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COMPUTER ARCHITECTURE AND OPERATING SYSTEM – SECA3004



UNIT.1 INTRODUCTION 

Central Processing Unit - Introduction - General Register Organization - Stack organization -- 

Basic computer Organization - Computer Registers - Computer Instructions - Instruction Cycle. 

Arithmetic, Logic, Shift Microoperations- Arithmetic Logic Shift Unit -Example Architectures: 

MIPS, Power PC, RISC, CISC 

 

Central Processing Unit 

The part of the computer that performs the bulk of data-processing operations is called the central 

processing unit CPU. The CPU is made up of three major parts, as shown in Fig.1  

 

Fig 1. Major components of CPU. 

 The register set stores intermediate data used during the execution of the instructions. 

 The arithmetic logic unit (ALU) performs the required microoperations for executing the 

instructions.  

 The control unit supervises the transfer of information among the registers and instructs 

the ALU as to which operation to perform. 

General Register Organization 

When a large number of registers are included in the CPU, it is most efficient to connect 

them through a common bus system. The registers communicate with each other not only for direct 

data transfers, but also while performing various microoperations. 



 Hence it is necessary to provide a common unit that can perform all the arithmetic, logic, 

and shift microoperations in the processor. A bus organization for seven CPU registers is shown 

in Fig.2. 

 The output of each register is connected to two multiplexers (MUX) to form the two buses A 

and B. 

 The selection lines in each multiplexer select one register or the input data for the particular 

bus. The A and B buses form the inputs to a common arithmetic logic unit (ALU). 

 

Fig 2 Register set with common ALU. 



 The operation selected in the ALU determines the arithmetic or logic microoperation that is to 

be performed. The result of the microoperation is available for output data and also goes into 

the inputs of all the registers. The register that receives the information from the output bus is 

selected by a decoder. The decoder activates one of the register load inputs, thus providing a 

transfer path between the data in the output bus and the inputs of the selected destination 

register. 

 The control unit that operates the CPU bus system directs the information flow through the 

registers and ALU by selecting the various components in the system.  

 For example, to perform the operation 

R 1 <--R2 + R3 

1. MUX A selector (SELA): to place the content of R2 into bus A. 

2. MUX B selector (SELB): to place the content o f R 3 into bus B. 

3. ALU operation selector (OPR): to provide the arithmetic addition A + B. 

4. Decoder destination selector (SELD): to transfer the content of the output bus into R 1. 

The four control selection variables are generated i n the control unit and must be available at the 

beginning of a clock cycle. 

Control Word 

There are 14 binary selection inputs in the unit, and their combined value specifies a control 

word. The 14-bit control word is defined in Fig. 4. 

 

Fig 4. Control Word Format 

TABLE 1 Encoding of Register Selection Fields 



 

The encoding of the register selections is specified in Table 1. The 3-bit binary code listed 

in the first column of the table specifies the binary code for each of the three fields. The register 

selected by fields SELA, SELB, and SELD is the one whose decimal number is equivalent to the 

binary number in the code. When SELA or SELB is 000, the corresponding multiplexer selects 

the external input data. When SELD = 000, no destination register is selected but the contents of 

the output. 

The ALU provides arithmetic and logic operations. The shifter may be placed in the input 

of the ALU to provide a preshift capability, or at the output of the ALU to provide postshifting 

capability. In some cases, the shift operations are included with the ALU. The function table for 

this ALU is listed in Fig.5.  The encoding of the ALU operations for the CPU is specified in Table. 

The OPR field has five bits and each operation is designated with a symbolic name. 

 

Fig.5 Encoding of ALU Operations 

Stack Organization: 



A stack is a storage device that stores information in such a manner that the item stored 

last is the first item retrieved. The operation of a stack can be compared to a stack of trays. The 

last tray placed on top of the stack is the first to be taken off. The register that holds the address 

for the stack is called a stack pointer (SP) because its value always points at the top item in the 

stack. The two operations of a stack are the insertion and deletion of items. The operation of 

insertion is called push. The operation of deletion is called pop. 

Register Stack 

A stack can be placed in a portion of a large memory or it can be organized as a collection 

of a finite number of memory words or registers. Figure 6 shows the organization of a 64-word 

register stack. The stack pointer register SP contains a binary number whose value is equal to the 

address of the word that is currently on top of the stack. Three items are placed in the stack: A, B, 

and C, in that order. Item C is on top of the stack so that the content of SP is now 3. To remove 

the top item, the stack is popped by reading the memory word at address 3 and decrementing the 

content of SP. Item B is now on top of the stack since SP holds address 2. To insert a new item, 

the stack is pushed by incrementing SP and writing a word in the next-higher location in the stack. 

Note that item C has been read out but not physically removed. This does not matter because when 

the stack is pushed, a new item is written in its place. 

The one-bit register FULL is set to 1 when the stack is full, and the one-bit register EMTY 

is set to 1 when the stack is empty of items. DR is the data register that holds the binary data to be 

written into or read out of the stack. 

Initially, SP is cleared to 0, EMTY is set to 1, and FULL is cleared to 0, so that SP points 

to the word at address 0 and the stack is marked empty and not full. If the stack is not full (if FULL 

= 0), a new item is inserted with a push operation. The push operation is implemented with the 

following sequence of microoperations: 

DR <--M [SP]    Read item from the top of stack 

SP <--SP – 1      Decrement stack pointer 

If (SP = 0) then (EMTY <--1) Check if stack is empty 

FULL <--0   Mark the stack not full 



 

Fig.6   Block diagram of a 64 word stack. 

The top item is read from the stack into DR. The stack pointer is then decremented. If its 

value reaches zero, the stack is empty, so EMTY is set to 1.  This condition is reached if the item 

read was in location L Once this item is read out, SP is decremented and reaches the value 0, which 

is the initial value of SP. 

Memory Stack: 

 A stack can exist as a stand-alone unit as in Fig. 6 or can be implemented in a random-

access memory attached to a CPU. The implementation of a stack in the CPU is done by assigning 

a portion of memory to a stack operation and using a processor register as a stack pointer. Fig 7 

shows a portion of computer memory partitioned into three segments: program, data, and stack. 

The program counter PC points at the address of the next instruction in the program. The address 

register AR points at an array of data. The stack pointer SP points at the top of the stack. The three 

registers are connected to a common address bus, and either one can provide an address for 

memory. PC is used during the fetch phase to read an instruction. AR is used during the execute 

phase to read an operand. SP is used to push or pop items into or from the stack. As shown in 

Fig.7, the initial value of SP is 4001 and the stack grows with decreasing addresses. Thus the first 

item stored in the stack is at address 4000, the second item is stored at address 3999, and the last 

address that can be used for the stack is 3000. No provisions are available for stack limit checks. 



 We assume that the items in the stack communicate with a data register DR. A new item is 

inserted with the push operation as follows 

SP <-SP - 1 

M [SP] <-DR 

 

Fig .7 Computer memory with Program, data, and sack segments 

The stack pointer is decremented so that it points at the address of the next word. A memory write 

operation inserts the word from DR into the top of the stack. A new item is deleted with a pop 

operation as follows:  

DR <-M [SP] 

SP <-SP + 1 

Instruction Formats: 



 The format of an instruction is usually depicted in a rectangular box symbolizing the bits 

of the instruction as they appear in memory words or in a control register. The bits of the instruction 

are divided into groups called fields. The most common fields found in instruction formats are: 

1. An operation code field that specifies the operation to be performed. 

2. An address field that designates a memory address or a processor register. 

3. A mode field that specifies the way the operand or the effective address is determined. 

The operation code field of an instruction is a group of bits that define various processor 

operations, such as add, subtract, complement, and shift. 

Three-Address Instructions 

Computers with three-address instruction formats can use each address field to specify 

either a processor register or a memory operand. The program in assembly language that 

evaluates X = (A + B) • (C + D) is shown below, together with comments that explain the 

register transfer operation of each instruction. 

ADD                R 1, A, B   R 1 <--M [A] + M [B] 

ADD               R2, C, D     R2 <--M [C] + M [D] 

MUL             X, R 1, R 2       M [X] <--R 1 • R 2 

It is assumed that the computer has two processor registers, R 1 and R2. The symbol M [A] 

denotes the operand at memory address symbolized by A. The advantage of the three-address 

format is that it results in short programs when evaluating arithmetic expressions. The 

disadvantage is that the binary-coded instructions require too many bits to specify three 

addresses. 

Two-Address Instructions 

Two-address instructions are the most common in commercial computers. Here again each 

address field can specify either a processor register or a memory word. The program to evaluate 

X = (A + B) • (C + D) is as follows: 

MOV     R 1, A   R 1 <--M [A] 

ADD      R 1, B   R 1 <--R 1 + M [B] 



MOV     R 2, C   R2 <--M [C] 

ADD      R2, D    R2 <--R 2 + M [D] 

MUL    R1, R2   R 1 <--R 1 • R 2 

MOV   X, R 1    M [X] <--R 1 

 The MOV instruction moves or transfers the operands t o and from memory and processor 

registers. The first symbol listed in an instruction is assumed to be both a source and the destination 

where the result of the operation is transferred. 

 One-Address Instructions 

 One-address instructions use an implied accumulator (AC) register for all data 

manipulation. For multiplication and division there is a need for a second register. The program to 

evaluate  

X = (A + B) • (C + D) is 

L O A D        A     AC <- M [A] 

A DD           B     A C <- A C + M [B] 

S T O R E     T    M [T] <- A C 

L O A D       C     A C <- M [C] 

A D D          D     A C <- A C + M [D] 

M U L         T       A C <- A C • M [T] 

S T O R E    X       M [X] <- A C 

 Zero-Address Instructions 

 A stack-organized computer does not use an address field for the instructions ADD and 

MUL. The PUSH and POP instructions, however, need an address field to specify the operand that 

communicates with the stack. The following program shows how X = (A + B) • (C + D) will be 

written for a stack organized computer. (TOS stands for top of stack.) 

P U S H      A          T O S <- A 



P U S H       B         T O S <- B 

A D D                      T O S <- (A + B) 

P U S H      C           T O S <- C 

P U S H      D           T O S <- D 

A D D                      T O S <- (C + D) 

M U L                     T O S <- (C + D) • (A + B) 

P O P         X           M [X] <- T O S 

Computer Registers 

 The memory unit has a capacity of 4096 words and each word contains 16 bits. Twelve 

bits of an instruction word are needed to specify the address of an operand. This leaves three bits 

for the operation part of the instruction and a bit to specify a direct or indirect address. The data 

register (DR) holds the operand read from memory. The accumulator (AC) register is a general 

purpose processing register. The instruction read from memory is placed in the instruction register 

(IR). The temporary register (TR) is used for holding temporary data during the processing. 

 The memory address register (AR) has 12 bits since this is the width of a memory address. 

The program counter (PC) also has 12 bits and it holds the address of the next instruction to be 

read from memory after the current instruction is executed. The PC goes through a counting 

sequence and causes the computer to read sequential instructions previously stored in memory. 

Instruction words are read and executed in sequence unless a branch instruction is encountered. A 

branch instruction calls for a transfer to a nonconsecutive instruction in the program. The address 

part of a branch instruction is transferred to PC to become the address of the next instruction. To 

read an instruction, the content of PC is taken as the address for memory and a memory read cycle 

is initiated. PC is then incremented by one, so it holds the address of the next instruction in 

sequence. Two registers are used for input and output. The input register (INPR) receives an 8-bit 

character from an input device. The output register (OUTR) holds an 8-bit character for an output 

device. 

 



 

 

Fig .8 List of Registers for the Basic Computer 

 

Figure 9. Basic computer registers and memory. 

Computer Instructions: 

 The basic computer has three instruction code formats, as shown in Fig. 10. Each format 

has 16 bits. The operation code (opcode) part of the instruction contains three bits and the 

meaning of the remaining 13 bits depends on the operation code encountered.  

 A memory-reference instruction uses 12 bits to specify an address and one bit to specify 

the addressing mode I. I is equal to 0 for direct address and to 1 for indirect address. The 

register reference instructions are recognized by the operation code 111 with a 0 in the 

leftmost bit (bit 15) of the instruction. 



  A register-reference instruction specifies an operation on or a test of the AC register. An 

operand from memory is not needed; therefore, the other 12 bits are used to specify the 

operation or test to be executed.  

 A input-output instruction does not need a reference to memory and is recognized by the 

operation code Ill with a 1 in the leftmost bit of the instruction. The remaining 12 bits are 

used to specify the type of input-output operation or test performed. 

 The type of instruction is recognized by the computer control from the four bits in positions 

12 through 15 of the instruction. If the three opcode bits in positions 12 through 14 are not equal 

to 111, the instruction is a memory-reference type and the bit in position 15 is taken as the 

addressing mode I. If the 3-bit opcode is equal to 111, control then inspects the bit in position 15. 

If this bit is 0, the instruction is a register-reference type. If the bit is 1, the instruction is an input 

-output type. Note that the bit in position 15 of the instruction code is designated by the symbol I 

but is not used as a mode bit when the operation code is equal to 111. 

 

Fig 10. Basic computer instruction formats. 

 



 

Fig 11.Basic Computer Instructions 

Stack Organization:  

Stack is a storage device that stores information in a way that the item is stored last is the first to 

be retrieved (LIFO). Stack in computers is actually a memory unit with address register (stack 

pointer SP) that can count only. SP value always points at top item in stack.  

The two operations done on stack are,  

 PUSH (Push Down), operation of insertion of items into stack  

 POP (Pop Up), operation of deletion item from stack  

Those operation are simulated by INC and DEC stack register (SP). 

1. Register stack: 



 A stand alone unit that consists of collection of finite number of registers. The next 

example shows 64 location stack unit with SP that stores address of the word that is 

currently on the top of stack. 

 

 

Note that 3 items are placed in the stack A, B, and C. Item C is in top of stack so that SP 

holds 3 which the address of item C. To remove top item from stack (popping stack) we 

start by reading content of address 3 and decrementing the content of SP. Item B is now in 

top of stack holding address 2. 

To insert new item (pushing the stack) we start by incrementing SP then writing a new 

word where SP now points to (top of stack). 

Note that in 64-word stack we need to have SP of 6 bits only (from 000000 to 111111). If 

111111 is reached then at next push SP will be 000000, that is when the stack is FULL. 

Similarly, when SP is 000001 then at next pop SP will go to 000000 that is when the stack 

is EMTY.  

Initially, SP = 0, EMPTY = 1, FULL =0  

Procedures for pushing stack  

SP <- SP + 1  

M[SP] <- DR  

IF (SP = 0) THEN (FULL = 1)  

EMTY <- 0 

 

Note that:  



1. Always we use DR to pass word into stack  

2. M[SP] memory word specified by address currently in SP  

3. First item stored in stack is at address 1  

4. Last item stored in stack is at address 0. That is FULL = 1  

5. Any push to stack means EMTY = 0 

2. Memory Stack : 

 Stack can be implemented in RAM memory attached to CPU. Only by assigning 

special part of it for stack operations. 

  Next figure shows of main memory divided into program, data, and stack.  

 PC points to next instruction in instruction part  

 AR points to array of data of operands 

 SP points to top of stack  All are connected to common address bus  

 Stack grows (pushed) with decreasing address and empties (pops) with increasing 

address.  

 New item is inserted with push operation by decrementing SP then a write to SP 

address is done 

SP <-SP -1  

M [SP]<- DR 

 Last item is removed from stack with pop operation by removing item by reading 

from memory location addressed by SP then SP is incremented. 

DR <- M [SP]  

SP <- SP +1 



 

 As shown in figure initial value of SP is 4001 and first item when pushed in stack stores at 

address 4000 and second one stores at address 3999. The last address pushed into will be 

3000. (See limitation danger?) 

 Most computers are not supported by hardware to sense stack overflow and underflow. But 

can be implemented by saving the 2 limits in 2 registers. After each push or pop the SP is 

compared with the limit to see if stack has reached its limits. So must be taking care of 

using software. 

 Always in this way we load SP with bottom address of stack portion of memory 

Reverse Polish Notation: 

 Very useful notation to utilize stacks to evaluate arithmetic expressions. 

We write in infix notation such as: 

A*B + C*D 

We compute A*B, store product, compute C*D, then sum two products. So we have to scam back 

and forth to see which operation comes first. 

 



The 3 notations to evaluate expressions 

1.  A + B Infix notation 

2.  +AB   Prefix notation (Polish notation) 

3.  AB+   Postfix notation (reverse Polish 

Reverse Polish Notation is in a form suitable for stack manipulation. Starts by scanning expression 

from left to right. When operator is found then perform 

Instruction Format: 

Operation with 2 operands in left of operator and replace result place of 2 operands and operator. 

Then you can continue this until you reach final answer. 

Example 

 

Expression A*B + C*D is written in RPN as AB*CD*+. And will computed as 

 

  (A*B) CD *+   

  (A*B)(C*D) + 

Example 

 

Convert infix notation expression (A + B)*(C * (D + E) + F) to RPN? 

 

AB+ DE+ C * F+*. 

Will be computed as 

(A+B) (D+E) C * F + * 

 Reverse polish notation combined with stack comprised of registers is most efficient way 

to evaluate expression. Stacks are good for handling long and complex problems involving 

chain calculations. But need first to convert arithmetic expressions into parenthesis-free 

reverse polish notation. 

 This procedure is employed in some scientific calculators and some computers. 



Example  

 Convert (3*4) (5*6) to RPN  

  34*56*+ 

 

The Instruction coding fields in today’s computers follow the next format  

1. Operation code field to specify operation  

2. Address field that specifies operand address field or register  

3. Mode field to specify effective address  

In general, most processors are organized in one of 3 ways 

 Single register (Accumulator) organization  

 Basic Computer is a good example  

 Accumulator is the only general-purpose register  

 General register organization  

 Used by most modern computer processors  

 Any of the registers can be used as the source or destination for computer operations 

 Stack organization 

 All operations are done using the hardware stack  

 For example, an OR instruction will pop the two top elements from the stack, do a 

logical OR on them, and push the result on the stack 

 We are interested with address field of instructions with multiple address fields in 

instructions. The number of address fields in the instruction format depends on the internal 

organization of CPU. Some CPU combines features from more of one structure. 



Instruction Cycle: 

A program residing in the memory unit of the computer consists of a sequence of instructions. The 

program is executed in the computer by going through a cycle for each instruction. Each instruction 

cycle in turn is subdivided into a sequence of subcycles or phases. In the basic computer each 

instruction cycle consists of the following phases: 

1. Fetch an instruction from memory. 

2. Decode the instruction. 

3. Read the effective address from memory if the instruction has an indirect address. 

4. Execute the instruction. 

Fetch and Decode: 

Initially, the program counter PC is loaded with the address of the first instruction in the 

program. The sequence counter SC is cleared to 0, providing a decoded timing signal To. After 

each clock pulse, SC is incremented by one, so that the timing signals go through a sequence 

T0, T1, T2, and so on. The micro-operations for the fetch and decode phases can be specified 

by the following register transfer statements. 

T0: AR <- PC 

T,: IR <-M[AR], PC <- PC + 1 

T2: D0, • • • , D7 <- Decode IR(12-14), AR <--- IR(0-11), 1 <--- IR(lS) 

 

 Since only AR is connected to the address inputs of memory, it is necessary to transfer the 

address from PC to AR during the clock transition associated with timing signal T0• The 

instruction read from memory is then placed in the instruction register IR with the clock transition 

associated with timing signal T1•  

 At the same time, PC is incremented by one to prepare it for the address of the next 

instruction in the program. At time T2, the operation code in IR is decoded, the indirect bit is 

transferred to flip-flop I, and the address part of the instruction is transferred to AR . Note that SC 

is incremented after each clock pulse to produce the sequence To, T1, and T2• 
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UNIT 2 CONTROL UNIT DESIGN AND MULTIPROCESSORS 

Microprogrammed Control: Control memory - address sequencing - Microprogram Example- 

Design of Control unit -Example Processor design Multiprocessors: Characteristics- 

Interprocessor Arbitration- Interprocessor Communication 

Control Memory: 

The function of the control unit in a digital computer is to initiate sequences of microoperations. 

The number of different types of microoperations that are available in a given system is finite. 

Microprogramming is a second alternative for designing the control unit of a digital computer. The 

control function that specifies a microoperation is a binary variable. When it is in one binary state, 

the corresponding rnicrooperation is executed. 

 In a bus-organized system, the control signals that specify microoperations are groups of 

bits that select the paths in multiplexers, decoders, and arithmetic logic units. The control unit 

initiates a series of sequential steps of rnicrooperations. The control variables at any given time 

can be represented by a string of 1's and 0's called a control word. As such, control words can be 

programmed to perform various operations on the components of the system.  

A control unit whose binary control variable are stored in memory is called a 

microprogrammed control unit.  Each word in control memory contains within it a 

microinstruction. The microinstruction specifies one or more microoperations for the system. A 

sequence of microinstructions constitutes a microprogram. Since alterations of the microprogram 

are not needed once the control unit is in operation, the control memory can be a read-only memory 

(ROM). 

A more advanced development known as dynamic microprogramming permits a 

microprogram to be loaded initially from an auxiliary memory such as a magnetic disk. Control 

units that use dynamic microprogramming employ a writable control memory. This type of 

memory can be used for writing (to change the microprogram) but is used mostly for reading. A 

memory that is part of a control unit is referred to as a control memory. 

A computer that employs a microprogrammed control unit will have two separate 

memories:  



 a main memory and  

 a control memory.  

The main memory is available to the user for storing the programs. The contents of 

main memory may alter when the data are manipulated and every time that the program 

is changed. The user's program in main memory consists of machine instructions and 

data. In contrast, the control memory holds a fixed microprogram that cannot be altered 

by the occasional user. The microprogram consists of microinstructions that specify 

various internal control signals for execution of register microoperations.  

Each machine instruction initiates a series of microinstructions in control memory. 

These microinstructions generate the microoperations to fetch the instruction from 

main memory; to evaluate the effective address, to execute the operation specified by 

the instruction, and to return control to the fetch phase in order to repeat the cycle for 

the next instruction 

 

 

Fig 1. Microprogrammed control organization 

The general configuration of a microprogrammed control unit is demonstrated in 

the block diagram of Fig 1.  

 The control memory is assumed to be a ROM, within which all control 

information is permanently stored.  

 The control memory address register specifies the address of the 

microinstruction, and the control data register holds the microinstruction 

read from memory. 

 The microinstruction contains a control word that specifies one or more 

microoperations for the data processor. 



 Once these operations are executed, the control must determine the next 

address. The location of the next microinstruction may be the one next in 

sequence, or it may be located somewhere else in the control memory. 

 While the microoperations are being executed, the next address is computed 

in the next address generator circuit and then transferred into the control 

address register to read the next microinstruction. 

 The next address generator is sometimes called a microprogram sequencer, 

as it determines the address sequence that is read from control memory. 

 Typical functions of a microprogram sequencer are incrementing the 

control address register by one, loading into the control address register an 

address from control memory, transferring an external address, or loading 

an initial address to start the control operations. 

 The control data register holds the present microinstruction while the next 

address is computed and read from memory. The data register is sometimes 

called a pipeline register. It allows the execution of the microoperations 

specified by the control word simultaneously with the generation of the next 

microinstruction.  

Address Sequencing: 

 Microinstructions are stored in control memory in groups, with each group specifying a 

routine. Each computer instruction has its own microprogram routine in control memory to 

generate the microoperations that execute the instruction. The hardware that controls the address 

sequencing of the control memory must be capable of sequencing the microinstructions within a 

routine and be able to branch from one routine to another. The steps that the control must undergo 

during the execution of a single computer instruction. 

 An initial address is loaded into the control address register (CAR) when power is 

turned on in the computer. This address is usually the address of the first 

microinstruction that activates the instruction fetch routine. 

  The fetch routine may be sequenced by incrementing the control address register 

through the rest of its microinstructions. At the end of the fetch routine, the 

instruction I in the instruction register of the computer. 



 The control memory next must go through the routine that determines the effective 

address of the operand.  

 The effective address computation routine in control memory can be reached 

through a branch microinstruction, which is conditioned on the status of the mode 

bits of the instruction. When the effective address computation routine is 

completed, the address of the operand is available in the memory address register. 

 The next step is to generate the microoperations that execute the instruction fetched 

from memory. The microoperation steps to be generated in processor registers 

depend on the operation code part of the instruction.  

 Each instruction has its own microprogram routine stored in a given location of 

control memory. The transformation from the instruction code bits to an address in 

control memory where the routine is located is referred to as a mapping process. 

 A mapping procedure is a rule that transforms the instruction code into a control 

memory address. Once the required routine is reached, the microinstructions that 

execute the instruction may be sequenced by incrementing the control address 

register, but sometimes the sequence of microoperations will depend on values of 

certain status bits in processor registers. 

When the execution of the instruction is completed, control must return to 

the fetch routine. This is accomplished by executing an unconditional branch 

microinstruction to the first address of the fetch routine.  In summary, the address 

sequencing capabilities required in a control memory are: 

1. Incrementing of the control address register. 

2. Unconditional branch or conditional branch, depending on status bit conditions. 

3. A mapping process from the bits of the instruction to an address for control 

memory. 

4. A facility for subroutine call and return. 

 

Microprogram Example:  
 
 The process of code generation for the control memory is called microprogramming.  
 The block diagram of the computer configuration is shown in below figure.  
 Two memory units:  



 Main memory – stores instructions and data  
 Control memory – stores microprogram  

 Four processor registers  
 Program counter – PC  
 Address register – AR  
 Data register – DR  
 Accumulator register - AC  

 Two control unit registers  
 Control address register – CAR  
 Subroutine register – SBR  

 
 Transfer of information among registers in the processor is through MUXs rather than a 

bus.  

 
The computer instruction format is shown in below figure.  
 

 

Three fields for an instruction:  
 1-bit field for indirect addressing  
 4-bit opcode  
 11-bit address field  

 



 
Design of control Unit:  
 
 The control memory out of each subfield must be decoded to provide the distinct 

microoperations.  
 The outputs of the decoders are connected to the appropriate inputs in the processor unit.  
 The below figure shows the three decoders and some of the connections that must be 

made from their outputs.  
 

 
 
 
 The three fields of the microinstruction in the output of control memory are decoded with 

a 3x8 decoder to provide eight outputs.  
 Each of the output must be connected to proper circuit to initiate the corresponding micro 

operation.  
 When F1 = 101 (binary 5), the next pulse transition transfers the content of DR (0-10) to 

AR.  
 Similarly, when F1= 110 (binary 6) there is a transfer from PC to AR (symbolized by 

PCTAR). As shown in Fig, outputs 5 and 6 of decoder F1 are connected to the load input 
of AR so that when either one of these outputs is active, information from the 
multiplexers is transferred to AR.  

 The multiplexers select the information from DR when output 5 is active and from PC 
when output 5 is inactive.  

 The transfer into AR occurs with a clock transition only when output 5 or output 6 of the 
decoder is active.  



 For the arithmetic logic shift unit the control signals are instead of coming from the 
logical gates, now these inputs will now come from the outputs of AND, ADD and 
DRTAC respectively.  

 
 
 
 
 
 
lnterprocessor Arbitration 
 

 Computer systems contain a number of buses at various levels to facilitate the transfer of 
information between components. The CPU contains a number of internal buses for 
transferring information between processor registers and ALU. 

 
 A memory bus consists of lines for transferring data, address, and read/write information. 

 
 An I/O bus is used to transfer information to and from input and output devices. 

 
 A bus that connects major components in a multiprocessor system, such as CPUs, lOPs, 

and memory, is called a system bus. 
 

 In a synchronous bus, each data item is transferred during a time slice known in advance 
to both source and destination units. Synchronization is achieved by driving both units 
from a common clock source. 
 

 In an asynchronous bus, each data item being transferred is accompanied by handshaking 
control signals to indicate when the data are transferred from the source and received by 
the destination. 
 

Serial Arbitration Procedure 
 
Arbitration procedures service all processor requests on the basis of established priorities. 
A hardware bus priority resolving technique can be established by means of a serial or 
parallel connection of the units requesting control of the system bus. The serial priority 
resolving technique is obtained from a daisy-chain connection of bus arbitration circuits 
similar to the priority interrupt logic. The processors connected to the system bus are 
assigned priority according to their position along the priority control line. The device 
closest to the priority line is assigned the highest priority. When multiple devices 
concurrently request the use of the bus, the device with the highest priority is granted access 
to it. 
 



The below Figure shows the daisy-chain connection of four arbiters. It is assumed that each 
processor has its own bus arbiter logic with priority-in and priority-out lines.  
 
 
 

 
 
The priority out (PO) of each arbiter is connected to the priority in (PI) of the next-lower-
priority arbiter. The PI of the highest-priority unit is maintained at a logic 1 value. The 
highest-priority unit in the system will always receive access to the system bus when it 
requests it. The PO output for a particular arbiter is equal to 1 if its PI input is equal to 1 
and the processor associated with the arbiter logic is not requesting control of the bus. This 
is the way that priority is passed to the next unit in the chain. If the processor requests 
control of the bus and the corresponding arbiter finds its PI input equal to 1, it sets its PO 
output to 0. Lower-priority arbiters receive a 0 in PI and generate a 0 in PO. Thus the 
processor whose arbiter has a PI = 1 and PO = 0 is the one that is given control of the 
system bus. 
 
A processor may be in the middle of a bus operation when a higher- priority processor 
requests the bus. The lower-priority processor must complete its bus operation before it 
relinquishes control of the bus. The bus busy line shown in Figure. It provides a mechanism 
for an orderly transfer of control. The busy line comes from open-collector circuits in each 
unit and provides a wired-OR logic connection. When an arbiter receives control of the bus 
(because it’s PI = 1 and PO = 0) it examines the busy line. If the line is inactive, it means 
that no other processor is using the bus. The arbiter activates the busy line and its processor 
takes control of the bus. However, if the arbiter finds the busy line active, it means that 
another processor is currently using the bus. The arbiter keeps examining the busy line 
while the lower-priority processor that lost control of the bus completes its operation. When 
the bus busy line returns to its inactive state, the higher-priority arbiter enables the busy 
line, and its corresponding processor can then conduct the required bus transfers. 
 
Parallel Arbitration Logic 
 
The parallel bus arbitration technique uses an external priority encoder and a decoder as 
shown in Figure. Each bus arbiter in the parallel scheme has a bus request output line and 



a bus acknowledge input line. Each arbiter enables the request line when its processor is 
requesting access to the system bus. 
 

 
 
 

 
The processor takes control of the bus if its acknowledge input line is enabled. The bus busy line 
provides an orderly transfer of control, as in the daisy-chaining case. 
 
Figure shows the request lines from four arbiters going into a 4 x 2 priority encoder. The output of 
the encoder generates a 2-bit code which represents the highest-priority unit among those 
requesting the bus. The 2-bit code from the encoder output drives a 2 x 4 decoder which enables 
the proper acknowledge line to grant bus access to the highest-priority unit. 
 
The bus priority-in BPRN and bus priority-out BPRO are used for a daisy-chain connection of bus 
arbitration circuits. The bus busy signal BUSY is an open-collector output used to instruct all 
arbiters when the bus is busy conducting a transfer. The common bus request CBRQ is also an 
open-collector output that serves to instruct the arbiter if there are any other arbiters of lower-
priority requesting use of the system bus. The signals used to construct a parallel arbitration 
procedure are bus request BREQ and priority-in BPRN, corresponding to the request and 
acknowledge signals .The bus clock BCLK is used to synchronize all bus transactions. 



 
 
lnterprocessor Communication 
 
The instruction set of a multiprocessor contains basic instructions that are used to implement 
communication and synchronization between cooperating processes. Communication refers to the 
exchange of data between different processes. For example, parameters passed to a procedure in a 
different processor constitute interprocessor communication. Synchronization refers to the special 
case where the data used to communicate between processors is control information. 
Synchronization is needed to enforce the correct sequence of processes and to ensure mutually 
exclusive access to shared writable data. 
 
Mutual Exclusion with a Semaphore 
 
A properly functioning multiprocessor system must provide a mechanism that will guarantee 
orderly access to shared memory and other shared resources. This is necessary to protect data from 
being changed simultaneously by two or more processors. This mechanism has been termed 
mutual exclusion. Mutual exclusion must be provided in a multiprocessor system to enable one 
processor to exclude or lock out access to a shared resource by other processors when it is in a 
critical section. A critical section is a program sequence that, once begun, must complete execution 
before another processor accesses the same shared resource. 
 
A binary variable called a semaphore is often used to indicate whether or not a processor is 
executing a critical section. A semaphore is a software- controlled flag that is stored in a memory 
location that all processors can access. When the semaphore is equal to 1, it means that a processor 
is executing a critical program, so that the shared memory is not available to other processors. 
When the semaphore is equal to 0, the shared memory is available to any requesting processor. 
Processors that share the same memory segment agree by convention not to use the memory 
segment unless the semaphore is equal to 0, indicating that memory is available. They also agree 
to set the semaphore to 1 when they are executing a critical section and to clear it to 0 when they 
are finished. 
 
Testing and setting the semaphore is itself a critical operation and must be performed as a single 
indivisible operation. If it is not, two or more processors may test the semaphore simultaneously 
and then each set it, allowing them to enter a critical section at the same time. This action would 
allow simultaneous execution of critical section, which can result in erroneous initialization of 
control parameters and a loss of essential information. 
 
A semaphore can be initialized by means of a test and set instruction in conjunction with a 
hardware lock mechanism. A hardware lock is a processor- generated signal that serves to prevent 
other processors from using the system bus as long as the signal is active. The test-and-set 
instruction tests and sets a semaphore and activates the lock mechanism during the time that the 
instruction is being executed. This prevents other processors from changing the semaphore 
between the time that the processor is testing it and the time that it is setting it. Assume that the 



semaphore is a bit in the least significant position of a memory word whose address is symbolized 
by SEM. Let the mnemonic TSL designate the "test and set while locked" operation.  
The instruction 
TSL SEM 
will be executed in two memory cycles (the first to read and the second to write) 
without interference as follows: 
 
R + -M [SEM]      Test semaphore 
M [SEM] + ->1      Set semaphore 
  
 
 
The semaphore is tested by transferring its value to a processor register R and then it is set to 1. 
The value in R determines what to do next. If the processor finds that R = 1, it knows that the 
semaphore was originally set. (The fact that it is set again does not change the semaphore value.) 
That means that another processor is executing a critical section, so the processor that checked the 
semaphore does not access the shared memory. If R = 0, it means that the common memory (or 
the shared resource that the semaphore represents) is available. The semaphore is set to 1 to prevent 
other processors from accessing memory. The processor can now execute the critical section. The 
last instruction in the program must clear location SEM to zero to release the shared resource to 
other processors. 
 
Note that the lock signal must be active during the execution of the test-and-set instruction. It does 
not have to be active once the semaphore is set. Thus the lock mechanism prevents other processors 
from accessing memory while the semaphore is being set. The semaphore itself, when set, prevents 
other processors from accessing shared memory while one processor is executing a critical section. 
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COMPUTER ARCHITECTURE AND OPERATING SYSTEM– SECA3004



 

UNIT.3 MEMORY AND I/O SYSTEM 

Memory Organization: Memory Hierarchy - Main memory - auxiliary Memory - Associative 

Memory –Cache Memory - Virtual memory Input - Output Organization: Peripheral Devices - 

I/O Interface, Modes of transfer - Priority Interrupt - DMA - IOP - Serial Communication 

 

Memory Hierarchy 

 

The memory unit is an essential component in any digital computer since It Is needed for 

storing programs and data. The memory unit that communicates directly with the CPU is called 

the main memory. Devices that provide backup storage are called auxiliary memory. The most 

common auxiliary memory devices used in computer systems are magnetic disks and tapes. They 

are used for storing system programs, large data files, and other backup information. The 

memory hierarchy system consists of all storage devices employed in a computer system from 

the slow but high-capacity auxiliary memory to a relatively faster main memory, to an even 

smaller and faster cache memory accessible to the high-speed processing logic. Figure 1 

illustrates the components in a typical memory hierarchy. 

 

Fig.1 Memory hierarchy in a typical Computer system 

 



Cache Memory: 

A special very- high- speed memory called a Cache is sometimes used to increase the 

speed of processing by making current programs and data available to the CPU at a rapid rate. 

The cache memory is employed in computer systems to compensate for the speed differential 

between main memory access time and processor logic. CPU logic is usually faster than main 

memory access time, with the result that processing speed is limited primarily by the speed of 

main memory. 

A technique used to compensate for the mismatch in operating speeds is to employ an 

extremely fast, small cache between the CPU and main memory whose access time Is dose to 

processor logic dock cycle time. The cache is used for storing segments of programs currently 

being executed in the CPU and temporary data frequently needed in the present calculations. 

 

Cache Memory 

Analysis of a large number of typical programs has shown that the references to memory 

at any given interval of time tend to be confined within a few localized areas in memory. This 

phenomenon is known as the property of locality of reference locality of reference. When a 

program loop is executed, the CPU repeatedly refers to the set of instructions in memory that 

constitute the loop. Every time a given subroutine is called, its set of instructions are fetched 

from memory. Thus loops and subroutines tend to localize the references to memory for fetching 

instructions. The result of all these observations is the locality of reference property, which states 

that over a short interval of time, the addresses generated by a typical program refer to a few 

localized areas of memory repeatedly, while the remainder of memory is accessed relatively 

infrequently. 

If the active portions of the program and data are placed in a fast small memory, the 

average memory access time can be reduced, thus reducing the total execution time of the 

program. Such a fast small memory is referred to as a cache memory. It is placed between the 

CPU and main memory as shown in the fig 2.   



 

Fig 2. Example of cache memory. 

Virtual Memory 

Virtual Memory is a storage allocation scheme in which secondary memory can be addressed as 

though it were part of main memory. The addresses a program may use to reference memory are 

distinguished from the addresses the memory system uses to identify physical storage sites, and 

program generated addresses are translated automatically to the corresponding machine 

addresses. 

The size of virtual storage is limited by the addressing scheme of the computer system and 

amount of secondary memory is available not by the actual number of the main storage 

locations. 

It is a technique that is implemented using both hardware and software. It maps memory 

addresses used by a program, called virtual addresses, into physical addresses in computer 

memory. 

1. All memory references within a process are logical addresses that are dynamically 

translated into physical addresses at run time. This means that a process can be swapped 

in and out of main memory such that it occupies different places in main memory at 

different times during the course of execution. 

2. A process may be broken into number of pieces and these pieces need not be 

continuously located in the main memory during execution. The combination of dynamic 

run-time address translation and use of page or segment table permits this. 

 



 

Virtual memory is commonly implemented by demand paging. It can also be implemented in a 

segmentation system. Demand segmentation can also be used to provide virtual memory. 

 

Demand Paging 

A demand paging system is quite similar to a paging system with swapping where processes 

reside in secondary memory and pages are loaded only on demand, not in advance. When a 

context switch occurs, the operating system does not copy any of the old program’s pages out 

to the disk or any of the new program’s pages into the main memory Instead, it just begins 

executing the new program after loading the first page and fetches that program’s pages as they 

are referenced. 



 

While executing a program, if the program references a page which is not available in the main 

memory because it was swapped out a little ago, the processor treats this invalid memory 

reference as a page fault and transfers control from the program to the operating system to 

demand the page back into the memory. 

 

Advantages 

Following are the advantages of Demand Paging − 

 Large virtual memory. 



 More efficient use of memory. 

 There is no limit on degree of multiprogramming. 

Disadvantages 

 Number of tables and the amount of processor overhead for handling page interrupts are 

greater than in the case of the simple paged management techniques. 

Page Replacement Algorithm 

Page replacement algorithms are the techniques using which an Operating System decides 

which memory pages to swap out, write to disk when a page of memory needs to be allocated. 

Paging happens whenever a page fault occurs and a free page cannot be used for allocation 

purpose accounting to reason that pages are not available or the number of free pages is lower 

than required pages. 

When the page that was selected for replacement and was paged out, is referenced again, it has 

to read in from disk, and this requires for I/O completion. This process determines the quality 

of the page replacement algorithm: the lesser the time waiting for page-ins, the better is the 

algorithm. 

A page replacement algorithm looks at the limited information about accessing the pages 

provided by hardware, and tries to select which pages should be replaced to minimize the total 

number of page misses, while balancing it with the costs of primary storage and processor time 

of the algorithm itself. There are many different page replacement algorithms. We evaluate an 

algorithm by running it on a particular string of memory reference and computing the number 

of page faults, 

Reference String 

The string of memory references is called reference string. Reference strings are generated 

artificially or by tracing a given system and recording the address of each memory reference. 

The latter choice produces a large number of data, where we note two things. 

 For a given page size, we need to consider only the page number, not the entire address. 



 If we have a reference to a page p, then any immediately following references to 

page p will never cause a page fault. Page p will be in memory after the first reference; 

the immediately following references will not fault. 

 For example, consider the following sequence of addresses − 123,215,600,1234,76,96 

 If page size is 100, then the reference string is 1,2,6,12,0,0 

First In First Out (FIFO) algorithm 

 Oldest page in main memory is the one which will be selected for replacement. 

 Easy to implement, keep a list, replace pages from the tail and add new pages at the 

head. 

 

Optimal Page algorithm 

 An optimal page-replacement algorithm has the lowest page-fault rate of all algorithms. 

An optimal page-replacement algorithm exists, and has been called OPT or MIN. 

 Replace the page that will not be used for the longest period of time. Use the time when 

a page is to be used. 

 



 

Least Recently Used (LRU) algorithm 

 Page which has not been used for the longest time in main memory is the one which will 

be selected for replacement. 

 Easy to implement, keep a list, replace pages by looking back into time. 

 

Page Buffering algorithm 

 To get a process start quickly, keep a pool of free frames. 

 On page fault, select a page to be replaced. 



 Write the new page in the frame of free pool, mark the page table and restart the 

process. 

 Now write the dirty page out of disk and place the frame holding replaced page in free 

pool. 

Least frequently Used (LFU) algorithm 

 The page with the smallest count is the one which will be selected for replacement. 

 This algorithm suffers from the situation in which a page is used heavily during the 

initial phase of a process, but then is never used again. 

Most frequently Used(MFU) algorithm 

 This algorithm is based on the argument that the page with the smallest count was 

probably just brought in and has yet to be used. 

Input/output  

 

 The computer system’s I/O architecture is its interface to the outside world. This 

architecture is designed to provide a systematic means of controlling interaction with 

the outside world and to provide the operating system with the information it needs to 

manage I/O activity effectively.  

 There are three principal I/O techniques: programmed I/O, in which I/O occurs under 

the direct and continuous control of the program requesting the I/O operation; interrupt-

driven I/O, in which a program issues an I/O command and then continues to execute, 

until it is interrupted by the I/O hardware to signal the end of the I/O operations; and 

direct memory access (DMA), in which a specialized I/O processor takes over control 

of an I/O operation to move a large block of data.  

 Two important examples of external I/O interfaces are FireWire and InfiniBand.  

 

Peripherals and the System Bus  

 There are a wide variety of peripherals each with varying methods of operation 

Impractical to for the processor to accommodate all  



 Data transfer rates are often slower than the processor and/or memory Impractical to 

use the high-speed system bus to communicate directly  

 Data transfer rates may be faster than that of the processor and/or memory This 

mismatch may lead to inefficiencies if improperly managed  

 Peripheral often use different data formats and word lengths Purpose of I/O Modules  

 Interface to the processor and memory via the system bus or control switch Interface to 

one or more peripheral devices  

 

Purpose of I/O Modules  

 Interface to the processor and memory via the system bus or control switch  

 Interface to one or more peripheral devices  

 

 

 

External Devices:  

External device categories  

• Human readable: communicate with the computer user – CRT  

• Machine readable: communicate with equipment – disk drive or tape drive  

 

• Communication: communicate with remote devices – may be human readable or machine 

readable  



 

 

The External Device – I/O Module  

• Control signals: determine the function that will be performed  

• Data: set of bits to be sent of received  

• Status signals: indicate the state of the device  

• Control logic: controls the device’s operations  

• Transducer: converts data from electrical to other forms of energy  

• Buffer: temporarily holds data being transferred  

 

Keyboard/Monitor  

• Most common means of computer/user interaction  

• Keyboard provides input that is transmitted to the computer  

• Monitor displays data provided by the computer  

• The character is the basic unit of exchange  

• Each character is associated with a 7 or 8 bit code  

 

Disk Drive  

• Contains electronics for exchanging data, control, and status signals with an I/O module  



• Contains electronics for controlling the disk read/write mechanism  

• Fixed-head disk – transducer converts between magnetic patterns on the disk surface and bits 

in the buffer  

• Moving-head disk – must move the disk arm rapidly across the surface  

 

I/O Modules  

Module Function  

• Control and timing  

• Processor communication  

• Device communication  

• Data buffering  

• Error detection  

 

I/O control steps  

• Processor checks I/O module for external device status  

• I/O module returns status  

• If device ready, processor gives I/O module command to request data transfer  

• I/O module gets a unit of data from device  

• Data transferred from the I/O module to the processor  

 

Processor communication  

Command decoding: 

 I/O module accepts commands from the processor sent as signals on the control bus  

Data:  

Data exchanged between the processor and I/O module over the data bus Status reporting:  

Common status signals BUSY and READY are used because peripherals are slow  

Address recognition:  

I/O module must recognize a unique address for each peripheral that it controls I/O module 

communication  

Device communication:  

Commands, status information, and data  



Data buffering: 

Data comes from main memory in rapid burst and must be buffered by the I/O module and 

then sent to the device at the device’s rate  

Error detection:  

Responsible for reporting errors to the processor  

 

 

 

 

 

 

 

I/O Module Structure: Block Diagram of an I/O Module 

 

 

 

 

 

Module connects to the computer through a set of signal lines – system bus  

• Data transferred to and from the module are buffered with data registers  

• Status provided through status registers – may also act as control registers  



• Module logic interacts with processor via a set of control signal lines  

• Processor uses control signal lines to issue commands to the I/O module  

• Module must recognize and generate addresses for devices it controls  

• Module contains logic for device interfaces to the devices it controls  

 

• I/O module functions allow the processor to view devices is a simple-minded way  

 

• I/O module may hide device details from the processor so the processor only functions in 

terms of simple read and write operations – timing, formats, etc.…  

 

• I/O module may leave much of the work of controlling a device visible to the processor – 

rewind a tape, etc.…  

 

I/O channel or I/O processor  

• I/O module that takes on most of the detailed processing burden  

• Used on mainframe computers  

 

I/O controller of device controller  

• Primitive I/O module that requires detailed control  

• Used on microcomputers  

PROGRAMMED I/O  

Overview of Programmed I/O  

• Processor executes an I/O instruction by issuing command to appropriate I/O module 

• I/O module performs the requested action and then sets the appropriate bits in the I/O status 

register – I/O module takes no further action to alert the processor – it does not interrupt the 

processor  

• The processor periodically checks the status of the I/O module until it determines that the 

operation is complete I/O Commands The processor issues an address, specifying I/O module 

and device, and an I/O command. The commands are:  

 

• Control: activate a peripheral and tell it what to do  



• Test: test various status conditions associated with an I/O module and its peripherals  

 

• Read: causes the I/O module to obtain an item of data from the peripheral and place it into an 

internal register  

 

• Write: causes the I/O module to take a unit of data from the data bus 

 

 

 

Three Techniques for Input of a Block of Data. 

I/O Instructions  

 Processor views I/O operations in a similar manner as memory operation. 

 Each device is given a unique identifier or address. 

 Processor issues commands containing device address – I/O module must check 

address lines to see if the command is for itself.  

I/O mapping  

Memory-mapped I/O  Single address space for both memory and I/O devices 



 

Disadvantage  

 Uses up valuable memory address space 

 I/O module registers treated as memory addresses 

 Same machine instructions used to access both memory and I/O devices  

 

Advantage  

 Allows for more efficient programming 

 Single read line and single write lines needed  

 Commonly used 

 

Isolated I/O  

 Separate address space for both memory and I/O devices 

 Separate memory and I/O select lines needed  

 Small number of I/O instructions  

 Commonly used 

 

DMA (DIRECT MEMORY ACCESS) 

 

DMA Function  

• DMA module on system bus used to mimic the processor.  

• DMA module only uses system bus when processor does not need it.  

• DMA module may temporarily force processor to suspend operations – cycle stealing 

 



 

 

DMA Operation  

 The processor issues a command to DMA module  

 Read or write  

 I/O device address using data lines  

 Starting memory address using data lines – stored in address register  

 Number of words to be transferred using data lines – stored in data register 

 The processor then continues with other work  

 DMA module transfers the entire block of data – one word at a time – directly to or from 

memory without going through the processor DMA module sends an interrupt to the processor 

when complete 

 



 

 

DMA and Interrupt Breakpoints during Instruction Cycle  

• The processor is suspended just before it needs to use the bus.  

• The DMA module transfers one word and returns control to the processor. 

• Since this is not an interrupt the processor does not have to save context.  

• The processor executes more slowly, but this is still far more efficient that either programmed 

or interrupt-driven I/O. 

 

DMA Configurations 

 

 

Single bus – detached DMA module each transfer uses bus twice – I/O to DMA, DMA to 

memory Processor suspended twice. 

 



 

 

Single bus – integrated DMA module  

It may support more than one device. Each transfer uses bus once – DMA to memory 

Processor suspended once. 

 

 

 

Separate I/O bus  

Bus supports all DMA enabled devices. Each transfer uses bus once – DMA to memory 

Processor suspended once. 

 

INPUT-OUTPUT PROCESSOR (IOP)  

Communicate directly with all I/O devices Fetch and execute its own instruction IOP 

instructions are specifically designed to facilitate I/O transfer. 

 



 

 

 Command Instruction that are read form memory by an IOP  

 Distinguish from instructions that are read by the CPU  

 Commands are prepared by experienced programmers and are stored in memory  

 Command word = IOP program Memory 

 

I/O Channels and Processors 

 

The Evolution of the I/O Function 

1. Processor directly controls peripheral device 

2. Addition of a controller or I/O module – programmed I/O 

3. Same as 2 – interrupts added 

4. I/O module direct access to memory using DMA 

5. I/O module enhanced to become processor like – I/O channel 

6. I/O module has local memory of its own – computer like – I/O processor 

• More and more the I/O function is performed without processor involvement. 

• The processor is increasingly relieved of I/O related tasks – improved performance. 

 

Characteristics of I/O Channels 

• Extension of the DMA concept 

• Ability to execute I/O instructions – special-purpose processor on I/O channel 

– complete control over I/O operations 



• Processor does not execute I/O instructions itself – processor initiates I/O transfer by 

instructing the I/O channel to execute a program in memory 

• Program specifies 

Device or devices 

Area or areas of memory 

Priority 

Error condition actions 

 

Two type of I/O channels 

 

Selector channel 

 Controls multiple high-speed devices 

 Dedicated to the transfer of data with one of the devices 

 Each device handled by a controller, or I/O module 

 I/O channel controls these I/O controllers 

 

 

Multiplexor channel 

 Can handle multiple devices at the same time 

 Byte multiplexor – used for low-speed devices 

 Block multiplexor – interleaves blocks of data from several devices. 

 



 

 

Type of Interfaces 

 

 Serial interface – bits transferred one at a time 

 

 

 

 

 Parallel interface – multiple bits transferred simultaneously 
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UNIT.4 INTRODUCTION TO OPERATING SYSTEM 

Introduction - Operating system structures - System components - OS services- Process 

Management: Processes - Process concepts - Process schedulling-- CPU schedulling 

Scheduling algorithms - Preemptive strategies - Non-preemptive strategies. 

Operating system structures: 

An operating system is a construct that allows the user application programs to interact 

with the system hardware. Since the operating system is such a complex structure, it should be 

created with utmost care so it can be used and modified easily. An easy way to do this is to create 

the operating system in parts. Each of these parts should be well defined with clear inputs, outputs 

and functions. 

For efficient performance and implementation an OS should be partitioned into separate 

subsystems, each with carefully defined tasks, inputs, outputs, and performance characteristics. 

These subsystems can then be arranged in various architectural configurations: 

  

Simple Structure 

When DOS was originally written its developers had no idea how big and important it 

would eventually become. It was written by a few programmers in a relatively short amount of 

time, without the benefit of modern software engineering techniques, and then gradually grew over 

time to exceed its original expectations. It does not break the system into subsystems, and has no 

distinction between user and kernel modes, allowing all programs direct access to the underlying 

hardware 

 

 



 

MS-DOS layer structure 

 

The original UNIX OS used a simple layered approach, but almost all the OS was in one big 

layer, not really breaking the OS down into layered subsystems: 

 

                                                                  Traditional UNIX system structure 



 

Layered Approach 

 Another approach is to break the OS into a number of smaller layers, each of which rests 

on the layer below it, and relies solely on the services provided by the next lower layer. 

 This approach allows each layer to be developed and debugged independently, with the 

assumption that all lower layers have already been debugged and are trusted to deliver 

proper services. 

 The problem is deciding what order in which to place the layers, as no layer can call upon 

the services of any higher layer, and so many chicken-and-egg situations may arise. 

 Layered approaches can also be less efficient, as a request for service from a higher layer 

has to filter through all lower layers before it reaches the HW, possibly with significant 

processing at each step. 

 

 

Layered operating system 

Microkernels 

 The basic idea behind micro kernels is to remove all non-essential services from the kernel, 

and implement them as system applications instead, thereby making the kernel as small 

and efficient as possible. 



 Most microkernels provide basic process and memory management, and message passing 

between other services, and not much more. 

 Security and protection can be enhanced, as most services are performed in user mode, not 

kernel mode. 

 System expansion can also be easier, because it only involves adding more system 

applications, not rebuilding a new kernel. 

 Mach was the first and most widely known microkernel, and now forms a major component 

of Mac OSX. 

 Windows NT was originally microkernel, but suffered from performance problems relative 

to Windows 95. NT 4.0 improved performance by moving more services into the kernel, 

and now XP is back to being more monolithic. 

 Another microkernel example is QNX, a real-time OS for embedded systems. 

 

Architecture of a typical microkernel 

 

Modules 

 Modern OS development is object-oriented, with a relatively small core kernel and a set 

of modules which can be linked in dynamically. See for example the Solaris structure, as 

shown in Figure below. 



 Modules are similar to layers in that each subsystem has clearly defined tasks and 

interfaces, but any module is free to contact any other module, eliminating the problems of 

going through multiple intermediary layers, as well as the chicken-and-egg problems. 

 The kernel is relatively small in this architecture, similar to microkernels, but the kernel 

does not have to implement message passing since modules are free to contact each other 

directly. 

 

 

                                                                            Solaris loadable modules 

 

 Hybrid Systems 

Most OSes today do not strictly adhere to one architecture, but are hybrids of several. 

Mac OS X 

The Max OSX architecture relies on the Mach microkernel for basic system management services, 

and the BSD kernel for additional services. Application services and dynamically loadable 

modules ( kernel extensions ) provide the rest of the OS functionality: 



 

              The Mac OS X structure 

 

Operating System Components 

These components reflect the services made available by the O.S. 

Process Management 

 Process is a program in execution --- numerous processes to choose from in a 

multiprogrammed system, 

 Process creation/deletion (bookkeeping) 

 Process suspension/resumption (scheduling, system vs. user) 

 Process synchronization 

 Process communication 

 Deadlock handling 

Memory Management 

 Maintain bookkeeping information 

 Map processes to memory locations 

 Allocate/deallocate memory space as requested/required 

 



I/O Device Management 

 Disk management functions such as free space management, storage allocation, 

fragmentation removal, head scheduling 

 Consistent, convenient software to I/O device interface through buffering/caching, 

custom drivers for each device. 

File System 

Built on top of disk management 

 File creation/deletion. 

 Support for hierarchical file systems 

 Update/retrieval operations: read, write, append, seek 

 Mapping of files to secondary storage 

Protection 

Controlling access to the system 

 Resources --- CPU cycles, memory, files, devices 

 Users --- authentication, communication 

 Mechanisms, not policies 

Network Management 

Often built on top of file system 

 TCP/IP, IPX, IPng 

 Connection/Routing strategies 

 ``Circuit'' management --- circuit, message, packet switching 

 Communication mechanism 

 Data/Process migration 

Network Services (Distributed Computing) 

Built on top of networking 



 Email, messaging (GroupWise) 

 FTP 

 gopher, www 

 Distributed file systems --- NFS, AFS, LAN Manager 

 Name service --- DNS, YP, NIS 

 Replication --- gossip, ISIS 

 Security --- kerberos 

User Interface 

 Character-Oriented shell --- sh, csh, command.com ( User replaceable) 

 GUI --- X, Windows 95 

Operating-System Services 

 

 

A view of operating system services 

OSes provide environments in which programs run, and services for the users of the system, 

including: 

 User Interfaces - Means by which users can issue commands to the system. Depending on 

the system these may be a command-line interface ( e.g. sh, csh, ksh, tcsh, etc. ), a GUI 



interface ( e.g. Windows, X-Windows, KDE, Gnome, etc. ), or a batch command systems. 

The latter are generally older systems using punch cards of job-control language, JCL, but 

may still be used today for specialty systems designed for a single purpose. 

 Program Execution - The OS must be able to load a program into RAM, run the program, 

and terminate the program, either normally or abnormally. 

 I/O Operations - The OS is responsible for transferring data to and from I/O devices, 

including keyboards, terminals, printers, and storage devices. 

 File-System Manipulation - In addition to raw data storage, the OS is also responsible for 

maintaining directory and subdirectory structures, mapping file names to specific blocks 

of data storage, and providing tools for navigating and utilizing the file system. 

 Communications - Inter-process communications, IPC, either between processes running 

on the same processor, or between processes running on separate processors or separate 

machines. May be implemented as either shared memory or message passing, ( or some 

systems may offer both. ) 

 Error Detection - Both hardware and software errors must be detected and handled 

appropriately, with a minimum of harmful repercussions. Some systems may include 

complex error avoidance or recovery systems, including backups, RAID drives, and other 

redundant systems. Debugging and diagnostic tools aid users and administrators in tracing 

down the cause of problems. 

Other systems aid in the efficient operation of the OS itself: 

 Resource Allocation - E.g. CPU cycles, main memory, storage space, and peripheral 

devices. Some resources are managed with generic systems and others with very carefully 

designed and specially tuned systems, customized for a particular resource and operating 

environment. 

 Accounting - Keeping track of system activity and resource usage, either for billing 

purposes or for statistical record keeping that can be used to optimize future performance. 

 Protection and Security - Preventing harm to the system and to resources, either through 

wayward internal processes or malicious outsiders. Authentication, ownership, and 

restricted access are obvious parts of this system. Highly secure systems may log all 

process activity down to excruciating detail, and security regulation dictate the storage of 



those records on permanent non-erasable medium for extended times in secure ( off-site ) 

facilities. 

Process Management 

An OS executes many kinds of activities: 

– Users’ programs 

– Batch jobs or scripts 

– System programs 

• Print spoolers, name servers, file servers, network daemons, 

• Each of these activities is encapsulated in a process 

– A process includes the execution context 

• PC, registers, VM, OS resources (e.g., open files), etc… 

• Plus the program itself (code and data) 

– The OS’s process module manages these processes 

• Creation, destruction, scheduling 

Program/processor/process 

• Note that a program is totally passive 

– Just bytes on a disk that encode instructions to be run 

• A process is an instance of a program being executed by a 

(Real or virtual) processor 

– At any instant, there may be many processes running copies of the 

Same program (e.g., an editor); each process is separate and (usually) independent 

– Linux: ps -auwwx to list all processes 

 



 

 

 

Process operations 

• The OS provides the following kinds operations on 

Processes (i.e., the process abstraction interface): 

– create a process 

– delete a process 

– suspend a process 

– resume a process 

– clone a process 



– Inter-process communication 

– Inter-process synchronization 

– create/delete a child process (sub process) 

Memory management 

• The primary memory is the directly accessed storage for the CPU 

– Programs must be stored in memory to execute 

– Memory access is fast 

– But memory doesn’t survive power failures 

• OS must: 

– allocate memory space for programs (explicitly and implicitly) 

– deallocate space when needed by rest of system 

– maintain mappings from physical to virtual memory 

• Through page tables 

– decide how much memory to allocate to each process 

• A policy decision 

– decide when to remove a process from memory 

• Also policy 

I/O 

• A big chunk of the OS kernel deals with I/O 

– Hundreds of thousands of lines in NT 

• The OS provides a standard interface between programs 

(User or system) and devices 

– file system (disk), sockets (network), frame buffer (video) 



• Device drivers are the routines that interact with specific device types 

– encapsulates device-specific knowledge 

• e.g., how to initialize a device, how to request I/O, how to handle interrupts or errors 

• Examples: SCSI device drivers, Ethernet card drivers, video card drivers, sound card drivers 

Secondary storage 

• Secondary storage (disk, tape) is persistent memory 

– Often magnetic media, survives power failures (hopefully) 

• Routines that interact with disks are typically at a very low level in the OS 

– used by many components (file system, VM …) 

– handle scheduling of disk operations, head movement, error handling, and often management 

of space on disks 

• Usually independent of file system 

– Although there may be cooperation 

– file system knowledge of device details can help optimize performance 

• e.g., place related files close together on disk 

File systems 

• Secondary storage devices are crude and awkward 

– e.g., “write 4096 byte block to sector 12” 

• File system: a convenient abstraction 

– defines logical objects like files and directories 

• hides details about where on disk files live 

– As well as operations on objects like read and write 

• read/write byte ranges instead of blocks 



• A file is the basic unit of long-term storage 

– file = named collection of persistent information 

• A directory is just a special kind of file 

– Directory = named file that contains names of other files and metadata about those files (e.g., 

file size) 

File system operations 

• The file system interface defines standard operations: 

– File (or directory) creation and deletion 

– Manipulation of files and directories (read, write, extend, rename, protect) 

– Copy 

– lock 

• File systems also provide higher level services 

– Accounting and quotas 

– Backup (must be incremental and online!) 

– (sometimes) indexing or search 

– (sometimes) file versioning 

Protection 

• Protection is a general mechanism used throughout the OS 

– All resources needed to be protected 

• Memory 

• Processes 

• Files 

• Devices 



• CPU time 

– Protection mechanisms help to detect and contain unintentional errors, as well as preventing 

malicious destruction 

Command interpreter (shell) 

• A particular program that handles the interpretation of users’ commands and helps to manage 

processes 

– User input may be from keyboard (command-line interface), from script files, or from the 

mouse (GUIs) 

– allows users to launch and control new programs 

• On some systems, command interpreter may be a standard part of the OS (e.g., MS DOS, 

Apple II) 

• On others, it’s just non-privileged code that provides an interface to the user 

– e.g., bash/csh/tcsh/zsh on UNIX 

• On others, there may be no command language 

– e.g., MacOS 

Process Scheduling 

The act of determining which process is in the ready state, and should be moved to the running 

state is known as Process Scheduling. 

The prime aim of the process scheduling system is to keep the CPU busy all the time and to 

deliver minimum response time for all programs. For achieving this, the scheduler must apply 

appropriate rules for swapping processes IN and OUT of CPU. 

Scheduling fell into one of the two general categories: 

Non Pre-emptive Scheduling: When the currently executing process gives up the CPU 

voluntarily. 



Pre-emptive Scheduling: When the operating system decides to favour another process, pre-

empting the currently executing process. 

Scheduling Queues 

All processes, upon entering into the system, are stored in the Job Queue. 

Processes in the Ready state are placed in the Ready Queue. 

Processes waiting for a device to become available are placed in Device Queues. There are unique 

device queues available for each I/O device. 

A new process is initially put in the Ready queue. It waits in the ready queue until it is selected for 

execution (or dispatched). Once the process is assigned to the CPU and is executing, one of the 

following several events can occur: 

 The process could issue an I/O request, and then be placed in the I/O queue. 

 The process could create a new sub process and wait for its termination. 

 The process could be removed forcibly from the CPU, as a result of an interrupt, and be 

put back in the ready queue. 

Scheduling Queues figure 

 



In the first two cases, the process eventually switches from the waiting state to the ready state, 

and is then put back in the ready queue. A process continues this cycle until it terminates, at 

which time it is removed from all queues and has its PCB and resources deallocated. 

Types of Schedulers 

There are three types of schedulers available: 

 Long Term Scheduler 

 Short Term Scheduler 

 Medium Term Scheduler 

Let's discuss about all the different types of Schedulers in detail: 

Long Term Scheduler 

Long term scheduler runs less frequently. Long Term Schedulers decide which program must get 

into the job queue. From the job queue, the Job Processor, selects processes and loads them into 

the memory for execution. Primary aim of the Job Scheduler is to maintain a good degree of 

Multiprogramming. An optimal degree of Multiprogramming means the average rate of process 

creation is equal to the average departure rate of processes from the execution memory. 

Short Term Scheduler 

This is also known as CPU Scheduler and runs very frequently. The primary aim of this 

scheduler is to enhance CPU performance and increase process execution rate. 

Medium Term Scheduler 

This scheduler removes the processes from memory (and from active contention for the CPU), 

and thus reduces the degree of multiprogramming. At some later time, the process can be 

reintroduced into memory and its execution van be continued where it left off. This scheme is 

called swapping. The process is swapped out, and is later swapped in, by the medium term 

scheduler. 

Swapping may be necessary to improve the process mix, or because a change in memory 

requirements has overcommitted available memory, requiring memory to be freed up. This 

complete process is descripted in the below diagram: 



 

Context Switch 

 Switching the CPU to another process requires saving the state of the old process and 

loading the saved state for the new process. This task is known as a Context Switch. 

 The context of a process is represented in the Process Control Block (PCB) of a process; 

it includes the value of the CPU registers, the process state and memory-management 

information. When a context switch occurs, the Kernel saves the context of the old 

process in its PCB and loads the saved context of the new process scheduled to run. 

 Context switch time is pure overhead, because the system does no useful work while 

switching. Its speed varies from machine to machine, depending on the memory speed, 

the number of registers that must be copied, and the existence of special instructions 

(such as a single instruction to load or store all registers). Typical speeds range from 1 to 

1000 microseconds. 

 Context Switching has become such a performance bottleneck that programmers are 

using new structures (threads) to avoid it whenever and wherever possible. 

CPU Scheduling 

CPU scheduling is a process which allows one process to use the CPU while the execution of 

another process is on hold (in waiting state) due to unavailability of any resource like I/O etc., 

thereby making full use of CPU. The aim of CPU scheduling is to make the system efficient, fast 

and fair. 



Whenever the CPU becomes idle, the operating system must select one of the processes in the 

ready queue to be executed. The selection process is carried out by the short-term scheduler (or 

CPU scheduler). The scheduler selects from among the processes in memory that are ready to 

execute, and allocates the CPU to one of them. 

Types of CPU Scheduling 

CPU scheduling decisions may take place under the following four circumstances: 

 When a process switches from the running state to the waiting state (for I/O request or 

invocation of wait for the termination of one of the child processes). 

 When a process switches from the running state to the ready state (for example, when an 

interrupt occurs). 

 When a process switches from the waiting state to the ready state (for example, 

completion of I/O). 

 When a process terminates. 

In circumstances 1 and 4, there is no choice in terms of scheduling. A new process (if one exists 

in the ready queue) must be selected for execution. There is a choice, however in circumstances 

2 and 3. 

When Scheduling takes place only under circumstances 1 and 4, we say the scheduling scheme is 

non-preemptive; otherwise the scheduling scheme is preemptive. 

Non-Preemptive Scheduling 

Under non-preemptive scheduling, once the CPU has been allocated to a process, the process 

keeps the CPU until it releases the CPU either by terminating or by switching to the waiting 

state. 

 

This scheduling method is used by the Microsoft Windows 3.1 and by the Apple Macintosh 

operating systems. 

It is the only method that can be used on certain hardware platforms, because It does not require 

the special hardware (for example: a timer) needed for preemptive scheduling. 



Preemptive Scheduling 

In this type of Scheduling, the tasks are usually assigned with priorities. At times it is necessary 

to run a certain task that has a higher priority before another task although it is running. 

Therefore, the running task is interrupted for some time and resumed later when the priority task 

has finished its execution. 

Below are different time with respect to a process. 

 Arrival Time: Time at which the process arrives in the ready queue. 

 Completion Time: Time at which process completes its execution. 

 Burst Time: Time required by a process for CPU execution. 

 Turn Around Time: Time Difference between completion time and arrival time. 

 Turn Around Time = Completion Time – Arrival Time 

 Waiting Time (W.T): Time Difference between turnaround time and burst time. 

 Waiting Time = Turn Around Time – Burst Time 

Scheduling Algorithms 

To decide which process to execute first and which process to execute last to achieve maximum 

CPU utilization, computer scientists have defined some algorithms, and they are: 

 First Come First Serve(FCFS) Scheduling 

 Shortest-Job-First(SJF) Scheduling 

 Priority Scheduling 

 Round Robin(RR) Scheduling 

 Multilevel Queue Scheduling 

 Multilevel Feedback Queue Scheduling 

First Come First Serve (FCFS) 

 Jobs are executed on first come, first serve basis. 

 It is a non-preemptive, pre-emptive scheduling algorithm. 

 Easy to understand and implement. 

 Its implementation is based on FIFO queue. 



 Poor in performance as average wait time is high. 

 

Wait time of each process is as follows – 

 

Average Wait Time: (0+4+6+13) / 4 = 5.75 

Shortest Job Next (SJN) 

 This is also known as shortest job first, or SJF 

 This is a non-preemptive, pre-emptive scheduling algorithm. 

 Best approach to minimize waiting time. 

 Easy to implement in Batch systems where required CPU time is known in advance. 

 Impossible to implement in interactive systems where required CPU time is not known. 

 The processer should know in advance how much time process will take. 

Given: Table of processes, and their Arrival time, Execution time 



 

 

 

 

 

Waiting time of each process is as follows – 

 

Average Wait Time: (0 + 4 + 12 + 5)/4 = 21 / 4 = 5.25 

Priority Based Scheduling 

 Priority scheduling is a non-preemptive algorithm and one of the most common 

scheduling algorithms in batch systems. 

 Each process is assigned a priority. Process with highest priority is to be executed first 

and so on. 

 Processes with same priority are executed on first come first served basis. 

 Priority can be decided based on memory requirements, time requirements or any other 

resource requirement. 

Given: Table of processes, and their Arrival time, Execution time, and priority. Here we are 

considering 1 is the lowest priority. 



 

Waiting time of each process is as follows – 

 

Average Wait Time: (0 + 10 + 12 + 2)/4 = 24 / 4 = 6 

Shortest Remaining Time 

 Shortest remaining time (SRT) is the preemptive version of the SJN algorithm. 

 The processor is allocated to the job closest to completion but it can be preempted by a 

newer ready job with shorter time to completion. 

 Impossible to implement in interactive systems where required CPU time is not known. 

 

 It is often used in batch environments where short jobs need to give preference. 

Round Robin Scheduling 

 Round Robin is the preemptive process scheduling algorithm. 

 Each process is provided a fix time to execute, it is called a quantum. 

 Once a process is executed for a given time period, it is preempted and other process 

executes for a given time period. 

 Context switching is used to save states of preempted processes. 

 



 

Wait time of each process is as follows – 

 

Average Wait Time: (9+2+12+11) / 4 = 8.5 

Multiple-Level Queues Scheduling 

 Multiple-level queues are not an independent scheduling algorithm. They make use of 

other existing algorithms to group and schedule jobs with common characteristics. 

 Multiple queues are maintained for processes with common characteristics. 

 Each queue can have its own scheduling algorithms. 

 Priorities are assigned to each queue. 

For example, CPU-bound jobs can be scheduled in one queue and all I/O-bound jobs in another 

queue. The Process Scheduler then alternately selects jobs from each queue and assigns them to 

the CPU based on the algorithm assigned to the queue. 

Multilevel feedback queue scheduler is defined by the following parameters: 

 The number of queues. 

 The scheduling algorithm for each queue. 

 The method used to determine when to upgrade a process to a higher-priority queue. 

 The method used to determine when to demote a process to a lower-priority queue. 

 The method used to determine which queue a process will enter when that process needs 

service. 
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Critical Section Problem 

The critical section is a code segment where the shared variables can be accessed. An atomic action 
is required in a critical section i.e. only one process can execute in its critical section at a time. All 
the other processes have to wait to execute in their critical sections. 

A diagram that demonstrates the critical section is as follows – 

 

In the above diagram, the entry section handles the entry into the critical section. It acquires the 
resources needed for execution by the process. The exit section handles the exit from the critical 
section. It releases the resources and also informs the other processes that the critical section is 
free. 

Solution to the Critical Section Problem 

The critical section problem needs a solution to synchronize the different processes. The solution 
to the critical section problem must satisfy the following conditions − 

Mutual Exclusion 

Mutual exclusion implies that only one process can be inside the critical section at any time. If any 
other processes require the critical section, they must wait until it is free. 

Progress 



Progress means that if a process is not using the critical section, then it should not stop any other 
process from accessing it. In other words, any process can enter a critical section if it is free. 

 

Bounded Waiting 

Bounded waiting means that each process must have a limited waiting time. It should not wait 
endlessly to access the critical section. 

Semaphores 

Semaphores are integer variables that are used to solve the critical section problem by using two 
atomic operations, wait and signal that are used for process synchronization. 

The definitions of wait and signal are as follows − 

Wait 

The wait operation decrements the value of its argument S, if it is positive. If S is negative or zero, 
then no operation is performed. 

wait(S) 

{ 

while (S<=0); 

 S--; 

} 

Signal 

The signal operation increments the value of its argument S. 

signal(S) 

{ 

   S++; 

} 

Types of Semaphores 

There are two main types of semaphores i.e. counting semaphores and binary semaphores. Details 
about these are given as follows − 

Counting Semaphores 

These are integer value semaphores and have an unrestricted value domain. These semaphores are 
used to coordinate the resource access, where the semaphore count is the number of available 



resources. If the resources are added, semaphore count automatically incremented and if the 
resources are removed, the count is decremented. 

 

 

Binary Semaphores 

The binary semaphores are like counting semaphores but their value is restricted to 0 and 1. The 
wait operation only works when the semaphore is 1 and the signal operation succeeds when 
semaphore is 0. It is sometimes easier to implement binary semaphores than counting semaphores. 

Advantages of Semaphores 

Some of the advantages of semaphores are as follows − 

 Semaphores allow only one process into the critical section. They follow the mutual 
exclusion principle strictly and are much more efficient than some other methods of 
synchronization. 

 There is no resource wastage because of busy waiting in semaphores as processor time is 
not wasted unnecessarily to check if a condition is fulfilled to allow a process to access the 
critical section. 

 Semaphores are implemented in the machine independent code of the microkernel. So they 
are machine independent. 

Disadvantages of Semaphores 

Some of the disadvantages of semaphores are as follows − 

 Semaphores are complicated so the wait and signal operations must be implemented in the 
correct order to prevent deadlocks. 

 Semaphores are impractical for last scale use as their use leads to loss of modularity. This 
happens because the wait and signal operations prevent the creation of a structured layout 
for the system. 

 Semaphores may lead to a priority inversion where low priority processes may access the 
critical section first and high priority processes later. 

Deadlocks 

Deadlock is a situation where a set of processes are blocked because each process is holding a 
resource and waiting for another resource acquired by some other process. 

A process in operating systems uses different resources and uses resources in the following way.  

 Requests a resource  
 Use the resource  
 Releases the resource 



 

 

In the above diagram, the process 1 has resource 1 and needs to acquire resource 2. Similarly 
process 2 has resource 2 and needs to acquire resource 1. Process 1 and process 2 are in deadlock 
as each of them needs the other’s resource to complete their execution but neither of them is willing 
to relinquish their resources. 

Deadlock can arise if the following four conditions hold simultaneously (Necessary 
Conditions)  

 Mutual Exclusion: One or more than one resource are non-shareable (Only one process 
can use at a time)  

 Hold and Wait: A process is holding at least one resource and waiting for resources.  
 No Preemption: A resource cannot be taken from a process unless the process releases the 

resource.  
 Circular Wait: A set of processes are waiting for each other in circular form. 

A deadlock occurs if the four Coffman conditions hold true. But these conditions are not mutually 
exclusive. They are given as follows – 

Mutual Exclusion 

There should be a resource that can only be held by one process at a time. In the diagram below, 
there is a single instance of Resource 1 and it is held by Process 1 only. 

 



 

Hold and Wait 

A process can hold multiple resources and still request more resources from other processes which 
are holding them. In the diagram given below, Process 2 holds Resource 2 and Resource 3 and is 
requesting the Resource 1 which is held by Process 1. 

 

No Preemption 

A resource cannot be preempted from a process by force. A process can only release a resource 
voluntarily. In the diagram below, Process 2 cannot preempt Resource 1 from Process 1. It will 
only be released when Process 1 relinquishes it voluntarily after its execution is complete. 

 

 

Circular Wait 

A process is waiting for the resource held by the second process, which is waiting for the resource 
held by the third process and so on, till the last process is waiting for a resource held by the first 
process. This forms a circular chain. For example: Process 1 is allocated Resource2 and it is 
requesting Resource 1. Similarly, Process 2 is allocated Resource 1 and it is requesting Resource 
2. This forms a circular wait loop. 



 

Deadlock Prevention 

It is very important to prevent a deadlock before it can occur. So, the system checks each 
transaction before it is executed to make sure it does not lead to deadlock. If there is even a slight 
chance that a transaction may lead to deadlock in the future, it is never allowed to execute. 

Deadlock Avoidance 

It is better to avoid a deadlock rather than take measures after the deadlock has occurred. The wait 
for graph can be used for deadlock avoidance. This is however only useful for smaller databases 
as it can get quite complex in larger databases. 

Deadlock Detection 

A deadlock can be detected by a resource scheduler as it keeps track of all the resources that are 
allocated to different processes. After a deadlock is detected, it can be resolved using the following 
methods − 

 

 All the processes that are involved in the deadlock are terminated. This is not a good 
approach as all the progress made by the processes is destroyed. 

 Resources can be preempted from some processes and given to others till the deadlock is 
resolved. 

Deadlock Recovery 

A traditional operating system such as Windows doesn’t deal with deadlock recovery as it is time 
and space consuming process. Real-time operating systems use Deadlock recovery. 

Recovery method 

 Killing the process: killing all the process involved in the deadlock. Killing process one 
by one. After killing each process check for deadlock again keep repeating the process till 
system recover from deadlock. 



 Resource Preemption: Resources are preempted from the processes involved in the 
deadlock, preempted resources are allocated to other processes so that there is a possibility 
of recovering the system from deadlock. In this case, the system goes into starvation. 

Storage Management 

Storage Management is defined as it refers to the management of the data storage equipment’s 
that are used to store the user/computer generated data. 

Storage management key attributes: 

Storage management has some key attribute which is generally used to manage the storage capacity 
of the system. These are given below: 

 Performance 
 Reliability 
 Recoverability 
 Capacity  

Feature of Storage management: 

There is some feature of storage management which is provided for storage capacity. These are 
given below: 

 Storage management is a process that is used to optimize the use of storage devices. 
 Storage management must be allocated and managed as a resource in order to truly benefit 

a corporation. 
 Storage management is generally a basic system component of information systems. 
 It is used to improve the performance of their data storage resources. 

Advantage of storage management: 

There are some advantage of storage management which are given below: 

 

 It is very simple to manage a storage capacity. 
 It is generally take a less time. 
 It is improve the performance of system. 
 In virtualization and automation technologies can help an organization improve its agility. 

Memory management 

Memory is central to the operation of a computer system. It consists of a large array of words 
or bytes each with its own address.  

Memory management techniques 

The memory management techniques is divided into two parts... 



Uniprogramming: 

In the uni-programming technique, the RAM is divided into two parts one part is for the 
resigning the operating system and other portion is for the user process. Here the fence register 
is used which contain the last address of the operating system parts. The operating system will 
compare the user data addresses with the fence register and if it is different that means the user 
is not entering in the OS area. Fence register is also called boundary register and is used to 
prevent a user from entering in the operating system area. Here the CPU utilization is very 
poor and hence multiprogramming is used. 

Multiprogramming: 

In the multiprogramming, the multiple users can share the memory simultaneously. By 
multiprogramming we mean there will be more than one process in the main memory and if 
the running process wants to wait for an event like I/O then instead of sitting ideal CPU will 
make a context switch and will pick another process. 

 Contiguous memory allocation 
 Non-contiguous memory allocation 

a) Contiguous memory allocation 

In contiguous memory allocation, all the available memory space remain together in one place. It 
means freely available memory partitions are not scattered here and there across the whole memory 
space. 

In the contiguous memory allocation, both the operating system and the user must reside in the 
main memory. The main memory is divided into two portions one portion is for the operating and 
other is for the user program. 

In the contiguous memory allocation when any user process request for the memory a single 
section of the contiguous memory block is given to that process according to its need. We can 
achieve contiguous memory allocation by dividing memory into the fixed-sized partition. 

A single process is allocated in that fixed sized single partition. But this will increase the degree 
of multiprogramming means more than one process in the main memory that bounds the number 
of fixed partition done in memory. Internal fragmentation increases because of the contiguous 
memory allocation. 



 

 

Fixed sized partition 

In the fixed sized partition the system divides memory into fixed size partition (may or may not be 
of the same size) here entire partition is allowed to a process and if there is some wastage inside 
the partition is allocated to a process and if there is some wastage inside the partition then it is 
called internal fragmentation. 

Advantage: Management or book keeping is easy. 

Disadvantage: Internal fragmentation 

 Variable size partition 

In the variable size partition, the memory is treated as one unit and space allocated to a process is 
exactly the same as required and the leftover space can be reused again. 

Advantage: There is no internal fragmentation. 

Disadvantage: Management is very difficult as memory is becoming purely fragmented after 
some time. 

b) Non-contiguous memory allocation 

In the non-contiguous memory allocation the available free memory space are scattered here and 
there and all the free memory space is not at one place. So this is time-consuming. In the non-
contiguous memory allocation, a process will acquire the memory space but it is not at one place 
it is at the different locations according to the process requirement. This technique of non-
contiguous memory allocation reduces the wastage of memory which leads to internal and external 
fragmentation. This utilizes all the free memory space which is created by a different process. 



 

Non-contiguous memory allocation is of different types, 

 Paging 
 Segmentation 
 Segmentation with paging 

i) Paging 

A non-contiguous policy with a fixed size partition is called paging. A computer can 
address more memory than the amount of physically installed on the system. This extra memory 
is actually called virtual memory. Paging technique is very important in implementing virtual 
memory. Secondary memory is divided into equal size partition (fixed) called pages. Every process 
will have a separate page table. The entries in the page table are the number of pages a process. At 
each entry either we have an invalid pointer which means the page is not in main memory or we 
will get the corresponding frame number. When the frame number is combined with instruction of 
set D than we will get the corresponding physical address. Size of a page table is generally very 
large so cannot be accommodated inside the PCB, therefore, PCB contains a register value PTBR 
(page table base register) which leads to the page table. 

A computer can address more memory than the amount physically installed on the system. 
This extra memory is actually called virtual memory and it is a section of a hard that's set up to 
emulate the computer's RAM. Paging technique plays an important role in implementing virtual 
memory. 

Paging is a memory management technique in which process address space is broken into 
blocks of the same size called pages (size is power of 2, between 512 bytes and 8192 bytes). The 
size of the process is measured in the number of pages. 

Similarly, main memory is divided into small fixed-sized blocks of (physical) memory 
called frames and the size of a frame is kept the same as that of a page to have optimum utilization 
of the main memory and to avoid external fragmentation. 



 

Address Translation 

 Page address is called logical address and represented by page number and the offset. 
 Logical Address = Page number + page offset 
 Frame address is called physical address and represented by a frame number and the offset. 
 Physical Address = Frame number + page offset 
 A data structure called page map table is used to keep track of the relation between a pages 

of a process to a frame in physical memory. 



 

When the system allocates a frame to any page, it translates this logical address into a physical 
address and create entry into the page table to be used throughout execution of the program. 

When a process is to be executed, its corresponding pages are loaded into any available memory 
frames. Suppose you have a program of 8Kb but your memory can accommodate only 5Kb at a 
given point in time, then the paging concept will come into picture. When a computer runs out of 
RAM, the operating system (OS) will move idle or unwanted pages of memory to secondary 
memory to free up RAM for other processes and brings them back when needed by the program. 

This process continues during the whole execution of the program where the OS keeps removing 
idle pages from the main memory and write them onto the secondary memory and bring them back 
when required by the program. 

Advantages: It is independent of external fragmentation. 

Disadvantages: 

 It makes the translation very slow as main memory access two times. 
 A page table is a burden over the system which occupies considerable space. 

ii) Segmentation 

Segmentation is a programmer view of the memory where instead of dividing a process into equal 
size partition we divided according to program into partition called segments. The translation is 
the same as paging but paging segmentation is independent of internal fragmentation but suffers 
from external fragmentation. Reason of external fragmentation is program can be divided into 
segments but segment must be contiguous in nature. 

 

iii) Segmentation with paging 

In segmentation with paging, we take advantages of both segmentation as well as paging. It is a 
kind of multilevel paging but in multilevel paging, we divide a page table into equal size partition 



but here in segmentation with paging, we divide it according to segments. All the properties are 
the same as that of paging because segments are divided into pages. 

 

Page Replacement Strategies 

In an operating system that uses paging for memory management, a page replacement algorithm 
is needed to decide which page needs to be replaced when new page comes in. 

Page Fault – A page fault happens when a running program accesses a memory page that is 
mapped into the virtual address space, but not loaded in physical memory. 

Page Replacement Algorithms: 

FIFO Page Replacement Algorithm- 

 As the name suggests, this algorithm works on the principle of “First in First out“. 
 It replaces the oldest page that has been present in the main memory for the longest time. 
 It is implemented by keeping track of all the pages in a queue. 

 LIFO Page Replacement Algorithm- 

 As the name suggests, this algorithm works on the principle of “Last in First out“. 
 It replaces the newest page that arrived at last in the main memory. 
 It is implemented by keeping track of all the pages in a stack. 

 NOTE 

 Only frame is used for page replacement during entire procedure after all the frames get occupied. 

LRU Page Replacement Algorithm- 

 As the name suggests, this algorithm works on the principle of “Least Recently Used“. 



 It replaces the page that has not been referred by the CPU for the longest time. 

 Optimal Page Replacement Algorithm- 

 This algorithm replaces the page that will not be referred by the CPU in future for the 
longest time. 

 It is practically impossible to implement this algorithm. 
 This is because the pages that will not be used in future for the longest time cannot be 

predicted. 
 However, it is the best known algorithm and gives the least number of page faults. 
 Hence, it is used as a performance measure criterion for other algorithms. 

 Random Page Replacement Algorithm- 

 As the name suggests, this algorithm randomly replaces any page. 
 So, this algorithm may behave like any other algorithm like FIFO, LIFO, LRU, Optimal 

etc. 
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