SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Power System Analysis - SEEA1501

UNIT 1 - POWER SYSTEM MODELLING

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

POWER SYSTEM MODELING

Need for system Analysis in planning and operation of power system - per phase analysis of symmetrical three - phase system. General aspects relating to power flow, short circuit and stability analysis - Modeling of generator, load, Shunt capacitor, trans mission line, shunt reactor for short circuit, power flow and stability studies - per unit representation - bus admittance by analytical method and direct inspection method

Introduction

- A Typical Power System Consists of a 3 - Phase grid to which all generating stations feeds energy and from which all substations taps energy
- A grid is eithe r 3- phase single circuit or 3 phase two circuit transmission line, running throughout the length and breadth of a country or a state

Components of Power System

Generators
Power Transformers
Transmission lines
Substation Transforme is
Distribution Transformers
Loads

Single Line Diagram

- It is a diagrammatic representation of power system in which the components are represented by their symbols and the interconnection between the m are shown by a single line diagram (even though the system is $\mathbf{3}$ phase system)
- The ratings and the impedances of the components are also marked on the single line diagram

SCHOOL OF ELECTRICAL AND ELECTRONICS
DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Per Unit Value

PerUnitValue $=\frac{\text { ActualValue }}{\text { BaseValue }}$
\%PerUnitValue $=\frac{\text { ActualValue }}{\text { BaseValue }} * 100$

Symbols used in Single line diagram

Machine or rotating armature	Power circuit breaker, -ロ(oil/gas filled)
Two-winding power transformer	Aircircuit breaker \sim
Three-winding power transformer	Three-phase, three-wire delta connection
Fuse - - -	Three-phase star, neutral ungrounded
Cufrent transformer - A	Three-phase star, neutral grounded
Potential transformer $\mathcal{-}$ or $-\mathfrak{z}$	Ammeter and voltmeter - (A)- - V -

Table: 1.1

Single line Diagram

- The various components of power system components of Power system like alternators, motors, transformers etc., have their voltage, power, current and impedance ratings in KV,KVA,KA and Ω

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

- The components or various sections of powe r system may operate at different voltage and power levels
- It will be convenient for analysis of powe r system if the voltage, powe r, current and impe dance ratings of components of power system are expressed with reference to a common value called base value

Figure: 1.1

- Hence the analysis purpose a base value is chosen for voltage, power, current and impe dance
- The power system requires the base values of four quantities and they are Voltage, Power, Curre nt and Impedance.
- Selection of base values for any two of the m determines the base values of the remaining two

Formula for finding base Value

Single Phase System

Let $\mathrm{KVA}_{\mathrm{b}}=$ Base KVA
$K_{b}=$ Base voltage in $K V$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$\mathrm{I}_{\mathrm{b}}=$ Base current in A
$\mathrm{Z}_{\mathrm{b}}=$ Base impedance in Ω
$I_{b}=\frac{K V A_{b}}{K V_{b}}$ inamps
$Z_{b}=\frac{K V_{b} * 1000}{I_{b}} i n \Omega$
$Z_{b}=\frac{K V_{b} * 1000}{\frac{K V A_{b}}{K V_{b}}}=\frac{\left(K V_{b}\right)^{2}}{\frac{K V A_{b}}{1000}}=\frac{\left(K V_{b}\right)^{2}}{M V A_{b}}$

- The same formula holds good for Three phase system also both for star connected and Delta connected
- In 3 phase system, the $K V_{b}$ is a line value and $M V A_{b}$ is a 3 phase MVA

The Impedance value is always expressed as Phase Value

1. A three Phase generator with rating $1000 \mathrm{KVA}, 33 \mathrm{KV}$ has its armature resistance and synchronous reactance as $20 \Omega /$ Phase and $70 \Omega /$ Phase. Calculate P.U. impedance of the generator.

Solution:

$$
K V_{b}=33 K V
$$

$\mathrm{KVA}_{\mathbf{b}}=\mathbf{1 0 0 0 K} \mathbf{K A}$

$$
Z_{b}=\frac{\left(K V_{b}\right)^{2}}{M V A_{b}}=\frac{(33)^{2}}{\frac{1000}{1000}}=1089 \Omega
$$

$\mathbf{Z}=(\mathbf{2 0}+\mathbf{j} 70) \mathbf{\Omega} /$ Phase

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\therefore Z_{p u}=\frac{\text { Actua } \lim \text { pedance }}{\text { Baseimpedance }}=\frac{Z}{Z_{b}}=\frac{20+j 70}{1089}=0.018+j 0.064 p . u
$$

2. A three phase, Δ / Y transformer with rating $100 \mathrm{KVA}, 11 \mathrm{KV} / 400 \mathrm{~V}$ has its primary and secondary leakage reactance as $12 \Omega /$ Phase and $0.05 \Omega /$ Phase respectively. Calculate the p.u reactance of the transformer.

Solution:

Case(i)

High Voltage winding (Primary) is chosen as base values.

$$
K V_{b}=11 \mathrm{KV}
$$

$\mathrm{KVA}_{b}=\mathbf{1 0 0 K V A}$

$$
Z_{b}=\frac{\left(K V_{b}\right)^{2}}{M V A_{b}}=\frac{(11)^{2}}{\frac{100}{1000}}=1210 \Omega
$$

Transforme r line voltage ratio,

$$
K=\frac{400}{11000}=0.0364
$$

Total leakage reactance referred to primary
$X_{01}=X_{1}+X_{2}^{\prime}=X_{1}+\frac{X_{2}}{K^{2}}=12+\frac{0.05}{(0.0364)^{2}}=12+37.737=49.737 \Omega /$ Phase
$\mathrm{X}_{\mathrm{pu}}=$ Total leakage reactance/ Base impedance

$$
=\frac{X_{01}}{Z_{b}}=\frac{49,737}{1210}=0.0411 \text { p.u. }
$$

Case(ii)

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Low Voltage winding (Secondary) is chosen as base values.

$$
\begin{aligned}
& \mathbf{K V}_{\mathbf{b}}=\mathbf{4 0 0} / \mathbf{1 0 0 0}=\mathbf{0 . 4 K V} \\
& \mathbf{K V A}_{\mathbf{b}}=\mathbf{1 0 0 K} \mathbf{K A} \\
& Z_{b}=\frac{\left(K V_{b}\right)^{2}}{M V A_{b}}=\frac{(0.4)^{2}}{\frac{100}{1000}}=1.6 \Omega
\end{aligned}
$$

Transformer line voltage ratio,

$$
K=\frac{400}{11000}=0.0364
$$

Total leakage reactance referred to Secondary
$X_{02}=X_{1}^{\prime}+X_{2}=K^{2} X_{1}+X_{2}=(0.0364)^{2} * 12+0.05=0.0159+0.05=0.0659 \Omega /$ Phase
$X_{\mathrm{pu}}=$ Total leakage reactance/ Base impedance

$$
=\frac{X_{02}}{Z_{b}}=\frac{0.0659}{1.6}=0.0411 p . u .
$$

Note: 1. It is observed that P.U. reactance of a transformer referred to primary and secondary are same.
2. In three phase transforme r if the voltage ratio K is obtained using line values then using this value of K,

The phase impedance per phase of star side can be directly transferred to delta side or vice versa

Advantages of Per Unit Computations

1. Manufactures usually specify the impedance of a device or machine in percent or per unit on the base of the name plate rating Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

2. The Per Unit impedances of a machines of the same type and widely different rating usually lie within a narrow range, although the ohmic Values differ widely for machines of different ratings
3. The Per Unit impedance of circuit element connected by transformers expressed on a proper base will be same if it is referred to either side of a transformer
4. The way in which the transformers are connected in a 3 phase circuits (Y/ Δ) does not affect the per unit impedances of the equivalent circuit, although the transformer connection does determine the relation between the voltage bases on the two sides of the transformer

Equivalent Circuits of Components of Power System

Equivalent Circuit of Generator

Figure 1.2

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Single phase equivalent circuit
Figure 1.3

Equivalent Circuit of Synchronous motor

Figure 1.4

SCHOOL OF ELECTRICAL AND ELECTRONICS
DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Single phase equivalent circuit
Figure 1.5

Equivalent Circuit of Transformer

Figure 1.6
$K=\frac{E_{2}}{E_{1}}=\frac{N_{2}}{N_{1}}=\frac{V_{2}}{V_{1}}=\frac{I_{1}}{I_{2}}$
$R_{01}=R_{1}+R_{2}^{\prime}=R_{1}+\frac{R_{2}}{K^{2}}$
$X_{01}=X_{1}+X_{2}^{\prime}=X_{1}+\frac{X_{2}}{K^{2}}$

SCHOOL OF ELECTRICAL AND ELECTRONICS
 DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Equivalent Circuit of Induction Motor

Figure 1.7
S=Slip
$R_{r}^{\prime}\left(\frac{1}{S}-1\right)=$ Resistance representing load
$R=R_{s}+R_{r}^{\prime}=$ Equivalent resistance referred to stator
$X=X_{s}+X_{r}^{\prime}=$ Equivalent reactance referred to stator
$R_{s,} X_{s} \quad=$ resistance and reactance of Stator
$R_{r}^{\prime} X_{r}^{\prime} \quad=$ resistance and reactance of rotor
Equivalent Circuit of Transmission line

Figure : 1.8 Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS
DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure:1.9

Representation of resistive and reactive loads

Single Phase Load

Constant Power representation

$$
S=P+j Q
$$

Constant Current representation

```
\(\mathrm{S}=\mathrm{VI}{ }^{*}\)
\(S^{*}=V^{*}\)
\(S^{*}=P-j Q\)
\(I=\frac{\sqrt{P^{2}+Q^{2}} \angle-\theta}{|V| \angle-\delta}=\frac{\sqrt{P^{2}+Q^{2}}}{|V|} \angle \delta-\theta=|I| \angle \delta-\theta\)
```

Where
$\theta=\tan ^{-1} \frac{Q}{P}$
Constant Impedance representation

$$
\begin{aligned}
Z & =\frac{|V|^{2}}{P-j Q} \\
Y & =\frac{P-j Q}{|V|^{2}}
\end{aligned}
$$ Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS
 DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Three Phase Load (Balanced Star Connected load)

$P=$ Three Phase active Power of star connected load in watts
Q= Three Phase reactive Power of star connected load in VARS
$\mathbf{V}, \mathbf{V}_{\mathbf{L}}=$ Phase \& line voltage of load respectively
$\mathbf{I}, \mathrm{I}_{\mathrm{L}}=$ Phase \& line current of load respectively

Constant Power representation

$$
S=P+j Q
$$

Constant Current representation

$I=I_{L}=\frac{\sqrt{P^{2}+Q^{2}}}{\sqrt{3}\left|V_{L}\right|} \angle \delta-\theta=\left|I_{L}\right| \angle \delta-\theta$
Where
$\theta=\tan ^{-1} \frac{Q}{P}$

Constant Impedance representation

$$
\begin{aligned}
Z & =\frac{\left|V_{L}\right|^{2}}{P-j Q} \\
Y & =\frac{P-j Q}{\left|V_{L}\right|^{2}}
\end{aligned}
$$

Three Phase Load (Balanced Delta Connected load)
Constant Power representation

$$
S=P+j Q
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Constant Current representation

$I_{L}=\frac{\sqrt{P^{2}+Q^{2}}}{\sqrt{3}\left|V_{L}\right|} \angle \delta-\theta=\left|I_{L}\right| \angle \delta-\theta$
Where
$\theta=\tan ^{-1} \frac{Q}{P}$
$I=\frac{\sqrt{P^{2}+Q^{2}}}{3\left|V_{L}\right|} \angle \delta-\theta=|I| \angle \delta-\theta$
Where
$\theta=\tan ^{-1} \frac{Q}{P}$

Constant Impedance representation

$$
\begin{aligned}
Z & =\frac{3\left|V_{L}\right|^{2}}{P-j Q} \\
Y & =\frac{P-j Q}{3\left|V_{L}\right|^{2}}
\end{aligned}
$$

3. A 50 Kw , three phase, Y connected load is fed by a 200 KVA transformer with voltage rating $11 \mathrm{KV} / 400 \mathrm{~V}$ through a feeder. The length of the feeder is 0.5 km and the impedance of the feeder is $0.1+j 0.2 \Omega / \mathrm{km}$. If the load p.f is 0.8 , Calculate the p.u impedance of the load and feeder.

Solution:

Choose secondary winding rating of transforme r as base values
$K v_{b}=400 / 1000=0.4 K V$
$\mathrm{KVA}_{\mathbf{b}}=\mathbf{2 0 0 K V A}$

$$
\begin{aligned}
& Z_{b}=\frac{\left(K V_{b}\right)^{2}}{M V A_{b}}=\frac{(0.4)^{2}}{\frac{200}{1000}}=0.8 \Omega \\
& Z_{\text {fed }}=(0.1+j 0.2) * 0.5=0.05+j 0.1 \Omega / \text { Phase } \\
& Z_{p u, f e d}=\frac{Z_{\text {fed }}}{Z_{b}}=\frac{0.05+j 0.1}{0.8}=0.0625+j 0.125 p . u
\end{aligned}
$$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
& \mathrm{P}=\mathbf{5 0 K w}, \mathrm{pf}=\cos \phi=\mathbf{0 . 8} \\
& \therefore \sin \phi=\sin \left(\cos ^{-1} \mathbf{0 . 8}\right)=\mathbf{0 . 6} \\
& Q=\frac{P}{\cos \phi} * \sin \phi=\frac{50}{0.8} * 0.6=37.5 K V A R
\end{aligned}
$$

Load impedance/Phase

$$
\begin{aligned}
& Z_{L}=\frac{|V|^{2}}{P-j Q}=\frac{400^{2}}{(50-j 37.5) * 10^{3}}=2.56 \angle 36.87^{\circ}=2.048+j 1.536 \mathrm{~W} / \text { Phase } \\
& Z_{L, P u}=\frac{Z_{L}}{Z_{b}}=\frac{2.048+j 1.536}{0.8}=2.56+j 1.92 \mathrm{pu}
\end{aligned}
$$

Impedance Diagram

- The impedance diagram is the equivalent circuit of Power system in which the various components of power system are represented by their approximate or simplified equivalent circuits
- It is used for load flow studies

Approximations made in Impedance Diagram

- The neutral reactances are neglected
- The shunt branches in equivalent circuit of Transformers \& induction motor are neglected

Reactance Diagram

- It is a simplified equivalent circuit of power system in which the various components are represented by their reactances
- It can be obtained from impe dance diagram if all the resistive components are neglected
- It is used for fault calculations

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Approximations made in Reactance Diagram

1. The neutral reactances are neglected
2. Shunt branches in the equivalent circuits of transformer are neglected
3. The resistances are neglected
4. All static loads and induction motors are neglected
5. The capacitance of the transmission lines are neglected

Single Line Diagram

Figure:1.10
Impedance Diagram

Figure 1.11

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Reactance Diagram

Figure:1.12
Equation for converting P.U impedance expressed in one base to another

$$
Z_{\text {pu,new }}=Z_{\text {pu,old }} *\left(\frac{K V_{b, o l d}}{K V_{b, \text { new }}}\right)^{2} *\left(\frac{M V A_{b, \text { new }}}{M V A_{b, \text { old }}}\right)
$$

Equation for transforming base KV on LV side to HV side of transformer \& Vice versa

Base KV on HT side = Base KV on LT side * (HT voltage rating / LT voltage rating)
Base KV on LT side = Base KV on HT side * (LT voltage rating / HT voltage rating)
4. A $300 \mathrm{MVA}, 20 \mathrm{KV}, 3 \phi$ generator has a subtransient reactance of 20%. The generator supplies 2 synchronous motors through a 64 Km transmission line having transforme is at both ends as as shown in Fig. In this, T_{1} is a 3ϕ transformer and T_{2} is made of 3 single phase transformer of rating $\mathbf{1 0 0} \mathrm{MVA}, 127 / 13.2 \mathrm{KV}, \mathbf{1 0 \%}$ reactance. Series reactance of the transmission line is $0.5 \Omega / \mathrm{Km}$. Draw the reactance diagram with all the reactances marked in p.u. Select the generator ratings as base values.

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure: 1.13
Solution:
MVA $_{\text {b,new }}=300 \mathrm{MVA}$
$\mathbf{K V}_{\text {b,new }}=\mathbf{2 0 K V}$

Reactance of Generator G

Since the generator rating and the base values are same, the generator p.u. reactance does not change

$$
\therefore \mathbf{X}_{\mathrm{G}, \mathrm{pu}, \text { new }}=\mathbf{2 0 \%}=\mathbf{0 . 2 p . u}
$$

Reactance of Transformer \mathbf{T}_{1}

$$
\begin{aligned}
X_{T 1, \text { pu,new }} & =X_{T 1 \text { pu,old }} *\left(\frac{K V_{b T 1, o l d}}{K V_{b, \text { new }}}\right)^{2} *\left(\frac{M V A_{b, \text { new }}}{M V A_{b T 1, o l d}}\right) \\
& =0.1 *\left(\frac{20}{20}\right)^{2} *\left(\frac{300}{350}\right)=0.0857
\end{aligned}
$$

Reactance of Trans mission line (TL)
Reactance of transmission line $=0.5 \Omega / \mathrm{Km}$
Total reactance $X_{T L}=0.5 * 64=32 \Omega$

SCHOOL OF ELECTRICAL AND ELECTRONICS DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Base $K V$ on HT side of $T_{1}=$ Base $K V$ on LT side of T_{1} * (HT

voltage rating of $\mathbf{T}_{1} / L T$ voltage rating of T_{1})

$$
=20 *(230 / 20)=230 \mathrm{KV}
$$

$\mathbf{K V}_{\text {b,new }}=\mathbf{2 3 0 K V}$

$$
\begin{aligned}
& Z_{b}=\frac{\left(K v_{b}, n e w\right)^{2}}{M V A_{b}}=\frac{230^{2}}{300}=176.33 \Omega \\
& X_{T L, p \cdot u}=\frac{32}{176.33}=0.1815 \mathrm{p} \cdot u
\end{aligned}
$$

Reactance of Transformer \mathbf{T}_{2}

Voltage ratio of line voltage of 3ϕ transformer bank $=\left(\left(\sqrt{ } 3^{*} 127\right) / \mathbf{1 3 . 2}\right)=(220 / 13.2) \mathrm{KV}$
Base $K V$ on LT side of $T_{\mathbf{2}}=$ Base $K V$ on HT side of T_{2} (LT voltage

$$
\text { rating of } T_{2} / \mathrm{HT} \text { voltage rating of } \mathrm{T}_{2} \text {) }
$$

$$
=230 *(13.2 / 220)=13.8 \mathrm{KV}
$$

$K_{\text {b,new }}=13.8 \mathrm{KV}$

$$
\begin{aligned}
& X_{T 2, \text { pu,new }}=X_{T 2 \text { pu,old }} *\left(\frac{K V_{b T 2, \text { old }}}{K V_{b, \text { new }}}\right)^{2} *\left(\frac{M V A_{b, \text { new }}}{M V A_{b T 2, o l d}}\right) \\
& =0.1 *\left(\frac{13.2}{13.8}\right)^{2} *\left(\frac{300}{3 * 100}\right)=0.0915 \mathrm{p} \cdot u
\end{aligned}
$$

Reactance of Motor \mathbf{M}_{1}

$$
\begin{aligned}
X_{M 1, \text { pu,new }} & =X_{M 1 \text { pu,old }} *\left(\frac{K V_{b M 1, \text { old }}}{K V_{b, \text { new }}}\right)^{2} *\left(\frac{M V A_{b, \text { new }}}{M V A_{b M 1, \text { old }}}\right) \\
& =0.2 *\left(\frac{13.2}{13.8}\right)^{2} *\left(\frac{300}{200}\right)=0.0915 \text { p.u }
\end{aligned}
$$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Reactance of Motor \mathbf{M}_{2}

$$
\begin{aligned}
X_{M 2, \text { pu,new }} & =X_{M 2 \text { pu,old }} *\left(\frac{K V_{b M 2, \text { old }}}{K V_{b, \text { new }}}\right)^{2} *\left(\frac{M V A_{b, \text { new }}}{M V A_{b M 2, \text { old }}}\right) \\
& =0.2 *\left(\frac{13.2}{13.8}\right)^{2} *\left(\frac{300}{100}\right)=0.549 \text { p.u }
\end{aligned}
$$

Figure :1.14
5.Draw the reactance diagram for the power system shown in fig. Neglect resistance and use a base of $100 \mathrm{MVA}, 220 \mathrm{KV}$ in 50Ω line. The ratings of the generator, motor and transforme r are given below.

Figure:1.15
Generator: 40MVA,25KV,X"=20\%
Synchronous motor:50MVA, $\mathbf{1 1 K V}, \mathbf{X}{ }^{\prime}=\mathbf{3 0 \%}$
Y-Y Transformer : 40MVA,33/220KV,X=15\%

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Y- Δ Transformer : 30MVA,11/220KV($\Delta / Y), \mathrm{X}=15 \%$

Solution:

$$
\text { MVA }_{\mathbf{b}, \text { new }}=100 \mathrm{MVA}
$$

$\mathrm{KV}_{\text {b,new }}=220 \mathrm{KV}$
Reactance of Trans mission line (TL)

$$
\begin{aligned}
& Z_{b}=\frac{\left(K v_{b}, \text { new }\right)^{2}}{M V A_{b}}=\frac{220^{2}}{100}=484 \Omega \\
& X_{T L, p . u}=\frac{50}{484}=0.1033 p \cdot u
\end{aligned}
$$

Reactance of Transformer \mathbf{T}_{1}
Base $K V$ on $L T$ side of $T_{1}=$ Base $K V$ on $H T$ side of $T_{1} *$ (LT voltage rating of $\mathrm{T}_{1} / \mathrm{HT}$ voltage rating of T_{1})

$$
=220 *(33 / 220)=33 \mathrm{KV}
$$

$\mathbf{K v}_{\mathbf{b}, \text { new }}=\mathbf{3 3 K} \mathbf{V}$

$$
\begin{array}{r}
X_{T 2, \text { pu,new }}=X_{T 2 \text { pu,old }} *\left(\frac{K V_{b T 2, o l d}}{K V_{b, n e w}}\right)^{2} *\left(\frac{M V A_{b, \text { new }}}{M V A_{b T 2, \text { old }}}\right) \\
=0.15 *\left(\frac{11}{11}\right)^{2} *\left(\frac{100}{30}\right)=0.5 p . u
\end{array}
$$

Reactance of Synchronous motor

$$
\begin{aligned}
X_{M, \text { pu,new }} & =X_{M \text { pu,old }} *\left(\frac{K V_{b M, \text { old }}}{K V_{b, \text { new }}}\right)^{2} *\left(\frac{M V A_{b, \text { new }}}{M V A_{b M, \text { old }}}\right) \\
& =0.3 *\left(\frac{11}{11}\right)^{2} *\left(\frac{100}{50}\right)=0.6 p . u
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure: 1.16
6. A $15 \mathrm{MVA}, 8.5 \mathrm{KV}, 3$ - Phase generator has a substransient reactance of $\mathbf{2 0 \%}$. It is connected through a $\Delta-Y$ transformer to a high voltage trans mission line having a total series reactance of 70Ω.The load end of the line has Y-Y step down transformer. Both transformer banks are composed of single Phase transformers connected for 3-Phase operation. Each of three transformers composing three phase bank is rated 6667 KVA , $10 / 100 \mathrm{KV}$, with a reactance of 10%. The load represented as impedance, is drawing 10MVA at 12.5 KV and 0.8 pf lagging. Draw the single line diagram of the power network. Choose a base of $10 \mathrm{MVA}, 12.5 \mathrm{KV}$ in the load circuit and determine the reactance diagram. Determine also the voltage at the terminals of the generator.

Solution:

Figure :1.17

$$
\begin{array}{r}
\text { MVA }_{\text {b,new }}=10 \mathrm{MVA} \\
\mathrm{KV}_{\mathrm{b}, \text { new }}=12.5 \mathrm{KV}
\end{array}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Reactance of Transformer T2

Voltage ratio of line voltage of transformer

$$
T 2=(100 * \sqrt{ } 3 K V / 10 * \sqrt{ } 3 K V)=(173.2 K V / 17.32 K V)
$$

3 - Phase KVA rating of Transforme T T2 $=3 * \mathbf{6 6 6 7}=\mathbf{2 0 , 0 0 0 \mathrm { KVA }} \mathbf{= 2 0 \mathrm { MVA }}$
$\therefore \mathrm{KVb}, o l d=17.32 \mathrm{KV}$ (LT side)
MVAb,old =20MVA

$$
\begin{aligned}
X_{T 2, \text { pu,new }} & =X_{T 2 \text { pu,old }} *\left(\frac{K V_{b T 2, o l d}}{K V_{b, n e w}}\right)^{2} *\left(\frac{M V A_{b, \text { new }}}{M V A_{b T 2, \text { old }}}\right) \\
& =0.1 *\left(\frac{17.32}{12.5}\right)^{2} *\left(\frac{10}{20}\right)=0.096 p \cdot u
\end{aligned}
$$

Reactance of Trans mission line

Base KV on HT side of $T_{2}=$ Base $K V$ on LT side of $T_{2} *$ (HT voltage rating of $T_{2} / L T$ voltage rating of T_{2})

$$
=12.5 *(173.2 / 17.32)=125 \mathrm{KV}
$$

Kv $_{\text {b,new }}=\mathbf{1 2 5 K V}$
$Z_{b}=\frac{\left(K v_{b}, n e w\right)^{2}}{M V A_{b}}=\frac{125^{2}}{10}=1562.5 \Omega$
$X_{T L, p . u}=\frac{70}{1562.5}=0.0448 p . u$

Reactance of Transformer T1
Voltage ratio of line voltage of transformer

$$
T 1=(10 \mathrm{KV} / 100 * \sqrt{ } 3 \mathrm{KV})=(10 \mathrm{KV} / 173.2 \mathrm{KV})
$$

3 - Phase KVA rating of Transformer T2 =

$$
3 * 6667=20,000 \mathrm{KVA}=20 \mathrm{MVA}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$\therefore \mathrm{KVb}$, old=173.2KV (HT side)
MVAb,old =20MVA

$$
\begin{aligned}
X_{T 1, \text { pu,new }}= & X_{T 1 \text { pu,old }} *\left(\frac{K V_{b T 1, o l d}}{K V_{b, \text { new }}}\right)^{2} *\left(\frac{M V A_{b, \text { new }}}{M V A_{b T 1, \text { old }}}\right) \\
& =0.1 *\left(\frac{173.2}{125}\right)^{2} *\left(\frac{10}{20}\right)=0.096 p . u
\end{aligned}
$$

Reactance of Generator

Base $K V$ on LT side of $T_{1}=$ Base $K V$ on HT side of T_{1} * (LT voltage rating of $\mathrm{T}_{1} / \mathrm{HT}$ voltage rating of T_{1})

$$
=125 *(10 / 173.2)=7.217 \mathrm{KV}
$$

$\mathrm{Kv}_{\mathrm{b}, \mathrm{ne}}=\mathbf{7 . 2 1 7 \mathrm { KV }}$

$$
\begin{aligned}
X_{G, p u, \text { new }} & =X_{G_{p u, o l d}} *\left(\frac{K V_{b G, \text { old }}}{K V_{b, \text { new }}}\right)^{2} *\left(\frac{M V A_{b, \text { new }}}{M V A_{b G, \text { old }}}\right) \\
& =0.2 *\left(\frac{8.5}{7.217}\right)^{2} *\left(\frac{10}{15}\right)=0.185 p . u
\end{aligned}
$$

Load
This can be represented as constant current load
p.f of load = 0.8lag
\therefore p.f angle $=-\cos ^{-1} 0.8=-36.87^{\circ}$
Complex load power $=10 \angle-36.87^{\circ}$ MVA
p.u value of load (Power) = Actual load MVA/ Base value of MVA

$$
=10 \angle-36.87^{\circ} / 10=1 \angle-36.87^{\circ} \text { p.u }
$$

p.u value of load voltage $=$ Actual load voltage/Base voltage

$$
=12.5 \mathrm{KV} / 12.5 \mathrm{KV}=1.0 \mathrm{p} . \mathrm{u}
$$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS
Let $\mathrm{I}=$ Load current in $\mathbf{p} . \mathrm{u}$
$\mathrm{V}=$ Load voltage in $\mathrm{p} . \mathrm{u}$
V*I=p.u value of load
$\therefore \mathrm{I}=1 \angle-36.87^{\circ} / 1.0=1 \angle-36.87^{\circ}$

Figure:1.18
Terminal voltage of the Generator

$$
\begin{aligned}
\mathrm{V}_{\mathrm{t}} & =\mathrm{V}+\mathbf{I}(\mathbf{j} 0.096+\mathbf{j} 0.096+\mathrm{j} 0.0448) \\
& =1.0+1 \angle-36.87^{\circ} * 0.2368 \angle 90^{\circ} \\
& =1.0+0.2368+\mathbf{j} 0.1894 \\
& =1.1421+\mathbf{j} 0.1894 \\
& =1.1577 \angle 9.4^{\circ} \text { p.u }
\end{aligned}
$$

Actual value of generator terminal voltage
$=p . u$ value of voltage $*$ Base $K V$ on LT side of Transformer \mathbf{T}_{1}
$=1.1577 \angle 9.4^{\circ} * 7.217=8.355 \angle 9.4^{\circ}$
BUS ADMITTANCE MATRIX

Bus

- The meeting point of various components in a power system is called a bus
- The bus is a conductor made of copper or aluminum having negligible resistance Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

- The buses are considered as points of constant voltage in a power system

Bus admittance matrix

- The matrix consisting of the self and mutual admittance of the network of a powe r system is called Bus admittance matrix
- It is given by the admittance matrix Y in the node basis matrix equation of a powe r system. Denoted as $Y_{\text {bus }}$
- It is a symmetrical matrix

$$
Y_{\text {bus }}=\left[\begin{array}{lll}
Y_{11} & Y_{12} & Y_{13} \\
Y_{21} & Y_{22} & Y_{23} \\
Y_{31} & Y_{32} & Y_{33}
\end{array}\right]
$$

- The diagonal elements of bus admittance matrix are called self admittances of the buses
- \quad Off - diagonal elements are called mutual admittances of the buses

Formula for determining $\mathbf{Y}_{\text {bus }}$ after eliminating the last row and Column

$$
\begin{gathered}
Y_{j k, \text { new }}=Y_{j k, o l d}-\frac{Y_{j n} Y_{n k}}{Y_{n n}} \\
\mathbf{j}=\mathbf{1 , 2 , 3} \ldots(\mathbf{n}-\mathbf{1}) ; \mathbf{K}=\mathbf{1 , 2 , 3} \ldots \ldots(\mathbf{n}-\mathbf{1}) ; \mathbf{n}=\text { last row and column to be eliminated }
\end{gathered}
$$

Direct Inspection method

The Guidelines to form bus admittance matrix by Indirect Inspection method are:

1. The diagonal element Y_{ij} is given by sum of all the admittances connected to node \mathbf{j}
2. The off diagonal elements $Y_{j k}$ is given by negative of the sum of all the admittances connected bet ween node j and node k

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

6. For the network shown in Fig, form the bus admittance matrix. Determine the reduced admittance by eliminating node 4 . The values are marked in p.u

Figure: 1.19

Solution: Direct Inspection Method

The $\mathbf{Y}_{\text {bus }}$ matrix of the network is,

$$
\begin{aligned}
& Y_{\text {bus }}=\left[\begin{array}{cccc}
-(j 0.5+j 0.4+j 0.4) & j 0.5 & j 0.4 & j 0.4 \\
j 0.5 & -(j 0.5+j 0.6) & j 0.6 & 0 \\
j 0.4 & j 0.6 & -(j 0.6+j 0.5+j 0.4) & j 0.5 \\
j 0.4 & 0 & j 0.5 & -(j 0.5+j 0.4)
\end{array}\right] \\
& Y_{\text {bus }}=\left[\begin{array}{cccc}
-j 1.3 & j 0.5 & j 0.4 & j 0.4 \\
j 0.5 & -j 1.1 & j 0.6 & 0 \\
j 0.4 & j 0.6 & -j 1.5 & j 0.5 \\
j 0.4 & 0 & j 0.5 & -j 0.9
\end{array}\right]
\end{aligned}
$$

The elements of ne w bus admittance matrix after eliminating the $4^{\text {th }}$ row and $4^{\text {th }}$ column is given by

$$
Y_{j k, n e w}=Y_{j k, o l d}-\frac{Y_{j n} Y_{n k}}{Y_{n n}}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\mathrm{n}=\mathbf{4} ; \quad \mathbf{j}=\mathbf{1 , 2 , 3} ; \quad K=1,2,3
$$

The bus admittance matrix is symmetrical, $\therefore \mathbf{Y}_{\mathbf{k j}, \text { new }}=\mathbf{Y}_{\mathbf{j K} \text {,new }}$

$$
\begin{aligned}
& Y_{11, \text { new }}=Y_{11, \text { old }}-\frac{Y_{14} Y_{41}}{Y_{44}}=-j 1.3-\frac{(j 0.4)(j 0.4)}{-j 0.9}=-j 1.12 \\
& Y_{12, \text { new }}=Y_{12, \text { old }}-\frac{Y_{14} Y_{42}}{Y_{44}}=j 0.5-\frac{(j 0.4 * 0)}{-j 0.9}=j 0.5 \\
& Y_{13, \text { new }}=Y_{13, \text { old }}-\frac{Y_{14} Y_{43}}{Y_{44}}=j 0.4-\frac{(j 0.4)(j 0.5)}{-j 0.9}=j 0.622 \\
& Y_{21, \text { new }}=Y_{12, \text { new }}=j 0.5 \\
& Y_{22, \text { new }}=Y_{22, \text { old }}-\frac{Y_{24} Y_{42}}{Y_{44}}=-j 1.1-\frac{(0)(0)}{-j 0.9}=-j 1.1 \\
& Y_{23, \text { new }}=Y_{23, \text { old }}-\frac{Y_{24} Y_{43}}{Y_{44}}=j 0.6-\frac{(0)(j 0.5)}{-j 0.9}=j 0.6 \\
& Y_{31, \text { new }}=Y_{13, \text { new }}=j 0.622 \\
& Y_{32, \text { new }}=Y_{23, \text { new }}=j 0.6 \\
& Y_{33, \text { new }}=Y_{33, \text { old }}-\frac{Y_{34} Y_{43}}{Y_{44}}=-j 1.5-\frac{(j 0.5)(j 0.5)}{-j 0.9}=-j 1.222
\end{aligned}
$$

The reduced admittance matrix after eliminating $4^{\text {th }}$ row is

$$
Y_{\text {bus }}=\left[\begin{array}{ccc}
-j 1.12 & j 0.5 & j 0.622 \\
j 0.5 & -j 1.1 & j 0.6 \\
j 0.622 & j 0.6 & -j 1.222
\end{array}\right]
$$

8. Determine the bus admittance matrix of the system whose reactance diagram is shown in fig. the currents and admittances are given in p.u. Determine the reduced bus admittance matrix after eliminating node-3

SCHOOL OF ELECTRICAL AND ELECTRONICS
DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure:1.20

Solution:

$$
\begin{aligned}
& Y_{\text {bus }}=\left[\begin{array}{cccc}
-(j 2+j 2+j 1) & 0 & j 2 & j 1 \\
0 & -(j 2+j 4) & 0 & j 2 \\
j 2 & 0 & -(j 2+j 2+j 5) & j 5 \\
j 1 & j 2 & j 5 & -(j 1+j 5+j 2+j 1)
\end{array}\right] \\
& Y_{\text {bus }}=\left[\begin{array}{cccc}
-j 5 & 0 & j 2 & j 1 \\
0 & -j 6 & 0 & j 2 \\
j 2 & 0 & -j 9 & j 5 \\
j 1 & j 2 & j 5 & -j 9
\end{array}\right]
\end{aligned}
$$

For eliminating node 3, the bus admittance matrix is re arranged by interchanging row 3 and then row 4 and then inte rehanging column $3 \&$ column 4.

After interchanging row 3 \& row 4 of $Y_{\text {bus }}$ matrix,

$$
Y_{\text {bus }}=\left[\begin{array}{cccc}
-j 5 & 0 & j 2 & j 1 \\
0 & -j 6 & 0 & j 2 \\
j 1 & j 2 & j 5 & -j 9 \\
j 2 & 0 & -j 9 & j 5
\end{array}\right]
$$

After interchanging column 3 \& column 4 of $\mathbf{Y}_{\text {bus }}$ matrix,

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
& Y_{\text {bus }}=\left[\begin{array}{cccc}
-j 5 & 0 & j 1 & j 2 \\
0 & -j 6 & j 2 & 0 \\
j 1 & j 2 & -j 9 & j 5 \\
j 2 & 0 & j 5 & -j 9
\end{array}\right] \\
& Y_{j k, \text { new }}=Y_{j k, \text { old }}-\frac{Y_{j n} Y_{n k}}{Y_{n n}} \\
& Y_{11, \text { new }}=Y_{11, \text { old }}-\frac{Y_{14} Y_{41}}{Y_{44}}=-j 5-\frac{(j 2)(j 2)}{-j 9}=-j 4.556 \\
& Y_{12, \text { new }}=Y_{12, \text { old }}-\frac{Y_{14} Y_{42}}{Y_{44}}=0-\frac{(j 2 * 0)}{-j 9}=0 \\
& Y_{13, \text { new }}=Y_{13, \text { old }}-\frac{Y_{14} Y_{43}}{Y_{44}}=j 1-\frac{(j 2)(j 5)}{-j 9}=j 2.111 \\
& Y_{21, \text { new }}=Y_{12, \text { new }}=0 \\
& Y_{22, \text { new }}=Y_{22, \text { old }}-\frac{Y_{24} Y_{42}}{Y_{44}}=-j 6-\frac{(0)(0)}{-j 9}=-j 6 \\
& Y_{23, \text { new }}=Y_{23, \text { old }}-\frac{Y_{24} Y_{43}}{Y_{44}}=j 2-\frac{(0)(j 5)}{-j 9}=j 2 \\
& Y_{31, \text { new }}=Y_{13, \text { new }}=j 2.111 \\
& Y_{32, \text { new }}=Y_{23, \text { new }}=j 2 \\
& Y_{33, \text { new }}=Y_{33, \text { old }}-\frac{Y_{34} Y_{43}}{Y_{44}}=-j 9-\frac{(j 5)(j 5)}{-j 9}=-j 6.222
\end{aligned}
$$

The reduced admittance matrix after eliminating bus $\mathbf{3}$ is

$$
Y_{\text {bus }}=\left[\begin{array}{ccc}
-j 4.556 & 0 & j 2.111 \\
0 & -j 6 & j 2 \\
j 2.111 & j 2 & -j 6.222
\end{array}\right]
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS DEPARTMENT OF ELECTRICAL AND ELECTRONICS

9. For the given 5-bus system form the admittance matrix by direct ins pection method.

Line	Impedance, Z (ohms)	Half Line Charging Admittance, L (mho)
$1-2$	$0.01+\mathbf{j 0 . 0 5}$	-j 0.02
$1-4$	$0.07+\mathrm{j} 0.02$	-j 0.03
$2-3$	$0.05+\mathrm{j} 0.11$	-j 0.025
$2-4$	$0.04+\mathrm{j} 0.20$	-j 0.12
$1-5$	$0.06+\mathrm{j} 0.14$	-j 0.01
$3-5$	$0.02+\mathrm{j} 0.05$	-j 0.02
$4-5$	$0.06+\mathbf{j} 0.14$	-j 0.025

Table:1.2

Solution:

$$
\begin{aligned}
& Y_{\text {bus }}(\mathbf{1}, 1)=\mathbf{1} /(0.01+\mathrm{j} 0.05)+\mathbf{1} /(\mathbf{0 . 0 7}+\mathrm{j} 0.02)+\mathbf{1} /(0.06+\mathrm{j} 0.14)-\mathbf{j} 0.01- \\
& \text { j0.02-j0.03 } \\
& =1 /(0.051 \angle 1.37)+1 /(0.073 \angle 0.28)+1 /(0.152 \angle 1.17- \\
& \text { j0.01-j0.02 - j0.03 } \\
& =19.61 \angle-1.37+13.69 \angle-0.28+6.58 \angle-1.17-\mathbf{j} 0.01-\mathbf{j} 0.02-\mathbf{J} 0.03 \\
& \mathrm{Y}_{\text {bus }}(\mathbf{1 , 1})=3.91-\mathrm{j} 19.22+13.16-\mathrm{j} 3.78+2.57-\mathrm{j} 6.06-\mathrm{j} 0.01-\mathrm{j} 0.02-\mathrm{j} 0.03 \\
& =19.64-\mathrm{j} 29.11 \\
& \mathbf{Y}_{\text {bus }}(\mathbf{2}, 2)=\mathbf{1} /(\mathbf{0 . 0 1}+\mathbf{j} 0.05)+\mathbf{1} /(\mathbf{0 . 0 5}+\mathbf{j} 0.11)+\mathbf{1} /(\mathbf{0 . 0 4}+\mathbf{j} 0.2)-\mathbf{j} 0.02-\mathbf{j} 0.025-\mathbf{j} 0.012 \\
& =8.23+\mathrm{j} 31.6 \\
& \mathbf{Y}_{\text {bus }}(\mathbf{3 , 3})=\mathbf{1} /(\mathbf{0 . 0 5}+\mathbf{j} 0.11)+\mathbf{1} /(\mathbf{0 . 0 2}+\mathbf{j} 0.05)-\mathbf{j} 0.02-\mathbf{j} 0.025 \\
& =10.31-\mathrm{j} 24.82 \\
& Y_{\text {bus }}(4,4)=\mathbf{1} /(0.04+\mathbf{j} 0.2)+\mathbf{1} /(0.07+\mathbf{j} 0.02)+\mathbf{1}(\mathbf{0 . 0 6}+\mathbf{j} 0.14)-
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\mathbf{j} 0.025 \text { - j0.012 - j0.03 }
$$

$$
=16.76-\mathrm{j} 30.12
$$

$$
Y_{\text {bus }}(5,5)=1 /(0.06+j 0.14)+1 /(0.02+j 0.05)+\mathbf{1} /(0.06+j 0.14)-
$$

$$
\mathbf{j} 0.025 \text { - j0.02 - j0.01 }
$$

$$
=12.05-\mathrm{j} 29.35
$$

$$
Y_{\text {bus }}=\left[\begin{array}{ccccc}
19.64-\mathrm{j} 29.11 & -3.85+\mathrm{j} 19.2 & 0 & -13.21+\mathrm{j} 3.77 & -2.59+\mathrm{j} 6.03 \\
-3.85+\mathrm{j} 19.2 & 8.23+\mathrm{j} 31.6 & -3.42+\mathrm{j} 7.73 & -0.96+\mathrm{j} 4.81 & 0 \\
0 & -3.42+\mathrm{j} 7.73 & 10.31-\mathrm{j} 24.82 & 0 & -6.9+\mathrm{j} 17.24 \\
-13.21+\mathrm{j} 3.77 & -0.96+\mathrm{j} 4.81 & 0 & 16.76-\mathrm{j} 30.12 & -2.59+\mathrm{j} 6.03 \\
-2.59+\mathrm{j} 6.03 & 0 & -6.9+\mathrm{j} 17.24 & -2.59+\mathrm{j} 6.03 & 12.05-\mathrm{j} 29.35
\end{array}\right]
$$

$$
\begin{aligned}
& \mathbf{Y}_{\text {bus }}(\mathbf{1 , 2})=Y_{\text {bus }}(\mathbf{2 , 1})=\mathbf{- 1}(\mathbf{0 . 0 1}+\mathbf{j} 0.05)=-\mathbf{3 . 8 5}+\mathbf{j} 19.2 \\
& \mathbf{Y}_{\text {bus }}(\mathbf{1 , 3})=\mathbf{Y}_{\text {bus }}(\mathbf{3 , 1})=\mathbf{0} \\
& \mathbf{Y}_{\text {bus }}(\mathbf{1}, 4)=\mathbf{Y}_{\text {bus }}(\mathbf{4}, \mathbf{1})=\mathbf{- 1}(\mathbf{(0 . 0 7}+\mathbf{j} 0.02)=\mathbf{- 1 3 . 2 1}+\mathbf{j} 3.77 \\
& Y_{\text {bus }}(1,5)=Y_{\text {bus }}(5,1)=-1 /(0.06+j 0.14)=-2.59+j 6.03 \\
& \mathbf{Y}_{\text {bus }}(\mathbf{2 , 3})=\mathbf{Y}_{\text {bus }}(\mathbf{3 , 2})=\mathbf{- 1}(\mathbf{0 . 0 5}+\mathbf{j} 0.11)=\mathbf{- 3 . 4 2}+\mathbf{j} 7.73 \\
& Y_{\text {bus }}(\mathbf{2 , 4})=Y_{\text {bus }}(4,2)=-1 /(0.04+j 0.2)=-\mathbf{0 . 9 6}+\mathbf{j} 4.81 \\
& \mathbf{Y}_{\text {bus }}(\mathbf{2 , 5})=\mathbf{Y}_{\text {bus }}(\mathbf{5 , 2})=\mathbf{0} \\
& \mathbf{Y}_{\text {bus }}(\mathbf{3 , 4})=\mathbf{Y}_{\text {bus }}(\mathbf{4 , 3})=\mathbf{0} \\
& \mathbf{Y}_{\text {bus }}(\mathbf{3 , 5})=\mathbf{Y}_{\text {bus }}(5,3)=-1 /(0.02+\mathbf{j} 0.05)=-6.9+\mathbf{j} 17.24 \\
& Y_{\text {bus }}(4,5)=Y_{\text {bus }}(5,4)=-1 /(0.06+\mathbf{j} 0.14)=-2.59+j 6.03
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Analytical method or Singular transformation Method

$\mathbf{Y}_{\text {bus }}=[\mathbf{A}]^{\mathbf{T}}[\mathbf{y}][\mathbf{A}]$

A - Incidence Matrix

y - primitive Ybus
10. For the given system form the admittance matrix by analytical method

Figure: 1.21
Solution:

$$
Z=\left[\begin{array}{ccc}
0.02+\mathrm{j} 0.04 & 0 & 0 \\
0 & 0.0125+\mathrm{j} 0.025 & 0 \\
0 & 0 & 0.01+\mathrm{j} 0.03
\end{array}\right]
$$

Columns are nodes and rows are elements (lines)

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right] \quad A^{T}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
& Y_{\text {bus }}=A^{T} y A \\
& Y_{\text {bus }}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{(0.02+\mathrm{j} 0.04)} & 0 & 0 \\
0 & \frac{1}{(0.0125+\mathrm{j} 0.025)} & 0 \\
0 & \frac{1}{(0.01+\mathrm{j} 0.03)}
\end{array}\right] \\
& Y_{\text {bus }}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right] \\
& 0\left.\begin{array}{ccc}
20-\mathrm{j} 50 & -10+\mathrm{j} 20 & -10+\mathrm{j} 30 \\
-10+\mathrm{j} 20 & 26-\mathrm{j} 52 & -16+\mathrm{j} 32 \\
-10+\mathrm{j} 30 & -16+\mathrm{j} 32 & 26-\mathrm{j} 62
\end{array}\right]
\end{aligned}
$$

11. For the given system form the admittance matrix by analytical method

Figure:1.22

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Solution:

Node 1 to Node 0 - $\mathbf{1}^{\text {st }}$ element
Node 1 to Node 2-2 ${ }^{\text {nd }}$ element
Node 1 to Node 3 - $3^{\text {rd }}$ element
Node 2 to Node $3-4^{\text {th }}$ element
Node 2 to Node 0 - $5^{\text {th }}$ element

$$
\begin{aligned}
& \text { ElementalNodeIncidcenceMatrix }(\hat{A})=\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
-1 & 0 & 1 & 0
\end{array}\right] \\
& \text { Incidcence Matrix }(A)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 1 & 0
\end{array}\right] \\
& Z=\left[\begin{array}{ccccc}
j 0.2 & 0 & j 0.6 & 0 & 0 \\
0 & j 0.3 & 0 & j 0.8 & 0 \\
j 0.6 & 0 & j 0.3 & 0 & 0 \\
0 & j 0.8 & 0 & j 0.5 & 0 \\
0 & 0 & 0 & 0 & j 0.4
\end{array}\right] \\
& Y_{\text {bus }}=A^{T} y A
\end{aligned}
$$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$Y_{\text {bus }}=\left[\begin{array}{ccccc}1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 \\ 0 & 0 & -1 & -1 & 0\end{array}\right]\left[\begin{array}{ccccc}\frac{1}{j 0.2} & 0 & \frac{1}{j 0.6} & 0 & 0 \\ 0 & \frac{1}{j 0.3} & 0 & \frac{1}{j 0.8} & 0 \\ \frac{1}{j 0.6} & 0 & \frac{1}{j 0.3} & 0 & 0 \\ 0 & \frac{1}{j 0.8} & 0 & \frac{1}{j 0.5} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{j 0.4}\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 1 & 0\end{array}\right]$

$$
Y_{\text {bus }}=\left[\begin{array}{ccc}
-\mathrm{j} 15 & \mathrm{j} 2.083 & \mathrm{j} 6.25 \\
\mathrm{j} 2.083 & -\mathrm{j} 5.33 & \mathrm{j} 0.75 \\
\mathrm{j} 6.25 & \mathrm{j} 0.75 & -\mathrm{j} 5.33
\end{array}\right]
$$

Need of System analysis in planning and operation of power System

Load Flow Studies:

- It is a steady state behavior of the power system under normal conditions $\mathbb{\&}$ its dy namic behavior under s mall scale disturbances
- In Load flow studies, the main concentration is on transmission with generators \& loads modeled by the complex powers. The transmission system may be a primary or sub trans mission system
- The transmission system is to be designed in such a manner that power system operation is reliable and economical \& no difficulties arise during its operation
- But these two objectives are conflicting, so more concentration is needed in load flow studies
- Now power system is highly complicated consisting of hundreds of buses \& trans mission lines
- So load flow involves extensive calculations

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Short Circuit Analysis:

- It is the abnormal system behavior under conditions of fault during operation
- In a large interconnected power system, heavy currents flowing during short circuits must be interrupted through a circuit breaker.
- So maximum current that circuit breaker can withstand momentarily has to be determined
- For selection of circuit breakers, the initial current that flows on occurrence of a short circuit \& the transient current that flows at the time of circuit interruption has to be calculated from short circuit studies

Stability Studies:

- The stability of an interconnected power system is its ability to return to its normal or stable operation after having been subjected to some form of disturbances
- Stability is conside red as an essential part of power system planning for a long time
- During a fault, electrical power from nearby generators is reduced drastically, while po wer from remote generators is scarcely affected
- In some cases, the system will be stable even with a sustained fault, whe reas other system will be stable only if the fault is cleared rapidly
- Whether the system is stable on occurrence of a fault depends not only on the system itself, but also on the type of the fault, location of the fault, rapidity on clearing the fault and method used in clearing the fault
- Thus for a reliable, economical operation of power system, the need of system analysis like load flow analysis, short circuit analysis, stability analysis is essential to have effective planning \& operation of power system

Questions

Part-A			
Q.No	Questions	Competence	BT Level
1.	Define per unit value.	Remember	BTL1
2.	What is bus incidence matrix?	Remember	BTL1
3.	List the advantages of per-unit computations?	Remember	BTL1
4.	A generator rated at $30 \mathrm{MVA}, 11 \mathrm{KV}$ has a reactance of 20%. Calculate its p.u. reactance for a base of 50 MVA and 10 KV .	Apply	BTL3
5.	What are the components of power system?	Remember	BTL1
6.	Show the equation for converting the per unit impedance expressed in one base to another?	Understand	BTL2
7.	If the reactance in ohms is 15 ohms, find the p.u value for a base of 15 KVA and 10 KV	Apply	BTL3
8.	Illustrate the approximations made in reactance diagram?	Understand	BTL2
9.	Rephrase the equations for transforming base KV on HV side to LV side of transformer and vice-versa.	Understand	BTL2
10.	Outline the equivalent circuit of a 3-phase generator.	Understand	BTL2
Part-B			
Q.No	Questions	Competence	BT Level
1.	Analyze the need for system analysis in planning and operation of power system.	Analyze	BTL4
2.	A 300 MVA, 20 KV, 3 phase generator has a sub transient reactance of 20%. The generator supplies 2 synchronous motors through a 64 km transmission line having transformers both ends. In this T1 is 3 phase transformer and T2 is made of 3 single phase transformer of rating $100 \mathrm{MVA}, 127$ / $13.2 \mathrm{KV}, 10 \%$ reactance. Series reactance of the transmission line is 0.5 ohm/km. select the generator rating as base values.	Evaluate	BTL5

	Evaluate the Per unit values of each component and represent it in a reactance diagram		
3.	Evaluate the Per Unit values for the given single line diagram of the power system. Take base MVA as 100 and base KV as 220 in 50 ohm line. The ratings of the generator, motor and transformers are given below Generator: 40 MVA, 25KV, $\mathrm{X}^{\prime \prime}=20 \%$ Synchronous motor: 50 MVA, 11 KV, X" $=30 \%$ Y - Y Transformer: 40 MVA, 33 / 220 KV, X = 15\% Y - Δ Transformer: 30 MVA, $11 / 220$ KV ($\Delta / \mathrm{Y}), \mathrm{X}=15 \%$	Evaluate	BTL5
4.	For the given 5-bus system Construct the admittance matrix by direct inspection method.	Apply	BTL3

	Line Impedance, \mathbf{Z} (ohms) Half Line Charging Admittance, \mathbf{L} (mho) $1-2$ $0.01+\mathrm{j} 0.05$ -j 0.02 $1-4$ $0.07+\mathrm{j} 0.02$ -j 0.03 $2-3$ $0.05+\mathrm{j} 0.11$ -j 0.025 $2-4$ $0.04+\mathrm{j} 0.20$ -j 0.12 $1-5$ $0.06+\mathrm{j} 0.14$ -j 0.01 $3-5$ $0.02+\mathrm{j} 0.05$ -j 0.02 $4-5$ $0.06+\mathrm{j} 0.14$ -j 0.025		
5.	For the given 4-bus system Build the admittance matrix by analytical method.	Apply	BTL3
6.	Construct the impedance diagram of the power system shown below. Mark impedances in per unit. Neglect resistance and use a base of $50 \mathrm{MVA}, 138 \mathrm{kV}$ in the 40 - line. The ratings of the generator, motors and transformers are: Generator 1: 20 MVA, $18 \mathrm{kV}, X^{\prime \prime}=20 \%$ Generator 2: $20 \mathrm{MVA}, 18 \mathrm{kV}, \mathrm{X}^{\prime \prime}=20 \%$ Synchronous motor 3: 30 MVA, $13.8 \mathrm{kV}, \mathrm{X}^{\prime \prime}=20 \%$ Three phase Y-Y transformers: 20 MVA, 138Y/20Y kV, X = 10\% Three phase Y- Δ transformers:15 MVA, $138 \mathrm{Y} / 13.8 \mathrm{kV}, \mathrm{X}$ $=10 \%$	Create	BTL6

References:

1. John J. Grainger and Stevenson Jr. W.D., "Power System Analysis", Tata McGraw Hill, 2017.
2. Kothari .D.P and Nagarath.I.J., "Power system Engineering", 2nd Edition, Tata McGraw Hill, 2011.

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

POWER FLOW ANALYSIS

Proble m definition - bus classification - derivation of powe r flow equation - solution by Gauss seidel and Newton Raphson methods by polar form - PV bus adjustments for both methods - computation of slack bus power, line flow and trans mission lines

Power flow study or load flow study

- The study of various methods of solution to power system networks is referred to as load flow study
- The solution provides the voltages at various buses, power flowing in various lines and line losses

Information's obtained from a load flow study

- Magnitude and phase of bus voltages, real and reactive power flowing in each line and the line losses
- Load flow solution also gives the initial conditions of the system when the transient behavior of the system is to be studied

Need for load flow study

- It is essential to decide the best operation of existing system and for planning the future expansion of the system
- It is also essential for designing a ne w power system

Work involved in a load flow study or How a load flow study is performed?

i. Representation of the system by single line diagram
ii. Determining the impedance diagram using the informations in single line diagram
iii. Formulation of network equations
iv. Solution of network equations

Quantities associated with each bus in a system
i. Real Power (P)

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

ii. Reactive Power (Q)
iii. Magnitude of Voltage (|V|)
iv. Phase angle of voltage (δ)

Classification of buses

i. Load bus or PQ bus (P and Q are specified)
ii. Generator bus or voltage controlled bus or PV bus (P and V Specified)
iii. Slack bus or swing bus or reference bus ($|\mathrm{V}|$ and δ are specified)

PQ bus

- A bus is called PQ bus or load bus when real and reactive components of power are specified for the bus.
- In a load bus the voltage is allowed to vary within permissible limits

PV bus or Voltage Controlled bus or Gene rator bus

- A bus is called voltage controlled bus if the magnitude of voltage $|\mathbf{V}|$ and real power (P) are specified for it.
- In a voltage controlled bus the magnitude of the voltage is not allowed to change

Slack bus

- A bus is called swing bus (or Slack bus) when the magnitude and phase of bus voltage are specified for it
- The swing bus is the reference bus for load flow solution and it is required for accounting for line losses.
- Usually one of the generator bus is selected as the swing bus

Need of Swing bus

- The slack bus is needed to account for transmission line losses
- In a power system the total power generated will be equal to sum of power consumed by loads and losses Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

- In a power system only the generated power and load power are specified for buses
- The slack bus is assumed to generate the power required for losses
- Since the losses are unknown the real and reactive power are not specified for slack bus
- They are estimated through the solution of load flow equations

Formulation of Load flow equations using $\mathbf{Y}_{\text {bus }}$ matrix

- The load flow equations can be formed using either the mesh or node basis equations of power system
- From the point of computer time and me mory, the nodal admittance formulation using the nodal voltages as the independent variables is the most economic

$$
\mathbf{Y}_{\text {bus }} * \mathbf{V}=\mathbf{I}
$$

Where,
$\mathbf{Y}_{\text {bus }}$ - Bus admittance matrix of order (nxn)
V - Bus (node) voltage matrix of order (nx1)
I - Sources current matrix of order (nx1)

$$
\left[\begin{array}{c}
I_{1} \\
I_{2} \\
\vdots \\
I_{p} \\
\vdots \\
I_{n}
\end{array}\right]=\left[\begin{array}{cccccc}
Y_{11} & Y_{12} & \cdots & Y_{1 p} & \cdots & Y_{1 n} \\
Y_{21} & Y_{22} & \cdots & Y_{2 p} & \cdots & Y_{2 n} \\
\vdots & \vdots & & \vdots & & \vdots \\
Y_{p 1} & Y_{p 2} & \cdots & Y_{p p} & \cdots & Y_{p n} \\
\vdots & \vdots & & \vdots & & \vdots \\
Y_{n 1} & Y_{n 2} & \cdots & Y_{n p} & \cdots & Y_{n n}
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
V_{2} \\
\vdots \\
V_{p} \\
\vdots \\
V_{n}
\end{array}\right]
$$

$I_{p}=$ Current injected to bus p
$\mathbf{V}_{\mathrm{p}}=$ Voltage at bus \mathbf{p}
$I_{p}=Y_{p 1} V_{1}+Y_{p 2} V_{2}+\cdots+Y_{p p} V_{p}+\cdots Y_{p n} V_{n}$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$\therefore I_{p}=\sum_{q=1}^{p-1} Y_{p q} V_{q}+Y_{p p} V_{p}+\sum_{q=p+1}^{n} Y_{p q} V_{q}$
$S_{p}=$ Complex power of bus p
$P_{p}=$ Real powe r of bus p
$\mathbf{Q}_{\mathrm{p}}=$ Reactive power of bus \mathbf{p}
$S_{p}=P_{p}+j Q_{p}$
$S_{p}=V_{p} I_{p}^{*}$
$\therefore V_{p} I_{p}^{*}=P_{p}+j Q_{p}$
The load flow problem can be handled more conveniently by use of I_{p} rather than I_{p} *
$\left(V_{p} I_{p}^{*}\right)^{*}=\left(P_{p}+j Q_{p}\right)^{*}$
$V_{p}^{*} I_{p}=P_{p}-j Q_{p}$
$\therefore I_{p}=\frac{P_{p}-j Q_{p}}{V_{p}^{*}}$
$Y_{p 1} V_{1}+Y_{p 2} V_{2}+\cdots+Y_{p p} V_{p}+\cdots Y_{p n} V_{n}=\frac{P_{p}-j Q_{p}}{V_{p}^{*}}$

- Iterative methods are used to solve load flow problems
- The reason to use iterative methods is the load (or power) flow equations are nonlinear algebraic equations and explicit solution is not possible

Iterative Methods

i. Gauss seidel (G-S) method
ii. Newton Raphson (N-R) method

Operating constraints imposed in the load flow studies

i. Reactive power limits for generator buses
ii. Allowable change in magnitude of voltage for load buses

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Flat Voltage Start

- In iterative methods of load flow solution, the initial voltages of all buses except slack bus are assumed as $\mathbf{1 + j 0} \mathbf{p . u}$

Gauss Seidel Method

$$
\begin{align*}
& Y_{p 1} V_{1}+Y_{p 2} V_{2}+\cdots+Y_{p p} V_{p}+\cdots Y_{p n} V_{n}=\frac{P_{p}-j Q_{p}}{V_{p}^{*}} \\
& \sum_{q=1}^{p-1} Y_{p q} V_{q}+Y_{p p} V_{p}+\sum_{q=p+1}^{n} Y_{p q} V_{q}=\frac{P_{p}-j Q_{p}}{V_{p}^{*}} \\
& Y_{p p} V_{p}=\left[\frac{P_{p}-j Q_{p}}{V_{p}^{*}}-\sum_{q=1}^{p-1} Y_{p q} V_{q}-\sum_{q=p+1}^{n} Y_{p q} V_{q}\right] \\
& V_{p}=\frac{1}{Y_{p p}}\left[\frac{P_{p}-j Q_{p}}{V_{p}^{*}}-\sum_{q=1}^{p-1} Y_{p q} V_{q}-\sum_{q=p+1}^{n} Y_{p q} V_{q}\right] \\
& V_{p}^{k+1}=\frac{1}{Y_{p p}}\left[\frac{P_{p}-j Q_{p}}{\left(V_{p}^{k}\right)^{*}}-\sum_{q=1}^{p-1} Y_{p q} V_{q}^{k+1}-\sum_{q=p+1}^{n} Y_{p q} V_{q}^{k}\right] \tag{1}
\end{align*}
$$

$\mathbf{V}_{\mathbf{i}}^{\mathbf{k}}-\mathbf{k}^{\text {th }}$ iteration value of bus voltage $\mathbf{V}_{\mathbf{i}}$
$V_{i}{ }^{k+1}-(k+1){ }^{\text {th }}$ iteration value of bus voltage V_{i}
$\frac{P_{p}-j Q_{p}}{V_{p}^{*}}=\sum_{q=1}^{p-1} Y_{p q} V_{q}+Y_{p p} V_{p}+\sum_{q=p+1}^{n} Y_{p q} V_{q}$
$\frac{P_{p}-j Q_{p}}{V_{p}^{*}}=\sum_{q=1}^{p-1} Y_{p q} V_{q}+\sum_{q=p}^{n} Y_{p q} V_{q}$
$\therefore P_{p}-j Q_{p}=V_{p}^{*}\left[\sum_{q=1}^{p-1} Y_{p q} V_{q}+\sum_{q=p}^{n} Y_{p q} V_{q}\right]$
$\therefore P_{p}^{k+1}-j Q_{p}^{k+1}=\left(V_{p}^{k}\right)^{*}\left[\sum_{q=1}^{p-1} Y_{p q} V_{q}^{k+1}+\sum_{q=p}^{n} Y_{p q} V_{q}^{k}\right]$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Reactive Power of bus \mathbf{p} during $(k+1)^{\text {th }}$ iteration

$$
\begin{equation*}
Q_{p}^{k+1}=(-1) * \operatorname{Im}\left\{\left(V_{p}^{k}\right)^{*}\left[\sum_{q=1}^{p-1} Y_{p q} V_{q}^{k+1}+\sum_{q=p}^{n} Y_{p q} V_{q}^{k}\right]\right\} \tag{2}
\end{equation*}
$$

Computation of Slack bus powe r and line flows
$P_{p}-j Q_{p}=V_{p}^{*} \sum_{q=1}^{n} Y_{p q} V_{q}^{k}$

Figure: 2.1
$\mathbf{Y}_{\mathbf{p q}}$ - series admittances
Y_{pq} /2-Shunt admittances
$I_{p q}=I_{p q 1}+I_{p q 2}=\left(V_{p}-V_{q}\right) Y_{p q}+V_{p} \frac{Y_{p q}^{\prime}}{2}$
$I_{p q}=I_{p q 1}+I_{p q 2}=\left(V_{p}-V_{q}\right) Y_{p q}+V_{p} \frac{Y_{p q}^{\prime}}{2}$

Complex powe r Injected by bus pin line pq
$S_{p q}=P_{p q}-j Q_{p q}=V_{p}^{*} I_{p q}=V_{p}^{*}\left[\left(V_{p}-V_{q}\right) Y_{p q}+V_{p} \frac{Y_{p q}^{\prime}}{2}\right]$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
I_{q p}=I_{q p 1}+I_{q p 2}=\left(V_{q}-V_{p}\right) Y_{p q}+V_{q} \frac{Y_{p q}^{\prime}}{2}
$$

Complex power Injected by bus q in line pq

$$
S_{q p}=P_{q p}-j Q_{q p}=V_{q}^{*} I_{q p}=V_{q}^{*}\left[\left(V_{q}-V_{p}\right) Y_{p q}+V_{p} \frac{Y_{p q}^{\prime}}{2}\right]
$$

Power loss in the transmission line - pq

$$
S_{p q, l o s s}=S_{p q}+S_{q p}
$$

Flow chart of Load Flow Analysis using Gauss Siedel Method

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

SCHOOL OF ELECTRICAL AND ELECTRONICS
DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure: 2.2

Algorithm for load flow solution by Gauss seidel method

Step 1: Form Y - bus matrix
Step 2: Assume $\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{i} \text { (spec) }} \angle \mathbf{0}^{\circ}$ at all generator buses
Step 3: Assume $V_{i}=1 \angle 0^{\circ}=1+j 0$ at all load buses
Step 4: set iteration count=1 ($k=1$)
Step 5: Let bus number i=1
Step 6: If 'i' refers to generator bus go to step no.7, otherwise go to step 8
Step7(a): If ' \mathbf{i} ' refers to the slack bus go to step 9 , otherwie go to step 7(b)
Step 7(b) : Compute Q_{i} using,

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
Q_{i}^{k+1}=(-1) * \operatorname{Im}\left\{\left(V_{i}^{k}\right)^{*}\left[\sum_{j=1}^{i-1} Y_{i j} V_{j}^{k+1}+\sum_{j=i}^{n} Y_{i j} V_{j}^{k}\right]\right\}
$$

$\mathbf{Q}_{\mathrm{Gi}}=\mathbf{Q}_{\mathrm{i}}{ }^{\text {cal }}+\mathbf{Q}_{\mathbf{L i}}$
Check for Q limit violation
If $\mathbf{Q}_{\mathbf{i}(\min)}<\mathbf{Q}_{\mathrm{Gi}}<\mathbf{Q}_{\mathbf{i}(\max)}$, then $\mathbf{Q}_{\mathbf{i}(\text { spe })}=\mathbf{Q}_{\mathrm{i}}{ }^{\text {cal }}$
If $\mathrm{Q}_{\mathrm{i}(\min)}<\mathrm{Q}_{\mathrm{Gi}}$, then $\mathrm{Q}_{\mathrm{i}(\mathrm{spec})}=\mathrm{Q}_{\mathrm{i}(\min)}-\mathrm{Q}_{\mathrm{Li}}$
If $\mathbf{Q}_{\mathbf{i}(\max)}<\mathbf{Q}_{\mathrm{Gi}}$, then $\mathrm{Q}_{\mathrm{i}(\text { spec })}=\mathrm{Q}_{\mathrm{i}(\max)}-\mathrm{Q}_{\mathrm{Li}}$
If $\mathbf{Q}_{\text {limit }}$ is violated, then treat this bus as P-q bus till convergence is obtained

Step 8: Compute \mathbf{V}_{i} using the equation,

$$
V_{i}^{k+1}=\frac{1}{Y_{i i}}\left[\frac{P_{i}-j Q_{i}}{\left(V_{i}^{k}\right)^{*}}-\sum_{j=1}^{i-1} Y_{i j} V_{j}^{k+1}-\sum_{j=i+1}^{n} Y_{i j} V_{j}^{k}\right]
$$

Step 9: If i is less than number of buses, increment i by 1 and go to step 6
Step 10: Compare two sucessive iteration values for $\mathbf{V i}$
If $\mathbf{V}_{\mathbf{i}}{ }^{\mathrm{K}+1}-\mathbf{V}_{\mathbf{i}}{ }^{\mathbf{k}}<$ tolerance, go to step 12
Step 11: Update the new voltage as

$$
\begin{aligned}
& V^{k+1}=V^{k}+\alpha\left(V^{K+1}-V^{k}\right) \\
& V^{k}=V^{k+1} \\
& K=K+1 ; \text { go to step } 5
\end{aligned}
$$

Step 12: Compute relevant quantities:
Slack bus power,

$$
S_{i}=P_{i}-Q_{i}=V^{*} I=V_{i}^{*} \sum_{j=1}^{N} Y_{i j} V_{j}
$$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Line flows,

$$
\begin{aligned}
S_{i j} & =P_{i j}+j Q_{i j} \\
& =V_{i}\left[V_{i}^{*}-V_{j}^{*}\right] Y_{i j s e r i e s}^{*}+\left|V_{i}\right|^{2} Y_{i i}^{*} \\
P_{\text {Loss }} & =P_{i j}+P_{j i} \\
Q_{\text {Loss }} & =Q_{i j}+Q_{j i}
\end{aligned}
$$

Step 13: Stop the execution

1. In the system shown in fig, gene rators are connected to all the four buses, while loads are at buses 2 and 3. The specifications of the buses and line impedances are given in the tables. Assume that all the buses other than slack bus are PQ type. By taking a flat voltage profile, determine the bus voltages at the end of first Gauss seidel iteration

Figure:2.3

Bus code	P	Q	V
1	-	-	$1.05 \angle 0^{\circ}$
2	0.5	-0.2	-
3	-1.0	0.5	-
4	0.3	-0.1	-

Table:2.1

SCHOOL OF ELECTRICAL AND ELECTRONICS
DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Line	R in p.u	X in p.u
$1-2$	0.05	0.15
$1-3$	0.10	0.30
$1-4$	0.20	0.40
$2-4$	0.10	0.30
$3-4$	0.05	0.15

Table: 2.2
$\mathrm{Z}_{12}=0.05+j 0.15 \mathrm{p} . \mathrm{u}$
$Z_{13}=\mathbf{0 . 1 0 + j 0 . 3 0 p . u}$
$Z_{14}=\mathbf{0 . 2 0}+\mathbf{j} 0.40 \mathrm{p} . \mathrm{u}$
$\mathrm{Y}_{12}=1 / \mathrm{Z}_{12}=1 /(0.05+\mathrm{j} 0.15)=2-\mathrm{j} 6$
$\mathrm{Y}_{14}=1 / \mathrm{Z}_{14}=1 /(0.20+\mathrm{j} 0.40)=1-\mathrm{j} 2 \quad Y_{24}=1 / \mathrm{Z}_{24}=1 /(0.10+\mathrm{j} 0.30)=1-\mathrm{j} 3$
$Y_{34}=1 / Z_{34}=1 /(0.05+j 0.15)=\mathbf{2 - j 6}$
$\mathrm{Y}_{11}=\mathrm{Y}_{12}+\mathrm{Y}_{13}+\mathrm{Y}_{14}=\mathbf{2 - j} \mathbf{j}+\mathbf{1 - j} \mathbf{j}+\mathbf{1 - j} \mathbf{2}=\mathbf{4 - j 1 1}$
$\mathrm{Y}_{22}=\mathrm{Y}_{12}+\mathrm{Y}_{\mathbf{2 4}}=\mathbf{2 - j 6 + 1 - \mathrm { j } 3 = 3 - \mathrm { j } 9}$
$\mathbf{Y}_{33}=\mathbf{Y}_{13}+\mathrm{y}_{34}=\mathbf{1 - j} \mathbf{3}+\mathbf{2 - j} \mathbf{j}=\mathbf{3 - j} \mathbf{9}$
$\mathrm{Y}_{44}=\mathrm{Y}_{14}+\mathrm{Y}_{24}+\mathrm{Y}_{34}=\mathbf{1 - j} \mathbf{j}+\mathbf{1 - j} \mathbf{3}+\mathbf{2 - j} \mathbf{j}=\mathbf{4}-\mathrm{j} 11$
$Y_{12}=Y_{21}=-Y_{12}=-(2-\mathrm{j} 6)=-\mathbf{2 + j} 6$
$\mathrm{Y}_{13}=\mathrm{Y}_{31}=-\mathrm{Y}_{13}=-(1-\mathrm{j} 3)=-1+\mathrm{j} 3$
$\mathrm{Y}_{14}=\mathrm{Y}_{41}=-\mathrm{Y}_{14}=-(1-\mathrm{j} 2)=-1+\mathrm{j} 2$
$Y_{23}=Y_{32}=0$
$Y_{24}=Y_{42}=-Y_{24}=-(1-j 3)=-1+\mathbf{j} 3$
$Y_{34}=Y_{43}=-Y_{34}=-(2-j 6)=-2+j 6$
$Y_{13}=1 / Z_{13}=1 /(0.10+j 0.30)=1-j 3$
$\mathrm{Z}_{24}=\mathbf{0 . 1 0 + j 0 . 3 0} \mathbf{p . u}$
$\mathrm{Z}_{34}=\mathbf{0 . 0 5}+\mathbf{j} 0.15 \mathrm{p} . \mathrm{u}$

SCHOOL OF ELECTRICAL AND ELECTRONICS DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
Y_{\text {bus }}=\left[\begin{array}{llll}
Y_{11} & Y_{12} & Y_{13} & Y_{14} \\
Y_{21} & Y_{22} & Y_{23} & Y_{24} \\
Y_{31} & Y_{32} & Y_{33} & Y_{34} \\
Y_{41} & Y_{42} & Y_{43} & Y_{44}
\end{array}\right]=\left[\begin{array}{cccc}
4-j 11 & -2+j 6 & -1+j 3 & -1+j 2 \\
-2+j 6 & 3-j 9 & 0 & -1+j 3 \\
-1+j 3 & 0 & 3-j 9 & -2+j 6 \\
-1+j 2 & -1+j 3 & -2+j 6 & 4-j 11
\end{array}\right]
$$

$$
V_{1}^{0}=V_{1}^{1}=\cdots \cdots=V_{1}^{n}=V_{1}=1.05+j 0 p . u
$$

$$
\begin{aligned}
V_{2}^{0} & =1+j 0 \quad V_{3}^{0}=1+j 0 \quad V_{4}^{0}=1+j 0 \quad K=0 \\
V_{p}^{k+1} & =\frac{1}{Y_{p p}}\left[\frac{P_{p}-j Q_{p}}{\left(V_{p}^{k}\right)^{*}}-\sum_{q=1}^{p-1} Y_{p q} V_{q}^{k+1}-\sum_{q=p+1}^{n} Y_{p q} V_{q}^{k}\right] \\
V_{2}^{1} & =\frac{1}{Y_{22}}\left[\frac{P_{2}-j Q_{2}}{\left(V_{2}^{0}\right)^{*}}-Y_{21} V_{1}^{1}-Y_{23} V_{3}^{0}-Y_{24} V_{4}^{0}\right] \\
V_{2}^{1} & =\frac{1}{3-j 9}\left[\frac{0.5+j 0.2}{1-j 0}-(-2+j 6)(1.05+j 0)-0 *(1+j 0)-(-1+j 3)(1+j 0)\right] \\
& =\frac{1}{3-j 9}[0.5+j 0.2+2.1-j 6.3+1-j 3] \\
& =\frac{3.6-j 9.1}{3-j 9}=\frac{9.7862 \angle-68.42^{\circ}}{9.4868 \angle-71.57^{\circ}}=1.0316 \angle 3.15^{\circ}=1.0300+j 0.0567 p . u
\end{aligned}
$$

$$
V_{3}^{1}=\frac{1}{Y_{33}}\left[\frac{P_{3}-j Q_{3}}{\left(V_{3}^{0}\right)^{*}}-Y_{31} V_{1}^{1}-Y_{32} V_{2}^{1}-Y_{34} V_{4}^{0}\right]
$$

$$
V_{3}^{1}=\frac{1}{3-j 9}\left[\frac{-1-j 0.5}{1-j 0}-(-1+j 3)(1.05+j 0)-0 *(1.0300+j 0.0567)-(-2+j 6)(1+j 0)\right]
$$

$$
=\frac{1}{3-j 9}[-1-j 0.5+1.05-j 3.15+2-j 6]
$$

$$
=\frac{2.05-j 9.65}{3-j 9}=\frac{9.8653 \angle-78.01^{\circ}}{9.4868 \angle-71.57^{\circ}}=1.0399 \angle-6.44^{\circ}=1.0333-j 0.01166 p . u
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

 DEPARTMENT OF ELECTRICAL AND ELECTRONICS$$
\begin{aligned}
& V_{4}^{1}=\frac{1}{Y_{44}}\left[\frac{P_{4}-j Q_{4}}{\left(V_{4}^{0}\right)^{*}}-Y_{41} V_{1}^{1}-Y_{42} V_{2}^{1}-Y_{43} V_{3}^{1}\right] \\
& V_{4}^{1}=\frac{1}{4-j 11}\left[\frac{0.3+j 0.1}{1-j 0}-(-1+j 2)(1.05+j 0)-(-1+j 3)^{*}(1.0300+j 0.0567)-(-2+j 6)(1.0333-j 0.01166)\right] \\
&=\frac{1}{4-j 11}[0.3+j 0.1+1.05-j 2.1-(-1.2001+j 3.0333)-(-1.367+j 6.433)] \\
&=\frac{3.9171-j 11.4663}{4-j 11}=\frac{12.1169 \angle-71.14^{\circ}}{11.7047 \angle-70.02^{\circ}}=1.0352 \angle-1.12^{\circ}=1.0350-j 0.0202 p . u
\end{aligned}
$$

The bus voltages at the end of first Gauss seidel iteration are

$$
\begin{aligned}
& V_{1}^{1}=1.05+j 0=1.05 \angle 0^{\circ} p . u \\
& V_{2}^{1}=1.0300+j 0.0567=1.0316 \angle 3.15^{\circ} p . u \\
& V_{3}^{1}=1.0333-j 0.01166=1.0399 \angle-6.44^{\circ} p . u \\
& V_{4}^{1}=1.0350-j 0.0202=1.0352 \angle-1.12^{\circ} p . u
\end{aligned}
$$

2. In Problem 1, let the bus 2 be a PV bus (Generator bus) with $\left|V_{2}\right|=1.07$ p.u. the reactive powe r constraint of the generator bus is $0.3 \leq Q_{2} \leq 1.0$. With othe r data re maining same (Except \mathbf{Q}_{2}), calculate the bus voltages at the end of first G-S ite ration Solution:

SCHOOL OF ELECTRICAL AND ELECTRONICS

 DEPARTMENT OF ELECTRICAL AND ELECTRONICS$$
\begin{aligned}
& Y_{b u s}=\left[\begin{array}{llll}
Y_{11} & Y_{12} & Y_{13} & Y_{14} \\
Y_{21} & Y_{22} & Y_{23} & Y_{24} \\
Y_{31} & Y_{32} & Y_{33} & Y_{34} \\
Y_{41} & Y_{42} & Y_{43} & Y_{44}
\end{array}\right]=\left[\begin{array}{cccc}
4-j 11 & -2+j 6 & -1+j 3 & -1+j 2 \\
-2+j 6 & 3-j 9 & 0 & -1+j 3 \\
-1+j 3 & 0 & 3-j 9 & -2+j 6 \\
-1+j 2 & -1+j 3 & -2+j 6 & 4-j 11
\end{array}\right] \\
& V_{1}^{0}=V_{1}^{1}=\cdots \cdots=V_{1}^{n}=V_{1}=1.05+j 0 p \cdot u \\
& V_{3}^{0}=1+j 0 \quad V_{4}^{0}=1+j 0 \quad V_{2}^{0}=1.07+j 0 \quad K=0 \\
& Q_{p}^{k+1}=(-1) * \operatorname{Im}\left\{\left(V_{p}^{k}\right)^{*}\left[\sum_{q=1}^{p-1} Y_{p q} V_{q}^{k+1}+\sum_{q=p}^{n} Y_{p q} V_{q}^{k}\right]\right\} \\
& Q_{2, \text { cal }}^{1}=(-1) \operatorname{Im}\left\{\left(V_{2}^{0}\right)^{*}\left[Y_{21} V_{1}^{1}+Y_{22} V_{2}^{0}+Y_{23} V_{3}^{0}+Y_{24} V_{4}^{0}\right]\right\} \\
& Q_{2, \text { cal }}^{1}=(-1) \operatorname{Im}\{(1.07-j 0)[(-2+j 6)(1.05+j 0)+(3-j 9)(1.07+j 0)+(0 *(1-j 0))+(-1+j 3)(1+j 0)]\} \\
&=(-1) \operatorname{Im}\{1.07[-2.1+j 6.3+3.21-j 9.63-1+j 3]\} \\
&=(-1) \operatorname{Im}\{1.07[0.11-j 0.33]\}=0.3531 p . u
\end{aligned}
$$

$Q^{\prime}{ }_{\text {cal }}=0.3531$. The given Q limits are $0.3 \leq Q_{2} \leq 1.0$. the calculated Q_{2} is within the limits. So bus 2 is treated as PV bus.

Now $Q_{2}=0.3531, p_{2}=\mathbf{0 . 5},\left|V_{2}\right|=1.07$

$$
\begin{aligned}
V_{p, t e m p}^{k+1} & =\frac{1}{Y_{p p}}\left[\frac{P_{p}-j Q_{p}}{\left(V_{p}^{k}\right)^{*}}-\sum_{q=1}^{p-1} Y_{p q} V_{q}^{k+1}-\sum_{q=p+1}^{n} Y_{p q} V_{q}^{k}\right] \\
V_{2, \text { temp }}^{1} & =\frac{1}{Y_{22}}\left[\frac{P_{2}-j Q_{2}}{\left(V_{2}^{0}\right)^{*}}-Y_{21} V_{1}^{1}-Y_{23} V_{3}^{0}-Y_{24} V_{4}^{0}\right] \\
V_{2, \text { temp }}^{1} & =\frac{1}{3-j 9}\left[\frac{0.5-j 0.3531}{1.07-j 0}-(-2+j 6)(1.05+j 0)-(0 *(1+j 0))-(-1+j 3)(1+j 0)\right] \\
& =\frac{1}{3-j 9}[0.4673-j 0.33+2.1-j 6.3+1-j 3]
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$=\frac{3.5673-j 9.63}{3-j 9}=\frac{10.2695 \angle-69.67^{\circ}}{9.4868 \angle-71.57^{\circ}}=1.0825 \angle 1.9^{\circ}$
$\therefore \delta_{2}^{1}=\angle V_{2, \text { temp }}^{1}=1.9^{\circ}$
$\therefore V_{2}^{1}=\left|V_{2}\right|_{\text {spec }} \angle \delta_{2}^{1}=1.07 \angle 1.9^{\circ}=1.0694+j 0.0355$ p.u

Bus 3 and bus 4 are load buses

$$
\begin{aligned}
V_{p}^{k+1} & =\frac{1}{Y_{p p}}\left[\frac{P_{p}-j Q_{p}}{\left(V_{p}^{k}\right)^{*}}-\sum_{q=1}^{p-1} Y_{p q} V_{q}^{k+1}-\sum_{q=p+1}^{n} Y_{p q} V_{q}^{k}\right] \\
V_{3}^{1} & =\frac{1}{Y_{33}}\left[\frac{P_{3}-j Q_{3}}{\left(V_{3}^{0}\right)^{*}}-Y_{31} V_{1}^{1}-Y_{32} V_{2}^{1}-Y_{34} V_{4}^{0}\right] \\
V_{3}^{1} & =\frac{1}{3-j 9}\left[\frac{-1-j 0.5}{1-j 0}-(-1+j 3)(1.05+j 0)-(0 *(1.0694+j 0.0355))-(-2+j 6)(1+j 0)\right] \\
& =\frac{1}{3-j 9}[-1-j 0.5+1.05-j 3.15+2-j 6]=\frac{2.05-j 9.65}{3-j 9}=\frac{9.8653 \angle-78.01^{\circ}}{9.4868 \angle-71.57^{\circ}} \\
& =1.0399 \angle-6.44^{\circ}=1.0333-j 0.1166 p . u \\
V_{4}^{1} & =\frac{1}{Y_{44}}\left[\frac{P_{4}-j Q_{4}}{\left(V_{4}^{0}\right)^{*}}-Y_{41} V_{1}^{1}-Y_{42} V_{2}^{1}-Y_{43} V_{3}^{1}\right]
\end{aligned}
$$

$$
\left.V_{4}^{1}=\frac{1}{4-j 11}\left[\frac{0.3+j 0.1}{1-j 0}-(-1+j 2)(1.05+j 0)-(-1+j 3)^{*}(1.0694+j 0.0355)\right)-(-2+j 6)(1.0333-j 0.01166)\right]
$$

$$
=\frac{1}{4-j 11}[0.3+j 0.1+1.05-j 2.1-(-1.1759+j 3.1727)-(-1.367+j 6.433)]
$$

$$
=\frac{3.8929-j 11.6057}{4-j 11}=\frac{12.2412 \angle-71.46^{\circ}}{11.7047 \angle-70.02^{\circ}}
$$

$$
=1.0458 \angle-1.44^{\circ}=1.0455-j 0.0263 p . u
$$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

The bus voltages at the end of first Gauss seidel iteration are

$$
\begin{aligned}
& V_{1}^{1}=1.05+j 0 p . u=1.05 \angle 0^{\circ} \\
& V_{2}^{1}=1.0694+j 0.0355=1.07 \angle 1.9^{\circ} p . u \\
& V_{3}^{1}=1.0333-j 0.1166=1.0399 \angle-6.44^{\circ} p \cdot u \\
& V_{4}^{1}=1.0458 \angle-1.44^{\circ}=1.0455-j 0.0263 p \cdot u
\end{aligned}
$$

3. In Proble m 2, let the reactive powe r constraint of the generator bus is $0.4 \leq Q_{2} \leq 1.0$. With other data remaining same (Except \mathbf{Q}_{2}), calculate the bus voltages at the end of first G-S iteration

Solution:

$$
\begin{aligned}
& Y_{\text {bus }}= {\left[\begin{array}{llll}
Y_{11} & Y_{12} & Y_{13} & Y_{14} \\
Y_{21} & Y_{22} & Y_{23} & Y_{24} \\
Y_{31} & Y_{32} & Y_{33} & Y_{34} \\
Y_{41} & Y_{42} & Y_{43} & Y_{44}
\end{array}\right]=\left[\begin{array}{cccc}
4-j 11 & -2+j 6 & -1+j 3 & -1+j 2 \\
-2+j 6 & 3-j 9 & 0 & -1+j 3 \\
-1+j 3 & 0 & 3-j 9 & -2+j 6 \\
-1+j 2 & -1+j 3 & -2+j 6 & 4-j 11
\end{array}\right] } \\
& V_{1}^{0}=V_{1}^{1}=\cdots \cdots=V_{1}^{n}=V_{1}=1.05+j 0 p \cdot u \\
& V_{3}^{0}=1+j 0 \quad V_{4}^{0}=1+j 0 \quad V_{2}^{0}=1.07+j 0 \quad K=0 \\
& Q_{p}^{k+1}=(-1)^{*} \operatorname{Im}\left\{\left(V_{p}^{k}\right)^{*}\left[\sum_{q=1}^{p-1} Y_{p q} V_{q}^{k+1}+\sum_{q=p}^{n} Y_{p q} V_{q}^{k}\right]\right\} \\
& Q_{2, \text { cal }}^{1}\left.=(-1) \operatorname{Im}\left\{\left(V_{2}^{0}\right)^{*} \mid Y_{21} V_{1}^{1}+Y_{22} V_{2}^{0}+Y_{23} V_{3}^{0}+Y_{24} V_{4}^{0}\right]\right\} \\
& Q_{2, \text { cal }}^{1}=(-1) \operatorname{Im}\{(1.07-j 0)[(-2+j 6)(1.05+j 0)+(3-j 9)(1.07+j 0)+(0 *(1-j 0))+(-1+j 3)(1+j 0)]\} \\
&=(-1) \operatorname{Im}\{1.07[-2.1+j 6.3+3.21-j 9.63-1+j 3]\} \\
&=(-1) \operatorname{Im}\{1.07[0.11-j 0.33]\}=0.3531 p \cdot u
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$Q^{\prime}{ }_{\text {cal }}=0.3531$. The given Q limits are $0.4 \leq Q_{2} \leq 1.0$. the calculated Q_{2} is less than the specified lower limit. So bus 2 is treated as $P Q$ bus.

$$
\begin{aligned}
& \text { Now } \mathbf{Q}_{\mathbf{2}}=\mathbf{0 . 4}, \mathbf{p}_{\mathbf{2}}=\mathbf{0 . 5},\left|\mathbf{V}_{\mathbf{2}}\right|=\mathbf{1 . 0} \\
& \begin{aligned}
& V_{p}^{k+1}=\frac{1}{Y_{p p}}\left[\frac{P_{p}-j Q_{p}}{\left(V_{p}^{k}\right)^{*}}-\sum_{q=1}^{p-1} Y_{p q} V_{q}^{k+1}-\sum_{q=p+1}^{n} Y_{p q} V_{q}^{k}\right] \\
& \begin{aligned}
& V_{2}^{1}=\frac{1}{Y_{22}}\left[\frac{P_{2}-j Q_{2}}{\left(V_{2}^{0}\right)^{*}}-Y_{21} V_{1}^{1}-Y_{23} V_{3}^{0}-Y_{24} V_{4}^{0}\right] \\
& \begin{aligned}
& V_{2}^{1}= \\
& 3-j 9
\end{aligned} \frac{1}{3.5-j 0.4} \\
&\left.=\frac{1}{3-j 9}-(-2+j 6)(1.05+j 0)-(0 *(1+j 0))-(-1+j 3)(1+j 0)\right] \\
&=\frac{3.6-j 9.7}{3-j 9}=\frac{10.3465 \angle-69.64^{\circ}}{9.4868 \angle-71.57^{\circ}}=1.0906 \angle 1.93^{\circ}=1.0900+j 0.0367 p . u .
\end{aligned}
\end{aligned} .
\end{aligned}
$$

Bus 3 and bus 4 are load buses

$$
\begin{aligned}
V_{p}^{k+1} & =\frac{1}{Y_{p p}}\left[\frac{P_{p}-j Q_{p}}{\left(V_{p}^{k}\right)^{*}}-\sum_{q=1}^{p-1} Y_{p q} V_{q}^{k+1}-\sum_{q=p+1}^{n} Y_{p q} V_{q}^{k}\right] \\
V_{3}^{1} & =\frac{1}{Y_{33}}\left[\frac{P_{3}-j Q_{3}}{\left(V_{3}^{0}\right)^{*}}-Y_{31} V_{1}^{1}-Y_{32} V_{2}^{1}-Y_{34} V_{4}^{0}\right] \\
V_{3}^{1} & =\frac{1}{3-j 9}\left[\frac{-1-j 0.5}{1-j 0}-(-1+j 3)(1.05+j 0)-(0 *(1.0900+j 0.0367))-(-2+j 6)(1+j 0)\right] \\
& =\frac{1}{3-j 9}[-1-j 0.5+1.05-j 3.15+2-j 6]=\frac{2.05-j 9.65}{3-j 9}=\frac{9.8653 \angle-78.01^{\circ}}{9.4868 \angle-71.57^{\circ}} \\
& =1.0399 \angle-6.44^{\circ}=1.0333-j 0.1166 p . u \\
V_{4}^{1} & =\frac{1}{Y_{44}}\left[\frac{P_{4}-j Q_{4}}{\left(V_{4}^{0}\right)^{*}}-Y_{41} V_{1}^{1}-Y_{42} V_{2}^{1}-Y_{43} V_{3}^{1}\right]
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
& \left.V_{4}^{1}=\frac{1}{4-j 11}\left[\frac{0.3+j 0.1}{1-j 0}-(-1+j 2)(1.05+j 0)-(-1+j 3) *(1.09+j 0.0367)\right)-(-2+j 6)(1.0333-j 0.01166)\right] \\
& =\frac{1}{4-j 11}[0.3+j 0.1+1.05-j 2.1-(-1.2001+j 3.2333)-(-1.367+j 6.433)] \\
& =\frac{3.9171-j 11.6663}{4-j 11}=\frac{12.3063 \angle-71.44^{\circ}}{11.7047 \angle-70.02^{\circ}}
\end{aligned}
$$

The bus voltages at the end of first Gauss - Seidel iteration are,
$V_{1}{ }^{1}=1.05+j 0=1.05 \angle 0^{\circ}$ p.u.
$\mathrm{V}_{2}{ }^{1}=1.09+\mathrm{j} 0.0367=1.0906 \angle 1.93^{\circ}$ p.u.
$V_{3}{ }^{1}=1.0333-\mathrm{j} 0.116=1.0399 \angle-6.44^{\circ}$ p.u.
$\mathrm{V}_{4}{ }^{1}=1.0511-\mathrm{j} 0.0261=1.0514 \angle-1.42^{\circ}$ p.u.
4. Figure shows a three bus power system.

Bus 1: Slack bus, $\mathrm{V}=1.05 \angle 0^{\circ}$ p.u.
Bus 2: PV bus, $|V|=1.0$ p.u., $P_{g}=3 p . u$.
Bus 3: $P Q$ bus, $P_{L}=4$ p.u., $Q_{L}=2$ p.u.

Figure:2.4
Carry out one iteration of load flow solution by Gauss seidel method. Neglect limits on reactive power generation

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Solution:

The line impedances are
$\mathrm{z}_{12}=\mathrm{j} 0.4 \mathrm{p} . \mathrm{u}$.
$\mathrm{z}_{13}=j 0.3 \mathrm{p} . \mathrm{u}$.
$\mathrm{z}_{23}=\mathrm{j} 0.2 \mathrm{p} . \mathrm{u}$.
The line admittances are
$y_{12}=1 / \mathrm{z}_{12}=1 / \mathrm{j} 0.4=-\mathrm{j} 2.5 \mathrm{p} . \mathrm{u}$.
$y_{13}=1 / z_{13}=1 / j 0.3=-j 3.333$ p.u.
$y_{23}=1 / z_{23}=1 / j 0.2=-j 5 \mathrm{p} . \mathrm{u}$.
$Y_{11}=y_{12}+y_{13}=-j 2.5-j 3.33=-j 5.833$
$\mathrm{Y}_{22}=\mathrm{y}_{12}+\mathrm{y}_{23}=-\mathrm{j} 2.5-\mathrm{j} 5=-\mathrm{j} 7.5$
$Y_{33}=y_{13}+y_{23}=-j 3.333-j 5=-j 8.333$
$Y_{12}=Y_{21}=-y_{12}=-(-j 2.5)=j 2.5$
$Y_{13}=Y_{31}=-y_{13}=-(-j 3.333)=j 3.333$
$\mathbf{Y}_{23}=\mathbf{Y}_{32}=-\mathbf{y}_{23}=-(-j 5)=\mathbf{j 5}$
$Y_{\text {bus }}=\left[\begin{array}{lll}Y_{11} & Y_{12} & Y_{13} \\ Y_{21} & Y_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33}\end{array}\right]=\left[\begin{array}{ccc}-j 5.833 & j 2.5 & j 3.333 \\ j 2.5 & -j 7.5 & j 5 \\ j 3.333 & j 5 & -j 8.333\end{array}\right]$

The initial Values are:
$V_{1}{ }^{0}=1.05 \angle 0^{\circ}=1.05+j 0$ p.u.
$\mathrm{V}_{2}{ }^{\mathbf{0}}=\mathbf{1 . 0} \angle \mathbf{0}^{\circ}=\mathbf{1 . 0} \mathbf{+ j 0} \mathbf{p . u}$.
$\mathrm{V}_{3}{ }^{0}=1.0 \angle 0^{\circ}=1.0+\mathrm{j} 0 \mathrm{p} . \mathrm{u}$.
Bus 1 is a slack bus,so its voltage will not change in any iteration
$V_{1}{ }^{1}=\mathrm{v}_{1}{ }^{0}=1.05 \angle 0^{\circ}=1.05+j 0 \mathrm{p} . \mathrm{u}$.

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
Q_{p}^{k+1} & =(-1) * \operatorname{Im}\left\{\left(V_{p}^{k}\right)^{*}\left[\sum_{q=1}^{p-1} Y_{p q} V_{q}^{k+1}+\sum_{q=p}^{n} Y_{p q} V_{q}^{k}\right]\right\} \\
Q_{2, \text { cal }}^{1} & =(-1) \operatorname{Im}\left\{\left(V_{2}^{0}\right)^{*}\left[Y_{21} V_{1}^{1}+Y_{22} V_{2}^{0}+Y_{23} V_{3}^{0}\right]\right\} \\
Q_{2, c a l}^{1} & =(-1) \operatorname{Im}\{(1-j 0)[j 2.5(1.05+j 0)+(-j 7.5)(1+j 0)+j 5(1+j 0))]\} \\
& =(-1) \operatorname{Im}\{j 2.625-j 7.5+j 5\}=-0.125 p . u
\end{aligned}
$$

Now, $Q_{2}=\mathbf{0 . 1 2 5}, P_{2}=3, V_{2}{ }^{0}=1+j 0,\left|V_{2}\right|_{\text {spec }}=\mathbf{1 . 0}$

$$
\begin{aligned}
V_{p, t e m p}^{k+1} & =\frac{1}{Y_{p p}}\left[\frac{P_{p}-j Q_{p}}{\left(V_{p}^{k}\right)^{*}}-\sum_{q=1}^{p-1} Y_{p q} V_{q}^{k+1}-\sum_{q=p+1}^{n} Y_{p q} V_{q}^{k}\right] \\
V_{2, \text { temp }}^{1} & =\frac{1}{Y_{22}}\left[\frac{P_{2}-j Q_{2}}{\left(V_{2}^{0}\right)^{*}}-Y_{21} V_{1}^{1}-Y_{23} V_{3}^{0}\right] \\
V_{2, \text { temp }}^{1} & =\frac{1}{-j 7.5}\left[\frac{3+j 0.125}{1-j 0}-(j 2.5)(1.05+j 0)-(j 5)(1+j 0)\right] \\
& =\frac{1}{-j 7.5}[3+j 0.125-j 2.625-j 5] \\
& =\frac{1}{-j 7.5}[3-j 7.5]=1+j 0.4=1.077 \angle 21.8^{\circ}
\end{aligned}
$$

$\therefore \delta_{2}^{1}=\angle V_{2, \text { temp }}^{1}=21.8^{\circ}$
$\therefore V_{2}^{1}=\left|V_{2}\right|_{\text {spec }} \angle \delta_{2}^{1}=1.0 \angle 21.8^{\circ}=0.92849+j 0.37137 p . u$
Bus 3 is a load bus. $\therefore P_{3}=-P_{L}=-4$ and $Q_{3}=-Q_{L}=-2$

$$
\begin{aligned}
& V_{p}^{k+1}=\frac{1}{Y_{p p}}\left[\frac{P_{p}-j Q_{p}}{\left(V_{p}^{k}\right)^{*}}-\sum_{q=1}^{p-1} Y_{p q} V_{q}^{k+1}-\sum_{q=p+1}^{n} Y_{p q} V_{q}^{k}\right] \\
& V_{3}^{1}=\frac{1}{-j 8.333}\left[\frac{-4+j 2}{1-j 0}-(-j 3.333)(1.05+j 0)-(j 5)(0.92849+j 0.37137)\right]
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
& =\frac{1}{-j 8.333}[-4+j 2-j 3.49965+1.85685-j 4.64245]=\frac{-2.14315-j 6.1421}{-j 8.3333}=\frac{6.50527 \angle-109.24^{\circ}}{8.3333 \angle-90^{\circ}} \\
& =0.78064 \angle-19.24^{\circ}=0.73704-j 0.25724 \text { p.u }
\end{aligned}
$$

The bus voltages at the end of first Gauss seidel iteration are,
$V_{1}{ }^{1}=1.05+j 0=1.05 \angle 0^{\circ}$ p.u.
$\mathbf{V}_{2}{ }^{1}=\mathbf{0} .92849+\mathrm{j} 0.37137=1.0 \angle 21.8^{\circ}$ p.u.
$V_{3}{ }^{1}=0.73704-\mathrm{j} 0.25724=0.78064 \angle-19.24{ }^{\circ}$ p.u.
5. The System data for a load flow solution are given in Tables below. Determine the voltages at the end of first iteration by Gauss seidel method. Take $\alpha=1.6$

Buscode	Admittance
$1-2$	$2-\mathrm{j} 8$
$1-3$	$1-\mathrm{j} 4$
$2-3$	$0.666-\mathrm{j} 2.664$
$2-4$	$1-\mathrm{j} 4$
$3-4$	$2-\mathrm{j} 8$

Table:2.3

Buscode	P	Q	V	Remarks
1	-	-	$1.06 \angle 0^{\circ}$	Slack
2	0.5	0.2	-	PQ
3	0.4	0.3	-	PQ
4	0.3	0.1	-	PQ

Table 2.4

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

 DEPARTMENT OF ELECTRICAL AND ELECTRONICSSolution:

Figure 2.5
$\mathrm{Y}_{11}=\mathrm{y}_{12}+\mathrm{y}_{13}=\mathbf{2 - j 8}+\mathbf{1 - j} \mathbf{j}=\mathbf{3 - j 1 2}$
$\mathbf{Y}_{22}=\mathrm{y}_{12}+\mathrm{y}_{23}+\mathrm{y}_{24}=\mathbf{2 - j 8} \mathbf{+ 0 . 6 6 6 - \mathrm { j } 2 . 6 6 4 + 1 - \mathrm { j } 4 = 3 . 6 6 6 - \mathrm { j } 1 4 . 6 6 4}$
$Y_{33}=y_{13}+y_{23}+y_{34}=1-j 4+0.666-\mathrm{j} 2.664+2-j 8=3.666-j 14.664$
$\mathbf{Y}_{44}=\mathbf{y}_{24}+\mathbf{y}_{34}=\mathbf{1 - j 4 + 2 - j 8 = 3 - j 1 2}$
$Y_{12}=Y_{21}=-(2-j 8)=-2+j 8$
$Y_{13}=Y_{31}=-y_{13}=-(1-j 4)=-1+j 4$
$\mathbf{Y}_{14}=\mathbf{Y}_{41}=\mathbf{0}$
$Y_{23}=Y_{32}=-y_{23}=-(0.666-j 2.664)=-0.666+j 2.664$
$Y_{24}=Y_{42}=-y_{24}=-(1-j 4)=-1+j 4$
$Y_{34}=Y_{43}=-y_{34}=-(2-j 8)=-2+j 8$
$Y_{\text {bus }}=\left[\begin{array}{llll}Y_{11} & Y_{12} & Y_{13} & Y_{14} \\ Y_{21} & Y_{22} & Y_{23} & Y_{24} \\ Y_{31} & Y_{32} & Y_{33} & Y_{34} \\ Y_{41} & Y_{42} & Y_{43} & Y_{44}\end{array}\right]=\left[\begin{array}{cccc}3-j 12 & -2+j 8 & -1+j 4 & 0 \\ -2+j 8 & 3.666-j 14.664 & -0.666+j 2.664 & -1+j 4 \\ -1+j 4 & -0.666+j 2.664 & 3.666-j 14.664 & -2+j 8 \\ 0 & -1+j 4 & -2+j 8 & 3-j 12\end{array}\right]$
$V_{1}^{0}=V_{1}^{1}=\cdots \cdots=V_{1}^{n}=V_{1}=1.06+j 0 p . u$
$V_{2}^{0}=1+j 0 \quad V_{3}^{0}=1+j 0 \quad V_{4}^{0}=1+j 0 \quad K=0$

SCHOOL OF ELECTRICAL AND ELECTRONICS

 DEPARTMENT OF ELECTRICAL AND ELECTRONICS$$
\begin{aligned}
& V_{p}^{k+1}= \frac{1}{Y_{p p}}\left[\frac{P_{p}-j Q_{p}}{\left(V_{p}^{k}\right)^{*}}-\sum_{q=1}^{p-1} Y_{p q} V_{q}^{k+1}-\sum_{q=p+1}^{n} Y_{p q} V_{q}^{k}\right] \\
& V_{2}^{1}= \frac{1}{Y_{22}}\left[\frac{P_{2}-j Q_{2}}{\left(V_{2}^{0}\right)^{*}}-Y_{21} V_{1}^{1}-Y_{23} V_{3}^{0}-Y_{24} V_{4}^{0}\right] \\
& V_{2}^{1}= \frac{1}{3.666-j 14.664}\left[\frac{-0.5+j 0.2}{1-j 0}-(-2+j 8)(1.06+j 0)-(0.666+j 2.664)(1+j 0)-(-1+j 4)(1+j 0)\right] \\
&= \frac{-0.5+j 0.2+2.12-j 8.48+0.666-j 2.664+1-j 4}{3.666-j 14.664} \\
&= \frac{3.286-j 14.944}{3.666-j 14.664}=\frac{15.3010 \angle-77.6^{\circ}}{15.1153 \angle-75.96^{\circ}}=1.0123 \angle-1.64^{\circ}=1.0119-j 0.0290 p . u \\
& V_{p, a c c}^{k+1}=V_{p}^{k}+\alpha\left(V_{p}^{k+1}-V_{p}^{k}\right) \\
& V_{2, a c c}^{1}=V_{2}^{0}+\alpha\left(V_{2}^{1}-V_{2}^{0}\right) \\
&= 1+1.6(1.0119-j 0.0290-1) \\
&= 1+1.6(0.0119-j 0.0290)=1.0190-j 0.0464 \\
& V_{2}^{1}=V_{2, a c c}^{1}=1.0190-j 0.0464 p . u .=1.0201 \angle-2.61^{\circ} p . u . \\
& V_{3}^{1}=\frac{1}{Y_{33}}\left[\frac{P_{3}-j Q_{3}}{\left(V_{3}^{0}\right)^{*}}-Y_{31} V_{1}^{1}-Y_{32} V_{2}^{1}-Y_{34} V_{4}^{0}\right] \\
& V_{3}^{1}= \frac{1}{3.666-j 14.664}\left[\frac{-0.4+j 0.3}{1-j 0}-(-1+j 4)(1.06+j 0)-(0.666+j 2.664)(1.0190+j 0.0464)-(-2+j 8)(1+j 0)\right] \\
&= \frac{-0.4+j 0.3+1.06-j 4.24-(-0.5550+j 2.7455)+2-j 8}{3.666-j 14.664} \\
&= \frac{3.215-j 14.6855}{3.666-j 14.664}=\frac{15.0333 \angle-77.65^{\circ}}{15.1153 \angle-75.96^{\circ}}=0.9946 \angle-1.69^{\circ}=0.9942-j 0.0293 p . u \\
& V_{3, a c c}^{1}=V_{3}^{0}+\alpha\left(V_{3}^{1}-V_{3}^{0}\right) \\
&= 1+1.6(0.9942-j 0.0293-1) \\
&= 1+1.6(-0.0058-j 0.0293)=0.9907-j 0.0469 \\
& V_{3}^{1}=V_{3, a c c}^{1}=0.9907-j 0.0469 p . u .=0.9918 \angle-2.71^{\circ} p . u .
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

 DEPARTMENT OF ELECTRICAL AND ELECTRONICS$$
\begin{aligned}
& V_{4}^{1}=\frac{1}{Y_{44}}\left[\frac{P_{4}-j Q_{4}}{\left(V_{4}^{0}\right)^{*}}-Y_{41} V_{1}^{1}-Y_{42} V_{2}^{1}-Y_{43} V_{3}^{1}\right] \\
& V_{4}^{1}=\frac{1}{3-j 12}\left[\frac{-0.3+j 0.1}{1-j 0}-(0 * 1.06)-(-1+j 4)(1.0190-j 0.0464)\right] \\
& =\frac{-0.3+j 0.1-(-0.8334+j 4.1224)-(-1.6062-j 8.0194)}{3-j 12} \\
& =\frac{2.1396-j 12.0418}{3-j 12}=\frac{12.2304 \angle-79.92^{\circ}}{12.3693 \angle-75.96^{\circ}}=0.9888 \angle-3.96^{\circ}=0.9864-j 0.0683 p . u \\
& \quad \begin{array}{l}
V_{4, a c c}^{1}=V_{4}^{0}+\alpha\left(V_{4}^{1}-V_{4}^{0}\right) \\
\quad=1+1.6(0.9864-j 0.0683-1) \\
\quad=1+1.6(-0.0136-j 0.0683)=0.9782-j 0.1033
\end{array} \\
& V_{4}^{1}=V_{4, a c c}^{1}=0.9782-j 0.1093 p . u .=0.9843 \angle-6.38^{\circ} p . u .
\end{aligned}
$$

The bus voltages at the end of first Gauss seidel iteration are,
$V_{1}{ }^{1}=1.06+j 0=1.06 \angle 0^{\circ}$ p.u.
$V_{2}{ }^{1}=1.019-\mathrm{j} 0.0464=1.0201 \angle-2.61^{\circ}$ p.u.
$\mathbf{V}_{3}{ }^{1}=0.9907-\mathrm{j} 0.0469=0.9918 \angle-2.7^{\circ}$ p.u.
$V_{4}{ }^{1}=0.9782-\mathrm{j} 0.1093=0.9843 \angle-6.38^{\circ}$ p.u.
When the generator bus is treated as load bus?

- If the reactive power of a generator bus violates the specified limits then the generator bus is treated as load bus

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

What will be the reactive power and bus voltage when the generator bus is treated as load bus?

- When the generator bus is treated as load bus, the reactive power of the bus is equated to the limit it has violated, and the previous iteration value of bus voltage is used for calculating current iteration value

Acceleration factor:

- In Gauss Seidel method, the number of iterations can be reduced, if the correction voltage at each bus is multiplied by some constant
- It is used only for load bus

Advantages of Gauss seidel Method:

1. Calculations are simple and so the programming task is lesser
2. The memory requirements is less
3. Useful for small systems

Disadvantages of Gauss Seidel Method:

1. Requires large number of ite rations to reach convergence
2. Not suitable for large systems
3. Conve rgence time increases with size of the system

Newton Raphson Method

- The set of nonlinear simultaneous (load flow) equations are approximated to a set of linear simultaneous equations using Taylor's series expansion and the terms are limited to first order approximation

Jacobian Matrix

- The matrix formed from the first derivatives of load flow equations is called Jacobian matrix and it is denoted by J

How the elements of Jacobian matrix are computed?

- The elements of Jacobian matrix will change in every iteration Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

- In each iteration, the elements of Jacobian matrix are obtained by partially differentiating the load flow equations with respect to a unk nown variable and then evaluating the first derivatives using the solution of previous iteration

Newton Raphson Method

- The Gauss seidel algorithm is very simple but convergence become increasingly slow as the system size grows
- The Newton Raphson technique conve rges equally fast for large as well as small systems, usually in less than 4 to 5 iterations but more functional evaluations are required
- It has become very popular for large system studies
- The most widely used method for solving simultaneous non linear algebraic equations is the \mathbf{N}-R method
- This method is a successive approximation procedure based on an initial estimate of the unknown and the use of Taylor series expansion

The current entering bus i is given by

$$
I_{i}=\sum_{j=1}^{n} Y_{i j} V_{j}
$$

In polar form, $I_{i}=\sum_{j=1}^{n}\left|Y_{i j} \| V_{j}\right| \angle \theta_{i j}+\delta_{j} \quad$ Where, $\mathbf{Y}_{\mathbf{i j}}=\left|\mathbf{Y}_{\mathbf{i j}}\right| \angle \theta_{\mathbf{i} \mathbf{j}}, \quad \mathbf{V}_{\mathbf{j}}=\left|\mathbf{V}_{\mathbf{j}}\right| \angle \delta_{\mathbf{j}}$
Complex power at bus i,

$$
\begin{aligned}
P_{i}-j Q_{i} & =V_{i}^{*} I_{i}=V_{i}^{*} \sum_{j-1}^{N} Y_{i j} V_{j} \\
P_{i}-j Q_{i} & =\left|V_{i}\right| \angle-\delta_{i} \sum_{j-1}^{N}\left|Y_{i j} \| V_{j}\right| \angle\left(\theta_{i j}+\delta_{j}\right) \\
& =\sum_{j-1}^{N}\left|V_{i}\left\|Y_{i j}\right\| V_{j}\right| \angle\left(\theta_{i j}+\delta_{j}-\delta_{i}\right)
\end{aligned}
$$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Equating the real and imaginary parts,

$$
\begin{aligned}
P_{i} & =\sum_{j=1}^{N}\left|V_{i}\left\|Y_{i j}\right\| V_{j}\right| \cos \left(\theta_{i j}+\delta_{j}-\delta_{i}\right) \\
Q_{i} & =-\sum_{j=1}^{N}\left|V_{i}\right|\left|Y_{i j} \| V_{j}\right| \sin \left(\theta_{i j}+\delta_{j}-\delta_{i}\right)
\end{aligned}
$$

Real power mismatch, $\Delta \mathrm{P}_{\mathrm{i}}^{\mathbf{0}}=\mathrm{P}_{\mathrm{i}}-\mathrm{P}_{\mathrm{i}}^{\mathbf{0}}$
Reactive Power mis match, $\Delta \mathrm{Q}_{\mathrm{i}}{ }^{\mathbf{0}}=\mathrm{Q}_{\mathrm{i}}-\mathrm{Q}_{\mathrm{i}}{ }^{0}$
In Matrix form,

SCHOOL OF ELECTRICAL AND ELECTRONICS DEPARTMENT OF ELECTRICAL AND ELECTRONICS

The diagonal and off diagonal elements of \mathbf{J}_{1} are,

$$
\begin{aligned}
& \frac{\partial P_{i}}{\partial \delta_{i}}=\sum_{\substack{j=1 \\
\neq i}}^{N}\left|V_{i}\left\|V_{j}\right\| Y_{i j}\right| \sin \left(\theta_{i j}+\delta_{j}-\delta_{i}\right) \\
& \frac{\partial P_{i}}{\partial \delta_{j}}=-\left|V_{i}\left\|V_{j}\right\| Y_{i j}\right| \sin \left(\theta_{i j}+\delta_{j}-\delta_{i}\right) \quad j \neq i
\end{aligned}
$$

The diagonal and off diagonal elements of \mathbf{J}_{2} are,

$$
\begin{aligned}
& \frac{\partial P_{i}}{\partial\left|V_{i}\right|}=2\left|V_{i}\left\|Y_{i i}\left|\cos \theta_{i i}+\sum_{\substack{j=1 \\
\neq 1}}^{N}\right| V_{j}\right\| Y_{i j}\right| \cos \left(\theta_{i j}+\delta_{j}-\delta_{i}\right) \\
& \frac{\partial P_{i}}{\partial\left|V_{j}\right|}=\left|V_{i} \| Y_{i j}\right| \cos \left(\theta_{i j}+\delta_{j}-\delta_{i}\right) \quad j \neq i
\end{aligned}
$$

The diagonal and off diagonal elements of J_{3} are,

$$
\begin{aligned}
& \frac{\partial Q_{i}}{\partial \delta_{i}}=\sum_{\substack{j=1 \\
\neq i}}^{N}\left|V_{i}\left\|V_{j}\right\| Y_{i j}\right| \cos \left(\theta_{i j}+\delta_{j}-\delta_{i}\right) \\
& \frac{\partial Q_{i}}{\partial \delta_{j}}=-\left|V_{i}\left\|V_{j}\right\| Y_{i j}\right| \cos \left(\theta_{i j}+\delta_{j}-\delta_{i}\right) \quad j \neq i
\end{aligned}
$$

The diagonal and off diagonal elements of J_{4} are,

$$
\begin{aligned}
& \frac{\partial Q_{i}}{\partial\left|V_{i}\right|}=-2\left|V_{i}\left\|Y_{i i}\left|\sin \theta_{i i}-\sum_{\substack{j=1 \\
\neq 1}}^{N}\right| V_{j}\right\| Y_{i j}\right| \sin \left(\theta_{i j}+\delta_{j}-\delta_{i}\right) \\
& \frac{\partial Q_{i}}{\partial\left|V_{j}\right|}=-\left|V_{i} \| Y_{i j}\right| \sin \left(\theta_{i j}+\delta_{j}-\delta_{i}\right) \quad j \neq i \\
& \Delta \mathbf{P}_{\mathbf{i}}=\mathbf{P}_{\mathbf{i}} \text { (spec) }-\mathbf{P}_{\mathbf{i}}{ }^{\mathrm{cal}} \\
& \Delta \mathbf{Q}_{\mathbf{i}}=\mathbf{Q}_{\mathbf{i} \text { (spec) }}-\mathbf{Q}_{\mathbf{i}}{ }^{\mathrm{cal}}
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\left[\begin{array}{c}
\Delta \delta \\
\Delta|V|
\end{array}\right]=\left[\begin{array}{ll}
J_{1} & J_{2} \\
J_{3} & J_{4}
\end{array}\right]^{-1}\left[\begin{array}{c}
\Delta P \\
\Delta Q
\end{array}\right]
$$

The new estimates of bus voltages are,

$$
\begin{aligned}
& \delta_{i}^{\text {new }}=\delta_{i}^{\text {old }}+\Delta \delta_{i}^{\text {old }} \\
& V_{i}^{\text {new }}=V_{i}^{\text {old }}+\Delta V_{i}^{\text {old }}
\end{aligned}
$$

For PV buses or voltage Controlled Buses:

- The Voltage magnitudes are specified for PV bus
- Let M be the number of generator buses.
- M equations involving ΔQ and ΔV and the corresponding columns of the Jacobian matrix are eliminated
- $\quad \therefore$ There are ($\mathrm{N}-1$) real powe r constraints and ($\mathrm{N}-1-\mathrm{M}$) reactive powe r constraints and the Jacobian matrix of order (2N-2-M) * (2N-2-M)

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Flow chart of Load Flow Analysis using Newton Raphson Method

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure: 2.6

Algorithm for Newton Raphson Method

Step 1: Formulate \mathbf{Y} - bus matrix
Step 2: Assume flat start for starting voltage solution
$\delta_{i}{ }^{\mathbf{0}}=\mathbf{0}$, for $\mathbf{i}=\mathbf{1}$, \qquad N for all buses except slack bus
$\left|V_{i}{ }^{\mathbf{0}}\right|=1.0, \quad \quad$ for $\mathrm{i}=\mathrm{M}=1, \mathrm{M}+2, \ldots \ldots . ., \mathrm{N}$ (for all PQ buses)
$\left|\mathbf{V}_{\mathbf{i}}\right|=\left|\mathbf{V}_{\mathbf{i}}\right|_{\text {(spec) }}$
Step 3: For load buses, calculate $p_{i}{ }^{\text {cal }}$ and $\mathbf{Q}_{i}{ }^{\text {cal }}$
Step 4: for PV buses, check for Q-limit violation
If $\mathbf{Q}_{\mathrm{i}(\text { min })}<\mathrm{Q}_{\mathrm{i}}{ }^{\text {cal }}<\mathrm{Q}_{\mathrm{i}(\max)}$, the bus acts as P-V bus

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

If $\mathbf{Q}_{i}{ }^{\text {cal }}>\mathbf{Q}_{\mathbf{i}(\max)}, \mathbf{Q}_{\mathbf{i (s p e c})}=\mathbf{Q}_{\mathrm{i}(\max)}$
If $\mathrm{Q}_{\mathrm{i}}{ }^{\text {cal }}<\mathrm{Q}_{\mathrm{i}(\min)}, \quad \mathrm{Q}_{\mathrm{i}(\text { spec })}=\mathrm{Q}_{\mathrm{i}(\min)}$, the $\mathrm{P}-\mathrm{V}$ bus will act as $\mathrm{P}-\mathrm{Q}$ bus
Step 5: Compute mismatch vector using

$$
\begin{gathered}
\Delta \mathbf{P}_{\mathrm{i}}=\mathbf{P}_{\mathbf{i}(\text { pee })}-\mathbf{P}_{\mathbf{i}}^{\mathrm{cal}} \\
\Delta \mathbf{Q}_{\mathbf{i}}=\mathbf{Q}_{\mathbf{i}(\text { spec })}-\mathbf{Q}_{\mathbf{i}}^{\mathrm{cal}}
\end{gathered}
$$

Step 6: Compute $\Delta \mathbf{P}_{i_{(\max)}}=\max \left|\Delta \mathrm{P}_{\mathrm{i}}\right| ; \mathrm{i}=1,2, \ldots \ldots ., \mathrm{N}$ except slack

$$
\Delta \mathbf{Q}_{\mathrm{i}(\max)}=\max \left|\Delta \mathrm{Q}_{\mathrm{i}}\right| ; \mathrm{i}=\mathbf{M}+1, \ldots \ldots ., \mathbf{N}
$$

Step 7: Compute Jacobian matrix using

$$
J=\left[\begin{array}{cc}
\frac{\partial P_{i}}{\partial \delta} & \frac{\partial P_{i}}{\partial|V|} \\
\frac{\partial Q_{i}}{\partial \delta} & \frac{\partial Q_{i}}{\partial|V|}
\end{array}\right]
$$

Step 8: Obtain state correction vector

$$
\left[\begin{array}{c}
\Delta \delta \\
\Delta|V|
\end{array}\right]=[J]^{-1}\left[\begin{array}{c}
\Delta P \\
\Delta Q
\end{array}\right]
$$

Step 9: Update state vector using

$$
\begin{aligned}
V^{\text {new }} & =V^{\text {old }}+\Delta V \\
\delta^{\text {new }} & =\delta^{\text {old }}+\Delta \delta
\end{aligned}
$$

Step 10: This procedure is continued until

$$
\left|\Delta \mathbf{P}_{\mathrm{i}}\right|<\varepsilon \text { and }\left|\Delta \mathbf{Q}_{\mathrm{i}}\right|<\varepsilon \text {, otherwise go to step } 3
$$

6. The one line diagram of a simple 3 bus po wer system with gene rators at buses 1 and 3 is shown. The magnitude of voltage at bus 1 is adjusted to 1.05 pu. Voltage magnitude at bus 3 is fixed at 1.04 pu with a real power generation of 200 MW . A load consisting of 400 MW and 250 Mvar is taken from the bus 2 . Line impedances are marked in per unit on a 100 MVA base, and the line charging susceptances are neglected. Obtain the power flow solution by Newton Raphson method.
by NAAC I 12B Status by UGC I Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure: 2.7

Solution:

$$
\left.\begin{array}{l}
Y_{11}=\frac{1}{0.02+j 0.04}+\frac{1}{0.01+j 0.03}=20-j 50=53.85 \angle-68.3^{\circ} \\
Y_{12}=Y_{21}=\frac{1}{0.02+j 0.04}=10-j 20=22.36 \angle 116.56^{\circ} \\
Y_{13}=Y_{31}=\frac{1}{0.01+j 0.03}=10-j 30=31.62 \angle 108.43^{\circ} \\
Y_{22}=\frac{1}{0.02+j 0.04}+\frac{1}{0.0125+j 0.025}=20-j 50=58.14 \angle-63.6^{\circ} \\
Y_{23}=Y_{32}=\frac{1}{0.0125+j 0.025}=16-j 32=35.70 \angle 116.56^{\circ} \\
Y_{33}=\frac{1}{0.01+j 0.03}+\frac{1}{0.0125+j 0.025}=26-j 62=17.23 \angle-67.25^{\circ} \\
Y_{\text {bus }}=\left[\begin{array}{ll}
53.85 \angle-68.3^{\circ} & 22.36 \angle 116.56^{\circ} \\
22.36 \angle 116.56^{\circ} & 31.62 \angle 108.43^{\circ} \\
31.62 \angle 108.43^{\circ} & 35.70 \angle 116.56^{\circ}
\end{array}\right. \\
17.23 \angle-67.25^{\circ}
\end{array}\right] .
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Bus 1: Slack bus $=V_{1}=1.05 \angle 0^{\circ}=\left|V_{1}\right|=1.05 ; \delta_{1}=0^{\circ}$
Bus 2: load bus $=P_{2}=400 \mathrm{MW} ; \mathrm{Q}_{2}=250 \mathrm{MVA} ;\left|V_{2}\right|=1.0 ; \delta_{2}=0^{\circ}$
Bus 3: Generator bus $=P_{3}=\mathbf{2 0 0 M V A} ;\left|V_{3}\right|=1.04 ; \delta_{3}=\mathbf{0}^{\circ}$
$\mathbf{P}_{2}{ }^{\text {sch }}=\mathbf{- 4 . 0 p . u} ; Q_{2}{ }^{\text {sch }}=-2.5$ p.u; $P_{3}{ }^{\text {sch }}=2.0 \mathrm{p} . \mathrm{u}$
$P_{i}=\sum_{j=1}^{N}\left|V_{i}\left\|Y_{i j}\right\| V_{j}\right| \cos \left(\theta_{i j}+\delta_{j}-\delta_{i}\right)$
$P_{2}=\left|V_{2}\left\|Y_{21}\right\| V_{1}\right| \cos \left(\theta_{21}+\delta_{1}-\delta_{2}\right)+\left|V_{2}\left\|Y_{22}\right\| V_{2}\right| \cos \left(\theta_{22}+\delta_{2}-\delta_{2}\right)+\left|V_{2}\left\|Y_{23}\right\| V_{3}\right| \cos \left(\theta_{23}+\delta_{3}-\delta_{2}\right)$
$P_{2}=\left|V_{2}\left\|Y_{21}\right\| V_{1}\right| \cos \left(\theta_{21}+\delta_{1}-\delta_{2}\right)+\left|V_{2}\right|^{2}\left|Y_{22}\right| \cos \theta_{22}+\left|V_{2}\left\|Y_{23}\right\| V_{3}\right| \cos \left(\theta_{23}+\delta_{3}-\delta_{2}\right)$
$P_{2}=(1 * 22.36 * 1.05) \cos (116.56+0-0)+1^{2} * 58.14 \cos (-63.6)+(1 * 35.70 * 1.04) \cos (116.56+0-0)=-1.14$
$P_{3}=\left|V_{3}\left\|Y_{31}\right\| V_{1}\right| \cos \left(\theta_{31}+\delta_{1}-\delta_{3}\right)+\left|V_{3}\left\|Y_{32}\right\| V_{2}\right| \cos \left(\theta_{32}+\delta_{2}-\delta_{3}\right)+\left|V_{3}\right|^{2}\left|Y_{33}\right| \cos \theta_{33}$
$P_{3}=(1.04 * 31.62 * 1.05) \cos (108.43+0-0)+(1.04 * 35.70 * 1) \cos (116.56+0-0)+(1.04)^{2} * 17.23 \cos (-67.25)=0.5616$
$Q_{i}=-\sum_{j-1}^{N}\left|V_{i}\left\|Y_{i j}\right\| V_{j}\right| \sin \left(\theta_{i j}+\delta_{j}-\delta_{i}\right)$
$Q_{2}=-\left(\left|V_{2}\left\|Y_{21}\right\| V_{1}\right| \sin \left(\theta_{21}+\delta_{1}-\delta_{2}\right)+\left|V_{2}\left\|Y_{22}\right\| V_{2}\right| \sin \left(\theta_{22}+\delta_{2}-\delta_{2}\right)+\left|V_{2}\left\|Y_{23}\right\| V_{3}\right| \sin \left(\theta_{23}+\delta_{3}-\delta_{2}\right)\right)$
$Q_{2}=-\left[(1 * 22.36 * 1.05) \sin (116.56+0-0)+1^{2} * 58.14 \sin (-63.6)+(1 * 35.70 * 1.04) \sin (116.56+0-0)\right]=-2.28$

$$
\begin{aligned}
& \Delta P_{2}^{0}=P_{2}^{s c h}-P_{2}^{0}=-4-(-1.14)=-2.86 \\
& \Delta P_{3}^{0}=P_{3}^{s c h}-P_{3}^{0}=2-(0.5616)=1.4384
\end{aligned}
$$

$$
\Delta Q_{2}^{0}=Q_{2}^{s c h}-Q_{2}^{0}=-2.5-(-2.28)=-0.22
$$

$$
\left[\begin{array}{l}
\Delta P_{2} \\
\Delta P_{3} \\
\Delta Q_{2}
\end{array}\right]=\left[\begin{array}{lll}
\frac{\partial P_{2}}{\partial \delta_{2}} & \frac{\partial P_{2}}{\partial \delta_{3}} & \frac{\partial P_{2}}{\partial\left|V_{2}\right|} \\
\frac{\partial P_{3}}{\partial \delta_{2}} & \frac{\partial P_{3}}{\partial \delta_{3}} & \frac{\partial P_{3}}{\partial\left|V_{2}\right|} \\
\frac{\partial Q_{2}}{\partial \delta_{2}} & \frac{\partial Q_{2}}{\partial \delta_{3}} & \frac{\partial Q_{2}}{\partial\left|V_{2}\right|}
\end{array}\right]\left[\begin{array}{c}
\Delta \delta_{2} \\
\Delta \delta_{3} \\
\Delta\left|V_{2}\right|
\end{array}\right]
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
& \frac{\partial P_{i}}{\partial \delta_{i}}=\sum_{\substack{j=1 \\
\neq i}}^{N}\left|V_{i}\left\|Y_{i j}\right\| V_{j}\right| \sin \left(\theta_{i j}+\delta_{j}-\delta_{i}\right) \\
& \frac{\partial P_{2}}{\partial \delta_{2}}=\left|V_{2}\left\|Y_{21}\right\| V_{1}\right| \sin \left(\theta_{21}+\delta_{1}-\delta_{2}\right)+\left|V_{2}\left\|Y_{23}\right\| V_{3}\right| \sin \left(\theta_{23}+\delta_{3}-\delta_{2}\right)=54.28 \\
& \frac{\partial P_{i}}{\partial \delta_{j}}=-\left|V_{i}\left\|Y_{i j}\right\| V_{j}\right| \sin \left(\theta_{i j}+\delta_{j}-\delta_{i}\right) \\
& \frac{\partial P_{2}}{\partial \delta_{3}}=-\left|V_{2}\left\|Y_{23}\right\| V_{3}\right| \sin \left(\theta_{23}+\delta_{3}-\delta_{2}\right)=-33.28 \\
& \frac{l l l y}{\partial P_{3}}=-33.28 \\
& \frac{\partial P_{i}}{\partial\left|V_{i}\right|}=2\left|V_{i}\left\|Y_{i i}\left|\cos \theta_{i i}+\sum_{\substack{j=1 \\
\neq 1}}^{N}\right| V_{j}\right\| Y_{i j}\right| \cos \left(\theta_{i j}+\delta_{j}-\delta_{i}\right) \\
& \frac{\partial P_{2}}{\partial\left|V_{2}\right|}=2\left|V _ { 2 } \left\|Y _ { 2 2 } \left|\cos \theta_{22}+\left|V _ { 1 } \left\|Y _ { 2 1 } \left|\cos \left(\theta_{21}+\delta_{1}-\delta_{2}\right)+\left|V_{3} \| Y_{23}\right| \cos \left(\theta_{23}+\delta_{3}-\delta_{2}\right)=24.86\right.\right.\right.\right.\right.\right. \\
& \frac{\partial P_{i}}{\partial\left|V_{j}\right|}=\left|V_{i} \| Y_{i j}\right| \cos \left(\theta_{i j}+\delta_{j}-\delta_{i}\right) \quad j \neq i \\
& \frac{\partial P_{3}}{\partial\left|V_{2}\right|}=\left|V_{3} \| Y_{32}\right| \cos \left(\theta_{32}+\delta_{2}-\delta_{3}\right)=-16.64 \\
& \frac{\partial Q_{i}}{\partial \delta_{i}}=\sum_{\substack{j=1 \\
\neq i}}^{N}\left|V_{i}\left\|Y_{i j}\right\| V_{j}\right| \cos \left(\theta_{i j}+\delta_{j}-\delta_{i}\right) \\
& \frac{\partial Q_{2}}{\partial \delta_{2}}=\left|V_{2}\left\|Y_{21}\right\| V_{1}\right| \cos \left(\theta_{21}+\delta_{1}-\delta_{2}\right)+\left|V_{2}\left\|Y_{23}\right\| V_{3}\right| \cos \left(\theta_{23}+\delta_{3}-\delta_{2}\right)=-27.14 \\
& \frac{\partial Q_{i}}{\partial \delta_{j}}=-\left|V_{i}\left\|Y_{i j}\right\| V_{j}\right| \sin \left(\theta_{i j}+\delta_{j}-\delta_{i}\right) \quad j \neq i \\
& \frac{\partial Q_{2}}{\partial \delta_{3}}=-\left|V_{2}\left\|Y_{23}\right\| V_{3}\right| \sin \left(\theta_{23}+\delta_{3}-\delta_{2}\right)=16.64 \\
& \frac{\partial}{2}
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

 DEPARTMENT OF ELECTRICAL AND ELECTRONICS$$
\begin{aligned}
& \frac{\partial Q_{i}}{\partial\left|V_{i}\right|}=-2\left|V_{i}\left\|Y_{i i}\left|\sin \theta_{i i}-\sum_{\substack{j=1 \\
\neq 1}}^{N}\right| V_{j}\right\| Y_{i j}\right| \sin \left(\theta_{i j}+\delta_{j}-\delta_{i}\right) \\
& \frac{\partial Q_{2}}{\partial\left|V_{2}\right|}=-2\left|V _ { 2 } \left\|Y _ { 2 2 } \left|\sin \theta_{22}-\left|V _ { 1 } \left\|Y _ { 2 1 } \left|\sin \left(\theta_{21}+\delta_{1}-\delta_{2}\right)-\left|V_{3} \| Y_{23}\right| \sin \left(\theta_{23}+\delta_{3}-\delta_{2}\right)=49.72\right.\right.\right.\right.\right.\right. \\
& {\left[\begin{array}{c}
-2.86 \\
1.43 \\
-0.22
\end{array}\right]=\left[\begin{array}{ccc}
54.28 & -33.28 & 24.86 \\
-33.28 & 66.04 & -16.64 \\
-27.14 & 16.64 & 49.72
\end{array}\right]\left[\begin{array}{c}
\Delta \delta_{2}^{0} \\
\Delta \delta_{3}^{0} \\
\Delta\left|V_{2}\right|^{0}
\end{array}\right]} \\
& {\left[\begin{array}{c}
\Delta \delta_{2}^{0} \\
\Delta \delta_{3}^{0} \\
\Delta\left|V_{2}\right|^{0}
\end{array}\right]=\left[\begin{array}{ccc}
54.28 & -33.28 & 24.86 \\
-33.28 & 66.04 & -16.64 \\
-27.14 & 16.64 & 49.72
\end{array}\right]^{-1}\left[\begin{array}{c}
-2.86 \\
1.43 \\
-0.22
\end{array}\right]} \\
& \Delta \delta_{2}^{0}=-0.0453 \\
& \Delta \delta_{3}^{0}=-0.0077 \\
& \Delta\left|V_{2}^{0}\right|=-0.0265 \\
& \Delta \delta_{2}^{1}=0+(-0.0453)=-0.0453 \\
& \Delta \delta_{3}^{1}=0+(-0.0077)=-0.0077 \\
& \Delta\left|V_{2}^{1}\right|=1+(-0.0265)=0.9735
\end{aligned}
$$

Advantages of Newton Raphson method

1. The $\mathbf{N}-\mathbf{R}$ method is faster, more reliable and the results are accurate
2. Requires less number of iterations for convergence
3. The Number of iterations are independent of size of the system (number of buses)
4. Suitable for large size system Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS
DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Disadvantages of Newton Raphson method

1. The programming is more complex
2. The memory requirement is more
3. Computational time per iteration is higher due to large number of calculations per iteration

Questions

3.	Analyze the step by step computational procedure for Newton Raphson method of load flow studies.					Apply	BTL3
4.	The load flow data for a three bus system are shown in tables given below. The reactive power limit of bus- 2 is $0.01 \leq \mathrm{Q} 2 \leq$ 0.25 .Evaluate the bus voltages at the end of second iteration by G-S method.					Evaluate	BTL5
5.	The load flow Estimate th alpha is 1.6	ta for a 4-b tages at th	syste nd of nittan $2-\mathrm{j} 8$ $1-\mathrm{j} 4$ 1-j2.66 1-j4 -j 8 Q -.2 0.3 0.1	re given in G-S iterat	bles below. . Take	Evaluate	BTL5
6.	The line data for a 3-bus system are given in table below. Determine the voltages at the end of first G-S iteration.					Evaluate	BTL5

References:

1. Pai. M.A," Computer Techniques in Power System Analysis", Tata McGraw-Hill Publishing Company Limited, New Delhi, 2006.
2. Nagarath, I.J. and Kothari, D.P., "Modern Power System Analysis", 4th Edition, Tata McGraw Hill Publishing Company, 2011.
3. Hadi Saadat, "Power system Analysis", Tata McGraw Hill Publishing Company, 3rd Edition, 2011.
(DEEMED TO BE UNIVERSITY)
Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Power System Analysis - SEEA1501

UNIT III - SYMMETRICAL SHORT CIRCUIT ANALYSIS

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS
DEPARTMENT OF ELECTRICAL AND ELECTRONICS

SYMMETRICAL SHORT CIRCUIT STUDIES

Need for Short circuit study - Bus impedance matrix formation - Symmetrical short circuit analysis using Zbus- Computations of short circuit capacity, post fault voltage and current

Fault

- A fault in a circuit is any failure which interferes with the normal flow of current.
- The faults are associated with abnormal change in current, voltage and frequency of the power system
- The faults may cause damage to the equipments if it is allowed to persist for a long time
- Hence every part of a system has been protected by means of relays and circuit breakers to sense the faults and to isolate the faulty part from the healthy part in the event of fault

Why faults occur in a power system?

- Insulation failure of equipments
- Flashover of lines initiated by a lightning stroke
- Permanent damage to conductors and towers
- Accidental faulty operations

Classification of faults

Method I

- Shunt Fault: Due to short circuits in conductors
- Series Fault: Due to open conductors

Method II

- Symmetrical faults: The fault currents are equal in all the phases and can be analysed on per phase basis

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

- Unsymmetrical faults: The fault currents are unbalanced and so they are analysed using symmetrical components

Various Types of shunt Faults

i. Line to ground fault
ii. Line to line fault
iii. Double line to ground fault
iv. Three Phase fault

Various Types of Series Faults

i. One open conductor fault
ii. Two open conductor fault

Symmetrical fault

i. Three Phase Fault

Unsymmetrical fault

i. Line to ground fault
ii. Line to line fault
iii. Double line to ground fault
iv. One or two open conductor faults

Methods of reducing short circuit current

- By providing neutral reactance
- By introducing a large value of shunt reactance between buses

Differences in representation of power system for load flow and short circuit studies

- For load flow studies both the resistances and reactances are considered whe reas for fault analysis the resistances are neglected

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

- For load flow studies the bus admittance matrix is useful whereas for short circuit studies bus impedance matrix is used
- The load flow study is performed to determine the exact voltages and currents whe reas in short circuit studies the voltages can be safely assumed as $\mathbf{1}$ pu and the prefault current can be neglected

Rank the various faults in the order of severity
i. 3-Phase fault
ii. Double line to ground fault
iii. Line to line fault
iv. Single line to ground fault
v. Open conductor faults

Relative frequency of occurrence of various types of faults

Type of Fault
i. 3-Phase fault
ii. Double line to ground fault
iii. Line to line fault
iv. Single line to ground fault

Relative frequency of occurrence 5\% 10\% 15\% 70\%

Reason for transients during short circuits

- The faults or short circuits are associated with sudden change in currents
- Most of the components of the power system have inductive property which opposes any sudden change in currents and so the faults (short circuits) are associated with transients

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Waveform of a short circuit current on a transmission line

Figure: 3.1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Doubling Effect

- If a symmetrical fault occurs when the voltage wave is going through zero then the maximum momentary short circuit current will be double the value of maximum symmetrical short circuit current.
- This effect is called doubling effect

DC off-set Current

- The unidirectional transient component of short circuit current is called DC off set current

Oscillogram of short circuit current when an unloaded generator is subjected to symmetrical fault

Figure 3.2
Subtransient Symmetrical rms current, $I=0 c / \sqrt{ } 2$
Transient Symmetrical rms current, $I^{\prime}=o b / \sqrt{2}$
Steady state symmetrical rms current, $I=0 a / \sqrt{ } 2$
Subtransient reactance, $\mathbf{X}_{\mathrm{d}}{ }^{\prime}=\left|\mathbf{E}_{\mathrm{g}}\right| /[\mathbf{I}, \mid$
Transient reactance, $\mathbf{X}_{\mathbf{d}}{ }^{\prime}=|\mathbf{E g}| /\left[\mathbf{I}^{\prime} \mid\right.$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Synchronous reactance, $\mathbf{X}_{\mathrm{d}}=\left|\mathbf{E}_{\mathrm{g}} / / \mathbf{I}\right|$

Subtransient reactance:

- It is the ratio of induced emf on no load and the subtransient symmetrical rms current, (i.e, it is the reactance of a synchronous machine under subtransient condition)

short circuit

$$
X_{d}^{\prime \prime}=X_{l}+\frac{1}{\frac{1}{X_{a}}+\frac{1}{X_{f}}+\frac{1}{X_{d W}}}
$$

Figure: 3.3
Significance of subtransient reactance in short circuit studies:

- It is used to estimate the initial value of fault current immediately on the occurrence of the fault
- The maximum momentary short circuit current rating of the circuit breaker used for protection or fault clearing should be less than this initial fault current

Transient reactance:

- It is the ratio of induced emf on no load and the transient symmetrical rms current. (i.e, it is the reactance of a synchronous machine under transient condition)

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure: 3.4
Significance of transient reactance in short circuit studies:

- It is used to estimate the transient state fault current
- Most of the circuit breakers open their contacts only during this period
- Therefore for a C.B used for fault clearing, its interruption short circuit current rating should be less than the transient fault current

Synchronous reactance:

- It is the ratio of induced emf and the steady state rms current (i.e, it is the reactance of a synchronous machine under steady state condition).
- It is the sum of leakage reactance and the reactance representing armature reaction

Figure: 3.5

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Need for Short circuit studies or fault analysis

- The short circuit studies are essential in order to design or develop the protective schemes for various parts of the system
- The selection of protective devices like current and voltage sensing devices, protective relays, circuit breakers mainly depends on various elements that may flow in fault conditions

Fault Calculations

- The fault condition of a powe r system can be divided into subtransient, transient and steady state periods
- The currents in the various parts of the system and in the fault are different in these periods
- The estimation of these currents for various types of faults at various locations in the system are commonly referred to as fault calculations

Analysis of Symmetrical faults:

- The symmetrical faults are analysed using per unit reactance diagram of the powe r system
- Once the reactance diagram is formed, then the fault is simulated by short circuit
- The currents and voltages at various parts of the system can be estimated by
i. Kirchoff's method
ii. Thevenin's theorem
iii. Bus impe dance matrix

1. A Synchronous generator and motor are rated for $30,000 \mathrm{KVA}, 13.2 \mathrm{KV}$ and both have sub - transient reactance of 20%. The line connecting them has a reactance of 10% on the base of machine ratings. The motor is drawing $20,000 \mathrm{KW}$ at 0.8 pf leading. The terminal voltage of the motor is $\mathbf{1 2 . 8 K V}$. When a symmetrical three phase fault occurs at motor terminals, find the sub - transient current in generator, motor and at the fault point.

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Solution:

Figure: 3.6

Figure: 3.7
Base Values:
MVA $_{b}=30 \mathrm{MVA} ; \quad \mathrm{KV}_{\mathrm{b}}=\mathbf{1 3 . 2 K V}$
Base current, $\mathbf{I}_{\mathrm{b}}=\mathrm{KVA}_{\mathrm{b}} /\left(\sqrt{ } \mathbf{3} * \mathrm{KV}_{\mathrm{b}}\right)=((\mathbf{3 0} * 1000) /(\sqrt{3} * 13.2))=1312.16 \mathrm{~A}$
Actual Value of prefault Voltage at fault point, $\mathrm{V}_{\mathrm{tm}}=\mathbf{1 2 . 8 K V}$
p.u. value of prefault voltage at fault point, $\mathbf{V}_{\mathrm{tm}}=$ Actual Value / Base Value

$$
=12.8 / 13.2=0.9697 \text { p.u. }
$$

Actual Value of real power of the load, $P_{m}=20 \mathrm{MW}, 0.8$ lead
p.u. value of real power of the load, $\mathrm{P}_{\mathrm{m}}=$ Actual Value $/$ Base Value

$$
=20 / 30=0.6667 \text { p.u. }
$$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

When voltage, current and power are expressed in p. u., then in 3 - phase circuits

$$
\mathbf{P}=\mathrm{VI} \cos \Phi
$$

Where $\cos \Phi=$ power factor of the load
\therefore p.u. value of magnitude of load current, $|\mathrm{I}|=\mathrm{P}_{\mathrm{m}} /\left(\mathrm{V}_{\mathrm{tm}} \cos \Phi\right)$

$$
\begin{aligned}
& =(0.6667 /(0.9697 * 0.8)) \\
& =0.8594 \text { p.u. }
\end{aligned}
$$

Take Terminal Voltage of motor V_{tm} as reference vector, so the load current will lead the terminal voltage of motor with an angle $\cos ^{-1} 0.8$

$$
\begin{aligned}
\therefore & \mathrm{V}_{\mathrm{tm}}=0.9697 \angle 0^{\circ} \\
& \mathrm{I}_{\mathrm{L}}=\mathbf{0 . 8 5 9 4} \angle \cos ^{-1} 0.8=\mathbf{0 . 8 5 9 4} \angle 36.9^{\circ} \text { p.u. }
\end{aligned}
$$

Method-1: Using Kirchoff's Theorem

Prefault Condition

Figure:3.8

$$
\begin{aligned}
\mathbf{E}_{\mathrm{g}} " & =j 0.2 \mathrm{I}_{\mathrm{L}}+\mathbf{j} 0.1 \mathrm{I}_{\mathrm{L}}+\mathbf{V}_{\mathrm{tm}} \\
& =j 0.3 \mathrm{I}_{\mathrm{L}}+\mathrm{V}_{\mathrm{tm}}
\end{aligned}
$$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE
www.sathyabama.ac.in
SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$=0.3 \angle 90^{\circ} * 0.8594 \angle 36.9^{\circ}+0.9697 \angle 0^{\circ}$
$=0.2578 \angle 126.9^{\circ}+0.9697 \angle 0^{\circ}$
$=\mathbf{- 0 . 1 5 4 8}+\mathbf{j} 0.2062+0.9697$
$=0.8149+\mathbf{j} 0.2062=0.8406 \angle 14.2^{\circ}$ p.u.
$\mathbf{E}_{\mathrm{m}} "+\mathbf{j 0 . 2 I _ { L }}=\mathrm{V}_{\mathrm{tm}}$
$\therefore \quad \mathbf{E}_{\mathrm{m}} "=\mathbf{V}_{\mathrm{tm}}-\mathbf{j} \mathbf{0 . 2} \mathbf{I}_{\mathbf{L}}$

$$
\begin{aligned}
& =0.9697 \angle 0^{\circ}-\left(0.2 \angle 90^{\circ} * 0.8594 \angle 36.9^{\circ}\right) \\
& =0.9697 \angle 0^{\circ}-\left(0.1719 \angle 126.9^{\circ}\right) \\
& =0.9697-(-0.1032+\mathbf{j} 0.1375) \\
& =1.0729-\mathbf{j} 0.1375=1.0817 \angle-7.3^{\circ} \text { p.u. }
\end{aligned}
$$

Fault Condition

Figure: 3.9
j0.2 $\mathrm{I}_{\mathrm{g}} "+\mathbf{j} 0.1 \mathrm{I}_{\mathrm{g}} "=\mathbf{E g}_{\mathbf{g}} "$
$\mathbf{j 0 . 3 I} \mathrm{I}^{\prime \prime}=\mathrm{E}_{\mathrm{g}}{ }^{\prime}$
$\mathbf{I}_{\mathrm{g}} "=\mathrm{E}_{\mathrm{g}}{ }^{\prime} / \mathrm{j} 0.3$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$=\left(\left(0.8406 \angle 14.2^{\circ}\right) /\left(0.3 \angle 90^{\circ}\right)\right)$
$=2.802 \angle 75.8^{\circ}$ p.u.
j0.2 $\mathbf{I m}_{\mathrm{m}}$ " $=\mathbf{E}_{\mathrm{m}}$ "
$\mathbf{I}_{\mathrm{m}} "=\mathbf{E}_{\mathrm{m}} " / \mathbf{j} \mathbf{0 . 2}$
$=\left(\left(1.0817 \angle-7.3^{\circ}\right) /\left(0.2 \angle 90^{\circ}\right)\right)$
$=5.4085 \angle-97.3^{\circ}$ p.u.
$\mathbf{I}_{\mathrm{f}} "=\mathbf{I}_{\mathbf{g}} "+\mathbf{I}_{\mathrm{m}} "$
$=2.802 \angle 75.8^{\circ}+5.4085 \angle-97.3^{\circ}$
$=0.687-\mathrm{j} 2.716-0.687-\mathrm{j} 5.365$
$=-j 8.081=8.081 \angle-90^{\circ}$ p.u.
Actual Value of fault current can be obtained by multiplying the p.u. values with base current

$$
\begin{aligned}
\mathrm{I}_{\mathrm{g}} "= & 2.802 \angle 75.8^{\circ} * 1312.16 \\
& =3676.67 \angle 75.8^{\circ} \mathrm{A}=\mathbf{3 . 6 7 6 6 7} \angle 75.8^{\circ} \mathrm{KA} \\
\mathbf{I}_{\mathrm{m}} " & =\mathbf{5 . 4 0 8 5 \angle - 9 7 . 3 ^ { \circ } * \mathbf { 1 3 1 2 . 1 6 }} \\
& =7096.8 \angle-97.3^{\circ} \mathrm{A}=\mathbf{7 . 0 9 6 8} \angle-97.3^{\circ} \mathrm{KA} \\
\mathbf{I}_{\mathrm{f}}^{\prime \prime}= & 8.081 \angle-90^{\circ} * \mathbf{1 3 1 2 . 1 6} \\
= & \mathbf{1 0 6 0 3 . 5 6} \angle-90^{\circ} \mathrm{A}=\mathbf{1 0 . 6 0 3 5 6} \angle-90^{\circ} \mathrm{KA}
\end{aligned}
$$

Method-2: Using thevenin's theorem
To find Fault current

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure: 3.10
Thevenin's equivalent impedance, $\mathrm{Z}_{\mathrm{th}}=((\mathbf{j} 0.1+\mathbf{j} 0.2) * \mathbf{j} 0.2) /(\mathbf{j} 0.1+\mathbf{j} 0.2)+\mathbf{j} 0.2$

$$
=\mathbf{j} 0.12
$$

Prefault thevenin's equivalent at fault point

Thevenin's equivalent under fault condition

Figure: 3.11
Current in the fault $=I_{f} "=V_{\text {th }} / Z_{\text {th }}=0.9697 \angle 0^{\circ} / 0.12 \angle 90^{\circ}=8.081 \angle-90^{\circ} \mathrm{p} . \mathrm{u}$
To find the change in current due to fault

Figure: 3.12

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
\mathrm{I}_{1}=\mathrm{V}_{\text {th }} / \mathrm{j} 0.2+\mathrm{j} 0.1= & 0.9697 \angle 0^{\circ} / 0.3 \angle 90^{\circ} \\
& =3.2323 \angle 90^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{I}_{2}=\mathrm{V}_{\text {th }} / \mathrm{j} 0.2= & 0.9697 \angle 0^{\circ} / 0.2 \angle 90^{\circ} \\
& =4.8485 \angle-90^{\circ}
\end{aligned}
$$

To find the sub - transient fault current in motor and generator

$$
\begin{aligned}
I_{g} "=I_{1}+I_{L}= & 3.2323 \angle 90^{\circ}+0.8594 \angle 36.9^{\circ}=-j 3.2323+0.6872+j 0.516 \\
& =0.6872-j 2.7163=2.802 \angle-75.8^{\circ} \text { p.u. } \\
I_{m} "=I_{2}-I_{L}= & 4.8485 \angle-90^{\circ}-0.8594 \angle 36.9^{\circ}=-j 4.8485-(0.6872+j 0.516) \\
& =-0.6872-j 5.3645=5.4083 \angle-97.3^{\circ} \text { p.u. }
\end{aligned}
$$

Note: The currents calculated by both the methods are same.

$\mathrm{I}_{\mathrm{m}} "=5.4085 \angle-97.3^{\circ} * 1312.16=7096.8 \angle-97.3^{\circ} \quad \mathrm{A}=\mathbf{7 . 0 9 6 8} \angle-97.3^{\circ} \mathrm{KA}$
$\mathrm{I}_{\mathrm{f}} "=8.081 \angle-90^{\circ} * 1312.16=10603.56 \angle-90^{\circ} \mathrm{A}=10.60356 \angle-90^{\circ} \mathrm{KA}$
2. A 3 - Phase, 5MVA, 6.6 KV alternator with a reactance of 8% is connected to a feeder of series impedance of $0.12+\mathbf{j 0 . 4 8} \mathrm{ohms} / \mathrm{phase}$ per Km . The transformer is rated at 3 MVA, $6.6 \mathrm{KV} / 33 \mathrm{KV}$ and has a reactance of 5%. Determine the fault current supplied by the generator operating under no load with a voltage of 6.9 KV , when a 3 - Phase symmetrical fault occurs at a point 15 Km along the feeder.

Solution:

Base Values
MVA $_{b}=\mathbf{5}$ MVA
$K_{b}=6.6 \mathrm{KV}$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

3中, 5MVA

$6.6 \mathrm{kV}, 8 \%$
$6.6 / 33 \mathrm{kV}, 5 \%$

Figure: $\mathbf{3 . 1 3}$

To Find generator reactance

Since the rating of the generator is chosen as base value, the p.u. reactance of the generator will be same as the specified value.
\therefore p.u. reactance of the generator, $X_{d}=8 \%=0.08$ p.u.
To find transforme r reactance
$X_{p u, \text { new }}=X_{p u, \text { old }} *\left(\frac{K V_{b, \text { old }}}{K V_{b, \text { new }}}\right)^{2} *\left(\frac{M V A_{b, \text { new }}}{M V A_{b, \text { old }}}\right)$
\therefore p.u. reactance of transformer, $\mathbf{X}_{\mathbf{T}}=0.05 *\left(\frac{6.6}{6.6}\right)^{2} *\left(\frac{5}{3}\right)=0.0833$ p.u.
To find feeder reactance
The base impedance, $\mathrm{Z}_{\mathrm{b}}=\left(\mathrm{KV}_{\mathrm{b}}\right)^{\mathbf{2}} / \mathrm{MVA}_{\mathrm{b}}=\mathbf{3 3}^{\mathbf{2}} / 5=217.8 \Omega /$ Phase
Actual impedance of the feeder for a length of 15 Km

$$
\begin{aligned}
\mathrm{Z}_{\text {feed }} & = \\
& \text { impedance } / \mathrm{Km} * \text { length } \\
& =(0.12+\mathrm{j} 0.48) * 15=1.8+\mathrm{j} 7.2 \Omega / \text { Phase }
\end{aligned}
$$

\therefore p.u. value of the impedance of the feeder,
$Z_{\text {feed }, \text { p.u. }}=$ Actual impedance $/$ Base impedance

$$
\begin{aligned}
& =(1.8+\mathrm{j} 7.2) / 217.8 \\
& =0.0083+\mathrm{j} 0.0331 \text { p.u. }
\end{aligned}
$$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure:3.14

To find $\mathrm{E}_{\mathrm{g}} \& \mathrm{~V}_{\mathrm{pf}}$

- Here the generator is not delivering any load current and so the induced emf of the generator will be same as operating voltage

Actual Value of induced emf, $\mathrm{E}_{\mathrm{g}}=\mathbf{6 . 9} \mathbf{~ K v}$
p.u. Value of induced emf = Actual Value $/$ Base Value

$$
=6.9 / 6.6=1.0455 \text { p.u. }
$$

- The open circuit p.u. value of voltage is same at every point in a series path irrespective of their actual voltages

$$
\therefore \mathrm{V}_{\mathrm{pf}}=1.0455 \text { p.u. }
$$

To find fault current

$$
\begin{aligned}
& Z_{\mathrm{ih}}=j \mathrm{X}_{\mathrm{d}}+\mathrm{j} \mathrm{X}_{\mathrm{T}}+\mathrm{Z}_{\text {feed }} \\
= & j 0.08+\mathrm{j} 0.0833+0.0083+j 0.0331 \\
= & 0.0083+j 0.1964 \text { p.u. }=0.1966 \angle 87.6^{\circ} \text { p.u. } \\
= & 0.1966 \angle 87.6^{\circ} \text { p.u. }
\end{aligned}
$$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure:3.15
\therefore p.u. value of fault current, $I_{f}=V_{t h} / Z_{\text {th }}=1.0455 \angle 0^{\circ} / 0.1966 \angle 87.6^{\circ}$

$$
=5.3179 \angle-87.6^{\circ} \text { p.u. }
$$

Base current, $I_{b}=K V A_{b} / \sqrt{ } 3 K_{b}=(5 * 1000) /(\sqrt{ } 3 * 33)=87.4773 \mathrm{~A}$
\therefore Actual Value of fault current, $I_{f}=\mathbf{p} . \mathbf{u}$. value of $\mathbf{I}_{\mathbf{f}} * \mathbf{I}_{\mathbf{b}}$

$$
\begin{aligned}
& =\left(5.3179 \angle-87.6^{\circ}\right) * 87.4773 \\
& =4652 \angle-87.6^{\circ} \mathrm{amps} .
\end{aligned}
$$

3. For the radial network shown in fig, a 3 - phase fault occurs at point F. Determine the fault current.

Figure: 3.16

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Solution:

Base Values
Choose Generator 1 ratings as base value
MVA $_{b}=10 \mathrm{MVA}$
$\mathrm{KV}_{\mathrm{b}}=11 \mathrm{KV}$
To find the generator reactances

- Since the generator ratings are chosen as base values, the p.u. reactance of the generators will remain same
p.u. reactance of generator $-1, X_{\mathrm{d} 1}=20 \%=0.2$ p.u.
p.u. reactance of generator-2, $X_{d 2}=12.5 \%=0.125$ p.u.

To find the reactance of \mathbf{T}_{1}

- The base values referred to LT side of transforme r is same as chosen base and so its reactance is same as specified value
p.u. reactance of transformer - $\mathbf{T}_{1}, \mathrm{XT}_{\mathbf{1}}=\mathbf{1 0 \%}=\mathbf{0 . 1}$ p.u.

To find the p.u. impedance of overhead line
Base KV on HT side of transforme $\mathrm{r}-\mathrm{T}_{\mathbf{1}}=\mathbf{1 1} \boldsymbol{*}(\mathbf{3 3} / \mathbf{1 1})=\mathbf{3 3 K V}$
Base impedance $\mathbf{Z}_{\mathrm{b}}=\mathrm{Kv}_{\mathbf{b}}{ }^{2} / \mathrm{MVA}_{\mathrm{b}}=\mathbf{3 3}^{2} / \mathbf{1 0}=\mathbf{1 0 8 . 9} \Omega /$ Phase
Actual Impedance of overhead line $=\mathbf{6 + j 1 0 \Omega}$
\therefore p.u. impe dance overhead line, $\mathbf{Z}_{\mathrm{TL}}=$ Actual $/$ Base $=(6+\mathbf{j} 10) / 108.9$

$$
=0.0551 \text { +j0.0918 p.u. }
$$

To find the reactance of $\mathbf{T}_{\mathbf{2}}$
$\mathbf{X}_{\text {pu,new }}=\mathbf{X}_{\text {puold }} *\left(\mathbf{K V}_{\mathrm{b}, \text { old }} / \mathrm{KV}_{\mathrm{b}, \text { new }}\right)^{2} *\left(\mathbf{M V A}_{\mathrm{b}, \text { new }} /\right.$ MVA $\left._{\mathrm{b}, \text { old }}\right)$
p.u. reactance of transformer $\mathrm{T}_{2}, \mathrm{XT}_{2}=0.087 *(33 / 33)^{2} *(10 / 25)$

$$
=0.0348 \text { p.u. }
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

To find the p.u. impedance of the feeder
Base KV on LT side of transformer, $T_{2}=33 *(6.6 / 33)=6.6 \mathrm{KV}$
Base impedance, $\mathrm{Z}_{\mathrm{b}}=\mathrm{KV}_{\mathrm{b}}{ }^{2} / \mathrm{MVA}_{\mathrm{b}}=6.62 / 10=4.356 \Omega /$ Phase
Actual impedance of feeder $=0.5+\mathbf{j} 0.15 \Omega /$ Phase
\therefore p.u. impe dance of the feeder, $\mathbf{Z}_{\text {fed }}=$ Actual impedance / Base impedance

$$
=0.5+\mathrm{j} 0.15 / 4.356=0.1148+\mathrm{j} 0.0344 \text { p.u. }
$$

To find thevenin's equivalent at fault point

- The thevenin's voltage at the fault point is prefault voltage

$$
\mathrm{V}_{\mathrm{th}}=1 \angle 0^{\circ} \mathrm{p} . \mathrm{u}
$$

Figure: $\mathbf{3 . 1 7}$

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{th}}= & ((\mathrm{j} 0.2 * \mathbf{j} 0.125) /(\mathrm{j} 0.2+\mathrm{j} 0.125)) \\
& +(\mathbf{j} 0.1+0.0551+\mathbf{j} 0.0918+\mathbf{j} 0.0348+0.1148+\mathbf{j} 0.0344) \\
= & \mathbf{j} 0.0769+0.1699+\mathbf{j} 0.261 \\
= & 0.1699+\mathbf{j} 0.3379 \\
= & \mathbf{0 . 3 7 8 2} \angle 63.3^{\circ} \mathrm{p} . \mathrm{u} .
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS
DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure:3.18

To find fault current

p.u. value of fault current, $I_{f}=V_{t h} / Z_{\text {hh }}=\left(1 \angle 0^{\circ}\right) /\left(0.3782 \angle-63.3^{\circ}\right.$ p.u.

The base current, $I_{b}=K V A_{b} / \sqrt{ } \mathbf{3} * K_{b}$

$$
\begin{aligned}
& =(10 * 1000) /(\sqrt{ } 3 * 6.6) \\
& =874.77 \mathrm{~A}
\end{aligned}
$$

The actual value of fault curre nt, $I_{f}=\mathbf{p}$. u. valu of fault curre nt * Base current

$$
\begin{aligned}
& =\left(2.6441 \angle-63.3^{\circ}\right) * 874.77 \\
& =2313 \angle-63.3^{\circ} \mathrm{KA}
\end{aligned}
$$

Bus impedance Matrix in Fault calculations

- The bus impedance matrix can be used to estimate the fault at any point of the system.
- Usually this method is useful for large system

For a n bus system,

$$
\mathbf{Z}_{\text {bus }} \mathbf{I}=\mathbf{V}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\left[\begin{array}{cccccc|}
Z_{11} & Z_{12} & \cdots & Z_{1 k} & \cdots & Z_{1 n} \\
Z_{21} & Z_{22} & \cdots & Z_{2 k} & \cdots & Z_{2 n} \\
\vdots & \vdots & & \vdots & & \vdots \\
Z_{k 1} & Z_{k 2} & \cdots & Z_{k k} & \cdots & Z_{k n} \\
\vdots & \vdots & & \vdots & & \vdots \\
Z_{n 1} & Z_{n 2} & \cdots & Z_{n k} & \cdots & Z_{n n}
\end{array}\right]\left[\begin{array}{c}
I_{1} \\
I_{2} \\
\vdots \\
I_{k} \\
\vdots \\
I_{n}
\end{array}\right]=\left[\begin{array}{c}
V_{1} \\
V_{2} \\
\vdots \\
V_{k} \\
\vdots \\
V_{n}
\end{array}\right]
$$

Where $I_{1}, I_{2},-\cdots----I_{n}$ are curre nts injected to buses $1,2,------$, n respectively
$\mathbf{V}_{1}, \mathbf{V}_{2},-\cdots---\mathbf{V}_{\mathrm{n}}$ are voltages at buses $1,2, \ldots---, \mathrm{n}$ respectively
Let a three phase fault occur in bus K

Figure:3.19

$$
\left[\begin{array}{c}
\Delta V_{1} \\
\Delta V_{2} \\
\vdots \\
-V_{p f} \\
\vdots \\
\Delta V_{n}
\end{array}\right]=\left[\begin{array}{cccccc}
Z_{11} & Z_{12} & \cdots & Z_{1 k} & \cdots & Z_{1 n} \\
Z_{21} & Z_{22} & \cdots & Z_{2 k} & \cdots & Z_{2 n} \\
\vdots & \vdots & & \vdots & & \vdots \\
Z_{k 1} & Z_{k 2} & \cdots & Z_{k k} & \cdots & Z_{k n} \\
\vdots & \vdots & & \vdots & & \vdots \\
Z_{n 1} & Z_{n 2} & \cdots & Z_{n k} & \cdots & Z_{n n}
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
-I_{f} \\
\vdots \\
0
\end{array}\right]
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
& \Delta V_{1}=-I_{f} Z_{1 k} \\
& \Delta V_{2}=-I_{f} Z_{2 k} \\
& \vdots \\
& -V_{p f}=-I_{f} z_{k k} \\
& \vdots \\
& \Delta V_{n}=-I_{f} Z_{n k}
\end{aligned}
$$

\therefore The fault current in bus $k, I_{f}=V_{p f} / \mathbf{Z}_{k k}$

- In general the change in bus q voltage due to three phase fault in bus k is given by

$$
\Delta \mathbf{V}_{\mathbf{q}}=-\mathbf{I}_{\mathrm{f}} \mathbf{Z}_{\mathrm{qk}}
$$

- The voltage at a bus after a fault in bus K is given by sum of prefault bus voltage and change in bus voltage
- Since the system is unloaded system, the prefault voltage at all buses be

$$
\mathbf{V}_{\mathrm{pf}}=1.0 \mathrm{p} . \mathrm{u} .
$$

$$
\begin{aligned}
& V_{1}=V_{p f}+\left(-I_{f} Z_{1 k}\right)=1 \angle 0^{\circ}-I_{f} Z_{1 k} \\
& V_{2}=V_{p f}+\left(-I_{f} Z_{2 k}\right)=1 \angle 0^{\circ}-I_{f} Z_{2 k}
\end{aligned}
$$

$$
\vdots
$$

$$
V_{k}=V_{p f}-V_{p f}=0
$$

$$
\vdots
$$

$$
V_{n}=V_{p f}+\left(-I_{f} Z_{n k}\right)=1 \angle 0^{\circ}-I_{f} Z_{n k}
$$

- The fault current flo wing through the lines can be estimated from the kno wledge of line impedances

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure: $\mathbf{3 . 2 0}$

$$
\mathbf{I}_{\mathbf{q r}}=\left(\mathbf{V}_{\mathbf{q}}-\mathbf{V}_{\mathbf{r}}\right) / \mathbf{Z}_{\mathbf{q r}}=\left(\mathbf{V}_{\mathbf{q}}-\mathbf{V}_{\mathbf{r}}\right) * \mathbf{Y}_{\mathbf{q r}}
$$

4. The bus impedance matrix of four bus system with values in p.u. is given by,

$$
Z_{\text {bus }}=j\left[\begin{array}{llll}
0.15 & 0.08 & 0.04 & 0.07 \\
0.08 & 0.15 & 0.06 & 0.09 \\
0.04 & 0.06 & 0.13 & 0.05 \\
0.07 & 0.09 & 0.05 & 0.12
\end{array}\right]
$$

In this system generators are connected to buses 1 and 2 and their subtransient reactances were included when finding $\mathbf{Z}_{\text {bus }}$. If prefault current is neglected, find subtransient current in p.u. in the fault of a 3 phase on bus 4 . Assume prefault voltage as 1 p.u. If the subtransient reactance of generator in bus 2 is $\mathbf{0 . 2} \mathbf{~ p . u . ~ f i n d ~ t h e ~}$ subtransient fault current supplied by generator.

Solution:

Let I_{f} " be the sub transient current in the fault on bus 4

$$
\begin{aligned}
& \quad I_{f} "=V_{p f} / Z_{44} \\
& V_{p f}=1 \angle 0^{\circ} \text { p.u. } \\
& \therefore \mathbf{I}_{\mathrm{f}} "=1 \angle 0^{\circ} / \mathbf{j} 0.12=-\mathbf{j} 8.333=8.333 \angle-90^{\circ} \text { p.u. }
\end{aligned}
$$

The voltage at bus 2 , when there is a $\mathbf{3}$ phase fault in bus $\mathbf{4}$ is given by

$$
\begin{aligned}
& \mathrm{V}_{2}=\mathrm{V}_{\mathrm{pf}}+\left(-\mathrm{I}_{\mathrm{f}} " \mathrm{Z}_{24}\right) \\
& \mathrm{V}_{2}=1 \angle 0^{\circ}+\left(8.333 \angle-90^{\circ}\right) * \mathrm{j} 0.09=1+8.333 \angle-90^{\circ} * 0.09 \angle 90^{\circ}
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
=1-0.74997=0.25003=0.25 \angle 0^{\circ} \text { p.u. }
$$

The subtransient fault current delivered by generator at bus 2 ,

$$
\begin{aligned}
\mathbf{I}_{\mathrm{g} 2} " & =\left(\mathrm{E}_{\mathrm{g} 2} "-\mathrm{V}_{2}\right) / \mathrm{j} \mathrm{X}_{\mathrm{d} 2 "} \\
& =\left(1 \angle 0^{\circ}-0.25 \angle 0^{\circ}\right) / \mathrm{j} 0.2 \\
& =(\mathbf{1 - 0 . 2 5}) / 0.2 \angle 90^{\circ} \\
& =3.75 \angle-90^{\circ}
\end{aligned}
$$

Figure: $\mathbf{3 . 2 1}$
5. Find the fault current and post fault voltages for the given system shown below and fault being occurred at bus 2 .

Figure:3.22

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Solution:

Node 1 to Node 0 - $\mathbf{1}^{\text {st }}$ element
Node 1 to Node 2-2 $2^{\text {nd }}$ element
Node 1 to Node 3 - $3^{\text {rd }}$ element
Node 2 to Node $3-4^{\text {th }}$ element
Node 2 to Node 0 - $5^{\text {th }}$ element
ElementalNodeIncidcenceMatrix $(\hat{A})=\left[\begin{array}{cccc}-1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 1 & 0\end{array}\right]$

Incidcence Matrix $(A)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 1 & 0\end{array}\right]$
$Z=\left[\begin{array}{ccccc}j 0.2 & 0 & j 0.6 & 0 & 0 \\ 0 & j 0.3 & 0 & j 0.8 & 0 \\ j 0.6 & 0 & j 0.3 & 0 & 0 \\ 0 & j 0.8 & 0 & j 0.5 & 0 \\ 0 & 0 & 0 & 0 & j 0.4\end{array}\right]\left[\begin{array}{cccc}-1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 1 & 0\end{array}\right]$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{gathered}
\text { Incidcence Matrix }(A)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 1 & 0
\end{array}\right] \\
Z=\left[\begin{array}{ccccc}
j 0.2 & 0 & j 0.6 & 0 & 0 \\
0 & j 0.3 & 0 & j 0.8 & 0 \\
j 0.6 & 0 & j 0.3 & 0 & 0 \\
0 & j 0.8 & 0 & j 0.5 & 0 \\
0 & 0 & 0 & 0 & j 0.4
\end{array}\right] \\
Y_{\text {bus }}=\left[\begin{array}{ccc}
-\mathrm{j} 15 & \mathrm{j} 2.083 & \mathrm{j} 6.25 \\
\mathrm{j} 2.083 & -\mathrm{j} 5.33 & \mathrm{j} 0.75 \\
\mathrm{j} 6.25 & \mathrm{j} 0.75 & -\mathrm{j} 5.33
\end{array}\right] \\
Z_{\text {bus }}=\left[\begin{array}{ccc}
\mathrm{j} 0.167 & \mathrm{j} 0.0945 & \mathrm{j} 0.209 \\
\mathrm{j} 0.0945 & \mathrm{j} 0.245 & \mathrm{j} 0.145 \\
\mathrm{j} 0.209 & \mathrm{j} 0.145 & \mathrm{j} 0.452
\end{array}\right]
\end{gathered}
$$

Fault B us at $\mathbf{n}^{\text {th }}$ bus $=\mathbf{V}_{\text {pre fault }} / \mathbf{Z}_{\text {bus }} \mathbf{(n , n)}$
Fault is $2^{\text {nd }}$ bus
$V_{\text {pre fault }}=1.0 \mathrm{pu}$
:. $I_{\text {fault }}=1 / Z_{(2,2)}=1 / 0.245 j=-4.0816 j$
$\Delta \mathrm{V}(1)=\mathrm{I}_{\text {fault }} * \mathrm{Z}(\mathbf{1 , 2})=\mathbf{- 4 . 0 8 1 6} \mathbf{j} * \mathbf{0 . 0 9 4 5} \mathbf{j}=\mathbf{- 0 . 3 8 6}$
$\Delta V(2)=I_{\text {fault }} * Z(2,2)=-4.0816 j * 0.245 j=-1$
$\Delta V(3)=I_{\text {fault }} * Z(3,2)=-4.0816 j * 0.145 j=-\mathbf{0 . 5 9 2}$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$\mathrm{V}(\mathbf{1})=\mathrm{V}_{\text {pre fault }}-\Delta \mathrm{V}(\mathbf{1})=\mathbf{1 . 0}+(-\mathbf{0 . 3 8 6})=\mathbf{0 . 6 1 4}$
$\mathbf{V}(\mathbf{2})=\mathrm{V}_{\text {pre fault }}-\Delta \mathrm{V}(\mathbf{2})=\mathbf{1 . 0}+(-\mathbf{1 . 0})=\mathbf{0 . 0}$
$\mathrm{V}(3)=\mathrm{V}_{\text {pre fault }}-\Delta \mathrm{V}(3)=1.0+(-\mathbf{0 . 5 9 2})=\mathbf{0 . 4 0 8}$

Bus Impedance Matrix

- The matrix consisting of driving point impedances and transfer impedances of the network of a power system is called bus impedance matrix
- It is given by the inverse of bus a bus admittance matrix ($\mathrm{Y}_{\text {bus }}$) and it is denoted as $\mathbf{Z}_{\text {bus }}$
- The bus impedance matrix is symmetrical
- Diagonal Elements - Driving point impedances
- Off - Diagonal Elements - Transfer impedances

$$
Z_{\text {bus }}=\left[\begin{array}{lll}
Z_{11} & Z_{12} & Z_{13} \\
Z_{21} & Z_{22} & Z_{23} \\
Z_{31} & Z_{32} & Z_{33}
\end{array}\right]
$$

Methods for Forming bus impedance matrix

Method 1: Form the bus admittance matrix ($\mathrm{Y}_{\text {bus }}$) and then take its inverse to get bus impedance matrix ($\mathrm{Z}_{\mathrm{bus}}$)

Method 2: Directly form bus impedance matrix $\left(Z_{b u s}\right)$ from the reactance diagram. This method utilizes the techniques of modifications of existing bus impedance matrix due to addition of new bus (Building Block method)

Forming $\mathbf{Z}_{\text {bus }}$ using Building Block method

Case i: Adding an element from a new bus to a reference bus
Case ii: Adding an element from a Existing bus to a new bus
Case iii: Adding an element from a Existing bus to a reference bus
Case iv: Adding an element between two existing buses
(DEEMED TO BE UNIVERSITY)
Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

6. Determine $\mathbf{Z}_{\text {bus }}$ for system whose reactance diagram is shown in fig where the impedance is given in p.u. preserve all the three nodes

Figure:3.23
Solution:

$$
Z_{b u s}=[j 1.2]
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$Z_{\text {bus }}=\left[\begin{array}{cccc}j 1.2 & j 1.2 & j 1.2 & j 1.2 \\ j 1.2 & j 1.4 & j 1.4 & j 1.4 \\ j 1.2 & j 1.4 & j 1.55 & j 1.55 \\ j 1.2 & j 1.4 & j 1.55 & j 1.55+j 1.5\end{array}\right]$
$Z_{\text {bus }}=\left[\begin{array}{cccc}j 1.2 & j 1.2 & j 1.2 & j 1.2 \\ j 1.2 & j 1.4 & j 1.4 & j 1.4 \\ j 1.2 & j 1.4 & j 1.55 & j 1.55 \\ j 1.2 & j 1.4 & j 1.55 & j 3.05\end{array}\right]$
$Z_{j k, n e w}=Z_{j k, o l d}-\frac{Z_{j n} Z_{n k}}{Z_{n n}}$

$$
\begin{aligned}
& \mathbf{n}=\mathbf{4} ; \mathbf{j}=\mathbf{1 , 2 , 3} ; \mathbf{K}=\mathbf{1 , 2 , 3} \\
& Z_{11, \text { new }}=Z_{11, \text { old }}-\frac{Z_{14} Z_{41}}{Z_{44}}=j 1.2-\frac{j 1.2 * j 1.2}{j 3.05}=j 0.728 \\
& Z_{12, \text { new }}=Z_{12, \text { old }}-\frac{Z_{14} Z_{42}}{Z_{44}}=j 1.2-\frac{j 1.2 * j 1.4}{j 3.05}=j 0.649 \\
& Z_{13, \text { new }}=Z_{13, \text { old }}-\frac{Z_{14} Z_{43}}{Z_{44}}=j 1.2-\frac{j 1.2 * j 1.55}{j 3.05}=j 0.590 \\
& Z_{21, \text { new }}=Z_{12, \text { new }}=j 0.649 \\
& Z_{22, \text { new }}=Z_{22, \text { old }}-\frac{Z_{24} Z_{42}}{Z_{44}}=j 1.4-\frac{j 1.4 * j 1.4}{j 3.05}=j 0.757 \\
& Z_{23, \text { new }}=Z_{23, \text { old }}-\frac{Z_{24} Z_{43}}{Z_{44}}=j 1.4-\frac{j 1.4 * j 1.55}{j 3.05}=j 0.689 \\
& Z_{31, \text { new }}=Z_{13, \text { new }}=j 0.590 \\
& Z_{32, \text { new }}=Z_{233 \text { new }}=j 0.689 \\
& Z_{33, \text { new }}=Z_{33, \text { old }}-\frac{Z_{34} Z_{43}}{Z_{44}}=j 1.55-\frac{j 1.55 * j 1.55}{j 3.05}=j 0.762
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
Z_{\text {bus }}=\left[\begin{array}{lll}
j 0.728 & j 0.649 & j 0.590 \\
j 0.649 & j 0.757 & j 0.689 \\
j 0.590 & j 0.689 & j 0.762
\end{array}\right]
$$

$$
Z_{44}=Z_{11}+Z_{33}-2 * Z_{13}+Z_{b} ; \text { Where } Z_{b}=j 0.3
$$

$$
\therefore \quad \mathrm{Z}_{44}=\mathrm{j} 0.728+\mathbf{j} 0.762-2(\mathbf{j} 0.59)+\mathbf{j} 0.3
$$

$$
=\mathbf{j} 0.61
$$

$$
Z_{\text {bus }}=\left[\begin{array}{cccc}
j 0.728 & j 0.649 & j 0.590 & j 0.728-j 0.590 \\
j 0.649 & j 0.757 & j 0.689 & j 0.649-j 0.689 \\
j 0.590 & j 0.689 & j 0.762 & j 0.590-j 0.762 \\
j 0.728-j 0.590 & j 0.649-j 0.689 & j 0.590-j 0.762 & j 0.61
\end{array}\right]
$$

$$
Z_{\text {bus }}=\left[\begin{array}{cccc}
j 0.728 & j 0.649 & j 0.590 & j 0.138 \\
j 0.649 & j 0.757 & j 0.689 & -0.04 \\
j 0.590 & j 0.689 & j 0.762 & -j 0.172 \\
j 0.138 & -0.04 & -j 0.172 & j 0.61
\end{array}\right] \quad Z_{j k, n e w}=Z_{j k, o l d}-\frac{Z_{j n} Z_{n k}}{Z_{n n}}
$$

$$
\mathrm{n}=\mathbf{4} ; \mathrm{j}=1,2,3 ; \quad \mathrm{K}=1,2,3
$$

$$
Z_{11, \text { new }}=Z_{11, \text { old }}-\frac{Z_{14} Z_{41}}{Z_{44}}=j 0.728-\frac{j 1.38 * j 0.138}{j 0.61}=j 0.697
$$

$$
Z_{12, \text { new }}=Z_{12, o l d}-\frac{Z_{14} Z_{42}}{Z_{44}}=j 0.649-\frac{j 0.138 *(-j 0.04)}{j 0.61}=j 0.658
$$

$$
Z_{13, \text { new }}=Z_{13, \text { old }}-\frac{Z_{14} Z_{43}}{Z_{44}}=j 0.59-\frac{j 0.138^{*}(-j 0.172)}{j 0.61}=j 0.629
$$

[DEEMED TO BE UNIVERSITY)

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
& Z_{21, \text { new }}=Z_{12, \text { new }}=j 0.658 \\
& Z_{22, \text { new }}=Z_{22, \text { old }}-\frac{Z_{24} Z_{42}}{Z_{44}}=j 0.757-\frac{(-j 0.04) *(-j 0.04)}{j 0.61}=j 0.754 \\
& Z_{23, \text { new }}=Z_{23, \text { old }}-\frac{Z_{24} Z_{43}}{Z_{44}}=j 0.689-\frac{(-j 0.04) *(-j 0.172)}{j 0.61}=j 0.678 \\
& Z_{31, \text { new }}=Z_{13, \text { new }}=j 0.629
\end{aligned}
$$

7. Determine $\mathbf{Z}_{\text {bus }}$ for system whose reactance diagram is shown in fig where the impedance is given in p.u. preserve all the three nodes.

Figure:3.24
Solution:

Reference'bus

$$
\mathbf{Z}_{\text {bus }}=[\mathbf{j} 1.0]
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
Z_{\text {bus }}=\left[\begin{array}{cc}
j 1.0 & j 1.0 \\
j 1.0 & j 1.0+j 0.25
\end{array}\right] \quad Z_{\text {bus }}=\left[\begin{array}{cc}
j 1.0 & j 1.0 \\
j 1.0 & j 1 . .25
\end{array}\right]
$$

$$
Z_{\text {bus }}=\left[\begin{array}{ccc}
j 1.0 & j 1.0 & j 1.0 \\
j 1.0 & j 1.25 & j 1.25 \\
j 1.0 & j 1.25 & j 1.25+j 1.25
\end{array}\right]
$$

Reference'bus

$$
\begin{aligned}
& Z_{j k, \text { new }}=Z_{j k, o l d}-\frac{Z_{j n} Z_{n k}}{Z_{n n}} \quad Z_{\text {bus }}=\left[\begin{array}{ccc}
j 1.0 & j 1.0 & j 1.0 \\
j 1.0 & j 1.25 & j 1.25 \\
j 1.0 & j 1.25 & j 2.5
\end{array}\right] \\
& \mathbf{n}=\mathbf{3} ; \mathbf{j}=\mathbf{1 , 2} ; \quad \mathbf{K}=\mathbf{1 , 2} \\
& Z_{11, \text { new }}=Z_{11, \text { old }}-\frac{Z_{13} Z_{31}}{Z_{33}}=j 1.0-\frac{j 1.0^{*} j 1.0}{j 2.5}=j 0.6 \\
& Z_{12, \text { new }}=Z_{12, \text { old }}-\frac{Z_{13} Z_{32}}{Z_{33}}=j 1.0-\frac{j 1.0^{*} j 1.25}{j 2.5}=j 0.5 \\
& Z_{21, \text { new }}=Z_{12, \text { new }}=j 0.5 \\
& Z_{22, \text { new }}=Z_{22, \text { old }}-\frac{Z_{23} Z_{32}}{Z_{33}}=j 1.25-\frac{j 1.25^{*} j 1.25}{j 2.5}=j 0.625 \\
& Z_{\text {bus }}=\left[\begin{array}{cc}
j 0.6 & j 0.5 \\
j 0.5 & j 1 . .625
\end{array}\right]
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Flowchart of Symmetrical Fault Analysis using $\mathbf{Z}_{\text {bus }}$

SCHOOL OF ELECTRICAL AND ELECTRONICS
DEPARTMENT OF ELECTRICAL AND ELECTRONICS
Draw the Thevenin's equivalent circuit and obtain the fault curront using

$$
\mathrm{I}_{\mathrm{f}}=\frac{\mathrm{v}_{\mathrm{q}}^{\mathrm{o}}}{Z_{\mathrm{qq}}+Z_{\mathrm{f}}}
$$

Compute change in bus voitages using network equation

$$
\left[\begin{array}{c}
\Delta V_{1} \\
\vdots \\
\Delta V_{\mathrm{q}} \\
\vdots \\
\Delta V_{\mathrm{N}}
\end{array}\right]=\left[\begin{array}{cccccc}
Z_{11} & Z_{12} & \cdots & Z_{1 \mathrm{q}} & \cdots & Z_{1 \mathrm{~N}} \\
\vdots & \vdots & & \vdots & & \vdots \\
Z_{\mathrm{q} 1} & z_{\mathrm{q} 2} & \cdots & z_{\mathrm{qq}} & \cdots & z_{\mathrm{qN}} \\
\vdots & \vdots & & \vdots \\
Z_{\mathrm{N} 1} & Z_{\mathrm{N} 2} & \cdots & Z_{\mathrm{Nq}} & \cdots & Z_{\mathrm{NN}}
\end{array}\right]\left[\begin{array}{c}
0 \\
\vdots \\
-I_{\mathrm{f}} \\
\vdots \\
0
\end{array}\right]
$$

Compute change in bus voltages using network equation

Post fault line currents

$$
I_{i j}^{f}=\frac{V_{i}^{f}-V_{i}^{f}}{Z_{i j} \text { series }}
$$

Print $I_{f,}$ post fault voltages, post fault line currents, etc.

Figure: $\mathbf{3 . 2 5}$

Questions

Part-A			
Q.No	Questions	Competence	BT Level
1.	Outline the need for short circuit analysis?	Understand	BTL2
2.	Define short circuit capacity of power system.	Remember	BTL1
3.	State and explain symmetrical fault.	Understand	BTL2
4.	List the causes of symmetrical fault?	Remember	BTL1
5.	Recall bus impedance matrix?	Remember	BTL1
6.	Explain the four ways of adding an impedance to an existing system so as to modify bus impedance matrix.	Understand	BTL2
7.	Label the methods available for forming bus impedance matrix?	Remember	BTL1
8.	Explain how the Z bus is modified when a branch of impedance Zb is added from a new bus-p to the reference bus?	Understand	BTL2
9.	State the applications of short circuit analysis.	Remember	BTL1
10.	Compare symmetrical and unsymmetrical short circuits.	Understand	BTL2
Part-B			
Q.No	Questions	Competence	BT Level
1.	For the 3- bus network shown in fig. Build Z bus	Create	BTL6
2.	Using building algorithm method, Build ZBUS for the network shown below.	Create	BTL6

3.	Evaluate the fault current and post fault voltages for the given system shown below and fault being occurred at bus 2 .	Evaluate	BTL5
4.	For the given system, Estimate the fault current, short circuit capacity and post fault voltages for a bolted fault at bus 4 . The sub transient reactance of the generators and positive sequence reactance of other elements are Generator $X=15 \%$, Transmission line $X=30 \%$, Transformer $X=20 \%$	Evaluate	BTL5
5.	Explain the procedure for making short circuit studies of a large power system	Evaluate	BTL5
6.	Build ZBUS for the network shown below using bus building algorithm	Create	BTL6

References:

1. John J. Grainger and Stevenson Jr. W.D., "Power System Analysis", Tata McGraw Hill, 2017.
2. Kothari .D.P and Nagarath.I.J., "Power system Engineering", 2nd Edition, Tata McGraw Hill, 2011.
3. Pai. M.A," Computer Techniques in Power System Analysis", Tata McGraw-Hill Publishing Company Limited, New Delhi, 2006.
4. Nagarath, I.J. and Kothari, D.P., "Modern Power System Analysis", 4th Edition, Tata McGraw Hill Publishing Company, 2011.
5. Hadi Saadat, "Power system Analysis", Tata McGraw Hill Publishing Company, 3rd Edition, 2011.
(DEEMED TO BE UNIVERSITY)

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Power System Analysis - SEEA1501
UNIT 1V-UNSYMMETRICAL SHORT CIRCUIT ANALYSIS

SCHOOL OF ELECTRICAL AND ELECTRONICS
DEPARTMENT OF ELECTRICAL AND ELECTRONICS

UNSYMMETRICAL SHORT CIRCUIT STUDIES

Symmetrical Component transformation - sequence impedance - sequence Networks Unsymmetrical short circuit analysis for single line fault, line to line fault, double line to ground fault using $\mathbf{Z}_{\text {bus }}$ - Computations of short circuit capacity, post fault voltage and current

Symmetrical Components

- An unbalanced system of \mathbf{N} related vectors can be resolved into \mathbf{N} systems of balanced vectors
- The \mathbf{N}-sets of balanced vectors are called symmetrical components
- Each set consist of \mathbf{N} vectors which are equal in length and having equal phase angles bet ween adjacent vectors

Symmetrical Components of three phase system:

1. Positive sequence components
2. Negative sequence components
3. Zero sequence components

Positive Sequence Components:

- The positive sequence components of a 3 phase unbalanced vectors consists of three vectors of equal magnitude, dis placed from each other by 120° in phase and having the same phase sequence as the original vectors

Negative Sequence Components:

- The negative sequence components of a 3 phase unbalanced vectors consists of three vectors of equal magnitude displaced from each other by 120° in phase and having the phase sequence opposite to that of the original vectors

Zero Sequence Components:

- The zero sequence components of a 3 phase unbalanced vectors consists of 3 phase vectors of equal magnitude and with zero phase displace ment from each other

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Positive sequence components

Negative sequence
components

Zero sequence components

Figure 4.1

Let V_{a}, V_{b} arrd V_{c} be the set of unbalanced voltage vectors with phase sequence $a b c$. Each voltage vector can be resolved into positive, negative and zero sequence components.

Let $\quad \mathrm{V}_{\mathrm{a} 1}, \mathrm{~V}_{\mathrm{b} 1} \& \mathrm{~V}_{\mathrm{c} 1}=$ Positive sequence components of $\mathrm{V}_{\mathrm{a}}, \mathrm{V}_{\mathrm{b}} \& \mathrm{~V}_{\mathrm{c}}$ respectively with phase sequence abc.
$\mathrm{V}_{\mathrm{a} 2}, \mathrm{~V}_{\mathrm{b} 2}, \mathrm{~V}_{\mathrm{c} 2}=$ Negative sequence components of $\mathrm{V}_{2}, \mathrm{~V}_{\mathrm{b}}$ and V_{c} respectively with phase sequence acb.

$$
\mathrm{V}_{\mathrm{a} 0}, \mathrm{~V}_{\mathrm{b}} \& \mathrm{~V}_{\mathrm{c}}=\text { Zero sequence components of } \mathrm{V}_{\mathrm{a}}, \mathrm{~V}_{\mathrm{b}} \& \mathrm{~V}_{\mathrm{c}} \text { respectively. }
$$

The operator " a " is defined as,

$$
\mathrm{a}=1 \angle 120^{\circ}=1 \mathrm{e}^{+j 2 \pi / 3}=\cos 2 \pi / 3+j \sin 2 \pi / 3=-0.5+j 0.866
$$

Since, $a=1 \angle 120^{\circ}=-0.5+j 0.866$
$\mathrm{a}^{2}=1 \angle 240^{\circ}=-0.5-\mathrm{j} 0.866$
$\mathrm{a}^{3}=1 \angle 360^{\circ}=1$
$1+a+a^{2}=1+(-0.5+j 0.866)+(-0.5-j 0.866)=0$
$\therefore 1+a+a^{2}=0$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Computation of Unbalanced Vectors from their symmetrical components

$$
\left[\begin{array}{c}
\mathrm{V}_{\mathrm{a}} \\
\mathrm{~V}_{\mathrm{b}} \\
\mathrm{~V}_{\mathrm{c}}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathrm{a}^{2} & \mathrm{a} \\
1 & \mathrm{a} & \mathrm{a}^{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{V}_{\mathrm{a} 0} \\
\mathrm{~V}_{\mathrm{a} 1} \\
\mathrm{~V}_{\mathrm{a} 2}
\end{array}\right]
$$

Computation of balanced Vectors from their Unbalanced Vectors

$$
\left[\begin{array}{c}
\mathrm{V}_{\mathrm{z}} \\
\mathrm{~V}_{\mathrm{a} 1} \\
\mathrm{~V}_{\mathrm{a} 2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathrm{a} & \mathrm{a}^{2} \\
1 & \mathrm{a}^{2} & \mathrm{a}
\end{array}\right]\left[\begin{array}{c}
\mathrm{V}_{\mathrm{a}} \\
\mathrm{~V}_{\mathrm{b}} \\
\mathrm{~V}_{\mathrm{c}}
\end{array}\right]
$$

1.

The voltages across a 3 phase unbalanced load are $\mathrm{V}_{2}=300 \angle 20^{\circ} \mathrm{V}, \mathrm{V}_{\mathrm{b}}=360 \angle 90^{\circ} \mathrm{V}$ and $\mathrm{V}_{\mathrm{c}}=500 \angle-140^{\circ} \mathrm{V}$. Determine the symmetrical components of voltages. Phase sequence is abc.

Solution:

The symmetrical components of V_{2} are given by the following matrix equations.

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mathrm{v}_{\mathrm{a} 0} \\
\mathrm{v}_{\mathrm{a} 1} \\
\mathrm{v}_{\mathrm{a} 2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{c}
\mathrm{v}_{\mathrm{a}} \\
\mathrm{v}_{\mathrm{b}} \\
\mathrm{v}_{\mathrm{c}}
\end{array}\right]} \\
& \therefore \mathrm{v}_{\mathrm{a} 0}=\frac{1}{3}\left[\mathrm{v}_{\mathrm{a}}+\mathrm{v}_{\mathrm{b}}+\mathrm{v}_{\mathrm{c}}\right] \\
& \mathrm{v}_{\mathrm{a} 1}=\frac{1}{3}\left[\mathrm{v}_{\mathrm{a}}+\mathrm{a}_{\mathrm{b}}+\mathrm{a}^{2} \mathrm{~V}_{\mathrm{c}}\right] \\
& \mathrm{v}_{\mathrm{a} 2}=\frac{1}{3}\left[\mathrm{v}_{\mathrm{a}}+\mathrm{a}^{2} \mathrm{v}_{\mathrm{b}}+\mathrm{a} \mathrm{~V}_{\mathrm{c}}\right]
\end{aligned}
$$

Given that $\mathrm{V}_{2}=300 \angle 20^{\circ} \mathrm{V}=281.91+\mathrm{j} 102.61 \mathrm{~V}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{b}}=360 \angle 90^{\circ} \mathrm{V}=0+\mathrm{j} 360 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{c}}=500 \angle-140^{\circ} \mathrm{V}=-383.02-\mathrm{j} 321.39 \mathrm{~V}
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
& \therefore \mathrm{aV} \mathrm{~V}_{\mathrm{b}}=.1 \angle 120^{\circ} \times 360 \angle 90^{\circ}=360 \angle 210^{\circ}=-311.77-\mathrm{j} 180 \mathrm{~V} \\
& \mathrm{a}^{2} \mathrm{~V}_{\mathrm{b}}=1 \angle 240^{\circ} \times 360 \angle 90^{\circ}=360 \angle 330^{\circ}=311.77-\mathrm{j} 180 \mathrm{~V} \\
& \mathrm{aV}_{\mathrm{c}}=1 \angle 120^{\circ} \times 500 \angle-140^{\circ}=500 \angle-20^{\circ}=469.85-\mathrm{j} 171.01 \mathrm{~V} \\
& \mathrm{a}^{2} \mathrm{~V}_{\mathrm{c}}=1 \angle 240^{\circ} \times 500 \angle-140^{\circ}=500 \angle 100^{\circ}=-86.82+\mathrm{j} 492.40 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{a} 0}=\frac{1}{3}\left[\mathrm{~V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{b}}+\mathrm{V}_{\mathrm{c}}\right]=\frac{1}{3}(281.91+\mathrm{j} 102.61+\mathrm{o}+\mathrm{j} 360-383.02-\mathrm{j} 321.39) \\
& \quad=\frac{1}{3}(-101.11+\mathrm{j} 141.22)=-33.70+\mathrm{j} 47.07=57.89 \angle 126^{\circ} \mathrm{V} \\
& \mathrm{~V}_{\mathrm{a} 1}=\frac{1}{3}\left[\mathrm{~V}_{\mathrm{a}}+\mathrm{a} \mathrm{~V}_{\mathrm{b}}+\mathrm{a}^{2} \mathrm{~V}_{\mathrm{c}}\right]=\frac{1}{3}(281.91+\mathrm{j} 102.61-311.77-\mathrm{j} 180-86.82+\mathrm{j} 492.40) \\
& \quad=\frac{1}{3}(-116.68+\mathrm{j} 415.01)=-38.89+\mathrm{j} 138.34=143.70 \angle 106^{\circ} \mathrm{V} \\
& \mathrm{~V}_{\mathrm{a} 2}=\frac{1}{3}\left[\mathrm{~V}_{\mathrm{a}}+\mathrm{a}^{2} \mathrm{~V}_{\mathrm{b}}+\mathrm{a} \mathrm{~V}_{\mathrm{c}}\right]=\frac{1}{3}(281.91+\mathrm{j} 102.61+311.77-\mathrm{j} 180+469.85-\mathrm{j} 171.01) \\
& =\frac{1}{3}(1063.53-\mathrm{j} 248.40)=354.51-\mathrm{j} 82.80=364.05 \angle-13^{\circ} \mathrm{V}
\end{aligned}
$$

$$
\text { We know that } V_{\mathrm{aj}}=V_{b 0}=V_{\infty}
$$

\therefore The zero sequence components are

$$
\begin{aligned}
& V_{s 0}=57.89<126^{\circ} \mathrm{V} \\
& V_{b 0}=57.89<126^{\circ} \mathrm{V} \\
& V_{\infty}=57.89<126^{\circ} \mathrm{V}
\end{aligned}
$$

We know that, $V_{b 1}=a^{2} V_{a 1} \quad ; \quad V_{c 1}=a V_{a 1}$
\therefore The positive sequence components are

$$
\begin{aligned}
& V_{a 1}=143.70 \angle 106^{\circ} \mathrm{V} \\
& \mathrm{~V}_{\mathrm{b} 1}=\mathrm{a}^{2} \mathrm{~V}_{21}=1 \angle 240^{\circ} \times 143.70 \angle 106^{\circ}=143.70 \angle 346^{\circ} \mathrm{V} \\
& \mathrm{~V}_{\mathrm{c} 1}=\mathrm{a} \mathrm{~V}_{21}=1 \angle 120^{\circ} \times 143.70 \angle 106^{\circ}=143.70 \angle 226^{\circ} \mathrm{V}
\end{aligned}
$$

We know that, $V_{b 2}=a V_{22} ; \quad V_{c 2}=a^{2} V_{22}$
\therefore The negative sequence components are

$$
\begin{aligned}
& V_{22}=364.05 \angle-13^{\circ} \mathrm{V} \\
& V_{b 2}=a V_{22}=1 \angle 120^{\circ} \times 364.05 \angle-13^{\circ}=364.05 \angle 107^{\circ} \mathrm{V} \\
& V_{c 2}=a^{2} V_{a 2}=1 \angle 240^{\circ} \times 364.05 \angle-13^{\circ}=364.05 \angle 227^{\circ} \mathrm{V}
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

2.

The symmetrical components of phasea fault current in a 3 -phase unbalanced system $\operatorname{are} I_{20}=350 \angle 90^{\circ} \mathrm{A}, I_{21}=600 \angle-90^{\circ} \mathrm{A}$ and $\mathrm{I}_{22}=250 \angle 90^{\circ} \mathrm{A}$. Determine the phase currents $\mathrm{I}_{2} \mathrm{I}_{\mathrm{b}}$ and $\mathrm{I}_{c^{*}}$

Solution:

The currents I_{2}, I_{b} and I_{c} are given by the following matrix equations.

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathrm{I}_{\mathrm{a}} \\
\mathrm{I}_{\mathrm{b}} \\
\mathrm{I}_{\mathrm{c}}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 . & \mathrm{a}^{2} & \mathrm{a} \\
1 & \mathrm{a} & \mathrm{a}^{2}
\end{array}\right]\left[\begin{array}{l}
\mathrm{I}_{\mathrm{a} 0} \\
\mathrm{I}_{\mathrm{a} 2} \\
\mathrm{I}_{\mathrm{a} 2}
\end{array}\right]} \\
& \therefore I_{2}=I_{20}+I_{21}+I_{22} \\
& I_{b}=I_{a 0}+a^{2} I_{-1}+a I_{a 2} \\
& I_{c}=I_{z 0}+a I_{a 1}+a^{2} I_{a 2}
\end{aligned}
$$

$$
\begin{gathered}
\text { Given that } I_{20}=350 \angle 90^{\circ}=0+j 350 \\
\mathbf{I}_{21}=600 \angle-90^{\circ}=0-j 600 \\
\mathbf{I}_{22}=250 \angle 90^{\circ}=0+j 250 \\
\therefore a I_{a 1}=1 \angle 120^{\circ} \times 600 \angle-90^{\circ}=600 \angle 30^{\circ}=519.62+j 300 \\
a^{2} I_{a 1}=1 \angle 240^{\circ} \times 600 \angle-90^{\circ}=600 \angle 150^{\circ}=-519.62+j 300 \\
a I_{a 2}=1 \angle 120^{\circ} \times 250 \angle 90^{\circ}=250 \angle 210^{\circ}=-216.51-j 125 \\
a^{2} I_{a 2}=1 \angle 240^{\circ} \times 250 \angle 90^{\circ}=250 \angle 330^{\circ}=216.51-j 125
\end{gathered}
$$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
I_{a} & =I_{a 0}+I_{a 1}+I_{a 2}=j 350-j 600+j 250=0 \\
I_{b} & =I_{a 0}+a^{2} I_{a 1}+a I_{a 2}=j 350-519.62+j 300-216.51-j 125 \\
& =-736.13+j 525=904.16 \angle 145^{\circ} \mathrm{A} \\
I_{c} & =I_{a 0}+a I_{a 1}+a^{2} I_{a 2}=j 350+519.62+j 300+216.51-j 125 \\
& =736.13+j 525=904.16 \angle 35^{\circ} \mathrm{A}
\end{aligned}
$$

Sequence Impedance and sequence Networks:

- The sequence impedances are the impedances offered by the devices or components for the like sequence component of the current
- The single phase equivalent circuit of a power system consisting of impedances to current of any one sequence only is called sequence network

Positive , Negative and Zero sequence impedances:

- The impedance of a circuit element for positive, negative and ze ro sequence component currents are called positive, negative and zero sequence impedance respectively

Positive, Negative and Zero sequence reactance diagram:

- The reactance diagram of a power system, when formed using positive, negative and zero sequence reactances are called positive, negative and zero sequence reactance diagram respectively

Sequence Impedances and networks of generator:

Figure: 4.2

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Let $\mathrm{E}_{\mathrm{a}}, \mathrm{E}_{\mathrm{b}}, \mathrm{E}_{\mathrm{c}}=$ Generated emf per phase in phase a, b and c respectively. (Positive sequence emf)
$Z_{1} \quad=$ Positive sequence impedance per phase of generator.
$Z_{2} \quad=$ Negative sequence impedance per phase of generator.
$\mathrm{Z}_{\mathrm{g} 0} \quad=$ Zero sequence impedance per phase of generator.
$Z_{n} \quad=$ Neutral reactance.
$Z_{0} \quad=$ Total zero sequence impedance per phase of zero-sequence network of generator.

Positive-sequence current paths.

Positive-sequence network

Negative-sequence current paths.

Negative-sequence network

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

network of a generator when the neutral is solidly grounded

Zero-sequence
network of a generator when the neutral is ungrounded

Figure: 4.3

Sequence Impedances and networks of Transmission lines

Let, $\quad Z_{1}=$ Positive sequence impedance of transmission line $Z_{2}=$ Negative sequence impedance of transmission line $Z_{o}=$ Zero sequence impedance of transmission line

The value of $Z_{1}=Z_{2} ; Z_{0}=2$ to 3.5 times the Z_{1}

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE
www.sathyabama.ac.in
SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Fig a : Positive sequence network

Fig b: Negative sequence network

Fig c : Zero sequence network

Figure: 4.4

Sequence Impedances and networks of Transformer:

Let, $\quad Z_{1}=$ Positive sequence impedance of transformer
$Z_{2}=$ Negative sequence impedance of transformer
$Z_{0}=$ Zero sequence impedance of transformer

Fig a: Positive sequence network

Fig b: Negative sequence network

Figure: 4.5
The value of $\mathbf{Z}_{1}=\mathbf{Z}_{2}=\mathbf{Z}_{\mathbf{0}}$
Ze ro Sequence network of three phase transformer:

Configuration	Winding Connection Diagram		Zero sequence Network

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

			$\xrightarrow[\text { Referencebus }]{\stackrel{\mathrm{M}}{\mathrm{M}} \mathrm{Z}_{0}}$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure: 4.6
Sequence Impedances and networks of Loads:
Let $\quad Z_{L 1}=$ Positive sequence impedance of load
$Z_{12}=$ Negative sequence impedance of load
$Z_{10}=$ Zero sequence impedance of load.

Fig $a:$ Positive sequence network
Zoro sequenco notworks of loads

Connection Diagram of load	Zero sequence network
	Load bus
	Load bus

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure: 4.7
3.

Determine the positive, negative and zero sequence networks for the system shown in fig 1.25.1. Assume zero sequence reactances for the generator and synchronous motors as 0.06 p.u. Current limiting reactors of 2.5Ω are connected in the neutral of the generator and motor No.2. The zero sequence reactance of the transmission line is $j 300 \Omega$.

Figure: 4.8

Solution:

Let us choose the generator ratings as new base values for entire system.

$$
\text { Base megavoltampere, } \mathrm{MVA}_{\mathrm{b}, \text { new }}=25 \mathrm{MVA}
$$

Base kilovolt, $\mathrm{kV}_{\mathrm{b}, \text { new }}=11 \mathrm{kV}$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Sequence reactances of Generator G

Since the generator rating and the new base values are same, the generator p.u. reactances does not change. Also for generator the positive and negative sequence reactances are same.
\therefore Positive sequence reactance of generator, $\mathrm{X}_{\mathrm{G}, 1}=10 \%=10 / 100=0.1$ p.u.
Negative sequence reactance of generator, $\mathrm{X}_{\mathrm{G}, 2}=0.1$ p.u.
Zero sequence reactance of generator, $\mathrm{X}_{\mathrm{G}, 0}=0.06$ p.u.
Base impedance, $\mathrm{Z}_{\mathrm{b}}=\frac{\left(\mathrm{kV}_{\mathrm{b}, \text { new }}\right)^{2}}{\mathrm{MVA}_{\mathrm{b}, \text { new }}}=\frac{11^{2}}{25}=4.84 \Omega$
$\left.\begin{array}{l}\text { p.u. value of generator } \\ \text { neutral reactance }\end{array}\right\} \mathrm{X}_{\mathrm{GN}}=\frac{\text { Actual Neutral reactance }}{\text { Base impedance }}=\frac{2.5}{4.84}=0.517 \mathrm{p} . \mathrm{u}$.

Sequence reactances of Transformer T

$$
\text { Here, } \mathrm{X}_{\mathrm{pu}, \text { old }}=10 \%=0.1, \quad \mathrm{kV}_{\mathrm{b}, \mathrm{old}}=10.8 \mathrm{kV}, \quad \mathrm{MVA}_{\mathrm{b}, \mathrm{old}}=30 \mathrm{MVA}
$$

$$
\mathrm{kV}_{\mathrm{b}, \text { new }}=11 \mathrm{kV}, \quad \mathrm{MVA}_{\mathrm{b}, \text { new }}=25 \mathrm{MVA}
$$

In transformer the specified reactance is positive sequence reactance. Also we assume that the positive, negative and zero sequence reactances of the transformer are equal.
\therefore Positive sequence reactance of transformer $\mathrm{T}_{1}, \mathrm{X}_{\mathrm{T} 1,1}=0.08$ p.u.
Negative sequence reactance of transformer $T_{1}, X_{T 1,2}=0.08$ p.u.

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Zero sequence reactance of transformer $T_{1}, \quad X_{T 1,0}=0.08$ p.u.

Sequence reactances of Transmission line

$\left.\begin{array}{l}\text { The base } k V \text { on HT side } \\ \text { of transformer } T_{1}\end{array}\right\}=$ Base $k V$ on LT side $\times \frac{H T \text { voltage rating }}{L T \text { voltage rating }}$

$$
=11 \times \frac{121}{10.8}=123.24 \mathrm{kV}
$$

Now, $k V_{b, \text { new }}=123.24 \mathrm{kV}$
Basc impedance, $Z_{b}=\frac{\left(k V_{b, n c w}\right)^{2}}{M V \Lambda_{b, n e w}}=\frac{(123.24)^{2}}{30}=506.27 \Omega$
$\left.\begin{array}{l}\text { p.u. reactance of } \\ \text { transmission line }\end{array}\right\}=\frac{\text { Actual reactance }}{\text { Base impedatiec }}=\frac{100}{506.27}=0.198$ p.u.
The specified reactance in single line diagram is positive sequence reactance. Also the negative sequence reactance of a transmission line is same as that of positive sequence reactance.
\therefore Positive sequence reactance of transmission line, $\mathrm{X}_{\mathrm{TL}, \mathrm{I}}=0.198 \mathrm{p} . \mathrm{u}$
Negative sequence reactance of transmission line, $\mathrm{X}_{\mathrm{TL}, 2}=0.198$ p.u
$\left.\begin{array}{l}\begin{array}{l}\text { p.u. value of zero sequence } \\ \text { reactance of transmission line }\end{array}\end{array}\right\} X_{T L, 0}=\frac{\text { Zero sequence reactance in } \Omega}{\text { Base impedance }}=\frac{300}{506.27}=0.593$ p.u.

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Sequence reactances of Transformer T_{2}

The ratings and winding connections of transformer T_{1} and T_{2} are identical and so the sequence reactances of T_{1} and T_{2} are same.

Positive sequence reactance of transformer $\mathrm{T}_{2}, \mathrm{X}_{\mathrm{T}, 1}=0.08$ p.u.
Negative sequence reactance of transformer $\mathrm{T}_{2}, \mathrm{X}_{\mathrm{T} 2,2}=0.08$ p.u.
Zero sequence reactance of transformer $\mathrm{T}_{2}, \mathrm{X}_{\mathrm{T} 2,0}=0.08 \mathrm{p}$.u.

Sequence reactances of Synchronous motor M_{1}

$$
=123.24 \times \frac{10.8}{121}=11 \mathrm{kV}
$$

Now, $\mathrm{kV}_{\mathrm{b}, \text { new }}=11 \mathrm{kV}$

Here, $\mathrm{X}_{\mathrm{pu}, \mathrm{old}}=25 \%=0.25 ; \mathrm{kV}_{\mathrm{b}, \text { old }}=10 \mathrm{kV} ; \quad \mathrm{MVA}_{\mathrm{b}, \text { old }}=15 \mathrm{MVA}$

$$
\mathrm{kV}_{\mathrm{b}, \text { new }}=11 \mathrm{kV} \quad ; \mathrm{MVA}_{\mathrm{b}, \text { new }}=25 \mathrm{MVA}
$$

The reactance specified in single line diagram is positive sequence reactance. Also the negative sequence reactance of synchronous motor is same as that of positive sequence reactance.
\therefore Positive sequence reactance of motor $\mathrm{M}_{1}, \mathrm{X}_{\mathrm{M} 1,1}=0.344$ p.u.
Negative sequence reactance of motor $\mathrm{M}_{1}, \mathrm{X}_{\mathrm{M} 1,2}=0.344$ p.u.
$\left.\begin{array}{l}\text { The zero sequence reactance } \\ \text { of motor } M_{1} \text { on new bases }\end{array}\right\} X_{M 1,0}=X_{p u, \text { old }} \times\left(\frac{k V_{b, o l d}}{k V_{b, \text { rew }}}\right)^{2} \times \frac{\mathrm{MVA}_{b, \text { now }}}{\mathrm{MVA}_{b, \text { old }}}$

$$
=0.06 \times\left(\frac{10}{11}\right)^{2} \times \frac{25}{15}=0.083 \mathrm{p}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Sequence reactances of Synchronous motor $\mathbf{M}_{\mathbf{2}}$

$\left.\begin{array}{l}\left.\begin{array}{l}\text { Newp.u. reactance } \\ \text { of motor } \mathrm{M}_{2}\end{array}\right\}=\mathrm{X}_{\mathrm{pu}, \text { old }} \times\left(\frac{\mathrm{kV}}{\mathrm{b}, \text { odd }}\right. \\ \mathrm{kV} \\ \mathrm{b}, \text { now }\end{array}\right)^{2} \times \frac{\mathrm{MVA}_{\mathrm{b}, \text { new }}}{\mathrm{MVA}_{\mathrm{b}, \text { old }}}$

Here, $\mathrm{X}_{\mathrm{pu}, \text { old }}=25 \%=0.25 ; \mathrm{kV}_{\mathrm{b}, \text { old }}=10 \mathrm{kV} ; \mathrm{MVA}_{\mathrm{b}, \mathrm{old}}=7.5 \mathrm{MVA}$

$$
\mathrm{kV}_{\mathrm{b}, \text { new }}=11 \mathrm{kV} \quad ; \mathrm{MVA}_{\mathrm{b}, \mathrm{ncw}}=25 \mathrm{MVA}
$$

$\left.\begin{array}{l}\text { Newp.u. reactance } \\ \text { of motor } \mathrm{M}_{2}\end{array}\right\}=0.25 \times\left(\frac{10}{11}\right)^{2} \times \frac{25}{7.5}=0.689$ p.u.

The reactance specified in single line diagram is positive sequence reactance. Also the negative sequence reactance of synchronous motor is same as that of positive sequence reactance.
\therefore Positive sequence reactance of motor $\mathrm{M}_{2}, \mathrm{X}_{\mathrm{M} 2,1}=0.689$ p.u.
Negative sequence reactance of motor $\mathrm{M}_{2}, \mathrm{X}_{\mathrm{M} 2,2}=0.689$ p.u.
$\left.\begin{array}{l}\text { The zero sequence reactance } \\ \text { of motor } M_{1} \text { on the new bases }\end{array}\right\} X_{M 2,0}=X_{p u, o l d} \times\left(\frac{k V_{b, \text { old }}}{k V_{b, \text { new }}}\right)^{2} \times \frac{M V A_{b, \text { new }}}{M V A_{b, \text { old }}}$

$$
=0.06 \times\left(\frac{10}{11}\right)^{2} \times \frac{25}{7.5}=0.165 \mathrm{p} . \mathrm{u} .
$$

Base impedance, $\mathrm{Z}_{\mathrm{b}}=\frac{\left(\mathrm{kV}_{\mathrm{b}, \text { new }}\right)^{2}}{\mathrm{MVA}_{\mathrm{b}, \text { new }}}=\frac{11^{2}}{25}=4.84 \Omega$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Positive sequence network.

Positive sequence reactance diagram of the power system.

Negative sequence network

Negative sequence reactance diagram of the power system

Zero sequence network

Zero sequence reactance diagram of the power system.

Figure:4.9

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Review of symmetrical components of unbalanced voltages and currents:
Computation of Unbalanced Vectors from their symmetrical components

$$
\left[\begin{array}{c}
\mathrm{V}_{\mathrm{a}} \\
\mathrm{~V}_{\mathrm{b}} \\
\mathrm{~V}_{\mathrm{c}}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathrm{a}^{2} & \mathrm{a} \\
1 & \mathrm{a} & \mathrm{a}^{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{V}_{\mathrm{a} 0} \\
\mathrm{~V}_{\mathrm{a} 1} \\
\mathrm{~V}_{\mathrm{a} 2}
\end{array}\right]
$$

Computation of balanced Vectors from their Unbalanced Vectors

$$
\left[\begin{array}{c}
\mathrm{V}_{\mathrm{a} 0} \\
\mathrm{~V}_{\mathrm{a} 1} \\
\mathrm{~V}_{\mathrm{a} 2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathrm{a} & \mathrm{a}^{2} \\
1 & \mathrm{a}^{2} & \mathrm{a}
\end{array}\right]\left[\begin{array}{l}
\mathrm{V}_{\mathrm{a}} \\
\mathrm{~V}_{\mathrm{b}} \\
\mathrm{~V}_{\mathrm{c}}
\end{array}\right]
$$

Review of Sequence net works of a generator:

Positive-sequence network

Negative-sequence network

Zero-sequence network

Figure: 4.10

$$
\begin{aligned}
V_{00} & =-I_{20} Z_{0} \\
V_{a 1} & =E_{a}-I_{21} Z_{1} \\
V_{a 2} & =-I_{22} Z_{2}
\end{aligned}
$$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE
www.sathyabama.ac.in
SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\left[\begin{array}{l}
\mathrm{V}_{\mathrm{a} 0} \\
\mathrm{~V}_{\mathrm{a} 1} \\
\mathrm{~V}_{\mathrm{a} 2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\mathrm{E}_{\mathrm{a}} \\
0
\end{array}\right]-\left[\begin{array}{ccc}
\mathrm{Z}_{0} & 0 & 0 \\
0 & \mathrm{Z}_{1} & 0 \\
0 & 0 & \mathrm{Z}_{2}
\end{array}\right]\left[\begin{array}{l}
\mathrm{I}_{\mathrm{a} 0} \\
\mathrm{I}_{\mathrm{a} 1} \\
\mathrm{I}_{\mathrm{a} 2}
\end{array}\right]
$$

Single Line to Ground fault on an unloaded generator

Circuit diagram for single line-to-ground fault on phase-a of an unloaded generator

Figure: 4.11
The condition at the fault is expressed by the following equations

$$
\mathrm{I}_{\mathrm{b}}=0 ; \mathrm{I}_{\mathrm{c}}=0 ; \quad \mathrm{V}_{\mathrm{a}}=0
$$

The symmetrical components of the currents are given by

$$
\left[\begin{array}{c}
\mathrm{I}_{\mathrm{a} 0} \\
\mathrm{I}_{\mathrm{a} 1} \\
\mathrm{I}_{\mathrm{a} 2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathrm{a} & \mathrm{a}^{2} \\
1 & \mathrm{a}^{2} & \mathrm{a}
\end{array}\right]\left[\begin{array}{c}
\mathrm{I}_{\mathrm{a}} \\
\mathrm{I}_{\mathrm{b}} \\
\mathrm{I}_{\mathrm{c}}
\end{array}\right]
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
& I_{b}=I_{c}=0 \quad\left[\begin{array}{l}
I_{a 0} \\
I_{a 1} \\
I_{a 2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{l}
I_{a} \\
0 \\
0
\end{array}\right] \\
& \mathrm{I}_{20}=\mathrm{I}_{21}=\mathrm{I}_{22}=\frac{\mathrm{I}_{\mathrm{a}}}{3} \\
& {\left[\begin{array}{c}
\mathrm{V}_{\mathrm{a} 0} \\
\mathrm{~V}_{\mathrm{a} 1} \\
\mathrm{~V}_{\mathrm{a} 2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\mathrm{E}_{\mathrm{a}} \\
0
\end{array}\right]-\left[\begin{array}{ccc}
\mathrm{Z}_{0} & 0 & 0 \\
0 & \mathrm{Z}_{1} & 0 \\
0 & 0 & \mathrm{Z}_{2}
\end{array}\right]\left[\begin{array}{l}
\mathrm{I}_{\mathrm{a} 0} \\
\mathrm{I}_{\mathrm{a} 1} \\
\mathrm{I}_{\mathrm{a} 2}
\end{array}\right]} \\
& I_{a 0}=I_{a 1} \text { and } I_{a_{2}}=I_{a 1} \\
& {\left[\begin{array}{l}
\mathrm{V}_{\mathrm{a} 0} \\
\mathrm{~V}_{\mathrm{a} 1} \\
\mathrm{~V}_{\mathrm{a} 2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\mathrm{E}_{\mathrm{a}} \\
0
\end{array}\right]-\left[\begin{array}{ccc}
\mathrm{Z}_{0} & 0 & 0 \\
0 & \mathrm{Z}_{1} & 0 \\
0 & 0 & \mathrm{Z}_{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{I}_{\mathrm{a} 1} \\
\mathrm{I}_{\mathrm{a} 1} \\
\mathrm{I}_{\mathrm{a} 1}
\end{array}\right]} \\
& \begin{array}{l}
V_{a 0}=-Z_{0} I_{a 1} \\
V_{a 1}=E_{2}-Z_{1} I_{a 1} \\
V_{a 2}=-Z_{2} I_{a 1}
\end{array} \quad\left[\begin{array}{c}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{c}
V_{a 0} \\
V_{a 1} \\
V_{a 2}
\end{array}\right] \\
& V_{a 0}+V_{a 1}+V_{a 2}=-I_{a 1} Z_{0}+E_{a}-I_{a 1} Z_{1}-I_{a 1} Z_{2} \\
& \mathrm{~V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{a} 0}+\mathrm{V}_{\mathrm{a} 1}+\mathrm{V}_{\mathrm{a} 2}=0 \text { : } \\
& -I_{a 1} Z_{0}+E_{2}-I_{a 1} Z_{1}-I_{a 1} Z_{2}=0 \\
& I_{a 1}=\frac{E_{a}}{Z_{1}+Z_{2}+Z_{0}}
\end{aligned}
$$

[DEEMED TO BE UNIVERSITY)

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Connection of sequence network of an unloaded generator for line-to-ground fault on phase -a

$$
I_{f}=I_{a}=3 I_{21}
$$

Figure: 4.12
If the neutral of the generator is not grounded, the zero-sequence network is open-circuited and Z_{0} is infinite. Under this condition I_{21} is zero and so I_{22} \& I_{20} must be zero. Therefore no path exists for the flow of current in the fault unless the generator neutral is grounded.

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Line to Line fault on an unloaded generator:

Circuit diagram for double
line to ground fault between phase $b \& c$ in an unloaded generator

Figure: 4.13

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mathrm{V}_{\mathrm{a} 0} \\
\mathrm{~V}_{\mathrm{a} 1} \\
\mathrm{~V}_{\mathrm{a} 2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & \mathrm{a} & \mathrm{a}^{2} \\
1 & \mathrm{a}^{2} & \mathrm{a}
\end{array}\right]\left[\begin{array}{c}
\mathrm{V}_{\mathrm{a}} \\
\mathrm{~V}_{\mathrm{b}} \\
\mathrm{~V}_{\mathrm{b}}
\end{array}\right]} \\
& \mathrm{V}_{\mathrm{al}}=\frac{1}{3}\left(\mathrm{~V}_{\mathrm{a}}+\mathrm{a}_{\mathrm{b}}+\mathrm{a}^{2} \mathrm{~V}_{\mathrm{b}}\right) \quad \mathrm{V}_{21}=\mathrm{V}_{22} . \\
& \mathrm{V}_{\mathrm{a} 2}=\frac{1}{3}\left(\mathrm{~V}_{\mathrm{a}}+\mathrm{a}^{2} \mathrm{~V}_{\mathrm{b}}+\mathrm{a} \mathrm{~V}_{\mathrm{b}}\right) \\
& {\left[\begin{array}{l}
\mathrm{I}_{\mathrm{a} 0} \\
\mathrm{I}_{\mathrm{a} 1} \\
\mathrm{I}_{\mathrm{a} 2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 \cdot & \mathrm{a} & \mathrm{a}^{2} \\
1 & \mathrm{a}^{2} & \mathrm{a}
\end{array}\right]\left[\begin{array}{c}
\mathrm{I}_{\mathrm{a}} \\
\mathrm{I}_{\mathrm{b}} \\
\mathrm{I}_{\mathrm{c}}
\end{array}\right]} \\
& I_{b}=-I_{c} \text { and } I_{a}=0
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathrm{I}_{\mathrm{a} 0} \\
\mathrm{I}_{\mathrm{a}!} \\
\mathrm{I}_{\mathrm{a} 2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & \mathrm{a} & \mathrm{a}^{2} \\
1 & \mathrm{a}^{2} & \mathrm{a}
\end{array}\right]\left[\begin{array}{c}
0 \\
-\mathrm{I}_{\mathrm{c}} \\
\mathrm{I}_{\mathrm{c}}
\end{array}\right]} \\
& \mathrm{I}_{\mathrm{a} 0}=\frac{1}{3}\left[-\mathrm{I}_{\mathrm{c}}+\mathrm{I}_{\mathrm{c}}\right]=0 \\
& I_{a 1}=\frac{1}{3}\left[-\mathrm{I}_{\mathrm{c}}+\mathrm{a}^{2} \cdot \mathrm{I}_{\mathrm{c}}\right] \\
& I_{22}=-I_{21} \\
& I_{a 2}=\frac{1}{3}\left[-a^{2} I_{c}+I_{c}\right]=-\frac{1}{3}\left[-\mathrm{a}_{\mathrm{c}}+\mathrm{a}^{2} \mathrm{I}_{\mathrm{c}}\right] \\
& {\left[\begin{array}{l}
\mathrm{V}_{\mathrm{a} 0} \\
\mathrm{~V}_{\mathrm{a} 1} \\
\mathrm{~V}_{\mathrm{a} 2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\mathrm{E}_{\mathrm{a}} \\
0
\end{array}\right]-\left[\begin{array}{ccc}
\mathrm{Z}_{0} & 0 & 0 \\
0 & \mathrm{Z}_{1} & 0 \\
0 & 0 & \mathrm{Z}_{2}
\end{array}\right]\left[\begin{array}{l}
\mathrm{I}_{\mathrm{a} 0} \\
\mathrm{I}_{\mathrm{a} 1} \\
\mathrm{I}_{\mathrm{a} 2}
\end{array}\right]} \\
& ; \mathrm{I}_{20}=0 \text { and } \mathrm{I}_{22}=-\mathrm{I}_{21} \\
& {\left[\begin{array}{l}
\mathrm{V}_{\mathrm{a} 0} \\
\mathrm{~V}_{\mathrm{n} 1} \\
\mathrm{~V}_{\mathrm{a} 2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\mathrm{E}_{\mathrm{a}} \\
0
\end{array}\right]-\left[\begin{array}{ccc}
\mathrm{Z}_{0} & 0 & 0 \\
0 & \mathrm{Z}_{1} & 0 \\
0 & 0 & \mathrm{Z}_{2}
\end{array}\right]\left[\begin{array}{c}
0 \\
\mathrm{I}_{21} \\
-\mathrm{I}_{\mathrm{a} 1}
\end{array}\right]} \\
& V_{20}=0 \\
& V_{21}=E_{2}-Z_{1} I_{21} \\
& V_{a 2}=Z_{2} I_{21} \\
& V_{21}=V_{22} . \\
& E_{2}-Z_{1} I_{21}=Z_{2} I_{21} \\
& \text { (or) } I_{21}\left(Z_{1}+Z_{2}\right)=E_{2} \\
& \therefore \mathrm{I}_{21}=\frac{\mathrm{E}_{3}}{Z_{1}+Z_{2}}
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Since $V_{21}=V_{22}$, here the positive and negative sequence networks of the generator must be in parallel. Since $V_{\nu}=0$, the zero sequence network is shorted and so it need not be considered. (or Since Z_{b} does not enter into the equations, the zero-sequencenetwork is not used). Since thistypeoffault does not involve ground, the neutral current $I_{n}=0$. Hence the presence or absence of a grounded neutral at the generator does not affect the fault current.

Connection of the sequence networks of an unloaded generator for a line-to-line fault between phases b and c

Figure: 4.14
the fault current, $\mathrm{I}_{\mathrm{f}}=\mathrm{I}_{\mathrm{b}}=-\mathrm{I}_{\mathrm{c}}$

$$
\begin{aligned}
& {\left[\begin{array}{l}
I_{2} \\
I_{b} \\
r_{c}
\end{array}\right] }=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{l}
I_{a 0} \\
I_{21} \\
I_{22}
\end{array}\right] \quad I_{b}=I_{20}+a^{2} I_{21}+a I_{22} \quad I_{20}=0 \text { and } I_{22}=-I_{21} . \\
& \\
& I_{b}=a^{2} I_{a 1}-a I_{22}=I_{a 1}\left(a^{2}-a\right)
\end{aligned}
$$

\therefore Fault current, $I_{f}=I_{b}=I_{a l}\left(a^{2}-a\right)$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Double Line to Ground fault on an unloaded generator:

Circuit diagram for double line-to-ground fault between phase $b \& c$ in an unloaded generator

The conditions at the fault are expressed by the following equations

$$
\begin{gathered}
\mathrm{V}_{\mathrm{b}}=0, \quad \mathrm{~V}_{\mathrm{c}}=0, \mathrm{I}_{\mathrm{a}}=0 \\
\mathrm{I}_{\mathrm{f}}=\mathrm{I}_{\mathrm{b}}+\mathrm{I}_{c^{*}} \quad \mathrm{~V}_{\mathrm{b}}=\mathrm{V}_{\mathrm{c}}=0,
\end{gathered}
$$

Figure: 4.15

$$
\left[\begin{array}{c}
\mathrm{V}_{\mathrm{a} 0} \\
\mathrm{~V}_{\mathrm{a} 1} \\
\mathrm{~V}_{\mathrm{a} 2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathrm{a} & \mathrm{a}^{2} \\
1 & \mathrm{a}^{2} & \mathrm{a}
\end{array}\right]\left[\begin{array}{c}
\mathrm{V}_{\mathrm{a}} \\
0 \\
0
\end{array}\right]
$$

$$
\mathrm{V}_{\mathrm{n} 0}=\mathrm{V}_{\mathrm{a} 1}=\mathrm{V}_{\mathrm{n} 2}=\frac{\mathrm{V}_{\mathrm{n}}}{3}
$$

$$
\left[\begin{array}{l}
\mathrm{V}_{\mathrm{a} 0} \\
\mathrm{~V}_{\mathrm{a} 1} \\
\mathrm{~V}_{\mathrm{a} 2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\mathrm{E}_{\mathrm{a}} \\
0
\end{array}\right]-\left[\begin{array}{ccc}
\mathrm{Z}_{0} & 0 & 0 \\
0 & \mathrm{Z}_{1} & 0 \\
0 & 0 & \mathrm{Z}_{2}
\end{array}\right]\left[\begin{array}{l}
\mathrm{I}_{\mathrm{a} 0} \\
\mathrm{I}_{\mathrm{a} 1} \\
\mathrm{I}_{\mathrm{a} 2}
\end{array}\right]
$$

$$
V_{a 1}=E_{2}-I_{a 1} Z_{1}
$$

$$
V_{a 0}=V_{a 1}=V_{a 2}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathrm{E}_{\mathrm{a}}-I_{a 1} Z_{1} \\
\mathrm{E}_{\mathrm{a}}-I_{a 1} Z_{1} \\
\mathrm{E}_{\mathrm{a}}-\mathrm{I}_{\mathrm{a} 1} Z_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\mathrm{E}_{\mathrm{a}} \\
0
\end{array}\right]-\left[\begin{array}{ccc}
\mathrm{Z}_{0} & 0 & 0 \\
0 & \mathrm{Z}_{1} & 0 \\
0 & 0 & Z_{2}
\end{array}\right]\left[\begin{array}{l}
\mathrm{I}_{\mathrm{a} 0} \\
\mathrm{I}_{\mathrm{a} 1} \\
\mathrm{I}_{\mathrm{a} 2}
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
Z_{0} & 0 & 0 \\
0 & Z_{1} & 0 \\
0 & 0 & Z_{2}
\end{array}\right]\left[\begin{array}{l}
I_{a 0} \\
I_{a 1} \\
I_{a 2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
E_{a} \\
0
\end{array}\right]-\left[\begin{array}{l}
E_{a}-I_{a l} Z_{1} \\
E_{a}-I_{a 1} Z_{1} \\
E_{a}-I_{a 1} Z_{1}
\end{array}\right]} \\
& \text { Let, } \mathbf{Z}=\left[\begin{array}{ccc}
Z_{0} & 0 & 0 \\
0 & Z_{1} & 0 \\
0 & 0 & Z_{2}
\end{array}\right] \quad \therefore \mathbf{Z}^{-1}=\left[\begin{array}{ccc}
1 / Z_{0} & 0 & 0 \\
0 & 1 / Z_{1} & 0 \\
0 & 0 & 1 / Z_{2}
\end{array}\right] \\
& {\left[\begin{array}{l}
I_{a 0} \\
I_{a 1} \\
I_{a 2}
\end{array}\right]=\left[\begin{array}{ccc}
1 / Z_{0} & 0 & 0 \\
0 & 1 / Z_{1} & 0 \\
0 & 0 & 1 / Z_{2}
\end{array}\right]\left[\begin{array}{c}
0 \\
E_{a} \\
0
\end{array}\right]-\left[\begin{array}{ccc}
1 / Z_{0} & 0 & 0 \\
0 & 1 / Z_{1} & 0 \\
0 & 0 & 1 / Z_{2}
\end{array}\right]\left[\begin{array}{l}
E_{a}-I_{a 1} Z_{1} \\
E_{a}-I_{a 1} Z_{1} \\
E_{a}-I_{a 1} Z_{1}
\end{array}\right]} \\
& \therefore\left[\begin{array}{l}
I_{a 0} \\
I_{a 1} \\
I_{a 2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\frac{E_{a}}{Z_{1}} \\
0
\end{array}\right]-\left[\begin{array}{l}
\frac{E_{a}-I_{a 1} Z_{1}}{Z_{0}} \\
\frac{E_{a}-I_{a 1} Z_{1}}{Z_{1}} \\
\frac{E_{a}-I_{a 1} Z_{1}}{Z_{2}}
\end{array}\right] \\
& I_{a 0} \doteq-\left(\frac{E_{a}-I_{a 1} Z_{1}}{Z_{0}}\right)=-\frac{E_{a}}{Z_{0}}+\frac{I_{a 1} Z_{1}}{Z_{0}} \\
& I_{a 1}=\frac{E_{a}}{Z_{1}}-\left(\frac{E_{a}-I_{a 1} Z_{1}}{Z_{1}}\right)=\frac{E_{a}}{Z_{1}}-\frac{E_{a}}{Z_{1}}+\frac{I_{a 1} Z_{1}}{Z_{1}}=I_{a 1} \\
& I_{a 2}=-\left(\frac{E_{a}-I_{a 1} Z_{1}}{Z_{2}}\right)=-\frac{E_{\mathrm{a}}}{Z_{2}}+\frac{I_{a 1} Z_{1}}{Z_{2}}
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$\mathrm{I}_{\mathrm{a}}=\mathrm{O}$,
$I_{2}=I_{20}+I_{21}+I_{22}=0$
$-\frac{E_{a}}{Z_{0}}+\frac{I_{a 1} Z_{1}}{Z_{0}}+I_{a 1}-\frac{E_{a}}{Z_{2}}+\frac{I_{a 1} Z_{1}}{Z_{2}}=0$
$I_{a 1}\left(\frac{Z_{1}}{Z_{0}}+1+\frac{Z_{1}}{Z_{2}}\right)=\frac{E_{a}}{Z_{0}}+\frac{E_{a}}{Z_{2}}$
$\mathrm{I}_{\mathrm{a} 1}\left(1+Z_{1}\left(\frac{1}{Z_{0}}+\frac{1}{Z_{2}}\right)\right)=\mathrm{E}_{\mathrm{a}}\left(\frac{1}{Z_{0}}+\frac{1}{Z_{2}}\right)$
$I_{a 1}\left(1+Z_{1}\left(\frac{Z_{0}+{ }^{2} Z_{2}}{Z_{0} Z_{2}}\right)\right)=E_{a}\left(\frac{Z_{0}+Z_{2}}{Z_{0} Z_{2}}\right)$
On multiplying throughoutby $\frac{L_{0} L_{2}}{Z_{0}+Z_{2}}$ weget,

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{a} 1}\left(\frac{\mathrm{Z}_{0} Z_{2}}{Z_{0}+Z_{2}}+\mathrm{Z}_{1}\right)=\mathrm{E}_{\mathrm{a}} \\
\therefore & \mathrm{I}_{\mathrm{a} 1}=\frac{\mathrm{E}_{\mathrm{a}}}{Z_{1}+\frac{Z_{0} Z_{2}}{Z_{0}+Z_{2}}}
\end{aligned}
$$

sequence networks of an unloaded generator for a double line-toground fault on phase b and c.

Under this fault conditon the sequence networks should be connected in parallel sincethepositive, negative, and zero-sequence voltages are equal during this faul. In the absence of a ground connection at the generator no current can flow into the ground at the fault. In this case Z_{0} would be infinite and I_{20} would be zero and so the fault will be similar to lineto-line fault.

Figure:4.16

$$
I_{f}=I_{b}+I_{c}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
& I_{a 1}=\frac{E_{a}}{Z_{1}+\frac{Z_{0} Z_{2}}{Z_{0}+Z_{2}} ; I_{a 0}=-\frac{E_{a}}{Z_{0}}+\frac{I_{01} Z_{1}}{Z_{0}} ; I_{a 2}=-\frac{E_{a}}{Z_{2}}+\frac{I_{a 1} Z_{1}}{Z_{2}}} \\
& I_{a 2}=-I_{a 1} \times \frac{Z_{0}}{Z_{0}+Z_{2}} \& I_{a 0}=-\left(I_{a 1}-I_{a 2}\right) \\
& {\left[\begin{array}{l}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & \cdot a^{2}
\end{array}\right]\left[\begin{array}{l}
I_{a 0} \\
I_{a 1} \\
I_{a 2}
\end{array}\right]} \\
& I_{b}=I_{a 0}+a^{2} I_{21}+a I_{22} \\
& I_{c}=I_{20}+a I_{a 1}+a^{2} I_{22}
\end{aligned}
$$

\therefore Fault current, $I_{f}=I_{b}+I_{c}=I_{20}+a^{2} I_{a 1}+a I_{a 2}+I_{a 0}+a I_{a 1}+a^{2} I_{a 2}$

$$
\begin{aligned}
& =2 I_{20}+\left(a+a^{2}\right) I_{a 1}+\left(a+a^{2}\right) I_{a 2} \\
& =2 I_{20}+\left(a+a^{2}\right)\left(I_{a 1}+I_{a 2}\right)
\end{aligned}
$$

Unsymmetrical Faults on Power Systems

Let $Z_{1}=$ Thevenin's impedance of positive sequence network.
$Z_{2}=$ Thevenin's impedance of negative sequence network.
$\mathrm{Z}_{0}=$ Thevenin's impedance of zero sequence network.
$\mathrm{V}_{\mathrm{vf}}=$ Prefault voltage at the fault point.

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Thevenin's equivalent of positive sequence network

Thevenin's equivalent of negative sequence network

Thevenin's equivalent of zero sequence network

Figure:4.17

$$
\begin{aligned}
& V_{20}=-Z_{0} I_{20} \\
& V_{21}=V_{p 1}-Z_{1} I_{21} \\
& V_{22}=-Z_{2} I_{22}
\end{aligned}
$$

$$
\left[\begin{array}{l}
\mathrm{V}_{\mathrm{a} 0} \\
\mathrm{~V}_{\mathrm{a} 1} \\
\mathrm{~V}_{\mathrm{a} 2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\mathrm{~V}_{\mathrm{pr}} \\
0
\end{array}\right]-\left[\begin{array}{ccc}
\mathrm{Z}_{0} & 0 & 0 \\
0 & \mathrm{Z}_{1} & 0 \\
0 & 0 & \mathrm{Z}_{2}
\end{array}\right]\left[\begin{array}{l}
\mathrm{I}_{\mathrm{a} 0} \\
\mathrm{I}_{\mathrm{a} 1} \\
\mathrm{I}_{\mathrm{u} 2}
\end{array}\right]
$$

Single Line to Ground fault on Power System

diagram of the stubs for a single line-ro-ground fault.

$$
\mathrm{I}_{\mathrm{al}}=\frac{\mathrm{V}_{\mathrm{pf}}}{Z_{1}+Z_{2}+Z_{0}}
$$

Figure: 4.18

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Connection of sequence networks for a single line-toground fault in a power system

Figure: 4.19
Line to Line fault on Power System

$$
\begin{aligned}
& V_{b}=V_{c} \quad I_{2}=0 \quad I_{b}=-I_{c} \\
& V_{a 1}=V_{22} \\
& I_{a 1}=\frac{V_{r r}}{Z_{1}+Z_{2}}
\end{aligned}
$$

Figure: $\mathbf{4 . 2 0}$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

sequence networks for a line-to-line fault in a power system.

Figure: 4.21

Double Line to Ground fault on Power System

Connection diagram of stubs for a double line-to-ground fault in power system

Figure: 4.22

sequence networks for a double line-to-ground fault in a power system.

$$
\begin{aligned}
& V_{b}=V_{c}=0 ; I_{a}=0 \\
& V_{21}=V_{22}=V_{20} \\
& I_{a 1}=\frac{V_{p f}}{Z_{1}+\left(Z_{2} Z_{0} /\left(Z_{2}+Z_{0}\right)\right)}
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Unsymmetrical Faults on Power Systems through Impedance

Single Line to Ground fault on Power System through Impedance:

Connection diagram of stubs for a single line-to ground fault through an impedance

Figure: 4.24
At the fault point F , the following relations exist

$$
\begin{aligned}
& I_{b}=0 ; \quad I_{c}=0 ; V_{a}=Z_{f} I_{a} \\
& {\left[\begin{array}{l}
I_{a 0} \\
I_{21} \\
I_{22}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{l}
I_{a} \\
0 \\
0
\end{array}\right]} \\
& \therefore I_{a 1}=I_{a 2}=I_{a 0}=\frac{1}{3} I_{i} \\
& I_{a}=3 I_{a 1} \\
& {\left[\begin{array}{l}
V_{a} \\
V_{b} \\
V_{\dot{c}}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{l}
V_{a 0} \\
V_{a 1} \\
V_{a 2}
\end{array}\right] \quad V_{a}=V_{a 1}+V_{a 2}+V_{a 0}} \\
& V_{a 1}+V_{a 2}+V_{a 0}=Z_{f} I_{a}=3 Z_{f} I_{a 1}
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Connection of sequence networks for a single line to ground fault through an impedance Z_{f}

Figure: 4.25

$$
I_{\mathrm{al}}=\frac{\mathrm{V}_{\mathrm{pf}}}{\left(Z_{1}+Z_{2}+Z_{0}\right)+3 Z_{\mathrm{f}}}
$$

Fault current, $I_{f}=I_{a}=3 I_{31}=\frac{3 V_{p r}}{\left(Z_{1}+Z_{2}+Z_{0}\right)+3 Z_{f}}$.

$$
\mathrm{V}_{\mathrm{al}}=\mathrm{V}_{\mathrm{pr}}-Z_{1} \mathrm{I}_{\mathrm{a} 1}
$$

$$
V_{\mathrm{a} 2}=-Z_{2} I_{\mathrm{a} 1}
$$

$V_{a 0}=-Z_{0} I_{21}$

$$
\left[\begin{array}{l}
\mathrm{V}_{\mathrm{a} 0} \\
\mathrm{~V}_{\mathrm{a} 1} \\
\mathrm{~V}_{\mathrm{a} 2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\mathrm{~V}_{\mathrm{pf}} \\
0
\end{array}\right]-\left[\begin{array}{ccc}
\mathrm{Z}_{0} & 0 & 0 \\
0 & \mathrm{Z}_{1} & 0 \\
0 & 0 & \mathrm{Z}_{2}
\end{array}\right]\left[\begin{array}{l}
\mathrm{I}_{\mathrm{a} 0} \\
\mathrm{I}_{\mathrm{a} 1} \\
\mathrm{I}_{\mathrm{a} 2}
\end{array}\right]
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

From the symmetrical components of phase-a voltage, the phase voltages V_{a}, V_{b} and V_{c} are calculated using the following matrix equation.

$$
\left[\begin{array}{c}
\mathrm{V}_{\mathrm{a}} \\
\mathrm{~V}_{\mathrm{b}} \\
\mathrm{~V}_{\mathrm{c}}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathrm{a}^{2} & \mathrm{a} \\
1 & \mathrm{a} & \mathrm{a}^{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{V}_{\mathrm{a}} \\
\mathrm{~V}_{\mathrm{a} 1} \\
\mathrm{~V}_{\mathrm{a} 2}
\end{array}\right]
$$

Line to Line fault on Power System through Impedance:

Connection diagram of stubs for a line-to-line fault through an impedance

$$
I_{a}=0 \text { and } I_{b}=-I_{c}
$$

$$
\text { Also } \mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{c}}=\mathrm{I}_{\mathrm{b}} \mathrm{Z}_{\mathrm{f}} ; \therefore \mathrm{V}_{\mathrm{c}}=\mathrm{V}_{\mathrm{b}}-\mathrm{I}_{\mathrm{b}} \mathrm{Z}_{\mathrm{f}}
$$

$$
\left[\begin{array}{c}
\mathrm{I}_{\mathrm{a} 0} \\
\mathrm{I}_{\mathrm{a} 1} \\
\mathrm{I}_{\mathrm{a} 2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & \mathrm{a} & \mathrm{a}^{2} \\
1 & \mathrm{a}^{2} & \mathrm{a}
\end{array}\right]\left[\begin{array}{c}
0 \\
\mathrm{I}_{\mathrm{b}} \\
-\mathrm{I}_{\mathrm{b}}
\end{array}\right]
$$

Figure: 4.26

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{a} 0}=\frac{1}{3}\left(\mathrm{I}_{\mathrm{b}}-\mathrm{I}_{\mathrm{b}}\right)=0 \\
& \mathrm{I}_{\mathrm{a} 1}=\frac{1}{3}\left(\mathrm{aI}_{\mathrm{b}}-\mathrm{a}^{2} \mathrm{I}_{\mathrm{b}}\right) \\
& \mathrm{I}_{\mathrm{a} 2}=\frac{1}{3}\left(\mathrm{a}^{2} \mathrm{I}_{\mathrm{b}}-\mathrm{a}_{\mathrm{b}}\right)=-\mathrm{I}_{\mathrm{a} 1} \\
& I_{a 0}=0 \text { and } I_{a 2}=-I_{a!}
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
& {\left[\begin{array}{l}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{l}
I_{20} \\
I_{a 1} \\
I_{22}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{c}
0 \\
I_{21} \\
-I_{21}
\end{array}\right]} \\
& I_{b}=a^{2} I_{a 1}-\mathrm{aI}_{a 1}=I_{a 1}\left(a^{2}-a\right)=I_{a 1}\left(-\frac{1}{2}-j \frac{\sqrt{3}}{2}+\frac{1}{2}-j \frac{\sqrt{3}}{2}\right)=-j \sqrt{3} I_{a 1} \\
& {\left[\begin{array}{l}
V_{20} \\
V_{21} \\
V_{22}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{c}
V_{2} \\
V_{b} \\
V_{c}
\end{array}\right]}
\end{aligned}
$$

$$
V_{c}=V_{b}-I_{b} Z_{f}
$$

$$
\left[\begin{array}{l}
\mathrm{V}_{\mathrm{a} 0} \\
\mathrm{~V}_{\mathrm{a} 1} \\
\mathrm{~V}_{\mathrm{a} 2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & \mathrm{a} & \mathrm{a}^{2} \\
1 & \mathrm{a}^{2} & \mathrm{a}
\end{array}\right]\left[\begin{array}{l}
\mathrm{V}_{\mathrm{a}} \\
\mathrm{~V}_{\mathrm{b}} \\
\mathrm{~V}_{\mathrm{b}}-\mathrm{I}_{\mathrm{b}} \mathrm{Z}_{\mathrm{f}}
\end{array}\right]
$$

From row-2 of matrix

$$
\begin{aligned}
\mathrm{V}_{\mathrm{al}} & =\frac{1}{3}\left[\mathrm{~V}_{\mathrm{a}}+\mathrm{aV} \mathrm{~V}_{\mathrm{b}}+\mathrm{a}^{2} \mathrm{~V}_{\mathrm{b}}-\mathrm{a}^{2} \mathrm{I}_{\mathrm{b}} \mathrm{Z}_{\mathrm{r}}\right] \\
\therefore 3 \mathrm{~V}_{\mathrm{al}} & =\mathrm{V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{b}}\left(\mathrm{a}+\mathrm{a}^{2}\right)-\mathrm{a}^{2} Z_{\mathrm{f}} \mathrm{I}_{\mathrm{b}}
\end{aligned}
$$

From row-3 of matrix

$$
\begin{aligned}
\mathrm{V}_{\mathrm{a} 2} & =\frac{1}{3}\left[\mathrm{~V}_{\mathrm{a}}+\mathrm{a}^{2} \mathrm{~V}_{\mathrm{b}}+a \mathrm{~V}_{\mathrm{b}}-\mathrm{aI}_{\mathrm{b}} \mathrm{Z}_{\mathrm{f}}\right] \\
\therefore 3 \mathrm{~V}_{\mathrm{a} 2} & =\mathrm{V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{b}}\left(\mathrm{a}^{2}+\mathrm{a}\right)-\mathrm{a} \mathrm{Z}_{\mathrm{f}} \mathrm{I}_{\mathrm{b}}
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
& 3 \mathrm{~V}_{\mathrm{a} 1}-3 \mathrm{~V}_{\mathrm{a} 2}=\mathrm{V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{b}}\left(\mathrm{a}+\mathrm{a}^{2}\right)-\mathrm{a}^{2} \mathrm{Z}_{\mathrm{f}} \mathrm{I}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}\left(\mathrm{a}^{2}+\mathrm{a}\right)+\mathrm{a} \mathrm{Z}_{\mathrm{r}} \mathrm{I}_{\mathrm{b}} \\
& =\left(-\mathrm{a}^{2}+\mathrm{a}\right) \mathrm{Z}_{\mathrm{f}} \mathrm{I}_{\mathrm{b}} \\
& =\left(\frac{1}{2}+\mathrm{j} \frac{\sqrt{3}}{2}-\frac{1}{2}+\mathrm{j} \frac{\sqrt{3}}{2}\right) \mathrm{Z}_{\mathrm{f}} \mathrm{I}_{\mathrm{b}}=\mathrm{j} \sqrt{3} \mathrm{Z}_{\mathrm{f}} \mathrm{I}_{\mathrm{b}} . \\
& \therefore \mathrm{V}_{\mathrm{a} 1}-\mathrm{V}_{\mathrm{a} 2}=\frac{1}{3} \mathrm{j} \sqrt{3} \mathrm{Z}_{\mathrm{f}} \mathrm{I}_{\mathrm{b}}=\mathrm{j} \frac{1}{\sqrt{3}} \mathrm{Z}_{\mathrm{r}} \mathrm{I}_{\mathrm{b}} \\
& V_{a l}-V_{a 2}=j \frac{1}{\sqrt{3}} Z_{f}\left(-j \sqrt{3} I_{a l}\right)=Z_{f} I_{a l} \\
& \therefore \mathrm{~V}_{\mathrm{a} 1}-\mathrm{V}_{\mathrm{a} 2}=\mathrm{Z}_{\mathrm{f}} \mathrm{I}_{\mathrm{a} 1} \\
& I_{\mathrm{al}}=\frac{\mathrm{V}_{\mathrm{pf}}}{\mathrm{Z}_{1}+\mathrm{Z}_{2}+Z_{\mathrm{f}}}
\end{aligned}
$$

The fault turfent, $I_{p}=I_{b}=-j \sqrt{3} I_{a l}$

Figure: 4.27

Double line to ground fault on Power System through Impedance:

A double line to ground fault at point F in a power system, through a fault impedance Z_{f} can be represented by connecting three stubs as shown in Fig

The current and voltage conditions at the fault are

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure: 4.28
The line currents are given by

$$
\text { W.K.T, } 1+\mathbf{a}+\mathbf{a}^{2}=\mathbf{0}, \quad \therefore \mathbf{a}+\mathbf{a}^{2}=-\mathbf{1}
$$

$$
\begin{aligned}
\mathbf{I}_{\mathbf{b}}+\mathbf{I}_{\mathbf{c}} & =2 \mathbf{I}_{\mathrm{a} 0}-\mathbf{I}_{\mathrm{a} 1}-\mathbf{I}_{\mathrm{a} 2} \\
& =2 \mathbf{I}_{\mathrm{a} 0}-\left(\mathbf{I}_{\mathbf{a} 1}+\mathbf{I}_{\mathrm{a} 2}\right) \\
& =2 \mathbf{I}_{\mathrm{a} 0}-\left(-\mathbf{I}_{\mathrm{a} 0}\right) \\
& =3 \mathbf{I}_{\mathrm{a} 0}
\end{aligned}
$$

The Symmetrical components of voltages after substituting $\mathbf{V}_{\mathbf{c}}=\mathbf{V}_{\mathbf{b}}$ are given by

$$
\begin{array}{cc}
\mathbf{V}_{\mathbf{a} 0}=(\mathbf{1} / \mathbf{3}) & {\left[\mathbf{V}_{\mathbf{a}}+\mathbf{V}_{\mathbf{b}}+\mathbf{V}_{\mathbf{b}}\right]=(\mathbf{1} / \mathbf{3})\left[\mathbf{V}_{\mathbf{a}}+\mathbf{2} \mathbf{V}_{\mathbf{b}}\right]} \\
\mathbf{V}_{\mathbf{a} 1}=\mathbf{V}_{\mathbf{a} 2}=(\mathbf{1} / \mathbf{3})\left[\mathbf{V}_{\mathbf{a}}+\mathbf{a} \mathbf{V}_{\mathbf{b}}+\mathbf{a}^{2} \mathbf{V}_{\mathbf{b}}\right] \\
& =(\mathbf{1} / \mathbf{3})\left[\mathbf{V}_{\mathbf{a}}+\left(\mathbf{a}+\mathbf{a}^{2}\right) \mathbf{V}_{\mathbf{b}}\right]=(\mathbf{1} / \mathbf{3})\left[\mathbf{V}_{\mathbf{a}}-\mathbf{V}_{\mathbf{b}}\right]
\end{array} \quad\left[\begin{array}{c}
V_{a 0} \\
V_{a 1} \\
V_{a 2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\left[\begin{array}{l}
V_{a} \\
V_{b} \\
V_{b}
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{l}
I_{a 0} \\
I_{a 1} \\
I_{a 2}
\end{array}\right]} \\
& \mathbf{I}_{\mathbf{a}}=\mathbf{I}_{\mathrm{a} 0}+\mathrm{I}_{\mathrm{a} 1}+\mathrm{I}_{\mathrm{a} 2} \\
& \mathbf{I}_{\mathrm{b}}=\mathbf{I}_{\mathrm{a} 0}+\mathrm{a}^{\mathbf{2}} \mathbf{I}_{\mathrm{a}}+\mathrm{aI}_{\mathrm{a} 2} \\
& \mathbf{I C}=\mathbf{I}_{\mathrm{a} 0}+\mathbf{a} \mathbf{I}_{\mathbf{a} 1}+\mathbf{a}^{2} \mathbf{I}_{\mathbf{a}} \mathbf{2} \\
& \mathbf{I}_{\mathrm{b}}+\mathbf{I}_{\mathrm{c}}=\mathbf{I}_{\mathrm{a} 0}+\mathbf{a}^{2} \mathbf{I}_{\mathbf{a} 1}+\mathbf{a I}_{\mathbf{a} 2}+\mathbf{I}_{\mathrm{a} 0}+\mathbf{I I}_{\mathbf{a} 1}+\mathbf{a}^{2} \mathbf{I}_{\mathrm{a} 2} \\
& =2 \mathbf{I}_{\mathbf{a} 0}+\left(\mathbf{a}^{2}+\mathrm{a}\right) \mathbf{I}_{\mathrm{a} 1}+\left(\mathbf{a}^{2}+\mathrm{a}\right) \mathbf{I}_{2}
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{a} 0}-\mathrm{V}_{\mathrm{a} 1}=(\mathbf{1} / 3)\left[\mathrm{V}_{\mathrm{a}}+2 \mathrm{~V}_{\mathrm{b}}\right]-(\mathbf{1} / \mathbf{3})\left[\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}\right] \\
& =(1 / 3)\left[\mathrm{V}_{\mathrm{a}}+2 \mathrm{~V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{b}}\right]=\mathrm{V}_{\mathrm{b}} \\
& \therefore \mathbf{V}_{\mathrm{a} 0}-\mathbf{V}_{\mathrm{a} 1}=\mathbf{V}_{\mathrm{b}} \\
& \mathbf{V}_{\mathrm{a} 0}-\mathbf{V}_{\mathbf{a} 1}=\mathbf{Z}_{f}\left(\mathbf{I}_{\mathbf{b}}+\mathbf{I}_{\mathbf{c}}\right) \\
& \mathbf{V}_{\mathrm{a} 0}-\mathrm{V}_{\mathrm{a} 1}=\mathrm{Z}_{4} 3 \mathrm{I}_{\mathrm{a} 0} \\
& \therefore \mathrm{~V}_{\mathrm{a} 0}=\mathrm{V}_{\mathrm{a} 1}+3 \mathrm{Z}_{\mathrm{i}} \mathrm{I}_{\mathrm{a} 0} \quad \text { (Since } \mathrm{V}_{\mathrm{a} 1}=\mathrm{V}_{\mathrm{a} 2} \text {) }
\end{aligned}
$$

Also, $\mathbf{V}_{\mathrm{a} 0}=\mathbf{V}_{\mathrm{a} 2}+3 \mathbf{Z}_{\mathrm{f}} \mathrm{I}_{\mathrm{a} 0}$

$$
I_{a 1}=\frac{V_{p f}}{Z_{1}+\frac{Z_{2}\left(Z_{0}+3 Z_{f}\right)}{Z_{2}+Z_{0}+3 Z_{f}}}
$$

Figure: 4.29
$\mathbf{V}_{\mathrm{a} 1}=\mathbf{V}_{\mathrm{pf}}-\mathbf{Z}_{\mathbf{f}} \mathbf{I}_{\mathrm{a} 1}$
$\mathrm{V}_{\mathrm{a} 2}=\mathrm{V}_{\mathrm{a} 1}$
$\mathbf{I}_{\mathrm{a} 2}=\left(\mathbf{V}_{\mathrm{a} 2} / \mathbf{Z}_{2}\right)$
$\mathbf{I}_{\mathrm{a} 0}=-\left(\mathbf{I}_{\mathbf{a} 1}+\mathrm{I}_{\mathrm{a} 2}\right)$
Fault current, $\mathbf{I}_{\mathbf{f}}=\mathbf{I}_{\mathbf{b}}+\mathbf{I}_{\mathbf{c}}=\mathbf{3} \mathbf{I}_{\mathbf{a} 0}$
4. Two $11 \mathrm{KV}, 20 \mathrm{MVA}$, three Phase star connected generators ope rate in parallel as shown in Figure. The positive, negative and zero sequence reactance's of each being respectively, $\mathbf{j} 0.18, \mathrm{j} 0.15, \mathrm{j} 0.10 \mathrm{p} . \mathrm{u}$. The star point of one of the generator is isolated and

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

that of the other is earthed through a 2.0Ω resistor. A single line to ground fault occurs at the terminals of one of the generators. Estimate (i) fault current, (ii) current in grounded resistor and (iii) voltage across grounding resistor

Figure: 4.30
Solution:
MVA $_{b}=\mathbf{2 0 M V A}$
$\mathrm{KV}_{\mathrm{b}}=11 \mathrm{KV}$
$\mathrm{Z}_{\mathrm{b}}=\left(\mathrm{KV}_{\mathrm{b}}\right)^{\mathbf{2}} / \mathrm{MVA}_{\mathrm{b}}=(\mathbf{1 1})^{\mathbf{2}} / \mathbf{2 0}=\mathbf{6 . 0 5} \Omega$
p.u. value of neutral resistance $=$ Actual Value $/$ Base Impedance

$$
=2 / 6.05=0.3306 \mathrm{p} . \mathrm{u}
$$

Figure: 4.31

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

The thevenin's equivalent of the sequence networks are shown as

Thevenin's
equivalent of p.s. network

Thevenin's equivalent of n.s. network

Thevenin's equivalent of z.s. network

Figure: 4.32
For a single line to ground fault,

$$
\begin{aligned}
& \mathbf{I}_{\mathbf{a} 1}=\mathbf{I}_{\mathbf{a} 2}=\mathbf{I}_{\mathrm{a} 0} \\
& \mathbf{I}_{\mathrm{f}}=\mathbf{I}_{\mathrm{a}}=\mathbf{3} \mathbf{I}_{\mathrm{a} \mathbf{1}}
\end{aligned}
$$

Hence the thevenin's equivalent of sequence networks are connected in series as shown in fig

The fault current is calculated by taking the prefault voltage $\mathbf{V}_{\mathrm{pf}}=\mathbf{1} \mathbf{p} . \mathrm{u}$.
From Fig,

$$
\begin{aligned}
\mathbf{I}_{\mathrm{a} 1} & =1 \angle 0^{\circ} /(\mathrm{j} 0.09+\mathrm{j} 0.075+0.9918+\mathrm{j} 0.1) \\
& =1 /(0.9918+\mathrm{j} 0.265) \\
& =1 /\left(1.0266 \angle 15^{\circ}\right) \\
& =0.9714 \angle-15^{\circ} \text { p.u. }
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS
DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure: 4.33

i. To find fault current

Fault curre $n t, I_{f}=\mathbf{I}_{\mathbf{a}}=\mathbf{3} \mathbf{I}_{\mathbf{a} \mathbf{1}}$

$$
\begin{aligned}
& =3 * 0.9741 \angle-15^{\circ} \\
& =2.9223 \angle-15^{\circ} \text { p.u. }
\end{aligned}
$$

Base current, $\mathbf{I}_{\mathbf{b}}=\mathrm{KVA}_{\mathrm{b}} /\left(\sqrt{ } \mathbf{3} * \mathrm{KV}_{\mathrm{b}}\right)=(20 * 1000) /(\sqrt{ } \mathbf{3} * 11)=1049.7$ A
\therefore Actual value of fault current $=\mathbf{p}$. u $^{\text {. value of fault curre } n t * \text { Base current }}$

$$
=2.9223 \angle-15^{\circ} \text { p.u. or } 3.0675 \angle-15^{\circ} \mathrm{KA}
$$

ii. To find the current through neutral resistor

The current through the neutral resistor is same as that of fault current
\therefore Current through neutral resistor $=2.9223 \angle-15^{\circ}$ p.u. or $3.0675 \angle-15^{\circ} \mathrm{KA}$
iii. To find the voltage across grounding resistor

From the thevenin's equivalent of ze ro sequence network, we get
The Voltage across grounding resistor $=\mathbf{3 R}_{\mathbf{n}} \mathbf{I}_{\mathbf{a} 0}=\mathbf{3 R}_{\mathbf{n}} \mathbf{I}_{\mathbf{a} 1}$

$$
=3^{*} 0.3306^{*} 0.9741 \angle-15^{\circ}=0.9661 \angle-15^{\circ} \text { p.u. }
$$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE
www.sathyabama.ac.in
SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Actual Value of voltage across grounding resistor

$$
\begin{aligned}
& =\text { p.u value of voltage } *\left(K V_{b} / \sqrt{ } 3\right) \quad \text { (Since } K V_{b} \text { is line value) } \\
& =0.9661 \angle-15^{\circ} *(11 / \sqrt{ } 3)=6.1356 \angle-15^{\circ} \mathrm{KV}
\end{aligned}
$$

5. A salient pole generator without dampers is rated $20 \mathrm{MVA}, 13.8 \mathrm{KV}$ and has a direct axis sub - transient reactance of 0.25 per unit. The negative and zero sequence reactance are 0.35 and 0.10 per unit respectively. The neutral of the generator is solidly grounded. Determine the sub - transient current in the generator and the line to line voltages for sub-transient conditions when a line to line fault occurs at the generator ope rating unloaded at rated voltage. Neglect resistance.

Solution:

Base Values
MVA $_{b}=20 \mathrm{MVA}$
$K_{b}=13.8 \mathrm{KV}$
Base current, $\mathbf{I}_{\mathbf{b}}=K^{\left(V A_{b}\right.} /\left(\sqrt{3} * K V_{b}\right)$

$$
\begin{aligned}
& =(20 * 1000) /(\sqrt{ } 3 * 13.8) \\
& =836.7 \mathrm{~A}=837 \mathrm{~A}
\end{aligned}
$$

Figure: 4.34

$$
\mathbf{I}_{\mathrm{a}}=\mathbf{0} ; \mathbf{I}_{\mathrm{b}}=-\mathrm{I}_{\mathrm{c}} ; \mathrm{I}_{\mathrm{a} 0}=\mathbf{0} ; \mathbf{I}_{\mathrm{a} 2}=-\mathbf{I}_{\mathrm{a} 1} ; \mathbf{V}_{\mathrm{b}}=\mathbf{V}_{\mathbf{c}} ; \mathbf{V}_{\mathrm{bc}}=\mathbf{0}
$$

From Fig,
$\mathbf{I}_{\mathrm{a} 1}=\mathbf{E}_{\mathrm{a}} /\left(\mathbf{Z}_{1}+\mathbf{Z}_{2}\right)$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

E_{a} is phase value value of induced emf.

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{a}}=1 \angle 0^{\circ} \mathrm{p} . \mathrm{u} \\
& \therefore \mathrm{I}_{\mathrm{a} 1}=1 /(\mathbf{j} 0.25+\mathbf{j} 0.35)=1 / \mathrm{j} 0.6=-\mathbf{j} 1.667=1.667 \angle-90^{\circ} \text { p.u. } \\
& I_{a 2}=-I_{a 1}=j 1.667 \text { p.u. } \\
& \mathrm{I}_{\mathrm{a} 0}=0 \\
& {\left[\begin{array}{l}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{l}
I_{a 0} \\
I_{a 1} \\
I_{a 2}
\end{array}\right]} \\
& \mathrm{a}=1 \angle 120^{\circ}=-\mathbf{0} .5+\mathrm{j} 0.866 \\
& \mathrm{a}^{2}=1 \angle 240^{\circ}=-0.5-\mathrm{j} 0.866 \\
& \mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{a} 0}+\mathrm{I}_{\mathrm{a} 1}+\mathrm{I}_{\mathrm{a} 2}=\mathbf{0}-\mathrm{j} 1.667+\mathrm{j} 1.667=0 \\
& I_{b}=I_{a 0}+a^{2} I_{a 1}+\mathrm{a}_{\mathrm{a} 2}=-j 1.667(-0.5-\mathrm{j} 0.866)+\mathbf{j} 1.667(-0.5+j 0.866) \\
& =\mathrm{j} 0.833-1.443-\mathrm{j} 0.833-1.443=-2.886 \text { р.u. } \\
& I_{c}=I_{a 0}+a I_{a 1}+a^{2} I_{a 2}=-a I_{a 2}-a^{2} I_{a 1}=-\left(a^{2} I_{a 1}+a I_{a 2}\right)=-I_{b}=2.886 \mathrm{p} . \mathrm{u}
\end{aligned}
$$

Actual values of line currents are obtained by multiplying the p.u. values with base currents
$\mathbf{I}_{\mathrm{a}}=\mathbf{0}$
$\mathrm{I}_{\mathrm{b}}=-\mathbf{2 . 8 8 6}$ * $837=\mathbf{2 4 1 6} \boldsymbol{\operatorname { L 1 8 0 }}{ }^{\circ} \mathrm{A}$
$I_{\mathrm{c}}=2.886 * 837=2416 \angle 0^{\circ} \mathrm{A}$
The fault current, $I_{f}=\left|I_{b}\right|=2416 \mathrm{~A}=\mathbf{2 . 4 1 6} \mathrm{KA}$
From the sequence networks of the generator, the symmetrical components of Phase a Voltage are calculated as:
$\mathbf{V}_{\mathrm{a} 0}=0 ; \quad \mathrm{V}_{\mathrm{a} 1}=\mathrm{E}_{\mathrm{a}}-\mathrm{I}_{\mathrm{a} 1} \mathrm{Z}_{1} ; \quad \mathrm{V}_{\mathrm{a} 2}=\mathrm{V}_{\mathrm{a} 1}$
$\therefore \mathrm{V}_{\mathrm{a} 1}=\mathrm{V}_{\mathrm{a} 2}=1-(-\mathrm{j} 1.667)(\mathrm{j} 0.25)=1-0.417=0.583$ p.u.

$$
\left[\begin{array}{c}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{l}
V_{a 0} \\
V_{a 1} \\
V_{a 2}
\end{array}\right]
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
\mathrm{V}_{\mathrm{a}} & =\mathrm{V}_{\mathrm{a} 0}+\mathrm{V}_{\mathrm{a} 1}+\mathrm{V}_{\mathrm{a} 2}=0.583+0.583=1.166 \angle 0^{\circ} \mathrm{p} . \mathrm{u} . \\
\mathrm{V}_{\mathrm{b}} & =V_{\mathrm{a} 0}+\mathrm{a}^{2} V_{\mathrm{a} 1}+\mathrm{a} V_{\mathrm{a} 2} \\
& =0.583(-0.5-\mathrm{j} 0.866)+0.583(-0.5+\mathrm{j} 0.866)=-0.583 \text { p.u. } \\
\mathrm{V}_{\mathrm{c}} & =V_{\mathrm{b}}=-0.583 \text { p.u. }
\end{aligned}
$$

Line voltages are

$$
\begin{aligned}
& V_{a b}=V_{a}-V_{b}=1.166+0.583=1.749 \angle 0^{\circ} \text { p.u. } \\
& V_{b c}=V_{b}-V_{c}=-0.583+0.583=0 \text { p.u. } \\
& V_{c a}=V_{c}-V_{a}=-0.583-1.166=1.749 \angle 180^{\circ} \text { p.u } \\
& E_{a}=1 p . u
\end{aligned}
$$

Line Value of base voltage $=\mathbf{1 3 . 8 K V}$
Phase Value of base voltage $=(13.8 / \sqrt{ } 3)=7.9 \mathrm{KV}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ab}}=\mathbf{1 . 7 4 9 \angle 0 ^ { \circ } * 7 . 9 7 = 1 3 . 9 4 \angle 0 ^ { \circ } \mathrm { KV }} \\
& \mathrm{V}_{\mathrm{bc}}=\mathbf{0} \mathrm{KV} \\
& \mathrm{~V}_{\mathrm{ca}}=1.749 \angle \mathbf{1 8 0 ^ { \circ }} * \mathbf{7 . 9 7}=\mathbf{1 3 . 9 4 \angle 1 8 0 ^ { \circ } \mathrm { KV }}
\end{aligned}
$$

6. A generator of negligible resistance having $1 \mathrm{p} . \mathrm{u}$. voltage behind transient reactance is subjected to different types of faults

Type of Fault

3 - Phase
$\mathbf{L}-\mathbf{L}$
\mathbf{L} - \mathbf{G}

Resulting fault current in pu

3.332.333.01Calculate the per unit value of $\mathbf{3}$ sequence reactances.

Solution:

Case (i): 3 Phase fault

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\mathbf{E}_{\mathrm{g}}{ }^{\prime}=1 \text { p.u. }, \mathrm{I}^{\prime}=3.33 \text { p.u. }
$$

Figure: 4.35
When load current is neglected, $\mathrm{E}_{\mathrm{g}} "=\mathbf{E}_{\mathrm{g}}{ }^{\prime}=\mathbf{E}_{\mathrm{g}}=\mathbf{E}_{\mathrm{a}}$
$\therefore \quad \mathbf{X}_{\mathbf{d}}{ }^{\prime}=\left|\mathbf{E}_{\mathrm{g}}\right| /|\mathbf{I}|=\mathbf{1} / \mathbf{3 . 3 3}=\mathbf{0} . \mathbf{3}$ p. \mathbf{u}.
\therefore W.K.T, the reactance during symmetrical fault is + sequence reactance
$\therefore+$ sequence reactance of generator, $\mathbf{X}_{1}=\mathbf{X}_{\mathrm{d}}{ }^{\prime}=\mathbf{0 . 3} \mathrm{p} . \mathrm{u}$.
Case (ii): L - L Fault,

From Fig

$$
\begin{aligned}
& \mathbf{I}_{\mathbf{a} 1}=\mathbf{E}_{\mathrm{a}} /\left(\mathbf{j} \mathbf{X}_{1}+\mathbf{j} \mathbf{X}_{2}\right) \\
& \therefore\left|\mathbf{I}_{\mathbf{a} 1}\right|=\mathbf{E}_{\mathbf{a}} /\left(\mathbf{X}_{\mathbf{1}}+\mathbf{X}_{2}\right)
\end{aligned}
$$

Assume the line to line fault is between Phase b and Phase c. Hence the fault current is I_{b}.

$$
\mathbf{I}_{b}=\mathbf{I}_{a 0}+\mathbf{a}^{2} \mathbf{I}_{a 1}+\mathbf{a}_{a 2}
$$

For a line to line fault, $\mathrm{I}_{\mathrm{a} 0}=0$ and $\mathrm{I}_{\mathrm{a} 2}=-\mathrm{I}_{\mathrm{a} 1}$

$$
\begin{aligned}
\therefore \mathbf{I}_{\mathrm{b}} & =0+\mathrm{a}^{2} \mathrm{I}_{\mathrm{a} 1}-\mathrm{aI}_{\mathrm{a} 1}=\mathbf{I}_{\mathrm{a} 1}\left(\mathbf{a}^{2}-\mathbf{a}\right) \\
& =\mathbf{I}_{\mathrm{a} 1}(-0.5-\mathbf{j} 0.866-(-0.5+\mathbf{j} 0.866))=\mathbf{I}_{\mathrm{a} 1}(-\mathbf{j} 1.7321)=-\mathbf{j} 1.732 \mathrm{I}_{\mathrm{a} 1}
\end{aligned}
$$

Fault current, $\mathbf{I}_{\mathrm{f}}=\left|\mathrm{I}_{\mathrm{b}}\right|=\mathbf{1 . 7 3 2}\left|\mathrm{I}_{\mathrm{a}}\right|$

$$
\begin{aligned}
\therefore & \left|\mathbf{I}_{\mathbf{a} 1}\right|=\left(\mathbf{I}_{\mathrm{f}} / \mathbf{1 . 7 3 2}\right) \\
& \mathbf{I}_{\mathrm{f}}=\mathbf{2 . 2 3} \text { p.u. } \\
\therefore & \left|\mathbf{I}_{\mathbf{a} 1}\right|=(\mathbf{2} .23 / \mathbf{1 . 7 3 2})=\mathbf{1 . 2 8 7 5} \text { p.u. } \\
& 1.2875=\left(\mathrm{E}_{\mathbf{a}} /\left(\mathbf{X}_{1}+\mathrm{X}_{2}\right)\right) \\
\therefore & \mathbf{X}_{1}+\mathbf{X}_{2}=\mathrm{Ea} / 1.2875
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
X_{2}=\left(E_{a} / 1.2875\right)-X_{1}=(1 / 1.2875)-0.3=0.48 \text { p.u. }
$$

Figure: 4.36
Case (iii): L-G Fault
For a single line to ground fault, on a generator the sequence net works are connected in series as shown in Fig

For a single line to ground fault, the fault current is $\left|I_{a}\right|$ and it is equal to $3\left|I_{a}\right|$
$\mathrm{I}_{\mathrm{f}}=\mathbf{3 . 0 1}$ p.u.
$\therefore 3\left|I_{a}\right|=I_{f}=3.01$ (or) $\left|\mathbf{I}_{\mathbf{a} 1}\right|=(\mathbf{3 . 0 1 / 3})=1.0033$ p.u.
From Fig

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{a} 1}=\left(\mathbf{E}_{\mathrm{a}} /\left(\mathbf{j} \mathbf{X}_{1}+\mathbf{j} \mathbf{X}_{\mathbf{2}}+\mathbf{j} \mathbf{X}_{\mathbf{0}}\right)\right) \\
& \therefore\left|\mathbf{I}_{\mathbf{a} 1}\right|=\left(\mathbf{E}_{\mathbf{a}} /\left(\mathbf{X}_{\mathbf{1}}+\mathbf{X}_{\mathbf{2}}+\mathbf{X}_{\mathbf{0}}\right)\right) \\
& \mathbf{X}_{1}+\mathbf{X}_{2}+\mathbf{X}_{0}=\left(\mathbf{E}_{a} /\left|\mathbf{I}_{\mathbf{a}}\right|\right) \\
& \mathbf{X}_{0}=\left(\mathbf{E}_{\mathbf{a}} /\left|\mathbf{I}_{\mathbf{a}}\right|\right)-\mathbf{X}_{\mathbf{1}}-\mathbf{X}_{\mathbf{2}} \\
& =(1 / 1.0033)-0.3-0.48 \\
& =0.22 \text { p.u. }
\end{aligned}
$$

[DEEMED TO BE UNIVERSITY)

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure: 4.37
Flowchart of UnSymmetrical Fault Analysis using $\mathbf{Z}_{\text {bus }}$

INSTITUTE OF SCIENCE AND TECHNOLOGY

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

SCHOOL OF ELECTRICAL AND ELECTRONICS
DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Post fault zero sequen
$V_{1}^{f+}=V_{p . f}-Z_{1 K}^{+} I_{K}^{f+}$
$V_{K}^{f+}=V_{p, f}-Z_{K K}^{+} I_{K}^{++}$
\vdots
$V_{K}^{f+}=V_{p, f}-Z_{n K}^{+} I_{K}^{f+}$
Post fault negative se
$v_{1}^{f-}=-Z_{1 \mathrm{~K}}^{-} \mathrm{I}_{\mathrm{K}}^{\mathrm{f}}$
\vdots
$V_{K}^{f-}=-Z_{K K}^{-} I_{K}^{f-}$
\vdots
$V_{n}^{f-}=-Z_{n K}^{-} I_{K}^{f-}$
Post fault zero seque
$V_{1}^{10}=V_{p, 1}-Z_{1 K}^{0} I_{K}^{10}$
$V_{K}^{f 0}=V_{p, f}-Z_{K K}^{0} I_{K}^{f 0}$
相
$V_{K}^{10}=V_{p . f}-Z_{n K}^{0} I_{K}^{10}$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure: 4.38
7. For the given net work shown below a solid single line to ground fault is occurre d at bus 3. Perform the fault analysis and determine (a) Fault current (b) Bus voltages after fault and (c) Line currents after fault. Assume pre fault voltage 1 p.u./phase. Neglect the shunt admittance of the line. All values are given on 100 MVA base.

Figure: 4.39

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Elements	Bus Code	Line Impedance		
		Positive Sequence	Negative Sequence	
L1	$\mathbf{1 - 2}$	$\mathbf{j 0 . 1 2}$	$\mathbf{j 0 . 2}$	$\mathbf{j 0 . 2}$
L2	$\mathbf{2 - 3}$	$\mathbf{j 0 . 1 2}$	$\mathbf{j 0 . 2}$	$\mathbf{j 0 . 2}$
L3	$\mathbf{1 - 3}$	$\mathbf{j 0 . 1 2}$	$\mathbf{j 0 . 2}$	$\mathbf{j 0 . 2}$
G1	$\mathbf{1 - 0}$	$\mathbf{j 0 . 1 5}$	$\mathbf{j 0 . 3}$	$\mathbf{j 0 . 3}$
G2	$\mathbf{2 - 0}$	$\mathbf{j 0 . 1 5}$	$\mathbf{j 0 . 3}$	$\mathbf{j 0 . 3}$

Table: 4.1
Solution:
$[Y]^{(0)}=\mathrm{j}\left(\begin{array}{ccc}1 / 0.15+1 / 0.12+1 / 0.12 & -1 / 0.12 & -1 / 0.12 \\ -1 / 0.12 & 1 / 0.15+1 / 0.12+1 / 0.12 & -1 / 0.12 \\ -1 / 0.12 & -1 / 0.12 & 1 / 0.12+1 / 0.12\end{array}\right)$

$$
[\mathrm{Y}]^{(0)}=\mathrm{j}\left(\begin{array}{lll}
23.33 & -8.33 & -8.33 \\
-8.33 & 23.33 & -8.33 \\
-8.33 & -8.33 & 16.66
\end{array}\right)
$$

$$
\begin{aligned}
& {[\mathrm{Z}]^{(0)}=\text { inverse of }[\mathrm{Y}]^{(0)}} \\
& {[\mathrm{Z}]^{(0)}=\mathrm{j}\left(\begin{array}{lll}
0.09078 & 0.05921 & 0.075 \\
0.05921 & 0.09078 & 0.075 \\
0.075 & 0.075 & 0.135
\end{array}\right)}
\end{aligned}
$$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE
www.sathyabama.ac.in
SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Similarly

$$
[\mathrm{Z}]^{(1)}=[\mathrm{Z}]^{(2)}=\mathrm{j}\left(\begin{array}{lll}
0.17727 & 0.12272 & 0.15 \\
0.12272 & 0.17727 & 0.15 \\
0.15 & 0.15 & 0.25
\end{array}\right)
$$

Faulted bus number $=\mathbf{3}$; pre fault phase voltage, $\mathrm{E}=\mathbf{1 . 0}$; for solid fault $\mathbf{Z}_{\mathrm{f}}=\mathbf{0}$

$$
\begin{aligned}
\mathbf{I}^{(0)}=\mathbf{I}_{3}{ }^{(1)}=\mathbf{I}_{3}{ }^{(2)} & =(\sqrt{ } 3) * E /\left(\mathbf{Z}_{33}{ }^{(0)}+Z_{33}{ }^{(1)}+Z_{33}{ }^{(2)}+3 Z_{f}\right) \\
& =(\sqrt{ } 3) /(\mathbf{j} 0.135+j 0.25+j 0.25) \\
& =-j 2.7276 \text { p.u. Fault current at bus } 3, \text { If }=3 * \mathbf{I}_{3}{ }^{(1)}=-j 8.1828 \text { p.u. }
\end{aligned}
$$

Bus voltages after fault is
Zero Sequence Voltages

$$
\begin{aligned}
\mathbf{V}_{1}{ }^{(0)} & =-\mathbf{Z}_{13}{ }^{(0)} \mathbf{I}_{3}{ }^{(0)} \\
& =-\mathrm{j} 0.075 *(-\mathrm{j} 2.7276)=-\mathrm{j} 0.2045 \mathrm{pu}
\end{aligned}
$$

$$
\mathbf{V}_{2}{ }^{(0)} \quad=-Z_{23}{ }^{(0)} \mathbf{I}_{3}{ }^{(0)} \quad=-j 0.2045 \mathrm{pu}
$$

$$
\mathbf{V}_{3}{ }^{(0)}=-Z_{33}{ }^{(0)} \mathbf{I}_{3}{ }^{(0)}=-j 0.3682 \mathrm{pu}
$$

Positive Sequence Voltages

$$
\begin{aligned}
\mathbf{V}_{1}{ }^{(1)} & =(\sqrt{ } 3) E-Z_{13}{ }^{(1)} \mathbf{I}_{3}{ }^{(1)} \\
& =(\sqrt{ } 3)-j 0.15^{*}(-j 2.7276) \\
& =1.3229 \mathrm{pu} \\
\mathbf{V}_{2}{ }^{(1)} & =(\sqrt{ } 3) E-Z_{23}{ }^{(1)} \mathbf{I}_{3}{ }^{(1)}=1.3229 \mathrm{pu} \\
\mathbf{V}_{3}{ }^{(1)} & =(\sqrt{ } 3) E-Z_{33}{ }^{(1)} \mathbf{I}_{3}{ }^{(1)}=1.0501 \mathrm{pu}
\end{aligned}
$$

Negative Sequence Voltages

$$
\begin{aligned}
\mathbf{V}_{1}{ }^{(2)} & =-\mathrm{Z}_{13}{ }^{(2)} \mathbf{I}^{(2)} \\
& =-\mathrm{j} 0.15 *(-\mathrm{j} 2.7276)=-0.4091 \mathrm{pu} \\
\mathbf{V}_{2}{ }^{(2)} & =-\mathrm{Z}_{23}{ }^{(2)} \mathbf{I}_{3}^{(2)}=-0.4091 \mathrm{pu}
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
V_{3}{ }^{(2)}=-Z_{33}{ }^{(2)} \mathbf{I}_{3}^{(2)}=-0.6819 \mathrm{pu}
$$

The line currents after fault are as follows,
Current in L1 element which connects buses 1 and 2

$$
\mathbf{I}_{12}{ }^{(0)}=\left(\mathbf{V}_{1}{ }^{(0)}-\mathbf{V}_{2}{ }^{(0)}\right) / Z_{\text {ine } 12}{ }^{(0)}=0
$$

Current in L2 element which connects buses 2 and 3

$$
\begin{aligned}
\mathbf{I}_{23}{ }^{(0)} & =\left(\mathbf{V}_{2}{ }^{(0)}-V_{3}{ }^{(0)}\right) / Z_{\text {ine } 23}{ }^{(0)} \\
& =(-0.2046-(-0.3682)) / \mathbf{j} 0.12 \\
& =-\mathbf{j} 1.3638
\end{aligned}
$$

Similarly
$\mathrm{I}_{12}{ }^{(0)}=0$
$\mathrm{I}_{12}{ }^{(1)}=0$
$\mathrm{I}_{12}{ }^{(2)}=0$
$\mathrm{I}_{23}{ }^{(0)}=-\mathrm{j} 1.3638$
$\mathrm{I}_{23}{ }^{(1)}=\mathbf{- j 1 . 3 6 3 8}$
$\mathrm{I}_{23}{ }^{(2)}=\mathrm{j} 1.3638$
$\mathbf{I}_{13}{ }^{(0)}=-\mathbf{j} 1.3638$
$\mathrm{I}_{13}{ }^{(1)}=\mathbf{- j 1 . 3 6 3 8}$
$\mathrm{I}_{13}{ }^{(2)}=\mathbf{- j 1 . 3 6 3 8}$
$\mathrm{I}_{10}{ }^{(0)}=\mathrm{j} 1.3638$
$I_{10}{ }^{(1)}=-j 4.4096$
$\mathrm{I}_{10}{ }^{(2)}=\mathrm{j} 1.3638$
$\mathrm{I}_{20}{ }^{(0)}=\mathbf{j} 1.3638$
$\mathrm{I}_{20}{ }^{(1)}=\mathbf{- j 4 . 4 0 9 6}$ $\mathrm{I}_{20}{ }^{(2)}=\mathbf{j} 1.3638$

Above all curre nts are in pu.

Questions

Part-A			
Q.No	Questions	Competence	BT Level
1.	List out the symmetrical components of three phase system.	Remember	BTL1
2.	Illustrate the vector diagram of symmetrical components of unbalanced 3 - phase voltage vectors.	Understand	BTL2
3.	Spell the fault in which positive, negative and zero sequence component currents are equal.	Remember	BTL1
4.	Outline the matrix equations of symmetrical components in terms of unbalanced vectors.	Understand	BTL2
5.	If $\mathrm{Ia}=18\left\llcorner 0^{\circ} \mathrm{A}, \mathrm{Ib}=10\left\llcorner-30^{\circ} \mathrm{A}\right.\right.$ and $\mathrm{Ic}=10\left\llcorner 30^{\circ} \mathrm{A}\right.$. Determine the positive sequence current.	Apply	BTL3
6.	Ilustrate the zero sequence network of a three phase solidly grounded star - delta transformer.	Understand	BTL2
7.	What are sequence impedance and sequence networks?	Remember	BTL1
8.	Demonstrate $1+a+a^{2}=0$.	Understand	BTL2
9.	llustrate the zero sequence network of a generator when the neutral is ungrounded.	Understand	BTL2
10.	List the various unsymmetrical faults in a power system.	Remember	BTL1
Part-B			
Q.No	Questions	Competence	BT Level
1.	The voltages across a 3 phase unbalanced load are $V a=300\left\llcorner 20^{\circ} \mathrm{V}, \quad V b=360\left\llcorner 90^{\circ} \mathrm{V} \text { and } \mathrm{Vc}=500\left\llcorner-140^{\circ} \mathrm{V}\right.\right.\right.$ Determine the symmetrical components of voltages. Phase sequence is abc.	Evaluate	BTL5
2.	Determine the symmetrical components of the unbalanced three phase currents $\mathrm{Ia}=10\left\llcorner 0^{\circ} \mathrm{A}, \mathrm{Ib}=12\left\llcorner 230^{\circ} \mathrm{A} \text { and } \mathrm{Ic}=10\left\llcorner 130^{\circ} \mathrm{A} .\right.\right.\right.$ Draw the positive, negative and zero sequence reactance diagram of the power system shown in figure.	Evaluate	BTL5

3.	Determine the positive, negative and zero sequence networks for the system shown in figure. Assume zero sequence reactances for the generator and synchronous motor as 0.06 p.u. Current limiting reactors of 2.5Ω are connected in the neutral of the generator and motor No.2. The zero sequence reactance of the transmission line is $j 300 \Omega$.	Evaluate	BTL5
4.	Formulate the necessary equation to determine the fault current of single line to ground fault on an unloaded generator.	Create	BTL6
5.	A salient pole generator without damper is rated 20MVA, 13.8 KV and has a direct axis sub transient reactance of 0.25 PU . The negative and zero sequence reactance are 0.35 PU and 0.10 PU respectively. Estimate the sub transient currents and line to line voltages at the fault under sub transient conditions when a line to line fault between phase b and c occurs at the terminals of the generator. Assume that the generator is unloaded and operating at rated terminal voltage when the fault occurs. Neglect resistance.	Evaluate	BTL5

References :

1. 4. Nagarath, I.J. and Kothari, D.P., "Modern Power System Analysis", 4th Edition, Tata McGraw Hill Publishing Company, 2011.
1. Hadi Saadat, "Power system Analysis", Tata McGraw Hill Publishing Company, 3rd Edition, 2011.

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

STABILITY AND SECURITY ANALYSIS

Distinction between steady state and transient state - Concepts of Stability and Security- Swing Equation - Solution to swing equation - step by step method - Power angle equation - Equal area criterion - critical clearing angle and time . Stability Analysis of single machine connected to infinite bus by modified Euler's method - Multi machine stability a nalysis using Runge kutta method

Stability

The Stability of a system is defined as the ability of power system to return to stable (Synchronous) operation when it is subjected to a disturbance

Steady State Stability

The steady state stability is defined as the ability of a power system to remain stable (i.e, without loosing synchronis m) for s mall disturbance

Transient Stability

The transient stability is defined as the ability of a power system to remain stable (i.e, without loosing synchronism) for large disturbances.

Steady State Stability limit

- The steady state stability limit is the maximum power that can be transmitted by a machine (or transmitting system) to a receiving system without loss of synchronism
- In Steady state the power transferred by synchronous machine (or power system) is always less than the steady state stability limit

Transient Stability limit

- The transient stability limit is the maximum power that can be transmitted by a machine (or transmitting system) to a fault or a receiving system during a transient state without loss of synchronism
- The transient stability limit is always less than the steady state stability limit Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Classification of Stability Studies
Depending upon the nature of disturbance, stability studies can be classified as :

1. Steady state stability

It is concerned with the determination of upper limit of loading without loss of synchronism

2. Dynamic Stability

It is concerned with the study of nature of oscillations and its decay for small disturbances

3. Transient Stability

It is concerned with the study of dynamics of a system for large disturbances

Dynamics of synchronous Machine Rotor

E_{KE} - Kinectic energy of the rotor in MJ (Mega Joules)

J - Moment of inertia of the rotor in Kg-m ${ }^{2}$
ω_{sm} - Synchronous angular speed of the rotor in mech.rad/sec
$\omega_{\mathrm{s}} \quad$ - Synchronous angular speed of rotor in elect.rad/sec
P - Number of poles in Synchronous machine
M - Moment of inertia of rotor in MJ-s/elec.rad or MJ-s/mech .rad
S - Power rating of Machine in MVA
H - Inertia constant in MJ/MVA or MW-s/MVA
F - Frequency in cycles/sec or HZ
δ_{m} - Angular displace ment of rotor with respect to synchronously rotating reference frame in mech.rad
$\delta \quad$ - Angular displacement of rotor with respect to synchronously rotating reference frame in elect.rad

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

θ_{m} - Angular displacement of rotor with respect to a stationary axis in mech.rad
θ - Angular displacement of rotor with respect to stationary axis in elec.rad
t - Time in seconds
T_{m} - Mechanical torque at the shaft of rotor (supplied by prime mover) in $\mathrm{N}-\mathrm{m}$
T_{e} - Net electromagnetic torque in $\mathbf{N}-\mathrm{m}$
T_{a} - Net accelerating torque in $\mathrm{N}-\mathrm{m}$
P_{m} - Mechanical Power input in p.u.
P_{e} - Electrical power output in p.u.
The Kinetic ene rgy (in MJ) of the rotor of a synchronous machine is given by

$$
E_{K E}=\frac{1}{2} J \omega_{s m}^{2} * 10^{-6}
$$

The mechanical and electrical angular speeds are related to the number of poles in synchronous machine as shown as

$$
\begin{aligned}
\omega_{s} & =\frac{P}{2} \omega_{s m} \quad \text { or } \quad \omega_{s m}=\frac{2}{P} \omega_{s} \\
E_{K E} & =\frac{1}{2} J\left(\frac{2}{P}\right)^{2} \omega_{s}^{2} * 10^{-6}
\end{aligned}
$$

Let,

$$
E_{K E}=\frac{1}{2} M \omega_{s}
$$

Where, $M=J\left(\frac{2}{P}\right)^{2} \omega_{s} * 10^{-6}$

Here M is the moment of inertia in MJ -s/elec.rad. This is used popularly in stability studies

Another useful constant which is popularly used in stability studies is the inertia constant H. It is defined as:

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

H = Stored Kinetic energy in MJ at synchronous speed / Machine rating in MVA

$$
\begin{aligned}
& H=\frac{E_{K E}}{S} \\
& H=\frac{\frac{1}{2} J \omega_{s m}^{2}}{S} \quad H=\frac{\frac{1}{2} M \omega_{s}}{S} \quad M=\frac{2 H S}{\omega_{s}}
\end{aligned}
$$

We Know that, $\omega_{s}=2 \pi f$

$$
M=\frac{2 H S}{2 \Pi f}=\frac{H S}{\Pi f} \quad(\text { in MJ-s/elec.rad })
$$

Sometimes it is required in MJ-s/elect.degree

$$
M=\frac{H S}{180 f} \quad \text { (in MJ-s/elec.deg) }
$$

The value of M can be expressed in per unit by selecting a base of MVA
Let, $\mathbf{S}_{\mathrm{b}}=$ Base MVA

$$
M_{p . \text { u. }}=\frac{S H / \Pi f}{S_{b}} \quad \text { Or } \quad M_{\text {p.u. }}=\frac{S H / 180 f}{S_{b}}
$$

If the machine rating S is chosen as base Value, then $S=S b$ p.u. value of M with Machine rating as base MVA

$$
M_{p . \text {.. }}=\frac{H}{\Pi f} \quad \text { or } \quad M_{\text {p.u. }}=\frac{H}{180 f}
$$

1. A 2 pole 50 Hz , 11 KV turbo alternator has a ratio of 100 MW , po wer factor 0.85 lagging. The rotor has a moment of inertia of $10,000 \mathrm{Kgm}^{2}$. Calculate H and M.

Solution:

Synchronous speed in rps, $\mathrm{n}_{\mathrm{s}}=\mathbf{2 f} / \mathrm{p}=(2 * 50) / 2=50 \mathrm{rps}$
Synchronous speed in rad/sec, $\omega_{\mathrm{s}}=2 \pi \mathrm{n}_{\mathrm{s}}=2 \pi^{*} 50=314.16$ elect.rad/sec

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Inertia constant $\mathrm{M}=\mathrm{J}(\mathbf{2} / \mathbf{P})^{2} \omega_{\mathrm{s}} * \mathbf{1 0}^{-6}$ in MJ -s/elect.rad
$\therefore M=10000 *(2 / 2)^{2} * 314.16 * 10^{-6}=3.146 \mathrm{MJ}-$ s $/$ elec.rad
MVA rating of machine, $\mathrm{S}=\mathrm{P} / \mathrm{pf}=\mathbf{1 0 0 / 0 . 8 5}=\mathbf{1 1 7 . 6 7 5} \mathrm{MVA}$
Base Values
$K_{b}=11 K V$
MVA $_{b}=\mathbf{1 1 7 . 6 5 M V A}$
Inertia constant, M in p.u., $M_{p u}=(M$ in MJ-s/elect.rad $) / \mathbf{M V A}_{b}$

$$
=3.1416 / 117.65=0.0267 \text { p.u. }
$$

Inertia constant, $\mathrm{H}=\pi \mathrm{fM}_{\mathrm{pu}}=\pi * 50 * 0.0267=4.194 \mathrm{MW}-\mathrm{s} / \mathrm{MVA}$
2. Two power station A and B are located close together. Station A has four identical generator sets each rated 100 MVA and having an inertia constant of $9 \mathrm{MJ} / \mathrm{MVA}$ whe reas the station B has 3 sets each rated 200MVA, 4MJ/MVA. Calculate the inertia constant of a single equivalent machine on a base of 100 MVA .

Solution:

- Assume that the machines are swinging coherently. For two machines swinging coherently the equivalent inertia constant, H_{eq} is given by

$$
\mathbf{H}_{\mathrm{eq}}=\left(\mathbf{H}_{1, \text { mach }} * \mathbf{S}_{1, \text { mach }}\right) / \mathbf{S}_{\text {sys }}+\left(\mathbf{H}_{2, \text { mach }} * \mathbf{S}_{2, \text { mach }}\right) / \text { Ssys }
$$

Where, Ssys - MVA rating of system
$\mathbf{S}_{1, \text { mach }} \boldsymbol{\&} \mathbf{H}_{\mathbf{1}, \text { mach }}$-MVA rating and ine rtia constant of machine 1
$S_{2, \text { mach }} \boldsymbol{\&} \mathbf{H}_{\mathbf{2}, \text { mach }}$-MVA rating and ine ria constant of machine $\mathbf{2}$
Station A
The station A has four machines of identical rating
\therefore Equivalent inertia constant of station $A=H_{A}=\mathbf{4}\left(\left(H_{\text {mach }} * S_{\text {mach }}\right) / S_{\text {sys }}\right)$

$$
\begin{aligned}
& =4((9 * 100) / 100) \\
& =36 \mathrm{MJ} / \mathrm{MVA}
\end{aligned}
$$

Station B

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

The station B has three machines of identical rating
\therefore Equivalent inertia constant of station $A=\mathbf{H}_{\mathrm{B}}=\mathbf{3}\left(\left(\mathbf{H}_{\text {mach }} * S_{\text {mach }}\right) / \mathrm{S}_{\text {sys }}\right)$

$$
\begin{aligned}
& =3((4 * 200) / 100) \\
& =24 \mathrm{MJ} / \mathrm{MVA}
\end{aligned}
$$

H_{eq} of System
Equivalent inertia constant of the system $=\mathrm{H}_{\mathrm{eq}}=\mathrm{H}_{\mathrm{A}}+\mathrm{H}_{\mathrm{B}}=\mathbf{3 6}+\mathbf{2 4}=\mathbf{6 0} \mathrm{MJ} / \mathrm{MVA}$

Swing Equation

- The rotor of a synchronous machine is subjected to two torques, T_{e} and T_{m} which are acting in opposite directions as shown in Fig

Torque acting on rotor of synchronous machine

Figure: 5.1
Where T_{e} - Net electrical or electromechanical torque in $\mathbf{N}-\mathrm{m}$
T_{m} - Mechanical or shaft torque supplied by the prime mover in $\mathrm{N}-\mathrm{m}$

- Under steady state operating condition the T_{e} and T_{m} are equal and the machine runs at constant speed, which is called synchronous speed.
- If there is a difference between the two torques then the rotor will have an accelerating or decelerating torque, denoted as T_{a}
$\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{m}}-\mathrm{T}_{\mathrm{e}}$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

- Here $T_{m} \& T_{e}$ are positive for generators and $T_{m} \& T_{e}$ are negative for motors
- Let θ_{m} - Angular displacement for rotor with respect to stationary reference axis
- δ_{m} - Angular displacement of rotor with respect with synchronously rotating reference axis
- By Newton's second law of motion,

$$
\begin{aligned}
& T_{a} \alpha \frac{d^{2} \theta_{m}}{d t^{2}} \quad \text { Or } \quad T_{a}=J \frac{d^{2} \theta_{m}}{d t^{2}} \\
& J \frac{d^{2} \theta_{m}}{d t^{2}}=T_{m}-T_{e}
\end{aligned}
$$

The angular displace ments $\theta_{\mathrm{m}} \& \delta_{\mathrm{m}}$ are related to synchronous speed by the following equation,

$$
\begin{gathered}
\theta_{m}=\omega_{s m} t+\delta_{m} \\
\frac{d \theta_{m}}{d t}=\omega_{s m}+\frac{d \delta_{m}}{d t}
\end{gathered}
$$

- From the equation, the rotor angular velocity $\mathrm{d} \theta_{\mathrm{m}} / \mathrm{dt}$ is constant and equal to
ω_{sm} (Synchronous speed) only $\mathbf{d} \delta_{\mathrm{m}} / \mathbf{d t}$ is ze ro.
- Hence $\mathbf{d} \delta_{\mathrm{m}} / \mathbf{d t}$ represents the deviation of the rotor speed from synchronism

$$
\frac{d^{2} \theta_{m}}{d t^{2}}=\frac{d^{2} \delta_{m}}{d t^{2}} \quad J \frac{d^{2} \delta_{m}}{d t^{2}}=T_{m}-T_{e}
$$

Let, $\mathbf{P}_{\mathrm{m}, \text { act }}$ - shaft power input to the machine neglecting losses (in MW)
$P_{e, \text { act }}$ - Electrical power developed in rotor (in MW)

$$
\begin{aligned}
& P=\frac{2 \Pi N T}{60}=\omega T \\
& P_{m, a c t}=\omega_{s m} T_{m} \quad \text { or } \quad T_{m}=\frac{P_{m, a c t}}{\omega_{s m}}
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
& P_{e, a c t}=\omega_{s m} T_{e} \quad T_{e}=\frac{P_{e, a c t}}{\omega_{s m}} \\
& J \frac{d^{2} \delta_{m}}{d t^{2}}=\frac{P_{m, a c t}}{\omega_{s m}}-\frac{P_{e, a c t}}{\omega_{s m}} \\
& J \omega_{s m} \frac{d^{2} \delta_{m}}{d t^{2}}=P_{m, a c t}-P_{e, a c t}
\end{aligned}
$$

Let, H - Inertia constant in MJ/MVA

S - power rating of machine in MVA

$$
H=\frac{\frac{1}{2} J \omega_{s m}^{2}}{S} \quad J \omega_{s m}=\frac{2 H S}{\omega_{s m}}
$$

$$
\frac{2 H S}{\omega_{s m}} \frac{d^{2} \delta_{m}}{d t^{2}}=P_{m, a c t}-P_{e, a c t}
$$

W.K.T, $\omega_{\mathrm{sm}}=(2 / \mathbf{p}) \omega_{\mathrm{s}} \quad \& \quad \delta_{\mathrm{m}}=(2 / \mathbf{p}) \delta$
\mathbf{P} - Number of poles in Sy nchronous machine

$$
\begin{aligned}
& \frac{2 H S}{2 \omega_{s} / P} \frac{d^{2}(2 \delta / p)}{d t^{2}}=P_{m, a c t}-P_{e, a c t} \\
& \frac{2 H S}{\omega_{s}} \frac{d^{2} \delta}{d t^{2}}=P_{m, a c t}-P_{e, a c t}
\end{aligned}
$$

On substituting for $\omega_{s}=\mathbf{2 \pi f}$

$$
\frac{2 H S}{2 \Pi f} \frac{d^{2} \delta}{d t^{2}}=P_{m, a c t}-P_{e, a c t} \quad \frac{H S}{\Pi f} \frac{d^{2} \delta}{d t^{2}}=P_{m, a c t}-P_{e, a c t}
$$

p.u. value of mechanical powe $r, P_{m}=P_{m, a c t} / S$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

p.u. value of electrical power, $P_{e}=P_{e, \text { act }} / S$

$$
\frac{H S}{\Pi f} \frac{d^{2} \delta}{d t^{2}}=P_{m} S-P_{e} S \quad \frac{H}{\Pi f} \frac{d^{2} \delta}{d t^{2}}=P_{m}-P_{e}
$$

- This equation is called swing equation.
- It is the fundamental equation which governs the dy namics of the synchronous machine rotor
- This swing equation is a second order differential equation

Power Angle Equation

- The equation relating the electrical power generated $\left(\mathbf{P}_{\mathrm{e}}\right)$ to the angular displacement of the rotor (δ) is called Power angle Equation
- The Power angle equation can be derived using the transient model of the generator, because for stability studies, the transient model of the generator is used
- The transient model of the generator is shown in fig

Figure: 5.2

- Consider a single generator supplying po wer through a trans mission system to a load or to a large system at other end.
- Such system can be represented by a 2 - bus net work as shown in fig as a rectangular box representing the linear passive components (reactance's) of the system including the transient reactance of the generator

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure: 5.3
Here $\mathbf{E}_{\mathbf{1}}{ }^{\prime}$ - Transient internal voltage of the generator at bus 1
$\mathrm{E}_{2}{ }^{\prime}$ - Voltage at the receiving end. (This may be the voltage at infinite bus, or transient internal voltage of synchronous motor at bus 2)

The node basis matrix equation of 2 bus system of fig can be written as

$$
\begin{gathered}
\mathbf{I}=\mathbf{Y}_{\text {bus }} \mathbf{V} \\
{\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]=\left[\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right]\left[\begin{array}{c}
E_{1}^{\prime} \\
E_{2}^{\prime}
\end{array}\right]}
\end{gathered}
$$

Where, $I_{1} \& I_{2}$ are the currents injected by the sources $E_{1}{ }^{\prime} \& E_{2}$ ' respectively to the system

$$
\begin{aligned}
& I_{1}=Y_{11} E_{1}^{\prime}+Y_{12} E_{2}^{\prime} \\
& S_{1}=P_{1}+j Q_{1}=E_{1}^{\prime} I_{1}^{*} \\
& P_{1}+j Q_{1}=E_{1}^{\prime}\left(Y_{11} E_{1}^{\prime}+Y_{12} E_{2}^{\prime}\right)^{*} \\
& =E_{1}^{\prime}\left(\left(Y_{11}{ }^{*}\left(E_{1}^{\prime}\right)^{*}+Y_{12}{ }^{*}\left(E_{2}^{\prime}\right)^{*}\right)\right. \\
& =\left(E_{1}^{\prime}\right)\left(E_{1}^{\prime}\right)^{*} Y_{11}{ }^{*}+Y_{12}{ }^{*}\left(E_{1}^{\prime}\right)\left(E_{2}^{\prime}\right)^{*} \\
& =\left|E_{1}^{\prime}\right|^{2} Y_{11}{ }^{*}+Y_{12}{ }^{*}\left(E_{1}^{\prime}\right)\left(E_{2}^{\prime}\right)^{*}
\end{aligned}
$$

Let $\mathrm{E}_{1}{ }^{\prime}=\left|\mathrm{E}_{1}{ }^{\prime}\right| \angle \delta_{1} \quad \mathrm{Y}_{11}=\mathbf{G}_{11}+\mathrm{j} \mathrm{B}_{11}=\left|\mathrm{Y}_{11}\right| \angle \theta_{11}$

$$
\mathbf{E}_{2}^{\prime}=\left|\mathbf{E}_{2}^{\prime}\right| \angle \delta_{2} \quad \mathbf{Y}_{12}=\mathbf{G}_{12}+\mathbf{j} \mathbf{B}_{12}=\left|\mathbf{Y}_{12}\right| \angle \theta_{12}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{gathered}
P_{1}+j Q_{1}=\left|E_{1}^{\prime}\right|^{2}\left(G_{11}+j B_{11}\right)^{*}+\left(Y_{12} \angle \theta_{12}\right)^{*}\left|E_{1}^{\prime}\right| \angle \delta_{1}\left(\left|E_{2}^{\prime}\right| \angle \delta_{2}\right)^{*} \\
\left.=\left|E_{1}^{\prime}\right|^{2}\left(G_{11}-j B_{11}\right)+\left|Y_{12}\right| \angle-\theta_{12}\right)\left|E_{1}^{\prime}\right| \angle \delta_{1}\left|E_{2}^{\prime}\right| \angle-\delta_{2} \\
P_{1}+j Q_{1}=\left|E_{1}^{\prime}\right|^{2}\left(G_{11}-j B_{11}\right)+\left|E_{1}^{\prime}\left\|E_{2}^{\prime}\right\|\right| Y_{12} \mid \angle\left(\delta_{1}-\delta_{2}-\theta_{12}\right) \\
=\left|E_{1}^{\prime}\right|^{2}\left(G_{11}-j B_{11}\right)+\left|E_{1}^{\prime}\left\|E_{2}^{\prime}\right\|\right|\left|Y_{12}\right| \cos \left(\delta_{1}-\delta_{2}-\theta_{12}\right)+j\left|E_{1}^{\prime}\left\|E_{2}^{\prime}\right\|\right|\left|Y_{12}\right| \sin \left(\delta_{1}-\delta_{2}-\theta_{12}\right) \\
P_{1}=\left|E_{1}^{\prime}\right|^{2} G_{11}+\left|E_{1}^{\prime} \| E_{2}^{\prime}\right|| | Y_{12} \mid \cos \left(\delta_{1}-\delta_{2}-\theta_{12}\right) \\
Q_{1}=-\left|E_{1}^{\prime}\right|^{2} B_{11}-\left|E_{1}^{\prime}\left\|E_{2}^{\prime}\right\|\right| Y_{12} \mid \sin \left(\delta_{1}-\delta_{2}-\theta_{12}\right)
\end{gathered}
$$

Let $\delta=\delta_{1} \boldsymbol{\delta}_{2}$

$$
\begin{aligned}
& \gamma=\theta_{12}-\pi / 2 \\
& \mathbf{P}_{\mathbf{c}}=\left|\mathbf{E}_{1}\right|^{2} \mathbf{G}_{11} \\
& \mathbf{P}_{\max }=\left|\mathbf{E}_{1}{ }^{\prime}\right| \mathbf{E}_{2}{ }^{\prime}| | \mathbf{Y}_{12} \mid \\
& \mathbf{P}_{\mathbf{1}}=\mathbf{P}_{\mathbf{e}}
\end{aligned}
$$

$$
P_{e}=P_{c}+P_{\max } \cos (\delta-\gamma-\Pi / 2)
$$

$$
P_{e}=P_{c}+P_{\max } \sin (\delta-\gamma)
$$

- This equation is called Powe r angle equation
$\mathrm{Pe} \quad$ - Electrical power generated by the Generator
Pc - power loss in the system
Pmax - maximum real power that can be delivered by the generator to an
infinite bus
- Assume bus 2 is an infinite bus $. \delta_{2}=0 . \therefore \delta=\delta_{1}$
- The power angle equation can be further simplified by conside ring the network as purely reactive network (Neglect resistance)

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$\mathbf{G}_{11}=\mathbf{0}, \theta_{12}=\pi / 2$. so $\gamma=0$
On Substituting,
$P_{e}=P_{\text {max }} \sin \delta$. This equation is called simplified power angle equation
Where,

$$
P_{\max }=\frac{\left|E_{1}^{\prime} \| E_{2}^{\prime}\right|}{X_{12}}
$$

and X_{12} - Transfer reactance between bus $1 \& 2$

- The graph or plot of P_{e} as a function of $\boldsymbol{\delta}$ is called power angle curve.

$\frac{H}{\Pi f} \frac{d^{2} \delta}{d t^{2}}=P_{m}-P_{e}$
$\frac{H}{\Pi f} \frac{d^{2} \delta}{d t^{2}}=P_{m}-P_{\max } \sin \delta$
- This equation is the swing equation in which the electrical power is expressed as a function of $\boldsymbol{\delta}$

Steady State Stability

- In steady state every synchronous machine has a limit for power transfer to a receiving system
- The steady state limit of a machine or transmitting system is defined as the maximum powe r that can be trans mitted to the receiving system without loss of synchronism Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

- Consider a single synchronous machine delivering power to a large system through a transmitting system
- The power angle equation of such system developed can be used for the analysis of steady state stability if the transfer emfs are replaced by steady state emfs

Let $|E|=$ Magnitude of steady state internal emf of synchronous machine
$|\mathrm{V}|=$ Magnitude of voltage of receiving system
X = Transfer reactance between the synchronous machine and receiving system

Real power injected by machine to system, $\mathbf{P}_{\mathrm{e}}=\mathrm{P}_{\text {max }} \sin \delta$

$$
P_{\text {max }}=\frac{|E \| V|}{X}
$$

- Let the system be ${ }_{\text {Operating }}$ with steady state power transfer with a torque angle δ_{0}
- In this operating condition, let the electrical powe r output be $\mathbf{P}_{\mathrm{e} 0}$
- Now $P_{m}=P_{e 0}$ under ideal conditions
- With the power input ($\mathbf{P m}$) re maining same, assume electrical powe r output increases by a small amount ΔP

Figure: 5.4

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

- Now the torque angle change by a small amount $\Delta \delta$
- So the ne w value of torque angle is $\left(\delta_{0}+\Delta \delta\right)$
- The electrical po wer output for this ne w torque angle of $\left(\delta_{0}+\Delta \delta\right)$ is

$$
\begin{aligned}
P_{e 0}+\Delta \mathrm{P} & =P_{\max } \sin \left(\delta_{0}+\Delta \delta\right) \\
& =P_{\max }\left[\sin \delta_{0} \cos \Delta \delta+\cos \delta_{0} \sin \Delta \delta\right]
\end{aligned}
$$

Since $\Delta \delta$ is a small incremental dis place ment from δ_{0}

$$
\begin{array}{r}
\operatorname{Sin} \Delta \delta \cong \Delta \delta \text { and } \cos \Delta \delta \cong 1 \\
\mathbf{P}_{\mathrm{e} 0}+\Delta \mathrm{P}=\mathrm{P}_{\max } \sin \delta_{0}+\left(\mathrm{P}_{\max } \cos \delta_{0}\right) \Delta \delta
\end{array}
$$

When $\delta=\delta 0$

$$
\begin{aligned}
& P_{e}=P_{e 0}=P_{m} \sin \delta_{0} \\
& \therefore \Delta P=\left(P_{\max } \cos \delta_{0}\right) \Delta \delta
\end{aligned}
$$

The nonlinear swing equation can be linearized about the operating point for steady state analysis

$$
\begin{aligned}
& \frac{H}{\Pi f} \frac{d^{2} \delta}{d t^{2}}=P_{m}-P_{e} \\
& M \frac{d^{2} \delta}{d t^{2}}=P_{m}-P_{e}
\end{aligned}
$$

For a torque of $\delta=\left(\delta_{0}+\Delta \delta\right), P_{e}=\left(p_{e} 0+\Delta P\right)$

$$
M \frac{d^{2}\left(\delta_{0}+\Delta \delta\right)}{d t^{2}}=P_{m}-\left(P_{e 0}+\Delta P\right)
$$

Since δ_{0} is constant and $P_{m}=P_{e 0}$

$$
\begin{aligned}
M \frac{d^{2} \Delta \delta}{d t^{2}} & =-\Delta P \\
M \frac{d^{2} \Delta \delta}{d t^{2}} & =-\left(P_{\max } \cos \delta_{0}\right) \Delta \delta
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
M \frac{d^{2} \Delta \delta}{d t^{2}}+\left(P_{\max } \cos \delta_{0}\right) \Delta \delta=0
$$

Let, $\frac{d^{2}}{d t^{2}}=x^{2} \quad$ and $\quad P_{\max } \cos \delta_{0}=C$

$$
M x^{2} \Delta \delta+C \Delta \delta=0
$$

$$
\left(M x^{2}+C\right) \Delta \delta=0
$$

Since $\quad \Delta \delta \neq 0 \quad\left(M x^{2}+C\right)=0$
This is the characteristic equation of the system for small changes. The stability is determined by the roots of the characte ristic equation

$$
\therefore x^{2}=\frac{-C}{M} \quad \text { or } \quad \therefore x= \pm \sqrt{\frac{-C}{M}}
$$

Case 1: When c is positive, (i.e, $\mathrm{P}_{\max } \cos \delta_{0}>0$)

- In this case the roots are purely imaginary and conjugate
- Hence the system behaviour is oscillatory about δ_{0}
- In this analysis the resistances in the system have been neglected
- If resistances are included, then the roots will be complex conjugate and the response will be dampe d oscillatory
- \therefore in a practical sysyem the system is stable for small incre ment in power provided, $\mathrm{P}_{\text {max }} \cos \delta_{0}>0$

Case 2: When c is negative, (i.e, $\mathrm{P}_{\text {max }} \cos \delta_{0}<0$)

- In this case the roots are real and equal in magnitude
- One of the root is positive and the other one is negative
- Due to positive root the torque angle increases without bound whe n there is a small increment in powe r and the machine will loose synchronism

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

- Hence the machine becomes unstable for small changes in power provided $P_{\text {max }}$ $\cos \delta_{0}<0$

Steady State limit

- The term $P_{\text {max }} \cos \delta_{0}$ decides the steady state stability of the system and so it is called Sy nchronizing coefficient or stiffness of the synchronous machine
- From the power angle curve for gene rator action, the range of $\boldsymbol{\delta}_{\boldsymbol{0}}$ as $\mathbf{0}$ to π
- The Fig is drawn using the equation $\mathrm{P}_{\mathrm{e}}=\mathrm{P}_{\text {max }} \sin \delta$

When $0 \leq \delta_{0} \leq \pi / 2 ; P_{\text {max }} \cos \delta_{0}$ and P_{e} are positive
When $\delta_{0}=\pi / 2 \quad ; P_{\text {max }} \cos \delta_{0}=\mathbf{0}$ and $P_{e}=P_{\text {max }}$
When $\pi / 2<\delta_{0} \leq \pi ; \mathrm{P}_{\text {max }} \cos \delta_{0}$ is negative and P_{e} is positive

- From the above discussion, the synchronizing coefficient $\left(P_{\max } \cos \delta_{0}\right)$ and real power injected to the system $\left(\mathrm{P}_{\mathrm{e}}\right)$ are positive when δ is in the range of 0 to $\pi / 2$
- \therefore the maximum power that can be transmitted without loss of stability occurs for $\delta=\delta_{0}=\pi / 2=90^{\circ}$
- The maximum power trans mitted is $\mathbf{P}_{\mathbf{r}}{ }_{\max }=\frac{|E \| V|}{X}$
- Fig shows the stable and unstable steady state operating regions of a generator
- This concept is also applicable for power transfer from one system to another system if the transmitting system is represented by single equivalent generator
- In stable operating region of the system the damping should be sufficient to reduce the oscillations developed due to small changes in loads
- If oscillations exists for a long time then it may pose a problem to system security
- Practically the system has to be operated below the steady state stability limit
- The limit can be improved by reducing the reactance X or by increasing the voltages at sending end and/or at the receiving end
- The reactance can be reduced by introducing series capacitors in the trans mission line

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

- Alternatively the line reactance can be reduced by using two parallel trans mission lines

Transient Stability

- It is conce rned with the study of system behaviour for large disturbances
- The Short circuits and s witching heavy loads can be treated as transients
- The dynamics of the system under transient state are governed by the nonlinear swing equation developed
- Since the changes in δ is very large in the transient state, the swing equation cannot be linearized for a gene ral solution
- So the solution has to be obtained by using any one of nume rical techniques like point by point method, Runga kutta method and modified Euler's method
- The transient stability of a single machine connected to infinite bus bar can be easily determined by a simple criterion called equal area criterion
- The computational task involved in transient stability studies can be unde istood considering the transient state of a practical system

Figure: 5.5

- Consider a single machine system feeding energy through a transmission line to an infinite bus
- Let the Circuit breakers (C.B) be auto closure type
- In this C.B will open its contact upon sensing a fault and after a small time it will close its contacts, if the fault still exist then again it will open its contact to permanently disconnect the faulty part
- This feature is useful in clearing transient faults
- Transient fault exists for a small time and it gets cleared when the circuit is opened

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

- Then the circuit can be closed for normal ope ration
- Most of the auto reclosure C.B will open and close the contacts twice before permanently disconnecting the circuit
- In majority of faults, first reclosure will be successful
- Hence system stability is improved by using autoreclosure C.B

Steps involved in Transient stability study

1. Calculate the transient internal emf and torque angle δ_{0} using the prefault load currents
2. Determine an equation for power during the fault condition $P_{e}(\delta)$. If the fault is $\mathbf{3}$ - phase fault then power transferred to infinite bus is zero and the entire power goes to fault
3. Calculate $\delta(t)$ for various time instant by solving the swing equation using a numerical technique. The initial value of $\boldsymbol{\delta}$ for the solution is $\boldsymbol{\delta}_{\mathbf{0}}$
4. Assume the fault is cleared when the C.B open its contact for the first time. Now $\mathrm{Pe}(\delta)=0$. Continue calculating $\delta(\mathrm{t})$ by taking previous step value as initial condition
5. Assume C.B close its contact and power feeding to infinite bus is resumed. For this situation find $\operatorname{Pe}(\delta)$ and continue to calculate $\delta(t)$
6. Examine the variations of $\delta(t)$. If $\delta(t)$ goes through a maximum value and starts to reduce then the system is a stable system. On the other hand if $\delta(t)$ remains increasing for a specified length of time then the system is considered unstable

Equal Area Criterion

1. The system is stable if $\mathbf{d} \delta / \mathbf{d t}=\mathbf{0}$ at some time instant
2. The system is unstable if $\mathbf{d} \delta / \mathbf{d t}>\mathbf{0}$ for a sufficiently long time (typically $\mathbf{1}$ second or more)

For a single machine infinite bus bar system, the stability criterion stated above can be converted to a simple condition as sho wn below

Consider the swing equation of a generator connected to infinite bus

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$\frac{H}{\Pi f} \frac{d^{2} \delta}{d t^{2}}=P_{m}-P_{e}$
Let there be a change in P_{e} due to a large disturbance, with P_{m} remaining constant $P_{m}-P_{e}=P_{a} \quad$ Where P_{a} is the accelerating power

$$
\begin{aligned}
& M=\frac{H}{\Pi f} \\
& M \frac{d^{2} \delta}{d t^{2}}=P_{a} \\
& \frac{d^{2} \delta}{d t^{2}}=\frac{P_{a}}{M}
\end{aligned}
$$

On Multiplying the equation by $2 \mathrm{~d} \delta / \mathrm{dt}$,

$$
\begin{aligned}
& 2 \frac{d \delta}{d t} \frac{d^{2} \delta}{d t^{2}}=2 \frac{d \delta}{d t} \frac{P_{a}}{M} \\
& 2 \frac{d \delta}{d t} \frac{d}{d t} \frac{d \delta}{d t}=\frac{2}{M} P_{a} \frac{d \delta}{d t} \\
& 2 \frac{d}{d t}\left(\frac{d \delta}{d t}\right)^{2}=\frac{2}{M} P_{a} \frac{d \delta}{d t} \\
& 2 d\left(\frac{d \delta}{d t}\right)^{2}=\frac{2}{M} P_{a} d \delta
\end{aligned}
$$

On integrating the equation

$$
\begin{gathered}
\left(\frac{d \delta}{d t}\right)^{2}=\frac{2}{M} \int_{\delta_{0}}^{\delta} P_{a} d \delta \\
\frac{d \delta}{d t}=\sqrt{\frac{2}{M} \int_{\delta_{0}}^{\delta} P_{a} d \delta}
\end{gathered}
$$

Where δ_{0} is the initial value of torque angle or rotor angle

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

For a stable system $\mathbf{d} \delta / \mathbf{d t}=\mathbf{0}$, at a particular time instance. so for a stable system
$\sqrt{\frac{2}{M} \int_{\delta_{0}}^{\delta} P_{a} d \delta=0}$

The equation is zero if the integral of \mathbf{P}_{a} is zero.
For $\frac{d \delta}{d t}=0 \quad$ The term $\int_{\delta_{0}}^{\delta} P_{a} d \delta=0$

- The physical meaning of integration is the estimation of the area under the curve
- Hence the integral of p_{a} equal to zero area
- The condition of stability can be stated as:
i. The system is stable if the area under $P_{a}-\delta$ curve reduces to zero at some value of $\boldsymbol{\delta}$
ii. This is possible only if the positive (accelerating) area under $P_{a}-\delta$ curve is equal to the negative (decelerating) area under $P_{a}-\delta$ for a finite change in δ
iii. Hence this stability criterion is called equal area criterion of stability
- The equal area criterion of stability can be applied to any type of disturbances that may occur in a single machine infinite bus bar system

Transient Stability analysis for a sudden change in mechanical input

Figure: 5.6 Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure: 5.7

- Consider a single generator feeding energy to infinite bus as shown in fig
- The electrical power transmitted by the generator is given by

$$
\begin{gathered}
P_{e}=\frac{\left|E^{\prime} \| V\right|}{X} \sin \delta=P_{\max } \sin \delta \\
\text { Where } \quad P_{\max }=\frac{\left|E^{\prime} \| V\right|}{X}
\end{gathered}
$$

- Let the generator be operating in steady state with a torque angle $\boldsymbol{\delta}_{0}$.
- At this condition the mechanical power input is $P_{m o}$ and the electrical output is $\mathbf{P e}_{\mathrm{e} 0}$
- Under ideal conditions $\mathbf{P}_{\mathrm{m} 0}=\mathrm{P}_{\mathrm{e} 0}$
- $P_{m 0}=P_{\text {e0 }}=P_{\text {max }} \sin \delta_{0}$
- In the power angle curve shown in fig, the steady state operating point is point a Let the mechanical input to the generator rotor be suddenly increased to $\mathbf{P}_{\mathrm{m} 1}$ by some adjustment in prime mover
- Since the mechanical power is more than electrical power, the generator will have an accelerating power Pa given by

$$
\mathbf{P}_{\mathrm{a}}=\mathbf{P}_{\mathrm{m} 1}-\mathbf{P}_{\mathrm{e}}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Where $\mathbf{P}_{\mathrm{e}}=\mathbf{P}_{\text {max }} \sin \delta$

- Due to accelerating power the rotor speed increases and so the rotor angle also increases
- This results in increased electrical powe r generation
- \therefore the operating point will move upwards along the powe r angle curve.
- At Point bagain the mechanical power Pm1 equals the electrical power $\mathbf{P}_{\text {e1 }}$, where $P_{e 1}$ is the electrical power out put corresponding to torque angle $\boldsymbol{\delta}_{1}$
- Now the rotor angle cannot stay at this point because the inertia of the rotor will make the rotor to oscillate with respect to point b
- Hence the torque angle will continue to increase till point c , whe n the operating point moves from b to c, the electrical powe r is more than mechanical powe r
\therefore the power P_{a} given by equation is negative and it is called decelerating power
- In this region (i.e., from point b to c) the rotor angle δ increases but the rotor speed decreases due to decelerating power
- The point \mathbf{c} is decided by the damping of the system
- At point \mathbf{c} the speed of rotor will be equal to synchronous speed
- At point a the speed is synchronous speed (ω_{s})
- From point a to \mathbf{b} the speed increases and then from point \mathbf{b} to \mathbf{c} the speed decreases
- Once again at point \mathbf{c} the speed is equal to synchronous speed $\left(\omega_{s}\right)$
- Thus the rotor oscillates between point a and point \mathbf{c} before settling to point b
- In Fig, the area A_{1} is the accelerating area and area $\mathbf{A}_{\mathbf{2}}$ is the deceleration area
- The equal area criterion says that, the system is stable if

$$
\int_{\delta_{0}}^{\delta} P_{a} d \delta=0
$$

- To satisfy the equation, the acceleration area A_{1} should be equal to deceleration area \mathbf{A}_{2}

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

- When the oscillation die out the system will settle to a new state
- In this ne w steady state, $P_{m 1}=P_{\text {e1 }}$

$$
\therefore \mathbf{P}_{\mathrm{m} 1}=\mathrm{P}_{\mathrm{e} 1}=\mathbf{P}_{\mathrm{max}} \sin \delta_{1}
$$

- The areas $\mathbf{A}_{\mathbf{1}} \& \mathbf{A}_{\mathbf{2}}$ can be evaluated as

$$
\begin{aligned}
& A_{1}=\int_{\substack{\delta_{0}}}^{\delta}\left(P_{m 1}-P_{e}\right) d \delta \\
& A_{2}=\int_{\delta_{1}}^{\delta_{2}}\left(P_{e}-P_{m 1}\right) d \delta
\end{aligned}
$$

- Where $\mathbf{P}_{\mathrm{e}}=\mathbf{P}_{\text {max }} \sin \delta$
- From the above discussion it is clear, that there is a upper limit for increase in mechanical power input P_{m}
- As the mechanical powe r is increased, a limiting condition is finally reached at a point where A_{1} equals the area above $P_{m 1, \text { max }}$ line as shown in fig
- The corresponding δ can be $\delta_{1, \text { max }}$
- Under this condition $\boldsymbol{\delta} 2$ takes a maximum value of $\delta \mathbf{2}$,max

Figure: 5.8

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Here $\delta \mathbf{2}, \max =\pi-\delta \mathbf{1}$, max

$$
\begin{aligned}
\text { Pe 1,max } & =\text { Pm1,max }=\boldsymbol{P m a x} \sin \delta_{1}, \text { max } \\
\therefore \sin \delta_{1, \text { max }} & =\frac{P_{m 1, \text { max }}}{P_{\max }} \quad \delta_{1, \text { max }}=\sin ^{-1}\left(\frac{P_{m 1, \text { max }}}{P_{\text {max }}}\right) \quad \delta_{2, \text { max }}=\Pi-\sin ^{-1}\left(\frac{P_{m 1, \text { max }}}{P_{\text {max }}}\right)
\end{aligned}
$$

- From Fig it is understood, any further increase in $P_{m 1, \text { max }}$ will make the area A_{2} less than the area A_{1}
- This means that the acceleration power is more than the deceleration power
- Hence the system will have an excess kinetic energy which causes $\boldsymbol{\delta}$ to increase beyond point c
- If the δ increases beyond c the deceleration powe r changes to acceleration powe r and so the system will become unstable
- The system will remain stable even though the rotor may oscillate beyond $\boldsymbol{\delta}=\mathbf{9 0 ^ { \circ }}$, as long as the equal area criterion is met.
- Hence the condition of $\boldsymbol{\delta}=\mathbf{9 0 ^ { \circ }}$ for stability is applicable only for steady state stability and not for transient stability

Clearing time and clearing angle

Figure: 5.9

- Consider a single machine system shown in Fig
- Let the mechanical input be Pm and the machine is operating in steady state with torque angle $\delta 0$
- In the power angle curve, the operating point is Point a

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE
www.sathyabama.ac.in

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure: 5.10

- Let a three fault phase fault occur at point F in the system
- Now $\mathrm{Pe}=0$ and the operating point drops to b
- It means the power transferred to infinite bus is zero and the entire power generated is flo wing through the fault
- Now the ope rating point moves along bc
- Let the fault be transient in nature and so the fault be cleared by opening of the C.B at point c where $\delta=\delta \mathrm{c}$ and the correspondind time be tc
- Here tc is called clearing time and $\delta \mathbf{c}$ is called clearing angle
- It is assumed that the C.B closes its contact imme diately after opening
- Hence normal operation is restored
- Now the ope rating point shifts to point d
- Now the rotor decelerates and the operating point moves along dc
- For this transient state, if an angle $\delta 1$ can be found such that $\mathrm{A} 2=\mathrm{A} 1$, then the system is found to be stable
- The stable system may finally settles down to the steady operating point a in an oscillatory manner due to damping in the system

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

- In the above discussion it is assumed that the fault is cleared at δ_{c}, but if the fault clearing is delayed then the angle δ_{1} continue to increase to an upper limit $\delta_{\text {max }}$
- This corresponds to a point where equal areas for A_{1} and $\mathrm{A}_{\mathbf{2}}$ can be found for a given P_{m} as shown in fig

Figure: 5.11

- For this situation the fault would have been cleared at an angle $\boldsymbol{\delta}_{\mathrm{cc}}$
- This angle $\delta_{\text {cc }}$ is called critical clearing angle
- The time corresponding to this angle is called critical clearing time, \mathbf{t}_{cc}
- If the fault is not cleared within critical time, then δ_{1} would increase to a value greater than $\delta_{\text {max }}$
- In this situation the area A_{2} will be less than the area A_{1} and so the system would be unstable
- For a 3 - Phase fault in simple systems, the equations for δ_{cc} and t_{cc} can be obtained as

$$
\delta_{\max }=\pi-\delta_{0}
$$

Under steady state for a given $\delta_{\mathbf{0}}, \mathrm{P}_{\mathrm{m}}=\mathrm{P}_{\mathrm{e}}$ and it is constant

$$
\therefore \mathbf{P}_{\mathrm{m}}=\mathbf{P}_{\mathrm{e}}=\mathbf{P}_{\text {max }} \sin \delta_{0}
$$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

The acceleration Powe r, $P_{a}=P_{m}-P_{e}$
When a three phase fault occurs, $\mathbf{P}_{\mathrm{e}}=\mathbf{0}$

$$
\therefore \mathbf{P}_{\mathrm{a}}=\mathrm{P}_{\mathrm{m}}=\text { constant }
$$

The acceleration area A_{1} can be evaluated by integrating P_{a} from $\delta=\delta_{0}$ to $\delta=\delta_{\mathrm{cc}}$

$$
\therefore A_{1}=\int_{\delta_{0}}^{\delta_{c c}} P_{m} d \delta=P_{m}[\delta]_{\delta_{0}}^{\delta_{c c}}=P_{m}\left(\delta_{c c}-\delta_{0}\right)
$$

When the Power feeding is resumed after the fault, $\mathrm{Pe}=\mathrm{Pmax} \sin \delta$

Now, $\mathbf{P a}=\mathbf{P e}-\mathbf{P m}=\mathbf{P m a x} \sin \delta-\mathbf{P m}$

The deacceleration area $\mathbf{A 2}$ can be evaluated by integrating Pa from from $\delta=\delta$ cc to
$\delta=\begin{array}{r}\text { max } \\ A_{2}\end{array}=\int_{\delta_{c c}}^{\delta_{\text {max }}}\left(P_{\text {max }} \sin \delta-P_{m}\right) d \delta=\left[-P_{\text {max }} \cos \delta-P_{m} \delta\right]_{\delta_{c c}}^{\delta \max }$

$$
\begin{aligned}
& =\left[-P_{\max } \cos \delta_{\max }-P_{m} \delta_{\max }+P_{\max } \cos \delta_{c c}+P_{m} \delta_{c c}\right] \\
& =P_{\max }\left(\cos \delta_{c c}-\cos \delta_{\max }\right)-P_{m}\left(\delta_{\max }-\delta_{c c}\right)
\end{aligned}
$$

For a stable system $\mathrm{A} 1=\mathrm{A} 2$. Hence the equations of $\mathrm{A} 1 \& \mathrm{~A} 2$ can be equated to solve δ cc

$$
\begin{aligned}
\therefore & P_{\max } \cos \delta_{c c}=P_{m} \delta_{c c}-P_{m} \delta_{0}+P_{\max } \cos \delta_{\max }+P_{m} \delta_{\max }-P_{m} \delta_{c c} \\
& P_{\max } \cos \delta_{c c}=P_{m}\left(\delta_{\max }-\delta_{0}\right)+P_{\max } \cos \delta_{\max } \\
\therefore & \cos \delta_{c c}=\frac{P_{m}}{P_{\max }}\left(\delta_{\max }-\delta_{0}\right)+\cos \delta_{\max } \\
& \delta_{c c}=\cos ^{-1}\left[\frac{P_{m}}{P_{\max }}\left(\delta_{\max }-\delta_{0}\right)+\cos \delta_{\max }\right]
\end{aligned}
$$

Consider the swing equation of single machine system

$$
\frac{H}{\Pi f} \frac{d^{2} \delta}{d t^{2}}=P_{m}-P_{e}
$$

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

During a three phase fault, $\mathrm{Pe}=\mathbf{0}$

$$
\frac{H}{\Pi f} \frac{d^{2} \delta}{d t^{2}}=P_{m} \quad \frac{d^{2} \delta}{d t^{2}}=\frac{\Pi f P_{m}}{H}
$$

On integrating the equation twice

$$
\delta=\frac{\Pi f}{2 H} P_{m} t^{2}+\delta_{0} \quad \text { Where } \delta_{0} \text { is the integral constant }
$$

When $\delta=\delta_{\mathrm{cc}}, \mathbf{t}=\mathbf{t}_{\mathrm{cc}} ; \quad$ At \mathbf{t}_{cc}

$$
\begin{aligned}
& \delta_{c c}=\frac{\Pi f}{2 H} P_{m} t_{c c}^{2}+\delta_{0} \\
& t_{c c}=\sqrt{\frac{2 H\left(\delta_{c c}-\delta_{0}\right)}{\Pi f P_{m}}}
\end{aligned}
$$

This equation is used to estimate the value of critical clearing time $t_{c c}$
Solution of swing equation by Point by Point method
Consider the swing equation of a power system

$$
\begin{aligned}
& \frac{H}{\Pi f} \frac{d^{2} \delta}{d t^{2}}=P_{m}-P_{e} \\
& M=\frac{H}{\Pi f} \\
& P_{e}=P_{\max } \sin \delta \\
& P_{a}=P_{m}-P_{e}=P_{m}-P_{\max } \sin \delta \\
& \therefore M \frac{d^{2} \delta}{d t^{2}}=P_{a} \\
& \frac{d^{2} \delta}{d t^{2}}=\frac{P_{a}}{M}
\end{aligned}
$$ Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

- The equation is a nonlinear equation
- During transient state the δ is a function of time, t and so it can be denoted as $\delta(t)$
- In point by point method, the solution of $\delta(t)$ is obtained by dividing the time into small equal values of Δt

Assumptions:

1. The accelerating power p_{a} computed at the beginning of an interval is assumed constant from the middle of the preceding interval to the middle of the interval being considered
2. The angular velocity is assumed constant throughout any interval. This constant value is the value corresponding to the midpoint of concerned interval

- The solution starts from the initial condition values, that corresponds to a stable operating point

Let δ_{0} be the angle corresponding to initial operating point

SCHOOL OF ELECTRICAL AND ELECTRONICS
DEPARTMENT OF ELECTRICAL AND ELECTRONICS

Figure: 5.12
$\delta_{\mathrm{n}-1}$ - The value of δ at the end of ($\left.\mathrm{n}-1\right)^{\text {th }}$ interval
$\omega_{\mathrm{n}-1 / 2}$ - The value of ω at the end of (n-1) ${ }^{\text {th }}$ interval
$\mathbf{P a}_{\mathbf{a}(\mathrm{n}-1)}$ - Value of Pa at the end of ($\left.\mathbf{n - 1}\right)^{\text {th }}$ interval
$\mathbf{P}_{\mathbf{a}(\mathbf{n}-1)}=\mathbf{P}_{\mathrm{m}}-\mathbf{P}_{\text {max }} \sin \delta_{\mathrm{n}-1}$
$\frac{d^{2} \delta}{d t^{2}}=\frac{P_{a}}{M} \quad \frac{d \omega}{d t}=\frac{P_{a}}{M} \quad \frac{\Delta \omega}{\Delta t}=\frac{P_{a}}{M} \quad \therefore \Delta \omega=\frac{\Delta t}{M} P_{a}$
Let $\omega_{\mathrm{n}-3 / 2}$ - the value of ω at the end of $\mathrm{n}^{\text {th }}$ interval

Accredited "A" Grade by NAAC I 12B Status by UGC I Approved by AICTE

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

For calculating $\mathbf{n}^{\text {th }}$ interval value of $\omega, \Delta \omega=\omega_{\mathrm{n}-1 / 2}-\omega_{\mathrm{n}-3 / 2}, \mathbf{P}_{\mathrm{a}}=\mathbf{P}_{\mathrm{a}(\mathrm{n}-1)}$

$$
\begin{aligned}
& \therefore \omega_{n-1 / 2}-\omega_{n-3 / 2}=\frac{\Delta t}{M} P_{a(n-1)} \\
& \therefore \omega_{n-3 / 2}=\omega_{n-1 / 2}-\frac{\Delta t}{M} P_{a(n-1)}
\end{aligned}
$$

For small changes in δ,

$$
\begin{aligned}
& \omega=\frac{\Delta \delta}{\Delta t} \\
& \Delta \delta=\Delta t \omega
\end{aligned}
$$

For a change in δ in $(\mathbf{n}-1)^{\text {th }}$ interval,

$$
\Delta \delta_{n-1}=\Delta t \omega_{n-3 / 2}
$$

For a change in δ in $\mathbf{n}^{\text {th }}$ interval,

$$
\Delta \delta_{n}=\Delta t \omega_{n-1 / 2}
$$

$\delta \mathrm{n}$ - The Value of $\boldsymbol{\delta}$ at the end of $\mathrm{n}^{\text {th }}$ interval,

$$
\delta_{n}=\delta_{n-1}+\Delta \delta_{n}
$$

- The above process of computation is repeated to obtain $\mathrm{P}_{\mathrm{a}(\mathrm{n})}, \Delta \delta_{(\mathrm{n}+1)}$ and $\boldsymbol{\delta}_{(\mathrm{n}+1)}$
- The solution of $\boldsymbol{\delta}(\mathrm{t})$ is thus obtained in discrete form over the desired length of time
- The normal desired length of time is 0.5 sec
- The continuous form of solution is obtained by drawing a smooth curve through discrete values

Modified Euler's Method

- This method is used to solve the swing equation
- In this the swing equation are transformed into the state variable form

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
& \frac{d \delta}{d t}=\Delta \omega \\
& \frac{d}{d t}\left(\frac{d \delta}{d t}\right)=\frac{\Pi f}{H} p_{a} \\
& \frac{d}{d t}(\Delta \omega)=\frac{\Pi f}{H} p_{a}
\end{aligned}
$$

Computational algorithm using Modified Euler's Method for power system problems

1. Obtain a load flow solution for the pre transient condition
2. Calculate the generator internal voltage behind transient reactance. The state vectors have finite values whereas all $\omega=0$ under pre transient condition
3. Assume the occurrence of fault and initialize time $i=0$. calculate the reduced admittance matrix for this condition. Set count $\mathbf{j}=\mathbf{0}$.
4. Determine the state derivatives and calculate the first state estimate

$$
\begin{aligned}
& \delta_{i+1}^{*}=\delta_{i}+\left[\frac{d \delta}{d t} / \Delta \omega t\right](\Delta t) \\
& \Delta \omega_{i+1}^{P}=\Delta \omega_{i}+\left[\frac{d \Delta \omega}{d t} / \delta_{i}\right](\Delta t)
\end{aligned}
$$

5. Second estimate of the variable δ can be obtained if derivatives at $t_{1}=t_{0}+\Delta t$ so that the generated power can be calculated
6. Determine the average value of the state derivative and obtain the second estimate of the state variables and the second estimate of the internal voltage angle and machine angular speeds

$$
\delta_{i+1}^{c}=\delta_{i}+\left[\frac{\frac{d \delta}{d t} / \Delta \omega_{i}+\frac{d \delta}{d t} / \Delta_{\omega i+1}^{P}}{2}\right](\Delta t)
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\Delta \omega_{i+1}^{c}=\Delta \omega_{i}+\left[\frac{\frac{d \Delta \omega t}{d t} / \delta_{i}+\frac{d \Delta \omega t}{d t} / \delta_{i+1}}{2}\right](\Delta t)
$$

7. Compute final internal voltage of the generation at the end of $\left[t_{0}+\Delta t\right]$ and print the results
8. Check if $\mathbf{t} \mathrm{t}_{\mathrm{cc}}$. If yes advance time by $\Delta \mathrm{t}$ and go to step 4
9. Check if $\mathbf{j}=0$, if yes the nodal admittance matrix is changed corresponding to the post fault condition and a new reduced admittance matrix is obtained. Set $\mathbf{j}=\mathbf{j}+1$
10. Set $i=i+1$ and $t_{1}=t_{0}+\Delta t$ and $t_{2}=t_{1}+\Delta t$
11. Check if $\mathbf{t} \mathrm{t}_{\text {max }}$. If yes go to step 8
12. Terminate the process of computation

The relation between δ and \mathbf{t} for various generators are obtained and stability of the system can be estimated for a particular type of fault and particular clearing time

Runge Kutta Method

This method is the most powerful method for solving s wing equation on digital computers

Algorithm

1. Obtain a load flow solution for the pre transient condition
2. Calculate the generator internal voltages behind transient reactances
3. Assume the occurrences of a fault and calculate the reduce admittance matrix for the condition and initialize the time count $\mathrm{k}=\mathbf{0}$, initialize $\mathrm{j}=\mathbf{0}$
4. Determine the following conditions

$$
\begin{aligned}
& \mathbf{K}_{1}{ }^{k}=\mathbf{f}_{1}\left(\delta^{k}, \omega^{k}\right) \Delta t \\
& \mathbf{I}_{1}{ }^{k}=\mathbf{f}_{2}\left(\delta^{k}, \omega^{k}\right) \Delta t \\
& \mathbf{K}_{2}{ }^{k}=\mathbf{f} 1\left[\delta^{k}+1 / 2 K_{1}{ }^{k} \omega^{k}+1 / 2 \mathbf{I}_{1}{ }^{k}\right] \Delta t \\
& \mathbf{I}_{2}{ }^{k}=\mathbf{f}_{2}\left[\delta^{k}+\mathbf{1} / 2 K_{1}{ }^{k} \omega^{k}+1 / 2 \mathbf{I}_{1}{ }^{k}\right] \Delta t
\end{aligned}
$$

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

$$
\begin{aligned}
& \mathbf{K}_{3}{ }^{k}=f_{1}\left[\delta^{k}+1 / 2 K_{2}{ }^{k} \omega^{k}+1 / 2 \mathbf{I}_{2}{ }^{k}\right] \Delta t \\
& \mathbf{I}_{3}{ }^{k}=\mathbf{f}_{2}\left[\delta^{k}+1 / 2 K_{2}{ }^{k} \omega^{k}+1 / 2 \mathbf{I}_{2}{ }^{k}\right] \Delta t \\
& \mathbf{K}_{4}{ }^{k}=f_{1}\left[\delta^{k}+1 / 2 K_{3}{ }^{k} \omega^{k}+1 / 2 \mathbf{I}_{3}{ }^{k}\right] \Delta t \\
& \mathbf{I}_{4}{ }^{k}=\mathbf{f}_{2}\left[\delta^{k}+\mathbf{1} / 2 K_{3}{ }^{k} \omega^{k}+1 / 2 \mathbf{I}_{3}{ }^{k}\right] \Delta t
\end{aligned}
$$

5. Then compute the change in state vector

$$
\begin{aligned}
& \Delta \delta^{k}=1 / 6\left[\mathbf{k}_{1}{ }^{k}+2 K_{2}{ }^{k}+2 K_{3}{ }^{k}+K_{4}{ }^{k}\right] \\
& \Delta \omega^{k}=1 / 6\left[I_{1}{ }^{k}+2 I_{2}{ }^{k}+2 I_{3}{ }^{k}+\mathbf{I}_{4}{ }^{k}\right]
\end{aligned}
$$

6. Evaluate the internal voltage behind transient reactance
7. Check if $t>t c c$, if yes $k=k+1$ and go to step 4
8. Check if $j=0$, yes modify the network data and obtain a new reduced admittance matrix corresponding to post fault condition. Set $\mathbf{j}=\mathbf{j}+1$
9. Set $k=k+1$
10. Check if $k<K_{\text {max }}$, yes go to step 4
11. Then terminate the process

Questions

Part-A			
Q.No	Questions	Competence	BT Level
1.	Define power system stability	Remember	BTL 1
2.	State steady state stability.	Remember	BTL 1
3.	Define transient stability.	Remember	BTL 1
4.	State equal area criterion	Remember	BTL 1
5.	Define power angle.	Remember	BTL 1
6.	Define critical clearing time.	Remember	BTL 1
7.	Define critical clearing angle.	Remember	BTL 1
8.	Recall the expression for swing equation.	Remember	BTL 1
9.	List the assumptions made to solve the swing equation	Remember	BTL 1
10.	List the methods of improving the transient stability limit of a power system	Remember	BTL 1
Part-B			
Q.No	Questions	Competence	BT Level
1.	Derive an expression for multi machine Stability Using swing Equation.	Evaluate	BTL5
2.	Derive an expression for Equal Area Criterion.	Evaluate	BTL5
3.	A 3 phase, $50 \mathrm{~Hz}, 50 \mathrm{MVA}$. Synchronous generator with 4.5 MJ/MVA in steady state input 0.7 p.u. Displacement angle 30 degree with respect to infinite bus. Consequent upon the occurrence of a fault. The output power angle relation is given by $\mathrm{Pe}=\sin \delta$. Assume input power remains constant. Determine and draw swing curve by step by step method, taking time interval of $\Delta t=0.05 \mathrm{~s}$ and $\mathrm{t}=1.2 \mathrm{sec}$.	Create	BTL6
4.	Derive an expression for critical clearing angle and critical clearing time.	Evaluate	BTL5
5.	Explain multi machine stability analysis using Runge Kutta method.	Evaluate	BTL5

6.	Explain the algorithm for numerical solution of swing equation by using modified Eulers method.	Evaluate	BTL5
7.	A synchronous motor having a steady state stability limit of 200 MW is receiving 50 MW from the infinite bus bars. Find the maximum additional load that can be applied without causing instability.	Create	BTL6

References :

1. John J. Grainger and Stevenson Jr. W.D., "Power System Analysis", Tata McGraw Hill, 2017.
2. Kothari .D.P and Nagarath.I.J., "Power system Engineering", 2nd Edition, Tata McGraw Hill, 2011.
3. Pai. M.A," Computer Techniques in Power System Analysis", Tata McGraw-Hill Publishing Company Limited, New Delhi, 2006.
4. Nagarath, I.J. and Kothari, D.P., "Modern Power System Analysis", 4th Edition, Tata McGraw Hill Publishing Company, 2011.
5. Hadi Saadat, "Power system Analysis", Tata McGraw Hill Publishing Company, 3rd Edition, 2011.
