
�

��������������

	�
�������������

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

��������������	�����������������������
����������

���������

MOBILE APPLICATION DEVELOPMENT

UNIT 1 INTRODUCTION TO VARIOUS MOBILE

PLATFORMS

Introduction: Survey of prominent mobile platforms - Android - iOS -

Windows Mobile.

What is Mobile Application Development?

Mobile application development is the process of creating software

applications that run on a mobile device, and a typical mobile application

utilizes a network connection to work with remote computing resources.

Hence, the mobile development process involves creating installable

software bundles (code, binaries, assets, etc.) , implementing backend

services such as data access with an API, and testing the application on

target devices

Mobile Applications and Device Platforms

There are two dominant platforms in the modern smartphone market. One
is the iOS platform from Apple Inc. The iOS platform is the operating
system that powers Apple's popular line of iPhone smartphones. The
second is Android from Google. The Android operating system is used not
only by Google devices but also by many other OEMs to built their own
smartphones and other smart devices.

Although there are some similarities between these two platforms when
building applications, developing for iOS vs. developing for Android
involves using different software development kits (SDKs) and different
development toolchain. While Apple uses iOS exclusively for its own
devices, Google makes Android available to other companies provided they
meet specific requirements such as including certain Google applications
on the devices they ship. Developers can build apps for hundreds of
millions of devices by targeting both of these platforms.

Alternatives for Building Mobile Apps

 There are four major development approaches when building mobile
applications

• Native Mobile Applications

• Cross-Platform Native Mobile Applications

• Hybrid Mobile Applications

• Progressive Web Applications

Each of these approaches for developing mobile applications has its own
set of advantages and disadvantages. When choosing the right
development approach for their projects, developers consider the desired
user experience, the computing resources and native features required by
the app, the development budget, time targets, and resources available to
maintain the app.

ANDROID PLATFORM:-

Android is an open source and Linux-based operating system for mobile
devices such as smartphones and tablet computers. Android was
developed by the Open Handset Alliance, led by Google, and other
companies.

What is Android?

Android is an open source and Linux-based Operating System for mobile
devices such as smartphones and tablet computers. Android was
developed by the Open Handset Alliance, led by Google, and other
companies.

Android offers a unified approach to application development for mobile
devices which means developers need only develop for Android, and their
applications should be able to run on different devices powered by
Android.

The first beta version of the Android Software Development Kit (SDK) was
released by Google in 2007 where as the first commercial version, Android
1.0, was released in September 2008.

On June 27, 2012, at the Google I/O conference, Google announced the
next Android version, 4.1 Jelly Bean. Jelly Bean is an incremental update,
with the primary aim of improving the user interface, both in terms of
functionality and performance.

The source code for Android is available under free and open source
software licenses. Google publishes most of the code under the Apache
License version 2.0 and the rest, Linux kernel changes, under the GNU
General Public License version 2.

Why Android ?

Android IDEs

There are so many sophisticated Technologies are available to develop
android applications, the familiar technologies, which are predominantly
using tools as follows

• Android Studio

• Eclipse IDE(Deprecated)

Android - Architecture

Android operating system is a stack of software components which is
roughly divided into five sections and four main layers as shown below in
the architecture diagram.

Linux kernel

At the bottom of the layers is Linux - Linux 3.6 with approximately 115
patches. This provides a level of abstraction between the device hardware
and it contains all the essential hardware drivers like camera, keypad,
display etc. Also, the kernel handles all the things that Linux is really good
at such as networking and a vast array of device drivers, which take the
pain out of interfacing to peripheral hardware.

Libraries

On top of Linux kernel there is a set of libraries including open-source Web
browser engine WebKit, well known library libc, SQLite database which is
a useful repository for storage and sharing of application data, libraries to
play and record audio and video, SSL libraries responsible for Internet
security etc.

Android Libraries

This category encompasses those Java-based libraries that are specific to
Android development. Examples of libraries in this category include the
application framework libraries in addition to those that facilitate user

interface building, graphics drawing and database access. A summary of
some key core Android libraries available to the Android developer is as
follows −

• android.app − Provides access to the application model and is the
cornerstone of all Android applications.

• android.content − Facilitates content access, publishing and
messaging between applications and application components.

• android.database − Used to access data published by content
providers and includes SQLite database management classes.

• android.opengl − A Java interface to the OpenGL ES 3D graphics
rendering API.

• android.os − Provides applications with access to standard
operating system services including messages, system services and
inter-process communication.

• android.text − Used to render and manipulate text on a device
display.

• android.view − The fundamental building blocks of application user
interfaces.

• android.widget − A rich collection of pre-built user interface
components such as buttons, labels, list views, layout managers,
radio buttons etc.

• android.webkit − A set of classes intended to allow web-browsing
capabilities to be built into applications.

Having covered the Java-based core libraries in the Android runtime, it is
now time to turn our attention to the C/C++ based libraries contained in
this layer of the Android software stack.

Android Runtime

This is the third section of the architecture and available on the second
layer from the bottom. This section provides a key component
called Dalvik Virtual Machine which is a kind of Java Virtual Machine
specially designed and optimized for Android.

The Dalvik VM makes use of Linux core features like memory
management and multi-threading, which is intrinsic in the Java language.

The Dalvik VM enables every Android application to run in its own
process, with its own instance of the Dalvik virtual machine.

The Android runtime also provides a set of core libraries which enable
Android application developers to write Android applications using
standard Java programming language.

Application Framework

The Application Framework layer provides many higher-level services to
applications in the form of Java classes. Application developers are
allowed to make use of these services in their applications.

The Android framework includes the following key services −

• Activity Manager − Controls all aspects of the application lifecycle
and activity stack.

• Content Providers − Allows applications to publish and share data
with other applications.

• Resource Manager − Provides access to non-code embedded
resources such as strings, color settings and user interface layouts.

• Notifications Manager − Allows applications to display alerts and
notifications to the user.

• View System − An extensible set of views used to create application
user interfaces.

Applications

You will find all the Android application at the top layer. You will write your
application to be installed on this layer only. Examples of such applications
are Contacts Books, Browser, Games etc.

Application components are the essential building blocks of an Android
application. These components are loosely coupled by the application
manifest file AndroidManifest.xml that describes each component of the
application and how they interact.

There are following four main components that can be used within an
Android application −

Sr.No Components & Description

1
Activities

They dictate the UI and handle the user interaction to
the smart phone screen.

2
Services

They handle background processing associated with
an application.

3
Broadcast Receivers

They handle communication between Android OS and
applications.

4 Content Providers

They handle data and database management issues.

Activities

An activity represents a single screen with a user interface,in-short Activity
performs actions on the screen. For example, an email application might
have one activity that shows a list of new emails, another activity to
compose an email, and another activity for reading emails. If an
application has more than one activity, then one of them should be marked
as the activity that is presented when the application is launched.

An activity is implemented as a subclass of Activity class as follows −

public class MainActivity extends Activity {

}

Services

A service is a component that runs in the background to perform long-
running operations. For example, a service might play music in the
background while the user is in a different application, or it might fetch
data over the network without blocking user interaction with an activity.

A service is implemented as a subclass of Service class as follows −

public class MyService extends Service {

}

Broadcast Receivers

Broadcast Receivers simply respond to broadcast messages from other
applications or from the system. For example, applications can also initiate
broadcasts to let other applications know that some data has been
downloaded to the device and is available for them to use, so this is
broadcast receiver who will intercept this communication and will initiate
appropriate action.

A broadcast receiver is implemented as a subclass
of BroadcastReceiver class and each message is broadcaster as
an Intent object.

public class MyReceiver extends BroadcastReceiver {

 public void onReceive(context,intent){}

}

Content Providers

A content provider component supplies data from one application to others
on request. Such requests are handled by the methods of
the ContentResolver class. The data may be stored in the file system, the
database or somewhere else entirely.

A content provider is implemented as a subclass
of ContentProvider class and must implement a standard set of APIs that
enable other applications to perform transactions.

public class MyContentProvider extends ContentProvider

{

 public void onCreate(){}

}

We will go through these tags in detail while covering application
components in individual chapters.

Apple iOS Architecture
Architecture of IOS is a layered architecture. At the uppermost level iOS
works as an intermediary between the underlying hardware and the apps
you make. Apps do not communicate to the underlying hardware directly.
Apps talk with the hardware through a collection of well defined system
interfaces. These interfaces make it simple to write apps that work
constantly on devices having various hardware abilities.
Lower layers gives the basic services which all application relies on and
higher level layer gives sophisticated graphics and interface related
services.
Apple provides most of its system interfaces in special packages called
frameworks. A framework is a directory that holds a dynamic shared library
that is .a files, related resources like as header files, images, and helper
apps required to support that library. Every layer have a set of Framework
which the developer use to construct the applications.

https://intellipaat.com/blog/tutorial/ios-tutorial/ios-architecture/ 2/5

1. Core OS Layer:

The Core OS layer holds the low level features that most other
technologies are built upon.

� Core Bluetooth Framework.
� Accelerate Framework.
� External Accessory Framework.
� Security Services framework.
� Local Authentication framework.

64-Bit support from IOS7 supports the 64 bit app development and enables
the application to run faster.

2. Core Services Layer

Some of the Important Frameworks available in the core services layers
are detailed:

� Address book framework – Gives programmatic access to a contacts
database of user.

� Cloud Kit framework – Gives a medium for moving data between your
app and iCloud.

� Core data Framework – Technology for managing the data model of
a Model View Controller app.

� Core Foundation framework – Interfaces that gives fundamental data
management and service features for Ios apps.

� Core Location framework – Gives location and heading information to
apps.

� Core Motion Framework – Access all motion based data available on
a device. Using this core motion framework Accelerometer based
information can be accessed.

� Foundation Framework – Objective C covering too many of the
features found in the Core Foundation framework

� Healthkit framework – New framework for handling health-related
information of user

� Homekit framework – New framework for talking with and controlling
connected devices in a user’s home.

� Social framework – Simple interface for accessing the user’s social
media accounts.

� StoreKit framework – Gives support for the buying of content and
services from inside your iOS apps, a feature known asIn-App
Purchase.

3. Media Layer: Graphics, Audio and Video technology is enabled using the
Media Layer.

Graphics Framework:

� UIKit Graphics – It describes high level support for designing images
and also used for animating the content of your views.

� Core Graphics framework – It is the native drawing engine for iOS
apps and gives support for custom 2D vector and image based
rendering.

� Core Animation – It is an initial technology that optimizes the
animation experience of your apps.

� Core Images – gives advanced support for controling video and
motionless images in a nondestructive way

� OpenGl ES and GLKit – manages advanced 2D and 3D rendering by
hardware accelerated interfaces

� Metal – It permits very high performance for your sophisticated
graphics rendering and computation works. It offers very low
overhead access to the A7 GPU.

Audio Framework:

� Media Player Framework – It is a high level framework which gives
simple use to a user’s iTunes library and support for playing playlists.

� AV Foundation – It is an Objective C interface for handling the
recording and playback of audio and video.

� OpenAL – is an industry standard technology for providing
audio.Video Framework

� AV Kit – framework gives a collection of easy to use interfaces for
presenting video.

� AV Foundation – gives advanced video playback and recording
capability.

� Core Media – framework describes the low level interfaces and data
types for operating media.

Cocoa Touch Layer

� EventKit framework – gives view controllers for showing the standard
system interfaces for seeing and altering calendar related events

� GameKit Framework – implements support for Game Center which
allows users share their game related information online

� iAd Framework – allows you deliver banner-based advertisements
from your app.

� MapKit Framework – gives a scrollable map that you can include into
your user interface of app.

� PushKitFramework – provides registration support for VoIP apps.
� Twitter Framework – supports a UI for generating tweets and support

for creating URLs to access the Twitter service.
� UIKit Framework – gives vital infrastructure for applying graphical,

event-driven apps in iOS. Some of the Important functions of UI Kit
framework:

-Multitasking support.

– Basic app management and infrastructure.

– User interface management

– Support for Touch and Motion event.

– Cut, copy and paste support and many more.

Architecture of Windows

The architecture of Windows NT, a line of operating systems produced and
sold by Microsoft, is a layered design that consists of two main
components, user mode and kernel mode. It is a preemptive, reentrant
multitasking operating system, which has been designed to work with
uniprocessor and symmetrical multiprocessor (SMP)-based computers. To
process input/output (I/O) requests, they use packet-driven I/O, which
utilizes I/O request packets (IRPs) and asynchronous I/O. Starting with
Windows XP, Microsoft began making 64-bit versions of Windows
available; before this, there were only 32-bit versions of these operating
systems.

Programs and subsystems in user mode are limited in terms of what
system resources they have access to, while the kernel mode has
unrestricted access to the system memory and external devices. Kernel
mode in Windows NT has full access to the hardware and system
resources of the computer. The Windows NT kernel is a hybrid kernel; the
architecture comprises a simple kernel, hardware abstraction layer (HAL),
drivers, and a range of services (collectively named Executive), which all
exist in kernel mode.[1]

User mode in Windows NT is made of subsystems capable of passing I/O
requests to the appropriate kernel mode device drivers by using the I/O
manager. The user mode layer of Windows NT is made up of the
"Environment subsystems", which run applications written for many
different types of operating systems, and the "Integral subsystem", which
operates system-specific functions on behalf of environment subsystems.
The kernel mode stops user mode services and applications from
accessing critical areas of the operating system that they should not have
access to.

The Executive interfaces, with all the user mode subsystems, deal with I/O,
object management, security and process management. The kernel sits
between the hardware abstraction layer and the Executive to provide
multiprocessor synchronization, thread and interrupt scheduling and
dispatching, and trap handling and exception dispatching. The kernel is
also responsible for initializing device drivers at bootup. Kernel mode
drivers exist in three levels: highest level drivers, intermediate drivers and
low-level drivers. Windows Driver Model (WDM) exists in the intermediate

layer and was mainly designed to be binary and source compatible
between Windows 98 and Windows 2000. The lowest level drivers are
either legacy Windows NT device drivers that control a device
can be a plug and play (PnP) hardware bus.

layer and was mainly designed to be binary and source compatible
between Windows 98 and Windows 2000. The lowest level drivers are
either legacy Windows NT device drivers that control a device
can be a plug and play (PnP) hardware bus.

layer and was mainly designed to be binary and source compatible
between Windows 98 and Windows 2000. The lowest level drivers are
either legacy Windows NT device drivers that control a device directly or

User mode

The user mode is made up of subsystems which can pass I/O requests to

the appropriate kernel mode drivers via the I/O manager (which exists in

kernel mode). Two subsystems make up the user mode layer of Windows

2000: the Environment subsystem and the Integral subsystem.

The environment subsystem was designed to run applications written for

many different types of operating systems. None of the environment

subsystems can directly access hardware, and must request access to

memory resources through the Virtual Memory Manager that runs in kernel

mode. Also, applications run at a lower priority than kernel mode

processes. Currently, there are three main environment subsystems: the

Win32 subsystem, an OS/2 subsystem and a POSIX subsystem.

The Win32 environment subsystem can run 32-bit Windows applications. It

contains the console as well as text window support, shutdown and hard-

error handling for all other environment subsystems. It also supports Virtual

DOS Machines (VDMs), which allow MS-DOS and 16-bit Windows 3.x

(Win16) applications to run on Windows. There is a specific MS-DOS VDM

which runs in its own address space and which emulates an Intel 80486

running MS-DOS 5. Win16 programs, however, run in a Win16 VDM. Each

program, by default, runs in the same process, thus using the same

address space, and the Win16 VDM gives each program its own thread to

run on. However, Windows 2000 does allow users to run a Win16 program

in a separate Win16 VDM, which allows the program to be preemptively

multitasked as Windows 2000 will pre-empt the whole VDM process, which

only contains one running application. The OS/2 environment subsystem

supports 16-bit character-based OS/2 applications and emulates OS/2 1.x,

but not 32-bit or graphical OS/2 applications as used with OS/2 2.x or later.

The POSIX environment subsystem supports applications that are strictly

written to either the POSIX.1 standard or the related ISO/ IEC standards.

The integral subsystem looks after operating system specific functions on

behalf of the environment subsystem. It consists of a security subsystem,

a workstation service and a server service. The security subsystem deals

with security tokens, grants or denies access to user accounts based on

resource permissions, handles logon requests and initiates logon

authentication, and determines which system resources need to be audited

by Windows 2000. It also looks after Active Directory. The workstation

service is an API to the network redirector, which provides the computer

access to the network. The server service is an API that allows the

computer to provide network services.

Kernel mode

Windows 2000 kernel mode has full access to the hardware and system

resources of the computer and runs code in a protected memory area. It

controls access to scheduling, thread prioritisation, memory management

and the interaction with hardware. The kernel mode stops user mode

services and applications from accessing critical areas of the operating

system that they should not have access to as user mode processes ask

the kernel mode to perform such operations on its behalf.

Kernel mode consists of executive services, which is itself made up on

many modules that do specific tasks, kernel drivers, a kernel and

a Hardware Abstraction Layer, or HAL.

Executive

The Executive interfaces with all the user mode subsystems. It deals with

I/O, object management, security and process management. It contains

various components, including the I/O Manager, the Security Reference

Monitor, the Object Manager, the IPC Manager, the Virtual Memory

Manager (VMM), a PnP Manager and Power Manager, as well as

a Window Manager which works in conjunction with the Windows Graphics

Device Interface (GDI). Each of these components exports a kernel-only

support routine allows other components to communicate with one another.

Grouped together, the components can be called executive services. No

executive component has access to the internal routines of any other

executive component.

The object manager is a special executive subsystem that all other

executive subsystems must pass through to gain access to Windows 2000

resources — essentially making it a resource management infrastructure

service. The object manager is used to reduce the duplication of object

resource management functionality in other executive subsystems, which

could potentially lead to bugs and make development of Windows 2000

harder . To the object manager, each resource is an object, whether that

resource is a physical resource (such as a file system or peripheral) or a

logical resource (such as a file). Each object has a structure or object

type that the object manager must know about. When another executive

subsystem requests the creation of an object, they send that request to the

object manager which creates an empty object structure which the

requesting executive subsystem then fills in . Object types define the object

procedures and any data specific to the object. In this way, the object

manager allows Windows 2000 to be an object oriented operating system,

as object types can be thought of as classes that define objects.

Each instance of an object that is created stores its name, parameters that

are passed to the object creation function, security attributes and a pointer

to its object type. The object also contains an object close procedure and a

reference count to tell the object manager how many other objects in the

system reference that object and thereby determines whether the object

can be destroyed when a close request is sent to it . Every object exists in

a hierarchical object namespace.

Further executive subsystems are the following:

� I/O Manager: allows devices to communicate with user-mode

subsystems. It translates user-mode read and write commands in read

or write IRPs which it passes to device drivers. It accepts file system I/O

requests and translates them into device specific calls, and can

incorporate low-level device drivers that directly manipulate hardware to

either read input or write output. It also includes a cache manager to

improve disk performance by caching read requests and write to the disk

in the background

� Security Reference Monitor (SRM): the primary authority for enforcing

the security rules of the security integral subsystem . It determines

whether an object or resource can be accessed, via the use of access

control lists (ACLs), which are themselves made up of access control

entries (ACEs). ACEs contain a security identifier (SID) and a list of

operations that the ACE gives a select group of trustees — a user

account, group account, or logon session — permission (allow, deny, or

audit) to that resource.

� IPC Manager: short for Interprocess Communication Manager, this

manages the communication between clients (the environment

subsystem) and servers (components of the Executive). It can use two

facilities: the Local Procedure Call (LPC) facility (clients and servers on

the one computer) and the Remote Procedure Call (RPC) facility (where

clients and servers are situated on different computers. Microsoft has

had significant security issues with the RPC facility .

� Virtual Memory Manager: manages virtual memory, allowing Windows

2000 to use the hard disk as a primary storage device (although strictly

speaking it is secondary storage). It controls the paging of memory in

and out of physical memory to disk storage.

� Process Manager: handles process and thread creation and

termination

� PnP Manager: handles Plug and Play and supports device detection

and installation at boot time. It also has the responsibility to stop and

start devices on demand — sometimes this happens when a bus gains a

new device and needs to have a device driver loaded to support that

device. Both FireWire and USB are hot-swappable and require the

services of the PnP Manager to load, stop and start devices. The PnP

manager interfaces with the HAL, the rest of the executive (as

necessary) and with device drivers.

� Power Manager: the power manager deals with power events and

generates power IRPs. It coordinates these power events when several

devices send a request to be turned off it determines the best way of

doing this.

� The display system has been moved from user mode into the kernel

mode as a device driver contained in the file Win32k.sys. There are two

components in this device driver — the Window Manager and the GDI:

� Window Manager: responsible for drawing windows and menus. It

controls the way that output is painted to the screen and handles

input events (such as from the keyboard and mouse), then passes

messages to the applications that need to receive this input

� GDI: the Graphics Device Interface is responsible for tasks such as

drawing lines and curves, rendering fonts and handling palettes.

Windows 2000 introduced native alpha blending into the GDI.

Kernel & kernel-mode drivers

The kernel sits between the HAL and the Executive and provides

multiprocessor synchronization, thread and interrupt scheduling and

dispatching, and trap handling and exception dispatching. The kernel often

interfaces with the process manager. The kernel is also responsible for

initialising device drivers at bootup that are necessary to get the operating

system up and running.

Windows 2000 uses kernel-mode device drivers to enable it to interact

with hardware devices. Each of the drivers has well defined system

routines and internal routines that it exports to the rest of the operating

system. All devices are seen by user mode code as a file object in the I/O

manager, though to the I/O manager itself the devices are seen as device

objects, which it defines as either file, device or driver objects. Kernel mode

drivers exist in three levels: highest level drivers, intermediate drivers and

low level drivers. The highest level drivers, such as file system drivers

for FAT and NTFS, rely on intermediate drivers. Intermediate drivers

consist of function drivers — or main driver for a device — that are

optionally sandwiched between lower and higher level filter drivers. The

function driver then relies on a bus driver — or a driver that services a bus

controller, adapter, or bridge — which can have an optional bus filter driver

that sits between itself and the function driver. Intermediate drivers rely on

the lowest level drivers to function. The Windows Driver Model (WDM)

exists in the intermediate layer. The lowest level drivers are either legacy

Windows NT device drivers that control a device directly or can be a PnP

hardware bus. These lower level drivers directly control hardware and do

not rely on any other drivers..

REFERENCES

1. Erica Sadun, "The iOS 5 Developer’s Cookbook: Core Concepts and Essential Recipes

for iOS Programmers", Addison Wesley, 3rd Edition, 2011.

2. G. Blake Meike, Zigurd Mednieks, John Lombardo, Rick Rogers, "Android Application

Development", O’reilly, 1st Edition, 2009.

3. R. Nageswara Rao,"Core JAVA: An Integrated Approach", Dreamtech Press, Wiley

India, 1st Edition, 2015.

4. https://en.wikipedia.org/wiki/Mobile_app_development

5. https://www.korcomptenz.com/mobile-app-development

6. http://garryowen.csisdmz.ul.ie/~cs5212/resources/oth8.pdf

7. https://en.wikipedia.org/wiki/Windows_Mobile

8. https://www.slideshare.net/Bhavsidd/windows-phone-7-architecture-overview

9. https://www.tutorialspoint.com/apple-ios-architecture

10. https://intellipaat.com/blog/tutorial/ios-tutorial/ios-architecture/

11. https://www.besanttechnologies.com/what-is-ios

UNIT - 1

INTRODUCTION TO VARIOUS MOBILE PLATFORMS

Part - A

1. Describe the characteristics of mobile application development?

2. Express briefly the advantages of various mobile platforms.

3. Demonstrate in detail about mobile security and its impact?

4. Summarize the features of Linux kernel of Android os?

5. Discuss about various android libraries in android platform?

6. Discuss in detail about ios hardware?

7. Describe about cocoa touch layer in ios?

8. Classify the various framework in windows os?

9. Describe about the windows os kernel?

10. Explain in detail the impact of J2ME in mobile application development?

Part - B

1. With neat blocks express the architecture of Android OS .

2. Discuss briefly the architecture of Windows OS with neat block diagram.

3. Interpret the concepts of ios and its impact on mobile application development with the neat diagram?

�

��������������

	�
�������������

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�������������	���	�������������	����	��������������������

UNIT 2 ANDROID ACTIVITIES: STUDY AND CREATION

Introduction to Android, Why develop for android OS, Android SDK features,

Creating android activities.

What is Android?

Android is an open-source operating system based on Linux with a Java programming interface for

mobile devices such as Smartphone (Touch Screen Devices who supports Android OS) as well for Tablets

too.

Android was developed by the Open Handset Alliance (OHA), which is led by Google. The Open Handset

Alliance(OHA) is a consortium of multiple companies like Samsung, Sony, Intel and many more to

provide services and deploy handsets using the android platform.

In 2007, Google released a first beta version of the Android Software Development Kit (SDK) and the first

commercial version of Android 1.0 (with name Alpha), was released in September 2008.

In 2012, Google released another version of android, 4.1 Jelly Bean. It’s an incremental update and it

improved a lot in terms of the user interface, functionality, and performance.

In 2014, Google announced another Latest Version, 5.0 Lollipop. In Lollipop version Google completely

revamped the UI by using Material Designs, which is good for the User Interface as well for the themes

related.

All the source code for Android is available free on Git-Hub, Stack overflow, and many more websites.

Google publishes most of the code under the Apache License version 2.0

Android Features

Android is a powerful open-source operating system which provides a lot of great features, those are

� It supports connectivity for GSM, CDMA, WIFI, NFC, Bluetooth, etc. for telephony or data

transfer. It will allow us to make or receive a calls / SMS messages and we can send or retrieve

data across mobile networks

� By using WIFI technology we can pair with other devices using apps

� Android has multiple APIs to support location-based services such as GPS

� We can perform all data storage related activities by using lightweight database SQLite

(/tutorial/sqlite).

� It has a wide range of media supports like AVI, MKV, FLV, MPEG4, etc. to play or record a variety

of audio/video and having a different image format like JPEG, PNG, GIF, BMP, MP3, etc.

� It has extensive support for multimedia hardware control to perform playback or recording

using camera and microphone

� It has an integrated open-source WebKit layout based web browser to support HTML5, CSS3

� It supports a multi-tasking, we can move from one task window to another and multiple

applications can run simultaneously

� It will give a chance to reuse the application components and the replacement of native

applications.

� We can access the hardware components like Camera, GPS, and Accelerometer

� It has support for 2D/3D Graphics

The main components of any android application are the following:

• Activities

• Services

• Content Providers

• Intent and broadcast receivers

• Widgets and Notifications

1. Activities

We can call the Activity as the presentation layer of an Android application. Simply put, an Activity

represents the screen on your Android application which has its user interface. An application, for

instance, an Email App can have many activities such as opening an email, composing an email, replying

to an email – these all are different activities. So every Android application has more than one activity.

When we start a new activity (like replying to an email), previous activity is pushed to the back stack and

it gets stopped until the new activity is finished, however, if we push back button while ongoing activity,

the current activity gets dissolved and is popped out of the stack and previous activity resumes.

2. Services

The other important component of an Android application is the service. It performs running operations

(long or short) in the background for the activity that you perform on your screen. For example, a push

notification from an email. It is possible that service still runs while you have terminated the application

or you are not using it currently. For example, when you get an email, you get the notification while still,

you are not using the application currently.

3. Content Providers

Content Providers manage the application Data and encapsulate it (Object Oriented Feature). This

provides the data from one processor of an application to another one. The data might be stored in

Database or in a file system or any other storage management systems. Android devices include several

native Content Providers that expose useful databases such as the media store and contacts.

4. Intent and broadcast receivers

Android Intents are the means of communication that acts as a facilitator when the exchange of

message occurs between different components within the same application or from one application to

another. In order to start any service, we have to pass an intent to perform this task. Intents are of two

types:

Image Source: https://goo.gl/images/AqiSpu

• Implicit Intents: It does not declare the name of the service to start but declares the action to

perform.

• Explicit Intents: It specifies the exact activity to which intent should be given.

Broadcast Receivers enable your application to listen for intents that match the criteria you specify. As

an example, applications can start the broadcasts to let other applications know that few data has been

downloaded to the device and is available for them to use. There are two types of broadcast:

• Normal Broadcast: They are completely asynchronous and all receivers of the broadcast are run

in an undefined order.

• Ordered Broadcast: They are synchronous and are delivered to one receiver one at a time.

5. Widgets and Notifications

Widgets display your app interesting or new content in the consolidated form on a mobile or tablet

home screen. The user can do different activities like moving and resizing of widgets. There are basically

four types of widgets:

• Information Widget – This widget displays only the important information to the users. For e.g.

the clock on the home screen.

• Collection Widget – This widget displays multiple information of the same type and allows you

to select any of them to open. For example, when you open an email application, you see

multiple emails.

• Control Widget – This widget displays frequently used functions. For example, the music app

widget allows the user to play, music from outside of an application.

• Hybrid Widget – This widget combines the information from above all three widgets.

Notifications allow informing users of any events that have occurred. For e.g., we use what’s app

application, as and when a message comes, we get a notification.

Characteristics of Android

• Android can run multiple applications at the same time.

• Android widgets let you display just about any feature you choose right on the home screen.

• Android supports multiple keyboards and it is super easy to install them.

• Android supports Video Graphics Array, 2D, and 3D graphics alongside.

• Android also supports Java applications.

• One can change settings quite faster when Android is running on the phone

• The very good app market

• Most Android devices support NFC, which allows electronic devices to easily interact across

short distances.

Applications of Android

Android applications are software applications which are running on Android platform. We have already

seen the components of the android application previously as composed of one or more application

components like activities, services, content providers, and broadcast receivers. Android apps are

written in the Java programming language and use Java core libraries. For Android app development,

developers may download the Software Development Kit (SDK) from the android website. The SDK

includes tools, sample code and relevant documents for creating Android apps.

What is the Android SDK?

Every time Google releases a new version, the corresponding SDK is also released. In order to work with

Android, the developers must download and install each version’s SDK for the particular device.

The Android SDK (Software Development Kit) is a set of development tools that are used to develop

applications for the Android platform.

This SDK provides a selection of tools that are required to build Android applications and ensures the

process goes as smoothly as possible. Whether you create an application using Java, Kotlin or C#, you

need the SDK to get it to run on any Android device. You can also use an emulator in order to test the

applications that you have built.

Nowadays, the Android SDK also comes bundled with Android Studio, the integrated development

environment where the work gets done and many of the tools are now best accessed or managed.

Android SDK Features

Android SDK has a lot of amazing features. I’ve tried noting down most of them. So, have a look!

• Offline Mapping

SDK helps in dynamically downloading the maps for more than 190 countries in over 60 languages. You

can view these offline. Also dealing with the map styles and the touch gesture. This SDK also has the

ability to render raster tiles and map objects interleaved within different map layers.

• Dynamic Markers

In the previous versions, you could not have moved the position without a fallback or re

But in the lastest edition, you can update the position of the icon dynamically.

• Improvised API compatibility

With the latest release, it is much easier to migrate from the Google Maps Android API. This is another

added advantage of using Android SDK in your program.

SDK Tools

Android SDK Tools is a component for the Android SDK. This includes a complete set of development

and debugging tools for Android. SDK tools are also included with Android Studio.

Android comes up with the revised version every now and then the latest rele

26.1.1 (September 2017)

In this release, they made a few changes. They are:

• A command-line version of the APK Analyzer has been added in

the same features as the APK Analyzer in

servers and scripts for tracking size regressions, generating reports, and many more.

• ProGuard rules that are under the

Gradle.

These change with each update.

In the previous versions, you could not have moved the position without a fallback or re

n, you can update the position of the icon dynamically.

Improvised API compatibility

With the latest release, it is much easier to migrate from the Google Maps Android API. This is another

added advantage of using Android SDK in your program.

Android SDK Tools is a component for the Android SDK. This includes a complete set of development

and debugging tools for Android. SDK tools are also included with Android Studio.

Android comes up with the revised version every now and then the latest release is SDK Tools, Revision

In this release, they made a few changes. They are:

line version of the APK Analyzer has been added in tools/bin/apkanalyzer.

the same features as the APK Analyzer in Android Studio and can be integrated into build/CI

servers and scripts for tracking size regressions, generating reports, and many more.

rules that are under the tools/proguard are no longer used by the Android Plugin for

In the previous versions, you could not have moved the position without a fallback or re-adding the icon.

With the latest release, it is much easier to migrate from the Google Maps Android API. This is another

Android SDK Tools is a component for the Android SDK. This includes a complete set of development

SDK Tools, Revision

tools/bin/apkanalyzer. It offers

and can be integrated into build/CI

servers and scripts for tracking size regressions, generating reports, and many more.

are no longer used by the Android Plugin for

SDK tools are generally platform-independent and they are required no matter which Android platform

you are currently working on. There are a set of tools that get installed automatically when install

Android Studio.

Android SDK manager

In order to download and install latest android APIs and development tools from the internet, Android

helps us by having the Android SDK manager. This separates the APIs, tools and different platforms into

different packages which you can download. Android SDK Manager comes with the Android SDK bundle.

You can’t download it separately.

Introduction to Activities

The Activity (/reference/android/app/Activity) class is a crucial component of an Android app, and the

way activities are launched and put together is a fundamental part of the platform's application model.

Unlike programming paradigms in which apps are launched with a main() method, the Android system

initiates code in an Activity (/reference/android/app/Activity) instance by invoking specic callback

methods that correspond to speciTc stages of its lifecycle.

The concept of activities

The mobile-app experience differs from its desktop counterpart in that a user's interaction with the app

doesn't always begin in the same place. Instead, the user journey often begins non-deterministically. For

instance, if you open an email app from your home screen, you might see a list of emails. By contrast, if

you are using a social media app that then launches your email app, you might go directly to the email

app's screen for composing an email.

The Activity (/reference/android/app/Activity) class is designed to facilitate this paradigm. When one

app invokes another, the calling app invokes an activity in the other app, rather than the app as an

atomic whole. In this way, the activity serves as the entry point for an app's interaction with the user.

You implement an activity as a subclass of the Activity (/reference/android/app/Activity) class.

An activity provides the window in which the app draws its UI. This window typically lls the screen, but

may be smaller than the screen and oat on top of other windows. Generally, one activity implements

one screen in an app. For instance, one of an app’s activities may implement a Preferences screen, while

another activity implements a Select Photo screen.

Most apps contain multiple screens, which means they comprise multiple activities. Typically, one

activity in an app is specied as the main activity, which is the rst screen to appear when the user

launches the app. Each activity can then start another activity in order to perform different actions. For

example, the main activity in a simple e-mail app may provide the screen that shows an e-mail inbox.

From there, the main activity might launch other activities that provide screens for tasks like writing e-

mails and opening individual e-mails.

Although activities work together to form a cohesive user experience in an app, each activity is only

loosely bound to the other activities; there are usually minimal dependencies among the activities in an

app. In fact, activities often start up activities belonging to other apps. For example, a browser app

might launch the Share activity of a social-media app.

To use activities in your app, you must register information about them in the app’s manifest, and you

must manage activity lifecycles appropriately. The rest of this document introduces these subjects.

Configuring the manifest

For your app to be able to use activities, you must declare the activities, and certain of their attributes,

in the manifest.

Declare activities

To declare your activity, open your manifest le and add an <activity> (/guide/topics/manifest/activity-

element) element as a child of the <application> (/guide/topics/manifest/application-element) element.

For example:

<manifest ... >

<application ... >

<activity android:name=".ExampleActivity" />

</application ... >

</manifest >

The only required attribute for this element is android:name (/guide/topics/manifest/activity-

element#nm), which speciLes the class name of the activity. You can also add attributes that deXne

activity characteristics such as label, icon, or UI theme. For more information about these and other

attributes, see the <activity> (/guide/topics/manifest/activity-element) element reference

documentation.

Declare intent Xlters

Intent Ilters (/guide/components/intents- lters) are a very powerful feature of the Android platform.

They provide the ability to launch an activity based not only on an explicit request, but also an implicit

one. For example, an explicit request might tell the system to “Start the Send Email activity in the Gmail

app". By contrast, an implicit request tells the system to “Start a Send Email screen in any activity that

can do the job." When the system UI asks a user which app to use in performing a task, that’s an intent

lter at work.

You can take advantage of this feature by declaring an <intent- lter> (/guide/topics/manifest/intent-

Rlter-element) attribute in the <activity> (/guide/topics/manifest/activity-element) element. The de

nition of this element includes an <action> (/guide/topics/manifest/action-element) element and,

optionally, a <category> (/guide/topics/manifest/category-element) element and/or a <data>

(/guide/topics/manifest/data-element) element. These elements combine to specify the type of intent

to which your activity can respond. For example, the following code snippet shows how to conGgure an

activity that sends text data, and receives requests from other activities to do so:

<activity android:name=".ExampleActivity" android:icon="@drawable/app_icon"> <intent-filter>

<action android:name="android.intent.action.SEND" /> <category

android:name="android.intent.category.DEFAULT" /> <data android:mimeType="text/plain" />

</intent-filter>

</activity>

In this example, the <action> (/guide/topics/manifest/action-element) element speci es that this activity

sends data. Declaring the <category> (/guide/topics/manifest/category-element) element as DEFAULT

enables the activity to receive launch requests. The <data> (/guide/topics/manifest/data-element)

element speci es the type of data that this activity can send. The following code snippet shows how to

call the activity described above:

val sendIntent = Intent().apply {

action = Intent.ACTION_SEND

type = "text/plain"

putExtra(Intent.EXTRA_TEXT, textMessage)

}

startActivity(sendIntent)

If you intend for your app to be self-contained and not allow other apps to activate its activities, you

don't need any other intent Slters. Activities that you don't want to make available to other applications

should have no intent lters, and you can start them yourself using explicit intents. For more information

about how your activities can respond to intents, see Intents and Intent Filters

(/guide/components/intents- lters).

Declare permissions

You can use the manifest's <activity> (/guide/topics/manifest/activity-element) tag to control which

apps can start a particular activity. A parent activity cannot launch a child activity unless both activities

have the same permissions in their manifest. If you declare a <uses-permission>

(/guide/topics/manifest/uses-permission-element) element for a parent activity, each child activity must

have a matching <uses-permission>

(/guide/topics/manifest/uses-permission-element) element.

For example, if your app wants to use a hypothetical app named SocialApp to share a post on social

media, SocialApp itself must de ne the permission that an app calling it must have:

<manifest>

<activity android:name="...."

android:permission=”com.google.socialapp.permission.SHARE_POST”

/>

Then, to be allowed to call SocialApp, your app must match the permission set in SocialApp's manifest:

<manifest>

<uses-permission android:name="com.google.socialapp.permission.SHARE_POST" /> </manifest>

For more information on permissions and security in general, see Security and Permissions

(/guide/topics/security/security).

Managing the activity lifecycle

Over the course of its lifetime, an activity goes through a number of states. You use a series of callbacks

to handle transitions between states. The following sections introduce these callbacks.

onCreate()

You must implement this callback, which Lres when the system creates your activity. Your

implementation should initialize the essential components of your activity: For example, your app

should create views and bind data to lists here. Most importantly, this is where you must call

setContentView() (/reference/android/app/Activity#setContentView(android.view.View)) to de ne the

layout for the activity's user interface.

When onCreate() (/reference/android/app/Activity#onCreate(android.os.Bundle)) nishes, the next

callback is always onStart() (/reference/android/app/Activity#onStart()).

onStart()

As onCreate() (/reference/android/app/Activity#onCreate(android.os.Bundle)) exits, the activity enters

the Started state, and the activity becomes visible to the user. This callback contains what amounts to

the activity’s nal preparations for coming to the foreground and becoming interactive.

onResume()

The system invokes this callback just before the activity starts interacting with the user. At this point, the

activity is at the top of the activity stack, and captures all user input. Most of an app’s core functionality

is implemented in the onResume() (/reference/android/app/Activity#onResume()) method. The

onPause() (/reference/android/app/Activity#onPause()) callback always follows onResume()

(/reference/android/app/Activity#onResume()).

onPause()

The system calls onPause() (/reference/android/app/Activity#onPause()) when the activity loses focus

and enters a Paused state. This state occurs when, for example, the user taps the Back or Recents

button. When the system calls onPause() (/reference/android/app/Activity#onPause()) for your activity,

it technically means your activity is still partially visible, but most often is an indication that the user is

leaving the activity, and the activity will soon enter the Stopped or Resumed state.

An activity in the Paused state may continue to update the UI if the user is expecting the UI to update.

Examples of such an activity include one showing a navigation map screen or a media player playing.

Even if such activities lose focus, the user expects their UI to continue updating.

You should not use onPause() (/reference/android/app/Activity#onPause()) to save application or user

data, make network calls, or execute database transactions. For information about saving data, see

Saving and restoring activity state (/guide/components/activities/activity-lifecycle#saras).

onStop()

The system calls onStop() (/reference/android/app/Activity#onStop()) when the activity is no longer

visible to the user. This may happen because the activity is being destroyed, a new activity is starting, or

an existing activity is entering a Resumed state and is covering the stopped activity. In all of these cases,

the stopped activity is no longer visible at all.The next callback that the system calls is either onRestart()

(/reference/android/app/Activity#onRestart()), if the activity is coming back to interact with the user, or

by onDestroy() (/reference/android/app/Activity#onDestroy()) if this activity is completely terminating.

onRestart()

The system invokes this callback when an activity in the Stopped state is about to restart. onRestart()

(/reference/android/app/Activity#onRestart()) restores the state of the activity from the time that it was

stopped.This callback is always followed by onStart() (/reference/android/app/Activity#onStart()).

onDestroy()

The system invokes this callback before an activity is destroyed. This callback is the Enal one that the

activity receives. onDestroy() (/reference/android/app/Activity#onDestroy()) is usually implemented to

ensure that all of an activity’s resources are released when the activity, or the process containing it, is

destroyed.

Understand the Activity Lifecycle

As a user navigates through, out of, and back to your app, the Activity instances in

your app transition through different states in their lifecycle. The Activity class
provides a number of callbacks that allow the activity to know that a state has changed:
that the system is creating, stopping, or resuming an activity, or destroying the process
in which the activity resides.

Within the lifecycle callback methods, you can declare how your activity behaves when
the user leaves and re-enters the activity. For example, if you're building a streaming
video player, you might pause the video and terminate the network connection when the
user switches to another app. When the user returns, you can reconnect to the network
and allow the user to resume the video from the same spot. In other words, each
callback allows you to perform specific work that's appropriate to a given change of
state. Doing the right work at the right time and handling transitions properly make your
app more robust and performant. For example, good implementation of the lifecycle
callbacks can help ensure that your app avoids:

• Crashing if the user receives a phone call or switches to another app while using your app.

• Consuming valuable system resources when the user is not actively using it.

• Losing the user's progress if they leave your app and return to it at a later time.

• Crashing or losing the user's progress when the screen rotates between landscape and portrait
orientation.

This document explains the activity lifecycle in detail. The document begins by
describing the lifecycle paradigm. Next, it explains each of the callbacks: what happens
internally while they execute, and what you should implement during them. It then briefly
introduces the relationship between activity state and a process’s vulnerability to being
killed by the system. Last, it discusses several topics related to transitions between
activity states.

For information about handling lifecycles, including guidance about best practices,
see Handling Lifecycles with Lifecycle-Aware Components and Saving UI States. To
learn how to architect a robust, production-quality app using activities in combination
with architecture components, see Guide to App Architecture.

Activity-lifecycle concepts

To navigate transitions between stages of the activity lifecycle, the Activity class
provides a core set of six callbacks:

 onCreate(), onStart(), onResume(), onPause(), onStop(), and onDestroy(). The
system invokes each of these callbacks as an activity enters a new state.

Figure below presents a visual representation of this paradigm.

Figure. A simplified illustration of the activity lifecycle.

As the user begins to leave the activity, the system calls methods to dismantle the
activity. In some cases, this dismantlement is only partial; the activity still resides in
memory (such as when the user switches to another app), and can still come back to
the foreground. If the user returns to that activity, the activity resumes from where the
user left off. With a few exceptions, apps are
running in the background.

The system’s likelihood of killing a given process
depends on the state of the activity at the time.
memory provides more information on the relationship between state and vulnerability
to ejection.

A simplified illustration of the activity lifecycle.

As the user begins to leave the activity, the system calls methods to dismantle the
activity. In some cases, this dismantlement is only partial; the activity still resides in

(such as when the user switches to another app), and can still come back to
the foreground. If the user returns to that activity, the activity resumes from where the
user left off. With a few exceptions, apps are restricted from starting activities when

The system’s likelihood of killing a given process—along with the activities in it
depends on the state of the activity at the time. Activity state and ejection from

provides more information on the relationship between state and vulnerability

As the user begins to leave the activity, the system calls methods to dismantle the
activity. In some cases, this dismantlement is only partial; the activity still resides in

(such as when the user switches to another app), and can still come back to
the foreground. If the user returns to that activity, the activity resumes from where the

restricted from starting activities when

along with the activities in it—
Activity state and ejection from

provides more information on the relationship between state and vulnerability

Depending on the complexity of your activity, you probably don't need to implement all
the lifecycle methods. However, it's important that you understand each one and
implement those that ensure your app behaves the way users expect.

REFERENCES

1. G. Blake Meike, Zigurd Mednieks, John Lombardo, Rick Rogers, "Android Application

Development", O’reilly, 1st Edition, 2009.

2. R. Nageswara Rao,"Core JAVA: An Integrated Approach", Dreamtech Press, Wiley

India, 1st Edition, 2015.

3. Herbert Schildt, "Java: The Complete Reference", 9th Edition, 2014.

4. Gary Cornell, Cay S. Horstmann, "Core Java Volume I - Fundamentals", Prentice Hall,

9th Edition, 2012.

5. Cay S. Horstmann," Core Java, Volume II - Advanced Features", Prentice Hall, 11th

Edition, 2019.https://www.besanttechnologies.com/what-is-ios

6. https://www.educba.com/introduction-to-android/

7. https://developer.android.com/guide/components/fundamentals

8. https://developer.android.com/studio/releases/platform-tools

9. https://code.tutsplus.com/tutorials/the-android-sdk-tutorial--cms-34623

10. https://www.javatpoint.com/android-life-cycle-of-activity

11. https://www.tutorialspoint.com/android/android_acitivities.html

12. https://developer.android.com/guide/components/activities/activity-lifecycle

UNIT - 2

ANDROID ACTIVITIES: STUDY AND CREATION

Part – A

1. What is android? List any 5 android SDK features?

2. Explain in briefly any 5 android development tools?

3. Define an activity? Explain the life cycle activity?

4. Express the challenges faced in Android app development?

5. Mention few applications of Android platform?

Part – B

1. Define Activity? Explain the steps for creating activity? How to add more activity?

2. What is Activity Life Cycle? Explain with diagram and call back methods that support activity life cycle?

3. Explain the procedure for getting data back from an activity?

4. With neat notations discuss the concepts of Android SDK?

�

��������������

	�
�������������

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

��������������	���	�����������	���	���������������������

UNIT 3 ANDROID INTENT, THREAD AND SERVICES

User Interface

An Activity interacts with the user, via a visual UI on a screen. The UI is placed on the

setContentView() method. In Android, the UI composes of

structure.

A View is an interactive UI component (or widget or control), such as button and text field. It contr

screen. It is responsible for drawing itself and handling events (such as clicking, entering texts). Android provides many re

use Views such as TextView, EditText, Button

custom View by extending android.view.View

A ViewGroup is an invisible container used to

such as LinearLayout, RelativeLayout, TableLayout

your custom ViewGroup by extending from android.view.ViewGroup

Views and ViewGroups are organized in a single tree structure called

programming codes or describing it in a XML layout file. XML layout is recommended as it separates the presentation view from

the controlling logic, which provides modularity and flexibility in your program design. Once a view

can add the root of the view-tree to the Activity

There are two approaches in constructing the UI:

Build a simple user interface
In this lesson, you learn how to use the

to create a layout that includes a text box and

send the content of the text box to another activity

Figure 1. Screenshot of the final layout

The user interface (UI) for an Android app is built as a hierarchy of

layouts are V iewGroup (/reference/android/view/ViewGroup)

their child views are positioned on

objects, UI components such as buttons

Figure 2. Illustration of how ViewGroup

UNIT 3 ANDROID INTENT, THREAD AND SERVICES

Interface - Views, ViewGroups and Resources

interacts with the user, via a visual UI on a screen. The UI is placed on the Activity

method. In Android, the UI composes of View and ViewGroup objects, organized in a single view

is an interactive UI component (or widget or control), such as button and text field. It controls a rectangular area

screen. It is responsible for drawing itself and handling events (such as clicking, entering texts). Android provides many re

Button, RadioButton, etc, in package android.widget. You can also create your

android.view.View.

used to layout the View components. Android provides many ready

TableLayout and GridLayout in package android.widget. You can also create

android.view.ViewGroup.

s are organized in a single tree structure called view-tree. You can create a view

cribing it in a XML layout file. XML layout is recommended as it separates the presentation view from

the controlling logic, which provides modularity and flexibility in your program design. Once a view-tree is constructed, you

Activity as the content view via Activity's setContentView() method.

There are two approaches in constructing the UI:

Build a simple user interface
In this lesson, you learn how to use the A ndroid Studio Layout Editor (/studio/write/layout

and a button. This sets up the next lesson, where you learn

activity when the button is tapped.

The user interface (UI) for an Android app is built as a hierarchy of layouts and

(/reference/android/view/ViewGroup) objects, containers that

on the screen. Widgets are V iew (/reference/android/view/View)

buttons and text boxes.

ViewGroup objects form branches in the layout and contain

UNIT 3 ANDROID INTENT, THREAD AND SERVICES

Resources

Activity via the Activity's

objects, organized in a single view-tree

rectangular area on the

screen. It is responsible for drawing itself and handling events (such as clicking, entering texts). Android provides many ready-to-

. You can also create your

components. Android provides many ready-to-use ViewGroups

. You can also create

. You can create a view-tree either using

cribing it in a XML layout file. XML layout is recommended as it separates the presentation view from

tree is constructed, you

method.

(/studio/write/layout-editor)

you learn how to make the app

and widgets. The

that control how

(/reference/android/view/View)

objects form branches in the layout and contain View

Android provides an XML vocabulary for ViewGroup and View classes, so most of your UI is defined in XML files.

However, rather than teach you to write XML, this lesson shows you how to create a layout using Android Studio's Layout

Editor. The Layout Editor writes the XML for you as you drag and drop views to build your layout.

This lesson assumes that you use A ndroid Studio v3.0 (/studio) or higher and that you've

completed the c reate your Android project (/training/basics/firstapp/creating-project) lesson.

Open the Layout Editor

To get started, set up your workspace as follows:

1. In the Project window, open app > res > layout > activity_main.xml.

2. To make room for the Layout Editor, hide the Project window. To do so, select View >

Tool Windows > Project, or just click Project

on the left side of the Android Studio screen.

3. If your editor shows the XML source, click the Design tab at the bottom of the

window.

4. Click Select Design Surface

and select Blueprint.

5. Click Show

in the Layout Editor toolbar and make sure that Show All Constraints is checked.

6. Make sure Autoconnect is off. A tooltip in the toolbar displays Enable

Autoconnection to Parent

when Autoconnect is off.

7. Click Default Margins in the toolbar and select 16. If needed, you can adjust the

margins for each view later.

8. Click Device for Preview

in the toolbar and select 5.5, 1440 × 2560, 560 dpi (Pixel XL).

Your Layout Editor now looks as shown in figure 3.

Figure 3. The Layout Editor showing activity_main.xml

For additional information, see I ntroduction to the Layout Editor (/studio/write/layout-editor#intro).

The Component Tree panel on the bottom left shows the layout's hierarchy of views. In this

case, the root view is a ConstraintLayout, which contains just one TextView object.

ConstraintLayout is a layout that defines the position for each view based on constraints to sibling views and the

parent layout. In this way, you can create both simple and complex layouts with a flat view hierarchy. This type of layout

avoids the need for nested layouts. A nested layout, which is a layout inside a layout, as shown in figure 2, can increase

the time

required to draw the UI.

Figure 4. Illustration of two views positioned inside

ConstraintLayout

For example, you can declare the following layout, which is shown in figure 4:

View A appears 16 dp from the top

16 dp from the left of the parent layout. View

of view A.

View B is aligned to the top of view A.

In the following sections, you'll build a layout similar to the layout in figure 4.

Add a text box

Figure 5. The text box is constrained to the

left of the parent layout

Follow these steps to add a text box:

1. First, you need to remove what's

Component Tree panel and

2. In the Palette panel, click Text

3. Drag the Plain Text into the

is an

E ditText (/reference/android/widget/EditText)

4. Click the view in the design

the view on each corner, and

better control, you might

buttons in the Layout Editor

5. Click and hold the anchor

layout, and then release it.

default margin that was set.

layout.

For example, you can declare the following layout, which is shown in figure 4:

 of the parent layout. View A appears

layout. View B appears 16 dp to the right

View B is aligned to the top of view A.

In the following sections, you'll build a layout similar to the layout in figure 4.

the top and

what's already in the layout. Click TextView

and then press the Delete key.

Text to show the available text controls.

the design editor and drop it near the top

(/reference/android/widget/EditText) widget that accepts plain text input.

design editor. You can now see the square handles

and the circular constraint anchors on each

 want to zoom in on the editor. To do so, use

Editor toolbar.

anchor on the top side, drag it up until it snaps to

it. That's a contraint: it constrains the view

set. In this case, you set it to 16 dp from the

TextView in the

 of the layout. This

widget that accepts plain text input.

handles to resize

each side. For

use the Zoom

to the top of the

view within the

the top of the

6. Use the same process to create

left side of the layout.

The result should look as shown in figure 5.

Add a button

Figure 6. The button is constrained to the

side of the text box and its baseline

1. In the Palette panel, click Buttons

2. Drag the Button widget into

3. Create a constraint from the

4. To constrain the views in a

the text baselines. To do so,

Baseline

. The baseline anchor appears inside

that appears in the adjacent text box.

The result should look as shown in figure 6.

Note: You can also use the top or bottom

includes padding around it, so the visual

Change the UI strings

Follow these steps to change the UI strings:

1. Open the Project window and

This is a s tring resources (/guide/topics/resources/string
your UI strings. It allows you to manage

update, and localize.

2. Click Open editor at the top

(/studio/write/translations-editor)

your default strings. It also helps

3. Click Add Key

create a constraint from the left side of the

The result should look as shown in figure 5.

the right

Buttons.

into the design editor and drop it near the

the left side of the button to the right side

a horizontal alignment, create a constraint

so, right-click the button and then select Show

inside the button. Click and hold this anchor, and then drag it to

box.

The result should look as shown in figure 6.

bottom edges to create a horizontal alignment. However,

visual alignment is wrong if created that way.

Follow these steps to change the UI strings:

and then open app > res > values > strings.xml

(/guide/topics/resources/string-resource) file, where you

manage all of your UI strings in a single location, which makes

top of the window. This opens the T ranslations

editor), which provides a simple interface to add

helps you keep all of your translated strings

the view to the

the right side.

side of the text box.

constraint between

Show

to the baseline anchor

However, the button image

strings.xml.

you can specify all of

makes them easier to find,

ranslations Editor

add and edit

strings organized.

to create a new string as the "hint text"

Figure 7. The dialog to add a new string

In the Add Key dialog box, complete the following steps:

a. Enter "edit_message"

b. Enter "Enter a message"

c. Click OK.

4. Add another key named "button_send"

Now you can set these strings for each view. To

as follows:

1. Click the text box in the layout.

right, click Attributes

2. Locate the text property,

3. Locate the hint property and
, which is to the right of the text box.

the list.

4. Click the button in the layout

set to "Button." Then, click

and select button_send.

text" for the text box. At this point, the window shown in figure 7

The dialog to add a new string

dialog box, complete the following steps:

"edit_message" in the Key field.

message" in the Default Value field.

"button_send" with a value of "Send".

To return to the layout file, click activity_main.xml in the tab

layout. If the Attributes window isn't already

 which is currently set to "Name," and delete

and then click Pick a Resource
 In the dialog that appears, double-click edit_message from

layout and locate its text property, which is currently

 Pick a Resource

shown in figure 7 opens.

tab bar. Then, add the strings

already visible on the

delete the value.

from

currently

Make the text box size flexible

To create a layout that's responsive to different screen sizes, you need to make the text box stretch to fill all the

horizontal space that remains after the button and margins are accounted for.

Before you continue, click Select Design Surface in

the toolbar and select Blueprint.

To make the text box flexible, follow these steps:

Figure 8. The result of choosing Create Horizontal

Chain

Figure 9. Click to change the width to Match

Constraints

Figure 10. The text box now stretches to

remaining space

1. Select both views. To do so, click one, hold

right- click either one and select

appears as shown in figure

A c hain (/training/constraint-layout#constrain

two or more views that allows

2. Select the button and open

the top of the Attributes

3. Click the text box to view its

set to Match Constraints

Match constraints means that the width

Therefore, the text box stretches to fill

accounted for.

Match

to fill the

do so, click one, hold Shift, then click the other,

select Chains > Create Horizontal Chain.

as shown in figure 8.

layout#constrain-chain) is a bidirectional constraint

allows you to lay out the chained views in unison.

open the Attributes window. Then, use the view

 window to set the right margin to 16 dp.

its attributes. Then, click the width indicator

Match Constraints, as indicated by callout 1 in figure 9.

width expands to meet the definition of the horizontal constraints

fill the horizontal space that remains after the button and all

other, and then

 The layout then

constraint between

unison.

view inspector at

dp.

indicator twice so it's

horizontal constraints and margins.

all the margins are

Now the layout is done, as shown in figure 10.

If your layout didn't turn out as expected, click See the final layout XML below to see what your XML should look like. Compare it

to what you see in the Text tab. If your attributes appear in a different order, that's okay.

See the final layout XML

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context="com.example.myfirstapp.MainActivity">

<EditText

android:id="@+id/editText"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_marginStart="16dp"
android:layout_marginLeft="16dp"
android:layout_marginTop="16dp"
android:ems="10"
android:hint="@string/edit_message"
android:inputType="textPersonName"

app:layout_constraintEnd_toStartOf="@+id/button"
app:layout_constraintHorizontal_bias="0.5"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />

<Button

android:id="@+id/button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginEnd="16dp"
android:layout_marginStart="16dp"
android:text="@string/button_send"
app:layout_constraintBaseline_toBaselineOf="@+id/editText"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintHorizontal_bias="0.5"

app:layout_constraintStart_toEndOf="@+id/editText" />

</androidx.constraintlayout.widget.ConstraintLayout>

Activities and Intents :-

An Activity represents a single screen in your app with which your user can perform a single, focused
task such as taking a photo, sending an email, or viewing a map. An activity is usually presented to
the user as a full-screen window.

An app usually consists of multiple screens that are loosely bound to each other. Each screen is an
activity. Typically, one activity in an app is specified as the "main" activity (MainActivity.java), which is
presented to the user when the app is launched. The main activity can then start other activities to
perform different actions.

Each time a new activity starts, the previous activity is stopped, but the system preserves the activity
in a stack (the "back stack"). When a new activity starts, that new activity is pushed onto the back
stack and takes user focus. The back stack follows basic "last in, first out" stack logic. When the user
is done with the current activity and presses the Back button, that activity is popped from the stack
and destroyed, and the previous activity resumes.

An activity is started or activated with an intent. An Intent is an asynchronous message that you can
use in your activity to request an action from another activity, or from some other app component.
You use an intent to start one activity from another activity, and to pass data between activities.

An Intent can be explicit or implicit:

• An explicit intent is one in which you know the target of that intent. That is, you already know
the fully qualified class name of that specific activity.

• An implicit intent is one in which you do not have the name of the target component, but you
have a general action to perform.

2. App overview

In this chapter you create and build an app called Two Activities that, unsurprisingly, contains
two Activity implementations. You build the app in three stages.

In the first stage, you create an app whose main activity contains one button, Send. When the user
clicks this button, your main activity uses an intent to start the second activity.

In the second stage, you add an EditText view to the main activity. The user enters a message and
clicks Send. The main activity uses an intent to start the second activity and send the user's
message to the second activity. The second activity displays the message it received.

In the final stage of creating the Two Activities app, you add an EditText and a Reply button to the
second activity. The user can now type a reply message and tap Reply, and the reply is displayed on
the main activity. At this point, you use an intent to pass the reply back from the second activity to the
main activity.

3. Task 1: Create the TwoActivities project

In this task you set up the initial project with a main Activity, define the layout, and define a
skeleton method for the onClick button event.

1.1 Create the TwoActivities project

1. Start Android Studio and create a new Android Studio project.

Name your app Two Activities and choose the same Phone and Tablet settings that you used
in previous practicals. The project folder is automatically named TwoActivities, and the app name
that appears in the app bar will be "Two Activities".

2. Choose Empty Activity for the Activity template. Click Next.

3. Accept the default Activity name (MainActivity). Make sure the Generate Layout
file and Backwards Compatibility (AppCompat) options are checked.

4. Click Finish.

1.2 Define the layout for the main Activity

1. Open res > layout > activity_main.xml in the Project > Android pane. The layout editor
appears.

2. Click the Design tab if it is not already selected, and delete the TextView (the one that
says "Hello World") in the Component Tree pane.

3. With Autoconnect turned on (the default setting), drag a Button from the Palette pane to
the lower right corner of the layout. Autoconnect creates constraints for the Button.

4. In the Attributes pane, set the ID to button_main,
the layout_width and layout_height to wrap_content, and enter Send for the Text field.
The layout should now look like this:

5. Click the Text tab to edit the XML code. Add the following attribute to the Button:

android:onClick="launchSecondActivity"

The attribute value is underlined in red because the launchSecondActivity() method has not yet
been created. Ignore this error for now; you fix it in the next task.

6. Extract the string resource, as described in a previous practical, for "Send" and use the
name button_main for the resource.

The XML code for the Button should look like the following:

<Button
 android:id="@+id/button_main"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="16dp"
 android:layout_marginRight="16dp"
 android:text="@string/button_main"
 android:onClick="launchSecondActivity"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintRight_toRightOf="parent" />

1.3 Define the Button action

In this task you implement the launchSecondActivity() method you referred to in the layout for
the android:onClick attribute.

1. Click on "launchSecondActivity" in the activity_main.xml XML code.

2. Press Alt+Enter (Option+Enter on a Mac) and select Create
'launchSecondActivity(View)' in 'MainActivity.

The MainActivity file opens, and Android Studio generates a skeleton method for
the launchSecondActivity() handler.

3. Inside launchSecondActivity(), add a Log statement that says "Button Clicked!"

Log.d(LOG_TAG, "Button clicked!");

LOG_TAG will show as red. You add the definition for that variable in a later step.

4. At the top of the MainActivity class, add a constant for the LOG_TAG variable:

private static final String LOG_TAG =
 MainActivity.class.getSimpleName();

This constant uses the name of the class itself as the tag.

5. Run your app. When you click the Send button you see the "Button Clicked!" message in
the Logcat pane. If there's too much output in the monitor, type MainActivity into the
search box, and the Logcat pane will only show lines that match that tag.

The code for MainActivity should look as follows:

package com.example.android.twoactivities;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;

public class MainActivity extends AppCompatActivity {
 private static final String LOG_TAG =
 MainActivity.class.getSimpleName();

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 public void launchSecondActivity(View view) {
 Log.d(LOG_TAG, "Button clicked!");
 }
}

4. Task 2: Create and launch the second Activity

Each new activity you add to your project has its own layout and Java files, separate from those
of the main activity. They also have their own <activity> elements in the AndroidManifest.xml file.
As with the main activity, new activity implementations that you create in Android Studio also
extend from the AppCompatActivity class.

Each activity in your app is only loosely connected with other activities. However, you can define
an activity as a parent of another activity in the AndroidManifest.xml file. This parent-child
relationship enables Android to add navigation hints such as left-facing arrows in the title bar for
each activity.

An activity communicates with other activities (in the same app and across different apps) with
an intent. An Intent can be explicit or implicit:

• An explicit intent is one in which you know the target of that intent; that is, you already
know the fully qualified class name of that specific activity.

• An implicit intent is one in which you do not have the name of the target component, but
have a general action to perform.

In this task you add a second activity to our app, with its own layout. You modify
the AndroidManifest.xml file to define the main activity as the parent of the second activity. Then
you modify the launchSecondActivity() method in MainActivity to include an intent that launches
the second activity when you click the button.

2.1 Create the second Activity

1. Click the app folder for your project and choose File > New > Activity > Empty Activity.

2. Name the new Activity SecondActivity. Make sure Generate Layout
File and Backwards Compatibility (AppCompat) are checked. The layout name is filled
in as activity_second. Do not check the Launcher Activity option.

3. Click Finish. Android Studio adds both a new Activity layout (activity_second.xml) and a
new Java file (SecondActivity.java) to your project for the new Activity. It also updates
the AndroidManifest.xml file to include the new Activity.

2.2 Modify the AndroidManifest.xml file

1. Open manifests > AndroidManifest.xml.

2. Find the <activity> element that Android Studio created for the second Activity.

<activity android:name=".SecondActivity"></activity>

3. Replace the entire <activity> element with the following:

<activity android:name=".SecondActivity"
 android:label = "Second Activity"
 android:parentActivityName=".MainActivity">
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"
 android:value=
 "com.example.android.twoactivities.MainActivity" />
</activity>

The label attribute adds the title of the Activity to the app bar.

With the parentActivityName attribute, you indicate that the main activity is the parent of the
second activity. This relationship is used for Up navigation in your app: the app bar for the
second activity will have a left-facing arrow so the user can navigate "upward" to the main
activity.

With the <meta-data> element, you provide additional arbitrary information about the activity in
the form of key-value pairs. In this case the metadata attributes do the same thing as
the android:parentActivityName attribute—they define a relationship between two activities for
upward navigation. These metadata attributes are required for older versions of Android,
because the android:parentActivityName attribute is only available for API levels 16 and higher.

4. Extract a string resource for "Second Activity" in the code above, and
use activity2_name as the resource name.

2.3 Define the layout for the second Activity
1. Open activity_second.xml and click the Design tab if it is not already selected.

2. Drag a TextView from the Palette pane to the top left corner of the layout, and add
constraints to the top and left sides of the layout. Set its attributes in the Attributes pane

as follows:

3. Click the Text tab to edit the XML code, and extract the "Message Received" string into a
resource named text_header.

4. Add the android:layout_marginLeft="8dp" attribute to the TextView to complement
the layout_marginStart attribute for older versions of Android.

The XML code for activity_second.xml should be as follows:

<android.support.constraint.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.android.twoactivities.SecondActivity">

 <TextView
 android:id="@+id/text_header"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginLeft="8dp"
 android:layout_marginTop="16dp"
 android:text="@string/text_header"
 android:textAppearance=
 "@style/TextAppearance.AppCompat.Medium"
 android:textStyle="bold"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />
</android.support.constraint.ConstraintLayout>

2.4 Add an Intent to the main Activity

In this task you add an explicit Intent to the main Activity. This Intent is used to activate the
second Activity when the Send button is clicked.

1. Open MainActivity.

2. Create a new Intent in the launchSecondActivity() method.

The Intent constructor takes two arguments for an explicit Intent: an application Context and the
specific component that will receive that Intent. Here you should use this as the Context,
and SecondActivity.class as the specific class:

Intent intent = new Intent(this, SecondActivity.class);

3. Call the startActivity() method with the new Intent as the argument.

startActivity(intent);

4. Run the app.

When you click the Send button, MainActivity sends the Intent and the Android system
launches SecondActivity, which appears on the screen. To return to MainActivity, click
the Up button (the left arrow in the app bar) or the Back button at the bottom of the screen.

5. Task 3: Send data from the main Activity to the second Activity

In the last task, you added an explicit intent to MainActivity that launched SecondActivity. You
can also use an intent to send data from one activity to another while launching it.

Your intent object can pass data to the target activity in two ways: in the data field, or in the
intent extras. The intent data is a URI indicating the specific data to be acted on. If the
information you want to pass to an activity through an intent is not a URI, or you have more than
one piece of information you want to send, you can put that additional information into
the extras instead.

The intent extras are key/value pairs in a Bundle. A Bundle is a collection of data, stored as
key/value pairs. To pass information from one activity to another, you put keys and values into
the intent extra Bundle from the sending activity, and then get them back out again in the
receiving activity.

In this task, you modify the explicit intent in MainActivity to include additional data (in this case, a
user-entered string) in the intent extra Bundle. You then modify SecondActivity to get that data
back out of the intent extra Bundle and display it on the screen.

3.1 Add an EditText to the MainActivity layout

1. Open activity_main.xml.

2. Drag a Plain Text (EditText) element from the Palette pane to the bottom of the layout,
and add constraints to the left side of the layout, the bottom of the layout, and the left side
of the Send Button. Set its attributes in the Attributes pane as follows:

3. Click the Text tab to edit the XML code, and extract the "Enter Your Message Here" string
into a resource named editText_main.

The XML code for the layout should look something like the following.

<android.support.constraint.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.android.twoactivities.MainActivity">

 <Button
 android:id="@+id/button_main"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="16dp"
 android:layout_marginRight="16dp"
 android:text="@string/button_main"
 android:onClick="launchSecondActivity"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintRight_toRightOf="parent" />

 <EditText
 android:id="@+id/editText_main"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginBottom="16dp"
 android:layout_marginEnd="8dp"
 android:layout_marginStart="8dp"
 android:ems="10"
 android:hint="@string/editText_main"
 android:inputType="textLongMessage"
 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toStartOf="@+id/button_main"
 app:layout_constraintStart_toStartOf="parent" />
</android.support.constraint.ConstraintLayout>

3.2 Add a string to the Intent extras

The Intent extras are key/value pairs in a Bundle. A Bundle is a collection of data, stored as
key/value pairs. To pass information from one Activity to another, you put keys and values into
the Intent extra Bundle from the sending Activity, and then get them back out again in the
receiving Activity.

1. Open MainActivity.

2. Add a public constant at the top of the class to define the key for the Intent extra:

public static final String EXTRA_MESSAGE =
 "com.example.android.twoactivities.extra.MESSAGE";

3. Add a private variable at the top of the class to hold the EditText:

private EditText mMessageEditText;

4. In the onCreate() method, use findViewById() to get a reference to the EditText and
assign it to that private variable:

mMessageEditText = findViewById(R.id.editText_main);

5. In the launchSecondActivity() method, just under the new Intent, get the text from
the EditText as a string:

String message = mMessageEditText.getText().toString();

6. Add that string to the Intent as an extra with the EXTRA_MESSAGE constant as the key
and the string as the value:

intent.putExtra(EXTRA_MESSAGE, message);

The onCreate() method in MainActivity should now look like the following:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 mMessageEditText = findViewById(R.id.editText_main);
}

The launchSecondActivity() method in MainActivity should now look like the following:

public void launchSecondActivity(View view) {
 Log.d(LOG_TAG, "Button clicked!");
 Intent intent = new Intent(this, SecondActivity.class);
 String message = mMessageEditText.getText().toString();
 intent.putExtra(EXTRA_MESSAGE, message);
 startActivity(intent);
}

3.3 Add a TextView to SecondActivity for the message

1. Open activity_second.xml.

2. Drag another TextView to the layout underneath the text_header TextView, and add
constraints to the left side of the layout and to the bottom of text_header.

3. Set the new TextView attributes in the Attributes pane as follows:

The new layout looks the same as it did in the previous task, because the new TextView does
not (yet) contain any text, and thus does not appear on the screen.

The XML code for the activity_second.xml layout should look something like the following:

<android.support.constraint.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.android.twoactivities.SecondActivity">

 <TextView
 android:id="@+id/text_header"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginTop="16dp"
 android:text="@string/text_header"
 android:textAppearance=
 "@style/TextAppearance.AppCompat.Medium"
 android:textStyle="bold"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

 <TextView
 android:id="@+id/text_message"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginStart="8dp"
 android:layout_marginTop="8dp"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/text_header" />
</android.support.constraint.ConstraintLayout>

3.4 Modify SecondActivity to get the extras and display the message

1. Open SecondActivity to add code to the onCreate() method.

2. Get the Intent that activated this Activity:

Intent intent = getIntent();

3. Get the string containing the message from the Intent extras using
the MainActivity.EXTRA_MESSAGE static variable as the key:

String message = intent.getStringExtra(MainActivity.EXTRA_MESSAGE);

4. Use findViewByID() to get a reference to the TextView for the message from the layout:

TextView textView = findViewById(R.id.text_message);

5. Set the text of the TextView to the string from the Intent extra:

textView.setText(message);

6. Run the app. When you type a message in MainActivity and
click Send, SecondActivity launches and displays the message.

The SecondActivity onCreate() method should look as follows:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_second);
 Intent intent = getIntent();
 String message = intent.getStringExtra(MainActivity.EXTRA_MESSAGE);
 TextView textView = findViewById(R.id.text_message);
 textView.setText(message);
}

Android - Services
A service is a component that runs in the background to perform

long-running operations without needing to interact with the user

and it works even if application is destroyed. A service can

essentially take two states −

Sr.No. State & Description

1 Started

A service is started when an application component,
such as an activity, starts it by calling startService().
Once started, a service can run in the background
indefinitely, even if the component that started it is
destroyed.

2 Bound

A service is bound when an application component
binds to it by calling bindService(). A bound service
offers a client-server interface that allows components
to interact with the service, send requests, get results,
and even do so across processes with interprocess
communication (IPC).

A service has life cycle callback methods that you can implement to monitor changes in the
service's state and you can perform work at the appropriate stage. The following diagram on the
left shows the life cycle when the service is created with startService() and the diagram on the
right shows the life cycle when the service is created with bindService(): (image courtesy :
android.com)

To create an service, you create a Java class that extends the Service base class or one of its
existing subclasses. The Service base class defines various callback methods and the most
important are given below. You don't need to implement all the callbacks methods. However, it's
important that you understand each one and implement those that ensure your app behaves the
way users expect.

Sr.No. Callback & Description

1
onStartCommand()

The system calls this method when another component, such as an activity, requests that the service be
started, by calling startService(). If you implement this method, it is your responsibility to stop the service
when its work is done, by calling stopSelf() or stopService() methods.

2
onBind()

The system calls this method when another component wants to bind with the service by
calling bindService(). If you implement this method, you must provide an interface that clients use to

communicate with the service, by returning an IBinder object. You must always implement this method,
but if you don't want to allow binding, then you should return null.

3
onUnbind()

The system calls this method when all clients have disconnected from a particular interface published by
the service.

4
onRebind()

The system calls this method when new clients have connected to the service, after it had previously
been notified that all had disconnected in its onUnbind(Intent).

5
onCreate()

The system calls this method when the service is first created using onStartCommand() or onBind().
This call is required to perform one-time set-up.

6
onDestroy()

The system calls this method when the service is no longer used and is being destroyed. Your service
should implement this to clean up any resources such as threads, registered listeners, receivers, etc.

The following skeleton service demonstrates each of the life cycle methods −

package com.tutorialspoint;

import android.app.Service;
import android.os.IBinder;
import android.content.Intent;
import android.os.Bundle;

public class HelloService extends Service {

 /** indicates how to behave if the service is killed */
 int mStartMode;

 /** interface for clients that bind */
 IBinder mBinder;

 /** indicates whether onRebind should be used */
 boolean mAllowRebind;

 /** Called when the service is being created. */
 @Override
 public void onCreate() {

 }

 /** The service is starting, due to a call to startService() */
 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 return mStartMode;
 }

 /** A client is binding to the service with bindService() */
 @Override
 public IBinder onBind(Intent intent) {
 return mBinder;
 }

 /** Called when all clients have unbound with unbindService() */
 @Override
 public boolean onUnbind(Intent intent) {
 return mAllowRebind;
 }

 /** Called when a client is binding to the service with bindService()*/
 @Override
 public void onRebind(Intent intent) {

 }

 /** Called when The service is no longer used and is being destroyed */
 @Override
 public void onDestroy() {

 }
}

Example
This example will take you through simple steps to show how to create your own Android
Service. Follow the following steps to modify the Android application we created in Hello World
Example chapter −

Step Description

1 You will use Android StudioIDE to create an Android

application and name it as My Application under a

package com.example.tutorialspoint7.myapplication as

explained in the Hello World Example chapter.

2 Modify main activity file MainActivity.java to

add startService() and stopService() methods.

3 Create a new java file MyService.java under the

package com.example.My Application. This file will

have implementation of Android service related

methods.

4 Define your service in AndroidManifest.xml file using

<service.../> tag. An application can have one or more

services without any restrictions.

5 Modify the default content

of res/layout/activity_main.xml file to include two

buttons in linear layout.

6 No need to change any constants

in res/values/strings.xml file. Android studio take care

of string values

7 Run the application to launch Android emulator and

verify the result of the changes done in the application.

Following is the content of the modified main activity file MainActivity.java. This file can include
each of the fundamental life cycle methods. We have
added startService() and stopService() methods to start and stop the service.

package com.example.tutorialspoint7.myapplication;

import android.content.Intent;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

import android.os.Bundle;
import android.app.Activity;
import android.util.Log;
import android.view.View;

public class MainActivity extends Activity {
 String msg = "Android : ";

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Log.d(msg, "The onCreate() event");
 }

 public void startService(View view) {
 startService(new Intent(getBaseContext(), MyService.class));
 }

 // Method to stop the service
 public void stopService(View view) {
 stopService(new Intent(getBaseContext(), MyService.class));
 }
}

Following is the content of MyService.java. This file can have implementation of one or more
methods associated with Service based on requirements. For now we are going to implement
only two methods onStartCommand() and onDestroy() −

package com.example.tutorialspoint7.myapplication;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.support.annotation.Nullable;
import android.widget.Toast;

/**
 * Created by TutorialsPoint7 on 8/23/2016.
*/

public class MyService extends Service {
 @Nullable

 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 // Let it continue running until it is stopped.
 Toast.makeText(this, "Service Started", Toast.LENGTH_LONG).show();
 return START_STICKY;
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 Toast.makeText(this, "Service Destroyed", Toast.LENGTH_LONG).show();
 }
}

Following will the modified content of AndroidManifest.xml file. Here we have added
<service.../> tag to include our service −

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.tutorialspoint7.myapplication">

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">

 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <service android:name=".MyService" />
 </application>

</manifest>

Following will be the content of res/layout/activity_main.xml file to include two buttons −

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
 android:layout_height="match_parent"
android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
tools:context=".MainActivity">

 <TextView
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Example of services"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true"
 android:textSize="30dp" />

 <TextView
 android:id="@+id/textView2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Tutorials point "
 android:textColor="#ff87ff09"
 android:textSize="30dp"
 android:layout_above="@+id/imageButton"
 android:layout_centerHorizontal="true"
 android:layout_marginBottom="40dp" />

 <ImageButton
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/imageButton"
 android:src="@drawable/abc"
 android:layout_centerVertical="true"
 android:layout_centerHorizontal="true" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/button2"
 android:text="Start Services"
 android:onClick="startService"
 android:layout_below="@+id/imageButton"
 android:layout_centerHorizontal="true" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Stop Services"
 android:id="@+id/button"
 android:onClick="stopService"
 android:layout_below="@+id/button2"
 android:layout_alignLeft="@+id/button2"
 android:layout_alignStart="@+id/button2"
 android:layout_alignRight="@+id/button2"
 android:layout_alignEnd="@+id/button2" />

</RelativeLayout>

Let's try to run our modified Hello World!
created your AVD while doing environment setup. To run the app from Android studio, open one
of your project's activity files and click Run
app on your AVD and starts it and if everything is fine with your set
display following Emulator window

Now to start your service, let's click on
our programming in onStartCommand()
bottom of the the simulator as follows

To stop the service, you can click the Stop Service button.

Hello World! application we just modified. I assume you had
while doing environment setup. To run the app from Android studio, open one

files and click Run icon from the tool bar. Android Studio installs the
app on your AVD and starts it and if everything is fine with your set-up and application, it will
display following Emulator window −

Now to start your service, let's click on Start Service button, this will start the service and as per
onStartCommand() method, a message Service Started

bottom of the the simulator as follows −

To stop the service, you can click the Stop Service button.

application we just modified. I assume you had
while doing environment setup. To run the app from Android studio, open one

icon from the tool bar. Android Studio installs the
up and application, it will

button, this will start the service and as per
Service Started will appear on the

Threads

When an application is launched, the system creates a thread of execution for the application,
called "main." This thread is very important because it is in charge of dispatching events to the
appropriate user interface widgets, including drawing events. It is also almost always the thread
in which your application interacts with components from the Android UI toolkit (components from

the android.widget and android.view packages). As such, the main thread is also

sometimes called the UI thread. However, under special circumstances, an app's main thread
might not be its UI thread; for more information, see Thread annotations.

The system does not create a separate thread for each instance of a component. All components
that run in the same process are instantiated in the UI thread, and system calls to each
component are dispatched from that thread. Consequently, methods that respond to system

callbacks (such as onKeyDown() to report user actions or a lifecycle callback method) always

run in the UI thread of the process.

For instance, when the user touches a button on the screen, your app's UI thread dispatches the
touch event to the widget, which in turn sets its pressed state and posts an invalidate request to
the event queue. The UI thread dequeues the request and notifies the widget that it should
redraw itself.

When your app performs intensive work in response to user interaction, this single thread model
can yield poor performance unless you implement your application properly. Specifically, if
everything is happening in the UI thread, performing long operations such as network access or
database queries will block the whole UI. When the thread is blocked, no events can be
dispatched, including drawing events. From the user's perspective, the application appears to
hang. Even worse, if the UI thread is blocked for more than a few seconds (about 5 seconds
currently) the user is presented with the infamous "application not responding" (ANR) dialog. The
user might then decide to quit your application and uninstall it if they are unhappy.

Additionally, the Android UI toolkit is not thread-safe. So, you must not manipulate your UI from a
worker thread—you must do all manipulation to your user interface from the UI thread. Thus,
there are simply two rules to Android's single thread model:

1. Do not block the UI thread

2. Do not access the Android UI toolkit from outside the UI thread

Worker threads

Because of the single threaded model described above, it's vital to the responsiveness of your
application's UI that you do not block the UI thread. If you have operations to perform that are not
instantaneous, you should make sure to do them in separate threads ("background" or "worker"
threads).

However, note that you cannot update the UI from any thread other than the UI thread or the
"main" thread.

The Application Main Thread

When an Android application is first started, the runtime system creates a single thread in which
all application components will run by default. This thread is generally referred to as the main
thread. The primary role of the main thread is to handle the user interface in terms of event
handling and interaction with views in the user interface. Any additional components that are
started within the application will, by default, also run on the main thread.

Any component within an application that performs a time consuming task using the main thread
will cause the entire application to appear to lock up until the task is completed. This will typically
result in the operating system displaying an “Application is unresponsive” warning to the user.
Clearly, this is far from the desired behavior for any application. In such a situation, this can be
avoided simply by launching the task to be performed in a separate thread, allowing the main
thread to continue unhindered with other tasks.

Thread Handlers

Clearly one of the key rules of application development is never to perform time-consuming
operations on the main thread of an application. The second, equally important rule is that the
code within a separate thread must never, under any circumstances, directly update any aspect
of the user interface. Any changes to the user interface must always be performed from within
the main thread. The reason for this is that the Android UI toolkit is not thread-safe. Attempts to
work with non thread-safe code from within multiple threads will typically result in intermittent
problems and unpredictable application behavior.

In the event that the code executing in a thread needs to interact with the user interface, it must
do so by synchronizing with the main UI thread. This is achieved by creating a handler within the
main thread, which, in turn, receives messages from another thread and updates the user
interface accordingly.

REFERENCES

1. G. Blake Meike, Zigurd Mednieks, John Lombardo, Rick Rogers, "Android Application

Development", O’reilly, 1st Edition, 2009.

2. R. Nageswara Rao,"Core JAVA: An Integrated Approach", Dreamtech Press, Wiley

India, 1st Edition, 2015.

3. Herbert Schildt, "Java: The Complete Reference", 9th Edition, 2014.

4. Gary Cornell, Cay S. Horstmann, "Core Java Volume I - Fundamentals", Prentice Hall,

9th Edition, 2012.

5. Cay S. Horstmann," Core Java, Volume II - Advanced Features", Prentice Hall, 11th

Edition, 2019.https://www.besanttechnologies.com/what-is-ios

6. https://www3.ntu.edu.sg/home/ehchua/programming/android/Android_BasicsUI.html

7. https://developer.android.com/guide/components/activities/intro-activities

8. https://livebook.manning.com/book/android-in-action-second-edition/chapter-3/

9. https://www.developer.com/languages/xml/understanding-user-interface-layout-and-ui-

components-for-android-apps/

UNIT - 3

ANDROID INTENT, THREAD AND SERVICES

PART - A

1. Define intent objects and discuss about it.

2. List the classification of intents in android platform?

3. Categorize various services in Android platform?

4. How to declare a service in manifext.xml file/

5. Explain how extras object of intent shall be useful?

PART – B

1. What is intent, fields? List & explain the types of intents?

2. What is implicit intent? List and explain the fields used in implicit intents?

3. Discuss in detail about various intent objects?

4. Discuss in detail how threads are handled in Android programming?

5. Explain in detail how Android services concepts implemented in Android ?

�

��������������

	�
�������������

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�����������������������	�������	������������������	���	���

���������

UNIT 4 RECEIVERS AND MULTIMEDIA TECHNIQUES IN ANDROID

Receiver and Alerts, User Interface Layout, User Interface Events, Multimedia Techniques, Hardware Interfaces.

Android Broadcast Receiver

What is Android Broadcast Receiver?

A broadcast receiver is a dormant component of the Android system. Only an Intent (for which it is registered) can bring it into

action. The Broadcast Receiver’s job is to pass a notification to the user, in case a specific event occurs.

Using a Broadcast Receiver, applications can register for a particular event. Once the event occurs, the system will notify all the

registered applications.

For instance, a Broadcast receiver triggers battery Low notification that you see on your mobile screen.

Other instances caused by a Broadcast Receiver are new friend notifications, new friend feeds, new message etc. on your

Facebook app.

In fact, you see broadcast receivers at work all the time. Notifications like incoming messages, WiFi Activated/Deactivated

message etc. are all real-time announcements of what is happening in the Android system and the applications.

How important is it to implement Broadcast Receivers correctly?

If you wish to create a good Android application, this is of utmost importance. If the broadcast events do not perform their job (of

sending notifications to support the application’s primary task) perfectly, the application would not be intuitive and user friendly.

Registration of Broadcast Receiver

There are two ways to register a Broadcast Receiver; one is Static and the other Dynamic.

1) Static: Use <receiver> tag in your Manifest file. (AndroidManifest.xml)

2) Dynamic: Use Context.registerReceiver () method to dynamically register an instance.

Classes of Broadcasts

The two major classes of broadcasts are:

1) Ordered Broadcasts: These broadcasts are synchronous, and therefore follow a specific order. The order is defined using

android: priority attribute. The receivers with greater priority would receive the broadcast first. In case there are receivers

with same priority levels, the broadcast would not follow an order. Each receiver (when it receives the broadcast) can either pass

on the notification to the next one, or abort the broadcast completely. On abort, the notification would not be passed on to the

receivers next in line.

2) Normal Broadcasts: Normal broadcasts are not orderly. Therefore, the registered receivers often run all at the same time.

This is very e cient, but the Receivers are unable to utilize the results.

Sometimes to avoid system overload, the system delivers the broadcasts one at a time, even in case of normal broadcasts.

However, the receivers still cannot use the results.

Di"erence between Activity Intent and Broadcasting Intent

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

public class

private
private int

@Override
public void

}

You must remember

previous Android

user is aware of

therefore invisible to the

Implementing the Broadcast Receiver

You need to follow

1) Create a subclass

2) Implement

implemented. Whenever

battery low notification, the receiver is registered to Intent.ACTION_BATTERY_LOW event. As soon as the battery level falls b

the defined level, this onReceive() method is called.

Following are the two arguments of the onReceive() method:

Context: This

Intent: The

Security

As the broadcast

and filters for the

Here are a few limitations that might help:

Whenever

android: exported=”false”

you, when

When you

specifying a few

Similarly,

prevented

(PS: As of Android 3.1, the Android system will not receive any external Intent, so the system is comparatively secure

now.)

Prolonged Operations

The Broadcast Receiver object is active only for the duration of onReceive (Context, Intent).

Therefore, if you

receivers.

To show a dialogue, then you should use

If you wish

sendStickyBroadcast (Intent)

Broadcast Receiver Example

In this sample application,

user to the Contacts.

Sample code

public class MyBroadcastReceiver

private NotificationManager mNotificationManager;
private int SIMPLE_NOTFICATION_ID;

@Override
public void onReceive(Context context, Intent intent) {

mNotificationManager = (NotificationManager)
.getSystemService(Context.NOTIFICATION_SERVICE);

Notification notifyDetails =
"Time Reset!", System.currentTimeMillis());

PendingIntent myIntent = PendingIntent.getActivity(context,
new Intent(Intent.ACTION_VIEW, People.CONTENT_URI),

notifyDetails.setLatestEventInfo(context,
"Click on me to view Contacts"

notifyDetails.flags |= Notification.FLAG_AUTO_CANCEL;
notifyDetails.flags |=

mNotificationManager.notify(SIMPLE_NOTFICATION_ID,
Log.i("hisham_debug",

remember that Broadcasting Intents

Android Tutorials). The intent used

of the process. However, in case

therefore invisible to the user.

Implementing the Broadcast Receiver

follow these steps to implement

subclass of Android’s BroadcastReceiver

Implement the onReceive() method: In

Whenever the event for which

battery low notification, the receiver is registered to Intent.ACTION_BATTERY_LOW event. As soon as the battery level falls b

the defined level, this onReceive() method is called.

Following are the two arguments of the onReceive() method:

his is used to access additional

The Intent object is used to

broadcast receivers have a global work

the registered receivers, other

Here are a few limitations that might help:

Whenever you publish a receiver in your

exported=”false”. You might think

when in reality they are not enough.

 send a broadcast, it is possible

specifying a few limitations.

 when you register your receiver

prevented using permissions as well.

Android 3.1, the Android system will not receive any external Intent, so the system is comparatively secure

Prolonged Operations

The Broadcast Receiver object is active only for the duration of onReceive (Context, Intent).

you need to allow an action after

To show a dialogue, then you should use

wish to send a broadcast intent

sendStickyBroadcast (Intent) method.

Broadcast Receiver Example

application, a notification is generated

Contacts. This is how the application
MyBroadcastReceiver extends BroadcastReceiver {

NotificationManager mNotificationManager;
SIMPLE_NOTFICATION_ID;

onReceive(Context context, Intent intent) {

mNotificationManager = (NotificationManager)
.getSystemService(Context.NOTIFICATION_SERVICE);

Notification notifyDetails = new Notification(R.drawable.android,
, System.currentTimeMillis());

PendingIntent myIntent = PendingIntent.getActivity(context,
Intent(Intent.ACTION_VIEW, People.CONTENT_URI),

notifyDetails.setLatestEventInfo(context, "Time has been
"Click on me to view Contacts", myIntent);

notifyDetails.flags |= Notification.FLAG_AUTO_CANCEL;
notifyDetails.flags |= Notification.DEFAULT_SOUND;

mNotificationManager.notify(SIMPLE_NOTFICATION_ID,
, "Sucessfully Changed Time"

Intents are di"erent from the Intents

used to start an Activity makes changes

case of broadcasting intent, the

implement a broadcast receiver:

BroadcastReceiver

In order for the notification

which the receiver is registered

battery low notification, the receiver is registered to Intent.ACTION_BATTERY_LOW event. As soon as the battery level falls b

the defined level, this onReceive() method is called.

Following are the two arguments of the onReceive() method:

additional information, or to start services

 register the receiver.

work-space, security is very important

other applications can abuse

Here are a few limitations that might help:

your application’s manifest,

think that specifying Intent filters

enough.

possible for the external applications

receiver using registerReceiver, any

well.

Android 3.1, the Android system will not receive any external Intent, so the system is comparatively secure

The Broadcast Receiver object is active only for the duration of onReceive (Context, Intent).

after receiving the notification

To show a dialogue, then you should use NotificationManager API

 that would stick around even

method.

generated when you change the

application works:
BroadcastReceiver {

onReceive(Context context, Intent intent) {

context
.getSystemService(Context.NOTIFICATION_SERVICE);

Notification(R.drawable.android,
, System.currentTimeMillis());

PendingIntent myIntent = PendingIntent.getActivity(context, 0,
Intent(Intent.ACTION_VIEW, People.CONTENT_URI), 0);

"Time has been Reset",
myIntent);

notifyDetails.flags |= Notification.FLAG_AUTO_CANCEL;
Notification.DEFAULT_SOUND;

mNotificationManager.notify(SIMPLE_NOTFICATION_ID, notifyDetails);
Time");

Intents used to start an Activity

changes to an operation the user

the operation runs completely

notification to be sent, an onReceive()

registered occurs, onReceive() is called.

battery low notification, the receiver is registered to Intent.ACTION_BATTERY_LOW event. As soon as the battery level falls b

services or activities.

important concern here. If you

abuse them.

manifest, make it unavailable to external

filters while publishing the receiver

applications too to receive them. This

any application may send it broadcasts.

Android 3.1, the Android system will not receive any external Intent, so the system is comparatively secure

The Broadcast Receiver object is active only for the duration of onReceive (Context, Intent).

notification services should be triggered

NotificationManager API

even after the broadcast is complete,

the system time. The notification

Activity or a Service (discussed

user is interacting with, so the

completely in the background, and is

onReceive() method has to be

called. For instance, in case of

battery low notification, the receiver is registered to Intent.ACTION_BATTERY_LOW event. As soon as the battery level falls below

you do not define the limitations

external applications by using

receiver would do the task for

This can be prevented by

broadcasts. This can be

Android 3.1, the Android system will not receive any external Intent, so the system is comparatively secure

The Broadcast Receiver object is active only for the duration of onReceive (Context, Intent).

triggered, and not broadcast

complete, you must use

notification when clicked leads the

(discussed in

the

is

of

elow

limitations

for

Android 3.1, the Android system will not receive any external Intent, so the system is comparatively secure

the

Dialogs

A dialog is a small window that prompts the user to make a decision or enter additional information. A dialog does not fill the screen and is
normally used for modal events that require users to take an action before they can proceed.

Dialog Design

For information about how to design your dialogs, including recommendations for language, read the Dialogs design guide.

The Dialog class is the base class for dialogs, but you should avoid instantiating Dialog directly. Instead, use one of the following

subclasses:

AlertDialog

A dialog that can show a title, up to three buttons, a list of selectable items, or a custom layout.

DatePickerDialog or TimePickerDialog

A dialog with a pre-defined UI that allows the user to select a date or time.

Caution: Android includes another dialog class called ProgressDialog that shows a dialog with a progress bar. This widget is

deprecated because it prevents users from interacting with the app while progress is being displayed. If you need to indicate loading or
indeterminate progress, you should follow the design guidelines for Progress & Activity and use a ProgressBar in your layout, instead of

using ProgressDialog.

These classes define the style and structure for your dialog, but you should use a DialogFragment as a container for your dialog.

The DialogFragment class provides all the controls you need to create your dialog and manage its appearance, instead of calling

methods on the Dialog object.

Using DialogFragment to manage the dialog ensures that it correctly handles lifecycle events such as when the user presses

the Back button or rotates the screen. The DialogFragment class also allows you to reuse the dialog's UI as an embeddable component

in a larger UI, just like a traditional Fragment (such as when you want the dialog UI to appear differently on large and small screens).

The following sections in this guide describe how to use a DialogFragment in combination with an AlertDialog object. If you'd like to

create a date or time picker, you should instead read the Pickers guide.

Note: Because the DialogFragment class was originally added with Android 3.0 (API level 11), this document describes how to use

the DialogFragment class that's provided with the Support Library. By adding this library to your app, you can

use DialogFragment and a variety of other APIs on devices running Android 1.6 or higher. If the minimum version your app supports is

API level 11 or higher, then you can use the framework version of DialogFragment, but be aware that the links in this document are for

the support library APIs. When using the support library, be sure that you import android.support.v4.app.DialogFragment class

and not android.app.DialogFragment.

Creating a Dialog Fragment

You can accomplish a wide variety of dialog designs—including custom layouts and those described in the Dialogs design guide—by

extending DialogFragment and creating a AlertDialog in the onCreateDialog() callback method.

For example, here's a basic AlertDialog that's managed within a DialogFragment:

KOTLINJAVA

class FireMissilesDialogFragment : DialogFragment() {

 override fun onCreateDialog(savedInstanceState: Bundle): Dialog {

 return activity?.let {

 // Use the Builder class for convenient dialog construction

 val builder = AlertDialog.Builder(it)

 builder.setMessage(R.string.dialog_fire_missiles)

 .setPositiveButton(R.string.fire,

 DialogInterface.OnClickListener { dialog, id ->

 // FIRE ZE MISSILES!

 })

 .setNegativeButton(R.string.cancel,

 DialogInterface.OnClickListener { dialog, id ->

 // User cancelled the dialog

 })

 // Create the AlertDialog object and return it

 builder.create()

 } ?: throw IllegalStateException("Activity cannot be null")

 }

}

Figure 1. A dialog with a message and two action buttons.

Now, when you create an instance of this class and call show() on that object, the dialog appears as shown in figure 1.

The next section describes more about using the AlertDialog.Builder APIs to create the dialog.

Depending on how complex your dialog is, you can implement a variety of other callback methods in the DialogFragment, including all

the basic fragment lifecycle methods.

Building an Alert Dialog

The AlertDialog class allows you to build a variety of dialog designs and is often the only dialog class you'll need. As shown in figure 2,

there are three regions of an alert dialog:

Figure 2. The layout of a dialog.

1. Title

This is optional and should be used only when the content area is occupied by a detailed message, a list, or custom layout. If you need to
state a simple message or question (such as the dialog in figure 1), you don't need a title.

2. Content area

This can display a message, a list, or other custom layout.

3. Action buttons

There should be no more than three action buttons in a dialog.

The AlertDialog.Builder class provides APIs that allow you to create an AlertDialog with these kinds of content, including a

custom layout.

Layouts Part of Android Jetpack.

A layout defines the structure for a user interface in your app, such as in an activity. All elements in the layout are built using a hierarchy

of View and ViewGroup objects. A View usually draws something the user can see and interact with. Whereas a ViewGroup is an

invisible container that defines the layout structure for View and other ViewGroup objects, as shown in figure 1.

Figure 1. Illustration of a view hierarchy, which defines a UI layout

The View objects are usually called "widgets" and can be one of many subclasses, such as Button or TextView.

The ViewGroup objects are usually called "layouts" can be one of many types that provide a different layout structure, such

as LinearLayout or ConstraintLayout .

You can declare a layout in two ways:

• Declare UI elements in XML. Android provides a straightforward XML vocabulary that corresponds to the View classes and subclasses,
such as those for widgets and layouts.

You can also use Android Studio's Layout Editor to build your XML layout using a drag-and-drop interface.

• Instantiate layout elements at runtime. Your app can create View and ViewGroup objects (and manipulate their properties)
programmatically.

Declaring your UI in XML allows you to separate the presentation of your app from the code that controls its behavior. Using XML files also
makes it easy to provide different layouts for different screen sizes and orientations (discussed further in Supporting Different Screen
Sizes).

The Android framework gives you the flexibility to use either or both of these methods to build your app's UI. For example, you can declare
your app's default layouts in XML, and then modify the layout at runtime.

Tip:To debug your layout at runtime, use the Layout Inspector tool.

Write the XML

Using Android's XML vocabulary, you can quickly design UI layouts and the screen elements they contain, in the same way you create
web pages in HTML — with a series of nested elements.

Each layout file must contain exactly one root element, which must be a View or ViewGroup object. Once you've defined the root element,
you can add additional layout objects or widgets as child elements to gradually build a View hierarchy that defines your layout. For

example, here's an XML layout that uses a vertical LinearLayout to hold a TextView and a Button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >
 <TextView android:id="@+id/text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello, I am a TextView" />
 <Button android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello, I am a Button" />
</LinearLayout>

After you've declared your layout in XML, save the file with the .xml extension, in your Android project's res/layout/ directory, so it will

properly compile.

More information about the syntax for a layout XML file is available in the Layout Resources document.

Load the XML Resource

When you compile your app, each XML layout file is compiled into a View resource. You should load the layout resource from your app

code, in your Activity.onCreate() callback implementation. Do so by calling setContentView(), passing it the reference to your

layout resource in the form of: R.layout.layout_file_name. For example, if your XML layout is saved as main_layout.xml, you

would load it for your Activity like so:

KOTLINJAVA
fun onCreate(savedInstanceState: Bundle) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.main_layout)
}

The onCreate() callback method in your Activity is called by the Android framework when your Activity is launched (see the discussion

about lifecycles, in the Activities document).

Attributes

Every View and ViewGroup object supports their own variety of XML attributes. Some attributes are specific to a View object (for example,

TextView supports the textSize attribute), but these attributes are also inherited by any View objects that may extend this class. Some

are common to all View objects, because they are inherited from the root View class (like the id attribute). And, other attributes are

considered "layout parameters," which are attributes that describe certain layout orientations of the View object, as defined by that object's
parent ViewGroup object.

ID

Any View object may have an integer ID associated with it, to uniquely identify the View within the tree. When the app is compiled, this ID

is referenced as an integer, but the ID is typically assigned in the layout XML file as a string, in the id attribute. This is an XML attribute

common to all View objects (defined by the View class) and you will use it very often. The syntax for an ID, inside an XML tag is:

android:id="@+id/my_button"

The at-symbol (@) at the beginning of the string indicates that the XML parser should parse and expand the rest of the ID string and
identify it as an ID resource. The plus-symbol (+) means that this is a new resource name that must be created and added to our resources

(in the R.java file). There are a number of other ID resources that are offered by the Android framework. When referencing an Android

resource ID, you do not need the plus-symbol, but must add the android package namespace, like so:

android:id="@android:id/empty"

With the android package namespace in place, we're now referencing an ID from the android.R resources class, rather than the local

resources class.

In order to create views and reference them from the app, a common pattern is to:

1. Define a view/widget in the layout file and assign it a unique ID:

<Button android:id="@+id/my_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/my_button_text"/>

2. Then create an instance of the view object and capture it from the layout (typically in the onCreate() method):

KOTLINJAVA
val myButton: Button = findViewById(R.id.my_button)

Defining IDs for view objects is important when creating a RelativeLayout. In a relative layout, sibling views can define their layout

relative to another sibling view, which is referenced by the unique ID.

An ID need not be unique throughout the entire tree, but it should be unique within the part of the tree you are searching (which may often
be the entire tree, so it's best to be completely unique when possible).

Note: With Android Studio 3.6 and higher, the view binding feature can replace findViewById() calls and provides compile-time type

safety for code that interacts with views. Consider using view binding instead of findViewById().

Layout Parameters

XML layout attributes named layout_something define layout parameters for the View that are appropriate for the ViewGroup in which it

resides.

Every ViewGroup class implements a nested class that extends ViewGroup.LayoutParams. This subclass contains property types that

define the size and position for each child view, as appropriate for the view group. As you can see in figure 2, the parent view group
defines layout parameters for each child view (including the child view group)

Figure 2. Visualization of a view hierarchy with layout parameters associated with each view

Note that every LayoutParams subclass has its own syntax for setting values. Each child element must define LayoutParams that are
appropriate for its parent, though it may also define different LayoutParams for its own children.

All view groups include a width and height (layout_width and layout_height), and each view is required to define them. Many

LayoutParams also include optional margins and borders.

You can specify width and height with exact measurements, though you probably won't want to do this often. More often, you will use one
of these constants to set the width or height:

• wrap_content tells your view to size itself to the dimensions required by its content.

• match_parent tells your view to become as big as its parent view group will allow.

In general, specifying a layout width and height using absolute units such as pixels is not recommended. Instead, using relative
measurements such as density-independent pixel units (dp), wrap_content, or match_parent, is a better approach, because it helps
ensure that your app will display properly across a variety of device screen sizes. The accepted measurement types are defined in
the Available Resources document.

Layout Position

The geometry of a view is that of a rectangle. A view has a location, expressed as a pair of left and top coordinates, and two dimensions,
expressed as a width and a height. The unit for location and dimensions is the pixel.

It is possible to retrieve the location of a view by invoking the methods getLeft() and getTop(). The former returns the left, or X,

coordinate of the rectangle representing the view. The latter returns the top, or Y, coordinate of the rectangle representing the view. These

methods both return the location of the view relative to its parent. For instance, when getLeft() returns 20, that means the view is

located 20 pixels to the right of the left edge of its direct parent.

In addition, several convenience methods are offered to avoid unnecessary computations, namely getRight() and getBottom().

These methods return the coordinates of the right and bottom edges of the rectangle representing the view. For instance,

calling getRight() is similar to the following computation: getLeft() + getWidth().

Size, Padding and Margins

The size of a view is expressed with a width and a height. A view actually possesses two pairs of width and height values.

The first pair is known as measured width and measured height. These dimensions define how big a view wants to be within its parent. The

measured dimensions can be obtained by calling getMeasuredWidth() and getMeasuredHeight().

The second pair is simply known as width and height, or sometimes drawing width and drawing height. These dimensions define the actual
size of the view on screen, at drawing time and after layout. These values may, but do not have to, be different from the measured width

and height. The width and height can be obtained by calling getWidth() and getHeight().

To measure its dimensions, a view takes into account its padding. The padding is expressed in pixels for the left, top, right and bottom
parts of the view. Padding can be used to offset the content of the view by a specific number of pixels. For instance, a left padding of 2 will

push the view's content by 2 pixels to the right of the left edge. Padding can be set using the setPadding(int, int, int,

int) method and queried by calling getPaddingLeft(), getPaddingTop(), getPaddingRight() and getPaddingBottom().

Even though a view can define a padding, it does not provide any support for margins. However, view groups provide such a support.

Refer to ViewGroup and ViewGroup.MarginLayoutParams for further information.

For more information about dimensions, see Dimension Values.

Common Layouts

Each subclass of the ViewGroup class provides a unique way to display the views you nest within it. Below are some of the more common

layout types that are built into the Android platform.

Note: Although you can nest one or more layouts within another layout to achieve your UI design, you should strive to keep your layout
hierarchy as shallow as possible. Your layout draws faster if it has fewer nested layouts (a wide view hierarchy is better than a deep view
hierarchy).

Building Layouts with an Adapter

When the content for your layout is dynamic or not pre-determined, you can use a layout that subclasses AdapterView to populate the

layout with views at runtime. A subclass of the AdapterView class uses an Adapter to bind data to its layout. The Adapter behaves as

a middleman between the data source and the AdapterView layout—the Adapter retrieves the data (from a source such as an array or

a database query) and converts each entry into a view that can be added into the AdapterView layout.

Common layouts backed by an adapter include:

Filling an adapter view with data

You can populate an AdapterView such as ListView or GridView by binding the AdapterView instance to an Adapter, which

retrieves data from an external source and creates a View that represents each data entry.

Android provides several subclasses of Adapter that are useful for retrieving different kinds of data and building views for

an AdapterView. The two most common adapters are:

ArrayAdapter

Use this adapter when your data source is an array. By default, ArrayAdapter creates a view for each array item by

calling toString() on each item and placing the contents in a TextView.

For example, if you have an array of strings you want to display in a ListView, initialize a new ArrayAdapter using a constructor

to specify the layout for each string and the string array:

KOTLINJAVA
val adapter = ArrayAdapter<String>(this, android.R.layout.simple_list_item_1, myStringArray)

The arguments for this constructor are:

• Your app Context

• The layout that contains a TextView for each string in the array

• The string array

Then simply call setAdapter() on your ListView:

KOTLINJAVA
val listView: ListView = findViewById(R.id.listview)
listView.adapter = adapter

To customize the appearance of each item you can override the toString() method for the objects in your array. Or, to create a

view for each item that's something other than a TextView (for example, if you want an ImageView for each array item), extend

the ArrayAdapter class and override getView() to return the type of view you want for each item.

SimpleCursorAdapter

Use this adapter when your data comes from a Cursor. When using SimpleCursorAdapter, you must specify a layout to use for

each row in the Cursor and which columns in the Cursor should be inserted into which views of the layout. For example, if you

want to create a list of people's names and phone numbers, you can perform a query that returns a Cursor containing a row for

each person and columns for the names and numbers. You then create a string array specifying which columns from

the Cursor you want in the layout for each result and an integer array specifying the corresponding views that each column should

be placed:

KOTLINJAVA
val fromColumns = arrayOf(ContactsContract.Data.DISPLAY_NAME,
 ContactsContract.CommonDataKinds.Phone.NUMBER)
val toViews = intArrayOf(R.id.display_name, R.id.phone_number)

When you instantiate the SimpleCursorAdapter, pass the layout to use for each result, the Cursor containing the results, and

these two arrays:

KOTLINJAVA
val adapter = SimpleCursorAdapter(this,
 R.layout.person_name_and_number, cursor, fromColumns, toViews, 0)
val listView = getListView()
listView.adapter = adapter

The SimpleCursorAdapter then creates a view for each row in the Cursor using the provided layout by inserting

each fromColumns item into the corresponding toViews view.

.

If, during the course of your app's life, you change the underlying data that is read by your adapter, you should

call notifyDataSetChanged(). This will notify the attached view that the data has been changed and it should refresh itself.

Handling click events

You can respond to click events on each item in an AdapterView by implementing

the AdapterView.OnItemClickListener interface. For example:

KOTLINJAVA
listView.onItemClickListener = AdapterView.OnItemClickListener { parent, view, position, id ->
 // Do something in response to the click
}

Supported media formats

As an application developer, you can use any media codec that is available on any Android-powered device, including those provided by
the Android platform and those that are device-specific. However, it is a best practice to use media encoding profiles that are device-
agnostic.

The tables below describe the media format support built into the Android platform. Codecs that are not guaranteed to be available on all
Android platform versions are noted in parentheses, for example: (Android 3.0+). Note that any given mobile device might support other
formats or file types that are not listed in the table.

REFERENCES

1. G. Blake Meike, Zigurd Mednieks, John Lombardo, Rick Rogers, "Android Application

Development", O’reilly, 1st Edition, 2009.

2. R. Nageswara Rao,"Core JAVA: An Integrated Approach", Dreamtech Press, Wiley

India, 1st Edition, 2015.

3. Herbert Schildt, "Java: The Complete Reference", 9th Edition, 2014.

4. Cay S. Horstmann," Core Java, Volume II - Advanced Features", Prentice Hall, 11th

Edition, 2019.https://www.besanttechnologies.com/what-is-ios

5. https://www.edureka.co/blog/android-tutorials-broadcast-receivers

6. https://developer.android.com/guide/components/broadcasts

7. https://www.journaldev.com/10356/android-broadcastreceiver-example-tutorial

8. https://www.techotopia.com/index.php/Broadcast_Intents_and_Broadcast_Receivers_in

_Android_Studio

UNIT - 4

RECEIVERS AND MULTIMEDIA TECHNIQUES IN ANDROID

PART – A

1. What do you understand from User Interface ?Discuss its hierarchy.

2. Discuss about various types of Layouts used in Android?

3. Enumerate about absolute layout in Android?

4. List the various multimedia events used in Android?

PART - B

1. Write short note on

i) Frame Layout

ii) Table Layout

iii) Relative Layout

2. Discuss in detail about the multimedia techniques available in Android platform?

3. Write in detail the hardware interfaces procedures and concepts in Android Platform?

4. Discuss in detail the handling of Alert Notification sequences in Android ?

�

��������������

	�
�������������

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

��������������������������	���	������������

UNIT 5 CONNECTIVITY IN ANDROID

Connecting Gyro Sensor and Accelerometer -Wi-Fi and Bluetooth Connectivity

with Mobile applications.

Android - Wi-Fi
Android allows applications to access to view the access the state of the wireless
connections at very low level. Application can access almost all the information of a wifi
connection.

The information that an application can access includes connected network's link
speed,IP address, negotiation state, other networks information. Applications can also
scan, add, save, terminate and initiate Wi-Fi connections.

Android provides WifiManager API to manage all aspects of WIFI connectivity. We can
instantiate this class by calling getSystemService method. Its syntax is given below −

WifiManager mainWifiObj;
mainWifiObj = (WifiManager) getSystemService(Context.WIFI_SERVICE);

In order to scan a list of wireless networks, you also need to register your
BroadcastReceiver. It can be registered using registerReceiver method with argument
of your receiver class object. Its syntax is given below −

class WifiScanReceiver extends BroadcastReceiver {
 public void onReceive(Context c, Intent intent) {
 }
}

WifiScanReceiver wifiReciever = new WifiScanReceiver();
registerReceiver(wifiReciever, new
IntentFilter(WifiManager.SCAN_RESULTS_AVAILABLE_ACTION));

The wifi scan can be start by calling the startScan method of the WifiManager class.
This method returns a list of ScanResult objects. You can access any object by calling
the get method of list. Its syntax is given below −

List<ScanResult> wifiScanList = mainWifiObj.getScanResults();
String data = wifiScanList.get(0).toString();

Apart from just Scanning, you can have more control over your WIFI by using the
methods defined in WifiManager class. They are listed as follows −

Sr.No Method & Description

1
addNetwork(WifiConfiguration config)

This method add a new network description to the set of configured networks.

2
createWifiLock(String tag)

This method creates a new WifiLock.

3
disconnect()

This method disassociate from the currently active access point.

4
enableNetwork(int netId, boolean disableOthers)

This method allow a previously configured network to be associated with.

5
getWifiState()

This method gets the Wi-Fi enabled state

6
isWifiEnabled()

This method return whether Wi-Fi is enabled or disabled.

7
setWifiEnabled(boolean enabled)

This method enable or disable Wi-Fi.

8
updateNetwork(WifiConfiguration config)

This method update the network description of an existing configured network.

Example

Here is an example demonstrating the use of WIFI. It creates a basic application that
open your wifi and close your wifi

To experiment with this example, you need to run this on an actual device on which wifi
is turned on.

Steps Description

1 You will use Android studio to create an Android application under a package

com.example.sairamkrishna.myapplication.

2 Modify src/MainActivity.java file to add WebView code.

3 Modify the res/layout/activity_main to add respective XML components

4 Modify the AndroidManifest.xml to add the necessary permissions

5 Run the application and choose a running android device and install the application on it and

verify the results.

Following is the content of the modified main activity file src/MainActivity.java.

package com.example.sairamkrishna.myapplication;

import android.net.wifi.WifiManager;
import android.os.Bundle;
import android.app.Activity;
import android.content.Context;

import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class MainActivity extends Activity {
 Button enableButton,disableButton;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 enableButton=(Button)findViewById(R.id.button1);
 disableButton=(Button)findViewById(R.id.button2);

 enableButton.setOnClickListener(new OnClickListener(){
 public void onClick(View v){
 WifiManager wifi = (WifiManager)
getSystemService(Context.WIFI_SERVICE);
 wifi.setWifiEnabled(true);
 }
 });

 disableButton.setOnClickListener(new OnClickListener(){
 public void onClick(View v){
 WifiManager wifi = (WifiManager)
getSystemService(Context.WIFI_SERVICE);
 wifi.setWifiEnabled(false);
 }
 });
 }
}

Following is the modified content of the xml res/layout/activity_main.xml.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
tools:context=".MainActivity">

 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

 android:id="@+id/imageView"
 android:src="@drawable/abc"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true" />

 <Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginLeft="76dp"
 android:text="Enable Wifi"
 android:layout_centerVertical="true"
 android:layout_alignEnd="@+id/imageView" />

 <Button
 android:id="@+id/button2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Disable Wifi"
 android:layout_marginBottom="93dp"
 android:layout_alignParentBottom="true"
 android:layout_alignStart="@+id/imageView" />

</RelativeLayout>

Following is the content of AndroidManifest.xml file.

<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.sairamkrishna.myapplication" >
 <uses-permission
android:name="android.permission.ACCESS_WIFI_STATE" />
 <uses-permission
android:name="android.permission.CHANGE_WIFI_STATE" />

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >

 <activity
 android:name=".MainActivity"
 android:label="@string/app_name" >

 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category
android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>
</manifest>

Let's try to run your application. I assume you have connected your actual Android
Mobile device with your computer. To run the app from Android studio, open one of
your project's activity files and click Run
application, Android studio will display following window to select an option where you
want to run your Android application.

Select your mobile device as an option and It will shows the following image

filter>

Let's try to run your application. I assume you have connected your actual Android
your computer. To run the app from Android studio, open one of

your project's activity files and click Run icon from the toolbar. Before starting your
application, Android studio will display following window to select an option where you

r Android application.

Select your mobile device as an option and It will shows the following image

Let's try to run your application. I assume you have connected your actual Android
your computer. To run the app from Android studio, open one of

icon from the toolbar. Before starting your
application, Android studio will display following window to select an option where you

Select your mobile device as an option and It will shows the following image−

Now click on disable wifi button.then the sample output should be like this –

Android - Bluetooth
Among many ways, Bluetooth is a way to send or receive data between two different
devices. Android platform includes support for the Bluetooth framework that allows a
device to wirelessly exchange data with other Bluetooth devices.

Android provides Bluetooth API to perform these different operations.

• Scan for other Bluetooth devices

• Get a list of paired devices

• Connect to other devices through service discovery

Android provides BluetoothAdapter class to communicate with Bluetooth. Create an
object of this calling by calling the static method getDefaultAdapter(). Its syntax is given
below.

private BluetoothAdapter BA;
BA = BluetoothAdapter.getDefaultAdapter();

In order to enable the Bluetooth of your device, call the intent with the following
Bluetooth constant ACTION_REQUEST_ENABLE. Its syntax is.

Intent turnOn = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);
startActivityForResult(turnOn, 0);

Apart from this constant, there are other constants provided the API , that supports
different tasks. They are listed below.

Sr.No Constant & description

1 ACTION_REQUEST_DISCOVERABLE

This constant is used for turn on discovering of bluetooth

2 ACTION_STATE_CHANGED

This constant will notify that Bluetooth state has been changed

3 ACTION_FOUND

This constant is used for receiving information about each device that is discovered

Once you enable the Bluetooth , you can get a list of paired devices by calling
getBondedDevices() method. It returns a set of bluetooth devices. Its syntax is.

private Set<BluetoothDevice>pairedDevices;
pairedDevices = BA.getBondedDevices();

Apart form the parried Devices , there are other methods in the API that gives more
control over Blueetooth. They are listed below.

Sr.No Method & description

1 enable()

This method enables the adapter if not enabled

2 isEnabled()

This method returns true if adapter is enabled

3 disable()

This method disables the adapter

4 getName()

This method returns the name of the Bluetooth adapter

5 setName(String name)

This method changes the Bluetooth name

6 getState()

This method returns the current state of the Bluetooth Adapter.

7 startDiscovery()

This method starts the discovery process of the Bluetooth for 120 seconds.

Example

This example provides demonstration of BluetoothAdapter class to manipulate
Bluetooth and show list of paired devices by the Bluetooth.

To experiment with this example , you need to run this on an actual device.

Steps Description

1 You will use Android studio to create an Android application a package

com.example.sairamkrishna.myapplication.

2 Modify src/MainActivity.java file to add the code

3 Modify layout XML file res/layout/activity_main.xml add any GUI component if required.

4 Modify AndroidManifest.xml to add necessary permissions.

5 Run the application and choose a running android device and install the application on it and

verify the results.

Here is the content of src/MainActivity.java

package com.example.sairamkrishna.myapplication;

import android.app.Activity;
import android.bluetooth.BluetoothAdapter;
import android.bluetooth.BluetoothDevice;

import android.content.Intent;
import android.os.Bundle;
import android.view.View;

import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.ListView;

import android.widget.Toast;
import java.util.ArrayList;
import java.util.Set;

public class MainActivity extends Activity {
 Button b1,b2,b3,b4;
 private BluetoothAdapter BA;
 private Set<BluetoothDevice>pairedDevices;
 ListView lv;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 b1 = (Button) findViewById(R.id.button);
 b2=(Button)findViewById(R.id.button2);
 b3=(Button)findViewById(R.id.button3);
 b4=(Button)findViewById(R.id.button4);

 BA = BluetoothAdapter.getDefaultAdapter();
 lv = (ListView)findViewById(R.id.listView);
 }

 public void on(View v){
 if (!BA.isEnabled()) {
 Intent turnOn = new
Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);
 startActivityForResult(turnOn, 0);
 Toast.makeText(getApplicationContext(), "Turned
on",Toast.LENGTH_LONG).show();
 } else {
 Toast.makeText(getApplicationContext(), "Already on",
Toast.LENGTH_LONG).show();
 }
 }

 public void off(View v){
 BA.disable();
 Toast.makeText(getApplicationContext(), "Turned off"
,Toast.LENGTH_LONG).show();
 }

 public void visible(View v){
 Intent getVisible = new
Intent(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE);
 startActivityForResult(getVisible, 0);

 }

 public void list(View v){
 pairedDevices = BA.getBondedDevices();

 ArrayList list = new ArrayList();

 for(BluetoothDevice bt : pairedDevices)
list.add(bt.getName());
 Toast.makeText(getApplicationContext(), "Showing Paired
Devices",Toast.LENGTH_SHORT).show();

 final ArrayAdapter adapter = new
ArrayAdapter(this,android.R.layout.simple_list_item_1, list);

 lv.setAdapter(adapter);
 }
}

Here is the content of activity_main.xml

Here abc indicates about logo of tutorialspoint.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".MainActivity"
 android:transitionGroup="true">

 <TextView android:text="Bluetooth Example"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/textview"
 android:textSize="35dp"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Tutorials point"

 android:id="@+id/textView"
 android:layout_below="@+id/textview"
 android:layout_centerHorizontal="true"
 android:textColor="#ff7aff24"
 android:textSize="35dp" />

 <ImageView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/imageView"
 android:src="@drawable/abc"
 android:layout_below="@+id/textView"
 android:layout_centerHorizontal="true"
 android:theme="@style/Base.TextAppearance.AppCompat" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Turn On"
 android:id="@+id/button"
 android:layout_below="@+id/imageView"
 android:layout_toStartOf="@+id/imageView"
 android:layout_toLeftOf="@+id/imageView"
 android:clickable="true"
 android:onClick="on" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Get visible"
 android:onClick="visible"
 android:id="@+id/button2"
 android:layout_alignBottom="@+id/button"
 android:layout_centerHorizontal="true" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="List devices"
 android:onClick="list"
 android:id="@+id/button3"
 android:layout_below="@+id/imageView"
 android:layout_toRightOf="@+id/imageView"
 android:layout_toEndOf="@+id/imageView" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="turn off"

 android:onClick="off"
 android:id="@+id/button4"
 android:layout_below="@+id/button"
 android:layout_alignParentLeft="true"
 android:layout_alignParentStart="true" />

 <ListView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/listView"
 android:layout_alignParentBottom="true"
 android:layout_alignLeft="@+id/button"
 android:layout_alignStart="@+id/button"
 android:layout_below="@+id/textView2" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Paired devices:"
 android:id="@+id/textView2"
 android:textColor="#ff34ff06"
 android:textSize="25dp"
 android:layout_below="@+id/button4"
 android:layout_alignLeft="@+id/listView"
 android:layout_alignStart="@+id/listView" />

</RelativeLayout>

Here is the content of Strings.xml

<resources>
 <string name="app_name">My Application</string>
</resources>

Here is the content of AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.sairamkrishna.myapplication" >
 <uses-permission android:name="android.permission.BLUETOOTH"/>
 <uses-permission
android:name="android.permission.BLUETOOTH_ADMIN"/>

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >

 <activity
 android:name=".MainActivity"
 android:label=

 <intent-filter>
 <action android:name
 <category
android:name="android.intent.category.LAUNCHER"
 </intent-filter>

 </activity>

 </application>
</manifest>

Let's try to run your application. I assume you have connected your ac
Mobile device with your computer. To run the app from Android studio, open one of
your project's activity files and click Run
not be turned on then, it will ask your permission to enable the Bluetooth.

Now just select the Get Visible button to turn on your visibility. The

following screen would appear asking your permission to turn on discovery

".MainActivity"
="@string/app_name" >

filter>
android:name="android.intent.action.MAIN"

"android.intent.category.LAUNCHER" />
filter>

Let's try to run your application. I assume you have connected your ac
Mobile device with your computer. To run the app from Android studio, open one of
your project's activity files and click Run icon from the tool bar.If your Bluetooth will
not be turned on then, it will ask your permission to enable the Bluetooth.

Now just select the Get Visible button to turn on your visibility. The

following screen would appear asking your permission to turn on discovery

for 120 seconds.

ntent.action.MAIN" />

Let's try to run your application. I assume you have connected your actual Android
Mobile device with your computer. To run the app from Android studio, open one of

your Bluetooth will
not be turned on then, it will ask your permission to enable the Bluetooth.

Now just select the Get Visible button to turn on your visibility. The

following screen would appear asking your permission to turn on discovery

Now just select the List Devices option. It will list down the paired devices

in the list view. In my case , I have only one paired device. It is shown

below.

Now just select the Turn off button to switch off the Bluetooth. Following message would

appear when you switch off the bluetooth indicating the successful switching off of

Bluetooth.

REFERENCES

1. G. Blake Meike, Zigurd Mednieks, John Lombardo, Rick Rogers, "Android Application

Development", O’reilly, 1st Edition, 2009.

2. Herbert Schildt, "Java: The Complete Reference", 9th Edition, 2014.

3. Gary Cornell, Cay S. Horstmann, "Core Java Volume I - Fundamentals", Prentice Hall,

9th Edition, 2012.

4. Cay S. Horstmann," Core Java, Volume II - Advanced Features", Prentice Hall, 11th

Edition, 2019.https://www.besanttechnologies.com/what-is-ios

5. https://developer.android.com/guide/topics/sensors/sensors_overview

6. https://subscription.packtpub.com/book/application_development/9781785285509/1/ch01

lvl1sec10/components-of-the-sensor-framework

7. https://stuff.mit.edu/afs/sipb/project/android/docs/guide/topics/sensors/sensors_overview.

html

8. https://blog.mindorks.com/using-android-sensors-android-tutorial

UNIT - 5

CONNECTIVITY IN ANDROID

PART –A

1. Classify the various sensors availabilities in android platform?

2. Prepare a notes on the concepts of WIFI device in Android platform?

3. Explain the basic concepts of Bluetooth technology used in Android?

4. Write short note on

i) Gyroscope

ii) Accelerometer

PART - B

1. Discuss the concepts and procedure for extracting Accelerometer data from Android Mobile devices?

2. Explain the concepts and procedure for extracting Gyroscope data from Android Mobile devices?

3. With a code explain how to establish and communicate Bluetooth connectivity in Android mobile environment?

4. Explain the concepts of implementing WiFi services in Android devices with neat diagram?

