a separate class containing business logic and is tested by it’s own JUnit test.  At the class level, we set-up PowerMock with the @RunWith ann...
	@RunWith(PowerMockRunner.class)
	@PrepareForTest(PopulatorPreprocessor.class)
	PowerMockito.mockStatic(PopulatorPreprocessor.class);
	Set the previously created test input and run the mapper:
	mapDriver.withInput(new LongWritable(1234567), new BytesWritable(lsmBytes));
	mapDriver.runTest();
	Assert.assertEquals("ROADS count incorrect.", 0,
	mapDriver.getCounters().findCounter(SurfaceCounters.ROADS).getValue());
	Assert.assertEquals("NONLINEARS count incorrect.", 1,
	mapDriver.getCounters().findCounter(SurfaceCounters.NONLINEARS).getValue());
	Assert.assertEquals("UNKNOWN count incorrect.", 0,
	mapDriver.getCounters().findCounter(SurfaceCounters.UNKNOWN).getValue());
	PowerMockito.verifyStatic(Mockito.never());
	PopulatorPreprocessor.processLinearSurface(rs);
	testMap_ROAD

	RoadSurfacers = newRoadSurface(Enums.RoadType.ROAD);
	Level originalLevel = Logger.getRootLogger().getLevel();
	Logger.getRootLogger().setLevel(Level.DEBUG)
	Logger.getRootLogger().setLevel(originalLevel);
	Assert.assertEquals("ROADS count incorrect.", 1,
	mapDriver.getCounters().findCounter(SurfaceCounters.ROADS).getValue());
	Assert.assertEquals("NONLINEARS count incorrect.", 0,
	mapDriver.getCounters().findCounter(SurfaceCounters.NONLINEARS).getValue());
	Assert.assertEquals("UNKNOWN count incorrect.", 0,
	mapDriver.getCounters().findCounter(SurfaceCounters.UNKNOWN).getValue());
	PowerMockito.verifyStatic(Mockito.times(1));
	PopulatorPreprocessor.processLinearSurface(rs);
	Testing A REDUCER

	privateReduceDriver<LongWritable, BytesWritable, LongWritable, BytesWritable>reduceDriver;
	@Before
	public voidsetUp() {
	MyReducer reducer = newMyReducer ();
	reduceDriver = newReduceDriver<LongWritable, BytesWritable, LongWritable, BytesWritable>();
	reduceDriver.setReducer(reducer);
	}
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