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NETWORK THEOREMS 
 

 

Superposition Theorem - Reciprocity Theorem - Thevenin’s Theorem - Norton’s Theorem - 
Maximum power transfer Theorem. 

 
1.1 SUPERPOSITION THEOREM 

The superposition theorem states that in any linear network containing two or 

more sources, the response in any element is equal to the algebraic sum of the responses 

caused by individual sources acting alone, while the other sources are non-operative; 

that is, while considering the effect of individual sources, other ideal voltage sources 

and ideal current sources in the network are replaced by short circuit and open circuit 

across their terminals.  This theorem is valid only for linear systems. This theorem can 

be better understood with a numerical example. 

 

Consider the circuit which contains two sources as shown in Fig. 1. 

 

Now let us find the current passing through the 3 V resistors in the circuit. According to 

the superposition theorem, the current I2 due to the 20 V voltage source with 5 A source 

open circuited = 20/(5 + 3) = 2.5 A 

Figure 1 : Superposition theorem 

 

The current I5 due to the 5 A source with the 20 V source short circuited is 

The total current passing through the 3 V 

resistor is 

(2.5 + 3.125) = 5.625 A 

Let us verify the above result by applying nodal 

analysis. 

 

Figure 2: Superposition theorem 



  

 
The current passing in the 3 V resistor due to both sources should be 5.625 A. 
Applying nodal analysis to Fig. 2, we have 

 
The current passing through the 3 V resistor is equal to V/3, 

i.e. I = 16.875/3=5.625 A 
So the superposition theorem is verified. 
Let us now examine the power responses. 
Power dissipated in the 3 V resistor due to the voltage source acting alone 

 
Power dissipated in the 3 V resistor due to the current source acting alone 

 
Power dissipated in the 3V resistor when both the sources are acting simultaneously is given 
by 

 
From the above results, the superposition of P20 and P5 gives 

 
which is not equal to P = 94.92 W 
We can, therefore, state that the superposition theorem is not valid for power responses. It is 
applicable only for computing voltage and current responses. 
 
Example 1: Find the voltage across the 2 V resistor in Fig. 3 by using the superposition 
theorem. 
 

 
Figure 3 

 
Solution  
Let us find the voltage across the 2 V resistor due to individual sources. The algebraic sum of 
these voltages gives the total voltage across the 2 V resistor. 
 
Our first step is to find the voltage across the 2 V resistor due to the 10 V source, while other 
sources are set equal to zero. 
 
The circuit is redrawn as shown in Fig. 4 



  

 
Figure 4 

 
Assuming a voltage V at the node ‘A’ as shown in Fig. 4, the current equation is 
 

 
The voltage across the 2 V resistor due to the 10 V source is 

 
Our second step is to find out the voltage across the 2 V resistor due to the 20 V source, while 
the other sources are set equal to zero. The circuit is redrawn as shown in Fig. 4. 
 
Assuming voltage V at the node A as shown in Fig. 4, the current equation is 

 
The voltage across the 2 V resistor due to the 20 V source is 

 

 
Figure 5 

The last step is to find the voltage across the 2 V resistor due to the 2 A current source, while 
the other sources are set equal to zero. The circuit is redrawn as shown in Fig. 5 



  

 
 
The voltage across the 2 V resistor = 0.73 x 2 = 1.46 V 
The algebraic sum of these voltages gives the total voltage across the 2 V resistor in the 
network 
V = 0.97 – 2.92 – 1.46 5 = - 3.41 V 
The negative sign of the voltage indicates that the voltage at ‘A’ is negative 
 
Example2: 
Determine the voltage across the (2 + j5) V impedance as shown in Fig below by using 
the superposition theorem. 

 
Solution According to the superposition theorem, the current due to the 50 ∠0° V voltage 
source is I1 as shown in Fig below with current source 20 ∠30° A open-circuited. 

 

 



  

 

 

 
 
2.2 THEVENIN’S THEOREM 

In many practical applications, it is always not necessary to analyse the complete  
circuit; it requires that the voltage, current, or power in only one resistance of a  circuit be 
found. The use of this theorem provides a simple, equivalent circuit  which can be substituted 
for the original network. Thevenin’s theorem states  that any two terminal linear network 
having a number of voltage current sources  and resistances can be replaced by a simple 
equivalent circuit consisting of a single voltage source in series with  a resistance, where the 
value of the voltage source is equal to the open-circuit voltage across the two terminals  of 
the network, and resistance is equal to the equivalent resistance measured between the 
terminals with all the  energy sources are replaced by their internal resistances. According to 
Thevenin’s theorem, an equivalent circuit  can be found to replace the circuit in Fig. 6 

 
Figure 6 



  

 
In the circuit, if the 24 V load resistance is connected to  Thevenin’s equivalent circuit, it will 
have the same current through  it and the same voltage across its terminals as it experienced 
in  the original circuit. To verify this, let us find the current passing  through the 24 V 
resistance due to the original circuit. 

 
The voltage across the 24 V resistor = 0.33 x 24 = 7.92 V.  
Now let us find Thevenin’s equivalent circuit. 
The Thevenin voltage is equal to the open-circuit voltage across the terminals ‘AB’, i.e. the 
voltage across the 12 V resistor. When the load resistance is disconnected from the circuit, 
the Thevenin voltage 

 
The resistance into the open-circuit terminals is equal to the Thevenin resistance 

 

 
Figure 7 

Thevenin’s equivalent circuit is shown in Fig. 7. Now let us find the current passing through 
the 24 V resistance  and voltage across it due to Thevenin’s equivalent circuit. Fig. 7 

 
The voltage across the 24 V resistance is equal to 7.92 V. Thus, it is proved that RL (5 24 V) 
has the same values of current and voltage in both the original circuit and Thevenin’s 
equivalent circuit. 
 
 
  



  

Example : Determine the Thevenin’s equivalent circuit across ‘AB’ for the given circuit 
shown in Fig. 8 

 
Figure 8 

Solution The complete circuit can be replaced by a voltage source in series with a resistance 
as shown in Fig. 9 
where  VTh is the voltage across terminals AB, and 

RTh is the resistance seen into the terminals AB. 
 
To solve for VTh, we have to find the voltage drops around the closed path as shown in Fig. 
9 

 
Figure 9 

 

 
Figure 10 

To find RTh, the two voltage sources are removed and replaced with short circuit. The 
resistance at terminals AB then is the parallel combination of the 10 V resistor and 5 V 
resistor; or 

 
Thevenin’s equivalent circuit is shown in Fig. 9 



  

 
Example 2: For the circuit shown in Fig. 7.22, determine Thèvenin’s equivalent between 
the output terminals. 
Solution The Thèvenin voltage, VTh, is equal to the voltage across the (4 + j6) V impedance. 
The voltage across (4 + j6) V is 

 

 
The impedance seen from terminals A and B is 

 

 
The Thèvenin equivalent circuit is shown in Fig above. 
 
 
  



  

2.3 NORTON’S THEOREM 
 
Another method of analysing the circuit is given by Norton’s theorem, which states that any 
two terminal linear network with current sources, voltage sources and resistances can be 
replaced by an equivalent circuit consisting of a current source in parallel with a resistance. 
The value of the current source is the short-circuit current between the two terminals of the 
network and the resistance is the equivalent resistance measured between the terminals of the 
network with all the energy sources are replaced by their internal resistance. 
 
According to Norton’s theorem, an equivalent circuit can be found to replace the circuit in 
Fig. 11 
In the circuit, if the load resistance of 6 V is connected to Norton’s equivalent circuit, it will 
have the same current through it and the same voltage across its terminals as it experiences in 
the original circuit. To verify this, let us find the current passing through the 6 V resistor due 
to the original circuit  
 

 
Figure 11 

 
i.e. the voltage across the 6 V resistor is 8.58 V. Now let us find Norton’s equivalent circuit. 
The magnitude of the current in the Norton’s equivalent circuit is equal to the current passing 
through short-circuited terminals as shown in Fig. 12 

 
Norton’s resistance is equal to the parallel combination of both the 5 V and 10 V resistors 

 

 
Figure 12 



  

 
The Norton’s equivalent source is shown in Fig. 12. 
Now let us find the current passing through the 6 V resistor and the voltage across it due to 
Norton’s equivalent circuit 

 
The voltage across the 6 Ω resistor = 1.43 x 6 = 8.58 V 
Thus, it is proved that RL (= 6 Ω) has the same values of current and voltage in both the 
original circuit and Norton’s equivalent circuit. 
 
Example Determine Norton’s equivalent circuit at terminals AB for the circuit shown in 
Fig. 13 
 
Solution The complete circuit can be replaced by a current source in parallel with a single 
resistor as shown in Fig. 14, where IN is the current passing through the short circuited 
output terminals AB and RN is the resistance as seen into the output terminals. 
 
To solve for IN, we have to find the current passing through the terminals AB as shown in 
Fig. 14 
  
From Fig. 14, the current passing through the terminals AB is 4 A. The resistance at terminals 
AB is the parallel combination of the 10 V resistor and the 5 V resistor 
Norton’s equivalent circuit is shown in Fig. 14 

 
Figure 13 

 

 
Figure 14 

  



  

Example 2: For the circuit shown in Fig below, determine Norton’s equivalent circuit 
between the output terminals, AB 

 
Solution Norton’s current IN is equal to the current passing through the short-circuited 
terminals AB as shown in Fig. below 

 
The current through terminals AB is 

 
The impedance seen from terminals AB is 

 

 
Norton’s equivalent circuit is shown in Fig above. 
 
 
2.4 RECIPROCITY THEOREM 
 
In any linear bilateral network, if a single voltage source Va in branch ‘a’ produces a current 
Ib in branch ‘b’, then if the voltage source Va is removed and inserted in branch ‘b’ will 
produce a current Ib in branch ‘a’. The ratio of response to excitation is same for the two 
conditions mentioned above. This is called the reciprocity theorem. 
 



  

Consider the network shown in Fig. 15. AA’ denotes input terminals and BB9 denotes output 
terminals. 

 
Figure 15 

The application of voltage V across AA’ produces current I at BB’. Now if the positions of 
the source and responses are interchanged, by connecting the voltage source across BB9, the 
resultant current I will be at terminals AA’. According to the reciprocity theorem, the ratio of 
response to excitation is the same in both cases. 
 
Example Verify the reciprocity theorem for the network shown in Fig. 16 

 
Figure 16 

Solution Total resistance in the circuit = 2 + [3 || (2 + 2 || 2)] = 3.5 Ω 
The current drawn by the circuit (See Fig. 17 (a)) 

 
The current in the 2 V branch cd is I = 1.43 A. 

 
Figure 17 (a) 

Applying the reciprocity theorem, by interchanging the source and response, we get Fig. 17 
(b). 

 
Figure 17 (b) 



  

 
Total resistance in the circuit = 3.23 V. 
Total current drawn by the circuit= = 20/3.23 = 6.19 A 
The current in the branch ab is I = 1.43 A 
If we compare the results in both cases, the ratio of input to response is the same, i.e. 
(20/1.43) = 13.99 
 
2.5 MAXIMUM POWER TRANSFER THEOREM 
Many circuits basically consist of sources, supplying voltage, current, or power to the load; 
for example, a radio speaker system, or a microphone supplying the input signals to voltage 
pre-amplifiers. Sometimes it is necessary to transfer maximum voltage, current or power 
from the source to the load. In the simple resistive circuit shown in Fig. 18, Rs is the source 
resistance. Our aim is to find the necessary conditions so that the power delivered by the 
source to the load is maximum 
 
It is a fact that more voltage is delivered to the load when the load resistance is high as 
compared to the resistance of the source. On the other hand, maximum current is transferred 
to the load when the load resistance is small compared to the source resistance. 
 
For many applications, an important consideration is the maximum power transfer to the 
load; for example, maximum power transfer is desirable from the output amplifier to the 
speaker of an audio sound system. The maximum power transfer theorem states that 
maximum power is delivered from a source to a load when the load resistance is equal to the 
source resistance. In Fig. 18, assume that the load resistance is variable. 
 
Current in the circuit is I = VS /(RS + RL) 
 
Power delivered to the load RL is P = I2RL = V2 S RL / (RS + RL)2 
 
To determine the value of RL for maximum power to be transferred to the load, we have to 
set the first derivative of the above equation with respect to RL, i.e. when dP/dRL equals zero. 

 
Figure 18 



  

 
So, maximum power will be transferred to the load when load resistance is equal to the 
source resistance 
 
Example In the circuit shown in Fig. 19, determine the value of load resistance when the 
load resistance draws maximum power. Also find the value of the maximum power 

 
Figure 19 

 
Solution In Fig. 19, the source delivers the maximum power when load resistance is equal to 
the source resistance. 
RL = 25 V 
The current I = 50/(25 + RL) = 50/50 = 1 A 
The maximum power delivered to the load P = I2RL= 1 x 25= 25 W 
 
Example 2: Determine the maximum power delivered to the load in the circuit shown in 
Fig below 
 

 
Solution The circuit is replaced by Thèvenin’s equivalent circuit in series with ZL as shown 
in Fig. below 

 



  

 

 
To get the maximum power delivered to the load impedance, the load impedance must be 
equal to complex conjugate of source impedance. Therefore, the total impedance in the 
circuit shown in Fig. 7.44 is 8 Ω. The current in the circuit is 
 

 
The maximum power transferred to the load is 
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UNIT – II – NETWORK FUNCTIONS AND ITS PARAMETERS 



Two-Port Networks

In a two-terminal network, the terminal voltage is related to the terminal current by the impedance Z = V/I.
In a four-terminal network, if each terminal pair (or port) is connected separately to another circuit as in 

These two equations, plus the terminal characteristics of the connected circuits, provide the necessary and 
sufficient number of equations to solve for the four variables.

The terminal characteristics of a two-port network, having linear elements and dependent sources, may be 
written in the s-domain as

V Z I Z I

V Z I Z I

1 11

21 1 22 2

= +

= +

1 12 2

2

(1)

The coefficients Zij have the dimension of impedance and are called the Z-parameters of the network. The 
Z-parameters are also called open-circuit impedance parameters since they may be measured at one terminal 
while the other terminal is open. They are
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Fig. 4-1, the four variables i , i , u , and u  are related by two equations called the terminal characteristics.

    UNIT 4

Fig. 2-1

2.1   Terminals and Ports

2.2  Z-Parameters



	
V I s I I s I sI

V I s I I

1 1 1 2 1 2

2 2 1 2
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= + + = + +

= + + =
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By comparing (1) and (3), the Z-parameters of the circuit are found to be

	

Z s

Z Z s

Z s
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= =

= +

21 	 (4)

Note that in this example Z12 = Z21.

Reciprocal and Nonreciprocal Networks
A two-port network is called reciprocal if the open-circuit transfer impedances are equal: Z12 = Z21. Conse-
quently, in a reciprocal two-port network with current I feeding one port, the open-circuit voltage measured 
at the other port is the same, irrespective of the ports. The voltage is equal to V = Z12I = Z21I. Networks 
containing resistors, inductors, and capacitors are generally reciprocal. Networks that additionally have 

Z-parameters.
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EXAMPLE 4.2  The two-port circuit shown in Fig. 4-3 contains a current-dependent voltage source. Find its

As in Example 4.1, we apply Kirchhoff’s Voltage Law (KVL) around the two loops:

Fig. 4-3

4dependent sources are generally nonreciprocal (see Example 4.2).

Apply KVL around the two loops in Fig. 4-2 with loop currents I  and I  to obtain

Type your text

EXAMPLE 2.1  Find the Z-parameters of the two-port circuit in Fig. 2-2.

Fig. 2-2



The Z-parameters are

Z s

Z s

Z s

Z s
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+

(5)

With the dependent source in the circuit, Z12 ≠ Z21 and so the two-port circuit is nonreciprocal.

are obtained from the Z-parameters as follows.
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(6)

The T-equivalent network is not necessarily realizable.

Again we apply KVL to obtain

V Z I Z I I Z Z I Z I

V Z I Z
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2 2
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a c a c c

b c
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(7)

By comparing (1) and (7) the Z-parameters are found to be

Z Z Z

Z Z Z

Z Z Z
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a c

c

b c

12 (8)

The terminal characteristics may also be written as in (9), where I1 and I2 are expressed in terms of V1 and V2.

I Y V Y V

I Y V Y V

1 1 2

2

= +

= +

11 12

2 21 1 22

(9)

The coefficients Yij have the dimension of admittance and are called the Y-parameters or short-circuit
admittance parameters because they may be measured at one port while the other port is short-circuited. 
The Y-parameters are
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Fig. 4-4

EXAMPLE 4.3  Find the Z-parameters of Fig. 4-4.

4A reciprocal network may be modeled by its T-equivalent as shown in the circuit of Fig. 4-4. Z , Z , and Z

4.3   T-Equivalent of Reciprocal Networks

4.4   Y-Parameters
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We apply Kirchhoff’s Current Law (KCL) to the input and output nodes (for convenience, we designate the admit-
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The node equations are

	
I V Y V V Y Y Y V Y V
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	 (12)
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EXAMPLE 4.4  Find the Y-parameters of the circuit in Fig. 4-5.

Fig. 4-5

tances of the three branches of the circuit by Y , Y , and Y  as shown in Fig. 4-6). Thus,

Fig. 2-6



By comparing (9) with (12), we get
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Substituting Ya, Yb, and Yc from (11) into (13), we find
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Since Y12 = Y21, the two-port circuit is reciprocal.

(10) we have
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from which

Y Y Y Y Y Y Y Y Ya b c= + = + = − = −11 12 22 12 12 21  (16)

The Pi-equivalent network is not necessarily realizable.

The four terminal variables I1, I2, V1, and V2 in a two-port network are related by the two equations (1) or (9). By 

The four equations then can determine I1, I2, V1, and V2 without any knowledge of the inside structure of 
the circuit.
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[Fig. 4-7-(a)]

[Fig. 4- 7-(b)]

[Fig. 4- 7-(a)]

[Fig. 4-7-(b)]

A reciprocal network may be modeled by its Pi-equivalent as shown in Fig. 4-6. The three elements of the
Pi-equivalent network can be found by reverse solution. We first find the Y-parameters of Fig. 4-6. From

connecting the two-port circuit to the outside as shown in Fig. 4-1, two additional equations are obtained.

Fig. 2-7

2.5   Pi-Equivalent of Reciprocal Networks

2.6   Application of Terminal Characteristics



	 Z s s Z Z s Z s11 12 21 221/= + = = = +2 2 2 4 	

The terminal characteristics are given by
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The phasor representation of voltage us(t) is Vs = 12 V with s = j. From KVL around the input and output loops we 
obtain the two additional equations
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Substituting s = j and Vs = 12 in (17) and in (18) we get
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The Y-parameters may be obtained from the Z-parameters by solving (1) for I1 and I2. Applying Cramer’s 
rule to (1), we get
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EXAMPLE 4.5  The Z-parameters of a two-port network are given by

4The network is connected to a source and a load as shown in Fig. 4-8. Find I , I , V , and V .

Type your text

Fig. 2-8

2.7  Conversion between Z- and Y-Parameters



where DZZ = Z11Z22 − Z12Z21 is the determinant of the coefficient matrix in (1). By comparing (19) with (9) 
we have
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Given the Z-parameters, for the Y-parameters to exist, the determinant D
zz

must be nonzero. Conversely, 
given the Y-parameters, the Z-parameters are
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where D
yy

= y11y22 − y12y21 is the determinant of the coefficient matrix in (9). For the Z-parameters of a 
two-port circuit to be derived from its Y-parameters, D

yy
should be nonzero.

The Y-parameters of the circuit were found to be [see (14)]
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Substituting into (21), where DYY = 1/(5s + 6), we obtain
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Z-parameters given in (22) to obtain the T-equivalent network.

Some two-port circuits or electronic devices are best characterized by the following terminal equations:

V h I h V

I h I h V

1 11 1 12 2

2 21 1 22 2

= +

= +
(23)

where the hij coefficients are called the hybrid or h-parameters.
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EXAMPLE 4.6  Referring to Example 4.4, find the Z-parameters of the circuit of Fig. 4-5 from its Y-parameters.

The Z-parameters in (22) are identical to the Z-parameters of the circuit of Fig. 4-2. The two circuits
are equivalent as far as the terminals are concerned. This was by design. Figure 4-2 is the T-equivalent of
Fig. 4-5. The equivalence between Fig. 4-2 and Fig. 4-5 may be verified directly by applying (6) to the

2.8   h-Parameters



This is the simple model of a bipolar junction transistor in its linear region of operation. By inspection, the terminal 

	 V I I I1 1 2 1and= =50 300 	 (24)

By comparing (24) and (23) we get

	 h h h h11 12 21 22= = = =50 0 300 0	 (25)

The terminal characteristics of a two-port circuit may also be described by still another set of hybrid 
parameters as given in (26).

	
I g V g I

V g V g I

1 11 1 2

2 21 1 2

= +

= +

12

22

	 (26)

where the coefficients gij are called inverse hybrid or g-parameters.

This is the simple model of a field effect transistor in its linear region of operation. To find the g-parameters, we first 
derive the terminal equations by applying Kirchhoff’s laws at the terminals:

At the input terminal:	 V1 = 109 I1

At the output terminal:	 V2 = 10(I2 − 10−3 V1)

or	 I V V I V1 1 2 2 1= 10 and = 10 10− −−9 2 	 (27)

By comparing (27) and (26) we get

	 g g g g11 12 21 22= = = − =− −10 0 10 109 2 	 (28)
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EXAMPLE 4.7  Find the h-parameters of Fig. 4-9.

characteristics of Fig. 4-9 are

Fig. 4-9

EXAMPLE 4.8  Find the g-parameters in the circuit shown in Fig. 4-10.

Fig. 4-10

4.9   g-Parameters



The transmission parameters A, B, C, and D express the required source variables V1 and I1 in terms of the 
existing destination variables V2 and I2. They are called ABCD or T-parameters and are defined by
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This is the simple lumped model of an incremental segment of a transmission line. From (29) we have

A
V
V

Z Z
Z Z Y

B
V
I Z

C
I

I

V

= =
+

= +

= − =

=

=

=

1

2 0

1

2 0

1

1

2

2

a b

b
a b

a

VVV Y

D
I
I

I

V

2 0

1

2 0

1

2

2

=

=

=

= − =

b

(30)

Two-port networks may be interconnected in various configurations, such as series, parallel, or cascade 
connections, resulting in new two-port networks. For each configuration, a certain set of parameters may be 
more useful than others to describe the network.

Series Connection

parameters Za and Zb, respectively. In this configuration, we use the Z-parameters since they are combined as 
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EXAMPLE 4.9  Find the T-parameters of Fig. 4-11 where Z  and Z  are nonzero.

Fig. 4-11

Fig. 4-12

Figure 4-12 shows a series connection of two two-port networks a and b with open-circuit impedance

a series connection of two impedances. The Z-parameters of the series connection are (see Problem 4.10):

4.11   Interconnecting Two-Port Networks

2.10   Transmission Parameters



	

Z Z Z

Z Z Z

Z Z Z

11 11, 11,

12 12, 12,

21 21, 21

= +

= +

= +

a b

a b

a ,,

22 22, 22,

b

a bZ Z Z= +

	 (31a)

or, in the matrix form,

	 [ ] [ ] [ ]Z Z Z= a b+ 	 (31b)

Parallel Connection

parameters Ya and Yb, respectively. In this case, the Y-parameters are convenient to work with. The Y-parameters 

	

Y Y Y

Y Y Y

Y Y Y

11 11, 11,

12 12, 12,

21 21, 21

= +

= +

= +

a b

a b

a ,,

22 22, 22,

b

a bY Y Y= +

	 (32a)

or, in matrix form,

	 [ ] [ ] [ ]Y Y Y= +a b 	 (32b)

Cascade Connection

are particularly convenient. The T-parameters of the cascade combination are

	

A A A B C

B A B B D

C C A D C

D C B D D

= +

= +

= +

= +

a b a b

a b a b

a b a b

a b a bb

	 (33a)
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Fig. 4-13

Fig. 4-14

Figure 4-13 shows a parallel connection of the two-port networks a and b with short-circuit admittance

of the parallel connection are (see Problem 4.11):

The cascade connection of the two-port networks a and b is shown in Fig. 4-14. In this case the T-parameters



or, in matrix form,

[ ] [ ][ ]T T T= a b (33b)

What types of parameters are appropriate for and can best describe a given two-port network or device? 
Several factors influence the choice of parameters. (1) It is possible that some types of parameters do not 

converting the two-port network to its T- and Pi-equivalents and then applying the familiar analysis tech-
niques, such as element reduction and current division, we can greatly reduce and simplify the overall circuit. 
(3) For some networks or devices, a certain type of parameter produces better computational accuracy and 
better sensitivity when used within the interconnected circuit.

We apply KVL to the input and output loops. Thus,

Input loop: V I I I1 1 1 23 3= + +( )

Output loop: V I I I I2 1 2 1 27 2 3= + + +( )

or V I I V I I1 1 2 2 1 26 3 10 5= + = +and (34)

By comparing (34) and (2) we get

Z Z Z Z11 12 21 226 3 10 5= = = =

The Y-parameters are, however, not defined, since the application of the direct method of (10) or the conversion from 
Z-parameters (19) produces Dzz = 6(5) − 3(10) = 0.

The various terminal parameters are defined by the following equations:

Z-parameters h-parameters T-parameters
V Z I Z I V h I h V V AV BI

V Z

1 11 1 12 2 1 11 1 12 2 1 2 2

2 2

= + = + = −

= 111 1 22 2 2 21 1 22 2 1 2 2I Z I I h I h V I CV DI

V Z I

+ = + = −

=[ ] [ ][ ]]]

Y-parameters g-parameters
I Y V Y V I g V g I
I Y V Y V V

1 11 1 12 2 1 11 1 12 2

2 21 1 22 2

= + = +
= + 222 21 1 22 2= +
=

g V g I
I Y V[ ] [ ][ ]
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EXAMPLE 4.10  Find the Z- and Y-parameters of Fig. 4-15.

Fig. 4-15

exist as they may not be defined at all (see Example 4.10). (2) Some parameters are more convenient to
work with when the network is connected to other networks, as shown in Section 4.11. In this regard, by

4.12   Choice of Parameter Type

4.13   Summary of Terminal Parameters and Conversion

Type your text



to be possible, the determinant of the source parameters must be nonzero.

Z Y h g T

Z

Z Z

Z Z

11 12

21 22

Y
D

Y
D

Y
D

Y
D

YY YY

YY YY

22 12

21 11

−

−

D
h

h
h

h
h h

hh

22

12

22

21

22 22

1−

1

11

12

11

21

11 11

g
g

g

g
g

D
g

gg

− A
C

D
C

C
D
C

TT

1

Y

Z
D

Z
D

Z
D

Z
D

zz zz

zz zz

22 12

21 11

−

−

Y Y

Y Y

11 12

21 22

1

11

12

11

21

11 11

h
h

h

h
h

D
h

nn

−

−

D
g

g
g

g
g g

gg

22

12

22

21

22 22

1−

D
B

D
B

B
A
B

−

−

TT

1
 

h

D
Z

Z
Z

Z
Z Z

ZZ

22

12

22

21

22 22

1−

1

11

12

11

21

11 11

Y
Y

Y

Y
Y

D
Y

−

yy

h h

h h

11 12

21 22

g
D

g
D

g
D

g
D

22 12

21 11

gg gg

gg gg

B
D

D
D

D
C
D

TT

−1

 

g

1

11

12

11

21

11 11

Z
Z

Z

Z
Z

D
Z

ZZ

− D
Y

Y
Y

Y
Y Y

YY

22

12

22

21

22 22

1−

h
D

h
D

h
D

h
D

hh hh

hh hh

22 12

21 11

−

−

g g

g g

11 12

21 22

C
A

D
A

A
B
A

− TT

1

 

T

Z
Z

D
Z

Z
Z
Z

ZZ11

21 21

21

22

21

1

− −

− −

Y
Y Y

D
Y

Y
Y

YY

22

21 21

21

11

21

1 − −

− −

D
h

h
h

h
h h

hh

21

11

21

21 21

22 1

1

21

22

21

11

21 21

g
g
g

g
g

D
g

gg

A B

C D

 

D P P P PPP = −11 1222 21  is the determinant of the coefficient matrix for the Z−, Y−, h−, g−, or T-parameters.

Solved Problems

The parallel and series combination of resistors produces

	 Z
V
I Z

V
I

I I
11

0
21

0

8
1
3= and =1

1

2

1= =
= =  

Similarly, Z22 and Z12 are obtained by connecting a source to port #2 and leaving port #1 open 

	 Z
V
I Z

V
I

I I
22

0
12

01 1

8
9

1
3= =2

2

1

2= =
= =  

The circuit is reciprocal, since Z12 = Z21.
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22

Table 4-1

Z  and Z  are obtained by connecting a source to port #1 and leaving port #2 open [Fig. 4-16(b)].

[Fig. 4-16(c)].

Table 4-1 summarizes the conversion between the Z-, Y-, h-, g-, and T-parameters. For the conversion

  4.1.  Find the Z-parameters of the circuit in Fig. 4-16(a).



Z s s Z Z s Z s11 12 21 222 1 2 2 4= + = = = +/

(a) Find the T-equivalent of N. (b) The network N is connected to a source and a load as shown in the 

Z Z Z s s s s

Z Z Z s s

Z

a

b

= − = + − =

= − = + − =

11 12

22 12

2
1

2
1

2 4 2 4

ccc = = =Z Z s12 21 2

(b)  The T-equivalent of N, along with its input and output connections, is shown in the phasor domain 
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Fig. 4-16

circuit of Fig. 4-8. Replace N by its T-equivalent and then solve for i , i , u , and u .

(a)  The three branches of the T-equivalent network (Fig. 4-4) are

in Fig. 4-17.

Fig. 4-17

4.2.  The Z-parameters of a two-port network N are given by



By applying the familiar analysis techniques, including element reduction and current division, to 

	    In the phasor domain	 In the time domain:

I

I

V

V

1

2

1

3 29 10 2

1 13 131 2

2 88 37 5

= −

= −

=

. .

. .

. .

/

/

/

�

�

�

22 1 6 93 8= . ./ �

        

i t

i t

1

2

1

3 29 10 2

1 13 131 2

2

= −

= −

=

. cos ( . )

. cos ( . )

�

�

υ .. cos ( . )

. cos ( . )

88 37 5

1 6 93 82

t

t

+

= +

�

�υ

	

KVL applied to the input and output ports results in the following:

Input port:	 V1 = 4I1 − 3I2 + (I1 + I2) = 5I1 − 2I2

Output port:	 V2 = I2 + (I1 + I2) = I1 + 2I2

By applying (1) to the above, Z11 = 5, Z12 = −2, Z21 = 1, and Z22 = 2.

	

KVL gives

	 V I I V I I1 1 2 2 1 25 2 2= − = +and  

The above equations are identical with the terminal characteristics obtained for the network of 
Fig. 13-18. Thus, the two networks are equivalent.

	 Z Z Z Z11 12 21 225 2 1 2= = − = =, , ,  

Ch13.indd   357 11/08/17   11:42 AM

Fig. 4-17 we find i , i , u , and u .

Fig. 4-18

Fig. 4-19

From Problem 4.4,

  4.3.  Find the Z-parameters of the two-port network in Fig. 4-18.

  4.4.  Find the Z-parameters of the two-port network in Fig. 4-19 and compare the results with those of
Problem 4.3.

  4.5.  Find the Y-parameters of Fig. 4-19 using its Z-parameters.



Since D Z Z Z ZZZ = − = − − =11 22 12 21 5 2 2 1 12( )( ) ( )( ) ,  

Y
Z
D Y

Z
D Y

Z

zz
11

22
12

12
21

212
12

1
6

2
12

1
6= = = =

−
= = =

−
zz DDD Y

Z
Dzz zz

= − = =1
12

5
1222

11  

Apply KCL at the ports to obtain the terminal characteristics and Y-parameters. Thus,

Input port: I
V V

1
1 2= 6 6+  

Output port: I
V V

2
2 1= 2.4 12−  

and Y Y Y Y11 12 21 22

1
6

1
6

1
12

1
2 4

5
12= = = − = =.  

which are identical with the Y-parameters obtained in Problem 13.5 for Fig. 13-19. Thus, the two networks 
are equivalent.

I Y V V Y

I Y V

V1 11 1 0 11

1 12

2

1
12

1
12

1
6

= = +








 =

=

= 1
or

222 0
2 2

12

2 2

1 4 12
1
4

1
12

1
6V

V V
V Y

I Y

=
= − = −









 =

=

2
or

111 1 0
1

21

2 22 2 0
2 2

2

1

12
1

12

3

V
V

Y

I Y V
V V

V

V

=

=

= − = −

= = +

or

1112
1
3

1
12

5
1222

= +








 =V Y

2
or
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Fig. 4-20

Fig. 4-21

4.6.  Find the Y-parameters of the two-port network in Fig. 4-20 and thus show that the networks of
Figs. 4-19 and 4-20 are equivalent.

4.7. Apply the short-circuit equations (10) to find the Y-parameters of the two-port network in
Fig. 4-21.



Input node:	 I
V V V V

1 = +
−

+1 1 2 2
12 12 4  

Output node:	 I
V V V

2 = +
−2 2 1

3 12  

	 I V V I V V1 1 2 2 1 2= + = − +1
6

1
6

1
12

5
12  

The Y-parameters observed from the above characteristic equations are identical with the Y-parameters of 

(a) Replace N by its T-equivalent. (b) Use part (a) to find input current i1 for us = cos 1000t (V).

(a) � The network is reciprocal. Therefore, its T-equivalent exists. Its elements are found from (6) and 
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Fig. 4.22

  4.8.  Apply  KCL  at  the  nodes  of  the  network  in  Fig.  4.21  to  obtain  its  terminal  characteristics  and
Y-parameters. Show that the two-port networks of Figs. 4.18 to 4.21 are all equivalent.

the circuits in Figs. 4.18, 4.19, and 4.20. Therefore, the four circuits are equivalent.

  4.9.  Z-parameters of the two-port network N in Fig. 4.22(a) are Z = 4s, Z =Z = 3s, and Z = 9s.

shown in the circuit of Fig. 4.22(b).



Z Z Z s s s

Z Z Z s s s

Z Z

a

b

c

= − = − =

= − = − =

=

11 12

22 21

12

4 3

9 3 6

=== =Z s21 3

and s in krad/s, to find Zin in kΩ:

Z s V I s
s s

s s Zin in) / or(
( )( )= = + + +

+ = +s 1

3 6 6 12
9 18 3 4 ((( ) .j j= + =3 4 5 36 9/ � kΩ  

and i1 = 0.2 cos(1000t − 36.9°) (mA).

From network a we have

V Z I Z I

V Z I Z I

1 11 12

2 21 22

a a a a a

a a a a a

= +

= +

, ,

, ,

1 2

1 2

From network b we have

V Z I Z I

V Z I Z I

1 11 12

2 21 22

b b b b b

b b b b b

= +

= +

, ,

, ,

1 2

1 2

From the connection between a and b we have

I I I V V V

I I I V V V

1 1

2 2

= = = +

= = = +

1 1 1 1

2 2 2 2

a b a b

a b a b

Therefore,

V Z Z I Z Z I

V Z

1 11 11 12 12

2 21

= + + +

=

( ) ( )

(

, , , ,

,

a b a b

a

1 2

+++ + +Z I Z Z I21 22 22, , ,) ( )b a b1 2

from which the Z-parameters (31a) are derived.

13.11. Two two-port networks a and b, with short-circuit admittances Ya and Yb, respectively, are connected 

From network a we have

I Y V Y V

I Y V Y V

1 11 1 12 2

2 21 1 22 2

a a a a a

a a a a a

= +

= +

, ,

, ,

and from network b we have

I Y V Y V

I Y V Y V

1 11 1 12 2

2 21 1 22 2

b b b b b

b b b b b

= +

= +

, ,

, ,

From the connection between a and b we have

V V V I I I

V V V I I I

1 1

2 2

= = = +

= = = +

1 1 1 1

2 2 2 2

a b a b

a b a b
Therefore,

I Y Y V Y Y V

I Y

1 1 2

2 21

= + + +

=

( ) ( )

( ,

11, 11, 12, 12,a b a b

a +++ + +Y V Y Y V21, 22,b a b) ( ),1 22 2

from which the Y-parameters of (32a) result.
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(b)   We repeatedly combine the series and parallel elements of Fig. 4.22(b), with resistors being in kΩ

4.10.  Two two-port networks a and b, with open-circuit impedances Z  and Z , respectively, are connected
in series (see Fig. 4.12). Derive the Z-parameter equations (31a).

in parallel (see Fig. 4.13). Derive the Y-parameter equations (32a).



positive-valued resistors and one dependent voltage source.

	

(a) � From application of KVL around the input and output loops we find, respectively,

 
V I I I I I

V I I I I

1 1 2 1 2 1

2 2 1 2 1

2 2 2 4

3 2 2

= − + + =

= + + = +

( )

( ) 55 2I
 

The Z-parameters are Z11 = 4, Z12 = 0, Z21 = 2, and Z22 = 5.

equivalent model which uses two positive-valued resistors and one dependent current source.

(a)  From Problem 13.12, Z11 = 4, Z12 = 0, Z21 = 2, Z22 = 5, and so DZZ = Z11Z22 − Z12Z21 = 20. Hence,

                  Y
Z
D Y

Z
D Y

Z
DZZ ZZ ZZ

11
22

12
12

21
215

20
1
4 0= = = =

−
= =

−
= −22

20
1

10
4

20
1
522

11= − = = =Y
Z
DZZ

 

(b) � Figure 13-24, with two resistors and a current source, has the same Y-parameters as the circuit in 
Fig.13-23(a). This can be verified by applying KCL to the input and output nodes.

The Norton equivalent current source is IN = 2I1/5 = 0.4I1. But I1 = V1/4. Therefore, IN = 0.4I1 = 0.1V1. 
The 5-Ω resistor is then placed in parallel with IN . The circuit is shown in Fig. 13-25 which is the same 
as the circuit in Fig. 13-24.
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Fig. 4.23

Fig. 4.24 Fig. 4.25

13.12.  Find (a) the Z-parameters of the circuit of Fig. 4.23(a) and (b) an equivalent model which uses three

(b)    The circuit of Fig. 4.23(b), with two resistors and a voltage source, has the same Z-parameters as the
circuit of Fig. 4.23(a). This can be verified by applying KVL around its input and output loops.

4.13.  (a)  Obtain  the  Y-parameters  of  the  circuit  in  Fig.  13-23(a)  from  its  Z-parameters.  (b)  Find  an

4.14.  Referring to the network of Fig. 4.23(b), convert the voltage source and its series resistor to its
Norton equivalent and show that the resulting network is identical to that in Fig. 4.24.



network in Fig. 13-26 where h11 is an impedance, h12 is a voltage gain, h21 is a current gain, and h22
is an admittance.

Apply KVL around the input loop to get

V h I h V1 11 1 12 2= +

Apply KCL at the output node to get

I h I h V2 21 1 22 2= +

These results agree with the definition of h-parameters given in (23).

h h h h11 12 21 22
14 0 0 4 1 5 0 2= = = − = = −Ω Ω, , . , ./  

of the Z-parameters to the h-parameters of the circuit. Thus,

h
D
Z h

Z
Z h

Z
Z

ZZ
11

22
12

12

22
21

21

22

20
5 4 0

2
5= = = = = =

−
= − === − = = =0 4

1 1
5 0 222

22
. .h Z  

Find its h-parameters.

The terminal equations are V1 = 0 and I2 = bI1. By comparing these equations with (23), we conclude 
that h11 = h12 = h22 = 0 and h21 = b.
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Fig. 4.26

Fig. 4.27

4.15.  The h-parameters of a two-port network are given. Show that the network may be modeled by the

4.16.  Find the h-parameters of the circuit in Fig. 4.25.
By comparing the circuit in Fig. 4.25 with that in Fig. 4.26, we find

4.17.  Find the h-parameters of the circuit in Fig. 4.25 from its Z-parameters and compare with the results

Refer to Problem 4.13 for the values of the Z-parameters and D . Use Table 4.1 for the conversion

The above results agree with the results of Problem 4.16.

4.18. The simplified model of a bipolar junction transistor for small signals is shown in Fig. 4.27.

of Problem 4.16.



	 h h h h11 12
4

21 22
6 1500 10 100 2 10= = = =− − −Ω Ω( )  

Draw a circuit model of the device made of two resistors and two dependent sources. Include the values 
of each element.

	

	

	 I V V I V1 12000 1000 100 1000 100 2000= = − = −s s/ 2 ( ) ( / ) == −50 Vs  

Thus, V2/Vs = −50.
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Fig. 4.28

Fig. 4.29

4.19.  The h-parameters of a two-port device H are given by

From a comparison with Fig. 4.26, we draw the model of Fig. 4.28.

4.20.  The device H of Problem 4.19 is placed in the circuit of Fig. 4.29(a). Replace H by its model of

The circuit of Fig. 4.29(b) contains the model. With good approximation, we can reduce it to
Fig. 4.29(c) from which

Fig. 4.28 and find V /V.



are given by V1 = (1/N)V2 and I1 = −NI2. Find (a) the T-parameters of N and (b) the input impedance 
Zin = V1/I1.

(a) The T-parameters are defined by [see (29)]

V AV BI

I CV DI

1 2 2

1 2 2

= −

= −

The terminal characteristics of the device are

V V

I I

1 2

1 2

1=

= −

( )/N

N

By comparing the two pairs of equations we get A = 1/N, B = 0, C = 0, and D = N.

(b)  Three equations relating V1, I1, V2, and I2 are available: two equations are given by the terminal 
characteristics of the device and the third equation comes from the connection to the load,

V Z I2 2= − L  

By eliminating V2 and I2 in these three equations, we get

V Z I Z V I Z1 1
2

1 1
2= = =L LN N/ / /from which in

lems

the input current i1 for us = cos 1000t (V) by using the open circuit impedance terminal characteristic equations 
of N, together with KCL equations at nodes A, B, and C.

Ans. i1 = 0.2 cos (1000t − 36.9°) (A)

Ans. h12 + h21 = 0, g12 + g21 = 0, and AD − BC = 1

Ans. A = 0.1, B = 0, C = 10−1/s, and D = 10

Ans. A = 0.1, B = 0, C = 10−7/s and D = 10. For high frequencies, the device is similar to the device of 
Problem 13.21, with N = 10.
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Fig. 4.30

4.22. The Z-parameters of the two-port network N in Fig. 4.22(a) are Z = 4s, Z =Z = 3s, and Z = 9s. Find

4.23. Express the reciprocity criteria in terms of h-, g-, and T-parameters.

4.24. Find the T-parameters of a two-port device whose Z-parameters are Z =s, Z =Z = 10s, and Z = 100s.

4.25. Find the T-parameters of a two-port device whose Z-parameters are Z = 10 s, Z =Z =

4.21.  A load Z  is connected to the output of a two-port device N (Fig. 13-30) whose terminal characteristics

 10 s, and Z = 10 s.
Compare with the results of Problem 4.21.



 = ks, Z12 = Z21 = 10ks, and Z22 

equivalent circuit. (b) Give the values of the elements for k = 1 and 10 .

	 Ans.  (a) Z
s

s sin /= + = +
k

k k1 100
1

100 1

	 The equivalent circuit is a parallel RL circuit with R = 10−2 Ω and L = 1 kH.

	 (b)  For k = 1, R = Ω1
100  and L = 1 H. For k = 106, R = Ω1

100  and L = 106 H.

  
Z Z Z Z Z12 21 11 22 11= = = N . Find Zin = V1/I1 when a load ZL is connected to the output terminal. Show

	 that if Z Z11
2

 L N/  we have impedance scaling such that Zin = ZL/N2.

	 Ans.  Z
Z

Z Zin /
=

+
L

LN 2
11

. For Z Z Z Z
L L

N N

2
11

2, .
in

/=  

	 Ans.  Z11 = Z22 = s + 3 + 1/s, Z12 = Z21 = s + 1

	

	 Ans.  Y11 = Y22 = 9(s + 2)/16, Y12 = Y21 = −3(s + 2)/16

	

Given I2a = −I1b and V2a = V1b, find the T-parameters of the resulting two-port network.

	 Ans.  A = AaAb + BaCb, B = AaBb + BaDb, C = CaAb + DaCb, D = CaBb + DaDb
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4.26.  The Z-parameters of a two-port device N are Z = 100ks. A 1-Ω resistor is

4.27.  The   device   N   in   Fig.   4.30   is   specified   by   the   following   Z-parameters:  Z =N Z    and

4.28. Find the Z-parameters in the circuit of Fig. 4.31. Hint: Use the series connection rule.

Fig. 4.31

4.29. Find the Y-parameters in the circuit of Fig. 4.32. Hint: Use the parallel connection rule.

Fig. 4.32

4.30.  Two two-port networks a and b with transmission parameters T  and T  are connected in cascade (see Fig. 13-14).

connected across the output port (see Fig. 4.30). (a) Find the input impedance Z =V /I and construct its



Use the cascade connection rule.

Ans. A = 5j − 4, B = 4j + 2, C = 2j − 4, and D = j3, Z11 = 1.3 − 0.6j, Z22 = 0.3 − 0.6j, Z12 = Z21 = − 0.2 − 0.1j

Ans.  Z Z Z Z Z Z Z Z11 22 12 21

1
2

1
2= = + = = −( ), ( )b a b a

Ans. Z Z
Z Z Z

Z Z Z Z
Z

Z Z11 22 12 21

2
1
2

2 1
2= = + = = +

+b a b

a b

b

a

( )
,

bbb
 

at w = 1, 103, and 106 rad/s.

Ans.  A = 1 − 10−9 w2 + j10−9 w, B = 10−3 (1 + jw), C = 10−6 jw, and D = 1. At w = 1 rad/s, A = 1,   
B = 10−3 (1 + j), C = 10−6 j, and D = 1. At w  = 103 rad/s, A ≈ 1, B ≈ j, C = 10−3j, and D = 1. At w  = 106 rad/s, 
A ≈ −103 , B ≈ 103 j, C = j, and D = 1.
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4.31. Find the T- and Z-parameters of the network in Fig. 4.33. The impedances of the capacitors are given. Hint:

Fig. 4.33

4.32.  Find the Z-parameters of the two-port circuit of Fig. 4.34.

Fig. 4.34

4.33.  Find the Z-parameters of the two-port circuit of Fig. 4.35.

Fig. 4.35

4.34.  Referring to the two-port circuit of Fig. 4.36, find the T-parameters as a function of w and specify their values



	

step voltage u1 = u(t) produces i1 = e−tu(t) (µA) and u2 = (1 − e−t) u(t) (V). With port #2 short-circuited 
[Fig. 13-37(b)], a unit step voltage u1 = u(t) delivers a current i1 = 0.5(1 + e−2t)u(t) (µA). Find i2 and the 
T-equivalent network.    Ans.  i2 = 0.5(−1 + 

	

	 Ans.  I1 = 24 A, I2 = 1.5 A, and I3 = 6.5 A
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11 12 21 22 21 3

Fig. 4.36

4.35.  A two-port network contains resistors, capacitors, and inductors only. With port #2 open [Fig. 4.37(a)], a unit

Fig. 4.37

4.36.  The two-port network N in Fig. 4.38 is specified by Z = 2, Z =Z = 1, and Z = 4. Find I, I, and I.

Fig. 4.38

e )u(t) [see Fig. 4.37(c)]
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UNIT – III – TWO PORT NETWORK 



UNIT –III 

TWO PORT NETWORKS 
 

1. Asymmetrical Networks 

 
If a network is asymmetrical the input and output terminals cannot be interchanged 

without affecting the electrical properties of the network. In this situation the characteristic 

impedance has a different value when looking at either input or output. In this situation we 

have to introduce the concept of the image impedance. 

2.Image Impedance 

 
It is the impedance which when connected to the input and the output of the transducer 

makes both the impedances equal at the input and the output terminal. It is basically the 

concept which is used in the field of the network analysis and design and also in filter 

design methods. It applies to the seen impedance which is determined by looking through 

the ports of the network. 

The Two-port network shown in Fig.3.1 describes the concept of the image impedance in 

the better way. 

Fig.3.1 Two port network 

The impedance zi1 – when considered from the port 1 

Zi2 –image impedance when considered from the port 2 
 

The image impedance will not be equal until the network is the symmetrical network or 

anti-symmetrical with respect to the ports. 

 

 

 

1 



2 

 

Characteristic impedance 

The characteristics impedance also known as the surge impedance is usually considered in 

the case of the transmission line and is represented as Z0. The characteristics impedance is 

defined as the ratio of the amplitude of the voltage and the current taking the consideration 

of the single wave through the line. The surge impedance is usually allocated through the 

transmission line with its geometry and the material. It is to be noted that this impedance is 

independent of the line length.SI unit – ohm 

Iterative impedance 

It is defined as the particular value of the load impedance which has the ability to produce 

an input impedance with the value as same as the value of the load impedance. In the two 

ports system when it is connected at the one end then it produces equal impedance when 

looking at each other. 

Image transfer coefficient 

It is usually considered for the linear passive type of the two-port network, such network 

must be terminated with the image impedance of the network. Let 

V1 – voltage at the input terminal 

I1 – current at the input terminal 

I2 – current at the output terminal 

V2 – voltage at the input terminal 

Hence, the image transfer coefficient can be calculated as half the logarithm of the product 

of V1 andI1 divided by the product of the V2 and I2. 

 

Propagation constant 

This constant is usually considered for the wave and is defined as change in the phase angle 

with respect to the per unit change in the distance travelled by the wave. In other words we 

can say the rate of the change in the phase of wave with distance. This constant is 

represented by the term K. 
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Image Impedance for asymmetrical ‘T’ Network 

Let Zi1 & Zi2 be the image impedance of asymmetrical T network. 

 

Fig 2.2. Image Impedance of Asymmetrical T network 

From Fig 2.2. a 

Zi1 =(ZA+ZC)//(ZB+Zi2) 

By Simplifying 

Zi1(ZB+ZC)+Zi1Zi2-∑ZAZB-Zi2(ZA+ZC)=0----------------1 

From Fig 2.2.b 

Zi2= (ZA+Zi1)//ZC+ZB 

By Simplifying  

Zi2(ZA+ZC)+Zi1Zi2-∑ZAZB-Zi1(ZB+ZC)=0----------------2 

Add 1and 2 

Zi1Zi2=∑ZAZB----------------3 

Sub 1and 2 

Zi1/Zi2=ZA + ZC / ZB + ZC----------------4 

MULTIPLY 3 and 4 

Zi1 =
 

 

A C
A B

B C

Z Z
Z Z

Z Z

 
 




 
  
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Divide 3and 4 

Zi2=
 

 

B C
A B

A C

Z Z
Z Z

Z Z

 
 




 
    

 

Image Impedance for asymmetrical ‘π’ Network 

 

Fig.2.3 Image Impedance for asymmetrical ‘π’ Network 

From Fig 2.3.a 

Zi1 =ZC//Zi2+ ZA 

By Simplifying 

Zi1ZC+Zi1Zi2 -Zi2(ZA+ZC)- ZA ZC =0----------------1 

From Fig 2.3.b 

Zi2= (ZA+Zi1)// ZC. 

By Simplifying 

Zi2(ZA+ZC)+Zi1Zi2 -Zi1ZC- ZA ZC =0----------------2 

Add 1and 2 

Zi1Zi2=ZAZC----------------3 

Sub 1and 2 

Zi1/Zi2=ZA + ZC / ZC----------------4 

MULTIPLY 3 and 4 
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Zi1 = ) (A A CZ Z Z  

Divide 3and 4 

Zi2=
 

A
C

A C

Z
Z

Z Z
  

 

Iterative Impedance for asymmetrical ‘T’ Network 

 

Fig.2.4 Iterative Impedance Zt1 for asymmetrical ‘T’ Network  

Zt1 =  ZA+( ZB + Zt1)//ZC 

 
1

2(  ( ( ) ) ) 4

2

A B B A A B

t

Z Z Z Z Z Z
Z

   
  

 

 

 

 

Fig.2.5 Iterative Impedance Zt2 for asymmetrical ‘T’ Network 

Zt2=  ZA+( ZB + Zt2)//ZC 

2

2) ) 4( (( ) 

2

 A B A B A B

t

Z Z Z Z Z Z
Z

   



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Iterative Impedance for asymmetrical ‘π’ Network 

 

Fig.2.6 Iterative Impedance Zt1 for asymmetrical ‘π’ Network 

 

Zt1 =  ZA+ Zt1//ZC 

1

2 4

2

A A A c

t

Z Z Z Z
Z 

 
   

 

 

 

 

Fig.2.7 Iterative Impedance Zt2 for asymmetrical ‘π’ Network 

Zt2=  (ZA + Zt2)//ZC 

2

2

 4

2

A A A c

t

Z Z Z Z
Z

 
  
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Iterative Impedance in terms of ABCD parameter 

 

Fig.2.8 Iterative Impedance for Zi1 open 

 

V2=-I2Zi2 

Zi1=V1/I1 

CONSIDER LINEAR EQUATION FOR ABCD 

V1=AV2-BI2-------------------------  1 

I1=CV2-DI2-------------------------   2 

Divide Equation 1 by 2 

   

2
1

2

i
i

i

Z
Z

Z

A B

C D

 
  

 
------------------  3 

 

Fig.2.9 Iterative Impedance for Zi2 open 

Zi2=V1/I2 

V1=-I1Zi1 
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2
1

2

i
i

i

A B

C D

Z
Z

Z

 
 


 


 ------------------  4 

Rearranging Equation 3 & 4 

CZi1Zi2+DZi2=AZi2+B------------------   5 

-CZi1Zi2+DZi1-AZi2+B=0 ---------------- 6 

Adding equation 5 & 6 

1

2

i

i

Z

Z

A

D
 ---------------  7 

Subtracting equation 5 from 6 

1

2

i

i

Z

Z

B

C
 ----------------  8 

Multiply equation 7 and 8 

1iZ
AB

CD
  

Divide Equation 7 by8 

2iZ
DB

CA
  

 

Lattice and bridged network 

A network that is made up of four branches connected in series to form a mesh; two 

nonadjacent junction points serve as input terminals, and the remaining two junction 

points serve as output terminals. The lattice networks are being widely used in the areas 

like grid computing, sensor networks and in many more areas. The main points which 

highlights the lattice networks are 

1. Its optimal routing policies 
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2. limits on the capacities of its elements 

3. Its performance with the finite amount of the buffers 

A bridge-T network has a fourth branch connected between an input and an output 

terminal and across two branches of the network. 

 

Insertion Loss 

The insertion loss can be explained as the loss in load power because of the insertion of a 

particular component or device in a transmission system. It is represented in the ratio of 

the decibels of the power received at the side of the load before the insertion of the 

component to the power received at the load side after the insertion of the component or 

the device.  

 

 

LATTICE NETWORKS 

One of the common four-terminal two-port networks is the lattice, or bridge network, 

shown in Figure 2.10 (a). Lattice networks are used in filter sections and are also used as 

attenuators filter and attenuators. Lattice structures are sometimes used in preference to 

ladder structures in some special applications. Za and Zd are called the series arms; Z b and 

Z c are called the diagonal arms. The lattice network is redrawn as a bridge network as 

shown in Figure 2.10 (b). It can be observed that if Zd is zero, the lattice structure as shown 

in Figure 2.10 (c). 

Z-parameters, 

  

When 
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Fig.2.10 Lattice networks 

 

Therefore 

  

If the network is symmetric, then Za = Zd, Zb = Zc 

Therefore 

  

When I2 = 0, V2 is the voltage across 2-2  

  

Substituting the value of V 1 from Equation, we have 
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Therefore 

  

If the network is symmetric, Z a = Z d, Z b = Z c 

  

When the input port is open, I 1 = 0, 

  

The network can be redrawn as shown in Figure 2.11 
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Fig.2.11 Modified Lattice networks 

Substituting the value of V2 into V1, we get 

  

If the network is symmetric, Z a = Z d, Z b = Z c, 

  

Therefore 

  

We have 

  

If the network is symmetric, Z a = Z 
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π and T networks 

Transforming from π to T and vice versa 

Any pi network can be transformed to an equivalent T network. This is also known as the 

Wye-Delta transformation, which is the terminology used in power distribution and 

electrical engineering. The π is equivalent to the Delta and the T is equivalent to the Wye 

(or Star) form.  

  

  

                 Fig.2.12 π Network                          Fig.2.13 T Network 

The impedances of the π network (Za, Zb, and Zc) can be found from the impedances of 

the T network with the following equations: 

Za =  (  (Z1*Z2)+(Z1*Z3)+(Z2*Z3) ) / Z2  

Zb  = (  (Z1*Z2)+(Z1*Z3)+(Z2*Z3) ) / Z1  

Zc =  (  (Z1*Z2)+(Z1*Z3)+(Z2*Z3) ) / Z3 

Note the common numerator in all these expressions which can prove useful in reducing 

the amount of computation necessary. 

The impedances of the T network (Z1, Z2, Z3) can be found from the impedances of the 

equivalent pi network with the following equations: 

Z1 =  (Za * Zc) / (Za + Zb + Zc)  

Z2 =  (Zb * Zc) / (Za + Zb + Zc)  

Z3 =  (Za * Zb) / (Za + Zb + Zc) 



14 

 

 The Twin-T Bridge  

The twin-T bridge shown in Fig. 2.14 is frequently used as a feedback element in selective 

amplifiers, oscillators and for many other purposes. It consists of two T-circuits connected 

in parallel. The analysis of this circuit is best carried out by transforming both T into 

equivalent Π-connection and connecting them parallel as shown in Fig. 2.15, where 

 

Fig.2.14 Twin –T bridge network 

 

 

 

 

 

 

 

 

 

         

 

Fig 2.15 T  to π bridge network        Fig 2.16  Simplified T to π bridge network 
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Adding the impedances in Fig.2.15 in parallel we get a new circuit as shown in Fig.2.16 

 

 

 

The complex transmission coefficient is 

 

 

The absolute value of transmission coefficient is given by 

 

 

 

 

 

 

where ω0 = 1/(RC). If the resistors and capacitors in Fig. 2.14 are fixed, the output voltage 

is dependent on the frequency of the input voltage. The dependence of Uout (ω/ω0) is 

shown in Fig. 2.17. 

 

 

 

 

 

 

Fig.2.17 Dependance of Uout 
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We see, that there is a single frequency 

 

 

 

at which the output voltage is zero. In the vicinity of this frequency the circuit behaves 

itself as a resonant circuit with relatively high Q- factor. The circuit is particularly useful at 

low frequencies where the equivalent RLC-circuit request large values of L and C. 

 

Bartlett's Bisection Theorem 

 It is an electrical theorem in network analysis due to Albert Charles Bartlett. The 

theorem shows that any symmetrical two-port network can be transformed into a lattice 

network. The theorem often appears in filter theory where the lattice network is sometimes 

known as a filter X-section following the common filter theory practice of naming sections 

after alphabetic letters to which they bear a resemblance. 

The theorem as originally stated by Bartlett required the two halves of the network to be 

topologically symmetrical. The theorem was later extended by Wilhelm Cauer to apply to 

all networks which were electrically symmetrical. That is, the physical implementation of 

the network is not of any relevance. It is only required that its response in both halves are 

symmetrical.  

 

Applications of Bartlett's Bisection Theorem 

Lattice topology filters are not very common. The reason for this is that they require 

more components (especially inductors) than other designs. Ladder topology is much more 

popular. However, they do have the property of being intrinsically balanced and a 

balanced version of another topology, such as T-sections, may actually end up using more 

 

https://en.wikipedia.org/wiki/Theorem
https://en.wikipedia.org/wiki/Network_analysis_(electrical_circuits)
https://en.wikipedia.org/wiki/Albert_Charles_Bartlett
https://en.wikipedia.org/wiki/Two-port_network
https://en.wikipedia.org/wiki/Lattice_filter
https://en.wikipedia.org/wiki/Lattice_filter
https://en.wikipedia.org/wiki/Filter_theory
https://en.wikipedia.org/wiki/Wilhelm_Cauer
https://en.wikipedia.org/wiki/Lattice_topology
https://en.wikipedia.org/wiki/Inductor
https://en.wikipedia.org/wiki/Ladder_topology
https://en.wikipedia.org/wiki/Balanced
https://en.wikipedia.org/wiki/Topology_(electronics)
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inductors. One application is for all-pass phase correction filters on balanced 

telecommunication lines. The theorem also makes an appearance in the design of crystal 

filters at RF frequencies. Here ladder topologies have some undesirable properties, but a 

common design strategy is to start from a ladder implementation because of its simplicity. 

Bartlett's theorem is then used to transform the design to an intermediate stage as a step 

towards the final implementation (using a transformer to produce an unbalanced version 

of the lattice topology). 

 

 

 

Fig.2.18 Bartlett's bisection theorem 

Definition 

Start with a two-port network, N, with a plane of symmetry between the two ports. 

Next cut N through its plane of symmetry to form two new identical two-ports, ½N. 

Connect two identical voltage generators to the two ports of N. It is clear from the 

symmetry that no current is going to flow through any branch passing through the plane of 

symmetry. The impedance measured into a port of N under these circumstances will be the 

same as the impedance measured if all the branches passing through the plane of symmetry 

https://en.wikipedia.org/wiki/All-pass_filter
https://en.wikipedia.org/wiki/Two-port_network
https://en.wikipedia.org/wiki/Port_(circuit_theory)
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were open circuit. It is therefore the same impedance as the open circuit impedance of ½N. 

Let us call that impedance . 

Now consider the network N with two identical voltage generators connected to the ports 

but with opposite polarity. Just as superposition of currents through the branches at the 

plane of symmetry must be zero in the previous case, by analogy and applying the principle 

of duality, superposition of voltages between nodes at the plane of symmetry must likewise 

be zero in this case. The input impedance is thus the same as the short circuit impedance of 

½N. Let us call that impedance . 

Bartlett's bisection theorem states that the network N is equivalent to a lattice network 

with series branches of  and cross branches of . 

Proof 

Consider the lattice network shown with identical generators, E, connected to each port. It 

is clear from symmetry and superposition that no current is flowing in the series 

branches . 

 

 

https://en.wikipedia.org/wiki/Superposition_theorem
https://en.wikipedia.org/wiki/Duality_(electrical_circuits)
https://en.wikipedia.org/wiki/Node_(circuits)
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Fig.2.19 Lattice network 

Those branches can thus be removed and left open circuit without any effect on the rest of 

the circuit. This leaves a circuit loop with a voltage of 2E and an impedance of  giving 

a current in the loop of; 

 

and an input impedance of; 

 

as it is required to be for equivalence to the original two-port. 

Similarly, reversing one of the generators results, by an identical argument, in a loop with 

an impedance of  and an input impedance of; 

  

Recalling that these generator configurations are the precise way in 

which  and  were defined in the original two-port it is proved that the lattice is 

equivalent for those two cases. It is proved that this is so for all cases by considering that all 

other input and output conditions can be expressed as a linear superposition of the two 

cases already proved. 
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Interconnections of two-port networks 

Two-port networks may be interconnected in various configurations, such as series, 

parallel, cascade, series-parallel, and parallel-series connections. For each configuration a 

certain set of parameters may be more useful than others to describe the network. 

Series Connection 

Figure shows a series connection of two-port networks N a and N b. 

  

Figure.2.20 Series connection of two two-port networks 

 

For network N a, 

  

    

  

For network N b, 
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The condition for series connection is 

  

  

  

Putting the values of V 1a and V 1b  into V1,we get 

  

Putting the values of V 2a and V 2b into V2, we get 

  

The Z-parameters of the series-connected combined network can be written as 

  

where 

  

or in the matrix form, 
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The overall Z-parameter matrix for series connected two-port networks is simply the sum 

of Z-parameter matrices of each individual two-port network connected in series. 

 

Parallel Connection 

 

A parallel connection of two two-port networks N a and N b is shown in Fig.2.21. The 

resultant of two admittances connected in parallel is Y 1 + Y 2. So in parallel connection, the 

parameters are Y-parameters. 

  

Figure.2.21 Parallel connections for two two-port networks 

For network Na, 

  

Or 

 

   

For network Nb, 
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Now the condition for parallel, 

  

and 

  

  

  

  

Similarly, 

  

The Y-parameters of the parallel connected combined network can be written as 

  

Where 

Y11 = Y11a + Y11b 

Y12 = Y12a + Y12b 

Y21 = Y21a + Y21b 

Y22 = Y22a + Y22b 
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Y = [Ya ] + [Yb] 

 

Cascade connection of two port networks 

Consider two networks N’ and N’’ are connected in cascade as shown in figure 2.22. 

When two port are connected in cascade, we can multiply their individual transmission 

parameter to get overall transmission parameters of the cascade connection. 

 

Figure.2.22 Cascade connections for two two-port networks 

 Let the transmission parameters of network N’ be A’, B’, C’, D’. Let the 

transmission parameters of the network N’’ be A’’, B’’, C’’, D’’. Let the overall 

transmission parameters of the cascade connection be A, B, C, D. For cascade connection 

we have, 

 

V1 = V1
1, V2

1 = V1
11, V2 = V2

11,  

I1 = I1
1, I2

1 = -I1
11, I2 = I2

11,  

For the network N1
1, transmission parameter equations are 

 

 

For the network N1
11, transmission parameter equations are, 

 

 

The overall transmission parameters of the cascade connection can be written as, 
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Hence, the transmission parameters for the cascaded two port network is simply the matris 

product of the transmission parameter matrix of each individual two port network, 

 

Problems 

1. A network has the following open-circuit and short circuit impedances: 

Z1oc= (600+j300)Ω, Z2oc500Ω, Z1sc=(500+j400)Ω, Z2sc=(450+j150)Ω 

Find its image parameters. 

Solution: 

ZI1=√(600+j300)(500+j400) 

     =552.05+j353 

ZI2=√ Z2oc Z2sc 

       = 480.7+j78.02 

Tanhθ==√ Z1sc/ Z1oc 

2. The Z parameters of the two port are Z11 =10 Ω, Z22 =15Ω, Z12=Z21=5 Ω .Compute the 

equivalent T network ABCD parameters. 

Solution: 

ABCD parameters  

A= Z11/ Z21 =3 Ω 

B= ∆Z/ Z21=70 Ω 

C=1/ Z21=.2 
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D= Z22/ Z21=5 

Equivalent T network 

Z11=ZA+ZC=15 

Z12=Z21=ZC=5 

ZA=10 

Z22=ZB+ZC 

ZB=20 

 

3. Two networks have been shown in figure. Obtain the transmission parameters of the 

resulting circuit when both the circuits are in cascade.  

 

Solution : 

Consider the network as shown in circuit 1 
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Open circuiting the port 2 as shown in circuit 2 

 

 

 

 



28 

 

 

 

 

Related Questions  

Part-A 

1. What are the different types of connection in two port network? 

2. Draw the symmetrical lattice network. 

3. Define Iterative impedance? 

4. What is Lattice network? 

5. Draw the symmetrical Twin–T network. 

6. Define propagation constant. 

7. Find the image parameters of the network shown in figure 

 

 

 

 

 

 

8. The currents of a two port network are given by I1=6V1-V2, I2=-V1+2V2.Find the 

equivalent π network. 

9. Find the lattice network by using Barlett’s theorem. 

 

10.The Z-parameters of two port network are Z11=15Ω, Z22=25Ω, Z12=Z21=5Ω.Determine 

the ABCD parameters. 
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Part-B 

1. Derive the expression for image impedance for asymmetrical T and π network. 

2. Derive the expression for iterative impedance for asymmetrical T and π network. 

3. Derive the expression for image impedance in terms of ABCD parameter. 

4. a) Find the equivalent π network for the T-network shown in Figure (a) 

    b) Find the equivalent T network for the π -network shown in Figure (b) 

 

 

 

 

 

5. A network has two input terminals a, b and two output terminals c, d. The input 

impedance with c-d open circuited is (250+j100) Ω and with c-d short circuited is 

(400+j300) Ω. The impedance across c-d with a-b open circuited is 200 Ω. Determine the 

equivalent T-network parameters. 

6. Find the open circuit and short circuit impedance of the network shown in figure. Also 

obtain its π equivalent. 
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7.Explain in detail about interconnection of two port networks. 

8.Derive the expression for types of interconnection of two port networks. 

9. Find the short circuit admittance parameter for the circuit shown in figure. 

 

 

 

 

 

 

 

10. Derive the expression for Lattice networks 

11. Derive the expression for Twin T networks. 

12. State and prove Bartlett's Bisection Theorem. 

13. The Z parameters of the two port are Z11 =10 Ω, Z22 =15Ω, Z12=Z21=5 Ω .Compute the 

equivalent T network and Y and ABCD parameters. 

14. Explain how the overall parameters are calculated, if two different two- port networks 

are connected in cascade and Series-Parallel. 

15. Determine the Image parameters of the T-network shown in figure. 
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UNIT – IV – SYNTHESIS OF LC, RL AND RC NETWORK 



Unit IV 
 

Synthesis of LC, RL & RC Network 
 

Hurwitz polynomial:- 
 

A polynomial is said to be Hurwitz polynomial, if its zeros lie on the left hand side of S-plane or on jω 

axis provided on the  jω axis, zeros are simple. 

Conditions: 
 

The conditions for the polynomial 

 
P(S) = ans

n + an–1s
n–1 + ··· + a1s + a0 to be Hurwitz are 

 
i) P(S) is real, when ‘s’ is real 

ii) The roots of polynomial P(S) must have zero or negative real parts. 

 
Properties:- 

 

Let P(S) = ans
n + an–1s

n–1 + ··· + a1s + a0 be a Hurwitz polynomial where a0, a1, … an are the coefficients 

 
i) All the coefficients of the polynomial ai where i = 0, 1 … n are positive. 

ii) All the terms starting from highest power of S to lowest power of S must be present. 

P(S) = S4 + 2S2 + 8 ⟹ evenpolynomial 

P(S) = S5 + 2S3 + 5 ⟹ evenpolynomial 

iii) If the polynomial is even or odd then all the roots must be on imaginary jω axis. 

iv) Given Hurwitz polynomial can be separated into even and odd parts. Odd part is denoted by 

O(S) & even part denoted by E(S).P(S) = E(S) + O(S) 

v) If the ratio of odd to even parts of P(S) or even to odd parts of P(S) is expressed in the 

continued fraction expansion then all the quotient terms must be positive. 

 

P(S)= 
O(S) 

or E(S) 
 

 

E(S) O(S) 

=q (S)+ 
1

 
 

1 

q2 (S)+ 
1 

 

 

1 
q3 (S)+ 

1
 

+ 
qn (S) 

1 



2 
 

 

 

 

1

1 2

2 1 3

3

E(S) O(S) q (S)

---

R (S) E(S) q (S)

---

R (S) R (S) q (S)

---

R (S)

 

vi) If P(S) is either odd or even function then the continued fraction expansion is obtained from 

the ratio of polynomial P(S) to its derivativeP′(S). 

Eg: P(S) = S4 + 3S2 + 2.     ThenP′(S) = 4S4 + 6S 

vii) If the continued fraction expansion terminates prematurely, then that indicates the functions 

E(S) & O(S) contain a common factor X(S).In that case, P(S) = X(S)Y(S).If  X(S) & Y(S) are 

Hurwitz, then P(S) is Hurwitz. 

 

1) Examine whether the given polynomials are Hurwitz or not 

a)    S5  +  4S4  +  7S2  +  6S +  2           ⇒  S3 term is missing.  So not Hurwitz. 

b) S6  +  7S5  +  5S4  − 3S3  + 2S2 +  S +  4   ⇒  S3term is negative.     So not hurwitz. 

 

2) Test whether the following polynomials are Hurwitz. 

a)  P(S) = S3 + 2S2 + 4S + 2 

 O(S) = S3 + 4S;     E(S) = 2S2 + 2. 

 

 

 

2 3

3

2

2

S2S 2 S 4S
2

S S

23S 2S 2 S
3

2S

32 3S S
2

3S

0

 




 

C(s) = 
𝑠

2
+

1
2𝑠

3
+

1
3𝑠
2

.All quotient terms are positive. So P(s) is a Hurwitz polynomial. 
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 

 

 

 

3 2

2 3

3

3

2

(b) P S S 2S 3S 6

O S S 3S

E

S2S 6

S

S 3

2S

S
2

S 3S

0

6

  

 

 





 

 

Continued fraction expansion is terminated abruptly. There exists a common factor. 

P(S)=(S3+3S)(1+
2

𝑆
). Here(1+

2

𝑆
) is Hurwitz. All quotients are positive. 

S3+3s is odd polynomial and be m(S) and m/ (s) = 3S2+3. 

 

 

 

2 3

3

2

2

S3S 3 S 3S
3

S S

3S2S 3S 3
2

3S

2S3 2S
3

2S

0

 





 

Continued fraction expansion,
5 1

C(S)
3S 13

2S2

3

 



 

All quotient terms are positive. Hence P(S) is Hurwitz. 

 

3) Test whether the polynomial is Hurwitz or not. 

 

 

 

4 3 2

4 2

3

P S S +S 5S 3S 4

E S S +5S 4

O S S 3S

   

 

 
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 

 

 

 

3 4 2

4 2

2 3

3

2

2

S 3S S 2S 2 S

S 3S

S 2 S 3S S

S 2S

S5S S +2
5

S

52 5S
2

5S

0

  



   






 

 

 

 

 

3 4 2

4 2

2 3

3

2

2

E(S)
C(S)

O(S)

S 3S S 5S 4 S

S 3S

S2S 4 S 3S
2

S 2S

S 2S +4 2S

2S

4

0

S

SS
4



  



 



 

 

All quotient terms are. 

 

All the quotient terms are positive. So P(S) is Hurwitz.

 
. 

4) Prove that the polynomial P(S) = S4 + S3 + 2S2 + 3S +2 is not Hurwitz. 

 

 

 

4 2

3

C S S +2S 2

O S S +3S

E(S)
C S

O(S)

 





 

 

 

 

 

 

 

 

 

 

1
C(S) S

S 1

2S 12

S

4

 




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1
C(S) S

S 1

1S
5 5 S

2

 



 

 

Two quotient terms are negative. So, P(S) is not Hurwitz. 

 

5) Test whether the polynomial P(S) = S5 + S3 + S is Hurwitz. 

Given polynomial contains odd function only, 

 
P(S)

C S
P (S)




 
 

1 4 2P (S) 5S 3S 1    







4 2 5 3

5 3

3 4 2

4 2

2 3 3

3

2

2

S
5S 3S 1 S S S

5

3 S
S S

5 5

2 4S 25
S 5S 3S +1 S

5 5 2

5S 10S

2 4S 2
7S 1 S S

5 5 35

2 2S
S

5 35

26 269S
S 7S +1

35 35

7S

26S 26
1 S

35 35

26S

35

0


    



 

 
  

 




   





 
  

 






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3

S 1
C(S)

25 15
S

2 12
S

269S 135
+

2635
S

35

 







 

All the quotient terms are not positive. P(S) is not Hurwitz. 

 

6) Test whether the polynomials are Hurwitz or not 

7 6 5 4 3 2Y(S) S 2S 2S S 4S 8S 8S 4         

7 5 3O(S) S 2S 4S 8S     

6 4 2E(S) 2S S 8S 4     

1

O(S)
P (S)

E(S)
  

 

 

 

6 4 2 7 5 3

5
7 3

5 6 4 2

6 2

5
4

5

S2S S 8S 4 S 2S 4S 8S
2

S
S 4S 2S

2

3 4S +6S 2S S 8S 4 S
32

2S O 8S

3S 3SS +2 6S
22

3S
6S

2

0

     

  

  

 





 

Continued fraction expansion is terminated abruptly. So there is a common factor in the 

function Y(S). 

7 6 5 4 3 2Y(S) S 2S 2S S 4S 8S 8S 4         

Taking S4 as common in the 1st 4 terms & 4 as common in the last 4 terms. 

   4 3 2 3 2Y(S) S S 2S 2S 1 4 S 2S 2S 1         

  4 3 2Y(S) S 4 S 2S 2S 1      

1 2Y(S) F (S) F (S)   
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4

1F (S) S 4   

Missing terms are there. So 1F (S)  is not Hurwitz. 

3 2

2F (S) S 2S 2S 1     

3O(S) S 2S   

2E(S) 2S 1   

Continued fraction expansion is, 

 



 

6 3

3

2

2

S2S 1 S 2S
2

S
S

2

3 4S 2S 1 S
32

2S

3 31 S S
22

3
S

2

0

 










 

1

5 1
P (S)

4S 12
3S3

2

 



 

Since all the quotient terms are positive. F2(S) is Hurwitz. 

1F (S) is not Hurwitz & 2F (S)  is Hurwitz, the polynomial Y(S) is not Hurwitz. 

Routh Hurwitz array method: 

 In this method, an array is constructed using the coefficients of given polynomial in a specific 

way. By the inspection of such an array formed, the polynomial can be decided to be Hurwitz or 

not. 

 

Let 
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Routh Hurwitz array is 

nS  na  n 2a   n 4a   

n 1S 
 n 1a   n 3a   n 5a   

n 2S 
 nb  n 1b   n 2b   

⁞ 
nc  n 1c   n 2c   

⁞   

0S  0a    

 1st row consists of all the coefficients of alternate power of S starting from n. 

 Next row consists of all the coefficients of alternate power of S starting from n–1. 

 A row corresponding to sn-2  is generated from first two rows as 

n 1 n 2 n n 3 n 1 n 4 n n 5
n n 1

n 1 n 1

a a a a a a a a
b , b

a a

     


 

 
   

 Row corresponding to 
h 3S 

 is generated from the two previous rows 

n n 3 n 1 n 1 n n 5 n 1 n 2
n n 1

n n

b a a b b a a a
c ; c

a a

     


 
   

 Procedure is continued until the row corresponding to S0 is obtained. 

 Last row a0 = constant term of the polynomial. 

 For the given polynomial P(S) to be Hurwitz 

1) All the elements in the 1st column should be non zero 

2) There should not be any sign change in the 1st column. 

Special case: 

nS  1a  2a  3a   

n 1S 
 1b  2b  3b   

n 2S 
 1c  2c  3c   

n 3S 
 0 0 0 ←  Rows of zeros 
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If there occur a complete row as row of zeros while generating an array, an equation is formed using the 

coefficients of a row which is just above the row of zeros. Such an equation is called the auxiliary 

equation A(S). A(S) is always odd or even polynomial in S. 

n 2 n 4 n 6

1 2 2A(S) c S c S c S     
 

Find 
dA(S)

dS
  and replace the row of zeros by the coefficients of equation 

dA(S)

dS
 

The special case is of repeated roots of P(S) on imaginary axis. Such case can be identified by solving the 

equation A(S) = 0. This is because the roots of A(S) = 0 are some of the roots of P(S) = 0, which decide 

whether polynomial is Hurwitz or not. If there is any sign change in the 1st column of the completed 

array, then the given polynomial is not Hurwitz or else it is Hurwitz. 

(1) Test whether 
5 4 3 2P(S) S 8S 24S 28S 23S 6       is Hurwitz or not using Routh array method. 

Routh array can be obtained as 

S5 1 24 23 

No sign change in the 1st column, 

all coefficients are positive.  

So P(S) is Hurwitz. 

 

S4 8 28 6 

S3 

20.5 22.25 

0 8 24 1 28

8

  
 

8 23 1 6

8

  
 

S2 19.32 6  

S1 15.88 0  

S0 6   

 

 (2) Test whether  
6 5 4 3 2F(S) 2S +S 13S 6S 56S 26S 25       is Hurwitz or not using Routh array 

method. 

6S  2 13 56 25 

5S  1 6 25 0 

4S  1 6 25  

3S  0 0 0 ←  Rows of zeros 

4 2A(S) S 6S 25    
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3dA
4S 12S

dS
    

3S  4 12 0  

2S  3 25   

1S  –21.33 0   

0S  25    
 

 

There is sign change in the 1st column. So, P(S) is not Hurwitz. 

Positive Real Function:- 

Significance of positive real function is that if the driving point imitance (i.e.) [admittance or impedance] 

is a positive real function, then only it is physically realizable using passive R, L & C components. Hence 

imitance function must be checked for positive realness before synthesizing. 

For a function to be positive real function it has to satisfy the following basic properties. 

i) Given function F(S) is real for real S. 

ii) Real part of F(S) is greater than or equal to zero, when the real part of S is greater than or 

equal to zero  

 Re F(S) 0 for Re | S | 0.   

    
    

n n 1

0 1 n

m m 1

0 1 m

0 1 2 n

0 1 2 m

P(S) a S a S a
F(S)

Q(S) b S b S a

a S Z S Z S Z

b S P S P S P

Let




  
 

  

  


  

 

Where Z1, Z2, … Zn are zeros & P1, P2, … Pm are poles. 

iii) F(S) must not have any poles on the right half of S plane. 

iv) F(S) may have simple poles on the jω axis with real & positive residues 

v) Real part of H(jω) is greater than or equal to zero for all ω values 

 (ie) Re H(jω) 0 ω   

Properties:- 

1) Coefficients of Numerator & Denominator polynomials P(S) & Q(S) are real and positive. 

2) Poles & zeros of F(S) have zero or negative real parts. 
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3) Poles of F(S) or 
1

F(S)
 lying on the imaginary axis must be simple & their residues must be real 

& positive. 

4) Poles & zeros are real or they occur in complex conjugate pairs. 

5) Highest degree of F(S) & Q(S) differ almost by 1. 

6) Lowest degree of F(S) & Q(S) differ almost by 1. 

7) IF F(S) is positive real, then 
1

F(S)
 is also positive real function 

8) Sum of positive real function is also positive  real. 

9) Difference of positive real function is not necessarily positive real. 

 

 

1. Derive the condition for positive realness? 

P(S)
Let F(S)

Q(S)
  

1 1

2 2

1 1

2 2

E (S) O (S)
F(S)

E (S) O (S)

E O
F(S)

E +O









 

 

Where E1(S) & O1 (S) are even & odd functions of P(S) 

& E2(S) & O2(S) are even & odd functions of Q(S). 

For simplicity let us drop S. 

 

By dividing& multiplying by E2 – O2. 

  
  

1 1 2 2

2 2 2 2

E O E O
F(S)

E O E O

 


 
 

1 2 1 2 2 1 1 2

2 2 2 2

2 2 2 2

E E O O E O E O
F(S)

E O E O

 
 

 
 

1 2 1 2E E & O O are even functions, while 2 1 1 2E O & E O  are odd functions 

Where 1 2 2

2 2

2 2

E E O
Even F(S)

E O





, 2 1 1 2

2 2

2 2

E O E O
odd F(S)

E O





 

 F(S) Even F(S) odd F(S)    

Let S = jω, 

   F(jω) Even F(jω) odd F(jω)   

Even function of F(jω) gives real value, as even power of jω removes j. odd function of F(jω) gives 

imaginary value.    F(jω) Re F(jω) j Im F(jω)   
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Where    Re F(jω) Even F(jω) &    Im F(jω) odd F(jω)  

Conditions for positive realness, is  Re F(jω) 0 ω   

 Even F(jω) 0 for all values of ω  

1 2 1 2

2 2

2 2

E E O O
0

E O





 

The condition to be satisfied is 1 2 1 2E E O O 0 
 

 

2. Find the condition for the given function to be a positive real function. 

a) 
2

S a
H(S)

S bS+c





 

 1 1E (S) a, O (S) S 
 

2

2 2E (S) S c, O (S) bS    

For positive realness, the condition to be satisfied is 1 2 1 2E E O O 0   

 2a S c S(bS) 0    

 2 2a S c bS 0    

Let S = jω, 

 2 2a (jω) c b(jω) 0    

 2 2a ω c bω 0     

 2ω b a ca 0    

ω lies between 0 to infinity, 

a, b, c ≥ 0 & b – a ≥ 0 (i.e) b ≥ a. 

 

b) 

2

1 0

2

1 0

S a S a
H(S)

S b S b

 


 
 

 
2

1 0 1 1E (S) S +a , O (S) a S   
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2

2 0 2 1E (S) S +b , O (S) b S   

1 2 1 2E E O O 0   

  2 2

0 0 1 1S a S b (a S)(b S) 0     

4 2 2 2

0 0 0 0 1 1S a S b S a b a b S 0      

 4 2

0 0 1 1 0 0S a b a b S a b 0      

Let S = jω, Therefore     
4 2

0 0 1 1 0 0jω a b a b jω a b 0      

  
2

4

0 0 1 1 0 0ω a b a b ω a b 0         

    
2

0 0 1 1 0 0 1 1 0 02
a b a b a b a b 4a b

ω
2

      


 

→ should be either zero or 

negative 

 
2

1 1 0 0 0 0(ie) a b a +b 4a b 0      

 
2

1 1 0 0 0 0a b a +b 4a b     

Taking square root on both sides, 

 1 1 0 0 0 0a b a +b 2 a b  
 

As –ve value is lesser than +ve value, 

 1 1 0 0 0 0a b a +b 2 a b  
 

1 1 0 0 0 0a b a +b 2 a b 
 

 
2

1 1 0 0a b a b 
 

So condition for positive realness is, 

 
2

1 1 0 0a b a b 
 

(3). Check the positive realness of the function, 2

S 4
N(S)

S 2S 1




   

This is of the form, 2

S a

S bS c



   
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a = 4, b = 2, c = 1. 

For +ve realness a,b,c a, 0 & b 
 

But a > b, the function is not a p.r.f. (or) 

2 2

S 4 S 4
N(S)

S 2S 1 (S 1)

 
 

    

2(S 1) 0 
 

S 1. 
 

There are multiple poles at S = –1. Hence the function is not a p.r.f. 

 

(4). Prove that the given function is a p.r.f.
 

2

S 2
N(S)

S 3S 2




   
 

a = 2, b = 3, c = 2. 

 

a, b, c ≥ 0, b > a, the given function  is a p.r.f. 

 

(5). Check the positive realness of 
2

2

S S 6
N(S)

S S 1

 


 
 

The given function is of the form, 

2

1 0

2

1 0

S a S a

S b S b

 

   

 

Condition for p.r.f. is 

 
2

1 1 0 0a b a b 
 

0 0 1 1a 6, b 6, a 1, b 1   
 

 

1 1a b 1
 

   
2 2

0 0a b 6 1 2.1   
 

1 1a b
≥  

2

0 0a b
. 

 

So it is not a p.r.f. 
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(6) Prove that the function 
(S 2)(S 4)

Z(S)
(S 1)(S 3)

 


 
 is +ve real. 

2

2

(S 2)(S 4) S 6S 8
Z(S)

(S 1)(S 3) S 4S 3

   
 

   
 

This function is of the form, 

2

1 0

2

1 0

S a S a

S b S b

 

 
 

0 1 0 1a 8, a 6; b 3, b 4.     

   
2 2

0 0a b 8 3 1.2     

1 1a b (6)(4) 24   

 
2

1 1 0 0a b a b  , the given function is a p.r.f. 

 

(7) Find whether the given function  is +ve real or not 
2

3S 5
Z(S)

S(S 1)





 

2

2 2

3S 5 A BS+C
Z(S)

S(S 1) S S 1


  

 
 

2 2 23S 5 A(S 1) BS +CS     

2 23S 5 (A B)S CS A      

2

Equating constant terms

Equating S terms

Equating S  te

, A 5

, C 0

, A B 3

B 3

rms

A 3 5 2





 

     

 

Residue value B is –ve, given function is not a p.r.f. 

 

(8) Check the positive realness of the following function 
3

4 2

S 5S
H(S)

S +2S 1





 

 

 

23

24 2 2

S S 5S 5S
H(S)

S +2S 1 S 1


 

 
 

 
2

2S 1 0   

  2 2S 1 S 1 0    

2S 1   

S j  &  j   Multiple poles, not a p.r.f. 
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Elementary Synthesis Procedure: 

Properties of LC driving point functions: 

1) LC imitance function is the ratio of odd to even or even to odd polynomials. 

2) Poles and zeros are simple & on the imaginary axis. 

3) Poles & zeros are alternating. 

4) At origin (i.e.) at S = 0, there is a pole or zero 

5) At infinity (i.e.) at S   , there is a pole or zero 

6)  Re F(jω) 0 ω   

7) The residues of imaginary axis poles are positive & real 

8) Highest power of Numerator & Denominator differ by unity. The lowest powers also differ by 

unity. 

The main methods for realizing a reactance function as a network are 

1) Foster form I 

2) Foster form II 

3) Cauer form I 

4) Cauer form II 

Foster form I: 
   
   

2 2 2 2 2 2

1 3 5

2 2 2 2 2 2

2 4 0

H S ω S ω S ω
Z(S)

S S ω S ω S ω

  


  
 

 Used to realize impedance function. If admittance function is given, the reciprocal of the function 

is realized. 

By partial fraction 

0 2 4

2 2 2 2

2 4

K 2K S 2K S
Z(S) K S

S S ω S ω
    

 
 

0 i

2 2
i 2,4 i

K 2K S
Z(S) K S

S S ω




  


  

0 iK ,K ,K
are the residues of Z(S) at origin, ω and ∞ respectively. 

0K

S
represent a capacitor of  

1

𝐾0
farads 

K S represent an inductor of K
 Henrys 
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i

2 2

i

2K S

S ω
represent a parallel combination of a capacitor of 

i

1
F

2K
& inductance of i

2

i

2K

ω
H

 

 
Foster form II:- 

 

 Used to realize admittance function. 

 If impedance function is given, reciprocal of the function which gives admittance is realized. 

  
  

2 2 2 2

1 3

2 2 2 2

3 4

H S ω S ω
Y(S)

S S ω S ω

 


 
 

0 2 4

2 2 2 2

2 4

K 2K S 2K S
Y(S) K S.

S S ω S ω
   

 
 

0 i

2 2
i 2,4 i

K 2K S
Y(S) K S.

S S ω




  


  

Where
0 iK , K & K

 are the residues of Y(S) at origin, ωi and ∞ respectively. 

0K

S
represent a inductor of  

1

𝐾0
Henrys 

K S represent an inductor of K
farads 

 

i

2 2

i

2K S

S ω
represent a series combination of a inductor of 

i

1
H

2K
&capacitor of i

2

i

2K

ω
F.

 
Y(S) is the parallel combination of elemental admittance. 
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1) The driving point impedance of a one-port reactive network is given by 

  
 

2 2

2

5 S 4 S 25
Z(S)

S S 16

 



Obtain the 1st& 2nd Foster networks. 

Foster 1: 

  
 

 2 2 4 2 2

32

4 2

3

5 S 4 S 25 5 S +4S 25S 100
Z(S)

S 16SS S 1b

5S 145S 500

S 16S

   
 



 




 

 3 4 2

4 2

2

S 16S 5S 145S 500 5S

5S 80S

65S 500

  





 

 

2 2

3 2

65S 500 65S 500
Z(S) 5S 5S

S 16S S S 16

 
   

 
 

 
 

2

22

65S 500 A BS+C

S S 16S S 16


 


 

 
2

135S
125 4Z(S) 5S+
4S S 16

 


 

 0 i

2 2

i

K 2K S
Z(S) K S.

S S ω
   




 

0

0

1 4
C F

K 125
 

2
1 2

2

135
2K 1354L H
ω 16 64

     

2

2

1 1 4
C = F

1352K 135
4

 

 

L K 2H  
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Foster form 2: 

 
  

2

2 2

S S 16
Y(S)

5 S 4 S 25




 
 

 
  

2

2 22 2

S S 16 AS B CS D
Y(S)

S 4 S 255 S 4 S 25

  
  

  
 

2 2

34 S S
35 35Y(S)

S 4 S 25
 

 
 

i
0 2 2

i 2,4 i

2K S
Y(S) K S K S

S ω




  



 

1

i

1 35
L H

2K 4
 

 

i
1 2

i

2K 1
C F

ω 35
 

 

2

i

1 35
L H

2K 3
 

 

i
2 2

i

3
2K 335C = F
ω 25 875

 

 

 

 
  

 

 

 

 

  

 

 

 

 

 

 

 

Cauer form I:- 

 Network is realized in Cauer I form by continuous fraction expansion. Highest power of 

numerator & denominator differ by unity. 

 Nr &Dr are arranged in the form of descending power of S. 
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1
(series)

2
(shunt )

3
(series)

4
(shunt ) 5

1

2 2

1
Z(S) Z (S)

1
Y (S)

1
Z (S)

1
Y (S) +

Z (S)

1
Z(S) 4(S)

1
C S

L S C

 





 




 

 

 It gives a ladder network with series arm as inductors & shunt arm as capacitors 

 If Numerator power is less than its denominator power, then driving point function is inverted. 

 In that case, continued fraction will give capacitive admittance as 1stshunt element and a series 

inductance. 

Cauer II form: 

Here Numerator &Denominator are arranged in the ascending power of S. 

1
(series)

2
(shunt)

3
(series) 4

(shunt)

1
Z(S) Z (S)

1
Y (S)

1
Z (S)

Y (S)

 





 

 

Here the series arms are capacitors and shunt arm are inductors. 
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1

2

1 1
Z(S)

1C (S)
1

4S
1

2S
1

L (S)

 







 

1) Realise the network in both Cauer forms. 
 

  

2

2 2

S S 4
Z(S)

S 1 S 9




 
 

Cauer I: 

Given Numerator degree should be higher than Denominator. 

  
 

2 2 4 2

32

S 1 S 9 S 10S 9
Y(S)

S 4SS S 4

   
 


 

 

 

3 2 2

4 2

2 3

S 4S S 10S 9 S Y

S 4S

S6S 9 S 4S Z
6

   



  
 



3

2

2

3S
S

2

5 12
S 6S 9 Y

2 5

6S

5 5
9 S S Z

2 18

5
S

2

0



 
  

 





 

1
Y(S) S

S

1
6

112S
5 5S

18

 




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Cauer II:

 

4 2 2 4

3 3

S 10S 9 9 10S S
Y(S)

S 4S 4S S

   
 

   







3 2 2

2

2 4 3

3 2 4

2

4 3

3

9
4S S 9 10S S Y

4S

9
9 S

4

31 16S S 4S S Z
31S4

16
4S S

31

15 31 961
S S S Y

31 4 60S

31
S

4

15 15
S S Z

31 31S

15
S

31

0


   






  





 
  

 






 

9 1
Y(S)

16 14S
961 131S

1560S

31S

 




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(2) Find the two Cauer realisations of driving point function given by 

4 2

3

10S 12S 1
Z(S)

2S 2S

 


  

Cauer 1: 

 

 

 

 

3 4 2

4 2

2 3

3

2

2

2S 2S 10S 12S 1 5S

10S 10S

2S 1 2S 2S S

2S S

S 2S 1 2S

2S

1 S S

S

0

  



 





 

1
Z(S) 5S

1
S+

1
2S

S

 



 

 

Cauer II  

 

4 2 2 4

3 3

10S 12S 1 1 12S +10S
Z(S)

2S 2S 2S 2S

  
 

 
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





3 2 4

2

2 4 3

3

3
2 4

2

4 3

3

1
2S+2S 1 12S 10S

2S

1 S

2
11S 10S 2S 2S

11S

20S
2S

11

2S 121
11S 10S

11 2S

11S

2 2
10S S

11 110S

2
S

11

0


  






  





 
 







 

1 1
Z(S)

2 12S
121 111S

22S

110S

 





 

 

Properties of RC Driving point function 

 RC network consists of R & C components. 

 Driving point impedance of RC network is denoted as RCZ (S) . 

 Properties of driving point admittance of RL network are identical. 
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RC

Poles are S 0, 2(S 1)(S 4)
eg: z (S)

Zeros are S 1, 4S(S 2)

  
 

  
 

 

Properties of RC Driving point Impedance fns: 

1) Poles and zeros are simple, no multiple poles & zeros. 

2) Poles & zeros are located on negative real axis & alternating. 

3) Critical frequency nearest to the origin is a pole (located at origin). 

4) Critical frequency farthest from the origin is a zero (located at ). 

5) The partial fraction expansion gives the residues values which are real & positive. 

6) If RC RCZ (0) Z ( ).   

7) There is no zero at the origin & no pole located at infinity. 

Synthesis of RC network: 

Foster form I: 

Driving point impedance RC n/w, Z(S) is given by 
  

  
1 3

2 4

H S σ S σ
Z(S)

S S σ S σ

 


 
 

0 1 2 i
RC

1 2 i

K K K K
Z (S) K

S S σ S σ S σ
      

  
 

Where 0K , K , iK  are the residues at origin, infinity & iσ  respectively. 

0K

S
represents a capacitor of 

0

1
F

K
. 

K represents a capacitor of K  ohms. 

i

i

K

S σ
represents a parallel combination  of capacitor of 

i

1

K
&  resistance of i

i

K

σ
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Foster Form II: 

It is used to realize 
RC

RC

1
Y (S)

Z (S)
  [negative residues at poles] 

RC 0 1 2 i

1 2 i

Y (S) K K K K
K

S S S σ S σ S σ
      

  
 

Residues of the expansion Ki will be negative, to make positive RCY (S)

S
. 

1 2 i
RC 0

1 2 i

K S K S K S
Y (S) K K S

S σ S σ S σ
       

  
 

0K represents a resistance of 

0

1

K
 . 

i

i

K S

S σ
represents a series combination of resistance of 

i

1

K
 ohms & a capacitance of i

i

K

σ
.F 

K
represents a capacitance of i

i

K

σ
.F 

 

 

1) Find the Foster I & II form for the function 
  
  

3 S 2 S 4
Z(S)

S 1 S 3

 


 
 

Numerator degree>denominator degree 

 2 2

2 2

3 S +2S+4S 8 3S +18S+24
Z(S)

S S 3S 3 S 4S 3


 

    
 

 2 2

2

S 4S+3 3S 18S 24 3

S 12S 9

6S 15

  

 

  

2

6S+15 6S+15
Z(S) 3 3

S 4S 3 (S 1)(S 3)
   

   
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A B
Z(S) 3

S 1 S 3
  

 
 

9 3
2 2Z(S) 3

S 1 S 3
  

 
  

0 i

i

K K
Z(S) K

S S σ
  


  

R 3   

 

i
i

i

i

i

K 9
R9 σ 22

1 2S 1
C F

K 9

  




 

 

i
i

i

i

i

K 1
R3 σ 22

1 2S 3
C F

K 3

  




 

 

 

 

Foster II: 

 

2

2

S 4S+3
Y(S)

3S 18S 24




 
 

2 2

2

1
3S 18S 24 S 4S 3

3

S 6S 8

2S 5


    



 

   

Negative terms appear. 



28 
 

Y(S) (S 1)(S 3) A B C

S 3S(S 2)(S 4) S S+2 S+4

 
   

 
 

1 11
Y(S) 8 812

S S S+2 S+4
    

11 SS1 812Y(S)
8 S+2 S+4

1 1 1

12 88 (S+2) (S+4)
S S

1 1 1

24 328 12 8
S S

  

  

  
 

 
 

i
0

i

K S
Y(S) K K S

S σ
  


 

0 0

1
K = R 8

8
 

 
 
 

i
i i

ii

i
i i

i

1 K 1
K C F

12 σ 24K S

1S σ
σ 2 R 12

K

   




   

 
 

i
i i

ii

i
i i

i

1 K 1
K , C F1 S 8 σ 32K S8

1S 4 S σ
σ 4, R 8

K

   

 
 

   
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Synthesis of RC network by Cauer method: 

Cauer I method:- 

1

2

3

4 n

1

1

2

2

1
F(S) q

1
q S+

1 1
q

q S q S

1
R

1
C S+

1
R

C S

 

  

 

 

 

 
Cauer II method:- 

1

1

2

2

1 1
F(S)

1 1C S
+

1 1R
1C S

R

 

 

 
 

 

 

 

 

 

 

(1)Find the 1st& 2nd Cauer form of 
(S 2)(S 4)

Z(S)
S(S 3)

 


  

Foster 1: 

2

2

S 6S 8
Z(S)

S 3S

 



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 

 

 

 

2 2

2

3

2

S 3S S 6S 18 1 Z

S 3S

S3S 18 S 3S Y
3

8SS
3

S 3S 8 9 Z
3

3S

S S8 Y
3 24

S
3

0

   



  



 



 

1
Z(S) 1

S 1
+

13
9

S

24

 

 

 

 

Cauer II: 

 

 

 

 

2 2

2 2

2

2
2

2
2

2

83S S 8+8S S Z
35

8S8
3

10S 9S 3S+S Y
3 10

9S3S
10

S 10S 100S Z
10 3 3S

10S
3

S 1S Y
10 10

S
10

0

  



 



 


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8 1
Z(S)

9 13S
+

100 110
13S

10

 



 

 

Synthesis of Driving point Impedance functions of RL Network’s:- 

 Driving point impedance is denoted as RLZ (S) . 

 RLZ (S) & RCY (S)  are identical 

Properties:- 

1) Poles & zeros are on the negative real axis of S-plane and are simple. 

(S 1)(S 3)
Z(S)

(S 2)(S 4)

Poles at S 2, 4

Zeros at S 1, 3

 


 

  

  

 

2) Poles & zeros are alternating. 

3) Poles & zeros are the critical frequencies.  

4) Critical frequency nearest to the origin is a zero. 

5) Critical frequency farthest from the origin is a pole. 

6) There cannot be a pole at the origin and cannot be a zero at infinity. 

7) RL RLZ ( ) Z (0)   

8) Residues of RLZ (S)  at its poles are real & negative and those of RCZ (S)

S
 are real and positive. 

Synthesis:-Foster form I:- 

1 2 i
RL 0

1 2 i

K S K S K S
Z (S) K K S

S σ S σ S σ
      

  
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(–)      (–) 

RL 0 1 i

1 i

Z (S) K K K
K

S S S σ S σ
     

 
 

1 2 i
RL 0

1 2 i

K S K S K S
Z (S) K K S.

S σ S σ S σ
      

  
 

 

 

Foster form II:- 

0 1 2 i
RL

1 2 i

K K K K
Y (S) K

S S σ S σ S σ
      

  
 

 

1) Find the 1st foster form of the driving point function:- 

2 2

2 2

S(S 1)(S 4) S(S +S 4S 4)(S 4) S +25S 20
Z(S)

(S 3)(S 5) S 3S 5S 15 S 8S 15

     
  

        

 2 2

2

S 8S 15 5S +25S 20 5

5S +40S 75

15S 55

  



 
 

Z(S) 5(S 1)(S 4) A B C

S S(S 3)(S 5) S S+3 S+5

 
   

 
 

S 0

5(S 1)(S 4) 5(1)(4) 4
A

S(S 3)(S 5) (3)(5) 3

 
  

 
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S 3

5(S 1)(S 4) 5( 2)(1) 5
B

(S 3)(S 5) ( 3)(2) 3

  
  

  
 

S 5

5(S 1)(S 4) 5( 4)( 1)
C 2

S(S 3) ( 5)( 2)

   
  

  
 

54
Z(S) 23 3

S S S+3 S+5
    

5 S4 2S3Z(S)
3 S+3 S+5

4 1 1 4 1 1

3 1 3 9 513 3(S+5)(S+3)
2S5S 5 5S 2 2S

  

     
 

 

 

 

2) Find the 2nd foster form of the driving point function:- 

2

2

2S +16S 30
Y(S)

S 6S 8




   

 2 2

2

S 6S 8 2S +16S 30 2

2S +12S 16

4S 14

  





 

2

2 2

2S +16S 30 4S 14 4S 14
Y(S) 2 2

S 6S 8 S 6S 8 (S+4)(S 2)

  
    

    
 

4S 14 A B

(S+4)(S 2) S+4 S+2


 


 

S 4

4S 14 16 14
A 1

S 2 2

  
  

 
 

S 2

4S 14 8 14
B 3

S 4 2

  
  


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1 3
Y(S) 2

S+4 S+2

1 1
2

S 2S+4 +
3 3

  

  

 

 

Cauer I:- 

Descending power of S. 

1
(series)

2
(shunt)

2
(series) 2

(shunt)

1
F(S) q (S)

1
Y (S)

1
Z (S)

Y (S)

 





 
1

2

3

4

1
L S

1
R +

1 1
L (S)

R R

 

  

 

 

 

Cauer II:- 

Ascending power of S. 

1

1

2

2

3

1
Z(S) R

1
SL +

1
R

1
SL

R

 



 
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1) Find the 1st Cauer form of 
(S+4)(S+8)

Y(S)
(S+2)(S+6)

  

2

2

S +12S 32
Y(S)

S +8S+12




 

 

 

 

 

 

2 2

2

2

2

S 8S+12 S 12S 32 1 Y

S 8S+12

S4S 20 S 8S+12 Z
4

S 5S

43S 12 4S 20 Y
3

4S+16

34 3S 12 S Z
4

3S

112 4 Y
3

4

0

   



  



  

 



 

1
Y(S) 1

S 1
+

4 14
3S 13

4 3

 




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(2)Find the 2nd Cauer form for 

2

2

2S +8S+6
Z(S)

S +8S+12
  

2

2

6+8S 2S
Z(S)

12 8S S




   





 

 

 

2 2

2

2 2

2 2

2

2 2

2 2

2

1
12+8S+S 6+8S 2S Z

2

1
6 4S+ S

2

3 34S S 12 8S+S Y
S2

912+ S
2

7 3 8S S 4S S Z
2 2 7

84S+ S
7

5 7 49S S S
14 2 5S

7 S
2

5 5S S
14 14

5 S
14

0

Z


 






  



  




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1 1
Z(S)

3 12
+

8 1S
49 17

55S

14

 





 

 

Synthesis of RLC networks:- 

1) Synthesize the impedance function

2S 7S 70
Z(S)

S(S 10)

 



. 

2S 7S 70
Z(S)

S(S 10)

 



has a pole at origin. 

 2 2

2

710S S 70+7S S
S

70 7S

S

 



 

2

2

7 S
Z(S)

S S 10S
 

  

1 2

7 S 1
Z (S) , Z (S)

10S S 10 1
S

  
   
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2) Synthesize a network having impedance function,  

2

3

6S 3S 3S 1
Z(S)

6S 3S

  


  

 3 3 2

3

2

6S 3S 6S 3S +3S 1 1 Z

6S 3S

3S 1

   




 

2

3

3S 1
Z(S) 1

6S 3S


 

  

1 1Z(S) Z (S) Z (S)   

2

2 3

3S 1
Z (S)

6S 3S





 

3

2 3

6S 3S
Y (S)

3S 1




  

 

 

 

2 3

3

2

2

3S 1 6S 3S 2S Y

S 2S

S 3S 1 3S Z

3S

1 S S Y

S

0

  



 



 

 

 

 

 

 



39 
 

Part A 

 

1. What are the properties of RC network? 

2. What is mean by synthesis of network? 

3. Test whether the polynomial H(S) =S5+7S4+5S3+S2+S is Hurwitz. Give reason 

4. Maintain the difference between first cauer form and second cauer form of LC network 

5. What are the two foster forms? 

6. For the given function determine cauer form of realization Y(S) = (S(S+2)(S+4))/(S(S+3)) 

7. Give any two conditions for a polynomial to be Hurwitz. 

8. What are the properties of impedance function? 

9. Write the conditions of the positive real function. 

10. List out the properties of the RL impedance function 

 

Part B 

1. Check whether the given polynomial is Hurwitz or not P(S)=S6+3S5+8S4+15S3+17S2+12S+4 

2.  Realize the given RC network impedance function using foster I and Cauer II forms 

Z(S)=((S+1)(S+4))/(S(S+2)) 

3. Synthesis the transfer impedance Z21=1/(S3+3S2+3S+2) with 1Ω termination. 

4. Discuss the synthesis of RL network by cauer method and obtain first and second cauer of the 

network 

5. Test the following polynomial are Hurwitz 

a) P(S)= S3+4S2+5S+2 

b) P(S)= S4+S3+S2+2S+12   

6. Synthesis the network using foster method II. Give admittance 

Y(S)=((S(S2+2)(S2+4))/((S2+1)(S2+3)) 

7. Find the Two foster realization of Z(S)=(4(S2+1)(S2+16))/(S(S2+4) 

8. Test whether the give equation is Hurwitz polynomial or not 

a) P(S)= S5+8S4+24S3+28S2+23S+6 

b) F(S)= 2S6+S5+13S4+6S3+56S2+25S+25 

9. Find two cauer realization of driving point function given by Z(S)=(10S4+12S2+1)/(2S3+2S) 

10. The driving point impedance of a one port reactive network is given by Z(S)= 

(5(S2+4)(S2+25))/(S(S2+16)) obtain first and second foster networks  

 



 

1 

 

 
SCHOOL OF ELECTRICAL AND ELECTRONICS 

DEPARTMENT OF ELECTRICAL AND ELECTRONICS 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

  

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

UNIT – V – NETWORK TOPOLOGY   
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 NETWORK TOPOLOGY 
 

1. Basic definitions: 

Network Topology: 

 Is another method of solving electric circuits 

 Is generalized approach 

Network: 

A combination of two or more network elements is called a network. 

Topology: 

Topology is a branch of geometry which is concerned with the properties of a geometrical 

figure, which are not changed when the figure is physically distorted, provided that, no parts of the 

figure are cut open or joined together. 

The geometrical properties of a network are independent of the types of elements and their 
values. 

Every element of the network is represented by a line segment with dots at the ends irrespective 
of its nature and value. 

Circuit: 

If the network has at least one closed path it is a circuit. 

Note that every circuit is a network but every network is not a circuit. 

Branch: 

Representation of each element (component) of a electric network by a line segment is a branch. 

Node: 

A point at which two or more elements are joined is a node. End points of the branches are called 
nodes. 

 

Graph: 

It is collection of branches and nodes in which each branch connects two 

nodes. 

Graph of a Network: 

The diagram that gives network geometry and uses lines with dots at the ends to represent 

network element is usually called a graph of a given network. For example, 

 

Fig.5.1 Network 
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Fig.5.2 Graph 

 

SUB GRAPH 

A sub-graph is a subset of branches and nodes of a graph for example branches 1, 2, 3 & 4 

forms a sub-graph. The sub-graph may be connected or unconnected. The sub- graph of graph shown in 

figure 2 is shown in figure 3. 

 

 

Fig.5.3 Sub-graph 

Connected Graph: 

If there exists at least one path from each node to every other node, then graph is said to be 
connected. Example, 

 

 

 

Un-connected Graph: 

Fig.5.4 Connected Graph 

If there exists no path from each node to every other node, the graph is said to be un-connected 

graph. For example, the network containing a transformer (inductively coupled parts) its graph could be 

un-connected. 
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Fig.5.5  
Network 

                                                                                       Fig.5.6 Un-connected Graph 

 

 

 

A sequence of branches going from one node to other is called path. The node once considered 

should not be again considered the same node. 

Loop (Closed Path): 

Loop may be defined as a connected sub-graph of a graph, which has exactly two branches of 
the sub-graph connected to each of its node. 

For example, the  

branches1, 2 & 3 in figure 7 constitute a loop.  
 

 
 

 

 
 

 

 

 

 Fig  5.7 Graph 

 
 

Planar and Non-planar Graphs: 

A planar graph is one where the branches do not cross each other while drawn on a plain sheet 
of paper. If they cross, they are non-planar. 

 

 

 Fig.5.8 Planar Graph                        Fig.5.9 Non-planar graph  
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Oriented Graph: 

The graph whose branches carry an orientation is called an oriented graph 

 

Fig.5.10 Oriented Graph 

The current and voltage references for a given branches are selected with a 
+ve sign at tail side and –ve sign at head 

 

Tree: 

Tree of a connected graph is defined as any set of branches, which together 
Connect all the nodes of the graph without forming any loops. The branches of a tree are called Twigs. 

Co-tree: 

Remaining branches of a graph, which are not in the tree, form a co-tree. The branches of a co-
tree are called links or chords. 

The tree and co-tree for a given oriented graph shown in figure5.11 is shown in 

Figure 5.12 and figure5.13. 

 
 

 

 
 

                      Fig. 5.11 Oriented Graph 
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Fig. 5.12 Trees 

 

 
Fig.5.13 Co-trees 

 

 

 

 

Properties of Tree: 

i) It contains all the nodes of the graph. 

ii) It contains (nt-1) branches. Where ‘nt’ is total number of nodes in the given graph. 

iii) There are no closed paths. 

Total number of tree branches, n = (nt-1) 

Where nt = Total number of nodes Total number of 

links, l = (b-n) 

Where b = Total number of branches in the graph. 

 

 

Degree of Node: 

The number of branches attached to the node is degree of node. 
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II. Complete Incidence Matrix (Aa): 

Incidence matrix gives us the information about the branches, which are joined to the nodes and 

the orientation of the branch, which may be towards a node or away from it. 

Nodes of the graph form the rows and branches form the columns. If the branch is not 

connected to node, corresponding element in the matrix is given the value ‘0’. If a branch is joined, it 

has two possible orientations. If the orientation is away from the node, the corresponding matrix 

element is written as ‘+1’. If it is towards the node, the corresponding matrix element is written as ‘-1’. 

Example: 1) Obtain complete incidence matrix for the graph shown 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution: Aa = 

 

 
 

  
 

Properties of Incidence Matrix: 

i) Each column has only two non-zero elements and all other elements are zero. 

ii) If all the rows of ‘Aa’ are added, the sum will be a row whose elements equal zero. 

If the graph has ‘b’ branches and ‘nt’ nodes, the complete incidence matrix is of the order (nt x b). 

 

III. Reduced Incidence Matrix (A): 
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When one row is eliminated from the complete incidence matrix, the remaining matrix 
is called reduced incidence matrix 

If the graph has ‘b’ branches and ‘nt’ nodes, the reduced incidence matrix is of the order 

(nt-1) x b. 

Example: 2) write the complete and reduced incidence matrix for the given graph shown 

 

Solution: 

 

 

 

Aa = 

 

 

 

 
Example: 3) Draw the oriented graph of incidence matrix shown below 

 

 

 

 

 

Solution: 

Aa = 

Nodes Branches 

1 2 3 4 5 6 

1 1 1 0 0 0 0 

2 0 -1 1 1 0 0 

3 0 0 0 -1 0 1 

4 -1 0 -1 0 1 0 

5 0 0 0 0 -1 -1 

 

1 0 0 0 1 -1 

-1 1 1 0 0 0 

0 -1 0 -1 0 1 
0 0 -1 1 -1 0 
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Total number of nodes = nt = 4 Total number of 

branches = b = 6 
 

 

 

 

 

 

 

 

 

 

Oriented Graph 

 

Example: 4) Draw the oriented graph of incidence matrix shown below 

 

 
 

 

 

                      Oriented Graph 

 

TIESET 

 A tie-set is a set of branches contained in a loop such that each loop contains one link or chord and 

remainder are tree branches. 

Or 

The set of branches forming the closed loop in which link or loop current circulate is called a Tie-set. 

The tie-set consists of only one link and remaining are Twigs.  

• The fundamental loop formed by one link has a unique path in the tree joining the two nodes of the link. 
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This loop is also called f-loop or a tie set.  

• The orientation of the cut-set is same as orientation of link. 

 

TIE-SET SCHEDULE  
For a given network tree, a systematic way of indicating the links through the use of a schedule is called tie-

set schedule 

To write the tie-set for network graph, 

(i) Consider an oriented network graph 

(ii) Write any one possible tree of the network graph 

(iii)Connect a link to the tree branches to form a loop. In the same way form all Fundamental loops. 

(iv)The loop current direction is same as that of the link. 

(v) Form the Matrix the rows denotes the loop and columns denotes the branches 

 

Problem 1:For the Given Network, Write a tie-set Schedule. 
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LOOPS  1  2  3  4  5  6  

ABD  1  0  1  0  0  -1  

ABC  0  0  -1  -1  1  0  

BCD  0  1  0  1  0  1  

 

 

 
 

Problem 2: For the Given Network, Write a tie-set Schedule. 
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Problem 3: Find the Tieset Matrix and the Branch Voltages. 
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CUTSET 

The cut set is a minimal set of branches of the graph, removal of which cuts the graph into two parts. It 

separates the nodes of the graph into two groups. 

• The cut-set consists of only one tree branch and remainders are links.  

• Each branch of the cut-set has one of its terminal incident at a node in one group and its other end at a node 

in the other group and its other end at a node in the other group.  

• The orientation of the cut-set is same as orientation of tree branch. 

CUT-SET SCHEDULE  
For a given network tree, a systematic way of indicating the tree branch voltage through use of a schedule 

called cut-set schedule 

To write the cut-set schedule for network graph, 

(i) Consider an oriented network graph 

(ii) Write any one possible tree of the network graph 

(iii)Assume tree branch voltages as (e1, e2…en) independent variables. 

(iv)Assume the independent voltage variable is same direction as that of a tree branch voltage 

(v) Mark the cut-sets (recognize) in the network graph. 
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PROBLEM 5: Determine the Cut set Schedule 

 
 

 
 

BRANCHES  1  2  3  4  5  6  

NODE A   -1  1  1  0  0  0  
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Problem 6: Find the Cutset Matrix and the Branch Voltages 
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                 Oriented Graph                                                      TREE & Co-TREE  
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Problem 8:For the circuit shown frame the Cutset schedule and find the branch currents 
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DUALITY AND DUAL NETWORK: 

 

The network is said to be dual network of each other if the mesh equations of given network are the 

node equations of other network. The property of duality is a mutual property. If network A is dual 

network B, then the network B is also dual of network A. 

Some of the dual pairs are given in the following table: 
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Methods of drawing the dual of a network 

 

The following steps are followed to draw the dual of given electrical network: 

 

1. A dot is placed in each independent loop of the original network. These dots placed inside the 

loops correspond to the independent nodes in dual network. 

2. A dot is placed outside the given network. This corresponds to the reference node of the 

dual network. 

3. All the dots are connected by dotted lines crossing all the branches. The dotted lines should 

cross only one branch at a time. The dual elements will form the branches connecting the 

corresponding nodes in the dual network. 

Note A: The voltage rise in the clockwise direction corresponds to a current flowing 

towards the independent network. 

Note B: A clockwise current in a loop corresponds to positive polarity for the at the dual 

independent node. 

 

 

    Example  Draw a dual network for the given network below. 

 

 

 

 The procedure for drawing the dual network is given below: 

 

 

      The dual network is given below: 
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