
1

 SCHOOL OF ELECTRICAL AND ELECTRONICS

 DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

UNIT – I -INTRODUCTION TO SOFT COMPUTING AND ARTIFICIAL

NEURAL NETWORKS – SIC1614

2

Evolution of Computing - Soft Computing Constituents - From Conventional AI to Computational

Intelligence - MachineLearning Basics, Fundamentals of ANN - Biological Neurons and Their

Artificial Models - Types of ANN - Properties -Different Learning Rules - Types of Activation

Functions - Training of ANN - Hebb learning - Perceptron Model (Both Single& Multi Layer) -

Training Algorithm - Problems Solving Using Learning Rules and Algorithms - Linear

Separability –Limitation.

Evolution of Computing

Soft computing is a collection of artificial intelligence-based computational

techniques
[1]

 including the fundamentals of neural network, fuzzy logic, and genetic

algorithm which, in turn, offers the superiority of humanlike problem solving capabilities.

Introduction Basics of Soft Computing What is Soft Computing

 • The idea of soft computing was initiated in 1981 when Lotfi A. Zadeh published his first

paper on soft data analysis ―What is Soft Computing‖, Soft Computing. Springer-Verlag

Germany/USA 1997.]

• Zadeh, defined Soft Computing into one multidisciplinary system as the fusion of the

fields of Fuzzy Logic, Neuro-Computing, Evolutionary and Genetic Computing, and Probabilistic

Computing.

• Soft Computing is the fusion of methodologies designed to model and enable solutions to

real world problems, which are not modeled or too difficult to model mathematically.

• The aim of Soft Computing is to exploit the tolerance for imprecision, uncertainty,

approximate reasoning, and partial truth in order to achieve close resemblance with human like

decision making.

• The Soft Computing – development history SC = EC + NN + FL

 Soft Evolutionary Neural Fuzzy Computing Computing Network Logic Zadeh Rechenberg

McCulloch Zadeh 1981 1960 1943 1965

EC = GP + ES + EP + GA Evolutionary Genetic Evolution Evolutionary Genetic

Computing Programming Strategies Programming Algorithms Rechenberg Koza Rechenberg

Fogel Holland 1960 1992 1965 1962 1970 3 Definitions of Soft Computing (SC) Lotfi A. Zadeh,

1992 :

―Soft Computing is an emerging approach to computing which parallel the remarkable

ability of the human mind to reason and learn in a environment of uncertainty and imprecision‖.

The Soft Computing consists of several computing paradigms mainly : Fuzzy Systems, Neural

Networks, and Genetic Algorithms.

 • Fuzzy set : for knowledge representation via fuzzy If – Then rules.

• Neural Networks : for learning and adaptation

• Genetic Algorithms : for evolutionary computation These methodologies form the core

of SC. Hybridization of these three creates a successful synergic effect; that is, hybridization

creates a situation where different entities cooperate advantageously for a final outcome. Soft

Computing is still growing and developing. Hence, a clear definite agreement on what comprises

Soft Computing has not yet been reached. More new sciences are still merging into Soft

Computing. Goals of Soft Computing Soft Computing is a new multidisciplinary field, to construct

new generation of Artificial Intelligence, known as Computational Intelligence.

https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Soft_computing#cite_note-:0-1
https://en.wikipedia.org/wiki/Neural_network
https://en.wikipedia.org/wiki/Fuzzy_logic
https://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Genetic_algorithm

3

 • The main goal of Soft Computing is to develop intelligent machines to provide solutions

to real world problems, which are not modeled, or too difficult to model mathematically.

 • Its aim is to exploit the tolerance for Approximation, Uncertainty, Imprecision, and

Partial Truth in order to achieve close resemblance with human like decision making.

 Approximation : here the model features are similar to the real ones, but not the same.

Uncertainty : here we are not sure that the features of the model are the same as that of the entity .

Imprecision : here the model features (quantities) are not the same as that of the real ones, but

close to them. Importance of Soft Computing Soft computing differs from hard (conventional)

computing. Unlike hard computing, the soft computing is tolerant of imprecision, uncertainty,

partial truth, and approximation. The guiding principle of soft computing is to exploit these

tolerance to achieve tractability, robustness and low solution cost. In effect, the role model for soft

computing is the human mind. The four fields that constitute Soft Computing (SC) are : Fuzzy

Computing (FC), Evolutionary Computing (EC), Neural computing (NC), and Probabilistic

Computing (PC), with the latter subsuming belief networks, chaos theory and parts of learning

theory. Soft computing is not a concoction, mixture, or combination, rather, Soft computing is a

partnership in which each of the partners contributes a distinct methodology for addressing

problems in its domain. In principal the constituent methodologies in Soft computing are

complementary rather than competitive. Soft computing may be viewed as a foundation component

for the emerging field of Conceptual Intelligence. 5 Fuzzy Computing In the real world there exists

mu

Fundamentals of ANN

Neural computing is an information processing paradigm, inspired by biological system,

composed of a large number of highly interconnected processing elements(neurons) working in

unison to solve specific problems.

Artificial neural networks (ANNs), like people, learn by example. An ANN is configured

for a specific application, such as pattern recognition or data classification, through a learning

process. Learning in biological systems involves adjustments to the synaptic connections that

exist between the neurons. This is true of ANNs as well.

The Biological Neuron

The human brain consists of a large number, more than a billion of neural cells that

process information. Each cell works like a simple processor. The massive interaction between all

cells and their parallel processing only makes the brain‘s abilities possible.

4

Dendrites are branching fibres that extend from the cell body or soma.

Soma or cell body of a neuron contains the nucleus and other structures, support chemical

processing and production of neurotransmitters.

Axon is a singular fiber carries information away from the soma to the synaptic sites of

other neurons (dendrites ans somas), muscels, or glands.

Axon hillock is the site of summation for incoming information. At any moment, the

collective influence of all neurons that conduct impulses to a given neuron will determine

5

whether or n ot an action potential will be initiated at the axon hillock and propagated along the

axon.

Myelin sheath consists of fat-containing cells that insulate the axon from electrical

activity. This insulation acts to increase the rate of transmission of signals. A gap exists

between each myelin sheath cell along the axon. Since fat inhibits the propagation of

electricity, the signals jump from one gap to the next.

Nodes of Ranvier are the gaps (about 1 µm) between myelin sheath cells. Since fat serves

as a good insulator, the myelin sheaths speed the rate of transmission of an electrical impulse

along the axon.

Synapse is the point of connection between two neurons or a neuron and a muscle or a

gland. Electrochemical communication between neurons take place at these junctions.

Terminal buttons of a neuron are the small knobs at the end of an axon that release

chemicals called neurotransmitters.

Information flow in a neural cell

The input/output and the propagation of information are shown below.

 Dendrites receive activation from other neurons.

 Soma processes the incoming activations and converts them into output

activations.

 Axons act as transmission lines to send activation to other neurons.

 Synapses the junctions allow signal transmission between the axons and

dendrites.

 The process of transmission is by diffusion of chemicals called neuro-

6

transmitters.

McCulloch-Pits introduced a simplified model of this real neurons.

Artificial neuron model

An artificial neuron is a mathematical function conceived as a simple model of a real

(biological) neuron.

 The McCulloch-Pitts Neuron

This is a simplified model of real neurons, known as a Threshold Logic Unit.

 A set of input connections brings in activations from other neuron.

 A processing unit sums the inputs, and then applies a non-linear activation function

(i.e. squashing/transfer/threshold function).

 An output line transmits the result to other neurons.

 In other words,

▪ The input to a neuron arrives in the form of signals.

▪ The signals build up in the cell.

▪ Finally the cell discharges (cell fires) through the output.

▪ The cell can start building up signals again.

The equation for the output of a McCulloch-Pitts neuron as a function of 1 to n inputs is

written as

Output = sgn (Input i – φ)

where φ is the neuron‘s activation threshold.

If Input i ≥ φ then Output = 1

If Input i ˂ φ then Output = 0

In this McCulloch-Pitts neuron model, the missing features are:

- Non-binary input and output

- Non-linear summation

- Smooth thresholding

- Stochastic

7

- Temporal information processing.

Basic Elements:

Neuron consists of three basic components – weights, thresholds and a single

activation function.

Types of ANN

Single Layer Feedforward NN

- A single layer network has one layer of connection weights.

- Often the units can be distinguished as input units which receive signals from the

outside world and output units from which the response of the net can be read

- In a typical single layer net the input units are fully connected to output units but are

not connected to other units and the output are not connected to other output units.

8

Multilayer feedforward NN

- A multilayer net is a net with one or more layers of nodes between the input units

and the output units.

- Typically there is a layer of weights between two adjacent levels of units.

9

- Multilayer nets can solve more complicated problems that can single layer nets,

but training may be more difficult.

Competitive layer:

- A competitive layer form a part of a large number of neural networks.

- The competitive interconnections have weights of -ɛ

Different Learning Rules

- Supervised learning

- Unsupervised learning

- Reinforced learning

- Hebbian learning

- Gradient descent learning

- Competitive learning

- Stochastic learning

10

 Supervised learning :

Every input pattern that is used to train the network is associated with an output pattern

which is the target or the desired pattern.

A teacher is assumed to be present during the training process, when a comparison is

made between the network‘s computed output and the correct expected output, to determine

the error.

The error can then be used to change network parameters, which result in an

improvement in performance.

 Unsupervised learning:

In this learning method the target output is not presented to the network.

It is as if there is no teacher to present the desired patterns and hence the system learns of its

own by discovering and adapting to structural features in the input patterns.

 Reinforced learning:

In this method, a teacher though available, doesnot present the expected answer but only

indicates if the computed output correct or incorrect.

The information provided helps the network in the learning process.

 Hebbian learning:

This rule was proposed by Hebb and is based on correlative weight adjustment.

This is the oldest learning mechanism inspired by biology.

In this, the input-output pattern pairs () are associated by the weight matrix W, known as the

correlation matrix.

It is computed as

W =

11

Here is the transpose of the associated output vector Numerous

variants of the rule have been proposed.

 Gradient descent learning:

This is based on the minimization of error E defined in terms of weights and activation

function of the network.

Also it is required that the activation function employed by the network is differentiable, as

the weight update is dependent on the gradient of the error E.

Thus if is the weight update of the link connecting the and neuron of the two

neighbouring layers, then is defined as,

= ɳ

Where, ɳ is the learning rate parameter and is the error gradient

with reference to the weight .

 Competitive learning:

In this method, those neurons which respond strongly to input stimuli have their weights

updated.

When an input pattern is presented, all neurons in the layer compete and the winning

neurons undergoes weight adjustment.

Hence it is a winner-takes-all strategy.

 Stochastic learning:

In this method, weights are adjusted in a probablistic fashion.

An example is evident in simulated annealing the learning mechanism employed by

Boltzmann and Cauchy machines, which are a kind of NN systems.

Types of Activation Functions

• Common activation functions

– Identity function

• f(x) = x for all x

12

– Binary step function (with threshold θ) (aka Heaviside function or threshold

function)

S

-- Binary

sigmoid

f (x)

1

1

ex

-

Bipolar sigmoid

13

Training a Neural Network

• Whether our neural network is a simple Perceptron, or a much more complicated

multilayer network with special activation functions, we need to develop a systematic

procedure for determining appropriate connection weights.

• The general procedure is to have the network learn the appropriate weights from a

representative set of training data

• In all but the simplest cases, however, direct computation of the weights is intractable

Instead, we usually start off with random initial weights and adjust them in small steps until the

required outputs are produced

• We shall now look at a brute force derivation of such an iterative learning algorithm

for simple Perceptrons.

Perceptron Model (Both Single & Multi Layer)

Simple Perceptron for Pattern Classification

We consider here a NN, known as the Perceptron, which is capable of performing pattern

classification into two or more categories. The perceptron is trained using the perceptron learning

rule. We will first consider classification into two categories and then the general multiclass

classification later. For classification into only two categories, all we need is a single output

neuron. Here we will use bipolar neurons. The simplest architecture that could do the job consists

of a layer of N input neurons, an output layer with a single output neuron, and no hidden layers.

This is the same architecture as we saw before for Hebb learning. However, we will use a

different transfer function here for the output neuron:

14

Perceptron Algorithm

• Step 0: Initialize weights and bias

– For simplicity, set weights and bias to zero

– Set learning rate a (0 <= a <= 1) (h)

• Step 1: While stopping condition is false do steps 2-6

• Step 2: For each training pair s:t do steps 3-5

• Step 3: Set activations of input units

xi =

• Step 4: Compute response of output unit:

y _ in b xi wi

• Step 5: Update weights and bias if an error occurred for this pattern

if y != t

wi(new) = wi(old) + atxi

b(new) = b(old) + at

else

wi(new) = wi(old)

b(new) = b(old)

• Step 6: Test Stopping Condition

– If no weights changed in Step 2, stop, else, continue

Note that instead of one separating line, we have a line separating the region of

positive reponse from the region of zero response, namely, the bounding the inequality.

15

W1 x1 + w2x2 + b > ɵ

And a line separating the region of zero reponse from the region of negative response,

namely, the bounding the inequality.

W1 x1 + w2x2 + b < -ɵ

PROBLEM--

Multi Layer Perceptron Model:

16

Perceptron and linearly seperable tasks:

Perceptron are successful only on problems with a linearly separable solution sapce and cited the XOR problem a

an illustration.

 Perceptron cannot handle, in particular, tasks which are not linearly separable.

Sets of points in two dimensional spaces are linearly separable if the sets can be seperated by a straight line.

Generalizing, a set of points in n-dimentional space are linearly seperable if the sets can be seperated by a

straight line.

Generalizing, a set of points in n-dimentional space are linearly seperable if there is a hyperplane of (n-1)

dimensions that separates the sets.

Hebbian net:

Earliest and simplest learning rule for a neural net. Hebb proposed that learning occurs by modificatio of the

synapse strenghts in a manner such that if two interconnected neurons are both ―ON‖ at the sametime, there the

weight between those neurons should be increased.

• Step 0: Initialize all weights

– For simplicity, set weights and bias to zero

• Step 1: For each input training vector do steps 2-4

• Step 2: Set activations of input units

xi = si

• Step 3: Set the activation for the output unit

y = t

• Step 4: Adjust weights and bias

wi(new) = wi(old) + yxi b(new) = b(old)

+ y

17

TEXT / REFERENCE BOOKS

1. Laurene Fausett, " Fundamentals of Neural Networks: Architectures, Algorithms and Applications", 2008.

2. Timothy J. Ross , ―Fuzzy Logic with Engineering Applications‖, McGraw - Hill International Editions, 2004.

3. Jang J.S.R., Sun C.T. and Mizutani E, "Neuro-Fuzzy and soft computing", Pearson Education, 2003.

4. Rajasekaran. S, Pai. G.A.V. ―Neural Networks, Fuzzy Logic and Genetic Algorithms‖, Prentice Hall of India, 2003.

Part- A

1. What is meant by evolutionary computation

2. What is meant by ANN

3. Define Architecture in NN

4. Define Training algorithm

5. Give some applications of ANN

6. Give the properties of biological neurons

7. Give the different types of ANN

8. Write the types of learning rules

9. What is meant by supervised learning

10. What is meant by competitive learning

11. Give the properties of ANN

12. What is meant by activation function

13. What is meant by Hebb Net.

14. What is meant by linear separability

15. Give the limitations of linear separability

Part-B

1. Explain the architecture, Learning rule and algorithm of Perceptron Model

2. Explain in detail about Biological Neural Network and compare with ANN.

3. Explain in detail about the different types of architecture

4. Elaborate on different learning rules

5. Explain in detail about Hebb Net .

6. Write notes on different types of activation function

7. Train logical AND gate with binary input & bipolar target using perceptron algorithm with initial

weights and bias as

w1=2 , w2=2 and b=-4

18

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

UNIT – II – DETERMINISTIC AND STATISTICAL NETWORKS – SIC1614

19

DETERMINISTIC AND STATISTICAL NETWORKS

Back Propagation Training Algorithm - Practical Difficulties - Counter Propagation Network - Structure & Operation

- Training of Kohonen and Grossberg Layer - Applications of BPN & CPN - Statistical Method – Training

Application - Boltzman Training - Cauchy Training - Hop Field Network and Boltzman Machine - Speed Energy

Function - Network Capacity - RBF Network, BAM, Architecture of SOM, ANN based water level controller.

Introduction

Back propagation is a way of learning the internal representation of a multilayered

network. How back propagation does this is based on a simple idea. We input a vector of values

pi into the network and we get out a corresponding output a3 i (see fig on preceding slide). We

compare this output to our target (desired) output ti to determine the cumulative error among the

different outputs units. But the output units are themselves connected with the hidden units in

the network. We don‘t know what the hidden units ought to do, but we can compute how fast the

error changes as we change a hidden activity. But instead of using the desired activities to train

the hidden units, we use error derivatives with respect to the hidden activities. Each hidden

activity can affect many output units and can therefore have many separate effects on the error.

These effects must be combined. The point of the back propagation algorithm is to show how

we can compute the error derivatives for all the hidden units efficiently. Once we have the error

derivatives for the hidden activities, its easy to get the error derivatives for the weights going

into a hidden unit.

Algorithm:

The training involves three stages

The feedforward of the input training pattern

The back propagation of the associated error

The adjustment of the weights

Activation function:

Backpropagation net should have several important characteristics

 Continuous

 Differentiable

 Monotonically non decreasing

One of the most typical activation functions is the binary sigmoid function, which has range of

(0,1) and is defined as

20

21

Another common activation function is bipolar sigmoid, which has range of (-1,1) and

is defined as,

The bipolar sigmoid function is closely related to the function,

22

Slop O. Initialize weights.

(I ‹a smzlt random values).

Sizp 1. While StO{3}jj ng cond tion is false, ds Steps z—9.

Siep 2. For cach training pair, do Steps 3-B.

T’ee@o •ard•

Step 3. Each input unit (A/, ¿ = I. . ,.

n) receives

inp£Jt g gFI,Bl x, and braadcasts this sigzud to all
uni‹s in the Iay<r abov« ‹tkc rida,n ul«itsj.

S/ @ Each hiddcn unll (Z„/ = f. . . ,. p) suats its
wcightc‹1 input signals,

applies its activation f••c‹iOfl tO compute i\g output
signal,

and sends this signal to al) units in the layer

above foutput units).

23

!+6 • b 0tJt§Ut «*it (Y# , ñ , I

it.• weighted input signals,

and applies i‹s w‹ivation functio»

i‹s output signal.

, . rig) SlZf¥lS

Bac ropn8aIiuo of rrror.'

5'fep 6. Each oaipai anii I Y z, t‹

, I . . . , m l receives

B t8f@gE p€tttc <e pending to the input twining
pattern. computes its error informa- tion term.

B•d aends 8‹ to units in the layer betw.

&ch hirfrtr•n uni(I-Jt,/ —- I, . . . , p) en its

d+ tR input» {from units in the layer a@),

multiplies by the denvativc oP its activation

ftC(IOU \O calculate US error information

vaIr›ik•trs its wetght correction term (ugpd to

and •nI•tiIn •1 its bias correction term fuasd to
update ; lafer).

24

Counter propagation network

They are multilayer networks based on a combination of input, clustering and output

layers.

Counter propagation networks are trained in two stages:

First stage – the input vectors are clustered

- No topology was assumed for the cluster units.

Second stage – the weights from the cluster units to the output units are adapted to produce the

desired response

There are two types of counter propagation nets:

- Full counter propagation

- Forward only counter propagation

Full counter propagation

This was developed to provide an efficient method of representing a large number of vector

pairs, x:y by adaptively constructing a look-up table.

It produces an approximation: based on input of an x vector or input of a y vector only, or input

of an x:y pair, possibly with some distorted or missing elements in either or both vectors.

25

Architecture:

Full counter propagation network:

First phase:

The units in the X input, cluster and Y input layers are active.

The learning rule for weight updates on the winning cluster unit is.

Second phase:

Only j unit remains active in the cluster region.

The weight updates for the units in the Y output and X outout layers are,

26

Algorithm:

27

In steps 4 and 11

28

- In case of a tie, take the unit with the smallest index.

- To use the dot product metric, find the cluster unit with the largest net input:

The weight vectors and input vectors should be normalized to use the dot product metric.

To use the Euclidean distance metric, find the cluster unit , the square of whose distance

from the input vectors is smallest.

Forward only counter propagation:

- Simplified version

- Differs from the other net in using only the x vectors to form the clusters.

Algorithm:

Learning rule for weights from input units to cluster units

29

Learning rule for weights from cluster units to output units

30

In steps 4 and 11

- In case of a tie, take the unit with the smallest index.

- To use the dot product metric, find the cluster unit with the largest net input:

To use the Euclidean distance metric, find the cluster unit , the square of whose distance from

the input vectors is smallest.

Training of Kohonen:

Algorithm:

31

To obtain approximate value of y for x = 0.12.

Step 0: Initialize weights.

Step 1: For the input x = 0.12, y = 0.0, do steps 2-4.

Step 2: Set X input layer activations to vector x.

Set Y input layer activations to vector y.

Step 3: Find the index J of the winning cluster unit, the squares of the distances from the

input to each of the cluster units are,

Thus, based on the total input, the closest cluster unit is J = 6.

Step 4: Compute approximations to x and y:

Step 5: Find the index J of the winning cluster unit, the squares of the distances from the

input to each of the cluster units are,

32

Thus based on the input from x only, the closest cluster unit is J = 1. Step

6: Compute approximations to x and y.

Boltzmann machine:

The states of the units are binary valued, with probabilistic state transitions. This

machine described in this section has fixed weights, which express the degree of desirability

that units and both be ‗ON‘. In applying Boltzmann machines to constrained optimization

problems, the weights represent the constraints of the problem and the quantity to be

optimized.

The objective of the neural net is to maximized the consensus function,

The sum runs over all units of the net. In sequential Boltzmann machine, the change in

consensus if unit, were to change its state is,

The probability of the net accepting a change in state for unit is,

33

The control parameters T called the temperature is gradually reduced as the net searches for a

maximal consensus.

Architecture:

The architecture of a Boltzmann machine for units arranged in a two dimensional array.

34

Hopfield Network:

The net is a fully interconnected neural net, in the sense that each unit is connected to every

other unit. The net has symmetric weights with no self-connections,

An

d

Only one unit updates its activation at a time and each unit continues to receive an external signal

in addition to the signal from the other units in the net. The asynchronous updating of the units

allows a function, known as an energy or Lyapunov function, to be found for the net.

Architecture:

An expanded form of a common representation of the Hopfield net,

35

Algorithm:

To store a set of binary patterns where,

The weight matrix is given by,

And = 0

To store a set of bipolar patterns where,

The weight matrix is given by,

And = 0.

36

Example:

Testing a discrete Hopfield net: mistakes in the first and second components of the stored vector.

The input vector is (1, 1, 1, 0) or (1, 1, 1,-1)

Mistake input (0,0,1,0)

Update order (, , ,)

37

38

Self-Organizing Map (SOM)

The Self-Organizing Map is one of the most popular neural network models. It belongs to the category

of competitive learning networks. The Self-Organizing Map is based on unsupervised learning, which

means that no human intervention is needed during the learning and that little needs to be known about

the characteristics of the input data. We could, for example, use the SOM for clustering data without

knowing the class memberships of the input data. The SOM can be used to detect features inherent to

the problem and thus has also been called SOFM, the Self-Organizing Feature Map.

The Self-Organizing Map was developed by professor Kohonen . The SOM has been proven useful in

many applications . For closer review of the applications published in the open literature, see section .

The SOM algorithm is based on unsupervised, competitive learning. It provides a topology preserving

mapping from the high dimensional space to map units. Map units, or neurons, usually form a two-

dimensional lattice and thus the mapping is a mapping from high dimensional space onto a plane. The

property of topology preserving means that the mapping preserves the relative distance between the

points. Points that are near each other in the input space are mapped to nearby map units in the SOM.

The SOM can thus serve as a cluster analyzing tool of high-dimensional data. Also, the SOM has the

capability to generalize. Generalization capability means that the network can recognize or characterize

inputs it has never encountered before. A new input is assimilated with the map unit it is mapped to.

The Self-Organizing Map is a two-dimensional array of neurons:

This is illustrated in Figure1 . One neuron is a vector called the codebook vector.

39

ANN based water level controller.

TEXT / REFERENCE BOOKS

1. Laurene Fausett, " Fundamentals of Neural Networks: Architectures, Algorithms and Applications", 2008.

2. Timothy J. Ross , ―Fuzzy Logic with Engineering Applications‖, McGraw - Hill International Editions, 2004.

3. Jang J.S.R., Sun C.T. and Mizutani E, "Neuro-Fuzzy and soft computing", Pearson Education, 2003.

4. Rajasekaran. S, Pai. G.A.V. ―Neural Networks, Fuzzy Logic and Genetic Algorithms‖, Prentice Hall of India,

2003.

40

Part- A

1. Write the three stages of operation in BPN

2. State the important characteristics of BPN

3. Give the practical consideration of BPN

4. What is meant by CPN

5. Give the application of CPN

6. What is meant by speed energy function

7. What is meant by RBF network

8. List out statistical methods of training

9. What is Boltzmann training

10. What is BAM

11. Write about network capacity

12. wite about grossberg layer

13. What is meant by Cauchy training

Part-B

1. Explain about back propagation algorithm in detail and its limitations

2. Explain the architecture and algorithm of Full CPN

3. Explain the architecture and algorithm of Forward CPN

4. Elaborate on the training of Hopfield Network

5. Explain in detail about Discrete BAM

6. With neat diagram explain the ANN based water level controller

7. Explain the Architecture of Self Organizing Map algorithm.

41

 SCHOOL OF ELECTRICAL AND ELECTRONICS

 DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

UNIT – III – FUZZY LOGIC – SIC 1614

42

Introduction to Fuzzy Set Theory - Basic Concepts of Fuzzy Sets - Classical Set Vs Fuzzy Set - Properties of Fuzzy Set -

Fuzzy Logic Operation on Fuzzy Sets - Fuzzy Logic Control Principles - Fuzzy Relations - Fuzzy Rules - Defuzzification -

Fuzzy Inference Systems - Fuzzy Expert Systems - Fuzzy Decision Making

Introduction to fuzzy set theory:

 In fuzzy logic, exact reasoning is viewed as a limiting case of approximate reasoning.

• In fuzzy logic, everything is a matter of degree.

• In fuzzy logic, knowledge is interpreted a collection of elastic or, equivalently, fuzzy

constraint on a collection of variables.

• Inference is viewed as a process of propagation of elastic constraints.

• Any logical system can be fuzzified.

There are two main characteristics of fuzzy systems that give them better performance for

specific applications.

• Fuzzy systems are suitable for uncertain or approximate reasoning, especially for the system

with a mathematical model that is difficult to derive.

• Fuzzy logic allows decision making with estimated values under incomplete or uncertain

information.

CLASSICAL SETS

Define a universe of discourse, X, as a collection of objects all having the same characteristics.

The individual elements in the universe X will be denoted as x. The features of the elements in

X can be discrete, countable integers, or continuous valued quantities on the real line.

Examples of elements of various universes might be as follows:

The clock speeds of computer CPUs;

The operating currents of an electronic motor;

The operating temperature of a heat pump (in degrees Celsius);

The Richter magnitudes of an earthquake;

The integers 1 to 10.

For crisp sets A and B consisting of collections of some elements in X, the following notation is

defined:

x X → x belongs to X

43

x A → x belongs to A

x / A → x does not belong to A

For sets A and B on X,

we also have

A B → A is fully contained in B (if x A, then x B)

A B → A is contained in or is equivalent to B

(A ↔ B) → A B and B A (A is equivalent to

B)

We define the null set, Ø, as the set containing no elements, and the whole set, X, as the set of

all elements in the universe. The null set is analogous to an impossible event, and the whole set

is analogous to a certain event. All possible sets of X constitute a special set called the power

set, P(X).

For a specific universe X, the power set P(X) is enumerated in the following example.

Example

We have a universe composed of three elements, X = {a,b,c}, so the cardinal number is nX = 3.

The power set is P(X) = {Ø,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}.

The cardinality of the power set, denoted nP(X), is found as nP(X) = 2nX = 23 = 8.

Note that if the cardinality of the universe is infinite, then the cardinality of the power set is also
infinity, that is, nX =∞ nP(X) = ∞.

Operations on Classical Sets:

The four terms are expressed using Venn Diagrams,

Union Intersection

44

Complement Difference

Properties of Classical (Crisp) Sets

Certain properties of sets are important because of their influence on the mathematical

manipulation of sets. The most appropriate properties for defining classical sets and showing

their similarity to fuzzy sets are as follows:

Two special properties of set operations are known as the excluded middle axioms and De

Morgan‘s principles. These properties are enumerated here for two sets A and B. The excluded

middle axioms are very important because these are the only set operations described here that

are not valid for both classical sets and fuzzy sets. There are two excluded middle axioms. The

first, called the axiom of the excluded middle, deals with the union of a set A and its

complement; the second, called the axiom of contradiction, represents the intersection of a set A

and its complement.

45

De Morgan‘s principles are important because of their usefulness in proving tautologies and

contradictions in logic, as well as in a host of other set operations and proofs. De Morgan‘s

principles are displayed in the shaded areas of the Venn diagrams

FUZZY SETS

In classical, or crisp, sets the transition for an element in the universe between membership and

nonmembership in a given set is abrupt and well defined (said to be ―crisp‖). For an element in a

universe that contains fuzzy sets, this transition can be gradual. This transition among various

degrees of membership can be thought of as conforming to the fact that the boundaries of the

fuzzy sets are vague and ambiguous. Hence, membership of an element from the universe in this

set is measured by a function that attempts to describe vagueness and ambiguity.

A notation convention for fuzzy sets when the universe of discourse, X, is discrete and finite, is

as follows for a fuzzy set A:

In both notations, the horizontal bar is not a quotient but rather a delimiter. The numerator in

each term is the membership value in set A associated with the element of the universe

indicated in the denominator. In the first notation, the summation symbol is not for algebraic

summation, but rather denotes the collection or aggregation of each element; hence, the ―+‖

signs in the first notation are not the algebraic ―add‖ but are an aggregation or collection

operator. In the second notation, the integral sign is not an algebraic integral but a continuous

function-theoretic aggregation operator for continuous variables.

Fuzzy Set Operations

Define three fuzzy sets A, B , and C on the universe X. For a given element x of the

universe, the following function-theoretic operations for the set-theoretic operations of

union, intersection, and complement are defined for A, B , and C on X:

46

De Morgan‘s principles for classical sets also hold for fuzzy sets, as denoted by the following

expressions:

As enumerated before, all other operations on classical sets also hold for fuzzy sets, except for

the excluded middle axioms. These two axioms do not hold for fuzzy sets since they do not

form part of the basic axiomatic structure of fuzzy sets. Since fuzzy sets can overlap, a set and

its complement can also overlap. The excluded middle axioms, extended for fuzzy sets, are

expressed as,

Properties of Fuzzy Sets:

Fuzzy sets follow the same properties as crisp sets. Because of this fact and because the

membership values of a crisp set are a subset of the interval [0,1], classical sets can be

thought of as a special case of fuzzy sets.

1. A B is the set of loadings for which one expects that either material B or material D

will be ―safe.‖

2. A ∩ B is the set of loadings for which one expects that both material B and material D

are ―safe.‖ 3. A and B are the sets of loadings for which material D and material B are

unsafe, respectively.

4. A|B is the set of loadings for which the ductile material is safe but the brittle material is

in jeopardy.

5. B|A is the set of loadings for which the brittle material is safe but the ductile material is

in jeopardy.

6. De Morgan‘s principle A ∩ B = A B asserts that the loadings that are not safe

with respect to both materials are the union of those that are unsafe with respect to the brittle

material with those that are unsafe with respect to the ductile material.

47

7. De Morgan‘s principle A B = A ∩ B asserts that the loads that are safe for

neither material D nor material B are the intersection of those that are unsafe for material D

with those that are unsafe for material B.

Fuzzy sets vs. crisp sets

Crisp sets are the sets that we have used most of our life. In a crisp set, an element is either a

member of the set or not. For example, a jelly bean belongs in the class of food known as

candy. Mashed potatoes do not.

Fuzzy sets, on the other hand, allow elements to be partially in a set. Each element is given a

degree of membership in a set. This membership value can range from 0 (not an element of the

set) to 1 (a member of the set). It is clear that if one only allowed the extreme membership values

of 0 and 1, that this would actually be equivalent to crisp sets. A membership function is the

relationship between the values of an element and its degree of membership in a set. An example

of membership functions are shown in the figure. In this example, the sets (or classes) are

numbers that are negative large, negative medium, negative small, near zero, positive small,

positive medium, and positive large. The value, µ, is the amount of membership in the set.

CARTESIAN PRODUCT

An ordered sequence of r elements, written in the form (a1, a2, a3,...,ar), is called an

ordered r-tuple; an unordered r-tuple is simply a collection of r elements without restrictions on

order. In a ubiquitous special case where r = 2, the r-tuple is referred to as an ordered pair. For

crisp sets A1, A2,..., Ar, the set of all r-tuples (a1, a2, a3,...,ar), where a1 A1, a2 A2, and ar

 Ar, is called the Cartesian product of A1, A2,..., Ar, and is denoted by A1 × A2 ×···× Ar. The

Cartesian product of two or more sets is not the same thing as the arithmetic product of two or

more sets. The latter is dealt with in Chapter 12, when the extension principle is introduced.

When all the Ar are identical and equal to A, the Cartesian product A1 × A2 × ···× Ar can be

denoted as Ar .

FUZZY RELATIONS

Fuzzy relations also map elements of one universe, say X, to those of another universe,

say Y, through the Cartesian product of the two universes. However, the ―strength‖ of the relation

48

between ordered pairs of the two universes is not measured with the characteristic function, but

rather with a membership function expressing various ―degrees‖ of strength of the relation on the

unit interval [0,1]. Hence, a fuzzy relation R is a mapping from the Cartesian space X × Y to

the interval [0,1], where the strength of the mapping is expressed by the membership function of

the relation for ordered pairs from the two universes, or µR (x, y).

Cardinality of Fuzzy Relations

Since the cardinality of fuzzy sets on any universe is infinity, the cardinality of a fuzzy

relation between two or more universes is also infinity. Operations on Fuzzy Relations Let

R and S be fuzzy relations on the Cartesian space X × Y.

Then the following operations apply for the membership values for various set operations

(these are similar to the same operations on crisp sets,

Properties of Fuzzy Relations

Just as for crisp relations, the properties of commutativity, associativity, distributivity,

involution, and idempotency all hold for fuzzy relations. Moreover, De Morgan‘s principles hold

for fuzzy relations just as they do for crisp (classical) relations, and the null relation, O, and the

complete relation, E, are analogous to the null set and the whole set in set-theoretic form,

respectively. Fuzzy relations are not constrained, as is the case for fuzzy sets in general, by the

excluded middle axioms. Since a fuzzy relation R is also a fuzzy set, there is overlap between a

relation and its complement; hence,

As seen in the foregoing expressions, the excluded middle axioms for fuzzy relations do not

result, in general, in the null relation, O, or the complete relation, E.

Fuzzy Cartesian Product and Composition

Because fuzzy relations in general are fuzzy sets, we can define the Cartesian product to

be a relation between two or more fuzzy sets. Let A be a fuzzy set on universe X and B be a

fuzzy set on universe Y, then the Cartesian product between fuzzy sets A and B will result in

a fuzzy relation R, which is contained within the full Cartesian product space, or

where the fuzzy relation R has membership function

49

Example .

Then, the resulting relation, T, which relates elements of universe X to elements of

universe Z, that is, defined on Cartesian space X × Z, can be found by max–min composition

The rest,

and by max–product composition

The rest,

FUZZY TOLERANCE AND EQUIVALENCE RELATIONS

A fuzzy relation, R, on a single universe X is also a relation from X to X. It is a fuzzy

equivalence relation if all three of the following properties for matrix relations define it:

50

FEATURES OF THE MEMBERSHIP FUNCTION

Since all information contained in a fuzzy set is described by its membership function, it
is useful to develop a lexicon of terms to describe various special features of this function. For
purposes of simplicity, the functions shown in the figures will all be continuous, but the terms
apply equally for both discrete and continuous fuzzy sets.

51

The core of a membership function for some fuzzy set A is defined as that region of the
universe that is characterized by complete and full membership in the set A. That is, the core
comprises those elements x of the universe such that µA (x) = 1.

The support of a membership function for some fuzzy set A is defined as that region
of the universe that is characterized by nonzero membership in the set A. That is, the support
comprises those elements x of the universe such that µA (x) > 0.

The boundaries of a membership function for some fuzzy set A are defined as that
region of the universe containing elements that have a nonzero membership but not complete
membership. That is, the boundaries comprise those elements x of the universe such that 0 < µA
(x) < 1. These elements of the universe are those with some degree of fuzziness, or only partial
membership in the fuzzy set A.

FUZZIFICATION

Fuzzification is the process of making a crisp quantity fuzzy. We do this by simply
recognizing that many of the quantities that we consider to be crisp and deterministic are
actually not deterministic at all; they carry considerable uncertainty. If the form of
uncertainty happens to arise because of imprecision, ambiguity, or vagueness, then the
variable is probably fuzzy and can be represented by a membership function.

DEFUZZIFICATION TO CRISP SETS

We begin by considering a fuzzy set A, then define a lambda-cut set, Aλ, where 0 ≤ λ
≤ 1. The set Aλ is a crisp set called the lambda (λ)-cut (or alpha-cut) set of the fuzzy set A,
where Aλ = {x|≧A (x) ≥ λ}. Note that the λ-cut set Aλ does not have a tilde underscore; it is a
crisp set derived from its parent fuzzy set, A. Any particular fuzzy set A can be transformed
into an infinite number of λ-cut sets, because there are an infinite number of values λ on the
interval [0, 1].

Any element x Aλ belongs to A with a grade of membership that is greater than or

equal to the value λ.

DEFUZZIFICATION TO SCALARS

As mentioned in the introduction, there may be situations where the output of a fuzzy
process needs to be a single scalar quantity as opposed to a fuzzy set. Defuzzification is the
conversion of a fuzzy quantity to a precise quantity, just as fuzzification is the conversion of a
precise quantity to a fuzzy quantity. The output of a fuzzy process can be the logical union of two
or more fuzzy membership functions defined on the universe of discourse of the output variable.
For example, suppose a fuzzy output comprises two parts:

52

(1) C1, a trapezoidal shape

(2) C2, a triangular membership shape.

The union of these two membership functions, that is, C = C 1 C 2, involves the max operator,

which graphically is the outer envelope of the two shapes shown

Of course, a general fuzzy output process can involve many output parts (more than two), and the
membership function representing each part of the output can have shapes other than triangles
and trapezoids.

Among the many methods that have been proposed in the literature in recent years, seven are
described here for defuzzifying fuzzy output functions (membership functions).

1. Max membership principle: Also known as the height method, this scheme is limited to
peaked output functions. This method is given by the algebraic expression,

53

where z is the defuzzified value.

2. Centroid method: This procedure (also called center of area or center of gravity) is the
most prevalent and physically appealing of all the defuzzification methods.

where ʃ denotes an algebraic integration.

3. Weighted average method: The weighted average method is the most frequently used in

fuzzy applications since it is one of the more computationally efficient methods.
Unfortunately, it is usually restricted to symmetrical output membership functions. It is
given by the algebraic expression,

Where ∑ denotes the algebraic sum and where z is the centroid of each symmetric

54

membership function.

The weighted average method is formed by weighting each membership function in the
output by its respective maximum membership value.

4. Mean max membership: This method (also called middle-of-maxima) is closely related

to the first method, except that the locations of the maximum membership can be
nonunique (i.e., the maximum membership can be a plateau rather than a single point).

55

5. Center of sums: This is faster than many defuzzification methods that are currently in
use, and the method is not restricted to symmetric membership functions. This process
involves the algebraic sum of individual output fuzzy sets, say C1 and C2, instead of
their union. Two drawbacks to this method are that the intersecting areasare added
twice, and the method also involves finding the centroids of the individual membership
functions. The defuzzified value z is given as follows:

56

6. Center of largest area: If the output fuzzy set has at least two convex subregions, then the
center of gravity (i.e., z is calculated using the centroid method, Equation 4.5) of the
convex fuzzy subregion with the largest area is used to obtain the defuzzified value z of
the output.

7. First (or last) of maxima: This method uses the overall output or union of all individual
output fuzzy sets Ck to determine the smallest value of the domain with maximized
membership degree in Ck. The equations for z are as follows.

First, the largest height in the union (denoted hgt(C k)) is determined,

Then, the first of the maxima is found,

An alternative to this method is called the last of maxima, and it is given as

57

Assumptions in a Fuzzy Control System

Design A number of assumptions are implicit in a fuzzy control system design. Six basic
assumptions are commonly made whenever a fuzzy rule-based control policy is selected.

1. The plant is observable and controllable: state, input, and output variables are
usually available for observation and measurement or computation.

2. There exists a body of knowledge comprising a set of linguistic rules, engineering
common sense, intuition, or a set of input–output measurements data from which rules can be
extracted.

3. A solution exists.

4. The control engineer is looking for a ―good enough‖ solution, not necessarily the
optimum one.

5. The controller will be designed within an acceptable range of precision.

6. The problems of stability and optimality are not addressed explicitly; such issues
are still open problems in fuzzy controller design.

The following section discusses the procedure for obtaining the control surface, h(·),
from approximations based on a collection of fuzzy IF–THEN rules that describe the dynamics
of the controller.

Simple Fuzzy Logic Controllers

58

First-generation (nonadaptive) simple fuzzy controllers can generally be depicted by a
block diagram such as that shown in Figure. The knowledge-base module in Figure contains
knowledge about all the input and output fuzzy partitions. It will include the term set and the
corresponding membership functions defining the input variables to the fuzzy rule-base system
and the output variables, or control actions, to the plant under control.

The steps in designing a simple fuzzy control system are as follows:

1. Identify the variables (inputs, states, and outputs) of the plant.

2. Partition the universe of discourse or the interval spanned by each variable into a
number of fuzzy subsets, assigning each a linguistic label (subsets include all the elements in
the universe).

59

3. Assign or determine a membership function for each fuzzy subset.

4. Assign the fuzzy relationships between the inputs‘ or states‘ fuzzy
subsets on the one hand and the outputs‘ fuzzy subsets on the other hand, thus
forming the rule-base.

5. Choose appropriate scaling factors for the input and output
variables in order to normalize the variables to the [0, 1] or the [−1, 1]
interval.

6. Fuzzify the inputs to the controller.

7. Use fuzzy approximate reasoning to infer the output contributed from each

rule.

8. Aggregate the fuzzy outputs recommended by each rule.

9. Apply defuzzification to form a crisp output.

EXAMPLES OF FUZZY CONTROL SYSTEM DESIGN

Most control situations are more complex than we can deal with

mathematically. In this situation, fuzzy control can be developed, provided a

body of knowledge about the control process exists, and formed into a number

of fuzzy rules. For example, suppose an industrial process output is given in

terms of the pressure. We can calculate the difference between the desired

pressure and the output pressure, called the pressure error (e), and we can

calculate the difference between the desired rate of change of the pressure,

dp/dt, and the actual pressure rate, called the pressure error rate, (e)˙ . Also,

assume that knowledge can be expressed in the form of IF–THEN rules such as

IF pressure error (e) is ―positive big (PB)‖ or ―positive medium (PM)‖ and

IF pressure error rate (e)˙ is ―negative small (NS),‖ THEN heat input

change is ―negative medium (NM).‖

The linguistic variables defining the pressure error, ―PB‖ and ―PM,‖ and

the pressure error rate, ―NS‖ and ―NM,‖ are fuzzy, but the measurements of both

60

the pressure and pressure rate as well as the control value for the heat (the

control variable) ultimately applied to the system are precise (crisp).

TEXT / REFERENCE BOOKS

1. Laurene Fausett, " Fundamentals of Neural Networks: Architectures, Algorithms and

Applications", 2008.

2. Timothy J. Ross , ―Fuzzy Logic with Engineering Applications‖, McGraw - Hill International

Editions, 2004.

3. Jang J.S.R., Sun C.T. and Mizutani E, "Neuro-Fuzzy and soft computing", Pearson Education,

2003.

4. Rajasekaran. S, Pai. G.A.V. ―Neural Networks, Fuzzy Logic and Genetic Algorithms‖, Prentice

Hall of India, 2003.

Part- A

1. Differentiate between crisp and fuzzy logic

2. Define fuzzy set

3. Define membership function

4. What is fuzzification

5. Define defuzzification

6. What is the advantage of fuzzy logic

7. What is FLC

8. What are Demorgan‘s laws

9. What is meant by decision making

10. Define fuzzy inference system

11. What is meant by Linguistic pharses

12. What is meant by alpha cut

13. Give the different types of membership functions

14. What are the basic elements of a fuzzy logic control system

Part-B

61

1. Discuss in detail about the fuzzy set theory

2. Write the operations and properties of fuzzy set

3. Differentiate classical set theory and fuzzy set using examples

4. Discuss in detail about the Fuzzy logic controller

5. Write in detail about the fuzzy relations and fuzzy rules

6. Explain in detail about the Defuzzification methods

7. Find max-min composition for the function

𝑦1 𝑦2 𝑦3

𝑅 =

𝑥1

𝑥2

𝑥3

0.7 0.8 0.5
0.2 0.4 0.6
0.1 0.9 0.4

𝑧1 𝑧2 𝑧3

𝑇 =

𝑦1

𝑦2

𝑦3

0.3 0.2 0.5
0.2 0.8 0.6
0.6 0.9 0.1

8. If 𝐷1
 = {

1

1
+

0.6

1.5
+

0.2

2
+

0.1

2.5
+

0

3
 }

𝐷2
 =

1

1
+

0.6

1.5
+

0.2

2
+

0.1

2.5
+

0

3

Find Complement, Union, Intersection and Difference

62

SCHOOL OF ELECTRICAL AND ELECTRONICS

 DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

UNIT – IV – FUZZY LOGIC CONTROLLER AND ITS APPLICATION – SIC 1614

63

Fuzzy Logic Controller - Fuzzification Interface - Knowledge Base- Decision Making Logic –

Defuzzification Interface- Application of Fuzzy Logic to Water Level Controller - Temperature

Controller - Control of Blood Pressure during Anaesthesia. Introduction to Neuro - Fuzzy Systems

- Fuzzy System Design Procedures - Fuzzy Sets and Logic Background - Fuzzy / ANN Design and

Implementation

General fuzzy logic controller:

- The principle design elements in a general fuzzy logic control system.

1. Fuzzification strategies and the interpretation of a Fuzzification operator, or

fuzzifier.

2. Knowledge base:

Discretization/ normalization of the universe of

discourse. Fuzzy partitions of the input and output

spaces.

Completeness of the partitions.

Choice of membership functions of a primary fuzzy set.

3. Rule base:

Choice of process state (input) variables and control (output)

variables. Source of derivation of fuzzy control rules

Types of fuzzy control rules

Consistency, interactivity and completeness of fuzzy control

rules

4. Decision making logic:

Definition of a fuzzy implication

Interpretation of the sentence

connective and Inference mechanism

5. Defuzzification strategies and the interpretation of a Defuzzification

operator (defuzzifier).

64

(ñ. I l)

B.4.1 Fuszy-F.o$pc n .ecl>Io« 'on ction Creztterl Lry Fuaaifyiog

RnnLmn R m

rat ‹r in 1›n:›kmJ ‹JHH‖\I hlt ‹› IH st‹'Ia ‹›f I \J lJI‘mI / ‹'I› 1›ku›‹1 I›r 'I .tir‹' in

\›r‹kk‹n rt‹e ' ti il I › I ‹ › J•t \1w t›{ I i1I roll t/\lp/ nt \ [›. ‹ Mt '¿‹qI xnlt tr I ir›l i» I

iFi kt•lj ‹Ir in.'j z it›t i› 1(I nl‹1x ‹y} .'›* \ ‹'r nt‹•]› IM t‹i r wtiitzti orv

rJ‹t \• in 1›n kt'lI ‹ l \›a'JI ilJt‹› I ‹j nl ‹•] n

iJ ztlrix La t'r •J‹t‹s I •'itI Il\t• ‹lii cxiv j¥,s I h•• fiMt. fi c IJ ••l 'Hit'H\ ‹ s{ tual

cix I ,

^y /'IUII^'II*I — Z Z I Z 8. U'I['/Il•I1•I/'* (• *‹›)

65

8. 4.2 Eiiaay-Logic Patient DeterlorRtion I Hdex

I. i f‹• I fln •tit ‹ ' Billy ‹ ' 'hI,s 1 i k‹' C•h S"i'i it ri‹ ‖H1«r L"nilJ tr •. I‘ Ill l i1 nrt' ‹w

\‹•tMti. a tl i i It iIz;l I ¥'t'liI ris1tl r L li ltiu• ztn• J‹ i has I \r' il J I u'\ñ Its I zu•ts

I ‹A i IN t‹' r •k fHs1‹›r. l‘ztt it•til U‹•t «i‹/rJ‹t i\/l\ Ill I 'x ir tto lt'I\<l ru•

nlJvV' tl iJ \ till' Lai . G.• . tt‖‹•iphl n +- i¥,Its^I t it F}s|*t {A -I c UI JsTi' /i

t"‹"[l i i› n) i]‹• Is. •}. {‘III j‹ 'III ‹ i•< 'ri r•t i ›i› tI1‹]I'X > f‹ ›£It t\I) tt‹ n

I t‹ › JLwwas I] t‹ ' t ¥1 I I‹-It I I I t' i f t lJ‹• -‹ ›1H {1t ic ij1 c i L t 1 H' [J‹tl H'llf - Al

jn I u\.w s}

i III I iii • fi izx;' }r4i',ic-] iy‹›f u\I ›i [i\ li',s c **j t lan x • ‹ \ifF •ri'J It c-rit ice\I ‹ zl i‹ lil i i lj,s

‹*} t lz •

li‹ 'art . l‘nt i ml IN 't‹ 'ri‹ ›r ztl i‹ ›ti JT t‹ li x (/r,i,) is cixx 'H 1 i' t I ‹ ' fia I' G..1 \.

£''i:s- 6.5. Pnti‹V il 0•'l •'ri ›rn11MIl I\1‹I‹'x Fi tri‹ 1 i‹ II at r Art s≦yi•

Coizsll£ lu M R\sk E'nrter{Wx)

66

Application Of Fuzzy Logic To Control Of Blood Pressure During Anaesthesia – Cardio

Vascular Signals

67

EXT / REFERENCE BOOKS

1. Laurene Fausett, " Fundamentals of Neural Networks: Architectures, Algorithms and Applications", 2008.

2. Timothy J. Ross , ―Fuzzy Logic with Engineering Applications‖, McGraw - Hill International Editions,

2004.

3. Jang J.S.R., Sun C.T. and Mizutani E, "Neuro-Fuzzy and soft computing", Pearson Education, 2003.

4. Rajasekaran. S, Pai. G.A.V. ―Neural Networks, Fuzzy Logic and Genetic Algorithms‖, Prentice Hall of

India, 2003.

Part- A

1. What is a fuzzy logic controller

2. What is fuzzy decision making

3. What is meant by defuzzification interface

4. Write about knowledge base

5. What is meant by neuro fuzzy system

6. What is meant by fuzzification interface

Part-B

1. Explain FLC with neat diagram and discuss advantages and disadvantages

2. Elaborate in detail about application of FLC for water level Controller

3. Write in detail about FLC for Temperature Controller

4. Explain in detail about application of FLC for the control of Blood Pressure during

Anesthesia

5. Explain in detail about the design and Implementation of Neuro fuzzy system

68

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

UNIT – V – GENETIC ALGORITHMS – SIC1614

69

Introduction - Robustness of Traditional Optimization and Search Techniques - The goals of optimization - Survival

of the Fittest - Fitness Computations - Cross over - Mutation -Reproduction- Rank method- Rank space method

1.Introduction

The genetic algorithm (GA), developed by John Holland and his collaborators in the 1960s and

1970s (Holland, 1975; De Jong, 1975), is a model or abstraction of biological evolution based on

Charles Darwin's theory of natural selection. Holland was probably the first to use the crossover

and recombination, mutation, and selection in the study of adaptive and artificial systems. These

genetic operators form the essential part of the genetic algorithm as a problem-solving strategy.

Since then, many variants of genetic algorithms have been developed and applied to a wide range

of optimization problems, from graph coloring to pattern recognition, from discrete systems (such

as the travelling salesman problem) to continuous systems (e.g., the efficient design of airfoil in

aerospace engineering), and from financial markets to multi-objective engineering optimization.

There are many advantages of genetic algorithms over traditional optimization algorithms. Two

most notable are: the ability of dealing with complex problems and parallelism. Genetic algorithms

can deal with various types of optimization, whether the objective (fitness) function is stationary or

non-stationary (change with time), linear or nonlinear, continuous or discontinuous, or with

random noise. Because multiple offsprings in a population act like independent agents, the

population (or any subgroup) can explore the search space in many directions simultaneously. This

feature makes it ideal to parallelize the algorithms for implementation. Different parameters and

even different groups of encoded strings can be manipulated at the same time.

However, genetic algorithms also have some disadvantages. The formulation of fitness function,

the use of population size, the choice of the important parameters such as the rate of mutation and

crossover, and the selection criteria of the new population should be carried out carefully. Any

inappropriate choice will make it difficult for the algorithm to converge or it will simply produce

meaningless results. Despite these drawbacks, genetic algorithms remain one of the most widely

used optimization algorithms in modern nonlinear optimization.

2.Robustness of Traditional Optimization and Search Techniques

GA is a stochastic search algorithm based on principles of natural competition between

individuals for appropriating limited natural sources. Success of the winner normally depends on

their genes, and reproduction by such individuals causes the spread of their genes. By successive

selection of superior individuals and reproducing them, the population will be led to obtain more

https://www.sciencedirect.com/topics/engineering/stochastic-search-algorithm

70

natural resources. The GA simulates this process and calculates the optimum of objective

functions. In general, the standard GA is not convenient for finding the solutions to complex

problems. The VSP method (Gholizadeh and Salajegheh, 2010; Gholizadeh and Samavati, 2011;

Salajegheh and Gholizadeh, 2005) is an alternative to overcome this shortcoming of GA.

In this modified GA, an initial population with a small number of individuals is selected; this

population is much smaller than that in standard GA. Then, all the necessary operations of the

standard GA are carried out and the optimal solution is achieved. As the size of the population is

small, the method converges to a premature solution. In each generation, the best individual is

saved. Then, the best solution is repeatedly copied to create a new population and the remaining

members of the population are randomly selected. Thereafter, the optimization process is repeated

using standard GA with a reduced population to achieve a new solution.

3.Survival of the Fittest - Fitness Computations - Cross over - Mutation

Over the past few years, there has been a terrific buzz around Artificial Intelligence (AI).

Major companies like Google, Apple, and Microsoft are actively working on the topic. In fact, AI

is an umbrella that covers lots of goals, approaches, tools, and applications. Genetic Algorithms

(GA) is just one of the tools for intelligent searching through many possible solutionsGA is a

metaheuristic search and optimization technique based on principles present in natural evolution. It

belongs to a larger class of evolutionary algorithms.GA maintains a population of

chromosomes—a set of potential solutions for the problem. The idea is that ―evolution‖ will find

an optimal solution for the problem after a number of successive generations—similar to natural

selection.GA mimics three evolutionary processes: selection, gene crossover, and mutation.Similar

to natural selection, the central concept of GA selection is fitness. The chromosomes that are more

fit have a better chance for survival. Fitness is a function that measures the quality of the solution

represented by the chromosome. In essence, each chromosome within the population represents the

input parameters. For example, if your problem contains two input parameters, such as price and

volume in trading, each chromosome will logically consist of two elements. How the elements are

encoded within the chromosome is a different topic.

During the selection, chromosomes form pairs of parents for breeding. Each child takes

characteristics from its parents. Basically, the child represents a recombination of characteristics

71

from its parents: Some of the characteristics are taken from one parent and some from another. In

addition to the recombination, some of the characteristics can mutate.Because fitter chromosomes

produce more children, each subsequent generation will have better fitness. At some point, a

generation will contain a chromosome that will represent a good enough solution for our problem.

GA is powerful and broadly applicable for complex problems. There is a large class of

optimization problems that are quite hard to solve by conventional optimization techniques.

Genetic algorithms are efficient algorithms whose solution is approximately optimal. The well-

known applications include scheduling, transportation, routing, group technologies, layout design,

neural network training, and many others.

4.Selection

 selection is a process of finding successors to the current chromosomes—the chromosomes that

are more fit for our problem. During the selection, we need to ensure that the chromosomes with

better fitness have a better chance for survival.

 private List<T> selection(List<T> population) {

 final double[] fitnesses = population.stream()

 .mapToDouble(fitness)

 .toArray();

 final double totalFitness = DoubleStream.of(fitnesses).sum();

 double sum = 0;

 final double[] probabilities = new double[fitnesses.length];

 for (int i = 0; i < fitnesses.length; i++) {

 sum += fitnesses[i] / totalFitness;

 probabilities[i] = sum;

 }

 probabilities[probabilities.length - 1] = 1;

 return range(0, probabilities.length).mapToObj(i -> {

 int index = binarySearch(probabilities, random());

72

if (index < 0) {

 index = -(index + 1);

 }

 return population.get(index);

 }).collect(toList());

}

The idea behind this implementation is the following: The population is represented as consequent

ranges on the numerical axis. The whole population is between 0 and 1.

5.Crossover

private void crossover(List<T> population) {

 final int [] indexes = range(0 , population.size())

 .filter(i-> random() < crossoverProbability)

 .toArray();

 shuffle(Arrays.asList(indexes));

 for (int i = 0 ; i < indexes.length / 2 ; i++) {

 final int index1 = indexes[2 * i];

 final int index2 = indexes[2 * i + 1];

 final T value1 = population.get(index1);

73

 final T value2 = population.get(index2);

 population.set(index1, crossover.apply(value1, value2));

 population.set(index2, crossover.apply(value2, value1));

 }

}

With the predefined probability crossoverProbability , we select parents for breeding. The selected

parents are shuffled, allowing any combinations to happen. We take pairs of parents and apply

the crossover operator. We apply the operator twice for each pair because we need to keep the

size of the population the same. The children replace their parents in the population.

Mutation

Finally, we perform recombination of the characteristics.

private void mutation(List<T> population) {

 for (int i = 0 ; i < population.size(); i++) {

 if (random() < mutationProbability) {

 population.set(i, mutation.apply(population.get(i)));

 }

 }

}

With predefined probability mutationProbability , we perform ―mutation‖ on the chromosomes.

The mutation itself is defined by mutation .

74

6.Reproduction- Rank method

Selection is the stage of a genetic algorithm in which individual genomes are chosen from a

population for later breeding (using the crossover operator).

A generic selection procedure may be implemented as follows:

1. The fitness function is evaluated for each individual, providing fitness values, which are

then normalized. Normalization means dividing the fitness value of each individual by the

sum of all fitness values, so that the sum of all resulting fitness values equals 1.

2. Accumulated normalized fitness values are computed: the accumulated fitness value of an

individual is the sum of its own fitness value plus the fitness values of all the previous

individuals; the accumulated fitness of the last individual should be 1, otherwise something

went wrong in the normalization step.

3. A random number R between 0 and 1 is chosen.

4. The selected individual is the first one whose accumulated normalized value is greater than

or equal to R.

For many problems the above algorithm might be computationally demanding. A simpler and

faster alternative uses the so-called stochastic acceptance.

If this procedure is repeated until there are enough selected individuals, this selection method is

called fitness proportionate selection or roulette-wheel selection. If instead of a single pointer spun

multiple times, there are multiple, equally spaced pointers on a wheel that is spun once, it is

called stochastic universal sampling. Repeatedly selecting the best individual of a randomly chosen

subset is tournament selection. Taking the best half, third or another proportion of the individuals

is truncation selection.

There are other selection algorithms that do not consider all individuals for selection, but only

those with a fitness value that is higher than a given (arbitrary) constant. Other algorithms select

from a restricted pool where only a certain percentage of the individuals are allowed, based on

fitness value.

Retaining the best individuals in a generation unchanged in the next generation, is

called elitism or elitist selection. It is a successful (slight) variant of the general process of

constructing a new population.

https://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
https://en.wikipedia.org/wiki/Fitness_function
https://en.wikipedia.org/wiki/Fitness_proportionate_selection
https://en.wikipedia.org/wiki/Stochastic_universal_sampling
https://en.wikipedia.org/wiki/Tournament_selection
https://en.wikipedia.org/wiki/Truncation_selection

75

7.Rank Selection

Rank Selection also works with negative fitness values and is mostly used when the individuals in

the population have very close fitness values (this happens usually at the end of the run). This leads

to each individual having an almost equal share of the pie (like in case of fitness proportionate

selection) and hence each individual no matter how fit relative to each other has an approximately

same probability of getting selected as a parent. This in turn leads to a loss in the selection pressure

towards fitter individuals, making the GA to make poor parent selections in such situations.

TEXT / REFERENCE BOOKS

5. Laurene Fausett, " Fundamentals of Neural Networks: Architectures, Algorithms and Applications", 2008.

6. Timothy J. Ross , ―Fuzzy Logic with Engineering Applications‖, McGraw - Hill International Editions,

2004.

7. Jang J.S.R., Sun C.T. and Mizutani E, "Neuro-Fuzzy and soft computing", Pearson Education, 2003.

8. Rajasekaran. S, Pai. G.A.V. ―Neural Networks, Fuzzy Logic and Genetic Algorithms‖, Prentice Hall of

India, 2003.

Part- A

1. What is meant by genetic Algorithm

2. What is rank space method

3. What is population in GA

4. What is meant by mutation

5. What is meant by rank method

6. What is crossover

7. Give the different types of crossover technique

8. What is meant by Roulette wheel selection2

Part-B

1) Explain with an example about the survival of the fittest

2) With the neat flowchart explain the operation of Genetic Algorithm

3) Explain Crossover Mutation

4) Describe in detail about Rank Method

5) Explain in detail about the selection operation in reproduction

