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UNIT I - INTRODUCTION AND INTERNALS 

Introduction to Real-Time Systems, Classification of real time systems, Difference 

between GPOS and RTOS- Real Time Kernels - RTOS Architecture- Features of RTOS- 

POSIX-RT standard 

Introduction to Real-Time Systems 

Real-time operating system (RTOS) is an operating system intended to serve real 

time application that process data as it comes in, mostly without buffer delay. The full form 

of RTOS is Real time operating system. In a RTOS, Processing time requirement are 

calculated in tenths of seconds increments of time. It is time-bound system that can be 

defined as fixed time constraints. In this type of system, processing must be done inside the 

specified constraints. Otherwise, the system will fail. 

Usage of RTOS 

Here are important reasons for using RTOS: 

• It offers priority-based scheduling, which allows you to separate analytical 

processing from non-critical processing. 

• The Real time OS provides API functions that allow cleaner and smaller application 

code. 

• Abstracting timing dependencies and the task-based design results in fewer 

interdependencies between modules. 

• RTOS offers modular task-based development, which allows modular task-based 

testing. 

• The task-based API encourages modular development as a task, will typically have a 

clearly defined role. It allows designers/teams to work independently on their parts 

of the project. 

• An RTOS is event-driven with no time wastage on processing time for the event 

which is not occur 

Components of RTOS 

Here, are important Component of RTOS 
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Fig:1.1: Components of RTOS 

The Scheduler: This component of RTOS tells that in which order, the tasks can be 

executed which is generally based on the priority. 

Symmetric Multiprocessing (SMP): It is a number of multiple different tasks that can be 

handled by the RTOS so that parallel processing can be done. 

Function Library: It is an important element of RTOS that acts as an interface that helps 

you to connect kernel and application code. This application allows you to send the 

requests to the Kernel using a function library so that the application can give the desired 

results. 

Memory Management: this element is needed in the system to allocate memory to every 

program, which is the most important element of the RTOS. 

Fast dispatch latency: It is an interval between the termination of the task that can be 

identified by the OS and the actual time taken by the thread, which is in the ready queue, 

that has started processing. 

User-defined data objects and classes: RTOS system makes use of programming languages 

like C or C++, which should be organized according to their operation. 

Types of RTOS 

Three types of RTOS systems are: 
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Hard Real Time : 

In Hard RTOS, the deadline is handled very strictly which means that given task 

must start executing on specified scheduled time, and must be completed within the 

assigned time duration. 

Example: Medical critical care system, Aircraft systems, etc. 

Firm Real time: 

These type of RTOS also need to follow the deadlines. However, missing a deadline 

may not have big impact but could cause undesired affects, like a huge reduction in quality 

of a product. 

Example: Various types of Multimedia applications. 

Soft Real Time: 

Soft Real time RTOS, accepts some delays by the Operating system. In this type of 

RTOS, there is a deadline assigned for a specific job, but a delay for a small amount of time 

is acceptable. So, deadlines are handled softly by this type of RTOS. 

Example: Online Transaction system and Livestock price quotation System. 

Factors for selecting an RTOS 

Here, are essential factors that you need to consider for selecting RTOS: 

Performance: Performance is the most important factor required to be considered while 

selecting for a RTOS. 

Middleware: if there is no middleware support in Real time operating system, then the 

issue of time-taken integration of processes occurs. 

Error-free: RTOS systems are error-free. Therefore, there is no chance of getting an error 

while performing the task. 

Embedded system usage: Programs of RTOS are of small size. So we widely use RTOS for 

embedded systems. 

Maximum Consumption: we can achieve maximum Consumption with the help of RTOS. 

Task shifting: Shifting time of the tasks is very less. 

 



5 
 

Unique features: A good RTS should be capable, and it has some extra features like how it 

operates to execute a command, efficient protection of the memory of the system, etc. 

24/7 performance: RTOS is ideal for those applications which require to run 24/7. 

Here are important differences between GPOS and RTOS: 

Table:1.1:Difference between in GPOS and RTOS 

General-Purpose Operating System (GPOS) Real-Time Operating System (RTOS) 

It used for desktop PC and laptop It is only applied to the embedded 

application. 

Process-based Scheduling Time-based scheduling used like round-

robin scheduling 

Interrupt latency is not considered as 

important as in RTOS 
Interrupt lag is minimal, which is measured 

in a few microseconds. 

No priority inversion mechanism is present 

in the system. 

The priority inversion mechanism is 

current. So it cannot modify by the system. 

Kernel's operation may or may not be 

preempted. 

Kernel's operation can be preempted. 

Priority inversion remain unnoticed No predictability guarantees 

Applications of Real Time Operating System 

Real-time systems are used in: 

• Airlines reservation system. 

• Air traffic control system. 

• Systems that provide immediate updating. 

• Used in any system that provides up to date and minute information on stock 

prices. 

• Defense application systems like RADAR. 

• Networked Multimedia Systems 

• Command Control Systems 

• Internet Telephony 

• Anti-lock Brake Systems 

• Heart Pacemaker 
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Disadvantages of RTOS 

Here, are drawbacks/cons of using RTOS system: 

• RTOS system can run minimal tasks together, and it concentrates only on those 

applications which contain an error so that it can avoid them. 

• RTOS is the system that concentrates on a few tasks. Therefore, it is really hard 

for these systems to do multi-tasking. 

• Specific drivers are required for the RTOS so that it can offer fast response time 

to interrupt signals, which helps to maintain its speed. 

• Plenty of resources are used by RTOS, which makes this system expensive. 

• The tasks which have a low priority need to wait for a long time as the RTOS 

maintains the accuracy of the program, which are under execution. 

• Minimum switching of tasks is done in Real time operating systems. 

• It uses complex algorithms which is difficult to understand. 

• RTOS uses lot of resources, which sometimes not suitable for the system. 

RTOS Architecture – Kernel 

RTOS Architecture 

For simpler applications, RTOS is usually a kernel but as complexity increases, 

various modules like networking protocol stacks debugging facilities, device I/Os are 

includes in addition to the kernel. The general architecture of RTOS is shown in the below 

fig 1.2  

 

Fig:1.2: RTOS Architecture 
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Kernel 

 

RTOS kernel acts as an abstraction layer between the hardware and the 

applications. There are three broad categories of kernels  

·    

Monolithic kernel 

 

Monolithic kernels are part of Unix-like operating systems like Linux, FreeBSD etc. 

A monolithic kernel is one single program that contains all of the code necessary to 

perform every kernel related task. It runs all basic system services (i.e. process and 

memory management, interrupt handling and I/O communication, file system, etc) and 

provides powerful abstractions of the underlying hardware. Amount of context switches 

and messaging involved are greatly reduced which makes it run faster than microkernel. 

·   Microkernel  

 

It runs only basic process communication (messaging) and I/O control. It normally 

provides only the minimal services such as managing memory protection, Inter process 

communication and the process management. The other functions such as running the 

hardware processes are not handled directly by micro kernels.  Thus, micro kernels 

provide a smaller set of simple hardware abstractions. It is more stable than monolithic as 

the kernel is unaffected even if the servers failed (i.e., File System). Micro kernels are part 

of the operating systems like AIX, BeOS, Mach, Mac OS X, MINIX, and QNX. Etc  

 

·          

Hybrid Kernel 

 

Hybrid kernels are extensions of micro kernels with some properties of monolithic 

kernels. Hybrid kernels are similar to micro kernels, except that they include additional 

code in kernel space so that such code can run more swiftly than it would were it in user 

space. These are part of the operating systems such as Microsoft Windows NT, 2000 and 

XP. Dragon Fly BSD, etc   

·    

Exokernel 

 

Exokernels provides efficient control over hardware. It runs only services protecting 

the resources (i.e. tracking the ownership, guarding the usage, revoking access to resources, 

etc) by providing low-level interface for library operating systems and leaving the 

management to the application. 

 

Six types of common services are shown in the following figure below and explained 

in subsequent sections  
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Fig:1.3: Representation of Common Services Offered By a RTOS System 

Architecture – Task Management 

Task Management 

 In RTOS, The application is decomposed into small, schedulable, and sequential 

program units known as “Task”, a  basic unit of execution and is governed by three time-

critical properties; release time, deadline and execution time. Release time refers to the 

point in time from which the task can be executed. Deadline is the point in time by which 

the task must complete. Execution time denotes the time the task takes to execute. 

 

 

Fig:1.4: Use of RTOS for Time Management Application 

Each task may exist in following states 

Dormant : Task doesn’t require computer time 

Ready:  Task is ready to go active state, waiting processor time 

Active: Task is running 
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Suspended: Task put on hold temporarily 

Pending: Task waiting for resource. 

 

Fig:1.5: Representation of  Different Time Management Tasks Done by an RTOS 

During the execution of an application program, individual tasks are continuously 

changing from one state to another. However, only one task is in the running mode (i.e. 

given CPU control) at any point of the execution. In the process where CPU control is 

change from one task to another, context of the to-be-suspended task will be saved while 

context of the to-be-executed task will be retrieved, the process referred to as context 

switching. A task object is defined by the following set of components: 

 

Task Control block: Task uses TCBs to remember its context. TCBs  are data structures 

residing in RAM, accessible only by RTOS 

 

Task Stack: These reside in RAM, accessible by stack pointer. 

 

    Task Routine: Program code residing in ROM 

 

Scheduler: The scheduler keeps record of the state of each task and selects from among 

them that are ready to execute and allocates the CPU to one of them. Various scheduling 

algorithms are used in RTOS. 

Polled Loop: Sequentially determines if specific task requires time. 



10 
 

 

Fig:1.6: Process Flow of a Scheduler 

Polled System with interrupts. In addition to polling, it takes care of critical tasks. 

 

 

Fig:1.7: A Figure Illustrating Polled Systems with Interrupts 

Round Robin : Sequences from task to task, each  task getting a slice of time 

 

Fig:1.8: Round Robin Sequences From Task to Task 

Hybrid System: Sensitive to sensitive interrupts, with Round Robin system working in 

background 

 Interrupt Driven:  System continuously wait for the interrupts 

Non pre-emptive scheduling or Cooperative Multitasking: Highest priority task executes 

for some time, then relinquishes control, re-enters ready state 
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Fig:1.9: Non-Preemptive Scheduling or Cooperative Multitasking 

Preemptive scheduling Priority multitasking:  Current task is immediately 

suspended Control is given to the task of the highest priority at all time. 

 

Fig:1.10: Preemptive Scheduling or Priority Multitasking 

Dispatcher : The dispatcher gives control of the CPU to the task selected by the scheduler 

by performing context switching and changes the flow of execution. 

Synchronization and communication: 

Task Synchronization & inter task communication serves to pass information amongst 

tasks. 

Task Synchronization 

 

Synchronization is essential for tasks to share mutually exclusive resources (devices, 

buffers, etc) and/or allow multiple concurrent tasks to be executed (e.g. Task A needs a 

result from task B, so task A can only run till task B produces it. 

Task synchronization is achieved using two types of mechanisms: 
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Event Objects 

 

Event objects are used when task synchronization is required without resource 

sharing. They allow one or more tasks to keep waiting for a specified event to occur. Event 

object can exist either in triggered or non-triggered state.  Triggered state indicates 

resumption of the task. 

 

Semaphores. 

 

A semaphore has an associated resource count and a wait queue. The resource count 

indicates availability of resource. The wait queue manages the tasks waiting for resources 

from the semaphore. A semaphore functions like a key that define whether a task has the 

access to the resource. A task gets an access to the resource when it acquires the 

semaphore. 

 

There are three types of semaphore: 

• Binary Semaphores 

• Counting Semaphores 

• Mutually Exclusion (Mutex) Semaphores 

 

Semaphore functionality (Mutex) represented pictorially in the following figure 

 

 

Fig:1.11: Architecture of Semaphore Functionality 

Inter task communication 

 

Inter task communication involves sharing of data among tasks through sharing of 

memory space, transmission of data, etc. Inter task communications is executed using 

following mechanisms 

 

Message queues  

 

A message queue is an object used for inter task communication through which task 

send or receive messages placed in a shared memory. The queue may follow 1) First In 

First Out (FIFO), 2) Last in First Out(LIFO) or 3) Priority (PRI) sequence. Usually, a 

message queue comprises of an associated queue control block (QCB), name, unique ID, 
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memory buffers, queue length, maximum message length and one or more task waiting 

lists. A message queue with a length of 1 is commonly known as a mailbox. 

 

 

Fig:1.12: Flow of a Message Queue in a Mailbox 

Pipes 

A pipe is an object that provide simple communication channel used for 

unstructured data exchange among tasks. A pipe does not store multiple messages but 

stream of bytes. Also, data flow from a pipe cannot be prioritized. 

 

Remote procedure call (RPC) 

 

 It permits distributed computing where task can invoke the execution of another 

task on a remote computer. 

 

Memory Management 

Two types of memory managements are provided in RTOS – Stack and Heap. Stack 

management is used during context switching for TCBs. Memory other than memory used 

for program code, program data and system stack is called heap memory and it is used for 

dynamic allocation of data space for tasks. Management of this memory is called heap 

management. 

 

Timer Management 

 

Tasks need to be performed after scheduled durations. To keep track of the delays, 

timers- relative and absolute are provided in RTOS. 

 Interrupt and event handling 

 

RTOS provides various functions for interrupt and event handling, viz., Defining 

interrupt handler, creation and deletion of ISR, referencing the state of an ISR, enabling 

and disabling of an interrupt, etc. It also restricts interrupts from occurring when 

modifying a data structure, minimize interrupt latencies due to disabling of interrupts 

when RTOS is performing critical operations, minimizes interrupt response times. 

  

Device I/O Management 

 

RTOS generally provides large number of APIs to support diverse hardware device 

drivers. 
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Features of RTOS 

Here are important features of RTOS: 

• Occupy very less memory 

• Consume fewer resources 

• Response times are highly predictable 

• Unpredictable environment 

• The Kernel saves the state of the interrupted task ad then determines which task 

it should run next. 

• The Kernel restores the state of the task and passes control of the CPU for that 

task. 

POSIX (Portable Operating System Interface) 

POSIX (Portable Operating System Interface) is a set of standard operating system 

interfaces based on the Unix operating system. The need for standardization  arose 

because enterprises using computers wanted to be able to develop programs that could be 

moved among different manufacturer's computer systems without having to be recoded. 

Unix was selected as the basis for a standard system interface partly because it was 

"manufacturer-neutral." However, several major versions of Unix existed so there was a 

need to develop a common denominator system. 

Informally, each standard in the POSIX set is defined by a decimal following the 

POSIX. Thus, POSIX.1 is the standard for an application program interface in 

the C language. POSIX.2 is the standard shell and utility interface (that is to say, the user's 

command interface with the operating system). These are the main two interfaces, but 

additional interfaces, such as POSIX.4 for thread management, have been developed or are 

being developed. The POSIX interfaces were developed under the auspices of the Institute 

of Electrical and Electronics Engineers (IEEE). 

 

POSIX.1 and POSIX.2 interfaces are included in a somewhat larger interface 

known as the X/Open Programming Guide (also known as the "Single UNIX Specification" 

and "UNIX 03"). The Open Group, an industry standards group, owns the UNIX 

trademark and can thus "brand" operating systems that conform to the interface as 

"UNIX" systems. IBM's OS/390 is an example of an operating system that includes a 

branded UNIX interface. 

Terms used in RTOS 

Here, are essential terms used in RTOS: 

• Task – A set of related tasks that are jointly able to provide some system 

functionality. 

https://searchsqlserver.techtarget.com/definition/record-standardization
https://searchwindowsserver.techtarget.com/definition/enterprise
https://searchwindowsserver.techtarget.com/definition/C
https://searchdatacenter.techtarget.com/definition/shell
https://whatis.techtarget.com/definition/utility
https://searchwindowsserver.techtarget.com/definition/command-line-interface-CLI
https://searchwindowsserver.techtarget.com/definition/command-line-interface-CLI
https://whatis.techtarget.com/definition/thread
https://whatis.techtarget.com/definition/IEEE-Institute-of-Electrical-and-Electronics-Engineers
https://whatis.techtarget.com/definition/Single-UNIX-Specification
https://searchoracle.techtarget.com/definition/The-Open-Group
https://searchdatacenter.techtarget.com/definition/OS-390
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• Job – A job is a small piece of work that can be assigned to a processor, and that 

may or may not require resources. 

• Release time of a job – It's a time of a job at which job becomes ready for 

execution. 

• Execution time of a job: It is time taken by job to finish its execution. 

• Deadline of a job: It's time by which a job should finish its execution. 

• Processors: They are also known as active resources. They are important for the 

execution of a job. 

• Maximum it is the allowable response time of a job is called its relative deadline 

• Response time of a job: It is a length of time from the release time of a job when 

the instant finishes. 

• Absolute deadline: This is the relative deadline, which also includes its release 

time. 

Summary 

RTOS is an operating system intended to serve real time application that process 

data as it comes in, mostly without buffer delay. It offers priority-based scheduling, which 

allows you to separate analytical processing from non-critical processing. Important 

components of RTOS system are:  

• The Scheduler 

• Symmetric Multiprocessing 

• Function Library 

• Memory Management 

• Fast dispatch latency and  

• User-defined data objects and classes.  

RTOS system occupy very less memory and consume fewer resources. Performance 

is the most important factor required to be considered while selecting for a RTOS. 

General-Purpose Operating System (GPOS) is used for desktop PC and laptop while Real-

Time Operating System (RTOS) only applied to the embedded application. Real-time 

systems are used in Airlines reservation system, Air traffic control system, etc. The biggest 

drawback of RTOS is that the system only concentrates on a few tasks. 
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II  PERFORMANCE METRICS AND SCHEDULING ALGORITHMS 

Performance Metrics of RTOS- Task Specifications-Task state - Real Time 

Scheduling algorithms: Cyclic executive, Rate monotonic, IRIS and Least laxity 

scheduling- Schedulability Analysis 

Performance Metrics of RTOS 

An embedded system typically has enough CPU power to do the job, but 

typically only just enough — there is no excess. Memory size is usually limited. 

It is not unreasonably small, but there isn't likely to be any possibility of adding 

more. Power consumption is usually an issue and the software — its size and 

efficiency – can have a significant bearing on the number of watts burned by the 

embedded device.  It is clear that it is vital in an embedded system that the real 

time operating system (RTOS) has the smallest possible impact on memory 

footprint and makes very efficient use of the CPU. 

 

RTOS metrics 

 

There are three areas of interest when looking at the performance and usage 

characteristics of an RTOS: 

 

• Memory – how much ROM and RAM does the kernel need and how is 

this affected by options and configuration 

 

• Latency - which is broadly the delay between something happening and 

the response to that occurrence. This is a particular minefield of 

terminology and misinformation, but there are two essential latencies to 

consider: interrupt response and task scheduling. 

 

• Performance of kernel services - How long does it take to perform  

specific actions. A key problem is that there is no real standardization. 

One possibility would be the Embedded Microprocessor Benchmark 

Consortium, but that does not cover all MCUs and, anyway, it is more 

oriented towards CPU, rather than MPU, benchmarking. 

 

RTOS Metrics – Memory footprint 

As all embedded systems have some limitations on available memory, the 

requirements of an RTOS, on a given CPU, need to be understood. An OS will 

use both ROM and RAM. ROM, which is normally flash memory, is used for 

the kernel, along with code for the runtime library and any middleware 

components. This code – or parts of it – may be copied to RAM on boot up, as 

this can offer improved performance. There is also likely to be some read only 

data. If the kernel is statically configured, this data will include extensive 
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information about kernel objects. However, nowadays, most kernels are 

dynamically configured. 

 

RAM space will be used for kernel data structures, including some or all 

of the kernel object information, again depending upon whether the kernel  is 

statically or dynamically configured. There will also be some global variables. If 

code is copied from flash to RAM, that space must also be accounted for. There 

are a number of factors that affect the memory footprint of an RTOS. The CPU 

architecture is key. The number of instructions can vary drastically from one 

processor to another, so looking at size figures for, say, PowerPC gives no 

indication of what the ARM version might be like. 

 

Embedded compilers generally have a large number of optimization 

settings. These can be used to reduce code size, but that will most likely affect 

performance. Optimizations affect ROM footprint, and also RAM. Data size can 

also be affected by optimization, as data structures can be packed or unpacked. 

Again both ROM and RAM can be affected. Packing data has an adverse effect 

on performance. Most RTOS products have a number of optional components. 

Obviously, the choice of those components will have a very significant effect 

upon memory footprint. Most RTOS kernels are scalable, which means that, all 

being well, only the code to support required functionality is included in the 

memory image. For some RTOS, scalability only applies to the kernel. For 

others, scalability is extended to the rest of the middleware. 

 

Although an RTOS vendor may provide or publish memory usage 

information, you may wish to make measurements yourself in order to ensure 

that they are representative of the type of application that you are designing. 

These measurements are not difficult. Normally the map file, generated by the 

linker, gives the necessary memory utilization data. Different linkers produce 

different kinds of map files with varying amounts of information included in a 

variety of formats. Possibilities extend from a mass of hex numbers through to 

an interactive HTML document and everything in between. There are some 

specialized tools that extract memory usage information from executable files. 

An example is obj dump . 

Interrupt latency 

 

The time related performance measurements are probably of most concern to 

developers using an RTOS. A key characteristic of a real time system is its 

timely response to external events and an embedded system is typically notified 

of an event by means of an interrupt, so interrupt latency is critical. 

 

• System: the total delay between the interrupt signal being asserted and 

the start of the interrupt service routine execution. 

• OS: the time between the CPU interrupt sequence starting and the 
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initiation of the ISR. This is really the operating system overhead, but 

many people refer to it as the latency. This means that some vendors claim 

zero interrupt latency. 

 

 

Fig:2.1: Interrupt latency 

Measurement 

 

Interrupt response is the sum of two distinct times: 

 

ƮIL = ƮH + ƮOS 

 

where: 

 

• ƮH is the hardware dependent time, which depends on the interrupt 

controller on the board as well as the type of the interrupt 

 

• ƮOS is the OS induced overhead 

 

Ideally, quoted figures should include the best and worst case scenarios. The 

worst case is when the kernel disables interrupts. To measure a time interval, 

like interrupt latency, with any accuracy, requires a suitable instrument. The 

best tool to use is an oscilloscope. One approach is to use one pin on a GPIO 

interface to generate the interrupt. This pin can be monitored on the ‘scope. At 

the start of the interrupt service routine, another pin, which is also being 

monitored, is toggled. The interval between the two signals may be easily read 

from the instrument. 

Importance 
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Many embedded systems are real time and it is those applications, along with 

fault tolerant systems, where knowledge of interrupt latency is important. If the 

requirement is to maximize bandwidth on a particular interface, the latency on 

that specific interrupt needs to be measured. To give an idea of numbers, the 

majority of systems exhibit no problems, even if they are subjected to interrupt 

latencies of tens of microseconds 

 

Interrupt latency is the sum of the hardware dependent time, which 

depends on the interrupt controller as well as the type of the interrupt, and 

the OS induced overhead. Ideally, quoted figures should include the best and 

worst case scenarios. The worst case is when the kernel disables interrupts. 

To measure a time interval, like interrupt latency, with any accuracy, 

requires a suitable instrument and the  best tool to use is an oscilloscope. One 

approach is to use one pin on a GPIO interface to generate the interrupt and 

monitor it on the 'scope. At the start of the interrupt service routine, another 

pin, which is also being monitored, is toggled and the interval between the 

two signals may be easily read. 

Scheduling latency 

 

A key part of the functionality of an RTOS is its ability to support a multi- 

threading execution environment. Being real time, the efficiency at which 

threads or tasks are scheduled is of some importance and the scheduler is at the 

core of an RTOS. so it is reasonable that a user might be interested in its 

performance. It is hard to get a clear picture of performance, as there is a wide 

variation in the techniques employed to make measurements and in the 

interpretation of the results. 

 

There are really two separate measurements to consider: 

 

• The context switch time 

• The time overhead that the RTOS introduces when scheduling a task 

 

Timing kernel services 

 

An RTOS is likely to have a great many system service API (application 

program interface) calls, probably numbering into the hundreds. To assess 

timing, it is not useful to try to analyze the timing of every single call. It makes 

more sense to focus on the frequently used services. 

 

For most RTOS there are four key categories of service call: 

 

• Threading services 

• Synchronization services 
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• Inter-process communication services 

• Memory services 

 

 All RTOS vendors provide performance data for their products, some of 

which is more comprehensive than others. This information may be very useful, but 

can also be misleading if interpreted incorrectly. It is important to understand the 

techniques used to make measurements and the terminology used to describe the 

results. There are also trade-offs – generally size against speed – and these, too, need 

to be thoroughly understood. Without this understanding, a fair comparison is not 

possible. If timing is critical to your application, it is strongly recommend that you 

perform your own measurements. This enables you to be sure that the hardware 

and software environment is correct and that the figures are directly relevant to 

your application. 

 Real Time Scheduling algorithms 

 

 In real time operating systems(RTOS) most of the tasks are periodic in 

nature. Periodic data mostly comes from sensors, servo control, and real- 

time monitoring systems. In real time operating systems, these periodic tasks 

utilize most of the processor computation power. A real-time control system 

consists of many concurrent periodic tasks having individual timing 

constraints. These timing constraints include release time (ri), worst case 

execution time(Ci), period (ti) and deadline(Di) for each individual task Ti. 

Real time embedded systems have time constraints linked with the output of 

the system. The scheduling algorithms are used to determine which task is 

going to execute when more than one task is available in the ready queue.  

  The operating system must guarantee that each task is activated at its 

proper rate and meets its deadline. To ensure this, some periodic scheduling 

algorithms are used. There are basic two types of scheduling algorithms 
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Fig:2.2:Classification of scheduling algorithm 

 

Offline Scheduling Algorithm 

 

Offline scheduling algorithm selects a task to execute with reference to a 

predetermined schedule, which repeats itself after specific interval of time. For 

example, if we have three tasks Ta, Tb and Tc then Ta will always execute first, 

then Tb and after that Tc respectively. 

Online Scheduling Algorithm 

 

In Online scheduling a task executes with respect to its priority, which is 

determined in real time according to specific rule and priorities of tasks may 

change during execution. The online line scheduling algorithm has two types. 

They are more flexible because they can change the priority of tasks on run time 

according to the utilization factor of tasks. 

 

Fixed priority algorithms 

 

In fixed priority if the kth job of a task T1 has higher priority than the kth 

job of task T2 according to some specified scheduling event, then every job of 

T1 will always execute first then the job of T2 i.e. on next occurrence priority 

does not change. More formally, if job J(1,K) of task T1 has higher priority than 

J(2,K) of task T2 then J(1,K+1) will always has higher priority than of J(2,K+1) 

. One of best example of fixed priority algorithm is rate monotonic scheduling 

algorithm. 

Dynamic priority algorithms 

 

In dynamic priority algorithm, different jobs of a task may have 

different priority on next occurrence, it may be higher or it may be lower than 



8 
 

the other tasks. One example of a dynamic priority algorithm is the earliest 

deadline first algorithm. 

 

Processor utilization factor (U) 

 

For a given task set of n periodic tasks, processor utilization factor U is the 

fraction of time that is spent for the execution of the task set. If Si is a task from 

task set then Ci/Ti is the time spent by the processor for the execution of Si . 

Processor utilization factor is denoted as 

 

Similarly, for the task set of n periodic tasks processor utilization is greater 

than one then that task set will not be schedulable  by any algorithm. Processor 

utilization factor tells about the processor load on a single processor. U=1 means 

100% processor utilization. Following scheduling algorithms will be discussed in 

details 

Rate Monotonic (RM) Scheduling Algorithm 

 

The Rate Monotonic scheduling algorithm is a simple rule that assigns 

priorities to different tasks according to their time period. That is task with 

smallest time period will have highest priority and a task with longest time 

period will have lowest priority for execution. As the time period of a task does 

not change so not its priority changes over time, therefore Rate monotonic is 

fixed priority algorithm. The priorities are decided before the start of execution 

and they does not change overtime. 

Rate monotonic scheduling Algorithm works on the principle of 

preemption. Preemption occurs on a given processor when higher priority task 

blocked lower priority task from execution. This blocking occurs due to priority 

level of different tasks in a given task set. rate monotonic is a preemptive 

algorithm which means if a task with shorter period comes during execution it 

will gain a higher priority and can block or preemptive currently running tasks. 

In RM priorities are assigned according to time period. Priority of a task is 

inversely proportional to its timer period.  

Task with lowest time period has highest priority and the task with 

highest period will have lowest priority. A given task is scheduled under rate 

monotonic scheduling Algorithm, if its satisfies the following equation: 

Example of Rate Monotonic (RM) Scheduling Algorithm 

 

For example, we have a task set that consists of three tasks as follows 

 

Table 2.1 Rate Monotonic (RM) Scheduling Algorithm 
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Tasks Release 

time(ri) 

Execution 

time(Ci) 

Deadline (Di) Time 

period(Ti) 

T1 0 0.5 3 3 

T2 0 1 4 4 

T3 0 2 6 6 

 

Task set U= 0.5/3 +1/4 +2/6 = 0.167+ 0.25 + 0.333 = 0.75 

 

As processor utilization is less than 1 or 100% so task set is schedulable and 

it also  

satisfies the above equation of rate monotonic scheduling algorithm. 

 

 

Fig:2.3: RM scheduling of Task set in Table 2.1 

 

A task set given in the above table is RM scheduling in the given figure. The 

explanation of above is as follows 

1. According to RM scheduling algorithm task with shorter period has 

higher priority so T1 has high priority, T2 has intermediate priority and 

T3 has lowest priority. At t=0 all the tasks are released. Now T1 has 

highest priority so it executes first till t=0.5. 

2. At t=0.5 task T2 has higher priority than T3 so it executes first for one-

time units till t=1.5. After its completion only one task is remained in the 

system that is T3, so it starts its execution and executes till t=3. 

3. At t=3 T1 releases, as it has higher priority than T3 so it preempts or 

blocks T3 and starts it execution till t=3.5. After that the remaining part 

of T3 executes. 

4. At t=4 T2 releases and completes it execution as there is no task running 

in the system at this time. 

5. At t=6 both T1 and T3 are released at the same time but T1 has higher 

priority due to shorter period so it preempts T3 and executes till t=6.5, 

after that T3 starts running and executes till t=8. 
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6. At t=8 T2 with higher priority than T3 releases so it preempts T3 and 

starts its execution. 

7. At t=9 T1 is released again and it preempts T3 and executes first and at 

t=9.5 T3 executes its remaining part. Similarly, the execution goes on. 

 

Advantages 

• It is easy to implement. 

• If any static priority assignment algorithm can meet the deadlines then 

rate monotonic scheduling can also do the same. It is optimal. 

• It consists of calculated copy of the time periods unlike other time-sharing 

algorithms as Round robin which neglects the scheduling needs of the 

processes. 

Disadvantages 

• It is very difficult to support a periodic and sporadic tasks under RMA. 

• RMA is not optimal when tasks period and deadline differ. 

 

Least laxity scheduling 

Least Laxity First (LLF) is a job level dynamic priority scheduling 

algorithm. It means that every instant is a scheduling event because laxity of 

each task changes on every instant of time. A task which has least laxity at an 

instant, it will have higher priority than others at this instant. 

Introduction to Least Laxity first (LLF) scheduling Algorithm 

 

More formally, priority of a task is inversely proportional to its run time 

laxity. As the laxity of a task is defined as its urgency to execute. Mathematically  

it is described as 

 

 

Here Di is the deadline of a task, Ci is the worst-case execution 

time(WCET) and Li  

is laxity of a task. It means laxity is the time remaining after completing the 

WCET before the deadline arrives. For finding the laxity of a task in run time 

current instant of time also included in the above formula. 

Here is the current instant of time and is the remaining WCET of the 

task. By using the above equation laxity of each task is calculated at every 

instant of time, then the priority is assigned. One important thing to note is that 
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laxity of a running task does not changes it remains same whereas the laxity all 

other tasks is decreased by one after every one-time unit. 

Example of Least Laxity first scheduling Algorithm 

 

An example of LLF is given below for a task set. 

 

Table 2.2 Least Laxity first scheduling Algorithm 

 

Task 
Release 

time(ri) 

Execution 

Time(Ci) 

Deadline 

(Di) 
Period(Ti) 

T1 0 2 6 6 

T2 0 2 8 8 

T3 0 3 10 10 

 

 

 

 

 
 

Fig:2.4: LLF scheduling algorithm 

 

1. At t=0 laxities of each task are calculated by using the equation 

  L1 = 6-(0+2) =4 

L2 = 8-(0+2) =6 

L3= 10-(0+3) =7 
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As task T1 has least laxity so it will execute with higher priority. 

Similarly, At t=1 its priority is calculated it is 4 and T2 has 5 and T3 has 6, 

so again due to least laxity T1 continue to execute. 

2. At t=2 T1is out of the system so Now we compare the laxities of T2 and 

T3 as following 

L2= 8-(2+2) =4 

L3= 10-(2+3) =5 

Clearly T2 starts execution due to less laxity than T3. At t=3 T2 

has laxity 4 and T3 also has laxity 4, so ties are broken randomly so we 

continue to execute T2. At t=4 no task is remained in the system except 

T3 so it executes till t=6. At t=6 T1 comes in the system so laxities are 

calculated again 

L1 = 6-(0+2) =4 

L3= 10-(6+1) =3 

So T3 continues its execution. 

3. At t=8 T2 comes in the system where as T1 is running task. So at this 

instant laxities are calculated 

L1 = 12-(8+1) =3 

L2= 16-(8+2) =6 

So T1 completes its execution. After that T2 starts running and at 

t=10 due to laxity comparison T2 has higher priority than T3 so it 

completes it execution. 

L2= 16-(10+1) =5 

L3= 20-(10+3) =7 

t=11 only T3 in the system so it starts its execution. 

4. At t=12 T1 comes in the system and due to laxity comparison at t=12 T1 

wins the priority and starts its execution by preempting T3. T1 completes 

it execution and after that at t=14 due to alone task T3 starts running its 

remaining part. So, in this way this task set executes under LLF 

algorithm. 

 

LLF is an optimal algorithm because if a task set will pass utilization test 

then it is surely schedulable by LLF. Another advantage of LLF is that it 

some advance knowledge about which task going to miss its deadline. On 

other hand it also has some disadvantages as well one is its enormous 

computation demand as each time instant is a scheduling event. It gives poor 

performance when more than one task has least laxity. 
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Cyclic executives: 

• Scheduling tables 

• Frames 

• Frame size constraints 

• Generating schedules 

• Non-independent tasks 

• Pros and cons 

 

Cyclic Scheduling 

This is an important way to sequence tasks in a real time system. Cyclic 

scheduling is static – computed offline and stored in a table. Task scheduling is 

non-preemptive. Non-periodic work can be run during time slots not used by 

periodic tasks. Implicit low priority for non-periodic work. Usually non-periodic 

work must be scheduled preemptively. Scheduling table executes completely in 

one hyper period H. Then repeats H is least common multiple of all task periods 

N quanta per hyper period. Multiple tables can support multiple system modes 

E.g., an aircraft might support takeoff, cruising, landing, and taxiing modes. 

Mode switches permitted only at hyper period boundaries. Otherwise, 

hard to meet deadlines. 

 

 

Frames: 

Divide hyper periods into frames .Timing is enforced only at frame 

boundaries.  

 Consider a system with four task  
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task is executed as a function call and must fit within a single frame. Multiple 

tasks may be executed in a frame size is f Number of frames per hyper period is 

F = H/f. 

 

Frame Size Constraints: 

 

1. Tasks must fit into frames so, f ≥ Ci for all tasks Justification: Non-

preemptive tasks should finish executing within a single frame 

2. f must evenly divide H Equivalently, f must evenly divide P for some task i 

Justification: Keep table size small 

3. There should be a complete frame between the release and deadline of 

every task 

Justification: Want to detect missed deadlines by the time the deadline arrives 

Cyclic executive is one of the major software architectures for embedded 

systems. Historically, cyclic executives dominate safety-critical systems 

Simplicity and predictability wins. However, there are significant drawbacks. 

Finding a schedule might require significant offline computation. 
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Drawbacks: 

 

• Difficult to incorporate sporadic processes. 

• Incorporate processes with long periods 

• Problematic for tasks with dependencies – Think about an OS without 

synchronization 

• Time consuming to construct the cyclic executive – Or adding a new task 

to the task set 

• “Manual” scheduler construction 

• Cannot deal with any runtime changes 

• Denies the advantages of concurrent 

programming  

 

         Summary: 

• Off-line scheduling 

• Doesn’t use the process abstraction of the OS 

• Manually created table of procedures to be called – Waits for a periodic 

interrupt for synchronization 

• Minor cycle – Loops the execution of the procedures in the table 
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III  RESOURCE SHARING FOR REAL TIME TASKS 

Resource sharing among tasks- Priority inversion Problem - Priority inheritance and 

Priority ceiling Protocols – Features of commercial and open source real time operating 

systems: Vxworks, QNX, Micrium OS, RT Linux and Free RTOS 

 

Sharing of critical resources among tasks requires a different set of rules, compared 

to the rules used for sharing resources such as a CPU among tasks. We have in the last 

Chapter discussed how resources such as CPU can be shared among tasks. Priority 

inversion is a operating system scenario in which a higher priority process is preempted by 

a lower priority process. This implies the  inversion of the priorities of the two processes. 

 

Problems due to Priority Inversion 

Some of the problems that occur due to priority inversion are given as follows − 

 

• A system malfunction may occur if a high priority process is not provided the 

required resources. 

• Priority inversion may also lead to implementation of corrective measures. These 

may include the resetting of the entire system. 

• The performance of the system can be reduces due to priority inversion. This may 

happen because it is imperative for higher priority tasks to execute promptly. 

• System responsiveness decreases as high priority tasks may have strict time 

constraints or real time response guarantees. 

• Sometimes there is no harm caused by priority inversion as the late execution of the 

high priority process is not noticed by the system. 

Solutions of Priority Inversion 

Some of the solutions to handle priority inversion are given as follows − 

 

• Priority Ceiling 

All of the resources are assigned a priority that is equal to the highest priority of any 

task that may attempt to claim them. This helps in avoiding priority inversion 

• Disabling Interrupts 

There are only two priorities in this case i.e. interrupts disabled and preemptible. So 

priority inversion is impossible as there is no third option. 

 

• Priority Inheritance 

This solution temporarily elevates the priority of the low priority task that is 

executing to the highest priority task that needs the resource. This means that 

medium priority tasks cannot intervene and lead to priority inversion. 

  

• No blocking 

Priority inversion can be avoided by avoiding blocking as the low priority task 
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blocks the high priority task. 

 

• Random boosting 

The priority of the ready tasks can be randomly boosted until they exit the critical 

section. 

Difference between Priority Inversion and Priority Inheritance 

Both of these concepts come under Priority scheduling in Operating System. In one 

line, Priority Inversion is a problem while Priority Inheritance is a solution. Literally, 

Priority Inversion means that priority of tasks get inverted and Priority Inheritance means 

that priority of tasks get inherited. Both of these phenomena happen in priority scheduling. 

Basically, in Priority Inversion, higher priority task 

(H) ends up waiting for middle priority task (M) when H is sharing critical section with 

lower priority task (L) and L is already in critical section. Effectively, H waiting for M 

results in inverted priority i.e. Priority Inversion. One of the solution for this problem is 

Priority Inheritance. 

In Priority Inheritance, when L is in critical section, L inherits priority of H at the 

time when H starts pending for critical section. By doing so, M doesn’t interrupt L and H 

doesn’t wait for M to finish. Please note that inheriting of priority is done temporarily i.e. L 

goes back to its old priority when L comes out of critical section. 

 

Priority Inheritance Protocol (PIP)  

 

Priority Inheritance Protocol (PIP) is a technique which is used for sharing critical 

resources among different tasks. This allows the sharing of critical resources among different 

without the occurrence of unbounded priority inversions. 

 

Basic Concept of PIP : 

 

The basic concept of PIP is that when a task goes through priority inversion, the 

priority of the lower priority task which has the critical resource is increased by the priority 

inheritance mechanism. It allows this task to use the critical resource as early as possible 

without going through the preemption. It avoids the unbounded priority inversion. 

 

Working of PIP : 

 

When several tasks are waiting for the same critical resource, the task which is 

currently holding this critical resource is given the highest priority among all the tasks 

which are waiting for the same critical resource. Now after the lower priority task 

having the critical resource is given the highest priority then the intermediate priority 

tasks cannot preempt this task. This helps in avoiding the unbounded priority inversion. 

When the task which is given the highest priority among all tasks, finishes the job and 

releases the critical resource then it gets back to its original priority value (which may 

be less or equal). If a task is holding multiple critical resources then after releasing one 

critical resource it cannot go back to it original priority value. In this case it inherits the 

highest priority among all tasks waiting for the same critical resource. 



4 

 

 

Advantages of PIP : 

 

Priority Inheritance protocol has the following advantages: 

• It allows the different priority tasks to share the critical resources. 

• The most prominent advantage with Priority Inheritance Protocol is that it avoids the 

unbounded priority inversion. 

 

Disadvantages of PIP : 

 

Priority Inheritance Protocol has two major problems which may occur: 

 

Deadlock : 

 

There is possibility of deadlock in the priority inheritance protocol. For 

example, there are two tasks T1 and T2. Suppose T1 has the higher priority than T2. 

T2 starts running first and holds the critical resource CR2. After that, T1 arrives and 

preempts T2. T1 holds critical resource CR1 and also tries to hold CR2 which is held by 

T2. Now T1 blocks and T2 inherits the priority of T1 according to PIP. T2 starts execution 

and now T2 tries to hold CR1 which is held by T1. Thus, both T1 and T2 are deadlocked. 

         

      Chain Blocking : 

 

When a task goes through priority inversion each time it needs a resource then 

this process is called chain blocking. For example, there are two tasks T1 and T2. 

Suppose T1 has the higher priority than T2. T2 holds the critical resource CR1 and CR2. 

T1 arrives and requests for CR1. T2 undergoes the priority inversion according to PIP. 

Now, T1 request CR2, again T2 goes for priority inversion according to PIP. Hence, 

multiple priority inversion to hold the critical resource leads to chain blocking. 

 

Priority Ceiling Protocol 

 

In real-time computing, the priority ceiling protocol is a synchronization protocol  

for shared  resources to  avoid  unbounded priority  inversion and   mutual deadlock due to 

wrong nesting of critical sections. In this protocol each resource is assigned a priority 

ceiling, which is a priority equal to the highest priority of any task which may lock the 

resource. The protocol works by temporarily raising the  priorities  of tasks  in  certain  

situations,  thus  it  requires a scheduler that supports dynamic priority scheduling. It is a 

job task synchronization protocol in a real-time system that is better than Priority 

inheritance protocol in many ways. Real-Time Systems are multitasking systems that 

involve the use of semaphore variables, signals, and events for job synchronization. In 

Priority ceiling protocol an assumption is made that all the jobs in the system have a fixed 

priority. It does not fall into a deadlock state. 

 

The chained blocking problem of the Priority Inheritance Protocol is resolved in the 

Priority Ceiling Protocol. 

The basic properties of Priority Ceiling Protocols are: 

https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Resource_(computer_science)
https://en.wikipedia.org/wiki/Priority_inversion
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Critical_section
https://en.wiktionary.org/wiki/priority
https://en.wikipedia.org/wiki/Task_(computers)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Dynamic_priority_scheduling
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1. Each of the resources in the system is assigned a priority ceiling. 

2. The assigned priority ceiling is determined by the highest priority among all the jobs 

which may acquire the resource. 

3. It makes use of more than one resource or semaphore variable, thus eliminating chain 

blocking. 

4. A job is assigned a lock on a resource if no other job has acquired lock on that 

resource. 

5. A job J, can acquire a lock only if the job’s priority is strictly greater than the priority 

ceilings of all the locks held by other jobs. 

6. If a high priority job has been blocked by a resource, then the job holding that 

resource gets the priority of the high priority task. 

7. Once the resource is released, the priority is reset back to the original. 

8. In the worst case, the highest priority job J1 can be blocked by T lower priority tasks 

in the system when J1 has to access T semaphores to finish its execution. 

 

 
                   Fig:3.1: Priority Ceiling Protocol 

 
Priority Scheduling Protocol can be used to tackle the problem of the priority 

inversion problem unlike that of Priority Inheritance Protocol. It makes use of semaphores 

to share the resources with the jobs in a real-time system. 

 

Features of firmware and commercial real time operating systems: 

 

Vx Works features: 

• High –performance 

• Unix performance 

• Unix -like, multitasking 

• Environment scalable and hierarchical RTOS 

• Hierarchical RTOS 

• Host and target based development approach Supports 

• Device Software Optimization ─ a new methodology that enables development and 

running of device software faster, better and more reliably Vx works RTOS Kernel 

• VxWorks 6.x processor abstraction layer 
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• The layer enables application design for new versions later by just changing the layer 

hardware 

• interface 

• Supports advanced processor architectures ─ ARM, Cold Fire, MIPS, Intel, SuperH. 

• Hard real time applications 

• Supports kernel mode execution of Supports kernel mode execution of tasks 

• Supports open source Linux and TIPC protocol 

• Provides for the preemption points at kernel 

• Provides preemptive as well as round robin scheduling 

• Support POSIX standard asynchronous IOs 

• Support UNIX standard buffered I/Os 

• PTTS 1.1 (Since Dec. 2007) 

• IPCs in TIPC for network and clustered system environment 

• POSIX 1003.1b standard IPCs and interfaces additional availability 

• Separate context for tasks and ISRs 
 

Micrium OS:  
 

 µC/OS is a full-featured embedded operating system.  Features support for TCP/IP, 

USB, CAN bus, and Modbus. Includes a robust file system, and graphical user interface 

Reliable: Micrium software includes comprehensive documentation, full source code, 

powerful debugging features, and support for a huge range of CPU architectures. Micrium 

software offers unprecedented ease-of-use, a small memory footprint, remarkable energy 

efficiency, and all with a full suite of protocol stacks.Real-Time Kernels 

Portable. Offering unprecedented ease-of-use, μC/OS kernels are delivered with complete 

source code and in-depth documentation. The μC/OS kernels run on huge number of 

processor architectures 

Scalable. The μC/OS kernels allow for unlimited tasks and kernel objects. The kernels' 

memory footprint can be scaled down to contain only the features required for your 

application, typically 6–24 KBytes of code space and 1 KByte of data space. 

 

Efficient. Micrium's kernels also include valuable runtime statistics, making the internals of 

your application observable. Identify performance bottlenecks, and optimize power usage, 

early in your development cycle. 

The features of the µC/OS kernels include: 

• Preemptive multitasking real-time kernel with optional round robin scheduling 

• Delivered with complete, clean, consistent source code with in-depth 

documentation. 
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• Highly scalable: Unlimited number of tasks, priorities and kernel objects 

• Resource-efficient: 6K to 24K bytes code space, 1K+ bytes data space) 

• Very low interrupt disable time 

• Extensive performance measurement metrics (configurable) 

• Certifiable for safety-critical applications 

• Micrium provides two extensions to the µC/OS-II kernel that provide memory 

protection and greater stability and safety for the  applications.  

μC/OS-MPU is an extension for Micrium’s µC/OS-II kernel that provides memory 

protection. The μC/OS-MPU extension prevents applications from accessing forbidden 

locations, thereby protecting against damage to safety-critical applications, such as medical 

devices and avionics systems. μC/OS-MPU builds a system with MPU processes, with each 

containing one or more tasks or threads. Each process has an individual read, write, and 

execution right. Exchanging data between threads is accomplished in the same manner using 

μC/OS-II tasks, however handling across different processes is achieved by the core 

operating system. 

µC/OS-MPU includes the following features: 

• Prevents access of forbidden locations 

• Appropriate for safety-critical applications 

• Easy integration of protocol stacks, graphical modules, FS libraries 

• Simplified debugging and error diagnosis 

• Available for any microcontroller equipped with a hardware Memory 

Protection Unit (MPU) or Memory Management Unit (MMU). 

• Third-party certification support available 

Debugging and error diagnosis is simplified as an error management system provides 

information on the different processes. The hardware protection mechanism cannot be 

bypassed by software. Existing μC/OS-applications can be adapted with minimal effort. 

μC/OS-MPU is available for any microcontroller containing a Memory Protection Unit 

(MPU) or Memory Management Unit (MMU). Third-party certification support is also 

available. µC/TimeSpaceOS is an extension for Micrium’s µC/OS-II kernel that manages 

both memory and time allocated to diverse types of applications. With µC/TimeSpaceOS you 

can certify complex systems for safety-critical applications cost-effectively. 
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Its features and benefits include: 

• Memory protection so that multiple applications cannot influence, disturb or 

interact with each other 

• Deterministic and run-time guaranteed 

• Configurable so that virtual Dynamic Random Access Memory (DRAM) is 

optionally available 

• A small footprint for use in a wide-range of applications 

• Compatibility: can be used within the protected segment in existing µC/OS-II 

applications 

• Certification according to DO178B and IEC61508 

• Available for a large number of microcontrollers; contact us for details 

µC/TimeSpaceOS makes it possible for several independent applications (with or 

without real-time kernels) within one environment to be executed on one target hardware 

platform. It guarantees that the applications will not influence or interfere with each other. 

Each application is developed in a protected memory area (partition). The application is 

independent with respect to other partitions. This makes it easier for multiple developers to 

develop complex control devices. Each partition can be considered its own virtual CPU. 

Features of RT Linux: 

• Multi-tasking 

• Priority-based scheduling 

• Application tasks should be programmed to suit 

• Ability to quickly respond to external interrupts 

• Basic mechanisms for process communication and synchronization 

• Small kernel and fast context switch 

Fig:3.2: Features of RT Linux 
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Priority based kernel for embedded applications e.g. OSE, Vx Works, QNX, 

VRTX32, pSOS . Many of them are commercial kernels . Applications should be designed 

and programmed to suite priority-based scheduling e.g deadlines as priority etc . Real 

Time Extensions of existing time-sharing OS. e.g. Real time Linux, Real time NT by e.g 

locking RT tasks in main memory, assigning highest priorities etc .Research RT Kernels 

e.g. SHARK, TinyOS . Run-time systems for RT programming languages e.g. Ada, Erlang, 

Real-Time Java  

 

Free RTOS and C Executive: 

 

Free RTOS is a popular real-time operating system kernel for embedded devices, 

which has been ported to 35 microcontrollers. It is distributed under the GPL with an 

additional restriction and optional exception. The restriction forbids benchmarking while 

the exception permits users' proprietary code to remain closed source while maintaining 

the kernel itself as open source, thereby facilitating the use of Free RTOS in proprietary 

applications. 

Free RTOS is designed to be small and simple. The kernel itself consists of only three 

or four C files. To make the code readable, easy to port, and maintainable, it is written 

mostly in C, but there are a few assembly functions included where needed (mostly in 

architecture-specific scheduler routines). Thread priorities are supported. In addition there 

are four schemes of memory allocation provided: 

Allocate only; 

• Allocate and free with a very simple, fast, algorithm; 

• A more complex but fast allocate and free algorithm with memory coalescence; 

• C library allocate and free with some mutual exclusion protection 

Key features: 

• Very small memory footprint, low overhead, and very fast execution. 

• Tick-less option for low power applications. 

• Equally good for hobbyists who are new to OSes, and professional developers 

working on commercial products. 

• Scheduler can be configured for either preemptive or cooperative operation. 

• Co routine support (Co routine in Free RTOS is a very simple and lightweight 

task that has very limited use of stack) 

• Trace support through generic trace macros. Tools such as Trace alyzer (a.k.a. 

Free RTOS+Trace, provided by the Free RTOS partner Percepio) can thereby 

record and visualize the runtime behavior of Free RTOS-based systems. This 

includes task scheduling and kernel calls for semaphore and queue operations. 

Trace analyzer is a commercial tool, but also available in a feature-limited free 

version. 

 

Features of a RTOS: 

• Allows multi-tasking 

• Scheduling of the tasks with priorities 
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• Synchronization of the resource access 

• Inter-task communication 

• Time predictable 

• Interrupt handling 

 

Predictability of timing 

• The timing behavior of the OS must be predictable 

• For all services of the OS, there is an upper bound on the execution time 

• Scheduling policy must be deterministic 

• The period during which interrupts are disabled must be short (to avoid 

unpredictable delays in the processing of critical events) 

 
QNX RTOS v6.1 

 

The QNX RTOS v6.1 has a client-server based architecture. QNX adopts the 

approach of implementing an OS with a 10 Kbytes micro-kernel surrounded by a team of 

optional processes that provide higher-level OS services .Every process including the device 

driver has its own virtual memory space. The system can be distributed over several nodes, 

and is network transparent. The  system performance is fast and predictable and is robust. 

It supports Intel x86family of processors, MIPS, PowerPC, and Strong ARM . 

QNX has successfully been used in tiny ROM-based embedded systems and in 

several hundred node distributed systems. 

 

VxWorks (Wind River Systems) 

 

VxWorks is the premier development and execution environment for complex real-

time and embedded applications on a wide variety of target processors. Three highly 

integrated components are included with Vxworks: a high performance scalable real-time 

operating system which executes on a target processor; a set of powerful cross-development 

tools; and a full range of communications software options such as Ethernet or serial line 

for the target connection to the host. The heart of the OS is the Wind microkernel which  

supports multitasking, scheduling, inter task management and memory management. All 

other functionalities are through processes. There is no privilege protection between system 

and application and also the support for communication between processes on different 

processors is poor. 
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IV APPLICATION PROGRAMMING USING RTOS 

Task synchronization using semaphores, Inter task communication: message queues and 

pipes, Remote procedure call- Timers and Interrupts-Memory management and I/O 

management 

 

Task Management: 

 

Task is the basic notion in RTOS. 
 

 

Fig:4.1:Typical RTOS Task Model 

 

Periodic tasks: arriving at fixed frequency, can be characterized by 3 parameters 

(C,D,T) where, C = computing time, D = deadline and T = period. Also called Time-driven 

tasks, their activations are generated by timers. 

 

 

 
Fig:4.2:Task states 

 

Non-Periodic or aperiodic tasks = all tasks that are not periodic, also known as Event 

driven, their activations may be generated by external interrupts. Sporadic tasks= 

aperiodic tasks with minimum inter arrival time Tmin. 

Managing tasks: 

 

• Execution of quasi-parallel tasks on a processor using processes or threads by 

maintaining process states, process queuing, allowing for preemptive tasks and quick 

interrupt handling. 

• CPU scheduling 

• Process synchronization 

• Inter-process communication 

• Support of a real-time clock as an internal time reference 
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• Task creation: create a new TCB (task control block) 

• Task termination: remove the TCB 

• Change Priority: modify the TCB 

• State-inquiry: read the TCB 

 

Task management is depicted in the below diagram 
 

 

Fig:4.3: Block Diagram of Task management 
 

Task synchronization: 

 

In classical operating systems, synchronization and mutual exclusion is performed 

via semaphores and monitors. In real-time OS, special semaphores and a deep Integration 

into scheduling is necessary (priority inheritance protocols). 

 

Further responsibilities: Initializations of internal data structures (tables, queues, task  

description blocks, semaphores) 

 

                Fig:4.4: Minimal Set of Task States 
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Run: 

A task enters this state as it starts executing on the processor 

Ready: 

State of those tasks that are ready to execute but cannot be executed, because the 

processor is assigned to another task. 

Wait: 

A task enters this state when it executes a synchronization primitive to wait for an event, 

e.g. a wait primitive on a semaphore. In this case, the task is inserted in a queue 

associated with the semaphore. The task at the head is resumed when the semaphore is 

unlocked by a signal primitive. 

Idle: 

A periodic job enters this state when it completes its execution and has to wait 

for the beginning of the next period. 

 

Challenges for an RTOS: 

• Creating an RT task, it has to get the memory without delay: this is difficult because 

memory has to be allocated and a lot of data structures, code segment must be 

copied/initialized 

• The memory blocks for RT tasks must be locked in main memory to avoid access 

latencies due to swapping 

• Changing run-time priorities dangerous: it may change the run-time behavior and 

predictability of the whole system 

 
Inter task communication and Synchronization: 

 

Inter process Communication (IPC) enables processes to communicate with each 

other to share information 

• Pipes (half duplex) 

• FIFOs(named pipes) 

• Stream pipes (full duplex) 

• Named stream pipes 

• Message queues 

• Semaphores 

• Shared Memory 

• Sockets 

• Streams 

• Pipes 

 

Oldest (and perhaps simplest) form of UNIX IPC 

• Half duplex 

• Data flows in only one direction 

• Only usable between processes with a common ancestor 

• Usually parent-child 

• Also child-child 
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In computing, a named pipe (also known as a FIFO) is one of the methods for intern-process 

communication. 

• It is an extension to the traditional pipe concept on Unix. A traditional pipe is 

“unnamed” and lasts only as long as the process. 

• A named pipe, however, can last as long as the system is up, beyond the life of the 

process. It can be deleted if no longer used. 

• Usually a named pipe appears as a file and generally processes attach to it for inter-

process communication. A FIFO file is a special kind of file on the local storage which 

allows two or more processes to communicate with each other by reading/writing 

to/from this file. 

• A FIFO special file is entered into the filesystem by calling mkfifo() in C. Once we have 

created a FIFO special file in this way, any process can open it for reading or writing, in 

the same way as an ordinary file. However, it has to be open at both ends 

simultaneously before you can proceed to do any input or output operations on it. 

 

Understanding Pipes 

• Within a process 

• Writes to files can be read on files 

• Not very useful 

• Between processes 

• After a fork() 

• Writes to files by one process can be read on files by the other 

 

Using Pipes: 

• Usually, the unused end of the pipe is closed by the process 

• If process A is writing and process B is reading, then process A would close files[0] 

and process B would close files[1] 

• Reading from a pipe whose write end has been closed returns 0 (end of file) 

• Writing to a pipe whose read end has been closed generates SIGPIPE 

• PIPE_BUF specifies kernel pipe buffer size  
 

Creating a Pipe 

The primitive for creating a pipe is the pipe function. This creates both the reading 

and writing ends of the pipe. It is not very useful for a single process to use a pipe to talk to 

itself. In typical use, a process creates a pipe just before it forks one or more child processes. 

The pipe is then used for communication either between the parent or child processes, or 

between two sibling processes. 

The pipe function is declared in the header file unistd.h. Here is an example of a 

simple program that creates a pipe. The parent process writes data to the pipe, which is read 

by the child process. 
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#include <sys/types.h> 

#include <unistd.h> 

#include <stdio.h> 

#include <stdlib.h> 

 

/* Read characters from the pipe and echo them to stdout. */ 

 

void 

read_from_pipe (int file) 

{ 

  FILE *stream; 

  int c; 

  stream = fdopen (file, "r"); 

  while ((c = fgetc (stream)) != EOF) 

    putchar (c); 

  fclose (stream); 

} 

 

/* Write some random text to the pipe. */ 

 

void 

write_to_pipe (int file) 

{ 

  FILE *stream; 

  stream = fdopen (file, "w"); 

  fprintf (stream, "hello, world!\n"); 

  fprintf (stream, "goodbye, world!\n"); 

  fclose (stream); 

} 

 

int 

main (void) 

{ 

  pid_t pid; 

  int mypipe[2]; 

 

  /* Create the pipe. */ 

  if (pipe (mypipe)) 

    { 

      fprintf (stderr, "Pipe failed.\n"); 

      return EXIT_FAILURE; 

    } 

 

 

 

 

 



7 

 

  /* Create the child process. */ 

  pid = fork (); 

  if (pid == (pid_t) 0) 

    { 

      

 /* This is the child process. 

         Close other end first. */ 

      close (mypipe[1]); 

      read_from_pipe (mypipe[0]); 

      return EXIT_SUCCESS; 

    } 

  else if (pid < (pid_t) 0) 

    { 

      /* The fork failed. */ 

      fprintf (stderr, "Fork failed.\n"); 

      return EXIT_FAILURE; 

    } 

  else 

    { 

      /* This is the parent process. 

         Close other end first. */ 

      close (mypipe[0]); 

      write_to_pipe (mypipe[1]); 

      return EXIT_SUCCESS; 

    } 

} 

 

Using Pipes for synchronization and communication: 

• Once you have a pipe or pair of pipes set up, you can use it/them to 

Signal events (one pipe) 

• Wait for a message 

• Synchronize (one or two pipes) 

• Wait for a message or set of messages 

• You send me a message when you are ready, then I’ll send you a 

message when I am ready 

• Communicate (one or two pipes) 

• Send messages back and forth  

• popen() and pclose(): 

FIFO 

A FIFO special file is similar to a pipe, except that it is created in a different way. 

Instead of being an anonymous communications channel, a FIFO special file is entered into 

the file system by calling mkfifo. 
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Once you have created a FIFO special file in this way, any process can open it for 

reading or writing, in the same way as an ordinary file. However, it has to be open at both 

ends simultaneously before you can proceed to do any input or output operations on it. 

Opening a FIFO for reading normally blocks until some other process opens the same FIFO 

for writing, and vice versa. 

First: Co processes–Nothing more than a process whose input and output are both 

redirected from another process 

FIFOs–named pipes 

With regular pipes, only processes with a common ancestor can communicate With 

FIFOs, any two processes can communicate 

Creating and opening a FIFO is just like creating and opening a file 

 

FIFO details: 

#include <sys/types.h> 

#include <sys/stat.h> 

intmkfifo(constchar *pathname, mode_tmode); The 

modeargument is just like in open() 

Can be opened just like a file 

When opened, O_NONBLOCK bit is important 

Not specified: open() for reading blocks until the FIFO is opened by a writer 

Specified: open() returns immediately, but returns an error if opened for writing and no 

reader exists 

Four Queue States: 

1. Both the sending and receiving queue are running. 

2. Only the sender is executing. 

3. Sender not executing, but receiver is running. 

4. Neither the sender nor the receiver are running. 

Parts of Message Queue: 

The queue that is local to the sending machine is called the source queue. The local queue of 

the 

receiver is called the destination queue. Queues are managed by queue managers. Mapping 

of queues to network locations. 

Message sending methods: 

1. Message Queues 

2. Mail box: 

 

Mail box: 

Mailboxes are similar to queues. 

➢ Capacity of mailboxes is usually fixed after initialization 

➢ Some RTOS allow only a single message in the mailbox. (mailbox is either full or 

empty) 

➢ Some RTOS allow prioritization of messages 
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Mailbox functions at OS 

Some OS provide the mailbox and queue both IPC functions. When the IPC functions 

for mailbox are not provided by an OS, then the OS employs queue for the same purpose. A 

mailbox of a task can receive from other tasks and has a distinct ID. Mailbox (for message) 

is an IPC through a message at an OS that can be received only one single destined task for 

the message from the tasks. Two or more tasks cannot take message from same Mailbox. A 

task on an OS function call puts (means post and also send) into the mailbox only a pointer 

to a mailbox message . Mailbox message may also include a header to identify the message-

type specification. 

OS provides for inserting and deleting message into the mailbox message pointer. 

Deleting means message-pointer pointing to Null. Each mailbox for a message need 

initialization (creation) before using the functions in the scheduler for the message queue 

and message pointer pointing to Null. There may be a provision for multiple mailboxes for 

the multiple types or destinations of messages. Each mailbox has an ID.  Each mailbox 

usually has one message pointer only, which can point to message. 

 

Mailbox Types 

 
Fig:4.5:Classification of mailbox 

 

Mailbox IPC features 

 

When an OS call is to post into the mailbox, the message bytes are as per the pointed 

number of bytes by the mailbox message pointer. 

 

Mailbox Related Functions at the OS 

 

 

Fig:4.6:Features of mailbox 
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Mailbox IPC functions 

1. OSMBoxCreate creates a box and initializes the mailbox contents with a NULL 

pointer at *msg . 2. OSMBoxPost sends at *msg, which now does not point to Null.  

2. An ISR can also post into mailbox for a task 

3. OSMBoxWait (Pend) waits for *msg not Null, which is read when not Null and again 

*msg points to Null. • The time out and error handling function can be provided with 

Pend function argument. • ISR not permitted to wait for message into mailbox. Only 

the task can wait 

4. OSMBoxAccept reads the message at *msg after checking the presence yes or no [No 

wait.] Deletes (reads) the mailbox message when read and *msg again points to Null  

• An ISR can also accept mailbox message for a task  

5. OSMBoxQuery queries the mailbox *msg. 

6. OSMBoxDelete 

 

Event Management and Memory Management 

 

Tasks are event driven or time driven. In RTOS environment there is less 

significance for event driven mechanism. Just as processes share the CPU, they also share 

physical memory. The concept of a logical address space that is bound to a separate 

physical address space is central to proper memory management. 

➢ Logical address – generated by the CPU; also referred to as virtual address 

➢ Physical address – address seen by the memory unit 

Logical and physical addresses are the same in compile-time and load time address binding 

schemes; logical (virtual) and physical addresses differ in execution-time address-binding 

scheme. Re locatable Means that the program image can reside anywhere in physical 

memory. Binding Programs need real memory in which to reside. When is the location of 

that real memory determined. This is called mapping logical to physical addresses. This 

binding can be done at compile/link time. Converts symbolic to re locatable. Data used 

within compiled source is offset within object module. 

 

Compiler: If it’s known where the program will reside, then absolute code is 

generated. Otherwise compiler produces re locatable code. 

 

Load: Binds re locatable to physical. Can find best physical location. 

 

Execution: The code can be moved around during execution. Means flexible virtual 

Mapping 
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Example of Memory Usage: 

 

Calculation of an effective address 
Fetch from instruction 

Use index offset 

Example: ( Here index is a pointer to an address ) 

loop: 

load register, index 

add 42, register store 

register, index inc 

index 

skip_equal index, final_address 

branch loop 

 

This binding can be done at compile/link time. Converts symbolic to re locatable. 

Data used within compiled source is offset within object module. Can be done at load time. 

Binds reloadable to physical. Can be done at run time. Implies that the code can be moved 

around during execution. 
 

 
Fig:4.7:Design of software development tools 

Message queues 

 

A message queue is an object used for inter task communication through which task 

send or receive messages placed in a shared memory. The queue may follow 

1) First In First Out (FIFO), 2) Last in First Out(LIFO) or 3) Priority (PRI) sequence. 

Usually, a message queue comprises of an associated queue control block (QCB), name, 

unique ID, memory buffers, queue length, maximum message length and one or more 

task waiting lists. A message queue with a length of 1 is commonly known as a mailbox. 
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Fig:4.8: Message queues 

 

Pipes 

 

A pipe is an object that provide simple communication channel used for 

unstructured data exchange among tasks. A pipe does not store multiple messages but 

stream of bytes. Also, data flow from a pipe cannot be prioritized. 

 

Remote procedure call (RPC) 

 

Remote Procedure Call (RPC) is a powerful technique for constructing distributed, 

client-server based applications. It is based on extending the conventional local procedure 

calling so that the called procedure need not exist in the same address space as the calling 

procedure. A remote procedure call is an inter process communication technique that is used 

for client-server based applications. It is also known as a subroutine call or a function call. A 

client has a request message that the RPC translates and sends to the server. This request 

may be a procedure or a function call to a remote server. When the server receives the 

request, it sends the required response back to the client. The client is blocked while the 

server is processing the call and only resumed execution after the server is finished. 

 
Fig:4.9: Remote procedure call 

 

The sequence of events in a remote procedure call are given as follows : 

1. A client invokes a client stub procedure, passing parameters in the usual way. The client stub 

resides within the client’s own address space. 
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2. The client stub marshalls (pack) the parameters into a message. Marshalling includes 

converting the representation of the parameters into a standard format, and copying each 

parameter into the message. 

3. The client stub passes the message to the transport layer, which sends it to the remote server 

machine. 

4. On the server, the transport layer passes the message to a server stub, which demar 

shalls(unpack) the parameters and calls the desired server routine using the regular procedure 

call mechanism. 

5. When the server procedure completes, it returns to the server stub (e.g., via a normal 

procedure call return), which marshalls the return values into a message. The server stub then 

hands the message to the transport layer. 

6. The transport layer sends the result message back to the client transport layer, which hands 

the message back to the client stub. 

7. The client stub demarshalls the return parameters and execution returns to the caller. 

 

RPC Issues 

 

1. RPC Runtime: RPC run-time system is a library of routines and a set of services that handle 

the network communications that underlie the RPC mechanism. In the course of an RPC call, 

client-side and server-side run-time systems’ code handle binding, establish communications 

over an appropriate protocol, pass call data between the client and server, and handle 

communications errors. 

2. Stub: The function of the stub is to provide transparency to the programmer-written 

application code. On the client side, the stub handles the interface between the client’s local 

procedure call and the run-time system, marshaling and unmarshaling data, invoking the RPC 

run-time protocol, and if requested, carrying out some of the binding steps. On the server side, 

the stub provides a similar interface between the run-time system and the local manager 

procedures that are executed by the server. 

3. Binding: The most flexible solution is to use dynamic binding and find the server at run time 

when the RPC is first made. The first time the client stub is invoked, it contacts a name server 

to determine the transport address at which the server resides. 

 

Advantages of Remote Procedure Call 

Some of the advantages of RPC are as follows  

• Remote procedure calls support process oriented and thread oriented models. 

• The internal message passing mechanism of RPC is hidden from the user. 

• The effort to re-write and re-develop the code is minimum in remote procedure calls. 

• Remote procedure calls can be used in distributed environment as well as the local 

environment. 

• Many of the protocol layers are omitted by RPC to improve performance. 
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Disadvantages of Remote Procedure Call 

Some of the disadvantages of RPC are as follows  

• The remote procedure call is a concept that can be implemented in different ways. It is 

not a standard. 

• There is no flexibility in RPC for hardware architecture. It is only interaction based. 

• There is an increase in costs because of remote procedure cal 

 

Memory Management 

 

Memory management is one of the most important subsystems of any operating 

system for computer control systems, and is even more critical in a RTOS than in standard 

operating systems. Firstly, the speed of memory allocation is important in a RTOS. A 

standard memory allocation scheme scans a linked list of indeterminate length to find a free 

memory block; however, memory allocation has to occur in a fixed time in a RTOS. 

Secondly, memory can become fragmented as free regions become separated by regions that 

are in use, causing a program to stall, unable to get memory, even though there is 

theoretically enough available. Memory allocation algorithms that slowly accumulate 

fragmentation may work perfectly well for desktop machines rebooted every day or so but 

are unacceptable for embedded systems that often run for months without rebooting. 

 

Memory management is the process by which a computer control system allocates a 

limited amount of physical memory among its various processes (or tasks) in a way that 

optimizes performance. Actually, each process has its own private address space, initially 

divided into three logical segments: text, data, and stack. The text segment is read-only and 

contains the machine instructions of a program, the data and stack segments are both 

readable and writable. The data segment contains the initialized and non-initialized data 

portions of a program, whereas the stack segment holds the application’s run-time stack. On 

most machines, this is extended automatically by the kernel as the process executes. This is 

done by making a system call, but change to the size of a text segment only happens when its 

contents are overlaid with data from the file system, or when debugging takes place. The 

initial contents of the segments of a child process are duplicates of the segments of its parent. 

 

The contents of a process address space do not need to be completely in place for a 

process to execute. If a process references a part of its address space that is not resident in 

main memory, the system pages the necessary information into memory. When system 

resources are scarce, the system uses a two-level approach to maintain available resources. If 

a modest amount of memory is available, the system will take memory resources away from 

processes if these resources have not been used recently. Should there be a severe resource 

shortage, the system will resort to swapping the entire context of a process to secondary 

storage. This paging and swapping done by the system are effectively transparent to 

processes, but a process may advise the system about expected future memory utili- zation as 

a performance aid. A common technique for doing the above is virtual memory, which 

simulates a much larger address space than is actually available, using a reserved disk area 

for objects that are not in physical memory. The operating system’s kernel often performs 

memory allocations that are needed for only the duration of a single system call. In a user 
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process, such short-term memory would be allocated on the run-time stack. Because the 

kernel has a limited run-time stack, it is not feasible to allocate even moderately- sized blocks 

of memory on it, so a more dynamic mechanism is needed. For example, when the system 

must translate a path name, it must allocate a 1-kbyte buffer to hold the name. Other blocks 

of memory must be more persistent than a single system call, and thus could not be allocated 

on the stack even if there was space. An example is protocol-control blocks that remain 

throughout the duration of a network connection. 

 

This section discusses virtual memory techniques, memory allocation and deallocation, 

memory protection and memory access control. 

 

Virtual memory 

 

When it is executing a program, the microprocessor reads an instruction from 

memory and decodes it. At this point it may need to fetch or store the contents of a location in 

memory, so it executes the instruction and then moves on to the next. In this way the 

microprocessor is always accessing memory, either to fetch instructions or to fetch and store 

data. In a virtual memory system all of these addresses are virtual, and not physical 

addresses. They are converted into physical addresses by the microprocessor, based on 

information held in a set of tables maintained by the operating system. 

 

The operating system uses virtual memory to manage the memory requirements of its 

processes by combining physical memory with secondary memory (swap space) on a disk, 

usually located on a hardware disk drive. Diskless systems use a page server to maintain their 

swap areas on the local disk (extended memory). The translation from virtual to physical 

addresses is implemented by a memory management unit (MMU), which may be either a 

module of the CPU, or an auxiliary, closely coupled chip. The operating system is responsible 

for deciding which parts of the program’s simulated main memory are kept in physical 

memory, and also maintains the translation tables that map between virtual and physical 

addresses. Three techniques of implementing virtual memory; paging, swapping and 

segmentation. 

(1) Paging 

 

Almost all implementations of virtual memory divide the virtual address space of an 

application program into pages; a page is a block of contiguous virtual memory addresses. 

Here, the low-order bits of the binary representation of the virtual address are preserved, 

and used directly as the low-order bits of the actual physical address; the high-order bits are 

treated as a key to one or more address translation 

 
 

Fig: 4 .10 :Address translation between physical and virtual memory 
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tables, which provide the high-order bits with the actual physical address. For this reason, a 

range of consecutive addresses in the virtual address space, whose size is a power of two, will 

be translated to a corresponding range of consecutive physical addresses. The memory 

referenced by such a range is called a page. The page size is typically in the range 512 8192 

bytes (with 4 kB currently being very common), though 4 MB or even larger may be used for 

special purposes. (Using the same or a related mechanism, contiguous regions of virtual 

memory larger than a page are often mappable to contiguous physical memory for purposes 

other than virtualization, such as setting access and caching control bits.) 

 

Almost all implementations use page tables to translate the virtual addresses seen by 

the application into physical addresses (also referred to as real addresses) used by the 

hardware. The operating system stores the address translation tables, i.e. the mappings from 

virtual to physical page numbers, in a data structure known as a page table. When the CPU 

tries to reference a memory location that is marked as unavailable, the MMU responds by 

raising an exception (commonly called a page fault) with the CPU, which then jumps to a 

routine in the operating system. If the page is in the swap area, this routine invokes an 

operation called a page swap, to bring in the required page. 

 

The operating systems can have one page table or a separate page table for each 

application. If there is only one, different applications running at the same time will share a 

single virtual address space, i.e. they use different parts of a single range of virtual addresses. 

The operating systems which use multiple page tables provide multiple virtual address 

spaces, so concurrent applications seem to use the same range of virtual addresses, but their 

separate page tables redirect to different real addresses 

 

 
 

Fig:4.11: Abstract model for mapping virtual addresses to physical addresses in the 

implementation of virtual memory 
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The above figure shows the virtual address spaces of two processes, X and Y, each 

with their own page tables, which map each process’s virtual pages into physical pages in 

memory. This shows that process X’s virtual page frame number 0 is mapped into memory at 

physical page frame number 1 and that process Y’s virtual page frame number 1 is mapped 

into physical page frame number 4. Each entry in the theoretical page table contains the 

following information: (1) a valid flag that indicates whether this page table entry is valid; (2) 

the physical page frame number that this entry describes; (3) the access control information 

that describes how the page may be used. 

 

(2) Swapping 

 

Swap space is a portion of hard disk used for virtual memory that is usually a 

dedicated partition (i.e., a logically independent section of a hard disk drive), created during 

the installation of the operating system. Such a partition is also referred to as a swap 

partition. However, swap space can also be a special file. Although it is generally preferable 

to use a swap partition rather than a file, sometimes it is not practical to add or expand a 

partition when the amount of RAM is being increased. In such case, a new swap file can be 

created with a system call to mark a swap space. 

It is also possible for a virtual page to be marked as unavailable because the page was never 

previously allocated. In such cases, a page of physical memory is allocated and filled with 

zeros, the page table is modified to describe it, and the program is restarted as above 

 

 
Fig:4.12: Page swapping for implementing virtual memory 

 

The above figure illustrates how the virtual memory of a process might correspond to 

what exists in physical memory, on swap, and in the file system. The U-area of a process 

consists of two 4 kB pages (displayed here as U1 and U1) of virtual memory containing 

information about the process that is needed by the system during execution. In this example, 

these pages are shown in physical memory, and the data pages, D3 and D4, are shown as 

being paged out to the swap area on disk. The text page, T4, has also been paged out, but it is 
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not written to the swap area as it exists in the file system. Those pages that have not yet been 

accessed by the process (D5, T2, and T5) do not occupy any resources in physical memory or 

in the swap area. The page swap operation involves a series of steps. Firstly it selects a page 

in memory; for example, a page that has not been recently accessed and (preferably) has not 

been modified since it was last read. If the page has been modified, the process writes the 

modified page to the swap area. The next step in the process is to read in the information in 

the needed page (the page corre-sponding to the virtual address the original program was 

trying to reference when the exception occurred) from the swap file. When the page has been 

read in, the tables for translating virtual addresses to physical addresses are updated to 

reflect the revised contents of physical memory. Once the page swap completes, it exits, the 

program is restarted and returns to the point that caused the exception. 

 

(3) Segmentation 

 

Some operating systems do not use paging to implement virtual memory, but use 

segmentation instead. For an application process, segmentation divides its virtual address 

space into variable-length segments, so a virtual address consists of a segment number and an 

offset within the segment. Memory is always physically addressed with a single number 

(called absolute or linear address). To obtain it, the microprocessor looks up the segment 

number in a table to find a segment descriptor. This contains a flag indicating whether the 

segment is present in main memory and, if so, the address of its starting point (segment’s 

base address) and its length. It checks whether the offset within the segment is less than the 

length of the segment and, if not, generates an interrupt. If a segment is not present in main 

memory, a hardware interrupt is raised to the operating sys- tem, which may try to read the 

segment into main memory, or to swap it in. The operating system may need to remove other 

segments (swap out) in order to make space for the segment to be read in. 

 

The difference between virtual memory implementations that use pages and those 

using segments is not only about the memory division. Sometimes the segmentation is actually 

visible to the user processes, as part of the semantics of the memory model. In other words, 

instead of a process just having a memory which looks like a single large vector of bytes or 

words, it is more structured. This is different from using pages, which does not change the 

model visible to the process. This has important consequences. It is possible to combine 

segmentation and paging, usually by dividing each segment into pages. In such systems, 

virtual memory is usually implemented by paging, with segmentation used to provide 

memory protection. The segments reside in a 32-bit linear paged address space, which 

segments can be moved into and out of, and pages in that linear address space can be moved 

in and out of main memory, providing two levels of virtual memory. This is quite rare, 

however, most systems only use paging. 

 

Memory allocation and deallocation 

 

The inefficient allocation or deallocation of memory can be detrimental to system 

performance. The presence of wasted memory in a block is called internal fragmentation, and 

it occurs because the size that was requested was smaller than that allocated. The result is a 

block of unusable memory, which is considered as allocated when not being used. The reverse 

situation is called external fragmentation, when blocks of memory are freed, leaving non-
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contiguous holes. If these holes are not large, they may not be usable because further requests 

for memory may call for larger blocks. Both internal and external fragmentation results in 

unusable memory. Memory allocation and deallocation is a process that has several layers of 

application. If one application fails, another operates to attempt to resolve the request. This 

whole process is called dynamic memory management. Memory allocation is controlled by a 

subsystem called malloc, which controls the heap, a region of memory to which memory 

allocation and deallocation occurs. The reallocation of memory is also under the control of 

malloc. In malloc, the allocation of memory is performed by two subroutines, malloc and 

calloc. Deallocation is performed by the free subroutine, and reallocation is performed by the 

subroutine known as realloc. In deallocation, those memory blocks that have been 

deallocated are returned to the binary tree at its base. Thus, a binary tree can be envisioned 

as a sort of river of information, with deallocated memory flowing in at the base and 

allocated memory flowing out from the tips. 

 

Garbage collection is another term associated with deallocation of memory. This 

refers to an automated process that determines what memory is no longer in use, and so 

recycles it. The automation of garbage collection relieves the user of time-consuming and 

error-prone tasks. There are a number of algorithms for the garbage collection process, all of 

which operate independently of malloc. 

 

Memory allocation and deallocation can be categorized as static or dynamic. 

 

(1) Static memory allocation 

 

Static memory allocation refers to the process of allocating memory at compile-time, 

before execution. One way to use this technique involves a program module (e.g., function or 

subroutine) declaring static data locally, such that these data are inaccessible to other 

modules unless references to them are passed as parameters or returned. A single copy of this 

static data is retained and is accessible through many calls to the function in which it is 

declared. Static memory allocation therefore has the advantage of modularizing data within a 

program so that it can be used throughout run-time. The use of static variables within a class 

in object-oriented programming creates a single copy of such data to be shared among all the 

objects of that class. 

 

(2) Dynamic memory allocation 

 

Dynamic memory allocation is the allocation of memory storage for use during the 

run-time of a program, and is a way of distributing ownership of limited memory resources 

among many pieces of data and code. A dynamically allocated object remains allocated until 

it is deallocated explicitly, either by the programmer or by a garbage collector; this is notably 

different from automatic and static memory allocation. It is said that such an object has 

dynamic lifetime. Memory pools allow dynamic memory allocation comparable to malloc, or 

the operator “new”. As those implementations suffer from fragmentation because of variable 

block sizes, it can be impossible to use them in a real-time system due to performance 

problems.  
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A more efficient solution is to pre-allocate a number of memory blocks of the same 

size, called the memory pool. The application can allocate, access, and free blocks represented 

by handles at run- time. Fulfilling an allocation request, which involves finding a block of 

unused memory of a certain size in the heap, is a difficult problem. A wide variety of 

solutions have been proposed, and some of the most commonly used are discussed here. 

 

(a) Free lists 

 

A free list is a data structure used in a scheme for dynamic memory allocation that 

operates by connecting unallocated regions of memory together in a linked list, using the first 

word of each unallocated region as a pointer to the next. It is most suitable for allocating 

from a memory pool, where all objects have the same size. Free lists make the allocation and 

deallocation operations very simple. To free a region, it is just added it to the free list. To 

allocate a region, we simply remove a single region from the end of the free list and use it. If 

the regions are variable-sized, we may have to search for a large enough region, which can be 

expensive. Free lists have the disadvantage, inherited from linked lists, of poor locality of 

reference and thus poor data cache utilization, and they provide no way of consolidating 

adjacent regions to fulfill allocation requests for large regions. Nevertheless, they are still 

useful in a variety of simple applications where a full-blown memory allocator is unnecessary, 

or requires too much overhead. 

 

(b) Paging 

 

As mentioned earlier, the memory access part of paging is done at the hardware level 

through page tables, and is handled by the MMU. Physical memory is divided into small 

blocks called pages (typically 4 kB or less in size), and each block is assigned a page number. 

The operating system may keep a list of free pages in its memory, or may choose to probe the 

memory each time a request is made (though most modern operating systems do the former). 

In either case, when a program makes a request for memory, the operating system allocates a 

number of pages to it, and keeps a list of allocated pages for that particular program in 

memory. 

 

Memory protection 

 

The topic of memory management in this section addresses a different set of 

constructs related to physical and virtual memory: protected memory, infinite amount of 

memory, and transparent sharing. Perhaps the simplest model for using memory is to 

provide single programming without memory protection, where each process (or task) runs 

with a range of physical memory addresses. Given that a single-programming environment 

allows only one process to run at a time, this can use the same physical addresses every time, 

even across reboots. Typically, processes use the lower memory addresses (low memory), and 

an operating system uses the higher memory addresses (high memory). An application 

process can address any physical memory location. 
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One step beyond the single-programming model is to provide multiprogramming 

without memory protection. When a program is copied into memory, a linker-loader alters 

the code of the program (loads, stores, jumps) to use the address of where the program lands 

in memory. In this environment, bugs in any program can cause other programs to crash, 

even the operating system. The third model is to have a multitasking operating system with 

memory protection, which keeps user programs from crashing one another and the operating 

system. Typically, this is achieved by two hardware- supported mechanisms: address 

translation and dual-mode operation. 

 

(1) Address translation 

 

Each process is associated with an address space, or all the physical addresses it can 

touch. However, each process appears to own the entire memory, with the starting virtual 

address of 0. The missing piece is a translation table that translates every memory reference 

from virtual addresses to physical addresses. Translation provides protection because there is 

no way for a process to talk about other processes’ address, and it has no way of touching the 

code or data of the operating system. The operating system uses physical addresses directly, 

and involves no translation. When an exception occurs, the operating system is responsible 

for allocating an area of physical memory to hold the missing information (and possibly in 

the process pushing something else out to disk), bringing the relevant information in from the 

disk, updating the translation tables, and finally resuming execution of the software that 

incurred the exception. 

 

(2) Dual-mode operation 

 

Translation tables can offer protection only if a process cannot alter their content. 

Therefore, a user process is restricted to only touching its address space under the user mode.  

A CPU can change from kernel to user mode when starting a program, or vice versa through 

either voluntary or involuntary mechanisms. The voluntary mechanism uses system calls, 

where a user application asks the operating system to do something on its behalf. A system 

call passes arguments to an operating system, either through registers or copying from the 

user memory to the kernel memory. A CPU can also be switched from user to kernel mode 

involuntarily by hardware interrupts (e.g., I/O) and program exceptions (e.g., segmentation 

fault). 

 

On system calls, interrupts, or exceptions, hardware atomically performs the 

following steps: 

(1) sets the CPU to kernel mode; (2) saves the current program counter; (3) jumps to the 

handler in the kernel (the handler saves old register values). 

Unlike threads, context switching among processes also involves saving and restoring 

pointers to translation tables. To resume execution, the kernel reloads old register values, sets 

the CPU to user mode, and jumps to the old program counter. Communication among 

address spaces is required in this operation. Since address spaces do not share memory, 

processes have to perform inter-process communication (IPC) through the kernel, which can 

allow bugs to propagate from one program to another. Protection by hardware can be 

prohibitively slow, since applications have to be structured to run in separate address spaces 

to achieve fault isolation. In the case of complex applications built by multiple vendors, it 
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may be desirable for two different programs to run in the same address space, with 

guarantees that they cannot trash each other’s code or data. Strong typing and software fault 

isolation are used to ensure this. 

 

(a) Protection via strong typing 

 

If a programming language disallows the misuse of data structures, a program may 

trash another, even in the same address space. With some object-oriented programming, 

programs can be downloaded over the net and run safely because the language, compiler, and 

run-time system prevents the program from doing bad things (e.g., make system calls). For 

example, Java defines a separate virtual machine layer, so a Java program can run on 

different hardware and operating systems. The downside of this protection mechanism is the 

requirement to learn a new language. 

 

(b) Protection via software fault isolation 

  

A language-independent approach is to have compilers generate code that is proven 

safe (e.g., a pointer cannot reference illegal addresses). For example, a pointer can be checked 

before it is used in some applications. 

 

Memory access control 

 

Dealing with race conditions is also one of the difficult aspects of memory 

management. To manage memory access requests coming from the system, a scheduler is 

necessary in the application layer or in the kernel, in addition to the MMU as a hardware 

manager. The most common way of protecting data from concurrent access by the memory 

access request scheduler is memory request contention. The semantics and methodologies of 

memory access request contention should be the same as for I/O request contention. 

 

Timer Management 

 

Tasks need to be performed after scheduled durations. To keep track of the delays, 

timers- relative and absolute are provided in RTOS. 

 

Interrupt and event handling 

 

RTOS provides various functions for interrupt and event handling, viz., Defining 

interrupt handler, creation and deletion of ISR, referencing the state of an ISR, enabling 

and disabling of an interrupt, etc. It also restricts interrupts from occurring when 

modifying a data structure, minimize interrupt latencies due to disabling of interrupts 

when RTOS is performing critical operations, minimizes interrupt response times. 
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Device I/O Management 

 

One of the important jobs of an Operating System is to manage various I/O devices 

including mouse, keyboards, touch pad, disk drives, display adapters, USB devices, Bit-

mapped screen, LED, Analog-to-digital converter, On/off switch, network connections, 

audio I/O, printers etc. An I/O system is required to take an application I/O request and 

send it to the physical device, then take whatever response comes back from the device and 

send it to the application. I/O devices can be divided into two categories − 

• Block devices − A block device is one with which the driver communicates by sending 

entire blocks of data. For example, Hard disks, USB cameras, Disk-On-Key etc. 

• Character devices − A character device is one with which the driver communicates by 

sending and receiving single characters (bytes, octets). For example, serial ports, 

parallel ports, sounds cards etc 

Device Controllers 

Device drivers are software modules that can be plugged into an OS to handle a 

particular device. Operating System takes help from device drivers to handle all I/O devices. 

The Device Controller works like an interface between a device and a device driver. I/O 

units (Keyboard, mouse, printer, etc.) typically consist of a mechanical component and an 

electronic component where electronic component is called the device controller. There is 

always a device controller and a device driver for each device to communicate with the 

Operating Systems. A device controller may be able to handle multiple devices. As an 

interface its main task is to convert serial bit stream to block of bytes, perform error 

correction as necessary. 

Any device connected to the computer is connected by a plug and socket, and the 

socket is connected to a device controller. Following is a model for connecting the CPU, 

memory, controllers, and I/O devices where CPU and device controllers all use a common 

bus for communication. 

 
Fig:4.13: Model for connecting the CPU to peripherals 

Synchronous vs asynchronous I/O 

• Synchronous I/O − In this scheme CPU execution waits while I/O proceeds 

• Asynchronous I/O − I/O proceeds concurrently with CPU execution 
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Communication to I/O Devices 

The CPU must have a way to pass information to and from an I/O device. There are 

three approaches available to communicate with the CPU and Device. 

• Special Instruction I/O 

• Memory-mapped I/O 

• Direct memory access (DMA) 

Special Instruction I/O 

This uses CPU instructions that are specifically made for controlling I/O devices. 

These instructions typically allow data to be sent to an I/O device or read from an I/O 

device. 

Memory-mapped I/O 

When using memory-mapped I/O, the same address space is shared by memory and 

I/O devices. The device is connected directly to certain main memory locations so that I/O 

device can transfer block of data to/from memory without going through CPU. 

 

Fig:4.14: Memory-mapped I/O 

 

While using memory mapped IO, OS allocates buffer in memory and informs I/O 

device to use that buffer to send data to the CPU. I/O device operates asynchronously with 

CPU, interrupts CPU when finished. The advantage to this method is that every instruction 

which can access memory can be used to manipulate an I/O device. Memory mapped IO is 

used for most high-speed I/O devices like disks, communication interfaces. 

Direct Memory Access (DMA) 

Slow devices like keyboards will generate an interrupt to the main CPU after each 

byte is transferred. If a fast device such as a disk generated an interrupt for each byte, the 

operating system would spend most of its time handling these interrupts. So a typical 

computer uses direct memory access (DMA) hardware to reduce this overhead. Direct 

Memory Access (DMA) means CPU grants I/O module authority to read from or write to 

memory without involvement. DMA module itself controls exchange of data between main 
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memory and the I/O device. CPU is only involved at the beginning and end of the transfer 

and interrupted only after entire block has been transferred. Direct Memory Access needs a 

special hardware called DMA controller (DMAC) that manages the data transfers and 

arbitrates access to the system bus. The controllers are programmed with source and 

destination pointers (where to read/write the data), counters to track the number of 

transferred bytes, and settings, which includes I/O and memory types, interrupts and states 

for the CPU cycles. 

 
Fig:4.15: Direct Memory Access 

 

I/O software is often organized in the following layers − 

• User Level Libraries − This provides simple interface to the user program to perform 

input and output. For example, stdio is a library provided by C and C++ 

programming languages. 

• Kernel Level Modules − This provides device driver to interact with the device 

controller and device independent I/O modules used by the device drivers. 

• Hardware − This layer includes actual hardware and hardware controller which 

interact with the device drivers and makes hardware alive. 

A key concept in the design of I/O software is that it should be device independent where 

it should be possible to write programs that can access any I/O device without having to 

specify the device in advance. For example, a program that reads a file as input should be 

able to read a file on a floppy disk, on a hard disk, or on a CD-ROM, without having to 

modify the program for each different device. 
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           Fig:4.16:  Design of I/O software 

Device Drivers 

Device drivers are software modules that can be plugged into an OS to handle a 

particular device. Operating System takes help from device drivers to handle all I/O devices. 

Device drivers encapsulate device-dependent code and implement a standard interface in 

such a way that code contains device-specific register reads/writes. Device driver, is 

generally written by the device's manufacturer and delivered along with the device on a CD-

ROM. 

A device driver performs the following jobs − 

• To accept request from the device independent software above to it. 

• Interact with the device controller to take and give I/O and perform required error 

handling 

• Making sure that the request is executed successfully 

How a device driver handles a request is as follows: Suppose a request comes to read a block 

N. If the driver is idle at the time a request arrives, it starts carrying out the request 

immediately. Otherwise, if the driver is already busy with some other request, it places the 

new request in the queue of pending requests. 

Interrupt handlers 

An interrupt handler, also known as an interrupt service routine or ISR, is a piece of 

software or more specifically a callback function in an operating system or more specifically 

in a device driver, whose execution is triggered by the reception of an interrupt. When the 

interrupt happens, the interrupt procedure does whatever it has to in order to handle the 

interrupt, updates data structures and wakes up process that was waiting for an interrupt to 

happen. 
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The interrupt mechanism accepts an address ─ a number that selects a specific 

interrupt handling routine/function from a small set. In most architectures, this address is 

an offset stored in a table called the interrupt vector table. This vector contains the memory 

addresses of specialized interrupt handlers. 

Device-Independent I/O Software 

The basic function of the device-independent software is to perform the I/O functions 

that are common to all devices and to provide a uniform interface to the user-level software. 

Though it is difficult to write completely device independent software but we can write some 

modules which are common among all the devices. Following is a list of functions of device-

independent I/O Software − 

• Uniform interfacing for device drivers 

• Device naming - Mnemonic names mapped to Major and Minor device numbers 

• Device protection 

• Providing a device-independent block size 

• Buffering because data coming off a device cannot be stored in final destination. 

• Storage allocation on block devices 

• Allocation and releasing dedicated devices 

• Error Reporting 

User-Space I/O Software 

These are the libraries which provide richer and simplified interface to access the 

functionality of the kernel or ultimately interactive with the device drivers. Most of the user-

level I/O software consists of library procedures with some exception like spooling system 

which is a way of dealing with dedicated I/O devices in a multiprogramming system. I/O 

Libraries (e.g., stdio) are in user-space to provide an interface to the OS resident device-

independent I/O SW. For example putchar(), getchar(), printf() and scanf() are example of 

user level I/O library stdio available in C programming. RTOS generally provides large 

number of APIs to support diverse hardware device drivers. 
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V RTOS IMAGE BUILDING FOR DIFFERENT TARGET PLATFORMS 

 

Porting of RTOS, Configuring RTOS for minimizing RAM consumption and increasing 

Throughput- Building RTOS Image for Target platforms 

 

Porting of RTOS: 

 

Product development cycles are market driven, and market demands often require 

vendors to compress development schedules. One approach to this is to simultaneously 

develop similar products, yet with varying levels of product complexity. However, 

scheduling pressures coupled with increased product complexity can be a recipe for 

disaster, resulting in slipped schedules and missed opportunities. Consequently, vendors 

are always on the alert for silver bullets, yet as developers, we know that they don't exist. 

That said, it is still in our best interest to seek better ways of compressing development 

cycles, and one way to do this is to port existing products to new hardware platforms, 

adding new features along the way. This is the approach we used to demonstrate a proof-

in-concept when porting a legacy security application to a new hardware platform. 

 

Our firm was hired to make enhancements to the client's existing 6502-based 

product, and we quickly realized that this platform was running out of steam. Specifically, 

the proposed features would significantly impact performance. Consequently, we proposed 

three options for fixing this problem: 

➢ Completely rewriting the application on the current hardware. 

➢ Rewriting the application on a new, higher performance hardware. 

➢ Migrating portable portions of the application to the new hardware. After 

considering the options, we decided to port to new hardware. 

 

RTXC Overview 

 

The Real-Time executive kernel (RTXC) supports three kinds of priority- based 

task scheduling: preemptive (the default), round-robin, and time-slice. RTXC is robust, 

supports hard deadlines, changeable task priorities, time and resource management, and 

inter task communication. It also has a small RAM/ROM code footprint, standard API 

interface, and is implemented in many processors. RTXC is divided into nine basic 

components: tasks, mailboxes, messages, queues, semaphores, resources, memory 

partitions, timers, and Interrupt Service Routines (ISRs). These components are further 

subdivided into three groups that are used for inter task communication, synchronization, 

and resource management. Moreover, component functionality is accessed via the standard 

API interface. 
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Porting Activities Overview: 

 

Porting an RTOS to a new board requires four activities: 

➢ Determining the system's architecture. 

➢ Figuring out what files to change based on the architecture. 

➢ Making changes to the files; this includes writing the code. 

➢ Creating test code and exercising the board to ensure that the RTOS is working 

properly. 

 

The first activity is design related, while the others are implementation related. 

Moreover, the last three activities require an understanding of the new hardware— 

knowing the specifics of what needs to happen to make the RTOS interact with the board. 

 

System Architecture: 

 

The purpose of determining the system architecture requirements is to identify the 

hardware and software components that need modifying to get the RTOS up and running 

on the NPE-167 board. For most porting projects, hardware components include I/O, 

memory, timers, and other unique peripherals. For this project, these components are no 

different. We had the I/O ports that control the LEDs, CAN bus, serial communication, 

memory selection, and card-slot selection. Memory had both Flash and SRAM. Memory is 

selected through the I/O component using the SPI bus. Therefore, I/O and memory 

selection are interrelated. For this project, we also had to identify the timer to run RTXC's 

real- time clock. The real-time clock is the master timer used for all RTOS-based time- 

keeping functions. Additionally, for this project, we were not going to use any other on-chip 

peripherals. 

 

The best way to identify hardware components is to study the board's schematics. 

Examining the NPE-167 board revealed that the I/O ports would be key for this project. 

Why? Because this board used the processor's general-purpose ports to handle switches to 

control CAN bus operation, the board's operating mode, control LED outputs, and 

memory selection. I/O cards were controlled via the SPI bus, rather than I/O ports. 

Ports can as either inputs or outputs. Examination of the NPE- 167 board showed 

that 17 be configured ports are used. Eleven ports are used as switch inputs. From the 

schematic we saw that switches 1-7 were used to set the MAC address for the CAN device. 

CAN bus speed is controlled by switches 8-9, while the board operating mode is controlled 

by switches 11-12. Switch 10 is not used. Four ports control the LEDs. There are three in 

total. One LED is green, one red, and the third bicolor. Thus, four outputs are required to 

control the three LEDs. Finally, two output ports are used as page selection for extended 

memory. 

 

 
 

 

 

NPE board addresses up to 512K of memory before having to make use of the page-
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selection ports. Although we would configure the page-selection ports for the porting 

process, we didn't have to use them because the total code footprint of the kernel, plus test 

code, is 107K. RTXC's kernel is about 76K, and the porting test code fits within another 

31K. In short, we would only use about 1/5 of the default memory to validate the porting 

process. 

 

The last necessary component for the port was to determine which timer to use as 

the master time base. Timers are internal on the C167 processor, so they don't show up on 

the schematic. So we had two options—choose a timer and write the code for that timer, or 

use the BSP default timer. RTXC's C167 BSP uses a timer in its configuration. A trick to 

simplify the initial porting process is to use the default timer that the BSP uses. Reviewing 

the BSP documentation, we discovered that it uses timer 6 for the master timer. Once we 

determined the components associated with the porting process, we could turn our 

attention to figuring out which files needed to be changed. 

 

Changing Files 

 

We knew from the previous step that 11 ports were used for input and six ports for 

output. Because these were general-purpose I/O ports, they needed to be initialized to work 

as either inputs or outputs. This gave us an idea of where NPE- specific initialization code 

needed to go—specifically, initialization code to set up these ports goes in the startup code. 

For this project, initialization code was located in the cstart.a66 file that is located in the 

Porting directory. Listing One is the code that configures the NPE-167 board I/O. Once 

configured, I/O can be used by higher level RTOS and API functions. Once we figured out 

where the I/O changes go, we needed to turn our attention to discovering and setting up the 

master timer. 

BSP set up the master timer for us because we were using default timer 6. Setup code 

for this timer is located in cstart.a66 and rtxc main.c. Listing Two is a snippet of the 

RTXC-specific code. After analyzing the architecture requirements, we discovered that the 

only file to change for porting the NPE-167 board was cstart.a66. Granted, we knew we 

would have to change other files as well, but those files are application specific. 

 
Changing Files and Writing Code 

 

This brought us to the third step, which was straightforward because we knew what 

needed to be changed and where. Recall that all changes for basic porting functionality 

occurred in cstart.a66. We also needed to write the code for initialization. We wrote code to 

initialize the switches to handle CAN—but no other code— to deal with it because it is not 

used in the basic port. For specifics, look at cstart.a66 and search for npe and rtxc labels to 

find code changes specific  to this port. Keep in mind, when porting to new hardware you 

may want to adopt a similar strategy for partitioning the code for hardware- and RTOS-

specific changes. That is because partitioning code through the use of labels helps with code 

maintainability. 

 

 

 

Test Code 
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Finally, we needed to create some test code to test our port. Building the test code 

application was a two-step process: 

• We compiled the RTXC kernel into a library object (rtxc.lib). 

• We compiled the test code and link in rtxc.lib to create the executable. 

There are two directories for generating the test code, and they are stored at the 

same level in the hierarchy. Moreover, all files for creating rtxc.lib are located in the kernel 

directory. Alternatively, test code-specific files are located in the Porting directory. 

 

The RTXCgen utility creates a set of files corresponding to each RTOS component. 

For instance, application queues are defined in three files: cqueue.c, cqueue.h, and 

cqueue.def. The same holds true for tasks, timers, semaphores, mailboxes, and the rest. 

Changes to the number of RTOS components are handled by this utility. For example, if 

we wanted to change the number of tasks used by the test code, we use RTXCgen to do it. 

Figure 2 shows the contents of the task definition file for the test code application. Test code 

files created by RTXCgen are placed in the Porting directory. Once RTXCgen has defined 

the system resources, we are ready to build the project. 

Creating the executable test code requires the build of two subprojects—the kernel 

and test code. We performed builds using the Keil Microvision IDE (http://www.keil.com/). 

Keil uses project files (*.prj files) to store its build information. RTXC kernel creation 

consists of building the code using the librtxc.prj file located in the kernel directory. 

Evoking the librtxc project compiles, links, and creates a librtxc object in the kernel 

directory. Building the test code is accomplished using the NpeEg.prj file stored in the 

Porting directory. Invoking the NpeEg project compiles and links files in the Porting 

directory, and links the librtxc object in the kernel directory. The resulting executable is 

then placed in the Porting directory as well. Once the test code was fully built, we were 

ready to test the board port. 

 

The test code is a simple application used to validate the porting process. Most of the 

test code is located in main.c located in the Porting directory. The application works by 

starting five tasks—two user and three system. User tasks execute alternatively, while 

system tasks execute in the background. One user task begins running. It then outputs data 

via one of the system tasks to the console. Next, it signals the other to wake up, and it puts 

itself to sleep, thus waiting for the other task to signal it to wake up again. 

 

Most embedded systems of non-trivial complexity employ an operating system of 

some kind – commonly an RTOS. Ultimately, the OS is an overhead, which uses time and 

memory that could otherwise have been used by the application code. As an embedded 

system has limited resources, this overhead needs to be carefully evaluated, which 

commonly leads to questions about RTOS memory footprint. If you were considering the 

purchase of a real time operating system (or, for that matter, any piece of software IP for 

an embedded application), you would probably like to get clear information on the amount 

of memory that it uses. It is very likely that an RTOS vendor will be unwilling – or actually, 

to be more precise – unable to provide you with such seemingly obvious information. The 

reason for this is that there are a huge number of variables. 

 

 

Broadly speaking, there is read only memory (ROM – nowadays that is usually flash 

http://www.keil.com/)
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memory) and read/write memory (RAM). ROM is where the code and constant data is 

stored; RAM is used for variables. However, to improve performance, it is not uncommon 

to copy code/data from ROM to RAM on boot up and then use the RAM copy. This is 

effective because RAM is normally faster to access  than  ROM.  So,  when  thinking  about  

of  RTOS   footprint,   you  need  to consider ROM and RAM size, including the RAM copy 

possibility. 

The issue can become more complex. There may be on-chip RAM and external 

memory available. The on-chip storage is likely to be faster, so it may be advantageous to 

ensure that RTOS code/data is stored there, as its performance  will affect the whole 

application. In a similar fashion, code/data may be locked into cache memory, which tends 

to offer even higher performance. 

Compiler optimization 

 

When building code, like an RTOS, the optimization setting applied to the compiler 

affect both size and execution speed. Most of the time, code built for highest performance 

(i.e. fastest) will be bigger; code optimized to be smaller will run slower. It is most likely 

that an RTOS would normally be built for performance, not size. 

Although an RTOS vendor, wanting to emphasize the small size of their product, might 

make a different choice. 

RTOS configuration 

 

Real time operating systems tend to be very configurable and that configuration can 

vary the RTOS size drastically. Most RTOS products are scalable, so the memory footprint 

is determined by the actual services used by the application. The granularity of such 

scalability varies from one product to another. In some cases, each individual service is 

optional; in others, whole service groups are included or excluded – i.e. if support for a 

particular type of RTOS object (e.g. semaphore) is required, all the relevant services are 

included. On a larger scale, other options, like graphics, networking and other connectivity, 

will affect the code size, as these options may or may not be needed/included. 
 

Fig:5.1:RTOS Configuration 

Runtime library 
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Typically, a runtime library will be used alongside an RTOS; this code needs to be 

accommodated. Again, the code, being a library, may scale well according to the needs of a 

particular application. Data size issues apart from a baseline amount of storage for 

variables, the RAM requirements of an RTOS can similarly be affected by a number of 

factors: 

Compiler optimization 

 

As with code, compiler optimization affects data size. Packed (compressed)data is 

smaller, but takes more instructions, and hence more time, to access. 

RTOS objects 

 

The number of RTOS objects (tasks, mailboxes, semaphores etc.) used by the 

application will affect the RTOSRAM usage, as each object needs some RAM space. 

Stack 

 

Normally, the operating system has a stack and every task has its own stack; these 

must all be stored in RAM. Allocation of this space may be done differently in each RTOS, 

but it can never be ignored. 

Dynamic memory 

 

If dynamic (partition/block)memory allocation is available with an RTOS and used by 

the application, space for memory pools needs to be accommodated. 

Static and dynamic RTOS configuration 

 

Early RTOS products required configuration to be performed at build time – i.e. 

statically. As the technology progressed, the facility to create (and destroy) RTOS objects 

dynamically became commonplace. It is now quite uncommon to find an RTOS that 

permits static configuration. The impact on memory utilization of these options is 

interesting. 

A statically configured RTOS holds most the data about RTOS objects in ROM. Some 

information needs to be copied to RAM, as it will be changed during execution, but needs to 

be initialized. Other objects need extra RAM space at run time. 

A dynamically configured RTOS keeps all object data in RAM – none in ROM at all. 

However, there is a significant hit on ROM space, as there will be extra service calls to 

perform object creation and destruction. 
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RTOS for Image Processing: 

 

Image registration is the process of transforming a set of sequential images (video 

stream acquired from a sensor) into a similar coordinate system, creating a smoother visual 

flow. In real life, physical conditions or normal movement affect the images a sensor 

gathers and may cause vibrations. Viewing a continuous frame-set from an image sensor 

generally looks shaky or unbalanced, as the sensor is often mobile or not stabilized. Image 

registration fixes this problem by smoothing the output video stream. Applications for 

image registration vary from defense to medical imaging and more. 

 

Typical registration process stages include identifying movement vectors between 

two relative images, performing alignment, and applying further correction/enhancement 

filters to improve image and stream quality. In defense applications, sensor-based 

components use registration from ground systems to a variety of aerial systems. Adding to 

its complexity, defense applications require very high-performance computations (high 

resolutions and frame rates) and have limited space for hardware, dictating a small system 

size. This requires a solution with good heat dissipation and the ability to consistently 

operate at low power. 

The key points in RTOS for image processing applications are : 

• The need for speed 

• Power and size constraints 

• Real-Time threat detection 

• Faster-than-real-time processing 

 

The quality and the size of image data (especially 3D medical Segmentation of a human 

brain. data) is constantly increasing. Fast and optimally interactive post processing of these 

images is a major concern. E. g., segmentation on them, morphing of different images, 

sequence analysis and measurement are difficult tasks to be performed. Especially for 

segmentation and for morphing purposes level set methods play an important role. 

 

In the case of image segmentation f is a force which pushes the interface towards the 

boundary of a segment region in an image. Usually f equals one in homogeneity regions of 

the image, whereas f tends to zero close to the segment boundary. The discretization of the 

level set model is performed with finite differences on an uniform quadrilateral or 

octahedral grid. A characteristic of image processing methods is the above described 

multiple iterative processing of data sets. Due to the possible restriction on the number 

precision it is possible to work on integer data sets with a restricted range of values, i. e., 

an application specific word length. Furthermore, it is possible to incorporate parallel 

execution  of the update formulas 
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Fig:5.2: A hardware accelerated system for data Processing: Software and 

Hardware Modules 

Image processing algorithms as described consists of a complex sequence of 

primitive operations, which have to be performed on each nodal value. By combining the 

complete sequence of primitive operations into a compound operation it is possible to 

reduce the loss of performance caused by the synchronous design approach. 

 

This design approach, which is common to CPU designs as well as for FPGA 

designs, is based on the assumption that all arithmetic operations will converge well in 

advance to the clock tick, which will cause the results to be post processed. Therefore, the 

maximum clock speed of such systems is defined by the slowest combinatorial path. In a 

CPU this leads to ’waiting time’ for many operations. Furthermore, there is no need for 

command fetching in FPGA designs, which solves another problem of CPU-based 

algorithms. Additionally, it is  possible to do arbitrary parallel data processing in a FPGA, 

so that several nodal values can be updated simultaneously. 

 

The input data rate for CPU-based and FPGA-based applications is determined by 

the bandwidth of the available memory interface. A 2562 image results in 64k words, 

resulting in 768 kBit data at 12 bit resolution. A CPU with a 16 bit wide data access would 

need 128 kByte to store the original image data, without taking the memory for 

intermediate results into account. The discussion is not restricted to the information 

described in this section, there are many real time examples those can be considered as case 

studies for image processing in RTOS. The process for generating a target image for the 

QNX CAR platform is described below 
 

Overall image generation process 

The following illustration shows the process used to generate a QNX CAR platform 

target image: 
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Fig:5.3: Procedure to generate a QNX CAR platform target image 

 
Building the target image: 

 

1. Set up the environment variables for the QNX development environment: 

     For Linux, enter the following command: 

# source install_location /qnx660-env.sh 

where by default the install_location is $ HOME /qnx660/. 

     For Windows, enter the following command: 

install_location \qnx660-env.bat 

where by default the install_location is C:\qnx660. 

     

As part of the installation process for the QNX CAR platform, a workspace was created for 

you that contains the scripts and configuration files you'll be using. These files are located in 

the following 

locations: 

Scripts: 

For Linux: $QNX_CAR_DEPLOYMENT /deployment/scripts/ 

For Windows: %QNX_CAR_DEPLOYMENT% \deployment\scripts 

where QNX_CAR_DEPLOYMENT is install_location /qnx660/deployment/qnx-car/. 

Configuration files: 

For Linux: $QNX_CAR_DEPLOYMENT /boards/<platform >/etc/ 

For Windows: %QNX_CAR_DEPLOYMENT% \boards\<platform >\etc 
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2. Extract a BSP. For detailed instructions, see “Building a BSP ”. 

 

3. Create an output directory where you want to have the image generated. 

 

You must specify a valid directory name; the directory must exist prior to running the 

mksysimage.py script, otherwise the image won't be generated. 

 

4. To generate a target system image, run the appropriate mksysimage.py command. 

For Linux, enter the following command: 

mksysimage.sh outputPath platform .external 

For Windows, enter the following command: 

mksysimage.bat  outputPath platform .external 

where outputPath is the location for the new system image. If this directory isn't 

empty, run 

mksysimage.py with the -f option (mksysimage.py won't overwrite existing system 

images 

 

The mksysimage.py utility generates images for various configurations. For example, for 

SABRE 

Lite, image files are created for SD and SD/SATA: 

imx61sabre-dos-sd-sata.tar 

imx61sabre-dos-sd.tar 

imx61sabre-os.tar 

imx61sabre-sd-sata.img 

imx61sabre-sd.img 
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