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UNIT I    INTRODUCTION TO DEEP LEARNING  

Introduction to machine learning - Linear models (SVMs and Perceptron’s, logistic 

regression)- Introduction to Neural Nets: What are a shallow network computes- Training a network: 

loss functions, back propagation and stochastic gradient descent- Neural networks as universal 

function approximates. 

 

1 Definition of Machine Learning [ML]: 

         Well posed learning problem: "A computer program is said to learn from experience E with 

respect to some class of tasks T and performance measure P, if its performance at tasks in T, as 

measured by P, improves with experience E."(Tom Michel) 

Machine Learning (ML) is an algorithm that works on consequently through experience and 

by the utilization of information. It is viewed as a piece of AI. ML calculations assemble a model 

dependent on example information (Data), known as "training Data or information", to settle on 

forecasts or choices without being unequivocally customized to do as such. AI calculations are 

utilized in a wide assortment of utilizations, for example, in medication, email sifting, discourse 

acknowledgment, and Computer vision, where it is troublesome or impractical to foster customary 

models to play out the needed tasks. 

ML includes PCs finding how they can perform tasks without being expressly modified to do 

as such. It includes Systems that can perform tasks without being expressly modified to do as such. 

It includes models gaining data so they can do certain specific applications. For basic undertakings 

appointed to Models, it is feasible to models advising the machine how to execute all means needed 

to tackle the current issue; on the systems part, no learning is required. For further developed 

undertakings, it tends to be trying for a human to physically make the required calculations. For more 

advanced tasks, it can be challenging for a human to manually create the needed algorithms. In 

practice, it can turn out to be more effective to help the machine develop its own algorithm, rather 

than having human programmers specify every needed step. 

The term machine learning was coined in 1959 by Arthur Samuel, an American IBMer and 
pioneer in the field of computer gaming and artificial intelligence. 

1.1 Fundamentals of ANN  

Neural computing is an information processing paradigm, inspired by biological system, 

composed of a large number of highly interconnected processing elements(neurons) working in 

unison to solve specific problems. 

Artificial neural networks (ANNs), like people, learn by example. An ANN is configured for 

a specific application, such as pattern recognition or data classification, through a learning process. 

Learning in biological systems involves adjustments to the synaptic connections that exist between 

the neurons. This is true of ANNs as well.  

1.2 The Biological Neuron 

The human brain consists of a large number, more than a billion of neural cells that process 

information. Each cell works like a simple processor. The massive interaction between all cells and 
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their parallel processing only makes the brain’s abilities possible. Figure 1 represents a human 

biological nervous unit. Various parts of biological neural network(BNN) is marked in Figure 1. 

 

Figure 1: Biological Neural Network 

Dendrites are branching fibres that extend from the cell body or soma. 

Soma or cell body of a neuron contains the nucleus and other structures, support chemical 

processing and production of neurotransmitters. 

Axon is a singular fiber carries information away from the soma to the synaptic sites of other 

neurons (dendrites ans somas), muscels, or glands. 

Axon hillock is the site of summation for incoming information. At any moment, the 

collective influence of all neurons that conduct impulses to a given neuron will determine whether or 

n ot an action potential will be initiated at the axon hillock and propagated along the axon. 

Myelin sheath consists of fat-containing cells that insulate the axon from electrical activity. 

This insulation acts to increase the rate of transmission of signals. A gap exists between each myelin 

sheath cell along the axon. Since fat inhibits the propagation of electricity, the signals jump from one 

gap to the next. 

Nodes of Ranvier are the gaps (about 1 μm) between myelin sheath cells. Since fat serves as 

a good insulator, the myelin sheaths speed the rate of transmission of an electrical impulse along the 

axon. 

Synapse is the point of connection between two neurons or a neuron and a muscle or a gland. 

Electrochemical communication between neurons take place at these junctions. 

Terminal buttons of a neuron are the small knobs at the end of an axon that release chemicals 

called neurotransmitters. 
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Information flow in a neural cell 

The input/output and the propagation of information are shown below. 

1.3. Artificial neuron model 

An artificial neuron is a mathematical function conceived as a simple model of a real (biological) 

neuron. 

 The McCulloch-Pitts Neuron 

This is a simplified model of real neurons, known as a Threshold Logic Unit. 

 A set of input connections brings in activations from other neuron. 

 A processing unit sums the inputs, and then applies a non-linear activation function (i.e. 

squashing/transfer/threshold function). 

 An output line transmits the result to other neurons. 

1.3.1 Basic Elements of ANN: 

 Neuron consists of three basic components –weights, thresholds and a  single activation 

function.  An Artificial neural network(ANN) model based on the biological neural sytems is shown 

in figure 2. 

 

                      

                            Figure 2: Basic Elements of Artificial Neural Network 

 

1.4 Different Learning Rules 

 A brief classification of Different Learning algorithms is depicted in figure 3. 

 Training: It is the process in which the network is taught to change its weight 

and bias. 

 Learning: It is the internal process of training where the artificial neural system 

learns to update/adapt the weights and biases. 
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         Different Training /Learning procedure available in ANN are 

 Supervised learning  

 Unsupervised learning 

 Reinforced learning 

 Hebbian learning 

 Gradient descent learning 

 Competitive learning 

 Stochastic learning 

1.4.1. Requirements of Learning Laws: 

• Learning Law should lead to convergence of weights 

• Learning or training time should be less for capturing the information from the training 

pairs 

• Learning should use the local information 

• Learning process should able to capture the complex non linear mapping available 

between the input & output pairs  

• Learning should able to capture as many as patterns as possible 

• Storage of pattern information's gathered at the time of learning should be high for the 

given network 

 

 

              Figure 3: Different Training methods of Artificial Neural Network 

 

1.4.1.1.Supervised learning : 
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Every input pattern that is used to train the network is associated with an output pattern which is 

the target or the desired pattern. 

A teacher is assumed to be present during the training process, when a comparison is made 

between the network’s computed output and the correct expected output, to determine the error.The 

error can then be used to change network parameters, which result in an improvement in performance. 

1.4.1.2 Unsupervised learning: 

In this learning method the target output is not presented to the network.It is as if there is no 

teacher to present the desired patterns and hence the system learns of its own by discovering and 

adapting to structural features in the input patterns. 

1.4.1.3 Reinforced learning: 

In this method, a teacher though available, doesnot present the expected answer but only indicates 

if the computed output correct or incorrect.The information provided helps the network in the 

learning process. 

1.4.1.4 Hebbian learning: 

This rule was proposed by Hebb and is based on correlative weight adjustment.This is the oldest 

learning mechanism inspired by biology.In this, the input-output pattern pairs (𝑥𝑖 , 𝑦𝑖) are associated 

by the weight matrix W, known as the correlation matrix. 

It is computed as 

   W = ∑ 𝑥𝑖𝑦𝑖
𝑇𝑛

𝑖=1       ------------ eq(1) 

Here 𝑦𝑖
𝑇 is the transposeof the associated output vector 𝑦𝑖.Numerous variants of the rule have 

been proposed. 

1.4.1.5 Gradient descent learning: 

This is based on the minimization of error E defined in terms of weights and activation function 

of the network.Also it is required that the activation function employed by the network is 

differentiable, as the weight update is dependent on the gradient of the error E. 

Thus if ∆𝑤𝑖𝑗 is the weight update of the link connecting the 𝑖𝑡ℎ and 𝑗𝑡ℎ neuron of the two 

neighbouring layers, then ∆𝑤𝑖𝑗 is defined as, 

                                         ∆𝑤𝑖𝑗 = ɳ  
𝜕𝐸

𝜕𝑤𝑖𝑗
    ----------- eq(2) 

 Where, ɳ  is the learning rate parameter and 
𝜕𝐸

𝜕𝑤𝑖𝑗
 is the error gradient with reference to the 

weight 𝑤𝑖𝑗. 

1.5 Perceptron Model  

1.5.1 Simple Perceptron for Pattern Classification  

Perceptron network is capable of performing pattern classification into two or more 

categories. The perceptron is trained using the perceptron learning rule. We will first consider 

classification into two categories and then the general multiclass classification later. For classification 
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into only two categories, all we need is a single output neuron. Here we will use bipolar neurons. The 

simplest architecture that could do the job consists of a layer of N input neurons, an output layer with 

a single output neuron, and no hidden layers. This is the same architecture as we saw before for Hebb 

learning. However, we will use a different transfer function here for the output neurons as given 

below in eq (7). Figure 7 represents a single layer perceptron network. 

                   --------------------- eq (7) 

                               

 

Figure 4: Single Layer Perceptron 

 

Equation 7 gives the bipolar activation function which is the most common function used in 

the perceptron networks. Figure 7 represents a single layer perceptron network. The inputs arising 

from the problem space are collected by the sensors and they are fed to the aswociation 

units.Association units are the units which are responsible to associate the inputs based on their 

similarities. This unit groups the similar inputs hence the name association unit.  A single input from 

each group is given to the summing unit.Weights are randomnly fixed intially and assigned to this 

inputs. The net value is calculate by using  the expression  

                           x = Σ wiai – θ    ___________________ eq(8) 

This value is given to the activation function unit to get the final output response.The actual 

output is compared with the Target or desired .If they are same then we can stop training else the 

weights haqs to be updated .It means there is error .Error is given as δ = b-s , where  b is the desired 
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/ Target output and S is the actual outcome of the machinehere the weights are updated based on the 

perceptron Learning law as given in equation 9. 

      Weight change is given as Δw= η δ ai. So new weight is given as  

                                    Wi (new) = Wi (old) + Change in weight vector (Δw) _________eq(9) 

1.5.2. Perceptron Algorithm 

           Step 1: Initialize weights and bias.For simplicity, set weights and bias to zero.Set learning rate 

in the range of zero to one. 

• Step 2: While stopping condition is false do steps 2-6 

• Step 3: For each training pair s:t do steps 3-5 

• Step 4: Set activations of input units  xi = ai 

• Step 5: Calculate the summing part value Net = Σ aiwi-θ  

• Step 6: Compute the response of output unit based on the activation functions  

• Step 7: Update weights and bias if an error occurred for this pattern(if yis  not equal to  t) 

Weight (new) = wi(old) + atxi , & bias (new) = b(old) + at 

Else wi(new) = wi(old) & b(new) = b(old) 

• Step 8: Test Stopping Condition  

1.5.3. Limitations of single layer perceptrons: 

•   Uses only Binary Activation function 

•   Can be used only for Linear Networks  

•   Since uses Supervised Learning ,Optimal Solution is provided 

•   Training Time is More 

•   Cannot solve Linear In-separable Problem  

 

1.5.4. Multi-Layer Perceptron Model:  

  Figure 8 is the general representation of Multi layer Perceptron network.Inbetween the input 

and output Layer there will be some more layers also known as Hidden layers. 
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                                        Figure 5: Multi-Layer Perceptron 

 

1.5.5. Multi Layer Perceptron Algorithm 

 

1. Initialize the weights (Wi) & Bias (B0) to small random values near Zero 

2. Set learning rate η or α  in the range of “0” to “1” 

3. Check for stop condition. If stop condition is false do steps 3 to 7 

4. For each Training pairs do step 4 to 7 

5. Set activations of Output units:  xi = si for i=1 to N 

6. Calculate the output Response 

  yin = b0 + Σ xiwi  

7. Activation function used is Bipolar sigmoidal or Bipolar Step functions 

              For Multi Layer networks, based on the number of layers  steps 6 & 7 are repeated   

8. If the Targets is  (not equal to) = to the actual output (Y), then update weights and bias based 

on Perceptron Learning Law 

            Wi (new) = Wi (old) + Change in weight vector 

 Change in weight vector   = ηtixi        

                      Where   η  = Learning Rate 

                                    ti  = Target output of ith unit 

                         xi  = ith Input vector 

              b0(new) = b0 (old) + Change in Bias 

                      Change in Bias = ηti 

      Else   Wi (new) = Wi (old)  

                        b0(new) = b0 (old) 

9. Test for Stop condition 
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1.6. linearly seperable & Linear in separable tasks: 

 

                              
            Figure 6: Representation of Linear seperable & Linear-in separable Tasks 

 

Perceptron are successful only on problems with a linearly separable solution sapce.Figure 9 

represents both linear separable as well as linear in seperable problem.Perceptron cannot handle, in 

particular, tasks which are not linearly separable.(Known as linear inseparable problem).Sets of 

points in two dimensional spaces are linearly separable if the sets can be seperated by a straight 

line.Generalizing, a set of points in n-dimentional space are that can be seperated by a straight line.is 

called Linear seperable as represented in figure 9. 

Single layer perceptron can be used for linear separation.Example AND gate.But it cant be 

used for non linear ,inseparable problems.(Example XOR Gate).Consider figure 10. 

                           

                                     Figure 7: XOR representation (Linear-in separable Task) 

Here a single decision line cannot separate the Zeros and Ones Linearly.At least Two lines 

are required to separate Zeros and Onesas shown in Figure 10. Hence single layer networks can not 

be used to solve inseparable problems. To over come this problem we go for creation of convex 

regions. 
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Convex regions can be created by multiple decision lines arising from multi layer 

networks.Single layer network cannot be used to solve inseparable problem.Hence we go for 

multilayer network there by creating convex regions which solves the inseparable problem. 

1.6.1 Convex Region:  

             Select any Two points in a region and draw a straight line between these two points. If the 

points selected and the lines joining them both lie inside the region then that region is known as 

convex regions. 

1.6.2.  Types of convex regions 

            (a) Open Convex region                                       (b)   Closed Convex region 

                               

                                            Figure 8: Open convex region 

 

 

 

  

       

 

Figure 9 A: Circle - Closed convex region               Figure 9 B: Triangle - Closed convex region 

1.7. Logistic Regression 

             Logistic regression is a probabilistic model that organizes the instances in terms of 

probabilities. Because the classification is probabilistic, a natural method for optimizing the 

parameters is to ensure that the predicted probability of the observed class for each training 

occurrence is as large as possible. This goal is achieved by using the notion of maximumlikelihood 

estimation in order to learn the parameters of the model. The likelihood of the training data is defined 

as the product of the probabilities of the observed labels of each training instance. Clearly, larger 

values of this objective function are better. By using the negative logarithm of this value, one obtains 

a loss function in minimization form. Therefore, the output node uses the negative log-likelihood as 

a loss function. This loss function replaces the squared error used in the Widrow-Hoff method. The 

output layer can be formulated with the sigmoid activation function, which is very common in neural 

network design. 
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 Logistic regression is another supervised learning algorithm which is used 

to solve the classification problems. In classification problems, we have 

dependent variables in a binary or discrete format such as 0 or 1. 

 

 Logistic regression algorithm works with the categorical variable such as 

0 or 1, Yes or No, True or False, Spam or not spam, etc. 

 

 It is a predictive analysis algorithm which works on the concept of probability. 

 

 Logistic regression is a type of regression, but it is different from the linear 

regression algorithm in the term how they are used. 

 

 Logistic regression uses sigmoid function or logistic function which is a 

complex cost function. This sigmoid function is used to model the data in 

logistic regression. The function can be represented as: 

 

            

 Where f(x)= Output between the 0 and 1 value. 

x= input to the function 

e= base of natural logarithm. 

 When we provide the input values (data) to the function, it gives the S-

curve as follows: It uses the concept of threshold levels, values above the threshold 

level are rounded up to 1, and values below the threshold level are rounded up to 0. 

 

 

                                  Figure 10: Circle – Logistic Function 
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1.8. Support Vector Machines  

         Support Vector Machine or SVM is one of the most popular Supervised Learning 

algorithms, which is used for Classification as well as Regression problems. However, primarily, 

it is used for Classification problems in Machine Learning. The goal of the SVM algorithm is to 

create the best line or decision boundary that can segregate n-dimensional space into classes so 

that we can easily put the new data point in the correct category in the future. This best decision 

boundary is called a hyperplane. SVM chooses the extreme points/vectors that help in creating 

the hyperplane. These extreme cases are called as support vectors, and hence algorithm is termed 

as Support Vector Machine. Consider the below diagram in which there are two different 

categories that are classified using a decision boundary or hyperplane: 

                

                                          Figure 11: SVM – Classification 

 

1.8.1.SVM can be of two types: 

  Linear SVM: Linear SVM is used for linearly separable data, which means if a dataset can be 

classified into two classes by using a single straight line, then such data is termed as linearly 

separable data, and classifier is used called as Linear SVM classifier. 

 

Non-linear SVM: Non-Linear SVM is used for non-linearly separated data, which means if a 

dataset cannot be classified by using a straight line, then such data is termed as non-linear data 

and classifier used is called as Non-linear SVM classifier 

        Support Vectors: 

The data points or vectors that are the closest to the hyperplane and which affect the position of 

the hyperplane are termed as Support Vector. Since these vectors support the hyperplane, hence 

called a Support vector. 
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1.8.2. Linear SVM: 

 The working of the SVM algorithm can be understood by using an example. 

Suppose we have a dataset that has two tags (green and blue), and the dataset has two 

features x1 and x2. We want a classifier that can classify the pair (x1, x2) of coordinates 

in either green or blue. Consider the below image figure11. It is 2-d space so by just 

using a straight line, we can easily separate these two classes. But there can be multiple 

lines that can separate these classes. Consider the below image:                           

                            Figure 12A: SVM – Input Space 

Hence, the SVM algorithm helps to find the best line or decision boundary; this best 

boundary or region is called as a hyperplane. SVM algorithm finds the closest point of 

the lines from both the classes. These points are called support vectors. The distance 

between the vectors and the hyperplane is called as margin. And the goal of SVM is to 

maximize this margin. The hyperplane with maximum margin is called the optimal 

hyperplane. 

 

                                            

                            Figure 12B: SVM – Linear Classification 

1.9. Gradient Descent: 

Gradient Descent is a popular optimization technique in Machine Learning and Deep 

Learning, and it can be used with most, if not all, of the learning algorithms. A gradient is the slope 

of a function. It measures the degree of change of a variable in response to the changes of another 

variable. Mathematically, Gradient Descent is a convex function whose output is the partial derivative 

of a set of parameters of its inputs. The greater the gradient, the steeper the slope.Starting from an 

initial value, Gradient Descent is run iteratively to find the optimal values of the parameters to find 

the minimum possible value of the given cost function. 



15 
 

1.9.1. Types of Gradient Descent: 
Typically, there are three types of Gradient Descent: 

1. Batch Gradient Descent 

2. Stochastic Gradient Descent 

3. Mini-batch Gradient Descent 

1.9.2. Stochastic Gradient Descent (SGD): 

The word ‘stochastic‘ means a system or a process that is linked with a random probability. 

Hence, in Stochastic Gradient Descent, a few samples are selected randomly instead of the whole 

data set for each iteration. In Gradient Descent, there is a term called “batch” which denotes the total 

number of samples from a dataset that is used for calculating the gradient for each iteration. In typical 

Gradient Descent optimization, like Batch Gradient Descent, the batch is taken to be the whole 

dataset. Although, using the whole dataset is really useful for getting to the minima in a less noisy 

and less random manner, but the problem arises when our datasets gets big. 

Suppose, you have a million samples in your dataset, so if you use a typical Gradient Descent 

optimization technique, you will have to use all of the one million samples for completing one 

iteration while performing the Gradient Descent, and it has to be done for every iteration until the 

minima is reached. Hence, it becomes computationally very expensive to perform. 

 

Reference Books: 

1. B. Yegnanarayana, “Artificial Neural Networks” Prentice Hall Publications.  

2. Simon Haykin, “Artificial Neural Networks”, Second Edition, Pearson Education. 

3. Laurene Fausett, “Fundamentals of Neural Networks, Architectures, Algorithms and 

Applications”, Prentice Hall publications. 

4. Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015. 

5. 2. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013. 

6. 3. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016. 

7. 4. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015. 

 

Note: For further reference, kindly refer the class notes, PPTs, Video lectures 

available in the Learning Management System (Moodle) 
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UNIT II    INTRODUCTION TO DEEP LEARNING  

History of Deep Learning- A Probabilistic Theory of Deep Learning- Backpropagation and 

regularization, batch normalization- VC Dimension and Neural Nets-Deep Vs Shallow Networks 

Convolutional Networks- Generative Adversarial Networks (GAN), Semi-supervised Learning 

 

2 History of Deep Learning [DL]: 

 The chain rule that underlies the back-propagation algorithm was invented in the 
seventeenth century (Leibniz, 1676; L’Hôpital, 1696) 

 Beginning in the 1940s, the function approximation techniques were used to motivate 
machine learning models such as the perceptron 

 The earliest models were based on linear models. Critics including Marvin Minsky 
pointed out several of the flaws of the linear model family, such as its inability to learn 
the XOR function, which led to a backlash against the entire neural network approach 

 Efficient applications of the chain rule based on dynamic programming began to appear 
in the 1960s and 1970s 

 Werbos (1981) proposed applying chain rule techniques for training artificial neural 
networks. The idea was finally developed in practice after being independently 
rediscovered in different ways (LeCun, 1985; Parker, 1985; Rumelhart et al., 1986a) 

 Following the success of back-propagation, neural network research gained popularity 
and reached a peak in the early 1990s. Afterwards, other machine learning techniques 
became more popular until the modern deep learning renaissance that began in 2006 

 The core ideas behind modern feedforward networks have not changed substantially 
since the 1980s. The same back-propagation algorithm and the same approaches to 
gradient descent are still in use. 

Most of the improvement in neural network performance from 1986 to 2015 can be 

attributed to two factors. First, larger datasets have reduced the degree to which statistical 

generalization is a challenge for neural networks. Second, neural networks have become much 

larger, because of more powerful computers and better software infrastructure.A small 

number of algorithmic changes have also improved the performance of neural networks 

noticeably. One of these algorithmic changes was the replacement of mean squared error with 

the cross-entropy family of loss functions. Mean squared error was popular in the 1980s and 

1990s but was gradually replaced by cross-entropy losses and the principle of maximum 

likelihood as ideas spread between the statistics community and the machine learning 

community. 

The other major algorithmic change that has greatly improved the performance of 

feedforward networks was the replacement of sigmoid hidden units with piecewise linear 

hidden units, such as rectified linear units. Rectification using the max{0, z} function was 

introduced in early neural network models and dates back at least as far as the Cognitron and 

Neo-Cognitron (Fukushima, 1975, 1980). 

For small datasets, Jarrett et al. (2009) observed that using rectifying nonlinearities is 

even more important than learning the weights of the hidden layers. Random weights are 
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sufficient to propagate useful information through a rectified linear network, enabling the 

classifier layer at the top to learn how to map different feature vectors to class identities. When 

more data is available, learning begins to extract enough useful knowledge to exceed the 

performance of randomly chosen parameters. Glorot et al. (2011a) showed that learning is far 

easier in deep rectified linear networks than in deep networks that have curvature or two-sided 

saturation in their activation functions.  

When the modern resurgence of deep learning began in 2006, feedforward networks 

continued to have a bad reputation. From about 2006 to 2012, it was widely believed that 

feedforward networks would not perform well unless they were assisted by other models, 

such as probabilistic models. Today, it is now known that with the right resources and 

engineering practices, feedforward networks perform very well. Today, gradient-based 

learning in feedforward networks is used as a tool to develop probabilistic models. 

Feedforward networks continue to have unfulfilled potential. In the future, we expect they 

will be applied to many more tasks, and that advances in optimization algorithms and model 

design will improve their performance even further. 

 

      

 

2.1 A Probabilistic Theory of Deep Learning 

Probability is the science of quantifying uncertain things. Most of machine learning and deep 

learning systems utilize a lot of data to learn about patterns in the data. Whenever data is utilized 

in a system rather than sole logic, uncertainty grows up and whenever uncertainty  grows up, 

probability becomes relevant. 

  By introducing probability to a deep learning system, we introduce common sense to the 

system. In deep learning, several models like Bayesian models, probabilistic graphical models, 

Hidden Markov models       are used. They depend entirely on probability concepts. 

Real world data is chaotic. Since deep learning systems utilize real world data, they 

require a tool to handle the chaoticness. 
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2.2 Back Propagation Networks (BPN) 

    2.2.1. Need for Multilayer Networks  

 Single Layer networks cannot used to solve Linear Inseparable problems & 

can only be used to solve linear separable problems 

 Single layer networks cannot solve complex problems 

 Single layer networks cannot be used when large input-output data set is 

available 

 Single layer networks cannot capture the complex information’s available in 

the training pairs  

Hence to overcome the above said Limitations we use Multi-Layer Networks. 

2.2.2. Multi-Layer Networks 

  Any neural network which has at least one layer in between input and output 

layers is called Multi-Layer Networks 

  Layers present in between the input and out layers are called Hidden Layers 

  Input layer neural unit just collects the inputs and forwards them to the next 

higher layer 

  Hidden layer and output layer neural units process the information’s feed to 

them and produce an appropriate output 

  Multi -layer networks provide optimal solution for arbitrary classification 

problems 

  Multi -layer networks use linear discriminants, where the inputs are non 

linear 

2.2.3. Back Propagation Networks (BPN) 

  Introduced by Rumelhart, Hinton, & Williams in 1986. BPN is a Multi-

layer Feedforward Network but error is back propagated, Hence the name Back 

Propagation Network (BPN). It uses Supervised Training process; it has a 

systematic procedure for training the network and is used in Error Detection and 

Correction.  Generalized Delta Law /Continuous Perceptron Law/ Gradient Descent 

Law is used in this network. Generalized Delta rule minimizes the mean squared 

error of the output calculated from the output. Delta law has faster convergence rate 

when compared with Perceptron Law. It is the extended version of Perceptron 

Training Law. Limitations of this law is the Local minima problem. Due to this the 

convergence speed reduces, but it is better than perceptron’s. Figure 1 represents a 

BPN network architecture. Even though Multi level perceptron’s can be used they 

are flexible and efficient that BPN. In figure 1 the weights between input and the 

hidden portion is considered as Wij and the weight between first hidden to the next 

layer is considered as Vjk. This network is valid only for Differential Output 

functions. The Training process used in backpropagation involves three stages, 

which are listed as below 

       1. Feedforward of input training pair 
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       2. Calculation and backpropagation of associated error 

       3. Adjustments of weights 

 

                                              Figure 1: Back Propagation Network 

2.2.4. BPN Algorithm 

The algorithm for BPN is as classified int four major steps as follows: 

1. Initialization of Bias, Weights 

2. Feedforward process 

3. Back Propagation of Errors 

4. Updating of weights & biases                  

Algorithm: 

 I. Initialization of weights: 

Step 1: Initialize the weights to small random values near zero 

Step 2: While stop condition is false , Do steps 3 to 10 

Step 3: For each training pair do steps 4 to 9 

     II.  Feed forward of inputs 

 Step 4: Each input xi is received and forwarded to higher layers (next 

hidden) 

 Step 5: Hidden unit sums its weighted inputs as follows 

                                    Zinj = Woj + Σxiwij 

                     Applying Activation function 

                                     Zj = f(Zinj) 

                              This value is passed to the output layer 

            Step 6: Output unit sums it’s weighted inputs 

   yink= Voj + Σ ZjVjk 

                  Applying Activation function 
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                                          Yk = f(yink) 

                   III. Backpropagation of Errors 

 Step 7:   δk = (tk – Yk)f(yink ) 

 Step 8:   δinj = Σ δjVjk 

IV. Updating of Weights & Biases 

            Step 8:  Weight correction  is  Δwij = αδkZj 

                                        bias Correction is   Δwoj = αδk 

V. Updating of Weights & Biases 

          Step 9: continued: 

     New Weight is   

   Wij(new) = Wij(old) + Δwij 

    Vjk(new) = Vjk(old) + ΔVjk 

      New bias is 

   Woj(new) = Woj(old) + Δwoj 

                                             Vok(new) = Vok(old) + ΔVok  

  

Step 10:  Test for Stop Condition 

 

2.2.5 Merits 

• Has smooth effect on weight correction 

• Computing time is less if weight’s are small 

• 100 times faster than perceptron model 

•  Has a systematic weight updating procedure 

 

2.2.6. Demerits 

• Learning phase requires intensive calculations 

• Selection of number of Hidden layer neurons is an issue 

• Selection of number of Hidden layers is also an issue 

• Network gets trapped in Local Minima 

• Temporal Instability 

• Network Paralysis 

• Training time is more for Complex problems  

2.3 Regularization 

  A fundamental problem in machine learning is how to make an algorithm that 

will perform well not just on the training data, but also on new inputs. Many strategies 

used in machine learning are explicitly designed to reduce the test error, possibly at 

the expense of increased training error. These strategies are known collectively as 

regularization. 

Definition: - “any modification we make to a learning algorithm that is intended to 

reduce its generalization error but not its training error.” 

 In the context of deep learning, most regularization strategies are based on 

regularizing estimators.  

 Regularization of an estimator works by trading increased bias for reduced 

variance.  
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An effective regularizer is one that makes a profitable trade, reducing variance 

significantly while not overly increasing the bias. 

 Many regularization approaches are based on limiting the capacity of models, such as 

neural networks, linear regression, or logistic regression, by adding a parameter norm 

penalty Ω(θ) to the objective function J. We denote the regularized objective function 

by J˜ 

                                            J˜(θ; X, y) = J(θ; X, y) + αΩ(θ) 

 

where α ∈ [0, ∞) is a hyperparameter that weights the relative contribution of the norm 

penalty term, Ω, relative to the standard objective function J. Setting α to 0 results in no 

regularization.  Larger values of α correspond to more regularization. 

 The parameter norm penalty Ω that penalizes only the weights of the affine transformation at 

each layer and leaves the biases unregularized.  

      2.3.1 L2 Regularization 

One of the simplest and most common kind of parameter norm penalty is L2 parameter & it’s 

also called  commonly as weight decay. This regularization strategy drives the weights closer 

to the origin by adding a regularization term      . L2 

regularization is also known as ridge regression or Tikhonov regularization. To simplify, we 

assume no bias parameter, so θ is just w. Such a model has the following total objective 

function. 

      

 

 We can see that the addition of the weight decay term has modified the learning rule to 

multiplicatively shrink the weight vector by a constant factor on each step, just before 

performing the usual gradient update. This describes what happens in a single step. 

 The approximation ^J is Given by

 

           Where H is the Hessian matrix of J with respect to w evaluated at w∗. 
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The minimum of ˆJ occurs where its gradient   ∇wˆJ(w) = H(w − w∗) is equal to ‘0’ 

To study the eff ect of weight decay, 

 

 As α approaches 0, the regularized solution ˜w approaches w*. But what happens as α grows? 

Because H is real and symmetric, we can decompose it into a diagonal matrix Λ and an 

orthonormal basis of eigenvectors, Q, such that   H = QΛQT. Applying Decomposition to the 

above equation, We Obtain  

 

                                                                 

                                      Figure 2: Weight updation effect 

The solid ellipses represent contours of equal value of the unregularized objective. The dotted 

circles represent contours of equal value of the L 2 regularizer. At the point w˜, these competing 

objectives reach an equilibrium. In the first dimension, the eigenvalue of the Hessian of J is small. 

The objective function does not increase much when moving horizontally away from w∗ . Because 

the objective function does not express a strong preference along this direction, the regularizer has a 

strong effect on this axis. The regularizer pulls w1 close to zero. In the second dimension, the 

objective function is very sensitive to movements away from w∗ . The corresponding eigenvalue is 

large, indicating high curvature. As a result, weight decay affects the position of w2 relatively little. 

2.3.2 L1 Regularization 

While L2 weight decay is the most common form of weight decay, there are other ways to 

penalize the size of the model parameters. Another option is to use L1 regularization. 



9 
 

     L1 regularization on the model parameter w is defined as the sum of absolute values of the 

individual parameters. 

                           

 L1 weight decay controls the strength of the regularization by scaling the penalty Ω using a 

positive hyperparameter α. Thus, the regularized objective function J˜(w; X, y) is given by 

 

By inspecting equation 1, we can see immediately that the effect of L 1 regularization is quite 

different from that of L 2 regularization. Specifically, we can see that the regularization 

contribution to the gradient no longer scales linearly with each wi ; instead it is a constant factor 

with a sign equal to sign(wi). 

 

 

2.3.3 Difference between L1 & L2 Parameter Regularization 

 L1 regularization attempts to estimate the median of data, L2 regularization makes estimation 

for the mean of the data in order to evade overfitting. 
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 L1 regularization can add the penalty term in cost function. But L2 regularization appends the 

squared value of weights in the cost function. 

 L1 regularization can be helpful in features selection by eradicating the unimportant features, 

whereas, L2 regularization is not recommended for feature selection 

 L1 doesn’t have a closed form solution since it includes an absolute value and it is a non-

differentiable function, while L2 has a solution in closed form as it’s a square of a weight 

 

2.4 Batch Normalization: 

 

It is a method of adaptive reparameterization, motivated by the difficulty of training 

very deep models.In Deep networks, the weights are updated for each layer. So the output 

will no longer be on the same scale as the input (even though input is 

normalized).Normalization - is a data pre-processing tool used to bring the numerical data to 

a common scale without distorting its shape.when we input the data to a machine or deep 

learning algorithm we tend to change the values to a  balanced scale because, we  ensure that 

our model can generalize appropriately.(Normalization is used to bring the input into a 

balanced scale/ Range). 
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  Even though the input X was normalized but the output is  no longer on the same scale. The 

data passes through multiple layers of network with multiple times(sigmoidal) activation functions 

are applied, which leads to an internal co-variate shift in the data. 

This motivates us to move towards Batch Normalization 

Normalization is the process of altering the input data to have mean as zero and standard deviation 

value as one. 

2.4.1 Procedure to do Batch Normalization: 

(1) Consider the batch input from layer h, for this layer we need to calculate the mean of this hidden 

activation. 

(2) After calculating the mean the next step is to calculate the standard deviation of the hidden 

activations. 

(3) Now we normalize the hidden activations using these Mean & Standard Deviation values. To do 

this, we subtract the mean from each input and divide the whole value with the sum of standard 

deviation and the smoothing term (ε). 

(4) As the final stage, the re-scaling and offsetting of the input is performed. Here two components 

of the BN algorithm is used, γ(gamma) and β (beta). These parameters are used for re-scaling (γ) and 

shifting(β) the vector contains values from the previous operations. 

These two parameters are learnable parameters, Hence during the training of  neural network, 

the optimal values of γ and β are obtained and used. Hence we get the accurate normalization of each 

batch. 

 

Image Source: https://www.analyticsvidhya.com/blog/2021/03/introduction-to-batch-normalization/ 
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2.5. Shallow Networks 

Shallow neural networks give us basic idea about deep neural network which consist 

of only 1 or 2 hidden layers. Understanding a shallow neural network gives us an 

understanding into what exactly is going on inside a deep neural network A neural network 

is built using various hidden layers. Now that we know the computations that occur in a 

particular layer, let us understand how the whole neural network computes the output for a 

given input X. These can also be called the forward-propagation equations. 

 

                                                                   

                                 

 

Figure 2:Shallow Networks – Generic Model 
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2.5.1 Difference Between a Shallow Net & Deep Learning Net: 

Sl.No             Shallow Net’s         Deep Learning Net’s 

1 One Hidden layer(or very less no. of 

Hidden Layers) 

Deep Net’s has many layers of Hidden 

layers with more no. of neurons in 

each layers 

2 Takes input only as VECTORS DL can have raw data like image, text 

as inputs 

3 Shallow net’s needs more parameters 

to have better fit 

DL can fit functions better with less 

parameters than a shallow network 

4 Shallow networks with one Hidden 

layer (same no of neurons as DL) 

cannot place complex functions over 

the input space 

DL can compactly express highly 

complex functions over input space  

5 The number of units in a shallow 

network grows exponentially with 

task complexity. 

DL don’t need to increase it 

size(neurons) for complex problems 

6 Shallow network is more difficult to 

train with our current algorithms (e.g. 

it has issues of local minima etc) 

Training in DL is easy and no issue of 

local minima in DL 

              

Reference Books: 

1. B. Yegnanarayana, “Artificial Neural Networks” Prentice Hall Publications.  

2. Simon Haykin, “Artificial Neural Networks”, Second Edition, Pearson Education. 

3. Laurene Fausett, “Fundamentals of Neural Networks, Architectures, Algorithms and 

Applications”, Prentice Hall publications. 

4. Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015. 

5. 2. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013. 

6. 3. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016. 

7. 4. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015. 

 

Note: For further reference, kindly refer the class notes, PPTs, Video lectures 

available in the Learning Management System (Moodle) 
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UNIT III    DIMENTIONALITY REDUCTION 

Linear (PCA, LDA) and manifolds, metric learning - Auto encoders and dimensionality 

reduction in networks - Introduction to Convnet - Architectures – AlexNet, VGG, Inception, ResNet 

- Training a Convnet: weights initialization, batch normalization, hyperparameter optimization. 

3.1  Linear Factor Models: 

linear factor models are used as building blocks of mixture models of larger, deep 

probabilistic models. A linear factor model is defined by the use of a stochastic linear decoder 

function that generates x by adding noise to a linear transformation of h. It allows us to 

discover explanatory factors that have a simple joint distribution. A linear factor model 

describes the data-generation process as follows. ( we sample the explanatory factors h from 

a distribution) 

                                                                                  h ∼ p(h)         

                                 

                                                      Figure:1   Linear Factor Model 

3.2   Dimensionality Reduction: 

 High dimensionality is challenging and redundant  
  It is natural to try to reduce dimensionality   
 We reduce  the dimensionality by feature combination i.e., combine old features X to 

create new features Y as given below 
 

        
                                                    Figure 2: Dimensionality Reduction 
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− 

3.3  Principal Component Analysis (PCA): 

Principal Component Analysis, or simply PCA, is a statistical procedure concerned 

with elucidating the covariance structure of a set of variables. In particular it allows us to 

identify the principal directions in which the data varies. 

For example, in figure 1, suppose that the triangles represent a two variable data set 

which we have measured in the X-Y coordinate system. The principal direction in which the 

data varies is shown by the U axis and the second most important direction is the V axis 

orthogonal to it. If we place the U-V axis system at the mean of the data it gives us a compact 

representation. If we transform each (X, Y ) coordinate into its corresponding (U, V ) value, 

the data is de-correlated, meaning that the co-variance between the U and V variables is zero. 

For a given set of data, principal component analysis finds the axis system defined by the 

principal directions of variance (ie the U − V axis system in figure 3). The directions U and 

V are called the principal components 

 

                         Figure 3A: PCA for Data Representation           Figure 3B: PCA Dimension Reduction 

If the variation in a data set is caused by some natural property, or is caused by random 

experimental error, then we may expect it to be normally distributed. In this case we show 

the nominal extent of the normal distribution by a hyper-ellipse (the two-dimensional ellipse 

in the example). The hyper ellipse encloses data points that are thought of as belonging to a 

class. It is drawn at a distance beyond which the probability of a point belonging to the class 

is low, and can be thought of as a class boundary. 

If the variation in the data is caused by some other relationship, then PCA gives us a 

way of reducing the dimensionality of a data set. Consider two variables that are nearly related 

linearly as shown in figure 3B. As in figure 3A the principal direction in which the data varies 

is shown by the U axis, and the secondary direction by the V axis. However in this case all 

the V coordinates are all very close to zero. We may assume, for example, that they are only 

non zero because of experimental noise. Thus in the U V axis system we can represent the 

data set by one variable U and discard V . Thus we have reduced the dimensionality of the 

problem by 1Computing the Principal Components 

3.3.1. Computing the Principal Components 

In computational terms the principal components are found by calculating the eigenvectors 

and eigenvalues of the data covariance matrix. This process is equivalent to finding the axis 

system in which the co-variance matrix is diagonal. The eigenvector with the largest 

eigenvalue is the direction of greatest variation, the one with the second largest eigenvalue 

is the (orthogonal) direction with the next highest variation and so on. To see how the 

computation is done we will give a brief review on eigenvectors/eigenvalues. 
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Let A be a  n × n matrix. The eigenvalues of A are defined as the roots of: 

Determinant (A − λI) = |(A − λI)| = 0 

where I is the n n identity matrix. This equation is called the characteristic equation (or 

characteristic polynomial) and has n roots. 

Let λ be an eigenvalue of A. Then there exists a vector x such that: 

          Ax = λx 

The vector x is called an eigenvector of A associated with the eigenvalue λ. Notice that there 

is no unique solution for x in the above equation. It is a direction vector only and can be 

scaled to any magnitude. To find a numerical solution for x we need to set one of its elements 

to an arbitrary value, say 1, which gives us a set of simultaneous equations to solve for the 

other elements. If there is no solution, we repeat the process with another element. Ordinarily 

we normalize the final values so that x has length one, that is x · xT = 1. 
Suppose we have a 3 × 3 matrix A with eigenvectors x1, x2, x3, and eigenvalues λ1, λ2, λ3 
so: 

                         Ax1 = λ1x1          Ax2 = λ2x2      Ax3 = λ3x3 

     Putting the eigenvectors as the columns of a matrix gives: 

    
 

              gives us the matrix equation: AΦ = ΦΛ We normalised the eigenvectors to unit magnitude, 

and they are orthogonal, so: ΦΦT = ΦT Φ = I,  which means that: Φ T AΦ = Λ and: A = 

ΦΛΦT. Now let us consider how this applies to the covariance matrix in the PCA process. 

Let Σ be an n×n covariance matrix. There is an orthogonal n × n matrix Φ whose columns are 

eigenvectors of Σ and a diagonal matrix Λ whose diagonal elements are the eigenvalues of Σ, 

such that Φ T ΣΦ = Λ We can look on the matrix of eigenvectors Φ as a linear transformation 

which, in the example of figure 3A transforms data points in the [X, Y ] axis system into the 

[U, V ] axis system. In the general case the linear transformation given by Φ transforms the 

data points into a data set where the variables are uncorrelated. The correlation matrix of the 

data in the new coordinate system is Λ which has zeros in all the off-diagonal elements. 

3.3.2 Steps involved in PCA: 

o Start with data for n observations on p variables 

o Form a matrix of size n X p 

o Calculate the Covariance Matrix 
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o Calculate the Eigen vectors and Eigen Values  

o Choose Principal Component from Feature Vectors 

o Derive the new Data Set 

 

  3.3.3 PCA Advantages: 

1. Removes Correlated Features:  

   In a real-world scenario, it is very common that we get thousands of features in our 

dataset. You cannot run your algorithm on all the features as it will reduce the performance 

of your algorithm and it will not be easy to visualize that many features in any kind of graph. 

Hence the data set should be reduced. We need to find out the correlation among the features 

(correlated variables). Finding correlation manually in thousands of features is nearly 

impossible, frustrating and time-consuming. PCA performs this task effectively. After 

implementing the PCA on your dataset, all the Principal Components are independent of one 

another. There is no correlation among them. 

2. Improves Algorithm Performance:  

   With so many features, the performance of your algorithm will drastically degrade. 

PCA is a very common way to speed up your Machine Learning algorithm by getting rid of 

correlated variables which don't contribute in any decision making. The training time of the 

algorithms reduces significantly with a smaller number of features.  So, if the input 

dimensions are too high, then using PCA to speed up the algorithm is a reasonable choice.  

3. Reduces Overfitting: 

 Overfitting mainly occurs when there are too many variables in the dataset. So, PCA     

     helps in overcoming the overfitting issue by reducing the number of features. 

 

4. Improves Visualization:  

 

3.3.4. Disadvantages of PCA 

1. Independent variables become less interpretable: After implementing PCA on the dataset, 

your original features will turn into Principal Components. Principal Components are the 

linear combination of your original features. Principal Components are not as readable and 

interpretable as original features. 

2. Data standardization is must before PCA: You must standardize your data before 

implementing PCA, otherwise PCA will not be able to find the optimal Principal 

Components.  

       3. Information Loss: Although Principal Components try to cover maximum variance among 

the features in a dataset, if we don't select the number of Principal Components with care, it 

may miss some information as compared to the original list of features. 

3.4 Linear Discrimination Analysis (LDA): 
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      Linear Discriminant Analysis as its name suggests is a linear model for classification and 

dimensionality reduction.  Most commonly used for feature extraction in pattern classification 

problems. 

3.4.1 Need for LDA: 

 Logistic Regression is perform well for binary classification but fails in the case of multiple 

classification problems with well-separated classes. While LDA handles these quite 

efficiently. 

 LDA can also be used in data pre-processing to reduce the number of features just as PCA 

which reduces the computing cost significantly. 

3.4.2.  Limitations: 

 Linear decision boundaries may not effectively separate non-linearly separable classes. More 

flexible boundaries are desired. 

 In cases where the number of observations exceeds the number of features, LDA might not 

perform as desired. This is called Small Sample Size (SSS) problem. Regularization is 

required. 

Linear Discriminant Analysis or Normal Discriminant Analysis or Discriminant 

Function Analysis is a dimensionality reduction technique that is commonly used for supervised 

classification problems. It is used for modeling differences in groups i.e. separating two or more 

classes. It is used to project the features in higher dimension space into a lower dimension space.  

For example, we have two classes and we need to separate them efficiently. Classes can have 

multiple features. Using only a single feature to classify them may result in some overlapping. 

So, we will keep on increasing the number of features for proper classification.  

3.4.3 Steps involved in LDA: 

There are the three key steps. 

(i) Calculate the separability between different classes. This is also known as between-class 

variance and is defined as the distance between the mean of different classes. 

(ii)  Calculate the within-class variance. This is the distance between the mean and the 

sample of every class.   

(iii) Construct the lower-dimensional space that maximizes Step1 (between-class variance) 

and minimizes Step 2(within-class variance). 

 

3.4.4. Pros & Cons of LDA 

         Advantages of LDA: 

1. Simple prototype classifier: Distance to the class mean is used, it’s simple to interpret. 

2. Decision boundary is linear: It’s simple to implement and the classification is robust. 

3. Dimension reduction: It provides informative low-dimensional view on the data, which is 

both useful for visualization and feature engineering. 

      Shortcomings of LDA: 
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1. Linear decision boundaries may not adequately separate the classes. Support for more 

general boundaries is desired. 

2. In a high-dimensional setting, LDA uses too many parameters. A regularized version of 

LDA is desired. 

3. Support for more complex prototype classification is desired. 

3.5.  Manifold Learnings: 

 Manifold learning for dimensionality reduction has recently gained much attention to 

assist image processing tasks such as segmentation, registration, tracking, 

recognition, and computational anatomy. 

 The drawbacks of PCA in handling dimensionality reduction problems for non-linear 

weird and curved shaped surfaces necessitated development of more advanced 

algorithms like Manifold Learning. 

 There are different variant’s of Manifold Learning that solves the problem of reducing 

data dimensions and feature-sets obtained from real world problems representing 

uneven weird surfaces by sub-optimal data representation.  

 This kind of data representation selectively chooses data points from a low-dimensional 

manifold that is embedded in a high-dimensional space in an attempt to generalize linear 

frameworks like PCA. 

 Manifolds give a look of flat and featureless space that behaves like Euclidean space. 

Manifold learning problems are unsupervised where it learns the high-dimensional 

structure of the data from the data itself, without the use of predetermined 

classifications and loss of importance of information regarding some characteristic of 

the original variables. 

 The goal of the manifold-learning algorithms is to recover the original domain 

structure, up to some scaling and rotation. The nonlinearity of these algorithms allows 

them to reveal the domain structure even when the manifold is not linearly embedded. 

It uses some scaling and rotation for this purpose. 

 Manifold learning algorithms are divided in to two categories: 

 Global methods: Allows high-dimensional data to be mapped from high-dimensional 

to low-dimensional such that the global properties are preserved. Examples 

include Multidimensional Scaling (MDS), Isomaps covered in the following 

sections. 

 Local methods: Allows high-dimensional data to be mapped to low dimensional such 

that local properties are preserved. Examples are Locally linear embedding (LLE), 

Laplacian eigenmap (LE), Local tangent space alignment (LSTA), Hessian 

Eigenmapping (HLLE)  

 Three popular manifold learning algorithms: 

    IsoMap (Isometric Mapping)  
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       Isomap seeks a lower-dimensional representation that maintains 

‘geodesic distances’ between the points. A geodesic distance is a generalization 

of distance for curved surfaces. Hence, instead of measuring distance in pure 

Euclidean distance with the Pythagorean theorem-derived distance formula, 

Isomap optimizes distances along a discovered manifold 

    Locally Linear Embeddings  

          Locally Linear Embeddings use a variety of tangent linear patches (as 

demonstrated with the diagram above) to model a manifold. It can be thought of 

as performing a PCA on each of these neighborhoods locally, producing a linear 

hyperplane, then comparing the results globally to find the best nonlinear 

embedding. The goal of LLE is to ‘unroll’ or ‘unpack’ in distorted fashion the 

structure of the data, so often LLE will tend to have a high density in the center 

with extending rays  

    t-SNE 

         t-SNE is one of the most popular choices for high-dimensional 

visualization, and stands for t-distributed Stochastic Neighbor Embeddings. 

The algorithm converts relationships in original space into t-distributions, or 

normal distributions with small sample sizes and relatively unknown standard 

deviations. This makes t-SNE very sensitive to the local structure, a common 

theme in manifold learning. It is considered to be the go-to visualization method 

because of many advantages it possesses. 

3.6.Auto Encoders: 

         AutoEncoder is an unsupervised Artificial Neural Network that attempts to 

encode the data by compressing it into the lower dimensions (bottleneck layer or code) and 

then decoding the data to reconstruct the original input. The bottleneck layer (or code) holds the 

compressed representation of the input data. In AutoEncoder the number of output units must 

be equal to the number of input units since we’re attempting to reconstruct the input data. 

AutoEncoders usually consist of an encoder and a decoder. The encoder encodes the 

provided data into a lower dimension which is the size of the bottleneck layer and the decoder 

decodes the compressed data into its original form.The number of neurons in the layers of the 

encoder will be decreasing as we move on with further layers, whereas the number of neurons 

in the layers of the decoder will be increasing as we move on with further layers. There are three 

layers used in the encoder and decoder in the following example. The encoder contains 32, 16, 

and 7 units in each layer respectively and the decoder contains 7, 16, and 32 units in each layer 

respectively. The code size/ the number of neurons in bottle-neck must be less than the 

number of features in the data. Before feeding the data into the AutoEncoder the data must 

definitely be scaled between 0 and 1 using MinMaxScaler since we are going to use sigmoid 
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activation function in the output layer which outputs values between 0 and 1.When we are 

using AutoEncoders for dimensionality reduction we’ll be extracting the bottleneck layer and 

use it to reduce the dimensions. This process can be viewed as feature extraction. 

The type of AutoEncoder that we’re using is Deep AutoEncoder, where the encoder and the 

decoder are symmetrical. The Autoencoders don’t necessarily have a symmetrical encoder 

and decoder but we can have the encoder and decoder non-symmetrical as well. 

3.6.1. Types of AutoEncoders  are, 

 Deep Autoencoder 

 Sparse Autoencoder 

 Under complete Autoencoder 

 Variational Autoencoder 

 LSTM Autoencoder  

3.6.2. Hyperparameters of an  AutoEncoder 

 Code size or the number of units in the bottleneck layer 

 Input and output size, which is the number of features in the data 

 Number of neurons or nodes per layer 

 Number of layers in encoder and decoder. 

 Activation function 

 Optimization function 

 

      

                                              Figure 4: Auto Encoders 
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3.7. AlexNet: 

 

 

 
 

Figure 5: Alexnet Architecture 

 

Alexnet model was proposed in 2012 in the research paper named Imagenet 

Classification with Deep Convolution Neural Network by Alex Krizhevsky and his colleagues 

 

 The Alexnet has eight layers with learnable parameters 

 The model has five layers with a combination of max pooling followed by 3 fully 

connected layers  

 The fully connected layers use Relu activation except the output layer 

 They found out that using the Relu as an activation function accelerated the speed of 

the training process by almost six times.  

 They also used the dropout layers, which prevented the model from overfitting.  

 The model is trained on the Imagenet dataset. The Imagenet dataset has arounf 14 

million images across a 1000 classes.  

 The input to this model is the images of size 227X227X3 

 The first convolution layer with 96 filters of size 11X11 with stride 4  

 The activation function used in this layer is relu. The output feature map is 55X55X96 

 Next, we have the first Maxpooling layer, of size 3X3 and stride 2 

 Next the filter size is reduced to 5X5 and 256 such filtersare added 

 The stride value is 1 and padding 2. The activation function used is again relu. The 

output size we get is 27X27X256 

 Next we have a max-pooling layer of size 3X3 with stride 2. The resulting feature map 

size is 13X13X256 

 The third convolution operation with 384 filters of size 3X3 stride 1 and also padding 

1is done next. In this stage the activation function used is relu. The output feature map 

is of shape 13X13X384 
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 Then the fourth convolution operation with 384 filters of size 3X3. The stride value 

along with the padding is 1.The output size remains unchanged as 13X13X384.  

 After this, we have the final convolution layer of size 3X3 with 256 such filters. The 

stride and padding are set to 1,also the activation function is relu. The resulting feature 

map is of shape 13X13X256 

 

If we look at the architecture now, the number of filters is increasing as we are going 

deeper. Hence more features are extracted as we move deeper into the architecture. 

Also, the filter size is reducing, which means a decrease in the feature map shape.  

 

3.8. VGG-16 

 The major shortcoming of too many hyper-parameters of AlexNet was solved by VGG 

Net by replacing large kernel-sized filters (11 and 5 in the first and second convolution 

layer, respectively) with multiple 3×3 kernel-sized filters one after another. 

 The architecture developed by Simonyan and Zisserman was the 1st runner up of the 

Visual Recognition Challenge of 2014.  

 The architecture consist of 3*3 Convolutional filters, 2*2 Max Pooling layer with a 

stride of 1. 

 Padding is kept same to preserve the dimension.  

 There are 16 layers in the network where the input image is RGB format with dimension 

of 224*224*3, followed by 5 pairs of Convolution(filters: 64, 128, 256,512,512) and 

Max Pooling.  

 The output of these layers is fed into three fully connected layers and a softmax function 

in the output layer.  

 In total there are 138 Million parameters in VGG Net 

 

 
 

Figure6: VGG Architecture 
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3.9 ResNet: 

ResNet, the winner of ILSVRC-2015 competition is a deep network with over 100 

layers. Residual networks (ResNet) is similar to VGG nets however with a sequential 

approach they also use “Skip connections” and “batch normalization” that helps to train deep 

layers without hampering the performance. After VGG Nets, as CNNs were going deep, it 

was becoming hard to train them because of vanishing gradients problem that makes the 

derivate infinitely small. Therefore, the overall performance saturates or even degrades. The 

idea of skips connection came from highway network where gated shortcut connections were 

used  

3.10 Inception Net: 

 

 
Figure 7: InceptionNet 

 

Inception network also known as GoogleLe Net was proposed by developers at google 

in “Going Deeper with Convolutions” in 2014. The motivation of InceptionNet comes from the 

presence of sparse features Salient parts in the image that can have a large variation in size. Due 

to this, the selection of right kernel size becomes extremely difficult as big kernels are selected 

for global features and small kernels when the features are locally located. The InceptionNets 

resolves this by stacking multiple kernels at the same level. Typically it uses 5*5, 3*3 and 1*1 

filters in one go.   

3.11. Hyperparameter Optimization: 

     Hyperparameter optimization in machine learning intends to find the hyperparameters 

of a given machine learning algorithm that deliver the best performance as measured on a 

validation set. Hyperparameters, in contrast to model parameters, are set by the machine 

learning engineer before training. The number of trees in a random forest is a hyperparameter 

while the weights in a neural network are model parameters learned during training. 

Hyperparameter optimization finds a combination of hyperparameters that returns an optimal 
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model which reduces a predefined loss function and in turn increases the accuracy on given 

independent data 

3.11.1 Hyperparameter Optimization methods 

  

        Manual Hyperparameter Tuning 

        Grid Search 

        Random Search 

        Bayesian Optimization 

        Gradient-based Optimization 

                 

Reference Books: 

1. B. Yegnanarayana, “Artificial Neural Networks” Prentice Hall Publications.  

2. Simon Haykin, “Artificial Neural Networks”, Second Edition, Pearson Education. 

3. Laurene Fausett, “Fundamentals of Neural Networks, Architectures, Algorithms and 

Applications”, Prentice Hall publications. 

4. Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015. 

5. 2. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013. 

6. 3. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016. 

7. 4. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015. 

 

 

Note: For further reference, kindly refer the class notes, PPTs, Video lectures 

available in the Learning Management System (Moodle) 
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UNIT IV    DIMENTIONALITY REDUCTION 

Optimization in deep learning– Non-convex optimization for deep networks- Stochastic 

Optimization Generalization in neural networks- Spatial Transformer Networks- Recurrent networks, 

LSTM Recurrent Neural Network Language Models- Word-Level RNNs & Deep Reinforcement 

Learning - Computational & Artificial Neuroscience. 

4.1  Optimization in Deep Learning: 

In Deep Learning, with the help of loss function, the performance of the model is estimated/ 

evaluated. This loss is used to train the network so that it performs better. Essentially, we try 

to minimize the Loss function. Lower Loss means the model performs better. The Process of 

minimizing any mathematical function is called Optimization. 

Optimizers are algorithms or methods used to change the features of the neural network such 

as weights and learning rate so that the loss is reduced. Optimizers are used to solve optimization 

problems by minimizing the function 

 The Goal of an Optimizer is to minimize the Objective Function(Loss Function based on the 

Training Data set). Simply Optimization is to minimize the Training Error. 

4.1.1 Need for Optimization: 

 Prescence of Local Minima  reduces the model performance 

 Prescence of Saddle Points which creates Vanishing Gradients or Exploding Gradient Issues 

 To select appropriate weight values and other associated model parameters 

 To minimize the loss value (Training error) 

 

4.2. Convex Optimization: 

Convex optimization is a kind of optimization which deals with the study of problem 

of minimizing convex functions. Here the optimization function is convex function. 

All Linear functions are convex, so linear programming problems are convex 

problems. When we have a convex objective and a convex feasible region, then there can be 

only one optimal solution, which is globally optimal. 

Definition:    A set C ⊆ Rn is convex if for x, y ∈ C and any α ∈ [0, 1],                                                      

                                     αx + (1 − α)y ∈ C  

Convexity plays a vital role in the design of optimization algorithms. This is largely 

due to the fact that it is much easier to analyze and test algorithms in such a context. 

Consider the given Figure 4.1 given below, select any to points in the region and join 

them by a straight Line. If the line and the selected points all lie inside the region then we call 

that region as Convex Region (as Shown in the diagram Figure 4.1) 
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                      Figure 4.1: Convex Regions 

 

4.3. Non-Convex Optimization: 

• The Objective function is a non- convex function  

• All non-linear problems can be modelled by using non convex functions. (Linear functions 

are convex) 

• It has Multiple feasible regions and multiple locally optimal points. 

• There can’t be a general algorithm to solve it efficiently in all cases 

• Neural networks are universal function approximators, to do this, they need to be able to 

approximate non-convex functions. 

Refer the figure 4.2 .It shows Non Convex Region 

4.3.1. How to solve non-convex problems? 

 Stochastic gradient descent 

 Mini-batching  

 SVRG  

 Momentum 

 

4.3.2. Reasons For Non-Convexity: 

•      Presence of many Local Minima 

•      Prescence of Saddle Points  

•      Very Flat Regions 

•      Varying Curvature 
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                         Figure 4.2: Convex Regions 

 

4.4.  Spatial Transform Network [STN]: 

Spatial Transformer Network (SSTN) helps to crop out and scale-normalizes the 

appropriate region, which can simplify the subsequent classification task and lead to better 

classification performance. The Spatial Transformer Network contains three parts Namely, 

Localization, Grid Generator and Sampler. These Networks are used for performing 

Transformations such as Cropping, Rotation etc on the given input images. 

 

             

                                     Figure 4.3: Convex Regions 

 

 

Non Convex Region 
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Localisation Net: 

With input feature map U, with width W, height H and C channels, outputs 

are θ, the parameters of transformation Tθ. It can be learnt as affine transform  

Grid Generator: 

   Suppose we have a regular grid G, this G is a set of points with target 

coordinates (xt_i, yt_i).   Then we apply transformation T θ on G, i.e. T θ( G).  

After Tθ(G), a set of points with destination coordinates (xt_i, yt_i) is outputted. 

These points have been altered based on the transformation parameters. It can be 

Translation, Scale, Rotation or More Generic Warping depending on how we set θ as 

mentioned above. 

Sampler: 

   Based on the new set of coordinates (xt_i, yt_i), we generate a transformed 

output feature map V. This V is translated, scaled, rotated, warped, projective 

transformed or affined, whatever.  It is noted that STN can be applied to not only input 

image, but also intermediate feature maps. 

 STN is a mechanism that rotates or scales an input image or a feature map 

in order to focus on the target object and to remove rotational variance .  

 One of the most notable features of STNs is their modularity (the module can 

be injected into any part of the model) and their ability to be trained with a single backprop 

algorithm without modification of the initial model. 

4.4.1. Advantages: 

 Helps in learning explicit spatial transformations like translation, rotation, scaling, 

cropping, non-rigid deformations, etc. of features. 

  Can be used in any networks and at any layer and learnt in an end-to-end trainable 

manner.  

 Provides improvement in the performance of existing models. 

4.5. Recurrent Neural Networks: 

 RNNs are very powerful, because they combine two properties: 

 Distributed hidden state that allows them to store a lot of information about 

the past efficiently. 

 Non-linear dynamics that allows them to update their hidden state in 

complicated ways. 

 With enough neurons and time, RNNs can compute anything that can be computed by 

your computer.  

4.5.1. Need for RNN: 

 Normal Networks cannot handle sequential data 
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  They considers only the current input 

  Normal Neural networks cannot memorize previous inputs 

 The solution to these issues is the RNN 

RNN works on the principle of saving the output of a particular layer and feeding 

this back to the input in order to predict the output of the layer. We can convert a Feed-

Forward Neural Network into a Recurrent Neural Network as given below in figure 4.4. 

  

                        

            Figure 4.4: Converting a Full network into Recurrent Network 

The nodes in different layers of the neural network are compressed to form a single 

layer of recurrent neural networks. A, B, and C are the parameters of the network. Here, 

“x” is the input layer, “h” is the hidden layer, and “y” is the output layer. A, B, and C are 

the network parameters used to improve the output of the model. At any given time t, the 

current input is a combination of input at x(t) and x(t-1). The output at any given time is 

fetched back to the network to improve on the output.(Refer Figures 5A and 5 B) 

 

                   Figure 4.5 A:  Recurrent Network 
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                       Figure 4.5 B: Fully Connected RNN 

4.5.2. Providing Input to RNN: 

   We can specify inputs in several ways:  

– Specify the initial states of all the units.  

– Specify the initial states of a subset of the units.  

– Specify the states of the same subset of the units at every time step.  

4.5.3. providing Targets to RNN: 

We can specify targets in several ways:  

– Specify desired final activities of all the units  

– Specify desired activities of all units for the last few steps  

• Good for learning attractors  

• It is easy to add in extra error derivatives as we backpropagate. 

 – Specify the desired activity of a subset of the units 

4.6. Long Short Term Memory Network’s ( LSTM): 

LSTMs are a special kind of RNN — capable of learning long-term dependencies by 

remembering information for long periods is the default behavior. All RNN are in the form 

of a chain of repeating modules of a neural network. In standard RNNs, this repeating 

module will have a very simple structure, such as a single tanh layer. 

LSTMs also have a chain-like structure, but the repeating module is a bit different 

structure. Instead of having a single neural network layer, four interacting layers are 

communicating extraordinarily. 

Hochreiter & Schmidhuber (1997) solved the problem of getting an RNN to remember 

things for a long time (like hundreds of time steps). They designed a memory cell using 
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logistic and linear units with multiplicative interactions. Information gets into the cell 

whenever its “write” gate is on. The information stays in the cell so long as its “keep” gate 

is on. Information can be read from the cell by turning on its “read” gate.(Refer Figure 4.6 

– shown Below) 

To preserve information for a long time in the activities of an RNN, we use a circuit 

that implements an analog memory cell. 

– A linear unit that has a self-link with a weight of 1 will maintain its state.  

–    Information is stored in the cell by activating its write gate. 

–    Information is retrieved by activating the read gate. 

–  We can backpropagate through this circuit because logistics are had nice 

derivatives. 

 

                       

Figure 4.6 B: Read, Keep, Write gate of an LSTM  

 

4.6.1. Steps Involved in LSTM Networks: 

Step 1: Decide how much past data it should remember 

      The first step in the LSTM is to decide which information should be omitted from the 

cell in that particular time step. The sigmoid function determines this. It looks at the previous 

state (ht-1) along with the current input xt and computes the function. 
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               Step 2: Decide how much this unit adds to the current state  

 In the second layer, there are two parts. One is the sigmoid function, and the other is the 

tanh function. In the sigmoid function, it decides which values to let through (0 or 

1). tanh function gives weightage to the values which are passed, deciding their level of 

importance (-1 to 1). 

              Step 3: Decide what part of the current cell state makes it to the output 

 The third step is to decide what the output will be. First, we run a sigmoid layer, which 

decides what parts of the cell state make it to the output. Then, we put the cell state through 

tanh to push the values to be between -1 and 1 and multiply it by the output of the sigmoid 

gate. 

4.6.2. Applications of LSTM include: 

•    Robot control 

•   Time series prediction 

•   Speech recognition 

•   Rhythm learning 

•   Music composition 

•   Grammar learning 

•   Handwriting recognition 

4.7. Computational and Artificial Neuro-Science: 

Computational neuroscience is the field of study in which mathematical tools and theories 

are used to investigate brain function. 

The term “computational neuroscience” has two different definitions:  

          1. using a computer to study the brain   

          2. studying the brain as a computer 

Computational and Artificial Neuroscience deals with the study or understanding of how 

signals are transmitted through and from the human brain. A better understanding of How 

decision is made in human brain by processing the data or signals will help us in developing 

Intelligent algorithms or programs to solve complex problems. Hence, we need to 

understand the basics of Biological Neural Networks (BNN). 

4.7.1. The Biological Neurons: 

           The human brain consists of a large number, more than a billion of neural cells that 

process information. Each cell works like a simple processor. The massive interaction 

between all cells and their parallel processing only makes the brain’s abilities possible. 

Figure 1 represents a human biological nervous unit. Various parts of biological neural 

network(BNN) is marked in Figure 4.7. 
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Figure 4.7: Biological Neural Network 

Dendrites are branching fibres that extend from the cell body or soma. 

Soma or cell body of a neuron contains the nucleus and other structures, support 

chemical processing and production of neurotransmitters. 

Axon is a singular fiber carries information away from the soma to the synaptic sites 

of other neurons (dendrites ans somas), muscels, or glands. 

Axon hillock is the site of summation for incoming information. At any moment, the 

collective influence of all neurons that conduct impulses to a given neuron will determine 

whether or n ot an action potential will be initiated at the axon hillock and propagated along 

the axon. 

Myelin sheath consists of fat-containing cells that insulate the axon from electrical 

activity. This insulation acts to increase the rate of transmission of signals. A gap exists 

between each myelin sheath cell along the axon. Since fat inhibits the propagation of 

electricity, the signals jump from one gap to the next. 

Nodes of Ranvier are the gaps (about 1 μm) between myelin sheath cells. Since fat 

serves as a good insulator, the myelin sheaths speed the rate of transmission of an electrical 

impulse along the axon. 

Synapse is the point of connection between two neurons or a neuron and a muscle or 

a gland. Electrochemical communication between neurons take place at these junctions. 
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Terminal buttons of a neuron are the small knobs at the end of an axon that release 

chemicals called neurotransmitters. 

Information flow in a neural cell 

The input/output and the propagation of information are shown below. 

4.7.2. Artificial neuron model 

An artificial neuron is a mathematical function conceived as a simple model of a real 

(biological) neuron. 

 The McCulloch-Pitts Neuron 

This is a simplified model of real neurons, known as a Threshold Logic Unit. 

 A set of input connections brings in activations from other neuron. 

 A processing unit sums the inputs, and then applies a non-linear activation function 

(i.e. squashing/transfer/threshold function). 

 An output line transmits the result to other neurons. 

4.7.3. Basic Elements of ANN: 

 Neuron consists of three basic components –weights, thresholds and a  single 

activation function.  An Artificial neural network(ANN) model based on the biological 

neural sytems is shown in figure 4.8. 

 

                      

                            Figure 4.8: Basic Elements of Artificial Neural Network 

The goal of computational neuroscience is to explain how electrical and chemical 

signals are used in the brain to represent and process information. It explains the biophysical 

mechanisms of computation in neurons, computer simulations of neural circuits, and models 

of learning. 
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4.7.4. Applications of Computational Neuro Science: 

 

 Deep Learning, Artificial Intelligence and Machine Learning 

 Human psychology 

 Medical sciences 

 Mental models 

 Computational anatomy 

 Information theory 

 

                 

Reference Books: 

1. B. Yegnanarayana, “Artificial Neural Networks” Prentice Hall Publications.  

2. Simon Haykin, “Artificial Neural Networks”, Second Edition, Pearson Education. 

3. Laurene Fausett, “Fundamentals of Neural Networks, Architectures, Algorithms and 

Applications”, Prentice Hall publications. 

4. Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015. 

5. 2. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013. 

6. 3. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016. 

7. 4. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015. 

 

 

Note: For further reference, kindly refer the class notes, PPTs, Video lectures available 

in the Learning Management System (Moodle) 
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UNIT V   APPLICATIONS OF DEEP LEARNING 
 

Imagenet- Detection-Audio WaveNet-Natural Language Processing Word2Vec - Joint 

Detection BioInformatics- Face Recognition- Scene Understanding- Gathering Image Captions 

5.1. Imagenet: 

 

ImageNet is an image database organized according to the WordNet hierarchy (currently only 

the nouns), in which each node of the hierarchy is depicted by hundreds and thousands of images. 
In Machine Learning and Deep Neural Networks, machines are trained on a large dataset of 

various images. Machines are required to learn useful features from these training images. Once 

learned, they can use these features to classify images and perform many other tasks associated 

with computer vision. ImageNet gives researchers a common set of images to benchmark their 

models and algorithms. 

 

ImageNet is useful for many computer vision applications such as object recognition, image 

classification and object localization.Prior to ImageNet, a researcher wrote one algorithm to 

identify dogs, another to identify cats, and so on. After training with ImageNet, the same 

algorithm could be used to identify different objects. The diversity and size of ImageNet meant 

that a computer looked at and learned from many variations of the same object. These variations 

could include camera angles, lighting conditions, and so on. Models built from such extensive 

training were better at many computers vision tasks. ImageNet convinced researchers those large 

datasets were important for algorithms and models to work well.  

5.1.1. Technical details of Image Net: 

  ImageNet consists of 14,197,122 images organized into 21,841 subcategories. These 

subcategories can be considered as sub-trees of 27 high-level categories. Thus, ImageNet is a 

well-organized hierarchy that makes it useful for supervised machine learning tasks. As many as 

1,034,908 images have been annotated with bounding boxes. For example, if an image contains 

a cat as its main subject, the coordinates of a rectangle that bounds the cat are also published on 

ImageNet. This makes it useful for computer vision tasks such as object localization and 

detection. Then there's Scale-Invariant Feature Transform (SIFT) used in computer 

vision. SIFT helps in detecting local features in an image. ImageNet gives researchers 1000 

subcategories with SIFT features covering about 1.2 million images. Images vary in resolution 

but it's common practice to train deep learning models on sub-sampled images of 256x256 pixels. 

        ImageNet did not define these subcategories on its own but derived these from 

WordNet. WordNet is a database of English words linked together by semantic relationships. 

Words of similar meaning are grouped together into a synonym set, simply called synset. 

Hypernyms are synsets that are more general. Thus, "organism" is a hypernym of "plant". 

Hyponyms are synsets that are more specific. Thus, "aquatic" is a hyponym of "plant". This 

hierarchy makes it useful for computer vision tasks. If the model is not sure about a subcategory, 
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it can simply classify the image higher up the hierarchy where the error probability is less. For 

example, if model is unsure that it's looking at a rabbit, it can simply classify it as a mammal. 

While WordNet has 100K+ synsets, only the nouns have been considered by ImageNet. 

5.1.2. How the images are labelled in ImageNet? 

   In the early stages of the ImageNet project, a quick calculation showed that by employing 

a few people, they would need 19 years to label the images collected for ImageNet. But in the 

summer of 2008, researchers came to know about an Amazon service called Mechanical Turk. 

This meant that image labelling can be crowdsourced via this service. Humans all over the world 

would label the images for a small fee. 

       Humans make mistakes and therefore we must have checks in place to overcome them. Each 

human is given a task of 100 images. In each task, 6 "gold standard" images are placed with 

known labels. At most 2 errors are allowed on these standard images, otherwise the task has to 

be restarted. 

       In addition, the same image is labelled by three different humans. When there's 

disagreement, such ambiguous images are resubmitted to another human with tighter quality 

threshold (only one allowed error on the standard images). 

5.1.3. How the images of ImageNet Licensed? 

  Images for ImageNet were collected from various online sources. ImageNet doesn't own the 

copyright for any of the images. This has implication on how ImageNet shares the images to 

researchers. 

  For public access, ImageNet provides image thumbnails and URLs from where the original 

images were downloaded. Researchers can use these URLs to download the original images. 

However, those who wish to use the images for non-commercial or educational purpose, can 

create an account on ImageNet and request access. This will allow direct download of images 

from ImageNet. This is useful when the original sources of images are no longer available. 

       The dataset can be explored via a browser-based user interface. Alternatively, there's also 

an API. Researchers may want to read the API Documentation. This documentation also shares 

how to download image features and bounding boxes. 
 

5.1.4. Shortcomings of ImageNet: 

     Images are not uniformly distributed across subcategories. One research team found that by 

considering 200 subcategories, they found that the top 11 had 50% of the images, followed by 

a long tail. 

      When classifying people, ImageNet uses labels that are racist, misogynist and offensive. 

People are treated as objects. Their photos have been used without their knowledge. About 

5.8% labels are wrong.     ImageNet lacks geodiversity. Most of the data represents North 

America and Europe. China and India are represented in only 1% and 2.1% of the images 

respectively. This implies that models trained on ImageNet will not work well when applied 

for the developing world. 
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       Another study from 2016 found that 30% of ImageNet's image URLs are broken. This is 

about 4.4 million annotations lost. Copyright laws prevent caching and redistribution of these 

images by ImageNet itself 

             Content Source: https://devopedia.org/imagenet 

5.2. WaveNet: 

          WaveNet is a deep generative model of raw audio waveforms. We show that WaveNets 

are able to generate speech which mimics any human voice and which sounds more natural 

than the best existing Text-to-Speech systems, reducing the gap with human performance by 

over 50%. Allowing people to converse with machines is a long-standing dream of human-

computer interaction. The ability of computers to understand natural speech has been 

revolutionised in the last few years by the application of deep neural networks. However, 

generating speech with computers  — a process usually referred to as speech synthesis or text-

to-speech (TTS) — is still largely based on so-called concatenative TTS, where a very large 

database of short speech fragments are recorded from a single speaker and then recombined to 

form complete utterances. This makes it difficult to modify the voice (for example switching 

to a different speaker, or altering the emphasis or emotion of their speech) without recording a 

whole new database. 

      This has led to a great demand for parametric TTS, where all the information required to 

generate the data is stored in the parameters of the model, and the contents and characteristics 

of the speech can be controlled via the inputs to the model. So far, however, parametric TTS 

has tended to sound less natural than concatenative. Existing parametric models typically 

generate audio signals by passing their outputs through signal processing algorithms known 

as vocoders. WaveNet changes this paradigm by directly modelling the raw waveform of the 

audio signal, one sample at a time. As well as yielding more natural-sounding speech, using 

raw waveforms means that WaveNet can model any kind of audio, including music. 

 

                     

                     Figure 5.1: WaveNet Structure 
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      The WaveNet proposes an autoregressive learning with the help of convolutional 

networks with some tricks. Basically, we have a convolution window sliding on the audio data, 

and at each step try to predict the next sample value that it did not see yet. In other words, it 

builds a network that learns the causal relationships between consecutive timesteps (as shown 

in figure 5.1) 

 

 

                            Figure 5.2: WaveNet Overall Model 

 

Typically, the speech audio has a sampling rate of 22K or 16K. For few seconds of speech, it 

means there are more than 100K values for a single data and it is enormous for the network to 

consume. Hence, we need to restrict the size, preferably to around 8K. At the end, the values 

are predicted in Q channels (eg. Q=256 or 65536), which is compared to the original audio data 

compressed to Q distinct values. For that, the mulaw quantization could be used: it maps the 

values to the range of [0,Q]. And the loss can be computed either by cross-entropy, 

or discretized logistic mixture. 

5.2.1. The Workflow of WaveNet: 

 Input is fed into a causal 1D convolution 

 The output is then fed to 2 different dilated 1D convolution layers 

with sigmoid and tanh activations 

 The element-wise multiplication of 2 different activation values results in a skip 

connection 
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 And the element-wise addition of a skip connection and output of causal 1D results in the 

residual 

                  Content Source: (1) https://www.analyticsvidhya.com/blog/2020/01/how-to-  

              perform-automatic-music-generation/ 

                                         (2)https://medium.com/@evinpinar/wavenet-implementation-

and-experiments-2d2ee57105d5 

                                                          (3)https://deepmind.com/blog/article/wavenet-generative-

model-raw-audio 
 

5.3. Natural Language Processing [NLP]: 

          Language is a method of communication with the help of which we can speak, read and 

write. For example, we think, we make decisions, plans and more in natural language; precisely, 

in words. However, the big question that confronts us in this AI era is that can we communicate 

in a similar manner with computers. In this sense, we can say that Natural Language Processing 

(NLP) is the sub-field of Computer Science especially Artificial Intelligence (AI) that is 

concerned about enabling computers to understand and process human language. Technically, 

the main task of NLP would be to program computers for analysing and processing huge 

amount of natural language data. 

5.3.1. Natural Language Processing Phases: 

 

                              Figure 5.3: NLP Phases 
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The above diagram (Figure5.3 ) shows the phases or logical steps involved in natural language 

processing 

5.3.1.1 Morphological Processing 

   It is the first phase of NLP. The purpose of this phase is to break chunks of language input 

into sets of tokens corresponding to paragraphs, sentences and words. For example, a word 

like “uneasy” can be broken into two sub-word tokens as “un-easy”. 

5.3.1.2 Syntax Analysis 

     It is the second phase of NLP. The purpose of this phase is two folds: to check that a 

sentence is well formed or not and to break it up into a structure that shows the syntactic 

relationships between the different words. For example, the sentence like “The school goes to 

the boy” would be rejected by syntax analyser or parser. 

5.3.1.3 Semantic Analysis 

     It is the third phase of NLP. The purpose of this phase is to draw exact meaning, or you can 

say dictionary meaning from the text. The text is checked for meaningfulness. For example, 

semantic analyser would reject a sentence like “Hot ice-cream”. 

5.3.1.4 Pragmatic Analysis 

       It is the fourth phase of NLP. Pragmatic analysis simply fits the actual objects/events, which 

exist in a given context with object references obtained during the last phase (semantic analysis). 

For example, the sentence “Put the banana in the basket on the shelf” can have two semantic 

interpretations and pragmatic analyser will choose between these two possibilities. 

        Content Source: Https:// www.tutorialspoint.com/ natural_language_processing/ natural_ 

language_processing_quick_guide.htm 

 

5.3.1.5. Different types based on Working: 

1. Speech Recognition  —  The translation of spoken language into text. 

2. Natural Language Understanding (NLU)   —  The computer’s ability to understand 

what we say. 

3. Natural Language Generation   (NLG) —  The generation of natural language by a 

computer. 

 

5.3.1.6. Applications of NLP: 

 Spam Filters 

 Algorithmic Trading 

 Answering Questions 

 Summarizing Information’s etc 

 

Content Source:  https://www.geeksforgeeks.org/natural-language-processing-overview/ 

 

5.4. Word2Vec: 

         Word embedding is one of the most popular representation of document vocabulary. It is 

capable of capturing context of a word in a document, semantic and syntactic similarity, relation 

with other words, etc. What are word embeddings exactly? Loosely speaking, they are vector 
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representations of a particular word. Having said this, what follows is how do we generate them? 

More importantly, how do they capture the context? Word2Vec is one of the most popular 

technique to learn word embeddings using shallow neural network. It was developed by Tomas 

Mikolov in 2013 at Google. 

 

            The purpose and usefulness of Word2vec is to group the vectors of similar words 

together in vector space. That is, it detects similarities mathematically. Word2vec creates vectors 

that are distributed numerical representations of word features, features such as the context of 

individual words. It does so without human intervention. 

              

             Given enough data, usage and contexts, Word2vec can make highly accurate guesses 

about a word’s meaning based on past appearances. Those guesses can be used to establish a 

word’s association with other words (e.g. “man” is to “boy” what “woman” is to “girl”), or 

cluster documents and classify them by topic. Those clusters can form the basis of search, 

sentiment analysis and recommendations in such diverse fields as scientific research, legal 

discovery, e-commerce and customer relationship management. Measuring cosine similarity, no 

similarity is expressed as a 90 degree angle, while total similarity of 1 is a 0 degree angle, 

complete overlap. 

 

              Word2vec is a two-layer neural net that processes text by “vectorizing” words. Its input 

is a text corpus and its output is a set of vectors: feature vectors that represent words in that 

corpus. While Word2vec is not a deep neural network, it turns text into a numerical form that 

deep neural networks can understand. 

 

              Word2vec’s applications extend beyond parsing sentences in the wild. It can be applied 

just as well to genes, code, likes, playlists, social media graphs and other verbal or symbolic 

series in which patterns may be discerned. 

 

 

               
 

  Figure 5.4:  Two models of Word2Vec (A- CBOW & B- Skip-Gram model) 
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             Word2vec is similar to an autoencoder, encoding each word in a vector, but rather than 

training against the input words through reconstruction, as a restricted Boltzmann machine does, 

word2vec trains words against other words that neighbour them in the input corpus. t does so in 

one of two ways, either using context to predict a target word (a method known as continuous 

bag of words, or CBOW), or using a word to predict a target context, which is called skip-gram.  

            When the feature vector assigned to a word cannot be used to accurately predict that 

word’s context, the components of the vector are adjusted. Each word’s context in the corpus is 

the teacher sending error signals back to adjust the feature vector. The vectors of words judged 

similar by their context are nudged closer together by adjusting the numbers in the vector. 

             Similar things and ideas are shown to be “close”. Their relative meanings have been 

translated to measurable distances. Qualities become quantities, and algorithms can do their 

work. But similarity is just the basis of many associations that Word2vec can learn. For example, 

it can gauge relations between words of one language, and map them to another. 

          The main idea of word2Vec is to design a model whose parameters are the word vectors. 

Then, train the model on a certain objective. At every iteration we run our model, evaluate the 

errors, and follow an update rule that has some notion of penalizing the model parameters that 

caused the error. Thus, we learn our word vectors. 

Content Source: (1) https://towardsdatascience.com/introduction-to-word-embedding-and-

word2vec-652d0c2060fa 

                            (2) https://wiki.pathmind.com/word2vec 

 

5.5. Applications of Deep Learning Networks: Joint Detection 

              Deep Learning finds a lot of usefulness in the field of Biomedical and Bioinformatics. 

Deep Learning algorithms can be used for detecting fractures or anatomical changes in the 

human bones or in bone joints thereby early prediction of various diseases like arteritis can be 

done which helps in early curing of the so-called diseases also. Knee osteoarthritis (OA) is a 

very general joint disease that disturb many people especially people over 60. The severity of 

pain caused by knee OA is the most important portent to disable. Until now, the bad impact of 

osteoarthritis on health care and public health systems is still increasing. 

          Normal Neural Networks fails because of errors in the stages of Image Segmentation and 

Feature Extractions.TO avoid this we can build a Convolution based model as shown in the 

Figure 5.5 given below. In this example we had considered a CNN based Network. The input 

to this model is Knee Thermographs. Thermography is the image which senses or captures the 

heat intensity coming out from that particular region. Based on the patient’s pressure points the 

color in the thermographs vary. Red regions denote more pressure locations and Yellow regions 

Denote less pressure locations. So, from the thermogram we can understand the effects of 

joint/Bone wear and tear or Damage occurred at particular spot. 

       The Convolution Filter is made to move over the image. The stride value here considered 

for this case study is 1. We have used Max Pooling and in the fully connected layer we have 

used Softmax aggregator. 
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           Figure 5.5:  General representation of Bone Joint detection system 

 

               The above diagram is a schematic representation of a Deep Learning based network 

which can be used for human knee Joint deformities Identification purpose. Figure 5.6 shows 

the general Anatomical structure of a Human Knee Joint. Figure 5.6 shows the key structure 

skin texture of knee osteoarthritis. The left elevation of the image demonstrates the ordinary 

knee and the right elevation illustrates the contaminated joint. There have been many deep 

learning methods that can contribute well to the KOA diagnosis accurately as a part of early 

detection. 

                 

                                            Figure 5.6:  Human Knee Joint Structure 
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                                   Figure 5.7: CNN based Knee Joint Detection Model 

Figure 5.7 shows the full model of a joint detection procedure. The Convolution filter 

moves to the right with a certain Stride Value till it parses the complete width. Moving on, it 

hops down to the beginning (left) of the image with the same Stride Value and repeats the 

process until the entire image is traversed. The Kernel has the same depth as that of the input 

image. The objective of the Convolution Operation is to extract the high-level features such 

as edges, from the input image. Stride is the number of pixels shifts over the input 

matrix. When the stride is 1 then we move the filters to 1 pixel at a time. When the stride is 2 

then we move the filters to 2 pixels at a time and so on 

Pooling layers section would reduce the number of parameters when the images are 

too large. Spatial pooling also called subsampling or down sampling which reduces the 

dimensionality of each map but retains important information. This is to decrease the 

computational power required to process the data by reducing the dimensions 

Types of Pooling: 

•   Max Pooling 

•   Average Pooling 

•   Sum Pooling 

• The image is flattened into a column vector. 

• The flattened output is fed to a feed-forward neural network and backpropagation applied 

to every iteration of training.  

            Over a series of epochs, the model is able to distinguish between dominating and 

certain low-level features in images and classify them using the Softmax 

Classification technique. The feature map matrix will be converted as vector (x1, x2, x3, …). 

These features are combined together to create a model.  
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Finally, an activation function such as softmax or sigmoid is used to classify the outputs as 

Normal and Abnormal. 

5.5.1 Steps Involved: 

• Provide input image into convolution layer 

• Choose parameters, apply filters with strides, padding if requires. Perform convolution 

on the image and apply ReLU activation to the matrix. 

• Perform pooling to reduce dimensionality size 

• Add as many convolutional layers until satisfied 

• Flatten the output and feed into a fully connected layer (FC Layer) 

• Output the class using an activation function (Logistic Regression with cost functions) 

and classifies images. 

5.6. Other Applications: 

               Similarly for the other Applications such as Facial Recognition and Scene 

Matching applications appropriate Deep Learning Based Algorithms such as AlexNet, 

VGG, Inception, ResNet and or Deep learning-based LSTM or RNN can be used. These 

Networks has to be explained with necessary Diagrams and appropriate Explanations. 

                

Reference Books: 

1. B. Yegnanarayana, “Artificial Neural Networks” Prentice Hall Publications.  

2. Simon Haykin, “Artificial Neural Networks”, Second Edition, Pearson Education. 

3. Laurene Fausett, “Fundamentals of Neural Networks, Architectures, Algorithms and 

Applications”, Prentice Hall publications. 

4. Cosma Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015. 

5. 2. Deng & Yu, Deep Learning: Methods and Applications, Now Publishers, 2013. 

6. 3. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016. 

7. 4. Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015. 

 

 

Note: For further reference, kindly refer the class notes, PPTs, Video lectures available 

in the Learning Management System (Moodle) 
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