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UNIT I: INTRODUCTION TO EMBEDDED PROCESSORS 

 

[Introduction to embedded processors– Compare Von Neumann architecture and Harvard 

architecture, RISC Vs CISC – System on Chip (SoC)-Introduction to SoC Architecture, An 

approach for SOC Design, System Architecture and Complexity. Processor Selection for SOC, 

Basic concepts in Processor Architecture, Overview of SOC external memory, Internal Memory, 

Scratchpads and Cache memory, SOC Memory System, Models of Simple Processor – memory 

interaction, SOC Standard Buses] 
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1.1 Overview of Embedded Application Architecture 

Embedded systems, an emerging area of computer technology, combine multiple 

technologies, such as computers, semiconductors, microelectronics, and the Internet, and as a 

result, are finding ever-increasing application in our modern world. With the rapid development 

of computer and communications technologies and the growing use of the Internet, embedded 

systems have brought immediate success and widespread application in the post-PC era, 

especially as the core components of the Internet of Things. They penetrate into every corner of 

modern life from the mundane, such as an automated home thermostat, to industrial production, 

such as in robotic automation in manufacturing. Embedded systems can be found in military and 

national defense, healthcare, science, education, and commercial services, and from mobile 

phones, MP3 players, and PDAs to cars, planes, and missiles. 

This chapter provides the concepts, structure, and other basic information about 

embedded systems and lays a theoretical foundation for embedded application development, of 

which application development for Android OS is becoming the top interest of developers. 

1.2 Introduction to Embedded Systems 

Since the advent of the first computer, the ENIAC, in 1946, the computer manufacturing 

process has gone from vacuum tubes, transistors, integrated circuits, and large-scale integration 

(LSI), to very-large-scale integration (VLSI), resulting in computers that are more compact, 

powerful, and energy efficient but less expensive (per unit of computing power). 

After the advent of microprocessors in the 1970s, the computer-using world witnessed 

revolutionary change. Microprocessors are the basis of microcomputers, and personal computers 

(PCs) made them more affordable and practical, allowing many private users to own them. At 

this stage, computers met a variety of needs: they were sufficiently versatile to satisfy various 

demands such as computing, entertainment, information sharing, and office automation. As the 

adoption of microcomputers was occurring, more people wanted to embed them into specific 

systems to intelligently control the environment. For example, microcomputers were used in 

machine tools in factories. They were used to control signals and monitor the operating state 

through the configuration of peripheral sensors. When microcomputers were embedded into such 

environments, they were prototypes of embedded systems. 

As the technology advanced, more industries demanded special computer systems. As a 

result, the development direction and goals of specialized computer systems for specific 

environments and general-purpose computer systems grew apart. The technical requirement of 

general-purpose computer systems is fast, massive, and diversified computing, whereas the goal 
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of technical development is faster computing speed and larger storage capacity. However, the 

technical requirement of embedded computer systems is targeted more toward the intelligent 

control of targets, whereas the goal of technical development is embedded performance, control, 

and reliability closely related to the target system. 

Embedded computing systems evolved in a completely different way. By emphasizing 

the characteristics of a particular processor, they turned traditional electronic systems into 

modern intelligent electronic systems. Figure 1-1 shows an embedded computer processor, the 

Intel Atom N2600 processor, which is 2.2 × 2.2 cm, alongside a penny. 

 

Figure 1.1: Comparison of an embedded computer chip to a US penny.  

The emergence of embedded computer systems alongside general-purpose computer 

systems is a milestone of modern computer technologies. The comparison of general-purpose 

computers and embedded systems is shown in Table 1-1. 

Today, embedded systems are an integral part of people's lives due to their mobility. As 

mentioned earlier, they are used everywhere in modern life. Smartphones are a great example of 

embedded systems. 

Table 1-1. Comparison of General-Purpose Computers and Embedded Systems 
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1.2.1 Mobile Phones 

Mobile equipment, especially smartphones, is the fastest growing embedded sector in 

recent years. Many new terms such as extensive embedded development and mobile 

development have been derived from mobile software development. Mobile phones not only are 

pervasive but also have powerful functions, affordable prices, and diversified applications. In 

addition to basic telephone functions, they include, but are not limited to, integrated PDAs, 

digital cameras, game consoles, music players, and wearables. 

1.2.2 Consumer Electronics and Information Appliances 

Consumer electronics and information appliances are additional big application sectors 

for embedded systems. Devices that fall into this category include personal mobile devices and 

home/entertainment/audiovisual devices. Personal mobile devices usually include smart 

handsets such as PDAs, as well as wireless Internet access equipment like mobile Internet 

devices (MIDs). In theory, smartphones are also in this class; but due to their large number, they 

are listed as a single sector. 

Home/entertainment/audiovisual devices mainly include network television like 

interactive television; digital imaging equipment such as digital cameras, digital photo frames, 

and video players; digital audio and video devices such as MP3 players and other portable audio 

players; and electronic entertainment devices such as handheld game consoles, PS2 consoles, 

and so on. Tablet PCs (tablets), one of the newer types of embedded devices, have become 

favorites of consumers since Apple released the iPad in 2010. 

1.3 General Architecture of an Embedded System 

Figure 1-2 shows a configuration diagram of a typical embedded system consisting of 

two main parts: embedded hardware and embedded software. The embedded hardware primarily 

includes the processor, memory, bus, peripheral devices, I/O ports, and various controllers. The 

embedded software usually contains the embedded operating system and various applications. 

Input and output are characteristics of any open system, and the embedded system is no 

exception. In the embedded system, the hardware and software often collaborate to deal with 

various input signals from the outside and output the processing results through some form. 
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Figure 1.2: Basic architecture of an embedded system 

The input signal may be an ergonomic device (such as a keyboard, mouse, or touch 

screen) or the output of a sensor circuit in another embedded system. The output may be in the 

form of sound, light, electricity, or another analog signal, or a record or file for a database. 

The basic computer system components—microprocessor, memory, and input and output 

modules are interconnected by a system bus in order for all the parts to communicate and execute 

a program (see Figure 1-3).  

 

Figure 1.3: Hardware architecture of Embedded System 

In embedded systems, the microprocessor's role and function are usually the same as those of 

the CPU in a general-purpose computer: control computer operation, execute instructions, and 

process data. In many cases, the microprocessor in an embedded system is also called the CPU. 

Memory is used to store instructions and data. I/O modules are responsible for the data exchange 

between the processor, memory, and external devices. 
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External devices include secondary storage devices (such as flash and hard disk), 

communications equipment, and terminal equipment. The system bus provides data and controls 

signal communication and transmission for the processor, memory, and I/O modules. 

There are basically two types of architecture that apply to embedded systems: Von Neumann 

architecture and Harvard architecture. In a Von-Neumann architecture, the same memory and 

bus are used to store both data and instructions that run the program. Since you cannot access 

program memory and data memory simultaneously, the Von Neumann architecture is susceptible 

to bottlenecks and system performance is affected. 

1.3.1 Von Neumann Architecture 

Von Neumann architecture (also known as Princeton architecture) was first proposed by 

John von Neumann. The most important feature of this architecture is that the software and data 

use the same memory: that is,   “The program is data, and the data is the program” (as shown in 

Figure 1-4). 

 

Figure 1.4: Von Neumann architecture 

In the Von Neumann architecture, an instruction and data share the same bus. In this 

architecture, the transmission of information becomes the bottleneck of computer performance 

and affects the speed of data processing; so, it is often called the Von Neumann bottleneck. In 

reality, cache and branch-prediction technology can effectively solve this issue. 

1.3.2 Harvard Architecture 

The Harvard architecture was first named after the Harvard Mark I computer. Compared 

with the Von Neumann architecture, a Harvard architecture processor has two outstanding 
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features. First, instructions and data are stored in two separate memory modules; instructions and 

data do not coexist in the same module. Second, two independent buses are used as dedicated 

communication paths between the CPU and memory; there is no connection between the two 

buses. The Harvard architecture is shown in Figure 1-5. 

To efficiently perform memory reads/writes, the processor is not directly connected to 

the main memory, but to the cache. Commonly, the only difference between the Harvard 

architecture and the Von Neumann architecture is single or dual L1 cache. In the Harvard 

architecture, the L1 cache is often divided into an instruction cache (I cache) and a data cache 

(D cache), but the Von-Neumann architecture has a single cache. 

 

Figure 1.5: Harvard architecture 

Because the Harvard architecture has separate program memory and data memory, it can 

provide greater data-memory bandwidth, making it the ideal choice for digital signal processing. 

Most systems designed for digital signal processing (DSP) adopt the Harvard architecture. The 

Von Neumann architecture features simple hardware design and flexible program and data 

storage and is usually the one chosen for general-purpose and most embedded systems. 

1.4.   Microprocessor Architecture for Embedded Systems 

 A microprocessor is the CPU of the computer fabricated on a single chip. The 

microprocessor is the core in embedded systems. By installing a microprocessor into a special 

circuit board and adding the necessary peripheral circuits and expansion circuits, a practical 

embedded system can be created. The microprocessor architecture determines the instructions, 
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supporting peripheral circuits, and expansion circuits. There are wide ranges of microprocessors:  

8-bit, 16-bit, 32-bit and 64-bit, with clock performance from MHz to GHz, and ranging from a 

few pins to thousands of pins. 

In general, there are two types of embedded microprocessor architecture: reduced 

instruction set computer (RISC) and complex instruction set computer (CISC). The RISC   

Nprocessor uses a small, limited, simple instruction set. Each instruction uses a standard word 

length and has a short execution time, which facilitates the optimization of the instruction 

pipeline. To compensate for the command functions, the CPU is often equipped with a large 

number of general-purpose registers. The CISC processor features a powerful instruction set and 

different instruction lengths, which facilitates the pipelined execution of instructions.  

Currently, microprocessors used in most embedded systems have five architectures: 

RISC, CISC, MIPS, PowerPC, and SuperH. The details follow. 

1.4.1 CISC Architecture 

The CISC approach attempts to minimize the number of instructions per program, 

sacrificing the number of cycles per instruction. Computers based on the CISC architecture are 

designed to decrease the memory cost (figure 1.6).  

 

Figure 1.6 CISC Architecture 

Because, the large programs need more storage, thus increasing the memory cost and large 

memory becomes more expensive. To solve these problems, the number of instructions per 

program can be reduced by embedding the number of operations in a single instruction, thereby 

making the instructions more complex. 
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Characteristics of CISC processor 

 MUL loads two values from the memory into separate registers in CISC. 

 CISC uses minimum possible instructions by implementing hardware and 

executes operations. 

 Instruction-decoding logic will be Complex. 

 One instruction is required to support multiple addressing modes. 

 Less chip space is enough for general purpose registers for the instructions that 

are     operated directly on memory. 

 Various CISC designs are set up two special registers for the stack pointer, 

handling interrupts,  etc. 

 MUL is referred to as a “complex instruction” and requires the programmer for 

storing functions. 

Note: Instruction Set Architecture is a medium to permit communication between the 

programmer and the hardware. Data execution part, copying of data, deleting or editing is 

the user commands used in the microprocessor and with this microprocessor the 

Instruction set architecture is operated. 

Examples of CISC PROCESSORS 

 

 IBM 370/168 – It was introduced in the year 1970. CISC design is a 32 bit processor and 

four 64-bit floating point registers. 

 VAX 11/780 – CISC design is a 32-bit processor and it supports many numbers of 

addressing modes and machine instructions which is from Digital Equipment 

Corporation. 

 Intel 80486 – It was launched in the year 1989 and it is a CISC processor, which has 

instructions varying lengths from 1 to 11 and it will have 235 instructions. 

1.4.2 RISC Architecture 

  RISC (Reduced Instruction Set Computer) processors take simple instructions and are executed 

within a clock cycle. The first RISC projects came from IBM, Stanford, and UC-Berkeley in the 

late 70s and early 80s. The IBM 801, Stanford MIPS, and Berkeley RISC 1 and 2 were all 

designed with a similar philosophy which has become known as RISC. Certain design features 

have been characteristic of most RISC processors: 
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 one cycle execution time: RISC processors have a CPI (clock per instruction) of one 

cycle. This is due to the optimization of each instruction on the CPU and a technique 

called pipelining.  

 pipelining: A techique that allows for simultaneous execution of parts, or stages, of 

instructions to more efficiently process instructions; 

 large number of registers: the RISC design philosophy generally incorporates a larger 

number of registers to prevent in large amounts of interactions with memory 

 

    RISC is used in portable devices due to its power efficiency. For Example, Apple iPod and 

Nintendo DS. RISC is a type of microprocessor architecture that uses highly-optimized set of 

instructions. RISC does the opposite, reducing the cycles per instruction at the cost of the number 

of instructions per program Pipelining is one of the unique feature of RISC. It is performed by 

overlapping the execution of several instructions in a pipeline fashion. It has a high performance 

advantage over CISC. 

  

Figure 1.7: RISC Architecture 

RISC Architecture Characteristics 

 Simple Instructions are used in RISC architecture. 

 RISC helps and supports few simple data types and synthesize complex data types. 

 RISC utilizes simple addressing modes and fixed length instructions for pipelining. 

 RISC permits any register to use in any context. 

file:///C:/Users/sugadev/Downloads/%3cimg%20aria-describedby=%22caption-attachment-741%22%20class=%22%20wp-image-741%22%20src=%22https:/www.watelectronics.com/wp-content/uploads/RISC-Architecture.jpg%22%20alt=%22RISC
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 One Cycle Execution Time 

 The amount of work that a computer can perform is reduced by separating “LOAD” and 

“STORE” instructions. 

 RISC contains Large Number of Registers in order to prevent various number of 

interactions with memory. 

 In RISC, Pipelining is easy as the execution of all instructions will be done in  a uniform 

interval of time i.e. one click. 

 In RISC, more RAM is required to store assembly level instructions. 

 Reduced instructions need a less number of transistors in RISC. 

 RISC uses Harvard memory model means it is Harvard Architecture. 

 A compiler is used to perform the conversion operation means to convert a high-level 

language statement into the code of its form. 

A comparison of RISC and CISC is given in Table 1-2. 

Table 1-2. Comparison of RISC and CISC 
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RISC and CISC have distinct characteristics and advantages, but the boundaries between 

RISC and CISC begin to blur in the microprocessor sector. Many traditional CISCs absorb RISC 

advantages and use a RISC-like design. Intel x86 processors are typical of them. They are 

considered as CISC architecture. These processors translate x86 instructions into RISC-like 

instructions through a decoder and comply with the RISC design and operation to obtain the 

benefits of RISC architecture and improve internal operation efficiency.  

1.5 System on Chip (SoC) Processor 

With the development of integrated circuit design and manufacturing technology, 

integrated circuit design has gone from transistor integration, to logic-gate integration, to the 

current IP integration or system on chip (SoC). The SoC design technology integrates popular 

circuit modules on a single chip. SoC usually contains a large number of peripheral function 

modules such as microprocessor/microcontroller, memory, USB controller, universal 

asynchronous receiver/transmitter (UART) controller, A/D and D/A conversion, I2C, and Serial 

Peripheral Interface (SPI). Figure 1-8 is an example structure of SoC-based hardware for 

embedded systems. 

A System on Chip or an SoC is an integrated circuit that incorporates a majority of 

components present on a computer. As the name suggests, it is an entire system fabricated on a 

silicon chip. SoC also  includes software and an interconnection structure for integration. The 

hardware-software integration approach makes the SoC smaller in size, allows for less power 

consumption, and more reliable than a standard multi-chip system. 

1.5.1 Components of an SoC 

SoCs can be identified as the following types: built around a microcontroller, build 

around a microprocessor, built for specific applications, and programmable SoCs (PSoC). The 

integral parts of an SoC include a processor, primary and secondary memory storage and 

input/output ports. The other vital components include a graphics processor unit (GPU), a WiFi 

module, Digital Signal Processor (DSP), and various peripherals such as USB, Ethernet, SPI 

(Serial Peripheral Interface), ADC, DAC, and even FPGAs. Usually, it has multiple cores. 

Depending on various deciding factors and preferences, the core can be a microcontroller, 

microprocessor, DSP, or even an ASIP (Application Specific Instruction- set Processor). ASIPs 

have instruction sets based on a particular application. Usually, SoCs use ARM architecture, 

which is a family of RISC (Reduced Instruction Set Computing), which requires less digital 

design, thereby making it compatible for embedded system use. The ARM architecture is much 

more power-efficient than processors like the 8051 because, in contrast to processors using the 
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CISC architecture, processors with RISC architecture require fewer transistors. This also reduces 

heat dissipation and the cost. 

The following diagram shows an example of an SoC block diagram. 

 

 

Figure 1.8: Example of an SoC block diagram. 

1.5.2 Processor architecture/Models for SoC 

     At the heart of the SoC is its Processor. It usually has multiple processor cores. Multiple 

cores allow different processes to run at the same time, which increases the speed of the system 

as it enables your computer to perform multiple operations at the same time. The operating 

system sees the multiple cores as multiple CPUs, which increases performance. As multiple cores 

are fitted onto the same chip, there is less latency, which is because of faster communication 

between the cores.  

1.5.2.1 Simple Sequential Processor  

Sequential processors directly implement the sequential execution model. These processors 

process instructions sequentially from the instruction stream. The next instruction is not 

processed until all execution for the current instruction is complete and its results have been 

committed. The semantics of the instruction determines the sequence of actions that must be 

performed to produce the specified result. These actions include 

1. fetching the instruction into the instruction register (IF), 

2. decoding the opcode of the instruction (ID), 

3. generating the address in memory of any data item residing there (AG), 
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4. fetching data operands into executable registers (DF), 

5. executing the specified operation (EX), and 

6. writing back the result to the register file (WB). 

A simple sequential processor model is shown in Figure 1.9. During execution, a 

sequential processor executes one or more operations per clock cycle from the instruction stream. 

An instruction is a container that represents the smallest execution packet managed explicitly by 

the processor. One or more operations are contained within an instruction. The distinction 

between instructions and operations is crucial to distinguish between processor behaviors. Scalar 

and superscalar processors consume one or more instructions per cycle, where each instruction 

contains a single operation. Although conceptually simple, executing each instruction 

sequentially has significant performance drawbacks: A considerable amount of time is spent on 

overhead and not on actual execution. Thus, the simplicity of directly implementing the 

sequential execution model has significant performance costs. 

 

Figure1.9: Sequential Processor Model 

1.5.2.2 Pipelined Processor 

Pipelining is a straightforward approach to exploiting parallelism that is based on 

concurrently performing different phases (instruction fetch, decode, execution, etc.) of 

processing an instruction. Pipelining assumes that these phases are independent between 

different operations and can be overlapped — when this condition does not hold, the processor 

stalls the downstream phases to enforce the dependency. Thus, multiple operations can be 

processed simultaneously with each operation at a different phase of its processing. Figure 1.10 

illustrates the instruction timing in a pipelined processor, assuming that the instructions are 

independent. 
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For a simple pipelined machine, there is only one operation in each phase at any given 

time; thus, one operation is being fetched (IF); one operation is being decoded (ID); one 

operation is generating an address (AG); one operation is accessing operands (DF); one operation 

is in execution (EX); and one operation is storing results (WB). Figure 1.10 illustrates the general 

form of a pipelined processor. 

 

 

Figure 1.10: Instruction Execution in a Pipelined Processor 

The most rigid form of a pipeline, sometimes called the static pipeline, requires the 

processor to go through all stages or phases of the pipeline whether required by a particular 

instruction or not. A dynamic pipeline allows the bypassing of one or more pipeline stages, 

depending on the requirements of the instruction. The more complex dynamic pipelines allow 

instructions to complete out of (sequential) order, or even to initiate out of order. The out - of - 

order processors must ensure that the sequential consistency of the program is preserved. 
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Figure 1.11 : Pipelined processor model. 

 

Two architectures that exploit ILP (Instruction level parallelism) are superscalar and 

VLIW processors. They use different techniques to achieve execution rates greater than one 

operation per cycle. A superscalar processor dynamically examines the instruction stream to 

determine which operations are independent and can be executed. A VLIW processor relies on 

the compiler to analyze the available operations (OP) and to schedule independent operations 

into wide instruction words, which then execute these operations in parallel with no further 

analysis. 

1.5.2.3 Superscalar Processors  

Dynamic pipelined processors remain limited to executing a single operation per cycle 

by virtue of their scalar nature. This limitation can be avoided with the addition of multiple 

functional units and a dynamic scheduler to process more than one instruction per cycle (Figure 

1.12 ). These superscalar processors can achieve execution rates of several instructions per cycle 

(usually limited to two, but more is possible depending on the application). The most significant 

advantage of a superscalar processor is that processing multiple instructions per cycle is done 

transparently to the user, and that it can provide binary code compatibility while achieving better 

performance. 

Compared to a dynamic pipelined processor, a superscalar processor adds a scheduling 

instruction window that analyses multiple instructions from the instruction stream in each cycle. 

Although processed in parallel, these instructions are treated in the same manner as in a pipelined 
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processor. Before an instruction is issued for execution, dependencies between the instruction 

and its prior instructions must be checked by hardware.  

 

Figure 1.12 Superscalar processor model. 

 

Because of the complexity of the dynamic scheduling logic, high – performance 

superscalar processors are limited to processing four to six instructions per cycle. Although 

superscalar processors can exploit ILP from the dynamic instruction stream, exploiting higher 

degrees of parallelism requires other approaches. 

1.5.2.4 VLIW Processors 

  In contrast to dynamic analyses in hardware to determine which operations can be 

executed in parallel, VLIW processors (Figure 1.13) rely on static analyses in the compiler. 

VLIW processors are thus less complex than superscalar processors and have the potential for 

higher performance. A VLIW processor executes operations from statically scheduled 

instructions that contain multiple independent operations. Because the control complexity of a 

VLIW processor is not significantly greater than that of a scalar processor, the improved 

performance comes without the complexity penalties. VLIW processors rely on the static 

analyses performed by the compiler and are unable to take advantage of any dynamic execution 

characteristics. For applications that can be scheduled statically to use the processor resources 
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effectively, a simple VLIW implementation results in high performance. Unfortunately, not all 

applications can be effectively scheduled statically. In many applications, execution does not 

proceed exactly along the path defined by the code scheduler in the compiler. 

 

Figure 1.13 VLIW processor model. 

Two classes of execution variations can arise and affect the scheduled execution behavior: 

1. delayed results from operations whose latency differs from the assumed 

latency scheduled by the compiler and 

2. interruptions from exceptions or interrupts, which change the execution 

path to a completely different and unanticipated code schedule. 

Although stalling the processor can control a delayed result, this solution can result in significant 

performance penalties. The most common execution delay is a data cache miss. Many VLIW 

processors avoid all situations that can result in a delay by avoiding data caches and by assuming 

worst - case latencies for operations. However, when there is insufficient parallelism to hide the 

exposed worst - case operation latency, the instruction schedule has many incompletely filled or 

empty instructions, resulting in poor performance. 

1.5.3 Digital Signal Processor (DSP) 

Digital Signal Processor (DSP) is a chip optimized for operations for digital signal 

processing. This includes operations for sensors, actuators, data processing, and data analysis. It 

can be used for image decoding. The use of DSP saves CPU cycles for other processing tasks, 
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which increases performance. Dedicated DSPs are more power-efficient, which makes them 

befitting for use in SoCs. The instruction set used for DSP cores is SIMD (Single Instruction, 

Multiple Data) and VLIW (Very Long Instruction Word). The use of this architecture allows for 

parallel processing of instructions and superscalar execution. DSPs are used to perform 

operations like Fast Fourier Transform, convolution, multiply-accumulate. 

1.5.4 Memories on SoC 

SoCs have memories based on the application. The memories are semiconductor memory blocks 

for computation purposes. Semiconductor memory usually refers to Metal Oxide Semiconductor 

memory cells, which are fabricated on a single silicon chip. The types of memories are: 

 Volatile memories: Memories that lose data after power off. In other words, they 

need a constant power source to retain information. Volatile memories are faster and 

cheaper, which is why they are chosen frequently. 

RAM is a type of volatile memory. The most common RAM used are SRAM (Static RAM) 

and DRAM (Dynamic RAM). SRAM is made of memory cells which consist of either 1,3 or 6 

transistors (MOSFETs). In contrast, DRAM has only one MOSFET and a capacitor which is 

charged and discharged according to the state of the FET. However, DRAM is prone to capacitor 

leakage currents. One significant advantage of DRAM is that its cheaper than SRAM. If an SoC 

has a cache hierarchy, SRAM is used for cache and DRAM is used for the main memory. This 

is because cache requires a faster type of memory as compared to the main memory. 

There are RAM types designed for non-volatile function as well. These are FRAM 

(Ferroelectric RAM), MRAM (Magneto-resistive random-access memory), which stores data in 

magnetic states, PRAM (Parameter Random Access Memory), which is used in Macintosh 

computers to store system settings including the display and time-zone settings. Other than these, 

there is RRAM (Resistive Random Access Memory), which has a component called memristor. 

A memristor is a resistor whose voltage varies as per the applied voltage. 

 Non-volatile memories: Memories that retain information even in the absence of a power 

source. ROM (Read Only Memory) is a kind of non-volatile memory. Types of ROM 

include EPROM (Erasable Programmable Read-Only Memory), which is an array of 

floating-gate transistors. UVROM (Ultra-Violet Erasable Programmable Read-Only 

Memory), which is erased using UV light and reprogrammed with data, EEPROM 

(Electrically Erasable Programmable ROM) and flash. 

The type of memory selected depends upon the design specifications and application. 
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Figure 1.14: Classification of semiconductor memories used SoC. 

 

1.5.5 SYSTEM - LEVEL INTERCONNECTION  

SOC technology typically relies on the interconnection of predesigned circuit modules 

(known as intellectual property [IP] blocks) to form a complete system, which can be integrated 

onto a single chip. In this way, the design task is raised from a circuit level to a system level. 

Central to the system – level performance and the reliability of the finished product is the method 

of interconnection used. A well - designed interconnection scheme should have vigorous and 

efficient communication protocols, unambiguously defined as a published standard. This 

facilitates interoperability between IP blocks designed by different people from different 

organizations and encourages design reuse. It should provide efficient communication between 

different modules maximizing the degree of parallelism achieved. SOC interconnect methods 

can be classified into two main approaches: 

 buses  and 

 network - on - chip  

1.5.5.1 Bus - Based Approach 

With the bus - based approach, IP blocks are designed to conform to published bus 

standards such as ARM ’ s Advanced Microcontroller Bus Architecture (AMBA)  
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Figure 1.15: System - level interconnection: bus - based approach. 

or IBM’s CoreConnect. Communication between modules is achieved through the sharing of the 

physical connections of address, data, and control bus signals. This is a common method used 

for SOC system – level interconnect. Usually, two or more buses are employed in a system, 

organized in a hierarchical fashion. To optimize system - level performance and cost, the bus 

closest to the CPU has the highest bandwidth, and the bus farthest from the CPU has the lowest 

bandwidth. 

1.5.5.2 Network - on - Chip Approach 

A network - on - chip system consists of an array of switches, either dynamically switched 

as in a crossbar or statically switched as in a mesh. The crossbar approach uses asynchronous 

channels to connect synchronous modules that can operate at different clock frequencies. This 

approach has the advantage of higher throughput than a bus - based system while making 

integration of a system with multiple clock domains easier. In a simple statically switched 

network (Figure 1.16), each node contains processing logic forming the core, and its own routing 

logic. The interconnect scheme is based on a two - dimensional mesh topology. All 

communications between switches are conducted through data packets, routed through the router 

interface circuit within each node. Since the interconnections between switches have a fixed 

distance, interconnect - related problems such as wire delay and cross talk noise are much 

reduced. 
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Figure 1.16: SOC interconnection: Network - on - Chip approach. 

 

The Network-On-Chip employs system-level network techniques for on-chip traffic 

management. The NOC is a homogeneous, scalable switch fabric network that is used to 

transport multi-purpose data packets. This architecture is layered in nature with user-defined 

technology. The communication takes place over a three-layer communication scheme, namely 

Transaction, Transport and Physical. 

The aim of a NOC interconnect fabric is to reduce the wire routing congestion on-chip, 

better timing closure, a standardized way to make changes various IPs to the SOC design. NOC 

architectures have proven to be more power-efficient and can match throughput requirements. 

1.5.6 External interfaces 

SOC interfaces defer as per the intended application. The external interfaces are 

commonly based on communication protocols such as WiFi, USB, Ethernet, I2C, SPI, HDMI. If 

required, analog interfaces may be added for interfacing with sensors and actuators. 

1.5.7 Other components 

Other components necessary for a fully functioning SOC are timing sources like clocks, 

timers, oscillators, phase lock loop systems, voltage regulators, and power management units. 

1.5.6 Advantages & disadvantages of SoC 
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The main aim of an SoC is to minimize external components. Hence, it has the following 

advantages over a Single Board Computer: 

 Size: The SoC is the size of a coin. Due to the rapidly decreasing size of MOS 

technology, SOCs can be made very small while being able to perform complex 

tasks. The size does not impact the features of the chip. 

 Decreased power consumption: An SoC is optimized for low-power devices like 

cell-phones. Low power consumption results in higher battery capacity in cell-

phones. 

 Flexibility: SoCs are easily reprogrammable, which makes them flexible. They so 

allow the reuse of IPs. 

 Reliability: SoCs offer high circuit security and reduced design complexity. 

 Cost Efficient: Mainly due to fewer physical components and design reuse 

 Faster circuit operation 

SoCs pose some disadvantages as well: 

1. Time Consuming: The entire process from design to fabrication can take between 6 

months to 1 year. Hence, the time to market demand is very high. 

2. Design Verification requirements are very high and consume 70% of the total time. DV is 

tedious due to the increasing complexity of SoC design. 

3. Availability and compatibility of IPs play a very significant role, which can add to the time 

to market. 

4. Exponentially increasing fabrication costs. 

5. For low volume products, SoC may not be the best option. 

1.5.7 Applications 

The most common application of SOCs today is in mobile applications, including 

smartphones, smartwatches, tablets. Other applications include signal speech processing, PC 

interfaces, data communication. SoCs are being applied to personal computers as well due to the 

integration of communication modules like LTE and wireless networks onto the chip. 

The most popular SoCs in the market today are manufactured by Qualcomm 

Technologies for smartphones, smartwatches, and the upcoming 5G network compatibility. 

Other manufacturers include Intel Technology, Samsung Inc, Apple Inc., among many others. 
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1.6 Software Development process for embedded system  

Because machine code is the only language the hardware can directly execute, all other 

languages need some type of mechanism to generate the corresponding machine code. This 

mechanism usually includes one or some combination of preprocessing, translation, and 

interpretation. Depending on the language, these mechanisms exist on the programmer’s host 

system (typically a non-embedded development system, such as a PC), or the target system (the 

embedded system being developed). See Figure 1.17. 

 

Figure 1.17: Host and target system diagram 

Preprocessing is an optional step that occurs before either the translation or interpretation 

of source code, and whose functionality is commonly implemented by a preprocessor. The 

preprocessor’s role is to organize and restructure the source code to make translation or 

interpretation of this code easier. As an example, in languages like C and C++, it is a preprocessor 

that allows the use of named code fragments, such as macros, that simplify code development 

by allowing the use of the macro’s name in the code to replace fragments of code. The 

preprocessor then replaces the macro name with the contents of the macro during preprocessing. 

The preprocessor can exist as a separate entity, or can be integrated within the translation or 

interpretation unit. 

1.6.1 Compiler 

  Many languages convert source code, either directly or after having been preprocessed 

through use of a compiler, a program that generates a particular target language such as machine 
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code and Java byte code from the source language as depicted in Figure 1.18. A compiler 

typically “translates” all of the source code to some target code at one time. As is usually the 

case in embedded systems, compilers are located on the programmer’s host machine and generate 

target code for hardware platforms that differ from the platform the compiler is actually running 

on. These compilers are commonly referred to as cross-compilers. In the case of assembly 

language, the compiler is simply a specialized cross-compiler referred to as an assembler, and it 

always generates machine code. The language name plus the term “compiler, ”such as“ Java 

compiler and C compiler, commonly refer to other high-level language compilers. 

 

Figure 1.18 General functions of an Embedded software 

 

 High-level language compilers vary widely in terms of what is generated. Some generate 

machine code, while others generate other high-level code, which then requires what is produced 

to be run through at least one more compiler or interpreter, as discussed later in this section. 

Other compilers generate assembly code, which then must be run through an assembler.  After 

all the compilation on the programmer’s host machine is completed, the remaining target code 

file is commonly referred to as an object file, and can contain anything from machine code to 

Java byte code (discussed later in this section), depending on the programming language used. 

As shown in Figure 1.13, after linking this object file to any system libraries required, the object 

file, commonly referred to as an executable, is then ready to be transferred to the target embedded 

system’s memory. 
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Figure 1.19: C Example compilation/linking steps and object file results 
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Exercise Questions 

1. List the important considerations when selecting a processor for embedded system 

design. 

2. Categorize the different types of computing devices used to design embedded systems. 

3. List the merits and de-merits of Von Neumann processor architecture. 

4. Mention the key characteristics of RISC processors. 

5. Identify the scenarios that creates a bottleneck for pipelined instruction execution. 

6. Contrast superscalar and VLIW processor architectures with respect to compiler design.  

7. Outline the reasons for using CISC architecture based processors for desktop computers. 

8. Compare SoC processor and application specific integrated circuits. 

9. Mention the reason for the widespread use of Dynamic RAMs for main memory in spite 

of being slower than Static RAMs. 

10. Distinguish scratch pads and cache memory. 

11. Recall the two types of interconnect architectures used in SoC processors. 

12. Give examples of commercial embedded processors with RISC architectures. 

13. Illustrate the key aspects of Von-Neumann and Harvard architectures used in the design 

of computers. 

14. Explain with suitable examples, the process of instruction execution in CISC and RISC 

processors. 

15. Illustrate the basic architecture of a System on Chip processor and summarize the 

importance of each functional unit. 

16. Classify the types of on-chip memories used in SoC processors. 

17. Demonstrate with suitable examples that a superscalar processor can improve the 

efficiency of instruction level of parallelism. 

18. Examine the architecture of  VLIW processor model and give your opinion on how it 

leads to lower hardware complexity compared to superscalar model. 
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2.1 Basics of ATmega328P 

 

ATmega328P is one of the high performances AVR technology microcontroller with a 

large number of pins and features. It is a an 8-bit microcontroller based on RSIC architecture, 

which enhances its performance and power efficiency. Its power consumption is reduced by auto 

sleep mode and internal temperature sensor. This ATmega328P IC comes with internal 

protections and multiple programming methods, which helps the engineers to priorities this 

controller for different situations. The IC allows multiple modern era communications methods 

for other modules and microcontrollers itself, which is why the microcontroller ATmega328P 

usage has been increasing every day. 

General Features 

 ● High performance, low power AVR® 8-bit microcontroller 

 ●Advanced RISC architecture 

 ● 131 powerful instructions – most single clock cycle execution 

 ● 32  8 general purpose working registers  

  ● Fully static operation 

 ● Up to 16MIPS throughput at 16MHz 

 ● On-chip 2-cycle multiplier 

 ● High endurance non-volatile memory segments  

● 32K bytes of in-system self-programmable flash program memory  

● 1Kbytes EEPROM 

 ● 2Kbytes internal SRAM  

● Write/erase cycles: 10,000 flash/100,000 EEPROM  

● Optional boot code section with independent lock bits  

● In-system programming by on-chip boot program  

● True read-while-write operation 

 ● Programming lock for software security  
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Peripheral features  

● Two 8-bit Timer/Counters with separate prescaler and compare mode  

● One 16-bit Timer/Counter with separate prescaler, compare mode, and capture mode  

● Real time counter with separate oscillator  

● Six PWM channels  

● 8-channel 10-bit ADC in TQFP and QFN/MLF package 

 ● Temperature measurement  

● Programmable serial USART 

 ● Master/slave SPI serial interface  

● Byte-oriented 2-wire serial interface (Phillips I2 C compatible) 

 ● Programmable watchdog timer with separate on-chip oscillator 

 ● On-chip analog comparator 

 

Figure 2.1 Pin details of ATMEGA328 in DIP and TQFP Package 

 

2.2 Pin Description of ATMEGA328 

ATMEGA328 comes in different packages as illustrated in figure 2.1 with 32pins and 28 

pins. The functions of each pin of the controller is described in this section. 

2.2.1 Digital Input/Output Pins  



31 
 

This microcontroller has three digital ports (B, C, D) such as PORTB, PORTC, and PORTD. 

All these pins can be used as digital input/output. On top of that, each port can be used for other 

purposes. To use them as output/input or for any other function it should be defined first otherwise 

there won’t be any default function by all I/O pins.  

2.2.2 Interrupt Pins 

Most of the electrical functions required an interrupt system to operate like AC dimmer, etc. 

ATmega328P gives the support of 2 interrupts within the controller which can be used to get the 

attention of the CPU at any instant. Interrupt pins of ATmega328P are given below: 

 IN0 – GPIO4 

 IN1 – GPIO5 

2.2.3 UART Communication in ATmega328P  

Although there are multiple kinds of communication systems within the devices and modules 

but the most common one is USART. It is one of the simplest and easiest method for implement 

and understanding by most of the developers and systems. In this method, two wires used to send 

and receive the data. The USART pins of microcontroller ATmega328P are: 

 RX – GPIO2 

 TX – GPIO3 

 XCK – GPIO6 

The data can be sent by specified the sending rate within the controllers but it can also use 

the external clock pin to keep the data sync. 

2.2.4 SPI Communication in ATmega328P  

It one of the best serial communication systems in the case of multiple 

peripherals. SPI protocol allows multiple devices to use the same channel for communication. It 

consists of four wires, two for data sending and one for clock but the fourth wire is used to select 

the peripherals knows as a select slave. In the case of multiple peripherals number of the select 

slave, pins will be increased. The SPI pins of the microcontroller are: 

 MOSI – GPIO17 

 MISO – GPIO18 

 SS – GPIO16 

 SCK – GPIO19 

https://microcontrollerslab.com/introduction-to-spi-communication-protocol/
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2.2.5 I2C Communication Module 

Most of the peripherals come with the I2C communication method which is one way at a 

specific time. I2C protocol only uses one data wire and one clock wire. Data wire will transfer and 

receive the data and clock wire will send the clock pulse to keep the data sync. The wires on the 

microcontroller are: 

 SDA – GPIO27 

 SCL – GPIO28 

2.2.6 Timers Modules 

ATtiny328P has two internal timers. We can use these timers to make counters and to generate 

pulses. Both of these timers are dependent on an oscillator. Both timers can use the internal and 

external clock to operate, but they also have an internal pin which can be used to count according 

to the external pulses. All of these pins in microcontroller ATmega328P are given below: 

 T0 – GPIO6 

 T1 – GPIO11 

 TOSC1 – GPIO9 

 TOSC2 – GPIO10 

 ICP1 – GPIO 

ICP1 is an input capture pin which can be used to capture the external pulse at a specific 

interval of time. When an input pulse will occur on this pin then it will generate a timestamp which 

can tell when the external signal was received. 

2.2.7 System Clock 

The internal clock and external clock pulses can be divided by the Prescaler and their value 

can be received at an external pin. The external pin for divided clock pulses will be: 

 CLKO – GPIO14 

2.2.8 Comparator Module 

The microcontroller has internal comparator modules for analog signal. This module takes 

the input in inverting and non-inverting form which can be used further for any internal purpose 

https://microcontrollerslab.com/i2c-bus-communication-protocol-tutorial-applications/
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or it can also be used to generate the output signals. Comparator pins of the microcontroller are 

listed below: 

 AN0 (Positive) – GPIO12 

 AN1 (Negative) – GPIO13 

2.2.9 Capture/Compare/PWM Channels  

There are six capture/compare/PWM pins are used to generate the desired time pulse-based 

signal. It uses a Prescaler to divide the time pulse. All of these pins in ATmega328P are: 

 OC0B – GPIO11 

 OC0A – GPIO12 

 OC1A – GPIO15 

 OC1B – GPIO16 

 OC2A – GPIO17 

 OC2B – GPIO5 

2.2.10 Analog to Digital Converter Channels 

In ATmega328P there are 6 ADC channels that can be used to convert the analog signal to 

digital. The analog converter needs to be activated first by its power pin (AVCC). The ADC 

channels use power supply voltage as a reference to differentiate the different levels of the analog 

signal. The analog pins of the controller are: 

 ADC0 – GPIO23 

 ADC1 – GPIO24 

 ADC2 – GPIO25 

 ADC3 – GPIO26 

 ADC4 – GPIO27 

 ADC5 – GPIO28 

 AVCC – Pin20 
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Figure 2.2: Block diagram of ATMEGA328 Microcontroller 

2.3 ATMega328 I/O Register Configuration 

In this section, the registers related to port configuration and input/output pin control of 

AVR/Atmel controllers is discussed.  
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2.3.1 GPIO Registers 

The basic and important feature of any controllers is the number of gpio's available for 

connecting the peripherals. Atmega32 has 32-gpio's grouped into four 8-bit ports namely PORTA-

PORTD as shown. Many I/O pins have 2-3 functions. If a pin is used for other function then it 

may not be used as a gpio. Though the gpio pins are grouped into 8-bit ports they can still be 

configured and accessed individually. 

Each Port is associated with 3 registers for direction configuration(Input/Output), read and 

write operation as shown in Table 2.1. 

Table 2.1 Registers for GPIO configuration 

Register Description 

DDRx Used to configure the respective PORT as output/input 

PORTx Used to write the data to the Port pins 

PINx Used to Read the data from the port pins 

Note: Here 'x' could be A,B,C,D so on depending on the number of ports supported by the 

controller. 

DDRx: Data Direction Register 

Before reading or writing the data from the ports, their direction needs to be set. Unless the 

PORT is configured as output, the data from the registers will not go to controller pins.This register 

is used to configure the PORT pins as Input or Output. Writing 1's to DDRx will make the 

corresponding PORTx pins as output. Similarly writing 0's to DDRx will make the corresponding 

PORTx pins as Input. 

1.  DDRB = 0xff;  // Configure PORTB as Output. 

2.  DDRC = 0x00; // Configure PORTC as Input. 

3.  DDRD = 0x0F; // Configure lower nibble of PORTD as Output and higher nibble as Input  

4. DDRD = (1<<PD0) | (1<PD3) | (1<<PD6); // Configure PD0,PD3,PD6 as Output and others 

as Input 
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PORTx: 

This register is used to send the data to port pins. Writing 1's to PORTx will make the 

corresponding PORTx pins as HIGH. Similarly writing 0's to PORTx will make the 

corresponding PORTx pins as LOW. 

1. PORTB = 0xff;  // Make all PORTB pins HIGH. 

2.  PORTC = 0x00; // Make all PORTC pins LOW.. 

3.  PORTD = 0x0F; // Make lower nibble of PORTD as HIGH and higher nibble as LOW  

4.  PORTD = (1<<PD0) | (1<PD3) | (1<<PD6); // Make PD0,PD3,PD6 HIGH, 

PINx: PORT Input Register 

This register is used to read the data from the port pins. Before reading the data from the port 

pins, the ports needs to be configured as Inputs. 

1. DDRB  = 0x00; // Configure the PORTB as Input.  

2. value = PINB;  // Read the data from PORTB. 

3.  DDRB = 0x00; // Configure PORTB as Input 

4. DDRD = 0xff;  // Configure PORTD as Output 

5. PORTD = PINB; // Read the data from PORTB and send it to PORTD. 

2.3.1 Enabling Internal Pull Up Resistors 

Making the DDRx bits to 0 will configure the PORTx as Input. Now the corresponding bits in 

PORTx register can be used to enable/disable pull-up resistors associated with that pin. To enable 

pull-up resistor, set bit in PORTx to 1, and to disable set it to 0. 

1. DDRB  = 0x00;  // Configure the PORTB as Input.  

2. PORTB = 0xFF;  // Enable the internal Pull Up resistor of PORTB. 

3. DDRD = 0xff;  // Configure PORTD as Output 

4. PORTD = PINB; // Read the data from PORTB and send it to PORTD. 

2.4 Led Blinking Example 

After knowing how to configure the GPIO ports, its time to write a simple program to blink 

the Leds. Below points needs to be considered for this example. 

 Include the io.h file as it has the definitions for all the PORT registers. 
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 Include delay.h file to use the delay functions. 

 Configure the PORT as Output before writing any data to PORT pins. 

2.4.1 Program for GPIO Control in ATMEGA328 Controller 

 

#include <avr/io.h> 

#include <util/delay.h> 

int main() 

{ 

    DDRC = 0xff;           // Configure PORTC as output 

    while(1) 

    { 

        PORTC = 0xff;        // Turn ON all the Leds connected to PORTC 

        _delay_ms(100);      // Wait for some time 

        PORTC = 0x00;        // Turn OFF all the Leds connected to PORTC 

        _delay_ms(100);      // Wait for some time 

    } 

    return 0; 

} 

2.5 TIMER Registers in ATMEGA328 

The ATmega328P is equipped with two 8-bit timer/counters and one 16-bit counter. These 

Timer/Counters let us do the following tasks. 

 Turn on or turn off an external device at a programmed time. 

 Generate a precision output signal (period, duty cycle, frequency). For example, generate 

a complex digital waveform with varying pulse width to control the speed of a DC motor 

 Measure the characteristics (period, duty cycle, frequency) of an incoming digital signal 

 Count external events  
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2.5.1 Timer Terminologies 

Frequency : The number of times a particular event repeats within a 1-s period. The unit 

of frequency is Hertz, or cycles per second. For example, a sinusoidal signal with a 60-Hz 

frequency means that a full cycle of a sinusoid signal repeats itself 60 times each second, or every 

16.67 ms. For the digital waveform shown in figure 2.2, the frequency is 2 Hz. 

Period: The flip side of a frequency is a period. If an event occurs with a rate of 2 Hz, the 

period of that event is 500 ms. To find a period, given a frequency, or vice versa, we simply need 

to remember their inverse relationship, F = 1/T where F and T represent a frequency and the 

corresponding period, respectively. 

Duty Cycle: In many applications, periodic pulses are used as control signals. A good 

example is the use of a periodic pulse to control a servo motor. To control the direction and 

sometimes the speed of a motor, a periodic pulse signal with a changing duty cycle over time is 

used. 

Duty cycle is defined as the percentage of one period a signal is ON. The periodic pulse 

signal shown in the Figure is ON for 50% of the signal period and off for the rest of the period. 

Therefore, we call the signal in a periodic pulse signal with a 50% duty cycle. This special case is 

also called a square wave. 

 

Figure 2.3: A 50% Duty Cycle square wave signal 

2.5.2 Timer Modes 

The simplest AVR Timer mode of operation is the Normal mode. Waveform Generation 

Mode for Timer/Counter 1 (WGM1) bits 3:0 = 0. These bits are located in Timer/Counter Control 

Registers A/B (TCCR1A and TCCR1B). 

 

Figure 2.4: Timer/Counter Control Register A 
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Figure 2.5: Timer/Counter Control Register B 

 

 In this mode the Timer/Counter 1 Register (TCNT1H:TCNT1L) counts up (incrementing), 

and no counter clear is performed. The counter simply overruns when it passes its maximum 

16-bit value 0xFFFF and then restarts 0x0000. 

 There are no special cases to consider in the Normal mode, a new counter value can be 

written anytime. 

 

Figure 2.6: Timer/Counter 1 Register 

 

 In normal operation the Timer/Counter Overflow Flag (TOV1) bit located in the 

Timer/Counter1 Interrupt Flag Register (T1FR1) will be set in the same timer clock cycle as 

the Timer/Counter 1 Register (TCNT1H:TCNT1L) becomes zero. The TOV1 Flag in this case 

behaves like a 17th bit, except that it is only set, not cleared. 

 

Figure 2.7: Timer/Counter 1 Interrupt Flag Register 

 

2.5.3 Timer/Counter-1 Prescalar 

The clock input to Timer/Counter 1 (TCNT1) can be pre-scaled (divided down) by 5 preset 

values (1, 8, 64, 256, and 1024). 
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Table 2.2: Timer Clock Frequency Selection Bits Configuration 

 

Clock Select Counter/Timer 1 (CS1) bits 2:0 are located in Timer/Counter Control Registers B 

[yellow]. 

 

 

Figure 2.8: Timer-1 register configuration for normal mode 

2.6 Timer programming Example 

In this design example, we want to write a 250 msec delay routine assuming a system clock 

frequency of 16.000 MHz and a prescale divisor of 64. The first step is to discover if our 16-bit 

Timer/Counter 1 can generate a 250 ms delay as shown in figure 2.3. 

 



41 
 

Variable Definitions 

 tclk_T1  : period of clock input to Timer/Counter1 

 fclk : AVR system clock frequency 

 fTclk_I/O : AVR Timer clock input frequency to Timer/Counter Waveform Generator 

Calculating Maximum Delay (Normal Mode) 

The largest time delay possible is achieved by setting both TCNT1H and TCNT1L to zero, 

which results in the overflow flag TOV1 flag being set after 216 = 65,536 tics of the 

Timer/Counter1 clock. 

, given  then  

and therefore  

Clearly, Timer 1 can generate a delay of 250 msec. Our next step is to calculate the TCNT1 load 

value needed to generate a 250 ms delay. 

Steps to Calculate Timer Load Value (Normal Mode) 

1. Divide desired time delay by tclkT1 where  

tclkT1 = 64/fclkI/O = 64 / 16.000 MHz = 4 µsec/tic 

250msec / 4 µs/tic = 62,500 tics 

2. Subtract 65,536 – step 1 

65,536 – 62,500 = 3,036 

3. Convert step 2 to hexadecimal. 

3,036=0x0BDC 

     For our example, TCNT1H = 0x0B and TCNT1L = 0xDC 

4. Check Answer 

      3,036ticsx4µs/tic=12.14msec 

      262.14 msec – 250 msec = 12.14 msec √ 

Code Snippet for Timer Delay 

void T1Delay() 

{ 
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  while (!(TIFR & (1<  TIFR = 1< 

 

  TCNT1H = 0x0B; 

  TCNT1L = 0xDC; 

} 

 

Figure 2.9: Workflow of timer based delay generation 

2.7 Application Design with ATMEGA328  

A microcontroller requires power supply, crystal and a power-on reset circuit for its 

functionality. Figure 2.10 shows the basic circuit design with ATMEGA328 controller with LEDs 

connected to port-C for flashing. A 16MHz crystal is used to provide clock for the Atmega32 

microcontroller and 22pF capacitors are used to stabilize the operation of crystal. The 10µF 

capacitor and 10KΩ resistor is used to provide Power On Reset (POR) to the device. When the 

power is switched-ON, voltage across capacitor will be zero so the device resets (since reset is 

active low), then the capacitor charges to VCC and the reset will be disabled. 30th pin (AVCC) of 

Atmega32 should be connected to VCC if you are using PORTA, since it is the supply voltage pin 

for PORT A. 



43 
 

 

Figure 2.10: Circuit design with ATMEGA328 controller 

2.7.1 Program for flashing LEDS 

#ifndef F_CPU 

#define F_CPU 16000000UL // 16 MHz clock speed 

#endif 

 

#include <avr/io.h> 

#include <util/delay.h> 

 

int main(void) 

{ 

  DDRC = 0xFF; //Nakes PORTC as Output 

  while(1) //infinite loop 

  { 

    PORTC = 0xFF; //Turns ON All LEDs 

    _delay_ms(1000); //1 second delay 

    PORTC= 0x00; //Turns OFF All LEDs 

    _delay_ms(1000); //1 second delay 

  } 

} 
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Description of the code 

 DDRC = 0xFF makes all pins on PORTC as output pins 

 PORTC = 0xFF makes all pins on PORTC Logic High (5V) 

 PORTC = 0x00 makes all pins on PORTC Logic Low (0V) 

 _delay_ms(1000) provides 1000 milliseconds delay. 

 while(1) makes an infinite loop 

You have seen that PORT registers are used to write data to ports. Similarly to read data from 

ports PIN registers are used. It stand for Port Input Register (eg : PIND, PINB). You may like to 

set or reset individual pins of PORT or DDR registers or to know the status of a specific bit of PIN 

register. There registers are not bit addressable, so we can’t do it directly but we can do it through 

program. To make 3ed bit (PC2) of DDRC register low we can use DDRC &= 

~(1<<PC2). (1<<PC2) generates the binary number 00000100, which 

is complemented 11111011 and ANDed with DDRC register, which makes the 3ed bit 0. 

Similarly DDRC |= (1<<PC2) can be used set the 3ed bit (PC2) of DDRC register and to 

read  3ed bit (PC2) we can use PINC & (1<<PC2). Similarly we can set or reset each bit of DDR 

or PORT registers and able to know the logic state of a particular bit of PIN register. 

2.8 Arduino Development Board 

The Arduino Uno is an open-source microcontroller board that is based on the 

Microchip ATmega328P (for Arduino UNO R3) or Microchip ATmega4809 (for Arduino UNO 

WIFI R2) micro-controller by Atmel and was the first USB powered board developed by Arduino. 

Atmega 328P based Arduino UNO pinout and specifications are given in figure below. Both 

Atmega328 and ATmega4809 have a built-in bootloader, which makes it very convenient to flash 

the board with our code. Like all Arduino boards, we can program the software running on the 

board using a language derived from C and C++. The easiest development environment is 

the Arduino IDE. 
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Figure 2.11: Pin details of Arduino Uno Board 

Analog pins 

The Arduino UNO board has six analog input pins A0 through A5. These pins can read the 

signal from an analog sensor like the humidity sensor or temperature sensor and convert it into a 

digital value that can be read by the microprocessor. 

ICSP pin 

Mostly, ICSP (12) is an AVR, a tiny programming header for the Arduino consisting of 

MOSI, MISO, SCK, RESET, VCC, and GND. It is often referred to as an SPI (Serial Peripheral 

Interface), which could be considered as an "expansion" of the output. Actually, you are slaving 

the output device to the master of the SPI bus. 
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Digital I/O 

The Arduino UNO board has 14 digital I/O pins [numbered 0-13] of which 6 provide PWM 

(Pulse Width Modulation) output. These pins can be configured to work as input digital pins to 

read logic values (0 or 1) or as digital output pins to drive different modules like LEDs, relays, 

etc. The pins labeled “~” can be used to generate PWM. 

AREF 

AREF stands for Analog Reference. It is sometimes, used to set an external reference 

voltage (between 0 and 5 Volts) as the upper limit for the analog input pins. 

2.9 Temperature measurement with LM35 and Arduino Uno 

LM35 is a temperature sensor which can measure temperature in the range of -55°C to 

150°C.It is a 3-terminal device that provides analog voltage proportional to the temperature. 

Higher the temperature, higher is the output voltage. The output analog voltage can be converted 

to digital form using ADC so that a microcontroller can process it. 

 

Figure 2.12: Connecting LM35 with Arduino Board 

Program for measuring temperature using LM35 sensor 

const int sensor=A1; // Assigning analog pin A1 to variable 'sensor' 

float tempc;  //variable to store temperature in degree Celsius 
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float tempf;  //variable to store temperature in Fahreinheit  

float vout;  //temporary variable to hold sensor reading 

void setup() 

{ 

pinMode(sensor,INPUT); // Configuring pin A1 as input 

Serial.begin(9600); 

} 

void loop()  

{ 

vout=analogRead(sensor); 

vout=(vout*500)/1023; 

tempc=vout; // Storing value in Degree Celsius 

tempf=(vout*1.8)+32; // Converting to Fahrenheit  

Serial.print("in DegreeC="); 

Serial.print("\t"); 

Serial.print(tempc); 

Serial.println(); 

Serial.print("in Fahrenheit="); 

Serial.print("\t"); 

Serial.print(tempf); 

Serial.println(); 

delay(1000); //Delay of 1 second for ease of viewing  

} 
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Figure 2.13: Serial monitor screenshot showing temperature 

 

2.10 Humidity and Temperature measurement with DHT11 sensor 

The DHTxx sensors have four pins, VCC, GND, data pin and a not connected pin which 

has no usage. A pull-up resistor from 5K to 10K Ohms is required to keep the data line high and 

in order to enable the communication between the sensor and the Arduino Board. There are some 

versions of these sensors that come with a breakout boards with built-in pull-up resistor and they 

have just 3 pins. The DHTXX sensors are digital sensors and have their own single wire protocol 

used for transferring the data suing single line(data pin). This protocol requires precise timing and 

the timing diagrams for getting the data from the sensors can be found from the datasheets of the 

sensors. 

The DHT22 is the more expensive version which obviously has better specifications. Its 

temperature measuring range is from -40 to +125 degrees Celsius with +-0.5 degrees accuracy, 

while the DHT11 temperature range is from 0 to 50 degrees Celsius with +-2 degrees accuracy. 

Also the DHT22 sensor has better humidity measuring range, from 0 to 100% with 2-5% accuracy, 

while the DHT11 humidity range is from 20 to 80% with 5% accuracy.  

 

Figure 2.13 DHT11/12 sensor- pinout and internal view 
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Figure 2.14: Connecting DHTxx sensor with Arduino board 

 

2.10.1 Programming for DHTxx sensors 

First we need to included the DHT library which can be found from the Arduino official 

website, then define the pin number to which our sensor is connected and create a DHT object. In 

the setup section, we need to initiate the serial communication because we will use the serial 

monitor to print the results. Using the read22() function we will read the data from the sensor and 

put the values of the temperature and the humidity into the t and h variables. If you use the DHT11 

sensor you will need to you the read11() function. At the end, we will print the temperature and 

the humidity values on the serial monitor. 

Program for reading data from DHTxx sensors with Arduino board 

/* DHT11/ DHT22 Temperature and Humidity Sensor 

#include <dht.h> 

#define dataPin 2 // Defines pin number to which the sensor is connected 

dht DHT; // Creats a DHT object 

void setup() { 

Serial.begin(9600); 

} 

void loop() { 

int readData = DHT.read22(dataPin); // Reads the data from the DHT22 sensor 

float  t = DHT.temperature; // Gets the values of the temperature 

float  h = DHT.humidity; // Gets the values of the humidity 

// Printing the results on the serial monitor 
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Serial.print("Temperature = "); 

Serial.print(t); 

Serial.print(" *C "); 

Serial.print(" Humidity = "); 

Serial.print(h); 

Serial.println(" % "); 

delay(2000); // Delays 2 seconds, as the DHT22 sampling rate is 0.5Hz 

} 

Note: Install DHT11/12 library in Arduino IDE, before executing the code 

2.11 Serial Communication Protocols 

This section compares UART vs SPI vs I2C interfaces and mentions difference between 

UART, SPI and I2C in tabular format. It provides comparison between these interfaces based on 

various factors which include interface diagram, pin designations, data rate, distance, 

communication type, clock, hardware and software complexity, advantages, disadvanatages etc. 

 

2.12 UART Interface 

 
Figure 2.15: USART Interface 

Features of UART interface 

 UART supports lower data rate. 

 Receiver need to know baudrate of the transmitter before initiation of reception i.e. before 

communication to be established. 

 UART is simple protocol, it uses start bit (before data word), stop bits (one or two, after 

dataword), parity bit (even or odd) in its base format for data formatting. Parity bit helps 

in one bit error detection. 

 UART Packet = 1 start bit(low level), 8 data bits including parity bit, 1 or 2 stop bit(high 

level). 
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 Data is transmitted byte by byte. 

 UART generates clock internally and synchronizes it with data stream with the help of 

transition of start bit. 

 It is also referred as RS232 . 

 For long distance communication, 5V UART is converted to higher voltages viz. +12V for 

logic 0 and -12V for logic 1. 

 Figure 2.15 depicts UART interface between two devices. 

 

2.13 SPI Interface 

 

SPI stands for Serial Peripheral Interface and has four lines for communication namely MOSI, 

MISO,SCLK and slave select (SS).  The functions of the four lines are outlined below. 

 MOSI - Master Output Slave Input, it is used to transfer data from master device to 

slave device. 

 MISO - Master Input Slave Output, it is used to transfer data from slave device to 

master device. 

 SCLK - Serial Clock, it is clock output from master and used for synchronization. 

 SS - Slave Select, it is used by master device to select one slave out of multiple slaves. 

It inserts active low signal to select the particular slave device. 

 

 
Figure 2.16: SPI Interface 

As shown in the figure 2.16, one slave is connected with one master device. Clock is 

generated by master device for synchronization of data transfer. It is also possible to connected 

more than one slave device with single master for communication. SPI interface operates in either 
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half or full duplex mode. SPI is the short form of Serial Peripheral interface. The figure-2 depicts 

SPI interface between master and slave devices. 

2.14 I2C Interface 

I2C stands for "inter-IC bus". It is also used as I2C for simplicity. I2C is a low speed and 

two wire serial data connection bus used in IC (Integrated Circuit). It is used to run signals between 

ICs mounted on the same PCB (Printed Circuit Board). The figure 2.17 depicts I2C interface 

between master and slave devices.  

• It uses only two lines between multiple masters and multiple slaves viz. SDA (Serial Data) and 

SCL (Serial Clock). 

• I2C supports various data rates as per versions from 100 Kbps, 400 Kbps, 1 Mbps to 3.4 Mbps 

• It is synchronous communication like SPI and unlike UART. Hence there is common clock 

signal between masters and slaves. 

• It uses start and stop bits and ACK bit for every 8 bits of data transfer. 

 

 
Figure 2.17: I2C Interface 

2.15 Difference between UART, SPI and I2C 

Let us compare UART vs SPI vs I2C and summarize difference between UART, SPI and I2C.  
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Table 2.2 Comparison between UART, SPI and I2C. 

Features UART SPI I2C 

Full Form 

Universal Asynchronous 

Receiver/Transmitter Serial Peripheral Interface Inter-Integrated Circuit 

Pin names 

TxD: Transmit Data 

RxD: Receive Data 

SCLK: Serial Clock 

MOSI: Master Output, Slave 

Input 

MISO: Master Input, Slave 

Output 

SS: Slave Select 

SDA: Serial Data 

SCL: Serial Clock 

Data rate 

As this is is asynchronous 

communication, data rate 

between two devices 

wanting to communicate 

should be set to equal 

value. Maximum data rate 

supported is about 230 

Kbps to 460kbps. 

Maximum data rate limit is 

not specified in SPI interface. 

Usually supports about 10 

Mbps to 20 Mbps 

I2C supports 100 kbps, 

400 kbps, 3.4 Mbps. 

Some variants also 

supports 10 Kbps and 

1 Mbps. 

Distance Lower about 50 feet highest Higher 

Type  Asynchronous Synchronous Synchronous 

Number of 

masters 

One to one 

Communication only One One or more than One 
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Clock 

No Common Clock signal 

is used. Both the devices 

will use there independent 

clocks. 

There is one common serial 

clock signal between master 

and slave devices. 

There is common 

clock signal between 

multiple masters and 

multiple slaves. 

Hardware 

complexity lesser less more 

Protocol 

For 8 bits of data one start 

bit and one stop bit is 

used. 

Each company or 

manufacturers have got their 

own specific protocols to 

communicate with 

peripherals. Hence one needs 

to read datasheet to know 

read/write protocol for SPI 

communication to be 

established. For example we 

would like SPI 

communication between 

microcontroller and EPROM. 

Here one need to go through 

read/write operational 

diagram in the EPROM data 

sheet. 

It uses start and stop 

bits. It uses ACK bit 

for each 8 bits of data 

which indicates 

whether data has been 

received or not. Figure 

depicts the data 

communication 

protocol. 

 

Software 

addressing 

As this is one to one 

connection between two 

devices, addressing is not 

needed. 

Slave select lines are used to 

address any particular slave 

connected with the master. 

There will be 'n' slave select 

lines on master device for 'n' 

slaves. 

There will be multiple 

slaves and multiple 

masters and all masters 

can communicate with 

all the slaves. Upto 27 

slave devices can be 
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connected/addressed in 

the I2C interface 

circuit. 

Merits 

• It is simple 

communication and most 

popular which is available 

due to UART support in 

almost all the devices with 

9 pin connector. It is also 

referred as RS232 

interface. 

 •It is simple protocol and 

hence so not require 

processing overheads. 

 •Supports full duplex 

communication. 

 •Due to separate use of CS 

lines, same kind of multiple 

chips can be used in the 

circuit design. 

 •SPI uses push-pull and 

hence higher data rates and 

longer ranges are possible. 

 •SPI uses less power 

compare to I2C 

 •Due to open collector 

design, limited slew 

rates can be achieved. 

 •More than one 

masters can be used in 

the electronic circuit 

design. 

 •Needs fewer i.e. only 

2 wires for 

communication. 

 •I2C addressing is 

simple which does not 

require any CS lines 

used in SPI and it is 

easy to add extra 

devices on the bus. 

 •It uses open collector 

bus concept. Hence 

there is bus voltage 

flexibity on the 

interface bus. 

 •Uses flow control. 

De-merits 

• They are suitable for 

communication between 

only two devices. 

• It supports fixed data rate 

 • As number of slave 

increases, number of CS lines 

increases, this results in 

hardware complexity as 

 •Increases complexity 

of the circuit when 

number of slaves and 

masters increases. 

 •I2C interface is half 
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agreed upon between 

devices initially before 

communication otherwise 

data will be garbled. 

number of pins required will 

increase. 

 • To add a device in SPI 

requires one to add extra CS 

line and changes in software 

for particular device 

addressing is concerned. 

 •Master and slave 

relationship cannot be 

changed as usually done in 

I2C interface. 

 •No flow control available in 

SPI. 

duplex. 

 •Requires software 

stack to control the 

protocol and hence it 

needs some processing 

overheads on 

microcontroller/micro

processor. 

 

2.11 Arduino Portable Weather Station Design 

A weather station is a system that measures atmospheric parameters such as temperature, 

pressure, humidity, gas content in air, etc. Here is a design example that measures temperature, 

pressure and humidity and display the values in a graphical display device along with time stamp. 

 

 

Figure 2.18: Connecting RTC,GLCD and sensors with Arduino board 
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Exercise Questions 

1. List the registers associated with I/O pin configuration in ATMEGA328p micron roller. 

2. Compare and contrast compiler and cross compiler 

3. Identify two real time applications that require watch dog timers. 

4. Calculate the resolution of a 10-bit A/D converter, if Vref pin is kept at 5V and 2V.  

5. Identify the communication protocol used in real-time clock module DS1307. 

6. A microcontroller operates at 5V DC and uses PWM  to control the speed of a DC meter. 

Determine the required duty cycle of the PWM signal to provide an average voltage of 

1.25V to the DC motor.  

7. Identify a suitable communication protocol for an embedded system application that has to 

collect data 5 different sensors using minimum number of I/O pins. 

8. It is required to introduce delay in tens of seconds in a system. Which timer will you choose 

for this use case in ATMEGA328? 

9. Identify the right choice of embedded processor and its word size for designing a i) smart 

lighting system for home and ii) face recognition based authentication system.  

10. Design a circuit with ATMEGA328 controller, write a C program to measure temperature 

using LM35 sensor connected to portB and serially transmit the atmospheric temperature 

value in Centigrade at 9600 baudrate. 

11. Discuss about the registers involved in IO interfacing in ATMEGA328 microcontroller 

with examples. 

12. Design a circuit with ATMEGA328 microcontroller and develop a C program to control 

the speed and direction of two DC motors connected to portC. 

13. Design a real-time digital clock with a LCD module that displays current time and date in 

the following format: 

i) DD/MM/YY  in first row of the LCD 

14. ii) HH/MM/SS   in second row of the LCD 

15. Develop the system level model of a real-time data acquisition system that records 

atmospheric temperature, humidity, pressure with time stamp and stores the data in a SD 

card. 
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3.1 Introduction to ARM processors 

 

     ARM was formed in 1990 as Advanced RISC Machines Ltd., a joint venture 

of Apple Computer, Acorn Computer Group, and VLSI Technology. In 1991, ARM 

introduced the ARM6  processor  family,  and  VLSI became  the  initial licensee. 

Subsequently, additional companies, including Texas Instruments, NEC,  Sharp and ST 

Microelectronics, licensed the ARM processor designs, extending the  applications of 

ARM processors into mobile phones,  computer  hard  disks,  personal digital assistants 

(PDAs), home entertainment systems, and many other consumer products. The ARM 

microcontroller architecture come with a few different versions such as ARMv1, ARMv2 etc 

and each one has its own advantage and disadvantages. 

 

3.2 ARM Architecture Versions 

The evolution of features and enhancements to the    processors over time has led to 

successive versions of the ARM architecture. Note that architecture  version  numbers are 

independent from processor names. For example, the ARM7TDMI processor   is based on 

the ARMv4T architecture (the T is for Thumb® instruction mode support). 

 

 

Figure 3.1 : The Evolution of ARM Processor Architecture. 

 

The ARMv5E architecture was introduced with the ARM9E processor families, 

including the  ARM926E-S  and  ARM946E-S  processors.  This  architecture  added  

“Enhanced”  Digital  Signal    Processing (DSP) instructions for multimedia applications. 

With the arrival of the ARM11 processor family, the architecture was extended to the 

ARMv6. New features  in  this  architecture   included   memory system features and 

Single Instruction–Multiple Data (SIMD) instructions. Processors based on the ARMv6 
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architecture include the ARM1136J(F)-S, the ARM1156T2(F)-S, and the 

ARM1176JZ(F)-S 

Over the past several years, ARM extended its product portfolio by diversifying its 

CPU development, which resulted in the architecture version 7 or v7. In this version, 

the architecture design is divided into three profiles:  

 A-profile is designed for high-performance open application platforms. 

 R-profile is designed for high-end embedded systems in which real-time 

performance is needed. 

 M-profile is designed for deeply embedded microcontroller-type systems. 

The Cortex processor families are the first products developed on architecture v7, 

and the  Cortex-M3 processor is based on one profile of the v7 architecture, called 

ARM v7-M, an architecture specification  for microcontroller products. 

 

 

 

Figure 3.2: Instruction set Enhancement in ARM architectures. 

 

Historically (since ARM7TDMI), two different instruction sets are supported on 

the ARM processor:  the ARM instructions that are 32 bits and Thumb instructions that 

are 16 bits. During program execution, the processor can be dynamically switched 

between the ARM state and the Thumb state   to    use     either  one of the instruction 

sets. The Thumb instruction set provides only a subset of the ARM instructions,  but it 

can provide higher code density. It is    useful for    products     with   tight memory 

requirements. 

 

 In 2003, ARM announced the Thumb-2 instruction set, which is a new superset 
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of Thumb instructions that contains both 16-bit and 32-bit instructions. The extended 

instruction set in Thumb-2 is  a  superset of   the previous   16-bit  Thumb instruction set, 

with additional 16-bit instructions alongside 32-bit instructions. It allows more  complex 

operations to be carried out in the Thumb state, thus allowing higher efficiency by 

reducing the number of states switching between ARM state and Thumb state. Focused 

on small memory system devices such as microcontrollers and reducing the size of the 

processor, the Cortex-M3 supports only the Thumb-2  (and traditional Thumb) 

instruction set. Instead of using ARM instructions for some operations, as in traditional 

ARM processors, it uses the Thumb-2 instruction  set for all operations. As a result, 

the Cortex-M3 processor is not  backward compatible with traditional ARM processors. 

That is, you cannot run a  binary image  for ARM7  processors  on the Cortex-M3  

processor.  Nevertheless, the Cortex-M3 processor can execute almost all the 16-bit 

Thumb instructions, including all 16-bit Thumb instructions supported on ARM7 family 

processors, making application porting easy. 

 

With support for both 16-bit and 32-bit instructions in the Thumb-2 instruction 

set, there is no need to switch the processor between Thumb state (16-bit instructions) 

and ARM  state  (32-bit  instructions). For example,  in  ARM7  or  ARM9   family 

processors, you might need to switch to ARM state if you want  to carry out complex 

calculations or a large number of conditional operations  and  good performance is  

needed, whereas in the Cortex-M3 processor, you can mix 32-bit instructions with 16-

bit instructions  without switching state, getting high code density and high 

performance with no extra complexity. The Thumb-2 instruction set is a very important 

feature of the ARMv7 architecture. Compared with the instructions supported on ARM7  

family processors (ARMv4T architecture), the Cortex-M3 processor instruction set has a 

large number of new  features. For the  first  time,  hardware  divide  instruction is 

available on an  ARM  processor, and a number of  multiply  instructions  are   also 

available  on  the Cortex-M3 processor to improve data-crunching performance. The 

Cortex-M3 processor also supports unaligned data accesses, a feature previously 

available only in high-end processors. 

 

3.3 ARM Architecture 

The ARM architecture processor is an advanced reduced instruction set computing 

[RISC] machine and it’s a 32bit reduced instruction set computer (RISC) microcontroller. It was 

introduced by the Acron computer organization in 1987. This ARM is a family of microcontroller 

developed by makers like ST Microelectronics,Motorola, and so on. The ARM architecture 
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comes with totally different versions like ARMv1, ARMv2, etc., and, each one has its own 

advantage and disadvantages. 

 

Figure 3.3 ARM Architecture 

The ARM Architecture consists of  

 Arithmetic Logic Unit 

 Booth multiplier 

 Barrel shifter 

 Control unit 

 Register file 

The ARM processor conjointly has other components like the Program status register, 

which contains the processor flags (Z, S, V and C). The modes bits conjointly exist within the 

program standing register, in addition to  the interrupt and quick interrupt disable bits; Some 

special  registers:  Some  registers are  used  like  the  instruction, memory data read and write 

registers and memory address register. 

Priority encoder: The encoder  is  used  in  the  multiple  load  and  store instruction to point 

which register within the register file to be loaded or kept . 

Multiplexers: Several multiplexers are accustomed to the management operation  of  the 

processor buses. Because of the restricted project time, we tend to implement these components 

in a very behavioral model. Each component is described with an entity. Every entity has its own 
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architecture, which can be optimized for certain necessities depending on its application. This 

creates the design easier to construct and maintain. 

 

 

Figure 3.4 ARM Core Block Diagram 

Arithmetic Logic Unit (ALU) 

The ALU has two 32-bits inputs. The primary comes from the register file, whereas the 

other comes from the shifter. Status registers flags modified by the ALU outputs. The V-bit 

output goes to the V flag as well as the Count goes to the C flag. Whereas the foremost significant 

bit really  represents  the S  flag,  the  ALU  output  operation is  done by NORed 

to  get  the  Z  flag. The ALU has a 4-bit function bus that permits up to 16 opcode to be 

implemented. 

Booth Multiplier Factor 

The multiplier factor has 3 32-bit inputs and the inputs return from the register file. The 

multiplier output is barely  32-Least Significant  Bits of the merchandise. The entity 

representation of the multiplier factor is shown in the above block diagram. The multiplication 

starts  whenever  the  beginning 04 input goes active. Fin of  the output goes high when finishing. 

Booth Algorithm 

Booth algorithm is a noteworthy multiplication algorithmic rule for 2’s complement 

numbers. This treats positive and negative numbers uniformly. Moreover, the runs of 0’s or 1’s 
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within the multiplier factor are skipped over without any addition or subtraction being performed, 

thereby creating possible quicker multiplication.  The figure shows the 

simulation   results   for   the multiplier test bench. It’s clear that the multiplication finishes only 

in16 clock cycle. 

Barrel Shifter 

The barrel shifter features a 32-bit input to be shifted.  This input is coming back from 

the register file or it might be immediate data.  The shifter has different control inputs coming 

back from the instruction register. The Shift field within the instruction controls the operation of 

the barrel shifter.  This  field indicates the kind  of  shift  to  be  performed  (logical  left  or  right, 

arithmetic right or rotate right). The quantity by which the register ought to be shifted is contained 

in an immediate field within the instruction or it might be the lower 6 bits of a register within the 

register file. 

The shift_val input bus is 6-bits, permitting up to 32 bit shift. The shift type indicates the 

needed shift sort of  00, 01, 10, 11 are corresponding to shift left, shift right, an arithmetic shift 

right and rotate right, respectively. The barrel shifter is especially created with multiplexers. 

Control Unit 

For any microprocessor, control unit is the heart of the whole process and it is responsible 

for the system operation,so the control unit design is the most important part within the whole 

design. The control unit is sometimes a pure combinational circuit design. Here, the control unit 

is implemented by easy state machine. The processor timing is additionally included within the 

control unit. Signals from the control unit are connected to each component within the processor 

to supervise its operation. 

 3.4 ARM Core Register and Modes 

An ARM micrcontroller is a load store reducing instruction set computer architecture 

means the core cannot directly operate with the memory. The data operations must be done by 

the registers and the information is stored in the memory by an address. The  ARM cortex-M3 

consists of 37 register sets wherein 31 are general purpose registers and 6 are status registers. 

The ARM uses seven processing modes to run the user task. 

 USER Mode 

 FIQ Mode 

 IRQ Mode 

 SVC Mode 
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 UNDEFINED Mode 

 ABORT Mode 

 Monitor Mode 

 

Figure 3.5 ARM Processor Register Modes 

 USER Mode: The user mode is a normal mode, which has the least number of registers. 

It doesn’t have SPSR and has limited access to the CPSR. 

 FIQ and IRQ: The FIQ and IRQ are the two interrupt caused modes of the CPU. The 

FIQ is processing interrupt and IRQ is standard interrupt. The FIQ mode has additional 

five banked registers to provide more flexibility and high performance when critical 

interrupts are handled. 

 SVC Mode: The Supervisor mode is the software interrupt mode of the processor to start 

up or reset. 

 Undefined Mode: The Undefined mode traps when illegal instructions are executed. The 

ARM core consists of 32-bit data bus and faster data flow. 

 THUMB Mode: In THUMB mode 32-bit data is divided into 16-bits and increases the 

processing speed. 

 THUMB-2 Mode: In THUMB-2 mode the instructions can be  either 16-bit or 32-bit 

and it increases the performance of the ARM cortex –M3 microcontroller. The ARM 

cortex-m3 microcontroller uses only THUMB-2 instructions. 

Some of the registers are reserved in each mode for the specific use of the core. The 

reserved registers are 

 Stack Pointer (SP). 
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 Link Register (LR). 

 Program Counter (PC). 

 Current Program Status Register (CPSR). 

 Saved Program Status Register (SPSR). 

The reserved registers are used for specific functions. The SPSR and CPSR contain the 

status control bits which are used to store the temporary data. The SPSR and CPSR register have 

some properties that are defined operating modes, Interrupt enable or disable flags and ALU 

status flag. The ARM core operates in two states 32-bit state or THUMBS state. 

 

Figure 3.6 : A generic program status register (psr). 

The ARM core uses the cpsr to monitor and control internal operations. The cpsr is a dedicated 

32-bit register and resides in the register file. The cpsr is divided into four fields, each 8 bits 

wide: flags, status, extension, and control. In current designs the extension and status fields are 

reserved for future use. The control field contains the processor mode, state, and interrupt mask 

bits. The flags field contains the condition flags. 

• First 5 bits is for mode selection 

• The processor mode determines which registers are active and the access rights to the 

cpsr register itself. 

• Each processor mode is either privileged or nonprivileged: A privileged mode allows 

full read-write access to the cpsr. Conversely, a nonprivileged mode only allows read 

access to the control field in the cpsr but still allows read-write access to the condition 

flags. 

• There are seven processor modes in total: six privileged modes (abort, fast interrupt 

request, interrupt request, supervisor, system, and undefined) and one nonprivileged 

mode (user). 
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3.5 Instruction Pipelining 

The Process of fetching the next instruction while the current instruction is being 

executed is called as “pipelining”.  Pipelining is supported by the processor to increase the speed 

of program execution. Increases throughput. Several operations take place simultaneously, rather 

than serially in pipelining. The Pipeline has three stages fetch, decode and execute as shown in 

figure 3.7. 

 

Figure 3.7: 3-stage pipeline  

The three stages used in the pipeline are: 

(i) Fetch : In this stage the ARM processor fetches the instruction from the memory. 

(ii) Decode : In this stage recognizes the instruction that is to be executed. 

(iii) Execute 2 In this stage the processor processes the instruction and writes the result back to 

desired register. 

If these three stages of execution are overlapped, we will achieve higher speed of 

execution. Such pipeline exists in version 7 of ARM processor. Once the pipeline is filled, each 

instructions require s one cycle to complete execution. Below fig shows three staged pipelined 

instruction. 

In first cycle, the processor fetches instruction 1 from the memory In the second cycle 

the processor fetches instruction 2 from the memory and decodes instruction 1. In the third cycle 

the processor fetches instruction 3 from memory, decodes instruction 2 and executes instruction 

1. In the fourth cycle the processor fetches instruction 4, decodes instruction 3 and executes 

instruction 2. The pipeline thus executes an instruction in three cycles i.e. it delivers a throughput 

equal to one instruction per cycle. 

In case of a multi-cycle instruction as shown in Fig. 3.8, instruction 2 (i. e. STR of the 

store instruction) requires 4 clock cycles and hence the pipeline stalls for one clock pulse. The 

first instruction completes execution in the third clock pulse, while the second instruction instead 

of completing execution in fourth clock pulse completes the same in fifth clock pulse. Thereafter 

every instruction completes execution in one clock pulse as seen in this figure 3.8. 
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Figure 3.8: Pipelined execution of single cycle and multicycle Instructions 

The amount of work done at each stage can be reduced by increasing the number of stages 

in the pipeline. To improve the performance, the processor then can be operated at higher 

operating frequency. As more number of cycles are required to fill the pipeline, the system 

latency also increases. The data dependency between the stages can also be increased as the 

stages of pipeline increase. So the instructions need to be schedule while writing code to decrease 

data dependency. 

5-Stage Pipeline 

A five stage pipelined architecture consists of the following stages. 

 Stage 1 (Instruction Fetch) 

In this stage the CPU reads instructions from the address in the memory whose value 

is present in the program counter. 

 Stage 2 (Instruction Decode) 

In this stage, instruction is decoded and the register file is accessed to get the values 

from the registers used in the instruction. 

 Stage 3 (Instruction Execute) 

In this stage, ALU operations are performed. 
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 Stage 4 (Memory Access) 

In this stage, memory operands are read and written from/to the memory that is 

present in the instruction. 

 Stage 5 (Write Back) 

In this stage, computed/fetched value is written back to the register present in the 

instructions. 

 

Figure 3.9: Different states in 5-Stages Pipelined architecture 

 

Figure 3.10: Instruction execution in 5-Stages Pipelined architecture 

 

3.5.1 Performance of a pipelined processor 

  Consider a ‘k’ segment pipeline with clock cycle time as ‘Tp’. Let there be ‘n’ tasks 

to  be  completed in the pipelined processor. Now, the first instruction  is  going to   take ‘k’ 

cycles to come out of the pipeline but the other ‘n – 1’ instructions will take only ‘1’ cycle 
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each, i.e, a total of ‘n – 1’ cycles. So, time taken to execute ‘n’ instructions in a pipelined 

processor: 

                     ETpipeline = k + n – 1 cycles 

                              = (k + n – 1) Tp 

In the same case, for a non-pipelined processor, execution time of ‘n’ instructions will be: 

                    ETnon-pipeline = n * k * Tp 

So, speedup (S) of the pipelined processor over non-pipelined processor, when ‘n’ tasks are 

executed on the same processor is: 

    S = Performance of pipelined processor /  Performance of Non-pipelined processor 

As the performance of a processor is inversely proportional to the execution time, we have, 

   S = ETnon-pipeline / ETpipeline 

    => S =  [n * k * Tp] / [(k + n – 1) * Tp] 

       S = [n * k] / [k + n – 1] 

When the number of tasks ‘n’ are significantly larger than k, that is, n >> k 

    S = n * k / n 

    S = k 

where ‘k’ are the number of stages in the pipeline. 

 

3.5.2 Pipeline Hazards 

Pipeline hazards are situations that prevent the next instruction in the instruction stream 

from executing during its designated clock cycles. Any condition that causes a stall in the 

pipeline operations can be called a hazard. There are primarily three types of hazards: 

i. Data Hazards 

ii. Control Hazards or instruction Hazards 

iii. Structural Hazards. 

Data Hazards: 

A data hazard is any condition in which either the source or the destination operands of an 

instruction are not available at the time expected in the pipeline. As a result of which some 

operation has to be delayed and the pipeline stalls. Whenever there are two instructions one of 

which depends on the data obtained from the other. 

A=3+A 
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B=A*4 

For the above sequence, the second instruction needs the value of ‘A’ computed in the 

first instruction. Thus the second instruction is said to depend on the first. If the execution is 

done in a pipelined processor, it is highly likely that the interleaving of these two instructions 

can lead to incorrect results due to data dependency between the instructions. Thus the pipeline 

needs to be stalled as and when necessary to avoid errors. 

Structural Hazards 

This situation arises mainly when two instructions require a given hardware resource at 

the same time and hence for one of the instructions the pipeline needs to be stalled. The most 

common case is when memory is accessed at the same time by two instructions. One instruction 

may need to access the memory as part of the Execute or Write back phase while other instruction 

is being fetched. In this case if both the instructions and data reside in the same memory. Both 

the instructions can’t proceed together and one of them needs to be stalled till the other is done 

with the memory access part. Thus in general sufficient hardware resources are needed for 

avoiding structural hazards. 

Control hazards 

The instruction fetch unit of the CPU is responsible for providing a stream of instructions 

to the execution unit. The instructions fetched by the fetch unit are in consecutive memory 

locations and they are executed. However the problem arises when one of the instructions is a 

branching instruction to some other memory location. Thus all the instruction fetched in the 

pipeline from consecutive memory locations are invalid now and need to removed(also called 

flushing of the pipeline).This induces a stall till new instructions are again fetched from the 

memory address specified in the branch instruction. 

Thus the time lost as a result of this is called a branch penalty. Often dedicated hardware 

is incorporated in the fetch unit to identify branch instructions and compute branch addresses as 

soon as possible and reducing the resulting delay as a result. 

3.6 ARM and Thumb Mode of operation 

 

About ARM and Thumb Mode ARM and Thumb are two different instruction sets 

supported by ARM cores with a “T” in their name. Limited instruction memory limits the size 

of the program you can run on your processor, so you want to look for ways to reduce the size 

of your code. Compile-time optimizations are one obvious way to achieve this, when such 

optimizations can be found. Increasing the size of the instruction set is another way to do it, but 

this normally results in an increase in the size of individual instructions across the board, which 

will lead to a corresponding increase in the amount of storage needed to store the instructions, 
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which may not be offset by the reduction in the number of instructions needed to write the 

program. We want to somehow do the same amount of work, yet have the program take up less 

space. This is where the Thumb extension comes in. Thumb tries to get the best of both worlds 

by allowing a large (32-bit) instruction set while providing an alternate, small (16-bit) instruction 

set that can do the bulk of the work while taking up only half the space. They call this concept 

"code compression", the idea being that the small Thumb instructions are "decompressed" to 

their equivalent full-size 32-bit ARM instructions before they are run. 

For instance, ARM7 TDMI supports Thumb mode. ARM instructions are 32 bits wide, 

and Thumb instructions are 16 wide. Thumb mode allows for code to be smaller, and can 

potentially be faster if the target has slow memory. The illustration below shows an example of 

how the ADD instruction is converted from Thumb to ARM. Notice how the immediate operand, 

8 bits in Thumb, is padded with zeroes in its ARM equivalent. Note also that the add instruction 

takes an additional operand when decompressed. 

 

.  

Figure 3.11 Compression with  Thumb Instruction sets 

 

 

  A smaller instruction means you must have smaller opcodes, and fewer or smaller (or 

both) operands. Thumb ensures smaller operands in part by restricting most of its instructions to 

use 8 general purpose registers in place of the usual 15. A few instructions can access the full 

register set, such as MOV, to enable workarounds to some of the limitations of a smaller register 

set. The Thumb instruction set provides most of the functionality required in a typical 

application. Arithmetic and logical operations, load/store data movements, and conditional and 

unconditional branches are supported. Based upon the available instruction set, any code written 

in C could be executed successfully in Thumb state. However, device drivers and exception 

handlers must often be written at least partly in ARM state. 
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3.6.1 Register sets in Thumb mode 

When operating in the 16-bit Thumb state, the application encounters a slightly 

different set of registers. Figure 1 compares the programmer’s model in that state to the same 

model in the 32-bit ARM state. 

 

Figure 3.12 ARM vs. Thumb programmer’s models 

In the ARM state, 17 registers are visible in user mode. One additional register—a saved copy 

of Current Program Status Register (CPSR ) that’s called SPSR (Saved Program Status 

Register)—is for exception mode only. Notice that the 12 registers accessible in Thumb state are 

exactly the same physical 32-bit registers accessible in ARM state. Thus data can be passed 

between software running in the ARM state and software running in the Thumb state via registers 

R0 through R7. This is done frequently in actual applications. 

The biggest register difference involves the SP register. The Thumb state has unique 

stack mnemonics (PUSH, POP ) that don’t exist in the ARM state. These instructions assume 

the existence of a stack pointer, for which R13 is used. They translate into load and store 

instructions in the ARM state. 

The CPSR register holds the processor mode (user or exception flag), interrupt mask bits, 

condition codes, and Thumb status bit. The Thumb status bit (T ) indicates the processor’s 

current state: 0 for ARM state (default) or 1 for Thumb. Although other bits in the CPSR may be 
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modified in software, it’s dangerous to write to T directly; the results of an improper state change 

are unpredictable. 

The ARM chip contains a special state bit that tells the CPU whether to expect a 

compressed Thumb instruction or a standard ARM instruction. This bit is toggled with its own 

instruction, BX, which must be inserted into the code every time a programmer or compiler 

wishes to switch between Thumb mode and Standard ARM mode. An obvious result of this is 

that there is some overhead to switching between modes, thus it is probably not a good idea to 

switch to Thumb unless it will save you more than two instructions of equivalent ARM code. 

 

3.7 Analog to Digital Converters 

Analogue-to-Digital Converters, (ADCs) allow micro-processor controlled circuits, 

Arduinos, Raspberry Pi, and other such digital logic circuits to communicate with the real world. 

In the real world, analogue signals have continuously changing values which come from various 

sources and sensors which can measure sound, light, temperature or movement, and many digital 

systems interact with their environment by measuring the analogue signals from such 

transducers. 

 

Figure 3.13: Schematic diagram of A/D converter 

 

 The resolution of the ADC is the number of bits it uses to digitize the input samples.  

 For an n bit ADC the number of discrete digital levels that can be produced is 2n.  

 Thus, a 12 bit digitizer can resolve 212 or 4096 levels. The least significant bit (lsb) 

represents the smallest interval that can be detected and in the case of a 12 bit digitizer is 

1/4096 or 2.4 x 10-4.  

 To convert the lsb into a voltage we take the input range of the digitizer and divide by 

two raised to the resolution of the digitizer.  

 Table 1 shows the lsb for a one Volt (±500 mV) input range for digitizers with resolutions 

of 8 to 16 bits. 
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Table 3.1 Resolution in ADC for different bit-size 

 

 

3.8 D/A Converter 

A Digital to Analog Converter (DAC) converts a digital input signal into an analog 

output signal. The digital signal is represented with a binary code, which is a combination of 

bits 0 and 1. This chapter deals with Digital to Analog Converters in detail. The block 

diagram of DAC is shown in the following figure. A Digital to Analog Converter (DAC) 

consists of a number of binary inputs and a single output. In general, the number of binary 

inputs of a DAC will be a power of two. 

 

 

Figure 3.14: Schematic diagram of D/A converter 
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3.9 Sensors and Actuators 

 

Sensor is a device used for the conversion of physical events or characteristics into the 

electrical signals. This is a hardware device that takes the input from environment and gives to 

the system by converting it. For example, a thermometer takes the temperature as physical 

characteristic and then converts it into electrical signals for the system. 

 

 

Figure 3.15 Function of a sensor 

 

Actuator is a device that converts the electrical signals into the physical events or 

characteristics. It takes the input from the system and gives output to the environment. 

For example, motors and heaters are some of the commonly used actuators. 

 

 

Figure 3.16 Function of a actuator 

 

Table 3.2 Difference between Sensor and Actuator 

Sensor Actuator 

It converts physical characteristics into 

electrical signals. 

It converts electrical signals into physical 

characteristics. 

It takes input from environment. 

It takes input from output conditioning 

unit of system. 

It gives output to input conditioning unit of 

system. It gives output to environment. 
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Sensor Actuator 

Sensor generated electrical signals. Actuator generates heat or motion. 

It is placed at input port of the system. It is placed at output port of the system. 

It is used to measure the physical quantity. 

It is used to measure the continuous and 

discrete process parameters. 

It gives information to the system about 

environment. It accepts command to perform a function. 

Example: Photo-voltaic cell which converts 

light energy into electrical energy. 

Example: Stepper motor where electrical 

energy drives the motor. 

 

3.10 Case study- Digital Clock Design 

Alarm Clock, Timer and Stopwatch are common time-keeping features. These functions 

are so frequently used that it is difficult to imagine modern life without a time-keeping 

application nowadays. Whether it is a scheduled wake up alarm, a stopwatch to track the time 

one has jogged or a timer and alarm to schedule office tasks, time-keeping is part and parcel of 

day-to-day life. This is an Arduino project demonstrating a complete time-keeping application. 

The project is a real-time clock and allows setting alarms, timers and running stopwatch.  

 

Figure 3.17 Components of Digital clock 
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It also displays real-time weather conditions with temperature and humidity indications 

as add-ons. The project has utilized RTC DS1307 for time-keeping and DHT11 sensor for 

fetching weather information. It is built on Arduino UNO and RTC used is internally powered 

through a button cell, so the project keeps track of real time and perform user-defined functions 

irrespective of the continuity of power supply to the circuit. The time and date, temperature and 

humidity values are displayed on a 16X2 LCD which also provides human interface to set alarm, 

timer and stopwatch. The users can feed inputs through a 4-switch keypad with switches for the 

following functions – Mode Selection, ENTER, Increment and SAVE buttons. A buzzer is 

connected to the Arduino board for realizing alarm and timer alerts. 

  

The project runs under four modes of operations:  

  

1) Default Mode: By default, the project is set to display time, date, temperature and humidity 

information on the 16X2 LCD screen. 

  

2) Alarm Mode: Here, user can set an alarm. The user enters this mode by pressing Mode 

selection button once and pressing the ENTER Button thereafter. He can first increase “Hours” 

value by pressing Increment button and skip to increase “Minutes” value by pressing the ENTER 

button again. After setting “Hours” and “Minutes” value the user can invoke alarm by pressing 

the SAVE button. To exit the alarm mode, Increment and mode selection buttons have to be 

pressed together. 

  

3) Timer Mode: A timer setting mode can be entered by pressing the Mode selection button twice 

and pressing the ENTER button thereafter. The process for setting and saving time for timer is 

same as in alarm mode except that “Seconds” value can also be set in this mode. The user can 

exit the timer mode after setting time by just pressing the mode selection button once again. 

  

4) Stopwatch Mode: To enter stopwatch mode, pressing mode selection button thrice and 

pressing the ENTER button thereafter works. Here pressing the SAVE button starts the 

stopwatch, pressing increment button pauses the stopwatch and pressing ENTER button again 

resets the stop watch. To exit the stopwatch mode, ENTER and Mode Selection buttons have to 

be pressed together. 

 

The major blocks of the circuit are as follow 

  

1) Power Supply Circuit 

2) RTC DS1307 Module 

3) DHT11 Temperature and Humidity sensor 
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4) LCD Display 

5) 4-switch keypad 

6) Buzzer 

7) Microcontroller Board 

 

1) Power Supply – The entire circuit runs on a 5V DC supply. A 12V battery is used to source 

power to the circuit. The 12V supply is stepped down to 5V by a 7805 voltage regulator. The pin 

1 of 7805 receives 12V supply from anode and pin 2 is grounded. The output 5V is generated at 

pin 3 of the regulator. An LED is also connected in parallel to the output as a visual indicator of 

power supply. 

  

2) RTC DS1307 Interfacing – The RTC DS1307 has a built in button cell that allows keeping 

track of real-time irrespective of the power supply. For interfacing with the microcontroller  

board, SDA and SCL pins of the RTC are connected to the SDA and SCL pins of controller. 

  

3) DHT11 Temperature and Humidity Sensor – This is a digital sensor with inbuilt capacitive 

humidity sensor and Thermistor. It relays a real-time temperature and humidity reading every 2 

seconds as a digital output. The pin 1 and 4 of DHT11 are VCC and Ground respectively.\ 

  

4) LCD Display – The 16X2 LCD display is connected to the microcontroller.  

 

5) 4-switch Keypad – The keypad here is a set of four push-to-on switches which are connected 

to 10, 9, 8 and 7 pins of the Arduino UNO through 1K ohm pull-up resistors. The switches 

connected at 10, 9, 8 and 7 pins works as SAVE, Increment, Enter and Mode selection buttons 

respectively. In the circuit diagram, SAVE, Increment, Enter and Mode selection buttons are 

designated by FIRST, SECOND, THIRD and MODE labels. 

  

6) Buzzer – The buzzer is connected to pin 6 of the Arduino board. A common emitter NPN 

BC547 transistor circuit is used to relay signal from Arduino pin to the buzzer. 

 

3.11 Internet of Things 

IoT (Internet of Things) is an advanced automation and analytics system which exploits 

networking, sensing, big data, and artificial intelligence technology to deliver complete systems 

for a product or service. These systems allow greater transparency, control, and performance 

when applied to any industry or system. IoT systems have applications across industries through 

their unique flexibility and ability to be suitable in any environment. They enhance data 

collection, automation, operations, and much more through smart devices and powerful 
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enabling technology. IoT systems allow users to achieve deeper automation, analysis, and integration 

within a system. They improve the reach of these areas and their accuracy. IoT utilizes existing and 

emerging technology for sensing, networking, and robotics. 

IoT exploits recent advances in software, falling hardware prices, and modern attitudes 

towards technology. Its new and advanced elements bring major changes in the delivery of 

products, goods, and services; and the social, economic, and political impact of those changes. 

IoT − Key Features 

The most important features of IoT include artificial intelligence, connectivity, sensors, active 

engagement, and small device use. A brief review of these features is given below − 

 AI − IoT essentially makes virtually anything “smart”, meaning it enhances every aspect 

of life with the power of data collection, artificial intelligence algorithms, and networks. 

This can mean something as simple as enhancing your refrigerator and cabinets to detect 

when milk and your favorite cereal run low, and to then place an order with your 

preferred grocer. 

 Connectivity − New enabling technologies for networking, and specifically IoT 

networking, mean networks are no longer exclusively tied to major providers. Networks 

can exist on a much smaller and cheaper scale while still being practical. IoT creates 

these small networks between its system devices. 

 Sensors − IoT loses its distinction without sensors. They act as defining instruments 

which transform IoT from a standard passive network of devices into an active system 

capable of real-world integration. 

 Active Engagement − Much of today's interaction with connected technology happens 

through passive engagement. IoT introduces a new paradigm for active content, product, 

or service engagement. 

 Small Devices − Devices, as predicted, have become smaller, cheaper, and more 

powerful over time. IoT exploits purpose-built small devices to deliver its precision, 

scalability, and versatility. 

IoT − Sensors 

The most important hardware in IoT might be its sensors. These devices consist of energy 

modules, power management modules, RF modules, and sensing modules. RF modules manage 

communications through their signal processing, WiFi, ZigBee, Bluetooth, radio transceiver, 

duplexer, and BAW. 
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The sensing module manages sensing through assorted active and passive measurement devices. 

Here is a list of some of the measurement devices used in IoT. 

Table 3.3 Sensing Devices for IoT 

1. accelerometers 7. temperature sensors 

2. magnetometers 8. proximity sensors 

3. gyroscopes 9. image sensors 

4. acoustic sensors 10. light sensors 

5. pressure sensors 11. RFID sensors 

6. humidity sensors 12. micro flow sensors 

Wearable Electronics 

Wearable electronic devices are small devices worn on the head, neck, arms, torso, and 

feet. Smartwatches not only help us stay connected, but as a part of an IoT system, they allow 

access needed for improved productivity. 

Current smart wearable devices include − 
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 Head − Helmets, glasses 

 Neck − Jewelry, collars 

 Arm − Watches, wristbands, rings 

 Torso − Clothing, backpacks 

 Feet − Socks, shoes 

Smart glasses help us enjoy more of the media and services we value, and when part of 

an IoT system, they allow a new approach to productivity. 

Standard Devices 

The desktop, tablet, and cellphone remain integral parts of IoT as the command center 

and remotes. 

 The desktop provides the user with the highest level of control over the system and its 

settings. 

 The tablet provides access to the key features of the system in a way resembling the 

desktop, and also acts as a remote. 

 The cellphone allows some essential settings modification and also provides remote 

functionality. 

Other key connected devices include standard network devices like routers and switches. 

IoT Software 

IoT software addresses its key areas of networking and action through platforms, 

embedded systems, partner systems, and middleware. These individual and master applications 

are responsible for data collection, device integration, real-time analytics, and application and 

process extension within the IoT network. They exploit integration with critical business 

systems (e.g., ordering systems, robotics, scheduling, and more) in the execution of related 

tasks. 

Data Collection 

This software manages sensing, measurements, light data filtering, light data security, 

and aggregation of data. It uses certain protocols to aid sensors in connecting with real-time, 

machine-to-machine networks. Then it collects data from multiple devices and distributes it in 

accordance with settings. It also works in reverse by distributing data over devices. The system 

eventually transmits all collected data to a central server. 
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Device Integration 

Software supporting integration binds (dependent relationships) all system devices to 

create the body of the IoT system. It ensures the necessary cooperation and stable networking 

between devices. These applications are the defining software technology of the IoT network 

because without them, it is not an IoT system. They manage the various applications, protocols, 

and limitations of each device to allow communication. 

Real-Time Analytics 

These applications take data or input from various devices and convert it into viable 

actions or clear patterns for human analysis. They analyze information based on various settings 

and designs in order to perform automation-related tasks or provide the data required by 

industry. 

Application and Process Extension 

These applications extend the reach of existing systems and software to allow a wider, 

more effective system. They integrate predefined devices for specific purposes such as allowing 

certain mobile devices or engineering instruments access. It supports improved productivity and 

more accurate data collection. 

IoT primarily exploits standard protocols and networking technologies. However, the 

major enabling technologies and protocols of IoT are RFID, NFC, low-energy Bluetooth, low-

energy wireless, low-energy radio protocols, LTE-A, and WiFi-Direct. These technologies 

support the specific networking functionality needed in an IoT system in contrast to a standard 

uniform network of common systems. 

 

NFC and RFID 

RFID (radio-frequency identification) and NFC (near-field communication) provide 

simple, lowenergy, and versatile options for identity and access tokens, connection 

bootstrapping, and payments. 

 RFID technology employs 2-way radio transmitter-receivers to identify and track tags 

associated with objects. 

 NFC consists of communication protocols for electronic devices, typically a mobile 

device and a standard device. 
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Low-Energy Bluetooth 

This technology supports the low-power, long-use need of IoT function while exploiting 

a standard technology with native support across systems. 

Low-Energy Wireless 

This technology replaces the most power hungry aspect of an IoT system. Though 

sensors and other elements can power down over long periods, communication links (i.e., 

wireless) must remain in listening mode. Low-energy wireless not only reduces consumption, 

but also extends the life of the device through less use. 

Radio Protocols 

ZigBee, Z-Wave, and Thread are radio protocols for creating low-rate private area 

networks. These technologies are low-power, but offer high throughput unlike many similar 

options. This increases the power of small local device networks without the typical costs. 

LTE-A 

LTE-A, or LTE Advanced, delivers an important upgrade to LTE technology by 

increasing not only its coverage, but also reducing its latency and raising its throughput. It gives 

IoT a tremendous power through expanding its range, with its most significant applications 

being vehicle, UAV, and similar communication. 

WiFi-Direct 

WiFi-Direct eliminates the need for an access point. It allows P2P (peer-to-peer) 

connections with the speed of WiFi, but with lower latency. WiFi-Direct eliminates an element 

of a network that often bogs it down, and it does not compromise on speed or throughput. 

 

3.11.1 Three Layer (Tier) IoT Architecture 

While there are myriad bits that build a complete end-to-end IoT architecture, this 

architecture simplifies it down to three fundamental building blocks. 

1. Perception layer – Sensors, actuators and edge devices that interact with the environment 

2. Network Layer – Discovers, connects and translates devices over a network and in 

coordination with the application layer 
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3. Application Layer – Data processing and storage with specialized services and 

functionality for users 

 

Devices make up a physical or perceptual IoT layer and typically include sensors, 

actuators and other smart devices. One might call these the “Things” in the Internet of Things. 

Devices, in turn, interface and communicate to the cloud via wire or localized Radio Frequency 

(RF) networks. This is typically done through gateways. Oftentimes IoT devices are said to be 

at the “edge” of the IoT network and are referred to as “edge nodes”.  

When selecting a device, it is important to consider requirements for specific I/O 

protocols and potential latency, wired or RF interfaces, power, ruggedness and the device’s 

overall sensitivity. It is critical to determine how much device flexibility your architecture should 

have. 

Many newer devices are IoT ready right out of the box (e.g. are sold with low power 

bluetooth or are Ethernet enabled). However, most sensors, actuators and legacy devices still 

interface via conventional “pre-IoT” methods such as analog or serial connections. It is common 

practice to connect one or more of these conventional devices to microcontrollers, systems on 

modules (SOMs) or single-board computers (SBCs) with the necessary peripherals (e.g. 

Arduino, NetBurner, or Raspberry Pi). At a minimum, such collectors provide network 
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connectivity between the edge nodes and a master gateway. In some instances they may be 

capable of being configured as a gateway as well. 

IoT Gateways are an important middleman element that serves as the messenger and 

translator between the cloud and clusters of smart devices. They are physical devices or software 

programs that typically run from the field in close proximity to the edge sensors and other 

devices. Large IoT systems might use a multitude of gateways to serve high volumes of edge 

nodes. They can provide a range of functionality, but most importantly they normalize, connect 

and transfer data between the physical device layer and the cloud. In fact, all data moving 

between the cloud and the physical device layer goes through a gateway. IoT gateways are 

sometimes called “intelligent gateways” or “control tiers”. [4] 

Today, gateways also support additional computing and peripheral functionality such as 

telemetry, multiple protocol translation, artificial intelligence, pre-processing and filtering 

massive raw sensor data sets, provisioning and device management. It is becoming common 

practice to implement data encryption and security monitoring on the intelligent gateway so as 

to prevent malicious man-in-the-middle attacks against otherwise vulnerable IoT systems. 

NetBurner devices can be used as robust IoT Gateways, as well as IoT Device Collectors, as 

mentioned above. 

Certain gateways offer an operating system that is specialized for use in embedded and 

IoT systems along with optimized low-level support for different hardware interfaces, such as 

NetBurner’s SOMs with our custom Real Time Operating System (RTOS) and interface 

libraries. Managing memory, I/O, timing and interface is not a trivial task. According to Google 

Cloud, “Generally these abstractions are not easy to use directly, and frequently the OS does not 

provide abstractions for the wide range of sensor and actuator modules you might encounter in 

building IoT solutions.”[5] Libraries are typically available based on standard protocols. 

Oftentimes, the most optimized libraries will be part of commercially available development kits 

and SDKs (as is the case with NetBurner for a multitude of protocols and hardware types). 

The Cloud is the application layer. It communicates with the gateway, typically over 

wired or cellular internet. The “Cloud” might be anything from services like AWS or Google 

Cloud, server farms, or even a company’s on-premises remote server. It provides powerful 

servers and databases that enable robust IoT applications and integrate services such as data 

storage, big data processing, filtering, analytics, 3rd party APIs, business logic, alerts, monitoring 

and user interfaces. In a Three Layer IoT Architecture, the “Cloud” is also used to control, 

configure, and trigger events at the gateway, and ultimately the edge devices. 

https://whatis.techtarget.com/definition/IoT-gateway
https://en.wikipedia.org/wiki/Man-in-the-middle_attack
https://cloud.google.com/solutions/iot-overview
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IoT − Advantages 

The advantages of IoT span across every area of lifestyle and business. Here is a list of some of 

the advantages that IoT has to offer − 

 Improved Customer Engagement − Current analytics suffer from blind-spots and 

significant flaws in accuracy; and as noted, engagement remains passive. IoT completely 

transforms this to achieve richer and more effective engagement with audiences. 

 Technology Optimization − The same technologies and data which improve the 

customer experience also improve device use, and aid in more potent improvements to 

technology. IoT unlocks a world of critical functional and field data. 

 Reduced Waste − IoT makes areas of improvement clear. Current analytics give us 

superficial insight, but IoT provides real-world information leading to more effective 

management of resources. 

 Enhanced Data Collection − Modern data collection suffers from its limitations and its 

design for passive use. IoT breaks it out of those spaces, and places it exactly where 

humans really want to go to analyze our world. It allows an accurate picture of 

everything. 

IoT − Disadvantages 

Though IoT delivers an impressive set of benefits, it also presents a significant set of challenges. 

Here is a list of some its major issues − 

 Security − IoT creates an ecosystem of constantly connected devices communicating 

over networks. The system offers little control despite any security measures. This 

leaves users exposed to various kinds of attackers. 

 Privacy − The sophistication of IoT provides substantial personal data in extreme detail 

without the user's active participation. 

 Complexity − Some find IoT systems complicated in terms of design, deployment, and 

maintenance given their use of multiple technologies and a large set of new enabling 

technologies. 

 Flexibility − Many are concerned about the flexibility of an IoT system to integrate 

easily with another. They worry about finding themselves with several conflicting or 

locked systems. 

 



88 
 

 Compliance − IoT, like any other technology in the realm of business, must comply with 

regulations. Its complexity makes the issue of compliance seem incredibly challenging 

when many consider standard software compliance a battle 

The hardware utilized in IoT systems includes devices for a remote dashboard, devices for 

control, servers, a routing or bridge device, and sensors. These devices manage key tasks and 

functions such as system activation, action specifications, security, communication, and 

detection to support-specific goals and actions. 

TEXT / REFERENCE BOOKS 

 1. Joseph Yiu, “The Definitive Guide to the ARM Cortex-M3”, Newnes, 2nd Edition, 2009. 

2. Mark Fisher, “ARM Cortex M4 Cookbook, Packt Publishing, 2016. 

 3. Lyla B. Das, “Architecture, Programming and Interfacing of Low-power Processors ARM 7, 

Cortex-M”, Cengage, 1 st Edition, 2017. 

4. Steve Furber, "ARM System-on-Chip Architecture” Pearson, 2nd Edition, 2015 

 

Exercise Questions 

1. List the features of A, R and M profile-based ARM processors. 

2. Identify the any four target applications of ARM cortex-M processor family. 

3. Identify the sensors and actuators required for a smart home system. 

4. Determine the maximum resolution of A/D converter available in classic ARM-7 

processors without pre-scaling. 

5. Identify the key communication protocols suitable for Internet of Things. 

6. List any four applications of D/A converters.  

7. In which mode, do you program the ARM processor, for an application in which cost of 

memory is much more critical than the execution speed? 

8. Illustrate the basic architecture of a classic ARM processer and outline its key features. 

9. Consider an instruction pipeline with four stages with the stage delays 5 nsec, 6 nsec, 11 

nsec, and 8 nsec respectively. The delay of an inter-stage register stage of the pipeline is 

1 nsec. What is the approximate speedup of the pipeline in the steady state under ideal 

conditions as compared to the corresponding non-pipelined implementation? 

10. Explain the Thumb programmer model of ARM processor and its applications. 

11. Articulate the 5-layer model of Internet of Things architecture. 

12. Develop a system model using ARM processor for seamless real-time vehicle tracking 

system. Outline the key hardwares required for the system. 
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4.1 GSM MODULE INTERFACING WITH LPC2148 

 GSM (Global System for Mobile Communications) is the technology that underpins 

most of the world's mobile phone networks. 

 GSM is an open, digital cellular technology used for transmitting mobile voice and data 

services. 

 GSM operates in the 900MHz and 1.8GHz bands GSM supports data transfer speeds 

of up to 9.6 kbps, allowing the transmission of basic data services such as SMS. 

 The SIM300 module is a Triband GSM/GPRS solution in a compact plug in module 

featuring an industry-standard interface 

4.1.1 Features of GSM MODEM 

 Single supply voltage 3.2v-4.5v 

 Typical power consumption in SLEEP Mode: 2.5mA. 

 SIM300 tri-band 

 MT,MO,CB, text and PDU mode, SMS storage: SIM card 

 Supported SIM Card :1.8V,3V 

 

Figure 4.1: GSM modules 

 GSM/GPRS module is used to establish communication between a computer and a 

GSM-GPRS system. 

 Global System for Mobile communication (GSM) is an architecture used for mobile 

communication in most of the countries. 

 Global Packet Radio Service (GPRS) is an extension of GSM that enables higher data 

transmission rate 
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 SIM7600EI is a complete multi-band LTE/EDGE/GPRS/GSM module solution in LCC 

type which supports LTE CAT1 up to 10Mbps for downlink and 5Mbps for uplink data 

transfer. 

 

Figure 4.2: GSM Module functional blocks 

4.1.2 GSM Mobile Vs GSM Module 

 A GSM mobile is a complete system in itself with embedded processors that are 

dedicated to provide an interface between the user and the mobile network. 

 The AT commands are served between the processors of the mobile termination and 

the terminal equipment. 

 The mobile handset can also be equipped with a USB    interface to connect with a 

computer, but it may or may not support AT commands from the computer or an 

external processor/controller. 

 The GSM/GPRS module, on the other hand, always needs a computer or external 

processor/controller to receive AT commands from. 

 GSM/GPRS module itself does not provide any interface between the user and the 

network, but the computer to which module is connected is the interface between user 

and network. 

 An advantage that GSM/GPRS modules offer is that they support concatenated SMS 

which may not be supported in some GSM mobile handsets 
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 Applications of GSM/GPRS module The GSM/GPRS module demonstrates the use of 

AT commands. They can feature all the functionalities of a mobile phone through 

computer like making and receiving calls, SMS, MMS etc. These are mainly employed 

for computer based SMS and MMS services. 

4.1.3 AT Commands 

AT commands are used to control MODEMs.AT is the abbreviation for Attention. 

 These commands come from Hayes commands that were used by the Hayes smart 

modems. 

 The Hayes commands started with AT to indicate the attention from the MODEM. 

 The dial up and wireless MODEMs need AT commands to interact with a computer. 

 AT commands with a GSM/GPRS MODEM 

Table 4.1 GSM AT Commands 

GSM AT Commands and their functions 

AT Command Function of AT Command 

ATD Dial 

AT+CGMS Send SMS Message 

AT+CMSS Send SMS Message from storage 

AT+CMGL List SMS Messages 

AT+CMGR Read SMS Messages 

AT+CSCA? Service Centre Address 

AT+CPMS To choose storage from ME or SM 

AT+IPR=0 To choose auto from baud rate 

AT+CMGF= To choose PDU Mode or Text Mode 
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Figure 4.3: UART data format 

4.1.4 Interfacing of GSM Module 

Figure 4.4 shows interfacing of LPC2148 with GSM modem using UART protocol. MAX232 

IC is used for voltage level shifting from 0V/5V to -12V/+12V. 

 

Figure 4.4 GSM modem interfacing with LPC2148 

 

Table 4.2 Pin assignment for GSM interfacing 

  UART DB-9 Connector LPC2148 Processor Lines 

UART0 (P1) ISP PGM 

TXD-0 P0.0 

RXD-0 P0.1 

UART1 (P2) 

TXD-1 P0.8 

RXD-1 P0.9 
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Algorithm for GSM module interfacing with LPC2148 

 

1) Start 

2) Initialise UART0 or UART1 serial interface using following instruction 

PINSEL0=0X0000 0005;//Enable P0.0-TxD0,P0.1-RxD0 

U0LCR=0X83;  //8-BIT Character length, NO parity,1 stop bit 

U0DLL=97; //Baud rate=9600@PCLK=15Mhz – Set the data rate 

U0LCR=0X03; Divisor Latch Access Bit (DLAB)  to Zero 

3) Transmit different AT commands through UART module using instruction 

while(!(U0LSR&0X20));//Monitor TI flag 

4) If transmission buffer is Empty, Transmit AT commands  

U0THR=ch; // U0THR (UART0 Transmit Holding Register) 

5) Provide delay while transmitting each command 

6) To transmit a single character use PUTCH function & to transmit a string use PUTS 

function  

7) END 

 

4.1.5  Example Program for GSM Interfacing 

/**************************************************************************/ 

/* Project Name:- GSM Module Interfacing with LPC2148 using UART module      */ 

/* Device:- LPC2148                          */ 

/* Compiler:- KeilUvision4                   */ 

/* Language:- Embedded C  */ 

/**************************************************************************

****************/ 

#include<lpc21xx.h>   //Includes LPC2148 register definitions 

#include "serial.h" 

unsigned char GsmSendMsg(unsigned char *msgStr); 

void DelayMs(unsigned int count); 

 

int main(void) 

{   

   Uart0Init(); 

   Uart0PutS("AT\r\n"); 
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   DelayMs(500); 

   Uart0PutS("ATE0\r\n");  //Turn echo off 

  DelayMs(500); 

   Uart0PutS("ATD9503XXXXXX;\r\n"); //replace xxxxxxxxxx with number to call 

  DelayMs(20000); 

   Uart0PutS("ATH0\r\n");      //disconnect call 

  DelayMs(3000); 

   GsmSendMsg("WIKINOTE FOUNDATION"); 

  while(1); 

} 

 

unsigned char GsmSendMsg(unsigned char *msgStr) 

{ 

    Uart0PutS("AT+CMGF=1\r\n");//Send SMS: Select Text mode 

   DelayMs(100); 

    Uart0PutS("AT+CMGS=\"9503XXXXXX\"\r\n"); //Send SMS to mobile number 

   DelayMs(100);   

    Uart0PutS(msgStr); 

    DelayMs(100);   

    Uart0PutCh(0x1A);          //CNTL + Z 

   DelayMs(3000); 

   return (1); 

} 

 

void DelayMs(unsigned int count) 

{ 

   volatile unsigned int j,k; 

   for (j=0;j<count;j++) 

       for (k=0;k<6000;k++); 

} 

4.2. GPS MODULE INTERFACING 

 

The SKG13BL is a complete GPS engine module that features super sensitivity, ultra 

low power and small form factor. The GPS signal is applied to the antenna input of module, 

and a complete serial data message with position, velocity and time information is presented at 

the serial interface with NMEA protocol or custom protocol. 

It is based on the high performance features of the MediaTek  MT3337  single-

chip  architecture,  Its –165dBm tracking sensitivity extends positioning coverage into place 

like urban canyons and dense foliage environment where the GPS was not possible before. The 
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small form factor and low power consumption make the module easy to integrate into portable 

device like PNDs, mobile phones, cameras and vehicle navigation systems. 

4.2.1 Features of GPS module 

 Ultra high sensitivity: -165dBm 

 Built-in 12 multi-tone active interference canceller 

 Low power consumption: Typical 22mA@3.3V 

 ±10ns high accuracy time pulse (1PPS) 

 NMEA Output：GGA,GSA,GSV,RMC 

 Advanced Features: AlwaysLocate; AIC 

 QZSS,SBAS(WAAS,EGNOS,MSAS,GAGAN) 

 UART interface: 4800/9600/38400/115200 bps 

 Small form factor: 15x13x2.2mm and RoHS compliant (Lead-free) 

 

Figure 4.4 GPS module and GPS Antenna 

Applications 

 LBS (Location Based Service) 

 PND (Portable Navigation Device) 

 Vehicle navigation system 

 Mobile phone 

 Extremely fast TTFF at low signal level 
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4.2.2 Interfacing of GPS Module 

 

Figure 4.5 Interfacing Circuit for GPS receiver module 

Table 4.3 Pin assignment with LPC 2148 

  UART DB-9 Connector LPC2148 Processor Lines 

UART0 (P1) ISP PGM 

TXD-0 P0.0 

RXD-0 P0.1 

UART1 (P2) 

TXD-1 P0.8 

RXD-1 P0.9 

 

Algorithm for GPS module interfacing with LPC2148 

1) Start 

2) Initialise UART0 or UART1 serial interface using following instruction 

PINSEL0=0X0000 0005;//Enable P0.0-TxD0,P0.1-RxD0 

U0LCR=0X83;  //8-BIT Character lenth,NO parity,1 stop bit 

U0DLL=97; //Baud rate=9600@PCLK=15Mhz 

U0LCR=0X03;//Dlab=0 

3) Receive GPS Message of location and longitude through UART module using 

function UARTGetch() 
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4) Store single character in Variable GPSData 

GPSDATA=Uart0Getch(); 

5) Copy each single received character in array lattitude and longitude 

6) Send this array characters to LCD for displaying message 

7) END 

4.2.3 Example Program for GPS Interfacing 

#include <lpc214x.h> 

#include "serial.h" 

#include "lcd.h" 

unsigned int j; 

unsigned char Gpsdata;             // for incoming serial data 

unsigned int finish =0;            // indicate end of message 

unsigned int pos_cnt=0;            // position counter 

unsigned int lat_cnt=0;            // latitude data counter 

unsigned int log_cnt=0;            // longitude data counter 

unsigned int flg    =0;            // GPS flag 

unsigned int com_cnt=0;            // comma counter 

unsigned char lat[20];             // latitude array 

unsigned char lg[20];              // longitude array 

unsigned int i=0; 

unsigned int fg=0;; 

void gps(void); 

int main(void) 

{ 

 lcd_init(); 

 Uart0Init(); 

while(1) 

 { 

   gps(); 

   lcdcmd(0x80); 

   DisplayLCD1("LT:"); 

  DisplayLCD1(lat); 

  DisplayLCD1("N"); 

   lcdcmd(0xC0); 

   DisplayLCD1("LG:"); 

  DisplayLCD1(lg); 

  DisplayLCD1("E"); 

 } 

} 
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void gps() 

{ 

   while(finish==0){ 

     

     Gpsdata = Uart0GetCh(); 

        flg = 1; 

      if( Gpsdata=='$' && pos_cnt == 0)   // finding GPRMC header 

        pos_cnt=1; 

      if( Gpsdata=='G' && pos_cnt == 1) 

         pos_cnt=2; 

      if( Gpsdata=='P' && pos_cnt == 2) 

         pos_cnt=3; 

      if( Gpsdata=='R' && pos_cnt == 3) 

         pos_cnt=4; 

      if( Gpsdata=='M' && pos_cnt == 4) 

         pos_cnt=5; 

      if( Gpsdata=='C' && pos_cnt==5 ) 

         pos_cnt=6; 

      if(pos_cnt==6 &&  Gpsdata ==','){   // count commas in message 

        com_cnt++; 

         flg=0; 

       } 

 

      if(com_cnt==3 && flg==1){ 

        lat[lat_cnt++] =  Gpsdata;         // latitude 

       flg=0; 

       } 

 

      if(com_cnt==5 && flg==1){ 

         lg[log_cnt++] =  Gpsdata;         // Longitude 

        flg=0; 

       } 

 

      if( Gpsdata == '*' && com_cnt >= 5 && flg == 1){ 

         lat[lat_cnt] ='\0';             // end of GPRMC message 

        lg[log_cnt]  = '\0'; 

     com_cnt = 0;                      // end of GPRMC message 

        lat_cnt = 0; 

         log_cnt = 0; 

         flg     = 0; 

         finish  = 1; 
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      } 

    } 

 

   finish = 0; 

   pos_cnt = 0; 

} 

///////$GPRMC,194530.000,A,3051.8007,N,10035.9989,W,1.49,111.67,310714,,,A*74 

  Note:- As we need to send AT Commands using UART , we need to add Program for 

Serial Communication. Hence Add Serial.c and Serial.h file  

Note:- As we want to display Lattitude and Longitude values on LCD we have to add 

LCD.c and LCD.h files in our keil Project     

 4.3 LPC2148 INTERFACING WITH ON-CHIP (INTERNAL) ADC 

Analog to Digital Converter (ADC) is used to convert analog signal/voltage into its 

equivalent digital number so that microcontroller can process that numbers and make it human 

readable. The ADC characterized by resolution. The resolution of ADC indicates the number 

of digital values. Let’s take example: In LPC2148 microcontroller we have in-built 10-bit 

ADC. So for 10-bit ADC resolution is 10-bit and maximum value will be 210=1024. This means 

our digital value or discrete level lies between 0 to 1023. There is one more term important to 

understand while dealing with ADC and it is step size. Step size is the minimum change in 

input voltage which can be resolved by ADC. The concept of step size is closely associated 

with the resolution of ADC. 

 

So in this case we can measure minimum 2.23 mV (Approx.) with our microcontroller. This 

is how step size defines an accuracy of ADC circuit. 

 

4.3.1 Features of ADC 

 2 internal  ADC's - ADC0 (6 Channel), ADC1 (8 Channel)  

 Type: 10-bit, Successive Approximation type,  

 Supports burst mode (repeated conversion at 3-bit to 10-bit resolution)  

 Supports simultaneous conversion on both ADC's  
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 Conversion time: 2.44 micro-seconds 

 Start of Conversion by software control / on timer match /transition on a pin  

 Range: 0 V – VREF (+3.3 V)  

 Max. clock frequency is 4.5 MHz, (by programming ADC Control (ADxCON 

Register)  

 

Figure 4.6 On-Chip ADC in LPC2148-Internal Diagram 

 

Table 4.4 Pin Assignment for ADC in LPC2148 

Block Symbol Description I/O 

ADC0 

AD0.1 Channel 1 P0.28 

AD0.2 Channel 2 P0.29 

AD0.3 Channel 3 P0.30 

AD0.4 Channel 4 P0.25 

AD0.6 Channel 6 P0.4 

AD0.7 Channel 7 P0.5 

ADC1 AD1.0 Channel 0 P0.6 
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AD1.1 Channel 1 P0.8 

AD1.2 Channel 2 P0.10 

AD1.3 Channel 3 P0.12 

AD1.4 Channel 4 P0.13 

AD1.5 Channel 5 P0.15 

AD1.6 Channel 6 P0.21 

AD1.7 Channel 7 P0.22 

 

4.3.2 ADC REGISTERS 

1. ADxCON - ADC Control Register-32-bit register 

 Useful for Selection of analog input channel, clock frequency to ADC, Resolution, 

conversion mode, method of issue of SoC, edge for conversion  

Table 4.5 ADC Register Configuration 

RESERVED EDGE START -- PDN -- CLKS BURST CLKDIV SEL 

31-28 27 26-24 
23-

22 
21 20 

19-

17 
16 15-8 7-0 

Bit      Symbol  Description 

7-0  

SEL 

(Channel 

Selection 

bits)  

Select field:- Selects which of the AD0.7:0/AD1.7:0 pins is (are) 

to be sampled and converted. For AD0, bit 0 selects Pin AD0.0, 

and bit 7 selects pin AD0.7. In software-controlled mode, only 

one of these bits should be 1. In hardware scan mode, any value 

containing 1 to 8 can be one 

15-8  CLKDIV:  Clock Division factor Value:- The APB clock (PCLK) is 

divided by (this value plus one) to produce the clock for the A/D 
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converter, which should be less than or equal to 4.5 MHz 

Typically, software should program the smallest value in this 

field that yields a clock of 4.5 MHz or slightly less, but in certain 

cases (such as a high-impedance analog source) a slower clock 

may be desirable. 

16    BURST  

 0; ADC will not perform Repeated A to D Conversion 

1; ADC will perform Repeated A to D Conversion The AD 

converter does repeated conversions at the rate selected by the 

CLKS field, scanning (if necessary) through the pins selected by 

1s in the SEL field. The first conversion after the start 

corresponds to the least-significant 1 in the SEL field, then 

higher numbered 1-bits (pins) if applicable. Repeated 

conversions can be terminated by clearing this bit, but the 

conversion that’s in progress when this bit is cleared will be 

completed. 

 Remark: START bits must be 000 when BURST = 1 or 

conversions will not start. 

19-17  
CLKS 

Clocks:- This field selects the number of clocks used for each 

conversion in Burst mode, and the number of bits of accuracy of 

the result in the RESULT bits of ADDR, between 11 clocks (10 

bits) and 4 clocks (3 bits). 

CLKS field - 19-

18-17 

No. of Clock cycles used per bit 

conversion 

000 11 clocks cycles / 10 bit conversion 

001 10 clocks/ 9 bits 

010 9 clocks/ 8 bits 

011 8 clocks/ 7 bits 
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100 7 clocks/ 6 bits 

101 6 clocks/ 5 bits 

110 5 clocks/ 4 bits 

111 4 clocks/ 3 bits 

 

21     PDN  
Power Down 

PDN=1 The A/D converter is operational. 

PDN=0 The A/D converter is in power-down mode. 

26-24  

  

START 

START field - 26-25-24 Description 

000 No start of Conversion 

001 Start of Conversion Now 

 

27  Edge 
 (In use only when START field contains Values from 010 TO 

111) 

 15-8 CLKDIV: The APB clock (PCLK) is divided by (this value plus one) to produce 

the clock for the A/D converter, which should be less than or equal to 4.5 MHz 

Typically, software should program the smallest value in this field that yields a clock 

of 4.5 MHz or slightly less, but in certain cases (such as a high-impedance analog 

source) a slower clock may be desirable. 

o The A/D Converters on the LPC2148 is also called as The conversion speed is 

selectable by the user. 

o A/D Clock frequency= [Pclk/(CLKDIV+1)]  .....................<=4.5 MHz 
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2. A/D Global Start Register (ADxGSR) 

 Used to initiate simultaneous conversion on both ADCs  

3. A/D Status Register (ADxSTAT) 

 Allows simultaneous checking of status of all A/D channels 

 Contains done, overrun, interrupt flags  

5. A/D Data Registers (ADR0 – ADR7) 

 Contains most recent converted data and EoC (Done) status on respected channel 

 

Table 4.6 ADC DATA Register Configuration 

DONE OVERRUN Reserved 10 bit A/D RESULT Reserved 

31 30 29-16 15-6 5-0 

 

6. Global Data Register 

 Contains done bit, most converted data, channel number  

 

Table 4.7 ADC Global Data Register Configuration 

DONE OVERRUN  Reserved 
 Channel 

Selection 
Reserved 

10 bit A/D 

RESULT 
Reserved 

31 30 
 29-28-

27 
 26-25-24 23-16 15-6 5-0 

 DONE (Bit 31) 
o DONE= 1  ;when an A/D conversion is complete. 

o D0NE=0  ;A/D conversion is in progress 
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For accurate results, you need to wait until this value is 1 before reading the RESULT bits. 

(Please note that this value is cleared when you read this register.) 

 OVERRUN (Bit 30) 

While not relevant to the examples used in this tutorial, this value with be 1 if the results 

of one or more conversions were lost when converting in BURST mode. See the User's Manual 

for further details.  (As with DONE, this bit will be cleared when you read this register.) 

 RESULTS (Bits 15..6) 

If DONE is 1 (meaning the conversion is complete), these 10 bits will contain a binary 

number representing the results of our analog to digital conversion. It works by measuring the 

voltage on the analog input pin divided by the voltage on the Vref pin. 

Table 4.8 Analog value and its digital equivalent 

Analog Input 10-bit Digital output Digital Output in HEX 

0V 0000 0000 00 B 000H 

3.3V 1111 1111 11 B 3FFH 

 

Zero means that the voltage on the analog input pin was less than, equal to or close to 

GND (Vssa), and 0x3FF (or 0011 1111 1111) indicates that the voltage on the analog input pin 

was close to, equal to or greater than the the voltage on the Vref pin.  Anything value between 

these two extremes will be returned as a 10-bit number (between 0 and 1023).   

6. Interrupt Enable Register 

 Enables interrupt on EOC channel 

 Programming ADC registers – Examples (Construction of control words 

4.3.3 ADC Design Example 

 

Select ADC-0, Channel-1, Clock frequency 3.75 MHz (let PCLK is 15 MHz), burst mode 

repeated conversion) and 10-bit resolution. Power-up ADC and issue start of conversion. 
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Solution: AD0CR    = 0x01210302; // configure SEL, CLKDIV, BURST CLKS & PDN bit 

fields set START, signal start of conversion 

1. Select ADC–1, Channels 0 to 7, clock frequency 4.5 MHz (assume PCLK is 30 MHz), 

burst mode repeated conversion, 8-bit resolution. 

 

Figure 4.7 On-chip interfacing with Peripherals 

 

a) C Program for on-chip ADC using interrupt 

#include <lpc214x.h> 

#include "serial.h" 

#include <stdio.h> 

void delay(void); 

void ADC_ISR(void) __attribute__ ((interrupt("IRQ"))); 

int adcdata; 

float voltage; 

unsigned char volt[3]; 

int i; 

int main(void) 

{ 

 PINSEL0 = 0x00000005; 

 PINSEL1 = 0x01000000; 

 PINSEL2 = 0x00000000; 

 

 Uart0Init(); 

    Uart0PutS("\n ADC o/p : "); 
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 AD0INTEN = 0x00000002;       ///On completion of AD conversion channel1 will generate 

an Interrupt 

 VICVectAddr0 = (unsigned int)ADC_ISR; 

 VICVectCntl0 = 0x20 | 18;    //// VIRQ and Assign AD0 interrupt Slot0 

VICIntEnable = 1 << 18;    ///Enable AD0 interrupt channel of VIC 

 

 AD0CR = 0X01200402; // Channel AD0.1 , Clock 3Mhz, Burst Mode, 11 clocks per 10 bit , 

     //AD conversion is operational, start conversion 

   

while(1){ 

  

  } 

 

return 0; 

} 

 

void ADC_ISR() 

{ 

if(AD0DR1 & 0x80000000)    ///Monitor EOC bit from AD Data Register of Channel0 

{ 

  adcdata=(AD0DR1 & 0x0000FFC0); 

  adcdata=adcdata>>6;         ///Right shift Digital Result by 6 bits 

 voltage=((adcdata/1023.0)*3.3); 

  sprintf(volt, "%.1f", voltage);      ////Buffer, decimal value. 1 digit fractional value, float 

volatage value 

 Uart0PutS(volt);    ///print buffer on Hyperterminal   

} 

 delay(); 

 AD0INTEN = 0;       ////Disable ADO Interrupr 

VICVectAddr=0;   ///End of ISR 

} 

void delay(void) 

{ 

int i,j; 

for(i=0;i<1000;i++) 

for(j=0;j<10000;j++); 

} 

b) Embedded C Program for on-chip(Internal ADC) without Interrupt 

#include<lpc214x.h> 

#include<stdio.h> 

#include "serial.h" 

void delay(void); 
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int main() 

{ 

int adcdata; 

float voltage; 

unsigned char volt[3]; 

 PINSEL0=0X00000000; 

 PINSEL1=0X01000000; //Select P0.28 pin function as Analog i/p 

Uart0Init(); 

 AD0CR=0x00210402; ///CHANNEL1 OF ADC0, ad freq=3MHz, 

while(1) 

 { 

 if(AD0DR1 & 0x80000000) ////EOC bit monitoring 

 { 

   adcdata=(AD0DR1 & 0x0000FFC0); 

   adcdata=adcdata>>6; 

   voltage=((adcdata/1023.0)*3.3); 

   sprintf(volt, "%.1f", voltage);  ADC o/p=1.2 

   Uart0PutS("\n ADC o/p : "); 

   Uart0PutS(volt); 

   delay(); 

  }    

 } 

} 

void delay(void) 

{ 

int i,j; 

for(i=0;i<1000;i++) 

for(j=0;j<10000;j++); 

} 

 

4.4 Serial Communication Using UART in LPC2148 

The characteristics of UART hardware in LPC2148 controller and its associated registers is briefly 

discussed in this section. The important features of UART hardware in LPC2148 are: 

 UART1 is identical to UART0, with the addition of a modem interface. 

 16 byte Receive and Transmit FIFOs. 

 Register locations conform to ‘550 industry standard. 

 Receiver FIFO trigger points at 1, 4, 8, and 14 bytes. 

 Built-in fractional baud rate generator with autobauding capabilities. 

 Mechanism that enables software and hardware flow control implementation. 

 Standard modem interface signals included with flow control (auto-CTS/RTS) fully 
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 supported in hardware (LPC2144/6/8 only). 

 

 

Figure 4.8 UART0 Architecture in LPC2148 
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U0FCR (FIFO Control Register) 

 8-BIT Byte Addressable register 

 This reg is used to enable TX & RX FIFO functionalities 

 U0FCR=0x07 is like SCON reg 

Table 4.9  U0FCR (FIFO Control Register) bit assignment 

U0FCR 

FIFO 

Control 

Register 

- - - - - 

TX 

FIFO 

Reset 

RX 

FIFO 

Reset 

FIFO 

Enable 

U0LCR (Line Control Register) 

 8-BIT byte addressable register 

Table 4.10  U0LCR (Line Control Register)bit assignment 

UART0 Line Control Register (U0LCR - address 0xE000 C00C) bit description  

Bit Symbol Value Description 
Reset 

Value 

1:0 

 

 

  

Word Length 

Select 

 

 

  

00 5 bit character length 

0 

 

 

  

01 6 bit character length 

10 7 bit character length 

11 8 bit character length 

2 

  

Stop Bit Select 

  

0 1 stop bit 

0 

  

1 2 stop bits (1.5 if U0LCR[1:0]==00) 
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3 

  

Parity Enable 

  

0 Disable parity generation and checking 

0 

  

1 Enable parity generation and checking 

5:4 

 

 

  

Parity Select 

 

 

  

00 

Odd parity. Number of 1s In the 

transmitted character and the attached 

parity bit will be odd. 

0 

 

 

  

01 

Even Parity. Number of is in the 

transmitted character and the attached 

parity bit will be even. 

10 Forced "1" stick parity. 

11 Forced "0" stick parity. 

6 

  

Break Control 

  

0 Disable break transmission 

0 

  

1 

Enable break transmission. Output pin 

UARTO TXD Is forced to logic 0 when 

UOLCR[6] Is active high.  

7 

  

Divisor Latch 

Access Bit 

(DLAB) 

  

0 Disable access to Divisor Latch 

0 

1 Enable access to Divisor Latch 

 

DLAB (Divisor Latch Buffer) 

One high-low pulse across DLAB bit indicates baud rate is successfully loaded. 

 DLAB=1  baud rate is loading 

 DLAB=0  After loading baud rate DLAB must be zero. 
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U0LSR (Line Status Register) 

 8-bit byte addressable register 

 Consists of different flag bits, TI interrupt & RI interrupt flag bit 

Table 4.11 U0LSR (Line Status Register) bit assignment 

UART0 Line Status Register 

Bit Symbol Value Description 
Reset 

value 

0 
Receiver Data 

Ready (RDR) 

  

U0LSR0 is set when the U0RBR holds an 

unread character and is cleared when the 

UART0 RBR FIFO is empty.  

0 

0 U0RBR is empty. 

1 U0RBR contains valid data. 

1 

 

  

Overrun Error 

(OE) 

 

  

  

The overrun error condition is set as soon as 

it occurs. An U0LSR read clears U0LSR1. 

U0LSR1 is set when UART0 RSR has a 

new character assembled and the UART0 

RBR FIFO is full. In this case, the UART0 

RBR FIFO will not be overwritten and the 

character in the UART0 RSR will be lost.  

0 

 

  

0 Overrun error status is inactive. 

1 Overrun error status is active. 

  
When the parity bit of a received character 

is in the wrong state, a parity error occurs. 

An U0LSR read clears U0LSR[2]. Time of 
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2 

  

Parity Error 

  

parity error detection is dependent on 

U0FCR(0). 

Note: A parity error is associated with the 

character at the top of the UART0 RBR 

FIFO. 

0 

  

0 Parity error status is Inactive. 

3 

 

  

Framing Error 

(FE) 

 

  

  

When the stop bit of a received character is 

a logic 0. a framing error occurs. 0 An 

U0LSR read dears U0LSR[3]. The time of 

the framing error detection is dependent on 

U0FCR0. Upon detection of a framing error, 

the Rx will attempt to resynchronize to the 

data and assume that the bad stop bit is 

actually an early start bit. However, it 

cannot be assumed that the next received 

byte will be correct even if there is no 

Framing Error. 

Note: A framing error is associated with the 

character at the top of the UART0 RBR 

FIFO. 

0 

 

  

0 Framing error status is inactive.  

1 Framing error status is active.  

4 

 

  

Break 

Interrupt (BI) 

 

  

  

When RXD0 is held in the spacing state (all 

0's) for one full character transmission 

(start, data, parity, stop), a break interrupt 

occurs. Once the break condition has been 

detected, the receiver goes idle until RXD0 

goes to marking state (all 1s). An U0LSR 

read clears this status bit. The time of break 

detection is dependent on U0FCR(0). 

Note: The break interrupt is associated with 

the character at the top of the UART0 RBR 

FIFO. 

0 

 

  

0 Break interrupt status is inactive.  
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1 Break interrupt status is active.  

5 

 

  

Transmitter 

Holding 

Register 

Empty 

(THRE) 

 

  

  

THRE is set immediately upon detection of 

an empty UART0 THR and is 1 

cleared on a U0THR write.  
1 

 

  0 U0THR contains valid data.  

1 U0THR is empty. 

6 

 

  

Transmitter 

Empty 

(TEMT)  

 

  

  

TEMT is set when both U0THR and U0TSR 

are empty; TEMT is cleared when either the 

U0TSR or the U0THR contain valid data. 

1 

 

  0 
U0THR and/or the U0TSR contains valid 

data.  

1 U0THR and the U0TSR are empty.  

7 

 

  

Error in RX 

FIFO (RXFE)  

 

  

  

UOLSR(7) is set when a character with a Rx 

error such as framing error, parity error or 

break interrupt, is loaded into the U0RBR. 

This bit is cleared when the U0LSR register 

is read and there are no subsequent errors in 

the UART0 FIFO. 
0 

  

0 
U0RBR contains no UART0 RX errors or 

U0FCR[0]=0. 

1 
UART0 RBR contains at least one UART0 

RX error. 
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DLR (Divisor Latch Register) 

 DLR is 16-bit register 

 Used to load baud rate 

 As the baud rate is 8-bit value, divide DLR into two parts DLM & DLL (8-bit each) 

For 9600 baud rate 

U0DLL=0x63;     //(Pclk=12Mhz) 

U0DLM=0x00 

U0DLL:U0DLM=[Pclk/16*Desired Baud rate] 

U0THR (Transmit Hold Register) 

 8-bit byte addressable reg. 

 Data can be loading to U0THR, whenever transmitting data 

U0THR=‘A’   //THR buffer register is used only for transmitting 

U0RBR (UART0 Receive Buffer Register) 

 8-bit byte addressable reg. 

 Data can be loading into U0RBR, whenever receiving data. 

 a = U0RBR   //RBR buffer register is used only for transmitting 

 

 
 

Figure 4.9 Circuit for serial communication with LPC2148 and PC 
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 4.4.2 Algorithm for UART serial communication 

1) Start 

2) Initialise UART0 serial interface using following instruction 

PINSEL0=0X0000 0005;//Enable P0.0-TxD0,P0.1-RxD0 

U0LCR=0X83;  //8-BIT Character lenth,NO parity,1 stop bit, DLAB=1 

U0DLL=97; //Baud rate=9600@PCLK=15Mhz 

U0LCR=0X03;//DLAB=0 

3) LPC2148 will receive characters transmitted by PC 

4) LPC2148 will transmit the characters received back to PC 

3) Transmit different AT commands through UART module using instruction 

while(!(U0LSR&0X20));//Monitor TI flag 

4) If transmission buffer is Empty,Transmit single character at a time 

U0THR=ch; 

5) Provide delay while transmitting each command 

6) To transmit a single character use PUTCH function & to transmit a string use PUTS 

function 

7) END 

4.4.3 Embedded C program for Serial Transmission and Reception 

#include<lpc21xx.h>   //Includes LPC2148 register definitions 

 

void Uart0Init (void)      // Initialize Serial Interface        

{                    

    PINSEL0 = 0x00000005;           //Enable RxD0 and TxD0                      

   U0LCR = 0x83;                   // 8 bits, no Parity, 1 Stop bit             

   U0DLL = 97;                     // 9600 Baud Rate @ 15MHz PCLK          

   U0LCR = 0x03;       // DLAB = 0   

} 

    

void Uart0PutCh (unsigned char ch)  // Write character to Serial Port    

{                     

    U0THR = ch; 

  while (!(U0LSR & 0x20)); 

} 
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void  Uart0PutS(unsigned char *str)  //A function to send a string on UART0 

{   

while(*str) 

{   

     Uart0PutCh(*str++);      

} 

} 

unsigned char Uart0GetCh (void)  // Read character from Serial Port    

{             

 while (!(U0LSR & 0x01)); 

 return (U0RBR); 

} 

int main() 

{ 

unsigned char a; 

Uart0Init(); 

while(1) 

{ 

a=Uart0GetCh(); 

Uart0PutCh(a); 

} 

} 

4.5 LPC2148 INTERFACING WITH EEPROM USING I2C 

I2C is a two-wire synchronous serial communication protocol. SDA line is used for 

transferring data and SCK is used for transferring clock information. Every device connected 

to an I2C bus has a unique address.  

 

Figure 4.10: I2C frame format 
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I2C communication protocol involves communication between a slave and a master. 

The device which initiates the communication and which provides the clock is referred to as a 

master device. The devices which receive the clock signal and receive/transmit data according 

to the clock signal is termed as a slave device. Each device on the bus is accessed using its 

slave address. 

START condition 

 STEP-1) First the MCU will issue a START condition. The devices connected to the 

bus will listen to the START condition and will stay ready to begin the communication 

process. 

 STEP-2) Then MCU will send the address of the device with which it needs to 

communicate. Master indicates the action to be performed with the device whether to 

read or write along with the address. 

 STEP-3) All devices connected to the bus will receive the address and will compare it 

with its own address. If the addresses match with each other, the device will send back 

an ACKNOWLEDGEMENT signal to the master device. If they                   don’t 

match they will simply wait for the bus to be released with a STOP condition. 

 STEP-4) Once the MCU sends the address and corresponding device acknowledges, 

the MCU can start transmitting or receiving data. 

 STEP-5) When the data transmission or reception is complete, the MCU will stop 

communicating by sending a STOP condition. 

STOP condition 

 STEP-6) STOP condition indicates that the bus is released and it can be used by any 

other master (if any) connected to the I2C bus. 

 After a master generate a start condition I2C bus will solely belong to it. The bus will 

be freed only if the master generate a STOP condition. Any other master connected to 

the bus can access the bus after a STOP is identified on the bus. 

 If the master device which uses the bus needs to communicate with a different slave it 

should generate a RESTART. Instead if it tries to stop current communication and then 

start again it may lose access to the bus. RESTART is nothing but a start signal without 

a stop in the bus. 
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4.5.1 Features of I2C module in LPC2148 

 Two fast I2C buses (I2C0, I2C1) 

 Standard I2C compliant bus interfaces that may be configured as Master, Slave, or 

Master/Slave. 

 Arbitration between simultaneously transmitting masters without corruption of serial 

data on the bus. 

 Programmable clock to allow adjustment of multiple I2C data transfer rates. 

o Standard- 100 kbps 

o Fast- 400 kbps 

o High Speed- 3.4 Mbps 

 Bidirectional data transfer between masters and slaves. 

 Serial clock synchronization allows devices with different bit rates to communicate via 

one serial bus. 

 Serial clock synchronization can be used as a handshake mechanism to suspend and 

resume serial transfer. 

 The I2C bus may be used for test and diagnostic purposes. 

Applications 

Interfaces to external I2C standard parts 

 Serial RAMs, ROMs 

 LCDs 

 Tone generators  

Table 4.12 Pin Description for I2C communication 

Pin Type Description LPC2148 Pins 

SDA0/1 Input/Output I2C Serial Data P0.3 and P0.14 

SCL0/1 Input/Output I2C Serial Clock P0.2 and P0.11 
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Table 4.13 I2C Registers 

Generic 

Name 
Description Access 

Reset 

value 

I2Cn Register 

name & Address 

I2CONSET 

I2C Control Set 

Register. When a one is 

written to a bit of this 

register. the corresponding 

bit in the I2C control register 

is set. Writing a zero has no 

effect on the corresponding 

bit in the I2C control 

register.  

R/W 0x00 

I2C0CONSET - 

0xE001 C000 

I2C1CONSET - 

0xE005 C000 

I2STAT 

I2C Status Register. During 

I2C operation, this register 

provides detailed status 

codes that allow software to 

determine the next action 

needed. 

RO 0xF8 

I2C0STAT - 

0xE001 C0004 

I2C1STAT - 

0xE005 C004 

I2DAT 

I2C Data Register. During 

master or slave transmit 

mode. data to be transmitted 

is written to this register. 

During master or slave 

receive mode, data that has 

been received may be read 

from this register. 

R/W 0x00 

I2C0DAT - 

0xE001 C008 

I2C1DAT - 

0xE005 C008 

I2ADR 

I2C Slave Address 

Register. Contains the 7 bit 

slave address for operation of 

the I2C interface in slave 

mode. and is not used in 

master mode. The least 

significant bit determines 

R/W 0x00 

I2C0ADR - 

0xE001 C00C 

I2C1ADR - 

0xE005 C00C 
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whether a slave responds to 

the general call address. 

I2CSCLH 

SCH Duty Cycle Register 

High Half 

Word. Determines the high 

time of the RC clock. 

R/W 0x04 

I2C0SCLH - 

0xE001 C010 

I2C1SCLH - 

0xE005 C010 

I2CSCLL 

SCL Duty Cycle Register 

Low Half 

Word. Determines the low 

time of the 12C clock. 

I2nSCLL and I2nSCLH 

together determine the clock 

frequency generated by an 

I2C master and certain times 

used in slave mode. 

R/W 0x04 

I2C0SCLL - 

0xE001 C014 

I2C1SCLL - 

0xE005 C014 

I2CONCLR 

I2C Control Clear 

Register. When a one is 

written to a bit of this 

register. the corresponding 

bit in the I2C control register 

is cleared. Writing a zero has 

no effect on the 

corresponding bit in the PC 

control register.  

WO NA 

I2C0CONCLR - 

0xE001 C018 

I2C1CONCLR - 

0xE005 C018 

 

Table 4.14 I2CxCONSET Register 

Bit Symbol Description 

0-1 -- Reserved 
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2 AA 
Assert Acknowledge  

AA=1; request an acknowledge 

3 SI 
I2C Serial Interrupt 

SI=1; indicate state change 

4 STO 
STOP 

STO=1; sends stop condition 

5 STA 
START 

STA=1; sends START condition 

6 I2CEN I2CEN=1; I2C interface enable 

7 - Reserved 

4.5.2 Features of EEPROM IC (AT24C512) 

 The AT24C512 provides 524,288 bits of serial electrically erasable and programmable 

read only memory (EEPROM) organized as 65,536 words of 8 bits each.  

 The device’s cascadable feature allows up to four devices to share a common two-wire 

bus.  

 The device is optimized for use in many industrial and commercial applications where 

low power and low-voltage operation are essential.  

 The devices are available in space saving8-pin PDIP, 8-lead EIAJ SOIC, 8-lead JEDEC 

SOIC, 8-lead TSSOP, 8-lead Leadless Array (LAP), and 8-lead SAP packages. In 

addition, the entire family is available in 2.7V (2.7V to 5.5V) and 1.8V (1.8V to 3.6V) 

versions. 
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Figure 4.11 Pin details of EEPROM IC 

 

Figure 4.12 Interfacing EEPROM IC with LPC2148 

4.5.3 Algorithm for the Interfacing EEPROM 

1) Start 

2) Initialize I2C bus interface 

PINSEL0=0X10400050; //Configure P0.11-SCL1 & P0.14-SD1 

I2CSCLH=150; 

I2CSCLL=150;   //SET I2C frequency=[Pclk/(I2CSCLL+I2CSCH)] 

3) Transmit the slave address(Page address,Page offset,No. of bytes) 

4) Enable I2C bus interface 
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I2CCONSET=0X40;////I2CEN=1 

5) Master (LPC2148) will transmit START signal 

I2CCONSET=0X20;//STA=1 

6) Transmit slave address(7-bit address,R/W=0; write operation) 

7) Wait for acknowledgement 

8) Tansmit Page address and page offset at which data is to be written 

9) Wait for acknowledment 

10) Transmit data using I2CDAT register 

11) Wait for acknowledge 

12) After successful transmission of data , master wil transmit STOP condition 

I2CCONSET=0X10;//STO=1 

13) Disable I2C interface 

I2CCONCLR=0X40; //I2CENC=1 

14) END  

Example Program 

#include <LPC214x.h> 

#include <stdio.h> 

#include "serial.h" 

 

#define EEPROM_Addr 0xA0     //device address 

#define I2Cwrite 0x00   //LSB bit 0 (write) 

#define I2Cread  0x01   //LSB bit 1 (read) 

 

#define I2C_ENABLE  1 << 6     //I2C Enable bit 

#define I2C_START 1 << 5     //Start Bit 

#define I2C_STOP  1 << 4     //Stop Bit 

#define I2C_SI  1 << 3     //I2C interrupt flag 

#define I2C_AACK   1 << 2     //assert ACK flag 

unsigned char write_array[10] = {11,12,13,14,15,16,17,18,19,20}; 

unsigned char read_array[10]; 

unsigned char val[4]; 

void I2CInit(void) 

{ 



126 
 

 PINSEL0 |= 0x00000050;       //P0.2 -> SCL0  P0.3 -> SDA0 I2C0CONCLR  = 

I2C_ENABLE | I2C_START | I2C_STOP | I2C_SI | I2C_AACK; //clear all the bits in 

CONTROL register 

//set I2C clock to work at 100Khz 

I2C0SCLH = 0x4B ;       //set the high time of i2c clock; (15mhz / 100khz / 2) 

I2C0SCLL = 0x4B ;       //set the low time of i2c clock; 

 

 I2C0CONSET = I2C_ENABLE ;     //enable the I2C Interface 

}           

void I2CStart(void)          //Function to initiate a start condition on the I2C bus 

{ 

unsigned int status; 

I2C0CONCLR = (I2C_START | I2C_STOP | I2C_SI | I2C_AACK);  // clear all the bits in 

CONCLR register 

I2C0CONSET = (I2C_ENABLE );            //Enable the I2C interface 

I2C0CONSET = (I2C_START);           //set the STA bit 

while(!((status=I2C0CONSET)& I2C_SI));      //wait till interrupt flag becomes set 

} 

void I2CStop(void) 

{ 

unsigned int status;       

I2C0CONCLR = I2C_START | I2C_SI | I2C_AACK;    //clear all bits 

I2C0CONSET = I2C_STOP;          //set STOP bit 

} 

void I2Csend(unsigned char data) 

{     

unsigned int status; 

I2C0DAT = data; 

I2C0CONCLR = I2C_START | I2C_STOP ;      // clear start bit for next operation 

I2C0CONCLR = I2C_SI;         // clear interrupt flag 

while(!((status=I2C0CONSET)& I2C_SI));        //wait till interrupt flag becomes set 

} 

 

unsigned char I2Cget(void) 

{ 

unsigned char data; 

unsigned int status; 

 

I2C0CONCLR = I2C_START | I2C_STOP;   

I2C0CONCLR = I2C_SI;         // clear interrupt flag     

I2C0CONSET = I2C_AACK;            // send ack to continue further data transfer 

while(!((status=I2C0CONSET)& I2C_SI));     //wait till interrupt flag becomes set 

data = I2C0DAT; 

return data; 
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} 

 

 

int main() 

{ 

unsigned int i,j; 

Uart0Init();       //initialize UART with 9600 baudrate 

Uart0PutS("\r\nI2C EEPROM\r\n"); 

I2CInit();        //initialize I2C 

 

 

  

/* Write Sequence */ 

Uart0PutS("\r\n Writing Data.....\r\n"); 

I2CStart();       //Assert START 

I2Csend(EEPROM_Addr | I2Cwrite);  //Device address with LSB bit 0 

I2Csend(0x13);         //Address higher byte 

I2Csend(0x49);      //Address lower byte 

for(i=0;i<10;i++) 

 I2Csend(write_array[i]);   //write the array to EEPROM 

I2CStop(); 

     //Assert STOP 

for(i=0;i<10;i++) 

{ 

 sprintf(val,"%d",write_array[i]);    //display read data 

Uart0PutS(val); 

 Uart0PutS("\r\n"); 

} 

/* Read Sequence */ 

Uart0PutS("\r\n Reading.....\r\n"); 

I2CStart();        //Assert START 

I2Csend(EEPROM_Addr | I2Cwrite);  //Device address with LSB bit 0 (Dummy Write) 

I2Csend(0x13);      //Address higher byte 

I2Csend(0x49);       //Address lower byte 

I2CStart();       //Assert Restart 

I2Csend(EEPROM_Addr | I2Cread);  //Device address with LSB bit 1 

for(i=0;i<10;i++) 

 read_array[i] = I2Cget();   //Read EEPROM 

I2CStop();       //Assert STOP 

 

 

/*Display Write and Read Data*/ 
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for(i=0;i<10;i++) 

{ 

 sprintf(val,"%d",read_array[i]);    //display read data 

Uart0PutS(val); 

 Uart0PutS("\r\n"); 

} 

while(1);      //stop here forever 

return 0; 

} 

 

4.6 SD CARD INTERFACING WITH LPC2148  

 

4.6.1 Features of SPI Module in LPC2148 

 Single complete and independent SPI controller. 

  Compliant with Serial Peripheral Interface (SPI) specification. 

  Synchronous, Serial, Full Duplex Communication. 

  Combined SPI master and slave. 

  Maximum data bit rate of one eighth of the input clock rate. 

  8 to 16 bits per transfer 

Table 4.15 SPI Pin Description in LPC2148 

Pin Name   Type  Pin Description  LPC2148 Pins 

 SCK0  Input / Output  Serial Clock  P0.4 

 SSEL0   Input  Slave Select  P0.7 

 MISO0   Input / Output  Master In Slave Out  P0.5 

 MOSI0   Input / Output  Master Out Slave In  P0.6 
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Table 4.16 SPI Registers 

Name   Description  Access 

 S0SPCR 
 SPI Control Register. This register controls the operation of 

the SPI. 
 R/W 

 S0SPSR   SPI Status Register. This register shows the status of the SPI. 
 Read 

Only 

 S0SPDR  

 SPI Data Register. This bi-directional register provides the 

transmit and receive data for the SPI. Transmit data is 

provided to the SPI0 by writing to this register. Data received 

by the SPI0 can be read from this register. 

  R/W 

 S0SPCCR  
 SPI Clock Counter Register. This register controls the 

frequency of a master’s SCK0. 
  R/W 

 S0SPINT 
  SPI Interrupt Flag. This register contains the interrupt flag 

for the SPI interface. 
  R/W 

 

SPI Control Register (S0SPCR) 

The S0SPCR register controls the operation of the SPI0 as per the configuration bits setting. 

Table 4.17 SOSPCR Register description 

Bits 15-12 11-8 7 6 5 4 3 2 1 0 

 Sym

bol 

 Reser

ved 

 BI

TS 

 SPI

E 

 LS

BF 

 MS

TR 

 CP

OL 

 CP

HA 

 Bit 

Enab

le 

 

- 

 

- 

Bits Symbol Description 

 0-1  Reserved  - 

 2 
 BIT FIELD 

ENABLE 

0 ;The SPI controller sends and receives 8 bits of data per 

transfer. 

1; The SPI controller  sends and receives the number of 

bits selected by bits  field (11:8) 

 3  CPHA Clock Phase Control 
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 0; The data is sampled on first clock edge 

1; The data is sampled on second clock edge 

 4  CPOL 

 Clock Polarity 

 0; Serial Clock (SCK) is active High 

1; Serial Clock (SCK) is active High 

 5  MSTR 

 Master mode select. 

0; The SPI operates in Slave mode.0 

1 ;The SPI operates in Master mode. 

 6  LSBF 

 LSB First controls which direction each byte is shifted 

when transferred. 

0; SPI data is transferred MSB (bit 7) first. 

1 ;SPI data is transferred LSB (bit 0) first. 

 7  SPIE 

 Serial peripheral interrupt enable. 

0; SPI interrupts are inhibited.0 

1;  A hardware interrupt is generated each time the SPIF 

or WCOL bits are activated 

 11-8  BITS FIELD 

 When bit 2 of this register is 1, this field controls the 

number of bits per transfer: 

 1000 - 8 bits per transfer 

 1001- 9 bits per transfer 

 1010- 10 bits per transfer 

 1011 -11 bits per transfer 

 1100 -12 bits per transfer 

 1101 -13 bits per transfer 

 1110 -14 bits per transfer 

 1111 -15 bits per transfer 

 0000 -16 bits per transfer 

 15-

12 
 RESERVED  Reserved 
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SPI STATUS REGISTER(S0SPSR) 

The S0SPSR register controls the operation of the SPI0 as per the configuration bits setting. 

Table 4.18 SOSPSR Register description 

Bits   7  6  5  4  3  2  1  0 

 Symbol  SPIF  WCOL  ROVR  MODF  ABRT  -  -  - 

Bits   Symbol Description 

 0-2  Reserved  - 

 3 ABRT 

Slave abort.  

When 1, this bit indicates that a slave abort has occurred. This bit 

is cleared by reading this register. 

 4  MODF 

Mode fault.  

when 1, this bit indicates that a Mode fault error has occurred. 

This bit is cleared by reading this register, then writing the SPI 

control register. 

 5  ROVR 

Read overrun. 

When 1, this bit indicates that a read overrun has occurred. This 

bit is cleared by reading this register. 

 6  WCOL 

Write collision.  

When 1, this bit indicates that a write collision has occurred. This 

bit is cleared by reading this register, then accessing the SPI data 

register. 

 7  SPIF 
SPI transfer complete flag.  

When 1, this bit indicates when a SPI data transfer is complete. 

When a master, this bit is set at the end of the last cycle of the 
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transfer. When a slave, this bit is set on the last data sampling 

edge of the SCK. This bit is cleared by first reading this register, 

then accessing the SPI data register. 

 

SPI Data Register (S0SPDR) 

This bi-directional data register provides the transmit and receive data for the SPI.Transmit 

data is provided to the SPI by writing to this register. Data received by the SPI can be read 

from this register. When a master, a write to this register will start a SPI data transfer. Writes 

to this register will be blocked from when a data transfer starts to when the SPIF status bit is 

set, and the status register has not been read. 

Table 4.19 SPI Data Register (S0SPDR) 

Bits   Symbol Description 

 7-0 
 Data 

Low 
  

 15-

8 

Data 

HIGH 

If bit 2 of the SPCR is 1 and bits 11:8 are other than 1000, some or 

all of these bits contain the additional transmit and receive bits. 

When less than 16 bits are  selected, the more significant among 

these bits read as zeroes. 

 

SPI Clock Counter Register (S0SPCCR) 

 This register controls the frequency of a master’s SCK. The register indicates the 

number of PCLK cycles that make up an SPI clock.  

 The value of this register must always be an even number. As a result, bit 0 must 

always be 0.  

 The value of the register must also always be greater than or equal to 8.  

 SPI (SCLK) Frequency = PCLK / SPCCR Value      Max. Freq=1.875 Mhz 

Note:-Violations of this can result in unpredictable behaviour 
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4.6.2 SD Cards 

Digital (SD) cards are removable flash-based storage device SD means ‘secure digital’ and 

MMC means ‘multimedia card.’ You can insert these cards in your media player, PDA or 

digital camera. Their small size, relative simplicity, low power consumption and low cost make 

them an ideal solution for many applications. 

 

Figure 4.13 SD Cards from different manufacturers 

 SD/MMC cards have their own architecture and signals. 

 These are universal low-cost, high-speed data storage cards.  

 MMCs work at 20 MHz, while SD cards work at up to 25 MHz's,  

 The two memories work in two different modes: SD mode and serial peripheral 

interface (SPI). 

 

Figure 4.13 SD card internals 



134 
 

Table 4.20 SD card pin details 

 

 

 

Figure 4.14 SD card Interfacing diagram with LPC2148 

 

SD Memory interfaces to the host point-to-point (in Fig. an ARM microcontroller is the host). 

This type of interfacing is very popular in the industry. In serial peripheral interface (SPI) 

mode, you can use following signals of the host: 
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1. CS: Host to card chip-select signal 

2. CLK: Host to card clock signal 

3. MOSI (master -out slave-in): Host to card single bit data signal 

4. MISO (master - in slave - out ) : Card to host single-bit data signal 

Now many companies are manufacturing suitable hosts for the SD bus interface. 

For example, Philips is manufacturing LPC2148 microcontroller with MOSI and MISO 

 Master-slave mode of communication is used for multiple slave devices in the SD 

architecture.  

 MOSI is a unidirectional signal used to transfer serial data from the master to the slave. 

When the host is master, data can move from the host to the SD card. That’s why MOSI 

is connected to data input (DI) of the SD/MMC card. 

 The MISO signal transfers serial data from the slave to the master. When the SD is a 

slave, serial data is output on MISO signal. When the SD is a master, it clocks in serial 

data from this signal.  

 SD memory cards use 1- or 4-bit bus width and star topology to connect multiple cards, 

while MMC cards use 1-bit bus width and bus topology for reading multiple cards. 

Steps to switch from SD-Bus mode to SPI Bus mode of Operation 

 All communications between the host and the card are controlled by the host. 

 Messages in the spi bus protocol consist of commands, responses and tokens. 

 The card returns a response to every command received and also a data response token 

for every write command 

 The sd card wakes up in sd card mode, and it will enter the spi mode if its cs (chip 

select or slave select) line is held low. When a reset command is sent to the card  

 The card can only be returned to the sd mode after a power down and power up 

sequence then the spi mode is entered.   

 The card is in the non protected mode where CRC checking is not used CRC checking 

can be turned on and off by sending command CRC_on_off command name cmd59  to 

the card.  
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Figure 4.15  Algorithm for R/W operation with SD card  

 

4.6.3 Example Program for SD card Interfacing 

/********************************/ 

           Function for initializing SPI 

/********************************/ 

void spi_init() 

{ 

 PINSEL0=0X00001505;// Select MOSI=P0.6, MISO=P0.5, SCK=P0.4,SSEL=P0.7 

S0SPCCR=0X08; // clock is divided by 8 ( SPI Clock freq = PCLK / S0SPCCR Value) 

S0SPCR=0X0020; // select as master mode 

} 

/********************************/ 

           Function for sending a char 

/********************************/ 

void spi_master(char a) 

{ 

S0SPDR=a;   //write character “a” to be transmitted in S0SPDR 

while(!(S0SPSR & 0X80)); // wait till SPIF=1 i.e., complete transfer of data 

} 

/********************************/ 

           Function for receiving a char 

/********************************/ 
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char spi_slave(void) 

{ 

while(!(S0SPSR & 0X80)); // wait till SPIF=1 i.e., complete reception of data 

 

return S0SPDR; //pick-up received character which is arrived in S0SPDR 

 

} 

4.7 DIGITAL TO ANALOG CONVERTER (DAC)  IN LPC2148 

 LPC2148 has one 10-bit DAC 

 Settling time software selectable  

 DAC output can drive max of 700 micro-Ampere or 350 micro-Ampere 

 DAC peripheral has only one register, DACR 

 

Table 4.21 DAC Register  Pin Description 

 

Pin Type Description 

AOUT Output 

Analog Output. After the selected settling time after the 

DACR is written with a new value, the voltage on this pin (with 

respect to VSSA) is VALUE/1024 * VREF. 

VREF Reference 
Voltage Reference. This pin provides a voltage reference level 

for the D/A converter. 

VDDA, 

VSSA 
Power 

Analog Power and Ground. These should be nominally the 

same voltages as V3 and VSSD, but should be isolated to 

minimize noise and error. 

Table 4.22 Digital to Analog Control Register (DACR)  Description 

31-17 16 15-6 5-0 

Reserved BIAS 10-bit Digital Value Reserved 

Bit Symbol Value Description 
Reset 

value 
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5:0 -   

Reserved, user software should not write ones 

to reserved NA bits. The value read from a 

reserved bit is not defined. 

NA 

15:6 VALUE   

After the selected settling time after this field 

is written with a 0 new VALUE, the voltage 

on the AOUT pin (with respect to VssA) is 

VALUE/1024 * VREF. 

0 

16 BIAS 

0 
The settling time of the DAC is 1 µs max, and 

the maximum current is 700 µA. 
0 

1 
The settling time of the DAC is 2.5 µs and the 

maximum current is 350 µA. 
  

31:17 -   

Reserved, user software should not write ones 

to reserved NA bits. The value read from a 

reserved bit is not defined. 

NA 

 

4.7.1 DAC Design Example 

Configure DAC register for generating with 3.3V VREF & Select 350 micro AMPERE settling 

time. 

1. 0V, 

2. 1.65V, 

3. 3.3V  

Note: AOUT= VREF * (10 bit Digital Value/Resolution) 

Solution: 

1. DACR = 0x00010000;     //AOUT = 0V 

2. DACR  =  0x00018000;     //AOUT = 1.65V 

3. DACR = 0x0001FFC0;      //AOUT = 3.3 V 
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Figure 4.16 Configuring internal DAC of LPC2148  

 

4.7.2 C-Program for Sine Waveform Generation using DAC in LPC2148 

#include <lpc214x.h> 

#include <stdint.h> 

void delay_ms(uint16_t j) 

{ 

   uint16_t x,i; 

for(i=0;i<j;i++) 

 { 

   for(x=0; x<6000; x++);    /* loop to generate 1 milisecond delay with Cclk = 60MHz */ 

 } 

} 

 

int main (void) 

{ 

 uint16_t value; 
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uint8_t i; 

 i = 0; 

 PINSEL1 = 0x00080000; /* P0.25 as DAC output */ 

uint16_t sin_wave[42] = { 

512,591,665,742,808,873,926,968,998,1017,1023,1017,998,968,926,873,808,742,665,591,51

2, 

             436,359,282,216,211,151,97,55,25,6,0,6,25,55,97,151,211,216,282,359,436 }; 

while(1) 

 {   

   while(i !=42) 

    { 

     value = sin_wave[i]; 

     DACR = ( (1<<16) | (value<<6) );///Bias bit=1, Digital Value left shifted by 6 bits 

    delay_ms(1); 

     i++; 

    } 

    i = 0; 

  } 

}   

4.7.3 C-code for Triangular Waveform Generation 

#include <lpc214x.h> 

#include <stdint.h> 

void delay_ms(uint16_t j) 

{ 

   uint16_t x,i; 

for(i=0;i<j;i++) 

 { 

   for(x=0; x<6000; x++);    /* loop to generate 1 milisecond delay with Cclk = 60MHz */ 

 } 

} 

 

int main (void) 

{ 

 uint16_t value; 

uint8_t i; 

 i = 0; 

 PINSEL1 = 0x00080000; /* P0.25 as DAC output */ 

while(1) 

 {   

    value = 0; 

   while ( value != 1023 ) 

    { 
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     DACR = ( (1<<16) | (value<<6) ); 

     value++; 

    } 

   while ( value != 0 ) 

    { 

     DACR = ( (1<<16) | (value<<6) ); 

     value--; 

    } 

  } 

  

} 

4.7.4 C-Program for Square Waveform Generation 

#include <lpc214x.h> 

#include <stdint.h> 

void delay_ms(uint16_t j) 

{ 

   uint16_t x,i; 

for(i=0;i<j;i++) 

 { 

   for(x=0; x<6000; x++);    /* loop to generate 1 milisecond delay with Cclk = 60MHz */ 

 } 

} 

 

int main (void) 

{ 

 uint16_t value; 

uint8_t i; 

 i = 0; 

 PINSEL1 = 0x00080000; /* P0.25 as DAC output */ 

while(1) 

 {   

    value = 1023; 

    DACR = ( (1<<16) | (value<<6) ); 

    delay_ms(100); 

    value = 0; 

    DACR = ( (1<<16) | (value<<6) ); 

    delay_ms(100); 

 } 

} 
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Exercise Questions 

 

1. Mention the key specifications of LPC2148 ARM processor. 

2. How many I/O devices can be connected to LPC2148 by using UART interface? 

3. Mention the four logic signals used in SPI protocols 

4. Outline the logic signals used in I2C protocol. 

5. Contrast SPI and I2C protocol. 

6. Outline the role of shift register in master slave devices of SPI bus. 

7. Give the specifications of on-chip DAC in LPC2148 processor. 

8. Contrast GSM and GPS modems. 

9. Design a circuit with LPC2148 ARM processor and develop a C code to measure the 

intensity of ambient light and temperature and automatically control a AC lamp. 

10. Design a circuit with LPC2148 ARM processor and develop a C code to read an analog 

voltage and convert it to equivalent digital value. 

11. Design a circuit with LPC2148 ARM processor and develop a C code to generate a 

triangular waveform with a frequency of 1KHz using the DAC module. 

12. Design a circuit with LPC2148 ARM processor and a GSM modem to control an 

agriculture water pump-set, by sending SMS from a mobile phone. 

13. Design a circuit with LPC2148 ARM processor and develop a C code to read data from 

EEPROM using I2C protocol.   

14. Develop a system model for a real-time data acquisition and logging system with SD 

card storage unit. 
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5.1 ARM Architecture classification 

The ARM architecture processor is an advanced reduced instruction set computing 

[RISC] machine and it’s a 32bit reduced instruction set computer (RISC). It was introduced 

by the Acron computer organization in 1987. Several Chip manufacturers started making 

microcontrollers using the ARM architecture for the CPU core and adding their own 

peripheral devices to it. They are called as ARM microcontrollers. This ARM family of 

microcontroller are developed by makers like ST Microelectronics, Motorola, NXP and so 

on. The relative simplicity of ARM processors makes them suitable for low power 

applications. As a result, they have become dominant in the mobile and embedded electronics 

market, as relatively low-cost, small microprocessors and microcontrollers. ARM processors 

account for approximately 90% of all embedded 32-bit RISC processors and are used 

extensively in consumer electronics, including personal digital assistants (PDAs), tablets, 

mobile phones, digital media and music players, hand-held game consoles, calculators and 

computer peripherals such as hard drives and routers.  

The ARM architecture comes with totally different versions like ARMv1, ARMv2, 

etc., (shown in figure 5.1) and each one has its own advantage and disadvantages. Some years 

ago, ARM has launched a new generation of its core identified by the name: CORTEX. 

 

Figure 5.1 ARM Processor families 
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5.2 ARM Cortex Series Processors  

The ARM® Cortex® series of cores encompasses a very wide range of scalable 

performance options offering designers a great deal of choice and the opportunity to use the 

best-fit core for their application without being forced into a one-size-fits-all solution. The 

Cortex portfolio is split broadly into three main categories:  

 Cortex-A -- application processor cores for a performance-intensive systems  

 Cortex-R – high-performance cores for real-time applications  

 Cortex-M – microcontroller cores for a wide range of embedded applications 

demanding low lost with optimum performance 

5.2.1 Cortex-A Series 

Cortex-A processors provide a range of solutions for devices that make use of a rich 

operating system such as Linux or Android and are used in a wide range of applications from 

low-cost handsets to smartphones, tablet computers, set-top boxes and also enterprise 

networking equipment. The first range of Cortex-A processors (A5, A7, A8, A9, A12, A15 

and A17) is based on the ARMv7-A architecture. Each core shares a common feature set 

including items such as the NEON media processing engine, Trustzone for security 

extensions, and single- and double-precision floating point support along with support for 

several instruction sets (ARM, Thumb-2, Thumb, Jazelle and DSP). Together this group of 

processors offers design flexibility by providing the required peak performance points while 

delivering the desired power efficiency. While the Cortex-A5 core is the smallest and lowest 

power member of the Cortex A series, it offers the possibility of multicore performance and 

is compatible with the larger members of the series (A9 and A15). The A5 is a natural choice 

for designers who have previously worked with the ARM926EJ-S or ARM1176JZ-S 

processors as it enables higher performance and lower silicon cost.  

The Cortex-A7 is similar in power consumption and area to the Cortex-A5 but brings 

a performance increase in the range of 20 percent as well as full architectural compatibility 

with the Cortex-A15 and Cortex-A17. The Cortex-A7 is an ideal choice for cost-sensitive 

smartphone and tablet implementations, and it can also be combined with a Cortex-A15 or 

Cortex-A17 in what ARM refers to as a “big.LITTLE” processing configuration.  

The big.LITTLE configuration is essentially a power optimization technology; a high-

performance CPU (e.g., Cortex-A17) and an ultra-efficient CPU (e.g., Cortex-A7) are 

combined to provide higher sustained performance and also to enable significant overall 

power savings by relying on the more efficient core in cases of low to moderate performance 
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requirements from the application, saving potentially 75 percent of CPU energy and as such 

extending battery life. This configuration offers a significant advantage to the developer as 

the performance demands of smartphones and tablets is advancing much faster than the 

capacity of batteries can keep pace.  

Design methodologies such as big.LITTLE, as part of an overall system design 

strategy, can significantly help reduce this battery technology gap. Moving to the other end of 

the Cortex-A scale, let’s consider the Cortex-A15 and Cortex-A17 cores. These are both very 

high-performance processors and again are available in a variety of configurations. The 

Cortex-A17 is the most efficient “mid-range” processor, and it squarely targets premium 

smartphones and tablets. The Cortex-A9 has been widely deployed in that market, but the 

Cortex-A17 offers an increase of more than 60percent (cycle for cycle) compared to the 

Cortex-A9 and achieves this performance while also improving overall power efficiency. The 

Cortex-A17 can be configured with up to four cores, each of which contains a fully out-of-

order pipeline. As mentioned previously, the Cortex-A17 can be combined with the Cortex-

A7 for an effective big.LITTLE configuration, and it can also be combined with high-end 

mobile graphics processors (such as the MALI from ARM), resulting in a very efficient 

design overall. The Cortex-A15 is the highest performance member of this series, providing 

(in a mobile configuration) twice the performance you would get from a Cortex-A9. While 

being perfectly adequate in applications such as high-end smartphones or tablets, a multi-core 

Cortex-A15 processor running at 2.5 GHz opens up the possibility of using a Cortex-A 

processor in applications such as low-power servers or wireless infrastructure.  

The Cortex-A15 is the first processor from ARM to incorporate hardware support for 

data management and arbitration of virtualized software environments. Applications in those 

software environments are able to simultaneously access the system capabilities, making it 

possible to implement devices with virtual environments that are robust and isolated from 

each other. The latest additions – the Cortex-A50 series – extend the reach of the Cortex-A 

series into low-power servers. These processors are built on the ARMv8 architecture and 

bring with them support for AArch64 – an energy-efficient 64-bit execution state that can 

operate alongside the existing 32-bit execution state. An obvious reason for the move to 64-

bit is the support of more than 4GB of physical memory, which is already achieved on 

Cortex-A15 and Cortex-A7. In this case, the move to 64-bit is really about providing better 

support for server applications where a growing number of operating system and application 

implementations are using 64-bit, and the Cortex-A50 series delivers a power optimized 

solution for this scenario. The same is largely true for the desktop market, and support for 64-

bit will enable the CortexA50 series to be more broadly adopted into this segment and will 
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provide some level of future-proofing for the eventual migration of 64-bit operating systems 

into mobile applications. 

 5.2.2 Cortex-R Series 

The Cortex-R processors target high-performance real-time applications such as hard 

disk controllers (or solid state drive controllers), networking equipment and printers in the 

enterprise segment, consumer devices such as Blu-ray players and media players, and also 

automotive applications such as airbags, braking systems and engine management. The 

Cortex-R series is similar in some respects to a high-end microcontroller (MCU) but targets 

larger systems than you would typically use a standard MCU. The Cortex-R4, for example, is 

well suited for automotive applications. It can be clocked up to 600 MHz (delivering 2.45 

DMIPS/MHz), has an 8-stage pipeline with dual-issue, pre-fetch and branch prediction and a 

low latency interrupt system that can interrupt multi-cycle operations to quickly serve the 

incoming interrupt. It can also be implemented in a dual-core configuration with the second 

Cortex-R4 being in a redundant lock-step configuration with logic for fault detection making 

it ideal for safety critical systems. 

  Networking and data storage applications are well served by the Cortex-R5, which 

extends the feature set offered by the Cortex-R4 to offer increased efficiency and reliability 

and enhance error management in dependable real-time systems. One such system-level 

feature is the low latency peripheral port (LLPP) to enable fast peripheral reads and writes 

(instead of having to perform a read-modify-write on the entire port). The Cortex-R5 can also 

be implemented as a “lock-step” dual-core system with the processors running independently, 

each executing its own programs with its own bus interfaces, and interrupts. This dual-core 

implementation makes it possible to build very powerful, flexible systems with real-time 

responses. The Cortex-R7 significantly extends the performance reach of the series, with 

clock speeds in excess of 1 GHz and a performance of 3.77 DMIPS/MHz. 

The 11-stage pipeline on the Cortex-R7 now adds out-oforder execution along with 

improved branch prediction. There are several options for multi-core implementations as 

well: lock-step, symmetric multi-processing and asymmetric multi-processing. The Cortex-

R7 also has a fully integrated generic interrupt controller (GIC) supporting complex priority-

based interrupt handling. It is worth noting, however, that despite its high-performance levels, 

the Cortex-R7 is it not suitable for running rich operating systems (such as Linux and 

Android), which remains the domain of the Cortex-A series.  
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5.2.3 Cortex-M Series 

The Cortex-M series is designed specifically to target the already very crowded 

microcontroller unit (MCU) market. The Cortex-M series is built on the ARMv7-M 

architecture (used for Cortex-M3 and Cortex-M4), and the smaller Cortex-M0+ is built on the 

ARMv6-M architecture. The first Cortex-M processor was released in 2004, and it quickly 

gained popularity when a few mainstream MCU vendors picked up the core and started 

producing MCU devices. It is safe to say that the Cortex-M has become for the 32-bit world 

what the 8051 is for the 8-bit – an industry-standard core supplied by many vendors, each of 

which dip the core in their own special sauce to provide differentiation in the market. The 

Cortex-M series can be implemented as a soft core in an FPGA, for example, but it is much 

more common to find them implemented as MCU with integrated memories, clocks and 

peripherals. Some are optimized for energy efficiency, some for high performance and some 

are tailored to a specific market segment such as smart metering. The Cortex-M3 and Cortex-

M4 are very similar cores. Each offers a performance of 1.25 DMIPS/MHz with a 3-stage 

pipeline, multiple 32-bit busses, clock speeds up to 200 MHz and very efficient debug 

options. The significant difference is the Cortex-M4 core’s capability for DSP. The Cortex-

M3 and Cortex-M4 share the same architecture and instruction set (Thumb-2). However, the 

Cortex-M4 adds a range of saturating and SIMD instructions specifically optimized to handle 

DSP algorithms.  

For example, consider the case of a 512 point FFT running every 0.5 second on 

equivalent off-the-shelf Cortex-M3 and Cortex-M4 MCUs. For comparison, the Cortex-M3 

would consume around three times the power that a Cortex-M4 would need for the same job. 

There is also the option to get a single precision floating point unit (FPU) on a Cortex-M4. If 

your application requires floating point math, you will get this done considerably faster on a 

Cortex-M4 than you will on a Cortex-M3. That said, for an application that is not using the 

DSP or FPU capabilities of the Cortex-M4, you will see the same level of performance and 

power consumption on a Cortex-M3. In other words, if you need DSP functionality, go with a 

Cortex-M4. Otherwise, the Cortex-M3 will do the job. For applications that are particularly 

cost sensitive or are migrating from 8-bit to 32-bit, the smallest member of the Cortex-M 

series might be the best choice. The Cortex-M0+ performance sits a little below that of the 

Cortex-M3 and Cortex-M4 at 0.95 DMIPS/MHz but is still compatible with its bigger 

brothers. The Cortex-M0+ uses a subset of the Thumb-2 instruction set, and those 

instructions are predominantly 16- bit operands (although all data operations are 32-bit), 

which lend themselves nicely to the 2-stage pipeline that the Cortex-M0+ offers. This brings 

some overall power saving to the system through reduced branch shadow, and the pipeline 

will in most cases hold the next four instructions. The Cortex-M0+ also has a dedicated bus 
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for single-cycle GPIO, meaning you can implement certain interfaces with bit-bashed GPIO 

like you would on an 8-bit MCU but with the performance of a 32-bit core to process the 

data.  

Another key difference on the Cortex-M0+ is the addition of the micro trace buffer 

(MTB). This peripherals allows you to dedicate some of the on-chip RAM to store program 

branches while in debug.– These branches can then be passed back up to the integrated 

development environment (IDE), and the program flow can be reconstructed. This capability 

provides a rudimentary form of instruction trace and compensates for not having the extended 

trace macrocell (ETM) found on the Cortex-M3 and Cortex-M4. The level of debug 

information you can extract from a Cortex-M0+ is significantly higher than that which you 

can get from an 8-bit MCU, meaning those hard to solve bugs just got easier to fix. 

Table 5.1 Comparison of Cortex-M and Cortex-R series 
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Table 5.2 Comparison of Cortex-M and Cortex-R series 

 

Applications of ARM Cortex Series Processors 

 

 The cortex-A stands for Application which will help in performance-intensive 

applications such as Android, Linux and many other applications related to handsets, 

tablets, desktops and laptops. 

 The Cortex-R stands for the real-time application which is used in the safety-critical 

applications and where we need real-time responses of the system such as 

Automotive, medical, defence, avionics and server-side technologies where data 

related operations are executed. 

 The Cortex-M stands for the Microcontroller which is used in most of our daily life 

applications also starting from the automation to DSP applications, sensors, smart 

displays, IoT applications and many more. The cortex-M series is an ocean of 

possibilities with a large number of probabilities and configurations.  

 

5.2 ARM Cortex-M3 processor 

The idea behind the Cortex-M3 architecture was to design a processor for cost-

sensitive applications while providing high-performance computing and control1. These 

applications include automotive body systems, industrial control systems and wireless 

networking/sensor products. The M3 series introduced several important features to the 32-bit 

ARM processor architecture including:  
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• Non-maskable interrupts 

 • Highly-deterministic, nested, vectored interrupts  

• Atomic bit manipulation 

 • Optional memory protection (MPU) In addition to excellent computational performance, 

the Cortex-M3 processor’s advanced interrupt structure ensures prompt system response to 

real-world events while still offering low dynamic and static power consumption. 

The Cortex-M3 and M4 processors share many common elements including advanced 

on-chip debug features, 3-stage pipeline and the ability to execute the full ARM instruction 

set or the subset used in THUMB2 processors. The Cortex-M4 processor’s instruction set is 

enhanced by a rich library of efficient DSP features including extended single-cycle cycle 

16/32-bit multiply-accumulate (MAC), dual 16-bit MAC instructions, optimized 8/16-bit 

SIMD arithmetic and saturating arithmetic instructions. Overall, the most noticeable 

difference between M3 and M4 is the optional single-precision (IEEE-754) Floating Point 

Unit (FPU) available with the M4. So Cortex-M4 processor core is best for digital signal 

processing applications. 

 

Figure 5.2 Cortex-M3 and Cortex-M4 Comparison 
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Features of ARM Cortex-M3 core 

 Armv7-M architecture 

 Bus interface 3x AMBA AHB-lite interface (Harvard bus architecture) AMBA ATB 

interface for CoreSight debug components 

 Thumb/Thumb-2 subset instruction support 

 3-stage pipeline 

 Nested Vectored Interrupt Controller (NVIC) 

 Optional 8 MPU regions with sub-regions and background region 

 Integrated Bit-field Processing Instructions and Bus Level Bit Banding 

 Non-maskable interrupt + 1 to 240 physical interrupts with 8 to 256 priority levels 

 Wake-up interrupt controller 

 Hardware single-cycle (32x32) multiply, Hardware Divide (2-12 cycles), Saturated 

Adjustment support 

 Integrated WFI and WFE Instructions and Sleep On Exit capability. Sleep and Deep 

Sleep Signal, Optional Retention Mode with Arm Power Management Kit 

 Optional JTAG and Serial Wire Debug ports. Up to 8 breakpoints and 4 watchpoints 

 Optional Instruction (ETM), Data Trace (DWT), and Instrumentation Trace (ITM) 

 

5.3 Product Development with STM32 Cortex-M3 Microcontrollers 

Figure 5.3 below shows the steps involved in converting ideas to product using the 

STM32 series microcontrollers. The first step is to identify a suitable STM32 microcontroller 

or STM32 development board that has inbuilt peripherals needed by the application 

 

Figure 5.3 Product Development steps with STM32 microcontroller series 
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5.3.1 Choosing STM32 Microcontrollers/Boards 

Select from the broad range of development boards available in the market for 

developing your applications. 

 

Figure 5.4 STM32 Development Boards 

5.3.2 STM32 software Development Tools 

STMicroelectronics' STM32 family of 32-bit ARM Cortex-M core-based 

microcontrollers is supported by a wide range of software integrated development 

environments (IDEs) with C, C++, Pascal and JAVA support and debuggers from 

STMicroelectronics and major 3rd-parties (free versions are available) that are complemented 

by tools from ST allowing to configure and initialize the MCU or monitor its behavior in run 

time. The popular IDE for STM32 processors are STM32Cube, mBED, Keil, Arduino IDE, 

Eclipse in Linux and emIDE. The code/memory optimization level and code portability 

achieved with different STM32 software tools is illustrated in figure 5.5. 

5.3.3 STM32 Firmware Library 

STM32 firmware library The STM32 firmware library provides easy access to all 

features of the standard device peripherals of the STM32. This free software package 

provides drivers for all standard device features and peripherals, from GPIO and timers to 

CAN, I2 C, FSMC, I2 S, SDIO, DAC, SPI, UART, ADC and more. The fully documented 

and tested C source code requires only basic knowledge of C programming, is compatible 

with any C compiler for ARM-core-based microcontrollers.  
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Figure 5.5 Performance of different STM32 Software Development Tools  

5.4 Need for Operating System in Embedded Applications 

For each embedded product, software developers need to consider whether they need 

an operating system; and if so, what type of an OS. Operating systems vary considerably, 

from real-time operating systems with a very small memory footprint to general-purpose 

OSes such as Linux with a rich set of features. 

Choosing a proper type of operating system for your product – and consequently working out 

the required features of the embedded processor – depends significantly on whether you face 

a hard real-time requirement. Safety-critical and industrial systems such as an anti-lock 

braking system or motor control will have hard maximum response times. At the other end 

of the spectrum, consumer systems such as audio or gaming devices may be able to tolerate 

buffering, as long as the average performance is adequate. Such systems are said to have soft 

real-time requirements. 

Bare metal 

A hard real-time requirement can be achieved by writing so called bare-metal 

software that directly controls the underlying hardware. Bare-metal programming is typically 

utilized when the processor resources are very limited, the software is simple enough, and/or 

the real-time requirements are so tight that introduction of a further abstraction layer would 

complicate meeting these hard real-time requirements. The disadvantage to this approach is 
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that such bare-metal software needs to be written as a single task (plus interrupt routines), 

making it difficult for programmers to maintain the software as its complexity grows. 

Real-time operating systems 

When dealing with more complex embedded software, it is often advantageous to 

employ a Real-Time Operating System (RTOS). It allows the programmer to split the 

embedded software into multiple threads whose execution is managed by the small, low-

overhead “kernel” of the RTOS. The use of the multi-threaded paradigm enables developers 

to create and maintain more complex software while still allowing for a sufficient reactivity. 

RTOSes typically operate with a concept of “priority” assigned to individual threads. The 

RTOS can then “pre-empt” (temporarily halt) lower-priority threads in favor of those with 

higher priority, so that the required real-time constraints can be met. The use of an RTOS 

often becomes necessary when adopting complex libraries or protocol stacks (such as TCP/IP 

or Bluetooth) as this third-party software normally consists of multiple threads already. 

Today there is a wide choice of open source and commercially licensed RTOSes. 

The embedded processor requirements of a simple RTOS, such as FreeRTOS or 

Zephyr, are truly modest. It is sufficient to have a RISC-V processor with just machine mode 

(M) and a timer peripheral. These RTOSes can therefore run on any of the Codasip RISC-V 

cores or Western Digital SweRV Cores. However, rigorous software development is needed 

as machine mode offers unconstrained access to all memory and peripherals with associated 

risks. Extra protection is possible through a specialized RTOS such as those developed for 

functional safety, like SAFERTOS, or for security. 

If a processor core supports both machine (M) and user (U) privilege modes and has 

physical memory protection (PMP), it is possible to establish separation between trusted code 

(with unconstrained access) and other application code. With PMP, the trusted code sets up 

rules for each portion of the application code, saying which parts of memory (or peripherals) 

it is allowed to access. PMP can for instance be used to prevent third-party code from 

interfering with the data of the rest of the application, or to detect stack overflows. 

Employing PMP therefore increases the safety and security of a system, but at the cost of 

additional hardware required for its support. 

Rich operating systems 

For applications requiring a more advanced user interface, sophisticated I/O and 

networking, such as in set-top boxes or entertainment systems, an RTOS is likely to be too 

simplistic. The same applies if there are complex computations, requirements for a full 

process isolation and multitasking, filesystem & storage support, or a full separation of 



 

156 
 

application code from hardware via device drivers. Systems like these generally have soft 

real-time requirements and can be best served by a general-purpose rich operating system 

such as Linux. As noted in an earlier post, Linux requires multiple RISC-V privilege modes – 

machine, supervisor, and user modes (M, S, U) – as well as a memory management unit 

(MMU) for virtual-to-physical address translation. Also, the memory footprint of such system 

is significantly larger compared to a simple RTOS. 

Finally, for embedded systems that require both hard real-time responses and features 

of a rich operating system like Linux, it is common to design them with two communicating 

processor subsystems, one supporting an RTOS and the other running Linux. 

5.5 Survey of ARM Cortex-M3 based Microcontrollers 

Chip Manufactures like ST Microelectronics, NXP, Motorola, Stellaris, Texas 

Instruments are manufacturing several microcontrollers using the ARM Cortex-M3 core and 

adding their own choice peripherals. Features of few of them is discussed in this section. 

5.5.1 NXP LPC1345 32bit ARM Microcontroller 

The LPC1345FHN33 is an Arm Cortex-M3 based microcontroller for embedded 

applications featuring a high level of integration and low power consumption. The Arm 

Cortex-M3 is a next generation core that offers system enhancements such as enhanced 

debug features and a higher level of support block integration. The LPC1345FHN33 operates 

at CPU frequencies of up to 72 MHz. The Arm Cortex-M3 CPU incorporates a 3-stage 

pipeline and uses a Harvard architecture with separate local instruction and data buses as well 

as a third bus for peripherals. The Arm Cortex-M3 CPU also includes an internal prefetch 

unit that supports speculative branching. 

Features of NXP LPC1345 features 

 Arm Cortex-M3 processor, running at frequencies of up to 72 MHz 

 32 kB on-chip flash program memory with a 256 byte page erase function 

 In-System Programming (ISP) and In-Application Programming (IAP) 

 2 kB on-chip EEPROM data memory with on-chip API support 

 10 kB SRAM data memory 

 16 kB boot ROM with API support 

 26 General Purpose I/O (GPIO) pins 

 Four general purpose counter/timers 

 Programmable Windowed WatchDog Timer (WWDT) 
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 2-bit ADC with eight input channels and sampling rates of up to 500 kSamples/s 

 USB 2.0 full-speed device controller and I2C bus 

 USART with fractional baud rate generation 

5.5.2 ST STM32F102/103 32bit ARM Microcontroller 

The STM32 family of 32-bit Flash microcontrollers is based on the breakthrough 

ARM Cortex-M3 core – a core specifically developed for embedded applications that require 

a combination of high-performance, realtime, low-power and low-cost operation. The STM32 

family benefi ts from the Cortex-M3 architectural enhancements (including the Thumb-2® 

instruction set) that deliver improved performance combined with better code density, and a 

tightly coupled nested vectored interrupt controller that significantly speeds response to 

interrupts, all combined with industry-leading power consumption. STMicroelectronics was a 

lead partner in developing the Cortex-M3 core and is now the first leading MCU supplier to 

introduce a product family based on the core. 

The STM32 also embeds a real-time clock (RTC) running either from a 32 kHz quartz 

oscillator or an internal RC oscillator. The RTC has a separate power domain, with an 

embedded switchover to run either from a dedicated coin cell battery or from the main 

supply. Its typical current consumption is 1.4 µA at 3.3 V. It embeds up to 84 bytes for data 

backup. Start-up time from low-power modes is lower than 6 µs typical from stop mode, and 

50 µs typical from standby mode and reset.  

 

Hardware features of STM32F102 and F103 series 

 2x USB OTG (one with HS support) 

 Audio: dedicated audio PLL and 2 half duplex I²S 

 Up to 15 communication interfaces (including 6 USARTs running at up to 7.5 Mbit/s, 

3x SPI running at up to 30 Mbit/s, 3x I²C, 2x CAN, SDIO) 

 Analog: two 12-bit DACs, three 12-bit ADCs reaching 2 MSPS or 6 MSPS in 

interleaved mode 

 Up to 17 timers: 16- and 32-bit timers 

 The STM32F205/215 devices cover from 128 Kbytes to 1 MByte of Flash, up to 128 

Kbytes of SRAM 

 

Performance Limits of STM32F10x series microcontrollers 

 

 Low voltage 2.0 V to 3.6 V operation  

 Clock Frequency - 72 MHz 
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 Startup time from stop < 6 µs  

 Startup time from standby 50 µs 

 USB - 12 Mbit/s  

 USART up to 4.5 Mbit/s  

 SPI - 18 MHz master and slave 

 I2C - 400 kHz  

 GPIO 18 MHz maximum toggle  

 PWM timer 72 MHz clock input 

 SDIO Up to 48 MHz  

 I2S From 8 kHz to 48 kHz sampling frequencies 

 ADC 12-bit, 1 µs conversion time 

 DAC 2-channel, 12-bit 

 

5.6 Firmware Development for STM32Fxxx ARM Cortex Microcontroller 

An alternative to Arduino is the STM32F103C8T6 microcontroller-based development board, 

which is often called as the Blue Pill (Matrix reference). This microcontroller is based on 

ARM Cortex-M3 Architecture manufactured by STMicroelectronics. STM32F103C8T6 is a 

very powerful Microcontroller and with its 32-bit CPU, it can easily beat Arduino UNO in 

performance. As an added bonus, you can easily program this board using your Arduino IDE 

(although with some tweaks and additional programmer i.e. USB to USART converter). 

Coming to the Blue Pill board itself, you get the board and two male header strips for you to 

solder on to the board. 

 

Figure 5.6 STM Blue Pill Board 

The other features of the board are as follows: 

 It contains the main MCU – the STM32F103C8T6 in a Quad Flat Package. 
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 A Reset Switch – to reset the Microcontroller. 

 microUSB port – for serial communication and power. 

 BOOT Selector Jumpers – BOOT0 and BOOT1 jumpers for selecting the booting 

memory. 

 8 MHz Crystal – Main Clock for MCU and 32.768KHz Oscillator – RTC Clock. 

 3.3V regulator (on the bottom) – converts 5V to 3.3V for powering the MCU. 

On either long edge of the board, there are pins for connecting various Analog and Digital IO 

and Power related stuff. The following image shows the pin configuration of the board along 

with different functions supported by each pin. 

 

Figure 5.7 Pin layout of STM32 Bluepill Board 

5.6.1 Programming STM32F103C8T6 Blue Pill Board using Arduino IDE 

 Install Arduino IDE. After that open your Arduino IDE and select File -> Preferences. 

You will find a tab called “Additional Boards Manager URLs”. Copy the following 

link and paste it there as shown in figure. 



 

160 
 

“https://github.com/stm32duino/BoardManagerFiles/raw/master/STM32/package_s

tm_index.json” 

 

Figure 5.8 Entering Board URL in Arduino IDE 

Now, go to Tools -> Board -> Board Manager… option and search for “stm32”. You will get 

a result like “STM32 Cores by STMicroelectronics”. This will take some time as it will 

download and install some of the necessary files and tools.  

 

Figure 5.8 Installing STM32 Library in Arduino IDE  
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Now you can select the board from Tools -> Board -> Generic STM32F1 series. Once you 

select this board, a bunch of options will appear below for customizing your board type. The 

first important option is “Board part number”. Make sure that “BluePill F103C8” is selected. 

 

Figure 5.9 Selecting STM32 board  for Programming 

The other important options are “U(S)ART support”, make it as “Enabled (generic ‘Serial’)” 

and “Upload method”, make its as “STM32CubeProgrammer (Serial)”. You can leave the 

remaining options as their default values. 

Write the Blinky program as follows. It is similar to the Arduino Blinky sketch but instead if 

LED_BUILTIN, I have used PC13 as the LED is connected to that pin of the MCU. 

After this, you can click on Upload and the IDE will start compiling the code. It will take 

some time for compiling. Once the compilation is successful, it will automatically invoke the 

STM32CubeProgrammer tool. If everything goes well, the IDE will successfully program the 

STM32 Board. 
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Code 

void setup() { 

    pinMode(PC13, OUTPUT); 

} 

void loop() { 

  digitalWrite(PC13, HIGH); 

  delay(1000); 

  digitalWrite(PC13, LOW); 

  delay(1000);            

} 

 

 

Figure 5.10 Writing the Code for STM32 in Arduino IDE 
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It will automatically reset the MCU and you can notice the LED blinking. Don’t forget to 

move the BOOT0 pins back to LOW position so that the next time you power-on the board, it 

will start running the previously uploaded program. 
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Exercise Questions 

 

1. Identify four applications for which ARM cortex-A processor is best   suited. 

2. Identify four applications for which ARM cortex-R processor is best suited. 

3. Outline the key features of Cortex-M ARM processor family. 

4. Mention two microcontrollers that are based on Cortex-M architecture. 

5. List the any four operating systems that can be used with ARM processors. 

6. Outline the key benefits of developing OS based embedded systems compared to bare 

metal embedded systems. 

7. Distinguish firmware and software. 

8. Contrast BIOS firmware and EFI firmware. 

9. Discuss on the evolution of ARM Processor Architectures. 

10. Illustrate the functional architecture of ARM Cortex-M3 32-bit processor and outline 

the functions of each modules. 

11. Compare and contrast CORTEX-A, CORTEX-M, CORTEX-R processors. 

12. Discuss the importance and applications of on-chip embedded In-circuit emulators 

(ICE) in ARM cortex processors 

13. Exempifly the different stages of embedded system development process with a flow 

chart. 

 

 

 

 


