(&)

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF COMPUTING
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Machine Learnina — SIT1305

2ATHYABAMA

(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC I Approved by AICTE

“www.sathyabama.ac.in

SCHOOL OF COMPUTING
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT I — INTRODUCTION TO MACHINE LEARNING

UNIT I
INTRODUCTION TO MACHINE LEARNING

Machine learning - examples of machine learning applications - Learning associations - Classification -
Regression - Unsupervised learning - Supervised Learning - Learning class from examples - PAC learning -
Noise, model selectionand generalization - Dimension of supervised machine learning algorithm.

Definition of Machine learning:

Well posed learning problem: "A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E."(Tom Michel)

"Field of study that gives computers the ability to learn without being explicitly programmed".
Learning = Improving with experience at some task

- Improve over task T,
- with respect to performance measure P,
- based on experience E.

E.g., Learn to play checkers

- T :Play checkers
- P : % of games won in world tournament
- E: opportunity to play against self

Traditional Programming

Data —»

— Output
Program Computer

Machine Learning

Data ——
Computer [Program
Output —

Examples of tasks that are best solved by using a learning algorithm:

« Recognizing patterns:

— Facial identities or facial expressions

— Handwritten or spoken words

— Medical images
« Generating patterns:

— Generating images or motion sequences (demo)
« Recognizing anomalies:

— Unusual sequences of credit card transactions

— Unusual patterns of sensor readings in a nuclear power plant or unusual sound in
your car engine.

« Prediction:

— Future stock prices or currency exchange rates
« The web contains a lot of data. Tasks with very big datasets often use machine learning

— especially if the data is noisy or non-stationary.
« Spam filtering, fraud detection:

— The enemy adapts so we must adapt too.
« Recommendation systems:

— Lots of noisy data. Million dollar prize!
 Information retrieval:

— Find documents or images with similar content.
 Data Visualization:

- Display a huge database in a revealing way

Types of learning algorithms:

e Supervised learning
o Training data includes desired outputs. Examples include,

o Prediction

o Classification (discrete labels), Regression (real values)

Unsupervised learning
o Training data does not include desired outputs, Examples include,

o Clustering

o Probability distribution estimation
o Finding association (in features)

o Dimension reduction

e Semi-supervised learning
o Training data includes a few desired outputs

e Reinforcement learning

o Rewards from sequence of actions
o Policies: what actions should an agent take in a particular situation
o Utility estimation: how good is a state (—used by policy)

o No supervised output but delayed reward

o Credit assignment problem (what was responsible for the outcome)

o Applications:
o Game playing
o Robot in a maze

o Multiple agents, partial observability, ...

Hypothesis Space

One way to think about a supervised learning machine is as a device that explores a
“hypothesis space”.

— Each setting of the parameters in the machine is a different hypothesis about the
function that maps input vectors to output vectors.

— If the data is noise-free, each training example rules out a region of hypothesis
space.

— If the data is noisy, each training example scales the posterior probability of each
point in the hypothesis space in proportion to how likely the training example is
given that hypothesis.

The art of supervised machine learning is in:
— Deciding how to represent the inputs and outputs

— Selecting a hypothesis space that is powerful enough to represent the relationship
between inputs and outputs but simple enough to be searched.

Generalization

The real aim of supervised learning is to do well on test data that is not known during
learning.

Choosing the values for the parameters that minimize the loss function on the training data
IS not necessarily the best policy.

We want the learning machine to model the true regularities in the data and to ignore the
noise in the data.

— But the learning machine does not know which regularities are real and which are
accidental quirks of the particular set of training examples we happen to pick.

So how can we be sure that the machine will generalize correctly to new data?

Training set, Test set and Validation set

Divide the total dataset into three subsets:
— Training data is used for learning the parameters of the model.

— Validation data is not used of learning but is used for deciding what type of model
and what amount of regularization works best.

— Test data is used to get a final, unbiased estimate of how well the network works.
We expect this estimate to be worse than on the validation data.

« We could then re-divide the total dataset to get another unbiased estimate of the true error
rate.

Learning Associations:

« Basket analysis:

P (Y | X) probability that somebody who buys X also buys Y where X and Y are
products/services.

Example: P (chips | beer) = 0.7 // 70 percent of customers who buy beer also buy chips.

We may want to make a distinction among customers and toward this, estimate P(Y|X,D) where
D is the set of customer attributes, for example, gender, age, marital status, and so on, assuming
that we have access to this information. If this is a bookseller instead of a supermarket, products
can be books or authors. In the case of a Web portal, items correspond to links to Web pages, and
we can estimate the links a user is likely to click and use this information to download such
pages in advance for faster access.

Classification:

« Example: Credit scoring
- Differentiating between low-risk and high-risk customers from their income and savings
 Discriminant: IF income > 01 AND savings > 02 THEN low-risk ELSE high-risk

Zn A
.g Lonv-iIRisk
s
==
S+ o
&
= A==
&=
o= (==
e, —— . .
= High-Risk
=] =
= =
(==

[

Income

Prediction - Regression:

« Example: Predict Price of a used car
« X :car attributes
y : price
y=9(x|8)

where, g () is the model, 6 are the parameters

¥ price

x: milage

A training dataset of used cars and the function fitted. For simplicity,mileage is taken as the only
input attribute and a linear model is used.

Supervised Learning:
Learning a Class from Examples:
* Class C of a “family car”

o Prediction: Is car x a family car?
o Knowledge extraction: What do people expect from a family car?

« Output:

o0 Positive (+) and negative (-) examples

« Input representation:

X1: price, X2 : engine power

-

S A
2
£ [. _ [1if xis positive
53] —
e =) s O if x is negative
1=
i s T@ -
o @ e X = |:X1:|
.\'_,’ - S X2
o 1=
S
1 .‘-' 1 1 L >
£ x,: Price
g (p, < price <p,) AND (e, <engine power <e,)
E =
:;JI.I
H:"j = = C
: -
6B @ =2 e
© o
{’j
5 o
+ ©
o
P P g

X = 2",

Toxg Price

Hypothesis class H

hix) = 1if h classifies x as positive
|0 if h classifies x as negative
C
-
2
E’ False positive
Ry h g g

C_ False negative

® FErrorof hon H

. E(hlX) =i1(h(x=)¢ r')

t=1

-

P Fa A Price

S, G, and the Version Space

most specific hypothesis, §
most general hypothesis, G

X, Engine power

h e H, between S and G is
consistent

and make up the
version space

Probably Approximately Correct (PAC):

Cannot expect a learner to learn a concept exactly.
Cannot always expect to learn a close approximation to the target concept

Therefore, the only realistic expectation of a good learner is that with high probability it
will learn a close approximation to the target concept.

In Probably Approximately Correct (PAC) learning, one requires that given small
parameters ¢ and 8, with probability at least (1- 5) a learner produces a hypothesis with
error at most .

The reason we can hope for that is the Consistent Distribution assumption.

PAC Learnability

Consider a concept class C defined over an instance space X (containing instances of length
n), and a learner L using a hypothesis space H.

C is PAC learnable by L using H if

e forallfeC,

o for all distributions D over X, and fixed 0<e,d <1,

L, given a collection of m examples sampled independently according to D produces

e with probability at least (1- 6) a hypothesis h € H with error at most ¢, (Errorp =
Pro[f(x) : = h(X)])
where m is polynomial in 1/ €, 1/ §, n and size(H)

C is efficiently learnable if L can produce the hypothesis in time polynomial in 1/ €, 1/ 5, n
and size(H)

We impose two limitations:
Polynomial sample complexity (information theoretic constraint)
e |s there enough information in the sample to distinguish a hypothesis h that
approximate f ?
Polynomial time complexity (computational complexity)

o Is there an efficient algorithm that can process the sample and produce a good
hypothesis h ?

10

To be PAC learnable, there must be a hypothesis h [H with arbitrary small error for every
f € C. We generally assume H o C. (Properly PAC learnable if H=C)

Occam’s Razor:

Claim: The probability that there exists a hypothesis h € H that
(1) is consistent with m examples and
(2) satisfies error(h) > € (Errorp(h) = Pr, _p [f(X) ==h(x)])
is less than [H|(1- &)™.

Proof: Leth be such a bad hypothesis.
- The probability that h is consistent with one example of fis

Pr. /) =ax)]<1-¢

- Since the m examples are drawn independently of each other,
The probability that h is consistent with m example of f is less than (1-£)™

- The probability that some hypothesis in H is consistent with m examples
is less than | H |- &)™

We want this probability to be smaller than &, that is:
m
[H|(1-€) < &
In(JH]) + mIn(1-€) < In(8)

(with e* = 1-x+x2/2+...; e*> 1-X; In (1- €) < - €] gives a safer §)

m> L H)+(1/6)}
&

(gross over estimate)

It is called Occam’s razor, because it indicates a preference towards small
hypothesis spaces

11

Noise and Model Complexity:

Noise is any unwanted anomaly in the data and due to noise, the class may be more difficult to
learn and zero error may be infeasible with a simple hypothesis class. There are several
interpretations of noise:

« There may be imprecision in recording the input attributes, which may shift the data points
in the input space.

« There may be errors in labeling the data points, which may relabel positive instances as
negative and vice versa. This is sometimes called teacher noise.

« There may be additional attributes, which we have not taken into account, that affect the
label of an instance. Such attributes may be hidden or latent in that they may be
unobservable. The effect of these neglected attributes is thus modeled as a random
component and is included in “noise.”

Use the simpler one because

« Simpler to use (lower computational complexity)
« Easier to train (lower space complexity)

« Easier to explain (more interpretable)

« Generalizes better (lower variance - Occam’s razor)

P 1
hz =) = = ;
= t,
& & 'EB_i =
&+
= = =) =
I = bl
= =
P, =
=]
[[['] 1 r—

12

Learning Multiple Classes:

In our example of learning a family car, we have positive examples belonging to the class family
car and the negative examples belonging to all other cars. This is a two-class problem. In the
general case, we have K classes denoted as Ci, i = 1, ..., K, and an input instance belongs to one
and exactly one of them. The training set is now of the form,

ine power

I
=

En

X = {x",r'}
) {1 if x* C,

¥ p—

t=1

Oif x* eC,, j=i

Train hypotheses
h(x), i=1,. . K

h, (x) = 1if x* e G
f |oifx eC,, j=i

Sports car

Family car

P Yy
R p—
Y '
() R
I/_h‘lu
R
‘-’
"I
AN AN
AN /\ AN
] an VAN
[] Luxury sedan

Price

There are three classes: family car, sports car, and luxury sedan. There are three hypotheses
induced, each one covering the instances of one class and leaving outside the instances of the
other two classes .”?’ are reject regions where no, or more than one, class is chosen.

13

Model Selection & Generalization:

« Learning is an ill-posed problem; data is not sufficient to find a unique solution
« The need for inductive bias, assumptions about H
« Generalization: How well a model performs on new data
« Overfitting: H more complex than C or f
« Underfitting: H less complex than C or f
Triple Trade-Off:
« There is a trade-off between three factors (Dietterich, 2003):
1. Complexity of H, ¢ (H),
2. Training set size, N,
3. Generalization error, E, on new data As N increases, E decreases
As ¢ (H), first E decreases and then E increases
Cross-Validation:

« To estimate generalization error, we need data unseen during training. We split the data as

« Training set (50%)
« Validation set (25%)
e Test (publication) set (25%)

« Resampling when there is few data
Dimensions of a Supervised Learner:
e« Model : dg(x]0)
@ Lossfunction: E(0 | X)=> L, g(x* |6))
r

a Optimizationprocedure:

El*:argmgnE(elx)

14

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF COMPUTING
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT- Il DECISION THEORY

MACHINE LEARNING - SIT1305

UNITII DECISION THEORY

Bayesian Decision Theory - Introduction - Classification - Discriminant function - Bayesian networks -
Association rule - Parametric Methods - Introduction - Estimation - Classification - Regression -
Multivariate Methods - Data Parameter estimation - Classification - Complexity - Features -
Dimensionality Reduction - Analysis - Multidimensional scaling - Linear discriminant analysis.

Bavesian Decision Theory

Bayesian framework assumes that we always have a prior distribution for everything.
— The prior may be very vague.

— When we see some data, we combine our prior distribution with a likelihood term
to get a posterior distribution.

— The likelihood term takes into account how probable the observed data is given
the parameters of the model.

» It favors parameter settings that make the data likely.
» It fights the prior

* With enough data the likelihood terms always win.

P(H|X) is the posterior probability, or a posteriori probability, of H conditioned
on X. For example, suppose our world of data tuples is confined to customers described
by the attributes age and income, respectively, and that X is a 35-yvear-old customer with
an income of $40,000. Suppose that H is the hypothesis that our customer will buy a
computer. Then P(H|X) reflects the probability that customer X will buy a computer
given that we know the customer’s age and income.

In contrast, P(H) is the prior probability, or a priori probability, of H. For our exam-
ple, this is the probability that any given customer will buy a computer, regardless of age,
income, or any other information, for that matter.

Bayes’ theorem is useful in that it provides a way of calculating the posterior probability
P(H|X), from P(H), P(X|H), and P(X).
Bayes’ theorem is

P(X|H)YP(H)

P(H|X) = POV

Naive Bayesian Classification

The naive Bayesian classifier, or simple Bayesian classifier, works as follows:

I. Let D be a training set of tuples and their associated class labels. As usual, each tuple
is represented by an n-dimensional attribute vector, X = (x1, x2,..., x»), depicting n
measurements made on the tuple from n attributes, respectively, A;, Az,..., A,

2. Suppose that there are m classes, Cy, Cy,..., Cy. Given a tuple, X, the classifier will
predict that X belongs to the class having the highest posterior probability, condi-
tioned on X. That is, the naive Bayesian classifier predicts that tuple X belongs to the
class C; ifand only if

P(Ci|X) = P(Gj|X) for 1<j<mj#i

Thus, we maximize P(C;|X). The class C; for which P(C;|X) is maximized is called
the maximum posteriori hypothesis. By Bayes’ theorem (Eq. 8.10),

P(Ci|X) = P(XIC:):D[C:)_
P(X)

3. As P(X) is constant for all classes, only P(X|C;)P(C;) needs to be maximized. If the
class prior probabilities are not known, then it is commonly assumed that the classes
are equally likely, that is, P(Cy) = P(G;) = --- = P(Cy,), and we would therefore
maximize P(X|C;). Otherwise, we maximize P(X|C;)P(C;). Note that the class prior
probabilities may be estimated by P(C;) = |C; p|/|D|, where |C; p| is the number of
training tuples of class C; in D.

4. Given data sets with many attributes, it would be extremely computationally
expensive to compute P(X|C;). To reduce computation in evaluating P(X|C;), the
naive assumption of class-conditional independence is made. This presumes that
the attributes’ values are conditionally independent of one another, given the class
label of the tuple (i.e., that there are no dependence relationships among the
attributes). Thus,

n
P(X|C) =[] P(x| Go)
k=1

= P(x1]C) x P(x2|C) % --- x P(x4|C)).

We can easily estimate the probabilities P(x;|C;), P(x2|C)),..., P(x,|C;) from the
training tuples. Recall that here x; refers to the value of attribute Aj for tuple X. For
each attribute, we look at whether the attribute is categorical or continuous-valued.
For instance, to compute P(X|C;), we consider the following:

(a) If Ay is categorical, then P(x;|C;) is the number of tuples of class C; in D having
the value x; for Ay, divided by |C; p|, the number of tuples of class C; in D.

(b) If A is continuous-valued, then we need to do a bit more work, but the cal-
culation is pretty straightforward. A continuous-valued attribute is typically

assumed to have a Gaussian distribution with a mean pt and standard deviation
er, defined by

7
(x—p)=
-

e L 3

[I, R U} -
£ 2mo

so that

P(xi|Ci) = g(xx, iLc» 0¢;)-

Given database:

Class-Labeled Training Tuples from the AllElectronics Customer Database

RID age income student credit_rating Class: buys_computer
I youth high no fair no
2 youth high no excellent no
3 middle_aged high no fair yes
4 senior medium no fair yes
5 senior low yes fair yes
6 senior low yes excellent no
7 middle_aged low yes excellent yes
8 youth medium no fair no
9 vyouth low yes fair yes

10 senior medium yes fair yes

11 youth medium yes excellent yes

12 middle.aged medium no excellent yes

13 middle_aged high yes fair yes

14 senior medium no excellent no

Example:

Predicting a class label using naive Bayesian classification. We wish to predict the
class label of a tuple using naive Bayesian classification, given the same training data
as in Example 8.3 for decision tree induction. The training data were shown earlier
in Table 8.1. The data tuples are described by the attributes age, income, student, and
credit_rating. The class label attribute, buys_computer, has two distinct values (namely,
{ves, no}). Let C; correspond to the class buys computer = yes and C; correspond to
buys_computer = no. The tuple we wish to classify is

X = (age = youth, income = medium, student = yes, credit_rating = fair)

We need to maximize P(X|C;) P(C)), for i = 1, 2. P(C;), the prior probability of each
class, can be computed based on the training tuples:

P(buys_computer = yes) = 9/14 = 0.643
P(buys_computer = no) = 5/14 = 0.357

To compute P(X|Cj), for i = 1, 2, we compute the following conditional probabilities:
P(age = youth | buys_computer = yes) =2/9=10.222
Plage = youth | buys_computer = no) = 3/5=0.600

P(income = medium | buys_computer = yes) = 4/9 = 0.444
P(income = medium | buys_computer = no) = 2/5 = 0.400
P(student = yes | buys_computer = yes) =6/9=0.667

P(student = yes | buys_computer = no) =1,/5=0.200
Pleredit_rating = fair | buys_computer = yes) = 6,/9 = 0.667
Pleredit_rating = fair | buys_computer = no) = 2/5 = 0.400
Using these probabilities, we obtain
P(X | buys_computer = yes) = Plage = youth | buys_computer = yes)
= Plincome = medium | buys_computer = yes)
= P(student = yes | buys_computer = yes)

= Plcredit_rating = fair | buys_computer = yes)
=0.222 x 0.444 x 0.667 x 0.667 = 0.044.

Similarly,
P(X | buys_computer = no) = 0.600 =< 0.400 x 0.200 % 0.400 = 0.019.
To find the class, C;, that maximizes P(X|C;) P(C;), we compute

P(X | buys_computer = yes) P(buys_computer = yes) = 0.044 x 0.643 = 0.028
P(X | buys_computer = no) P(buys_computer = no) = 0.019 x 0.357 = 0.007

Therefore, the naive Bayesian classifier predicts buys_computer = yes for tuple X.

Losses and Risks:

Actions: aj;
Loss ofa; when the state iS5 A,
Expected risk (Duda and Hart, 1973)

R(exr, | X)= Z L P(CL | x)

choose o, 1f Rie, | X)= min, R« | x)

Oifi =Kk
H., =
ix { if i =Kk

R(o,; | x) = Z?LF,\P(C | x)

— ZP(CK | x)

=i

=1—P(C, | x)

For minimum risk, choose the most probable class

0 ifi=k
h otherwise

A
Rlot,,, | xX)=>2P(C, | xX)=n
k=1

Rlo,; | X)=>_P(C, | x)=1-P(C, | x)

R=i

choose C;, it P(C, | x) = P(C, | x) vk =iand P(C, | x}=1—x
reject otherwise

Discriminant Functions

Classification can also be seen as implementing a set of discriminant functions,
gi(x), i=1,.. K, such that we

choose C, if g,(x) = max, g, (x)

[— R{a’i | x)
of; (X] = 3 P(Ci | X}
p(x 1 CHP(C,)

K decision regionsR,, .., Rg

R, = {X | g, {X} = maxkgk{x)}

Dichotomizer K=2) vs PolychotomizerKk2)

g(x) =g1{X) _cg[)()
(C, if g(x) >0

choose -
]__ C, otherwise
Log odds:
log P(C} | x)
P(C, | x)

Bayvesian networks

A Bayesian network, Bayes network, belief network, Bayes(ian)
model or probabilistic directed acyclic graphical model is a probabilistic graphical
model (a type of statistical model) that represents a set of variables and
their conditional dependencies via a directed acyclic graph (DAG). For example, a
Bayesian network could represent the probabilistic relationships between diseases
and symptoms. Given symptoms, the network can be used to compute the
probabilities of the presence of various diseases.

Bayesian Net Example:

Consider the following Bayesian network:

2 &
OO
(=5

Thus, the independence expressed in this Bayesian net are that
A and B are (absolutely) independent.

C is independent of B given A.

D is independent of C given A and B.

E is independent of A, B, and D given C.

Suppose that the net further records the following probabilities:
Prob(A=T) =0.3
Prob(B=T) = 0.6
Prob(C=TIA=T) = 0.8
Prob(C=TIA=F) =04
Prob(D=TIA=T,B=T) = 0.7
Prob(D=TIA=T,B=F) = 0.8
Prob(D=TIA=F,B=T) = 0.1
Prob(D=TIA=F,B=F) = 0.2
Prob(E=TIC=T) = 0.7
Prob(E=TIC=F) = 0.2

Some sample computations:

Prob(D=T):
P(D=T) =

P(D=T,A=T,B=T) + P(D=T,A=T,B=F) + P(D=T,A=F,B=T) + P(D=T,A=F,B=F) =

P(D=TIA=T,B=T) P(A=T,B=T) + P(D=TIA=T,B=F) P(A=T,B=F) +
P(D=TIA=F,B=T) P(A=F,B=T) + P(D=TIA=F,B=F) P(A=F,B=F) =
(since A and B are independent absolutely)

P(D=TIA=T,B=T) P(A=T) P(B=T) + P(D=TIA=T,B=F) P(A=T) P(B=F) +
P(D=TIA=F,B=T) P(A=F) P(B=T) + P(D=TIA=F,B=F) P(A=F) P(B=F) =

0.7*0.3*0.6 + 0.8*%0.3*0.4 + 0.1*0.7*0.6 + 0.2*0.7*%0.4 = 0.32

Prob(A=TIC=T):

P(A=TIC=T) = P(C=TIA=T)P(A=T) / P(C=T).
Now, P(C=T)=P(C=T,A=T) + P(C=T,A=F) =
P(C=TIA=T)P(A=T) + P(C=TIA=F)P(A=F) =
0.8%0.3+ 0.4%0.7 = 0.52

So P(C=TIA=T)P(A=T) / P(C=T) = 0.8*0.3/0.52= 0.46.

Association rule

Association rule mining is explained using the Apriori Algorithm.

Transactional Data tor an AllElectromics

Branch

TiD List of tem_IDs
T10 11, 12, IS

T200 12, 14

T30 2, 13

T 400 11, I2, 14

TS50 11, 13

TG0 12, 13

700 11, 13

TR0 11, 12, 13, 15

T900 1, 12, I3

G 1
Sean D for [temset | Sup. count | Compare Lundid:au'. Tiemset | Sup. count
count of each | {1 b :-'.Ll[.'l]Jlﬁrt count Wi {17} b
candidate () /| mininmm support | ([2) 7
| .5 count 1) f,
(4] 2 5 | 1[4} 2
s | 2 Ty | 2
(Generate ', G (3 Ly
candidates | ltemse! Sean D for ltemset| Sup. count | Compare candidate | liemsel | Sup. count
from L, UL 23| count of each | L5 L2 4 support count with {11, 12} |
— |{[1 13} {11, I3} 4 mummum support /1] [3} 4
candidare .
(LW — o [{ILE} 1 count E[I I}i i
[, 15) I,y 2 :
12, 13} {12, [3} 4 {12, 14} 2
(2, 14) Ul 2 B 2
(12,15} (12,15} 2
I3, 14} w0
13, 15] {3, [5} 1
(14, 15) 4,15 0
Gy Cy Compare candidate L,
Generate €, ltemset | Scan D for | Itemset |Sup. count support count et [Sup, count
candidates [[TT, 12, 13)| count of cach [T, 12,)] 2| "t minimum [oy
from L candidate support count
— (I) —— |25 2 |————— | 2

Generation of the candidate itemsets and frequent itemsets, where the minimum support

count is 2.

Apriori Algorithm:

Algorithm: Apriori. Find frequent itemsets using an iterative level-wise approach based
on candidate generation.

Input:
D, a database of transactions;

min_sup, the minimum support count threshold.

Output: L, frequent itemsets in D.
Method:

(1) L = find_frequent_l-itemsets{D);
(2) for(k=21L; #dik++) |

(3) Cy = apriori_gen(Lj_)

(4) for each transaction ¢ € D { j/ scan D for counts

(5] C; = subset(Cy, £); // get the subsets of ¢ that are candidates
(6) for each candidate ¢ € C,

(7) c.count++;

(8) t

(9] Ly = {c € Ci|c.count = min_sup}

(10) '}

(11} return L = UL

procedure apriori_gen(L;_ ,:frequent (k — 1)-itemsets)
(1) for each itemset I} € [

(2) for each itemset L € Lj_,
(3) f(h[1]=k[1D A (2] =5([2))
A A [k=2]=h|k=2])A(h[k—1] < h|k—1]) then {
(4) c =1y " L // join step: generate candidates
(5] if has_infrequent_subsetic, L;_) then
(6) delete c; // prune step: remove unfruitful candidate
(7) else add ¢ to Cj:
(8) }

(9] return Cj;

procedure has_infrequent_subset(c: candidate k-itemset;
Lg_: frequent (k — 1)-itemsets); // use prior knowledge
(1) for each (k — 1)-subset s of ¢
(2) if s ¢ [}, then
(3) return TRUE;
(4) return FALSE;

Confidence:

suppori_count(AU B)
support_count(A)

confidence(A = B) = P(B|A) =

The conditional probability is expressed in terms of itemset support count, where
support_count(A U B) is the number of transactions containing the itemsets AU B, and
support_count(A) is the number of transactions containing the itemset A.

Generating association rules. Let’s try an example based on the transactional data for
AllElectronics shown before in Table 6.1. The data contain frequent itemset X = [I1, 12,
[5}). What are the association rules that can be generated from X? The nonempty subsets
of X are {11, 12}, {I1, 15}, {12, I5}, {I1}, {12}, and {15}. The resulting association rules are
as shown below, each listed with its confidence:

{11,12} = 15, confidence=2/4 = 50%
11,15} = 12, confidence=2/2 = 100%
(12,15} = 11, confidence=2/2 = 100%
1 = {12,15}, confidence=2/6=33%
12 = {I11,15}, confidence=2/7=29%
I5 = {I1,12}, confidence=2/2 = 100%

If the minimum confidence threshold is, say, 70%, then only the second, third, and
last rules are output, because these are the only ones generated that are strong.

Parametric Methods

Parametric Estimation

e X ={x'},wherex'~p (x)
e Parametric estimation:

Assume a form for p (x |) and estimate 6, its sufficient statistics,
using X

e.g., N (u, 02) where 6 = { u, 02}

Maximum Likelihood Estimation:

e Likelihood of 0 given the sample X

L (OX)=p X10) =T, p (x'10)
¢ Log likelihood
L(01X) =log [(91X) = 3, log p (x'10)
e Maximum likelihood estimator (MLE)
0 = argmaxy L(01X)

Examples: Bernoulli/Multinomial:

Two states, failure/success, xin {0,1}
P(x) = p*(1 - p,) %
L (p)X) =log II, pX (1 - p,) -
MLE: p,=2. X'/ N

K>2 states, x;in {0,1}
P(XDXE!"'!XK) = H;‘ pr'xj
L(p1,P2,..-,PxlX) = log I 11, pt
MLE: p;=3 . X// N

Gaussian (Normal) Distribution:

p(x) = N (p, 62)

p(x) = \/21?6 exp[(}{2@!;}

MLE for x and &2:

2~
M=TN
- Zr:(xf —m)z

N

Bias and Variance:

Unknown parameter &

Estimator d; = d (X;) on sample X; variance
< >
Bias: by(d) = E[d] - 6 i e -
Variance: E [(d-E [d])?] éfd T
<
Mean square error: bias
r(d,0) = E [(d-6)°]
= (E [d] - 6)? + E[(d-E [d])?]
= Bias? + Variance
Classification
gi(x) = p(X | Ci)P(Ci)
or equivalently
g,(x) = log p(x1C,)+log P(C,)
1 (x—n,)
x| C;)= exp| — :
P) ~ 2o, p|: 2c,?
g, (x) = —llog 21 — log o, — (x — ";‘)2 + log P(C,)
2 20;
Given the sample X = {ijrr}fil
. t
X e R Lt _ 1if x" C;
! Oif x" eC,, j=i
ML estimates are
> > X S -m)
P(c,)= ¢ m, = g7 =1
(I) N I Z ?,it I Z r.ft
r r

Discriminant becomes

g, (x)= —%log 21t —log s, — (X; T‘)z +log P(C,)
S

Regression

r=F(x)+s

estimator: g(x | 9) o X >’~'
g~ N(O,o'2)

plr 1X)~ N1 0)0?) |
N ._ -
L(E] | X) = log HP(XI,;"I) ot X
T;rl N
= log Hp(}'T | X')+ log Hp(xf)
t=1 t=1

£(0]X)= logﬁLexp [| —QI(Air |€')]2

276G 26°

- ~N logy/2nc - iil glx' 1]

26 t=1

1 ’

E©1X)=7> I -glx o)

=1

Linear Regression:

t L t
g(x | wl,wg) = W, X' + W,

D ri=Nw, +w > X'
t t

DX =w > X+ WIZ(XI)Z
Tt Tt T

NOEE] ey [E
e o) L

w=A"y
Other Error Measures:
1Y ’
Square Error: E(B1X)= EZ”J - Q(Xt | 9)]

Relative Square Error:

Absolute Error: E (01X) = X.. [r- g(x10)|
g-sensitive Error:

E@01X) = X, 1(r- gX16)>¢) (- g(x16)] - ¢)

Multivariate Methods

Data:

e Multiple measurements (sensors)

¢ d inputs/features/attributes: d-variate

® N instances/observations/examples
[vl 1 1
Xl X2 o X q
2 2 2
Xl X2 . ¢ p

XX X

Multivariate Parameters:

Mean : Efx]— = oot]
Covariance : 5, = Cov(X,, X)

. o;;
Correlation : Corr(X,, X,)=p, = —
0,0,
1 Op
2

> =Cov(X)= E[(X —)X - M)T]=

Parameter Estimation

N ot
X
Sample mean m : m, = Z}\; —i=1,..,d
N (¢ .
X. — M rX. —Imn.
Covariance matrix S : S; = ZH(: NIX J J)
. . S
Correlation matrix R : ry = ——
SiS;
Classification

pr(xlC,.)»-«N(yi,Zj)
I |
)= ——(x-ul X (X-u
p(x|Cl) (2n)a/2211/2eXp{ Z(X Jul) 1 (X M)}
Discriminant functions are

g,(x)=1log plx| C)+ log P(C)
RIS

d
-—log? -—lo Y

Estimating the mean and Variance,
t
~ Y,
P(C,-) — L
N
Lyl
m = 2l X
i Z rr
i
t ot t 9
S DRy (x —ml.Xx —m,.)J

i Zr rfr

g,(x) = —;log S| —;(x -m,)'S,” (x—m,)+log P(C,)

Quadratic Discriminant:

g,(x)= —%log S| %(x'f'si'lx -2’8 'm, + me[lmI.)Jr log P(C,)

e "I‘
=X Wx+w, x+w,
where

W=-s"
2

-1
w, =S m,

1

W = —Emf'S,.'lmi - %log S+log P(C,)

Tuning Complexity

Assumption Covariance matrix | No of parameters

Shared, Hyperspheric S=S=¢1

Shared, Axis-aligned $=8, with s,=0 d
Shared, Hyperellipsoidal |S=S d(d+1)/2
Different, Hyperellipsoidal | S; K dd+1)/2

As we increase complexity (less restricted S), bias
decreases and variance increases

Assume simple models (allow some bias) to control
variance (regularization)

Discrete Features

features: p; = D(XJ: 1] Ci)
if x; are (Naive Bayes’)

p(x1C)=Tpy 0-p,)
the discrilngant is
g,(x) =log p(x | C;)+log P(C,)
= ;[xj log p, +(1-x,)log (1-p,)]+ 1og P(C,)

t .t
rxjrf

1

Estimated parameters

(1-of-n) features: x; € {v}, v;,..,, an-}
Pijx = p(zjk: 1] Cf) = p(x.j: Vel Cf)

if X; are

d N
p(x1C)=T]T]rit

j=1 k=1

g,(x)=> .2 7y 10g py +log P(C,)

ﬁ__ _ Zrzjfkrfr
W4

Dimensionality Reduction

Necessity:

1.Reduces time complexity: Less computation

2. Reduces space complexity: Less parameters

3. Saves the cost of observing the feature

4. Simpler models are more robust on small datasets
5. More interpretable; simpler explanation

6. Data visualization (structure, groups, outliers, etc) if plotted in 2
or 3 dimensions.

Feature Selection and Extraction:

Choosing k<d important features,
ignoring the remaining d - k
Subset selection algorithms
Project the
original x;, i =1,...,d dimensions to
new k<d dimensions, z;, j=1,...,k

Principal components analysis (PCA), linear
discriminant analysis (LDA), factor analysis (FA)

Principal Component Analysis(PCA)

Find a low-dimensional space such that when x is
projected there, information loss is minimized.

The projection of x on the direction of wis: z= wix
Find w such that Var(z) is maximized
Var(z) = Var(w!x) = E[(w!x - wlu)?]
= E[(Wx - win)(Wix - wiy)]
= E[wl(x - u)(x - u)'w|
= WE[(x -)(x -u)TIw = wl 2w
where Var(x)= E[(x - u)(x -u)1] = 2

Maximize Var(z) subject to |[wi|=1

max w!Ew, —a(w/w, - 1)

w1

2w, = aw, that is, w, is an eigenvector of =

Choose the one with the largest eigenvalue for
Var(z) to be max

Second principal component: Max Var(z,), s.t.,
lw,||=1 and orthogonal to w,

max w,Iw, — a(wng - 1)— |3(w§w1 - 0)
W2
2 w, = a W, that is, w, is another eigenvector of X
and so on.
z=WIl(x- m)
where the columns of W are the eigenvectors of X,
and m is sample mean

Centers the data at the origin and rotates the axes
A A

zZ, b

Proportion of Variance (PoV) explained

A +A,+e Ay
AM+A,+o+ A+ + Ay

when J;are sorted in descending order
Typically, stop at PoV>0.9
Scree graph plots of PoV vs Kk, stop at “elbow”

Factor Analysis

Find a small number of z, which when
combined generate x:

where z; j=1,..,k are the with

E[z;]=0, Var(z)=1, Cov(z, , z)=0, i = J,
¢; are the

E[¢;]=y;, Covle;, €) =0, 1 # j, Cov(e;, z) =0,
and v; are the

PCA From x to z z=W!i(x-u
FA From z to x X-U=Vz+¢g

. 3 %4 7 2 3
; B factors
variables :
ef J0) O OO Qe 2
W

S

new B i il i i _
il variables
variables
o7 — - X
£ i :.‘ Z & "‘I! '\-_1
P FA

X,

CA

In FA, factors z; are stretched, rotated and
translated to generate x

A A

] [
™ =

=

b i .._

Multidimensional Scaling

Given pairwise distances between N points,

placelon a low-dim map s.t. distances are preserved.
z=¢g((x|0) Find 6 that min

E((—] | X): zqzr _zsr B X:2_xs)5
¥,s X — X
_y (la(x 10)- g(:xs | 8}‘; x x|
r,s X —X

Linear Discriminant Analysis

Find a low-dimensional 4

space such that when x ~
is projected, classes m,
are well-separated.

Find w that maximizes
2
_ (ml - mz)

Jw)= s34+ 8 e

- erTxfrF , o

m, = Si=), (wa’ - ml)zrr
> ,

Between-class scatter:
(m, -m,) = (mel - wrmz)2

= WT(mL - mzxml - mz)Tw

- w'S,w where S, =(m,-m,)m, -m,)'
Within-class scatter:

2= (Wix—m,Jr'
=> w]r(:nzr -m, er -m,)Twrr =w'S\w
where §, =% (xf = lexf -m,)Trf

si+s:=w'S, w where S, =S, +8,

Fisher’s Linear Discriminant:

Find w that max
J(w) =
LDA soln:

T 2
wisS,w |w (m, _mzj
w'S, w w'S, w

Parametric soln:

w=2" (1, —n,)
when p(x|C,)~ N (u,;,%)

For K>2 Classes,

Within-class scatter:

:is" S, =>.F (x —mXx —ml)jr

Between- class scatter: .
1
N, o

2 (m, —m)m, -m) > m,

i=1
Find W that max

(W)= |WTSBW\ The largest eigenvectors of S!S,
JW) =1 Maximum rank of K-1
W'S, W]

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF COMPUTING
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-I11 CLUSTERING & REGRESSION

MACHINE LEARNING - SIT1305

UNIT 1l

UNITIII CLUSTERING & REGRESSION

Clustering - Mixture densities - k-means clustering - Supervised Learning after clustering - Hierarchical
clustering - Nonparametric Methods - Density estimation - Generalization of multivariate data -
Classification -Regression - Smoothing models - Decision Trees - Univariate trees - Multivariate trees -
Learning rules from data - Linear Discrimination.

Clustering

* Cluster: A collection of data objects
o similar (or related) to one another within the same group
o dissimilar (or unrelated) to the objects in other groups
* Cluster analysis (or clustering, data segmentation, ...)
o Finding similarities between data according to the characteristics found in the data
and grouping similar data objects into clusters
* Unsupervised learning: no predefined classes (i.e., learning by observations vs. learning
by examples: supervised)
* A good clustering method will produce high quality clusters
o high intra-class similarity: cohesive within clusters
o low inter-class similarity: distinctive between clusters
* The quality of a clustering method depends on
o the similarity measure used by the method
o its implementation, and
o its ability to discover some or all of the hidden patterns.

Major Clustering Approaches

» Partitioning approach:
o Construct various partitions and then evaluate them by some criterion, e.g.,
minimizing the sum of square errors
o Typical methods: k-means, k-medoids, CLARANS
* Hierarchical approach:
o Create a hierarchical decomposition of the set of data (or objects) using some
criterion
o Typical methods: DIANA, AGNES, BIRCH, CAMELEON

Mixture densities

The mixture density is written as

[
pix) = > p(x|Gi)P(Gi)

where G; are the mixture components. They are also called group or clus-
ters. p(x|G;) are the component densities and P(G;) are the mixture pro-
portions. The number of components, k, is a hyperparameter and should
be specified beforehand. Given a sample and k, learning corresponds to
estimating the component densities and proportions. When we assume
that the component densities obey a parametric model, we need only
estimate their parameters. If the component densities are multivariate
Gaussian, we have p(x|G;i) ~ N (p;, Z;), and @ = lP{Ef},FJ‘,EfiF=1 are the
parameters that should be estimated from the iid sample X = {x"},.

Parametric classification is a bona fide mixture model where groups,
G;, correspond to classes, C;, component densities p(x|G;) correspond to
class densities p(x|C;), and P(G;) correspond to class priors, P(C;):

K
p(x) = > p(X|CG)P(Ci)
i=1

In this supervised case, we know how many groups there are and learn-
ing the parameters is trivial because we are given the labels, namely,
which instance belongs to which class (component). We remember from
chapter 5 that when we are given the sample X = {x",r' f':iu wherer; =1
if x' € C; and 0 otherwise, the parameters can be calculated using max-
imum likelihood. When each class is Gaussian distributed, we have a
Gaussian mixtre, and the parameters are estimated as

- _ LY
P(C) = =
I ¥ (5.5
o 2ar
g - Zif(X-mi)(x - m;) 7’
o=

>

The difference in this chapter is that the sample is X = {x"};: We have
an unsupervised learning problem. We are given only x' and not the labels
F', that is, we do not know which x* comes from which component. 50 we
should estimate both: First, we should estimate the labels, rf, the compo-
nent that a given instance belongs to; and, second, once we estimate the
labels, we should estimate the parameters of the components given the
set of instances belonging to them. We are first going to discuss a simple
algorithm, k-means clustering, for this purpose and later on show thar it
is a special case of the Expectation-Maximization algorithm.

Partitioning method

* Partitioning a database D of n objects into a set of k clusters, such that the sum of squared
distances is minimized (where c; is the centroid or medoid of cluster C;)
* @Given k, find a partition of k clusters that optimizes the chosen partitioning criterion

The K-Means Clustering Method

* Given k, the k-means algorithm is implemented in four steps:
o Partition objects into kK nonempty subsets
o Compute seed points as the centroids of the clusters of the current partitioning
(the centroid is the center, i.e., mean point, of the cluster)
o Assign each object to the cluster with the nearest seed point
o Go back to Step 2, stop when the assignment does not change

Initialize m;,i = 1,...,k, for example, to k random x'
Repeat
Forallx' e X
b 10faf - m;| = min; X' - m;|
! 0 otherwise
Forallm;,i=1,....k
m; — >, bix'/ X, b
Until m; converge

k-means algorithm.

Example:

k- Mear: cluz -+E~,ﬂ‘m1. "

) peecide -Ahe ruber B frame +Hhe elveden.

it
} Fihd Mearn ﬂf‘ o luadeye.

-?) Fﬂ‘u‘] drﬁ{"’ﬂﬁef. EIIAJI an Q i’.'if?+ﬂ|'ff "FEJ'I‘" ﬂ“ F.ﬂ;""l'jl.

= R POF5 T TR 17, SR PP S LY)
Aerunie, e date o clurten, & |
{'-‘-'L; 1] & Ca= {'-'-':;'-'5':@
(2) Apply 4 THbaton ef E-mreant Pﬂ‘l"’ﬁhn.l :!urhﬂ.rﬁlnﬁk

() whet & change I tefal cquare evror.

(e} A—Pfrfy g9 Hevadn o F-means a{an'ﬁ‘{kr‘w. 1

H'Ef_'j:". o
Mﬁ'ﬂn; 3 E
- A = %
i Rl T
£y !

Ky =

Fsver Coleclatie my = “;.b;]l Ay = 1 Eal)

E 3 ¥ = [1,=-1
Et. - .EL {Hrr - Mr't Wy = fa, 3) 'I M, = 114%)

.f_' [Jl},:"

g = "'4'1'- [i_i.”:.,”_{,.r?.,[;_;.;]F_.L“_n.:}"}

= 4.
Co & €4 = {_lh—i-.‘-‘]‘—l- (1-aF+ (z-1-€F 4 {3—-1}’}
= -5 I
Sfep 20

To-tal dqaave EXTDY -

e i
g=d
L
= £g+ Fa
1 -+ &0 = WL

Hep b

Dirtanee o It wlaHor.

£ = hgand Anilo s e Az | rane Aretance FEQIVYE

lag - 220+ (9e-va)?

W A, 0%

eh (g, p,Y

¥a lfa, 4],

Alxs, miy) - zlrr.-;. tc Pt f1-00)"

'|.||[rj !-l!'_l;"' £ et i':" = o T Rk .

a l-L"‘:I--'-"I'a-::l . .dr.!',.f.._:‘q fa-a) = P -ohR

=TT 4 T
Alxa,Ma) - Jio-acPste-af = @ 1-v02
Wela,4) .
"I'r:":hmj]' : Jfﬂ-d-f:l:"r-l [4- 6T = p-3073

< (xe,r) = JT-'*- 1oPr fa-aF - 44w

‘:'ii-l [¥_| i':l'. -

i, My - -._Jrl!'-t-_i-r]'-lfi;n-r} =

& (B , MY J_ R T i)
[T— 40P (2-37 = 4.£08F
A 4 r it

T G- FoF_- 2. pEea

Ha 4.r864 i-fozx

EE ' o- =eT = 4.44¢

"y FXLE S 1.20a3 ~—
T, ea

.ﬁ;} _DII"-"'-':'-'E .-H'-. [l:'.'—ﬂ'l._lh"l.l"_l.-l:

i

Sl iy

ey & g
I:.-.I-'-'L_,,. Hl._,..'{‘.t-]

(xy) .

o -4 A

b o R]

fed
Fear,
1 L =
Er 2 E owpy
—— =4
€1
"{g-‘i_.ﬂ-:l
— _I [
Cai—

%y = UJJ =3 I'-f' o {3-__33..
Lyvoy O lewlation,

£y ® es? = [H—-‘L.Fq-fa.-.—n-u]! + (ocdP 41 _p.g5 P

+ (24P 4+ (1_p.get]

P

Gpw == & § ta=2yt+ (:'-—jj'j = o,

TEJ+ﬂ-| _'['.:;_1_.-.::1-# EATRY
= et - @ 14460
Diisdarmce Caleulahbn,

Wy (1,00 %
4 Pt Jris v gesiile wilasam

o (Mg, M) = J[.t_z}’-l |{t..--:%l','|:t = 1| Yh+9q =

= @hIfLFL $p LATEF L g.dafl = 4 ipne.

= i §4

Ji3

= Sefnf

¥a (e, 1)

d[t;,mﬂ . JE j]:4rnﬂ£ﬂ'} (1- o-66Y = J—ﬂﬂt;I:
Oy o [Tipa o s ﬂ

Ty,
Xq (a,1)

dlxz,my) . \r{;_ 4 ¥4 [1- c-6et) = 1-05%
; H"“H‘J - JF ﬂ"u- (1-1P S ey
Yy (2,2)

d (%, My) . J_h-ﬂ-u (2-0-66¥ = Ayarg

Al [
“,"a) nT- (2- 3y 4 (1-2)° = 0.
_ | F'f_’ I p_-f.,
1]
*'ffu r l!'-i-""'-.'II Lo
Ya 107 4- i hnt
[
Y= 1-ntg t 8 s349¢
f'-r L I | n
*y . _f'.
=) (yg = {'I{;!J':l:a"h:?:]

The iteration stops here, as we get the same set of clusters as the previous step.

Hierarchical Clustering

Cluster based on similarities/distances
Distance measure between instances xr and xs

Minkowski distance (Lp) (Euclidean for p = 2)

r sy d (r s)p:r/p
dm(X » X)_ Zj=1 xj xj
City-block distance
d
r s) ro__ s
dcb(x » X)_ijl‘xj x]"

Two important paradigms:
— Bottom-up agglomerative clustering(Agglomerative Nesting-AGNES)
— Top-down divisive clustering(Divisive Analysis-DIANA)

) 4 :
Step 0 Step1 Step2 Step3 Step agglomerative

~ (AGNES)

-~

| | | | | divisive
Step4 Step3 Step2 Step1 Step 0 (DIANA)

AgglomerativeClustering:

e Start with N groups each with one instance and merge two closest groups at each
iteration
e Distance between two groups Gi and Gj:

® Single-link clustering:

d(gz"gj): min d(Xr’XS)

x'egG; x’eq;

® Complete-link clustering:

d(g,gj)z max d(x”,xs)

 JS(ON =€}

® Average-link clustering, centroid

¢ Dendrogram: Decompose data objects into a several levels of nested partitioning
(tree of clusters), called a dendrogram

® A clustering of the data objects is obtained by cutting the dendrogram at the
desired level, then each connected component forms a cluster

Example of Single Linkage Clustering:

Given a datset, first find the distance matrix using Euclidean distance measure.

After finding the distance matrix, find the smallest element in the distance matix.

Merge these two points to form a cluster.

Next find the minium distance between the new cluster obtained with all other points.
Now frame the distance matrix and find the smallest value in the obtained distance matrix
and then merge these points to form a cluster. The process repeats until all points are
grouped into clusters.

6. Finally draw the dendogram.

Nk w -

Example:

» i

Fa B- Lt 0-£3
Fa o33 0Tk
F3 O 1c p-73
P

o -11 G-4%
Po £ - Ok o i
FE XRTT 5 d.ﬂ?

Bl | Eikiiee un'nf I-‘"ﬂlf' I.hf“nﬂt -!rrhh-}}ur_

AN
ot

54:‘,__11,,
Fuelidearn dirance

';J BoCH 9 = 0-224.

Attt = o oue AN

d(fa,ty) = ~..| u-ni!m'- = o-Jyuy3q.

dit,P) = Jogzm .

B 267
d (P, 1) - m’-' o I LT
a (f,h) = Jﬁa}' = 0-igey
d [fy, B = o3y AT p Y. &.an d [ATRELL
dify, i) =0oily LN NI 6ag ;-.HF;P:J - 0V8)
d-thfc) = ot)« oy d (f: F.,:Ji 011

) Ged i e Aredanee ’

MYty
| | :
P4 Fa Pz IP‘- LA Pé \
P4 L)
Pa 0D A3y o
P2 b33 o gx O
"-f .
P S Eulul b1 |o
Pc
n.
* loav|o. 48 [p.a0]| ©
Ps T o _-_- - . - — - i - -
©- a7 orﬂrJttJ-jd_J oaal e-z9| 4
i L=
':h.-'\-.n.i*i‘t.“
P BT

-g;l TS MI-ﬁE‘h'rw el e v e s A A re o L e

A PP
-_'— Rec&levladtes e Are A A
-— To vl a e e B R = N 5
w2 e CP2 L, Py, Pa)
=t (Al (P2, Pad, {Ps,Pad)

= Py B (_ = - D—ﬂ?__} - s QN - |

s (et (P, P), Fa)

= md (A [P, Pod, [Pe, P.lj:’
- e (=T o -8 s) -~ o g

Fem [i (P2, P D, FH}
= e T fr_‘_“h'}—" L‘FI_, ‘Pq j){ 'FE_, Pl' jj
— v [ode, o-@a) = oA

rvim (chifet CPx, B Y, Pr)

= moTm fdl‘t'l:'-l' t&) FS'}; {rﬁl_j r.l.'_jj
— mfntﬂ--ﬂ_ﬂ, ﬂ‘g"ﬂ = o -2

. ng.ﬁJ.

a4
HMJ e rewv) lhucdes o :f""F—"
-- T va are)
U‘F'Hﬂ""? . Vel vea Aoy clus = .
’ Fs
F4 Fa fs, Fe !
P4 o
fs oaz o
F‘_‘i; ﬂg_ o858 oc. 45 o
Pes 027 D-ao o-15 o

Pe o- 24 @J 0-2€ 0 -3 o

L amnadlert elenrent -

Mesrs clocter - { (] Fr.j"-’

Up ceate Hhe it . ~radvix.
w e e {'Fn,."'r.jw’il'}
= rio (et [CFa, P2), CPc, F:!)_?
- iy (u.alg, o- 2 u) =~ ©o-a2
mims (S (P, Pe) lrma, P))
= rin (s @, (BR)) |, oy (mp,3)
= Iftw.-id“;, o-a2g) ~ 045

b (Alet (P, 200 ;P)

= i (A (th0,), tro P,))

- vt ['ﬂ"i% b""“') = Cran.

UP{Tiﬂ"I"ﬂd dr'J—i-r AAY-T 5 o e _

i Ca Pe Fs Pe L
Pa o
Fa P 0:a2 G
¥ Drad f . i
6 0.4« O
Pl.# 023 "-t)-&u 0-4¢ O

New clustey - |:(PJP6) (% Pf)}

—

L1
. F

Update e dih matrt i a3
: : & = wnin (dot Lt'afz), h)
NI (du'f’ Cﬂ’.apr) (P P{)], fj,) [(fn?s);fﬁ]
= Mih (clim‘ [(Pafr);(’i][(f’zﬁ);?ﬂ) ~"nin (06,0042)

e 048

- M'nh (D'a-?) D,M) .: 0'9\3. J

Newo
oW dudsy [.pﬂ Py s f’;ﬂsj‘.,—

— i

U
Pdode 4he ditd. madri ©

M’ (d'}_* [PQPJ‘PJ PG f,_’]) Pi)
= Mmi'n (Arit [Pﬂr&ﬂ& ,Fi}) [Flf)fd])

= M (0 &g, 0.3'4") = 084,

:; UPda—h:_A (:*O"f‘ MOy i . ~

P.‘L fa P g P(, flw
Py o
P&_Prt'?. Fe P‘f 048, =
Dendogyam,
B0
P& ?S' [
(Faf) th 1) ’
(R) Py

() (B f’i 2 \]

Nonparametric Methods

Parametric (single global model), semiparametric (small number of local models)
Nonparametric: Similar inputs have similar outputs

Functions (pdf, discriminant, regression) change smoothly

Keep the training data;“let the data speak for itself”

Given x, find a small number of closest training instances and interpolate from these
Aka lazy/memory-based/case-based/instance-based learning

Density Estimation

Given the training set X={xt}t drawn iid from p(x)
Divide data into bins of size h
Histogram:

5(x) = #{x’inthe same bin as x}
Nai pPAX)= Nh
alve estimator:

5(x) = #{x—h<x’ Sx+h}
PR 2 Nh

ﬁ(x):LiW(x_xtJ W(u):{l/z if Ju| <1

0 otherwise

with the weight function defined as,,

{ 1 if jul < 1/2
H-'I:LH =

0 otherwise

This is as if each x' has a symmertric region of influence of size h around
it and contributes 1 for an x falling in its region. Then the nonparamet-
ric estimate is just the sum of influences of x* whose regions include x.
Because this region of influence is “hard” (0 or 1), the estimate is not a
continuous function and has jumps at x' + h/2.

Kernel Estimator:

Kernel function, e.g., Gaussian kernel:

K (u)= \/;_ﬂexp {Jﬂ

e Kernel estimator (Parzen windows)

The kernel function K(-) determines the shape of the influences and
the window width h determines the width. Just like the naive estimate is
the sum of “boxes,” the kernel estimate is the sum of “bumps.” All the x°
have an effect on the estimate at x, and this effect decreases smoothly as
|x — x'| increases.

To simplify calculation, K(-) can be taken to be 0 if |x —x'| > 3h. There
exist other kernels easier to compute that can be used, as long as K(u) is
maximum for u = 0 and decreasing symmetrically as |u| increases.

Kk-Nearest Neighbor Estimator:

® Instead of fixing bin width 4 and counting the number of instances, fix the instances
(neighbors) k and check bin width,

R k
p(x) B 2Nd, (x)

di(x), distance to kth closest instance to x.

The nearest neighbor class of estimators adapts the amount of smoothing to the local density of
data. The degree of smoothing is controlled by k, the number of neighbors taken into account,
which is much smaller than N, the sample size. Let us define a distance between a and b, for
example, la — bl, and for each x, we define,

di(x) =ds(x) = --- = dy(x)

to be the distances arranged in ascending order, from x to the points
in the sample: d;(x) is the distance to the nearest sample, d:(x) is the
distance to the next nearest, and so on. If x' are the data points, then we
define dy(x) = min; |x — x'|, and if i is the index of the closest sample,
namely, i = arg min; |[x — x|, then dz(x) = min;4; |x — x7|, and so forth.

Generalization of multivariate data

e Kernel density estimator

1 & %
K
T NK Z‘
e Multivariate Gaussian kernel
d 2
- 1 Ju
* Spheric K = —— S |
@)=[<y ool 13
1 1 _
* Ellipsoid K(u) = W eXp|:— EUTS 1ll:|

where S is the sample covariance matrix. This corresponds to using Mahalanobis distance instead
of the Euclidean distance. It is also possible to have the distance metric local where S is
calculated from instances in the vicinity of x, for example, some k closest instances.

Note that S calculated locally may be singular and PCA (or LDA, in thecase of classification)
may be needed.

Hamming distance:

When the inputs are discrete, we can use Hamming distance, which counts the number of
nonmatching attributes.

d
HD(x,x") = > 1(x; #x})

J=1
where
1 ifx; £
4wl = 77
Lx; # ;) { 0 otherwise

HD(x,x') is then used in place of |x — xt|| or (x — x')7S~1(x — x') for
kernel estimation or for finding the k closest neighbors.

Nonparametric Classification

* Estimate p(xIC;) and use Bayes’ rule

¢ Kernel estimator

h = h N
6,(x)= p(x1C)P(C) = — 3 K| XX |
i i i th — h i

¢ k-NN estimator

Xk

The k-nn classifier assigns the input to the class having most examples among the k neighbors of
the input. All neighbors have equal vote, and the class having the maximum number of voters
among the k neighbors is chosen. Ties are broken arbitrarily or a weighted vote is taken. K is
generally taken to be an odd number to minimize ties: confusion is generally between two
neighboring classes. Again, the use of Euclidean distance corresponds to assuming uncorrelated
inputs with equal variances, and when this is not the case a suitable discriminant metric should
be used. One example is discriminant adaptive nearest neighbor where the optimal distance to
separate classes is estimated locally.

k; ﬁ(C |X):IA9(X|C1)}A>(C;) k,

15(X|Q)=m i

Nonparametric Regression

® Aka smoothing models

® Regressogram

Z:;lb(x,xf)rt
PE Y Al .

g(x)—=

where

b(x =)_ 1 if x" is inthe same bin with x
= 0 otherwise

Running Mean/Kernel Smoother:

* Running mean smoother * Kernelsmoother
t t
. X=X | ¢ RN o e G S
thlw h E Zt:lK h r
g(X): t g(X): t
ZN A T G
t=1 h r=1K —
h
where
where K() is Gaussian
n 1 iflul<1
= 0 otherwise * Additive models (Hastie and

Tibshirani, 1990)
* Runningline smoother

Instead of taking an average and giving a constant fit at a point, we can take into account one
more term in the Taylor expansion and calculate a linear fit. In the running line smoother, we can
use the data points in the neighborhood, as defined by h or k, and fit a local regression line. In
the locally weighted running line smoother, known as loess, instead of a hard definition of
neighborhoods, we use kernel weighting such that distant points have less effect on error.

Decision Trees

Decision tree induction is the learning of decision trees from class-labeled training
tuples. A decision tree is a flowchart-like tree structure, where each internal node (non-
leaf node) denotes a test on an attribute, each branch represents an outcome of the
test, and each leaf node (or terminal node) holds a class label. The topmost node in
a tree is the root node. A typical decision tree is shown in Figure 8.2, It represents
the concept buys_computer, that is, it predicts whether a customer at AllElectronics is

likely to purchase a computer. Internal nodes are denoted by rectangles, and leaf nodes
are denoted by ovals. Some decision tree algorithms produce only binary trees (where
each internal node branches to exactly two other nodes), whereas others can produce
nonbinary trees.

credit_rating”

e excellent

A decision tree for the concept buys_computer, indicating whether an AllElectronics cus-
fomer is likely to purchase a computer. Each internal (nonleaf) node represents a test on
an attribute. Each leaf node represents a class (either buys_computer = yes or buys.computer
= o).

Algorithm:

Algorithm: Generate_decision_tree. Generate a decision tree from the training tuples of
data partition, [).

Input:
Data partition, D, which is a set of training tuples and their associated class labels;

attribute_list, the set of candidate attributes:

Attribute_selection_method, a procedure to determine the splitting criterion that “best”
partitions the data tuples into individual classes. This criterion consists of a
splitting_attribute and, possibly, either a split-point or splitting subset.

Output: A decision tree.

Method:
(1) create a node N;
(2) if tuples in D are all of the same class, C, then
(3) return N as a leaf node labeled with the class C;
(4) if attribute_list is empty then
(5) return N as a leaf node labeled with the majority class in I3; // majority voting
(6) apply Attribute_selection_method(D), attribute_list) to find the “best™ splitting_criterion;
(7) label node N with splitting_criterion,
(8) if splitting_attribute is discrete-valued and
multiway splits allowed then // not restricted to binary trees
(9) attribute list < attribute_list — splitting_attribute; /| remove splitting_attribute

(10) for each outcome j of splitting_criterion
/! partition the tuples and grow subtrees for each partition

(11} let Djbe the set of data tuples in [satistying outcome j; // a partition

(12) if Djis empty then

(13) attach a leaf labeled with the majority class in D to node N;

(14) else attach the node returned by Generate.decisiun.tree[ﬂf, attribute_list) to node N;
endfor

(15) return N;

Attribute Selection Measure:

Select the attribute with the highest information gain

Let p; be the probability that an arbitrary tuple in D belongs to
classC, estimated by |C, ,|/|D]|

Expected information (entropy) needed to classify a tuple in D:
Info(D) =—2 p,log,(p,)

Information needed (after using A to split Dintov partitions) to
classify D:

Info (D)=

> | D, |

;
<

| D |

x Info (D)

=1

Information gained by branching on attribute A

Gain(A) = Info(D) — Info (D)

Example:

Class-Labeled Training Tuples from the AllElectromics Customer Database

RID age income student credit.rating Class: buys_computer
1 youth high no fair no
2 youth high no excellent no
3 middleaged high no fair yes
4 senior medium no fair yes
5 senior low yes fair yes
6 senior low yes excellent no
7 middle_aged low yes excellent yes
8 youth medium no fair no
9 youth low yes fair yes

10 senior medium yes fair yes

11 youth medium yes excellent yes

12 middle.aged medium no excellent yes

13 middle_aged high yes fair yes

14 senior medium no excellent no

Induction of a decision tree using information gain. Table 8.1 presents a training set,
D, of class-labeled tuples randomly selected from the AllElectronics customer database.
(The data are adapted from Quinlan [Quiga]. In this example, each attribute is discrete-
valued. Continuous-valued attributes have been generalized.) The class label attribute,
buys_computer, has two distinct values (namely, {yes, no}); therefore, there are two dis-
tinct classes (i.e., m = 2). Let class C; correspond to yes and class (7 correspond to no.
There are nine tuples of class yes and five tuples of class mo. A (root) node N is created
for the tuples in D. To find the splitting criterion for these tuples, we must compute
the information gain of each attribute. We compute the expected

information needed to classify a tuple in Dx

9 9 5 5
Info(D) = —— o — | ——lo — | = 0.940)
fo(D) 14 33(14) 14 gz(1-:1)

Next, we need to compute the expected information requirement for each attribute.
Let’s start with the attribute age. We need to look at the distribution of yes and no tuples
for each category of age. For the age category “youth,” there are two yes tuples and three
no tuples. For the category “middle_aged,” there are four yes tuples and zero no tuples.
For the category “senior,” there are three yes tuples and two no tuples. Using Eq. (8.2),
the expected information needed to classify a tuple in D if the tuples are partitioned
according to age is

; oy 210 2 33
Mfoge (D) = 7o x | —zlog; = — - log;

14 5 5
N 4 4| 4
14\ 71982
5 3 2
4+ — x (——Iugl— — —log, —)
= (.694

Hence, the gain in information from such a partitioning would be
Gainiage) = Info(D) — fﬂﬁ}ang[}} = 0.940 — 0.694 = 0.246

Similarly, we can compute Gaim(income) = 0.029
Cearinil student) = 0.151

and Gain{credit _rating) = 0.048

Because age has the highest information gain
among the attributes, it is selected as the splitting attribute. Node N is labeled with age,
and branches are grown for each of the attribute’s values. The tuples are then partitioned
accordingly, as shown in Figure 8.5. Notice that the tuples falling into the partition for
age = middle_aged all belong to the same class. Because they all belong to class “yes,”
a leaf should therefore be created at the end of this branch and labeled “yes.”

age’?

youth middle_aged ™ senior
incone sident credit_rating cliss frcome student | credii_rating | olass
high it fair no medium | no fair yes
hizh M excellent i lovw yes fair Vs
medium | no fair no low yes excellent no
low ves fair yes medium | yes fair ves
medium | yes excellent yes medium | no excellent N
income studens | credit_rating | class
high no fair yes
low NS excellent yes
medium | no excellent yes
high yes fair yes
After further iterations, the final decision tree would be,
middle_aged senior
studeni? credit _rating ?
fair excellent

R

Univariate Trees

In a univariate tree, in each internal node, the test uses only one of the
input dimensions. If the used input dimension, x;, is discrete, taking one
of n possible values, the decision node checks the value of x; and takes
the corresponding branch, implementing an n-way split. For example, if
an attribute is color € {red, blue, green}, then a node on that attribute
has three branches, each one corresponding to one of the three possible
values of the attribute.

A decision node has discrete branches and a numeric input should be
discretized. If x; is numeric (ordered), the test is a comparison

fm(X) 1xj > Wmo

where wpp is a suitably chosen threshold value. The decision node di-
vides the input space into two: Ly = {X|x; > wmo! and Ry = [x|x; =

Wmol: this is called a binary split. Successive decision nodes on a path
from the root to a leaf further divide these into two using other attributes
and generating splits orthogonal to each other. The leaf nodes define hy-
perrectangles in the input space (see figure 9.1).

Tree induction is the construction of the tree given a training sample.
For a given training set, there exists many trees that code it with no er-
ror, and, for simplicity, we are interested in finding the smallest among

them, where tree size is measured as the number of nodes in the tree
and the complexity of the decision nodes. Finding the smallest tree is
NP-complete (Quinlan 1986), and we are forced to use local search proce-
dures based on heuristics that give reasonable trees in reasonable time.

Tree learning algorithms are greedy and, at each step, starting at the
root with the complete training data, we look for the best split. This
splits the training data into two or n, depending on whether the chosen
attribute is numeric or discrete. We then continue splitting recursively
with the corresponding subset until we do not need to split anymore, at
which point a leaf node is created and labeled.

Multivariate Trees

L
= 4

" R

-

u'”.l‘,+1|‘;313+u‘m=

T

r~_.'

Learning rules from data

From the decision tree, the following rules are identified.

If age=youth and student=no then buys_computer=no.

If age=youth and student=yes then buys_computer=yes.

If age=middle_aged then buys_computer=yes.

If age=senior and credit_rating=fair then buys_computer=no.

If age=senior and credit_rating=excellent then buys_computer=yes.

* Rule induction is similar to tree induction but
o tree induction is breadth-first,
o rule induction is depth-first; one rule at a time
* Rule set contains rules; rules are conjunctions of terms
* Rule covers an example if all terms of the rule evaluate to true for the example
* Sequential covering: Generate rules one at a time until all positive examples are covered.

Ripper(Pos,Neg, k)
RuleSet «— LearnRuleSet(Pos,Neg)
For k& times
RuleSet «—— OptimizeRuleSet(RuleSet,Pos,Neg)
LearnRuleSet(Pos,Neg)
RuleSet — ¢
DL «— DesclLen(RuleSet,Pos,Neg)
Repeat
Rule — LearnRule(Pos,Neg)
Add Rule to RuleSet
DL «— DescLen(RuleSet,Pos,Neg)
It DL'=DL+-64
PruneRuleSet(RuleSet, Pos,Neg)
Return RuleSet
Irf DL'=-DL DL — DL’
Delete instances covered from Pos and Neg
Until Pos = ¢
Return RuleSet

PruneRuleSet(RuleSet, Pos,Neg)
For each Rule € RuleSet in reverse order
DL «— DesclLen(RuleSet,Pos,Neg)
DL «— DesclLen(RuleSet-Rule, Pos,Neg)
IF DL'—DL Delete Rule from RuleSet
Return RuleSet
OptimizeRuleSet(RuleSet,Pos,Neg)
For each Rule € RuleSet
DLO «— DesclLen(RuleSet,Pos,Neg)
DL1 «— DesclLen(RuleSet-Rule+
ReplaceRule(RuleSet,Pos,Neg),Pos,Neg)
DL2 «— DesclLen(RuleSet-Rule+
ReviseRule(RuleSet, Rule,Pos,Neg),Pos, Neg)
If DL1=min(DLO,DL1,DL2)
Delete Rule from RuleSet and
add ReplaceRule(RuleSet,Pos,Neqg)
Else If DL2=min(DLO,DL1,DL2)
Delete Rule from RuleSet and
add ReviseRule(RuleSet,Rule,Pos,Neg)
Return RuleSet

Linear Discrimination

Likelihood- vs. Discriminant-based Classification:

® Likelihood-based: Assume a model for p(xIC;), use Bayes’ rule to calculate P(Cilx)
gi(x) =log P(Cjlx)
® Discriminant-based: Assume a model for g,(xI®;); no density estimation

e Estimating the boundaries is enough; no need to accurately estimate the densities inside
the boundaries

Linear Discriminant:

® Linear discriminant:

d
gi(X| Wi’Wio)zwiTX'i'Wio =sz'jxj W
=1

® Advantages:
e Simple: O(d) space/computation

e Knowledge extraction: Weighted sum of attributes; positive/negative weights,
magnitudes (credit scoring)

® Optimal when p(xIC;) are Gaussian with shared cov matrix; useful when classes
are (almost) linearly separable

Generalized Linear Model:

® (uadratic discriminant:

T T
gi(X|VVi,Wi,WiO)—X Wx+w. x+w,

® Higher-order (product) terms:

— — — 2 — 2 —
L =X L =Xy G3=X, 4y =Xy, 4s= XX,

e Map from x to z using nonlinear basis functions and use a linear discriminant in z-space:

)= 3 w0, (x)

Two Classes:

A

o

=
gx)=w x,+twx,tw,=0

2(x)>0

g (x)=¢g,(x)- ¢g,(kx)
=(W1TX+W10)—(W§X+W20)
:(W1_W2)TX+(W10_W20)

=w' X+ w,

c, if g(x)>0

choose ,
C, otherwise

Multiple Classes:

: ==
Q’;(Kl“’uwm)—wix‘l'wm

Choose C, if

K
g,(x)=maxg,(x)

Classes are
linearly separable

Sigmoid (Logistic) Function:

T ———
LE S
kil amitnnaatanninba et

| CEpEP R aoad ol s LI e e R (e SR Rl LS A P e
Py T LTy LTINS TN TN PR
A e R g S S R S e A
pal i Skt s st e e s L e e R ey

I e i i o e ol i sl

[L F 1 L L L L L 1
=10 =3 = =4 =2 o 4 4 g -] L

1. Calculate g(x)=w'x+w, and choose(, if g(x) = 0,0r
2.Calculate y = sigmoid(w“x +w,)and choosec(, ify =0.5

Gradient-Descent:

* E(w|X)is error with parameters w on sample X
w*=arg min, E(w | X)

w r

e Gradient d
radien v F {&E OE GE}

ow, ow, " ow,
* Gradient-descent:

Starts from random w and updates witeratively in the
negative direction of gradient

Aw, :—?}a—E,“@’f
ow,

\ W, =w, +Aw,
E(w!) \
E (Wt+1) \

Logistic Discrimination:

Two classes: Assume log likelihood ratio is linear

|ng(x—|cl) :WTK-I-WS
p(x|C,)
_ P(C,|x) p(x|C) 0o PC)
logit(P(cC, | x))=log—— it e
(PG, [x)) EPlclx) pixic) Pl
:WTK‘I'WD
where w, =w; +log PG
P(C;,)
- 1
y:P(C1|K)=

1+exp[— (W x+w,)]

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF COMPUTING
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-1V MULTILAYER PERCEPTRONS

MACHINE LEARNING - SIT1305

UNIT IV

UNITIV MULTILAYER PERCEPTRONS

Structure of brain - Neural networks as a parallel processing - Perceptron - Multilayer perceptron -
Backpropagation - Training procedures - Tuning the network size - Learning time.

Structure of the Brain

The human brain is one of the most complicated things that we have studied in detail, and is, on
the whole, poorly understood. We do not have satisfactory answers to the most fundamental of
questions such as “what is my mind?” and “how do I think?”. Nevertheless, we do have a basic
understanding of the operation of the brain at a low level. It contains approximately ten thousand
million (10'") basic units, called neurons. Each of these neurons is connected to about ten
thousand (10* others. To put this in perspective, imagine an Olympic-sized swimming pool,
empty. The number of raindrops that it would take to fill the pool is approximately 10", You’d
also need at least a dozen full address books if you were to be able to contact 104 other people.
The neuron is the basic unit of the brain, and is a stand-alone analogue logical processing unit.
The neurons form two main types, local processing interneuron cells that have their input and
output connections over about 100 microns, and output cells that connect different regions of the
brain to each other, connect the brain to muscle, or connect from sensory organs into the brain.
The operation of the neuron is a complicated and not fully understood process on a microscopic
level, although the basic details are relatively clear. The neuron accepts many inputs, which are
all added up in some fashion. If enough active inputs are received at once, then the neuron will
be activated and “fire”; if not, then the neuron will remain in its inactive, quiet state. A
representation of the basic features of a neuron is shown in the below figure.

The soma is the body of the neuron. Attached to the soma are long, irregularly shaped filaments,
called dendrites. These nerve processes are often less than a micron in diameter, and have
complex branching shapes. Their intricate shape resembles that of a tree in winter, without
leaves, whose branches fork and fork again into finer structure. The dendrites act as the
connections through which all the inputs to the neuron arrive. These cells are able to perform
more complex functions than simple addition on the inputs they receive, but considering a simple
summation is a reasonable approximation.

The basic features of a biological neuron

Another type of nerve process attached to the soma is called an axon. This is electrically active,
unlike the dendrite, and serves as the output channel of the neuron. Axons always appear on
output cells, but are often absent from interneurons, which have both inputs and outputs on
dendrites. The axon is a non-linear threshold device, producing a voltage pulse, called an action
potential, that lasts about 1 millisecond (10s) when the resting potential within the soma rises
above a certain critical threshold. This action potential is in fact a series of rapid voltage spikes.
The axon terminates in a specialised contact called a synapse that couples the axon with the
dendrite of another cell. There is no direct linkage across the junction; rather, it is a temporary
chemical one. The synapse releases chemicals called neurotransmitters when its potential is
raised sufficiently by the action potential. It may take the arrival of more than one action
potential before the synapse is triggered. The neurotransmitters that are released by the synapse
diffuse across the gap, and chemically activate gates on the dendrites, which, when open, allow
charged ions to flow. It is this flow of ions that alters the dendritic potential, and provides a
voltage pulse on the dendrite, which is then conducted along into the next neuron body. Each
dendrite may have many synapses acting on it, allowing massive interconnectivity to be
achieved. At the synaptic junction, the number of gates opened on the dendrite depends on the
number of neurotransmitters released. It also appears that some synapses excite the dendrite they
affect, whilst others serve to inhibit it. This corresponds to altering the local potential of the

dendrite in a positive or negative direction. A single neuron will have many synaptic inputs on its
dendrites, and may have many synaptic outputs connecting it to other cells.

Neural networks as a parallel processing

There are mainly two paradigms for parallel processing: In Single In-
struction Multiple Data (SIMD) machines, all processors execute the same
instruction but on different pieces of data. In Multple Instruction Mul-
tiple Data (MIMD) machines, different processors may execute different
instructions on different data. SIMD machines are easier to program be-
cause there is only one program to write. However, problems rarely have
such a regular structure that they can be parallelized over a SIMD ma-
chine. MIMD machines are more general, but it is not an easy task to write
separate programs for all the individual processors; additional problems
are related to synchronization, data ransfer betrween processors, and so
forth. SIMD machines are also easier to build, and machines with more
processors can be constructed if they are SIMD. In MIMD machines, pro-
cessors are more complex, and a more complex communication nerwork
should be constructed for the processors to exchange data arbitrarily.

Assume now that we can have machines where processors are a lit-
tle bit more complex than SIMD processors but not as complex as MIMD
processors. Assume we have simple processors with a small amount of
local memory where some parameters can be stored. Each processor im-
plements a fixed functon and executes the same instructions as SIMD
processors; but by loading different values into the local memory, they
can be doing different things and the whole operation can be distributed
over such processors. We will then have what we can call Neural Instruc-
tion Multiple Data (NIMD) machines, where each processor corresponds
o a neuron, local parameters correspond to its synaptic weights, and the
whole structure is a neural network. If the function implemented in each
processor is simple and if the local memory is small, then many such
processors can be fit on a single chip.

The problem now is to distribute a task over a network of such proces-
sors and to determine the local parameter values. This is where learning
comes into play: We do not need to program such machines and deter-
mine the parameter values ourselves if such machines can learn from
examples.

Thus, artificial neural networks are a way to make use of the parallel
hardware we can build with current technology and—rhanks to learning —
they need not be programmed. Therefore, we also save ourselves the
effort of programming them.

Perceptron

It performs a weighted sum of its inputs, compares this to some internal threshold level, and
turns on only if this level is exceeded. If not, it stays off. Because the inputs are passed through
the model neuron to produce the output, the system is known as a feedforward one. We need to
formulate this mathematically. If there are n inputs, then there are n associated weights on the
input lines. The model neuron calculates the weighted sum of its inputs; it takes the first input,
multiplies it by the weight on that input line, then does the same for the next input, and so on,
adding them all up at the end. This can be written as,

total input = weight on line 1 X input on 1 +
weight on line 2 X input on 2 + .-+ +
weight on line n X input on n
= WiT1 + w2 + W3T3 + Walg + ¢+ WyTh

n

=1

input
multiplicative body - adds
weight it's inputs,
then thresholds

z-} ouput_
input

Outline of the basic model.

This sum then has to be compared to a certain value in the neuron, the threshold value. This
thresholding process is accomplished by comparison; if the sum is greater than the threshold
value, then output a 1, if less, output a 0. This can be seen graphically in the figure given below,
where the x-axis represents the input, and the y-axis the output. ?

The thresholding function is altematively
known as the “'step”” funciion, or the
' Heaviside'” function.

b Threshold function,
i thresdsalding a1 8.
i
I
i i}
1 :
Threahald e don,
threghaolding &1 pero,
0 o

The thresholding function

Equivalently, the threshold value can be subtractec from the weighted sum, and the resulting
value compared to zero; if the result is positive, then output a 1, else output a 0. Notice that the
shape of the function is the same, but now the jump occurs at zero. The threshold effectively
adds an offset to the weighted sum. An alternative way of achieving the same effect is to take the
threshold out of the body of the model neuron and connect it to an extra input value that is fixed
to be “on” all the time. In this case, rather than subtracting the threshold value from the weighted

sum, the extra input of +1 is multiplied by a weight equal to minus the threshold value, = ﬂ-, and
added in as well as all the other inputs-this is known as biasing the neuron. The value of -8 is
therefore known as the neuron’s bias or ofSset. Both approaches are equivalent, and either is
acceptable.

Calling the output y, we can write

T
y=fu|) wizi—0
1=1
where f; is a step function (actually known as the Heaviside func-
tion) and

filz)=1 x>0
fulz)=0 2<0

so that it does what we want. Note that the function produces only
a lorad0,so that the neuron is either on or off.

If we use the approach of biasing the neuron, we can define an
extra input, input 0, which is always set to be on, with a weight that
represents the bias applied to the neuron. The equation describing
the output can then be written as

T
y= fu|), wit;

1=0

Notice that the lower limit of the summation has changed from 1 to 0, and that the value of the
input xo is always set to 1. This model of the neuron, shown in the below figure, was proposed
in 1943 by McCulloch and Pitts. Their model came about in much the same way as we have
developed ours, and stemmed from their research into the behaviour of the neurons in the brain.
It is important to look at the features of this McCulloch-Pitts neuron. It is a simple enough unit,
thresholding a weighted sum of its inputs to get an output. It specifically does not take any
account of the complex patterns and timings of actual nervous activity in real neural systems, nor
does it have any of the complicated features found in the body of biological neurons.

threshold unit

Details of basic Model

This ensures its status as a model, and not a copy, of a real neuron, and makes it possible to
implement on a digital computer. This is the strength of the model-now we need to investigate
what can be achieved using this simple design. The arrangement of the connections between the
neurons is important, but, continuing our trend of choosing simple models to get an idea of what
1s happening in a complicated red-world situation, we shall for the time being consider only one
layer of neurons, where we study the outputs of the neurons under a known set of inputs. The
model neurons, connected up in a simple fashion, were given the name “perceptrons” by Frank
Rosenblatt in 1962. He pioneered the simulation of neural networks on digital computers, as well
as their formal analysis. In his book “Principles of Neurodynamics ’
perceptrons as simplified networks in which certain properties of red nervous systems axe
exaggerated whilst others are ignored. He stated that they are not intended to serve as detailed

’. he describes these

copies of any real nervous system; in other words, he realised at this early stage that he was
dealing with a basic model. This fact is often lost in the popular press as the idea of computer
“brains”, based on these techniques, grabs the imagination. We are not attempting to build
computer brains, nor are we trying to mimic parts of red brains-rather we are aiming to discover
the properties of models that take their behaviour from extremely simplified versions of natural
neural systems, usually on a massively reduced scale as well. Whereas the brain has at least 10"
neurons, each connected to 10* others, we are concerned here with maybe a few hundred neurons
at most, connected to a few thousand input lines.

The learning paradigm can be summarised as follows:

¢ set the weights and thresholds randomly
e present an input

e calculate the actual out put by taking the thresholded value of the weighted sum of the
inputs

® alter the weights to reinforce correct decisions and discourage incorrect decisions-i.e.
reduce the error

® present the next input etc

The perceptron learning algorithm

Perceptron Learning Algorithm

1. Initialise weights and threshold
Define w;(t),(0 < i < n), to be the weight from input ¢ at time ¢, and
to be the threshold value in the output node. Set wg to be —#, the
bias, and zg to be always 1.

Set w;(0) to small random values, thus initialising all the weights and
the threshold.
2. Present input and desired output
Present input z¢,2y,%2,...,%, and desired output d(t)
3. Calculate actual output

y(t) = fr [i w:‘(ﬂ}&*ift}]

=0

4. Adapt weights

if correct wi(t+1) = w(t)
if output 0, should be 1 (class A) wi(t+ 1) = wit)+ x:(t)
if output 1, should be 0 (class B) wi(t+ 1) = wi(t) — zi(1)

Note that weights are unchanged if the net makes the correct decision.
Also, weights are not adjusted on input lines which do not contribute
to the incorrect response, since each weight is adjusted by the value of
the input on that line, ;, which would be zero.

This is the basic perceptron algorithm. However, various modi-
fications have been suggested to this basic algorithm. The first is
to introduce a multiplicative factor of less than one into the weight
adaption term. This has the effect of slowing down the change in
the weights, making the network take smaller steps towards the so-
lution. This alteration to the algorithm entails replacing step 4 with
the following:

4, Adapt weights—modified version
if correct wi(t+ 1) = wit)

if output 0, should be 1 (class A) wi(t+ 1) w;i(t) + nr(t)
if output 1, should be 0 (class B) wi(t+ 1) = wi(t) - nzi(t)

I

where 0 < 17 < 1, a positive gain term that controls the adaption rate.

Another algorithm of a similar nature was suggested by Widrow
and Hoff. They realised that it would be best to change the weights
by a lot when the weighted sum is a long way from the desired
value, whilst altering them only slightly when the weighted sum is
close to that required to give the correct solution. They proposed a
learning rule known as the Widrow-Hoff delta rule, which calculates
the difference between the weighted sum and the required output,
and calls that the error. Weight adjustment is then carried out
in proportion to that error. This means that during the learning
process, the output from the unit is not passed through the step
function—however, actual classification is effected by using the step
function to produce the +1 or 0 indication as before,

The error term A can be written

A = d(t) ~ y(t)

where d(t) is the desired response of the system, and y(t) is the
actual response. This takes care of the addition or subtraction, since
if the desired output is 1 and the actual output is 0, A = 41 and

so the weights are increased. Conversely, if the desired output is 0
and the actual output is +1, A = —1 and so the weights will be
decreased. Note that weights are unchanged if the net makes the
correct decision, since d(t) — y(t) = 0.

The learning algorithm is basically the same as for the basic per-
ceptron, except this time step 4 is replaced by

4. Adapt weights—Widrow-Hoff delta rule

A= d(t) - y(t)
wi(t+ 1) = wi(t)+ nAz(t)
d(t) = { +1, if i+nput from class A
0, if input from class B

where 0 < nn < 1, a positive gain function that controls the adaption
rate

Neuron units using this learning algorithm were called ADALINEs
(adaptive linear neurons) by Widrow, who also connected many of
them together into a many-ADALINE structure, or MADALINE.

Another alternative proposed is to use inputs that are not 0 or
1 (binary), but are instead —1 or +1, known as bipolar. Using bi-
nary inputs means that input lines with 0’s on them are not trained,
whereas bipolar values allow all the inputs to be trained each time.
This simple alteration helps to speed up the convergence process,
but often leads to confusion in the literature as some authors discuss
binary inputs and others bipolar ones. Effectively, they are equiva-
lent, and the use of one or the other is usually a matter of personal
preference.

Learning Boolean Functions:

In a Boolean function, the inputs are binary and the output is 1 if the
corresponding function value is true and 0 otherwise. Therefore, it can
be seen as a two-class classification problem. As an example, for learning
to AND two inputs, the table of inputs and required outputs is given in
table . An example of a perceptron that implements AND and its

Table - Input and output for the AND function.

1

i == 5

R =EaE=1E:
Pt
-0 o o=

[LL]}C

O

p—
x=+1 . X.
=+ X1 X2 (0.0} (1L0) 1.5 '

The perceptron that implements AND and its geometric interpre-

tation.

geomelric interpretation in two dimensions is given in figure 11.4. The
discriminant is

v =5(x1 +x2 — 1.5)

thatis, x = [1,x1,x2]7 andw = [-1.5,1,1]". Note that y = s(x;+x2—1.5)
satisfies the four constraints given by the definition of AND function in
table 11.1, for example, for x; = 1,x2 = 0, v = §{-0.5) = 0. Similarly it
can be shown that y = s(x; + x2 — 0.5) implements OR.

Though Boolean functions like AND and OR are linearly separable and
are solvable using the perceptron, certain functions like XOR are not.

The problem is not linearly separable. This
can also be proved by noting that there are no wy, wy, and w> values that

Input and output for the XOR function.

X1 | X2 F
0 [0 0
0 (1 1
1 |10 1
1 |1 0

XOR problem is not linearly separable. We cannot draw a line where
the empty circles are on one side and the filled circles on the other side.

satisfy the following set of inequalities:

wp =0

Wi+ Wy >0

W1+ wp >0
Wi+ Wi+ wp =0

This result should not be very surprising to us since the VC dimension
of a line (in two dimensions) is three. With two binary inputs there are
four cases, and thus we know that there exist problems with two inputs
that are not solvable using a line; XOR is one of them.

Multilayer perceptron

ALTERING THE PERCEPTRON MODEL
1 The Problem

How are we to overcome the problem of being unable to solve lin-
early inseparable problems with our perceptron? An initial approach
would be to use more than one perceptron, each set up to identify
small, linearly separable sections of the inputs, then combining their
outputs into another perceptron, which would produce a final indi-
cation of the class to which the input belongs. This approach to the
XOR problem is shown in figure 4.1.

This seems fine on first examination, but a moment’s thought will
show that this arrangement of perceptrons in layers will be unable
to learn. Each neuron in the structure still takes the weighted sum
of its inputs, thresholds it, and outputs either a one or a zero. For
the perceptrons in the first layer, the inputs come from the actual
inputs to the network, while the perceptrons in the second layer
take as their inputs the outputs from the first layer. This means

) Combining perceptrons can solve the XOR problem: percep-
tron 1 detects when the pattern corresponding to (0,1) is present, and the
other detects when (1,0) is there. Combined, these two facts allow percep-
tron J to classify the input correctly. They have to be set up correctly in

the first place, however; they cannot learn to produce this classification.

that the perceptrons in the second layer do not know which of the
real inputs were on or not; they are only aware of input from the first
layer, Since learning corresponds to strengthening the connections
between active inputs and active units (refer to section 3.3), it is
impossible to strengthen the correct parts of the network, since the
actual inputs are effectively masked off from the output units by the
intermediate layer. The two-state neuron, being “on” or “off”, gives
us no indication of the scale by which we need to adjust the weights,
and so we cannot make a reasonable adjustment. Weighted inputs
that only just turn a neuron on should not be altered to the same
extent as those in which the neuron is definitely turned on, but we
have no way of finding out what the situation is. In other words, the
hard-limiting threshold function (figure 3.3) removes the information
that is needed if the network is to successfully learn. This difficulty
is known as the credit assignment problem, since it means that the
network is unable to determine which of the input weights should be
increased and which should not, and so is unable to work out what
changes should be made to produce a better solution next time.

The Solution

The way around the difficulty imposed by using the step function
as the thresholding process is to adjust it slightly, and use a slightly
different non-linearity. If we smooth it out, so that it more or less
turns on or off, as before, but has a sloping region in the middle that
will give us some information on the inputs, we will be able to de-
termine when we need to strengthen or weaken the relevant weights.
This means that the network will be able to learn, as required. A
couple of possibilities for the new thresholding function are shown
in figure 4.2,

In both cases, the value of the output will be practically one if
the weighted sum exceeds the threshold by a lot, and conversely, it
will be practically zero if the weighted sum is much less than the
threshold value. However, in the case when the threshold and the
weighted sum are almost the same, the output from the neuron will
have a value somewhere between the two extremes. This means that

A B.

S T PR

Linear threshold Sigmoidal threshold
between limits -

otherwise, 0 or 1.

Two possible thresholding functions.

the output from the neuron is able to be related to its inputs in a
more useful and informative way.

Notice that we have altered our model to try and overcome a
particular difficulty by tracing the root of the problem, the hard-
limiting thresholding that masks the inputs from the outputs, and
then adjusting the model so that this can be solved. We have kept
many of the essential features the same; each neuron still calculates
the weighted sum. and thresholds it. However the input is now not

simply on or off, but lies within a range, although the thresholding
function that we are using approximates to the step function in many
ways, especially at the extremes of its range. The solution that we
have adopted is therefore one tailored to our particular problem, and
it would be foolish of us to say that real biological neurons also work
in this way. We are looking at an interesting construction of model
neurons, and not at a small version of a real brain. This may appear
obvious to the reader, but it is surprising how many false claims are
made about models that have their roots in biological systems, and
a timely reminder can do no harm.

We have to use a non-linear thresholding function, since layers of
perceptron units using linear functions are no more powerful than
a suitably chosen single layer. This is because each layer would be
performing a purely linear operation on its inputs, which could be
condensed into one operation. This is easiest to see with a simple
example. Changing scale is a linear operation, since all things are
affected by an equal amount. If a network scaled the input by 5
times in the first layer, and by 2 times in the second, that is exactly
equivalent to one layer scaling the whole thing by 10 times.

THE NEW MODEL

The adapted perceptron units are arranged in layers, and so the new

model is naturally enough termed the multilayer perceptron. The
basic details are shown in figure.

The multilayer perceptron: our new model.

Our new model has three layers; an input layer, an output layer,
and a layer in between, not connected directly to the input or the
output, and so called the hidden layer. Each unit in the hidden
layer and the output layer is like a perceptron unit, except that the
thresholding function is the one shown in figure , the sigmoid

function B and not the step function as before. The units in the

input layer serve to distribute the values they receive to the next
layer, and so do not perform a weighted sum or threshold, Because
we have modified the single-layer perceptron by changing the non-
linearity from a step function to a sigmoid function, and added a
hidden layer, we are forced to alter our learning rule as well,

THE MULTILAYER PERCEPTRON ALGORITHM

The algorithm for the multilayer perceptron that implements
2] the back-propagation training rule is shown below. It re-
quires the units to have thresholding non-linear functions that are
continuously differentiable, i.e. smooth everywhere. We have as-
sumed the use of the sigmoid function, f(net) = 1/(1 + ™% ")
since it has a simple derivative.

Multilayer Perceptron Learning Algorithm

1. Initialise weights and thresholds

Set all weights and thresholds to small random values.

2. Present input and desired output

Present input X, = xo,21,22,...,Zn-1 and target output 7T, =
toyt1y. . tm—1 where n is the number of input nodes and m is the
number of output nodes. Set wg to be —6, the bias, and z; to be al-
ways 1. For pattern association, X, and T}, represent the patterns to be
associated. For classification, T}, is set to zero except for one element
set to 1 that corresponds to the class that X is in.

s

3. Calculate actual output
Each layer calculates

n=—1
Ypi = f [E w:'I:':l
i=0

and passes that as input to the next layer. The final layer outputs values

ﬂpj.
4. Adapt weights

Start from the output layer, and work backwards.
wij(t+ 1) = wi;(t) + nbpjop;

w;;(t) represents the weights from node i to node j at time t, 7 is a
gain term, and 4, is an error term for pattern p on node j.

For output units

b = kopi(1 = 0p;)(ty; = 0p;)

For hidden units

byj = kopi(1 = 0)) bprws
k

where the sum is over the k nodes in the layer above node .

Backpropagation

Backpropagation learns by iteratively processing a data set of training tuples, comparing the
network’s prediction for each tuple with the actual known farget value. The target value may be
the known class label of the training tuple (for classification problems) or a continuous value (for
numeric prediction). For each training tuple, the weights are modified so as to minimize the
mean-squared error between the network’s prediction and the actual target value. These
modifications are made in the “backwards” direction (i.e., from the output layer) through each
hidden layer down to the first hidden layer (hence the name backpropagation). Although it is not
guaranteed, in general the weights will eventually converge, and the learning process stops.

Algorithm: Backpropagation. Neural network learning for classification or numeric
prediction, using the backpropagation algorithm.
Input:

D, a data set consisting of the training tuples and their associated target values;
[, the learning rate;

network, 2 multilayer feed-forward network.

Output: A trained neural network.

Method:

(1) Initialize all weights and biases in network;

(2) while terminating condition is not satisfied {

(3) for each training tuple X in I {

(4) [/ Propagate the inputs forward:

(5) for each input layer unit j {

(6) O; = Iy /{ output of an input unit is its actual input value

(7) for each hidden or output layer unit ; |

(8) I =3 ; wjjO; +8; /compute the net input of unit j with respect to
the previous layer, 1

(9) 0; = H-%JT | // compute the output of each unit j

(10] [/ Backpropagate the errors:

(11) for each unit j in the output layer

(12) Errj = Oj(1 — O3)(T; — Oy); [/ compute the error

(13) for each unit j in the hidden layers, from the last to the first hidden layer

(14) Err; = 0j(1 — 0;) } _; Errpwy; /] compute the error with respect to

the next higher layer, k

(15) for each weight wy; in nefwork |

(16) Awij = (1) ErryO;; /] weight increment
(17) wij = wy + Awgs |/ weight update
(18) for each bias &; in network |

(19) Af; = (1) Erry3 // bias increment

[Eﬂ':l Ej:5j+ﬁ3;§ HH biﬂSllpdE[E

(21) i

Backpropogation Algorithm

Example:

The figure given below shows a multilayer feed-forward neural network. Let the learning rate be
0.9. The initial weight and bias values of the network are given in Table 1, along with the first
training tuple, X= (1, 0, 1), with a class label of 1 (target value T;). This example shows the
calculations for backpropagation, given the first training tuple, X. The tuple is fed into the
network, and the net input and output of each unit are computed. The error of each unit is
computed and propagated backward. The error values and the weight and bias updates are
calculated. Given learning rate=0.9.

Figure Example of a multilayer feed-forward neural network.

Table .| Initial Input, Weight, and Bias Values

NN o%owg oWy Wy ows owy oWy owg w6 B 6

L0 1 02 -0 04 01 -05 02 03 -0 -04 02 Ol

Table.2 Net Input and Output Calelations

Uni - Netlnput 1 (utpt, 0
b 0240-05-04=07 1/(148) 03]
5 =03404+02402=01 |(14¢Y) =055

6 (D038 - 0)035) +01=-0105 1/(1+¢%) =044

Table .3 Calculation of the Error at Each Node

Unit, j Err;
6 (0.474)(1 —0.474)(1 — 0.474) =0.1311
i (0.525)(1 —0.525)(0.1311){ —0.2) = —0.0065

4 (0.332)(1 — 0.332)(0.1311){—0.3) = —0.0087

Table .4 Calculations for Weight and Bias Updating

Weight

or Bias New Value

Wig —0.3+(0.9(0.1311)(0.332) = —-0.261
W5g —0.2 + (0.93(0.1311)(0.525) = —0.138
W4 0.2 + (0.9 —0.0087)(1) =0.192

Wis —0.3 4+ (0.9)(—0.0065)(1) = —0.306
Wy 0.4+ (0.9{—0.0087){0) =04

Wa5 0.1+ (0.9 —0.00653){0) = 0.1

Wi4 —0.5 4 (0.9)(—0.0087)(1) = —0.508
Wis 0.2+ (0.9)(—0.0065)(1) = 0,194

g 0.1+ {0.9){0.1311) =0.218

(s 0.2 4+ (0.9)(—0.0065) =0.194

(g —0.4 + (0.9)(—0.0087) = —0.408

Improving Convergence:

¢ Momentum

Training Procedures

® Adaptive learning rate

ap| T HET<E

- —bn otherwise

Overfitting/Overtraining:

e Number of weights: H (d+1)+(H+1)K
01z T T T T

m— TTraining
v Yglidatio

0irF | - 4
o.osr | - i -

0.06

Mean Square Error

0.04

002

1
0 5 10 15 20 25 30
Mumber of Hidden Units

D 1 1

As complexity increases, training error is fixed but the validation error starts to increase and the
network starts to overfit.

3-5 T T T T T T T T I
=== Training
oo Walidation

o8]

Mean Square Error
—
tn

057

| | | | | | | | 1
0 100 200 300 400 500 600 700 800 900 1000
Training Epochs

As training continues, the validation error starts to increase and the network starts to overfit.

Hints:

* |nvariance to translation, rotation, size

A N T A

* Virtual examples
* Augmented error: E'=E+M\, E,
If x” and x are the “same”: E,=[g(x|8)- g(x’|98)]?
Approximation hint: 0 if g(xlt?)e I:axlbx}
E, = (g(xli?)—ax)l ifg(xli?){:ax
(g(x18)-b,) ifg(x|8)=b,

Tuning the Network Size

® Destructive * Constructive
* Weight decay: * Growing networks
OF
Aw, =-n—-Aw,
ow,

JE':EJZW.2

Dynamic Node Creation Cascade Correlation

(Ash, 1989) (Fahlman and Lebiere, 1989)

Learning Time

® Applications:
® Sequence recognition: Speech recognition
® Sequence reproduction: Time-series prediction
® Sequence association
® Network architectures
® Time-delay networks (Waibel et al., 1989)
® Recurrent networks (Rumelhart et al., 1986)

Time-Delay Neural Networks:

In a time delay neural network, previous inputs are delayed in time so as to synchronize with the
final input, and all are fed together as input to the system.Backpropagation can then be used to
train the weights. To extract features local in time, one can have layers of structured connections
and weight sharing to get translation invariance in time. The main restriction of this architecture
is that he size of the time window we slide over the sequence should be fixed a priori.

Inputs in a time window of length T are delayed in time until we can feed all T inputs as the
input vector to the MLP.

~r-T-1

! Y -T

Recurrent Networks:

Examples of MLP with partial recurrency. Recurrent connections are shown with dashed lines:
(a) self-connections in the hidden layer, (b) selfconnections in the output layer, and (c)
connections from the output to the hidden layer. Combinations of these are also possible.

Unfolding in Time:

If the sequences have a small maximum length, then unfolding in time can be used to convert an
arbitrary recurrent network to an equivalent feedforward network. A separate unit and
connection is created for copies at different times. The resulting network can be trained with
backpropagation with the additional requirement that all copies of each connection should
remain identical. The solution, as in weight sharing, is to sum up the different weight changes in
time and change the weight by the average. This is called backpropagation through time
(Rumelhart, Hinton, and Willams 1986b). The problem with this approach is the memory
requirement if the length of the sequence is large. Real time recurrent learning (Williams and
Zipser 1989) is an algorithm learning for training recurrent networks without unfolding and has
the advantage that it can use sequences of arbitrary length.

(b)

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF COMPUTING
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

UNIT-V LOCAL MODELS

MACHINE LEARNING - SIT1305

UNITV

UNITV LOCAL MODELS

Competitive learning - Adaptive resonance theory - Self organizing map - Basis functions - Learning
vector quantization - Assessing and Comparing Classification Algorithms - Combining Multiple Learners —
Reinforcement Learning.

Introduction

¢ Divide the input space into local regions and learn simple (constant/linear) models in each
patch

v

® Unsupervised: Competitive, online clustering
® Supervised: Radial-basis functions, mixture of experts

Competitive learning

The term competitive learning is used because it is as if these groups, or rather the units
representing these groups, compete among themselves to be the one responsible for

representing an instance. The model is also called winner-take-all; it is as if one group wins and
gets updated, and the others are not updated at all.

An online method has the usual advantages that (1) we do not need extra memory to store

the whole training set; (2) updates at each step are simple to implement, for example, in
hardware; and (3) the input distribution may change in time and the model adapts itself to these
changes automatically. If we were to use a batch algorithm, we would need to collect a new
sample and run the batch method from scratch over the whole sample.

X>
- O
*O B
@
.
X4
Online k-Means:
The reconstruction error is,
Elfm Y 1x)= 3 bl -m |
pro 11 i = m = min xt - m
' 0 otherwise
b'l t
Batch k - means :m ; = Z:’—’)f
Z tbi
Online k - means
Amij = -7 OF = ﬂbit(xtj - mij)

om

i

Initialize m;,i = 1,...,k, for example, to k£ random !
Repeat
For all ' € X in random order
i — argmin; ||®" — m;||
m; — m; + n(x’ — m;)
Until m,; converge

Online k-means algorithm.

Hebbian learning, which defines the update as the product of the values
of the presynaptic and postsynaptic units. It was proposed as a model for
neural plasticity: A synapse becomes more important if the units before
and afrer the connection fire simultaneously, indicating thart they are cor-
related. However, with only Hebbian learning, the weights grow without
bound (x_‘r- = 0), and we need a second force to decrease the weights that
are not updated. One possibility is to explicitly normalize the weights to
have ||m;| = 1; if Am;; > 0 and Amy = 0,1 # i, once we normalize m;
to unit length, mj; decrease. .

Winner-take-all network:

X Xa

The winner-take-all competitive neural network, which is a network
of k perceptrons with recurrent connections at the output. Dashed lines are re-
current connections, of which the ones that end with an arrow are excitatory and
the ones that end with a circle are inhibitory. Each unit at the output reinforces
its value and tries to suppress the other outputs. Under a suitable assignment of
these recurrrent weights, the maximum suppresses all the others. This has the
net effect that the one unit whose m; is closest to x ends up with its b; equal to
| and all others, namely, by, 1 # i are 0.

Adaptive Resonance Theory

The number of groups, k, should be known and specified before the pa-
rameters can be calculated. Another approach is incremental, where one
starts with a single group and adds new groups as they are needed. We
discuss the adaptive resonance theory (ART) algorithm (Carpenter and
Grossberg 1988) as an example of an incremental algorithm. In ART,
given an input, all of the output units calculate their values and the one
most similar to the input is chosen. This is the unit with the maximum
value if the unit uses the dot product or it is the unit with the minimum-
value if the unit uses the Fuclidean distance.

Let us assume that we use the Euclidean distance. If the minimum value
is smaller than a certain threshold value, named the vigilance, the updarte
is done as in online k-means. If this distance is larger than vigilance, a
new output unit is added and its center is initialized with the instance.
This defines a hypersphere whose radius is given by the vigilance defining
the volume of scope of each unirt; we add a new unit whenever we have
an input that is not covered by any unit -

* Incremental; add a new cluster if
not covered; defined by vigilance,

.'I '\L
p \
s g i

bftz‘#r_mr :_n;linHIE—mf“ r'fz;. :'i; Vi 5 |
m,.; < T If bf =P e Ur* ""-k._l\H ,
tm=nf-m) otenwise | N
0
L

Self-Organizing Maps

* Units have a neighborhood defined; m. is “between” m._,
andm.,,, and are all updated together

* One-dim map:

(Kohonen, 1990)

Am, :pe(!,f)(f _mf)

i) e LT

In the SOM, not only the closest unit but also its neighbors, in
terms of indices, are moved toward the input. Here, neighborhood is 1; m; and
its 1-nearest neighbors are updated. Note here that m;.; is far from m;, but as
it is updated with m;, and as m; will be updated when mi.1 is the winner, they
will become neighbors in the input space as well.

Radial Basis Functions

In a multilayer perceptron where hidden units use the dot
product, each hidden unit defines a hyperplane and with the sigmoid
nonlinearity, a hidden unit has a value between 0 and 1, coding the po-
sition of the instance with respect to the hyperplane. Each hyperplane
divides the input space in two, and typically for a given input, many of
the hidden units have nonzero output. This is called a distributed repre-
sentation because the input is encoded by the simultaneous activation of
many hidden units.

Another possibility is to have a local representation where for a given
input, only one or a few units are active. It is as if these locally tuned
units partition the input space among themselves and are selective to
only certain inputs. The part of the input space where a unit has nonzero
response is called its receptive field. The input space is then paved with
such units.

Neurons with such response characteristics are found in many parts
of the cortex. For example, cells in the visual cortex respond selectively
to stimulation that is both local in retinal position and local in angle
of visual orientation. Such locally tuned cells are typically arranged in
topogrophical cortical maps in which the values of the variables to which
the cells respond vary by their position in the map, as in a SOM.

The concept of locality implies a distance function to measure the simi-
larity between the given input x and the position of unit h, my. Frequently
this measure is taken as the Fuclidean distance, ||[x — my||. The response
function is chosen to have a maximum where x = my and decreasing
as they get less similar.

* Locally-tuned units:

¢ 2
[~ m,|

=
25

p, = €xp

H
: :
= Z w,p, tw,
2]

Local vs Distributed Representation:

A
x, 4 ‘
em
] o x4 3
o ©
T xC @ M Tt
om, . .
X

Local representation in the Distributed representation in the

space of (p, p,, p;) space of (1, h,)
x?: (1.0, 0.0, 0.0) x?: (1.0, 1.0)
x?: (0.0, 0.0, 1.0) x?: (0.0, 1.0)
x¢: (1.0, 1.0, 0.0) x“: (1.0, 0.0)

The difference between local and distributed representations.

The values are hard, 0/1, values. One can use soft values in (0, 1) and get a more informative
encoding. In the local representation, this is done by the Gaussian RBF that uses the distance to

the center, mi , and in the distributed representation, this is done by the sigmoid that uses the
distance to the hyperplane, wi .

Regression:

E({mh’sh’wih i,th)= ;_z z (rit_ yz't)z

H
_ t
yl'_z W Pp T Wiy

h =1

Aw, = 772 (rit_ yz't)P/tz
t t z(xtj_mhj)
Am-=772 {Z (ri_yi)wih:|ph

&

2
S

3
S

. 2
Ash:ﬂz {Z (Vit_yit)wih:|p;zHX th

Training RBF':

* Hybrid learning:
o First layer centers and spreads:
Unsupervised k-means
o Second layer weights:
Supervised gradient-descent
* Fully supervised

Classification:
_ t t
E({mh’sh’wih i | X)_ _Z Z r; log y;
t I

t
- eXP[Zhwihph T Wi

Yi = 1
ZkeXP _Zhwkhplta + WkOJ

Rules and Exceptions:

II.Il
b £ e
& y —ththF:(Y,
r ' h=1
e Default
xceptions i

Learning Vector Quantization

Let us say we have H units for each class, already labeled by those classes.
These units are initialized with random instances from their classes. At
each iteration, we find the unit, m;, that is closest to the input instance
in Euclidean distance and use the following update rule;

Am; =n(x"-m;) if x" and m; have the same class label
Am; = —n(x' —m;) otherwise

If the closest center has the correct label, it is moved toward the input
to better represent it. If it belongs to the wrong class, it is moved away
from the input in the expectation that if it is moved sufficiently away, a
center of the correct class will be the closest in a future iteration. This
is the learning vector gquantization (LVQ) model proposed by Kohonen
(1990, 1995).

The LVQ update equation is analogous to

(x Mpi)
Ay =0 Y (fy - Gf) ———— p J
I h
where the

direction in which the center is moved depends on the difference between
two values: our prediction of the winner unit based on the input distances
and what the winner should be based on the required output.

Assessing and Comparing Classification Algorithms

L({mh’sh’wih i h IX): Z log Z gftzH (yith)rit

h
= > log > g} exp {Z r' log yi’h}
t h i

t
y[_ eXp wih _ eXp VihX
ih — - t
E keXp th E keXp thX

Combining Multiple Learners

* Early integration: Concat all features and train a single learner

e Late integration: With each feature set, train one learner, then either use a fixed rule or
stacking to combine decisions

* Intermediate integration: With each feature set, calculate a kernel, then use a single SVM
with multiple kernels

* Combining features vs decisions vs kernels

Rationale:

No Free Lunch Theorem: There is no algorithm that is always the most accurate
® Generate a group of base-learners which when combined has higher accuracy
Different learners use different
® Algorithms
® Hyperparameters
® Representations /Modalities/Views
® Training sets
Subproblems
® Diversity vs accuracy

Voting:

Linear combination

L
y= Z w}.d}.

=]

L
w; =0 and Zw =1
=l

(Classification

J
}:"I. = Z w‘fdjf

1 X

* Bayesian perspective:

P(C. | x)= ZP(C:- |XJMJ)P(M1)

almudelﬂﬂ'{j

I dj are iid . ;

ﬂﬂ:EEEI¢]=_LEhJ=EhJ
j

L

1 1 1 1
Var[}f}zvar[zzdj]z F’U’ar[z r::‘JzIL—I.'_-"l.a"*arl:r::{i }zIVarl:dj}
i i
Bias does not change, variance decreases by L

* |f dependent, errorincrease with positive correlation

Var(y)= Lil‘u’ar[z n‘j]z L—1|:Z ‘nu"arl:r:[i)+ 2> Covl(d,,d, }]

i

Fixed Combination Rules:

Rule Fusion function f(-)

Sum ??=%ELHH

Weighted sum | yi = Xywidj, w20, X = 1

Median yi = median;d ;

Minimum yi = minjdji

Maximum yi = max; dj O |G |G

Product Vi = [_[j- djj d) 02105 |03
i» 00106 |04
iy 04104 0.2
Sum 02105 |03

Median 02105 |04
Minimum | 0.0 | 0.4 | 0.2
Maximum | 04 | 0.6 | 04
Product 00| 012 |0.032

Error-Correcting Qutput Codes:

® K classes; [problems (Dietterich and Bakiri, 1995)
® Code matrix W codes classes in terms of learners

+1 —1 —1 -1
* One per class =31 31 =1 -1
£k WSl b =i a0
=1 —a3 3 3
* Pairwise FEE i O 0 0 —l
L=K(K-1)/2 W' =10 S ETE ST
1o a2 o |3 O i
o o[l -1|l0 -1 -—1]
® Full code [=2¥11_1 e s
o P L Lol 1 el e
-1 +1 +1 -1 -1 +1 +1
= 4 i 4

* With reasonablel, find W such thatthe Hamming
distance btw rows and columns are maximized.

* Voting scheme

L
T T

=1

Subproblems may be more difficult than one-per-K

Bagging:

e Use bootstrapping to generate L training sets and train one base-learner with each

(Breiman, 1996)
® Use voting (Average or median with regression)

® Unstable algorithms profit from bagging

AdaBoost:
Generate a sequence of base-learners each focusing on previous one’s errors

(Freund and Schapire, 1996).

Training:
1 N) il t _ 4 /AT
For all {z*,»*};2, € X, initialize pj = 1/N
For all base-learners j=1,....L
Randomly draw &; from A" with probabilities p;.
Train d; using &;
For each (z'.r?), calculate uf — d-(rt)
Calculate error rate: ¢; — Z pj z,rj rt)
Ife; >1/2, then L —j -1, stop
Bi = ei/(1-¢))
For each (z',r"), decrease probabilities if correct:
If yj =7t p;rl jipj Else le pt
Normalize probabilltles
t 7
Z pj-l—l ;;+1 —Djs1/4;
Testing:
Given z, calculate d;(x). jz',....L
Calculate class outputs, 1 =1.. ... K:

L
=Ty (e) dufo)

Stacking

*» Combinerf() is O

anotherlearner

(Wolpert, 1992) / f \

X

Fine-Tuning an Ensemble:

® Given an ensemble of dependent classifiers, do not use it as is, try to get independence
1. Subset selection: Forward (growing)/Backward (pruning) approaches to improve
accuracy/diversity/independence
2. Train metaclassifiers: From the output of correlated classifiers, extract new
combinations that are uncorrelated. Using PCA, we get “eigenlearners.”
e Similar to feature selection vs feature extraction

Cascading:

* Use dj only if preceding ones are not confident
» (ascade learners in order of complexity

A: r
.,V_dz
yes
y=d, Ll - d,
yes A
7120
d,

H_" HQ‘

Reinforcement Learning

* Game-playing: Sequence of moves to win a game
* Robotina maze: Sequence of actions to find a goal

* Agenthas a statein an environment, takes an action and
sometimes receives reward and the state changes

* Credit-assignment

i Lea rn a3 F}D“C‘F ENVIRONMENT

Reward

State Action

Single State: K-armed Bandit

* Among K levers, choose Slot ——@) Leverl
the one that pays best machine

Q(a): value of action a ‘\. Lever 2

Reward is r,

Set Qa) =r, ‘ — @) Leverk
Choosea” if []

Q(a”)=max, Q(a)

reward
* Rewards stochastic (keep an expected reward):

Q..(a)«—Q (a)+7lr.,(a)-Q,(a)]

Elements of RL (Markov Decision Processes):

s; : State of agent at time ¢
® . Action taken at time ¢
® In s, action q, is taken, clock ticks and reward r; is received and state changes to s

Next state prob: P (w1 | 8¢, ar)

Reward prob: p (ri11s:, ar)

Initial state(s), goal state(s)

Episode (trial) of actions from initial state to goal
(Sutton and Barto, 1998; Kaelbling et al., 1996)

Policy and Cumulative Reward:

Policy, #:5—>.A E:I':.F'T(fu“r_]

t

Value of a policy, V’T(s)
t
Finite-horizon:

1_‘

Vg(st):E[rHl+rr+2+"‘+rr+r]:E F

E+i

q.
I
—

Infinite horizon:

V(s)= Elrss + #ross +72hs +---]= E[i e]

i=1
0=<»¥<1 isthe discount rate

V(s)=max v=(s,) Vs,

=max g >’ ;z"‘lrm]
e i=1

= ==
= ﬂaKE I 1 fz ,r’fl J"r+|'+1]
! i=1

= mfx E[’}+1 + WV (s,)] Bellman’s equation

v (Sr):mfx E[rr+1]+}’rzp(5r+1 Isr e)/- (5r+1)

sl

t

Q-(Sf :ﬂr):E[rt+1]+FZP(5r+l |5r :ﬂr)HEEK a- (5r+1rﬂt+1]

t+1

V'(s,)J=maxQ’(s,,a,) Valueofa,ins

Model-Based Learning:

* Environment, P(s., | ¢, a;), p (req | S;, @), is known
* Thereis no need for exploration

* Can be solved using dynamic programming

* Solvefor

v (s,)= maxL a7 P 15,0,V (5.0)

5._]

* Optimal policy
7*(s, :]= arg max E[rr_l B ,ar] "';”Z Pls...|s.,a, :L"*(Sr_l]J

Sl

Value Iteration:

Initialize V (s) to arbitrary values

Repeat
For all se §
For all a e A

Q(s,a) — Elr|s,a] +~ Zs’es P(s'|s,a)V (s')
V(s) « maxg, Q(s, a)
Until V'(s) converge

Policy Iteration:

Initialize a policy = arbitrarily
Repeat
T
Compute the values using = by
solving the linear equations
L.,rTT(S) |q “ 3 + Z ’ES
Improve the policy at each state
7'(s) «— argmaxq (E[r|s,a] + 4 Zs’es P(d']s,
Until 7 = «’

Q-learning

Initialize all Q(s,a) arbitrarily
For all episodes
Initalize s
Repeat
Choose a using policy derived from @, e.g., e-greedy
Take action a, observe r and s
Update Q(s,a):

Q(s,a) — Q(s,a) + n(r + ymax, Q(s',a’) — Q(s,a))
§— g

Until s is terminal state

Sarsa:

Initialize all Q(s,a) arbitrarily
For all episodes
[nitalize s
Choose a using policy derived from (), e.g., e-greedy
Repeat
Take action a, observe r and s’
Choose o’ using policy derived from Q, €.9., e-greedy
Update Q(s,a):
Q(s,a) = Q(s,a) +n(r +4Q(s',d") - Q(s,a))
s—s§, a—d

Until s is terminal state

