
SATHYABAMA INSTITUTE OF SCIENCE AND TECHNOLOGY SCHOOL OF ELECTRICAL AND ELECTRONICS

B.E. / B.Tech. - Regular 42 REGULATIONS 2019

SEIA1504
MICROPROCESSORS, MICROCONTROLLERS

AND EMBEDDED SYSTEMS

L T P Credits Total Marks

3 0 0 3 100

COURSE OBJECTIVES
Ø To impart basic knowledge about 8085 microprocessor, 8051 and PIC microcontrollers.
Ø To introduce about microprocessor interfacing with external systems.
Ø To provide basics of 8085, 8051 and PIC programming with the knowledge of instructions and interfacing chips.
Ø To discuss the major components that constitutes an embedded system.

UNIT 1 ARCHITECTURE AND INSTRUCTION SET OF 8085, 8086 11 Hrs.
 8085 Architecture and its operation- Instruction set classification-Addressing modes – 8086 Architecture and Instruction
set- Basic programs.

UNIT 2 ARCHITECTURE OF 8051 AND INSTRUCTION SET 9 Hrs.
Introduction - Architecture of 8051 - Memory organization - Addressing modes - Instruction set – Assembly Language
Programming - Jump, Loop and Call Instructions - Arithmetic and Logic Instructions - Bit Operations.

UNIT 3 PIC MICROCONTROLLER 9 Hrs.
PIC Microcontrollers and Instruction Set: PIC Micro-controllers - overview; features, PIC-18Fxxx architecture, file selection
register, Memory organization, Addressing modes, Instruction set, Interrupt handling. PIC-18Fxxx - Reset, low power
operations, oscillator connections, I/O ports - serial; parallel, Timers, Interrupts, ADC.

UNIT 4 INTERFACING 9 Hrs.
Basic Interface concepts, Fundamentals of memory interface- memory mapped I/O and I/O mapped I/O, Interrupt and
vectored interrupt, Programmable peripheral interface 8255 - Programmable Interval timer 8253 - Programmable interrupt
controller 8259 - Programmable DMA controller 8257.

UNIT 5 INTRODUCTION TO EMBEDDED SYSTEM 7 Hrs.
Embedded system- characteristics of embedded system- categories of embedded system- requirements of embedded
systems- challenges and design issues of embedded system- trends in embedded system- system integration- hardware
and software partition- applications of embedded system - control system and industrial automation-biomedical-data
communication system-network information appliances- IVR systems- GPS systems.
 Max.45 Hrs.
COURSE OUTCOMES
On completion of the course, student will be able to
CO1 - Recall architecture and operation of 8085, 8086, 8051 and PIC microcontroller.
CO2 - Explain the instruction set of the 8085,8086, 8051 & PIC Microcontroller.
CO3 - Discuss interfacing concepts with Microprocessors.
CO4 - Demonstrate small programs using microprocessors and microcontrollers.
CO5 - Design of embedded systems.
CO6 - Design a control system using 8051, PIC.

TEXT / REFERENCE BOOKS
1. Ramesh Goankar, "Microprocessor architecture programming and applications with 8085 / 8088", 5th Edition, Penram

International Publishing, 2002.
2. Mazidi & McKinlay, “The 8051 Microcontroller and Embedded Systems using Assembly and C”, PHI, 2007.
3. MykePredko, “Programming and Customizing the 8051 Micro-controller”, Tata McGraw-Hill edition, 2007.
4. R A Gaonkar, “Fundamentals of Microcontrollers and Applications in Embedded Systems (with the PIC18

Microcontroller Family)”, Penram Publishing India, 2007.
5. Kenneth Ayala ,”The 8051 Microcontroller”, 3rd Edition, Thomson Delmar Learning, 2004.
6. Kenneth J. Ayala, Dhananjay V. Gadre, “The 8051 Microcontroller & Embedded Systems Using Assembly and C”,

Cengage Learning India Publication, 2007.
7. Ajay V Deshmukh, “Microcontrollers: Theory and Applications”, Tata McGraw-Hill, 2005.
8. Raj Kamal, “Embedded Systems Architecture, Programming, and Design”. (2/e), Tata McGraw Hill, 2008.

END SEMESTER EXAM QUESTION PAPER PATTERN

Max. Marks : 100 Exam Duration: 3 Hrs.

PART A: 10 Questions of 2 marks each-No choice 20 Marks

PART B: 2 Questions from each unit of internal choice, each carrying 16 marks 80 Marks

1

UNIT – I – MICROPROCESSORS , MICROCONTROLLERS AND EMBEDDED SYSTEMS– SEIA 1504

 SCHOOL OF ELECTRICAL AND ELECTRONICS ENGINEERING

 DEPARTMENT OF ELECTRONICS AND INSRUMENTATION ENGINEERING

2

UNIT 1 ARCHITECTURE AND INSTRUCTION SET OF 8085, 8086

8085 Architecture and its operation- Instruction set classification-Addressing modes –

8086 Architecture and Instruction set- Basic programs.

 1. History of microprocessor:

The invention of the transistor in 1947 was a significant development in the world of

technology. It could perform the function of a large component used in a computer in

the early years. Shockley, Brattain and Bardeen are credited with this invention and

were awarded the Nobel prize for the same. Soon it was found that the function this

large component was easily performed by a group of transistors arranged on a single

platform. This platform, known as the integrated chip (IC), turned out to be a very crucial

achievement and brought along a revolution in the use of computers. A person named

Jack Kilby of Texas Instruments was honored with the Nobel Prize for the invention of

IC, which laid the foundation on which microprocessors were developed. At the same

time, Robert Noyce of Fairchild made a parallel development in IC technology for which

he was awarded the patent.

ICs proved beyond doubt that complex functions could be integrated on a single chip

with a highly developed speed and storage capacity. Both Fairchild and Texas

Instruments began the manufacture of commercial ICs in 1961. Later, complex

developments in the IC led to the addition of more complex functions on a single chip.

The stage was set for a single controlling circuit for all the computer functions. Finally,

Intel corporation's Ted Hoff and Frederico Fagin were credited with the design of the

first microprocessor.

The work on this project began with an order from a Japanese calculator company

Busicom to Intel, for building some chips for it. Hoff felt that the design could integrate

a number of functions on a single chip making it feasible for providing the required

functionality. This led to the design of Intel 4004, the world's first microprocessor. The

next in line was the 8 bit 8008 microprocessor. It was developed by Intel in 1972 to

perform complex functions in harmony with the 4004.

This was the beginning of a new era in computer applications. The use of mainframes

and huge computers was scaled down to a much smaller device that was affordable to

many. Earlier, their use was limited to large organizations and universities. With the

advent of microprocessors, the use of computers trickled down to the common man. The

next processor in line was Intel's 8080 with an 8 bit data bus and a 16 bit address bus.

This was amongst the most popular microprocessors of all time.

Very soon, the Motorola corporation developed its own 6800 in competition with the

Intel's 8080. Fagin left Intel and formed his own firm Zilog. It launched a new

microprocessor Z80 in 1980 that was far superior to the previous two versions.

Similarly, a break off from Motorola prompted the design of 6502, a derivative of the

6800. Such attempts continued with some modifications in the base structure.

3

The use of microprocessors was limited to task-based operations specifically required for

company projects such as the automobile sector. The concept of a 'personal computer'

was still a distant dream for the world and microprocessors were yet to come into

personal use. The 16 bit microprocessors started becoming a commercial sell-out in the

1980s with the first popular one being the TMS9900 of Texas Instruments.

Intel developed the 8086 which still serves as the base model for all latest advancements

in the microprocessor family. It was largely a complete processor integrating all the

required features in it. 68000 by Motorola was one of the first microprocessors to

develop the concept of microcoding in its instruction set. They were further developed

to 32 bit architectures. Similarly, many players like Zilog, IBM and Apple were

successful in getting their own products in the market. However, Intel had a

commanding position in the market right through the microprocessorers.

The 1990s saw a large scale application of microprocessors in the personal computer

applications developed by the newly formed Apple, IBM and Microsoft corporation. It

witnessed a revolution in the use of computers, which by then was a household entity.

This growth was complemented by a highly sophisticated development in the

commercial use of microprocessors. In 1993, Intel brought out its 'Pentium Processor'

which is one of the most popular processors in use till date. It was followed by a series

of excellent processors of the Pentium family, leading into the 21st century. The latest

one in commercial use is the Pentium Dual Core technology and the Xeon processor.

They have opened up a whole new world of diverse applications. Supercomputers have

become common, owing to this amazing development in microprocessors.

1.1 Introduction

A microprocessor is a programmable electronics chip that has computing and decision

making capabilities similar to central processing unit of a computer. Any

microprocessor-based systems having limited number of resources are called

microcomputers. Nowadays, microprocessor can be seen in almost all types of

electronics devices like mobile phones, printers, washing machines etc.

Microprocessors are also used in advanced applications like radars, satellites and flights.

Due to the rapid advancements in electronic industry and large scale integration of

devices results in a significant cost reduction and increase application of microprocessors

and their derivatives.

4

Fig.1.1 Microprocessor-based system

Bit: A bit is a single binary digit.

Word: A word refers to the basic data size or bit size that can be processed by the

arithmetic and logic unit of the processor. A 16-bit binary number is called a word in a

16-bit processor.

Bus: A bus is a group of wires/lines that carry similar information.

System Bus: The system bus is a group of wires/lines used for communication between

the microprocessor and peripherals.

Memory Word: The number of bits that can be stored in a register or memory element

is called a memory word.

Address Bus: It carries the address, which is a unique binary pattern used to identify a

memory location or an I/O port. For example, an eight bit address bus has eight lines

and thus it can address 28 = 256 different locations. The locations in hexadecimal

format can be written as 00H – FFH.Data Bus: The data bus is used to transfer data

between memory and processor or between I/O device and processor. For example, an

8-bit processor will generally have an 8-bit data bus and a 16-bit processor will have 16-

bit data bus.

Control Bus: The control bus carry control signals, which consists of signals for

selection of memory or I/O device from the given address, direction of data transfer and

synchronization of data transfer in case of slow devices.A typical microprocessor

consists of arithmetic and logic unit (ALU) in association with control unit to process

the instruction execution. Almost all the microprocessors are based on the principle of

store- program concept. In store-program concept, programs or instructions are

sequentially stored in the memory locations that are to be executed. To do any task

5

using a microprocessor, it is to be programmed by the user. So the programmer must

have idea about its internal resources, features and supported instructions. Each

microprocessor has a set of instructions, a list which is provided by the microprocessor

manufacturer. The instruction set of a microprocessor is provided in two forms: binary

machine code and mnemonics.

Microprocessor communicates and operates in binary numbers 0 and 1. The set of

instructions in the form of binary patterns is called a machine language and it is difficult

for us to understand. Therefore, the binary patterns are given abbreviated names, called

mnemonics, which forms the assembly language. The conversion of assembly-level

language into binary machine-level language is done by using an application called

assembler.

Technology Used:

The semiconductor manufacturing technologies used for chips are:

• Transistor-Transistor Logic (TTL)
• Emitter Coupled Logic (ECL)

• Complementary Metal-Oxide Semiconductor (CMOS)

Classification of Microprocessors:

Based on their specification, application and architecture

microprocessors are classified. Based on size of data bus:

• 4-bit microprocessor

• 8-bit microprocessor

• 16-bit microprocessor

• 32-bit microprocessor

Based on application:

• General-purpose microprocessor- used in general computer system and can be used

by programmer for any

application. Examples, 8085 to Intel Pentium.

• Microcontroller- microprocessor with built-in memory and ports and can be programmed for any

generic

6

control

application. Example, 8051.

• Special-purpose processors- designed to handle special functions required for an

application. Examples, digital signal processors and application-specific integrated

circuit (ASIC) chips.

Based on architecture:

• Reduced Instruction Set Computer (RISC) processors

• Complex Instruction Set Computer (CISC) processors

2. 8085 Microprocessor Architecture

The 8085 microprocessor is an 8-bit processor available as a 40-pin IC package and uses

+5 V for power. It can run at a maximum frequency of 3 MHz. Its data bus width is 8-bit

and address bus width is 16-bit, thus it can address 216 = 64 KB of memory. The

internal architecture of 8085 is shown is Fig. 1.2.

Fig 1.2: 8085 Architecture

7

Arithmetic and Logic Unit

The ALU performs the actual numerical and logical operations such as Addition (ADD),

Subtraction (SUB), AND, OR etc. It uses data from memory and from Accumulator to

perform operations. The results of the arithmetic and logical operations are stored in the

accumulator.

Registers

The 8085 includes six registers, one accumulator and one flag register, as shown in Fig.

1.3. In addition, it has two 16-bit registers: stack pointer and program counter. They are

briefly described as follows.

The 8085 has six general-purpose registers to store 8-bit data; these are identified as B,

C, D, E, H and L. they can be combined as register pairs - BC, DE and HL to perform

some 16-bit operations. The programmer can use these registers to store or copy data

into the register by using data copy instructions.

Fig 1.3: Register Organization

Accumulator

The accumulator is an 8-bit register that is a part of ALU. This register is used to store 8-bit data

and to perform arithmetic and logical operations. The result of an operation is stored in the

accumulator. The accumulator is also identified as register A.

8

Flag register

The ALU includes five flip-flops, which are set or reset after an operation according to data

condition of the result in the accumulator and other registers. They are called Zero (Z), Carry

(CY), Sign (S), Parity (P) and Auxiliary Carry (AC) flags. Their bit positions in the flag register

are shown in Fig. 4. The microprocessor uses these flags to test data conditions.

Fig 1.4: PSW

For example, after an addition of two numbers, if the result in the accumulator is larger than 8-bit,

the flip-flop uses to indicate a carry by setting CY flag to 1. When an arithmetic operation results in

zero, Z flag is set to 1. The S flag is just a copy of the bit D7 of the accumulator. A negative number

has a 1 in bit D7 and a positive number has a 0 in 2‘s complement representation. The AC flag is set

to 1, when a carry result from bit D3 and passes to bit D4. The P flag is set to 1, when the result in

accumulator contains even number of 1s.

Program Counter (PC)

This 16-bit register deals with sequencing the execution of instructions. This register is a memory

pointer. The microprocessor uses this register to sequence the execution of the instructions. The

function of the program counter is to point to the memory address from which the next byte is to

be fetched. When a byte is being fetched, the program counter is automatically incremented by

one to point to the next memory location.

Stack Pointer (SP)

The stack pointer is also a 16-bit register, used as a memory pointer. It points to a memory

location in R/W memory, called stack. The beginning of the stack is defined by loading 16-bit

address in the stack pointer.

Instruction Register/Decoder

It is an 8-bit register that temporarily stores the current instruction of a program. Latest instruction

sent here from memory prior to execution. Decoder then takes instruction and decodes or

interprets the instruction. Decoded instruction then passed to next stage.

Control Unit

Generates signals on data bus, address bus and control bus within microprocessor to carry out the

instruction, which has been decoded. Typical buses and their timing are described as follows:

9

• Data Bus: Data bus carries data in binary form between microprocessor and other

external units such as memory.
It is used to transmit data i.e. information, results of

arithmetic etc between memory and the microprocessor. Data bus is bidirectional in nature. The

data bus width of 8085 microprocessor is 8-bit i.e. 28 combination of binary digits and are typically

identified as D0 – D7. Thus

size of the data bus determines what arithmetic can be done. If only 8-bit wide then largest number

is 11111111 (255 in decimal). Therefore, larger numbers have to be broken down into chunks of

255. This slows

microprocessor.

• Address Bus: The address bus carries addresses and is one way bus from microprocessor

to the memory or other devices. 8085 microprocessor contain 16-bit address bus and are

generally identified as A0 - A15. Thehigher

order address lines (A8 – A15) are unidirectional and the lower order lines (A0 – A7) are

multiplexed (time- shared) with the eight data bits (D0 – D7) and hence, they are

bidirectional.

• Control Bus: Control bus are various lines which have specific functions for coordinating and
controlling

microprocessor operations. The control bus carries control signals partly unidirectional and

partly bidirectional. The following control and status signals are used by 8085 processor:

I. ALE (output): Address Latch Enable is a pulse that is provided when an

address appears on the AD0 – AD7 lines, after which it becomes 0.

II. RD (active low output): The Read signal indicates that data are being read from
the selected I/O or memory device and that they are available on the data bus.

III. WR (active low output): The Write signal indicates that data on the data bus are
to be written into a selected memory or I/O location.

IV. IO/M (output): It is a signal that distinguished between a memory operation and

an I/O operation. When IO/M = 0 it is a memory operation and IO/M = 1 it is an

I/O operation.

V. S1 and S0 (output): These are status signals used to specify the type of operation

being performed; they are listed in Table 1.1

10

Table 1.1: Status signals and associated operations

The schematic representation of the 8085 bus structure is as shown in Fig. 1.5.

The microprocessor performs primarily four operations:

1.Memory Read: Reads data (or instruction)

from memory. 2.Memory Write: Writes data

(or instruction) into memory. 3.I/O Read:

Accepts data from input device.

4.I/O Write: Sends data to output device.

The 8085 processor performs these functions using address bus, data bus and control

bus as shown in Fig. 1.5.

Fig 1.5: 8085 Bus structure

3. 8085 Pin Description

• It is a 8-bit microprocessor
• Manufactured with N-MOS technology
• 40 pin IC package

11

• It has 16-bit address bus and thus has 216 = 64 KB addressing capability.
• Operate with 3 MHz single-phase clock
• +5 V single power supply

The logic pin layout and signal groups of the 8085nmicroprocessor are shown in Fig. 1.6. All the

signals are classified into six groups:

• Address bus
• Data bus
• Control & status signals
• Power supply and frequency signals
• Externally initiated signals

• Serial I/O signals

Fig 1.6: 8085-Pin Diagram

Address and Data Buses:

• A8 – A15 (output, 3-state): Most significant eight bits of memory addresses and

the eight bits of the I/O

addresses. These lines enter into tri-state high impedance state during HOLD and HALT

modes.

12

• AD0 – AD7 (input/output, 3-state): Lower significant bits of memory

addresses and the eight bits of the I/O addresses during first clock cycle.

Behaves as data bus during third and fourth clock cycle. These lines enter into

tri-state high impedance state during HOLD and HALT modes.

Control & Status Signals:

• ALE: Address latch enable

• RD : Read control signal.

• WR :Write control signal

:

• IO/M , S1 and S0 : Status

signals. Power Supply & Clock Frequency:

• Vcc: +5 V power supply

• Vss: Ground reference

• X1, X2: A crystal having frequency of 6 MHz is connected at these two pins

• CLK: Clock output

Externally Initiated and Interrupt Signals:

• RESET IN : When the signal on this pin is low, the PC is set to 0, the buses are

tri-stated and the processor is reset.

• RESET OUT: This signal indicates that the processor is being reset. The

signal can be used to reset other

devices.

• READY: When this signal is low, the processor waits for an integral number
of clock cycles until it goes high.

• HOLD: This signal indicates that a peripheral like DMA (direct

memory access) controller is requesting the use of address and data bus.

• HLDA: This signal acknowledges the HOLD request.

• INTR: Interrupt request is a general-purpose interrupt.

• INTA : This is used to acknowledge an interrupt.

• RST 7.5, RST 6.5, RST 5,5 – restart interrupt: These are vectored interrupts

13

and have highest priority than INTR interrupt.

• TRAP: This is a non-maskable interrupt and has the highest priority.

Serial I/O Signals:

• SID: Serial input signal. Bit on this line is loaded to D7 bit of register A

using RIM instruction.

• SOD: Serial output signal. Output SOD is set or reset by using SIM instruction.

4. Instruction Set And Execution In 8085

Based on the design of the ALU provides and decoding unit, the microprocessor manufacturer

microprocessor. The instruction set for every machine code and instruction set

consists of both

mnemonics.

An instruction is a binary pattern designed inside a microprocessor to perform a

specific function. The entire group of instructions that a microprocessor

supports is called instruction set. Microprocessor instructions can be classified

based on the parameters such functionality, length and operand addressing.

Classification based on functionality:

I. Data transfer operations: This group of instructions copies data from source to

destination. The content of the source is not altered.

II. Arithmetic operations: Instructions of this group perform operations like

addition, subtraction, increment & decrement. One of the data used in

arithmetic operation is stored in accumulator and the result is also stored in

accumulator.

III. Logical operations: Logical operations include AND, OR, EXOR, NOT. The

operations like AND, OR and EXOR uses two operands, one is stored in

accumulator and other can be any register or memory location. The result is

stored in accumulator. NOT operation requires single operand, which is stored

in accumulator.

IV. Branching operations: Instructions in this group can be used to transfer

program sequence from one memory location to another either conditionally or

unconditionally.

V. Machine control operations: Instruction in this group control execution of

other instructions and control operations like interrupt, halt etc.

14

Classification based on length:

I. One-byte instructions: Instruction having one byte in machine code. Examples are

depicted in Table 1.2.

I. Two-byte instructions: Instruction having two byte in machine code. Examples

are depicted in Table 1.3

II. Three-byte instructions: Instruction having three byte in machine code.

Examples are depicted in Table 1.4.

Table 1.2: Example of one byte instruction

Opcode Operand Machine code/Hex code

MOV A, B 78

ADD M 86

Table 1.3 Examples of two byte instructions

Opcode Operand Machine code/Hex code Byte description

MVI A, 7FH 3E First byte

 7F Second byte

ADI 0FH C6 First byte

 0F Second byte

Table 1.4 Examples of
three byte instructions

Opcode Operand Machine code/Hex code Byte description

JMP 9050H C3 First byte
 50 Second byte

 90 Third byte

LDA 8850H 3A First byte
 50 Second byte

 88 Third byte

5. Addressing Modes in Instructions:

The process of specifying the data to be operated on by the instruction is called

addressing. The various formats for specifying operands are called addressing modes.

The 8085 has the following five types of addressing:

1. Immediate addressing

2. Memory direct addressing

3. Register direct addressing

15

4. Indirect addressing

5. Implicit

addressing Immediate

Addressing:

In this mode, the operand given in the instruction - a byte or word – transfers to the

destination register or memory location.

Ex: MVI A, 9AH

• The operand is a part of the instruction.

• The operand is stored in the register mentioned in the instruction.

Memory Direct Addressing:

Memory direct addressing moves a byte or word between a memory location and

register. The memory location address is given in the instruction.

Ex: LDA 850FH

This instruction is used to load the content of memory address 850FH in the

accumulator. Register Direct Addressing:

Register direct addressing transfer a copy of a byte or word from source register to
destination register.

Ex: MOV B, C

It copies the content of register C to register B.

Indirect Addressing:

Indirect addressing transfers a byte or word between a register and a memory

location. Ex: MOV A, M

Here the data is in the memory location pointed to by the contents of HL pair. The data

is moved to the accumulator.

Implicit Addressing

In this addressing mode the data itself specifies the data to be

operated upon. Ex: CMA

16

The instruction complements the content of the accumulator. No specific data or

operand is mentioned in the instruction

6.8085 Interrupts

Interrupt Structure:

Interrupt is the mechanism by which the processor is made to transfer control from its

current program execution to another program having higher priority. The interrupt

signal may be given to the processor by any external peripheral device.

The program or the routine that is executed upon interrupt is called interrupt service

routine (ISR). After execution of ISR, the processor must return to the interrupted

program. Key features in the interrupt structure of any microprocessor are as follows:

i. Number and types of interrupt signals available.

ii. The address of the memory where the ISR is located for a particular interrupt

signal. This address is called interrupt vector address (IVA).

iii. Masking and unmasking feature of the interrupt signals.

iv. Priority among the interrupts.

v. Timing of the interrupt signals.

vi. Handling and storing of information about the interrupt program (status information).

Types of Interrupts:

Interrupts are classified based on their maskability, IVA and source. They are classified as:

i. Vectored and Non-Vectored Interrupts

Vectored interrupts require the IVA to be supplied by the external device that gives the

interrupt signal. This technique is vectoring, is implemented in number of ways.

Non-vectored interrupts have fixed IVA for ISRs of

different interrupt signals. ii.Maskable and Non-Maskable

Interrupts

Maskable interrupts are interrupts that can be blocked. Masking can be done by software or hardware

means.

17

Non-maskable interrupts are interrupts that are always recognized; the corresponding ISRs are

executed.

iii. Software and Hardware Interrupts

Software interrupts are special instructions, after execution transfer the control to predefined ISR.

Hardware interrupts are signals given to the processor, for recognition as an interrupt

and execution of the corresponding ISR.

Interrupt Handling Procedure:

The following sequence of operations takes place when an interrupt signal is recognized:

i. Save the PC content and information about current state (flags,

registers etc) in the stack. ii.Load PC with the beginning address of

an ISR and start to execute it.

iii. Finish ISR when the return instruction is executed.

iv. Return to the point in the interrupted program where execution was interrupted.

Interrupt Sources and Vector Addresses in 8085:

Software Interrupts:

8085 instruction set includes eight software interrupt instructions called Restart (RST)

instructions. These are one byte instructions that make the processor execute a

subroutine at predefined locations. Instructions and their vector addresses are given in

Table 1.6

Table 1.6 Vector address

Instructi
on

Machine hex
code

Interrupt Vector
Address

RST 0 C7 0000H

RST 1 CF 0008H

RST 2 D7 0010H

RST 3 DF 0018H

RST 4 E7 0020H

RST 5 EF 0028H

RST 6 F7 0030H

RST 7 FF 0032H

18

The software interrupts can be treated as CALL instructions with default call locations.

The concept of priority does not apply to software interrupts as they are inserted into the

program as instructions by the programmer and executed by the processor when the

respective program lines are read.

Hardware Interrupts and Priorities:

8085 have five hardware interrupts – INTR, RST 5.5, RST 6.5, RST 7.5 and TRAP.

Their IVA and priorities are given in Table 1.7.

Table 1.7 Hardware interrupts of 8085

Interrupt Interrupt

vector

address

Maskable or

non-

maskable

Edge or

level

Triggered

priority

TRAP 0024H Non-
makable

Level 1

RST 7.5 003CH Maskable Rising edge 2

RST 6.5 0034H Maskable Level 3

RST 5.5 002CH Maskable Level 4

INTR Decided by hardware Maskable Level 5

Addressing Modes

Implied - the data value/data address is implicitly associated with the instruction.

Register - references the data in a register or in a register pair.

Immediate - the data is provided in the instruction.

Direct - the instruction operand specifies the memory address where data is located.

Register indirect - instruction specifies a register containing an address, where data

is located. This addressing mode works with SI, DI, BX and BP registers.

Based :- 8-bit or 16-bit instruction operand is added to the contents of a base

register (BXor BP), the resulting value is a pointer to location where data resides.

Indexed :- 8-bit or 16-bit instruction operand is added to the contents of an

index register(SI or DI), the resulting value is a pointer to location where data

resides.

19

Based Indexed :- the contents of a base register (BX or BP) is added to the contents

of anindex register (SI or DI), the resulting value is a pointer to location where data

resides.

Based Indexed with displacement :- 8-bit or 16-bit instruction operand is added to the

contents of a base register (BX or BP) and index register (SI or DI), the resulting

value is a pointer to location where data resides.

Interrupts

The processor has the following interrupts:

INTR is a maskable hardware interrupt. The interrupt can be enabled/disabled using

STI/CLI instructions or using more complicated method of updating the FLAGS

register with the help of the POPF instruction.

When an interrupt occurs, the processor stores FLAGS register into stack, disables

further interrupts, fetches from the bus one byte representing interrupt type, and jumps

to interrupt processing routine address of which is stored in location 4 * <interrupt

type>. Interrupt processing routine should return with the IRET instruction.

NMI is a non-maskable interrupt. Interrupt is processed in the same way as the INTR

interrupt. Interrupt type of the NMI is 2, i.e. the address of the NMI processing routine

is stored in location 0008h. This interrupt has higher priority then the maskable

interrupt.

Software interrupts can be caused by:

INT instruction - breakpoint interrupt. This is a type 3 interrupt.

INT <interrupt number> instruction - any one interrupt from available 256

interrupts.INTO instruction - interrupt on overflow

Single-step interrupt - generated if the TF flag is set. This is a type 1 interrupt. When

the CPU processes this interrupt it clears TF flag before calling the interrupt

processing routine.

Processor exceptions: Divide Error (Type 0),

Unused Opcode (type 6) and Escape opcode

(type 7).

Software interrupt processing is the same as for the hardware interrupts.

The figure below shows the 256 interrupt vectors arranged in the interrupt vector

table inthe memory.

20

Fig 1.7 Interrupt Vector Table in the 8086

Minimum Mode Interface

When the Minimum mode operation is selected, the 8086 provides all control signals

needed to implement the memory and I/O interface. The minimum mode signal can be

divided into the following basic groups : address/data bus, status, control, interrupt and

DMA.

Address/Data Bus : these lines servetwo functions. As an address bus is 20 bits long

and consists of signal lines A0 through A19. A19 represents the MSB and A0 LSB. A

20bit address gives the 8086 a 1Mbyte memory address space. More over it has an

independent I/O address space which is 64K bytes in length.

The 16 data bus lines D0 through D15 are actually multiplexed with address lines A0

21

through A15 respectively. By multiplexed we mean that the bus work as an address bus

during first machine cycle and as a data bus during next machine cycles. D15 is the

MSB and D0 LSB. When acting as a data bus, they carry read/write data for memory,

input/output data for I/O devices, and interrupt type codes froman interrupt controller.

Fig 1.8: Block diagram of Minimum mode

Status signal : The four most significant address lines A19 through A16 are also

multiplexed but in this case with status signals S6 through S3. These status bits are

output on the bus at the same time that data are transferred over the other bus lines. Bit

S4 and S3 together from a 2 bit binary code that identifies which of the 8086 internal

segment registersare used to generate the physical address that was output on the

address bus during the current bus cycle. Code S4S3 = 00 identifies a register known

as extra segment register as the source of the segment address.

Fig 1.9:Memory segment status code

22

Status line S5 reflects the status of another internal characteristic of the 8086. It is the

logic level of the internal enable flag. The last status bit S6 is always at the logic 0 level.

Control Signals : The control signals are provided to support the 8086 memory I/O

interfaces. They control functions such as when the bus is to carry a valid address in

which direction data are to be transferred over the bus, when valid write data are on the

bus and when to put read data on the system bus.

ALE is a pulse to logic 1 that signals external circuitry when a valid address word is on

the bus. This address must be latched in external circuitry on the 1-to-0 edge of the pulse

at ALE.

Another control signal that is produced during the bus cycle is BHE bank high enable.

Logic 0 on this used as a memory enable signal for the most significant byte half of the

data bus D8 through D1. These lines also serves a second function, which is as the S7

status line.

Using the M/IO and DT/R lines, the 8086 signals which type of bus cycle is in progress

and in which direction data are to be transferred over the bus.

The logic level of M/IO tells external circuitry whether a memory or I/O transfer is taking

place over the bus. Logic 1 at this output signals a memory operation and logic 0 an

I/O operation.

The direction of data transfer over the bus is 74ignallin by the logic level output at DT/R.

When this line is logic 1 during the data transfer part of a bus cycle, the bus is in the

transmit mode. Therefore, data are either written into memory or output to an I/O device.

On the other hand, logic 0 at DT/R signals that the bus is in the receive mode. This

corresponds to reading data from memory or input of data from an input port.

The signal read RD and write WR indicates that a read bus cycle or a write bus cycle is

in progress. The 8086 switches WR to logic 0 to signal external device that valid write or

output data are on the bus.

On the other hand, RD indicates that the 8086 is performing a read of data of the

bus. During read operations, one other control signal is also supplied. This is

DEN

(data

enable) and it signals external devices when they should put data on the bus.

There is one other control signal that is involved with the memory and I/O interface.

This isthe READY signal.

23

READY signal is used to insert wait states into the bus cycle such that it is extended by a

number of clock periods. This signal is provided by an external clock generator device

and can be supplied by the memory or I/O sub- system to signal the 8086 when they are

ready topermit the data transfer to be completed.

Fig 1.10: Maximum mode

Maximum Mode Interface

When the 8086 is set for the maximum-mode configuration, it provides signals for

implementing a multiprocessor / coprocessor systemenvironment. By

multiproces

sor environment we mean that one microprocessor exists in the system and that each

processor is executing its own program. Usually in this type of system environment,

there are some system resources that are common to all processors. They are called as

global resources.

There are also other resources that are assigned to specific processors. These are known as

local or private resources. Coprocessor also means that there is a second processor in the

system. In this two processor does not access the bus at the same time. One passes the

control of the system bus to the other and then may suspend its operation. In the maximum-

mode 8086 system, facilities are provided for implementing allocation of global

resources and passing bus control to other microprocessor or coprocessor.

8288 Bus Controller – Bus Command and Control Signals: 8086 does not directly

provide all the signals that are required to control the memory, I/O and interrupt

interfaces. Specially the WR, M/IO, DT/R, DEN, ALE and INTA, signals are no longer

produced by the 8086. Instead it outputs three status signals S0, S1, S2 prior to the

initiation of each bus cycle. This 3- bit bus status code identifies which type of bus cycle

is to follow. S2S1S0 are input to the external bus controller device, the bus controller

generates the appropriately timed command and control signals. The 8288 produces one

or two of these eight command signals for each b us cycles. For instance, when the 8086

24

outputs the code S2S1S0 equals 001, it indicates that an I/O read cycle is to be

performed. In the code 111 is output by the 8086, it is 7 signalling that no bus

activity is to take place.

The control outputs produced by the 8288 are DEN, DT/R and ALE. These 3 signals

provide the same functions as those described for the minimum system mode. This set of

bus commands and control signals is compatible with the Multibus and industry standard

for interfacing microprocessor systems.

This device permits processors to reside on the system bus. It does this by implementing

the Multibus arbitration protocol in an 8086-based system. Addition of the 8288 bus

controller and 8289 bus arbiter frees a number of the 8086 pins for use to produce control

signals that are needed to support multiple processors. Bus priority lock (LOCK) is one

of these signals.It is input to the bus arbiter together with status signals S0 through S2.

Queue Status Signals: Two new signals that are produced by the 8086 in the maximum-

mode system are queue status outputs QS0 and QS1. Together they form a 2-bit queue

status code, QS1QS0. Following table shows the four different queue status.

Table 1.8: Queue status code

AX - the Accumulator BX - the Base Register CX - the Count Register DX - the Data Register
Normally used for storing temporaryresults. Each of the registers is 16 bits wide (AX, BX,
CX, DX). Can be accessed as either 16 or 8 bits AX, AH, AL

AX-Accumulator Register. Preferred register to use in arithmetic, logic and data transfer

instructions because it generates the shortest Machine Language Code. Must be used in

multiplication and division operations.Must also be used in I/O operations.

BX-Base Register.Also serves as an address register

CX- Count register. Used as a loop counter. Used in shift and rotate operations

DX- Data register. Used in multiplication and division. Also used in I/O

25

operations

Pointer and Index Registers

Fig 1.11 Pointers and index registers

• All 16 bits wide, L/H bytes are notaccessible. Used as memory pointers

• Example: MOV AH,[SI]

• Move the byte stored in memory location whose address is contained in register SIto register AH.

IP is not under direct control of theprogrammer

The Stack

The stack is used for temporary storage of information such as data or addresses. When a CALL is

executed, the 8086 automatically PUSH the current value of CS and IP onto the stack. Other

registers can also be pushed. Before return from the subroutine, POP instructions can be used to

pop values back from the stack into the corresponding registers.

Fig 1.12 stack operation

26

Test signals in 8086

TEST is an input pin and is only used by the wait instruction .the 8086 enter a wait state after

execution of the wait instruction until a low is Seen on the test pin. Used in conjunction with the

WAIT instruction in multiprocessing environments. This is input from the 8087 coprocessor.

During execution of a wait instruction, the CPU checks this signal. If it is low, execution of the

signal will continue; if not, it will stop executing.
Coprocessor Execution

 Multiprocessor configuration

High system throughput can be achieved by having more than one CPU. The system can
be expanded in modular form. Each bus master module is an independent unit and
normally resides on a separate PC board. One can be added or removed without affecting
the others in the system. A failure in one module normally does not affect the breakdown
of the entire system and the faulty module can be easily detected and replaced. Each bus
master has its own local bus to access dedicated memory or IO devices. So a greater
degree of parallel processing can be achieved.

Fig 1.13 Coprocessor

27

8.8085ROPROCESSOR INSTRUCYIONS

 8.1 Instruction Set of 8085

 An instruction is a binary pattern designed inside a microprocessor to perform a specific

function.

 The entire group of instructions that a microprocessor supports is called Instruction Set.

 8085 has 246 instructions.

 Each instruction is represented by an 8-bit binary value.

 These 8-bits of binary value is called Op-Code or Instruction Byte.

Classification of Instruction Set

• Data Transfer Instruction

• Arithmetic Instructions

• Logical Instructions

• Branching Instructions

• Control Instructions

Data Transfer Instructions • These instructions move data between registers, or between memory and

registers. • These instructions copy data from source to destination. • While copying, the contents of

source are not modified.

Arithmetic Instructions • These instructions perform the operations like: • Addition • Subtract •
Increment • Decrement

Logical Instructions • These instructions perform logical operations on data stored in registers,

memory and status flags. • The logical operations are: • AND • OR • XOR • Rotate • Compare
• Complement

Branching Instructions • The branching instruction alter the normal sequential flow. • These

instructions alter either unconditionally or conditionally

Control Instructions • The control instructions control the operation of microprocessor.
DATA TRANSFER INSTRUCTIONS

Copy of data

 MOV Moves data from register to register / memory

 MVI Moves immediate data to register /

memory Load Instructions

 LDA Load accumulator direct

 LDAX Load accumulatorindirect

 LHLD Load H&L registersdirect

 LXI Load register pair

immediate Store Instructions

 STA Store accumulator direct

 SPHL Copy H&L registers to stack pointer.

 STAX Store accumulator indirect

28

Opcode Operand Meaning Explanation

MOV

Rd, Sc

M, Sc Dt, M

Copy from the

source (Sc) to the

destination(Dt)

This instruction copies the

contents of the source register

into the destination register

without any alteration.

Example − MOV A, L

MVI

Rd, data

M, data

Move immediate 8-bit

The 8-bit data is stored in the

destination register or memory.

Example − MVI H, 55H

LDA

16-bit address

Load the accumulator

The contents of a memory

location, specified by a 16-bit

address in the operand, are copied

to the accumulator.

Example − LDA 2034H

LDAX

B/D Reg. pair

Load the

accumulat
or indirect

The contents of the designated

register pair point to a memory

location. This instruction copies

the contents of that memory

location into the accumulator.

Example − LDAX B

LXI

Reg. pair, 16-

bit data

Load the

register

The instruction loads 16-bit data

in the register pair designated in

the register or the memory.

Example − LXI H, 3225H

LHLD

16-bit address

Load H and L

registers direct

The instruction copies the

contents of the memory location

pointed out by the address into

register L and copies the contents

of the next memory location into

register H.

29

 Example − LHLD 3225H

STA

16-bit address

16-bit address

The contents of the accumulator

are copied into the memory

location specified by the operand.

This is a 3-byte instruction, the

second byte specifies the low-

order address and the third byte

specifies the high-order address.

Example − STA 3257H

STAX

16-bit address

Store the accumulator

indirect

The contents of the accumulator

are copied into the memory

location specified by the contents

of the operand.

Example − STAX D

SHLD

16-bit address

Store H and L registers

direct

The contents of register L are

stored in the memory location

specified by the 16-bit address in

the operand and the contents of H

register are stored into the next

memory location by incrementing

the operand.

This is a 3-byte instruction, the

second byte specifies the low-

order address and the third byte

specifies the high-order address.

Example − SHLD 3225H

XCHG

None

Exchange H and L with D and

E

The contents of register H are

exchanged with the contents of

register D, and the contents of

register L are exchanged with the

contents of register E.

Example − XCHG

SPHL

None

Copy H and L registers to

the stack pointer

The instruction loads the

contents of the H and L registers

into the stack pointer register.

The contents of the H register

provide the high-order address

and the contents of the L

register provide the low-order

address.

Example − SPHL

XTH

L

None

Exchange H and L with top

of stack

The contents of the L register

are exchanged with the stack

location pointed out by the

contents of the stack pointer

register.

The contents of the H register

are exchanged with the next

stack location (SP+1).

Example − XTHL

PUSH

Reg. pair

Push the register pair onto

the stack

The contents of the register pair

designated in the operand are

copied onto the stack in the

following sequence.

The stack pointer register is

decremented and the contents of

the high order register (B, D, H,

A) are copied into that location.

The stack pointer register is

decremented again and the

contents of the low-order

register (C, E, L, flags) are

copied to that location.

Example − PUSH PSW

POP

Reg. pair

Pop off stack to

 the register pair

The contents of the memory

location pointed out by the

stack pointer register are copied

to the low-order register (C, E,

L, status flags) of the operand.

30

31

 The stack pointer is incremented

by 1 and the contents of that

memory location are copied to the

high- order register (B, D, H, A) of

the operand.

The stack pointer register is again

incremented by 1.

Example – POP D

OUT

8-bit port

address

Output the data from the

accumulator to a port with

8bit address

The contents of the accumulator

are copied into the I/O port

specified by the operand.

Example − OUT 12H

IN

8-bit port

address

Input data to accumulator

from a port with 8-bit

address

The contents of the input port

designated in the operand are read

and loaded into the accumulator.

Example – IN 55H

31

32

Arithmetic Instructions:

33

34

35

36

37

38

39

40

QUESTION BANK

PART A

 Part A
1. Define microprocessor
2. In how many groups can the signals of 8085 be classified?
3. What is the technology used in the manufacture of 8085?
4. Draw the block diagram of the built-in clock generator of 8085
5. What is the purpose of CLK signal of 8085?
6. What are the widths of data bus (DB) and address bus (AB) of 8085?
7. The address capability of 8085 is 64 KB. Explain.
8. Does 8085 have serial I/O control
9. What jobs ALU of 8085 can perform?
10. How many hardware interrupts 8085 supports?

11. How many I/O ports can 8085 access?

12. Why the lower byte address bus (A0 – A7) and data bus (D0 – D7) are

multiplexed?

13. Why the lower byte address bus (A0 – A7) and data bus (D0 – D7) are
multiplexed?

14. List the interrupts of 8085

15. List the flag bits of 8086

PART B

1. Explain the architecture of 8085
2. Discuss the addressing modes of 8085
3. Explain the 8086 architecture with neat diagram

4. Explain a. XTHL b.SPHL c.PCHL d.RAR e.SIM

5. Explain with example a.LDAX B b.PUSH PSW c.RLCd.JNC 16bit e.XRA A

6. Write an ALP to sort a given array in ascending order
7. Explain the interrupts of 8085

41

TEXT / REFERENCE BOOKS

1. Ramesh Goankar, "Microprocessor architecture programming and applications with 8085 / 8088", 5th

Edition, Penram International Publishing, 2002.

2. Mazidi & McKinlay, “The 8051 Microcontroller and Embedded Systems using Assembly and C”, PHI,

2007.

 3. MykePredko, “Programming and Customizing the 8051 Micro-controller”, Tata McGraw-Hill edition,

2007.

4. R A Gaonkar, “Fundamentals of Microcontrollers and Applications in Embedded Systems (with the

PIC18 Microcontroller Family)”, Penram Publishing India, 2007

5. Kenneth Ayala ,”The 8051 Microcontroller”, 3rd Edition, Thomson Delmar Learning, 2004.

6. Kenneth J. Ayala, Dhananjay V. Gadre, “The 8051 Microcontroller & Embedded Systems Using

Assembly and C”, Cengage Learning India Publication, 2007.

7. Ajay V Deshmukh, “Microcontrollers: Theory and Applications”, Tata McGraw-Hill, 2005

 8. Raj Kamal, “Embedded Systems Architecture, Programming, and Design”. (2/e), Tata McGraw Hill,

2008.

42

SCHOOL OF ELECTRICAL AND ELECTRONICS ENGINEERING

 DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

UNIT – II– MICROPROCESSORS , MICROCONTROLLERS AND EMBEDDED SYSTEMS – SEIA 1504

43

UNIT 2 ARCHITECTURE OF 8051 AND INSTRUCTION SET

Introduction - Architecture of 8051 - Memory organization - Addressing modes - Instruction set

 – Assembly Language Programming - Jump, Loop and Call Instructions - Arithmetic and

 Logic Instructions - Bit Operations.

1. Architecture of 8051 Microcontroller

An 8051 microcontroller has the following 11 major components:

1. ALU (Arithmetic and Logic Unit)

2. PC (Program Counter)

3. Registers

4. Timers and counters

5. Internal RAM and ROM

6. Four general purpose parallel input/output ports

7. Interrupt control logic with five sources of interrupt

8. Serial date communication

9. PSW (Program Status Word)

10. Data Pointer (DPTR)

11. Stack Pointer (SP)

44

Fig 2.1: 8051- Architecture

The unique features are

Internal ROM and RAM, I/O ports with programmable pins, Timers and counters, Serial

Data communication

45

2. Programming Model of 8051

Fig 2.2: Programming Model

46

The above diagram shows the programming model of

8051. The 8051 architecture consists of these specific

features:

 8 bit CPU with registers A and B

 16 bit PC and DPTR

 8 bit Program status word (PSW)

 8 bit Stack pointer(SP)

 Internal ROM (4K)

 Internal RAM of 128 bytes

 4 register banks, each containing 8 registers

 16 bytes, which may be addressed at the bitlevel

 80 bytes of general purpose data memory

 32 input/output pins arranged as four 8 bit ports: P0-P3

 Two 16 bit Timers/Counters: T0 and T1

 Full duplex serial data receiver/transmitter: SBUF

 Control Register: TCON,TMOD,SCON,PCON,IP and IE

 Two external and three internal interrupt sources

 Oscillator and

clock circuits Special

Function Registers (SFRs)

Special Function Registers (SFRs) are a sort of control table used for running and monitoring
the operation of the microcontroller. Each of these registers as well as each bit they

include, has its name, address in the scope of RAM and precisely defined purpose such as

timer control, interrupt control, serial communication control etc. Even though there are

128 memory locations intended to be occupied by them, the basic core, shared by all types of

8051 microcontrollers, has only 21 such registers. Rest of locations are intensionally left

47

unoccupied in order to enable the manufacturers to further develop microcontrollers

keeping them compatible with the previous versions. It also enables programs written a long

time ago for microcontrollers which are out of production now to be used today.

Fig 2.3 : Special Function Register

A Register (Accumulator)

Fig 2.4: Accumulator

A register is a general-purpose register used for storing intermediate results obtained during

operation. Prior to executing an instruction upon any number or operand it is necessary to

store itin the accumulator first. All results obtained from arithmetical operations performed

by the ALU are stored in the accumulator. Data to be moved from one register to another

must go through theaccumulator. In other words, the A register is the most commonly used

register and it is impossible to imagine a microcontroller without it. More than half

instructions used by the 8051 microcontroller use somehow the accumulator.

48

B Register

Multiplication and division can be performed only upon numbers stored in the A and B

registers.All other instructions in the program can use this register as a spare accumulator

(A).

R Registers

(R0-R7)

Fig 2.5: B Register

Fig 2.6: Register Banks

This is a common name for 8 general-purpose registers (R0, R1, R2 ...R7). Even though

they are not true SFRs, they deserve to be discussed here because of their purpose. They

occupy 4 banks within RAM. Similar to the accumulator, they are used for temporary

storing variables and intermediate results during operation. Which one of these banks is to

be active depends on two bits of the PSW Register. Active bank is a bank the registers of

which are currently used.

The following example best illustrates the purpose of these registers. Suppose it is

necessary to perform some arithmetical operations upon numbers previously stored in the R

registers: (R1+R2) - (R3+R4). Obviously, a register for temporary storing results of addition

is needed. This is how it looks in the program:

49

MOV A,R3; Means: move number from R3 into accumulator
ADD A,R4; Means: add number from R4 to accumulator (result remains in accumulator)
MOV R5,A; Means: temporarily move the result from accumulator into R5
MOV A,R1; Means: move number from R1 to accumulator
ADD A,R2; Means: add number from R2 to accumulator

SUBB A,R5; Means: subtract number from R5 (there are R3+R4)

Program Status Word (PSW) Register

Fig 2.7: PSW

PSW register is one of the most important SFRs. It contains several status bits that reflect

the current state of the CPU. Besides, this register contains Carry bit, Auxiliary Carry, two

register bank select bits, Overflow flag, parity bit and user-definable status flag.

P - Parity bit. If a number stored in the accumulator is even then this bit will be

automatically set (1), otherwise it will be cleared (0). It is mainly used during data transmit

and receive via serial communication.

- Bit 1. This bit is intended to be used in the future versions of microcontrollers.

OV Overflow occurs when the result of an arithmetical operation is larger than 255 and

cannot be stored in one register. Overflow condition causes the OV bit to be set (1).

Otherwise, it will becleared (0).

RS0, RS1 - Register bank select bits. These two bits are used to select one of four register

banks of RAM. By setting and clearing these bits, registers R0-R7 are stored in one of four

banksof RAM.

RS1 RS2 Space in RAM

0 0 Bank0 00h-07h

0 1 Bank1 08h-0Fh

1 0 Bank2 10h-17h
1 1 Bank3 18h-1Fh

50

F0 - Flag 0. This is a general-purpose bit available for use.

AC - Auxiliary Carry Flag is used for BCD operations only.

CY - Carry Flag is the (ninth) auxiliary bit used for all arithmetical operations and shift

instructions.

Data Pointer Register (DPTR)

DPTR register is not a true one because it doesn't physically exist. It consists of two

separate registers: DPH (Data Pointer High) and (Data Pointer Low). For this reason it may

be treated as a16-bit register or as two independent 8-bit registers. Their 16 bits are

primarly used for external memory addressing. Besides, the DPTR Register is usually used

for storing data and intermediateresults.

Fig 2.8: DPTR

Stack Pointer (SP)

Register

51

Pin 9: RS

Fig 2.9: Stack Pointer

A value stored in the Stack Pointer points to the first free stack address and permits stack

availability. Stack pushes increment the value in the Stack Pointer by 1. Likewise, stack

pops decrement its value by 1. Upon any reset and power-on, the value 7 is stored in the

Stack Pointer,which means that the space of RAM reserved for the stack starts at this

location. If another value is written to this register, the entire Stack is moved to the new

memory location.

P0, P1, P2, P3 - Input/Output Registers

Fig 2.10: P0
If neither external memory nor serial communication system are used then 4 ports with in

total of32 input/output pins are available for connection to peripheral environment. Each bit

within theseports affects the state and performance of appropriate pin of the microcontroller.

Thus, bit logic state is reflected on appropriate pin as a voltage (0 or 5 V) and vice versa,

voltage on a pin reflects the state of appropriate port bit.

As mentioned, port bit state affects performance of port pins, i.e. whether they will be

configuredas inputs or outputs. If a bit is cleared (0), the appropriate pin will be configured

as an output, while if it is set (1), the appropriate pin will be configured as an input. Upon

reset and power-on, all port bits are set (1), which means that all appropriate pins will be

configured as inputs.

Pinout Description

Each of these pins can be configured as an input or an output.

A logic one on this pin disables the microcontroller and clears the contents of

most registers. In other words, the positive voltage on this pin resets the microcontroller.

By applying logic zero to this pin, the program starts execution from the beginning.

Similar to port 1, each of these pins can serve as general input or output.

Besides, all of them have alternative functions:

Pins10-17: Port 3

Pins 1-8: Port 1

52

Pin 18, 19: X2,RXA1M.

Pin 30: ALE

Pin 29: PSEN

Pin 21-28: Port 2

Pin 15: T1

Serial asynchronous communication input or Serial synchronous communication

output.

Serial asynchronous communication output or Serial synchronous communication

clock output.

Interrupt 0 input.

Interrupt 1 input.

Counter 0 clock

input.Counter 1

Pin 16: WRclock input.

Write to external (additional)

RAM.Read from external

Internal oscillator input and output. A quartz crystal which specifies

Operating frequency is usually connected to these pins. Instead of it, miniature ceramics
resonators can also be used for frequency stability. Later versions of microcontrollers
operate ata frequency of 0 Hz up to over 50 Hz.

Ground.

If there is no intention to use external memory then these port pins

areconfigured as general inputs/outputs. In case external memory is used, the higher

address byte,
i.e. addresses A8-A15 will appear on this port. Even though memory with capacity of 64Kb is
not used, which means that not all eight port bits are used for its addressing, the rest of
them arenot available as inputs/outputs.

If external ROM is used for storing program then a logic zero (0) appears

on itevery time the microcontroller reads a byte from memory.

Prior to reading from external memory, the microcontroller puts the lower

address byte (A0-A7) on P0 and activates the ALE output. After receiving signal from the

Pin 20: GND

Pin 17: RD

Pin 14: T0

Pin 13: INT1

Pin 12: INT0

Pin 11: TXD

Pin 10: RXD

53

Pin 31: EA

ALE pin, the external register (usually 74HCT373 or 74HCT375 add-on chip) memorizes

the state of P0 and uses it as a memory chip address. Immediately after that, the ALU

pin is

returned its previous logic state and P0 is now used as a Data Bus. As seen, port data

multiplexing is performed by means of only one additional (and cheap) integrated circuit. In

other words, this port is used for both data and address transmission.

By applying logic zero to this pin, P2 and P3 are used for data and address

transmission with no

PIN DIAGRAM OF 8051

Fig 2.11: Pin Diagram-8051

3.Memory Organization

The 8051 has two types of memory and these are Program Memory and Data Memory.

Program Memory (ROM) is used to permanently save the program being executed, while

Data Memory (RAM) is used for temporarily storing data and intermediate results created

and used during the operation of the microcontroller. Depending on the model in use (we are

still talking about the 8051 microcontroller family in general) at most a few Kb of ROM

and 128 or 256 bytes of RAM is used. However All 8051 microcontrollers have a 16-bit

addressing bus and are capable of addressing 64 kb memory. It is neither a mistake nor a

big ambition of engineers who were working on basic core development. It is a matter of

smart memory organization which makes these microcontrollers a real ―programmers‘

goody―.Program Memory. The first models of the 8051 microcontroller family did not

have internal program memory. It was added as an external separate chip. These models are

recognizable by their label beginning with 803 (for example 8031 or 8032). All later models

have a few Kbyte ROM embedded. Even though such an amountof memory is sufficient for

writing most of the programs, there are situations when it is necessaryto use additional

memory as well. A typical example is so called lookup tables. They are used in cases when

54

equations describing some processes are too complicated or when there is no time

forsolving them. In such cases all necessary estimates and approximates are executed in

advance and the final results are put in the tables (similar to logarithmic tables).

How does the microcontroller handle external memory depends on the EA pin logic state:

Fig 2.12: External memory EA pin

EA=0 In this case, the microcontroller completely ignores internal program memory

andexecutes only the program stored in external memory.

EA=1 In this case, the microcontroller executes first the program from built-in ROM,

then theprogram stored in external memory.

In both cases, P0 and P2 are not available for use since being used for data and
addresstransmission. Besides, the ALE and PSEN pins are also used.

Data Memory

As already mentioned, Data Memory is used for temporarily storing data and intermediate

resultscreated and used during the operation of the microcontroller. Besides, RAM memory

built in the 8051 family includes many registers such as hardware counters and timers,

input/output ports, serial data buffers etc. The previous models had 256 RAM locations,

while for the later models this number was incremented by additional 128 registers.

However, the first 256 memory locations (addresses 0-FFh) are the heart of memory

common to all the models belonging to the 8051 family. Locations available to the user

occupy memory space with addresses 0-7Fh, i.e. first 128 registers. This part of RAM is

divided in several blocks.

The first block consists of 4 banks each including 8 registers denoted by R0-R7. Prior to

accessing any of these registers, it is necessary to select the bank containing it. The next

55

memory block (address 20h-2Fh) is bit- addressable, which means that each bit has its own

address (0- 7Fh). Since there are 16 such registers, this block contains in total of 128 bits

with separate addresses (address of bit 0 of the 20h byte is 0, while address of bit 7 of the

2Fh byte is 7Fh). The third group of registers occupy addresses 2Fh-7Fh, i.e. 80 locations,

and does not have any special functions or features.
Additional RAM

In order to satisfy the programmers‘ constant hunger for Data Memory, the manufacturers

decided to embed an additional memory block of 128 locations into the latest versions of

the 8051 microcontrollers. However, it‘s not as simple as it seems to be… The problem is

that electronics performing addressing has 1 byte (8 bits) on disposal and is capable of

reaching only the first 256 locations, therefore. In order to keep already existing 8-bit

architecture and compatibility with other existing models a small trick was done.

What does it mean? It means that additional memory block shares the same addresses with

locations intended for the SFRs (80h- FFh). In order to differentiate between these two

physically separated memory spaces, different ways of addressing are used. The SFRs

memory locations are accessed by direct addressing, while additional RAM memory

locations are accessed by indirect addressing.

56

Fig 2.13 : Internal RAM

57

Memory expansion

In case memory (RAM or ROM) built in the microcontroller is not sufficient, it is possible

to addtwo external memory chips with capacity of 64Kb each. P2 and P3 I/O ports are used

for their addressing and data transmission.

Fig 2.14: External Memory Interfacing

From the user‘s point of view, everything works quite simply when properly connected

because most operations are performed by the microcontroller itself. The 8051

microcontroller has two pins for data read RD#(P3.7) and PSEN#. The first one is used for

reading data from external data memory (RAM), while the other is used for reading data

from external program memory (ROM). Both pins are active low. A typical example of

memory expansion by adding RAM and ROM chips (Hardward architecture), is shown in

figure above.

58

Even though additional memory is rarely used with the latest versions of the

microcontrollers, we will describe in short what happens when memory chips are connected
according to the previous schematic. The whole process described below is performed

automatically.

• When the program during execution encounters an instruction which resides in

external memory (ROM), the microcontroller will activate its control output ALE

and set the first 8 bits of address (A0-A7) on P0. IC circuit 74HCT573 passes the

first 8 bits to memory address pins.

• A signal on the ALE pin latches the IC circuit 74HCT573 and immediately

afterwards 8 higher bits of address (A8-A15) appear on the port. In this way, a
desired location of additional program memory is addressed. It is left over to read

its content.

• Port P0 pins are configured as inputs, the PSEN pin is activated and the

microcontroller reads from memory chip.

Similar occurs when it is necessary to read location from external RAM. Addressing is

performed in the same way, while read and write are performed via signals appearing on the

control outputs RD (is short for read) or WR (is short for write).

3. Addressing Modes

An "addressing mode" refers to how you are addressing a given memory location. In

summary, the addressing modes are as follows, with an example of each:

Immediate Addressing MOV A,#20h
Direct Addressing MOV A,30h

Indirect Addressing MOV A,@R0

External Direct

A,@DPTR

MOVX

Code Indirect MOVC A,@A+DPTR

Each of these addressing modes provides important flexibility.

Immediate Addressing

Immediate addressing is so-named because the value to be stored in memory immediately

follows the operation code in memory. That is to say, the instruction itself dictates what

value will be stored in memory.

For example, the instruction:

MOV A,#6Ah

This instruction uses Immediate Addressing because the Accumulator will be loaded with
the value that immediately follows; in this case 6A (hexidecimal).

Immediate addressing is very fast since the value to be loaded is included in the
instruction. However, since the value to be loaded is fixed at compile-time it is not very
flexible.

59

Direct Addressing

Direct addressing is so-named because the value to be stored in memory is obtained by
directly retrieving it from another memory location. For example:

MOV A,30h

This instruction will read the data out of Internal RAM address 30 (hexidecimal) and store
it in the Accumulator.

Direct addressing is generally fast since, although the value to be loaded isnt included in

the instruction, it is quickly accessable since it is stored in the 8051s Internal RAM. It is

also much more flexible than Immediate Addressing since the value to be loaded is

whatever is found at thegiven address--which may be variable.

Also, it is important to note that when using direct addressing any instruction which refers

to an address between 00h and 7Fh is referring to Internal Memory. Any instruction which

refers to an address between 80h and FFh is referring to the SFR control registers that

control the 8051 microcontroller itself.

Indirect Addressing

Indirect addressing is a very powerful addressing mode which in many cases provides an

exceptional level of flexibility. Indirect addressing is also the only way to access the extra

128 bytes of Internal RAM found on an 8052.

Indirect addressing appears as follows:

MOV A,@R0

This instruction causes the 8051 to analyze the value of the R0 register. The 8051 will then

load the accumulator with the value from Internal RAM which is found at the address

indicated by R0.

For example, lets say R0 holds the value 40h and Internal RAM address 40h holds the

value 67h.When the above instruction is executed the 8051 will check the value of R0.

Since R0 holds 40h the 8051 will get the value out of Internal RAM address 40h (which

holds 67h) and store it in theAccumulator. Thus, the Accumulator ends up holding 67h.

Indirect addressing always refers to Internal RAM; it never refers to an SFR. Thus, in a

prior example we mentioned that SFR 99h can be used to write a value to the serial port.

Thus one may think that the following would be a valid solution to write the value 1 to the

serial port:

MOV R0,#99h ;Load the address of the serial port

MOV @R0,#01h ;Send 01 to the serial port -- WRONG!!

This is not valid. Since indirect addressing always refers to Internal RAM these two

instructions would write the value 01h to Internal RAM address 99h on an 8052. On an

8051 these two instructions would produce an undefined result since the 8051 only has 128

bytes

60

of Internal RAM.

External Direct

External Memory is accessed using a suite of instructions which use what I call "External

Direct"addressing. I call it this because it appears to be direct addressing, but it is used to

access externalmemory rather than internal memory.

There are only two commands that use External Direct addressing mode:

MOVXA,@DPT R

MOVX
@DPTR,A

Both commands utilize DPTR. In these instructions, DPTR must first be loaded with the

address of external memory that you wish to read or write. Once DPTR holds the correct

external memory address, the first command will move the contents of that external memory

address into the Accumulator. The second command will do the opposite: it will allow you

to write the value of the Accumulator to the external memory address pointed to by DPTR.

External Indirect

External memory can also be accessed using a form of indirect addressing which I call

External Indirect addressing. This form of addressing is usually only used in relatively small

projects that have a very small amount of external RAM. An example of this addressing mode

is:

MOVX @R0,A

Once again, the value of R0 is first read and the value of the Accumulator is written to that

address in External RAM. Since the value of @R0 can only be 00h through FFh the project

would effectively be limited to 256 bytes of External RAM. There are relatively simple

hardware/software tricks that can be implemented to access more than 256 bytes of memory

using External Indirect addressing.

4. Instruction Set

The process of writing program for the microcontroller mainly consists of giving instructions

(commands) in the specific order in which they should be executed in order to carry out a

specific task. As electronics cannot ―understand‖ what for example an instruction ―if the

push button is pressed- turn the light on‖ means, then a certain number of simpler and

precisely defined orders that decoder can recognise must be used. All commands are

known as INSTRUCTION SET. All microcontrollers compatibile with the 8051 have in

total of 255 instructions, i.e. 255 different words available for program writing.

At first sight, it is imposing number of odd signs that must be known by heart. However, It

is not so complicated as it looks like. Many instructions are considered to be ―different‖, even

though they perform the same operation, so there are only 111 truly different commands.

For example: ADD A,R0, ADD A,R1, ... ADD A,R7 are instructions that perform the

same

61

operation (additon of the accumulator and register). Since there are 8 such registers, each

instruction is counted separately. Taking into account that all instructions perform only 53

operations (addition, subtraction, copy etc.) and most of them are rarely used in practice,

there are actually 20-30 abbreviations to be learned, which is acceptable.

Types of instructions

Depending on operation they perform, all instructions are divided in several groups:

• Arithmetic Instructions
• Branch Instructions
• Data Transfer Instructions
• Logic Instructions
• Bit-oriented Instructions

The first part of each instruction, called MNEMONIC refers to the operation aninstruction
performs (copy, addition, logic operation etc.). Mnemonics are abbreviations of the name

of operation being executed. For example:

• INC R1 - Means: Increment register R1 (increment register R1);
• LJMP LAB5 - Means: Long Jump LAB5 (long jump to the address marked as LAB5);
• JNZ LOOP - Means: Jump if Not Zero LOOP (if the number in the accumulator is

not 0, jump to the address marked as LOOP);

The other part of instruction, called OPERAND is separated from mnemonic by at least one

whitespace and defines data being processed by instructions. Some of the instructions have

no operand, while some of them have one, two or three. If there is more than one operand in

an instruction, they are separated by a comma. For example:

• RET - return from a subroutine;

• JZ TEMP - if the number in the accumulator is not 0, jump to the address marked
as TEMP;

• ADD A,R3 - add R3 and accumulator;

• CJNE A,#20,LOOP - compare accumulator with 20. If they are not equal, jump

to the address marked as LOOP;

Arithmetic instructions

Arithmetic instructions perform several basic operations such as addition, subtraction,

division, multiplication etc. After execution, the result is stored in the first operand. For

example:

ADD A,R1 - The result of addition (A+R1) will be stored in the accumulator.

Arithmetic Instructions
Mnemonic Description Byte Cycle

ADD A,Rn Adds the register to the accumulator 1 1

ADD A,direct Adds the direct byte to the accumulator 2 2

ADD A,@Ri Adds the indirect RAM to the accumulator 1 2

ADD A,#data Adds the immediate data to the accumulator 2 2

62

ADDC A,Rn Adds the register to the accumulator with a carry flag 1 1

AD
DC

A,di
rect

Adds the direct byte to the accumulator with a carry flag 2 2

ADDC A,@Ri Adds the indirect RAM to the accumulator with a carry flag 1 2

ADDC Adds the immediate data to the accumulator with a carry flag 2 2

A,#data

SUBB A,Rn Subtracts the register from the accumulator with a borrow 1 1

SUBB A,direct Subtracts the direct byte from the accumulator with a borrow 2 2

SUBB A,@Ri Subtracts the indirect RAM from the accumulator with a borrow 1 2

SUBB A,#data Subtracts the immediate data from the accumulator with a borrow 2 2

INC A Increments the accumulator by 1 1 1

INC Rn Increments the register by 1 1 2

INC Rx Increments the direct byte by 1 2 3

INC @Ri Increments the indirect RAM by 1 1 3

DEC A Decrements the accumulator by 1 1 1

DEC Rn Decrements the register by 1 1 1

DEC Rx Decrements the direct byte by 1 1 2

DEC @Ri Decrements the indirect RAM by 1 2 3

INC DPTR Increments the Data Pointer by 1 1 3

MUL AB Multiplies A and B 1 5

DIV AB Divides A by B 1 5
DA A Decimal adjustment of the accumulator according to BCD code 1 1

Branch Instructions

There are two kinds of branch instructions:

Unconditional jump instructions: upon their execution a jump to a new location from

where theprogram continues execution is executed.

Conditional jump instructions: a jump to a new program location is executed only if

a specifiedcondition is met. Otherwise, the program normally proceeds with the next

instruction.

63

Fig 2.15: Jump Address Range

Branch Instructions

Mnemonic Description Byte Cycle

ACALL addr11 Absolute subroutine call 2 6

LCALL addr16 Long subroutine call 3 6

RET Returns from subroutine 1 4

RETI Returns from interrupt subroutine 1 4

AJMP addr11 Absolute jump 2 3

LJMP addr16 Long jump 3 4

SJMP rel Short jump (from –128 to +127 locations relative to the following 2 instruction)
3

JC rel Jump if carry flag is set. Short jump. 2 3

JNC rel Jump if carry flag is not set. Short jump. 2 3

JB bit,rel Jump if direct bit is set. Short jump. 3 4

JBC bit,rel Jump if direct bit is set and clears bit. Short jump. 3 4

JMP @A+DPTR
JZ rel

Jump indirect relative to the DPTR
Jump if the accumulator is zero. Short jump.

1 2

2 3
JNZ rel Jump if the accumulator is not zero. Short jump. 2 3

CJNE A,direct,rel Compares direct byte to the accumulator and jumps if not equal. 34
Short jump.

CJNE A,#data,rel Compares immediate data to the accumulator and jumps if not 34
equal. Short jump.

CJNE Rn,#data,rel

64

CJNE
DJNZ Rn,rel Decrements register and jumps if not 0. Short jump. 2 3

DJNZ Rx,rel Decrements direct byte and jump if not 0. Short jump. 3 4
NOP No operation 1 1

Data Transfer Instructions

Data transfer instructions move the content of one register to another. The register the

content of which is moved remains unchanged. If they have the suffix ―X‖ (MOVX), the data

is exchanged with external memory.

Data Transfer Instructions
Mnemonic Description Byte Cycle

MOV A,Rn Moves the register to the accumulator 1 1

MOV A,direct Moves the direct byte to the accumulator 2 2

MOV A,@Ri Moves the indirect RAM to the accumulator 1 2

MOV A,#data Moves the immediate data to the accumulator 2 2

MOV Rn,A Moves the accumulator to the register 1 2

MOV Rn,direct Moves the direct byte to the register 2 4

MOV Rn,#data Moves the immediate data to the register 2 2

MOV direct,A Moves the accumulator to the direct byte 2 3

MOV direct,Rn Moves the register to the direct byte 2 3

MOV direct,direct Moves the direct byte to the direct byte 3 4

MOV direct,@Ri Moves the indirect RAM to the direct byte 2 4

MOV direct,#data Moves the immediate data to the direct byte 3 3

MOV @Ri,A Moves the accumulator to the indirect RAM 1 3

MOV @Ri,direct Moves the direct byte to the indirect RAM 2 5

MOV @Ri,#data Moves the immediate data to the indirect RAM 2 3

MOV DPTR,#data Moves a 16-bit data to the data pointer 3 3

MOVC Moves the code byte relative to the DPTR to the accumula tor 1 3

A,@A+DPTR (address=A+DPTR)

MOVC A,@A+PC
(

Moves the code byte relative to the PC to the accumulator 1 3
address=A+PC)

MOVX A,@Ri Moves the external RAM (8-bit address) to the accumulator 1 3-10

OVX A,@DPTR Moves the external RAM (16-bit address) to the accumulator 1 3-10

MOVX @Ri,A Moves the accumulator to the external RAM (8-bit address) 1 4-11

MOVX Moves the accumulator to the external RAM (16-bit address) 1 4-11

@DPTR,A

PUSH direct Pushes the direct byte onto the stack 2 4

POP direct Pops the direct byte from the stack/td> 2 3

XCH A,Rn Exchanges the register with the accumulator 1 2

XCH A,direct Exchanges the direct byte with the accumulator 2 3
XCH A,@Ri Exchanges the indirect RAM with the accumulator 1 3

65

XCHD A,@Ri Exchanges the low-order nibble indirect RAM with the 1 3 accumulator

Logic Instructions

Logic instructions perform logic operations upon corresponding
bits of execution, the result is stored in the first operand.

two registers. After

Logic Instructions

Mnemonic Description Byte Cycle

ANL A,Rn AND register to accumulator 1 1

ANL A,direct AND direct byte to accumulator 2 2

ANL A,@Ri AND indirect RAM to accumulator 1 2

ANL A,#data AND immediate data to accumulator 2 2

ANL direct,A AND accumulator to direct byte 2 3

ANL direct,#data AND immediae data to direct register 3 4

ORL A,Rn OR register to accumulator 1 1

ORL A,direct OR direct byte to accumulator 2 2

ORL A,@Ri OR indirect RAM to accumulator 1 2

ORL direct,A OR accumulator to direct byte 2 3

ORL direct,#data OR immediate data to direct byte 3 4

XRL A,Rn Exclusive OR register to accumulator 1 1

XRL A,direct Exclusive OR direct byte to accumulator 2 2

XRL A,@Ri Exclusive OR indirect RAM to accumulator 1 2

XRL A,#data Exclusive OR immediate data to accumulator 2 2

XRL direct,A Exclusive OR accumulator to direct byte 2 3

XORL direct,#data Exclusive OR immediate data to direct byte 3 4

CLR A Clears the accumulator 1 1

CPL A Complements the accumulator (1=0, 0=1) 1 1

SWAP A Swaps nibbles within the accumulator 1 1

RL A Rotates bits in the accumulator left 1 1

RLC A Rotates bits in the accumulator left through carry 1 1

RR A Rotates bits in the accumulator right 1 1

RRC A Rotates bits in the accumulator right through carry 1 1

66

Bit-oriented Instructions

Similar to logic instructions, bit-oriented instructions perform logic operations.

The difference isthat these are performed upon single bits.

Bit-oriented Instructions

Mnemonic Description Byte Cycle

CLR C Clears the carry flag 1 1

CLR bit Clears the direct bit 2 3

SETB C Sets the carry flag 1 1

SETB bit Sets the direct bit 2 3

CPL C Complements the carry flag 1 1

CPL bit Complements the direct bit 2 3

ANL C,bit AND direct bit to the carry flag 2 2

ANL C,/bit AND complements of direct bit to the carry flag

2 2 ORL C,bit OR direct bit to the carry flag

2 2 ORL C,/bit OR complements of direct bit to the carry

flag 2 2 MOV C,bit Moves the direct bit to the carry flag

2 2 MOV bit,C Moves the carry flag to the direct bit

2 3

6.8051 Microcontroller Interrupts

There are five interrupt sources for the 8051, which means that they can recognize 5

different events that can interrupt regular program execution. Each interrupt can be

enabled or disabled bysetting bits of the IE register. Likewise, the whole interrupt system

can be disabled by clearing the EA bit of the same register. Refer to figure below.

Now, it is necessary to explain a few details referring to external interrupts- INT0 and

INT1. Ifthe IT0 and IT1 bits of the TCON register are set, an interrupt will be generated

on high to lowtransition, i.e. on the falling pulse edge (only in that moment). If these bits

are cleared, an interrupt will be continuously executed as far as the pins are held low.

67

Fig 2.16:TCON

IE Register (Interrupt Enable)

Fig 2.17: IE

• EA - global interrupt enable/disable:

o 0 - disables all interrupt requests.

o 1 - enables all individual interrupt requests.
• ES - enables or disables serial interrupt:

o 0 - UART system cannot generate an interrupt.
o 1 - UART system enables an interrupt.

• ET1 - bit enables or disables Timer 1 interrupt:

o 0 - Timer 1 cannot generate an interrupt.
o 1 - Timer 1 enables an interrupt.

• EX1 - bit enables or disables external 1 interrupt:

o 0 - change of the pin INT0 logic state cannot generate an interrupt.
o 1 - enables an external interrupt on the pin INT0 state change.

• ET0 - bit enables or disables timer 0 interrupt:

o 0 - Timer 0 cannot generate an interrupt.
o 1 - enables timer 0 interrupt.

• EX0 - bit enables or disables external 0 interrupt:

o 0 - change of the INT1 pin logic state cannot generate an interrupt.

o 1 - enables an external interrupt on the pin INT1 state change.

68

Interrupt Priorities

It is not possible to forseen when an interrupt request will arrive. If several

interrupts areenabled, it may happen that while one of them is in progress, another one is

requested. In order

that the microcontroller knows whether to continue operation or meet a new interrupt

request,there is a priority list instructing it what to do.

The priority list offers 3 levels of interrupt priority:

1. Reset! The apsolute master. When a reset request arrives, everything is stopped

and the microcontroller restarts.

2. Interrupt priority 1 can be disabled by Resetonly.

3. Interrupt priority 0 can be disabled by both Reset and interrupt priority1.

The IP Register (Interrupt Priority Register) specifies which one of existing interrupt

sourceshave higher and which one has lower priority. Interrupt priority is usually

specified at the beginning of the program. According to that, there are several

possibilities:

• If an interrupt of higher priority arrives while an interrupt is in progress, it

willbe immediately stopped and the higher priority interrupt will be

executed first.

• If two interrupt requests, at different priority levels, arrive at the same time

then the higher priority interrupt is serviced first.

• If the both interrupt requests, at the same priority level, occur one after another,
the one which came later has to wait until routine being in progress ends.

• If two interrupt requests of equal priority arrive at the same time then the
interrupt to be serviced is selected according to the following priority list:

1. External interrupt INT0

2. Timer 0 interrupt

3. External Interrupt INT1

4. Timer 1 interrupt

5. Serial Communication Interrupt

IP Register (Interrupt Priority)

The IP register bits specify the priority level of each interrupt (high or low priority).

Fig 2.18: IP

69

• PS - Serial Port Interrupt priority bit

o Priority 0
o Priority 1

• PT1 - Timer 1 interrupt priority

o Priority 0
o Priority 1

• PX1 - External Interrupt INT1 priority

o Priority 0
o Priority 1

• PT0 - Timer 0 Interrupt Priority

o Priority 0
o Priority 1

• PX0 - External Interrupt INT0 Priority

o Priority 0

o Priority 1
Handling Interrupt

When an interrupt request arrives the following occurs:

1. Instruction in progress is ended.

2. The address of the next instruction to execute is pushed on the stack.

3. Depending on which interrupt is requested, one of 5 vectors (addresses) is
written tothe program counter in accordance to the table below:

4.

Interrupt Source Vector (address)

IE0 3 h

TF0 B h

TF1 1B h

RI, TI 23 h

All addresses are in hexadecimal format

Reset

5. These addresses store appropriate subroutines processing interrupts. Instead of

them, there are usually jump instructions specifying locations on which these

subroutines reside.

6. When an interrupt routine is executed, the address of the next instruction to

execute is poped from the stack to the program counter and interrupted program

resumes operation from where it left off.

Reset occurs when the RS pin is supplied with a positive pulse in duration of at least 2

machine cycles (24 clock cycles of crystal oscillator). After that, the microcontroller

generates an internal reset signal which clears all SFRs, except SBUF registers, Stack Pointer

and ports (the state of the first two ports is not defined, while FF value is written to the ports

configuring all their pins as inputs). Depending on surrounding and purpose of device, the

RS pin is usually connected to apower-on reset push button or circuit or to both of them.

Figure below illustrates one of the simplest circuit providing safe power-on reset.

70

Fig 2.19:Reset

Basically, everything is very simple: after turning the power on, electrical capacitor is

being charged for several milliseconds throgh a resistor connected to the ground. The pin is

driven highduring this process. When the capacitor is charged, power supply voltage is

already stable and the pin remains connected to the ground, thus providing normal

operation of the microcontroller.Pressing the reset button causes the capacitor to be

temporarily discharged and the microcontroller is reset. When released, the whole process

is repeated…

Through the program- step by step...

microcontrollers normally operate at very high speed. The use of 12 Mhz quartz crystal enables
instructions to be executed per second. Basically, there is no need for higher

operating rate. In case it is needed, it is easy to built in a crystal for high frequency.

The problem arises when it is necessary to slow down the operation of the

microcontroller. For example during testing in real environment when it is

necessary to execute several instructions step by step in order to check I/O pins'

logic state.

Interrupt system of the 8051 microcontroller practically stops operation of the

microcontrollerand enables instructions to be executed one after another by pressing the

button. Two interruptfeatures enable that:

• Interrupt request is ignored if an interrupt of the same priority level is inprogress.

• Upon interrupt routine execution, a new interrupt is not executed until at

least one instruction from the main program is executed.

In order to use this in practice, the following steps should be done:

71

1. External interrupt sensitive to the signal level should be enabled (for example INT0).

2. Three following instructions should be inserted into the program (at the 03hex. address):

What is going on? As soon as the P3.2 pin is cleared (for example, by pressing the

button), themicrocontroller will stop program execution and jump to the 03hex address

will be executed. This address stores a short interrupt routine consisting of 3

instructions.

The first instruction is executed until the push button is realised (logic one (1) on the P3.2

pin). The second instruction is executed until the push button is pressed again. Immediately

after that, the RETI instruction is executed and the processor resumes operation of the main

program. Uponexecution of any program instruction, the interrupt INT0 is generated and

the whole procedure is repeated (push button is still pressed). In other words, one button

press - one instruction

6. Input/Output Ports

All 8051 microcontrollers have 4 I/O ports each comprising 8 bits which can be configured

as inputs or outputs. Accordingly, in total of 32 input/output pins enabling the

microcontroller to beconnected to peripheral devices are available for use.

Pin configuration, i.e. whether it is to be configured as an input (1) or an output (0), depends

on its logic state. In order to configure a microcontroller pin as an output, it is necessary to

apply a logic zero (0) to appropriate I/O port bit. In this case, voltage level on appropriate

pin will be 0.

Similarly, in order to configure a microcontroller pin as an input, it is necessary to apply a

logic one (1) to appropriate port. In this case, voltage level on appropriate pin will be 5V

(as is the case with any TTL input). This may seem confusing but don't loose your

patience. It all becomesclear after studying simple electronic circuits connected to an I/O

pin.

72

Fig 2.20: Input / Output

Fig 2.21: Output

Input/Output (I/O) pin Figure abov

73

Fig 2.22: Input / output

Output pin

A logic zero (0) is applied to a bit of the P register. The output FE transistor is turned on,

thus connecting the appropriate pin to ground.

Fig 2.23 output

Hardware interrupts of 8085

Input

pin A logic one (1) is applied to a bit of the P register. The output FE transistor is turned off and

theappropriate pin remains connected to the power supply voltage over a pull-up resistor of

high resistance.

Logic state (voltage) of any pin can be changed or read at any moment. A logic zero (0) and

logic one (1) are not equal. A logic one (0) represents a short circuit to ground. Such a pin

acts asan output.

A logic one (1) is ―loosely‖ connected to the power supply voltage over a resistor of high

resistance. Since this voltage can be easily ―reduced‖ by an external signal, such a pin acts as.

74

The P0 port is characterized by two functions. If external memory is used then the lower

address byte (addresses A0-A7) is applied on it. Otherwise, all bits of this port are configured as

inputs/outputs.The other function is expressed when it is configured as an output. Unlike other

ports consisting of pins with built-in pull-up resistor connected by its end to 5 V power

supply, pins of this port have this resistor left out. This apparently small difference has its

consequences:

Fig 2.24: Port 0 configuration-input

If any pin of this port is configured as an input then it acts as if it ―floats‖. Such an input has

unlimited input resistance and indetermined potential.

Fig 2.25: Port 0 configuration-output

When the pin is configured as an output, it acts as an ―open drain‖. By applying logic 0 to aport

bit, the appropriate pin will be connected to ground (0V). By applying logic 1, the external

output will keep on ―floating‖. In order to apply logic 1 (5V) on this output pin, it is necessary to

built in an external pull-up resistor.Only in case P0 is used for addressing external memory,

the microcontroller will provide internalpower supply source in order to supply its pins with

logic one. There is no need to add

75

PORT A

P2 acts similarly to P0 when external memory is used. Pins of this port occupy addresses

intended for external memory chip. This time it is about the higher address byte with

addresses A8-A15. When no memory is added, this port can be used as a general input/output

port showingfeatures similar to P1.

Port 3

All port pins can be used as general I/O, but they also have an alternative function. In order

to use these alternative functions, a logic one (1) must be applied to appropriate bit of the P3

register. In tems of hardware, this port is similar to P0, with the difference that its pins have

a pull-up resistor built-in.

Pin's Current limitations

When configured as outputs (logic zero (0)), single port pins can receive a current of

10mA. If all8 bits of a port are active, a total current must be limited to 15mA (port P0:

26mA). If all ports (32 bits) are active, total maximum current must be limited to 71mA.

When these pins are configured as inputs (logic 1), built-in pull-up resistors provide very

weak current, but strong enough to activate up to 4 TTL inputs of LS series.

As seen from description of some ports, even though all of them have more or less similar

architecture, it is necessary to pay attention to which of them is to be used for what and how.

For example, if they shall be used as outputs with high voltage level (5V), then P0 should

be avoided because its pins do not have pull-up resistors, thus giving low logic level only.

When using other ports, one should have in mind that pull-up resistors have a relatively

high resistance,so that their pins can give a current of several hundreds microamperes only.

Counters and Timers

As you already know, the microcontroller oscillator uses quartz crystal for its operation. As

the frequency of this oscillator is precisely defined and very stable, pulses it generates are

always of the same width, which makes them ideal for time measurement. Such crystals are

also used in quartz watches. In order to measure time between two events it is sufficient to

count up pulses coming from this oscillator. That is exactly what the timer does. If thetimer

is properly programmed, the value stored in its register will be incremented (or

decremented) with each coming pulse, i.e. once per each machine cycle. A single machine-

cycle instruction lasts for 12 quartz oscillator periods, which means that by embedding

quartz with oscillator frequency of 12MHz, a number stored in the timer register will be
changed million times per second, i.e. each microsecond.

76

The 8051 microcontroller has 2 timers/counters called T0 and T1. As their names suggest,

their main purpose is to measure time and count external events. Besides, they can be used

for generating clock pulses to be used in serial communication, so called Baud Rate.

Timer T0

As seen in figure below, the timer T0 consists of two registers – TH0 and TL0 representing

a lowand a high byte of one 16-digit binary number.

Fig 2.26: Timer 0

Accordingly, if the content of the timer T0 is equal to 0 (T0=0) then both registers it

consists ofwill contain 0. If the timer contains for example number 1000 (decimal), then

the TH0 register (high byte) will contain the number 3, while the TL0 register (low byte)

will contain decimal number 232.

Fig 2.27: Timer 0-TLO& TL1

Formula used to calculate values in these two registers is very
simple:TH0 × 256 + TL0 = T

Matching the previous example it would
be as follows:3 × 256 + 232 = 1000

77

Fig 2.28: Timer 0

Since the timer T0 is virtually 16-bit register, the largest value it can store is 65 535. In

case ofexceeding this value, the timer will be automatically cleared and counting starts

from 0. This condition is called an overflow. Two registers TMOD and TCON are

closely connected to thistimer and control its operation.

TMOD Register (Timer Mode)

The TMOD register selects the operational mode of the timers T0 and T1. As seen in

figure below, the low 4 bits (bit0 - bit3) refer to the timer 0, while the high 4 bits (bit4 -

bit7) refer tothe timer 1. There are 4 operational modes and each of them is described

herein.

Fig 2.29: TMOD

Bits of this register have the following function:

• GATE1 enables and disables Timer 1 by means of a signal brought to the

INT1 pin (P3.3):

o 1 - Timer 1 operates only if the INT1 bit is set.

o 0 - Timer 1 operates regardless of the logic state of the INT1 bit.
• C/T1 selects pulses to be counted up by the timer/counter 1:

o 1 - Timer counts pulses brought to the T1 pin (P3.5).
o 0 - Timer counts pulses from internal oscillator.

• T1M1,T1M0 These two bits select the operational mode of the Timer 1.

T1M1 T1M0 Mode Description

0 0 0 13-bit timer

0 1 1 16-bit timer

1 0 2 8-bit auto-reload

78

1 1 3 Split mode

• GATE0 enables and disables Timer 1 using a signal brought to the INT0 pin (P3.2):

o 1 - Timer 0 operates only if the INT0 bit is set.
o 0 - Timer 0 operates regardless of the logic state of the INT0 bit.

• C/T0 selects pulses to be counted up by the timer/counter 0:

o 1 - Timer counts pulses brought to the T0 pin (P3.4).
o 0 - Timer counts pulses from internal oscillator.

• T0M1,T0M0 These two bits select the oprtaional mode of the Timer 0.

T0M1 T0M0 Mode

Descriptio

n

0 0 0 13-bit timer

0 1 1 16-bit timer

1 0 2 8-bit auto-reload

1 1 3 Split mode

Timer 0 in mode 0 (13-bit timer)

This is one of the rarities being kept only for the purpose of compatibility with the previuos

versions of microcontrollers. This mode configures timer 0 as a 13-bit timer which consists

of all8 bits of TH0 and the lower 5 bits of TL0. As a result, the Timer 0 uses only 13 of 16

bits. How does it operate? Each coming pulse causes the lower register bits to change their

states. After receiving 32 pulses, this register is loaded and automatically cleared, while the

higher byte (TH0)is incremented by 1. This process is repeated until registers count up

8192 pulses. After that, both registers are cleared and counting starts from 0.

79

Fig 2.30: Timer Mode 0

Timer 0 in mode 1 (16-bit timer)

Mode 1 configures timer 0 as a 16-bit timer comprising all the bits of both registers TH0

and TL0. That's why this is one of the most commonly used modes. Timer operates in the

same wayas in mode 0, with difference that the registers count up to 65 536 as allowable

by the 16 bits.

Fig 2.31: Timer Mode 1

80

Timer 0 in mode 2 (Auto-Reload Timer)

Mode 2 configures timer 0 as an 8-bit timer. Actually, timer 0 uses only one 8-bit

register for counting and never counts from 0, but from an arbitrary value (0-255) stored

in another (TH0)register.

The following example shows the advantages of this mode. Suppose it is necessary to
constantlycount up 55 pulses generated by the clock.

If mode 1 or mode 0 is used, It is necessary to write the number 200 to the timer registers

and constantly check whether an overflow has occured, i.e. whether they reached the value

255. When it happens, it is necessary to rewrite the number 200 and repeat the whole

procedure. The same procedure is automatically performed by the microcontroller if set in

mode 2. In fact, only the TL0 register operates as a timer, while another (TH0) register stores

the value from which thecounting starts. When the TL0 register is loaded, instead of being

cleared, the contents of TH0 will be reloaded to it. Referring to the previous example,

in

order to register each 55th pulse, the best solution is to write the number 200 to the TH0

register and configure the timer to operate in mode 2.

Fig 2.32: Timer Mode 2

81

Timer 0 in Mode 3 (Split Timer)

Mode 3 configures timer 0 so that registers TL0 and TH0 operate as separate 8-bit timers.

In other words, the 16-bit timer consisting of two registers TH0 and TL0 is split into two

independent 8-bit timers. This mode is provided for applications requiring an additional 8-

bit timer or counter. The TL0 timer turns into timer 0, while the TH0 timer turns into timer

1. In addition, all the control bits of 16-bit Timer 1 (consisting of the TH1 and TL1

register), now control the 8-bit Timer 1. Even though the 16-bit Timer 1 can still be

configured to operate in any of modes (mode 1, 2 or 3), it is no longer possible to disable it

as there is no control bit to doit. Thus, its operation is restricted when timer 0 is in mode 3.

Fig 2.33: Timer Mode 3

The only application of this mode is when two timers are used and the 16-bit Timer 1
the operation of which is out of control is used as a baud rate generator.

Timer Control (TCON) Register

TCON register is also one of the registers whose bits are directly in control of timer

operation. Only 4 bits of this register are used for this purpose, while rest of them is used for

82

interrupt control to be discussed later.

Fig 2.34: TCON

• TF1 bit is automatically set on the Timer 1 overflow.

• TR1 bit enables the Timer 1.

o 1 - Timer 1 is enabled.

o 0 - Timer 1 is disabled.
• TF0 bit is automatically set on the Timer 0 overflow.

• TR0 bit enables the timer 0.

o 1 - Timer 0 is enabled.

o 0 - Timer 0 is disabled.

How to use the Timer 0 ?

In order to use timer 0, it is first necessary to select it and configure the mode of its

operation.Bits of the TMOD register are in control of it:

Fig 2.35: Timer 0 configuration

Referring to figure above, the timer 0 operates in mode 1 and counts pulses generated by
internalclock the frequency of which is equal to 1/12 the quartz frequency.

Turn on the timer:

83

Fig 2.36: TCON control bits

The TR0 bit is set and the timer starts operation. If the quartz crystal with frequency of

12MHz isembedded then its contents will be incremented every microsecond. After 65.536

microseconds, the both registers the timer consists of will be loaded. The microcontroller

automatically clears them and the timer keeps on repeating procedure from the beginning

until the TR0 bit value is logic zero (0).

 How to 'read' a timer?

Depending on application, it is necessary either to read a number stored in the timer

registers or to register the moment they have been cleared.

- It is extremely simple to read a timer by using only one register configured in mode 2 or

3. It is sufficient to read its state at any moment. That's all!

- It is somehow complicated to read a timer configured to operate in mode 2. Suppose the

lower byte is read first (TL0), then the higher byte (TH0). The result is:

TH0 = 15 TL0 = 255

Everything seems to be ok, but the current state of the register at the moment of reading

was:TH0 = 14 TL0 = 255

In case of negligence, such an error in counting (255 pulses) may occur for not so

obvious but quite logical reason. The lower byte is correctly read (255), but at the

moment the program counter was about to read the higher byte TH0, an overflow

occurred and the contents of both registers have been changed (TH0: 14→15, TL0:

255→0). This problem has a simple solution.The higher byte should be read first, then

the lower byte and once again the higher byte. If the number stored in the higher byte is

different then this sequence

84

should be repeated. It's about ashort loop consisting of only 3 instructions in the program.

There is another solution as well. It is sufficient to simply turn the timer off while reading

is going on (the TR0 bit of the TCON register should be cleared), and turn it on again after

readingis finished.

Timer 0 Overflow Detection

Usually, there is no need to constantly read timer registers. It is sufficient to register the

moment they are cleared, i.e. when counting starts from 0. This condition is called an

overflow. When it occurrs, the TF0 bit of the TCON register will be automatically set. The

state of this bit can be constantly checked from within the program or by enabling an

interrupt which will stop the mainprogram execution when this bit is set. Suppose it is

necessary to provide a program delay of

0.05 seconds (50 000 machine cycles), i.e. time when the program seems to be

stopped:First a number to be written to the timer registers should be calculated:

Then it should be written to the timer registers TH0 and TL0:

Fig 2.37: Timer 0 -TLO & THO count write

When enabled, the timer will resume counting from this number. The state of the TF0 bit,

i.e. whether it is set, is checked from within the program. It happens at the moment of

overflow, i.e. after exactly 50.000 machine cycles or 0.05 seconds.

85

How to measure pulse duration?

Fig 2.38: Measure Pulse duration

Suppose it is necessary to measure the duration of an operation, for example how long a

device has been turned on? Look again at the figure illustrating the timer and pay attention

to the function of the GATE0 bit of the TMOD register. If it is cleared then the state of

the P3.2 pin doesn't affect timer operation. If GATE0 = 1 the timer will operate until the

pin P3.2 is cleared. Accordingly, if this pin is supplied with 5V through some external

switch at the moment the device is being turned on, the timer will measure duration of its

operation, which actually was the objective.

How to count up pulses?

Similarly to the previous example, the answer to this question again lies in the TCON

register. This time it's about the C/T0 bit. If the bit is cleared the timer counts pulses

generated by the internal oscillator, i.e. measures the time passed. If the bit is set, the timer

input is provided withpulses from the P3.4 pin (T0). Since these pulses are not always of

the same width, the timer cannot be used for time measurement and is turned into a

counter, therefore. The highest frequency that could be measured by such a counter is 1/24

frequency of used quartz-crystal.

86

Timer 1

Timer 1 is identical to timer 0, except for mode 3 which is a hold-count mode. It means

that theyhave the same function, their operation is controlled by the same registers TMOD

and TCON and both of them can operate in one out of 4 different modes.

Fig 2.39: timer 1

7. Serial Communication

One of the microcontroller features making it so powerful is an integrated UART, better

known as a serial port. It is a full-duplex port, thus being able to transmit and receive data

simultaneously and at different baud rates. Without it, serial data send and receive would be

an enormously complicated part of the program in which the pin state is constantly changed

and checked at regular intervals. When using UART, all the programmer has to do is to

simply selectserial port mode and baud rate. When it's done, serial data transmit is nothing

but writing to the SBUF register, while data receive represents reading the same register.

The microcontroller takescare of not making any error during data transmission.

Fig 2.40: SBUF

87

Serial port must be configured prior to being used. In other words, it is necessary to

determinehow many bits is contained in one serial ―word‖, baud rate and synchronization

clock source. The whole process is in control of the bits of the SCON register (Serial

Control).

Serial Port Control (SCON) Register

Fig 2.41: SCON

• SM0 - Serial port mode bit 0 is used for serial port modeselection.
• SM1 - Serial port mode bit 1.

• SM2 - Serial port mode 2 bit, also known as multiprocessor communication

enable bit. When set, it enables multiprocessor communication in mode 2 and 3,

and eventually mode 1. It should be cleared in mode 0.

• REN - Reception Enable bit enables serial reception when set. When cleared,

serial reception is disabled.

• TB8 - Transmitter bit 8. Since all registers are 8-bit wide, this bit solves the

problemof transmiting the 9th bit in modes 2 and 3. It is set to transmit a logic 1

in the 9th bit.

• RB8 - Receiver bit 8 or the 9th bit received in modes 2 and 3. Cleared by

hardware if9th bit received is a logic 0. Set by hardware if 9th bit received is a

logic 1.

• TI - Transmit Interrupt flag is automatically set at the moment the last bit of one

byte is sent. It's a signal to the processor that the line is available for a new byte

transmite. It must be cleared from within the software.

• RI - Receive Interrupt flag is automatically set upon one byte receive. It signals

that byte is received and should be read quickly prior to being replaced by a new

data. This bit is also cleared from within the software.

As seen, serial port mode is selected by combining the SM0 and SM2 bits:

SM0 SM1 Mode Description Baud Rate

0 0 0 8-bit Shift Register 1/12 the quartz frequency

0 1 1 8-bit UART Determined by the timer 1

1 0 2 9-bit UART 1/32 the quartz frequency (1/64 the quartz frequency)

1 1 3 9-bit UART Determined by the timer 1

88

Fig 2.42: TXD , RXD

In mode 0, serial data are transmitted and received through the RXD pin, while the TXD pin

output clocks. The bout rate is fixed at 1/12 the oscillator frequency. On transmit, the least

significant bit (LSB bit) is sent/received first.

TRANSMIT - Data transmit is initiated by writing data to the SBUF register. In fact, this

process starts after any instruction being performed upon this register. When all 8 bits have

beensent, the TI bit of the SCON register is automatically set.

Fig 2.43: TXD , RXD status- TI-mode 0

89

RECEIVE - Data receive through the RXD pin starts upon the two following conditions

are met: bit REN=1 and RI=0 (both of them are stored in the SCON register). When all 8

bits havebeen received, the RI bit of the SCON register is automatically set indicating

that one byte receive is complete.

Fig 2.44: TXD , RXD-RI-mode 0

Since there are no START and STOP bits or any other bit except data sent from the SBUF

register in the pulse sequence, this mode is mainly used when the distance between devices

is short, noise is minimized and operating speed is of importance. A typical example is I/O

port expansion by adding a cheap IC (shift registers 74HC595, 74HC597 and similar).

Fig 2.45: TXD , RXD, SBUF,SCON-mode 1

90

In mode 1, 10 bits are transmitted through the TXD pin or received through the RXD pin

in thefollowing manner: a START bit (always 0), 8 data bits (LSB first) and a STOP bit

(always 1).

The START bit is only used to initiate data receive, while the STOP bit is automatically

writtento the RB8 bit of the SCON register.

TRANSMIT - Data transmit is initiated by writing data to the SBUF register. End

of datatransmission is indicated by setting the TI bit of the SCON register.

Fig 2.46: TXD , TI-mode 1

RECEIVE - The START bit (logic zero (0)) on the RXD pin initiates data receive. The

following two conditions must be met: bit REN=1 and bit RI=0. Both of them are stored

in theSCON register. The RI bit is automatically set upon data reception is complete.

Fig 2.47: RXD-RI-mode 1

The Baud rate in this mode is determined by the timer 1 overflow.

91

Mode 2

Fig 2.48: TXD , RXD-mode 2

In mode 2, 11 bits are transmitted through the TXD pin or received through the RXD pin:

a START bit (always 0), 8 data bits (LSB first), a programmable 9th data bit and a STOP

bit (always 1). On transmit, the 9th data bit is actually the TB8 bit of the SCON register.

This bit usually has a function of parity bit. On receive, the 9th data bit goes into the RB8

bit of the sameregister (SCON).The baud rate is either 1/32 or 1/64 the oscillator frequency.

TRANSMIT - Data transmit is initiated by writing data to the SBUF register. End

of datatransmission is indicated by setting the TI bit of the SCON register.

Fig 2.49: mode 2

RECEIVE - The START bit (logic zero (0)) on the RXD pin initiates data receive. The

following two conditions must be met: bit REN=1 and bit RI=0. Both of them are stored

in theSCON register. The RI bit is automatically set upon data reception is complete.

92

Fig 2.50: mode 2

Mode 3 is the same as Mode 2 in all respects except the baud rate. The baud rate in Mode

3 is variable.

Baud Rate

Baud Rate is a number of sent/received bits per second. In case the UART is used, baud

rate depends on: selected mode, oscillator frequency and in some cases on the state of the

SMOD bitof the SCON register. All the necessary formulas are specified in the table:

Timer 1 as a clock generator

Baud Rate
Fosc. (MHz)

Bit SMOD

11.0592 12 14.7456 16 20

150 40 h 30 h 00 h 0
300 A0 h 98 h 80 h 75 h 52 h 0

600 D0 h CC h C0 h BB h A9 h 0

1200 E8 h E6 h E0 h DE h D5 h 0

2400 F4 h F3 h F0 h EF h EA h 0

93

4800 F3 h EF h EF h 1

4800 FA h F8 h F5 h 0

9600 FD h FC h 0

9600 F5 h 1

19200 FD h FC h 1

38400 FE h 1

76800 FF h 1

Multiprocessor Communication

As you may know, additional 9th data bit is a part of message in mode 2 and 3. It can be

used forchecking data via parity bit. Another useful application of this bit is in

communication between two or more microcontrollers, i.e. multiprocessor communication.

This feature is enabled by setting the SM2 bit of the SCON register. As a result, after

receiving the STOP bit, indicating end of the message, the serial port interrupt will be

generated only if the bit RB8 = 1 (the 9th bit).

This is how it looks like in practice:

Suppose there are several microcontrollers sharing the same interface. Each of them has its

own address. An address byte differs from a data byte because it has the 9th bit set (1),

while this bitis cleared (0) in a data byte. When the microcontroller A (master) wants to

transmit a block of data to one of several slaves, it first sends out an address byte which

identifies the target slave. An address byte will generate an interrupt in all slaves so that they

can examine the received byteand check whether it matches their address.

Fig 2.51: multiprocessor communication

Of course, only one of them will match the address and immediately clear the SM2 bit of

the SCON register and prepare to receive the data byte to come. Other slaves not being

addressed leave their SM2 bit set ignoring the coming data bytes.

94

Fig 2.52: multiprocessor communication

95

QUESTION BANK

 PART A

1. What are the addressing modes of 8051.

2. Differentiate microcontroller and microprocessor.

3. Write short notes on interrupts.

4. Write briefly about the timer of 8051.

5. What is an SFR.

6. List the SFR in 8051.

7. Write an assembly language program to transfer

8. a.10 data from internal to external

b.10 data from external to internal

9. Explain how to interface I/O devices to 8051.

10. Write a program to find a square of a number using look up table.10.Write a program to find the
given number is odd or even.

11. Write a program to generate a square wave of 1ms using timer.

12. List the bits of PSW.

13. What are the different ranges of jump.

14. Classify jump instruction

15. Write about stack

16. On reset the value of SP is , I/O ports are configured as .

17. Write about EA pin of 8051.

18. Draw one machine cycle of 8051.

19. What is ALE?

20. The internal RAM size is and the internal ROM size is .

PART B

1. With neat diagram explain the architecture of 8051.

2. Classify the instruction set of8051 and explain the instruction with
suitable examples.

3. Write in detail how serial communication is carried out in 8051.

4. Explain in detail about timers in 8051 microcontroller

5. Explain the interrupts of 8051 microcontroller

6. Write the following programs

a. programs using arithmetic and logical instruction

b. Programs to convert hexa to ascii and ascii to hexa

c. Programs using program transfer

instructions. d.Programs using I/O ports

7. Explain the following instructions with example

a. movc a,@a+dptr b. movx @r0,a c. JBC b,radd

d. XCHD A,@Rp e. Swap A

97

TEXT / REFERENCE BOOKS

1. Ramesh Goankar, "Microprocessor architecture programming and applications with 8085 / 8088", 5th Edition,

Penram International Publishing, 2002.

2. Mazidi & McKinlay, “The 8051 Microcontroller and Embedded Systems using Assembly and C”, PHI, 2007.

 3. MykePredko, “Programming and Customizing the 8051 Micro-controller”, Tata McGraw-Hill edition, 2007.

4. R A Gaonkar, “Fundamentals of Microcontrollers and Applications in Embedded Systems (with the PIC18

Microcontroller Family)”, Penram Publishing India, 2007

. 5. Kenneth Ayala ,”The 8051 Microcontroller”, 3rd Edition, Thomson Delmar Learning, 2004.

6. Kenneth J. Ayala, Dhananjay V. Gadre, “The 8051 Microcontroller & Embedded Systems Using Assembly and C”,

Cengage Learning India Publication, 2007.

7. Ajay V Deshmukh, “Microcontrollers: Theory and Applications”, Tata McGraw-Hill, 2005

. 8. Raj Kamal, “Embedded Systems Architecture, Programming, and Design”. (2/e), Tata McGraw Hill, 2008.

98

 SCHOOL OF ELECTRICAL AND ELECTRONICS ENGINEERING

 DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

UNIT – III MICROPROCESSORS, MICROCONTROLLERS AND EMBEDDED SYSTEMS: SEIA1504

99

 UNIT 3: PIC MICROCONTROLLER AND INSTRUCTION SET
PIC Microcontrollers and Instruction Set: PIC Micro-controllers - overview; features, PIC-18Fxxx architecture,

file selection register, Memory organization, Addressing modes, Instruction set, Interrupt handling. PIC-18Fxxx -

Reset, low power operations, oscillator connections, I/O ports - serial; parallel, Timers, Interrupts, ADC.

 3.1 PIC ARCHITECTURE:

• High performance RISC CPU.

• ONLY 35 simple word instructions.

• All single cycle instructions except for program branches which are two cycles.

• Operating speed: clock input (200MHz), instruction cycle (200nS).

• Up to 368×8bit of RAM (data memory), 256×8 of EEPROM (data memory), 8k×14 of flash

memory.

• Pin out compatible to PIC 1 6C74B, PIC 1 6C76, PIC 1 6C77.

• Eight level deep hardware stack.

• Interrupt capability (up to 14 sources).

• Different types of addressing modes (direct, Indirect, relative addressing modes).

• Power on Reset (POR).

• Power-Up Timer (PWRT) and oscillator start-up timer.

• Low power- high speed CMOS flash/EEPROM.

• Fully static design.

100

• Wide operating voltage range (2.0 – 5.56)volts.

• High sink/source current (25mA).

• Commercial, industrial and extended temperature ranges.

• Low power consumption (<0.6mA typical @3v-4MHz, 20µA typical @3v-32MHz and <1

A typical standby).

Peripheral Features

• Timer 0: 8 bit timer/counter with pre-scalar.

• Timer 1:16 bit timer/counter with pre-scalar.

• Timer 2: 8 bit timer/counter with 8 bit period registers with pre-scalar and post-scalar.

• Two Capture (16bit/12.5nS), Compare (16 bit/200nS), Pulse Width Modules (10bit).

• 1 0bit multi-channel A/D converter

• Synchronous Serial Port (SSP) with SPI (master code) and I2C (master/slave).

• Universal Synchronous Asynchronous Receiver Transmitter (USART) with 9 bit address

detection.

• Parallel Slave Port (PSP) 8 bit wide with external RD, WR and CS controls (40/46pin).

• Brown Out circuitry for Brown-Out Reset (BOR).

Key Features

• Maximum operating frequency is 20MHz.

• Flash program memory (14 bit words), 8KB.

• Data memory (bytes) is 368.

101

• EEPROM data memory (bytes) is 256.

• 5 input/output ports.

• 3 timers and 2 CCP modules.

• 2 serial communication ports (MSSP, USART).

• PSP parallel communication port and 10bit A/D module (8 channels)

Analog Features

• 1 0bit, up to 8 channel A/D converter.

• Brown Out Reset function.

• Analog comparator module.

Special Features

• 100000 times erase/write cycle enhanced memory.

• 1000000 times erase/write cycle data EEPROM memory.

• Self programmable under software control.

• In-circuit serial programming and in-circuit debugging capability.

• Single 5V,DC supply for circuit serial programming

• WDT with its own RC oscillator for reliable operation.

• Programmable code protection.

• Power saving sleep modes.

• Selectable oscillator options.

102

2. Architecture of PIC

Fig.3.1 Block Diagram of PIC

The function of CPU in PIC is same as a normal microcontroller CPU. A PIC, CPU consists

of several sub units such as instruction decoder, ALU, accumulator, control unit, etc. The CPU in

PIC normally supports Reduced Instruction Set Computer (RISC) architecture. RISC design is based

on the premise that most of the instructions. The computer decodes and executes are simple. As a

result, RISC architecture limits the number of instructions. Execution Time is less.

103

MEMORY

The memory in a PIC chip used to store the data and programs (temporary or permanently).

PIC also has certain amount of memory space for RAM, ROM, and EEPROM and other flash

memory, etc. ROM memory is used for permanent storage memory. The contents in the EEPROM

changes during run time and at that time it acts like a RAM memory. But the difference is after the

power goes off, the data remains in this ROM chip. This is the one of the special advantages of

EEPROM. In the PIC chip the function of EPROM is to store the values created during the

runtime.RAM memory is the one of the complex memory module in a PIC chip. This memory

associated with various type of registers (special function registers and general purpose registers)

and memory BANK modules (BANK 0, BANK 1, etc.). Once the power goes off, the contents in

the RAM will be cleared. As like normal microcontrollers, the RAM memory is used to store

temporary data and provide immediate results. The flash memory is a special type of memory where

READ, WRITE, and ERASE operations can be done many times.

3. REGISTERS

Information is stored in a CPU memory location called a register. Registers can be thought of

as the CPUs tiny scratchpad, temporarily storing instructions or data. Registers basically classified into

the following.

General Purpose Register (GPR)

A general purpose register (or processor register) is a small storage area available on a CPU

whose contents can be accessed more quickly than other storage that available on PIC. A general

purpose register can store both data addresses simultaneously.

Special Function registers (SFR)

These are also a part of RAM memory locations. As compared to GPR, their purpose is

predetermined during the manufacturing time and cannot be changed by the user. It is only for

special dedicated functions.

104

4. INTERRUPTS

Interrupt is the temporary delay in a running program. These delays stop the current

execution for a particular interval. This interval/delay is usually called as interrupt. When an

interrupt request arrives into a current execution program, then it stops its regular execution.

Interrupt can be performed by externally (hardware interrupt) or internally (by using software).

BUS

BUS is the communication or data transmission/reception path in a microcontroller unit. In

a normal microcontroller chip, two types of buses are normally available.

Data bus

Data bus is used for memory addressing. The function of data bus is interfacing all the

circuitry components inside the PIC chip.

Address bus

Address bus mostly used for memory addressing. The function of address bus is to transmit

the address from the CPU to memory locations.

USART or UART

These ports are used for the transmission (TX) and reception (RX) of data. These transmissions

possible with help of various digital data transceiver modules like RF, IR, Bluetooth, etc. This is the

one of the simplest way to communicate the PIC chip with other devices.

5. OSCILLATORS

Oscillator unit basically an oscillation/clock generating circuit which is used for providing

proper clock pulses to the PIC chip. This clock pulses also helps the timing and counting

applications. A PIC chip normally use various types of clock generators. According to the

application and the type of PIC used, the oscillators and its frequencies may vary. RC (Resistor-

Capacitor), LC (Inductor-Capacitor), RLC (Resistor-Inductor-capacitor), crystal oscillators, etc are

the normal oscillators used with A PIC chip.

105

Stack

The entire PIC chip has an area for storing the return addresses. This area or unit called Stack is used

in some Peripheral interface controllers. The hardware stack is not accessible by software. But for

most of the controllers, it can be easily accessible.

6. INPUT/ OUTPUT PORTS

These ports are used for the interfacing various input/output devices and memories. According to

the type of PIC, the number of ports may change.

Advanced functioning blocks

These sections include various advanced features of a PIC chip. According to the type of

PIC, these features may change. Various advanced features in a peripheral interface controller are

power up timer, oscillator start up timer, power on reset, watch dog timer, brown out reset, in circuit

debugger, low voltage programming, voltage comparator, CCP modules etc.

7. MEMORY ORGANIZATION OF PIC16F877

The memory of a PIC 1 6F877 chip is divided into 3 sections. They are

1. Program memory

2. Data memory and

3. Data EEPROM

Program memory

Program memory contains the programs that are written by the user. The program counter

(PC) executes these stored commands one by one. Usually PIC1 6F877 devices have a 13 bit wide

program counter that is capable of addressing 8K×14 bit program memory space. This memory is

primarily used for storing the programs that are written (burned) to be used by the PIC. These devices

also have 8K*14 bits of flash memory that can be electrically erasable /reprogrammed. Each time

we write a new program to the controller, we must delete the old one at that time. The figure below

shows the program memory map and stack.

106

Fig.3.2 :Memory Map

PIC16f877 Program Memory

Program counters (PC) is used to keep the track of the program execution by holding the

address of the current instruction. The counter is automatically incremented to the next instruction

during the current instruction execution.

110

The PIC16F87XA family has an 8-level deep 13-bit wide hardware stack. The stack space

is not a part of either program or data space and the stack pointers are not readable or writable. In

the PIC microcontrollers, this is a special block of RAM memory used only for this purpose. Each

time the main program execution starts at address 0000 – Reset Vector. The address 0004 is

“reserved” for the “interrupt service routine” (ISR).

PIC16F87XA Data Memory Organization

The data memory of PIC1 6F877 is separated into multiple banks which contain the general

purpose registers (GPR) and special function registers (SPR). According to the type of the

microcontroller, these banks may vary. The PIC1 6F877 chip only has four banks (BANK 0,

BANK 1, BANK 2, and BANK4). Each bank holds 128 bytes of addressable memory.

Fig.3.3 :Memory Map

The banked arrangement is necessary because there are only 7 bits are available in the

instruction word for the addressing of a register, which gives only 128 addresses. The selection of

the banks are determined by control bits RP1, RP0 in the STATUS registers Together the RP1, RP0

and the specified 7 bits effectively form a 9 bit address. The first 32 locations of Banks 1 and 2, and

110

the first 16 locations of Banks2 and 3 are reserved for the mapping of the Special Function Registers

(SFR).

Fig.3.4 :Memory Map

Data EEPROM and FLASH

The data EEPROM and Flash program memory is readable and writable during normal operation

(over the full VDD range). This memory is not directly mapped in the register file space. Instead, it

is indirectly addressed through the Special Function Registers. There are six SFRs used to read and

write this memory:

• EECON1

• EECON2

• EEDATA

• EEDATH

• EEADR

• EEADRH

110

The EEPROM data memory allows single-byte read and writes. The Flash program memory

allows single-word reads and four-word block writes. Program memory write operations

automatically perform an erase-before write on blocks of four words. A byte write in data EEPROM

memory automatically erases the location and writes the new data (erase-beforewrite). The write

time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge

pump, rated to operate over the voltage range of the device for byte or word operations.

8. PIN DIAGRAM

Fig.3.5:Pin details

PIC16F877 chip is available in different types of packages. According to the type of

applications and usage, these packages are differentiated. The pin diagrams of a PIC16F877 chip in

different packages. PIC1 6F877 has 5 basic input/output ports. They are usually denoted by PORT A

(R A), PORT B (RB), PORT C (RC), PORT D (RD), and PORT E (RE). These ports are used for

input/ output interfacing. In this controller, PORT A is only 6 bits wide (RA-0 to RA-7), PORT B ,

PORT C,PORT D are only 8 bits wide (RB-0 to RB-7,RC-0 to RC-7,RD-0 to RD-7), PORT E has

only 3 bit wide (RE-0 to RE-7).

All these ports are bi-directional. The direction of the port is controlled by using TRIS(X)

registers (TRIS A used to set the direction of PORT-A, TRIS B used to set the direction for PORT-

B, etc.). Setting a TRIS(X) bit1 will set the corresponding PORT(X) bit as input. Clearing a TRIS(X)

bit 0 will set the corresponding PORT(X) bit as output.(If we want to set PORT A as an input, just set

TRIS(A) bit to logical „1 and want to set PORT B as an output, just set the PORT B bits to logical 0.)

• Analog input port (AN0 TO AN7): these ports are used for interfacing analog inputs.

• TX and RX: These are the USART transmission and reception ports.

• SCK: These pins are used for giving synchronous serial clock input.

• SCL: These pins act as an output for both SPI and I2C modes.

• DT: These are synchronous data terminals.

• CK: Synchronous clock input.

• SD0: SPI data output (SPI Mode).

• SD1: SPI Data input (SPI mode).

• SDA: Data input/output in I2C Mode.

• CCP1 and CCP2: These are capture/compare/PWM modules.

• OSC1: Oscillator input/external clock.

• OSC2: Oscillator output/clock out.

• MCLR: Master clear pin (Active low reset).

• Vpp: programming voltage input.

• THV: High voltage test mode controlling.

• Vref (+/-): reference voltage.

• SS: Slave select for the synchronous serial port.

• T0CK1: clock input to TIMER 0.

• T1OSO: Timer 1 oscillator output.

• T1OS1: Timer 1 oscillator input.

• T1CK1: clock input to Timer 1.

• PGD: Serial programming data.

111

• PGC: serial programming clock.

• PGM: Low Voltage Programming input.

• INT: external interrupt.

• RD: Read control for parallel slave port.

• CS: Select control for parallel slave.

• PSP0 to PSP7: Parallel slave port.

• VDD: positive supply for logic and input pins.

• VSS: Ground reference for logic and input/output pins

Input/ Output Ports

In order to synchronize the operation of I/O ports with the internal 8-bit organization of the

microcontroller, they are, similar to registers, grouped into five ports denoted by A, B, C, D

and E. All of them have several features in common: If a pin performs any of these functions,

it may not be used as a general-purpose input/output pin. TRIS register: TRISA, TRISB,

TRISC etc which determines the performance of port bits, but not their contents. By clearing

any bit of the TRIS register (bit=0), the corresponding port pin is configured as an output.

Similarly, by setting any bit of the TRIS register (bit=1), the corresponding port pin is

configured as an input. This rule is easy to remember 0 = Output, 1 = Input.

PORTC and TRISC register

Port C is an 8-bit wide, bidirectional port. Bits of the TRISC register determine the function

of its pins. Similar to other ports, a logic one (1) in the TRISC register configures the

appropriate portC pin as an input. Port D is an 8 bit wide, bidirectional port Bits .

PORTE and TRISE register

Port E is a 4-bit wide, bidirectional port. The TRISE registers bits determine the function of

its pins. Similar to other ports, a logic one in the TRISE register configures the appropriate

portE pin as an input. The exception is the RE3 pin which is always configured as an input.

Similar to ports A and B, three pins can be configured as analog inputs in this case. The

112

ANSELH register bits determine whether a pin will act as an analog input (AN) or digital

input/output:

RE0 = AN5

RE1 = AN6

RE2 = AN7

 INSTRUCTION SET OF PIC 16F877

The instruction set for the 16F8XX includes 35 instructions. The reason for such a small

number of instructions lies in the RISC architecture. It means that instructions are well optimized from

the aspects of operating speed, simplicity in architecture and code compactness.

Instruction Execution Time

All instructions are single-cycle instructions. The only exception may be conditional branch

instructions (if condition is met) or instructions performed upon the program counter. In both cases,

two cycles are required for instruction execution, while the second cycle is executed as an NOP (No

Operation). Single-cycle instructions consist of four clock cycles. If 4MHz oscillator is used, the

nominal time for instruction execution is 1μs. As for jump instructions, the instruction execution time

is 2μs.

• Data transfer Instruction

• Arithmetic and Logic Instruction

• Bit oriented Instruction

• Program Control Instruction

Data transfer Instruction:

The data is copied from source to Destination without any change.

EX: MOVLW k- Move constant to W.

MOV WF f Move W to F

113

CLR W Clear W

Arithmetic and Logic Instruction:

To perform arithmetic operation such as addition, subtraction, Increment and decrement. The group

of instruction perform logical operation such as AND, OR, Exclusive-OR, Rotate, Compare, and

Complement the content.

EX: ADDLW k Add W and Constant

SUB LW k Subtract W from constant

IORLW k Logical OR with W with constant

Bit oriented Instruction:

BC F f, b Clear bit b in f

Program Control Instruction:

CALL k Call subroutine

RETURN Return from subroutine

9. PIC ADDRESSING MODES.

1. Immediate addressing mode

2. Direct addressing mode

3. Register addressing mode

4. Indexed ROM addressing mode

1. Immediate addressing mode

• In immediate addressing mode, the immediate data is specified in the instruction.

• The immediate addressing mode is used to load the data into PIC registers and WREG register.

• However, it cannot use to load data into any of the file register.

114

Example:

1. MOVLW 50H

2. ANDLW 40H 3. IORLW 60H

2. Direct addressing mode:

• In direct addressing mode, the 8- bit data in RAM memory location whose address is specified in

the instruction.

• This mode is used for accessing the RAM file register.

Fig.3.6 Pictorial representation of Direct Addressing

Example:

1. MOVWF 0X10

2. MOVFF PORTB, POTRC

3. MOVFF 0X30, PORTC

3. Register indirect addressing mode:

• Register indirect addressing mode is used for accessing data stored in the RAM part of file register.

• In this addressing mode a register is used as pointer to the memory location of the file register.

• Three file select registers are used. They are FSR0, FSR1 and FSR2.

Example:

115

1. LFSR1,0X55

2. MOVWF INDF2

Fig3.7 Pictorial representation of Indirect Addressing

4. Indexed ROM addressing mode:

• This addressing mode is used for accessing the data from look up tables that reside in the PIC18

program ROM.

11. Watch Dog Timer

• Watchdog Timer (WDT) can be helpful to automatically reset the system whenever a timeout

occurs

• A system reset is required for preventing the failure of the system in a situation of a hardware

fault or program error.

• There are countless applications where the system cannot afford to get stuck at a point (not

even for a small duration of time).

• For example, in a radar system, if the system hangs for 5 minutes, it can result in serious

repercussions (an enemy plane or missile may go undetected resulting in huge losses).

• The system should be robust enough to automatically detect the failures quickly and reset

itself in order to recover from the failures and function normally without errors.

116

• One can manually reset the system to recover from errors. But it is not always feasible to

manually reset the system, especially once it has been deployed.

• To overcome such problems, a watchdog timer is necessary to automatically reset the system

without human intervention.

• The watchdog timer is loaded with a timeout period which is dependent on the application.

• The watchdog timer starts its counting independent of a system clock i.e. it has a separate

internal oscillator to work independently of a system clock.

• The watchdog timer cleared through software each time before the timeout period occurs.

• Whenever software failed to clear the watchdog timer before its timeout period, the watchdog

timer resets the system.

• For this purpose, a watchdog timer is used to overcome software failures in real-time

applications.

• The watchdog timer is also used to wake up the microcontroller from sleep mode.

• In PIC18F4550, the watchdog timer uses a different 31 kHz INTRC clock and it is

independent of a system clock.

• Watchdog Timer can be enabled in two ways through Configuration Register (CONFIG2H)

and through WDTCON Register.

• CONFIG2H has a WDTEN bit to enable/disable the watchdog timer.

• WDTCON (WDT control register) has the SWDTEN bit which is used to enable/disable the

WDT through software.

117

Fig3.8 Operation of Watch dog Timer

• When WDT is enabled, 31 kHz INTRC source gets initialized and provides a clock for the

watchdog timer.

• This clock is then divided by 128 (pre-scaler). This pre-scaler gives a nominal time-out

period of 4 ms.

• PIC18F4550 also has a programmable Post-scaler which helps to divide down the WDT pre-

scaler output and increase the time-out periods. So now we can vary the time-out period in

the range of 4ms to 131.072 sec (2.18 min) using Post-scaler.

Enabling and Disabling WDT

There are two ways to enable or disable the WDT which are given as follows

1. Through Configuration Register:

Fig.3.9 CONFIG2H Register: Configuration Register 2 High

118

Bit 0 – WDTEN: Watchdog Timer Enable bit

0 = Disables WDT (possible to enable WDT through SWDTEN)

1 = Enables WDT

Bit 4:1 – WDTPS3:WDTPS0: Watchdog Timer Post-scale select bit

1111 = 1:32768

1110 = 1:16384

1101 = 1:8192

1100 = 1:4096

1011 = 1:2048

1010 = 1:1024

1001 = 1:512

1000 = 1:256

0111 = 1:128

0110 = 1:64

0101 = 1:32

0100 = 1:16

0011 = 1:8

0010 = 1:4

0001 = 1:2

0000 = 1:1

119

Through WDTCON Register

Fig3.10 WDTCON Register: Watchdog Timer Control

Register Bit 0 – SWDTEN: Software Controlled Watchdog Timer Enable bit

0 = Disable Watchdog Timer

1 = Enable Watchdog Timer

This software controlled watchdog timer can enable watchdog timer only if configuration bit has

disabled the WDT.

If the WDTEN (configuration bit) is enabled, then SWDTEN has no effect.

Calculate the WDT Timeout Period

Fig.3.11 WDT

120

120

 Question Bank

 UNIT III

PART A

1Compare RISC vs CISC controllers.

2.What is the role of program counter in accessing program memory in PIC microcontroller?

3.Write about serial connector

4.What is meant by PIC

5.What is meant by interrupt controller

6What are the various types of PIC

7.Explain the different types of addressing 8.Explain the memory organization

9 Define RISC processor 10.Define CSIC processor

PART- B
1. Explain with a neat diagram the architecture of micro controller.

2. Explain the addressing modes of micro controller

3. List the features of PIC Micro controller

4. Explain about the RISC architecture.

5. Discuss the addressing modes of PIC microcontroller with ports.

6. List out the different instruction group in PIC microcontroller and explain the and Compare

CICS and RISC.

7. Explain the instruction set of PIC microcontroller. 8..Write in detail about ports,interrupt and

timer

8. Explain the architecture of microprocessor with watch dog timer.

9. Describe the operations carried out whenexecutes the following instructions:

10. Movlw 50H (ii) Swapf INTCON, W

11. Clrwdt (iv) bsf Port B,O

121

 TEXT / REFERENCE BOOKS

1. Ramesh Goankar, "Microprocessor architecture programming and applications with 8085 /

8088", 5th Edition, Penram International Publishing, 2002.

2. Mazidi & McKinlay, “The 8051 Microcontroller and Embedded Systems using Assembly and

C”, PHI, 2007.

 3. MykePredko, “Programming and Customizing the 8051 Micro-controller”, Tata McGraw-Hill

edition, 2007.

4. R A Gaonkar, “Fundamentals of Microcontrollers and Applications in Embedded Systems

(with the PIC18 Microcontroller Family)”, Penram Publishing India, 2007

 5. Kenneth Ayala ,”The 8051 Microcontroller”, 3rd Edition, Thomson Delmar Learning, 2004.

6. Kenneth J. Ayala, Dhananjay V. Gadre, “The 8051 Microcontroller & Embedded Systems

Using Assembly and C”, Cengage Learning India Publication, 2007.

7. Ajay V Deshmukh, “Microcontrollers: Theory and Applications”, Tata McGraw-Hill, 2005

 8. Raj Kamal, “Embedded Systems Architecture, Programming, and Design”. (2/e), Tata

McGraw Hill, 2008.

122

UNIT IV-MICROPROCESSORS,MICROCONTROLLERS AND EMBEDDED SYSTEMS: SEIA 1504

SCHOOL OF ELECTRICAL & ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

123

UNIT 4 INTERFACING

INTERFACING 9 Hrs. Basic Interface concepts, Fundamentals of memory interface- memory mapped I/O and

I/O mapped I/O, Interrupt and vectored interrupt, Programmable peripheral interface 8255 - Programmable Interval

timer 8253 - Programmable interrupt controller 8259 - Programmable DMA controller 8257

1.PROGRAMMABLE PERIPHERAL INTERFACE -825PPI

The Intel 8255 (or i8255) Programmable Peripheral Interface (PPI) chip is a

peripheral chip, is used to give the CPU access to programmable parallel I/O. It can be

programmable to transfer data under various conditions from simple I/O to interrupt I/O.

it is flexible versatile

Fig 4.1: Pin diagram

and economical (when multiple I/O ports are required) but some what complex. It is an

important general purpose I/O device that can be used with almost any microprocessor.

Functional block of 8255 – Programmable Peripheral Interface (PPI)

The 8255A has 24 I/O pins that can be grouped primarily in two 8-bit parallel ports:

A and B with the remaining eight bits as port C. The eight bits of port C can be used as

individual bits or be grouped in to 4-bit ports: CUpper (Cu) and CLower (CL) as in Figure

2. The function of these ports is defined by writing a control word in the control register as

124

shown in Figure 3.3

Fig 4.2 : Block diagram of 8255

Fig 4.3. Control word Register format

125

 Data Bus Buffer

This three-state bi-directional 8-bit buffer is used to interface the 8255 to the system data

bus. Data is transmitted or received by the buffer upon execution of input or output

instructions by theCPU. Control words and status information are also transferred through

the data bus buffer.Read/Write and Control Logic

The function of this block is to manage all of the internal and external transfers of both Data

and Control or Status words. It accepts inputs from the CPU Address and Control busses

and in turn, issues commands to both of the Control Groups.

(CS) Chip Select. A "low" on this input pin enables the communication between the 8255

and the CPU.

(RD) Read. A "low" on this input pin enables 8255 to send the data or status information to

the CPU on the data bus. In essence, it allows the CPU to "read from" the 8255.

(WR) Write. A "low" on this input pin enables the CPU to write data or control words into

the 8255.

(A0 and A1) Port Select 0 and Port Select 1. These input signals, in conjunction with the

RD andWR inputs, control the selection of one of the three ports or the control word

register. They are normally connected to the least significant bits of the address bus (A0

and A1).

Fig 4.4 selection of Ports and Control reg

126

(RESET) Reset. A "high" on this input initializes the control register to 9Bh and all ports

(A, B,C) are set to the input mode.

Group A and Group B Controls

The functional configuration of each port is programmed by the systems software. In

essence, theCPU "outputs" a control word to the 8255. The control word contains

information such as "mode", "bit set", "bit reset", etc., that initializes the functional

configuration of the 8255. Eachof the Control blocks (Group A and Group B) accepts

"commands" from the Read/Write Control logic, receives "control words" from the internal

data bus and issues the proper commands to its associated ports.

Ports A, B, and C

The 8255 contains three 8-bit ports (A, B, and C). All can be configured to a wide variety

of functional characteristics by the system software but each has its own special features or

"personality" to further enhance

e the power and flexibility of the 8255.

Port A One 8-bit data output latch/buffer and one 8-bit data input latch. Both "pull-up" and

"pull- down" bus-hold devices are present on Port A.

Port B One 8-bit data input/output latch/buffer and one 8-bit data input buffer.

Port C One 8-bit data output latch/buffer and one 8-bit data input buffer (no latch for input).

This port can be divided into two 4-bit ports under the mode control. Each 4-bit port contains

a 4-bit latch and it can be used for the control signal output and status signal inputs in

conjunction with ports A and B.

I. Operational modes of 8255

There are two basic operational modes of 8255:

1. Bit set/reset Mode (BSR Mode).

2. Input/Output Mode (I/O Mode).

The two modes are selected on the basis of the value present at the D7 bit of the Control Word

127

Register. When D7 = 1, 8255 operates in I/O mode and when D7 = 0, it operates in the

BSR mode.

1. Bit set/reset (BSR) mode

The Bit Set/Reset (BSR) mode is applicable to port C only. Each line of port C (PC0 -

PC7) can be set/reset by suitably loading the control word register as shown in Figure 4.

BSR mode and I/O mode are independent and selection of BSR mode does not affect the

operation of other portsin I/O mode.

Fig 4.5: 8255 Control register format for BSR mode

D7 bit is always 0 for BSR

mode. Bits D6, D5 and D4

are don't care bits.

Bits D3, D2 and D1 are used to select the pin of

Port C.Bit D0 is used to set/reset the selected pin

of Port C.

Selection of port C pin is determined as follows:

128

As an example, if it is needed that PC5 be set, then in the control word,

1. Since it is BSR mode, D7 = '0'.

2. Since D4, D5, D6 are not used, assume them to be'0'.

3. PC5 has to be selected, hence, D3 = '1', D2 = '0', D1 = '1'.

4. PC5 has to be set, hence, D0 = '1'.

Thus, as per the above values, 0B (Hex) will be loaded into the Control Word Register (CWR).

D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 1 0 1 1

2. Input/Output mode

129

This mode is selected when D7 bit of the Control Word Register is 1. There are three I/O modes:

1. Mode 0 - Simple I/O

2. Mode 1 - Strobed I/O

3. Mode 2 - Strobed Bi-directional I/O

Figure 4.6: 8255 Control word for I/O mode

D0, D1, D3, D4 are assigned for lower port C, port B, upper port C and port A

respectively. When these bits are 1, the corresponding port acts as an input port. For

e.g., if D0 = D4 = 1, then lower port C and port A act as input ports. If these bits are

0, then the corresponding port acts as an output port. For e.g., if D1 = D3 = 0, then

port B and upper port C act as output ports as shown in Figure 5.

D2 is used for mode selection of Group B (port B and lower port C). When D2 = 0,

mode 0 is selected and when D2 = 1, mode 1 is selected.

D5& D6 are used for mode selection of Group A (port A and upper port C). The

selectionis done as follows:

130

D6

D5

Mode

0

0

0

0

1

1

1 X 2

As it is I/O mode, D7 = 1.

For example, if port B and upper port C have to be initialized as input ports and lower

port Cand port A as output ports (all in mode 0):

1. Since it is an I/O mode, D7 = 1.

2. Mode selection bits, D2, D5, D6 are all 0 for mode 0 operation.

3. Port B and upper port C should operate as Input ports, hence, D1 = D3 = 1.

4. Port A and lower port C should operate as Output ports, hence, D4 = D0 = 0.

Hence, for the desired operation, the control word register will have to be loaded with

"10001010" = 8A (hex).

Mode 0 - simple I/O

In this mode, the ports can be used for simple I/O operations without handshaking

signals. Port A, port B provide simple I/O operation. The two halves of port C can be

either used together as an additional 8-bit port, or they can be used as individual 4-bit

ports. Since the two halves of port C are independent, they may be used such that one-

half is initialized as an input port while the other half is initialized as an output port.

The input/output features in mode 0 are as follows:

1. Output ports are latched.

131

2. Input ports are buffered, not latched.

3. Ports do not have handshake or interrupt capability.

4. With 4 ports, 16 different combinations of I/O are possible.

Mode 0 – input mode

In the input mode, the 8255 gets data from the external peripheral ports and the

CPUreads the received data via its data bus.

The CPU first selects the 8255 chip by making CS low. Then it selects

the desiredport using A0 and A1 lines.

The CPU then issues an RD signal to read the data from the

external peripheraldevice via the system data bus.

Mode 0 - output mode

In the output mode, the CPU sends data to 8255 via system data bus and then

the external peripheral ports receive this data via 8255 port.

CPU first selects the 8255 chip by making CS low. It then selects the desired

port using A0 and A1 lines.

CPU then issues a WR signal to write data to the selected port via the system

databus. This data is then received by the external peripheral device connected

to the selected port.

Mode 1

When we wish to use port A or port B for handshake (strobed) input or output operation,

we initialise that port in mode 1 (port A and port B can be initilalised to operate in

different modes, i.e., for e.g., port A can operate in mode 0 and port B in mode 1).

Some of the pins of port C function as handshake lines.

For port B in this mode (irrespective of whether is acting as an input port or output port),

PC0, PC1 and PC2 pins function as handshake lines.

132

If port A is initialised as mode 1 input port, then, PC3, PC4 and PC5 function

as handshake signals. Pins PC6 and PC7 are available for use as input/output

lines.

The mode 1 which supports handshaking has following features:

1. Two ports i.e. port A and B can be used as 8-bit i/o ports.

2. Each port uses three lines of port c as handshake signal and remaining two

signals can be used as i/o ports.

3. Interrupt logic is supported.

4. Input and Output data are latched.

 Input Handshaking signals

1. IBF (Input Buffer Full) - It is an output indicating that the input latch

contains information.

2. STB (Strobed Input) - The strobe input loads data into the port latch, which

holds the information until it is input to the microprocessor via the IN

instruction.

3. INTR (Interrupt request) - It is an output that requests an interrupt. The

INTR pin becomes a logic 1 when the STB input returns to a logic 1, and is

cleared when the data are input from the port by the microprocessor.

4. INTE (Interrupt enable) - It is neither an input nor an output; it is an internal

bit programmed via the port PC4(port A) or PC2(port B) bit position.

Output Handshaking signals

1. OBF (Output Buffer Full) - It is an output that goes low whenever data are

output(OUT) to the port A or port B latch. This signal is set to a logic 1

whenever the ACK pulse returns from the external device.

133

2. ACK (Acknowledge)-It causes the OBF pin to return to a logic 1 level. The

ACK signal is a response from an external device, indicating that it has received

the data from the 82C55 port.

3. INTR (Interrupt request) - It is a signal that often interrupts the microprocessor

when the external device receives the data via the signal. this pin is qualified by

the internal INTE(interrupt enable) bit.

4. INTE (Interrupt enable) - It is neither an input nor an output; it is an internal

bit programmed to enable or disable the INTR pin. The INTE A bit is

programmed using the PC6 bit and INTE B is programmed using the PC2 bit.

Mode 2

Only group A can be initialized in this mode. Port A can be used for bidirectional

handshake data transfer. This means that data can be input or output on the same eight

lines (PA0 - PA7). Pins PC3 - PC7 are used as handshake lines for port A. The

remaining pins of port C (PC0 - PC2) can be used as input/output lines if group B is

initialized in mode 0 or as handshaking for port B if group B is initialized in mode 1. In

this mode, the 8255 may be used to extend the system bus to a slave microprocessor or

to transfer data bytes to and froma floppy disk controller. Acknowledgement and

handshaking signals are provided to maintain proper data flow and synchronisation

between the data transmitter and receiver.

https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Floppy_disk

134

II. Interfacing 8255 with 8085 processor

Fig 4.7. Interfacing 8255 with 8085 processor

The 8255 can be either memory mapped or I/O mapped in the system. In

the schematic shown in above is I/O mapped in the system.

Using a 3-to-8decoder generates the chip select signals for I/O mapped devices.

The address lines A4, A5 and A6 are decoded to generate eight chip select

signals (IOCS-0 to IOCS-7) and in this, the chip select IOCS- 1 is used to select

8255 as shown in Figure 3.7.

The address line A7 and the control signal IO/M (low) are used as enable for

thedecoder.

The address line A0 of 8085 is connected to A0 of 8255 and A1 of 8085 is

connected toA1 of 8255 to provide the internal addresses.

The data lines D0-D7 are connected to D0-D7 of the processor to achieve parallel

datatransfer.

The I/O addresses allotted to the internal devices of 8255 are listed in table.

135

2. USART 8251 (Universal Synchronous/ Asynchronous Receiver Transmitter)

The 8251 is a USART (Universal Synchronous Asynchronous Receiver Transmitter) for

serial data communication. As a peripheral device of a microcomputer system, the 8251

receives parallel data from the CPU and transmits serial data after conversion. This device

also receives serial data from the outside and transmits parallel data to the CPU after

conversion as shown in Figure 3.8.

Figure 4.8 : Architecture of 8251

136

Transmitter Section

The transmitter section consists of three blocks—transmitter buffer register, output register

and the transmitter control logic block. The CPU deposits (when TXRDY = 1, meaning

that the transmitter buffer register is empty) data into the transmitter buffer register, which

is subsequently put into the output register (when TXE = 1, meaning that the output buffer

is empty). In the output register, the eight bit data is converted into serial form and comes

out

via TXD pin. The serial data bits are preceded by START bit and succeeded by STOP bit,

which are known as framing bits. But this happens only if transmitter is enabled and the

CTS is low. TXC signal is the transmitter clock signal which controls the bit rate on the

TXD line (output line). This clock frequency can be 1, 16 or 64 times the baud.

Receiver Section

The receiver section consists of three blocks — receiver buffer register, input register and

the receiver control logic block. Serial data from outside world is delivered to the input

register via RXD line, which is subsequently put into parallel form and placed in the receiver

buffer register. When this register is full, the RXRDY (receiver ready) line becomes high.

This line is then used either to interrupt the MPU or to indicate its own status. MPU then

accepts the data from the register. RXC line stands for receiver clock. This clock signal

controls the rate at which bits are received by the input register. The clock can be set to 1,

16 or 64 times the baud in the asynchronous mode.

137

Fig 4.9 : Pin Configuration of 8251

Pin Configuration of 8251 is shown in figure

11. D 0 to D 7 (l/O terminal)

This is bidirectional data bus which receive control words and transmits data from the

CPU andsends status words and received data to CPU.

RESET (Input terminal)

A "High" on this input forces the 8251 into "reset status." The device waits for the

writing of"mode instruction." The min. reset width is six clock inputs during the operating

status of CLK.

CLK (Input terminal)

CLK signal is used to generate internal device timing. CLK signal is independent of RXC

or TXC. However, the frequency of CLK must be greater than 30 times the RXC and TXC

at Synchronous mode and Asynchronous "x1" mode, and must be greater than 5 times at

Asynchronous "x16" and "x64" mode.

138

WR (Input terminal)

This is the "active low" input terminal which receives a signal for writing transmit

data andcontrol words from the CPU into the 8251.

RD (Input terminal)

This is the "active low" input terminal which receives a signal for reading receive data and

statuswords from the 8251.

C/D (Input terminal)

This is an input terminal which receives a signal for selecting data or command words and

statuswords when the 8251 is accessed by the CPU. If C/D = low, data will be accessed. If

C/D

= high, command word or status word will

be accessed.CS (Input terminal)

This is the "active low" input terminal which selects the 8251 at low level when the CPU

accesses. Note: The device won‘t be in "standby status"; only setting CS =

High. TXD (output terminal)

This is an output terminal for transmitting data from which serial-converted data is sent out.

The device is in "mark status" (high level) after resetting or during a status when transmit is

disabled. It is also possible to set the device in "break status" (low level) by a command.

TXRDY (output terminal)

This is an output terminal which indicates that the 8251is ready to accept a transmitted data

character. But the terminal is always at low level if CTS = high or the device was set in

"TX disable status" by a command. Note: TXRDY status word indicates that transmit data

character isreceivable, regardless of CTS or command. If the CPU writes a data character,

TXRDY will be reset by the leading edge or WR signal.

TXEMPTY (Output terminal)

This is an output terminal which indicates that the 8251 has transmitted all the characters

and hadno data character. In "synchronous mode," the terminal is at high level, if transmit

data charactersare no longer remaining and sync characters are automatically transmitted.

139

If the CPU writes a data character, TXEMPTY will be reset by the leading edge of WR

signal. Note : As the transmitter is disabled by setting CTS "High" or command, data written

before disable will be sent out. Then TXD and TXEMPTY will be "High". Even if a data is

written after disable, that data is not sent out and TXE will be "High". After the transmitter

is enabled, it sent out. (Refer to Timing Chart of Transmitter Control and Flag Timing)

TXC (Input terminal)

This is a clock input signal which determines the transfer speed of transmitted data. In

"synchronous mode," the baud rate will be the same as the frequency of TXC. In

"asynchronous mode", it is possible to select the baud rate factor by mode instruction. It can

be 1, 1/16 or 1/64 the TXC. The falling edge of TXC sifts the serial data out of the 8251.

RXD (input terminal)

This is a terminal which receives

serial data.RXRDY (Output

terminal)

This is a terminal which indicates that the 8251 contains a character that is ready to READ.

If theCPU reads a data character, RXRDY will be reset by the leading edge of RD signal.

\Unless the CPU reads a data character before the next one is received completely, the

preceding data will belost. In such a case, an overrun error flag status word will be set.

RXC (Input terminal)

This is a clock input signal which determines the transfer speed of received data. In

"synchronous mode," the baud rate is the same as the frequency of RXC. In "asynchronous

mode," it is possible to select the baud rate factor by mode instruction. It can be 1, 1/16,

1/64 the RXC.

SYNDET/BD (Input or output terminal)

This is a terminal whose function changes according to mode. In "internal synchronous

mode." this terminal is at high level, if sync characters are received and synchronized. If a

status word is read, the terminal will be reset. In "external synchronous mode, "this is an

input terminal. A "High" on this input forces the 8251 to start receiving data characters.

In "asynchronous mode," this is an output terminal which generates "high level"output

140

upon the detection of a "break" character if receiver data contains a "low-level" space

between the stopbits of two continuous characters. The terminal will be reset, if RXD is at

high level. After Reset is active, the terminal will be output at low level.

DSR (Input terminal)

This is an input port for MODEM interface. The input status of the terminal can be

recognizedby the CPU reading status words.

DTR (Output terminal)

This is an output port for MODEM interface. It is possible to set the status of DTR by a

command.

CTS (Input terminal)

This is an input terminal for MODEM interface which is used for controlling a transmit

circuit. The terminal controls data transmission if the device is set in "TX Enable" status by

a command.

Data is transmitable if the terminal is

atlow level.

RTS (Output terminal)

This is an output port for MODEM interface. It is possible to set the status RTS by a

command. The 8251 functional configuration is programmed by software. Operation

between the 8251 anda CPU is executed by program control. Table 1 shows the

operation between a CPU and thedevice.

Summary of Control Signals for 8251

141

Control Words

There are two types of control word.

1. Mode instruction (setting of function)

2. Command (setting of operation)

1) Mode Instruction

Mode instruction is used for setting the function of the 8251. Mode instruction will be in

"wait for write" at either internal reset or external reset. That is, the writing of a control

word after resetting will be recognized as a "mode instruction."

Items set by mode instruction are as follows:

Fig 4.10: Bit configuration of Mode instruction (Asynchronous)

• Synchronous/asynchronous mode

• Stop bit length (asynchronous mode)

• Character length

• Parity bit

142

• Baud rate factor (asynchronous mode)

• Internal/external synchronization (synchronous mode)

• Number of synchronous characters (Synchronous mode)

The bit configuration of mode instruction is shown in Figures 12 and 13. In the case of

synchronous mode, it is necessary to write one-or two byte sync characters. If sync characters

were written, a function will be set because the writing of sync characters constitutes part of

mode instruction.

Fig 4.11: Bit configuration of mode instruction(synchronous)

143

2) Command

Command is used for setting the operation of the 8251. It is possible to write a

commandwhenever necessary after writing a mode instruction and sync characters as

shown in figure 14.

Items to be set by command are as follows:

• Transmit Enable/Disable

• Receive Enable/Disable

• DTR, RTS Output of data.

• Resetting of error flag.

• Sending to break characters

• Internal resetting

• Hunt mode (synchronous mode)

144

Fig 4.12: Bit configuration of command

Status Word

It is possible to see the internal status of the 8251 by reading a status word. The

bit configuration of status word is shown in Fig.15.

Fig 4.13: Bit configuration of Status Word

145

3.8253/8254 PROGRAMMABLE INTERVAL TIMER:PIT

The 8254 programmable Interval timer consists of three independent 16-bit programmable

counters (timers). Each counter is capable of counting in binary or binary coded decimal.

The maximum allowable frequency to any counter is 10MHz. This device is useful

whenever the microprocessor must control real-time events. The timer in a personal

computer is an 8253. To operate a counter a 16-bit count is loaded in its register and on

command, it begins to decrement the count until it reaches 0. At the end of the count it

generates a pulse, which interrupts the processor. The count can count either in binary or

BCD Each counter in the block diagram has 3 logical lines connected to it. Two of these

lines, clock and gate, are inputs. The third, labeled OUT is an output.

Fig : 4.14 Block Diagram of 8253 programmable interval timer

146

Data bus buffer- It is a communication path between the timer and the microprocessor. The

buffer is 8-bit and bidirectional. It is connected to the data bus of the microprocessor. Read

/write logic controls the reading and the writing of the counter registers. Control word register,

specifies the counter to be used and either a Read or a write operation. Data is transmitted

or received by the buffer upon execution of INPUT instruction from CPU as shown in figure

16. The data bus buffer has three basic functions,

(i). Programming the modes of

8253. (ii). Loading the count value

in times (iii).Reading the count

value from timers.

Fig 4.15:Pin Diagram of 8253

The data bus buffer is connected to microprocessor using D7 – D0 pins which are also

bidirectional. The data transfer is through these pins. These pins will be in high- impedance (or this

state) condition until the 8253 is selected by a LOW or CS and either the read operation requested by a

LOW RD on the input or a write operation WR requested by the input going LOW.

Read/ Write Logic:

It accepts inputs for the system control bus and in turn generation the control signals for overall

device operation. It is enabled or disabled by CS so that no operation can occur to change the

function unless the device has been selected as the system logic.

CS : The chip select input is used to enable the communicate between 8253 and themicroprocessor

by means of data bus. A low an CS enables the data bus buffers, while a high disable the buffer.

The CS input does not have any affect on the operation of threetimes once they have been

initialized. The normal configuration of a system employs an decode logic which actives CS line,

whenever a specific set of addresses thatcorrespond to 8253 appear on the address bus.

RD & WR :

The read (RD) and write WR pins central the direction of data transfer on the 8-bit bus.

Whenthe input RD pin is low. Then CPU is inputting data from 8253 in the form of counter

value. When WR pins is low, then CPU is sending data to 8253 in the form of mode

information or loading counters. The RD &WR should not both be

low simultaneously. When RD & WR pins are HIGH, the data bus buffer isdisabled.

A0 & A1:

These two input lines allow the microprocessor to specify which one of the internal register

in the 8253 is going to be used for the data transfer. Fig shows how these two lines are

used to select either the control word register or one of the 16-bit counters.

146

147

Control word register:

It is selected when A0 and A1 . It the accepts information from the data bus buffer and

stores itin a register. The information stored in then register controls the operation mode of

each counter,selection of binary or BCD counting and the loading of each counting and the

loading of each count register. This register can be written into, no read operation of this

content is available.

Counters:

Each of the times has three pins associated with it. These are CLK (CLK) the gate (GATE)

and the output (OUT).

CLK:

This clock input pin provides 16-bit times with the signal to causes the times to decrement

maxm clock input is 2.6MHz. Note that the counters operate at the negative edge (H1 to L0) of

this

clock input. If the signal on this pin is generated by a fixed oscillator then the user has

implemented a standard timer. If the input signal is a string of randomly occurring pulses,

then it is called implementation of a counter.

GATE:

The gate input pin is used to initiate or enable counting. The exact effect of the gate signal

dependson which of the six modes of operation is chosen.

OUTPUT:

The output pin provides an output from the timer. It actual use depends on the mode of

operationof the timer. The counter can be read ―in the fly‖ without inhibiting gate pulse or

clock input.

148

CONTROL WORD OF 8253

Fig 4.16: Control word format-8253

Control Register

MODES OF OPERATION

Mode 0 Interrupt on terminal count Mode 1 Programmable one shot Mode 2 Rate

Generator Mode 3 Square wave rate Generator Mode 4 Software triggered strobe Mode 5

Hardware triggeredstrobe

Mode 0: The output goes high after the terminal count is reached. The counter stops if the

Gate islow.. The timer count register is loaded with a count (say 6) when the WR line is

made low by the processor. The counter unit starts counting down with each clock pulse.

The output goes highwhen the register value reaches zero. In the mean time if the GATE is

made low the count is suspended at the value(3) till the GATE is enabled again .

149

OUT

GATE

CLK

WR

6 5 4 3 2 1

GATE

Mode 0 count when Gate is high (enabled)

CLK

6 5 4 3 3 3 2 1

OUT

Mode 0 count when Gate is low temporarily (disabled) Mode 1 Programmable

mono-shot

The output goes low with the Gate pulse for a predetermined period depending on the

WR

150

counter. The counter is disabled if the GATE pulse goes momentarily low.The counter

register isloaded with a count value as in the previous case (say 5). The output responds to

the GATE inputand goes low for period that equals the count down period of the register (5

clock pulses in this period). By changing the value of this count the duration of the output

pulse can be changed. If the GATE becomes low before the count down is completed then

the counter will be suspended at that state as long as GATE is low. Thus it works as a

mono- shot.

\

CL K

WR

5 4 3 2 1
OUT

Mode 1 The Gate goes high. The output goes low for the

period depending on the count

GATE (trigger)

151

one clock period before it becomes high again. This is a periodic operation.

GATE (trigger)

OUT 4 3 3 4 3 2 1

CLK

WR

Mode 1 The Gate pulse is disabled momentarily causing the counter to stop.

Mode 2 Programmable Rate Generator

In this mode it operates as a rate generator. The output goes high for a period that equals

the timeof count down of the count register (3 in this case). The output goes low exactly

CLK

OUT

Mode 2 Operation when the GATE is kept high

for

WR

GATE

3 2 1 3 2 1

152

WR

GATE

OUT 3 2 1 3 3 2 1 Mode 2 operation when the GATE isdisabled

WR

n=

4 OUT (n=4)

OUT (n=5)

CLK

momentarily.

Mode 3 Programmable Square Wave Rate Generator

It is similar to Mode 2 but the output high and low period is symmetrical. The output

goes high after the count is loaded and it remains high for period which equals the count

down period of the counter register. The output subsequently goes low for an equal period

and hence generates a symmetrical square wave unlike Mode 2. The GATE has no role here.

CLK

Mode3 Operation: Square Wave generator

153

WR

OUT

4 3 2 1

WR

GATE

OUT

4 3 3 2 1

Mode 4 Software Triggered Strobe

In this mode after the count is loaded by the processor the count down starts. The output

goes low for one clock period after the count down is complete. The count down can be

suspended bymaking the GATE low . This is also called a software triggered strobe as the

count down is initiated by a program.

CLK

Mode 4 Software Triggered Strobe when GATE is high

154

WR

GATE

OUT

5 4 3 2 1

LK

Mode 4 Software Triggered Strobe when GATE is momentarily low

Mode 5 Hardware Triggered Strobe

The count is loaded by the processor but the count down is initiated by the GATE pulse. The

transition from low to high of the GATE pulse enables count down. The output goes low

for one clock period after the count down is complete.

CLK

Mode 5 Hardware Triggered Strobe

155

4. PROGRAMMABLE INTERRUPT CONTROLLER-8259

FEAUTURES OF 8259

▪ Eight-Level PriorityController Expandable to 64Levels

Programmable Interrupt Modes

• 8086, 8088 Compatible

• MCS-80, MCS-85 Compatible

▪ Individual Request

Mask Capability

Single +5V Supply

(No Clocks)

▪ Available in 28-Pin DIP and 28-Lead

PLCC Package Available in

EXPRESS

1. Standard Temperature Range

2. Extended Temperature Range

The Intel 8259A Programmable Interrupt Controller handles up to eight vectored priority

interrupts for the CPU. It is cascadable for up to 64 vectored priority interrupts without

additional circuitry. It is packaged in a 28-pin DIP, uses NMOS technology and requires a

single a5V supply. Circuitry is static, requiring no clock input. The 8259A is designed to

minimize the software and real time overhead in handling multi-level priority interrupts. It

has several modes, permitting optimization for a variety of system requirements. The

8259A is fully upward compatible with the Intel 8259. Software originally written for the

8259 will operate the 8259Ain all 8259 equivalent modes (MCS-80/85, Non-Buffered, Edge

Triggered). Pin Diagram of 8259is shown in figure 3.17.

156

Fig.4.17 Pin Diagram of 8259

Pin Description of 8259

157

Fig. 4.18 Block Diagram of 8259

A more desirable method would be one that would allow the microprocessor to be

executing its main program and only stop to service peripheral devices when it is told to do

so bythe device itself. In effect, the method would provide an external asynchronous input

that would inform the processor that it should complete whatever instruction that is

currently being executedand fetch a new routine that will service the requesting device.

Once this servicing is complete, however, the processor would resume exactly where it left

off. This method is called Interrupt. It is easy to see that system throughput would drastically

increase, and thus more tasks could be assumed by the micro-computer to further enhance

its cost effectiveness. Block Diagram of 8259is shown in figure 18.

The Programmable Interrupt Controller (PIC) functions as an overall manager in an

Interrupt-Driven system environment. It accepts requests from the peripheral equipment,

determines which of the in-coming requests is of the highest importance (priori-ty),

158

ascertains whether the incoming request has a higher priority value than the level currently

being serviced, and issues an interrupt to the CPU based on this determination.

The 8259A is a device specifically designed for use in real time, interrupt driven

microcomputer systems. It manages eight levels or requests and has built-in features for

expandability to other 8259A's (up to 64 levels). It is programmed by the system's software

as an I/O peripheral. A selection of priority modes is available to the programmer so that the

manner in which the requests are processed by the 8259A can be configured to match his

system requirements. The priority modes can be changed or reconfigured dynamically at

any time during the main program. This means that the complete interrupt structure can be

defined as required, based on the total system environment.

5. Interrupt Request Register (Irr) And In-Service Register (Isr)

The interrupts at the IR input lines are handled by two registers in cascade, the

Interrupt Request Register (IRR) and the In-Service (ISR). The IRR is used to store all the

interrupt levels which are requesting service; and the ISR is used to store all the interrupt

levels which are being serviced.

PRIORITY RESOLVER

This logic block determines the priorites of the bits set in the IRR. The highest priority is

selected and strobed into the corresponding bit of the ISR during INTA pulse.

INTERRUPT MASK REGISTER (IMR)

The IMR stores the bits which mask the interrupt lines to be masked. The IMR operates on

the IRR. Masking of a higher priority input will not affect the interrupt request lines of lower

quality.

INT (INTERRUPT)

This output goes directly to the CPU interrupt input. The VOH level on this line is

designed to befully compatible with the 8080A, 8085A and 8086 input levels.

159

INTA (INTERRUPT ACKNOWLEDGE)

INTA pulses will cause the 8259A to release vectoring information onto the data bus. The

formatof this data depends on the system mode (mPM) of the 8259A.

DATA BUS BUFFER

This 3-state, bidirectional 8-bit buffer is used to inter-face the 8259A to the system Data

Bus. Control words and status information are transferred through the Data Bus Buffer.

READ/WRITE CONTROL LOGIC

The function of this block is to accept Output commands from the CPU. It contains the

Initialization Command Word (ICW) registers and Operation Command Word (OCW)

registers which store the various control formats for device operation. This function block

also allows the status of the 8259A to be transferred onto the Data Bus.

CS (CHIP SELECT)

A LOW on this input enables the 8259A. No reading or writing of the chip

willoccur unless the device is selected.

WR (WRITE)

A LOW on this input enables the CPU to write con-trol words (ICWs and OCWs)

to the8259A. RD (READ)

A LOW on this input enables the 8259A to send the status of the Interrupt Request

Register (IRR), In Service Register (ISR), the Interrupt Mask Register (IMR), or the

Interrupt level onto the Data Bus.

160

A0

This input signal is used in conjunction with WR and RD signals to write

commands into the various command registers, as well as reading the various status registers

of the chip. This line can be tied directly to one of the address lines.

INTERRUPT SEQUENCE

The powerful features of the 8259A in a microcomputer system are its programmability and

the interrupt routine addressing capability. The latter allows direct or indirect jumping to

the specificinterrupt routine requested without any polling of the interrupting devices. The

normal sequence of events during an interrupt depends on the type of CPU being used.

The events occur as follows in an MCS-80/85 sys-tem:

1. One or more of the INTERRUPT REQUEST lines (IR7±0) are raised high, setting

the correspond-ing IRR bit(s).

2. The 8259A evaluates these requests, and sends an INT to the CPU, if appropriate.

3. The CPU acknowledges the INT and responds with an INTA pulse.

4. Upon receiving an INTA from the CPU group, the highest priority ISR bit is set,

and the correspond-ing IRR bit is reset. The 8259A will also release a CALL

instruction code (11001101) onto the 8-bit Data Bus through its D7±0 pins.

5. This CALL instruction will initiate two more INTA pulses to be sent to the 8259A

from the CPU group.

6. These two INTA pulses allow the 8259A to re-lease its preprogrammed subroutine

address onto the Data Bus. The lower 8-bit address is released at the first INTA pulse

andthe higher 8-bit address is released at the second INTA pulse.

7. This completes the 3-byte CALL instruction re-leased by the 8259A. In the AEOI

mode the ISR bit is reset at the end of the third INTA pulse. Otherwise, the ISR

161

bit remains set until an appropriate EOI command is issued at the end of the

interruptsequence.

8. The events occurring in an 8086 system are the same until step 4.

9. Upon receiving an INTA from the CPU group, the highest priority ISR bit is set

and the corresponding IRR bit is reset. The 8259A does not drive the Data Bus

during thiscycle.

10. The 8086 will initiate a second INTA pulse. During this pulse, the 8259A releases an

8- bit pointer onto the Data Bus where it is read by the CPU.

11. This completes the interrupt cycle. In the AEOI mode the ISR bit is reset at the end

of the second INTA pulse. Otherwise, the ISR bit remains set until an appropriate

EOI command is issued at the end of the interrupt subroutine.

If no interrupt request is present at step 4 of either sequence (i.e., the request was too

short in duration) the 8259A will issue an interrupt level 7. Both the vectoring bytes and

the CASlines will look like an interrupt level 7 was requested.

When the 8259A PIC receives an interrupt, INT be-comes active and an interrupt

acknowledge cycle is started. If a higher priority interrupt occurs between the two INTA

pulses, the INT line goes inactive immediately after the second INTA pulse. After an un-

specified amount of time the INT line is activated again to signify the higher priority

interrupt waiting for service. This inactive time is not specified and can vary between parts.

The designer should be aware of this consideration when designing a sys-tem which

usesthe 8259A. It is recommended that proper asynchronous design techniques be

followed.

INITIALIZATION COMMAND WORDS

Whenever a command is issued with A0 e 0 and D4 e 1, this is interpreted as Initialization

Command Word 1 (ICW1). ICW1 starts the initialization sequence during which the

following automatically occur.

a. The edge sense circuit is reset, which means that following initialization, an

interrupt request (IR) input must make a low-to-high transition to generate an

interrupt.
b. The Interrupt Mask Register is cleared.

c. IR7 input is assigned priority 7.

162

d. The slave mode address is set to 7.

e. Special Mask Mode is cleared and Status Read isset to IRR.

f. If IC4 e 0, then all functions selected in ICW4are set to zero. (Non-Buffered

mode*, no Auto-EOI, MCS-80, 85 system).

Initialization Command Word Format is as shown infigure

163

Fig 4.19 . Initialization Command Word Format

164

OPERATION COMMAND WORDS

After the Initialization Command Words (ICWs) are programmed into the 8259A, the chip

is ready to accept interrupt requests at its input lines. However, during the 8259A operation,

a selection of algorithms can command the 8259A to operate in various modes through the

Operation Command Words (OCWs). Operation Command Word format is as shown in

figure

Fig 4.20 a. Operational Control Words

165

Fig 4.20 b. Operation Command Word Format

INTERFACING MEMORY CHIPS WITH 8085

8085 has 16 address lines (A0 - A15), hence a maximum of 64 KB (= 216 bytes) of

memory locations can be interfaced with it. The memory address space of the 8085

takes values from0000H to FFFFH.

The 8085 initiates set of signals such as IO/M , RD and WR when it wants to read

from and write into memory. Similarly, each memory chip has signals such as CE or

CS (chip enable or chip select), OE or RD (output enable or read) and WE or WR

(write enable or write) associated with it.

Generation of Control Signals for Memory:

When the 8085 wants to read from and write into memory, it activates IO/M , RD

and WR signals as shown in Table .

166

Table 8 Status of IO/M , RD and WR signals during memory read and write operations

IO/M

RD

WR

Operation

0 0 1 8085 reads data from memory

0 1 0 8085 writes data into memory

Using IO/M , RD and WR signals, two control signals MEMR (memory read) and

MEMW (memory write) are generated. Fig. 16 shows the circuit used to generate

thesesignals.

Fig. 4.21 Circuit used to generate MEMR and MEMW signals

When is IO/M high, both memory control signals are deactivated irrespective of the

statusof RD and WR signals.

Ex: Interface an IC 2764 with 8085 using NAND gate address decoder such

that theaddress range allocated to the chip is 0000H – 1FFFH.

Specification of IC 2764:

8 KB (8 x 210 byte) EPROM chip

13 address lines (213 bytes =

8 KB) Interfacing:

167

13 address lines of IC are connected to the corresponding address lines of

8085. Remaining address lines of 8085 are connected to address decoder

formed using logic gates, the output of which is connected to the CE pin of

IC. Address range allocated to the chip is shown in Table 9.

Chip is enabled whenever the 8085 places an address allocated to EPROM chip

in the address bus. This is shown in Fig. 17.

Fig. 4.22 Interfacing IC 2764 with the 8085 Table 9 Address allocated to IC 2764

Ex: Interface a 6264 IC (8K x 8 RAM) with the 8085 using NAND gate decoder

suchthat the starting address assigned to the chip is 4000H.

Specification of IC 6264:

8K x 8 RAM

168

8 KB = 213 bytes

13 address lines

The ending address of the chip is 5FFFH (since 4000H + 1FFFH = 5FFFH). When the

address 4000H to 5FFFH are written in binary form, the values in the lines A15, A14,

A13 are 0, 1 and 0 respectively. The NAND gate is designed such that when the lines

A15 and A13 carry 0 and A14 carries 1, the output of the NAND gate is 0. The

NAND gate output is in turn connected to the CE1 pin of the RAM chip. A NAND

output of 0 selects the RAM chip for read or write operation, since CE2 is already 1

because of its connection to +5V. Fig. 18 shows the interfacing of IC 6264 with the

8085.

Fig. 4.23 Interfacing 6264 IC with the 8085

Ex: Interface two 6116 ICs with the 8085 using 74LS138 decoder such that the

starting addresses assigned to them are 8000H and 9000H, respectively.

Specification of IC 6116:

2 K x 8 RAM

2 KB = 211 bytes

11 address lines

169

6116 has 11 address lines and since 2 KB, therefore ending addresses of 6116 chip 1

is and chip 2 are 87FFH and 97FFH, respectively. Table 10 shows the address range of

the two chips.

Table 4.1 Address range for IC 6116

Interfacing:

• Fig. 19 shows the interfacing.

• A0 – A10 lines of 8085 are connected to 11 address lines of the RAMchips.

• Three address lines of 8085 having specific value for a particular RAM are

connected to the three select inputs (C, B and A) of 74LS138 decoder.

• Table 10 shows that A13=A12=A11=0 for the address assigned to RAM 1 and

A13=0, A12=1 and A11=0 for the address assigned to RAM 2.

• Remaining lines of 8085 which are constant for the address range assigned to

thetwo RAM are connected to the enable inputs of decoder.

• When 8085 places any address between 8000H and 87FFH in the address bus,

the select inputs C, B and A of the decoder are all 0. The Y0 output of the

170

• When 8085 places any address between 9000H and 97FFH in the address bus,

the select inputs C, B and A of the decoder are 0, 1 and 0. The Y2 output of

the decoder is also 0, selecting RAM 2.

Fig. 4.24 Interfacing two 6116 RAM chips using 74LS138 decoder

3. PERIPHERAL MAPPED I/O INTERFACING

In this method, the I/O devices are treated differently from memory chips. The

control signals I/O read (IOR) and I/O write (IOW), which are derived from the

IO/M , RD and

WR signals of the 8085, are used to activate input and output

devices, respectively.

Generation of these control signals is shown in Fig. 20. Table 11 shows the status

of IO/M ,RD and WR signals during I/O read and I/O write operation.

171

Fig. 4.25 Generation of IOR and IOW signals

IN instruction is used to access input device and OUT instruction is used to access

output device. Each I/O device is identified by a unique 8-bit address assigned to it.

Since the control signals used to access input and output devices are different, and all

I/O device use 8-bit address, a maximum of 256 (28) input devices and 256 output

devices can be interfaced with 8085.

Table 4.2 Status of IOR and IOW signals in 8085.

IO/

M

IOW

 Operation

RD WR IOR

1 0 1 0 1 I/O read operation

1 1 0 1 0 I/O write operation

0 X X 1 1 Memory read or write operation

Ex: Interface an 8-bit DIP switch with the 8085 such that the address assigned to

the DIPswitch if F0H.

IN instruction is used to get data from DIP switch and store it in accumulator.
Stepsinvolved in the execution of this instruction are:

• Address F0H is placed in the lines A0 – A7 and a copy of it in lines A8 –A15.

ii.

The IOR signal is activated (IOR = 0), which makes the selected input

device to place its data in the data bus.

iii. The data in the data bus is read and store in the accumulator.

172

Fig. 3.26 shows the interfacing of DIP switch.

A7 A6 A5 A4 A3 A2 A1 A0

1 1 1 1 0 0 0 0 = F0H

A0 – A7 lines are connected to a NAND gate decoder such that the output of NAND gate is

0. The output of NAND gate is ORed with the IOR signal and the output of OR gateis

connected to 1G and 2G of the 74LS244. When 74LS244 is enabled, data from the

DIP switch is placed on the data bus of the 8085. The 8085 read data and store in the

accumulator. Thus data from DIP switch is transferred to the accumulator.

Fig. 4.26 interfacing of 8-bit DIP switch with 8085

6. Memory Mapped I/O Interfacing

In memory-mapped I/O, each input or output device is treated as if it is a memory location.

The MEMR and MEMW control signals are used to activate the devices. Each input or

output device is identified by unique 16-bit address, similar to 16-bit address assigned

to memory location. All memory related instruction like LDA 2000H, LDAX B,

MOV A, M can be used.Since the I/O devices use some of the memory address space

of 8085, the maximum memory capacity is lesser than 64 KB in this method. Ex:

Interface an 8- bit DIP switch with the 8085 using logic gates such that the address

assigned to it is F0F0H. Since a 16-bit address has to be assigned to a DIP switch, the

memory- mapped I/O technique must be used. Using LDA F0F0H instruction, the data

from the 8-bit DIP switch can be transferred to the accumulator. The steps involved

are:

The address F0F0H is placed in the address bus

A0 – A15.The MEMR signal is made low for

some time.

The data in the data bus is read and stored in the accumulator.

Fig. 4.27 shows the interfacing diagram.

When 8085 executes the instruction LDA F0F0H, it places the address

F0F0Hin the address lines A0 – A15 as:

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0= F0F0H

The address lines are connected to AND gates. The output of these gates along with

MEMR signal are connected to a NAND gate, so that when the address F0F0H is

placed in the address bus and MEMR = 0 its output becomes 0, thereby enabling the

buffer 74LS244. The data from the DIP switch is placed in the 8085 data bus. The

8085 reads the data from the data bus and stores it in the accumulator.

nterfacing ADC with 8085 Microprocessor

To interface the ADC with 8085, we need 8255 Programmable Peripheral Interface

chip with it. Let us see the circuit diagram of connecting 8085, 8255 and the ADC

converter.

Fig 4.28: ADC interfacing

173

The PortA of 8255 chip is used as the input port. The PC7 pin of Port Cupper is

connected to the End of Conversion (EOC) Pin of the analog to digital converter.

This port is also used as input port. The Clower port is used as output port. The PC2-

0 lines are connected to three address pins of this chip to select input channels. The

PC3 pin is connected to the Start of Conversion (SOC) pin and ALE pin of ADC

0808/0809.

Now let us see a program to generate digital signal from analog data. We are using

IN0 as input pin, so the pin selection value will be 00H.

Program

MVI A, 98H ; Set Port A and Cupper as input, CLower as

output OUT 03H ; Write control word 8255-I to control Word

register XRA A ; Clear the accumulator

OUT 02H ; Send the content of Acc to Port Clower to select

IN0

MVI A, 08H ; Load the accumulator with

08H OUT 02H ; ALE and SOC will be 0

XRA A ; Clear the accumulator

OUT 02H ; ALE and SOC will be low.

READ: IN 02H ; Read from EOC (PC7)

RAL ; Rotate left to check C7 is 1.

JNC READ ; If C7 is not 1, go to

READ IN 00H ; Read digital output

of ADC STA 8000H ; Save result at

8000H

HLT ; Stop the program

174

Fig 4.29: Flow chart-

ADC Either of the method can write the program.

Fig 4.30: control word format

175

DAC

Fig 4.31: DAC Interfacing

• The processor sends an address, which is decoded by decoder in the microprocessor system to produce

chip select signal.

• Then the processor sends a digital data to latch. The buffer and inverter will produce sufficient delay

for CS signal so that, the latch is clocked only after the data is arrived at the input lines of the latch.

• When the latch is clocked the digital data is send to DAC. The DAC will produce a

corresponding current signal, which is converted to voltage signal by the op-amp 741.

• The typical settling time of DAC0800 is 150nsec. Therefore the processor need not wait for

loading next data

PROGRAMS FOR VARIOUS WAVEFORM GENERATION USING DAC

•

177

QUESTION BANK

PART A

1. What is interfacing

2. Distinguish memory mapped I/O and I/O mapped I/O

3. Draw the control word for 8255

4. Configure 8255 as PORT A-I/P, PORT B-O/P & PORT C LOWER-I/P ,

PORTCUPPER-O/P

5. Set PCO using bit set reset mode

6. Write the control word to generate square wave using 8253

7. What is the need of Priority resolver in 8259

8. How many interrupts maximum a 8259 can support

9. What is USART

10. Define resolution in DAC and ADC

11. What is EOC and SOC in ADC

12. Write an ALP to generate sawtooth using DAC

13. What are the two command words used in 8259

14. Explain mode 5 of 8253

15. Explain the transmitter section of 8251 USART

PART B

1. Explain with neat diagram 8255 PPI

2. With neat diagram explain how serial communication is done using 8251

3. With neat diagram explain the 8253 timer

4. Explain the various modes of 8253 timer

5. Discuss about 8259 PIC

6. Interface ADC to 8085 and explain

7. Interface DAC with 8085 and generate various waveforms

TEXT / REFERENCE BOOKS

1. Ramesh Goankar, "Microprocessor architecture programming and applications with

8085 / 8088", 5th Edition, Penram International Publishing, 2002.

2. Mazidi & McKinlay, “The 8051 Microcontroller and Embedded Systems using

Assembly and C”, PHI, 2007.

 3. MykePredko, “Programming and Customizing the 8051 Micro-controller”, Tata

McGraw-Hill edition, 2007.

4. R A Gaonkar, “Fundamentals of Microcontrollers and Applications in Embedded

Systems (with the PIC18 Microcontroller Family)”, Penram Publishing India, 2007

. 5. Kenneth Ayala ,”The 8051 Microcontroller”, 3rd Edition, Thomson Delmar Learning,

2004.

6. Kenneth J. Ayala, Dhananjay V. Gadre, “The 8051 Microcontroller & Embedded

Systems Using Assembly and C”, Cengage Learning India Publication, 2007.

7. Ajay V Deshmukh, “Microcontrollers: Theory and Applications”, Tata McGraw-Hill,

2005

.8. Raj Kamal, “Embedded Systems Architecture, Programming, and Design”. (2/e), Tata

McGraw Hill, 2008.

178

UNIT V- MICROPROCESSORS,MICROCONTROLLERS AND EMBEDDED SYSTEMS: SEIA 1504

 SCHOOL OF ELECTRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

178

I INTRODUCTION TO EMBEDDED SYSTEM

Embedded system- characteristics of embedded system- categories of embedded system-

requirements of embedded systems- challenges and design issues of embedded system- trends in

embedded system- system integration- hardware and software partition- applications of embedded

system- control system and industrial automation-biomedical- data communication system-

network information appliances- IVR systems- GPS systems

1.1INTRODUCTION TO EMBEDDED SYSTEM

An embedded system is one kind of a computer system mainly designed to perform several

tasks like to access, process, store and also control the data in various electronics- based systems.

Embedded systems are a combination of hardware and software where software is usually known

as firmware that is embedded into the hardware. One of its most important characteristics of these

systems is, it gives the o/p within the time limits. Embedded systems support to make the work

more perfect and convenient. So, we frequently use embedded systems in simple and complex

devices too. The applications of embedded systems mainly involve in our real life for several

devices like microwave, calculators, TV remote control, home security and neighborhood traffic

control systems

Fig: 5.1: Block Diagram of Embedded system

 The embedded system basics are the combination of embedded system hardware and embedded

 system software.

https://www.elprocus.com/mini-embedded-systems-projects-ideas/

179

 Embedded System Hardware

An embedded system uses a hardware platform to perform the operation. Hardware of the

embedded system is assembled with a microprocessor/microcontroller. It has the elements

such as input/output interfaces, memory, user interface and the display unit. Generally, an

embedded system comprises of the following

• Power Supply

• Memory

• Processor

• Timers

• Output/Output circuits

• Serial communication ports

• SASC (System application specific circuits)

Embedded System Software

The software of an embedded system is written to execute a particular function. It is normally

written in a high-level setup and then compiled down to offer code that can be stuck within a non-

volatile memory in the hardware. An embedded system software is intended to keep in view of the

following three limits

• Convenience of system memory

• Convenience of processor’s speed

• When the embedded system runs constantly, there is a necessity to limit power dissipation for

actions like run, stop and wake up.

2EMBEDDED SYSTEM CHARACTERISTICS

• Generally, an embedded system executes a particular operation and does the similar

continually. For instance: A pager is constantly functioning as a pager.

• All the computing systems have limitations on design metrics, but those can be especially tight.

Design metric is a measure of an execution features like size, power, cost and also performance.

• It must perform fast enough and consume less power to increase battery life.

https://www.elprocus.com/microprocessor-and-microcontroller/
https://www.elprocus.com/switch-mode-power-supply-working/
https://www.elprocus.com/embedded-system-programming-using-keil-c-language/

180

• Several embedded systems should constantly react to changes in the system and also calculate

particular results in real time without any delay. For instance, a car cruise controller; it

continuously displays and responds to speed & brake sensors. It must calculate acceleration/de-

accelerations frequently in a limited time; a delayed computation can consequence in letdown

to control the car.

• It must be based on a microcontroller or microprocessor based.

• It must require a memory, as its software generally inserts in ROM. It does not require any

secondary memories in the PC.

• It must need connected peripherals to attach input & output devices.

• An Embedded system is inbuilt with hardware and software where the hardware is used for

security and performance and Software is used for more flexibility and features.

 Embedded System Applications

The applications of an embedded system basics include smart cards, computer networking,

satellites, telecommunications, digital consumer electronics, missiles, etc

3 CATEGORIES OF EMBEDDED SYSTEM

Embedded systems are classified into four categories based on their performance and functional

requirements:

 Stand alone embedded systems

 Real time embedded systems

 Networked embedded systems

 Mobile embedded systems

Embedded Systems are classified into three types based on the performance of the

microcontroller such as

• Small scale embedded systems

• Medium scale embedded systems

181

• Sophisticated embedded systems

Stand Alone Embedded Systems

Stand alone embedded systems do not require a host system like a computer, it works by itself. It

takes the input from the input ports either analog or digital and processes, calculates and converts

the data and gives the resulting data through the connected device- Which either controls, drives

and displays the connected devices. Examples for the stand alone embedded systems are mp3

players, digital cameras, video game consoles, microwave ovens and temperature measurement

systems.

Real Time Embedded Systems

A real time embedded system is defined as, a system which gives a required o/p in a particular

time. These types of embedded systems follow the time deadlines for completion of a task. Real

time embedded systems are classified into two types such as soft and hard real time systems.

Further this Real-Time Embedded System is divided into two types i.e.

182

 Soft Real Time Embedded Systems

In these types of embedded systems time/deadline is not so strictly followed. If deadline

of the task is passed (means the system didn’t give result in the defined time) still result or output

is accepted.

 Hard Real-Time Embedded Systems

In these types of embedded systems time/deadline of task is strictly followed. Task must

be completed in between time frame (defined time interval) otherwise result/output may not be

accepted.

Examples

 Traffic control system

 Military usage in defense sector

 Medical usage in health sector

Networked Embedded Systems

These types of embedded systems are related to a network to access the resources. The connected

network can be LAN, WAN or the internet. The connection can be any wired or wireless. This

type of embedded system is the fastest growing area in embedded system applications. The

embedded web server is a type of system wherein all embedded devices are connected to a web

server and accessed and controlled by a web browser.Example for the LAN networked embedded

system is a home security system wherein all sensors are connected and run on the protocol TCP/IP

Mobile Embedded Systems

Mobile embedded systems are used in portable embedded devices like cell phones, mobiles, digital

cameras, mp3 players and personal digital assistants, etc.The basic limitation of these devices is

the other resources and limitation of memory.

Small Scale Embedded Systems

These types of embedded systems are designed with a single 8 or 16-bit microcontroller, that may

even be activated by a battery. For developing embedded software for small scale embedded

systems, the main programming tools are an editor, assembler, cross assembler and integrated

development environment (IDE).

183

 Medium Scale Embedded Systems

These types of embedded systems design with a single or 16 or 32 bit microcontroller, RISCs or

DSPs. These types of embedded systems have both hardware and software complexities. For

developing embedded software for medium scale embedded systems, the main programming tools

are C, C++, JAVA, Visual C++, RTOS, debugger, source code engineering tool, simulator and

IDE.

Sophisticated Embedded Systems

These types of embedded systems have enormous hardware and software complexities, that may

need ASIPs, IPs, PLAs, scalable or configurable processors. They are used for cutting- edge

applications that need hardware and software Co-design and components which have to assemble

in the final system.

Requirements of Embedded system

Reliability

Cost-effectiveness

Low power consumption Efficient

use of processing power Efficient

use of memory

Appropriate execution time

Reliability

Embedded system have to work without the need for resetting or rebooting. This

call for a very reliable hardware and software. For example : if an embedded system comes to a

halt because of hardware error, the system must reset itself without the need for human

intervention. However the embedded software developers must make the reliability of the

hardware as well as that of the software

Cost-effectiveness

If an embedded system is designed for a very special purpose such as for deep space or for nuclear

power plant station cost may not be an issue. However if the embedded system is designed for a

mass market purpose like CD players, toys and mobile devices cost is a major concern. Application

184

Specific Integrated Circuit (ASIC) is used by the designers to reduce the hardware components

and hence the cost

Low power consumption

Most of the embedded systems are powered by battery, rather than a main supply. In such

case the power consumption should be minimized to avoid draining the Batteries. For example :

by reducing the number of hardware component the power consumption can be reduced. As well

as by designing the processor to revert to low power or sleep mode when there is no operation to

perform

Efficient use of processing power

A wide variety of processors with varying processing powers are available to embedded

systems. Developers must keep processing power, memory and cost in mind while choosing the

right processor. The processing power requirement is specified in

,Million Instruction Per Second (MIPS). With the availability of so many processor, choosing a

processor has become a tough task nowadays

Efficient use of memory

Most of the embedded systems do not have secondary storage such as hard disk. The

memory chip available on the embedded systems are only Read Only memory and Random Access

memory. As most of the embedded systems do not have secondary storage, “flash memory” is used

to store the program. Nowadays micro-controller and Digital signal processors also comes with

onboard memory. Such processors are used for small embedded system as the cost generally is

low and the execution generally is fast

Appropriate execution time

In real time embedded systems, certain task must be performed within a specified

period of time. Normally desktop pc cannot achieve real time performance. Therefore,

185

special operating system known as real time operating systems run on these embedded systems. In

hard real time embedded system deadlines has to be strictly met but whereas in soft real time

embedded system the task may not be performed in a timely manner. The software developer needs

to ascertain whether the embedded system is a hard real time or soft one and has to perform the

performance analysis accordingly

 CHALLENGES AND ISSUES

Co-design

Embedding an operating system

Code optimization

Efficient input or output

Testing and debugging

 Co-design

An embedded system consists of hardware and software, deciding which function of the system

should be implemented in hardware and software is of a major consideration. For example in

hardware implementation the task execution is faster compared with the other one. On the

downside a chip cost money, consumes valuable power and occupies space. A software

implementation is better if these are the major concern. This issue of choosing between hardware

and software implementation is known as a co-design issue

 Embedding an operating system

It is possible to write embedded software without any operating system embedded into the

system. Developers can implement services such as memory management, input/output

management and so on. Writing your own routines necessary for a particular application results in

compact and efficient coding. Embedded operating system provide the necessary Application

Programming Interfaces(API).

 code optimization

186

Developers need not worry much about the code optimization, because the processor is highly

powerful, plenty of memory is generally available. Memory and Execution time are the important

constraints in embedded system. Sometimes to achieve the required response time the programmer

has to write certain portion of coding in assembly language. Of course, with the availability of

sophisticated development tools, this is less of an issue in recent years

 Efficient input or output

In most of the embedded system, the input interfaces have limited functionality. Writing

embedded software is a different ball game compared with writing a user interface with a full-

fledged keyboard, a mouse and a large display. Many systems available in process control take

electrical signal as input and produce electrical signal as output, since they don’t use I/O devices.

Developing, testing and debugging such systems is much more challenging than doing the same

with the desktop systems.

4.TESTING AND DEBUGGING

Software for an embedded system cannot be tested on the target hardware during the

development phase because debugging will be extremely difficult. Testing and debugging the

software on the host system by actual simulation of field conditions is very challenging. Nowadays,

the job is made a bits simpler with the availability of “profilers” that tell you clearly which line of

code are executed and which lines are not executed. Using the output of such profilers we can

locate the untested lines of code and ensure that they are also executed by providing the necessary

test input data. It is these challenges that made embedded software development a “black art” in

earlier days. This is no longer the case, however the developments in embedded software are

changing the scenario completely.

Recent trends in embedded system

Processors

Memory

Operating Systems

187

Programming Languages

Development Tools

 Processors

In an effort to cater to different applications, several semiconductor electronics vendors have

released many processors. We can find 8-bit, 16-bit, and 32 bit processors with different processing

powers and memory addressing capabilities. Many sophisticated DSP are available to cater to

numerous application needs including audio and video coding and image processing. The

processor boards around which the embedded systems can be built come with the necessary RAM

and ROM as well as peripherals such as a serial port, USB port and Ethernet connectivity.

Memory

Both RAM and ROM memory devices are becoming increasingly cheaper paving the way for

devices that can store large numbers of programs and their data. Secondary devices such as Hard

disk are also being integrated into embedded systems such as mobile communication and

computing devices . Devices that do not have secondary storage use flash memory and the capacity

of flash memory chips is also rising very rapidly making it possible to incorporate heavy OS

 Operating Systems

As most everyone knows Microsoft currently holds the lion share of the market in operating

systems that run desktop computers. Many operating systems which are available nower days are

categorized as embedded operating systems, real time operating systems and mobile operating

system. These operating system occupies much less memory. This reduces the development time

and the effort considerably

 Programming Languages

The era of writing the embedded software in assembly languages is now almost history. High

level languages are extensively used for embedded software development. Object oriented

programming languages are also extensively used. Another important development is the use of

JAVA. Because of JAVA platform independence it has become very popular for embedded

188

software development

 Development Tools

Many advances in development tools are accelerating embedded software development. These

development tools include Cross compiler, Debbugers and Emulators. Using these tools

developers can write programs on host machines, test the software thoroughly and port to the target

hardware. The cycle time for the development has been reduced considerably in recent years

because of these development tools. Many of them are available free of cost from major software

vendors

6. CONTROL SYSTEM AND INDUSTRIAL AUTOMATION

Fig.2: Block Diagram of control system and industrial automation

The embedded system takes electrical signals as input. Generally sensors or transducers are

used to convert the physical entity into an electrical signal. The processor can process only digital

signals, the ADC(Analog to Digital Convertor) converts the analog signals to its equivalent digital

signals, which is an electrical representation of a bit stream of 0s and 1s. RAM is used to store the

volatile data. A DAC(Digital to Analog Convertor) is used to convert the output digital signal to

analog format. The processor board also includes input/output interface, such as serial interface ,

USB port and an Ethernet port for connectivity to the external systems. For the user interaction

189

LCD and LED and a keypad are provided. These modules may or may not be required depending

on the application. Depending on the application the designer chooses the necessary modules and

carries out the design. While designing the reliability, performance and the cost need to be kept in

the mind. Some of the typical process control applications in nuclear plants and telemetry and tele

command units in satellite communication systems. Some of the embedded systems have to

operate in very hostile environments

7. BIOMEDICAL SYSTEMS

Much of the progress made in the health care industry is due to the development in the

electronic industry Hospitals are full of embedded systems, including X-ray control units, EEG

and ECG units and equipments used for diagnostic testing such as endoscopy and so on. These

systems use PC add on cards which take the ECG signals and process them and the PC monitor is

used for the display. Even the PC secondary storage is used to store the ECG records. Biometric

systems for finger print and face recognition are gaining wide

use in the agencies concerned with the securities

The input fingerprint must be processed and compared with the available database using pattern

recognition algorithm, which requires intensive processing. The biometric systems use a Digital

Signal Processor(DSP) for signal processing such as filtering and edge enhancement of the image.

And a general purpose processor for implementing the pattern matching algorithms

13.DATA COMMUNICATION SYSTEM

Internet has acted as the catalyst for the embedded system. Modem that connects two

computers is an embedded system. Dialup modems normally used to access the internet are

embedded systems with a DSP inside. Using the DSP and the associated software the modem

establishes the connection using the standard protocols. As the digital signal is modulated a lot of

signal processing is involved therefore, DSP is used.

190

Fig. 5.3:Multimedia Communication over IP Network

“Convergence” is the mantra nowadays. For years we used different networks for different

services. Telephone network(PSTN) for making voice call and sending fax messages. Internet for

data rate services such as email, file transfer and web services. WAN act as the backbone network

supporting the data, voice and video communication services

 Telecommunication

Telecommunication infrastructure element includes networking components such as

Telephone switches, Loop carriers, terminal adapters, ATM switches, frame relays and so on.

Mobile communication components includes base station, Mobile switching centers and so on.

Satellite communication equipment includes earth station controller, onboard processing elements,

telemetry and so on

191

 Audio codec

Normally when voice is transmitted over the telephone network the voice is coded at the rate

of 64kbps using a technique known as PCM. In radio system speech is compressed to save the

bandwidth. At the transmitting side the audio signal are compressed to achieve data rates and at

the receiving end the audio signal is expanded to retrieve the original Signal. These codecs use

DSP extensively and gets embedded into cell phones and equipment of mobile and fixed

communication systems. MP3 player is a good example, where are the signals are encoded and

transmitted from a music kiosk to be played on the MP3 device

 Automatic speech generation system

Fig.5.4: Human speech model

Video codec

Video conferencing has become very popular in recent years. Video occupies very large

bandwidth however and to transmit video over the internet, video signals must be compressed to

reduce the data Standards such as MPEG and JPEG are used to achieve

192

video compression. To compress the video signal a video coder is used and to bring to the original

signal a decoder is used. These embedded systems use DSP to implement video compression

Algorithm

8. IVR SYSTEM

It is a stand alone embedded system connected to the computer through a parallel port or USB

port or it can be implemented on a PC with an add on card. IVR system is an embedded system

connected to the computer holding the bank database. IVR system also has a telephone interface

and it is connected in parallel to a telephone line. Once the bank assigns a specific number to the

IVR system any subscriber can call this number to get the information about his/her bank account

details. IVR system comprises of PSTN interface, ADC and DAC, S to P and P to S Convertors

and an interface circuitry with microphone and speaker PSTN interface receives the telephone calls

and answers them. Filters limit the audio signal to the desired frequency band up to 4khz. ADC

converts input to digital format and digitized voice data is converted to parallel format using S to

P convertor and vice versa. FIFO are buffers that temporarily holds the speech data. An IC MT8880

is used. Using this technology coupled with speech recognition and speech synthesis we can

develop applications to browse the web through voice commands

15. GPS SYSTEM

Fig.5.5: Block Diagram of GPS Receiver

193

It is a gift from the U.S from DOD to the humankind. Using a set of 24 NAVSTAR satellites,

the DOD provides the GPS service for any moving or fixed object. A GPS receiver receives the

satellite signals and process them to find the position parameters of the GPS receiver location. GPS

receiver is a powerful embedded system that uses a DSP to process the satellite signals. GPS

receiver computes its latitude, longitude, altitude, velocity and so on. It has an RS 232 serial

communication interface or a USB interface from which the position data is available.

Question Bank

Part-A

1. What is the technique used for power&energy management in a system.

2. What do you mean by real time Operating system.

3. What is the role of RAM in an Embedded System. 6.When do we need multitasking Operating system.

4. When do we need an RTOS?

5. What are the challenges faced in designing an Embedded System.

6. What are the requirements of Embedded System.

7. List the issues in Embedded software development.

PART B

1. Explain the different categories of Embedded System.

2. Explain about the Networked Embedded System with a neat block diagram.

3. Discuss about the issues in Embedded software development.

4. Explain the requirements of Embedded System in detail.

5. Give an example of real time embedded system.

6. Give the basic steps in developing an embedded system.

7. Explain about in trend in embedded system

8. Explain about stand alone system with three example.

194

TEXT / REFERENCE BOOKS

1. Ramesh Goankar, "Microprocessor architecture programming and applications with 8085 / 8088", 5th Edition, Penram

International Publishing, 2002.

2. Mazidi & McKinlay, “The 8051 Microcontroller and Embedded Systems using Assembly and C”, PHI, 2007.

 3. MykePredko, “Programming and Customizing the 8051 Micro-controller”, Tata McGraw-Hill edition, 2007.

4. R A Gaonkar, “Fundamentals of Microcontrollers and Applications in Embedded Systems (with the PIC18 Microcontroller

Family)”, Penram Publishing India, 2007

. 5. Kenneth Ayala ,”The 8051 Microcontroller”, 3rd Edition, Thomson Delmar Learning, 2004.

6. Kenneth J. Ayala, Dhananjay V. Gadre, “The 8051 Microcontroller & Embedded Systems Using Assembly and C”,

Cengage Learning India Publication, 2007.

7. Ajay V Deshmukh, “Microcontrollers: Theory and Applications”, Tata McGraw-Hill, 2005

. 8. Raj Kamal, “Embedded Systems Architecture, Programming, and Design”. (2/e), Tata McGraw Hill, 2008.

