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I. SIGNALS, SYSTEMS & TRANSFORMS
1.1 INTRODUCTION

A signal is a function of independent variables such as time, distance, position, temperature and
pressure. A signal carries information, and the objective of signal processing is to extract useful
information carried by the signal.

Signal processing is concerned with the mathematical representation of the signal and the
algorithmic operation carried out on it to extract the information present. For most purposes of
description and analysis, a signal can be defined simply as a mathematical function, y where X is
the independent variable .y = f (x) .e.g.: y=sin(mt) is a function of a variable in the time domain
and is thus a time signal. X(0)=1/(-mo’+ico+k) is a frequency domain signal; An image I(x,y) is

in the spatial domain.
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Fig 1.1 Classification of signals
At t=0, will have the same motions at all time. There is no place for uncertainty here. If we can
uniquely specify the value of 6 for all time, i.e., we know the underlying functional relationship
between t and6, the motion is deterministic or predictable. In other words, a signal that can be
uniquely determined by a well defined process such as a mathematical expression or rule is
called a deterministic signal. The opposite situation occurs if we know all the physics there is to
know, but still cannot say what the signal will be at the next time instant-then the signal is



random or probabilistic. In other words, a signal that is generated in a random fashion and can
not be predicted ahead of time is called a random signal.

1.1.1 EXAMPLES OF SIGNALS

For a simple pendulum as shown, basic definition is: where 6m is the peak amplitude of the
motion and ®=1/g with | the length of the pendulum and g the acceleration due to gravity.

As the system has a constant amplitude (we assume no damping for now), a constant
frequency (dictated by physics) and an initial condition (6=0 when t=0), we know the value

of 0(t) for all time
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Fig 1.2 Typical examples to deterministic signals
Random signals are characterized by having many frequency components present over a
wide range of frequencies.The amplitude versus time appears to vary rapidly and unsteadily
with time. The ‘shhhh’ sound is a good example that is rather easy to observe using a
microphone and oscillloscope. If the sound intensity is constant with time, the random signal
is stationary, while if the sound intensity varies with time the signal is nonstationary. One can

easily see and hear this variation while making the ‘shhhh’ sound.
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Fig 1.3 Random signals
Random signals are characterized by analyzing the statistical characteristics across an

ensemble of records. Then, if the process is ergodic, the time (temporal) statistical



characteristics are the same as the ensemble statistical characteristics. The word temporal means

that a time average definition is used in place of an ensemble statistical definition

Transient signals may be defined as signals that exist for a finite range of time as shown in the

figure. Typical examples are hammer excitation of systems, explosion and shock loading etc. It

should be noted that periodicity does not necessarily mean a sinusoidal signal as shown in the

figure. :
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Fig 1.4 Aperiodic signal

For a simple pendulum as shown, if we define the period t by , then for the pendulum, and such
signals are defined as periodic. A periodic signal is one that repeats itself in time and is a
reasonable model for many real processes, especially those associated with constant speed
machinery. «Stationary signals are those whose average properties do not change with time.
Stationary signals have constant parameters to describe their behaviour.Nonstationary signals
have time dependent parameters. In an engine excited vibration where the engines speed varies
with time; the fundamental period changes with time as well as with the corresponding dynamic
loads that cause vibration.

Deterministic Vs Random Signal:

The signals can be further classified as monofrequency (sinusoidal) signals and multifrequency
signals such as the square wave which has a functional form made up of an infinite superposition
of different sine waves with periods t,7/2,t/3,... .1 D signals are a function of a single
independent variable. The speech signal is an example of a 1 D signal where the independent

variable is time.. 2D signals are a function of two independent variables. An image signal such



as a photograph is an example of a 2D signal where the two independent variables are the two
spatial variables

1.1.2 CONTINUOUS VERSUS DISCRETE SIGNALS

The value of a signal at a specific value of the independent variable is called its amplitude.The
variation of the amplitude as a function of the independent variable is called its waveform.For a
1 D signal, the independent variable is usually labelled as time. If the independent variable is
continuous, the signal is called a continuous-time signal. A continuous time signal is defined at
every instant of time.If the independent variable is discrete, the signal is called a discrete-time
signal. A discrete time signal takes certain numerical values at specified discrete instants of time,
and between these specified instants of time, the signal is not defined. Hence, a discrete time
signal is basically a sequence of numbers.

1.1.3 ANALOG VERSUS DIGITAL SIGNALS

A continuous-time signal with a continuous amplitude is usually called an analog signal. A
speech signal is an example of an analog signal.

A discrete time signal with discrete valued amplitudes represented by a finite number of digits is
referred to as a digital signal

1.2 SAMPLING AND QUANTIZATION

Nearly all data acquisition systems sample data with uniform time intervals. For evenly sampled
data, time can be expressed as:

T=(N1) t. where N is the sampling index which is the number of equally spaced samples. For

most Fourier analyzers N is restricted to a power of 2.

Fig 1. 5 Process of sampling

 The sample rate or the sampling frequency is:
f=1=(N-1)f

Sampling frequency is the reciprocal of the time elapsed t from one sample to the next.



« The unit of the sampling frequency is cycles per second or Hertz (Hz), if the sampling period is
in seconds.

» The sampling theorem asserts that the uniformly spaced discrete samples are a complete
representation of the signal if the bandwidth fmax is less than half the sampling rate. The
sufficient condition for exact reconstructability from samples at a uniform sampling rate fs

(in samples per unit time) (fs>2fmax).

1.2.1 Aliasing

One problem encountered in A/D conversion is that a high frequency signal can be falsely
confused as a low frequency signal when sufficient precautions have been avoided.This happens
when the sample rate is not fast enough for the signal and one speaks of aliasing.Unfortunately,
this problem can not always be resolved by just sampling faster, the signal’s frequency content
must also be limited. Furthermore, the costs involved with postprocessing and data analysis
increase with the quantity of data obtained.

Data acquisition systems have finite memory, speed and data storage capabilities. Highly
oversampling a signal can necessitate shorter sample lengths, longer time on test, more storage
medium and increased database management and archiving requirements The central concept to
avoid aliasing is that the sample rate must be at least twice the highest frequency component of
the signal (fs>2fmax).

We define the Nyquist or cut-off frequency.The concept behind the cut-off frequency is often
referred to as 2 t. Shannon’s sampling criterion. Signal components with frequency content
above the cut-off frequency are aliased and can not be distinguished from the frequency
components below the cut-off frequency.

Conversion of analog frequency into digital frequency during sampling is shown in the figure.
Continuous signals with a frequency less than one-half of the sampling rate are directly
converted into the corresponding digital frequency. Above one-half of the sampling rate, aliasing
takes place, resulting in the frequency being misrepresented in the digital data. Aliasing always
changes a higher frequency into a lower frequency between 0 and 0.5. In addition, aliasing may

also change the phase of the signal by 180 degrees.



DC  Froquency
S e N
0.5 i :
04 A A
0.3 / —\
3§ 024—-- ol X /
%O.l— ASESERENE SOOI FODERTN s, TSI S
0.0 E
0.0 0.5 1.5 2.0 2.5
—~ 270 -
in
§ so - - L EE— B
=
% O
= i H H
= -90 T $ t
0.0 0s 10 1.5 20 25

Continuous frequency {as a fraction of the s&unp]in—g rate)

Fig 1.6 Aliasing effect
If any energy in the original signal extends beyond the Nyquist frequency, it is folded back into
the Nyquist interval in the spectrum of the sampled signal. This folding is called
aliasing.fs>2fmax
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Fig 1.7 Spectrum of sampled signal

QuantizationQuantization is involved to some degree in nearly all digital signal processing, as
the process of representing a signal in digital form ordinarily involves rounding. Quantization
also forms the core of essentially all lossy compression algorithms. The difference between an
input value and its quantized value (such as round-off error) is referred to as quantization error.

A device or algorithmic function that performs quantization is called a quantizer. An analog-to-


https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Round-off_error
https://en.wikipedia.org/wiki/Algorithm_function
https://en.wikipedia.org/wiki/Analog-to-digital_converter

digital converter is an example of a quantizer. Because quantization is a many-to-few mapping, it
is an inherently non-linear and irreversible process (i.e., because the same output value is shared
by multiple input values, it is impossible in general to recover the exact input value when given
only the output value). The set of possible input values may be infinitely large, and may possibly
be continuous and therefore uncountable (such as the set of all real numbers, or all real numbers
within some limited range). The set of possible output values may be finite or countably infinite.
The input and output sets involved in quantization can be defined in a rather general way. For
example, vector quantization is the application of quantization to multi-dimensional (vector-
valued) input data.

1.3 CONCEPTS OF SIGNAL PROCESSING

In the case of analog signals, most signal processing operations are usually carried out in

the time domain.In the case of discrete time signals, both time domain and frequency
domain applications are employed.In either case, the desired operations are implemented by

a combination of some elementary operations such as:

— Simple time domain operations , Filtering , Amplitude modulation

The three most basic time-domain signal operations are:

« Scaling

* Delay

* Addition

Scaling is simply the multiplication of a signal by a positive or a negative constant. In the case
of analog signals, this operation is usually called amplification if the magnitude of the
multiplying constant, called gain, is greater than one. If the magnitude of the multiplying
constant is less than one, the operation is called attenuation. Thus, if x(t) is an analog signal,
the scaling operation generates a signal y(t)=ax(t), where o is the multiplying constant.

Delay operation generates a signal that is delayed replica of the original signal. For an analog
signal x(t), y(t)=x(t-t0) is the signal obtained by delaying x(t) by the amount t0, which is
assumed to be a positive number. If tO is negative, then it is an advance operation Addition
operation generates a new signal by the addition of signals. For instance, y(t)=x1(t)+x2(t)-x3(t) is
the signal generated by the addition of the three analog signals x1(t), x2(t) and x3(t) .

1.4 TYPICAL APPLICATIONS

The main applications of DSP are
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AUDIO SIGNAL PROCESSING, sometimes referred to as audio processing, is the intentional
alteration of auditory signals, or sound, often through an audio effect oreffects unit. As audio
signals may be electronically represented in either digital or analog format, signal processing
may occur in either domain. Analog processors operate directly on the electrical signal, while
digital processors operate mathematically on the digital representation of that signal.

AUDIO COMPRESSION, bit-rate reduction involves encoding information using fewer bits
than the original representation.[2]Compression can be either lossy or lossless. Lossless
compression reduces bits by identifying and eliminating statistical redundancy. No information is
lost in lossless compression. Lossy compression reduces bits by identifying unnecessary
information and removing it.[3] The process of reducing the size of a data file is referred to as
data compression. In the context of data transmission, it is called source coding (encoding done
at the source of the data before it is stored or transmitted) in opposition to channel coding.[4]
DIGITAL IMAGE PROCESSING, is the use of computer algorithms to perform image
processing on digital images. As a subcategory or field of digital signal processing, digital image
processing has many advantages over analog image processing. It allows a much wider range of
algorithms to be applied to the input data and can avoid problems such as the build-up of noise
and signal distortion during processing. Since images are defined over two dimensions (perhaps
more) digital image processing may be model in the form of multidimensional systems

SPEECH PROCESSING;,s the study of speech signals and the processing methods of these
signals. The signals are usually processed in a digital representation, so speech processing can be
regarded as a special case of digital signal processing, applied to speech signal. Aspects of
speech processing includes the acquisition, manipulation, storage, transfer and output of speech
signals.

SPEECH RECOGNITION, is the inter-disciplinary sub-field of computational linguistics
which incorporates knowledge and research in the linguistics, computer science, and electrical
engineering fields to develop methodologies and technologies that enables the recognition and
translation of spoken language into text by computers and computerized devices such as those
categorized as Smart Technologies and robotics. It is also known as "automatic speech
recognition™ (ASR), "computer speech recognition™, or just "speech to text" (STT). imaging such
as CAT scans and MRI, MP3 compression, computer graphics, image manipulation, hi-fi

loudspeakercrossovers and equalization, and audio effects for use with electric guitar amplifiers.
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1.41 ADVANTAGES OF DIGITAL SIGNAL PROCESSING COMPARED WITH
ANALOG SIGNAL PROCESSING

Accracy

Implimentation of sophisticated algorithms

Storage

Noise reduction

1.4.2 APPLICATIONS OF SIGNAL PROCESSING IN BIOMEDICAL ENGINEERING
1/0 signal processing — for electrical signals representing sound, such as speech or music ,

Speech signal processing — for processing and interpreting spoken words

Image processing — in digital cameras, computers and various imaging systems,

Video processing — for interpreting moving pictures,

Wireless communication - waveform generations, demodulation, filtering, equalization,Control
systems,

Array processing — for processing signals from arrays of sensors, Seismology,

Financial signal processing — analyzing financial data using signal processing techniques,
especially for prediction purposes.

Feature extraction, such as image understanding and ,

Quality improvement, such as noise reduction,

image enhancement, and echo cancellation.(Source coding), including audio compression, image
compression, and video compression

1.5 DISCRETE TIME SIGNALS

A discrete time signal is defined as the one that is defined at distinct time intervals

10
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Fig 1.8 Graphical representation of a discrete-time signal.

two successive samples. Also, it is incorrect to think that x(n} is equal to zero if n
is not an integer. Simply. the signal x(n) is not defined for noninteger values of n.

In the sequel we will assume that a discrete-time signal s defined for every
integer value n for —oc < n < oc. By tradition, we refer to x(n) as the “nth sample™
of the signal even if the signal x(n) is inherently discrete time (i.e.. not obtained
by sampling an analog signal). If, indeed. x(n) was obtained from sampling an
analog signal x,(7}, then x(n) = x,(nT), where T is the sampiing period (i.e., the
time between successive samples).

Besides the graphical representation of a discrete-time signal or sequence as
illustrated in Fig. 2.1. there are some alternative representations that are often
more convenient to use. These are:

1. Functional representation, such as
1. forn=1.3
x{n) = l4. forn=2
0. elsewhere
2. Tabular representation, such as
-2 —1
e 0 0
3. Sequence representation

n 2 3 4 5
x(m) 1 4 1 0 0

An infinite-duration signal or sequence with the time origin (n = 0) indicated
by the symbol t is represented as

x{n)y=1{...0.0.1.4,1.0,0. ..}
T

A sequence x(n), which is zero for n < 0. can be represented as

x(ny=1{0,1.4.1.0.0....)
T

The time origin for a sequence x(n), which is zero for n < 0, is understood to be
the first (leftmost)} point in the sequence.

11
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A finite-duration sequence can be represented as
vin) = {3, -1.-2.5.0.4. -1}
T

whereas a finite-duration sequence that satisfies the condition x(n) = 0 forn < 0
can be represented as

x(n)=[(0.1.4.1}
T

The signal in (2.1.4) consists of seven samples or points (in time}. so it is called or
identified as a seven-point sequence. Similarly. the sequence given by (2.1.5) is a
four-point sequence.

Some Elementary Discrete-Time Signals

In our study of discrete-time signats and svstems there are a number of basic signals
that appear often and play an important role. These signals are defined below.

1. The unir sample sequence 1s denoted as 841) and is defined as

I. forn=20

S =00 forn =0

In words. the unit sample sequence i1s a signal that is zero evervwhere. except
at n = 0 where its value 15 unity. This signal is sometimes referred to as a
unit impulse. In contrast to the analog signal §(7). which is also called a
unit impulse and is defined to be zero evervwhere except r = 0. and has unn
area. the unit sample sequence 1s much less mathematicallv complicated. The
graphical representation of é(n) 1s shown n Fig. 2.2.

2. The unit step signal is denoted as win) and is defined as

1. forn=>0
0. forn <0

Figure 2.3 iflustrates the unit step signal.
3. The unit ramp signal is denoted as u,(n) and is defined as

u{n}E{

n., forn=>0

()= [ 0. forn<0

This signal is illustrated in Fig. 2.4.
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4. The exponential signal is a sequence of the form
x(n)y=a" for all n

If the parameter a is real, then x(n) is a real signal. Figure 2.5 illustrates x(n)
for various values of the parameter a.

When the parameter a is complex valued, it can be expressed as
a = rel’
where r and & are now the parameters. Hence we can express x(n) as
x{n) = rhe/t
= r"(cosfn + jsin€n)

a> 1 xin)

e <=l

."‘nlitl"T’
""'lellll n

. ~ Graphical representation of exponential signals.
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Since x(#7) is now complex valued. it can be represented graphically by plotting
the real pant

xpin} = r" costn
as a function of n. and separatelyv plotting the imaginary part
xiin) = r’sinfn .

as a function of n. Figure 2.6 iliustrates the graphs of xg(rn) and x;(n} for r = 0.9
and # = 7 /10. We observe that the signals xg(n) and x;(n) are a damped (decaying
exponential) cosine function and a damped sine function. The angle variable &
is simply the frequency of the sinusoid. previously denoted by the (normalized)
frequency variable w. Clearly, if r = 1. the damping disappears and xg(n). x;(n).
and x(n) have a fixed amplitude. which is unity.

Alternatively. the signal x(n) given by (2.1.10) can be represented graphically
by the amphitude function

[x(n) = Ain) = r"

and the phase function
Xy =¢g(n)=n

Figure 2.7 illustrates Awn) and ¢in) for r = U9 and ¢ = 7/10. We observe that
the phase tunction s hinear with n. However. the phase is defined only over the
interval —m < # = 7 or. equivalently. over the interval 0 = ¢ < 2. Consequently.
by convention ¢(n) is plotted over the finite interval —mr <« @ < T or ) < & < 2.
In other words, we subtract multiplies of 2m from ¢(xn) before plotting. In one
case. ¢(n) is constrained 1o the range —7 < ¢ < & and in the other case ¢(n) is
constrained to the range () < ¢ < 2. The subtraction of muluples of 27 from ¢@n)
is equivalent 1o interpreting the function ¢(n) as ¢(n), modulo 2. The graph for
¢(n). moduio 2x. is shown in Fig. 2.7b.

Zlassification of Discrete-Time Signais

The mathematical methods emploved in the analysis of discrete-time signals and
systems depend on the characteristics of the signals. In this section we classify
discrete-time signals according to a number of different characteristics.

Energy signals and power signals. The energy E of a signal x(n} 1s
defined as

o

E= Z |x(n)|?

= —o

We have used the magnitude-squared values of x(n}. so that our definition applies
to complex-valued signals as well as real-valued signals. The energy of a signal can
be finite or infinite. If E 1s finite (i.e., 0 < E < o¢), then x(rn) is called an energy
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signal. Sometimes we add a subscript v to £ and write £, to emphasize that E, 18
the energy of the signal x(n).

Many signals that possess infinite energy. have a finite average power. The
average power of a discrete-time signal x(n) ts defined as

P= lim s 5 ZA Ix(n)?
P

If we define the signal energv of x(n) over the finmte interval =N =n < N as

.
Y xomf

n=—N
then we can express the signal energy £ as

N—nog
and the average power of the signal x{n) as

1
= i N
i NI_{[]-,;2N+1£
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Clearly, if E is finite. P = 0. On the other hand. if £ is infinite. the average
power P may be either fintte or infinite. If P is fimite (and nonzero), the signal is
called a power signal. The following example illustrates such a signal.

Example 2.1.1

Determine the power and energy of the unint step sequence. The average power of
the unit step signal is

. 1 o,
P‘h!’_'.‘lzwﬂg“("}

= lim N+1—~i 1+ 1/N
+.'t'—-:-cZN-kl_h'-To-:2+1fN

1
T2

Consequently, the unit step sequence is a power signal. Its energy is infinite.

Similarly, it can be shown that the complex exponential sequence x{(n) =
Ae’™" has average power A°, so it is a power signal. On the other hand, the unit
ramp sequence is neither a power signal nor an energy signal.

Periodic signals and aperiodic signals. As defined on Section 1.3, a
signal x(n) is periodic with period N(N = 0) if and only if

xin+ N)=x(n) for all n

The smallest value of N for which (2.1.20) holds is called the (fundamental) period.
If there is no value of N that satisfies (2.1.20). the signal 1s called nonperiodic or
aperiodic.
We have already observed that the sinusoidal signal of the form
x(m) = Asin2r fyn

is periodic when f;, is a rational number, that is, if f can be expressed as

k
fﬁ-—;:,

where k and N are integers.

The energy of a periodic signal x(n) over a single period, say. over the interval
0 <n =< N-1,is finite if x(n) takes on finite values over the period. However, the
energy of the periodic signal for —oc < n < oo is infinite. On the other hand, the
average power of the periodic signal s finite and it is equal to the average power
over a single period. Thus if x{n) is a periodic signal with fundamental period N
and takes on finite values. its power is given by

] -1
P==2 lxmp

r=0

Consequently, periodic signals are power signals.
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Symmetric (even) and antisymmetric (odd) signals. A real-valued sig-
nal xin) s called symmetnc (even) if

X(—n) = x(n)
On the other hand. a signal x(n) is called antisvmmetric (odd) if
xi—np = —xin)

We note that if xin) 15 odd. then x (0} = 0. Examples of signals with even and odd
symmetrv are tllustrated in Fig. 2.8,

We wish 10 illustrate that anv arbitrary signal can be expressed as the sum of
two signal components. one of which 1s even and the other odd. The even signal
component is formed by adding x(n) to x(—n) and dividing by 2. that 1s.

X0 = %[_’.‘(?I} + x(—m]

o 1y
? i
R »
1 HEEE R
4322101 23 4 "
lal
xim
e
i
e o b I (R O N B ———e
' li 1 2 3 4 4 n

by

Figure 2.8 Example of even (a) and odd (b) signals.

18


Free Hand

Free Hand


Clearly, x.(n) satisfies the symmetry condition (2.1.24). Similarly, we form an odd
signal component x,(n) according to the relation

Xoln) = 3[x(m) — x(—n)]

Again, it is clear that x,(n) satisfies (2.1.25). hence it is indeed odd. Now, if we
add the two signal components, defined by (2.1.26) and (2.1.27), we obtain x(n),
that 1s,

x(n) = x.(n) + x,{n)
Thus any arbitrary signal can be expressed as in (2.1.28).

2.1.3 Simple Manipulations of Discrete-Time Signals

In this section we consider some simple modifications or manipulations involving
the independent variable and the signal amplitude (dependent variabie).

Transtormation of the independent variable (time). A signal x(n) may
be shifted in time by replacing the independent variable n by n — k. where k is an
integer. If k is a positive integer, the time shift results in a delay of the signal by
k units of time. If k is a negative integer, the time shift results in an advance of
the signal by |k| units in time.

Example 2.1.2

A signal x(n) is graphically illustrated in Fig. 2.9a. Show a graphical representation
of the signals x(n — 3} and x(n + 2).

Solution The signal x(n — 3) is obtained by delaying x(n} by three units in time. The
result is illustrated in Fig. 2.9b. On the other hand. the signal x(n + 2) is obtained by
advancing x(n) by two units in time. The result is illustrated in Fig. 2.9c. Note that
delay corresponds to shifting a signal to the right. whereas advance implies shifting
the signal to the left on the time axis.

If the signal x(n) is stored on magnetic tape or on a disk or, perhaps, in the
memory of a computer, it is a relatively simple operation to modify the base by
introducing a delay or an advance. On the other hand, if the signal is not stored but
is being generated by some physical phenomenon in real time, it is not possible
to advance the signal in time, since such an operation involves signal samples
that have not yet been generated. Whereas it is always possible to insert a delay
into signal samples that have already been generated, it is physically impossible
to view the future signal samples. Consequently, in real-time signal processing
applications, the operation of advancing the time base of the signal is physically
unrealizable.

Another useful modification of the time base is to replace the independent
variable n by —n. The result of this operation is a folding or a reflection of the
signal about the time origin n = 0.
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Example 2.1.3

Show the graphical representation of the signal x{(—n) and x{—n + 2). where x(n} is
the signal illustrated in Fig. 2.10a.

Solution The new signal {7} = x{~n} is shown in Fig. 2.10b. Note that v(0) = x{0).
v(l) = x{=1). ¥{2) = x{—=2), and so on. Also., v(—1) = x(1}), v(-2) = x({2}. and s0 on.
Therefore. vin) is simply x(n) reflected or folded about the time ongin n = 0. The
signal vin) = x(—n + 2} is simplv x{—n) delayed by two units in time. The resulting
signal 15 illustrated 1n Fig. 2.10c. A simple way to verify that the result in Fig. 2.10c
1s correct is o compute samples, such as v(0) = x(2h »(1) = x(1}, ¥(2) = x(0n
¥(=1) = x(3). and so on.

It is important to note that the operations of folding and time delaying (or
advancing) a signal are not commutative. If we denote the time-delay operation
by TD and the folding operation by FD. we can write

TD{x(n)] = x(n — k) k>0

(2.1.29)
FD[x(n)] = x(—n)

Now

TD, [FD[x(n)]} = TD[x(—n)l = x(—n + k) (2.1.30)
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—4-3-2-1 |0
®)
Hn)=x(—n +2)

_ ..~ _ 7 Graphical illustration of
{c) the folding and shifting operations.

whereas
FD(TDy[x(n)]} = FD[x(n — k)] = x(~n — k)

Note that because the signs of n and k in x(n—k) and x(—n-+k) are different, the re-
sult is a shift of the signals x(n) and x(—n) to the right by & samples, corresponding
to a time delay.

A third modification of the independent variable involves replacing n by un,
where u is an integer. We refer to this time-base modification as time scaling or
down-sampling.

Example 2.1.4
Show the graphical representation of the signal y(n) = x(2n), where x(n) is the signal
illustrated in Fig. 2.11a.

Solution We note that the signal y(n) is obtained from x(n) by taking every other
sample from x(a), starting with x(0). Thus y(0) = x(0), y(i) = x(2), y(2) = x(4), ...
and y(—1) = x(~2), ¥(=2) = x(—4), and so on. In other words, we have skipped
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Figure 2.11  Graphical illustration of down-samphng operation.

the odd-numbered samples in x(n) and retained the even-numbered samples. The
resulting signal is illustrated in Fig. 2.11b.

If the signal xy(n) was originally obtained by sampling an analog signal x,{1).
then x(n} = x,(nT). where T is the sampling interval. Now. v(n) = x(2n) =
x;(2Tn). Hence the time-scaling operation described in Example 2.1.4 is equivalent
to changing the sampling rate from 1/7 to 1/2T. that is. to decreasing the rate by
a factor of 2. This i1s a downsampling operation.

Addition, multiplication, and scaling of sequences. Amplitude modifi-
cations include addition, muliiplication, and scaling of discrete-time signals.

Amplitude scaling of a signal by a constant A is accomplished bv multiplyving
the value of every signal sample by A. Consequently. we obtain

vin) = Axin) —oC @ n <

) The sum of two signals x;(n) and x>(n) is a signal v(n), whose value at any
Instant is equal to the sum of the values of these two signals at that instant. that is.

vin) = x () + xa(n} -0 < h <X
The producr of two signals is similarly defined on a sample-to-sample basis as

vin) = x;{nixain) ~—o00c<n <20

22



DISCRETE-TIME SYSTEMS

In many applications of digital signal processing we wish to design a device or
an algorithm that performs some prescribed operation on a discrete-time signal,
Such a device or algorithm is called a discrete-time system. More specifically, a
discrete-time system is a device or algorithm that operates on a discrete-time signal,
called the input or excitation. according to some well-defined rule, to produce an-
other discrete-time signal called the output or response of the system. In general,
we view a system as an operation or a set of operations performed on the input
signal x(n) to produce the output signal v(n). We say that the input signal x(n) is
transformed by the svstem into a signal v(n), and express the general relationship
between x(n) and v(n) as
vin) = T[x(nm)]

where the symbol 7 denotes the transformation (also called an operator), or pro-
cessing performed by the system on x(n) to produce y(r). The mathematical
relationship in (2.2.1} is depicted graphically in Fig. 2.12.

There are various ways to describe the characteristics of the svstem and the
operation it performs on x(n) to produce y(n). In this chapter we shall be con-
cerned with the time-domain characterization of systems. We shall begin with
an input-output description of the system. The input-output description focuses
on the behavior at the terminals of the system and ignores the detailed internal
construction or realization of the system. Later, in Section 7.5, we introduce the
state-space description of a system. In this description we develop mathemati-
cal equations that not only describe the input—output behavior of the system but
specify its internal behavior and structure.

" Input-Qutput Description of Systems

The input-output description of a discrete-time system consists of a mathematical
expression or a rule, which explicitly defines the relation between the input and
output signals (input-output relationship). The exact internal structure of the sys-
tem is either unknown or ignored. Thus the only way to interact with the system is
by using its input and output terminals (i.e., the system is assumed to be a “black
box™ to the user). To reflect this philosophy, we use the graphical representa-

Ll il

[
L ]

1y -

xin) . . .

) ! Discrete-time ‘ - ¥ -—
. System i

Input signal Cutput signal

or excilation " or response

~ ¢ Block diagram representation of a discrete-time system.
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tion depicted in Fig. 2.12, and the general input—output relationship in (2.2.1) or,
alternatively, the notation

x(n) > y(n)
which simply means that v(n) is the response of the system T to the excitation
x(n). The following examples illustrate several different systems.
Example 2.2.1
Determine the response of the following sytems to the input signal

inl, —3=<n<3

xrin) = .
0, otherwise

(a) vin) = x(n)

(b) vin)=x(n—1)

(c) vim)=x(n+1)

(d) vin)y= %[x[n + 1)+ xtn)+xin—1)]

(&) vin)=max{x(n + 1), x{tn). x(n — 1)}

(N _\‘(HJ=E:=__¢II'H=J:(n1+.r{n—1}+x(n—2]+-~- . 4

Solution First. we determine expiicitly the sample values of the input signal

x(my=1....03210.1.230 ...}
T

Next. we determine the output of each svstem using its input-output relationship.

(a) In this case the output is exactly the same as the input signal. Such a system is
known as the identiry system.
(b) This system simply delays the input by one sample. Thus its output is given by

xmy=1{..03.210123.0,..)
t

{c) In this case the system “advances” the input one sample into the future. For
example, the value of the output at time » = 0 is ¥(0) = x(1). The response of
this system to the given input is

x(my=(...0,3.2.1,0.1.2.3.0....}
T

(d) The output of this svstem at any time is the mean value of the present, the
immediate past, and the immediate future samples. For example, the output at
time n =0 is

v(0) = %fx(-ll +x(0) + x()] = %{1 +0+1)= ';_*
Repeating this computauon for every value of n, we obtain the output signal

yimy={....0.L3.2.1.512.41.0..]
1
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{e)} This svstem selects as its output at time » the maximum vaiue of the three mnput
samples x{n — 1), xin). and x(n + 1). Thus the response of this system 10 the
input signal x{n) is

wny=1{0.3.3.3.2.1.2.3.3.3.0....)

(f) This system is basically an accumulaior that computes the running sum of all
the past input values up to present time. The response of this system 1o the
given nput 1s

ey ={...0.3.56.6.7,9.12.0,...]
T

We observe that for several of the systems considered in Example 21.2.1 the
tput at time n = ny depends not only on the value of the input at n = ng [i.e.,
15)]. but also on the values of the input applied to the system before and after
= ng. Consider. for instance, the accumulator in the example. We see that the
tput at time n = a1y depends not enly on the input at time n = nq. but also on
1) at times n = ny, — 1. ng — 2. and so on. By a simple algebraic manipulation
Cinput-output relation of the accumulator can be written as

n nw—1
Vi = Z Ak = Z Ak 4 i
b — = h=—=nm

= v(n—1)+ xtn)

ich justifies the term accumulaior. Indeed. the svstem computes the current
ue of the output by adding (accumulating) the current value of the input to the
'vious output value.

There are some interesting conclusions that can be drawn by taking a close
'k into this apparently simple svstem. Suppose that we are given the input signal
1) for n = ny. and we wish to determine the output v(n) of this svstem for n = ny.
rn=mnsne+t..... {2.2.4) gives

ving) = ving — 1y + x(ng)
ving + 1) = ving) + x(ng + 1)

1 so on. Note that we have a problem in computing v(rg). since it depends on
te — 1). However,

M=

ving — 1y = Z x(k)y

e

t1s. v(ng — 1) “summarizes™ the effect on the system from all the inputs which
i been appbed to the system beforec time n,. Thus the response of the svstem
n = nyp to the input x(n) that is applied at time n, is the combined result of this
wt and all inputs that had been applied previously to the system. Consequently,
. m = ng 1s not uniquely determined by the input x(n) for n = np.
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The additional information required to determine y(n) for n > ny is the initial
condition y(np — 1). This value summarizes the effect of all previous inputs to the.
system. Thus the initial condition v(ng — 1) together with the input sequénce x(n)
for n > ng uniquely determine the output sequence y(n) for a > no.

If the accumulator had no excitation prior to ng, the initial condition is y(ng—
1) = 0. In such a case we say that the system is initially relaxed. Since y(ng—1) =0,
the output sequence y(n) depends only on the input sequence x(r) for n = ng.

It is customary to assume that every system is relaxed at n = —oo. In this

case, if an input x{n) is applied at n = —c0, the corresponding output y(n) 1s solely
and uniguely determined by the given input.
Example 2.2.2

The accumulator described by (2.2.3) is excited by the sequence x(n) = au(n). De-
termine its output under the condition that:

(8) It is iniually relaxed [Le., »(~1) =0)].
(b) Initially. v(—1} = 1.

Solution The output of the system is defined as

3 xt = i x(k) + ix(kl

k== k=0 k=)

= vi=1)+ Zx(k}
k=0

Il

vin)

But

Z—t“‘) _ nin+ 1)

k=l 2

{a) If the system is initially relaxed. v(—1) = 0 and hence
nin4+1)
2
(b) On the other hand, if the initial condition is y(—1) = 1, then
nn+1) nP4n+2
2 T 2

¥(n = n>{

n=0

¥n) =1+

2.2.2 Block Diagram Representation of Discrete-Time
Systems

It 1s useful at this point to introduce a block diagram representation of discrete-
time systems. For this purpose we need to define some basic building blocks that
can be interconnected to form complex systems.

An adder. Figure 2.13 illustrates a system (adder) that performs the addi-
tion of two signal sequences to form another (the sum) sequence, which we denote
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via)=x () + xy(n)

Figure 2.13 Graphical representation
*aim of an adder.

as v(n). Note that it is not necessary to store either one of the sequences in order
to perform the addition. In other words, the addition operation is memoryiess.

A constant multiplier. This operation s depicted by Fig. 2.14, and simply
represents applying a scale factor on the input x(n). Note that this operation is
also memoryless.

Figure 2.14 Graphical representation

xini a wvin) = ax{nl .
of a constant muluplier.

A signal muitiplier. Figure 2.15 illustrates the multiplication of two sig-
nal sequences to form another (the product) sequence, denoted in the figure as
vin). As in the preceding two cases. we can view the multiplication operation as
memoryless.

Iyt vird=x(nlialn)
—....!@———

4

i Graphical representauon
xa(nm) of a signal multipher.

A unit delay element. The unit delay is a special svstem that simply delavs
the signal passing through it by one sample. Figure 2.16 illustrates such a system.
If the input signal is x{n). the output is x{n — 1). In fact, the sample x(n — 1) 1s
stored in memory at time n — 1 and it is recalled from memory at time 7 to form

viny=xin—-1)

Thus this basic building block requires memory. The use of the symbol z7! to
denote the unit of delay will become apparent when we discuss the z-transform in
Chapter 3.

xim) yvin)=xin—13 B
-1 - * Graphical representation

of the unit delay element.

L

A unit advance element. In contrast to the unit delay, a unit advance
moves the input x(n) ahead by one sampie in time to yield x(n + 1). Figure 2.17
illustrates this operation, with the operator © being used to denote the unit advance.
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x(nm) I viny=x(n+1)
z - Graphical representation
I of the unit advance element.

We observe that any such advance is physically impossible in real time. since. in
fact, it involves looking into the future of the signal. On the other hand. if we store
the signal in the memory of the computer, we can recall any sample at any time.
In such a nonreal-time application, it is possible to advance the signal x(z) in ime.

Example 2.2.3

Using basic building blocks introduced above. sketch the block diagram representa-
tion of the discrete-time system described by the input-output relation.

yin)=ivin = 1)+ ixm) + tetn = 1y
where x{n) 1s the input and v(n) is the output of the svstem.

Solution According to (2.2.5), the output y(n) is obtained by multiplving the inpult
x(n) by 0.5, multiplving the previous input x{n-1) by 0.5, adding the two products. and
1

then adding the previous cutput v(n = 1) multiplied by ;. Figure 2.18a illustrates this

block diagram realization of the system. A simple rearrangement of (2.2.5), namely,
}![n}:%}.‘[n— 1}+%[xm]+.r(n~13| o

leads to the block diagram realization shown in Fig. 2,18b. Note that if we trcat “the
system” from the “viewpoint™ of an input—output or an external description. we are
nol concerned about how the system is realized. On the other hand. if we adopt an

Black box
: 0.5 !
: :'I .
x( : X
...L;_ é:} @ | : vini
: 0.5 37 il
: 0.25 L !
(aj
Black box
i »—1 :
xtn) | - ! 0.5 |
4 .=t :
! 0.25 ,
(b)

Biock diagram realizations of the system y(n) = 0.25yv(n - 1} +
0.5x(ny +05x{n = 1).
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internal description of the system. we know exactly how the svstem building blocks
are configured. In terms of such a realization. we can see that a svstem is relaxed at
time n = ny if the outputs of all the delevs existing in the system are zero at an = ny,
(i.e.. all memory is filled with zeros).

~lassification of Discrete-Time Systems

In the analysis as well as in the design of systems. it is desirabie to classify the
svstems accerding to the general properties that they satisfy. In fact, the mathe-
matical techniques that we develop in this and in subsequent chapters for analyzing
and desigming discrete-time systems depend heavily on the general characteristics
of the svstems that are being considered. For this reason it is necessary for us
to develop a number of properties or categories that can be used to describe the
general characteristics of systems.

We stress the point that for a system to possess a given property, the property
must hold for every possible input signal to the system. If a property holds for
some input signals but not for others. the system does not possess that property.
Thus a counterexample is sufficient to prove that a svstemn does nol possess 4
property. However, tc prove that the svstem has some propertv. we must prove
that this property hoids for every possible input signal.

Static versus dynamic systems. A discrete-time system is called static
or memorvless if its output at any instant n depends at most on the tnput sample
at the same time. but not on past or future sampies of the input. In any other case.
the system is said to be dynarnic or to have memory, If the output of a system at
time n is completely determined by the input samples in the interval from n — N
to n(N = 0), the system is said to have memory of duration N. If N = 0. the
svstem 1s static. If 0 < N < oc. the system 1s said to have finite memory, whereas
if N = oc. the system is said to have infinite memory.

The systems described by the following input—output equations

y{n) = ax(n)

v(n) = nx(n) + bx3(n) . '

are both static or memoryless. Note that there is no need to store any of the past
inputs or outputs in order to compute the present output. On the other hand. the
systems described by the following input—output reiations

yin) = x(n) +3x(n—1)

vin) = Ex{n - k)
k=0

o
yny = x(n—k o
k=0

are dynamic systems or systems with memory. The systems described by
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and (2.2.10) have finite memory, whereas the system described by (2.2.11) has

infinite memory.
We observe that static or memoryless systems are described in general by
input—output equations of the form

v(n) = T[x(n), n]

and they do not include delay elements {memory).

Time-invariant versus time-variant systems. We can subdivide the gen-
eral class of systems into the two broad categories, time-invariant systems and
time-variant systems. A system is called time-invariant if its input—output charac-
teristics do not change with time. To elaborate, suppose that we have a system 7
in a relaxed state which, when excited by an input signal x(n), produces an output
signal y(n). Thus we write

yiny = Tlx(n)]

Now suppose that the same input signal is delayed by k units of time to yield
x{n — k), and again applied to the same system. If the characteristics of the system
do not change with time, the output of the relaxed system will be v(n —k). That is,
the output will be the same as the response to x{n). except that it will be delayed
by the same & units in time that the input was delayed. This leads us to define a
time-invariant or shift-invariant system as follows.

Definition. A relaxed system 7 is time invariant or shift invariant if and
only if
x{n) N v(n)
implies that
x{n —k} X vin —k)

for every input signal x(n) and every time shift .

To determine if any given system is time invariant, we need to perform the
test specified by the preceding definition. Basically, we excite the system with an
arbitrary input sequence x(n), which produces an output denoted as y(n). Next
we delay the input sequence by same amount k and recompute the output. In
general, we can write the output as

vin, k) = T[x(n - k)]

Now if this output y(n, k) = v(n — k), for all possible values of k, the system is
time invariant. On the other hand, if the output v(n, k) # y(n — k), even for one
value of k, the system is time variant.
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Example 2.2.4

Determine il the sysiems shown in Fig. 2.19 are time invariant or time variant,
Solution
(a) This svstem s described by the input—output eguations
vim = T|xtn)]=xini—xtn - 1)

Now if the input is delayed by & units in time and applied to the system. 1. s
clear from the block diagram that the output will be

vink)y=xtn-ky—xtn - k-1

On the other hand. from (2.2.14) we note that if we delav v(n) by & units in
time. we obtain

vin—ky=xin—k)—xin—=k—-1)

Since the night-hand sides of {2.2.16) and (2.2.17) are identical, it follows that
vin. k) = v(n — k). Therefore, the system is time invariant.
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(b) The input-output equation for this system is
v(n) = Tlx{(r)] = nx{n)
The response of this system to x{n — k) is
y(n, k) = nx{n —k)
Now if we delay y(n) in (2.2.18) by 4 units in time, we obtain
yin—k) = {n~k)x(n — k)
= nx{n — k) — kx{n — k)

This system is time variant, since y{n, k) # y(n = k).
{¢) This system is described by the input—-outpur relation

yiny = T[x(n)] = x(—n)
The response of this system to x(n — k) is
yin k) = T[x(n — k)] = x(~n — k)

Now, if we delay the output y{n), as given by (2.2.21). by & units in time, the
result will be
v{in — k) =x(—n+k)

Since y{n, k) # v{n — k), the system is nme variant.
(d) The input—output equation for this system is

v(n) = x(n) cOswyn
The response of this system 10 x(n — &) is
vin k) = x(n — k) coswyn

If the expression in (2.2.24) is delayed by k units and the result is compared to
(2.2.25), it is evident that the system is time vanant.

Linear versus nonlinear systems. The general class of systems can also
be subdivided into linear systems and nonlinear systems. A linear system is one
that satisfies the superposition principle. Simply stated, the principle of superposi-
tion requires that the response of the system to a weighted sum of signals be equal
to the corresponding weighted sum of the responses (outputs) of the system to each
of the individual input signals. Hence we have the following definition of linearity.

Definition. A relaxed 7 system is linear if and only if
Tlavxi(n) + axx2in}] = a; T[x1(n)] + @2 T [x2(n)]

for any arbitrary input sequences x;(n) and x2(n), and any arbitrary constants a;
and a;.

Figure 2.20 gives a pictorial illustration of the superposition principle.
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Fipure 2.20 Graphical representation of the superposition principle. 7 is linear
if and ontv if vin) = v'{n)

The superposition principle embodied in the relation (2.2.26) can be sepa-
rated into two parts. First, suppose that a; = 0. Then (2.2.26) reduces to

Tlaixy(m)] = a\Tx (n)] = ayvi(n)
where
yi(n) = Tlx)(n)]

The relation (2.2.27) demonstrates the mulriplicative or scaling property of a linear
system. That 1s. if the response of the system to the input x;(n) i1s y;{n). the
response to ajx;(n) s simply @1 vi{(n). Thus any scaling of the input results in an
identical scaling of the corresponding output.

Second. suppose that a; = a2 = 1 in (2.2.26). Then

Tlxi(n) + x2(n)] = Tlx(n)] + T{xy(n)]
= yi(n) + v(n}

This relation demonstrates the addirivity property of a linear system. The additivity
and multiplicative properties constitute the superposition principle as it applies to
linear systems.

The linearity condition embodied in (2.2.26) can be extended arbitrarily to
any weighted linear combination of signals by induction. In general, we have

M-1 M=1
T _
xin) = E ayxiy(n) — vin) = E apyiln)
k=1 k=1

where
yi(n) = Tlxein)) k=1,2,....M =1
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We observe from (2.2.27) that if a; = 0, then y(n} = 0. In other words. a re-
laxed, linear system with zero input produces a zero output. If a system produces
a nonzero output with a zero input. the system may be either nonrelaxed or non-
linear. If a relaxed system does not satisfy the superposition principie as given by
the definition above, it is called nonlinear.

Example 2.2.5

Determine if the systems described by the following input—output equations are linear
or nonlinear.

(a) v{n) =nxin} (b) vin) = x(n*) (c) v(n) = x3(n)
{d} vin) = Ax(n)+ 8 (e} vin) = ¢
Solution
(a) For two input sequences x(n} and x;(s). the corresponding outputs arc
yiln) = nxy(nl
va{n) = nxs(n)
A linear combination of the two input sequences results in the output
vilm) = Tlarx () + arxaim} = nfayx, () + aaa-(n}] i
= gaxiin) + awnxzin)
On the other hand. a linear combination of the two outputs in (2.2.31) resulis
in the output
arviln) + axvp(n) = anx (n) + danxain)
Since the right-hand sides of (2.2.32) and (2.2.33) are identical. the svstem is
jinear.
(b) As in part (a), we find the response of the system to two separate input signals
x1(n} and x;(n). The result is
viln) = x)(n®)
valn) = xa(n)
The output of the svstem 10 a linear combination of x,(r) and x2(n) is
wi(m) = Tlax (7)) + azxa(n)) = ayx; (n*) + azxain?)
Finally. a linear combination of the twe outputs in (2.2.36) viclds
a)vi(n) +ayva(n) = ax;(n”) + arxa(n’)
By comparing (2.2.35) with (2.2.36). we conclude that the system is linear.
(¢) The output of the system is the square of the input. (Electronic devices that

have such an input-output characteristic and are called square-law devices.)
From our previous discussion 1t is clear that such a system is memoryless. We
now illustrate that this system is nonlinear.
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The responses of the system 1o 1wo separate input stgnals are

Vil = x3(n)

yaln) = x3(m)
The response of the svstem Lo a linear combinatuon of these two input signals is
vi{n) = Tlaixiin) + azxz(n)]
= lﬂ1x| (n)+ (12,\:2[1'1}]:
= afrfm) + 2enyaaxyin)x=(ny + a::.rgin]-
On the ather hand. if the system is linear. it would produce a linear combination
of the two outputs in (2.2.37). namely,
aryvin) + avinl = a..rf(n} + u-_v.r;"{n’;
Since the actual output of the svstem. as given by (2.2.38). 15 not equal (o
(2.2.39), the system is nonlinear.
(d) Assuming that the svstem is excited by x;(n) and x:(n) separately. we obtain
the corresponding oulputs
vi(n) = Axyint+ 8B
va{n) = Axy(n) =+ B
A linear combination of x;{n) and x-(n) produces the output
valn) = Tlaya(n) + azxa(n]
= Alqx;(nl +azxaini| + B
= Agxi(nl+ aAxin)+ B
On the other hand. if the system were linear, its output to the linear combina-
ton of x,(n} and x2(n) would be a linear combination of v ts} and vaia}. that is.
a viin) +azvwsin) =g Axgn)+ a8+ asAx=(n) +a- 8
Clearly. (2.2.41) and (2.2.42) are different and hence the svstem fails ta saw-fv
the linearity test.

The reason that this system fails to satsfy the linearity test is not that the
system 1s nonlinear (in fact. the system 1s described by a linear eguation} but
the presence of the constant B. Consequently, the output depends on both the
input excitation and on the parameter B # (. Hence. for B # 0. the system 15
not relaxed. If we set B = 0. the system is now relaxed and the linearity test is
satished.

(e} Note that the system described by the input—output ¢quation
_‘L-'{.ﬂ‘j _ e.ﬂ-rl

1s relaxed. If x(n) = 0. we find that v(n} = 1. This is an indication that the
system is nonlinear. This, in fact, is the conclusion reached when the linearity
test. is apphed.

Causal versus noncausal systems. We begin with the definition of causal
Iscrete-time systems.
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and the output of the second svstem is
y(n) = Tlnn)]
= T2(Tilx(n}])

We observe that systems 7; and 7; can be combined or consolidated into a single
overall system

7. =TT
Consequently, we can express the output of the combined system as
¥(n) = T {x(n)]

In general, the order in which the operations 7; and 7; are performed is
important. That is,

LT # T

for arbitrary systems. However, if the systems 7; and 7; are linear and time
invariant, then (a) 7. is time invariant and {b) 7377 = 7,7;, that is, the order in
which the systems process the signal is not important. 7,7} and 7,7 yield identical

output sequences.
The proof of (a) follows. The proof of (b} is given in Section 2.3.4. To prove
time invariance, suppose that 7; and 7; are time invariant; then

x(n —k) 4, vi{n — Kk}
and

Vin—k) 2> yin — k)
Thus

x(n— k) =ZI y(n — k)

and therefore, 7, is time invariant.
In the parallel interconnection, the output of the system 7; is y;(n) and the
output of the system 7; is y2(n). Hence the output of the paralle] interconnection is

yiln) = »i(n) + y2(n)
= Ti[x(m)] + T[x(n)]
= (T + T2)[x(n)]
= T,[x(n)]

where 7, =T1 + T5.

In general, we can use parallel and cascade interconnection of systems to
construct larger. more complex systems. Conversely, we can take a larger system
and break it down into smaller subsystems for purposes of analysis and imple-
mentation. We shall use these notions later, in the design and implementation of
digital filters.
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Definition. A system is said to be causal if the output of the system at any
time n [i.e.. v(n)} depends only on present and past inputs [i.e., x{(n), x(n — 1),
x(n —2),...], but does not depend on future inputs [i.e., x(n+ 1), x(n+2),...]. In
mathematical terms, the output of a causal system satisfies an equation of the form

viny = Flx(n}, xin — 1), x(n —2),.. ] (2.2.44)

where F[.] is some arbitrary function.

If a system does not satisfy this defimtion, it 1s called noncausal. Such a
system has an output that depends not only on present and past inputs but also
on future inputs.

It is apparent that in real-time signal processing applications we cannot ob-
serve future values of the signal, and hence a noncausal system is physically unreal-
izable (i.e., it cannot be implemented). On the other hand, if the signal is recorded
so that the processing is done off-line (nonreal time). it is possible to implement
a noncausal system, since all vaiues of the signal are available at the ime of pro-
cessing. This is often the case in the processing of geophysical signals and images.

Example 2.2.6

Determine if the systems described by the following input-output equations are causal
or noncausal.

(a) y(m) =xin) —x(n—1) (b) ¥(n) =3, x(k) (€) vin) =ax(n)
{d) vin)=x(n)+ 3x(n+4) (e) ¥{n) = xin?) N v(n) = x(2n)
(g) vim) = x(—n)

Solution The systems described in parts (aj, (b). and (c) are clearly causal, since the
output depends only on the present and past inputs. On the other hand. the systems
in parts (d). (e), and (f) are clearly noncausal, since the output depends on future
values of the input. The system in (g} is also noncausal, as we note by selecting, for
example, n = —1, which vields ¥(—1) = x(1). Thus the output at » = —1 depends on
the input at 2 = 1. which is two units of time into the future.

Stable versus unstable systems. Stability s an important property that
must be considered in any practical application of a system., Unstable systems
usually exhibit erratic and extreme behavior and cause overflow in any practical
implementation. Here, we define mathematically what we mean by a stable system,
and later, in Section 2.3.6. we explore the implications of this defimtion for linear,
time-invariant systems.

Definition. An arbitrary relaxed system is said to be bounded input-bounded
output (BIBO) stable if and only if every bounded input produces a bounded
output,

The conditions that the input sequence x(r) and the output sequence y(n) are
bounded is translated mathematically to mean that there exist some finite numbers,
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sav M, and M. such that
(xtnll = M, = o2 vinl < M, o« (2.2.45)

for all n. If. for some bounded input sequence x(n). the output 1s unbounded
(infinite ), the system 1s classified as unstable.

Example 2.2.7

Consider the nonlincar sysiem descnibed by the input—outpul equation

v =" (n = 1+ xin
As an input sequence we select the bounded signal

xiny = Cdin)
where C Is a constant. We also assume that v«— 1) = U, Then the output seguence is
yi=C, vy =C. wW2)=C' .. vim=C

Clearly. the output is unbounded when 1 < || < oc. Therefore, the svstem s BIBO
unstable. since a bounded input sequence has resulted in an unbounded output.

- 7 Interconnection of Discrete-Time Systems

Discrete-time systems can be interconnected (o form lareer svstems. There are
two basic ways in which svstems can be interconnected: in cascade (series) or in
parallel. These interconnections are illustrated in Fig. 2.2]1. Note that the two
interconnected systems are different.

In the cascade interconnection the output of the first svstem is

it = T{xn]

xin} ' AR | Covia)
: T A
7,
(a]
.: vitm} :
7 P
xim) _\1‘”]

7,
»
Figure 2.21 Cascade {a) and paraliel
{b) {b) interconnections of svstems,
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Convolution

Convolution, one of the most important concepts in electrical engineering, can be used to
determine the output a system produces for a given input signal. It can be shown that a linear
time invariant system is completely characterized by its impulse response. The sifting property of
the discrete time impulse function tells us that the input signal to a system can be represented as
a sum of scaled and shifted unit impulses. Thus, by linearity, it would seem reasonable to
compute of the output signal as the sum of scaled and shifted unit impulse responses. That is
exactly what the operation of convolution accomplishes. Hence, convolution can be used to
determine a linear time invariant system's output from knowledge of the input and the impulse

response

LINEAR CONVOLUTION = —

r any arbitrary input is given by convolution

The response or output y(n) of a LTI system o
of input x(n) and the impulse response h(n) of the system-

y(n)= kE h(k) x(n-k) or y(n)= kg‘ox(k) h(n- k)

l
If the input x(n) has N, samples and the impulse TCSPO{‘SC_ h(“gfhﬁs& ialmsrz)a ;;;Esn'lf}l::
output sequence y(n) will be a finite duration sequence consisting islals é - aper.iod'
convolution results in a nonperiodic sequence. Hence this convolution Ic
convolution,
The convolution relation of equation () can also be expressed as
y(@) =x(n)  h(n) = h(n) * x(n)

where the symbol  indicates convolution operation.
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PROCEDURE FOR EVALUATING LINEAR CONVOLUTION

When we want to compute the output of the system at some time instant, say
n=1,, then according to convolution sum formula, the value of output sample at n=n, 15 given by

1(n,)= t:y;x(k) b, -K)

where x(k)is the input sequence, and h(k) is the impulse response of the system,

The index in the summation is k. Hence x(n) is taken as x(k) and h(n) is taken as h(k),
[1.¢.,both the input signal (k) and the impulse response h(n, - k) are functions of k],

The process of computing the convolution between x(k) and h(k) involves the following
four steps.

I Folding : Fold h(k) about k = 0, to obtain h(-k)

2 Shifting : SHiR b-k)by n, othe ightifn, s posiive shift h(-k) by n to the
leftif n, is negative to obtain h(n,-k).

3. Multiplication: Multiply x(k) by h(n,~k)
v, (k) = x(k)x h(n,-k)

4, Summation : Sum all the values of the product sequence v () to obtain the value
of the output at time n =, [, y(n,).

The above procedu're results ip the response of the system gt 4 single time instant say
n=n,, In general we are interested in evaluating the responge of the system over all the time
instants = o <n < oo, Hence the steps 2 through 4 given above must be repeated. for all possible
time shifts in the range -c0<n<e, s

to obtain the product sequence

. Ifx(n)stansatn=n',andh(n)stansatn=nhthe.nthe iniial value of i o
The value of (n) forn <n, and the value of h(n) for n < I~ 0 nfg z(enz);; n=n +n,

I lenghof 3()isN, and engthof )i N, the h ey o
inal value of n o () is .= n10) + (VAN -3, B of y(n)is N +N.- 1 and the
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PROPERTIES OF LINEAR CONVOLUTION
Mﬂﬁw Property
y(n) = x(n) » h(n) = h(n) « x(n)

proof

We know that, ¥(n)= x(n)+h(n) = kix{k}ﬂn*k}

‘Letm = n-k, then k = n—m. On substituting k by n—m and m by n-k in the abave
gquntmfﬂ,“'th“ﬂ

y(n)= i’l{ﬂ = mj) h{m)
Since m is dummy index, we can replace m by k
ym)= I x(a-k)h()= F bl x(n-k)=h(n)e x(n)
Mﬂ“ Property
[x(n) #1h,(n)] #hy(n) = x(n) # [, (n) # hy (n)]

!'_rg_n!
To prove left hand side (LHS) of the property
Let x(n) be the input signal to a LTI system with impulse response h, ().
Now y,(n) = x(n) * h,(n). ' :
The signal y (n) is now input to a second LTI system with impulse response h,(n). Then

the output of second system is given by - (n) yim)
: _ x(n) Y
y(m) = y,(n) » hy(n) = [x(n) * ()] = h,(n)

3. Distributive Property

)« [, @) + (@] = (0) + B (0)] (X # 0]
LTI systems with impulse response h (n) and h,(n) are excited
sum of the two responses is identical to the response of an
h(n) = h,(n) + h,(n).

This law implies that if two
by the same input signal x(n), the
overall system with impulse response,

@] b= | o)

Aad b, (n) + h(n)

41



Determine the response of the system whose input x(n) and impulse response h(n) are
given by x(n) = {1},2, 3, 1} and h(n) = {1,%, 1,-1}

SOLUTION

The response y(n) of the system is given by convolution of x(n) and h(n)
y(n) = x(n)*h(n) = ti x(k) h(n - k)
The graphical representation of x(n) and h(n) after replacing n by k are shown below.

h(k) x(k) 3 h(-k)

2 2 2
e Ll l & HER
T 0 1 zll_”‘ 12 3 kX SN 4

- 1

The sequence h(k) is folded with respect to k = 0 to obtain h(—k). The Input sequence
start at n = 0 and the impulse response sequence startatn = —1. Therefore the output sequence
start at n = 0 + (=1) = —1. The input and impulse response consist of 4 samples, so the output
consists of 4 + 4 — 1 =7 samples. The 7 samples of y(n) are computed as shown below.

By convolution formula,
y(m)= fj_wx(k} h(n-k) = k:fmx(k] h. (k) ; where h, (k)= h(n — k)

- Whenn = -1, y(-1)= Hiﬂx{k} h(-1-K)= ki’x{k) h,,(K)

Whean=0, y0)= £ x(0B0-) = F x()h,®)

Whenn=1, y(1}=i x(k)h(1-k) = éﬂx{k)h,fk}
Whenn=2, y@)= I x(k)b2-0) = j x(k) h, (k)

5 x(k) h,(k)

k=—u

Whenn=3, y(3)= fj_‘x[k] h(3- k)
Whenn=4, y(4)= h‘:ﬁ_ﬁx(k] h(4—k) = 5‘. x(k) b, (K)
C Whenn=5, y(5)= £ x()hs-k) = :Z_wx(k) hy(k)

The computation of each Samll:lf—‘ is graphically shown below.
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Shifted Impulse Response

Input Sequence Product Sequence
h_,(k)
) v, (%)
3
X 2 e
¢ - | I '
0 1 2 3 2k . ) >k
The sum of product sequence v_,(k)
gives y(=1). - (=) =1.
hy(k) 4 x(k) vy(K)
) 3
2 h4 2] l -
11 1 1 1
>k I vk k
1—2 -1 0 1 0 1 2 3 ' 0 1
The sum of product sequence v, (k)
B gives y(0). - y(0)=2+2=4.
h,(k} - Kﬂ[] .,‘,L{k) 4
. 3 3
/ 2 X 2 =
1 ] 1] 1__ ] Il 1 .
>k A s T R S
o1 27 o 1.% ¢ The sum of product sequence v, (k)
-1 gives y(1). . y(1) = 1+4 +3=8.
v(k)l\
hy(k) A x(k) : 61
3
X 2
2
1 1 1 ] l Il = 2
| L l
—>k 2.3 7 |
0-1 23 : —
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The sum of product sequence V,(K)
gives y(2). .. y(2)=-142 +6+1=8.



>k

=
w
=
~
>
=
L
N—
N

Il -3
;_L
n L4
I [T T T 3 _2
1 | The sum of product sequence v,(k) gives
y(3). - . y(3) ==2+3 +2=13.

' vy(k)
(k) x(k)
: 1
2 X 5 | any 1. ' .
1 >k —>k,

0 I 12 3 4 5 03 2 33

s 1.‘ .

) The sum of product sequence v (k)
? gives y(4). .. y(4) =-3+1=-2

e ® v,(k]

3
2] x 2] l K
1 It 1 1 k
¥ 2 3

0 I 2: l3 45 & % k 0 k”  The sum of product sequence
v (k) gives y(5). . y(5) = -1

The output sequence, y(n) = {l. 4, 8,8,3,-2,-1} )
8¢ 8
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-2 -1 0 1 -115 g rn

Fig : Graphical representation of y(n)
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Analysis of DT-LTI Systems

" The Direct z-Transform

The ;-transform of a discrete-time signal x(n) 1s defined as the power series
s

where z is a complex variable. The relation (3.1.1) is sometimes called the direet
z-transform because it transforms the time-domain signal x(n) into its complex-
plane representation X{z). The inverse procedure [i.e., obtaining x(n} from X (z)]
ts called the mverse z-transform and is examined briefly in Section 3.1.2 and in
more detail in Section 3.4.
For convenience, the z-transform of a signal x(n) is denoted by
X2y = Z{x(nl}
whereas the relationship between x{n) and X (z} is indicated by
x(n) <= X(2)
Since the c-transform is an infinite power series, it exists only for those values of
z for which this series converges. The region of convergence (ROC) of X(2) is the
set of all values of ; for which X(z) attains a finite value. Thus any time we cite
a z-transform we should also indicate its ROC,
We illustrate these concepts by some simple examples.
Example 3.1.1

Determine the -transforms of the following finue-duration signals,

(a) xy(my={1,2.5.7.0.1}
(b) x:in)=11.2.5.7.0G. 1}

{c) x:(n)=10,0,1,2,57.0.1)
(d) xsin) =1{2.4.5.7.0.1)

(€} xsin) = §{n}
(0 xeln)=8in=k) k=0
(g) mimy=fn+k) k=0

Solution From definiion (3.1.1), we have

(@) Xylz) =142+ 5277 4727 + 7%, ROC: enuire z-plane except z =0

(by X:(z) =2 +2:+54 7" +:7%. ROC: entire z-plane except z = 0 and : =
(€} Xaisd =274 27 +5:7 4777 4 277, ROC: entire z-plane except z = 0

(dy Xi(z) =27 +4z 45+ 727" 4 :7%, ROC: entire z-plane except z = O and 1 = o0
{e) Xs(z) = 1[i.e.. 8(n) «— 1], ROC: entire z-plane

(f) Xelz) = *[i.e.. 6(n — k) — :7%], k = 0, ROC: entire z-plane except z =0
(g) X+0z) = *[ie., 5(n + k) == z*].k > 0, ROC: entire z-plane except z = o0&
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-1 THE Z-TRANSFORM

In this section we introduce the z-transform of a discrete-time signal, investigate
its convergence properties, and briefly discuss the inverse z-transform.

Nid=1 . N-1 N ’
— rkn - g
= Zx(n)u,,.q-w,, Z.r(n+4)“h

n={) r=0
N~ N4
T N : 3N
+W':,"’2 Z x (n+3) Wt + W:,m" Z X (n+ T) win
o n=l

From the definition of the twiddle factors, we have
W‘:,NM - (—j)k w:l.r: - (_])l w:'mn - (j)‘

After substitution of (6.1.49) into (6.1.48). we obtain

N1 p N
XKk = Z [x(n) +(—Jjrx (n+ 7)

ne=l}

+ (=1 (n - ﬁ) + (j)'x (n - 3-”)] wit
4 4
The relation in (6.1.50) is not an N /4-point DFT because the twiddle factor
depends on N and not on N/4. To convert it into an N /4-point DFT, we subdivide
the DFT sequence into four N /4-point subsequences, X (4k). X (4k + 1), X4k +2),
and X(4k +3). k=0.1..... N/4 — 1. Thus we obtain the radix-4 decimation-in-
frequency DFT as

Nid= N
X(4k) = G X -
(4k) Z[)(ﬂ)+x(n+4)

N 3N 0 wrkn
+x(n+3 +x(n+—-4—-) Wy Wil

Nja=1 N
X(dk+1) = x(n) - jx (n+—) e
g J 3 \

N . 3N n varkn
—x(n + 7) + jx (n+ T)] W,'.W,‘;/‘

N-1 N
X (4k = - — -
(4k + 2) z [x(n) x(n+ 4) .

me=()
3N
+x(n+%)-x(n+—;)]wf;'wl'g;‘
Nid-1 N
X4k +3) = g [x(n)+jx(n+7) (-

N . 3N
-x (n + 5) - jx (n+ T)] Wy
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From this example it is easily seen that the ROC of a finite-duration signal
is the entire z-plane, except possibly the points z = { and/or z = oc. These points
are excluded, because -*(k > 0) becomes unbounded for - = oo and z7%(k > 0)
becomes unbounded for z = 0.

From a mathematical point of view the z-transform is simply an alternative
representation of a signal. This is nicely illustrated in Example 3.1.1, where we
see that the coefficient of ™", in a given transform, is the value of the signal at
time n. In other words, the exponent of z contains the time information we need
to identify the samples of the signal.

In many cases we can express the sum of the finite or infinite series for the
z-transform in a closed-form expression. In such cases the z-transform offers a
compact alternative representation of the signal.

Example 3.1.2
Determine the z-transform of the signal
x{n} =13 u(n)
Solution The signal x(n) consists of an infinite number of nonzero values
i = (LG GE A

The z-transiorm of x(a) is the infimite power series

Xtoy = 1+ Lt b g ddyemn

]
3|
LT
-

a
i
]

=

o

i
]

t

:

This 15 an infinite geometric series, We recall that

. 1 .
1~A¢A~+A-‘+---=l—-7 il A < 1

Consequently, for |3:7'| < 1. or equivalently, for [z| = 3, X(z) converges to

Xz = -—1—-— ROC: |z] = EI

=it
We see that in this case. the z-transform provides a compact allernative representation
of the signal x(a).
Let us express the complex variable z in polar form as
= re!® ) ’

where r = |z| and # = £z, Then X(z) can be expressed as

==

X(Dlemrer = ) x(m)r"eTie"

A===00
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In the ROC of X(z). |Xiz)| = o¢. But

X2 = | Z xin)r e /Hn
= —3C . =y
oo = B
= Z |xtn)r e = Z lxinir™"|
A=—2¢ p=—

Hence |X(z)| is finite if the sequence x(n)r~" is absolutely summable.

The problem of finding the ROC for Xi(z) is equivalent to determining the
range of values of r for which the sequence xtmir™" is absolutely summable. To
elaborate, iet us express (3.1.5) as

™=

xim}p:
Xz = {myr ™" E 5
| = |xiedr 4 .
[T = L
= = [ x(n)}

= [xi=nir"| +
=) Y= |

n=1 =1l

If X {z) converges in some region of the complex plane. both summations in {3.1.6)
must be finite in that region. If the first sum in (3.1.6) converges. there must exist
values of r small enough such that the product sequence xi—wir". 1 < n < o, is
absolutely summable. Therefore. the ROC for the first sum consists of all points
in a circle of some radius r. where ry < =, as illustrated in Fig. 3.1a. On the
other hand, if the second sum in (3.1.6) converges, there must exist values of r
large enough such that the product sequence xin)/r". 0 = n < =c. is absolutely
summable, Hence the ROC for the second sum in (3.1.6) consists of all points
outside a circle of radius r = ra. as illustrated m Fig. 3.1b.

Since the convergence of X(2) requires that both sums in (3.1.6) be finite. it
follows that the ROC of X(2) is generallv specified as the annular region in the
z-plane, r- < r < r;. which is the common region where both sums are finite, This
region is iliustrated in Fig. 3.1¢. On the other hand. if r- > r;. there is no common
region of convergence for the two sums and hence X (z) does not exist.

The following examples illustrate these important concepis.

Example 3.1.3

Determine the ;-transform of the signal

o,
zimy=a'uin) = [
0.

n o<}

Solution From the defimition (3.1.1) we have

= [
Xiz= Za"; "= Zia:'H"

A=l m=ll

If lez7!| < 1 or equivalently, |z| = e, this power series converges to 1/(1 — az7").
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Figure 3.1 Region of convergence for
X (z) and its corresponding causal and
anticausal components,



[0 ree 7

(b}

Figure 3.2 The exponential signal x(n) = e"win) (a}, and the ROC of ns ;-
transiorm (B).

Thus we have the ;-iransform pair
: 1
rimy=o"win) +— X(z) = T ROC: 2] = o]
—az-!
The ROC is the exierior of a circle having radius je|. Figure 3.2 shows a graph of the
signal xin) and its corresponding ROC. Note that. in general. o need not be real.
If we set o = 1 in (3.1.7). we obtain the :-transform of the unit step signal

: 1
= uin) — Xz} = 5—_:3 ROC: |zl = 1
Example 3.1.4

Determine the z-transform of the signal
nz=0
f ':l = —n‘ﬂ - I = { -
xinm ui=n ] —a". n<-1

Solution From the definition (3.1.1) we have

Xiz) = _Z‘ {—a")z ™" = -i{a“::“
il

A= Tl

where { = —n. Using the formula

. 3 . A
A+A+A 4+ = A(1+A+A‘—r--.]=ﬁ
when [A] = 1 gives
o'z 1
X(2)= - = .
) ] =&tz ] —azt
provided that jo™';z| < 1 or, equivalently, |2{ < |a}. Thus
: 1
n)=—a"ui—n—1) — Xz}l = “T—aa ROC: jz| = || -
el ¥ £

The ROC is now the interior of a circle having radius i, This is shown in Fig. 3.3.
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xin)

Relz)

(al ik

Anticausal signal x(n) = =g"u({=r = 1} {a), and the ROC of its ;-
transic rm (b},

Examples 3.1.3 and 3.1.4 illustrate two very important issues. The first con-
cerns the unigueness of the z-transform. From (3.1.7) and (3.1.9) we see that
the causal signal o"u(n) and the anticausal signal —e"u(—n — 1} have identical
closed-form expressions for the z-transform, that is.

1

1 —az!

Zie"uin)) = Zi—e"ul—n - 1)) =

This implies that a closed-form expression for the z-transform does not uniquely
specify the signal in the time domain. The ambiguity can be resolved only if
in addition to the closed-form expression, the ROC is specified. In summary. a
discrete-time signal x(n) is uniquely determined by its z-transform X(2) and the
region of convergence of X (z). In this text the term “z-transform™ is used to refer
to both the closed-form expression and the corresponding ROC. Example 3.1.3
also illustrates the point that the ROC of a causal signal is the exterior of a circle
of some radius r» while the ROC of an anticausal signal is the interior of a circle of
some radius r;. The following example considers a sequence that is nonzero for
-0 < 1< 00

Example 3.15

Determine the z-transform of the signal
x(n) =o"uwin) 4+ Fui-n-1)
Solstion From definition (3.1.1) we have

X2 = iﬂ“‘:"‘ + -Z] B = i[u:“‘]" + i{b‘J:J’
A=l =1

A= =i E=l

The first power series converges if |az™'| < 1 or |z] = |e|. The second power senies
converges if |57z < 1 or |2i < |bl
In determining the convergence of X (), we consider two different cases.
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Case 1 jb| < [cef: In this case the two ROC above do not overlap. as shown
in Fig. 3.4ia). Consequently. we cannot find values of : for which both power series
converge simultancously. Clearly, in this case, X(z) does not exist.

Case 2 |b| > |«ft  In this case there is a ring in the z-plane where both power
series converge simultaneously, as shown in Fig. 3.4(b). Then we obtain
1 1
T—gz? 1= bz
b=
a+b-z—abr!
The ROC of Xiz) 15 |e| < [2| = |B|.

X2 =

This example shows that if there is a ROC for an infinite duration two-sided
signal, it is a ring (annular region) in the z-plane. From Examples 3.1.1, 3.1.3, 3.1.4,
and 3.1.5. we see that the ROC of a signal depends on both its duration {finite
or infinite) and on whether it is causal, anticausal, or two-sided. These facts are
summarized in Table 3.1.

One special case of a two-sided signal 1s a signal that has infinite duration
on the right side but not on the left ie., xin) = 0 forn < ny = 0] A sec-
ond case is a signal that has infinite duration on the left side but not on the

b1 < bl
Xz does not exist

Reiz)

ROC for X(2)
|

Figure 34 ROC for z-transform in
Example 2.1.5.
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3.1.2 The Inverse z-Transform

Often, we have the z-transform Xiz) of a signal and we must determine the signal
sequence. The procedure for transforming from the :-domain 1o the time domain
is called the inverse z-transform. An inversion formula for obtaining xin) from
X(z) can be derived by using the Cauchy mregral theorem, which is an important
theorem in the theory of complex vanables.
To begin, we have the z-transform defined by (3.1.1) as
4

Xtoy= 3 xthyz™

[
Suppose that we muluiply both sides of (3.1.12} by :* ' and integrate both sides

over a closed contour within the ROC of Xz} which encloses the ongin. Such a
contour is illustrated in Fig. 3.5, Thus we have

L
EXEC':"'IJJ': :i S :rl—!—l_d:
freostaz =) 3 s

ba—=c

where C denotes the closed contour in the ROC of X(z). taken in a counterclock-
wise direction. 5ince the series converges on this contour, we can interchange
the order of integration and summation on the right-hand side of {3.1.13}. Thus

Figure 3.5 Contour C for integral in
(3.1.13)
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{3.1.13) becomes

o
Séﬂ:]z“‘ld; = > :(klféz""“d:

k=—ac
Now we can invoke the Cauchy integral theorem, which states that
1

n—1—k
—_—T5 dr =
2m) JE I

1. = n

00 k#n

where C is any contour that encloses the origin. By applying (3.1.15), the right-
hand side of (3.1.14) reduces to 2w jx(n) and hence the desired inversion formula

1
x(ny= —.ﬁxmz"" dz
2mj

Although the contour integral in (3.1.16) provides the desired inversion for-
mula for determining the sequence x(n) from the z-transform, we shall not use
(3.1.16) directly in our evaluation of inverse z-transforms. In our treatment we deal
with signals and systems in the z-domain which have rational z-transforms (i.e., z-
transforms that are a ratio of two polynomials). For such z-transforms we develop a
simpler method for inversion that stems from (3.1.16) and employs a table lookup.

3.2 PROPERTIES OF THE Z-TRANSFORM

The z-transform is a very powerful tool for the study of discrete-time signals and
systems. The power of this transform is a consequence of some very important
properties that the transform possesses. In this section we examine some of these
properties.

In the treatment that follows, it should be remembered that when we combine
several z-transforms, the ROC of the overall transform is, at least, the intersection
of the ROC of the individual transforms. This will become more apparent later,
when we discuss specific examples.

Linearity, If
xy(n) =— X,(z)
and
x2(n) «— X»(z)
then
x(n) = ayxi(n) + arx2(n) —— X(z) = a1 X1(2) + a2X3(2)
for any constants a; and a;. The proof of this property follows immediately from
the definition of linearity and is left as an exercise for the reader.

The linearity property can easily be generalized for an arbitraryv number of
signals. Basically, it implies that the z-transform of a linear combination of signals
15 the same linear combination of their z-transforms. Thus the linearity property
helps us to find the z-transform of a signal by expressing the signal as a sum of
elementary signals, for each of which, the z-transform is already known.
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Example 3.2.1
Determine the z-transform and the ROC of the signal
xin) = [3(27) — 43" ) Juin)
Solution If we define the signals
xpin) = 2win)
and
xxin) = Yuin)
then x{a) can be written as
x(n) = 3xy(n) — 4x2(n)
According to (3.2.1). its z-transform is
Xiz)=3X (21— 4X:iz)

From {3.1.7) we recall that

a'uin} —— T ROC: |z| = |e|

By senting & =2 and @ = 3 i (3.2.2}. we obtain

: 1
_]_'r“'r:l = :'IH{H:I L] x-l::] = m RDC: |:: - 2
: 1 .
;;.{n_:j = 3"';;{”'; - — Xl{:} - ﬁ ROC' |-'..| - 3
= Az

The intersection of the ROC of X,(z) and X302} is |z] = 3. Thus the overall transform
Xizvis

Xz = T - ROC: |z] = 3

3
N T T Iy

a
e

Example 3.2.2

Determine the z-transform of the signals

{a) x(n)= (coswynjuin)
(b) xin) = (sionwynduin)

Solution
(s} By using Euler’s identity, the signal x(n) can be expressed as
xin) = (coswpniuln) = 1&/*0"u(n) + je~/**"u(n)
Thus {3.2.1) implies that

X(2) = Z{e/™ uin)} + L Z{e™ ™ u(n))
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If we set & = e {ja] = [¢2| = 1) in (3.2.2). we obtain

W) ik ke ROC: |2 > 1
| — gromz-l
and
e’_"w""lfr._ﬂ} {;‘ ___J_.__ RD(" |: > 1
1 — g=im =1
Thus
1 1 1 i
X(z) = ROC: 2} = 1

21~ ezl TIT- e sz
After some stmple algebraic mampulations we obtain the desired result, namely,

1 = 27" cos ay
1— 2 Vcosay +27-

(Cus wpn hu(n) = ROC: - = 1 {323

{b) From Euler’s identiry,

, | -
x(n) = (8 o hie(n] = q—If"“MHEH] — Ty

Thus
1 1 1
= - _— R el
.:f( ] 2_} (j — gl ==l 1- f_"""'-:_l) (}C I

and finally,

(sin wonuin) ——s 7= 2;?;;:::_ = ROC: 21 =1 (3.24)
Time shifting. If
x(n) > X(z}
then
x(n — k) — 27 X () (3.2.3)

The ROC of ;7' X(z) is the same as that of X (z) except for : = 0 if k& = 0 and
z = co if k = . The proof of this property follows immediately from the definition

of the z-transform given in (3.1.1)
The properties of linearity and time shifting are the keyv features that make
the z-transform extremely useful for the analysis of discrete-time LTI systems.

Example 3.2.3

By applying the time-shifting property, determine the z-transform of the signals x:in)
and x3{r) in Example 3.1.1 from the z-transform of x;(n).

Solution It can easily be seen that

xin) = xin+12)
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and
xiln) = xy(n =~ 2)
Thus from (3.2.5) we obtain
Xalz) =X =" + 2454771 4277
and

Xslz = X =t 4 2070 4 5 e 1 e

Note that because of the multiphication by 2% the ROC of X,(z) does not include the
point = = oo, even if it 15 contained in the ROC of X,{z).

Example 3.2.3 provides additional insight in understanding the meaning of
the shifting property. Indeed, if we recall that the coefficient of :7" is the sample
value at time n. it is immediately seen that delaving a signal by k{k > ) samples
[l.e.. x(n) = xi{n = k)] corresponds to multiplying all terms of the z-transform by
=7, The coefficient of : ™" becomes the coefficient of ="',

Example 3.2.4

Determine the transform of the signal
“”]q_[I. O=n=N-1
S0, elsewhere

Soletivn We can determine the z-transform of this signal by using the definition

(3.1 Indeed,
L | N ifz=
- L R AT s PR B TR ) .,
Jr’m_ZI‘ L el
Al 1—:""

Since xin) has finite duration. its ROC is the entire z-plane. excepl ¢ =
ELet us also derive this transform by using the bnearity and nme shifung prop-
erties. Motle that x{n} can be expressed in terms of two unit step signals
xin)=uwin) —uin = N)
By using (3.2.1) and {3.2.5) we have
Xzt = Ziuln)) = Z{uin = N}y = (1 = 27" Z{wim)} .

However, from (3.1.8) we have

1
] —z=

which. when combined with {3.2.8), leads 10 (3.2.7).

ROC: 2] = 1

Z{utn)) =

Example 3.2.4 helps to clarify a very important issue regarding the ROC
of the combination of several z-transforms. If the linear combination of several
signals has finite duration, the ROC of its z-transform is exclusively dictated by the
finite-duration nature of this signal, not by the ROC of the individual transforms.

Scaling in the z-domain. If
x(n) — X(2) ROC:r < |z] <12

57


Free Hand


then
a"x(n) — X(a"'z) ROC: |alry < |zl < la|r:

for any constant a, real or complex.
Proof. From the definition (3.1.1)

e = s
Zla"x(n)) = Z a"xin)z™" = Z ximia~'z)™"
=0 R=—0
= X(a'7)

Since the ROC of X(z) is ry < |2] < r2. the ROC of X(a~'z) is

ry < Ia"]:l < Fa
or

lafry < |z| < lajr:

To better understand the meaning and implications of the scaling property,

we express a and : in polar form as a = rpe/™. = = re/”, and we introduce a new
complex variable w = a~'=. Thus Z{x(n}} = X(z) and Z{a"x(n)) = X(w). It can

easily be seen that
1 .
. _'|_ = iy
w=a =|—r]e
(Tn )

This change of variables results in either shrinking (if ry > 1) or expanding (if
ry < 1) the z-plane in combination with a rotation (if wy # 2kx ) of the z-plane
(see Fig. 3.6). This explains why we have a change in the ROC of the new transform
where |a| = 1. The case |a| = 1, that is, @ = ¢/*" is of special interest because it
corresponds only to rotation of the z-plane.

Example 3.2.5
Determine the :z-transforms of the signals

(a) x({r) = a"(coswnluin)
(b} xi{n) = a" (Sim wynduin)

z-plane w-plane
Trniz) [ werd
u=a-l; ut
’
w wr— iy
0 Retlz} 0 Reluw)

Figure 3.6 Mapping of the z-plane 1o the w-plane via the transformation w =
a~lz, a = rpe’*o,
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Solution
{a) From (3.2.3) and {3.2.9) we castly oblamn

| —a:z ' cosw,

G 0O e () e - — o |a
| — 2027 coSan +a-27-
(b} Similarlv. (3.2.4) and {3.2.9) vield
. : a:” siny
& VBT b B Ca ) — - — joi = lal ' 1y
1 — 2a:- coB oy, + a-2
Time reversal. If
At} == X{zt  ROC:r < [z} < r
Lthen
) 1 1
X(=n} — Xiz7" ROC: — < |z = —
Fz L
FProof. From the definition (3.1.1). we have
=, s
Zlal=n) = Z xi—nizTt = Z vibhiz"h = XY
= — " =y
where the change of variable | = —» 15 made. The ROC of Xz7') is

ryo< |27 < por eguivalently F—E- < || = ;l-
MWote that the ROC for xim is the inverse of that for xi—=n). This means that if oy
belongs to the ROC of xn). then 1/z, is in the ROC for x{—n).

An intuitive proofl of (3.2.12) 1s the following. When we fold a signal. the
coefficient of -7" becomes the coefficient of 2", Thus. folding a signal is eguivalent
to replacing z by 27 in the z-transform formula. In other words, reflection in the
time domatn corresponds to inversion 1n the z-domain.
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TABLE 3.2 PROPERTIES OF THE Z-TRANSFORM

Property Time Domain z-Domain
Notation x{n) Xi{z)

xy(n) Xilz)

xzin) Xalz)
Linearity myxy(n) + azry(n) m Xy (z) + a; X»(z)

Time shifting

Scaling in the z-domain

Time reversal
Conjugation
Real part
Imaginary part

Differentiation in the
z-domain
Convolution
Correlation

Initial value theorem

Multiplication

Parseval's relation

x{n — k) X

a"x(n) X(a sy

x(—n) Xz

x*(n) XT(z")

Relx(n)} X+ X))
Im{x(n)} LHxy - xmizn)

dXi(z)
nxin) -7 dz

xp(ndw xa(n)

X (z) X (2)

rxu;l”] = ’rll” *-TI(_” R;,”(E] = xl(z}xltz_r)

If x{n) causal

o

(0 = lim X(z)
=

xy{n)xz(n) i%?ﬁk’.lu)xz {:1_,) v 'du

1
EII("]X;IHJ = mﬁk’dv]x;[lm'hr"du

ROC

ROC: i = |2l = 1y
ROC,
ROC;

Al least the intersection of ROC,
and ROC,

That of X(z), except z =010l k =0
and t =oc il k <10}

lalry < |z < |alr,

1

— <zl <« —
r *
ROC
Includes ROC
Includes ROC

ry = lz] = ny

At least, the intersection of ROC,
and ROC,

Al least, the intersection of ROC of
X(z) and Xa(z™h

At least ryry < |2] = Fiofy
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Example 1.3.1
Determine the pole-zero plot for the signal

xin) = auin) g =0

Solution From Table 3.3 we find that
1 z
Xz = - = ROC: |z = a
L -l I=-4

Thus X(z) has one zero at z; = 0 and one pole at p; = e. The pole—zero plot s
shown in Fig. 3.7. Note that the pole py = ¢ 15 not included in the ROC since the
z-transform does not converge at a pole.

L z)

Feizl

7
| Figure 3.7 Pole—zero plot for the
causal exponential signal & = a"wtr,

Example 3.3.2
Determine the pole-zero plot for the signal
x(n) = [.r:r". J=n=M-1
10, elsewhere

where & = 0.

Solution From the definition (3.1.1) we obtain

M=i
1= {az~4)¥ M —a¥
- ~—1ym —
X(@=) (@ = o =
Al

Since a = 0, the equation ;¥ = a" has M roots at

2 = geliTEIM k=0,1,....M~1

The zero z; = g cancels the pole at ; = @, Thus
Z—oizr—z)---lz—2xw)
Xi(z) = e

which has M — 1 zeros and M — 1 poles, located as shown in Fig. 3.8 for M = 8. Note
that the ROC is the entire z-plane except z = 0 because of the M — 1 poles located
at the origin,
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Irmii 2

M =1 poies m::‘:ﬂ
'H&I ‘f

¥ Reiz}

Fipure 3.8 Pole-zero pattern for
| the finite-duration signal xinl = a°,
| U=n=M-lia =0}, for M =&

Clearly. if we are given a pole-zero plot, we can determine X (), by using
(3.3.2). 1o within a scabing factor G. This is illustrated in the following example.

Example 3.3.3
Determine the c-transform and the signal that corresponds 1o the pole-zero plot of
Fip. 3.4,

Solution There are two zeros (M =23 at 2, = 0, 23 = rcosux, and two poles (& = )
at pp = re™™ g = re”™" By substitution of these relations into (3.3.2), we obtain
o= oMz - zz) iz —roos o)

M= =0 . ROC: iz >r
2=l = pal (z—remu)(z —re='a)

Afwer some simple algebraic manipulations, we obtain
. 1—rz7' cosmy
Xiz)=0G- - ',_ - BROC: [zl =r
P =2zt cosay 4 rizd

From Table 3.3 we find that

xin) = Gir® coswonuin}

From Example 3.3.3, we see that the product (z — py)iz — p2) results in a
polvnomial with real coefficients, when py and p» are complex conjugates. In

Imiz)

7)),

Figare 3.9 Pole-zero pattern for
Example 3.3.3.
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Ana_nlvsis of discrete time sustem usina Z-transtorm

The convolution property of Z-transform says that the #-transfo
of x(n) and h(n) is equal to the product of their individual #-transforms.

~Z{x(n) » h(n)} = X(2) H(z)
From eqn(1.29) we know that,
y(n) = x(n)+h(n)
Using equation(1.34) in eqn(1.33) we get
Z{y (n)} =X(z) H@)
-~ Y(z) = X(2)H(2)
where Y(2) = Z{y(n)}
Now the response y(n) of LTI sy
equation(1 .35)

rm of the convolution

stem is obtained by taking inverse #-transform of

~y(n) = ' {(X(@2)H(@)}
Hence in order to determine the response of LTI system, first determine the Z-transform

of the input signal and impulse response of the system.
Let X(z) = Z-transform of input signal x(n) and
H(z) = #-transform of impulse response h(n).
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Now take the product of X(z) and H(z), then determine thc inverse Z-transform of the
product, which gives the response y(n) of the system.

From equation (1.35) we can write,

Y(z) '
H(z) = —=2

(2) X(z)

We know that Y(z)/X(z) is the transfer function of LTI system. Therefore from equation

(1.37) we can say that the transfer function of LTI system is also given by the Z-transform of
impulse response.

Conversely we can say that if the transfer function of the system is known then we can
determine the impulse response of the system by taking inverse #-transform of the transfer
function ,

Y
~.Impulse response, h(n) = 2 {H(z)} = &~ {XL(;%}

EXAMPLE 1.1

Determine the impulse response h(n) for the system described by the second order
difference equation, y(n) — 4y(n - 1) + 4y(n - 2) = x(n - 1).

SOLUTION h
The difference equation governing the system is
y(n) —4y(n-1)+4y (n-2)=x(n-1)
Let Z{yn)}=Y@), - Z{aym-k)} =az*Y(2)
Let Z{x(n)}=X(z) .. Z{ax(n-k)}=az"*X(z)

where a is constant

On taking Z-transform of the difference equation governing the system we get,
Y(z)-4z"'Y(2) +4z272Y(2) = 27" X(2)
(1-4z"+4z) Y(z) =z X(2)

Y@ 7
“X(z) 1-4z"' +4z72

We know that, XEZ; H(z)

oz - 2 o 3B 1 22
1-4z" +427  77(Z -dz+4) (z-2)' 2(z-2)°

- H(z)=
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L

1 2z } We know that
=

Z{na"} = (z— a)’

= ol
Impulse response, h(n) = Z'{H@)} = Z {2 (Z= 2)2

=(1/2)n2*=n g0-» forn 2 0

or h(n) = n2-" u(n) for all n.

rder difference

EXAMPLE 1.2
of the second 0

Find the transfer function and unit sample response
equation with zero initial condition, y(nT) = x(nT) — 0:25y(nT-2T)

SOLUTION

The difference equation governing the system is
y(nT) = x(nT) - 0.25 y(nT-2T)
Let Z{y(nT)} = Y(2),
. Z{ay(nT —-2T)} = a z*? Y(z) when the initial conditions are zero.
Let Z {x(nT)} =X(2)
On taking Z-transform of the difference equation governing the system we get
Y(z) = X(2) - 0.25 22 Y(2)
Y(2) +0.2522 Y(2) = X(2)
(1+0.252%) Y(z) = X(2)
Y(z) 1
" X(2) 14025272

The equation (1.2.2) is the transfer function of the system

Y(z)
We know that, —= =
X@) H(z)

~H(z)= 1 = 1 2
® | 1402522 22(24.025) (24 05)2(2~j 0.5)
By partial fraction expansion we can write,
H(z) N . & A A’
2 (@+109(-105 " 2+105 " 7= 503
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where A" is conjugate of A.

H
A= ﬁ(z+j0.5)‘ - __& - jO.S)\
z =05 (z+ j0O.5) (z— j0.5) rm-j0S
R - =05 _ _=j05 _1
z2-j0.5|,_,s -j0.5-j0.5 2(-j0.5) 2
ot A. = _l.
2

z  z+j05 z-j0.5s \2)z+j0.5s \2)z-j0s5

S H(z) = (l] [ e + - = l & + - :l
2)|z+j05 z-j0.5| 2|z-(-j0.5) z-j0.5

The impulse response is obtained by taking inverse Z-transform of H(z).

1 Z

. . i . z 4
= Implulse response, h(n) = 2" {H(z)} = 2 {2 [z—(—jOj) + z—jOS}}

Aleltsk sl

=%[(_j05)f+(j05);] ; forn=0

or h(n)=%[(—j05)"+(j05)"]u(n); forall n

FREQUENCY ANALYSIS OF SIGNALS

The discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of
a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier
transform (DTFT), which is a complex-valued function of frequency. The interval at which the
DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT is
a Fourier series, using the DTFT samples as coefficients of complexsinusoids at the
corresponding DTFT frequencies. It has the same sample-values as the original input sequence.
The DFT is therefore said to be a frequency domain representation of the original input
sequence. If the original sequence spans all the non-zero values of a function, its DTFT is
continuous (and periodic), and the DFT provides discrete samples of one cycle. If the original
sequence is one cycle of a periodic function, the DFT provides all the non-zero values of one
DTFT cycle.

The DFT is the most important discrete transform, used to perform Fourier analysis in many
practical applications.!) In digital signal processing, the function is any quantity or signal that
varies over time, such as the pressure of asound wave, aradiosignal, or
daily temperature readings, sampled over a finite time interval (often defined by a window
function™™). In image processing, the samples can be the values of pixels along a row or column
of a raster image. The DFT is also used to efficiently solve partial differential equations, and to
perform other operations such as convolutions or multiplying large integers.
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Since it deals with a finite amount of data, it can be implemented in computers by numerical
algorithms or even dedicated hardware. These implementations usually employ efficient fast
Fourier transform (FFT) algorithms;®! so much so that the terms "FFT" and "DFT" are often
used interchangeably. Prior to its current usage, the "FFT" initialism may have also been used for
the ambiguous term "finite Fourier transform".

The Discrete Fourier Transform (DFT) of a discrete time signal x(n) is a finite duration
discrete frequency sequence. The DFT sequence is denoted by X(k). The DFT is obtained by
sampling one period of the Fourier Transform X() of the signal x(n) at a finite num‘:fﬂf of
frequency points. This sampling is conventionally performed at N equally spaced points in the
pﬂ.igdugmﬂnnrat o =2nk/N;0<k<N-1

The Fourier Transform of a discrete - time signal is a continuous function of @ and 50
cannot be processed by digital system. The discrete Fourier Transform (DFT) converts the
continuous function of @ to a discrete function of w. Thus DFT allows us to perform frequency

analysis on a digital computer.

ortant for two reasons. First it allows us to determine the frequency

T gl The second application of the DFT is t0

content of a signal, that is to perform spectral analysis.
perform filtering operations in the frequency domain.

nce with Fourier Transform X(w), then the DFT of x(n)

Let x(n) be a discrete time seque
denoted by X(k) is defined s,

X(k)=X (0) su: fork= 0, 1,2 ..(N-1)
LA

consisting of N samples of X(@). The DFT ﬁﬂ'qum;t
put does not include k = N, corresponding t w = &%

= lly, the DFT is defined along
e i N for a finite

The DFT of x(n) 15 2 aoqucnﬁrb

ing to @ =
starts a k = 0, conespondie le at
(Since the sample at® = 018 sm:ne a;?; ;all;:gim o :rhe ik Samplﬁ

wilh ofsamples cashr:mld be such that, N2 L.

- ; 1.To
- of a sequence to get L‘{FT is shown 1n.¢xaﬁ;) E'-;r .
Thesanpling & ﬁmm?tris ot necessary to compute fri ““.“Sf“;“‘z’)”“““
calculate DFT of atzq:;;;w gefinition of DFT as given by equation (2.2).
be directly compu .
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" TheNpointD) here N2 L, i
The N-point DFT of a finite duration sequence x(n) of length L, w is defineq o
Inkn

: “ = el N=1)
DFT{x(n)} = X[k}-;g: x(n)e "W fork =0,1,2 (

Definition of IDFT
The Inverse Discrete Fourier Transform (IDFT) of the sequence X(k) of length N is defineg as

. jaskn
’D”{X{k}}-x[n}-wl :3;_;:-:{1:}4: N oy forn=0,l,....,(N=1)

The equation (2.4) is used to denote the N-point DFT pair x(n) and X(k).
DFT
x{n; I—-;-; X(k)
EXAMPLE
_____-_-_.

Compute 4-point DFT of causal three sample sequence given by

1
x(ﬂ}'-‘"i ; O=n<2

=0 : elge
SoLunion
the definiti -poi i
_ hiy on of N-point DFT, the k¢ complex coefficient of X(k), for0 <k < N-1, is

X(k)= Nfl x(n) ¢~mkn/N
n=0

Here N = 4, therefore the 4-point DFT s
X(k)= % x(n) e _ 3 X(n) ¢l
=i n=0 .

= x(0)e® + x(le =2 X(2)e i X(3)ePwki2

I 1 _. 1 .
= —4_p M1+__=—Jlk+{l =

373 3 %[1 tetna gy ¢ ]

= -

1+ cos — o tk — ied

The values of X(k) can be evaluated fork = () | 2.3
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When k = 0; X(0) = 1 isi
(0) 3[1+Gmﬂ—351nﬂ+mul}-jnin{l]

1
’=E{1+1+1}=1=14g

Whenk =1; X(1)= %[

L -
l+mi“13\n-i+msr:—jainn]

1
=3Ur0-j-1-j0)= o=t s-ni2

Whenk=2; X(2)=

_1 . 1 1
‘——'(1-1- +l-1====.70
3 10 10) 373

1
§[l+cmn—jainn+ cos 2 - jsin 2]

Whenk=3; X(3)= 13[1 +ms§:—— 'sin?'T“+cu53n— jsin 31':}

1 . . .
=3(+0+j-1-j0)=

e | =
| =

.. The 4-point DFT sequence of x(n) is given by,

1 1 1
k)Y={120, =2- - -
X(k)= 20, 3 £=n/2, 220, L2

- 1 1 1
Magnitude function, X(K)|={1, 3, 3. 3}

Phase function, ZX(k) = {0, —n/2, 0, n/2}
PROPERTIES OF DFT

Enll

Property Time Domain  Frequency Domain
MNotation x(n), y(n) Xk}, Y (k)
Penodicity x(n) = x(n+ N) Xk)=X(k+N)
Linearity ajxi(n) +ayxz(n) @y Xy (k) + ax: X3 (k)
Time reversal x(N = n) X(N=k)
Circular time shift x((n = D)n X (k)e iZxuIN
Circular frequency shift x(n)e¥IniN X (k= D)
Complex conjugate x*(n) X*(N = k)
Circular convolution x:(m) M) x;(m) X, (k) X2(k)
Circular correlation x{(n) ® ¥ (—n) X(k)Y*(k)
Multiplication of two sequences x{n)xs(n) -}H—X,(k] @ Xz(k)

N=1 N=1
]
seval’ . ~ Y*(k

Parseval's theorem gx{n]} (n) N ; X(k)Y*(k)
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If we multiply the two DFTs together, the result is a DFT. say Xi(k), of a se-
quence x3(n) of length N. Let us determine the relationship between x3(r) and
the sequences x;(n) and xz(n).

We have

Xa(k) = Xp(k) Xz (k) k=01,....N—1
The IDFT of (Xa(k)]} is

=

X}{kJEjﬁﬂ):M}N

1
x3{m) = N

it

=

155 .
= 2 . Xi(R) Xy (kyemom/¥
N k=0

Suppose that we substitute for X;(k) and Xa(k) in (5.2.35) using the DFTs given
in (5.2.32) and (5.2.33). Thus we obtain

M=1
=0

k=l | p=U) _
-1 -
= — ZI] (n) Z xa(1) E F;:’.Rklm-n—ﬂfa'\"
n=l) i=t) k=(}

The inner sum in the brackets in (5.2.36) has the form

N=1 N, a=1
ST R
a#1

k=)

l1—a'’
where « is defined as
g = eiZTim—n=1)/N

We observe that a = 1 when m — n — [ is a multiple of N. On the other hand,
a® = 1 for any value of @ # 0. Consequently, (5.2.37) reduces to

E a* = —n+ pN = ((m—n))x. paninteger
= 0 othcmse

If we substitute the result in (5.2.38) into (5.2.36), we obtain the desired expression
for x3(m) in the form

N—1
xa(m) = Zn(n)xz((m —n)in m=01...,N-1
n=0

The expression in (5.2.39) has the form of a convolution sum. However, it is
not the ordinary linear convolution that was introduced in Chapter 2, which relates
the output sequence y(n) of a linear system to the input sequence x(n) and the
impulse response h(n). Instead, the convolution sum in (5.2.39) involves the index

70


Free Hand


({m —n))y and is called circular convolution. Thus we conclude that multiplication
of the DFTs of two sequences is equivalent to the circular convolution of the two
sequences in the time domain.

The following example illustrates the operations involved in circular convo-
lution.

Example 5.2.1

Perform the circular convolution of the following two sequences:

I}(ﬂ} = {21 1! 25 1]
1.

x2(n) = (1,2,3,4)
T

Solution Each sequence consists of four nonzero points. For the purposes of illus-
trating the operations involved in circular convolution, it is desirable to graph each
scquence as points on a circle. Thus the sequences x;{n) and x;(n) are graphed as
ilustrated in Fig. 5.8(a). We note that the sequences are graphed in a counterclock-
wise direction on a circle. This establishes the reference direction in rotating onec of
the sequences relative to the other.

Now. xa{m) 15 obtained by circularly convolving x;{n) with x2(n) as specilied by
{5.2.39). Beginning with m = 0 we have

3
20 = 3 xme—n)y
a=l!
x3({—n)}s is simply the sequence x»(r) folded and graphed on a circle as illustrated in
Fig. 5.8(b}). In other words, the folded sequence is simply x2{n) graphed in a clockwise
direction.

The product sequence is obtained by multiplying x,(n) with x;((—n)})s, point by
point. This sequence is also illustrated in Fig. 5.8(b). Finally, we sum the values in
the product sequence to obtain

13{0) =14

For m =1 we have
3

x) =Y xmx(d —n)

nml}

It is easily verified that x2((1 — n))4 is simply the sequence x2((~n))s rotated coun-
terclockwise by one unit in time as illustrated in Fig. 5.8(c). This rotated sequence
multiplies x;(n) to yield the product sequence, also illustrated in Fig. 5.8(c). Finally,
we sum the values in the product sequence to obtain x3(1). Thus

x;(l) =16
For m = 2 we have

3
x(2) =Y 5 (mxi2—m)s
ne==l]

Now x3((2 = n))4 is the folded sequence in Fig. 5.8(b) rotated two units of time in
the counterclockwise direction. The resultant sequence is illustrated in Fig. 5.8(d)
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x(1y=1 x3(1)=2

x(2y=2 x {0y =2 x4(2)=3 x{0) =1

0
0

xn(3)=1 x(3) =4

(a}

x{3) =4

xy(2) =3 xo{0) =1 a

0

x{(E)y=2

Folded sequence (b Product sequenc

L]

{0 =1

xy(3) =4 xx(l)=2 B

®

52{2} =3

Folded sequence rotated by one unit in time @ Product sequence
c

x(1) =2

.l‘z(ﬁ) =1 .3:1(2] =13 2

0

(3 =4
Folded sequence rotated by two units in time @ Product sequence
xd(2)=3 3
zzil}-:. 3 =4 4. 8
x(0) = 1 1
Folded sequence rotated by three units in time © Product sequence
(2

Figure 5.8 Circular convolution of two sequences.
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along with the product sequence x;(n)x2({2 —n))s. By summing the four terms in the
product sequence, we obtain

x3(2) = 14

For m = 3 we have
3
@) =Y ximn(G—n)
aat)

The folded sequence x2({—n))4 is now rotated by three units in time to yield x2((3—n))4
and the resultant sequence is multiplied by x;(n) to yield the product sequence as
illustrated in Fig. 5.8(¢). The sum of the values in the product sequence is

x3(3) =16
We observe that if the computation above is continued beyond m = 3, we
simply repeat the sequence of four values obtained above. Therefore, the circular
convolution of the two sequences x,(n) and x;(n) yields the sequence

x3ln) = |14. 16, 14, 16)
T

From this example. we observe that circular convolution involves basically
the same four steps as the ordinary linear convolution introduced in Chapter 2:
folding (ume reversing) one sequence, shifting the folded sequence, multiplying the
two sequences to obtain a product sequence, and finally, summing the values of the
product sequence. The basic difference between these two types of convolution
is that, in circular convolution, the folding and shifting (rotating) operations are
performed in a circular fashion by computing the index of one of the sequences
modulo N. In linear convoelution, there is no modulo N operation.

The reader can easily show from our previous development that either one
of the two sequences may be folded and rotated without changing the result of the
circular convolution. Thus

N-1
xm) =Y x(mxm—m)y  m=01,...,N~1 (5.2.40)
n=0

The following example serves to illustrate the computation of x3(n) by means
of the DFT and IDFT.

Example 5.2.2

By means of the DFT and IDFT, determine the sequence x3(n) corresponding to the
circular convolution of the sequences x;(n) and x:(n) given in Example 5.2.1.

Solution First we compute the DFTs of x;(n) and x;(n). The four-point DFT of
x(n) is

3
Xyt = ) mime ™M £=0.1,2,3
mal)

= 2+ea-jttf1 +2‘-1n +e-j3l'kj2
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Thus
X1(0) =6 Xi(1)y=0 X 2)y=2 X13)=0
The DFT of x2(n) is

3
Xa(k) = Zn(nu-ih"f‘ k=0.1,2,3
A}

= 1+42e7 /M 4 3e7ITh 4 4o I3AR2
Thus
X0 =10 X;(1)=-2+j2 X2(2) = -2 X23)=-2-j2
When we multiply the two DFTs, we obtain the product
X3y(k) = Xy (k)X2(k)
or, equivalently,
X3(0) = 60 Xa(l) =0 X:(2) = -4 X;(3)=0
Now, the IDFT of X3(k) is

3
nn) = Y Xahe™™  n=0.1,2.3
ke=ll

= $(60 — 4e/™)
Thus
x3{0) = 14 x3(1) = 16 x3(2) = 14 x3(3) = 16

which is the result obtained in Example 5.2.1 from circular convolution.

We conclude this section by formally stating this important property of the

Circular convolution. If

x1(m) €5 X3 (K)
x2(n) %F-r* Xa(k)

x1(n) ) x2(m) "DTFT’ X1 X2(k) .

where x;(n) @xg (n) denotes the circular convolution of the sequence x,(n) and
x2(n).

74


Free Hand


x(2) x{6)
(3 x(1)

x4} x(0) x(4}

x(5) x(7)
x{6) x(2)

Fipure 5.9 Time reversal of a sequence.

. Additional DFT Properties

Time reversal of a sequence, If
x(n}) e X (k)
N

then

x((—n))w = x(N — n) f?» X((=k)n = X(N — k) S,

Hence reversing the N-point sequence in ume is equivalent to reversing the DFT
values. Time reversal of a sequence x(n) is illustrated in Fig. 5.9.

Proof From the definition of the DFT in (5.2.1) we have

N-]
DFTII(N —_ n“ = Zx(h’ - ”)E'jZIl'tan

n=0
If we change the index from » to m = N — n, then

N—1
DFT{x(N —n)} = Zx(m}e-jzﬂm_mm

me=0

N-=1
= 3 x(myesmimY
m=0

N=]
Zx{m)f“’_‘"““ “HIN — X(N —k)
m=0

I

We note that X(N — k) = X((—k)n,0<k <N -1

Circular time shift of a sequence. If

x(n) %"—5 X (k)
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then

x((n = D)y S5 X (kye /2N

Proof. From the definition of the DFT we have

N-1
DFT{x((n —D)n} = Zx((,, — 1)) ye~izmkniN
n=0

I=1
— ZJ({H — I))Ne—jlltn,ih'
n={

N=1

-+ ZI{" _ ’)F—-jrrkn,'ﬂ

n=l
But x((n = D))y = x(N =1 + n). Consequently,

(=1 -1
EI({H - !))Nf—jhkﬂfN = ZI{N —_ I“ <+ n)e—er.tan

n=0 w=t)

N-1
s Z x(m)er;11k1m+f},‘ﬂ

Furthermore,

N-1-]

N=1
Z‘“” — [ye~ /2N _ Z x{m)e=/TRkmH/N
n={ m=l

Therefore,

N-1
DFT{x((n — 1)} = ) x(m)e /2rkim+tin
m=0

- X(k}e-jlﬂu,!’h'

Circular frequency shift. If
x(n) %’F—Tr X (k)
then
x(m)e/N S5 X ((k ~ D) L

Hence, the multiplication of the sequence x(r) with the complex exponential se-
quence e/2*#*/¥ js equivalent to the circular shift of the DFT by / units in frequency.
This is the dual to the circular time-shifting property and its proof is similar to the
latter.
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Complex-conjugate properties. If
x(ny < X (k)

then
x*(n) S5 X (B = XN — k)
The proof of this property is left as an exercise for the reader. The IDFT of X*(k)

1S
N=1

1 . 1 N1 ) *
— - jlmka)N _ | Jink(N=nr)/N
N E X" (ke [N ;r X({k)e ]

k=)

Therefore,

x*((—nhn = x"(N =~ n) EE-[: X (k)

Circular correlation. In general, for complex-valued sequences x(n) and
v{n), if

x(n) -1%1 X (k)

and

y(n) 3—? Y (k)

then
Farll) <0 Ryg(k) = X (0" (k)

where 7., (/) is the (unnormalized) circular crosscorrelation sequence, defined as

=1
Pl =3 x(m)y*((n — D)w
n=0

Proof. We can write 7, (I) as the circular convolution of x(n) with y*(~n),
that is,

Fay() = xO) Q) y*(=1)
Then, with the aid of the properties in (5.2.41) and (5.2.46), the N-point DFT of
Fop(l) is
Rey(k) = X(K)Y* (k)

In the special case where y(n) = x(n), we have the corresponding expression
for the circular autocorrelation of x{(n),

FeslD) E;f—’» Rex (k) = |X (k)2
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where W3, denotes the complex conjugate of the matrix Wy. Comparison of
(5.1.26) with (5.1.25) leads us to conclude that

_ | ,
w;' = ~ Wi ~
which, in turn, implies that
WyW,, = Ny

where 1y is an N x N identity matrix. Therefore. the matrix Wy in the trans-
formation is an orthogonal (unitary) matrix. Furthermore, its inverse exists and
is given as W}, /N Of course. the existence of the inverse of Wy was established
previously from our derivation of the IDFT.
Example 5.1.3

Compute the DFT of the four-point sequence

amy=(0 1 2 3

Solution The first step is 1o determine the matrix Wy, By exploiting the periodicity
property of Wy and the symmetry property

N2 L
A T
the matrix W, may be expressed as

. W-:I W‘I;I H_.-j_l “.rjl

1
w wiow!ows W] 1w W W)
T oWy owrowd owr | [ owowdows
Lw) wl owp o ow) bowlowlowg

11
L=y -1
1T -1 I -1

L1 j -1 —j

Then
6
—242j
x4=w‘t‘= .|I'
-2
~2-=2j

The IDFT of X, may be determined by conjugating the elements in W, to obtain W;
and then applying the formula (5.1.26).

The DFT and IDFT are computational tools that play a very important role
in many digital signal processing applications, such as frequency analysis (spectrum
apalysis) of signals, power spectrum estimation, and linear filtering. The impor-
tance of the DFT and IDFT in such practical applications is due to a large extent
on the existence of computationally efficient algorithms, known collectively as fast
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Discrete Fourier Transform (DET):

Definition (Discrete Fourier Transform): Given a finite sequence

x =[x(0). x(1),.... x(N — 1]

its Discrete Fourier Transform (DFT) is a finite sequence

X = DFT (x) =[X(0), X(1),.... X (N —1)]

where
N—1

X(k) — Zx(n)kan, WN — ef,]'ZJT/N
n=0

Inverse Discrete Fourier Transform (IDET):

The inverse discrete Fourier transform of X(k) is defined as

N—1
xz(n) = % > X(E)eTh/l - e e N — 1
k=0

For notation purpose discrete Fourier transform and inverse Fourier transform can be
represented by

X (k) = DFT [z(n)]
x(n) = IDFT [X (k)]

Formula:

~N—1

X(&) = > x(n)e IZF

2=—=0

N 1

a(r2) = % E A\'(/\')(“""z"rl}'\'f'

Where K and n are in the range of 0,1,2...... N-1 For example, if N=4, K=0,1,2,3: N=0,1,2,3

Alternative Formula:




IN—1

X(k) = S x(n)Whrr W =eiF

=0

N 1
x(n) = { § X (R)ymr—"rn,
- k=0

Properties of DET:
Periodicity property:

If X(k) is the N-point DFT of x(n), then
X(k+N)=X(k)
Linearity property:
If X1(k)=DFT[x1(n)] & X2(k)=DFT[x2(n)], then

DFT[a1x1(n)+a2x2(n)]=a1X1(k)+a2X2(k)

nvolution property:
If X1(k) = DFT[x1(n)] & X2(k) = DFT[x2(n)], then
DFTIX(M)(N) x2(M)] = X1(k)X2(K)
Where@ indicates N-point circular convolution.
ltiplicati .

If X1(K) = DFT[x1(n)] & X2(k) = DFT[x2(n)], then

DFTIx1(n)x2(m)] = (UN)[X1(kN) X2(K)]
Where @ Indicates N-point circular convolution.

Time reversal property:
If X(K) is the N-point DFT of x(n), then DFT[X(N—n)] = X(N-K)

Time shift property:

If X(K) is the N-point DFT of x(n), then

10



2mkm

DFT {x((n—mj)y } = Xik) e N

Svmmetry properties:
If x(n)=xR(n)+jx1(n) is N-point complex sequence and X(k)=XR(K)+jXI(k) is the

N- point DFT of x(n) where xR(n) & x|(n) are the real & imaginary parts of x(n) and
XR(k) & X|(k) are the those of X(k), then

()  DFTIX (]=X (N-K)

(i)  DFTIX (N=n)]=X (K)

(i) DFTIXRM)I=L2)X(K)+X (N=K)]

(iv)  DFT[xi(m]=(V/ 2j)[X(k)—X*(N—k)]

(v)  DFT[xce(n)]=XR(K) where xce(n):(1/2)[x(n)+x*(N—n)]

(vi)  DFT[xco(n)]=jX1(K) where xco(n)=(L/2)[(n)-x (N—n)]

If x(n) is real, then

(i) If x(n) is real, then
a X=X (N-K)
b.  XR(K)=XR(N-k)
(i) If x(n) is real, then
a) X(K)=X_ (N=K)
b) XR(K)=XR(N-K)
c) Xi(k)=—-X1(N-Kk)
d) [X(K)I=IX(N-K)|
e) X(K)[=X(N-K)]
f) £X(k)=—-2£X(N-k)
(i)  DFT[xce(n)]=XR(K) where xce(n)=(L1/2)[x(n)+x(N-n)]
(i) DFTIxco(n)]=iX1(k) where xco(n)=(1/2)[x(n)-x(N-n)]

11



Problem

Compute 4-point DFT and 8-point DFT of causal three sample sequence given by

IW:%;DEHEZ
=0 ; else
Solution

By the definition of N-point DFT, the k™ complex coefficient of X(k), for 0 £ k € N -1, is given by,

N1 cpan
Xﬂd=zx[nj::“
no=10

a) 4-point DFT(\ N =4)

-1 Zizkn 2 Zikn = :
Xk) = ¥ xinle 4 =% xinje 2 =x(0)e” +x(e 2 +x({2)e™
n=0 n=0
11 g nk k
= —p—p 2 g Pk _ ™ in 2 i
= gtge’t tgel =g 14 cos 5 lsin + cosnk — jsinnk

For 4-point DFT, X(k) hasto be evaluated fork=0,1, 2, 3.

When k

0; X(0)

1
E" + €os0 - jsin0 + cos0 - jsin0]

%I_I + 1 -j0+1-j0) = 1 = 120

Whenk = 1: X(1)

1 1+ CDSE 's:inE + COST - JsinT
3 7 1y -

1 . . 11
= —(1+0=j=1=jll==j—=—F=n/2=03337 =05
3I'+ J io) ]3 i "l §

1
Whenk = 2; X(2) E[I + €08 - jsinm + cos2n - isinZnI

1
S0 =10+ 1-j0) = = = 033320

l.n:ll—l-

1 In In

Whenk = 3; X(3) 5[1 + osx - isinT + cosit - isin!u]

1 . . 101
= =[1+0+j=-1-jll=j===sn/2=033320.5
3[ +0+] jo) |3 3 nf n
', The 4-point DFT sequence X(k) is given by,

Xk = {120, 03337 -05r, 033320, 0.333£05r )
. Magnitude Funetion, |I{kﬂ=| 1, 0.333, 0.333, 0333}
Phase Function, <Xk} ={0, -05z, 0, 051}

Phase angles
are in radians.

12



b) 8-point DFT (\

N = 8)

Xik)

51 -jemkn 5 ~jkn ik —jek
= Z xne & = E xiMe * =xiDje’+x(le * +x(e 2 e'i“= cosgt jsing
n = i no=0
= l+l e-i:kq-—e#-— 1-1-:;'.'.::.4'.E 'sin:ﬂ—kh'_'.::.-sE jsin
= 3'3 3 =3 s ¥ 2 !}

For 8-point DFT, X(k) has to be evaluated fork=0,1,2,3,4,5, 6, 7.

When k

When k

When k

0; Xi0D) =

l; x.“}=

1; x{l} =

When k = 3: X(3) =

Whenk = 4; X(4) =

Whenk = 5; X(5) =

Whenk = 6; X(6) =
Whenk = 7; X(7) =

1 n __. r = __ Tn
3 1+ cusT—lsm—+m€.—— jsin—

%|I+|:usl]-jsinl]+|:usl]-jsinl]]
%[I+I-jl]+1-jl]}=l = 120

1[ x .. W T . 11!]
—|1 + eos— - jsin— + cos— - jsin—
3 4 4 2 2
0.333 (1 + 0707 - jO.707 + 0 - jl)

0.568 - j0.568 = 0.803: - 0.785 = 0,803 - 0.257n
1[ 2n . n L 111:]
—|1 + eos— - jsin— + cos— - jsin—
3 4 4 2 2
033301 + 0 - jl -1 - jo)

- j0.333 = 033325-n/2 = 0.3332-0.5n0

1 i .. 3m in .. 3m
=1 + cos— - jsin— + cos— - jsin—
3 4 4 2 2
0333 (1 - 0.707 - j0.707 + 0 + jI)

0.098 + j0.098 = 0.13920.785 = 0.13920.25n

1[ 4n . 4n 4n L 41:]
=1 + cos— - jsin— + cos— - jsin—
4 4 2 2
0.333(1-1-j0+1-j0)=0.333 = 03330
1 1+ msS—n - 'sinS—n + |:|:||sE - 'sinE
3 PRI 7 E
0.333 01 - 0707 + jOFO7 + O - jI)
0.098 - j0.098 = 01392 - 0.785 = 0,139 - 0.25x
1[ 6r . . 6n 6 ..t’m}
=1+ eos— - jsin— + cos— - jsin—
3 4 4 2 2
03330 + 0+ jl =1 - jO)

j0.333 = 0.3334n/2 = 0.33320.5x

4 2 2

0.333 {1+ 0.707 + j0.707 + 0 + 1)
0.568 + j0.568 = 0.803.£0.785 = 0.803.2£0.25x

', The 8-point DFT sequence X(k) is given by,
X(k) = {120, 0.8032 - 0.25x, 0.333~ - 0.5%, 0.139.20.251, 0.333.20, 0.1392 - 0.25x,

0.33320.5x,

0.803.20.25x)

-k

k
2

0.785
x =025t

Phase angles
are in radians.

-, Magnitude Function, [X(k) = { 1, 0.803, 0.333, 0.139, 0.333, 0.139, 0.333, 0.803 )
Z%Xk) = {0, -0.251, -0.51, 0.25n, 0, -0.25r, 0.5, 0.25n )

Phase Function,

13



X(k) ’ 11
[X k)| & (k)&
1.0 4o, A 0.75 -
0.8 "“ .r" s ’r} .
0.25 7 - ;
0.5 i e
'-I :' 0 -+ : { ';‘ : Y >
\ H 1 2' 3! " k
0.4 ) !
) 4 0.251 -~ ;
"" ‘t. .i. .h'
0.2 Rt i 0.50% s
’ \ « 4
'-‘ n ’a' ‘.‘ .4'. e
0 1 ! 1 > ; 0.75n >
1 2 3 s+ K

4

e S Phase spectrum of X(k) for N=4.
Magnitude spectrum of X(k) for N=4.

X (k]y (k)
10 0.75n
B ;
il 0.50 = o "."‘ 2 5 |
0.25 n

)

0.2 : ]
N \ ey 9.507 -
J I ! ! ! > 0.75x
2 5 6

3 7 a K
Muagnitude spectrum of X(k) for N=8§. ;
Fig 7. Magnitude and phasor representation of N=4,8 pont DFT Time Signals

>

L Phase spectrum of X(k) for N=8

[courtesy: DSP by Nagoorkani]

Fast Fourier Transform (FET)

The Fast Fourier Transform (FFT) is a method (or algorithm) for computing the discrete
Fourier transform (DFT) with reduced number of calculations. The computational
efficiency is achieved if we adopt a divide and conquer approach. This approach is based on
the decomposition of an N-point DFT into successively smaller DFTs. This basic approach
leads to a family of an efficient computational algorithms known collectively as FFT
algorithms. Radix-r FET In an N-point sequence, if N can be expressed as N = r™, then the
sequence can be decimated into r-point sequences. For each r-point sequence, r-point DFT
can be computed. From the results of r-point DFT, the r2 -point DFTs are computed. From
the results of r2 -point DFTs, the r3 -point DFTs are computed and so on, until we get r™
point DFT. This FFT algorithm is called radix-r FFT. In computing N-point DFT by this
method the number of stages of computation will be m times.

Radix-2 FFT For radix-2 FFT, the value of N should be such that, N = 2™, so that the N-
point sequence is decimated into 2-point sequences and the 2-point DFT for each decimated
sequence is computed. From the results of 2-point DFTs, the 4-point DFTs can be

14



computed. From the results of 4-point DFTSs, the 8-point DFTs can be computed and so on,
until we get N-point DFT.

Number of Calculations in N-point DFT

N2 number of complex multiplications and N(N — 1) number of complex additions

Number of Calculations in Radix-2 FFT

N/2logzN complex multiplications and N logaN complex additions.

Radix-2 FET algorithms:
Decimation-In-Time (DIT) FET algorithm:

The algorithm in which the decimation is based on splitting the sequence x(n) into
successively smaller sequences is called the decimation-in-time algorithm.
The N-point DFT of a sequence x(n) is given by

N-1
k

XOKZEXMWN OSKEN=T et (1)
n=0
“2n/Ny o o
where WN=e . X(K) is periodic with period N i.e., X(k+N)=X(k).
Splitting Equ(1) into two, one for even-indexed samples of x(n) and the other for
odd- indexed samples of x(n), we have

X(k) = Zx(mWN™ + Zx(n)wn " 2)

n even n odd

Substituting n=2n for n even and n=2n+1 for n odd, we have

N/2-1 N/2-1
X(k) = 2‘.x(2n)WNznk +Z‘,x(2n+1)WN(2n'|-1)k
n=0 n=0

8-Point DFT Using Radix-2 DIT FFT

The input sequence is 8-point sequence. Therefore, N =8 =23=r™ Here,r=2and m

= 3. Therefore, the computation of 8-point DFT using radix-2 FFT, involves three stages of
computation. The given 8-point sequence is decimated to 2-point sequences. For each 2-
point sequence, the 2-point DFT is computed. From the results of 2-point DFT, the 4-point
DFT can be computed. From the results of 4-point DFT, the 8-point DFT can be computed.

15



Let the given sequence be x(0), x(1), x(2), x(3), x(4),x(5), x(6), x(7), which consists of 8
samples. The 8-samples should be decimated into sequences of 2-samples. Before decimation

they are arranged in bit reversed order, as shown in table

MNormal order Bit reversed order
x(0) %(000) x(0) x(000)
x(1) x(001) x4y x{ 100
x(2) w010 X2} w01
x(3) x(011) x(B) =110y
x(4) x( 100) x(1) x(001)
x(5) = 101) x(5) = 101)
x(b) x( 110y x(3) =011y
x(7) w1l x(T) x111)

Fig 8. Bit reversal order of 2 point DFT

_Using the decimated sequences as input the 8-point DFT is computed. The fig shows
three stages of computation of an 8-point DFT.

10) Compule
w4l o 2-poinl DFT o Combine . —* Xi{0)
2-point DFTa
o = (1)
. .| et d-paint i
Kle * compute b OFT — 12,
& B (2}
. 2-paint DFT » . oo i e
1 ’ 4-paint = %3
DFTs io o
o gel &-paint "
M —H compue [ - DFT R4
Tmaint OFT _ Cambimne | N
1(S) — 2-point DFTe ()
e — 3(E|
w3 gel d-paint o
' Compule OFT — 37
€7 2-paint OFT * J :

Fig 9.Block diagram representation of 8 pt DFT

Flow Graph for 8-Point DFT using Radix-2 DIT FFT

PY— P— Ao=a+ bWy

\ :
Wy >< '
P L B =g —bWy

k1

0
bW

Fig 10.Basic butterfly or flow graph of DIT rad ix-2 FFT.

the
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The signal flow graph is also called butterfly diagram smce it resembles a butterfly
i 1

D> R VA A
e \\//

J:|E|-l X3}

><
RS
G AN/

The flow graph (or butierfly diagram ) for 8-point DFT via radix-2 DIT FFT.

X[4)

X[5)

Fig 11.

8-point DFT Using Radix-2 DIF FFT

The DIF computation for an eight sequence is discussed in detail in this section. Let
x(n) be an 8-point sequence. Therefore N =8 =23 = r™ Here, r = 2 and m = 3. Therefore,
the computation of 8-point DFT using radix-2 FFT involves three stages of computation.
The samples of x(n) are,
x(0), x(1), x(2), x(3), x(4), x(5), x(6), X(7).

Flow Graph For 8-point DFT using Radix-2 DIF FFT
The above basic computation can be expressed by a signal flow graph shown in Fig

1 a+h
B Asa+h

"
Wi
b
b . o =ia bWy
-1 ab
Basic butierfly or flaw graph

af DIF radix-2 FFT.
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b ,
, 1 i 1 1
) o - o -
3 1 1 &
1
.,/ \ Wy /\ W¢>< W,
(7)o b o & v # 5(7}
— -

Fig 12. The flaw graph for buiterfly diagram) for 8-point DFT via radix-2 DIF FFT.

Problem:
An 8-point sequence is given by x(n) ={2, 1, 2, 1, 1, 2, 1, 2}. Compute 8-point DFT of x(n) by
a) radix-2 DIT-FFT and b) radix-2 DIF-FFT. Also sketch the magnitude and phase
spectrum.

a) 8-point DFT by Radix-2 DIT-FFT
The given sequence is first arranged in the bit reversed order

The sequence x(n) The sequence x(n) in x{0) = 2 - -3
in nermal order kit reversed order .
x4 2= 1
K[D: - 2 x[l]] = 2 )= 2 —11 O
w1} =1 u(d) =1 z
xpEp= 1 ] F—{=m 1
x(2)=2 %(2) =2 . : o
x(4) =1 x(1)=1 HENT R e
xf3) = 1 1+2% 3
x(5) =2 %(5) =2 .
wlB) =1 i) =1 #(T)= 2 me 12w
Butierfly diagram for
=2 x7)=2 first stage of radix-2 DIT FFT.

The 8-point DFT by radix-2 FFT involve 3 stages of computation with 4-butterfly
computations in each stage. The sequence rearranged in the bit reversed order forms the
input to the first stage. For other stages of computation the output of previous stage will be
the input for current stage.

Second stage computation
The input sequence to second stage computation={3,1,3,1,3,1,3,1}
The phase factors involved in second stage computation are W4° and W,?

18



o
2rw =
Wf—f_‘ 4 =p"=1 3 i 1 143 mE
1
1 \
| j2x X i = — 7 A+ A= 1+
W;=e 1=g .
fmh (e 3 3-3=0
:r:n-g|—|+15m|—| =) 1 Sy
\ 2 ) A 2 ) L = = A1) 14
. Butterfly diagram for
= second stage of radix-2 DIT FFT.

Third stage computation The input sequence to third stage computation = {6, 1j, 0,
1+j, 6, 1+j, 0, 1j} The phase factors involved in third stage computation are Wsg® , Ws!

, We? and Wg?

g 1.2.'
. E} an i f 3
W= ju = A 1 _I
'I.|'I|"3:|'_\~J 8op 4 = el —]1- gin| —— | =
" . : 4 ) 2 '

6. _\ /_5 6=12 = X[0)
=i m .- 11-111-"[ o [ S P B ,"_-iL+—-1+_[-1+—'-1 0. 414 = X[1)
1- JE- -.E W2 ‘E ] 1I|'_|
o 0+ 0 () = 0 = %{2)
i & ¥ i i 1 1 1 1 2 i
14 Hep+i-1—-j| -t - 1+J-—+,—+|—-—__1+,[1+— =1+ 2. 414 = X[3)
|u 2OE R R - 2

BE-6=0=X[4)

b i
= —i—1+} |[—‘E——|—L— =1-j-| =+t '__1—i[1—i_ l=1-.414 = Xi5)
We L W2 2 42 42 ) J

! - ‘
o- -~ 1.{ 0 — 05—} = 0 = X{6)
___ji./ \ i 1| B 1 1 1| [ 2|
o % [1.,.I|_.:_1_i:|L___I_)I 1+ - [_.,.I__i__l_)l_11..[1__)]_1_.0_41.1_x_.:?]

v 2 TE- TR T B

Butterfly diagram for third stage of radix-2 DIT FFT af X{k) .
Fig 13. Butterfly diagram for third stage of radix-2 DIT FFT

b) 8-point DFT by Radix-2 DIF-FFT

For 8-point DFT by radix-2 FFT we require 3-stages of computation with 4-butterfly

computation in each stage. The given sequence is the input to first stage. For other stages of

computations, the output of previous stage will be the input for current stage.
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First stage computation
The input sequence for first stage of computation={2,1,2,1,1,2,1,2}

The phase factors involved in first stage computation are Wg® , Ws! , Ws? and Ws®

o ,112
W, =e =1
"
Wi=e  "T=e T = cof —| jsin| |:% j%
2 o P e T s cod — E s isinl =
Wi =e =e _1':::-&|H 2J+Js|ri 5 1=-i
ki 3n { 3m L
Wize " 8zg 't =cod 2% |+ jsinf - 2% | =
“ S
1 2e1m3

R
2\\//

23 =1

) =1

x5 = 2
o) = 1o
7= 2 d / \
Butierfly diagram for first stage of radix-2 DIF FFT.
Fig 14. Butterfly diagram for first stage of radix-2 DIT FFT

Y1
}_—_—l—_

The output sequence of first

[ 1.1 11
stage of computation =133 3 3,1, E*‘Jﬁr Is ]54'353

Second stage computation
The input sequence for second stage of computation =

( 1.1 o1 1)
13, 3,3, 3,1, i b EHEE
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! 1 14 1 z

N : . [[ FEIETE J}"' 17

Fig §: Butterfly diagram for second stage of radix-2 DIF FFT.
Fig 15. Butterfly diagram for second stage of radix-2 DIT FFT

| .2 .2
i :‘6: 6: 0: 0: ]_]:]_Ilr—: 1+l: ]?
The output sequence of second stage of computation l V2 V2]
Third stage computation

B B+ 6=12=2X(0)
B E—6=0=X(4)
0 0+0=0=X(2)

0—-0=0=X(6)

W 2 .
1-j [1—J]+Jf—1+]{].414—}:[1]

<
<
<
<

2 L2 .

. 1—j)— j=—=—=1-j2.414 = X(5

jWE (1-] JJE— j ()
: , . 2 ,

1+ ] (14 )+ j—==1+j2.414 = X(3)

J2
2 L2 .
]:,? - [1+]J—]I—.2_—1—]D.414—K[TJ

N
Butterfly diagram for third stage of radix-2 DIF FFT.
Fig 16. Butterfly diagram for third stage of radix-2 DIT FFT

Correlation
Correlation is a measure of similarity between two signals. The general formula for

xq (Flxeg (2 — 7)dE

correlation is f,oo

There are two types of correlation:

21



1. Auto correlation
2. Cross correlation

Auto Correlation Function

It is defined as correlation of a signal with itself. Auto correlation function is a
measure of similarity between a signal & its time delayed version. It is represented with
R(7). Consider a signals x(t). The auto correlation function of x(t) with its time delayed

version is given by

iy () = Ri+) = f_oo o)z — idE [+we shift]

— /Oo @)t 4 ) [ve shift]

Where T = searching or scanning or delay parameter.

Properties

Auto correlation of power signal exhibits conjugate symmetry i.e. R(-r) = (-T)
Auto correlation function of power signal at r = 0 (at origin)is equal to total power of that
signal. i.e. R(0) =p
Auto correlation function of power signal R(0)~1/T. Auto correlation function of power
signal is maximum atr =0 i.e., |R(t)| < R(0)Vt
Auto correlation function and power spectral densities are Fourier transform pairs. i.e.,
F.TIR(DI=S(w)

sle) = 0, Bim)e ™ dr

Cross Correlation Function

Cross correlation is the measure of similarity between two different signals.
Consider two signals x1(t) and x2(t). The cross correlation of these two signals R12(t) is
given by

Faya(r) — /_OO wq (£)ma (£ — ) 4% [-+re shift]

= /Oo wy (¥ + e () dF [~ shift]

Properties of Cross Correlation Function
Auto correlation exhibits conjugate symmetry i.e. Ri2(t)=R*21(-7).

Cross correlation is not commutative like convolution i.e. R12(t)#R21(—T)
22
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2.1 INTRODUCTION

To remove or to reduce strength of unwanted signal like noise and to improve the quality of
required signal filtering process is used. To use the channel full bandwidth we mix up two or
more signals on transmission side and on receiver side we would like to separate it out in
efficient way. Hence filters are used. Thus the digital filters are mostly used in

1. Removal of undesirable noise from the desired signals

2. Equalization of communication channels

3. Signal detection in radar, sonar and communication

4. Performing spectral analysis of signals.

Analog and digital filters

In signal processing, the function of a filter is to remove unwanted parts of the signal, such as
random noise, or to extract useful parts of the signal, such as the components lying within a
certain frequency range. The following block diagram illustrates the basic idea.

There are two main kinds of filter, analog and digital. They are quite different in their physical
makeup and in how they work. An analog filter uses analog electronic circuits made up from
components such as resistors, capacitors and op amps to produce the required filtering effect.
Such filter circuits are widely used in such applications as noise reduction, video signal
enhancement, graphic equalizers in hi-fi systems, and many other areas.

In analog filters the signal being filtered is an electrical voltage or current which is the direct
analogue of the physical quantity (e.g. a sound or video signal or transducer output) involved.

A digital filter uses a digital processor to perform numerical calculations on sampled values of
the signal.

The processor may be a general-purpose computer such as a PC, or a specialized DSP (Digital
Signal Processor) chip. The analog input signal must first be sampled and digitized using an
ADC (analog to digital converter). The resulting binary numbers, representing successive
sampled values of the input signal, are transferred to the processor, which carries out numerical
calculations on them. These calculations typically involve multiplying the input values by
constants and adding the products together. If necessary, the results of these calculations, which
now represent sampled values of the filtered signal, are output through a DAC (digital to analog
converter) to convert the signal back to analog form. In a digital filter, the signal is represented

by a sequence of numbers, rather than a voltage or current.
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~.1 INTRODUCTION

The filters designed by considering all the infinite samples of impulse response are called

IR filters. The impulse response is obtained by taking inverse fourier transform of ideal frequency

response. The popular methods for such filter design uses the technique of transforming the

analog filter to an equivalent digital filter. We know that the analog filter with transfer functi.on

H (s) is stable if all its poles lie in the left half of the s-plane. Consequently, if the conversion
technique is to be effective, it should posses the following desirable properties.

1. The imaginary axis in the s-plane should map into the unit circle in the z-p!ane. Thus
there will be a direct relationship between the two frequency variables in the two

domains.

2. The left-half of the s-plane should map into the interior of the unit circle in the z-
plane. Thus a stable analog filter will be converted to a stable digital filter.

The IIR filter is a discrete time system that is designed to pass the spectral content of the
input signal in a specified band of frequencies. Based on the frequency response the filters are
classified into four types. They are lowpass, highpass, bandpass and bandstop filters. The ideal
frequency response of the filters are shown by solid lines in fig 4.1 Since the ideal response is
not realizable they are approximated using a filter approximation function. The approximation
problem is solved to meet a specified tolerance in the passband and stopband. The shaded areas
in the fig 4.1 shows the tolerance regions of the ideal frequency response. In the passband the

[H(w)| 4

1+8 -?4-——— Ideal response
P
1—6,

Approximate response

Stopband

Fig a:Lowpass filter
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P
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l+6p ————— - 1+5p . %
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> r—— sF---- —>
8, | > ] _
(1] [0 0, O, w @, @, o, 2 Col
sl pl

Fig c : Bandpass filter Fig d : Bandstop filter

Fip .1 :Ideal and approximate magnitude response of filters.

magnitude is approximated to unity within an error of +5 . In the stopband the magnitude Is
approximated to zero within an error of 8. Here the § and ‘83 are the limits of ‘I:h(? tolerance in
the passband and stopband. The 8 and §, are also called npp!es. The frequencies @ and o,
represent the passband and stopband edge frequencies respectively.

A number of solutions to the approximation problem of analog filter design are well
developed. The popular among them are butterworth and Chebyshev approximation. The
approximation problem for digital filter design is conceptually same as that of analog filter
design. Hence for designing a digital IIR filter, first an equivalent analog filter is designed
using any one of the approximation technique and the given specifications. The result of the
analog filter design will be an analog filter transfer function H,(s). The analog transfer function
is converted to digital transfer function H(z) using either Bilinear or Impulse invariant
transformation. The digital transfer function H(z) can be realized in a software that runs on a
digital hardware (or it can be implemented in firmware). :

The designed transfer function of the filter should Tepresent a stable and causal system.
For stability and causality of analog filter, the analog transfer function should satisfy the following

requirements.

1. The H,_(s) should be a rational function of s and the coefficients of s should be
real. ‘

2. The poles should lie on the left half of s-plane.
3. The number of zeros should be less than or equal to number of poles

For stability and causality of digital filter, the digita] . :
following requirements. . gital transfer function should satisfy the

1. The H(z) should be a-rati_onal function of Z and the coeffi Cicnis of z should be real.
2. The poles should lie inside the unit circle in z-plane

3. The number of zeros should be less than or €qual to number of poles
o es.
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Table .1 : Comparison of digital and analog filters.

Digital Filter Analog Filter J
1. 8;?;:;5103 digital samples | 1. Operates on analog signals
pled version) of the signal. (or actual signals).

2. Iti .
di;':'e%::: med (or defined) by linear |2. Itis governed (or defined) by linear
€ equation. differential equation.

3 - It i . -
consists of adders, multipliers and | 3. It consists of electrical components

de_lays l_mplemented in digital logic like resistors, capacitors and inductors.
(either in hardware or software or
" both)
4. In digital filters the filter coefficients | 4. In analog filters the approximation
are designed to satisfy the desired problem is solved to satisfy the desired
frequency response. frequency response.

Advantages of digital filters

L Tl_le values of resistors,capacitors and inductors used in the analog filters changes
with temperature. Since the digital filters does not have these components, they have
high thermal stability.

2. Indigital filters the precision of the filter depends on the length (or size) of the registers
used to store the filter coefficients. Hence by increasing the register bit - length (in
hardware) the performance characteristics of the filter like accuracy, dynamic range,
stability and frequency response tolerance, can be enhanced.

3. The digital filters are programmable. Hence the filter coefficients can be changed
any time to implement adaptive features.

4. A single filter can be used to process multiple signals by using the techﬁiquc_:s of
multiplexing. ' '

Disadvantages of digital filters

1. The bandwidth of the discrete signal is limited by the sampling frequency. The
bandwidth of real discrete signal is half the sampling frequency.

2. The performance of the digital filter depends on the hardware (i.e., depends on the bit
length of the registers in the hardware) used to implement the filter.

impoﬁnnt features of IIR filters

L The physically realizable IIR filters does not have linear phase.

2. The IIR filter Speciﬁéati'ons includes the desired characteristics for the magnitude
response only. '

92


Free Hand
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bt “'“E‘m“"g%’ Ay [HOwe,

y ©, and @, is called attenuation at

Here o, is called attenuation at the passband frequenc

the stopband frequency w,. |
. : ess than 1 and

The maximum value of normalized gain is unity and so, A, & A, are : &y

n terms of gain and attenuation

i Iter i
& a, are greater than 1. The magnitude response of lowpass fi : n
are shown in fig 4.8. In this sketch A, is assumed as 0.8 and A, 1S assumed as 0.2 Hence o

1/0.8=125and o, = 1/0.2 = 5. .. .
Another popular unit that is used for filter specification is dB. When the gain is expressed

in dB it will be a negative dB. When the attenuation is expressed in dB it will be a positive dB.
k, = Gain in dB at a Passband frequency ®,.

Let
k, = Gain in dB at a Stopband frequency ®,.
[H()ip 1 4
i _ |H(o))|
A =08 --- :
_ 1 ' a, =5
1
I
I
!
A=02F---4--- a,=1.25
noo%© K

e

Passb ition
ass. and Tr;ns:twn Stopband Passband Transition Stopband
and band '

Figa :.Ga:'n Vs o Fig b : Attenuation Vs o
Fig 4.8 : Magnitude response of Low pass filter

The gain can be converted to normal values as shown below

20log A, <k, 20 log A, =k,
log A = k|f20 log A, = k,/20
VA =102 A, =10k

When expressed in dB the gain and att i i
) ress ¢ attenuation will have only change i ign, bec
log o = log(1/A) = —logA. (Hence when the dB is positive it is aﬂenzation f:(;l\l:l:en ’tll: ;1;1 is
Ve It edBis

negative it is gain).
When A, =08, k =20log A =2010g0.8=—1 935y . 2dB
When A, =02, k,=20log A, =2010g 0.2 = _13 9704 . ~14 4B

The magnitude response of lowpass fijter ; .
in fig 4.9. m,tems of db-gain and db-magnitude are shown

93



SPECIFICATIONS OF THE LOW PASS FILTER

Let w;=pass band digital frequency in rad/sec ,w,=stop band digital frequency
in rad/sec , A;=gain in pass band ,A,=gain in stop band

3 1/[H(w){]
®, o, 4 20 log [1//H(
0 T T >
1 w
k,=—2dB | - - - '
' 14 dB
] ]
] 1
] ]
] [}
]
K,=-14dB [ = - === =~ 2dB X
v y o, -
Fig a : dB-Gain Vs o Fig b : dB - Attenuation Vs ©

Fig 4.9 : Magnitude response of lowpass filter
Sometimes the specifications are given in terms of passband ripple 89 and stopband
ripple &_. In this case the dB gain and attenuation can be estimated as shown below.
k,=20 log(l—-ﬁp) . a, =-20 log (1——8P)
k,=20log 3, a,=-201logd,

Note : If the ripples are specified in dB, then the minimum passband ripple is equal to k,
and the negative of maximum passband attenuation is equal to k,.

DESIGN OF LOWPASS DIGITAL BUTTERWORTH FILTER

The popular methods of designing IIR digital filter involves the design of equivalent
analog filter and then converting the analog filter to digital filter. Hence to design a butterworth
IR digital filter, first an analog butterworth filter transfer function is determined using the
given specifications. Then the analog filter transfer function is converted to a digital filter
transfer function by using either impulse invariance transformation or bilinear transformation.

Analog Butterworth filter

The analog butterworth filter is designed by approximating the ideal frequency response
using an error function. The error function is selected such that the magnitude is maximally
flat in the passband and monotonically decreasing in the stopband. (Stictly saying, the magnitude
is maximally flat at the origin i.e., at Q = 0, and monotonically decreasing with increasing Q)

The magnitude response of lowpass filter obtained by this approximation is given by
RO BERS
2N
1+ (E)
Qc

We know that the frequency respo
§ = jC in the analog transfer funct}i'on I—l; o (€D of an analog filter is obtained by letting

gives the system transfer function. . -chele substituting Q by s/j in equation

=, @) =
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1 1

S H,(s)H,(-s)= ~aN 7 N
1+ s/J 1+ —E———]
Q, i

In equation (4.36), when s/Q_is replaced by s, (i.e., letting Q= 1 rad/sec) the transfer
function is called normalized transfer function.

1
1 +(—s.i)N

The transfer function of equation (4.37) will have 2N poles which are given by the roots
of the denominator polynomial. It can be shown that the poles of the transfer function
symmetrically lies on a unit circle in s-plane with angular spacing of n/N.

For a stable and causal filter the poles should lie on the left half of s-plane. Hence the
desired filter transfer function is formed by choosing the N-number of left half poles. When N
is even, all the poles are complex and exist as conjugate pair. When N is odd, one of the pole
is real and all other poles are complex and exist as conjugate pair. Therefore the transfer function
of butterworth filters will be a product of second order factors. The analog filter transfer
function of normalized and unnormalized butterworth lowpass filters are given below.

Normalized butterworth lowpass filter transfer function

a Hl(sl) Hu(_sn) =

Let N be the order of the filter.

|z

i X |
When N is even, H,(s) = B B E——
®) En s2+b,s, +1
51
1 2 1
S+l 82 +b,s, +1

When Nis odd, H,(s) =

where,b, = ZSin[@i-)—ﬂ-'
2N

Unnormalized butterworth lowpass filter transfer function

The unnormalized transfer function is obtained by replacing s by /2. where Q. is the
3-dB cutoff frequency of the lowpass filter. . s -
' Let N be the order of the filter.

QZ
c
- 8 +b,Qs+0Q?

iz

When N is even, H,(s) =

L.

95


Free Hand

Free Hand


When Nis odd, H,(s) = —2 [ Q;
S+Q k1 8 +b,Q +QF

where, b, = 25in[M]
2N

Frequency response of butterworth filter

The frequency response of butterworth filter depends on the order N. The magnitude
response (frequency response) for different values of N are shown in fig 4.10. From fig 4.10 it
can be observed that the approximated
magnitude response approaches the ideal
response as the value of N increases.

Order of the filter

In butterworth filters the frequency
response of the filter depends on the order, N.
Hence the order N has to be estimated to satisfy
the given specifications.

Usually the specifications of the filter are
given in terms of gain or attenuation at a

pHE N=4

passband and stopband frequency. Fig. 4.10: Magnitude response of
Let, A, = Gain or Magnitude at a butterworth lowpass filter for various
passband frequency Q,. values of N

A, = Gain or Magnitude at a stopband frequency Q,.

Calculate a parameter N, using equation (4.44) and correct it to nearest integer. Choosc

N such that N 2 N,.
O R ]}
N =] 8 LAl A3
4 Q,

Properties of butterworth filters
1. The Butterworth filters are all pole designs. (i.e., the zeros of the filters exist at
infinity). '
2. At the cutoff Eejn_:ency Q, the magnitude of normalized butterworth filter is 12
(i.e., [H(Q)| = 1N2= 0.707). Hence the dB magnitude at the cutoff frequency wil
be 3 dB less than the maximum value. -

3. The filter order N completely specifies the filter.
The magnitude is maximally flat at the origin.
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&1
When N is odd, H,(s) = Q, 131 Q?
S+Q, ks 87 +b,Q +QF

where, bt =2 sln[(_z_l_c.ﬂ]
2N

Frequency response of butterworth filter

The frequency response of butterworth filter depends on the order N. The magnitude

response (frequency response) for different values of N are shown in fig 4.10. From fig 4.101t
can be observed that the approximated

magnitude response approaches the ideal HEX A Ne4
response as the value of N increases. 10
Order of the filter 1
: : =0.707
In butterworth filters the frequency 2
response of the filter depends on the order, N. 0.5

Hence the order N has to be estimated to satisfy
the given specifications.

Usually the specifications of the filter are
given in terms of gain or attenuation at a
passband and stopband frequency.

Fig. 4.10: Magnitude response of
Let, A, = Gain or Magnitude at a butterworth lowpass filter for various
passband frequency Q. values of N

A, = Gain or Magnitude at a stopband frequency €Q,.
Calculate a parameter N, using equation (4.44) and correct it to nearest integer. -Choose

N such that N> N,.

1 1

—-1|/|—=-1
= {[Af ]/[Az ]} |
N, ==
2 Q

log [ 0, )

Properties of butterworth filters
1. The Butterworth filters are all pole designs. (i.e., the zeros of the filters exist at
infinity).

2. At the cutoff rrec\lruency Q, the magnitude of normalized butterworth filter is 1/V2
(ie., [H(Q) = 1N2= 0.707). Hence the dB magnitude at the cutoff frequency will
be 3 dB less than the maximum value. -

3. The filter order N completely specifies the filter.
4. The magnitude is maximally flat at the origin.
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5. The magnitude is a monotonically decreasing function of €2.
6. The magnitude response approaches the ideal response as the value of N increases.

Mgn procedure for lowpass digital butterworth IIR ﬁlte:’

A, = Gain at a passband frequency o,.
A,=Gain at a stopband frequency w,.

Q, = Analog frequency corresponding to .
Q, = Analog frequency corresponding to ®,.

1.
2.

Choose either bilinear or impulse invariant transformatlon

Calculate the ratio of Q /Q

/2

For bilinear transformation, —2 ! L lanw, /2

tanw, /2
Q_o,

For impulse invariant transfonnation,—ﬁl- =
©,

AS

Decide the order N of the filter. The order N should be greater than or equal to

N, where N is given by

)

2 Q

log—=

Q

(Choose N such that, N > N)
Calculate the analog cutoff frequency Q.

For bilinear transformation, Q, = %h__m"ml /2

1

1 2N
[F‘l]

For impulse invariant transformation, Q) =.-—,_(’3L/_’I.;__

1

1 2N
=

Determine the analog transfer function of the filter,
Let, H,(s) = Analog filter transfer function,
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When the order N is even for unity dc gain filter, H (s) is given by equation
2
H —_...
()= 11=2=1| $* +b,Qs+0Q;
When the order N is odd for unity dc gain filter, H(s) is given by equation
_ N |
H6) =2 ]
s+Q kel 87 +b Qs +Q;
The coefficient b, is given by,

Note : For normalized case take 2 = I rad/sec.

6."  Using the chosen transformation, transform H (s) to H(z), where H(z) is the transfer
function of the digital filter.

7. Realize the digital filter transfer function H(z) by a suitable structure.

Note : The basic filter design is lowpass filter design, The highpass, bandpass or
bandstop filters are obtained from lowpass filter design by frequency
transformation. -

DESIGN OF LOWPASS DIGITAL CHEBYSHEYV FILTER

For designing a chebyshev IIR digital filter, first an analog filter is designed using the
given specifications. Then the analog filter transfer function is transformed to digital filter
transfer function by using either impulse invariance transformation or bilinear transformation.

Analog Chebyshev filter

The analog Chebyshev filter is demgned by approximating the ideal frequency response
using an error function. The approximation function is selected such that the error is minimized
over a prescribed band of frequencies. There are two types of Chebyshev approximation. In
type-1 approximation, the error function is selected such that, the magmtude response is
equiripple in the passband and monotonic in the stopband. In type-2 approximation the error
function is selected such that, the magmtude response is monotonic in passband and equiripple

- in stopband. The type-2 magnitude response is also called inverse. Chebyshev response. The
type-1 design is presented in this book. - .

The magnitude response of Type-1 lowpass filter is given by
1

I+ & c;(E.J
\Q,
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where & is attenuation constant and C,(/€,) is the Chebyshev polynomial of the first

kind of degree N.

1 2
The attenuation constant, €= [F - l]

where A, is the gain or magnitude at passband edge frequency £,
For small values of N the Chebyshev polynomial is given by

cos(N cos™ x) . for|x| <1
C\x)=
cosh(Ncosh™x) ; for|x| > 1
For large values of N the Chebyshev polynomial is given by the recurrence relatior ,
Cyx)=2xC_ (x)-C,, (%)
with initial values C,(x)=1and C(x)=x

The transfer function of the analog system can be obtamed from equation (4.53) by
substituting Q by s/j.

(OB = ——
1+ € C2 s/
Ma

For the normalized transfer function, let us replace s/Q_by s;.

1

~H H(-s )= —————
For the transfer function of equation (4.58) we can determine 2N poles which are ﬁven

by the roots of the denominator polynomial. It can be shown that the poles of the transfer

function symmetrically lies on an ellipse in s-plane.

For a stable and causal filter the poles should lie on the left half of s-planc Hence the
desired filter transfer function is obtained by selecting N number of left half poles. When N is
even all the poles are complex and exist as conjugate pair. When N is odd, one of the pole is
real and all other poles are complex and exist as conjugate pair. Therefore the transfer function
of chebyshev filters will be a product of second order factors. The analog filter transfer function
of unnormalized chebyshev lowpass filter is given below.

Unnormalised chebyshev lowpass filter transfer function
Let N be the order of the filter.

. - ﬂ ..
2 B, Q?
s even, H.(5) = K> §
When N 1s eV ) E:.I, s? +b,Q .5+ ¢, Q
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Whell N is Odd, H‘(S) = Bﬂnc 2 ka}: .
$+CoQ, ki 5°+b, Qs+c,Q

where,b, =2y, sin(@;l)ﬂ]
2N

2 (2k-N)n

C, = Yy -+ 08 o

Co= Y

el [_I.H)il " (.Lﬂ)il B
Noallle € e €

For even values of N and unity dc gain filter, the parameter B, are evaluated using the
equation (4.65) i -

H,(),., =

~

1

1
(1+ €)?

For odd values of N and unity dc gain filter, the parameter B, are evaluated using the
equation (4.66)

H,(s),, =1

While evaluating B, 's using equation (4.65) or (4.66), it is normal practice to take, B =

BI = B2 = reeen — Bg.

To determine the order N of the filter calculate a parameter N, using equation (¢ ¢}
and correct it to nearest integer. Then choose N such that N> N,.

; M@ 4

| 1
, cosh (Ql) ..... 46 o
Ideal
Frequency response of chebyshev response

filter | ]
: _The frequency response ’bf : '.
chebyshev filter depends on the order N Q Q

as shown in fig4.11. Itcanbeobserved  Fig 4.11. Magnitude re.;panse of Chebyshev

that the approximated magnitude type-1 lowpass filter for various values of N.
response approaches the ideal response

101


Free Hand

Free Hand


" -2 chebyshev filters
as the value of N increases. The magnitude response of Type-1 and Type
are shown in fig 4.12.

ay He@ 1

_____

> Q. Q
Fig a : Chebyshev Type - 1, when Nisodd ~ Fig b : Chebyshev Type - I, when N is even

ST [HQ)I4

-l - - -

e
Pt
e

Fig ¢ : Chebyshev Type - 2, when N is odd Fig d : Chebyshev Type - 2, when N is even
Fig 4.12 : Magnitude responses of analog chebyshev filters

Properties of chebyshev filters (Type-1)

1.  The magnitude IH;(Q)I oscillates between 1 and IN I+ € within the passband
and so the filter is called equiripple in the passband. ,

The normalized magnitude response has a value of YVi+ & at cutoff frequency Q.
The magnitude is monotonic outside the passband. N
The chebyshev type-1 filters are all pole designs.

'’ Opband becomes more

VoA woN
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Design procedure for lowpass digital chebyshev IIR filter

A, = Gain at a passband frequency ©,.

A, = Gain at a stopband frequency ©,.

Q, = Analog frequency corresponding to ®,. ’
Q, = Analog frequency corresponding to ®,.

1. Choose either bilinear or impulse invariant transformation.

2. Calculate the attenuation constant €
1
el
e=|—-
A}

3. Calculate the ratio %"

' tanw, / 2
For bilinear transﬁ:urmation,-g£ el R
Q tano,/2

. . . Q) o,
*For impulse variant transformation, === —=
|

Q
4 Decide the order N of the filter. Choose N such that N> N, , where N, is given by

1] 1 2
-1) 2 2
Cosh e[§ ]

Cosh"[%) | -

5 Calculate the analog cutoff frequency Q..

N, =

2 “‘“‘% ‘
For bilinear transformation, Q, = —=——
T e
1 N
[Af ]
For impulse invariant transformation, Q, = _oJT

1
1 =
. | [Af "]
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f the filter.

ion H (s) 0
. alog transfer function H,
Determine the analog quation (4.74).

When the order N is even, H,(s) is given bye
N B.Q?
H© =1 ST +b, Qs+ 0

A i .75
When the order N is odd, H,(s) is given by equation (4.75)

Q N1 B Qz
B s
H.(S)=s‘+:nq tlfll S_! ""thng s+5103'

((2k=1)m
e {8

(2k-1)n

2 2
¢, =yy + Cos’
e 2N

For even values of N and unity dc gain filter, find B,’s such that

Hl (0) = 1
(1+ &)
For odd values of N anqd unity de gain filter, find B,’s such that
H(0)=1
(It is normal practice to take B = B, =B, ... =B)).

Using the chosen transformation, trangf; :
function of the digital filter, ’ omH (s)to H(z), where H(z) is the transfer

Realize the digjta) filter transfer function H(z) by a suitable structure,

te : The hi
[Note I: “;z’;%:s 3arfdpas.s_' and bandstop filters are obtained from
er design by frequency transformation, y
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4.7 FREQUENCY TRANSFORMATIONS

The four basic types of filters are lowpass, hig
fig 4.13. the frequency response of the ideal cases are
dotted lines.

hpass, ba

ndpass and ba
hown in solid lines and

ndstop filters. In
practical case in

[H,(€)] [H(EDI 1
| prewes 1- /"'—
‘ . _,/ R
Q 0 Q a0 Q )
Fig a : Frequency response , Fig b :Frequency response of
lowzass ﬂj;ter i / highpass filter
HH ()| 1 [H (€ .
1 — 1 =
\\ / \\\
\ \
\
\
\
\ / \
-l . \\._ .
Q 9 9 Q 000 0
Fig ¢ : Frequency response of Fig d : Frequency response of
bandstop filter bandpass filter

Fig 4.13 : Frequency response (magnitude response) of analog filters
The highpass or bandpass or bandstop filters are designed by designing a lowpass filter and
then using frequency transformation, the transfer function of the desired filter is obtained. The
frequency transformation can be carried in s-domain (Analog) or in z-domain (Digital).
Analog frequency transformation
Using analog frequency transformation the following filters can be designed.

1 Lowpass filter of another cutoff frequency.

2. Highpass filter with cutoff frequency Q..
3. Bandpass filter with center frequency €2, and Quality factor Q.
4. Bandstop filter with center frequency Q, and Quality factor Q.
where (), = ,’Q'Q! and Q= Q
Q-9

To design a filter, first design a lowpass filter from the given T i
. - S determine
the analog transfer function (either butterworth or c:he:byc:he%fl m??ﬁﬁlm@:s’mw lowpass
filter. Then choose the transformation from the table 4.1 and determine the analog transfer
function of the desired filter. ’ o8
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Table 4.1
Filter Type Transformation
| S
s —
Lowpass ) Q.
. Q
Highpass s— o
Q(sz + ()02)
§—
Bandpass . o
‘ s—> s
Bandstop Q(52 N Q‘f)

~ Fromthe Analog transfer function H (s) the digital transfer function H(z) is obtained by
either bilinear transformation or impulse invariant transformation. The H(z) can be realized
from a suitable structure. .

EXAMPLE 4.8
The specification of the desired lowpass filter is

Q.‘8SIH(co!|$1.0 - 0<w=02x
Il—!(co)[ =0.2 - Q32 n=w= =

Design a) Butterworth digital filter using impulse invariant transformatio:
-b) Chebyshev digital filter using bilinear transformation.

SOLUTION
A) BUTTERWORTH DIGITAL FILTER
Given that, A = 0.8 ; ®, = 0.2 x rad/sec
A,=02 ; @, =0.32x rad/sec

The transformation to be used is impulse invariant transformation.

. 2 . . £ o, 032x
For impulse invariant transformation, Q ®, O2x I-E
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1 163 _39031
2 log1.6 2 logl6 2 02041
Choose the order of the filter N such that N2 N,
Let the order of the filter, N =4.
The analog cutoff frequency €, = © /T N
g 1 ‘Z_N‘
— -1
_ | A?
Let T = 1sec
= ol = 0.2m =027 __ 0675 rad / sec
! 1 09306

(1 N (1 1)5;1
- (:f‘“) (0.82
The transfer function of the analog filter for even value of N is given by

S -
H.(s)= H s:‘+b_££)\:s+0t2

()

ore. by =2si
where, P« 5“{ N

Here N=4, .. k=12

Whenk=1; b, = 2sin( Lx ") =0.765
2x4
. [ 3m
When k=2 ; b, = ZSm( )= 1.848
2x4
o of
~H,(8)= -
(&= +b,Qs+ 07 20,0 s+ Q7
_ (0.675)" 5 (0.675)
s? +(0.765 x 0.675)s + 0.675*  s” + (1848 x 0.675)s + 0.675”

02076 _
(s? +0.516s + 0456)(s* +1247s + 0.456)
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The roots of the quadratic (s*+0.5168+0.456) = 0, are

g = —0516+ V05167 - 4x0456
2

The roots of the quadratic (s+1.247s+0.456) = 0, are

= ~0258 + j0.624 = —0.26 + j0.62

oo 12474 V12477 - 4x0.456
2

= -0.623 £ j0.259 = —0.62 * j0.26

S H,(s) = 02076 -
* " [s-(~026+ j0.62)] [s - (-026 - j0.62] [s - (~0.62 + j026)] [s - (-0.62 - 026)]

By partial fraction expansion H (s) can be expressed as,

H,(8)= R - Ry + Ry & R2
s—(—026+j0.62) s—(-026-j0.62) s—(-0.62+j026) s—(~0.62~j0.26)

where R, R/", R,,R " are residues.

R - 0.2076
'~ [5- (<026 - j0.62)] [s - (-0.62+ j0.26)] [s - (-0.62- jo.26)] | .. .,

02076
[—026+1062+026+1062] [-026 + j0.62 + 0.62 — j0.26]

[-026 + j0.62 + 0.62 + j0.26]

02076 _ 02076
= 124(036 + j036)(036 + j088) 1244157 x 05091£0.785 x 09541182
02076

=124 % 05091 x 095
— 0346/ —3537 = 032 + j013

Z—157-0785~-1182 Note : The complex number in
the rectangular form is
converted to polar form

. (and viceversa) using
a calculator in radians

R; = Conjugate of R, = -032 - j0.13 mode.

R = 02076
2" [s- (-026 + 0.62)] [s - (-026 - j062)] [s ~ (-0.62 - j026)]

_ 0.2076
(-0.62 + j0.26 + 026 - j0.62)(~0.62 + j0.26 + 026 + j0. 62)—-0.62 + j0.26 + 0.62 + j0.26)

02076 02076
= (036 - j036)(—036 + j088)j052 05091 — 2356 x 09508 21959 x 0522157

8=-0.62+0.26
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= 02076
05091 < 09508 x 0.52 Z+2356-1959-157= qsusz ~1173 = 032 - j0.76

R," = Conjugate of R, = 0.32+j0.76

~H(s)= —032+j013 = -032-j0d3 032-j0.76 _, _ 032+j0.76
S_(-026+ 062) | 5—(-026- j062) s-(-062+026) s—(-062- j0.26)

-~

EXAMPLE 4.10

desired lowpass digital filter is
. 0<sw<0.25%

0.5t<SOST
Jter using impulse invariant trans

The specification of the
0.9 < |[H(w)| = 1.0
|H(w)| < 0.24 ;

Design a chebyshev digital fi

formation.

SOLUTION

Given that, A =09 ; ®,F 0.25n
A,=024 ; 0, 0.5w

The transformation to be used is impulse invariant transformation.

For impulse invariant transformation, 5?- = —:— = 0.-2511:

\ 1

The attenuation constant, €=|——-1| = -1| =0484
Aj \0'92
' ' L
2
cosh™ : [_12"_"1 ’ cosh™4 —1- L -1
y 0484 024
N{ = =
cosh-' 22 cosh™ 2

1
_ cosh™' 8357 23813
cosh™'2 1317

=2136=3

Choosc_ N such that, N > N,. Let the order of the filter, N .= 3. Alsolet T=1
? : ! = 1 sec.

The analog cutoff frequency, Q, = ®,/T — 0.25n 0.25n
Nl =————=1rad / sec.

1

1 N L 1
-1 1 \23 0235)s
(Af ] (@7—-1) ( )6

The transfer function of the analog fi

BQ, 2
H‘(S) = 0" "¢ BEQE
SHCQ, k=1 8T +b Qs+, O

Iter for odd values of N is given by

Here N=3, k=1
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B, B Q!
8 + ¢, L, 8 +b s+ cln?,

N VRS N
T 1
- H(&) ]

W H.(R) £

* =-l—4 [__.]'.__+1E+ 1 ’_ [‘._..1_.-4.])54._—1—
- 2|{\0484* 0484 0.484 0.484

|
=

= >{1634- 0612} = 0511

Cy =Yy = 0511

2k - 1)n
¢, =y +cos‘(—-—-—
k= Yn 7N

Whenk =1, ¢, =y}, +cos’ = _ =0.511’+cos’[1t—)=1.011
2x3 6

(2k - )n

b, =2y, sin =

n3)=2x0511xsin[%)=0.511

Whenk=1, b, =2 i
L =2¥n sm[;Zx

0 % BI
s+0511 s?+0511s+1011

~H,(s)=

B.B
— 0 H.(0)= —22__ ~1936B,B
When s =0, H,(0) = 5= n 677 o

Let H(0)=1, .. 1.936 BB, =1
1 1

= B =——o0rB, = =071
LetB,=B, - Bo=1g5q orBo=75ee =071
~.B,=B,=0.719 | _

H(s)= 0719 0517

By partial fraction expansion H (s) can be expressed as,

0517 A Bet C

(s+0511)(s* +0511s+1011) s+0511 ' 52 +0511s+1011 ~(4102)

H,(s)
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On cross multiplying the equation (4.10.2) we get

0.517 = A(s?+0.511s + 1.011) + (Bs + C) (s + 0.511)
0517=As*+0.511As + 1.011A+Bs* +0.511Bs + Cs + 0.511C ..., (4103,

On equating the coefficient of s? in equation (4.10.3) we get
A+ B= 0
On equating the coefficients of s in equation (4.10.3) we get

0.511A+0.511B+C=0 *
0.511(A+B) tc=0 . .

On equating the constants in equation (4.10.3) we get
LOLIA+0.511C=0.517
From equations (4.10.4) & (4.10.5), we get, C=0.
On substituting, C = 0, in equation (4.10.6), we get, A =0.517/1.011 = 0.511
From equation (4.10.4) we get, B=-A =-0.511.

_ A Bs+C 0511 0511s
~H,(5)= +5 — = -5
s+0511 s +0511s+1011 s+0511 s*+0511s+1011
0511 0511s

PO (42x02565 +02567) +(Vi011-025¢7)

0511 0511 s+0256 - 0.256

s+OSI1 (5+0256)" +0972?
_0S1 e 4025 0256
s+0511  (s+0256)" +0972* (s+0256)° +0972°
__OSIL oo SH0256 05110256 097
Cs+O0SIL (s 0256) 409728 0972 (5+0256) + 0977
0511 oy 5+0256 0972

- +0.
s+0511  (5+0256)" +0972° (s+0256)' +0972°

-
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Free Hand


2.5 Direct Form Structures

The output signal y[K]=H{x[Kk]}y[k]=H{x[K]} of a recursive linear-time invariant (LTI) system
and the computational realization of above equation requires additions, multiplications, the
actual and past samples of the input signal x[k]x[K], and the past samples of the output signal
yIK]y[K]. Technically this can be realized by

+ adders

« multipliers, and

* unit delays or storage elements.
These can be arranged in different topologies. A certain class of structures, which is
introduced in the following, is known as direct form structures. Other known forms are for

instance cascaded sections, parallel sections, lattice structures and state-space structures.

For the following it is assumed that a0=1a0=1. This can be achieved for instance by

dividing the remaining coefficients by a0a0.
2.5.1 Direct Form |

The direct form I is derived by rearranging the difference equation.lIt is now evident that we
can realize the recursive filter by a superposition of a non-recursive and a recursive part.

With the elements given above, this results in the following block-diagram

bo

=I5l | & & & ] ylk]
= 1)1 —da =
a[5e 1] : (:::EEE:::} —+ —ii {:::EEE:::) : K 1]
v ' ' v
- bar ‘ —an £
x[k — M) ”/’—;:;\\\\ //”;;-‘\\\ [ & N
' ey oy

Fig 2.10 Direct form I filter
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https://dsp-nbsphinx.readthedocs.io/en/nbsphinx-experiment/recursive_filters/cascaded_structures.html
https://dsp-nbsphinx.readthedocs.io/en/nbsphinx-experiment/recursive_filters/cascaded_structures.html
https://en.wikipedia.org/wiki/Digital_filter#Direct_Form_I

This representation is not canonical since N+MN+M unit delays are required to realize a
system of order NN. A benefit of the direct form | is that there is essentially only one
summation point which has to be taken care of when considering quantized variables and
overflow. The output signal y[K]y[k] for the direct form | is computed by realizing above
equation.The block diagram of the direct form | can be interpreted as the cascade of two
systems. Denoting the signal in between both as w[k]Jw[k] and discarding initial values we
getwhere h1[k]=[b0,b1,...,.bM]h1[k]=[b0,b1,...,bM] denotes the impulse response of the non-
recursive part and h2[k]=[1,—al,...,—aN]h2[k]=[1,—al,...,—aN] for the recursive part. From the
last equality of the second equation and the commutativity of the convolution it becomes clear
that the order of the cascade can be exchanged.

2.5.2 Direct Form 11
The direct form Il is yielded by exchanging the two systems in above block diagram and

noticing that there are two parallel columns of delays which can be combined, since they are
redundant. For N=MN=M it is given as
w(k] bo

.
o1
—a) by
:
M
X

b

o)
p 4

2.11 Direct form 11 filter

Other cases with NAMN#M can be considered for by setting coefficients to zero. This form is a
canonical structure since it only requires NN unit delays for a recursive filter of order NN. The
output signal y[k]y[K] for the direct form Il is computed by the following equations The samples
w[k—m]w[k—m] are termed state (variables) of a digital filter.
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https://en.wikipedia.org/wiki/Digital_filter#Direct_Form_II

FINITE IMPULSE RESPONSE DIGITAL FILTERS

3.1 Symmetric and Anti symmetric FIR filters

FIR filters are digital filters with finite impulse response. They are also known as non-
recursive digital filters as they do not have the feedback (a recursive part of a filter),
even though recursive algorithms can be used for FIR filter realization. FIR filters can be
designed using different methods, but most of them are based on ideal filter
approximation. The objective is not to achieve ideal characteristics, as it is impossible
anyway, but to achieve sufficiently good characteristics of a filter. The transfer function
of FIR filter approaches the ideal as the filter order increases, thus increasing the
complexity and amount of time needed for processing input samples of a signal being
filtered. The resulting frequency response can be a monotone function or an oscillatory
function within a certain frequency range. The waveform of frequency response
depends on the method used in design process as well as on its parameters.

This book describes the most popular method for FIR filter design that uses window
functions. The characteristics of the transfer function as well as its deviation from the
ideal frequency response depend on the filter order and window function in use.

Each filter category has both advantages and disadvantages. This is the reason why it
is so important to carefully choose category and type of a filter during design process.

FIR filters can have linear phase characteristic, which is not like IIR filters that will be
discussed in Chapter 3. Obviously, in such cases when it is necessary to have a linear
phase characteristic, FIR filters are the only option available. If the linear phase
characteristic is not necessary, as is the case with processing speech signals, FIR filters
are not good solution at all.

sin(mt)+sin(3wt) sin(mt)-sin(3wt)

Fig.3.1. lllustration of input and output signals of non-linear phase systems.
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The system introduces a phase shift of O radians at the frequency of w, and 1 radians at
three times that frequency. Input signal consists of natural frequency w and one
harmonic with the same amplitude at three times that frequency. Figure 2-1-3. shows
the block diagram of input signal (left) and output signal (right). It is obvious that these
two signals have different waveforms. The power of signals is not changed, nor the
amplitudes of harmonics, only the phase of the second harmonic is changed.

If we assume that the input is a speech signal whose phase characteristic is not of the
essence, such distortion in the phase of the signal would be unimportant. In this case,
the system satisfies all necessary requirements. However, if the phase characteristic is
of importance, such a great distortion mustn’t be allowed.

In order that the phase characteristic of a FIR filter is linear, the impulse response must
be symmetric or anti-symmetric, which is expressed in the following way:

h[n] = h[N-n-1] ; symmetric impulse response (about its middle element)
h[n] = -h[N-n-1] ; anti-symmetric impulse response (about its middle element)

One of the drawbacks of FIR filters is a high order of designed filter. The order of FIR
filter is remarkably higher compared to an IIR filter with the same frequency response.
This is the reason why it is so important to use FIR filters only when the linear phase
characteristic is very important.

A number of delay lines contained in a filter, i.e. a number of input samples that should
be saved for the purpose of computing the output sample, determines the order of a
filter. For example, if the filter is assumed to be of order 10, it means that it is necessary
to save 10 input samples preceeding the current sample. All eleven samples will affect
the output sample of FIR filter.

The transform function of a typical FIR filter can be expressed as a polynomial of a
complex variable z-1. All the poles of the transfer function are located at the origin. For
this reason, FIR filters are guaranteed to be stable, whereas IIR filters have potential to
become unstable.

3.2. Finite impulse response (FIR) filter design methods

Most FIR filter design methods are based on ideal filter approximation. The resulting
filter approximates the ideal characteristic as the filter order increases, thus making the
filter and its implementation more complex.

The filter design process starts with specifications and requirements of the desirable
FIR filter. Which method is to be used in the filter design process depends on the filter
specifications and implementation. This chapter discusses the FIR filter design method
using window functions.

Each of the given methods has its advantages and disadvantages. Thus, it is very
important to carefully choose the right method for FIR filter design. Due to its simplicity
and efficiency, the window method is most commonly used method for designing filters.
The sampling frequency method is easy to use, but filters designed this way have small
attenuation in the stopband.
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As we have mentioned above, the design process starts with the specification of desirable FIR
filter.

3.2.1. Basic concepts and FIR filter specification

First of all, it is necessay to learn the basic concepts that will be used further in this book. You
should be aware that without being familiar with these concepts, it is not possible to understand

analyses and synthesis of digital filters.

Figure 3.2 illustrates a low-pass digital filter specification. The word specification actually refers

to the frequency response specification.
IH(w)|
A

1-3, 7

-

W

=

5 o >0
. Il'lfw)l
iy

Fig.3.2. A low-pass digital filter specification
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. op — normalized cut-off frequency in the passband;

. s — normalized cut-off frequency in the stopband;
. o1 — maximum ripples in the passband,

. 82 — minimum attenuation in the stopband [dB];

. ap — maximum ripples in the passband; and

. as — minimum attenuation in the stopband [dB].

[ 1+ 3, x"|

ap — 20 |Dg1ﬂkﬁﬁ

a, =—20log,, O,

Frequency normalization can be expressed as follows:

where:
. fs is a sampling frequency;
. f is a frequency to normalize; and

. o is normalized frequency.
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Table.3.1.Filters

Type of filter Frequency response ha[n]
‘sin[m.(n—M)]. N =M
low-pass filter hyln] = I J'E{nm_ W
—£; n=M
L n
| 1= : n=M
.0__(.__ . h_n:‘: . T
high-pass filter on] - sin(o,(n - M}}; n=M
| wn-M)
ism(wcz{nhi M}) _ Siﬂ(mm{ﬂr‘; M)) C n# M
band-pass filter hy[n] =+ mn=M) min-M)
ey — Wy, —
1 —2_—*; n=M
| sin mﬂ(nhirw)) B sin(mcg{nru; M) hem
band-stop filter hy[n] =1 m(n=M) i -M)

The value of variable n ranges between 0 and N, where N is the filter order. A constant M can be

expressed as M = N / 2. Equivalently, N can be expressed as N = 2M.

The constant M is an integer if the filter order N is even, which is not the case with odd order
filters. If M is an integer (even filter order), the ideal filter frequency response is symmetric
about its Mth sample which is found via expression shown in the table 2-2-1 above. If M is not
an integer, the ideal filter frequency response is still symmetric, but not about some frequency

response sample.
Since the variable n ranges between 0 and N, the ideal filter frequency response has N+1 sample.

If it is needed to find frequency response of a non-standard ideal filter, the expression for inverse

Fourier transform must be used:

1%
hd [n] _ | ejmi_ﬁ—l"ﬂjdm
o
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Non-standard filters are rarely used. However, if there is a need to use some of them, the integral

above must be computed via various numerical methodes.
3..3 FIR filter design using window functions

The FIR filter design process via window functions can be split into several steps:

1. Defining filter specifications;

2. Specifying a window function according to the filter specifications;

3. Computing the filter order required for a given set of specifications;

4. Computing the window function coefficients;

5. Computing the ideal filter coefficients according to the filter order;

6. Computing FIR filter coefficients according to the obtained window function and ideal

filter coefficients;

7. If the resulting filter has too wide or too narrow transition region, it is necessary to
change the filter order by increasing or decreasing it according to needs, and after that steps 4, 5

and 6 are iterated as many times as needed.

The final objective of defining filter specifications is to find the desired normalized frequencies
(oc, ocl, wc2), transition width and stopband attenuation. The window function and filter order

are both specified according to these parameters.

Accordingly, the selected window function must satisfy the given specifications. After this step,
that is, when the window function is known, we can compute the filter order required for a given
set of specifications. When both the window function and filter order are known, it is possible to
calculate the window function coefficients w[n] using the formula for the specified window

function.

1.Rectangular Window The rectangular window is what you would obtain if you were to

simply segment a finite portion of the impulse response without any shaping in the time domain:
wn)=10<n<M,
= 0 otherwise

2.Bartlett (or triangular) window
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The Bartlett window is triangularly shaped:

=0 otherwise
3.Hanning window

The Hanning window(or more properly, the von Hann window) is nothing more than a raised

cosine:
2Tn
w(n) = 0.5—0.5cos(v) 0<n<M,
=0 otherwise
4. Hamming window
21n
w(n) = 0.54 — 0.46 cos (V) 0<n<M,

=0 otherwise
5.Blackmam window

The Hanning and Hamming have a constant and a cosine term; the Blackman window adds a

cosine at twice the frequency

2Tn 41tn
w(n) = 0.42 — 0.5 cos (7) + 0.08 cos (V) 0<n<M,

=0 otherwise

After estimating the window function coefficients, it is necessary to find the ideal filter
frequency samples. The expressions used for computing these samples are discussed in section
2.2.3 under Ideal filter approximation. The final objective of this step is to obtain the

coefficients hy[n]. Two sequencies w[n] and hg[n] have the same number of elements.

The next step is to compute the frequency response of designed filter h[n] using the following

expression:
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h[n] = w[n]-hy[n]

Lastly, the transfer function of designed filter will be found by transforming impulse response

via Fourier transform:
H(e")=> h[n]-e™™
n=0

or via Z-transform:

H(z) = ih[n]z‘n

If the transition region of designed filter is wider than needed, it is necessary to increase the filter
order, reestimate the window function coefficients and ideal filter frequency samples, multiply
them in order to obtain the frequency response of designed filter and reestimate the transfer
function as well. If the transition region is narrower than needed, the filter order can be decreased
for the purpose of optimizing hardware and/or software resources. It is also necessary to

reestimate the filter frequency coefficients after that.
PROBLEMS

Use the window design method to design a linear phase FIR filter of order N = 24 to approximate

the following ideal frequency response magnitude

3 |w| <0.27
|Ha(e!®)| =
0 027 < |lw| <nm

The ideal filter that we would like to approximate is a low-pass filter with a cutoff frequency =

0.2. With N = 24, the frequency response of the filter that is to be designed has the form

24
H(e™) =" h(n)e™"

n=0
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Therefore, the delay of h(n) is=N/2 = 12, and the ideal unit sample response that is to be

windowed is

sin[0.27r(n — 12)]

hatn) = (n—12)x

All that is left to do in the design is to select a window. With the length of the window fixed,
there is a trade-off between the width of the transition band and the amplitude of the passband

and stopband ripple. With a rectangular window, which provides the smallest transition band,

0.9
Aw=2n- %= 0.075n

and the filter is

sin[0.2r(n — 12)] 0<n<4
h(n) = (n—12)r
0 otherwise

However, the stopband attenuation is only 21 dB, which is equivalent to a ripple of 0.089. With

a Hamming window, on the other hand,

<n<24

h(n) = [0.54 - 0A46cos( 2%n )] _sin[0.27(n — 12)]

24 (n— 12)r
and the stopband attenuation is 53 dB, or ? s = 0.0022. However, the width of the transition band

increases to

33
Aw =21 - o 0.275n

which, for most designs, would be too wide.
3..4 .Frequency sampling method:

The frequency sampling method allows us to design recursive and nonrecursive FIR filters for
both standard frequency selective and filters with arbitrary frequency response. A. No recursive
frequency sampling filters : The problem of FIR filter design is to find a finite—length impulse

response h (n) that corresponds to desired frequency response. In this method h (n) can be
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determined by uniformly sampling, the desired frequency response Hp (®) at the N points and

finding its inverse DFT of the frequency samples.

Problem

EXAMPLE .
~ Determine the coefficients of a linear-phase FIR filter of length N=15 which has ,
Symmetric unit sample response and a frequency response that satisfies the conditions
1 ; fork=0,1,2,3
1 . ¥ ] ¥
H{T’:‘—)- 04 ; fork=4
0 ; fork=5,6,7

SOLUTION

For linear phase FIR filter the phase function, 8(w) = —am, where o = (N-1)/2.
Here N = 15, La=(15=1)y2=7.

2nk
Also, hmimzmkz—% % ence we can go for type-1 design.

In this problem the sample . . ;
: : ples of the : .
directly given for various values of k. magnitude response of the ideal (desired) filter are

ﬁ_{t}:_ﬂd{mjmqk =104 ¢y o
o ik=5,6,7

Whﬁ'l:.-fﬂk =—13.-.

_nllno

Whenk =0, H(0)=¢"= - ,/™5; &1

= 0 - - Iﬁ x
Wheak=1, B(l)=et oo ™5 _ 42
Whenk=2, i.'i(2)=e'j""' =e-r’“z-;msl=.e-'?s-’l

= H = o) - uhﬁd A2x
Whenk =3, H(3) =g om _ =e-‘%

Whenk =4, H(4)=0.4 ¢ = B Ll sox
=04e s =04 e‘}F

Whenk =5, H(5)=0
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When k = 6, FH(6)=0
Whenk = 7, H(7)=0

The samples of impulse response are given by
)= {ﬁm)n: yer=
B _l {ﬁ(O) +2Z Re[ﬁ(k) eizakns]} v
{H(O) +22 Re{H(k) cﬁmﬁlli] +2 Re []—]_(4) cﬂ-‘"’]}

ek }’_-1 A
{1+2Z Rc[ T ke ]+2 Re [0.4e " e ,T]}

=-l_5 {1+2Z Re [e Is ]+2 Re [04 e%(n n]}

1l
m,"‘

—

k=1

1‘5 {1+2Z cos—(n I+ 08oos§1£(n-7)}

k=1
1

_1—5+B b (n 7 +— oos—-(n 7) = sélm;—5 (n—7)+08008?—:(n—7)

n= 0 NO)—E-F% cos(%)w% cos(—l—zgu)+%s oos(—‘:?‘)+0.8 ( i?)=0.4855
n=1; Kl)-l-b-l oos(_nn}-% cos[-?;u)«&l—zs oos(%)+0.8003(—:§“
n=2; h(2)=E+1—25 oos(%}-l—zs cos [%)+% (-::gx)+0.8 cos[;ﬂ;)=—03333

15
: 2 (8x) 2 _(-l6n) 2 (-24n —%on
3 ) =—+— cos[ % |2 = -
=2 L) ls+15°°s( 15 ]+15°°s( 15 ]+15 ( 15 )*0’8 ( } s

£25N ' Sl

:

_Li ~12xn 2 —18n —24n
+15 ms[ T l+ T m[—ﬁ-]+ﬂ.8:m[ s }=ﬂ,1393

2 —Ar) 2 ~8ny 2 ~12n 16m

=5 - =4 — —_— =

n s h(§)= ]5+15 [15 J+15 cus[ T )+15.0m( T )+I‘.}.8ms( T ]=—Gﬁ'48‘4

“2r) 2 -4xy 2 —6m
6 - 1.2 “2m) 2 8n
n=6 ; bo)= 15+15m[15 ]+15m(15] 15 (15}%“[ }il

2 " )
= =— el _
n=7; h(7)= 15+1 cusﬂ+ uosﬂ+l msﬂ+ﬂ.8msﬂ-——+{].84

Fm- linear phase FIR filters the condition h(N—. =
@=N-1/2. :

L ALY o

2 (6
4 bd)=—+-= cos[ 2"
n=4; h) 15+15m['15')

h(n) will be satisfied wher
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=6 = B e
-g w1s-1-9 ~w5=-"
‘h-_’; wis-1-9=¥) = ;:ﬁrfﬂ-‘ﬁ
:::=m. uij-i-Iﬂlsi“'ﬂmhgﬂjﬁﬂm
whean=1l WiS-1-107EDZ L g)=-063333
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3..5 Design of Optimum Equiripple Linear-Phase FIR
The window method and the frequency-sam pling method are relatively sim ple

techniques for designing linear-phase FIR filters. However, they also possess some minor
disadvantages, , which may render them undesirable for some applications. A major problem is
the lack of precise control of the critical frequencies such ws. The filter design method described
in this section is formulated as a Chebyshev approximation problem . It is viewed as an optimum
design criterion in the sense that the weighted approximation error between the desired
frequency response and the actual frequency response is spread evenly across the passband and
evenly across the stopband of the filter minimizing the maximum error. The resulting filter
designs have ripples in both the passband and the stopband. To describe the design procedure, let
us consider the design of a lowpass filter with passband edge frequency a>p and stopband edge

frequency .
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3..6 Structure realization of FIR Filters

In signal processing, adigital filteris a system that performs mathematical operations on
a sampled, discrete-time signal to reduce or enhance certain aspects of that signal. This is in
contrast to the other major type of electronic filter, the analog filter, which is anelectronic

circuit operating on continuous-time analog signals.

A digital filter system usually consists of an analog-to-digital converter to sample the input
signal, followed by a microprocessor and some peripheral components such as memory to store
data and filter coefficients etc. Finally a digital-to-analog converter to complete the output stage.
Program Instructions (software) running on the microprocessor implement the digital filter by
performing the necessary mathematical operations on the numbers received from the ADC. In
some high performance applications, an FPGA orASIC is used instead of a general purpose
microprocessor, or a specialized DSP with specific paralleled architecture for expediting

operations such as filtering.

Digital filters may be more expensive than an equivalent analog filter due to their increased
complexity, but they make practical many designs that are impractical or impossible as analog
filters. When used in the context of real-time analog systems, digital filters sometimes have
problematic latency (the difference in time between the input and the response) due to the
associated analog-to-digital and digital-to-analog conversions and anti-aliasing filters, or due to

other delays in their implementation.

Digital filters are commonplace and an essential element of everyday electronics such

as radios, cellphones, and AV receivers.
3.6.1. Characterization

A digital filter is characterized by its transfer function, or equivalently, its difference equation.
Mathematical analysis of the transfer function can describe how it will respond to any input. As
such, designing a filter consists of developing specifications appropriate to the problem (for
example, a second-order low pass filter with a specific cut-off frequency), and then producing a

transfer function which meets the specifications.

The transfer function for a linear, time-invariant, digital filter can be expressed as a transfer

function in the Z-domain; if it is causal, then it has the form:
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where the order of the filter is the greater of N or M. See Z-transform's LCCD equation for

further discussion of this transfer function.

This is the form for arecursive filter with both the inputs (Numerator) and outputs
(Denominator), which typically leads to an IIR infinite impulse response behaviour, but if
thedenominator is made equal to unity i.e. no feedback, then this becomes an FIR or finite

impulse response filter.

The impulse response, often denoted h(k) or hy, is a measurement of how a filter will respond to
the Kronecker delta function. Digital filters are typically considered in two categories: infinite
impulse response (IIR) and finite impulse response (FIR). In the case of linear time-invariant FIR

filters, the impulse response is exactly equal to the sequence of filter coefficients:

n—1
Un = Z hkxﬂ—k
k=0

IR filters on the other hand are recursive, with the output depending on both current and

previous inputs as well as previous outputs. The general form of an IR filter is thus:

M-1 n—1
Z OmYn—m = Z DT

Plotting the impulse response will reveal how a filter will respond to a sudden, momentary

disturbance.
1.Difference equation

In discrete-time systems, the digital filter is often implemented by converting the transfer
function to a linear constant-coefficient difference equation (LCCD) via the Z-transform. The
discrete frequency-domain transfer function is written as the ratio of two polynomials. For

example:
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This is expanded:

2212241
Hl:z): z?_l_i_;_%

and to make the corresponding filter causal, the numerator and denominator are divided by the

highest order of z:

142270 +272 Y(2)

143271 —22-2 X(z)

H(z) =

The coefficients of the denominator, &, are the 'feed-backward' coefficients and the coefficients

of the numerator are the ‘'feed-forward' coefficients, ch. The resultant linear difference

equation is:

yn| = — Eaky[n — k] + kgbkx[n — k]

or, for the example above:

Y(z) 1+ 2271 4 22

X(z) 143z1—32z72

rearranging terms:

1 3
= (1+ 13_1 — gz_E)Y(z) = (1+22"+279)X(2)
then by taking the inverse z-transform:
1 3
= y[n] +7 [n — 1] — gy[n — 2] = z[n] + 2z[n — 1] + z[n — 2]

and finally, by solving for y[n|.

yln] = = 1uln — 1]+ Syln — 2]+ xn] + 2efn — 1] + afn — 2

This equation shows how to compute the next output sample, y[”], in terms of the past

outputs, yn — P], the present input, I[n] and the past inputs, z[n — p|, Applying the filter to

130


https://en.wikipedia.org/wiki/Causal_filter
https://en.wikipedia.org/wiki/Difference_equation
https://en.wikipedia.org/wiki/Difference_equation

an input in this form is equivalent to a Direct Form | or Il realization, depending on the exact
order of evaluationAfter a filter is designed, it must be realized by developing a signal flow

diagram that describes the filter in terms of operations on sample sequences.
A given transfer function may be realized in many ways. Consider how a simple expression such

as ax + bxr + ¢ could be evaluated — one could also compute the equivalent I{ﬂ' + '5) +cC
In the same way, all realizations may be seen as "factorizations™ of the same transfer function,
but different realizations will have different numerical properties. Specifically, some realizations
are more efficient in terms of the number of operations or storage elements required for their
implementation, and others provide advantages such as improved numerical stability and reduced
round-off error. Some structures are better for fixed-point arithmetic and others may be better

for floating-point arithmetic.
1.Direct Form I

A straightforward approach for IIR filter realization is Direct Form I, where the difference
equation is evaluated directly. This form is practical for small filters, but may be inefficient and
impractical (numerically unstable) for complex designs.!®! In general, this form requires 2N delay
elements (for both input and output signals) for a filter of order N.

b,

xfn] » yin]

—a-

Fig.3.3.  Direct form |
2.Direct Form Il

The alternate Direct Form 1l only needs N delay units, where N is the order of the filter —
potentially half as much as Direct Form I. This structure is obtained by reversing the order of the

numerator and denominator sections of Direct Form I, since they are in fact two linear systems,
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and the commutativity property applies. Then, one will notice that there are two columns of

delays (z_l) that tap off the center net, and these can be combined since they are redundant,

yielding the implementation as shown below.

The disadvantage is that Direct Form Il increases the possibility of arithmetic overflow for filters
of high Q or resonance.”! It has been shown that as Q increases, the round-off noise of both
direct form topologies increases without bounds.™ This is because, conceptually, the signal is
first passed through an all-pole filter (which normally boosts gain at the resonant frequencies)
before the result of that is saturated, then passed through an all-zero filter (which often attenuates
much of what the all-pole half amplifies).

yinj

Fig.3.4.  Direct form Il

3.Cascaded second-order sections

A common strategy is to realize a higher-order (greater than 2) digital filter as a cascaded series
of second-order "biquadratric” (or "biquad") sections’® (see digital biquad filter). The advantage
of this strategy is that the coefficient range is limited. Cascading direct form Il sections results in
N delay elements for filters of order N. Cascading direct form | sections results in N+2 delay
elements since the delay elements of the input of any section (except the first section) are

redundant with the delay elements of the output of the preceding section.
4.Linear-Phase FIR Structures Phase FIR Structures

The symmetry (or antisymmetry) property of a linear-phase FIR filter can be exploited to reduce

the number of multipliers into almost half of that in the direct form implementations ¢
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Consider a length-7 Type 1 FIR transfer function with a symmetric impulse response: H(Z) =
h(0) + h(1)Z Y+ h(2)Z72+ h(3)Z72 + h(2)Z™* + h(1)Z~° + h(0)Z~°.Rearranging, we get

:—1 = 1 z 1
1 -1 ~1h—s
Voo Y YRl "71;[3]

S>>

Fig.3.4.  Linear phase FIRI

5.Polyphase Polyphase FIR Structures FIR Structures
The polyphase decomposition of H(z) leads to a parallel form structure.
To illustrate this approach, consider a causal FIR transfer function H(z) with N = 8:

HZ) =h()+h(DZ'+hRZ2+hR)Z3+h@A)Z*+h(5)Z >+ h(6)Z 0+ h(7)Z77
+ h(8)Z78

H(z) can be expressed as a sum of two terms, with one term containing the even indexed

coefficients and the other containing the odd-indexed coefficients:

H(Z) =h(0) ++h(2)Z72+h(4)Z™*+ h(6)Z7°+ h(8)Z78
+Z7Hh(1D) + h(3)Z72 + +h(5)Z™* + h(7)Z7°]

Putting H(Z) = Ey(Z?) + Z71E,(Z?).
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The subfilters in the polyphase realization of an FIR transfer function are also FIR filters and can
be realized using any methods. However, to obtain a canonic realization of the overall structure,

the delays in all subfilters must be shared.
Part A

1. What is a high pass filter?

2. Compare analog and digital filters.

3. Name the techniques available for the design of analog filter.

4. Mention the requirement for a digital filter to be stable and causal.
5. What is frequency sampling method

Part B

6. Design a low pass digital filter of order 5 with cut of frequency 0.2 pi using hanning window.
7. An LTI system is described by y (n)+ y(n-1)- 0.25y(n-2)=x(n).Realize in direct form | and

Cascade form.
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DIGITAL SIGNAL PROCESSOR

The TMS320C24x is a member of the TMS320 family of digital signal processors(DSPs). The
"C24x is designed to meet a wide range of digital motor control(DMC) and embedded control

applications.
5.1.TMS320 Family Overview

The TMS320 family consists of fixed-point, floating-point, multiprocessor digital signal
processors (DSPs), and fixed-point DSP controllers. TMS320 DSPs have an architecture
designed specifically for real-time signal processing. The’C24x series of DSP controllers
combines this real-time processing capability with controller peripherals to create an ideal
solution for control system applications. The following characteristics make the TMS320 family
the right choice for a wide range of processing applications:

1. Very flexible instruction set
2.Inherent operational flexibility
3.High-speed performance
4.Innovative parallel architecture

5.Cost effectiveness

5.2.TMS320C24x Series of DSP Controllers

Designers have recognized the opportunity to redesign existing DMC systems to use advanced

algorithms that yield better performance and reduce system component count. DSPs enable:

1. Design of robust controllers for a new generation of inexpensive motors,such as AC
induction, DC permanent magnet, and switched-reluctance motors.

2. Full variable-speed control of brushless motor types that have lower manufacturing cost
and higher reliability.

3. Energy savings through variable-speed control, saving up to 25% of the energy used by

fixed-speed controllers.
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4. Increased fuel economy, improved performance, and elimination of hydraulic fluid in
automotive electronic power steering (EPS) systems .

5. Reduced manufacturing and maintenance costs by eliminating hydraulic fluids in
automotive electronic braking systems.

6. More efficient and quieter operation due to less generation of torque ripple, resulting in
less loss of power, lower vibration, and longer life

7. Elimination or reduction of memory lookup tables through real-time polynomial
calculation, thereby reducing system cost.

8. Use of advanced algorithms that can reduce the number of sensors required in a system.
9. Control of power switching inverters, along with control algorithm processing.

10.  Single-processor control of multi motor systems

The *C24x DSP controllers are designed to meet the needs of control-based applications. By
integrating the high performance of a DSP core and the on-chip peripherals of a microcontroller

into a single-chip solution, the *’C24x

series yields a device that is an affordable alternative to traditional microcontroller units (MCUs)
and expensive multichip designs. At 20 million instructions per second (MIPS), the *C24x DSP
controllers offer significant performance over traditional 16-bit microcontrollers and
microprocessors. Future derivatives of these devices will run at speeds higher than 20 MIPS. The

16-bit, fixed-point DSP core of the *C24x device provides analog designers

a digital solution that does not sacrifice the precision and performance of their systems. In fact,
system performance can be enhanced through the use of advanced control algorithms for
techniques such as adaptive control,Kalman filtering, and state control. The ’C24x DSP
controllers offer reliability and programmability. Analog control systems, on the other hand, are
hardwired solutions and can experience performance degradation due to aging,component

tolerance, and drift. The high-speed central processing unit (CPU) allows the digital designer to

process algorithms in real time rather than approximate results with look-up tables. When the
instruction set of these DSP controllers (which incorporates both signal processing instructions

and general-purpose control functions) is
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coupled with the extensive development support available for the *C24x devices,it reduces
development time and provides the same ease of use as traditional 8- and 16-bit microcontrollers.

The instruction set also allows you to

retain your software investment when moving from other general-purpose TMS320 fixed-point
DSPs. It is source- and object-code compatible with the other members of the *C24x generation,

source code compatible with the *C2x

generation, and upwardly source code compatible with the *C5x generation of DSPs from Texas
Instruments. The C24x architecture is also well-suited for processing control signals. It uses a
16-bit word length along with 32-bit registers for storing intermediate results, and has two

hardware shifters available to scale numbers independently

of the CPU. This combination minimizes quantization and truncation errors, and increases
processing power for additional functions. Two examples of these additional functions are: a
notch filter that cancels mechanical resonances in a system, and an estimation technique that
eliminates state sensors in a system. The *C24x DSP controllers take advantage of an existing set
of peripheral functions that allow Texas Instruments to quickly configure various series members

for different price/performance points or for application optimization.
This library of both digital and mixed-signal peripherals includes :
Timers

Serial communications ports (SCI, SPI)

Analog-to-digital converters (ADC)

Event manager

system protection, such as watchdog timers

5.3.Architectural Overview

The *C24x DSP uses an advanced, modified Harvard architecture that maximizes processing

power by maintaining separate bus structures for program memory and data memory.
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Fig.5.1. Architecture of TMS320C24X processor
5.3.1. C24x CPU Internal Bus Structure

The *C24x DSP, a member of the TMS320 family of DSPs, includes a >C2xx DSP core designed
using the "2xLP ASIC core. The ’C2xx DSP core has an internal data and program bus structure

that is divided into six 16-bit buses. The six buses are:
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PAB. The program address bus provides addresses for both reads from and writes to program

emory.
DRAB. The data-read address bus provides addresses for reads from data memory.
DWAB. The data-write address bus provides addresses for writes to data memory.

PRDB. The program read bus carries instruction code and immediate operands, as well as table

information, from program memory to the CPU.

DRDB. The data-read bus carries data from data memory to the central arithmetic logic unit
(CALU) and the auxiliary register arithmetic unit (ARAU).

DWEB. The data-write bus carries data to both program memory and data memory. Having
separate address buses for data reads (DRAB) and data writes (DWAB) allows the CPU to read

and write in the same machine cycle.

5.3.2. Memory

The *C24x contains the following types of on-chip memory:
Dual-access RAM (DARAM)

Flash EEPROM or ROM (masked)

The *C24x memory is organized into four individually-selectable spaces:
Program (64K words)

Local data (64K words)

Global data (32K words)

Input/Output (64K words)

These spaces form an address range of 224K words.
1.0n-Chip Dual-Access RAM (DARAM)

The *C24x has 544 words of on-chip DARAM, which can be accessed twice per machine cycle.
This memory is primarily intended to hold data, but when needed, can also be used to hold
programs. The memory can be configured in one of two ways, depending on the state of the CNF

bit in status register ST1.
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When CNF = 0, all 544 words are configured as data memory.

When CNF = 1, 288 words are configured as data memory and 256 words are configured as

program memory.

Because DARAM can be accessed twice per cycle, it improves the speed of the CPU. The CPU
operates within a 4-cycle pipeline. In this pipeline, the CPU reads data on the third cycle and
writes data on the fourth cycle. However, DARAM allows the CPU to write and read in one
cycle; the CPU writes to DARAM on the master phase of the cycle and reads from DARAM on
the slave phase. For example, suppose two instructions, A and B, store the accumulator value to
DARAM and load the accumulator with a new value from DARAM. Instruction A stores the
accumulator value during the master phase of the CPU cycle, and instruction B loads the new
value in the accumulator during the slave phase. Because part of the dual-access operation is a
write, it only applies to RAM.

2.Flash EEPROM

Flash EEPROM provides an attractive alternative to masked program ROM.Like ROM, flash is a
nonvolatile memory type; however, it has the advantage of in-target reprogrammability. The
"F24x incorporates one 16K/8K [1[116-bit flash EEPROM module in program space. This type
of memory expands the capabilities of the ’F24x in the areas of prototyping, early field testing,
and single-chip applications.Unlike most discrete flash memory, the *F24x flash does not require
a dedicated state machine because the algorithms for programming and erasing the flash are
executed by the DSP core. This enables several advantages, including reduced chip size and
sophisticated adaptive algorithms. For production programming, the IEEE Standard 1149.1
(JTAG) scan port provides easy access to on-chip RAM for downloading the algorithms and
flash code. Other key features of the flash include zero-wait-state access rate and single 5-V
power supply.An erased bit in the *24x flash is read as a logic one, and a programmed bit is read
as a logic zero. The flash requires a block-erase of the entire 16K/8K module; however, any
combination of bits can be programmed. The following four algorithms are required for flash
operations: clear, erase, flash-write, and program. For an explanation of these algorithms and a
complete description of the flash EEPROM, see TMS320F20x/F24x DSPs Embedded Flash
Memory Technical Reference (Literature number SPRU282).

3.Flash Serial Loader
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Most of the on-chip flash devices are shipped with a serial bootloader code programmed at the
following addresses: 0x0000 — 0xO00FFh. All other flash addresses are in an erased state. The
serial bootloader can be used to program the on-chip flash memory with user’s code. During the
flash programming sequence, the on-chip data RAM is used to load and execute the clear, erase,

and program algorithms.
4.Factory-Masked ROM

For large-volume applications consisting of stable software free of bugs, lowcost, masked ROM
is available and supported up to 16K or 4K words. If you want a custom ROM, you can provide
the code or data to be programmed into the ROM in object-file format, and Texas Instruments
will generate the appropriate process mask to program the ROM. For details, see Appendix B,
Submitting ROM Codes to TI.A small portion of the ROM (128 or 64 words) is reserved by
Texas Instruments for test purposes. These reserved locations are at addresses 0x3F80 or 3FCO

through Ox3FFF. This leaves about 16K words available for your code.
5.External Memory Interface Module

In addition to full, on-chip memory support, some of the *C24x devices provide access to
external memory by way of the External Memory Interface Module. This interface provides 16
external address lines, 16 external data lines, and relevant control signals to select data, program,

and 1/0O spaces. An on-chip

wait-state generator allows interfacing with slower off-chip memory and peripherals.
5.3.3. Central Processing Unit

The *C24x is based on TI’s ’C2xx CPU. It contains:

A 32-bit central arithmetic logic unit (CALU)

A 32-bit accumulator

Input and output data-scaling shifters for the CALU

A 16-bit

16-bit multiplier

A product-scaling shifter
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Data-address generation logic, which includes eight auxiliary registers and an auxiliary register
arithmetic unit (ARAU)

Program-address generation logic.
5.3.4. Central Arithmetic Logic Unit (CALU) and Accumulator

The *C24x performs 2s-complement arithmetic using the 32-bit CALU. The CALU uses 16-bit
words taken from data memory, derived from an immediate instruction, or from the 32-bit
multiplier result. In addition to arithmetic operations, the CALU can perform Boolean
operations. The accumulator stores the output from the CALU; it can also provide a second input
to the CALU. The accumulator is 32 bits wide and is divided into a highorder word (bits 31
through 16) and a low-order word (bits 15 through 0). Assembly language instructions are

provided for storing the high- and loworder accumulator words to data memory.
1.Scaling Shifters

The *C24x has three 32-bit shifters that allow for scaling, bit extraction, extended arithmetic, and

overflow-prevention operations:

a.Input data-scaling shifter (input shifter). This shifter left-shifts 16-bit input data by 0 to 16
bits to align the data to the 32-bit input of the CALU.

b.Output data-scaling shifter (output shifter). This shifter left-shift output from the
accumulator by 0 to 7 bits before the output is stored to data memory. The content of the

accumulator remains unchanged.

c.Product-scaling shifter (product shifter). The product register (PREG) receives the output of
the multiplier. The product shifter shifts the output of the PREG before that output is sent to the
input of the CALU. The product shifter has four product shift modes (no shift, left shift by one
bit, left shift by four bits, and right shift by six bits), which are useful for performing
multiply/accumulate operations, performing fractional arithmetic, or justifying fractional

products.
5.3.5. Multiplier

The on-chip multiplier performs 16-bit [J[116-bit 2s-complement multiplication with a 32-bit
result. In conjunction with the multiplier, the ’C24x uses the 16-bit temporary register (TREG)
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and the 32-bit product register (PREG); TREG always supplies one of the values to be

multiplied, and PREG receives the result

of each multiplication. Using the multiplier, TREG, and PREG, the *C24x efficiently performs

fundamental

DSP operations such as convolution, correlation, and filtering. The effective execution time of

each multiplication instruction can be as short as one CPU cycle.
5.3.6. Auxiliary Register Arithmetic Unit (ARAU) and Auxiliary Registers

The ARAU generates data memory addresses when an instruction uses indirect addressing to
access data memory.The ARAU is supported by eight auxiliary registers (ARO through AR7),
each of which can be loaded with a 16-bit value from data memory or directly from an
instruction word. Each auxiliary register value can also be stored in data memory. The auxiliary
registers are referenced by a 3-bit auxiliary register pointer (ARP) embedded in status register
STO.

5.3.7. Program Control

Several hardware and software mechanisms provide program control: Program control logic
decodes instructions, manages the 4-level pipeline, stores the status of operations, and decodes
conditional operations. Hardware elements included in the program control logic are the program
counter, the status registers, the stack, and the address-generation logic. Software mechanisms
used for program control include branches, calls, conditional instructions, a repeat instruction,

reset, interrupts, and power down modes.
5.3.8. Serial-Scan Emulation

The ’C24x has seven pins dedicated to the serial scan emulation port (JTAG port). This port
allows for non-intrusive emulation of C24x devices, and is supported by Texas Instruments

emulation tools and by many third party debugger tools.
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Figure 1-2. TMS320 Device Nomenclature
TMS 320 (B) F 240 FGE (L)

PREFIX ;

TEMPERATURE RANGE (DEFAULT: 0°C TO 70°C)

TMX = experimental device L = 0°Cto70°C
TMP = prototype device A = —40°Cto 85°C
TMS = qualified device S = —40°Cto 125°C
Q = -40°Cto 125°C, Q 100 Fault Grading

PACKAGE TYPET

PAG= 6&4-pin plastic TQFP
e et o PGE= 144-pin plastic QFP
= amily PZ = 100-pin plastic TQFP
BOOT-LOADER OPTION
DEVICE
"20x DSP
TECHNOLOGY 203
C = CMOS ggg
E = CMOSEPROM
F = Flash EEPROM .
LC= Low-voitage CMOS (3.3 V) 24x DSP 240
LF = Flash EPROM (3.3 V) 547
VC= Low-voltage CMOS (3 V) 542
243
tPLCC = Plastic J-Leaded Chip Carrier
QFF = «Quad Flatpack
TQFP = Thin Quad Flatpack

Fig.5.2. TMS320C24X processor nomenclature

Figure 2-2 'C24x Address and Data Bus Structure
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Fig.5.3. Bus structure
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5.4. Memory and 1/O Spaces

The ’C24x has a 16-bit address line that accesses four individually selectable spaces (224K

words total):

A 64K-word program space

A 64K-word local data space

A 32K-word global data space

A 64K-word 1/O space

5.4.1. Overview of Memory and 1/0 Spaces

The *C24x design is based on an enhanced Harvard architecture. The *C24x has multiple
memory spaces accessible on three parallel buses: a program address bus (PAB), a data-read
address bus (DRAB), and a data-write address bus (DWAB). Each of the three buses access
different memory spaces for different phases of the device’s operation. Because the bus
operations are independent, it is possible to access both the program and data spaces
simultaneously. Within a given machine cycle, the CALU can execute as many as three
concurrent memory operations. The C24x address map is organized into four individually

selectable spaces:

1.Program memory (64K words) contains the instructions to be executed, as well as data used

during program execution.
2.Data memory (64K words) holds data used by the instructions.

3.Global data memory (32K words) shares data with other devices or serves as additional data

space.

4.Input/output (1/0) space (64K words) interfaces to external peripherals and may contain on-

chip registers.

These spaces provide a total address space of 224K words. The *C24x includes on-chip memory
to aid in system performance and integration, and numerous addresses that can be used for

external memory and I/O devices. The advantages of operating from on-chip memory are:
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Higher performance than external memory (because the wait states required for slower external

memories are avoided)
Lower cost than external memory,Lower power consumption than external memory

The advantage of operating from external memory is the ability to access a larger address
space.The memory maps are generic for all *’C24x devices; however, each device has its own set
of memory maps. ’C24x devices are available with different combinations of on-chip memory

and peripherals.
5.4.2. Program Memory

The program-memory space is where the application program code resides; it can also hold table
information and immediate operands. The program memory space addresses up to 64K 16-bit
words. On the ’C24x device, these words include on-chip DARAM and on-chip ROM/flash
EEPROM. When the *C24x generates an address outside the set of addresses configured to on
chip program memory, the device automatically generates an external access, asserting the

appropriate control signals (if an external memory interface is present).

Figure 3-2. Frogram Memory Map for 'C24x

0000h TT——

Interrupt vectors and Reset 0000h-D001h
003Fh Interrupt level 1 0002h—0003h
0040h

Flash/ROM Interrupt level 2 D004h—D005h
16KIBK words Interrupt level 3 0006h—0007h
(External if MP/MC = 1) Interrupt level 4 0008h—D00Sh
on Interrupt level 5 000Ah—-000Bh
Extemal Interrupt level 6 DODCh—D0O0DR
FDFFh Reserved O0DER—DDOFh
FEQOh
DARAM (BO) Software interrupts D010h-D021h
256 words
[CHF=1) TRAP 0022h—0023h

(External if CNF = 0) A D024h—D025h

FEFF Reserved D026h—-0027h
FFOO ]

Reserved Software interrupts 0028h—003Fh
FFFF
Note: Flash/ROM memory includes the address range 0000h—003Fh.

Fig.5.4. Program memory
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5.4.3. Program Memory Configuration

Depending on which types of memory are included in a particular *C24x device, two factors

contribute to the configuration of program memory:

CNF bit. The CNF bit (bit 12) of status register ST1 determines whether the addresses for
DARAM BO are available for program space:

CNF = 0. There is no addressable on-chip program DARAM.

CNF = 1. The 256 words of DARAM BO are configured for program use. At reset, any words of
program/data DARAM are mapped into local data space (CNF = 0).

MP/MC pin. The level on the MP/MC pin determines whether program instructions are read
from on-chip ROM or flash EEPROM (if available) after reset:

MP/MC = 0. The device is configured as a microcomputer. The onchip ROM/flash EEPROM is
accessible. The device fetches the reset vector from on-chip memory.

MP/MC = 1. The device is configured as a microprocessor. The device fetches the reset vector
from external memory. Regardless of the value of MP/MC, the *C24x fetches its reset vector at

location 0000h of program memory.
5.4.5. Data Memory

Data-memory space addresses up to 64K 16-bit words. Each C24x device has three on-chip
DARAM blocks: B0, B1, and B2. Block BO is configurable as either data memory or program
memory. Blocks B1 and B2 are available for data memory only. Data memory can be addressed
with either of two addressing modes: directaddressing or indirect-addressing. When direct
addressing is used, data memory is addressed in blocks of 128 words called data pages. The

entire 64K of data memory consists of 512 data

pages labeled 0 through 511. The current data page is determined by the value in the 9-bit data
page pointer (DP) in status register STO. Each of the 128 words on the current page is referenced
by a 7-bit offset, which is taken from the instruction that is using direct addressing. Therefore,
when an instruction uses direct addressing, you must specify both the data page (with a

preceding instruction) and the offset (in the instruction that accesses data memory).

1.Data Page 0 Address Map
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The data memory also includes the device’s memory-mapped registers (MMR), which reside at
the top of data page 0 (addresses 0000h—007Fh). The three registers that can be accessed with
zero wait states are Interrupt mask register (IMR),Global memory allocation register
(GREG),Interrupt flag register (IFR),The test/emulation reserved area is used by the test and
emulation systems for s pecial information transfers.[! The scratch-pad RAM block (B2)
includes 32 words of DARAM that provide for variable storage without fragmenting the larger
RAM blocks,whether internal or external. This RAM block supports dual-access operationsand
can be addressed via any data-memory addressing mode.

Figure 3—3. Pages of Data Memory

DP Value | Offset Data Memory
0000 0000 0| DOD 0000

: : Page 0: 0000h-007Fh
0000 00000 | 111 1111
0000 0000 1| 000 D000

: : Page 1: 0080h-00FFh
0000 6000 1| 111 1111

0000 0001 0| DOO 0000

: : Page 2: 0100h—017Fh
000000010/ 111 1M

111111111 | 000 0000
: : Page 511: FFBOh-FFFFh
1111111 1111

Fig.5.5. Pages of data memory
5.4.5. Data Memory Configuration

The following contributes to the configuration of data memory:

CNF bit. The CNF bit (bit 12) of status register ST1 determines whether the on-chip DARAM

BO is mapped into local data space or into program space.

CNF = 1. DARAM BO is used for program space.  CNF = 0. B0 is used for data space.At reset,
BO is mapped into local data space (CNF = 0).

1.Global Data Memory
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Addresses in the upper 32K words (8000h—FFFFh) of local data memory can be used for global
data memory. The global memory allocation register (GREG) determines the size of the global
data-memory space, which is between 256 and 32K words. The GREG is connected to the eight
LSBs of the internal data bus and is memory-mapped to data-memory location 0005h. Table 3-2
shows the allowable GREG values and shows the corresponding address range set aside for
global data memory. Any remaining addresses within 8000h—FFFFh are available for local data

memory.
2.1/0 Space

The 1/0 space memory addresses up to 64K 16-bit words. The 1/O space is useful for mapping
external peripherals and flash control registers. This 1/O space is a generic space available for the
’C24x core. Depending on the specific device within the *C24x family, the I/O space is partially
available or disabled. External I/O space is available only in ’24x devices that have an external

memory interface; otherwise, this space is reserved

5.5.Central Processing Unit

Figure £4—171. Block DNiagram of the inpuwt Scaling, Central Anthhmefic ogic, and
Murlitipiicationr Sections of the CPU
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5.4.1. Input Scaling Section

A 32-bit input data-scaling shifter (input shifter) aligns the 16-bit value from memory to the 32-
bit central arithmetic logic unit (CALU). This data alignment is necessary for data-scaling
arithmetic, as well as aligning masks for logical operations. The input shifter operates as part of
the data path between program or data space and the CALU; and therefore, requires no cycle

overhead. Described below are the input, output, and shift count of the input shifter.

Figure 4-2. Block Diagram of the Input Scaling Section

From program memory (FRDB)
From data memory (DRDB)

16 T 16

L v
. Input scaling :
; section :
' MUX !
1 1
\ 16
1 ]
 [21 16[15 i K
1 ]
1 ]

| Input shifter (32 bits)

To CALU

Fig.5.7. Input scaling unit

Figure 4.7, Block Diagram of the Input Scaling Section, can be used as a reference throughout

the discussion.

1. Input. Bits 15 through 0 of the input shifter accept a 16-bit input from either of two sources
(see Figure 4-2): (1 The data read bus (DRDB). This input is a value from a data memory
location referenced in an instruction operand. [1 The program read bus (PRDB). This input is a

constant value given as an instruction operand.
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2.0utput. After a value has been accepted into bits 15 through 0, the input shifter aligns the16-
bit value to the 32-bit bus of the CALU as shown in Figure 4-2. The shifter shifts the value left 0
to 16 bits and then sends the 32-bit result to the CALU. During the left shift, unused LSBs in the
shifter are filled with Os, and unused MSBs in the shifter are either filled with Os or sign

extended, depending on the value of the sign-extension mode bit (SXM) of status register ST1.

3.Shift count. The shifter can left shift a 16-bit value by 0 to 16 bits. The size of the shift (or the
shift count) is obtained from one of two sources: [ A constant embedded in the instruction word.
Putting the shift count in the instruction word allows you to use specific data-scaling or
alignment operations customized for your program code. [1 The four LSBs of the temporary
register (TREG). The TREG-based shift allows the data-scaling factor to be determined

dynamically so that it can be adapted to the system’s performance.

4.Sign-extension mode bit. For many (but not all) instructions, the sign-extension mode bit
(SXM), bit 10 of status register ST1, determines whether the CALU uses sign extension during
its calculations. If SXM = 0, sign extension is suppressed. If SXM = 1, the output of the input
shifter is sign extended. Figure 4-3 shows an example of an input value shifted left by eight bits
for SXM = 0. The MSBs of the value passed to the CALU are zero filled. Figure 4-4 shows the
same shift but with SXM = 1. The value is sign extended during the shift.

5.4.2. Multiplication Section

The *C24x uses a 16-bit [1(]16-bit hardware multiplier that can produce a signed or unsigned 32-
bit product in a single machine cycle. As shown in Figure 4-5, the multiplication section consists
of: [ The 16-bit temporary register (TREG), which holds one of the multiplicands 1 The
multiplier, which multiplies the TREG value by a second value from data memory or program
memory [ The 32-bit product register (PREG), which receives the result of the multiplication [
The product shifter, which scales the PREG value before passing it to the CALU

1.Multiplier

The 16-bit [10116-bit hardware multiplier can produce a signed or unsigned 32-bit product in a

single machine cycle. The two numbers being multiplied are treated as 2s-complement numbers,
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except during unsigned multiplication (MPYU instruction). Descriptions of the inputs to, and

output of, the multiplier follow.
a.Inputs. The multiplier accepts two 16-bit inputs:

One input is always from the 16-bit temporary register (TREG). The TREG is loaded before the
multiplication with a data-value from the data read bus (DRDB).The other input is one of the

following:
_ A data-memory value from the data read bus (DRDB)
_ A program memory value from the program read bus (PRDB)

b.Output. After the two 16-bit inputs are multiplied, the 32-bit result is stored in the product
register (PREG). The output of the PREG is connected to the 32-bit product-scaling shifter.
Through this shifter, the product is transferred from the PREG to the CALU or to data memory
(by the SPH and SPL instructions).

Figure 4-5. Block Diagram of the Multiplication Section

From data memory
From data memory
From program memory

F= === === = = =} = = = = = = = -
Multiplication 16 16!
section

TREG

From data o
memory Multiplier

1

1

:

X 16x16
I

1

1

1

16

> PREG
To high word

of PREG ¥ 32

| Product shifter (32 bits) |

__________________________ 1
16
s - p— To data memory

To CALU

Fig.5.8. Multiplier- block diagram
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2.Product-Scaling Shifter

The product-scaling shifter (product shifter) facilitates scaling of the product register (PREG)
value. The shifter has a 32-bit input connected to the output of the PREG and a 32-bit output
connected to the input of the CALU.

a.Input. The shifter has a 32-bit input connected to the output of the PREG.

b.Output. After the shifter completes the shift, all 32 bits of the result can be passed to the
CALU, or 16 bits of the result can be stored to data memory.

c.Shift Modes. This shifter uses one of four product shift modes, summarized in Table 4-1. As
shown in the table, these modes are determined by the product shift mode (PM) bits of status
register ST1. In the first shift mode (PM = 00), the shifter does not shift the product at all before
giving it to the CALU or to data memory. The next two modes cause left shifts (of one or four),
which are useful for implementing fractional arithmetic or justifying products. The right-shift
mode shifts the product by six bits, enabling the execution of up to 128 consecutive multiply-
and-accumulate operations without causing the accumulator to overflow. Note that the content of

the PREG remains unchanged; the value is copied to the product shifter and shifted there.
5.4.3. Central Arithmetic Logic Section
The main components of the central arithmetic logic section are:

1.The central arithmetic logic unit (CALU), which implements a wide range of arithmetic and

logic functions

2.The 32-bit accumulator (ACC), which receives the output of the CALU and is capable of
performing bit shifts on its contents with the help of the carry bit (C). Figure 4-6 shows the
accumulator’s high word (ACCH) and low word (ACCL).

3.The output shifter, which can shift a copy of either the high word or low word of the
accumulator before sending it to data memory for storage
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Figure 4-6. Block Diagram of the Central Arithmetic Logic Section
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Fig.5.8. Block diagram -Central Arithmetic Logic Unit
1.Central Arithmetic Logic Unit (CALU)

The CALU implements a wide range of arithmetic and logic functions, most of which execute in

a single clock cycle. These functions can be grouped into four categories:

16-bit addition,16-bit subtraction,Boolean logic operations,Bit testing, shifting, and
rotating.Because the CALU can perform Boolean operations, you can perform bit manipulation.
For bit shifting and rotating, the CALU uses the accumulator. The CALU is referred to as central
because there is an independent arithmetic unit, the auxiliary register arithmetic unit (ARAU),
which is described in Section 4.4. A description of the inputs, the output, and an associated status
bit of the CALU follows.

a.Inputs. The CALU has two inputs [ One input is always provided by the 32-bit accumulator.
The other input is provided by one of the following: The product-scaling shifter The input data-
scaling shifter Output. Once the CALU performs an operation, it transfers the result to the 32-bit
accumulator, which is capable of performing bit shifts of its contents. The output of the

accumulator is connected to the 32-bit output data-scaling shifter. Through the output shifter, the
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accumulator’s upper and lower 16-bit words can be individually shifted and stored to data

memory.

c.Sign-extension mode bit. For many but not all instructions, the sign-extension mode bit
(SXM), bit 10 of status register ST1, determines whether the CALU uses sign extension during

its calculations. If SXM = 0, sign extension is suppressed. If SXM = 1, sign extension is enabled.
d.Accumulator

Once the CALU performs an operation, it transfers the result to the 32-bit accumulator, which
can then perform single-bit shifts or rotations on its contents. Each of the accumulator’s upper
and lower 16-bit words can be passed to the output data-scaling shifter, where it can be shifted
and then stored in data memory. The following describes the status bits and branch instructions

associated with the accumulator.
Status bits. Four status bits are associated with the accumulator:

Carry bit (C). C (bit 9 of status register ST1) is affected during: _ Additions to and subtractions
from the accumulator: C = 0 When the result of a subtraction generates a borrow When the result
of an addition does not generate a carry (Exception: When the ADD instruction is used with a
shift of 16 and no carry is generated, the ADD instruction has no effect on C.) C = 1 When the
result of an addition generates a carryWhen the result of a subtraction does not generate a borrow
(Exception: When the SUB instruction is used with a shift of 16 and no borrow is generated, the
SUB instruction has no effect on C.) Single-bit shifts and rotations of the accumulator value.
During a left shift or rotation, the MSB of the accumulator is passed to C; during a right shift or
rotation, the LSB is passed to C. Overflow mode bit (OVM). OVM (bit 11 of status register STO)
determines how the accumulator reflects arithmetic overflows. When the processor is in
overflow mode (OVM = 1) and an overflow occurs, the accumulator is filled with one of two
specific values: If the overflow is in the positive direction, the accumulator is filled with its most
positive value (7FFF FFFFh).If the overflow is in the negative direction, the accumulator is filled
with its most negative value (8000 0000h). Overflow flag bit (OV). OV is bit 12 of status register
STO. When no accumulator overflow is detected, OV is latched at 0. When overflow (positive or
negative) occurs, OV is set to 1 and latched.Test/control flag bit (TC). TC (bit 11 of status
register ST1) is set to 0 or 1 depending on the value of a tested bit. In the case of the NORM

instruction, if the exclusive-OR of the two MSBs of the accumulator is true, TC is set to 1.A
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number of branch instructions are implemented, based on the status of bits C, OV, and TC, and

on the value in the accumulator (as compared to 0).
e.Output Data-Scaling Shifter

The output data-scaling shifter (output shifter) has a 32-bit input connected to the 32-bit output
of the accumulator and a 16-bit output connected to the data bus. The shifter copies all 32 bits of
the accumulator and then performs a left shift on its content; it can be shifted from zero to seven
bits, as specified in the corresponding store instruction. The upper word (SACH instruction) or

lower

word (SACL instruction) of the shifter is then stored to data memory. The content of the
accumulator remains unchanged. When the output shifter performs the shift, the MSBs are lost
and the LSBs are

zero filled. Figure 4-7 shows an example in which the accumulator value is shifted left by four
bits and the shifted high word is stored to data memory.Figure 4-8 shows the same accumulator

value shifted left by six bits and the shifted low word stored.
5.4.3. Auxiliary Register Arithmetic Unit (ARAU)

The CPU also contains the ARAU, an arithmetic unit independent of the CALU. The main
function of the ARAU is to perform arithmetic operations on eight auxiliary registers (AR7
through ARO) in parallel with operations occurring in the CALU. The eight auxiliary registers
(AR7—ARO) provide flexible and powerful indirect addressing. Any location in the 64K data
memory space can be accessed using a 16-bit address contained in an auxiliary register. To select
a specific auxiliary register, load the 3-bit auxiliary register pointer (ARP) of status register STO
with a value from 0 through 7. The ARP can be loaded as a primary operation by the MAR
instruction (which only performs modifications to the auxiliary registers and the ARP), or by the
LST instruction (which can load a data-memory value to STO by way of the data read bus,

DRDB). The ARP can be loaded as a secondary operation by any instruction that supports
indirect addressing. The register pointed to by the ARP is referred to as the current auxiliary
register or current AR. During the processing of an instruction, the content of the current
auxiliary register is used as the address where the data-memory access will take place. The
ARAU passes this address to the data-read address bus (DRAB) if the instruction requires a read
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from data memory; or, it passes the address to the data-write address bus (DWAB) if the
instruction requires a write to data memory. After the instruction uses the data value, the contents
of the current auxiliary register can be incremented or decremented by the ARAU, which
implements unsigned 16-bit arithmetic.

1.ARAU Functions

The ARAU performs the following operations: [ Increments or decrements an auxiliary register
value by 1 or by an index amount (by way of any instruction that supports indirect addressing) [
Adds a constant value to an auxiliary register value (ADRK instruction) or subtracts a constant
value from an auxiliary register value (SBRK instruction). The constant is an 8-bit value taken
from the eight LSBs of the instruction word.] Compares the content of ARO with the content of
the current AR and puts the result in the test/control flag bit (TC) of status register ST1 (CMPR
instruction). The result is passed to TC by way of the data write bus (DWEB). Normally, the
ARAU performs its arithmetic operations in the decode phase of the pipeline (when the
instruction specifying the operations is being decoded). This allows the address to be generated
before the decode phase of the next instruction. There is an exception to this rule: During
processing of the NORM instruction, the auxiliary register and/or ARP modification is done

during the execute phase of the pipeline.
2.Auxiliary Register Functions

In addition to using the auxiliary registers to reference data-memory addresses, you can use them
for other purposes. For example, you can: [1 Use the auxiliary registers to support conditional
branches, calls, and returns by using the CMPR instruction. This instruction compares the
content of ARO with the content of the current AR and puts the result in the test/control flag bit
(TC) of status register ST1.

1 Use the auxiliary registers for temporary storage by using the LAR instruction to load values
into the registers and the SAR instruction to store AR values to data memory [ Use the auxiliary

registers as software counters, incrementing or decrementing them as necessary
5.6.  Addressing modes
The various addressing modes are

1.Direct addressing mode
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2.Indirect addressing mode
3.Immediate Addressing Mode
5.6.1. Immediate Addressing Mode

In the immediate addressing mode, the instruction word contains a constant to be manipulated

by the instruction. The two types of immediate addressing modes are:

1.Short-immediate addressing. Instructions that use short-immediate addressing have an 8-bit,
9-bit, or 13-bit constant as an operand. Short-immediate instructions require a single instruction
word, with the constant embedded in that word.

Example:RPT #99 ;Execute the instruction that follows RPT 100 times
10111011 01100011
RPT opcode for immediate addressing 8-bit constant = 99

2.Long-immediate addressing. Instructions that use long-immediate addressing have a 16-bit
constant as an operand and require two instruction words. The constant is sent as the second
instruction word. This 16-bit value can be used as an absolute constant or as a 2s-complement
value. In Example , the immediate operand is contained as a part of the RPT instruction word.
For this RPT instruction, the instruction register will be loaded with the value Immediate

operands are preceded by the symbol #.

Example:ADD #16384,2 ;Shift the value 16384 left by two bits ;and add the result to the

accumulator
5.6.2. Direct Addressing Mode

In the direct addressing mode, data memory is addressed in blocks of 128 words called data
pages. The entire 64K of data memory consists of 512 data pages labeled 0 through 511, as
shown in Figure 6-3. The current data page is determined by the value in the 9-bit data page
pointer (DP) in status register STO. For example, if the DP value is 0 0000 00002, the current
data page is If the DP value is 0 0000 00102, the current data page is 2. In addition to the data
page, the processor must know the particular word being referenced on that page. This is
determined by a 7-bit offset .The offset is supplied by the seven least significant bits (LSBs) of
the IR register . Instruction Register (IR) Contents in Direct Addressing Mode instruction
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register, which holds the opcode for the next instruction to be executed. In direct addressing

mode, the contents of the instruction register has the format
Instruction Register (IR) Contents in Direct Addressing Mode
1514131211109876543210

8 MSBs 0 7 LSBs

8 MSBs Bits 15 through 8 indicate the instruction type (for example, ADD) and also contain any
information regarding a shift of the data value to be accessed by the instruction.

0 Direct/indirect indicator. Bit 7 contains a 0 to define the addressing mode as direct.

7 LSBs Bits 6 through 0 indicate the offset for the data-memory address referenced by the

instruction.

To form a complete 16-bit address, the processor concatenates the DP value and the seven LSBs
of the instruction register.The DP supplies the nine most significant bits (MSBs) of the address
(the page number), and the seven LSBs of the instruction register supply the seven LSBs of the
address (the offset). For example, to access data address 003Fh,specify data page 0 (DP = 0000
0000 0) and an offset of 011 1111. Concatenating the DP and the offset produces the 16-bit
address 0000 0000 0011 1111, which is 003Fh or decimal 63.

Generation of Data Addresses in Direct Addressing Mode
7 LSBs from IR

16-bit data-memory address

All 9 bits from DP

Data page pointer (DP)

Page (9 MSBs) Offset (7 LSBs)

Instruction register (IR)

9 bits 8 MSBs 0 7 LSBs

1.Using Direct Addressing Mode
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When you use direct addressing mode, the processor uses the DP to find the data page and uses
the seven LSBs of the instruction register to find a particular address on that page. Always do the

following:

a. Set the data page. Load the appropriate value (from 0 to 511) into the DP. The DP register
can be loaded by the LDP instruction or by any instruction that can load a value to STO. The
LDP instruction loads the DP directly without affecting the other bits of STO, and it clearly
indicates the value loaded into the DP. For example, to set the current data page to 32 (addresses
1000h—107Fh), you can use:

Example:LDP #32 ;Initialize data page pointer

b. Specify the offset. Supply the 7-bit offset as an operand of the instruction. For example, if you
want the ADD instruction to use the value at the second address of the current data page, you

would write:
ADD 1h ;Add to accumulator the value in the current ;data page, offset of 1.

Do not have to set the data page prior to every instruction that uses direct addressing. If all the
instructions in a block of code access the same data page, you can simply load the DP at the front
of the block. However, if various data pages are being accessed throughout the block of code, be

sure the DP is changed whenever a new data page should be accessed.

Examples of Direct Addressing

Example:. Using Direct Addressing with ADD (Shift of 0 to 15)

LDP #4 ;Set data page to 4 (addresses 0200h—027Fh).

ADD 9h,5 ;The contents of data address 0209h are ;left shifted 5 bits and added to the
;contents of the accumulator.

7 LSBs from IR 16-bit data address 0209h

All 9 bits from DP DP = 4 Instruction register (IR)
00000010000100010000010012

ADD opcode Shift of 5

00000010000010019h
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In Example the ADD instruction references a data memory address that is generated as shown
following the program code. For any instruction that performs a shift of 16, the shift value is not
embedded directly in the instruction word; instead, all eight MSBs contain an opcode that not
only indicates the instruction type, but also a shift of 16. The eight MSBs of the instruction word
indicate an ADD with a shift of 16.

5.6.3. Indirect Addressing Mode

Eight auxiliary registers (ARO—AR7) provide flexible and powerful indirect addressing. Any
location in the 64K data memory space can be accessed using a 16-bit address contained in an

auxiliary register.
1. Current Auxiliary Register

To select a specific auxiliary register, load the 3-bit auxiliary register pointer (ARP) of status
register STO with a value from 0 to 7. The ARP can be loaded as a primary operation by the
MAR instruction or by the LST instruction. The ARP can be loaded as a secondary operation by
any instruction that supports indirect addressing. The register pointed to by the ARP is referred
to as the current auxiliary register or current AR. During the processing of an instruction, the
content of the current auxiliary register is used as the address at which the data-memory access
occurs. The ARAU passes this address to the data-read address bus (DRAB) if the instruction
requires a read from data memory, or it passes the address to the data-write address bus (DWAB)
if the instruction requires a write to data memory. After the instruction uses the data value, the
contents of the current auxiliary register can be incremented or decremented by the ARAU,
which implements unsigned 16-bit arithmetic. Normally, the ARAU performs its arithmetic
operations in the decode phase of the pipeline (when the instruction specifying the operations is
being decoded). This allows the address to be generated before the decode phase of the next
instruction. There is an exception to this rule: during processing of the NORM instruction, the

auxiliary register and/or ARP modification is done during the execute phase of the pipeline.
2. Indirect Addressing Options

The *C24x provides four types of indirect addressing options:
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a.No increment or decrement. The instruction uses the content of the current auxiliary register
as the data memory address but neither increments nor decrements the content of the current

auxiliary register.

b.Increment or decrement by 1. The instruction uses the content of the current auxiliary
register as the data memory address and then increments or decrements the content of the current

auxiliary register by one.

c.Increment or decrement by an index amount. The value in ARO is the index amount. The
instruction uses the content of the current auxiliary register as the data memory address and then
increments or decrements the content of the current auxiliary register by the index amount.

Indirect Addressing Mode

d.Increment or decrement by an index amount using reverse carry. The value in ARO is the
index amount. After the instruction uses the content of the current auxiliary register as the data-
memory address, that content is incremented or decremented by the index amount. The addition
and subtraction process is accomplished with the carry propagation reversed for fast Fourier

transforms (FFTSs).
e.Operand Option Example

* No increment or decrement LT * loads the temporary register (TREG) with the content of the

data memory address referenced by the current AR.

*+ Increment by 1 LT *+ loads the temporary register (TREG) with the content of the data
memory address referenced by the current AR and then adds 1 to the content of the current AR.

*— Decrement by 1 LT *— loads the temporary register (TREG) with the content of the data
memory address referenced by the current AR and then subtracts 1 from the content of the

current AR.

*0+ Increment by index amount LT *0+ loads the temporary register (TREG) with the content of
the data memory address referenced by the current AR and then adds the content of ARO to the

content of the current AR.

*0— Decrement by index amount LT *0— loads the temporary register (TREG) with the content
of the data memory address referenced by the current AR and then subtracts the content of ARO

from the content of the current AR.
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*BRO+ Increment by index amount, adding with reverse carry

LT *BRO+ loads the temporary register (TREG) with the content of the data memory address
referenced by the current AR and then adds the content of ARO to the content of the current AR,
adding with reverse carry propagation.

*BRO- Decrement by index amount, subtracting with reverse carry

LT *BRO- loads the temporary register (TREG) with the content of the data memory address
referenced by the current AR and then subtracts the content of ARO from the content of the

current AR, subtracting with bit reverse carry propagation.

All increments or decrements are performed by the auxiliary register arithmetic unit (ARAU) in

the same cycle during which the instruction is being decoded in the pipeline.

The bit-reversed indexed addressing allows efficient 1/0 operations by resequencing the data
points in a radix-2 FFT program. The direction of carry propagation in the ARAU is reversed
when the address is selected, and ARO is added to or subtracted from the current auxiliary
register. A typical use of this addressing mode requires that ARO be set initially to a value
corresponding to half of the array’s size, and further, that the current AR value be set to the base

address of the data (the first data point).
f. Next Auxiliary Register

In addition to updating the current auxiliary register, a number of instructions can also specify
the next auxiliary register or next AR. This register will be the current auxiliary register when the
instruction execution is complete. The instructions that allow you to specify the next auxiliary
register load the ARP with a new value. When the ARP is loaded with that value, the previous

ARP value is loaded into the auxiliary register pointer buffer (ARB).
Example:MAR*,AR1 ;Load the ARP with 1 to make ARL1 the ;current auxiliary register.
LT *+,AR2 ;AR2 is the next auxiliary register ;Load the TREG with the content of the
;address referenced by AR1, add one to ;the content of AR1, then make AR2 the
;current auxiliary register.

MPY* ;:Multiply TREG by content of address ;referenced by AR2.
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5.7.  Event Manager

Event Manager (EV) Functional Blocks

All devices of the *240x family, with the exception of the 2402, have two event each other in
terms of functionality and register mapping/bit definition. For the sake of brevity, only the
functionality of EVA is explained. Minor differences (such as naming conventions and register

addresses) are highlighted as appropriate.

Each EV module in the *240x device contains the following functional blocks:
1.Two general-purpose (GP) timers.

2.Three compare units.

3. Pulse-width modulation (PWM) circuits that include space vector PWM circuits, dead-band

generation units, and output logic .
4.Three capture units (described in section 6.8 on page 6-66).
5. Quadrature encoder pulse (QEP) circuit

6.Interrupt logic .
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Fig.5.9. Block diagram Event manager
5.8.Simple Programs For PWM Generation
5.8.1. Algorithm

Include the 2407 register header file
Enable the PWM output pin using MCRA.
Load the data page of the even manager.

Enable the polarity of compare output and compare outputs using GPT con.

o B~ w0 D

Initialize the timer 1 counter.
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Load the timer 1 compare Register corresponding to the duty cycle.

Load the timer 1 period register corresponding to the switching frequency

S

Select the counting mode using timer 1 control register.
9. End.
5.8.2. Program

.include 2407 regs.h
fext
LDP #0Elh
SPLK #1000h,MCRA
LDP #0E8h
SPLK #6042h.GPTCONA
SPLK #0000h, TICNT
SPLK #800h, TICMPR
SPLK #4000h, T1IPR
SPLK #9042h, TICON
H: B H
5.8.3. Speed control of PMDC motor control
Algorithm
Include the 2407 register header file.
Initialize even manager registers for timer underflow interrupt.
Configure required PWMs.
Load timer control registers.
Initialize minimum duty cycle and load value into compare register.
Check for underflow interrupt.

Read up button and down button switches.
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