
Page 1 of 28

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT I - Big Data – SIT1606

Page 2 of 28

UNIT 1 INTRODUCTION 9 Hrs.
Introduction to Big Data - Challenges of Conventional Systems - Nature of Data - Small data
- Medium data - Big Data - Small data vs Big data - Sources of Big Data - Big Data
Characteristics - Big Data Analytics - Importance of Big Data, Big Data in the Enterprise -
Big Data Enterprise Model - Building a Big Data Platform - Big data in Social and
Behavioral sciences.

Introduction

What is Data?

Data can be defined as a representation of facts, concepts, or instructions in a formalized
manner.

Table 1.1 Characteristics of Data

Accuracy Is the information correct in every detail?

Completeness How comprehensive is the information?

Reliability Does the information contradict other trusted resources?

Relevance Do you really need this information?

Timeliness How up- to-date is information? Can it be used for real-time
reporting?

Differences between Small Data, Medium Data and Big Data

Data can be small, medium or big.

Small data is data in a volume and format that makes it accessible, informative and
actionable.

Medium data refers to data sets that are too large to fit on a single machine but don’t require
enormous clusters of thousands.

Big data is extremely large data sets that may be analysed computationally to reveal patterns,
trends, and associations, especially relating to human behaviour and interactions.

Table 1.2 Small Data and Big Data Comparison Table

Basis of
Comparison Small Data Big Data

Definition
Data that is ‘small’ enough for human
.In a volume and format that makes it
accessible, informative and actionable

Data sets that are so large or complex
that traditional data processing
applications cannot deal with them

Data Source ● Data from traditional enterprise
systems like ● Purchase data from point-of-sale

Page 3 of 28

○ Enterprise resource planning ● Clickstream data from websites

○ Customer relationship
management(CRM)

● GPS stream data – Mobility data
sent to a server

 ● Social media – Facebook, Twitter

Volume
Most cases in a range of tens or
hundreds of GB.Some case few TBs (1
TB=1000 GB)

More than a few Terabytes (TB)

Velocity (Rate
at which data
appears)

● Controlled and steady data flow ● Data can arrive at very fast
speeds.

● Data accumulation is slow ● Enormous data can accumulate
within very short periods of time

Variety
Structured data in tabular format with
fixed schema and semi-structured data
in JSON or XML format

High variety data sets which include
Tabular data,Text files, Images,
Video, Audio,
XML,JSON,Logs,Sensor data etc.

Veracity
(Quality of
data)

Contains less noise as data collected in
a controlled manner.

Usually, the quality of data not
guaranteed. Rigorous data validation
is required before processing.

Value Business Intelligence, Analysis, and
Reporting

Complex data mining for prediction,
recommendation, pattern finding, etc.

Time
Variance

Historical data equally valid as data
represent solid business interactions

In some cases, data gets older soon(Eg
fraud detection).

Data Location Databases within an enterprise, Local
servers, etc.

Mostly in distributed storages on
Cloud or in external file systems.

Infrastructure Predictable resource allocation.Mostly
vertically scalable hardware

More agile infrastructure with a
horizontally scalable architecture.
Load on the system varies a lot.

Introduction to Big Data

Big data is data that exceeds the processing capacity of conventional database systems. The
data is too big, moves too fast, or doesn’t fit the strictures of your database architectures. To
gain value from this data, you must choose an alternative way to process it. Big Data has to
deal with large and complex datasets that can be structured, Semi-structured, or unstructured
and will typically not fit into memory to be Processed.

Big data is a field that treats ways to analyze, systematically extract information from, or
otherwise deal with data sets that are too large or complex to be dealt with by traditional data-
processing application software. – Wikipedia

Page 4 of 28

Fig. 1.1 3Vs of Big Data

Examples of Big Data:

The New York Stock Exchange generates about one terabyte of new trade data per day.

The statistic shows that 500+terabytes of new data get ingested into the databases of social
media site Facebook, every day. This data is mainly generated in terms of photo and video
uploads, message exchanges, putting comments etc.

A single Jet engine can generate 10+terabytes of data in 30 minutes of flight time. With many
thousand flights per day, generation of data reaches up to many Petabytes.

Table 1.3 Examples of Data Volumes

Unit Value Example
Kilobytes (KB) 1,000 bytes a paragraph of a text document
Megabytes (MB) 1,000 Kilobytes a small novel
Gigabytes (GB) 1,000 Megabytes Beethoven’s 5th Symphony
Terabytes (TB) 1,000 Gigabytes all the X-rays in a large hospital

Petabytes (PB) 1,000 Terabytes half the contents of all US academic research
libraries

Exabytes (EB) 1,000 Petabytes about one fifth of the words people have ever
spoken

Zettabytes (ZB) 1,000 Exabytes as much information as there are grains of sand
on all the world’s beaches

Page 5 of 28

Yottabytes (YB) 1,000 Zettabytes as much information as there are atoms in 7,000
human bodies

Advantages of using Big Data

1. Improved business processes

2. Fraud detection

3. Improved customer service

4. Better decision-making

5. Increased productivity

6. Reduce costs

7. Improved customer service

8. Fraud detection

9. Increased revenue

10. Increased agility

11. Greater innovation

12. Faster speed to market

Disadvantages of Big Data

1. Privacy and security concerns

2. Need for technical expertise

3. Need for talent

4. Data quality

5. Need for cultural change

6. Compliance

7. Cybersecurity risks

8. Rapid change

9. Hardware needs

10. Costs

11. Difficulty integrating legacy systems

Page 6 of 28

Benefits of Using Big Data Analytics:

• Identifying the
root causes of failures and issues in real time

• Fully
understanding the potential of data-driven marketing

• Generating
customer offers based on their buying habits

• Improving
customer engagement and increasing customer loyalty

• Reevaluating
risk portfolios quickly

• Personalizing
the customer experience

• Adding value
to online and offline customer interactions

• Big Data has
to deal with large and complex datasets that can be structured,

• Semi-
structured, or unstructured and will typically not fit into memory to be

• Processed.

Fig 1.2 Four Characteristics of Big Data

Page 7 of 28

Characteristics of Big Data (3 Vs of Big Data)

3Vs of Big Data = Volume, Velocity and Variety.

1. Volume:

Volume refers to the sheer size of the ever-exploding data of the computing world. It raises
the question about the quantity of data collected from different sources over the Internet

2. Velocity:

Velocity refers to the processing speed. It raises the question of at what speed the data is
processed. The speed is measured by the use of the data in a specific time period.In Big Data
velocity data flows in from sources like machines, networks, social media, mobile phones
etc.There is a massive and continuous flow of data. This determines the potential of data that
how fast the data is generated and processed to meet the demands.

3. Variety:

Variety: Variety refers to the types of data. In Big Data the raw data always collected in
variety. The raw data can be structured, unstructured, and semi structured. This is because the
data is collected from various sources.It also refers to heterogeneous sources.

Fig. 1.3 Four Vs of Big Data

4Vs of Big Data = Volume, Velocity, Variety, Veracity

4. Veracity:

Veracity is all about the trust score of the data. If the data is collected from trusted or reliable
sources then the data neglect this rule of big data.It refers to inconsistencies and uncertainty
in data, that is data which is available can sometimes get messy and quality and accuracy are
difficult to control.Big Data is also variable because of the multitude of data dimensions

Page 8 of 28

resulting from multiple disparate data types and sources.Example: Data in bulk could create
confusion whereas less amount of data could convey half or Incomplete Information.

5Vs of Big Data = Volume, Velocity, Variety, Veracity,

5. Value:

Value refers to purpose, scenario or business outcome that the analytical solution has to
address.Does the data have value, if not is it worth being stored or collected?The analysis
needs to be performed to meet the ethical considerations.

6Vs of Big Data = Volume, Velocity, Variety, Veracity, Variability

6. Variability

This refers to establishing if the contextualizing structure of the data stream is regular and
dependable even in conditions of extreme unpredictability.It defines the need to get
meaningful data considering all possible circumstances.

7Vs of Big Data =Volume, Velocity, Variety, Veracity, Variability, Visualization

7. Visualization:

Visualization is critical in today’s world. Using charts and graphs to visualize large amounts
of complex data is much more effective in conveying meaning than spreadsheets and reports
chock-full of numbers and formulas.

Challenges of Conventional System:

Fundamental challenges

–How to store

–How to work with voluminous data sizes,

–and more important, how to understand data and turn it into a competitive advantage.

How about Conventional system technology?

• CPU Speeds:

– 1990 - 44 MIPS at 40 MHz

– 2000 - 3,561 MIPS at 1.2 GHz

– 2010 - 147,600 MIPS at 3.3 GHz

• RAM Memory

– 1990 – 640K conventional memory (256K extended memory recommended)

– 2000 – 64MB memory

– 2010 - 8-32GB (and more)

Page 9 of 28

• Disk Capacity

– 1990 – 20MB

– 2000 - 1GB

– 2010 – 1TB

• Disk Latency (speed of reads and writes) – not much improvement in last 7-10 years,
currently around 70 – 80MB / sec

How long it will take to read 1TB of data?

•1TB (at 80Mb / sec):

• 1 disk - 3.4 hours

• 10 disks - 20 min

•100 disks - 2 min

• 1000 disks - 12 sec

What do we care about when we process data?

• Handle partial hardware failures without going down:

– If machine fails, we should be switch over to stand by machine

– If disk fails – use RAID or mirror disk

• Able to recover on major failures:

– Regular backups

– Logging

– Mirror database at different site

• Capability:

– Increase capacity without restarting the whole system

– More computing power should equal to faster processing

• Result consistency:

– Answer should be consistent (independent of something failing) and returned in reasonable
amount of time

Nature of Data

Big data is a term thrown around in a lot of articles, and for those who understand what big
data means that is fine, but for those struggling to understand exactly what big data is, it can
get frustrating. There are several definitions of big data as it is frequently used as an all-
encompassing term for everything from actual data sets to big data technology and big data

Page 10 of 28

analytics. However, this article will focus on the actual types of data that are contributing to
the ever growing collection of data referred to as big data. Specifically we focus on the data
created outside of an organization, which can be grouped into two broad categories:
structured and unstructured.

Fig. 1.4. Nature of Data

Structured Data

1. Created:

Created data is just that; data businesses purposely create, generally for market research. This
may consist of customer surveys or focus groups. It also includes more modern methods of
research, such as creating a loyalty program that collects consumer information or asking
users to create an account and login while they are shopping online.

2. Provoked:

A Forbes Article defined provoked data as, “Giving people the opportunity to express their
views.” Every time a customer rates a restaurant, an employee, a purchasing experience or a
product they are creating provoked data. Rating sites, such as Yelp, also generate this type of
data.

3. Transacted:

Transactional data is also fairly self-explanatory. Businesses collect data on every transaction
completed, whether the purchase is completed through an online shopping cart or in-store at
the cash register. Businesses also collect data on the steps that lead to a purchase online. For
example, a customer may click on a banner ad that leads them to the product pages which
then spurs a purchase.

As explained by the Forbes article, “Transacted data is a powerful way to understand exactly
what was bought, where it was bought, and when. Matching this type of data with other
information, such as weather, can yield even more insights. (We know that people buy more
Pop-Tarts at Walmart when a storm is predicted.)”

Page 11 of 28

4. Compiled:

Compiled data is giant databases of data collected on every U.S. household. Companies like
Acxiom collect information on things like credit scores, location, demographics, purchases
and registered cars that marketing companies can then access for supplemental consumer
data.

5. Experimental:

Experimental data is created when businesses experiment with different marketing pieces and
messages to see which are most effective with consumers. You can also look at experimental
data as a combination of created and transactional data.

Unstructured Data

People in the business world are generally very familiar with the types of structured data
mentioned above. However, unstructured is a little less familiar not because there’s less of it,
but before technologies like NoSQL and Hadoop came along, harnessing unstructured data
wasn’t possible. In fact, most data being created today is unstructured. Unstructured data, as
the name suggests, lacks structure. It can’t be gathered based on clicks, purchases or a
barcode, so what is it exactly?

6. Captured:

Captured data is created passively due to a person’s behavior. Every time someone enters a
search term on Google that is data that can be captured for future benefit. The GPS info on
our smartphones is another example of passive data that can be captured with big data
technologies.

7. User-generated:

User-generated data consists of all of the data individuals are putting on the Internet every
day. From tweets, to Facebook posts, to comments on news stories, to videos put up on
YouTube, individuals are creating a huge amount of data that businesses can use to better
target consumers and get feedback on products.

Big data is made up of many different types of data. The seven listed above comprise types of
external data included in the big data spectrum. There are, of course, many types of internal
data that contribute to big data as well, but hopefully breaking down the types of data helps
you to better see why combining all of this data into big data is so powerful for business.

Sources of Big Data

Classification of Types of Big Data

The following classification was developed by the Task Team on Big Data, in June 2013.

Page 12 of 28

Fig. 1.5 Sources of Big Data

1. Social Networks (human-sourced information): this information is the record of human
experiences, previously recorded in books and works of art, and later in photographs, audio
and video. Human-sourced information is now almost entirely digitized and stored
everywhere from personal computers to social networks. Data are loosely structured and
often ungoverned.

 1100. Social Networks: Facebook, Twitter, Tumblr etc.

 1200. Blogs and comments

 1300. Personal documents

 1400. Pictures: Instagram, Flickr, Picasa etc.

 1500. Videos: Youtube etc.

 1600. Internet searches

 1700. Mobile data content: text messages

 1800. User-generated maps

 1900. E-Mail

Page 13 of 28

2. Traditional Business systems (process-mediated data): these processes record and
monitor business events of interest, such as registering a customer, manufacturing a product,
taking an order, etc. The process-mediated data thus collected is highly structured and
includes transactions,reference tables and relationships, as well as the metadata that sets its
context. Traditional business data is the vast majority of what IT managed and processed, in
both operational and BI systems. Usually structured and stored in relational database systems.
(Some sources belonging to this class may fall into the category of "Administrative data").

 21. Data produced by Public Agencies

 2110. Medical records

 22. Data produced by businesses

 2210. Commercial transactions

 2220. Banking/stock records

 2230. E-commerce

 2240. Credit cards

3. Internet of Things (machine-generated data): derived from the phenomenal growth in
the number of sensors and machines used to measure and record the events and situations in
the physical world. The output of these sensors is machine-generated data, and from simple
sensor records to complex computer logs, it is well structured. As sensors proliferate and data
volumes grow, it is becoming an increasingly important component of the information stored
and processed by many businesses. Its well-structured nature is suitable for computer
processing, but its size and speed is beyond traditional approaches.

 31. Data from sensors

 311. Fixed sensors

 3111. Home automation

 3112. Weather/pollution sensors

 3113. Traffic sensors/webcam

 3114. Scientific sensors

 3115. Security/surveillance videos/images

 312. Mobile sensors (tracking)

 3121. Mobile phone location

 3122. Cars

 3123. Satellite images

 32. Data from computer systems

 3210. Logs

Page 14 of 28

 3220. Web logs

BIG DATA ENTERPRISE ARCHITECTURE

The 5 V’s of Big Data:

Too often in the hype and excitement around Big Data, the conversation gets complicated
very quickly. Data scientists and technical experts bandy around terms like Hadoop, Pig,
Mahout, and Sqoop, making us wonder if we’re talking about information architecture or a
Dr. Seuss book. Business executives who want to leverage the value of Big Data analytics in
their organisation can get lost amidst this highly-technical and rapidly-emerging ecosystem.
In an effort to simplify Big Data, many experts have referenced the “3 V’s”: Volume,
Velocity, and Variety. In other words, is information being generated at a high volume (e.g.
terabytes per day), with a rapid rate of change, encompassing a broad range of sources
including both structured and unstructured data? If the answer is yes then it falls into the Big
Data category along with sensor data from the “internet of things”, log files, and social media
streams. The ability to understand and manage these sources, and then integrate them into the
larger Business Intelligence ecosystem can provide previously unknown insights from data
and this understanding leads to the “4th V” of Big Data – Value.

There is a vast opportunity offered by Big Data technologies to discover new insights that
drive significant business value. Industries are seeing data as a market differentiator and have
started reinventing themselves as “data companies”, as they realise that information has
become their biggest asset. This trend is prevalent in industries such as telecommunications,
internet search firms, marketing firms, etc. who see their data as a key driver for monetisation
and growth. Insights such as footfall traffic patterns from mobile devices have been used to
assist city planners in designing more efficient traffic flows. Customer sentiment analysis
through social media and call logs have given new insights into customer satisfaction.
Network performance patterns have been analysed to discover new ways to drive efficiencies.
Customer usage patterns based on web click-stream data have driven innovation for new
products and services to increase revenue. The list goes on.

Key to success in any Big Data analytics initiative is to first identify the business needs and
opportunities, and then select the proper fit-for-purpose platform. With the array of new Big
Data technologies emerging at a rapid pace, many technologists are eager to be the first to
test the latest Dr. Seuss-termed platform. But each technology has a unique specialisation,
and might not be aligned to the business priorities. In fact, some identified use cases from the
business might be best suited by existing technologies such as a data warehouse while others
require a combination of existing technologies and new Big Data systems.

With this integration of disparate data systems comes the 5th V – Veracity, i.e. the
correctness and accuracy of information. Behind any information management practice lies
the core doctrines of Data Quality, Data Governance, and Metadata Management, along with
considerations for Privacy and Legal concerns. Big Data needs to be integrated into the entire
information landscape, not seen as a stand-alone effort or a stealth project done by a handful
of Big Data experts.

Page 15 of 28

Fig. 1.6 Enterprise Architects Information Management Framework

In the excitement and hype around Big Data analytics, it’s easy to see this emerging
technology as a “silver bullet” that can magically generate new insights solely through
powerful technology and smart data scientists. As in any age of change, however, core
principles still apply, and in order to gain insights from Big Data, you need to make sure your
“little data” is correct. Many of the “golden nuggets” of discovery are obtained through an
intersection of Big Data analytics with traditional sources such as a data warehouses or
master data management hubs.

Fig.1.7 The intersection of Big Data analytics with traditional sources such as a data
warehouse

Page 16 of 28

Customer sentiment analysis is a common use-case for Big Data analytics—i.e. what are our
customers saying about our products in social media and/or call log records? And how can
we leverage this information to improve our business? Unless you have a robust ‘single
source of record’ for customer information, new discoveries from Big Data analytics will be
of little use. Was it Jane R. Doe or Jane P. Doe complaining about the new luxury sedan
model? With data properly managed within an information management framework, the full
value of Big Data becomes apparent and “golden nuggets” of information can appear. For
example, not only did Jane R. Doe complain about the new luxury sedan, but she had five
service calls about her transmission. She has purchased five high-priced sedans from us in the
past ten years and has an income of over $750,000. Jane R. Doe recently followed our
competitor on Twitter and has asked several questions about new features. It might be worth
having a representative call her personally.

Big Data analytics is an exciting development in the field of information management and, if
used properly, can generate a wealth of opportunity. In order to discover the “golden
nuggets” in your organisation, remember these guiding principles:

•Start with your business goals and drivers and align them to fit-for-purpose technologies (not
the other way around)

•Integrate your Big Data initiatives with core information management practices

•Build your information management practice on a core framework that includes data
governance, data quality management, data quality, and the other principles that create a
trusted source of information

Lastly, have fun—this is an exciting time to be in information management. New
technologies are emerging almost daily that can add significant value to your organisation,
particularly in the Big Data space.

A big data architecture is designed to handle the ingestion, processing, and analysis of data
that is too large or complex for traditional database systems. The threshold at which
organizations enter into the big data realm differs, depending on the capabilities of the users
and their tools. For some, it can mean hundreds of gigabytes of data, while for others it means
hundreds of terabytes. Over the years, the data landscape has changed. What you can do, or
are expected to do, with data has changed. The cost of storage has fallen dramatically, while
the means by which data is collected keeps growing. Some data arrives at a rapid pace,
constantly demanding to be collected and observed. Other data arrives more slowly, but in
very large chunks, often in the form of decades of historical data. You might be facing an
advanced analytics problem, or one that requires machine learning. These are challenges that
big data architectures seek to solve.

Big data solutions typically involve one or more of the following types of workload:

• Batch
processing of big data sources at rest.

• Real-time
processing of big data in motion.

• Interactive
exploration of big data.

Page 17 of 28

• Predictive
analytics and machine learning.

Consider big data architectures when you need to:

• Store and
process data in volumes too large for a traditional database.

• Transform
unstructured data for analysis and reporting.

• Capture,
process, and analyze unbounded streams of data in real time, or with low latency.

Fig. 1.8 Components of a Big Data Architecture

Components of a Big Data Architecture: Logical components that fit into a big data
architecture

Most big data architectures include some or all of the following components:

Data sources: All big data solutions start with one or more data sources. Examples
includeApplication data stores, such as relational databases.Static files produced by
applications, such as web server log files.Real-time data sources, such as IoT devices.

Data storage: Data for batch processing operations is typically stored in a distributed file
store that can hold high volumes of large files in various formats. This kind of store is often
called a data lake. Options for implementing this storage include Azure Data Lake Store or
blob containers in Azure Storage.

Real-time message ingestion:If the solution includes real-time sources, the architecture must
include a way to capture and store real-time messages for stream processing. This might be a
simple data store, where incoming messages are dropped into a folder for processing.
However, many solutions need a message ingestion store to act as a buffer for messages, and
to support scale-out processing, reliable delivery, and other message queuing semantics. This
portion of a streaming architecture is often referred to as stream buffering. Options include
Azure Event Hubs, Azure IoT Hub, and Kafka.

Real-time message ingestion:

Page 18 of 28

If the solution includes real-time sources, the architecture must include a way to capture and
store real-time messages for stream processing. This might be a simple data store, where
incoming messages are dropped into a folder for processing. However, many solutions need a
message ingestion store to act as a buffer for messages, and to support scale-out processing,
reliable delivery, and other message queuing semantics. This portion of a streaming
architecture is often referred to as stream buffering. Options include Azure Event Hubs,
Azure IoT Hub, and Kafka.

Stream Processing:

 After capturing real-time messages, the solution must process them by filtering, aggregating,
and otherwise preparing the data for analysis. The processed stream data is then written to an
output sink. Azure Stream Analytics provides a managed stream processing service based on
perpetually running SQL queries that operate on unbounded streams. You can also use open
source Apache streaming technologies like Storm and Spark Streaming in an HDInsight
cluster.

Analytical Data Store:

 Many big data solutions prepare data for analysis and then serve the processed data in a
structured format that can be queried using analytical tools. The analytical data store used to
serve these queries can be a Kimball-style relational data warehouse, as seen in most
traditional business intelligence (BI) solutions. Alternatively, the data could be presented
through a low-latency NoSQL technology such as HBase, or an interactive Hive database that
provides a metadata abstraction over data files in the distributed data store. Azure Synapse
Analytics provides a managed service for large-scale, cloud-based data
warehousing.HDInsight supports Interactive Hive, HBase, and Spark SQL, which can also be
used to serve data for analysis.

Analysis and Reporting:

The goal of most big data solutions is to provide insights into the data through analysis and
reporting. To empower users to analyze the data, the architecture may include a data
modeling layer, such as a multidimensional OLAP cube or tabular data model in Azure
Analysis Services. It might also support self-service BI, using the modeling and visualization
technologies in Microsoft Power BI or Microsoft Excel. Analysis and reporting can also take
the form of interactive data exploration by data scientists or data analysts. For these
scenarios, many Azure services support analytical notebooks, such as Jupyter, enabling these
users to leverage their existing skills with Python or R. For large-scale data exploration, you
can use Microsoft R Server, either standalone or with Spark.

Orchestration:

Most big data solutions consist of repeated data processing operations, encapsulated in
workflows, that transform source data, move data between multiple sources and sinks, load
the processed data into an analytical data store, or push the results straight to a report or
dashboard. To automate these workflows, you can use an orchestration technology such
Azure Data Factory or Apache Oozie and Sqoop

Page 19 of 28

BIG DATA ANALYTICS

Big Data Analytics are the natural result of four major global trends

Fig 1.9 Four Major Global Trends

Moore’s Law – Basically says that technology always gets cheaper

Mobile Computing – Smart Phone or Mobile Phone in your hand

Social Networking – Facebook, Foursquare, Pinterest (American Image sharing social media
service), etc.

Cloud Computing – You don’t have to buy hardware or software. Just rent or lease it.

Big data analytics is the use of advanced analytic techniques against very large, diverse data
sets that include structured, semi-structured and unstructured data, from different sources, and
in different sizes from terabytes to zettabytes.

Big data is a term applied to data sets whose size or type is beyond the ability of
traditional relational databases to capture, manage and process the data with low latency. Big
data has one or more of the following characteristics: high volume, high velocity or high
variety. Artificial intelligence (AI), mobile, social and the Internet of Things (IoT) are
driving data complexity through new forms and sources of data. For example, big data comes
from sensors, devices, video/audio, networks, log files, transactional applications, web, and
social media — much of it generated in real time and at a very large scale.

Page 20 of 28

APPLICATIONS – Where it is used

1. Life Sciences:

Clinical research is a slow and expensive process, with trials failing for a variety of reasons.
Advanced analytics, artificial intelligence (AI) and the Internet of Medical Things (IoMT)
unlocks the potential of improving speed and efficiency at every stage of clinical research by
delivering more intelligent, automated solutions.

2. Banking:

Financial institutions gather and access analytical insight from large volumes of unstructured
data in order to make sound financial decisions. Big data analytics allows them to access the
information they need when they need it, by eliminating overlapping, redundant tools and
systems.

3. Manufacturing:

For manufacturers, solving problems is nothing new. They wrestle with difficult problems on
a daily basis - from complex supply chains, to motion applications, to labor constraints and
equipment breakdowns. That's why big data analytics is essential in the manufacturing
industry, as it has allowed competitive organizations to discover new cost saving
opportunities and revenue opportunities.

4. Health Care:

Big data is a given in the health care industry. Patient records, health plans, insurance
information and other types of information can be difficult to manage – but are full of key
insights once analytics are applied. That’s why big data analytics technology is so important
to heath care. By analyzing large amounts of information – both structured and unstructured –
quickly, health care providers can provide lifesaving diagnoses or treatment options almost
immediately.

5. Government:

Certain government agencies face a big challenge: tighten the budget without compromising
quality or productivity. This is particularly troublesome with law enforcement agencies,
which are struggling to keep crime rates down with relatively scarce resources. And that’s
why many agencies use big data analytics; the technology streamlines operations while
giving the agency a more holistic view of criminal activity.

6. Retail:

Customer service has evolved in the past several years, as savvier shoppers expect retailers to
understand exactly what they need, when they need it. Big data analytics technology helps
retailers meet those demands. Armed with endless amounts of data from customer loyalty
programs, buying habits and other sources, retailers not only have an in-depth understanding
of their customers, they can also predict trends, recommend new products – and boost
profitability.

Page 21 of 28

Big Data Enterprise Model

Fig. 1.10 Big Data Enterprise Model

The requirements of traditional enterprise data models for application, database, and storage
resources have grown over the years, and the cost and complexity of these models has
increased along the way to meet the needs of big data. This rapid change has prompted
changes in the fundamental models that describe the way that big data is stored, analyzed,
and accessed.

The new models are based on a scaled-out, shared-nothing architecture, bringing new
challenges to enterprises to decide what technologies to use, where to use them, and how.
One size no longer fits all, and the traditional model is now being expanded to incorporate
new building blocks that address the challenges of big data with new information processing
frameworks purpose-built to meet big data’s requirements. However, these purpose-built
systems also must meet the inherent requirement for integration into current business
models, data strategies, and network infrastructures.

Big Data Components

Two main building blocks are being added to the enterprise stack to accommodate big data:

● Hadoop: Provides storage capability through a distributed, shared-nothing file system, and
analysis capability through MapReduce

● NoSQL: Provides the capability to capture, read, and update, in real time, the large influx
of unstructured data and data without schemas; examples include click streams, social media,
log files, event data, mobility trends, and sensor and machine data

Page 22 of 28

Building a Big Data Platform

Big Data Platform - Hadoop System:

New analytic applications drive the requirements for a big data platform

•Integrate and manage the full variety, velocity and volume of data

•Apply advanced analytics to information in its native form

•Visualize all available data for ad-hoc analysis

•Development environment for building new analytic applications

•Workload optimization and scheduling

•Security and Governance

Augments open source Hadoop with enterprise capabilities:

–Enterprise-class storage

–Security

–Performance Optimization

–Enterprise integration

–Development tooling

–Analytic Accelerators

–Application and industry accelerators

–Visualization

Workload Optimization:

Adaptive MapReduce

•Algorithm to optimize execution time of multiple small and large jobs

•Performance gains of 30% reduce overhead of task startup

Hadoop System Scheduler

•Identifies small and large jobs from prior experience

•Sequences work to reduce overhead

Page 23 of 28

Fig. 1.11 Workload Optimization

Big Data Platform - Stream Computing :

Built to analyze data in motion

•Multiple concurrent input streams

•Massive scalability

Process and analyze a variety of data

•Structured, unstructured content, video, audio

•Advanced analytic operators

Fig 1.12 Connects different types of data

Big Data Platform - Data Warehousing :

Workload optimized systems

–Deep analytics appliance

–Configurable operational analytics appliance

–Data warehousing software

Capabilities

•Massive parallel processing engine

•High performance OLAP

Page 24 of 28

•Mixed operational and analytic workloads

Fig 1.13 Big Data Platform

Big Data Platform - Information Integration and Governance

Integrate any type of data to the big data platform

–Structured

–Unstructured

–Streaming

Governance and trust for big data

–Secure sensitive data

–Lineage and metadata of new big data sources

–Lifecycle management to control data growth

–Master data to establish single version of the truth

Leverage purpose-built connectors for multiple data sources:

Page 25 of 28

Massive volume of structured data movement

•2.38 TB / Hour load to data warehouse

•High-volume load to Hadoop file system

Ingest unstructured data into Hadoop file system

Integrate streaming data sources

Big Data Platform - User Interfaces

•Business Users

•Visualization of a large volume and wide variety of data

•Developers

•Similarity in tooling and languages

•Mature open source tools with enterprise capabilities

•Integration among environments

•Administrators

•Consoles to aid in systems management

Big Data Platform –Accelerators:

Analytic accelerators

–Analytics, operators, rule sets

Industry and Horizontal Application Accelerators

–Analytics

–Models

–Visualization / user interfaces

–Adapters

Big Data Platform - Analytic Applications :

Big Data Platform is designed for analytic application development and integration

BI/Reporting – Cognos BI, Attivio

Predictive Analytics – SPSS, G2, SAS

Page 26 of 28

Exploration/Visualization – BigSheets, Datameer

Instrumentation Analytics – Brocade, IBM GBS

Content Analytics – IBM Content Analytics

Functional Applications – Algorithmics, Cognos Consumer Insights, Clickfox, i2, IBM GBS

Industry Applications – TerraEchos, Cisco, IBM GBS

Big Data Analytics for Social and Behavioral Sciences

What Social &Behavioral Sciences Tell Us?

•Social science networks have widespread application in various fields

•Most of the analyses techniques have come from Sociology, Statistics and Mathematics

•For a comprehensive introduction to social network analysis

Fig 1.14 History of Social Network Analysis

Why do we create and sustain networks?

•Theories of self-interest

•Theories of social and resource exchange

•Theories of mutual interest and collective action

•Theories of contagion

•Theories of balance

•Theories of homophily

•Theories of proximity

•Theories of co-evolution

Page 27 of 28

Fig 1.15 “Structural Signatures” of Social Theories

Application Successes

• Numerous in
Social Sciences

• Google –
PageRank

• LinkedIn –
expanding your Cognitive Social Network

o Making you
aware that you’re more connected and closer than you think you are

• Expertise
discovery in organizations

o Knowledge
experts, ‘authorities’

o Well-
connected individuals, ‘hubs’

• Rapid-
Response teams in emergency management

• Information
flow in organizations

• Twitter – real
time information dissemination Etc.

Page 28 of 28

HDFS, Hadoop and Hadoop Infrastructure

1

SCHOOL OF COMPUTING

Common to: CSE & IT

Syllabus

Hadoop and Databases - Typical Datacenter Architecture - Adding Hadoop to the Mix - Key Benefit -

·Flexibility: Complex Data Processing - HDFS - Hadoop Infrastructure - Architecture - Different in

Data Model and Computing Model - HDFS Files and Blocks, Components of HDFS - Hadoop

framework - HDFS - Map Reduce Framework - Data Loading techniques - Hadoop Cluster

Architecture - Hadoop Configuration files - Hadoop Cluster modes - Single Node - Multi Node - Fully

distributed node.

UNIT – II – SIT1606 – BIG DATA

HDFS, Hadoop and Hadoop Infrastructure

2

UNIT-II

HDFS, HADOOP AND HADOOP INFRASTRUCTURE

Hadoop

• Big Data Technology

• Distributed processing of large data sets

• Open source

• Map Reduce- Simple Programming model

Why Hadoop?

• Handles any data type

➢ Structured/unstructured

➢ Schema/no Schema

➢ High volume/Low volume

➢ All kinds of analytic applications

• Grows with business

• Proven with Petabyte scale

• Capacity & Performance grows

• Leverages commodity hardware to mitigate costs

Hadoop Features

• 100% Apache open source

• No Vendor locking

• Rich Eco system & community development

• To Derive compute value of all data

• More affordable cost-effective platform

Hadoop and Databases

RDMS (Relational Database Management System): RDBMS is an information management system,

which is based on a data model. In RDBMS tables are used for information storage. Each row of the

table represents a record and column represents an attribute of data. Organization of data and their

manipulation processes are different in RDBMS from other databases. RDBMS ensures ACID

HDFS, Hadoop and Hadoop Infrastructure

3

(atomicity, consistency, integrity, durability) properties required for designing a database. The purpose

of RDBMS is to store, manage, and retrieve data as quickly and reliably as possible.

Hadoop: It is an open-source software framework used for storing data and running applications on a

group of commodity hardware. It has large storage capacity and high processing power. It can manage

multiple concurrent processes at the same time. It is used in predictive analysis, data mining and

machine learning. It can handle both structured and unstructured form of data. It is more flexible in

storing, processing, and managing data than traditional RDBMS. Unlike traditional systems, Hadoop

enables multiple analytical processes on the same data at the same time. It supports scalability very

flexibly. Below in Table 2.1 of differences between Data Science and Data Visualization:

Table 2.1 RDBMS Vs Hadoop

S.NO. RDBMS HADOOP

1. Structured database approach Structured and Unstructured database approach

2.

Traditional row-column based

databases, basically used for data

storage, manipulation and retrieval.

An open-source software used for storing data

and running applications or processes

concurrently.

3. It is best suited for OLTP environment. It is best suited for BIG data.

4. Interactive OLAP analytics Scalability of storage/Compute

5. Multistep ACID transactions Complex data processing

6. Stored in the form of tables Distributed file system

7. It is less scalable than Hadoop. It is highly scalable.

8. SQL – Update and Access data MapReduce Programming model

9. 100% SQL compliant Both SQL & NoSQL

10.
Data normalization is required in

RDBMS.
Data normalization is not required in Hadoop.

11.
It stores transformed and aggregated

data.
It stores huge volume of data.

12. It has no latency in response. It has some latency in response.

13.
The data schema of RDBMS is static

type.
The data schema of Hadoop is dynamic type.

14. High data integrity available. Low data integrity available than RDBMS.

15. Cost is applicable for licensed software. Free of cost, as it is an open source software.

HDFS, Hadoop and Hadoop Infrastructure

4

Typical Data Centre Architecture

 Schema _on_write (RDBMS)

 Schema must be created before any data can be loaded

 An explicit load operation has to take place which transforms data into DB internal

structure.

 New columns must be added explicitly and loaded into the database. (Figure 2.1)

Fig. 2.1 Traditional Data Centre Architecture

Adding Hadoop to the Mix

 Schema _on_write (Hadoop)

 Data is simply copied to the storage, no transformation is needed

 A serializer / Deserilalizer is applied during read time to extract the required columns.

 New data can start flowing at any time and will appear. (Figure 2.2)

HDFS, Hadoop and Hadoop Infrastructure

5

Fig. 2.2 Adding Hadoop Mix to the Traditional Data Centre Architecture

Hadoop Key Benefits

1. Scalable

2. Cost effective

3. Flexible

4. Fast

5. Resilient to failure

1. Scalable

Hadoop is a highly scalable storage platform, because it can store and distribute very large data sets

across hundreds of inexpensive servers that operate in parallel. Unlike traditional relational database

systems (RDBMS) that can't scale to process large amounts of data, Hadoop enables businesses to run

applications on thousands of nodes involving thousands of terabytes of data.

2. Cost effective

Hadoop also offers a cost-effective storage solution for businesses' exploding data sets. The problem

with traditional relational database management systems is that it is extremely cost prohibitive to scale

to such a degree in order to process such massive volumes of data. In an effort to reduce costs, many

companies in the past would have had to down-sample data and classify it based on certain assumptions

as to which data was the most valuable. The raw data would be deleted, as it would be too cost-

prohibitive to keep. While this approach may have worked in the short term, this meant that when

http://www.mapr.com/products/apache-hadoop

HDFS, Hadoop and Hadoop Infrastructure

6

business priorities changed, the complete raw data set was not available, as it was too expensive to

store. Hadoop, on the other hand, is designed as a scale-out architecture that can affordably store all of

a company's data for later use. The cost savings are staggering: instead of costing thousands to tens of

thousands of pounds per terabyte, Hadoop offers computing and storage capabilities for hundreds of

pounds per terabyte.

3. Flexible

Hadoop enables businesses to easily access new data sources and tap into different types of data (both

structured and unstructured) to generate value from that data. This means businesses can use Hadoop to

derive valuable business insights from data sources such as social media, email conversations or

clickstream data. In addition, Hadoop can be used for a wide variety of purposes, such as log

processing, recommendation systems, data warehousing, market campaign analysis and fraud detection.

4. Fast

Hadoop's unique storage method is based on a distributed file system that basically 'maps' data

wherever it is located on a cluster. The tools for data processing are often on the same servers where

the data is located, resulting in much faster data processing. If you're dealing with large volumes of

unstructured data, Hadoop is able to efficiently process terabytes of data in just minutes, and petabytes

in hours.

5. Resilient to failure

A key advantage of using Hadoop is its fault tolerance. When data is sent to an individual node, that

data is also replicated to other nodes in the cluster, which means that in the event of failure, there

is another copy available for use.

The MapR distribution goes beyond that by eliminating the NameNode and replacing it with a

distributed No NameNode architecture that provides true high availability. Our architecture provides

protection from both single and multiple failures.

When it comes to handling large data sets in a safe and cost-effective manner, Hadoop has the

advantage over relational database management systems, and its value for any size business will

continue to increase as unstructured data continues to grow.

Flexibility: Complex Data processing

 Java Map Reduce

 Streaming Map Reduce

 Crunch

 Pig Latin

 Hive

 Oozie

HDFS, Hadoop and Hadoop Infrastructure

7

 Java MapReduce

 Most Flexible and well performed, but tedious development cycles

 Streaming MapReduce

 Develop using any programming language of your choice, but slightly lower

performance and less flexibility than native Java MapReduce.

 Crunch

 A library for multi stage MapReduce pipelines in Java

 Pig Latin

 A High-level language suitable for batch data flow workloads developed by yahoo

 Hive

 Hive is a data warehouse infrastructure tool to process structured data in Hadoop.

 Hive is an SQL Based tool that builds over Hadoop to process the data.

 Oozie

 Oozie is a workflow scheduler system to manage Apache Hadoop jobs.

Hadoop Infrastructure

The 2 infrastructure models of Hadoop are:

 Data Model

 Computing Model

Traditional Database Model Vs Hadoop Data Model

Table 2.2 Traditional Database Model Vs Hadoop Data Model

DISTRIBUTED DATABASE MODEL HADOOP DATA MODEL

Deals with tables and relations Deals with flat files in any format

Must have a schema for data No schema

Data fragmentation and partitioning Files are divided automatically into blocks

HDFS, Hadoop and Hadoop Infrastructure

8

Fig. 2.3 Distributed Database Model

A distributed database consists of a network of many interconnected physical databases that spread

across various geographical locations. The separate databases are periodically synchronized for

ensuring all have consistent data. (Figure 2.3)

Fig. 2.4 Hadoop Data Model

A Hadoop data model consists of a Blocks of Distributed File Systems under a specific Compute

Cluster, where the DFS blocks are interconnected with communication channel. This makes sure that

the centre is in one place for the data sent to be mapped and reduced. (Figure 2.4)

HDFS, Hadoop and Hadoop Infrastructure

9

Traditional Vs Computing Model

Table 2.3 Traditional Vs Computing Model

DISTRIBUTED DATABASES HADOOP

Notion of a transaction Notion of a job divided into tasks

Distributed transaction with ACID properties MapReduce computing model where every

task is either a map or reduce service

Fig. 2.5 Distributer Databases

Fig. 2.6 Hadoop – Computing Model

HDFS, Hadoop and Hadoop Infrastructure

10

Hadoop Architecture

What is Architecture of Hadoop?

 Hadoop is the open-source framework of Apache Software Foundation, which is used to store

and process large unstructured datasets in the distributed environment.

 Data is first distributed among different available clusters then it is processed.

 Hadoop biggest strength is that it is scalable in nature means it can work on a single node to

thousands of nodes without any problem.

 Hadoop framework is based on Java programming and it runs applications with the help of

MapReduce which is used to perform parallel processing and achieve the entire statistical

analysis on large datasets.

 Distribution of large datasets to different clusters is done on the basis of Apache Hadoop

software library using easy programming models.

 Organizations are now adopting Hadoop for the purpose of reducing the cost of data storage.

 It will lead to the analytics at an economical cost which will maximize the business

profitability.

 For a good Hadoop architectural design, you need to take in considerations – good computing

power, storage, and networking.

Hadoop Architecture

 Hadoop ecosystem consists of various components such as Hadoop Distributed File System

(HDFS), Hadoop MapReduce, Hadoop Common, HBase, YARN, Pig, Hive, and others.

 Hadoop components which play a vital role in its architecture are-

 Hadoop Distributed File System (HDFS)

 Hadoop MapReduce

 Hadoop works on the master/slave architecture for distributed storage and distributed

computation.

 NameNode is the master and the DataNodes are the slaves in the distributed storage.

 The Job Tracker is the master and the Task Trackers are the slaves in the distributed

computation.

 The slave nodes are those which store the data and perform the complex computations.

 Every slave node comes with a Task Tracker daemon and a DataNode synchronizes the

processes with the Job Tracker and NameNode respectively.

 In Hadoop architectural setup, the master and slave systems can be implemented in the cloud or

on-site premise. (Figure 2.7, 2.8)

HDFS, Hadoop and Hadoop Infrastructure

11

Fig. 2.7 Hadoop Architecture

Fig. 2.8 Hadoop Ecosystem Components & its Architecture

Hadoop Framework

There are 2 Main layers:

➢ HDFS

➢ Execution Engineer

HDFS

Role of HDFS in Hadoop Architecture

HDFS, Hadoop and Hadoop Infrastructure

12

 HDFS is used to split files into multiple blocks. Each file is replicated when it is stored in

Hadoop cluster.

 The default size of that block of data is 64 MB but it can be extended up to 256 MB as per the

requirement.

 HDFS stores the application data and the file system metadata on two different servers.

 NameNode is used to store the file system metadata while and application data is stored by the

DataNode.

 To ensure the data reliability and availability to the highest point, HDFS replicates the file

content many times.

 NameNode and DataNode communicate with each other by using TCP protocols.

 Hadoop architecture performance depends upon Hard-drives throughput and the network speed

for the data transfer. (Figure 2.9)

Fig. 2.9 HDFS

What is HDFS in Hadoop

 The Hadoop Distributed File System is a java-based file, developed by Apache Software

Foundation with the purpose of providing versatile, resilient, and clustered approach to manage

files in a Big Data environment using commodity servers.

 HDFS used to store a large amount of data by placing them on multiple machines as there are

hundreds and thousands of machines connected together.

 The goal is to store a smaller number of larger files rather than the greater number of small

files.

HDFS, Hadoop and Hadoop Infrastructure

13

 HDFS provides high reliability of data because it used to replicate data into three different

copies- two are saved in one group and third one in another.

 HDFS is scalable in nature as it can be extended to 200 PB of storage where a single cluster

contains 4500 servers, supporting billions of blocks and files.

How HDFS Works

 Hadoop works on a master node which is NameNode and multiple slave nodes which are

DataNodes on a commodity cluster.

 As all the nodes are present in the same rack in the data center, data is broken into different

blocks that are distributed among different nodes for the storage.

 These blocks are replicated across nodes to make data available in case of a failure. (Figure

2.10)

Fig. 2.10 HDFS Working

 The NameNode is known as a smart node in the cluster.

 NameNode knows which data node contains which blocks and where data node has been placed

in the clusters.

 The NameNode also contains the access authority which is given to files to perform read, write,

create, delete and replication of various blocks between the data nodes.

 The NameNode is connected with the data nodes in the loosely coupled fashion.

HDFS, Hadoop and Hadoop Infrastructure

14

 This provides the feature of scalability in real time means it can add or delete nodes as per the

requirement.

 Data nodes used to communicate every time with the NameNode to check whether the certain

task is completed or not.

 Communication between these two ensures that NameNode knows the status of each data node

all the time.

 If one of the data nodes is not functioning properly then NameNode can assign that task to

another node.

 To operate normally, data nodes in the same block communicate with each other.

 The NameNode is replicated to overcome system failure and is the most critical part of the

whole system.

 Data nodes are not considered to be smart, but flexible in nature and data blocks are replicated

across various nodes and the NameNode is used to manage the access.

 To gain the maximum efficiency, replication mechanism is used and all the nodes of the cluster

are placed into a rack. Rack Id is used by the NameNode to track data nodes in the cluster.

 A heartbeat message is put through to ensure that the data nodes and the NameNode are still

connected.

 When the heartbeat is no longer available, then the NameNode detach that data node from the

cluster and works in the normal manner.

 When the heartbeat comes, data node is added back to the cluster.

 Transaction log and the checksum are used to maintain the data integrity.

 Transaction log used to keep track of every operation and help them in auditing and rebuilding

the file system, in case of an exception.

 Checksum validates the content in HDFS.

 When a user requests a file, it verifies the checksum of that content.

 If checksum validation matches then they can access it.

 If the checksum reports an error, then the file is hidden to avoid tampering.

 The performance also depends on where the data is stored, so it is stored on local disk in the

commodity servers.

 To ensure that one server failure doesn’t corrupt the whole file, data blocks are replicated in

various data nodes.

 The degree of replication and the number of data nodes are managed at a time when the cluster

is implemented.

HDFS, Hadoop and Hadoop Infrastructure

15

Features of HDFS

 Fault-Tolerant

 Scalability

 Data Availability

 Data Reliability

 Replication

Description to Features of HDFS

 Fault-Tolerant

 HDFS is highly fault-tolerant.

 HDFS replicates and stores data in three different locations.

 So, in the case of corruption or unavailability, data can be accessed from the previous

location.

 Scalability

 Scalability means adding or subtracting the cluster from HDFS environment.

 Scaling is done by the two ways – vertical or horizontal.

 In vertical scaling, you can add up any number of nodes to the cluster but there is some

downtime.

In horizontal scaling, there is no downtime; you can add any number of nodes in the

cluster in real time.

 Data Availability

 Data is replicated and stored on different nodes due to which data is available all the

time.

 In case of network, node or some hardware failure, data is accessible without any

trouble from a different source or from a different node.

 Data Reliability

 HDFS provides highly reliable data storage, as data are divided into blocks and each

block is replicated in the cluster which made data reliable.

 If one node contains the data is down, it can be accessed from others because HDFS

creates three replicas of each block.

 When there is no loss of data in case of failure then it is highly reliable.

 Replication

HDFS, Hadoop and Hadoop Infrastructure

16

 Data replication is one of the unique and important features of HDFS.

 HDFS used to create replicas of data in the different cluster.

 As if one node goes down it can be accessed from other because every data block has

three replicas created.

 This is why, there is no chance of data loss.

Fig. 2.11 HDFS Layer

Fig. 2.12 HDFC Communication

HDFS, Hadoop and Hadoop Infrastructure

17

Components of HDFS

NameNode

• Single node in cluster

• Brain of HDFS

• Hadoop employs master/slave architecture for both distributed storage and distributed

computation

• Distributed Storage system is HDFS

• NameNode is the master of HDFS that directs slave DataNode to perform low level tasks.

(Figure 2.13)

Fig. 2.13 Components of HDFS

NameNode as book Keeper of HDFS

• NameNode list of all blocks of file and list of all data nodes that contains the block

• It keeps track of how files are stored into file blocks, which nodes store these blocks and overall

health of HDFS

• The function of NameNode is memory and IO intensive

• The server hosting NameNode doesn’t store any user data or perform any computation

Name node – Drawback

• Name node is the Single point of failure in Hadoop cluster

• For other data nodes, if their host node fails due to h/w or s/w reasons, the Hadoop cluster will

continue smoothly

Data Nodes

• Each slave machine in the cluster will host a data node to perform grunt work of Distributed

File System

• Reading and writing HDFS blocks to actual files on local file system

HDFS, Hadoop and Hadoop Infrastructure

18

• During r/w a HDFS file, the file is broken into blocks and NameNode will tell the client which

data node each block resides in.

• Client communicates directly with the DataNodes to process local files corresponding to the

blocks

• Data node may communicate with other DataNodes to replicate data blocks for redundancy

Data Replication

• HDFS is designed to reliably store very large files across machines in a large cluster.

• It stores each file as a sequence of blocks; all blocks in a file except the last block are the same

size.

• The blocks of a file are replicated for fault tolerance.

• The block size and replication factor are configurable per file.

• An application can specify the number of replicas of a file.

• The replication factor can be specified at file creation time and can be changed later.

• Files in HDFS are write-once and have strictly one writer at any time.

• The NameNode makes all decisions regarding replication of blocks.

Heartbeat and Block report of data nodes

• NameNode periodically receives a Heartbeat and a Block report from each of the DataNodes in

the cluster

• Receipt of a Heartbeat implies that the DataNode is functioning properly

• A Block report contains a list of all blocks on a DataNode (Figure 2.14, 2.15)

 Fig. 2.14 Block Replication

 Fig. 2.15 DataNodes

HDFS, Hadoop and Hadoop Infrastructure

19

Replication factor

When the replication factor is three, HDFS’s placement policy is to put:

1. one replica:

• on the local machine if the writer is on a DataNode,

• otherwise on a random DataNode,

2. another replica on a node in a different (remote) rack,

3. last on a different node in the same remote rack.

This policy cuts the inter-rack write traffic which generally improves write performance. The chance of

rack failure is far less than that of node failure.

Replication factor >3

• If the replication factor is greater than 3, the placement of the 4th and following replicas are

determined randomly while keeping the number of replicas per rack below the upper limit

(which is basically (replicas - 1) / racks + 2)

DataNodes and NameNodes

• DataNode constantly report to NameNode

• Upon initialization, each DataNode informs NameNode of the blocks it is currently storing

• After mapping, the DataNode continually poll the NameNode to provide information regarding

local changes and receive instructions to create, move or delete blocks from local disk.

Secondary Name Node (SNN)

• SNN is an assistant daemon for maintaining the state of clusters HDFS

• Like NameNode, each cluster has on SNN

• SNN does not receive or record any real-time changes to HDFS

• SNN communicates with NameNode to take snapshots of HDFS meta data at intervals defined

by cluster configuration

• NameNode is a single point of failure for Hadoop clusters and SNN snapshots help minimize

the downtime and loss of data

• NameNode failure requires human intervention to reconfigure the cluster to use SNN as

primary NameNode (Figure 2.16)

HDFS, Hadoop and Hadoop Infrastructure

20

Fig. 2.16 NameNode Interaction

Job Tracker

• Job tracker is a liaison between the client application and Hadoop

• Once the client submits the code to the cluster the JobTracker determines the execution plan by

determining which files to process

• Assigns nodes to different tasks and monitors all tasks as they are running

• If a task fails, the job tracker will automatically relaunch the task on a different node

Task Tracker

• Job tracker is the master overseeing the overall execution of MapReduce job

• Task trackers manages the execution of individual tasks

• Task tracker can spawn multiple JVMs to handle many map/reduce tasks in parallel

• Main responsibility is to constantly communicate with Job tracker

• If Job tracker fails to receive a heartbeat from TaskTracker within the specified amount of time,

it will assume task tracker has crashed and will resubmit the corresponding tasks to other nodes

in the cluster. (Figure 2.17)

HDFS, Hadoop and Hadoop Infrastructure

21

Fig. 2.17 Task Tracker

Topology of Hadoop cluster

Fig. 2.18 Topology of Hadoop cluster

HDFS

• HDFS is the first building block of Hadoop cluster

• HDFS breaks incoming files into blocks and stores them redundantly across the cluster

• To efficiently process massive amounts of data, it is important to move

HDFS, Hadoop and Hadoop Infrastructure

22

• A single large file splits into blocks and blocks are distributed among the nodes of Hadoop

cluster

• The blocks used in HDFS are large 128 MB or more compared to small blocks associated with

traditional file systems

• This allows the system to scale without increasing the size and complexity of HDFS metadata

• Files in HDFS are write once files

• Input data is loaded into HDFS and processed by MapReduce framework. (Figure 2.18)

HDFS Files and Blocks

• Files are stored as a collection of Blocks

• Blocks: The minimum amount of data that can be read or written

• Typically, 64MB of unit size is default

• Block details are stored on 3 nodes

➢ The Name node – Manages meta-data about files & Blocks

➢ SNN – Holds backup of Name node data

➢ Data Node – Store and serve blocks

➢ Multiple copies of a block are stored

Data Loading techniques

HDFS READS

Fig. 2.19 HDFS Reads

HDFS, Hadoop and Hadoop Infrastructure

23

HDFS Writes

Fig. 2.20 HDFS Write

In conclusion, HDFS empowers Hadoop functionality.

HDFS provides highly reliable data storage despite of any hardware failure.

It is highly fault-tolerant, provides high data availability, and high scalability. (Figure 2.19, 2.20)

MapReduce

Role of MapReduce in Hadoop Architecture

 The job is the top-level unit of MapReduce working and each job contains one or more Map or

Reduce tasks.

 The execution of a job starts when it is submitted to the Job Tracker of MapReduce which

specifies the map, combines, and reduce functions along with the location of input and output

data.

 When the job is received, the job tracker searches the number of splits based on input path and

select Task Trackers based on their network locality to the data sources.

 Task Tracker extracts information from the splits as the processing begins in Map phase.

HDFS, Hadoop and Hadoop Infrastructure

24

 Records are parsed by the “Input Format” and generate key-value pairs in the memory buffer

when Map function is provoked.

 Combine function is used to sort all the splits from the memory buffer.

 After the completion of a map task, Task Tracker gives a message to the Job Tracker.

 Job Tracker then gives a message to selected Task Tracker to start the reduce phase.

 Now Task Tracker sorts the key-value pairs for each key after reading it.

 At last reduce function is invoked and all the values are collected into one output file.

MapReduce

• Map reduce is a programming model for expressing distributed computations at a massive scale

• It is an execution framework for organizing and performing such computation. (Figure 2.21)

Fig. 2.21 MapReduce

Typical Large Data Problem

• Map

➢ Iterate over large number of records

➢ Extract data of interest

➢ Shuffle and sort intermediate results

▪ Reduce

➢ Aggregate intermediate results

➢ Generate final output

Map Reduce model

HDFS, Hadoop and Hadoop Infrastructure

25

• Basic notion of MapReduce is to divide a task into subtasks, handle subtasks in parallel and

aggregate the results of sub tasks to form the final output

• Programs written in MapReduce are automatically parallelized and programmers not need to be

concerned about the implementation details of parallel processing

MapReduce functions

• Map()

• Reduce()

• Map Phase:

➢ Reads input(in parallel) and distributes data to reducers

➢ Auxiliary phase such as sorting partitioning and combining values can also take place

between map and reduce phases.

• Map Reduce programs are used to process large files

• Input and Output for map and reduce functions are expressed in the form of (Key, Value) pairs

• Hadoop MapReduce program has a component called Driver

• Driver is responsible for initializing the job with its configuration details, specifying the mapper

and reducer classes for the job informing the Hadoop platform to execute the code on the

specified input file and controlling the location which the output files are placed.

What is MapReduce in Hadoop?

 The heart of Apache Hadoop is Hadoop MapReduce.

 It’s a programming model used for processing large datasets in parallel across hundreds or

thousands of Hadoop clusters on commodity hardware.

 The framework does all the work, you just need to put the business logic into the MapReduce.

 All the work is divided into the smaller works and assigned to the slave by a master who is

submitted by the user.

 Hadoop MapReduce is designed by using a different approach.

 Different kinds of lists as input is presented to MapReduce for processing and it coverts those

lists into output which is also in the form lists.

 Hadoop MapReduce parallel processing has made Hadoop more efficient and powerful.

 Jobs are divided into small parts by MapReduce and each of them resides in parallel on the

cluster.

 All the problems are divided into a larger number of small chunks and each of the chunks are

processed individually for the output.

HDFS, Hadoop and Hadoop Infrastructure

26

 For the final output, these are further processed.

 Hadoop MapReduce can be scaled hundreds to thousands of computers across the clusters.

 Different computers in the clusters used to process the jobs which could not be processed by a

large one.

 Map-Reduce is the component of Hadoop and used for processing the data.

 These two transform the lists of input data elements by providing those key-pair values and then

back into the lists of output data elements by combining the key pair values.

 A small phase of Shuffle and Sort also come during the Map and Reduce phase in MapReduce.

 Mapper and Reducer execution across a data set is known as MapReduce Job.

 Mapper and Reducer is an execution of two processing layer.

 Input data, the MapReduce program, and configuration information are what a MapReduce Job

contains.

 So, if the client wants a MapReduce Job to execute, he needs to provide input data, write a

MapReduce program, and provide some configuration information.

 Execution of a chunk of data in Mapper or Reducer phase is known as the Task or Task-In-

Progress.

 The attempt of any instance to execute a task on a node is known as Task Attempt.

 There’s possibility task cannot be executed due to machine failure.

 Then the task is rescheduled another node.

 Rescheduling of the task can only be done for 4 times.

 If any job fails more than the 4 times then it is considered to be a failed job.

Working Process of Map and Reduce

 User-written function at mapper is used for processing of input data in mapper.

 All the business logic is put into the mapper level because it is a place where all the heavy

processing is done.

 A number of mappers are always greater than the reducers.

 The output which is produced by the mapper is intermediate data and it is input for the reducer.

 User-written function at reducer is used to process the intermediate data and after this final

output is generated.

 The output generated in reducer phase is stored in HDFS and replication is done as per usual.

(Figure 2.22)

HDFS, Hadoop and Hadoop Infrastructure

27

Fig. 2.22 Working of MapReduce

Dataflow in MapReduce

 Mapper is the first phase where datasets are splits into chunks.

 Mapper works on a one chunk at a time.

 The output from the mapper phase is written to the local disk machine where it is running.

 An output created by the mapper phase is known as Intermediate output.

 Intermediate output by mapper phase is written to the local disk always.

 When the mapper phase is done, the intermediate output is transferred to reducer node.

 Hence, the transferring of intermediate data from the mapper to reducer is known as Shuffle.

 If the shuffle phase will not happen then the reducer will not have any input to work on.

 The entire keys which are generated during mapper are sorted by MapReduce.

 It starts even before reducers and all the intermediate key-value pairs are generated by the

mapper, are sorted by key and not by the value.

 Sorting helps reducers to start a new reduce task at the right time.

HDFS, Hadoop and Hadoop Infrastructure

28

 Reduce task is started by the reducers when the key is sorted and input data is different from the

previous.

 Key-value pairs are taken as input in very reduce task and key-value pairs as output are

generated.

 If reducers are specified as zero then no shuffling and sorting are performed and which makes

the mapper phase faster. (Figure 2.24)

Map Input

• Map(inkey, invalue)-> list(intermediate key, intermediate value)

• Purpose of map phase is to organize data in preparation for processing done in reduce phase

• Input to map function is in the form of (key, value) pairs, even though the input to MapReduce

program is a file or files.

Map

• Value: data record

• Key: Offset of data record from the beginning of the file

• Output: Collection of Key value pairs which are inputs for reduce function

• E.g. Wordcount Problem

• Mapper can run several identical mappers in parallel

Reduce

• Reduce function processes intermediate values for particular key generated by map function and

generates the output

• One to one mapping between keys and reducers

• Several reducers can run in parallel. Independent of each other

• No. of reducers decided by the user

• Default no. of reducers is 1 (Figure 2.23)

HDFS, Hadoop and Hadoop Infrastructure

29

Fig. 2.23 Reduce

Map Reduce Example

Fig. 2.24 MapReduce Example

Conclusion

 Hadoop MapReduce enables a high degree of parallelism, scalability, and fault tolerance.

 It is a versatile tool for data processing and it will help enterprises to gain importance.

 If you want to become a Hadoop administrator, it is mandatory to be familiar with the role and

functionality of MapReduce.

HDFS, Hadoop and Hadoop Infrastructure

30

Data Loading Techniques & Analysis

Fig. 2.25 Data Loading Techniques & Analysis

Data Loading using Flume

Flume is a distributed, reliable and available service for efficiently collecting, aggregating and moving

large amounts of streaming event data (Figure 2.26).

Fig. 2.26 Data Loading using Flume

HDFS, Hadoop and Hadoop Infrastructure

31

Hadoop Cluster Architecture

• Cluster: Loosely/Tightly connected computers work together as a single system

• Hadoop Cluster: Storing & analysing large amount of unstructured data in distributed

environment

• These clusters run on low cost on commodity computers

Fig. 2.27 Hadoop Cluster Architecture

Hadoop Cluster architecture as Share nothing systems

• Nodes share only the networks that connects them

• Large Hadoop clusters are arranged in several racks

• Network traffic between different nodes in the same rack is much more desirable than network

traffic across the racks

• E.g. Hadoop cluster set up for 4500 nodes (Figure 2.27)

HDFS, Hadoop and Hadoop Infrastructure

32

Fig. 2.28 Hadoop Cluster architecture as Share nothing systems

• In this Hadoop cluster (Figure 2.28)

➢ 110 different racks

➢ Each rack has 40 slave machines

Rack Description

• At the top of each rack there is a rack switch

• Each slave machine has cables coming out from both the ends

• Cables are connected to rack switch at the top which means that top rack switch will have

around 80 ports

• There are global 8 core switches

• The rack which has uplinks connected to core switches and hence connecting all other racks

with uniform bandwidth forming the cluster

• In the cluster, few machines act as NameNodes and JobTracker

HDFS, Hadoop and Hadoop Infrastructure

33

• They are referred to as Masters

• Masters have different configuration for more DRAM and CPU and less storage

• The majority of machine acts as data node and Task trackers are referred as slaves

• These slave nodes have lots of local disk storage and moderate amounts of DRAM and CPU

Hadoop configuration files

• Hadoop configuration is driven by two types of important configuration files:

➢ Read-only default configuration - src/core/core-default.xml, src/hdfs/hdfs-

default.xml and src/mapred/mapred-default.xml.

➢ Site-specific configuration - conf/core-site.xml, conf/hdfs-site.xml and conf/mapred-

site.xml.

Configuring the Environment of the Hadoop Daemons

Table 2.4 Hadoop Configuration Options

Daemon Configuration Options

NameNode HADOOP_NAMENODE_OPTS

DataNode HADOOP_DATANODE_OPTS

SecondaryNamenode HADOOP_SECONDARYNAMENODE_OPTS

JobTracker HADOOP_JOBTRACKER_OPTS

TaskTracker HADOOP_TASKTRACKER_OPTS

Configuring the Hadoop Daemons

Table 2.5 Specified in conf/core-site.xml

Parameter Value

fs.default.name URI of NameNode.

Table 2.6 conf/hdfs-site.xml

Parameter Description

dfs.name.dir
Path on the local filesystem where the NameNode stores the

namespace and transactions logs persistently.

dfs.data.dir
Comma separated list of paths on the local filesystem of a

DataNode where it should store its blocks.

http://hadoop.apache.org/core/docs/current/core-default.html
http://hadoop.apache.org/core/docs/current/core-default.html
http://hadoop.apache.org/core/docs/current/hdfs-default.html
http://hadoop.apache.org/core/docs/current/hdfs-default.html
http://hadoop.apache.org/core/docs/current/hdfs-default.html
http://hadoop.apache.org/core/docs/current/hdfs-default.html
http://hadoop.apache.org/core/docs/current/hdfs-default.html
http://hadoop.apache.org/core/docs/current/mapred-default.html
http://hadoop.apache.org/core/docs/current/mapred-default.html
http://hadoop.apache.org/core/docs/current/mapred-default.html
http://hadoop.apache.org/core/docs/current/mapred-default.html

HDFS, Hadoop and Hadoop Infrastructure

34

Table 2.7 conf/mapred-site.xml

Parameter Value

mapred.job.tracker Host or IP and port of JobTracker.

mapred.system.dir Path on the HDFS where the MapReduce framework stores

system files e.g. /hadoop/mapred/system/.

mapred.local.dir Comma-separated list of paths on the local filesystem where

temporary MapReduce data is written.

mapred.tasktracker.{map|reduce}.

tasks.maximum

The maximum number of MapReduce tasks, which are run

simultaneously on a given TaskTracker, individually.

dfs.hosts/dfs.hosts.exclude List of permitted/excluded DataNodes.

mapred.hosts/mapred.hosts.exclude List of permitted/excluded TaskTrackers.

mapred.queue.names Comma separated list of queues to which jobs can be submitted.

mapred.acls.enabled Boolean, specifying whether checks for queue ACLs and job

ACLs are to be done for authorizing users for doing queue

operations and job operations

Table 2.8 conf/mapred-queue-acls.xml

Parameter Value

mapred.queue.queue-name.acl-submit-job List of users and groups that can submit jobs to the

specified queue-name.

mapred.queue.queue-name.acl-

administer-jobs

List of users and groups that can view job details,

change the priority or kill jobs that have been

submitted to the specified queue-name.

Introduction to Apache Hadoop

 With the continuous business growth and start-ups flourishing up, the need to store a large

amount of data has also increased rapidly.

 To meet the growth of business and gain profits the companies would fetch tools to analyse the

Big Data.

 To meet the growing demand, Apache Software Foundation launched Hadoop, a tool to store,

analyse, and process Big Data.

What is Hadoop?

 Hadoop is an open source Java-based framework for big data processing.

HDFS, Hadoop and Hadoop Infrastructure

35

 It is a tool used to store, analyse and process Big Data in the distributed environment.

 The Hadoop is an open source project of Apache Software Foundation and was originally

created by Yahoo in 2006.

 Since then, this open source project has brought revolution in Big Data analytics and taken over

the Big Data market.

 In simple terms, Apache Hadoop is a tool used to handle big data.

 It is used to work on large sets of data distributed over a number of computers using some

programming languages.

 Apache Hadoop is easily scalable and you can scale a number of machines through a single

server.

 Apache Hadoop runs on Java and is an open source framework used to process and store a large

amount of data on a huge cluster.

 Hadoop framework is composed of four main components (Figure 2.29):

 Hadoop Common

 Hadoop Distributed File System

 YARN

 MapReduce

The Apache framework is composed of the following components:

Fig. 2.29 Hadoop framework Components

HDFS, Hadoop and Hadoop Infrastructure

36

 Hadoop Common:

 It refers to the common Java utilities and libraries that support Hadoop modules.

 Hadoop Distributed File Systems:

 It is the primary storage system that Hadoop applications use.

 It is a distributed file system that enables you to have an access to applications data.

 Hadoop MapReduce:

 Hadoop MapReduce is a software framework used for the parallel processing of big

data.

 Hadoop YARN:

 YARN is the resource management technology used by Hadoop.

 It is responsible for resource management and job scheduling

How does Hadoop Work?

Fig. 2.30 Working of Hadoop

HDFS, Hadoop and Hadoop Infrastructure

37

 The working of Hadoop is a three-stage procedure. Let’s understand how exactly Hadoop works

(Figure 2.30):

 Stage 1: The job is submitted to the Hadoop job client for the required process with following

details –

 Input and Output file location in the distributed file system

 The Java classes with the implementation of Map and Reduce functions

 Job configuration with the different parameter set

 Stage 2:

 Hadoop job client transfers job along with job configuration to the JobTracker.

 The JobTracker is then responsible to perform for configuration distribution to slaves,

tasks scheduling, and monitoring, submitting status update back to the job client.

 Step 3:

 At different nodes, TaskTrackers then execute the tasks according to MapReduce

implementation.

 The output generated by the Reduce function is stored on the distributed file system in

output files.

Features of Apache Hadoop

 Scalability: Apache Hadoop uses distributed processing of local data, this allows the data to be

stored, processed, and analyzed at a large scale.

 Reliability: In Apache Hadoop, the data is auto-replicated and hence can generate a redundant

copy of data when it comes to system failures. Thus, Apache Hadoop has fault tolerance

feature.

 Flexibility: Apache Hadoop does not follow the traditional relational database rules. It can store

information and data in any format such as structured, unstructured, and semi-structured.

 Cost-effectiveness: Apache Hadoop is open source and is free of cost. This makes it cost-

effective and available for all.

 Compatibility: Apache Hadoop, being a Java-based framework, is compatible with all the

platforms.

Hadoop Cluster Modes

• Standalone mode

• Single node cluster/Pseudo distributed mode

• Multi node cluster/ Fully Distributed mode

HDFS, Hadoop and Hadoop Infrastructure

38

Standalone mode

• Default mode

• HDFS is not utilized in this mode

• Local file system is used for input and output

• Used for debugging purpose

• No custom configuration is required in 3 Hadoop files

➢ mapred- site.xml

➢ core-site.xml

➢ hdfs-site.xml

• Standalone mode is much faster than pseudo distributed mode

Pseudo distributed mode

• Configuration is required in given 3 files

• Replication factor is one for HDFS

• Here, one node is used as Master node/data node/Job tracker/Task tracker

• Used for real code to test in HDFS

• Pseudo distributed cluster is a cluster where all daemons are running on one node itself

Fully Distributed mode/Multiple node cluster

• Production phase

• This mode involves the code running on an actual Hadoop cluster.

• It is mode in which you see the actual power of Hadoop, when you run your code against a very

large input on 1000s of servers.

• It is always difficult to debug a MapReduce program as you have Mappers running on different

machine with different piece of input.

• You can never know where the Mappers are going to run eventually.

• Also, with large inputs, it is likely that the data will be irregular in its format.

Hadoop MapReduce Framework

1

SCHOOL OF COMPUTING

COMMON TO CSE AND IT

UNIT – III – SIT1606 – BIG DATA

Hadoop MapReduce Framework

2

UNIT 3 HADOOP MAP REDUCE FRAMEWORK 9 Hrs.
 Relationship between MapReduce and HDFS - Clients, Data Nodes, and HDFS Storage -
MapReduce workloads. Hadoop framework - Hadoop data types - Hadoop map reduce
Paradigm - Map and Reduce Tasks - Map reduce Execution framework - Partitioners and
Combiners - Input formats (Input Splits and Records, Text Input, Binary Input, Multiple
Inputs)- Output Formats (TextOutput, BinaryOutPut, Multiple Output)- Hadoop Mapreduce
programming - Advanced Map reduce concepts - Counters, Custom Writables - Unit testing
framework - Error Handling - Tuning - Advanced Map reduce.

HADOOP MAPREDUCE FRAMEWORK

MAPREDUCE

 MapReduce is a programming framework of Hadoop that is used for parallel processing

of data. MapReduce is the processing engine of Hadoop that processes and computes

vast volumes of data.

 It has 2 components: Map and Reduce phase which is shown in Fig. 3.1.

Fig. 3.1 Components of Hadoop

 The generalized workflow of MapReduce is shown in Fig. 3.2.

Hadoop MapReduce Framework

3

Fig. 3.2 Generalized Workflow of MapReduce

 MapReduce performs parallel processing in the manner shown in Fig. 3.3.

Fig. 3.3 Parallel Processing of MapReduce

 The detailed workflow of MapReduce is shown in the Fig. 3.4:

Hadoop MapReduce Framework

4

Fig. 3.4 Detailed Workflow of MapReduce

 So, to conclude, MapReduce does parallel processing of data in Hadoop.

HDFS – HADOOP DISTRIBUTED FILE SYSTEM

 HDFS provides high throughput access to application data and is suitable for applications

that have large data sets.

 The NameNode executes file system namespace operations like opening, closing, and

renaming files and directories.

 The DataNodes are responsible for serving read and write requests from the file system’s

clients.

Fig. 3.5 Hadoop Distributed File System

Working of HDFS

Hadoop MapReduce Framework

5

Fig. 3.6 Working of HDFS

RELATIONSHIP BETWEEN MAPREDUCE AND HDFS

 We compare the Hadoop software framework as a computer, the MapReduce is the same

as software, and the HDFS is the same as hardware.

 MapReduce is a framework that is used by Hadoop to process the data residing with

HDFS.

 HDFS store data in each block which size is 64MB or 128MB and MapReduce can

interaction with HDFS and operates the data in HDFS.

 The configuration which we set when we set the environment of Hadoop. The below

diagram will show the structure of Hadoop

Fig. 3.7 Relationship between MapReduce and HDFS

Hadoop MapReduce Framework

6

 HDFS is a distributed file system that provides high throughput access to application

data

 MapReduce is a software framework that processes big data on large clusters reliably.

 Hadoop supports distributed processing of large data sets across clusters of computers.

 HDFS and MapReduce are two modules in Hadoop architecture.

HDFS vs MapReduce

Fig. 3.8 HDFS vs. MapReduce

 Another difference between HDFS and MapReduce is that the HDFS provides high-

performance access to data across highly scalable Hadoop clusters while MapReduce

performs the processing of big data.

HDFS CLIENT

 Client in Hadoop refers to the Interface used to communicate with the Hadoop

Filesystem.

 There are different types of Clients available with Hadoop to perform different tasks.

 The basic filesystem client HDFS DFS is used to connect to a Hadoop Filesystem and

perform basic file related tasks.

 It uses the ClientProtocol to communicate with a NameNode daemon, and connects

directly to DataNodes to read/write block data.

Hadoop MapReduce Framework

7

 These Clients can be invoked using their respective CLI (Command Line Interface)

commands from a node where Hadoop is installed and has the necessary configurations

and libraries required to connect to a Hadoop Filesystem. Such nodes are often referred

as Hadoop Clients.

 For example, if I just write an HDFS command on the Terminal, is it still a "client”?

 Technically, Yes. If you are able to access the FS using the HDFS command, then the

node has the configurations and libraries required to be a Hadoop Client.

HDFS DATANODE

 A DataNode stores data in the Hadoop Filesystem.

 A functional filesystem has more than one DataNode, with data replicated across them.

 On startup, a DataNode connects to the NameNode; spinning until that service comes up.

It then responds to requests from the NameNode for filesystem operations.

 Client applications can talk directly to a DataNode, once the NameNode has provided the

location of the data.

 Similarly, MapReduce operations farmed out to TaskTracker instances near a DataNode,

talk directly to the DataNode to access the files.

 TaskTracker instances can be deployed on the same servers of the host DataNode

instances, so that MapReduce operations are performed close to the data.

 DataNode instances can talk to each other, which is what they do when they are

replicating data.

 Data is designed to replicate across multiple servers, rather than multiple disks on the

same server.

 An ideal configuration is for a server to have a DataNode, a TaskTracker, and then

physical disks with one TaskTracker slot per CPU.

 This will allow every TaskTracker 100% of a CPU, and separate disks to read and write

data.

Map Task (HDFS Data Localization):

 The unit of input for a map task is an HDFS data block of the input file. The map

taskfunctions most efficiently if the data block it has to process is available locally on the

node on which the task is scheduled. This approach is called HDFS data localization.

 An HDFS data locality miss occurs if the data needed by the map task is not available

locally. In such a case, the map task will request the data from another node in the

Hadoop MapReduce Framework

8

cluster: an operation that is expensive and time consuming, leading to inefficiencies and,

hence, delay in job completion.

CLIENTS, DATA NODES, AND HDFS STORAGE:

Input data is uploaded to the HDFS file system in either of following two ways:

1. An HDFS client has a large amount of data to place intoHDFS.

2. An HDFS client is constantly streaming data intoHDFS.

 Both these scenarios have the same interaction with HDFS, except that in the streaming

case, the client waits for enough data to fill a data block before writing to HDFS.

 Data is stored in HDFS in large blocks, generally 64 to 128 MB or more in size.

 This storage approach allows easy parallel processing of data.

HDFS-SITE.XML

<property>

<name>dfs.block.size</name>

<value>134217728</value> ç 128MB Block size

</property>

OR

<property>

<name>dfs.block.size</name>

<value>67108864</value> ç 64MB Block size (Default is this value is not set)

</property>

Block Replication Factor:

 During the process of writing to HDFS, the blocks are generally replicated to multiple

data nodes for redundancy.

 The number of copies, or the replication factor, is set to a default of 3 and can be

modified by the cluster administrator as below:

HDFS-SITE.XML

<property>

<name>dfs.replication</name>

<value>3</value>

</property>

<property>

When the replication factor is three, HDFS’s placement policy is to:

- Put one replica on one node in the localrack,

Hadoop MapReduce Framework

9

- Another on a node in a different (remote)rack,

- Last on a different node in the same remoterack.

 When a new data block is stored on a data node, the data node initiates a replication

process to replicate the data onto a second data node.

 The second data node, in turn, replicates the block to a third data node, completing the

replication of the block.

 With this policy, the replicas of a file do not evenly distribute across the racks.

 One third of replicas are on one node, two thirds of replicas are on one rack, and the

other third are evenly distributed across the remaining racks.

 This policy improves write performance without compromising data reliability or read

performance.

HADOOP DATA TYPES

Serialization:

 Serialization is the process of converting object data into byte stream data for

transmission over a network across different nodes in a cluster or for persistent data

storage.

Deserialization:

 Deserialization is the reverse process of serialization and converts byte stream data into

object data for reading data from HDFS.

 Hadoop provides Writables for serialization and deserialization purpose.

Writable and WritableComparable Interfaces:

 To provide mechanisms for serialization and deserialization of data, Hadoop provided

two important interfaces Writable and WritableComparable.

 Writable interface specification is as follows:

package org.apache.hadoop.io; import java.io.DataInput;

import java.io.DataOutput; import java.io.IOException; public interface Writable

{

void write (DataOutput out) throws IOException; void readFields(DataInput in)

throws IOException;

}

 WritableComparable interface is subinterface of Hadoop’s Writable and Java’s

Comparable interfacesand its specification is shown below:

public interface WritableComparable extends Writable, Comparable

Hadoop MapReduce Framework

10

{

}

 The standard java.lang.Comparable Interface contains single method compareTo()

method for comparing the operators passed to it.

public interface Comparable

{

public int compareTo(Object obj);

}

 The compareTo() method returns 1, 0 , or 1 depending on whether the compared object is

less than, equal to, or greater than the current object.

 The above two interfaces are provided in org.apache.hadoop.io package

Constraints on Keyvalues in Mapreduce

 Hadoop data types used in Mapreduce for key or value fields must satisfy two

constraints.

o Any data type used for a Value field in mapper or reducer input/output must

implementWritable Interface.

o Any data type used for a Key field in mapper or reducer input/output must implement

WritableComparable interface along with Writable interface to compare the keys of

this type with each other for sorting purposes

Writable Classes – Hadoop Data Types

 Hadoop provides classes that wrap the Java primitive types and implement the

WritableComparableand Writable Interfaces. They are provided in the

org.apache.hadoop.io package.

 All the Writable wrapper classes have a get() and a set() method for retrieving and

storing the wrapped value.

Primitive Writable Classes

 These are Writable Wrappers for Java primitive data types and they hold a single

primitive value that can be set either at construction or via a setter method.

 All these primitive writable wrappers have get() and set() methods to read or write the

wrapped value. Below is the list of primitive writable data types available in Hadoop.

o BooleanWritable

o ByteWritable

o IntWritable

Hadoop MapReduce Framework

11

o VIntWritable

o FloatWritable

o LongWritable

o VLongWritable

o DoubleWritable

 In the above list VIntWritable and VLongWritable are used for variable length Integer

types and variable length long types respectively.

 Serialized sizes of the above primitive writable data types are same as the size of actual

java data type. So, the size of IntWritable is 4 bytes and LongWritable is 8 bytes.

Array Writable Classes

 Hadoop provided two types of array writable classes, one for singledimensionaland

another for twodimensional arrays.

 But the elements of these arrays must be other writable objects like IntWritable or

LongWritable only but not the java native data types like int or float.

o ArrayWritable

o TwoDArrayWritable

Map Writable Classes

 Hadoop provided below MapWritable data types which implement java.util.Map

interface

o AbstractMapWritable – This is abstract or base class for other MapWritable

classes.

o MapWritable – This is a general-purpose map mapping Writable keys to

Writable values.

o SortedMapWritable – This is a specialization of the MapWritable class that

also implements the SortedMap interface.

Other Writable Classes

 NullWritable NullWritable is a special type of Writable representing a null value. No

bytes are read or written when a data type is specified as NullWritable. So, in

Mapreduce, a key or a value can be declared as a NullWritable when we don’t need to

use that field.

 ObjectWritable This is a generalpurposegeneric object wrapper which can store any

objects like Java primitives, String, Enum, Writable, null, or arrays.

Hadoop MapReduce Framework

12

 Text Text can be used as the Writable equivalent of java.lang.String and It’s max size

is 2 GB. Unlike java’s String data type, Text is mutable in Hadoop.

 BytesWritable BytesWritable is a wrapper for an array of binary data.

 GenericWritable It is similar to ObjectWritable but supports only a few types. User

need to subclass this GenericWritable class and need to specify the types to support.

Example Program to Test Writables

 Let’s write a WritablesTest.java program to test most of the data types mentioned above

in this post with get (), set (), getBytes(), getLength(), put(), containsKey(), keySet()

methods.

import org.apache.hadoop.io. * ;

import java.util.* ;

public class WritablesTest

{

public static class TextArrayWritable extends ArrayWritable

{

public TextArrayWritable()

{

super (Text.class) ;

}

}

public static class IntArrayWritable extends ArrayWritable

{

public IntArrayWritable()

{

super (IntWritable.class) ;

}

}

public static void main (String [] args)

{

IntWritable i1 = new IntWritable(2) ;

IntWritable i2 = new IntWritable() ;

i2.set (5) ;

IntWritable i3 = new IntWritable () ;

Hadoop MapReduce Framework

13

i3.set (i2.get ()) ;

System.out.printf("Int Writables Test I1: %d, I2: %d, I3: %d", i1.get (), i2.get (), i3.get ()) ;

BooleanWritable bool1 = new BooleanWritable() ;

bool1.set(true);

ByteWritable byte1 = new ByteWritable((byte)7) ;

System.out.printf("\n Boolean Value: %s Byte Value: %d", bool1.get (), byte1.get ()) ; Text t

= new Text("hadoop”) ;

Text t2 = new Text () ; t2.set("pig”) ;

System.out.printf("\n t: %s, t.legth: %d, t2: %s, t2.length: %d \n", t.toString(), t.getLength(),

t2.getBytes(), t2.getBytes().length);

ArrayWritable a = new ArrayWritable(IntWritable.class) ;

a.set(new IntWritable[]{new IntWritable(10), new IntWritable(20), new IntWritable(30)});

ArrayWritable b = new ArrayWritable(Text.class);

b.set (new Text [] {new Text("Hello"), new Text("Writables"), new Text ("World !!!")}) ;

for (IntWritable i: (IntWritable[]) a.get())

System.out.println(i) ;

for (Text i: (Text []) b.get())

System.out.println(i) ;

IntArrayWritableia = new IntArrayWritable();

ia.set (newIntWritable[]{new IntWritable(100), new IntWritable(300), new

IntWritable(500)}) ;

IntWritable[] ivalues = (IntWritable[])ia.get() ;

for (IntWritablei:ivalues)

System.out.println(i);

MapWritable m = new MapWritable() ; IntWritable key1 = new IntWritable(1) ;

NullWritable value1 = NullWritable.get() ;

m.put(key1, value1) ;

m.put(new VIntWritable(2), new LongWritable(163));

m.put(new VIntWritable(3), new Text("Mapreduce"));

System.out.println(m.containsKey(key1));

System.out.println(m.get(new VIntWritable(3)));

m.put(new LongWritable(1000000000), key1);

Set<Writable> keys = m.keySet() ;

For(Writable w: keys)

Hadoop MapReduce Framework

14

System.out.println(m.get(w)) ;

}

}

MAPREDUCE PARADIGM

 Splits input files into blocks (typically of 64MB each)

 Operated on key/value pairs

 Mapper filter & transform input data

 Reducers aggregate mappers output

 Efficient way to process the cluster:

o Move code to data

o Run code on all machines

Fig. 3.9 MapReduce Paradigm

Hadoop MapReduce Framework

15

Fig. 3.10 Map and Reduce Phase

Job Scheduling in Hadoop

 One map task for each block of the input file

o Applies user-defined map function to each record in the block

o Record = <key, value>

 User-defined number of reduce tasks

o Each reduce task is assigned a set of record groups

o For each group, apply user-defined reduce function to the record values in that

group

 Reduce tasks read from every map task

o Each read returns the record groups for that reduce task

Visual understanding of Dataflow in Hadoop

 Map tasks write their output to local disk

o Output available after map task has completed

 Reduce tasks write their output to HDFS

o Once job is finished, next job’s map tasks can be scheduled, and will read

input from HDFS

 Therefore, fault tolerance is simple: simply re-run tasks on failure

o No consumers see partial operator output

Hadoop MapReduce Framework

16

Fig. 3.11 Step1 of Dataflow in Hadoop

Fig. 3.12 Step2 of Dataflow in Hadoop

Fig. 3.13 Step 3 of Dataflow in Hadoop

Hadoop MapReduce Framework

17

Fig. 3.14 Step 4 of Dataflow in Hadoop

 Terms are borrowed from Functional Language (e.g., Lisp)

Sum of Squares:

 (map square ‘(1 2 3 4))

o Output: (1 4 9 16)

o [processes each record sequentially and independently]

 (reduce + ‘(1 4 9 16))

o (+16 (+9 (+4 1)))

o Output: 30

o [processes set of all records in batches]

 Let’s consider a sample application: Wordcount

o You are given a huge dataset and asked to list the count for each of the words

in each of the documents therein

o Process individual records to generate intermediate key/value pairs.

Fig. 3.15 Individual Record Processing

Hadoop MapReduce Framework

18

o Parallelly process individual records to generate intermediate key/value pairs.

Fig. 3.16 Parallel Processing of Individual Record

o Parallelly process a large number of individual records to generate

intermediate key/value pairs.

Fig. 3.17 Parallel Processing of Large Number of Records

o Reduce processes and merges all intermediate values associated per key

Fig. 3.18 Reduce Process

o Each key assigned to one Reduce

o Parallelly processes and merges all intermediate values by partitioning keys

Hadoop MapReduce Framework

19

Fig. 3.19 Merge the Intermediate Values

o Popular: Hash partitioning, i.e., key is assigned to reduce # -

hash(key)%number of reduce servers

Hadoop Code – Map

Fig. 3.20 Hadoop Code - Map

Hadoop MapReduce Framework

20

Hadoop Code – Reduce

Fig. 3.21 Hadoop Code - Reduce

Hadoop Code – Driver

Fig. 3.22 Hadoop Code - Driver

Hadoop MapReduce Framework

21

MAPREDUCE WITH COMBINER AND PARTITIONER

Fig. 3.23 Combiner and Partitioners

MAPREDUCE COMBINERS

 A Combiner, also known as a semi-reducer, is an optional class that operates by

accepting the inputs from the Map class and thereafter passing the output key-value pairs

to the Reducer class.

MapReduce with and without Combiner

Fig. 3.24 MapReduce without Combiner

Hadoop MapReduce Framework

22

Fig. 3.25 MapReduce with Combiner

 The main function of a Combiner is to summarize the map output records with the same

key. The output key-value collection of the combiner will be sent over the network to the

actual Reducer task as input.

Combiner

 The Combiner class is used in between the Map class and the Reduce class to reduce the

volume of data transfer between Map and Reduce. Usually, the output of the map task is

large and the data transferred to the reduce task is high.

 The following MapReduce task diagram shows the COMBINER PHASE.

Fig. 3.26 Combiner Phase

Hadoop MapReduce Framework

23

 Here is a brief summary on how MapReduce Combiner works −

o A combiner does not have a predefined interface and it must implement the

Reducer interface’s reduce method.

o A combiner operates on each map output key. It must have the same output

key-value types as the Reducer class.

o A combiner can produce summary information from a large dataset because it

replaces the original Map output.

 Although, Combiner is optional yet it helps segregating data into multiple groups for

Reduce phase, which makes it easier to process.

MapReduce Combiner Implementation

 The following example provides a theoretical idea about combiners. Let us assume we

have the following input text file named input.txt for MapReduce.

 The important phases of the MapReduce program with Combiner are discussed below.

Record Reader

 This is the first phase of MapReduce where the Record Reader reads every line from the

input text file as text and yields output as key-value pairs.

 Input − Line by line text from the input file.

 Output − Forms the key-value pairs. The following is the set of expected key-value pairs.

Map Phase

 The Map phase takes input from the Record Reader, processes it, and produces the

output as another set of key-value pairs.

Hadoop MapReduce Framework

24

 Input − The following key-value pair is the input taken from the Record Reader.

 The Map phase reads each key-value pair, divides each word from the value using

StringTokenizer, treats each word as key and the count of that word as value.

 The following code snippet shows the Mapper class and the map function.

public static class TokenizerMapper extends Mapper<Object, Text, Text,

IntWritable>

{

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public void map(Object key, Text value, Context context) throws IOException,

InterruptedException

 {

 StringTokenizer itr = new StringTokenizer(value.toString());

 while (itr.hasMoreTokens())

 {

word.set(itr.nextToken());

context.write(word, one);

 }

 }

}

 Output − The expected output is as follows –

Combiner Phase

Hadoop MapReduce Framework

25

 The Combiner phase takes each key-value pair from the Map phase, processes it, and

produces the output as key-value collection pairs.

 Input − The following key-value pair is the input taken from the Map phase.

 The Combiner phase reads each key-value pair, combines the common words as key and

values as collection.

 Usually, the code and operation for a Combiner is similar to that of a Reducer.

 Following is the code snippet for Mapper, Combiner and Reducer class declaration.

job.setMapperClass(TokenizerMapper.class);

job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

 Output − The expected output is as follows –

Reducer Phase

 The Reducer phase takes each key-value collection pair from the Combiner phase,

processes it, and passes the output as key-value pairs.

 Note that the Combiner functionality is same as the Reducer.

 Input − The following key-value pair is the input taken from the Combiner phase.

 The Reducer phase reads each key-value pair. Following is the code snippet for the

Combiner.

public static class IntSumReducer extends

Reducer<Text,IntWritable,Text,IntWritable>

{

private IntWritable result = new IntWritable();

Hadoop MapReduce Framework

26

public void reduce(Text key, Iterable<IntWritable> values, Context context)throws

IOException, InterruptedException

{

 int sum = 0;

 for (IntWritableval : values)

 {

 sum += val.get();

 } result.set(sum);

context.write(key, result);

 }

}

 Output − The expected output from the Reducer phase is as follows –

Record Writer

 This is the last phase of MapReduce where the Record Writer writes every key-value pair

from the Reducer phase and sends the output as text.

 Input − Each key-value pair from the Reducer phase along with the Output format.

 Output − It gives you the key-value pairs in text format. Following is the expected

output.

Hadoop MapReduce Framework

27

MAPREDUCE –PARTITIONER

 A partitioner works like a condition in processing an input dataset.

 The partition phase takes place after the Map phase and before the Reduce phase.

 The number of partitioners is equal to the number of reducers.

 That means a partitioner will divide the data according to the number of reducers.

 Therefore, the data passed from a single partitioner is processed by a single Reducer.

Partitioner

 A partitioner partitions the key-value pairs of intermediate Map-outputs.

 It partitions the data using a user-defined condition, which works like a hash function.

 The total number of partitions is same as the number of Reducer tasks for the job.

 Let us take an example to understand how the partitioner works.

MapReduce Partitioner Implementation

 For the sake of convenience, let us assume we have a small table called Employee with

the following data.

 We will use this sample data as our input dataset to demonstrate how the partitioner

works.

Table 3.1 Employee Dataset

Id Name Age Gender Salary

Hadoop MapReduce Framework

28

1201 gopal 45 Male 50,000

1202 manisha 40 Female 50,000

1203 khalil 34 Male 30,000

1204 prasanth 30 Male 30,000

1205 kiran 20 Male 40,000

1206 laxmi 25 Female 35,000

1207 bhavya 20 Female 15,000

1208 reshma 19 Female 15,000

1209 kranthi 22 Male 22,000

1210 Satish 24 Male 25,000

1211 Krishna 25 Male 25,000

1212 Arshad 28 Male 20,000

1213 lavanya 18 Female 8,000

 We have to write an application to process the input dataset to find the highest salaried

employee by gender in different age groups (for example, below 20, between 21 to 30,

above 30).

 The above data is saved as input.txt in the “/home/hadoop/hadoopPartitioner” directory

and given as input.

 Based on the given input, following is the algorithmic explanation of the program.

 Map Tasks

o The map task accepts the key-value pairs as input while we have the text data

in a text file. The input for this map task is as follows −

o Input − The key would be a pattern such as “any special key + filename + line

number” (example: key = @input1) and the value would be the data in that

line (example: value = 1201 \t gopal \t 45 \t Male \t 50000).

Hadoop MapReduce Framework

29

o Method − The operation of this map task is as follows –

 Read the value (record data), which comes as input value from the

argument list in a string.

 Using the split function, separate the gender and store in a string

variable.

String [] str = value.toString().split("\t", -3);

String gender=str[3];

 Send the gender information and the record data value as output key-

value pair from the map task to the partition task

context.write (new Text(gender), new Text(value));

 Repeat all the above steps for all the records in the text file.

o Output − You will get the gender data and the record data value as key-value

pairs.

 Partitioner Task

o The partitioner task accepts the key-value pairs from the map task as its input.
Partition implies dividing the data into segments. According to the given
conditional criteria of partitions, the input key-value paired data can be
divided into three parts based on the age criteria.

o Input − The whole data in a collection of key-value pairs.
 key = Gender field value in the record.
 value = Whole record data value of that gender.

o Method − The process of partition logic runs as follows.
 Read the age field value from the input key-value pair

o Check the age value with the following conditions.

 Age less than or equal to 20

 Age Greater than 20 and Less than or equal to 30.

 Age Greater than 30.

if(age<=20)

{

 return 0;

}

else if(age>20 && age<=30)

{

Hadoop MapReduce Framework

30

 return 1 % numReduceTasks;

}

else

{

 return 2 % numReduceTasks;

}

o Output − The whole data of key-value pairs are segmented into three

collections of key-value pairs. The Reducer works individually on each

collection.

 Reduce Tasks

o The number of partitioner tasks is equal to the number of reducer tasks. Here

we have three partitioner tasks and hence we have three Reducer tasks to be

executed.

o Input − The Reducer will execute three times with different collection of key-

value pairs.

 key = gender field value in the record.

 value = the whole record data of that gender.

o Method − The following logic will be applied on each collection.

 Read the Salary field value of each record.

 String [] str = val.toString ().split("\t", -3);

 Note: str [4] have the salary field value.

o Check the salary with the max variable. If str[4] is the max salary, then assign

str[4] to max, otherwise skip the step.

if(Integer.parseInt(str[4])>max)

{

 max=Integer.parseInt(str[4]);

}

o Repeat Steps 1 and 2 for each key collection (Male & Female are the key

collections). After executing these three steps, you will find one max salary

from the Male key collection and one max salary from the Female key

collection.

context.write(new Text(key), new IntWritable(max));

Hadoop MapReduce Framework

31

o Output − Finally, you will get a set of key-value pair data in three collections

of different age groups. It contains the max salary from the Male collection

and the max salary from the Female collection in each age group respectively.

o After executing the Map, the Partitioner, and the Reduce tasks, the three

collections of key-value pair data are stored in three different files as the

output.

o All the three tasks are treated as MapReduce jobs. The following requirements

and specifications of these jobs should be specified in the Configurations –

 Job name

 Input and Output formats of keys and values

 Individual classes for Map, Reduce, and Partitioner tasks

Configuration conf = getConf();

//Create Job Jobjob = new Job(conf, "topsal");

job.setJarByClass(PartitionerExample.class);

// File Input and Output paths FileInputFormat.setInputPaths(job, new

Path(arg[0]));

FileOutputFormat.setOutputPath(job,new Path(arg[1]));

//Set Mapper class and Output format for key-value pair.

job.setMapperClass(MapClass.class);

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(Text.class);

//set partitioner statement

job.setPartitionerClass(CaderPartitioner.class);

//Set Reducer class and Input/Output format for key-value pair.

job.setReducerClass(ReduceClass.class);

//Number of Reducer tasks.

job.setNumReduceTasks(3);

//Input and Output format for data

job.setInputFormatClass(TextInputFormat.class);

job.setOutputFormatClass(TextOutputFormat.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(Text.class);

o I/P Mapper: Data set

o O/P to Mapper I/P to Partioner:

Hadoop MapReduce Framework

32

 Female record

 Male record

o O/P Partioner I/P to Reducer

 Age < 20 Female Record

 Age < 20 Male Record

 Age > 20 &&< 30 Female Record

 Age > 20 &&< 30 Male Record

 Age > 30 Female Record

 Age > 30 Male Record

o O/P Reducer

 Max(Age < 20 Female Record)

 Max(Age < 20 Male Record)

 Max(Age > 20 &&< 30 Female Record)

 Max(Age > 20 &&< 30 Male Record)

 Max(Age > 30 Female Record)

 Max(Age > 30 Male Record)

HADOOP INPUT FORMATS

Input Splits, Input Formats and Record Reader:

Fig. 3.27 Input Splits and Record Reader

Hadoop MapReduce Framework

33

 On job startup, each input file is broken into splits and each map processes a single split.

Each split is further divided into records of key/value pairs which are processed by map

tasks one record at a time.

 To get split details of an input file, Hadoop provides an InputSplit class

in org.apache.hadoop.mapreduce package and its implementation is as follows.

public abstract class InputSplit

{

 public abstract long getLength() throws IOException, InterruptedException;

 public abstract String[] getLocations() throws IOException, InterruptedException;

}

Input Splits

 From the above two methods, programmer can get length of a split and storage locations.

 A good input split size is equal to the HDFS block size.

 But if the splits are too smaller than the default HDFS block size, then managing splits

and creation of map tasks becomes an overhead than the job execution time.

 But these file splits need not be taken care by Mapreduce programmer because Hadoop

provides InputFormat class in org.apache.hadoop.mapreduce package for the below

two responsibilities.

o To provide details on how to split an input file into the splits.

o To create a RecordReader class that will generate the series of key/value

pairs from a split.

 To meet these two requirements, Hadoop provides below implementation for

InputFormat class with two methods.

public abstract class InputFormat<K, V>

{

public abstract List<InputSplit>getSplits(JobContext context) throws

IOException, InterruptedException;

public abstract RecordReader<K, V>createRecordReader(InputSplit split,

TaskAttemptContext context) throws IOException, InterruptedException;

}

Key value paring in Hadoop Mapreduce

Hadoop MapReduce Framework

34

Fig. 3.28 Key Value Paring in Hadoop MapReduce

 Thus, Record reader creates key/value pairs from input splits and writes on to Context,

which will be shared with Mapper class. Mapper class’s run () method retrieves these

key/value pairs from context by calling getCurrentKey() and getCurrentValue() methods

and passes onto map() method for further processing of the record.

 Mapper’s run () method:

public void run (Context context) throws IOException, InterruptedException

{

 setup(context);

 while (context.nextKeyValue())

 {

 map(context.getCurrentKey(), context.getCurrentValue(), context);

 }

cleanup(context);

}

 Thus, finally key/value pairs from each input record are sent to map() task.

Built-in Hadoop Input Formats:

 Hadoop provided some built in InputFormat implementations in

the org.apache.hadoop.mapreduce.lib.input package:

 FileInputFormat: Base class for all file-based InputFormat implementations.

 Some of the important sub classes of the FileInputFormat class are:

o TextInputFormat

o KeyValueTextInputFormat

o FixedLengthInputFormat

Hadoop MapReduce Framework

35

o NLineInputFormat

o CombineFileInputFormat

o MultiFileInputFormat

o SequenceFileInputFormat

o SequenceFileAsTextInputFormat

o SequenceFileAsBinaryInputFormat

o MultipleInputs

o DBInputFormat

 TextInputFormat :

The default InputFormat class when no other class is specified. It treats the input files as

text files.

 KeyValueTextInputFormat :

An InputFormat for plain text files. Files are broken into lines. Each line is divided into

key and value parts by a separator byte. If no such a byte exists, the key will be the entire

line and value will be empty.

 FixedLengthInputFormat :

An input format to read input files with fixed length records. These need not be text files

and can be binary files. Users must configure the record length property by calling:

FixedLengthInputFormat.setRecordLength(conf, recordLength);

 NLineInputFormat :

It splits N lines of input as one split which will be fed to a single map task. It can be used

in applications, that splits the input file such that by default, one line is fed as a value to

one map task, and key is the offset. i.e. (k,v) is (LongWritable, Text).

 CombineFileInputFormat :

This input file format is suitable for processing huge number of small files.

CombineFileInputFormat packs many small files into each split so that each mapper has

more to process. Thus it can improve the efficiency of mapreduce job by making less

number of map tasks to process huge number of small files.

 MultiFileInputFormat :

An abstract InputFormat class that returns MultiFileSplit’s in getSplits() method from

the files under the input paths.

Hadoop MapReduce Framework

36

 SequenceFileInputFormat :

Hadoop specific Binary file format for efficient file processing.

 SequenceFileAsTextInputFormat :

SequenceFileAsTextInputFormat is a sub class of SequenceFileInputFormat. This class

is similar to SequenceFileInputFormat, except it generates

SequenceFileAsTextRecordReader which converts the input keys and values to their

String forms by calling toString() method.

 SequenceFileAsBinaryInputFormat :

SequenceFileAsBinaryInputFormat is another sub class of SequenceFileInputFormat. It

is an input format for reading keys, values from Sequence Files in binary (raw) format.

 MultipleInputs :

This class supports MapReduce jobs that have multiple input paths with a different

InputFormat and Mapper for each path.

 DBInputFormat :

A InputFormat that reads input data from an SQL table. DBInputFormat

emits LongWritables containing the record number as key and DBWritables as value.

The SQL query, and input class can be using one of the two setInput() methods

Prevent Input File Splitting

 If we don’t want files to be split, so that a single mapper can process each input file in its

entirety, we can override the isSplitable() method of FileInputFormat class to return

false.

 For example, here’s a non splittableFileInputFormat implementation.

Import org.apache.hadoop.fs.Path;

Import org.apache.hadoop,.mapreduce.JobContext;

Import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

public class NonSplittableFileInputFormat extends FileInputFormat {

@Override

protected Boolean isSplitable(JobContext context, Path file) {

return false;

}

Hadoop MapReduce Framework

37

}

Input File Format Class Hierarchy

Fig. 3.29 Class Hierarchy of Input File Format

Hadoop Output Formats

 Hadoop provides output formats that corresponding to each input format. All hadoop

output formats must implement the interface

org.apache.hadoop.mapreduce.OutputFormat.

o OutputFormat describes the output-specification for a Map-Reduce job. Based

on Output specification, Mapreduce job checks that the output directory

doesn’t already exist.

o OutputFormat provides the RecordWriter implementation to be used to write

out the output files of the job.

Hadoop MapReduce Framework

38

Fig. 3.30 Output File Format

 These two requirements of the OutputFormat are accomplished with below two methods

in the interface.

public abstract void checkOutputSpecs(JobContext context) throws

IOException, InterruptedException

{

}

 This method checks that output directory doesn’t exist already and throws an exception

when it already exists, so that output is not overwritten.

public abstract RecordWriter<K,V> getRecordWriter(TaskAttemptContextcontext)throw

s IOException, InterruptedException

{

}

 This method Gets the RecordWriter for the given task.

 org.apache.hadoop.mapreduce.RecordWriter<K,V> class implementations are used to

write the output <key, value> pairs to an output file.

Built-In Hadoop Output Formats

Hadoop MapReduce Framework

39

 Hadoop provided some built in InputFormat implementations in the

org.apache.hadoop.mapreduce.lib.output package:

 FileOutputFormat

o Base class for all file-based OutputFormat implementations. Some of the

important sub classes of the FileOutputFormat class are:

 TextOutputFormat

o The default output format provided by hadoop is TextOuputFormat and it

writes records as lines of text. If file output format is not specified explicitly,

then text files are created as output files.

o Output Key-value pairs can be of any format

because TextOutputFormat converts these into strings with toString() method.

Output key-value pairs are tab delimited by default.

o For reading these output text files as input, KeyValueTextInputFormat is best

suitable, since it breaks input lines into key value pairs based on a separator

character.

 SequenceFileOutputFormat

o This output format class is useful to write out sequence files which is a best

option when the output files need to be fed into another mapreduce jobs as

input files, since these are compressed and compact.

 SequenceFileAsBinaryOutputFormat

o SequenceFileAsBinaryOutputFormat is a direct subclass of

SequenceFileOutputFormat and it is counterpart for

SequenceFileAsBinaryInputFormat. It writes keys and values to Sequence

Files in binary format.

 MapFileOutputFormat

o It is also a direct subclass of FileOutputFormat and it is used to write output

as Map files.

 MultipleOutputs

o The MultipleOutputs class is used to write output data to multiple outputs.

Below are the two main use cases of MultipleOutputs.

 Job output can be written to additional outputs other than the default

output. Each additional output, or named output, may be configured

with its own OutputFormat, with its own key class and value class.

Hadoop MapReduce Framework

40

 Write data to different files provided by user

o MultipleOutputs supports counters to count the number records written to each

output name. But these are disabled by default.

Usage pattern for job submission:

Job job = new Job();

FileInputFormat.setInputPath(job, InPath);

FileOutputFormat.setOutputPath(job, OutPath);

job.setMapperClass(MultipleOutputMap.class);

job.setReducerClass(MultipleOutputReduce.class);

...

// Defines additional single text-based output 'text' for the job

MultipleOutputs.addNamedOutput(job, "text", TextOutputFormat.class, LongWritable.class,

Text.class);

// Defines additional sequence-file based output 'sequence' for the job

MultipleOutputs.addNamedOutput(job, "seq", SequenceFileOutputFormat.class,

LongWritable.class, Text.class);

...

job.waitForCompletion(true);

...

Usage in Reducer: MultipleOutputs

MultipleOutputFormat

• It is an abstract class which is extended by

MultipleTextOutputFormat and MultipleSequenceFileOutputFormat. This abstract

class extends the FileOutputFormat,

• The main advantage of this format is the ability to write the output data to different

output files. Instead of the default output file convention part-m-xxxxx or part-r-

xxxxx , output files can be written with names of our choice. Below are the three

scenarios where output file names can be changed.

• If there is at least one reducer in the mapreduce job, output can be written to different

files depending on the actual keys.

Hadoop MapReduce Framework

41

• If the mapreduce job is a map only job, then job can use the output file name that

is either a part of the input file name or any name derived from it.

• If it is a map only job, job can use the output file name that depends on both the keys

and the input file name.

• MultipleSequenceFileOutputFormat

This is also a sub class of MultipleOutputFormat class. Using this format, the

output data can be written to different output files in Sequence file format.

• MultipleTextOutputFormat

This is also a sub class of MultipleOutputFormat class. Using this format, the

output data can be written to different output files in Text output format.

• LazyOutputFormat

By Default, FileOutputFormat creates the output files even if a single output record

is not emitted from reducers. Thus,Mapreduce jobs create empty output files some

times. This can be avoided with LazyOutputFormat in which output files are created

only when the first output is emitted from the reducers. It is used in conjunction

with org.apache.hadoop.mapreduce.lib.output.MultipleOutputs to recreate the

behavior of org.apache.hadoop.mapred.lib.MultipleTextOutputFormat of the old

Hadoop API.

• DBOutputFormat

This output format is used to write an output into SQL tables using mapreduce

jobs. DBOutputFormat accepts <key,value> pairs, where key has a type

extending DBWritable. Returned DBOutputFormat. DBRecordWriter writes only

the key to the database with a batch SQL query.

• NullOutputFormat

NullOutputFormat writes nothing to output directory. It Consumes all outputs and put

them in /dev/null. We can suppress the key or value in the output using a

NullWritable type. Both can be suppressed if the output file format is

NullOutputFormat.

Hadoop Output Format Hierarchy

Hadoop MapReduce Framework

42

Fig. 3.31 Output File Format Hierarchy

Input / Output Formats

Table 3.2 Input Format vs. Output Format

org.apache.hadoop.mapreduce.lib.input org.apache.hadoop.mapreduce.OutputFormat.

InputSplit class
in org.apache.hadoop.mapreduce

getLength()
getLocations()

InputFormat provides the Record Reader
class that will generate the series of
key/value pairs from a split.

OutputFormat provides
theRecordWriter implementation to be used
towrite out the output files of the job.

Mapper class’s run () method retrieves
these key/value pairs from context by
callinggetCurrentKey() and
getCurrentValue() methods and passes
onto map() method for further processing
of the record.

checkOutputSpecs() - Based on Output
specification, Mapreduce job checks that the
output directory
RecordWriter<K,V> - used to write out the
output files of the job.

TextInputFormat
The default InputFormat class

TextOutputFormat
It writes records as lines of text.

KeyValueTextInputFormat
An InputFormat for plain text files. Files
are broken into lines. Each line is divided
into key and value parts by a separator
byte

MultipleOutputFormat class. Using this format
the output data can be written to different
output files in Text output format.

FixedLengthInputFormat
An input format to read input files with

Hadoop MapReduce Framework

43

fixed length records.

NLineInputFormat
It splits N lines of input as one split
which will be fed to a single map task.

NullOutputFormat
NullOutputFormat writes nothing to output
directory.

CombineFileInputFormat
This input file format is suitable for
processing huge number of small files.
CombineFileInputFormat packs many
small files into each split so that each
mapper has more to process.

MapFileOutputFormat
It is used to write output as Map files.

SequenceFileInputFormat
Hadoop specific Binary file format for
efficient file processing

SequenceFileOutputFormat
This output format class is useful to write out
sequence files

SequenceFileAsTextInputFormat
which converts the input keys and values
to their String forms by
calling toString() method

MultipleTextOutputFormat
This is also a sub class
of MultipleOutputFormat class. Using this
format the output data can be written to
different output files in Text output format.

SequenceFileAsBinaryInputFormat: It is
an input format for reading keys, values
from Sequence Files in binary (raw)
format

SequenceFileAsBinaryOutputFormat
It writes keys and values to Sequence Files in
binary format.

MultipleInputs
This class supports MapReduce jobs that
have multiple input paths with a different
InputFormat

MultipleOutputs
The MultipleOutputs class is used to write
output data to multiple outputs

DBInputFormat
A InputFormat that reads input data from
an SQL table

DBOutputFormat
This output format is used to write an output
into SQL tables using mapreduce jobs.
DBRecordWriter writes only the key to the
database with a batch SQL query

HADOOP COUNTERS

Hadoop MapReduce Framework

44

Fig. 3.32 Hadoop Counters

 MapReduce is the core component of Hadoop which provides data processing.

 MapReduce works by breaking the processing into two phases; Map phase

and Reduce phase.

 The map is the first phase of processing, where we specify all the complex logic/business

rules/costly code, whereas the Reduce phase is the second phase of processing, where we

specify light-weight processing like aggregation/ summation.

 In Hadoop, MapReduce Framework has certain elements such as Counters, Combiners,

and Partitioners, which play a key role in improving the performance of data processing.

What are Hadoop Counters?

http://data-flair.training/blogs/combiner-in-hadoop-mapreduce-advantages-disadvantages/
http://data-flair.training/blogs/partitioner-in-hadoop-mapreduce-hadoop-internals/
http://data-flair.training/blogs/partitioner-in-hadoop-mapreduce-hadoop-internals/

Hadoop MapReduce Framework

45

 Hadoop Counters provides a way to measure the progress or the number of operations

that occur within map/reduce job.

 Counters in Hadoop MapReduce are a useful channel for gathering statistics about the

MapReduce job: for quality control or for application-level.

 They are also useful for problem diagnosis.

 Counters represent Hadoop global counters, defined either by the MapReduce framework

or applications.

 Each Hadoop counter is named by an “Enum” and has a long for the value.

 Counters are bunched into groups, each comprising of counters from a particular Enum

class.

 Hadoop Counters validate that:

o The correct number of bytes was read and written.

o The correct number of tasks was launched and successfully ran.

o The amount of CPU and memory consumed is appropriate for our job and

cluster nodes.

 There are basically 2 types of MapReduce Counters:

o Built-In Counters in MapReduce

o User-Defined Counters/Custom counters in MapReduce

Built-In Counters in MapReduce

 Hadoop maintains some built-in Hadoop counters for every job and these report various

metrics, like, there are counters for the number of bytes and records, which allow us to

confirm that the expected amount of input is consumed and the expected amount of

output is produced.

 Hadoop Counters are divided into groups and there are several groups for the built-in

counters.

 Each group either contains task counters (which are updated as task progress) or job

counter (which are updated as a job progress).

 There are several groups for the Hadoop built-in Counters:

a) MapReduce Task Counter in Hadoop

b) FileSystem Counters

c) FileInputFormat Counters in Hadoop

d) FileOutputFormat counters in MapReduce

http://data-flair.training/blogs/hadoop-mapreduce-flow/

Hadoop MapReduce Framework

46

e) MapReduce Job Counters

MapReduce Task Counter in Hadoop

 Hadoop Task counter collects specific information (like number of records read and

written) about tasks during its execution time.

 For example, the MAP_INPUT_RECORDS counter is the Task Counter which counts

the input records read by each map task.

 Hadoop Task counters are maintained by each task attempt and periodically sent to

the application master so they can be globally combined.

FileSystem Counters

 Hadoop FileSystem Counters in Hadoop MapReduce gather information like a

number of bytes read and written by the file system. Below are the name and

description of the file system counters:

o FileSystem bytes read– The number of bytes read by the filesystem by map

and reduce tasks.

o FileSystem bytes written– The number of bytes written to the filesystem by

map and reduce tasks.

FileInputFormat Counters in Hadoop

 FileInputFormat Counters in Hadoop MapReduce gather information of a number of

bytes read by map tasks via FileInputFormat.

FileOutputFormat counters in MapReduce

 FileOutputFormat counters in Hadoop MapReduce gathers information of a number

of bytes written by map tasks (for map-only jobs) or reduce tasks via

FileOutputFormat.

MapReduce Job Counters

 MapReduce Job counter measures the job-level statistics, not values that change while

a task is running.

 For example, TOTAL_LAUNCHED_MAPS, count the number of map tasks that

were launched over the course of a job (including tasks that failed).

http://data-flair.training/blogs/apache-hadoop-hdfs-introduction-tutorial/
http://data-flair.training/blogs/apache-hadoop-hdfs-introduction-tutorial/

Hadoop MapReduce Framework

47

 Application master maintains MapReduce Job counters, so these Hadoop Counters

don’t need to be sent across the network, unlike all other counters, including user-

defined ones.

User-Defined Counters/Custom Counters in Hadoop MapReduce

 In addition to MapReduce built-in counters, MapReduce allows user code to define a

set of counters, which are then incremented as desired in the mapper or reducer.

 For example, in Java, ‘enum’ is used to define counters.

 A job may define an arbitrary number of ‘enums’, each with an arbitrary number of

fields.

 The name of the enum is the group name, and the enum’s fields are the counter

names.

Dynamic Counters in Hadoop MapReduce

 Java enum’s fields are defined at compile time, so we cannot create new counters in

Hadoop MapReduce at runtime using enums.

 To do so, we use dynamic counters in Hadoop MapReduce, one that is not defined at

compile time using java enum.

MapReduce Counters: Conclusion

 Counters check whether the correct number of bytes is read or written, the correct

number of tasks are launched and successfully run.

 Hence, Hadoop maintains built-in counters and user-defined counters to measure the

progress that occurs within MapReduce job.

Custom Writables in Hadoop

HOW TO CREATE A CUSTOM WRITABLE FOR HADOOP

 We have gone through other Hadoop MapReduce examples, we will have noticed the

use of “Writable” data types such as LongWritable, IntWritable, Text, etc…

 All values in used in Hadoop MapReduce must implement the Writable interface.

 Although we can do a lot with the primitive Writables already available with Hadoop,

there are often times when we want to transmit a variety of data and/or data types

from Mapper to Reducer.

http://data-flair.training/blogs/mapper-in-hadoop-mapreduce/
http://data-flair.training/blogs/reducer-in-hadoop-mapreduce/

Hadoop MapReduce Framework

48

 Sometimes it is possible to convert all these data into strings and concatenate them to

result in a single key or single value. However, this can get very messy, and is not

recommended.

 Implementing Writable requires implementing two methods, readFields(DataInput

in) and write(DataOutput out).

 Writables that are used as keys in MapReduce jobs must also implement Comparable

(or simply WritableComparable).

 Overriding the toString() method is not necessary, but can be very helpful when

storing your output data as text in HDFS.

 Below is an example of a custom Writable that is used to store both gender and login

information.

 An example of using this might be to calculate login statistics based on gender.

 Notice that this custom class, GenderLoginWritable, does not implement Comparable

or WritableComparable, so it can only be used as a value in the MapReduce

framework, not as a key.

package com.bigdatums.hadoop.mapreduce;

 import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Writable;

 import java.io.DataInput;

import java.io.DataOutput;

import java.io.IOException;

public class GenderLoginWritable implements Writable {

 private IntWritable male;

 private IntWritable female;

 private IntWritablemaleLogins;

 private IntWritablefemaleLogins;

 public GenderLoginWritable() {

 male = new IntWritable(0);

 female = new IntWritable(0);

 maleLogins = new IntWritable(0);

 femaleLogins = new IntWritable(0); }

Hadoop MapReduce Framework

49

public GenderLoginWritable(IntWritable male, IntWritablemaleLogins, IntWritable female,

IntWritablefemaleLogins) {

 this.male = male;

 this.female = female;

 this.maleLogins = maleLogins;

 this.femaleLogins = femaleLogins;

 }

public IntWritablegetMale() {

 return male;

 }

 public IntWritablegetFemale() {

 return female;

 }

 public IntWritablegetMaleLogins() {

 return maleLogins;

 }

 public IntWritablegetFemaleLogins() {

 return femaleLogins;

 }

 public void setMale(IntWritable male) {

 this.male = male;

 }

 public void setFemale(IntWritable female) {

 this.female = female;

 }

 public void setMaleLogins(IntWritablemaleLogins) {

 this.maleLogins = maleLogins;

 }

Hadoop MapReduce Framework

50

 public void setFemaleLogins(IntWritablefemalelogins) {

 this.femaleLogins = femalelogins;

 }

 public void readFields(DataInput in) throws IOException {

 male.readFields(in);

 female.readFields(in);

 maleLogins.readFields(in);

 femaleLogins.readFields(in);

 }

public void write(DataOutput out) throws IOException {

 male.write(out);

 female.write(out);

 maleLogins.write(out);

 femaleLogins.write(out);

 }

@Override

public String toString() {

return male.toString() + "\t" + maleLogins.toString() + "\t" + female.toString() + "\t" +

femaleLogins.toString();

}

}

Unit Testing Framework

 Hadoop MapReduce jobs have a unique code architecture that follows a specific template

with specific constructs.

 This architecture raises interesting issues when doing test-driven development (TDD)

and writing unit tests.

 This is a real-world example using MRUnit, Mockito, and PowerMock. It is

o using MRUnit to write JUnit tests for hadoop MR applications,

o using PowerMock& Mockito to mock static methods,

Hadoop MapReduce Framework

51

o mocking-out business-logic contained in another class,

o verifying that mocked-out business logic was called (or not)

o testing counters,

o testing statements in a log4j conditional block, and

o handling exceptions in tests.

 With MRUnit, you can craft test input, push it through your mapper and/or reducer, and

verify it’s output all in a JUnit test. As do other JUnit tests, this allows you to debug

your code using the JUnit test as a driver.

 A map/reduce pair can be tested using MRUnit’sMapReduceDriver. A combiner can be

tested using MapReduceDriver as well. A PipelineMapReduceDriver allows you to test

a workflow of map/reduce jobs. Currently, partitioners do not have a test driver under

MRUnit.

 MRUnit allows you to do TDD and write light-weight unit tests which accommodate

Hadoop’s specific architecture and constructs.

 In the following example, we’re processing road surface data used to create maps. The

input contains both linear surfaces (describing a stretch of the road) and intersections

(describing a road intersection). This mapper takes a collection of these mixed surfaces

as input, discards anything that isn’t a linear road surface, i.e., intersections, and then

processes each road surface and writes it out to HDFS. We want to keep count and

eventually print out how many non-road surfaces are input. For debugging purposes, we

will additionally print out how many road surfaces were processed.

public class MergeAndSplineMapper extends Mapper<LongWritable, BytesWritable,

LongWritable, BytesWritable> {

private static Logger LOG = Logger.getLogger(MergeAndSplineMapper.class);

enumSurfaceCounters {

ROADS, NONLINEARS, UNKNOWN

}

@Override

public void map(LongWritable key, BytesWritable value, Context context) throws

IOException, InterruptedException {

// A list of mixed surface types

LinkSurfaceMaplsm = (LinkSurfaceMap) BytesConverter.bytesToObject(value.getBytes());

List<RoadSurface>mixedSurfaces = lsm.toSurfaceList();

Hadoop MapReduce Framework

52

for (RoadSurfacesurface :mixedSurfaces) {

Long surfaceId = surface.getNumericId();

Enums.SurfaceTypesurfaceType = surface.getSurfaceType();

if (surfaceType.equals(SurfaceType.INTERSECTION)) {

// Ignore non-linear surfaces.

context.getCounter(SurfaceCounters.NONLINEARS).increment(1);

continue;

}

else if (!surfaceType.equals(SurfaceType.ROAD)) {

// Ignore anything that wasn’t an INTERSECTION or ROAD, ie any future additions.

context.getCounter(SurfaceCounters.UNKNOWN).increment(1);

continue;

}

PopulatorPreprocessor.processLinearSurface(surface);

// Write out the processed linear surface.

lsm.setSurface(surface);

context.write(new LongWritable(surfaceId), new

BytesWritable(BytesConverter.objectToBytes(lsm)));

if (LOG.isDebugEnabled()) {

context.getCounter(SurfaceCounters.ROADS).increment(1);

}

}

}

}

We’ve written the following unit test for our class using MRUnit, Mockito, and PowerMock.

@RunWith(PowerMockRunner.class)

@PrepareForTest(PopulatorPreprocessor.class)

public classMergeAndSplineMapperTest {

privateMapDriver<LongWritable, BytesWritable, LongWritable, BytesWritable>mapDriver;

@Before

public voidsetUp() {

MergeAndSplineMapper mapper = newMergeAndSplineMapper();

Hadoop MapReduce Framework

53

mapDriver = newMapDriver<LongWritable, BytesWritable, LongWritable,

BytesWritable>();

mapDriver.setMapper(mapper);

}

@Test

public voidtestMap_INTERSECTION() throwsIOException {

LinkSurfaceMaplsm = newLinkSurfaceMap();

RoadSurfacers = newRoadSurface(Enums.RoadType.INTERSECTION);

byte[] lsmBytes = append(lsm, rs);

PowerMockito.mockStatic(PopulatorPreprocessor.class);

mapDriver.withInput(newLongWritable(1234567), newBytesWritable(lsmBytes));

mapDriver.runTest();

Assert.assertEquals("ROADS count incorrect.", 0,

mapDriver.getCounters().findCounter(SurfaceCounters.ROADS).getValue());

Assert.assertEquals("NONLINEARS count incorrect.", 1,

mapDriver.getCounters().findCounter(SurfaceCounters.NONLINEARS).getValue());

Assert.assertEquals("UNKNOWN count incorrect.", 0,

mapDriver.getCounters(). findCounter(SurfaceCounters.UNKNOWN).getValue());

PowerMockito.verifyStatic(Mockito.never());

PopulatorPreprocessor.processLinearSurface(rs);

}

@Test

public voidtestMap_ROAD() throwsIOException {

LinkSurfaceMaplsm = newLinkSurfaceMap();

RoadSurfacers = newRoadSurface(Enums.RoadType.ROAD);

byte[] lsmBytes = append(lsm, rs);

// save logging level since we are modifying it.

Level originalLevel = Logger.getRootLogger().getLevel();

Logger.getRootLogger().setLevel(Level.DEBUG);

PowerMockito.mockStatic(PopulatorPreprocessor.class);

mapDriver.withInput(newLongWritable(1234567), newBytesWritable(lsmBytes));

mapDriver.withOutput(newLongWritable(1000000), newBytesWritable(lsmBytes));

mapDriver.runTest();

Hadoop MapReduce Framework

54

Assert.assertEquals("ROADS count incorrect.", 1,

mapDriver.getCounters().findCounter(SurfaceCounters.ROADS).getValue());

Assert.assertEquals("NONLINEARS count incorrect.", 0,

mapDriver.getCounters().findCounter(SurfaceCounters.NONLINEARS).getValue());

Assert.assertEquals("UNKNOWN count incorrect.", 0,

mapDriver.getCounters().findCounter(SurfaceCounters.UNKNOWN).getValue());

PowerMockito.verifyStatic(Mockito.times(1));

PopulatorPreprocessor.processLinearSurface(rs);

// set logging level back to it's original state so as not to affect other tests

Logger.getRootLogger().setLevel(originalLevel);

}

Let’s take a look at the first test, testMap_INTERSECTION().

testMap_INTERSECTION

Our objective is to verify

1. SurfaceCounters.NONLINEARS is incremented.

2. The for-loop

continues,i.e., PopulatorPreprocessor.processLinearSurface(surface) is never called.

3. SurfaceCounters.ROADS and SurfaceCounters.UNKNOWN are not incremented.

Since this is a mapper, we start by defining and initializing a mapper driver. Note that

the four type-parameters defined for the MapDriver must match our class under test,

i.e., MergeAndSplineMapper.

private MapDriver<LongWritable, BytesWritable, LongWritable, BytesWritable>mapDriver;

 @Before

 public void setUp() {

MergeAndSplineMapper mapper = new MergeAndSplineMapper();

mapDriver = new MapDriver<LongWritable, BytesWritable, LongWritable,

BytesWritable>();

mapDriver.setMapper(mapper);

 }

Throwing IOException on the unit test method signature

The mapper could throw an IOException. In JUnit tests you can handle exceptions thrown by

the calling code by catching them or throwing them. Keep in mind that we are not

Hadoop MapReduce Framework

55

specifically testing exceptions. I prefer not to catch the exception and have the unit test

method throw it. If the unit test method encounters the exception, the test will fail. Which is

what we want. Trying to catch exceptions in unit tests, when you are not specifically testing

exception handling, can lead to unnecessary clutter, logic, maintenance, when you can simply

throw the exception to fail the test.

@Test

 public void testMap_INTERSECTION() throws IOException {

Initialize the test input to drive the test. In order to hit the if-block we want to test, we have

to ensure the surface type is of RoadType.INTERSECTION.

LinkSurfaceMaplsm = new LinkSurfaceMap();

 RoadSurfacers = new RoadSurface(Enums.RoadType.INTERSECTION);

 byte[] lsmBytes = append(lsm, rs);

We use PowerMock[3] to mock out a static call to the PopulatorPreprocessor

class. PopulatorPreprocessor is a separate class containing business logic and is tested by it’s

own JUnit test. At the class level, we set-up PowerMock with the @RunWith annotation and

tell it which classes to mock; in this case one, PopulatorPreprocessor.

With @PrepareForTest we tell PowerMock which classes have static methods that we want

to mock. PowerMock supports both EasyMock and Mockito, since we’re using Mockito,

you’ll see references to PowerMockito. We mock the static class by

calling PowerMockito.mockStatic.

@RunWith(PowerMockRunner.class)

@PrepareForTest(PopulatorPreprocessor.class)

PowerMockito.mockStatic(PopulatorPreprocessor.class);

Set the previously created test input and run the mapper:

mapDriver.withInput(new LongWritable(1234567), new BytesWritable(lsmBytes));

 mapDriver.runTest();

Verify the output. SurfaceCounters.NONLINEARS is incremented once,

and SurfaceCounters.ROADS and SurfaceCounters.UNKNOWN are not incremented. A quick

review – with JUnit’s assertEquals, the first parameter, a String, which is optional, is the

assertion error message. The second parameter is the expected value and the third parameter

is the actual value. assertEquals prints out a nice error message of the form “expected: <x>

but was: <y>.“ So if the second assertion were to fire, e.g., we could get the error message

“java.lang.AssertionError: NONLINEARS count incorrect. expected:<1> but was:<0>.”

Assert.assertEquals("ROADS count incorrect.", 0,

Hadoop MapReduce Framework

56

mapDriver.getCounters().findCounter(SurfaceCounters.ROADS).getValue());

Assert.assertEquals("NONLINEARS count incorrect.", 1,

mapDriver.getCounters().findCounter(SurfaceCounters.NONLINEARS).getValue());

Assert.assertEquals("UNKNOWN count incorrect.", 0,

mapDriver.getCounters().findCounter(SurfaceCounters.UNKNOWN).getValue());

Verify that PopulatorPreprocessor.processLinearSurface(surface) has not been called, by

using the following PowerMock/Mockito syntax.

 PowerMockito.verifyStatic(Mockito.never());

 PopulatorPreprocessor.processLinearSurface(rs);

testMap_ROAD

In our second test, testMap_ROAD(). Our Objective is to verify:

1. SurfaceCounters.ROADS is incremented.

2. That PopulatorPreprocessor.processLinearSurface(surface) is called.

3. SurfaceCounters.NONLINEARS and SurfaceCounters.UNKNOWN are not incremente

d.

The setup is identical to the first test with a couple of exceptions.

 1. Specifying a Road type in our input data.

 RoadSurfacers = newRoadSurface(Enums.RoadType.ROAD);

 2. Setting the log4j debug level.

Interestingly, in our source code we only want to count road surfaces when debug level is set

in the log4j logger. To test this,first we save the original logging level, then we retrieve the

Root logger and set the level to DEBUG .

Level originalLevel = Logger.getRootLogger().getLevel();

Logger.getRootLogger().setLevel(Level.DEBUG)

At the end of the test, we revert to the original logging level so as not to affect other tests

Logger.getRootLogger().setLevel(originalLevel);

Once again, let’s verify the output. SurfaceCounters. ROADS is incremented once,

and SurfaceCounters. NONLINEARS and SurfaceCounters.UNKNOWN are not incremented.

Assert.assertEquals("ROADS count incorrect.", 1,

mapDriver.getCounters().findCounter(SurfaceCounters.ROADS).getValue());

Assert.assertEquals("NONLINEARS count incorrect.", 0,

mapDriver.getCounters().findCounter(SurfaceCounters.NONLINEARS).getValue());

Assert.assertEquals("UNKNOWN count incorrect.", 0,

Hadoop MapReduce Framework

57

mapDriver.getCounters().findCounter(SurfaceCounters.UNKNOWN).getValue());

Verify that PopulatorPreprocessor.processLinearSurface(surface) has been called once, by

using the following PowerMock/Mockito syntax.

 PowerMockito.verifyStatic(Mockito.times(1));

 PopulatorPreprocessor.processLinearSurface(rs);

Testing A REDUCER

The same principles would apply as in testing a mapper. The difference being that we would

want to create a ReducerDriver, and populate it with our reducer class under test as shown

below.

privateReduceDriver<LongWritable, BytesWritable, LongWritable,

BytesWritable>reduceDriver;

 @Before

public voidsetUp() {

 MyReducer reducer = newMyReducer ();

 reduceDriver = newReduceDriver<LongWritable, BytesWritable, LongWritable,

BytesWritable>();

 reduceDriver.setReducer(reducer);

 }

MAVEN Pom Dependencies

In addition to JUnit 4, you’ll have to include the following dependencies in your maven

pom.xml. On the PowerMock web page[3], take note of the supported versions of Mockito.

 <dependency>

 <groupId>org.apache.mrunit</groupId>

 <artifactId>mrunit</artifactId>

 <version>0.8.0-incubating</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.mockito</groupId>

 <artifactId>mockito-all</artifactId>

 <version>1.9.0-rc1</version>

 <scope>test</scope>

 </dependency>

Hadoop MapReduce Framework

58

 <dependency>

 <groupId>org.powermock</groupId>

 <artifactId>powermock-module-junit4</artifactId>

 <version>1.4.12</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.powermock</groupId>

 <artifactId>powermock-api-mockito</artifactId>

 <version>1.4.12</version>

 <scope>test</scope>

</dependency>

Running In Eclipse

The test is run just as any other JUnit test would be run. Here’s an example of the test

running inside Eclipse.

Summary

MRUnit provides a powerful and light-weight approach to do test-driven development. A

nice side effect is that it helps move you to better code coverage than was previously

possible.

Exception Handling (Handling Failures in Hadoop, Mapreduce)

 In the real world, user code is buggy, processes crash, and machines fail.

Hadoop MapReduce Framework

59

 One of the major benefits of using Hadoop is its ability to handle such failures and allow

your job to complete successfully.

 We need to consider the failure of any of the following entities the task, the application

master, the node manager, and the resource manager.

Task Failure

 The most common occurrence of this failure is when user code in the map or reduce task

throws a runtime exception.

 If this happens, the task JVM reports the error back to its parent application master

before it exits.

 The error ultimately makes it into the user logs.

 The application master marks the task attempt as failed, and frees up the container so its

resources are available for another task.

 Another failure mode is the sudden exit of the task JVM perhaps there is a JVM bug that

causes the JVM to exit for a particular set of circumstances exposed by the MapReduce

user code.

 In this case, the node manager notices that the process has exited and informs the

application master so it can mark the attempt as failed.

 Hanging tasks are dealt with differently. The application master notices that it hasn’t

received a progress update for a while and proceeds to mark the task as failed.

 The task JVM process will be killed automatically after this period. The timeout period

after which tasks are considered failed is normally 10 minutes and can be configured on

a per-job basis (or a cluster basis) by setting the mapreduce.task.timeout property to a

value in milliseconds.

 Setting the timeout to a value of zero disables the timeout, so long-running tasks are

never marked as failed.

 In this case, a hanging task will never free up its container, and over time there may be

cluster slowdown as a result. This approach should therefore be avoided, and making

sure that a task is reporting progress periodically should suffice.

 When the application master is notified of a task attempt that has failed, it will

reschedule execution of the task. The application master will try to avoid rescheduling

the task on a node manager where it has previously failed. Furthermore, if a task fails

four times, it will not be retried again. This value is configurable. The maximum number

Hadoop MapReduce Framework

60

of attempts to run a task is controlled by the mapreduce.map.maxattempts property for

map tasks and mapreduce.reduce.maxattempts for reduce tasks. By default, if any task

fails four times (or whatever the maximum number of attempts is configured to), the

whole job fails.

 For some applications, it is undesirable to abort the job if a few tasks fail, as it may be

possible to use the results of the job despite some failures. In this case, the maximum

percentage of tasks that are allowed to fail without triggering job failure can be set for

the job. Map tasks and reduce tasks are controlled independently, using the

mapreduce.map.failures.maxpercent and mapreduce.reduce.failures.maxpercent

properties.

 A task attempt may also be killed, which is different from it failing. A task attempt may

be killed because it is a speculative duplicate or because the node manager it was running

on failed and the application master marked all the task attempts running on it as killed.

 Killed task attempts do not count against the number of attempts to run the task (as set by

mapreduce.map.maxattempts and mapreduce.reduce.maxattempts), because it wasn’t the

task’s fault that an attempt was killed.

 Application Master Failure

 Just like MapReduce tasks are given several attempts to succeed (in the face of hardware

or network failures), applications in YARN are retried in the event of failure. The

maximum number of attempts to run a MapReduce application master is controlled by

the mapreduce.am.max-attempts property. The default value is 2, so if a MapReduce

application master fails twice it will not be tried again and the job will fail.

 YARN imposes a limit for the maximum number of attempts for any YARN application

master running on the cluster, and individual applications may not exceed this limit. The

limit is set by yarn.resourcemanager.am.max-attempts and defaults to 2, so if you want to

increase the number of MapReduce application master attempts, you will have to

increase the YARN setting on the cluster, too.

 The way recovery works is as follows. An application master sends periodic heartbeats to

the resource manager, and in the event of application master failure, the resource

manager will detect the failure and start a new instance of the master running in a new

container which is managed by a node manager.

 In the case of the MapReduce application master, it will use the job history to recover the

state of the tasks that were already run by the application so they don’t have to be rerun.

Hadoop MapReduce Framework

61

Recovery is enabled by default, but can be disabled by setting

yarn.app.mapreduce.am.job.recovery.enable to false.

 Node Manager Failure

 If a node manager fails by crashing or running very slowly, it will stop sending

heartbeats to the resource manager (or send them very infrequently). The resource

manager will notice a node manager that has stopped sending heartbeats if it hasn’t

received one for 10 minutes (this is configured, in milliseconds, via the

yarn.resourcemanager.nm.liveness-monitor.expiry-interval-ms property) and remove it

from its pool of nodes to schedule containers on.

 Any task or application master running on the failed node manager will be recovered

using the mechanisms described in the previous two sections. In addition, the application

master arranges for map tasks that were run and completed successfully on the failed

node manager to be rerun if they belong to incomplete jobs, since their intermediate

output residing on the failed node manager’s local filesystem may not be accessible to

the reduce task.

 Node managers may be blacklisted if the number of failures for the application is high,

even if the node manager itself has not failed. Blacklisting is done by the application

master, and for MapReduce the application master will try to reschedule tasks on

different

nodes if more than three tasks fail on a node manager. The user may set the threshold

with the mapreduce.job.maxtaskfailures.per.tracker job property.

 Note : Note that the resource manager does not do blacklisting across applications (at the

time of writing), so tasks from new jobs may be scheduled on bad nodes even if they

have been blacklisted by an application master running an earlier job.

 Resource Manager Failure

 Failure of the resource manager is serious, because without it, neither jobs nor task

containers can be launched. In the default configuration, the resource manager is a single

point of failure, since in the (unlikely) event of machine failure, all running jobs fail—

and can’t be recovered.

 To achieve high availability (HA), it is necessary to run a pair of resource managers in an

active-standby configuration. If the active resource manager fails, then the standby can

take over without a significant interruption to the client.

Hadoop MapReduce Framework

62

 Information about all the running applications is stored in a highly available state store

(backed by ZooKeeper or HDFS), so that the standby can recover the core state of the

failed active resource manager.

Tuning of Mapreduce program

 Most important process of mapreduce program is shuffling of outputs produced by map

function .So we need to concentrate mainly on map phase for better optimization of

mapreduce programshence, We should do the following things for optimization :-

 We should give as much as more memory to shuffle process , but also need to keep in

mind that we also give sufficient memory to map and reduce function .

 Amount of memory given to JVM for map reduce tasks is set by :-

mapred.child.java.opts , we need to make this value more as much as we can.

 Map Side optimization: -

 optimization can be done by minimizing the multi spills ,, which can be controlled by

io.sort.*

 We can use counters to check about the count of spill records

 We should increaseio.sort.mb :- which is used as amount of memory buffer used while

sorting out the map output

 io.sort.spill.percent :- threshold value for using memory buffer , afterwards records

started to spill.Default value :- 0.80.

 io.sort.factor :- property which help to merge output streams by map. We should increase

this upto 100 for optimization.

 mapred.compress.map.output :- we should compress the ouptput of mapper phase , it

saves space as ell increase transfer of data between tasks.

SCHOOL OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT V Big Data – SIT1606

UNIT 5 HADOOP PROJECT ENVIRONMENT 9 Hrs.
HBase: Introduction to HBase, Client API's and their features, Available Client, HBase
Architecture, MapReduce Integration. HBase: Advanced Usage, Schema Design, Advance
Indexing, Coprocessors, Hadoop 2.0-MRv2 - YARN - NameNode High Availability, HDFS
Federation, MRv2, YARN, Running MRv1 in YARN, Upgrade your existing MRv1 code to
MRv2, Programming in YARN framework-cover Apache Oozie Workflow Scheduler for
Hadoop

Hadoop Project Environment

5.1 Introduction to HBase

HBase is a distributed column-oriented database built on top of the Hadoop file system. Base is a

data model that is similar to Google’s big table designed to provide quick random access to huge

amounts of structured data.It leverages the fault tolerance provided by the Hadoop File System

(HDFS).It is a part of the Hadoop ecosystem that provides random real-time read/write access to

data in the Hadoop File System.One can store the data in HDFS either directly or through

HBase.Data consumer reads and accesses the data in HDFS randomly using HBase.

Need for Hbase is as follows:

• Hadoop can perform only batch processing

• data will be accessed only in a sequential manner.

• That means one has to search the entire dataset even for the simplest of jobs.

• a new solution is needed to access any point of data in a single unit of time (random

access)

HBase sits on top of the Hadoop File System and provides read and write access. Figure 5.1

shows the Hbase read and write

Figure 5.1 Hbase Read/Write

Relational DBMS Vs Column oriented database

 In a row-oriented indexed system, the primary key is the rowid that is mapped from

indexed data. In Hbase, HBase is built on top of HDFS where the HBase data is stored in HFiles

and HFiles are stored on HDFS. The purpose for introducing HBase was to enable random

access to data for interactive querying which was not supported by pure HDFS implementation.

Column-oriented vs Row-oriented storages

Column-oriented Database Row oriented Database

When the situation comes to process
and analytics we use this approach.
Such as Online Analytical
Processing and it's applications.

Online Transactional process such as banking and
finance domains use this approach.
Online banking, Online airline ticket booking
Sending a text message, Order entry
Add a book to shopping cart

The amount of data that can able to
store in this model is very huge like
in terms of petabytes

It is designed for a small number of rows and
columns.

DB design is subject oriented.
Example: Database design changes
with subjects like sales, marketing,
purchasing, etc.

DB design is application oriented. Example:
Database design changes with industry like Retail,
Airline, Banking, etc.

Storage Mechanism in HBase

 The data storage model is shown on figure 5.2.

Figure 5.2 Hbase Data model

 HBase is a column-oriented database and the tables in it are sorted by row. The table
schema defines only column families, which are the key value pairs. Table is a collection of
rows. Row is a collection of column families and column family is a collection of columns.
Column is a collection of key value pairs.

Figure 5.3 Sample Hbase Column database

Features of HBase

The important feature of Hbase is as follows:

• HBase is linearly scalable :You can add any number of columns anytime.

• It has automatic failure support.

• Integrations with Map/Reduce framework: All the commands and java codes internally
implement Map/ Reduce to do the task.

• fundamentally, it's a platform for storing and retrieving data with random access.

• It doesn't care about data types(storing an integer in one row and a string in another for
the same column).

• It doesn't enforce relationships within your data.

• It provides consistent read and writes.

• It integrates with Hadoop, both as a source and a destination.

• It has easy java API for client.

• It provides data replication across clusters.

Applications of HBase

 It is used whenever there is a need to write heavy applications. HBase is used whenever

we need to provide fast random access to available data. Companies such as Facebook, Twitter,

Yahoo, and Adobe use HBase internally.

5.2HBase Architecture

HBase is a column-oriented database and data is stored in tables.The tables are sorted by RowId. As

shown below figure 5.5, HBase has RowId, which is the collection of several column families that are

present in the table.The column families that are present in the schema are key-value pairs. If we observe

in detail each column family having multiple numbers of columns.The column values stored into disk

memory. Each cell of the table has its own Metadata like timestamp and other information.

Figure 5.4 Sample Hbase database

In the above table , two column families: PersonInfo and Sales are present. PersonInfo column

family has two column qualifiers: Name and Address and Sales column family has two column

qualifiers: Territory and SalesYTD. All values have a timestamp and Territory for row key 002 has

multiple values that have changed over time (same for Address of row key 004)

The above can be represented as this JSON -like map:

key terms representing table schema

Table: Collection of rows present.

Row: Collection of column families.

Column Family: Collection of columns.

Column: Collection of key-value pairs.

Namespace: Logical grouping of tables.

Cell: A {row, column, version} tuple exactly specifies a cell definition in HBase.

HBase Architecture and its Important Components are shown in figure 5.6.

Figure 5.5Hbase Architecture

HBase architecture consists mainly of four components

• HMaster

• HRegionserver

• HRegions

• Zookeeper

• HDFS

HMaster:

HMaster is the implementation of a Master server in HBase architecture.It acts as a

monitoring agent to monitor all Region Server instances present in the cluster and acts as an

interface for all the metadata changes. In a distributed cluster environment, Master runs on

NameNode. Master runs several background threads.

Roles performed by HMaster in HBase.

• provides admin performance and distributes services to different region servers.

• assigns regions to region servers.

• controlling load balancing and failover to handle the load over nodes present in the

cluster.

• When a client wants to change any schema and to change any Metadata operations,

HMaster takes responsibility for these operations.

Some of the methods exposed by HMaster Interface are primarily Metadata oriented methods.

• Table (createTable, removeTable, enable, disable)

• ColumnFamily (add Column, modify Column)

• Region (move, assign)

• The client communicates in a bi-directional way with both HMaster and ZooKeeper.

• For read and write operations, it directly contacts with HRegion servers.

• HMaster assigns regions to region servers and in turn, check the health status of region
servers.

Hbase Region Servers

• receives writes , and read requests from the client

• it assigns the request to a specific region, where the actual column family resides.

• Client can directly communicates the region server.

• The client requires HMaster help when operations related to metadata and schema
changes are required.

• It is responsible for serving and managing regions or data that is present in a distributed
cluster.

• The region servers run on Data Nodes present in the Hadoop cluster.

Hbase Region Servers

HMaster can get into contact with multiple HRegion servers and performs the following
functions.

• Hosting and managing regions

• Splitting regions automatically

• Handling read and writes requests

• Communicating with the client directly

HBase Regions:

HRegions are the basic building elements of HBase cluster that consists of the distribution
of tables and are comprised of Column families. It contains multiple stores, one for each column
family. It consists of mainly two components, which are Memstore and Hfile.

ZooKeeper:

In HBase, Zookeeper is a centralized monitoring server which maintains configuration
information and provides distributed synchronization. Distributed synchronization is to access
the distributed applications running across the cluster with the responsibility of providing
coordination services between nodes.

Services provided by ZooKeeper

• Maintains Configuration information

• Provides distributed synchronization

• Client Communication establishment with region servers

• Provides ephemeral nodes for which represent different region servers

• Master servers usability of ephemeral nodes for discovering available servers in the
cluster

• To track server failure and network partitions

Master and HBase slave nodes (region servers) registered themselves with ZooKeeper. The
client needs access to ZK(zookeeper) quorum configuration to connect with master and region

servers.During a failure of nodes that present in HBase cluster, ZKquoram will trigger error
messages, and it starts to repair the failed nodes.

HDFS:-

HDFS is a Hadoop distributed file system, as the name implies it provides a distributed
environment for the storage and it is a file system designed in a way to run on commodity
hardware. It stores each file in multiple blocks and to maintain fault tolerance, the blocks are
replicated across a Hadoop cluster.HDFS provides a high degree of fault –tolerance and runs on
cheap commodity hardware. By adding nodes to the cluster and performing processing & storing
by using the cheap commodity hardware, it will give the client better results as compared to the
existing one.

HBase Read and Write Data

Hbase read and write operations are shown in figure 5.6

Figure 5.6Hbase Read and Write operation

Step 1) Client wants to write data and in turn first communicates with Regions server and then
regions

Step 2) Regions contacting memstore for storing associated with the column family

Step 3) First data stores into Memstore, where the data is sorted and after that, it flushes into
HFile. The main reason for using Memstore is to store data in a Distributed file system
based on Row Key. Memstore will be placed in Region server main memory while
HFiles are written into HDFS.

Step 4) Client wants to read data from Regions

Step 5) In turn Client can have direct access to Mem store, and it can request for data.

Step 6) Client approaches HFiles to get the data. The data are fetched and retrieved by the
Client.

Memstore holds in-memory modifications to the store. The hierarchy of objects in HBase
Regions is as shown from top to bottom in below table.

Table HBase table present in the HBase cluster

Region HRegions for the presented tables

Store It stores per ColumnFamily for each region for the table

Memstore • Memstore for each store for each region for the table
• It sorts data before flushing into HFiles
• Write and read performance will increase because of sorting

StoreFile StoreFiles for each store for each region for the table

Block Blocks present inside StoreFiles

5.3 Client API's and their features

HBase Client API – HTable,Put, Get, Delete, Result

 In order to perform CRUD operations on HBase tables, we use Client API for Hbase.

Figure 5.7Hbase Client API

 To perform CRUD operations on HBase tables we use Java client API for HBase.Since
HBase has a Java Native API and it is written in Java thus it offers programmatic access to DML
(Data Manipulation Language).

https://data-flair.training/blogs/java-tutorial/

Class HBase Configuration

• This class adds HBase configuration files to a Configuration. It belongs to
the org.apache.hadoop.hbase package.

Method

• static org.apache.hadoop.conf.Configuration create()

• To create a Configuration with HBase resources, we use this method.

Class HTable in HBase Client API

• An HBase internal class which represents an HBase table is HTable.

• Basically, to communicate with a single HBase table, we use this implementation of a
table.

• It belongs to the org.apache.hadoop.hbase.client class.

a. Constructors

i. HTable()

ii. HTable(TableNametableName, ClusterConnection connection, ExecutorService pool)

• We can create an object to access an HBase table, by using this constructor.

b. Methods

i. void close()

 Basically, to release all the resources of the HTable, we use this method.

ii. void delete(Delete delete)

 The method “void delete(Delete delete)” helps to delete the specified cells/row.

iii. boolean exists(Get get)

As specified by Get, it is possible to test the existence of columns in the table,
with this method.

iv. Result get(Get get)

 This method retrieves certain cells from a given row.

v. org.apache.hadoop.conf.ConfigurationgetConfiguration()

It returns the Configuration object used by this instance.

vi. TableNamegetName()

This method returns the table name instance of this table.

vii. HTableDescriptorgetTableDescriptor()

It returns the table descriptor for this table.

viii. byte[] getTableName()

This method returns the name of this table.

ix. void put(Put put)

We can insert data into the table, by using this method.

In order to perform put operations for a single row, we use this class. This class belongs to
the org.apache.hadoop.hbase.client package.

a. Constructors

i. Put(byte[] row)

ii. Put(byte[] rowArray, introwOffset, introwLength)

However, to make a copy of the passed-in row key to keep local, we use it.

iii. Put(byte[] rowArray, introwOffset, introwLength, long ts)

We can make a copy of the passed-in row key to keep local, by using this
constructor.

iv. Put(byte[] row, long ts)

Basically, to create a Put operation for the specified row, using a given timestamp,
we use it.

b. Methods

i. Put add(byte[] family, byte[] qualifier, byte[] value)

The method “Put add(byte[] family, byte[] qualifier, byte[] value)” adds the specified

column and value to this Put operation.

ii. Put add(byte[] family, byte[] qualifier, long ts, byte[] value)
With the specified timestamp, it adds the specified column and value, as its version to
this Put operation.

iii. Put add(byte[] family, ByteBuffer qualifier, long ts, ByteBuffer value)
This method adds the specified column and value, with the specified timestamp as its
version to this Put operation.

iv. Put add(byte[] family, ByteBuffer qualifier, long ts, ByteBuffer value)
With the specified timestamp, it adds the specified column and value, as its version to
this Put operation.

To perform Get operations on a single row, we use this class. It belongs to the
org.apache.hadoop.hbase.client package.

a. Constructor

i. Get(byte[] row)

It is possible to create a Get operation for the specified row, by using this constructor.

ii. Get(Get get)

b. Methods

i. Get addColumn(byte[] family, byte[] qualifier)

To retrieves the column from the specific family with the specified qualifier, this method
helps.

ii. Get addFamily(byte[] family)

Whereas this one helps to retrieves all columns from the specified family.

In order to perform delete operations on a single row, we use this Class.

Instantiate a Delete object with the row to delete, to delete an entire row.

It belongs to the org.apache.hadoop.hbase.client package.

a. Constructor

i. Delete(byte[] row)

To create a delete operation for the specified row, we use it.

ii. Delete(byte[] rowArray, introwOffset, introwLength)

This constructor creates a Delete operation for the specified row and timestamp.

iii. Delete(byte[] rowArray, introwOffset, introwLength, long ts)

Basically, the constructor “Delete(byte[] rowArray, introwOffset, introwLength, long ts)”

creates a Delete operation.

iv. Delete(byte[] row, long timestamp)

Again the constructor “Delete(byte[] row, long timestamp)” also creates a Delete operation.

b. Methods

i. Delete addColumn(byte[] family, byte[] qualifier)

This method helps to delete the latest version of the specified column.

ii. Delete addColumns(byte[] family, byte[] qualifier, long timestamp)

However, to delete all versions of the specified column we use this method, especially, With
a timestamp less than or equal to the specified timestamp.

iii. Delete addFamily(byte[] family)

The method “Delete addFamily(byte[] family)” deletes all versions of all columns of the
specified family.

iv. Delete addFamily(byte[] family, long timestamp)

Again, with a timestamp less than or equal to the specified timestamp, this method also
deletes all columns of the specified family.

In order to get a single row result of a Get or a Scan query, we use class result HBase Client API.

a. Constructors

i.Result()
With no KeyValue payload, it is possible to create an empty Result; returns null if you call
raw Cells(), by using this constructor.

b.Methods
i. byte[] getValue(byte[] family, byte[] qualifier)
Basically, in order to get the latest version of the specified column, we use this method.
ii. byte[] getRow()
Moreover, to retrieve the row key which corresponds to the row from which this Result was
created, we use this method.
So, this was all about HBase Client API. Hope you like our explanation.

Client API Features:-Filters

HBase filters are a powerful feature that can greatly enhance your effectiveness

when working with data stored in tables. The two prominent read functions for HBase

are get() and scan(), both supporting either direct access to data or the use of a start

and end key, respectively. These include column families, column qualifiers,

timestamps or ranges, as well as version number.

https://hbase.apache.org/

setFilter(filter)

Fig- 5.8 Shows the filters created on the client side, sent through the RPC,

and executed on the server side

The filter hierarchy

The lowest level in the filter hierarchy is the Filter interface, and the

abstractFilterBase class that implements an empty shell, or skeleton, that is used by the
actual filter classes to avoid having the same boilerplate code in each ofthem.

You define a new instance of the filter you want to apply and hand it to

the Get or Scan instances,using:

Comparison operators

As CompareFilter-based filters add one more feature to the base FilterBaseclass,
namely the compare() operation, it has to have a user-supplied operator type that

defines how the result of the comparison isinterpreted.

Table5.1 The possible comparison operators for CompareFilter-based filters

Operator

Description

LESS

Match values less than the provided one.

LESS_OR_EQUAL

Match values less than or equal to the provided one.

EQUAL

Do an exact match on the value and the provided one.

NOT_EQUAL

Includeeverything that does not match the
providedvalue.

GREATER_OR_EQUAL

Match values that are equal to or greater than the provided one.

GREATER

Only include values greater than the provided one.

NO_OP

Exclude everything.

The comparison operators define what is included, or excluded, when the filter is
applied. This allows you to select the data that you want as either a range, subset, or
exact and single match.

Comparators

The second type that you need to provide to CompareFilter-related classes is a
comparator, which is needed to compare various values and keys in different ways.
They are derived from WritableByteArrayComparable, which implements Writable,

and Comparable. You do not have to go into the details if you just want to use an
implementation provided by HBase and listed in the Table .The constructors usually
take the control value, that is, the one to compare each table valueagainst.

Table-5.2 The HBase-supplied comparators, used with CompareFilter-based
filters

Comparator

Description

BinaryComparator

Uses Bytes.compareTo() to compare the current with the
provided value.

BinaryPrefixComparator

Similar to the above, but does a lefthand, prefix- based match
usingBytes.compareTo().

NullComparator

Does not compare against an actual value but whether a
given one is null, or notnull.

BitComparator

Performs a bitwise comparison, providing a BitwiseOp

class with AND,OR,and XOR operators.

RegexStringComparator

Given a regular expression at instantiation this comparator does a
pattern match on the table data.

SubstringComparator

Treats the value and table data as Stringinstances and performs a
contains()check.

https://www.safaribooksonline.com/library/view/hbase-the-definitive/9781449314682/ch04.html#tbl_comparators

FILTERROW() AND BATCHMODE
A filter using filterRow() to filter out an entire row, or filterRow(List) to modify

the final list of included values, must also override the hasRowFilter() function to
return true.Figure shows the logical flow of the filter methods for a single row. There
is a more fine-grained process to apply the filters on a column level, which is not
relevant in this context.

5.4 Advanced Usage of HBASE:

It is important to have a good understanding of how to design tables, row keys,

column names, and so on, to take full advantage of the architecture.

Key Design

HBase has two fundamental key structures: the row key and the column key. Both

can be used to convey meaning, by either the data they store, or by exploiting their

sorting order. In the following sections, we will use these keys to solve commonly

found problems when designing storage solutions.

Concepts

Figure 5.9 logical flow of the filter methods

The first concept to explain in more detail is the logical layout of a table, compared to

on-disk storage. HBase‘s main unit of separation within a table is the column family—

not the actual columns as expected from a column-oriented database in their traditional

sense.

Figure - shows the fact that, although you store cells in a table format logically, in

reality these rows are stored as linear sets of the actual cells, which in turn contain all

the vital information inside them.

The top-left part of the figure shows the logical layout of your data—you have rows and

columns. The columns are the typical HBase combination of a column family name and

a column qualifier, forming the column key. The rows also have a row key so that you

can address all columns in one logicalrow.

Figure 5.10Hbase cell

HBASE Design Schema

With HBase, you have a ―query-first‖ schema design; all possible queries should be

identified first, and the schema model designed accordingly. You should design your HBase

schema to take advantage of the strengths of HBase. Think about your access patterns, and

design your schema so that the data that is read together is stored together. Remember that

HBase is designed for clustering.

https://www.safaribooksonline.com/library/view/hbase-the-definitive/9781449314682/ch09.html#img_folding

• Distributed data is stored and accessedtogether
• It is query-centric, so focus on how the data isread
• Design for thequestions

Parent-Child Relationship–Nested Entity
Here is an example of denormalization in HBase, if your tables exist in aone-to-

manyrelationship, it‘s possible to model it in HBase as a single row. In the example below,

theorder and related line items are stored together and can be read together with a get on the row
key. This makes the reads a lot faster than joining tables together.

 The rowkey corresponds to the parent entity id, the OrderId. There is one column family

for the order data, and one column family for the order items. The Order Items arenested, the

Order Item IDs are put into the column names and any non-identifying attributes are put into

thevalue.This kind of schema design is appropriate when the only way you get at the childentities

is via the parententity.

Self-Join Relationship – HBase

Figure 5.11 Data Access

• A self-join is a relationship in which both match fields are defined in the sametable.

• Consider a schema for twitter relationships, where the queries are: which users does userX

follow, and which users follow userX? Here‘s a possible solution: The userids are put in a

composite row key with the relationship type as a separator. For example, Carol follows

Steve Jobs and Carol is followed by BillyBob. This allows for row key scans for everyone

carol:follows or carol:followedby

• Below is the example Twittertable:

Schema Design Exploration:

• Raw data from HDFS orHBase

• MapReduce for data transformation and ETL from rawdata.

• Use bulk import from MapReduce toHBase

• Serve data for online reads fromHBase

Designing for reads means aggressively de-normalizing data so that the data that is

read together is stored together.

Data Access Pattern

The batch layer precomputes the batch views. In the batch view, you read the results from

a precomputed view. The precomputed view is indexed so that it can be accessed quickly with

random reads.The serving layer indexes the batch view and loads it up so it can be efficiently

queried to get particular values out of the view. A serving layer database only requires batch

updates and random reads. The serving layer updates whenever the batch layer finishes

precomputing a batch view.

You can do stream-based processing with Storm and batch processing with

Hadoop. The speed layer only produces views on recent data, and is for functions

computed on data in the few hours not covered by the batch.

5.4 Advance Indexing In HBase

In HBase, the row key provides the same data retrieval benefits as a primary index. So, when you

create a secondary index, use elements that are different from the row key. Secondary indexes

allow you to have a secondary way to read an HBase table. They provide a way to efficiently

access records by means of some piece of information other than the primary key. Secondary

indexes require additional cluster space and processing because the act of creating a secondary

index requires both space and processing cycles to update. A method of index maintenance,

called Diff-Index, can help IBM® Big SQL to create secondary indexes for HBase, maintain

those indexes, and use indexes to speed up queries.

Why is this important?
With secondary indexing, I can either find a single row to find all of the rows that contain an

attribute with a specific value. Like everything in HBase, its stored in sort order so it becomes

rather trivial for the client to fetch several rows and join them in sort order, or to take the

intersection if we are trying to find the records that meet a specific qualification. (e.g. find all of

Bob's employees who live in Cleveland, OH. Or find the average cost of repairing a Volvo S80

that was involved in a front end collision.)As more people want to use HBase like a database and

apply SQL, using secondary indexing makes filtering and doing data joins much more efficient.

One just takes the intersection of the indexed qualifiers specified, and then apply the unindexed

qualifiers as filters further reducing theresulset

Problems in Indexing

This design appears to mimic the concept of the column families, where like data is stored in a

column family file. So that like data can be accessed quickly. But like the column families, we

run in to the same problem... too many column families can be a bad thing when it comes to

compaction. Depending on the number of columns to be indexed, the size of the index table

could easily be larger than the base table. (Especially when you add in geo-spatial indexing.)

Co-Processor

The idea of HBase Coprocessors was inspired by Google‘s BigTable coprocessors. which

Google developed to bring computing parallelism to BigTable. They have the following

characteristics:

• Arbitrary code can run at each tablet in tableserver

• High-level call interface forclients
• Calls are addressed to rows or ranges of rows and the coprocessor client library

resolves them to actual locations;
• Calls across multiple rows are automatically split into multiple parallelized RPC
• Provides a very flexible model for building distributed services
• Automatic scaling, load balancing, request routing for applications

Back to HBase, we definitely want to support efficient computational parallelism as well,

beyond what HadoopMapReduce can provide. In addition, exciting new features can be built on

top of it, for example secondary indexing, complex filtering (push down predicates), and access

control. Coprocessors can be loaded globally on all tables and regions hosted by the region

server, these are known as system coprocessors; or the administrator can specify which

coprocessors should be loaded on all regions for a table on a per-table basis, these are known as

tablecoprocessors. In order to support sufficient flexibility for potential coprocessor behaviors,

two different aspects of extension are provided by the framework. One is the observer, which are

like triggers in conventional databases, and the other is the endpoint, dynamic RPC endpoints

that resemble stored procedures.

Observers

The idea behind observers is that we can insert user code by overriding upcall methods

provided by the coprocessor framework. The callback functions are executed from core

HBase code when certain events occur.The coprocessor framework handles all of the

details of invoking callbacks during various base HBase activities; the coprocessor need

only insert the desired additional or alternate functionality.

The RegionObserver interface provides callbacks for:

• preOpen, postOpen: Called before and after the region is reported as online to themaster.
• preFlush, postFlush: Called before and after the memstore is flushed into a new storefile.

• preGet, postGet: Called before and after a client makes a Getrequest.

• preExists, postExists: Called before and after the client tests for existence using aGet.

• prePut and postPut: Called before and after the client stores avalue.

• preDelete and postDelete: Called before and after the client deletes a value etc.

Endpoint
 As mentioned previously, observers can be thought of like database triggers. Endpoints, on

the other hand, are more powerful, resembling stored procedures. One can invoke an endpoint at

any time from theclient.The endpoint implementation will then be executed remotely at the target

region or regions, and results from those executions will be returned to theclient.Endpoint is an

interface for dynamic RPC extension. The endpoint implementation is installed on the server side

and can then be invoked with HBase RPC. The client library provides convenience methods for

invoking such dynamicinterfaces.
In order to build and use your own endpoint, you need to:

• Have a new protocol interface which extendsCoprocessorProtocol.

• Implement the Endpoint interface. The implementation will be loaded into and

executed from the regioncontext.

• Extend the abstract class BaseEndpointCoprocessor. This convenience class hides

some internal details that the implementer need not necessary be concerned about,

such as coprocessor framework classloading.

• On the client side, the Endpoint can be invoked by two new HBase clientAPIs:

Executing against a singleregion:

o HTableInterface.coprocessorProxy(Class<T> protocol, byte[]row)

o HTableInterface.coprocessorExec(Class<T> protocol, byte[]

startKey, byte[] endKey, Batch.Call<T,R> callable)

<property>

<name>hbase.coprocessor.region.classes</name>

Executing over a range of regions

Coprocessor Management

After you have a good understanding of how coprocessors work in HBase, you can start to build

your own experimental coprocessors, deploy them to your HBase cluster, and observe the new

behaviors.

Build Your Own Coprocessor

We now assume you have your coprocessor code ready, compiled and packaged as a jar
file.

Coprocessor Deployment

Currently we provide two options for deploying coprocessor extensions: load from

configuration, which happens when the master or region servers start up; or load from table

attribute, dynamic loading when the table is (re)opened. Because most users will set table

attributes by way of the‗alter‘ command of the HBase shell, let‘s call this load from shell.

Load from Configuration

When a region is opened, the framework tries to read coprocessor class names supplied

as the configuration entries:

• hbase.coprocessor.region.classes: for RegionObservers andEndpoints

• hbase.coprocessor.master.classes: for MasterObservers

• hbase.coprocessor.wal.classes: forWALObservers

Here is an example of the hbase-site.xml where one RegionObserver is configured for all the

HBase tables:

5.5 Hadoop 2.0

Apache Hadoop 2.0 represents a generational shift in the architecture of Apache Hadoop.

With YARN, Apache Hadoop is recast as a significantly more powerful platform – one that takes

Hadoop beyond merely batch applications to taking its position as a ‗data operating system‘

where HDFS is the file system and YARN is the operating system.YARN is a re-architecture of

Hadoop that allows multiple applications to run on the same platform. With YARN, applications

run ―in‖ Hadoop, instead of ―on‖ Hadoop:

The fundamental idea of YARN is to split up the two major responsibilities of the JobTracker

and TaskTracker into separate entities. In Hadoop 2.0, the JobTracker and TaskTracker no longer

exist and have been replaced by threecomponents:

• ResourceManager: a scheduler that allocates available resources in the cluster amongst the

competingapplications.

• NodeManager: runs on each node in the cluster and takes direction from the

ResourceManager. It is responsible for managing resources available on a singlenode.

• ApplicationMaster: an instance of a framework-specific library, an ApplicationMaster runs

a specific YARN job and is responsible for negotiating resources from theResourceManager

and also working with the NodeManager to execute and monitor Containers.

<value>org.apache.hadoop.hbase.coprocessor.AggregateImplementation</value>

</property>

The actual data processing occurs within the Containers executed by the ApplicationMaster.

A Container grants rights to an application to use a specific amount of resources (memory,

cpu etc.) on a specific host.

YARN is not the only new major feature of Hadoop 2.0. HDFS has undergone a major

transformation with a collection of new features that include:

• NameNode HA: automated failover with a hot standby and resiliency for the

NameNode masterservice.

• Snapshots: point-in-time recovery for backup, disaster recovery and protection

against useerrors.

• Federation: a clear separation of namespace and storage by enabling generic block
storagelayer.

MRv2-YARN

The new architecture introduced in hadoop-0.23, divides the two major functions of the

JobTracker: resource management and job life-cycle management into separate components.The

new ResourceManager manages the global assignment of compute resources to applications and

the per-application ApplicationMaster manages the application‘s scheduling and coordination.

An application is either a single job in the sense of classic MapReduce jobs or a DAG of such

jobs.The ResourceManager and per-machine NodeManager daemon, which manages the user

processes on that machine, form the computation fabric.The per-application ApplicationMaster

is, in effect, a framework specific library and is tasked with negotiating resources from the

ResourceManager and working with the NodeManager(s) to execute and monitor the tasks. The

fundamental idea of YARN is to split up the functionalities of resource management and job

scheduling/monitoring into separate daemons. The idea is to have a global ResourceManager

(RM) and per-application ApplicationMaster (AM). An application is either a single job or a

DAG ofjobs.The ResourceManager and the NodeManager form the data-computation

framework. The ResourceManager is the ultimate authority that arbitrates resources among all

the applications in the system.The NodeManager is the per-machine framework agent who is

responsible for containers, monitoring their resource usage (cpu, memory, disk, network) and

reporting the same to the ResourceManager/Scheduler.The per-application ApplicationMaster is,

in effect, a framework specific library and is tasked with negotiating resources from the

ResourceManager and working with the NodeManager(s) to execute and monitor the tasks.

The ResourceManager has two main components: Scheduler and ApplicationsManager.
The Scheduler is responsible for allocating resources to the various running applications subject

to familiar constraints of capacities, queues etc. The Scheduler is pure scheduler in the sense that

it performs no monitoring or tracking of status for the application. Also, it offers no guarantees

about restarting failed tasks either due to application failure or hardware failures.The Scheduler

performs its scheduling function based the resource requirements of the applications; it does so

based on the abstract notion of a resource Container which incorporates elements such as

memory, cpu, disk, network etc.

5.6 NameNode High Availablity

Prior to Hadoop 2.0.0, the NameNode was a single point of failure (SPOF) in an HDFS cluster.

Each cluster had a single NameNode, and if that machine or process became unavailable, the

Figure 5.12 YARN workflow

cluster as a whole would be unavailable until the NameNode was either restarted or brought up

on a separate machine.

This impacted the total availability of the HDFS cluster in two major ways:

• In the case of an unplanned event such as a machine crash, the cluster would be

unavailable until an operator restarted theNameNode.

• Planned maintenance events such as software or hardware upgrades on the NameNode

machine would result in windows of cluster downtime.

The HDFS High Availability feature addresses the above problems by providing the option of

running two redundant NameNodes in the same cluster in an Active/Passive configuration with a

hot standby.This allows a fast failover to a new NameNode in the case that a machine crashes, or

a graceful administrator-initiated failover for the purpose of planned maintenance.

Architecture
In a typical HA cluster, two separate machines are configured as NameNodes. At any

point in time, exactly one of the NameNodes is in an Active state, and the other is in a Standby

state. The Active NameNode is responsible for all client operations in the cluster, while the

Standby is simply acting as a slave, maintaining enough state to provide a fast failover if

necessary.In order for the Standby node to keep its state synchronized with the Active node, the

current implementation requires that the two nodes both have access to a directory on a shared

storage device (eg an NFS mount from a NAS). This restriction will likely be relaxed in future

versions.When any namespace modification is performed by the Active node, it durably logs a

record of the modification to an edit log file stored in the shared directory. The Standby node is

constantly watching this directory for edits, and as it sees the edits, it applies them to its own

namespace.In the event of a failover, the Standby will ensure that it has read all of the edits from

the shared storage before promoting itself to the Active state. This ensures that the namespace

state is fully synchronized before a failover occurs.

In order to provide a fast failover, it is also necessary that the Standby node have up-to-

date information regarding the location of blocks in the cluster. In order to achieve this, the

DataNodes are configured with the location of both NameNodes, and send block location

information and heartbeats toboth.

Hardware resources
In order to deploy an HA cluster, you should prepare the following:
• NameNode machines - the machines on which you run the Active and Standby

NameNodes should have equivalent hardware to each other, and equivalent

hardware to what would be used in a non-HAcluster.

• Shared storage - you will need to have a shared directory which both NameNode machines

can have read/write access to. Typically this is a remote filer whichsupportsNFS and is

mounted on each of the NameNode machines. Currently only a single shared edits

directory is supported.Thus, the availability of the system is limited by the availability of

this shared edits directory, and therefore in order to remove all single points of failure

there needs to be redundancy for the shared edits directory.

5.7HDFS Federation

HDFS Federation improves the existing HDFS architecture through a clear

separation of namespace and storage, enabling generic block storage layer. It

enables support for multiple namespaces in the cluster to improve scalability and

isolation

This guide provides an overview of the HDFS Federation feature and how to

configure and manage the federated cluster.

Background

Figure 5.13 Block storage

HDFS has two main layers:

• Namespace

o Consists of directories, files andblocks.

o It supports all the namespace related file system operations such as

create,delete, modify and list files anddirectories.

• Block Storage Service, which has two parts:

o Block Management (performed in theNamenode)
▪ Provides Datanode cluster membership by handling registrations,and

periodic heartbeats.

▪ Processes block reports and maintains location ofblocks.

▪ Supports block related operations such as create, delete, modify andget

blocklocation.

▪ Manages replica placement, block replication for under replicatedblocks,

and deletes blocks that are over replicated.

o Storage - is provided by Datanodes by storing blocks on the local file

systemand allowing read/writeaccess.

 The prior HDFS architecture allows only a single namespace for the entire cluster. In that

configuration, a single Namenode manages the namespace. HDFS Federation addresses this

limitation by adding support for multiple Namenodes/namespaces to HDFS.

Key Benefits

• Namespace Scalability - Federation adds namespace horizontal scaling. Large

deployments or deployments using lot of small files benefit from namespace scaling by

allowing more Namenodes to be added to thecluster.

• Performance - File system throughput is not limited by a single Namenode. Adding more

Namenodes to the cluster scales the file system read/writethroughput.

• Isolation - A single Namenode offers no isolation in a multi user environment. For

example, an experimental application can overload the Namenode and slow down

production critical applications. By using multiple Namenodes, different categories of

applications and users can be isolated to different namespaces.

Federation configuration is backward compatible and allows existing single

Namenode configurations to work without any change. The new configuration is

designed such that all the nodes in the cluster have the same configuration without the

need for deploying different configurations based on the type of the node in the cluster.

Configuration:

Step 1: Add the dfs.nameservices parameter to your configuration and configure it with a list of

comma separated NameServiceIDs. This will be used by the Datanodes to determine the

Namenodes in the cluster.

Step 2: For each Namenode and Secondary Namenode/BackupNode/Checkpointer add the

following configuration parameters suffixed with the corresponding NameServiceID into the

common configuration file:

Formatting Namenodes

Step 1: Format a Namenode using the following command:

[hdfs]$ $HADOOP_PREFIX/bin/hdfsnamenode -format [-clusterId<cluster_id>]

Choose a unique cluster_id which will not conflict other clusters in your environment. If a

cluster_id is not provided, then a unique one is auto generated.

Step 2: Format additional Namenodes using the following command:

[hdfs]$ $HADOOP_PREFIX/bin/hdfsnamenode -format -clusterId<cluster_id>

Upgrading from an older release and configuring federation

Older releases only support a single Namenode. Upgrade the cluster to newer release in

order to enable federation During upgrade you can provide a ClusterID as follows:

[hdfs]$ $HADOOP_PREFIX/bin/hdfs start namenode --config $HADOOP_CONF_DIR -
upgrade -clusterId<cluster_ID>

If cluster_id is not provided, it is auto generated. Adding a new Namenode to an existing

HDFScluster Perform the followingsteps:

• Add dfs.nameservices to theconfiguration.
• Update the configuration with the NameServiceID suffix. Configuration key names

changed post release 0.20. You must use the new configuration parameter names

inorder to usefederation.

• Add the new Namenode related config to the configurationfile.

• Propagate the configuration file to the all the nodes in thecluster.

• Start the new Namenode andSecondary/Backup.

• Refresh the Datanodes to pickup the newly added Namenode by running

thefollowing command against all the Datanodes in thecluster:

[hdfs]$ $HADOOP_PREFIX/bin/hdfsdfsadmin -refreshNameNodes

<datanode_host_name>:<datanode_rpc_port>

Managing the cluster

Starting and stopping cluster

To start the cluster run the followingcommand:

[hdfs]$ $HADOOP_PREFIX/sbin/start-dfs.sh To stop the cluster run the

followingcommand:

[hdfs]$ $HADOOP_PREFIX/sbin/stop-dfs.sh

Balancer

The Balancer has been changed to work with multiple Namenodes. The Balancer can be run

using the command:

[hdfs]$ $HADOOP_PREFIX/sbin/hadoop-daemon.sh start balancer [-policy <policy>]

Decommissioning

Decommissioning is similar to prior releases. The nodes that need to be decomissioned are

added to the exclude file at all of the Namenodes. Each Namenode decommissions its Block

Pool.When all the Namenodes finish decommissioning a Datanode, the Datanode is considered

decommissioned.

Step 1: To distribute an exclude file to all the Namenodes, use the following command:

[hdfs]$ $HADOOP_PREFIX/sbin/distribute-exclude.sh <exclude_file>

Step 2: Refresh all the Namenodes to pick up the new exclude file:

[hdfs]$ $HADOOP_PREFIX/sbin/refresh-namenodes.sh

The above command uses HDFS configuration to determine the configured Namenodes in

the cluster and refreshes them to pick up the new exclude file.

Cluster Web Console

Similar to the Namenode status web page, when using federation a Cluster Web Console is

available to monitor the federated cluster at http://<any_nn_host:port>/dfsclusterhealth.jsp. Any

Namenode in the cluster can be used to access this web page.

Migrating from MapReduce 1 (MRv1) to MapReduce 2

MapReduce from Hadoop 1 (MapReduce MRv1) has been split into two components. The

cluster resource management capabilities have become YARN (Yet Another Resource

Negotiator), while the MapReduce-specific capabilities remainMapReduce.In the MapReduce

MRv1 architecture, the cluster was managed by a service called the JobTracker. TaskTracker

services lived on each host and would launch tasks on behalf of jobs. The JobTracker would

serve information about completed jobs.

In MapReduce MRv2, the functions of the JobTracker have been split between three

services. The ResourceManager is a persistent YARN service that receives and runs applications

(a MapReduce job is an application) on the cluster.It contains the scheduler, which, as

previously, is pluggable. The MapReduce-specific capabilities of the JobTracker have been

moved into the MapReduce Application Master, one of which is started to manage each

MapReduce job and terminated when the jobcompletes.The JobTracker function of serving

information about completed jobs has been moved to the JobHistory Server. The TaskTracker

has been replaced with the NodeManager, a YARN service that manages resources and

deployment on a host. It is responsible for launching containers, each of which can house a map

or reduce task.Nearly all jobs written for MRv1 will be able to run without any modifications on

an MRv2 cluster.

The new architecture has its advantages. First, by breaking up the JobTracker into a few different

services, it avoids many of the scaling issues faced by MapReduce in Hadoop 1.More

importantly, it makes it possible to run frameworks other than MapReduce on a Hadoop cluster.

For example, Impala can also run on YARN and share resourceswith MapReduce.

Configuration Migration

Since MapReduce 1 functionality has been split into two components, MapReduce cluster

configuration options have been split into YARN configuration options, which go in yarn-

site.xml, and MapReduce configuration options, which go in mapred-site.xml. Many have been

given new names to reflect the shift. As JobTrackers and TaskTrackers no longer exist in MRv2,

all configuration options pertaining to them no longer exist, although many have corresponding

options for the ResourceManager, NodeManager, and JobHistoryServer.

A minimal configuration required to run MRv2

jobs on YARN is: yarn-site.xml
configuration
<?xml version="1.0" encoding="UTF-8"?>
<configuration>

Figure 5.14 MRV2

http://www.cloudera.com/documentation/enterprise/5-2-x/topics/cm_mc_managing_resources.html#xd_583c10bfdbd326ba--43d5fd93-1410993f8c2--7ff3

<property>
<name>yarn.resourcemanager.hostname</name>
<value>you.hostname.com</value>

</property>

<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>

</property>
</configuration>

mapred-site.xml configuration
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>

</property>
</configuration>
Below is a table with HA-related configurations used in MRv1 and their equivalents in
YARN:

MRv1 YARN / MRv2 Comment
mapred.jobtrackers.name yarn.resourcemanager.ha.rm-ids
mapred.ha.jobtracker.id yarn.resourcemanager.ha.id Unlike in MRv1, this

must be configured in
YARN.

mapred.jobtracker.rpc-
address.name.id

yarn.resourcemanager.rpc-address.id YARN/ MRv2 has
different RPC ports for
different
functionalities. Each
port-related
configuration must be
suffixed with an id.
Note that there is no
<name> in YARN.

mapred.ha.jobtracker.rpc-
address.name.id

yarn.resourcemanager.ha.admin.addres
s

mapred.ha.fencing.methods yarn.resourcemanager.ha.fencer Not required to be
specified

mapred.client.failover.* None Not required
 yarn.resourcemanager.ha.enabled Enable HA
mapred.jobtracker.restart.recove
r

yarn.resourcemanager.recovery.enable
d

Enable recovery of jobs
after failover

 yarn.resourcemanager.store.class org.apache
.hadoop.yarn

MRv1 YARN / MRv2 Comment
 .server.resourcemanage

r .recovery
.ZKRMStateStore

mapred.ha.automatic-
failover.enabled

yarn.resourcemanager.ha.automatic-
failover.enabled

Enable automatic
failover

mapred.ha.zkfc.port yarn.resourcemanager.ha.automatic-
failover.port

mapred.job.tracker yarn.resourcemanager.cluster.i

5.8 Programming in YARN Framework

Under Hadoop 2.0, MapReduce is but one instance of a YARN application, where YARN has

taken center stage as the ―operating system‖ of Hadoop. BecauseYARN allowsany application to

run on equal footing with MapReduce, it opened the floodgates for a new generation of software

applications with these kinds of features:

More programming models.Because YARN supports any application that can divide itself into

parallel tasks,they are no longer shoehorned into the palette of ―mappers,‖―combiners,‖and

―reducers.‖ This in turn supports complex data-flow applications like ETL and ELT, and

iterative programs like massively-parallel machine learning and modeling.

Integration of native libraries.Because YARN has robust support for any executable – not

limited to MapReduce, and not even limited to Java – application vendors with a large mature

code base have a clear path to Hadoop integration.

Support for large reference data. YARN automatically ―localizes‖ and caches large reference

datasets, making them available to all nodes for ―data local‖ processing. This supports legacy

functions like address standardization, which require large reference data sets that cannot be

accessed from the Hadoop Distributed File System (HDFS) by the legacy libraries. Of course,

MapReduce isn‘t the only option for processing data at scale using Hadoop. Toolslike Pig (a

large scale query and analysis system), Hive (a data warehousing application) and others have

been available for some time. These tools can express transforms and analysis using more

accessible constructs: Hive uses HQL, a language similar to SQL.

Pig provides a script language (Pig Latin) to create MapReduce jobs. Business analysts

familiar with conventional tools like SQL and SAS should be able to use these tools to

write programs to solve large data problems on Hadoop clusters

The Value of Visual Application Development Tools

A new generation of ―visual design‖application development tools could help solve

thesecoding problems. By running as native YARN applications and side-stepping the

need for MapReduce, some of these programs eliminate coding altogether.Other tools

reduce coding by generating MapReduce code or by generating scripts like Pig. Visual

designers are powerful for several reasons:

• Increased level of abstraction: Instead of thinking about classes and methods, users see

operations, data, and outcomes.

• Fast―what-if‖:Thedrag-and-connectinterfacesupportsquicktry/observe/adjustcycles.
• Automatic optimization: Scaling and efficiency arebuilt-in.
• High-levelpalette:High-levelconstructslike―standardizeaddress‖,―deduplicateconsumers‖,

or―parsenames‖ areoften directlyon thedesignerpalette.

How does this look in practice? Here‘s an illustration that shows how three competing
approaches differ:

• MapReduce written inJava

• Pig scripts developed fromscratch

• A visually-designed process running a native YARN ETL application. The application

is from RedPoint Global, but comparable approaches can be seen in Talend andActian.

Using these three approaches, we conducted a ―Word Count‖ test on 30,000 files (20 gigabytes)

of Project Gutenberg books. This test reads lines of text, breaks them into words, and creates a

concordance (list of words and the number of times each occurs).Our Hadoop cluster was

small—only four nodes—but was large enough to demonstrate the concepts and tradeoffs

http://www.gutenberg.org/

MapReduce:

Set-up time: While flexible, MapReduce had the longest learning curve and required significant

coding skills—both as a Java programmer and a MapReduce specialist—to prepare the test.

Performance: It took 3 hours 20 minutes to run the test initially due to the ―small files problem‖

that is familiar to seasoned MapReduce programmers.This problem occurs when reading large

collections of small files, because MapReduce‘s default behavior is to assign a mapper task to

each file. This results in a huge number of tasks.To address this issue, we created a custom

InputFormat class to read multiple files at once. This reduced our run time to 58 minutes. Then

we tuned the split sizes and mapper task limit appropriately, which dropped the run time to about

six minutes.

Comments: Each performance improvement came at a cost. Overall, nearly a full day of

programmer time was spent optimizing the original code.

Pig:

Set-up time: Learning Pig was fairly easy. It was pretty natural to create the coding for

this test. However to make a common adjustment in the code—changing the set of

whitespace separators to include punctuation—required the addition of a ―User defined

function‖ or UDF which had to be written in Java.

Pig is generally easy enough to use by people who aren‘t professional programmers but

who know how to write scripting languages like JavaScript or Visual Basic.

Performance: The results were not stellar: run time was close to 15 minutes.

Comments: While coding took less time, Java programming was ultimately required to

meet the test requirements.

YARN-enabled ETL/ELT designer:

Set-up time: The tool is designed to have a shorter learning curve than even Pig scripting.

Dragging tools like ―Delimited Input‖, ―Summarize‖ and ―Tokenize‖ from the palette and

configuring them is designed to be discoverable and intuitive, and the resulting diagram has a

one-to-one correspondence between icons and operations. There‘s no need for coding or learning

a language like Java or Pig.

The visual design covers the input file format, tokenizing and counting steps. The resulting data

flow graph contains seven icons along with a grouping construct that shows what executes

―inside‖Hadoop.Each icon represents a stepin the data transformation.

Performance: The run time for this data flow is just over three minutes with no tuning.

Comments:Because there is no code to manage, and editing is done visually, running ―what if‖

scenarios is quick for non-programmers.

Once the data flow is designed, it can be stored and saved for later use. In addition, the logic can

be captured into a ―macro‖ for sharing and reuse between multiple data flows.

5.9 Oozie workflow scheduler for Hadoop

Oozieis a framework that helps automate this process and codify this work into repeatable

units or workflows that can be reused over time without the need to write any new code or steps.

Apache Oozie is an open source project based on Java™ technology that simplifies the process

of creating workflows and managing coordination among jobs. In principle, Oozie offers the

ability to combine multiple jobs sequentially into one logical unit ofwork.One advantage of the

Oozie framework is that it is fully integrated with the Apache Hadoop stack and supports

Hadoop jobs for Apache MapReduce, Pig, Hive, andSqoop.

In addition, it can be used to schedule jobs specific to a system, such as Java programs.In
practice, there are different types of Oozie jobs:

• Oozie Workflow jobs — Represented as directed acyclical graphs to specify a sequence of

actions to beexecuted.

• Oozie Coordinator jobs — Represent Oozie workflow jobs triggered by time and data

availability.

• Oozie Bundle— Facilitates packaging multiple coordinator and workflow jobs, and makes it

easier to manage the life cycle of those jobs.

How does Oozie work?

An Oozie workflow is a collection of actions arranged in a directed acyclic graph (DAG).

This graph can contain two types of nodes: control nodes and action nodes. Control nodes, which

are used to define job chronology, provide the rules for beginning and ending a workflow and

control the workflow execution path with possible decision points known as fork and joinnodes.

Action nodes are used to trigger the execution of tasks. In particular, an action node can be a

MapReduce job, a Pig application, a file system task, or a Java application. (The shell and ssh

actions have been deprecated).Oozie is a native Hadoop stack integration that supports all types

of Hadoop jobs and is integrated with the Hadoop stack.Figure shown below illustrates a sample

Oozie workflow that combines six action nodes (Pig scrip, MapReduce jobs,Java code,and

HDFStask) andfive control nodes (Start, Decisioncontrol, Fork, Join, and End). Oozie workflows

can be also parameterized. When submitting a workflow job, values for the parameters must be

provided. If the appropriate parameters are used, several identical workflow jobs can

occurconcurrently.

In practice, it is sometimes necessary to run Oozie workflows on regular time intervals, but

in coordination with other conditions, such as the availability of specific data or the completion

of any other events or tasks.

Oozie in action

Use an Oozie workflow to run a recurring job. Oozie workflows are written as an

XML file representing a directed acyclic graph. Let's look at the following simple

workflow example that chains two MapReduce jobs. The first job performs an initial

ingestion of the data and the second job merges data of a given type.

Simple example of Oozie workflow

Figure 5.16 :sample Oozie workflow

<workflow-app xmlns='uri:oozie:workflow:0.1' name='SimpleWorkflow'>
<start to='ingestor'/>
<action name='ingestor'>

</java>
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<configuration>

<property>
<name>mapred.job.queue.name</name>
<value>default</value>

</property>
</configuration>

<arg>${driveID}</arg>
</java>
<ok to='merging'/>
<error to='fail'/>

</action>
<fork name='merging'>

<pathstart='mergeT1'/>
<pathstart='mergeT2'/>

</fork>
<action name='mergeT1'>

<java>
 <job-tracker>${jobTracker}</job-tracker>

<name-node>${nameNode}</name-node>
<configuration>

<property>
<name>mapred.job.queue.name</name>
<value>default</value>

</property>
</configuration>
<arg>-drive</arg>
<arg>${driveID}</arg>
<arg>-type</arg>
<arg>T1</arg>
<ok to='completed'/>
<error to='fail'/>

</action>

Reference :
1.WA Gmob, “Big Data and Hadoop”, Kindle Edition, 2013
2. Eric Miller, “A Overview of Map Reduce and its impact on Distributed Data”, Kindle Edition, 2012.
3. Strata, “ Big Data Now”, O’Reily Media Inc., Kindle Edition, 2012.
https://www.guru99.com/hbase-architecture-data-flow-usecases.html
https://data-flair.training/blogs/hbase-client-api/
https://intellipaat.com/blog/tutorial/hbase-tutorial/installation/
https://www.tutorialspoint.com/hbase/hbase_create_data.htm
http://jcsites.juniata.edu/faculty/Rhodes/smui/hbase.htm

<action name='mergeT2'>
<java>

<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<configuration>

<property>
<name>mapred.job.queue.
name</name>
<value>default</value>

</property>
</configuration>
<main-

class>com.navteq.assetmgmt.hdfs.mer
ge.MergerLoader</main-class>

<arg>-drive</arg>
<arg>${driveID}</arg>
<arg>-type</arg>
<arg>T2</arg>

</java>
<ok to='completed'/>
<error to='fail'/>

</action>
<join name='completed' to='end'/>
<kill name='fail'>

<message>Java failed,
error
message[${wf:errorMessage(wf:lastErrorNo
de())}]</message>

</kill>
<end name='end'/>

</workflow-app>

https://www.guru99.com/hbase-architecture-data-flow-usecases.html
https://www.guru99.com/hbase-architecture-data-flow-usecases.html
https://data-flair.training/blogs/hbase-client-api/
https://data-flair.training/blogs/hbase-client-api/
https://intellipaat.com/blog/tutorial/hbase-tutorial/installation/
https://intellipaat.com/blog/tutorial/hbase-tutorial/installation/
https://www.tutorialspoint.com/hbase/hbase_create_data.htm
https://www.tutorialspoint.com/hbase/hbase_create_data.htm

	 MapReduce is a programming framework of Hadoop that is used for parallel processing of data. MapReduce is the processing engine of Hadoop that processes and computes vast volumes of data.
	 It has 2 components: Map and Reduce phase which is shown in Fig. 3.1.
	Fig. 3.1 Components of Hadoop
	 The generalized workflow of MapReduce is shown in Fig. 3.2.
	 MapReduce performs parallel processing in the manner shown in Fig. 3.3.
	 The detailed workflow of MapReduce is shown in the Fig. 3.4:
	Fig. 3.4 Detailed Workflow of MapReduce
	 So, to conclude, MapReduce does parallel processing of data in Hadoop.
	HDFS – HADOOP DISTRIBUTED FILE SYSTEM
	 HDFS provides high throughput access to application data and is suitable for applications that have large data sets.
	 The NameNode executes file system namespace operations like opening, closing, and renaming files and directories.
	 The DataNodes are responsible for serving read and write requests from the file system’s clients.
	Fig. 3.5 Hadoop Distributed File System
	Working of HDFS
	Fig. 3.6 Working of HDFS
	RELATIONSHIP BETWEEN MAPREDUCE AND HDFS
	 We compare the Hadoop software framework as a computer, the MapReduce is the same as software, and the HDFS is the same as hardware.
	Input data is uploaded to the HDFS file system in either of following two ways:
	Serialization:

	HOW TO CREATE A CUSTOM WRITABLE FOR HADOOP
	public class MergeAndSplineMapper extends Mapper<LongWritable, BytesWritable, LongWritable, BytesWritable> {
	private static Logger LOG = Logger.getLogger(MergeAndSplineMapper.class);
	enumSurfaceCounters {
	ROADS, NONLINEARS, UNKNOWN
	}
	@Override
	public void map(LongWritable key, BytesWritable value, Context context) throws IOException, InterruptedException {
	// A list of mixed surface types
	LinkSurfaceMaplsm = (LinkSurfaceMap) BytesConverter.bytesToObject(value.getBytes());
	List<RoadSurface>mixedSurfaces = lsm.toSurfaceList();
	for (RoadSurfacesurface :mixedSurfaces) {
	Long surfaceId = surface.getNumericId();
	Enums.SurfaceTypesurfaceType = surface.getSurfaceType();
	if (surfaceType.equals(SurfaceType.INTERSECTION)) {
	// Ignore non-linear surfaces.
	context.getCounter(SurfaceCounters.NONLINEARS).increment(1);
	continue;
	}
	else if (!surfaceType.equals(SurfaceType.ROAD)) {
	// Ignore anything that wasn’t an INTERSECTION or ROAD, ie any future additions.
	context.getCounter(SurfaceCounters.UNKNOWN).increment(1);
	continue;
	}
	PopulatorPreprocessor.processLinearSurface(surface);
	// Write out the processed linear surface.
	lsm.setSurface(surface);
	context.write(new LongWritable(surfaceId), new BytesWritable(BytesConverter.objectToBytes(lsm)));
	if (LOG.isDebugEnabled()) {
	context.getCounter(SurfaceCounters.ROADS).increment(1);
	}
	}
	}
	}
	We’ve written the following unit test for our class using MRUnit, Mockito, and PowerMock.
	@RunWith(PowerMockRunner.class)
	@PrepareForTest(PopulatorPreprocessor.class)
	public classMergeAndSplineMapperTest {
	privateMapDriver<LongWritable, BytesWritable, LongWritable, BytesWritable>mapDriver;
	@Before
	public voidsetUp() {
	MergeAndSplineMapper mapper = newMergeAndSplineMapper();
	mapDriver = newMapDriver<LongWritable, BytesWritable, LongWritable, BytesWritable>();
	mapDriver.setMapper(mapper);
	}
	@Test
	public voidtestMap_INTERSECTION() throwsIOException {
	LinkSurfaceMaplsm = newLinkSurfaceMap();
	RoadSurfacers = newRoadSurface(Enums.RoadType.INTERSECTION);
	byte[] lsmBytes = append(lsm, rs);
	PowerMockito.mockStatic(PopulatorPreprocessor.class);
	mapDriver.withInput(newLongWritable(1234567), newBytesWritable(lsmBytes));
	mapDriver.runTest();
	Assert.assertEquals("ROADS count incorrect.", 0,
	mapDriver.getCounters().findCounter(SurfaceCounters.ROADS).getValue());
	Assert.assertEquals("NONLINEARS count incorrect.", 1,
	mapDriver.getCounters().findCounter(SurfaceCounters.NONLINEARS).getValue());
	Assert.assertEquals("UNKNOWN count incorrect.", 0,
	mapDriver.getCounters(). findCounter(SurfaceCounters.UNKNOWN).getValue());
	PowerMockito.verifyStatic(Mockito.never());
	PopulatorPreprocessor.processLinearSurface(rs);
	}
	@Test
	public voidtestMap_ROAD() throwsIOException {
	LinkSurfaceMaplsm = newLinkSurfaceMap();
	RoadSurfacers = newRoadSurface(Enums.RoadType.ROAD);
	byte[] lsmBytes = append(lsm, rs);
	// save logging level since we are modifying it.
	Level originalLevel = Logger.getRootLogger().getLevel();
	Logger.getRootLogger().setLevel(Level.DEBUG);
	PowerMockito.mockStatic(PopulatorPreprocessor.class);
	mapDriver.withInput(newLongWritable(1234567), newBytesWritable(lsmBytes));
	mapDriver.withOutput(newLongWritable(1000000), newBytesWritable(lsmBytes));
	mapDriver.runTest();
	Assert.assertEquals("ROADS count incorrect.", 1,
	mapDriver.getCounters().findCounter(SurfaceCounters.ROADS).getValue());
	Assert.assertEquals("NONLINEARS count incorrect.", 0,
	mapDriver.getCounters().findCounter(SurfaceCounters.NONLINEARS).getValue());
	Assert.assertEquals("UNKNOWN count incorrect.", 0,
	mapDriver.getCounters().findCounter(SurfaceCounters.UNKNOWN).getValue());
	PowerMockito.verifyStatic(Mockito.times(1));
	PopulatorPreprocessor.processLinearSurface(rs);
	// set logging level back to it's original state so as not to affect other tests
	Logger.getRootLogger().setLevel(originalLevel);
	}
	testMap_INTERSECTION

	private MapDriver<LongWritable, BytesWritable, LongWritable, BytesWritable>mapDriver;
	@Before
	public void setUp() {
	MergeAndSplineMapper mapper = new MergeAndSplineMapper();
	mapDriver = new MapDriver<LongWritable, BytesWritable, LongWritable, BytesWritable>();
	mapDriver.setMapper(mapper);
	}
	Throwing IOException on the unit test method signature

	@Test
	public void testMap_INTERSECTION() throws IOException {
	Initialize the test input to drive the test. In order to hit the if-block we want to test, we have to ensure the surface type is of RoadType.INTERSECTION.
	LinkSurfaceMaplsm = new LinkSurfaceMap();
	RoadSurfacers = new RoadSurface(Enums.RoadType.INTERSECTION);
	byte[] lsmBytes = append(lsm, rs);
	We use PowerMock[3] to mock out a static call to the PopulatorPreprocessor class. PopulatorPreprocessor is a separate class containing business logic and is tested by it’s own JUnit test. At the class level, we set-up PowerMock with the @RunWith ann...
	@RunWith(PowerMockRunner.class)
	@PrepareForTest(PopulatorPreprocessor.class)
	PowerMockito.mockStatic(PopulatorPreprocessor.class);
	Set the previously created test input and run the mapper:
	mapDriver.withInput(new LongWritable(1234567), new BytesWritable(lsmBytes));
	mapDriver.runTest();
	Assert.assertEquals("ROADS count incorrect.", 0,
	mapDriver.getCounters().findCounter(SurfaceCounters.ROADS).getValue());
	Assert.assertEquals("NONLINEARS count incorrect.", 1,
	mapDriver.getCounters().findCounter(SurfaceCounters.NONLINEARS).getValue());
	Assert.assertEquals("UNKNOWN count incorrect.", 0,
	mapDriver.getCounters().findCounter(SurfaceCounters.UNKNOWN).getValue());
	PowerMockito.verifyStatic(Mockito.never());
	PopulatorPreprocessor.processLinearSurface(rs);
	testMap_ROAD

	RoadSurfacers = newRoadSurface(Enums.RoadType.ROAD);
	Level originalLevel = Logger.getRootLogger().getLevel();
	Logger.getRootLogger().setLevel(Level.DEBUG)
	Logger.getRootLogger().setLevel(originalLevel);
	Assert.assertEquals("ROADS count incorrect.", 1,
	mapDriver.getCounters().findCounter(SurfaceCounters.ROADS).getValue());
	Assert.assertEquals("NONLINEARS count incorrect.", 0,
	mapDriver.getCounters().findCounter(SurfaceCounters.NONLINEARS).getValue());
	Assert.assertEquals("UNKNOWN count incorrect.", 0,
	mapDriver.getCounters().findCounter(SurfaceCounters.UNKNOWN).getValue());
	PowerMockito.verifyStatic(Mockito.times(1));
	PopulatorPreprocessor.processLinearSurface(rs);
	Testing A REDUCER

	privateReduceDriver<LongWritable, BytesWritable, LongWritable, BytesWritable>reduceDriver;
	@Before
	public voidsetUp() {
	MyReducer reducer = newMyReducer ();
	reduceDriver = newReduceDriver<LongWritable, BytesWritable, LongWritable, BytesWritable>();
	reduceDriver.setReducer(reducer);
	}
	MAVEN Pom Dependencies

	<dependency>
	<groupId>org.apache.mrunit</groupId>
	<artifactId>mrunit</artifactId>
	<version>0.8.0-incubating</version>
	<scope>test</scope>
	</dependency>
	<dependency>
	<groupId>org.mockito</groupId>
	<artifactId>mockito-all</artifactId>
	<version>1.9.0-rc1</version>
	<scope>test</scope>
	</dependency>
	<dependency>
	<groupId>org.powermock</groupId>
	<artifactId>powermock-module-junit4</artifactId>
	<version>1.4.12</version>
	<scope>test</scope>
	</dependency>
	<dependency>
	<groupId>org.powermock</groupId>
	<artifactId>powermock-api-mockito</artifactId>
	<version>1.4.12</version>
	<scope>test</scope>
	</dependency>
	Running In Eclipse
	Summary

	Exception Handling (Handling Failures in Hadoop, Mapreduce)
	Client API Features:-Filters
	The filter hierarchy
	Comparison operators
	Comparators
	FILTERROW() AND BATCHMODE
	5.4 Advanced Usage of HBASE:
	Key Design
	Concepts
	Figure 5.9 logical flow of the filter methods
	HBASE Design Schema
	Parent-Child Relationship–Nested Entity
	Self-Join Relationship – HBase
	Data Access Pattern
	5.4 Advance Indexing In HBase
	Why is this important?
	Problems in Indexing
	Co-Processor
	Observers
	Endpoint
	Coprocessor Management
	Build Your Own Coprocessor
	Coprocessor Deployment
	5.5 Hadoop 2.0
	MRv2-YARN
	5.6 NameNode High Availablity
	Architecture
	Hardware resources
	5.7HDFS Federation
	Background
	 Namespace
	Key Benefits
	Configuration:
	Formatting Namenodes
	Upgrading from an older release and configuring federation
	Managing the cluster
	Balancer
	Decommissioning
	Cluster Web Console
	Migrating from MapReduce 1 (MRv1) to MapReduce 2
	Configuration Migration
	How does Oozie work?
	Oozie in action
	Simple example of Oozie workflow

