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UNIT-I (DIGITAL DESIGN USING VERILOG HDL) 

Hardware modeling with the Verilog HDL: Encapsulation, modeling primitives, Types of 
Modelling. Logic system, Data types and operators. Behavioral descriptions in verilog HDL. 
Styles for Synthesis of combinational logic and sequential logic. HDL based Synthesis – 
Technology Independent design 

Verilog HDL is a hardware description language that can be used to model a digital system 
at many levels of abstraction ranging from the algorithmic level to the gate level to the switch 
level. The complexity of the digital system being modeled could vary from that of a simple 
gate to a complete electronic digital system, or anything in between. The digital system can be 
described hierarchically and timing can be explicitly modeled within the same description. 

 
1.1 Typical Design Flow 

A typical design flow for designing VLSI IC circuits is shown in Figure 2.1. Un shaded 
blocks show the level of design representation; shaded blocks show processes in the design 
flow. 

The design flow shown in Figure 1.1 is typically used by designers who use HDLs. In 
any design, specifications are written first. Specifications describe abstractly the functionality, 
interface, and overall architecture of the digital circuit to be designed. At this point, the 
architects do not need to think about how they will implement this circuit. A behavioral 
description is then created to analyze the design in terms of functionality, performance, 
compliance to standards, and other high-level issues. Behavioral descriptions are often written 
with HDLs 

The behavioral description is manually converted to an RTL description in an HDL. The 
designer has to describe the data flow that will implement the desired digital circuit. From this 
point onward, the design process is done with the assistance of EDA tools. 

Logic synthesis tools convert the RTL description to a gate-level netlist. A gatelevel netlist 
is a description of the circuit in terms of gates and connections between them. Logic synthesis 
tools ensure that the gate-level netlist meets timing, area, and power specifications. The gate-
level netlist is input to an Automatic Place and Route tool, which creates a layout. The layout 
is verified and then fabricated on a chip. 
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Figure 1.1: Typical Design Flow 
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1.2.1 Levels for design description

Verilog supports designing
very important: 

Behavioral level  

Register-Transfer Level Gate

Behavioral Level: This level describes a system by concurrent algorithms (Behavioral). Each 
algorithm itself is sequential, that means it consists of a set of instructions that are executed 
one after the other. Functions, Tasks
regard to the structural realization

 
Register-Transfer Level: Designs
of a circuit by operations and the transfer of data between the registers.An explicit clock is used. 
RTL design contains exact timing bounds: operations are scheduled to occur at certain times. 
Modern RTL code definition is "Any code
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Figure 1.3: Bottom-up Design Methodology  
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designing at many different levels of abstraction. Three

Gate Level 

This level describes a system by concurrent algorithms (Behavioral). Each 
sequential, that means it consists of a set of instructions that are executed 

Tasks and Always blocks are the main elements.
structural realization of the design. 

Designs using the Register-Transfer Level specify the
and the transfer of data between the registers.An explicit clock is used. 

exact timing bounds: operations are scheduled to occur at certain times. 
"Any code that is synthesizable is called RTL code".
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Gate Level: Within the logic level the characteristics of a system are described by logical 
links and their timing properties. All signals are discrete signals. They can only have 
definite logical values (`0', `1', `X', `Z`). The usable operations are predefined logic 
primitives (AND, OR, NOT etc gates). Using gate level modeling might not be a good idea 
for any level of logic design. Gate level code is generated by tools like synthesis tools and 
this netlist is used for gate level simulation and for backend. 

 
1.3 Data types 

Verilog HDL has two groups of data types a) Net type: A net type represents a 
physical connection between structural elements. Its value is determined from the value of 
its drivers such as a continuous assignment or a gate output. If no driver is connected to a 
net, the net defaults to a value of z. b)Variable type: A variable type represents an abstract 
data storage element. It is assigned values only within an always statement or an initial 
statement, and its value is saved from one assignment to the next. A variable type has a 
default value of x. 

Net types 

Here are the different kinds of nets that belong to the net data type  

wire, tri, wor, trior, wand, triand ,,       trireg,  tri1 tri0, supply0, supply1 
 
 

1.3.1 Variable types:  
There are five different kinds of variable types reg, integer, time, real, 

realtime 
Register: Registers represent data storage elements. Registers retain value until another 
value is placed onto them. Register data types are commonly declared by the keyword reg. 
The default value for a reg data type is x. 

Integer: An integer is a general purpose register data type used for manipulating quantities. 
Integers are declared by the keyword integer. Although it is possible to use reg as a 
general-purpose variable, it is more convenient to declare an integer variable for purposes 
such as counting. The default width for an integer is the host-machine word size, which is 
implementation- specific but is at least 32 bits. Registers declared as data type reg store 
values as unsigned quantities, whereas integers store values as signed quantities. 

Real: Real number constants and real register data types are declared with the keyword 
real. They can be specified in decimal notation (e.g., 3.14) or in scientific notation (e.g., 
3e6, which is 3 x 106 ). Real numbers cannot have a range declaration, and their default 
value is 0. When a real value is assigned to an integer, the real number is rounded off to the 
nearest integer. 
Time: Verilog simulation is done with respect to simulation time. A special time register 
data type is used in Verilog to store simulation time. A time variable is declared with the 
keyword time. The width for time register data types is implementation specific but is at 



least 64 bits. The system function $time is invoked to get the current simulation time. 
 
 
Arrays: Arrays are allowed in Verilog for reg, integer, time, real, realtime and vector 
register data types. Multi-dimensional arrays can also be declared with any number of 
dimensions. Arrays of nets can also be used to connect ports of generated instances. Each 
element of the array can be used in the same fashion as a scalar or vector net.  
 
1.4 Styles of Modelling: 
1.4.1 Gate Level Modelling: The Built-in Primitive Gates: The following built-in primitive 
gates are available in Verilog HDL.  

i. Multiple-input gates: and, nand, or,nor,xor,xnor  
ii. Multiple-output gates: buf, not  
iii. Tristate gates: buflfO, bufifl, notifO, notifl  
iv. Pull gates: pullup, pulldown  Multiple-input  
v. MOS switches: cmos, nmos, pmos, rcmos, rnmos, rpmos  
vi. Bidirectional switches: tran, tranifO, tranifl, rtran, rtranifO,rtranifl  
A gate can be used in a design using a gate instantiation. Here is a simple format of a gate 
instantiation. gate_type[ instance_name ] ( terml , term2 , . . . , termN); 

Example: 4x1 Multiplexer: 

 
Figure 1.4 Multiplexer 

 
moduleMUX4x1 (Z, DO, Dl, D2, D3, SO, Si); 
output Z; 
10 
input DO, Dl, D2, D3, SO, SI; 
and (TO, DO, SObar, Slbar), 
(Tl, Dl, SObar, S1), 
(T2, D2, SO, Slbar), 
(T3, D3, SO, S1); 
not (SObar,SO), 



(Slbar, S1); 
or (Z, TO, Tl, T2, T3); 
endmodule 
 

1.4.2 Dataflow Modeling 
For small circuits, the gate-level modeling approach works very well because the 

numbers of gates is limited and the designer can instantiate and connect every gate individually. 
Also, gate-level modeling is very intuitive to a designer with a basic knowledge of digital logic 
design. However, in complex designs the number of gates is very large. Thus, designers can 
design more effectively if they concentrate on implementing the function at a level of abstraction 
higher than gate level. Dataflow modeling provides a powerful way to implement a design. 
Verilog allows a circuit to be designed in terms of the data flow between registers and how a 
design processes data rather than instantiation of individual gates. Later in this chapter, the 
benefits of dataflow modeling will become more apparent. With gate densities on chips 
increasing rapidly, dataflow modeling has assumed great importance. No longer can companies 
devote engineering resources to handcrafting entire designs with gates. Currently, automated 
tools are used to create a gate-level circuit from a dataflow design description. This process is 
called logic synthesis. Dataflow modeling has become a popular design approach as logic 
synthesis tools have become sophisticated. This approach allows the designer to concentrate on 
optimizing the circuit in terms of data flow. For maximum flexibility in the design process, 
designers typically use a Verilog description style that combines the concepts of gate-level, data 
flow, and behavioral design. In the digital design community, the term RTL (Register Transfer 
Level) design is commonly used for a combination of dataflow modeling and behavioral 
modeling. 
 
Example: 
Master Slave Flip-flop:  
module MSDFF_DF (D, C, Q, Qbar) ; 
input D, C;  
output Q, Qbar;  
wireNotC, NotD, NotY, Y, Dl, D2, Ybar, Yl, Y2;  
assignNotD = ~ D;  
assign Note = ~ C;  
assign NotY = ~ Y;  
assign D1= - (D & C) ;  
assign D2 = ~ (C &NotD);  
assign Y = ~ (Dl St Ybar);  
assign Ybar = ~ (Y & D2);  
assign Yl = ~ (y & Note);  
assign Y2 = - (NotY&NotC);  
assign Q = ~ (Qbar&Yl);  
assignQbar = ~ (Y2 & Q);  
endmodule 



 
 
8 bit Magnitude Comparator:  
moduleMagnitudeComparator (A, B, AgtB, AeqB, AltB) ;  
parameter BUS= 8;  
parameter EQ_DELAY = 5, LT_DELAY = 8, GT_DELAY = 8;  
input [1 : BUS]A, B;  
outputAgtB, AeqB, AltB;  
assign %EQ_DELAY AeqB = A == B; 19  
assign $GT_DELAY AgtB = A > B;  
assign $LT_DELAY AltB = A < B;  
endmodule 
 
1.4.3 Behavioral Modeling: 

Behavioral modeling is the highest level of abstraction in the Verilog HDL. The other 
modeling techniques are relatively detailed. They require some knowledge of how hardware or 
hardware signals work. The abstraction in this modeling is as simple as writing the logic in C 
language. This is a very powerful abstraction technique. All that a designer need is the 
algorithm of the design, which is the basic information for any design. Most of the behavioral 
modeling is done using two important constructs: initial and always. All the other behavioral 
statements appear only inside these two structured procedure constructs. 
Example:  
4x1 Multiplexer 
module mux4( input a, b, c, d 
input [1:0] sel, 
output out ); 
always @(a or b or c or d or sel) 
begin 
if(sel==0) 
out = a; 
else if (sel==1) 
out = b; 
else if ( sel == 2 ) 
out = c ; 
else if ( sel == 3 ) 
out = d; 
end 
endmodule 
 
D flip-flop 
module RisingEdge_DFlipFlop(D,clk,Q); 
input D; // Data input 
input clk; // clock input 



output Q; // output Q 
always @(posedgeclk) 
27 
begin 
Q <= D; 
end 
endmodule 
 
Shift Register (Serial In Serial Out) 
module shift (C, SI, SO); 
input C,SI; 
output SO; 
reg [7:0] tmp; 
always @(posedge C) 
begin 
tmp = tmp<< 1; 
tmp[0] = SI; 
end 
assign SO = tmp[7]; 
endmodule 
 
Procedural Assignments: 

Procedural assignments are for updating reg, integer, time, and memory variables. There 
is a significant difference between procedural assignment and continuous assignment as 
described below –  

Continuous assignments drive net variables and are evaluated and updated whenever an 
input operand changes value.  

Procedural assignments update the value of register variables under the control of the 
procedural flow constructs that surround them.  

The right-hand side of a procedural assignment can be any expression that evaluates to a 
value. However, part-selects on the right-hand side must have constant indices. The lefthand 
side indicates the variable that receives the assignment from the right-hand side. The left-hand 
side of a procedural assignment can take one of the following forms  

− register, integer, real, or time variable  
− An assignment to the name reference of one of these data types. bit-select of a register, 

integer, real, or time variable  
− An assignment to a single bit that leaves the other bits untouched. part-select of a 

register, integer, real, or time variable  
− A part-select of two or more contiguous bits that leaves the rest of the bits untouched. 

For the part-select form, only constant expressions are legal. memory element − A single word 
of a memory. Note that bit-selects and part-selects are illegal on memory element references. 
concatenation of any of the above  

− A concatenation of any of the previous four forms can be specified, which effectively 



partitions the result of the right-hand side expression and assigns the partition parts, in order, to 
the various parts of the concatenation. 
 
Nonblocking (RTL) Assignments: The non-blocking procedural assignment allows you to 
schedule assignments without blocking the procedural flow. You can use the non-blocking 
procedural statement whenever you want to make several register assignments within the same 
time step without regard to order or dependance upon each other. 

<lvalue> <= <timing_control> <expression> 
Where lvalue is a data type that is valid for a procedural assignment statement, <= is the 

non-blocking assignment operator, and timing control is the optional intra-assignment timing 
control. The timing control delay can be either a delay control or an event control (for example, 
@(posedge clk)). The expression is the right-hand side value the simulator assigns to the left-
hand side. The non-blocking assignment operator is the same operator the simulator uses for the 
less-than-orequal relational operator. The simulator interprets the <= operator to be a relational 
operator when you use it in an expression, and interprets the <= operator to be an assignment 
operator when you use it in a non-blocking procedural assignment construct. How the simulator 
evaluates non-blocking procedural assignments When the simulator encounters a non-blocking 
procedural assignment, the simulator evaluates and executes the non-blocking procedural 
assignment in two steps as follows – 

The simulator evaluates the right-hand side and schedules the assignment of the new 
value to take place at a time specified by a procedural timing control.  

The simulator evaluates the right-hand side and schedules the assignment of the new 
value to take place at a time specified by a procedural timing control. At the end of the time 
step, in which the given delay has expired or the appropriate event has taken place, the 
simulator executes the assignment by assigning the value to the left-hand side. 

 
Case Statement: The case statement is a special multi-way decision statement that tests 

whether an expression matches one of a number of other expressions, and branches accordingly. 
The case statement is useful for describing, for example, the decoding of a microprocessor 
instruction. The case statement has the following syntax – 

The case expressions are evaluated and compared in the exact order in which they are 
given. During the linear search, if one of the case item expressions matches the expression in 
parentheses, then the statement associated with that case item is executed. If all comparisons 
fail, and the default item is given, then the default item statement is executed. If the default 
statement is not given, and all of the comparisons fail, then none of the case item statements is 
executed.  

Apart from syntax, the case statement differs from the multi-way if-else-if construct in 
two important ways – 

The conditional expressions in the if-else-if construct are more general than comparing 
one expression with several others, as in the case statement.  

The case statement provides a definitive result when there are x and z values in an 
expression. 

 



 
Looping Statements: There are four types of looping statements. They provide a means 

of controlling the execution of a statement zero, one, or more times. forever continuously 
executes a statement. repeat executes a statement a fixed number of times. while executes a 
statement until an expression becomes false. If the expression starts out false, the statement is 
not executed at all. for controls execution of its associated statement(s) by a three-step process, 
as follows  

− Executes an assignment normally used to initialize a variable that controls the number 
of loops executed Evaluates an expression 

- if the result is zero, the for loop exits, and if it is not zero, the for loop executes its 
associated statement(s) and then performs step 3 Executes an assignment normally used to 
modify the value of the loopcontrol variable, then repeats step 2. 

 
Procedures: Always and Initial Blocks All procedures in Verilog are specified within 

one of the following four Blocks. 1) Initial blocks 2) Always blocks 3) Task 4) Function The 
initial and always statements are enabled at the beginning of simulation. The initial blocks 
executes only once and its activity dies when the statement has finished. In contrast, the always 
blocks executes repeatedly. Its activity dies only when the simulation is terminated. There is no 
limit to the number of initial and always blocks that can be defined in a module. Tasks and 
functions are procedures that are enabled from one or more places in other procedures. 

 
1.4.4 Structural Modelling: 

The structural model of Verilog HDL is described using: 

 Gate instantiation 

 UDP instantiation 

 Module instantiation 
Module: A module defines a basic unit in Verilog HDL. It is of the form: 
modulemodule_name ( port_list ); 
Declarations_and_Statements 
endmodule 

The port list gives the list of ports through which the module communicates with the 
external modules. 
 

Ports: A port can be declared as input, output or inout. A port by default is a net. However, it 
can be explicitly declared as a net. An output or an inout port can optionally be redeclared as a 
regregister. In either the net declaration or the register declaration the net or register must have 
the same size as the one specified in the port declaration. Here are some examples of 
declarations. 
 
module Micro {PC, Instr, NextAddr); 
// Port declarations: 
input [3:1] PC; 
output [1:8] Instr; 



inout [16:1]NextAddr; 
// Redeclarations: 
wire [16:1] NextAddr; 
//Optional; but if specified must have same range as in its port declaration. 
reg [1:8] Instr; 
/* Instr has been redeclared as a reg so that it can be assigned a value within an always 
statement or an initial statement. */ 
endmodule 
 
Module Instantiation: A module can be instantiated in another module, thus creating 
hierarchy. A module instantiation statement is of the form: 
module_name instance_name( port_associations); 
Port associations can be by position or by name; however, associations cannot be mixed. A 
port association is of the form: 
port_expr // By position. 
.PortName (port_expr )// By name. 

Where port_expr can be any of the following: 
i. an identifier (a register or a net) 
ii. a bit-select 
iii. a part-select 
iv. a concatenation of the above 
v. an expression (only for input ports) 
In positional association, the port expressions connect to the ports of the module in the 

specified order. In association by name, the connection between the module port and the port 
expression is explicitly specified and thus the order of port associations is not important. Here is 
an example of a full-adder built using two half-adder modules. 
 
Half Adder: 

module HA (A, B, S, C); 
input A, B; 
output S, C; 
parameter AND_DELAY = 1, XOR_DELAY = 2; 
assign #XOR_DELAY s=A ^ B; 
assign #AND_ DELAY C= A & B; 
endmodule 

 
Full Adder: 

module FA (P, Q, Cin, Sum, Cout); 
input P, Q, Cin; 
output Sum, Cout; 
parameter OR_DELAY = 1; 
wire SI, CI, C2; 
//Two module instantiations: 



HA h1 (P, Q, S1, C1); 
// Associatingby position. 
HA h2 (.A(Cin), .S(Sum), .B(S1), .C(C2)); //Associating by name. 
// Gate instantiation: 
or #OR_DELAY 01 (Cout, CI, C2) ; 
endmodule 
 

 
Figure 1.5: Full Adder using Two Half Adders 

 
In the first module instantiation, HA is the name of the module, h1 is the instance name 

and ports are associated by position, that is, P is connected to module (HA) port A, Q is 
connected to module port B, S1 to S and C1 to module port C. In the second instantiation, the 
port association is by name, that is, the connections between the module (HA) ports and the port 
expressions are specified explicitly. 
Example: 

Decade Counter: 

 
Figure 1.6: Decade Counter 



 
 

3-bit UP-DOWN counter 

 
Figure 1.7: 3-bit UP-DOWN counter 

 
 

moduleUp_Down {Clk, Cnt_Up, Cnt_Down, Q); 
inputClk, Cnt__Up, Cnt_Down; 
output [0:2] Q; 
wire S1, S2, S3, S4, S5,S6, S7, S8; 
JK_FF JK1 (l'bl, l'bl, Clk, Q[Q], S1), 
JK2 (l'bl, l'bl, S4, Q[l], S5), 



JK3 (l'bl, l'bl, S8, Q[2], ); 
and A1 (S2, Cnt_Up, Q[Q]), 
A2 (S3, SI, Cnt_Down), 
A3 (S7, Q[l] ,Cnt_Up), 
A4 (S6, S5, Cnt_Down); 
or 01 (S4, S2, S3), 
02 (S8,S7, S6); 
endmodule 

 
1.5 USER-DEFINED PRIMITIVES (UDP): 

 
The primitives available in Verilog are the entire gate or switch types. Verilog has the 

provision for the user to define primitives them. The designers occasionally like to use their own 
custom-built primitives when developing a design. Verilog provides the ability to define User- 
Defined Primitives (UDP). These primitives are self contained and do not instantiate other 
modules or primitives. UDPs are instantiated exactly like gate level primitives. UDPs are 
basically of two types combinational and sequential. A combinational UDP is used to define a 
combinational scalar 

A combinational UDP accepts a set of scalar inputs and gives a scalar output. An inout 
declaration is not supported by a UDP. The UDP definition is on par with that of a module; that 
is, it is defined independently like a module and can be used in any other module. 

primitiveudp_and(out, a, b); 
output out; 
input a, b; 
table 
// a b: Out; 
0 0: 0; 
0 1: 0; 
1 0: 0 
1 1: 1; 
endtable 
endprimitive 

 Any sequential circuit has a set of possible states. When it is in one of the specified states, the 
next state to be taken is described as a function of the input logic variables and the present state. 

primitive latch(q, d, clock, clear); // d-latch 
output q; reg q; //q declared as reg to create internal storage 
input d, clock, clear; 
initial q = 0; //initialize output to value 0 
table 
//state table 
//d clock clear: q : q+ ; 



? ? 1 : ? : 0 ; //clear condition; 
1 1 0 : ? : 1; //latchq =data=1 

0 1 0 : ? : 0; //latchq =data=0 

? 0 0 : ? : - ; //retain original state if clock = 0 
endtable 

endprimitive 
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Questions to Practice: 

PART -A  
1 Describe in detail about the types of modelling 
2 Identify the data types and its functions. 
3 Describe in detail about synthesis in Verilog 
4 Classify the Data Operators in Verilog 
5 Develop a Verilog code for D Flip Flop using Behavioural modelling 

 



 
  

  
PART-B  

1 Develop a Verilog code for shift registers using structural modelling 
2 Classify how Data Types are used in Verilog HDL 
3 Demonstrate in detail about the User defined Data Types 
4 Develop a Verilog code for Ripple carry Adder using structural modelling 
5 
6 

Develop a Verilog code for Up/Down Counter using structural modelling 
Develop a Verilog code for Full Adder using two half adders using structural 
modelling 
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UNIT-II (INTRODUCTION TO SYSTEM VERILOG) 

System Verilog standards, Key System Verilog enhancements for hardware design. 
Advantages of System Verilog over Verilog, Data Types: Verilog data types, System 
Verilog data types, 2 - State Data types, Bit, byte, shortint, int, longint. 4 - State data types. 
Logic, Enumerated data types, User Defined data types, Struct data types, Strings, 
Packages, Type Conversion: Dynamic casting, Static Casting, Memories: Arrays, Dynamic 
Arrays, Multidimensional Arrays, Packed Arrays, Associative Arrays, Queues, Array 
Methods, Tasks and Functions: Verilog Tasks and Functions  

2.1 Introduction : 

SystemVerilog is a standard set of extensions to the IEEE 1364- 2005 Verilog Standard 
(commonly referred to as “Verilog-2005”). The SystemVerilog extensions to the Verilog HDL 
that are described in this book are targeted at design and writing synthesizable models. These 
extensions integrate many of the features of the SUPERLOG and C languages. SystemVerilog 
also contains many extensions for the verification of large designs, integrating features from the 
SUPERLOG, VERA C, C++, and VHDL languages, along with OVA and PSL assertions. These 
verification assertions are in a companion book, SystemVerilog for Verification. 

This integrated whole created by SystemVerilog greatly exceeds the sum of its individual 
components, creating a new type of engineering language, a Hardware Description and 
Verification Language or HDVL. Using a single, unified language enables engineers to model 
large, complex designs, and verify that these designs are functionally correct. 

2.2 Generations of the System Verilog standard: 
A major portion of SystemVerilog was released as an Accellera standard in June of 2002 

under the title of SystemVerilog 3.0. This initial release of the SystemVerilog standard allowed 
EDA companies to begin adding the SystemVerilog extensions to existing simulators, synthesis 
compilers and other engineering tools. The focus of this first release of the SystemVerilog 
standard was to extend the synthesizable constructs of Verilog, and to enable modeling hardware 
at a higher level of abstraction. 

SystemVerilog began with a version number of 3.0 to show that SystemVerilog is the third 
major generation of the Verilog language. Verilog-1995 is the first generation, which represents 
the standardization of the original Verilog language defined by Phil Moorby in the early 1980s. 
Verilog-2001 is the second major generation of Verilog, and SystemVerilog is the third major 
generation.  

Accellera continued to refine the SystemVerilog 3.1 standard by working closely with major 
Electronic Design Automation (EDA) companies to ensure that the SystemVerilog specification 
could be implemented as intended. A few additional modeling and verification constructs were 
also defined. In May of 2004, a final Accellera SystemVerilog draft was ratified by Accellera, 
and called System- Verilog 3.1a. 



 
Prior to the donation of SystemVerilog 3.1a to the IEEE, the IEEESA had already begun 

work on the next revision of the IEEE 1364 Verilog standard. At the encouragement of 
Accellera, the IEEE-SA organization decided not to immediately add the SystemVerilog 
extensions to work already in progress for extending Verilog 1364. Instead, it was decided to 
keep the SystemVerilog extensions as a separate document. To ensure that the reference manual 
for the base Verilog language and the reference manual for the SystemVerilog extensions to 
Verilog remained synchronized, the IEEE-SA dissolved the 1364 Working Group and made the 
1364 Verilog reference manual part of the responsibility of the 1800 SystemVerilog Working 
Group. The 1800 Working Group formed a subcommittee to update the 1364 Verilog standard in 
parallel with the specification of the P1800 SystemVerilog. For the most part, the work done on 
the 1364 revisions was limited to errata corrections and clarifications. Most extensions to Verilog 
were specified in the P1800 standard. The 1800 SystemVerilog Working Group released a ballot 
draft for an updated Verilog P1364 standard at the same time as the ballot draft for the new 
P1800 SystemVerilog standard. Both standards were approved at the same time.  

 

2.3 Key SystemVerilog enhancements for hardware design 
The following list highlights some of the more significant enhancements SystemVerilog adds 

to the Verilog HDL for the design and verification of hardware: This list is not intended to be all 
inclusive of every enhancement to Verilog that is in SystemVerilog. This list just highlights a 
few key features that aid in writing synthesizable hardware models. 

 Interfaces to encapsulate communication and protocol checking within a design 

 C like data types, such as int  

 User-defined types, using typedef  

 Enumerated types  

 Type casting  

 Structures and unions  

 Packages for definitions shared by multiple design blocks  

 External compilation-unit scope declarations  

 ++, --, += and other assignment operators  

 Explicit procedural blocks  

 Priority and unique decision modifiers  

 Programming statement enhancements  

 Pass by reference to tasks, functions and modules 

2.4 Packages 

In Verilog, declarations of variables, nets, tasks and functions must be declared within a 
module, between the module...endmodule keywords. The objects declared within a module are 
local to the module. For modeling purposes, these objects should be referenced within the 
module in which they are declared. Verilog also allows hierarchical references to these objects 
from other modules for verification purposes, but these cross-module references do not represent 



hardware behavior, and are not synthesizable. Verilog also allows local variables to be defined in 
named blocks (formed with begin...end or fork...join), tasks and functions. These declarations are 
still defined within a module, however, and, for synthesis purposes, only accessible within the 
module. Verilog does not have a place to make global declarations, such as global functions.  

A declaration that is used in multiple design blocks must be declared in each block. This not 
only requires redundant declarations, but it can also lead to errors if a declaration, such as a 
function, is changed in one design block, but not in another design block that is supposed to have 
the same function. Many designers use include files and other coding tricks to work around this 
shortcoming, but that, too, can lead to coding errors and design maintenance problems. 

SystemVerilog adds user-defined types, using typedef. It is often desirable to use the definition 
of user-defined types in multiple modules. Using Verilog rules, where declarations are always 
local to a module, it would be necessary to duplicate a user-defined type definition in each and 
every module in which the definition is used. Redundant local definitions would not be desirable 
for user-defined types. 

2.4.1 Package definitions 

To enable sharing a user-defined type definition across multiple modules, SystemVerilog 
adds packages to the Verilog language. The concept of packages is leveraged from the VHDL 
language. SystemVerilog packages are defined between the keywords package and endpackage. 

The synthesizable constructs that a packages can contain are:  

• parameter and localparam constant definitions  

• const variable definitions  

• typedef user-defined types  

• Fully automatic task and function definitions  

• import statements from other packages  

• Operator overload definitions  

Packages can also contain global variable declarations, static task definitions and static 
function definitions.  

Packages can contain parameter, localparam and const constant declarations. The 
parameter and localparam constants are Verilog constructs. A const constant is a SystemVerilog 
constant. In Verilog, a parameter constant can be redefined for each instance of a module, 
whereas a localparam cannot be directly redefined. In a package, however, a parameter constant 
cannot be redefined, since it is not part of a module instance. In a package, parameter and 
localparam are synonymous. 

 

 



 

Example: 

 

2.4.2 Referencing package contents 

Modules and interfaces can reference the definitions and declarations in a package four 
ways:  

• Direct reference using a scope resolution operator  

• Import specific package items into the module or interface  

• Wildcard import package items into the module or interface  

• Import package items into the $unit declaration space 

SystemVerilog allows specific package items to be imported into a module, using an 
import statement. When a package definition or declaration is imported into a module or 
interface, that item becomes visible within the module or interface, as if it were a locally 
defined name within that module or interface. It is no longer necessary to explicitly reference 
the package name each time that package item is referenced. 

2.4.3 Synthesis guidelines 

When a module references a task or function that is defined in a package, synthesis will 
duplicate the task or function functionality and treat it as if it had been defined within the 
module. To be synthesizable, tasks and functions defined in a package must be declared as 
automatic, and cannot contain static variables. This is because storage for an automatic task 
or function is effectively allocated each time it is called. Thus, each module that references 
an automatic task or function in a package sees a unique copy of the task or function storage 
that is not shared by any other module. This ensures that the simulation behavior of the pre-
synthesis reference to the package task or function will be the same as post-synthesis 
behavior, where the functionality of the task or function has been implemented within one or 
more modules.  



For similar reasons, synthesis does not support variables declarations in packages. In 
simulation, a package variable will be shared by all modules that import the variable. One 
module can write to the variable, and another module will see the new value. This type of 
inter-module communication without passing values through module ports is not 
synthesizable. 

2.5 $unit compilation-unit declarations 
SystemVerilog adds a concept called a compilation unit to Verilog. A compilation unit is 

all source files that are compiled at the same time. Compilation units provide a means for 
software tools to separately compile sub-blocks of an overall design. A sub-block might 
comprise a single module or multiple modules. The modules might be contained in a single 
file or in multiple files. A sub-block of a design might also contain interface blocks and 
testbench program blocks. 

SystemVerilog extends Verilog’s declaration space by allowing declarations to be made 
outside of package, module, interface and program block boundaries. These external 
declarations are in a compilation-unit scope, and are visible to all modules that are compiled 
at the same time. 

The compilation-unit scope can contain:  
• Time unit and precision declarations  
• Variable declarations  
• Net declarations  
• Constant declarations  
• User-defined data types, using typedef, enum or class  
• Task and function definitions 

The following example illustrates external declarations of a constant, a variable, a user-defined 
type, and a 
function. 

 

 

 

 

 

 

 

 

 



 

A declaration in the compilation-unit scope is not the same as a global declaration. A true 
global declaration, such as a global variable or function, would be shared by all modules that 
make up a design, regardless of whether or not source files are compiled separately or at the 
same time.  

SystemVerilog’s compilation-scope only exists for source files that are compiled at the 
same time. Each time source files are compiled, a compilation-unit scope is created that is unique 
to just that compilation. For example, if module CPU and module controller both reference an 
externally declared variable called reset, then two possible scenarios exist: 

• If the two modules are compiled at the same time, there will be a single compilation-
unit scope. The externally declared reset variable will be common to both modules.  

• If each module were compiled separately, then there would be two compilation-unit 
scopes, possibly with two different reset variables. 

In the latter scenario, the compilation that included the external declaration of reset would 
appear to compile OK. The other file, when compiled separately, would have its own, unique 
$unit compilation space, and would not see the declaration of reset from the previous 
compilation. Depending on the context of how reset is used, the second compilation might fail, 
due to an undeclared variable, or it might compile OK, making reset an implicit net. This is a 
dangerous possibility! If the second compilation succeeds by making reset an implicit net, there 
will now be two signals called reset, one in each compilation. The two different reset signals 
would not be connected in any way. 

2.5.1 Coding guidelines:  
 Do not make any declarations in the $unit space! All declarations should be made 

in named packages.  

 When necessary, packages can be imported into $unit. This is useful when a 
module or interface contains multiple ports that are of user-defined types, and the 
type definitions are in a package.  

Directly declaring objects in the $unit compilation-unit space can lead to design errors when 
files are compiled separately. It can also lead to spaghetti code if the declarations are scattered in 
multiple files that can be difficult to maintain, re-use, or to debug declaration errors. 

 



2.5.2 Variables and nets in the compilation-unit scope 

There is an important consideration when using external declarations. Verilog supports 
implicit type declarations, where, in specific contexts, an undeclared identifier is assumed to 
be a net type (typically a wire type). Verilog requires the type of identifiers to be explicitly 
declared before the identifier is referenced when the context will not infer an implicit type, or 
when a type other than the default net type is desired.  

This implicit type declaration rule affects the declaration of variables and nets in the 
compilation-unit scope. Software tools must encounter the external declaration before an 
identifier is referenced. If not, the name will be treated as an undeclared identifier, and follow 
the Verilog rules for implicit types. 

The following example illustrates how source code order can affect the usage of a 
declaration external to the module. This example will not generate any type of compilation or 
elaboration error. For module parity_gen, software tools will automatically infer parity as an 
implicit net type local to the module, since the reference to parity comes before the external 
declaration for the signal. On the other hand, module parity_check comes after the external 
declaration of parity in the source code order. Therefore, the parity_check module will use 
the external variable declaration. 

 

2.5.3 Synthesis Guidelines 
The synthesizable constructs that can be declared within the compilation- unit 

scope (external to all module and interface definitions) are:  
• typedef user-defined type definitions  
• Automatic functions  
• Automatic tasks  
• parameter and localparam constants  
• Package imports 
 



While not a recommended style, user-defined types defined in the compilation-unit scope 
are synthesizable. A better style is to place the definitions of user-defined types in named 
packages. Using packages reduces the risk of spaghetti code and file order dependencies.  

Declarations of tasks and functions in the $unit compilation-unit space is also not a 
recommended coding style. However, tasks and functions defined in $unit are synthesizable. 
When a module references a task or function that is defined in the compilation-unit scope, 
synthesis will duplicate the task or function code and treat it as if it had been defined within the 
module. To be synthesizable, tasks and functions defined in the compilation-unit scope must be 
declared as automatic, and cannot contain static variables. This is because storage for an 
automatic task or function is effectively allocated each time it is called. Thus, each module that 
references an automatic task or function in the compilation-unit scope sees a unique copy of the 
task or function storage that is not shared by any other module. This ensures that the simulation 
behavior of the presynthesis reference to the compilation-unit scope task or function will be the 
same as post-synthesis behavior, where the functionality of the task or function has been 
implemented within the module. 

A parameter constant defined within the compilation-unit scope cannot be redefined, 
since it is not part of a module instance. Synthesis treats constants declared in the compilation-
unit scope as literal values. Declaring parameters in the $unit space is not a good modeling style, 
as the constants will not be visible to modules that are compiled separately from the file that 
contains the constant declarations. 

2.6 Declarations in unnamed statement blocks 

Verilog allows local variables to be declared in named begin...end or fork...join blocks. A 
common usage of local variable declarations is to declare a temporary variable for controlling a 
loop. The local variable prevents the inadvertent access to a variable at the module level of the 
same name, but with a different usage. The following code fragment has declarations for two 
variables, both named i. The for loop in the named begin block will use the local variable i that 
is declared in that named block, and not touch the variable named i declared at the module level. 

 

A variable declared in a named block can be referenced with a hierarchical path name 
that includes the name of the block. Typically, only a testbench or other verification routine 
would reference a variable using a hierarchical path. Hierarchical references are not 
synthesizable, and do not represent hardware behavior. The hierarchy path to the variable within 
the named block can also be used by VCD (Value Change Dump) files, proprietary waveform 



displays, or other debug tools, in order to reference the locally declared variable. The following 
testbench fragment uses hierarchy paths to print the value of both the variables named i in the 
preceding example: 

 

 

2.6.1 Local variables in unnamed blocks 

SystemVerilog extends Verilog to allow local variables to be declared in unnamed 
blocks. The syntax is identical to declarations in named blocks, as illustrated below: 

 

Since there is no name to the block, local variables in an unnamed block cannot be 
referenced hierarchically. A testbench or a VCD file cannot reference the local variable, because 
there is no hierarchy path to the variable.  

Declaring variables in unnamed blocks can serve as a means of protecting the local 
variables from external, cross-module references. Without a hierarchy path, the local variable 
cannot be referenced from anywhere outside of the local scope. 

This extension of allowing a variable to be declared in an unnamed scope is not unique to 
SystemVerilog. The Verilog language has a similar situation. User-defined primitives (UDPs) 
can have a variable declared internally, but the Verilog language does not require that an 
instance name be assigned to primitive instances. This also creates a variable in an unnamed 
scope. Software tools will infer an instance name in this situation, in order to allow the variable 
within the UDP to be referenced in the tool’s debug utilities. Software tools may also assign an 
inferred name to an unnamed block, in order to allow the tool’s waveform display or debug 
utilities to reference the local variables in that unnamed block. The SystemVerilog standard 
neither requires nor prohibits a tool inferring a scope name for unnamed blocks, just as the 



Verilog standard neither requires nor prohibits the inference of instance names for unnamed 
primitive instances. 

2.7 SystemVerilog Literal Values and Built-in Data Types 

SystemVerilog extends Verilog’s built-in variable types, and enhances how literal values 
can be specified. This chapter explains these enhancements and offers recommendations on 
proper usage. A number of small examples illustrate these enhancements in context. Subsequent 
chapters contain other examples that utilize SystemVerilog’s enhanced variable types and literal 
values. 

The enhancements presented in this chapter include:  

• Enhanced literal values  

• ‘define text substitution enhancements  

• Time values  

• New variable types  

• Signed and unsigned types  

• Variable initialization  

• Static and automatic variables  

• Casting  

• Constants 

2.8 SystemVerilog variables 
2.8.1 Object types and data types: 

Verilog Data Types: The Verilog language has hardware-centric variable types 
and net types. These types have special simulation and synthesis semantics to represent 
the behavior of actual connections in a chip or system.  

• The Verilog reg, integer and time variables have 4 logic values for each bit: 0, 1, 
Z and X.  

• The Verilog wire, wor, wand, and other net types have 120 values for each bit 
(4-state logic plus multiple strength levels) and special wired logic resolution functions. 

System Verilog Data Types: Verilog does not clearly distinguish between signal 
types, and the value set the signals can store or transfer. In Verilog, all nets and 
variables use 4-state values, so a clear distinction is not necessary. To provide more 
flexibility in variable and net types and the values that these types can store or transfer, 
the SystemVerilog standard defines that signals in a design have both a type and a data 
type.  

Type indicates if the signal is a net or variable. SystemVerilog uses all the Verilog 
variable types, such as reg and integer, plus adds several more variable types, such as 
byte and int. SystemVerilog does not add any extensions to the Verilog net types. 



Data type indicates the value system of the net or variable, which is 0 or 1 for 2-
state data types, and 0, 1, Z or X for 4-state data types. The SystemVerilog keyword bit 
defines that an object is a 2-state data type. The SystemVerilog keyword logic defines 
that an object is a 4-state data type. In the SystemVerilog-2005 standard, variable types 
can be either 2-state or 4-state data types, where as net types can only be 4-state data 
types. 

2.8.2 SystemVerilog 4-state and 2-state variables 
The 4-state logic type: The Verilog language uses the reg type as a general 

purpose variable for modeling hardware behavior in initial and always procedural 
blocks. The keyword reg is a misnomer that is often confusing to new users of the 
Verilog language. The term “reg” would seem to imply a hardware “register”, built 
with some form of sequential logic flip-flops. In actuality, there is no correlation 
whatsoever between using a reg variable and the hardware that will be inferred. It is the 
context in which the reg variable is used that determines if the hardware represented is 
combinational logic or sequential logic. SystemVerilog uses the more intuitive logic 
keyword to represent a general purpose, hardware-centric data type. 

 

 

The keyword logic is not actually a variable type, it is a data type, indicating the signal 
can have 4-state values. However, when the logic keyword is used by itself, a variable is implied. 
A 4-state variable can be explicitly declared using the keyword pair var logic.  

For example:  
var logic [63:0] addr; // a 64-bit wide variable  

A Verilog net type defaults to being a 4-state logic data type. A net can also be explicitly 
declared as a 4-state data type using the logic keyword.  

For example:  
wire logic [63:0] data; // a 64-bit wide net 

Semantically, a variable of the logic data type is identical to the Verilog reg type. The 
two keywords are synonyms, and can be used interchangeably (except that the reg keyword 
cannot be paired with net type keywords, as discussed in section 3.3.4 on page 47). Like the 
Verilog reg variable type, a variable of the logic data type can store 4-state logic values (0, 1, Z 
and X), and can be defined as a vector of any width. 

Because the keyword logic does not convey a false implication of the type of hardware 
represented, logic is a more intuitive keyword choice for describing hardware when 4-state logic 
is required. In the subsequent examples in this book, the logic type is used in place of the Verilog 



reg type (except when the example illustrates pure Verilog code, with no SystemVerilog 
enhancements). 

SystemVerilog 2-state variables: SystemVerilog adds several new 2-state types, suitable 
for modeling at more abstract levels than RTL, such as system level and transaction level. These 
types include:  

• bit — a 1-bit 2-state integer  

• byte — an 8-bit 2-state integer, similar to a C char  

• shortint — a 16-bit 2-state integer, similar to a C short  

• int — a 32-bit 2-state integer, similar to a C int  

• longint — a 64-bit 2-state integer, similar to a C longlong 

Variables of the reg or logic data types are used for modeling hardware behavior in 
procedural blocks. These types store 4-state logic values, 0, 1, Z and X. 4-state types are the 
preferred types for synthesizable RTL hardware models. The Z value is used to represent 
unconnected or tri-state design logic. The X value helps detect and isolate design errors. At 
higher levels of modeling, such as the system and transaction levels, logic values of Z and X are 
seldom required. 

SystemVerilog allows variables to be declared as a bit data type. Syntactically, a bit 
variable can be used any place reg or logic variables can be used. However, the bit data type is 
semantically different, in that it only stores 2-state values of 0 and 1. The bit data type can be 
useful for modeling hardware at higher levels of abstraction. Variables of the bit data type can 
be declared in the same way as reg and logic types. Declarations can be any vector width, from 
1-bit wide to the maximum size supported by the software tool (the IEEE 1364 Verilog standard 
defines that all compliant software tools should support vector widths of at least 216 bits wide). 

 

2.9 Type casting 

Verilog is a loosely typed language that allows a value of one type to be assigned to a 
variable or net of a different type. When the assignment is made, the value is converted to the 
new type, following rules defined as part of the Verilog standard. SystemVerilog adds the 
ability to cast a value to a different type. Type casting is different than converting a value during 
an assignment. With type casting, a value can be converted to a new type within an expression, 
without any assignment being made. The Verilog 1995 standard did not provide a way to cast a 
value to a different type. Verilog-2001 added a limited cast capability that can convert signed 
values to unsigned, and unsigned values to signed. This conversion is done using the system 
functions $signed and $unsigned. 



2.9.1 Static Casting: 

SystemVerilog adds a cast operator to the Verilog language. This operator can be used to 
cast a value from one type to another, similar to the C language. SystemVerilog’s cast operator 
goes beyond C, however, in that a vector can be cast to a different size, and signed values can be 
cast to unsigned or vice versa. To be compatible with the existing Verilog language, the syntax 
of SystemVerilog’s cast operator is different than C’s. <type>’(<expression>) — casts a value to 
any type, including user-defined types. 

For Example: 

 

2.9.1.1 Static casting and error checking: 

The static cast operation is a compile-time cast. The expression to be cast will always be 
converted during run time, without any checking that the expression to be cast falls within the 
legal range of the type to which the value is cast. In the following example, a static cast is used to 
increment the value of an enumerated variable by 1. The static cast operator does not check that 
the result of state + 1 is a legal value for the next_state enumerated type. Assigning an out of 
range value to next_state using a static cast will not result in a compile-time or run-time error. 
Therefore, care must be taken not to cause an illegal value to be assigned to the next_state 
variable. 



 

2.9.2 Dynamic casting 
The static cast operation described above is a compile-time cast. The cast will always be 

performed, without checking the validity of the result. When stronger checking is desired, 
SystemVerilog provides a new system function, $cast, that performs dynamic, runtime 
checking on the value to be cast. 

The $cast system function takes two arguments, a destination variable and a source 
variable. 

 
 

$cast attempts to assign the source expression to the destination variable. If the 
assignment is invalid, a run-time error is reported, and the destination variable is left 
unchanged. Some examples that would result in an invalid cast are:  

• Casting a real to an int, when the value of the real number is too large to be represented 
as an int (as in the example, above).  

• Casting a value to an enumerated type, when the value does not exist in the legal set of 
values in the enumerated type list 

2.10 User-Defined and Enumerated Types 

SystemVerilog makes a significant extension to the Verilog language by allowing users to 
define new net and variable types. User-defined types allow modeling complex designs at a more 
abstract level that is still accurate and synthesizable. Using System- Verilog’s user-defined types, 
more design functionality can be modeled in fewer lines of code, with the added advantage of 
making the code more self-documenting and easier to read. 

 



The enhancements presented in this include:  
• Using typedef to create user-defined types  
• Using enum to create enumerated types  
• Working with enumerated values 

2.10.1 User Defined Types: 

The Verilog language does not provide a mechanism for the user to extend the language 
net and variable types. While the existing Verilog types are useful for RTL and gate-level 
modeling, they do not provide C-like variable types that could be used at higher levels of 
abstraction. SystemVerilog adds a number of new types for modeling at the system and 
architectural level. In addition, SystemVerilog adds the ability for the user to define new net and 
variable types. 

SystemVerilog user-defined types are created using the typedef keyword, as in C. User-
defined types allow new type definitions to be created from existing types. Once a new type has 
been defined, variables of the new type can be declared. 

 

Local typedef definitions: User-defined types can be defined locally, in a package, or 
externally, in the compilation-unit scope. When a user-defined type will only be used within a 
specific part of the design, the typedef definition can be made within the module or interface 
representing that portion of the design. Interfaces are presented in Chapter 10. In the code 
snippet that follows, a user-defined type called nibble is declared, which is used for variable 
declarations within a module called alu. Since the nibble type is defined locally, only the alu 
module can see the definition. Other modules or interfaces that make up the overall design are 
not affected by the local definition, and can use the same nibble identifier for other purposes 
without being affected by the local typedef definition in module alu. 

 

Shared typedef definitions: When a user-defined type is to be used in many different 
models, the typedef definition can be declared in a package. These definitions can then be 
referenced directly, or imported into each module, interface or program block that uses the user-
defined types. 



A typedef definition can also be declared externally, in the compilation- unit scope. 
External declarations are made by placing the typedef statement outside of any module, interface 
or program block. For Example 

 

It is also possible to import package definitions into the $unit compilation- unit space. 
This can be useful when many ports of a module are of user-defined types, and it becomes 
tedious to directly reference the package name for each port declaration. Example illustrates 
importing a package definition into the $unit space, for use as a module port type. 

 

If the package contains many typedefs, instead of importing specific package items into 
the $unit compilation-unit space, the package can be wildcard imported into $unit. 

2.11 Enumerated Types: 

Enumerated types provide a means to declare an abstract variable that can have a specific 
list of valid values. Each value is identified with a user-defined name, or label. In the following 
example, variable RGB can have the values of red, green and blue: 

enum {red,green,blue} RGB; 



The Verilog language does not have enumerated types. To create pseudo labels for data 
values, it is necessary to define a parameter constant to represent each value, and assign a value 
to that constant. Alternatively, Verilog’s ‘define text substitution macro can be used to define a 
set of macro names with specific values for each name. The following example shows a simple 
state machine sequence modeled using Verilog parameter constants and ‘define macro names: 
The parameters are used to define a set of states for the state machine, and the macro names are 
used to define a set of instruction words that are decoded by the state machine. 

Example: 

 

 

The variables that use the constant values—State and NextState in the preceding 
example—must be declared as standard Verilog variable types. This means a software tool 
cannot limit the valid values of those signals to just the values of the constants. There is nothing 
that would limit State or NextState in the example above from having a value of 3, or a value 
with one or more bits set to X or Z. Therefore, the model itself must add some limit checking on 



the values. At a minimum, a synthesis “full case” pragma would be required to specify to 
synthesis tools that the state variable only uses the values of the constants that are listed in the 
case items. The use of synthesis pragmas, however, would not affect simulation, which could 
result in mismatches between simulation behavior and the structural design created by synthesis. 

Example: State machine modeled with enumerated types 

 

In this example, the variables State and NextState can only have the valid values of 
WAITE, LOAD, and STORE. All software tools will interpret the legal value limits for these 
enumerated type variables in the same way, including simulation, synthesis and formal 
verification. 

2.12 Arrays: 
2.12.1 Unpacked arrays: 

The basic syntax of a Verilog array declaration is: 
<data_type> <vector_size> <array_name> <array_dimensions> 
For example: reg [15:0] RAM [0:4095]; // memory array 

Verilog-1995 only permitted one-dimensional arrays. A one-dimensional array is often 
referred to as a memory, since its primary purpose is to model the storage of hardware memory 
devices such as RAMs and ROMs. Verilog-1995 also limited array declarations to just the 
variable types reg, integer and time. Verilog-2001 significantly enhanced Verilog-1995 arrays by 



allowing any variable or net type except the event type to be declared as an array, and by 
allowing multi-dimensional arrays. Beginning with Verilog-2001, both variable types and net 
types can be used in arrays. 

 

Verilog restricts the access to arrays to just one element of the array at a time, or a bit-
select or part-select of a single element. Any reading or writing to multiple elements of an array 
is an error. 

 

 

SystemVerilog refers to the Verilog style of array declarations as unpacked arrays. With 
unpacked arrays, each element of the array may be stored independently from other elements, but 
grouped under a common array name. Verilog does not define how software tools should store 
the elements in the array. For example, given an array of 8-bit wide elements, a simulator or 
other software tool might store each 8-bit element in 32-bit words. 

SystemVerilog extends unpacked array dimensions to include the Verilog event type, and 
the SystemVerilog types: logic, bit, byte, int, longint, shortreal, and real. Unpacked arrays of 
user-defined types defined using typedef can also be declared, including types using struct and 
enum. 

 

SystemVerilog also adds to Verilog the ability to reference an entire unpacked array, or a 
slice of multiple elements within an unpacked array. A slice is one or more contiguously 
numbered elements within one dimension of an array. These enhancements make it possible to 
copy the contents of an entire array, or a specific dimension of an array into another array. 

In order to directly copy multiple elements into an unpacked array, the layout and 
element type of the array or array slice on the lefthand side of the assignment must exactly match 



the layout and element type of the right-hand side. That is, the element type and size and the 
number of dimensions copied must be the same. 

2.12.2 Packed arrays 

The Verilog language allows vectors to be created out of single-bit types, such as reg and 
wire. The vector range comes before the signal name, whereas an unpacked array range comes 
after the signal name. 

SystemVerilog refers to vector declarations as packed arrays. A Verilog vector is a one-
dimensional packed array. 

 

SystemVerilog adds the ability to declare multiple dimensions in a packed array. 

 

SystemVerilog defines how the elements of a packed array are stored. The entire array 
must be stored as contiguous bits, which is the same as a vector. Each dimension of a packed 
array is a sub field within the vector. In the packed array declaration above, there is an array of 4 
8-bit sub-arrays. 

SystemVerilog also adds dynamic array types to Verilog:  

• Dynamic arrays  

• Associative arrays  

• Sparse arrays  

• Strings (character arrays) 

Dynamically sized arrays are not synthesizable, and are intended for use in verification 
routines and for modeling at very high levels of abstraction. 

2.13 Tasks and Functions: 

SystemVerilog makes several enhancements to Verilog tasks and functions. These 
enhancements make it easier to model large designs in an efficient and intuitive manner. 

2.13.1 Implicit task and function statement grouping: 

In Verilog, multiple statements within a task or function must be grouped using 
begin...end. Tasks also allow multiple statements to be grouped using fork...join. 
SystemVerilog simplifies task and function definitions by not requiring the begin...end 
grouping for multiple statements. If the grouping is omitted, multiple statements within a task 
or function are executed sequentially, as if within a begin...end block. 

 



 

2.13.2 Returning function values 

In Verilog, the function name itself is an inferred variable that is the same type as the 
function. The return value of a function is set by assigning a value to the name of the function. 
A function exits when the execution flow reaches the end of the function. The last value that 
was written into the inferred variable of the name of function is the value returned by the 
function. 

 

To maintain backward compatibility with Verilog, the return value of a function can be 
specified using either the return statement or by assigning to the function name. The return 
statement takes precedence. If a return statement is executed, that is the value returned. If the 
end of the function is reached without executing a return statement, then the last value assigned 
to the function name is the return value, as it is in Verilog. Even when using the return 
statement, the name of the function is still an inferred variable, and can be used as temporary 
storage before executing the return statement. For example: 

 

2.13.3 Returning before the end of tasks and functions 

In Verilog, a task or function exits when the execution flow reaches the end, which is 
denoted by endtask or endfunction. In order to exit before the end a task or function is reached 
using Verilog, conditional statements such as if...else must be used to force the execution flow 
to jump to the end of the task or function. A task can also be forced to jump to its end using the 
disable keyword, but this will affect all currently running invocations of a re-entrant task. The 
following example requires extra coding to prevent executing the function if the input to the 
function is less than or equal to 1. 



 

 

The SystemVerilog return statement can be used to exit a task or function at any time in 
the execution flow, without having to reach the end of the task or function. Using return, the 
example above can be simplified as follows: 

 

Using return to exit a task or function before the end is reached can simplify the coding 
within the task or function, and make the execution flow more intuitive and readable 

2.13.4 Named task and function ends 

SystemVerilog allows a name to be specified with the endtask or endfunction keyword. 
The syntax is: 

 

The white space before and after the colon is optional. The name specified must be the 
same as the name of the corresponding task or function. For example: 

 

Specifying a name with the endtask or endfunction keyword can help make large blocks 
of code easier to read, thus making the model more maintainable. 



2.13.5 Empty tasks and functions 

Verilog requires that tasks and functions contain at least one statement (which can be an 
empty begin...end statement group). SystemVerilog allows tasks and functions to be completely 
empty, with no statements or statement groups at all. An empty function will return the current 
value of the implicit variable that represents the name of the function. An empty task or function 
is a place holder for partially completed code. In a top-down design flow, creating an empty task 
or function can serve as documentation in a model for the place where more detailed 
functionality will be filled in later in the design flow. 
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Questions to Practice: 

PART -A  
1 Identify how System Verilog is going to be a trendsetter in VLSI Industry 
2 Identify the data types and its functions. 
3 Describe in detail about static casting 
4 Classify the use cases of arrays in System Verilog 
5 Explain in detail about Empty Tasks and Functions 

 
 

  



PART-B  
1 With the advent of VLSI Industry, Demonstrate how industry experts define the 

support of System Verilog 
2 Classify how Data Types are used in System Verilog 
3 Demonstrate in detail about the User defined Data Types 
4 Demonstrate in detail about the impact of tasks and Functions in System Verilog 
5 Enumerate Packed and Unpacked Arrays in detail. 
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UNIT-III (CONNECTING THE TESTBENCH AND DESIGN) 
Verilog interface signals - Limitations of Verilog interface signals, SystemVerilog 
interfaces, SystemVerilog port connections, Interface instantiation. Interfaces Arguments, 
Interface Modports, Interface References, Tasks and functions in interface, Verilog Event 
Scheduler, SystemVerilog Event Scheduler, Clocking Block, Input and Output Skews, 
Typical Testbench Environment, Verification plan 

SystemVerilog extends the Verilog language with a powerful interface construct. Interfaces 
offer a new paradigm for modeling abstraction. The use of interfaces can simplify the task of 
modeling and verifying large, complex designs. This chapter contains a number of small 
examples, each one showing specific features of interfaces. These examples have been purposely 
kept relatively small and simple, in order to focus on specific features of interfaces. 

3.1  Interface concepts: 

The Verilog language connects modules together through module ports. This is a detailed 
method of representing the connections between blocks of a design that maps directly to the 
physical connections that will be in the actual hardware. For large designs, however, using 
module ports to connect blocks of a design together can become tedious and redundant. 
Consider the following example that connects five blocks of a design together using a 
rudimentary bus architecture called main_bus, plus some additional connections between some 
of the design blocks. Figure shows the block diagram for this simple design, and example lists 
the Verilog source code for the module declarations involved. 

 

Figure 3.1: Block diagram of a simple design 

 

 

 

 



Example: Verilog module interconnections for a simple design 

 

 

 



 

 

 

 



 

 

 



3.2 Disadvantages of Verilog’s module ports 

Verilog’s module ports provide a simple and intuitive way of describing the 
interconnections between the blocks of a design. In large, complex designs, however, Verilog’s 
module ports have several shortcomings. Some of these are:  

• Declarations must be duplicated in multiple modules.  

• Communication protocols must be duplicated in several modules.  

• There is a risk of mismatched declarations in different modules. 

• A change in the design specification can require modifications in multiple modules. 

One disadvantage of using Verilog’s module ports to connect major blocks of a design 
together is readily apparent in the example code above. The signals that make up main_bus in the 
preceding example must be declared in each module that uses the bus, as well as in the top-level 
netlist that connects the design together. In this simple example, there are only a handful of 
signals in main_bus, so the redundant declarations are mostly just an inconvenience. In a large, 
complex design, however, this redundancy becomes much more than an inconvenience. A large 
design could have dozens of modules connected to the same bus, with dozens of duplicated 
declarations in each module. If the ports of one module should inadvertently be declared 
differently than the rest of the design, a functional error can occur that may be difficult to find. 

The replicated port declarations also mean that, should the specification of the bus change 
during the design process, or in a next generation of the design, then each and every module that 
shares the bus must be changed. All netlists used to connect the modules using the bus must also 
be changed. This wide spread effect of a change is counter to good coding styles. One goal of 
coding is to structure the code in such a way that a small change in one place should not require 
changing other areas of the code. A weakness in the Verilog language is that a change to the 
ports in one module will usually require changes in other modules. 

Another disadvantage of Verilog’s module ports is that communication protocols must be 
duplicated in each module that utilize the interconnecting signals between modules. If, for 
example, three modules read and write from a shared memory device, then the read and write 
control logic must be duplicated in each of these modules. Yet another disadvantage of using 
module ports to connect the blocks of a design together is that detailed interconnections for the 
design must be determined very early in the design cycle. This is counter to the top-down design 
paradigm, where models are first written at an abstract level without extensive design detail. At 
an abstract level, an interconnecting bus should not require defining each and every signal that 
makes up the bus. Indeed, very early in the design specification, all that might be known is that 
the blocks of the design will share certain information. In the block diagram shown in Figure 10-
1 on page 264, the main_bus is represented as a single connection. Using Verilog’s module ports 
to connect the design blocks together, however, does not allow modeling at that same level of 
abstraction. Before any block of the design can be modeled, the bus must first be broken down to 
individual signals. 



3.3 Advantages of SystemVerilog interfaces 

SystemVerilog adds a powerful new port type to Verilog, called an interface. An interface 
allows a number of signals to be grouped together and represented as a single port. The 
declarations of the signals that make up the interface are contained in a single location. Each 
module that uses these signals then has a single port of the interface type, instead of many ports 
with the discrete signals. Example shows how SystemVerilog’s interfaces can reduce the 
amount of code required to model the simple design shown in Figure. By encapsulating the 
signals that make up main_bus as an interface, the redundant declarations for these signals 
within each module are eliminated. 

Example: SystemVerilog module interconnections using interfaces 

 

 



 

 

 

 

 

 



 

In example, above, all the signals that are in common between the major blocks of the 
design have been encapsulated into a single location—the interface declaration called main_bus. 
The top-level module and all modules that make up these blocks do not repetitively declare these 
common signals. Instead, these modules simply use the interface as the connection between 
them. Encapsulating common signals into a single location eliminates the redundant declarations 
of Verilog modules. Indeed, in the preceding example, since clock and resetN are also common 
to all modules, these signals could have also been brought into the interface. 

3.4 SystemVerilog interface contents 

SystemVerilog interfaces are far more than just a bundle of wires. Interfaces can 
encapsulate the full details of the communication between the blocks of a design. Using 
interfaces:  

• The discrete signal and ports for communication can be defined in one location, the 
interface.  

• Communication protocols can be defined in the interface.  

• Protocol checking and other verification routines can be built directly into the interface.  

With Verilog, the communication details must be duplicated in each module that shares a 
bus or other communication architecture. SystemVerilog allows all the information about a 



communication architecture and the usage of the architecture to be defined in a single, common 
location. An interface can contain type declarations, tasks, functions, procedural blocks, 
program blocks, and assertions. SystemVerilog interfaces also allow multiple views of the 
interface to be defined. For example, for each module connected to the interface, the data_bus 
signal can be defined to be an input, output or bidirectional port. 

3.5 Differences between modules and interfaces 

There are three fundamental differences that make an interface differ from a module. 
First, an interface cannot contain design hierarchy. Unlike a module, an interface cannot contain 
instances of modules or primitives that would create a new level of implementation hierarchy. 
Second, an interface can be used as a module port, which is what allows interfaces to represent 
communication channels between modules. It is illegal to use a module in a port list. Third, an 
interface can contain modports, which allow each module connected to the interface to see the 
interface differently. 

3.6 Interface declarations 

Syntactically, the definition of an interface is very similar to the definition of a module. 
An interface can have ports, just as a module does. This allows signals that are external to the 
interface, such as a clock or reset line, to be brought into the interface and become part of the 
bundle of signals represented by the interface. Interfaces can also contain declarations of any 
Verilog or SystemVerilog type, including all variable types, all net types and user-defined types. 
Example 10-3 shows a definition for an interface called main_bus, with three external signals 
coming into the interface: clock, resetN and test_mode. These external signals can now be 
connected to each module through the interface, without having to explicitly connect the signals 
to each module. Notice in this example how the instance of interface main_bus has the clock, 
resetN and test_mode signals connected to it, using the same syntax as connecting signals to an 
instance of a module. 

Example: The interface definition for main_bus, with external inputs 
 

 
 
 



 

 
3.7 Using interfaces as module ports 

With SystemVerilog, a port of a module can be declared as an interface type, instead 
of the Verilog input, output or inout port directions. 

A module port can be explicitly declared as a specific type of interface. This is done 
by using the name of an interface as the port type. The syntax is: 

 

 

An explicitly named interface port can only be connected to an interface of the same 
name. An error will occur if any other interface definition is connected to the port. Explicitly 
named interface ports ensure that a wrong interface can never be inadvertently connected to the 
port. Explicitly naming the interface type that can be connected to the port also serves to 
document directly within the port declaration exactly how the port is intended to be used. 

3.8 Instantiating and connecting interfaces 

An instance of an interface is connected to a port of a module instance using a port 
connection, just as a discrete net would be connected to a port of a module instance. This 



requires that both the interface and the modules to which it is connected be instantiated. The 
syntax for an interface instance is the same as for a module instance. If the definition of the 
interface has ports, then signals can be connected to the interface instance, using either the port 
order connection style or the named port connection style, just as with a module instance. 

A module input, output or inout port can be left unconnected on a module instance. This 
is not the case for an interface port. A port that is declared as an interface, whether generic or 
explicit, must be connected to an interface instance or another interface port. An error will occur 
if an interface port is left unconnected. On a module instance, a port that has been declared as an 
interface type must be connected to an interface instance, or another interface port that is higher 
up in the hierarchy. If a port declaration has an explicitly named interface type, then it must be 
connected to an interface instance of the identical type. If a port declaration has a generic 
interface type, then it can be connected to an interface instance of any type. 

3.9 Interface modports 

Interfaces provide a practical and straightforward way to simplify connections between 
modules. However, each module connected to an interface may need to see a slightly different 
view of the connections within the interface. For example, to a slave on a bus, an 
interrupt_request signal might be an output from the slave, whereas to a processor on the same 
bus, interrupt_request would be an input.  

SystemVerilog interfaces provide a means to define different views of the interface signals 
that each module sees on its interface port. The definition is made within the interface, using the 
modport keyword. Modport is an abbreviation for module port. A modport definition describes 
the module ports that are represented by the interface. An interface can have any number of 
modport definitions, each describing how one or more other modules view the signals within the 
interface. 

A modport defines the port direction that the module sees for the signals in the interface. 
Examples of two modport declarations are: 

 

 



The modport definitions do not contain vector sizes or types. This information is defined as 
part of the signal type declarations in the interface. The modport declaration only defines 
whether the connecting module sees a signal as an input, output, bidirectional inout, or ref port. 

3.10 Using tasks and functions in interfaces: 

Interfaces can encapsulate the full details of the communication protocol between 
modules. For instance, the main_bus protocol in the previous example includes handshaking 
signals between the master processor and the slave processor. In regular Verilog, the master 
processor module would need to contain the procedural code to assert and de-assert its 
handshake signals at the appropriate time, and to monitor the slave handshake inputs. 
Conversely, the slave processor would need to contain the procedural code to assert and de-assert 
its handshake signals, and to monitor the handshake inputs coming from the master processor or 
the RAM. 

Describing the bus protocol within each module that uses a bus leads to duplicated code. 
If any change needs to be made to the bus protocol, the code for the protocol must be changed in 
each and every module that shares the bus. 

3.10.1 Interface methods: 

SystemVerilog allows tasks and functions to be declared within an interface. These tasks 
and functions are referred to as interface methods. A task or function that is defined within an 
interface is written using the same syntax as if it had been within a module, and can contain the 
same types of statements as within a module. These interface methods can operate on any signals 
within the interface. Values can be passed in to interface methods from outside the interface as 
input arguments. Values can be written back from interface methods as output arguments or 
function returns.  

Interface methods offer several advantages for modeling large designs. Using interface 
methods, the details of communication from one module to another can be moved to the 
interface. The code for communicating between modules does not need to be replicated in each 
module. Instead, the code is only written once, as interface methods, and shared by each module 
connected using the interface. Within each module, the interface methods are called, instead of 
implementing the communication protocol functionality within the module. Thus, an interface 
can be used not only to encapsulate the data connecting modules, but also the communication 
protocols between the modules. 

3.10.2 Importing interface methods 

If the interface is connected via a modport, the method must be specified using the import 
keyword. The import definition is specified within the interface, as part of a modport 
definition. Modports specify interface information from the perspective of the module. Hence, 
an import declaration within a modport indicates that the module is importing the task or 
function. 

The import declaration can be used in two ways:  



• Import using just the task or function name  

• Import using a full prototype of the task or function 

Import using a task or function name: The simplest form of importing a task or function is to 
simply specify the name of the task or function. The basic syntax is: 

 

The second style of an import declaration is to specify a full prototype of the task or 
function arguments. This style requires that the keyword task or function follow the import 
keyword. It also requires that the task or function name be followed by a set of parentheses, 
which contain the formal arguments of the task or funciton. The basic syntax of this style of 
import declarations is: 

 

A full prototype can serve to document the arguments of the task or function directly as 
part of the modport declaration. This additional code documentation can be convenient if the 
actual task or function is defined in a package, and therefore the definition is not in the package 
source code for easy visual reference. 

3.11 Exporting tasks and functions 
SystemVerilog interfaces and modports provide a mechanism to define a task or function 

in one module, and then export the task or function through an interface to other modules. 
Exporting tasks or functions into an interface is not synthesizable. This modeling style 

should be reserved for abstract models that are not intended to be synthesized. An export 
declaration in an interface modport does not require a full prototype of the task or function 
arguments. Only the task or function name needs to be listed in the modport declaration.  

If an exported task or function has default values for any of its formal arguments, then 
each import declaration of the task or function must have a complete prototype of the 
task/function arguments. A full prototype for the import declaration is also required if the task 
or function call uses named argument passing instead of passing by position. 



The code fragments in example 10-10 show a function called check that is declared in 
module CPU. The function is exported from the CPU through the master modport of the 
chip_bus interface. The same function is imported into any modules that use the slave modport 
of the interface. To any module connected to the slave modport, the check function appears to 
be part of the interface, just like any other function imported from an interface. Modules using 
the slave modport do not need to know the actual location of the check function definition. 

 

 

Exporting a task or function to the entire interface: The export declaration allows a module to 
export a task or function to an interface through a specific modport of the interface. A task or 
function can also be exported to an interface without using a modport. This is done by declaring 
an extern prototype of the task or function within the interface. 

Example: Exporting a function from a module into an interface 

 



 

Restrictions on exporting tasks and functions: SystemVerilog places a restriction on exporting 
functions through interfaces. It is illegal to export the same function name from two different 
modules, or two instances of the same module, into the same interface. For example, module A 
and module B cannot both export a function called check into the same interface.  

SystemVerilog places a restriction on exporting tasks through interfaces. It is illegal to 
export the same task name from two different modules, or two instances of the same module, 
into the same interface, unless an extern forkjoin declaration is used. The multiple export of a 
task corresponds to a multiple response to a broadcast. Tasks can execute concurrently, each 
taking a different amount of time to execute statements, and each call returning different values 
through its outputs. The concurrent response of modules A and B containing a call to a task 
called task1 is conceptually modeled by 

 

Because an interface should not contain the hierarchical names of the modules to which it 
is connected, the task is declared as extern forkjoin, which infers the behavior of the fork...join 
block above. If the task contains outputs, it is the last instance of the task to finish that 
determines the final output value.  

This construct can be useful for abstract, non-synthesizable transaction level models of 
busses that have slaves, where each slave determines its own response to broadcast signals. The 
extern forkjoin can also be used for configuration purposes, such as counting the number of 
modules connected to an interface. Each module would export the same task, name which 
increments a counter in the interface. 

3.12 System Verilog Event Scheduling: 

This section gives an overview of the interactions and behavior of SystemVerilog 
elements, especially with respect to the scheduling and execution of events. Updates to IEEE 
STD 1800-20051 divide the SystemVerilog time slot into 17 ordered regions, nine ordered 
regions for the execution of SystemVerilog statements and eight ordered regions for the 
execution of PLI code. The purpose of dividing a time slot into these ordered regions is to 
provide predictable interactions between the design and testbench code. 



Every change in the state of a net or variable in the system description being simulated is 
considered an update event. When an update event is executed, all the processes that are 
sensitive to those events are considered for evaluation known as an evaluation event. Examples
of processes include, initial, always, always_comb, always_latch, and always_ff procedural 
blocks, continuous assignments, asynchronous tasks, and procedural assignment statements. A 
single time slot is divided into multiple regions where events can be sc
scheduling supports obtaining clear and predictable interactions that provide for the ordering of 
particular types of execution. This allows properties and checkers to sample data when the 
design under test is in a stable state. Propert
testbenches can react to both properties and checkers with zero delay, all in a predictable 
manner. This same mechanism also allows for non
and/or stimulus and response code to be mixed freely and consistently with cycle
descriptions. 

The term simulation time is used to refer to the time value maintained by the simulator to 
model the actual time it would take for the system description being simulated. A time s
includes all simulation activity that is processed in the event regions for each simulation time 
SystemVerilog event Regions The new SystemVerilog event regions are developed to support 
new SystemVerilog constructs and also to prevent race conditions b
RTL design and the new verification constructs.

Figure 3.2 System Verilog Event Scheduling

These new regions guarantee predictability and consistency between design, testbenches, 
and assertions  

Preponed region: The values of variables that are used in concurrent assertions are 
sampled in the Preponed region. (Evaluation is done at observed region). Preponed region is 
executed only once in each time slot, immediately after advancing simulation time. 
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Pre-active region: The Pre-active region is specifically for a PLI callback control point 
that allows for user code to read and write values and create events before events in the Active 
region are evaluated 

Active region: The Active region holds current events being evaluated and can be 
processed in any order.  

 Execute all module blocking assignments.  

 Evaluate the Right-Hand-Side (RHS) of all nonblocking assignments and 
schedule updates into the NBA region.  

 Execute all module continuous assignments  

 Evaluate inputs and update outputs of Verilog primitives.  

 Execute the $display and $finish commands 

Inactive region: The Inactive region holds the events to be evaluated after all the active 
events are processed. In this region #0 blocking assignments are scheduled.  

Pre-NBA region: The Pre-NBA region is specifically for a PLI callback control point that 
allows for user code to read and write values and create events before the events in the NBA 
region are evaluated 

Non-blocking Assignment Events region (NBA): The principal function of this region is to 
execute the updates to the Left-Hand-Side (LHS) variables that were scheduled in the Active 
region for all currently executing nonblocking assignments.  

Post-NBA region: The Post-NBA region is specifically for a PLI callback control point that 
allows for user code to read and write values and create events after the events in the NBA 
region are evaluated  

Observed region: The principal function of this region is to evaluate the concurrent 
assertions using the values sampled in the Preponed region. A criterion behind this decision is 
that the property evaluations must only occur once in any clock triggering time slot. During the 
property evaluation, the pass/fail code shall be scheduled in the Reactive region of the current 
time slot. 

Post-observed region: The Post-observed region is specifically for a PLI callback control 
point that allows for user code to read values after properties are evaluated (in Observed or 
earlier region).  

Reactive region: The code specified in the program block, and pass/fail code from property 
expressions, are scheduled in the Reactive region. The principal function of this region is to 
evaluate and execute all current program activity in any order 

 Execute all program blocking assignments.  

 Execute the pass/fail code from concurrent assertions.  

 Evaluate the Right-Hand-Side (RHS) of all program nonblocking assignments and 
schedule  



 Execute all program continuous assignments  

 Execute the $exit and implicit $exit commands 

Re-Inactive Events region: In this region #0 blocking assignments in a program process are 
scheduled.  

Postponed Region: The principal function of this region is to execute the $strobe and 
$monitor commands that will show the final updated values for the current time slot. This region 
is also used to collect functional coverage for items that use strobe sampling. 

3.13 Verification with interfaces 

Using only Verilog-style module ports, without interfaces, a typical design and 
verification paradigm is to develop and test each module of a design, independent of other 
modules in the design. After each module is independently verified, the modules are connected 
together to test the communication between modules. If there is a problem with the 
communication protocols, it may be necessary to make design changes to multiple modules.  

Interfaces enable a different paradigm for verification. With interfaces, the 
communication channels can be developed as interfaces independently from other modules. 
Since an interface can contain methods for the communication protocols, the interface can be 
tested and verified independent of the rest of the design. Modules that use the interface can be 
written knowing that the communication between modules has already been verified. 
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Questions to Practice: 

PART -A  
1 Identify how System Verilog is is used in Interface signals 
2 Identify the Limitations of Verilog interface signals. 
3 Describe in detail about Interface Instantiation 
4 Classify the use of tasks and functions in interface 
5 Explain in detail about Modports in System Verilog 

 
 

  
PART-B  

1 Demonstrate in detail about Interface and modules in System Verilog 
2 Classify Interface types that are used in System Verilog 
3 Demonstrate in detail about the System Verilog Event Scheduler 
4 Demonstrate in detail about the impact of tasks and Functions in Interface 
5 Enumerate Interface methods and Exporting Tasks & Functions in detail. 
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UNIT-IV (CONSTRAINED RANDOMIZATION) 
Random Variables - rand and randc, Randomize( ) Method - Pre/Post Randomize( ) 

methods, Constraints in the class, Rand_mode and constraint_mode, Constraint and 
Inheritance, Constraint Overriding, Set Membership, Distribution Constraints, 
Conditional Constraints - .implication (->), if/else, Inline Constraints 

As designs grow larger, it becomes more difficult to create a complete set of stimuli needed 
to check their functionality. You can write a directed test case to check a certain set of features, 
but you cannot write enough directed test cases when the number of features keeps doubling on 
each project. Worse yet, the interactions between all these features are the source for the most 
devious bugs and are the least likely to be caught by going through a laundry list of features.  

The solution is to create test cases automatically using constrained-random tests (CRT). A 
directed test finds the bugs you think are there, but a CRT finds bugs you never thought about, 
by using random stimulus. You restrict the test scenarios to those that are both valid and of 
interest by using constraints. Creating a CRT environment takes more work than creating one for 
directed tests. A simple directed test just applies stimulus, and then you manually check the 
result. These results are captured as a golden log file and compared with future simulations to see 
whether the test passes or fails.  

A CRT environment needs not only to create the stimulus but also to predict the result, 
using a reference model, transfer function, or other techniques. However, once this environment 
is in place, you can run hundreds of tests without having to hand-check the results, thereby 
improving your productivity. This trade-off of test-authoring time (your work) for CPU time 
(machine work) is what makes CRT so valuable.  

4.1 Randomize 

When you think of randomizing the stimulus to a design, the first thing you may think of 
are the data fields. These are the easiest to create – just call $random. The problem is that this 
approach has a very low payback in terms of bugs found: you only find data-path bugs, perhaps 
with bit-level mistakes. The test is still inherently directed. The challenging bugs are in the 
control logic. As a result, you need to randomize all decision points in your DUT. Wherever 
control paths diverge, randomization increases the probability that you’ll take a different path in 
each test case. 

You need to think broadly about all design input such as the following: 

   Device configuration 

   Environment configuration  

  Primary input data  

  Encapsulated input data  



  Protocol exceptions  

  Delays  

  Transaction status  

  Errors and violations 

4.1.1 Device configuration:  

Over time, in a real world environment, the DUT’s configuration becomes more and 
more random. For example, a verification engineer had to verify a time-division multiplexor 
switch that had 600 input channels and 12 output channels. When the device was installed in the 
end-customer’s system, channels would be allocated and deallocated over and over. At any point 
in time, there would be little correlation between adjacent channels. In other words, the 
configuration would seem random. To test this device, the verification engineer had to write 
several dozen lines of Tcl code to configure each channel. As a result, she was never able to try 
configurations with more than a handful of channels enabled. Using a CRT methodology, she 
wrote a testbench that randomized the parameters for a single channel, and then put this in a loop 
to configure the whole device. Now she had confidence that her tests would uncover bugs that 
previously would have been missed. 

4.1.2 Environment configuration 

The device that you are designing operates in an environment containing other devices. 
When you are verifying the DUT, it is connected to a testbench that mimics this environment. 
You should randomize the entire environment, including the number of objects and how they are 
configured. Another company was creating an I/O switch chip that connected multiple PCI buses 
to an internal memory bus. At the start of simulation the customer used randomization to choose 
the number of PCI buses (1–4), the number of devices on each bus (1–8), and the parameters for 
each device (master or slave, CSR addresses, etc.). Even though there were many possible 
combinations, this company knew all had been covered. 

4.1.3 Primary input data 

This is what you probably thought of first when you read about random stimulus: take a 
transaction such as a bus write or ATM cell and fill it with some random values. How hard can 
that be? Actually it is fairly straightforward as long as you carefully prepare your transaction 
classes. You should anticipate any layered protocols and error injection. 

4.1.4 Encapsulated Input Data 

 Many devices process multiple layers of stimulus. For example, a device may create TCP 
traffic that is then encoded in the IP protocol, and finally sent out inside Ethernet packets. Each 
level has its own control fields that can be randomized to try new combinations. So you are 
randomizing the data and the layers that surround it. You need to write constraints that create 
valid control fields but that also allow injecting errors. 

 



4.1.5 Protocol Exceptions, Errors, and Violations 

 Anything that can go wrong, will, eventually. The most challenging part of design and 
verification is how to handle errors in the system. You need to anticipate all the cases where 
things can go wrong, inject them into the system, and make sure the design handles them 
gracefully, without locking up or going into an illegal state. A good verification engineer tests 
the behavior of the design to the edge of the functional specification and sometimes even 
beyond. When two devices communicate, what happens if the transfer stops partway through? 
Can your testbench simulate these breaks? If there are error detection and correction fields, you 
must make sure all combinations are tried. The random component of these errors is that your 
testbench should be able to send functionally correct stimuli and then, with the flip of a 
configuration bit, start injecting random types of errors at random intervals. 

4.1.6 Delays: 

Many communication protocols specify ranges of delays. The bus grant comes one to 
three cycles after request. Data from the memory is valid in the fourth to tenth bus cycle. 
However, many directed tests, optimized for the fastest simulation, use the shortest latency, 
except for that one test that only tries various delays. Your testbench should always use random, 
legal delays during every test to try to find that (hopefully) one combination that exposes a 
design bug. Below the cycle level, some designs are sensitive to clock jitter. By sliding the clock 
edges back and forth by small amounts, you can make sure your design is not overly sensitive to 
small changes in the clock cycle. The clock generator should be in a module outside the 
testbench so that it creates events in the Active region along with other design events. However, 
the generator should have parameters such as frequency and offset that can be set by the 
testbench during the configuration phase. (Note that you are looking for functional errors, not 
timing errors. Your testbench should not try to violate setup and hold requirements. These are 
better validated using timing analysis tools.) 

4.2 Randomization in SystemVerilog 

The random stimulus generation in SystemVerilog is most useful when used with OOP. 
You first create a class to hold a group of related random variables, and then have the random-
solver fill them with random values. You can create constraints to limit the random values to 
legal values, or to test-specific features. Note that you can randomize individual variables, but 
this case is the least interesting. True constrained-random stimuli is created at the transaction 
level, not one value at a time. 

4.2.1 Simple Class with Random Variables 

Example 6.1 shows a packet class with random variables and constraints, plus testbench 
code that constructs and randomizes a packet. 

 

 



 

This class has four random variables. The first three use the rand modifier, so that every 
time you randomize the class, the variables are assigned a value. Think of rolling dice: each roll 
could be a new value or repeat the current one. The kind variable is randc, which means random 
cyclic, so that the random solver does not repeat a random value until every possible value has 
been assigned. Think of dealing cards from a deck: you deal out every card in the deck in 
random order, then shuffle the deck, and deal out the cards in a different order. Note that the 
cyclic pattern is for a single variable.  

A randc array with eight elements has eight different patterns. A constraint is just a set of 
relational expressions that must be true for the chosen value of the variables. In this example, the 
src variable must be greater than 10 and less than 15. Note that the constraint expression is 
grouped using curly braces: {}. This is because this code is declarative, not procedural, which 
uses begin...end. 

The randomize() function returns 0 if a problem is found with the constraints. The 
procedural assertion is used to check the result. This example uses a $fatal to stop simulation, but 
the rest of the book leaves out this extra code. You need to find the tool-specific switches to 
force the assertion to terminate simulation. This book uses assert to test the result from 
randomize(), but you may want to test the result, call your special routine that prints any useful 
information and then gracefully shut down the simulation. 

 You should not randomize an object in the class constructor. Your test may need to turn 
constraints on or off, change weights, or even add new constraints before randomization. The 
constructor is for initializing the object’s variables, and if you called randomize() at this early 
stage, you might end up throwing away the results.  

All variables in your classes should be random and public. This gives your test the 
maximum control over the DUT’s stimulus and control. You can always turn off a random 
variable. If you forget to make a variable random, you must edit the environment, which you 
want to avoid. 

 



4.2.2 Checking the Result from Randomization 

 The randomize() function assigns random values to any variable in the class that 
has been labeled as rand or randc, and also makes sure that all active constraints are obeyed. 
Randomization can fail if your code has conflicting constraints (see next section), and so you 
should always check the status. If you don’t check, the variables may get unexpected values, 
causing your simulation to fail.  

Example checks the status from randomize() by using a procedural assertion. If 
randomization succeeds, the function returns 1. If it fails, randomize() returns 0. The assertion 
checks the result and prints an error if there was a failure. You should set your simulator’s 
switches to terminate when an error is found. Alternatively, you might want to call a special 
routine to end simulation, after doing some housekeeping chores like printing a summary 
report. 

4.3 Constraint: 

 Useful stimulus is more than just random values – there are relationships between the 
variables. Otherwise, it may take too long to generate interesting stimulus values, or the stimulus 
might contain illegal values. You define these interactions in SystemVerilog using constraint 
blocks that contain one or more constraint expressions. SystemVerilog chooses random values so 
that the expressions are true.  

At least one variable in each expression should be random, either rand or randc. The 
following class fails when randomized, unless age happens to be in the right range. The solution 
is to add the modifier rand or randc before age. 

 

The randomize() function tries to assign new values to random variables and to make sure 
all constraints are satisfied. In above example, since there are no random variables, randomize() 
just checks the value of son to see if it is in the bounds specified by the constraint c_teenager. 
Unless the variable happens to fall in the range of 13:19, randomize() fails. While you can use a 
constraint to check that a nonrandom variable has a valid value, use an assert or if-statement 
instead. It is much easier to debug your procedural checker code than read through an error 
message from the random solver. 

 

The below Example shows a simple class with random variables and constraints 

 



 

4.3.1 Simple Expressions 

 Example showed a constraint block with several expressions. The first two control the 
values for the len variable. As you can see, a variable can be used in multiple expressions. There 
can be a maximum of only one relational operator (<, <=, ==, >=, or >) in an expression. Below 
Sample incorrectly tries to generate three variables in a fixed order. 

 

Result: 

 

Example  shows the results, which are not what was intended. The constraint bad  in Sample is 
broken down into multiple binary relational expressions, going from left to right: ((lo < med) < 
hi). First, the expression (lo < med) is evaluated, which gives 0 or 1. Then hi is constrained to be 
greater than the result. The variables lo and med are randomized but not constrained. 

 

4.3.2 Equivalence Expressions 



The most common mistake with constraints is trying to make an assignment in a 
constraint block, but it can only contain expressions. Instead, use the equivalence operator to set 
a random variable to a value, e.g., len==42. You can build complex relationships between one or 
more random variables, such as len == header.addr_mode * 4 + payload.size(). 

4.3.3 Weighted Distributions 

The dist operator allows you to create weighted distributions so that some values are 
chosen more often than others. The dist operator takes a list of values and weights, separated by 
the := or the :/ operator. The values and weights can be constants or variables. The values can be 
a single value or a range such as [lo:hi]. The weights are not percentages and do not have to add 
up to 100. The := operator specifies that the weight is the same for every specified value in the 
range, whereas the :/ operator specifies that the weight is to be equally divided between all the 
values. 

 

In example, src gets the value 0, 1, 2, or 3. The weight of 0 is 40, whereas, 1, 2, and 3 
each have the weight of 60, for a total of 220. The probability of choosing 0 is 40/220, and the 
probability of choosing 1, 2, or 3 is 60/220 each. Next, dst gets the value 0, 1, 2, or 3. The weight 
of 0 is 40, whereas 1, 2, and 3 share a total weight of 60, for a total of 100. The probability of 
choosing 0 is 40/100, and the probability of choosing 1, 2, or 3 is only 20/100 each. Once again, 
the values and weights can be constants or variables. You can use variable weights to change 
distributions on the fly or even to eliminate choices by setting the weight to zero, as shown in 
Sample. 

In Sample, the len enumerated variable has three values. With the default weighting 
values, longword lengths are chosen more often, as w_lwrd has the largest value. 



 

4.3.4 Set Membership and the Inside Operator 

 You can create sets of values with the inside operator. The SystemVerilog solver chooses 
between the values in the set with equal probability, unless you have other constraints on the 
variable. As always, you can use variables in the sets. 

 

In Sample, SystemVerilog uses the values for lo and hi to determine the range of possible 
values. You can use this to parameterize your constraints so that the testbench can alter the 
behavior of the stimulus generator without rewriting the constraints. Note that if lo > hi, an 
empty set is formed, and the constraint fails. You can use $ as a shortcut for the minimum and 
maximum values for a range, as shown in Sample. This is helpful when you are building 
constraints for variables with different ranges. 

 

4.3.5 Using an Array in a Set 

You can choose from a set of values by storing them in an array. 



 

All values in the set are chosen equally, even if they appear multiple times. You can also think 
of the inside constraint as being turned into a foreach constraint, as explained. 

Example: Repeated values in inside constraint 

 

 

 



Output: 

 

4.3.6 Conditional Constraints 

Normally, all constraint expressions are active in a block. For example, a bus supports 
byte, word, and longword reads, but only longword writes. SystemVerilog supports two 
implication operators, -> and if-else. When you are choosing from a list of expressions, such as 
an enumerated type, the implication operator, ->, lets you create a case-like block. The 
parentheses around the expression are not required, but do make the code easier to read. 

 

In constraint blocks, you use curly braces, { }, to group multiple expressions. The 
begin...end keywords are for procedural code. 

4.37 Bidirectional Constraints 

By now you may have realized that constraint blocks are not procedural code, executing 
from top to bottom. They are declarative code, all active at the same time. If you constrain a 
variable with the inside operator with the set [10:50] and have another expression that constrains 
the variable to be greater than 20, SystemVerilog solves both constraints simultaneously and 
only chooses values between 21 and 50. SystemVerilog constraints are bidirectional, which 
means that the constraints on all random variables are solved concurrently. Adding or removing 
a constraint on any one variable affects the value chosen for all variables that are related directly 
or indirectly. Consider the constraint in Sample. 



 

The SystemVerilog solver looks at all four constraints simultaneously. The variable r has 
to be less than t, which has to be less than 30. However, r is also constrained to be equal to s, 
which is greater than 25. Even though there is no direct constraint on the lower value of t, the 
constraint on s restricts the choices. Table 6-1 shows the possible values for these three variables. 

Even the conditional constraints such as -> and if...else, which can look like a procedural 
if-else statement, are bidirectional. For example, the constraint {(a==1) - > (b==0)} is equivalent 
to {!(a == 1) || b == 0;}. The solver picks values for the variables that meet this constraint, and 
does not first check if a==1, then force b==0. In fact, if you add the additional constraint 
{b==1;}, the solver will set a to 0. 

4.3.8 Implication and Bidirectional Constraints 

Note that the implication operator says that when x==0, y is forced to 0, but when y==0, 
there is no constraint on x. However, implication is bidirectional in that if y were forced to a 
nonzero value, x would have to be 1. Sample 6.26 has the constraint y>0, and so x can never be 
0. 

 

4.4 Controlling Multiple Constraint Blocks 

A class can contain multiple constraint blocks. One might make sure you have a valid 
transaction, but you might need to disable this when testing the DUT’s error handling. Or you 
might want to have a separate constraint for each test. Perhaps one constraint would restrict the 
data length to create small transactions (great for testing congestion), whereas another would 
make long transactions. At run-time, you can use the built-in constraint_mode() routine to turn 
constraints on and off. You can control a single constraint with 
handle.constraint.constraint_mode(). To control all constraints in an object, use 
handle.constraint_mode(), as shown in Sample. 

 

 



 

4.5 Valid Constraints 

A good randomization technique is to create several constraints to ensure the correctness 
of your random stimulus, known as “valid constraints.” For example, a bus read– modify–write 
command might only be allowed for a longword data length. 

 

Now you know the bus transaction obeys the rule. Later, if you want to violate the rule, 
use constraint_mode to turn off this one constraint. You should have a naming convention to 
make these constraints stand out, such as using the prefix valid as shown above. 

4.6 In-Line Constraints:  

As you write more tests, you can end up with many constraints. They can interact with 
each other in unexpected ways, and the extra code to enable and disable them adds to the test 
complexity. Additionally, constantly adding and editing constraints to a class could cause 
problems in a team environment. Many tests only randomize objects at one place in the code. 
SystemVerilog allows you to add an extra constraint using randomize() with. This is equivalent 



to adding an extra constraint to any existing ones in effect. Sample shows a base class with 
constraints, then two randomize() with statements. 

 

The extra constraints are added to the existing ones in effect. Use constraint_mode if you 
need to disable a conflicting constraint. Note that inside the with{} statement, SystemVerilog 
uses the scope of the class. That is why Sample 6.30 used just addr, not t.addr. 

A common mistake is to surround your in-line constraints with parenthesis instead of 
curly braces {}. Just remember that constraint blocks use curly braces, and so your in-line 
constraint must use them too. Braces are for declarative code. 

4.7 Randomizing Individual Variables 

 Suppose you want to randomize a few variables inside a class. You can call random ize() 
with the subset of variables. Only those variables passed in the argument list will be randomized; 
the rest will be treated as state variables and not randomized. All constraints remain in effect. In 
Sample 6.36, the first call to randomize() only changes the values of two rand variables med and 
hi. The second call only changes the value of med, whereas hi retains its previous value. 
Surprisingly, you can pass a nonrandom variable, as shown in the last call, and low is given a 
random value, as long as it obeys the constraint. 

This trick of only randomizing a subset of the variables is not commonly used in real 
testbenches as you are restricting the randomness of your stimulus. You want your testbench to 
explore the full range of legal values, not just a few corners. 

 



 

4.8 Pseudorandom Number Generators 

 Verilog uses a simple PRNG that you could access with the $random function. The 
generator has an internal state that you can set by providing a seed to $random. All IEEE-1364-
compliant Verilog simulators use the same algorithm to calculate values. Sample  shows a simple 
PRNG, not the one used by SystemVerilog. The PRNG has a 32-bit state. To calculate the next 
random value, square the state to produce a 64-bit value, take the middle 32 bits, then add the 
original value. 

 

You can see how this simple code produces a stream of values that seem random, but can 
be repeated by using the same seed value. SystemVerilog calls its PRNG to generate a new value 
for randomize() and randcase. 
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Questions to Practice: 

PART -A  
1 Identify how System Verilog is is used in rand and randc 
2 Identify the Limitations of  Constraints. 
3 Describe in detail about Rand_mode 
4 Classify the use of Set Membership in constraint 
5 Explain in detail about Conditional Constraints in System Verilog 

 
  

PART-B  
1 Demonstrate in detail about Randomization  in System Verilog 
2 Classify Constraint  types that are used in System Verilog 
3 Demonstrate in detail about the System Verilog Device and Environment 

Configuration 
4 Demonstrate in detail about the impact of  Equivalence and Weighted Constraints 
5 Enumerate Randomizing individual variables and PRNG  in detail. 
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UNIT-V (FUNCTIONAL COVERAGE AND ASSERTION BASED 
VERIFICATION) 

 
Coverage Definition, Code Coverage,  Functional Coverage: Cover Group, Creating 
Cover Group Instances, Coverpoints, Bins -  implicit bins, . Explicit bins, Bin creation, 
Vector and Scalar bins, Cross products, Intersect, Select Expressions, Conditional 
Expression (iff), Illegal bins, Ignore bins, Coverage Analysis, Covergroup Built-in 
Methods - .Sample(), . get_coverage(), .get_instance_coverage(),  .set_instance_name 
(string),  .start(), . stop() 
 

5.1 Functional Coverage: 

As designs become more complex, the only effective way to verify them thoroughly is 
with constrained-random testing (CRT). This approach elevates you above the tedium of writing 
individual directed tests, one for each feature in the design. However, if your testbench is taking 
a random walk through the space of all design states.  

Whether you are using random or directed stimulus, you can gauge progress using 
coverage. Functional coverage is a measure of which design features have been exercised by the 
tests. Start with the design specification and create a verification plan with a detailed list of what 
to test and how. For example, if your design connects to a bus, your tests need to exercise all the 
possible interactions between the design and bus, including relevant design states, delays, and 
error modes. 

Use a feedback loop to analyze the coverage results and decide on which actions to take 
in order to converge on 100% coverage (Figure 5.1). Your first choice is to run existing tests 
with more seeds; the second is to build new constraints. Resort to creating directed tests only if 
absolutely necessary. 

 

Figure 5.1 Coverage Convergence 



Back when you exclusively wrote directed tests, the verification planning was limited. If 
the design specification listed 100 features, all you had to do was write 100 tests. Coverage was 
implicit in the tests – the “register move” test moved all combinations of registers back and forth. 
Measuring progress was easy: if you had completed 50 tests, you were halfway done. This 
chapter uses “explicit” and “implicit” to describe how coverage is specified. Explicit coverage is 
described directly in the test environment using SystemVerilog features.  

Implicit coverage is implied by a test – when the “register move” directed test passes, you 
have hopefully covered all register transactions. With CRT, you are freed from hand crafting 
every line of input stimulus, but now you need to write code that tracks the effectiveness of the 
test with respect to the verification plan. You are still more productive, as you are working at a 
higher level of abstraction. You have moved from tweaking individual bits to describing the 
interesting design states. Reaching for 100% functional coverage forces you to think more about 
what you want to observe and how you can direct the design into those states. 

Gathering Coverage Data: You can run the same random testbench over and over, 
simply by changing the random seed, to generate new stimulus. Each individual simulation 
generates a database of functional coverage information, the trail of footprints from the random 
walk. You can then merge all this information together to measure your overall progress using 
functional coverage as shown in Figure 5.2. 

 

Figure 5.2: Coverage Flow 

You then analyze the coverage data to decide how to modify your tests. If the coverage 
levels are steadily growing, you may just need to run existing tests with new random seeds, or 
even just run longer tests. If the coverage growth has started to slow, you can add additional 
constraints to generate more “interesting” stimuli. When you reach a plateau, some parts of the 
design are not being exercised, and so you need to create more tests.  

Lastly, when your functional coverage values near 100%, check the bug rate. If bugs are 
still being found, you may not be measuring true coverage for some areas of your design. Don’t 



be in too big of a rush to reach 100% coverage, which just shows that you looked for bugs in all 
the usual places. While you are trying to verify your design, take many random walks through 
the stimulus space; this can create many unanticipated combinations. 

Each simulation vendor has its own format for storing coverage data and as well as its 
own analysis tools. You need to perform the following actions with those tools.  

  Run a test with multiple seeds. For a given set of constraints (and coverage groups), 
compile the testbench and design into a single executeable. Now you need to run this constraint 
set over and over with different random seeds. You can use the Unix system clock as a seed, but 
be careful, as your batch system may start multiple jobs simultaneously. These jobs may run on 
different servers or may start on a single server with multiple processors. 

   Check for pass/fail. Functional coverage information is only valid for a successful 
simulation. When a simulation fails because there is a design bug, the coverage information must 
be discarded. The coverage data measures how many items in the verification plan are complete, 
and this plan is based on the design specification. If the design does not match the specification, 
the coverage values are useless. Some verification teams periodically measure all functional 
coverage from scratch so that it reflects the current state of the design. 

   Analyze coverage across multiple runs. You need to measure how successful each 
constraint set is, over time. If you are not yet getting 100% coverage for the areas that are 
targeted by the constraints, but the amount is still growing, run more seeds. If the coverage level 
has plateaued, with no recent progress, it is time to modify the constraints. Only if you think that 
reaching the last few test cases for one particular section may take too long for 
constrainedrandom simulation should you consider writing a directed test. Even then, continue to 
use random stimulus for the other sections of the design, in case this “background noise” finds a 
bug. 

5.2 Coverage Types: 

Coverage is a generic term for measuring progress to complete design verification. Your 
simulations slowly paint the canvas of the design, as you try to cover all of the legal 
combinations. The coverage tools gather information during a simulation and then postprocess it 
to produce a coverage report. You can use this report to look for coverage holes and then modify 
existing tests or create new ones to fill the holes. This iterative process continues until you are 
satisfied with the coverage level. 

5.2.1 Code Coverage 

The easiest way to measure verification progress is with code coverage. Here you are 
measuring how many lines of code have been executed (line coverage), which paths through the 
code and expressions have been executed (path coverage), which singlebit variables have had the 
values 0 or 1 (toggle coverage), and which states and transitions in a state machine have been 
visited (FSM coverage). You don’t have to write any extra HDL code. The tool instruments your 
design automatically by analyzing the source code and adding hidden code to gather statistics. 



You then run all your tests, and the code coverage tool creates a database. Many simulators 
include a code coverage tool. A postprocessing tool converts the database into a readable form.  

The end result is a measure of how much your tests exercise the design code. Note that 
you are primarily concerned with analyzing the design code, not the testbench. Untested design 
code could conceal a hardware bug, or may be just redundant code. Code coverage measures 
how thoroughly your tests exercised the “implementation” of the design specification, and not 
the verification plan. Just because your tests have reached 100% code coverage, your job is not 
done. 

Example: Incomplete D-flip flop model missing a path 

 

The reset logic was accidently left out. A code coverage tool would report that every line 
had been exercised, yet the model was not implemented correctly. 

5.2.2 Functional Coverage 

The goal of verification is to ensure that a design behaves correctly in its real 
environment, be that an MP3 player, network router, or cell phone. The design specification 
details how the device should operate, whereas the verification plan lists how that functionality is 
to be stimulated, verified, and measured. When you gather measurements on what functions were 
covered, you are performing “design” coverage.  

For example, the verification plan for a D-flip flop would mention not only its data 
storage but also how it resets to a known state. Until your test checks both these design features, 
you will not have 100% functional coverage. Functional coverage is tied to the design intent and 
is sometimes called “specification coverage,” while code coverage measures the design 
implementation. Consider what happens if a block of code is missing from the design. Code 
coverage cannot catch this mistake, but functional coverage can. 

5.2.3 Bug Rate 

An indirect way to measure coverage is to look at the rate at which fresh bugs are found. 
You should keep track of how many bugs you found each week, over the life of a project. At the 
start, you may find many bugs through inspection as you create the testbench. As you read the 
design spec, you may find inconsistencies, which hopefully are fixed before the RTL is written. 
Once the testbench is up and running, a torrent of bugs is found as you check each module in the 
system. The bug rate drops, hopefully to zero, as the design nears tape-out. However, you are not 
yet done. Every time the rate sags, it is time to find different ways to create corner cases. 



 

Figure 5.3 Bug Rate during a Project 

The bug rate can vary per week based on many factors such as project phases, recent 
design changes, blocks being integrated, personnel changes, and even vacation schedules. 
Unexpected changes in the rate could signal a potential problem. As shown in Figure 5.3, it is not 
uncommon to keep finding bugs even after tape-out, and even after the design ships to 
customers. 

5.2.4 Assertion Coverage 

Assertions are pieces of declarative code that check the relationships between design 
signals, either once or over a period of time. These can be simulated along with the design and 
testbench, or proven by formal tools. Sometimes you can write the equivalent check using 
SystemVerilog procedural code, but many assertions are more easily expressed using 
SystemVerilog Assertions (SVA). Assertions can have local variables and perform simple data 
checking.  

If you need to check a more complex protocol, such as determining whether a packet 
successfully went through a router, procedural code is often better suited for the job. There is a 
large overlap between sequences that are coded procedurally or using SVA. The most familiar 
assertions look for errors such as two signals that should be mutually exclusive or a request that 
was never followed by a grant. These error checks should stop the simulation as soon as they 
detect a problem. Assertions can also check arbitration algorithms, FIFOs, and other hardware. 
These are coded with the assert property statement. 

Some assertions might look for interesting signal values or design states, such as a 
successful bus transaction. These are coded with the cover property statement. You can measure 
how often these assertions are triggered during a test by using assertion coverage. A cover 
property observes sequences of signals, whereas a cover group samples data values and 
transactions during the simulation. These two constructs overlap in that a cover group can trigger 
when a sequence completes. Additionally, a sequence can collect information that can be used by 
a cover group. 

 

 



5.3 Cover Group 

A cover group is similar to a class – you define it once and then instantiate it one or more 
times. It contains cover points, options, formal arguments, and an optional trigger. A cover group 
encompasses one or more data points, all of which are sampled at the same time.  

You should create very clear cover group names that explicitly indicate what you are 
measuring and, if possible, reference to the verification plan. The name 
Parity_Errors_In_Hexaword_Cache_Fills may seem verbose, but when you are trying to read a 
coverage report that has dozens of cover groups, you will appreciate the extra detail. You can 
also use the comment option for additional descriptive information. 

A cover group can be defined in a class or at the program or module level. It can sample 
any visible variable such as program/module variables, signals from an interface, or any signal in 
the design (using a hierarchical reference). A cover group inside a class can sample variables in 
that class, as well as data values from embedded classes. 

Don’t define the cover group in a data class, such as a transaction, as doing so can cause 
additional overhead when gathering coverage data. Imagine you are trying to track how many 
beers were consumed by patrons in a pub. Would you try to follow every bottle as it flowed from 
the loading dock, over the bar, and into each person? No, instead you could just have each patron 
check off the type and number of beers consumed. In SystemVerilog, you should define cover 
groups at the appropriate level of abstraction. This level can be at the boundary between your 
testbench and the design, in the transactors that read and write data, in the environment 
configuration class, or wherever is needed. The sampling of any transaction must wait until it is 
actually received by the DUT. If you inject an error in the middle of a transaction, causing it to 
be aborted in transmission, you need to change how you treat it for functional coverage. You 
need to use a different cover point that has been created just for error handling. A class can 
contain multiple cover groups. This approach allows you to have separate groups that can be 
enabled and disabled as needed. Additionally, each group may have a separate trigger, allowing 
you to gather data from many sources. A cover group must be instantiated for it to collect data. If 
you forget, no error message about null handles is printed at run-time, but the coverage report 
will not contain any mention of the cover group. This rule applies for cover groups defined either 
inside or outside of classes. 

5.3.1 Defining a Cover Group in a Class 

A cover group can be defined in a program, module, or class. In all cases, you must 
explicitly instantiate it to start sampling. If the cover group is defined in a class, you do not make 
a separate name when you instance it; you just use the original cover group name. 

Below Example  is very similar to the first example of this chapter except that it embeds 
a cover group in a transactor class, and thus does not need a separate instance name. 

 

 



 

5.4 Triggering a Cover Group 

The two major parts of functional coverage are the sampled data values and the time when they 
are sampled. When new values are ready (such as when a transaction has completed), your 
testbench triggers the cover group. This can be done directly with the sample function, as shown 
in above example, or by using a blocking expression in the covergroup definition. The blocking 
expression can use a wait or @ to block on signals or events. Use sample if you want to 
explicitly trigger coverage from procedural code, if there is no existing signal or event that tells 
when to sample, or if there are multiple instances of a cover group that trigger separately. Use 
the blocking statement in the covergroup declaration if you want to tap into existing events or 
signals to trigger coverage. 

5.4.1 Sampling Using a Callback 

 One of the better ways to integrate functional coverage into your testbench is to use 
callbacks. This technique allows you to build a flexible testbench without restricting when 
coverage is collected. You can decide for every point in the verification plan where and when 
values are sampled. And if you need an extra “hook” in the environment for a callback, you can 
always add one in an unobtrusive manner, as a callback only “fires” when the test registers a 
callback object. You can create many separate callbacks for each cover group, with little 
overhead. As explained in Section 8.7.4, callbacks are superior to using a mailbox to connect the 
testbench to the coverage objects. You might need multiple mailboxes to collect transactions 
from different points in your testbench. A mailbox requires a transactor to receive transactions, 
and multiple mailboxes cause you to juggle multiple threads. Instead of an active transactor, use 
a passive callback. 



 Push an instance of the coverage callback class into the driver’s callback queue, and your 
coverage code triggers the cover group at the right time. The following two examples define and 
use the callback Driver_cbs_coverage. 

 

5.4.2 Cover Group With an Event Trigger 

 

The advantage of using an event over calling the sample method directly is that you may 
be able to use an existing event such as one triggered by an assertion, as shown in above 
example. 

5.4.3 Triggering on a SystemVerilog Assertion 

If you already have an SVA that looks for useful events like a complete transaction, you 
can add an event trigger to wake up the cover group. 

 

 

 



5.5 Data Sampling 

 How is coverage information gathered? When you specify a variable or expression in a 
cover point, SystemVerilog creates a number of “bins” to record how many times each value has 
been seen. These bins are the basic units of measurement for functional coverage. If you sample 
a one-bit variable, a maximum of two bins are created. You can imagine that SystemVerilog 
drops a token in one or the other bin every time the cover group is triggered. At the end of each 
simulation, a database is created with all bins that have a token in them. You then run an analysis 
tool that reads all databases and generates a report with the coverage for each part of the design 
and for the total coverage. 

5.5.1 Individual Bins and Total Coverage 

To calculate the coverage for a point, you first have to determine the total number of 
possible values, also known as the domain. There may be one value per bin or multiple values. 
Coverage is the number of sampled values divided by the number of bins in the domain. A cover 
point that is a 3-bit variable has the domain 0:7 and is normally divided into eight bins. If, during 
simulation, values belonging to seven bins are sampled, the report will show 7/8 or 87.5% 
coverage for this point. All these points are combined to show the coverage for the entire group, 
and then all the groups are combined to give a coverage percentage for all the simulation 
databases. 

This is the status for a single simulation. You need to track coverage over time. Look for 
trends so that you can see where to run more simulations or add new constraints or tests. Now 
you can better predict when verification of the design will be completed. 

5.5.2 Creating Bins Automatically 

SystemVerilog automatically creates bins for cover points. It looks at the domain of the 
sampled expression to determine the range of possible values. For an expression that is N bits 
wide, there are 2N possible values. For the 3-bit variable port, there are 8 possible values. The 
range of an enumerated type is shown in Section 9.6.8. The domain for enumerated data types is 
the number of named values. 

5.5.3 Limiting the Number of Automatic Bins Created 

The cover group option auto_bin_max specifies the maximum number of bins to 
automatically create, with a default of 64 bins. If the domain of values in the cover point variable 
or expression is greater than this option, SystemVerilog divides the range into auto_bin_max 
bins. For example, a 16-bit variable has 65,536 possible values, and so each of the 64 bins covers 
1,024 values. In reality, you may find this approach impractical, as it is very difficult to find the 
needle of missing coverage in a haystack of auto-generated bins.  

Lowering this limit to 8 or 16, or better yet, explicitly define the bins. The following code 
takes the chapter’s first example and adds a cover point option that sets auto_bin_max to two 
bins. The sampled variable is still port, which is three bits wide, for a domain of eight possible 



values. The first bin holds the lower half of the range, 0–3, and the other hold the upper values, 
4–7. 

 

The coverage report from VCS shows the two bins. This simulation achieved 100% coverage 
because the eight port values were mapped to two bins. Since both bins have sampled values, 
your coverage is 100%. 

5.5.4 Conditional Coverage  

You can use the iff keyword to add a condition to a cover point. The most common 
reason for doing so is to turn off coverage during reset so that stray triggers are ignored. Below 
Example  gathers only values of port when reset is 0, where reset is active-high. 

 

Alternately, you can use the start and stop functions to control individual instances of cover 
groups. 

 

5.5.5 Transition Coverage 

You can specify state transitions for a cover point. In this way, you can tell not only what 
interesting values were seen but also the sequences. For example, you can check if port ever 
went from 0 to 1, 2, or 3. 

 

You can quickly specify multiple transitions using ranges. The expression (1,2 => 3,4) 
creates the four transitions (1=>3), (1=>4), (2=>3), and (2=>4). 



You can specify transitions of any length. Note that you have to sample once for each 
state in the transition. So (0 => 1 => 2) is different from (0 => 1 => 1 => 2) or (0 => 1 => 1 => 1 
=> 2). If you need to repeat values, as in the last sequence, you can use the shorthand form:(0 => 
1[*3] => 2). To repeat the value 1 for 3, 4, or 5 times, use 1[*3:5]. 

5.5.6 Illegal Bins 

Some sampled values not only should be ignored but also should cause an error if they 
are seen. This is best done in the testbench’s monitor code, but can also be done by labeling a bin 
with illegal_bins. Use illegal_bins to catch states that were missed by the test’s error checking. 
This also double-checks the accuracy of your bin creation: if an illegal value is found by the 
cover group, it is a problem either with the testbench or with your bin definitions. 

 

5.6 Coverage Options 

 You can specify additional information in the cover group using options. There are two 
flavors of options: instance options that apply to a specific cover group instance and type options 
that apply to all instances of the cover group, and are analogous to static data members of 
classes. Options can be placed in the cover group so that they apply to all cover points in the 
group, or they can be put inside a single cover point for finer control. You have already seen the 
auto_bin_max and weight options. Here are several more. 

5.6.1 Per-Instance Coverage 

If your testbench instantiates a coverage group multiple times, by default SystemVerilog 
groups together all the coverage data from all the instances. However, if you have several 
generators, each creating very different streams of transactions, you will need to see separate 
reports. For example, one generator may be creating long transactions while another makes short 
ones. The cover group in example can be instantiated in each separate generator. It keeps track of 
coverage for each instance, and has a unique comment string with the hierarchical path to the 
cover group instance. 

 

The per-instance option can only be given in the cover group, not in the cover point or cross 
point. 



5.6.2 Cover Group Comment 

You can add a comment into coverage reports to make them easier to analyze. A comment 
could be as simple as the section number from the verification plan to tags used by a report 
parser to automatically extract relevant information from the sea of data. If you have a cover 
group that is only instantiated once, use the type option as shown in below example. 

 

However, if you have multiple instances, you can give each a separate comment, as long as you 
also use the per-instance option. 

 

5.6.3 Coverage Goal 

The goal for a cover group or point is the level at which the group or point is considered 
fully covered. The default is 100% coverage. If you set this level below 100%, you are 
requesting less than complete coverage, which is probably not desirable. This option affects only 
the coverage report. 

 

5.7 Analyzing Coverage Data 

 In general, assume you need more seeds and fewer constraints. After all, it is easier to run 
more tests than to construct new constraints. If you are not careful, new constraints can easily 
restrict the search space. If your cover point has only zero or one sample, your constraints are 
probably not targeting these areas at all. You need to add constraints that “pull” the solver into 
new areas. In given example, the transaction length had an uneven distribution. This situation is 
similar to the distribution seen when you roll two dice and look at the total value. 



 

The problem with this class is that len is not evenly weighted as shown in Figure 5.4. 

 

Figure 5.4 Uneven probability for transaction length 

If you want to make the total length be evenly distributed, use a solve...before constraint  
as shown in Figure 5.4. 

 

Figure 5.5  Even probability for transaction length with solve...before 

The normal alternative to solve...before is the dist constraint. However, this does not work, as 
len is also being constrained by the sum of the two lengths. 

5.8 Measuring Coverage Statistics During Simulation 

You can query the level of functional coverage on the fly during simulation. This allows 
you to check whether you have reached your coverage goals, and possibly to control a random 
test. At the global level, you can get the total coverage of all cover groups with $get_coverage, 



which returns a real number between 0 and 100. This system task looks across all cover groups. 
You can narrow down your measurements with the get_coverage() and get_inst_coverage() 
methods. The first function works with both cover group names and instances to give coverage 
across all instances of a cover group, for example, CoverGroup::get_coverage() or 
cgInst.get_coverage(). The second function returns coverage for a specific cover group instance, 
for example cgInst.get_inst_coverage().  

You need to specify option.per_instance=1 if you want to gather perinstance coverage. 
The most practical use for these functions is to monitor coverage over a long test. If the coverage 
level does not advance after a given number of transactions or cycles, the test should stop. 
Hopefully, another seed or test will increase the coverage. While it would be nice to have a test 
that can perform some sophisticated actions based on functional coverage results, it is very hard 
to write this sort of test. Each test + random seed pair may uncover new functionality, but it may 
take many runs to reach a goal. If a test finds that it has not reached 100% coverage, what should 
it do? Run for more cycles? How many more? Should it change the stimulus being generated? 
How can you correlate a change in the input with the level of functional coverage? The one 
reliable thing to change is the random seed, which you should only do once per simulation.  

Otherwise, how can you reproduce a design bug if the stimulus depends on multiple 
random seeds? You can query the functional coverage statistics if you want to create your own 
coverage database. Verification teams have built their own SQL databases that are fed functional 
coverage data from simulation. This setup allows them greater control over the data, but requires 
a lot of work outside of creating tests. Some formal verification tools can extract the state of a 
design and then create input stimulus to reach all possible states.  
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Questions to Practice: 

PART -A  
1 Identify how System Verilog is is used in implicit bins 
2 Identify the advantages of  Fucntional Coverage. 
3 Describe in detail about Cover Group 
4 Classify the use of Cover points 
5 Explain in detail about Coverage Analysis 

 
  

PART-B  
1 Demonstrate in detail about Functional Coverage  in System Verilog 
2 Classify Coverage  types that are used in System Verilog 
3 Demonstrate in detail about the System Verilog Cover group Built in Methods 
4 Demonstrate in detail about the impact of  Implicit and Explicit Bins 
5 Enumerate Vector and Scalar bins of Functional Coverage  in detail. 

 

 


