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STATE SPACE ANALYSIS  

1.1 INTRODUCTION 

The state variable approach is a powerful tool / technique for the analysis and design of 

control systems. The analysis and design of the following systems can be carried using state 

space method.  

1. Linear system 

2. Non-linear system 

3. Time invariant system 

4. Time varying system 

5. Multiple input and multiple output system. 

 The state space analysis is a modern approach and also easier for analysis using digital 

computers. The conventional (or old) methods of analysis employs the transfer function of the 

system. The drawbacks in the transfer function model and analysis are, 

1. Transfer function is defined under zero initial conditions. 

2. Transfer function is applicable to linear time invariant systems, 

3. Transfer function analysis is restricted to single input and single output systems.  

4. Does not provides information regarding the internal state of the system. 

 The state variable analysis can be applied for any type of systems. The analysis can be 

carried with initial conditions and can be carried on multiple input and multiple output systems. 

In this method of analysis, it is not necessary that the state variables represent physical 

quantities of the system, but variables that do not represent physical quantities and those that 

are neither measurable not observable may be chosen as state variables.  

1.2 STATE SPACE FORMULATION  

 The state of a dynamic system is a minimal set of variable (known as state variables) 

such that the knowledge of these vairables at t = t0 together with the knowledge of the imputs 

fo t ≥ t0, completely determibnes the behaivour of the sytem for t > t0 (or) A set of vairables 

which describes the system at any time instant are called state variables.   

 In the state variable formulation of a system, in general, a system consists of m-inputs, 

p-outputs and n-state variabels. The state space representation of the system may be visualized 

in Figure 1.1. 

Let, State varibles   = x1(t), x2(t), x3(t),……………………. xn(t) 

Input varibles   = u1(t), u2(t), u3(t),……………………. um(t) 

Output varibles = y1(t), y2(t), y3(t),……………………. yp(t), 

 
 

Figure 1.1 State space representation of system 
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 The different variables may be represented by the vectors (column matrix) as shown 

below. 

 

STATE EQUATIONS 

 The state variable representation can be arranged in the form of n number of first 

order differential equation as shown below. 

 …1.1 

 The n number of differential equations may be written in vector notation as 

  …1.2 

 The set of all possible values which the input vector U(t) can have (assume) at time t 

forms the input space of the system. Similarly, the set of all possible values which the output 

vector Y(t) can assume at time t forms the output space of the system and the set of all possible 

values which the state vector X(t) can assume at time t forms the state space of the system. 

1.3 STATE MODEL OF LINEAR SYSTEM 

 The state model of a system consist of the state equation and output equation. The state 

equation of a system is a function of state variables and inputs as defined by equation (1.2). 

For linear time invariant systems the first derivations of state variable can be expressed as a 

linear combination of state variables and inputs.  

 …1.3 

where the coefficients aij and bij are constants. 
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 In the matrix form the above equations can be expressed as, 

  …1.4 

 The matrix equation (1.4) can also be written as, Ẋ(t) = A X(t) + B U(t)   …1.5 

where, X(t) = State vector of order (n  1) 

 U(t) = Input vector of order (m  1) 

 A = System matric of order (n  n) 

 B = Input matric of order (n  m) 

Note: For convenience the input, output and state variables are denoted as u1, u2,…, y1, y2,… 

and x1, x2,…; but actual they are functions of time, t. 

 The equation, Ẋ(t) = A X(t) + B U(t) is called the state equation of Linear Time Invariant 

(LTI) system. 

 The output at any time are functions of state variables and inputs. 

  Output vector, Y(t) = f(X(t), U(t))  …1.6 

 Hence the output variables can be expressed as a linear combination of state variables 

and inputs. 

  ... 1.7 

where the coefficients cij and dij are constants. 

In the matrix form the above equations can be expressed as,  

  …1.8 

 The matrix equation (1.8)  can also be written as, Y(t) = C X(t) + D U(t)  …1.9 
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where, X(t) = State vector of order (n  1)  

 U(t) = Input vector of order (m  1)  

 Y(t) = Output vector of order (p  1)  

 C = Output matrix of order (p  n)  

 D = Transmission matrix of order (p  m) 

 The equation Y(t) = C X (t) + D U(t) is called the output equation of Linear Time 

Invariant (LTI) system. 

 The state model of a system consists of state equation and output equation. (or) The 

state equation  and output equation together called as state model of the system. Hence the state 

model of a linear time invariant system (LTI) system is given by the following equations.  

 Ẋ(t) = A X(t) + B U(t) …………. State equation. 

 Y(t) = C X (t) + D U(t) …………. Output equation. 

1.4 STATE DIAGRAM  

 The pictorial representation of the state model of the system is called state diagram. The 

state diagram of the system can be either in Block Diagram form or in signal flow graph form. 

 The state diagram describes the relationships among the state variables and provides 

physical interpretations of the state variables. The time domain state diagram may be obtained 

directly from the differential equation governing the system and this diagram can be used for 

simulation of the system in analog computers.  

 The s-domain sate diagram can be obtained from the transfer function of the system. 

The state diagram provides a direct relation between time domain and s-domain. [i.e., the time 

domain equations can be directly obtained from the s-domain state diagram]. 

 The state diagram (Block diagram and signal flow graph) of a state model is constructed 

using three basic elements, Scalar, Adder and Integrator. 

 Scalar: The scalar is used to multiply a signal by a constant. The input signal x(t) is 

multiplied by the scalar a to give the output, a x(t). 

 Adder: The adder is used to add two or more signals. The output of the adder is the 

sum of incoming signals. 

 Integrator:  The integrator is sued to integrate the signals. They are used to integrate 

the derivatives of state variables to get the state variables. The initial conditions of the state 

variable can be added by using an adder after integrator. 

 The time domain and s-domain elements of block diagram are shown in Table 1.1. The 

time domain and s-domain elements of signals flow graph are shown in Table 1.2. 

 

 

 



6 

Table 1.1 Elements of Block Diagram 

Element Time domain s-domain 

Scalar 
  

Adder 

  

Integrator 

  
 

Table 1.2 Elements of Signal Flow Diagram 

Element Time domain s-domain 

Scalar 

  

Adder 

  

Integrator 

  
 

 The state model of linear time invariant system is given by the equations. 

 Ẋ(t) = A X(t) + B U(t) …………. State equation. 

 Y(t) = C X (t) + D U(t) …………. Output equation. 

 The block time domain diagram representation of the state model is shown in Figure 

1.2 and the time domain signal flow graph representation of the system is shown in Figure 1.3. 

 

Figure 1.2 Block diagram of state model 
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CONSTRUCTION OF TIME DOMAIN STATE DIAGRAM 

 In state space modelling, n-number of first order differential equations are formed for 

a nth order system. In order to integrate n-numbers of first derivatives, the state diagram requires 

n-numbers of integrators. Therefore the first step in constructing the state diagram is to draw 

n-numbers of integrators. Mark the input to the integrators as first derivatives of state variables 

and so the output of the integrators are state variables. [If initial conditions are given, then they 

can be added at the output of integrators using adders]. 

 In each state equation, the first derivative of state variable is expressed as a function of 

state variables and inputs. Therefore from the knowledge of a state equation, the state variables 

and inputs are multiplied by appropriate scalars and then added to get the first derivative of a 

state variable. Now, the first derivative of the state variable is given as input to the 

corresponding integrator. Similarly the input of all other integrators are obtained by considering 

the state equations one by one.  

 Each output equation is a function of state variables and inputs. Therefore from the 

knowledge of an output, equation, the state variables and inputs are multiplied by appropriate 

scalars and then added to get an output. Similar procedure is followed to generate all other 

outputs.  

1.5 STATE – SPACE REPRESENTATION USING PHYSICAL VARIABLES  

In state-space modelling of systems, the choice of state variables is arbitrary. One of 

the possible choice of state variables is the physical variables. The physical variables of 

electrical systems are current or voltage in the R, L and C elements. The physical variables of 

mechanical systems are displacement, velocity and acceleration. The advantages of choosing 

the physical variables (or quantities) of the system as state variables are the following, 

1. The state variables can be utilized for the purpose of feedback. 

2. The implementation of design with state variable feedback becomes straight 

forward. 

3. The solution of state equation gives time variation of variables which have 

direct relevance to the physical system.  

 The drawback in choosing the physical quantities as state variables is that the solution 

of state equation may become a difficult task. 

 In state space modelling using physical variables, the sta6te equations are obtained from 

the differential equations governing the system. The differential equations governing a system 

are obtained from a basic model of the system which is developed using the fundamental 

elements of the system.  
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ELECTRICAL SYSTEM 

 The basic model of a electrical system can be obtained by using the fundamental 

elements Resistor, Capacitor and Inductor. Using these elements the electrical network or 

equivalent circuit of the system is drawn. Then the differential equations governing the 

electrical systems can be formed by writing Kirchoff’s current law equations by choosing 

various nodes in the network or Kirchoff’s voltage law by choosing various closed path in the 

network. The current-voltage relation of the basic elements R, L and C are given in Table 1.3. 

Table 1.3 

Element 
Voltage across the 

element   

Current through the 

element  

   

   

   

 

 A minimal number of state variables are chosen for obtaining the state model of the 

system. The best choice of state variables in electrical system are currents and voltages in 

energy storage elements. The energy storage elements are inductance and capacitance. The 

physical variables in the differential equations are replaced by state variables and the equations 

are rearranged as first order differential equations. These set of first order equations constitutes 

the state equation of the system. 

 The inputs to the system are exciting voltage sources or current sources. The outputs in 

electrical system are usually voltages or currents in energy dissipating element. The resistance 

is energy dissipating element in electrical network. In general the output variables can be any 

voltage or current in the network. 

MECANICAL TRANSLATIONAL SYSTEM 

 The basic model of mechanical translational system can be obtained by using three 

basic elements mass, spring and dash-pot. When a force applied to a mechanical translational 

system, it is opposed by opposing forces due to mass, friction and elasticity of the system. The 

forces acting on a body are governed by Newton’s second law of motion. 

 The differential equations governing the system are obtained by writing force balance 

equations at various nodes in the system. A node is a meeting point of elements. The Table 1.4 

shows the force balance equations of idealized elements.  

List of symbol used in mechanical translational system are 

 y = Displacement, m 

 v = dy/dt = Velocity, m/sec 
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 a = dv/dt = d2y/dt2 = Acceleration, m/sec2 

 f = Applied force, N (Newton) 

 fm = Opposing force offered by mass of the body, N 

 fk = Opposing force offered by the elasticity of the body (spring), N 

 fb = Opposing force offered by the friction of the body (dash-pot), N 

 M = Mass, Kg 

 K = Stiffness of spring, N/m 

 B = Viscous friction coefficient, N/(m/sec). 

Guidelines to form the state model of mechanical translational systems 

1. For each node in the system one differential equation can be framed by equating the 

sum of applied forces to the sum of opposing forces. Generally, the nodes are mass 

element.  

 

Table 1.4 Force balance equations of idealized elements 

Element Force balance equations 

 
 

 
 

 
 

 
 

  

 

2. Assign a displacement to each nods and draw a free body diagram for each node. The 

free body diagram is obtained by drawing each mass of node separately and then 

marking all the forces acting on it. 

3. In the free body diagram, the opposing forces due to mass, spring and dash-pot are 

always act in a direction opposite to applied force. The displacement, velocity and 

acceleration will be in the direction of applied force or in the direction opposite to that 

of opposing force. 

4. For each free body diagram write one differential equation by equating the sum of 

applied forces to the sum of opposing forces. 



10 

5. Choose a minimum number of state variables. The choice of state variables are 

displacement, velocity or acceleration. 

6. The physical variables in differential equations are replaced by state variables and the 

equations are rearranged as first order differential equations. These set of first order 

equations constitute the state equation of the system   

7. The inputs are the applied forces and the outputs are the displacement, velocity or 

acceleration of the desired nodes.   

MECHANICAL ROTATIONAL SYSTEM 

 The basic model of mechanical rotational system can be obtained by using three basic 

elements moment of inertia of mass, rotational dash-pot and rotational spring. When a torque 

is applied to a mechanical rotational system, it is opposed by opposing torques due to momen6t 

of inertia, friction and elasticity of the system. The torque acting on a body are governed by 

Newton’s second law of motion. 

 The differential equations governing the system are obtained by writing torque balance 

equations at various nodes in the system. A node is a meeting point of elements. The Table 1.5 

shows the torque balance equations of the idealized elements. 

List of symbols used in mecanical rotational system 

  = Angular displacement and 

 d/dt = Angular velocity, rad/sec 

 d2/dt2 = Angular acceleration, rad/sec 

 T = Applied torque, N-m 

 J = Moment of inertia, Kg-m2/rad 

 B = Rotational frictional coefficient, N-m/rad/sec) 

 K = Stiffness of the spring, N-m/rad. 

Table 1.5 Torque balance equations of idealized elements 

Element Torque balance equations 
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Guidelines to form the state model of mechanical rotational systems 

1. For each node in the system one differential equation can be framed by equating the 

sum of applied torques to the sum of opposing torques. Generally the nodes are mass 

elements but in some cases the nodes may be without mass element. 

2. Assign an angular displacement to each node and draw a free body diagram for each 

node. The free body diagram is obtained by drawing each node separately and then 

drawing all the torques acting on it. 

3. In the free body diagram, the opposing torques due to moment of inertia, spring and 

dash-pot are always act in a direction opposite to applied force. The angular 

displacement, velocity and acceleration will be in the direction of applied torque or in 

the direction opposite to that of opposing torque. 

4. For each free body diagram write one differential equation by equating the sum of 

applied torque to the sum of opposing torques.  

 5. Choose a minimum number of state variables. The choice of state variables are angular 

dispalcement, velocity or acceleration. 

6. The physical variables in differential equations are replaced by state variables and the 

equations are rearraged as first order differential equations. These set of first order 

equations constitute the state equation of the system. 

7. The inputs are the applied torques and the outputs are the angular displacement, velocity 

or acceleration of the desired nodes. 

EXAMPLE 1.1  

 Obtain the state model of the electrical network shown in Fig 1.1.1 by choosing number 

of state variables. 

  

Figure 1.1.1 Figure 1.1.2 
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SOLUTION 

 Let us choose the current through the inductances i1, i2 and voltage across the capacitor 

vs as state variables. The assumed directions of currents and polarity of the voltage are shown 

in Fig 1.1.2. 

 [Note: The best choice of state variables in electrical network are currents and voltages 

in energy storage elements ]. 

 Let the three state varaibles x1, x2 and x3 be related to physical quantities as show below. 

 x1 = i1 = Current through L1 

 x2 = i2 = Current through L2 

 x3 = vo = Voltage across capacitor 

 At node A, by Kirchoff’s current law (refer Figure 1.1.3), 

  …1.1.1 

 On substiuting the state variables for physical variables in Eqn. (1.1.1) we get, 

  

  …1.1.2 

  

Figure 1.1.3 Figure 1.1.4 
 

 By Kirchoff’s voltage law in the closed path shown in Figure 1.1.4 we get, 

  ..1.1.3 

 On substituting the state variables for physical variables in Eqn (1.1.3) we get, 
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 Also, let u(t) = e(t) = input to the system 

  …1.1.4 

 By Kirchoff’s voltage law in the closed path shown in Figure 1.1.5 we get, 

  …1.1.5 

 On substituting the state variables for physical variables in Eqn. (1.1.5) we get, 

   

  …1.1.6 

 The equations (1.1.2), (1.1.4) and (1.1.6) are the state equations of the system. Hence 

the state equations of the system are, 

   

 On arranging the state equations in the matrix form we get, 

  

 Let us choose the voltage across the resistances as output variables and the output 

variables are denoted by y1 and y2. 

  y1 = i1 R1  …1.1.8 

and      y2 = i2 R2  …1.1.9 

Figure 1.15 

State equation ……1.1.7 
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 On substituting the state variables in equations (1.1.8) and (1.1.9) we get, 

 (i.e.  i1 = x1 and i2 = x2) 

  y1 = x1R1     ;  y2 = x2R2      

 On arranging the above equations in the matrix form we get 

   

 The state equation (Eqn (1.1.7)] and output equation (Eqn (1.1.10)] together constitute 

the state model of the system.  

EXAMPLE 1.2 

 Obtain the state model of the electrical network shown in Figure 1.2.1 by choosing v1(t) 

and v2(t) as state variables. 

SOLUTION 

 Connect a voltage source at the inputs as shown in Figure 1.2.2. Convert the Voltage 

source to current source as shown in Figure 1.2.3. At node 1, by Kirchofrf’s current law we 

can write (Refer Figure 1.2.4). 

   

 

Figure 1.2.1 Figure 1.2.2 Figure 1.2.3 Figure 1.2.4 
 

  1.2.1 

 At node 2, by Kirchoff’s current law, we can write (Refer Figure 1.2.5)  

  …1.2.2 

 Let the state variables be x1 and x2 and they are related to physical variable as shown 

below. 

 v1 = x1 and v2 = x2 

 Also, Let v(t) = u = input.  

 

 

Output equation        …1.1.10 

Figure 1.2.5 
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 On substituting the state variables in equation (1.2.1) and (1.2.2) we get, 

  …1.2.3 

  …1.2.4 

 From equation (1.2.3) we get,  

  …1.2.5 

 From equation (1.2.4) we get,  

  …1.2.6 

 The equation (1.2.5) and (1.2.6) are state equations of the system. Hence the state 

equations of the system are 

  

 On arranging the state equations in the matrix form, 

  …1.2.7 

 The output, y = v1(t) = x1 

  The output equation is  …1.2.8 

 The state equation [Eqn (1.2.7)] and output equation [Eqn (1.2.8)] together constitute 

the state model of the system. 
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EXAMPLE 1.3 

 Construct the state model of mechanical system shown in Figure 1.3.1.  

SOLUTION 

 Free body diagram of M1 is shown in Figure 1.3.2 

  

   Figure 1.3.2 

 By Newton’s second law, the force balance equation at node M1 is 

  …1.3.1 

 Free body diagram of M2 in shown in Figure 1.3.3. 

   

 By Newton’s second law, the force balance equation at node M2 is 

  …1.3.2 

 Let us choose four state variable x1, x2, x3 and x4. Also, let the input f(t) = u. The state 

variables are related to physical variables as follows. 

  

Figure 1.3.1 

Figure 1.3.3 



17 

 On   substituting,                                                                                                 in  

equation (1.3.1) we get, 

  …1.3.3 

 On substituting                                                                                                     in 

equation (1.3.2) we get, 

  …1.3.4 

 The state variables x1 = y1. 

 On differentiating x1 = y1 with respect to t we get,  

  …1.3.5 

 The state variable, x2 = y2. 

 On differentiating x2 = y2 with respect to t we get,  

  ..1.3.6 

 The equations (1.3.3) to (1.3.6) are state equations of the mechanical system. Hence the 

state equations of the mechanical system are,  

  

 On arranging the state equations in the matrix form, we get,  

 



18 

 

  

 Let the displacements y1 and y2 be the outputs of the system. 

  y1 = x1  and     y2 = x2. 

 The output equation in matrix form is given by, 

  …1.3.8 

 The state equation [Eqn (1.3.7)] and the output equation [Eqn (1.3.8)] together called 

state model of the system. 

EXAMPLE 1.4 

 Obtain the state model of the mechanical system shown in Figure 1.4.1 by choosing a 

minimum of three state variables.  

 

Figure 1.4.1 

SOLUTION 

 Le the three state variables be x1, x2 and x3 and they are related to physical variables 

as shown below. 

   

 Free body diagram of mass M is shown in Figure 1.4.2 
Figure 1.4.2 
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 By Newton’s second law, the force balance equation at node M is, 

  …1.4.1 

  …1.4.2 

 The free body diagram of node 2 (meeting point of K2 and B).  

  

 Writing force balance equation at the meeting point of K2 and B we get,  

  …1.4.3 

 The state variable, x1 = y1. On differentiating this expression with respect of t we get  

  …1.4.4 
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 The state equations are given by equations (1.4.4), (1.4.3) and (1.4.2). 

  

 On arranging the state equations in the matrix form,  

  …1.4.5 

 If the desired outputs are y1 and y2, then y1 = x1 and y2 = x2 

 The output equation to the matrix form is given by  

  …1.4.6 

 The state equation [Eqn (1.4.5)] and the output equation [Eqn (1.4.6)] together 

constitute the state model of the system.  

EXAMPLE 1.5 

 Determine the state model of armature controlled dc motor.  

SOLUTION 

 The speed of DC motor is directly proportional to armature voltage and inversely 

proportional to flux. In armature controlled DC motor the desired speed is obtained by varying 

the armature voltage. This speed control system is an electro-mechanical control system. The 

electrical system consists of the armature and the field circuit for analysis purpose. Only the 

armature circuit is considered because the field circuit but for analysis purpose, only the 

armature circuit is considered because the field is excited by a constant voltage. The mechanical 

system consist of the rotating part of the motor and load connected to the shaft of the motor. 

The armature controlled DC motor speed control system is shown in Figure 1.5.1. 

 

Figure 1.5.1 Armature controlled DC motor 
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Let Ra = Armature resistance Ω 

 La = Armature inductance, H 

 ia = Armature current, H 

 va = Armature voltage, V 

 eb = Back emf, V 

 Kt = Torque constant, N-m/A 

 T = Torque developed by motor, N-m 

  = Angular displacement of shaft, rad  

  = d/dt = Angular velocity of the shaft, rad/sec 

 J = Moment of inertia of motor and load, Kg-m2 / rad 

 B = Frictional coefficient of motor and load, N-m/(rad/sec) 

 Kb = Back emf constant, V/(rad/sec). 

 The equivalent circuit of armature is shown in Figure 1.5.2. 

 By Kirchoff’s voltage law, we can write  

  …1.5.1 

 Torque of DC motor is proportional to the product of flux and current. Since flux is 

constant in this system, the torque is proportional to ia alone.  

   …. 1.5.2  

 

 The mechanical system of the motor is shown in Figure 1.5.3. The differential equation 

governing the mechanical system of motor is given by 

   …1.5.3 

 The back emf of DC machine is proportional to speed (angular velocity) of shaft 

  … 1.5.4 

 From Eqn (1.5.1) and (1.5.4) we get, 

   … 1.5.5 

 From Eqn (1.5.2) and (1.5.3) we get, 

   … 1.5.6 

Figure 1.5.2 Equivalent circuit of armature 

Figure 1.5.3 
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 The equations (1.5.5) and (1.5.6) are the differential equations governing the armature 

controlled dc motor. 

 Let us choose i1,  and  as state variables to model the armature controlled dc motor. 

The physical variables ia,  and  are related to the general notation of state variables x1, x2 

and x3 as shown below. 

 x1 = ia ;  x2 =  = d/dt and x3 =  

 The input to the motor is the armature voltage, va and let va = u, where u is the general 

notation for input variable. 

 On substituting the state variables for the physical variables in equation (1.5.5) we get, 

 

  …1.5.7 

 On substituting the state variables for physical variables in Eqn (1.5.6) we get, 

  ..1.5.8 

 The state variable x3 = . On differentiating x3 =  with respect to t we get,  

  …1.5.9 

 The equation (1.5.7), (1.5.8) and (1.5.9) are the state equations of the system. 
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 On arranging the state equations in the matrix form, 

  …1.5.10 

 Let the desired outputs be I,  and . Let us equate the desired output quantities to 

standard notation y1, y2 and y3 as shown below. 

 y1 = ia ;  y2 =  = d/dt and y3 =  

 On relating the outputs to state variables we get, 

 y1 = x1 ;  y2 = x2 ; y3 = x3 

 The output equation in the matrix form is  

  …1.5.11 

 The state equation [Eqn (1.5.10)] and the output equation [Eqn (4.5.11)] together 

constitute the state model of the armature controlled dc motor. 

 

Figure 1.5.4 Block diagram representation of the state model of armature controlled  

dc motor 

EXAMPLE 1.6 

 Determine the state model of field controlled dc motor. 

SOLUTION 

 The speed of a DC motor is directly proportional to armature voltage and inversely 

proportional to flux. In field controlled DC motor the armature voltage is kept constant 

armature the speed is varied by varying the flux of the machine. Since flux is directly 

proportional to field current, the flux is varied by varying field current. The speed control 

system is an electromechanical control system. The electrical system consists of armature and 

field circuit but for analysis purpose, only field circuit is considered because the armature is 
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excited by a constant voltage. The mechanical system consists of the rotating part of the motor 

and the load connected to the shaft of the motor. The field controlled DC motor speed control 

system is shown in Figure 1.6.1. 

 

Figure 1.6.1 Field controlled DC motor 

Let Rf = Field resistance, Ω 

 Lf = Field inductance, H 

 if = Field current, A 

 vf = Field voltage, V 

  = Angular displacement of the motor shaft, rad 

  = d/dt = Angular velocity of the motor shaft, rad/sec 

 T = Torque developed by motor, N-m 

 Ktf = Torque constant, N-m/A 

 J = Moment of inertia of rotor and load, Kg-m2/rad 

 B = Frictional coefficient of rotor and load, N-m/(rad/sec). 

 

 The equivalent circuit of field is shown in Figure 1.6.2. 

 By Kirchoff’s voltage law, we can write 

  …1.6.1 

  The torque of DC motor is proportional to produce of flux and armature current. 

Since armature current is constant in this system, the torque is proportional to flux alone, but 

flux is proportional to field current.  

  …1.6.2 

 The mechanical system of the motor is shown in Figure 1.6.3. The differential equation 

governing the mechanical system of the motor is given by 

  …1.6.3 

 From Eqn (1.6.2) and (1.6.3) we get, 

  …1.6.4 

Figure 1.6.2 

Figure 1.6.3 
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 The equation (1.6.1) and (1.6.4) are the differential equations governing the field 

controlled dc motor. 

 Let us choose ip   and  as state variable to model the field controlled dc motor. The 

physical variables ip   and  are related to the general notation of state variables x1, x2 and x3 

as shown in below. 

 x1 = if ; x2 =  = d/dt ; x3 =  

 The input to the system is the field voltage vf. Let vf = u, where u is the general notation 

for input.  

 On substituting the state variables and input variables for the physical variables in Eqn 

(1.6.1) we get,  

  …1.6.5 

 On substituting the state variables for the physical variables in Eqn (1.6.4) we get,  

  …1.6.6 

 The state variable x3 = . On differentiating x3 =  with respect to t we get, 

  …1.6.7 

 The equations (1.6.5), (1.6.6) and (1.6.7) are the state equations of the system.  
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 On arranging the state equations in the matrix form, 

   …1.6.8 

 Let the desired output be  and . Let us equate the desired output quantities to standard 

notation y1 and y2 as shown below. 

 y1 =  ;  y2 =    

 On relating the outputs to state variable we get, 

 y1 = x2 ;  y2 = x3   

 The output equation in the matrix for is    

  …1.6.9 

 The state equation [Eqn (1.6.8)] and the output equation [Eqn (1.6.9)] together 

constitute the state model of the system.  

 

Figure 1.6.4 Block diagram representation of the state model field controlled dc motor 

1.6 STATE SPACE REPRESENTAION USING PHASE VARIABLES 

 The phase variables are defined as those particular state variables which are obtained 

from one of the system variables and its derivatives. Usually the variable used is the system 

output and the remaining state variables are then derivatives of the output. The state model 

using phase variables can be easily determined if the system model is already known in the 

differential equation or transfer function form. There are three methods of modelling a system 

using phase variables and they are explained in the following sections.  

Method 1 

 Consider the following nth order linear differential equation relating to the output y(t) 

to the input u(t) of a system. 
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  …1.10 

 By choosing the output y and their derivatives as state variables, we get,  

  

 On substituting the state variables in the differential equation governing the system 

[Eqn (1.10),] we get, 

   

 The state equations of the system are 

  

 On arranging the above equations in the matrix form we get,  

  … 1.11 

 Or Ẋ = A X + B U 

 Here the matrix A (system matrix) has a very special form. It has all 1’s in the upper 

off-diagonal, its last row is comprised of the negative of the coefficients of the original 

differential equation and all other elements are zero. This form of matrix A is known as Bush 

form (or) Companion form. 
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 Also note that B matrix has the speciality that all its elements except the last element 

are zero. The output being y = x1, the output equation is given by, 

  …1.12 

 (or) Y = C X 

 The advantage in using phase variables for state space modelling is that the system state 

model can be written directly by inspection from the differential equation governing the 

system. 

Method 2 

 Consider the following nth order differential equation governing the output y(t) to the 

input u(t) of a system.  

  …1.13 

 Let n = m = 3 

  …1.14 

 On taking laplace transform of Eqn (1.14) with zero initial conditions we get,  

  …1.15 

 From the Mason’s gain formula, the transfer function of the system is given by 

  …1.16  

Where Pk = path gain of Kth forward path. 

   = 1 – (sun of loop gain of all individual loops) 

   + (sum of gain products of all possible combinations of two non-

touching loops) - ….. 

 k =  for that part of the graph which is not touching Kth forward path.  
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 The transfer function of a system with four forward paths and with three feedback loops 

(touching each other) is given by, 

  …1.17 

 On comparing equation (1.15) and (1.17) we get, 

  

 Hence for this system represented by the transfer function as that of equation (1.15), a 

signal flow graph can be constructed as shown in the Figure 1.4. The signal flow is constructed 

such that all k = 1 and all loops are touching loops.  

 Let us assign state variables at the output of each integrator in the signal flow graph. 

Hence at the input of each integrator, the first derivative of the state variable will be available. 

The state equations are formed by summing all the incoming signals to the nodes, whose values 

corresponds to first derivative of state variables. 

 

Figure 1.4 Signal flow graph of the system represented by the equation 1.15 

 By summing up the incoming signals to node  ẋ1 we get, (Refer Fig. 1.4a) 

 
Figure 4.4a 

…1.18 

 

 By summing up the incoming signals to node  ẋ2 we get, (Refer Fig. 1.4b) 

 
Figure 4.4b 

…1.19 
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 By summing up the incoming signals to node  ẋ3 we get, (Refer Fig. 1.4c) 

 
Figure 4.4c 

…1.20 

  

 The output equation is given by the sum of incoming signals to output node. 

 The output equation is given by the sum of incoming signals to output node. 

  y = x1 + b0 u …1.21 

 On arranging the state equations and the output equations in the matrix form, we get,  

  …1.22 

  …1.23 

 The above results can be generalized for an nth order differential equation, and the 

general state model for m = n is given below. 

  …1.24 

  …1.25 

Method 3 

 Consider the following nth order differential equation governing the output y(t) to the 

input u(t) of a system. 
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   …1.26 

 Let n = m = 3, 

  …1.27 

 On taking laplace transform of Eqn (1.27) with zero initial conditions, we get. 

 …4.28 

 …4.29 

On cross multiplying the Eqn (1.28) we get, 

 …4.30 

On taking inverse laplace transform of Eqn (1.30) we get,  

 …1.31 

Let the state variable be, x1, x2 and x3 

 where,  x2 = ẋ1 

 and       x3 = ẍ1 = ẋ2  ;   ẋ3 =   ẍ1 

On substituting the state variables in equation (1.31) we get,  

 

The state equations are,  
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 On cross multiply the Eqn (1.29) we get, 

  ..1.32 

 On taking inverse laplace transform of Eqn (1.32), we get,  

  …1.33 

 On substituting the state variables in Eqn (1.33) we get, 

  …1.34 

  …1.35 

` The equation (1.35) is the output equation. 

 On arranging the state equations and output equations in the matrix form, we get, 

  

 The above results can be generalized for an nth order differential equation and the 

general state model for m = n is given below. 

  …1.38 

  …1.39 

 

…1.36 

…1.37 
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Advantages of Phase Variables 

 The state space model can be directly formed by inspection from the differential 

equations governing the system. The phase variables provides a link between the transfer 

function design approach and time-domain design approach. 

Disadvantage of Phase Variables 

 The phase variables are not physical variables of the system and therefore are not 

available for measurement and control purposes. 

EXAMPLE 1.7 

 Construct a state model for a system characterized by the differential equation, 

  

 Give the block diagram representation of the state model. 

SOLUTION 

 Let us choose y and their derivatives as state variables. The system is governed by third 

order differential equation and so the number of state variables are three. 

 The state variables x1, x2 and x3 are related to phase variables as follows. 

  

 

 The state equations are 

  

 On arranging the state equations in the matrix form we get, 

  



34 

 Here y = output 

 But, y = x1 

 The output equation is,  

 

 The state equation and output equation, constitutes the state model of the system, The 

block diagram form of the state diagram of the system is shown in Figure 1.7.1 

 

Figure 1.7.1 Block diagram form of state diagram 

EXAMPLE 1.8 

 The state diagram of a system is shown in Figure 1.8.1. Assign state variables and 

obtain the state model of the system.  

 

Figure 1.8.1 

SOLUTION 

 Since there are 4-integrators in the state diagram we can assign, 4 state variables. The 

state variables can be assigned at the output of the integrators as shown in Figure 1.8.2. Hence 

at the input of the integrator, the first derivative of the state variable will be available. The state 

equations are formed by summing all the incoming signals to the input of the integrator and 

equating to the corresponding first derivatives of the state variable.  
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Figure 1.8.2 

 On adding the signals coming to the 1st integrator we get, (refer Figure 1.8.3). 

  

 On adding the signals coming to the 2nd integrator we get, (Refer Figure 1.8.4) 

  

 On adding the signals coming to the 3rd integrator we get, (Refer Figure 1.8.5) 

  

 On adding the signals coming to the 4th integrator we get, (Refer Figure 1.8.6) 

  

 
   

Figure 1.8.3 Figure 1.8.4 Figure 1.8.5 Figure 1.8.6 
 

 The state equations are  

  

 The output equations are, y1 = y2 and y2 = x4. 

 The state equations and output equations are arranged in the matrix form as shown 

below. The state equations and output equations together constitute the state model of the 

system.  
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EXAMPLE 1.9 

 The state diagram of a linear system is given below. Assign state variables to obtain 

the state model. 

 

Figure 1.9.1 

SOLUTION  

 Since there are three integrators (1/s) we can assign three state variables. The state 

variables are assigned at the output of the integrator as shown in Figure 1.9.2. At the input of 

the integrator we have the first derivative of the state variable. The state equations are formed 

by summing all the signals at the input of integrator and equating to the corresponding first 

derivatives of state variable.  

 

Figure 1.9.2 

 On adding the signals coming to node-5, we get, (Refer Figure 1.9.3)  

 𝑥̇1 = x2 

 On adding the signals coming to node-4, we get, (Refer Figure 1.9.4) 

 𝑥̇2 = -2x2 +
 x3 

  

Figure 1.9.3 Figure 1.9.4 
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 On adding the signals coming to node-=2, we get, (refer Figure 1.9.5). 

  

 

Figure 1.9.5 

 The state equations are 

  

 The output equation is obtained by adding the signals coming to output node (refer 

Figure 1.9.6) 

    

 The state equations and the output equation are arranged in the matrix form as shown 

below. 

   

EXAMPLE 1.10 

 Obtain the state model of the system whose transfer function is given as,  

  

 

Figure 1.9.6 
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SOLUTION  

Method 1 

 Given that,   …1.10.1 

 

 On cross multiplying the Eqn (1.10.1) we get,  

  …1.10.2 

 On taking inverse laplace transform of Eqn (1.10.2) we get, 

  …1.10.3 

 Let us define state variables as follows, 

  

 Put                                                                                    in the equation (1.10.3) 

  

 The state equations are  

  

 The output equation is y = x1 

 The state model in the matrix form is,  

  

Method 2 
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 The signal flow graph for the above transfer function can be constructed as shown in 

Figure 1.10.1 with a single forward path consisting of three integrators and with path gain 10/s3. 

The graph will have three individual loops with loop gains – 4/2, -2/s2, and 1/s3. 

 

Figure 1.10.1 

 Assign state variables at the output of the integrator (l/s). The state equations are 

obtained by summing the incoming signals to the input of the integrators and equating them to 

the corresponding first derivative of the state variable. Refer Figure 1.10.2 to Figure 1.10.4). 

 The state equations are 

  

 The output equation is, y = x1 

 The state model in the matrix form is,  

  

1.7 STTE SPACE REPRESENTATION USING CANONICAL VARIABLES 

 In canonical form (or normal form) of state model, the system matrix A will be a 

diagonal matrix. The elements on the diagonal are the poles of the transfer function of the 

system. 

 By partial fraction expansion, the transfer function Y(s)/U(s) of the nth order system can 

be expressed as shown in Eqn (1.40). 

  …1.40 

where C1, C2, C3…..Cn are residues and 1, 2,……….. n are roots of denominator 

polynominal (or poles of the system). 

 The equation (1.40) can be rearranged as shown below. 

Figure 1.10.2 
Figure 1.10.3 

Figure 1.10.4 
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 …1.41 

 The equation (1.41) can be represented by a block diagram as shown in Figure 1.5. 

 

Figure 1.5 Block diagram of canonical state model  

 Assign state variables at the output of integrator. The input of the integrator will be first 

derivative of state variable. The state equations are formed by adding the incoming signals to 

the integrator and equating to first derivative of state variable. The state equations are,  

  

 The output equation is,  

 The canonical form of state model in the matrix form is given below. 
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  …1.41 

  …1.42 

 The advantage of canonical form is that the state equations are independent of each 

other. The disadvantage is that the canonical variables are not physical variables and so they 

are not available for measurement and control. 

 When a pole of the transfer function has multiplicity, the canonical state model will be 

in a special form called Jordan canonical form. In this form the system matrix A will have a 

Jordan block of size q x q, correspond to a pole of value 1 with multiplicity q. In the Jordan 

block the diagonal element will be the poles and the element just above the diagonal is one. 

 Consider a system with poles 1, 1, 1, 4, 5, …. n where 1 has multiplicity of three. 

The input matrix (B) and system matrix for this case will be as shown in Eqn (1.41a). The 

system matrix is also denoted as J.  

 …1.41a 

 

 The transfer function of the system for this case is given by Eqn (1.40a) and the block 

diagram is shown in Figure 1.5a. 

 ….1.40a 
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Figure 1.5a Block diagram of Jordan canonical state model  

EXAMPLE 1.11 

 A feedback system has a closed-loop transfer function 

  

 Construct three different state models for this system and give block diagram 

representation for each state model. 

SOLUTION 

Mode 1 

 

 A signal flow graph for the above transfer function can be constructed as shown Figure 

1.11.1 with two forward paths and two individual loops. The forward path gains are 10/s2 and 

40/s3. The loop gains are -4/s and -3/s2. 
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 Assign state variables at the output of integrator as shown in FIGURE 1.11.1 and so the 

input of integrator is first derivative of state variable. The state equation are obtained by 

summing all the incoming signals to the integrator and equating to the corresponding first 

derivative of the state variable. [Refer Figure 1.11.2 to 1.11.3] 

 

Figure 1.11.1 

 The state equations are  

  

 The output equation is, y = x1 

 The state model is obtained by arranging the state equations and the output equation 

in the matrix form as shown below. The block diagram representative of this state model is 

shown in Figure 1.11.5. 

 

 

Figure 1.11.5 

Model 2 

 Give that,   

  

Figure 1.11.2 Figure 1.11.3 Figure 1.11.4 
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  …1.11.1 

 On cross multiplying the Eqn (1.11.1) we get, 

  …1.11.2 

 On taking inverse laplace transform of Eqn (1.11.2) we get, 

  …1.11.3 

 Let the state variables be x1, x2 and x3; where x2 = x1 and x3 =  𝑥̇1. 

                                    in Eqn (1.11.3), 

  

 The state equations are 

  

 Consider the second part of transfer function,  

  …1.11.4 

 On cross multiplying Eqn (1.11.4) we get,  

  … 1.11.5 

 On taking inverse laplace transform of Eqn (1.11.5) we get, 

  

 Here, y = 40x1 + 10x2 is the output equation. The state model in the matrix form is 

shown below. The block diagram representation of this state model is shown in Figure 1.11.6. 
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Figure 1.11.6 

Model 3 

  

 By partial fraction expansion Y(s) / U(s) can be expressed as, 

  …1.11.6 

 The equation (1.11.6) can be rearranged as shown below 

  …1.11.7 

 The block diagram of the Eqn (1.11.7) is shown in Figure 1.11.7 

 

Figure 1.11.7 
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 Assign state variables at the output of the integrator as shown in Figure 1.11.7. At the 

input of the integrator, the first derivative of the state variables will be available. The state 

equations are obtained by adding incoming signals to the integrator and equating to the 

corresponding first derivative of the state variable. 

 The state equations are  

  

 The output equation is  

 The state model is the matrix form is shown below. The Figure 1.11.7 is the block 

diagram representation of this state model. 

  

EXAMPLE 1.12 

 Determine the canonical state model of the system, whose transfer function is  

T(s) = 2(s+5)/[(s+2) (s+3) (s+4)] 

SOLUTION 

 By partial fraction expansion, 

 …1.12.1 

 The equation (1.12.1) can be rearranged as shown below. 

  …1.12.2 
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 The equation (1.12.2) can be represented by the block diagram in Figure 1.12.1 

 Assigns state variables at the output of the integrators as shown in Figure 4.12.1. At the 

input of the integrators we have first derivative of the state variables. The state equations are 

formed by adding all the incoming signals to the integrator and equating to the corresponding 

first derivative of state variable.  

 The state equations are  

  

 

Figure 1.12.1 

 The output equation is, y = 3x1 – 4x2 + x3 

 The state model in matrix form is given below. 

  

1.8 SOLUTION OF STATE EQUATIONS 

SOLUTION OF HOMOGENEOUS STATE EQUATIONS 

(Solution of State Equations without input or excitation) 

 Consider a first order differential equation, with initial condition, x(0) = x0. 

  …1.43 

 On rearranging Eqn (1.43) we get,  …1.44  

 On integrating Eqn (1.44) we get, 
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  …1.45 

 When t = 0, from Eqn (1.45) we get, x = x(0) = eC 

  Given that x(0) = x0 ;  eC = x0 

 On substituting the initial condition in Eqn (1.45), we get the solution of first order 

differential equation as  

 x = eat x0.   ….1.46 

 We know that,  …1.47 

 From Eqn (1.46) and (1.47) we get,  

  …1.48 

 Consider the state equations without input vector, (i.e., homogeneous state equation)

  …1.49 

 Where X(0) is the initial condition vector. 

 By analog of the solution of first order differential equation [Eqn (4.48)], the solution 

of the matrix or vector equation can be assumed as shown in Eqn (1.50). 

  ...1.50 

Where A0, A1, A2, …. Ai… are matrices and the elements of the matrices are constants. 

 On differentiating the Eqn (1.5) we get, 

  …1.51 

 On multiplying Equation (1.50) by A, we get, 

  …1.52 

 From Eqn (1.49), we know that X(t) = A X(t). Therefore we can equate the coefficients 

of equal powers of t in equations (1.51) and (1.52) as shown below.  
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 In the above analysis, the matrices A1, A2, A3, etc., are expressed in terms of A and A1. 

Hence replace the matrices A1, A2, A3…. Ai in the assumed solution of X(t) [i.e., Eqn (1.50)] 

by the equivalent terms of obtained above. 

  

   …1.53 

 where I is the unit matrix. 

 I tis given that, when t = 0,        X(t) = X(0) = X0 …1.54 

 From Eqn (1.53) when t = 0, we get  

  …1.55 

 From Equations (1.54) and (1.55) we get, 

 A0 = X0  … 1.56 

 On substituting for A0 from Eqn (1.56) in Eqn (1.53) we get,  

  …1.57 

 Each of the term inside the brackets is an n x n matrix. Because of the similarity of the 

entity inside the bracket with a scalar exponential of eat, we call it a matrix exponential, which 

may be written as,  
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  …1.58 

 Hence the solution of the state equation is  

   ...1.59 

 The matrix eat is called state transition matrix and denoted by (t). From the solution of 

the state equations it is observed that the initial state X0 at t = 0, is driven to state X(t) at time t 

by state transition matrix.   

SOLUTION OF NON HOMOGENEOUS STATE EQUATIONS  

(Solution of state equations with input or excitation) 

 The state equation of nth order system is given by 

  …1.60 

 where X0 is initial condition vector. 

 The state equation of Eqn (1.60) can be rearrangement as shown below. 

  …1.61 

 Premultiply both sides of Eqn (1.61) by e-At 

  …1.62 

 Consider the differential of e-At X(t) 

  …1.63 

 On comparing equations (1.62) and (1.63) we can write, 

  …1.64 

 On integrating the equation (1.64) between limits 0 to t we get, 

  …1.65 
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where X0 = Initial condition vector = Integral constant 

 τ = Dummy variable substituted for t. 

 Premultiply both sides of Eqn (1.65) by eAt
, 

  …1.66 

 The term eAt independent of the integral variable τ, and so eAt can be brought inside the 

integral function. 

  …1.67 

 The equation (1.67) is the solution of state equation, when the initial conditions are 

known at t = 0. If initial conditions are known at t = t0 then the solution of state equations is 

given by Eqn (1.68). 

  …1.68 

 The state transition matrix eAt is denoted by the symbol (t), i.e., (t) = eAt 

 Hence, eA(t-t
e
)
 can be expressed as, eA(t-t

e
) = (t-t0) …1.69 

 and, eA(t-τ) can be expressed as, eA(t-τ) = (t-τ) …1.70 

 The equation (1.67) and (1.68) can also be expressed as 

                                  if the initial conditions are known t = 0 …1.71 

  

     if the initial conditions are known t = t0 … 1.72 

PROPERTIES OF STATE TRANSITION MARIX 

1.  

2.  

3.  

COMPUTATION OF STATE TRANSITION MATRIX 
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Method 1: Computation of eAt using matrix exponential.  

Method 2: Computation of eAt using laplace transform. 

Method 3: Computation of eAt by canonical transformation. 

Method 4: Computation of eAt using Sylvester’s interpolation formula (or computation 

based on Cayley-Hamilton theorem). 

 The computation of state transition matrix using matrix exponential and laplace 

transform are presented in this section.  

Computation of state transition matrix using matrix exponential 

 In this method, the eAt is computed using the matrix exponential of Eqn (1.58), which 

is also given below, 

  

where, eAt = State transition matrix of order n x n 

 A = System matrix of order n x n 

 I = Unit matrix of order n x n. 

 The disadvantage in this method is that each term of eAt will be an infinite series and 

the convergence of the infinite series are obtained by trial and error. 

Computation of State Transition Matrix by Laplace Transform Method 

 Consider the state equation without input vector, 𝑋̇(t) = A X(t) …1.73 

 On taking laplace transform of equation (1.73) we get, 

  where I is a unit matrix. 

 Premultiply both sides by (sl – A)-1 

   

 On taking inverse laplace transform we get, 

  …1.74 

 On computing Eqn (1.74) with the solution of state equation, X(t) = eAt X(0) we get 

   …1.75 
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 We know that,   ...(1.76) 

 where, (s) =  (sI–A)-1 and it is called resolvant matrix.  

 From the system matrix, A the resolvant matrix, (s) can be computed. By taking 

inverse laplace transform of resolvant matrix, the state transition matrix is computed, from 

which the solution of state equation is obtained. 

 The solution of state equation is given by 

  …(1.77) 

 where, (s) = (sl-A)-1  

 Consider the state equation with forcing function (input or excitation) 

 𝑋̇ = AX + BU  …1.78 

 On taking laplace transform of Eqn (1.78), we get 

  where I is the unit matrix. …1.79 

 Premultiply the Eqn (1.79) by (sl-A)-1 

  …1.80 

 On taking inverse Laplace transform of Eqn (1.80) we get, 

  ..1.81 

 The equation (1.81) is the solution of state equation with forcing function. 

EXAMPLE 1.13 

 Consider the matrix A, Compute eAt by two methods. 
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SOLUTION 

Method 1 

  

  

 

 The each term in the matrix is an expansion of eat. The convergence of series obtained 

by trial and error. Consider the expansion of e-1 and  e-2t. 
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Method 2 
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 By partial fraction expansion, (s) can be written as, 

  

  

 On taking inverse Laplace transform (s) we get (t), where (t) = eAt 

  

 It is observed that the results of both the methods are same. 
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EXAMPLE 1.14 

  

SOLUTION 
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EXAMPLE 1.15 

 For a system represented by state equation  𝑋̇(t) = A X(t)  

  

 Determine the system matrix A and the state transition matrix 

SOLUTION 

 The Solution of State equation is, X(t) = eAt X(0) …1.15.1 

 Premultiply the Eqn (1.15.1) by e-At 

  …1.15.2 

 One of the response is  

 

 On substituting the response in equation (1.15.2) we get, 

  …1.15.3 

  …1.15.4 

 From equation (1.15.3) and (1.15.4) we can write 

  …1.15.5 

 

 On multiplying the equation (1.15.5) we get the following two equations. 

  …1.15.6 

  …1.15.7 
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 The second solution of state equation is  

 

 On substituting this solution in equation (1.15.2) we get, 

  …1.15.8 

 From Eqn (1.15.4) and (1.15.8) we can write,  

  …1.15.9 

 On multiplying the equation (1.15.9) we get the following two equations, 

  ….1.15.10 

  …1.15.11 

equation (1.15.10)  

equation (1.15.16)  

 

On subtracting  

 

 From Eqn (1.15.12) we get 

  …1.15.13 

 From equation (1.15.6),  
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 …1.15.14 

From Eqn (1.15.14) we get,  

  

 From Equation (1.15.11),  

  

  

  

 eAt is the state transition matrix.  

 We know that,  

 Where  
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 Determinant of (s)  

 

 

  

  

RESULT 

  

EXAMPLE 1.16 

 A linear time-invariant system is characterized by homogenous state equation. 

  

 Compute the solution of the homogenous equation, assuming the initial state vector. 
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SOLUTION 

 

 Here 

 

 

 

  

 The solution of the state equation is,  

 

1.9 STATE SPACE REPRESENTATION OF DISCRETE TIME SYSTEMS 

 The state variable analysis techniques of continuous time systems can be extended to 

the discrete-time system. The discrete form of state space representation is quite analogue to 

the continuous form. 

 In the state variable formulation of a discrete time system, in general, a system consists 

of m-inputs, p-outputs and n-state variables. The state space representation of discrete-time 

system may be visualized as shown in Figure 1.6. 

  

 

Figure 1.6 State space representation of discrete time system 
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 The different variables may be represented by the vectors (column matrix) as shown 

below.  

  

 Note: The simplified notation x(k), y(k) and u(k) are used to denote x(kT), y(kT) and 

u(kT) respectively. Also for convenience the variables are denoted, x1, x2, x3,….: y1, y2, y3, and 

u1, u2, u3….. 

 The state equation of a discrete time system is a set of n-numbers of first order 

difference equations.  
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ANALYSIS AND DESIGN OF CONTROL SYSTEM IN STATE SPACE 

2.1 DEFINITIONS OF INVOLVING MATRICES 

 Matrix: A matrix is an ordered array of elements which may be real numbers, complex 

numbers, functions or operators. In general the array consists of m rows and n columns. When 

m = n, the matrix is called square matrix. When n = 1, the matrix is called column matrix or 

vector. When m = 1, the matrix is called row matrix or vector. 

 Diagonal matrix: It is a square matrix whose elements other than main diagonal area 

all zeros. 

 Unit matrix: It is a diagonal matrix whose diagonal elements are all equal to unity. The 

elements other than diagonal are all zeros. It is denoted by I. 

 Transpose: If the rows and columns of an m x n matrix A are interchanged, then the 

resulting n x m matrix is called the transpose of A. The transpose of A is denoted by AT. 

 Determinant: A determinant consisting of the elements of a square matrix (in the order 

given it the matrix) is called the determinant of the matrix.  

 Symmetric matrix: A square matrix is symmetric if it is equal to its transpose, i.e.,  

AT = A. If A is a square matrix, then A + AT is a symmetric matrix. 

 Skew-symmetric matrix: A square matrix is skew-symmetric if it is equal to the 

negative of its transpose, i.e., AT = -A. If A is a square matrix then A-AT is a skew symmetric 

matrix. 

 Orthogonal Matrix: A matrix A is called an orthogonal matrix if it is real and satisfies 

the relationship AT A = AAT = I. 

 Minor: If the ith row and jth column of determinant A are deleted, the remaining (n-1) 

rows and columns form a determinant Mij. This determinants is called the minor of the element 

aij. 

 Cofactor: The cofactor Cij of element aij of the matrix A is defined as Cij = (-1)(i+j) Mij, 

where Mij , is the minor of aij. 

 Adjoint matrix: The adjoint matrix of a square matrix A is found by replacing each 

element aij of matrix A by its cofactor Cij and then transposing. 

 Singular matrix: A square matrix is called singular if its associated determinant is 

zero. If the determinant of the matrix is non zero then the matrix is  non singular. 

 Rank of matrix: A matrix A is said to have a rank r if there exists an r x r submatric of 

A which is non singular and all other q x q submatrices are singular, where q ≥ (r+1). 

 Conjugate matrix: The conjugate of a matrix A is the matrix is which each element is 

the complex conjugate of the corresponding element of A. The conjugate of A is denoted  

by A*. 
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 Real matrix: If all the elements of a matrix are real then the matrix is called real matrix. 

A real matrix is equal to its conjugate.  

2.2 EIGENVALUES AND EIGENVECTORS 

 A nonzero column vector X is an eigenvector of a square matrix A, if there exists a 

scalar  such that AX = X, then  is an eigenvector (or characteristic value) of A. Eigenvalue 

may be zero but the corresponding vector may not be a zero vector. 

 The characteristic equation of n x n matrix A is the nth degree polynomial of equation. 

|I - A| = 0, where I is the unit matrix. Solving the characteristic equation for  gives the 

eigenvalues of A. The eigenvalues may be real, complex or multiples of each other.    

 Once an eigenvalue is determined it may be substituted into AX = X and then that 

equation may be solved for the corresponding eigenvector. 

PROPERTIES OF EIGENVALUES AND EIGENVECTORS 

1. The sum of the eigenvalues of a matrix is equal to its trace, which is the sum of the 

elements on its main diagonal. 

2. Eigenvectors corresponding to different eigenvalues are linearly independent. 

3. A matrix is singular if and only if it has a zero eigenvalue. 

4. If X is an eigenvector of A corresponding to the eigenvector of  and A is invertible, 

then X is an eigenvector of A-1 corresponding to its eigenvalue 1/. 

5.  If X is an eigenvector of a matrix then KX is also an eigenvector for any nonzero  

constant K. Here both X and KX correspond to the same eigenvector. 

6. A matrix and its transpose have the same eigenvalues. 

7. The eigenvalues of an upper or lower triangular matrix are the elements on its main 

diagonal. 

8. The product of the eigenvalues (counting multiplicities) of the matrix equals the 

determinant of the matrix. 

9. If X is an eigenvector of A corresponding to eigenvalue of , then X is an eigenvector 

of A-CI corresponding to the eigenvalue -C for any scalar C. 

DETERMINATON OF EIGENVECTORS 

Case 1: Distinct eigenvalues 

 If the eigenvalues of A are all distinct, then we have only one independent eigenvector 

corresponding to any particular eigenvalue i. The eigenvector corresponding to i may be 

obtained by taking cofactors of matrix (i I-A) along any row. 

 Let, mi = Eigenvector corresponding to i 
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 Now the eigenvector mi is given by 

  …2.1 

 where  Ck1, Ck2,…Ckn are cofactors of matrix (i I-A) along kth row. 

Case ii: Multiple eigenvalues 

 In this case the eigenvectors corresponding to the distinct eigenvalues are evaluated as 

mentioned in case (i). 

 If the matrix has repeated eigenvalues with multiplicity “q”, then there exists only one 

independent eigenvector corresponding to that repeated eigenvalue. If I is a repeated 

eigenvalue, then the independent vector corresponding to I can be evaluated by taking the 

cofactor of matrix (I I-A) along any row as mentioned in case (1). The remaining (q-1) 

eigenvectors can be obtained as shown in Eqn (2.2). 

 Let, mp = pth eigenvector corresponding to repeated eigenvalue i. 

  …2.2 

 where ck1, ck2, ck3….ckn are cofactors of matrix (i I-A) along kth row 

2.3 SIMILARITY TRANSFORMATION 

 The square matrices A and B are said to be similar if a non singular matrix P exists such 

that 

 P-1 AP = B  …2.3 

 The process of transformation is called similarity transformation and it is a linear 

transformation. Thematrix P is called transformation matrix. Also the matrix, A can be obtained 

from B by a similarly transformation with a transformation matrix P -1, 

 i.e., A = P B P-1 …2.4 

 The similarity transformation can be used for diagonalization of a square matrix. If an 

n x n matrix has n linearly independent eigenvectors (i.e., with distinct eigenvalues) then it can 



68 

be diagonalized by a similarity transformation. If a matrix has multiple eigenvalues then it will 

not have a complete set of n lineraly independent eigenvectors and so it cannot be diagonalized. 

However such a matrix can be transformed into a Jordan matrix (Jordan canonical form). 

 The transformation matrix for diagonalization or converting to Jordan form can be 

obtained from eigenvectors. For a system with n state variables we can find numbers of 

eigenvectors m1, m2, m3, ……., mn. The eigenvectors are column vectors of order (nx1). The 

transformation matrix is obtained by arranging the eigenvectors columnwise as shown in Eqn 

(2.5). This transformation matrix is also called Modal matrix and denoted by M. 

 Modal matrix, M = [ m1 m2  m3 ………. Mn ] …2.5 

 The similarity transformation will not alter certain properties of the matrix. A property 

of a matrix is said to be invariant if it is possessed by all similar matrices. The determinant, 

characteristic equation and trace of a matrix are invariant under a similarity transformation. 

Since the characteristics equation is invariant the eigenvalues are also invariant under a linear 

or similarity transformation.  

PROOF FOR INVARIANCE OF DETERMINANT 

 Let A and B are similar matrices and P be the transformation matrix which transforms 

A to B by a similarity transformation, P-1  AP = B. 

  B = P-1 AP  …2.6 

 On taking determinant of Eqn (2.6) we get, 

 |B| = |P-1 AP|  …2.7 

 Since the determinant of a product of two or more square matrices is equal to the 

product of their individual determinants, the Eqn (2.7) can be written as,  

  

 From the above analysis it is evident that the determinant of a matrix is invariant under 

a similarity transformation.  

PROOF FOR INVARIANCE OF CHARACTERISTIC EQUATION AND 

EIGENVALUES 

 Let A and B are similar matrices and P be the transformation matrix which transforms 

A to B by a similarity transformation, P-1 AP = B. 

 The characterisrtic equation of matrix B is given by  

   …2.8 

 On substituting B = P-1 AP is Eqn (2.8) we get, 
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  …2.9 

 Since the determinant of a product is the product of the determinant, the Eqn (2.9)  can 

be written as,  

  

 From the above analysis it is clear that the characteristic equations of A and B are 

identical. Since the characteristic equations are identical, the eigenvalues of A and B are 

identical. Hence the eigenvalues are invariant undr a similarity (linearity) transformation.  

PROOF FOR INVARIANCE OF TRACE OF A MATRIX 

 Let A and B are similar matrices and P be the transformation matrix which transforms 

A to B by a similarity transformation, P-1 AP = B. 

  tr  B = tr P-1 AP …2.10 

 For an n x m matric C and m x n matrix D, regardless of whether CD = DC or CD  

DC, we have, 

 tr (CD) = tr (DC) …2.11 

 Using the property of Eqn (2.11), the Eqn (2.10) can be written as, 

  

 From the above analysis it is clear that the trace of a matrix is invariant under a 

similarity transformation. 

2.4 CAYLEY – HAMILTON THEOREM 

 The Cayley – Hamilton theorem states that every square matrix satisfies its o wn 

characteristics equation. 

 Consider an n x n matrix A and its characteristics equation [Eqn (2.12)]. 

  …2.12 

 By Cayley-Hamilton theorem, the matrix A has to satisfy its characteristic equation, 

hene Eqn (2.12) can be written as,  

  …2.13 
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PROOF OF CAY-LEY HAMILTON THEOREM 

 Let A be a square matrix. The characteristic equation of A is given by 

  ..2.14 

 We have to prove that A satisfies the characteristic equation, 

  …2.15 

 where I is the unit matrix of order (n x n).  

 Consider the matrix (I – A). Let the matrix B be adjoint of (I – A). 

  …2.16 

 The elements of adj (I-A) are the cofactors of the elements of (I-A). Therefore each 

element of B will be a polynominal in  of degree (n-1) or less. We know that every matrix 

whose elements are ordinary polynominals can be written as matrix polynominal. Hence the 

matrix B can be written as a matrix polynomial as shown in Eqn (2.17.). 

  …2.17 

 From equations (2.16) and (2.17) we get, 

  …2.18 

 We know that, (I-A) (I-A)-1 = 1 

 But,   

  

 Using equations (2.12) and (5.18), the equation (5.19) can be written as,  

  

 …2.19 
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 On equating the coefficient of like powers of  in Eqn (2.18) we get the following (n+1) 

equations  

  

 On premultiplying both sides of equations (1), (2), (3),… (n-1), (n) and (n+1) by An, 

An+1, An-2,…. A2
 A and I represectively we get the following (n+1) equations.  

  

 On adding the above (n+1) equations we get, (i.e., all the left hand side terms gets 

cancelled and becomes zero), 

  …2.20 

 The Eqn (5.20) shows that the matrix A satisfies its characteristic equation. Thus 

Cayley-Hamilton theorem is proved. 

COMPUTATION OF THE FUNCDTION OF A MARIX USING CAYLEY-

HAMILTON THEOREM 

 The Cayley-Hamilton theorem provides a simple procedure for evaluting the function 

of a matrix. Consider a matrix A of order (n x n) with eigenvalues 1, 2, 3,…. n. The 

characteristic equation q() of matrix A will be as shon in Eqn (2.21) 

  …2.21 

 Let f(A) be a function of matrix A and f(A) can be expressed as a matrix polynomial. 

Let f() be a scalar polynominal obtained from f(A) after substituting A by . 

 On dividing f() by q(), we get 
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  …2.22 

 where Q() = Quotient polynoinal 

 and  R() = Remainder polynominal 

  …2.23 

 If we evaluate the Eqn (5.23) using the eigenvalues 1, 2, 3, ….n then from Eqn 

(5.23) we get, q() = 0 and we have, 

  …2.24 

 where i = 1, 2, 3, … n 

 The remainder polynominal R() will be in the form of Eqn (2.25) shown below. 

  …2.25 

 where α0, α1, α2, ….., αn-1 are constants 

 From equations (2.24) and (2.25) when  = I we get, 

  …2.26 

 where i = 1,2,3,… n 

 On substituting the n number of eigenvalues in Eqn (2.27), one by one, we get n number 

of equations. There equations can be solved to find the constants α0, α1,….,αn-1. 

  ..2.27 

 The Cayley-Hamilton theorem says that every square matrix satisfies its characteristic 

equation and so q(A) = 0. Therefore the Eqn (2. 28) can be written as,\ 

   …2.28 

 From Eqn (2.28) we get, 

  …2.29 

 From equations (2.28) and (2.29) we get, 

  …2.30 
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 The Eqn (2.30) can be used to evaluate the function f(A). On substituting the 

eigenvalues in Eqn (2.26) we get n-number of linear equations. The constants α0, α1, α2, α3, …. 

αn-1 are obtained by solving these n-number of linear equations. 

 The Eqn (2.26) can be used to form n-number of independent equations only when all 

the eigenvalues are distinct. If the matrix A have a multiple eigenvalue with multiplicity in then 

only one independent equation can be obtained by substituting the multiple eigenvalue in Eqn. 

(2.26). The remaining (m-1) equations are obtained by differentiating Eqn (2.26) after replacing 

i by  and then evaluating with  = p where p is the multiple eigenvalue, as shown in Eqn 

(5.31). [The equations corresponding to distinct eigenvalues are obtained by substituting the 

eigenvalues in Eqn (2.26)]. 

  …2.31 

 where j = 1, 2, 3, …., (n-1) 

 The equation (2.30) can also be used to compute the state transition matrix of continous 

time system eAt by taking f(A) = eAt and the state transition matrix of discrete time system Ak 

by taking f(A) = Ak. 

 Note: In order to solve f(A) = eAt, when the eigenvalues are distinct the equations (2.26) 

and  (2.30) can also be obtained by using the sylvester’s interpolation formula given below 

  

EXAMPLE 2.1 

 

 Find   

 

SOLUTION 

  

 The characteristic equation is given by 
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 The eivenvalues 1, 2 are roots of charactertistic equation. 

 1 = -2, 2 = -3, 

 Given that, f(A) = A7,   f() = 7 

  …2.1.1 

  …2.1.2 

  …2.1.3 

 From Eqn (2.1.1) and (2.1.3) when i = 1 = -2, we get, 

  … 2.1.4 

 From Eqn (2.1.2) and (2.1.3) when i = 1 = -3 we get, 

  …2.1.5 

 On substituting for α1 from Eqn (2.1.5) in Eqn (2.1.4) we get, 

  

 On substituting the value of α0 in Eqn (2.1.5) we get, 

  

  

  

 



75 

ALTERNATE METHOD 

  

EXAMPLE 1.2 

 

 For   

 

 Compute the state transition matrix eAt using Cayley-Hamilton theorem. 

SOLUTION 

 Given that,  

 

  
 The characteristic equation is given by 

  

 The eigenvalues 1, 2 are roots of characteristic equation. 

  

  

  …2.2.3 

 From Eqn (2.2.1) and (2.2.3) when i = 1 = -1, we get, 

…2.2.1 

…2.2.2 
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  …2.2.4 

 From Eqn (2.2.2) and (2.2.3) when I = 2 = -2, we get, 

  

  …2.2.5 

 On substitutign for α1 from Eqn (2.2.5) in Eqn (2.2.4) we get, 

  

 On substituting the vaue of α0 in Eqn (2.2.5) we get, 

  

 By Cayley-Hamilton theorem, 

  

  State transititon matrix,  

EXAMPLE 2.3 

 The system matrix A of as discrete time systme is given by A =   
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 Compute the state transitiotn matrix Ak using the Cayley-Hamilton theorem.  

SOLUTION 

  

 The characteristic equation is given by 

  

 The eigenvalues 1, 2 are roots of characteristic equation. 

  

  …2.3.1 

  …2.3.2 

  …2.3.3 

 From Eqn (2.3.1) and (2.3.3) when i = 1 = - 1 we get, 

  …2.3.4 

 From Eqn (2.3.2) and (2.3.3) when i = 2 = -2, we get,  

  

  …2.3.5 
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 On substituting for α1 from Eqn (2.3.5) in Eqn (2.3.4) we get, 

  

 On substituting the value of α0 in Eqn (2.3.5) we get, 

  

 By Cayley-Hemilton theorem, 

  

  

2.5 TRANSFORMATION OF STATE MODEL 

 The state model of a system is not unique and it canbe formed using physical variables 

phase variables or canonical variables. The  physical variables are useful from application point 

of view because they can be measured and used for contorl purposes. However, the state model 

using physical variables is not convenient for investigation of system properties and evaluation 

of time response. But the canonical state model is most convenient for time domain analysis. 

In canonical model the system matrix A will be a diagonal matrix. Therefore  each component 

state variable equation is a first order equation and is decoupled from all other component state 

variable equation.  

 When a non diagonal system matrix A has distinct eigenvalues, it can be converted 

diagonal matrix by a similarity transformation using modal matrix, M. Due to this the state 

model is transformed to canonical form. 
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 When a non diagonal system matrix has multiple eigenvalues, it can be converted to 

Jordan matrix by a similarity transformation using modal matrix, M. Due to this the state model 

is transformed to Jordan canonical form. 

CANONICAL FORM OF STATE MODEL 

 Consider the state equation of a system, 𝑋̇ = AX + BU, where X is the state variable 

vector of order n x 1. Let us define a new state variable vector Z, such that X = MZ, where M 

is the Modal Matrix or Diagonalizaiton matrix. 

 The state model of the nth order system is given by 

  

 On substituting X = MZ in the state model of the system, we get 

  …2.32 

  …2.33 

 Premultiply Eqn (5.32) by M-1 

  …2.34 

 The relation governing X and Z is, X = MZ. …2.35 

 On differentiating Eqn (2.35), we get, 𝑋̇ = M𝑍̇ …2.36 

 On premultiplying the Eqn (2.36) by M-1 we get 

 M-1𝑋̇ = 𝑍̇  …2.37 

 From Eqn (2.34) and (2.37), we get, 

 𝑍̇ = M-1 AMZ + M-1 BU …2.38 

 L1¸ M
-1 AM  = ~ (called grammian matrix) …2.39 

 M-1 B = 𝑋̇ = 𝐵̃  … 2.40 

 CM = 𝐶̃   …2.41 
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CONCEPTS OF CONTROLLABILITY AND OBSERVABILITY 

CONTROLLABILITY 

 The controllability verifies the usefulness of a state variable. In the controllability test 

we can find, whether the state variable can be controlled to achieve the desired output. The 

choice of state variables is arbitrary while forming the state model. After determining the state 

model, the controllability of the state variable is verified. If the state variable is not controllable 

6then we have to go for another choice of state variable. 

Definition of controllability 

 A system is said to be completely state controllable if it is possible to transfer the system 

state from any initial state X(t0) to any other desired state X(t0) in specified finite time by a 

control vector U(t). 

 The controllability of a state model can be tested by Kalman’s test or Gilbert’s test. 

Gilbert’s method of testing controllability 

Case (i): When the system matrix has distinct eigenvalues 

 In this case the system matrix can be diagonalized and the state model can be converted 

to canonical form. 

 Consider the state model of the system, 

  

 The state model can be converted to canonical form by a transformation, X = MZ, where 

M is the modal matrix and Z is the transformed state variable vector. 

 The transformed state model is given by 

  

where  

 

 

 In this case the necessary and sufficient condition for complete controllability is that, 

the matrix 𝐵̃ must have no rows with all zeros. If any row of the matrix 𝐵̃ is zero then the 

corresponding state variable is uncontrollable. 

Case (ii): When the system matrix has repeated eigenvalues 

 In this case, the system matrix cannot be diagonalized but can be transformed to Jordan 

canonical form. 
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 Consider the state model of the system, 

  

 The state model can be transformed to Jordan canonical form by a transformation.  

X = MZ, where M is model matrix and Z is the transformed state variable vector. 

 The transformed state model is given by, 

  

where  

 

 In this case, the system is completely controllable if the elements of any row of B that 

correspond to the last row of each Jordan block are not all zero and the rows corresponding to 

other state variables must not have all zeros. 

Kalman’s method of testing controllability 

 Consider a system with state equation, 𝑋̇ = AX + BU. For this system, a composite 

matrix, Qc can be formed such that,  

  …3.1 

where n is the order of the system (n is also equal to number of state variables) 

 In this case the system is completely state controllable if the rank of the composite 

matrix, Qc is n. 

 The rank of the matrix is n, if the determinant of (n x n) composite matrix Qr is non-

zero. i.e., if |Qc|  0, then rank of Qc = n and the system is completely state controllable. 

 The advantage is kalman’s test is that the calculations are simpler. But the disadvantage 

in kalman’s test is that, we can’t find the state variable which is uncontrollable. But is Gilbert’s 

method we can find the uncontrollable state variable which is the state variable corresponding 

to the row of 𝐵̃ which has all zeros. 

Condition for complete state controllability in the s-plane 

 A necessary and sufficient condition for complete state controllability is that no 

cancellation of poles and zeros occurs in the transfer function of the system. If cancellation 

occurs then the system cannot be controlled in the direction of the cancelled mode. 

OBSERVABILITY 

 In observability test we can find whether the state variable is observable or measurable. 

The concept of observability is useful in solving the problem of reconstructing unmeasurable 
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state variables from measurable ones in the minimum possible length of time. In state feedback 

control the estimation of unmeasurable state variables is essential in order to construct the 

control signals. 

Definition of observability 

 A system is said to be completely observable if every state X(t) can be completely 

identified by measurements of the output Y(t) over a finite time interval. The observability of 

a system can be tested by either Gilbert’s method or Kalman’s method. 

Gilber’s method of testing observability 

 Consider a state model of nth order system, 𝑋̇ = AX + BU  ; Y = CX + DC 

 The state model can be transformed to a canonical or Jordan canonical form by a 

transformation, X = MZ, where M is the modal matrix and Z is the transformed state variable 

vector.  

 The transformed state model is, 

  

where  = M-1 AM; if eigenvalues are distinct ; 𝐵̃ = M-1 B  

 J= M-1 AM; if eigenvalues have multiplicity; 𝐶̃ = CM 

 The necessary and sufficient condition for complete observability is that none of the 

columns of the matrix  𝐶̃  be zero. If any of the column’s of  𝐶̃  has all zeros then the 

corresponding state variable is not observable. 

Kalman’s Test for observability 

 Consider a system with state model, 𝑋̇ = AX + BU ; Y = CX + DU 

 For this system, a composite matrix, Q0 can be formed such that,  

  …3.2 

where n is the order of the system (n is also equal to number of state variables) 

 In this case, the system is completely observable if the rank of composite matrix, Q0  

is n. The rank of the matrix is n, if the determinant of n x n composite matrix Qo is non-zero. 

The disadvantage is Kalman’s test is that, the non observable state variables cannot be 

determined.  

Condition for complete observability in the s-plane 

 The necessary and sufficient condition for complete observability is that no cancellation 

of poles and zeros occurs in the transfer function. If cancellation occurs, the cancelled mode 

cannot be observed in the output. 
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RELATIONSHIPS BETWEEN CONTROLLABILITY, OBSERVABILITY & 

TRANSFER FUNCTIONS 

 The concepts of controllability and observability play an important role in the design 

of control system is state space. They govern the existence of a complete solution to the control 

system design problem. The solution to this problem may not exist if the system considered is 

not controllable. 

 It is important to note that all physical systems are controllable and observable. 

However, the mathematical models of these systems may not posses the property of the 

controllability or observability. Then it is necesasry to know the conditions under which a 

system is controllable and observable and the designer can seek another state model which is 

controllable and observable. 

Duality property 

 The concepts of controllabilitu and observability are dual concepts and its is proposed 

by Kalman as principle of duality. The principle of duality states that a system is completely 

state controllable if and only if its dual system is completely observable or viceversa. [i.e., if 

the system is observable then its duly is controllable]. Uusing the principle of duality, the 

observability of a given system can be checked by testing the state controllability of its dual or 

vice-versa. 

 Consider the system S1, described by the state model shown below.    

  

 Let the dual of system S1 be denoted as S2 and the dal system S2 is described by the 

following state model. 

  

where, Z = State vector of dual system 

 V = Input vector of dual system 

 N = Output vector of dual system 

 For the system S1 the composite matrix, Qc1 for controllability is given by Eqn (3.3) 

and the composite matrix, QaI for observability is given by Eqn (3.4). 

  …3.3 

  …3.4 

 For the dual system S2 the composite matrix, Qc2 for controllability is given by Eqn 

(3.5) and the composite matrix Qc2 for observability is given by Eqn (3.6). 

  …3.5 

  …3.6 
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 From equations (3.3) and (3.4) we get Qc1 = Qc2, hence if the system S1 is controllable 

then its dual system S2 is observable. 

 From equations (3.5) and (3.6) we get Qc1 = Qc2, hence if the system S1 is observable 

then its dual system S2 is controllable. 

Effect of pole-zero cancellation in transfer function 

 The concepts of controllability and observability are closely related to the properties of 

the transfer function. Consider an nth order system with distinct eigenvalues. The transfer 

function of the system can be expressed as a ratio of the two polynominals as shown in Eqn. 

(3.7). 

  …3.7 

       

 By partial fraction expansion technique the Eqn (3.8) can be written as,  

  …3.8 

where C1, C2, C3,….. Cn are residues. 

 If the transfer function has identical pair of pole and zero at ß i = i, then Ci = 0. The 

effect of this cancellation on controllability and observability properties depends on the choice 

of state variables [or depends on the method of forming state model]. 

 In one method of state space modelling using canonical of variables, the Ci = 0, will 

appear in input (control) vector B and the state xi is uncontrollable. In another method of state 

space modelling using canonical variables, the Ci = 0, will appear in output vector C and the 

state xi is shielded from observation.   

 From the above discussion we can conclude that if cancellation of pole-zero occurs in 

the transfer function of a system, then the system will be either not state controllable or 

unobservable, depending on how the state variables are defined (or chosen). If the transfer 

function does not have pole-zero cancellation, the system can always be represented by 

completely controllable and observable state model. 

EXAMPLE 1.6 

 Write the state equations for the system shown in 

Figure 3.1 in which x1, x2 and x3 constitute the state vector. 

Determine whether the system is completely controllable and 

observable.  

 

 

Figure 3.1 
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SOLUTION 

To find state model 

 The state equations are obtained by writing equations for the output of each block and 

then taking inverse Laplace transform. 

 With reference to Figure 3.2 we can write,  

  

 On taking inverse laplace transform 

  …3.6.1 

 With reference to Figure 3.3, we can write,  

 X3(s) = sX1(s) 

 On taking inverse laplace transform 

 x3 = 𝑥̇1   …3.6.2 

 With reference to Figure 3.6.4 we can write 

  

 On taking inverse Laplace transform 

   …3.6.3 

 From  Eqn (2.6.2), 𝑥̇1 = x3 ; 𝑥̈1 = 𝑥̇3 

 Put  𝑥̇1 = x3 and 𝑥̈1 = 𝑥̇3 in equation (3.6.1) 

  

 The state equation are given by equations (3.6.2), (3.6.3), and (3.6.4) 

Figure 3.2 

Figure 3.3 

Figure 3.4 
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 The output equation is y = x1 

 The state model in the matrix form is  

  

To find eigenvalues 

 

 Here the system matrix,  

 

 The characteristic equation is | I – A | = 0 

  

             

The eigenvalues are 1 = -1, 2 = -1, and 3  = -4, 

To find eigenvectors 

  

 Let C11, C12 and C13 be cofactors along Ist row of the matrix (1 I-A) 
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 Let C11, C12 and C13 be the cofactors along Ist row of the matrix (3 I-A): 

  

To find canonical form of state model 

 The modal matrix, M is given by 
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 The Jordan canonical form of state model is shown below. 

  

CONCLUSION 

 It is observed that the elements of the rows of 𝐵̃ are not all zeros. Hence the system is 

completely controllable (or state controllable). 

 It is observed that the elements of the columns of 𝐶̃ are not all zeros. Hence the system 

is completely observable [i.e., all the state variables are observable]. 

ALTERNATE METHOD 

KALMAN’S TEST FOR CONTROLLABILITY 
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 The composite matrix for controllability,  

     

   

 Hence the system is completely state controllable.  

KALMAN’S TEST FOR OBSERVABILITY  

  

  

  

  

 Hence the system is completely observable (or all the state variables of the system are 

observable). 
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3.7 CONTROLLABLE PHASE VARIABLE FORM OF STATE MODEL 

 A controllable system can be represented by a modified state model called controllable 

phase variable form by transforming the system matrix, A into phase variable form (Bush form 

or companion form). 

 Consider the state model of nth order system with single-input and single output as 

shown below. 

 𝑋̇ = AX + Bu  …3.9 

 y = CX + Du  …3.10 

 Let us choose a transformation, Z = Pc X to transform the state model to controllable 

phase variable form. 

 Here Z = Transformed state vector of order (n x 1) 

  Pc = Transformation matrix of order (n x n) 

   

 On premultiplying the equation Z = Pc X by Pc
-1 we get 

 Pc
-1Z = Pc

-1 Pc X 

  X = Pc
-1 Z 

 On differentiating the equation X = Pc
-1Z we get, 

 𝑋̇ = Pc
-1Z 

 On substituting X = Pc
-1Z and 𝑋̇ = Pc

-1𝑍̇ in the state model (equation (3.9) and (3.10)) 

of the system we get,  

 Pc
-1 𝑍̇ = APc

-1
 Z + Bu …3.11 

 y = C Pc
-1 Z + Du …3.12 

 On premultiplying the equations (3.11) by Pc we get, 

 𝑍̇ = PcAPc
-1Z + PcBu 

 y = C Pc
-1 Z + Du 

 Let, Pc  APc
-1 = Ac ; PcB = Bc and CPc

-1 = CC 
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  𝑍̇ = AC Z + BCu …3.13 

 y = CC Z + Du  …3.14 

 The equations (3.13) and (3.14) are called the controllable phase variable form of state 

model of the system. 

 Note: In controllable phase variable form of state model the matrices AC, BC and CC 

will be as shown below.  

  

Determination of transformation matrix, Pc 

 The n x n transformation matrix, Pc and be expressed as n-numbers of row vectors 

(Matrices) as shown below. 

  …3.15 

Where  

 

 

 

 

 The transformation Z = Pc X can be written in the expanded form as,  

  …3.16 
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 From equation (3.16) we get, 

  

         

  z1 = P1X  …3.17 

 On differentiating equation (3.17) we get 

 𝑧̇1 = P1𝑋̇  …3.18 

 On substituting for 𝑋̇ from equation (3.9) in equation (3.18)  we get 

  

 Since the transformed state variables are functions of state variables alone, the term P1B 

will be zero (i.e., P1B = 0) 

 𝑧̇1 = P1 AX  …3.19 

 We know that, 𝑧̇1 = z2 

 z2 = 𝑧̇1 = P1 AX …3.20 

 On differentiating equation (3.20) we get 

 𝑧̇2 = P1A𝑋̇  …3.21 

 On substituting for 𝑋̇ for equation (3.9) in equation (3.21) we get,  

  

 We know that, 𝑧̇2 = z3 

  z3 = P1A
2X  …3.22 

 Similarly the kth transformed state variable zk can be expressed as 

  

 Hence the n-numbers of transformed state variables can be expressed as shown below. 
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 On arranging the above equations in the matrix form we get 

  …3.23 

 Providing P1B = P1AB = … = P1A
(n-2) B = 0 and P1A

(n-1) B = 1. 

 The equation (3.23) is same as Z = PcX we can write,  

   …3.24 

 On arranging the elements P1B, P1AB, P1A
2B,…,P1A

(n-1)B as column vector we get 

  …3.25 

where, Qc = [B AB A2B … A(n-2) B A(n-1) B A(n-1)B)] …3.26 

 Using the equation (3.24), (3.25) and (3.26), the transformation matrix, Pc can be 

evaluated.  

Alternate method to find transformation matrix, Pc 

 Let A be the system matrix of original state model. Now the characteristic equation 

governing the system is given by Eqn (3.27). 

  …3.27 
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 Using the coefficients a1, a2,…an-2, an-1 of characteristics equation [Eqn (3.27)] we can 

form a matrix, W as shown in Eqn (3.28). 

  …3.28 

 Now the transformation matrix, Pc is given by 

  Pc = (Q W)-1 …3.29 

 (or) Pc
-1 = (Qc W) ….3.30 

Where, Q = [B AB A2B….A(n-2)B   A(n-1)B] 

EXAMPLE 1.7 

 The state model of a system is given by 

  

 Convert the state model to controllable phase variable form 

SOLUTION 

 The given state model can be transformed to controllable phase variable form, only if 

the system is completely state controllable. Hence check for controllability.  

Kalman’s test for controllability 

 From the given state model we get, 
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 The composite matrix for controllability,  

 Determinant of   

 

 Since, QC  0, the rank of Qc = 0. Hence the system is completely state controllable.  

To find transformation matrix Pc 

 The system state model can be converted to controllable phase variable form by 

choosing a transformation matrix, Pc.  
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  Transformation matric,   

 

To determine the controllable phase variable form of state model 

 The controllable phase variable form of state model is given by, 

 𝑍̇ = AcZ + Bcu 

 y = CcZ (Here D is not given) 

Where Ac = PcAPc
-1   ;  Bc = PcB and Cc = CPc

-1 

The transformation matrix,  
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 The controllable phase variable form of state model is given by, 

  

Alternate method of find Pc 

 From the given state model we get, 

  

 The characteristic equation is 1 + 62 + 9 + 4 = 0 

 The standard form of characteristic equation when n = 3 is given by 

 3 + a1
2 + a2 + a3 = 0 

 On comparing the characteristic equation of the system with standard form we get, 

 a1 = 6,  a2 = 9  and a3 = 4 
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1.8 CONTROL SYSTEM DESIGN VIA POLE PLACEMENT BY STATE 

FEEDBACK 

 In the conventional approach to the design of a single-input, single-output control 

system, a controller or compensator is designed such that the dominant closed-loop poles have 

a desired damping ratio,  and undamped natural frequency, n. In the compensated system the 

output alone is used as feedback signal to achieve desired performance. In state space design 

any inner parameter or variable of a system can be used for feedback. If the state variables 

(inner parameters or variables of the system) are used for feedback, then the system can be 

optimized for satisfying a desired performance index.  

 In control system design by pole placement or pole assignment technique, the state 

variables are used for feedback, to achieve desired closed loop poles. The advantage in this 

system is that the closed loop poles may be placed at any desired locations by means of state 

feedback through an appropriate state feedback gain matrix, K. The necessary and sufficient 

condition to be satisfied by the system for arbitrary pole placement is that the system be 

completely state controllable. 

 Consider the nth order single – input single-output system with and without state 

variable feedback as shown in Figure 3.5. The state model of the system without state feedback 

is given by. 

 𝑋̇ = AX + Bu  …3.31 

 Y = CX  …3.32 
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        Figure(a) System without state feedback          Figure(b) System with state feedback 

Figure 3.5 The nth order single – input single – output system 

Let r = System input when state variable feedback is employed. 

 σ = Feedback signal obtained from state variables. 

 U = Plant input. 

 The feedback signal, σ is obtained from state feedback and it is related to the state 

variables by the equation, 

 σ = KX  …3.33 

where K = State feedback gain matrix of order (1 x n) and 

 K = (k1 k2 k3 … kn) …3.34 

 In system employing state variable feedback, the plant input, u is the difference 

between system input, r and feedback input, σ. 

  Plant input, u = r – σ …3.35 

 On substituting, σ = KX in equation (3.35) we get, 

 u = r – KX  …3.36 

 The equation (3.36) is called control law. 

 The state equation of the system with state variable feedback is obtained by substituting 

the expression for u, from equation (3.36) in equation (3.31). 

  

 Therefore, the state model of the system with state variable feedback is given by the 

following equations [Eqn (3.32) and (3.33)].   

 𝑋̇ = (A-BK) X + Br …3.32 

 y = CX   …3.33 

where,  K = [k1, k2, k3 … kn] 

and r = u + KX 
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 This design technique starts with the determination of desired closed-loop poles to 

satisfy transient response and/or frequency response requirements. By choosing an appropriate 

gain matrix, K for state feedback, it is possible to force the system to have closed loop poles at 

the desired locations, provided that the original system is completely state controllable. In this 

design technique it is assumed that all state variable are measurable and are available for 

feedback. 

DETERMINATION OF STATE FEEDBACK GAIN MATRIX, K 

 The state feedback gain matrix can be determined by three methods. In all the three 

methods, the system has to be first checked for complete state controllability. 

 The state model of the original nth order system is given by 

 𝑋̇ = AX + Bu 

 Y = CX 

 To check for controllability of original system, determine the composite matrix for 

controllability Qc. 

 Where, Qc = [B AB A2B … An-1B] 

 Then calculate the determinant of Qc. If the determinant of Qc is not equal to zero, then 

the rank of Qc is n and so the system is completely state controllable. (Here n is the order of 

the system). If the rank is not equal to n then arbitrary pole placement is not possible. When 

the system is completely state controllable any one of the following method can be used to find 

K. 

METHOD – I 

1. Determine the characteristic polynomial of original system. The characteristic 

polynomial is given by |I – A| = 0. 

  

2. Determine the desired characteristic polynomial from the specified closed loop poles. 

Let the specified or desired closed loop poles be µ1, µ2, µ3, …. µn. 

 Now the desired characteristic polynomial is given by 

  

3. Determine the transformation matrix, Pc which transforms the original state model to 

controllable phase variable form. 

 

 The transformation matrix,  
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 and, P1 = [0 0  … 0  1] Q-1
c 

4. Determine the state feedback gain matrix, from the following equation. 

  

Note: If the given system state modal is in controllable phase variable form then Pc = 1, unit 

matrix. 

METHOD – II 

1. Determine the characteristic polynomial of the system with state feedback, which is 

given by, | 1-(A-BK) | = 0. 

 Here take, K = [k1, k2, k3 … kn] 

 Let |1-(A-BK) | = |1-A+BK| = n + b1 
n-1 + b2 

n-2 + … bn-1  + bn. 

 The coefficients of this polynomial b1, b2, b3,… bn will be functions of k1, k2, k3,… kn. 

2. Determine the desired characteristic polynomial from the specified closed loop poles. 

Let the specified on desired closed loop poles be µ1, µ2, µ3, … µn. Now the desired 

characteristic polynomial is given by, 

  

3. By equating the coefficients of polynomials obtained in step-1 and step-2, we get n-

number of equations. 

 i.e., b1 = α1 ;  b2 = α2 ;   …. ; bn-1 = αn-1 and bn = an.  

 On solving these equations we get the elements k1, k2, … kn of state feedback gain 

matrix, K. 

Note: Method – II is suitable only for low values of n (i.e. for 2nd and 3rd order systems) 

otherwise calculations will be tedious.  

METHOD – III 

1. Determine the desired characteristic polynomial from the specified closed loop poles. 

Let the specified or desired closed loop poles be µ1, µ2, µ3, … µn. 

 Now the desired characteristic polynomial is given by, 

  

2. Determine the matrix (A) using the coefficients of desired characteristic polynomial. 

  



103 

3. Calculate the state feedback gain matrix, K, using the Ackermann’s formula given 

below. 

 K = [0 0 … 0 1]  Qc
-1  (A) 

 Where, Qc = [B  AB  A2B  … An-1 B] 

EXAMPLE 1.8 

 Consider a linear system described by the transfer function 

  

 Design a feedback controller with a state feedback so that the closed loop poles are 

placed at -2, -1  j1 

SOLUTION 

To determine the state equation of the system 

  …3.8.1 

 On cross multiplying the equation (3.8.1) we get, 

  …3.8.2 

 On taking inverse laplace transform of equation (3.8.2) we bet, 

  … 3.8.3 

 Let us define state variables as follows, 

  

  in equation (3.8.3) 

  

 The state equations governing the system are 
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 The state equation in the matrix form is 

  …3.8.4 

Check for controllability 

  

  …3.8.5 

  

  

  

  

 Since, QC  0, the system is completely state controllable. 

To find Qc-1 

 From equation (3.8.6) and (3.8.7) we get 
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To find desired characteristic polynomial 

 The desired closed loop poles are 

  

 Hence the desired characteristic polynomial is 

  

 The desired characteristic polynomial is  

  …3.8.9 

To determine the state variable feedback matrix, K 

Method – I 

 Characteristic polynomial of original system is given by | I – A| = 0  
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 The characteristic polynomial of original system is, 

  …3.8.10 

 From Eqn (3.8.9) we get the desired characteristic polynomial as 

  …3.8.11 

 From equation (3.8.8.) we get, 

  

  

  

 The state feedback gain matrix, K = [α3 – a3   α2 – a2  α1 – a1 ]  Pc 

 From equation (3.8.11) we get, α3 = 4;   α2 = 6;  α1 = 4 

 From equation (3.8.10) we get, a3 = 0;   a2 = 2;  a1 = 3 

  K = [4-0  6-2  4-3] Pc 
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Method – II 

 From the given state model we get, 

  

 Let, K = [k1  k2  k3] 

 The characteristic polynomial of the system with state feedback is given by, 

  

  

  

 The characteristic polynomial of the system with state feedback is 

  …3.8.12 

 From equation (3.8.12) we get the desired characteristic polynomial as, 

  …3.8.13 

 On equating the coefficients of 0 term (constant) is equations (3.8.12) and (3.8.13) we 

get,  
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 On equating the coefficient of 1 term in equations (3.8.12) and (3.8.13) we get, 

  

 On equating the coefficient of 2 term in equations (3.8.12) and (3.8.13) we get, 

  

 The state feedback gain matrix, K = [k1  k2  k3 ] = [0.4  0.4  0.1] 

Method – III 

 From equation (3.8.9) we get the desired characteristic polynomial as, 

  …3.8.14 

 Here, (A) = A3 + α1 A
2 + α2 A + α3 I 

 From equation (3.8.14) we get, α1 = 4; α2 = 6; α3 = 4. 

 From the given state equation and equation (3.8.5) we get,  

  

  

 

 From equation (3.8.8) we get,   

 From Ackermann’s formula we get, 
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 The state feedback gain matrix K = [ 0.4  0.4  0.1 ] 

 Note: It is observed that the values of k1, k2, k3 obtained by all the three methods are 

same. Because for a given set of poles the values of k1, k2, k3, … will be unique. 

EXAMPLE 1.9 

 A single input system is described by the following state equations.  

  

 Design a state feedback controller which will give closed-loop poles at -1  j2, -6. 

SOLUTION 

 Check for controllability 
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 Since, QC   0, The system is completely state controllable.  

To find QC
-1 

 From equations (3.9.2) and (3.9.3) we get, 

  

  

  …3.9.4 

To find desired characteristic polynomial 

 The desired closed loop poles are, 

  

 Hence the desired characteristic polynomial is, 

  

 The desired characteristic polynomial is 3 + 82 + 17 + 30 = 0 
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To determine the state variable feedback matrix, K 

Method – I 

 The characteristics equation of original system is given by, 

  

  

 The characteristic polynomial of original system is. 

  …3.9.6 

 From equation (3.9.5) we get the desired characteristic polynomial as 

  …3.9.7 

 From equation (3.9.4) we get,  
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 The state feedback gain matrix, K = [α3 – a3   α2 – a2   α1 – a1 ] Pc 

 From equation (3.9.7) we get, α3 = 30 ;   α2 = 17 ;   α1 = 8  

 From equation (3.9.6) we get, a3 = 6 ;  a2 = 11 ;  a1 = 6 

  

Method – II 

 From the given state model we get 

  

 The characteristic polynomial of the systems with state feedback is given by, 
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 The characteristic polynomial of system with state feedback is 

  …3.9.8 

 From equation (3.9.5) we get the desired characteristic polynomial as, 

  …3.9.9 

 On equating the coefficients of 2 term in equations (3.9.8) and (3.9.8) we get, 

  …3.9.10 

 On equation the coefficients of 1 term in equations (3.9.8) and (3.9.9) we get,   

  …3.9.11 

 On equating the coefficients of 0 term (constant) in equation (3.9.8) and (3.9.9) we 

get, 
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  …3.9.12 

 The equations (3.9.10), (3.9.11) and (3.9.12) can be arranged in the matrix form and k1, 

k2 and k3 are solved using cramer’s rule as shown below. 

  

  

  

  

 The state feedback gain matrix, K = [k1  k2  k3 ] = [ -0.22   4.22  -2 ] 

Method – III 

 From equation (3.9.5) we get the desired characteristic polynomial as, 

 3 + 82 + 17 + 30 = 0 …3.9.13 

 Here, (A) = A3 + α1 A
2 + α2 A + a3 I 
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 From equation (3.9.13) we get, α1 = 8 ; α2 = 17 ;  α3 = 30 

 From the given state equation and equation (3.9.1) we get, 

  

  

  

 From equation (3.9.4) we get, 

  

 From Ackermann’s formula we get, 

  

 The state feedback gain matrix, K = [ -0.22   4.22  -2] 

 Note: The result obtained from all the three methods are same. 
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1.9 OBSERVABLE PHASE VARIABLE FORM OF STATE MODEL 

 An observable system can be represented by a modified state model called observable 

phase variable form by transforming the system matrix A into the transpose of bush of 

companion form as shown in equation (3.34) 

  …3.34 

 Consider the state model of a nth order system with single-input and single-output as 

shown below. 

 𝑋̇ = AX + Bu  …3.35 

 y = CX + Du  …3.36 

 Let us choose a transformation Z = Po X to transform the state model of observable 

phase variable form. 

Here, Z = Transformed state vector of order (n x 1) 

 Po = Transformed matrix of order (n x n) 

 On premultiplying the equation, Z = Po X by Po
-1 we get, 

 Po
-1 Z = Po

-1 PoX 

 X = Po
-1 Z 

 On differentiating the equation X = Po
-1 Z we get, 

 𝑋̇ =  Po
-1

 𝑍̇ 

 On substituting X = Po
-1 Z and 𝑋̇ = Po

-1 𝑍̇ in the state model [equations (3.35) and (3.36) 

of the system we get, 

 Po
-1

 𝑍̇ = A Po
-1 Z + B u  …3.37 

 y = C Po
-1Z + D u ….3.38 

 On premultipling the equation by Po we get, 

  

 Let PoA Po
-1 = A ; PoB = B and C Po

-1 = C, 

 𝑍̇  = AoZ + Bo u …3.39 

 y  =  Co Z + Du …3.40 
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 The equation (3.39) and (3.40) are called observable phase variable from of state model 

of the system. 

 Note: In observable phase variable form of state model the matrix A. 

  

DETERMINATION OF THE TRANSFORMATION MATRIX PO 

 Let A be the system matrix of original state model. Now the characteristic equation 

governing the system is given by equation (3.41). 

  …3.41 

 Using the coefficients a1, a2, …. aa-2  aa-1 of characteristic equation. [equation 3.41] we 

can form a matrix was shown in equation (3.42)]. 

  …3.42 

 Now the transformation matrix Po is given by 

 Po = W Qo
T  … 3.43 

 Where  Qo = [CT ATCT (AT)2CT …. (AT)n-1 CT] 

EXAMPLE 1.10 

 The state model of a system is given by 

  

 Convert the state model to observable phase variable form. 

SOLUTION 

 The given state model can be transformed to observable phase variable form, only if 

the system is completely observable. Hence check for observability. 
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Kalman’s test for observability 

 From the given state model we get, 

  

  

  

  

  

  

 Since Qo , the rank of Qo = 3. Hence the system is completely observable. 

To find transformation matrix, Po 
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 The characteristic equation is, 

  

 The standard form of characteristic equation when n = 3 is given by, 

  

 On comparing the characteristic equation of the system with standard form we get, 

 a1 = 6,  a2 = 9  and a3 = 4 
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To determine the observable phase variable form of state model 

 The observable phase variable form of state model is given by, 

 𝑍̇ = Ao  Z + Bo u 

 Y = Co Z  (Here D is not given) 

Where, Ao = Po A Po
-1

   ;  Bo = Po B and Co = C Po
-1 
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SAMPLED DATA CONTROL SYSTEMS 

4.1 INTRODUCTION  

 When the signal or information at any or some points in a system is in the form of 

discrete pulses, then the system is called discrete data system. In control engineering the 

discrete data system is popularly known as sampled data system. 

 The control system becomes a sampled data system in any one of the following 

situations. 

1. When a digital computer or microprocessor or digital device is employed as a 

part of the control loop. 

2. When the control components are used on time sharing basis.  

3. When the control signals are transmitted by pulse modulation. 

4. When the output or input of a component in the system is a digital or discrete 

signals. 

 The controllers are provided in control systems to modify the errors signal for better 

control action. If the controllers are constructed using analog elements then they are called 

analog controllers and their input and output are analog signals, which are continuous functions 

of time. The analog controllers are complex, costlier and once fabricated it is difficult to alter 

the controllers.  

 A digital controller can be employed to implement complex or time shared control 

functions. [In time shared controller, a single controller will perform more than one function]. 

The digital controller are simple, versatile, programmable, fast acting and less costlier than 

analog controllers. 

 The digital controller can be a special purpose computer (microprocessor based system) 

or a general purpose computer or it is constructed using non-programmable digital devices. 

When computer or microprocessor is involved then the controller becomes programmable and 

its easier to alter the control functions by modifying the program instructions.   

 A sampled-data control system using digital controller is shown in Figure 4.1. The input 

and output signal in a digital computer will be digital signals, but the error signal (input to the 

controller) to be modified by the controller and the control signal (output of the controller) to 

drive the plant are analog in nature. Hence a sampler and an analog-to-digital converter (ADC) 

are provided at the computer input. A digital to analog converter (DAC) and a hold circuit are 

provided at the computer output.  

 

Figure 4.1 Sampled-data control system 
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 The sampler converts the continous time-error signal into a sequence of pulses and 

ADC produces a binary code (binary number) for each sample. These codes are the input data 

to the digital computer which process the binary codes and produces another stream of binary 

codes as output. The DAC and hold circuit converts the output binary codes to continous time 

signal (Analog signal) called control signal. This output control signal is used to drive the plant. 

ADVANTAGES OF DIGITAL CONTROLLERS 

1. The digital controllers can perform large and complex computation with any desired 

degree of accuracy at very high speed. In analog controllers the cost of controllers 

increases rapidly with the increase in complexity of computation and desired accuracy. 

2. The digital controllers are easily programmable and so they are more versatile. 

3. Digital controllers have better resoultion.  

ADVANTAGES OF SAMPLED DATA CONTROL SYSTEMS 

1. The sampled data systems are highly accurate, fast  and flexible. 

2. Use of time sharing concept of digital computer results in economical cosst and space. 

3. Digital transducers used in the system have better resolution. 

4. The digital components used in the system are less affected by noise, non linearities 

and transmission errors of noisy channel.   

5. The sampled data system require low power instruments which can be built to have 

high sensitivity. 

6. Digital coded signals can be stored, transmitted, retransmitted, detected, analysed or 

processed as desired. 

7. The system performance can be modified by compensation techniques. 

4.2 SAMPLING PROCESS 

 Sampling is the conversion of a continuous-time signals (or analog signal) into a 

discrete-time signal obtained by taking samples of the continuous time signal (or analog signal) 

at discrete time instants. Thus if f(L) is the input to the sampler as shown in Figure 4.2, the 

output is f(kT) where T is called the sampling interval or samplnig period. The reciprocal of T, 

i.e., 1/T=Fs is called the sampling rate (or samples per second or sampling frequency). This 

type of sampling is called periodic sampling, since samples are obtained uniformly at intervals 

of T seconds.  

 
  

Fig. a Sampler Fig.b Analog signal 
Fig.c  Discrete signal or 

sequence 
 

Figure 4.2 Periodic sampling of an analog signal 
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 (In this book only periodic sampling of signals is considered, because periodic sampling 

is most widely used in practice. The other forms of sampling are multiple-order sampling, 

multiple-rate sampling and Random sampling. 

 Multiple-order sampling: A particular sampling pattern is repeated periodically.  

 Multiple-rate sampling: In this method two simultaneous sampling operations with 

different time periods are carried out on the signal to produce the sampled output. 

 Random sampling: In this case the sampling instants are random. 

 The sampling frequency Fs (=I/) must be selected large enough such that the sampling 

process will not result in any loss of spectral information. (i.e. if the spectrum of the analog 

signal can be recovered from the spectrum of the discrete – time signal, there is no loss of 

information). A guideline for choosing the sampling frequency is given sampling theorem 

given below. 

 SAMPLING THEOREM: A band limited continuous time signal with highest 

frequency (bandwidth) fm hertz, can be uniquely recovered from its samples provided that the 

sampling rate Fs is greater than or equal to 2fm samples per second. 

 From the sampling theorem we can infer that the knowledge of frequency content of a 

signal is essential while choosing the sampling frequency. 

 For processing the sampled signals by digital means, it has to be converted to binary 

codes and this convertion process is called quantization and coding. The process of converting 

a discrete time continuous valued signal into a discrete time discrete valued signal is called 

quantization. In quantization the value of each signal sample is represented by a value selected 

from a finite set of possible values called quantization levels. The difference between the 

unquantized sample and the quantized output is called the quantization error. The coding is the 

process of representing each discrete value by an n-bit binary sequence (or code or number). 

The process of sampling, quantization and coding are performed by sample/hold circuit and 

ADC. 

1.3 ANALYSIS OF SAMPLING PROCESS IN FREQUENCY DOMAIN 

 The sampling process explained in the previous section is equivalent to multiplying the 

analog signal, f(t) with a impulse train, δT(t) to produce the sampled signal, fs(t). Let the impulse 

train consists of pulses of area, . Hence the impulse sampled signal, fs(t) can be expressed as, 

 …4.1 

Mathematically, the impulse train, δT(t) can be expressed as, 

  …4.2 

  … 4.3 

where T is the sampling period. 
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 A typical analog signal, f(t) [Fig a]; the impulse train, δT(t) [Fig b] and the impulse 

sampled signal, fs(t) [Fig c] are shown in Figure 4.3. 

   

Fig.a. Analog signal Fig.b. Impulse train 
Fig.c. Impulse sampled 

analog signal 
 

Figure 4.3 Impulse sampling of an analog signals 

 The frequency content (frequency response) of a signal can be obtained from the fourier 

transform of the signal [i.e., Fourier transform converts the time domain signal to frequency 

domain signal]. Hence the frequency response of the impulse sampled signal can be obtained 

by taking fourier transform of Eqn (4.3). 

 The fourier transform of a single-valued function, f(t) is defined as 

  …4.4

 On taking fourier transform of fs(t) using the definition of fourier transform we get, 

  … 4.5 

 Mathematically the Eqn (4.5) represents, the convolution of two signals, f(t) and δ(t-

kT). The convolution theorem of fourier transform says that, the convolution of two time 

domain signals is equivalent to the product of their individual fourier transforms. Therefore, 

fourier transform of fs(t) can be expressed as a product of fourier transform of f(t) and δ(t – 

kT). 

  …4.6 

 Let, F {f(t)} = F() …4.7 

  …4.8

 where, s = 2π/T = sampling frequency in rad/sec. 

 Using equations (4.7) and (4.8),  the equ (4.6) can be written as,  
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 Since F() δ( - ks) = F( - ks) 

  …4.9 

 The equation (4.9) gives the frequency spectrum of the impulse sampled signal. 

 Let f() be a band-limited signal with a maximum frequency of m. The frequency 

spectrum of F() is shown in Figure 4.4(a), which is a plot of |F()| Vs . The frequency 

spectrum of impulse sampled signal, i.e., |Fs()| Vs , is shown in Figure 4.4(b), when s > 2 

s and in Figure 4.4(c), when  when s < 2 m. 

 In Figure 4.4(b) the frequency spectrum of original signal is repeated periodically with 

period s and there is no overlapping of original spectrum. In Figure 4.4(c) the periodic 

repeatition of original spectrum overlaps.  

                         

 

Figure 4.4 Fourier spectra of input signal and its impulse sampled version 

 From fig 4.4 it is observed that, as long as s   m , the original spectrum is preserved 

(since there is no overlapping) in the sampled signal and can be extracted from it by low-pass 

filtering. This fact was proposed as shanon’s sampling theorem, which states that the 

information contained in a signal is fully preserved in the sampled version as long as the 

sampling frequency is at least twice the maximum frequency in the signal. 

4.4  RECONSTRUCTION OF SAMPLED SIGNALS USING HOLD CIRCUITS 

 The hold circuits are popularly used in the process of analog-to-digital conversion 

(ADC) and digital-to-analog conversion (DAC). In ADC process the hold circuit is used to 

hold the sample until the quantization and coding for the current sample is complete. 

 In DAC process various types of hold circuits are used to convert the discrete time 

signal to analog signal. The simplest hold circuit is the zero order hold (ZOH). In zero order 

hold circuits the signal is reconstructed such that the value of reconstructed signal for a 

sampling period is same as the value of last received sample. The schematic diagram of sampler 

and zero order hold (ZOH) is shown in Fig 4.5. The signal reconstruction by zero order hold 

(ZOH) circuit is illustrated in Fig 4.6.  

(b) (a) 

(c) 
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Figure 4.5 Sampler and ZOH 

 The high frequencies present in the reconstructed 

signal are easily filtered out by the various elements of the 

control system, because the control system is basically a 

low-pass filter. 

 In a first-order hold, the last two signal samples 

(current and previous sample) are used to reconstruct the 

signal for the current sampling period. Similarly higher order hold circuits can be devised. First 

or higher-order hold circuits offer no particular advantage over the zero order hold. In sampled 

data control systems, the zero-order hold when used in conjunction with a high sampling rate 

provides a satisfactory performance. An ideal sample / hold circuit introduces no distortion in 

the conversion process. However, in practical sample / hold circuits the following problems 

may be encountered. 

 1. Errors in the periodicity of sampling process. 

 2. Non linear variations in the duration of sampling aperture. 

 3. Droop (changes) in the voltage held during conversion. 

4.5 DISCRETE SEQUENCE (DISCRETE TIME SIGNAL) 

 A discrete sequence or discrete time signal, f(k), is a function of an independent 

variable, k, which is an integer. It is important to note that a Discrete time signal is not defined 

at instants between two successive samples. Also, it is incorrect to think that f(k) is equal to 

zero if k is not an integer. Simply the signal f(k) is not defined for non-integer values of k. A 

discrete-time signal is defined for every integer value of k in the range - ∞ < k < ∞. Since a 

digital signal is represented by a set of numbers it is also called a sequence. (i.e., the terms 

signal and sequence refers the digital or discrete time signal). 

METHODS OF REPRESENTING A DISCRETE TIME SIGNAL OR SEQUENCE 

1. Functional representation 

      

2. Graphical representation  

 The graphical representation of a discrete sequence is shown in Figure 4.7. 

3. Tabular representation  

  

Figure 4.6 Sampler 

reconstruction by ZOH 

Figure 4.7 Graphical 

representation of a 

disorder time signal 
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4. Sequence representation  

An infinite duration signal or sequence with the time origin (k=0) indicated by the 
symbol ↑ is represented as  

 f(k) {…..1, 2, 1, 4, 1, 0, 0…..} 
                        ↑ 

 An infinite sequence f(k), which is zero for k<0, may be represented as  

 f(k)={2, 1, 4, 1, 0,0 …..} (or)   f(k)={2, 1, 4, 1…..} 
           ↑ 

 An finite duration sequence with the time origin (k=0), indicated by the symbol ↑ is 
represented as 

 f(k)={3, -1, -2, 5, 0, 4 …..} 
           ↑ 

 A finite duration sequence that satisfies the condition f(k) = 0 for k < 0 may be 
represented as 

 f(k)={2, 1, 4, 1} (or)   f(k)={2, 1, 4, 1} 
           ↑ 

SOME ELEMENTARY DISCRETE TIME SIGNALS 

1. Digital impulse signal or unit sample sequence 

  

 An impulse delayed by k0, 

  

2. Unit step signal  

  

 An unit step signal delayed by k0 

  

 The unit step is related to digital impulse by the  

summation relation 

  

Figure 4.8 Digital impulse signal 

Figure 4.9 Delayed impulse signal 

Figure 4.10 Unit step signal 

Figure 4.11 Delayed unit step 

signal 
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3. Ramp signal 

   

4. Exponential signal  

  

MATHEMATICAL OPERATIONS ON 

DISCRETE TIME SIGNALS 

1.  Shifting in time  

 A signal f(k) may be shifted in time by replacing the independent variable k by (k-m), 

where m is an integer. If m is a positive integer, the time shift results in a delay by m units of 

time. If m is a negative integer, the time shift results in an advance of the signal by |m| units in 

time. The delay results in shifting each sample of f(k) to right. The advance results in shifting 

each sample of f(k) to left. 

Example 

 

 

2.  Folding or reflection or Transpose 

 The folding of a signal f(k) is performed by changing the sign of the time base k in the 

signal f(k). The folding operation produces a signal f(-k) which is mirror image of f(k) with 

respect to time origin k=0. 

Example 

     

 

Figure 4.12 Ramp signal 

Figure 4.13 Exponential signal 
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3.  Amplitude scaling or scalar multiplication 

 Amplitude scaling of a signal by a constant A is accomplished by multiplying the value 

of every signal sample by A.  

 Let c(k) be amplitude scaled signal of f(k), then c(k) = Af(k) 

  

4.  Time scaling or down sampling 

 In a signal, f(k), if k is replaced by k, where  is an integer, then it is called time 

scaling or down sampling. 

 Example: If f(k)=ak; k0, then f1(k) = f(2k) = ak for even values of k   

 

5. Signal (or vector) addition 

 The sum of two signals f1(k) and f2(k) is a signal c(k), whose value at any instant is 

equal to the sum of the samples of these two signals at that instant. 

  

Example  

  

6. Signal (or vector) multiplication 

 Signal multiplication results in the product of two signals on a sample-by-sample basis. 

The product of two signals f1(k) and f2(k) is a signal c(k), whose value at any instant is equal 

to the product of the sample of these two signals at that instant. The product is also called 

modulation. 

Example  

  



131 

1.6 z-TRANSFORM 

 Transform techniques are an important tool in the analysis of signals and linear time 

invariant systems. The Laplace transforms are popularly used for analysis of continuous time 

signals and systems. Similarly z-transform plays an important role in analysis and 

representation of linear discrete time systems. The z-transform provides a method for the 

analysis of discrete time systems in the frequency domain which is generally more efficient 

than its time domain analysis. 

DEFINITION OF Z-TRANSFORM 

Let, f(k) = Discrete time signal or sequence 

 F(z) = z{f(k)} = z-transform of f(k) 

 The z-transform of a discrete time signal or sequence is defined as the power series 

  …4.10 

 where z is a complex variable. 

 The sequence of equ (4.10) is considered to be two sided and the transform is called 

two sided z-transform, since the time index k is defined for both positive and negative values. 

If the sequence f(k) is one sided sequence, (i.e. f(k) is defined only for positive value of k) then 

the z-transform is called one sided z-transform. 

 The one sided z-transform of f(k) is defined as, 

  

REGION OF CONVERGENCE  

 Since the z-transform is an infinite power series, it exists only for those values for z for 

which the series converges.  The region of convergence, (ROC) of F(z) is the set of all values 

of z for the which F(z) attains a finite value. The ROC of a finite-duration signal is the entire 

z-plane, except possibly the point z = 0 and / or z = ∞. These points are excluded, because zk 

(when k > 0) becomes unbounded for z = ∞ and z-k (when k > 0) becomes unbounded for  

z = 0. 

 The complex variables z can be expressed in the polar form as,   

 Z = r ej
  …4.11 

where r = |z| and  = z 

On substituting for z from equ (4.11) in equ (4.10) we get, 

  …4.12 
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 In the ROC of F(z), |F(z)| < ∞. 

 From equ  (4.13) we observe that |F(z)| is finite, if the sequence f(k) r-k is absolutely 

summable.   

 To find the ROC, the equ (4.13) can be expressed as, 

  …4.14 

 If F(z) converges in some region of the complex plane, both summations in equ (4.14) 

must be finite. 

 If the first sum of equ (4.14) converges, there must exist values of r small enough for 

f(-k)rk to be absolutely summable. Hence the ROC for the first sum consists of all points in a 

circle of radius, r1 as shown in Figure 4.14, where r1 > r. 

 If the second sum of equ (4.14) converges, there must exist large values of r for which 

f(k) / rk is absolutely summable. Hence the ROC for the second sum consists of all points in a 

circle of radius, r2 as shown in Figure 4.15, where r2 < r.  

 Therefore, the ROC of F(z) is the region inbetween two circles of radius r1 and r2 as 

shown in Figure 4.16. where r2 < r < r1. 

 

 Figure 4.14 ROC for         Figure 4.15 ROC for    Figure 4.16 ROC for F(z) 
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Table 4.1 Characteristic families of signals with their corresponding ROC 

SIGNAL ROC 

Finite-Duration Signals 

  

Infinite-Duration Signals 

   
 

Table 4.2 Properties of one-sided Z-transform 

 

Property Discrete sequence z-transform 

Linearity a1f1(k) + a2f2(k) a1F1(z) + a2F2(z) 

Shifting, m ≥ 0 
f(k+m) 

f(k-m) 
 

z-mF(z0 

Multiplication by km (or 

differentiation in z-domain) 
Kmf(k) 

 

Scaling in z-domain (or 

multiplication by ak) 
akf(k) F(a-1z) 

Time reversal f(-k) F(z-1) 

Conjugation f*(k) F*(z) 

Convolution 
 

H(z)R(z) 
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Initial value 
 

 

Final value 

 

 

 

Table 4.3 Some Common one side Z-transform 

f(t) : t ≥ 0 f(k) or f(kT) ; k ≥ 0 F(z) 

 δ (k) 1 

 u(k) or 1 z/(z-1) 

 ak z/(z-a) 

 k ak 
 

 (k + i) ak 
 

 
  

 
  

 
  

t kT 
 

t2 (kT)2 
 

e-at kTe-atT 
 

sin t sin kT 
 

cos t cos kT 
 

Note: Two sided sequence can be converted to one sided sequence by multiplying by 

GEOMETRIC SERIES 

 A geometric series is a series in which consecutive elements differ by a constant ratio. 

Such a series can be written in the form,  

   …4.17 
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where C is a constant and M1 and M2 are any two numbers. 

 If C is a complex number, where |C| < 1, then by Taylor’s series expansion we can 

write,   

  …4.18 

 Applying the result in the reverse direction yields the infinite geometric series sum 

formula 

  … 4.19 

 The equ (4.19) is the infinite geometric series sum formula. 

 We can also compute the sum of a finite number of elements in a geometric series. Let 

us consider the following sum, 

  ...4.20 

 The sum of the finite duration sequence in equ (4.20) can be expressed as the difference 

between the sum of two infinite duration sequence as shown in equ (4.21). 

  …4.21 

  …4.22 

 From equations (4.21) and (4.22) we can write,  

  …4.23 

  …4.23 

 The equation (4.23) and (4.24) are finite geometric series sum formula. 

 Note: The infinite geometric series sum formula requires that the magnitude of C be 

strictly less than unity, but the finite geometric series sum formula is valid for any value of C. 
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EXAMPLE 4.1 

 Determine the z-transform and their ROC of the following discrete sequence 

 (a) f(k) = {3, 2, 5, 7}   (b) f(k) = {2, 4, 5, 7, 3} 

    ↑  

SOLUTION 

(a) Given that, f(k) = {3, 2, 5, 7} 

 i.e., f(0) = 3 ; f(1) = 2 ; f(2) = 5 ; f(3) = 7 

 and f(k) = 0 for k < 0 and for k > 3 

 By the definition of z-transform 

   

 The given sequence is a finite duration sequence, hence the limits of summation can be 

changed as k = 0 to k = 3. 

  

 On expanding the summation we get, 

  

 Here F(z) is bounded (i.e., finite) except when z = 0, therefore the ROC is entire z-plane 

except  z = 0.  

(b) Given that, f(k) = {2, 4, 5, 7, 3} 

                   ↑ 

 i.e., f(-2) = 2 ; f(-1) = 4 ; f(0) = 5 ; f(1) = 7 ; f(2) = 3 

 and f(k) = 0 for k < -2 and for k > 2 

 By the definition of z-transform 

  

 The given sequence is a finite duration sequence, hence the limits of summation can be 

changed as k = 2 to k = 2. 

  

 On expanding the summation we get, 
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 Here F(z) is bounded (i.e., finite) except when z = 0 and z = ∞, therefore the ROC is 

entire z-plane except z = 0  and z = ∞. 

EXAMPLE 4.2 

(a) f(k) = u (k)               (b) f(k) = (1/2)k u(k)            (c) f(k) = ak u(-k-1) 

SOLUTION 

(a) Given that, f(k) = u(k) 

 u(k) is a discrete unit step sequence, which is defined as 

  

 By the definition of z-transform, 

  

 Here, F(z) is an infinite geometric series and it converges if |z| > 1 (i.e., |z-1| < 1). Using 

infinite geometric series sum formula we get, 

  

(b) Given that, f(k) = (1/2)k u(k) 

 u(k) is a discrete unit step sequence, which is defined as 

  

  

 By the definition of z-transform, 

  

 Here, F(z) is an infinite geometric series and it converges if |z| > (i.e., |z-1| < 1). Using 

infinite geometric series sum formula we get, 
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(c) Give that f(K) = αk u(-k-1) 

 u(-k-1) is a discrete unit step sequence, which is defined as 

 u(-k-1) = 0 for k ≥ 0 

   = 1 for k ≤ -1 

     f(k) =  0 for k ≥ 0 

              =  αk for k ≤ -1 

 By the definition of z-transform, 

  

 Using infinite geometric series sum formula we get, 

  

EXAMPLE 4.3 

 Find the one sided z-transform of the following discrete sequences. 

 (a) f(k) = k a (k-1)   (b) f(k) = k2 

SOLUTION 

(a) Given that f(k) = k a(k-t) 

 The one sided z-transform of ak is given by 

  …4.3.1 

 Using infinite geometric series sum formula, 

  …4.3.2 

 From equation (4.3.1) and (4.3.2) we get 

  

 On expanding the summation in the above equation, we get, 

  …4.3.3 
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 On differentiating the equation (4.3.3) we get, 

  …4.3.4 

 On multiplying the equation (4.3.4) by –(z/a) we get, 

  …4.3.5 

 The infinite series on the left hand side on the equ (4.3.5) can be expressed as a 

simulation and the equ (4.3.5) is written as shown below. 

  …4.3.6 

 By definition of z-transform, the one sided z-transform of k a(k-1) is given by, 

  …4.3.7 

 (Because, k a(k-1) = 0 when k = 0)  

 On  comparing equations (4.3.6) and (4.3.7) we get, 

  

(b) Given that, f(k) = k2 

 Let us multiply the given discrete sequence by a discrete unit step sequence, 

 f(k) = k2 u(k) 

 Note: Multiplying a one sided sequence by u(k) will not alter its value. 

 By the property of z-transform, we get, 
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EXAMPLE 4.4 

 Find the one sided z-transform of the discrete sequence generated by mathematically 

sampling the following continuous time functions 

(a) t2
   (b) sin t  (c) cos t 

SOLUTION 

(a) Given that, f(t) = t2 

 The discrete sequence is generated by replacing t by kT, where T is the sampling time 

period.  

  

 where, g(k) = T2 

 By the definition of one sided z-transform we get, 

  

 By the property of z-transform we get, 

  

(b) Given that, f(t) = sint 

 The discrete sequence is generated by replacing t by kT, where T is the sampling time 

period. 

 f(k) = sin (kT) 

 By the definition of one sided z-transform. 
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 We know that, sin  = (ej  - e-j)/2j 

  

 We know that.  

  

  

 We know that, sin  = (ej  - e-j)/2j and cos  = (ej  + e-j)/2 

  

(c) Given that, f(t) = cos t 

 The discrete sequence is generated by replacing by t by kT, where T is the sampling 

time period. 

 f(k) = cos (kT) 

 By the definition of one sided z- transform, 

  

 We know that, cos  = (ej + e-j)/2 

  

 We know that 
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 We know that, cos  = (ej  - e-j)/2 

  

EXAMPLE 4.5 

 Find the one sided z-transform of the discrete sequence generated by mathematically 

sampling the following continuous time function, 

(a) e-at cos t  (b) e-at sin t 

SOLUTION 

(a)  Given that, f(t) = e-at cos t  

 The discrete sequence is generated by replacing t by kT, where T is the sampling time 

period.  

 f(k) = e –at cos kT 

 By the definition of one sided z-transform we get, 

  

 From infinite geometric sum series formula we know that,  
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(b) Given that, f(t) = e-at sin t 

 The discrete sequence f(k) is generated by replacing t by kT, where T is the sampling 

time period. 

 f(k) = e –akt sin kT 

 By the definition of one sided z-transform we get, 

  

 From infinite geometric sum series formula we know that,  

  

INVERSE z-TRANSFORM 

 The following methods are employed to recover the original discrete sequence from 

its z-transform. 

 1. Direct evaluation by contour integration (or) complex inversion integral. 

 2. Partial fraction expansion. 

 3. Power series expansion. 

 The inverse z-transform by partial fraction expansion method and power series 

expansion method are presented in this section. The inverse z-transform by contour integration 

is beyond the scope of the book. 
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PARTIAL FRACTION EXPANSION METHOD 

 Let f(k) = Discrete sequence 

 and F(z) = Z{j(k)} = z-Transform of f(k). 

 The function F(z) can be expressed as a ratio of two polynomials in z as shown below. 

  

 The function F(z) can be expressed as a series of  sum terms by partial fraction 

expansion technique.  

  …4.25 

 where A0 is a constant, A1, A2,…An are residues and p1, p2,….pn are poles of F(z). 

 Note: Sometimes it will be convenient to express F(z)/z as a series of sum terms instead 

of F(z). 

 Once the function F(z) is expressed as a series of sum terms , the inverse z-transform 

of F(z) is given by sum of inverse z-transform of each term in equ (4.25);[The inverse z-

transform of each term of equ (4.25)can be obtained from standard z-transform pairs. 

 The coefficients of the polynomials of F(z) are assumed real and so the roots of the 

polynomial are real and/or complex conjugate pairs ) i.e., complex roots will  occur only in 

conjugate pairs). Hence on factorizing the denominator polynomial we get the following cases. 

(The roots of the denominator polynomial are poles of F(z)).  

 Case (i) : When roots (or poles) are real and distinct 

 Case (ii) : When roots (or poles) have multiplicity 

 Case (iii) : When roots (or poles) are complex conjugate. 

Case (i) : When roots (or poles) are real and distinct 

 In this case F(z) can be expressed as, 

  

 where A0 is a constant ; A1, A2 …. An are residues and P1, P2, …. Pn are poles. 

 The constant A0 is present when m = n (i.e., when the order of numerator and 

denominator polynomial are equal). The value of A0 is obtained by dividing the numerator 

polynomial by denominator polynomial. 
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 The residue Ai is evaluated by multiplying both sides of H(z) by (z+pi) and letting  

z = -pi. 

  

Case (ii) When roots (or poles) have multiplicity 

 Let one of pole has a multiplicity of q. (i.e., repeats q times). In this case F(z) can be 

expressed as,  

  

where Ax0, Ax1, ..... Ax(q-1) are residues of repeated root (or pole), z = -px. 

 The constant A0 and residues of distinct real roots are evaluated as explained in case(i). 

 The residue Axr of repeated root is obtained as shown below. 

  

Case (iii) When roots (or poles) are complex conjugate 

 Let F(z) has one pair of complex conjugate pole. In this case F(z) can be expressed as,  

  

 The constant A0 and residues of real and non-repeated roots are evaluated as explained 

in case (i). 

 The residue Ax is evaluated as that of case(i) and the residue Ax
* is conjugate of Ax*. 

POWER SERIES EXPANSION METHOD  

 Let f(k) = Discrete sequence 

 and F(z) = Z{f(k)} = z-transform of f(k). 

 By the definition of z-transform we get, 
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 On expanding the summation we get, 

  …4.26 

 In the given function, F(z) can be expressed as a power series of z by long division then 

on comparing the coefficients of z with that of equ (4.26), the samples of f(k) are determined. 

[i.e. the coefficient of z1 is the ith sample f(i) of the sequence f(k)]. 

 Note: The different method of evaluation of inverse z-transform of a function F(z) will 

result in different type of mathematical expressions. But on evaluating the expressions for each 

value of k, we may get a same sequence. 

EXAMPLE 4.6 

 Determine the inverse z-transform of the following function, 

  

SOLUTION 

  

 By partial fraction expansion, F(z) / z can be expressed as  
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 We know that   

 On taking inverse z-transform of F(z) we get, 

 f(k) = 2 u(k) + (0.5)k;  k ≥ 0 

 (Here we consider only one sided z-transform) 

      

   

 By partial fraction expansion, we can write,  

  

  

 We know that  

 On taking inverse z-transform of F(z) we get, 

  



148 

 

  

 By partial fraction expansion, we can write. 

  

  

 On taking inverse z-transform of F(z) we get, 

  

 

 By partial fraction expansion, we can write, 
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 On taking inverse z-transform of F(z) we get, 

  

EXAMPLE 4.7 

 Determine the inverse z-transform of the following z-domain functions. 

   

SOLUTION 
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 By time shifting property we get,  

  

 On taking inverse z-transform of F(z) we get, 

  

 Note: The term 2(k-1) is multiplied by u(k-1), because this term have samples only after 

k ≥ 1. 
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 By time shifting property,  

  

 On taking inverse z-transform of F(z) we get, 

  

Note: The term d(k-1) is multiplied by u(k-1), because these terms have samples only after  

k ≥ 1. 

 

  

   

  

  

 On taking inverse z-transform of F(z) we get, 



152 

  

Note: Since the term a(k-1) is valid only for k ≥ 1, it is multiplied by u(k-1).  

 

  

  

 By time shifting property we get, 

  

 On taking inverse z-transform of F(z) we get, 

  

Note: Since the term a(k-1) is valid only for k ≥ 1, it is multiplied by u(k-1). 

EXAMPLE 4.8 

 Determine the inverse z-transform of  

 

 When (a) ROC : |z\ > 1.0 and   (b) ROC : |z| < 0.5. 

SOLUTION 

 Since the ROC is the exterior of a circle, we expect f(k) to be causal signal. Hence we 

can express F(z) as a power series expansion in negative powers of z. On dividing the 

numerator of F(z) by its denominator we get, 
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  …4.8.1 

  

 If F(z) is z-transform of f(k) then, by the definition of z-transform we get, 

  

 For a causal signal, 

  

 On expanding the summation we get, 

  ….4.8.2 

 On comparing the two power series of F(z) [i.e., equ (4.8.1) & (4.8.2)], we get, 

  

 (b) Since the ROC is the interior of a circle, we expect f(k) to be anticausal signal. 

Hence we can express F(z) as a power series expansion in positive powers of z. Therefore, 



154 

rewrite the denominator polynomial of F(z) in the reverse order and then the numerator, is 

divided by the denominator as shown below. 

  

  …4.8.3 

 If F(z) is z-transform of f(k) then, by the definition of z-transform we get, 

  

  

 On expanding the summation we get, 

  …4.8.4 

 On comparing the two power series of F(z) [i.e., equ (4.8.3) & (4.8.4)], we get, 

  

4.7 LINEAR DISCRETE TIME SYSTEMS 

 A discrete-time system is a device or algorithm that operates on a discrete-time signal 

called the input or excitation, according to some well-defined rule, to produce another discrete-

time signal called the output or the response of the system. We can say that the input signal 

r(k) is transformed by the system into a signal c(k) and expressed as 
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where H denotes the transformation (also called as operator) 

 A discrete time system is linear if it obeys the principle of 

superposition and it is time invariant if its input-output relationships do 

not change with time. 

 When the input to a discrete time system is unit impulse, δ(k) 

then the output is called impulse response of the system and denoted by 

h(k). 

   …4.28 

 A linear-time invariant discrete time system is characterized by its impulse response 

h(k) and so the impulse response h(k) is also called weighting sequence. 

 The input-output description of a discrete-time system consists of mathematical 

expression or a rule, which explicitly defines the relation between the input and output signals 

(input-output relationship). It is denoted by 

   …4.29 

 The input-output relationship of a linear-time invariant discrete time system, (LDS) can 

be expressed by Nth order constant coefficient difference equation given below. 

  …4.30 

 The integer N is called the order of the system and M ≤ N. 

 Here c(k-m) are past outputs, r(k-m) are past inputs, r(k) is present input and ak and bk 

are constant coefficients.  

ANALYSIS OF LINEAR DISCRETE TIME SYSTEM (LDS) 

 There are two methods of analysing the behaviour or response of a LDS systems. 

Method 1 

 The input-output relation of the LDS system is governed by the constant coefficient 

difference equation of the form shown in equ (4.30). Mathematically the direct solution of 

equation (4.30) can be obtained to analyse the performance of the system. 

Method 2 

 The given input signal is first decomposed or resolved into a sum of elementary signals. 

Then using the linearity property of the system, the responses of the system to the elementary 

signals are added to obtain the total response of the system to the given input signals. 

Figure 4.17 

Figure 4.18 
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Resolution of discrete time signal (or sequence) into impulses 

Let  r(k) = Discrete time signal 

 δ(k) = Unit impulse signal  

and  δ(k-m) = Delayed unit impulse signal 

 Consider the product of r(k) and δ(k-m) 

  …4.41 

  …4.42 

 The product r(k) δ(k-m) has zero everywhere except at k = m. The value of the signal 

at k = m is the mth sample of the signal r(k) and it is denoted by r(m). Therefore each 

multiplication of the signal r(k) by an unit impulse at some delay m, in essence picks out the 

signal value r(m) of the signal r(k) at k = m, where the unit impulse is non zero. Consequently 

if we repeat this multiplication over all possible delays in the range of, 0 ≤ m < ∞ and sum all 

the product sequences, the result will be a sequence that is equal to the sequence r(k). Hence 

r(k) can be expressed as  

  …(4.53) 

Note: Each product r(k) δ(k-m) is an impulse and the summation of impulses give r(k). Here 

r(k) is considered as one sided sequence. If r(k) is two sided sequence then the range of 

m is -∞ to +∞. 

RESPONSE OF LDS SYSTEM TO ARBITRARY INPUT – THE CONVOLUITON 

SUM 

 In a LDS system the response c(k) of the system for arbitrary input r(k) is given by 

convolution of the input r(k0 with the impulse response h(k) of the system. It is expressed as 

  …4.34 

 where the symbol * represents convolution operation. 

Proof 

 Let c(k) be the response of the H for an input r(k). [Let r(k) be a one sided sequence]. 

  …4.35 

 The signal r(k) can be expressed as a summation of impulses as, 

  …4.36 
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 where δ(k-m) is the delayed unit impulses signal. 

 From equation (4.35) and (4.36) we get, 

  …4.37 

 The system H is a function of k and not a function of m. Hence by linearity property 

the equ (4.37) can be written as,  

  …4.38 

 Let the response of the LDS system to the unit impulse input δ(k) be denoted by h(k). 

  …4.39 

 Then by time invariance property the response of the system to the delayed unit 

impulse input δ(k-m) is 

  …4.40 

 Using equ (4.40), the equ (4.38) can be expressed as  

  …4.41 

 The equation of c(k) [equ(4.41)] is called convolution sum. We can say that the input 

r(k) is convoluted with the impulse response h(k) to yield the output c(k). 

  …4.42 

PROPERTIES OF CONVOLUITON 

 Commutative property : r(k) * h(k) = h(k) * r(k) 

 Associative property : [r(k) * h1(k)] * h2(k) = r(k) * [h1(k) * h2(k)] 

 Distributive property : r(k) * [h1(k) + h2(k)] = [r(k) * h1(k)] + [r(k) * h2(k)] 

4.8 TRANSFER FUNCTION OF LDS SYSTEM (PULSE TRANSFER 

FUNCDTION) 

 The transfer function of LDS system is given by z-transform of its impulse response. 

The transfer function of LDS system is also called z-transfer function or pulse transfer function. 

 Let h(k) = Impulse response of a LDS system 

 Now, z-transform of h(k) = Z{h(k)} = H(z) 

  Transfer function of LDS system = H(z) …4.43 
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 The input-output relationship of a LDS system is governed by a convolution sum of 

equ (4.42). By taking z-transform of this convolution sum it can be shown that, H(z) is given 

by the ratio by C(z)/R(z), where C(z) is the z-transform of output c(k) of LDS system and R(z) 

is the z-transform of input r(k) to the LDS system. 

Proof 

 By the definition of one sided z-transform. 

  …4.44 

 From equ (4.42), we get  

 On substituting this convolution sum in equ (4.44) we get, 

  …4.45 

 The order of summation in equ (4.45) can be interchanged. Therefore equ (4.45) can be 

written as 

  …4.46 

Let, p = (k – m),  when k = 0, p = -m 

        and when k = ∞, p = ∞ 

   Also,  k = p + m 

 On replacing (k – m) by p in equ (4.46) we get 

  …4.47 

 By the definition of one sided z-transform, 

  

 Hence equation (4.47) can be written as 

  …4.48 

 From equ (4.48) we can conclude that the transfer function of the system is given by 

the ratio C(z) / R(z). 
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 From the above analysis we can define the transfer function of the LDS system as the 

ratio of the z-transform of the output of a system to the z-transform of the input to the system 

with zero initial conditions. 

 Let r(k) = Input of LDS system 

 and c(k) = Output of a LDS system 

 Now, Z{r(k)} = R(z) and Z{c(k)} = C(z) 

 Transfer function of LDS system = 
𝐶(𝑧)

𝑅(𝑧)
 …4.49 

 The input-output relation of LDS system is governed by the constant coefficient 

difference equation.  

  …4.50 

 where N is the order of the system and M ≤ N. 

 On taking z-transform of equ (4.50) we get, 

 [By time shifting property, Z{c(k-m)} = z-m. C(z) and Z{r(k-m)} = z-mR(z)] 

  …4.51 

 On expanding the equ (4.51) with M = N, we get, 

  

  …4.52 

 From the above discussions it is evident that the transfer function of the LDS system 

can be obtained by taking z-transform of the difference equation governing the system. 

EXAMPLE 4.9 

 The input-output relation of a sampled data system is described by the equation 

 c(k + 2) + 3 c(k + 1) + 4c(k) = r(k + 1) – r(k). 

 Determine the z-transfer function. Also obtain the weighting sequence of the system. 
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SOLUTION 

 Let R(z) = Z{r(k)} and C(z) = Z{c(k)}   

 By time shifting property, when initial conditions are zero, we get, 

 Z{c(k+m)} = zm C(z) and Z{r(k+m)} = zm R(z) 

 Given that, c(k+2) + 3 c(k+1) + 4c(k) = r(k+1) – r(k) 

 On taking z-transform of the above equation we get,  

  

  

 The weighting sequence is the impulse response, h(k) of the system. It is given by 

inverse z-transform of H(z). 

  

 By partial fraction technique H(z) can be expressed as 
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 On taking inverse z-transform of H(z) we get, 

  

EXAMPLE 4.10 

 Solve the difference equation c(k+1) + 3 c(k+1) + 2 c(k) = u(k) 

 Given that c(0) = 1 ; c(1) = -3 ; c(k) = 0 for k < 0  

SOLUTION 

 Let Z{c(k)} = C(z) and Z {u(k)} = U(z) 

 Since u(k) is unit step signal,   

 We know that, if F(z) = Z{f(k)} then 

  

 Given that, c(k+2) + 3 c(k+1) + 2 c(k) = u(k) 

 On taking z-transform of the above equation we get, 

 Z{c(k+2)} + Z{3 c(k+1)} + Z{2 c(k)} = Z {u(k)} 

  

 On substituting the initial conditions, c(0) = 1 and c(t) – 3 we get, 
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 By partial fraction expansion technique we can write C(z)/z as, 

  

  

 On taking inverse z-transform of C(z) we get, 

  

 The above equation of c(k) is the solution of the given difference equation.  

4.9 ANALYSIS OF SAMPLER AND ZERO – ORDER HOLD 

 Consider a pulse sampler with zero-order hold (ZOH) shown in Figure 4.19. Let the 

output of sampler be a pulse train of pulse width . For each input pulse, the ZOH produces a 

pulse of duration T, where T is the sampling period.  

                                          

 Figure 4.19 Pulse sampler with ZOH   Figure 4.20 Equivalent representation  

                                                      pulse sampler with ZOH 

 In can be proved that the output of pulse sampler with ZOH can be produced by impulse 

sampled f(t) when passed through a transfer function.  

  …4.53 

 Hence the pulse sampler with ZOH can be replaced by an equivalent system consisting 

of an impulse sampler and a block with transfer function, (1 – e-sT)/s as shown in Figure 4.20. 

This equivalent representation offers easier analysis of sampled data control systems. 
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FREQUENCY RESPONSE CHARACTERISTICS ZERO ORDER HOLDING 

DEVICE 

 The sinusoidal transfer function of ZOH can be obtained from G0(s) by replacing  

s by j. 

  …4.54 

 We know that,  …4.55 

  

 Hence from equation (4.54) and (4.55) we get,    

  

  

  …4.56 

 We know that, sampling frequency, s = 
2𝜋

𝑇
  

  

 On substituting T = 2π/s in equ (4.56) we get, 

  

  …4.57 

  …4.58 

 The frequency response characteristics consists of magnitude response and phase 

response characteristics. The magnitude and phase response of ZOH device are given by 

equations (4.57) and (4.58) respectively. The Figure (4.21) shows the frequency response curve 

of ZOH device. From the frequency response curve we can conclude that ZOH device has low 

pass filtering characteristics.  
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Fig.a. Magnitude response of ZOH device      Fig.b. Phase a response of ZOH device 

Figure 4.21 Frequency response of ZOH device 

4.10 ANALYSIS OF SYSTEM WITH IMPULSE SAMPLING 

 Consider a linear continuous time system fed from an impulse sampler as shown in 

Figure 4.22a. Let H(s) be the transfer function of the system is s-domain. In such a system we 

are intersected in reading the output at sampling instants. This can be achieved by means of a 

mathematical sampler or read-out sampler.  

              
               Fig. 4.22a                                    Fig. 4.22b 

Figure 4.22 Linear continuous time system with impulse sampled input 

 For the system shown in Figure 4.22b, it can be shown that the z-domain transfer 

function H(z) can be directly obtained from s-domain transfer function by taking z-transform 

of H(s) 

 i.e ., H(z) = Z{H(s)} …4.59  

 The Figure 4.23 shows the z-transform 

equivalent of the s-domain system of Figure 

4.22b. 

 The output in z-domain is given by, C(z) = H(z) R(z) …4.60 

Procedure to find z-transfer function from s-domain transfer function  

1. Determine h(i1) from H(s, where h(t) = L-1 |H(s)} 

2. Determine the discrete sequence h(kT) by replacing t by kT in h(t) 

3. Take z-transform of h(kT), which is z-transform function of the system (i.e., H(z) = 

Z{h(kT)}. 

 

 

 

 

Figure 4.23: The z-transform equivalent of 

the system shown in Figure 3.22b 
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Table 4.4 Laplace and Z-transformations 

H(s) H(z) 

  
 

 Alternatively, by partial fraction technique if H(s) can be expressed as a summation of 

first order terms then using standard transform pairs listed in Table 4.4, the z-transform of H(s) 

can be directly obtained.  

        

                  Fig. 3.24a                                Fig. 3.24b                          Fig. 3.24c 

Fig. 3.24 

 Consider a continuous time system with transfer function H(s) as shown in Figure 

4.24a. Let the input r(t) be a continuous time input. To read the continuous output at sampling 

instants, let us image a mathematical sampler at the output stage.  

 The system shown in Figure 4.24a can be equivalently represented by a block of H(s) 

R(s) with impulse input δ(t) as shown in Figure 4.24b. Now the input and so the output does 

not change by imaging a fictious impulse sampler through which δ(t) is applied to H(s) R(s) as 

shown in Figure 3.24c. For such a system we can prove that  

  …4.61 

 Hence, if C(s) = H(s) R(s) then C(z) = Z{H(s) R(s)} = HR(z) …4.62 

 The function Z{H(s) R(s)} is also denote das HR(z). 

 When the impulse sampled input is applied to two or more s-domain transfer function 

in cascade as shown in Figure 4.25a, then z-transfer function of the system is given by  
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  …4.63 

  …4.64 

 The function Z{H1(s) H2(s)} is also denoted as H1H2(z). The equivalent z-domain 

system is shown in Figure 4.25b. 

       

 Consider a system in which impulse sampler is introduced at the input of each block a 

shown in Figure 4.26a. 

      

 Now the z-transfer function of the system is given by, 

  H(z) = H1(z) H2(z) 

 where H1(z) = Z{H1((s)} and H2(z) = Z{H2(s)} 

 and C(z) = H1(z) H2(z) R(z) 

 where  R(z) = Z{R(s)} and R(s) = L[r(t)]. 

 The equivalent z-domain system is shown in Figure 4.26b. 

EXAMPLE 4.11 

 Determine the z-domain transfer function for the following s-domain transfer functions.  

  

SOLUTION 

 

 The discrete sequence h(kT) in obtained by letting t = kT in h(t) 

Figure 4.25a Figure 4.25b 

Figure 4.26a 
Figure 4.26a 
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 h(kT) = akTc-akT 

 z-transfer function, H(z) = Z{h(kT)}  

 Let f(k) = e-akT,  F(z) = Z {f(k)} 

 By the definition of z-transform, 

  

  

 

 The discrete sequence h(kT) is obtained by letting t = kT in h(t) 

  h(kT) = cos kT 

  

 [Refer Table 4.3 and example 4.4(c)] 

 

  

 By partial fraction expansion,  
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 The discrete sequence h(kT) is obtained by letting t = kT in h(t)  

  

 By the definition of one sided z-transform, 

  

 From infinite geometric sum series formula we know that, 

  

  

  

 

 The discrete sequence h(kT) is obtained by letting t = kT in h(t) 

  h(kT) = e-bkT
 cos akT 
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 z-transfer function, H(z) = Z{h(kT)} = Z{e-bkT cos akT} 

 For example 4.5(a) we get 

  

 

 The discrete sequence h(kT) is obtained by letting t = kT in hh(t) 

 h(kT) = e-bkT sin akT 

 z-transfer function, H(z) = Z{h(kT)} = Z{e-bkT sin akT} 

 From example 4.5(b) we get,  

4.11 ANALYSIS OF SAMPLED DATA CONTROL SYSTEMS USING Z-

TRANSFORM 

 The analysis of sampled data control systems are performed using the concepts 

developed in section 4.9 and 4.10. The following points serve as guidelines to determine the 

output in z-domain and hence the z-transfer function of the sampled data control systems. 

 1. The pulse sampling is approximated as impulse sampling. 

 2. The ZOH is replaced by a block with transfer function, G0(s) = (1 –e-sT)/s. 

 3. When the input to a block is impulse sampled signal then the z-transform of the 

output of the block can be obtained from the z-transform of the input and z-

transform of the s-domain transfer function of the block. In determining the 

output of a block one may come across the following cases.  

 Case (i) The impulse sampler is located at the input of a block as shown in Figure 4.27. 

 

Figure 4.27 

 In this case, C(z) = G(z) R(z) …4.67 

 Here, G(z) = Z{G(s)}  ; R(z) = Z{R’(s)} and R’(s) = L[r’(t)] 



170 

 Case (ii) The impulse sampler is located at the input of two s-domain cascaded blocks 

as shown in Figure 4.28. 

 

Figure 4.28 

 In this case, C(z) = Z{G1(s) G2(s)} ; R(z) = G1G2(z) R(z) 

 Case (iii) The impulse sampler is located at the input of each blocks as shown in Figure 

4.29. 

 

Figure 4.29 

 In this case, C(z) = G1(z) G2(z) R(z) …4.69 

 Here, G1(z) = Z{G1(s)}  and G2(z) =  Z{G2(s)} 

 Case (iv) The impulse sampler is located at the input of ZOH in cascade with G(s) as 

shown in Figure 4.30. 

 

Figure 4.30 

 In this case, C(z) = Z{G0(s) G(s)} R(z) = (1-z-1 ) Z {G(s) / s} R(z) …4.70 

 The Table 4.5 shows some configurations of the closed loop sampled data control 

systems and their corresponding z-domain outputs. 

Table 3.5 

Closed loop sampled data control system  Output z-domain 
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EXAMPLE 4.12 

 Find C(z) / R(z) for the following closed loop sampled data control systems. Assume 

all the samplers to be of impulse type.  

   

Figure 4.12a Figure 4.12b Figure 4.12c 
 

SOLUTION  

(a) The ZOH in the system is replaced by G0(s) as shown in Figure 4.12.1, where G0(s) = 

(1-e-sT)/s 

 Let e(t) = Error signals 

  e'(t) = Impulse sampled error signal 

  b(t) = Feedback signal  

 
  

Figure 4.12.1 Figure 4.12.2a Figure 4.12.2b 
 

 The input to the cascaded blocks of G0(s) and G(s) is an impulse sampled signal as 

shown in Figure 4.12.2a. It’s z-domain equivalent is shown in Figure 4.12.2b. 

 From Figure 4.12.2b we get, C(z) = Z{G0(s) G(s)} E(z) …4.12.1 

 Here, C(z) = Z {C(s)} ; E(z) = Z {E’(s)} ; C(s) = L[c(t)] and E’(s) = L[e’(t)] 

 The input to the cascaded blocks of G0(s), G(s) and H(s) is an impulse sampled signal 

as shown in Figure 4.12.3a. It’s z-domain equivalent is shown in Figure 4.12.3b. 
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Figure 4.12.3a  Figure 4.12.3b 
 

 From Figure 4.12.2b we get, B(z) = Z{G0(s) G(s) H(s)} E(z) …4.12.2 

 Here, B(z) = Z {B(s)} and B(s) = L[b(t)] 

 With reference to Figure 4.12.1, at the summing point we get, 

 e(t) = r(t) – b(t) …4.12.3 

 Since e’(t) = e(kT) is an impulse sampled signal, by superposition principle the equation 

(4.12.3) can be written as,  

 e(kT) = r(kT) – b(kT) …4.12.4 

 where e(kT), r(kT) and b(kT) are impulse sampled signals of e(t), r(t) and b(t) 

respectively.  

 On taking z-transform of equ (4.12.4) we get, 

  …4.12.5 

 Where R(z) = Z{R(s)} and R(s) = L[r(t)] 

 On substituting for B(z) from equ (4.12.2) in equ (4.12.5) we get, 

  …4.12.6 

 From equations (4.12.1) and (4.12.6) the z-transfer function or pulse transfer function, 

C(z)/R(z) can be written as,  

  …4.12.7 

 Here, Z{G0(s) G(s)}is denoted as G0G(z) and Z{G0(s) G(s) H(s)} is denoted as 

G0GH(z). 

(b) The input to the block G2(s) in an impulse sampled signal as shown in Figure 4.12.4a. 

It’s z-domain equivalent is shown in Figure 4.12.4b. 

               

          Figure 4.12.4a                  Figure 4.12.4b 
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 From Figure 4.12.4b we get, C(z) = G2(z) D(z) …4.12.8 

 where C(Z) = Z{C(s)} ; G2(z) = Z{G2(s)} ; D(z) = Z{D’(s)}; C(s) = L[c(t) and D’(s) 

= L[d’(t)] 

 The input to the block G1(s) is an impulse sampled signal as shown in Figure 4.12.5a. 

It’s  z-domain equivalent is shown in Figure 3.12.5b. 

              

                   Figure 4.12.5a                  Figure 4.12.5b 

 From Figure 4.12.5b we get, D(z) = G1(z) E(z) …4.12.9 

 From equations (4.12.8) and (4.12.9) we get, 

  C(z) = G2(z)G1(z) E(z) …4.12.10 

where G1(z) = Z{G1(s)} ; E(z) =  Z{E’(s)} and E’(s) = L[e’(t)’] 

 The input to the cascaded blocks G2(s) and H(s) is an impulse sampled signal as shown 

in Figure 4.12.6a. It’s z-domain equivalent is shown in Figure 4.12.6.b. 

                    

                   Figure 4.12.6a                  Figure 4.12.6b 

 From Figure 4.12.6b we get, 

  B(z) = Z(G2(s) H(s)} D(z) …3.12.11 

 On substituting for D(z) from equ (4.12.9). in equ (4.12.11) we get, 

  B(z) = Z(G2(s) H(s)} G1(z) E(z) …3.12.12 

 With reference to Figure 3.12b, at the summing point we get, 

  e(t) = r(1) – b(t)  …4.12.13 

 Since e(t) = e(Kt) is an impulse sampled signal, by superposition principle the equation 

(4.12.13) can be written as, 

 e(kT) = r(kT) – b(kT) …4.12.14 

where e(kT), r(kT) and b(kT) are impulse sampled signals of e(t), r(t) and b(t) respectively. 

 On taking z-transform of equ (4.12.14) we get. 

 E(z) = R(z) – B(z) 
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 R(z) = E(z) + B(z) …4.12.15 

 On substituting, for B(z) from equ (4.12.2) in equ (4.12.15) we get, 

  …4.12.16 

 From equation (4.12.10) and (4.12.16) the z-transfer function or pulse transfer function 

C(z)/R(z) can be written as,  

  …4.12.17 

 Here Z {G2(s) H(s)} is denoted as G2H(z) 

(c) The ZOH in the system is replaced by G0(S) as shown in Figure 4.12.7, where Ga(s) = 

(1-e-sT)/s. 

    

                       Figure 4.12.7                              Figure 4.12.8a               Figure 4.12.8b 

 The input to the cascaded blocks of G0(s) and G(s) is an impulse sampled signal as 

shown in Figure 4.12.8a. It’s z-domain equivalent is shown in Figure 4.12.8b. 

 From 4.12.8b, we get C(z) = Z{G0(s) G(s)} E(z) …4.12.18 

where, C(z) = Z{C(s)};  E(z) = Z{E(s)} ; C(s) = L[c(t)] and E(s) = L(e(t)]. 

 The input to the block H(s) is an impulse sampled signal as shown in Figure 4.12.9a. 

It’s z-domain equivalent is shown in Figure 4.12.9B. 

 

              

                   Figure 4.12.9a                  Figure 4.12.9b 

 From Figure 4.12.9b, we get, B(z) = H(z) C(z) …4.12.19 

 with reference to Figure 4.12.7, at the summing point we get, 

 e(t) = r(t) – b(t) …4.12.20 

 Since e(t) = e(kT) is an impulse sampled signal, by principle of superposition the equ 

(4.12.20) can be written as,  

 e(kT) = r(kT) – b(kT) …4.12.21 
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where e(kT), r(kT) and b(kT) are impulse sampled signals of e(t), r(t) and b(t) respectively.  

 On taking z-transform of equ (4.12.21) we get, 

 E(z) = R(z) – B(z) …4.12.22 

 On substituting for B(z) from equ (4.12.19) in equ (4.12.22) we get, 

 E(z) = R(z) – H(z) C(z) …4.12.23 

 On substituting for E(z) from equ (4.12.23) in equ (4.12.18) we get, 

  …4.12.24 

 The equation (4.12.24) is the z-transfer function of the system. 

 Here Z{G0(s) G(s)} is denoted as G0G(z). 

EXAMPLE 4.13 

 Find the output C(z) in z-domain for the closed loop sampled data control system shown 

in Figure 4.13. 

    

          Figure 4.13                                                Figure 4.13.1  

SOLUTION 

 The ZOH in Figure 4.13 is replaced by a block with transfer function G0(s) as shown in 

Figure 4.13.1, where G0(s) = (1 – e-sT) / s. 

 Here, d(t) = Impulse sampled signal of d(t).  

 The input to the cascaded blocks of G0(s) and G2(s) is an impulse sampled signal as 

shown in Figure 4.13.2a. It’s z-domain equivalent  is shown in Figure 4.13.2b. 

       

    Figure 4.13.2a                           Figure 4.13.2b 

 From Figure 4.13.12b we get, C(z) = Z {G0(s) G2(s)} D(z) …4.13.1 

 Where C(z) = Z {C(s)}; D(z) = Z {D(s)} ; C(s) = L[c(t)] and D(s) = L[d(t)]. 
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 With reference to Figure 4.13.1 the following s-domain equations can be obtained. 

  E(s) = R(s) – B(s) …4.13.2 

  D(s) = E(s) G1(S) …4.13.3 

  B(s) = G0(s) G2(s) H(s) Ds …4.13.4 

 On substituting for E(s) from equ (4.13.2) in equ (4.13.3) we get, 

  D(s) = [R(s) – B(s)] G1(s) = G1(s) R(s) – G1(s) B(s) …4.13.5 

 On substituting for B(s) from equ (4.13.4) in equ (4.13.5) we get, 

  D(s) = G1(s) R(s) – G1(s) G0(s) G2(s) H(s) D(s) …4.13.6  

 On taking z-transform of equ (4.13.6) we get, 

  

  …4.13.7 

Note: The term G0(s) G1(s) G2(s) H(s) D(s) represents the output of a block with transfer 

from G0(s) G1(s) G2(s) H(s) when the input is D(s). 

 On substituting for D(z) from equ (4.13.7) in equ (4.13.1) we get, 

 Output in z-domain,   

Where {G0(s) G2(s)} is represented as G0G2(z), 

 {G1(s) R(s)} is represented as G1R(z) and 

 {G0(s) G1(s) G2(s) H(s)} is represented as G0G1G2H(z) 

EXAMPLE 4.14 

 For the sampled data control system shown in Figure 4.14, find the response to unit step 

input, where G(s) = 1/(s+t), 

            

             Figure 4.14                                 Figure 4.14.1 

SOLUTION  

 The ZOH in the system is rep0laced by G0(s) as shown in fig 4.14.1, where G0(s) = 

(1-e-sT)/s. 
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 The input to the cascaded blocks of G0(s) and G(s) is an impluse sampled signla as 

shown in fig 4.14.2a. It’s z-domain equivalent is shown in fig 4.14.2b.   

 From fig 4.14.2b we get, C(z)= Z{G0(s)G(s)}E(z)  …(4.14.1) 

        

      Figure 4.14.2a                             Figure 4.14.2b 

 From Figure 4.14.2b we get, C(z) = Z{G0(s) G(s)} E(z) …4.14.1 

 With reference to Figure 4.14.1, at the summing pont we get, 

  e(t) = r(t) – c(t) …4.14.2 

 Since e(t) = e(kT) is an impulse sampled signal, the equation (4.14.2) can be written 

as,  

 E(kT) = r(kT) – c(kT) …4.14.3 

where e(kT), r(kT) and c(kT) are impulse sampled signals of e(t), r(t) and c(t) respectively.  

 On taking z-transform of equ (4.14.3) we get, 

 E(z) = R(z) – C(z) …4.14.4 

 On substituting for E(z) from equ (4.14.4) in equ (4.14.10 we get, 

  …4.14.5 

  

  

 By partial fraction expansion,  
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 From standard laplace and z-transform pairs we get, 

  

 Here a = 1 and T = 1 

  

  …4.14.6 

 Given that input is unit step 

  …4.14.7 

 From equation (4.14.5), (4.14.6) and (4.14.7) we get,  

  

 By partial fraction expansion,  
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   …4.14.8 

 We know that 

  

 On taking inverse z-transform of equ (4.14.8) we get, 

  …4.14.9 

 The equation (4.14.9) is the response of given system for unit step input. 

4.12 THE z AND s-DOMAIN RELATONSHIP 

 Let r(kT) be a discrete sequence which has been obtained by sampling r(t) at a sampling 

rate of 1/T. On taking z-transform of r(kT) we get, 

  …4.71 

 Let, r(t) = Impulse sampled signal of r(t) at the sampling rate of 1/T and R(s) =L[r(t)] 

= Laplace transform of r(t). 

  …4.72 

 On taking laplace transform of equ (4.72) we get, 

  …4.73 

 Let us choose a transformation such that,  

 z = esT   …4.74 

  …4.75 

 On substituting for s from equ (4.75) in equ (4.73) we get, 
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  …4.76 

 From equ (4.76) it is obvious that z-transform of a discrete sequence can be obtained 

from the laplace transform of its impulse sampled version, by choosing a transformation, 

s=(1/T)ln z(or z=esT). 

 The transformation, s=(1/T)ln z, maps the s-plane into the z-plane. It can be shown that 

every section of j-axis of length, N, maps into the unit circle in the anticlockwise direction 

where N is an integer and s is the sampling frequency and it can be shown that every strip in 

he left half s-plane of width s, maps into the interior of the unit circle as shown in fig 4.31.   

 

Figure Mapping of s-plane into z-plane 

 The above mapping helps in extending the s-plane stability criterion to z-plane. For 

stability of a system in s-plane the poles of s-domain transfer function should lie on the left 

half of s-plane. In this transformation the left half of s-plane maps into interior of unit circle. 

Hence for the stabilith of the system in z-domain, the poles of the z-transfer function should 

the inside the unit circle. 

4.13 STABILITY ANALYSIS OF SAMPLED DATA CONTROL SYSTEMS 

 The sampled data control system is stable if all the poles of the z-transfer function of 

the system lies inside the unit circlr in z-plane. The poles of the transfer funtion are given by 

the roots of the characteristic equation. Hence the sysem stability can be determined from the 

roots of the characteritic equation. 

 The z-transfer function of the sampled data control system can be expressed as a ratio 

of two polynomials in z as shown below.  

  …4.77 

Where, A0 = constant 

 P(z) = Numerator polynomial 

 Q(z) = Denominator polynomial 

 The characteristic equation is the denominator polynomial of H(z). [i.e., characteristic 

equation is given by Q(z) = 0]. 

 Consider the system shown in Figure 4.32. For this system, the z-transfer function is 

given by, 
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 …4.78          

                                 Figure 4.32 

 and the characteristic equation is, 

   (4.79) 

 The following methods are available for the stability analysis of sampled data control 

system using the characteristic equation 

 1. Jury’s stability test 

 2. Bilinear transformation 

 3. Root locus technique 

 The Jury’s stability test and bilinear transformation are presented in this book. 
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NON LINEAR SYSTEMS 

5.1 INTRODUCTION TO NON LINEAR SYSTEMS 

 The non-linear systems are which does not obey the principle of superposition. The 

linear systems are systems which satisfy that principle of superposition.  

 The principle of superposition implies that if a system has responses y1(t) and y2(t) any 

two inputs x1(t) and x2(t) respectively then the system response to the linear combination of 

these inputs α1x1(t) ÷ α2x2(t) is givwn by the linear combination of the individual outpus, i.e. 

α1y1(t) ÷ α2x2(t), where α1 and α2 are constants. 

 

 To satisfy the principle of superposition, y3 = α1y1 + α2y2 

 Example of linear system : y = ax + b
𝑑𝑥

𝑑𝑡
 

 Example of nonlinear system : y = ax2 + ebx 

EXAMPLE 5.1 

 The response of a system is, y = ax + b
𝑑𝑥

𝑑𝑡
 . Test whether the system is linear or non 

linear.   

SOLUTION 

 Let x1 and x2 be the two inputs to the system and y1 and y2 be their resopnses, 

respectively.  

 Given that y = ax + b
𝑑𝑥

𝑑𝑡
 

 When x = x1, y = y1,   y1 = ax1 + b 
𝑑𝑥1

𝑑𝑡
 

 When x = x2, y = y2,   y2 = ax2 + b 
𝑑𝑥2

𝑑𝑡
 

 Consider a linear combination nof inputs α1x1 + α2x2 and let the response of the system 

for this linear combination of inputs be y3. 

 When x = α1x1 + α2x2 . y = y3  

  



184 

 Consider the same linear combination of output, α1y1 + α2y2. 

  

 It is observed that y3 = α1y1 + α2y2 . Hence the system is linear.  

EXAMPLE 5.2 

 The response of a system is y = ax2 + ebx. Test whether the system is linear or nonlinear.  

SOLUTION 

Let x1 and x2 be two inputs to the system and y1 and y2 be their resonses respectively.  

Given that y = ax2 + ebx 

When x = x1, y = y1,  y1 = ax1
2 + ebx

l 

When x = x2, y = y2,  y2 = ax2
2 + ebx

2 

 Consider a linear combination of inputs α1x1 + α2x2 and let the response of the system 

for this linear combination of inputs be y3. 

 

Consider the same liear combination of output, α1y1 + α2y2 

 

It is observed that y3  α1y1 + α2y2. Hence the system is nonlinear. 

In all practical engineering systems, there will be always some nonlinearity due to 

friction, inertia, stiffness, backflash, hysteresis, saturation and dead-zone. The effect of the non 

linear components can be avoided by restricting the operation of the component over a narrow  

limited range. Moreover most of the automatic control systems operate within a narrow range, 

e.g. the speed controller of an electric drive for constant speed operation of 1500 rpm will be 

required to operate between 1450 to 1550 rpm. Similarly, automatic voltage controller will be 

operating within  5% of the specified voltage. Thus the characteristics of components may be 

considered as linear over this limited range.  

 Further, some components behave linearly over its working range, e.g., a spring when 

loaded, gets extended. As the load is being increased the load-displacement curve is linar within 

the working range. However, when the load is increased beyond the maximum of the working 
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range, the  spring material starts to yield and it becomes permanently deformed. It can be 

concluded that the sprin g behaves linearly over its working range and beyond this range it is 

nonlinear.  

 Although nonlinearities in systems may generally be due to imperfections of a physical  

device, some times we deliberately introduce non linear device or operate the linear devices in 

nonlinear regions with a view to improve system performance.  

 The characterustucs of non linear system are given below. 

1. The response of nonliinear system to a particular test signal is no guide to their 

behaviour to other inputs, since the principle of superposition does not holds 

good for nonlinear systems. 

2. The nonlinear system response may be highly sensitive to input amplitude. The 

stability study of nonlinear systems requires the information about the type and 

amplitude of the anticipated inputs, initial conditions, etc., in addition to the 

usual requirement of the mathematical modal. 

3. The non linear systems may exhibit cycles which are self sustained oscillations 

of fixed frequency and amplitude. 

4. The non linear systems may have jump resonance in the frequency response. 

5. The output of a nonlinear system will have harmonics and sub-harmonics when 

excited by sinusoidal signals. 

6. The nonlinear systems will exhibit phenomena like frequency entrainment and 

asynchronous quenching. 

BEHAVIOUR OF NONLINEAR SYSTEMS 

 In nonlinear systems, the response (output) depends on the magnitude and type of input 

signal. The principle of superposition will not hold good for nonlinear systems. The nonlinear 

systems may exhibit various phenomena like jump resonance, sub harmonic oscillation, limit 

cycles, frequency entrainment and asynchronous quenching. The various phenomena that occur 

in nonlinear system are explained in this section. 

Frequency-amplitude dependence 

 The frequency-amplitude dependence is one of the most fundamental characteristics of 

the oscillations of nonlinear systems. The frequency-amplitude dependence can be best studied 

by considering the mechanical system shown in Figure 5.1 in which the spring is nonlinear. 

The differential equation governing the dynamic of the system may be written as 

 M x + B x + K x + Kx1 = 0 …5.1 

where Kx + Kx1 – Opposing force due to nonlinear spring. 

 The parameters M,  B and K are positive constants. The 

parameters K may be positive or negative. If K is positive, 

the spring in called hard spring and if K is negative the spring 

is called soft spring. The equation (5.1) is nonlinear differential 

equation and it also called Duffing’s equation.  

Figure 2.1 Mechanical 

system with nonlinear spring 
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 When the system of Figure 5.1 has non zero initial conditions, the free response (i.e., 

solution of equ 5.1) is damped oscillatory. The frequency of free oscillations depends on the 

amplitude of oscillations. When K < 0 (soft spring) the frequency decreases with decreasing 

amplitude . When K > 0 (hard spring) the frequency increases with decreasing amplitude. 

When K = 0  (corresponding to linear system) the frequency remains unchanged as the 

amplitude of free oscillation decreases. The frequency-amplitude dependence characteristic of 

nonlinear mechanical system of Fig. 5.1 is shown in Fig. 5.2 

Jump resonance 

 In the frequency response of nonlinear systems, the 

amplitude of the response (output) may jump from one point to 

another for increasing or decreasing values of 

frequency, . This phenomenon is called jump 

resonance and it can be observed in the frequency 

response of the system shown in Fig. 51., when it is 

subjected to sinusoidal input. 

 Let the mechanical system of Fig. 5.1, be subjected to an input of type A cos t. Now 

the differential equation governing the mechanical system is 

 M 𝑥̈ + B 𝑥̇ + K x + K x3 = A cos t …5.2 

 Let X be the amplitude of the response or output of the system. In frequency response 

studies, the amplitude, A of the input is held constant, while its  is varied and the amplitude, 

X of the output is observed. The frequency response curve is plotted between X and . The 

frequency response curves of the mechanical system of fig 5.1 are shown in fig 5.3a and 5.3b 

for hard and soft springs respectively. 

 

Figure 5.3 Frequency response curves showing jump resonance 

 In the frequency response curve shown in fig 5.3a and b, as the frequency  is increased, 

the amplitude X increas4es, until point-2 is reached, A further increase in frequency will cause 

a jump from point-2 to point-3. This phenomenon is called jump resonance. As the frequency 

is increased further, the amplitude X follows the curve from point-3 towards point-4. 

 When the frequency is reduced starting from a high value corresponding to point-4, the 

amplitude X slowly increases through point-3, until point-5 is reached. A further decrease in  

will cause another jump from point-5 to point-6. This phenomenon is called jump resonance. 

After this jump, the amplitude X decreases with  and follows the curve from point-6 towards 

point-1. 

Figure 5.2 Amplitude vs frequency 

curves for free oscillations in the 

system described by equation 5.1 
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 For jump resonance to take place, it is necessary that the damping term be small and 

the amplitude of the forcing function be large enough to drive the system into a region of 

appreciably nonlinear operation. 

Subharmonic oscillations 

 When an nonlinear system is excited by a sinusoidal signal, the response or output will 

have steady-state oscillation whose frequency is an integral submultiple of the forcing 

frequency. These oscillations are called sub harmonic oscillations. The generation of sub 

harmonic oscillations depends on the system parameters and initial conditions. It also depends 

on amplitude and frequency of the forcing functions. 

Limit cycles 

 The response (or output) of nonlinear systems may exhibit oscillations with fixed 

amplitude and frequency. These oscillations are called limit cycles. Consider a mechanical 

system with nonlinear damping and described by the equation,  

 M 𝑥̈ + B(1-x2) 𝑥̇ + K x  = 0 …5.3 

where M, B and K are positive constants. The equation (5.3) is called the van der pol equation. 

For small values of x the damping will be negative which implies the stored energy in the 

damper is fed to the system. For large values of x the damping is positive which implies that it 

absorbs energy from the system. Thus, it can be expected that such a system may exhibit a 

sustained oscillation. Since the system explained above is not a forced system, this oscillation 

is called a self-excited oscillation or zero input limit cycle. 

Frequency entrainment 

 The phenomena of frequency entrainment is observed 

in the frequency response of nonlinear systems that exhibit 

limit cycles. Consider a system capable of exhibiting a limit 

cycle of frequency . If a periodic input of frequency  is 

applied to this system then the phenomenon of beats is 

observed. [The beat is the oscillation whose frequency is the 

difference between 1 and . This frequency is also called 

beat frequency]. In linear systems, the beat frequency 

decreases indefinitely as  approaches 1. But in nonlinear 

systems, the frequency 1 of the limit cycle falls in 

synchronistically with or is entrained by the forcing 

frequency,  within a certain band of frequencies. This phenomenon is called frequency 

entrainment. The band of frequency in which entrainment occurs is called the zone of frequency 

entrainment. In this zone, the frequencies  and 1 coalsee and only one frequency,  exists. 

The relationship between |-1| and  is shown in Figure 5.4. 

Asynchronous quenching 

 In a nonlinear system that exhibits a limit cycle of frequency, 1 it is possible to quench 

(stop or eliminate) the limit cycle oscillation by forcing the system of a frequency q, where 

q and t are not related to each other. The phenomenon is called signal stabilization or 

asynchronous quenching.  

Figure 5.4 |-1| vs  curve 

showing the zone of frequency 

entrainment 
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INVESTIGATION OF NONLIEAR SYSTEMS 

 For analysis, the nonlinear system can be approximated by a linear model in the entire 

operating region. The nonlinear systems can be piecewise approximated. Each piece can be 

analysed by a differential equation governing the systems.  

 The two popular methods of analysing nonlinear systems are phase-plane method and 

describing function method. 

 The phase plane method is basically a graphical method from which information about 

transient behaviour and stability is easily obtained by constructing phase trajectories. This 

method is restricted to second order systems. Higher order systems may first be approximated 

by their second-order equivalent for investigation by the phase plane method.  

 The Describing function method is based on harmonic linearization. Here the input to 

nonlinear component is sinusoidal and depending upon the filtering properties of the linear part 

of the overall system, the output is adequately represented by the fundamental frequency term 

in fourier series. 

 The phase-plane and describing function methods use complimentary approximations. 

The phase-plane method retains, the nonlinearity as such and uses the second-order 

approximation of a higher-order linear part, while on the other hand, the describing function 

method retains the linear part and harmonically linearizes the nonlinearity.  

COMMON PHYSICAL NONLINEARITIES 

 The nonlinearites can be classified as incidental and intentional. 

 The incidental nonlinearities are those which are inherently present in the system. 

Common examples of incidental nonlinearities are saturation, dead-zone, coulomb friction, 

striction, backlash, etc.  

 The intentional nonlinarities are those which are deliberately inserted in the system  to 

modify system characteristics. The most common example of this type of nonlinearity is a 

relay. 

 SATURATION: In this type nonlinearity the output is proportional to input for a 

limited range of input signals. When the input exceeds this range, the output tends to become 

nearly constant as shown in Figure 5.5. 

 All devices when driven by sufficiently large 

signals, exhibit the phenomenon of saturation due to 

limitations of their physical capabilities. Saturation in the 

output of electronic, rotating and flow (hydraulic and 

pneumatic) amplifiers, speed and torque saturation in 

electric and hydraulic motors, saturation in the output of 

sensors for measuring position, velocity, temperature etc., 

are the well known examples.  

 DEADZONE: The deadzone is the region in which the output is zero for a given input. 

Many physical devices do not respond to small signals, i.e., if the input amplitude is less than 

Figure 5.5 Saturation 
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some small value, there will be no output. The region in which the output is zero is called 

deadzone. When the input is increased beyond this deadzone value, the output will be linear.  

               

Figure 5.6: Dead zone nonlinearity    Figure 5.7: Dead zone and saturation nonlinearity 

 The Figure 5.6 shows the deadzone nonlinearity and the Figure 5.7 shows the 

combination of dead zone and saturation nonlinearity. 

 FRICTION: Friction exists in any system when there is relative motion between 

contacting surfaces. The different types of friction are viscous friction, coulomb friction and 

stiction. 

 The viscous friction is linear in nature and the frictional force is directly proportional 

to relative velocity of the sliding surfaces. 

 The coulomb friction and stiction are nonlinear frictions. The coulomb friction offers a 

constant retarding force only when the motion is initiated. Due to interlocking of surface 

irregularities, more force is required to move an object from rest than to maintain it in motion. 

Hence the force of stiction is always greater than that of coulomb friction.  

 In actual practice, the stiction force gradually decreases with velocity and changes over 

to coulomb friction at reasonably low velocities as shown in Figure 5.10. The composite 

characteristics of various frictions are shown in Figure 5.8 to 5.11.  

 
   

Figure 5.8: Viscous 

friction 

Figure 5.9: Ideal 

stiction and 

coulomb friction 

Figure 5.10: Actual 

stiction and 

coulomb friction 

Figure 2.11: 

Stiction, coulomb 

friction and viscous 

friction 

 5.2 DESCRIBING FUNCTION 

 Consider the block diagram of the nonlinear system shown in Figure 5.12 

 

Figure 5.12: A nonlinear system 
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 In the above system the block G1(s) and G2(s) represents linear elements and the block 

N represent nonlinear element. 

 Let x = X sin t be the input to nonlinear element. Now the output y of the nonlinear 

element will be in general a nonsinusoidal periodic function. The fourier series representation 

of the output y can be expressed as (by assuming that the nonlinearity does not generate sub 

harmonics).  

 y = A0 + A 1 sin t + B1 cos t + A2 sin 2t + B2 cos 2t +…. …5.4 

 If the nonlinearity is symmetrical the average value of y is zero and hence the output y 

is given by 

 y = A1 sin t + B1 cos t + A2 sin 2t + B2 cos 2t +…. …5.5 

 In the absence of an external input (i.e., when r = 0) the output y of the nonlinearity N 

is feedback to its input through the linear element G2(s) and G1(s) in tandem. If G1(s) G2(s) has 

low-pass characteristics, then all the harmonics of y are filtered, so that the input x to the 

nonlinear element N is mainly contributed by the fundamental component of y and hence x 

remains sinusoidal. Under such conditions the harmonics of the output are neglected and the 

fundamental components of y alone considered for the purpose of analysis.  

  y = y1 = A1  sin t + B1 cos t = Y1 < 1 = Y1 sin (t + 1) …5.6 

  …5.7 

  …5.8 

 Y1  =  Amplitude of the fundamental harmonic component of the output. 

 1 =  Phase shift of the fundamental harmonic component of the output with 

respect to the input.  

 The coefficient A1 and B1 of the fourier series are given by 

  …5.9 

  …5.10 

 When the input, x to the nonlinearity is sinusoidal (i.e., x = X sin t) the describing 

function of the nonlinearity is defined as,  

  …5.11 

 The nonlinear element N in the system can be replaced by the describing function as 

shown in Figure 5.13. 
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Figure 5.13: Nonlinear system with non linearity replaced by describing function  

 If the nonlinearity is replaced by a describing function then all linear theory frequency 

domain technique can be used for the analysis of the system. The describing functions are used 

only for stability analysis and it is not directly applied to the optimization of system design. 

The describing function is a frequency domain approach and no general correlation is possible 

between time and frequency responses.  

5.3 DESCRIBING FUNCTION OF DEAD-ZONE AND SATURATION 

NONLINEARITY 

 The input and the output relationship of nonlinearity with dead-zone and saturation is 

shown in Figure 5.14. 

 The dead-zone region is from x = -D/2 to +D/2 and in this region the output is zero. 

The input-output relation is linear for x =  D/2 to  S and when the input, x > S, the output 

reaches a saturated value of K (S-D/2). 

 The output equation for the linear region can be obtained from the general equation of 

straight line as shown below. 

 The equation of straight lines is, y = mx + c …5.12 

 In the linear region, when x = D/2, y = 0. On substituting this values of x and y in equ 

(5.12) we get, 

 0 = mD/2 + c  …5.13 

 In the linear region, when x = S, 

y = K(S-D/2). On substituting thi s 

values of x and y in equ (5.12) we get,  

K (S-D/2) = mS + c ….5.14 

Equ (5.14) – equ (5.15) yields,  

  

  …5.15 

  …5.16 

 From equations (5.12), (5.15) and (5.16) the output equation for the linear region can 

be written as,   

Figure 5.14 Input-

output characteristic of 

dead-zone and 

saturation 
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  …2.17 

 The response or output of the non linearity when the input is sinusoidal signal  

(x = X sin t) is shown in Figure 5.15. 

 The input x is sinusoidal  x = X sin t …2.18 

 Where X = Maximum value of input. 

  

 

 The output y of the nonlinearity can be divided five regions in a period of π and the 

output equation for the five regions are given below. 

  

Let Y1 = Amplitude of the fundamental harmonic component of the output. 

 1 = Phase shift of the fundamental harmonic component of the output with 

respect to the input  

 The describing function is given by 

  

 

Page No. 154 

 

 

 

Figure 5.15: Sinusoidal 

response of nonlinearity 

with dead zone and 

saturation 
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 On substituting for D/2 and S from equations (5.26) and (5.27) in equ (5.25) we get,  

  

  …5.28 

  …5.29 

  …5.30 

 The describing function KN (X, ) = 
𝑌1

𝑋
 1 …5.31 

 On substituting for Y1 and 1 from equations (5.29) and (5.30) in equ (5.31) we get 

  …5.32 

 Depending on the maximum value of input, X the describing function of equ (5.32) can 

be written as,  

    ..5.33 

  ..5.34 

  ..5.35 

5.4 DESCRIBING FUNCTION OF SATURATION NONLINARITY 

 The input-output relationship of saturation nonlinearity is shown in Figure 5.16. 

 The input-output relation is linear for x = 0 to S. When the input x > S, the output 

reaches a saturated value of KS. 

 The response of the nonlinearity when the input is sinusoidal signal (x = X sin t) is 

shown in Figure 5.17. 
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 The input x is sinusoidal, 

 x = X sin t  … (5.36) 

Where X is the maximum value of input.  

 In Figure (5.17), when t = ß, x = S. 

 Hence equ (5.36) can be written as, S = X sin ß 

 …5.37  

  …5.38 

 The output y of the nonlinearity can be divided into three regions in a period of π. The 

output equation for the three regions are given by equ (5.39).  

  …5.39 

 

Let Y1 =  Amplitude of the fundamental harmonic component of the output. 

  =  Phase shift of the fundamental harmonic component of the output with 

respect to the input. 

 The describing function is given by, KN(X,) =  (Y1 / X)  1 

 where Y1 = √𝐴1
2 + 𝐵1

2  and 1 = tan-1 (B1 / A1) 

 The output y has half wave and quarter wave symmetries 

Figure 5.17 Sinusoidal response of 

saturation nonlinearity 

Figure 5.16 Input-output 

characteristics of saturation 

nonlinearity 
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  …2.40 

 The output, y is given by two different expressions in the period 0 to π/2. Hence equ 

(5.40) can be written as shown in equ (5.41). 

  …2.41 

 On substituting the values of y from equ (5.39) in equ (5.41) we get,  

  

 On substituting x = X sin  t, we get 

 

  ..5.42 

 On substituting for S, (i.e., S = X sin ß) from equ (5.37) in equ (5.42) we get, 

  …5.43 

  …5.44 
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  ..5.45 

  …5.46 

 Using equations (5.44) and (5.45), the describing function of equ (5.46) can be written 

as,  

   …5.47 

 Depending on the maximum value of input X, the describing function can be written 

as,  

  …5.48 

  ..5.49 

 The equation (5.49) can be expressed in aother form as shown below. 

  …5.50 

  On constructing right angle triangle with unity hypotenuse is 

shown in Figure 5.18, cos ß can be evaluated. From Figure 5.28 we get. 

  …5.51 

 In the describing function of equ (5.49), substitute for ß, sin ßnd cos ß from equations 

(5.38),  (5.50), and (5.51) 

  ..5.52 

5.5 DESCRIBING FUNCTION OF DEAD-ZONE NONLINEARITY 

 The input-output relationship of dead-zone nonlinearity is shown in Figure 5.19. The 

output is zero, when the input is less than D/2. The input-output relationship is linear when the 

input is less than D/2. The input-output relationship is linear when the input is greater than D/2. 

The response of the nonlinearity when input is sinusoidal signal (x = X sin t) is shown in 

Figure 5.20. 
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 The input x is sinusoidal, x = X sin t …5.53 

Where X is the maximum value of input 

 In Figure 5.20, when t = α, x = D/2 

 Hence when t = α, the equ (5.53) can be written as, D/2 = X sin α 

   …5.55 

  ..5.56 

 The output y can be divided into three regions in a period of π. The output equation for 

the three regions are given by equ (5.27).  

  …5.57 

Let Y1 =  Amplitude of the fundamental harmonic component of the output. 

 1 =  Phase shift of the fundamental harmonic component of the output with 

respect to the input. 

Figure 5.20 Sinusoidal response of 

dead-zone nonlinearity 

Figure 5.19 Input-output 

characteristic of dead-zone 

nonlinearity 
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 The describing function is given by, KN(X,) =  (Y1 / X)  1 

 where Y1 = √𝐴1
2 + 𝐵1

2  and 1 = tan-1 (B1 / A1) 

 The output y has half wave and quarter wave symmetries 

  ...5.58 

 Since the output, y is zero in the range, 0 ≤ t ≤ α, the limits on integration in equ (5.58) 

can be changed to, α to π/2 instead of, 0 to π/2.  

  …5.59 

 Put x = X sin t in equ (5.59) 

 

  …5.60 

 From equ (5.55) we get, sin α = 
𝐷

2𝑋
   D = 2 sin α …5.61 

 On substituting for D from equ (5.61) in equ (5.60) we get, 
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  …5.65 

 Using equations (5.63) and (5.64) the describing function of equ (5.65) can be written 

as,  

  …5.66 

 Depending on the maximum value of input X, the describing function can be written 

as,  

  ...5.67 

  …5.68 

 The equation (5.68) can be expressed in another form as shown 

below. 

 From equ (5.55), we get, sin α = D/2 X 

 On constructing right able triangle with unity  hypotenuse as shown in Fig. 5.21 cos α  

can be evaluated.  

 From Figure 5.21, we get,  

  …569 

 In the describing function of equ (5.68), substitute fro α, sin α and cos α from equations 

(5.26) (5.55) and (5.69) respectively.   

  …5.70 
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5.6 DESCRIBING FUNCTION OF RELAY WITH DEAD-ZONE AND 

HYSTERESIS 

 The input and the output relationship of a relay 

with dead-zone and hysteresis shown in Figure 5.22. 

 Due to dead-zone the relay will respond only 

after a definite value of input. Due to hysteresis the 

output follows a different paths for increasing and 

decreasing values of input. When the input x is 

increased from zero, the output follows the path ABCD 

and when the input is decreased from a maximum 

value, the output follows the path DCEA. 

 For increasing values of input, the output is zero 

when x<(D/2) and the output is M when x>(D/2). For decreasing values of input the output is 

M when x>(D/2-H) and output is zero when x < (D/2-H). 

 The response or output of the relay when the input is sinusoidal signal (x=X sint) is 

shown in fig 5.23. 

 

 The input x is sinusoidal, x = X sin rt …5.71 

 Where X = maximum value of input.  

 In fig. 5.23, when t = α, x = D/2 

 Hence equ (5.71) can be writte as D /2 = sin α 

  sin α = D / 2X … 5. 72 

 and α = sib-1 D / 2X  …5.73 

Figure 5.22 Input output 

characteristics of relay with 

dead-zone and hysteresis 

Figure 5.23: Sinusoidal response of relay 

with dead-zone and hysteresis 
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 In Figure 5.23, when t = π – ß, x = D/2) – H 

 Hence eqn (5.71) an be written as 

  D / 2 – H = X sin (π – ß) 

  D / 2 – H = X sin ß 

  …5.74 

  …5.75 

 The output can be divided into five regions in a period of 2 and the output equation 

for thr five regions are given by equ(5.76). 

  …5.76 

Let Y1 =  Amplitude of the fundamental harmonic component of the output. 

 1 =  Phase shift of the fundamental harmonic component of the output with 

respect to the input. 

 The describing function is given by, KN(X,) =  (Y1 / X)  1 

 where Y1 = √𝐴1
2 + 𝐵1

2  and 1 = tan-1 (B1 / A1) 

  

  

 From equ(5.72) we get, sin  = D/2X 

 On constructing right angle triangle with unity hypotenuse as shown in fig 5.24, cos  

can be evaluated 

  …5.78 

Figure 5.24 
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 From equ (5.74) we get sin ß = (
𝐷

2𝑋
−

𝐻

𝑋
). 

 On constructing right angle triangle with unity hypotenuse as shown in fig 5.25, cos  

can be evaluated 

  …5.79 

 On substituting for cos  and cos  from equations (5.78) and (5.79) in equ(5.77) we 

get, 

  ..5.80 

  

 On substituting for sin α and sin ß from equ (2.72) and equ (2.74) we get, 

  …5.81 

  

  …5.82 

   …5.83 

 The describing function of the relay with dead-zone and hysteresis is given by 

  …5.84 

 Where Y1 is given by equ (5.82) and 1 is given by equ(5.83). 

 From the equ(5.84), the describing functions of the following three cases of relay can 

be obtained. 

Figure 5.25 
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 1. Ideal relay 

 2. Relay with dead-zone 

 3. Relay with hysteresis 

1. IDEAL RELAY 

 In this case D = H = 0,  

 On substituting D = H = 0, in equ (5.82) and 

equ (5.83) we get, 

 Y1 = 
2𝑀

𝜋
  and 1 = 0 

 Hence the describing function of the ideal relay is given by, 

 KN(X,) = = 
𝑌1

𝑥
   1 =  = 

2𝑀

𝜋𝑋
 …5.85 

2. RELAY WITH DEAD-ZONE 

 In this case H = 0 

 On substituting H = 0, in equ (5.82) and (5.83) we get, 

  

 Hence the describing function of relay with dead-zone is given by 

 …5.86 

3. RELAY WITH HYSTERESIS 

 In this case D = H 

 On substituting D  = H in equ (5.82) we get,  

  

Figure 5.27 Input-Output 

characteristics of relay 

with dead-zone 

Figure 5.28 Input – output 

characteristics of relay with 

hysteresis 

Figure 5.26 : Input – Output 

characteristics of ideal relay 
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  …5.87 

 On substituting D = H in equ (5.83) we get,  

  …5.88 

 Using the numerator and denominator of equ (5.88) as two sides, we can construct a 

right angle triangle as shown in Figure 5.29. 

 

 From Figure 5.29 we get,  

  …5.89

  

 Using equations (5.87) and (5.89), the describing function of relay with hysteresis can 

be written as,  

  …5.90 

 

Figure 5.29 
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5.7 DESCRIBING FUNCTION OF BACKLASH NONLINEARITY 

 The input-output relationship of Backlash nonlinearity is shown in fig 5.30. 

 The response of the nonlinearity when the input is 

sinusoidal signal (x=X sint) is shown in fig 5.31.  

 In Fig 5.31, when t = (π-ß),  x = X – b 

 On substituting this value of x and t in the input 

signal, x = X sin t we get  

 X – b = X sin (π – ß) 

 X – b = X sin ß 

  …5.91 

  …5.92 

 The output can be divided into five regions in a period of 2 and the output equation 

for the five regions are given by equ(5.93). 

 

 ….5.93 

Let Y1 =  Amplitude of the fundamental harmonic component of the output. 

 1 =  Phase shift of the fundamental harmonic component of the output with 

respect to the input. 

Figure 5.30: Input-

Output characteristic of 

backlash nonlinearity 

Figure 5.31 Sinusoidal response of 

backlash nonlinearity 
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 The describing function is given by, KN(X,) =  (Y1 / X)  1 

 where Y1 = √𝐴1
2 + 𝐵1

2  and 1 = tan-1 (B1 / A1) 

  …5.94 

 The output, y is given by three different equations in range 0 to π, hence equ (5.94) can 

be written as 

  …5.95 

 Put x = X sin t in equ (5.95) 

  

   

  …5.96 

   

  

In equ (5.96) 
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  …5.97 

 On substituting of r(1-b/X) from equ (5.91) in equ (5.97) we get, 

  

  …5.98 

  …5.99 

 The output, y is given by three different equations in the range 0 to π, hence equ (5.99) 

can be expressed as,  

  …5.100 

 Put = X sin t in equ (5.100) 
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  …5.101 

 Since (1-b/X) = sin ß and cos 2ß = (1-2 sin2ß), the equ (5.98) can be written as 

   

   …5.102 

Page No. 172 

 The Nyquist stability criterion can also be extended to the stability analysis of nonlinear 

systems. According to the Nyquist stability criterion the system will exhibit sustained 

oscillations or limit cycles when, 

 KN G(j) = -1  …5.108 

 The equation (5.108) implies that the sustained oscillations or limit cycles will occur if 

KN G(j) locus pass through the critical point, -1+j0, in the complex plane.  
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 The equation (5.108) can be modified as shown below 

 G(j) = - 1/ KN …5.109 

 The equation (5.109) implies that the critical point, -1 + j0 becomes the critical locus 

which is the locus of -1/KN. Hence the intersection point of G(j) locus and -1/KN locus will 

give the amplitude and frequency of limit cycles. 

 In the stability analysis, let us assume that the linear part of the system is stable. To 

determine the stability of the system due to nonlinearity sketch the -1/KN locus and G(j) locus 

(polar plot of G(j)) in complex plane. (Use either a polar graph sheet or ordinary graph sheet) 

and from the sketches the folowing conclusions can be obtained. 

1.  If the -1/KN locus is not enclosed by the G(j) locus then the system is stable or there 

is no limit cycle at steady state. 

 2. If the -1/KN locus is enclosed by the G(j) locus then the system is unstable. 

3.  If the -1/KN locus and the G(j) locus intersect, then the system output may exibit a 

sustained oscillation or a limit cycle. The amplitude of the limit cycle is given by the 

value of -1/KN locus at the intersection point. The frequency of the limit cycle is given 

by the frequency of G(j) corresponding to the intersection point. 

CONCEPT OF ENCLOSURE 

 In a complex plane the -1/KN locus is said to be enclosed by G(j) locus if it lies in the 

region to the right of an observer travelling through G(j) locus in the direction of increasing 

, as shown in fig 5.33. 

 In a complex plane the -1/KN locus is not enclosed by G(j) locus if it lies in the region 

to the left of an observer travelling through G(j) locus in the direction of increasing , as 

shown in fig 5.34. 

 If the -1/KN locus and G(j) locus intersect as shown in fig 5.35, then for an observer 

travelling through G(j) locus in the direction of increasing , the region on the right is 

unstable region and the region on the left is stable region. 

 
  

Figure 5.33 Figure 

showing enclosure of – 

1/KN locus by G(j) locus 

Figure 5.34 Figure 

showing non enclosure of – 

1/KN locus by G(j) locus 

Figure 5.35 Figure 

showing intersection of – 

1/KN locus by G(j) locus 
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STABLE AND UNSTABLE LIMIT CYCLES 

 The -1/KN locus may intersect G(j) locus at one or more points. There exists a limit 

cycle at every intersecting point. These limit cycles can be either stable or unstable limit cycles, 

as shown in fig 5.36. 

 If -1/KN locus travels in unstable region and it intersect G(j) locus to enter stable 

region then the limit cycle corresponding to that intersection point is stable limit cycle. 

  If -1/KN locus travels in stable region and it intersect G(j) locus to enter unstable 

region then the limit cycle corresponding to that intersection point is unstable limit cycle. 

 

Note: The concept of enclosure can be extended to db-phase angle plane (i.e. to Nichols plot) 

and it is same as that of complex plane. 

5.9  REVIEW OF POLAR PLOT AND NICHOLS PLOT 

POLAR PLOT 

 The polar plot of a sinusoidal transfer function, G(j) is a plot 

of the magnitude of G(j) versus the phase angle of G(j) on polar 

coordinates as  is varied from zero to infinity. Thus the polar pot is 

the locus of vector |G(j)|  G(j) as  is varied from zero to infinity. 

The polar plot is also called Nyquist plot. 

 The polar plot is usually plotted on a polar graph sheet. The polar graph sheet has 

concentric circles and radial lines. The circles represent the magnitude and the radial lines 

represent the phases angles. Each point on the polar graph has a magnitude and phase angle. 

The magnitude of a point is given by the value of the circle passing through that point and the 

phase angle is given by the radial line passing through that point. In polar graph sheet a positive 

phase angle is measured in anticlockwise from the reference axis (0o) and a negative angle is 

measured clockwise from the reference axis (0o). 

 Alternatively, if G(j) can be expressed in rectangular coordinates as, 

  G(j) = GR(j) + jG1(j) 

 Where, GR(j) = Real part of G(j) 

 and G1(j) = Imaginary part of G(j) 

Figure 5.36 Stable and unstable limit cycles 

Figure 5.37 

Polar graph 
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 Then the polar plot can be plotted in ordinary graph sheet between GR(j) and G1(j) 

as  is varied from 0 to  ∞. 

To plot the polar plot, first compute the magnitude and phase of G(j) for various 

values of  and tabulate them. Usually the chicce of frquencies are corner frequencies and 

frequencies around corner frequencies. Choose proper scale the magnitude circles. Fix all the 

points on polar graph sheet and join the points by smooth curve. Write the frequency 

corresponding to each point of the plot.  

To plot the polar plot on ordinary graph sheet, compute the magnitude and phase for 

various values of . Then convert the polar coordinates to rectangular coordinates using  

P → R convertion (polar to rectangular convertion) in the calculator. Sketch the polar plot using 

rectangular coordinates. 

For minimum phase transfer function with onlt polea, the type number of the system 

determines at what quadrant the polat plot starts and the order of the system determines at 

what quadraqnt the polat plot ends. 

Note:  The minimum phase systems are systems with all poles and zeros on the left half of s-

plane  

 

Figure 5.38 

Start of polar 

plot 

 

Figure 5.39 End 

of polar plot 

 

NICHOLS PLOT 

The Nichols plot is a frequency response plot of the open loop transfer function of a 

system. The Nichols plot is a graph between magnitude of G(j) in db and the phase of G(j) 

in degree, plotted on a ordinary graph sheet. 

To plot the Nichols plot, first compute the magnitude of G(j) in db and phase of G(j) 

in deg for various values of  and tabulate them. Usually the choice of frequencies are corner 

frequencies. Choose appropriate scales for magnitude on y-axis and phase on x-axis. Fix all the 

points on ordinary graph sheet and join the points by smooth curve. Write the frequency 

corresponding to each point of the plot. 

In another method, first the Bode plot of G(j) is sketched. From the Bode plot the 

magnitude and phase for various values of frequency,  are noted and tabulated. Using these 

values the Nichols plot is sketched as explained earlier. 

In a system if the zero frequency gain K is varied then the magnitude of the transfer 

function alone will vary and there will not be any change in phase. This results in vertical shift 

of Nichols plot up or down. The constant K adds 20log K to every point of the plot. If 20log K 

is positive then the plot shifts upwards and if it is negative the plot shifts downwards. 
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EXAMPLE 5.2 

 A servo system used for positioning a load has backlash characteristics as shown in Fig 

5.2.1. The block diagram of the system is shown in Fig 5.2.2. The magnitude and phase of the 

describing function of backlash nonlinearity for various values of b/X are listed in Table 5.2.1, 

where X = Maximum value of input sinusoidal signal to the nonlinearity. 

 
 

Figure 5.2.1 Figure 5.2.2 

Table 5.2.1 

b/X 0 0.2 0.4 1.0 1.4 1.6 1. 1.9 2.0 

|KN| 1 0.954 0.882 0.592 0.367 0.248 0.125 0.064 0 

KN 0 -6.7o -13.4o -32.5o -46.6o -55.2o -66o -69.8o -90o 

 

 Show that the system is table if K = 1. Also show that limit cycle exists when K = 2. 

Investigate the stability of these limit cycles and determine their frequency and b/X. 

SOLUTION 

 The describing function analysis of the system can be carried using either polar plot or 

using Nichols plot. 

METHOD 1: USING PLOR PLOT 

Polar plot of G(j) when K = 1 

  

The magnitude and phase of G(j) are calculated for various values of  and tabulated 

in Table 5.2.2. Using poloar to rectangular conversion the polar coordinates are converted 

rectangular coordinates and listed in Table 5.2.2. The polar plot of G(j) when K = 1 drawn in 

an ordinary graph sheet, as shown in Figure 5.2.3. 
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Figure 5.2.3 Polar plot of G(j) and – 1/KN 

Table 5.2.2 

 rad/sec 0.1 0.15 0.2 0.25 0.5 0.75 1.0 1.25 

|G(j)| 9.94 6.57 4.88 3.85 1.74 1.0 0.63 0.42 

G(j) deg. -99 -103 -107 -111 -131 -147 -162 -173 

GR(j) -1.6 -1.5 -1.4 -1.4 -1.1 -0.8 -0.6 -0.4 

G1(j) -9.8 -6.4 -4.7 -3.6 -1.3 -0.5 -0.2 -0.05 
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Polar plot of G(j) when K = 2 

 The magnitude of G(j) when K = 2 is given by 

  

 (The phase of G(j) will not change due to a change in the value of K) 

 The magnitude and phase of G(j) and the real part and imaginary part of G(j) K = 2 

are calculated for various values of  and listed in Table 5.2.3. The polar plot of 0 when  

K = 2, is drawn on the same graph sheet using the same scales as shown in Figure. 

Table 5.2.3 

 rad/sec 0.2 0.25 0.3 0.5 0.75 1.0 1.25 

|G(j)| 9.76 7.7 6.31 3.48 2.0 1.26 0.84 

G(j) deg. -107 -111 -115 -1321 -147 -162 -173 

GR(j) -2.9 -2.8 -2.7 -2.3 -1.7 -1.2 -0.8 

G1(j) -9.3 -7.2 -5.7 -2.6 -1.1 -0.4 -0.1 

 

Polar plot of – 1/KN 

 The function – 1/KN can be written as,  

  

 The values of |KN| and KN are given in the problem, in Table 5.2.1., for various values 

of b/X. Using the values if Table 5.2.1, the |-1/KN| and (-1/KN) are calculated for various 

values of b/X and listed in Table 5.2.4. Then the real part and imaginary part of -1/KN are 

calculated using polar to rectangular convertion and listed in Table 5.2.4. The locus of -1/KN 

is sketched using rectangular coordinates in the same graph sheet as shown in Figure 5.2.3. 

Table 5.2.4 

b/X 0 0.2 0.4 1.0 1.4 1.6 1.8 1.9 2.0 

|KN| 1 0.954 0.882 0.592 0.367 0.248 0.125 0.064 0 

KN 0 -6.7o -13.4o -32.5o -46.6o -55.2o -66o -69.8o -90o 

|-1/KN| 1 1.05 1.13 1.69 2.72 4.03 8.0 15.63 ∞ 

(-1/KN) -180o -173o -166o -148o -133o -125o -114o -110o -90o 

Real part of 

-1/K 
-1.0 -1.04 -1.1 -1.4 -1.9 -2.3 -3.3 -5.3 0 

Ima. Part of 

1/KN 
0 -0.1 -0.3 -0.9 -2.0 -3.3 -7.3 -14.7 ∞ 



215 

STABILITY ANALYSIS 

 Case (i) when K = 1 

 When K = 1, G(j) locus does not enclose -1/KN locus, hence the system is stable. 

Case (ii) K = 2 

 When K = 2, the G(j) locus, intersects -1/KN locus at two points. From the polar plots, 

it is observed that at one intersection point, unstable limit cycle exits and at another intersection 

point stable limit cycle exist. 

 From Figure 5.2.3, Coordinates corresponding to unstable limit cycle = - 2.6 – j4.4 = 

5.11 -120o. 

 Let 11  = Frequency corresponding to unstable limit cycle. 

 And b/X1 = The value of b/X corresponding to unstable limit cycle 

 Now at  = 11 G(j) = 5.11 -120o 

 At  = 11 G(j) = -120o 

 By equating the expression for G(j) to -120o, the frequency 11 can be determined. 

 We know that, G(j) = -90o –tan-1  - tan-1 0.5 

 At  = 11 -90o – tan-1 11 –tan-1 0.511 = -120o 

 -90o –tan-1 11 + tan-1 0.511 = 120o 

 tan-1 11 + tan-1 0.511 = 120o – 90o = 30o 

 On taking tan on either side we get, 

 tan (–tan-1 11 + tan-1 0.511) = tan 30o 
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 From the describing function of backlash nonlinearity we get, 

  

 From the describing function of backlash nonlinearity we get,  

  

 On substituting ((π/2) + ß1 + (1/2) sin 2ß1) = 0.577 cos2 ß1 and then squaring we get 

  

 We know that, ß = sin-1 (1 – b/X) 

  ß1 = sin-1 (1 – b / X1) (or) b / X1 = 1 – sin ß1 = 1 – sin 43.1o = 0.316. 

 From Figure 5.2.3,  

 Coordinates corresponding to stable limit cycle = - 1.1 – j0.3 = 1.14 -165o. 

 Let 12  = Frequency corresponding to stable limit cycle. 

 and b/X2 = The value of b/X corresponding to stable limit cycle 

 Now at  = 12 G(j) = 1.14 -165o 

 At  = 12 G(j) = -165o 

 By equating the expression for G(j) to -165o, the frequency 12 can be determined. 
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 We know that, G(j) = -90o –tan-1  - tan-1 0.5 

 At  = 12 -90o – tan-1 12 –tan-1 0.511 = -165o 

 -90o –tan-1 12 + tan-1 0.512 = 165o – 90o = 75o 

 On taking tan on either side we get, 

 tan (tan-1 12 + tan-1 0.512) = tan 75o 

  

  

 On taking only positive root we get, 

  

 Hence at  = 12, |KN| = 0.877 and KN = -15o. 

 From the describing function of backlash nonlinearity we get, 
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 From the describing function of backlash nonlinearity we get, 

  

  

RESULT 

1. The unstable limit cycle exist when b/X = 0.316 and the frequency of oscillation is 

0.36 rad / sec. 

2. The stable limit cycle exist when b/X = 0.464 and the frequency of oscillation is 1.07 

rad /sec. 

METHOD 2 : USING NICHOLS PLOT 

Nichols plot of G(j) when K = 1 

 Given that, G(s) = K/s (1+s) (1+-0.5) 

 Let K = 1 and put s = j 

  

 The magnitude of G(j) in db and phase of G(j) are calculated for various values of 

 and tabulated in Table 5.2.5. The Nichols plot of  G(j) is sketched in an ordinary graph 

sheet as shown in Figure 5.2.4. 
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Figure 5.2.4 Nichols plot of G(j) and – 1/KN 

Table 5.2.5 

 rad/sec 0.1 0.15 0.2 0.25 0.5 0.75 1.0 1.25 

|G(j)| db 19.9 16.4 13.8 11.7 4.8 0 -4 -7.5 

G(j) deg -99 -103 -107 -111 -131 -147 -162 -173 
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Nichols plot of G(j) when K = 2 

 When K = 2, the magnitude of G(j) increases by an amount, 20 log K = 20 log2=6 

db. The phase of G(j) is not altered. 

 The increase in magnitude independent of frequency. Hence G(j) locus when K = 2 

is obtained by shifting the locus of G(j) when K = 1, by 6 db upwards as shown in Figure 

5.2.4. 

Nichols plot of – 1/KN 

 The function -1/KN can be written as,   

The magnitude and phase of the  describing function of backlash, KN is listed in the 

probelem in table  5.2.1 for various values of b/X. Using the values of |KN| and KN given in 

table 5.2.1, the values of |-1/KN| in db and (-1/KN) are calculated for various values of b/X 

and listed in table 5.2.6. Using these values the locus of -1/KN is sketched as shown in fig 5.2.4. 

Table 5.2.6 

b/X 0 0.2 0.4 1.0 1.4 1.6 1.8 1.9 2.0 

|KN| 1 0.954 0.882 0.592 0.367 0.248 0.125 0.064 0 

KN 0 -6.7o -13.4o -32.5o -46.6o -55.2o -66o -69.8o -90o 

|-1/KN| in db 0 0.4 1.0 4.6 8.7 12.1 18.1 23.9 ∞ 

(-1/KN) in deg -180o -173o -166o -148o -133o -125o -114o -110o -90o 

 

STABILITY ANALYSIS 

Case (i) when K = 1 

 From the Nichols plots it is observed that when K = 1, G(j) locus does not enclose -

1/KN locus. Hence the system is stable. 

Case (ii) when K = 2 

 From the Nichols plots it is observed that when K = 2, G(j) locus, intersects -1/KN 

locus at two points. At one intersection point unstable limit cycle exits and at another 

intersection point stable limit cycle exist. 

The coordinates corresonding to 

unstable limit cycle 
 

= (14.2 db, -120o) = 1014.2/20  -120o = 5.1  - 120o 

 

The coordinates corresonding to 

stable limit cycle 

 
= (11.2 db, -165o) = 101.1/20  -165o = 1.14  - 165o 

 

Note: It is observed that the coordinates corresponding to limit cycles are same as that 

obtained from polar plot, hence by an analysis similar to that of method-1. We can 

determine the frequency and b/X corresponding to limit cycles.  
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RESULT 

1. The unstable limit cycle exist when b/X = 0.316 and the frequency of oscillation is 

0.36 rad / sec. 

2. The stable limit cycle exist when b/X = 0.464 and the frequency of oscillation is 1.07 

rad /sec. 

EXAMPLE 5.3 

 Consider a unity feedback system shown in Figure 5.3.1 having a saturating amplifier 

with gain K. Determine the maximum value of K for the system to stay stable. What would be 

the frequency and nature of limit cycle for a gain of K = 2.59. 

 

SOLUTION  

 The stability of the system can analysed using polar plot. The gain K of the saturating 

amplifier can be attached to G(j) and amplifier is considered to be an unity gain amplifier. 

Polar plot of G(j) when K = 1 

  

The magnitude and phase of G(j) are calculated for various values of  and listed in 

Table 5.3.1. Using polar to rectangular conversion the real part and imaginary part of G(j) are 

determined and listded in Table 5.3.1. The polar plot of G(j) is sketched in an orindary graph 

sheet as shown in Figure 5.3.2. 

Table 5.3.1 

 rad/sec 0.4 0.5 0.6 0.8 1.0 1.2 

| G(j)| 1.299 0.868 0.614 0.346 0.216 0.145 

 G(j) -159o -167o -174o -184o -192o -199o 

GR(j) -1.21 -0.85 -0.61 -0.35 -0.21 -0.14 

GJ(j) -0.47 -0.2 -0.06 0.02 0.04 0.05 

Figure 5.3.1 
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Polar plot of G(j) when K = 2.5 

  

 The phase of G(j) is not altered by the term, K. The magnitude and phase of G(j) 

when K = 2.5 are calculated for various values of  and listed in Table 5.3.2. Using plot to 

rectangular conversion the real part and imaginary part of G(j) when K = 2.5 are determined 

and listed in Table 5.3.2. The polar plot of G(j) when K = 2.5 is sketched in the same graph 

sheet using the same scale,s as shown in Figure 5.3.2. 

Table 5.3.2 

 rad/sec 0.6 0.65 0.75 0.8 1.0 1.2 

| G(j)| 1.535 1.313 0.987 0.865 0.54 0.363 

 G(j) -174 -177 -182 -184 -192 -199 

GR(j) -1.53 -1.31 -0.99 -0.87 -0.53 -0.34 

GJ(j) -0.16 -0.07 0.03 0.06 0.11 0.12 

 

Polar plot of -1/KN 

 The function -1/KN can be expressed as, 

  

 We know that the describing functio (KN) of saturation nonlinearity is given by 

  

 where, ß = sin-1 (S/X) 

 and X = Maximum value of input sinusoidal signal 

 Here, K = 1 and S = 1 

  

 where, ß = sin-1 (1/X) 

 From the equation of -1/KN we can say that, the locus of -1/KN starts at 1 -180o (i.e., 

=1+j0) and travels along the negative real axis for increasing values of X as shown in Figure 

5.3.2. The locus of -1/KN is shown as a bold line on the negative real axis. 
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Figure 5.3.2 Polar plot of G(j) and – 1/KN 

STABILITY ANALYSIS 

Case (i) when K = 1 

 When K = 1, the G(j) locus does not encloses the -1/KN locus, hence the system is 

stable. 

Case (ii) when K = 2 

 When K is increased the G(j) locus sifts upards. For a paritulcar vlaue of K, the G(j) 

locus crosses the starting point (k.e., -1 +j0) of -1/KN locus and this value of K is the limiting 

value of K for stability. 

 If G(j) cross negative real axis at -1+j0, then G(j) = -1 = 1  -180o 
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  |G(j)| = 1 and  G(j) = - 180o 

 Let, 11 = Frequency when G(j) = -1 

 At = 11,  G(j) = -90o -  tan-1 0.5 11 – tan-1-411 = -180o 

 tan-1 0.5 11 + tan-1 411 = 90o 

 On taking tan on either side we get, 

 tan (tan-1 0.511 + tan-1 411) = tan 90o 

  

 For the above equation to be infinity, the denominator should be zero. 

  

 Therefore the system remains stable if, K < 2.25 

Case (iii) when K = 2.5 

 When K = 2.5 the G(j) locus intersects, -1/KN locus at -1.11 +j0. At the intersection 

point stable limit cycle exists. 

 Coorindate correspoinding to stable limit cycle = -1.11 +j0 =   -180o 

 Let, 12 = Frequency of stable limit cycle 

 At   = 12, G(j) = 1.11  -180o 

 At = 12,  G(j) = -90o -  tan-1 0.5 12 – tan-1 412 = -180o 

 tan-1 0.5 12 + tan-1 412 = 90o 

 On taking tan on either side we get, 

 tan (tan-1 0.512 + tan-1 412) = tan 90o 
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 For the above equation to be infinity, the denominator should be zero. 

  

  Frequency of limit cycle = 1√2 = 0.707 rad / sec 

RESULT 

1. When K = 1, the system is stable 

2. The system remains stable if K < 2.25 

3. When K = 2.5, a stable limit cycle occurs, whose frequency of oscillation is 0.707 

rad/sec. 

5.10 PHASE PLANE AND PHASE TRAJECTORIES 

 The phase plane method of analysis is a graphical method for the analysis of linear and 

nonlinear systems. The analysis is carried by constructing phase trajectories. It gives an idea 

about the transient behaviour and stability of the system. 

 The phase plan analysis is usually restricted to second order systems excited by step or 

ramp inputs. This analysis technique can be extended to a higher order system if it is 

approximated as a second order system. 

 The dynamics of control systems can be represented by differential equations. A second 

order linear system can be represented by the differential equation. 

  

where, x = One of the system variable (e.g. displacement in mechanical system, 

current in electrical system, etc.,) 

  = Damping ratio 

 n = Natural frequency of oscillation. 

 The state of the second order system represented by equ (5.11.0) can be described by 

choosing two state variables. 

Note:  Refer chapter 4 for state, state variables and state space modelling using phase 

variables. 

 In state space modelling using phase variables we choose one of the system variable 

and its derivatives as state variables. Let x1 and x2 be the state variables of the second order 

system. 

 Here x1 = x and x2 = dx/dt …5.111 

 On substituting the state variables in equ (5.110) we get, 

  …5.112 
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 The state equations of the system are obtained from equations (5.111) and (5.112). The 

state equations are, 

    …5.113 

  …5.114 

 For linear systems the state equations are a set of first order linear differential equations 

and solutions of state equations can be easily obtained by integration. But for nonlinear 

systems, the state equations are a set of first-order nonlinear differential equations and solving 

the nonlinear differential equations will not be an easy task. Hence for nonlinear systems the 

phase plane method of analysis will be an useful tool. 
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QUESTON BANK 

PART A 

 

1. Formulate the choice of state variables? 

2. Choose the basic elements used to construct the state diagram? 

3. Create the general form of state model of nth order system? 

4. The drawback of transfer function model compare with state space model. 

5. Compose the Phase variables of a linear time invariant system? 

6. Estimate how the modal matrix can be determined 

7. Construct  the bush or companion form of state model 

8. A system is characterized by the differential equation,  
𝑑2𝑦

𝑑𝑡2 + 10
𝑑𝑦

𝑑𝑡
+ 7𝑦 − 𝑢 = 0  

Formulate  its transfer function. 

9. Estimate the path to diagonalise a matrix 

10. Estimate the Eigen values and Eigen vector? 

11. Examine the solution of homogenous state solutions. 

12. List  the solution of non-homogenous state equations. 

13. What is resolvant matrix? 

14. List the different methods available for computing 𝑒𝐴𝑡? 

15. Enumerate the properties of state transition matrix. 

16. What is state transition matrix? 

17. Define the characteristic equation of a matrix. 

18. State cayley-Hamilton theorem. 

19. List the disadvantage of state transition matrix using matrix exponential? 

20. Illustrate the canonical form of state model? 

21. Predict the condition for observability by Gilbert’s method. 

22. Predict the condition for controllability by Kalman’s method. 

23. Define observability 

24. Define Controllability 

25. What is pole placement by state feedback? 

26. Write the Ackermann’s formula to find the state feedback gain matrix, k. 

27. Write the observable phase variable form of state model. 

28. Write the controllable phase variable form of state model. 

29. Correlate the duality between controllability and observability. 

30. What is state observer? 

31. Define periodic sampling? 

32. Explain Shanon’s sampling theorem. 

33. Define pulse transfer function? 

34. Define Zero order hold? 

35. Compare analog and digital controller. 

36. Discuss sampled data control systems? 

37. Express one sided Z-transform. 

38. Compute the infinite and finite geometric series sum formula. 

39. Classify the different methods available for inverse Z-transform? 

40. List the methods available for the stability analysis of sampled data control systems? 

41. Compare the different kind of nonlinearities .Give examples. 

42. List the properties of nonlinear systems. 

43. Explain jump resonance? 
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44. Explain how   limit cycles are formed? 

45. Define a describing function? 

46. List the different types of friction? 

47. Explain hysteresis and backlash? 

48. Classify the methods available for the analysis of nonlinear system? 

49. Explain the non linearites that are introduced in the systems? 

50. Trace the input-output characteristic of a relay with dead zone and hysteresis. 

 

PART- B 

 

1. Develop the state model of electro mechanical system whose speed can be controlled 

below the rated value.  

 

2. Construct  the canonical state model of the system, whose transfer function is 

  𝑇(𝑠) =
2(𝑠+5)

[(𝑠+2)(𝑠+3)(𝑠+4)]
 

3. A feedback system has a closed-loop transfer function 
𝑌(𝑠)

𝑈(𝑠)
=

10(𝑠+4)

𝑠(𝑠+1)(𝑠+3)
  Construct 

state model for this system and give block diagram for the state model. 

 

4. Develop the state model for Ward Leonard system 

5. A linear time invariant system is described by the following state model. 

[

𝑋1

𝑋2̇

𝑋3̇

̇

]=[
0 1 0
0 0 1

−6 −11 −6
] [

𝑋1

𝑋2

𝑋3

] + [
0
0
2

] [𝑈]       y=[1 0 0] [
𝑋1

𝑋2

𝑋3

] 

Formulate this state model into a canonical state model. 

 

6. A linear time invariant system is described by the following state model. 

[

𝑋1

𝑋2̇

𝑋3̇

̇

]=[
0 0 1

−2 −3 0
0 2 −3

] [
𝑋1

𝑋2

𝑋3

] + [
0
0
2

] [𝑈]       y=[1 0 0] [
𝑋1

𝑋2

𝑋3

] 

Modify this state model into a canonical state model. 

 

 

7. Given that    𝐴1 = [
𝜎 0
0 𝜎

]  ; 𝐴2 = [
0 𝜔

−𝜔 0
] ; 𝐴 = [

𝜎 𝜔
−𝜔 𝜎

]  Inspect 𝑒𝐴𝑡. 

 

8. A linear time invariant system is described by the following state model. 

[

𝑋1

𝑋2̇

𝑋3̇

̇

]=[
0 1 0
0 0 1

−6 −11 −6
] [

𝑋1

𝑋2

𝑋3

] + [
0
0
2

] [𝑈]       y=[1 0 0] [
𝑋1

𝑋2

𝑋3

] 

Compute the state transition matrix, 𝑒𝐴𝑡. 

 

9. Discover the solution of Non Homogeneous state equations. 
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10. For a system represented by state equation 𝑋̇(𝑡) = 𝐴𝑋(𝑡) The response is 

X(t)=[ 𝑒−2𝑡

−2𝑒−2𝑡
] when X(0)=[

1
−2

] and X(t)=[ 𝑒−𝑡

−𝑒−𝑡
] when X(0)=[

1
−1

] Examine the 

system matrix A and the state transition matrix. 

 

11. For  𝐴 = [
0 1

−2 −3
] Determine the state transition matrix 𝑒𝐴𝑡 using cayley- Hamilton 

theorem. 

 

12. A linear time invariant system is characterised by homogeneous state equation. 

[
𝑋1

𝑋2̇

̇
]=[

1 0
1 1

] [
𝑋1

𝑋2
] Compute the solution of the homogenous equation, assuming the 

initial state vector   𝑋0=[
1
0

]  

 

13. Consider a linear system described by the transfer function 
𝒀(𝒔)

𝑼(𝒔)
=

𝟏𝟎

𝒔(𝒔+𝟏)(𝒔+𝟐)
   Design a feedback controller with a state feedback so that the 

closed loop poles are placed at −2, −1 + 𝑗1, −1 − 𝑗1 

 

14. The state model of a system is given by 

[

𝑋1

𝑋2̇

𝑋3̇

̇

]=[
0 0 1

−2 −3 0
0 2 −3

] [
𝑋1

𝑋2

𝑋3

] + [
0
0
2

] [𝑈]       y=[1 0 0] [
𝑋1

𝑋2

𝑋3

] 

Formulate  the state model to observable phase variable form. 

 

15. Consider the system described by the state model 

 

16. 𝑋̇ = 𝐴𝑋, Y=CX   where 𝐴 = [
−1 1
1 −2

] ; 𝐶 = [1 0]  Design a full-order state 

observer. The desired eigen values for the observer matrix are µ1=-5, µ2=-5 

 

17. The state model of a system is given by 

[

𝑋1

𝑋2̇

𝑋3̇

̇

]=[
0 0 1

−2 −3 0
0 2 −3

] [
𝑋1

𝑋2

𝑋3

] + [
0
0
2

] [𝑈]       y=[1 0 0] [
𝑋1

𝑋2

𝑋3

] 

Formulate the state model to Controllable phase variable form. 

 

18. The state model of a system is given by 

[

𝑋1

𝑋2̇

𝑋3̇

̇

]=[
0 0 1

−2 −3 0
0 2 −3

] [
𝑋1

𝑋2

𝑋3

] + [
0
0
2

] [𝑈]       y=[1 0 0] [
𝑋1

𝑋2

𝑋3

] 

Test whether the system is completely controllable and observable by Kalman’s Test. 

 

19. A single-input system is described by the following state equation. 

[

𝑋1

𝑋2̇

𝑋3̇

̇

]=[
−1 0 1
1 −2 0
2 1 −3

] [
𝑋1

𝑋2

𝑋3

] + [
10
1
0

] [𝑈] 

Design a state feedback controller which will give closed-loop poles at -1+j2, -1-j2, -6 
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20. Estimate the analysis of sampling process in frequency domain. 

 

21. Determine the Z-transform for the following discrete sequences (a) f(k)={3,2,5,7}  (b) 

(1/2)k u(k) (c) f(k)= K2                     

 

22. Determine C(Z)/R(Z) for the given closed loop sampled data control systems. Assume 

the sampler to be of impulse type. 

 
 

23. Evaluate the difference equation 𝑐(𝑘 + 2) + 3𝑐(𝑘 + 1) + 2𝑐(𝑘) = 𝑢(𝑘) Given that 

c(0)=1; c(1)=-3; c(k)=0 for k<0 

 

24. Estimate the stability of sampled data control systems represented by the following 

characteristic equation 𝑧4 − 1.7𝑧3 + 1.04𝑧2 + 0.024 = 0 

 

25. Determine the one sided z-transform of the discrete sequence generated by 

mathematically sampling the following continuous time functions𝑓(𝑡) = cos  𝑤𝑡 

 

26. Assess the describing function. Derive the describing function of a relay with 

hysteresis and dead zone. 

 

27. (a). Explain Liapunov stability and instability theorems. 

(b). Determine the stability range for the gain ‘k’ of the system shown in the figure. 

 
 

28. (a).Determine Krasovski’s theorem of stability.  

(b). Consider the nonlinear system 

 

29. 𝑥1̇ = −𝑥1 − 𝑥22   ,𝑥2̇ = −𝑥2   Justify the stability of the equilibrium points using 

Krasovski’s method. 

 

30. Estimate the describing function of Dead-zone and saturation nonlinearity. 

 

31. Consider a unity feedback system as shown in figure below having saturating amplifier 

with gain k. Determine the maximum value of k for which the system to stay stable.

 
 

32. Estimate the describing function of saturation nonlinearity. 


