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UNIT 1 MATLAB PROGRAMMING  
 

Introduction to MATLAB Software: MATLAB Command window - Workspace - Working 

with the MATLAB- user interface -Basic commands- Assigning variables Operations with 

variables-programming with different loops and conditionalstatements-Applications in 

Biomedical and Control engineering (signal & image). 

 

MATLAB® is a very powerful software package that has many built-in tools for solving 

problems and for graphical illustrations. The simplest method for using the MATLAB product is 

interactively; an expression is entered by the user and MATLAB immediately responds with a 

result. It is also possible to write programs in MATLAB, which are essentially groups of 

commands that are executed sequentially. This chapter will focus on the basics, including many 

operators and built-in functions that can be used in interactive expressions. Means of storing 

values, including vectors and matrices, will also be introduced. 

 
MATrix LABoratory (MATLAB) 

o Basically deals with interactive matrix calculations 

o Special purpose computer program optimized to perform Engineering and Scientific 

calculations 

 Has built in integrated development environment 

o Supports different platform ( windows 9x/NT/ 2000, Unix,etc.,) 

o Has extensive library and built in functions for various field. 

o MATLAB complier is an interpreter 

o Includes tools that allow Graphical User Interface (GUI) 
 

1.Getting Into Mat Lab 

MATLAB is a mathematical and graphical software package; it has numerical, graphical, and 

programming capabilities. It has built-in functions to do many operations, and there are  

toolboxes that can be added to augment these functions (e.g., for signal processing). There are 

versions available for different hardware platforms, and there are both professional and student 

editions. When the MATLAB software is started, a window is opened: the main part is the 

Command Window (see Figure 1.1). In the Command Window, there is a statement that says: 

In the Command Window, you should see: 

>> 

The >> is called the prompt. In the Student Edition, the prompt 

appears as: EDU>> 
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Figure 1.1 MATLAB Window 

In the Command Window, MATLAB can be used interactively. At the prompt, any MATLAB 

command or expression can be entered, and MATLAB will immediately respond with the result. 

It is also possible to write programs in MATLAB, which are contained in script files or M-files. 

There are several commands that can serve as an introduction to MATLAB and allow you to get 

help: 

info will display contact information for the product 

demo has demos of several options in MATLAB 

help will explain any command; help help will explain how help works 
 

help browser opens a Help Window 
 

lookfor searches through the help for a specific string (be aware that this can take a long 

time) 

 
To get out of MATLAB, either type quit at the prompt, or chooses File, then Exit MATLAB 

from the menu. In addition to the Command Window, there are several other windows that can 

be opened and may be opened by default. What is described here is the default layout for these 

windows, although there are other possible configurations. Directly above the Command 

Window, there is a pull-down menu for the Current Directory. The folder that is set as the 

Current Directory is where files will be saved. By default, this is the Work Directory, but that  

can be changed. 

 
To the left of the Command Window, there are two tabs for Current Directory Window and 

Workspace Window. If the Current Directory tab is chosen, the files stored in that directory are 
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displayed. The Command History Window shows commands that have been entered, not just in 

the current session (in the current Command Window), but previously as well. This default 

configuration can be altered by clicking Desktop, or using the icons at the top-right corner of 
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each  window:  either  an  ―x,‖  which  will  close  thatparticular window; or a curled arrow, which in 

its initial state pointing to the upper right lets you undock that window. Once undocked, clicking 

the curled arrow pointing to the lower right will dock the window again. 

 
2.Variables And Assignment Statements 

In order to store a value in a MATLAB session, or in a program, a variable is used. The 

Workspace Window shows variables that have been created. One easy way to create a variable is 

to use an assignment statement. The format of an assignment statement is 

variablename = expression 
 

The variable is always on the left, followed by the assignment operator, = (unlike in 

mathematics, the single equal sign does not mean equality), followed by an expression. The 

expression is evaluated and then that value is stored in the variable. For example, this is the way 

it would appear in the Command Window: 

>> mynum = 6 
 

mynum 

= 6 

>> 

 
Here, the user (the person working in MATLAB) typed mynum = 6 at the prompt, and 

MATLAB stored the integer 6 in the variable called mynum, and then displayed the result 

followed by the prompt again. Since the equal sign is the assignment operator, and does not 

mean equality, the statement should be read as 

―mynum gets the value of 6‖ (not ―mynum equals 6‖). Note that the variable name must always be 

onhteleft, and the expression on the right. An error will occur if these are reversed. 

>> 6 = mynum 
 

??? 6 = mynum 

| 

Error: The expression to the left of the equals sign is not a valid target for an 

assignment. Putting a semicolon at the end of a statement suppresses the output. 

For example, 

>> res = 9 – 2; 
 

>> 

This would assign the result of the expression on the right side, the value 7, to the variable res; it 

just doesn‗t show that result. Instead, another prompt appears immediately. However, at this 

point in the Workspace Window the variables mynum and res can be seen. 

Note: In the remainder of the text, the prompt that appears after the result will not be shown. The 

spaces in a statement or expression do not affect the result, but make it easier to read. The 

following statement that has no spaces would accomplish exactly the same thing as the previous 
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statement: 

>> res = 9–2; 

 

MATLAB uses a default variable named ans if an expression is typed at the prompt and it is not 

assigned to a variable. For example, the result of the expression 6 3 is stored in the variable ans: 

>> 6 + 3 
 

ans 

= 9 

This default variable is reused any time just an expression is typed at the prompt. A short-cut for 

retyping commands is to press the up-arrow, which will go back to the previously typed 

command(s). For example, if you decided to assign the result of the expression 6 3 to the variable 

res instead of using the default ans, you could press the up-arrow and then the left-arrow to 

modify the command rather than retyping the whole statement: 

>> res = 6 + 3 
 

res 

= 9 

This is very useful, especially if a long expression is entered with an error, and you want to go 

back to correct it. To change a variable, another assignment statement can be used that assigns 

the value of a different expression to it. Consider, for example, the following sequence of 

statements: 

>> mynum = 3 
 

mynum 

= 3 

>> mynum = 4 + 2 

mynum = 

6 

>> mynum = mynum + 1 
 

mynum 

= 7 

In the first assignment statement, the value 3 is assigned to the variable mynum. In the next 

assignment statement, mynum is changed to have the value of the expression 4 2, or 6. In the 

third assignment statement, mynum is changed again, to the result of the expression mynum 1. 

Since at that time mynum had the value 6, the value of the expression was 6 1, or 7. At that point, 

if the expression mynum 3 is entered, the default variable ans is used since the result of this 

expression is not assigned to a variable. 

Thus, the value of ans becomes 10 but mynum is unchanged (it is still 7). Note that just typing 

the name of a variable will display its value. 
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>> mynum + 3 
 

ans = 

10 

>> 

mynum 

 

mynum = 

7 

3.Initializing, Incrementing, And Decrementing 

 

Frequently, values of variables change. Putting the first or initial value in a variable is called 

initializing the variable. Adding to a variable is called incrementing. For example, the statement 

mynum = mynum + 1 
 

increments the variable mynum by 1. 

 
VARIABLE NAMES 

 
Variable names are an example of identifier names. We will see other examples of identifier 

names, such as filenames, in future chapters. The rules for identifier names are: 

The name must begin with a letter of the alphabet. After that, the name can contain 

letters, digits, and the underscore character (e.g., value_1), but it cannot have a space. 

There is a limit to the length of the name; the built-in function namelengthmax tells how 

many characters this is. 

MATLAB is case-sensitive. That means that there is a difference between upper- and 

lowercase letters. So, variables called mynum, MYNUM, and Mynum are all different. 

There are certain words called reserved words that cannot be used as variable 

names. Names of built-in functions can, but should not, be used as variable 

names. 

 
Additionally, variable names should always be mnemonic, which means they should make some 

sense. For example, if the variable is storing the radius of a circle, a name such as ―radius‖ would 

make sense; ―x‖ probably   wouldn‗t.   The   Workspace   Window   shows   the   variables   that   have 

been created in the current Command Window and their values. 

The following commands relate to variables: 

who shows variables that have been defined in this Command Window (this just shows 

the names of the variables) 

whos shows variables that have been defined in this Command Window (this shows 

more information on the variables, similar to what is in the Workspace Window) 
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     clear clears out all variables so they no longer exist 
clear variablename clears out a particular variable 

 

If nothing appears when who or whos is entered, that means there aren‗t any variables! For 

example, in the beginning of a MATLAB session, variables could be created and then selectively 

cleared (remember that the semicolon suppresses output): 

>> who 
 

>> mynum = 3; 

 

>> mynum + 5; 
 

>> who 
 

Your variables are: 

Ans mynum 

>> clear mynum 
 

>> who 
 

Your variables are: 
 

ans 

 
 

EXPRESSIONS 

Expressions can be created using values, variables that have already been created, operators, 

built-in functions, and parentheses. For numbers, these can include operators such as 

multiplication, and functions such as trigonometric functions. An example of such an expression 

would be: 

>> 2 * sin(1.4) 
 

ans = 

1.970 

9 

 
 

The Format Function and Ellipsis 
 

The default in MATLAB is to display numbers that have decimal places with four decimal 

places, as already shown. The format command can be used to specify the output format of 

expressions. There are many options, including making the format short (the default) or long. 

For example, changing the format to long will result in 15 decimal places. This will remain in 

effect until the format is changed back to short, as demonstrated with an expression and with the 

built-in value for pi. 
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>> format long 
 

>> 2 * sin(1.4) 
 

ans = 

1.9708994599769 

20 

>> 

pi 

ans 

= 

3.141592653589793 

>> format short 
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>> 2 * sin(1.4) 
 

ans = 

1.970 

9 

>> pi 

ans = 

3.141 

6 

 
 

The format command can also be used to control the spacing between the MATLAB command 

or expression and the result; it can be either loose (the default) or compact 

 
>> format loose 

 

>> 2^7 

ans 

= 

128 

>> format compact 
 

>> 2^7 
 

ans 

= 

128 

Especially long expressions can be continued on the next line by typing three (or more) periods, 

which is the continuation operator, or the ellipsis. For example, 

>> 3 + 55 – 62 + 4 – 5 .â•›.â•›. 
 

+ 22 – 1 
 

ans 

= 16 

 

 
4.Built-In Functions And Help 

There are many, many built-in functions in MATLAB. The help command can be used to find 

out what functions MATLAB has, and also how to use them. For example, typing help at the 

prompt in the Command Window will show a list of help topics, which are groups of related 

functions. This is a very long list; the most elementary help topics are in the beginning. 
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For example, one of these is listed as matlab\elfun; it includes the elementary math functions. 

Another of the first help topics is matlab\ops, which shows the operators that can be used in 

expressions. To see a list of the functions contained within a particular help topic, type help 

 

followed by the name of the topic. For example, 

>> help elfun 
 

will show a list of the elementary math functions. It is a very long list, and is broken into 

trigonometric (for which the default is radians, but there are equivalent functions that instead use 

degrees), exponential, complex, and rounding and remainder functions. To find out what a 

particular function does and how to call it, type help and then the name of the function. For 

example, 

>> help sin 
 

will give a description of the sin function. 

To call a function, the name of the function is given followed by the argument(s) that are passed 

to the function in parentheses. Most functions then return value(s). For example, to find the 

absolute value of –4, the following expression would be entered: 

>> abs(–4) 
 

which is a call to the function abs. The number in the parentheses, the –4, is the argument. The 

value 4 would then be returned as a result. In addition to the trigonometric functions, the elfun 

help topic also has some rounding and remainder functions that are very useful. Some of these 

include fix, floor, ceil, round, rem, and sign. The rem function returns the remainder from a 

division; for example 5 goes into 13 twice with a remainder of 3, so the result of this expression 

is 3: 

>> rem(13,5) 
 

ans 

= 3 

Another function in the elfun help topic is the sign function, which returns 1 if the argument is 

positive, 0 if it is 0, and –1 if it is negative. For example, 

>> sign(–5) 
 

ans = 

–1 

>> sign(3) 
 

ans 

= 1 

 
CONSTANTS 
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Variables are used to store values that can change, or that are not known ahead of time. Most 

languages also have the capacity to store constants, which are values that are known ahead of 

time, and cannot possibly change. An example of a constant value would be pi, or , which is 

3.14159…. In MATLAB, there are functions that return some of these constant values. Some of 

these include: 

pi 3.14159…. 

i  

j square root of 1 

k square root of 1 

inf infinity 

NaN stands for ―not a number‖; e.g., the result of 0/0 

 
 

TYPES 

 
 

Every expression, or variable, has a type associated with it. MATLAB supports many types of 

values, which are called classes. A class is essentially a combination of a type and the operations 

that can be performed on values of that type. For example, there are types to store different kinds 

of numbers. For float or real numbers, or in other words numbers with a decimal place (e.g., 5.3), 

there are two basic types: single and double. The name of the type double is short for double 

precision; it stores larger numbers than single. MATLAB uses a floating point representation for 

these numbers. For integers, there are many integer types (e.g., int8, int16, int32, and int64). 

The numbers in the names represent the number of bits used to store values of that type. For 

example, the type int8 uses eight bits altogether to store the integer and its sign. Since one bit is 

used for the sign, this means that seven bits are used to store the actual number. Each bit stores 

the number in binary (0‗s or 1‗s), and 0 is also a possible value, which means that 2 ^ 7 – 1 or 

127 is the largest number that can be stored. The range of values that can be stored in int8 is 

actually from –128 to 127. This range can be found for any type by passing the name of the type 

as a string (which means in single quotes) to the functions intmin and intmax. For example, 

>> intmin(‘int8’) 
 

ans = 

–128 

>> intmax(‘int8’) 
 

ans 

= 

127 

The larger the number in the type name, the larger the number that can be stored in it. We will 

for the most part use the type int32 when an integer type is required. The type char is used to 
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store either  single  characters  (e.g.,  ‗x‗) or  strings,  which  are sequences  of  characters  (e.g., 

‗cat‗). Both characters and strings are enclosed in single quotes. The type logical is used to store 

true/false values. If any variables have been created in the Command Window, they can be seen 

in the Workspace Window. In that window, for every variable, the variable name, value, and 

class (which is essentially its type) can be seen. Other attributes of variables can also be seen in 

the Workspace Window. Which attributes are visible by default depends on the version of 

MATLAB. However, when the Workspace Window is chosen, clicking View allows the user to 

choose which attributes will be displayed. By default, numbers are stored as the type double in 

MATLAB. There are, however, many functions that convert values from one type to another. 

The names of these functions are the same as the names of the types just shown. They can be 

used as functions to convert a value to that type.  This is  called  casting  the value  to a  different 
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type, or type casting. For example, to convert a value from the type double, which is the default, 

to the type int32, the function int32 would be used. Typing the following assignment statement: 

>> val = 6+3 
 

would result in the number 9 being stored in the variable val, with the default type of double, 

which can be seen in the Workspace Window. Subsequently, the assignment statement 

>> val = int32(val); 
 

would change the type of the variable to int32, but would not change its value. If we instead 

stored the result in another variable, we could see the difference in the types by using whos. 

>> val = 6 + 3; 
 

>> vali = int32(val); 
 

>> whos 
 

Name Size Bytes Class Attributes 

val 1x 8 doubl 

 1  e 

vali 1x 4 int32 
 1   

One reason for using an integer type for a variable is to save space. 

 
RANDOM NUMBERS 

 
When a program is being written to work with data, and the data is not yet available, it is often 

useful to test the program first by initializing the data variables to random numbers. There are 

several built-in functions in MATLAB that generate random numbers, some of which will be 

illustrated in this section. Random number generators or functions are not truly random. 

Basically, the way it works is that the process. starts with one number, called a seed. Frequently, 

the initial seed is either a predetermined value or it is obtained from the built-in clock in the 

computer. Then, based on this seed, a process determines the next random number. Using that 

number as the seed the next time, another random number is generated, and so forth. These are 

actually called pseudo-random; they are not truly random because there is a process that 

determines the next value each time. The function rand can be used to generate random real 

numbers; calling it generates one random real number in the range from 0 to 1. There are no 

arguments passed to the rand function. Here are two examples of calling the rand function: 

>> rand 

ans = 

0.9501 

>> rand 
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ans = 

0.2311 

The seed for the rand function will always be the same each time MATLAB is started, unless the 

 

state is changed, for example, by the following: 

rand(‘state’,sum(100*clock)) 
 

This uses the current date and time that are returned from the built-in clock function to set the 

seed. Note: this is done only once in any given MATLAB session to set the seed; the rand 

function can then be used as shown earlier any number of times to generate random numbers. 

Since rand returns a real number in the range from 0 to 1, multiplying the result by an integer N 

would return a random real number in the range from 0 to N. For example, multiplying by 10 

returns a real in the range from 0 to 10, so this expression rand*10 

would return a result in the range from 0 to 10. To generate a random real number in the range 

from low to high, first create the variables low and high. Then, use the expression rand*(high– 

low) low. For example, the sequence 

>> low = 3; 
 

>> high = 5; 
 

>> rand*(high–low)+low 
 

would generate a random real number in the range from 3 to 5. 

However, in MATLAB, there is another built-in function that specifically generates random 

integers, 

randint. Calling the function with randint(1,1,N) generates one random integer in the range from 

0 to N – 

1. The first two arguments essentially specify that one random integer will be returned; the third 

argument gives the range of that random integer. For example, 

 
>> randint(1,1,4) 

 
 

generates a random integer in the range from 0 to 3. Note: Even though this creates random 

integers, the type is actually the default type double. A range can also be passed to the randint 

function. For example, the following specifies a random integer in the range from 1 to 20: 

 
>> randint(1,1,[1,20]) 

 

VECTORS AND MATRICES 

Vectors and matrices are used to store sets of values, all of which are the same type. A vector 

can be either a row vector or a column vector. A matrix can be visualized as a table of values. 
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The dimensions of a matrix are r × c, where r is the number of rows and c is the number of 

columns. This is pronounced ―r by c.‖ If a vector has n elements, a row vector would have the 

dimensions 1 × n, and a column vector would have the dimensions n × 1. A scalar (one value) 

has the dimensions 1 × 1. Therefore, vectors and scalars are actually just subsets of matrices. 

Here are some diagrams showing, from left to right, a scalar, a column vector, a row vector, and 

a matrix: 
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The scalar is 1 × 1, the column vector is 3 × 1 (3 rows by 1 column), the row vector is 1 × 4 (1 

row by 4 columns), and the matrix is 3 × 3. All the values stored in these matrices are stored in 

what are called elements. MATLAB is written to work with matrices; the name MATLAB is 

short for ―matrix laboratory.‖ Forthis reason, it is very easy to create vector and matrix variables, 

and there are many operations and functions that can be used on vectors and matrices. A vector 

in MATLAB is equivalent to what is called a one-dimensional array in other languages. A 

matrix is equivalent to a two-dimensional array. Usually, even in MATLAB, some operations 

that can be performed on either vectors or matrices are referred to as array operations. The term 

array also frequently is used to mean generically either a vector or a matrix. 

 
CREATING ROW VECTORS 

There are several ways to create row vector variables. The most direct way is to put the values 

that you want in the vector in square brackets, separated by either spaces or commas. For 

example, both of these assignment statements create the same vector v: 

>> v = [1       2 3  4] 
 

v = 

1 2 3 4 

>> v = [1,2,3,4] 

3 5 88 3 11 9 6 3 

7     5 7 2 

4     4 33 8 

 

5 
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v = 

1 2 3 4 

Both of these create a row vector variable that has four elements; each value is stored in a 

separate element in the vector. 

 
The Colon Operator and Linspace Function 

 

If, as in the earlier examples, the values in the vector are regularly spaced, the colon operator 

can be used to iterate through these values. For example, 1:5 

results in all the integers from 1 to 5: 

>> vec = 1:5 
 

vec = 

1 2 3 4 5 

Note that in this case, the brackets [ ] are not necessary to define the vector. 

With the colon operator, a step value can also be specified with another colon, in the form 

(first:step:last). For example, to create a vector with all integers from 1 to 9 in steps of 2: 

>> nv = 1:2:9 
 

nv = 

1         3 5 7 9 

Similarly, the linspace function creates a linearly spaced vector; linspace(x,y,n) creates a vector 

with n values in the inclusive range from x to y. For example, the following creates a vector with 

five values linearly spaced between 3 and 15, including the 3 and 15: 

>> ls = linspace(3,15,5) 
 

ls = 

3 6 9 12 15 

Vector variables can also be created using existing variables. For example, a new vector is created 

here consisting first of all the values from nv followed by all values from ls: 

>> newvec = [nv ls] 
 

newvec = 

1 3 5 7 9 3 6 9 12 15 

Putting two vectors together like this to create a new one is called concatenating the vectors. 

 
REFERRING TO AND MODIFYING ELEMENTS 

A particular element in a vector is accessed using the name of the vector variable and the element 

number (or index, or subscript) in parentheses. In MATLAB, the indices start at 1. Normally, 

diagrams of vectors and matrices show the indices; for example, for the variable newvec created 

earlier the indices 1–10 of the elements are shown above the vector: 

 
1 2 3 4 5 6 7 8 9 10 
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1 3 5 7 9 3 6 9 12 15 

 
For example, the fifth element in the vector newvec is a 9. 

 

>> newvec(5) 
 

ans 

= 9 

A subset of a vector, which would be a vector itself, can also be obtained using the colon 

operator. For example, the following statement would get the fourth through sixth elements of 

the vector newvec, and store the result in a vector variable b: 

 
>> b = newvec(4:6) 

 

b = 

7 9 3 

 
Any vector can be used for the indices in another vector, not just one created using the colon 

operator. For example, the following would get the first, fifth, and tenth elements of the vector 

newvec: 

 
>> newvec([1 5 10]) 

 

ans = 

1         9 15 

The vector [1 5 10] is called an index vector; it specifies the indices in the original vector that are 

being referenced. The value stored in a vector element can be changed by specifying the index or 

subscript. For example, to change the second element from the vector b to now store the value 11 

instead of 9: 

 
>> b(2) = 11 

 

b = 

7 11 3 

By using an index, a vector can also be extended. For example, the following creates a vector 

that has three elements. By then referring to the fourth element in an assignment statement, the 

vector is extended to have four elements. 

 
>> rv = [3 55 11] 

 

rv = 

3 55 11 

>> rv(4) = 2 
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rv = 

3 55 11 2 

 
If there is a gap between the end of the vector and the specified element, 0‗s are filled in. For 

example, the following extends the variable created earlier again: 

>> rv(6) = 13 

 

rv = 

3 55 11 2 0 13 

 
CREATING COLUMN VECTORS 

One way to create a column vector is by explicitly putting the values in square brackets, separated 

by semicolons: 

>> c = [1; 2; 3; 4] 
 

c 

= 

1 

2 

3 

4 

 

There is no direct way to use the colon operator described earlier to get a column vector. 

However, any row vector created using any of these methods can be transposed to get a column 

vector. In general, the transpose of a matrix is a new matrix in which the rows and columns are 

interchanged. For vectors, transposing a row vector results in a column vector, and transposing a 

column vector results in a row vector. MATLAB has a built-in operator, the apostrophe, to get a 

transpose. 

 
>> r = 1:3; 

 

>> c = r 
 

c 

= 

1 

2 

3 

 
CREATING MATRIX VARIABLES 

Creating a matrix variable is really just a generalization of creating row and column vector 
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variables. That is, the values within a row are separated by either spaces or commas, and the 

different rows are separated by semicolons. For example, the matrix variable mat is created by 

explicitly typing values: 

 
>> mat = [4 3 1; 2 5 6] 

 

mat = 

4 3 1 

2 5 6 

There must always be the same number of values in each row. If you attempt to create a matrix 

in which there are different numbers of values in the rows, the result will be an error message; 
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for example: 

 
>> mat = [3 5 7; 1 2] 

 

??? Error using ==> vertcat 

 
CAT arguments dimensions are not consistent. Iterators can also be used for the values on the 

rows using the colon operator; for example: 

 
>> mat = [2:4; 3:5] 

 

mat =  

2 3 4 

3 4 5 

 
Different rows in the matrix can also be specified by pressing the Enter key after each row 

instead of typing a semicolon when entering the matrix values; for example: 

 
>> newmat = [2 6 88 

 

33 5 2] 

 
newmat = 

2 6 88 

33 5 2 

Matrices of random numbers can be created using the rand and randint functions. The first two 

arguments to the randint function specify the size of the matrix of random integers. For 

example, the following will create a 2 × 4 matrix of random integers, each in the range from 10 

to 30: 

 
>> randint(2,4,[10,30]) 

 

ans =  

29 22 28 19 

14 20 26 10 
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>> 

rand(1,3) 

ans = 

0.7621 

 
 

0.4565 0.018 

5 

 

MATLAB also has several functions that create special matrices. For example, the zeros 

function creates a matrix of all zeros. Like rand, either one argument can be passed (which will 

be both the number of rows and columns), or two arguments (first the number of rows and then 

the number of columns). 

 
>> zeros(3) 

 

ans =  

0 0 0 

0 0 0 

0 0 0 

 
>> zeros(2,4) 

 

ans =  

0 0 0 0 

0 0 0 0 

 
Referring To And Modifying Matrix Elements 

To refer to matrix elements, the row and then the column indices are given in parentheses 

(always the row index first and then the column). For example, this creates a matrix variable mat, 

and then refers to the value in the second row, third column of mat: 

 
>> mat = [2:4; 3:5] 

 

mat =  

2 3 4 

3 4 5 

>> mat(2,3) 
 

ans 

= 5 

 
It is also possible to refer to a subset of a matrix. For example, this refers to the first and second 

rows, second and third columns: 

 
>> mat(1:2,2:3) 
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ans = 

3 4 
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4 5 

 
Using a colon for the row index means all rows, regardless of how many, and using a colon for the 

column index means all columns. For example, this refers to the entire first row: 

>> mat(1,:) 
 

ans = 

2 3 4 

and this refers to the entire second column: 

>> mat(:, 2) 
 

ans 

= 3 

4 

If a single index is used with a matrix, MATLAB unwinds the matrix column by column. For 

example, for the matrix intmat created here, the first two elements are from the first column, and 

the last two are from the second column: 

 
>> intmat = randint(2,2,[0 100]) 

 

intmat = 

100 77 

28 14 

 
>> intmat(1) 

 

ans 

= 

100 

>> intmat(2) 
 

ans 

= 28 

>> intmat(3) 
 

ans 

= 77 

>> intmat(4) 
 

ans 

= 14 

 
This is called linear indexing. It is usually much better style when working with matrices to  

refer to the row and column indices, however. An individual element in a matrix can be modified 
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>> mat = [2:4; 3:5]; 
 

>> mat(1,2) = 11 
 

mat =  

2 11 4 

3 4 5 

 
An entire row or column could also be changed. For example, the following replaces the entire 

second row with values from a vector: 

>> mat(2,:) = 5:7 
 

mat =  

2 11 4 

5 6 7 

 
Notice that since the entire row is being modified, a vector with the correct length must be 

assigned. To extend a matrix, an individual element could not be added since that would mean 

there would no longer be the same number of values in every row. However, an entire row or 

column could be added. For example, the following would add a fourth column to the matrix: 

 
>> mat(:,4) = [9 2]’ 

 

mat =  

2 11 4 9 

5 6 7 2 

 
Just as we saw with vectors, if there is a gap between the current matrix and the row or column 

being added, MATLAB will fill in with zeros. 

 
>> mat(4,:) = 2:2:8 

 

mat =  

2 11 4 9 

5 6 7 2 

0 0 0 0 

2 4 6 8 

 
DIMENSIONS 

The length and size functions in MATLAB are used to find array dimensions. The length 

function returns the number of elements in a vector. The size function returns the number of  

rows and columns in a matrix. For a matrix, the length function will return either the number of 

rows or the number of columns, whichever is largest. For example, the following vector, vec, has  
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vec = 

-2 -1 0 1 

>> length(vec) 
 

ans 

= 4 

>> size(vec) 
 

ans = 

1 4 

For the matrix mat shown next, it has three rows and two columns, so the size is 3 × 2. The 

length is the larger dimension, 3. 

 
>> mat = [1:3; 5:7]’ 

 

mat = 

1 5 

2 6 

3 7 

>> size(mat) 
 

ans = 

3 2 

>> length(mat) 
 

ans 

= 3 

>> [r c] = size(mat) 
 

r 

= 

3 

c = 

2 

 
Note: The last example demonstrates a very important and unique concept in MATLAB: the 

ability to have a vector of variables on the left-hand side of an assignment. The size function 

returns two values, so in order to capture these values in separate variables we put a vector of 

two variables on the left of the assignment. The variable r stores the first value returned, which is 

the number of rows, and c stores the number of columns. 

 
MATLAB also has a function, numel, which returns the total number of elements in any array 

(vector or matrix): 



28 
 

vec = 

9 7 5 3 1 

 
>> numel(vec) 

 

ans 

= 5 

 
>> mat = randint(2,3,[1,10]) 

 

mat =  

7 9 8 

4 6 5 

 
>> numel(mat) 

 

ans 

= 6 

 

For vectors, this is equivalent to the length of the vector. For matrices, it is the product of the 

number of rows and columns. MATLAB also has a built-in expression end that can be used to 

refer to the last element in a vector; for example, v(end) is equivalent to v(length(v)). For 

matrices, it can refer to the last row or column. So, using end for the row index would refer to 

the last row. In this case, the element referred to is in the first column of the last row: 

 
>> mat = [1:3; 4:6]’ 

 

mat = 

1 4 

2 5 

3 6 

 
>> mat(end,1) 

 

ans 

= 3 

Using end for the column index would refer to the last column (e.g., the last column of the second 

row): 

 
>> mat(2,end) 

 

ans 

= 5 
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Changing Dimensions 

In addition to the transpose operator, MATLAB has several built-in functions that change the 

dimensions or configuration of matrices, including reshape, fliplr, flipud, and rot90. The 

reshape function changes the dimensions of a matrix. The following matrix variable mat is 3 4, 

or in other words it has 12 elements. 

 
>> mat = randint(3,4,[1 100]) 

 

mat =  

14 61 2 94 

21 28 75 47 

20 20 45 42 

 
These 12 values instead could be arranged as a 2 x 6 matrix, 6 x 2, 4 x3, 1x 12, or 12 x1. The 

reshape function iterates through the matrix columnwise. For example, when reshaping mat into 

a 2 6 matrix, the values from the first column in the original matrix (14, 21, and 20) are used 

first, then the values from the second column (61, 28, 20), and so forth. 

 
>> reshape(mat,2,6) 

 

ans =  

14 20 28 2 45 47 

21 61 20 75 94 42 

 
The fliplr function ―flips‖ the matrix from left to right (in other words the left-most column, the 

first column, becomes the last column and so forth), and the flipud functions flips up to down. 

Note that in these examples mat is unchanged; instead, the results are stored in the default 

variable ans each time. 

 
>> mat = randint(3,4,[1 100]) 

 

mat =  

14 61 2 94 

21 28 75 47 

20 20 45 42 

 

>> 

fliplr(mat) 

ans = 

94 2 61 14 

47 75 28 21 

42 45 20 20 
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>> 

mat 

 

 
61 2 94 

 

 

 

 

 
 

>> flipud(mat) 
 

ans =  

20 20 45 42 

21 28 75 47 

14 61 2 94 

 
The rot90 function rotates the matrix counterclockwise 90 degrees, so for example the value in 

the top-right corner becomes instead the top-left corner and the last column becomes the first 

row: 

 
>> mat 

mat = 

14 61 2 94 

21 28 75 47 

20 20 45 42 
 

>> 

rot90(mat) 

ans = 
42

 

94 47  

2 75 45 

61 28 20 

14 21 20 

 
The function repmat can also be used to create a matrix; repmat(mat,m,n) creates a larger 

matrix, which consists of an m × n matrix of copies of mat. For example, here is a 2 × 2 random 

matrix: 

>> intmat = randint(2,2,[0 100]) 
 

intmat = 

100 

7 

7 

mat =    

14    

21 28 75 47 

20 20 45 42 
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The function repmat can be used to replicate this matrix six times as a 3 × 2 matrix of the variable 

intmat. 

 
>> repmat(intmat,3,2) 

 

ans =  

100 77 100 77 

28 14 28 14 

100 77 100 77 

28 14 28 14 

28 14 28 14 

 
EMPTY VECTORS 

An empty vector, or, in other words, a vector that stores no values, can be created using empty 

square brackets: 

>> evec = [ ] 
 

evec 

= [ ] 

>> length(evec) 
 

ans 

= 0 

 
Then, values can be added to the vector by concatenating, or adding values to the existing vector. 

The following statement takes what is currently in evec, which is nothing, and adds a 4 to it. 

>> evec = [evec 4] 
 

evec 

= 4 

The following statement takes what is currently in evec, which is 4, 

and adds an 11 to it. 

>> evec = [evec 11] 
 

evec = 

4 11 

This can be continued as many times as desired, in order to build a vector up from nothing. 

Empty vectors can also be used to delete elements from arrays. For example, to remove the third 

element from an array, the empty vector is assigned to it: 

 
>> vec = 1:5 

 

vec = 

1 2 3 4 5 
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1 2 4 5 

The elements in this vector are now numbered 1 through 4. Subsets of a vector could also be 

removed; for example: 

 
>> vec = 1:8 

 

vec = 

1 2 3 4 5 6 7 8 

>> vec(2:4) = [ ] 
 

vec = 

1 5 6 7 8 

Individual elements cannot be removed from matrices, since matrices always have to have the 

same number of elements in every row. 

 
>> mat = [7 9 8; 4 6 5] 

 

mat =  

7 9 8 

4 6 5 

 
>> mat(1,2) = [ ]; 

 

??? Indexed empty matrix assignment is not allowed. However, entire rows or columns could 

be removed from a matrix. For example, to remove the second column: 

>> mat(:,2) = [ ] 
 

mat =  

7 8 

4 5 

 
CELL ARRAYS 

It is a special MATLAB array whose elements are cells, container that can hold other MATLAB arrays 

Cell array contains data structures instead of data 

C{1,1} = 
 

1 2 3 
 

4 5 6 
 

7 8 3 
 

C{2,1} = 
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C{1,2} = 
 

this is a text 

C{2,2} = 

[] 
 

TO CREATE CELL ARRAY 
 

Using assignment statement 

Assignment with content indexing 

C{1,1} = [ 1 2 3; 4 5 6; 7 8 9]; 

C{1,2} = ‗ This is a text‘; 

C{2,1} = [ 3+4*I -5; 2 -10*i]; 

C{2,2} = [ ]; 

Assignment with cell indexing 

C(1,1) = {[ 1 2 3; 4 5 6; 7 8 9]}; 

C(1,2) = {‗ This is a text‘}; 
 

C(2,1) = {[ 3+4*I -5; 2 -10*i]}; 
 

C(2,2) = {[ ]}; 
 

Pre-allocating cell array with cell function 
 

B=cell(2,3) 
 



34 
 

>> B=cell(2,3) 

B = 

[] [] [] 
 

[] [] [] 

 

 

Use { } as cell constructor 
 

Individual cell values can be created separated by comma 

B = {[1 2],17,[2;3];3-4*I, ‗hello‘, eye(3)} 

>> B = {[1 2],17,[2;3];3-4*i, 'hello', eye(3)} 

B = 

[1x2 double] [  17] [2x1 double] 

[3.0000 - 4.0000i]  'hello'  [3x3 double] 

To View Content Of Cell Array 

>> B 

B = 

[1x2 double] [  17] [2x1 double] 

[3.0000 - 4.0000i]  'hello' [3x3 double] 

>> celldisp(B) 

B{1,1} = 

1 2 
 

B{2,1} = 
 

3.0000 - 4.0000i 

B{1,2} = 

17 
 

B{2,2} = 
 

Hello 
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2 
 

3 
 

B{2,3} = 
 

1 0 0 

0 1 0 

0 0 1 
 

>> cellplot(B) 
 

TO EXTENT CELL ARRAY 
 

The existing cell array can be extended by assignment statement 
 

>> B{4,4}=5 

B = 

[1x2 double] [  17] [2x1 double] [] 

[3.0000 - 4.0000i]  'hello'  [3x3 double]  [] 

[] [] [] [] 
 

[] [] [] [5] 
 

TO DELETE THE CONTENT OF CELL ARRAY 
 

>> B(4,:) = [ ]  
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[3.0000 - 4.0000i] 'hello' [3x3 double] [] 
 

[] [] [] [] 
 

The fourth row is deleted 
 

There are several methods of displaying cell arrays. The celldisp function displays all elements of 

the cell array: 

 
>> celldisp(cellrowvec) 

 

cellrowvec{1 

} = 23 

cellrowvec{2 

} = a 

cellrowvec{3} = 

1 3 5 7 9 

cellrowvec{4 

} = hello 

 
The function cellplot puts a graphical display of the cell array in a Figure Window; however, it is 

a high- level view and basically just displays the same information as typing the name of the 

variable (e.g., it wouldn‗t show the contents of the vector in the previous example). Many of the 

functions and operations on arrays that we have already seen also work with cell arrays. For 

example, here are some related to dimensioning: 

>> length(cellrowvec) 
 

ans 

= 4 

>> size(cellcolvec) 
 

ans = 

4 1 

>> cellrowvec{end} 
 

ans 

= 

hello 

 
It is not possible to delete an individual element from a cell array. For example, assigning an 

empty vector to a cell array element does not delete the element, it just replaces it with the 

emptyvector: 

 
>> cellrowvec 
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>> length(cellrowvec) 
 

ans 

= 4 

>> cellrowvec{2} = [ ] 
 

mycell = 

[23] â [] [1x5 double] ‗hello‗ 

 
>> length(cellrowvec) 

 

ans 

= 4 

However, it is possible to delete an entire row or column from a cell array by assigning the 

empty vector (Note: use parentheses rather than curly braces to refer to the row or column): 

 
>> cellmat 

 

mycellmat = 

[ 23] ‗a‗ 

[1x5 double] ‗hello‗ 

>> cellmat(1,:) = [] 
 

mycellmat = 

[1x5 double] ‗hello‗ 

 
Storing Strings in Cell Arrays 

One good application of a cell array is to store strings of different lengths. Since cell arrays can 

store different types of values in the elements, that means strings of different lengths can be 

stored in the elements. 

 
>> names = {‘Sue’, ‘Cathy’, ‘Xavier’} 

 

names = 

‗Sue‗  ‗Cathy‗ ‗Xavier‗ 

This is extremely useful, because unlike vectors of strings created using char or strvcat, these 

strings do not have extra trailing blanks. The length of each string can be displayed using a for 

loop to loop through the elements of the cell array: 

 
>> for i = 

1:length(names) 

disp(length(names{i})) 

end
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It is possible to convert from a cell array of strings to a character array, and vice versa. 

MATLAB has several functions that facilitate this. For example, the function cellstr converts 

from a character array padded with blanks to a cell array in which the trailing blanks have been 

removed. 

 
>> greetmat = char(‘Hello’,‘Goodbye’); 

 

>> cellgreets = cellstr(greetmat) 
 

cellgreets = 

‗Hello‗ 

‗Goodbye‗ 

 
The char function can convert from a cell array to a character matrix: 

>> names = {‘Sue’, ‘Cathy’, ‘Xavier’}; 
 

>> cnames = char(names) 
 

cnames 

= Sue 

Cathy 

Xavier 

 
>> size(cnames) 

 

ans = 

3 6 

 
The function iscellstr will return logical true if a cell array is a cell array of all strings, or logical 

false if not. 

 
>> iscellstr(names) 

 

ans 

= 1 

 
>> iscellstr(cellcolvec) 

 

ans 

= 0 

We will see several examples of cell arrays containing strings of varying lengths in the coming 

chapters, including advanced file input functions and customizing plots. 
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Structure Array 
 

A cell array is a data type in which there is a single name for the whole data structure. 
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A Structure is a data type in which each individual element has a name. The individual elements of a 

structure are known as fields. 

Create Structure Array 
 

A Field at a time using assignment statement 
 

Assignment Statement 
 

>> student.name='ram'; 
 

>> student.regno='3513110'; 
 

>> student.add='1st street'; 
 

>> student.city='Chennai'; 
 

>> student.zip='600119'; 
 

These assignment statement will create a structure named student with fields – name, regno,add,city,zip 
 

To add another database 
 

>> student(2).name='shiva'; 
 

Using struct function 
 

>> student_database=struct('name', 'sathya','regno', [3513120]) 

student_database = 

name: 'sathya' 

regno: 3513120 

Will create a structure named student_database with fields name and regno 
 

>> student2_database(1000)=struct('name',[ ],'regno',[ ],'add',[ ]) 

student2_database = 

1x1000 struct array with fields: 

name 

regno 

add 

Will create a structure named student2_database with fields name, regno and add 
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TO ADD FIELDS TO STRUCTURE 
 

>> student(2).mark = [ 88 80 76 90 78 81 99] 
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student = 
 

1x2 struct array with fields: 

name 

regno 

add 

city 

zip 

mark 

The field mark is added to the structure named student 
 

TO REMOVE FIELDS TO STRUCTURE 
 

>> student = rmfield(student,'zip') 

student = 

1x2 struct array with fields: 

name 

regno 

add 

city 

mark 

The field ‗zip‘ is removed from the structure named student 

TO EXTRACT DATA FROM STRUCTURE ARRAY 

To get the information in the structure 
 

>> student(2).add 

ans = 

[] 
 

Returns empty array, since there is no data added to the field for student(2) 
 

>> student(2).mark 
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ans = 
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88 80 76 90 78 81 99 
 

Returns the marks corresponding to student(2) 
 

>> student(2).mark(2) 

ans = 

80 
 

Returns the mark corresponding to student(2) with index 2 
 

>> mean(student(2).mark) 

ans = 

84.5714 

Returns the mean of the marks corresponding to student(2) 

Similarly any operation can be performed with the extracted data 

TO EXTRACT/SET DATA 

getfield is a function that gets the current value stored in the field 
 

>> city= getfield(student(1),'city') 

city = 

Chennai 
 

Returns the current value of the field ‗city‘ corresponding to student(1) 
 

setfield is a function that inserts new value in to the field 
 

>> setfield(student(2),'regno',3513105') 

ans = 

name: 'shiva' 

regno: 3513105 

add: [] 

city: [] 
 

mark: [88 80 76 90 78 81 99] 
 

Sets the value to the field ‗regno‘ corresponding to student(2) 
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Passing Structures To Functions 
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An entire structure can be passed to a function, or individual fields can be passed. For example, here 

are two different versions of a function that calculates the profit on a software package. The profit is 

defined as the price minus the cost. In the first version, the entire structure variable is passed to the 

function, so the function must use the dot operator to refer to the price and cost fields of the input 

argument. 

 
calcprof.m 

function profit = calcprof(packstruct) 

% Calculates the profit for a software package 

% The entire structure is passed to the function 

profit = packstruct.price – packstruct.cost; 

 
>> calcprof(package) 

 

ans = 

19.9600 

 
In the second version, just the price and cost fields are passed to the function using the dot operator in 

the function call. These are passed to two scalar input arguments in the function header, so there is no 

reference to a structure variable in the function itself, and the dot operator is not needed in the 

function. 

 
calcprof2.m 

function profit = calcprof2(oneprice, onecost) 

% Calculates the profit for a software package 

% The individual fields are passed to the function 

profit = oneprice – onecost; 

>> calcprof2(package.price, package.cost) 
 

ans = 19.9600 

It is important, as always with functions, to make sure that the arguments in the function call correspond 

one-to-one with the input arguments in the function header. In the case of calcprof, a structure variable 

is passed to an input argument, which is a structure. For the second function calcprof2, two individual 

fields, which are double values, are passed to two double arguments. 

 
Related Structure Functions 

There are several functions that can be used with structures in MATLAB. The function isstruct will 

return 1 for logical true if the variable argument is a structure variable, or 0 if not. The isfield function 

returns logical true if a fieldname (as a string) is a field in the structure argument, or logical false if 

not 

>> isstruct(package) 
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ans = 1 

 
The fieldnames function will return the names of the fields that are contained in a structure variable. 

>> pack_fields = fieldnames(package) 
 

pack_fields = 

‗item_no‗ 

‗cost‗ 

‗price‗ 

‗code‗ 

Since the names of the fields are of varying lengths, the fieldnames function returns a cell array with 

the names of the fields. Curly braces are used to refer to the elements, since pack_fields is a cell array. 

For example, we can refer to the length of one of the strings: 

 
>> length(pack_fields{2}) 

 

ans = 4 

 

 
File I/O operations 

 

fclose Close one or all open files 

feof Test for end of file 

ferror File I/O error information 

fgetl Read line from file, removing newline characters 

fgets Read line from file, keeping newline characters 

fileread Read contents of file as text 

fopen Open file, or obtain information about open files 

fprintf Write data to text file 

fread Read data from binary file 

frewind Move file position indicator to beginning of open 
file 

fscanf Read data from text file 

fseek Move to specified position in file 
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ftell Current position 

fwrite Write data to binary file 
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Saving Variables To Files & Loading Variables From Files 
 

save filename x y -ASCII 

filename is the name of the file that you want to write data to. 
 

• x, y are variables to be written to the file. 
 

‣ If omitted, all variables are written. 
 

• -ASCII tells Matlab to write the data in a format that you can read. 
 

‣ If omitted, data will be written in binary format. 
 

‣ best for large amounts of data 
 

load filename x y 

• This is the complimentary command to save. 
 

• Reads variables x and y from file filename 
 

‣ If variables are omitted, all variables are loaded... 

FORMATTED OUTPUT IN MATLAB 

disp(x) - prints the contents of variable x. 

fprintf(...) - use for formatted printing 

• Allows much more control over output 
 

• Syntax: fprintf(‗text & formatting‘,variables); 
 

• Text formatting: ‣ %a.bc 

 

‣ a - minimum width of output buffer 
 

‣ b - number of digits past decimal point 
 

‣ c - formatting scheme 
 

‣ f - floating point (typical format) 12.345 
 

‣ e - scientific notation - 1.2345e1 
 

‣ s - string format 
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FILE OUTPUT IN MATLAB 
 

• Open the file 
 

‣ fid = fopen(filename,‘w‘); 
 

‣ ‗w‘ tells matlab that we want to WRITE to the file. 
 

‣ see ―help fopen‖ for more information. 
 

• Write to the file 
 

‣ fprintf(fid,format,variables); 
 

• Close the file 
 

‣ fclose(fid); 
 

FILE INPUT IN MATLAB 
 

Import wizard “File→Import Data” 
 

• Allows you to import data from delimited files (spreadsheets, etc) 
 

Importing “spreadsheet” data 
 

• dlmread - import data from a delimited file (you choose the delimiter) 
 

• xlsread - import data from Excel. 
 

General file input - three steps: 
 

• fid=fopen(filename,‘r‘) - open a file to allow detailed input control. 
 

‣ ‗r‘ tells matlab that we want to READ from the file. 
 

• a=fscanf(fid,format,size); 
 

‣ Works like file writing, but use fscanf rather than fprintf. 
 

‣ fid - file id that you want to read from 
 

‣ format - how you want to save the information (string, number) 
 

‣ ‗%s‘ to read a string, ‗%f‘ to read a floating point number, ‗%e‘ to read scientific notation. 
 

‣ size - how many entries to read. 
 

‣ feof(fid) - returns true if end of file, false otherwise. 
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CREATING STRING VARIABLES 

A string consists of any number of characters (including, possibly, none). These are examples of 

strings: ‗‗ 

‗x‗ 

‗cat‗ 

‗Hello there‗ 

‗123‗ 

 
A substring is a subset or part of a string. For example, ‗there‗ is a substring within the string 

‗Hello there‗. Characters include letters of the alphabet, digits, punctuation marks, white space, 

and control characters. Control characters are characters that cannot be printed, but accomplish 

a task (such as a backspace or tab). Whitespace characters include the space, tab, newline 

(which moves the cursor down to the next line), and carriage return (which moves the cursor to 

the beginning of the current line). Leading blanks are blank spaces at the beginning of a string, 

for example, ‗ hello‗, and trailing blanks are blank spaces at the end of a string. There are several 

ways that string variables can be created. One is using assignment statements: 

 
>> word = ‘cat’; 

 
 

Another method is to read into a string variable. Recall that to read into a string variable using the 

input 

function, the second argument ‗s‗ must be included: 

 
>> strvar = input(‘Enter a string: ’, ‘s’) 

 

Enter a string: 

xyzabc strvar = 

xyzabc 

 
If leading or trailing blanks are typed by the user, these will be stored in the string. For example, 

in the following the user entered four blanks and then ‗xyz‗: 

>> s = input(‘Enter a string: ’,‘s’) 
 

Enter a string: 

xyz s = 

xyz 

 
Strings as Vectors 

Strings are treated as vectors of characters—or in other words, a vector in which every element 

is a single character—so many vector operations can be performed. For example, the number of 

characters in a string can be found using the length function: 
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ans = 

3 

>> length(‗ ‗) 

ans = 

1 

>> 

length(‗‗) 

ans = 

0 

 
Notice that there is a difference between an empty string, which has a length of zero, and a string 

consisting of a blank space, which has a length of one. Expressions can refer to an individual 

element (a character within the string), or a subset of a string or a transpose of a string: 

 
>> mystr = ‘Hi’; 

 

>> mystr(1) 
 

ans 

= H 

>> mystr’ 
 

ans 

= H 

i 

>> sent = ‘Hello there’; 
 

>> length(sent) 
 

ans 

= 11 

>> sent(4:8) 
 

ans 

= lo 

th 

Notice that the blank space in the string is a valid character within the string. A matrix can be 

created, which consists of strings in each row. So, essentially it is created as a column vector of 

strings, but the end result is that this would be treated as a matrix in which every element is a 

character: 

 
>> wordmat = [‘Hello’;‘Howdy’] 

 

wordmat 
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>> size(wordmat) 
 

ans = 

2 5 

 
This created a 2 5 matrix of characters. With a character matrix, we can refer to an individual 

element, which is a character, or an individual row, which is one of the strings: 

 
>> wordmat(2,4) 

 

ans 

= d 

>> wordmat(1,:) 
 

ans 

= 

Hell 

o 

 
Since rows within a matrix must always be the same length, the shorter strings must be padded 

with blanks so that all strings have the same length, otherwise an error will occur. 

 
>> greetmat = [‘Hello’; ‘Goodbye’] 

 

??? Error using ==> vertcat 

 
CAT arguments dimensions are not consistent. 

>> greetmat = [‘Hello ’; ‘Goodbye’] 
 

greetmat 

= Hello 

Goodbye 

 
>> size(greetmat) 

 

ans = 

2 7 

 
: 



54 
 

>> first = ‘Bird’; 
 

>> last = ‘house’; 
 

>> [first 

last] ans = 

Birdhouse 

The function strcat does this also horizontally, meaning that it creates one longer string from the 

inputs. 

>> first = ‘Bird’; 
 

>> last = ‘house’; 
 

>> strcat(first,last) 
 

ans = 

Birdhous 

e 

 
There is a difference between these two methods of concatenating, however, if there are leading 

or trailing blanks in the strings. The method of using the square brackets will concatenate the 

strings, including all leading and trailing blanks. 

 
>> str1 = ‘xxx ’; 

 

>> str2 = ‘ yyy’; 
 

>> [str1 str2] 
 

ans = 

xxx 

yyy 

>> length(ans) 
 

ans 

= 12 

 
The strcat function, however, will remove trailing blanks (but not leading blanks) from strings 

before concatenating. Notice that in these examples, the trailing blanks from str1 are removed, 

but the leading blanks from str2 are not: 

 
>> strcat(str1,str2) 

 

ans =  
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length(ans) 

ans = 

9 

>> strcat(str2,str1) 
 

ans = 

yyyxx 

x 

>> length(ans) 
 

ans 

= 9 

The function strvcat will concatenate vertically, meaning that it will 

create a column vector of strings. 

>> strvcat(first,last) 
 

ans = 

Bird 

hous 

e 

>> size(ans) 
 

ans = 

2 5 

Note that strvcat will pad with extra blanks automatically, in this case to make both strings have 

a length of 5. 

 

Creating Customized Strings 

There are several built-in functions that create customized strings, including char, blanks, and 

sprintf. We have seen already that the char function can be used to convert from an ASCII code 

to a character, for example: 

 
>> char(97) 

 

ans 

= a 

 
The char function can also be used to create a matrix of characters. When using the char 

function to create a matrix, it will automatically pad the strings within the rows with blanks as 

necessary so that they are all the same length, just like strvcat. 

 
>> clear greetmat 
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= Hello 

Goodbye 

>> size(greetmat) 
 

ans 

= 2 7 

The blanks function will create a string consisting of n blank characters which are kind of hard to 

see here! However, in MATLAB if the mouse is moved to highlight the result in ans, the blanks can 

be seen. 

 
>> blanks(4) 

 

ans = 

>> length(ans) 
 

ans 

= 4 

 
Usually this function is most useful when concatenating strings, and you want a number of blank 

spaces in between. For example, this will insert five blank spaces in between the words: 

 
>> [first blanks(5) last] 

 

ans = 

Bird house 

 
Displaying the transpose of the blanks function can also be used to move the cursor down. In the 

Command Window, it would look like this: 

 
>> disp(blanks(4)’) 

 
 

This is useful in a script or function to create space in output, and is essentially equivalent to 

printing the newline character four times. The sprintf function works exactly like the fprintf 

function, but instead of printing it creates a string. Here are several examples in which the output 

is not suppressed so the value of the string variable is shown: 

>> sent1 = sprintf(‘The value of pi is %.2f’, pi) 
 

sent1 = 

The value of pi is 3.14 

>> sent2 = sprintf(‘Some numbers: %5d, %2d’, 33, 6) 
 

sent2 = 

Some numbers: 33, 6 
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= 23 

In the following example, on the other hand, the output of the assignment is suppressed so the 

string is created including a random integer and stored in the string variable. Then, some 

exclamation points are concatenated to that string. 

>> phrase = sprintf(‘A random integer is 

%d’, ›. randint(1,1,[5,10])); 
 

>> strcat(phrase, ‘!!!’) 
 

ans = 

A random integer is 7!!! 

 
All the conversion specifiers that can be used in the fprintf function can also be used in the sprintf 

function. 

 
Removing Whitespace Characters 

MATLAB has functions that will remove trailing blanks from the end of a string and/or leading 

blanks from the beginning of a string. The deblank function will remove blank spaces from the 

end of a string. For example, if some strings are padded in a string matrix so that all are the same 

length, it is frequently preferred to then remove those extra blank spaces in order to actually use 

the string. 

 
>> names = char(‘Sue’, ‘Cathy’,‘Xavier’) 

 

names 

= Sue 

Cathy 

Xavier 

>> name1 = names(1,:) 
 

name1 

= Sue 

>> length(name1) 
 

ans 

= 6 

>> name1 = deblank(name1); 
 

>> length(name1) 
 

ans 

= 3 

 
Note: The deblank function removes only trailing blanks from a string, not leading blanks. The  
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the two blanks in the middle. Selecting the result in MATLAB with the mouse would show the 

blank spaces. 

 
>> strvar = [blanks(3) ‘xx’ blanks(2) ‘yy’ blanks(4)] 

 

strvar 

= xx 

yy 

>> length(strvar) 
 

ans 

= 13 

>> strtrim(strvar) 
 

ans 

= xx 

yy 

>> length(ans) 
 

ans 

= 6 

 
Changing Case 

MATLAB has two functions that convert strings to all uppercase letters, or all lowercase, called 

upper and 

lower. 

>> mystring = ‘AbCDEfgh’; 
 

>> lower(mystring) 
 

ans = 

abcdefg 

h 

 
>> 

upper(ans) 

ans = 

ABCDEFG 

H 

Comparing Strings 

There are several functions that compare strings and return logical true if they are equivalent, or 

logical false if not. The function strcmp compares strings, character by character. It returns  
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>> word1 = ‘cat’; 
 

>> word2 = ‘car’; 
 

>> word3 = ‘cathedral’; 
 

>> word4 = ‘CAR’; 
 

>> strcmp(word1,word2) 
 

ans 

= 0 

>> strcmp(word1,word3) 
 

ans 

= 0 

>> strcmp(word1,word1) 
 

ans 

= 1 

>> strcmp(word2,word4) 
 

ans 

= 0 

The function strncmp compares only the first n characters in strings and ignores the rest. The 

first two arguments are the strings to compare, and the third argument is the number of  

characters to compare (the value of n). 

 
>> strncmp(word1,word3,3) 

 

ans 

= 1 

>> strncmp(word1,word3,4) 
 

ans 

= 0 

There is also a function strncmpi that compares n characters, ignoring the case. 

 
Finding, Replacing, and Separating Strings 

There are several functions that find and replace strings, or parts of strings, within other strings 

and functions that separate strings into substrings. The function findstr receives two strings as 

input arguments. It finds all occurrences of the shorter string within the longer, and returns the 

subscripts of the beginning of the occurrences. The order of the strings does not matter with 

findstr; it will always find the shorter string within the longer, whichever that is. The shorter 



60 
 

>> findstr(‘abcde’, ‘d’) 
 

ans 

= 4 

>> findstr(‘d’,‘abcde’) 
 

ans 

= 4 

>> findstr(‘abcde’, ‘bc’) 
 

ans 

= 2 

>> findstr(‘abcdeabcdedd’, ‘d’) 
 

ans = 

4         9 11 12 

The function strfind does essentially the same thing, except that the order of the arguments does 

make a difference. The general form is strfind(string, substring); it finds all occurrences of the 

substring within the string, and returns the subscripts. 

 
>> strfind(‘abcdeabcde’,‘e’) 

 

ans = 

5 10 

For both strfind and findstr, if there are no occurrences, the empty vector is returned. 

>> strfind(‘abcdeabcde’,‘ef’) 
 

ans 

= [ ] 

The function strrep finds all occurrences of a substring within a string, and replaces them with a 

new substring. The order of the arguments matters. The format is: strrep(string, oldsubstring, 

newsubstring) The following example replaces all occurrences of the substring ‗e‗ with the 

substring ‗x‗: 

 
>> strrep(‘abcdeabcde’,‘e’,‘x’) 

 

ans = 

abcdxabcd 

x 

 
All strings can be any length, and the lengths of the old and new substrings do not have to be the 

same. In addition to the string functions that find and replace, there is a function that separates a 

string into two substrings. The strtok function breaks a string into pieces; it can be called several 
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string, up to (but not including) the first delimiter. It also returns the rest of the string, which 

includes the delimiter. Assigning the returned values to a vector of two variables will capture 

both of these. The format is 

 
[token rest] = strtok(string) 

where token and rest are variable names. For example, 
 

>> sentence1 = ‘Hello there’ 
 

sentence1 

= Hello 

there 

>> [word rest] = strtok(sentence1) 
 

word 

= 

Hello 

rest = 

there 

>> length(word) 
 

ans 

= 5 

>> length(rest) 
 

ans 

= 6 

Notice that the rest of the string includes the blank space delimiter. By default, the delimiter for 

the token is a whitespace character (meaning that the token is defined as everything up to the 

blank space), but alternate delimiters can be defined. The format 

 
[token rest] = strtok(string, delimeters) 

 
returns a token that is the beginning of the string, up to the first character contained within the 

delimiters string, and also the rest of the string. In the following example, the delimiter is the 

character ‗l‗. 

 
>> [word rest] = strtok(sentence1,‘l’) 

 

word 

= He 

rest = 

llo there 

Leading delimiter characters are ignored, whether it is the default whitespace or a specified  
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firstpart 

= 

material 

s 

lastpart 

= 

science 

 
Evaluating a String 

The function eval is used to evaluate a string as a function.For example, in the following, the 

string ‗plot(x)‗ is interpreted to be a call to the plot function, and it produces the plot shown in 

Figure 6.2. 

 
>> x = [2 6 8 3]; 

 

>> eval(‘plot(x)’) 

 
 

This would be useful if the user entered the name of the type of plot to use. In this example, the 

string that the user enters (in this case ‗bar‗) is concatenated with the string ‗(x)‗ to create the 

string ‗bar(x)‗; this is then evaluated as a call to the bar function as seen in Figure 6.3. The 

name of the plot type is also used in the title. 

 
The is functions for strings 

There are several is functions for strings, which return logical true or false. The function isletter 

returns logical true if the character is a letter of the alphabet. The function isspace returns logical 

true if the character is a whitespace character. If strings are passed to these functions, they will 

return logical true or false for every element, or, in other words, every character. 

 
>> isletter(‘a’) 

 

ans 

= 1 

>> isletter(‘EK127’) 
 

ans = 

1 1 0 0 0 

>> isspace(‘a b’) 
 

ans 

= 0 1 

0 

The ischar function will return logical true if an array is a character array, or logical false if not. 
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ans 

= 1 

>> vec = 3:5; 
 

>> ischar(vec) 
 

ans 

= 0 

 
Converting between string and number types 

MATLAB has several functions that convert numbers to strings in which each character element 

is a separate digit, and vice versa. (Note: these are different from the functions char, double, 

etc., that convert characters to ASCII equivalents and vice versa.) To convert numbers to strings, 

MATLAB has the functions int2str for integers and num2str for real numbers (which also 

works with integers). The function int2str would convert, for example, the integer 4 to the string 

‗4‗. 

 
>> rani = randint(1,1,50) 

 

rani 

= 38 

>> s1 = int2str(rani) 
 

s1 

= 

38 

>> length(rani) 
 

ans 

= 1 

>> length(s1) 
 

ans 

= 2 

The variable rani is a scalar that stores one number, whereas s1 is a string that stores two 

characters, ‗3‗ and ‗8‗. Even though the result of the first two assignments is 38, notice that the 

indentation in the Command Window is different for the number and the string. The num2str 

function, which converts real numbers, can be called in several ways. If only the real number is 

passed to the num2str function, it will create a string that has four decimal places, which is the 

default in MATLAB for displaying real numbers. The precision can also be specified (which is 

the number of digits), and format strings can also be passed, as shown: 

 
>> str2 = num2str(3.456789) 
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>> length(str2) 
 

ans 

= 6 

>> str3 = num2str(3.456789,3) 
 

str3 

= 

3.46 

>> str = num2str(3.456789,‘%6.2f’) 
 

str 

= 

3.4 

6 

Note that in the last example, MATLAB removed the leading blanks from the string. The function 

str2num 

does the reverse; it takes a string in which a number is stored and converts it to the type double: 

 
>> num = str2num(‘123.456’) 

num = 

123.4560 

If there is a string in which there are numbers separated by blanks, the str2num function will 

convert this to a vector of numbers (of the default type double). For example, 

 
>> mystr = ‘66 2 111’; 

 

>> numvec = str2num(mystr) 
 

numvec 

= 66 2 

111 

>> sum(numvec) 
 

ans 

= 

179 

 
Input and Output 

The previous script would be much more useful if it were more general; for example, if the value 

of the radius could be read from an external source rather than being assigned in the script. Also, 

it would be better to have the script print the output in a nice, informative way. Statements that 

accomplish these tasks are called input/output statements, or I/O for short. Although for  



65 
 

Input Function 

Input statements read in values from the default or standard input device. In most systems, the 

default input device is the keyboard, so the input statement reads in values that have been entered 

by the user, or the person who is running the script. In order to let the user know what he or she 

is supposed to enter, the script must first prompt the user for the specified values. The simplest 

input function in MATLAB is called input. The input function is used in an assignment 

statement. To call it, a string is passed, which is the prompt that will appear on the screen, and 

whatever the user types will be stored in the variable named on the left of the assignment 

statement. To make it easier to read the prompt, put a colon and then a space after the prompt. 

For example, 

>> rad = input(‘Enter the radius: ’) 
 

Enter the radius: 5 

rad = 

5 

If character or string input is desired, ‗s‗ must be added after the prompt: 

>> letter = input(‘Enter a char: ’,‘s’) 
 

Enter a char: g 

letter 

= g 

Notice that although this is a string variable, the quotes are not shown. However, they are shown 

in the Workspace Window. If the user enters only spaces or tabs before pressing the Enter key, 

they are ignored and an empty string is stored in the variable: 

 
>> mychar = input(‘Enter a character: ’, ‘s’) 

 

Enter a 

character: 

mychar = 

‗‗ 

Notice that in this case the quotes are shown, to demonstrate that there is nothing inside of the 

string. However, if blank spaces are entered before other characters, they are included in the 

string. In this example, the user pressed the space bar four times before entering ―go‖: 

 
>> mystr = input(‘Enter a string: ’, ‘s’) 

 

Enter a string: go 

mystr = 

go 

>> length(mystr) 
 

ans 
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>> name = input(‘Enter your name: ’); 
 

Enter your name: ‘Stormy’ However, it is better to signify that character input is desired in the 

input function itself. Normally, the results from input statements are suppressed with a 

semicolon at the end of the assignment statements, as shown here. Notice what happens if string 

input has not been specified, but the user enters a letter rather than a number: 

 
>> num = input(‘Enter a number: ’) 

 

Enter a number: t 

??? Error using ==> input 

Undefined function or 

variable ‗t‗. 

Enter a number: 3 
 

num 

= 3 

MATLAB gave an error message and repeated the prompt. However, if t is the name of a 

variable, MATLAB will take its value as the input: 

 
>> t = 11; 

>> num = input(‘Enter a number: ’) 
 

Enter a number: t 

num = 

11 

Separate input statements are necessary if more than one input is desired. For example 

 
>> x = input(‘Enter the x coordinate: ’); 

 

>> y = input(‘Enter the y coordinate: ’); 

 
 

Output Statements: disp and fprintf 
 

Output statements display strings and the results of expressions, and can allow for formatting, or 

customizing how they are displayed. The simplest output function in MATLAB is disp, which is 

used to display the result of an expression or a string without assigning any value to the default 

variable ans. However, disp does not allow formatting. For example, 

 
>> disp(‘Hello’) 
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Hello 

>> disp(4^3) 
 

64 

 
Formatted output can be printed to the screen using the fprintf function. For example, 

 
>> fprintf(‘The value is %d, for sure!\n’,4^3) 

 

The value is 64, for sure! 

 
To the fprintf function, first a string (called the format string) is passed, which contains 

any text to be printed as well as formatting information for the expressions to be printed. 

In this example, the %d is an example of format information. The %d is sometimes called 

a placeholder; it specifies where the value of the expression that is after the string is to be 

printed. The character in the placeholder is called the conversion character, and it 

specifies the type of value that is being printed. There are others, but what follows is a list 

of the simple placeholders: 

 
%d integers (it actually stands for decimal integer) 

%f floats 

%c single characters 

%s strings 

 
Don‗t confuse the % in the placeholder with the symbol used to designate a comment. 

The  character  ‗\n‗  at  the  end  of  the  string  is  a  special  character  called  the  newline 

character; when it is printed the output moves down to the next line. A field width can 

also be included in the placeholder in fprintf, which specifies how many characters total 

are to be used in printing. For example, %5d would indicate a field width of 5 for printing 

an integer and %10â•›s would indicate a field width of 10 for a string. For floats, the 

number of decimal places can also be specified; for example, %6.2f means a field width 

of 6 (including the decimal point and the decimal places) with two decimal places. For 

floats, just the number of decimal places can also be specified; for example, %.3f if 

indicates three decimal places. 

 
>> fprintf(‘The int is %3â•›d and the float is %6.2f\n’,5,4.9) 

 
 

The int is 5 and the float is 4.90 Note that if the field width is wider than necessary, 

leading blanks are printed, and if more decimal places are specified than necessary, 

trailing zeros are printed. There are many other options for the format string. For 
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example, the value being printed can be left-justified within the field width using a minus 

sign. The following example shows the difference between printing the integer 3 using 

%5d and using %–5d. The x‗s are just used to show the spacing. 

 
>> fprintf(‘The integer is xx%5dxx and xx%-5dxx\n’,3,3) 

 

The integer is xx 3xx and xx3 xx 

 
Also, strings can be truncated by specifying decimal places: 

>> fprintf(‘The string is %s or 

%.4s\n’, ‘truncate’,... ‘truncate’) 
 

The string is truncate or trun. There are several special characters that can be printed in 

the format string in addition to the newline character. To print a slash, two slashes in a 

row are used, and also to print a single quote two single quotes in a row are used. 

Additionally, \t is the tab character. 

>> fprintf(‘Try this out: tab\t quote ‘‘ slash \\ \n’) 
 

Try this out: tab quote ‗ slash \ 

 
Scripts with Input and Output 

Putting all this together, we can implement the algorithm from 

the beginning of this chapter. The following script calculates 

and prints the area of a circle. It 

first prompts the user for a radius, reads in the radius, and then 

calculates and prints the area of the circle based on this radius. 

 
script2.m 

% This script calculates the area of a circle 

% It prompts the user for the radius 

% Prompt the user for the radius and calculate 

% the area based on that radius 

radius = input(‗Please enter 

the radius: ‗); area = pi * 

(radius^2); 

% Print all variables in a sentence 

format fprintf(‗For a circle with a 

radius of %.2f,‗,radius) fprintf(‗the 

area is %.2f\n‗,area) 

 
Executing the script produces the following output: 
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>> script2 
 

Please enter the radius: 3.9 

For a circle with a radius of 3.90, the area is 47.78 

 
Notice that the output from the first two assignment statements is suppressed by putting 

semicolons at the end. That is frequently done in scripts, so that the exact format of what 

is displayed by the program is controlled by the fprintf functions. 

 
Introduction to File Input/Output (Load and Sav e) 

In many cases, input to a script will come from a data file that has been created by 

another source. Also, it is useful to be able to store output in an external file that can be 

manipulated and/or printed later. In this section, we will demonstrate how to read from an 

external data file, and also how to write to an external data file. There are basically three 

different operations, or modes, on files. Files can be: 

 
Read from 

Written to 

Appended to 

Writing to a file means writing to a file, from the beginning. Appending to a file is also 

writing, but starting at the end of the file rather than the beginning. In other words, 

appending to a file means adding to what was already there. There are many different file 

types, which use different filename extensions. For now, we will keep it simple and just 

work with .dat or .txt files when working with data or text files. There are several 

methods for reading from files and writing to files; for now we will use the load function 

to read and the save function to write to files. 

 
Writing Data to a File 

The save function can be used to write data from a matrix to a data file, or to append to a 

data file. The format is: 

 
save filename matrixvariablename –ascii. 

 
 

The -ascii qualifier is used when creating a text or data file. The following creates a 

matrix and then saves the values of the matrix variable to a data file called testfile.dat: 

 
>> mymat = rand(2,3) 

 

mymat = 
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0.4565 0.821 0.6154 

 4  

0.0185 0.444 0.7919 
 7  

>> save testfile.dat mymat –ascii 
 

This creates a file called testfile.dat that stores the numbers 

0.4565 0.821 0.6154 

 4  

0.0185 0.444 0.7919 
 7  

The type command can be used to display the contents of the file; notice that scientific 

notation is used: 

 
>> type testfile.dat 

4.5646767e–001 8.2140716e–001 6.1543235e–001 

1.8503643e–002 4.4470336e–001 7.9193704e–001 

 
Note: If the file already exists, the save function will overwrite it; save always begins 

writing from the beginning of a file. 

 
Appending Data to a Data File 

Once a text file exists, data can be appended to it. The format is the same as previously, 

with the addition of the qualifier -append. For example, the following creates a new 

random matrix and appends it to the file just created: 

 
>> mymat = rand(3,3) 

 

mymat = 

0.9218 0.4057 0.4103 

0.7382 0.9355 0.8936 

0.1763 0.9169 0.0579 

>> save testfile.dat mymat –ascii –append 
 

This results in the file testfile.dat containing 

0.4565 0.821 0.6154 

 4  

0.0185 0.444 0.7919 

 7  

0.9218 0.405 0.4103 
 7  
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0.7382 0.935 0.8936 

 5  

0.1763 0.916 0.0579 
 9  

Note: Although technically any size matrix could be appended to this data file, in order to 

be able to read it back into a matrix later there would have to be the same number of 

values on every row. 

 
Reading from a File 

Once a file has been created (as previously), it can be read into a matrix variable. If the 

file is a data file, the load function will read from the file filename.ext (e.g., the extension 

might be .dat) and create a matrix with the same name as the file. For example, if the data 

file testfile.dat had been created as shown in the previous section, this would read from it: 

>> clear 
 

>> load testfile.dat 
 

>> who 
 

Your variables are: 

testfile 

>> testfile 
 

testfile =  

0.4565 0.821 0.6154 

 4  

0.0185 0.444 0.7919 

 7  

0.9218 0.405 0.4103 

 7  

0.7382 0.935 0.8936 

 5  

0.1763 0.916 0.0579 
 9  

Note: The load command works only if there are the same number of values in 

each line, so that the data can be stored in a matrix, and the save command only 

writes from a matrix to a file. If this is not the case, lower-level file I/O functions 

must be used
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OPERATORS 

 Arithmetic Operations

Addition, subtraction, multiplication, division, power, rounding 

 Relational Operations

Value comparisons 

 Logical Operations

True or false (Boolean) conditions 

 Set Operations

Unions, intersection, set membership 

 Bit-Wise Operations

Set, shift, or compare specific bit fields 

 
ARITHMETIC OPERATIONS 

 
 

Operator Purpose Description 

+ Addition A+B adds A and B. 

+ Unary plus +A returns A. 

- Subtraction A-B subtracts B from A 

- Unary minus -A negates the elements of A. 

* Matrix multiplication C = A*B is the linear algebraic product of the 

matrices A and B.   The   number    of    columns 
of A must equal the number of rows of B. 

\ Matrix left division x = A\B is the solution to the equation Ax = B. 
Matrices A and B must have the same number of 

rows. 

/ Matrix right division x = B/A is the solution to the equation xA = B. 
Matrices A and B must have the same number of 

columns.  In  terms  of  the  left  division   

operator, B/A = (A'\B')'. 

^ Matrix power A^B is A to the power B, if B is a scalar. For other 

values of B, the calculation involves eigen values 

and eigenvectors. 

' Complex 

transpose 

conjugate A' is the linear algebraic transpose of A. For 

complex matrices, this is the complex conjugate 

transpose. 

.^ Element-wise power A.^B is the 

the B(i,j) power. 

matrix with elements A(i,j) to 

./ Right array division A./B is the matrix with elements A(i,j)/B(i,j). 

.\ Left array division A.\B is the matrix with elements B(i,j)/A(i,j). 



73 
 

.' Array transpose A.' is the array transpose of A. For complex 

matrices, this does not involve conjugation. 

 

 

RELATIONAL OPERATORS Conditions in if statements use expressions that are conceptually, 

or logically, either true or false. These expressions are called relational expressions, or 

sometimes Boolean or logical expressions. These expressions can use both relational operators, 

which relate two expressions of compatible types, and logical operators, which operate on 

logical operands. 
 

Symbol Role 

== Equal to 

~= Not equal to 

> Greater than 

>= Greater than or equal to 

< Less than 

<= Less than or equal to 

All concepts should be familiar, although the operators used may be different from those used in 

other programming languages, or in mathematics classes. In particular, it is important to note that 

the operator for equality is two consecutive equal signs, not a single equal sign (recall that the 

single equal sign is the assignment operator). For numerical operands, the use of these operators 

is straightforward. 

For example, 

3 < 5 means ―3 less than 5,‖ 
 

which is conceptually a true expression. However, in MATLAB, as in many programming 

languages, logical true is represented by the integer 1, and logical false is represented by the 

integer 0. So, the expression 

 

3 < 5 actually has the value 1 in MATLAB. 

Displaying the result of expressions like this in the Command Window demonstrates the values of 

the expressions. 

 

>> 3 < 5 

ans = 1 

>> 9 < 2 

ans = 0 

However, in the Workspace Window, the value shown for the result of these expressions would 

be true or false. The type of the result is logical. 

Mathematical operations could be performed on the resulting 1 or 0.
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>> ans + 3 

ans = 4 

Comparing characters, for example ‗a‗ < ‗c‗, is also possible. Characters are compared using 

their ASCII equivalent values. So, ‗a‗ < ‗câ•›‗ is conceptually a true expression, because the 

character ‗a‗ comes before the character ‗c‗. 

 

>> ‘a’ < ‘c’ 
 

ans = 1 

 

LOGICAL OPERATORS 
 
 

Symbol Role 

& Logical AND 

| Logical OR 

&& Logical AND (with short-circuiting) 

|| Logical OR (with short-circuiting) 

~ Logical NOT 

 

All logical operators operate on logical or Boolean operands. The not operator is a unary 

operator; the others are binary. The not operator will take a Boolean expression, which is 

conceptually true or false, and give the opposite value. For example, (3 < 5) is conceptually false 

since (3 < 5) is true. The or operator has two Boolean expressions as operands. The result is true 

if either or both of the operands are true, and false only if both operands are false. The and 

operator also operates on two Boolean operands. The result of an and expression is true only if 

both operands are true; it is false if either or both are false. In addition to these logical operators, 

MATLAB also has a function xor, which is the exclusive or function. It returns logical true if 

one (and only one) of the arguments is true. For example, in the following only the first argument 

is true, 

 

so the result is true: 

>> xor(3 < 5, ‘a’ > ‘c’) 

ans = 1In this example, both arguments are true so the result is false: 

>> xor(3 < 5, ‘a’ < ‘c’) 

ans = 0 

Given the logical values of true and false in variables x and y, the truth table shows how the 

logical operators work for all combinations. Note that the logical operators are commutative  

 
SPECIAL CHARACTERS 
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Symbol Role 

, Use commas to separate row elements in an array, array 

subscripts, function input and output arguments, and commands 

entered on the same line. 

: Use the colon operator to create regularly spaced vectors, index 

into arrays, and define the bounds of a for loop. 

; Use semicolons to separate rows in an array creation command, 

or to suppress the output display of a line of code. 

( ) Use parentheses to specify precedence of operations, enclose 

function input arguments, and index into an array 

[] Square brackets enable array construction and concatenation, 

creation of empty matrices, deletion of array elements, and 

capturing values returned by a function. 

{} Use curly braces to construct a cell array, or to access the 

contents of a particular cell in a cell array. 

% The percent sign is most commonly used to indicate 

nonexecutable text within the body of a program. This text is 

normally used to include comments in your code. 

‗ ‘ Use single quotes to create character vectors that have class char 

 

OPERATOR PRECEDENCE RULES 

 
1. Parentheses () 

2. Transpose (.'), power (.^), complex conjugate transpose ('), matrix power (^) 

3. Power with unary minus (.^-), unary plus (.^+), or logical negation (.^~) as well as matrix power 

with unary minus (^-), unary plus (^+), or logical negation (^~). 

4. Unary plus (+), unary minus (-), logical negation (~) 

5. Multiplication (.*), right division (./), left division (.\), matrix multiplication (*), matrix right 

division (/), matrix left division (\) 

6. Addition (+), subtraction (-) 

7. Colon operator (:) 

8. Less than (<), less than or equal to (<=), greater than (>), greater than or equal to (>=), equal 

to (==), not equal to (~=) 

9. Element-wise AND (&) 

10. Element-wise OR (|) 

11. Short-circuit AND (&&) 

12. Short-circuit OR (||) 
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BRANCHES & LOOPS 

 

BRANCHES are MATLAB statements that permit us to select and execute specific section of code called blocks, 

while skipping other sections of code. 

 if 

 switch 

 try-catch 

LOOPS are MATLAB construct that allow us to execute a sequence of statements more than once 

 for 

 while 

 
The If Statement 

 

The if statement chooses whether or not another statement, or group of statements, is executed. 

The general form of the if statement is: 

if condition 

action 
end 

 

A condition is a relational expression that is conceptually, or logically, either true or false. The 

action is a statement, or a group of statements, that will be executed if the condition is true. 

When the if statement is executed, first the condition is evaluated. If the value of the condition is 

conceptually true, the action will be executed, and if not, the action will not be executed. The 

action can be any number of statements until the reserved word end; the action is naturally 

bracketed by the reserved words if and end. (Note: This is different from the end that is used as 

an index into a vector or matrix.) 

 

For example, the following if statement checks to see whether the value of a variable is negative. 

If it is, the value is changed to a positive number by using the absolute value function; otherwise 

nothing is changed. 

 

if num < 0 

num = abs(num) 

end 
 

If statements can be entered in the Command Window, although they generally make more sense 

in scripts or functions. In the Command Window, the if line would be entered, then the Enter 

key, then the action, the Enter key, and finally end and Enter; the results will immediately 

follow. For example, the previous if statement is shown twice here. Notice that the output from 

the assignment is not suppressed, so the result of theÂ€action will be shown if the action is 

executed. The first time the value of the variable is negative so the action is executed and the 

variable is modified, but in the second case the variable is positive so the action is skipped. 

 

>> num = −4; 

>> if num < 0 
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num = abs(num) 

end 

num = 4 

 

>> num = 5; 
 

>> if num < 0 

num = abs(num) 
 

end 

>> 

This may be used, for example, to make sure that the square root function is not used on a 

negative number. The following script prompts the user for a number, and prints the square root. 

If the user enters a negative number, the if statement changes it to positive before taking the 

square root. 

 

sqrtifexamp.m 

% Prompt the user for a number and print its 

sqrt num = input(‗Please enter a number: ‗); 

% If the user entered a negative number, 

change it 

if num < 0 
num = abs(num); 
end 

fprintf(‗The sqrt of %.1f is %.1f\n‗,num,sqrt(num)) 

 
 

Here are two examples of running this script: 

>> sqrtifexamp 

Please enter a number: −4.2 

The sqrt of 4.2 is 2.0 

>> sqrtifexamp 

Please enter a number: 1.44 

The sqrt of 1.4 is 1.2 

 

In this case, the action of the if statement was a single assignment statement. The action can be 

any number of valid statements. For example, we may wish to print a note to the user to say that 

the number entered was being changed. 

 

sqrtifexampii.m 

% Prompt the user for a number and print its sqrt num = 

input(‗Please enter a number: ‗); 
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% If the user entered a negative number, tell 

% the user and change it 

if num < 0 

disp(‗OK, we‗‗ll use the absolute value‗) 

num = abs(num); 

end 

fprintf(‗The sqrt of %.1f is %.1f\n‗,num,sqrt(num)) 
 

>> sqrtifexampii 
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Please enter a number: −25 OK, we‗ll use the 

absolute value 

The sqrt of 25.0 is 5.0 

Notice the use of two single quotes in the disp statement in order to print one single quote 

 
The If-Else statement 

The if statement chooses whether an action is executed or not. Choosing between two actions, or 

choosing from several actions, is accomplished using if-else, nested if, and switch statements. 

The if-else statement is used to choose between two statements, or sets ofstatements. 

 

The general form is: 

if condition 

action1 

else 

action2 

end 

 

First, the condition is evaluated. If it is conceptually true, then the set of statements designated as 

action1 is executed, and that is it for the if-else statement. If instead the condition is  

conceptually false, the second set of statements designated as action2 is executed, and that‗s it. 

The first set of statements is called the action of the if clause; it is what will be executed if the 

expression is true. The second set of statements is called the action of the else clause; it is what 

will be executed if the expression is false. One of these actions, and only one, will be executed— 

which one depends on the value of the condition. For example, to determine and print whether or 

not a random number in the range from 0 to 1 is less than 0.5, an if-else statement could be used: 

 

if rand < 0.5 
disp(‗It was less than .5!‗) 

else 

disp(‗It was not less than .5!‗) 
end 

 

One application of an if-else statement is to check for errors in the inputs to a script. For 

example, an earlier script prompted the user for a radius, and then used that to calculate the area 

of a circle. However, it did not check to make sure that the radius was valid (e.g., a positive 

number). Here is a modified script that checks the radius: 

 

checkradius.m 

% This script calculates the area of a circle 

% It error-checks the user‗s radius 
radius = input(‗Please enter the radius: ‗); 

if radius <= 0 

fprintf(‗Sorry; %.2f is not a valid radius\n‗,radius) 

else 

 

 

end
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Examples of running this script when the user enters invalid and then valid radii are shown here: 

>> checkradius 

Please enter the radius: −4 

Sorry; −4.00 is not a valid radius 

>> checkradius 

Please enter the radius: 5.5 

For a circle with a radius of 5.50, the area is 95.03 
 

The if-else statement in this example chooses between two actions: printing an error message, or 

actually using the radius to calculate the area, and then printing out the result. Notice that the 

action of the if clause is a single statement, whereas the action of the else clause is a group of 

three statements. 

 

Nested If-Else Statements 

The if-else statement is used to choose between two statements. In order to choose from more 

than two statements, the if-else statements can be nested, one inside of another. For example, 

consider implementing the following continuous 

 

mathematical function y = f(x): 

y = 1 for x < −1 

y = x2 for −1 ≤ x ≤ 2 

y = 4 for x > 2 

 

The value of y is based on the value of x, which could be in one of three possible ranges. Choosing 

which range could be accomplished with three separate if statements, as follows: 

 

if x < −1 

end 
y = 1; 

if x > = −1 && x < = 2 
y = x^2; 

end 
if x > 2 

end y= 4; 

Since the three possibilities are mutually exclusive, the value of y can be determined by using 

three separate if statements. However, this is not very efficient code: all three Boolean 

expressions must be evaluated, regardless of the range in which x falls. For example, if x is less 

than –1, the first expression is true and 1 would be assigned to y. However, the two expressions 

in the next two if statements are still evaluated. Instead of writing it this way, the expressions can 

be nested so that the statement ends when an expression is found to be true
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% If we are here, x must be > = −1 
% Use an if-else statement to choose 
% between the two remaining ranges 

if x > = −1 && x < = 2 

y = x^2; 

else 
% No need to check 
% If we are here, x must be > 2 
y = 4; 
end 
end 

 

By using a nested if-else to choose from among the three possibilities, not all conditions must be 

tested as they were in the previous example. In this case, if x is less than –1, the statement to 

assign 1 to y is executed, and the if-else statement is completed so no other conditions are tested. 

If, however, x is not less than –1, then the else clause is executed. If the else clause is executed, 

then we already know that x is greater than or equal to –1 so that part does not need to be tested. 

Instead, there are only two remaining possibilities: either x is less than or equal to 2, or it is 

greater than 2. An if-else statement is used to choose between those two possibilities. So, the 

action of the else clause was another if-else statement. Although it is long, this is one if-else 

statement, a nested if-else statement. The actions are indented to show the structure. Nesting if- 

else statements in this way can be used to choose from among three, four, five, six, or more 

options—the possibilities are practically endless! This is actually an example of a particular kind 

of nested if-else called a cascading if-else statement. In this type of nested if-else statement, the 

conditions and actions cascade in a stair-like pattern. 

For example, if there are n choices (where n > 3 in this example), the following general form 

would be used: if condition1 

Action1 
elseif condition2 

action2 

elseif condition3 

action3 

% etc: there can be many of 

these else 

actionn % the nth action 

end 

 
The actions of the if, elseif, and else clauses are naturally bracketed by the reserved words if, 

elseif, else, and end. For example, the previous example could be written using the elseif clause 

rather than nesting if- else statements: 

 
So, there are three ways of accomplishing this task: using three separate if statements, using 
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of y: 

 

Another example demonstrates choosing from more than just a few options. The following 

function receives an integer quiz grade, which should be in the range from 0 to 10. The program 

then returns a corresponding letter grade, according to the following scheme: a 9 or 10 is an ‗A‗, an 

8 is a ‗B‗, a 7 is a ‗C‗, a 6 is a ‗D‗, and anything below that is an ‗F‗. Since the possibilities are 

mutually exclusive, we could implement the grading scheme using separate if statements. 

However, it is more efficient to have one if- else statement with multiple elseif clauses. Also, the 

function returns the value ‗X‗ if the quiz grade is not valid. The function does assume that the 

input is an integer. 

 
letgrade.m 

function grade = letgrade(quiz) 

% This function returns the letter grade corresponding 

% to the integer quiz grade argument 

% First, error-check 

if quiz < 0 || quiz > 10 

grade = ‗X‗; 

% If here, it is valid so figure out the 

% corresponding letter grade 

elseif quiz == 9 || quiz == 10 

grade = ‗A‗; 

elseif quiz == 8 

grade =‗B‗; 

elseif quiz == 7 

grade = ‗C‗; 

elseif quiz == 6 

grade = ‗D‗; 

else 

end 

 
grade = ‗F‗; 

Here are three examples of calling this function: 

>> quiz = 8; 
 

>> lettergrade = letgrade(quiz) 
 

lettergrade 

= B 

>> quiz = 4; 
 

>> letgrade(quiz) 
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>> quiz = 22; 
 

>> lg = letgrade(quiz) 
 

lg = X 

 
In the part of this if statement that chooses the appropriate letter grade to return, all the Boolean 

expressions are testing the value of the variable quiz to see if it is equal to several possible 

values, in sequence (first 9 or 10, then 8, then 7, etc.). This part can be replaced by a switch 

statement. 

 
The Switch Statement 

A switch statement can often be used in place of a nested if-else or an if statement with many 

elseif clauses. Switch statements are used when an expression is tested to see whether it is equal 

to one of several possible values. The general form of the switch statement is: 

 
switch 

switch_expression 

case caseexp1 

action1 

case caseexp2 

action2 

case caseexp3 

action3 

% etc: there can be many of 

these otherwise 

actionn 

end 

 
The switch statement starts with the reserved word switch, and ends with the reserved word end. 

The switch_expression is compared, in sequence, to the case expressions (caseexp1, caseexp2, 

etc.). If the value of the switch_expression matches caseexp1, for example, then action1 is 

executed and the switch statement ends. If the value matches caseexp3, then action3 is executed, 

and in general if the value matches caseexpi, where i can be any integer from 1 to n, then actioni 

is executed. If the value of the switch_expression does not match any of the case expressions, the 

action after the word otherwise is executed. For the previous example, the switch statement can 

be used as follows: 
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switchletgrade.m 

function grade = switchletgrade(quiz) 

% This function returns the letter grade corresponding 

% to the integer quiz grade argument using switch 
% First, error-check if quiz < 0 || quiz > 10 

grade = ‗X‗; 
else  

% If here, it is valid so figure out the 
% corresponding letter grade using a 

switch switch quiz 

case 10 
 

case 9 

 

case 8 

grade=‗B‗; 

case 7 

grade= ‗A‗; 

case 6 

grade= 'A‗; 

grade = ‗D‗; 

otherwise 
grade = ‗F‗; 

end 

end 

 

Here are two examples of calling this function: 

>> quiz = 22; 

>> lg = switchletgrade(quiz) 

lg = X 

>> quiz = 9; 

>> switchletgrade(quiz) 

ans 

= A 

 

Note that it is assumed that the user will enter an integer value. If the user does not, either an 

error message will be printed or an incorrect result will be returned. Since the same action of 

printing ‗A‗ is desired for more than one case, these can be combined as follows: 

switch quiz 

case {10,9} 

grade = ‗A‗; 

case 8 

 

% etc. 

 

grade = ‗B‗; 
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(The curly braces around the case expressions 10 and 9 are necessary.) In this example, we error- 

checked first using an if-else statement, and then if the grade was in the valid range, used a 

switch statement to find the corresponding letter grade. 

 
Sometimes the otherwise clause is used instead for the error message. For example, if 

the user is supposed to enter only a 1, 3, or 5, the script might be organized as follows: 

 
switcherror.m 
% Example of otherwise for error message choice = 

input(‗Enter a 1, 3, or 5: ‗); 

switch choice 

case 1 
 

case 3 

 

case 5 

disp(‗It‗‗s a one!!‗) 
 

disp(‗It‗‗s a three!!‗) 

 

disp(‗It‗‗s a five!!‗) 

 

end 

otherwise 

disp(‗Follow directions next time!!‗) 
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In this case, actions are taken if the user correctly enters one of the valid options. If the user does 

not, the otherwise clause handles printing an error message. Note the use of two single quotes 

within the string to print one. 

 

>> switcherror 
 

Enter a 1, 3, or 5: 4 

Follow directions next time!! 
 

The for Loop 

The for statement, or the for loop, is used when it is necessary to repeat statement(s) in a script 

or function, and when it is known ahead of time how many times the statements will be repeated. 

The statements that are repeated are called the action of the loop. For example, it may be known 

that the action of the loop will be repeated five times. The terminology used is that we iterate 

through the action of the loop five times. The variable that is used to iterate through values is 

called a loop variable, or an iterator variable. For example, the variable might iterate through the 

integers 1 through 5 (e.g., 1, 2, 3, 4, and then 5). Although variable names in general should be 

mnemonic, it is common for an iterator variable to be given the name i (and if more than one 

iterator variable is needed, i, j, k, l, etc.) This is historical, and is because of the way integer 

variables were named in Fortran. However, in MATLAB both i and j are built-in values for -1 , 

so using either as a loop variable will override that value. If that is not an issue, then it is 

acceptable to use i as a loop variable. The general form of the for loop is: 

 
for loopvar = range 

action 

end 

 

where loopvar is the loop variable, range is the range of values through which the loop variable is 

to iterate, and the action of the loop consists of all statements up to the end. The range can be 

specified using any vector, but normally the easiest way to specify the range of values is to use the 

colon operator. As an example, to print a column of numbers from 1 to 5: 

 

for i = 1:5 

fprintf(‗%d\n‗,i) 

end 

 

This loop could be entered in the Command Window, although like if and switch statements, 

loops will make more sense in scripts and functions. In the Command Window, the results would 

appear after the for loop: 

 

>> for i = 1:5 

fprintf(‘%d\n’,i) 

end  
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4 

5 
 

What the for statement accomplished was to print the value of i and then the newline character 

for every value of i, from 1 through 5 in steps of 1. The first thing that happens is that i is 

initialized to have the value 

1. Then, the action of the loop is executed, which is the fprintf statement that prints the value of 

i (1), and then the newline character to move the cursor down. Then, i is incremented to have the 

value of 2. Next, the action of the loop is executed, which prints 2 and the newline. Then, i is 

incremented to 3 and that is printed, then i is incremented to 4 and that is printed, and then  

finally i is incremented to 5 and that is printed. The final value of i is 5; this value can be used 

once the loop has finished. 

 
Finding Sums and Products 

A very common application of a for loop is to calculate sums and products. For example, instead 

of just printing the integers 1 through 5, we could calculate the sum of the integers 1 through 5 

(or, in general, 1 through n, where n is any positive integer). Basically, we want to implement or 

calculate the sum 1 + 2 + 3 

+ … + n. In order to do this, we need to add each value to a running sum. A running sum is a 

sum that will keep changing; we keep adding to it. First the sum has to be initialized to 0, then in 

this case it will be 1 (0 + 1), then 3 (0 + 1 + 2), then 6 (0 + 1 + 2 + 3), and so forth. In a function 

to calculate the sum, we need a loop or iterator variable i, as before, and also a variable to store 

the running sum. In this case we will use the output argument runsum as the running sum. Every 

time through the loop, the next value of i is added to the value of runsum. This function will 

return the end result, which is the sum of all integers from 1 to the input argument n stored in the 

output argument runsum. 

 

sum_1_to_n.m 

function runsum = sum_1_to_n(n) 

% This function returns the sum of 
% integers from 1 to 

n runsum = 0; 

for i = 1:n 

runsum = runsum + i; 

end 
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As an example, if 5 is passed to be the value of the input argument n, the function will calculate 

and return 1 + 2 + 3 + 4 + 5, or 15: 

>> sum_1_to_n(5) 

ans 

= 15 

Note that the output was suppressed when initializing the sum to 0 and when adding to it during 

the loop. Another very common application of a for loop is to find a running product. For 

example, instead of finding the sum of the integers 1 through n, we could find the product of the 

integers 1 through n. Basically, we want to implement or calculate the product 1 * 2 * 3 * 4 *… 

* n, which is called the factorial of n, written n!. 

 

For Loops that Do Not Use the Iterator Variable in the Action 

In all the examples that we have seen so far, the value of the loop variable has been used in some 

way in the action of the for loop: we have printed the value of i, or added it to a sum, or 

multiplied it by a running product, or used it as an index into a vector. It is not always necessary 

to actually use the value of the loop variable, however. Sometimes the variable is simply used to 

iterate, or repeat, a statement a specified number of times. For example, 

 
for i = 1:3 

fprintf(‗I will not chew gum\n‗) 

end 

 

produces the output: 

I will not chew gum 

I will not chew gum 

I will not chew gum 

 

The variable i is necessary to repeat the action three times, even though the value of i is not used 

in the action of the loop. 

 

Nested for Loops 
 

The action of a loop can be any valid statement(s). When the action of a loop is another loop, 

this is called a nested loop. As an example, a nested for loop will be demonstrated in a script 

that will print a box of *‗s. Variables in the script will specify how many rows and columns to 

print. For example, if rows has the value 3, and columns has the value 5, the 

 

output would be: 

 

***** 

***** 

***** 
Since lines of output are controlled by printing the newline character, the basic 

algorithm is: For every row of output, 

Print the required number of *‗s 

Move the cursor down to the next line (print the ‗\n‗) 
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printstars.m 

% Prints a box of stars 
% How many will be specified by 2 variables 

% for the number of rows and 

columns rows = 3; 

columns = 5; 
% loop over the 

rows for i=1:rows 

% for every row loop to print *‗s and then one \n for j=1:columns 

fprintf(‗*‗) 

end 

fprintf(‗\n‗) 
end 

 

Running the script displays the output: 

>> printstars 

***** 

***** 

***** 
 

The variable rows specifies the number of rows to print, and the variable columns specifies how 

many *‗s to print in each row. There are two loop variables: i is the loop variable for the rows, 

and j is the loop variable for the columns. Since the number of rows and columns are known 

(given by the variables rows and columns), for loops are used. There is one for loop to loop over 

the rows, and another to print the required number of *‗s. The values of the loop variables are not 

used within the loops, but are used simply to iterate the correct number of times. The first for 

loop specifies that the action will be repeated rows times. The action of this loop is to print *‗s 

and then the newline character. Specifically, the action is to loop to print columns *‗s across on 

one line. Then, the newline character is printed after all five stars to move the cursor down for 

the next line. The first for loop is called the outer loop; the second for loop is called the inner 

loop. So, the outer loop is over the rows, and the inner loop is over the columns. The outer loop 

must be over the rows because the program is printing a certain number of rows of output. For 

each row, a loop is necessary to print the required number of *‗s; this is the inner for loop. When 

this script is executed, first the outer loop variable i is initialized to 1. Then, the action is 

executed. The action consists of the inner loop, and then printing the newline character. So, while 

the outer loop variable has the value 1, the inner loop variable j iterates through all its values. 

Since the value of columns is 5, the inner loop will print a * five times. Then, the newline 

character is printed and the outer loop variable i is incremented to 2. The action of the outer loop 

is then executed again, meaning the inner loop will print five *‗s, and then the newline character 

will be printed. This continues, and in all, the action of the outer loop will be executed rows 

times. Notice the action of the outer loop consists of two statements (the for loop and an fprintf 

statement). The action of the inner loop, however, is only a single statement. The fprintf 

statement to print the newline character must be separate from the other fprintf statement that 
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prints the *. If we simply had fprintf(‗*\n‗) as the action of the inner loop, this would print a long 

column of 15 *‗s, not a box In these examples, the loop variables were used just to specify the 

number of times the action is to be repeated. These same loops could be used instead to produce 
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a multiplication table by multiplying the values of the loop variables. The following function 

multtable calculates and returns a matrix that is a multiplication table. Two arguments are passed 

to the function, which are the number of rows and columns for this matrix 

 
multtable.m 

function outmat = multtable (rows, columns) 

% Creates a matrix which is a multiplication table 

% Preallocate the matrix 

outmat = zeros(rows,columns); 

for i = 1:rows 

for j = 1:columns 

outmat(i,j) = i * j; 

end 

end 

 

In the following example, the matrix has three rows and five columns: 

>> multtable(3,5) 

ans = 
1 2 3 4 5 
2 4 6 8 10 

3 6 9 12 15 

 

Notice that this is a function that returns a matrix; it does not print anything. It preallocates the 

matrix to zeros, and then replaces each element. Since the number of rows and columns are 

known, for loops are used. The outer loop loops over the rows, and the inner loop loops over the 

columns. The action of the nested loop calculates i * j for all values of i and j. First, when i has 

the value 1, j iterates through the values 1 through 5, so first we are calculating 1 * 1, then 1 * 2, 

then 1 * 3, then 1 * 4, and finally 1 * 5. These are the values in the first row (first in element 

(1,1), then (1,2), then (1,3), then (1,4), and finally (1,5)). Then, when i has the value 2, the 

elements in the second row of the output matrix are calculated, as j again iterates through the 

values from 1 through 5. Finally, when i has the value 3, the values in the third row are 

calculated (3 * 1, 3 * 2, 3 * 3, 3 * 4, and 3 * 5). This function could be used in a script that 

prompts the user for the number of rows and columns, calls this function to return a 

multiplication table, and writes the resulting matrix to a file: 

 

createmulttab.m 

% Prompt the user for rows and columns and 
% create a multiplication table to store in 

% a file mymulttable.dat 
num_rows = input(‗Enter the number of rows: ‗); 

num_cols = input(‗Enter the number of columns: ‗); 

multmatrix = multtable(num_rows, num_cols); 

save mymulttable.dat multmatrix –ascii 

 

Here is an example of running this script, and then loading from the file into a matrix in order to 

verify that the file was created:
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Enter the number of rows: 6 

Enter the number of 

columns: 4 

>> load mymulttable.dat 

>> mymulttable 

mymulttable = 
1 2 3 4 
2 4 6 8 

3 6 9 12 

4 8 12 16 

5 10 15 20 

6 12 18 24 

 
Logical Vectors 

The relational operators can also be used with vectors and matrices. For example, let‗s say that 

there is a vector, and we want to compare every element in the vector to 5 to determine 

whether it is greater than 5 or not. The result would be a vector (with the same length as the 

original) with logical true or false values. Assume a variable vec as shown here. 

 

>> vec = [5 9 3 4 6 11]; 

In MATLAB, this can be accomplished automatically by simply using the relational operator >. 

>> isg = vec > 5 

isg = 
0 1         0 0         1 1 

Notice that this creates a vector consisting of all logical true or false values. Although this is a 

vector of ones and zeros, and numerical operations can be done on the vector isg, its type is 

logical rather than double. 

>> doubres = isg + 5 

ans = 

5 6 5 5 6 6 
>> whos 

Name Size Bytes Class 

doubres 1x6 4 8 double array 

isg 1x6 6 logical array 

vec 1x6 48 double array 

To determine how many of the elements in the vector vec were greater than 5, the sum 

function could be used on the resulting vector isg: 

 
>> 

sum(isg) 

ans = 

3 
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>> vec(isg) 
 

ans = 

9 6 11 
 

Because the values in the vector must be logical 1‗s and 0‗s, the following function that appears at 

first to accomplish the same operation using the programming method, actually does not. The 

function receives two input arguments: the vector, and an integer with which to compare (so it is 

somewhat more general). It loops through every element in the input vector, and stores in the result 

vector either a 1 or 0 depending on whether vec(i) > n is true or false. 

 

testvecgtn.m 

function outvec = testvecgtn(vec,n) 

% Compare each element in vec to see whether it 

% is greater than n or not 
% Preallocate the vector 

outvec = zeros(size(vec)); 

for i = 1:length(vec) 

% Each element in the output vector stores 1 or 0 

if vec(i) > n 

outvec(i) = 1; 

else 

outvec(i) = 0; 

end 

end 

 

Calling the function appears to return the same vector as simply vec > 5, and summing the result 

still works to determine how many elements were greater than 5. 

 
>> notlog = testvecgtn(vec,5) 

notlog = 

0 1 0 0 1 1 

>> sum(notlog) 

ans = 

3 

However, as before, it could not be used to index into a vector because the elements are double, not 

logical: 

 
>> vec(notlog) 

 

??? Subscript indices must either be real positive integers or logicals. 

While Loops 

The while statement is used as the conditional loop in MATLAB; it is used to repeat an action 
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while condition 

action 

end 

 

The action, which consists of any number of statement(s), is executed as long as the condition is 

true. The condition must eventually become false to avoid an infinite loop. (If this happens, Ctrl- 

C will exit the loop.) The way it works is that first the condition is evaluated. If it is logically 

true, the action is executed. So, to begin with it is just like an if statement. However, at that point 

the condition is evaluated again. If it is still true, the action is executed again. Then, the action is 

evaluated again. If it is still true, the action is executed again. Then, the action is… eventually, 

this has to stop! Eventually something in the action has to change something in the condition so 

it becomes false. As an example of a conditional loop, we will write a function that will find the 

first factorial that is greater than the input argument high. Previously, we wrote a function to 

calculate a particular factorial. For example, to calculate 5! we found the product 1 * 2 * 3 * 4 * 

5. In that case a for loop was used, since it was known that the loop would be repeated five 

times. Now, we do not know how many times the loop will be repeated. The basic algorithm is to 

have two variables, one that iterates through the values 1, 2, 3, and so on, and one that stores the 

factorial of the iterator at each step. We start with 1, and 1 factorial, which is 1. Then, we check 

the factorial. If it is not greater than high, the iterator variable will then increment to 2, and find 

its factorial (2). If this is not greater than high, the iterator will then increment to 3, and the 

function will find its factorial (6). This continues until we get to the first factorial that is greater 

than high. So, the process of incrementing a variable and finding its factorial is repeated until we 

get to the first value greater than high. This is implemented using a while loop: 

 

factgthigh.m 

function facgt = factgthigh(high) 
% Finds the first factorial > 

high i=0; 

fac=1; 
while fac <= high 

i=i+1; 

fac = fac * i; 
end 

facgt = fac; 

 

Here is an example of calling the function, passing 5000 for the value of the input argument high. 

>> factgthigh(5000) 

ans 

= 

5040 

 

The iterator variable i is initialized to 0, and the running product variable fac, which will store 

the factorial of each value of i, is initialized to 1. The first time the while loop is executed, the 

condition is conceptually true: 1 is less than or equal to 5000. So, the action of the loop is 
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executed, which is to increment i to 1 and fac to 1 (1 * 1). After the execution of the action of the 

loop, the condition is evaluated again. Since it will still be true, the action is executed: i is 

incremented to 2, and fac will get the value 2 (1 * 2). The value 2 is still <= 5000, so the action 

 

will be executed again: i will be incremented to 3, and fac will get the value 6 (2 * 3). This 

continues until the first value of fac is found that is greater than 5000. As soon as fac gets to this 

value, the condition will be false and the while loop will end. At that point the factorial is 

assigned to the output argument, which returns the value. The reason that i is initialized to 0 

rather than 1 is that the first time the loop action is executed, i becomes 1 and fac becomes 1 so 

we have 1 and 1!, which is 1. Notice that the output of all assignment statements is suppressed in 

the function. 

 
Multiple Conditions in a While Loop 

In the previous section, we wrote a function myany that imitated the built-in any function by 

returning logical true if any value in the input vector was logical true, and logical false otherwise. 

The function was inefficient because it looped through all the elements in the input vector, even 

though once one logical true value is found it is no longer necessary to examine any other 

elements. A while loop will improve on this. Instead of looping through all the elements, what 

we really want to do is to loop until either a logical true value is found, or until we‗ve  gone 

through the entire vector. Thus, we have two parts to the condition in the while loop. In the 

following function, we initialize the output argument to logical false, and an iterator variable i to 

The action of the loop is to examine an element from the input vector: if it is logical true, we 

change the output argument to be logical true. Also in the action the iterator variable is 

incremented. The action of the loop is continued as long as the index has not yet reached the end 

of the vector, and as long as the output argument is still logical false. 

 

myanywhile.m 

function logresult = myanywhile(vec) 

% Simulates the built-in function any 
% Uses a while loop so that the action halts 

% as soon as any true value is 

found logresult = logical(0); 

i = 1; 
while i <= length(vec) && logresult == 0 

if vec(i) = 0 

logresult = logical(1); 

end 

i = i + 1; 
end 

 

The output produced by this function is the same as the myany function, but it is more efficient 

because now as soon as the output argument is set to logical true, the loop ends. 
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Debugging Techniques 

Any error in a computer program is called a bug. This term is thought to date back to the 1940s, 

when a problem with an early computer was found to have been caused by a moth in the 

computer‗s circuitry! The process of finding errors in a program, and correcting them, is still 

called debugging. 

 

Types of Errors 

There are several different kinds of errors that can occur in a program, which fall into the 

categories of syntax errors, run-time errors, and logical errors. Syntax errors are mistakes in 

using the language. Examples of syntax errors are missing a comma or a quotation mark, or 

misspelling a word. MATLAB itself will flag syntax errors and give an error message. For 

example, the following string is missing the end quote: 

 
>> mystr = ‘how are you; 

 

??? mystr = ‗how are you; 

| 

Error: A MATLAB string constant is not terminated properly. 

Another common mistake is to spell a variable name incorrectly, which MATLAB will also catch. 

 

>> value = 5; 
 

>> newvalue = valu + 3; 

??? Undefined function or variable ‘valu’. 

 

Run-time, or execution-time, errors are found when a script or function is executing. With most 

languages, an example of a run-time error would be attempting to divide by zero. However, in 

MATLAB, this will generate a warning message. Another example would be attempting to refer 

to an element in an array that does not exist. 

 
runtime_ex.m 

% This script shows an execution-time 

error vec = 3:5; 

for i = 1:4 

disp(vec(i)) 
end 

 

This script initializes a vector with three elements, but then attempts to refer to a fourth. Running it 

prints the three elements in the vector, and then an error message is generated when it attempts to 

refer to the fourth element. Notice that it gives an explanation of the error, and it gives the line 

number in the script in which the error occurred. 
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>> runtime_ex 

3 

4 

5 
??? Attempted to access vec(4); index out of bounds because 

numel(vec)=3. 

Error in ==> runtime_ex at 6 

disp(vec(i)) 

 

Logical errors are more difficult to locate, because they do not result in any error message. A 

 

logical error is a mistake in reasoning by the programmer, but it is not a mistake in the 

programming language. An example of a logical error would be dividing by 2.54 instead of 

multiplying in order to convert inches to centimeters. The results printed or returned would be 

incorrect, but this might not be obvious. All programs should be robust and should wherever 

possible anticipate potential errors, and guard against them. For example, whenever there is input 

into a program, the program should error-check and make sure that the input is in the correct 

range of values. Also, before dividing, the denominator should be checked to make sure that it is 

not zero. Despite the best precautions, there are bound to be errors in programs. 

 
Tracing 

Many times, when a program has loops and/or selection statements and is not running properly, it 

is useful in the debugging process to know exactly which statements have been executed. For 

example, here is a function that attempts to display In Middle Of Range if the argument passed to 

it is in the range from 3 to 6, and Out Of Range otherwise. 

 

testifelse.m 
function testifelse(x) 

% This function will test the 

debugger if 3 < x < 6 

disp(‗In middle of range‗) 

else 
 

disp(‗Out of range‗) 

end 

 

However, it seems to print In Middle Of Range for all values of x: 

>> testifelse(4) 

In middle of range 

>> testifelse(7) 

In middle of range 

>> testifelse(–2) 
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In middle of range 

 

One way of following the flow of the function, or tracing it, is to use the echo function. The 

echo function, which is a toggle, will display every statement as it is executed as well as results 

from the code. For scripts, just echo can be typed, but for functions, the name of the function 

must be specified, for example, echo function name on/off 

>> echo testifelse on 
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Editor/Debugger 
 

MATLAB has many useful functions for debugging, and debugging can also be done 

through its editor, called the Editor/Debugger. Typing help debug at the prompt in the 

Command Window will show some of the debugging functions. Also, in the Help 

Browser, clicking the Search tab and then typing debugging will display basic 

information about the debugging processes. It can be seen in the previous example that 

the action of the if clause was executed and it printed In Middle Of Range, but just from 

that it cannot be determined why this happened. There are several ways to set 

breakpoints in a file (script or function) so that the variables or expressions can be 

examined. These can be done from the Editor/Debugger, or commands can be typed from 

the Command Window. For example, the following dbstop command will set a 

breakpoint in the fifth line of this function (which is the action of the if clause), which 

allows us to type variable names and/or expressions to examine their values at that point 

in the execution. The function dbcont can be used to continue the execution, and dbquit 

can be used to quit the debug mode. Notice that the prompt becomes K>> in  debug 

mode. 

 

>> dbstop testifelse 5 

>> testifelse(–2) 

5 disp(‗In middle of range‗) 

K>> x 

x = 

–2 

K>> 3 < x 

ans = 

0 

K>> 3 < x < 6 

ans = 

1 

K>> dbcont 

In middle 

of range 

end 

>> 
By typing the expressions 3 < x and then 3 < x < 6, we can determine that the expression 

3 < x will return either 0 or 1. Both 0 and 1 are less than 6, so the expression will always 

be true, regardless of the value of x! 
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Function Stubs 

Another common debugging technique, which is used when there is a script main 

program that calls many functions, is to use function stubs. A function stub is a 

placeholder, used so that the script will work even though that particular function hasn‗t 

been written yet. For example, a programmer might start with a script main program 

that consists of calls to three function that accomplish all the tasks. 

 

mainmfile.m 

% This program gets values for x and y, and 

% calculates and prints 

z [x, y] = getvals; 

z = calcz(x,y); 

printall(x,y,z) 

 

The three functions have not yet been written, however, so function stubs are put in place 

so that the script can be executed and tested. The function stubs consist of the proper 

function headers, followed by a simulation of what the function will eventually do (e.g., it 

puts arbitrary values in for the output arguments). 

 

getvals.m 

function [x, y] = getvals 

x = 33; 

y = 11; 

calcz.m 
 

function z = calcz(x,y) 

z = 2.2; 

 
printall.m 

function printall(x,y,z) 

disp(‗Something‗) 

 

Then, the functions can be written and debugged one at a time. It is much easier to write a 

working program using this method than to attempt to write everything at once—then, 

when errors occur, it is not always easy to determine where the problem
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QUESTION BANK 

 

PART A CO 

1. List the various windows  available in MATLAB? 1 

2. What is matrix? 1 

3. List 5 built in functions in MATLAB 1 

4. Develop MATLAB function for finding the determinant of a 1 

matrix? 

5. List the various relational operators in the MATLAB? 1 

6. What is the use of strcat functions 1 

7. Compare floor and ceil functions in MATLAB 1 

8. What is the use of getfield command in MATLAB? 1 

9. What is the need for celldisp command in MATLAB? 1 

10. What is the use of CHAR command in MATLAB 1 

PART B 

1. Design a string calculator in MATLAB that performs various 1 

string operations Compare and contrast the various input  

and output statements in MATLAB support your answer with 

suitable examples. 

2. Develop a cell array(a) whose size is 2*2. 1 

a(1,1)= „ India Australia Matches‟ 

a(1,2)=[50 , 60, 100] 

a(2,1)=‟Viratkohli‟ 

a(2,2)=[ ]; 

use  preallocation  and  assignment  statements .Also display 1 

60. 



102 
 

3. Develop a software to assist the mentor in maintaining the 1 

address details of each student use structure array 

4. Explain the various ways of reading and writing data into 1 

files. Illustrate with suitable examples 

5. Explain the various data types used in MATLAB .support 1 

your answer with suitable examples . 

6. Develop a function foe finding factorial of a number. Also 1 

design MATLAB codes for finding binomial co-efficient. 

7. Explain different methods of string and accessing values 1 

from matrices and vectors in MA
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UNIT II- SIMULINK 

 

Introduction-Introduction to simulink libraries-graphical user interface - selection of objects- blocks-

lines- simulationapplicationprograms-limitations- Steps for creating fuzzy logic tool box -GUI editor-

rule viewer -membership function editor rule editor. 

 

CREATING A SIMPLE MODEL IN SIMULINK 

 
You can use Simulink® to model a system and then simulate the dynamic behavior  of  that 

system. Simulink allows you to create block diagrams, where blocks you connect represent parts 

of a system, and signals represent input/output relationships between those blocks. The primary 

function of Simulink is to simulate behavior of system components over time. In its simplest  

form, this task involves keeping a clock, determining the order in which the blocks are to be 

simulated, and propagating the outputs, computed in the block diagram, to the next block. 

Consider a switch that turns on a heater. At each time step, Simulink must compute the output of 

the switch, propagate it to the heater, and then compute the heat output. 

 

Often, the effect of a component's input on its output is not instantaneous. For example, turning  

on a heater does not result in an instant change in temperature. Rather, this action provides input  

to a differential equation, and the history of the temperature (a state) is also a factor. When the 

simulation of a block diagram requires solving a differential or difference equation, Simulink 

employs memory and numerical solvers to compute the state values for the time step. 

 

Simulink handles data in three categories: 
 

Signals Block inputs and outputs, computed during simulation 

States Internal values, representing the dynamics of the block, computed during simulation 

Parameters Values that affect the behavior of a block, controlled by the user 

 
At each time step, Simulink computes new values for signals and states. By contrast, you specify 

parameters when you build the model and can occasionally change them while simulation is 

running. 

 

Model Overview 

 
The basic techniques you use to create a simple  model in this tutorial are the same techniques  

that you use for more complex models. This example simulates simplified motion of a car, after a 

brief press of the accelerator pedal. 
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   A Simulink block is a model element that defines a mathematical relationship between its input and output. To 

create this simple model, you need four Simulink blocks. 

 

Block name Block Purpose Model Purpose 

Pulse Generator Generate an input signal for the model Simulate the accelerator pedal 

Gain Multiply the input signal by a factor Simulate how pressing the accelerator 

affects the car's acceleration 

Integrator, Second-Order Integrate input signal twice Obtain position from acceleration 

Outport Designate a signal as an output from 

the model 

Designate the position as an output from 

the model 

 

 
Simulating this model integrates a brief pulse twice to get a ramp and then displays the result in a 

Scope window. The input pulse represents a press of the accelerator pedal in a car, and the output 

ramp represents the increasing distance from the starting point. 

 

Open New Model 

 
Use the Simulink Editor to build your models. 

 

1. Start MATLAB®. From the MATLAB Toolstrip, click the Simulink button  . 
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2. Click the Blank Model template. 

 
The Simulink Editor opens. 

 

 
3. From the File menu, select Save as. In the File name text box, enter a name for your model, 

For example, simple_model. Click Save. The model is saved with the file extension.slx. 
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Open Simulink Library Browser 

 
Simulink provides a set of block libraries, organized by functionality in the Library Browser. The 

following libraries are common to most workflows: 
 

Continuous  Building blocks for systems with continuous states 

Discrete Building blocks for systems with discrete states 

Math Operations Blocks that implement algebraic and logical equations 

Sinks Blocks that store and show the signals that connect to them 

Sources  Blocks that generate the signal values that drive the model 

 

1. From the Simulink Editor toolbar, click the Library Browser button  . 

 

2. Set the Library Browser to stay on top of the other desktop windows. On the Library Browser 

toolbar, select the Stay on top button  . 

To browse through the block libraries, select a MathWorks® product and then a functional area in 

the left pane. To search all of the available block libraries, enter a search term. 

 
For example, find  the Pulse  Generator block.  In  the  search  box  on  the  browser  toolbar,  

enter pulse, and then press the Enter key. Simulink searches the libraries for blocks with pulse in 

their name or description, and then displays the blocks. 
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Get detailed information about a block. Right-click a block, and then select Help for the Pulse 

Generator block. The Help browser opens with the reference page for the block. 

 

Blocks typically have several parameters. You can access all parameters by double-clicking the 

block. 

 
Add Blocks to a Model 

 
To start building the model, browse the library and add the blocks. 

 
1. From the Sources library, drag the Pulse Generator block to the Simulink Editor. A copy of  

the Pulse Generator block appears in your model with a text box for the value of 

theAmplitude parameter. Enter 1. 
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Parameter values are held throughout the simulation. 

 
2. Add the following blocks to your model using the same approach. 

 

Block Library 

Gain Simulink/Math Operations 

Integrator, Second Order Simulink/Continuous 

Outport Simulink/Sinks 

 

3. Add a second Outport block right-clicking and dragging the existing one. 

4. Your model should now have the blocks you need. 

5. Arrange the blocks as follows by clicking and dragging each block. To resize a block, click 

and drag a corner. 
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Connect Blocks 

 
Connect the blocks by creating lines between output ports and input ports. 

 
1. Click the output port on the right side of the Pulse Generator block. 

 
The output port, and all input ports suitable for a connection get highlighted. 

 

 
2. Click the input port of the Gain block. 

 
Simulink connects the blocks with a line and an arrow indicating the direction of signal flow. 
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3. Connect the output port of the Gain  block to  the  input  port  on  the Integrator,  Second  

Order block. 

4. Connect the two outputs of the Integrator, Second Order block to the two Outport blocks. 

5. Save your model. Select File > Save and provide a name. 

 

 
Your model is complete. 

 
Add Signal Viewer 

 
To view the results, connect the first output to a Signal Viewer. 
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Access the context menu by right-clicking the signal. Select Create & Connect Viewer > 

Simulink > Scope. This creates a viewer icon on the signal, and opens a Viewer display. 

 

 

 

 

 

You can open the viewer at any time by double-clicking the icon. 

 
Run Simulation 

 
After you define the configuration parameters, you are ready to simulate your model. 

 
1. On the model window, set the simulation stop time by changing the value at the toolbar. 

 

 

 

 

 

 
The default stop time of 10.0 is appropriate for this model. This time value has no unit. Time 

unit in Simulink depends on how the equations are constructed. This example simulates the 

simplified motion of a car for 10 seconds. 

 

2. To run the simulation, click the Run simulation button  . 

The simulation runs and produces the output on the Viewer. 
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GENERATING AM IN SIMULINK 

 
For generating AM we just have to implement the equation of AM in block level. 

Blocks Required 

Analyzing the equation we need, 

 
1. Carrier Signal Source 

2. Message Signal Source 

3. Blocks for viewing the signals Scope 

4. Product Block 

5. Summer Block 

6. Constant Block 

 
Carrier, Message, Constant blocks 

 

Simulink > Sources > Sine wave 

Simulink > Sources > Constant 
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View Block 
 

Simulink > Sink > Scope 

Product and Summer Block 

Simulink > Math Operations > Product 

Simulink > Math Operations > Summer 

 
Block Diagram 

 

 
AM Generation using Simulink Block Diagram 

 
Block parameters can be changed by selecting the block and parameter that I used are given 

below.. 
 

Carrier Signal frequency = 2*pi*25 and sampling time=1/5000 

Message Signal frequency = 2*pi and sampling time=1/5000 

Amplitudes of both signals are 1 

 

Output Waveforms 



115 

 

 

 

 
 

AM Generation using Simulink Message Signal 

 

 

AM Generation using Simulink Carrier 

 

 
AM Generation using Simulink Modulated Signal 
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GENERATING SECOND ORDER SYSTEM RESPONSE IN  SIMULINK 

 
To obtain the step response of a 2nd order system for both open and closed loop. 

 
Blocks Required 

 

Step input 

Transfer Function 

PID Controller 

Summer block 

Scope 

Step input 

Simulink > Sources > Step 

View output 

Simulink > Sink > Scope 

Summer Block 

Simulink > Math Operations > Summer 

Transfer Function 

Simulink > Continuous > Transfer function 

PID Controller 

Simulink > Continuous > PID controller 

 
Block Diagram of Open Loop system and closed loop System 
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The numerator .tx›efFicient can be a vactor or matrix digression.. The 

deromiriator -coefficient must be a vector. 'The output width equals fhe 

number ot rows in.tI\e numerator coefficient. ”You ahould spec'ifi/ tke 

coefficients‹ in déscerid”ing..order of powers off. 

 

Parameters 

Nurñérator éoefF<le,nts: 
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Absolute tolerance. 
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Open Loop Response 

 

 
Closed Loop response 
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Full Wave Bridge Rectifier 
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Simulation Results from Scopes 

 

 
Simulation Results from Simscape Logging 

 
Plot "Bridge Rectifier Voltages and Currents" shows how AC voltage is converted to  DC  

Voltage. The dark blue line is the AC voltage on the source side of the bridge. There are two  

paths for current flow through the diode bridge. The alternating peaks through diodes 1&4 and 

diodes 2&3 show that current flow reaching the capacitor is flowing in the same direction even 

though the polarity of the voltage is changing. The ripple in the load voltage corresponds to the 

charging and discharging of the capacitor. 
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In the same manner half wave rectifier can be designed using Simulink. 
 

AC current source is used. The diode is connected in series to the Source. The Output is taken 

across the Load resister. Current and Voltage measurements can be seen through the Scope. The 

output contains only one half of the cycle of the input waveform. The below figure shows the 

output of a half wave rectifier. 
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Create a Subsystem 
 

Subsystem Advantages 

Subsystems allow you to create a hierarchical model comprising many layers. A subsystem is a  

set of blocks that you replace with a single Subsystem block. As your model increases in size and 

complexity, you can simplify it by grouping blocks into subsystems. Using subsystems: 

Establishes a hierarchical block diagram, where a Subsystem block is on one layer and the blocks 

that make up the subsystem are on another 

Keeps functionally related blocks together 

Helps reduce the number of blocks displayed in your model window 

When you make a copy of a subsystem, that copy is independent of the source subsystem. To 

reuse the contents of a subsystem across a model or across models, use either model referencing 

or a library. 

Ways to Create a Subsystem 

You can create a subsystem using these approaches: 

Add a Subsystem block to your model, and then open the block and add blocks to the subsystem 

window. Create a Subsystem in a Subsystem Block. 

Select the blocks that you want in the subsystem, and from the right-click context menu, 

select Create Subsystem from Selection. Create a Subsystem from Selected Blocks. 

Copy a model to a subsystem. In the Simulink®  Editor, copy and paste the model into a 

subsystem window, or use Simulink.BlockDiagram.copyContentsToSubsystem. 

Copy an existing Subsystem block to a model. 

Drag a box around the blocks you want in a subsystem, and select the type of subsystem you 

want from the context options. Create a Subsystem Using Context Options. 

Create a Subsystem in a Subsystem Block 

Add a Subsystem block to the model, and then add the blocks that make up the subsystem. 
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1. Copy the Subsystem block from the Ports & Subsystems library into your model. 

2. Open the Subsystem block by double-clicking it. 

3. In the empty subsystem window, create the subsystem contents. Use Inport blocks to 

represent input from outside the subsystem and Outport blocks to represent external output. 

For example, this subsystem includes a Sum block and Inport and Outport blocks to represent 

input to and output from the subsystem. 

When you close the subsystem window, the Subsystem block includes a port for each Inport 

and Outport block. 

 
 

 

 
Create a Subsystem from Selected Blocks 

1. Select the blocks that you want to include in a subsystem. To select multiple blocks in one 

area of the model, drag a bounding box that encloses the blocks and connecting lines that you 

want to include in the subsystem. 

The figure shows a model that represents a counter. The bounding box selects the Sum and 

Unit Delay blocks. 
 

 
2. Select Diagram > Subsystems & Model Reference > Create Subsystem from Selection. 

A Subsystem block appears, which encloses the selected blocks. 
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To edit the subsystem contents, open the Subsystem block. For example: 
 

adds Inport and Outport blocks to represent input from and output to blocks outside the 

subsystem. 

You can change the name of the Subsystem block and modify the block the way that you do with 

any other block (for example, you can mask the subsystem). 

Create a Subsystem Using Context Options 

1. Drag a box around the blocks you want in your subsystem. 
 

 
 

 
 

2. View the subsystems you can create with these blocks by hovering over the first context 

option that appears. 

Tip 
 

Resize the Subsystem block so the port labels are readable. 
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3. Select the type of subsystem you want to create from these options. 

A Subsystem block appears, which encloses the selected blocks. 

Few application programs in simulink 

Example 1: AM Radio Receiver 

This example shows a simplified AM radio receiver. A single tone signal at 2 kHz is transmitted 

with a carrier frequency of 600 kHz. The variable capacitor, Cres, in the resonant circuit is used   

in order to sweep through a certain frequency span. When the resonance passes through 600 kHz, 

the signal is picked up and amplified by a two-stage Class A RF power amplifier. The signal is 

finally extracted by a diode detector, where it would normally be passed on to an audio amplifier 

(not included here). The Scope displays the final output, the value of the resonant capacitance,  

and the received and amplified signals. 

Model 
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Diode Detector Subsystem 
 

 

Two-Stage Amplifier Subsystem 
 

 

 

 

 

 

 
Class A Stage 1 Subsystem 
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Simulation Results from Simscape Logging 

The plots below shows received, amplified, and output signals in the radio receiver. As the 

resonance in the resonant circuit passes through 600 kHz, the signal is picked  up and amplified  

by a two-stage Class A RF power amplifier. 
 

 

 
Example 2: FIR and IIR Filter Design and their Frequency Responses 

This example shows how to design FIR and IIR filters based on frequency  response  

specifications using the designfilt function in the Signal Processing Toolbox® product. The 

example concentrates on low pass filters but most of the results apply to other response types as 

well. And also focuses on the design of digital filters rather than on their applications.. 

Low pass Filter Specifications 

The ideal low pass filter is one that leaves unchanged all frequency components of a signal 

      c                       c.  Because  the 

impulse response required to implement the ideal low pass filter is infinitely long, it is 

impossible  to  design  an  ideal  FIR  low  pass  filter.  Finite  length  approximations  to  the ideal 

c) and the stop  band 

c) of the filter, as well as to a nonzero transition width between pass band and stop band. 
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Both the pass band/stop band ripples and the transition width are undesirable but unavoidable 

deviations from the response of an ideal low pass filter when approximated with a finite impulse 

response. These deviations are depicted in the following figure: 

 

 

 

 

Practical FIR designs typically consist of filters that have a transition width and maximum pass 

band and stop band ripples that do not exceed allowable values. In addition to those design 

specifications, one must select the filter order, or, equivalently, the length of the  truncated 

impulse response. 

A useful metaphor for the design specifications in filter design is to think of each specification as 

one of the angles in the triangle shown in the figure below. 
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The triangle is used to understand the degrees of freedom available when choosing design 

specifications. Because the sum of the angles is fixed, one can at most select the values of two of 

the specifications. The third specification will be determined by the particular design algorithm. 

Moreover, as with the angles in a triangle, if we make one of the specifications larger/smaller, it 

will impact one or both of the other specifications. 

FIR filters are very attractive because they are inherently stable and can be designed to have  

linear phase. Nonetheless, these filters can have long transient responses and might prove 

computationally expensive in certain applications. 

Minimum-Order FIR Filter Design 

Minimum-order designs are obtained by specifying pass band and stop band frequencies as well  

as a pass band ripple and a stop band attenuation. The design algorithm then chooses the  

minimum filter length that complies with the specifications. 

Design a minimum-order low pass FIR filter with a pass band frequency of 0.37*pi rad/sample, a 

stop band frequency of 0.43*pi rad/sample (hence the transition width equals  0.06*pi  

rad/sample), a pass band ripple of 1 dB and a stop band attenuation of 30 dB. 

 

Fpass = 0.37; 

Fstop = 0.43; 

Ap = 1; 

Ast = 30; 

 
 
d = designfilt('lowpassfir','PassbandFrequency',Fpass,... 

'StopbandFrequency',Fstop,'PassbandRipple',Ap,'StopbandAttenuation',Ast); 

 
 

hfvt = fvtool(d); 
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IIR Filter Design 

One of the drawbacks of FIR filters is that they require a large filter order to meet some design 

specifications. If the ripples are kept constant, the filter order grows inversely proportional to the 

transition width. By using feedback, it is possible to meet a set of design specifications with a far 

smaller filter order. This is the idea behind IIR filter design. The term "infinite impulse response" 

(IIR) stems from the fact that, when an impulse is applied to the filter, the output never decays to 

zero. 

IIR filters are useful when computational resources are at a premium. However, stable, causal    

IIR filters cannot have perfectly linear phase. Avoid IIR designs in cases where phase linearity is  

a requirement. 

Another important reason for using IIR filters is their small group delay relative to FIR filters, 

which results in a shorter transient response. 

Butterworth Filters 

Butterworth filters are maximally flat IIR filters. The flatness in the pass band and stop band 

causes the transition band to be very wide. Large orders are required to obtain filters with narrow 

transition widths. 

Design a minimum-order Butterworth filter with pass band frequency 100 Hz, stop band 

frequency 300 Hz, maximum pass band ripple 1 dB, and 60 dB stop band attenuation.  The  

sample rate is 2 kHz. 

Fp = 100;  
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FUZZY LOGIC TOOLBOX 

 

GUI – EDITORS: 

The following  graphic user interface editors are available in the fuzzy logic tool box. Also the fuzzy logic tool box 

contains comprehensive tools to help us to automatic control, signal processing, system identification, pattern 

recognition, time series prediction, determining and functional application. 

GUI – EDITORS are: 

Fuzzy – basic FIS editor 

MF edit – Membership function editor 

Rule edit – Rule editor 

Rule View – Rule Viewer & Fuzzy interface Algorithm 

SUF view – Output surface viewer 

Various membership function and command line FIS first are available in tool box. 

Fuzzy (Basic FIS editor): 

The FIS editor displays high level information about a fuzzy interface system at the top is a diagram of the system 

with each input to output Clearly tabulated by double clicking on the input or output boxes. We can bring up the 

member ship function. Double clicking on the fuzzy rule box of the diagram will bring up the rule editor. 

MFEDIT (Membership function editor): 

It is used to create, remove and modify the MFS. For a given fuzzy system, on the left side of the diagram is a 

variable pallete region that we use to select the current variable by clicking. 

 

Rule Edit  (Rule editor): 

The surface displays the rules associate with a given fuzzy system. Rules can be edited and displayed in any one of 

the different modes. 

Surf View: 

The surface viewer displays the entire output surface, output variables and input variables more than two input and 

output can be accommodated by using the ―POP UP‖ menu. 

Problem: 

Design a fuzzy logic system to control the Level in a process line the Level to be maintained is between 14 to 18 m 

,the inputs are  the range of Flow is 10 to 18 l/s, the range of error is 52 to 60° C respectively. 

Procedure: 

1. Open the Matlab Command window Enter FIS editor or fuzzy 

2. In the FIS editor window , Edit-Add variable-input , to add the no. of inputs and outputs and 

enter the name. 

3. Edit the membership function-range, type and its parameters. Create the rule editor –Add 

rule and view rules 

4. Finally compare the results and write the inference. 
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QUESTION BANK 

PART A CO 

1. What is Simulink? 5 

2. Mention the advantages of Simulink. 5 

3. List the applications of Simulink. 5 

4. How to create and run Simulink? 5 

5. Name the command used for opening Simulink window in the command 

window 5 

6. What is a subsystem? 5 

7. Infer the significance of creating a subsystem. 6 

8. Give the design procedure of any simple application in Simulink 6 

9. Draw the Simulink model to get open loop gain of an OPAMP 6 

10. List the standard test signals available in Simulink 6 

PART B 

1. Create a Simulink application to generate AM Signal 5 

2. How to create a subsystem? Explain with suitable example. 5 

3. Create a Simulink application to generate PCM 5 

4. Design a Fullwave and Halfwave rectifier using Simulink 6 

5. Create a Simulink application to generate DPCM 6 

6. Design a 2
nd

 order system in Simulink and plot its open and close 

loop response. 5 

7. Develop FIR filter and obtain the frequency response using 

MATLAB 5 
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Programmable logic controllers: Organization- Hardware details- I/O- Power supply- CPU Standards- Programming 
aspects-Ladder programming- Sequential function charts- Human-machine interface (HMI) - Case study on Lubrication 
System. 

 

INTRODUCTION 

PLC stands for Programmable Logic Controllers. 

A PLC is basically a microprocessor based device that is used for controlling any machine 

(electrical, mechanical, and electronic). It is also used in assembly lines controlling in the industries. It is 

similar to a computer. It is typically based on RISC architecture. It is programmed in specific languages 

based on the real time purpose. It is connected to sensors, actuators, relays, contactors, etc. it is 

characterized by the number and type of I/O ports they provide and by their I/O scan rate 

 
The National Electrical Manufacturers Association (NEMA) defines a PLC as a "digitally 

operating electronic apparatus which uses a programmable memory for the internal storage  of 

instructions by implementing specific functions, such as logic, sequencing, timing, counting, and 

arithmetic to control through digital or analog I/O modules various types of machines or processes. 

 
A PLC is able to receive (input) and transmit (output) various types of electrical and 

electronic signals and can control and monitor practically any kind of mechanical and/or electrical 

system. Therefore, it has enormous flexibility in interfacing with  computers,  machines,  and  many 

other peripheral systems or devices. 

 
Control is the process in a system in which one or several input variables influence other 

variables. 

 
Need for PLC 

Hardwired panels were very time consuming to time, debug  and change 

The following requirements for computer controllers to replace hard wired panels: 

 Solid state not mechanical 

 Easy to modify input and output devices 

 Easily programmed and maintained by plant electricians 

 Be able to function in an industrial environmentComparison 

Comparison 

Hard wired control systems PLC systems 

The functions are determined by physical 

wiring 

The functions are determined by a program 

stored in the memory 

Changing the function means changing the 

wiring 

The control functions can be changed by 

simply changing the program 

Can be contact making type (relays, 

contactors) or electronic  type  (logic 

circuits) 

Consists of a control device, to which  all 

the sensors and actuators are connected 
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PLC architecture 

The basic architecture of the PLC can be described as below: 
 
 

 

The basic components of a PLC are: 

1. A Central Processing Unit (CPU) 2. Input module 

3. Output module 4. Programming device 5. Power supply 

 
Central Processing Unit: 

It is the heart of the PLC system. The CPU is a microprocessor based control system that replaces 

central relays, counters, timers and sequencers. One bit processors are adequate for dealing with logic 

operations. The operations of a CPU are as follows: 

 The CPU accepts data from various sensing devices, executes the user program from memory and 

sends appropriate output commands to control devices. 

 A DC power source is required to produce a low -level voltage used by processor and  I/O 

modules. This power supply can be housed in the CPU or may be a separately mounted unit, 

depending on the PLC system manufacturer. 

 
Input and Output Modules: 

Inputs: 

Inputs are basically the physical entities that control the on and off of the machine. These devices 

are controlled by the either the machine operator manually or automatically sent after starting  the 

machine. Some off the devices can be listed down as: 

Push buttons Limiter switches 

Pressure  switches  Flow switches 

Proxy sensor Emergency switch 
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Outputs: 

Outputs are the devices which receive the signals given by the PLC and perform the actions 

accordingly. The output devices can be listed down as: 

Relays Contactors 

Solenoid valves Lamp indicators. Input-output module: 

The I/O modules connect the input devices with the controller. They convert the electrical signals 

used in the devices into electronic signals that can be used by the control system and translate the real 

world values to IO table values. 

 
Block diagram of input module: 

 

Block diagram of output module: 

 
Circuit diagram of isolator circuit: 

The number of I/O devices used within a control system is called its “point count”. 
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Programming device (keyboard and monitor): 

Keyboard and monitor is used for programming the PLC. The data is  entered  in the  processor 

with the help of the keyboard in the form of ladder diagram. This ladder diagram can be seen on the 

monitor screen. The programmer can communicate with the processor with the help of the programming 

devices. The programming unit communicates with the processor of the PLC via a serial or parallel data 

communication link. 

 
PLC power supply: 

The PLC is power by the AC mains supply. However some of the PLC components utilize power 

of about only 5V DC. PLC power supply converts the AC power supply into DC and supports these 

components. 

 
The overall block diagram of the PLC: 

The input signals are given to the Data Acquisition System (DAS) and then further sent to the 

input module. Further the signals are sent to the processor. The processor is connected with the 

programming devices. The signal from the processor is then sent to the output module and then from the 

output module further to the output devices. 

 
PLC operating sequence 

 Self- test: testing of its own hardware and software for faults. 

 Input scan: if there are no problems, PLC will copy all the inputs and copy their values into 

memory. 

 Logic solve/scan: using inputs, the ladder logic program is  solved  once  and  outputs  are 

updated. 

 Output scan: while solving logic, the output values are updated only in  memory  when ladder 

scan is done, the outputs will be updated using temporary values in memory. 
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Number systems and codes 

The integral operation of programmable controllers is largely based on numbers. Numbers 

emulated by electronic circuitry are used to encode and store information that in turn se allow s these 

devices to process instructions and data required to perform each and every operation. 

 
PLC also relies on number systems to perform even the  most  basic  operations  and  store  

various information. The number systems commonly used in PLC are given below: 

 

 
In PLC, decimal number system is usually used for timer and counter presets, math operations 

and general numerical quantities. 

Binary number system, bytes  and words  are the common units  for  storing  digital information 

in memory. They are used to represent letters, numbers, punctuation marks, machine instructions and 

virtually any information type. 

In PLC in many cases, base 8 is  used for addressing memory and input/output terminal 

locations. Using octal for numbering is convenient in these cases since memory is comprised of 

groupings of 8 binary digits (bytes) and I /O modules are normally in one or more  groups of  eight  

points per module. 

Hex numbers easily express coded digital data which is otherwise  expressed in  binary.  Such 

codes are typically used when devices  communicate. While  the  binary  data may be  easily interpreted 

by the receiving device, hex coded characters are really used for convenience of human operators. 

 
Automation: 

Automation is basically the delegation of human control  functions  to  technical  equipment 

aimed towards achieving higher productivity, superior quality of end product, efficient usage of energy 

and raw materials, improved safety in working conditions etc. 

 
Advantages of PLC in Automation: 

 To reduce human efforts 

 To get maximum efficiency from machine and control them with human logic 

 To reduce complex circuitry of entire system 

 To eliminate the high costs associated with inflexible, relay controlled systems. 
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Areas of application of PLC in automation: 

 Manufacturing/machining 

 Food/beverage 

 Textile industry 

 Travel industry 

 Aerospace 

 Printing industry 

Memory System: 

All PLCs contain both RAM and ROM in varying amounts  depending  upon  the  design  of the  

PLC. The use of PLC’s memory is determined again by the design of the unit. However, all PLC 

memories can be  subdivided  into  at least  five  major areas. A typical  memory utilization map  for  a PLC 

is depicted in the following figure. 

 

a. Executive Memory: 

The operating system or executive memory for the PLC is always in ROM since, once 

programmed and developed by the manufacturer, it rarely  needs  changing.  It is  the  one  that actually  

does the scanning in a PLC. The operating system is a special machine language program that  runs  the 

PLC. It instructs the microprocessor to read each user instruction, helps the microprocessor to 

interpret user programmed symbols and instructions , keeps the track of all the I/O status, and is 

responsible for maintaining / monitoring the current status of the health of the system and all its 

components. 

b. System memory 

In order for the operating system to function, a section of the memory is allotted for system 

administration. As the executive program performs its duties, it often requires  a  place  to  store 

intermediate results and  information. A section of RAM is installed for this purpose. Normally this 

area is allotted for use of the operating system only and is not available to the user for programming. It 

might be thought of as a scratch pad for the operating system to doodle on as necessary. Some  PLCs use 

this area for storing the information w h i c h passes  between programmer a n d  operating system, e.g. 

the operating system generates certain error codes store in the specific address in this area during the 

execution of user program which can be read by user program; or the user may also give additional 

information to the operating system before execution of user program by writing some codes in the 

specific address in this area, etc. 
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c. I/O Status Memory - I/O Image Table 

Another portion of RAM is allocated for the storage of current I/O status. Every single 

input/output module has been assigned to it a particular location within the input/output image table. The 

location within the input and output image tables are identified by addresses, each location has its  own  

unique address. 

During the execution of  user  program, the microprocessor scans the user program and 

interpret the user commands,  the status of input modules used are read from the input image table 

(not directly from the input  module  itself).  Various  output device  status  generated  during the  execution 

of user program are stored in the output image table (not directly to  output modules).  (Find  out about 

input scan and output scan.) 

 
d. Data Memory 

Whenever timers, counters, mathematics and process parameters are required, an area of 

memory must be set aside for data storage. The data storage portion of memory is allocated for the  

storage of such items as  timers  or  counter  preset/accumulated  values,  mathematics instruction  data  

and results, and other miscellaneous data and  information  which   will  be   used  by  any  data 

manipulation functions in the user program. 

Some manufacturers subdivide the data memory  area into  two  sub-memories,  one  for 

fixed data and other for variable data. The  fixed data portion can only be programmed  via  the 

programming device. The CPU is  not  permitted  to place  data  values  in  this  area. The  variable  portion 

of the data memory is available to the CPU for data storage. 

 
e. User Program Memory 

The final area of memory in a PLC is allocated to the storage of the user  program.  It is  this 

memory area that the executive program instructs the  microprocessor  to  examine  or  'scan'  to find the 

user instructions. The user program area may be subdivided if  the  CPU  allocates  a  portion  of  this 

memory area for the storage of ASCII messages, subroutine programs, or other special programming 

functions or routines. In the majority PLCs, the internal data storage and user program areas are 

located in RAM. 

Several systems do offer an option that places both the user program and the fixed data storage 

areas in EPROM type memory. The user can develop program in RAM and run the system to ensure 

correct operation. Once the user is satisfied that the programming is correct, a set of EPROMs is then 

duplicated from the RAM. Then the user can shut down  the  CPU  and  replaces  the  RAM  with  the 

newly programmed EPROM. Any future change would require that the EPROMs be reprogrammed. 

 
Discrete I/O 

A “discrete” data point is one with only two states on and off. Process switches, pushbutton 

switches, limit switches, and proximity switches are all  examples  of  discrete  sensing  devices.  In  order 

for a PLC to be aware of a discrete sensor’s state, it must receive a signal from the sensor through a  

discrete input channel. 
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Inside the discrete input module is (typically) a light-emitting  diode  (LED)  which   will  be 

energized when the corresponding sensing device turns on. Light from this LED shines on a photo- 

sensitive device such as a phototransistor inside the module, which in  turn  activates  a  bit  (a  single  

element of digital data) inside the PLC’s memory. This opto-coupled arrangement makes each input 

channel of a PLC rather rugged, capable of isolating the sensitive computer circuitry of the PLC from 

transient voltage “spikes” and other electrical phenomena capable of causing damage. 

Indicator lamps, solenoid valves, and motor contactors (starters) are all examples of discrete 

control devices. In a manner similar to discrete inputs, a PLC connects  to  any  number  of  different 

discrete final control devices through a discrete output channel. Discrete output modules typically use the 

same form of opto-isolation to allow the PLC’s computer circuitry to send electrical power to loads: the 

internal PLC circuitry driving an LED which then activates some  form  of  photosensitive  switching 

device. Alternatively, small electro mechanical relays may be used to interface the PLC’s output bits to real-

world electrical control devices. 

 
Analog I/O 

In the early days of programmable logic controllers, processor  speed  and  memory  were  too 

limited to support anything but discrete (on/off) control functions. Consequently, the only I/O capability  

found on early PLCs were discrete in nature2. Modern PLC technology, though, is powerful enough to 

support the measurement, processing, and output of analog (continuously variable) signals. 

All PLCs are digital devices at heart. Thus, in order to interface with an analog  sensor  or 

control device, some “translation” is necessary between the analog  and  digital  worlds.  Inside  every 

analog input module is an ADC, or Analog-to-Digital Converter, circuit designed to convert an analog 

electrical signal into a multi-bit binary word.  Conversely,  every  analog  output module  contains  a  DAC, 

or Digital-to-Analog Converter, circuit to convert the PLC’s digital  command  words  into  analog  

electrical quantities. 

Analog I/O is commonly available for modular PLCs for many different analog signal types, 

including: 

1. Voltage (0 to 10 volt, 0 to 5 volt) 2. Current (0 to 20 mA, 4 to 20 mA) 

3. Thermocouple (millivoltage) 4. RTD (millivoltage) 5. Strain gauge (millivoltage) 

 
Programming of PLC: 

The PLC can be programmed in different ways. There are various methods for entering and 

interconnecting various logic elements. Some of these can be explained as follows: 

1. Entry of ladder logic diagram 2. Low level computer languages 

3. High  level computer languages 4. Functional blocks 5. Sequential function chart 

 
Programming Devices are: 

Programming Console, Hand Programmer, PC 

 
Ladder Logic Diagram 

The ladder  diagrams  are based  on three logic controls: 1. AND 2. OR 3. NOT 
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1. Logic AND operation 2. Logic OR operation 
 

 

3. Logic NOT operation 

(i) (ii) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(i). Ladder logic symbols (ii). Implementing the switching operations using ladder symbol 

Ladder Diagram: 

• First Step : Translate all of the items we're using into symbols the PLC understands. 

• Second step : We must tell the PLC where everything is located.  In other words we have  

to give all the devices an address. 

• Final step : We have to convert the schematic into a logical sequence of events. 



196  

First Step: 

• The PLC doesn't understand terms like switch, relay, bell, etc. 

• It prefers input, output, coil, contact, etc. 

• It doesn't care what the actual input or output device actually is. It only cares that its an 

input or an output. 

• First we replace the battery with a symbol. This symbol is common to all ladder diagrams. We 

draw what are called bus bars. 

• These simply look like two vertical bars. One on each side of the diagram. Think of the left one 

as being + voltage and the right one as being ground. Further think of the current (logic) flow as 

being from left to right. 

• Next we give the inputs a symbol. In this basic example we have one real world input. (i.e. the 

switch). 

• We give the input that the switch will be connected to the symbol shown below. This symbol 

can also be used as the contact of a relay. 

 

• Next we give the outputs a symbol. In this example we use one output (i.e. the bell). 

• We give the output that the bell will be physically connected to the symbol shown below. 

This symbol is used as the coil of a relay. 

• The AC supply is an external supply so we don't put it in our ladder. The PLC only cares about 

which output it turns on and not what's physically connected to it. 

 
Second Step: 

• We must tell the PLC where everything is located. In other words we have to give all the 

devices an address. 

• Where is the switch going to be physically connected to the PLC? How about the bell? We start 

with a blank road map in the PLCs town and give each item an address. 

• Could you find your friends if you didn't know their address? You know they live in the 

same town but which house? The PLC town has a lot of houses (inputs and outputs) but we 

have to figure out who lives where (what device is connected where). 

• We'll get further into the addressing scheme later. The PLC manufacturers each do it a 

different way! For now let's say that our input will be called "0000". The output will be called 

"500". 

 
Final Step: 

• Convert the schematic into a logical sequence of events. 

• The program we're going to write tells the PLC what to do when certain events take place. 

• In our example we have to tell the PLC what to do when the operator turns on the switch. 

• Final converted diagram. 

• We eliminated the real world relay from needing a symbol as shown below. 
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Basic Instructions 

Load: 

• The load (LD) instruction is a normally open contact. It is sometimes also called examine if on 

(XIO) (as in examine the input to see if its physically on). The symbol for a load instruction is 

shown above. 

• This is used when an input signal is needed to be present for the symbol to turn on. 

• When the physical input is on we can say that the instruction is True. 

• We examine the input for an on signal. If the input is physically on then the symbol is on. 

• An on condition is also referred to as a logic 1 state. 

 
Load Bar: 

• The Load bar instruction is a normally closed contact. It is sometimes also called LoaDNot or 

examine if closed (XIC) (as in examine the input to see if its physically closed) The symbol for 

a load bar instruction is shown below. 

• This is used when an input signal does not need to be present for the symbol to turn on. 

• When the physical input is off we can say that the instruction is True. 

• We examine the input for an off signal. If the input is physically off then the symbol is on. 

• With most PLCs this instruction (Load or Load bar) MUST be the first symbol on the left of the 

ladder. 

 
Out: 

• The Out instruction is sometimes also called an Output Energize instruction. The output 

instruction is like a relay coil. Its symbol looks as shown below. 

• When there is a path of True instructions preceding this on the ladder rung, it will also be True. 

• When the instruction is True it is physically ON. 

• We can think of this instruction as a normally open output. 
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Out Bar: 

• The Outbar instruction is sometimes also called an OutNot instruction. 

• The Outbar instruction is like a normally closed relay coil. Its symbol looks like that shown 

below. 

 
Among these, ladder logic diagram is most frequently used as whenever a personnel wants to 

change the PLC, he does not have to learn an entirely  new  programming  language.  Only the knowledge 

of the circuit diagram is enough. 

 
This method includes the direct entry of the logic diagram into the PLC memory. This method 

requires the use of a keyboard and a display screen with graphics capability to display the symbols of the 

components and their inter relationships in the ladder logic diagram. Programming is accomplished by 

inserting appropriate components in the rungs of the ladder diagram. 

 Ladder logic diagram uses graphic symbols similar to relay schematic circuit diagrams. 

 It consists of two vertical lines representing the power rails 

 Circuits are connected as horizontal lines between these two vertical lines. Such horizontal lines 

are called as Rungs. 

 Each rung contains atleast one input and one output. 

 A particular input or output can appear in more than one rung of ladder. 

 Output is connected at right side and input is connected and input is connected  at left side (for  

each rung) 

 Output (which is on right side) cannot be directly connected with left side 

 The ladder logic diagram consists of two types of components: Contacts & Coils 

The various devices that are based on the binary logic can be stated as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
• Contacts are used to represent loads such as motors, relays, solenoids, timers, counters, etc. 

• The program is entered rung by rung in the logic diagram. 

DEVICE ONE / ZERO 

INPUT 
Limit switch Contact / no contact 
Photo detector Contact / no contact 

Pushbutton switch On /off 
Timer On / off 
Control relay Contact / no contact 

Circuit breaker Contact / no contact 
  

OUTPUT 

Motor On / off 
Alarm buzzer On / off 
Control relay Contact / no contact 

Lights On / off 
Valves Closed / open 

Clutch Engaged / not engaged 
Solenoid Energized / not energized 
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• Disadvantage: Ladder logic diagrams are based on the ON-OFF operation. They are entirely 

based on the logic level 1 and logic level 0. This can be a disadvantage in using the ladder logic 

programming. 

 
A Simple Example 1: 

• In the above circuit, the coil will be energized when there is a closed loop between the + and - 

terminals of the battery. 

• We can simulate this same circuit with a ladder diagram 
 

• A ladder diagram consists of individual rungs just like on a real ladder. 

• Each rung must contain one or more inputs and one or more outputs. 

• The first instruction on a rung must always be an input instruction and the last instruction on a 

rung should always be an output (or its equivalent). 

• Notice in this simple one rung ladder diagram we have recreated the external circuit above 

with a ladder diagram. 

• Here we used the Load and Out instructions. 

• Some manufacturers require that every ladder diagram include an END instruction on the last 

rung. Some PLCs also require an ENDH instruction on the rung after the END rung. 

 
Example 2: 

Lighting controlsystem: 

A lighting control system is to be developed. The system will be controlled by four switches, 

SWITCH1, SWITCH2, SWITCH3, and SWITCH4. These switches will control the lighting in a room  

based on the following criteria: 

 
1. Any of three of the switches SWITCH1, SWITCH2, and SWITCH3, if turned ON can turn the 

lighting on, but all three switches must be OFF before the lighting will turn OFF. 

2. The fourth switch SWITCH4 is a Master Control Switch. If this switch is in the ON position, the 

lights will be OFF and none of the other three switches have any control. 

 
The first item we may accomplish is the drawing of the controller wiring  diagram.  All we need  

do is connect all switches to inputs and the lighting to an output and note the numbers of the inputs and  

output associated with these connections. 
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ent required to operate a bank of room lights is higher than the maximum current a PLC output 

nnected to a relay coil CR1. We are using the relay CR1 to operate the lights because genera 

The remainder of the task becomes developing the ladder diagram.  The wiring diagram  is 

shown in Figure. 

  Notice that all four  switches  are  shown  as  normally  open selector switches and the  output  is 

co  lly the 

curr 

carry. 

can 

 

For this wiring configuration, the following definition list is apparent: 

 INPUT IN1 = SWITCH1

 INPUT IN2 = SWITCH2

 INPUT IN3 = SWITCH3

 INPUT IN4 = SWITCH4 (Master Control Switch)

 OUTPUT OUT1 = Lights control relay coil CR1

This program requires that when SWITCH4 is ON, the lights must be OFF. In order to do this, it 

would appear that we need a N/C SWITCH4, not a N/O as we have in our  wiring  diagram.  However,  

keep in mind that once an input signal  is  brought  into  a PLC, we may use as many contacts  of  the input 

as we need in our program, and the contacts may be either N/O or N/C. 

Therefore, we may use a N/O switch for SWITCH4 and then in  the program,  we will  logically  invert  it  

by using N/C IN4 contacts. 

The ladder diagram to implement this example problem is shown in Figure. 
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The ladder was printed using graphics characters (extended ASCII characters). 

 
Notice the normally closed contact for IN4. A normally closed  contact  represents an inversion of 

the assigned element, in this case IN4, which  is  defined  as SWITCH  4.  Remember,  SWITCH  4 has to 

be in the OFF position before any of the other switches  can take control.  In the OFF position, SWITCH  4 

is open. 

 
This means that IN4 will be OFF (de -energize d). So, in order for an element  assigned  to IN4 

to be closed with the switch in the OFF position, it must be shown as a normally closed contact. When 

SWITCH 4 is turned ON, the input, IN4, will become active  (energized).  If  IN4  is  ON,  a  normally  

closed IN4 contact will open. 

 
With this contact open in the ladder  diagram,  none  of the other  switches  will  be able  to control  

the output. 

 
REMEMBER: A normally closed switch will open when energized and will close when de-energized. 

 

Example 3: 

Devices: 

Device Function 

X0 X0=ON when the detected input signal from the bottle bottom is sheltered 

X1 X1=ON when the detected input signal from the bottle neck is sheltered 

Y 0 Pneumatic pushing pole 

 

Program description 

 If the bottle on the conveyor belt is upstanding, the input signal from the monitoring 

photocell at both bottle bottom and bottle neck will be detected. In this case, X0=ON and 

X1=ON. The normally open (NO) contact X0 will be activated as w ell as the normally 

closed (NC) contact X1. Y 0 remains OFF and pneumatic pushing pole will not  perform  

any action.
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 If the bottle from the conveyor belt  is down, only the input signal from  monitoring  

photocell at the bottle bottom  will be detected.  I n this case, X0=ON, X1=O FF. The state  

of the output Y 0 will be ON because the NO contact X activates and the NC contact X1 

remains OFF. The pneumatic pushing pole will push the fallen bottle  out of the conveyor 

belt

 
Example 4: 

Devices: 
 
 

Device Function 

X0 X0 turns ON when the bottom switch is turned to the right 

X1 X1 turns ON when the top switch is turned to the right 

Y 1 Stair light 
 

 

 

Program Description 

 If the states of the bottom switch and the top switch are the  same,  both  ON or OFF, the 

light will be ON. If different, one is ON and the other is OFF, the light will be OFF.

 When the light is OFF, users can turn on the light by changing the state  of  either  top  

switch or the bottom switch of the stairs. Likewise,  when  the light  is  ON, users  can turn 

off the light by changing the state of one of the two switches.

 
Example 5: 

A Level Application: 

• We are controlling lubricating oil being dispensed from a tank. 

• This is possible by using two sensors. 

• We put one near the bottom and one near the top, as shown in the picture. 

Here, we want the fill motor to pump lubricating oil into the tank until the high level sensor turns on. 

At that point we want to turn off the motor until the level falls below the low level sensor. Then we 

should turn on the fill motor and repeat the process. 
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Here we have a need for 3 I/O (i.e. Inputs/Outputs): 

• 2 are inputs (the sensors) and 1 is an output (the fill motor). 

• Both of our inputs will be NC (normally closed) fiber-optic level sensors. When they are 

NOT immersed in liquid they will be ON. When they are immersed in liquid they will be 

OFF. 

 

Program Scan: 

• Initially the tank is empty. Therefore, input 0000 is TRUE and input 0001 is also TRUE. 
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• Gradually the tank fills because 500(fill motor) is on. 

• After 100 scans the oil level rises above the low level sensor and it becomes open. (i.e. FALSE). 
 

• Even when the low level sensor is false there is still a path of true logic from left to right. This is 

why we used an internal relay. Relay 1000 is latching the output (500) on. It will stay this way until 

there is no true logic path from left to right.(i.e. when 0001 becomes false). 

 

• Since there is no more true logic path, output 500 is no longer energized (true) and therefore 

the motor turns off. 

• Even though the high level sensor became true there still is NO continuous true logic path and 

therefore coil 1000 remains false!. 
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• After 2000 scans the oil level falls below the low level sensor and it will also become true again. 

• At this point the logic will appear the same as SCAN 1 above and the logic will repeat as 

illustrated above. 

 
Latch Instruction: 

• The latching instructions let us use momentary switches and program the plc so that 

when we push one the output turns on and when we push another the output turns off. 

• Picture the remote control for your TV. It has a button for ON and another for OFF: 

- When I push the ON button the TV turns on. 

- When I push the OFF button the TV turns off. 

• I don't have to keep pushing the ON button to keep the TV on. This would be the 

function of a latching instruction. 

• The latch instruction is often called a SET or OTL (output latch). 

• The unlatch instruction is often called a RES (reset), OUT (output unlatch) or RST 

(reset). The diagram below shows how to use them in a program. 
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Here we are using 2 momentary push button switches. One is physically connected to input 0000 

while the other is physically connected to input 0001. When the operator pushes switch 0000 the 

instruction "set 0500" will become true and output 0500 physically turns on. Even after the operator 

stops pushing the switch, the output (0500) will remain on. It is latched on. The only way to turn off 

output 0500 is turn on input 0001. This will cause the instruction "res 0500" to become true thereby 

unlatching or resetting output 0500. 

 

 

 
• What would happen if input 0000 and 0001 both turn on at the exact same time 

• Will output 0500 be latched or unlatched? 

• To answer this question we have to think about the scanning sequence. The ladder is always scanned 

from top to bottom, left to right. 

• The first thing in the scan is to physically look at the inputs. 

• 0000 and 0001 are both physically on. 

• Next the PLC executes the program. 

• Starting from the top left, input 0000 is true therefore it should set 0500. 

• Next it goes to the next rung and since input 0001 is true it should reset 0500. 

• The last thing it said was to reset 0500. Therefore on the last part of the scan when it updates the 

outputs it will keep 0500 off. (i.e. reset 0500). 



 

PLC features and benefits 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 



 

Part- A 

 

1) Draw and explain block diagram of PLC. 

2) What is ladder diagram? Explain with suitable example.  

3) Write a short note of different type of register in PLC. 

4) Describe application of PLC in power system. 

5) Describe application of PLC in control drives. 

6) Write a short note on timer and counter functions with reference of PLC.  

7) Write a short note on history of PLC 

8) Explain number comparison functions of PLC. 

9) Explain skip and master control relay functions with reference of PLC. 

10) Write advantages and different application of PLC 

 

 

 

Part- B 

 

1) Write a short note on PLC matrix functions.  

2) Write a short note on sequencer function.  

3) Explain on off mechanism operation in PLC.  

4) What is hot rail and cold rail in terms of PLC.  

5) Draw and explain input and out mechanism in PLC 

6) Draw and explain block diagram of PLC 
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UNIT 3 DISTRIBUTED CONTROL SYSTEMS (DCS) 

 

Evolution of DCS - building blocks - different architectures-comparison of architectures- 

detailed descriptions and functions of local control units - basic elements & functions-operator 

stations - data highways - redundancy concepts. 

 
 
3.1 Distributed control system (DCS) 
 
DCS is a control system for a plant or process, where the control elements are distributed 

throughout the system. It is in contrast to non-distributed systems, that uses a single controller at 

a central location. In a DCS, a hierarchy of controllers are connected by communication 

networks for command and for monitoring. To command and to monitor a hierarchy of 

controllers is connected by communications networks. Example scenarios where DCS might be 

used are given below: 
 

 Chemical plants 

 Petrochemical plants (oil) and refineries 

 Pulp and Paper Mills 

 Boiler controls and power plant systems 

 Nuclear power plants 

 Environmental control systems 

 Water management systems 

 Metallurgical process plants 

 Pharmaceutical manufacturing plants 

 Sugar refining plants 

 Dry cargo and bulk oil carrier ships 

 Formation control of multi-agent systems 

 
The processor receives information from input modules and sends information to output 

modules. The input modules receive information from input instruments in the process and 

transmit instructions to the output instruments in the field. Computer buses or electrical buses 

connect the processor and modules through multiplexer or demultiplexers. Also it connect the 

distributed controllers with the central controller and finally to the Human Machine Interface 

(HMI) or control consoles. Early minicomputers were used in the control of industrial processes 

ever since the beginning of the 1960s. For example IBM 1800, was an early computer that had 

input/output hardware to gather process signals in a plant for conversion from field contact 

levels (for digital points) and analog signals to the digital domain. 

The first industrial control computer system was built in the year 1959 at the Texaco Port 

Arthur, Texas, refinery with an RW-300 of the Ramo-Wooldridge Company. DCS was 

introduced in 1975, where both Honeywell and Japanese electrical engineering firm Yokogawa 

introduced their own independently produced DCSs at roughly the same time, with the TDC 

2000 and CENTUM systems. Also US -based Bristol introduced their UCS 3000 universal 

controller in 1975. In 1980, Bailey (now part of ABB) introduced the NETWORK 90 system. In 

1980, Fischer & Porter Company (now also part of ABB) introduced DCI-4000 (DCI stands for 

Distributed Control Instrumentation). DCS largely came due to the increased availability of 

microcomputers and the proliferation of 
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microprocessors in the world of process control. Computers are applied to process automation 

for some time in the form of both Direct Digital Control (DDC) and Set Point Control. In the 

early 1970s Taylor Instrument Company, (now part of ABB) developed the 1010 system, 

Foxboro the FOX1 system and Bailey Controls the 1055 systems. All of them were DDC 

applications implemented within minicomputers (DEC PDP-11, Varian Data Machines, 

MODCOMP etc.) and connected to proprietary Input / Output hardware. Central to the DCS 

model was the addition of control function blocks. One of the first embodiments of object-

oriented software, function blocks were self contained "blocks" of code that emulated analog 

hardware control components and performed tasks that are essential to process control, such as 

execution of PID algorithms. Function blocks continue to endure as the predominant method of 

control for DCS suppliers, and are supported by key technologies such as Foundation Field bus 

today. 

Digital communication between distributed controllers, workstations and other 

computing elements (peer to peer access) are one of the primary advantages of DCS. Attention 

was duly focused on the networks, that provides all important lines of communication that is , 

for process applications, specific functions such as determinism and redundancy. Hence many 

suppliers embraced the IEEE 802.4 networking standard. This decision set the stage for the wave 

of migrations essential when information technology moved into process automation and IEEE 

802.3 rather than IEEE 802.4 prevailed as the control LAN. 

DCS conveyed distributed intelligence to the plant and built up the presence of computers and 

microprocessors in process control, it didn't manage the cost of the scope and openness 

important to bind together plant asset necessities. In various cases, the DCS was just a digital 

replacement of the same functionality provided by analog controllers and a panel board display. 

In 1980s, users began to look at DCSs as a development of the basic process control.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig. 3.1 Evolution of DCS 
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3.2 Traditional Control System Developments 

 
The idea of distributed control systems is not a new one. The early discrete device 

control systems listed in the figure above were distributed around the plant. Individual control 

devices such as governors and mechanical controllers were situated at the process equipment to 

be control local readouts of set points. Control outputs were also available, and a means to 

change the control mode from manual to automatic are also usually provided. It is up to the 

operator to coordinate the control of the numerous gadgets that made up the total process. These 

controllers provides a more flexible way to select and adjust the control algorithms, yet all of the 

elements of the control loop such as sensor, controller, operator interface, and output actuator 

were still located in the field. There was no mechanism for communication between controllers. 

Later in 1930‟s a new architecture was developed in which measurements made at the process 

were converted to pneumatic signals at standard levels, which were then transmitted to the 

central station. The required control signals were computed at this location, then transmitted 

back to the actuating devices. The great advantage of this architecture is that all the necessary 

information will be available to the operator at the central location. Thus, the operator was able 

to make better control decisions to operate the plant with a greater degree of safety and 

economic return. 

Later in 1950s and early 1960s, the technology started to shift from pneumatics to 

electronics . This change reduced the installation cost and also eliminated the time lag in 

pneumatic systems . These advantages became more significant as the size of the plants 

increased. Another consequence of the centralized control architecture was the development of 

the split controller structure . In this type of controller, the operator display section of the 

controller is panel mounted in the control room and the computing section will be located in a 

separate room. 

 

3.3 Resulting System Architectures 
 

As a result of the developments , two industrial control system architectures came into 

existence by the end of the 1970s . The first architecture is a hybrid one, which makes use of a 

combination of discrete control hardware and computer hardware in a central location to 

implement the necessary control functions. In hybrid architecture, the local control of the plant 

operations is implemented by using discrete analog and sequential logic controllers . Operator 

interface is usually provided by panel board instruments. The plant management operations are 

performed by supervisory computer and its associated data acquisition system. The supervisory 

computer is used to perform operations such as operating point optimization, alarming, data 

logging, and historical data storage and retrieval. It is also used to operating point optimization, 

alarming, data logging, and historical data storage and retrieval. 

In the second architecture, all the system functions are implemented in high performance 

computer hardware in a central location. To accomplish this task, redundant computers are 

required so that the failure of a single computer does not shut the whole process .Operator 

interface for the plant management functions is provided using 
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computer-driven VDUs. Operator interface for continuous and sequential closed-loop control are 

also implemented using VDUs. 

The computers can be interfaced to standard panel board instrumentation so that the 

operator in charge can use a more familiar set of operator interface. The major difference 

between the two architecture is the location and the implementation of the first- level continuous 

and sequential logic control functions . By the late 1970s, the hybrid system architecture became 

a more popular approach in industrial practice . The chemical and petroleum process industries 

heavily favored this approach.   
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Fig.3.2 Hybrid system Architecture 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.3  Central computer system Architecture 
 
 
 
         Though centralized computer and hybrid system architectures provides  significant 

advantages over existing architectures, they suffered from a number of disadvantages . They are- 

The CPU represents a single point failure that can shutdown the entire process if it is lost. To 

overcome the above drawback, another computer is used as a „„hot standby‟„ to take over if the 

primary control computer fails. This approach lead to a new architecture which is more 

expensive than an analog control system that performs a comparable set of functions. Another 

problem with these computer-based systems has been that the software required to implement all 

these functions is extremely complex. 
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Fig.3.4 Generalized Distributed Control System Architecture 

 

3.4 COMPARISON WITH PREVIOUS ARCHITECTURES 
 
Scalability and expandability—The hybrid system architecture is quite modular than 

distributed system architecture. The central computer architecture is designed for only a small 

range of applications which is not cost-effective for applications smaller than its design size and 

it cannot be expanded once its memory and performance limits are reached. 

Control capability—Hybrid architecture has only limited functions available in the hardware 

modules .To add a function involves adding hardware and rewiring the control system. While in 

central computer and distributed architectures advantages of using digital control is available 

Operator interfacing capability—The operator interface in the hybrid system consists of 

conventional panel board instrumentation for control and monitoring functions and a separate 

video display unit. In the central computer and distributed architectures, VDUs 

are used as the primary operator interface for supervisory control functions. The VDUs in the 

distributed system are driven by microprocessor which can be applied in a cost effective way to 

small systems as well as large ones.  
Integration of system functions—A high degree of integration minimizes user problems in 

procuring, interfacing, starting up, and maintaining the system. The hybrid system is poorly 

integrated. The central computer architecture is well integrated because the functions are 

performed only by the same hardware. The distributed system lies somewhere in between, 

depending on how well the products are designed to work together. 

Significance of single point fai1ure—In the central computer architecture, the failure of the 

supervisory computer will cause the entire plant to shut down unless a backup computer is used. 

Hence centralized architecture is very sensitive to single-point failures while the hybrid and 

distributed architectures are insensitive to single-point failures due to the modularity of their 

structure. 

Installation costs—The installation costs of the hybrid system is high since custom wiring is 

needed for internal system interconnections and long wiring runs are needed from sensors to 

control cabinets and the large volume of control modules are required to implement the system. 
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The central computer architecture requires less cost the module inter- connection wiring are 

eliminated and VDUs are used to replace much of the panel-board instrumentation. The 

distributed system reduces costs further by using a communication system to replace the sensor 

wiring runs . 

Maintainability—The hybrid system is particularly poor in this area because large number of 

spare modules are required. The central computer architecture is better than hybrid architecture 

since the range of module types is reduced . The maintainability of the distributed system 

architecture is excellent since there are only a few general-purpose control modules in the 

system. The spare parts and personnel training requirements are also minimal in distributed 

architecture. 
 
3.5 A comparison of architectures 
 
While the figure describes the basic elements of all microprocessor based local control units, the 

current offerings of controllers in the market place exhibit endless variations on this structure. 

The controllers differ in size, I/O capability, range of functions provided, and other architectural 

parameters depending on the application and the vendor who designed the equipment. 
 
3.6 Architectural Parameters 

 

When evaluating the controllers in the market or when specifying a new one, the control 

system designer is facing with the problem of choosing a controller architecture that best meets 

the needs of the range of applications in which the controller is to be used. Few of the major 

architectural parameters that must be selected include the following: 

1. Size of controller—This refers to the number of function blocks and/ or language statements 

that can be executed by the controller, and also the number of process I/O channels provided 

by the controller. 

2. Functionality of controller—This refers to the mix of function blocks or language statements 

provided by the controller (e.g., continuous control, logic control, 
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arithmetic functions, or combinations of the above) .Also it refers to the mix of process input and 

output types (e.g, analog or digital) provided by the controller. 

3. Performance of controller—It refers to the rate at which the controller scans inputs, 

processes function blocks or language statements, generates outputs, also includes the 

accuracy with which the controller performs these operations. 

4. Communication channels out of controller— ln addition to process inputs and output 

channels, the controller must provide other communication channels to operator interface 

devices and to other controllers and devices in the system. The number, type and speed of 

these channels are key controller design parameters. 

5. Controller output security—In a real-time process control system, a mechanism must be 

provided (usually manual backup or redundancy) to ensure that the control output is 

maintained despite a controller failure so that a process shutdown can be avoided. 

       Unfortunately, it is not generally possible to select any one of these architectural parameters 

independently from all of the others, since there is a great degree of interaction among them. 

Hence, selecting the best combination for the range of applications to be considered is more a 

matter of engineering judgment than a science. Each vendor of microprocessor based systems 

has a different view of the range of applications intended for the controller, and as a result 

designs an LCU architecture that quite often differs from that of its competitors. To illustrate 

some of the differences in LCU architectures, three representative LCU configurations are 

shown in Figures. They are not intended to represent particular commercially available products 

but, different classes of controllers on the market today.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

              Fig.3.5  LCU Architecture – Configuration A 
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Fig.3.6  LCU Architecture – Configuration B and C 

 
Configuration A represents a class of single-loop LCU that provides both analog and 

digital inputs and outputs and executes both continuous and logic function blocks. Configuration 

B represents an architecture in which two different types of LCUs
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implement the full range of required continuous and logic functions. Configuration C gives a 

multiloop controller architecture in which both continuous and logic functions are performed. 
 
 

Comparison of LCU Architectures   

    

ARCHITECTURE CONFIGURATION A CONFIGURATION B CONFIGURATION C 

PARAMETERS (SINGLE- LOOP) (2 LCU TYPES) (MULTI-LOOP) 

Controller size Number of functions Includes functions System size is 
 needed for single and equivalent 

 PID I/O needed for eight to small DDC 

 loop or motor control loops and a system 

 controller small  

  logic controller  

Controller Uses both Continuous and Uses both 

Functionality continuous logic continuous 

 and logic function function blocks split and logic function 

 blocks between controllers blocks, 

   can support high 

   level 

   languages 

Controller High degree of Requires both Not scalable to very 

Scalability scalability from controller small systems 

 small types even in small  

 to large systems systems  

Controller Requirements can be Because of Hardware must be 

Performance met with functional high 

 inexpensive split, performance performance to 

 hardware requirements are not execute 

  excessive large number of 

   functions 

Communication Need inter module Functional Large 

Channels communications for separation communication 

 control; only requires close requirement to 

 minimum interface human 

 needed for human between controller interface; minimal 

 interface types between controllers. 

Controller Controller has single Lack of single loop Size of controller 

output security loop integrity; integrity requires requires redundancy 

 usually redundancy in in 

 only manual backup critical all applications 

 Is applications.  

 needed    
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LCU Configuration A - In configuration A, the controller size is the minimum that required to 

perform a single loop of control or a single motor control function or other simple sequencing 

function. Two digital outputs are provided to allow the controller to drive a pulsed (raise/lower) 

positioner or actuator. Twice as many inputs as outputs are provided to allow implementation of 

algorithms such as cascade control, temperature compensation of flows, and interlocking of logic 

inputs and continuous control loops. 

A general purpose controller requires both continuous and sequential (logic) function 

blocks to be included in its library. In most industrial control applications, the performance of 

the LCU is adequate to sample all inputs, compute all of the function blocks, and generate all 

outputs in the range of 0.1 to 0.5 seconds maximum. Since configuration has such a small 

number of inputs, function blocks, and outputs, the performance requirement can be met easily 

by a simple and inexpensive set of microprocessor-based hardware (e g an eight-bit 

microprocessor and matching memory components). The communication requirements on 

configuration A for purposes of human interfacing are minimal since only one loop is controlled 

and a few input points monitored. However it is important that a secure inter controller 

communication channel be provided so that the single-loop controller can participate in complex 

control system structures that contains other LCUs. 

An important architectural feature to be considered when evaluating industrial controllers is the 

provision for control output security in commercially available controllers, one or both of the 

following methods are used to permit continued operation of the process in the event of a 

controller failure. 

(1) A backup feature is provided to allow the operator to adjust the control output manually if 

the automatic controller fails, or 

(2) A redundant controller is provided to allow continuation of automatic control if the primary 

controller fails. The choice of method depends on the number of control outputs that would be 

lost if a controller fails. 

An operator can handle a small number of loops (usually in the range of one to four) manually, 

that is so for small controllers usually only a manual backup is provided. In case of controller 

architecture A, the single-loop integrity of the controller configuration allows the simple and 

inexpensive option of manual backup to be used in most applications. For controllers that 

implement large numbers of control loops, some form of control redundancy is usually provided. 

 

LCU Configuration B - In the first place, two different types of LCUs (continuous control and 

logic control are used to provide the full range of required controller functionality). In general 

increasing the number of types of controllers in the system has both positive and negative effects 

on the positive side, that is the specialized design of each controller allows it to match the 

functional needs of the corresponding application more closely than would a single general 

purpose controller. As a result, a particular control application would require a smaller number 

of controller hardware modules on the other hand, an increase in the number of controller types 

from one to two also results in increased interfacing requirements between controllers, additional 

documentation and training needs, and a decrease in production volume for each controller type 

(resulting in higher unit costs and longer lead times). In addition, this increase will reduce the 

scalability of the resulting system, since in the general case both of the controller types 
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will be needed even in the smallest system. The optimum tradeoff is dependent on the range of 

applications foreseen for the system being designed. 

With respect to controller size, configuration B is medium in scale. The continuous control 

portion has the form of an eight-loop controller and the logic control portion can be viewed as a 

small programmable logic controller (PLC) or equivalent. Because of the split in functions and 

the relatively small size of each controller, the performance requirements on the controller 

hardware is to meet the 0.1 to 0.5 seconds cycle time are not excessive. This controller is usually 

implemented using a high performance eight bit or an average performance 16-bit 

microprocessor and matching memory components. 

In the area of communication channels required, configuration B calls for a well designed 

interface between the two controller types, since in many systems both controllers must operate 

in close coordination to integrate continuous anti logic control functions. The ability to 

communicate with other controllers in the distributed system must be provided, but the 

communication performance level need not be as high as in configuration A since a greater 

percentage of communications takes place within the LCU. Of course, as with Configuration A, 

a communication channel to human interface devices has to be provided, but the channel must 

have a larger bandwidth because of the larger volume of traffic required per controller. 

Finally, regarding output security, the lack of single-loop integrity of configuration B implies 

that a redundant controller must be used in all critical applications (i e , those in which a 

controller failure would cause a significant upset to the process). Of course if the application 

requires both continuous and logic control, redundancy must be provided for both of the 

controller types in the system. It has to be noted that full one-on-one redundancy often is not 

used in commercially available controllers. Instead, one redundant controller may be used to 

back up several primary controllers. This can reduce the cost of redundancy to some extent, but 

increases the complexity of the hardware used for interfacing the primary and backup 

controllers. 

 

LCU Configuration C is closer to the structure to direct digital control (DDC) systems than the 

other two configurations. It is designed as multiloop controller in which all functions are 

performed by one CPU in conjunction with its associated memory and I/O boards. This places 

stringent requirements on the performance of the hardware since all of the control algorithms in 

the LCU must be executed within 0.5 seconds of less. This LCU configuration is implemented 

with one or more 16-bit microprocessors or a 32-bit microprocessor in conjunction with support 

hardware such as arithmetic coprocessors to attain the required speed. 

In this configuration, it also becomes feasible that it include a high-level Language 

(usually BASIC or FORTRAN) in addition to or instead of function blocks. This architecture has 

a number of advantages over configurations A and B. For example, requirements for 

communication among controllers are minimal because of the high density of functions 

implemented per controller. Also this LCU‟s high-level language capability allows it to 

implement complex user-defined control and computational algorithms. However, it is not as 

scalable to small systems as the other two architectures, and the communication port or ports to 

the operator interface hardware must handle a large volume of traffic. In addition, since a failure 

of this type of LCU could affect a large number of control loops, are redundant CPU (and 

perhaps redundant I/O hardware as 
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well). Redundant hardware may not be required if only a few loops are affected by a failure or if 

the controller is performing only high-level control functions and is not manipulating control 

outputs directly. 
 
3.5 LOCAL CONTROL UNIT (LCU) 

 
* Smallest collection of hardware that performs closed loop control and interfaces directly with 

the process. 

* It takes input from process measuring devices and commands from operator. 

* Computes the control outputs needed to make process follow the command. 

* Sends control output to actuators, drives valves and other mechanical devices. 

 

Requirements of LCU 

  
* Flexibility of changing the control configuration. 

* Ability to use the controller without being a computer expert. 

* Ability of the LCU to communicate with other elements in the system. 

* Ability to bypass the failed controller manually.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Fig.3.7  Basic Elements of a Local Control Unit 
 

The LCU also have input/output circuitry so that it can communicate with the external 

world by reading in or receiving, analog and digital data as well as sending similar signals out. 

Generally, the CPU communicates with the other elements in the LC U over an internal shared 

bus that transmits addressing, data control, and status information in addition to the data .The 

controller structure shown in figure is the minimum that required to perform basic control 

functions. In a noncritical application in which the control function never changes, this structure 

might be adequate. The control algorithms could be coded in assembly language and loaded into 

ROM. After the controller was turned on, it would read inputs, execute the control algorithms, 

and generate control outputs in a fixed cycle in definitely. However, because the situation is 
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not this simple in industrial control applications, the controller structure shown in Figure must be 

enhanced to include the following: 
 
1. Flexibility of changing the control configuration -In industrial applications the same 

controller product usually is used to implement a great variety of different control strategies. 

Even for a particular strategy, the user usually wants the flexibility of changing the control 

system tuning parameters without changing the controller hardware. Therefore the control 

configuration cannot be burned into ROM but must be stored in a memory medium whose 

contents can be changed, such as RAM. Unfortunately, RAM is usually implemented using 

semiconductor technology that is volatile that is, it loses its contents if the power is turned off 

(whether due to power failure, routine maintenance or removal of the controller from its 

cabinet). Therefore, some provision must be made for restoring the control configuration, 

either from an external source or from a nonvolatile memory within the controller itself.  

2. Ability to use the controller without being a computer expert-The typical user of an industrial 

control system is generally familiar with the process to be controlled, knows the basics of 

control system design, and has worked with electric analog or pneumatic control systems 

before. However, the user is usually not capable of or interested in programming a 

microprocessor in assembly language. He or she simply wants to be able to implement the 

selected control algorithms. Therefore a mechanism for allowing the user to „ configure” the 

LCU‟s control algorithms in a relatively simple way must be provided. 

3. Ability to bypass the controller in case it fails so that the process still can be controlled 

manually- Shutting down the process is very expensive and undesirable for the control system 

user. Since all control equipment has the potential of failing no matter how carefully it has 

been designed, the system architecture must allow an operator to “take over” the control loop 

and run it by hand until the control hardware is repaired or replaced. 

4. Ability of the LCU to communicate with other LCUs and other elements in the system-

Controllers in an industrial control system do not operate in isolation but must work in 

conjunction with other controllers, devices, and human interface devices. 
 
 

3.6 Redundant Controller Designs 

The manual backup approach to control system security is viable if the LCU in question 

handles only a few loops and if the process being controlled is relatively slow. On the other hand 

situations, however, require some form of controller redundancy to ensure that automatic control 

of the process is maintained in spite of an LCU failure. 

By their nature, redundant control system structures are very complex than those that rely on 

manual backup. The addition of redundant elements to the basic control system will always 

result in an increase in system cost and also in additional maintenance to service the extra 

hardware. The redundant structure must be designed carefully to ensure that system reliability 

actually increases enough to offset these drawbacks. Some of the guidelines to follow in 

evaluating or designing a redundant control system are given as follows. 

 The redundant architecture should be kept as simple as possible as there is a law of diminishing 

returns in redundancy design. At some point, adding more hardware will reduce system 

reliability. 

1. As much as possible, the architecture must minimize single points of failure. The redundant 

hardware elements must be in dependent as possible so that the failure of any one does not 
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bring the rest down as well (in each design, however, there is always at least one single point 

of failure; this element must be designed to be as simple and reliable as possible.) 

2. Also, the redundant nature of the controller configuration should be transparent to the user; 

that is, the user should be able to deal with the redundant system in the same way as a non 

redundant one. This includes both operational and engineering functions (e.g., control system 

configuration and tuning). If one of the redundant elements fails, the steps to follow in 

repairing and restarting the system is to be clear to the user. 

3. The process should not be bumped or disturbed either when one of the redundant elements 

fails or when the user puts the repaired element back on line. 

4. After a control element has failed, the system should not have to rely on it to perform any 

positive action or to provide any necessary information to other elements in the system until 

after repair or replacement . 

5. The redundant LCU architecture must have the capability for “hot” spare replacement; that is, 

allow for the replacement of failed redundant elements without shutting down the total LCU. 

The following discussion will describe, in order to increase complexity, several approaches 

for designing a redundant LCU architecture: 

 CPU redundancy 

 One-on-one redundancy 

 One-on-many redundancy 

 Multiple active redundancy 

In each case, the key advantages and disadvantages of the approach will be listed. No attempt 

will be made to recommend a best approach; as always, this will depend on the particular control 

system application. 

 

3.6.1 CPU Redundancy 
 

Only one redundant element will be active at a time. The backup element takes over if 

the primary fails. In the first configuration, only the CPU portion of the LCU is redundant, but 

the I/O circuitry will not be redundant. This configuration is more popular in areas where large 

number of control loops have to be implemented. Only one of the CPUs is active which 

performs operations such as reading inputs, performing control computations, and generating 

control outputs at any one time. The user designates the primary CPU, through the priority 

arbitrator circuit shown in Figure, using a switch setting mechanism. After startup, the arbitrator 

starts monitoring the operation of the primary CPU and if the arbitrator detects a failure in the 

primary , it will transfer the priority to the backup. During this operation, the backup CPU will 

periodically update its internal memory by reading the state of the primary CPU through the 

arbitrator .Though, both CPUs are connected to the plant communication system, only the 

primary will be active in transmitting and receiving messages over this link. The operator and 

engineering interface used in this system is the high-level human interface which is usually a 

CRT- 
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based video display unit that interfaces with the LCU over the shared communication facilities. 

Only the primary CPU will accept control commands and tuning changes transmitted by the 

VDU. The primary CPU, in turn, updates the backup CPU with this updated information. By 

following the same methodology, all monitoring and status information in the LCU is 

transmitted to the VDU by the primary CPU.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.8  CPU Redundancy Configuration 
 

The key advantages of this approach- relatively easy to implement and cost-effective. 

The redundant elements can interface easily to the plant communication facilities and the 110 

bus, which are shared communication channels. The cost of the redundant hardware will not be 

excessive since only the CPU hardware is duplicated. Problems may occur with this architecture 

if it is not designed properly. For example, the I/O bus and the priority arbitrator will represent 

potential single points of failure in the configuration. They must be designed in such a way that 

their failure does not affect both CPUs . Another potential problem is that the low-level operator 

interface is physically located near the LCU. 
 
3.6.2 One-on-One Redundancy 

The remaining three redundancy approaches provides redundancy in the control output 

circuit as well as in the CPU hardware. Hence, most of these architectures do not support a low-

level operator interface for manual backup purposes. This approach shown in Figure provides a 

total backup LCU to the primary LCU . An output switching block must be included to transfer 

the outputs when the controller fails, since the control output circuit is duplicated . Similar to 

first redundant configuration a priority arbitrator designates the primary and backup LCUs and 

activates the backup if a failure in the primary is detected. It also serves as the means to update 

the internal states of the backup 
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LCU . In this configuration, the arbitrator has the additional responsibility of sending a 

command to the output switching circuitry if the primary LCU fails, causing the backup LCU to 

generate the control outputs Communications with the high-level human interface which are 

handled in the same way as in the CPU-redundant configuration.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.9  One –on – One Backup Redundancy 
 

The main advantage of the one-on-one configuration are no manual backup is needed. It 

eliminates any questions that may arise with a partial redundancy approach , particularly 

regarding the decision on which elements are to be redundant. However, it also suffers from a 

number of disadvantages . First, it is an expensive approach to redundancy, but additional 

equipments must be included to manage the redundant ones. It also suffers from potential single-

point failure problems with the arbitrator and the output switching circuitry. 
 
3.6.3 One-on -Many Redundancy 

In this configuration, a single LCU is used as a standby to back up any one of several 

primary LCUs. An arbitrator is required to monitor the status of the primary controller and 

switch to the backup when a failure occurs. Unfortunately, there is no way to know beforehand, 

for which primary controller the backup has to replace. Hence, a very general switching matrix 

is necessary to transfer the I/O from the failed controller to the backup. It is also not possible to 

preload the backup controller with the control system configuration for any particular primary 

LCU. Rather, the configuration is loaded into the backup LCU from the primary LCU only after 

the primary has failed. The cost of this approach is lower than the other three redundancy 

configurations because only a small portion of the control hardware is duplicated. The switching 

matrix is an element whose operation is essential to control the loops concerned, but it also 

represents a potential single point failure. Because of this complexity, it must be designed very 

carefully so that its failure does not affect the other loops. Second, the approach relies on the 

failed controller to provide a copy of the control system configuration to the backup LCU. A 

better approach would be provided if we store a copy of each primary LCU‟s control 
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configuration in the arbitrator. When an LCU failure occurs, the arbitrator could then load the 

proper configuration into the backup LCU. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.10  Multiple Active  Redundancy 
 

 

In this approach, three or more redundant LCUs are used to perform the same control 

functions. In this one of the redundant controllers will be active at the same time in reading 

process inputs, computing the control calculations, and generating control outputs to the process. 

Each LCU has access to all of the process inputs needed to implement the control configuration. 

An output voting device selects one of the valid control outputs from the controllers and 

transmits it to the control process. When a controller fails, it is designed to generate an output 

outside the normal range. The output voting device will then discard this output as an invalid 

one. In the case of analog control outputs, the output voting device, is often designed to select 

the median signal; in the case of digital control outputs, the voting device is designed to select 

the signal generated by at least two out of the three controllers. Each controller has access to the 

output of the voting device to check its own operation and shut down if its output disagrees 

significantly with that of the other controllers. 
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Fig.3.11 Multiple Active Redundancy 
 

The multiple active redundancy configuration is a very sophisticated approach which is 

very complex and obviously costs three times more than a non redundant system. In its modified 

form it has been used in safety systems for nuclear power plants. More often, this configuration 

has been used in high-reliability computer control applications such as aerospace industry . This 

approach may find its way into selected process control applications as hardware costs continue 

to decline and configurations become standardized. The main advantage of this approach is that, 

as long as the output voting device is designed for high reliability, it significantly increases the 

reliability of the control system. However, this architecture suffers various disadvantages in 

addition to cost. In most of the applications where this configuration has been used so far, the 

approach has implemented a fixed configuration. The process of ensuring that control system 

configuration and tuning changes have been implemented properly is not trivial. Other 

drawbacks of this approach are that the added hardware requires increased maintenance and also 

the system is very complex. 
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UNIT- III       Part- A 

Sl.no Part A - Questions  CO Level 

1 Define DCS CO2 L1 

2 Write few applications of DCS CO2 L6 

3 Point out the various elements in DCS  CO2 L4 

4 Discuss the significance of LLHI CO2 L2 

5 List the various architecture of DCS CO2 L1 

6 Classify the various redundant controllers in DCS CO2 L1 

7 Define redundant controller CO2 L1 

8 Tell the functions of  LCU CO2 L1 

9 Compare LLHI and HLHI CO2 L5 

10 Report  the architecture parameter to be considered 

while selecting LCU 

CO2 L3 

 

 

UNIT- III     Part – B 

Sl.no Part B - Questions  CO Level 

1 Explain the generalized architecture of DCS with neat 

sketch 

CO2 L2 

2 Discuss and compare the different architecture of DCS CO2 L2 

3 Sketch and discuss about local control unit in DCS  CO2 L3 

4 Explain and compare the various redundancy controllers CO2 L2 

5 Compare Hybrid  and central computer system 

architecture with construction  and working 

CO2 L2 

6 List different configurations  of LCU, explain the 

various blocks in LCU 

CO2 L1, L2 

 



229  

 
 

 

 

SCHOOL OF ELECTRICAL AND ELECTRONICS 

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING 

 

UNIT-V-VIRTUAL BIOINSTRUMENTATION – SEIA1503 



230  

I Introduction 
 

                        Virtual instrumentation - Definition, flexibility - Block diagram and architecture of virtual 

instruments - Virtual instrumentsversus traditional instruments -LabVIEW software and 

interfacing with Hardware, VI programming techniques - VI, sub VI,loops and charts, 

arrays, clusters and graphs, interfacing LabView with Matlab .-LabVIEW applications in 

Instrumentation. 

 

 
 INTRODUCTION 

 

An instrument is a device designed to collect data from an environment, or from a unit under 

test, and to display information to a user based on the collected data. Such an instrument may 

employ a transducer to sense changes in a physical parameter, such as temperature or pressure, and 

to convert the sensed information into electrical signals, such as voltage or frequency variations. 

The term instrument may also be defined as a physical software device that performs an analysis on 

data acquired from another instrument and then outputs the processed data to display or recording 

devices. This second category of recording instruments may include oscilloscopes, spectrum 

analyzers, and digital millimeters. The types of source data collected and analyzed by instruments 

may thus vary widely, including both physical parameters such as temperature, pressure, distance, 

frequency and amplitudes of light and sound, and also electrical parameters including voltage, 

current, and frequency. 

Virtual instrumentation is an interdisciplinary field that merges sensing, hardware, and 

software technologies in order to create flexible and sophisticated instruments for control and 

monitoring applications. The concept of virtual instrumentation was born in late 1970s, when 

microprocessor technology enabled a machine‘s function to be more easily changed by changing its 

software. The flexibility is possible as the capabilities of a virtual instrument depend very little on 

dedicated hardware – commonly, only application specific signal conditioning module and the 

analog-to- digital converter used as interface to the external world. Therefore, simple use of 

computers or specialized onboard processors in instrument control and data acquisition cannot be 

defined as virtual instrumentation. Increasing number of biomedical applications use virtual 

instrumentation to improve insights into the underlying nature of complex phenomena and reduce 

costs of medical equipment and procedures. 

 

 History of Instrumentation Systems 
 

Historically, instrumentation systems originated in the distant past, with measuring rods, 

thermometers, and scales. In modern times, instrumentation systems have generally consisted of 

individual instruments, for example, an electromechanical pressure gauge comprising a sensing 

transducer wired to signal conditioning circuitry, outputs a processed signal to a display panel and 
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perhaps also to a line recorder, in which a trace of changing conditions is linked onto a rotating 

drum by a mechanical arm, creating a time record of pressure changes. Complex systems such as 

chemical process control applications employed until the 1980s consisted of sets of individual 

physical instruments wired to a central control panel that comprised an array of physical data 

display devices such as dials and counters, together with sets of switches, knobs, and buttons for 

controlling the instruments. A history of virtual instrumentation is characterized by continuous 

increase of flexibility and scalability of measurement equipment. Starting from first manual- 

controlled vendor- defined electrical instruments, the instrumentation field has made a great 

progress toward contemporary computer-controlled, user-defined, sophisticated measuring 

equipment. Instrumentation had the following phases: 

– Analog measurement devices 

 
– Data acquisition and processing devices 

 
– Digital processing based on general purpose computing platform 

 
– Distributed virtual instrumentation 

 
The first phase is represented by early ―pure‖ analog measurement devices, such as oscilloscopes 

or EEG recording systems. They were completely closed dedicated systems, which included power 

suppliers, sensors, translators, and displays. They required manual settings, presenting results on 

various counters, gauges, CRT displays, or on the paper. Further use of data was not part of the 

instrument package, and an operator had to physically copy data to a paper notebook or a data sheet. 

Performing complex or automated test procedures was rather complicated or impossible, as 

everything had to be set manually. 

Second phase started in 1950s, as a result of demands from the industrial control field. 

Instruments incorporated rudiment control systems, with relays, rate detectors, and integrators. That 

led to creation of proportional– integral–derivative (PID) control systems, which allowed greater 

flexibility of test procedures and automation of some phases of measuring process. Instruments 

started to digitalize measured signals, allowing digital processing of data, and introducing more 

complex control or analytical decisions. However, real-time digital processing requirements were 

too high for any but an onboard special purpose computer or digital signal processor (DSP). The 

instruments still were standalone vendor defined boxes. 

In the third phase, measuring instruments became computer based. They began to include 

interfaces that enabled communication between the instrument and the computer. This relationship 

started with the general-purpose interface bus (GPIB) originated in 1960s by Hewlett-Packard (HP), 

then called HPIB, for purpose of instrument control by HP computers. Initially, computers were 

primarily used as off-line instruments. They were further processing the data after first recording the 

measurements on disk or type. As the speed and capabilities of general-purpose  computers 

advanced exponentially general-purpose computers became fast enough for complex real-time 

measurements. It soon became possible to adapt standard, by now high-speed computers, to the 

online applications required in real-time measurement and control. New general-purpose computers 
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from most manufactures incorporated all the hardware and much of the general software required  

by the instruments for their specific purposes. The main advantages of standard personal computers 

are low price driven by the large market, availability, and standardization. Although computers‘ 

performance soon became high enough, computers were still not easy to use for experimentalists. 

Nearly all of the early instrument control programs were written in BASIC, because it had 

been the dominant language used with dedicated instrument controllers. It required engineers and 

other users to become programmers before becoming instrument users, so it was hard for them to 

exploit potential that computerized instrumentation could bring. Therefore, an important milestone 

in the history of virtual instrumentation happened in 1986, when National Instruments introduced 

LabVIEW 1.0 on a PC platform. LabVIEW introduced graphical user interfaces and visual 

programming into computerized instrumentation, joining simplicity of a user interface operation 

with increased capabilities of computers. Today, the PC is the platform on which most 

measurements are made, and the graphical user interface has made measurements user-friendlier. As 

a result, virtual instrumentation made possible decrease in price of an instrument. As the virtual 

instrument depends very little on dedicated hardware, a customer could now use his own computer, 

while an instrument manufactures could supply only what the user could not get in the general 

market. 

The fourth phase became feasible with the development of local and global networks of 

general purpose computers. Since most instruments were already computerized, advances in 

telecommunications and network technologies made possible physical distribution of virtual 

instrument components into telemedical systems to provide medical information and services at a 

distance. 

Possible infrastructure for distributed virtual instrumentation includes the Internet, private 

networks, and cellular networks, where the interface between the components can be balanced for 

price and performance. 

The introduction of computers into the field of instrumentation began as a way to couple an 

individual instrument, such as a pressure sensor, to a computer, and enable the display of 

measurement data on virtual instrument panel on the  computer  screen  using  appropriate  

software. The instrumental so contained buttons for controlling the operation of the sensor. Thus, 

such instrumentation software enabled the creation of a simulated physical instrument, having the 

capability to control physical sensing components. 

 Virtual Instrumentation 
 

Virtual instrumentation achieved mainstream adoption by providing a new model for building 

measurement and automation systems. Keys to its success include rapid PC advancement; explosive 

low-cost, high-performance data converter (semiconductor) development; and system design 

software emergence. These factors make virtual instrumentation systems accessible to a very broad 

base of users. 
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Definition 

A virtual instrumentation system is software that is used by the user to develop a 

computerized test and measurement system, for controlling an external measurement hardware 

device from a desktop computer, and for displaying test or measurement data on panels in the 

computer screen. The test and measurement data are collected by the external device interfaced with 

the desktop computer. Virtual instrumentation also extends to computerized systems for controlling 

processes based on the data collected and processed by a PC based instrumentation system. 

 Block diagram and architecture of a virtual instrument 

 

A virtual instrument is composed of the following blocks: 

 

 Sensor module 

 Sensor interface 

 Information systems interface 

 Processing module 

 Database interface 

 User interface 

Figure shows the general architecture of a virtual instrument. The sensor module detects 

physical signal and transforms it into electrical form, conditions the signal, and transforms it into a 

digital form for further manipulation. Through a sensor interface, the sensor module communicates 

with a computer. Once the data are in a digital form on a computer, they can be processed, mixed, 

compared, and otherwise manipulated, or stored in a database. 

Then, the data may be displayed, or converted back to analog form for further process control. 

Virtual instruments are often integrated with some other information systems. In this way, the 

configuration settings and the data measured may be stored and associated with the available 

records. In following sections each of the virtual instruments modules are described in more detail. 

 

 

 

Fig 1: Architecture of a virtual instrument 
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 Sensor Module 
 

The sensor module performs signal conditioning and transforms it into a digital form for further 

manipulation. Once the data are in a digital form on a computer, they can be displayed, processed, 

mixed, compared, stored in a database, or converted back to analog form for further process control. 

The database can also store configuration settings and signal records. The sensor module interfaces 

a virtual instrument to the external, mostly analog world transforming measured signals into 

computer readable form. A sensor module principally consists of three main parts: 

• The sensor 

• The signal conditioning part 

• The A/D converter 
 

The sensor detects physical signals from the environment. If the parameter being measured is 

not electrical, the sensor must include a transducer to convert the information to an electrical signal, 

for example, when measuring blood pressure. 

The signal-conditioning module performs (usually analog) signal conditioning prior to AD 

conversion. This module usually does the amplification, transducer excitation, linearization, 

isolation, or filtering of detected signals. 

The A/D converter changes the detected and conditioned voltage into a digital value. The 

converter is defined by its resolution and sampling frequency. The converted data must be precisely 

time- stamped to allow later sophisticated analyses. Although most biomedical sensors are 

specialized in processing of certain signals, it is possible to use generic measurement components, 

such as data acquisition (DAQ), or image acquisition (IMAQ) boards, which may be applied to 

broader class of signals. Creating generic measuring board, and incorporating the most important 

components of different sensors into one unit, it is possible to perform the functions of many 

medical instruments on the same computer. 

 Sensor Interface 

 

There are many interfaces used for communication between sensors modules and the computer. 

According to the type of connection, sensor interfaces can be classified as wired and wireless.Wired 

Interfaces are usually standard parallel interfaces, such as GPIB, Small Computer Systems Interface 

(SCSI), system buses (PCI eXtension for Instrumentation PXI or VME Extensions for 

Instrumentation (VXI), or serial buses (RS232 or USB interfaces).Wireless Interfaces are 

increasingly used because of convenience. Typical interfaces include 802.11 family of standards, 

Bluetooth, or GPRS/GSM interface. Wireless communication is especially important for implanted 

sensors where cable connection is impractical or not possible. In addition, standards, such as 

Bluetooth, define a self-identification protocol, allowing the network to configure dynamically and 

describe itself. In this way, it is possible to reduce installation cost and create plug-and-play like 

networks of sensors. Device miniaturization allowed development of Personal Area Networks 

(PANs) of intelligent sensors Communication with medical devices is also standardized with the 

IEEE 1073 family of standards. This interface is intended to be highly robust in an environment 
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where devices are frequently connected to and disconnected from the network. 

 
 Processing Module 

 

Integration of the general purpose microprocessors/microcontrollers allowed flexible 

implementation of sophisticated processing functions. As the functionality of a virtual instrument 

depends very little on dedicated hardware, which principally does not perform any complex 

processing, functionality and appearance of the virtual instrument may be completely changed 

utilizing different processing functions. Broadly speaking, processing function used in virtual 

instrumentation may be classified as analytic processing and artificial intelligence techniques. 

Analytic functions define clear functional relations among input parameters. Some of the 

common analyses used in virtual instrumentation include spectral analysis, filtering, windowing, 

transforms, peak detection, or curve fitting. Virtual instruments often use various statistics function, 

such as, random assignment and bio statistical analyses. Most of those functions can nowadays be 

performed in real-time. 

. Artificial intelligence technologies could be used to enhance and improve the efficiency, the 

capability, and the features of instrumentation in application areas related to measurement, system 

identification, and control. These techniques exploit the advanced computational capabilities of 

modern computing systems to manipulate the sampled input signals and extract the desired 

measurements. Artificial intelligence technologies, such as neural networks, fuzzy logic and expert 

systems, are applied in various applications, including sensor fusion to high- level sensors, system 

identification, prediction, system control, complex measurement procedures, calibration, and 

instrument fault detection and isolation. Various nonlinear signal processing, including fuzzy logic 

and neural networks, are also common tools in analysis of biomedical signals. Using artificial 

intelligence it is even possible to add medical intelligence to ordinary user interface devices. For 

example, several artificial intelligence techniques, such as pattern recognition and machine 

learning, were used in a software-based visual-field testing system. 

 

 Database Interface 

 

Computerized instrumentation allows measured data to be stored for off-line processing, or to keep 

records as a part of the patient record. There are several currently available database technologies 

that can be used for this purpose. Simple usage of file systems interface leads to creation of many 

proprietary formats, so the interoperability may be a problem. The eXtensible Markup Language 

(XML) may be used to solve interoperability problem by providing universal syntax. The XML is a 

standard for describing document structure and content. It organizes data using markup tags, 

creating self-describing documents, as tags describe the information it contains. Contemporary 

database management systems such SQL Server and Oracle support XML import and export of 

data. Many virtual instruments use DataBase Management Systems(DBMSs). They provide 

efficient management of data and standardized insertion, update, deletion, and selection. Most of 
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these DBMSs provided Structured Query Language (SQL) interface, enabling transparent execution 

of the same programs over database from different vendors. Virtual instruments usethese DMBSs 

using some of programming interfaces, such as ODBC, JDBC,ADO, and DAO. 

 Information System Interface 
 

Virtual instruments are increasingly integrated with other medical information systems, such as 

hospital information systems. They can be used to create executive dashboards, supporting decision 

support, real time alerts, and predictive warnings. Some virtual interfaces toolkits, such as 

LabVIEW, provide mechanisms for customized components, such as ActiveX objects, that allows 

communication with other information system, hiding details of the communication from virtual 

interface code. In Web based applications this integration is usually implemented using Unified 

Resource Locators (URLs). Each virtual instrument is identified with its URL, receiving 

configuration settings via parameters. The virtual instrument then can store the results of the 

processing into a database identified with its URL. 

 Presentation and Control 

An effective user interface for presentation and control of a virtual instrument affects efficiency and 

precision of an operator do the measurements and facilitates result interpretation. Since computer‘s 

user interfaces are much easier shaped and changed than conventional instrument‘s user interfaces, 

it is possible to employ more presentation effects and to customize the interface for each user. 

According to presentation and interaction capabilities, we can classify interfaces used in virtual 

instrumentation in four groups: 

• Terminal user interfaces 

• Graphical user interfaces 

• Multimodal user interfaces and 

• Virtual and augmented reality interfaces 

 
Terminal User Interfaces 

First programs for instrumentation control and data acquisition had character-oriented 

terminal user interfaces. This was necessary as earlier general-purpose computers were not capable 

of presenting complex graphics. As terminal user interfaces require little of system resources, they 

were implemented on many platforms. In this interfaces, communication between a user and a 

computer is purely textual. The user sends requests to the computer typing commands, and receives 

response in a form of textual messages. 

 

Graphical User Interfaces 

Graphical user interfaces (GUIs) enabled more intuitive human–computerinteraction, making 

virtual instrumentation more accessible. Simplicity ofinteraction and high intuitiveness of graphical 

user interface operations madepossible creation of user-friendlier virtual instruments. GUIs allowed 

creationof many sophisticated graphical widgets such as graphs, charts, tables, gauges,or meters, 

which can easily be created with many user interface tools. 

 
Multimodal Presentation 

In addition to graphical user interfaces that improve visualization, contemporarypersonal 

computers are capable of presenting other modalities suchas sonification or haptic rendering. 
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Multimodal combinations of complementarymodalities can greatly improve the perceptual quality 

of user interfaces. 

 
Virtual Instruments versus Traditional Instruments 

Stand-alone traditional instruments such as oscilloscopes and waveform generators are very 

powerful, expensive, and designed to perform one or more specific tasks defined by the vendor. 

However, the user generally cannot extend or customize them. The knobs and buttons on the 

instrument, the built-in circuitry, and the functions available to the user, are all specific to the nature 

of the instrument. In addition, special technology and costly components must be developed to  

build these instruments, making them very expensive and slowto adapt. 

Table 1: Traditional Instruments Vs Virtual Instruments 
 

Traditional Instruments Virtual Instruments 

Vendor defined User-defined 

Function specific,stand alone with limited 

connectivity 

Application oriented system with connectivity 

to networks,peripherals, and applications 

Hardware is the key Software is the key 

Expensive Low cost , reusable 

Closed, fixed functionality Open, flexible functionality 

Slow turn on technology Fast turn on technology 

Minimal economics of scale Maximum economics of scale 

High development and maintenance cost Software minimizes development and 

maintenance cost 

 
 Advantages of VI 

The virtual instruments running on notebook automatically incorporate their portable nature 

to the Engineers and scientists whose needs, applications and requirements change very quickly, 

need flexibility to create their own solutions. We can adapt a virtual instrument to our particular 

needs without having to replace the entire device because of the application software installed on 

the PC and the wide range of available plug-in hardware. 

Performance 

In terms of performance, LabVIEW includes a compiler that produces native code for the 

CPU platform. The graphical code is translated into executable machine code by interpreting the 

syntax and by compilation. The LabVIEW syntax is strictly enforced during the editing process and 

compiled into the executable machine code when requested to run or upon saving. In the latter case, 

the executable and the source code are merged into a single file. The executable runs with the help 

of the LabVIEW run-time engine, which contains some precompiled code to perform common tasks 

that are defined by the G language. The run-time engine reduces compile time and also provides a 

consistent interface to various operating systems, graphic systems, hardware components, etc. 

 
Platform-Independent Nature 

A benefit of the LabVIEW environment is the platform-independent nature of the G-code, 
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which is (with the exception of a few platform specific functions) portable between the different 

LabVIEW systems for different operating systems (Windows, MacOSX, and Linux). National 

Instruments is increasingly focusing on the capability of deploying LabVIEW code onto an 

increasing number of targets including devices like Pharlap OS-based LabVIEW realtime 

controllers, PocketPCs, PDAs, Fieldpoint modules, and into FPGAs on special boards. 

 

Flexibility 

Except for the specialized components and circuitry found in traditional instruments, the 

general architecture of stand-alone instruments is very similar to that of a PC-based virtual 

instrument. Both require one or more microprocessors, communication ports (for example, serial 

and GPIB), and display capabilities, as well as data acquisition modules. These devices differ from 

one another in their flexibility and the fact that these devices can be modified and adapted to the 

particular needs. 

 
Lower Cost 

By employing virtual instrumentation solutions, lower capital costs, system development costs, 

and system maintenance costs are reduced, increasing the time to market and improving the quality 

of our own products. 

 
Plug-In and Networked Hardware 

There is a wide variety of available hardware that can either be plugged into the computer or 

accessed through a network. These devices offer a wide range of data acquisition capabilities at a 

significantly lower cost than that of dedicated devices. 

 

The Costs of a Measurement Application 

The costs involved in the development of a measurement application can be divided into five 

distinct areas composed of hardware and software prices and several time costs. The price of the 

hardware and software was considered as the single largest cost of their most recent test or 

measurement system. However, the cumulative time costs in the other areas make up the largest 

portion of the total application cost. 

 
Reducing System Specification Time Cost 

Deciding the types of measurements to take and the types of analysis to perform takes time. 

Once the user has set the measurement specifications, the user must then determine exactly the 

method to implement the measurement system. The time taken to perform these two steps equals 

the system specification time. 

 

Lowering the Cost of Hardware and Software 

The price of measurement hardware and software is undoubtedly the most visible cost of a 

data-acquisition system. Many people attempt to save money in this area without considering the 

effect on the total development cost. 

 
Minimizing Set-Up and Configuration Time Costs 

Once the users have specified and purchased measurement hardware, the real task of 

developing the application begins. However, the user must first install the hardware and software, 

configure any necessary setting and ensure that all pieces of the system function properly. 

 

Dataflow Programming 



239  

Lab VIEW follows a dataflow model for running VIs. A block diagram node executes when 

all its inputs are available. When a node completes execution, it supplies data to its output terminals 

and passes the output data to the next node in the dataflow path. Visual Basic, C + +, JAVA, and 

most other text-based programming languages follow a control flow  model of program execution. 

In control flow, the sequential order of program elements determines the execution order of a 

program. For a dataflow-programming example, consider a block diagram that adds two numbers 

and then subtracts 50.00 from the result of the addition as illustrated in Fig. In this case, the block 

diagram executes from left to right, not because the objects are placed in that order, but because the 

Subtract function cannot execute until the Add function finishes executing and passes the data to the 

Subtract function. Remember that a node executes only when data are available at all of its input 

terminals, and it supplies data to its output terminals only when it finishes execution. 

In the following example in Fig. 2.consider which code segment would execute first – the 

Add, Random Number, or Divide function. In a situation where one code segment must execute 

before another and no data dependency exists between the functions, the user can use other 

programming methods, such as error clusters, to force the order of execution. 

 
 

Fig. 2. Dataflow programming example 

 

 
„G‟ Programming 

The ‗G‘ sequence structure is used to control execution order when natural data dependency 

does not exist. The user also can create an artificial data dependency in which the receiving node 

does not actually use the data received. Instead, the receiving node uses the arrival of data to trigger 

its execution. The programming language used in LabVIEW, called ―G‖, is a dataflow language. 

Execution is determined by the structure of a graphical block diagram (the LV-source code) on 

which the programmer connects different function-nodes by drawing wires. These wires propagate 

variables and any node can execute as soon as all its input data become available. Since this might 

be the case for multiple nodes simultaneously, ―G‖ is inherently capable of parallel execution. 

Multiprocessing and multi-threading hardware is automatically exploited by the built-in scheduler, 

which multiplexes multiple OS threads over the nodes ready for execution. Programmers with a 
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background in conventional programming often show a certain reluctance to adopt the LabVIEW 

dataflow scheme, claiming that LabVIEW is prone to race conditions. In reality, this stems from a 

misunderstanding of the data-flow paradigm. The afore-mentioned data-flow (which can be 

―forced,‖ typically by linking inputs and outputs of nodes) completely defines the execution 

sequence, and that can be fully controlled by the programmer. The graphical approach also allows 

nonprogrammers to build programs by simply dragging and dropping virtual representations of the 

lab equipment with which they are already familiar. The LabVIEW programming environment,  

with the included examples and the documentation, makes it easy to create small applications. This 

is a benefit on one side but there is also a certain danger of underestimating the expertise needed for 

good quality ―G‖ programming. For complex algorithms or large-scale code  it  is  important  that 

the programmer understands the special LabVIEW syntax and the topology of its memory 

management well. The most advanced Lab-VIEW development systems offer the possibility of 

building standalone applications. 

 

 Virtual Instruments 

Virtual Instruments are front panel and block diagram. The front panel or user interface is 

built with controls and indicators. Controls are knobs, pushbuttons, dials, and other input devices. 

Indicators are graphs, LEDs, and other displays. 

 
Front Panel 

The front panel is the window through which the user interacts with the program. The input 

data to the executing program is fed through the front panel and the output can also be viewed  on 

the front panel, thus making it indispensable. 

 
Front Panel Toolbar controls and Indicators 

 
The front panel is primarily a combination of controls and indicators, which are the interactive input 

and output terminals of the VI, respectively. Controls are knobs, push buttons, dials, and other input 

devices. Indicators are graphs, LEDs, and other displays. Controls simulate instrument input devices 

and supply data to the block diagram of the VI. Indicators simulate instrument output devices and 

display data the block diagram acquires or generates. 
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Fig 3: Front panel tool bars 
 

 

 

 

Controls and Indicators : 

 
Controls and Indicators are generally not interchangeable; the difference should be clear among the 

user. The user can ―drop‖ controls and indicators onto the front panel by selecting them from a 

subpalette of the floating Controls palette window shown in Figure. 
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Fig 4: Controls and Indicators 
 

Once an object is on the front panel, the user can easily adjust its size, shape, position, color, and 

other attributes. Controls and indicators can be broadly classified as: 

• Numeric controls and indicators 

• Boolean controls and indicators 

Numeric Controls and Indicators 

The two most commonly used numeric objects are the numeric control and the numeric 

indicator, as shown in Fig. The values in a numeric control can be entered or changed by selecting 

the increment and decrement buttons with the Operating tool or double-clicking the number with 

either the Labeling tool or the Operating tool. 

Boolean Controls and Indicators 

The Boolean controls and indicators (Fig) are used to enter and display Boolean (True or 

false) values. Boolean objects simulate switches, push buttons, and LEDs. The most common 

Boolean objects are the vertical toggle switch and the round LED. 
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Fig 5: Numeric Control and Indicator 

 

Block Diagram 

The block diagram window holds the graphical source code of a LabVIEW‘sblock diagram 

corresponds to the lines of text found in a more conventional language like C or BASIC – it is the 

actual executable code. The block diagram can be constructed with the basic blocks such as: 

terminals, nodes, and wires. 

 
Terminals 

Terminals are entry and exit ports that exchange information between the front panel and 

block diagram. Terminals are analogous to parameters and constants in text-based programming 

languages. 

Types of terminals include control or indicator terminals and node terminals. Control and 

indicator terminals belong to front panel controls and indicators. When a control or indicator is 

placed on the front panel, LabVIEW automatically creates a corresponding terminal on the block 

diagram. The terminals represent the data type of the control or indicator. The user cannot delete a 

block diagram terminal that belongs to a control or indicator. The terminal disappears when its 

corresponding control or indicator is deleted on the front panel. The front panel controls or 

indicators can be configured to appear as icon or data type terminals on the block diagram. By 

default, front panel objects appear as icon terminals. 

Control terminals have thick borders, while indicator terminal borders are thin. It is very 

important to distinguish between the two since they are not functionally equivalent i.e., 

control=input, indicator=output, and so they are not interchangeable. 

Nodes: 

Nodes are analogous to statements, operators, functions, and subroutines in standard 

programming languages. The AND and XOR functions represent one type of node. A structure is 

another type of node. Structures can execute code repeatedly or conditionally, similar to loops and 

Case statements in traditional programming languages. LabVIEW also has special nodes, called 

Formula Nodes, which are useful for evaluating mathematical formulas or expressions. 

 
Wires 

Wires connecting nodes and terminals hold a LabVIEW VI together. Wiresare the data paths 
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between source and destination terminals, they deliver data from one source terminal to one or more 

destination terminals. Wires are analogous to variables in text-based programming languages. If 

more than one source or no source at all is connected to a wire, LabVIEW disagrees and the wire 

will appear broken. This principle of wires connecting source and destination terminals explains 

why controls and indicators are not interchangeable; controls are source terminals, whereas 

indicators are destinations, or sinks. Each wire has a different style or color, depending on the data 

type that flows through the wire. The below Table shows a few wires and their corresponding types. 

By default, basic wire styles are used in block diagrams. To avoid confusion among the data types, 

the colors and styles are simply matched. 

 
Block Diagram Toolbar 

When a VI is run, buttons appear on the block diagram toolbar that can beused to debug the VI. 

 
Table 2: Data type and representation 

 

Table 3 :Dialogue box menu 
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Startup Menu 

The menus at the top of a VI window contain items common to other applications, such as 

Open, Save, Copy, and Paste, and other items specific to LabVIEW. Some menu items also list 

shortcut key combinations (Mac OS).The menus appear at the top of the screen (Windows and 

UNIX).The menus display only the most recently used items by default. The arrows at the bottom of 

a menu are used to display all items. All menu items can be displayed by default by selecting Tools- 

>Options 

 
Palletes 

LabVIEW has graphical; floating palettes to help the user to create and run VIs.LabVIEW  

has three often-used floating palettes that can be placed in a convenient spot on the screen: the  

Tools palette, the Controls palette, and the Functions palette. Controls and Functions Palettes. The 

Controls palette will often be used, since the controls and indicators that are required on the front 

panel are available. The user will probably use the Functions palette even more often, since it 

contains the functions and structures used to build a VI. The Controls and Functions palettes are 

unique in several ways. Most importantly the Controls palette is only visible when the front panel 

window is active, and the Functions palette is only visible when the block diagram window is  

active. Both palettes have subpalettes containing the objects to be accessed. As the cursor is passed 

over each subpalette button in the Controls and Functions palettes, the subpalette‘s name appears at 

the top of the window. If a button is clicked, the associated subpalette appears and replaces the 

previous active palette. To select an object in the subpalette, the mouse buttonis clicked over the 

object, and then clicked on the front panel or block diagram to place it wherever desired. Like 

palette button names, subpalette object name appear when the cursor is run over them. 

To return to the previous(―owning‖) palette, the top-left arrow on each palette is selected. 

Clicking on the spyglass icon the user can search for a specific item in a palette, and then the user 

can edit palettes by clicking the options buttons. There is another way to navigate palettes that some 

people find a little easier. Instead of having each subpalette replace the current palette, the user can 

pass through subpalettes in a hierarchical manner without them replacing their parent palettes. 

 
Controls Palette 

The Controls palette can be displayed by selecting Window->Show ControlsPalette or right-clicking 

the front panel workspace. The Controlspalette can also be tacked down by clicking the thumbtack 

on the top left corner of the palette. By default, the Controls palette starts in the Expressview. The 

Express palette view includes subpalettes on the top level of theControls and Functions  palettes. 

The All Controls and All Functions subpalettes contain the complete set of built-in controls, 

indicators, VIs, and functions. The Advanced palette view includes subpalettes on the top level of 

the Controls and Functions palettes that contain the complete set of built in controls, indicators, VIs, 

and functions. The Express subpalettes contain Express VIs and other objects required to build 

common measurement applications. Click the Options button on the Controls or Functions palette to 

change to another palette view or format. 

Functions Palette 

The Functions palette is available only on the block diagram. The Functions palette contains the VIs 

and functions used to build the block diagram. The Functions Palette can be displayed by selecting 

the Windows->Show or right-clicking the block diagram workspace to display the Functions palette. 
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Fig : 6 Function Palette 

 

Tools Palette 

A tool is a special operating mode of the mouse cursor. Tools are used to perform specific 

diting and operation functions, similar to that used in a standard paint program. 

 

 
Fig :7 Tool Palette 

Table 4 : Tool Pal
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 Loops & Charts: 

LabVIEW offers two loop structures namely, the For Loop and While Loop to control 

repetitive operation in a VI. A For Loop executes a specific number of times; a While Loop 

executes until a specified condition is no longer true. 

 The FOR Loop 

A For Loop executes the code inside its borders, called its sub diagram, for total of count times, 

where the count equals the value contained in the count terminal. The count can be set by wiring a 

value from outside the loop of the count terminal. If ‗0‘ is wired to the count terminal, the loop does 

not execute.The iteration terminal contains the current number of completed loop iterations; 0 

during the first iteration, 1 during the second, and so on, up to N-1 (where N is the number of times 

the loop executes). 
 

 
Fig 1: Structure Palette 

 

 

 

Fig 2: Flow chart of FOR loop 
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Fig 3: FOR Loop 

 
The For Loop is located on the Functions->All Functions->Structures 

The value in the count terminal (an input terminal), indicates how many times to repeat the 

sub diagram. 

The iteration terminal (an output terminal), contains the number of iterations completed. The 

iteration count always starts at zero. During the first iteration, the iteration terminal returns 0. 

 

 The While Loop 

The While Loop executes the subdiagram inside its borders until the Boolean value wired to its 

conditional terminal is FALSE. LabVIEW checks the conditional terminal value at the end of 

iteration. If the value is TRUE, the iteration repeats. The default value of the conditional terminal is 

FALSE, so if left unwired, the loop iterates only once. 

The While Loop is equivalent to the following pseudocode: 

Do 

Execute sub diagram 

While condition is TRUE 

 

It change the state that the conditional terminal of the While Loop checks, so that instead 

looping while true, we can have it loop unless it‘strue. To do this, we pop-up on the conditional 

terminal, and select “Stop ifTrue.” 

 

 

 

 
Fig 4: While loop terminals 
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Fig 5: Flowchart of while loop 
 

Do 

Execute subdiagram 

While condition is NOT TRUE 
 
 

The While Loop is located on the Functions>>Execution Control palette 

The section of code to be added inside the While loop is dragged or while loop 

encloses the area of code to be executed conditionally. 

Condition Terminal 

The While Loop executes the subdiagram until the conditional terminal, an input terminal, 

receives a specific Boolean value. The default behavior and appearance of the conditional terminal 

is Stop If True. When a conditional terminal is Stop If True, the While Loop executes its 

subdiagram until the conditional terminal receives a True value. 

Iteration Terminal 

The iteration terminal, an output terminal, contains the number of completed iterations. The iteration 

count always starts at zero. During the first iteration, the iteration terminal returns 0. 

 

EXAMPLE 1 

Problem statement: To find the sum of first 10 natural numbers using For Loop. 

Block diagram construction: 

– The For Loop is added from the structures sub palette on the functions Palette located on the block 

diagram. 

– The count terminal is wired with the value 10 for 10 natural numbers. 

– The iteration terminal is wired the greater than or equal to node from the Comparison subpalette 

from the Functions palette. 

– The Boolean Output of the greater than or equal to is wired to the conditional terminal as in Fig. 

Front panel construction: 

– The control and indicator are added from the controls palette of the front panel. Using the labeling 

tool the Owned label is changed as input and output, respectively. 
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– The front panel with the result is shown in Fig. . 
 

 
 
 

Fig 7: Block diagram of for loop example 

Fig 8: Front panel of For loop example 

 

Example 2 

Problem statement: To find the sum of first 10 natural numbers using while loop 

Block diagram construction: 

– The While Loop is added from the structures subpalette on the functions palette located on the 

block diagram. 

– The count terminal is wired with the value 10 for 10 natural numbers. 

– The iteration terminal is wired the greater than or equal to node from the comparison subpalette 

from the Functions palette. 

– The Boolean Output of the greater than or equal to is wired to the conditional terminal of the While 

Loop as in Fig. 

Front panel construction: 

– The control and indicator are added from the controls palette of the front panel as in Fig. Using 

the labeling tool the Owned label is changed as input and output, respectively. 
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Fig 9: Block diagram of while loop for the above example 
 

 

 

Fig 10: Front panel 

 

 Arrays: 

A LabVIEW array is a collection of data elements that are all the same type similar to 

traditional programming languages. An array can have one or more dimensions, and has elements 

231per dimension (memory permitting, of course). An array element can have any type except 

another array, a chart, or a graph. 

Single and Multidimensional Arrays: 

Single Dimensional Array: 

Array elements are accessed by their indices; each element‘s index is in range 0 to N − 1, where N is 

the total number of elements in the array.The first element has index 0, the second element has index 

1, and so on. Generally, waveforms are often stored in arrays, with each point in the waveform 

comprising an element of the array. Arrays are also useful for storing data generated in loops, where 

each loop iteration generates one element of the array. 

 

Two steps are involved to make the controls and indicators for compound data types such as arrays 

and clusters. 

 

Step 1. The array control or indicator known as the Array shell is created from the Array subpalette 

of the Controls palette available in the front panel 

Step 2. The array shell is combined with a data object, which can be numeric, Boolean, or string (or 

cluster).Using the above two steps the created structure resembles 
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Fig11: Single Dimensional Array 
 

 

 
 

Fig12: Array control and indicator 

 

The user can also create array constants on the block diagram just like creating numeric, Boolean,  

or string constants. Array Constant can be chosen from the Array subpalette of the Functions 

palette. Then the data is placed in an appropriate data type (usually another constant) similar to that 

created on the front panel. This feature is useful when the user needs to initialize shift registers or 

provide a data type to a file or network functions. To clear an array control, indicator, or constant of 

data, the user can pop-on the index display. 

Two-Dimensional Arrays 

A two-dimensional, or 2D, array stores elements in a gridline fashion. It requires two indices to 

locate an element: a column index and a row index, both of which are zero-based in LabVIEW 

Fig13: 6*4 2D array 

 

The user can add dimensions to an array control or indicator by popping up on its index display (not 

on the element display) and choosing Add Dimension from the Pop-up menu. In a 2D array of 

digital controls the user will have two indices to specify each element. The grid cursor of the 

Positioning tool can be used to expand the element display in two dimensions so that more elements 

can be seen. Unwanted dimensions can be removed by selecting Remove Dimension from the 

index display‘s Pop-up menu. 

 

Creating Two-Dimensional Array 

Two For Loops, one inside the other, can be used to create a 2D array on the front panel. The 
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inner For Loop creates a row, and the outer For Loop ―stacks‖ these rows to fill in the columns of 

the matrix. In two For Loops creating a 2D array of random numbers using auto indexing 

 

Autoindexing 

The For Loop and the While Loop can index and accumulate arrays at their boundaries 

automatically, adding one new element for each loop iteration. This capability is called 

autoindexing. One important thing to remember is that autoindexing enabled by default on For 

Loops but disabled by default on While Loops. The For Loop autoindexes, an array at its boundary. 

Each iteration creates the next array element. After the loop completes, the arraypasses out of the 

loop to the indicator; none of the array data are available until the Loop finishes. Notice that the 

wire becomes thicker as it changes to an array wire type at the Loop border. 

 

Fig14: For loop for creating 2 D array 
 

 
Fig15: Auto indexing disabled 

 

 

 
Fig16: Auto indexing enabled 
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To wire a scalar value out of a For Loop without creating an array, autoindexing must be 

disabled. This can be done by popping up on the tunnel (the square with the [] symbol) and 

choosing Disable Indexing from the tunnel‘s Pop-up menu. Since autoindexing is disabled by 

default, to wire array data out of a While Loop, the user must pop-up on the tunnel and select 

Enable Indexing. When autoindexing is disabled, only the last value returned from the Random 

Number (0–1) function passes out of the loop. Notice that the wire remains the same size after it 

leaves the loop. Pay attention to this wire size, because autoindexing is a common source of 

problems among beginners. Autoindexing also applies when the user is wiring arrays into loops. If 

indexing is enabled, the loop will index off one element from the array each time it iterates (note 

how the wire becomes thinner as it enters the loop). If indexing is disabled, the entire array passes  

in to the loop at once. Because For Loops are often used to process arrays, LabVIEW enables 

autoindexing by default when an array is wired into or out of them. 

 

 Clusters : 

Cluster is a data structure that groups data. However, unlike an array, a cluster can group data 

of different types (i.e., numeric, Boolean, etc.); it is analogous to a struct in C or the data members 

of a class in C++ or Java. 

Cluster elements can be accessed by unbundling them all at once or by indexing one at a time, 

depending on the function chosen; each method has its place. Unbundling a cluster is similar as 

unwrapping a telephone cable and having access to the different-colored wires. Unlike  arrays, 

which can change size dramatically, clusters have a fixed size, or a fixed number of wires in them. 

The Unbundled By Name function is used to access specific cluster elements. Cluster terminals can 

be connected with a wire only if they have exactly the same type; in other words, both clusters must 

have the same number of elements, and corresponding elements must match in both data type and 

order. The principle of polymorphism applies to clusters as well as arrays, as long as the data types 

match. 

Clusters are often used in error handling. The error clusters, Error In.ctl and Error Out.ctl, 

are used by LabVIEW to pass a record of errors between multiple VIs in a block diagram 

 

Creating Cluster Controls and Indicators 

A cluster is created by placing a Cluster shell (Array & Cluster subpalette of the Controls 

palette) on the front panel. Like arrays, objects can be added directly inside when they are pulled  

out from the Controls palette, or the user can drag an existing object into a cluster. Objects inside  

a cluster mustbe all controls or all indicators. 

A cluster cannot have a combination of both controls and indicators; this is based on the 

status of the first object one place inside it. The cluster can be resized with the Positioning tool if 

necessary. The cluster can conform exactly to the size of the objects inside it, by popping up on the 

border(not inside the cluster) and choosing an option in the Auto sizing menu. 

Creating Cluster Constants 

If a cluster control or indicator is available on the front panel and if the user wants to create a cluster 

constant containing the same elements on the block diagram, then the user can either drag that 

cluster from the front panel to the block diagram or right-click the cluster on the front panel and 

select Create>>Constant from the shortcut menu. 
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Fig17: Cluster palette 

 
Bundling Data 

The Bundle function (Cluster palette) assembles individual components into a new cluster or 

allows us to replace elements in an existing cluster. The function appears as the icon at the left when 

one places it in the diagram window. Dragging a corner of the function with positioning tool can 

increase the number of inputs. When wired on each input terminal, a symbol representing the data 

type of the wired element appears on the empty terminal. The order of the resultant cluster will be 

the order of inputs to the Bundle. To create a new cluster the user need not wire an input to the 

center cluster input of the Bundle function. This needs to be wired only if elements are replaced in 

the cluster. 

 

Fig18: Bundle Function 
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Unbundling Clusters 

The unbundled function (Cluster palette) in Fig. 19 splits a cluster into each of its individual 

components. The output components are arranged fromtop to bottom in the same order they have in 

the cluster. If they have the same data type, the elements‘ order in the cluster is the only way to 

distinguish among them. Dragging a corner in the function with the Positioning tool can increase  

the number of outputs. The Unbundled function must be sized to contain the same number of 

outputs as there are elements in the input cluster, or it will produce bad wires. When an input cluster 

is wired to the correctly sized Unbundled, the previously blank output terminals will assume the 

symbols of the data types in the cluster example has been shown in Fig. LabVIEW does have a way 

to bundle and unbundled clusters using element names. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig19: Unbundle function 

Bundling and Unbundling by Name 

Sometimes there is no need to assemble or disassemble an entire cluster – the user just needs to 

operate on an element or two. This is accomplished using Bundle By Name and Unbundle By Name 

functions. Unbundle By Name, also located in the Cluster palette, returns elements whose name(s) 

are specified. There is no need to consider cluster order to correct Unbundle function size. The 

unbundle function is illustrated in Fig. 

Bundle by Name, found in the Cluster palette, references elements by name instead 

of by position (as Bundle does). Unlike Bundle, we can access only the elements that are required. 

However, Bundle by Name cannot create new clusters; it can only replace an element in an existing 

cluster. Unlike Bundle, Bundle by Name‘s middle input terminal should be wired to allow the 

function know which element in the cluster has to be to replaced. This function is illustrated in Fig. 

All cluster elements should have owned labels when the By Name functions are used. As soon as 
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the cluster input of Bundle By Name or Unbundled By Name is wired, the name of the first element 

in the cluster appears in the name input or output. 
 

Fig20: Bundle by name 
 
 

Fig21: Unbundle by name 
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 Graphs: 

The graphs located on the Controls_Graph Indicators palette include the waveform graph and XY 

graph. The waveform graph plots onlysingle-valued functions, as in y = f(x), with points evenly 

distributed along the x-axis, such as acquired time-varying waveforms. 

 

Fig 22: waveform graph 

 

 

 
Single-Plot Waveform Graphs 

The waveform graph accepts a single array of values and interprets the data as points on the 

graph and increments the x index by one starting at x = 0. The graph also accepts a cluster of an 

initial x value, and an array of y data. 

 
Fig 23: Single Plot Graph 
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Multiple-Plot Waveform Graphs 

A multi plot waveform graph accepts a 2D array of values, where each row of the array is a 

single plot. The graph interprets the data as points on the graph and increments the x index by one, 

starting at x = 0. Wire a 2D array data type to the graph, right-click the graph, and select Transpose 

Array from the shortcut menu to handle each column of the array as a plot. 

XY Graphs 

XY graphs display any set of points, evenly sampled or not. Resize the plot legend to 

display multiple plots. Use multiple plots to save space on the front panel and to make 

comparisons between plots. XY and waveform graphs automatically adapt to multiple plots. 

Single Plot XY Graphs 

The single-plot XY graph accepts a cluster that contains an x array and a y array. The XY 

graph also accepts an array of points, where a point is a clusterthat contains an x value and a y value. 

 

Multiplot XY Graphs 

The multiplot XY graph accepts an array of plots, where a plot is a cluster that contains an x 

array and a y array. The multi plot XY graph also accepts an array of clusters of plots, where a plot 

is an array of points. 

Waveform Charts 

A plot is simply a graphical display of X versus Y values. Often, Y values in a plot represent 

the data value, while X values represent time. The waveform chart, located in the Graph subpalette 

of the Controls palette, is a special numeric indicator that can display one or more plots of data. 
 

 
Fig24: Waveform chart and its component 

 
Chart Update Modes 

The waveform chart has three update modes – strip chart mode, scope chart mode, and sweep 
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chart mode. The update mode can be changed by poppingup on the waveform chart and choosing 

one of the options from the Advanced>>update Mode>>menu. Modes can be changed while the 

VI isrunning by selecting Update Mode from the chart‘s runtime Pop-up menu.The default mode is 

Strip Chart. The strip chart has a scrolling display similar to a paper strip chart . The scope chart 

and the sweep chart have retracing displays similar to that of an oscilloscope. 

Strip Chart 

A strip chart shows running data continuously scrolling from left to right across the chart. 

 

Fig:25  Strip chart 

 

 

Scope chart: 

A scope chart shows one item of data, such as a pulse or wave, scrolling part way across the chart 
 

 
Fig: 26 Scope chart 

 

 

 
Sweep Chart: 
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A sweep chart is similar to an EKG display. A sweep chart works similarly to a scope except  

it shows the older data on the right and the newer data on the left separated by a vertical line. The 

scope chart and sweep chart have retracing displays similar to an oscilloscope. Because there is less 

overhead in retracing a plot, the scope chart and the sweep chart display plots significantly faster 

than the strip chart. 

Fig:27 Sweep Chart 

Wiring Charts 

A scalar output can be wired directly to a waveform chart. 

 

 Strings 

A string is a sequential collection of displayable or nondisplayable ASCII characters. Strings 

provide a platform-independent format for information and data. Often, strings may be used for 

displaying simple text message. 

Some of the more common applications of strings include the following: 

• Creating simple text messages. 

• Passing numeric data as character strings to instruments and then converting the strings to 

numeric values. 

• Storing numeric data to disk. To store numeric values in an ASCII file, the numeric values 

must be first converted to strings before writing the numeric values to a disk file. 

• Instructing or prompting the user with dialog boxes. On the front panel, strings appear as 

tables, text entry boxes, and labels. 

 

Creating String Controls and Indicators 

The string control and indicator located on the Controls_Text Controls and Controls_Text Indicators 

palettes are used to simulate text entry boxes and labels. Using the Operating tool or labeling tool text 

data can betyped or edited in a string control. The Positioning tool is used to resize a frontpanel string 

object. The space occupied by a string object can be minimized byright-clicking the object and 

selecting the Visible Items_Scrollbar optionfrom the shortcut menu. The display types can be selected 

by right-clickinga string control or indicator on the front panel 
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String Functions 

String Length returns the number of characters in a given string asshown in Fig 28. 

 

Concatenate Strings concatenates all input strings into a single outputstring as shown in Fig 

29.The function appears as the icon shown in block diagram in Fig 29.The function can be resized 

with the Positioning tool to increase the numberof inputs. In addition to simple strings, the user can 

also wire a 1D array ofstrings as input; the output will be a single string containing a 

concatenationof strings in the array. 

 

String Subset accesses a particular section of a string. It returns the substringbeginning at 

offset and containing length which indicates the number 
 
 

Fig:28 string length 
 
 

Fig 29: Concatenate Strings 

 

Sequence Structures (Flat and Stacked Structures) 

Determining the execution order of a program by arranging its elements ina certain sequence is 

called control flow. Visual Basic, C, and most other Fig. 30. 
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Fig30: Block diagram 
 

 
Fig 31: Front panel 

 
 

procedural programming languages have inherent control flow because statementsexecutes in the 

order in which they appear in the program. LabVIEWuses the Sequence Structure to obtain control 

flow within a dataflow framework.A Sequence Structure executes frame 0, followed by frame 1, 

then frame2, until the last frame executes. Only when the last frame completes dataleaves the 

structure.The Sequence Structure as shown in Fig. 30, looks like a frame of film.It can be found in 

the Structures subpalette of the Functions palette.Like the Case Structure, only one frame is visible 

at a time – the arrowsat the top of the structure can be selected to see other frames; or the topdisplay 

can be clicked to obtain a listing of existing frames, or the user canpop-up on the structure border 

and choose Show Frame. When a SequenceStructure is first dropped on the block diagram, it has 

only one frame; thus,it has no arrows or numbers at the top of the structure to designate whichframe 

is showing. New frames can be created by popping up on the structureborder and selecting Add 

Frame After or Add Frame Before as shownin Fig. 31.The Sequence Structure is used to control 

the order of execution of nodesthat are not data dependent on each other. Within each frame, as in 

the rest ofthe block diagram, data dependency determines the execution order of nodes. 

 

 The Formula Node 

The Formula Node is a resizable box that is used to enter algebraic formulasdirectly into the block 
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diagram. The Formula Node is a convenient text-basednode used to perform mathematical 

 

The case structureis LabVIEW‘s method of executing conditional text, sort of like an―if–then– 

else‖statement. It is located in the Structures subpalette of the Functions palette. The Case 

Structure, has two or more subdiagrams, orcases; only one of them executes, depending on the value 

of the Boolean,numeric, or string value wired to the selector terminal.If a Boolean value is wired to 

the selector terminal, the structure has twocases, FALSE and TRUE. If a numeric or string data type 

is wired to the selector, the structure can have from zero to almost unlimited cases. Initially only  

two cases are available, but number of cases can be easily added. More than one value can be 

specified for a case, separated by commas. In addition, the user can always select a ―Default‖ case 

that will execute if the value wired to the selector terminal doesn‘t match any of the other cases. 

When a case structure is first placed on the panel, the Case Structure appears in its Boolean form; it 

assumes numeric values as soon as a numeric data type is wired to its selector terminal.Case 

Structures can have multiple subdiagrams, but the user can see only one case at a time, sort of like a 

stacked deck of cards. Clicking on the decrement(left) or increment (right) arrow at the top of the 

structure displays the previous or next subdiagram, respectively. The user can also click on the 

display at the top of the structure for a pull-down menu listing all cases, and then pop-up on the 

structure border and select Show Case. If a floating-point number is wired to the selector,  

LabVIEW rounds that number to the nearest integer value. LabVIEW coerces negative numbers to 0 

and reduces any value higher than the highest-numbered case to equal the number of that case. The 

selector terminal can be positioned anywhere along the left border. If the data type wired to the 

selector is changed from a numeric to a Boolean, cases 0 to 1 change to FALSE and TRUE. If other 

cases exist (2 to n), Lab-VIEW does not discard them, in case the change in data type is accidental. 

However, these extra cases must be deleted before the structure can execute. For string data types 

wired to case selectors, the user should always specify the case values as strings between quotes. 

 
Fig 34: Boolean case structure 



265 

 

 

Boolean Case Structure 

The following example is a Boolean Case structure shown in Fig34. The cases are shown 

overlapped to simplify the illustration. If the Boolean controlwired to the selector terminal is True, 

the VI increments the numeric value. Otherwise, the VI decrements the numeric value. 

 

Integer Case Structure 

The following example is an integer Case structure shown in Fig35. Integer is a text ring 

control located on the Controls_Text Controls palette that associates numeric values with text 

items. If the text ring control wired to the selector terminal is 0 (add), the VI decrements the  

numeric values. If the value is 1 (subtract), the VI increments the numeric values. If the text ring 

control is any other value than 0 (add) or 1 (subtract), the VI adds the numeric values, because that 

is the default case. 
 

 

Fig 35: Integer Case Structure 

 

 
String Case Structure 

The following example is a string Case structure as shown in Fig36. IfString is ―Increment,‖ the VI 

increments the numeric values. If String is ―Decrement,‖ the VI decrements the numeric values. 
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Fig 36: string case 

 

 

Enumerated Case Structure 

The following example is an enumerated Case structure as shown in Fig.37 An enumerated 

control gives users a list of items from which to select. 

 

Fig:37 Enumerated case 

The data type of an enumerated control includes information about the numeric values and 

string labels in the control. When an enumerated control is wired to the selector terminal of a Case 

structure, the case selector displays acase for each item in the enumerated control. The Case 

structure executes the appropriate case subdiagram based on the current item in the enumerated 

control. If Enum is ―Increment,‖ the VI increments the numeric values. If Enum is ―Decrement,‖ the 

VI decrements the numeric values. 

 

Error Case Structure 

When an error cluster is wired to the selector terminal of a Case structure, the case selector 

label displays two cases, Error and No Error, and the border of the Case structure changes color – 

red for Error and green for No Error. The Case structure executes the appropriate case subdiagram 

based on the error state. When an error cluster is wired to the selection terminal, the Case structure 

recognizes only the status Boolean of the cluster. 

SEQUENCE STRUCTURES 

A sequence structure contains one or more subdiagrams, or frames, that execute in sequential 

order. Within each frame of a sequence structure, as in the rest of the block diagram, data 

Dependency determines the execution order of nodes. There are two types of sequence structure the 

Flat Sequence structure and the Stacked Sequence structure. The Flat Sequence structure, shown as 

follows, displays all the frames at once and executes the frames from left to right and when all data 

values wired to a frame are available, until the last frame executes. The data values leave each frame 

as the frame finishes executing. Use the Flat Sequence structure to avoid using sequence locals and to 

better document the block diagram. When you add or delete frames in a Flat Sequence structure, the 

structure resizes automatically. To convert a Flat Sequence structure to a Stacked Sequence structure, 

right-click the Flat Sequence structure and select Replace with Stacked Sequence from the shortcut 
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menu. If you change a Flat Sequence to a Stacked Sequence and then back to a Flat Sequence, 

 

LabVIEW moves all input terminals to the first frame of the sequence. The final Flat Sequence 

should operate the same as the Stacked Sequence. After you change the Stacked Sequence to a Flat 

Sequence with all input terminals on the first frame, you can move wires to where they were located 

in the original Flat Sequence. 
 

 
 

 

Fig:38 Flat sequence 

Stacked Sequence Structure 

The Stacked Sequence structure, shown as follows, stacks each frame so you see only one frame at a 

time and executes frame 0, then frame 1, and soon until the last frame executes. The Stacked 

Sequence structure returns data only after the last frame executes. Use the Stacked Sequence 

structure if you want to conserve space 

on the block diagram. To convert a Stacked Sequence structure to a Flat Sequence structure, right- 

click the Stacked Sequence structure and select Replace»Replace with Flat Sequence from the 

shortcut menu. The sequence selector identifier, shown as follows, at the top of the Stacked 

Sequence structure contains the 

current frame number and range of frames. Use the sequence selector identifier to navigate through 

the available frames and rearrange frames. The frame label in a Stacked Sequence structure is 

similar to the case selector label of the Case structure. The frame label contains the frame number in 

the center and decrement and increment arrows on each side. Click the decrement and increment 

arrows to scroll through the available frames. You also can click the down arrow next to the frame 

number and select a frame from thepull-down menu. Right-click the border of a frame, select Make 

This Frame, and select a framenumber from the shortcut menu to rearrange the order of a Stacked 

Sequence structure. Unlike the case selector label, you cannot enter values in the frame label. When 

you add, delete, or rearrange frames in a Stacked Sequence structure, LabVIEW automatically 

adjusts the numbers in the frame labels. To pass data from one frame to any subsequent frame of a 

Stacked Sequence structure, use a sequence local terminal shown .An outward-pointing arrow 

appears in the sequence local terminal of the frame that contains the data source. The terminal in 

subsequent frames contains an inward-pointing arrow, indicating that the terminal is a data source 

for that frame. You cannot use the sequence local terminal in frames that precede the first frame 

where you wired the sequence local. 
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Fig 39: Stacked Structure 

 
BASICS OF FILE INPUT/OUTPUT 

File I/O records or reads data in a file. File I/O operations pass data to and from files. Use the fileI/ O 

VIs and functions located on the Functions->All Functions»File I/O palette to handle all aspects of 

file I/O, including the following: 

● Opening and closing data files 

● Reading data from and writing data to files 

● Reading from and writing to spreadsheet-formatted files 

● Moving and renaming files and directories 

● Changing file characteristics 

● Creating, modifying and reading configuration files 

LabVIEW can use or create the following file formats: Binary, ASCII, LVM, and TDM. 

● Binary—Binary files are the underlying file format of all other file formats. 

● ASCII—An ASCII file is a specific type of binary file that is a standard used by most programs. It 

consists of a series of ASCII codes. ASCII files are also called text files. 

● LVM—The LabVIEW measurement data file (.lvm) is a tab-delimited text file you can open with  a 

spreadsheet application or a text-editing application. The .lvm file includes information about the 

data, such as the date and time the data was generated. This file format is a specific type of ASCII 

file created for LabVIEW. 

● TDM—This file format is a specific type of binary file created for National Instruments products. It 

actually consists of two separate files: an XML section contains the data attributes and a binary file 

for the waveform. 

Use of Text Files 

Use text format files for your data to make it available to other users or applications, if disk 

space and file I/O speed are not crucial, if you do not need to perform random access reads or writes, 

and if numeric precision is not important. Text files are the easiest format to use and to  share. 

Almost any computer can read from or write to a text file. 

Use of Binary Files 

Storing binary data, such as an integer, uses a fixed number of bytes on disk. For example, 

storingany number from 0 to 4 billion in binary format, such as 1, 1,000, or 1,000,000, takes up 4 

bytesfor each number. Use binary files to save numeric data and to access specific numbers from a 

fileor randomly access numbers from a file. Binary files are machine readable only, unlike text 

fileswhich are human readable. Binary files are the most compact and fastest format for storing data. 

Use of Datalog Files 

Use datalog files to access and manipulate data only in LabVIEW and to store complex data 

structures quickly and easily. A datalog file stores data as a sequence of identically structured 

records, similar to a spreadsheet, where each row represents a record. Each record in a datalog File 

must have the same data types associated with it. LabVIEW writes each record to the file as acluster 

containing the data to store. 
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A typical file I/O operation involves the following process, 

1. Create or open a file. Indicate where an existing file resides or where you want to create a new 

file by specifying a path or responding to a dialog box to direct LabVIEW to the file location. After 

 

the file opens, a refnum represents the file. 

2. Read from or write to the file. 

3. Close the file. 

File I/O VIs and some File I/O functions, such as the Read from Text File and Write to Text 

File functions, can perform all three steps for common file I/O operations. The VIs and functions 

designed for multiple operations might not be as efficient as the functions configured or designed 

for individual operations. 

 

LOCAL VARIABLES 
 Local variables transfer data within a single VI and allow data to be passed between parallel 

loops 
 They also break the dataflow programming paradigm. 

Two ways to create 

a local variable are right-click on an object‘s terminal and select Create->Local Variable. 

 

Fig 40: Local Variable 
 
 

Fig41: Creating local variable 

Another way is to select the Local Variable from the Structures palette. Create the front panel and 
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select a local variable from the Functions palette and place it on the block diagram. The local 

variable node, shown as follows, is not yet associated with a control or indicator. To associatea local 

variable with a control or indicator, right-click the local variable node and select Select Item from the 

shortcut menu. 

 

GLOBAL VARIABLES 
 Global variables are built-in LabVIEW objects. 

  

   use variables to access and pass data among several VIs that run simultaneously 
 A local variable shares data within a VI; a global variable also shares data, but it shares data 

with multiple VIs. 

For example, suppose you have two VIs running simultaneously. Each VI contains a While Loop 

and writes data points to a waveform chart. The first VI contains a Boolean control to terminate both 

VIs. You can use a global variable to terminate both loops with a single Boolean control as shown  in 

Figure . If both loops were on a single block diagram within the same VI, you could use a local 

variable to terminate the loops. 

When you create a global variable, LabVIEW automatically creates a special global VI, which has a 

front panel but no block diagram. Add controls and indicators to the front panel of the global VI to 

define the data types of the global variables. Select a global variable as shown inFigure42 .from the 

Functions palette and place it on the block diagram. Double-click the global variable node to display 

the front panel of the global VI. Place controls and indicators on this front panel the same way you 

do on a standard front panel. LabVIEW uses owned labels to identify global variables, so label the 

front panel controls and indicators with descriptive owned labels. 
 

 
Fig:42 Global Variable 
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Part-A 

1. Define Virtual Instrumentation. 

2. .What is Graphical System Design model?  

3. Draw the VI and GSD model.   

4. Draw the architecture of VI and indicate the parts. 

5. Distinguish between Virtual Instrument and Traditional Instrument.  

6. Mention the role of hardware‘s in VI I/O modules: 

7. Mention the role of software‘s in VI  

8. Name the different layers of VI software.  

9. Mention the different challenges in Test.  

10. What is G programming? 

 

 

                                     Part- B  

 

1) Draw and explain the graphical and VI models with design flow 

2) Explain the essential need for Virtual Instrumentation and compare it with the traditional 
instruments 

3) Explain the role of different hardware‘s and software‘s in VI 

4) Explain how VI can be used in test, Control and Design process 

5) .Compare Graphical programming with traditional programming 

 

 

 

 

 

 

 

 

 


