
1

SCHOOL OF ELECTRICAL & ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

UNIT - I

RTOS PROGRAMMING-SECA5302

2

UNIT I - INTRODUCTION AND INTERNALS

Introduction to Real-Time Systems, Classification of real time systems, Difference

between GPOS and RTOS- Real Time Kernels - RTOS Architecture- Features of RTOS-

POSIX-RT standard

Introduction to Real-Time Systems

Real-time operating system (RTOS) is an operating system intended to serve real

time application that process data as it comes in, mostly without buffer delay. The full form

of RTOS is Real time operating system. In a RTOS, Processing time requirement are

calculated in tenths of seconds increments of time. It is time-bound system that can be

defined as fixed time constraints. In this type of system, processing must be done inside the

specified constraints. Otherwise, the system will fail.

Usage of RTOS

Here are important reasons for using RTOS:

• It offers priority-based scheduling, which allows you to separate analytical

processing from non-critical processing.

• The Real time OS provides API functions that allow cleaner and smaller application

code.

• Abstracting timing dependencies and the task-based design results in fewer

interdependencies between modules.

• RTOS offers modular task-based development, which allows modular task-based

testing.

• The task-based API encourages modular development as a task, will typically have a

clearly defined role. It allows designers/teams to work independently on their parts

of the project.

• An RTOS is event-driven with no time wastage on processing time for the event

which is not occur

Components of RTOS

Here, are important Component of RTOS

3

Fig:1.1: Components of RTOS

The Scheduler: This component of RTOS tells that in which order, the tasks can be

executed which is generally based on the priority.

Symmetric Multiprocessing (SMP): It is a number of multiple different tasks that can be

handled by the RTOS so that parallel processing can be done.

Function Library: It is an important element of RTOS that acts as an interface that helps

you to connect kernel and application code. This application allows you to send the

requests to the Kernel using a function library so that the application can give the desired

results.

Memory Management: this element is needed in the system to allocate memory to every

program, which is the most important element of the RTOS.

Fast dispatch latency: It is an interval between the termination of the task that can be

identified by the OS and the actual time taken by the thread, which is in the ready queue,

that has started processing.

User-defined data objects and classes: RTOS system makes use of programming languages

like C or C++, which should be organized according to their operation.

Types of RTOS

Three types of RTOS systems are:

4

Hard Real Time :

In Hard RTOS, the deadline is handled very strictly which means that given task

must start executing on specified scheduled time, and must be completed within the

assigned time duration.

Example: Medical critical care system, Aircraft systems, etc.

Firm Real time:

These type of RTOS also need to follow the deadlines. However, missing a deadline

may not have big impact but could cause undesired affects, like a huge reduction in quality

of a product.

Example: Various types of Multimedia applications.

Soft Real Time:

Soft Real time RTOS, accepts some delays by the Operating system. In this type of

RTOS, there is a deadline assigned for a specific job, but a delay for a small amount of time

is acceptable. So, deadlines are handled softly by this type of RTOS.

Example: Online Transaction system and Livestock price quotation System.

Factors for selecting an RTOS

Here, are essential factors that you need to consider for selecting RTOS:

Performance: Performance is the most important factor required to be considered while

selecting for a RTOS.

Middleware: if there is no middleware support in Real time operating system, then the

issue of time-taken integration of processes occurs.

Error-free: RTOS systems are error-free. Therefore, there is no chance of getting an error

while performing the task.

Embedded system usage: Programs of RTOS are of small size. So we widely use RTOS for

embedded systems.

Maximum Consumption: we can achieve maximum Consumption with the help of RTOS.

Task shifting: Shifting time of the tasks is very less.

5

Unique features: A good RTS should be capable, and it has some extra features like how it

operates to execute a command, efficient protection of the memory of the system, etc.

24/7 performance: RTOS is ideal for those applications which require to run 24/7.

Here are important differences between GPOS and RTOS:

Table:1.1:Difference between in GPOS and RTOS

General-Purpose Operating System (GPOS) Real-Time Operating System (RTOS)

It used for desktop PC and laptop It is only applied to the embedded

application.

Process-based Scheduling Time-based scheduling used like round-

robin scheduling

Interrupt latency is not considered as

important as in RTOS
Interrupt lag is minimal, which is measured

in a few microseconds.

No priority inversion mechanism is present

in the system.

The priority inversion mechanism is

current. So it cannot modify by the system.

Kernel's operation may or may not be

preempted.

Kernel's operation can be preempted.

Priority inversion remain unnoticed No predictability guarantees

Applications of Real Time Operating System

Real-time systems are used in:

• Airlines reservation system.

• Air traffic control system.

• Systems that provide immediate updating.

• Used in any system that provides up to date and minute information on stock

prices.

• Defense application systems like RADAR.

• Networked Multimedia Systems

• Command Control Systems

• Internet Telephony

• Anti-lock Brake Systems

• Heart Pacemaker

6

Disadvantages of RTOS

Here, are drawbacks/cons of using RTOS system:

• RTOS system can run minimal tasks together, and it concentrates only on those

applications which contain an error so that it can avoid them.

• RTOS is the system that concentrates on a few tasks. Therefore, it is really hard

for these systems to do multi-tasking.

• Specific drivers are required for the RTOS so that it can offer fast response time

to interrupt signals, which helps to maintain its speed.

• Plenty of resources are used by RTOS, which makes this system expensive.

• The tasks which have a low priority need to wait for a long time as the RTOS

maintains the accuracy of the program, which are under execution.

• Minimum switching of tasks is done in Real time operating systems.

• It uses complex algorithms which is difficult to understand.

• RTOS uses lot of resources, which sometimes not suitable for the system.

RTOS Architecture – Kernel

RTOS Architecture

For simpler applications, RTOS is usually a kernel but as complexity increases,

various modules like networking protocol stacks debugging facilities, device I/Os are

includes in addition to the kernel. The general architecture of RTOS is shown in the below

fig 1.2

Fig:1.2: RTOS Architecture

7

Kernel

RTOS kernel acts as an abstraction layer between the hardware and the

applications. There are three broad categories of kernels

·

Monolithic kernel

Monolithic kernels are part of Unix-like operating systems like Linux, FreeBSD etc.

A monolithic kernel is one single program that contains all of the code necessary to

perform every kernel related task. It runs all basic system services (i.e. process and

memory management, interrupt handling and I/O communication, file system, etc) and

provides powerful abstractions of the underlying hardware. Amount of context switches

and messaging involved are greatly reduced which makes it run faster than microkernel.

· Microkernel

It runs only basic process communication (messaging) and I/O control. It normally

provides only the minimal services such as managing memory protection, Inter process

communication and the process management. The other functions such as running the

hardware processes are not handled directly by micro kernels. Thus, micro kernels

provide a smaller set of simple hardware abstractions. It is more stable than monolithic as

the kernel is unaffected even if the servers failed (i.e., File System). Micro kernels are part

of the operating systems like AIX, BeOS, Mach, Mac OS X, MINIX, and QNX. Etc

·

Hybrid Kernel

Hybrid kernels are extensions of micro kernels with some properties of monolithic

kernels. Hybrid kernels are similar to micro kernels, except that they include additional

code in kernel space so that such code can run more swiftly than it would were it in user

space. These are part of the operating systems such as Microsoft Windows NT, 2000 and

XP. Dragon Fly BSD, etc

·

Exokernel

Exokernels provides efficient control over hardware. It runs only services protecting

the resources (i.e. tracking the ownership, guarding the usage, revoking access to resources,

etc) by providing low-level interface for library operating systems and leaving the

management to the application.

Six types of common services are shown in the following figure below and explained

in subsequent sections

8

Fig:1.3: Representation of Common Services Offered By a RTOS System

Architecture – Task Management

Task Management

 In RTOS, The application is decomposed into small, schedulable, and sequential

program units known as “Task”, a basic unit of execution and is governed by three time-

critical properties; release time, deadline and execution time. Release time refers to the

point in time from which the task can be executed. Deadline is the point in time by which

the task must complete. Execution time denotes the time the task takes to execute.

Fig:1.4: Use of RTOS for Time Management Application

Each task may exist in following states

Dormant : Task doesn’t require computer time

Ready: Task is ready to go active state, waiting processor time

Active: Task is running

9

Suspended: Task put on hold temporarily

Pending: Task waiting for resource.

Fig:1.5: Representation of Different Time Management Tasks Done by an RTOS

During the execution of an application program, individual tasks are continuously

changing from one state to another. However, only one task is in the running mode (i.e.

given CPU control) at any point of the execution. In the process where CPU control is

change from one task to another, context of the to-be-suspended task will be saved while

context of the to-be-executed task will be retrieved, the process referred to as context

switching. A task object is defined by the following set of components:

Task Control block: Task uses TCBs to remember its context. TCBs are data structures

residing in RAM, accessible only by RTOS

Task Stack: These reside in RAM, accessible by stack pointer.

 Task Routine: Program code residing in ROM

Scheduler: The scheduler keeps record of the state of each task and selects from among

them that are ready to execute and allocates the CPU to one of them. Various scheduling

algorithms are used in RTOS.

Polled Loop: Sequentially determines if specific task requires time.

10

Fig:1.6: Process Flow of a Scheduler

Polled System with interrupts. In addition to polling, it takes care of critical tasks.

Fig:1.7: A Figure Illustrating Polled Systems with Interrupts

Round Robin : Sequences from task to task, each task getting a slice of time

Fig:1.8: Round Robin Sequences From Task to Task

Hybrid System: Sensitive to sensitive interrupts, with Round Robin system working in

background

 Interrupt Driven: System continuously wait for the interrupts

Non pre-emptive scheduling or Cooperative Multitasking: Highest priority task executes

for some time, then relinquishes control, re-enters ready state

11

Fig:1.9: Non-Preemptive Scheduling or Cooperative Multitasking

Preemptive scheduling Priority multitasking: Current task is immediately

suspended Control is given to the task of the highest priority at all time.

Fig:1.10: Preemptive Scheduling or Priority Multitasking

Dispatcher : The dispatcher gives control of the CPU to the task selected by the scheduler

by performing context switching and changes the flow of execution.

Synchronization and communication:

Task Synchronization & inter task communication serves to pass information amongst

tasks.

Task Synchronization

Synchronization is essential for tasks to share mutually exclusive resources (devices,

buffers, etc) and/or allow multiple concurrent tasks to be executed (e.g. Task A needs a

result from task B, so task A can only run till task B produces it.

Task synchronization is achieved using two types of mechanisms:

12

Event Objects

Event objects are used when task synchronization is required without resource

sharing. They allow one or more tasks to keep waiting for a specified event to occur. Event

object can exist either in triggered or non-triggered state. Triggered state indicates

resumption of the task.

Semaphores.

A semaphore has an associated resource count and a wait queue. The resource count

indicates availability of resource. The wait queue manages the tasks waiting for resources

from the semaphore. A semaphore functions like a key that define whether a task has the

access to the resource. A task gets an access to the resource when it acquires the

semaphore.

There are three types of semaphore:

• Binary Semaphores

• Counting Semaphores

• Mutually Exclusion (Mutex) Semaphores

Semaphore functionality (Mutex) represented pictorially in the following figure

Fig:1.11: Architecture of Semaphore Functionality

Inter task communication

Inter task communication involves sharing of data among tasks through sharing of

memory space, transmission of data, etc. Inter task communications is executed using

following mechanisms

Message queues

A message queue is an object used for inter task communication through which task

send or receive messages placed in a shared memory. The queue may follow 1) First In

First Out (FIFO), 2) Last in First Out(LIFO) or 3) Priority (PRI) sequence. Usually, a

message queue comprises of an associated queue control block (QCB), name, unique ID,

13

memory buffers, queue length, maximum message length and one or more task waiting

lists. A message queue with a length of 1 is commonly known as a mailbox.

Fig:1.12: Flow of a Message Queue in a Mailbox

Pipes

A pipe is an object that provide simple communication channel used for

unstructured data exchange among tasks. A pipe does not store multiple messages but

stream of bytes. Also, data flow from a pipe cannot be prioritized.

Remote procedure call (RPC)

 It permits distributed computing where task can invoke the execution of another

task on a remote computer.

Memory Management

Two types of memory managements are provided in RTOS – Stack and Heap. Stack

management is used during context switching for TCBs. Memory other than memory used

for program code, program data and system stack is called heap memory and it is used for

dynamic allocation of data space for tasks. Management of this memory is called heap

management.

Timer Management

Tasks need to be performed after scheduled durations. To keep track of the delays,

timers- relative and absolute are provided in RTOS.

 Interrupt and event handling

RTOS provides various functions for interrupt and event handling, viz., Defining

interrupt handler, creation and deletion of ISR, referencing the state of an ISR, enabling

and disabling of an interrupt, etc. It also restricts interrupts from occurring when

modifying a data structure, minimize interrupt latencies due to disabling of interrupts

when RTOS is performing critical operations, minimizes interrupt response times.

Device I/O Management

RTOS generally provides large number of APIs to support diverse hardware device

drivers.

14

Features of RTOS

Here are important features of RTOS:

• Occupy very less memory

• Consume fewer resources

• Response times are highly predictable

• Unpredictable environment

• The Kernel saves the state of the interrupted task ad then determines which task

it should run next.

• The Kernel restores the state of the task and passes control of the CPU for that

task.

POSIX (Portable Operating System Interface)

POSIX (Portable Operating System Interface) is a set of standard operating system

interfaces based on the Unix operating system. The need for standardization arose

because enterprises using computers wanted to be able to develop programs that could be

moved among different manufacturer's computer systems without having to be recoded.

Unix was selected as the basis for a standard system interface partly because it was

"manufacturer-neutral." However, several major versions of Unix existed so there was a

need to develop a common denominator system.

Informally, each standard in the POSIX set is defined by a decimal following the

POSIX. Thus, POSIX.1 is the standard for an application program interface in

the C language. POSIX.2 is the standard shell and utility interface (that is to say, the user's

command interface with the operating system). These are the main two interfaces, but

additional interfaces, such as POSIX.4 for thread management, have been developed or are

being developed. The POSIX interfaces were developed under the auspices of the Institute

of Electrical and Electronics Engineers (IEEE).

POSIX.1 and POSIX.2 interfaces are included in a somewhat larger interface

known as the X/Open Programming Guide (also known as the "Single UNIX Specification"

and "UNIX 03"). The Open Group, an industry standards group, owns the UNIX

trademark and can thus "brand" operating systems that conform to the interface as

"UNIX" systems. IBM's OS/390 is an example of an operating system that includes a

branded UNIX interface.

Terms used in RTOS

Here, are essential terms used in RTOS:

• Task – A set of related tasks that are jointly able to provide some system

functionality.

https://searchsqlserver.techtarget.com/definition/record-standardization
https://searchwindowsserver.techtarget.com/definition/enterprise
https://searchwindowsserver.techtarget.com/definition/C
https://searchdatacenter.techtarget.com/definition/shell
https://whatis.techtarget.com/definition/utility
https://searchwindowsserver.techtarget.com/definition/command-line-interface-CLI
https://searchwindowsserver.techtarget.com/definition/command-line-interface-CLI
https://whatis.techtarget.com/definition/thread
https://whatis.techtarget.com/definition/IEEE-Institute-of-Electrical-and-Electronics-Engineers
https://whatis.techtarget.com/definition/Single-UNIX-Specification
https://searchoracle.techtarget.com/definition/The-Open-Group
https://searchdatacenter.techtarget.com/definition/OS-390

15

• Job – A job is a small piece of work that can be assigned to a processor, and that

may or may not require resources.

• Release time of a job – It's a time of a job at which job becomes ready for

execution.

• Execution time of a job: It is time taken by job to finish its execution.

• Deadline of a job: It's time by which a job should finish its execution.

• Processors: They are also known as active resources. They are important for the

execution of a job.

• Maximum it is the allowable response time of a job is called its relative deadline

• Response time of a job: It is a length of time from the release time of a job when

the instant finishes.

• Absolute deadline: This is the relative deadline, which also includes its release

time.

Summary

RTOS is an operating system intended to serve real time application that process

data as it comes in, mostly without buffer delay. It offers priority-based scheduling, which

allows you to separate analytical processing from non-critical processing. Important

components of RTOS system are:

• The Scheduler

• Symmetric Multiprocessing

• Function Library

• Memory Management

• Fast dispatch latency and

• User-defined data objects and classes.

RTOS system occupy very less memory and consume fewer resources. Performance

is the most important factor required to be considered while selecting for a RTOS.

General-Purpose Operating System (GPOS) is used for desktop PC and laptop while Real-

Time Operating System (RTOS) only applied to the embedded application. Real-time

systems are used in Airlines reservation system, Air traffic control system, etc. The biggest

drawback of RTOS is that the system only concentrates on a few tasks.

TEXT / REFERENCE BOOKS

1. Jane W. S Liu, “Real Time Systems” Pearson Higher Education, 3rd Edition, 2000.

2. Raj Kamal, “Embedded Systems- Architecture, Programming and Design” Tata

McGraw Hill, 2nd Edition, 2014.

3. Jean J. Labrosse, “Micro C/OS-I : The real time kernel” CMP Books, 2nd Edition,2015.

5. Richard Barry, “Mastering the Free RTOS: Real Time Kernel”, Real Time Engineers

Ltd, 1st Edition, 2016.

6. David E. Simon, “ An Embedded Software Primer”, Pearson Education Asia Publication

1

SCHOOL OF ELECTRICAL & ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

UNIT - II

RTOS PROGRAMMING-SECA5302

2

II PERFORMANCE METRICS AND SCHEDULING ALGORITHMS

Performance Metrics of RTOS- Task Specifications-Task state - Real Time

Scheduling algorithms: Cyclic executive, Rate monotonic, IRIS and Least laxity

scheduling- Schedulability Analysis

Performance Metrics of RTOS

An embedded system typically has enough CPU power to do the job, but

typically only just enough — there is no excess. Memory size is usually limited.

It is not unreasonably small, but there isn't likely to be any possibility of adding

more. Power consumption is usually an issue and the software — its size and

efficiency – can have a significant bearing on the number of watts burned by the

embedded device. It is clear that it is vital in an embedded system that the real

time operating system (RTOS) has the smallest possible impact on memory

footprint and makes very efficient use of the CPU.

RTOS metrics

There are three areas of interest when looking at the performance and usage

characteristics of an RTOS:

• Memory – how much ROM and RAM does the kernel need and how is

this affected by options and configuration

• Latency - which is broadly the delay between something happening and

the response to that occurrence. This is a particular minefield of

terminology and misinformation, but there are two essential latencies to

consider: interrupt response and task scheduling.

• Performance of kernel services - How long does it take to perform

specific actions. A key problem is that there is no real standardization.

One possibility would be the Embedded Microprocessor Benchmark

Consortium, but that does not cover all MCUs and, anyway, it is more

oriented towards CPU, rather than MPU, benchmarking.

RTOS Metrics – Memory footprint

As all embedded systems have some limitations on available memory, the

requirements of an RTOS, on a given CPU, need to be understood. An OS will

use both ROM and RAM. ROM, which is normally flash memory, is used for

the kernel, along with code for the runtime library and any middleware

components. This code – or parts of it – may be copied to RAM on boot up, as

this can offer improved performance. There is also likely to be some read only

data. If the kernel is statically configured, this data will include extensive

3

information about kernel objects. However, nowadays, most kernels are

dynamically configured.

RAM space will be used for kernel data structures, including some or all

of the kernel object information, again depending upon whether the kernel is

statically or dynamically configured. There will also be some global variables. If

code is copied from flash to RAM, that space must also be accounted for. There

are a number of factors that affect the memory footprint of an RTOS. The CPU

architecture is key. The number of instructions can vary drastically from one

processor to another, so looking at size figures for, say, PowerPC gives no

indication of what the ARM version might be like.

Embedded compilers generally have a large number of optimization

settings. These can be used to reduce code size, but that will most likely affect

performance. Optimizations affect ROM footprint, and also RAM. Data size can

also be affected by optimization, as data structures can be packed or unpacked.

Again both ROM and RAM can be affected. Packing data has an adverse effect

on performance. Most RTOS products have a number of optional components.

Obviously, the choice of those components will have a very significant effect

upon memory footprint. Most RTOS kernels are scalable, which means that, all

being well, only the code to support required functionality is included in the

memory image. For some RTOS, scalability only applies to the kernel. For

others, scalability is extended to the rest of the middleware.

Although an RTOS vendor may provide or publish memory usage

information, you may wish to make measurements yourself in order to ensure

that they are representative of the type of application that you are designing.

These measurements are not difficult. Normally the map file, generated by the

linker, gives the necessary memory utilization data. Different linkers produce

different kinds of map files with varying amounts of information included in a

variety of formats. Possibilities extend from a mass of hex numbers through to

an interactive HTML document and everything in between. There are some

specialized tools that extract memory usage information from executable files.

An example is obj dump .

Interrupt latency

The time related performance measurements are probably of most concern to

developers using an RTOS. A key characteristic of a real time system is its

timely response to external events and an embedded system is typically notified

of an event by means of an interrupt, so interrupt latency is critical.

• System: the total delay between the interrupt signal being asserted and

the start of the interrupt service routine execution.

• OS: the time between the CPU interrupt sequence starting and the

4

initiation of the ISR. This is really the operating system overhead, but

many people refer to it as the latency. This means that some vendors claim

zero interrupt latency.

Fig:2.1: Interrupt latency

Measurement

Interrupt response is the sum of two distinct times:

ƮIL = ƮH + ƮOS

where:

• ƮH is the hardware dependent time, which depends on the interrupt

controller on the board as well as the type of the interrupt

• ƮOS is the OS induced overhead

Ideally, quoted figures should include the best and worst case scenarios. The

worst case is when the kernel disables interrupts. To measure a time interval,

like interrupt latency, with any accuracy, requires a suitable instrument. The

best tool to use is an oscilloscope. One approach is to use one pin on a GPIO

interface to generate the interrupt. This pin can be monitored on the ‘scope. At

the start of the interrupt service routine, another pin, which is also being

monitored, is toggled. The interval between the two signals may be easily read

from the instrument.

Importance

5

Many embedded systems are real time and it is those applications, along with

fault tolerant systems, where knowledge of interrupt latency is important. If the

requirement is to maximize bandwidth on a particular interface, the latency on

that specific interrupt needs to be measured. To give an idea of numbers, the

majority of systems exhibit no problems, even if they are subjected to interrupt

latencies of tens of microseconds

Interrupt latency is the sum of the hardware dependent time, which

depends on the interrupt controller as well as the type of the interrupt, and

the OS induced overhead. Ideally, quoted figures should include the best and

worst case scenarios. The worst case is when the kernel disables interrupts.

To measure a time interval, like interrupt latency, with any accuracy,

requires a suitable instrument and the best tool to use is an oscilloscope. One

approach is to use one pin on a GPIO interface to generate the interrupt and

monitor it on the 'scope. At the start of the interrupt service routine, another

pin, which is also being monitored, is toggled and the interval between the

two signals may be easily read.

Scheduling latency

A key part of the functionality of an RTOS is its ability to support a multi-

threading execution environment. Being real time, the efficiency at which

threads or tasks are scheduled is of some importance and the scheduler is at the

core of an RTOS. so it is reasonable that a user might be interested in its

performance. It is hard to get a clear picture of performance, as there is a wide

variation in the techniques employed to make measurements and in the

interpretation of the results.

There are really two separate measurements to consider:

• The context switch time

• The time overhead that the RTOS introduces when scheduling a task

Timing kernel services

An RTOS is likely to have a great many system service API (application

program interface) calls, probably numbering into the hundreds. To assess

timing, it is not useful to try to analyze the timing of every single call. It makes

more sense to focus on the frequently used services.

For most RTOS there are four key categories of service call:

• Threading services

• Synchronization services

6

• Inter-process communication services

• Memory services

 All RTOS vendors provide performance data for their products, some of

which is more comprehensive than others. This information may be very useful, but

can also be misleading if interpreted incorrectly. It is important to understand the

techniques used to make measurements and the terminology used to describe the

results. There are also trade-offs – generally size against speed – and these, too, need

to be thoroughly understood. Without this understanding, a fair comparison is not

possible. If timing is critical to your application, it is strongly recommend that you

perform your own measurements. This enables you to be sure that the hardware

and software environment is correct and that the figures are directly relevant to

your application.

 Real Time Scheduling algorithms

 In real time operating systems(RTOS) most of the tasks are periodic in

nature. Periodic data mostly comes from sensors, servo control, and real-

time monitoring systems. In real time operating systems, these periodic tasks

utilize most of the processor computation power. A real-time control system

consists of many concurrent periodic tasks having individual timing

constraints. These timing constraints include release time (ri), worst case

execution time(Ci), period (ti) and deadline(Di) for each individual task Ti.

Real time embedded systems have time constraints linked with the output of

the system. The scheduling algorithms are used to determine which task is

going to execute when more than one task is available in the ready queue.

 The operating system must guarantee that each task is activated at its

proper rate and meets its deadline. To ensure this, some periodic scheduling

algorithms are used. There are basic two types of scheduling algorithms

7

Fig:2.2:Classification of scheduling algorithm

Offline Scheduling Algorithm

Offline scheduling algorithm selects a task to execute with reference to a

predetermined schedule, which repeats itself after specific interval of time. For

example, if we have three tasks Ta, Tb and Tc then Ta will always execute first,

then Tb and after that Tc respectively.

Online Scheduling Algorithm

In Online scheduling a task executes with respect to its priority, which is

determined in real time according to specific rule and priorities of tasks may

change during execution. The online line scheduling algorithm has two types.

They are more flexible because they can change the priority of tasks on run time

according to the utilization factor of tasks.

Fixed priority algorithms

In fixed priority if the kth job of a task T1 has higher priority than the kth

job of task T2 according to some specified scheduling event, then every job of

T1 will always execute first then the job of T2 i.e. on next occurrence priority

does not change. More formally, if job J(1,K) of task T1 has higher priority than

J(2,K) of task T2 then J(1,K+1) will always has higher priority than of J(2,K+1)

. One of best example of fixed priority algorithm is rate monotonic scheduling

algorithm.

Dynamic priority algorithms

In dynamic priority algorithm, different jobs of a task may have

different priority on next occurrence, it may be higher or it may be lower than

8

the other tasks. One example of a dynamic priority algorithm is the earliest

deadline first algorithm.

Processor utilization factor (U)

For a given task set of n periodic tasks, processor utilization factor U is the

fraction of time that is spent for the execution of the task set. If Si is a task from

task set then Ci/Ti is the time spent by the processor for the execution of Si .

Processor utilization factor is denoted as

Similarly, for the task set of n periodic tasks processor utilization is greater

than one then that task set will not be schedulable by any algorithm. Processor

utilization factor tells about the processor load on a single processor. U=1 means

100% processor utilization. Following scheduling algorithms will be discussed in

details

Rate Monotonic (RM) Scheduling Algorithm

The Rate Monotonic scheduling algorithm is a simple rule that assigns

priorities to different tasks according to their time period. That is task with

smallest time period will have highest priority and a task with longest time

period will have lowest priority for execution. As the time period of a task does

not change so not its priority changes over time, therefore Rate monotonic is

fixed priority algorithm. The priorities are decided before the start of execution

and they does not change overtime.

Rate monotonic scheduling Algorithm works on the principle of

preemption. Preemption occurs on a given processor when higher priority task

blocked lower priority task from execution. This blocking occurs due to priority

level of different tasks in a given task set. rate monotonic is a preemptive

algorithm which means if a task with shorter period comes during execution it

will gain a higher priority and can block or preemptive currently running tasks.

In RM priorities are assigned according to time period. Priority of a task is

inversely proportional to its timer period.

Task with lowest time period has highest priority and the task with

highest period will have lowest priority. A given task is scheduled under rate

monotonic scheduling Algorithm, if its satisfies the following equation:

Example of Rate Monotonic (RM) Scheduling Algorithm

For example, we have a task set that consists of three tasks as follows

Table 2.1 Rate Monotonic (RM) Scheduling Algorithm

9

Tasks Release

time(ri)

Execution

time(Ci)

Deadline (Di) Time

period(Ti)

T1 0 0.5 3 3

T2 0 1 4 4

T3 0 2 6 6

Task set U= 0.5/3 +1/4 +2/6 = 0.167+ 0.25 + 0.333 = 0.75

As processor utilization is less than 1 or 100% so task set is schedulable and

it also

satisfies the above equation of rate monotonic scheduling algorithm.

Fig:2.3: RM scheduling of Task set in Table 2.1

A task set given in the above table is RM scheduling in the given figure. The

explanation of above is as follows

1. According to RM scheduling algorithm task with shorter period has

higher priority so T1 has high priority, T2 has intermediate priority and

T3 has lowest priority. At t=0 all the tasks are released. Now T1 has

highest priority so it executes first till t=0.5.

2. At t=0.5 task T2 has higher priority than T3 so it executes first for one-

time units till t=1.5. After its completion only one task is remained in the

system that is T3, so it starts its execution and executes till t=3.

3. At t=3 T1 releases, as it has higher priority than T3 so it preempts or

blocks T3 and starts it execution till t=3.5. After that the remaining part

of T3 executes.

4. At t=4 T2 releases and completes it execution as there is no task running

in the system at this time.

5. At t=6 both T1 and T3 are released at the same time but T1 has higher

priority due to shorter period so it preempts T3 and executes till t=6.5,

after that T3 starts running and executes till t=8.

10

6. At t=8 T2 with higher priority than T3 releases so it preempts T3 and

starts its execution.

7. At t=9 T1 is released again and it preempts T3 and executes first and at

t=9.5 T3 executes its remaining part. Similarly, the execution goes on.

Advantages

• It is easy to implement.

• If any static priority assignment algorithm can meet the deadlines then

rate monotonic scheduling can also do the same. It is optimal.

• It consists of calculated copy of the time periods unlike other time-sharing

algorithms as Round robin which neglects the scheduling needs of the

processes.

Disadvantages

• It is very difficult to support a periodic and sporadic tasks under RMA.

• RMA is not optimal when tasks period and deadline differ.

Least laxity scheduling

Least Laxity First (LLF) is a job level dynamic priority scheduling

algorithm. It means that every instant is a scheduling event because laxity of

each task changes on every instant of time. A task which has least laxity at an

instant, it will have higher priority than others at this instant.

Introduction to Least Laxity first (LLF) scheduling Algorithm

More formally, priority of a task is inversely proportional to its run time

laxity. As the laxity of a task is defined as its urgency to execute. Mathematically

it is described as

Here Di is the deadline of a task, Ci is the worst-case execution

time(WCET) and Li

is laxity of a task. It means laxity is the time remaining after completing the

WCET before the deadline arrives. For finding the laxity of a task in run time

current instant of time also included in the above formula.

Here is the current instant of time and is the remaining WCET of the

task. By using the above equation laxity of each task is calculated at every

instant of time, then the priority is assigned. One important thing to note is that

11

laxity of a running task does not changes it remains same whereas the laxity all

other tasks is decreased by one after every one-time unit.

Example of Least Laxity first scheduling Algorithm

An example of LLF is given below for a task set.

Table 2.2 Least Laxity first scheduling Algorithm

Task
Release

time(ri)

Execution

Time(Ci)

Deadline

(Di)
Period(Ti)

T1 0 2 6 6

T2 0 2 8 8

T3 0 3 10 10

Fig:2.4: LLF scheduling algorithm

1. At t=0 laxities of each task are calculated by using the equation

 L1 = 6-(0+2) =4

L2 = 8-(0+2) =6

L3= 10-(0+3) =7

12

As task T1 has least laxity so it will execute with higher priority.

Similarly, At t=1 its priority is calculated it is 4 and T2 has 5 and T3 has 6,

so again due to least laxity T1 continue to execute.

2. At t=2 T1is out of the system so Now we compare the laxities of T2 and

T3 as following

L2= 8-(2+2) =4

L3= 10-(2+3) =5

Clearly T2 starts execution due to less laxity than T3. At t=3 T2

has laxity 4 and T3 also has laxity 4, so ties are broken randomly so we

continue to execute T2. At t=4 no task is remained in the system except

T3 so it executes till t=6. At t=6 T1 comes in the system so laxities are

calculated again

L1 = 6-(0+2) =4

L3= 10-(6+1) =3

So T3 continues its execution.

3. At t=8 T2 comes in the system where as T1 is running task. So at this

instant laxities are calculated

L1 = 12-(8+1) =3

L2= 16-(8+2) =6

So T1 completes its execution. After that T2 starts running and at

t=10 due to laxity comparison T2 has higher priority than T3 so it

completes it execution.

L2= 16-(10+1) =5

L3= 20-(10+3) =7

t=11 only T3 in the system so it starts its execution.

4. At t=12 T1 comes in the system and due to laxity comparison at t=12 T1

wins the priority and starts its execution by preempting T3. T1 completes

it execution and after that at t=14 due to alone task T3 starts running its

remaining part. So, in this way this task set executes under LLF

algorithm.

LLF is an optimal algorithm because if a task set will pass utilization test

then it is surely schedulable by LLF. Another advantage of LLF is that it

some advance knowledge about which task going to miss its deadline. On

other hand it also has some disadvantages as well one is its enormous

computation demand as each time instant is a scheduling event. It gives poor

performance when more than one task has least laxity.

13

Cyclic executives:

• Scheduling tables

• Frames

• Frame size constraints

• Generating schedules

• Non-independent tasks

• Pros and cons

Cyclic Scheduling

This is an important way to sequence tasks in a real time system. Cyclic

scheduling is static – computed offline and stored in a table. Task scheduling is

non-preemptive. Non-periodic work can be run during time slots not used by

periodic tasks. Implicit low priority for non-periodic work. Usually non-periodic

work must be scheduled preemptively. Scheduling table executes completely in

one hyper period H. Then repeats H is least common multiple of all task periods

N quanta per hyper period. Multiple tables can support multiple system modes

E.g., an aircraft might support takeoff, cruising, landing, and taxiing modes.

Mode switches permitted only at hyper period boundaries. Otherwise,

hard to meet deadlines.

Frames:

Divide hyper periods into frames .Timing is enforced only at frame

boundaries.

 Consider a system with four task

14

task is executed as a function call and must fit within a single frame. Multiple

tasks may be executed in a frame size is f Number of frames per hyper period is

F = H/f.

Frame Size Constraints:

1. Tasks must fit into frames so, f ≥ Ci for all tasks Justification: Non-

preemptive tasks should finish executing within a single frame

2. f must evenly divide H Equivalently, f must evenly divide P for some task i

Justification: Keep table size small

3. There should be a complete frame between the release and deadline of

every task

Justification: Want to detect missed deadlines by the time the deadline arrives

Cyclic executive is one of the major software architectures for embedded

systems. Historically, cyclic executives dominate safety-critical systems

Simplicity and predictability wins. However, there are significant drawbacks.

Finding a schedule might require significant offline computation.

15

Drawbacks:

• Difficult to incorporate sporadic processes.

• Incorporate processes with long periods

• Problematic for tasks with dependencies – Think about an OS without

synchronization

• Time consuming to construct the cyclic executive – Or adding a new task

to the task set

• “Manual” scheduler construction

• Cannot deal with any runtime changes

• Denies the advantages of concurrent

programming

 Summary:

• Off-line scheduling

• Doesn’t use the process abstraction of the OS

• Manually created table of procedures to be called – Waits for a periodic

interrupt for synchronization

• Minor cycle – Loops the execution of the procedures in the table

TEXT / REFERENCE BOOKS

1. Jane W. S Liu, “Real Time Systems” Pearson Higher Education, 3rd Edition, 2000.

2. Raj Kamal, “Embedded Systems- Architecture, Programming and Design” Tata

McGraw Hill, 2nd Edition, 2014.

3. Jean J. Labrosse, “Micro C/OS-I : The real time kernel” CMP Books, 2nd Edition,2015.

5. Richard Barry, “Mastering the Free RTOS: Real Time Kernel”, Real Time Engineers

Ltd, 1st Edition, 2016.

6. David E. Simon, “ An Embedded Software Primer”, Pearson Education Asia Publication

1

SCHOOL OF ELECTRICAL & ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

UNIT - III

RTOS PROGRAMMING – SECA5302

2

III RESOURCE SHARING FOR REAL TIME TASKS

Resource sharing among tasks- Priority inversion Problem - Priority inheritance and

Priority ceiling Protocols – Features of commercial and open source real time operating

systems: Vxworks, QNX, Micrium OS, RT Linux and Free RTOS

Sharing of critical resources among tasks requires a different set of rules, compared

to the rules used for sharing resources such as a CPU among tasks. We have in the last

Chapter discussed how resources such as CPU can be shared among tasks. Priority

inversion is a operating system scenario in which a higher priority process is preempted by

a lower priority process. This implies the inversion of the priorities of the two processes.

Problems due to Priority Inversion

Some of the problems that occur due to priority inversion are given as follows −

• A system malfunction may occur if a high priority process is not provided the

required resources.

• Priority inversion may also lead to implementation of corrective measures. These

may include the resetting of the entire system.

• The performance of the system can be reduces due to priority inversion. This may

happen because it is imperative for higher priority tasks to execute promptly.

• System responsiveness decreases as high priority tasks may have strict time

constraints or real time response guarantees.

• Sometimes there is no harm caused by priority inversion as the late execution of the

high priority process is not noticed by the system.

Solutions of Priority Inversion

Some of the solutions to handle priority inversion are given as follows −

• Priority Ceiling

All of the resources are assigned a priority that is equal to the highest priority of any

task that may attempt to claim them. This helps in avoiding priority inversion

• Disabling Interrupts

There are only two priorities in this case i.e. interrupts disabled and preemptible. So

priority inversion is impossible as there is no third option.

• Priority Inheritance

This solution temporarily elevates the priority of the low priority task that is

executing to the highest priority task that needs the resource. This means that

medium priority tasks cannot intervene and lead to priority inversion.

• No blocking

Priority inversion can be avoided by avoiding blocking as the low priority task

3

blocks the high priority task.

• Random boosting

The priority of the ready tasks can be randomly boosted until they exit the critical

section.

Difference between Priority Inversion and Priority Inheritance

Both of these concepts come under Priority scheduling in Operating System. In one

line, Priority Inversion is a problem while Priority Inheritance is a solution. Literally,

Priority Inversion means that priority of tasks get inverted and Priority Inheritance means

that priority of tasks get inherited. Both of these phenomena happen in priority scheduling.

Basically, in Priority Inversion, higher priority task

(H) ends up waiting for middle priority task (M) when H is sharing critical section with

lower priority task (L) and L is already in critical section. Effectively, H waiting for M

results in inverted priority i.e. Priority Inversion. One of the solution for this problem is

Priority Inheritance.

In Priority Inheritance, when L is in critical section, L inherits priority of H at the

time when H starts pending for critical section. By doing so, M doesn’t interrupt L and H

doesn’t wait for M to finish. Please note that inheriting of priority is done temporarily i.e. L

goes back to its old priority when L comes out of critical section.

Priority Inheritance Protocol (PIP)

Priority Inheritance Protocol (PIP) is a technique which is used for sharing critical

resources among different tasks. This allows the sharing of critical resources among different

without the occurrence of unbounded priority inversions.

Basic Concept of PIP :

The basic concept of PIP is that when a task goes through priority inversion, the

priority of the lower priority task which has the critical resource is increased by the priority

inheritance mechanism. It allows this task to use the critical resource as early as possible

without going through the preemption. It avoids the unbounded priority inversion.

Working of PIP :

When several tasks are waiting for the same critical resource, the task which is

currently holding this critical resource is given the highest priority among all the tasks

which are waiting for the same critical resource. Now after the lower priority task

having the critical resource is given the highest priority then the intermediate priority

tasks cannot preempt this task. This helps in avoiding the unbounded priority inversion.

When the task which is given the highest priority among all tasks, finishes the job and

releases the critical resource then it gets back to its original priority value (which may

be less or equal). If a task is holding multiple critical resources then after releasing one

critical resource it cannot go back to it original priority value. In this case it inherits the

highest priority among all tasks waiting for the same critical resource.

4

Advantages of PIP :

Priority Inheritance protocol has the following advantages:

• It allows the different priority tasks to share the critical resources.

• The most prominent advantage with Priority Inheritance Protocol is that it avoids the

unbounded priority inversion.

Disadvantages of PIP :

Priority Inheritance Protocol has two major problems which may occur:

Deadlock :

There is possibility of deadlock in the priority inheritance protocol. For

example, there are two tasks T1 and T2. Suppose T1 has the higher priority than T2.

T2 starts running first and holds the critical resource CR2. After that, T1 arrives and

preempts T2. T1 holds critical resource CR1 and also tries to hold CR2 which is held by

T2. Now T1 blocks and T2 inherits the priority of T1 according to PIP. T2 starts execution

and now T2 tries to hold CR1 which is held by T1. Thus, both T1 and T2 are deadlocked.

 Chain Blocking :

When a task goes through priority inversion each time it needs a resource then

this process is called chain blocking. For example, there are two tasks T1 and T2.

Suppose T1 has the higher priority than T2. T2 holds the critical resource CR1 and CR2.

T1 arrives and requests for CR1. T2 undergoes the priority inversion according to PIP.

Now, T1 request CR2, again T2 goes for priority inversion according to PIP. Hence,

multiple priority inversion to hold the critical resource leads to chain blocking.

Priority Ceiling Protocol

In real-time computing, the priority ceiling protocol is a synchronization protocol

for shared resources to avoid unbounded priority inversion and mutual deadlock due to

wrong nesting of critical sections. In this protocol each resource is assigned a priority

ceiling, which is a priority equal to the highest priority of any task which may lock the

resource. The protocol works by temporarily raising the priorities of tasks in certain

situations, thus it requires a scheduler that supports dynamic priority scheduling. It is a

job task synchronization protocol in a real-time system that is better than Priority

inheritance protocol in many ways. Real-Time Systems are multitasking systems that

involve the use of semaphore variables, signals, and events for job synchronization. In

Priority ceiling protocol an assumption is made that all the jobs in the system have a fixed

priority. It does not fall into a deadlock state.

The chained blocking problem of the Priority Inheritance Protocol is resolved in the

Priority Ceiling Protocol.

The basic properties of Priority Ceiling Protocols are:

https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Resource_(computer_science)
https://en.wikipedia.org/wiki/Priority_inversion
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Critical_section
https://en.wiktionary.org/wiki/priority
https://en.wikipedia.org/wiki/Task_(computers)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Dynamic_priority_scheduling

5

1. Each of the resources in the system is assigned a priority ceiling.

2. The assigned priority ceiling is determined by the highest priority among all the jobs

which may acquire the resource.

3. It makes use of more than one resource or semaphore variable, thus eliminating chain

blocking.

4. A job is assigned a lock on a resource if no other job has acquired lock on that

resource.

5. A job J, can acquire a lock only if the job’s priority is strictly greater than the priority

ceilings of all the locks held by other jobs.

6. If a high priority job has been blocked by a resource, then the job holding that

resource gets the priority of the high priority task.

7. Once the resource is released, the priority is reset back to the original.

8. In the worst case, the highest priority job J1 can be blocked by T lower priority tasks

in the system when J1 has to access T semaphores to finish its execution.

 Fig:3.1: Priority Ceiling Protocol

Priority Scheduling Protocol can be used to tackle the problem of the priority

inversion problem unlike that of Priority Inheritance Protocol. It makes use of semaphores

to share the resources with the jobs in a real-time system.

Features of firmware and commercial real time operating systems:

Vx Works features:

• High –performance

• Unix performance

• Unix -like, multitasking

• Environment scalable and hierarchical RTOS

• Hierarchical RTOS

• Host and target based development approach Supports

• Device Software Optimization ─ a new methodology that enables development and

running of device software faster, better and more reliably Vx works RTOS Kernel

• VxWorks 6.x processor abstraction layer

6

• The layer enables application design for new versions later by just changing the layer

hardware

• interface

• Supports advanced processor architectures ─ ARM, Cold Fire, MIPS, Intel, SuperH.

• Hard real time applications

• Supports kernel mode execution of Supports kernel mode execution of tasks

• Supports open source Linux and TIPC protocol

• Provides for the preemption points at kernel

• Provides preemptive as well as round robin scheduling

• Support POSIX standard asynchronous IOs

• Support UNIX standard buffered I/Os

• PTTS 1.1 (Since Dec. 2007)

• IPCs in TIPC for network and clustered system environment

• POSIX 1003.1b standard IPCs and interfaces additional availability

• Separate context for tasks and ISRs

Micrium OS:

 µC/OS is a full-featured embedded operating system. Features support for TCP/IP,

USB, CAN bus, and Modbus. Includes a robust file system, and graphical user interface

Reliable: Micrium software includes comprehensive documentation, full source code,

powerful debugging features, and support for a huge range of CPU architectures. Micrium

software offers unprecedented ease-of-use, a small memory footprint, remarkable energy

efficiency, and all with a full suite of protocol stacks.Real-Time Kernels

Portable. Offering unprecedented ease-of-use, μC/OS kernels are delivered with complete

source code and in-depth documentation. The μC/OS kernels run on huge number of

processor architectures

Scalable. The μC/OS kernels allow for unlimited tasks and kernel objects. The kernels'

memory footprint can be scaled down to contain only the features required for your

application, typically 6–24 KBytes of code space and 1 KByte of data space.

Efficient. Micrium's kernels also include valuable runtime statistics, making the internals of

your application observable. Identify performance bottlenecks, and optimize power usage,

early in your development cycle.

The features of the µC/OS kernels include:

• Preemptive multitasking real-time kernel with optional round robin scheduling

• Delivered with complete, clean, consistent source code with in-depth

documentation.

7

• Highly scalable: Unlimited number of tasks, priorities and kernel objects

• Resource-efficient: 6K to 24K bytes code space, 1K+ bytes data space)

• Very low interrupt disable time

• Extensive performance measurement metrics (configurable)

• Certifiable for safety-critical applications

• Micrium provides two extensions to the µC/OS-II kernel that provide memory

protection and greater stability and safety for the applications.

μC/OS-MPU is an extension for Micrium’s µC/OS-II kernel that provides memory

protection. The μC/OS-MPU extension prevents applications from accessing forbidden

locations, thereby protecting against damage to safety-critical applications, such as medical

devices and avionics systems. μC/OS-MPU builds a system with MPU processes, with each

containing one or more tasks or threads. Each process has an individual read, write, and

execution right. Exchanging data between threads is accomplished in the same manner using

μC/OS-II tasks, however handling across different processes is achieved by the core

operating system.

µC/OS-MPU includes the following features:

• Prevents access of forbidden locations

• Appropriate for safety-critical applications

• Easy integration of protocol stacks, graphical modules, FS libraries

• Simplified debugging and error diagnosis

• Available for any microcontroller equipped with a hardware Memory

Protection Unit (MPU) or Memory Management Unit (MMU).

• Third-party certification support available

Debugging and error diagnosis is simplified as an error management system provides

information on the different processes. The hardware protection mechanism cannot be

bypassed by software. Existing μC/OS-applications can be adapted with minimal effort.

μC/OS-MPU is available for any microcontroller containing a Memory Protection Unit

(MPU) or Memory Management Unit (MMU). Third-party certification support is also

available. µC/TimeSpaceOS is an extension for Micrium’s µC/OS-II kernel that manages

both memory and time allocated to diverse types of applications. With µC/TimeSpaceOS you

can certify complex systems for safety-critical applications cost-effectively.

8

Its features and benefits include:

• Memory protection so that multiple applications cannot influence, disturb or

interact with each other

• Deterministic and run-time guaranteed

• Configurable so that virtual Dynamic Random Access Memory (DRAM) is

optionally available

• A small footprint for use in a wide-range of applications

• Compatibility: can be used within the protected segment in existing µC/OS-II

applications

• Certification according to DO178B and IEC61508

• Available for a large number of microcontrollers; contact us for details

µC/TimeSpaceOS makes it possible for several independent applications (with or

without real-time kernels) within one environment to be executed on one target hardware

platform. It guarantees that the applications will not influence or interfere with each other.

Each application is developed in a protected memory area (partition). The application is

independent with respect to other partitions. This makes it easier for multiple developers to

develop complex control devices. Each partition can be considered its own virtual CPU.

Features of RT Linux:

• Multi-tasking

• Priority-based scheduling

• Application tasks should be programmed to suit

• Ability to quickly respond to external interrupts

• Basic mechanisms for process communication and synchronization

• Small kernel and fast context switch

Fig:3.2: Features of RT Linux

9

Priority based kernel for embedded applications e.g. OSE, Vx Works, QNX,

VRTX32, pSOS . Many of them are commercial kernels . Applications should be designed

and programmed to suite priority-based scheduling e.g deadlines as priority etc . Real

Time Extensions of existing time-sharing OS. e.g. Real time Linux, Real time NT by e.g

locking RT tasks in main memory, assigning highest priorities etc .Research RT Kernels

e.g. SHARK, TinyOS . Run-time systems for RT programming languages e.g. Ada, Erlang,

Real-Time Java

Free RTOS and C Executive:

Free RTOS is a popular real-time operating system kernel for embedded devices,

which has been ported to 35 microcontrollers. It is distributed under the GPL with an

additional restriction and optional exception. The restriction forbids benchmarking while

the exception permits users' proprietary code to remain closed source while maintaining

the kernel itself as open source, thereby facilitating the use of Free RTOS in proprietary

applications.

Free RTOS is designed to be small and simple. The kernel itself consists of only three

or four C files. To make the code readable, easy to port, and maintainable, it is written

mostly in C, but there are a few assembly functions included where needed (mostly in

architecture-specific scheduler routines). Thread priorities are supported. In addition there

are four schemes of memory allocation provided:

Allocate only;

• Allocate and free with a very simple, fast, algorithm;

• A more complex but fast allocate and free algorithm with memory coalescence;

• C library allocate and free with some mutual exclusion protection

Key features:

• Very small memory footprint, low overhead, and very fast execution.

• Tick-less option for low power applications.

• Equally good for hobbyists who are new to OSes, and professional developers

working on commercial products.

• Scheduler can be configured for either preemptive or cooperative operation.

• Co routine support (Co routine in Free RTOS is a very simple and lightweight

task that has very limited use of stack)

• Trace support through generic trace macros. Tools such as Trace alyzer (a.k.a.

Free RTOS+Trace, provided by the Free RTOS partner Percepio) can thereby

record and visualize the runtime behavior of Free RTOS-based systems. This

includes task scheduling and kernel calls for semaphore and queue operations.

Trace analyzer is a commercial tool, but also available in a feature-limited free

version.

Features of a RTOS:

• Allows multi-tasking

• Scheduling of the tasks with priorities

10

• Synchronization of the resource access

• Inter-task communication

• Time predictable

• Interrupt handling

Predictability of timing

• The timing behavior of the OS must be predictable

• For all services of the OS, there is an upper bound on the execution time

• Scheduling policy must be deterministic

• The period during which interrupts are disabled must be short (to avoid

unpredictable delays in the processing of critical events)

QNX RTOS v6.1

The QNX RTOS v6.1 has a client-server based architecture. QNX adopts the

approach of implementing an OS with a 10 Kbytes micro-kernel surrounded by a team of

optional processes that provide higher-level OS services .Every process including the device

driver has its own virtual memory space. The system can be distributed over several nodes,

and is network transparent. The system performance is fast and predictable and is robust.

It supports Intel x86family of processors, MIPS, PowerPC, and Strong ARM .

QNX has successfully been used in tiny ROM-based embedded systems and in

several hundred node distributed systems.

VxWorks (Wind River Systems)

VxWorks is the premier development and execution environment for complex real-

time and embedded applications on a wide variety of target processors. Three highly

integrated components are included with Vxworks: a high performance scalable real-time

operating system which executes on a target processor; a set of powerful cross-development

tools; and a full range of communications software options such as Ethernet or serial line

for the target connection to the host. The heart of the OS is the Wind microkernel which

supports multitasking, scheduling, inter task management and memory management. All

other functionalities are through processes. There is no privilege protection between system

and application and also the support for communication between processes on different

processors is poor.

TEXT / REFERENCE BOOKS

1. Jane W. S Liu, “Real Time Systems” Pearson Higher Education, 3rd Edition, 2000.

2. Raj Kamal, “Embedded Systems- Architecture, Programming and Design” Tata McGraw

Hill, 2nd Edition, 2014.

3. Jean J. Labrosse, “Micro C/OS-I : The real time kernel” CMP Books, 2nd Edition,2015.

5. Richard Barry, “Mastering the Free RTOS: Real Time Kernel”, Real Time Engineers Ltd,

1st Edition, 2016.

6. David E. Simon, “ An Embedded Software Primer”, Pearson Education Asia Publication

1

SCHOOL OF ELECTRICAL & ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

UNIT -IV

RTOS PROGRAMMING – SECA5302

2

IV APPLICATION PROGRAMMING USING RTOS

Task synchronization using semaphores, Inter task communication: message queues and

pipes, Remote procedure call- Timers and Interrupts-Memory management and I/O

management

Task Management:

Task is the basic notion in RTOS.

Fig:4.1:Typical RTOS Task Model

Periodic tasks: arriving at fixed frequency, can be characterized by 3 parameters

(C,D,T) where, C = computing time, D = deadline and T = period. Also called Time-driven

tasks, their activations are generated by timers.

Fig:4.2:Task states

Non-Periodic or aperiodic tasks = all tasks that are not periodic, also known as Event

driven, their activations may be generated by external interrupts. Sporadic tasks=

aperiodic tasks with minimum inter arrival time Tmin.

Managing tasks:

• Execution of quasi-parallel tasks on a processor using processes or threads by

maintaining process states, process queuing, allowing for preemptive tasks and quick

interrupt handling.

• CPU scheduling

• Process synchronization

• Inter-process communication

• Support of a real-time clock as an internal time reference

3

• Task creation: create a new TCB (task control block)

• Task termination: remove the TCB

• Change Priority: modify the TCB

• State-inquiry: read the TCB

Task management is depicted in the below diagram

Fig:4.3: Block Diagram of Task management

Task synchronization:

In classical operating systems, synchronization and mutual exclusion is performed

via semaphores and monitors. In real-time OS, special semaphores and a deep Integration

into scheduling is necessary (priority inheritance protocols).

Further responsibilities: Initializations of internal data structures (tables, queues, task

description blocks, semaphores)

 Fig:4.4: Minimal Set of Task States

4

Run:

A task enters this state as it starts executing on the processor

Ready:

State of those tasks that are ready to execute but cannot be executed, because the

processor is assigned to another task.

Wait:

A task enters this state when it executes a synchronization primitive to wait for an event,

e.g. a wait primitive on a semaphore. In this case, the task is inserted in a queue

associated with the semaphore. The task at the head is resumed when the semaphore is

unlocked by a signal primitive.

Idle:

A periodic job enters this state when it completes its execution and has to wait

for the beginning of the next period.

Challenges for an RTOS:

• Creating an RT task, it has to get the memory without delay: this is difficult because

memory has to be allocated and a lot of data structures, code segment must be

copied/initialized

• The memory blocks for RT tasks must be locked in main memory to avoid access

latencies due to swapping

• Changing run-time priorities dangerous: it may change the run-time behavior and

predictability of the whole system

Inter task communication and Synchronization:

Inter process Communication (IPC) enables processes to communicate with each

other to share information

• Pipes (half duplex)

• FIFOs(named pipes)

• Stream pipes (full duplex)

• Named stream pipes

• Message queues

• Semaphores

• Shared Memory

• Sockets

• Streams

• Pipes

Oldest (and perhaps simplest) form of UNIX IPC

• Half duplex

• Data flows in only one direction

• Only usable between processes with a common ancestor

• Usually parent-child

• Also child-child

5

In computing, a named pipe (also known as a FIFO) is one of the methods for intern-process

communication.

• It is an extension to the traditional pipe concept on Unix. A traditional pipe is

“unnamed” and lasts only as long as the process.

• A named pipe, however, can last as long as the system is up, beyond the life of the

process. It can be deleted if no longer used.

• Usually a named pipe appears as a file and generally processes attach to it for inter-

process communication. A FIFO file is a special kind of file on the local storage which

allows two or more processes to communicate with each other by reading/writing

to/from this file.

• A FIFO special file is entered into the filesystem by calling mkfifo() in C. Once we have

created a FIFO special file in this way, any process can open it for reading or writing, in

the same way as an ordinary file. However, it has to be open at both ends

simultaneously before you can proceed to do any input or output operations on it.

Understanding Pipes

• Within a process

• Writes to files can be read on files

• Not very useful

• Between processes

• After a fork()

• Writes to files by one process can be read on files by the other

Using Pipes:

• Usually, the unused end of the pipe is closed by the process

• If process A is writing and process B is reading, then process A would close files[0]

and process B would close files[1]

• Reading from a pipe whose write end has been closed returns 0 (end of file)

• Writing to a pipe whose read end has been closed generates SIGPIPE

• PIPE_BUF specifies kernel pipe buffer size

Creating a Pipe

The primitive for creating a pipe is the pipe function. This creates both the reading

and writing ends of the pipe. It is not very useful for a single process to use a pipe to talk to

itself. In typical use, a process creates a pipe just before it forks one or more child processes.

The pipe is then used for communication either between the parent or child processes, or

between two sibling processes.

The pipe function is declared in the header file unistd.h. Here is an example of a

simple program that creates a pipe. The parent process writes data to the pipe, which is read

by the child process.

6

#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

/* Read characters from the pipe and echo them to stdout. */

void

read_from_pipe (int file)

{

 FILE *stream;

 int c;

 stream = fdopen (file, "r");

 while ((c = fgetc (stream)) != EOF)

 putchar (c);

 fclose (stream);

}

/* Write some random text to the pipe. */

void

write_to_pipe (int file)

{

 FILE *stream;

 stream = fdopen (file, "w");

 fprintf (stream, "hello, world!\n");

 fprintf (stream, "goodbye, world!\n");

 fclose (stream);

}

int

main (void)

{

 pid_t pid;

 int mypipe[2];

 /* Create the pipe. */

 if (pipe (mypipe))

 {

 fprintf (stderr, "Pipe failed.\n");

 return EXIT_FAILURE;

 }

7

 /* Create the child process. */

 pid = fork ();

 if (pid == (pid_t) 0)

 {

 /* This is the child process.

 Close other end first. */

 close (mypipe[1]);

 read_from_pipe (mypipe[0]);

 return EXIT_SUCCESS;

 }

 else if (pid < (pid_t) 0)

 {

 /* The fork failed. */

 fprintf (stderr, "Fork failed.\n");

 return EXIT_FAILURE;

 }

 else

 {

 /* This is the parent process.

 Close other end first. */

 close (mypipe[0]);

 write_to_pipe (mypipe[1]);

 return EXIT_SUCCESS;

 }

}

Using Pipes for synchronization and communication:

• Once you have a pipe or pair of pipes set up, you can use it/them to

Signal events (one pipe)

• Wait for a message

• Synchronize (one or two pipes)

• Wait for a message or set of messages

• You send me a message when you are ready, then I’ll send you a

message when I am ready

• Communicate (one or two pipes)

• Send messages back and forth

• popen() and pclose():

FIFO

A FIFO special file is similar to a pipe, except that it is created in a different way.

Instead of being an anonymous communications channel, a FIFO special file is entered into

the file system by calling mkfifo.

8

Once you have created a FIFO special file in this way, any process can open it for

reading or writing, in the same way as an ordinary file. However, it has to be open at both

ends simultaneously before you can proceed to do any input or output operations on it.

Opening a FIFO for reading normally blocks until some other process opens the same FIFO

for writing, and vice versa.

First: Co processes–Nothing more than a process whose input and output are both

redirected from another process

FIFOs–named pipes

With regular pipes, only processes with a common ancestor can communicate With

FIFOs, any two processes can communicate

Creating and opening a FIFO is just like creating and opening a file

FIFO details:

#include <sys/types.h>

#include <sys/stat.h>

intmkfifo(constchar *pathname, mode_tmode); The

modeargument is just like in open()

Can be opened just like a file

When opened, O_NONBLOCK bit is important

Not specified: open() for reading blocks until the FIFO is opened by a writer

Specified: open() returns immediately, but returns an error if opened for writing and no

reader exists

Four Queue States:

1. Both the sending and receiving queue are running.

2. Only the sender is executing.

3. Sender not executing, but receiver is running.

4. Neither the sender nor the receiver are running.

Parts of Message Queue:

The queue that is local to the sending machine is called the source queue. The local queue of

the

receiver is called the destination queue. Queues are managed by queue managers. Mapping

of queues to network locations.

Message sending methods:

1. Message Queues

2. Mail box:

Mail box:

Mailboxes are similar to queues.

➢ Capacity of mailboxes is usually fixed after initialization

➢ Some RTOS allow only a single message in the mailbox. (mailbox is either full or

empty)

➢ Some RTOS allow prioritization of messages

9

Mailbox functions at OS

Some OS provide the mailbox and queue both IPC functions. When the IPC functions

for mailbox are not provided by an OS, then the OS employs queue for the same purpose. A

mailbox of a task can receive from other tasks and has a distinct ID. Mailbox (for message)

is an IPC through a message at an OS that can be received only one single destined task for

the message from the tasks. Two or more tasks cannot take message from same Mailbox. A

task on an OS function call puts (means post and also send) into the mailbox only a pointer

to a mailbox message . Mailbox message may also include a header to identify the message-

type specification.

OS provides for inserting and deleting message into the mailbox message pointer.

Deleting means message-pointer pointing to Null. Each mailbox for a message need

initialization (creation) before using the functions in the scheduler for the message queue

and message pointer pointing to Null. There may be a provision for multiple mailboxes for

the multiple types or destinations of messages. Each mailbox has an ID. Each mailbox

usually has one message pointer only, which can point to message.

Mailbox Types

Fig:4.5:Classification of mailbox

Mailbox IPC features

When an OS call is to post into the mailbox, the message bytes are as per the pointed

number of bytes by the mailbox message pointer.

Mailbox Related Functions at the OS

Fig:4.6:Features of mailbox

10

Mailbox IPC functions

1. OSMBoxCreate creates a box and initializes the mailbox contents with a NULL

pointer at *msg . 2. OSMBoxPost sends at *msg, which now does not point to Null.

2. An ISR can also post into mailbox for a task

3. OSMBoxWait (Pend) waits for *msg not Null, which is read when not Null and again

*msg points to Null. • The time out and error handling function can be provided with

Pend function argument. • ISR not permitted to wait for message into mailbox. Only

the task can wait

4. OSMBoxAccept reads the message at *msg after checking the presence yes or no [No

wait.] Deletes (reads) the mailbox message when read and *msg again points to Null

• An ISR can also accept mailbox message for a task

5. OSMBoxQuery queries the mailbox *msg.

6. OSMBoxDelete

Event Management and Memory Management

Tasks are event driven or time driven. In RTOS environment there is less

significance for event driven mechanism. Just as processes share the CPU, they also share

physical memory. The concept of a logical address space that is bound to a separate

physical address space is central to proper memory management.

➢ Logical address – generated by the CPU; also referred to as virtual address

➢ Physical address – address seen by the memory unit

Logical and physical addresses are the same in compile-time and load time address binding

schemes; logical (virtual) and physical addresses differ in execution-time address-binding

scheme. Re locatable Means that the program image can reside anywhere in physical

memory. Binding Programs need real memory in which to reside. When is the location of

that real memory determined. This is called mapping logical to physical addresses. This

binding can be done at compile/link time. Converts symbolic to re locatable. Data used

within compiled source is offset within object module.

Compiler: If it’s known where the program will reside, then absolute code is

generated. Otherwise compiler produces re locatable code.

Load: Binds re locatable to physical. Can find best physical location.

Execution: The code can be moved around during execution. Means flexible virtual

Mapping

11

Example of Memory Usage:

Calculation of an effective address
Fetch from instruction

Use index offset

Example: (Here index is a pointer to an address)

loop:

load register, index

add 42, register store

register, index inc

index

skip_equal index, final_address

branch loop

This binding can be done at compile/link time. Converts symbolic to re locatable.

Data used within compiled source is offset within object module. Can be done at load time.

Binds reloadable to physical. Can be done at run time. Implies that the code can be moved

around during execution.

Fig:4.7:Design of software development tools

Message queues

A message queue is an object used for inter task communication through which task

send or receive messages placed in a shared memory. The queue may follow

1) First In First Out (FIFO), 2) Last in First Out(LIFO) or 3) Priority (PRI) sequence.

Usually, a message queue comprises of an associated queue control block (QCB), name,

unique ID, memory buffers, queue length, maximum message length and one or more

task waiting lists. A message queue with a length of 1 is commonly known as a mailbox.

12

Fig:4.8: Message queues

Pipes

A pipe is an object that provide simple communication channel used for

unstructured data exchange among tasks. A pipe does not store multiple messages but

stream of bytes. Also, data flow from a pipe cannot be prioritized.

Remote procedure call (RPC)

Remote Procedure Call (RPC) is a powerful technique for constructing distributed,

client-server based applications. It is based on extending the conventional local procedure

calling so that the called procedure need not exist in the same address space as the calling

procedure. A remote procedure call is an inter process communication technique that is used

for client-server based applications. It is also known as a subroutine call or a function call. A

client has a request message that the RPC translates and sends to the server. This request

may be a procedure or a function call to a remote server. When the server receives the

request, it sends the required response back to the client. The client is blocked while the

server is processing the call and only resumed execution after the server is finished.

Fig:4.9: Remote procedure call

The sequence of events in a remote procedure call are given as follows :

1. A client invokes a client stub procedure, passing parameters in the usual way. The client stub

resides within the client’s own address space.

13

2. The client stub marshalls (pack) the parameters into a message. Marshalling includes

converting the representation of the parameters into a standard format, and copying each

parameter into the message.

3. The client stub passes the message to the transport layer, which sends it to the remote server

machine.

4. On the server, the transport layer passes the message to a server stub, which demar

shalls(unpack) the parameters and calls the desired server routine using the regular procedure

call mechanism.

5. When the server procedure completes, it returns to the server stub (e.g., via a normal

procedure call return), which marshalls the return values into a message. The server stub then

hands the message to the transport layer.

6. The transport layer sends the result message back to the client transport layer, which hands

the message back to the client stub.

7. The client stub demarshalls the return parameters and execution returns to the caller.

RPC Issues

1. RPC Runtime: RPC run-time system is a library of routines and a set of services that handle

the network communications that underlie the RPC mechanism. In the course of an RPC call,

client-side and server-side run-time systems’ code handle binding, establish communications

over an appropriate protocol, pass call data between the client and server, and handle

communications errors.

2. Stub: The function of the stub is to provide transparency to the programmer-written

application code. On the client side, the stub handles the interface between the client’s local

procedure call and the run-time system, marshaling and unmarshaling data, invoking the RPC

run-time protocol, and if requested, carrying out some of the binding steps. On the server side,

the stub provides a similar interface between the run-time system and the local manager

procedures that are executed by the server.

3. Binding: The most flexible solution is to use dynamic binding and find the server at run time

when the RPC is first made. The first time the client stub is invoked, it contacts a name server

to determine the transport address at which the server resides.

Advantages of Remote Procedure Call

Some of the advantages of RPC are as follows

• Remote procedure calls support process oriented and thread oriented models.

• The internal message passing mechanism of RPC is hidden from the user.

• The effort to re-write and re-develop the code is minimum in remote procedure calls.

• Remote procedure calls can be used in distributed environment as well as the local

environment.

• Many of the protocol layers are omitted by RPC to improve performance.

14

Disadvantages of Remote Procedure Call

Some of the disadvantages of RPC are as follows

• The remote procedure call is a concept that can be implemented in different ways. It is

not a standard.

• There is no flexibility in RPC for hardware architecture. It is only interaction based.

• There is an increase in costs because of remote procedure cal

Memory Management

Memory management is one of the most important subsystems of any operating

system for computer control systems, and is even more critical in a RTOS than in standard

operating systems. Firstly, the speed of memory allocation is important in a RTOS. A

standard memory allocation scheme scans a linked list of indeterminate length to find a free

memory block; however, memory allocation has to occur in a fixed time in a RTOS.

Secondly, memory can become fragmented as free regions become separated by regions that

are in use, causing a program to stall, unable to get memory, even though there is

theoretically enough available. Memory allocation algorithms that slowly accumulate

fragmentation may work perfectly well for desktop machines rebooted every day or so but

are unacceptable for embedded systems that often run for months without rebooting.

Memory management is the process by which a computer control system allocates a

limited amount of physical memory among its various processes (or tasks) in a way that

optimizes performance. Actually, each process has its own private address space, initially

divided into three logical segments: text, data, and stack. The text segment is read-only and

contains the machine instructions of a program, the data and stack segments are both

readable and writable. The data segment contains the initialized and non-initialized data

portions of a program, whereas the stack segment holds the application’s run-time stack. On

most machines, this is extended automatically by the kernel as the process executes. This is

done by making a system call, but change to the size of a text segment only happens when its

contents are overlaid with data from the file system, or when debugging takes place. The

initial contents of the segments of a child process are duplicates of the segments of its parent.

The contents of a process address space do not need to be completely in place for a

process to execute. If a process references a part of its address space that is not resident in

main memory, the system pages the necessary information into memory. When system

resources are scarce, the system uses a two-level approach to maintain available resources. If

a modest amount of memory is available, the system will take memory resources away from

processes if these resources have not been used recently. Should there be a severe resource

shortage, the system will resort to swapping the entire context of a process to secondary

storage. This paging and swapping done by the system are effectively transparent to

processes, but a process may advise the system about expected future memory utili- zation as

a performance aid. A common technique for doing the above is virtual memory, which

simulates a much larger address space than is actually available, using a reserved disk area

for objects that are not in physical memory. The operating system’s kernel often performs

memory allocations that are needed for only the duration of a single system call. In a user

15

process, such short-term memory would be allocated on the run-time stack. Because the

kernel has a limited run-time stack, it is not feasible to allocate even moderately- sized blocks

of memory on it, so a more dynamic mechanism is needed. For example, when the system

must translate a path name, it must allocate a 1-kbyte buffer to hold the name. Other blocks

of memory must be more persistent than a single system call, and thus could not be allocated

on the stack even if there was space. An example is protocol-control blocks that remain

throughout the duration of a network connection.

This section discusses virtual memory techniques, memory allocation and deallocation,

memory protection and memory access control.

Virtual memory

When it is executing a program, the microprocessor reads an instruction from

memory and decodes it. At this point it may need to fetch or store the contents of a location in

memory, so it executes the instruction and then moves on to the next. In this way the

microprocessor is always accessing memory, either to fetch instructions or to fetch and store

data. In a virtual memory system all of these addresses are virtual, and not physical

addresses. They are converted into physical addresses by the microprocessor, based on

information held in a set of tables maintained by the operating system.

The operating system uses virtual memory to manage the memory requirements of its

processes by combining physical memory with secondary memory (swap space) on a disk,

usually located on a hardware disk drive. Diskless systems use a page server to maintain their

swap areas on the local disk (extended memory). The translation from virtual to physical

addresses is implemented by a memory management unit (MMU), which may be either a

module of the CPU, or an auxiliary, closely coupled chip. The operating system is responsible

for deciding which parts of the program’s simulated main memory are kept in physical

memory, and also maintains the translation tables that map between virtual and physical

addresses. Three techniques of implementing virtual memory; paging, swapping and

segmentation.

(1) Paging

Almost all implementations of virtual memory divide the virtual address space of an

application program into pages; a page is a block of contiguous virtual memory addresses.

Here, the low-order bits of the binary representation of the virtual address are preserved,

and used directly as the low-order bits of the actual physical address; the high-order bits are

treated as a key to one or more address translation

Fig: 4 .10 :Address translation between physical and virtual memory

16

tables, which provide the high-order bits with the actual physical address. For this reason, a

range of consecutive addresses in the virtual address space, whose size is a power of two, will

be translated to a corresponding range of consecutive physical addresses. The memory

referenced by such a range is called a page. The page size is typically in the range 512 8192

bytes (with 4 kB currently being very common), though 4 MB or even larger may be used for

special purposes. (Using the same or a related mechanism, contiguous regions of virtual

memory larger than a page are often mappable to contiguous physical memory for purposes

other than virtualization, such as setting access and caching control bits.)

Almost all implementations use page tables to translate the virtual addresses seen by

the application into physical addresses (also referred to as real addresses) used by the

hardware. The operating system stores the address translation tables, i.e. the mappings from

virtual to physical page numbers, in a data structure known as a page table. When the CPU

tries to reference a memory location that is marked as unavailable, the MMU responds by

raising an exception (commonly called a page fault) with the CPU, which then jumps to a

routine in the operating system. If the page is in the swap area, this routine invokes an

operation called a page swap, to bring in the required page.

The operating systems can have one page table or a separate page table for each

application. If there is only one, different applications running at the same time will share a

single virtual address space, i.e. they use different parts of a single range of virtual addresses.

The operating systems which use multiple page tables provide multiple virtual address

spaces, so concurrent applications seem to use the same range of virtual addresses, but their

separate page tables redirect to different real addresses

Fig:4.11: Abstract model for mapping virtual addresses to physical addresses in the

implementation of virtual memory

17

The above figure shows the virtual address spaces of two processes, X and Y, each

with their own page tables, which map each process’s virtual pages into physical pages in

memory. This shows that process X’s virtual page frame number 0 is mapped into memory at

physical page frame number 1 and that process Y’s virtual page frame number 1 is mapped

into physical page frame number 4. Each entry in the theoretical page table contains the

following information: (1) a valid flag that indicates whether this page table entry is valid; (2)

the physical page frame number that this entry describes; (3) the access control information

that describes how the page may be used.

(2) Swapping

Swap space is a portion of hard disk used for virtual memory that is usually a

dedicated partition (i.e., a logically independent section of a hard disk drive), created during

the installation of the operating system. Such a partition is also referred to as a swap

partition. However, swap space can also be a special file. Although it is generally preferable

to use a swap partition rather than a file, sometimes it is not practical to add or expand a

partition when the amount of RAM is being increased. In such case, a new swap file can be

created with a system call to mark a swap space.

It is also possible for a virtual page to be marked as unavailable because the page was never

previously allocated. In such cases, a page of physical memory is allocated and filled with

zeros, the page table is modified to describe it, and the program is restarted as above

Fig:4.12: Page swapping for implementing virtual memory

The above figure illustrates how the virtual memory of a process might correspond to

what exists in physical memory, on swap, and in the file system. The U-area of a process

consists of two 4 kB pages (displayed here as U1 and U1) of virtual memory containing

information about the process that is needed by the system during execution. In this example,

these pages are shown in physical memory, and the data pages, D3 and D4, are shown as

being paged out to the swap area on disk. The text page, T4, has also been paged out, but it is

18

not written to the swap area as it exists in the file system. Those pages that have not yet been

accessed by the process (D5, T2, and T5) do not occupy any resources in physical memory or

in the swap area. The page swap operation involves a series of steps. Firstly it selects a page

in memory; for example, a page that has not been recently accessed and (preferably) has not

been modified since it was last read. If the page has been modified, the process writes the

modified page to the swap area. The next step in the process is to read in the information in

the needed page (the page corre-sponding to the virtual address the original program was

trying to reference when the exception occurred) from the swap file. When the page has been

read in, the tables for translating virtual addresses to physical addresses are updated to

reflect the revised contents of physical memory. Once the page swap completes, it exits, the

program is restarted and returns to the point that caused the exception.

(3) Segmentation

Some operating systems do not use paging to implement virtual memory, but use

segmentation instead. For an application process, segmentation divides its virtual address

space into variable-length segments, so a virtual address consists of a segment number and an

offset within the segment. Memory is always physically addressed with a single number

(called absolute or linear address). To obtain it, the microprocessor looks up the segment

number in a table to find a segment descriptor. This contains a flag indicating whether the

segment is present in main memory and, if so, the address of its starting point (segment’s

base address) and its length. It checks whether the offset within the segment is less than the

length of the segment and, if not, generates an interrupt. If a segment is not present in main

memory, a hardware interrupt is raised to the operating sys- tem, which may try to read the

segment into main memory, or to swap it in. The operating system may need to remove other

segments (swap out) in order to make space for the segment to be read in.

The difference between virtual memory implementations that use pages and those

using segments is not only about the memory division. Sometimes the segmentation is actually

visible to the user processes, as part of the semantics of the memory model. In other words,

instead of a process just having a memory which looks like a single large vector of bytes or

words, it is more structured. This is different from using pages, which does not change the

model visible to the process. This has important consequences. It is possible to combine

segmentation and paging, usually by dividing each segment into pages. In such systems,

virtual memory is usually implemented by paging, with segmentation used to provide

memory protection. The segments reside in a 32-bit linear paged address space, which

segments can be moved into and out of, and pages in that linear address space can be moved

in and out of main memory, providing two levels of virtual memory. This is quite rare,

however, most systems only use paging.

Memory allocation and deallocation

The inefficient allocation or deallocation of memory can be detrimental to system

performance. The presence of wasted memory in a block is called internal fragmentation, and

it occurs because the size that was requested was smaller than that allocated. The result is a

block of unusable memory, which is considered as allocated when not being used. The reverse

situation is called external fragmentation, when blocks of memory are freed, leaving non-

19

contiguous holes. If these holes are not large, they may not be usable because further requests

for memory may call for larger blocks. Both internal and external fragmentation results in

unusable memory. Memory allocation and deallocation is a process that has several layers of

application. If one application fails, another operates to attempt to resolve the request. This

whole process is called dynamic memory management. Memory allocation is controlled by a

subsystem called malloc, which controls the heap, a region of memory to which memory

allocation and deallocation occurs. The reallocation of memory is also under the control of

malloc. In malloc, the allocation of memory is performed by two subroutines, malloc and

calloc. Deallocation is performed by the free subroutine, and reallocation is performed by the

subroutine known as realloc. In deallocation, those memory blocks that have been

deallocated are returned to the binary tree at its base. Thus, a binary tree can be envisioned

as a sort of river of information, with deallocated memory flowing in at the base and

allocated memory flowing out from the tips.

Garbage collection is another term associated with deallocation of memory. This

refers to an automated process that determines what memory is no longer in use, and so

recycles it. The automation of garbage collection relieves the user of time-consuming and

error-prone tasks. There are a number of algorithms for the garbage collection process, all of

which operate independently of malloc.

Memory allocation and deallocation can be categorized as static or dynamic.

(1) Static memory allocation

Static memory allocation refers to the process of allocating memory at compile-time,

before execution. One way to use this technique involves a program module (e.g., function or

subroutine) declaring static data locally, such that these data are inaccessible to other

modules unless references to them are passed as parameters or returned. A single copy of this

static data is retained and is accessible through many calls to the function in which it is

declared. Static memory allocation therefore has the advantage of modularizing data within a

program so that it can be used throughout run-time. The use of static variables within a class

in object-oriented programming creates a single copy of such data to be shared among all the

objects of that class.

(2) Dynamic memory allocation

Dynamic memory allocation is the allocation of memory storage for use during the

run-time of a program, and is a way of distributing ownership of limited memory resources

among many pieces of data and code. A dynamically allocated object remains allocated until

it is deallocated explicitly, either by the programmer or by a garbage collector; this is notably

different from automatic and static memory allocation. It is said that such an object has

dynamic lifetime. Memory pools allow dynamic memory allocation comparable to malloc, or

the operator “new”. As those implementations suffer from fragmentation because of variable

block sizes, it can be impossible to use them in a real-time system due to performance

problems.

20

A more efficient solution is to pre-allocate a number of memory blocks of the same

size, called the memory pool. The application can allocate, access, and free blocks represented

by handles at run- time. Fulfilling an allocation request, which involves finding a block of

unused memory of a certain size in the heap, is a difficult problem. A wide variety of

solutions have been proposed, and some of the most commonly used are discussed here.

(a) Free lists

A free list is a data structure used in a scheme for dynamic memory allocation that

operates by connecting unallocated regions of memory together in a linked list, using the first

word of each unallocated region as a pointer to the next. It is most suitable for allocating

from a memory pool, where all objects have the same size. Free lists make the allocation and

deallocation operations very simple. To free a region, it is just added it to the free list. To

allocate a region, we simply remove a single region from the end of the free list and use it. If

the regions are variable-sized, we may have to search for a large enough region, which can be

expensive. Free lists have the disadvantage, inherited from linked lists, of poor locality of

reference and thus poor data cache utilization, and they provide no way of consolidating

adjacent regions to fulfill allocation requests for large regions. Nevertheless, they are still

useful in a variety of simple applications where a full-blown memory allocator is unnecessary,

or requires too much overhead.

(b) Paging

As mentioned earlier, the memory access part of paging is done at the hardware level

through page tables, and is handled by the MMU. Physical memory is divided into small

blocks called pages (typically 4 kB or less in size), and each block is assigned a page number.

The operating system may keep a list of free pages in its memory, or may choose to probe the

memory each time a request is made (though most modern operating systems do the former).

In either case, when a program makes a request for memory, the operating system allocates a

number of pages to it, and keeps a list of allocated pages for that particular program in

memory.

Memory protection

The topic of memory management in this section addresses a different set of

constructs related to physical and virtual memory: protected memory, infinite amount of

memory, and transparent sharing. Perhaps the simplest model for using memory is to

provide single programming without memory protection, where each process (or task) runs

with a range of physical memory addresses. Given that a single-programming environment

allows only one process to run at a time, this can use the same physical addresses every time,

even across reboots. Typically, processes use the lower memory addresses (low memory), and

an operating system uses the higher memory addresses (high memory). An application

process can address any physical memory location.

21

One step beyond the single-programming model is to provide multiprogramming

without memory protection. When a program is copied into memory, a linker-loader alters

the code of the program (loads, stores, jumps) to use the address of where the program lands

in memory. In this environment, bugs in any program can cause other programs to crash,

even the operating system. The third model is to have a multitasking operating system with

memory protection, which keeps user programs from crashing one another and the operating

system. Typically, this is achieved by two hardware- supported mechanisms: address

translation and dual-mode operation.

(1) Address translation

Each process is associated with an address space, or all the physical addresses it can

touch. However, each process appears to own the entire memory, with the starting virtual

address of 0. The missing piece is a translation table that translates every memory reference

from virtual addresses to physical addresses. Translation provides protection because there is

no way for a process to talk about other processes’ address, and it has no way of touching the

code or data of the operating system. The operating system uses physical addresses directly,

and involves no translation. When an exception occurs, the operating system is responsible

for allocating an area of physical memory to hold the missing information (and possibly in

the process pushing something else out to disk), bringing the relevant information in from the

disk, updating the translation tables, and finally resuming execution of the software that

incurred the exception.

(2) Dual-mode operation

Translation tables can offer protection only if a process cannot alter their content.

Therefore, a user process is restricted to only touching its address space under the user mode.

A CPU can change from kernel to user mode when starting a program, or vice versa through

either voluntary or involuntary mechanisms. The voluntary mechanism uses system calls,

where a user application asks the operating system to do something on its behalf. A system

call passes arguments to an operating system, either through registers or copying from the

user memory to the kernel memory. A CPU can also be switched from user to kernel mode

involuntarily by hardware interrupts (e.g., I/O) and program exceptions (e.g., segmentation

fault).

On system calls, interrupts, or exceptions, hardware atomically performs the

following steps:

(1) sets the CPU to kernel mode; (2) saves the current program counter; (3) jumps to the

handler in the kernel (the handler saves old register values).

Unlike threads, context switching among processes also involves saving and restoring

pointers to translation tables. To resume execution, the kernel reloads old register values, sets

the CPU to user mode, and jumps to the old program counter. Communication among

address spaces is required in this operation. Since address spaces do not share memory,

processes have to perform inter-process communication (IPC) through the kernel, which can

allow bugs to propagate from one program to another. Protection by hardware can be

prohibitively slow, since applications have to be structured to run in separate address spaces

to achieve fault isolation. In the case of complex applications built by multiple vendors, it

22

may be desirable for two different programs to run in the same address space, with

guarantees that they cannot trash each other’s code or data. Strong typing and software fault

isolation are used to ensure this.

(a) Protection via strong typing

If a programming language disallows the misuse of data structures, a program may

trash another, even in the same address space. With some object-oriented programming,

programs can be downloaded over the net and run safely because the language, compiler, and

run-time system prevents the program from doing bad things (e.g., make system calls). For

example, Java defines a separate virtual machine layer, so a Java program can run on

different hardware and operating systems. The downside of this protection mechanism is the

requirement to learn a new language.

(b) Protection via software fault isolation

A language-independent approach is to have compilers generate code that is proven

safe (e.g., a pointer cannot reference illegal addresses). For example, a pointer can be checked

before it is used in some applications.

Memory access control

Dealing with race conditions is also one of the difficult aspects of memory

management. To manage memory access requests coming from the system, a scheduler is

necessary in the application layer or in the kernel, in addition to the MMU as a hardware

manager. The most common way of protecting data from concurrent access by the memory

access request scheduler is memory request contention. The semantics and methodologies of

memory access request contention should be the same as for I/O request contention.

Timer Management

Tasks need to be performed after scheduled durations. To keep track of the delays,

timers- relative and absolute are provided in RTOS.

Interrupt and event handling

RTOS provides various functions for interrupt and event handling, viz., Defining

interrupt handler, creation and deletion of ISR, referencing the state of an ISR, enabling

and disabling of an interrupt, etc. It also restricts interrupts from occurring when

modifying a data structure, minimize interrupt latencies due to disabling of interrupts

when RTOS is performing critical operations, minimizes interrupt response times.

23

Device I/O Management

One of the important jobs of an Operating System is to manage various I/O devices

including mouse, keyboards, touch pad, disk drives, display adapters, USB devices, Bit-

mapped screen, LED, Analog-to-digital converter, On/off switch, network connections,

audio I/O, printers etc. An I/O system is required to take an application I/O request and

send it to the physical device, then take whatever response comes back from the device and

send it to the application. I/O devices can be divided into two categories −

• Block devices − A block device is one with which the driver communicates by sending

entire blocks of data. For example, Hard disks, USB cameras, Disk-On-Key etc.

• Character devices − A character device is one with which the driver communicates by

sending and receiving single characters (bytes, octets). For example, serial ports,

parallel ports, sounds cards etc

Device Controllers

Device drivers are software modules that can be plugged into an OS to handle a

particular device. Operating System takes help from device drivers to handle all I/O devices.

The Device Controller works like an interface between a device and a device driver. I/O

units (Keyboard, mouse, printer, etc.) typically consist of a mechanical component and an

electronic component where electronic component is called the device controller. There is

always a device controller and a device driver for each device to communicate with the

Operating Systems. A device controller may be able to handle multiple devices. As an

interface its main task is to convert serial bit stream to block of bytes, perform error

correction as necessary.

Any device connected to the computer is connected by a plug and socket, and the

socket is connected to a device controller. Following is a model for connecting the CPU,

memory, controllers, and I/O devices where CPU and device controllers all use a common

bus for communication.

Fig:4.13: Model for connecting the CPU to peripherals

Synchronous vs asynchronous I/O

• Synchronous I/O − In this scheme CPU execution waits while I/O proceeds

• Asynchronous I/O − I/O proceeds concurrently with CPU execution

24

Communication to I/O Devices

The CPU must have a way to pass information to and from an I/O device. There are

three approaches available to communicate with the CPU and Device.

• Special Instruction I/O

• Memory-mapped I/O

• Direct memory access (DMA)

Special Instruction I/O

This uses CPU instructions that are specifically made for controlling I/O devices.

These instructions typically allow data to be sent to an I/O device or read from an I/O

device.

Memory-mapped I/O

When using memory-mapped I/O, the same address space is shared by memory and

I/O devices. The device is connected directly to certain main memory locations so that I/O

device can transfer block of data to/from memory without going through CPU.

Fig:4.14: Memory-mapped I/O

While using memory mapped IO, OS allocates buffer in memory and informs I/O

device to use that buffer to send data to the CPU. I/O device operates asynchronously with

CPU, interrupts CPU when finished. The advantage to this method is that every instruction

which can access memory can be used to manipulate an I/O device. Memory mapped IO is

used for most high-speed I/O devices like disks, communication interfaces.

Direct Memory Access (DMA)

Slow devices like keyboards will generate an interrupt to the main CPU after each

byte is transferred. If a fast device such as a disk generated an interrupt for each byte, the

operating system would spend most of its time handling these interrupts. So a typical

computer uses direct memory access (DMA) hardware to reduce this overhead. Direct

Memory Access (DMA) means CPU grants I/O module authority to read from or write to

memory without involvement. DMA module itself controls exchange of data between main

25

memory and the I/O device. CPU is only involved at the beginning and end of the transfer

and interrupted only after entire block has been transferred. Direct Memory Access needs a

special hardware called DMA controller (DMAC) that manages the data transfers and

arbitrates access to the system bus. The controllers are programmed with source and

destination pointers (where to read/write the data), counters to track the number of

transferred bytes, and settings, which includes I/O and memory types, interrupts and states

for the CPU cycles.

Fig:4.15: Direct Memory Access

I/O software is often organized in the following layers −

• User Level Libraries − This provides simple interface to the user program to perform

input and output. For example, stdio is a library provided by C and C++

programming languages.

• Kernel Level Modules − This provides device driver to interact with the device

controller and device independent I/O modules used by the device drivers.

• Hardware − This layer includes actual hardware and hardware controller which

interact with the device drivers and makes hardware alive.

A key concept in the design of I/O software is that it should be device independent where

it should be possible to write programs that can access any I/O device without having to

specify the device in advance. For example, a program that reads a file as input should be

able to read a file on a floppy disk, on a hard disk, or on a CD-ROM, without having to

modify the program for each different device.

26

 Fig:4.16: Design of I/O software

Device Drivers

Device drivers are software modules that can be plugged into an OS to handle a

particular device. Operating System takes help from device drivers to handle all I/O devices.

Device drivers encapsulate device-dependent code and implement a standard interface in

such a way that code contains device-specific register reads/writes. Device driver, is

generally written by the device's manufacturer and delivered along with the device on a CD-

ROM.

A device driver performs the following jobs −

• To accept request from the device independent software above to it.

• Interact with the device controller to take and give I/O and perform required error

handling

• Making sure that the request is executed successfully

How a device driver handles a request is as follows: Suppose a request comes to read a block

N. If the driver is idle at the time a request arrives, it starts carrying out the request

immediately. Otherwise, if the driver is already busy with some other request, it places the

new request in the queue of pending requests.

Interrupt handlers

An interrupt handler, also known as an interrupt service routine or ISR, is a piece of

software or more specifically a callback function in an operating system or more specifically

in a device driver, whose execution is triggered by the reception of an interrupt. When the

interrupt happens, the interrupt procedure does whatever it has to in order to handle the

interrupt, updates data structures and wakes up process that was waiting for an interrupt to

happen.

27

The interrupt mechanism accepts an address ─ a number that selects a specific

interrupt handling routine/function from a small set. In most architectures, this address is

an offset stored in a table called the interrupt vector table. This vector contains the memory

addresses of specialized interrupt handlers.

Device-Independent I/O Software

The basic function of the device-independent software is to perform the I/O functions

that are common to all devices and to provide a uniform interface to the user-level software.

Though it is difficult to write completely device independent software but we can write some

modules which are common among all the devices. Following is a list of functions of device-

independent I/O Software −

• Uniform interfacing for device drivers

• Device naming - Mnemonic names mapped to Major and Minor device numbers

• Device protection

• Providing a device-independent block size

• Buffering because data coming off a device cannot be stored in final destination.

• Storage allocation on block devices

• Allocation and releasing dedicated devices

• Error Reporting

User-Space I/O Software

These are the libraries which provide richer and simplified interface to access the

functionality of the kernel or ultimately interactive with the device drivers. Most of the user-

level I/O software consists of library procedures with some exception like spooling system

which is a way of dealing with dedicated I/O devices in a multiprogramming system. I/O

Libraries (e.g., stdio) are in user-space to provide an interface to the OS resident device-

independent I/O SW. For example putchar(), getchar(), printf() and scanf() are example of

user level I/O library stdio available in C programming. RTOS generally provides large

number of APIs to support diverse hardware device drivers.

TEXT / REFERENCE BOOKS

1. Jane W. S Liu, “Real Time Systems” Pearson Higher Education, 3rd Edition, 2000.

2. Raj Kamal, “Embedded Systems- Architecture, Programming and Design” Tata McGraw

Hill, 2nd Edition, 2014.

3. Jean J. Labrosse, “Micro C/OS-I : The real time kernel” CMP Books, 2nd Edition,2015.

5. Richard Barry, “Mastering the Free RTOS: Real Time Kernel”, Real Time Engineers Ltd,

1st Edition, 2016.

6. David E. Simon, “ An Embedded Software Primer”, Pearson Education Asia Publication

1

SCHOOL OF ELECTRICAL & ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

UNIT -V

RTOS PROGRAMMING - SECA5302

2

V RTOS IMAGE BUILDING FOR DIFFERENT TARGET PLATFORMS

Porting of RTOS, Configuring RTOS for minimizing RAM consumption and increasing

Throughput- Building RTOS Image for Target platforms

Porting of RTOS:

Product development cycles are market driven, and market demands often require

vendors to compress development schedules. One approach to this is to simultaneously

develop similar products, yet with varying levels of product complexity. However,

scheduling pressures coupled with increased product complexity can be a recipe for

disaster, resulting in slipped schedules and missed opportunities. Consequently, vendors

are always on the alert for silver bullets, yet as developers, we know that they don't exist.

That said, it is still in our best interest to seek better ways of compressing development

cycles, and one way to do this is to port existing products to new hardware platforms,

adding new features along the way. This is the approach we used to demonstrate a proof-

in-concept when porting a legacy security application to a new hardware platform.

Our firm was hired to make enhancements to the client's existing 6502-based

product, and we quickly realized that this platform was running out of steam. Specifically,

the proposed features would significantly impact performance. Consequently, we proposed

three options for fixing this problem:

➢ Completely rewriting the application on the current hardware.

➢ Rewriting the application on a new, higher performance hardware.

➢ Migrating portable portions of the application to the new hardware. After

considering the options, we decided to port to new hardware.

RTXC Overview

The Real-Time executive kernel (RTXC) supports three kinds of priority- based

task scheduling: preemptive (the default), round-robin, and time-slice. RTXC is robust,

supports hard deadlines, changeable task priorities, time and resource management, and

inter task communication. It also has a small RAM/ROM code footprint, standard API

interface, and is implemented in many processors. RTXC is divided into nine basic

components: tasks, mailboxes, messages, queues, semaphores, resources, memory

partitions, timers, and Interrupt Service Routines (ISRs). These components are further

subdivided into three groups that are used for inter task communication, synchronization,

and resource management. Moreover, component functionality is accessed via the standard

API interface.

3

Porting Activities Overview:

Porting an RTOS to a new board requires four activities:

➢ Determining the system's architecture.

➢ Figuring out what files to change based on the architecture.

➢ Making changes to the files; this includes writing the code.

➢ Creating test code and exercising the board to ensure that the RTOS is working

properly.

The first activity is design related, while the others are implementation related.

Moreover, the last three activities require an understanding of the new hardware—

knowing the specifics of what needs to happen to make the RTOS interact with the board.

System Architecture:

The purpose of determining the system architecture requirements is to identify the

hardware and software components that need modifying to get the RTOS up and running

on the NPE-167 board. For most porting projects, hardware components include I/O,

memory, timers, and other unique peripherals. For this project, these components are no

different. We had the I/O ports that control the LEDs, CAN bus, serial communication,

memory selection, and card-slot selection. Memory had both Flash and SRAM. Memory is

selected through the I/O component using the SPI bus. Therefore, I/O and memory

selection are interrelated. For this project, we also had to identify the timer to run RTXC's

real- time clock. The real-time clock is the master timer used for all RTOS-based time-

keeping functions. Additionally, for this project, we were not going to use any other on-chip

peripherals.

The best way to identify hardware components is to study the board's schematics.

Examining the NPE-167 board revealed that the I/O ports would be key for this project.

Why? Because this board used the processor's general-purpose ports to handle switches to

control CAN bus operation, the board's operating mode, control LED outputs, and

memory selection. I/O cards were controlled via the SPI bus, rather than I/O ports.

Ports can as either inputs or outputs. Examination of the NPE- 167 board showed

that 17 be configured ports are used. Eleven ports are used as switch inputs. From the

schematic we saw that switches 1-7 were used to set the MAC address for the CAN device.

CAN bus speed is controlled by switches 8-9, while the board operating mode is controlled

by switches 11-12. Switch 10 is not used. Four ports control the LEDs. There are three in

total. One LED is green, one red, and the third bicolor. Thus, four outputs are required to

control the three LEDs. Finally, two output ports are used as page selection for extended

memory.

NPE board addresses up to 512K of memory before having to make use of the page-

4

selection ports. Although we would configure the page-selection ports for the porting

process, we didn't have to use them because the total code footprint of the kernel, plus test

code, is 107K. RTXC's kernel is about 76K, and the porting test code fits within another

31K. In short, we would only use about 1/5 of the default memory to validate the porting

process.

The last necessary component for the port was to determine which timer to use as

the master time base. Timers are internal on the C167 processor, so they don't show up on

the schematic. So we had two options—choose a timer and write the code for that timer, or

use the BSP default timer. RTXC's C167 BSP uses a timer in its configuration. A trick to

simplify the initial porting process is to use the default timer that the BSP uses. Reviewing

the BSP documentation, we discovered that it uses timer 6 for the master timer. Once we

determined the components associated with the porting process, we could turn our

attention to figuring out which files needed to be changed.

Changing Files

We knew from the previous step that 11 ports were used for input and six ports for

output. Because these were general-purpose I/O ports, they needed to be initialized to work

as either inputs or outputs. This gave us an idea of where NPE- specific initialization code

needed to go—specifically, initialization code to set up these ports goes in the startup code.

For this project, initialization code was located in the cstart.a66 file that is located in the

Porting directory. Listing One is the code that configures the NPE-167 board I/O. Once

configured, I/O can be used by higher level RTOS and API functions. Once we figured out

where the I/O changes go, we needed to turn our attention to discovering and setting up the

master timer.

BSP set up the master timer for us because we were using default timer 6. Setup code

for this timer is located in cstart.a66 and rtxc main.c. Listing Two is a snippet of the

RTXC-specific code. After analyzing the architecture requirements, we discovered that the

only file to change for porting the NPE-167 board was cstart.a66. Granted, we knew we

would have to change other files as well, but those files are application specific.

Changing Files and Writing Code

This brought us to the third step, which was straightforward because we knew what

needed to be changed and where. Recall that all changes for basic porting functionality

occurred in cstart.a66. We also needed to write the code for initialization. We wrote code to

initialize the switches to handle CAN—but no other code— to deal with it because it is not

used in the basic port. For specifics, look at cstart.a66 and search for npe and rtxc labels to

find code changes specific to this port. Keep in mind, when porting to new hardware you

may want to adopt a similar strategy for partitioning the code for hardware- and RTOS-

specific changes. That is because partitioning code through the use of labels helps with code

maintainability.

Test Code

5

Finally, we needed to create some test code to test our port. Building the test code

application was a two-step process:

• We compiled the RTXC kernel into a library object (rtxc.lib).

• We compiled the test code and link in rtxc.lib to create the executable.

There are two directories for generating the test code, and they are stored at the

same level in the hierarchy. Moreover, all files for creating rtxc.lib are located in the kernel

directory. Alternatively, test code-specific files are located in the Porting directory.

The RTXCgen utility creates a set of files corresponding to each RTOS component.

For instance, application queues are defined in three files: cqueue.c, cqueue.h, and

cqueue.def. The same holds true for tasks, timers, semaphores, mailboxes, and the rest.

Changes to the number of RTOS components are handled by this utility. For example, if

we wanted to change the number of tasks used by the test code, we use RTXCgen to do it.

Figure 2 shows the contents of the task definition file for the test code application. Test code

files created by RTXCgen are placed in the Porting directory. Once RTXCgen has defined

the system resources, we are ready to build the project.

Creating the executable test code requires the build of two subprojects—the kernel

and test code. We performed builds using the Keil Microvision IDE (http://www.keil.com/).

Keil uses project files (*.prj files) to store its build information. RTXC kernel creation

consists of building the code using the librtxc.prj file located in the kernel directory.

Evoking the librtxc project compiles, links, and creates a librtxc object in the kernel

directory. Building the test code is accomplished using the NpeEg.prj file stored in the

Porting directory. Invoking the NpeEg project compiles and links files in the Porting

directory, and links the librtxc object in the kernel directory. The resulting executable is

then placed in the Porting directory as well. Once the test code was fully built, we were

ready to test the board port.

The test code is a simple application used to validate the porting process. Most of the

test code is located in main.c located in the Porting directory. The application works by

starting five tasks—two user and three system. User tasks execute alternatively, while

system tasks execute in the background. One user task begins running. It then outputs data

via one of the system tasks to the console. Next, it signals the other to wake up, and it puts

itself to sleep, thus waiting for the other task to signal it to wake up again.

Most embedded systems of non-trivial complexity employ an operating system of

some kind – commonly an RTOS. Ultimately, the OS is an overhead, which uses time and

memory that could otherwise have been used by the application code. As an embedded

system has limited resources, this overhead needs to be carefully evaluated, which

commonly leads to questions about RTOS memory footprint. If you were considering the

purchase of a real time operating system (or, for that matter, any piece of software IP for

an embedded application), you would probably like to get clear information on the amount

of memory that it uses. It is very likely that an RTOS vendor will be unwilling – or actually,

to be more precise – unable to provide you with such seemingly obvious information. The

reason for this is that there are a huge number of variables.

Broadly speaking, there is read only memory (ROM – nowadays that is usually flash

http://www.keil.com/)

6

memory) and read/write memory (RAM). ROM is where the code and constant data is

stored; RAM is used for variables. However, to improve performance, it is not uncommon

to copy code/data from ROM to RAM on boot up and then use the RAM copy. This is

effective because RAM is normally faster to access than ROM. So, when thinking about

of RTOS footprint, you need to consider ROM and RAM size, including the RAM copy

possibility.

The issue can become more complex. There may be on-chip RAM and external

memory available. The on-chip storage is likely to be faster, so it may be advantageous to

ensure that RTOS code/data is stored there, as its performance will affect the whole

application. In a similar fashion, code/data may be locked into cache memory, which tends

to offer even higher performance.

Compiler optimization

When building code, like an RTOS, the optimization setting applied to the compiler

affect both size and execution speed. Most of the time, code built for highest performance

(i.e. fastest) will be bigger; code optimized to be smaller will run slower. It is most likely

that an RTOS would normally be built for performance, not size.

Although an RTOS vendor, wanting to emphasize the small size of their product, might

make a different choice.

RTOS configuration

Real time operating systems tend to be very configurable and that configuration can

vary the RTOS size drastically. Most RTOS products are scalable, so the memory footprint

is determined by the actual services used by the application. The granularity of such

scalability varies from one product to another. In some cases, each individual service is

optional; in others, whole service groups are included or excluded – i.e. if support for a

particular type of RTOS object (e.g. semaphore) is required, all the relevant services are

included. On a larger scale, other options, like graphics, networking and other connectivity,

will affect the code size, as these options may or may not be needed/included.

Fig:5.1:RTOS Configuration

Runtime library

7

Typically, a runtime library will be used alongside an RTOS; this code needs to be

accommodated. Again, the code, being a library, may scale well according to the needs of a

particular application. Data size issues apart from a baseline amount of storage for

variables, the RAM requirements of an RTOS can similarly be affected by a number of

factors:

Compiler optimization

As with code, compiler optimization affects data size. Packed (compressed)data is

smaller, but takes more instructions, and hence more time, to access.

RTOS objects

The number of RTOS objects (tasks, mailboxes, semaphores etc.) used by the

application will affect the RTOSRAM usage, as each object needs some RAM space.

Stack

Normally, the operating system has a stack and every task has its own stack; these

must all be stored in RAM. Allocation of this space may be done differently in each RTOS,

but it can never be ignored.

Dynamic memory

If dynamic (partition/block)memory allocation is available with an RTOS and used by

the application, space for memory pools needs to be accommodated.

Static and dynamic RTOS configuration

Early RTOS products required configuration to be performed at build time – i.e.

statically. As the technology progressed, the facility to create (and destroy) RTOS objects

dynamically became commonplace. It is now quite uncommon to find an RTOS that

permits static configuration. The impact on memory utilization of these options is

interesting.

A statically configured RTOS holds most the data about RTOS objects in ROM. Some

information needs to be copied to RAM, as it will be changed during execution, but needs to

be initialized. Other objects need extra RAM space at run time.

A dynamically configured RTOS keeps all object data in RAM – none in ROM at all.

However, there is a significant hit on ROM space, as there will be extra service calls to

perform object creation and destruction.

8

RTOS for Image Processing:

Image registration is the process of transforming a set of sequential images (video

stream acquired from a sensor) into a similar coordinate system, creating a smoother visual

flow. In real life, physical conditions or normal movement affect the images a sensor

gathers and may cause vibrations. Viewing a continuous frame-set from an image sensor

generally looks shaky or unbalanced, as the sensor is often mobile or not stabilized. Image

registration fixes this problem by smoothing the output video stream. Applications for

image registration vary from defense to medical imaging and more.

Typical registration process stages include identifying movement vectors between

two relative images, performing alignment, and applying further correction/enhancement

filters to improve image and stream quality. In defense applications, sensor-based

components use registration from ground systems to a variety of aerial systems. Adding to

its complexity, defense applications require very high-performance computations (high

resolutions and frame rates) and have limited space for hardware, dictating a small system

size. This requires a solution with good heat dissipation and the ability to consistently

operate at low power.

The key points in RTOS for image processing applications are :

• The need for speed

• Power and size constraints

• Real-Time threat detection

• Faster-than-real-time processing

The quality and the size of image data (especially 3D medical Segmentation of a human

brain. data) is constantly increasing. Fast and optimally interactive post processing of these

images is a major concern. E. g., segmentation on them, morphing of different images,

sequence analysis and measurement are difficult tasks to be performed. Especially for

segmentation and for morphing purposes level set methods play an important role.

In the case of image segmentation f is a force which pushes the interface towards the

boundary of a segment region in an image. Usually f equals one in homogeneity regions of

the image, whereas f tends to zero close to the segment boundary. The discretization of the

level set model is performed with finite differences on an uniform quadrilateral or

octahedral grid. A characteristic of image processing methods is the above described

multiple iterative processing of data sets. Due to the possible restriction on the number

precision it is possible to work on integer data sets with a restricted range of values, i. e.,

an application specific word length. Furthermore, it is possible to incorporate parallel

execution of the update formulas

9

Fig:5.2: A hardware accelerated system for data Processing: Software and

Hardware Modules

Image processing algorithms as described consists of a complex sequence of

primitive operations, which have to be performed on each nodal value. By combining the

complete sequence of primitive operations into a compound operation it is possible to

reduce the loss of performance caused by the synchronous design approach.

This design approach, which is common to CPU designs as well as for FPGA

designs, is based on the assumption that all arithmetic operations will converge well in

advance to the clock tick, which will cause the results to be post processed. Therefore, the

maximum clock speed of such systems is defined by the slowest combinatorial path. In a

CPU this leads to ’waiting time’ for many operations. Furthermore, there is no need for

command fetching in FPGA designs, which solves another problem of CPU-based

algorithms. Additionally, it is possible to do arbitrary parallel data processing in a FPGA,

so that several nodal values can be updated simultaneously.

The input data rate for CPU-based and FPGA-based applications is determined by

the bandwidth of the available memory interface. A 2562 image results in 64k words,

resulting in 768 kBit data at 12 bit resolution. A CPU with a 16 bit wide data access would

need 128 kByte to store the original image data, without taking the memory for

intermediate results into account. The discussion is not restricted to the information

described in this section, there are many real time examples those can be considered as case

studies for image processing in RTOS. The process for generating a target image for the

QNX CAR platform is described below

Overall image generation process

The following illustration shows the process used to generate a QNX CAR platform

target image:

10

Fig:5.3: Procedure to generate a QNX CAR platform target image

Building the target image:

1. Set up the environment variables for the QNX development environment:

 For Linux, enter the following command:

source install_location /qnx660-env.sh

where by default the install_location is $ HOME /qnx660/.

 For Windows, enter the following command:

install_location \qnx660-env.bat

where by default the install_location is C:\qnx660.

As part of the installation process for the QNX CAR platform, a workspace was created for

you that contains the scripts and configuration files you'll be using. These files are located in

the following

locations:

Scripts:

For Linux: $QNX_CAR_DEPLOYMENT /deployment/scripts/

For Windows: %QNX_CAR_DEPLOYMENT% \deployment\scripts

where QNX_CAR_DEPLOYMENT is install_location /qnx660/deployment/qnx-car/.

Configuration files:

For Linux: $QNX_CAR_DEPLOYMENT /boards/<platform >/etc/

For Windows: %QNX_CAR_DEPLOYMENT% \boards\<platform >\etc

11

2. Extract a BSP. For detailed instructions, see “Building a BSP ”.

3. Create an output directory where you want to have the image generated.

You must specify a valid directory name; the directory must exist prior to running the

mksysimage.py script, otherwise the image won't be generated.

4. To generate a target system image, run the appropriate mksysimage.py command.

For Linux, enter the following command:

mksysimage.sh outputPath platform .external

For Windows, enter the following command:

mksysimage.bat outputPath platform .external

where outputPath is the location for the new system image. If this directory isn't

empty, run

mksysimage.py with the -f option (mksysimage.py won't overwrite existing system

images

The mksysimage.py utility generates images for various configurations. For example, for

SABRE

Lite, image files are created for SD and SD/SATA:

imx61sabre-dos-sd-sata.tar

imx61sabre-dos-sd.tar

imx61sabre-os.tar

imx61sabre-sd-sata.img

imx61sabre-sd.img

TEXT / REFERENCE BOOKS

1. Jane W. S Liu, “Real Time Systems” Pearson Higher Education, 3rd Edition, 2000.

2. Raj Kamal, “Embedded Systems- Architecture, Programming and Design” Tata McGraw

Hill, 2nd Edition, 2014.

3. Jean J. Labrosse, “Micro C/OS-I : The real time kernel” CMP Books, 2nd Edition,2015.

5. Richard Barry, “Mastering the Free RTOS: Real Time Kernel”, Real Time Engineers Ltd,

1st Edition, 2016.

6. David E. Simon, “ An Embedded Software Primer”, Pearson Education Asia Publication

