&)
SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
[DEEMED TO BE UNIVERSITY)
Accredited "A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF EEE
DEPARTMENT OF ECE

UNIT - 1- INTRODUCTION TO VARIOUS MOBILE PLATFORMS —

SECAS205




MOBILE APPLICATION DEVELOPMENT

UNIT 1 INTRODUCTION TO VARIOUS MOBILE
PLATFORMS

Introduction: Survey of prominent mobile platforms - Android - iOS -
Windows Mobile.

What is Mobile Application Development?

Mobile application development is the process of creating software
applications that run on a mobile device, and a typical mobile application
utilizes a network connection to work with remote computing resources.
Hence, the mobile development process involves creating installable
software bundles (code, binaries, assets, etc.) , implementing backend
services such as data access with an API, and testing the application on
target devices

Mobile Applications and Device Platforms

There are two dominant platforms in the modern smartphone market. One
is the IOS platform from Apple Inc. The iOS platform is the operating
system that powers Apple's popular line of iPhone smartphones. The
second is Android from Google. The Android operating system is used not
only by Google devices but also by many other OEMs to built their own
smartphones and other smart devices.

Although there are some similarities between these two platforms when
building applications, developing for iOS vs. developing for Android
involves using different software development kits (SDKs) and different
development toolchain. While Apple uses iOS exclusively for its own
devices, Google makes Android available to other companies provided they
meet specific requirements such as including certain Google applications
on the devices they ship. Developers can build apps for hundreds of
millions of devices by targeting both of these platforms.



Alternatives for Building Mobile Apps

There are four major development approaches when building mobile
applications

Native Mobile Applications
Cross-Platform Native Mobile Applications
Hybrid Mobile Applications

Progressive Web Applications

Each of these approaches for developing mobile applications has its own
set of advantages and disadvantages. When choosing the right
development approach for their projects, developers consider the desired
user experience, the computing resources and native features required by
the app, the development budget, time targets, and resources available to
maintain the app.

ANDROID PLATFORM:-

Android is an open source and Linux-based operating system for mobile
devices such as smartphones and tablet computers. Android was
developed by the Open Handset Alliance, led by Google, and other
companies.

What is Android?

Android is an open source and Linux-based Operating System for mobile
devices such as smartphones and tablet computers. Android was
developed by the Open Handset Alliance, led by Google, and other
companies.

Android offers a unified approach to application development for mobile
devices which means developers need only develop for Android, and their
applications should be able to run on different devices powered by
Android.



The first beta version of the Android Software Development Kit (SDK) was
released by Google in 2007 where as the first commercial version, Android
1.0, was released in September 2008.

On June 27, 2012, at the Google I/0O conference, Google announced the
next Android version, 4.1 Jelly Bean. Jelly Bean is an incremental update,
with the primary aim of improving the user interface, both in terms of
functionality and performance.

The source code for Android is available under free and open source
software licenses. Google publishes most of the code under the Apache
License version 2.0 and the rest, Linux kernel changes, under the GNU
General Public License version 2.

Why Android ?

Open Source

Larger Developer and
Community Reach

Increased Marketing

Inter App Integration

Reduced Cost of
Development

Higher Success Ratio

Rich Development
E

Android IDEs

There are so many sophisticated Technologies are available to develop
android applications, the familiar technologies, which are predominantly
using tools as follows

. Android Studio
. Eclipse IDE(Deprecated)

Android - Architecture

Android operating system is a stack of software components which is
roughly divided into five sections and four main layers as shown below in
the architecture diagram.



Applications

(e ) (oo ) (o] (v ) (ommr ) (omen ) (o ) (o)
Corm ) (o] (o ) (o) (i ) (oo ) (o ) ()

Application F ramework

[ Actbeity Manager Window Manager ] [ Contenti Provides ] [ View System ] [ kst ]

Kanager

] I
[ Package Manager ] [ quqphnn'fhhna.gtr] [ Resource Mana ger ] [ Location BManage: ] [ ZMPP Servioe ]
L1

Libraries id Runtime:

| sutace tanager | f.u.mmmm } [ sewe | [ comivaies |
|
[

[ OaenGLIES ] FreeType 1 [ Liteblore ] Dakk Virtual Miehine

[ SGL ] 551 l [ Liba ]
Linux Kernel
| Diplay Diwer ] [ Camera Deve [ Bluetoath Braver ] [ FIHE::::HW ] [ Binder (IPC) Driver l
‘= . 9 - = i : . P .-'Jumer
[ USH Driver I [ Keypad Diives [ WIF i Driver ] [ Audia Drivers ] [ Management l

Linux kernel

At the bottom of the layers is Linux - Linux 3.6 with approximately 115
patches. This provides a level of abstraction between the device hardware
and it contains all the essential hardware drivers like camera, keypad,
display etc. Also, the kernel handles all the things that Linux is really good
at such as networking and a vast array of device drivers, which take the
pain out of interfacing to peripheral hardware.

Libraries

On top of Linux kernel there is a set of libraries including open-source Web
browser engine WebKit, well known library libc, SQLite database which is
a useful repository for storage and sharing of application data, libraries to
play and record audio and video, SSL libraries responsible for Internet
security etc.

Android Libraries

This category encompasses those Java-based libraries that are specific to
Android development. Examples of libraries in this category include the
application framework libraries in addition to those that facilitate user



interface building, graphics drawing and database access. A summary of
some key core Android libraries available to the Android developer is as
follows -

. android.app — Provides access to the application model and is the
cornerstone of all Android applications.

. android.content — Facilitates content access, publishing and
messaging between applications and application components.

. android.database - Used to access data published by content
providers and includes SQLite database management classes.

. android.opengl - A Java interface to the OpenGL ES 3D graphics
rendering API.

. android.os - Provides applications with access to standard
operating system services including messages, system services and
inter-process communication.

. android.text - Used to render and manipulate text on a device
display.

. android.view — The fundamental building blocks of application user
interfaces.

. android.widget — A rich collection of pre-built user interface
components such as buttons, labels, list views, layout managers,
radio buttons etc.

android.webkit — A set of classes intended to allow web-browsing
capabilities to be built into applications.

Having covered the Java-based core libraries in the Android runtime, it is
now time to turn our attention to the C/C++ based libraries contained in
this layer of the Android software stack.

Android Runtime

This is the third section of the architecture and available on the second
layer from the bottom. This section provides a key component
called Dalvik Virtual Machine which is a kind of Java Virtual Machine
specially designed and optimized for Android.

The Dalvik VM makes use of Linux core features like memory
management and multi-threading, which is intrinsic in the Java language.



The Dalvik VM enables every Android application to run in its own
process, with its own instance of the Dalvik virtual machine.

The Android runtime also provides a set of core libraries which enable
Android application developers to write Android applications using
standard Java programming language.

Application Framework

The Application Framework layer provides many higher-level services to
applications in the form of Java classes. Application developers are
allowed to make use of these services in their applications.

The Android framework includes the following key services -

. Activity Manager — Controls all aspects of the application lifecycle
and activity stack.

. Content Providers — Allows applications to publish and share data
with other applications.

. Resource Manager - Provides access to non-code embedded
resources such as strings, color settings and user interface layouts.

. Notifications Manager — Allows applications to display alerts and
notifications to the user.

. View System — An extensible set of views used to create application
user interfaces.

Applications

You will find all the Android application at the top layer. You will write your
application to be installed on this layer only. Examples of such applications
are Contacts Books, Browser, Games etc.

Application components are the essential building blocks of an Android
application. These components are loosely coupled by the application
manifest file AndroidManifest.xml that describes each component of the
application and how they interact.

There are following four main components that can be used within an
Android application -



Sr.No

Activities

An activity represents a single screen with a user interface,in-short Activity
performs actions on the screen. For example, an email application might
have one activity that shows a list of new emails, another activity to
compose an email, and another activity for reading emails.
application has more than one activity, then one of them should be marked

Components & Description

Activities

They dictate the Ul and handle the user interaction to
the smart phone screen.

Services

They handle background processing associated with
an application.

Broadcast Receivers

They handle communication between Android OS and
applications.

Content Providers
They handle data and database management issues.

as the activity that is presented when the application is launched.

An activity is implemented as a subclass of Activity class as follows -

public class MainActivity extends Activity {

}

If an




Services

A service is a component that runs in the background to perform long-
running operations. For example, a service might play music in the
background while the user is in a different application, or it might fetch
data over the network without blocking user interaction with an activity.

A service is implemented as a subclass of Service class as follows -

public class MyService extends Service {

}

Broadcast Receivers

Broadcast Receivers simply respond to broadcast messages from other
applications or from the system. For example, applications can also initiate
broadcasts to let other applications know that some data has been
downloaded to the device and is available for them to use, so this is
broadcast receiver who will intercept this communication and will initiate
appropriate action.

A broadcast receiver IS implemented as a subclass
of BroadcastReceiver class and each message is broadcaster as
an Intent object.

public class MyReceiver extends BroadcastReceiver ({
public void onReceive (context,intent) {}

}

Content Providers

A content provider component supplies data from one application to others
on request. Such requests are handled by the methods of
the ContentResolver class. The data may be stored in the file system, the
database or somewhere else entirely.

A content provider IS implemented as a subclass
of ContentProvider class and must implement a standard set of APIs that
enable other applications to perform transactions.

public class MyContentProvider extends ContentProvider

{

public void onCreate () {}

}




We will go through these tags in detail while covering application
components in individual chapters.

Apple iOS Architecture

Architecture of IOS is a layered architecture. At the uppermost level iOS
works as an intermediary between the underlying hardware and the apps
you make. Apps do not communicate to the underlying hardware directly.
Apps talk with the hardware through a collection of well defined system
interfaces. These interfaces make it simple to write apps that work
constantly on  devices having various hardware  abilities.
Lower layers gives the basic services which all application relies on and
higher level layer gives sophisticated graphics and interface related
services.

Apple provides most of its system interfaces in special packages called
frameworks. A framework is a directory that holds a dynamic shared library
that is .a files, related resources like as header files, images, and helper
apps required to support that library. Every layer have a set of Framework
which the developer use to construct the applications.

Cocoa Touch

Media Layer

Core Services

Core OS

https://intellipaat.com/blog/tutorial/ios-tutorial/ios-architecture/ 2/5

1. Core OS Layer:

The Core OS layer holds the low level features that most other
technologies are built upon.



>
>
>
>
>

Core Bluetooth Framework.
Accelerate Framework.

External Accessory Framework.
Security Services framework.
Local Authentication framework.

64-Bit support from I0S7 supports the 64 bit app development and enables
the application to run faster.

2. Core Services Layer

Some of the Important Frameworks available in the core services layers
are detailed:

>

v ¥V VYV VvV V¥V

v VvV VYV VvV V

Address book framework — Gives programmatic access to a contacts
database of user.

Cloud Kit framework — Gives a medium for moving data between your
app and iCloud.

Core data Framework — Technology for managing the data model of
a Model View Controller app.

Core Foundation framework — Interfaces that gives fundamental data
management and service features for los apps.

Core Location framework — Gives location and heading information to
apps.

Core Motion Framework — Access all motion based data available on
a device. Using this core motion framework Accelerometer based
information can be accessed.

Foundation Framework — Objective C covering too many of the
features found in the Core Foundation framework

Healthkit framework — New framework for handling health-related
information of user

Homekit framework — New framework for talking with and controlling
connected devices in a user's home.

Social framework — Simple interface for accessing the user’s social
media accounts.

StoreKit framework — Gives support for the buying of content and
services from inside your iOS apps, a feature known asln-App
Purchase.



3. Media Layer: Graphics, Audio and Video technology is enabled using the
Media Layer.

Graphics Framework:

>

vV ¥V VYV V¥V

UIKit Graphics — It describes high level support for designing images
and also used for animating the content of your views.

Core Graphics framework — It is the native drawing engine for iOS
apps and gives support for custom 2D vector and image based
rendering.

Core Animation — It is an initial technology that optimizes the
animation experience of your apps.

Core Images — gives advanced support for controling video and
motionless images in a nondestructive way

OpenGl ES and GLKit — manages advanced 2D and 3D rendering by
hardware accelerated interfaces

Metal — It permits very high performance for your sophisticated

graphics rendering and computation works. It offers very low
overhead access to the A7 GPU.

Audio Framework:

>

v V VYV VvV V

Media Player Framework — It is a high level framework which gives
simple use to a user’s iTunes library and support for playing playlists.
AV Foundation — It is an Objective C interface for handling the
recording and playback of audio and video.

OpenAL - is an industry standard technology for providing
audio.Video Framework

AV Kit — framework gives a collection of easy to use interfaces for
presenting video.

AV Foundation — gives advanced video playback and recording
capability.

Core Media — framework describes the low level interfaces and data
types for operating media.

Cocoa Touch Layer

>

>

EventKit framework — gives view controllers for showing the standard
system interfaces for seeing and altering calendar related events
GameKit Framework — implements support for Game Center which
allows users share their game related information online



IAd Framework — allows you deliver banner-based advertisements
from your app.

MapKit Framework — gives a scrollable map that you can include into
your user interface of app.

PushKitFramework — provides registration support for VolP apps.
Twitter Framework — supports a Ul for generating tweets and support
for creating URLs to access the Twitter service.

UIKit Framework — gives vital infrastructure for applying graphical,
event-driven apps in iOS. Some of the Important functions of Ul Kit
framework:

vV VV VvV V

-Multitasking support.

— Basic app management and infrastructure.
— User interface management

— Support for Touch and Motion event.

— Cut, copy and paste support and many more.



Architecture of Windows

The architecture of Windows NT, a line of operating systems produced and
sold by Microsoft, is a layered design that consists of two main
components, user mode and kernel mode. It is a preemptive, reentrant
multitasking operating system, which has been designed to work with
uniprocessor and symmetrical multiprocessor (SMP)-based computers. To
process input/output (I/O) requests, they use packet-driven 1/0O, which
utilizes 1/O request packets (IRPs) and asynchronous I/O. Starting with
Windows XP, Microsoft began making 64-bit versions of Windows
available; before this, there were only 32-bit versions of these operating
systems.

Programs and subsystems in user mode are limited in terms of what
system resources they have access to, while the kernel mode has
unrestricted access to the system memory and external devices. Kernel
mode in Windows NT has full access to the hardware and system
resources of the computer. The Windows NT kernel is a hybrid kernel; the
architecture comprises a simple kernel, hardware abstraction layer (HAL),
drivers, and a range of services (collectively named Executive), which all
exist in kernel mode.[1]

User mode in Windows NT is made of subsystems capable of passing I/O
requests to the appropriate kernel mode device drivers by using the 1/O
manager. The user mode layer of Windows NT is made up of the
"Environment subsystems", which run applications written for many
different types of operating systems, and the "Integral subsystem", which
operates system-specific functions on behalf of environment subsystems.
The kernel mode stops user mode services and applications from
accessing critical areas of the operating system that they should not have
access to.

The Executive interfaces, with all the user mode subsystems, deal with 1/O,
object management, security and process management. The kernel sits
between the hardware abstraction layer and the Executive to provide
multiprocessor synchronization, thread and interrupt scheduling and
dispatching, and trap handling and exception dispatching. The kernel is
also responsible for initializing device drivers at bootup. Kernel mode
drivers exist in three levels: highest level drivers, intermediate drivers and
low-level drivers. Windows Driver Model (WDM) exists in the intermediate



layer and was mainly designed to be binary and source compatible
between Windows 98 and Windows 2000. The lowest level drivers are
either legacy Windows NT device drivers that control a device directly or
can be a plug and play (PnP) hardware bus.

POSIX 05/2
Application@ Application@Application

Work-
! Server ; .
22?5'@2 cervice Securlty: ,| Win32 ‘ POSIX 05/2
Integral subsystems Environment subsystems
User mode

Executive Services

- Window
Virtual Manager

/O ||2ecwity || |PC |[memory||Process|| PnP ||Power

Reference
Manager|| wonitor | Manager| Manager| manager| Manager| [Manager

AL GDI

Object Manager

Executive

Kernel mode drivers Microkernel

Hardware Abstraction Layer (HAL)

Kernel mode

Hardware




User mode

The user mode is made up of subsystems which can pass I/O requests to
the appropriate kernel mode drivers via the I/O manager (which exists in
kernel mode). Two subsystems make up the user mode layer of Windows
2000: the Environment subsystem and the Integral subsystem.

The environment subsystem was designed to run applications written for
many different types of operating systems. None of the environment
subsystems can directly access hardware, and must request access to
memory resources through the Virtual Memory Manager that runs in kernel
mode. Also, applications run at a lower priority than kernel mode
processes. Currently, there are three main environment subsystems: the
Win32 subsystem, an OS/2 subsystem and a POSIX subsystem.

The Win32 environment subsystem can run 32-bit Windows applications. It
contains the console as well as text window support, shutdown and hard-
error handling for all other environment subsystems. It also supports Virtual
DOS Machines (VDMs), which allow MS-DOS and 16-bit Windows 3.x
( Win16) applications to run on Windows. There is a specific MS-DOS VDM
which runs in its own address space and which emulates an Intel 80486
running MS-DOS 5. Win16 programs, however, run in a Win16 VDM. Each
program, by default, runs in the same process, thus using the same
address space, and the Win16 VDM gives each program its own thread to
run on. However, Windows 2000 does allow users to run a Win16 program
in a separate Win16 VDM, which allows the program to be preemptively
multitasked as Windows 2000 will pre-empt the whole VDM process, which
only contains one running application. The OS/2 environment subsystem
supports 16-bit character-based OS/2 applications and emulates OS/2 1.x,
but not 32-bit or graphical OS/2 applications as used with OS/2 2.x or later.
The POSIX environment subsystem supports applications that are strictly
written to either the POSIX.1 standard or the related ISO/ IEC standards.

The integral subsystem looks after operating system specific functions on
behalf of the environment subsystem. It consists of a security subsystem,
a workstation service and a server service. The security subsystem deals
with security tokens, grants or denies access to user accounts based on
resource permissions, handles logon requests and initiates logon



authentication, and determines which system resources need to be audited
by Windows 2000. It also looks after Active Directory. The workstation
service is an API to the network redirector, which provides the computer
access to the network. The server service is an APl that allows the
computer to provide network services.

Kernel mode

Windows 2000 kernel mode has full access to the hardware and system
resources of the computer and runs code in a protected memory area. It
controls access to scheduling, thread prioritisation, memory management
and the interaction with hardware. The kernel mode stops user mode
services and applications from accessing critical areas of the operating
system that they should not have access to as user mode processes ask
the kernel mode to perform such operations on its behalf.

Kernel mode consists of executive services, which is itself made up on
many modules that do specific tasks, kernel drivers, a kernel and
a Hardware Abstraction Layer, or HAL.

Executive

The Executive interfaces with all the user mode subsystems. It deals with
I/O, object management, security and process management. It contains
various components, including the I/O Manager, the Security Reference
Monitor, the Object Manager, the IPC Manager, the Virtual Memory
Manager VMM), a PnP Manager and Power Manager, as well as
a Window Manager which works in conjunction with the Windows Graphics
Device Interface (GDI). Each of these components exports a kernel-only
support routine allows other components to communicate with one another.
Grouped together, the components can be called executive services. No
executive component has access to the internal routines of any other
executive component.

The object manager is a special executive subsystem that all other
executive subsystems must pass through to gain access to Windows 2000
resources — essentially making it a resource management infrastructure
service. The object manager is used to reduce the duplication of object



resource management functionality in other executive subsystems, which
could potentially lead to bugs and make development of Windows 2000
harder . To the object manager, each resource is an object, whether that
resource is a physical resource (such as a file system or peripheral) or a
logical resource (such as a file). Each object has a structure or object
type that the object manager must know about. When another executive
subsystem requests the creation of an object, they send that request to the
object manager which creates an empty object structure which the
requesting executive subsystem then fills in . Object types define the object
procedures and any data specific to the object. In this way, the object
manager allows Windows 2000 to be an object oriented operating system,
as object types can be thought of as classes that define objects.

Each instance of an object that is created stores its name, parameters that
are passed to the object creation function, security attributes and a pointer
to its object type. The object also contains an object close procedure and a
reference count to tell the object manager how many other objects in the
system reference that object and thereby determines whether the object
can be destroyed when a close request is sent to it . Every object exists in
a hierarchical object namespace.

Further executive subsystems are the following:

/0 Manager: allows devices to communicate with user-mode
subsystems. It translates user-mode read and write commands in read
or write IRPs which it passes to device drivers. It accepts file system I/O
requests and translates them into device specific calls, and can
incorporate low-level device drivers that directly manipulate hardware to
either read input or write output. It also includes a cache manager to
improve disk performance by caching read requests and write to the disk
in the background

« Security Reference Monitor (SRM): the primary authority for enforcing
the security rules of the security integral subsystem . It determines
whether an object or resource can be accessed, via the use of access
control lists (ACLs), which are themselves made up of access control
entries (ACEs). ACEs contain a security identifier (SID) and a list of
operations that the ACE gives a select group of trustees — a user



account, group account, or logon session — permission (allow, deny, or
audit) to that resource.
IPC Manager: short for Interprocess Communication Manager, this
manages the communication between clients (the environment
subsystem) and servers (components of the Executive). It can use two
facilities: the Local Procedure Call (LPC) facility (clients and servers on
the one computer) and the Remote Procedure Call (RPC) facility (where
clients and servers are situated on different computers. Microsoft has
had significant security issues with the RPC facility .
Virtual Memory Manager: manages virtual memory, allowing Windows
2000 to use the hard disk as a primary storage device (although strictly
speaking it is secondary storage). It controls the paging of memory in
and out of physical memory to disk storage.
Process Manager: handles process andthread creation and
termination
PnP Manager: handles Plug and Play and supports device detection
and installation at boot time. It also has the responsibility to stop and
start devices on demand — sometimes this happens when a bus gains a
new device and needs to have a device driver loaded to support that
device. Both FireWire and USB are hot-swappable and require the
services of the PnP Manager to load, stop and start devices. The PnP
manager interfaces with the HAL, the rest of the executive (as
necessary) and with device drivers.
Power Manager: the power manager deals with power events and
generates power IRPs. It coordinates these power events when several
devices send a request to be turned off it determines the best way of
doing this.
The display system has been moved from user mode into the kernel
mode as a device driver contained in the file Win32k.sys. There are two
components in this device driver — the Window Manager and the GDI:
Window Manager: responsible for drawing windows and menus. It
controls the way that output is painted to the screen and handles
input events (such as from the keyboard and mouse), then passes
messages to the applications that need to receive this input



GDI: the Graphics Device Interface is responsible for tasks such as
drawing lines and curves, rendering fonts and handling palettes.
Windows 2000 introduced native alpha blending into the GDI.

Kernel & kernel-mode drivers

The kernel sits between the HAL and the Executive and provides
multiprocessor synchronization, thread and interrupt scheduling and
dispatching, and trap handling and exception dispatching. The kernel often
interfaces with the process manager. The kernel is also responsible for
initialising device drivers at bootup that are necessary to get the operating
system up and running.

Windows 2000 uses kernel-mode device drivers to enable it to interact
with hardware devices. Each of the drivers has well defined system
routines and internal routines that it exports to the rest of the operating
system. All devices are seen by user mode code as a file object in the 1/0
manager, though to the 1/0O manager itself the devices are seen as device
objects, which it defines as either file, device or driver objects. Kernel mode
drivers exist in three levels: highest level drivers, intermediate drivers and
low level drivers. The highest level drivers, such as file system drivers
for FAT and NTFS, rely on intermediate drivers. Intermediate drivers
consist of function drivers — or main driver for a device — that are
optionally sandwiched between lower and higher level filter drivers. The
function driver then relies on a bus driver — or a driver that services a bus
controller, adapter, or bridge — which can have an optional bus filter driver
that sits between itself and the function driver. Intermediate drivers rely on
the lowest level drivers to function. The Windows Driver Model (WDM)
exists in the intermediate layer. The lowest level drivers are either legacy
Windows NT device drivers that control a device directly or can be a PnP
hardware bus. These lower level drivers directly control hardware and do
not rely on any other drivers..



© Nk

9.

REFERENCES

Erica Sadun, "The 10S 5 Developer’s Cookbook: Core Concepts and Essential Recipes
for 10S Programmers", Addison Wesley, 3rd Edition, 2011.

G. Blake Meike, Zigurd Mednieks, John Lombardo, Rick Rogers, "Android Application
Development", O’reilly, 1st Edition, 2009.

R. Nageswara Rao,"Core JAVA: An Integrated Approach", Dreamtech Press, Wiley
India, 1st Edition, 2015.

https://en.wikipedia.org/wiki/Mobile app development
https://www.korcomptenz.com/mobile-app-development
http://garryowen.csisdmz.ul.ie/~cs5212/resources/oth8.pdf
https://en.wikipedia.org/wiki/Windows Mobile
https://www.slideshare.net/Bhavsidd/windows-phone-7-architecture-overview
https://www.tutorialspoint.com/apple-ios-architecture

10. https://intellipaat.com/blog/tutorial/ios-tutorial/ios-architecture/
11. https://www.besanttechnologies.com/what-is-ios



L o Nk W

=
o

UNIT-1

INTRODUCTION TO VARIOUS MOBILE PLATFORMS

Part - A

Describe the characteristics of mobile application development?
Express briefly the advantages of various mobile platforms.
Demonstrate in detail about mobile security and its impact?
Summarize the features of Linux kernel of Android os?

Discuss about various android libraries in android platform?
Discuss in detail about ios hardware?

Describe about cocoa touch layer in ios?

Classify the various framework in windows os?

Describe about the windows os kernel?

. Explain in detail the impact of J2ME in mobile application development?

Part-B

With neat blocks express the architecture of Android OS .
Discuss briefly the architecture of Windows OS with neat block diagram.

Interpret the concepts of ios and its impact on mobile application development with the neat diagram?



&)
SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
[DEEMED TO BE UNIVERSITY)
Accredited "A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF EEE
DEPARTMENT OF ECE

UNIT - II - ANDROID ACTIVITIES: STUDY AND CREATION — SECAS205




UNIT 2 ANDROID ACTIVITIES: STUDY AND CREATION

Introduction to Android, Why develop for android OS, Android SDK features,
Creating android activities.

What is Android?

Android is an open-source operating system based on Linux with a Java programming interface for
mobile devices such as Smartphone (Touch Screen Devices who supports Android OS) as well for Tablets
too.

Android was developed by the Open Handset Alliance (OHA), which is led by Google. The Open Handset
Alliance(OHA) is a consortium of multiple companies like Samsung, Sony, Intel and many more to
provide services and deploy handsets using the android platform.

In 2007, Google released a first beta version of the Android Software Development Kit (SDK) and the first
commercial version of Android 1.0 (with name Alpha), was released in September 2008.

In 2012, Google released another version of android, 4.1 Jelly Bean. It’s an incremental update and it
improved a lot in terms of the user interface, functionality, and performance.

In 2014, Google announced another Latest Version, 5.0 Lollipop. In Lollipop version Google completely
revamped the Ul by using Material Designs, which is good for the User Interface as well for the themes
related.

All the source code for Android is available free on Git-Hub, Stack overflow, and many more websites.
Google publishes most of the code under the Apache License version 2.0

Android Features

Android is a powerful open-source operating system which provides a lot of great features, those are
> It supports connectivity for GSM, CDMA, WIFI, NFC, Bluetooth, etc. for telephony or data

transfer. It will allow us to make or receive a calls / SMS messages and we can send or retrieve

data across mobile networks

By using WIFI technology we can pair with other devices using apps

Android has multiple APIs to support location-based services such as GPS

We can perform all data storage related activities by using lightweight database SQLite

(/tutorial/sqlite).

> It has a wide range of media supports like AVI, MKV, FLV, MPEG4, etc. to play or record a variety
of audio/video and having a different image format like JPEG, PNG, GIF, BMP, MP3, etc.

> It has extensive support for multimedia hardware control to perform playback or recording
using camera and microphone

YV V VY



It has an integrated open-source WebKit layout based web browser to support HTML5, CSS3

> It supports a multi-tasking, we can move from one task window to another and multiple
applications can run simultaneously

> It will give a chance to reuse the application components and the replacement of native
applications.

> We can access the hardware components like Camera, GPS, and Accelerometer

» It has support for 2D/3D Graphics

Following is the pictorial representation of using an android in the mobile phone market with different versions.

Android Market Value with different

!

Versions

= Android 1.0-0%

" Android 20-1%

8 Android 3.0- 1%

8 Android 4.0 - 5. 4%
= Android 4.4 - 20.8%
= Android 5.0-23.1%
= Android 6.0 - 32%

= Android 7.0 - 2.4%

This is how Google released multiple versions of the android operating system and acquired a huge mobile phone market

share with different versions.

Android Components

Application components are the essential building blocks of an Android application.

Activities
An activity represents a single
screen with a user interface,
in-short Activity performs actions
on the screen.

Services

F: i ==
A service is a componentthat runs

in the background to perform long-
running operations.

-ro

ﬁ

Broadcast Receivers

Broadcast Receivers simply
respond to broadcast messages
from ather applications or from
the system.

—0

C

Content Providers
A content provider
component supplies data
from ane application to
others on request.

AndroidSquad.net

Learn Android Development Free Complete Course ¢

Additional Components

There are additional
components which will be
used in the construction of
above mentioned entities

—0

The main components of any android application are the following:



e Activities

e Services

e Content Providers

¢ Intent and broadcast receivers

e Widgets and Notifications

1. Activities

We can call the Activity as the presentation layer of an Android application. Simply put, an Activity
represents the screen on your Android application which has its user interface. An application, for
instance, an Email App can have many activities such as opening an email, composing an email, replying
to an email — these all are different activities. So every Android application has more than one activity.
When we start a new activity (like replying to an email), previous activity is pushed to the back stack and
it gets stopped until the new activity is finished, however, if we push back button while ongoing activity,

the current activity gets dissolved and is popped out of the stack and previous activity resumes.

2. Services

The other important component of an Android application is the service. It performs running operations
(long or short) in the background for the activity that you perform on your screen. For example, a push

notification from an email. It is possible that service still runs while you have terminated the application
or you are not using it currently. For example, when you get an email, you get the notification while still,

you are not using the application currently.

3. Content Providers

Content Providers manage the application Data and encapsulate it (Object Oriented Feature). This
provides the data from one processor of an application to another one. The data might be stored in
Database or in a file system or any other storage management systems. Android devices include several

native Content Providers that expose useful databases such as the media store and contacts.

4. Intent and broadcast receivers

Android Intents are the means of communication that acts as a facilitator when the exchange of
message occurs between different components within the same application or from one application to
another. In order to start any service, we have to pass an intent to perform this task. Intents are of two

types:



Dial call
Implicit

| .
Intent Map location

Open WebPage

Intent
Start Activity

Explicit
Intent

Services

Broadcast

K Android Basics

tutorial.eyehunt.in

Image Source: https://goo.gl/images/AqiSpu

¢ Implicit Intents: It does not declare the name of the service to start but declares the action to

perform.

e Explicit Intents: It specifies the exact activity to which intent should be given.

Broadcast Receivers enable your application to listen for intents that match the criteria you specify. As
an example, applications can start the broadcasts to let other applications know that few data has been

downloaded to the device and is available for them to use. There are two types of broadcast:

e Normal Broadcast: They are completely asynchronous and all receivers of the broadcast are run

in an undefined order.

e Ordered Broadcast: They are synchronous and are delivered to one receiver one at a time.



Register for
Intent

Application

Android
System

Broadcast .

Receiver Application
broadcast

System broadcast

5. Widgets and Notifications

Widgets display your app interesting or new content in the consolidated form on a mobile or tablet
home screen. The user can do different activities like moving and resizing of widgets. There are basically

four types of widgets:

Information Widget — This widget displays only the important information to the users. For e.g.

the clock on the home screen.

e Collection Widget — This widget displays multiple information of the same type and allows you
to select any of them to open. For example, when you open an email application, you see
multiple emails.

e Control Widget — This widget displays frequently used functions. For example, the music app

widget allows the user to play, music from outside of an application.

e Hybrid Widget — This widget combines the information from above all three widgets.

Notifications allow informing users of any events that have occurred. For e.g., we use what’s app

application, as and when a message comes, we get a notification.

Characteristics of Android

e Android can run multiple applications at the same time.
e Android widgets let you display just about any feature you choose right on the home screen.
e Android supports multiple keyboards and it is super easy to install them.

e Android supports Video Graphics Array, 2D, and 3D graphics alongside.



e Android also supports Java applications.

e One can change settings quite faster when Android is running on the phone

e The very good app market

e Most Android devices support NFC, which allows electronic devices to easily interact across

short distances.

Applications of Android

Android applications are software applications which are running on Android platform. We have already
seen the components of the android application previously as composed of one or more application
components like activities, services, content providers, and broadcast receivers. Android apps are
written in the Java programming language and use Java core libraries. For Android app development,
developers may download the Software Development Kit (SDK) from the android website. The SDK
includes tools, sample code and relevant documents for creating Android apps.

What is the Android SDK?

Every time Google releases a new version, the corresponding SDK is also released. In order to work with
Android, the developers must download and install each version’s SDK for the particular device.

The Android SDK (Software Development Kit) is a set of development tools that are used to develop
applications for the Android platform.

This SDK provides a selection of tools that are required to build Android applications and ensures the
process goes as smoothly as possible. Whether you create an application using Java, Kotlin or C#, you
need the SDK to get it to run on any Android device. You can also use an emulator in order to test the

applications that you have built.

Nowadays, the Android SDK also comes bundled with Android Studio, the integrated development
environment where the work gets done and many of the tools are now best accessed or managed.

Android SDK Features

Android SDK has a lot of amazing features. I've tried noting down most of them. So, have a look!
e Offline Mapping
SDK helps in dynamically downloading the maps for more than 190 countries in over 60 languages. You

can view these offline. Also dealing with the map styles and the touch gesture. This SDK also has the
ability to render raster tiles and map objects interleaved within different map layers.



e Dynamic Markers

In the previous versions, you could not have moved the position without a fallback or re-adding the icon.
But in the lastest edition, you can update the position of the icon dynamically.

e Improvised APl compatibility

With the latest release, it is much easier to migrate from the Google Maps Android API. This is another
added advantage of using Android SDK in your program.

SDK Tools

Android SDK Tools is a component for the Android SDK. This includes a complete set of development
and debugging tools for Android. SDK tools are also included with Android Studio.

Android comes up with the revised version every now and then the latest release is SDK Tools, Revision
26.1.1 (September 2017)

In this release, they made a few changes. They are:

e A command-line version of the APK Analyzer has been added in tools/bin/apkanalyzer. It offers
the same features as the APK Analyzer in Android Studio and can be integrated into build/Cl
servers and scripts for tracking size regressions, generating reports, and many more.

e ProGuard rules that are under the tools/proguard are no longer used by the Android Plugin for
Gradle.

These change with each update.



e TS SDK Platforms SDK Tools SDK Update Sites

System Settings
Below are the available SDK developer tools. Once installed, Android Studio will automatically check for updates.

s Check "show package details" to display available versions of an SDK Tool.
R ez I Name | Version | Status
Data Sharing Android SDK Build-Teols Installed
[JGpu Debugging tools Mot Installed
Updates [ LLDB Not Installed
Memory Settings [] NDK (Side by side) Mot Installed
— [] CMake Not Installed
[] Android Auto APl Simulaters 1 Mot installed
Neotifications [] Android Auto Desktop Head Unit emulator 1.1 Mot installed
. Android Emulator 28.2.1 Installed
ndElEs Android SDK Platform-Tools 20,04 Installed
Path Variables Android SDK Tools 2611 Installed
"] Documentation for Android SDK 1 Not installed
Keymap [] Google Play APK Expansion library 1 Not installed
Editor [_] Google Play Instant Development SDK 1.8.0 Mot installed
. [_] Google Play Licensing Library 1 Mot installed
Plugins [_] Google Play services 49 Mot installed
Build, Execution, Deployment [_] Google USB Driver 1 Mot installed
. [_| Google Web Driver 2 Mot installed
Kotlin Intel x86 Emulator Accelerator (HAXM installer) 752 Installed
Tools

Hide Obsolete Packages [] Show Package Details
m Cancel Apply Help

SDK tools are generally platform-independent and they are required no matter which Android platform
you are currently working on. There are a set of tools that get installed automatically when install
Android Studio.

Description

This tool lets you manage the AVD (Android
Andraid Virtual Device), projects, and the installed
components of the SDK.

It lets you test your applications without using a

Emulator .

physical device.

This tool helps in shrinking, optimizing, and
Proguard P g P 5

obscures your code by removing unused code.
ddms It lets you debug your Android applications

This is a versatile command-line tool that helps
Android Debug Bridge (Adb) you communicate with an emulator instance or

connected Android-powered device.

Android SDK manager



In order to download and install latest android APIs and development tools from the internet, Android
helps us by having the Android SDK manager. This separates the APIs, tools and different platforms into
different packages which you can download. Android SDK Manager comes with the Android SDK bundle.
You can’t download it separately.

Introduction to Activities

The Activity (/reference/android/app/Activity) class is a crucial component of an Android app, and the
way activities are launched and put together is a fundamental part of the platform's application model.
Unlike programming paradigms in which apps are launched with a main() method, the Android system
initiates code in an Activity (/reference/android/app/Activity) instance by invoking specic callback
methods that correspond to speciTc stages of its lifecycle.

The concept of activities

The mobile-app experience differs from its desktop counterpart in that a user's interaction with the app
doesn't always begin in the same place. Instead, the user journey often begins non-deterministically. For
instance, if you open an email app from your home screen, you might see a list of emails. By contrast, if
you are using a social media app that then launches your email app, you might go directly to the email
app's screen for composing an email.

The Activity (/reference/android/app/Activity) class is designed to facilitate this paradigm. When one
app invokes another, the calling app invokes an activity in the other app, rather than the app as an
atomic whole. In this way, the activity serves as the entry point for an app's interaction with the user.
You implement an activity as a subclass of the Activity (/reference/android/app/Activity) class.

An activity provides the window in which the app draws its Ul. This window typically lls the screen, but
may be smaller than the screen and oat on top of other windows. Generally, one activity implements
one screen in an app. For instance, one of an app’s activities may implement a Preferences screen, while
another activity implements a Select Photo screen.

Most apps contain multiple screens, which means they comprise multiple activities. Typically, one
activity in an app is specied as the main activity, which is the rst screen to appear when the user
launches the app. Each activity can then start another activity in order to perform different actions. For
example, the main activity in a simple e-mail app may provide the screen that shows an e-mail inbox.
From there, the main activity might launch other activities that provide screens for tasks like writing e-
mails and opening individual e-mails.

Although activities work together to form a cohesive user experience in an app, each activity is only
loosely bound to the other activities; there are usually minimal dependencies among the activities in an
app. In fact, activities often start up activities belonging to other apps. For example, a browser app
might launch the Share activity of a social-media app.

To use activities in your app, you must register information about them in the app’s manifest, and you
must manage activity lifecycles appropriately. The rest of this document introduces these subjects.



Configuring the manifest

For your app to be able to use activities, you must declare the activities, and certain of their attributes,
in the manifest.

Declare activities

To declare your activity, open your manifest le and add an <activity> (/guide/topics/manifest/activity-
element) element as a child of the <application> (/guide/topics/manifest/application-element) element.
For example:

<manifest ... >

<application ... >

<activity android:name=".ExampleActivity" />
</application ... >

</manifest >

The only required attribute for this element is android:name (/guide/topics/manifest/activity-
element#nm), which specilLes the class name of the activity. You can also add attributes that deXne
activity characteristics such as label, icon, or Ul theme. For more information about these and other
attributes, see the <activity> (/guide/topics/manifest/activity-element) element reference
documentation.

Declare intent Xlters

Intent llters (/guide/components/intents- Iters) are a very powerful feature of the Android platform.
They provide the ability to launch an activity based not only on an explicit request, but also an implicit
one. For example, an explicit request might tell the system to “Start the Send Email activity in the Gmail
app". By contrast, an implicit request tells the system to “Start a Send Email screen in any activity that
can do the job." When the system Ul asks a user which app to use in performing a task, that’s an intent
Iter at work.

You can take advantage of this feature by declaring an <intent- lter> (/guide/topics/manifest/intent-
Rlter-element) attribute in the <activity> (/guide/topics/manifest/activity-element) element. The de
nition of this element includes an <action> (/guide/topics/manifest/action-element) element and,
optionally, a <category> (/guide/topics/manifest/category-element) element and/or a <data>
(/guide/topics/manifest/data-element) element. These elements combine to specify the type of intent
to which your activity can respond. For example, the following code snippet shows how to conGgure an
activity that sends text data, and receives requests from other activities to do so:

<activity android:name=".ExampleActivity" android:icon="@drawable/app_icon"> <intent-filter>

<action android:name="android.intent.action.SEND" /> <category
android:name="android.intent.category.DEFAULT" /> <data android:mimeType="text/plain" />

</intent-filter>



</activity>

In this example, the <action> (/guide/topics/manifest/action-element) element speci es that this activity
sends data. Declaring the <category> (/guide/topics/manifest/category-element) element as DEFAULT
enables the activity to receive launch requests. The <data> (/guide/topics/manifest/data-element)
element speci es the type of data that this activity can send. The following code snippet shows how to
call the activity described above:

val sendIntent = Intent().apply {
action = Intent. ACTION_SEND
type = "text/plain"

putExtra(Intent.EXTRA_TEXT, textMessage)

startActivity(sendintent)

If you intend for your app to be self-contained and not allow other apps to activate its activities, you
don't need any other intent Slters. Activities that you don't want to make available to other applications
should have no intent Iters, and you can start them yourself using explicit intents. For more information
about how vyour activities can respond to intents, see Intents and Intent Filters
(/guide/components/intents- Iters).

Declare permissions

You can use the manifest's <activity> (/guide/topics/manifest/activity-element) tag to control which
apps can start a particular activity. A parent activity cannot launch a child activity unless both activities
have the same permissions in their manifest. If you declare a <uses-permission>
(/guide/topics/manifest/uses-permission-element) element for a parent activity, each child activity must
have a matching <uses-permission>

(/guide/topics/manifest/uses-permission-element) element.

For example, if your app wants to use a hypothetical app named SocialApp to share a post on social
media, SocialApp itself must de ne the permission that an app calling it must have:

<manifest>
<activity android:name="...."

android:permission="com.google.socialapp.permission.SHARE_POST”

/>



Then, to be allowed to call SocialApp, your app must match the permission set in SocialApp's manifest:
<manifest>
<uses-permission android:name="com.google.socialapp.permission.SHARE_POST" /> </manifest>

For more information on permissions and security in general, see Security and Permissions
(/guide/topics/security/security).

Managing the activity lifecycle

Over the course of its lifetime, an activity goes through a number of states. You use a series of callbacks
to handle transitions between states. The following sections introduce these callbacks.

onCreate()

You must implement this callback, which Lres when the system creates your activity. Your
implementation should initialize the essential components of your activity: For example, your app
should create views and bind data to lists here. Most importantly, this is where you must call
setContentView() (/reference/android/app/Activity#fsetContentView(android.view.View)) to de ne the
layout for the activity's user interface.

When onCreate() (/reference/android/app/ActivityfonCreate(android.os.Bundle)) nishes, the next
callback is always onStart() (/reference/android/app/Activity#fonStart()).

onStart()

As onCreate() (/reference/android/app/Activity#fonCreate(android.os.Bundle)) exits, the activity enters
the Started state, and the activity becomes visible to the user. This callback contains what amounts to
the activity’s nal preparations for coming to the foreground and becoming interactive.

onResume()

The system invokes this callback just before the activity starts interacting with the user. At this point, the
activity is at the top of the activity stack, and captures all user input. Most of an app’s core functionality
is implemented in the onResume() (/reference/android/app/ActivityfonResume()) method. The
onPause() (/reference/android/app/ActivityfonPause()) callback always follows onResume()
(/reference/android/app/Activity#tonResume()).

onPause()

The system calls onPause() (/reference/android/app/Activity#fonPause()) when the activity loses focus
and enters a Paused state. This state occurs when, for example, the user taps the Back or Recents
button. When the system calls onPause() (/reference/android/app/Activity#fonPause()) for your activity,
it technically means your activity is still partially visible, but most often is an indication that the user is
leaving the activity, and the activity will soon enter the Stopped or Resumed state.

An activity in the Paused state may continue to update the Ul if the user is expecting the Ul to update.
Examples of such an activity include one showing a navigation map screen or a media player playing.
Even if such activities lose focus, the user expects their Ul to continue updating.



You should not use onPause() (/reference/android/app/Activity#fonPause()) to save application or user
data, make network calls, or execute database transactions. For information about saving data, see
Saving and restoring activity state (/guide/components/activities/activity-lifecycle#saras).

onStop()

The system calls onStop() (/reference/android/app/Activity#fonStop()) when the activity is no longer
visible to the user. This may happen because the activity is being destroyed, a new activity is starting, or
an existing activity is entering a Resumed state and is covering the stopped activity. In all of these cases,
the stopped activity is no longer visible at all.The next callback that the system calls is either onRestart()
(/reference/android/app/Activity#fonRestart()), if the activity is coming back to interact with the user, or
by onDestroy() (/reference/android/app/ActivityfonDestroy()) if this activity is completely terminating.

onRestart()

The system invokes this callback when an activity in the Stopped state is about to restart. onRestart()
(/reference/android/app/Activity#fonRestart()) restores the state of the activity from the time that it was
stopped.This callback is always followed by onStart() (/reference/android/app/Activity#fonStart()).

onDestroy()

The system invokes this callback before an activity is destroyed. This callback is the Enal one that the
activity receives. onDestroy() (/reference/android/app/Activity#fonDestroy()) is usually implemented to
ensure that all of an activity’s resources are released when the activity, or the process containing it, is
destroyed.

Understand the Activity Lifecycle

As a user navigates through, out of, and back to your app, the 2ctivity instances in
your app transition through different states in their lifecycle. The Activity class
provides a number of callbacks that allow the activity to know that a state has changed:
that the system is creating, stopping, or resuming an activity, or destroying the process
in which the activity resides.

Within the lifecycle callback methods, you can declare how your activity behaves when
the user leaves and re-enters the activity. For example, if you're building a streaming
video player, you might pause the video and terminate the network connection when the
user switches to another app. When the user returns, you can reconnect to the network
and allow the user to resume the video from the same spot. In other words, each
callback allows you to perform specific work that's appropriate to a given change of
state. Doing the right work at the right time and handling transitions properly make your
app more robust and performant. For example, good implementation of the lifecycle
callbacks can help ensure that your app avoids:

Crashing if the user receives a phone call or switches to another app while using your app.

Consuming valuable system resources when the user is not actively using it.



Losing the user's progress if they leave your app and return to it at a later time.

Crashing or losing the user's progress when the screen rotates between landscape and portrait
orientation.

This document explains the activity lifecycle in detail. The document begins by
describing the lifecycle paradigm. Next, it explains each of the callbacks: what happens
internally while they execute, and what you should implement during them. It then briefly
introduces the relationship between activity state and a process’s vulnerability to being
killed by the system. Last, it discusses several topics related to transitions between
activity states.

For information about handling lifecycles, including guidance about best practices,
see Handling Lifecycles with Lifecycle-Aware Components and Saving Ul States. To
learn how to architect a robust, production-quality app using activities in combination
with architecture components, see Guide to App Architecture.

Activity-lifecycle concepts

To navigate transitions between stages of the activity lifecycle, the Activity class
provides a core set of Six callbacks:
onCreate (), onStart (), onResume (), onPause (), onStop (), and onDestroy (). The
system invokes each of these callbacks as an activity enters a new state.

Figure below presents a visual representation of this paradigm.



= onCreate()

v

onStart() - onRestart()

* &

User navigates
= onResume() -——.

ter the activity

| v

r S —
App process f Activity |
(. killed ) . running .

Another activity comes
into the foreground

User returns
+ to the activity

Apps with higher priority

need memory T onPause()

|
The activity is
no longer visible )
User navigates
+ to the activity
onStop() :
I

The activity is finishing or
being destrayed by the system

v

onDestroy()

Figure. A simplified illustration of the activity lifecycle.

As the user begins to leave the activity, the system calls methods to dismantle the
activity. In some cases, this dismantlement is only partial; the activity still resides in
memory (such as when the user switches to another app), and can still come back to
the foreground. If the user returns to that activity, the activity resumes from where the
user left off. With a few exceptions, apps are restricted from starting activities when
running in the background.

The system’s likelihood of killing a given process—along with the activities in it—
depends on the state of the activity at the time. Activity state and ejection from
memory provides more information on the relationship between state and vulnerability
to ejection.




Depending on the complexity of your activity, you probably don't need to implement all
the lifecycle methods. However, it's important that you understand each one and
implement those that ensure your app behaves the way users expect.



oA

9.

REFERENCES

G. Blake Meike, Zigurd Mednieks, John Lombardo, Rick Rogers, "Android Application
Development", O’reilly, 1st Edition, 2009.

R. Nageswara Rao,"Core JAVA: An Integrated Approach", Dreamtech Press, Wiley
India, 1st Edition, 2015.

Herbert Schildt, "Java: The Complete Reference", 9th Edition, 2014.

Gary Cornell, Cay S. Horstmann, "Core Java Volume I - Fundamentals", Prentice Hall,
9th Edition, 2012.

Cay S. Horstmann," Core Java, Volume II - Advanced Features", Prentice Hall, 11th
Edition, 2019.https://www.besanttechnologies.com/what-is-ios
https://www.educba.com/introduction-to-android/
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/studio/releases/platform-tools
https://code.tutsplus.com/tutorials/the-android-sdk-tutorial--cms-34623

10. https://www.javatpoint.com/android-life-cycle-of-activity
11. https://www.tutorialspoint.com/android/android_acitivities.html
12. https://developer.android.com/guide/components/activities/activity-lifecycle



vk wnN e

A

UNIT -2

ANDROID ACTIVITIES: STUDY AND CREATION

Part—-A

What is android? List any 5 android SDK features?

Explain in briefly any 5 android development tools?

Define an activity? Explain the life cycle activity?

Express the challenges faced in Android app development?
Mention few applications of Android platform?

Part-B

Define Activity? Explain the steps for creating activity? How to add more activity?

What is Activity Life Cycle? Explain with diagram and call back methods that support activity life cycle?
Explain the procedure for getting data back from an activity?

With neat notations discuss the concepts of Android SDK?



&)
SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
[DEEMED TO BE UNIVERSITY)
Accredited "A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF EEE
DEPARTMENT OF ECE

UNIT - III - ANDROID INTENT, THREAD AND SERVICES — SECAS5205




UNIT 3 ANDROID INTENT, THREAD AND SERVICES

User Interface - Views, ViewGroups and Resources

An Activity interacts with the user, via a visual Ul on a screen. The Ul is placed on the Activity via the Activity's
setContentView() method. In Android, the Ul composes of View and ViewGroup objects, organized in a single view-tree
structure.

A View is an interactive Ul component (or widget or control), such as button and text field. It controls a rectangular area on the
screen. It is responsible for drawing itself and handling events (such as clicking, entering texts). Android provides many ready-to-
use Views such as TextView, EditText, Button, RadioButton, etc, in package android.widget. You can also create your
custom View by extending android.view.View.

A ViewGroup is an invisible container used to layout the View components. Android provides many ready-to-use ViewGroups
such as LinearLayout, Relativelayout, TableLayout and GridLayout in package android.widget. You can also create
your custom ViewGroup by extending from android.view.ViewGroup.

Views and ViewGroups are organized in a single tree structure called view-tree. You can create a view-tree either using
programming codes or describing it in a XML layout file. XML layout is recommended as it separates the presentation view from
the controlling logic, which provides modularity and flexibility in your program design. Once a view-tree is constructed, you
can add the root of the view-tree to the Activity as the content view via Activity's setContentView() method.

There are two approaches in constructing the UL

Build a simple user interface

In this lesson, you learn how to use the Android Studio Layout Editor (/studio/write/layout-editor)

to create a layout that includes a text box and a button. This sets up the next lesson, where you learn how to make the app
send the content of the text box to another activity when the button is tapped.

View View

irstApp |

View View View SEND

Figure 1. Screenshot of the final layout

The user interface (Ul) for an Android app is built as a hierarchy of layouts and widgets. The
layouts are¥ewGroup (/reference/android/view/ViewGroup) objects, containersthat control how

their child views are positioned on the screen. Widgets are ¥ ew (/reference/android/view/View)
objects, Ul components such as buttons and text boxes.

Figure 2. lllustration of how ViewGroup objects form branches in the layout and contain view



Android provides an XML vocabulary forViewGroup and View classes, so most of your Ulis defined in XML files.
However, rather than teach you to write XML, this lesson shows you how to create a layout using Android Studio's Layout
Editor. The Layout Editor writes the XML for you as you drag and drop views to build your layout.

This lesson assumes that you use A ndroid Studio v3.0 (/studio) or higher and that you've

completed the create your Android project (/training/basics/firstapp/creating-project) lesson.

Open the LayoutEditor

To get started, set up your workspace as follows:

I. In the Project window, open app > res > layout > activity_main.xml.

2. To make room for the Layout Editor, hide the Project window. To do so, select View >

Tool Windows > Project, or just click Project

»
on the left side of the Android Studio screen.

3. If your editor shows the XML source, click the Design tab at the bottom of the
window.

4. Click Select Design Surface

and select Blueprint.

5. Click Show
®

in the Layout Editor toolbar and make sure that Show All Constraints is checked.

6. Make sure Autoconnect is off. A tooltip in the toolbar displays Enable
Autoconnection to Parent

N
wnen Autoconnect isoff.

7. Click Default Margins in the toolbar and select 16. If needed, you can adjust the
margins for each view later.

8. Click Device for Preview

0

in the toolbar and select 5.5, 1440 x 2560, 560 dpi (Pixel XL).

Your Layout Editor now looks as shown in figure 3.



= MyFirstApp T app src main =res layout . - (L, Pixel 2 API 28 (Pie) ~

fvity_rmain.xmi MainActivity java

(@) AppTheme & Default (en-us) Aftributes

Ab TextView
BB Button

yonent Tree

7: Structure

4, Build : Logeca = 0 4l Event Log

build finished in (15 minutes ago) 45 - ®@® 2

Figure 3. The Layout Editor showing activity main.xml

Foradditionalinformation, see htroduction to the Layout Editor (/studio/write/layout-editor#intro).

TheComponentTreepanelonthebottomleftshowsthelayout's hierarchy ofviews. Inthis
case,therootviewisa ConstraintLayout, which contains justone TextVview object.

ConstraintLayout isalayoutthat definesthe position for each view based on constraints to sibling views and the
parent layout. In this way, you can create both simple and complex layouts with a flat view hierarchy. This type of layout
avoids the need for nested layouts. A nested layout, which is a layout inside a layout, as shown in figure 2, can increase
the time

required to draw the UL

Figure 4. lllustration of two views positioned inside

ConstraintLayout



For example, you can declare the following layout, which is shown in figure 4:

*
*

*

View A appears 16 dp from the top of the parent layout. View A appears
16 dp from the left of the parent layout. View B appears 16 dp to the right
of view A.

View B is aligned to the top of view A.

In the following sections, you'll build a layout similar to the layout in figure 4.

Add atextbox

Figure 5. The text box is constrained to the top and
left of the parentlayout

Follow these steps to add a text box:

. First, you need to remove what's already in the layout. Click TextView in the

Component Tree panel and then press the Delete key.

. In the Palette panel, click Text to show the available text controls.

. Drag the Plain Text into the design editor and drop it near the top of the layout. This

isan

HitText (/reference/android/widget/EditText) widget that accepts plain text input.

. Click the view in the design editor. You can now see the square handles to resize

the view on each corner, and the circular constraint anchors on each side. For
better control, you might wanttozoom in on the editor. Todo so, use the Zoom
buttonsin the Layout Editor toolbar.

. Click and hold the anchor on the top side, drag it up until it snaps to the top of the

layout, and then release it. That's a contraint: it constrains the view within the
default margin that was set. In this case, you set it to 16 dp from the top of the
layout.



6. Use the same process to create a constraint from the left side of the view to the
left side of the layout.

The result should look as shown in figure 5.

Add abutton

Figure6.The buttonisconstrainedtotheright
side of the text box and its baseline

I. In the Palette panel, click Buttons.
2. Drag the Button widget into the design editor and drop it near the right side.
3. Create a constraint from the left side of the button to the right side of the text box.

4. To constrain the views in a horizontal alignment, create a constraint between
the text baselines. To do so, right-click the button and then select Show
Elseline

. The baseline anchor appears inside the button. Click and hold this anchor, and then drag it to the baseline anchor
that appears in the adjacent text box.

The result should look as shown in figure 6.

Note: You canalso use the top or bottom edges to create a horizontal alignment. However, the buttonimage
includes padding around it, so the visual alignment is wrong if created that way.

Change the Ulstrings

Follow these steps to change the Ul strings:

I. Open the Project window and then open app > res > values > strings.xml.

Thisisastringresources(/guide/topics/resources/string-resource) file, whereyoucanspecify all of
your Ulstrings.Itallowsyou to manage all of your UIstringsin asingle location, which makes them easier to find,
update, and localize.

2. Click Open editor at the top of the window. This opens the Translations Editor

(/studio/write/translations-editor), which provides a simple interface to add and edit
your default strings. It also helps you keep all of your translated strings organized.

3. Click Add Key
+



to create a new string as the "hint text" for the text box. At this point, the window shown in figure 7opens.

[ MON ) Add Key

Key:  edit_message

Default Value: | Enter a message

Resource Folder: app/src/main/res

Cancel

Figure 7. The dialog to add a new string

In the Add Key dialog box, complete the following steps:
a. Enter "edit_message" in the Key field.
b. Enter "Enter a message" in the Default Value field.
c. Click OK.
4. Add another key named "button_send" with a value of "Send".

Now you can set these strings for each view. To return to the layout file, click activity_main.xml in the tab bar. Then, add the strings
as follows:

I. Click the text boxin the layout.If the Attributes window isn'talready visible on the
right, click Attributes

2. Locate the text property, which is currently set to "Name," and delete the value.

3. Locate the hint property and then click Pick a Resource
, which is to the right of the text box. In the dialog that appears, double-click edit_message from
thelist.

4. Click the button in the layout and locate its text property, which is currently
set to "Button.” Then, click Pick a Resource

and select button_send.



Make the text box size flexible
To create a layout that's responsive to different screen sizes, you need to make the text box stretch to fill all the

horizontal space that remains after the button and margins are accounted for.

Before you continue, click Select Design Surface in
the toolbar and select Blueprint.

To make the text box flexible, follow these steps:

™ 16dp, ST 4

Figure8.Theresultofchoosing Create Horizontal
Chain



Figure 9. Click to change the width to Match
Constraints

©v W [l6dp, JL 4 IV

Figure 10. The text box now stretches to fill the
remaining space

I. Select both views. To do so, click one, hold Shift, then click the other, and then
right- click either one and select Chains > Create Horizontal Chain. The layout then
appears as shown in figure 8.

A chain (/training/constraint-layout#constrain-chain) is a bidirectional constraint between
two or more views that allows you to lay out the chained views in unison.

2. Select the button and open the Attributes window. Then, use the view inspector at
the top of the Attributes window to set the right margin to 16 dp.

3. Click the text box to view its attributes. Then, click the width indicator twice so it's
set to Match Constraints, as indicated by callout 1 in figure 9.
Match constraints meansthatthewidth expandsto meetthe definition ofthe horizontal constraintsandmargins.

Therefore,thetextboxstretchestofillthehorizontalspacethat remains after the button and all the margins are
accounted for.



Now the layout is done, as shown in figure 10.
Ifyourlayoutdidn'tturnoutasexpected, clickSeethefinallayoutXMLbelowtoseewhatyour XML should look like. Compare it
towhatyou seeinthe Texttab.If yourattributes appearin a different order, that'sokay.

See the final layout XML
<?xml version="1.0" encoding="utf-8"7?>

<androidx.constraintlayout.widget.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
tools:context="com.example.myfirstapp.MainActivity">

<EditText

android:id="@+id/editText"
android:layout width="0dp"
android:layout height="wrap content"
android:layout marginStart="1l6dp"
android:layout marginLeft="16dp"
android:layout marginTop="16dp"
android:ems="10"
android:hint="@string/edit message"
android:inputType="textPersonName"

app:layout constraintEnd toStartOf="@+id/button”
app:layout constraintHorizontal bias="0.5"
app:layout constraintStart toStartOf="parent"
app:layout constraintTop toTopOf="parent" />

<Button

android:id="@+id/button”

android:layout width="wrap content”

android:layout height="wrap content"

android:layout marginEnd="16dp"

android:layout marginStart="1l6dp"
android:text="@string/button send"

app:layout constraintBaseline toBaselineOf="@+id/editText"
app:layout constraintEnd toEndOf="parent"

app:layout constraintHorizontal bias="0.5"

app:layout constraintStart toEndOf="@+id/editText" />

</androidx.constraintlayout.widget.ConstraintLayout>



Activities and Intents :-

An Activity represents a single screen in your app with which your user can perform a single, focused
task such as taking a photo, sending an email, or viewing a map. An activity is usually presented to
the user as a full-screen window.

An app usually consists of multiple screens that are loosely bound to each other. Each screen is an
activity. Typically, one activity in an app is specified as the "main" activity (MainActivity.java), which is
presented to the user when the app is launched. The main activity can then start other activities to
perform different actions.

Each time a new activity starts, the previous activity is stopped, but the system preserves the activity
in a stack (the "back stack"). When a new activity starts, that new activity is pushed onto the back
stack and takes user focus. The back stack follows basic "last in, first out" stack logic. When the user
is done with the current activity and presses the Back button, that activity is popped from the stack
and destroyed, and the previous activity resumes.

An activity is started or activated with an intent. An Intent is an asynchronous message that you can
use in your activity to request an action from another activity, or from some other app component.
You use an intent to start one activity from another activity, and to pass data between activities.

An Intent can be explicit or implicit:

o An explicit intent is one in which you know the target of that intent. That is, you already know
the fully qualified class name of that specific activity.

o An implicit intent is one in which you do not have the name of the target component, but you
have a general action to perform.

2. App overview

In this chapter you create and build an app called Two Activities that, unsurprisingly, contains
two Activity implementations. You build the app in three stages.

In the first stage, you create an app whose main activity contains one button, Send. When the user
clicks this button, your main activity uses an intent to start the second activity.



TR0 *R500
Two Activities € Second Activity
Message Received

Main activity = Second activity
In the second stage, you add an EditText view to the main activity. The user enters a message and

clicks Send. The main activity uses an intent to start the second activity and send the user's
message to the second activity. The second activity displays the message it received.

600 ¥l 600
Two Activities € Second Activity
I

Message Received

Main activity P Second activity

In the final stage of creating the Two Activities app, you add an EditText and a Reply button to the
second activity. The user can now type a reply message and tap Reply, and the reply is displayed on
the main activity. At this point, you use an intent to pass the reply back from the second activity to the

main activity.



w600 *R600 w600
Two Activities & Second Activity Two Activities

Message Received Reply Received

his is the message This is the reply

Main activity == Second activity = Back to
Main activity

3. Task 1: Create the TwoActivities project

In this task you set up the initial project with a main Activity, define the layout, and define a
skeleton method for the onClick button event.

1.1 Create the TwoActivities project
1. Start Android Studio and create a new Android Studio project.

Name your app Two Activities and choose the same Phone and Tablet settings that you used
in previous practicals. The project folder is automatically named TwoActivities, and the app name
that appears in the app bar will be "Two Activities".

2. Choose Empty Activity for the Activity template. Click Next.

3. Accept the default Activity name (MainActivity). Make sure the Generate Layout
file and Backwards Compatibility (AppCompat) options are checked.

4. Click Finish.

1.2 Define the layout for the main Activity

1. Open res > layout > activity_main.xml in the Project > Android pane. The layout editor
appears.

2. Click the Design tab if it is not already selected, and delete the TextView (the one that
says "Hello World") in the Component Tree pane.

3. With Autoconnect turned on (the default setting), drag a Button from the Palette pane to
the lower right corner of the layout. Autoconnect creates constraints for the Button.



4. In the Attributes pane, set the ID to button_main,

the layout_width and layout_height to wrap_content, and enter Send for the Text field.
The layout should now look like this:

00 BV
esitivitoA owT

anaz

a o] >

5. Click the Text tab to edit the XML code. Add the following attribute to the Button:
android:onClick=

The attribute value is underlined in red because the launchSecondActivity() method has not yet
been created. Ignore this error for now; you fix it in the next task.

6. Extract the string resource, as described in a previous practical, for "Send" and use the
name button_main for the resource.

The XML code for the Button should look like the following:

android:id=
android:layout_width=
android:layout_height=
android:layout_marginBottom=

android:layout_marginRight=

android:text=

android:onClick=
app:layout_constraintBottom_toBottomOf=
app:layout constraintRight toRightOf=

1.3 Define the Button action

In this task you implement the launchSecondActivity() method you referred to in the layout for
the android:onClick attribute.
1. Click on "launchSecondActivity" in the activity _main.xml XML code.

2. Press Alt+Enter (Option+Enter on a Mac) and select Create
'launchSecondActivity(View)' in 'MainActivity.



The MainActivity file opens, and Android Studio generates a skeleton method for
the launchSecondActivity() handler.

3. Inside launchSecondActivity(), add a Log statement that says "Button Clicked!"

d(LOG TAG, );

LOG_TAG will show as red. You add the definition for that variable in a later step.

4. At the top of the MainActivity class, add a constant for the LOG_TAG variable:
LOG_TAG =

.getSimpleName();

This constant uses the name of the class itself as the tag.

5. Run your app. When you click the Send button you see the "Button Clicked!" message in
the Logcat pane. If there's too much output in the monitor, type MainActivity into the
search box, and the Logcat pane will only show lines that match that tag.

The code for MainActivity should look as follows:

com.example.android.twoactivities;

android.support.v7.app.
android.os. ;
android.util. :
android.view.

{
LOG_TAG =
.getSimpleName();

onCreate( savedinstanceState) {
.onCreate(savedInstanceState);
setContentView(R.layout.activity _main);

launchSecondActivity( view) {
d(LOG_TAG, );




4. Task 2: Create and launch the second Activity

Each new activity you add to your project has its own layout and Java files, separate from those
of the main activity. They also have their own <activity> elements in the AndroidManifest.xml file.
As with the main activity, new activity implementations that you create in Android Studio also
extend from the AppCompatActivity class.

Each activity in your app is only loosely connected with other activities. However, you can define
an activity as a parent of another activity in the AndroidManifest.xml file. This parent-child
relationship enables Android to add navigation hints such as left-facing arrows in the title bar for
each activity.

An activity communicates with other activities (in the same app and across different apps) with
an intent. An Intent can be explicit or implicit:

e An explicit intent is one in which you know the target of that intent; that is, you already
know the fully qualified class name of that specific activity.

e An implicit intent is one in which you do not have the name of the target component, but
have a general action to perform.

In this task you add a second activity to our app, with its own layout. You modify

the AndroidManifest.xml file to define the main activity as the parent of the second activity. Then
you modify the launchSecondActivity() method in MainActivity to include an intent that launches
the second activity when you click the button.

2.1 Create the second Activity
1. Click the app folder for your project and choose File > New > Activity > Empty Activity.

2. Name the new Activity SecondActivity. Make sure Generate Layout
File and Backwards Compatibility (AppCompat) are checked. The layout name is filled
in as activity_second. Do not check the Launcher Activity option.

3. Click Finish. Android Studio adds both a new Activity layout (activity_second.xml) and a
new Java file (SecondActivity.java) to your project for the new Activity. It also updates
the AndroidManifest.xml file to include the new Activity.

2.2 Modify the AndroidManifest.xml file
1. Open manifests > AndroidManifest.xml.
2. Find the <activity> element that Android Studio created for the second Activity.

<activity android:name= ></activity>

3. Replace the entire <activity> element with the following:



android:name=
android:label =
android:parentActivityName=

android:name=
android:value=

The label attribute adds the title of the Activity to the app bar.

With the parentActivityName attribute, you indicate that the main activity is the parent of the
second activity. This relationship is used for Up navigation in your app: the app bar for the
second activity will have a left-facing arrow so the user can navigate "upward" to the main
activity.

With the <meta-data> element, you provide additional arbitrary information about the activity in
the form of key-value pairs. In this case the metadata attributes do the same thing as

the android:parentActivityName attribute—they define a relationship between two activities for
upward navigation. These metadata attributes are required for older versions of Android,
because the android:parentActivityName attribute is only available for API levels 16 and higher.

4. Extract a string resource for "Second Activity" in the code above, and
use activity2_name as the resource name.
2.3 Define the layout for the second Activity
1. Open activity_second.xml and click the Design tab if it is not already selected.

2. Drag a TextView from the Palette pane to the top left corner of the layout, and add
constraints to the top and left sides of the layout. Set its attributes in the Attributes pane

(DR | 4
yiivifoA bnooss2 =

bavisosfl sps2aaM

as folows: [T

3. Click the Text tab to edit the XML code, and extract the "Message Received" string into a
resource named text_header.



4. Add the android:layout_marginLeft="8dp" attribute to the TextView to complement
the layout_marginStart attribute for older versions of Android.

The XML code for activity_second.xml should be as follows:

xmlns:android=
xmins:app=
xmlns:tools=
android:layout_width=
android:layout_height=
tools:context=

android:id=
android:layout_width=
android:layout_height=
android:layout_marginStart=
android:layout_marginLeft=
android:layout_marginTop=
android:text=
android:textAppearance=

android:textStyle=
app:layout_constraintStart_toStartOf=
app:layout_constraintTop_toTopOf=

2.4 Add an Intent to the main Activity

In this task you add an explicit Intent to the main Activity. This Intent is used to activate the
second Activity when the Send button is clicked.

1. Open MainActivity.

2. Create a new Intent in the launchSecondActivity() method.
The Intent constructor takes two arguments for an explicit Intent: an application Context and the

specific component that will receive that Intent. Here you should use this as the Context,
and SecondActivity.class as the specific class:

intent = (this, : )
3. Call the startActivity() method with the new Intent as the argument.

startActivity(intent);
4. Run the app.



When you click the Send button, MainActivity sends the Intent and the Android system
launches SecondActivity, which appears on the screen. To return to MainActivity, click
the Up button (the left arrow in the app bar) or the Back button at the bottom of the screen.

5. Task 3: Send data from the main Activity to the second Activity

In the last task, you added an explicit intent to MainActivity that launched SecondActivity. You
can also use an intent to send data from one activity to another while launching it.

Your intent object can pass data to the target activity in two ways: in the data field, or in the
intent extras. The intent data is a URI indicating the specific data to be acted on. If the
information you want to pass to an activity through an intent is not a URI, or you have more than
one piece of information you want to send, you can put that additional information into

the extras instead.

The intent extras are key/value pairs in a Bundle. A Bundle is a collection of data, stored as
key/value pairs. To pass information from one activity to another, you put keys and values into
the intent extra Bundle from the sending activity, and then get them back out again in the
receiving activity.

In this task, you modify the explicit intent in MainActivity to include additional data (in this case, a
user-entered string) in the intent extra Bundle. You then modify SecondActivity to get that data
back out of the intent extra Bundle and display it on the screen.

3.1 Add an EditText to the MainActivity layout
1. Open activity_main.xml.

2. Drag a Plain Text (EditText) element from the Palette pane to the bottom of the layout,
and add constraints to the left side of the layout, the bottom of the layout, and the left side
of the Send Button. Set its attributes in the Attributes pane as follows:

Attribute Value

id editText_main
Right margin a

Left margin a

Bottom margin 16

layout_width match_constraint

layout_height  wrap_content

inputType textlLongMessage

hint Enter Your Message Here
text (Delete any text in this field)

The new layout in activity_main.xml looks like this:



Wilcoo
Two Activities

Enter Your Message Here SEND

3. Click the Text tab to edit the XML code, and extract the "Enter Your Message Here" string
into a resource named editText_main.

The XML code for the layout should look something like the following.

xmins:android=
xmlns:app=
xmins:tools=
android:layout_width=
android:layout_height=
tools:context=

android:id=
android:layout_width=
android:layout_height=
android:layout_marginBottom=
android:layout_marginRight=
android:text=

android:onClick=
app:layout_constraintBottom_toBottomOf=
app:layout_constraintRight_toRightOf=

android:id=

android:layout_width=
android:layout_height=
android:layout_marginBottom=
android:layout_marginEnd=
android:layout_marginStart=
android:ems=

android:hint=

android:inputType=

app:layout constraintBottom_toBottomOf=




app:layout_constraintEnd_toStartOf=

app:layout_constraintStart_toStartOf=

3.2 Add a string to the Intent extras

The Intent extras are key/value pairs in a Bundle. A Bundle is a collection of data, stored as
key/value pairs. To pass information from one Activity to another, you put keys and values into
the Intent extra Bundle from the sending Activity, and then get them back out again in the
receiving Activity.

1. Open MainActivity.
2. Add a public constant at the top of the class to define the key for the Intent extra:

EXTRA_MESSAGE =

3. Add a private variable at the top of the class to hold the EditText:

mMessageEditText;

4. In the onCreate() method, use findViewByld() to get a reference to the EditText and
assign it to that private variable:

mMessageEditText = findViewByld(R.id.editText main);

5. In the launchSecondActivity() method, just under the new Intent, get the text from
the EditText as a string:

message = mMessageEditText.getText().toString();

6. Add that string to the Intent as an extra with the EXTRA_MESSAGE constant as the key
and the string as the value:

intent.putExtra(EXTRA MESSAGE, message);

The onCreate() method in MainActivity should now look like the following:

onCreate( savedInstanceState) {
.onCreate(savedInstanceState);
setContentView(R.layout.activity _main);
mMessageEditText = findViewByld(R.id.editText_main);

The launchSecondActivity() method in MainActivity should now look like the following:

launchSecondActivity( view) {
d(LOG_TAG, );
intent = {

);

message = mMessageEditText.getText().toString();
intent.putExtra(EXTRA_MESSAGE, message);
startActivity(intent);




3.3 Add a TextView to SecondActivity for the message
1. Open activity_second.xml.

2. Drag another TextView to the layout underneath the text_header TextView, and add
constraints to the left side of the layout and to the bottom of text_header.

3. Set the new TextView attributes in the Attributes pane as follows:

Attribute Value

id text_message
Top margin 2]

Left margin a

layout_width wrap_content
layout_height wrap_content

text (Delete any text in this field)

textAppearance  AppCompat.Medium

The new layout looks the same as it did in the previous task, because the new TextView does
not (yet) contain any text, and thus does not appear on the screen.

The XML code for the activity_second.xml layout should look something like the following:

xmlns:android=
xmins:app=
xmins:tools=
android:layout_width=
android:layout_height=
tools:context=

android:id=
android:layout_width=
android:layout_height=
android:layout_marginStart=
android:layout_marginTop=
android:text=
android:textAppearance=

android:textStyle=
app:layout_constraintStart_toStartOf=
app:layout constraintTop toTopOf=




android:id=
android:layout_width=
android:layout_height=

android:layout_marginStart=
android:layout_marginTop=
app:layout_constraintStart_toStartOf=
app:layout_constraintTop_toBottomOf=

3.4 Modify SecondActivity to get the extras and display the message
1. Open SecondActivity to add code to the onCreate() method.
2. Get the Intent that activated this Activity:
intent = getintent();

3. Get the string containing the message from the Intent extras using
the MainActivity. EXTRA_MESSAGE static variable as the key:

message = intent.getStringExtra( .EXTRA MESSAGE);
4. Use findViewBylID() to get a reference to the TextView for the message from the layout:

textView = findViewByld(R.id.text message);
5. Set the text of the TextView to the string from the Intent extra:
textView.setText(message);

6. Run the app. When you type a message in MainActivity and
click Send, SecondActivity launches and displays the message.

The SecondActivity onCreate() method should look as follows:
onCreate( savedInstanceState) {

.onCreate(savedInstanceState);
setContentView(R.layout.activity second);

intent = getlintent();
message = intent.getStringExtra( .EXTRA_MESSAGE);
textView = findViewByld(R.id.text_message);
textView.setText(message);




Android - Services

A service is a component that runs in the background to perform
long-running operations without needing to interact with the user
and it works even if application is destroyed. A service can
essentially take two states —

Sr.No. State & Description

1 Started

A service is started when an application component,
such as an activity, starts it by calling startService().
Once started, a service can run in the background
indefinitely, even if the component that started it is
destroyed.

2 Bound

A service is bound when an application component
binds to it by calling bindService(). A bound service
offers a client-server interface that allows components
to interact with the service, send requests, get results,
and even do so across processes with interprocess
communication (IPC).

A service has life cycle callback methods that you can implement to monitor changes in the
service's state and you can perform work at the appropriate stage. The following diagram on the
left shows the life cycle when the service is created with startService() and the diagram on the
right shows the life cycle when the service is created with bindService(): (image courtesy :
android.com )



Service is
started by

Service is
created by
; bindServical)

startSenvice()

onCreate() anCraatae(}
T |
onStart() onBind()

( Gllent interacts with the service
runming - onRebind()

Service s

The service |
is slopped | _
| (no callback) | onnbind()

¥

onDestray() onDestroy()

UN Bounded Service Bounded services

To create an service, you create a Java class that extends the Service base class or one of its
existing subclasses. The Service base class defines various callback methods and the most
important are given below. You don't need to implement all the callbacks methods. However, it's
important that you understand each one and implement those that ensure your app behaves the
way users expect.

Sr.No. Callback & Description

onStartCommand()

The system calls this method when another component, such as an activity, requests that the service be
started, by calling startService(). If you implement this method, it is your responsibility to stop the service
when its work is done, by calling stopSelf() or stopService() methods.

onBind()

The system calls this method when another component wants to bind with the service by
calling bindService(). If you implement this method, you must provide an interface that clients use to



communicate with the service, by returning an /Binder object. You must always implement this method,
but if you don't want to allow binding, then you should return null.

onUnbind()

The system calls this method when all clients have disconnected from a particular interface published by
the service.

onRebind()

The system calls this method when new clients have connected to the service, after it had previously
been notified that all had disconnected in its onUnbind(Intent).

onCreate()

The system calls this method when the service is first created using onStartCommand() or onBind().
This call is required to perform one-time set-up.

onDestroy()

The system calls this method when the service is no longer used and is being destroyed. Your service
should implement this to clean up any resources such as threads, registered listeners, receivers, etc.

The following skeleton service demonstrates each of the life cycle methods -

package com.tutorialspoint;

import
import
import
import

public

/**

int

/**

android.app.Service;
android.os.IBinder;
android.content.Intent;
android.os.Bundle;

class HelloService extends Service {

indicates how to behave if the service is killed */
mStartMode;

interface for clients that bind */

IBinder mBinder;

/**

indicates whether onRebind should be used */

boolean mAllowRebind;

/**

Called when the service is being created. */

@Override
public void onCreate () {

}




/** The service 1is starting, due to a call to startService() */

@Override

public int onStartCommand (Intent intent, int flags, int startId) {
return mStartMode;

}

/** A client is binding to the service with bindService () */
@Override
public IBinder onBind(Intent intent) {

return mBinder;

}

/** Called when all clients have unbound with unbindService () */
@Override
public boolean onUnbind(Intent intent) {

return mAllowRebind;

}

/** Called when a client is binding to the service with bindService () */
@Override
public void onRebind (Intent intent) ({

}

/** Called when The service is no longer used and is being destroyed */
@Override
public void onDestroy () {

}

Example

This example will take you through simple steps to show how to create your own Android
Service. Follow the following steps to modify the Android application we created in Hello World
Example chapter -

Step Description

1 You will use Android StudiolDE to create an Android
application and name it as My Application under a
package com.example.tutorialspoint7.myapplication as
explained in the Hello World Example chapter.




Modify main activity file MainActivity.java to
add startService() and stopService() methods.

Create a new java file MyService.java under the
package com.example.My Application. This file will
have implementation of Android service related
methods.

Define your service in AndroidManifest.xml file using
<service.../> tag. An application can have one or more
services without any restrictions.

Modify the default content
of res/layout/activity _main.xml file to include two
buttons in linear layout.

No need to change any constants
in res/values/strings.xml file. Android studio take care
of string values

Run the application to launch Android emulator and
verify the result of the changes done in the application.



Following is the content of the modified main activity file MainActivity.java. This file can include
each of the fundamental life cycle methods. We have
added startService() and stopService() methods to start and stop the service.

package com.example.tutorialspoint7.myapplication;

import android.content.Intent;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.os.Bundle;
import android.app.Activity;
import android.util.Log;
import android.view.View;

public class MainActivity extends Activity {
String msg = "Android : ";

/** Called when the activity is first created. */

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
Log.d(msg, "The onCreate() event");

}

public void startService (View view) {
startService (new Intent (getBaseContext (), MyService.class)):;

}

// Method to stop the service
public void stopService (View view) ({
stopService (new Intent (getBaseContext (), MyService.class));
}
}

Following is the content of MyService.java. This file can have implementation of one or more
methods associated with Service based on requirements. For now we are going to implement
only two methods onStartCommand() and onDestroy() -

package com.example.tutorialspoint7.myapplication;

import android.app.Service;

import android.content.Intent;

import android.os.IBinder;

import android.support.annotation.Nullable;
import android.widget.Toast;

/**
* Created by TutorialsPoint7 on 8/23/2016.
*/

public class MyService extends Service {
@Nullable




}

@Override
public IBinder onBind (Intent intent) {
return null;

}

@Override

public int onStartCommand (Intent intent, int flags, int startId) {
// Let it continue running until it is stopped.
Toast.makeText (this, "Service Started", Toast.LENGTH LONG) .show();
return START STICKY;

}

@Override
public void onDestroy () {
super.onbDestroy () ;
Toast.makeText (this, "Service Destroyed", Toast.LENGTH LONG) .show();

Following will the modified content of AndroidManifest.xmlfile. Here we have added
<service.../> tag to include our service -

<?xml version="1.0" encoding="utf-8"7?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.example.tutorialspoint7.myapplication">

<application
android:allowBackup="true"
android:icon="@mipmap/ic launcher"
android:label="@string/app name"
android:supportsRtl="true"
android:theme="@style/AppTheme">

<activity android:name=".MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

<service android:name=".MyService" />
</application>

</manifest>

Following will be the content of res/layout/activity _main.xml file to include two buttons -

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

android:layout width="match parent"

android:layout height="match parent"

android:paddingLeft="@dimen/activity horizontal margin"

android:paddingRight="@dimen/activity horizontal margin"




android:paddingTop="@dimen/activity vertical margin"
android:paddingBottom="@dimen/activity vertical margin"
tools:context=".MainActivity">

<TextView
android:id="@+id/textViewl"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="Example of services"
android:layout alignParentTop="true"
android:layout centerHorizontal="true"
android:textSize="30dp" />

<TextView
android:id="Q+id/textView2"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="Tutorials point "
android:textColor="#f£87££09"
android:textSize="30dp"
android:layout above="@+id/imageButton"
android:layout centerHorizontal="true"
android:layout marginBottom="40dp" />

<ImageButton
android:layout width="wrap content"
android:layout height="wrap content"
android:id="@+id/imageButton"
android:src="@drawable/abc"
android:layout centerVertical="true"
android:layout centerHorizontal="true" />

<Button
android:layout width="wrap content"
android:layout height="wrap content"
android:id="@+id/button2"
android:text="Start Services"
android:onClick="startService"
android:layout below="@+id/imageButton"
android:layout centerHorizontal="true" />

<Button
android:layout width="wrap content"
android:layout height="wrap content"
android:text="Stop Services"
android:id="@+id/button"
android:onClick="stopService"
android:layout below="@+id/button2"
android:layout alignLeft="@+id/button2"
android:layout alignStart="@+id/button2"
android:layout alignRight="@+id/button2"
android:layout alignEnd="@+id/button2" />

</RelativeLayout>




Let's try to run our modified Hello World! application we just modified. | assume you had
created your AVD while doing environment setup. To run the app from Android studio, open one
of your project's activity files and click Run i# icon from the tool bar. Android Studio installs the
app on your AVD and starts it and if everything is fine with your set-up and application, it will
display following Emulator window -

Example of services

<> tutorialspoint

START SERVICES

STOP SERVICES

Now to start your service, let's click on Start Service button, this will start the service and as per
our programming in onStartCommand() method, a message Service Started will appear on the
bottom of the the simulator as follows -

Example of services

<>!=ue=.c-ri?!spe.in!z

START SERVICES

STOP SERVICES

To stop the service, you can click the Stop Service button.



Threads

When an application is launched, the system creates a thread of execution for the application,
called "main." This thread is very important because it is in charge of dispatching events to the
appropriate user interface widgets, including drawing events. It is also almost always the thread
in which your application interacts with components from the Android Ul toolkit (components from
the android.widget and android.view packages). As such, the main thread is also
sometimes called the Ul thread. However, under special circumstances, an app's main thread
might not be its Ul thread; for more information, see Thread annotations.

The system does not create a separate thread for each instance of a component. All components
that run in the same process are instantiated in the Ul thread, and system calls to each
component are dispatched from that thread. Consequently, methods that respond to system
callbacks (such as onKeyDown () to report user actions or a lifecycle callback method) always
run in the Ul thread of the process.

For instance, when the user touches a button on the screen, your app's Ul thread dispatches the
touch event to the widget, which in turn sets its pressed state and posts an invalidate request to
the event queue. The Ul thread dequeues the request and notifies the widget that it should
redraw itself.

When your app performs intensive work in response to user interaction, this single thread model
can yield poor performance unless you implement your application properly. Specifically, if
everything is happening in the Ul thread, performing long operations such as network access or
database queries will block the whole Ul. When the thread is blocked, no events can be
dispatched, including drawing events. From the user's perspective, the application appears to
hang. Even worse, if the Ul thread is blocked for more than a few seconds (about 5 seconds
currently) the user is presented with the infamous "application not responding" (ANR) dialog. The
user might then decide to quit your application and uninstall it if they are unhappy.

Additionally, the Android Ul toolkit is not thread-safe. So, you must not manipulate your Ul from a
worker thread—you must do all manipulation to your user interface from the Ul thread. Thus,
there are simply two rules to Android's single thread model:



1. Do not block the Ul thread

2. Do not access the Android Ul toolkit from outside the Ul thread

Worker threads

Because of the single threaded model described above, it's vital to the responsiveness of your
application's Ul that you do not block the Ul thread. If you have operations to perform that are not
instantaneous, you should make sure to do them in separate threads ("background" or "worker"
threads).

However, note that you cannot update the Ul from any thread other than the Ul thread or the
"main" thread.

The Application Main Thread

When an Android application is first started, the runtime system creates a single thread in which
all application components will run by default. This thread is generally referred to as the main
thread. The primary role of the main thread is to handle the user interface in terms of event
handling and interaction with views in the user interface. Any additional components that are
started within the application will, by default, also run on the main thread.

Any component within an application that performs a time consuming task using the main thread
will cause the entire application to appear to lock up until the task is completed. This will typically
result in the operating system displaying an “Application is unresponsive” warning to the user.
Clearly, this is far from the desired behavior for any application. In such a situation, this can be
avoided simply by launching the task to be performed in a separate thread, allowing the main
thread to continue unhindered with other tasks.

Thread Handlers

Clearly one of the key rules of application development is never to perform time-consuming
operations on the main thread of an application. The second, equally important rule is that the
code within a separate thread must never, under any circumstances, directly update any aspect
of the user interface. Any changes to the user interface must always be performed from within
the main thread. The reason for this is that the Android Ul toolkit is not thread-safe. Attempts to
work with non thread-safe code from within multiple threads will typically result in intermittent
problems and unpredictable application behavior.

In the event that the code executing in a thread needs to interact with the user interface, it must
do so by synchronizing with the main Ul thread. This is achieved by creating a handler within the
main thread, which, in turn, receives messages from another thread and updates the user
interface accordingly.



o oA

REFERENCES

G. Blake Meike, Zigurd Mednieks, John Lombardo, Rick Rogers, "Android Application
Development", O’reilly, 1st Edition, 2009.

R. Nageswara Rao,"Core JAVA: An Integrated Approach", Dreamtech Press, Wiley
India, 1st Edition, 2015.

Herbert Schildt, "Java: The Complete Reference", 9th Edition, 2014.

Gary Cornell, Cay S. Horstmann, "Core Java Volume I - Fundamentals", Prentice Hall,
9th Edition, 2012.

Cay S. Horstmann," Core Java, Volume II - Advanced Features", Prentice Hall, 11th
Edition, 2019.https://www.besanttechnologies.com/what-is-i0s
https://www3.ntu.edu.sg/home/ehchua/programming/android/Android BasicsUIhtml
https://developer.android.com/guide/components/activities/intro-activities
https://livebook.manning.com/book/android-in-action-second-edition/chapter-3/
https://www.developer.com/languages/xml/understanding-user-interface-layout-and-ui-
components-for-android-apps/




vk wnN e

vk wnN e

UNIT -3

ANDROID INTENT, THREAD AND SERVICES

PART-A

Define intent objects and discuss about it.

List the classification of intents in android platform?
Categorize various services in Android platform?
How to declare a service in manifext.xml file/
Explain how extras object of intent shall be useful?

PART-B

What is intent, fields? List & explain the types of intents?

What is implicit intent? List and explain the fields used in implicit intents?
Discuss in detail about various intent objects?

Discuss in detail how threads are handled in Android programming?
Explain in detail how Android services concepts implemented in Android ?



&)
SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
[DEEMED TO BE UNIVERSITY)
Accredited "A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF EEE
DEPARTMENT OF ECE

UNIT -1V - RECEIVERS AND MULTIMEDIA TECHNIQUES IN ANDROID —

SECAS205




UNIT 4 RECEIVERS AND MULTIMEDIA TECHNIQUES IN ANDROID
Receiver and Alerts, User Interface Layout, User Interface Events, Multimedia Techniques, Hardware Interfaces.
Android Broadcast Receiver

What is Android Broadcast Receiver?

Abroadcastreceiveris a dormant component of the Android system. Only an Intent (for which it is registered) can bring it into

action. The Broadcast Receiver’s job is to pass a notification to the user, in case a specific event occurs.

Using aBroadcast Receiver, applications canregisterforaparticularevent. Once the eventoccurs, the system will notify all the

registered applications.

Registers for Intents to Observe

Broadcast

Receiver

Gets Notification when Intents Occur

For instance, a Broadcast receiver triggers battery Low notification that you see on your mobile screen.

Other instances caused by a Broadcast Receiver are new friend notifications, new friend feeds, new message etc. on your

Facebook app.

In fact, you see broadcast receivers at work all the time. Notifications like incoming messages, WiFi Activated/Deactivated

messageetc.areallreal-timeannouncements ofwhatis happeninginthe Android system and the applications.

A\ Please connect charger

The battery is getting low:
less than 15% remaining.

-«

—3
oo000




How important is it to implement Broadcast Receivers correctly?

If you wish to create a good Android application, this is of utmost importance. If the broadcast events do not perform their job (of
sending notifications to support the application’s primary task) perfectly, the application would not be intuitive and user friendly.

Registration of Broadcast Receiver

There are two ways to register a Broadcast Receiver; one is Static and the other Dynamic.
1) Static: Use <receiver> tag in your Manifest file. (AndroidManifest.xml)

2) Dynamic: Use Context.registerReceiver () method to dynamically register an instance.

Classes of Broadcasts

The two major classes of broadcasts are:

1) Ordered Broadcasts: These broadcasts are synchronous, and therefore follow a specific order. The orderis defined using
android: priority attribute. The receivers with greater priority would receive the broadcast first. In case there are receivers
with same priority levels, the broadcast would not follow an order. Eachreceiver (whenitreceives the broadcast) can eitherpass
on the notification to the next one, or abort the broadcast completely. On abort, the notification would not be passed on to the

receivers next in line.

2) NormalBroadcasts: Normalbroadcasts are notorderly. Therefore, theregisteredreceivers oftenrunallatthe same time.

This is very e cient, but the Receivers are unable to utilize the results.

Sometimes to avoid system overload, the system delivers the broadcasts one at atime, evenin case of normal broadcasts.

However, the receivers still cannot use the results.

Di"erence between Activity Intent and Broadcasting Intent



YoumustrememberthatBroadcastingintentsaredi”erentfromthelntentsusedtostartanActivityoraService(discussedin
previous Android Tutorials). The intent used to start an Activity makes changes to an operation the useris interacting with, so the
user is aware of the process. However, in case of broadcasting intent, the operation runs completely in the background, and is
therefore invisible to theuser.

Implementing the Broadcast Receiver

You need to follow these steps toimplement abroadcastreceiver:
1) Create a subclass of Android’s BroadcastReceiver

2) Implementthe onReceive() method: In order for the notification to be sent, an onReceive() method has to be
implemented.Wheneverthe eventforwhichthereceiverisregisteredoccurs,onReceive()iscalled.Forinstance,incase of
battery low notification, the receiver is registered to Intent. ACTION_BATTERY_LOW event. As soon as the battery level falls below

the defined level, this onReceive() method is called.
Following are the two arguments of the onReceive() method:

+ Context: Thisis used to access additional information, or to start services or activities.
+ Intent: The Intent object is used to register the receiver.

Security

As the broadcastreceivers have aglobal work-space, securityis very important concern here. If you do not define the limitations
and filters for the registered receivers, other applications can abuse them.

Here are a few limitations that might help:

+ Wheneveryoupublishareceiverinyourapplication’s manifest,makeitunavailable toexternal applicationsbyusing
android: exported="false”. You might think that specifying Intent filters while publishing the receiver would do the task for
you, when in reality they are not enough.

+ Whenyou send a broadcast, itis possible for the external applications too to receive them. This can be prevented by
specifying a fewlimitations.

+ Similarly, when you register your receiver using registerReceiver, any application may send it broadcasts. This can be
prevented using permissions as well.

(PS: As of Android 3.1, the Android system will not receive any external Intent, so the system is comparatively secure

now.)

Prolonged Operations

The Broadcast Receiver object is active only for the duration of onReceive (Context, Intent).
Therefore, if you need to allow an action after receiving the notification services should be triggered, and not broadcast

receivers.

+ To show a dialogue, then you should use NotificationManager API
+ Ifyouwishto send a broadcast intent that would stick around even after the broadcast is complete, you must use
sendStickyBroadcast (Intent) method.

Broadcast Receiver Example

Inthis sample application, anotificationis generated when youchange the system time. The notification when clicked leads the

user to the Contacts. This is how the application works:

1 public class MyBroadcastReceiver extends BroadcastReceiver {
2
3 private Not:
4 private int
5 l
6 @Ovepplde December 18,2012 S [fll @ 9:41em
7 i i Date & time settings =
public void e T w—
8 iasbinli
9 mNotifi N EJ Time has been Reset
10 Sefdth: Click on me to view Contacts 9:40 PM
11 B
12 Notifici 5.E.1|E1('£ time zone
13 el MT+05:30, 1 o
14 St_at .Ei.me
12 Pendlng | —— | FJSE. 24-hour format .
17 . Select date format ®
18 notifyDs 123112012
v e .
20
Sample code notifyDetails.flags |= Notification.FLAG_AUTO_CANCEL;
22 notifyDetails.flags |= Notification.DEFAULT_SOUND;
23
24 mNotificationManager.notify(SIMPLE_NOTFICATION_ID, notifyDetails);
25 Log.i("hisham_debug", "Sucessfully Changed Time");
26

27 }




Dialogs

A dialog is a small window that prompts the user to make a decision or enter additional information. A dialog does not fill the screen and is
normally used for modal events that require users to take an action before they can proceed.

Dialog Design
For information about how to design your dialogs, including recommendations for language, read the Dialogs design guide.

Text messaqge limit A

Set number ofl messages lo save:

You'll lose all photos and media!

e

500

Cancel Set

The Dialog class is the base class for dialogs, but you should avoid instantiating Diz1o0g directly. Instead, use one of the following
subclasses:

AlertDialog

A dialog that can show a title, up to three buttons, a list of selectable items, or a custom layout.

DatePickerDialogor TimePickerDialog

A dialog with a pre-defined Ul that allows the user to select a date or time.

Caution: Android includes another dialog class called ProgressDialog that shows a dialog with a progress bar. This widget is
deprecated because it prevents users from interacting with the app while progress is being displayed. If you need to indicate loading or
indeterminate progress, you should follow the design guidelines for Progress & Activity and use a ProgressBar in your layout, instead of
using ProgressDialog.

These classes define the style and structure for your dialog, but you should use a DialogFragment as a container for your dialog.
The DialogFragment class provides all the controls you need to create your dialog and manage its appearance, instead of calling
methods on the Dialog object.

Using DialogFragment to manage the dialog ensures that it correctly handles lifecycle events such as when the user presses
the Back button or rotates the screen. The DialogFragment class also allows you to reuse the dialog's Ul as an embeddable component
in a larger U, just like a traditional Fragment (such as when you want the dialog Ul to appear differently on large and small screens).

The following sections in this guide describe how to use a DialogFragment in combination with an AlertDialog object. If you'd like to
create a date or time picker, you should instead read the Pickers guide.

Note: Because the DialogFragment class was originally added with Android 3.0 (API level 11), this document describes how to use
the DialogFragment class that's provided with the Support Library. By adding this library to your app, you can

use DialogFragment and a variety of other APIs on devices running Android 1.6 or higher. If the minimum version your app supports is
APl level 11 or higher, then you can use the framework version of DialogFragment, but be aware that the links in this document are for
the support library APIs. When using the support library, be sure that you import android. support.v4.app.DialogFragment class
and not android.app.DialogFragment.




Creating a Dialog Fragment

You can accomplish a wide variety of dialog designs—including custom layouts and those described in the Dialogs design guide—by
extending DialogFragment and creatinga AlertDialoginthe onCreateDialog () callback method.

For example, here's a basic A1ertDialog that's managed withina DialogFragment:

KOTLINJAVA
class FireMissilesDialogFragment : DialogFragment () {
override fun onCreateDialog(savedInstanceState: Bundle): Dialog {

return activity?.let {
// Use the Builder class for convenient dialog construction
val builder = AlertDialog.Builder (it)
builder.setMessage (R.string.dialog fire missiles)
.setPositiveButton (R.string.fire,
DialogInterface.OnClickListener { dialog, id ->
// FIRE ZE MISSILES!
})
.setNegativeButton (R.string.cancel,
DialogInterface.OnClickListener { dialog, id ->
// User cancelled the dialog
)
// Create the AlertDialog object and return it
builder.create ()

} ?: throw IllegalStateException ("Activity cannot be null")

Fire missiles?

CANCEL FIRE

Figure 1. A dialog with a message and two action buttons.
Now, when you create an instance of this class and call show () on that object, the dialog appears as shown in figure 1.

The next section describes more about usingthe AlertDialog.Builder APIs to create the dialog.

Depending on how complex your dialog is, you can implement a variety of other callback methods in the DialogFragment, including all
the basic fragment lifecycle methods.

Building an Alert Dialog

The AlertDialog class allows you to build a variety of dialog designs and is often the only dialog class you'll need. As shown in figure 2,
there are three regions of an alert dialog:




1.

4} Bric

Automatic brightness

Cancel

Figure 2. The layout of a dialog.

Title

This is optional and should be used only when the content area is occupied by a detailed message, a list, or custom layout. If you need to
state a simple message or question (such as the dialog in figure 1), you don't need a title.

Content area
This can display a message, a list, or other custom layout.
Action buttons

There should be no more than three action buttons in a dialog.

The AlertDialog.Builder class provides APls that allow you to create an 21ertDialog with these kinds of content, including a
custom layout.

Layouts Part of Android Jetpack.

A layout defines the structure for a user interface in your app, such as in an activity. All elements in the layout are built using a hierarchy
of View and ViewGroup objects. A View usually draws something the user can see and interact with. Whereas a ViewGroup is an
invisible container that defines the layout structure for view and other ViewGroup objects, as shown in figure 1.

View View View

Figure 1. lllustration of a view hierarchy, which defines a Ul layout

The View objects are usually called "widgets" and can be one of many subclasses, such as Button or TextView.
The ViewGroup objects are usually called "layouts" can be one of many types that provide a different layout structure, such
as LinearLayout Oor ConstraintLayout..

You can declare a layout in two ways:

Declare Ul elements in XML. Android provides a straightforward XML vocabulary that corresponds to the View classes and subclasses,
such as those for widgets and layouts.

You can also use Android Studio's Layout Editor to build your XML layout using a drag-and-drop interface.

Instantiate layout elements at runtime. Your app can create View and ViewGroup objects (and manipulate their properties)
programmatically.

Declaring your Ul in XML allows you to separate the presentation of your app from the code that controls its behavior. Using XML files also
makes it easy to provide different layouts for different screen sizes and orientations (discussed further in Supporting Different Screen
Sizes).

The Android framework gives you the flexibility to use either or both of these methods to build your app's Ul. For example, you can declare
your app's default layouts in XML, and then modify the layout at runtime.



Tip:To debug your layout at runtime, use the Layout Inspector tool.

Write the XML

Using Android's XML vocabulary, you can quickly design Ul layouts and the screen elements they contain, in the same way you create
web pages in HTML — with a series of nested elements.

Each layout file must contain exactly one root element, which must be a View or ViewGroup object. Once you've defined the root element,
you can add additional layout objects or widgets as child elements to gradually build a View hierarchy that defines your layout. For
example, here's an XML layout that uses a vertical LinearLayout to hold a TextView and a Button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="match parent"
android:layout height="match parent"
android:orientation="vertical" >
<TextView android:id="@+id/text"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="Hello, I am a TextView" />
<Button android:id="@+id/button"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="Hello, I am a Button" />
</LinearLayout>

After you've declared your layout in XML, save the file with the . xm1 extension, in your Android project's res/layout/ directory, so it will
properly compile.

More information about the syntax for a layout XML file is available in the Layout Resources document.

Load the XML Resource

When you compile your app, each XML layout file is compiled into a View resource. You should load the layout resource from your app

code, inyour Activity.onCreate () callback implementation. Do so by calling setContentView (), passing it the reference to your
layout resource in the form of: R. layout. layout file name. For example, if your XML layout is saved as main layout.xml, you

would load it for your Activity like so:

KOTLINJAVA

fun onCreate (savedInstanceState: Bundle) {
super.onCreate (savedInstanceState)
setContentView (R.layout.main layout)

The onCreate () callback method in your Activity is called by the Android framework when your Activity is launched (see the discussion
about lifecycles, in the Activities document).

Attributes

Every View and ViewGroup object supports their own variety of XML attributes. Some attributes are specific to a View object (for example,
TextView supports the textSize attribute), but these attributes are also inherited by any View objects that may extend this class. Some
are common to all View objects, because they are inherited from the root View class (like the id attribute). And, other attributes are
considered "layout parameters," which are attributes that describe certain layout orientations of the View object, as defined by that object's
parent ViewGroup object.

ID

Any View object may have an integer ID associated with it, to uniquely identify the View within the tree. When the app is compiled, this ID
is referenced as an integer, but the ID is typically assigned in the layout XML file as a string, in the id attribute. This is an XML attribute
common to all View objects (defined by the vView class) and you will use it very often. The syntax for an ID, inside an XML tag is:

android:id="@+id/my button"



The at-symbol (@) at the beginning of the string indicates that the XML parser should parse and expand the rest of the ID string and
identify it as an ID resource. The plus-symbol (+) means that this is a new resource name that must be created and added to our resources
(in the R. java file). There are a number of other ID resources that are offered by the Android framework. When referencing an Android
resource ID, you do not need the plus-symbol, but must add the android package namespace, like so:

android:id="@android:id/empty"

With the android package namespace in place, we're now referencing an ID from the android.R resources class, rather than the local
resources class.

In order to create views and reference them from the app, a common pattern is to:

1. Define a view/widget in the layout file and assign it a unique ID:

<Button android:id="@+id/my button"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="@string/my button text"/>

2. Then create an instance of the view object and capture it from the layout (typically in the onCreate () method):

KOTLINJAVA
val myButton: Button = findViewById(R.id.my button)

Defining IDs for view objects is important when creating a RelativelLayout. In a relative layout, sibling views can define their layout
relative to another sibling view, which is referenced by the unique ID.

An ID need not be unique throughout the entire tree, but it should be unique within the part of the tree you are searching (which may often
be the entire tree, so it's best to be completely unique when possible).

Note: With Android Studio 3.6 and higher, the view binding feature can replace £indviewById () calls and provides compile-time type
safety for code that interacts with views. Consider using view binding instead of £indViewById ().

Layout Parameters

XML layout attributes named layout something define layout parameters for the View that are appropriate for the ViewGroup in which it
resides.

Every ViewGroup class implements a nested class that extends ViewGroup.LayoutParams. This subclass contains property types that
define the size and position for each child view, as appropriate for the view group. As you can see in figure 2, the parent view group
defines layout parameters for each child view (including the child view group)

View View

Figure 2. Visualization of a view hierarchy with layout parameters associated with each view

Note that every LayoutParams subclass has its own syntax for setting values. Each child element must define LayoutParams that are
appropriate for its parent, though it may also define different LayoutParams for its own children.

All view groups include a width and height (Layout width and layout height), and each view is required to define them. Many
LayoutParams also include optional margins and borders.

You can specify width and height with exact measurements, though you probably won't want to do this often. More often, you will use one
of these constants to set the width or height:

e wrap_content tells your view to size itself to the dimensions required by its content.



match_parent tells your view to become as big as its parent view group will allow.

In general, specifying a layout width and height using absolute units such as pixels is not recommended. Instead, using relative
measurements such as density-independent pixel units (dp), wrap_content, or match_parent, is a better approach, because it helps
ensure that your app will display properly across a variety of device screen sizes. The accepted measurement types are defined in
the Available Resources document.

Layout Position

The geometry of a view is that of a rectangle. A view has a location, expressed as a pair of left and top coordinates, and two dimensions,
expressed as a width and a height. The unit for location and dimensions is the pixel.

It is possible to retrieve the location of a view by invoking the methods getieft () and getTop (). The former returns the left, or X,
coordinate of the rectangle representing the view. The latter returns the top, or Y, coordinate of the rectangle representing the view. These
methods both return the location of the view relative to its parent. For instance, when getTLeft () returns 20, that means the view is
located 20 pixels to the right of the left edge of its direct parent.

In addition, several convenience methods are offered to avoid unnecessary computations, namely getRight () and getBottom ().
These methods return the coordinates of the right and bottom edges of the rectangle representing the view. For instance,
calling getRight () is similar to the following computation: getLeft () + getWidth ().

Size, Padding and Margins

The size of a view is expressed with a width and a height. A view actually possesses two pairs of width and height values.

The first pair is known as measured width and measured height. These dimensions define how big a view wants to be within its parent. The
measured dimensions can be obtained by calling getMeasuredWidth () and getMeasuredHeight ().

The second pair is simply known as width and height, or sometimes drawing width and drawing height. These dimensions define the actual
size of the view on screen, at drawing time and after layout. These values may, but do not have to, be different from the measured width
and height. The width and height can be obtained by calling getwidth () and getHeight ().

To measure its dimensions, a view takes into account its padding. The padding is expressed in pixels for the left, top, right and bottom
parts of the view. Padding can be used to offset the content of the view by a specific number of pixels. For instance, a left padding of 2 will
push the view's content by 2 pixels to the right of the left edge. Padding can be set using the setPadding (int, int, int,

int) method and queried by calling get PaddinglLeft (), getPaddingTop (), getPaddingRight () and getPaddingBottom ().

Even though a view can define a padding, it does not provide any support for margins. However, view groups provide such a support.
Refer to ViewGroup and ViewGroup.MarginLayoutParams for further information.

For more information about dimensions, see Dimension Values.

Common Layouts

Each subclass of the ViewGroup class provides a unique way to display the views you nest within it. Below are some of the more common
layout types that are built into the Android platform.

Note: Although you can nest one or more layouts within another layout to achieve your Ul design, you should strive to keep your layout
hierarchy as shallow as possible. Your layout draws faster if it has fewer nested layouts (a wide view hierarchy is better than a deep view
hierarchy).



Linear Layout Relative Layout Web View

<html=
<!-- web page -->
</html>
I N

A layout that organizes its Enables you to specify the Displays web pages.

children into a single location of child objects
horizontal or vertical row. It relative to each other (child
creates a scrollbar if the A to the left of child B) or to
length of the window the parent (aligned to the

exceeds the length of the top of the parent).

Building Layouts with an Adapter

When the content for your layout is dynamic or not pre-determined, you can use a layout that subclasses Adapterview to populate the
layout with views at runtime. A subclass of the Adapterview class uses an Adapter to bind data to its layout. The Adapter behaves as
a middleman between the data source and the Adapterview layout—the Adapter retrieves the data (from a source such as an array or
a database query) and converts each entry into a view that can be added into the Adapterview layout.

Common layouts backed by an adapter include:

List View Grid View

Displays a scrolling single Displays a scrolling grid of
column list. columns and rows.

Filling an adapter view with data

You can populate an AdaptervView such as ListView or GridView by binding the Adapterview instance to an Adapter, which
retrieves data from an external source and creates a vView that represents each data entry.

Android provides several subclasses of Adapter that are useful for retrieving different kinds of data and building views for
an AdapterView. The two most common adapters are:

ArrayAdapter

Use this adapter when your data source is an array. By default, Arrayrdapter creates a view for each array item by
calling tostring () on each item and placing the contents in a TextVview.

For example, if you have an array of strings you want to display in a .i st View, initialize a new ArrayAdapter using a constructor
to specify the layout for each string and the string array:

KOTLINJAVA
val adapter = ArrayAdapter<String>(this, android.R.layout.simple list item 1, myStringArray)

The arguments for this constructor are:

e Yourapp Context
o The layout that contains a TextView for each string in the array

e The string array



Then simply call setAdapter () onyour ListView:

KOTLINJAVA
val listView: ListView = findViewById(R.id.listview)
listView.adapter = adapter

To customize the appearance of each item you can override the toString () method for the objects in your array. Or, to create a
view for each item that's something other than a TextVview (for example, if you want an ImageView for each array item), extend
the ArrayAdapter class and override getView () to return the type of view you want for each item.

SimpleCursorAdapter

Use this adapter when your data comes froma Cursor. When using SimpleCursorAdapter, you must specify a layout to use for
each row in the Cursor and which columns in the Cursor should be inserted into which views of the layout. For example, if you
want to create a list of people's names and phone numbers, you can perform a query that returns a Cursor containing a row for
each person and columns for the names and numbers. You then create a string array specifying which columns from

the Cursor you want in the layout for each result and an integer array specifying the corresponding views that each column should
be placed:

KOTLINJAVA

val fromColumns = arrayOf (ContactsContract.Data.DISPLAY NAME,
ContactsContract.CommonDataKinds.Phone.NUMBER)

val toViews = intArrayOf (R.id.display name, R.id.phone number)

When you instantiate the simpleCursorAdapter, pass the layout to use for each result, the Cursor containing the results, and
these two arrays:

KOTLINJAVA
val adapter = SimpleCursorAdapter (this,
R.layout.person name and number, cursor, fromColumns, toViews, O0)
val listView = getListView ()
listView.adapter = adapter

The simpleCursoridapter then creates a view for each row in the Cursor using the provided layout by inserting
each fromColumns item into the corresponding toviews view.

If, during the course of your app's life, you change the underlying data that is read by your adapter, you should
call notifybataSetChanged (). This will notify the attached view that the data has been changed and it should refresh itself.

Handling click events

You can respond to click events on each item in an Adapterview by implementing
the AdaptervView.OnItemClickListener interface. For example:

KOTLINJAVA
listView.onItemClickListener = AdapterView.OnItemClickListener { parent, view, position, id ->
// Do something in response to the click

}

Supported media formats

As an application developer, you can use any media codec that is available on any Android-powered device, including those provided by
the Android platform and those that are device-specific. However, it is a best practice to use media encoding profiles that are device-
agnostic.

The tables below describe the media format support built into the Android platform. Codecs that are not guaranteed to be available on all
Android platform versions are noted in parentheses, for example: (Android 3.0+). Note that any given mobile device might support other
formats or file types that are not listed in the table.



Audio support

Audio formats and codecs

Supported File
Details Type(s) /
Container Formais
AACLC . " Support for mono/stereo/5.0/5.1 content with standard sampling rates * 3GPP (3gp)
from 8 to 48 kHz. * MPEG-4 (.mp4, .m4a)
HE-AACV1 . . + ADTS raw AAC (.aac,
(AACH) (Android 4.14) decode in Android 3.1+,
encode in Android 4.0+,
HE-AACvV2 L Support for stereo/5.0/5.1 content with standard sampling rates from 8 ADIF not supported)
(enhanced to 48 kHz. + MPEG-TS (ts, not
AACH) seekable, Android 3.0+)
AAC ELD . g Support for mono/stereo content with standard sampling rates from 16
(enhanced | (andreid4.1+) | (Android4.1+) 1048 kKHz
low delay
AAC)
AMR-NB . E 4.75t0 12.2 kbps sampled @ 8kHz 3GPP (.3gp)
AMR-WB . " 9 rates from 6.60 kbit/s to 23.85 kbit/s sampled @ 16kHz 3GPP (.3ap)
FLAC . . Monao/Stereo (no multichannel). Sample rates up to 48 kHz (but up to FLAC (.flac) only

(Android 4.1+) | (Andreid 3.1+) | 44.1 kHz is recommended on devices with 44.1 kHz output, as the 48 to
441 kHz downsampler does not include a low-pass filter). 16-bit
recommended; no dither applied for 24-bit.

GSM g Android supports GSM decoding on telephony devices GSM(.gsm)
MIDI . MIDI Type 0 and 1. DLS Version 1 and 2. XMF and Mobile XMF. Support |+ Type 0 and 1 (mid,
for ringtone formats RTTTL/RTX, OTA, and iMelody xmf, .rxmif)
- RTTTL/RTX (.rittl, .rtx)
« OTA (ota)
- iMelody (imy)
MP3 . Mono/Stereo 8-320Kbps constant (CBR) or variable bit-rate (VBR) MP3 (.mp3)
Opus . Matroska {.mkv)
(Andreid 5.0+)
PCM/WAVE . . 8- and 16-bit linear PCM (rates up to limit of hardware). Sampling rates WAVE (wav)
(Android 4.1+) for raw PCM recordings at 8000, 16000 and 44100 Hz.
Vorbis . - Ogg (.ogg)
- Matroska (_mky,
Android 4.0+)
Video support

Video formats and codecs

. Supported File Type(s) /
Encoder Decoder Details . s)
Container Formats
H.263 . . Support for H.263 is optional in Android 7.0+ + 3GPP (3ap)
- MPEG-4 (. mp4)
H.264 AVC . . * 3GPF (3gp)
Baseline Profile (BP) | (Android 3.049) * MPEG-4 (.mp4)

* MPEG-TS (.ts, AAC audio only, not
seekable, Android 3.0+)

H.264 AVC . . The decoder is required, the encoder is
Main Profile (MP) (Android 6.0+) recommended.
H.265 HEVC . Main Profile Level 3 for mobile devices and Main * MPEG-4 (.mp4)

(Android 5.0+) Profile Level 4.1 for Android TV
MPEG-4 5P . 3GPP (.3gp)

VP8 . . Streamable only in Android 4.0 and above * WebM (.webm)
(Android 4.3+) | (Android 2.3.3+) - Matroska (_mkv, Android 4.0+)



Video encoding recommendations

The table below lists the Android media framework video encoding profiles and parameters recommended for
playback using the H.264 Baseline Profile codec. The same recommendations apply to the Main Profile codec,
which is only available in Android 6.0 and later.

SD (Low quality) SD (High quality)

176 x 144 px 480 x 360 px
12 fps 30 fps 30 fps
1 (mono) 2 (stereo) 2 (stereo)

HD 720p (N/A on all devices)

1280 x 720 px

The table below lists the Android media framework video encoding profiles and parameters recommended for
playback using the VP8 media codec.

SD (High
quality)

640 x 360 px

HD 720p (N/A on all
devices)

HD 1080p (N/A on all
devices)

1280 x 720 px 1920 x 1080 px

Video 320 x 180 px
resolution

30 fps 30 fps 30 fps 30 fps

Video bitrate  [Ratliely 2 Mbps 4 Mbps 10 Mbps

Video decoding recommendations

Device implementations must support dynamic video resolution and frame rate switching through the standard
Android APls within the same stream for all VP8, VP9, H.264, and H.265 codecs in real time and up to the
maximum resolution supported by each codec on the device.

Implementations that support the Dolby Vision decoder must follow these guidelines:

* Provide a Dolby Vision-capable extractor.
» Properly display Dolby Vision content on the device screen or on a standard video output port (e.g., HDMI).

» Set the track index of backward-compatible base-layer(s) (if present) to be the same as the combined
Dolby Vision layer's track index.

Video streaming requirements
For video content that is streamed over HTTP or RTSP, there are additional requirements:

s For 3GPP and MPEG-4 containers, the moov atom must precede any mdat atoms, but must succeed the
ftyp atom.

* For 3GPP, MPEG-4, and WebM containers, audio and video samples corresponding to the same time offset
may be no more than 500 KB apart. To minimize this audio/video drift, consider interleaving audio and
video in smaller chunk sizes.



Image support

Supported
File Type(s) /
Container
Formats

BMP . BMP (.bmp)

GIF . GIF (.gif)

JPEG . . Basetprogressive JPEG (jpa)

PNG . . PNG (.png)

WebP . . Lossless encoding can ~ WebP (.webp)

{Android 4.0+) {Android 4.0+) be achieved on Android

(Transparency, Android 4.2.14) (Lossless Android 10+) | (Lossless, Transparency, Andreid 4.2.1+) 10 using a quality of
100.

HEIF = HEIF (_heic; heif)
(Android 8.0+)

Network protocols

The following network protocols are supported for audio and video playback:

* RTSP (RTR SDP)

« HTTP/HTTPS progressive streaming

= HTTPR/HTTPS live streaming draft protocol:
* MPEG-2 TS media files only
= Protocol version 3 (Android 4.0 and above)
* Protocol version 2 (Android 3.x)

s Not supported before Android 3.0

Media app architecture overview

This section explains how to separate a media player app into a media controller (for the Ul) and a media
session (for the actual player). It describes two media app architectures: a client/server design that works well
for audio apps and a single-activity design for video players. It also shows how to make media apps respond to
hardware controls and cooperate with other apps that use the audic ouiput stream.

Player and Ul

A multimedia application that plays audio or video usually has two parts:

« A player that takes digital media in and renders it as video and/or audio

« AUl with transport controls to run the player and optionally display the player's state

ul !

In Android you can build your own player from the ground up, or you can choose from these options:

* The MediaPlayer class provides the basic functionality for a bare-bones player that supports the most
common audio/video formats and data sources.

* ExoPlayer is an open source library that exposes the lower-level Android audio APls. ExoPlayer supporis
high-performance features like DASH and HLS streaming that are not available in MediaPlayer . You can
customize the ExoPlayer code, making it easy to add new components. ExoPlayer can only be used with
Android version 4.1 and higher.

Media session and media controller

While the APIs for the Ul and player can be arbitrary, the nature of the interaction between the two pieces is
basically the same for all media player apps. The Android framework defines two classes, a media session and
a media controller, that impose a well-defined structure for building a media player app.

The media session and media controller communicate with each other using predefined callbacks that
correspond to standard player actions (play, pause, stop, etc.), as well as extensible custom calls that you use to
define special behaviors unique to your app.



Contralier Session

[ i Calls . Callbacks | Media Session TR
bl ' Media PlaybackState i :
; l«——|  Controller . Metadata *: Player .
.| Updale Controller Callback ! ;

Callbacks et

Media session

A media session is responsible for all communication with the player. It hides the player's API from the rest of
your app. The player is only called from the media session that controls it.

The session maintains a representation of the player's state (playing/paused) and information about what is
playing. A session can receive callbacks from one or more media controllers. This makes it possible for your
player to be controlled by your app's Ul as well as companion devices running Wear OS and Android Auto. The
logic that responds to callbacks must be consistent. The response to a MediaSession callback should be the
same no matter which client app initiated the callback.

Activity
MediaController MediaSession
ul Player
Audio app

An audio player does not always need to have its Ul visible. Once it begins to play audio, the player canrun as a
background task. The user can switch to another app and work while continuing to listen.

To implement this design in Android, you can build an audio app using two components: an activity for the Ul
and a service for the player. If the user switches to another app, the service can run in the background. By
factoring the two parts of an audio app into separate components, each can run more efficiently on its own. A Ul
is usually short-lived compared to a player, which may run for a long time without a Ul

Media controller

A media controller isolates your UL Your Ul code only communicates with the media controller, not the player
itself. The media controller translates transport control actions into callbacks to the media session. It also
receives callbacks from the media session whenever the session state changes. This provides a mechanism to
automatically update the associated Ul. A media controller can only connect to one media session at a time.

When you use a media controller and a media session, you can deploy different interfaces and/or players at
runtime. You can change your app's appearance and/or performance independently depending on the
capabilities of the device on which it's running.

Video apps versus audio apps

When playing a video, your eyes and ears are both engaged. When playing audio, you are listening, but you can
also work with a different app at the same time. There's a different design for each use case.
Video app

A video app needs a window for viewing content. For this reason a video app is usually implemented as a single
Android activity. The screen on which the video appears is part of the activity.

Activity MediaBrowserService
] Connect ] .
MediaBrowser -— MediaBrowserService
. Callbacks . .
MediaController — MediaSession
{25 | yoTTTTTTETETEEE A
; ul : ; Player :

The support library provides two classes to implement this client/server approach: MediaBrowserService and
MediaBrowser . The service component is implemented as a subclass of MediaBrowserService containing
the media session and its player. The activity with the Ul and the media controller should include a
MediaBrowser , which communicates with the MediaBrowserService .

Using MediaBrowserService makes it easy for companion devices (like Android Auto and Wear) to discover
your app, connect to it, browse for content, and control playback, without accessing your app's Ul activity at all.
In fact, there can be multiple apps connected to the same MediaBrowserService atthe same time, each app
with its own MediaController . An app that offers a MediaBrowserService should be able to handle multiple
simultaneous connections.



Media apps and the Android audio infrastructure

A well-designed media app should "play well together” with other apps that play audio. It should be prepared to
share the phone and cooperate with other apps on your device that use audio. It should also respond to
hardware controls on the device.

Your
App
el AN
Other Hardware
Apps Events

The media-compat library

The media-compat library contains classes that are helpful for building apps that play audio and video. These
classes are compatible with devices running Android 2.3 (API level 9) and higher. They also work with other
Android features to create a comfortable, familiar Android experience.

The recommended implementation of media sessions and media controllers are the classes
MediaSessionCompat and MediaControllerCompat , which are defined in the media-compat support library.
They replace earlier versions of the classes MediaSession and MediaController that wereintroduced in
Android 5.0 (APl level 21). The compat classes offer the same functionality but make it easier to develop your
app because you only need to write to one API. The library takes care of backward compatibility by translating
media session methods to the equivalent methods on older platform versions when available.

If you already have a working app that's using the older classes, we recommend updating to the compat
classes. When you use the compat versions you can remove all calls to registerMediaButtonReceiver()
and any methods from RemoteControlClient .

Measuring performance

In Android 8.0 (API level 26) and later, the getMetrics() method is available for some media classes. It
returns a PersistableBundle object containing configuration and performance information, expressed as a
map of attributes and values. The getMetrics() method is defined for these media classes:

+ MediaPlayer.getMetrics()
* MediaRecorder.getMetrics()
* MediaCodec.getMetrics()

* MediaExtractor.getMetrics()

Metrics are collected separately for each instance and persist for the lifetime of the instance. If no metrics are
available the method returns null. The actual metrics returned depend on the class.

android.nhardware Added in AP level 1

Kotlin  Java

Provides support for hardware features, such as the camera and other sensors. Be aware that not all Android-
powered devices support all hardware features, so you should declare hardware that your application requires
using the <uses-feature= manifest element.



Interfaces

Camera.AutoFocusCallback This interface was deprecated in AP level 21. We recommend using the new
android.hardware.camera2 AP! for new applications.

Camera.AutoFocusMoveCallback This interface was deprecated in API level 21. We recommend using the new
android.hardware.camera2 API for new applications.

Camera.ErrorCallback This interface was deprecated in API level 21. We recommend using the new
android.hardware.camera2 API for new applications.

Camera.FaceDetectionListener  This interface was deprecated in API level 21. We recommend using the new
android.hardware.camera2 API for new applications.

Camera.OnZoomChangelistener | This interface was deprecated in API level 21. We recommend using the new
android.hardware.camera2 API for new applications.

Camera.PictureCallback This interface was deprecated in APl level 21. We recommend using the new
android.hardware.camera2 API for new applications.

Camera.PreviewCallback This interface was deprecated in API level 21. We recommend using the new
android.hardware.camera2 API for new applications.

Camera.ShutterCallback This interface was deprecated in API level 21. We recommend using the new
android.hardware.camera2 API for new applications.

SensorEventListener Used for receiving notifications from the SensorManager when there is new sensor data.
SensorEventListener2 Used for receiving a notification when a flush() has been successfully completed.
Sensorlistener This interface was deprecated in API level 3. Use SensorEventlListener instead.

GeomagneticField

HardwareBuffer

sensor

SensorAdditionalinfo
SensorDirectChannel

SensorEvent

SensorEventiCallback
SensorManager

SensorManager.DynamicSensorCallback

TriggerEvent

TriggerEventListener

Estimates magnetic field at a given point on Earth, and in particular, to compute
the magnetic declination from true north.

HardwareBuffer wraps a native AHardwareBuffer object, which is a low-level
object representing a memory buffer accessible by various hardware units.

Class representing a sensor.

This class represents a Sensor additional information frame, which is reported
through listener callback onSensorAdditionallnfo.

Class representing a sensor direct channel.

This class represents a Sensor event and holds information such as the
sensor's type, the time-stamp, accuracy and of course the sensor's
SensorEvent#values.

Used for receiving sensor additional information frames.
SensorManager lets you access the device's sensors.

Used for receiving notifications from the SensorManager when dynamic
sensors are connected or disconnected.

This class represents a Trigger Event - the event associated with a Trigger
Sensor.

This class is the listener used to handle Trigger Sensors.



ANDROID CAMERA ARCHITECTURE

e

T TTTITTT TS . | Image Processing

Camera
Shading .  Geometric
Corraction Correction
4 v

MNoise Reduction Color Correction

-
-

Tone Curve
Adjusiment

v

Demosaic

Edge
Enhancement }—,—p Scale and Crop

[—— I —

Scale and Crop Scale and Crop Scale and Crop Scale and Crop JPEG Encoder ‘

RAW Bayer
Output

Cutput

m

Android's camera HAL connects the higher level camera framework APIs in android hardware
to your underlying camera driver and hardware. The figure and list describe the components
invelved and where to find the source for each:

Application framework
At the application framewaork level is the app's code, which utilizes the
android hardware.Camera AP to interact with the camera hardware. Internally, this code calls
a corresponding JMI glue class to access the native code that interacts with the camera.

JNI

The JNI code associated with android hardware.Camera is located in
frameworks/base/core/ini/android_hardware_Camera.cpp . This code calls the lower level
native code to obtain access to the physical camera and returns data that is used to create the
android. hardware.Camera object at the framework level.

Native framework

The native framework defined in frameworks/av/camera/Camera.cpp provides a native
equivalent to the android.hardware.Camera class. This class calls the IPC binder proxies fo
obtain access to the camera service.

Binder IPC proxies

The IPC binder proxies facilitate communication over process boundaries. There are three
camera binder classes that are located inthe frameworks/zv/camera directory that calls into
camera service. ICameraService is the interface to the camera service, ICamera is the
interface to a specific opened camera device, and ICameraClient is the device's interface back
to the application framework,

Camera service

The camera service, located in

frameworks/av/services /camera/libcameraservice/CameraService. cpp | is the actual code
that interacts with the HAL.

HAL

The hardware abstraction layer defines the standard interface that the camera service calls
into and that you must implement to have your camera hardware function correctly.

Kemel driver

The camera's driver interacts with the actual camera hardware and your implementation of the
HAL. The camera and driver must support Y12 and NV21 image formats to provide support
for previewing the camera image on the display and video recording.



nalie

© N

REFERENCES

G. Blake Meike, Zigurd Mednieks, John Lombardo, Rick Rogers, "Android Application
Development", O’reilly, 1st Edition, 2009.

R. Nageswara Rao,"Core JAVA: An Integrated Approach", Dreamtech Press, Wiley
India, 1st Edition, 2015.

Herbert Schildt, "Java: The Complete Reference", 9th Edition, 2014.

Cay S. Horstmann," Core Java, Volume II - Advanced Features", Prentice Hall, 11th
Edition, 2019.https://www.besanttechnologies.com/what-is-i0s
https://www.edureka.co/blog/android-tutorials-broadcast-receivers
https://developer.android.com/guide/components/broadcasts

https://www .journaldev.com/10356/android-broadcastreceiver-example-tutorial

https://www.techotopia.com/index.php/Broadcast Intents and Broadcast Receivers in
_Android_Studio




P wnN e

UNIT -4

RECEIVERS AND MULTIMEDIA TECHNIQUES IN ANDROID

PART-A

What do you understand from User Interface ?Discuss its hierarchy.
Discuss about various types of Layouts used in Android?

Enumerate about absolute layout in Android?

List the various multimedia events used in Android?

PART -B
Write short note on
i) Frame Layout
i) Table Layout
iiii) Relative Layout

Discuss in detail about the multimedia techniques available in Android platform?
Write in detail the hardware interfaces procedures and concepts in Android Platform?
Discuss in detail the handling of Alert Notification sequences in Android ?



&)
SATHYABAMA

INSTITUTE OF SCIENCE AND TECHNOLOGY
[DEEMED TO BE UNIVERSITY)
Accredited "A” Grade by NAAC | 12B Status by UGC | Approved by AICTE

www.sathyabama.ac.in

SCHOOL OF EEE
DEPARTMENT OF ECE

UNIT - V - CONNECTIVITY IN ANDROID — SECAS205




UNIT 5 CONNECTIVITY IN ANDROID

Connecting Gyro Sensor and Accelerometer -Wi-Fi and Bluetooth Connectivity
with Mobile applications.

The sensor framework, which is a part of the Android SDK, allows you to read raw data from most sensors,
be they hardware ar software, in an easy and consistent manner. In this tutorial, I'll show you how to use
the framework to read data from two very common sensors: proximity and gyroscope. I'll also introduce
you to the rotation vector sensor, a composite sensor that can, in most situations, serve as an easier and
more accurate alternative to the gyroscope.

Motion sensors

The Android platform provides several sensors that let you monitor the motion of a device.
The sensors' possible architectures vary by sensor type:

= The gravity, linear acceleration, rotation vector, significant motion, step counter, and step detector sensors
are either hardware-based or software-based.

* The accelerometer and gyroscope sensors are always hardware-based.

Most Android-powered devices have an accelerometer, and many now include a gyroscope. The availability of
the software-based sensors is more variable because they often rely on one or more hardware sensors o derive
their data. Depending on the device, these software-based sensors can derive their data either from the
accelerometer and magnetometer or from the gyroscope.

Motion sensors are useful for monitoring device movement, such as tilt, shake, rotation, or swing. The
movement is usually a reflection of direct user input (for example, a user steering a car in a game or a user
controlling a ball in a game), but it can also be a reflection of the physical environment in which the device is
sitting (for example, moving with you while you drive your car). In the first case, you are monitoring motion
relative to the device's frame of reference or your application's frame of reference; in the second case you are
monitoring motion relative to the world's frame of reference. Motion sensors by themselves are not typically
used to monitor device position, but they can be used with other sensors, such as the geomagnetic field sensor,
to determine a device's position relative to the world's frame of reference (see Position Sensors for more
information).

All of the motion sensors return multi-dimensional arrays of sensor values for each SensorEvent . For example,
during a single sensor event the accelerometer returns acceleration force data for the three coordinate axes,
and the gyroscope returns rate of rotation data for the three coordinate axes. These data values are returned in
a float array ( values ) along with other SensorEvent parameters. Table 1 summarizes the motion sensors
that are available on the Android platform.



The rotation vector sensor and the gravity sensor are the most frequently used sensors for motion detection
and monitoring. The rotational vector sensor is particularly versatile and can be used for a wide range of
motion-related tasks, such as detecting gestures, monitoring angular change, and monitoring relative
orientation changes. For example, the rotational vector sensor is ideal if you are developing a game, an
augmented reality application, a 2-dimensicnal or 3-dimensional compass, or a camera stabilization app. In
most cases, using these sensors is 2 better choice than using the accelerometer and geomagnetic field sensor
or the orientation sensor.

Android Open Source Project sensors

The Android Open Source Project (AOSP) provides three software-based motian sensors: a gravity sensar, a
linear acceleration sensor, and a rotation vector sensor. These sensors were updated in Android 4.0 and now
use a device's gyroscope (in addition to other sensors) to improve stability and performance. If you want to try
these sensors, you can identify them by using the getVendor() method and the getVersion() method (the
vendor is Google LLC; the version number is 3). Identifying these sensors by vendor and version number is
necessary because the Android system considers these three sensors 1o be secondary sensors. For example, if
a device manufacturer provides their own gravity sensor, then the AOSP gravity sensor shows up as a secondary
gravity sensor. All three of these sensors rely on a gyroscope: if a device does not have a gyroscope, these
sensors do not show up and are not available for use.

Use the gravity sensor

The gravity sensor provides a three dimensional vector indicating the direction and magnitude of gravity.
Typically, this sensor is used to determine the device's relative orientation in space. The following code shows
you how to get an instance of the default gravity sensor:

KOTLIN JAVA

val sensorManager

= getSystemService(Context.SENSOR_SERVICE) as SensorManager
val sensor: Sensor? =

sensorManager.getDefaultSensor(Sensor.TYPE_GRAVITY)

The units are the same as those used by the acceleration sensor (m/s?), and the coordinate system is the same
as the one used by the acceleration sensor.

* Note: When a device is at rest, the output of the gravity sensor should be identical to that of the accelerometer.



Use the linear accelerometer

The linear acceleration sensor provides you with a three-dimensional vector representing acceleration along
each device axis, excluding gravity. You can use this value to perform gesiure detection. The value can also
serve as input to an inertial navigation system, which uses dead reckoning. The following code shows you how
to get an instance of the default linear acceleration sensor:

KOTLIN JAVA
£ 0
val sensorManager = getSystemService(Context.SENSOR_SERVICE) as SensorManager
val sensor: Sensor? = sensorManager.getDefaultSensor(Sensor.TYPE_LINEAR_ACCELERATION)
Conceptually, this sensor provides you with acceleration data according to the following relationship:
i

linear acceleration = acceleration - acceleration due to gravity

You typically use this sensor when you want to obtain acceleration data without the influence of gravity. For
example, you could use this sensor to see how fast your car is going. The linear acceleration sensor always has
an offset, which you need to remove. The simplest way to do this is to build a calibration step into your
application. During calibration you can ask the user to set the device on a table, and then read the offsets for all
three axes. You can then subtract that offset from the acceleration sensor's direct readings to get the actual
linear acceleration.

The sensor coordinate system is the same as the one used by the acceleration sensor, as are the units of
measure (m/s?).

Use the rotation vector sensor

The rotation vector represents the orientation of the device as a combination of an angle and an axis, in which
the device has rotated through an angle 8 around an axis (x, y, or z). The following code shows you how to get
an instance of the default rotation vector sensor:



Project Setup

If your app is simply unusable on devices that do not have all the hardware sensors it needs, it should not
be installable on such devices. You can let Google Play and other app marketplaces know about your app’s
hardware requirements by adding one or more <uses-feature> tags to your Android Studio project's

manifest file.

The app we'll be creating in this tutorial will not work on devices that lack a proximity sensor and a
gyroscope. Therefore, add the following lines to your manifest file:

<uses-feature
android:name="android.hardware.sensor.proximity"
android:required="true" />

<uses-feature
android:name="android.hardware.sensor.gyroscope”
android:required="true" />

[= IV o S - VN Ry S I

Note, however, that because the <uses-feature> tag doesn't help if a user installs your app manually using
its APK file, you must still programmatically check if a sensor is available before using it.

KOTLIN JAVA

€0
val sensorManager = getSystemService(Context.SENSOR_SERVICE) as SensorManager
val sensor: Sensor? = sensorManager.getDefaultSensor(Sensor.TYPE_ROTATION_VECTOR)

The three elements of the rotation vector are expressed as follows:

T - sin(g)

y-sin(z)

Where the magnitude of the rotation vector is equal to sin(8/2), and the direction of the rotation vector is equal
to the direction of the axis of rotation.



The three elements of the rotation vector are equal to the last three
components of a unit quaternion (cos(8/2), x*sin(8/2), y*sin(8/2),
z*sin(6/2)). Elements of the rotation vector are unitless. The x, y, and z
axes are defined in the same way as the acceleration sensor. The
reference coordinate system is defined as a direct orthonormal basis

(see figure 1). This coordinate system has the following characteristics:

» Xis defined as the vector product ¥ x Z. It is tangential to the
ground at the device's current location and points approximately
East.

* Y is tangential to the ground at the device's current location and
points toward the geomagnetic North Pole.

» 7 points toward the sky and is perpendicular to the ground plane.

Using the Gyroscope

/

Figure 1. Coordinate system used by
the rotation vector sensor.

The gyroscope allows you to determine the angular velocity of an Android device at any given instant. In
simpler terms, it tells you how fast the device is rotating around its X, Y, and Z axes. Lately, even budget
phones are being manufactured with a gyroscope built in, what with augmented reality and virtual reality

apps becoming so popular.

By using the gyroscope, you can develop apps that can respond to minute changes in a device's

orientation. To see how, let us now create an activity whose background color changes to blue every time
you rotate the phone in the anticlockwise direction along the Z axis, and to yellow otherwise.

Step 1: Acquire the Gyroscope

To create a sensor object for the gyroscope, all you need to do is pass the tvee_svroscore constant to the

getbDefaultsansor() Method of the sensormanager oObject.

1 gyroscopeSensor =
2 sensorManager.getDefaultSensor(Sensor. TYPE_GYROSCOPE) ;



Step 2: Register a Listener

Creating a listener for the gyroscope sensor is no different from creating one for the proximity sensor.
While registering it, however, you must make sure that its sampling frequency is very high. Therefore,
instead of specifying a polling interval in microseconds, | suggest you use the SENSOR_DELAY_NORMAL
constant.

/[ Create a listener
gyroscopeSensorLlistener = new SensorEventlistener() {
@override
public void onSensorChanged(SensorEvent sensortvent) {
{// More code goes here

Ik

@override
public void onAccuracyChanged(Sensor sensor, int i) {

)§
b5

/f Register the listener
sensorManager.registerlistener(gyroscopeSensorListener,
gyroscopeSensor, SensorManager.SENSOR_DELAY _NORMAL) ;

Step 3: Use the Raw Data

The gyroscope sensor's raw data consists of three float values, specifying the angular velocity of the
device along the X, Y, and Z axes. The unit of each value is radians per second. In case of anticlockwise
rotation along any axis, the value associated with that axis will be positive. In case of clockwise rotation, it
will be negative.

Because we are currently interested only in rotation along the Z-axis, we'll be working only with the third
element in the values array of the sensorevent object. If it's more than e.sf, we can, 1o a large extent, be
sure that the rotation is anticlockwise, and set the background color to blue. Similarly, if it's less than
-e.5f , we can set the background color to yellow.

if(sensorEvent.values[2] » 8.5f) { // anticlockwise
getWindow().getDecorView().setBackgroundColor(Color.BLUE);

} else if(sensorEvent.values[2] ¢ -8.5f) { // clockuise
getWindow().getDecorView().setBackgroundColor(Color.YELLOW);

h

If you run the app now, hold your phone in the portrait mode, and tilt it to the left, you should see the
activity turn blue. If you filt it in the opposite direction, it should turn yellow.



If you turn the phone too much, however, its screen orientation will change to landscape and your activity
will restart. To avoid this condition, | suggest you set the scresnorientation of the activity 10 portrait inthe
manifest file.

<activity
android:name=".Gyroscopefctivity”
android:screenOrientation="portrait"”>
<factivity>

Android - Wi-Fi

Android allows applications to access to view the access the state of the wireless
connections at very low level. Application can access almost all the information of a wifi
connection.

The information that an application can access includes connected network's link
speed,|P address, negotiation state, other networks information. Applications can also
scan, add, save, terminate and initiate Wi-Fi connections.

Android provides WifiManager APl to manage all aspects of WIFI connectivity. We can
instantiate this class by calling getSystemService method. Its syntax is given below -

WifiManager mainWifiObj;
mainWifiObj = (WifiManager) getSystemService (Context.WIFI SERVICE) ;




In order to scan a list of wireless networks, you also need to register your
BroadcastReceiver. It can be registered using registerReceiver method with argument
of your receiver class object. Its syntax is given below -

class WifiScanReceiver extends BroadcastReceiver {
public void onReceive (Context ¢, Intent intent) {
}

}

WifiScanReceiver wifiReciever = new WifiScanReceiver () :;
registerReceiver (wifiReciever, new
IntentFilter (WifiManager. SCAN_RESULTS_AVAILABLE_ACTION) ) ;

The wifi scan can be start by calling the startScan method of the WifiManager class.
This method returns a list of ScanResult objects. You can access any object by calling
the get method of list. Its syntax is given below -

List<ScanResult> wifiScanList = mainWifiObj.getScanResults();
String data = wifiScanList.get (0).toString();

Apart from just Scanning, you can have more control over your WIFI by using the
methods defined in WifiManager class. They are listed as follows -

Sr.No Method & Description

addNetwork(WifiConfiguration config)

This method add a new network description to the set of configured networks.

2 createWifiLock(String tag)

This method creates a new WifiLock.
3 .

disconnect()

This method disassociate from the currently active access point.
4 enableNetwork(int netld, boolean disableOthers)

This method allow a previously configured network to be associated with.
5 -

getWifiState()

This method gets the Wi-Fi enabled state
6

isWifiEnabled()




This method return whether Wi-Fi is enabled or disabled.

/ setWifiEnabled(boolean enabled)

This method enable or disable Wi-Fi.
8 updateNetwork(WifiConfiguration config)

This method update the network description of an existing configured network.
Example

Here is an example demonstrating the use of WIFI. It creates a basic application that
open your wifi and close your wifi

To experiment with this example, you need to run this on an actual device on which wifi

is turned on.

Steps Description

1 You will use Android studio to create an Android application under a package
com.example.sairamkrishna.myapplication.

2 Modify src/MainActivity.java file to add WebView code.

3 Modify the res/layout/activity_main to add respective XML components

4 Modify the AndroidManifest.xml to add the necessary permissions

5 Run the application and choose a running android device and install the application on it and

verify the results.

Following is the content of the modified main activity file src/MainActivity.java.

package com.example.sairamkrishna.myapplication;

import
import
import
import

android.net.wifi.WifiManager;
android.os.Bundle;
android.app.Activity;
android.content.Context;




import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class MainActivity extends Activity {
Button enableButton, disableButton;
@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);

enableButton= (Button) findViewById(R.id.buttonl) ;
disableButton= (Button) findViewById (R.id.button?2);

enableButton.setOnClickListener (new OnClickListener () {
public void onClick (View v) {
WifiManager wifi = (WifiManager)
getSystemService (Context .WIFI SERVICE) ;
wifi.setWifiEnabled (true) ;
}
1) ;

disableButton.setOnClickListener (new OnClickListener () {
public void onClick (View v) {
WifiManager wifi = (WifiManager)
getSystemService (Context .WIFI SERVICE) ;
wifi.setWifiEnabled (false) ;

1)

}

Following is the modified content of the xml res/layout/activity_main.xml.

<?xml version="1.0" encoding="utf-8"7?>

<Relativelayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"

android:layout width="match parent"
android:layout height="match parent"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
android:paddingBottom="@dimen/activity vertical margin"

tools:context=".MainActivity">

<ImageView
android:layout width="wrap content"
android:layout height="wrap content"




android:id="@+id/imageView"
android:src="@drawable/abc"
android:layout alignParentTop="true"
android:layout centerHorizontal="true" />

<Button
android:id="@+id/buttonl"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginLeft="76dp"
android:text="Enable Wifi"
android:layout centerVertical="true"
android:layout alignEnd="@+id/imageView" />

<Button
android:id="@+id/button2"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="Disable Wifi"
android:layout marginBottom="93dp"
android:layout alignParentBottom="true"
android:layout alignStart="Q@+id/imageView" />

</RelativeLayout>

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"7?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.sairamkrishna.myapplication" >
<uses-permission

android:name="android.permission.ACCESS WIFI STATE" />
<uses-permission

android:name="android.permission.CHANGE WIFI STATE" />

<application
android:allowBackup="true"
android:icon="@mipmap/ic launcher"
android:label="@string/app name"
android:theme="@style/AppTheme" >

<activity
android:name=".MainActivity"
android:label="@string/app name" >

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />




</intent-filter>
</activity>

</application>
</manifest>

Let's try to run your application. | assume you have connected your actual Android
Mobile device with your computer. To run the app from Android studio, open one of
your project's activity files and click Run @ icon from the toolbar. Before starting your
application, Android studio will display following window to select an option where you
want to run your Android application.

A Choose Device

(*) Choose a running device

Device Serial Number State |Com...
E Emulator Mexus 5 API 21 %86 Android 5.0.2 (emulator-3554 Online  Yes

Iris Iris405+ Android 4.2.2 (API 17) 0123456789ABCDEF

O Launch emulator

Android virtual device: | Nexus 5 APl 21 x86 ‘

D Use same device for future launches

B (o]

Select your mobile device as an option and It will shows the following image-

w4l s

ENABLE WIFI

DISAELE WIFI




Now click on disable wifi button.then the sample output should be like this —

ENABLE WIFI

DISAELE WIFI




Android - Bluetooth

Among many ways, Bluetooth is a way to send or receive data between two different
devices. Android platform includes support for the Bluetooth framework that allows a
device to wirelessly exchange data with other Bluetooth devices.

Android provides Bluetooth API to perform these different operations.
« Scan for other Bluetooth devices
« Get alist of paired devices
« Connect to other devices through service discovery

Android provides BluetoothAdapter class to communicate with Bluetooth. Create an

object of this calling by calling the static method getDefaultAdapter(). Its syntax is given
below.

private BluetoothAdapter BA;
BA = BluetoothAdapter.getDefaultAdapter()

In order to enable the Bluetooth of your device, call the intent with the following
Bluetooth constant ACTION_REQUEST_ENABLE. Its syntax is.

Intent turnOn = new Intent (BluetoothAdapter.ACTION REQUEST ENABLE) ;
startActivityForResult (turnOn, O0);

Apart from this constant, there are other constants provided the API , that supports
different tasks. They are listed below.

Sr.No Constant & description

1 ACTION_REQUEST_DISCOVERABLE

This constant is used for turn on discovering of bluetooth

2 ACTION_STATE_CHANGED

This constant will notify that Bluetooth state has been changed

3 ACTION_FOUND

This constant is used for receiving information about each device that is discovered



Once you enable the Bluetooth , you can get a list of paired devices by calling
getBondedDevices() method. It returns a set of bluetooth devices. Its syntax is.

private Set<BluetoothDevice>pairedDevices;
pairedDevices = BA.getBondedDevices () ;

Apart form the parried Devices , there are other methods in the API that gives more
control over Blueetooth. They are listed below.

Sr.No Method & description

1 enable()

This method enables the adapter if not enabled

2 isEnabled()

This method returns true if adapter is enabled

3 disable()
This method disables the adapter

4 getName()

This method returns the name of the Bluetooth adapter

5 setName(String name)

This method changes the Bluetooth name

6 getState()

This method returns the current state of the Bluetooth Adapter.

7 startDiscovery()

This method starts the discovery process of the Bluetooth for 120 seconds.



Example

This example provides demonstration of BluetoothAdapter class to manipulate
Bluetooth and show list of paired devices by the Bluetooth.

To experiment with this example , you need to run this on an actual device.

Steps

Description

You will use Android studio to create an Android application a package
com.example.sairamkrishna.myapplication.

Modify src/MainActivity.java file to add the code

Modify layout XML file res/layout/activity_main.xml add any GUI component if require:

Modify AndroidManifest.xml to add necessary permissions.

Run the application and choose a running android device and install the application o
verify the results.

Here is the content of src/MainActivity.java

package com.example.sairamkrishna.myapplication;

import
import
import

import
import
import

import
import
import

android.app.Activity;
android.bluetooth.BluetoothAdapter;
android.bluetooth.BluetoothDevice;

android.content.Intent;
android.os.Bundle;
android.view.View;

android.widget.ArrayAdapter;
android.widget.Button;
android.widget.ListView;




import android.widget.Toast;
import java.util.ArrayList;
import java.util.Set;

public class MainActivity extends Activity {
Button bl,b2,b3,b4;
private BluetoothAdapter BA;
private Set<BluetoothDevice>pairedDevices;
ListView 1lv;

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main) ;
bl = (Button) findViewById(R.id.button);
b2=(Button) findViewById (R.id.button2) ;
b3=(Button) findViewById (R.id.button3) ;
bd=(Button) findViewById (R.id.button4) ;

BA = BluetoothAdapter.getDefaultAdapter ()
1v (ListView) findvViewById (R.id.listView) ;

public void on (View v) {
if (!BA.isEnabled()) {
Intent turnOn = new
Intent (BluetoothAdapter .ACTION REQUEST ENABLE) ;
startActivityForResult (turnOn, O0);
Toast.makeText (getApplicationContext (), "Turned
on", Toast.LENGTH LONG) .show () ;
} else {
Toast.makeText (getApplicationContext (), "Already on",
Toast.LENGTH LONG) .show () ;
}
}

public void off (View v) {
BA.disable () ;
Toast.makeText (getApplicationContext (), "Turned off"
, Toast .LENGTH LONG) .show () ;
}

public void visible (View v) {
Intent getVisible = new
Intent (BluetoothAdapter .ACTION REQUEST DISCOVERABLE) ;
startActivityForResult (getVisible, 0);




public void list (View v) {
pairedDevices = BA.getBondedDevices|() ;

ArrayList list = new ArrayList();

for (BluetoothDevice bt : pairedDevices)
list.add (bt.getName ()) ;

Toast.makeText (getApplicationContext (), "Showing Paired
Devices", Toast.LENGTH SHORT) .show () ;

final ArrayAdapter adapter = new
ArrayAdapter (this,android.R.layout.simple list item 1, list);

lv.setAdapter (adapter) ;

}

Here is the content of activity_main.xml

Here abc indicates about logo of tutorialspoint.

<?xml version="1.0" encoding="utf-8"7?>

<RelativelLayout

xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"
android:layout height="match parent"
android:paddingLeft="@dimen/activity horizontal margin"
android:paddingRight="@dimen/activity horizontal margin"
android:paddingTop="@dimen/activity vertical margin"
android:paddingBottom="@dimen/activity vertical margin"
tools:context=".MainActivity"
android:transitionGroup="true">

<TextView android:text="Bluetooth Example"
android:layout width="wrap content"
android:layout height="wrap content"
android:id="@+id/textview"
android:textSize="35dp"
android:layout alignParentTop="true"
android:layout centerHorizontal="true" />

<TextView
android:layout width="wrap content"
android:layout height="wrap content"
android:text="Tutorials point"




android:
android:
android:
android:
android:

<ImageView
android:
android:
android:
android:
android:
android:
android:

<Button
android:
android:
android:
android:
android:
android:
android:
android:
android:

<Button
android:
android:
android:
android:
android:
android:
android:

<Button
android:
android:
android:
android:
android:
android:
android:
android:

<Button
android:
android:
android:

id="@+id/textView"

layout below="@+id/textview"
layout centerHorizontal="true"
textColor="#ff7aff24"
textSize="35dp" />

layout width="wrap content"
layout height="wrap content"
id="@+1id/imageView"
src="@drawable/abc"

layout below="@+id/textView"
layout centerHorizontal="true"

theme="@style/Base.TextAppearance.AppCompat"

layout width="wrap content"
layout height="wrap content"
text="Turn On"

id="@+id/button"

layout below="@+id/imageView"
layout toStartOf="@+id/imageView"
layout toLeftOf="@+id/imageView"
clickable="true"

onClick="on" />

layout width="wrap content"
layout height="wrap content"
text="Get visible"
onClick="visible"
id="@+id/button2"

layout alignBottom="@+id/button”
layout centerHorizontal="true" />

layout width="wrap content"

layout height="wrap content"
text="List devices"

onClick="1ist"

id="@+id/button3"

layout below="@+id/imageView"
layout toRightOf="@+id/imageView"
layout toEndOf="@+id/imageView" />

layout width="wrap content"
layout height="wrap content"
text="turn off"

/>




android:onClick="off"
android:id="@+id/button4"

android:layout below="@+id/button"
android:layout alignParentLeft="true"
android:layout alignParentStart="true" />

<ListView
android:layout width="wrap content"
android:layout height="wrap content"
android:id="@+id/listView"
android:layout alignParentBottom="true"
android:layout alignLeft="@+id/button"
android:layout alignStart="@+id/button"
android:layout below="@+id/textView2" />

<TextView
android:layout width="wrap content"
android:layout height="wrap content"
android:text="Paired devices:"
android:id="Q+id/textView2"
android:textColor="#ff34£ff06"
android:textSize="25dp"
android:layout below="@+id/button4"
android:layout alignLeft="@+id/listView"
android:layout alignStart="@+id/listView" />

</RelativeLayout>

Here is the content of Strings.xml

<resources>
<string name="app name">My Application</string>
</resources>

Here is the content of AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"7?>

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.sairamkrishna.myapplication" >
<uses-permission android:name="android.permission.BLUETOOTH" />
<uses-permission

android:name="android.permission.BLUETOOTH ADMIN"/>

<application
android:allowBackup="true"
android:icon="@mipmap/ic launcher"
android:label="@string/app name"
android:theme="@style/AppTheme" >




<activity
android:name=".MainActivity"
android:label="@string/app name" >

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>

</activity>

</application>
</manifest>

Let's try to run your application. | assume you have connected your actual Android
Mobile device with your computer. To run the app from Android studio, open one of
your project's activity files and click Run @ icon from the tool bar.If your Bluetooth will
not be turned on then, it will ask your permission to enable the Bluetooth.

An app wants to turn Bluetooth ON
for this device.

DENY ALLOW

Now just select the Get Visible button to turn on your visibility. The
following screen would appear asking your permission to turn on discovery
for 120 seconds.



3 4 b 11:44

An app wants to make your phone
visible to other Bluetooth devices for
120 seconds.

DENY ALLOW

Now just select the List Devices option. It will list down the paired devices
in the list view. In my case , | have only one paired device. It is shown
below.

% F 4 @ 1147

Bluetooth Example

&

TURN ON GET VISIBLE LIST DEVICES
TURN OFF
Paired devices:

Mi Phone



Now just select the Turn off button to switch off the Bluetooth. Following message would
appear when you switch off the bluetooth indicating the successful switching off of
Bluetooth.

BUsee

Bluetooth Example

TURNON  GET VISIELE LIST DEVICES

TURN OFF

Mi Phone

Turned off



REFERENCES

. G. Blake Meike, Zigurd Mednieks, John Lombardo, Rick Rogers, "Android Application
Development", O’reilly, 1st Edition, 2009.

. Herbert Schildt, "Java: The Complete Reference", 9th Edition, 2014.

. Gary Cornell, Cay S. Horstmann, "Core Java Volume I - Fundamentals", Prentice Hall,
Oth Edition, 2012.

. Cay S. Horstmann," Core Java, Volume II - Advanced Features", Prentice Hall, 11th
Edition, 2019.https://www.besanttechnologies.com/what-is-ios

. https://developer.android.com/guide/topics/sensors/sensors _overview

. https://subscription.packtpub.com/book/application development/9781785285509/1/ch01
lvllsec10/components-of-the-sensor-framework

. https://stuff.mit.edu/afs/sipb/project/android/docs/guide/topics/sensors/sensors _overview.
html

. https://blog.mindorks.com/using-android-sensors-android-tutorial




P wnN e

A wnNPRE

UNIT-5

CONNECTIVITY IN ANDROID

PART -A

Classify the various sensors availabilities in android platform?
Prepare a notes on the concepts of WIFI device in Android platform?
Explain the basic concepts of Bluetooth technology used in Android?
Write short note on

i) Gyroscope

ii) Accelerometer

PART -B

Discuss the concepts and procedure for extracting Accelerometer data from Android Mobile devices?

Explain the concepts and procedure for extracting Gyroscope data from Android Mobile devices?

With a code explain how to establish and communicate Bluetooth connectivity in Android mobile environment?
Explain the concepts of implementing WiFi services in Android devices with neat diagram?



