SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY SCHOOL OF ELECTRICAL AND ELECTRONICS

MICROPROCESSORS, MICROCONTROLLERS | L | T | P | Credits | Total Marks

SEIA1504 AND EMBEDDED SYSTEMS 300 3 100

COURSE OBJECTIVES
» To impart basic knowledge about 8085 microprocessor, 8051 and PIC microcontrollers.
» Tointroduce about microprocessor interfacing with external systems.
» To provide basics of 8085, 8051 and PIC programming with the knowledge of instructions and interfacing chips.
» To discuss the major components that constitutes an embedded system.

UNIT1 ARCHITECTURE AND INSTRUCTION SET OF 8085, 8086 11 Hrs.
8085 Architecture and its operation- Instruction set classification-Addressing modes — 8086 Architecture and Instruction
set- Basic programs.

UNIT2 ARCHITECTURE OF 8051 AND INSTRUCTION SET 9 Hrs.
Introduction - Architecture of 8051 - Memory organization - Addressing modes - Instruction set — Assembly Language
Programming - Jump, Loop and Call Instructions - Arithmetic and Logic Instructions - Bit Operations.

UNIT3 PIC MICROCONTROLLER 9 Hrs.

PIC Microcontrollers and Instruction Set: PIC Micro-controllers - overview; features, PIC-18Fxxx architecture, file selection
register, Memory organization, Addressing modes, Instruction set, Interrupt handling. PIC-18Fxxx - Reset, low power
operations, oscillator connections, 1/O ports - serial; parallel, Timers, Interrupts, ADC.

UNIT 4 INTERFACING 9 Hrs.

Basic Interface concepts, Fundamentals of memory interface- memory mapped /O and 1/O mapped 1/O, Interrupt and
vectored interrupt, Programmable peripheral interface 8255 - Programmable Interval timer 8253 - Programmable interrupt
controller 8259 - Programmable DMA controller 8257.

UNIT5 INTRODUCTION TO EMBEDDED SYSTEM 7 Hrs.
Embedded system- characteristics of embedded system- categories of embedded system- requirements of embedded
systems- challenges and design issues of embedded system- trends in embedded system- system integration- hardware
and software partition- applications of embedded system - control system and industrial automation-biomedical-data
communication system-network information appliances- IVR systems- GPS systems.

Max.45 Hrs.
COURSE OUTCOMES
On completion of the course, student will be able to
CO1 - Recall architecture and operation of 8085, 8086, 8051 and PIC microcontroller.

CO2 - Explain the instruction set of the 8085,8086, 8051 & PIC Microcontroller.
CO3 - Discuss interfacing concepts with Microprocessors.

CO4 - Demonstrate small programs using microprocessors and microcontrollers.
CO5 - Design of embedded systems.

CO6 - Design a control system using 8051, PIC.

TEXT /| REFERENCE BOOKS

1. Ramesh Goankar, "Microprocessor architecture programming and applications with 8085 / 8088", 5t Edition, Penram
International Publishing, 2002.

2. Mazidi & McKinlay, “The 8051 Microcontroller and Embedded Systems using Assembly and C”, PHI, 2007.

3. MykePredko, “Programming and Customizing the 8051 Micro-controller”, Tata McGraw-Hill edition, 2007.

4. R A Gaonkar, “Fundamentals of Microcontrollers and Applications in Embedded Systems (with the PIC18
Microcontroller Family)”, Penram Publishing India, 2007.

5. Kenneth Ayala ,"The 8051 Microcontroller”, 31 Edition, Thomson Delmar Learning, 2004.

6. Kenneth J. Ayala, Dhananjay V. Gadre, “The 8051 Microcontroller & Embedded Systems Using Assembly and C”,
Cengage Learning India Publication, 2007.

7. Ajay V Deshmukh, “Microcontrollers: Theory and Applications”, Tata McGraw-Hill, 2005.

8. Raj Kamal, “‘Embedded Systems Architecture, Programming, and Design”. (2/e), Tata McGraw Hill, 2008.

END SEMESTER EXAM QUESTION PAPER PATTERN

Max. Marks : 100 Exam Duration: 3 Hrs.
PART A: 10 Questions of 2 marks each-No choice 20 Marks
PART B: 2 Questions from each unit of internal choice, each carrying 16 marks 80 Marks

B.E./B.Tech. - Regular 42 REGULATIONS 2019

_—

(E)
SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
[DEEMED TO BE UNIVERSITY)
Accredited "A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.éathyébéma.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRONICS AND INSRUMENTATION ENGINEERING

UNIT - I - MICROPROCESSORS , MICROCONTROLLERS AND EMBEDDED SYSTEMS- SEIA 1504

UNIT 1 ARCHITECTURE AND INSTRUCTION SET OF 8085, 8086

8085 Architecture and its operation- Instruction set classification-Addressing modes —
8086 Architecture and Instruction set- Basic programs.

1. History of microprocessor:

The invention of the transistor in 1947 was a significant development in the world of
technology. It could perform the function of a large component used in a computer in
the early years. Shockley, Brattain and Bardeen are credited with this invention and
were awarded the Nobel prize for the same. Soon it was found that the function this
large component was easily performed by a group of transistors arranged on a single
platform. This platform, known as the integrated chip (IC), turned out to be a very crucial
achievement and brought along a revolution in the use of computers. A person named
Jack Kilby of Texas Instruments was honored with the Nobel Prize for the invention of
IC, which laid the foundation on which microprocessors were developed. At the same
time, Robert Noyce of Fairchild made a parallel development in IC technology for which
he was awarded the patent.

ICs proved beyond doubt that complex functions could be integrated on a single chip
with a highly developed speed and storage capacity. Both Fairchild and Texas
Instruments began the manufacture of commercial ICs in 1961. Later, complex
developments in the IC led to the addition of more complex functions on a single chip.
The stage was set for a single controlling circuit for all the computer functions. Finally,
Intel corporation's Ted Hoff and Frederico Fagin were credited with the design of the
first microprocessor.

The work on this project began with an order from a Japanese calculator company
Busicom to Intel, for building some chips for it. Hoff felt that the design could integrate
a number of functions on a single chip making it feasible for providing the required
functionality. This led to the design of Intel 4004, the world's first microprocessor. The
next in line was the 8 bit 8008 microprocessor. It was developed by Intel in 1972 to
perform complex functions in harmony with the 4004.

This was the beginning of a new era in computer applications. The use of mainframes
and huge computers was scaled down to a much smaller device that was affordable to
many. Earlier, their use was limited to large organizations and universities. With the
advent of microprocessors, the use of computers trickled down to the common man. The
next processor in line was Intel's 8080 with an 8 bit data bus and a 16 bit address bus.
This was amongst the most popular microprocessors of all time.

Very soon, the Motorola corporation developed its own 6800 in competition with the
Intel's 8080. Fagin left Intel and formed his own firm Zilog. It launched a new
microprocessor Z80 in 1980 that was far superior to the previous two versions.
Similarly, a break off from Motorola prompted the design of 6502, a derivative of the
6800. Such attempts continued with some modifications in the base structure.

2

The use of microprocessors was limited to task-based operations specifically required for
company projects such as the automobile sector. The concept of a 'personal computer’
was still a distant dream for the world and microprocessors were yet to come into
personal use. The 16 bit microprocessors started becoming a commercial sell-out in the
1980s with the first popular one being the TMS9900 of Texas Instruments.

Intel developed the 8086 which still serves as the base model for all latest advancements
in the microprocessor family. It was largely a complete processor integrating all the
required features in it. 68000 by Motorola was one of the first microprocessors to
develop the concept of microcoding in its instruction set. They were further developed
to 32 bit architectures. Similarly, many players like Zilog, IBM and Apple were
successful in getting their own products in the market. However, Intel had a
commanding position in the market right through the microprocessorers.

The 1990s saw a large scale application of microprocessors in the personal computer
applications developed by the newly formed Apple, IBM and Microsoft corporation. It
witnessed a revolution in the use of computers, which by then was a household entity.

This growth was complemented by a highly sophisticated development in the
commercial use of microprocessors. In 1993, Intel brought out its 'Pentium Processor’
which is one of the most popular processors in use till date. It was followed by a series
of excellent processors of the Pentium family, leading into the 21st century. The latest
one in commercial use is the Pentium Dual Core technology and the Xeon processor.
They have opened up a whole new world of diverse applications. Supercomputers have
become common, owing to this amazing development in microprocessors.

1.1 Introduction

A microprocessor is a programmable electronics chip that has computing and decision
making capabilities similar to central processing unit of a computer. Any
microprocessor-based systems having limited number of resources are called
microcomputers. Nowadays, microprocessor can be seen in almost all types of
electronics devices like mobile phones, printers, washing machines etc.
Microprocessors are also used in advanced applications like radars, satellites and flights.
Due to the rapid advancements in electronic industry and large scale integration of
devices results in a significant cost reduction and increase application of microprocessors
and their derivatives.

) Y i
“ y T >
\
] Y
El ' Y 15
“ ' ‘ >

Fig.1.1 Microprocessor-based system

Bit: A bit is a single binary digit.

Word: A word refers to the basic data size or bit size that can be processed by the
arithmetic and logic unit of the processor. A 16-bit binary number is called a word in a
16-bit processor.

Bus: A bus is a group of wires/lines that carry similar information.

System Bus: The system bus is a group of wires/lines used for communication between
the microprocessor and peripherals.

Memory Word: The number of bits that can be stored in a register or memory element
is called a memory word.

Address Bus: It carries the address, which is a unique binary pattern used to identify a
memory location or an 1/O port. For example, an eight bit address bus has eight lines
and thus it can address 28 = 256 different locations. The locations in hexadecimal
format can be written as 00H — FFH.Data Bus: The data bus is used to transfer data
between memory and processor or between 1/O device and processor. For example, an
8-bit processor will generally have an 8-bit data bus and a 16-bit processor will have 16-
bit data bus.

Control Bus: The control bus carry control signals, which consists of signals for
selection of memory or 1/O device from the given address, direction of data transfer and
synchronization of data transfer in case of slow devices.A typical microprocessor
consists of arithmetic and logic unit (ALU) in association with control unit to process
the instruction execution. Almost all the microprocessors are based on the principle of
store- program concept. In store-program concept, programs or instructions are
sequentially stored in the memory locations that are to be executed. To do any task

using a microprocessor, it is to be programmed by the user. So the programmer must
have idea about its internal resources, features and supported instructions. Each
microprocessor has a set of instructions, a list which is provided by the microprocessor
manufacturer. The instruction set of a microprocessor is provided in two forms: binary
machine code and mnemonics.

Microprocessor communicates and operates in binary numbers 0 and 1. The set of
instructions in the form of binary patterns is called a machine language and it is difficult
for us to understand. Therefore, the binary patterns are given abbreviated names, called
mnemonics, which forms the assembly language. The conversion of assembly-level
language into binary machine-level language is done by using an application called
assembler.

Technology Used:

The semiconductor manufacturing technologies used for chips are:

. Transistor-Transistor Logic (TTL)
. Emitter Coupled Logic (ECL)
. Complementary Metal-Oxide Semiconductor (CMQOS)

Classification of Microprocessors:
Based on their specification, application and architecture

microprocessors are classified. Based on size of data bus:

. 4-bit microprocessor
. 8-bit microprocessor
. 16-bit microprocessor
. 32-bit microprocessor

Based on application:

« General-purpose microprocessor- used in general computer system and can be used
by programmer forany
application. Examples, 8085 to Intel Pentium.

« Microcontroller- microprocessor with built-in memory and ports and can be programmed for any
generic

control

application. Example, 8051.

« Special-purpose processors- designed to handle special functions required for an
application. Examples, digital signal processors and application-specific integrated
circuit (ASIC) chips.

Based on architecture:

Reduced Instruction Set Computer (RISC) processors

. Complex Instruction Set Computer (CISC)processors

2. 8085 Microprocessor Architecture

The 8085 microprocessor is an 8-bit processor available as a 40-pin IC package and uses
+5 V for power. It can run at a maximum frequency of 3 MHz. Its data bus width is 8-bit

and address bus width is 16-bit, thus it can address 216 = 64 KB of memory. The

internal architecture of 8085 is shown is Fig. 1.2.

.

Tx.\?f\

RES

ls.s

TRAP

B

SID

INT

INTERRUPT CONTROL

¥

SERIAL I/ 0 CONTROL

I

8 BIT INTERNAL

DATABLS

I

|

($)

ACCUMU-
LATOR

TEMP REG

%)

|

I

FLAG (%)
FLIP FLOPS

=2V

ARITHEMETIC

LOGIC UNIT (ALU

($)

[t

GND

U

]

SR
CLK

GEN
b g

CONTROL

TIMING AND CONTROL

STATUS

DMA

INSTRUCTION , .
REGISTER, 5, MULTIPLXER

R wW(s)

E | TEMP. REG.

6 [BrEG(S) CREGTST

s: | DREG(S) EREG (5)

E
INSTRUC TION, r | BREG(3) L REG (8)
DECODER AN E oo

N
e E | STACK POINTER (16)
ENCODING T PROGRAM COUNTER (16)
> INCREAMESNT "DECREAMENT
ADDRESS LATCH (16)

<

v | v vy v | vt

SI 10/ M HOLDHLDA

READY RDWR ALE ™

Fig 1.2: 8085 Architecture

\

RESET OUT

ADDRESS BUFFER (DATA / ADDRESS

$) BUFFER (%)
A15-240 AD- - AB ADDRESS
ADDRESS BUS el g

Arithmetic and Logic Unit

The ALU performs the actual numerical and logical operations such as Addition (ADD),
Subtraction (SUB), AND, OR etc. It uses data from memory and from Accumulator to
perform operations. The results of the arithmetic and logical operations are stored in the
accumulator.

Registers

The 8085 includes six registers, one accumulator and one flag register, as shown in Fig.
1.3. In addition, it has two 16-bit registers: stack pointer and program counter. They are
briefly described as follows.

The 8085 has six general-purpose registers to store 8-bit data; these are identified as B,
C, D, E, Hand L. they can be combined as register pairs - BC, DE and HL to perform
some 16-bit operations. The programmer can use these registers to store or copy data
into the register by using data copy instructions.

ST . N 1] == =)
ACCUMULATOR A (3) FIAG RFGISTER
| I I I
B (8) C (8)
D (8) E (8)
H (S) L ()
Stack Pointer (SP) (16)
Program Counter (PC) (16)
Datal Bus Address Bus
8 Lines Bidirectional 16 Lines unidirectional
v

Fig 1.3: Register Organization
Accumulator

The accumulator is an 8-bit register that is a part of ALU. This register is used to store 8-bit data
and to perform arithmetic and logical operations. The result of an operation is stored in the
accumulator. The accumulator is also identified as register A.

Flag register

The ALU includes five flip-flops, which are set or reset after an operation according to data
condition of the result in the accumulator and other registers. They are called Zero (Z), Carry
(CY), Sign (S), Parity (P) and Auxiliary Carry (AC) flags. Their bit positions in the flag register
are shown in Fig. 4. The microprocessor uses these flags to test data conditions.

D- Ds Ds Ds D: D: Di Do
S zZ AC P CY
Fig 1.4: PSW

For example, after an addition of two numbers, if the result in the accumulator is larger than 8-bit,
the flip-flop uses to indicate a carry by setting CY flag to 1. When an arithmetic operation results in
zero, Z flag is set to 1. The S flag is just a copy of the bit D7 of the accumulator. A negative number
hasa 1 in bit D7 and a positive number has a 0 in 2‘s complement representation. The AC flag is set
to 1, when a carry result from bit D3 and passes to bit D4. The P flag is set to 1, when the result in
accumulator contains even number of 1s.

Program Counter (PC)

This 16-bit register deals with sequencing the execution of instructions. This register is a memory
pointer. The microprocessor uses this register to sequence the execution of the instructions. The
function of the program counter is to point to the memory address from which the next byte is to
be fetched. When a byte is being fetched, the program counter is automatically incremented by
one to point to the next memory location.

Stack Pointer (SP)

The stack pointer is also a 16-bit register, used as a memory pointer. It points to a memory
location in R/W memory, called stack. The beginning of the stack is defined by loading 16-bit
address in the stack pointer.

Instruction Register/Decoder

It is an 8-bit register that temporarily stores the current instruction of a program. Latest instruction
sent here from memory prior to execution. Decoder then takes instruction and decodes or
interprets the instruction. Decoded instruction then passed to next stage.

Control Unit

Generates signals on data bus, address bus and control bus within microprocessor to carry out the
instruction, which has been decoded. Typical buses and their timing are described as follows:

. Data Bus: Data bus carries data in binary form between microprocessor and other

ex_ternal units such as memory. _
It is used to transmit data i.e. information, results of

arithmetic etc between memory and the microprocessor. Data bus is bidirectional in nature. The
data bus width of 8085 microprocessor is 8-bit i.e. 28 combination of binary digits and are typically
identified as DO — D7. Thus

size of the data bus determines what arithmetic can be done. If only 8-bit wide then largest number
1511111111 (255 in decimal). Therefore, larger numbers have to be broken down into chunks of
255. This slows

microprocessor.

. Address Bus: The address bus carries addresses and is one way bus frommicroprocessor
to the memory or other devices. 8085 microprocessor contain 16-bit address bus and are
generally identified as AO - A15. Thehigher

order address lines (A8 — A15) are unidirectional and the lower order lines (A0 — A7) are
multiplexed (time- shared) with the eight data bits (DO — D7) and hence, they are
bidirectional.

Control Bus: Control bus are various lines which have specific functions for coordinatingand
controlling

microprocessor operations. The control bus carries control signals partly unidirectional and
partly bidirectional. The following control and status signals are used by 8085 processor:

l. ALE (output): Address Latch Enable is a pulse that is provided when an
address appears on the ADO — AD7 lines, after which it becomes 0.

1. RD (active low output): The Read signal indicates that data are being read from
the selected I/O or memory device and that they are available on the databus.

. WR (active low output): The Write signal indicates that data on the data bus are
to be written into a selected memory or 1/O location.

V. IO/M (output): It is a signal that distinguished between a memory operation and
an 1/0 operation. When 10/M = 0 it is a memory operation and I0/M = 1 it is an
I/O operation.

V. S1 and SO (output): These are status signals used to specify the type of operation
being performed; they are listed in Table 1.1

Table 1.1: Status signals and associated operations

S1 S0 States
0 0 Halt
0 1 Write
1 0 Read
1 1 Fetch

The schematic representation of the 8085 bus structure is as shown in Fig. 1.5.
The microprocessor performs primarily four operations:

1.Memory Read: Reads data (or instruction)
from memory. 2.Memory Write: Writes data
(or instruction) into memory. 3.1/0 Read:
Accepts data from input device.

4.1/0 Write: Sends data to output device.

The 8085 processor performs these functions using address bus, data bus and control
bus as shown in Fig. 1.5.

A
¢ [Address Bus
. -
<
8085 Memory Input
| y Output Real
MPU World
5 NS
D,< - Data Bus >
(|
'L i 7§ A |
T Control Bus

Fig 1.5: 8085 Bus structure

3. 8085 Pin Description
It is a 8-bit microprocessor

Manufactured with N-MOS technology
40 pin IC package

10

It has 16-bit address bus and thus has 216 = 64 KB addressing capability.
Operate with 3 MHz single-phase clock
. +5 V single power supply

The logic pin layout and signal groups of the 8085nmicroprocessor are shown in Fig. 1.6. All the
signals are classified into six groups:

Address bus

Data bus

Control & status signals

Power supply and frequency signals
Externally initiated signals

. Serial 1/0 signals

X, %1 0 Vee
X +, ¥ uow]_mu
RESE oUT 413 38 P HLDA
Serial /o, oo sienal <+ 3 P AKOUT) — .
Serial v'p, o/p signals o s % F » RESET IN
TRAP 4 6 38 P READY ==
RIS 47 M e
RST6S 4§ ~ 3 3
RIS «—f, S085A Ll =
INTR 4— 19 il (g
AR ’ WR
INTA 41
30 —p ALE
D y —>
! "_)3 3 —p AI;
AL — 1y M > Au
Dy 12 % > Ay
ADi 4— ¢ 3 —p Ay
D 4— 7 N A
Dy 413 B>
AD, 1 N —p A
\'gn, 4+— A 21 m— -'\l
Fig 1.6: 8085-Pin Diagram
Address and Data Buses:
. A8 — Al5 (output, 3-state): Most significant eight bits of memory addresses and

the eight bits of the I/0
addresses. These lines enter into tri-state high impedance state during HOLD and HALT
modes.

11

. ADO — AD7 (input/output, 3-state): Lower significant bits of memory
addresses and the eight bits of the 1/0 addresses during first clock cycle.
Behaves as data bus during third and fourth clock cycle. These lines enter into
tri-state high impedance state during HOLD and HALT modes.

Control & Status Signals:

. ALE: Address latch enable
. RD : Read control signal.
. WR :Write control signal
. IO/M , S1 and SO : Status

signals. Power Supply & Clock Frequency:

. Vcc: +5 V power supply
. Vss: Ground reference

. X1, X2: A crystal having frequency of 6 MHz is connected at these two pins

. CLK: Clock output

Externally Initiated and Interrupt Signals:

. RESET IN : When the signal on this pin is low, the PC is set to 0, the buses are
tri-stated and the processor is reset.

. RESET OUT: This signal indicates that the processor is being reset. The
signal can be used to reset other
devices.

. READY': When this signal is low, the processor waits for an integral number

of clock cycles until it goes high.

. HOLD: This signal indicates that a peripheral like DMA (direct
memoryaccess) controller is requesting the use of address and data bus.

. HLDA: This signal acknowledges the HOLD request.

. INTR: Interrupt request is a general-purpose interrupt.

. INTA : This is used to acknowledge an interrupt.

. RST 7.5, RST 6.5, RST 5,5 — restart interrupt: These are vectored interrupts

12

and have highest priority than INTR interrupt.

. TRAP: This is a non-maskable interrupt and has the highest priority.

Serial /O Signals:

 SID: Serial input signal. Bit on this line is loaded to D7 bit of register A
using RIM instruction.
« SOD: Serial output signal. Output SOD is set or reset by using SIM instruction.

4. Instruction Set And Execution In 8085

Based on the design of the ALU provides and decoding unit, the microprocessor manufacturer

microprocessor. The instruction set for every machine code and instruction set
consists of both

mnemonics.

An instruction is a binary pattern designed inside a microprocessor to perform a
specific function. The entire group of instructions that a microprocessor
supports is called instruction set. Microprocessor instructions can be classified
based on the parameters such functionality, length and operand addressing.

Classification based on functionality:

l. Data transfer operations: This group of instructions copies data from source to
destination. The content of the source is not altered.

. Arithmetic operations: Instructions of this group perform operations like
addition, subtraction, increment & decrement. One of the data used in
arithmetic operation is stored in accumulator and the result is also stored in
accumulator.

I11. Logical operations: Logical operations include AND, OR, EXOR, NOT. The
operations like AND, OR and EXOR uses two operands, one is stored in
accumulator and other can be any register or memory location. The result is
stored in accumulator. NOT operation requires single operand, which is stored
in accumulator.

V. Branching operations: Instructions in this group can be used to transfer
program sequence from one memory location to another either conditionally or
unconditionally.

V. Machine control operations: Instruction in this group control execution of
other instructions and control operations like interrupt, halt etc.

13

Classification based on length:

I. One-byte instructions: Instruction having one byte in machine code. Examples are
depicted in Table 1.2.

l. Two-byte instructions: Instruction having two byte in machine code. Examples
are depicted in Table 1.3

. Three-byte instructions: Instruction having three byte in machine code.
Examples are depicted in Table 1.4.

Table 1.2: Example of one byte instruction

Opcode Operand Machine code/Hex code
MOV A B 78
ADD M 86
Table 1.3 Examples of two byte instructions
Opcode Operand | Machine code/Hex code | Byte description
MVI A, 7TFH 3E First byte
7F Second byte
ADI OFH C6 First byte
OF Second byte

Table 1.4 Examples of
three byte instructions

Opcode | Operand | Machine code/Hex code | Byte description
JMP 9050H C3 First byte
50 Second byte
90 Third byte
LDA 8850H 3A First byte
50 Second byte
88 Third byte

5.Addressing Modes in Instructions:

The process of specifying the data to be operated on by the instruction is called
addressing. The various formats for specifying operands are called addressing modes.
The 8085 has the following five types of addressing:

1. Immediate addressing
2. Memory direct addressing
3. Register direct addressing

14

4. Indirect addressing
5. Implicit

addressing Immediate
Addressing:

In this mode, the operand given in the instruction - a byte or word — transfers to the
destination register or memory location.

Ex: MVI A, 9AH

 The operand is a part of the instruction.
 The operand is stored in the register mentioned in the instruction.

Memory Direct Addressing:

Memory direct addressing moves a byte or word between a memory location and
register. The memory location address is given in the instruction.

Ex: LDA 850FH

This instruction is used to load the content of memory address 850FH in the
accumulator. Register Direct Addressing:

Register direct addressing transfer a copy of a byte or word from source register to
destination register.

Ex: MOV B, C

It copies the content of register C to register B.

Indirect Addressing:
Indirect addressing transfers a byte or word between a register and a memory
location. Ex: MOV A, M

Here the data is in the memory location pointed to by the contents of HL pair. The data
is moved to the accumulator.

Implicit Addressing
In this addressing mode the data itself specifies the data to be

operated upon. Ex: CMA

15

The instruction complements the content of the accumulator. No specific data or
operand is mentioned in the instruction

6.8085 Interrupts

Interrupt Structure:

Interrupt is the mechanism by which the processor is made to transfer control from its
current program execution to another program having higher priority. The interrupt
signal may be given to the processor by any external peripheral device.

The program or the routine that is executed upon interrupt is called interrupt service
routine (ISR). After execution of ISR, the processor must return to the interrupted
program. Key features in the interrupt structure of any microprocessor are as follows:

i. Number and types of interrupt signals available.

The address of the memory where the ISR is located for a particularinterrupt

signal. This address is called interrupt vector address (IVA).

Masking and unmasking feature of the interrupt signals.

Priority among the interrupts.

Timing of the interrupt signals.

Handling and storing of information about the interrupt program (status information).

Types of Interrupts:

Interrupts are classified based on their maskability, IVA and source. They are classified as:

i. Vectored and Non-Vectored Interrupts

Vectored interrupts require the IVA to be supplied by the external device that gives the
interrupt signal. This technique is vectoring, is implemented in number of ways.

Non-vectored interrupts have fixed IVA for ISRs of
different interrupt signals. ii.Maskable and Non-Maskable

Interrupts

Maskable interrupts are interrupts that can be blocked. Masking can be done by software or hardware
means.

16

Non-maskable interrupts are interrupts that are always recognized; the corresponding ISRs are
executed.

iil. Software and Hardware Interrupts

Software interrupts are special instructions, after execution transfer the control to predefined ISR.
Hardware interrupts are signals given to the processor, for recognition as an interrupt

and execution of the corresponding ISR.

Interrupt Handling Procedure:

The following sequence of operations takes place when an interrupt signal is recognized:

i. Save the PC content and information about current state (flags,

registers etc) in the stack. ii.Load PC with the beginning address of

an ISR and start to execute it.

i Finish ISR when the return instruction is executed.

iv. Return to the point in the interrupted program where execution was interrupted.

Interrupt Sources and Vector Addresses in 8085:

Software Interrupts:

8085 instruction set includes eight software interrupt instructions called Restart (RST)
instructions. These are one byte instructions that make the processor execute a
subroutine at predefined locations. Instructions and their vector addresses are given in
Table 1.6

Table 1.6 Vector address

Instructi Machine hex Interrupt Vector

on code Address
RSTO C7 0000H
RST 1 CF 0008H
RST 2 D7 0010H
RST 3 DF 0018H
RST 4 E7 0020H
RST5 EF 0028H
RST 6 F7 0030H
RST 7 FF 0032H

17

The software interrupts can be treated as CALL instructions with default call locations.
The concept of priority does not apply to software interrupts as they are inserted into the

program as instructions by the programmer and executed by the processor when the
respective program lines are read.

Hardware Interrupts and Priorities:

8085 have five hardware interrupts — INTR, RST 5.5, RST 6.5, RST 7.5 and TRAP.
Their IVA and priorities are given in Table 1.7.

Table 1.7 Hardware interrupts of 8085

Interrupt Interrupt Maskable or Edge or priority
vector non- level
address maskable Triggered
TRAP 0024H Non- Level 1
makable
RST 7.5 003CH Maskable Rising edge 2
RST 6.5 0034H Maskable Level 3
RST 5.5 002CH Maskable Level 4
INTR Decided by hardware Maskable Level 5

Addressing Modes

Implied - the data value/data address is implicitly associated with the instruction.
Register - references the data in a register or in a register pair.

Immediate - the data is provided in the instruction.

Direct - the instruction operand specifies the memory address where data is located.

Register indirect - instruction specifies a register containing an address, where data
is located. This addressing mode works with SlI, DI, BX and BP registers.

Based :- 8-bit or 16-bit instruction operand is added to the contents of a base
register (BXor BP), the resulting value is a pointer to location where data resides.

Indexed :- 8-bit or 16-bit instruction operand is added to the contents of an
index register(S1 or DI), the resulting value is a pointer to location where data
resides.

18

Based Indexed :- the contents of a base register (BX or BP) is added to the contents
of anindex register (SI or DI), the resulting value is a pointer to location where data
resides.

Based Indexed with displacement :- 8-bit or 16-bit instruction operand is added to the
contents of a base register (BX or BP) and index register (SI or DI), the resulting
value is a pointer to location where data resides.

Interrupts
The processor has the following interrupts:

INTR is a maskable hardware interrupt. The interrupt can be enabled/disabled using
STI/CLI instructions or using more complicated method of updating the FLAGS
register with the help of the POPF instruction.

When an interrupt occurs, the processor stores FLAGS register into stack, disables
further interrupts, fetches from the bus one byte representing interrupt type, and jumps
to interrupt processing routine address of which is stored in location 4 * <interrupt
type>. Interrupt processing routine should return with the IRET instruction.

NMI is a non-maskable interrupt. Interrupt is processed in the same way as the INTR
interrupt. Interrupt type of the NMI is 2, i.e. the address of the NMI processing routine
is stored in location 0008h. This interrupt has higher priority then the maskable
interrupt.

Software interrupts can be caused by:

INT instruction - breakpoint interrupt. This is a type 3 interrupt.

INT <interrupt number> instruction - any one interrupt from available 256
interrupts.INTO instruction - interrupt on overflow

Single-step interrupt - generated if the TF flag is set. This is a type 1 interrupt. When
the CPU processes this interrupt it clears TF flag before calling the interrupt
processing routine.

Processor exceptions: Divide Error (Type 0),

Unused Opcode (type 6) and Escape opcode

(type 7).

Software interrupt processing is the same as for the hardware interrupts.

The figure below shows the 256 interrupt vectors arranged in the interrupt vector
table inthe memory.

19

Address

003FFH Type FFH vector (available)

s
4

Availabie interrupt .
vectors {224) 003fCH

Type 21H vector (available)

Type 20H vector (available)

1l

Type 1FH vector (reserved)

Reserved interrupt 2
vectors (27) . I 3

00014H Type 05H vector (reserved)

00010H Type 04H vector (overflow)

Dedicated
inte‘frz:t . Type 03H vector
0000BH
00008H Type 02H vector (NMI)
00007H Type 01H vector
00004H (Trap or single step)
CS < [00003H
) _00002H Type 00H vector
P < [00001H (Divide-by-0 error)
| —00000H
< . >
8 bits

Fig 1.7 Interrupt Vector Table in the 8086
Minimum Mode Interface

When the Minimum mode operation is selected, the 8086 provides all control signals
needed to implement the memory and I/O interface. The minimum mode signal can be
divided into the following basic groups : address/data bus, status, control, interrupt and
DMA.

Address/Data Bus : these lines servetwo functions. As an address bus is 20 bits long
and consists of signal lines A0 through A19. A19 represents the MSB and A0 LSB. A
20bit address gives the 8086 a 1Mbyte memory address space. More over it has an
independent 1/0 address space which is 64K bytes in length.

The 16 data bus lines DO through D15 are actually multiplexed with address lines A0

20

through A15 respectively. By multiplexed we mean that the bus work as an address bus

during first machine cycle and as a data bus during next machine cycles. D15 is the
MSB and DO LSB. When acting as a data bus, they carry read/write data for memory,
input/output data for 1/O devices, and interrupt type codes froman interrupt controller.

l,cc,‘ GTD
INTR =
i ArAisigSa—A/Ss
—
;nterrup(Address /data hns
ingerface ___
TEST |
D;-D;:
NMI o <:> L
8086
RESET - MPU e
- BHE/S-
— MY Memory
DMA HOLD » : » DI/R 1/O controls
HLDA < ’ B0
- WR
X5 —» DEX
Mode select
. e READY
MN/MX

LLK clock

__ Block Diagram of the Minimum Mode 8086 MPU

Fig 1.8: Block diagram of Minimum mode

Status signal : The four most significant address lines A19 through A16 are also
multiplexed but in this case with status signals S6 through S3. These status bits are
output on the bus at the same time that data are transferred over the other bus lines. Bit
S4 and S3 together from a 2 bit binary code that identifies which of the 8086 internal
segment registersare used to generate the physical address that was output on the
address bus during the current bus cycle. Code S4S3 = 00 identifies a register known
as extra segment register as the source of the segment address.

Sy Sy Segment Register
0 0 Extra
0 1 Stack
1 0 Code/ none
1 1 Data

Fig 1.9:Memory segment status code

21

Status line S5 reflects the status of another internal characteristic of the 8086. It is the
logic level of the internal enable flag. The last status bit S6 is always at the logic O level.

Control Signals : The control signals are provided to support the 8086 memory 1/O
interfaces. They control functions such as when the bus is to carry a valid address in
which direction data are to be transferred over the bus, when valid write data are on the
bus and when to put read data on the system bus.

ALE is a pulse to logic 1 that signals external circuitry when a valid address word is on
the bus. This address must be latched in external circuitry on the 1-to-0 edge of the pulse
at ALE.

Another control signal that is produced during the bus cycle is BHE bank high enable.
Logic 0 on this used as a memory enable signal for the most significant byte half of the
data bus D8 through D1. These lines also serves a second function, which is as the S7
status line.

Using the M/IO and DT/R lines, the 8086 signals which type of bus cycle is in progress
and in which direction data are to be transferred over the bus.

The logic level of M/IO tells external circuitry whether a memory or /O transfer istaking
place over the bus. Logic 1 at this output signals a memory operation and logic 0 an

I/O operation.

The direction of data transfer over the bus is 74ignallin by the logic level output at DT/R.
When this line is logic 1 during the data transfer part of a bus cycle, the bus is in the
transmit mode. Therefore, data are either written into memory or output to an /O device.

On the other hand, logic 0 at DT/R signals that the bus is in the receive mode. This
corresponds to reading data from memory or input of data from an input port.

The signal read RD and write WR indicates that a read bus cycle or a write bus cycle is
in progress. The 8086 switches WR to logic 0 to signal external device that valid write or
output data are on the bus.

On the other hand, RD indicates that the 8086 is performing a read of data of the
bus. During read operations, one other control signal is also supplied. This is
DEN
(data
enable) and it signals external devices when they should put data on the bus.

There is one other control signal that is involved with the memory and 1/O interface.
This isthe READY signal.

22

READY signal is used to insert wait states into the bus cycle such that it is extended by a
number of clock periods. This signal is provided by an external clock generator device
and can be supplied by the memory or 1/0 sub- system to signal the 8086 when they are
ready topermit the data transfer to be completed.

Maximum Mode Interface (cont..)

s :
et Toputs _ CPU Cyecles 8288

Sy Sy Sg Command

0 0 0 Tuaterrupt Acknowledge INTA

0 0 1 Rend /O Port IORC

0 1 0 Write I/O Port ToOwWcC, ATOWC
0 | 1 Halt None

1 0 0 Instruction Fetch MRDC

1 0 1 Read Memory MRDC

1 1 0 Write Memory MWTC, ANIWCT

1 1 1 Passive None

Bus Status Codes

Fig 1.10: Maximum mode

Maximum Mode Interface

When the 8086 is set for the maximum-mode configuration, it provides signals for
implementing a multiprocessor / coprocessor systemenvironment. By

multiproces
sor environment we mean that one microprocessor exists in the system and that each
processor is executing its own program. Usually in this type of system environment,
there are some system resources that are common to all processors. They are called as
global resources.
There are also other resources that are assigned to specific processors. These are known as
local or private resources. Coprocessor also means that there is a second processor in the
system. In this two processor does not access the bus at the same time. One passes the
control of the system bus to the other and then may suspend its operation. In the maximum-
mode 8086 system, facilities are provided for implementing allocation of global
resources and passing bus control to other microprocessor or Coprocessor.

8288 Bus Controller — Bus Command and Control Signals: 8086 does not directly
provide all the signals that are required to control the memory, I/O and interrupt
interfaces. Specially the WR, M/IO, DT/R, DEN, ALE and INTA, signals are no longer
produced by the 8086. Instead it outputs three status signals SO, S1, S2 prior to the
initiation of each bus cycle. This 3- bit bus status code identifies which type of bus cycle
is to follow. S2S1S0 are input to the external bus controller device, the bus controller
generates the appropriately timed command and control signals. The 8288 produces one
or two of these eight command signals for each b us_cycles. For instance, when the 8086

23

outputs the code S2S1SO equals 001, it indicates that an 1/O read cycle is to be
performed. In the code 111 is output by the 8086, it is 7 signalling that no bus

activity is to take place.

The control outputs produced by the 8288 are DEN, DT/R and ALE. These 3 signals
provide the same functions as those described for the minimum system mode. This set of
bus commands and control signals is compatible with the Multibus and industry standard
for interfacing microprocessor systems.

This device permits processors to reside on the system bus. It does this by implementing
the Multibus arbitration protocol in an 8086-based system. Addition of the 8288 bus
controller and 8289 bus arbiter frees a number of the 8086 pins for use to produce control
signals that are needed to support multiple processors. Bus priority lock (LOCK) is one
of these signals.It is input to the bus arbiter together with status signals SO through S2.

Queue Status Signals: Two new signals that are produced by the 8086 in the maximum-
mode system are queue status outputs QSO and QS1. Together they form a 2-bit queue
status code, QS1QS0. Following table shows the four different queue status.

Table 1.8: Queue status code

Qs,; Qs, Queue Status

0(low) | 0 No Operation. During the last clock cycle, nothing was
taken from the queue.

0 1 | First Byte. The byte taken from the queue was the first
byte of the instruction.

1 (high) | o |Queue Empty. The queue has been reinitialized as a result
of the execution of a transfer instruction.

Subseauent Bvte. The bvte taken from the aueue was a
subsequent byte of the instruction.

Queue status codes

AX - the Accumulator BX - the Base Register CX - the Count Register DX - the Data Register
Normally used for storing temporaryresults. Each of the registers is 16 bits wide (AX, BX,
CX, DX). Can be accessed as either 16 or 8 bits AX, AH, AL

AX-Accumulator Register. Preferred register to use in arithmetic, logic and data transfer
instructions because it generates the shortest Machine Language Code. Must be used in
multiplication and division operations.Must also be used in 1/0 operations.

BX-Base Register.Also serves as an address register
CX- Count register. Used as a loop counter. Used in shift and rotate operations
DX- Data register. Used in multiplication and division. Also used in 1/0

24

operations

Pointer and Index Registers

sSP Stack Pointer

EP Base Pointer

s Source Index

D Destination Index
(| = Instruction Pointer

Fig 1.11 Pointers and index registers

® Al 16 bits wide, L/H bytes are notaccessible. Used as memory pointers

® Example: MOV AH,[SI]

® Move the byte stored in memory location whose address is contained in register Slto register AH.

IP is not under direct control of theprogrammer

The Stack

The stack is used for temporary storage of information such as data or addresses. When a CALL is
executed, the 8086 automatically PUSH the current value of CS and IP onto the stack. Other
registers can also be pushed. Before return from the subroutine, POP instructions can be used to
pop values back from the stack into the corresponding registers.

PUSH POP

\ Eudof
SS :ODDOh stack

Topof

35:5P stack

Y Bottom
SS:FFFEh | of

stack

Fig 1.12 stack operation

25

Test signals in 8086
TEST is an input pin and is only used by the wait instruction .the 8086 enter a wait state after
execution of the wait instruction until a low is Seen on the test pin. Used in conjunction with the
WAIT instruction in multiprocessing environments. This is input from the 8087 coprocessor.
During execution of a wait instruction, the CPU checks this signal. If it is low, execution of the
signal will continue; if not, it will stop executing.

Coprocessor Execution

SUSH/SUB S

Coprocessor (1e: 8087)

s Monitor the |g
8086 or 8088

Wake up the

coprocessor

-

v
Deactivate the
host's !TEST pin
and execute the
specified operation

Execurte
8086
instructions

A 4

Wake up the Activate the
8086 or 8088 'TEST pin

Fig 1.13 Coprocessor

Multiprocessor configuration

High system throughput can be achieved by having more than one CPU. The system can
be expanded in modular form. Each bus master module is an independent unit and
normally resides on a separate PC board. One can be added or removed without affecting
the others in the system. A failure in one module normally does not affect the breakdown
of the entire system and the faulty module can be easily detected and replaced. Each bus
master has its own local bus to access dedicated memory or 10 devices. So a greater
degree of parallel processing can be achieved.

26

8.8085ROPROCESSOR INSTRUCYIONS

8.1 Instruction Set of 8085

~I Aninstruction is a binary pattern designed inside a microprocessor to perform a specific
function.
The entire group of instructions that a microprocessor supports is called Instruction Set.
8085 has 246 instructions.
Each instruction is represented by an 8-bit binary value.
These 8-bits of binary value is called Op-Code or Instruction Byte.

(0 I I I R O

Classification of Instruction Set

» Data Transfer Instruction
* Arithmetic Instructions
* Logical Instructions
* Branching Instructions
* Control Instructions
Data Transfer Instructions ¢ These instructions move data between registers, or between memory and
registers. ¢ These instructions copy data from source to destination. « While copying, the contents of
source are not modified.
Arithmetic Instructions ¢ These instructions perform the operations like: « Addition ¢ Subtract *
Increment * Decrement
Logical Instructions * These instructions perform logical operations on data stored in registers,
memory and status flags. * The logical operations are: * AND ¢ OR ¢ XOR ¢ Rotate * Compare
« Complement
Branching Instructions ¢ The branching instruction alter the normal sequential flow. ¢ These
instructions alter either unconditionally or conditionally
Control Instructions * The control instructions control the operation of microprocessor.
DATA TRANSFER INSTRUCTIONS
Copy of data
I MOV Moves data from register to register / memory
Z MVI Moves immediate data to register /
memory Load Instructions
I LDA Load accumulator direct
1 LDAX Load accumulatorindirect
1 LHLD Load H&L registersdirect
1 LXI Load register pair
immediate Store Instructions
1 STA Store accumulator direct
1 SPHL Copy H&L registers to stack pointer.
1 STAX Store accumulator indirect

27

Opcode

MOV

MVI

LDA

LDAX

LXI

LHLD

Operand

Rd, Sc
M, Sc Dt, M

Rd, data
M, data

16-bit address

B/D Reg. pair

Reg. pair, 16-
bit data

16-bit address

Meaning

Copy from the
source (Sc) to the
destination(Dt)

Move immediate 8-bit

Load the accumulator

Load the
accumulat

or indirect

Load the
register

Load H and L

registers direct

28

Explanation

This instruction copies the
contents of the source register
into the destination register
without any alteration.

Example — MOV A, L

The 8-bit data is stored in the
destination register or memory.

Example — MVI H, 55H

The contents of a memory
location, specified by a 16-bit
address in the operand, are copied
to the accumulator.

Example — LDA 2034H

The contents of the designated
register pair point to a memory
location. This instruction copies
the contents of that memory
location into the accumulator.

Example - LDAX B

The instruction loads 16-bit data
in the register pair designated in
the register or the memory.

Example — LXI H, 3225H

The instruction copies the
contents of the memory location
pointed out by the address into
register L and copies the contents
of the next memory location into
register H.

STA

STAX

SHLD

XCHG

16-bit address

16-bit address

16-bit address

None

16-bit address

Store
indirect

the

accumulator

Store H and L registers

direct

Exchange H and L with D and

E

29

Example — LHLD 3225H

The contents of the accumulator
are copied into the memory
location specified by the operand.

This is a 3-byte instruction, the
second byte specifies the low-
order address and the third byte
specifies the high-order address.

Example — STA 3257H

The contents of the accumulator
are copied into the memory
location specified by the contents
of the operand.

Example — STAX D

The contents of register L are
stored in the memory location
specified by the 16-bit address in
the operand and the contents of H
register are stored into the next
memory location by incrementing
the operand.

This is a 3-byte instruction, the
second byte specifies the low-
order address and the third byte
specifies the high-order address.

Example — SHLD 3225H

The contents of register H are
exchanged with the contents of
register D, and the contents of
register L are exchanged with the
contents of register E.

Example — XCHG

SPHL

XTH

PUSH

POP

Copy H and L registers to
None the stack pointer

Exchange H and L with top
None of stack

Push the register pair onto
Reg. pair the stack

Reg. pair Pop off stack to
the register pair

30

The instruction loads the
contents of the H and L registers
into the stack pointer register.
The contents of the H register
provide the high-order address
and the contents of the L
register provide the low-order
address.

Example — SPHL

The contents of the L register
are exchanged with the stack
location pointed out by the
contents of the stack pointer
register.

The contents of the H register
are exchanged with the next
stack location (SP+1).

Example — XTHL

The contents of the register pair
designated in the operand are
copied onto the stack in the
following sequence.

The stack pointer register is
decremented and the contents of
the high order register (B, D, H,
A) are copied into that location.

The stack pointer register is
decremented again and the
contents of the low-order
register (C, E, L, flags) are
copied to that location.

Example — PUSH PSW

The contents of the memory
location pointed out by the
stack pointer register are copied
to the low-order register (C, E,
L, status flags) of the operand.

ouT

8-bit port
address

8-bit port
address

Output the data from the
accumulator to a port with
8bit address

Input data to accumulator
from a port with 8-bit
address

31

The stack pointer is incremented
by 1 and the contents of that
memory location are copied to the
high- order register (B, D,H, A) of
the operand.

The stack pointer register is again
incremented by 1.

Example — POP D

The contents of the accumulator
are copied into the 1/0 port
specified by the operand.

Example — OUT 12H

The contents of the input port
designated in the operand are read
and loaded into the accumulator.

Example — IN 55H

Stote aceunwilator direct

STA 16-bit address The contents of the accumulator ar¢ copied into the memory
location speeified by the opetand. This is a 3-byte
instruction, the sccend byte specifies the low-order address
anid the third byte specifies the high-order address.
Example: STA 4350 or STA XYZ

Store accumulator indirect
STAX Reg. pair The eontents of the accwmulator are copied into the memory
location: specified by the contents of the operand (register
-Ea;r} The contents of the accumulater are not altered.
xample: STAXB

Store H and L registers direet

SHLD i6-hit address The contents of register L are stored into the memory location
spocified by the 16-bit address in the operand and the contents
of H regisfer are stored into the mext memory lodation by
incrementing the operand. The contents of registers HL are
not altered. This is a 3-byte instruction, the second byte
specifics the low-order address and the third byte specifies the
‘high-order addsess.
Example: SHLD 2470

Excliange Hand L with D and E

XCHG none The contents of register H are exchanged with the conteats of
register 1D, and the contents of register L are exchanged with,
the contents of register E.
Example: XCHG

Copy H and L registers to the stack pointer

SPHL. none The instruction loads the contents of the H and L registers
into-the stack pomiter register, the contents of the H register
provide the high-order address and the contents of the L
register provide the Jow-order address. The contents of the H.
amd L registers are not abtered.
‘Example: SPHL

Exchange H and L with tep of stack
XTHL none The contents of the L register are eXchanged with the sfack
‘ lacation. ppinted out by the contents of the stack pointer
register. The eontents of the H repister are exchanged with
the next stack location (SP+1); howeves, the coritents of the
stack pointer register are not altered.
Example: XTHL

31

-P‘uﬁh n:tgu;!q:r Ppair onto simed

PLISEHE Fep. padi The contents of the repister pair designated i the operand are
copieil onto the stadk in the followmp sequence. The stack
pevitdter register is decremepted and the comtents of the high-
order register (B, 13; 1, A) are copied into thatdocation. The
stpck poimter register is dﬂ:remi;nh.d agin aml the coptents of
the bew-order vegister 07, B, L, flags) ore weopicet oo that
Tevcaticon.
Exinmple: PUSTER or PLISIH A

Py of T ssck tov fegister pads _)

PeE Reg, pair The contents of the memory looation, pointed ow by the stack
pointer repister are copied o the brw-order mgﬂ_tm o€, E. L.
statiys flaos) of the operand: The stack poinfer i= lu;rmnwﬂud
By 1 amd fhe contents of that memery location are copicd to
the hgh-order regaster {8, D, H, Ayt tlve operanid. The siack

pointer register is again incremvented by i,
Exnmple: POF H or PO A

Tu(ahatar from seeomuloger o port with 8-bit addregs
{.IU sehit port acddress The comtents of the accumndator me copied into the 190 port

specilied by the wmadd.
Exwimple: €UTT ﬁg

Loypart data teeacemnmmlator fom a port with 83-bit address

it H-bit pert address The contents of the input port designated in the operand are
rend aad: logasded into the aceumpelator.
Example: 1N &2

Arithmetic Instructions:

Opcode Operand Description
Add register or memory to accumulator
ADD R I'he contents of the operand (register or memory) are
M added to the contents of the accumulator and the result is

stored in the accumulator. I the operand 15 4 memory
location, its location is speciticd by the contents of the HL
registers. All flags are modified to reflect the result of the
addition.

Example: ADDB or ADD M

Add register to accumulator with carry
ADC R The contents of the operiand (register or memory) and
M the Carry flag are added o the contents of the accumulator

and the result 1s stored in the accumulator, 1f the operand is a
memory location, i1s location is specified by the contents of
the HL registers. All flags are moditied to reflect the result of
the addition.
Example: ADC Bor ADCM

Add immediate to accumulator

ADI 8-bit data The 8-bit data (operand) 15 added to the contenis of the
accumulator and the result is stored m the accumulator. All
flags are modified to reflect the result of the addition.
Example: ADI 45

Add immediate to accumulator with carry

ACT |-bit data The 8-bit data (operand) and the Carry flag are added to the
contents of the accumulator and the result is stored i the
accumulator. All flags are modified to reflect the result of the
addition.
Example: ACT 435

Add register pair to H and L. registers

DAD Reg. pair I'he 16-bit contents of the specified register pair are added to
the contents of the HL register and the sum jis stored in the
HL register. The contents of the source register pair are not
altered. If the result is larger than 16 bits, the CY flag is ser
No other flags are affected.
Example: DAD H

32

Subtract register or memery from aceumulator
SUB R The contents of the operand (register or memory) are
M subtracted frem the comtents of the accumulater, and the

result is stored in the accumulator. If the operand is a
memory location, its Jocation is speeified by the conterits of
the HL registers. All flags-are modified to reflect the result of
the subtraction.
Example: SUB B or SUBM

Subtract source and borrow from secumulator
SBB R The contents of the operand (register or memory jand
M the Borrow flag are subtracted from the contents of the

accumulater and the result is placed in the accomulator. If
the operand 1s a memory location, its location 1s spectied by
the contents of the HL registers. Al flags are modified to
reflect the result of the sublfaction.
Example: SBBBor SBEM

Subtract immediate from accumulator

SEL 8-hit data The 8-bit data (operand) is subtracted from the eontents of the
accumulator and the result is stored m the accumulator, AH
flags are modified to reflect the result of the subtraction.
Example: SUI 45

Subtract immediate from accumulator with berrow

SBI 8-bif data The S-bat data {operand) and the Bomow flag are subtracted
from the contents:of the accumulator and the resulf 15 stored
1 the accumulator. All flags are modified to refleet the result
of the subtracien.
Example: SBI 45

Inerement regrster or memory by 1

INR R The conterits of the designated register or memory) are
M meremented by [and the result is stored in the same place. If
the operand is a memory focation, its location is speeified by
the contents of the HE registers.

Example: INRB or INKEM

Inerement regrster pair by 1

INX R The contents of the designated register pair are incremented
by 1 and the result 1s stored in the same place.
Example: INXH

33

Decrement register or memory by 1

R R’
¥ |

Diecrement repister p
DCX R

air by 1

Deciimal adjust pocuanmlator

DAA e

BRANCHING INSTRUCTIONS

The contents of the designated pegister or menwny are
decremented by 1 and the result is stored in the same place. IF
the operand is a moemory [oeation, s locatien 1= specificd by
the contents of the HI. regiswers.)

Example: DOR B or DORM

The comtents of the designated register pair are decremented
by 1 and the resull s stored in the same place.
Exmmple: DOCXH

The contenis of the acveumulater are changed from a binary
value to tivae 4-hit binary coded dechmal {BCD) digits. This is
the only instruction that wees the smalisry flag fo perform the
banary to, BCD conversion, ad the conversion proeedure s
deseribed belima. 8. 7, AC, P, €Y Hags are altered to meflect
the sesults of the operation.

If the value of the low-erder 4-hits in the accummulator is
ereater than 9 or if AC flag is set, the instruction adds & to the
low=order four bits,

It ihie valuwe of the high-ordsr 4-bits i the sccinmulator is
greater than. @ or if the Carry flag is set, the instruction adds 6
tor the high=order foyr hits.

Example: TIAA

" bt adives -
IMP bo-bat The program sequence is transferred to thie memory location
specified by the 16-bit address given in the operand.
Example: JIMP 2034 or IMP XYZ
Jump eonditionally
Operand: 16-bit address
The program sequence is transferred to the memory location
specified by the 16-bit address given in the operand based on
the speeified flag of the PSW as deseribed below.
Example: JZ 2034 or JZ XYZ
Opcode Deseription Flag Status
IC Jump on Carry CY =1
INC Jump on no Carry CY=90
1P Jump on positive =0
nd Jump on minus §=1
1Z Jump om zero £=1
INZ Jump en no zero Z=0
JPE Jump on parity even P=1
PO Jump on parity odd P=10

34

Uneonditional subroutine call
CALL 16-bit adkdress

Call gonditiondlty

Operand: 16-bit address

Opeadi
Ce
NI
cp
M
CE
CNZ
CPE
€Po

Dreserigntion

Call en Carey
Call on wa -Carry
Call on positive
Calt an manms
Call on zern
Call enne zero

Call on parity even
Call o pagity odd

The progrom sequence ©s transferied o the nuenmmny locwtion
spocilicd by the 10-bit addiess given wthie operand. Before
ilve fransier, the address of the next msgructon alter CALL
i the sontents of the pregram cownter) is pushed onie the staek.
Example: CALL 20534 er £ALE XYZ

The program sequence is transferred w the memery location
specified by the 16-bit addfess given in the operand based on
e specified flag of the PSW as described below. Before the
transfer, the address-of the nexi instruction aftey the call (ihe
comtents of the program counter) is. pushed onto the stack.
Examiple: CF 2034 of CZ XYZ

Flag Status
TY¥ = l
C’Y =

B

TENNEW

Q"‘a-l:-u'—*i:'

Return from, stshroutine smcomditionally

R..ET nowe

The program sequenve is lramskerred from the subroutine 1o

itie calling program. The two Svies from the top of dre stack
are copied inte the progrm counder, and prograny execufion

hn:g'iﬂs ot the new addiess.

Example: RET

Retwrn fromm subrowise conditionaliy

Operand: nong

Oipeade
B

RM
BNZ

Ieseyiption

Retun on Carry
Return on noe Carry
Returm o positive
Retugn on mmws

Keluen o zero

Rehum on no zero
Rieturn on parily évesr
Peturn on pariky

The program sequendce s wanslerred from the subroutine io
the-ealfing program based on the speoified Aag of the PEW as
desuribed bilow., Thie two Dytes from the top of the stack are
copicd into the program -eoupter, and program execufion
hegins at the new address,

Example: HZ

Flig Status
€Y =]
Y o

TENNALA A

i

ﬂ'-"[..".-'."l-c-"""'lﬂ-"

wnld

35

Looad prograin counter with TEL contents

il S TR Thre contemts of regedsters T mad T, are copiid ianio the prosnean
conmiger, The cosiemes of 8 oare plgocd as e high-order byie
sl the contents of T as the lovs=order byte.
]T'.;nl::."l:piﬂ: FPOIAE.

Hestart

%1 W=7 The BRET instrwetbon is eguivadent to o I=bwie call instroction
tir e of cight raenwery focations depesdioag wpon the mumsder.
The inwrucitions are gemerddly used in conjurction wisd
inberrEpts and inserted ustog extemat bardware. Flowieves
these can e asepl as solbecere INSHRESTTES 4 8 P rogEemnm o
transter progeon execwtibon o one of the eight loewians, The
achdresses are:

Hars e tiom Hestarr Acddiess
75T 0 LT
BST 1 (et Y
Bnat 2 RO BRREIR
BST 3 G0l
RST 4 L % |
RS S Y2 &1
L3 o) OEEREL
RET 7 [EEENET

The H085 has four additdonal inferiepss ad these intervapes
penende RET msdtracfieons h\mnnﬂy ancl-tlnas do nol reguire
wny extermal hoardweare. These ssteociioors ancd thedsr et
adhdresses arie:

Interrupt Testart Address
TRAR R
RET 5.5 BOICLE
ST 68 A FEL
ST 7.8 LETRES S)
LOVGECAL INSTRUCTIONS
Opeods Operand DBeéseription
Camgpare register or maemory with accumulator
CKIP 14 The contents-of the operand (regrsier or memory)-are
Ml eompared swith the comtents of the accwmdator. Podh
comlents are preserved . The reswly of the comparison is

shown by setting The flags of the PSW as folows:

i LAY < (remmemT: carry tlag is set, s=1

1f'{ﬁ} [regapemy. zevo flag mset, 50

iU LA) = (reg'mem}: carry amld zero Hags are resel, 50
Exmmple: UMP R or CMP M

Compare immediate with accunulator

L | bt data The secand byte (8-Fat data) is ¢ aved with the comtents of
the scewmmalotor. The vaiues ing ecompared reniain
unchanged. The resubt of the comparisan is shewn by seiting
the flags of the PEW as folloas:
It LAY = data: carey Hﬁg 15 sof, s=}
iF £AQ = data: zero Ve is sct, 5=
iFLA) = dota: carry and #ero ﬂag,s are resct, 5=
Exuample: P &9

Logical AN register or memaory aath accumnkator
ANA R The eomtents of the accumulator are logicallv ANDed with
b the contents of die opermid (register or meiory), amd the

result is placed in the agcomuator. If the operand s a
meswory location, its address is specificd by the comtents of
HL registers. 8, £, P afe modified to refleict the sésuli of the
oparakron. O as reset. AC s ser
Exmnple: ANA B or ANA M

Logical ANDY immrediage with accwmulatar

ANT Bt ekt The contents of the gccomplator are- logically ANDed with the
it data {oporand) and the resuft s placed i the
avcumulatise. 5, ¥, P are modificd fofeffect the reslt of the
gperation. CY is reset. AC is sef
Example: AN &6

36

Eselusive OR register or memary with accumulator
XRA i The contents of the accunnuilatof ave Exclusive ORed with
& the conleits of the operand {register or memory). and the

result is placed in the accumulator. If the operand is a
memory location, its address 1s specified by the contents of
HL registers. S, 7. P are modified to refleet the resuli of the
operation. CY and AC are reset.
Example: XRA Bor XREA M

Exelusive OR unmediate with accomulator

XRI 8-bit data The contents of the accunwlator are Exclusive ORed with the
B-bit data (opesand} amd the result is placed in the
aceumulator. S, Z, P are modified o reflect the result of the
operation. CY and AC are reset,

Example: XRI 86
Logieal OR register or mensory with accumilaotr
DRA i The contents of the accumutator are logically DRed with
A the contents of the operand {register or memory), and the

result is placed w the accumulator. M the npnmnd s a
memory focation, its address is specified by the contents of
HL repisters. S, Z, P are modified to reflect the resuli of the
operation. CY and AC are reset.

Example: ORA B-or ORA M

Logical OR immediate with aceumufator

O B-lut dhaia Thie contents of the accurulalor are Togically ORed with the
S-bit data (operand) and the resuht s placed in the
acowmulator. %, 7, P are modified to reflect the sesult.of the
operation. TY and AC are resel.
Example: ORI 36

Rotate mecunndator left _

RLC none Eueh binmy bat of the acenmulator is rotated left by one
position. Bit D7 1s placed in the position of Dy as well as m
the Carry flag. CY is modifisd aceording tobit D7. S, Z, P,
AL are not affected.
Example: RLEC

Rotate acenmmlater right

RRL aong Each binary bit -of the aceumulator is rotated right by one
position. Bit Dy is placed in the position of 17 as well as m
the Carey flag. CY 15 modified aceording to bit Dg. 5. Z, P,
A€ are not affected.
Example: RRC

37

Rowate aecvrmudaior lell through corry

RAL none

Rotate acenmulator right through ¢

RAR none

Comiplement accumulitor
CMA nonie

Complement carmy
CNIC e

Sel Carry
STC

e
CONTROL INSTRUCTIONS
Opeod: Operand

No operation
NOP negie

Halt and enter wait state
HLT noTe

{dsable mrerrupts
Dl e

Enable imterrupts
El none

Each binary bt of the secumulator is rotated eft by one
position through the Carry flag. Bt D7 is placed in the Carry
fag, and the Cany fag is pleced dn the least significont
position D, Y is wodified aceording 1w bat 137, 5, Z, P, AC
are nol affected.
Exmmnple: RAL

iach Binary hit of the accumulator is rotated sight by one
position through the Cory flag, Bit Di is placed in thie Carry
flag, and the Carry is placed m the mwosi significant
position D7. CY is modified according to bit D, §, Z, P, AC
are not aifected.
Example: RAR

The contents of the aceumulator are complefiented. No flags
are affecred
Exmmple: CMA

‘The Carry flag is complemented. No other flags are affected.
Example: OMC

The Carry flag is st to 1. Noother Qags are afféersd.
Example: STC

Dreseription

Mo wtion s performed. The instruction is fetched and
Heweéver no operation i3 executed,
Example: NOP

The CPU finishes executing the current instruction and hals
any forther execution. An interrupt or reset is pecesspy o
exit from the hali state.

Exemple: HLT

The interrupt enable Hip-flop is reset and all the dintermgpds
except the TRAP are disabled. No flags are affected.
Example: TH

The dnterrupt enablé lip-flop is set and all imermapts are
enabled. No flyps are atfected. Atter a system reset or the
acknowledpement of an imterrupt. the imterrupt enable fip-
flop is reset, thus disabling the erruprs. This instuction 15
neeessary o reenable theinterrapts (except TRAP).

Exmmpde: EI

38

Rizad inferrupt niask

RN

fone

Thas 1s a multipurpose instruction vsed to read the status of
mtervupts 7.5, 6.5, 5.5 and read serial data nput bit: The
mstriction loads eight bits in the accumulster with the
foflowing interpretations.

Example: RIM

Dy D, Do D, Dy Dy D Dy
[SID] 17 [16 | 15 | IE [7.5]65]55]
1 . | b1 _J
Seral input | Interupt
data bit masked if
bit = 1
Interrupts Interrupt enable
pending if flip-flop is sel
bit = 1 if hit = 1

Set interrupt mask

SEM

Mol

This ¥s @ multipurpose instruction and used o implement the
BOSS interrupts 7.5, 6.5, 5.5, and serial data output. The
instruction interprefs the accumulator contents as follows.
Example: SIM

D, D D D D D B D
[SOD | SDE | XXX [R7.5 [MSE [M7.5 [M6.5 | M5.5 |
L1 1

Serial output data J Reset R7.5 Masks i#l]:rrl.tpts
D, =1 il bits = 1
Serial data enable Mask set
1 = Enable enable if
0 = Disahle D=1

[7 $OD— Serial Output Data: Bit D, of the accumulator is laiched into the 50D output
line and made available to a serial peripheral if bit D, = 1.

0 SDE — Serial Data Enable; If this bit = 1, it enables the serial output. To implement
serial output, this bit needs 1o be enabled.

0 XXX —Don't Care

O R7.5—Reset RST 7.5: Ifthis bit = 1, RST 7.5 flip-flop is reset, This is an additional
control to reset RST 7.5.

7] MSE —Mask Set Enable: [f this bit is high, it enables the functions of bits Dy, Dy, Dy

This is a master control over all the interrupt masking bits. If this bit is low, bits D.,

Dy, and [, do not have any effect on the masks,

[0 M7.5—0Dy = 0, R5T 7.5 is enabled.

= 1, RST 7.5 is masked or disabled.
O M&S—D, = 0, RST 6.5 is enabled.

= 1, R8T 6.5 is masked or disabled.
O MS.5—D, = 0, RST 5.5 is enabled.

1, RST 5.5 is masked or disabled.

39

QUESTION BANK
PART A

Part A
1. Define microprocessor
2. In how many groups can the signals of 8085 be classified?
3. What is the technology used in the manufacture of 80857
4. Draw the block diagram of the built-in clock generator of 8085
5. What is the purpose of CLK signal of 8085?
6. What are the widths of data bus (DB) and address bus (AB) of 8085?
7. The address capability of 8085 is 64 KB. Explain.
8. Does 8085 have serial 1/O control
9. What jobs ALU of 8085 can perform?
10. How many hardware interrupts 8085 supports?
11. How many I/O ports can 8085 access?
12. Why the lower byte address bus (A0 — A7) and data bus (DO — D7) are
multiplexed?

13. Why the lower byte address bus (A0 — A7) and data bus (DO — D7) are
multiplexed?

14. List the interrupts of 8085

15. List the flag bits of 8086

PART B
1. Explain the architecture of 8085
Discuss the addressing modes of 8085
. Explain the 8086 architecture with neat diagram

2

3

4, Explaina. XTHL b.SPHL c.PCHL d.RAR e.SIM

5. Explain with example a.LDAX B b.PUSH PSW c¢.RLCd.JNC 16bit e.XRA A
6
7

. Write an ALP to sort a given array in ascending order
. Explain the interrupts of 8085

40

TEXT / REFERENCE BOOKS
1. Ramesh Goankar, "Microprocessor architecture programming and applications with 8085 / 8088", 5th
Edition, Penram International Publishing, 2002.
2. Mazidi & McKinlay, “The 8051 Microcontroller and Embedded Systems using Assembly and C”, PHI,
2007.
3. MykePredko, “Programming and Customizing the 8051 Micro-controller”, Tata McGraw-Hill edition,
2007.
4. R A Gaonkar, “Fundamentals of Microcontrollers and Applications in Embedded Systems (with the
PIC18 Microcontroller Family)”, Penram Publishing India, 2007
5. Kenneth Ayala ,”The 8051 Microcontroller”, 3rd Edition, Thomson Delmar Learning, 2004.
6. Kenneth J. Ayala, Dhananjay V. Gadre, “The 8051 Microcontroller & Embedded Systems Using
Assembly and C”, Cengage Learning India Publication, 2007.
7. Ajay V Deshmukh, “Microcontrollers: Theory and Applications”, Tata McGraw-Hill, 2005
8. Raj Kamal, “Embedded Systems Architecture, Programming, and Design”. (2/¢), Tata McGraw Hill,
2008.

41

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
[(DEEMED TO BE UNIVERSITY)
Accredited "A” Grade by NAAC | 12B Status by UGC | Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

UNIT - II- MICROPROCESSORS , MICROCONTROLLERS AND EMBEDDED SYSTEMS — SEIA 1504

42

UNIT 2 ARCHITECTURE OF 8051 AND INSTRUCTION SET
Introduction - Architecture of 8051 - Memory organization - Addressing modes - Instruction set

— Assembly Language Programming - Jump, Loop and Call Instructions - Arithmetic and
Logic Instructions - Bit Operations.
1.Architecture of 8051 Microcontroller

An 8051 microcontroller has the following 11 major components:
1. ALU (Arithmetic and Logic Unit)

PC (Program Counter)

Registers

Timers and counters

Internal RAM and ROM

Four general purpose parallel input/output ports

Interrupt control logic with five sources of interrupt

© N o o~ w N

Serial date communication
PSW (Program Status Word)
10. Data Pointer (DPTR)

11. Stack Pointer (SP)

43

ALE
PSEN
XTALL
XTALZ
RESET

Vceo
GND

4
—
-

VT

REER

B R

BRI

Arithmetic Speci;l- - P
and PSW FuﬂFtIOﬂ § §
Logic Unit Registers
RAM
A e B-Bit Data and
L Address Bus § =
[1 i - g
DPTR
PC DPH ROM
DPL .5 o~
3 2
16-Bit Adress Bus
; Special- = -
System A%‘gfela't Function = =
Timing . Registers 3 a
System ; 1E
S nasizer v '
Timers PCON I
Data Buffers . SBUF '
Register
)
Memory Contra Bank 2 SCON I
| TCON]
i Register T™OD I
Bank 1 TLO I
l THO
| Register TL] !
) Bank O ™1 |
' Internal KAM Structure !
1 1
s o e S Y S G G WD G G T G . S — — e — — w— ol

Fig 2.1: 8051- Architecture

The unique features are

Internal ROM and RAM, 1/O ports with programmable pins, Timers and counters, Serial

Data communication

44

170
AQ-A7
DO-D7

o

1O
AB-A1S

J{¢]
Interrupt
Counter
Serial Dat:
RD-WR

2.Programming Model of 8051

8 88| | 8 48] [8 | 89 8 |88
IP IE TMOOD TCON
i Regist Regi Regis!
8 [& RS Register egister egister egister
A B Interrupt Registers Timer Control Registers
Register R
g L2 E) [le] (%] [F]®
WAy THO L0 THI U
Counter Counter Counter Counter
Timer/Counter Registers
8 [98*]| [8] % 8 | 87 8 | Do
i SCON SBUF PCON PSW
Register Register Register Register
Serial Data Registers Flags
General-
Purpose
Area 8 I 2l
Stack
Pointer
30
i3 Bit b3
Rddress Bit Addresses for this RAM Area Only
20 Area 00
1f Register
Bank
18 3
17 Register 8 [83] 8 | 8 16 | NoAddress
Bank Data Pointer
10 2 o | oo Program Counter
oF Register
Bank
08 1
07 R7 8 |80 8 |90 8 | a0 8 | 8o
06 R6 Port0 Port | Port 2 Port 3
Register 05 RS Latch Latch Latch Lateh
Bank 04 R4
0 03 R3
02 R2 I .
01 Rl Number of Direct Byte Address
Bits * Indicates Bit Addressable
00 RO
Byte Internal
Addresses RAM

Fig 2.2: Programming Model

45

FFF

000

The above diagram shows the programming model of
8051. The 8051 architecture consists of these specific
features:
[1 8 bit CPU with registers A and B
(1 16 bitPC and DPTR
[1 8 bit Program status word (PSW)
[1 8 bit Stack pointer(SP)
[0 Internal ROM (4K)
[0 Internal RAM of 128 bytes
[1 4 register banks, each containing 8 registers
[1 16 bytes, which may be addressed at the bitlevel
[1 80 bytes of general purpose datamemory
32 input/output pins arranged as four 8 bit ports: PO-P3
(1 Two 16 bit Timers/Counters: TO and T1
[0 Full duplex serial data receiver/transmitter: SBUF
[1 Control Register: TCON,TMOD,SCON,PCON,IP and IE
(1 Two external and three internal interrupt sources

(1 Oscillator and
clock circuits Special

Function Registers (SFRs)

Special Function Registers (SFRs) are a sort of control table used for running and monitoring
the operation of the microcontroller. Each of these registers as well as each bit they
include, has its name, address in the scope of RAM and precisely defined purpose such as
timer control, interrupt control, serial communication control etc. Even though there are
128 memory locations intended to be occupied by them, the basic core, shared by all types of
8051 microcontrollers, has only 21 such registers. Rest of locations are intensionally left

46

unoccupied in order to enable the manufacturers to further develop microcontrollers
keeping them compatible with the previous versions. It also enables programs written a long
time ago for microcontrollers which are out of production now to be used today.

]:8]'.“l'.'
0 B F7
E8 EF
E0 [ACC E7
D8 DE
DO | PSW D7
C8 CF
C0 C7
B8 IP BF
B0 P3 B7
A8 IE AF
A0 P2 AT
98 [SCON | SBUF OF
90 Pl 97
88 | TCON | TMOD | TLO | TLI THO | THI sF
80 PO SP DPL | DPH PCON | 87

L

A Register (Accumulator)

Bit-addressable Registers
Fig 2.3 : Special Function Register

0 0 0 0 0 0 0 0 Value after Reset

ACC Bit name

bit7 bit6 bit5 bitd bit3 bit2 bit1 bit0
Fig 2.4: Accumulator

A register is a general-purpose register used for storing intermediate results obtained during
operation. Prior to executing an instruction upon any number or operand it is necessary to
store itin the accumulator first. All results obtained from arithmetical operations performed
by the ALU are stored in the accumulator. Data to be moved from one register to another
must go through theaccumulator. In other words, the A register is the most commonly used
register and it is impossible to imagine a microcontroller without it. More than half
instructions used by the 8051 microcontroller use somehow the accumulator.

47

B Register

Multiplication and division can be performed only upon numbers stored in the A and B
registers.All other instructions in the program can use this register as a spare accumulator

(A).
0 0 0 0 0 0 0 0 Value after Reset
B[I] Bit name
bit7 bt bitS bitd bitd bit2 bitt bitd
Fig 2.5: B Register
R Registers

(RO-R7)

RAM

00 |RO|R1[R2|R3|R4|R5|R6|R7| Bank0
§ 08 |RO|R1|R2|R3|R4|R5|R6|R7| Bank 1
g 10 |RO|R1|R2(R3|R4|R5|R6(R7| Bank z

Fig 2.6: Register Banks

This is a common name for 8 general-purpose registers (RO, R1, R2 ...R7). Even though
they are not true SFRs, they deserve to be discussed here because of their purpose. They
occupy 4 banks within RAM. Similar to the accumulator, they are used for temporary
storing variables and intermediate results during operation. Which one of these banks is to
be active depends on two bits of the PSW Register. Active bank is a bank the registers of
which are currently used.

The following example best illustrates the purpose of these registers. Suppose it is
necessary to perform some arithmetical operations upon numbers previouslystored in the R
registers: (R1+R2) - (R3+R4). Obviously, a register for temporary storing results of addition
is needed. This is how it looks in the program:

48

MOV A R3; Means: move number from R3 into accumulator

ADD A R4; Means: add number from R4 to accumulator (result remains in accumulator)
MOV R5,A; Means: temporarily move the result from accumulator into R5

MOV A,R1; Means: move number from R1 to accumulator

ADD A,R2; Means: add number from R2 to accumulator

SUBB A,R5; Means: subtract number from R5 (there are R3+R4)

Program Status Word (PSW) Register

0 0 0 0 0 0 0 0 Value after Reset

PSW | cv | ac | Fo | Rs1 | RSO [OV P | Bitname
bit7 bité bits bit4 bit3 hit2 bit1 bit0
Fig 2.7: PSW

PSW register is one of the most important SFRs. It contains several status bits that reflect
the current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two
register bank select bits, Overflow flag, parity bit and user-definable status flag.

P - Parity bit. If a number stored in the accumulator is even then this bit will be
automatically set (1), otherwise it will be cleared (0). It is mainly used during data transmit
and receive via serial communication.

- Bit 1. This bit is intended to be used in the future versions of microcontrollers.

OV Overflow occurs when the result of an arithmetical operation is larger than 255 and
cannot be stored in one register. Overflow condition causes the OV bit to be set (1).
Otherwise, it will becleared (0).

RS0, RS1 - Register bank select bits. These two bits are used to select one of four register
banks of RAM. By setting and clearing these bits, registers RO-R7 are stored in one of four
banksof RAM.

RS1 RS2 Space in RAM

Bank0 00h-07h

Bank1 08h-0Fh
Bank2 10h-17h
Bank3 18h-1Fh

= O O
O O

49

FO - Flag 0. This is a general-purpose bit available for use.
AC - Auxiliary Carry Flag is used for BCD operations only.

CY - Carry Flag is the (ninth) auxiliary bit used for all arithmetical operations and shift

instructions.

Data Pointer Register (DPTR)

DPTR register is not a true one because it doesn't physically exist. It consists of two
separate registers: DPH (Data Pointer High) and (Data Pointer Low). For this reason it may
be treated as al6-bit register or as two independent 8-bit registers. Their 16 bits are
primarly used for external memory addressing. Besides, the DPTR Register is usually used

for storing data and intermediateresults.

DPH DPL
A A
f N/ N
pPTIR [1 1+ 1+t~ ¢+t 1+t 1t 1T [° 11
bit15 bit1d bit13 bit12 bit11 b0 bH9 bt bRT bit6 b5 bitd b3 bRZ Bitl bito
0 0 0 0 0 0 0 0 Value after Resat
ppL| [[[[[[| | sitname
hit7 hit6 hits hit4 hit3 hit2 hit1 hit0
0 0 0 0 0 0 0 0 Value after Raset
DPH| | | [[| | | |Biname
hit? bité hit5 hitd bit3 hit2 hit1 hit0
Fig 2.8: DPTR
Stack Pointer (SP)
Register

50

0 0 0 0 0 1 1 1 Value after Reset

SP [[[[[[[[®ct;«e

bit7 bité bits bitd hit3 bit2 bit1 bit0

Fig 2.9: Stack Pointer
A value stored in the Stack Pointer points to the first free stack address and permits stack
availability. Stack pushes increment the value in the Stack Pointer by 1. Likewise, stack
pops decrement its value by 1. Upon any reset and power-on, the value 7 is stored in the
Stack Pointer,which means that the space of RAM reserved for the stack starts at this
location. If another value is written to this register, the entire Stack is moved to the new
memory location.

PO, P1, P2, P3 - Input/Output Registers

1 1 1 1 1 1 1 1 Value after Reset

PO [o7 | pos | Pos | Poa | P03 | Po2 | Po.t | Po.0 | Bitname
bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0
FIg 2.10: PU
If neither external memory nor serial communication system are used then 4 ports with in
total 0of32 input/output pins are available for connection to peripheral environment. Each bit
within theseports affects the state and performance of appropriate pin of the microcontroller.

Thus, bit logic state is reflected on appropriate pin as a voltage (0 or 5 V) and vice versa,
voltage on a pin reflects the state of appropriate port bit.

As mentioned, port bit state affects performance of port pins, i.e. whether they will be
configuredas inputs or outputs. If a bit is cleared (0), the appropriate pin will be configured
as an output, while if it is set (1), the appropriate pin will be configured as an input. Upon
reset and power-on, all port bits are set (1), which means that all appropriate pins will be
configured as inputs.

Pinout Description
Pins 1-8: Port 1 Each of these pins can be configured as an input or an output.
Pin 9: RS A logic one on this pin disables the microcontroller and clears the contents of
most registers. In other words, the positive voltage on this pin resets the microcontroller.

By applying logic zero to this pin, the program starts execution from the beginning.

Pins10-17: Port 3 Similar to port 1, each of these pins can serve as general input or output.
Besides, all of them have alternative functions:

51

Pin 10: RXD Serial asynchronous communication input or Serial synchronous communication
output.

Pin 11: TXD Serial asynchronous communication output or Serial synchronous communication
clock output.

Pin 12: INTO Interrupt O input.

Pin 13: INT1 Interrupt 1input.

Pin 14: TO Counter 0 clock

Pin 15: T1 input.Counter 1
Pin 16: WRclock input.

Write to external (additional)

Pin 17: RD RAM.Read from external

Pin 18, 19: X2,

Internal oscillator input and output. A quartz crystal which specifies

Operating frequency is usually connected to these pins. Instead of it, miniature ceramics
resonators can also be used for frequency stability. Later versions of microcontrollers
operate ata frequency of 0 Hz up to over 50 Hz.

Pin 20: GND Ground.

Pin 21-28: Port 2 If there is no intention to use external memory then these port pins
areconfigured as general inputs/outputs. In case external memory is used, the higher
address byte,
i.e. addresses A8-A15 will appear on this port. Even though memory with capacity of 64Kb is
not used, which means that not all eight port bits are used for its addressing, the rest of
them arenot available as inputs/outputs.

Pin 29: PSEN If external ROM is used for storing program then a logic zero (0) appears
on itevery time the microcontroller reads a byte from memory.

Pin 30: ALE Prior to reading from external memory, the microcontroller puts the lower
address byte (A0-A7) on PO and activates the ALE output. After receiving signal from the

52

ALE pin, the external register (usually 74HCT373 or 74HCT375 add-on chip) memorizes
the state of PO and uses itas a memory chip address. Immediately after that, the ALU
pin is

returned its previous logic state and PO is now used as a Data Bus. As seen, port data
multiplexing is performed by means of only one additional (and cheap) integrated circuit. In
other words, this port is used for both data and address transmission.

Pin 31: EA By applying logic zero to this pin, P2 and P3 are used for data and address
transmission with no

PIN DIAGRAM OF 8051

|

Fort 1 DI O ~r.0 B Veer A0 - nv

1
ot L B) 2 ~

(ADHPO O A% Foat O Bit O

(Addrean/Data O)

Lok I AD1IFO 1 3% PFort O B 1

(Adciress/Data 1)

AO2)HPOo. 2 37 Fort O e 2

(Addraan/Oata 2)

(ADPO. D AnK Port O Bit 3

(Addrosn/Calts 3)

(ADA)FO. 4 Oan Fart O Bt &

(Address/Dote a3

(ADSFO. 5 34 Port O Bt 5

(Adcarese/TOats %)

(ADGHPO.G aa Port O Bt &

(Address/Date 6)

RST (ADZIrO. 7 32 Port O nit 7

(Address/ODate 7)
Fost 3 MILO 10 F3.OMmxXDy V) /EA 21 Enternal Enabile

(Receive Data) (EFPROM Programming Valtage)
Tort 33 B0 1 13 PO Ty trRrROGYALE DO Address Letch Enabie
(XMIT Datad (EPROM Program Pules)
Port 3 Bt 2 12 PR ZONTD) FSEN 29 FProgram Stores £ nable
{Intermupt O)
Port 3 Rit 3 13 PR AGNT L) ALTHP2.7 2R Pot 2 8t 7
Interruet 1) (Address | 5)
Poct 2 DA 14 P3.ACTO (AT 6 27 Part 2 Rt 6

(Timer O ingar) (Adaress | 4)
Fort 2 i % 1% PR ST (AT e 26 Poct 2 Bt s

ETimer | input) (Adciress 1 A)

-
ot 3 Bt e 16 P36 W a1z a 25 | ot 2 Rita
3

Fort 1 DI 2
Faort 1 Bt 3 Lo
Fort | PRIt 4 ”

Fort 1 B e -1

NDs s

-~

a
A
=
Port 1 Ot S 6 P2
7
Port | Mt 7 "
°

Rorat Inpat

CWeste Sitratse) (Adirens t 2)
Port 3 Bt 7 17 P37 (HO) Ay P2 a Port 2 Bt s

(Read Strobe) (Addrens 1 1)
Cryatal Inout 2 18 xTALZ tAL1OYIm2. .2 28 Port 2 Bt 2

(Address 10)
Coystal 1nput) 19 =XTAL1L (AP2 1 22 ot 2 Rt)
(Adress 9)
fReaunad 20 Vas A2 0 2 Fost &t
(Addrans &)

Fig 2.11: Pin Diagram-8051
3.Memory Organization

The 8051 has two types of memory and these are Program Memory and Data Memory.
Program Memory (ROM) is used to permanently save the program being executed, while
Data Memory (RAM) is used for temporarily storing data and intermediate results created
and used during the operation of the microcontroller. Depending on the model in use (we are
still talking about the 8051 microcontroller family in general) at most a few Kb of ROM
and 128 or 256 bytes of RAM is used. However All 8051 microcontrollers have a 16-bit
addressing bus and are capable of addressing 64 kb memory. It is neither a mistake nor a
big ambition of engineers who were working on basic core development. It is a matter of
smart memory organization which makes these microcontrollers a real —programmers*
goody—.Program Memory. The first models of the 8051 microcontroller family did not
have internal program memory. It was added as an external separate chip. These models are
recognizable by their label beginning with 803 (for example 8031 or 8032). All later models
have a few Kbyte ROM embedded. Even though such an amountof memory is sufficient for
writing most of the programs, there are situations when it is necessaryto use additional
memory as well. A typical example is so called lookup tables. They are used in cases when

53

equations describing some processes are too complicated or when there is no time
forsolving them. In such cases all necessary estimates and approximates are executed in
advance and the final results are put in the tables (similar to logarithmic tables).

How does the microcontroller handle external memory depends on the EA pin logic state:

Address FFFF hex

A

EA pin=1 »
EA pin=0 Additional ROM

‘ Memory
(64K max.)

Address FFFF hex

External ROM
Memory Address 4000 hex

(64K max.)

<+
<+
<+
<+
<+

Embedded ROM
Memory
(4K)

Fig 2.12: External memory EA pin
EA=0 In this case, the microcontroller completely ignores internal program memory
andexecutes only the program stored in external memory.
EA=1 In this case, the microcontroller executes first the program from built-in ROM,

then theprogram stored in external memory.
In both cases, PO and P2 are not available for use since being used for data and
addresstransmission. Besides, the ALE and PSEN pins are also used.

Data Memory

As already mentioned, Data Memory is used for temporarily storing data and intermediate
resultscreated and used during the operation of the microcontroller. Besides, RAM memory
built in the 8051 family includes many registers such as hardware counters and timers,
input/output ports, serial data buffers etc. The previous models had 256 RAM locations,
while for the later models this number was incremented by additional 128 registers.
However, the first 256 memory locations (addresses 0-FFh) are the heart of memory
common to all the models belonging to the 8051 family. Locations available to the user
occupy memory space with addresses 0-7Fh, i.e. first 128 registers. This part of RAM is
divided in several blocks.

The first block consists of 4 banks each including 8 registers denoted by R0-R7. Prior to
accessing any of these registers, it is necessary to select the bank containing it. The next

54

memory block (address 20h-2Fh) is bit- addressable, which means that each bit has its own
address (0- 7Fh). Since there are 16 such registers, this block contains in total of 128 bits
with separate addresses (address of bit 0 of the 20h byte is 0, while address of bit 7 of the
2Fh byte is 7Fh). The third group of registers occupy addresses 2Fh-7Fh, i.e. 80 locations,
and does not have any special functions or features.

Additional RAM

In order to satisfy the programmers‘ constant hunger for Data Memory, the manufacturers
decided to embed an additional memory block of 128 locations into the latest versions of
the 8051 microcontrollers. However, it‘s not as simple as it seems to be... The problem is
that electronics performing addressing has 1 byte (8 bits) on disposal and is capable of
reaching only the first 256 locations, therefore. In order to keep already existing 8-bit
architecture and compatibility with other existing models a small trick was done.

What does it mean? It means that additional memory block shares the same addresses with
locations intended for the SFRs (80h- FFh). In order to differentiate between these two
physically separated memory spaces, different ways of addressing are used. The SFRs
memory locations are accessed by direct addressing, while additional RAM memory
locations are accessed by indirect addressing.

55

Later versions of the 8051 microcontrollers
(ﬁegenud-pmjgosenglsten)

(128 general-purpose registers)

Previous versions of the 8051 microcontrollers

2885 mmmmnmm o

w
5
=

58B 5833838 8 832 2 8 23

SxERE2BE mnmmmmmm BXRRE2ER mmmmmmmm < seweu w..ouw_mom

(02]l03 [04]05]l06 !!?_

Internal RAM

Fig 2.13:

56

Memory expansion

In case memory (RAM or ROM) built in the microcontroller is not sufficient, it is possible
to addtwo external memory chips with capacity of 64Kb each. P2 and P3 1/O ports are used
for their addressing and data transmission.

Ej

LRI

) LA
T

[

Lower address byte writing

Fig 2.14: External Memory Interfacing

From the user‘s point of view, everything works quite simply when properly connected
because most operations are performed by the microcontroller itself. The 8051
microcontroller has two pins for data read RD#(P3.7) and PSEN#. The first one is used for
reading data from external data memory (RAM), while the other is used for reading data
from external program memory (ROM). Both pins are active low. A typical example of
memory expansion by adding RAM and ROM chips (Hardward architecture), is shown in
figure above.

57

Even though additional memory is rarely used with the latest versions of the
microcontrollers, we will describe in short what happens when memory chips are connected
according to the previous schematic. The whole process described below is performed
automatically.

o When the program during execution encounters an instruction which resides in
external memory (ROM), the microcontroller will activate its control output ALE
and set the first 8 bits of address (A0-A7) on PO. IC circuit 74HCT573 passes the
first 8 bits to memory address pins.

o A signal on the ALE pin latches the IC circuit 74HCT573 and immediately
afterwards 8 higher bits of address (A8-A15) appear on the port. In this way, a
desired location of additional program memory is addressed. It is left over to read
its content.

o Port PO pins are configured as inputs, the PSEN pin is activated and the
microcontroller reads from memory chip.

Similar occurs when it is necessary to read location from external RAM. Addressing is
performed in the same way, while read and write are performed via signals appearing on the
control outputs RD (is short for read) or WR (is short for write).

3.Addressing Modes

An "addressing mode" refers to how you are addressing a given memory location. In
summary, the addressing modes are as follows, with an example of each:
Immediate Addressing MOV A, #20h

Direct Addressing MOV A,30h
Indirect Addressing MOV A QRO
External Direct MOV X

A,@DPTR

Code Indirect MOVC A,@A+DPTR

Each of these addressing modes provides important flexibility.

Immediate Addressing
Immediate addressing is so-named because the value to be stored in memory immediately
follows the operation code in memory. That is to say, the instruction itself dictates what
value will be stored in memory.
For example, the instruction:

MOV A #6Ah

This instruction uses Immediate Addressing because the Accumulator will be loaded with
the value that immediately follows; in this case 6A (hexidecimal).

Immediate addressing is very fast since the value to be loaded is included in the
instruction. However, since the value to be loaded is fixed at compile-time it is not very
flexible.

58

Direct Addressing

Direct addressing is so-named because the value to be stored in memory is obtained by
directly retrieving it from another memory location. For example:

MOV A,30h

This instruction will read the data out of Internal RAM address 30 (hexidecimal) and store
it in the Accumulator.

Direct addressing is generally fast since, although the value to be loaded isnt included in
the instruction, it is quickly accessable since it is stored in the 8051s Internal RAM. It is
also much more flexible than Immediate Addressing since the value to be loaded is
whatever is found at thegiven address--which may be variable.

Also, it is important to note that when using direct addressing any instruction which refers
to an address between 00h and 7Fh is referring to Internal Memory. Any instruction which
refers to an address between 80h and FFh is referring to the SFR control registers that
control the 8051 microcontroller itself.
Indirect Addressing

Indirect addressing is a very powerful addressing mode which in many cases provides an
exceptional level of flexibility. Indirect addressing is also the only way to access the extra
128 bytes of Internal RAM found on an 8052.

Indirect addressing appears as follows:

MOV A,@RO
This instruction causes the 8051 to analyze the value of the RO register. The 8051 will then
load the accumulator with the value from Internal RAM which is found at the address
indicated by RO.

For example, lets say RO holds the value 40h and Internal RAM address 40h holds the
value 67h.When the above instruction is executed the 8051 will check the value of RO.
Since RO holds 40h the 8051 will get the value out of Internal RAM address 40h (which
holds 67h) and store it in theAccumulator. Thus, the Accumulator ends up holding 67h.

Indirect addressing always refers to Internal RAM; it never refers to an SFR. Thus, in a
prior example we mentioned that SFR 99h can be used to write a value to the serial port.
Thus one may think that the following would be a valid solution to write the value 1 to the
serial port:

MOV RO0,#99h ;Load the address of the serial port

MOV @RO0,#01h ;Send 01 to the serial port -- WRONG!!

This is not valid. Since indirect addressing always refers to Internal RAM these two
instructions would write the value 01h to Internal RAM address 99h on an 8052. On an
8051 these two instructions would produce an undefined result since the 8051 only has 128
bytes

59

of Internal RAM.

External Direct

External Memory is accessed using a suite of instructions which use what I call "External
Direct"addressing. | call it this because it appears to be direct addressing, but it is used to
access externalmemory rather than internal memory.
There are only two commands that use External Direct addressing mode:

MOVXA,@DPT R

MOVX
@DPTR,A

Both commands utilize DPTR. In these instructions, DPTR must first be loaded with the
address of external memory that you wish to read or write. Once DPTR holds the correct
external memory address, the first command will move the contents of that external memory
address into the Accumulator. The second command will do the opposite: it will allow you
to write the value of the Accumulator to the external memory address pointed to by DPTR.

External Indirect

External memory can also be accessed using a form of indirect addressing which | call
External Indirect addressing. This form of addressing is usually only used in relatively small
projects that have a very small amount of external RAM. An example of this addressing mode
is:
MOVX @R0,A

Once again, the value of RO is first read and the value of the Accumulator is written to that
address in External RAM. Since the value of @RO can only be 00h through FFh the project
would effectively be limited to 256 bytes of External RAM. There are relatively simple
hardware/software tricks that can be implemented to access more than 256 bytes of memory
using External Indirect addressing.

4. Instruction Set

The process of writing program for the microcontroller mainly consists of giving instructions
(commands) in the specific order in which they should be executed in order to carry out a
specific task. As electronics cannot —understandl what for example an instruction —if the
push button is pressed- turn the light onl means, then a certain number of simpler and
precisely defined orders that decoder can recognise must be used. All commands are
known as INSTRUCTION SET. All microcontrollers compatibile with the 8051 have in
total of 255 instructions, i.e. 255 different words available for program writing.

At first sight, it is imposing number of odd signs that must be known by heart. However, It
is not so complicated as it looks like. Many instructions are considered to be —differentl, even
though they perform the same operation, so there are only 111 truly different commands.
For example: ADD A,RO, ADD ARL, ... ADD A,R7 are instructions that perform the
same

60

operation (additon of the accumulator and register). Since there are 8 such registers, each
instruction is counted separately. Taking into account that all instructions perform only 53
operations (addition, subtraction, copy etc.) and most of them are rarely used in practice,
there are actually 20-30 abbreviations to be learned, which is acceptable.

Types of instructions
Depending on operation they perform, all instructions are divided in several groups:
o Arithmetic Instructions
Branch Instructions
Data Transfer Instructions
Logic Instructions
Bit-oriented Instructions

The first part of each instruction, called MNEMONIC refers to the operation aninstruction
performs (copy, addition, logic operation etc.). Mnemonics are abbreviations of the name
of operation being executed. For example:
o INC R1 - Means: Increment register R1 (increment register R1);
o LJMP LABS - Means: Long Jump LAB5 (long jump to the address marked as LAB5);
e JNZ LOOP - Means: Jump if Not Zero LOOP (if the number in the accumulator is
not 0, jump to the address marked as LOOP);

The other part of instruction, called OPERAND is separated from mnemonic by at least one
whitespace and defines data being processed by instructions. Some of the instructions have
no operand, while some of them have one, two or three. Ifthere is more than one operand in
an instruction, they are separated by a comma. For example:
o RET - return from asubroutine;
e JZ TEMP - if the number in the accumulator is not 0, jump to the address marked
as TEMP;
« ADD AR3 -add R3 and accumulator;
o CJINE A#20,LOOP - compare accumulator with 20. If they are not equal, jump
to the address marked as LOOP;

Arithmetic instructions
Arithmetic instructions perform several basic operations such as addition, subtraction,
division, multiplication etc. After execution, the result is stored in the first operand. For
example:
ADD A,R1 - The result of addition (A+R1) will be stored in the accumulator.

Arithmetic Instructions

Mnemonic Description Byte Cycle
ADD A,Rn Adds the register to the accumulator 1 1
ADD A, direct Adds the direct byte to the accumulator 2 2
ADD A,@Ri Adds the indirect RAM to the accumulator 1 2
ADD A #data Adds the immediate data to the accumulator 2 2

61

ADDC A,Rn Adds the register to the accumulator with acarry flag 1

AD Adds the direct byte to the accumulator with acarry flag 2
DC

Adi

rect

ADDC A,@Ri Adds the indirect RAM to the accumulator with a carry flag 1
ADDC Adds the immediate data to the accumulator with a carry flag 2
A #data

SUBB A,Rn Subtracts the register from the accumulator with a borrow 1
SUBB A, direct Subtracts the direct byte from the accumulator with a borrow 2
SUBB A,@Ri Subtracts the indirect RAM from the accumulator with a borrow 1
SUBB A #data Subtracts the immediate data from the accumulator with a borrow 2
INC A Increments the accumulator by 1 1
INC Rn Increments the register by 1 1
INC Rx Increments the direct byte by 1 2
INC @RI Increments the indirect RAM by 1 1
DEC A Decrements the accumulator by 1 1
DEC Rn Decrements the register by 1 1
DEC Rx Decrements the direct byte by 1 1
DEC @Ri Decrements the indirect RAM by 1 2
INC DPTR Increments the Data Pointer by 1 1
MUL AB Multiplies A and B 1
DIV AB Divides A by B 1
DA A Decimal adjustment of the accumulator according to BCD code 1

Branch Instructions

There are two kinds of branch instructions:

Unconditional jump instructions: upon their execution a jump to a new location from
where theprogram continues execution is executed.

Conditional jump instructions: a jump to a new program location is executed only if
a specifiedcondition is met. Otherwise, the program normally proceeds with the next
instruction.

62

N

P O1TO0O1T W WNEFEPPFP WWDNEDNDNDDNDPE

Jump Instruction Ranges
Memory Address (HEX)

Frry¥ LADOD Lirmit T - _i
|
i
/ i
Next Page r_ _s;;DTmT _______ _, :
:]
PC + 1274 Relative Limit »——1' jthc o : :
1 jze Jumps= I '
| sac AIMP LIame
e C Next Opcode ———r—c—JE————'_——————_._._{
Jump Opcode | oamnz Byte] {
' 2z Jumps] 1
| INz] I
PC — 128a Relative Limit L — —1 some : 1
1 1
z SADD Limit J _: :
THIS Page Lo c e s a— r_ S - I A a— S S— ‘
/// '
1
o | '
[
o000 2 caa B LG S N S S SN P S D _J
Fig 2.15: Jump Address Range
Branch Instructions
Mnemonic Description Byte Cycle
ACALL addrll Absolute subroutine call 2 6
LCALL addrl6 Long subroutine call 3 6
RET Returns from subroutine 1 4
RETI Returns from interrupt subroutine 1 4
AJMP addril Absolute jump 2 3
LIJMP addr16 Long jump 3 4
hort jump (from —128 to +127 locations relative to the followin
SIMP rel ﬁmstruéﬁorﬁ(g2 3
JC rel Jump if carry flag is set. Short jump. 2 3
JNC rel Jump if carry flag is not set. Short jump. 2 3
JB bit,rel Jump if direct bit is set. Short jump. 3 4
JBC bit,rel Jump if direct bit is set and clears bit. Short jump. 3 4
JMP @A+DPTR Jump indirect relative to the DPTR 1 2
JZ rel Jump if the accumulator is zero. Short jump. 2 3
JNZ rel Jump if the accumulator is not zero. Short jump. 2 3

CINE A direct re] Compares direct byte to the accumulator and jumps if not equal. g4
' "~ Short jump.

CINE A #data.re] Compares immediate data to the accumulator and jumps if not 54
’ ’ equal. Short jump.

CJINE Rn #data,rel

63

CINE

DJNZ Rn,rel Decrements register and jumps if not 0. Short jump. 2 3
DJNZ Rx,rel Decrements direct byte and jump if not 0. Short jump. 3 4
NOP No operation 1 1

Data Transfer Instructions
Data transfer instructions move the content of one register to another. The register the
content of which is moved remains unchanged. If they have the suffix —XI (MOVX), the data
is exchanged with external memory.

Data Transfer Instructions

Mnemonic Description Byte Cycle
MOV A,Rn Moves the register to the accumulator 1 1
MOV A direct Moves the direct byte to the accumulator 2 2
MOV A ,@Ri Moves the indirect RAM to the accumulator 1 2
MOV A #data Moves the immediate data to the accumulator 2 2
MOV Rn,A Moves the accumulator to the register 1 2
MOV Rn,direct Moves the direct byte to the register 2 4
MOV Rn#data Moves the immediate data to the register 2 2
MOV direct,A Moves the accumulator to the direct byte 2 3
MOV direct,Rn Moves the register to the direct byte 2 3
MOV direct,direct Moves the direct byte to the direct byte 3 4
MOV direct,@Ri Moves the indirect RAM to the direct byte 2 4
MOV direct,#data Moves the immediate data to the direct byte 3 3
MOV @RI, A Moves the accumulator to the indirect RAM 1 3
MOV @Ri,direct Moves the direct byte to the indirect RAM 2 5
MOV @Ri#data Moves the immediate data to the indirect RAM 2 3
MOV DPTR #data Moves a 16-bit data to the data pointer 3 3
MOVC Moves the code byte relative to the DPTR to the accumula tor 1 3

A @Q@A+DPTR (address=A+DPTR)

Moves the code byte relative to the PC to theaccumulator
MOVC A @A+PC (address=A+PC) 1

MOVX A,@Ri Moves the external RAM (8-bit address) to the accumulator 1 3-10

w

OVX A, @DPTR Moves the external RAM (16-bit address) to the accumulator 1 3-10
MOVX @Ri,A Moves the accumulator to the external RAM (8-bit address) 1 4-11
MOVX Moves the accumulator to the external RAM (16-bit address) 1 4-11
@DPTR,A

PUSH direct Pushes the direct byte onto the stack 2 4
POP direct Pops the direct byte from the stack/td> 2 3
XCH A,Rn Exchanges the register with the accumulator 1 2
XCH A direct Exchanges the direct byte with the accumulator 2 3
XCH A,@RI Exchanges the indirect RAM with the accumulator 1 3

64

XCHD A,@Ri

Logic Instructions

Exchanges the low-order nibble indirect RAM with the {

Logic instructions perform logic operations upon corresponding
bits of execution, the result is stored in the first operand.

Logic Instructions
Mnemonic

ANL ARn

ANL A direct
ANL A @RI
ANL A #data
ANL direct,A
ANL direct,#data
ORL A,Rn

ORL A, direct
ORL A,@Ri
ORL direct,A
ORL direct,#data
XRL A,Rn

XRL A,direct
XRL A,@RIi
XRL A #data
XRL direct,A

Description

AND register to accumulator

AND direct byte to accumulator

AND indirect RAM to accumulator

AND immediate data to accumulator

AND accumulator to direct byte

AND immediae data to direct register

OR register to accumulator

OR direct byte to accumulator

OR indirect RAM to accumulator

OR accumulator to direct byte

OR immediate data to direct byte

Exclusive OR register to accumulator
Exclusive OR direct byte to accumulator
Exclusive OR indirect RAM to accumulator
Exclusive OR immediate data to accumulator
Exclusive OR accumulator to direct byte

XORL direct,#data Exclusive OR immediate data to direct byte

CLRA
CPL A
SWAP A
RL A

RLC A
RR A

RRC A

Clears the accumulator

Complements the accumulator (1=0, 0=1)
Swaps nibbles within the accumulator
Rotates bits in the accumulator left

Byte Cycle

P PP PP OWODNMNNMNPEPDNPFPODNEPDNE ODNMNMDMNDEDNPRE

Rotates bits in the accumulator left through carry 1

Rotates bits in the accumulator right

1

Rotates bits in the accumulator right through carry 1

65

1

2
2
2
3
4
1
2
2
3
4
1
2
2
2
3
4
1
1
1
1
1
1
1

g accumulator

two registers. After

Bit-oriented Instructions

Similar to logic instructions, bit-oriented instructions perform logic operations.
The difference isthat these are performed upon single bits.

Bit-oriented Instructions

Mnemonic Description Byte Cycle
CLRC Clears the carry flag

CLR bit Clears the direct bit

SETB C Sets the carry flag

SETB bit Sets the direct bit

CPLC Complements the carry flag
CPL bit ~ Complements the direct bit
ANL C,bit AND direct bit to the carry flag
ANL C,/bit AND complements of direct bit to the carry flag
2 2 ORL C,bit OR direct bit to the carry flag

NN EFEDNEFEDNPRP-
NWEFE WEFEk W

2 2 ORL C,/bit OR complements of direct bit to the carry
flag 2 2 MOV C,bit Moves the direct bit to the carry flag

2 2 MOV bit,C Moves the carry flag to the direct bit

23

6.8051 Microcontroller Interrupts

There are five interrupt sources for the 8051, which means that they can recognize 5
different events that can interrupt regular program execution. Each interrupt can be
enabled or disabled bysetting bits of the IE register. Likewise, the whole interrupt system
can be disabled by clearing the EA bit of the same register. Refer to figure below.

Now, it is necessary to explain a few details referring to external interrupts- INTO and
INT1. Ifthe ITO and IT1 bits of the TCON register are set, an interrupt will be generated
on high to lowtransition, i.e. on the falling pulse edge (only in that moment). If these bits
are cleared, an interrupt will be continuously executed as far as the pins are held low.

66

Register TCON

INTO ¥ o “>°—
INTY l: I g - {E

TFO

Register IE

&”

Timer 0
_EA

— Interrupt

TF1

(7 p] Timer 1
=
(a UART ﬁ:@
8051
Fig 2.16:TCON
IE Register (Interrupt Enable)
0 X 0 0 0 0 0 0 Value after Reset
IE | EA ET2 | ES | ET1 | EX1 | ETO | EX0o | Bitname
bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0
Fig 2.17: IE

o EA - global interrupt enable/disable:
o 0-disables all interrupt requests.
o 1-enables all individual interrupt requests.
o ES - enables or disables serial interrupt:
o 0-UART system cannot generate an interrupt.
o 1-UART system enables an interrupt.
o ET1 - bitenables or disables Timer 1 interrupt:
o 0-Timer 1 cannot generate an interrupt.
0 1-Timer 1enables an interrupt.
o EX1 - bitenables or disables external 1 interrupt:
o 0-change of the pin INTO logic state cannot generate an interrupt.
o 1-enables an external interrupt on the pin INTO state change.
o ETO - bit enables or disables timer 0 interrupt:
o 0 - Timer 0 cannot generate an interrupt.
o 1-enablestimer 0 interrupt.
o EXO - bit enables or disables external O interrupt:
o 0 -change of the INT1 pin logic state cannot generate an interrupt.
o 1-enables an external interrupt on the pin INT1 state change.

67

Interrupt Priorities

It is not possible to forseen when an interrupt request will arrive. If several
interrupts areenabled, it may happen that while one of them is in progress, another one is
requested. In order

that the microcontroller knows whether to continue operation or meet a new interrupt
request,there is a priority list instructing it what to do.

The priority list offers 3 levels of interrupt priority:

1. Reset! The apsolute master. When a reset request arrives, everything is stopped
and the microcontroller restarts.

2. Interrupt priority 1 can be disabled by Resetonly.

3. Interrupt priority O can be disabled by both Reset and interrupt priorityl.

The IP Register (Interrupt Priority Register) specifies which one of existing interrupt
sourceshave higher and which one has lower priority. Interrupt priority is usually
specified at the beginning of the program. According to that, there are several
possibilities:

« If an interrupt of higher priority arrives while an interrupt is in progress, it
willbe immediately stopped and the higher priority interrupt will be
executed first.

o If two interrupt requests, at different priority levels, arrive at the same time
then the higher priority interrupt is serviced first.

« If the both interrupt requests, at the same priority level, occur one after another,
the one which came later has to wait until routine being in progress ends.

o If two interrupt requests of equal priority arrive at the same time then the
interrupt to be serviced is selected according to the following priority list:

External interrupt INTO

Timer 0 interrupt

External Interrupt INT1

Timer 1 interrupt

Serial Communication Interrupt

arwbdE

IP Register (Interrupt Priority)

The IP register bits specify the priority level of each interrupt (high or low priority).

X X 0 0 0 0 0 0 Value after Reset
IP P12 | ps | Pr1 | Px1 | PTO | PXo | Bitname
bit7 bit6 bit5 bit4 hit3 bit2 bit1 hit0
Fig 2.18: IP

68

PS - Serial Port Interrupt priority bit

o Priority0
Priority 1
PT1 - Timer 1 interrupt priority
o Priority0
o Priority1
PX1 - External Interrupt INT1 priority
o Priority0
o Priority 1
PTO - Timer O Interrupt Priority
o Priority0
o Priority1
PXO0 - External Interrupt INTO Priority
o Priority0
o Priority1

Handling Interrupt
When an interrupt request arrives the following occurs:

Reset

1.
2.
3.

Reset occurs when the RS pin is supplied with a positive pulse in duration of at least 2
machine cycles (24 clock cycles of crystal oscillator). After that, the microcontroller
generates an internal reset signal which clears all SFRs, except SBUF registers, Stack Pointer
and ports (the state of the first two ports is not defined, while FF value is written to the ports
configuring all their pins as inputs). Depending on surrounding and purpose of device, the
RS pin is usually connected to apower-on reset push button or circuit or to both of them.

Instruction in progress is ended.

The address of the next instruction to execute is pushed on the stack.
Depending on which interrupt is requested, one of 5 vectors (addresses) is
written tothe program counter in accordance to the table below:

Interrupt Source Vector (address)

IEO 3h
TFO Bh
TF1 1B h
RI, Tl 23 h

All addresses are in hexadecimal format

These addresses store appropriate subroutines processing interrupts. Instead of
them, there are usually jump instructions specifying locations on which these

subroutines reside.

When an interrupt routine is executed, the address of the next instruction to
execute is poped from the stack to the program counter and interrupted program

resumes operation from where it left off.

Figure below illustrates one of the simplest circuit providing safe power-on reset.

69

vce On Reset
e
N D RST
Hszxo
T—D GND
L GND

Fig 2.19:Reset

Basically, everything is very simple: after turning the power on, electrical capacitor is
being charged for several milliseconds throgh a resistor connected to the ground. The pin is
driven highduring this process. When the capacitor is charged, power supply voltage is
already stable and the pin remains connected to the ground, thus providing normal
operation of the microcontroller.Pressing the reset button causes the capacitor to be
temporarily discharged and the microcontroller is reset. When released, the whole process
IS repeated. ..

Through the program- step by step...
microcontrollers normally operate at very high speed. The use of 12 Mhz quartz crystal enables
instructions to be executed per second. Basically, there is no need for higher

operating rate. In case it is needed, it is easy to built in a crystal for high frequency.
The problem arises when it is necessary to slow down the operation of the
microcontroller. For example during testing in real environment when it is
necessary to execute several instructions step by step in order to check 1/0 pins'
logic state.

Interrupt system of the 8051 microcontroller practically stops operation of the
microcontrollerand enables instructions to be executed one after another by pressing the
button. Two interruptfeatures enable that:
o Interrupt request is ignored if an interrupt of the same priority level is inprogress.
« Upon interrupt routine execution, a new interrupt is not executed until at
least one instruction from the main program is executed.

In order to use this in practice, the following steps should be done:

70

1. External interrupt sensitive to the signal level should be enabled (for example INTO).
2. Three following instructions should be inserted into the program (at the 03hex. address):

"

INB P32§ <—— Mecans: wait here until the pin P3.2 (INTO) 1s set to “1™.
JB P32§ <—— Mecans: wait here until the pin P3.2 (INTO) 1s set to “(0",
RETI <— Mecans: go back to the main program

What is going on? As soon as the P3.2 pin is cleared (for example, by pressing the
button), themicrocontroller will stop program execution and jump to the 03hex address
will be executed. This address stores a short interrupt routine consisting of 3
instructions.

The first instruction is executed until the push button is realised (logic one (1) on the P3.2
pin). The second instruction is executed until the push button is pressed again. Immediately
after that, the RET]I instruction is executed and the processor resumes operation of the main
program. Uponexecution of any program instruction, the interrupt INTO is generated and
the whole procedure is repeated (push button is still pressed). In other words, one button
press - one instruction

6. Input/Output Ports

All 8051 microcontrollers have 4 1/0O ports each comprising 8 bits which can be configured
as inputs or outputs. Accordingly, in total of 32 input/output pins enabling the
microcontroller to beconnected to peripheral devices are available for use.

Pin configuration, i.e. whether it is to be configured as an input (1) or an output (0), depends
on its logic state. In order to configure a microcontroller pin as an output, it is necessary to
apply a logic zero (0) to appropriate 1/0 port bit. In this case, voltage level on appropriate
pin will be 0.

Similarly, in order to configure a microcontroller pin as an input, it is necessary to apply a
logic one (1) to appropriate port. In this case, voltage level on appropriate pin will be 5V
(as is the case with any TTL input). This may seem confusing but don't loose your
patience. It all becomesclear after studying simple electronic circuits connected to an 1/0

pin.

71

U U U 4 §
U]] i U i U
1|o[jo]jo(|1]o[]1] 0]
A A A A A A A
0 ‘ 1 L OI(0|1 (O‘ 1| Special Function
e — ﬁ — Registers
1loa]ae]a][1]e] Erre
"2 ' 'LO*J;%;’ ;:” i ﬁﬁ’ Input / Output
o/o|/1/1]/0)1]0]1. Register
| = 1_1— 01 0H1 lnputplo?tutput
s St o B B . SRR
| IO Pins
E
= = =

Fig 2.20: Input / Output

vce
i
' Output (0V)
VO Register iy \ TTT '
(Port) ISR
— |
Output Data (0)
GND
Fig 2.21: Output
Input/Output (1/0) pin Figure abov

72

]1 Pull up
Resistor
1O pin

Input D?a— :} T A:-]’F

IIO Register '=rT=T
(Port) l
| f

Oul,Jul Data
1
GN

Fig 2.22: Input / output

Output pin
A logic zero (0) is applied to a bit of the P register. The output FE transistor is turned on,

thus connecting the appropriate pin to ground.

vee
i|\
InputData 0or 1) _ N, Input (SV)
(. |
e IIE

Fig 2.23 output
Hardware interrupts of 8085

Input
pin A logic one (1) is applied to a bit of the P register. The output FE transistor is turned off and

theappropriate pin remains connected to the power supply voltage over a pull-up resistor of
high resistance.

Logic state (voltage) of any pin can be changed or read at any moment. A logic zero (0) and
logic one (1) are not equal. A logic one (0) represents a short circuit to ground. Such a pin

acts asan output.

A logic one (1) is —loosely connected to the power supply voltage over a resistor of high
resistance. Since this voltage can be easily —reduced| by an external signal, such a pin actsas.

73

The PO port is characterized by two functions. If external memory is used then the lower
address byte (addresses A0-A7) is applied on it. Otherwise, all bits of this port are configured as
inputs/outputs.The other function is expressed when it is configured as an output. Unlike other
ports consisting of pins with built-in pull-up resistor connected by its end to 5 V power
supply, pins of this port have this resistor left out. This apparently small difference has its

consequences:
Input Data (0 or 1) :I] Input
,(i] a8, “ ;

*

Port 0 [
(/O Register)

Fig 2.24: Port 0 configuration-input

If any pin of this port is configured as an input then it acts as if it —floatsl. Such an input has
unlimited input resistance and indetermined potential.

Input Data (0 or 1) :} Input
r—‘ - \”I

*

: uli-U
Port 0 [v

(/O Register)

Port
(/0 regisver)

= |

Ll

GND

L
o »
Qutput Data (0)

Fig 2.25: Port 0 configuration-output

When the pin is configured as an output, it acts as an —open drainl. By applying logic 0 to aport
bit, the appropriate pin will be connected to ground (0V). By applying logic 1, the external
output will keep on —floatingl. In order to apply logic 1 (5V) on this output pin, it isnecessary to
built in an external pull-up resistor.Only in case PO is used for addressing external memory,
the microcontroller will provide internalpower supply source in order to supply its pins with
logic one. There is no need to add

74

PORT A

P2 acts similarly to PO when external memory is used. Pins of this port occupy addresses
intended for external memory chip. This time it is about the higher address byte with
addresses A8-A15. When no memory is added, this port can be used as a general input/output
port showingfeatures similar to P1.

Port 3

All port pins can be used as general /O, but they also have an alternative function. In order
to use these alternative functions, a logic one (1) must be applied to appropriate bit of the P3
register. In tems of hardware, this port is similar to PO, with the difference that its pins have
a pull-up resistor built-in.

Pin's Current limitations

When configured as outputs (logic zero (0)), single port pins can receive a current of
10mA. If all8 bits of a port are active, a total current must be limited to 15mA (port PO:
26mA). If all ports (32 bits) are active, total maximum current must be limited to 71mA.
When these pins are configured as inputs (logic 1), built-in pull-up resistors provide very
weak current, but strong enough to activate up to 4 TTL inputs of LS series.

As seen from description of some ports, even though all of them have more or less similar
architecture, it is necessary to pay attention to which of themis to be used for what and how.

For example, if they shall be used as outputs with high voltage level (5V), then PO should
be avoided because its pins do not have pull-up resistors, thus giving low logic level only.
When using other ports, one should have in mind that pull-up resistors have a relatively
high resistance,so that their pins can give a current of several hundreds microamperesonly.

Counters and Timers

As you already know, the microcontroller oscillator uses quartz crystal for its operation. As
the frequency of this oscillator is precisely defined and very stable, pulses it generates are
always of the same width, which makes them ideal for time measurement. Such crystals are
also used in quartz watches. In order to measure time between two events it is sufficient to
count up pulses coming from this oscillator. That is exactly what the timer does. If thetimer
is properly programmed, the value stored in its register will be incremented (or
decremented) with each coming pulse, i.e. once per each machine cycle. A single machine-
cycle instruction lasts for 12 quartz oscillator periods, which means that by embedding

quartz with oscillator frequency of 12MHz, a number stored in the timer register will be
changed million times per second, i.e. each microsecond.

75

The 8051 microcontroller has 2 timers/counters called TO and T1. As their names suggest,
their main purpose is to measure time and count external events. Besides, they can be used
for generating clock pulses to be used in serial communication, so called Baud Rate.

Timer TO

As seen in figure below, the timer TO consists of two registers — THO and TLO representing
a lowand a high byte of one 16-digit binary number.

THO Register TLO Register
A A

bit3 bit2

bitd

bits

bith

bitT

bith

Timer TO

it15 bitld bit1d bit12 bit11 bit10 bitd

Fig 2.26: Timer 0

Accordingly, if the content of the timer TO is equal to 0 (TO=0) then both registers it
consists ofwill contain 0. If the timer contains for example number 1000 (decimal), then
the THO register (high byte) will contain the number 3, while the TLO register (low byte)
will contain decimal number 232.

0 0 0 0 0 0 0 0 Value after reset

THO Bit name

hit? bit6 bit5 hitd hit3 bit2 bit1 hit0

0 0 0 0 0 0 0 0 Value after reset

TLO Bit name

bit7 hité bits hit4 hit3 bit2 bit1 bit0

Fig 2.27: Timer 0-TLO& TL1

Formula used to calculate values in these two registers is very
simple:THOx 256 + TLO=T

Matching the previous example it would

be as follows:3 x 256 + 232 = 1000

76

THO=3(Dec.) TL0=232(Dec.)
f A AF A

LoJoJoJolol 114 1F4f4f1f07f1f07]07]f0|

biti5 bit1d bit13 biti2 bt bitio bitd bitd bitT it hit5 bitd bit3 bit2 bit1 bitd

Timer T0=1000 (Dec.)

A

.

Fig 2.28: Timer 0
Since the timer TO is virtually 16-bit register, the largest value it can store is 65 535. In
case ofexceeding this value, the timer will be automatically cleared and counting starts
from 0. This condition is called an overflow. Two registers TMOD and TCON are

closely connected to thistimer and control its operation.
TMOD Register (Timer Mode)

The TMOD register selects the operational mode of the timers TO and T1. As seen in
figure below, the low 4 bits (bit0 - bit3) refer to the timer 0, while the high 4 bits (bit4 -
bit7) refer tothe timer 1. There are 4 operational modes and each of them is described

herein.

0 0 0 0 0 Value after reset
Bit name

0 0 0

TMOD | catet | cm1 | Tim1 | TIMO | GATEO | C/TO | ToM1 | TOMO
bit7 bit6 bit5 bitd bit3 btz bitt bit0

Fig 2.29: TMOD

Bits of this register have the following function:

o GATEZ1 enables and disables Timer 1 by means of a signal brought to the
INT1 pin (P3.3):
o 1-Timer 1 operates only if the INT1 bit is set.
o 0 - Timer 1 operates regardless of the logic state of the INT1 bit.

o C/T1 selects pulses to be counted up by the timer/counter 1:

o 1-Timer counts pulses brought to the T1 pin (P3.5).
0 0- Timer counts pulses from internal oscillator.

o T1ML1,T1IMO These two bits select the operational mode of the Timer 1.

T1M1 T1MO Mode Description

0 O 0 13-bit timer
0 1 1 16-bit timer
1 0 2 8-hit auto-reload

77

1 1 3 Split mode

o GATEO enables and disables Timer 1 using a signal brought to the INTO pin (P3.2):

o 1-Timer O operates only if the INTO bit is set.
o 0 - Timer O operates regardless of the logic state of the INTO bit.
o C/TO selects pulses to be counted up by the timer/counter 0:
o 1-Timer counts pulses brought to the TO pin (P3.4).
0 0 - Timer counts pulses from internal oscillator.
o TOM1,TOMO These two bits select the oprtaional mode of the Timer 0.

TOM1 TOMO Mode
Descriptio
n
0 O 0 13-bit timer
0 1 1 16-bit timer
1 0 2 8-bit auto-reload
1 1 3 Split mode

Timer 0 in mode 0 (13-bit timer)

This is one of the rarities being kept only for the purpose of compatibility with the previuos
versions of microcontrollers. This mode configures timer 0 as a 13-bit timer which consists
of all8 bits of THO and the lower 5 bits of TLO. As a result, the Timer 0 uses only 13 of 16
bits. How does it operate? Each coming pulse causes the lower register bits to change their
states. After receiving 32 pulses, this register is loaded and automatically cleared, while the
higher byte (THO)is incremented by 1. This process is repeated until registers count up
8192 pulses. After that, both registers are cleared and counting starts from 0.

78

£ Mode 0

[TCON Register

! 112
| l.,,)_,# THO TLO
ol TN o+ [(1EII
I =y e
INTOI: :@ :oa——*g (Timero: 0 - 8191
[l i '
L cT | [GATE|

TMOD Register
Fig 2.30: Timer Mode 0

Timer 0 in mode 1 (16-bit timer)

Mode 1 configures timer 0 as a 16-bit timer comprising all the bits of both registers THO
and TLO. That's why this is one of the most commonly used modes. Timer operates in the
same wayas in mode 0, with difference that the registers count up to 65 536 as allowable

by the 16 bits.

U‘m Mocdle 1

ol
'm! | osC.
|:|J | TCON Register
BT TRO
s
THO TLO
oll__9 1 TS /°“’|IIIIII|IIIIIIII||
i N
| L B = _
INT05|:E I Io—ﬁg [Tlmer0:0-65§35]
1] I:E I: g)
ey @ v @
GATE
TMOD Register

Fig 2.31: Timer Mode 1

79

Timer 0 in mode 2 (Auto-Reload Timer)

Mode 2 configures timer 0 as an 8-bit timer. Actually, timer 0 uses only one 8-bit
register for counting and never counts from 0, but from an arbitrary value (0-255) stored
in another (THO)register.

The following example shows the advantages of this mode. Suppose it is necessary to
constantlycount up 55 pulses generated by the clock.

If mode 1 or mode 0 is used, It is necessary to write the number 200 to the timer registers
and constantly check whether an overflow has occured, i.e. whether they reached the value
255. When it happens, it is necessary to rewrite the number 200 and repeat the whole
procedure. The same procedure is automatically performed by the microcontroller if set in
mode 2. In fact, only the TLO register operates as a timer, while another (THO) register stores
the value from which thecounting starts. When the TLO register is loaded, instead of being
cleared, the contents of THO will be reloaded to it. Referring to the previous example,
in

order to register each 55th pulse, the best solution is to write the number 200 to the THO
register and configure the timer to operate in mode 2.

Mode 2

0SC. TCON Register

' l TRO

| e THO
] 0 (0

/n TLO
Tof {1 BTN\ -

o ——40

INTO! | | Timer 0: 0 - 255

' ! I I E

- I| 0 I g [1 J
CT | |GATE
TMOD Register

Fig 2.32: Timer Mode 2

80

Timer 0 in Mode 3 (Split Timer)

Mode 3 configures timer 0 so that registers TLO and THO operate as separate 8-bit timers.
In other words, the 16-bit timer consisting of two registers THO and TLO is split into two
independent 8-bit timers. This mode is provided for applications requiring an additional 8-
bit timer or counter. The TLO timer turns into timer 0, while the THO timer turns into timer
1. In addition, all the control bits of 16-bit Timer 1 (consisting of the TH1 and TL1
register), now control the 8-bit Timer 1. Even though the 16-bit Timer 1 can still be
configured to operate in any of modes (mode 1, 2 or 3), it is no longer possible to disable it
as there is no control bit to doit. Thus, its operation is restricted when timer 0 is in mode 3.

TCO?::.gister Mo de 3

Wk g
M A .98 g THO
Je / TCON Register
L ° >
| M2 TRO
g [Timer1:0-2i5]
> TLO
10 [f—— 9 I TN I
|NTU§ I i I |o—40 Timer0: 0 - 255]
10K ﬂ <

- e

cT | |GATE

TMOD Register
Fig 2.33: Timer Mode 3

The only application of this mode is when two timers are used and the 16-bit Timer 1
the operation of which is out of control is used as a baud rate generator.

Timer Control (TCON) Register
TCON register is also one of the registers whose bits are directly in control of timer

operation. Only 4 bits of this register are used for this purpose, while rest of them is used for

81

interrupt control to be discussed later.

0 0 0 0 0 0 0 0 Value after Rest
TCON | 1/t | TRI | TR0 | TRO [IE1 T E0 | I1T0 | Bitname
bit7 bit6 bit5 bitd bitd bit2 bit1 bit0

Fig 2.34: TCON

o TF1 bit is automatically set on the Timer 1 overflow.
o TR1 bit enables the Timer 1.
o 1-Timer 1 isenabled.

o 0-Timer 1 isdisabled.
o TFO bit is automatically set on the Timer 0 overflow.
o TRO bit enables the timer 0.

o 1-Timer 0 isenabled.

o 0-Timer 0 isdisabled.

How to use the Timer 0 ?

In order to use timer 0, it is first necessary to select it and configure the mode of its
operation.Bits of the TMOD register are in control of it:

Timer 0

TMOD Register m—rom TOMOY Bt Name

TP o | o | o | 1

bit4 bit3 hit2 hit1 bit
A 4 T

16-bit Timer (mode 1)

Pulses are brought
from quartz oscillator

to Timer (ports)

P3.2 Pin doesn't affect Timer
Fig 2.35: Timer O configuration

Referring to figure above, the timer 0 operates in mode 1 and counts pulses generated by
internalclock the frequency of which is equal to 1/12 the quartz frequency.
Turn on the timer:

82

1E1

bit7 bit6 bit5

TCON Register

Fig 2.36: TCON control bits

The TRO bit is set and the timer starts operation. If the quartz crystal with frequency of
12MHz isembedded then its contents will be incremented every microsecond. After 65.536
microseconds, the both registers the timer consists of will be loaded. The microcontroller
automatically clears them and the timer keeps on repeating procedure from the beginning
until the TRO bit value is logic zero (0).
How to ‘read’ a timer?

Depending on application, it is necessary either to read a number stored in the timer
registers or to register the moment they have been cleared.

- It is extremely simple to read a timer by using only one register configured in mode 2 or
3. It is sufficient to read its state at any moment. That's all!

- It is somehow complicated to read a timer configured to operate in mode 2. Suppose the
lower byte is read first (TLO), then the higher byte (THO). The result is:

THO=15TLO =255
Everything seems to be ok, but the current state of the register at the moment of reading
was:THO =14 TLO = 255

In case of negligence, such an error in counting (255 pulses) may occur for not so
obvious but quite logical reason. The lower byte is correctly read (255), but at the
moment the program counter was about to read the higher byte THO, an overflow
occurred and the contents of both registers have been changed (THO: 14—15, TLO:
255—0). This problem has a simple solution.The higher byte should be read first, then
the lower byte and once again the higher byte. If the number stored in the higher byte is
different then thissequence

83

should be repeated. It's about ashort loop consisting of only 3 instructions in the program.

There is another solution as well. It is sufficient to simply turn the timer off while reading
is going on (the TRO bit of the TCON register should be cleared), and turn it on again after
readingis finished.

Timer 0 Overflow Detection

Usually, there is no need to constantly read timer registers. It is sufficient to register the
moment they are cleared, i.e. when counting starts from 0. This condition is called an
overflow. When it occurrs, the TFO bit of the TCON register will be automatically set. The
state of this bit can be constantly checked from within the program or by enabling an
interrupt which will stop the mainprogram execution when this bit is set. Suppose it is
necessary to provide a program delay of

0.05 seconds (50 000 machine cycles), i.e. time when the program seems to be

stopped:First a number to be written to the timer registers should be calculated:

65536 - 50 000=1553? On Reset

Tx =15 536

” .
-

"‘r

T =50 000 l

— |

—

Tmax = 65 536

Then it should be written to the timer registers THO and TLO:

15536:256@6875
60-256=15360

15536-1 5360@
THO=60 TLO176 S —

L4 AL

R T P S D U R O) M U T L B L D [R e

LIS pirta L B2 b1y 0 LU btk "y bite bas witd ity b2 bt b

. >

Timer T0=15536

Fig 2.37: Timer 0 -TLO & THO count write
When enabled, the timer will resume counting from this number. The state of the TFO bit,
i.e. whether it is set, is checked from within the program. It happens at the moment of
overflow, i.e. after exactly 50.000 machine cycles or 0.05 seconds.

84

How to measure pulse duration?

1!12

c-ﬁ_

TO | TN
: _a-hg 4
INTU ! 0]
Ii' II'
PINS

Fig 2.38: Measure Pulse duration

Suppose it is necessary to measure the duration of an operation, for example how long a
device has been turned on? Look again at the figure illustrating the timer and pay attention
to the function of the GATEQO bit of the TMOD register. If it is cleared then the state of
the P3.2 pin doesn't affect timer operation. If GATEO = 1 the timer will operate until the
pin P3.2 is cleared. Accordingly, if this pin is supplied with 5V through some external
switch at the moment the device is being turned on, the timer will measure duration of its
operation, which actually was the objective.

How to count up pulses?

Similarly to the previous example, the answer to this question again lies in the TCON
register. This time it's about the C/TO bit. If the bit is cleared the timer counts pulses
generated by the internal oscillator, i.e. measures the time passed. If the bit is set, the timer
input is provided withpulses from the P3.4 pin (TO). Since these pulses are not always of
the same width, the timer cannot be used for time measurement and is turned into a
counter, therefore. The highest frequency that could be measured by such a counter is 1/24
frequency of used quartz-crystal.

85

Timer 1

Timer 1 is identical to timer 0, except for mode 3 which is a hold-count mode. It means
that theyhave the same function, their operation is controlled by the same registers TMOD
and TCON and both 'i)']i-ltr‘iem can operate in one out of 4 differt_alplt- rrfodes.
A A
/ \/ \

biti5 bit1d bit13 bit1Z bit11 Bit10 bit9 hbitB hit? hité bits bitd hit3 hit2 bitl hitD

- J
~
Timer 1
0 0 0 0 0 0 0 0 Value after Reset

TH1 Bit name

hit7 bit6 bit5 bitd4 bit3 hit2 bit1 bit0

0 0 0 0 0 0 0 0 Value after Resot

TE9 Bit name

bit7 bité bits bit4 bit3 bit2 bit1 bit0
Fig 2.39: timer 1

7.Serial Communication

One of the microcontroller features making it so powerful is an integrated UART, better
known as a serial port. It is a full-duplex port, thus being able to transmit and receive data
simultaneously and at different baud rates. Without it, serial data send and receive would be
an enormously complicated part of the program in which the pin state is constantly changed
and checked at regular intervals. When using UART, all the programmer has to do is to
simply selectserial port mode and baud rate. When it's done, serial data transmit is nothing
but writing to the SBUF register, while data receive represents reading the same register.
The microcontroller takescare of not making any error during data transmission.

X X X X X X X X Value after Reset

SBUF Bit name

bit7 bit6 bit5 bitd bit3 bit2 bit1 bito
Fig 2.40: SBUF

86

Serial port must be configured prior to being used. In other words, it is necessary to
determinehow many bits is contained in one serial —wordl, baud rate and synchronization
clock source. The whole process is in control of the bits of the SCON register (Serial
Control).

Serial Port Control (SCON) Register

0 0 0 0 0 0 0 0 Value after reset

SCON | smo | smt | sm2 | REN | 788 | RB8 | TI R | Bitname

bit7 bité bit5 bitd bit3 bit2 bit1 bit0
Fig 2.41: SCON

SMO - Serial port mode bit O is used for serial port modeselection.

SML1 - Serial port mode bit 1.

SM2 - Serial port mode 2 bit, also known as multiprocessor communication
enable bit. When set, it enables multiprocessor communication in mode 2 and 3,
and eventually mode 1. It should be cleared in mode O.

REN - Reception Enable bit enables serial reception when set. When cleared,
serial reception is disabled.

TB8 - Transmitter bit 8. Since all registers are 8-bit wide, this bit solves the
problemof transmiting the 9th bit in modes 2 and 3. It is set to transmit a logic 1

in the 9th bit.

RB8 - Receiver bit 8 or the 9th bit received in modes 2 and 3. Cleared by

hardware if9th bit received is a logic 0. Set by hardware if 9th bit received is a
logic 1.

TI - Transmit Interrupt flag is automatically set at the moment the last bit of one
byte is sent. It's a signal to the processor that the line is available for a new byte
transmite. It must be cleared from within the software.

RI - Receive Interrupt flag is automatically set upon one byte receive. It signals
that byte is received and should be read quickly prior to being replaced by a new
data. This bit is also cleared from within the software.

As seen, serial port mode is selected by combining the SM0 and SM2 bits:

SMO SM1 Mode Description Baud Rate
0O 0 O 8-bit Shift Register 1/12 the quartz frequency
0 1 1 8-bit UART Determined by the timer 1
10 2 9-bit UART 1/32 the quartz frequency (1/64 the quartz frequency)
11 3 9-bit UART Determined by the timer 1

87

Fig 2.42: TXD , RXD

In mode 0, serial data are transmitted and received through the RXD pin, while the TXD pin
output clocks. The bout rate is fixed at 1/12 the oscillator frequency. On transmit, the least
significant bit (LSB bit) is sent/received first.

TRANSMIT - Data transmit is initiated by writing data to the SBUF register. In fact, this
process starts after any instruction being performed upon this register. When all 8 bits have
beensent, the TI bit of the SCON register is automatically set.

PinRXD XDOXDTXD2XD3 X4 XD5XD6 X7y
Pin TXD |||||||||||||||

Bit Tl

Fig 2.43: TXD , RXD status- TI-mode 0

88

RECEIVE - Data receive through the RXD pin starts upon the two following conditions
are met: bit REN=1 and RI=0 (both of them are stored in the SCON register). When all 8
bits havebeen received, the RI bit of the SCON register is automatically set indicating

that one byte receive is complete.

DO DI D2 D3 D4 D5 D6 D7

M n_mn_n_mr
Pin RXD dU U U U U U U U
Pin TXD ||||||||||||||||
Bit RI

Fig 2.44: TXD , RXD-RI-mode 0

Since there are no START and STOP bits or any other bit except data sent from the SBUF
register in the pulse sequence, this mode is mainly used when the distance between devices
is short, noise is minimized and operating speed is of importance. A typical example is 1/0
port expansion by adding a cheap IC (shift registers 74HC595, 74HC597 and similar).

TXD
— T ’L
SBUF
RXD
— T TWu f
- SCON

Fig 2.45: TXD , RXD, SBUF,SCON-mode 1
89

In mode 1, 10 bits are transmitted through the TXD pin or received through the RXD pin
in thefollowing manner: a START bit (always 0), 8 data bits (LSB first) and a STOP bit
(always 1).

The START bit is only used to initiate data receive, while the STOP bit is automatically
writtento the RB8 bit of the SCON register.

TRANSMIT - Data transmit is initiated by writing data to the SBUF register. End
of datatransmission is indicated by setting the TI bit of the SCON register.

START hit
Pin TXD \¢ DO X D1 XD2 XD3 X D4 XD5 XD6 XD7 STOP bit

Bit Tl

Fig 2.46: TXD , TI-mode 1

RECEIVE - The START bit (logic zero (0)) on the RXD pin initiates data receive. The
following two conditions must be met: bit REN=1 and bit R1=0. Both of them are stored
in theSCON register. The RI bit is automatically set upon data reception is complete.

START bit

Pin RXD e, "L',..-"'DI:I}{I:H }{DZ}{DS}.{ D5 > D& > D7 > sSsTOP bit
Ii

Bit RI

Fig 2.47: RXD-RI-mode 1

The Baud rate in this mode is determined by the timer 1 overflow.

90

Mode 2

TXD BT
e
T | | SCON

SBUF

il
81T 9
| Tree| | SCON

Fig 2.48: TXD , RXD-mode 2

In mode 2, 11 bits are transmitted through the TXD pin or received through the RXD pin:
a START bit (always 0), 8 data bits (LSB first), a programmable 9th data bit and a STOP
bit (always 1). On transmit, the 9th data bit is actually the TB8 bit of the SCON register.
This bit usually has a function of parity bit. On receive, the 9th data bit goes into the RB8
bit of the sameregister (SCON).The baud rate is either 1/32 or 1/64 the oscillator frequency.

TRANSMIT - Data transmit is initiated by writing data to the SBUF register. End
of datatransmission is indicated by setting the T1 bit of the SCON register.

START bit
PinTXD N\ ¥ /D0 XD1XD2XD3XD4 X5 XD6 XD7 X788 STOP bit

Bit Tl

Fig 2.49: mode 2

RECEIVE - The START bit (logic zero (0)) on the RXD pin initiates data receive. The
following two conditions must be met: bit REN=1 and bit RI=0. Both of them are stored
in theSCON register. The RI bit is automatically set upon data reception is complete.

91

START bit

PinRXD _ /DOXDTXDZXDTXDEXBEXDEXBTXRED STOP bit

Bit RI

Fig 2.50: mode 2

Mode 3 is the same as Mode 2 in all respects except the baud rate. The baud rate in Mode
3is variable.

Baud Rate

Baud Rate is a number of sent/received bits per second. In case the UART is used, baud
rate depends on: selected mode, oscillator frequency and in some cases on the state of the
SMOD bitof the SCON register. All the necessary formulas are specified in the table:

BAUD RATE BATSMOD

Timer 1 as a clock generator

Fosc. (MHz)

Baud Rate Bit SMOD

11.0592 12 14.7456 16 20

150 40h 30h 00h O
300 AOh 98h 80h 75h52h0

600 DOh CChCOh BBhA9hO
1200 E8h E6hEOh DEhD5h0
2400 F4h F3hFOh EFhEAQO

92

4800 F3hEFh EF h 1
4800 FAh F8h F5h 0
9600 FDh FCh 0
9600 F5h 1
19200 FDh FCh 1
38400 FE h 1
76800 FF h 1

Multiprocessor Communication

As you may know, additional 9th data bit is a part of message in mode 2 and 3. It can be
used forchecking data via parity bit. Another useful application of this bit is in
communication between two or more microcontrollers, i.e. multiprocessor communication.
This feature is enabled by setting the SM2 bit of the SCON register. As a result, after
receiving the STOP bit, indicating end of the message, the serial port interrupt will be
generated only if the bit RB8 = 1 (the 9th bit).

This is how it looks like in practice:

Suppose there are several microcontrollers sharing the same interface. Each of them has its
own address. An address byte differs from a data byte because it has the 9th bit set (1),
while this bitis cleared (0) in a data byte. When the microcontroller A (master) wants to
transmit a block of data to one of several slaves, it first sends out an address byte which
identifies the target slave. An address byte will generate an interrupt in all slaves so that they
can examine the received byteand check whether it matches their address.

Master Slave Slave
K
SCON [Tsw2] |SCON Tsw] |SCON
[[[TT]IT]SBUF [[ITTITTISBUF [[[IT]]T]SBUF
RXD TXD Jm\ RXD TXD [ﬁj RXD TXD &

Address C

— [T

Fig 2.51: multiprocessor communication

Of course, only one of them will match the address and immediately clear the SM2 bit of
the SCON register and prepare to receive the data byte to come. Other slaves not being
addressed leave their SM2 bit set ignoring the coming data bytes.

93

Master Slave Slave

0] (1]
Tres| | scon |I::5.In-
I [[ITTITT]SBUF nmnn

RXD TXD B

Fig 2.52: rhultiprocessor communication

94

Nk~ WM

= O
o -

11.
12.
13.
14.
15.
16.
17.
18.

19.
20.

QUESTION BANK

PART A

What are the addressing modes of 8051.
Differentiate microcontroller and microprocessor.
Write short notes on interrupts.
Write briefly about the timer of 8051.
What is an SFR.

List the SFR in 8051.
Write an assembly language program to transfer
a.10 data from internal to external

b.10 data from external to internal

Explain how to interface 1/0 devices to 8051.

. Write a program to find a square of a number using look up table.10.Write a program to findthe

given number is odd or even.

Write a program to generate a square wave of 1ms using timer.

List the bits of PSW.

What are the different ranges of jump.

Classify jump instruction

Write about stack

On reset the value of SPis , I/0 ports are configured as .
Write about EA pin of 8051.

Draw one machine cycle of 8051.

What is ALE?
The internal RAM size is and the internal ROM size is

PART B

N

o0k~ w

With neat diagram explain the architecture of 8051.
Classify the instruction set 0f8051 and explain the instruction with
suitable examples.
Write in detail how serial communication is carried out in 8051.
Explain in detail about timers in 8051 microcontroller
Explain the interrupts of 8051 microcontroller
Write the following programs
a. programs using arithmetic and logical instruction
b. Programs to convert hexa to ascii and ascii to hexa

¢. Programs using program transfer
instructions. d.Programs using 1/O ports
Explain the following instructions with example
a. movc a,@a+dptr b. movx @r0,a c. JBC b,radd
d. XCHD A,@Rp e. Swap A

95

TEXT / REFERENCE BOOKS

1. Ramesh Goankar, "Microprocessor architecture programming and applications with 8085 / 8088", 5th Edition,
Penram International Publishing, 2002.

2. Mazidi & McKinlay, “The 8051 Microcontroller and Embedded Systems using Assembly and C”, PHI, 2007.
3. MykePredko, “Programming and Customizing the 8051 Micro-controller”, Tata McGraw-Hill edition, 2007.
4. R A Gaonkar, “Fundamentals of Microcontrollers and Applications in Embedded Systems (with the PIC18
Microcontroller Family)”, Penram Publishing India, 2007

. 5. Kenneth Ayala ,”The 8051 Microcontroller”, 3rd Edition, Thomson Delmar Learning, 2004.

6. Kenneth J. Ayala, Dhananjay V. Gadre, “The 8051 Microcontroller & Embedded Systems Using Assembly and C”,
Cengage Learning India Publication, 2007.

7. Ajay V Deshmukh, “Microcontrollers: Theory and Applications”, Tata McGraw-Hill, 2005

. 8. Raj Kamal, “Embedded Systems Architecture, Programming, and Design”. (2/e), Tata McGraw Hill, 2008.

97

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS ENGINEERING
DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

UNIT — 11l MICROPROCESSORS, MICROCONTROLLERS AND EMBEDDED SYSTEMS: SEIA1504

98

UNIT 3: PIC MICROCONTROLLER AND INSTRUCTION SET
PIC Microcontrollers and Instruction Set: PIC Micro-controllers - overview; features, PIC-18Fxxx architecture,
file selection register, Memory organization, Addressing modes, Instruction set, Interrupt handling. PIC-18Fxxx -
Reset, low power operations, oscillator connections, 1/O ports - serial; parallel, Timers, Interrupts, ADC.

3.1 PIC ARCHITECTURE:

High performance RISC CPU.

ONLY 35 simple word instructions.

All single cycle instructions except for program branches which are two cycles.
Operating speed: clock input (200MHz), instruction cycle (200nS).

Up to 368x8hit of RAM (data memory), 256x8 of EEPROM (data memory), 8kx14 offlash

memory.
Pin out compatible to PIC 1 6C74B, PIC 1 6C76, PIC 1 6C77.

Eight level deep hardware stack.

Interrupt capability (up to 14 sources).

Different types of addressing modes (direct, Indirect, relative addressing modes).
Power on Reset (POR).

Power-Up Timer (PWRT) and oscillator start-up timer.

Low power- high speed CMOS flash/EEPROM.

Fully static design.

99

Wide operating voltage range (2.0 — 5.56)volts.
High sink/source current (25mA).
Commercial, industrial and extended temperature ranges.

Low power consumption (<0.6mA typical @3v-4MHz, 20pA typical @3v-32MHz and <1
A typical standby).

Peripheral Features

Timer 0: 8 bit timer/counter with pre-scalar.

Timer 1:16 bit timer/counter with pre-scalar.

Timer 2: 8 bit timer/counter with 8 bit period registers with pre-scalar and post-scalar.
Two Capture (16bit/12.5nS), Compare (16 bit/200nS), Pulse Width Modules (10bit).
1 Obit multi-channel A/D converter

Synchronous Serial Port (SSP) with SPI (master code) and 12C (master/slave).

Universal Synchronous Asynchronous Receiver Transmitter (USART) with 9 bit address
detection.

Parallel Slave Port (PSP) 8 bit wide with external RD, WR and CS controls (40/46pin).

Brown Out circuitry for Brown-Out Reset (BOR).

Key Features

Maximum operating frequency is 20MHz.
Flash program memory (14 bit words), 8KB.

Data memory (bytes) is 368.

100

EEPROM data memory (bytes) is 256.

5 input/output ports.

3 timers and 2 CCP modules.

2 serial communication ports (MSSP, USART).

PSP parallel communication port and 10bit A/D module (8 channels)

Analog Features

1 Obit, up to 8 channel A/D converter.

Brown Out Reset function.

Analog comparator module.

Special Features

100000 times erase/write cycle enhanced memory.

1000000 times erase/write cycle data EEPROM memory.

Self programmable under software control.

In-circuit serial programming and in-circuit debugging capability.
Single 5V,DC supply for circuit serial programming

WDT with its own RC oscillator for reliable operation.
Programmable code protection.

Power saving sleep modes.

Selectable oscillator options.

101

2. Architecture of PIC

13 a8
Dala Bus PCRTA
FLASH Pregram Cauntar
Frogram
Mamory
8 Lavel Slack
{13-bity
Pragram
Bus RAM Addrl)
Insiruction reg
Diecl Addr 7
¥
a
=
Poraar-up gt MUX
ivi Timar
Insructon Ossillabar —'_| o
Dacode B [Sr—-1 | Start-up Timar AL
Cantral Poraar-on
Resat B
Timing - ‘Watchda
E‘::::' EENErANon :'" Timar " PORTD
DSCTLEIM B rawn-put =
DSCHCLEOUT Ree=al n
Ir-Cireui M
Dabuggar — -
[Q M
Programming Parallel Stava Port X M
=
-
PORTE
MCLR “Won, Vss
—
Timee(l Timari Timer2 10-bit AT
Dota E=PrROM ceen2 Sptropous usaT

The function of CPU in PIC is same as a normal microcontroller CPU. A PIC, CPU consists

Fig.3.1 Block Diagram of PIC

RADIAND
RAAIAN1
RAZIAN VRS-
RATIANVRT+
R4 ITOCKI
RASIANA/SE

RBOAMT

RBS
RESIPGT
RETIPGD

RCUMIGSONTCHI
RCUTIDSINCCP2
RCACCAM
RCASCKISCL
RCAMSDUSDA
RCSISDO
RCAIMTHRICK
RCTIRXDT

ROMPSPE
ROVPIP1
ROZPSPZ
ROIPSP3
RDO4PSP4
RDEPEPE
RDEFPSPE
ROTPSPT

~[] REWANSAD
B reEvmneANR
o] REZANTIES

of several sub units such as instruction decoder, ALU, accumulator, control unit, etc. The CPU in

PIC normally supports Reduced Instruction Set Computer (RISC) architecture. RISC design is based

on the premise that most of the instructions. The computer decodes and executes are simple. As a

result, RISC architecture limits the number of instructions. Execution Time is less.

102

MEMORY

The memory in a PIC chip used to store the data and programs (temporary or permanently).
PIC also has certain amount of memory space for RAM, ROM, and EEPROM and other flash
memory, etc. ROM memory is used for permanent storage memory. The contents in the EEPROM
changes during run time and at that time it acts like a RAM memory. But the difference is after the
power goes off, the data remains in this ROM chip. This is the one of the special advantages of
EEPROM. In the PIC chip the function of EPROM is to store the values created during the
runtime.RAM memory is the one of the complex memory module in a PIC chip. This memory
associated with various type of registers (special function registers and general purpose registers)
and memory BANK modules (BANK 0, BANK 1, etc.). Once the power goes off, the contents in
the RAM will be cleared. As like normal microcontrollers, the RAM memory is used to store
temporary data and provide immediate results. The flash memory is a special type of memory where
READ, WRITE, and ERASE operations can be done many times.

3.REGISTERS

Information is stored in a CPU memory location called a register. Registers can be thought of
as the CPUs tiny scratchpad, temporarily storing instructions or data. Registers basically classified into
the following.

General Purpose Register (GPR)

A general purpose register (or processor register) is a small storage area available on a CPU
whose contents can be accessed more quickly than other storage that available on PIC. A general
purpose register can store both data addresses simultaneously.

Special Function registers (SFR)
These are also a part of RAM memory locations. As compared to GPR, their purpose is
predetermined during the manufacturing time and cannot be changed by the user. It is only for

special dedicated functions.

103

4 INTERRUPTS

Interrupt is the temporary delay in a running program. These delays stop the current
execution for a particular interval. This interval/delay is usually called as interrupt. When an
interrupt request arrives into a current execution program, then it stops its regular execution.

Interrupt can be performed by externally (hardware interrupt) or internally (by using software).

BUS

BUS is the communication or data transmission/reception path in a microcontroller unit. In

a normal microcontroller chip, two types of buses are normally available.

Data bus
Data bus is used for memory addressing. The function of data bus is interfacing all the

circuitry components inside the PIC chip.

Address bus
Address bus mostly used for memory addressing. The function of address bus is to transmit

the address from the CPU to memory locations.

USART or UART

These ports are used for the transmission (TX) and reception (RX) of data. These transmissions
possible with help of various digital data transceiver modules like RF, IR, Bluetooth, etc. This is the

one of the simplest way to communicate the PIC chip with other devices.

5.0SCILLATORS

Oscillator unit basically an oscillation/clock generating circuit which is used for providing
proper clock pulses to the PIC chip. This clock pulses also helps the timing and counting
applications. A PIC chip normally use various types of clock generators. According to the
application and the type of PIC used, the oscillators and its frequencies may vary. RC (Resistor-
Capacitor), LC (Inductor-Capacitor), RLC (Resistor-Inductor-capacitor), crystal oscillators, etc are
the normal oscillators used with A PIC chip.

104

Stack

The entire PIC chip has an area for storing the return addresses. This area or unit called Stack is used
in some Peripheral interface controllers. The hardware stack is not accessible by software. But for
most of the controllers, it can be easily accessible.

6.INPUT/ OUTPUT PORTS

These ports are used for the interfacing various input/output devices and memories. According to

the type of PIC, the number of ports may change.
Advanced functioning blocks

These sections include various advanced features of a PIC chip. According to the type of
PIC, these features may change. Various advanced features in a peripheral interface controller are
power up timer, oscillator start up timer, power on reset, watch dog timer, brown out reset, in circuit

debugger, low voltage programming, voltage comparator, CCP modules etc.
MEMORY ORGANIZATION OF PIC16F877

The memory of a PIC 1 6F877 chip is divided into 3 sections. They are

1. Program memory

2. Data memory and

3. Data EEPROM

Program memory

Program memory contains the programs that are written by the user. The program counter
(PC) executes these stored commands one by one. Usually PIC1 6F877 devices have a 13 bit wide
program counter that is capable of addressing 8Kx14 bit program memory space. This memory is
primarily used for storing the programs that are written (burned) to be used by the PIC. These devices
also have 8K*14 bits of flash memory that can be electrically erasable /reprogrammed. Each time
we write a new program to the controller, we must delete the old one at that time. The figure below

shows the program memory map and stack.

105

PROGRAM MEMORY MAP

AND STACK
PC<120>]
CALL, RETURN 13
RETFIE, RETLW [7~
Stack Level 1
Stack Level 2
s
-
o
Stack Leved 8
Reset vector 0000
-
- @
-
Intermupt Vector 0004n
0DOSh
Page 0
O7FFn
0800h
P. 1
e - OFFFN
Program -
Memory 1000n
Page 2
17FFh
1800N
Page 3
1FFFh

Fig.3.2 :Memory Map

PI1C16f877 Program Memory

Program counters (PC) is used to keep the track of the program execution by holding the
address of the current instruction. The counter is automatically incremented to the next instruction
during the current instruction execution.

106

The PIC16F87XA family has an 8-level deep 13-bit wide hardware stack. The stack space
is not a part of either program or data space and the stack pointers are not readable or writable. In
the PIC microcontrollers, this is a special block of RAM memory used only for this purpose. Each
time the main program execution starts at address 0000 — Reset Vector. The address 0004 is

“reserved” for the “interrupt service routine” (ISR).

PIC16F87XA Data Memory Organization

The data memory of PIC1 6F877 is separated into multiple banks which contain the general
purpose registers (GPR) and special function registers (SPR). According to the type of the
microcontroller, these banks may vary. The PIC1 6F877 chip only has four banks (BANK O,
BANK 1, BANK 2, and BANK4). Each bank holds 128 bytes of addressable memory.

PC<12:0- |
N\

CALL, RETURN [13
BRETFIE, RETLW

Stack Level 1

Stack Level 2

Stack Level 8

Resst Veclor 0000n

- -<,:

Interrupt Vector 0004n
0005n

Page 0
07FFh
0200n

FPage 1
On-Chip

Program -

Memory 1000n
Page 2

OFFFh

17FFh
1800h

Page 2

tFFFh

Fig.3.3 :Memory Map
The banked arrangement is necessary because there are only 7 bits are available in the

instruction word for the addressing of a register, which gives only 128 addresses. The selection of
the banks are determined by control bits RP1, RPO in the STATUS registers Together the RP1, RP0
and the specified 7 bits effectively form a 9 bit address. The first 32 locations of Banks 1 and 2, and

110

the first 16 locations of Banks2 and 3 are reserved for the mapping of the Special Function Registers
(SFR).

REGISTER FILE MAP

File Address File Address
JOh Indirect addr. (1 Indirect addr (M 20hn
O1h TMRO OPTION_ REG 81h
ozZhn PCL PCL 22h
o=2hn STATUS STATUS 2832h
O4ah FSR FSR 24anh
osh PORTA TRISA 85h
osh PORTB TRISB 86h
oO7h — — 87h
o2hn EEDATA EECON1 28sn
osh EEADR EECON2(s9n
oAN PCLATH PCLATH 2ANh
oBh INTCON INTCON 2Bh
oCh 2Ch

58
Seneral rMa ed
Purpose (accesses)
Registers in Sank O
(SRAM)
aFh Fh
50h DOh
x —— hf~\
TFh |ﬁ FFh
BSank O Bank 1
[0 Unimplemented data memory location, read as 0.
1

Fig.3.4 :Memory Map

Data EEPROM and FLASH

The data EEPROM and Flash program memory is readable and writable during normal operation
(over the full VDD range). This memory is not directly mapped in the register file space. Instead, it
is indirectly addressed through the Special Function Registers. There are six SFRs used to read and

write this memory:

e EECON1
e EECONZ2
e EEDATA
e EEDATH
e EEADR

e EEADRH

110

The EEPROM data memory allows single-byte read and writes. The Flash program memory

allows single-word reads and four-word block writes.

Program memory write operations

automatically perform an erase-before write on blocks of four words. A byte write in data EEPROM

memory automatically erases the location and writes the new data (erase-beforewrite). The write

time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge

pump, rated to operate over the voltage range of the device for byte or word operations.

8.PIN DIAGRAM

MCLRAPP —= [1 Xecd 40

RAO/AND =[] 2 39

RAT/ANT1 =—»[13 38
RA/ANNREF-/CYREF - [4 37
RA3/ANNREF+ -—a[] 5 36
RA4/TOCKI/C1OUT == [16 35
RAS/AN4/SS/C20UT =[] 7 S 34
REO/RD/ANS =[] 8 [33
RE1ANR/ANG <[] 9 g 32
RE2/CS/AN7 = [] 10 - 31

Voo —= [1 B 30

Vss— - [J12 %= 29

OSC1/CLKI —[] 13 - 28
OSC2/CLKO =[] 14 g 27
RCO/T10SO/T1CKI «—=[] 15 26
RC1/T10SI/CCP2 =[] 16 25
RC2/CCP1 =[] 17 24
RC3/SCK/SCL = [] 18 23
RDO/PSPO = [] 19 22
RD1/PSP1 =[] 20 21

[] =—= RB7/PGD
] == RB6/PGC
] =——= RB5

|] -——= RB4

[] == RB3/PGM
[] - RB2

[] =— RB1

] =—= RBOANT

|] =—— VDD

[] =-—— VssS

] =—= RD7/PSP7
[1 -—= RD6/PSP6
[] =——= RDS5/PSP5
[] == RD4/PSP4
[] == RC7ZRXDT
[] =—= RCB/TX/CK
[] -——» RC5/SDO
] =—= RC4/SDI/SDA
[] =——= RD3/PSP3
] =—= RD2/PSP2

Fig.3.5:Pin details

PIC16F877 chip is available in different types of packages. According to the type of

applications and usage, these packages are differentiated. The pin diagrams of a PIC16F877 chipin

different packages. PIC1 6F877 has 5 basic input/output ports. They are usually denoted by PORT A
(R A), PORT B (RB), PORT C (RC), PORT D (RD), and PORT E (RE). These ports are used for
input/ output interfacing. In this controller, PORT A is only 6 bits wide (RA-0 to RA-7), PORT B,
PORT C,PORT D are only 8 bits wide (RB-0 to RB-7,RC-0 to RC-7,RD-0 to RD-7), PORT E has

only 3 bit wide (RE-0 to RE-7).

110

All these ports are bi-directional. The direction of the port is controlled by using TRIS(X)
registers (TRIS A used to set the direction of PORT-A, TRIS B used to set the direction for PORT-
B, etc.). Setting a TRIS(X) bit1 will set the corresponding PORT(X) bit as input. Clearing a TRIS(X)
bit 0 will set the corresponding PORT(X) bit as output.(If we want to set PORT A as an input, just set
TRIS(A) bit to logical ,,1 and want to set PORT B as an output, just set the PORT B bits to logical 0.)

e Analog input port (ANO TO AN7Y): these ports are used for interfacing analog inputs.
e TXand RX: These are the USART transmission and reception ports.
e SCK: These pins are used for giving synchronous serial clock input.
e SCL: These pins act as an output for both SPI and 12C modes.

e DT: These are synchronous data terminals.

e CK: Synchronous clock input.

e SDO: SPI data output (SP1 Mode).

e SD1: SPI Data input (SPI mode).

e SDA: Data input/output in 12C Mode.

e CCP1 and CCP2: These are capture/compare/PWM modules.

e OSC1: Oscillator input/external clock.

e (OSC2: Oscillator output/clock out.

e MCLR: Master clear pin (Active low reset).

e Vpp: programming voltage input.

e THV: High voltage test mode controlling.

e Vref (+/-): reference voltage.

e SS: Slave select for the synchronous serial port.

e TOCKZI: clock input to TIMER O.

e T10SO: Timer 1 oscillator output.

e T10S1: Timer 1 oscillator input.

e TI1CK1: clock input to Timer 1.

e PGD: Serial programming data.

111

PGC: serial programming clock.

PGM: Low Voltage Programming input.

INT: external interrupt.

RD: Read control for parallel slave port.

CS: Select control for parallel slave.

PSPO to PSP7: Parallel slave port.

VDD: positive supply for logic and input pins.

VSS: Ground reference for logic and input/output pins

Input/ Output Ports

In order to synchronize the operation of 1/0 ports with the internal 8-bit organization of the
microcontroller, they are, similar to registers, grouped into five ports denoted by A, B, C, D
and E. All of them have several features in common: If a pin performs any of these functions,
it may not be used as a general-purpose input/output pin. TRIS register: TRISA, TRISB,
TRISC etc which determines the performance of port bits, but not their contents. By clearing
any bit of the TRIS register (bit=0), the corresponding port pin is configured as an output.
Similarly, by setting any bit of the TRIS register (bit=1), the corresponding port pin is
configured as an input. This rule is easy to remember 0 = Output, 1 = Input.

PORTC and TRISC register

Port C is an 8-bit wide, bidirectional port. Bits of the TRISC register determine the function
of its pins. Similar to other ports, a logic one (1) in the TRISC register configures the

appropriate portC pin as an input. Port D is an 8 bit wide, bidirectional port Bits .

PORTE and TRISE register

Port E is a 4-bit wide, bidirectional port. The TRISE registers bits determine the function of
its pins. Similar to other ports, a logic one in the TRISE register configures the appropriate
portE pin as an input. The exception is the RE3 pin which is always configured as an input.
Similar to ports A and B, three pins can be configured as analog inputs in this case. The

112

ANSELH register bits determine whether a pin will act as an analog input (AN) or digital
input/output:

REO = AN5
RE1 = ANG
RE2 = AN7

INSTRUCTION SET OF PIC 16F877

The instruction set for the 16F8XX includes 35 instructions. The reason for such a small
number of instructions lies in the RISC architecture. It means that instructions are well optimized from

the aspects of operating speed, simplicity in architecture and code compactness.

Instruction Execution Time

All instructions are single-cycle instructions. The only exception may be conditional branch
instructions (if condition is met) or instructions performed upon the program counter. In both cases,
two cycles are required for instruction execution, while the second cycle is executed as an NOP (No
Operation). Single-cycle instructions consist of four clock cycles. If 4MHz oscillator is used, the
nominal time for instruction execution is 1us. As for jump instructions, the instruction execution time
is 2ps.

e Data transfer Instruction

e Arithmetic and Logic Instruction

e Bit oriented Instruction

e Program Control Instruction
Data transfer Instruction:

The data is copied from source to Destination without any change.

EX: MOVLW k-[JMove constant to W.
MOV WF f[1Move W to F

113

CLR W[Clear W

Arithmetic and Logic Instruction:

To perform arithmetic operation such as addition, subtraction, Increment and decrement. The group
of instruction perform logical operation such as AND, OR, Exclusive-OR, Rotate, Compare, and
Complement the content.

EX: ADDLW k[JAdd W and Constant

SUB LW k [1Subtract W from constant
IORLW k[JLogical OR with W with constant
Bit oriented Instruction:

BC F f, bJClear bitb in f

Program Control Instruction:

CALL kO Call subroutine

RETURNI[IReturn from subroutine

9. PIC ADDRESSING MODES.
1. Immediate addressing mode
2. Direct addressing mode
3. Register addressing mode
4. Indexed ROM addressing mode
1. Immediate addressing mode
¢ In immediate addressing mode, the immediate data is specified in the instruction.
e The immediate addressing mode is used to load the data into PIC registers and WREG register.

e However, it cannot use to load data into any of the file register.

114

Example:

1. MOVLW 50H

2. ANDLW 40H 3. IORLW 60H
2. Direct addressing mode:

e In direct addressing mode, the 8- bit data in RAM memory location whose address is specified in

the instruction.
e This mode is used for accessing the RAM file register.

T - [hl[S I'I'I
o T

‘L = EBank Sesiect

Location Seiecl —

ey

Bank -.jlnk‘l

Data [B o

Fig.3.6 Pictorial representation of Direct Addressing
Example:
1. MOVWEF 0X10
2. MOVFF PORTB, POTRC
3. MOVFF 0X30, PORTC
3. Register indirect addressing mode:

e Register indirect addressing mode is used for accessing data stored in the RAM part of file register.

e In this addressing mode a register is used as pointer to the memory location of the file register.
e Three file select registers are used. They are FSR0, FSR1 and FSR2.

Example:

115

1. LFSR1,0X55
2. MOVWEF INDF2

IRP 7 FSR O

B - (LT 1171171
4\|

\L = Bank Select

o0 01

Location Select —

oCn

4Fn
S0

TFh

BankO Bank1

L Data Memory

Fig3.7 Pictorial representation of Indirect Addressing

4. Indexed ROM addressing mode:

e This addressing mode is used for accessing the data from look up tables that reside in the PIC18

program ROM.
11. Watch Dog Timer

* Watchdog Timer (WDT) can be helpful to automatically reset the system whenever a timeout

occurs

» Asystem reset is required for preventing the failure of the system in a situation of a hardware

fault or program error.

» There are countless applications where the system cannot afford to get stuck at a point (not

even for a small duration of time).

» For example, in a radar system, if the system hangs for 5 minutes, it can result in serious

repercussions (an enemy plane or missile may go undetected resulting in huge losses).

» The system should be robust enough to automatically detect the failures quickly and reset

itself in order to recover from the failures and function normally without errors.

116

One can manually reset the system to recover from errors. But it is not always feasible to
manually reset the system, especially once it has been deployed.

To overcome such problems, a watchdog timer is necessary to automatically reset the system

without human intervention.
The watchdog timer is loaded with a timeout period which is dependent on the application.

The watchdog timer starts its counting independent of a system clock i.e. it has a separate
internal oscillator to work independently of a system clock.

The watchdog timer cleared through software each time before the timeout period occurs.

Whenever software failed to clear the watchdog timer before its timeout period, the watchdog
timer resets the system.

For this purpose, a watchdog timer is used to overcome software failures in real-time

applications.
The watchdog timer is also used to wake up the microcontroller from sleep mode.

In PIC18F4550, the watchdog timer uses a different 31 kHz INTRC clock and it is

independent of a system clock.

Watchdog Timer can be enabled in two ways through Configuration Register (CONFIG2H)
and through WDTCON Register.

CONFIG2H has a WDTEN bit to enable/disable the watchdog timer.

WDTCON (WDT control register) has the SWDTEN bit which is used to enable/disablethe
WDT through software.

117

Enable WDT

SWDTEN—) =80 B & INTRC Control
WDT Counter
+128

WODTEN—_/

L™
INTRC Source— /™

Change on IRCF bits —-l

—

-

|

Programmabie Postscaler
1:110 1:32,768

‘ Reset_

!

CLRWDT] -
—1_/
All Device Reselsj
WDTPS<3:0>
SLEEP _

WODT

—/

il

Fig3.8 Operation of Watch dog Timer

Wake-up from
Power-Managed
Modes

WDT
Resel

« When WDT is enabled, 31 kHz INTRC source gets initialized and provides a clock for the

watchdog timer.

» This clock is then divided by 128 (pre-scaler). This pre-scaler gives a nominal time-out

period of 4 ms.

» PIC18F4550 also has a programmable Post-scaler which helps to divide down the WDT pre-

scaler output and increase the time-out periods. So nhow we can vary the time-out period in

the range of 4ms to 131.072 sec (2.18 min) using Post-scaler.

Enabling and Disabling WDT

There are two ways to enable or disable the WDT which are given as follows

1. Through Configuration Register:

1 6 5 4

3

2

1

0

WDTPS3

WDTPS2

WDTPS1

WDTPSO

WDTEN

Fig.3.9 CONFIG2H Register: Configuration Register 2 High

118

Bit 0 —- WDTEN: Watchdog Timer Enable bit
0 = Disables WDT (possible to enable WDT through SWDTEN)
1 = Enables WDT
Bit 4:1 - WDTPS3:WDTPS0: Watchdog Timer Post-scale select bit
1111 =1:32768
1110 =1:16384
1101 = 1:8192
1100 = 1:4096
1011 = 1:2048
1010 = 1:1024
1001 = 1:512
1000 = 1:256
0111 =1:128
0110 =1:64
0101 = 1:32
0100 = 1:16
0011=1:8
0010=1:4
0001 =1:2

0000=1:1

119

Through WDTCON Register

SWDTEN

Fig3.10 WDTCON Register: Watchdog Timer Control
Register Bit 0 — SWDTEN: Software Controlled Watchdog Timer Enable bit
0 = Disable Watchdog Timer
1 = Enable Watchdog Timer

This software controlled watchdog timer can enable watchdog timer only if configuration bit has
disabled the WDT.

If the WDTEN (configuration bit) is enabled, then SWDTEN has no effect.

Calculate the WDT Timeout Period

Pre-scaler Post-scaler
INTRC : ‘ Out| 4 Time-Out
= 128 > : AN ”
31 kKHz N — WDTPS3:0 DUt > Period
divide by
postscaler
Fig.3.11 WDT

120

ok wdE

7.

8.

9.

Question Bank

UNIT I

PART A

1Compare RISC vs CISC controllers.

2.What is the role of program counter in accessing program memory in PIC microcontroller?
3.Write about serial connector

4.What is meant by PIC

5.What is meant by interrupt controller

6What are the various types of PIC

7.Explain the different types of addressing 8.Explain the memory organization

9 Define RISC processor 10.Define CSIC processor

PART-B
Explain with a neat diagram the architecture of micro controller.
Explain the addressing modes of micro controller
List the features of PIC Micro controller
Explain about the RISC architecture.
Discuss the addressing modes of PIC microcontroller with ports.
List out the different instruction group in PIC microcontroller and explain the and Compare
CICS and RISC.
Explain the instruction set of PIC microcontroller. 8..Write in detail about ports,interrupt and
timer
Explain the architecture of microprocessor with watch dog timer.
Describe the operations carried out whenexecutes the following instructions:

10. Moviw 50H (ii) Swapf INTCON, W
11. Clrwdt (iv) bsf Port B,O

120

TEXT / REFERENCE BOOKS

1. Ramesh Goankar, "Microprocessor architecture programming and applications with 8085 /
8088", 5th Edition, Penram International Publishing, 2002.

2. Mazidi & McKinlay, “The 8051 Microcontroller and Embedded Systems using Assembly and
C”, PHI, 2007.

3. MykePredko, “Programming and Customizing the 8051 Micro-controller”, Tata McGraw-Hill
edition, 2007.

4. R A Gaonkar, “Fundamentals of Microcontrollers and Applications in Embedded Systems
(with the PIC18 Microcontroller Family)”, Penram Publishing India, 2007

5. Kenneth Ayala ,”The 8051 Microcontroller”, 3rd Edition, Thomson Delmar Learning, 2004.
6. Kenneth J. Ayala, Dhananjay V. Gadre, “The 8051 Microcontroller & Embedded Systems
Using Assembly and C”, Cengage Learning India Publication, 2007.

7. Ajay V Deshmukh, “Microcontrollers: Theory and Applications”, Tata McGraw-Hill, 2005
8. Raj Kamal, “Embedded Systems Architecture, Programming, and Design”. (2/¢), Tata
McGraw Hill, 2008.

121

r

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited "A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF ELECTRICAL & ELECTRONICS ENGINEERING
DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

UNIT 1V MICROPROCESSORS MICROCONTROLLERS AND EMBEDDED SYSTEMS: SEIA 1504

122

UNIT 4 INTERFACING

INTERFACING 9 Hrs. Basic Interface concepts, Fundamentals of memory interface- memory mapped 1/0O and
1/0 mapped I/O, Interrupt and vectored interrupt, Programmable peripheral interface 8255 - Programmable Interval
timer 8253 - Programmable interrupt controller 8259 - Programmable DMA controller 8257

1.PROGRAMMABLE PERIPHERAL INTERFACE -825PPI

The Intel 8255 (or i8255) Programmable Peripheral Interface (PPI) chip is a
peripheral chip, is used to give the CPU access to programmable parallel 1/0O. It can be
programmable to transfer data under various conditions from simple 1/O to interrupt 1/O.
it is flexible versatile

Fig 4.1: Pin diagram

and economical (when multiple 1/O ports are required) but some what complex. It is an
important general purpose 1/0 device that can be used with almost any microprocessor.
Functional block of 8255 — Programmable Peripheral Interface (PPI)

The 8255A has 24 1/0O pins that can be grouped primarily in two 8-bit parallel ports:
A and B with the remaining eight bits as port C. The eight bits of port C can be used as
individual bits or be grouped in to 4-bit ports: CUpper (Cu) and CLower (CL) as in Figure

2. The function of these ports is defined by writing a control word in the control register as

123

shown in Figure 3.3

powkr J = 5V

RN i D —] S5t K——
CONTIROL

GROUP A
PORT A

®)

"o
PA7-PACQ

BLDIRECTIONAL
DATA NUS

DATA BUSE A I
or-v0 & Wirrer)|
™ 8-8ITY

INTERNAL
T DATA BRUS

GROUP A
rortT ¢ K
UrPPER

"wo
PCT-FPCa

(4)

D ——p >
4 reao 3

WrR WRITE GROUP B
42 CONTROL CONTROL (q_
™ Loaic

o
PCa-PCO

no
PB7-PBO

Fig 4.2 : Block diagram of 8255
CONTROL WORD
E7|°6|°5|D4I°3I02|°1|°°I —

PORT C (LOWER)
=l 1 =INPU

0 =0UTPUT
PORT B

&8 1 =INPUT
0 =0UTPUT

MODE SELECTION
DE O

GROUP A

PORT C (UPPER)
1 =INPUT

v

0 =0UTPUT

PORT A
1 =INPUT

h 4

0 =0UTPUT

MODE SELECTION
00 = MODE 0

L 4

01 = MODE 1
1X = MODE 2

.1 MmoDE seT FLAG
1 1=AcTivE

Fig 4.3. Control word Register format

124

Data Bus Buffer

This three-state bi-directional 8-bit buffer is used to interface the 8255 to the system data
bus. Data is transmitted or received by the buffer upon execution of input or output
instructions by theCPU. Control words and status information are also transferred through
the data bus buffer.Read/Write and Control Logic

The function of this block is to manage all of the internal and external transfers of both Data
and Control or Status words. It accepts inputs from the CPU Address and Control busses
and in turn, issues commands to both of the Control Groups.

(CS) Chip Select. A "low" on this input pin enables the communication between the 8255
and the CPU.

(RD) Read. A "low" on this input pin enables 8255 to send the data or status information to
the CPU on the data bus. In essence, it allows the CPU to "read from" the 8255.

(WR) Write. A "low" on this input pin enables the CPU to write data or control words into
the 8255.
(A0 and A1) Port Select 0 and Port Select 1. These input signals, in conjunction with the
RD andWR inputs, control the selection of one of the three ports or the control word
register. They are normally connected to the least significant bits of the address bus (A0
and Al).

Al A0 SELECTION
0 0 PORT A
0 '} PORT B
1 0 PORT C

1 1 CONTROL

Fig 4.4 selection of Ports and Control reg

125

(RESET) Reset. A "high" on this input initializes the control register to 9Bh and all ports
(A, B,C) are set to the input mode.

Group A and Group B Controls

The functional configuration of each port is programmed by the systems software. In
essence, theCPU "outputs" a control word to the 8255. The control word contains
information such as "mode", "bit set”, "bit reset”, etc., that initializes the functional
configuration of the 8255. Eachof the Control blocks (Group A and Group B) accepts
"commands" from the Read/Write Control logic, receives "control words" from the internal

data bus and issues the proper commands to its associated ports.

Ports A, B, and C

The 8255 contains three 8-bit ports (A, B, and C). All can be configured to a wide variety
of functional characteristics by the system software but each has its own special features or
"personality" to further enhance

e the power and flexibility of the 8255.

Port A One 8-bit data output latch/buffer and one 8-bit data input latch. Both "pull-up™ and
"pull- down" bus-hold devices are present on Port A.

Port B One 8-bit data input/output latch/buffer and one 8-bit data input buffer.

Port C One 8-bit data output latch/buffer and one 8-bit data input buffer (no latch for input).
This port can be divided into two 4-bit ports under the mode control. Each 4-bit port contains
a 4-bit latch and it can be used for the control signal output and status signal inputs in
conjunction with ports A and B.

I. Operational modes of 8255

There are two basic operational modes of 8255:

1. Bitset/reset Mode (BSR Mode).
2. Input/Output Mode (I/0 Mode).

The two modes are selected on the basis of the value present at the D7 bit of the Control Word

126

Register. When D7 = 1, 8255 operates in 1/0 mode and when D7 = 0, it operates in the
BSR mode.

1. Bit set/reset (BSR) mode

The Bit Set/Reset (BSR) mode is applicable to port C only. Each line of port C (PCO -
PC7) can be set/reset by suitably loading the control word register as shown in Figure 4.
BSR mode and I/O mode are independent and selection of BSR mode does not affect the

operation of other portsin 1/0 mode.

Always 0 Don't care Port C bit select Set/Reset
for BSR mode
Fig 4.5: 8255 Control register format for BSR mode
L D7 bit is always 0 for BSR
N
Il mode. Bits D6, D5 and D4
r

are don't care bits.

Bits D3, D2 and D1 are used to select the pin of
Port C.Bit DQ is used to set/reset the selected pin
of Port C.

Selection of port C pin is determined as follows:

127

B3 B2 |B1 (Bivpin of port C selected

[1 PC;

1 0 1 PC;

1 1 0 |PCs

1 1 1 PCy

As an example, if it is needed that PC5 be set, then in the control word,

1. Since itis BSR mode, D7 ="0".

2. Since D4, D5, D6 are not used, assume them to be'0".

3. PC5 has to be selected, hence, D3 ="1', D2 ='0', D1 ="1".
4. PC5 has to be set, hence, DO ='1".

Thus, as per the above values, 0B (Hex) will be loaded into the Control Word Register (CWR).

D7|D6|DS |D4 D3 |D2 D1 DO
0 0 D Oo1 p 12

2. Input/Output mode

128

This mode is selected when D7 bit of the Control Word Register is 1. There are three 1/0O modes:

1. Mode 0 - Simple I/O
2. Mode 1 - Strobed 1/0
3. Mode 2 - Strobed Bi-directional I/O

: |
q) ot \ T o e s
w 'GA mode { (P& POu GBmiode PB- PG
. _ — A
Always 1 for Group A mode Group A Group A Group 8 Group 8 Group 8
1/Q mode selection bit Port A Port Cu mode Port B Port C1
11 selection
00-Mode 1 -input 1-input 1-tnput 1-Input
01-Mode 2 0-Output 0-Output 0-Mode 0 0-Output 0-Output
1X~Mode 3 l-Mode 1
PCu-Port C upper

PCL-Port C lower
Figure 4.6: 8255 Control word for 1/0 mode

r D0, D1, D3, D4 are assigned for lower port C, port B, upper port C and port A
respectively. When these bits are 1, the corresponding port acts as an input port. For
e.g., If DO = D4 = 1, then lower port C and port A act as input ports. If these bits are
0, then the corresponding port acts as an output port. For e.g., if D1 = D3 = 0, then

port B and upper port C act as output ports as shown in Figure 5.
r D2 is used for mode selection of Group B (port B and lower port C). When D2 =0,

mode 0 is selected and when D2 = 1, mode 1 is selected.

r D5& D6 are used for mode selection of Group A (port A and upper port C). The

selectionis done as follows:

129

D6D5 |Mode

0|0 |0
o1 |1
1 X |2

r As it is I/0 mode, D7 = 1.

For example, if port B and upper port C have to be initialized as input ports and lower
port Cand port A as output ports (all in mode 0):

1. Sinceitisan I/O mode, D7 = 1.

2. Mode selection bits, D2, D5, D6 are all 0 for mode 0 operation.

3. Port B and upper port C should operate as Input ports, hence, D1 = D3 = 1.
4. Port A and lower port C should operate as Output ports, hence, D4 = D0 = 0.

Hence, for the desired operation, the control word register will have to be loaded with
"10001010" = 8A (hex).

" Mode 0 - simple 1/0

In this mode, the ports can be used for simple 1/0O operations without handshaking
signals. Port A, port B provide simple 1/0 operation. The two halves of port C can be
either used together as an additional 8-bit port, or they can be used as individual 4-bit
ports. Since the two halves of port C are independent, they may be used such that one-

half is initialized as an input port while the other half is initialized as an output port.

The input/output features in mode O are as follows:

1. Output ports are latched.

130

2. Input ports are buffered, not latched.
3. Ports do not have handshake or interrupt capability.

4. With 4 ports, 16 different combinations of 1/0 are possible.
Mode 0 — input mode

In the input mode, the 8255 gets data from the external peripheral ports and the
CPUreads the received data via its data bus.

r The CPU first selects the 8255 chip by making»CS low. Then it selects

the desiredport using A0 and A1 lines.

r The CPU thenissues anm RD signal to read the data from the

external peripheraldevice via the system data bus.

-

Mode 0 - output mode

r In the output mode, the CPU sends data to 8255 via system data bus and then
the external peripheral ports receive this data via 8255 port.

r CPU first selects the 8255 chip by making CS low. It then selects the desired
port using AQ and A1 lines.

r CPU then issues-a WR signal to write data to the selected port via the system
databus. This data is then received by the external peripheral device connected

to the selected port.

" Model

When we wish to use port A or port B for handshake (strobed) input or output operation,
we initialise that port in mode 1 (port A and port B can be initilalised to operate in
different modes, i.e., for e.g., port A can operate in mode O and port B in mode 1).

Some of the pins of port C function as handshake lines.

For port B in this mode (irrespective of whether is acting as an input port or output port),
PCO0, PC1 and PC2 pins function as handshake lines.

131

If port A is initialised as mode 1 input port, then, PC3, PC4 and PC5 function
as handshake signals. Pins PC6 and PC7 are available for use as input/output
lines.

The mode 1 which supports handshaking has following features:

1. Two ports i.e. port A and B can be used as 8-bit i/o ports.

2. Each port uses three lines of port ¢ as handshake signal and remaining two
signals can be used as i/o ports.

3. Interrupt logic is supported.

4. Input and Output data are latched.
Input Handshaking signals
1. IBF (Input Buffer Full) - It is an output indicating that the input latch

contains information.

2. STB (Strobed Input) - The strobe input loads data into the port latch, which
holds the information until it is input to the microprocessor via the IN

instruction.

3. INTR (Interrupt request) - It is an output that requests an interrupt. The
INTR pin becomes a logic 1 when the STB input returns to a logic 1, and is

cleared when the data are input from the port by themicroprocessor.

4. INTE (Interrupt enable) - It is neither an input nor an output; it is an internal

bit programmed via the port PC4(port A) or PC2(port B) bit position.

Output Handshaking signals

1. OBF (Output Buffer Full) - It is an output that goes low whenever data are
output(OUT) to the port A or port B latch. This signal is set to a logic 1
whenever the ACK pulse returns from the external device.

132

2. ACK (Acknowledge)-It causes the OBF pin to return to a logic 1 level. The
ACK signal is a response from an external device, indicating that it has received
the data from the 82C55 port.

3. INTR (Interrupt request) - It is a signal that often interrupts the microprocessor
when the external device receives the data via the signal. this pin is qualified by
the internal INTE(interrupt enable) bit.

4. INTE (Interrupt enable) - It is neither an input nor an output; it is an internal
bit programmed to enable or disable the INTR pin. The INTE A bit is
programmed using the PC6 bit and INTE B is programmed using the PC2 bit.

r Mode 2

Only group A can be initialized in this mode. Port A can be used for bidirectional
handshake data transfer. This means that data can be input or output on the same eight
lines (PAO - PATY). Pins PC3 - PC7 are used as handshake lines for port A. The
remaining pins of port C (PCO - PC2) can be used as input/output lines if group B is
initialized in mode 0 or as handshaking for port B if group B is initialized in mode 1. In
this mode, the 8255 may be used to extend the system bus to a slave microprocessor or
to transfer data bytes to and froma floppy disk controller. Acknowledgement and
handshaking signals are provided to maintain proper data flow and synchronisation

between the data transmitter and receiver.

133

https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Floppy_disk

Il. Interfacing 8255 with 8085 processor

D,-D.
.7
AD-AD £ e
B-bit >
Latceh
ALE p————] EN TALA,
D,- D AsA,
8085 <> PA -PA.
N0 g
TR y——r T o
RD > RD Gl)(S-1 b
WR > WR = 1OCS-2 r(—-;——)m;,,-m;
. g = 1OCS-2 8255
RESET > RESET Al & D“_‘"x_d)
— : — - .
10/ L{:: G % F i <> PC.-PC
Gy 2 p——— o L 3
% HOCS -6 ®D — RD
— G HX'S-7 WE S
’ RESET —> RESET

Fig 4.7. Interfacing 8255 with 8085 processor

r The 8255 can be either memory mapped or 1/O mapped in the system. In

the schematic shown in above is 1/0 mapped in the system.

Using a 3-t0-8decoder generates the chip select signals for /0 mapped devices.

r The address lines A4, A5 and A6 are decoded to generate eight chip select
signals (I0CS-0 to I0CS-7) and in this, the chip select IOCS- 1 is used to select
8255 as shown in Figure 3.7.

r The address line A7 and the control signal I0/M (low) are used as enable for

thedecoder.
r The address line AO of 8085 is connected to AO of 8255 and Al of 8085 is

connected toA1 of 8255 to provide the internal addresses.

r The data lines DO-D7 are connected to DO-D7 of the processor to achieve parallel

datatransfer.

r The 1/0O addresses allotted to the internal devices of 8255 are listed in table.

134

Binary Address
Internal | Decoder input | Input to address| Hexa
Device and enable pins of 8255 Addvess
A, A, A, AJA, A, A A

Port-A 0 0 0 1{x x 0 O 10
Port-B 0O 0 o0 1 |x x 0 1 11
Port-C 0O 0 0 1|x x 1 O 12
Control 0O 0 0 I{x x I I 13
Register

Note : Don’t care "x" is considered as zero.

2.USART 8251 (Universal Synchronous/ Asynchronous Receiver Transmitter)

The 8251 is a USART (Universal Synchronous Asynchronous Receiver Transmitter) for
serial data communication. As a peripheral device of a microcomputer system, the 8251
receives parallel data from the CPU and transmits serial data after conversion. This device
also receives serial data from the outside and transmits parallel data to the CPU after
conversion as shown in Figure 3.8.

="
DataBus o | Transmit
0004 ot f—y])| B 0
i
RESET —={ LI
OLK | _ Transmit i
c/D = Read/Write Control LX—E*
RD—=d Control e e e
W__R—.c Logic 5
CS—== oL
(sa]
=
o =
DSR —= = i
DIR=— Modem —< RBecfa:eve —— RXD
CTS—=a Control J—N Su f’r
RTS =— NV g
4
) — RXRDY
L Recieve RYXC
Control le— = SYNDET/BD
foe)

Figure 4.8 : Architecture of 8251

135

Transmitter Section

The transmitter section consists of three blocks—transmitter buffer register, output register
and the transmitter control logic block. The CPU deposits (when TXRDY = 1, meaning
that the transmitter buffer register is empty) data into the transmitter buffer register, which
is subsequently put into the output register (when TXE = 1, meaning that the output buffer
is empty). In the output register, the eight bit data is converted into serial form and comes

out

via TXD pin. The serial data bits are preceded by START bit and succeeded by STOP bit,
which are known as framing bits. But this happens only if transmitter is enabled and the
CTS is low. TXC signal is the transmitter clock signal which controls the bit rate on the

TXD line (output line). This clock frequency can be 1, 16 or 64 times the baud.

Receiver Section

The receiver section consists of three blocks — receiver buffer register, input register and
the receiver control logic block. Serial data from outside world is delivered to the input
register via RXD line, which is subsequently put into parallel form and placed in the receiver
buffer register. When this register is full, the RXRDY (receiver ready) line becomes high.
This line is then used either to interrupt the MPU or to indicate its own status. MPU then
accepts the data from the register. RXC line stands for receiver clock. This clock signal
controls the rate at which bits are received by the input register. The clock can be set to 1,
16 or 64 times the baud in the asynchronous mode.

136

D, 1 28 |21 D,
D, 2 27 =3 D,
RXD 3 26 3 Vf+5VY)
GNDC 4 25 1 RXC
D,={5 24 |2 DTR
D6 23 9 RTS
D7 22 =3 DSR
D, 8 GegiA 21 B RESET
TXC] 9 20 B2 CLK
WR] 10 19 |3 TXD
CSg 11 18 |3 TXEMPTY
c/Dg 12 17 CTS
RD 13 16 |2 SYNDET/BD
RXRDY] 14 15 | TXRDY

Fig 4.9 : Pin Configuration of 8251

Pin Configuration of 8251 is shown in figure
11.D0to D 7 (I/0 terminal)
This is bidirectional data bus which receive control words and transmits data from the

CPU andsends status words and received data to CPU.

RESET (Input terminal)

A "High" on this input forces the 8251 into "reset status.” The device waits for the
writing of"mode instruction.” The min. reset width is six clock inputs during the operating
status of CLK.

CLK (Input terminal)

CLK signal is used to generate internal device timing. CLK signal is independent of RXC
or TXC. However, the frequency of CLK must be greater than 30 times the RXC and TXC
at Synchronous mode and Asynchronous "x1" mode, and must be greater than 5 times at

Asynchronous "x16" and "x64" mode.
137

WR (Input terminal)

This is the "active low" input terminal which receives a signal for writing transmit
data andcontrol words from the CPU into the 8251.
RD (Input terminal)

This is the "active low" input terminal which receives a signal for reading receive data and
statuswords from the 8251.
C/D (Input terminal)

This is an input terminal which receives a signal for selecting data or command words and
statuswords when the 8251 is accessed by the CPU. If C/D = low, data will be accessed. If
CI/ID

= high, command word or status word will

be accessed.CS (Input terminal)

This is the "active low" input terminal which selects the 8251 at low level when the CPU

accesses. Note: The device won‘t be in "standby status"; only setting CS =

High. TXD (output terminal)

This is an output terminal for transmitting data from which serial-converted data is sent out.
The device is in "mark status" (high level) after resetting or during a status when transmit is
disabled. It is also possible to set the device in "break status” (low level) by a command.
TXRDY (output terminal)

This is an output terminal which indicates that the 8251is ready to accept a transmitted data
character. But the terminal is always at low level if CTS = high or the device was set in
"TX disable status" by a command. Note: TXRDY status word indicates that transmit data
character isreceivable, regardless of CTS or command. If the CPU writes a data character,
TXRDY will be reset by the leading edge or WR signal.

TXEMPTY (Output terminal)

This is an output terminal which indicates that the 8251 has transmitted all the characters
and hadno data character. In "synchronous mode," the terminal is at high level, if transmit

data charactersare no longer remaining and sync characters are automatically transmitted.
138

If the CPU writes a data character, TXEMPTY will be reset by the leading edge of WR
signal. Note : As the transmitter is disabled by setting CTS "High" or command, data written
before disable will be sent out. Then TXD and TXEMPTY will be "High". Even if a data is
written after disable, that data is not sent out and TXE will be "High™. After the transmitter
is enabled, it sent out. (Refer to Timing Chart of Transmitter Control and Flag Timing)
TXC (Inputterminal)

This is a clock input signal which determines the transfer speed of transmitted data. In
"synchronous mode,” the baud rate will be the same as the frequency of TXC. In
"asynchronous mode", it is possible to select the baud rate factor by mode instruction. Itcan
be 1, 1/16 or 1/64 the TXC. The falling edge of TXC sifts the serial data out of the8251.
RXD (input terminal)

This is a terminal which receives
serial data.RXRDY (Output

terminal)

This is a terminal which indicates that the 8251 contains a character that is ready to READ.
If theCPU reads a data character, RXRDY will be reset by the leading edge of RD signal.

\Unless the CPU reads a data character before the next one is received completely, the
preceding data will belost. In such a case, an overrun error flag status word will be set.

RXC (Input terminal)

This is a clock input signal which determines the transfer speed of received data. In
"synchronous mode," the baud rate is the same as the frequency of RXC. In "asynchronous
mode," it is possible to select the baud rate factor by mode instruction. It can be 1, 1/16,
1/64 the RXC.

SYNDET/BD (Input or output terminal)

This is a terminal whose function changes according to mode. In "internal synchronous
mode." this terminal is at high level, if sync characters are received and synchronized. If a
status word is read, the terminal will be reset. In "external synchronous mode, "this is an
input terminal. A "High™ on this input forces the 8251 to start receiving data characters.

In "asynchronous mode," this is an output terminal which generates "high level"output
139

upon the detection of a "break™ character if receiver data contains a "low-level” space
between the stopbits of two continuous characters. The terminal will be reset, if RXD is at
high level. After Reset is active, the terminal will be output at low level.

DSR (Input terminal)

This is an input port for MODEM interface. The input status of the terminal can be
recognizedby the CPU reading status words.
DTR (Output terminal)

This is an output port for MODEM interface. It is possible to set the status of DTR by a
command.
CTS (Input terminal)

This is an input terminal for MODEM interface which is used for controlling a transmit
circuit. The terminal controls data transmission if the device is set in "TX Enable" status by

a command.

Data is transmitable if the terminal is

atlow level.

RTS (Output terminal)

This is an output port for MODEM interface. It is possible to set the status RTS by a
command. The 8251 functional configuration is programmed by software. Operation
between the 8251 anda CPU is executed by program control. Table 1 shows the
operation between a CPU and thedevice.

Summary of Control Signals for 8251

S C/D RD WR Function

0 1 1 0 MPU writes instructions in the control register
0 1 0 1 MPU reads status from the status register

0 0 1 0 MPU outputs data to the Data Buffer

0 0 0 1 MPU accepts data from the Data Buffer

1 X X X USART is not selected

140

Control Words

There are two types of control word.

1. Mode instruction (setting of function)

2. Command (setting of operation)

1) Mode Instruction

Mode instruction is used for setting the function of the 8251. Mode instruction will be in
"wait for write" at either internal reset or external reset. That is, the writing of a control

word after resetting will be recognized as a "mode instruction."

Items set by mode instruction are as follows:
0, Dy D,)

D4 (& Dy o, (B
[[s [er [een] o [1, [8 [8,
| | | I Baud Hate Fasctor
— 0 1 0 1
- 0 0 (I
g 1 > 16 = G4 -
SYNC
C'muu.;rl}.‘u Length
- &) 1 0 1
sl 8] 0 1 |
5 bits 6 hits 7 bits | 8 bits |
Parity Check
- 0 1 o 1
0 0 1 1
Disable rg?i("y Disabla rE:,L;:;,
Stop bit Length
0 1 0 1
L 0 0 1 1
Inhabit 1 bit 1.5 bits 2 bits

Fig., 2 Bit Configuration of Mode Instruction (Asynchronous)

Fig 4.10: Bit configuration of Mode instruction (Asynchronous)
« Synchronous/asynchronous mode

« Stop bit length (asynchronous mode)

* Character length

* Parity bit

141

» Baud rate factor (asynchronous mode)
« Internal/external synchronization (synchronous mode)

» Number of synchronous characters (Synchronous mode)

The bit configuration of mode instruction is shown in Figures 12 and 13. In the case of
synchronous mode, it is necessary to write one-or two byte sync characters. If sync characters
were written, a function will be set because the writing of sync characters constitutes part of

mode instruction.

SCS | ESD | EP | PEN Ly Ly 0 0

Charactor Length
= 0 1 0 1
= 0 0 1 1

5 bits 6 bits 7 bits 8 bits

Parity
» 0 1 0 1
0 0 1 1

Disable | pay | Disable | parr,

Synchranous Mode

0 1

Internal External
Synchronization | Synchronization

Number of Synchronous Charactors
» 0 1
2 Charactors | 1 Charactor

Fig. 3 Bit Configuration of Mode Instruction (Synchronous)

Fig 4.11: Bit configuration of mode instruction(synchronous)

142

2) Command

Command is used for setting the operation of the 8251. It is possible to write a
commandwhenever necessary after writing a mode instruction and sync characters as

shown in figure 14.

Items to be set by command are as follows:
* Transmit Enable/Disable

» Receive Enable/Disable

* DTR, RTS Output of data.

* Resetting of error flag.

« Sending to break characters

* Internal resetting

« Hunt mode (synchronous mode)

143

Dy Ds Ds Da Dz D2 D5 Do
| EH | IR I RTS | ER ISBRKI RXE I DTR ITXENI

-..Transmit Enable
...Disable

& =

1...Recieve Enable

0...Disable

-

..Sent Break Charactor

0...Normal Operation

-

..Reset Error Flag
0...Normal Operation

|

TS

iS=0

1

(=]
sl
7

o

[

—
—

wl

..Internal Reset

(=]

..Normal Operation

1...Hunt Mode {Note}
0...Normal Operation

Note Seach mode for synchronous
charactors in synchronous mode

Fig. 4 Bit Configuration of Command
Fig 4.12: Bit configuration of command
Status Word

It is possible to see the internal status of the 8251 by reading a status word. The

bit configuration of status word is shown in Fig.15.

D7 Ds Ds Da D3 Dz D1y Og
DSR SV,’;’;“' FE I OE | PE |Ix5r\u=w| AXADY I nmovl

Parity Different from
TXRDY Terminal.
Refer to "Explanation”
of TXRDY Terminals.

Same as terminal.
Refer to "Explanation”
of Terminals:

1...Parity Error

1...0verrun Errer

1...Framing Error

Note: Only asynchronous mode.
Stop bit cannot be detected

Shows Terminal DS

1..DSR=0

0...DSR =1

Fig. 5 Bit Configuration of Status Word

Fig 4.13: Bit configuration of Status Word
144

3.8253/8254 PROGRAMMABLE INTERVAL TIMER:PIT

The 8254 programmable Interval timer consists of three independent 16-bit programmable

counters (timers). Each counter is capable of counting in binary or binary coded decimal.

The maximum allowable frequency to any counter is 10MHz. This device is useful

whenever the microprocessor must control real-time events. The timer in a personal

computer is an 8253. To operate a counter a 16-bit count is loaded in its register and on

command, it begins to decrement the count until it reaches 0. At the end of the count it

generates a pulse, which interrupts the processor. The count can count either in binary or

BCD Each counter in the block diagram has 3 logical lines connected to it. Two of these

lines, clock and gate, are inputs. The third, labeled OUT is an output.

Do T,
BUS
BUFFER

%

B ——of
Vi —————+0
a0 ——
F R —

FEADY
YWRITE
LS

s

CTRL.
oD
RE.

INTERMAL BUS

>

COUMTER

F3

1

COUMTER |

COUMTER |

3

CLK O
SATE O

+ T 0

LKA
FATE 1

+ LT 1

CLW 2
ZATE 2

LT 2

Fig : 4.14 Block Diagram of 8253 programmable interval timer

145

Data bus buffer- It isa communication path between the timer and the microprocessor. The
buffer is 8-bit and bidirectional. It is connected to the data bus of the microprocessor. Read

/write logic controls the reading and the writing of the counter registers. Control word register,
specifies the counter to be used and either a Read or a write operation. Data is transmitted
or received by the buffer upon execution of INPUT instruction from CPU as shown in figure

16. The data bus buffer has three basic functions,

(i). Programming the modes of
8253. (ii). Loading the count value
in times (iii).Reading the count

value from timers.

® S |
D7 |1 24 vcc
D6l |2 230 1-wr
D53 22 -RD
DA |4 21| _-CS
D3LI5 .. 20] Al
D26 8753 19| 1 AD
D1 |7 18| CLK 2
polls 1711 ouT 2
CLKo_]9 16| _ GATE 2
ouT0.]10 150 CLK 1
GATEO |11 14| GATE 1
GNDL|12 13 louT1

Fig 4.15:Pin Diagram of 8253

The data bus buffer is connected to microprocessor using D7 — DO pins which are also
bidirectional. The data transfer is through these pins. These pins will be in high- impedance (or this
state) condition until the 8253 is selected by a LOW or CS and either the read operation requested by a
LOW RD on the input or a write operation WR requested by the input going LOW.

Read/ Write Logic:

It accepts inputs for the system control bus and in turn geneation the control signals for overall
device operation. It is enabled or disabled by CS so that no operation can occur to change the
function unless the device has been selected as the system logic.

146

CS: The chip select input is used to enable the communicate between 8253 and themicroprocessor
by means of data bus. A low an CS enables the data bus buffers, while-a high disable the buffer.
The CS input does not have any affect on the operation of threetimes once they have been
initialized. The normal configuration of a system employs an decode logic which actives CS line,

whenever a specific set of addresses thatcorrespond to 8253 appear on the address bus.

RD & WR :
The readﬂ'\’D) and write WR pins central the direction of data transfer on the 8-bit bus.

Whenthe inpuﬁD pin is low. Then CPU is inputting data from 8253 in the form of counter

value. When WR pins is low, then CPU is sending data to 8253 in the form of mode
information or loading counters. The RD &WR should not both be
low simultaneously. When RD & WR pins are HIGH, the data bus buffer isdisabled.

A0 & Al:

These two input lines allow the microprocessor to specify which one of the internal register
in the 8253 is going to be used for the data transfer. Fig shows how these two lines are

used to select either the control word register or one of the 16-bit counters.

s RD WR A Ao operation

0 1 0 0 0 Load counter ‘0’

0 1 0 0 1 Load counter ‘1’

0 1 0 1 0 Load counter 2’

0 1 0 1 1 Write mode word

0 0 1 0 0 Read TM,

0 0 1 0 1 Read TM;,

0 0 1 1 0 Read TM,

0 0 1 1 1 No- operation 3- state
1 X X X X Disable -- state

0 1 1 X X No- operation 3- state

146

Control word register:

It is selected when A0 and Al . It the accepts information from the data bus buffer and
stores itin a register. The information stored in then register controls the operation mode of
each counter,selection of binary or BCD counting and the loading of each counting and the
loading of each count register. This register can be written into, no read operation of this

content is available.
Counters:

Each of the times has three pins associated with it. These are CLK (CLK) the gate (GATE)
and the output (OUT).

CLK:

This clock input pin provides 16-bit times with the signal to causes the times to decrement

max™ clock input is 2.6MHz. Note that the counters operate at the negative edge (H1 to LO) of
this

clock input. If the signal on this pin is generated by a fixed oscillator then the user has
implemented a standard timer. If the input signal is a string of randomly occurring pulses,
then it is called implementation of a counter.

GATE:

The gate input pin is used to initiate or enable counting. The exact effect of the gate signal
dependson which of the six modes of operation is chosen.

OUTPUT:

The output pin provides an output from the timer. It actual use depends on the mode of
operationofthe timer. The counter can be read —in the flyl without inhibiting gate pulse or
clock input.

147

CONTROL WORD OF 8253

DT D& D5 D4 D3 Dz D1 Do

M2 lm lmu [BCD‘

Binary counter {16-
0 |wit)
ECD (4 decades)

=

0 |0 |0 Moded
0 0 |1 Mode1
x |1 |0 Mode2
= [|1 Modeld
i 0 0 Mode 4
i |0 1 Modes
0 0 ICounter latching operation
0 1 Road/load LSB only
1 0 Road/load MSB only
Road/load LSB first, then
1 1 MSB

Select

0 0 ounter 0
Select

] 1 ounter 1
Select

1 1] ounter 2

Illeg
1 1 al

| | |
Fig 4.16: Control word format-8253

Control Register
MODES OF OPERATION
Mode O Interrupt on terminal count Mode 1 Programmable one shot Mode 2 Rate
Generator Mode 3 Square wave rate Generator Mode 4 Software triggered strobe Mode 5

Hardware triggeredstrobe

Mode 0: The output goes high after the terminal count is reached. The counter stops if the
Gate islow.. The timer count register is loaded with a count (say 6) when the WR line is
made low by the processor. The counter unit starts counting down with each clock pulse.
The output goes highwhen the register value reaches zero. In the mean time if the GATE is

made low the count is suspended at the value(3) till the GATE is enabled again .

148

CLK

WR

GATE

Mode 0 count when Gate is high (enabled)

UiudutuuduyuL

CLK

S

WR

ouT

GATE b‘ ’

Mode 0 count when Gate is low temporarily (disabled) Mode 1 Programmable
mono-shot

The output goes low with the Gate pulse for a predetermined period depending on the

149

counter. The counter is disabled if the GATE pulse goes momentarily low.The counter
register isloaded with a count value as in the previous case (say 5). The output responds to
the GATE inputand goes low for period that equals the count down period of the register (5
clock pulses in this period). By changing the value of this count the duration of the output
pulse can be changed. If the GATE becomes low before the count down is completed then
the counter will be suspended at that state as long as GATE is low. Thus it works as a

mono- shot.

Uittt

CLK

"\

GATE (trigger)

ouT

Mode 1 The Gate goes high. The output goes low for the
period depending on the count

150

CLK

Uiyt

WR

N\

GATE (trigger)

O -
P - -
'\) e e e e e

ouT 4

w

Mode 1 The Gate pulse is disabled momentarily causing the counter to stop.

Mode 2 Programmable Rate Generator

In this mode it operates as a rate generator. The output goes high for a period that equals

the timeof count down of the count register (3 in this case). The output goes low exactly

WR

O/

GATE

CLK

ouT

Mode 2 Operation when the GATE is kept high

151

CLK

Uiyl

N/

GATE

1 1
OouT3213321 M(lde 2=operafion when t!le GAETE iséiisatiled
i

momentarily.
Mode 3 Programmable Square Wave Rate Generator

It is similar to Mode 2 but the output high and low period is symmetrical. The output

goes high after the count is loaded and it remains high for period which equals the count
down period of the counter register. The output subsequently goes low for an equal period

and hence generates a symmetrical square wave unlike Mode 2. The GATE has no role here.

U UuU oyl

WR
n=

4 OUT (n=4)

OUT (n=5)

CLK

Mode3 Operation: Square Wave generator

152

Mode 4 Software Triggered Strobe

In this mode after the count is loaded by the processor the count down starts. The output
goes low for one clock period after the count down is complete. The count down can be
suspended bymaking the GATE low . This is also called a software triggered strobe as the

count down is initiated by a program.

WR
ouT
4 137 21
1 I 1
1 1 |
CLK

Mode 4 Software Triggered Strobe when GATE is high

Uity Ul

WR

S

GATE

ouT

N

w

w
-D-

153

LK

Mode 4 Software Triggered Strobe when GATE is momentarily low
Mode 5 Hardware Triggered Strobe

The count is loaded by the processor but the count down is initiated by the GATE pulse. The
transition from low to high of the GATE pulse enables count down. The output goes low

for one clock period after the count down is complete.

UUUUuUiutuyuL

WR

N/

GATE

ouT

)]
-
IS
-y -
- -
N
- -

CLK

Mode 5 Hardware Triggered Strobe

154

4 PROGRAMMABLE INTERRUPT CONTROLLER-8259

FEAUTURES OF 8259

= Eight-Level PriorityController Expandable to 64Levels
Programmable Interrupt Modes
e 8086, 8088 Compatible

e MCS-80, MCS-85 Compatible

= |ndividual Request
Mask Capability
Single +5V Supply
(No Clocks)
= Available in 28-Pin DIP and 28-Lead
PLCC Package Available in
EXPRESS
1. Standard Temperature Range
2. Extended Temperature Range

The Intel 8259A Programmable Interrupt Controller handles up to eight vectored priority
interrupts for the CPU. It is cascadable for up to 64 vectored priority interrupts without
additional circuitry. It is packaged in a 28-pin DIP, uses NMOS technology and requires a
single a5V supply. Circuitry is static, requiring no clock input. The 8259A is designed to
minimize the software and real time overhead in handling multi-level priority interrupts. It
has several modes, permitting optimization for a variety of system requirements. The
8259A is fully upward compatible with the Intel 8259. Software originally written for the
8259 will operate the 8259Ain all 8259 equivalent modes (MCS-80/85, Non-Buffered, Edge
Triggered). Pin Diagram of 8259is shown in figure 3.17.

155

Pin Description of 8259

-cs[|21® >~ 2s8[lvecc
-wr [|2 27| lao
-rD |3 26 B “INTA
D7 |a 25 IR7
D6 |5 2al 1IR6
DSE 6 _— 23 % IRS.
pal |7 el >> IR4
p3|s #2°2 33 [0rs
p2l|o 20| _lIr2
pil|io 19l liIrR1
pol |11 18| liro
casol |12 17|l iNnT
cas 1 |ais is6| | -sP/i-EN
GnD [|14 1s| lcas 2

Fig.4.17 Pin Diagram of 8259

Symbol

Pin No.

Name and Function

Vee

28

SUPPLY: + 5V Supply.

GND

14

GROUND

Ts

1

CHIP SELECT: A low on this pin enables FD and WR communication
between the CPU and the 8259A. INTA functions are independent of
CS.

WR

2

WRITE: A low on this pin when CS is low enables the B259A to accept
command words from the CPU.

RD

3

READ: A low on this pinwhen CS is low enables the 8259A to release
status onto the data bus for the CPU.

D7-Dy

4-1

170

BIDIRECTIONAL DATA BUS: Control, status and interrupt-vector
information is transferred via this bus,

CASy-CAS,

12,13, 15

170

CASCADE LINES: The CAS lines form a private 8259A bus to control
a multiple B259A structure. These pins are outpuls for a master 8259A
and inputs for a slave 8259A.

SP/EN

16

170

SLAVE PROGRAM/ENABLE BUFFER: This is a dual function pin.
When in the Bufferad Mode it can be used as an output to control
buffer ranscaivers (EN). When not in the buffered mode it is used as
an input to designate a master (SP = 1) or slave (SP = 0).

17

INTERRUPT: This pin goes high whenever a valid interrupt request is
assarted. Itis usad to interrupt the CPU, thus it is connected o the
CPU's interrupt pin.

IRg~IR;

18-25

INTERRUPT REQUESTS: Asynchronous inputs. An interrupt request
is executed by raising an IR input (low to high), and holding it high until
itis acknowledged (Edge Triggered Mode), or st by a high level on an
IR input (Level Triggered Mode),

INTERRUPT ACKNOWLEDGE: This pin is used 1o enable 8259A
interrupt-vector data onto the data bus by a sequence of interrupt
acknowledge pulses issued by the CPU.

27

AO ADDRESS LINE: This pin acts in conjunction with the CS, WR, and
RD pins. It is used by the 8259A to decipher various Command Words
the CPU writes and status the CPU wishes to read. It is typically
connected 1o the CPU AD address line (A1 for 8086, 8088).

156

Data =
DDy bus <:‘J> Control logic
buffer T il g s\ FhOv
WR[]:2 27 [Ae
wH : % [T
ﬁl 1 |ﬂ D[4 25 [IR7
RD . <— [RO p, [5 24 [T]1R6
WR _:‘ RL(-ld/ In Interrupt = H%J) (P i 23 [RS
\\fnfc |~ service Priority | 4| request |«—R3 D[] 7 8250A 2] R4
Ag —s| logic re"is(erc'p resolver c register [+ IR4 L i
T (TSR) (lCRR) «}Eg D, [9 20 [C]IR2
CS 4 : :|R7 b U 19 [Jm
o] 1 18 [J1ro
t t T caso] 12 17 [INT
CASO <—={ Cascade C::) Interrupt mask register (“' O ': :ITWR
CAS! <] buffer/ |« (IMR) aNp O 14 15 [Jcas2
CAS?2 <—s-|comparator
SPEN ‘—; \ Internal bus

Fig. 4.18 Block Diagram of 8259

A more desirable method would be one that would allow the microprocessor to be
executing its main program and only stop to service peripheral devices when it is told to do
so bythe device itself. In effect, the method would provide an external asynchronous input
that would inform the processor that it should complete whatever instruction that is
currently being executedand fetch a new routine that will service the requesting device.
Once this servicing is complete, however, the processor would resume exactly where it left
off. This method is called Interrupt. It is easy to see that system throughput would drastically
increase, and thus more tasks could be assumed by the micro-computer to further enhance

its cost effectiveness. Block Diagram of 8259is shown in figure 18.

The Programmable Interrupt Controller (PIC) functions as an overall manager in an
Interrupt-Driven system environment. It accepts requests from the peripheral equipment,
determines which of the in-coming requests is of the highest importance (priori-ty),

157

ascertains whether the incoming request has a higher priority value than the level currently
being serviced, and issues an interrupt to the CPU based on this determination.

The 8259A is a device specifically designed for use in real time, interrupt driven
microcomputer systems. It manages eight levels or requests and has built-in features for
expandability to other 8259A's (up to 64 levels). It is programmed by the system's software
as an /O peripheral. A selection of priority modes is available to the programmer so that the
manner in which the requests are processed by the 8259A can be configured to match his
system requirements. The priority modes can be changed or reconfigured dynamically at
any time during the main program. This means that the complete interrupt structure can be
defined as required, based on the total systemenvironment.

5.Interrupt Request Register (Irr) And In-Service Register (Isr)

The interrupts at the IR input lines are handled by two registers in cascade, the
Interrupt Request Register (IRR) and the In-Service (ISR). The IRR is used to store all the
interrupt levels which are requesting service; and the ISR is used to store all the interrupt

levels which are being serviced.

PRIORITY RESOLVER

This logic block determines the priorites of the bits set in the IRR. The highest priority is
selected and strobed into the corresponding bit of the ISR during INTA pulse.

INTERRUPT MASK REGISTER (IMR)

The IMR stores the bits which mask the interrupt lines to be masked. The IMR operates on
the IRR. Masking of a higher priority input will not affect the interrupt request lines of lower

quality.

INT (INTERRUPT)

This output goes directly to the CPU interrupt input. The VOH level on this line is
designed to befully compatible with the 8080A, 8085A and 8086 input levels.

158

INTA (INTERRUPT ACKNOWLEDGE)

INTA pulses will cause the 8259A to release vectoring information onto the data bus. The
formatof this data depends on the system mode (mPM) of the 8259A.

DATA BUS BUFFER

This 3-state, bidirectional 8-bit buffer is used to inter-face the 8259A to the system Data

Bus. Control words and status information are transferred through the Data Bus Buffer.

READ/WRITE CONTROL LOGIC

The function of this block is to accept Output commands from the CPU. It contains the
Initialization Command Word (ICW) registers and Operation Command Word (OCW)
registers which store the various control formats for device operation. This function block

also allows the status of the 8259A to be transferred onto the Data Bus.

CS (CHIP SELECT)

A LOW on this input enables the 8259A. No reading or writing of the chip

willoccur unless the device is selected.

WR (WRITE)

A LOW on this input enables the CPU to write con-trol words (ICWs and OCWs)
to the8259A. RD (READ)

A LOW on this input enables the 8259A to send the status of the Interrupt Request
Register (IRR), In Service Register (ISR), the Interrupt Mask Register (IMR), or the

Interrupt level onto the Data Bus.

159

A0

This input signal is used in conjunction with WR and RD signals to write
commands into the various command registers, as well as reading the various status registers

of the chip. This line can be tied directly to one of the address lines.

INTERRUPT SEQUENCE

The powerful features of the 8259A in a microcomputer system are its programmability and
the interrupt routine addressing capability. The latter allows direct or indirect jumping to
the specificinterrupt routine requested without any polling of the interrupting devices. The

normal sequence of events during an interrupt depends on the type of CPU being used.

The events occur as follows in an MCS-80/85 sys-tem:

1. One or more of the INTERRUPT REQUEST lines (IR7£0) are raised high, setting
the correspond-ing IRR bit(s).
2. The 8259A evaluates these requests, and sends an INT to the CPU, ifappropriate.

3. The CPU acknowledges the INT and responds with an INTA pulse.

4. Upon receiving an INTA from the CPU group, the highest priority ISR bit is set,
and the correspond-ing IRR bit is reset. The 8259A will also release a CALL
instruction code (11001101) onto the 8-bit Data Bus through its D7+0 pins.

5. This CALL instruction will initiate two more INTA pulses to be sent to the 8259A
from the CPU group.

6. These two INTA pulses allow the 8259A to re-lease its preprogrammed subroutine
address onto the Data Bus. The lower 8-bit address is released at the first INTA pulse
andthe higher 8-bit address is released at the second INTA pulse.

7. This completes the 3-byte CALL instruction re-leased by the 8259A. In the AEOI
mode the ISR bit is reset at the end of the third INTA pulse. Otherwise, the ISR

160

bit remains set until an appropriate EOl command is issued at the end of the
interruptsequence.

8. The events occurring in an 8086 system are the same until step4.

9. Upon receiving an INTA from the CPU group, the highest priority ISR bit is set
and the corresponding IRR bit is reset. The 8259A does not drive the Data Bus
during thiscycle.

10. The 8086 will initiate a second INTA pulse. During this pulse, the 8259A releases an
8- bit pointer onto the Data Bus where it is read by the CPU.

11. This completes the interrupt cycle. In the AEOI mode the ISR bit is reset at the end
of the second INTA pulse. Otherwise, the ISR bit remains set until an appropriate
EOI command is issued at the end of the interrupt subroutine.

If no interrupt request is present at step 4 of either sequence (i.e., the request was too
short in duration) the 8259A will issue an interrupt level 7. Both the vectoring bytes and
the CASlines will look like an interrupt level 7 was requested.

When the 8259A PIC receives an interrupt, INT be-comes active and an interrupt
acknowledge cycle is started. If a higher priority interrupt occurs between the two INTA
pulses, the INT line goes inactive immediately after the second INTA pulse. After an un-
specified amount of time the INT line is activated again to signify the higher priority
interrupt waiting for service. This inactive time is not specified and can vary between parts.
The designer should be aware of this consideration when designing a sys-tem which
usesthe 8259A. It is recommended that proper asynchronous design techniques be
followed.

INITIALIZATION COMMAND WORDS

Whenever a command is issued with A0 e 0 and D4 e 1, this is interpreted as Initialization
Command Word 1 (ICW1). ICW1 starts the initialization sequence during which the
following automatically occur.

a. The edge sense circuit is reset, which means that following initialization, an
interrupt request (IR) input must make a low-to-high transition to generate an

interrupt.
b. The Interrupt Mask Register is cleared.

c. IR7 input is assigned priority 7.

161

d. The slave mode address is set to 7.

e. Special Mask Mode is cleared and Status Read isset to IRR.

If IC4 e 0, then all functions selected in ICW4are set to
mode*, no Auto-EOI, MCS-80, 85 system).

Initialization Command Word Format is as shown infigure
1Cw

A, 0O 0 B o, 0, 0, 0, 0

0 A, A. a, ' LY | At |SNGL| 1ICa

zero. (Non-Buffered

1 ICWANEEDED
0« NO ICWANEEDED

SINGLE
CASCADE MODE

CALL ADDRESS INTERVAL
1« INTERVAL OF 4
0+« INTERVALOF B

! = LEVEL TRIGGERED MODE
0 = EDGE TRIGGERED MODE

A,- Ay of INTERRUPT
VECTOR ADDRESS
(MCS.B0 . 85 MODE ONLY)

A, s Ag OF INTERRUPT
VE T&R ADDRESS
(MCSB0 /85 MODE)
T, T, OF INTERRUPT
VECTOR ADDRESS
(8086 ' 8088 MODE)

162

ICW3 (MASTER DEVICE)

a, D, D ©», 0O, D, D, 0O, Iy
' 5 Se B 5S4 S5 1% 5, So
1= 1R INPUT HAS A SLAVE
0- IR INPUT DOESNOT HAVE
ASLAVE
ICWI ISLAVE DEVICE]
A O, DO, O O, b, 0, 0 0
) 0 0 0 0 0 IUJ 10, 10,
SLAVE DIV
oli1|2]3]|4]5 7
ojvjojrjol 1
=fojo|r|[r]ojo]|]|
ejojojojr v
ICwd
A L7 Dg Dy Dg D3 D2 Dy Do
1 0 0 0 |SFNM| BUF | m 5 |AfFOL] uPM

= B0OB6 8088 MODE
0 = MCS-B80'/85 MODE

1= AUTO EOI
0 NORMA| FOI

NON BUF FERED MODE
-~ BUFFERED MODE /SLAVE
- BUFFERED MODE/MASTER

SPECIAL FULLY NESTED
MODE

NOT SPECIAL FULLY
NESTED MODE

Fig 4.19 . Initialization Command Word Format

163

OPERATION COMMAND WORDS

After the Initialization Command Words (ICWSs) are programmed into the 8259A, the chip
is ready to accept interrupt requests at its input lines. However, during the 8259A operation,
a selection of algorithms can command the 8259A to operate in various modes through the
Operation Command Words (OCWSs). Operation Command Word format is as shown in
figure

OCWwWi1

A0 D7 D6 D5 D4 D3 D2 D1 DO

1 M7 M6 M5 M4 M3 M2 M1 MO
oCcw2

0 R SL EOl 0 0 L2 L1 LO
OCws3

0 0 ESMM SMM 0 1 P RR RIS

Fig 4.20 a. Operational Control Words

ocwi
A, D, D, O Dy 04 o, 0O D,
1 M7 | me | ms | ma | m3a | m2z | M1 | mo

INTERRUPT MASK
1 - MASK SET
0 = MASK RESETY

164

3 0o, o, (BN

EO

A LEVEL TO BE
ACTED UPON

? 3 4

c|o|lo|o

sle|=|=-

S
1 0
4]
1

0 L]
1 o
0 1

'
1
O

- || =-ly

(-] Y Py B

“falol-]-leclc

0

0

NON-SPECIFIC EQICOMMAND

SPECIFIC EOI COMMAND

ROTATE ON NON-SPECIFIC EOIl COMMAND
ROYTATE IN AUTOMAYIC EOI MODE (SET)
ROTATE IN AUTOMATIC ECI MODE (CLEAR)
"TROTATE ON SPRCIFIC BOI COMMAND
“SET PRIORITY COMMAND

NO OPERATION

END OF INTEARUPY

AUTOMATIC ROTATION

SPECIFIC ROTATION

“LO-L2 ARE USED

Fig 4.20 b. Operation Command Word Format

INTERFACING MEMORY CHIPS WITH 8085

8085 has 16 address lines (AO - A15), hence a maximum of 64 KB (= 216 bytes) of
memory locations can be interfaced with it. The memory address space of the 8085
takes values fromO000H to FFFFH.

The 8085 initiates set of signals such as 10/M , RD and WR when it wants to read
from and write into memory. Similarly, each memory chip has signals such as CE or
CS (chip enable or chip select), OE or RD (output enable or read) and WE or WR

(write enable or write) associated with it.

Generation of Control Signals for Memory:
When the 8085 wants to read from and write into memory, it activates 10/M , RD

and WR signals as shown in Table .

165

Table 8 Status of IO/M , RD and WR signals during memory read and write operations

IO/] Operation
RD WR
0 0 1 8085 reads data from memory
0 1 0 8085 writes data into memory

Using IO/M , RD and WR signals, two control signals MEMR (memory read) and

MEMW (memory write) are generated. Fig. 16 shows the circuit used to generate

thesesignals.

Fig. 4.21 Circuit used to generate MEMR and MEMW signals

When is I0/M high, both memory control signals are deactivated irrespective of the
“statusof RD and WR signals.

Ex: Interface an IC 2764 with 8085 using NAND gate address decoder such
that theaddress range allocated to the chip is 0000H — 1FFFH.

Specification of IC 2764:

™ 8 KB (8 x 210 byte) EPROM ¢hip

13 address lines (213 bytes =
8 KB) Interfacing:

166

r 13 address lines of IC are connected to the corresponding address lines of
8085. Remaining address lines of 8085 are connected to_address decoder
formed using logic gates, the output of which is connected to the CE pin of

r IC. Address range allocated to the chip is shown in Table 9.

r Chip is enabled whenever the 8085 places an address allocated to EPROM chip
in the address bus. This is shown in Fig. 17.

//%ﬁ! Rl
e]) s
;_A'ﬂ L A2
- . / | &
¢ M £
7 "
;:Jlf L o7
Data bus
7 .. :

Fig. 4.22 Interfacing IC 2764 with the 8085 Table 9 Address allocated to IC 2764

A1S A14 A13]A12 A11 AT0 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Address
o © o ‘0 0 0O O O O O O 0 0 0 0 0 O0OH

o 0 0 '0 O O 0 0 0 0o 0 0 0 0 0 1 O0001H
T IR EEEREEEE T TR T T
o 0 o0 ‘1 1 1 1 1 1 1 1 1 1 1 10

o o 0 ‘1 1 1 1 1 1 1 1 1 1 1 1 1 IFFFH

Ex: Interface a 6264 I1C (8K x 8 RAM) with the 8085 using NAND gate decoder
suchthat the starting address assigned to the chip is 4000H.

Specification of IC 6264:

r 8K x 8 RAM

167

g KB =213 bytes
13 address lines

The ending address of the chip is 5FFFH (since 4000H + 1FFFH = 5FFFH). When the
address 4000H to 5FFFH are written in binary form, the values in the lines A15, Al4,
Al3 are 0, 1 and 0O respectively. The NAND gate is designed such that when the lines
Al15 and Al13 carry 0 and Al4 carries 1, the output of the NAND gate is 0. The
NAND gate output is in turn connected to the CE1 pin of the RAM chip. A NAND
output of 0 selects the RAM chip for read or write operation, since CE2 is already 1
because of its connection to +5V. Fig. 18 shows the interfacing of IC 6264 with the
8085.

L&
L
HaM |

Fig. 4.23 Interfacing 6264 IC with the 8085

Ex: Interface two 6116 ICs with the 8085 using 74LS138 decoder such that the
starting addresses assigned to them are 8000H and 9000H, respectively.

Specification of IC 6116:

r 2 Kx8 RAM

I 2 KB =211 bytes
11 address lines

168

6116 has 11 address lines and since 2 KB, therefore ending addresses of 6116 chip 1

is and chip 2 are 87FFH and 97FFH, respectively. Table 10 shows the address range of
the two chips.

Table 4.1 Address range for IC 6116

A15A145A13A12A11§A10A9Aa A7 A6 A5 A4 A3 A2 A1 A0 Address
1 0 0 0 00 0 0 0 0 0O 0 0 0 0 0 8000H

..

Interfacing:

« Fig. 19 shows the interfacing.
« AO0-— A0 lines of 8085 are connected to 11 address lines of the RAMchips.

« Three address lines of 8085 having specific value for a particular RAM are
connected to the three select inputs (C, B and A) of 74LS138 decoder.

« Table 10 shows that A13=A12=A11=0 for the address assigned to RAM 1 and
A13=0, A12=1 and A11=0 for the address assigned to RAM 2.

« Remaining lines of 8085 which are constant for the address range assigned to
thetwo RAM are connected to the enable inputs of decoder.

« When 8085 places any address between 8000H and 87FFH in the address bus,

the select inputs C, B and A of the decoder are all 0. The YO output of the
169

« When 8085 places any address between 9000H and 97FFH in the address bus,
the select inputs C, B and A of the decoder are 0, 1 and 0. The Y2 output of
the decoder is also 0, selecting RAM 2.

1
; Al4
g Y0
? GZA GZB 61 v 'slv ’fi"
A3 | Y . . i
/Mz : 745138 : Tl CE2 CE c&2
. / Al A P
/ Voo GND
/ 08\'l & wE we
OE o)
8118 6116
“ A0 o.g A0 v
/ + RAM Chip 1 / © RAM Chip2
A A0
/ o7 / o7
.v m—-——- " -m—._._J

Fig. 4.24 Interfacing two 6116 RAM chips using 74L.S138 decoder

3. PERIPHERAL MAPPED I/O INTERFACING

In this method, the I/O devices are treated differently from memory chlps The
control signals I/O read (IOR) and I/O write (IOW), which are derived from the
IO/M , RD and

WR signals of the 8085, are used to activate input and output

devices, respectively.

Generation of these control signals is shown in Fig. 20. Table 11 shows the status
of I0/M ,RD and WR signals during 1/O read and 1/O write operation.

170

8l

3

3l

o
o

>__

g

Fig. 4.25 Generation of IOR and IOW signals

IN instruction is used to access input device and OUT instruction is used to access

output device. Each 1/0O device is identified by a unique 8-bit address assigned to it.

Since the control signals used to access input and output devices are different, and all

I/O device use 8-bit address, a maximum of 256 (28) input devices and 256 output

devices can be interfaced with 8085.
Table 4.2 Status of IOR and IOW signals in 8085.

10/ | Operation
M RD | WR | IOR | IOW
1 0 |1 0 1 I/0 read operation
1 1 |0 1 0 I/0O write operation
0 X X 1 1 Memory read or write operation

Ex: Interface an 8-bit DIP switch with the 8085 such that the address assigned to
the DIPswitch if FOH.

IN instruction is used to get data from DIP switch and store it in accumulator.
Stepsinvolved in the execution of this instruction are:
« Address FOH is placed in the lines A0 — A7 and a copy of it in lines A8 —A15.

The IOR signal is activated (IOR = 0), which makes the selected input
device to place its data in the data bus.
iii. The data in the data bus is read and store in the accumulator.

171

Fig. 3.26 shows the interfacing of DIP switch.

A7 A6 A5 Ad A3 A2 Al A0
1 1 1 1 0 0 0 0 =FOH

A0 — A7 lines are connected to a NAND gate decoder such that the output of NAND gate is
0. The output of NAND gate is ORed with the IOR signal and the output of OR gateis

connected to 1G and 2G of the 74LS244. When 74LS244 is enabled, data from the
DIP switch is placed on the data bus of the 8085. The 8085 read data and store in the

accumulator. Thus data from DIP switch is transferred to the accumulator.

+5V
5V 10K 10KS 10K

|

=
o7 V.. GND N

T4L8244

LERRAYD

Fig. 4.26 interfacing of 8-bit DIP switch with 8085

172

6. Memory Mapped 1/O Interfacing

In memory-mam, each input or output device is treated as if it is a memory location.
The MEMR and MEMW control signals are used to activate the devices. Each input or
output device is identified by unique 16-bit address, similar to 16-bit address assigned

to memory location. All memory related instruction like LDA 2000H, LDAX B,
MOV A, M can be used.Since the 1/0 devices use some of the memory address space

of 8085, the maximum memory capacity is lesser than 64 KB in this method. Ex:
Interface an 8- bit DIP switch with the 8085 using logic gates such that the address
assigned to it is FOFOH. Since a 16-bit address has to be assigned to a DIP switch, the
memory- mapped 1/O technique must be used. Using LDA FOFOH instruction, the data
from the 8-bit DIP switch can be transferred to the accumulator. The steps involved

are:

r The address FOFOH is placed in the address bus

r A0 — A15.The MEMR signal is made low for
some time.
The data in the data bus is read and stored in the accumulator.
Sy ~ 10 <10 ?M‘é_ o
707 v Gﬁ“ ; i
L~os e o =1 =
) —— ——H
/ 3 TALS244 |
] 1
i
/oo e N A
s 2‘;%E S0P sueh i
/ Al
Zz—a
L~
]
L~
gi=
W ' .

Fig. 4.27 shows the interfacing diagram.

When 8085 executes the instruction LDA FOFOH, it places the address
FOFOHin the address lines A0 — A15 as:

Al5 Al4 Al3 Al12 All A10 A9 A8 A7 A6 A5 A4 A3 A2 Al A0
1 1 1 1 0 0 0O 0 1 11 1 O 0 0 0= FOFOH

The address lines are connected to AND gates. The output of these gates along with
MEMR signal are connected to a NAND gate, so that when the address FOFOH is
placed in the address bus and MEMR = 0 its output becomes 0, thereby enabling the
buffer 74LS244. The data from the DIP switch is placed in the 8085 data bus. The

8085 reads the data from the data bus and stores it in the accumulator.
nterfacing ADC with 8085 Microprocessor

To interface the ADC with 8085, we need 8255 Programmable Peripheral Interface
chip with it. Let us see the circuit diagram of connecting 8085, 8255 and the ADC

converter.
ADC
. 0808/0809 8255
N $-Bit
Owput [
CLK ' Port A
—1 7490 —{CLK l/l .
from y
uP A
Vi EOC » | Port ¢ >
PGy jctpper I
=59 REF() |ALE o
o3 Microprocessor
OE PCy
ADD < o i
GND F5 3 ey [} c o
20 Lower

PC

Fig 4.28: ADC interfacing

173

The PortA of 8255 chip is used as the input port. The PC7 pin of Port Cupper is
connected to the End of Conversion (EOC) Pin of the analog to digital converter.
This port is also used as input port. The Clower port is used as output port. The PC2-
0 lines are connected to three address pins of this chip to select input channels. The
PC3 pin is connected to the Start of Conversion (SOC) pin and ALE pin of ADC
0808/0809.

Now let us see a program to generate digital signal from analog data. We are using

INO as input pin, so the pin selection value will be O0H.
Program
MVI A, 98H ; Set Port A and Cupper as input, CLower as
output OUT 03H ; Write control word 8255-1 to control Word
register XRA A ; Clear the accumulator
OUT 02H ; Send the content of Acc to Port Clower to select
INO
MVI A, 08H ; Load the accumulator with
08H OUT 02H ; ALE and SOC will be 0
XRA A ; Clear the accumulator
OUT 02H ; ALE and SOC will be low.
READ: IN 02H ; Read from EOC (PC7)
RAL ; Rotate left to check C7 is 1.
JNC READ ; If C7 isnot 1, go to
READ IN 00H ; Read digital output
of ADC STA 8000H ; Save result at
8000H
HLT ; Stop the program

174

PC7-EOC-I/P

PC3-SOC-0/P

PORT A-1/P

MVI A8

OUT Control Reg

L2: MVI A, 08(send SOC)

OUT PORT C

L1:IN PORT C(wait for EOC)

CPI101

JNZ L1: 1/P-0/P

INPORT A 0\[-00 Wtd datafrom ADC nd fore

STA 9100 1V-33 I

JMP L2 oV - 66 Restore regider
3V-99
4V-CC Return
5V-FF

Fig 4.29: Flow chart-
ADC Either of the method can write the program.
S (3 Ta [o |
> 0=0/P

l PORT C (LOWER) 1=I/P,

PORT B 1=1/P, 0=0/P

GROUP A

_ PORT C (UPPER) 1=1/P,

* o=0/P

> 1=I/P, 0=0/P

MODE SELECTION 00 =
MODE O

v

MODE SET FLAG {1/0)
1= ACTIVE

> 01 = MODE 1
1X = MODE 2

Port C lower-O/F
Port C upper- /P

Port A - 1/P

Fig 4.30: control word format

175

DAC

LATCH DAC 4
QO AR IOIH
Q A,
o D,-D, 0 A
8085 A D,-D, 9 s =V e converter
SYSTEM Q, Ay -V
Qs A‘ -VRH(-I
A
8" Az "Vum-)
CLK 7 |
\fu-d CLR
B 74L.8273 DACO0808

Fig 4.31: DAC Interfacing

Vo (Analog output
voltage)

Current to voltage

« The processor sends an address, which is decoded by decoder in the microprocessor system to produce

chip select signal.

« Then the processor sends a digital data to latch. The buffer and inverter will produce sufficientdelay
for CS signal so that, the latch is clocked only after the data is arrived at the input lines of the latch.

* When the latch is clocked the digital data is send to DAC. The DAC will produce a
corresponding current signal, which is converted to voltage signal by the op-amp 741.

« The typical settling time of DACO0800 is 150nsec. Therefore the processor need not wait for

loading next data

PROGRAMS FOR VARIOUS WAVEFORM GENERATION USING DAC

SAW TOOTH

L1:MVI1 A,00
. OUT DAC |
INR A

JMP L1:

TRIANGULAR

L1:MVI A,00
OUT DAC
INRA
CPI FF
JNZ L1: _
L2:0UT DAC
DCR A
JNZ L2

. JMPL1:

SQUARE WAVE

L1:MVI A,00
OUT DAC
CALL DELAY
MVI A, FF

OuUT DAC

CALL DELAY
JMP L1:

DELAY
MVI B,55
L2:DCR B
INZ L2:
RET

STAIR CASE

L1:LXI H,9100
MVI C, 06
L2:MOV A, M
OUT DAC
CALL DELAY
INX H

DCR C

JNZ L2:

JMP L1:

9100: 00
9101: 55
9102: AA
9103: FF
9104: AA
9105: 65

QUESTION BANK

PART A
. What is interfacing
. Distinguish memory mapped 1/0 and 1/0O mapped 1/O
. Draw the control word for 8255
. Configure 8255 as PORT A-1/P, PORT B-O/P & PORT C LOWER-I/P,
PORTCUPPER-O/P
. Set PCO using bit set reset mode
. Write the control word to generate square wave using 8253
. What is the need of Priority resolver in 8259
. How many interrupts maximum a 8259 can support
9. What is USART
10. Define resolution in DAC and ADC
11. What is EOC and SOC in ADC
12. Write an ALP to generate sawtooth using DAC
13. What are the two command words used in 8259
14. Explain mode 5 of 8253
15. Explain the transmitter section of 8251 USART

WD

oo N o Ol

PART B

Explain with neat diagram 8255 PPI

With neat diagram explain how serial communication is done using 8251
With neat diagram explain the 8253 timer

Explain the various modes of 8253 timer

Discuss about 8259 PIC

Interface ADC to 8085 and explain

Interface DAC with 8085 and generate various waveforms

NogakwnpE

TEXT / REFERENCE BOOKS

1. Ramesh Goankar, "Microprocessor architecture programming and applications with
8085 / 8088", 5th Edition, Penram International Publishing, 2002.

2. Mazidi & McKinlay, “The 8051 Microcontroller and Embedded Systems using
Assembly and C”, PHI, 2007.

3. MykePredko, “Programming and Customizing the 8051 Micro-controller”, Tata
McGraw-Hill edition, 2007.

4. R A Gaonkar, “Fundamentals of Microcontrollers and Applications in Embedded
Systems (with the PIC18 Microcontroller Family)”, Penram Publishing India, 2007

. 5. Kenneth Ayala ,”The 8051 Microcontroller”, 3rd Edition, Thomson Delmar Learning,
2004.

6. Kenneth J. Ayala, Dhananjay V. Gadre, “The 8051 Microcontroller & Embedded
Systems Using Assembly and C”, Cengage Learning India Publication, 2007.

7. Ajay V Deshmukh, “Microcontrollers: Theory and Applications”, Tata McGraw-Hill,
2005

.8. Raj Kamal, “Embedded Systems Architecture, Programming, and Design”. (2/e), Tata
McGraw Hill, 2008.

177

SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
(DEEMED TO BE UNIVERSITY)
Accredited “A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS ENGINEERING
DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

UNIT V MICROPROCESSORS,MICROCONTROLLERS AND EMBEDDED SYSTEMS: SEIA 1504

178

| INTRODUCTION TO EMBEDDED SYSTEM

Embedded system- characteristics of embedded system- categories of embedded system-
requirements of embedded systems- challenges and design issues of embedded system- trends in
embedded system- system integration- hardware and software partition- applications of embedded
system- control system and industrial automation-biomedical- data communication system-

network information appliances- IVR systems- GPS systems

1.1INTRODUCTION TO EMBEDDED SYSTEM

An embedded system is one kind of a computer system mainly designed to perform several
tasks like to access, process, store and also control the data in various electronics- based systems.
Embedded systems are a combination of hardware and software where software is usually known
as firmware that is embedded into the hardware. One of its most important characteristics of these
systems is, it gives the o/p within the time limits. Embedded systems support to make the work
more perfect and convenient. So, we frequently use embedded systems in simple and complex
devices too. The applications of embedded systems mainly involve in our real life for several
devices like microwave, calculators, TV remote control, home security and neighborhood traffic

control systems

{ User Interface)

Embedded Computer
Input - OuitpuIL
Variables_> Software Vari;:ﬂes

Hardware

Link to Other Systems

Fig: 5.1: Block Diagram of Embedded system

The embedded system basics are the combination of embedded system hardware and embedded

system

software.

178

https://www.elprocus.com/mini-embedded-systems-projects-ideas/

Embedded System Hardware

An embedded system uses a hardware platform to perform the operation. Hardware of the

embedded system is assembled with a microprocessor/microcontroller. It has the elements

such as input/output interfaces, memory, user interface and the display unit. Generally, an

embedded system comprises of the following

Power Supply

Memory

Processor

Timers

Output/Output circuits
Serial communication ports

SASC (System application specific circuits)

Embedded System Software

The software of an embedded system is written to execute a particular function. It is normally

written in a high-level setup and then compiled down to offer code that can be stuck within a non-

volatile memory in the hardware. An embedded system software is intended to keep in view of the

following three limits

Convenience of system memory
Convenience of processor’s speed
When the embedded system runs constantly, there is a necessity to limit power dissipation for

actions like run, stop and wake up.

2EMBEDDED SYSTEM CHARACTERISTICS

Generally, an embedded system executes a particular operation and does the similar
continually. For instance: A pager is constantly functioning as a pager.

All the computing systems have limitations on design metrics, but those can be especially tight.
Design metric is a measure of an execution features like size, power, cost and also performance.

It must perform fast enough and consume less power to increase battery life.

179

https://www.elprocus.com/microprocessor-and-microcontroller/
https://www.elprocus.com/switch-mode-power-supply-working/
https://www.elprocus.com/embedded-system-programming-using-keil-c-language/

Several embedded systems should constantly react to changes in the system and also calculate
particular results in real time without any delay. For instance, a car cruise controller; it

continuously displays and responds to speed & brake sensors. It must calculate acceleration/de-
accelerations frequently in a limited time; a delayed computation can consequence in letdown
to control the car.

It must be based on a microcontroller or microprocessor based.

It must require a memory, as its software generally inserts in ROM. It does not require any
secondary memories in the PC.

It must need connected peripherals to attach input & output devices.

An Embedded system is inbuilt with hardware and software where the hardware is used for

security and performance and Software is used for more flexibility and features.

Embedded System Applications

O o o o

The applications of an embedded system basics include smart cards, computer networking,

satellites, telecommunications, digital consumer electronics, missiles, etc

3 CATEGORIES OF EMBEDDED SYSTEM

Embedded systems are classified into four categories based on their performance and functional

req

uirements:

Stand alone embedded systems

Real time embedded systems

Networked embedded systems

Mobile embedded systems

Embedded Systems are classified into three types based on the performance of the

microcontroller such as

Small scale embedded systems

Medium scale embedded systems

180

e Sophisticated embedded systems
Stand Alone Embedded Systems

Stand alone embedded systems do not require a host system like a computer, it works by itself. It
takes the input from the input ports either analog or digital and processes, calculates and converts
the data and gives the resulting data through the connected device- Which either controls, drives
and displays the connected devices. Examples for the stand alone embedded systems are mp3
players, digital cameras, video game consoles, microwave ovens and temperature measurement

systems.

Real Time Embedded Systems

A real time embedded system is defined as, a system which gives a required o/p in a particular
time. These types of embedded systems follow the time deadlines for completion of a task. Real
time embedded systems are classified into two types such as soft and hard real time systems.
Further this Real-Time Embedded System is divided into two types i.e.

181

Soft Real Time Embedded Systems

In these types of embedded systems time/deadline is not so strictly followed. If deadline
of the task is passed (means the system didn’t give result in the defined time) still result or output

IS accepted.

Hard Real-Time Embedded Systems

In these types of embedded systems time/deadline of task is strictly followed. Task must
be completed in between time frame (defined time interval) otherwise result/output may not be
accepted.

Examples
Traffic control system
Military usage in defense sector

[1 Medical usage in health sector

Networked Embedded Systems

These types of embedded systems are related to a network to access the resources. The connected
network can be LAN, WAN or the internet. The connection can be any wired or wireless. This
type of embedded system is the fastest growing area in embedded system applications. The
embedded web server is a type of system wherein all embedded devices are connected to a web
server and accessed and controlled by a web browser.Example for the LAN networked embedded
system is a home security system wherein all sensors are connected and run on the protocol TCP/IP
Mobile Embedded Systems

Mobile embedded systems are used in portable embedded devices like cell phones, mobiles, digital
cameras, mp3 players and personal digital assistants, etc.The basic limitation of these devices is
the other resources and limitation of memory.

Small Scale Embedded Systems

These types of embedded systems are designed with a single 8 or 16-bit microcontroller, that may
even be activated by a battery. For developing embedded software for small scale embedded
systems, the main programming tools are an editor, assembler, cross assembler and integrated

development environment (IDE).

182

Medium Scale Embedded Systems

These types of embedded systems design with a single or 16 or 32 bit microcontroller, RISCs or
DSPs. These types of embedded systems have both hardware and software complexities. For
developing embedded software for medium scale embedded systems, the main programming tools
are C, C++, JAVA, Visual C++, RTOS, debugger, source code engineering tool, simulator and
IDE.

Sophisticated Embedded Systems

These types of embedded systems have enormous hardware and software complexities, that may
need ASIPs, IPs, PLAs, scalable or configurable processors. They are used for cutting- edge
applications that need hardware and software Co-design and components which have to assemble
in the final system.

Requirements of Embedded system

Reliability

Cost-effectiveness

Low power consumption Efficient
use of processing power Efficient

use of memory

Appropriate execution time
Reliability
Embedded system have to work without the need for resetting or rebooting. This

call for a very reliable hardware and software. For example : if an embedded system comes to a
halt because of hardware error, the system must reset itself without the need for human
intervention. However the embedded software developers must make the reliability of the
hardware as well as that of the software
Cost-effectiveness

If an embedded system is designed for a very special purpose such as for deep space or for nuclear
power plant station cost may not be an issue. However if the embedded system is designed for a

mass market purpose like CD players, toys and mobile devices cost is a major concern. Application

183

Specific Integrated Circuit (ASIC) is used by the designers to reduce the hardware components

and hence the cost

Low power consumption

Most of the embedded systems are powered by battery, rather than a main supply. In such
case the power consumption should be minimized to avoid draining the Batteries. For example :
by reducing the number of hardware component the power consumption can be reduced. As well
as by designing the processor to revert to low power or sleep mode when there is no operation to

perform

Efficient use of processing power

A wide variety of processors with varying processing powers are available to embedded
systems. Developers must keep processing power, memory and cost in mind while choosing the
right processor. The processing power requirement is specified in
,Million Instruction Per Second (MIPS). With the availability of so many processor, choosing a

processor has become a tough task nowadays

Efficient use of memory

Most of the embedded systems do not have secondary storage such as hard disk. The
memory chip available on the embedded systems are only Read Only memory and Random Access
memory. As most of the embedded systems do not have secondary storage, “flash memory” is used
to store the program. Nowadays micro-controller and Digital signal processors also comes with
onboard memory. Such processors are used for small embedded system as the cost generally is

low and the execution generally is fast

Appropriate execution time
In real time embedded systems, certain task must be performed within a specified

period of time. Normally desktop pc cannot achieve real time performance. Therefore,

184

special operating system known as real time operating systems run on these embedded systems. In
hard real time embedded system deadlines has to be strictly met but whereas in soft real time
embedded system the task may not be performed in a timely manner. The software developer needs
to ascertain whether the embedded system is a hard real time or soft one and has to perform the
performance analysis accordingly

CHALLENGES AND ISSUES
Co-design
Embedding an operating system
Code optimization
Efficient input or output

Testing and debugging

Co-design

An embedded system consists of hardware and software, deciding which function of the system
should be implemented in hardware and software is of a major consideration. For example in
hardware implementation the task execution is faster compared with the other one. On the
downside a chip cost money, consumes valuable power and occupies space. A software
implementation is better if these are the major concern. This issue of choosing between hardware

and software implementation is known as a co-design issue

Embedding an operating system

It is possible to write embedded software without any operating system embedded into the
system. Developers can implement services such as memory management, input/output
management and so on. Writing your own routines necessary for a particular application results in
compact and efficient coding. Embedded operating system provide the necessary Application

Programming Interfaces(API).

code optimization

185

Developers need not worry much about the code optimization, because the processor is highly
powerful, plenty of memory is generally available. Memory and Execution time are the important
constraints in embedded system. Sometimes to achieve the required response time the programmer
has to write certain portion of coding in assembly language. Of course, with the availability of

sophisticated development tools, this is less of an issue in recent years

Efficient input or output

In most of the embedded system, the input interfaces have limited functionality. Writing
embedded software is a different ball game compared with writing a user interface with a full-
fledged keyboard, a mouse and a large display. Many systems available in process control take
electrical signal as input and produce electrical signal as output, since they don’t use I/O devices.
Developing, testing and debugging such systems is much more challenging than doing the same

with the desktop systems.

4. TESTING AND DEBUGGING

Software for an embedded system cannot be tested on the target hardware during the
development phase because debugging will be extremely difficult. Testing and debugging the
software on the host system by actual simulation of field conditions is very challenging. Nowadays,
the job is made a bits simpler with the availability of “profilers” that tell you clearly which line of
code are executed and which lines are not executed. Using the output of such profilers we can
locate the untested lines of code and ensure that they are also executed by providing the necessary
test input data. It is these challenges that made embedded software development a “black art” in
earlier days. This is no longer the case, however the developments in embedded software are
changing the scenario completely.

Recent trends in embedded system
Processors

Memory

Operating Systems

186

Programming Languages
Development Tools

Processors

In an effort to cater to different applications, several semiconductor electronics vendors have
released many processors. We can find 8-bit, 16-bit, and 32 bit processors with different processing
powers and memory addressing capabilities. Many sophisticated DSP are available to cater to
numerous application needs including audio and video coding and image processing. The
processor boards around which the embedded systems can be built come with the necessary RAM
and ROM as well as peripherals such as a serial port, USB port and Ethernet connectivity.

Memory
Both RAM and ROM memory devices are becoming increasingly cheaper paving the way for
devices that can store large numbers of programs and their data. Secondary devices such as Hard
disk are also being integrated into embedded systems such as mobile communication and
computing devices . Devices that do not have secondary storage use flash memory and the capacity

of flash memory chips is also rising very rapidly making it possible to incorporate heavy OS

Operating Systems

As most everyone knows Microsoft currently holds the lion share of the market in operating
systems that run desktop computers. Many operating systems which are available nower days are
categorized as embedded operating systems, real time operating systems and mobile operating
system. These operating system occupies much less memory. This reduces the development time

and the effort considerably

Programming Languages

The era of writing the embedded software in assembly languages is now almost history. High
level languages are extensively used for embedded software development. Object oriented
programming languages are also extensively used. Another important development is the use of
JAVA. Because of JAVA platform independence it has become very popular for embedded

187

software development

Development Tools

Many advances in development tools are accelerating embedded software development. These
development tools include Cross compiler, Debbugers and Emulators. Using these tools
developers can write programs on host machines, test the software thoroughly and port to the target
hardware. The cycle time for the development has been reduced considerably in recent years
because of these development tools. Many of them are available free of cost from major software

vendors

CONTROL SYSTEM AND INDUSTRIAL AUTOMATION

Embedded system for Process Control Application

: LCD ‘ l LED ! Keypad

]
Sensors
s . [| —e
I Eectrical Outputs te
. . "=~ Processer - P

Trans-
ducern]

ar»eo

i
:
[

10 Imterfaces
(RAZIZ. USE, Evhernet

Fig.2: Block Diagram of control system and industrial automation

The embedded system takes electrical signals as input. Generally sensors or transducers are
used to convert the physical entity into an electrical signal. The processor can process only digital
signals, the ADC(Analog to Digital Convertor) converts the analog signals to its equivalent digital
signals, which is an electrical representation of a bit stream of 0s and 1s. RAM is used to store the
volatile data. A DAC(Digital to Analog Convertor) is used to convert the output digital signal to
analog format. The processor board also includes input/output interface, such as serial interface ,

USB port and an Ethernet port for connectivity to the external systems. For the user interaction

188

LCD and LED and a keypad are provided. These modules may or may not be required depending

on the application. Depending on the application the designer chooses the necessary modules and
carries out the design. While designing the reliability, performance and the cost need to be kept in
the mind. Some of the typical process control applications in nuclear plants and telemetry and tele
command units in satellite communication systems. Some of the embedded systems have to

operate in very hostile environments

BIOMEDICAL SYSTEMS

Much of the progress made in the health care industry is due to the development in the
electronic industry Hospitals are full of embedded systems, including X-ray control units, EEG
and ECG units and equipments used for diagnostic testing such as endoscopy and so on. These
systems use PC add on cards which take the ECG signals and process them and the PC monitor is
used for the display. Even the PC secondary storage is used to store the ECG records. Biometric
systems for finger print and face recognition are gaining wide

use in the agencies concerned with the securities

The input fingerprint must be processed and compared with the available database using pattern
recognition algorithm, which requires intensive processing. The biometric systems use a Digital
Signal Processor(DSP) for signal processing such as filtering and edge enhancement of the image.

And a general purpose processor for implementing the pattern matching algorithms

13.DATA COMMUNICATION SYSTEM

Internet has acted as the catalyst for the embedded system. Modem that connects two
computers is an embedded system. Dialup modems normally used to access the internet are
embedded systems with a DSP inside. Using the DSP and the associated software the modem
establishes the connection using the standard protocols. As the digital signal is modulated a lot of

signal processing is involved therefore, DSP is used.

189

Fax Maching
Food Phone e -

- W =2

Multinedia PC

IPPSTN
Gatoway

=)
lFf P T ||
P Phono P Fax Doshtop wih

Videa Camem

Fig. 5.3:Multimedia Communication over IP Network

“Convergence” is the mantra nowadays. For years we used different networks for different
services. Telephone network(PSTN) for making voice call and sending fax messages. Internet for
data rate services such as email, file transfer and web services. WAN act as the backbone network

supporting the data, voice and video communication services

Telecommunication

Telecommunication infrastructure element includes networking components such as
Telephone switches, Loop carriers, terminal adapters, ATM switches, frame relays and so on.
Mobile communication components includes base station, Mobile switching centers and so on.

Satellite communication equipment includes earth station controller, onboard processing elements,
telemetry and so on

190

Audio codec

Normally when voice is transmitted over the telephone network the voice is coded at the rate
of 64kbps using a technique known as PCM. In radio system speech is compressed to save the
bandwidth. At the transmitting side the audio signal are compressed to achieve data rates and at
the receiving end the audio signal is expanded to retrieve the original Signal. These codecs use
DSP extensively and gets embedded into cell phones and equipment of mobile and fixed
communication systems. MP3 player is a good example, where are the signals are encoded and
transmitted from a music kiosk to be played on the MP3 device

Automatic speech generation system

Pitch Period

iglse LPC Coefficients

Train Voiced/
Generator .
Unvoiced
Switch . Output
= Time

x(n) speech s(n)

N Varying ——>
i Filter
Random gain
Noise
Generator
Fig.5.4: Human speech model
Video codec

Video conferencing has become very popular in recent years. Video occupies very large
bandwidth however and to transmit video over the internet, video signals must be compressed to

reduce the data Standards such as MPEG and JPEG are used to achieve

191

video compression. To compress the video signal a video coder is used and to bring to the original
signal a decoder is used. These embedded systems use DSP to implement video compression

Algorithm

8. IVR SYSTEM

It is a stand alone embedded system connected to the computer through a parallel port or USB
port or it can be implemented on a PC with an add on card. IVR system is an embedded system
connected to the computer holding the bank database. IVR system also has a telephone interface
and it is connected in parallel to a telephone line. Once the bank assigns a specific number to the
IVR system any subscriber can call this number to get the information about his/her bank account
details. IVR system comprises of PSTN interface, ADC and DAC, S to P and P to S Convertors
and an interface circuitry with microphone and speaker PSTN interface receives the telephone calls
and answers them. Filters limit the audio signal to the desired frequency band up to 4khz. ADC
converts input to digital format and digitized voice data is converted to parallel format using S to
P convertor and vice versa. FIFO are buffers that temporarily holds the speech data. An IC MT8880
is used. Using this technology coupled with speech recognition and speech synthesis we can

develop applications to browse the web through voice commands

15. GPS SYSTEM

MULTI CHANNMNEL
SATELLITE RECEIVER

PRE AMPLIFIER
o
PROCESSOR HCD DISPLAY I
.

g >
APPLICATION
SOFTWARE MAPPING]
-

Fig.5.5: Block Diagram of GPS Receiver

192

N ooakrwh B

LN~ WNE

It is a gift from the U.S from DOD to the humankind. Using a set of 24 NAVSTAR satellites,
the DOD provides the GPS service for any moving or fixed object. A GPS receiver receives the
satellite signals and process them to find the position parameters of the GPS receiver location. GPS
receiver is a powerful embedded system that uses a DSP to process the satellite signals. GPS
receiver computes its latitude, longitude, altitude, velocity and so on. It has an RS 232 serial

communication interface or a USB interface from which the position data is available.

Question Bank

Part-A

What is the technique used for power&energy management in a system.

What do you mean by real time Operating system.

What is the role of RAM in an Embedded System. 6.When do we need multitasking Operating system.
When do we need an RTOS?

What are the challenges faced in designing an Embedded System.

What are the requirements of Embedded System.

List the issues in Embedded software development.
PART B

Explain the different categories of Embedded System.

Explain about the Networked Embedded System with a neat block diagram.
Discuss about the issues in Embedded software development.

Explain the requirements of Embedded System in detail.

Give an example of real time embedded system.

Give the basic steps in developing an embedded system.

Explain about in trend in embedded system

Explain about stand alone system with three example.

193

TEXT / REFERENCE BOOKS

1. Ramesh Goankar, "Microprocessor architecture programming and applications with 8085 / 8088", 5th Edition, Penram
International Publishing, 2002.

2. Mazidi & McKinlay, “The 8051 Microcontroller and Embedded Systems using Assembly and C”, PHI, 2007.

3. MykePredko, “Programming and Customizing the 8051 Micro-controller”, Tata McGraw-Hill edition, 2007.

4. R A Gaonkar, “Fundamentals of Microcontrollers and Applications in Embedded Systems (with the PIC18 Microcontroller
Family)”, Penram Publishing India, 2007

. 5. Kenneth Ayala ,”The 8051 Microcontroller”, 3rd Edition, Thomson Delmar Learning, 2004.

6. Kenneth J. Ayala, Dhananjay V. Gadre, “The 8051 Microcontroller & Embedded Systems Using Assembly and C”,
Cengage Learning India Publication, 2007.

7. Ajay V Deshmukh, “Microcontrollers: Theory and Applications”, Tata McGraw-Hill, 2005

. 8. Raj Kamal, “Embedded Systems Architecture, Programming, and Design”. (2/¢), Tata McGraw Hill, 2008.

194

