
1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

PRINCIPLES OF EMBEDDED SYSTEM DESIGN-SECA1706

2

UNIT – I

8051 MICROCONTROLLER ARCHITECTURE

3

I. UNIT – I

8051 MICROCONTROLLER ARCHITECTURE

SYLLABUS

Comparison of microprocessors and microcontrollers - 8051 architecture - hardware, I/O

pins, ports, memory, counters, timers, serial I/O interrupts.

Table 1.1-Difference between Microprocessor and microcontroller

Microprocessor Micro Controller

Microprocessor is heart of Computer system. Micro Controller is a heart of embedded system.

It is just a processor. Memory and I/O
components have to be connected externally

Micro controller has processor along with
internal memory and i/O components

Since memory and I/O has to be connected

externally, the circuit becomes large.

Since memory and I/O are present internally, the

circuit is small.

Cannot be used in compact systems and hence

inefficient

Can be used in compact systems and hence it is

an efficient technique

Cost of the entire system increases Cost of the entire system is low

Due to external components, the entire power

consumption is high. Hence it is not suitable to

used with devices running on stored power like

batteries.

Since external components are low, total power

consumption is less and can be used with devices

running on stored power like batteries.

Most of the microprocessors do not have power

saving features.

Most of the micro controllers have power saving

modes like idle mode and power saving mode.

This helps to reduce power consumption even

further.

4

Since memory and I/O components are all

external, each instruction will need external

operation, hence it is relatively slower.

Since components are internal, most of the

operations are internal instruction, hence speed is

fast.

Microprocessor have less number of registers,

hence more operations are memory based.

Micro controller have more number of registers,

hence the programs are easier to write.

Microprocessors are based on von Neumann

model/architecture where program and data are

stored in same memory module

Micro controllers are based on Harvard

architecture where program memory and Data

memory are separate

Mainly used in personal computers Used mainly in washing machine, MP3 players

5

8051 Microcontroller

The INTEL 8051 is an 8 bit microcontroller with 128 byte internal RAM and 4K bytes

internal ROM. The 8051 is a 40 pin IC available in Dual in line package (DIP) and it requires a

single power supply of +5V.

Pin Diagram

Fig .1.1: Pin Diagram of 8051

6

Pin-40 : Named as Vcc is the main power source. Usually its +5V DC.

Pins 32-39: Known as Port 0 (P0.0 to P0.7) – In addition to serving as I/O port, lower order

address and data bus signals are multiplexed with this port (to serve the purpose of external

memory interfacing). This is a bi directional I/O port (the only one in 8051) and external pull up

resistors are required to function this port as I/O.

Pin-31:- ALE aka Address Latch Enable is used to demultiplex the address-data signal of port 0

(for external memory interfacing.) 2 ALE pulses are available for each machine cycle.

Pin-30:- EA/ External Access input is used to enable or disallow external memory interfacing. If

there is no external memory requirement, this pin is pulled high by connecting it to Vcc.

Pin- 29:- PSEN or Program Store Enable is used to read signal from external program memory.

Pins- 21-28:- Known as Port 2 (P 2.0 to P 2.7) – in addition to serving as I/O port, higher order
address bus signals are multiplexed with this quasi bi directional port.

Pin 20:- Named as Vss – it represents ground (0 V) connection.

Pins 18 and 19:- Used for interfacing an external crystal to provide system clock.

Pins 10 – 17:- Known as Port 3. This port also serves some other functions like interrupts, timer

input, control signals for external memory interfacing RD and WR , serial communication

signals RxD and TxD etc. This is a quasi bi directional port with internal pull up.

Pin 9:- As explained before RESET pin is used to set the 8051 microcontroller to its initial

values, while the microcontroller is working or at the initial start of application. The RESET pin

must be set high for 2 machine cycles.

Pins 1 – 8:- Known as Port 1. Unlike other ports, this port does not serve any other functions.

Port 1 is an internally pulled up, quasi bi directional I/O port.

8051 Block Diagram (Architecture)

The 8051 architecture consists of the following special features.

 8 bit CPU with registers A and B

 16 bit Program Counter(PC) and Data Pointer(DPTR)

 8 bit Program Status Word(PSW)

 8 bit Stack Pointer(SP)

 Internal ROM or EPROM of 4K bytes

7

 Internal RAM of 128 bytes.

o 4 Register banks , each containing 8 registers

o 16 bytes ,which may be addressed at the bit level

o 80 bytes of general purpose memory

 32 input / output pins are arranged as four 8 bit ports : P0-P3

 Two 16 bit timer / counters : T0 and T1

 Full duplex serial data receiver / transmitter : SBUF

 Control registers TCON,TMOD,SCON,PCON,IP and IE

 2 external and 3 internal interrupt sources

 Oscillator and Clock circuits.

8051 System Clock

Fig 1.2: Architecture of 8051

Fig 1.3: 8051 System clock

8

An 8051 clock circuit is shown above. In general cases, a quartz crystal is used to make the clock

circuit. The connection is shown in figure and note the connections to XTAL 1 and XTAL 2. In

some cases external clock sources are used and you can see the various connections above. Clock

frequency limits (maximum and minimum) may change from device to device. Standard practice

is to use 12MHz frequency. If serial communications are involved then its best to use 11.0592

MHz frequency.

Fig 1.4: Clock signal of 8051

Okay, take a look at the above machine cycle waveform. One complete oscillation of the clock

source is called a pulse. Two pulses forms a state and six states forms one machine cycle. Also

note that, two pulses of ALE are available for 1 machine cycle.

ALU

All arithmetic and logical functions are carried out by the ALU.

Addition, subtraction with carry, and multiplication come under arithmetic operations.

Logical AND, OR and exclusive OR (XOR) come under logical operations.

Registers

Registers are usually known as data storage devices.

9

A & B Registers

8051 microcontroller has 2 registers, namely Register A and Register B. Register A serves as an

accumulator while Register B functions as a general purpose register. These registers are used to

store the output of mathematical and logical instructions.

The operations of addition, subtraction, multiplication and division are carried out by Register A.

Register B is usually unused and comes into picture only when multiplication and division

functions are carried out by Register A. Register A also involved in data transfers between the

microcontroller and external memory.

 Program Counter (PC)

A program counter is a 16-bit register and it has no internal address. The basic function of

program counter is to fetch from memory the address of the next instruction to be executed. The

PC holds the address of the next instruction residing in memory and when a command is

encountered, it produces that instruction. This way the PC increments automatically, holding the

address of the next instruction.

Data Pointer (DPTR)

The data pointer or DPTR is a 16-bit register. It is made up of two 8-bit registers called DPH and

DPL. Separate addresses are assigned to each of DPH and DPL. These 8-bit registers are used for

the storing the memory addresses that can be used to access internal and external data/code.

Stack Pointer (SP)

The stack pointer (SP) in 8051 is an 8-bit register. The main purpose of SP is to access the stack.

As it has 8-bits it can take values in the range 00 H to FF H. Stack is a special area of data in
memory. The SP acts as a pointer for an address that points to the top of the stack.

PSW (Program Status Word)

Program Status Word or PSW is a hardware register which is a memory location which holds a

program's information and also monitors the status of the program this is currently being

executed. PSW also has a pointer which points towards the address of the next instruction to be

executed. PSW register has 3 fields namely are instruction address field, condition code field and

error status field. We can say that PSW is an internal register that keeps track of the computer at

every instant.Generally, the instruction of the result of a program is stored in a single bit register

called a 'flag'. The are7 flags in the PSW of 8051. Among these 7 flags, 4 are math flags and 3

are general purpose user flags.

10

\

The 4 Math flags are: Carry flag(C), Auxiliary Carry (AC) ,Overflow (OV) and Parity (P)

The 3 General purpose flags or User flags are: FO, GFO and GF 1

CY PSW.7 Carry flag (Carry out from the D7 bit)

AC PSW.6 Auxiliary carry flag (A carry from D3 to D4)

— PSW.5 Available to the user for general purpose

RS1 PSW.4 Register Bank selector bit 1.

RS0 PSW.3 Register Bank selector bit 0.

OV PSW.2 Overflow flag.

— PSW.1 User definable bit.

P PSW.0 Parity flag. Set/cleared by hardware each instruction cycle to indicate an

odd/ even number of 1 bits in the accumulator.

Special function registers

The table1.2 shows the list of special function registers for various operations in 8051.

11

Table 1.2- Special Function Registers

Internal RAM and ROM

ROM

A code of 4K memory is incorporated as on-chip ROM in 8051. The 8051 ROM is a non-volatile

memory meaning that its contents cannot be altered and hence has a similar range of data and

program memory, i.e, they can address program memory as well as a 64K separate block of data

memory.

http://www.techulator.com/articles/Virtual-Memory.aspx

12

RAM

The 8051 microcontroller is composed of 128 bytes of internal RAM. This is a volatile memory

since its contents will be lost if power is switched off. These 128 bytes of internal RAM are

divided into 32 working registers which in turn constitute 4 register banks (Bank 0-Bank 3) with

each bank consisting of 8 registers (R0 - R7). There are 128 addressable bits in the internal

RAM.

Fig 1.5: Register Bank

Data and Address Bus

A bus is group of wires using which data transfer takes place from one location to another within

a system. Buses reduce the number of paths or cables needed to set up connection between

components. There are mainly two kinds of buses - Data Bus and

Address Bus

Data Bus: The purpose of data bus is to transfer data. It acts as an electronic channel using

which data travels. Wider the width of the bus, greater will be the transmission
of data.

Address Bus: The purpose of address bus is to transfer information but not data. The

information tells from where within the components, the data should be sent to or

received from. The capacity or memory of the address bus depends on the number of wires that

transmit a single address bit.

13

Four General Purpose Parallel Input/Output Ports

The 8051 microcontroller has four 8-bit input/output ports. These are:

PORT P0: When there is no external memory present, this port acts as a general purpose

input/output port. In the presence of external memory, it functions as a multiplexed address and

data bus. It performs a dual role.

PORT P1: This port is used for various interfacing activities. This 8-bit port is a normal I/O port

i.e. it does not perform dual functions.

PORT P2: Similar to PORT P0, this port can be used as a general purpose port when there is no

external memory but when external memory is present it works in conjunction with PORT PO as

an address bus. This is an 8-bit port and performs dual functions.

PORT P3: PORT P3 behaves as a dedicated I/O port

PORT 0 :

The structure of a Port-0 pin is shown in fig 6.It has 8 pins (P0.0-P0.7).

Fig 1.6: PORT 0 STRUCTURE

Port-0 can be used as a normal bidirectional I/O port or it can be used for address/data

interfacing for accessing external memory. When control is '1', the port is used for address/data

interfacing. When the control is '0', the port can be used as a bidirectional I/O port.

PORT 0 as an Input Port

Let us assume that control is '0'. When the port is used as an input port, '1' is written to the latch.

In this situation both the output MOSFETs are 'off'. Hence the output pin have floats hence

whatever data written on pin is directly read by read pin.

14

Fig 1.7: PORT 0-INPUT PORT

PORT 0 as an Output Port

Suppose we want to write 1 on pin of Port 0, a '1' written to the latch which turns 'off' the lower

FET while due to '0' control signal upper FET also turns off as shown in fig. above. Here we

wants logic '1' on pin but we getting floating value so to convert that floating value into logic '1'

we need to connect the pull up resistor parallel to upper FET . This is the reason why we needed

to connect pull up resistor to port 0 when we want to initialize port 0 as an output port.

Fig 1.8: PORT 0 PULL-UP RESISTORS

15

If we want to write '0' on pin of port 0 , when '0' is written to the latch, the pin is pulled down

by the lower FET. Hence the output becomes zero.

Fig 1.9: PORT 0 –OUTPUT PORT

When the control is '1', address/data bus controls the output driver FETs. If the address/data bus

(internal) is '0', the upper FET is 'off' and the lower FET is 'on'. The output becomes '0'. If the

address/data bus is '1', the upper FET is 'on' and the lower FET is 'off'. Hence the output is '1'.

Hence for normal address/data interfacing (for external memory access) no pull-up resistors are

required.Port-0 latch is written to with 1's when used for external memory access.

PORT 1:

The structure of a port-1 pin is shown in fig below.It has 8 pins (P1.1-P1.7) .

Port-1 dedicated only for I/O interfacing. When used as output port, not needed to connect

additional pull-up resistor like port 0. It have provided internally pull-up resistor as shown in fig.

below. The pin is pulled up or down through internal pull-up when we want to initialize as an

output port. To use port-1 as input port, '1' has to be written to the latch. In this input mode when

'1' is written to the pin by the external device then it read fine. But when '0' is written to the pin

by the external device then the external source must sink current due to internal pull-up. If the

external device is not able to sink the current the pin voltage may rise, leading to a possible

wrong reading.

16

Fig 1.10: PORT 1

PORT 2:

The structure of a port-2 pin is shown in fig. below. It has 8-pins (P2.0-P2.7) .

Fig 1.11: PORT 2

17

Port-2 we use for higher external address byte or a normal input/output port. The I/O operation is

similar to Port-1. Port-2 latch remains stable when Port-2 pin are used for external memory

access. Here again due to internal pull-up there is limited current driving capability.

PORT 3:

Port-3 (P3.0-P3.7) having alternate functions to each pin,The internal structure of a port-3 pin is

shown in fig below.

Fig 1.12: PORT 3

Following are the alternate functions of port 3:

TABLE 1.3: Alternate Functions of Port 3

It work as an IO port same like Port 2. only alternate function of port 3 makes its architecture

different than other ports.

18

Timers and Counters

The 8051 has two timers: timer0 and timer1. They can be used either as timers or as counters.

Both timers are 16 bits wide. Since the 8051 has an 8-bit architecture, each 16-bit is accessed as

two separate registers of low byte and high byte. First we shall discuss about Timer0 registers.

Timer0 registers is a 16 bits register and accessed as low byte and high byte. The low byte is

referred as a TL0 and the high byte is referred as TH0. These registers can be accessed like any

other registers.

Fig 1.14: Timer 0

Timer1 registers is also a 16 bits register and is split into two bytes, referred to as TL1 and TH1.

Fig 1.15: Timer 1

TMOD (timer mode) Register: This is an 8-bit register which is used by both timers 0 and 1 to

set the various timer modes. In this TMOD register, lower 4 bits are set aside for timer0 and the

upper 4 bits are set aside for timer1. In each case, the lower 2 bits are used to set the timer mode

and upper 2 bits to specify the operation.

Fig 1.16: TMOD Registers

19

TMOD

In upper or lower 4 bits, first bit is a GATE bit. Every timer has a means of starting and stopping.

Some timers do this by software, some by hardware, and some have both software and hardware

controls. The hardware way of starting and stopping the timer by an external source is achieved

by making GATE=1 in the TMOD register. And if we change to GATE=0 then we do no need

external hardware to start and stop the timers. The second bit is C/T bit and is used to decide

whether a timer is used as a time delay generator or an event counter. If this bit is 0 then it is

used as a timer and if it is 1 then it is used as a counter. In upper or lower 4 bits, the last bits third

and fourth are known as M1 and M0 respectively. These are used to select the timer mode.

M0 M1 Mode Operating Mode

0 0 0 13-bit timer mode, 8-bit timer/counter THx and TLx as 5-bit prescalar.

0 1 1 16-bit timer mode, 16-bit timer/counters THx and TLx are cascaded;

There are no prescalar.

1 0 2 8-bit auto reload mode, 8-bit auto reload timer/counter; THx holds a

value which is to be reloaded into TLx eachtime it overflows.

1 1 3 Spilt timer mode.

Mode 1- It is a 16-bit timer; therefore it allows values from 0000 to FFFFH to be loaded into the

timer‗s registers TL and TH. After TH and TL are loaded with a 16-bit initial value, the timer

must be started. We can do it by ―SETB TR0‖ for timer 0 and ―SETB TR1‖ for timer 1. After the

timer is started. It starts count up until it reaches its limit of FFFFH. When it rolls over from

FFFF to 0000H, it sets high a flag bit called TF (timer flag). This timer flag can be monitored.

When this timer flag is raised, one option would be stop the timer with the instructions ―CLR

TR0― or CLR TR1 for timer 0 and timer 1 respectively. Again, it must be noted that each timer

flag TF0 for timer 0 and TF1 for timer1. After the timer reaches its limit and rolls over, in order

to repeat the process the registers TH and TL must be reloaded with the original value and TF

must be reset to 0.

Mode 1 programming

The following are the characteristics and operations of mode 1:

1. It is a 16-bit timer; therefore, it allows values of 0000 to FFFFH to be loaded into

the timer‗s registers TL and TH.

2. After TH and TL are loaded with a 16-bit initial value, the timer must be start ed.

This is done by ―SETB TRO‖ for Timer 0 and ―SETB TR1″ for Timer 1.

3. After the timer is started, it starts to count up. It counts up until it reaches its limit of

FFFFH. When it rolls over from FFFFH to 0000, it sets high a flag bit called TF (timer

20

flag). This timer flag can be monitored. When this timer flag is raised, one option would

be to stop the timer with the instructions ―CLR TRO‖ or ―CLR TR1″, for Timer 0 and

Timer 1, respectively. Again, it must be noted that each timer has its own timer flag: TFO

for Timer 0, and TF1 for Timer 1.

4. After the timer reaches its limit and rolls over, in order to repeat the process the registers TH

and TL must be reloaded with the original value, and TF must be reset to 0.

Fig 1.17: Mode 1 Programming

Steps to program in mode 1

To generate a time delay, using the timer‗s mode 1, the following steps are taken. To clarify

these steps, see Example 9-4.

1. Load the TMOD value register indicating which timer (Timer 0 or Timer 1) is

to be used and which timer mode (0 or 1) is selected.

1. Load registers TL and TH with initial count values.

2. Start the timer.

1. Keep monitoring the timer flag (TF) with the ―JNB TFx, target‖ instruc

tion to see if it is raised. Get out of the loop when TF becomes high.

3. Stop the timer.

4. Clear the TF flag for the next round.

5. Go back to Step 2 to load TH and TL again.

Mode0- Mode 0 is exactly same like mode 1 except that it is a 13-bit timer instead of 16-bit. The

13- bit counter can hold values between 0000 to 1FFFH in TH-TL. Therefore, when the timer

reaches its maximum of 1FFH, it rolls over to 0000, and TF is raised.

Mode 2- It is an 8 bit timer that allows only values of 00 to FFH to be loaded into the timer‗s

register TH. After TH is loaded with 8 bit value, the 8051 gives a copy of it to TL. Then the timer

must be started. It is done by the instruction ―SETB TR0‖ for timer 0 and ―SETB TR1‖ for

timer1. This is like mode 1. After timer is started, it starts to count up by incrementing the TL

register. It counts up until it reaches its limit of FFH. When it rolls over from FFH to 00. It sets

high the TF (timer flag). If we are using timer 0, TF0 goes high; if using TF1 then TF1 is raised.

When Tl register rolls from FFH to 00 and TF is set to 1, TL is reloaded automatically with the

original value kept by the TH register. To repeat the process, we must simply clear TF and let it

go without any need by the programmer to reload the original value. This makes mode 2 auto

21

reload, in contrast in mode 1 in which programmer has to reload TH and TL.

1. Mode 2 programming

The following are the characteristics and operations of mode 2.

1. It is an 8-bit timer; therefore, it allows only values of 00 to FFH to be

loaded

into the timer‗s register TH.

2. After TH is loaded with the 8-bit value, the 8051 gives a copy of it to TL.

Then

the timer must be started. This is done by the instruction ―SETB TRO‖ for

Timer 0 and ―SETB TR11‗ for Timer 1. This is just like mode 1.

3. After the timer is started, it starts to count up by incrementing the TL

register.

It counts up until it reaches its limit of FFH. When it rolls over from FFH to

00, it sets high the TF (timer flag). If we are using Timer 0, TFO goes high;

if

we are using Timer 1, TF1 is raised.

Fig 1.18 Mode 1 Programming

4. When the TL register rolls from FFH to 0 and TF is set to 1, TL is reloaded

automatically with the original value kept by the TH register. To repeat the process, we

must simply clear TF and let it go without any need by the programmer to reload the

original value. This makes mode 2 an auto-reload, in contrast with mode 1 in which the

programmer has to reload TH and TL.

It must be emphasized that mode 2 is an 8-bit timer. However, it has an auto- reloading

capability. In auto-reload, TH is loaded with the initial count and a copy of it is given to TL.

This reloading leaves TH unchanged, still holding a copy of the original value. This mode

has many applications, including setting the baud rate in serial communication, as we will see

in Chapter 10.

Steps to program in mode 2

To generate a time delay using the timer‗s mode 2, take the following steps.

22

1Load the TMOD value register indicating which timer (Timer 0 or Timer 1) is to be

used, and select the timer mode (mode 2).

2. Load the TH registers with the initial count value.

3. Start the timer.

3. Keep monitoring the timer flag (TF) with the ―JNB TFx, target‖ instruc tion

to see whether it is raised. Get out of the loop when TF goes high.

4. Clear the TF flag.

5. Go back to Step 3, since mode 2 is auto-reload.

Mode3- Mode 3 is also known as a split timer mode. Timer 0 and 1 may be programmed to be in

mode 0, 1 and 2 independently of similar mode for other timer. This is not true for mode 3;

timers do not operate independently if mode 3 is chosen for timer 0. Placing timer 1 in mode 3

causes it to stop counting; the control bit TR1 and the timer 1 flag TF1 are then used by timer0.

TCON register- Bits and symbol and functions of every bits of TCON are as follows:

Fig 1.19: TCON Registers

BIT Symbol Functions

7 TF1 Timer1 over flow flag. Set when timer rolls from all 1s to 0.
Cleared

When the processor vectors to execute interrupt service routine

Located at program address 001Bh.

6 TR1 Timer 1 run control bit. Set to 1 by programmer to enable timer

to

count; Cleared to 0 by program to halt timer.

5 TF0 Timer 0 over flow flag. Same as TF1.

4 TR0 Timer 0 run control bit. Same as TR1.

23

3 IE1 External interrupt 1 Edge flag. Not related to timer operations.

2 IT1 External interrupt1 signal type control bit. Set to 1 by program to

Enable external interrupt 1 to be triggered by a falling edge signal. Set

To 0 by program to enable a low level signal on external interrupt1 to

generate an interrupt.

1 IE0 External interrupt 0 Edge flag. Not related to timer operations.

0 IT0 External interrupt 0 signal type control bit. Same as IT0.

Interrupt Control

An event which is used to suspend or halt the normal program execution for a temporary period

of time in order to serve the request of another program or hardware device is called an interrupt.

An interrupt can either be an internal or external event which suspends the microcontroller for a

while and thereby obstructs the sequential flow of a program.

There are two ways of giving interrupts to a microcontroller – one is by sending software

instructions and the other is by sending hardware signals. The interrupt mechanism keeps the

normal program execution in a "put on hold" mode and executes a subroutine program and after

the subroutine is executed, it gets back to its normal program execution. This subroutine program

is also called an interrupt handler. A subroutine is executed when a certain event occurs.

These five sources of interrupts in 8051are: (1,2 and 5 are internal interrupts . 3 and 4 are

external interrupts).

1. Timer 0 overflow interrupt- TF0

2. Timer 1 overflow interrupt- TF1

3. External hardware interrupt- INT0

4. External hardware interrupt- INT1

5. Serial communication interrupt- RI/TI

http://www.techulator.com/articles/Computer-Hardware.aspx

24

The Timer and Serial interrupts are internally generated by the microcontroller, whereas the

external interrupts are generated by additional interfacing devices or switches that are externally

connected to the microcontroller. These external interrupts can be edge triggered or level

triggered. When an interrupt occurs, the microcontroller executes the interrupt service routine

so that memory location corresponds to the interrupt that enables it. The Interrupt corresponding

to the memory location is given in the interrupt vector table below.

TABLE 1.4: Interrupt Vector Table

Interrupt Source

Vector address

Interrupt

priority

External Interrupt 0 –INT0

0003H

1

Timer 0 Interrupt

000BH

2

External Interrupt 1 –INT1

0013H

3

Timer 1 Interrupt

001BH

4

Serial Interrupt

0023H

5

Interrupt Enable register

This register is responsible for enabling and disabling the interrupt. It is a bit addressable register

in which EA must be set to one for enabling interrupts. The corresponding bit in this register

enables particular interrupt like timer, external and serial inputs. In the below IE register, bit

corresponding to 1 activates the interrupt and 0 disables the interrupt.

https://www.elprocus.com/peripherals-interfacing-to-the-microcontroller-8051-in-electronics/

25

Fig 1.20: Interrupt Enable register

Interrupt priority Register

It is also possible to change the priority levels of the interrupts by setting or clearing the

corresponding bit in the Interrupt priority (IP) register as shown in the figure. This allows the

low priority interrupt to interrupt the high-priority interrupt, but prohibits the interruption by

another low- priority interrupt. Similarly, the high-priority interrupt cannot be interrupted. If

these interrupt priorities are not programmed, the microcontroller executes in predefined manner

and its order is INT0, TF0, INT1, TF1, and SI.

Fig 1.21: Interrupt Priority register

26

Serial Data Communication

A method of establishing communication among computers is by transmitting and receiving data

bits is a serial connection network. In 8051, the SBUF (Serial Port Data Buffer) register holds the

data; the SCON (Serial Control) register manages the data communication and the PCON (Power

Control) register manages the data transfer rates. Further, two pins - RXD and TXD, establish the

serial network.

The SBUF register has 2 parts – one for storing the data to be transmitted and another for

receiving data from outer sources. The first function is done using TXD pin and the second

function is done using RXD pin.

SCON Register

There are 4 programmable modes in serial data communication. They are:

1. Serial Data mode 0 (shift register mode)
2. Serial Data mode 1 (standard UART)

3. Serial Data mode 2 (multiprocessor mode)

4. Serial Data mode 3

TABLE 1.5: Programmable Modes in Serial Data Communication

SM0 SM1 Mode/Description/Baud rate

0 0 0,shift register,(Fosc./12)

0 1 1,8 bit UART,Variable

1 0 2,9 bit UART,(Fosc./64) OR (Fosc./32)

1 1 3,9 bit UART, Variable

SMO, SM1

SMO and SMI are D7 and D6 of the SCON register, respectively. These two bits determine the

framing of data by specifying the number of bits per character, and the start and stop bits. They

take the following combinations.

27

Of the 4 serial modes, only mode I is of interest to us. Further explanation for the other three

modes is in Appendix A.2. They are rarely used today. In the SCON register, when serial mode 1

is chosen, the data framing is 8 bits, 1 stop bit, and 1 start bit, which makes it compatible with

the COM port of IBM/compatible PCs. More importantly, serial mode 1 allows the baud rate to

be variable and is set by Timer 1 of the 8051. In serial mode 1, for each character a total of 10

bits are transferred, where the first bit is the start bit, followed by 8 bits of data, and finally 1 stop

bit.

SM2

SM2 is the D5 bit of the SCON register. This bit enables the multiprocessing capability of the

8051 and is beyond the discussion of this chapter. For our applications, we will make SM2 = 0

since we are not using the 8051 in a multiprocessor environment.

REN

The REN (receive enable), bit is D4 of the SCON register. The REN bit is also referred to as

SCON.4 since SCON is a bit-addressable register. When the REN bit is high, it allows the 8051

to receive data on the RxD pin of the 8051. As a result if we want the 8051 to both transfer and

receive data, REN must be set to 1. By making REN = 0, the receiver is disabled. Making REN

— 1 or REN = 0 can be achieved by the instructions ―SETB SCON. 4″ and ―CLR SCON. 4″,

respectively. Notice that these instructions use the bit-addressable features of register SCON.

This bit can be used to block any serial data reception and is an extremely important bit in the

SCON register.

TBS

TBS (transfer bit 8) is bit D3 of SCON. It is used for serial modes 2 and 3. We make TBS = 0

since it is not used in our applications.

RB8

RB8 (receive bit 8) is bit D2 of the SCON register. In serial mode 1, this bit gets a copy of the

stop bit when an 8-bit data is received. This bit (as is the case for TBS) is rarely used anymore.

In all our applications we will make RB8 = 0. Like TB8, the RB8 bit is also used in serial modes

2 and 3.

Tl

28

TI (transmit interrupt) is bit Dl of the SCON register. This is an extremely important flag bit in

the SCON register. When the 8051 finishes the transfer of the 8-bit character, it raises the TI flag

to indicate that it is ready to transfer another byte. The TI bit is raised at the beginning of the stop

bit. We will discuss its role further when programming examples of data transmission are given.

Rl

RI (receive interrupt) is the DO bit of the SCON register. This is another extremely important

flag bit in the SCON register. When the 8051 receives data serially via RxD, it gets rid of the

start and stop bits and places the byte in the SBUF register. Then it raises the RI flag bit to

indicate that a byte has been received and should be picked up before it is lost. RI is raised

halfway through the stop bit, and we will soon see how this bit is used in programs for receiving

data serially.

Programming the 8051 to transfer data serially

In programming the 8051 to transfer character bytes serially, the following steps must be taken.

1. The TMOD register is loaded with the value 20H, indicating the use ofTimer 1 in

mode 2 (8-bit auto-reload) to set the baud rate.

2. The TH1 is loaded with one of the values in Table 10-4 to set the baud ratefor serial

data transfer (assuming XTAL = 11.0592 MHz).

3. The SCON register is loaded with the value 50H, indicating serial mode 1, where

an 8-bit data is framed with start and stop bits.

1. TR1 is set to 1 to start Timer 1.

2. TI is cleared by the ―CLR TI‖ instruction.

3. The character byte to be transferred serially is written into the SBUF register.

1. The TI flag bit is monitored with the use of the instruction ‖ JNB TI, xx‖ to see

if the character has been transferred completely.

4. To transfer the next character, go to Step 5.

5. Programming the 8051 to receive data serially

In the programming of the 8051 to receive character bytes serially, the following steps

must be taken.

1. The TMOD register is loaded with the value 20H, indicating the use of

Timer

1 in mode 2 (8-bit auto-reload) to set the baud rate.

2. TH1 is loaded with one of the values in Table 10-4 to set the baud rate

(assum

ing XTAL = 11.0592MHz).

29

3. The SCON register is loaded with the value 50H, indicating serial mode 1, where

8-bit data is framed with start and stop bits and receive enable is turned

on.

6. TR1 is set to 1 to start Timer 1.

7. RI is cleared with the ―CLR RI‖ instruction.

1. The RI flag bit is monitored with the use of the instruction ―JNB RI, xx‖ to see

if an entire character has been received yet.

8. When RI is raised, SBUF has the byte. Its contents are moved into a safe place.

9. To receive the next character, go to Step 5.

External memory interface with 8051

Address/Data Multiplexing

From Figure, it is important to note that normally ALE = 0, and PO is used as a data bus,

sending data out or bringing data in. Whenever the 8031/51 wants to use PO asan address bus, it

puts the addresses AO – A7 on the PO pins and activates ALE = 1 to indicate that PO has the

addresses.

PSEN

Another important signal for the 8031/51 is the PSEN (program store enable) signal. PSEN is an

output signal for the 8031/51 microcontroller and must be connected to the OE pin of a ROM

containing the program code. In other words, to access external ROM containing program code,

the 8031/51 uses the PSEN signal. It is important to emphasize the role of EA and PSEN when

connecting the 8031/51 to external ROM. When the EA pin is connected to GND, the 8031/51

fetches opcode from external ROM by using PSEN. The connection of the PSEN pin to the OE

pin of ROM. In systems based on the 8751/89C51/DS5000 where EA is connected to VCC,

these chips do not activate the PSEN pin. This indicates that the on-chip ROM contains program

code.

In systems where the external ROM contains the program code, burning the program into ROM

leaves the microcontroller chip untouched. This is preferable in some applications due to

flexibility. In such applications the software is updated via the serial or parallel ports of the IBM

PC. This is especially the case during software development and this method is widely used in

many 8051-based trainers and emulators.

30

Fig 1.22: External memory interface with 8051

TEXT / REFERENCE BOOKS

1. Kenneth. J. Ayala, ―The 8051 Microcontroller Architecture, Programming and Apllications‖, Penram

International, 1996, 2 nd Edition.

2. Sriram. V. Iyer, Pankaj Gupta, ―Embedded Real Time Systems Programming‖, 2004 Tata McGraw Hill

Publishing Company Limited, 2006.

3. Frank Vahid, Tony Givargis, ‗Embedded system Design - A unified Hardware / software Introduction‘,

John Wiley and Sons, 2002.

4. Todd D Morton, ‗Embedded Microcontrollers‘, Reprint by 2005, Low Price Edition.
5. Muhammed Ali Mazidi, Janice Gillispie Mazidi, ‗The 8051 Microcontroller and Embedded Systems‘,

Low Price Edition, Second Impression 2006.

6. Raj Kamal, ‗Embedded Systems-Architecture, Programming and Design‘, Tata McGraw Hill

Publishing Company Limited 2003.

7. Muhammed Ali Mazidi, Rolin D.Mckinlay, Dannycauscy, ―PIC microcontrollers and embedded

systems using assembly and C‖, 1st edition, Pearson, 2007.

1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

PRINCIPLES OF EMBEDDED SYSTEM DESIGN-SECA1706

2

UNIT – II

PROGRAMMING OF 8051

3

II. UNIT – II

Programming of 8051

SYLLABUS

Addressing modes - Instruction sets - Simple programs with 8051 -I/O

Programming.- Timer programming-Serial communication programs - Delay

Programs.

Addressing Modes

 Data or value can be specified in the instruction itself or it can be stored in the

registers, internal memory and external memory

 Definition

The method of specifying the data to be operated by the instruction is called

addressing Mode.

Fig 2.1: Addressing Modes of 8051

1. Immediate Addressing Mode

 This method is the simplest method to get the data.

 An 8/16 bit immediate data / constant is specified in the instruction itself.

 The immediate data must be preceded by ―#‖ sign

 Examples

 MOV R3, #45H - Data 45H is copied into R3

4

Register

 MOV A, #0AFH - Data AFH is copied into A

Register

 MOV DPTR, #4500H - Data 4500H is copied into

DPTR Register

2. Register Addressing Mode

 Register addressing mode involves the use of registers to hold the data to be

manipulated

 Permits access to eight registers(R0-R7) of register bank

 Examples

 MOV A, R5 ; Data available in R5 is copied to A

 MOV R0, A ; Data available in A is copied to R0

 ADD A,R5; Add the content of R5 to content of A

3. Direct Addressing Mode

 Address of the data is directly specified in the instruction.

 The direct address can be the address of an internal data RAM location (00H to

7FH) or address of special function register (80H to FFH).

 Examples MOV R2, 45H ; Data stored in the location 45H is

copied to R2 Register

 MOV R0, 05H; Data stored in the location 05H is

copied to R2 Register

4. Register Indirect Addressing Mode

 Instruction specifies the name of the register in which the address of the data is

available.

 Source or destination address is given in the register.

 A register is used as a pointer to the data

 R0 and R1 are used for 8-bit addresses, and DPTR is used for 16-bit addresses, no

other registers can be used for addressing purposes.

 R2 – R7 cannot be used to hold the address of an operand located in RAM when

5

using this addressing mode

 Must be preceded by the ―@‖ sign

Fig 2.2: Register Indirect Addressing Mode

5. Indexed addressing mode

 Only programme memory is accessed .

 Either DPTR or PC may act as base register and Register A acts as Index register

 Summation of both base and index register determines the operand address.

 Example MOVC A,@A+DPTR ; The C in MOVC instruction refers to code byte.

Let us consider A holds 30H and the DPTR value is 1125H. The contents of

program memory location 1155H (30H + 1125H) are moved to register A.

6

Fig 2.3: Register Indirect Addressing Mode

6. Implied Addressing Mod

 Instruction itself specifies the data to be operated by the instruction.

 There will be a single operand.

 Data Execution will happen with that operand itself

 Example CPL C: Complement carry flag.

 SWAP A; Exchanges the low-order and high-order nibbles within the

accumulator. No flags are affected by this instruction.

Summary-Addressing Modes

 Addressing Modes-The method of specifying the data to be operated by the

instruction is called addressing Mode.

 Immediate Addressing Mode- MOV R3, #45H

 Register Addressing Mode- MOV A, R5

 Direct Addressing Mode- MOV R2, 45H

 Register Indirect Addressing Mode- MOV 0E5H, @R0 Indexed addressing mode

-MOVC A,@A+DPTR

 Implied Addressing Mode- CPL C

Instruction Set

Fig 2.4: Instruction set

7

Instruction Set

Note

 The following names for register, data, address and variables are used while

writing the instructions.

 A: Accumulator

 B: "B" register

 C: Carry bit

 Rn: Register R0 - R7 of the currently selected register bank

 Direct: 8-bit internal direct address for data. The data could be in lower 128bytes

of RAM (00 - 7FH) or it could be in the special function register (80 - FFH).

 @Ri: 8-bit external or internal RAM address available in register R0 or R1. This is

used for indirect addressing mode.

 #data8: Immediate 8-bit data available in the instruction.

 #data16: Immediate 16-bit data available in the instruction.

 Addr11: 11-bit destination address for short absolute jump. Used by instructions

AJMP & ACALL. Jump range is 2kbyte (one page).

 Addr16: 16-bit destination address for long call or long jump.

 Rel: 2's complement 8-bit offset (one - byte) used for short jump (SJMP) and all

conditional jumps.

 bit: Directly addressed bit in internal RAM or SFR

8

TABLE 2.1: Arithmetic Instructions

TABLE 2.2: BOOLEAN VARIABLE INSTRUCTIONS

9

TABLE 2.3: Logical Instructions

10

TABLE 2.4: Data transfer Instructions

11

TABLE 2.5: PROGRAM BRANCH INSTRUCTIONS

Direct bit addressing

Values between 0 and 127 (00H and 7FH) define bits in a block of 16 bytes of on-

chip RAM between addresses 20H-2FH. They are numbered consecutively from

the lowest-order bytes lowest order bit through the highest order bit.

Bit addresses between 128 and 255 (80H and 0FFH) correspond to bits in a number

of special function registers mostly used for I/O or peripheral device control. These

positions are numbered with a different scheme than RAM. The five high-order

address bits match those of the registers own address

while the three low-order bits identifies the bit position within that register.

12

Read Write Read

AReg
Ext

MOVX @ RT
RAM

R0 or R1

Int &
Ext

RAM

MOVX @ DPTR
DPTR

DPTR +A

PC+ A

MOVCA,@ A+PC

External Addressing using MOVX and MOVE

Fig 2.5: External Addressing using MOVX and MOVE

Jump and Call Program Range

Relative Range:

Jump that replaces the program counter content with a new address that is greater

than the ad- dress of the instruction following the jump by 127 or less than the

address of the instruction following jump by 128 are called relative jumps. The

address following the jump is used to calculate the relative jump because the PC is

incremented to the next instruction before the current instruction is extended.

Relative jump has two advantages. First, only 1 byte of data (2‗s complement)

need to be speci- fied for jumping ahead(positive range 0-127) or jumping back

(negative range -128). Specifying only 1 byte saves program bytes and speeds up

program execution. Second, the program that is written using relative jumps can be

relocated anywhere in the program namely without reassembling the code to

generate absolute addresses.

The disadvantage of relative jump is the short jump range (-128 to 127). This can

be problem- atic in large programs where multiple relative jump may be require

if higher jump range is required. Instructions using relative range jump are SJMP

rel, and all conditional jumps.

13

Short Absolute Range:

Short Absolute range makes use of the concept of dividing memory into logical

divisions called pages. Program memory may be regarded as one continuous stretch

of addresses from 0000H to 0FFFFH or it can be divided into a series of pages of

any convenient binary size.

The 8051 program memory is arranged on 2k byte pages giving a total of 32 (20H)

pages. The hexadecimal address of each page is shown in the following table.

TABLE 2.6:8051 2K Pages

Page Address Range Page Address Range

00 0000 - 07FF 10 8000 - 87FF

01 0800 - 0FFF 11 8800 - 8FFF

02 1000 - 17FF 12 9000 - 97FF

03 1800 - 1FFF 13 9800 - 9FFF

04 2000 - 27FF 14 A000 - A7FF

05 2800 - 2FFF 15 A800 - AFFF

06 3000 - 37FF 16 B000 - B7FF

07 3800 - 3FFF 17 B800 - BFFF

08 4000 - 47FF 18 C000 - C7FF

09 4800 - 4FFF 19 C800 - CFFF

0A 5000 - 57FF 1A D000 - D7FF

0B 5800 - 5FFF 1B D800 - DFFF

0C 6000 - 67FF 1C E000 - E7FF

0D 6800 - 6FFF 1D E800 - EFFF

0E 7000 - 77FF 1E F000 - F7FF

0F 7800 - 7FFF 1F F800 - FFFF

It can be seen that the upper 5 bits of the program counter hold the page number

and the lower 11 bits of the program counter hold the address within each page.

Thus an absolute address is formed by taking page number of the instruction

following the branch and attaching the absolute page range address of 11 bits to it

to form the 16-bit address.

Difficulty is encountered when the next instruction (the instruction following the

jump instruction) starts at X800H or X000H. This places the jump or call address

on the same page as the next in- struction. This does not give rise to any problem

on forward jump, but results in error if the branch is backward in the program. This

should be checked by assembler and the user should be instructed to relocate the

14

program suitably.

Short absolute range jump is also relocatable as the relative jump. Instructions

using short abso- lutes range are

ACALL addr 11

AJMP addr 11

Long Absolute Jump:

Address that can access the entire program from 0000H to FFFFH use long-range

addressing. Long range addresses require more bytes of code to specify and

relocatable only at the beginning of 64 K byte pages. Since the normal code

memory is only 64k bytes, the program must be reassembled every time a long-

range address changes and then branches are not generally relocatable.

Instructions using long
absolute range are
LCALL addr 16

LJMP addr 16

JMP @ A+DPTR

8051 MICROCONTROLLER PROGRAMS

.8 BIT ADDITION USING INTERNAL MEMORY

Mnemonics

Opcode Operand Comments

MOV A,40 Move the content of 40 to accumulator

MOV R0,41 Move the content of 41 to ‗R0‗ register

ADD A,R0 Add the content of ‗R0‗ and ‗A‗

MOV 42,A Move the content of accumulator to 42

MOV A,#00 Initialize the accumulator

ADDC A,#00 Add the content of A and 00 with carry
MOV 43,A Move the content of accumulator to 43
LCALL 00BB Halt the program

15

8 BIT ADDITION USING EXTERNAL MEMORY

Mnemonics

Opcode Operand Comments

MOV DPTR,#9100 Initialize the data pointer

MOVX A,@DPTR Move the content of DPTR to Acc.

MOV R0,A Move the content of A to R0

INC DPTR Increment the data pointer

MOVX A,@DPTR Move the content of DPTR to Acc.

ADD A,R0 Add the content of ‗R0‗ and ‗A‗

INC DPTR Increment the data pointer

MOVX @DPTR,A Move the content of A to DPTR

MOV A,#00 Initialize the accumulator

ADDC A,#00 Add the content of A and 00 with carry

INC DPTR Increment the data pointer

MOVX @DPTR,A Move the content of A to DPTR
LCALL 00BB Halt the program

16

8 BIT SUBTRACTION USING INTERNAL MEMORY

Mnemonics

Opcode Operand Comments

CLR C Clear the Carry flag

MOV A,40 Move the content of 40 to accumulator

MOV R0,41 Move the content of 41 to ‗R0‗ register

SUBB A,R0 Subtract the content of ‗R0‗ from ‗A‗

MOV 42,A Move the content of accumulator to 42

MOV A,#00 Initialize the accumulator

ADDC A,#00 Add the content of A and 00 with carry
MOV 43,A Move the content of accumulator to 43
LCALL 00BB Halt the program

8 BIT SUBTRACTION USING EXTERNAL MEMORY

Mnemonics

Opcode Operand Comments

CLR C Clear the Carry flag
MOV DPTR,#9100 Initialize the data pointer

MOVX A,@DPTR Move the content of DPTR to Acc.

MOV R0,A Move the content of A to R0

INC DPTR Increment the data pointer

MOVX A,@DPTR Move the content of DPTR to Acc.

SUBB A,R0 Subtract the content of ‗R0‗ from ‗A‗
INC DPTR Increment the data pointer

MOVX @DPTR,A Move the content of A to DPTR

MOV A,#00 Initialize the accumulator

ADDC A,#00 Add the content of A and 00 with carry

INC DPTR Increment the data pointer
MOVX @DPTR,A Move the content of A to DPTR
LCALL 00BB Halt the program

8 BIT MULTIPLICATION USING INTERNAL MEMORY

Mnemonics

Opcode Operand Comments

MOV A,40 Move the content of 40 to accumulator

MOV 0F0,41 Move the content of 41 to ‗B‗ register
MUL AB Multiply the content of ‗A‗ and ‗B‗

MOV 42,A Move the content of accumulator to 42

MOV A,0F0 Move the content of ‗B‗ to accumulator
MOV 43,A Move the content of accumulator to 43
LCALL 00BB Halt the program

17

8 BIT MULTIPLICATION USING EXTERNAL MEMORY

Mnemonics

Opcode Operand Comments

MOV DPTR,#9100 Initialize the data pointer

MOVX A,@DPTR Move the content of DPTR to Acc.
MOV 0F0,A Move the content of ‗A‗ to ‗B‗ register

INC DPTR Increment the data pointer

MOVX A,@DPTR Move the content of DPTR to Acc.

MUL AB Multiply the content of ‗A‗ and ‗B‗

INC DPTR Increment the data pointer
MOVX @DPTR,A Move the content of ‗A‗ to DPTR

MOV A,0F0 Move the content of ‗B‗ to accumulator

INC DPTR Increment the data pointer

MOVX @DPTR,A Move the content of A to DPTR
LCALL 00BB Halt the program

8 BIT DIVISION USING INTERNAL MEMORY

Mnemonics

Opcode Operand Comments

MOV A,40 Move the content of 40 to accumulator

MOV 0F0,41 Move the content of 41 to ‗B‗ register
DIV AB Divide the content of ‗A‗ and ‗B‗

MOV 42,A Move the content of accumulator to 42

MOV A,0F0 Move the content of ‗B‗ to accumulator

MOV 43,A Move the content of accumulator to 43
LCALL 00BB Halt the program

8 BIT DIVISION USING EXTERNAL MEMORY

Mnemonics

Opcode Operand Comments

MOV DPTR,#9100 Initialize the data pointer

MOVX A,@DPTR Move the content of DPTR to Acc.
MOV 0F0,A Move the content of ‗A‗ to ‗B‗ register

INC DPTR Increment the data pointer

MOVX A,@DPTR Move the content of DPTR to Acc.

DIV AB Divide the content of ‗A‗ and ‗B‗

INC DPTR Increment the data pointer
MOVX @DPTR,A Move the content of ‗A‗ to DPTR

18

MOV A,0F0 Move the content of ‗B‗ to accumulator

INC DPTR Increment the data pointer

MOVX @DPTR,A Move the content of A to DPTR

LCALL 00BB Halt the program

19

16 BIT ADDITION USING INTERNAL MEMORY

Mnemonics

Opcode Operand Comments

MOV A,40 Move the content of 40 to accumulator
MOV R0,A Move the content of ‗A‗ to ‗R0‗ register

MOV A,41 Move the content of 41 to accumulator

MOV R1,A Move the content of ‗A‗ to ‗R1‗ register

MOV A,42 Move the content of 42 to accumulator

MOV R2,A Move the content of ‗A‗ to ‗R2‗ register

MOV A,43 Move the content of 43 to accumulator

MOV R3,A Move the content of ‗A‗ to ‗R3‗ register

MOV A,R0 Move the content of ‗ R0‗ to ‗A‗ register

ADD A,R2 Add the content of ‗R2‗ and ‗A‗

MOV 44,A Move the content of ‗A‗ to 44 Mem. Loc

MOV A,R1 Move the content of R1 to accumulator

ADDC A,R3 Add the content of ‗R3‗ and ‗A‗ with carry

MOV 45,A Move the content of ‗A‗ to 45 Mem. Loc.

MOV A,#00 Initialize the accumulator
ADDC A,#00 Add the content of A and 00 with carry

MOV 46,A Move the content of ‗A‗ to 46 Mem. Loc.

LCALL 00BB Halt the program

16 BIT ADDITION USING EXTERNAL MEMORY

Mnemonics

Opcode Operand Comments

MOV DPTR,#9100 Initialize the data pointer

MOVX A,@DPTR Move the content of DPTR to Acc.
MOV R0,A Move the content of ‗ A‗ to ‗R0‗ register

INC DPTR Increment the data pointer

MOVX A,@DPTR Move the content of DPTR to Acc.

MOV R1,A Move the content of ‗ A‗ to ‗R1‗ register

INC DPTR Increment the data pointer

MOVX A,@DPTR Move the content of DPTR to Acc.
MOV R2,A Move the content of ‗ A‗ to ‗R2‗ register

INC DPTR Increment the data pointer

MOVX A,@DPTR Move the content of DPTR to Acc.

MOV R3,A Move the content of ‗ A‗ to ‗R3‗ register

MOV A,R0 Move the content of ‗ R0‗ to ‗A‗ register

ADD A,R2 Add the content of ‗R2‗ and ‗A‗
INC DPTR Increment the data pointer

MOVX @DPTR,A Move the content of A to DPTR

MOV A,R1 Move the content of ‗ R1‗ to ‗A‗ register

ADDC A,R3 Add the content of ‗R3‗ and ‗A‗ with carry

INC DPTR Increment the data pointer

MOVX @DPTR,A Move the content of A to DPTR
MOV A,#00 Initialize the accumulator

20

ADDC A,#00 Add the content of A and 00 with carry

INC DPTR Increment the data pointer
MOVX @DPTR,A Move the content of A to DPTR
LCALL 00BB Halt the program

21

BCD ADDITION USING INTERNAL MEMORY

Mnemonics

Opcode Operand Comments

MOV A, #47h first BCD operand
MOV R0,A Move A to R0
MOV A, #25h second BCD operand

ADD A,R0 Add the content of ‗R0‗ and ‗A‗ (A=6Ch)

DA A Decimal adjust accumulator (A=72h)

MOV 40,A Move the content of accumulator to 40
LCALL 00BB Halt the program

Hex BCD
47 0100 0111

+ 25 + 0010 0101

6C

0110 1100

+ 6 + 0110

72

0111 0010

TEXT / REFERENCE BOOKS

1. Kenneth. J. Ayala, ―The 8051 Microcontroller Architecture, Programming and Apllications‖, Penram

International, 1996, 2 nd Edition.

2. Sriram. V. Iyer, Pankaj Gupta, ―Embedded Real Time Systems Programming‖, 2004 Tata McGraw Hill

Publishing Company Limited, 2006.

3. Frank Vahid, Tony Givargis, ‗Embedded system Design - A unified Hardware / software Introduction‘,

John Wiley and Sons, 2002.

4. Todd D Morton, ‗Embedded Microcontrollers‘, Reprint by 2005, Low Price Edition.

5. Muhammed Ali Mazidi, Janice Gillispie Mazidi, ‗The 8051 Microcontroller and Embedded Systems‘,

Low Price Edition, Second Impression 2006.

6. Raj Kamal, ‗Embedded Systems-Architecture, Programming and Design‘, Tata McGraw Hill

Publishing Company Limited 2003.

7. Muhammed Ali Mazidi, Rolin D.Mckinlay, Dannycauscy, ―PIC microcontrollers and embedded

systems using assembly and C‖, 1st edition, Pearson, 2007.

1

PRINCIPLES OF EMBEDDED SYSTEM DESIGN-SECA1706

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

2

UNIT-III

RISC EMBEDDED CONTROLLERS

3

III. UNIT III RISC EMBEDDED CONTROLLERS

SYLLABUS:

Comparison of CISC and RISC controllers - PIC 16F877 architecture - Memory organization -

Addressing modes - Assembly language instructions. Arm 7 Processor-Register Organization-Modes &

Status.

Table 3.1-Comparison of RISC and CISC processors

 RISC CISC

Acronym It stands for ‗Reduced Instruction Set
Computer‗.

It stands for ‗Complex Instruction Set
Computer‗

Definition processors have a smaller set of

instructions with
few addressing nodes.

Processors have a larger set of instructions

with many addressing nodes.

Memory unit It has no memory unit and uses a

separate hardware to implement

instructions.

It has a memory unit to implement complex

instructions

Program It has a hard-wired unit of
programming.

It has a microprogramming unit.

Design It is a complex complier design. It is an easy complier design

Calculations The calculations are faster and precise. The calculations are slow and precise.

Time Execution time is very less. Execution time is very high

External
memory

It does not require external
memory for calculations.

It requires external memory for calculations.

Pipelining Pipelining does function correctly. Pipelining does not function correctly.

Stalling Stalling is mostly reduced in

processors.

The processors often stall

Code
expansion

Code expansion can be a problem. Code expansion is not a problem.

Disc space The space is saved. The space is wasted.

Applications Used in high end applications such as
video processing, telecommunications
and image

Used in low end applications such as security

Salient features of PIC 16F877A Microcontroller

https://sathyabama.cognibot.in/course/view.php?id=215§ion-3

4

High-Performance RISC CPU:

 Only 35 single-word instructions to learn

 All single-cycle instructions except for program branches, which are two-cycle

 Operating speed: DC – 20 MHz clock input DC – 200 ns instruction cycle

 Up to 8K x 14 words of Flash Program Memory, Up to 368 x 8 bytes of Data Memory (RAM),

 Up to 256 x 8 bytes of EEPROM Data Memory

 Pinout compatible to other 28-pin or 40/44-pin PIC16CXXX and PIC16FXXX microcontrollers

Peripheral Features:

 Timer0: 8-bit timer/counter with 8-bit prescaler

 Timer1: 16-bit timer/counter with prescaler, can be incremented during Sleep via external
crystal/clock

 Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler

 Two Capture, Compare, PWM modules

 Capture is 16-bit, max. resolution is 12.5 ns

 Compare is 16-bit, max. resolution is 200 ns

 PWM max. resolution is 10-bit

 Synchronous Serial Port (SSP) with SPI™ (Master mode) and I2C™ (Master/Slave)

 Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI) with 9-bit address

Detection

 Parallel Slave Port (PSP) – 8 bits wide with external RD, WR and CS controls (40/44-pin only)

 Brown-out detection circuitry for Brown-out Reset (BOR)

Analog Features:

 10-bit, up to 8-channel Analog-to-Digital Converter (A/D)

 Brown-out Reset (BOR)

 Analog Comparator module with: - Two analog comparators - Programmable on-chip voltage

reference (VREF) module

 Programmable input multiplexing from device inputs and internal voltage reference -

5

Comparator outputs are externally accessible

Special Microcontroller Features:

 100,000 erase/write cycle Enhanced Flash program memory typical• 1,000,000 erase/write cycle
Data EEPROM memory typical

 Data EEPROM Retention > 40 years

 Self-reprogrammable under software control

 In-Circuit Serial Programming™ (ICSP™) via two pins

 Single-supply 5V In-Circuit Serial Programming

 Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation •

 Programmable code protection

 Power saving Sleep mode • Selectable oscillator options

 In-Circuit Debug (ICD) via two pins

CMOS Technology:

 Low-power, high-speed Flash/EEPROM technology

 Fully static design

 Wide operating voltage range (2.0V to 5.5V)

 Commercial and Industrial temperature ranges

 Low-power consumption

Table 3.2-PIC16F87XA DEVICE FEATURES

6

PIC 16F877A Pin Diagram and Description

Fig 3.1: PIC 16F877A Pin Diagram and Description

Pin diagram PIC16F877A The PIC 16F877 features all the components which modern

microcontrollers normally have The PIC16F provides 8K bytes of Flash, 368 bytes of RAM, 256 bytes

of EPROM, 5 I/O ports, 3 timers., 35 simple word instructions.

7

8

PIC 16F877A Block Diagram (Architecture)

Fig 3.2: PIC 16F877A Architecture

9

Fig 3.3: PIC 16F877A Block Diagram

I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on

the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O

pin.

PORTA and the TRISA Register

PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA. Setting a

TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output

driver in a High-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA

pin an output (i.e., put the contents of the output latch on the selected pin).Reading the PORTA register

reads the status of the pins, whereas writing to it will write to the port latch. All write operations are

read-modify-write operations. Therefore, a write to a port implies that the port pins are read, the value is

modified and then written to the port data latch. The TRISA register controls the direction of the port

pins even when they are being used as analog inputs.

10

Fig 3.4: PORT A

Similarly for other ports : PORTB and the TRISB Register ,PORTC and the TRISC Register, PORTD
and TRISD Registers ,PORTE and TRISE Register.

TIMER0 MODULE

The Timer0 module timer/counter has the following features:

 8-bit timer/counter

 Readable and writable

 8-bit software programmable prescaler

 Internal or external clock select

 Interrupt on overflow from FFh to 00h

 Edge select for external clock

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L)

which are readable and writable. Timer1 can operate in one of two modes:

 As a Timer

 As a Counter

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be used as the PWM time base for the

PWM mode of the CCP module(s). The TMR2 register is readable and writable and is cleared on any

device Reset.

CAPTURE/COMPARE/PWM MODULES

11

Each Capture/Compare/PWM (CCP) module contains a 16-bit register which can operate as a:

 16-bit Capture register

 16-bit Compare register

 PWM Master/Slave Duty Cycle register

CCP1 Module:

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte)

and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. The special event

trigger is generated by a compare match and will reset Timer1.

CCP2 Module:

Capture/Compare/PWM Register 2 (CCPR2) is comprised of two 8-bit registers: CCPR2L (low byte)

and CCPR2H (high byte). The CCP2CON register controls the operation of CCP2. The special event

trigger is generated by a compare match and will reset Timer1 and start an A/D conversion (if the A/D

module is enabled).

Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event

occurs on pin RC2/CCP1. An event is defined as one of the following:

 Every falling edge

 Every rising edge

 Every 4th rising edge

 Every 16th rising edge

The type of event is configured by control bits, CCP1M3:CCP1M0 (CCPxCON<3:0>).

Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register

pair value. When a match occurs, the RC2/CCP1 pin is:

 Driven high

 Driven low

 Remains unchanged

The action on the pin is based on the value of control bits, CCP1M3:CCP1M0 (CCP1CON<3:0>).

PWM Mode (PWM)

In Pulse Width Modulation mode, the CCPx pin produces up to a 10-bit resolution PWM output.

PWM BLOCK DIAGRAM

12

Fig 3.5: PWM BLOCK DIAGRAM

Master SSP (MSSP) Module

The Master Synchronous Serial Port (MSSP) module is a serial interface, useful for communicating

with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs,

shift registers,display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

 Serial Peripheral Interface (SPI)

 Inter-Integrated Circuit (I2C)

 Full Master mode

 Slave mode (with general address call)

 The I2C interface supports the following modes in hardware:

 Master mode

 Multi-Master mode

 Slave mode

COMPARATOR MODULE

The comparator module contains two analog comparators.The inputs to the comparators are multiplexed

with I/O port pins RA0 through RA3, while the outputs are multiplexed to pins RA4 and RA5.

Reset

The PIC16F87XA differentiates between various kinds of Reset:

 Power-on Reset (POR)

 MCLR Reset during normal operation

 MCLR Reset during Sleep

 WDT Reset (during normal operation)

 WDT Wake-up (during Sleep)

 Brown-out Reset (BOR)0

Memory organization

13

The program memory and data memory have separate buses so that concurrent access can occur

Program memory map

The PIC16F87XA devices have a 13-bit program counter capable of addressing an 8K word x 14

bit.program memory space. The PIC16F876A/877Adevices have 8K words x 14 bits of Flash program

memory. The Reset vector is at 0000h and the interrupt vector is at 0004h.

Fig 3.6: Program memory map

Data Memory Organization

The data memory is partitioned into multiple banks which contain the General Purpose Registers and

the Special Function Registers. Bits RP1 (Status<6>) and RP0 (Status<5>) are the bank select bits.

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special

Function Registers. Above the Special Function Registers are General Purpose Registers, implemented

14

as static RAM. All implemented banks contain Special Function Registers.

Data EEPROM and flash program memory

The data EEPROM and Flash program memory is readable and writable during normal operation (over

the full VDD range). This memory is not directly mapped in the register file space. Instead, it is

indirectly addressed through the Special Function Registers. There are six SFRs used to read and write

this memory:

 EECON1

 EECON2

 EEDATA

 EEDATH

 EEADR

 EEADRH

GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly, through the File Select Register (FSR).

SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling

the desired operation of the device. These registers are implemented as static RAM. The Special

Function Registers can be classified into two sets: core (CPU) and peripheral. Some examples are

Status Register The Status register contains the arithmetic status of the ALU, the Reset status and the

bank select bits for data memory.

• STATUS register – changes/moves from/between the banks

• PORT registers – assigns logic values (―0‖/‖1‖) to the ports

• TRIS registers - data direction register (input/output)

DIRECT/INDIRECT ADDRESSING

1. Direct addressing

Direct addressing like CLRF 13h. We deal with the address or the memory location.

Direct Addressing is done through a 9-bit address. This address is obtained by connecting 7th bit

of direct address. By using an instruction with two bits (RP1, RP0) from STATUS register. this is

shown on bellow Figure . Any access to SFR registers can be an example of direct addressing.

http://www.microcontrollerboard.com/pic_memory_organization.html
http://www.microcontrollerboard.com/pic_memory_organization.html
http://www.microcontrollerboard.com/pic_memory_organization.html

15

Fig 3.7: Direct Addressing Mode

2. Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect

addressing. Indirect addressing is possible by using the INDF register. Any instruction using the INDF

register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF

register itself, indirectly (FSR = 0) will read 00h. Writing to the INDF register indirectly results in a no

operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating

the 8-bit FSR register and the IRP bit

Fig 3.8: Indirect Addressing Mode

INSTRUCTION SET SUMMARY

The PIC16 instruction set is highly orthogonal and is comprised of three basic categories:

 Byte-oriented operations

 Bit-oriented operations

 Literal and control operations.

16

Each PIC16 instruction is a 14-bit word divided into an opcode which specifies the instruction type and
one or more operands which further specify the operation of the instruction.

TABLE 3.3-Opcode Field Descriptions

TABLE 3.4-General Format for Instructions

17

TABLE 3.5-PIC16F87XA INSTRUCTION SET

18

19

20

21

22

History of the ARM Processor

Developed the first ARM Processor (Acorn RISC Machine) in 1985 at Acorn Computers

Limited.

• Established a new company named Advanced RISCMachine Limited and developed

ARM6.

• Continuation of the architecture enhancements from the original architecture

Features of the ARM Processor

Incorporate features of Berkeley RISC design

 a large register file

 a load/store architecture

 uniform and fixed length instruction field

23

 simple addressing mode

 Other ARM architecture features

 Arithmetic Logic Unit and barrel shifter

 auto increment and decrement addressing mode

 conditional execution of instructions

o Based on Von Neumann Architecture or Harvard Architecture

The Evolution of the ARM architecture:

Fig 3.9: The Evolution of the ARM architecture

24

Architecture V1 was implemented only in the ARM1 CPU and was not utilized in a

commercial product. Architecture V2 was the basis for the first shipped processors. These two

architectures were developed by Acorn Computers before ARM became a company in 1990.

After that introduced ARM the Architecture V3, which included many changes over its

predecessors .These changes resulted in an extremely small and power-efficient processor suitable

for embedded systems .Architecture V4, co-developed by ARM and Digital Electronics

Corporation, resulted in the Strong ARM series of processors. These processors are very

performance-centric and do not include the on chip debug extensions.

This architecture was further developed to include the Thumb 16-bitinstruction set

architecture enabling a 32-bit processor to utilize a 16-bit system. Today, ARM only licenses

cores based on Architecture V4T or above.

The latest architectures, version 5TE and 5TEJ, embody added instructions for DSP

applications and the Jazelle-Java extensions, respectively.

Currently, the ARM9E and 10E family of processors are the only implementations of

these architectures. Details on these architectures and cores will be provided later in the course.

Architecture basics

ARM cores use a 32-bit, Load-Store RISC architecture. That means that the core cannot

directly manipulate the memory. All data manipulation must be done by loading registers with

information located in memory, performing the data operation and then storing the value back to

memory. There are 37 total registers in the processor. However, that number is split among seven

different processor modes. The seven processor modes are used to run user tasks, an operating

system, and to efficiently handle exceptions such as interrupts. Some of the registers within each

mode are reserved for specific use by the core, while most are available for general use. The

reserved registers that are used by the core for specific functions are r13 is commonly used as the

stack pointer (SP), r14 as a link register (LR), r15as a program counter (PC), the Current Program

Status Register (CPSR), and the Saved Program Status Register (SPSR).

The SPSR and the CPSR contain the status and control bits specific to the properties the processor

core is operating under. These properties define the operating mode, ALU status flags, interrupt

disable/enable flags and whether the core is operating in 32-bit ARM or 16-bit Thumb state.

There are 37 total registers divided among seven different processor modes. Figure 09

shows thebank of registers visible in each mode .User mode, the only non-privileged mode, has

25

the least number of total registers visible. It has noSPSR and limited access to the CPSR. FIQ and

IRQ are the two interrupt modes of the CPU

Fig 3.10: REGISTER ORGANISATION

There are 37 total registers divided among seven different processor modes. Figure shows

the bank of registers visible in each mode. User mode, the only non-privileged mode, has the least

number of total registers visible. It has no SPSR and limited

26

access to the CPSR. FIQ and IRQ are the two interrupt modes of the CPU.

Supervisor mode is the default mode of the processor on start up or reset. Undefined mode traps

unknown or illegal instructions when they are passed though the pipeline. Abort mode traps

illegal memory accesses as a result of fetching instructions or accessing data.

Finally, system mode, which uses the user mode bank of registers, was introduced to provide an

additional privileged mode when dealing with nested interrupts.

Each additional mode offers unique registers that are available for use by exception handling

routines. These additional registers are the minimum number of registers required to preserve the

state of the processor, save the location in code, and switch between modes.

FIQ mode, however, has an additional five banked registers to provide more flexibility and

higher performance when handling critical interrupts.

When the ARM core is in Thumb state, the registers banks are split into low and high

register domains. The majority of instructions in Thumb state have a 3-bit register specifier. As a

result, these instructions can only access the low registers in Thumb, R0 through R7. The high

registers,R8through R15, have more restricted use. Only a few instructions have access to these

registers.

TDMI stands for:

• Thumb, which is a 16-bit instruction set extension to the 32-bit ARM architecture, referred as

states of the processor.

• "D" and "I" together comprise the on-chip debug facilities offered on all ARM cores.These

stand for the Debug signals and EmbeddedICE logic, respectively.

• The M signifies the support for 64-bit results and an enhanced multiplier, resulting inhigher

performance. This multiplier is now standard on all ARMv4 architectures and\above.

Thumb 16-bit Instructions

With growing code and data size, memory contributes to the system cost. The need to

reduce memorycost leads to smaller code size and the use of narrower memory. Therefore ARM

developed a modified instruction set to give market-leading code density for compiled standard C

language.

There is also the problem of performance loss due to using a narrow memory path, such as

a 16-bitmemory path with a 32-bit processor.

27

The processor must take two memory access cycles to fetch an instruction or read and write data.

To address this issue, ARM introduced another set of reduced 16-bit instructions labeled Thumb,

based on the standard ARM 32-bit instruction set.

For Thumb to be used, the processor must go through a change of state from ARM to Thumb in

order to begin executing 16-bit code. This is because the default state of the core is ARM.

Therefore, every application must have code at boot up that is written in ARM. If the application

code is to be compiled entirely for Thumb, then the segment of ARM boot code must change the

state of the processor. Once this is done, 16-bit instructions are fetched seamlessly into the

pipeline without any result.

It is important to note that the architecture remains the same. The instruction set is actually a

reduced set of the ARM instruction set and only the instructions are 16-bit; everything else in the

core still operates as 32-bit.An application code compiled in Thumb is 30% smaller on average

than the same code compiled in ARM and normally 30% faster when using narrow 16-bit memory

systems.

Fig 3.10: Register Bank in the

center of the diagram

FIGURE shows the register bank in the center of the diagram, plus the required address bus

28

and data bus. The multiplier, in-line barrel shifter, and ALU are also shown. In addition, the

diagram illustrates the in-line decompression process of Thumb instructions while in the decode

stage of the pipeline. This process creates a 32-bit ARM equivalent instruction from the 16-bit

Thumb instruction, decodes the instruction, and passes it on to the execute stage.

ARM design philosophy

Small processor for lower power consumption (for embedded system)

• High code density for limited memory and Physical size

restrictions

• The ability to use slow and low-cost memory

• Reduced die size for reducing manufacture cost and

accommodating more peripherals

Registers

ARM has 37 registers all of which are 32-bits long. 1 dedicated program counter

 1 dedicated current program status register

 5 dedicated saved program status registers

 30 general purpose registers

 The current processor mode governs which of several banks is accessible.

Each mode can access a particular set of

 r0-r12 registers

 a particular r13 (the stack pointer, sp)

 r14 (the link register, lr)

 the program counter, r15 (pc)

 the current program status register, cpsr

 Privileged modes (except System) can also access a particular spsr (saved program status

29

reg

Registers

The ARM1136JF-S processor has a total of 37 registers:

• 31 general-purpose 32-bit registers

• six 32-bit status registers.

These registers are not all accessible at the same time. The processor state and operating mode

determine which registers are available to the programmer

The ARM state register set In ARM state, 16 general registers and one or two status

registers are accessible at any time. In privileged modes, mode-specific banked registers become

available.

The ARM state register set contains 16 directly-accessible registers, r0-r15. Another

register, the Current Program Status Register (CPSR), contains condition code flags, status bits,

and current mode bits. Registers r0-r13 are general-purpose registers used to hold either data or

address values. Registers r14, r15, and the SPSR have the following special functions.

Link Register Register r14 is used as the subroutine Link Register (LR). Register r14

receives the return address when a Branch with Link (BL or BLX) instruction is executed. You

can treat r14 as a general-purpose register at all other times. The corresponding banked registers

r14_svc, r14_irq, r14_fiq, r14_abt, and r14_und are similarly used to hold the return values when

interrupts and exceptions arise, or when BL or BLX instructions are executed within interrupt or

exception routines.

Program Counter Register r15 holds the PC:

• in ARM state this is word-aligned

• in Thumb state this is halfword-aligned

• in Java state this is byte-aligned. Saved Program Status Register

In privileged modes, another register, the Saved Program Status Register (SPSR), is

accessible. This contains the condition code flags, status bits, and current mode bits saved as a

result of the exception that caused entry to the current mode.

Banked registers have a mode identifier that indicates which mode they relate to. These mode

30

identifiers are listed in

Table 3.6-Register mode identifiers

FIQ mode has seven banked registers mapped to r8–r14 (r8_fiq– r14_fiq). As a result many FIQ

handlers do not have to save any registers. The Supervisor, Abort, IRQ, and Undefined modes each

have alternative mode-specific registers mapped to r13 and r14, permitting a private stack pointer and

link register for each mode

ARM Processor Modes

 Unprivileged mode

 User mode Privileged mode Abort mode

 Fast Interrupt Request mode

 Interrupt Request mode Supervisor mode

 System mode

Undefined mode

31

Fig 3.11:register set showing banked registers

32

Fig 3.12: ARM register

The Thumb state register set

The Thumb state register set is a subset of the ARM state set. The programmer has direct access

to:

• Eight general registers, r0–r7

• The PC

• A stack pointer, SP (ARM r13)

• An LR (ARM r14)

• The CPSR.

There are banked SPs, LRs, and SPSRs for each privileged mode.

33

Fig 3.13: THUMB register

Accessing high registers in Thumb state

In Thumb state, the high registers, r8–r15, are not part of the standard register set. You can use

special variants of the MOV instruction to transfer a value from a low register, in the range r0– r7,

to a high register, and from a high register to a low register. The CMP instruction enables you to

compare high register values with low register values. The ADD instruction enables you to add

high register values to low register values.

.

34

ARM state and Thumb state registers relationship

Fig 3.14: ARM state and THUMB state registers relationship

Registers r0–r7 are known as the low registers. Registers r8–r15 are known as the

high registers.

The program status registers

The ARM7TDMI-S contains a CPSR and five SPSRs for

exception handlers to use. The

program status registers:

• hold the condition code flags

• control the enabling and disabling of interrupts

• set the processor operating mode.

The arrangement of bits is shown in Figure

35

Fig 3.15: Program Status Registers

The condition code flags

The N, Z, C, and V bits are the condition code flags, You can set these bits by arithmeticand

logical operations. The flags can also be set by MSR and LDM instructions.

TheARM7TDMI-S tests these flags to determine whether to execute an instruction.

All instructions can execute conditionally in ARM state. In Thumb state, only the Branch

instruction can be executed conditionally

The control bits

The bottom eight bits of a PSR are known collectively as the

control bits. They are the:

36

• Interrupt disable bits

• T bit

• Mode bits.

The control bits change when an exception occurs. When the processor is operating in a

privileged mode, software can manipulate these bits.

Interrupt disable bits

The I and F bits are the interrupt disable bits:

• when the I bit is set, IRQ interrupts are disabled

• when the F bit is set, FIQ interrupts are disabled.

T bit

The T bit reflects the operating state:

• when the T bit is set, the processor is executing in Thumbstate

• when the T bit is clear, the processor executing in ARMstate. The operating state is

reflected by the CPTBIT external signal.

Mode bits

The M4, M3, M2, M1, and M0 bits (M[4:0]) are the mode bits. These bits determine the processor

operating mode . Not all combinations of the mode bits define a valid processor mode, so take

care to use only the bit combinations shown

Reserved bits

The remaining bits in the PSRs are unused but are reserved. When changing a PSR flag or control

bits make sure that these reserved bits are not altered. Also, make sure that your program does not

rely on reserved bits containing specific values because future processors might have these bits set

to one or zero

The ARM7TDMI-S is a member of the ARM family of general- purpose 32-bit microprocessors.

The ARM family offers high performance for very low power consumption and gate count. The

ARM architecture is based on Reduced Instruction Set Computer (RISC) principles. The RISC

instruction set, and related decode mechanism are much simpler than those of Complex

Instruction Set Computer (CISC) designs. This simplicity gives:

• a high instruction throughput

37

• an excellent real-time interrupt response

• a small, cost-effective, processor macrocell.

The Program Counter (PC) points to the instruction being fetched rather than to the instruction

being executed.During normal operation, while one instruction is being executed, its successor is

being decoded, and a third instruction is being fetched from memory

The ARM Processor Families (I)

The ARM7 Family

32- bit RISC Processor. Support three-

stage pipeline

Uses Von Neumann Architecture.

Fig 3.15:ARM7TDMI andARM7EJ-S

Widely used in many applications such as palmtop computers, portable instruments, smart card.

The instruction pipeline

The ARM7TDMI-S uses a pipeline to increase the speed of the flow of instructions to the

processor. This allows several operations to take place simultaneously, and the processing, and

memory systems to operate continuously.

A three-stage pipeline is used, so instructions are executed in three stages:

• Fetch

38

• Decode

• Execute.

The three-stage pipeline is shown in

ARM Pipelines

Pipeline mechanism to increase execution speed

• The pipeline design of each processor family is different

39

Fig 3.16:ARM7 Pipeline architecture

40

ARM 7 ARCHITECTURE

Fig 3.17:ARM7 DATAPATH OVERVIEW

41

A barrel shifter is a digital circuit that can shift a data word by a specified number of bits without

the use of any sequential logic, only pure combinational logic.

Fig 3.18: Barrel shifter

42

Fig 3.19: ARM 7 ARCHITECTURE

43

Fig 3.20: Booth Multiplier

44

TEXT / REFERENCE BOOKS

1. Kenneth. J. Ayala, ―The 8051 Microcontroller Architecture, Programming and Apllications‖, Penram

International, 1996, 2 nd Edition.

2. Sriram. V. Iyer, Pankaj Gupta, ―Embedded Real Time Systems Programming‖, 2004 Tata McGraw Hill

Publishing Company Limited, 2006.

3. Frank Vahid, Tony Givargis, ‗Embedded system Design - A unified Hardware / software Introduction‘,

John Wiley and Sons, 2002.

4. Todd D Morton, ‗Embedded Microcontrollers‘, Reprint by 2005, Low Price Edition.

5. Muhammed Ali Mazidi, Janice Gillispie Mazidi, ‗The 8051 Microcontroller and Embedded Systems‘,

Low Price Edition, Second Impression 2006.

6. Raj Kamal, ‗Embedded Systems-Architecture, Programming and Design‘, Tata McGraw Hill

Publishing Company Limited 2003.

7. Muhammed Ali Mazidi, Rolin D.Mckinlay, Dannycauscy, ―PIC microcontrollers and embedded

systems using assembly and C‖, 1st edition, Pearson, 2007.

1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

PRINCIPLES OF EMBEDDED SYSTEM DESIGN-SECA1706

2

UNIT-IV

DISTRIBUTED EMBEDDED SYSTEM DESIGN

3

SYLLABUS

IV. UNIT – IV

DISTRIBUTED EMBEDDED SYSTEM DESIGN

Distributed Embedded system - Embedded networking -RS 232 - RS485 - Inter-Integrated Circuit (I2C)

- Serial Peripheral Interface (SPI) - Universal Serial Bus (USB) - Controller Area Network (CAN) -

Ethernet.

DISTRIBUTED EMBEDDED ARCHITECTURES

A distributed embedded system can be organized in many different ways, but its basic units are the PE

and the network as illustrated in Figure4.1. A PE may be an instruction set processor such as a DSP,

CPU, or microcontroller, as well as a nonprogrammable unit such as the ASICs used to implement PE

4. An I/O device such as PE 1 (which we call here a sensor or actuator, depending on whether it

provides input or output) may also be a PE, so long as it can speak the network protocol to

communicate with other PEs. The network in this case is a bus, but other network topologies are also

possible. It is also possible that the system can use more than one network, such as when relatively

independent functions require relatively little communication among them. We often refer to the

connection between PEs provided by the network as a communication link

The system of PEs and networks forms the hardware platform on which the application runs. the

distributed embedded system does not have memory on the bus (unless a memory unit is organized as

an I/O device that speaks the network protocol). In particular, PEs do not fetch instructions over the

network as they do on the microprocessor bus. We take advantage of this fact when analyzing network

performance—the speed at which PEs can communicate over the bus would be difficult if not

impossible to predict if we allowed arbitrary instruction and data fetches as we do on microprocessor

buses

Fig 4.1: An example of a distributed embedded system.

4

Why Distributed?

Building an embedded system with several PEs talking over a network is definitely more complicated

than using a single large microprocessor to perform the same tasks. So why would anyone build a

distributed embedded system? All the reasons for designing accelerator systems also apply to

distributed embedded systems, and several more reasons are unique to distributed systems.

In some cases, distributed systems are necessary because the devices that the PEs communicate with are

physically separated. If the deadlines for processing the data are short, it may be more cost-effective to

put the PEs where the data are located rather than build a higher-speed network to carry the data to a

distant, fast PE. An important advantage of a distributed system with several CPUs is that one part of

the system can be used to help diagnose problems in another part. Whether you are debugging a

prototype or diagnosing a problem in the field, isolating the error to one part of the system can be

difficult when everything is done on a single CPU. If you have several CPUs in the system ,you can use

one to generate inputs for another and to watch its output.

Network Abstractions

Networks are complex systems. Ideally, they provide high-level services while hiding many of the

details of data transmission from the other components in the system. In order to help understand (and

design) networks, the International Standards Organization has developed a seven- layer model for

networks known as Open Systems Interconnection (OSI) models [Sta97A]. Understanding the OSI

layers will help us to understand the details of real networks.

The seven layers of the OSI model, shown in Figure 4.2, are intended to cover a broad spectrum of

networks and their uses. Some networks may not need the services of one or more layers because the

higher layers may be totally missing or an intermediate layer may not be necessary. However, any data

network should fit into the OSI model. The OSI layers from lowest to highest level of abstraction are

described below.

Physical:

The physical layer defines the basic properties of the interface between systems, including the physical

connections (plugs and wires), electrical properties, basic functions of the electrical and physical

components, and the basic procedures for exchanging bits.

Data link:

The primary purpose of this layer is error detection and control across a single link. However, if the

network requires multiple hops over several data links, the data link layer does not define the

mechanism for data integrity between hops, but only within a single hop.

Network:

This layer defines the basic end-to-end data transmission service. The network layer is particularly

important in multihop networks.

5

Transport:

The transport layer defines connection-oriented services that ensure that data are delivered in the proper

order and without errors across multiple links. This layer may also try to optimize network resource

utilization.

Session:

A session provides mechanisms for controlling the interaction of end user services across a network,

such as data grouping and check pointing.

Presentation:

This layer defines data exchange formats and provides transformation utilities to application programs.

Application:

The application layer provides the application interface between the network and end-user programs.

Although it may seem that embedded systems would be too simple to require use of the OSI model, the

model is in fact quite useful. Even relatively simple embedded networks provide physical, data link,

and network services. An increasing number of embedded systems provide Internet service that requires

implementing the full range of functions in the OSI model.

Fig 4.2: The OSI model layers.

What is a Distributed System?

A distributed system is A collection of independent computers that appears to its users as a single

coherent system.

Distributed computing is a field of computer science that studies distributed systems. A distributed

system consists of multiple autonomous computers that communicate through a computer network. The

computers interact with each other in order to achieve a common goal. A computer program that runs in

6

a distributed system is called a distributed program, and distributed programming is the process of

writing such programs.

Distributed computing also refers to the use of distributed systems to solve computational problems. In

distributed computing, a problem is divided into many tasks, each of which is solved by one or more

computers.

A distributed system is a collection of independent computers, interconnected via a network, capable of

collaborating on a task. Distributed computing is computing performed in a distributed system.

Distributed computing has become increasingly common due advances that have made both machines

and networks cheaper and faster.

Some examples of distributed systems :

♦ Local Area Network and Intranet

♦ Database Management System

♦ Automatic Teller Machine Network

♦ Internet/World-Wide Web

♦ Mobile and Ubiquitous Computing

7

Design Issues of Distributed Systems

Fig 4.3: Components of distributed Systems

Types of Distributed Systems

Distributed Computing Systems

Many distributed systems are configured for High-Performance Computing Cluster Computing:
Essentially a group of high-end systems connected through a LAN:

Distributed Information Systems

The vast amount of distributed systems in use today is forms of traditional information systems

that now integrate legacy systems.

Example: Transaction processing systems.

Distributed Pervasive Systems

8

There is a next-generation of distributed systems emerging in which the nodes are small, mobile,

and often embedded as part of a larger system.

Ex: smart cities, smart homes, smart highways, smart classroom.

Fig 4.4: Types of distributed Systems

Embedded networking

LAN, WAN, and MAN; more often, all these refer to networks.

What is a network?

A ―network‖ is a generic term that refers to a group of entities like objects, peoples, etc., that are

connected

Thus, a network allows material or immaterial elements to be spread among all of these entities,

based on well-defined rules.

Why networks are important?

A computer is a machine used to manipulate and process data. Linking of computers is essential

9

for exchanging information in communication. So, this explains our query about what is a network

in terms of computers.

A computer network can serve several different purposes like the ones given below:

• Provides resource sharing (sharing of files, applications or hardware, an Internetconnection,

etc.)

• Provides Communication support (email, live discussions, etc.Processes Communication (communication

between industrial computers)

• Provides access to information: Guarantees full access to information for a specified group of

people through networked databases

• Supports Multiplayer video games

For example, email and group scheduling can be used to communicate more quickly and efficiently.

• Such systems offer the following advantages:

• Lower costs due to sharing of data and peripherals

• Standardize applications

• Provide timely access to data

• Offer more efficient communication and organization

What types of networks are used in the embedded system?

Telecommunication systems make use of numerous embedded systems ranging from telephone

switches for the network to mobile phones at the end-user.

Computer networking uses dedicated routers and Network Bridge to route data.

The Advanced HVAC system uses networked thermostats for more accurate and efficient control

of temperature that may change during a day or season.

The home automation system uses wired and wireless networking to control lights, climate,

security, audio and so on.

Different types of networks generally have the following points in common:

Servers: These are computers that provide the main information.

Clients: These are computers or other devices that get access to shared resources.

https://www.elprocus.com/what-is-a-communication-system-and-its-basic-elements/

10

Connection medium: Connection medium defines the interlinking of different devices.

Shared data: It refers to the information that is transmitted in a network and received by the

clients.

Printers and other shared peripherals: Peripherals (devices) that are connected to the client

machines for processing and obtaining the information.

Examples:

RFID based embedded identification module

Automated access control and access management area

Fault monitoring in industries

Tracking and quality control of goods

Global monitoring of large buildings and infrastructures

What is the network’s importance in an embedded system?

The embedded system was originally designed to work on a single device. However, in the current

scenario, the implementation of different networking options has increased the overall

performance of the embedded system in terms of economy as well as technical considerations.

The most efficient types of the network used in the embedded system are BUS network and an

Ethernet network.

A BUS is used to connect different network devices and to transfer a huge range of data, for

example, serial bus, I2C bus, CAN bus, etc.

The Ethernet type network works with the TCP/IP protocol.

Examples of embedded networking include CAN, I2C, Component, sensor, and serial bus

networking.

https://www.elprocus.com/communication-protocols/
https://www.elprocus.com/controller-area-network-can/

11

Fig 4.5: Embedded network

Fig 4.6: Computer network

RS232 PIN DETAILS

12

Fig 4.7: RS232 PIN DETAILS-DB9

13

A RS232 connection transmits signals using a positive voltage for a binary 0 and a negative

voltage for a binary 1. But what do the PLCs use RS232 for?

PLCs use RS232 to talk to other modules or even other PLCs. These modules can be anything that

also uses RS232 such as, operator interface or HMI, computers, motor controllers or drives, a

robot, or some kind of vision system.

DTE stands for Data Terminal Equipment. A common example of this is a computer.

DCE stands for Data Communications Equipment. An example of DCE is a modem.

The reason this is important is because two DTE or two DCE devices cannot talk to each other

without some help. This is typically done by using a reverse (null-modem) RS232 cable

connection to connect the devices.

Typically our PLCs will be DTE and our devices used will be DCE and everything should talk to

each other.

One very common example that many people are probably familiar with is a computer connected

to a printer. While USB has become the standard, RS232 is still widely used for older printers in

the workplace.

The RS232 protocol and cable allow the computer to give commands to the printer via a voltage

signal. The printer then deciphers those commands and completes the print.

One is the speed at which data can be transferred. Data can be transferred at around 20 kilobytes

per second. That is pretty slow compared to what people are used to now.

Another issue with RS232 is that the maximum length a cable is about 50 feet. Wire resistance and

voltage drops become an issue with cables longer than this. This is one reason RS232 is not used

as much as newer technology for remote installations.

Fig 4.8: DTE & DCE Connection using RS232

https://realpars.com/what-is-hmi/

14

Fig 4.9: RS232 PIN DETAILS-DB 25

15

Fig 4.10: RS232 Line Driver

16

Fig 4.11: RS232 Connection

RS232 bit streams

The RS232 standard describes a communication method where information is sent bit by bit on a

physical channel. The information must be broken up in data words. The length of a data word is

variable. On PC‗s a length between 5 and 8 bits can be selected. This length is the net information

length of each word. For proper transfer additional bits are added for synchronization and error

checking purposes. It is important, that the transmitter and receiver use the same number of bits.

Otherwise, the data word may be misinterpreted, or not recognized at all.

With synchronous communication, a clock or trigger signal must be present which indicates the

beginning of each transfer. The absence of a clock signal makes an asynchronous communication

channel cheaper to operate. Less lines are necessary in the cable. A disadvantage is, that the

receiver can start at the wrong moment receiving the information. Re-synchronization is then

needed which costs time. All data received in the re-synchronization period is lost. Another

disadvantage is that extra bits are needed in the data stream to indicate the start and end of useful

information. These extra bits take up bandwidth.

Data bits are sent with a predefined frequency, the baud rate. Both the transmitter and receiver

must be programmed to use the same bit frequency. After the first bit is received, the receiver

calculates at which moments the other data bits will be received. It will check the line voltage

levels at those moments.

With RS232, the line voltage level can have two states. The on state is also known as mark, the off

state as space. No other line states are possible. When the line is idle, it is kept in the mark state.

Start bit

RS232 defines an asynchronous type of communication. This means, that sending of a data word

can start on each moment. If starting at each moment is possible, this can pose some problems for

the receiver to know which is the first bit to receive. To overcome this problem, each data word is

started with an attention bit. This attention bit, also known as the start bit, is always identified by

the space line level. Because the line is in mark state when idle, the start bit is easily recognized by

the receiver.

Data bits

Directly following the start bit, the data bits are sent. A bit value 1 causes the line to go in mark

state, the bit value 0 is represented by a space. The least significant bit is always the first bit sent.

17

Parity bit

For error detecting purposes, it is possible to add an extra bit to the data word automatically. The

transmitter calculates the value of the bit depending on the information sent. The receiver performs

the same calculation and checks if the actual parity bit value corresponds to the calculated value.

This is further discussed in another paragraph.

Stop bits

Suppose that the receiver has missed the start bit because of noise on the transmission line. It

started on the first following data bit with a space value. This causes garbled date to reach the

receiver. A mechanism must be present to re-synchronize the communication. To do this, framing

is introduced. Framing means, that all the data bits and parity bit are contained in a frame of start

and stop bits. The period of time lying between the start and stop bits is a constant defined by the

baud rate and number of data and parity bits. The start bit has always space value, the stop bit

always mark value. If the receiver detects a value other than mark when the stop bit should be

present on the line, it knows that there is a synchronization failure. This causes a framing error

condition in the receiving UART. The device then tries to re-synchronize on new incoming bits.

RS232 physical properties

The RS232 standard describes a communication method capable of communicating in different

environments. This has had its impact on the maximum allowable voltages etc. on the pins. In the

original definition, the technical possibilities of that time were taken into account. The maximum

baud rate defined for example is 20 kbps. With current devices like the 16550A UART, maximum

speeds of 1.5 Mbps are allowed.

Voltages

The signal level of the RS232 pins can have two states. A high bit, or mark state is identified by a

negative voltage and a low bit or space state uses a positive value. This might be a bit confusing,

because in normal circumstances, high logical values are defined by high voltages also.

Maximum cable lengths

Cable length is one of the most discussed items in RS232 world. The standard has a clear answer,

the maximum cable length is 50 feet, or the cable length equal to a capacitance of 2500 pF. The

latter rule is often forgotten. This means that using a cable with low capacitance allows you to span

longer distances without going beyond the limitations of the standard. If for example UTP CAT-5

cable is used with a typical capacitance of 17 pF/ft, the maximum allowed cable length is 147 feet.

18

RS485

Fig 4.12: RS485 Line Driver

19

Fig 4.13: complex RS485 network

Table 4.1:Comparison of RS232 vs RS485

20

I²C-INTER INTEGRATED CIRCUIT BUS

What is a I²C? (Signals)?

• I²C stands for Inter-integrated-circuit

• It is a serial communication interface with a bidirectional two-wire synchronous serial bus

normally consists of two wires – SDA (Serial data line) and SCL (Serial clock line) and pull-up

resistors. They are used for projects that require many different parts (eg. sensors, pin,

expansions, and drivers) working together as they can connect up to 128 devices to the main

board while maintaining a clear communication pathway! It is used to connect various low-

speed devices together like microcontrollers, EEPROMs, A/D and D/A converters, etc. Unlike

UART or SPI, I2C bus drivers are open-drain which prevents bus contention and eliminates the

chances for damage to the drivers.

• Each signal line in I2C contains pull-up resistors to restore the signal to a high of the wire when

no device is pulling it low.

Fig 4.14: I²C Bus

• I
2
C Interface

21

• I
2
C uses only two wires: SCL (serial clock) and SDA (serial data).

• Both need to be pulled up with a resistor to +Vdd. There are also I2C level shifters which can be

used to connect to two I2C buses with different voltages.

• I

2
C Addresses

• Basic I

2
C communication is using transfers of 8 bits or bytes.

• Each I

2
C slave device has a 7-bit address that needs to be unique on the bus.

• Some devices have fixed I

2
C address while others have few address lines which determine

lower bits of the I
2
C address.

• This makes it very easy to have all I

2
C devices on the bus with unique I

2
C address. There are

also devices which have 10-bit address as allowed by the specification.

• 7-bit address represents bits 7 to 1 while bit 0 is used to signal reading from or writing to the

device. If bit 0 (in the address byte) is set to 1 then the master device will read from the slave

I
2
C device.

• Master device needs no address since it generates the clock (via SCL) and addresses individual

I
2
C slave devices Each signal line in I

2
C contains pull-up resistors to restore the signal to a high

of the wire when no device is pulling it low

Fig 4.15: I²C Bus_Master & Slave

In normal state both lines (SCL and SDA) are high. The communication is initiated by the master

device. It generates the Start condition (S) followed by the address of the slave device (B1). If the

bit 0 of the address byte was set to 0 the master device will write to the slave device (B2).

Otherwise, the next byte will be read from the slave device. Once all bytes are read or written (Bn)

https://i2c.info/i2c-bus-specification
https://i2c.info/i2c-bus-specification
https://i2c.info/i2c-bus-specification
https://i2c.info/i2c-bus-specification

22

the master device generates Stop condition (P). This signals to other devices on the bus that the

communication has ended and another device may use the bus.

Most I

2
C devices support repeated start condition. This means that before the communication ends

with a stop condition, master device can repeat start condition with address byte and change the

mode from writing to reading.

I
2
C bus is used by many integrated circuits and is simple to implement. Any microcontroller can

communicate with I
2
C devices even if it has no special I

2
C interface. I

2
C specifications are

flexlible – I
2
C bus can communicate with slow devices and can also use high speed modes to

transfer large amounts of data. Because of many advantages, I
2
C bus will remain as one of the

most popular serial interfaces to connect integrated circuits on the board.

Fig 4.16: Master device writes data to slave device

I²C communication protocol

 I2C data is transferred in messages which are broken up into data frames.

 Each message contains:

 Start condition

 Address of the Slave

 Read and write bits

 Data frame

 ACK/NACK bits

 Stop condition

Start Condition:

The transmission will start when the master device switches the SDA line from high voltage
level to low voltage level then switches the SCL line from high to low.

Signals to other slave device that a transmission is going to happen.

https://i2c.info/i2c-bus-specification
https://i2c.info/i2c-bus-specification

23

If two masters sends a start condition at one time wants to take ownership of the bus,

whoever pulls the SDA low first ―wins‖

Stop Condition:

A stop condition will be transmitted after all the data frames have been sent.

The SCL line will switch from a low voltage level to high first before the SDA line switches
from a low voltage to high

Value on SDA should not change when SCL is high during normal data writing operation as

it can cause false stop conditions.

Read/Write Bit

 Single bit specifying whether the master is transmitting (write) data to the slave (low voltage

level) or requesting (read) data from it (high voltage level).

ACK/NACK Bit

 Sent by the the receiving device after each frame to signal to the sender whether the data frame was

successfully received (ACK) or not (NACK)

Fig 4.17:I²C communication protocol

Addressing

Compared to SPI, I2C do not have slave select lines which causes the slave devices not being able
know when data is being sent to him instead of other slave.

To solve this problem, I2C uses an address frame which is the first frame after the start bit in a new

message.

24

Master devices will first send the unique address of the slave it wants to communicate with. I

If the address does matches with the slave own address, it will send a ACK bit back to the master

device.

If it does not match, the slave will do nothing which leaves the SDA line high.

Data Frame (data to be transmitted)

After the address frame has been sent and master device receives a ACK bit from the slave, data

will begin being transmitted which are 8 bits long with the most significant bits (MSB) being sent

first.

While the master device will be generating clock pulses at regular intervals, data are sent on the

SDA by the master or the slave depending on the Read/write bit.

After this process have been completed, the master will send a stop condition to the slave which

will end the transmission.

Step by step of I2C communication

Firstly, a start signal will be generated by the master device which signals to the other devices to

start listening to the bus and prepare to receive data. (SCL high, SDA switch from high to low)

When a start signal condition is transmitted, the bus will enter a busy state where the current data

transfer is limited to only the selected master and slave. It is only after a stop condition is generated

where the bus will be released and be in an idle mode again.

Secondly, the master device will send a 7-bit device address plus one bit of reading and write the

data frame to every device. The bit will also indicate the direction of the next data transmission. 0 =

Master device writes data to the slave devices. 1 = Master device reads data to the slave devices.

Thirdly, Each slave compares the address sent by the master with its own address. The slave device
that successfully matches the address returns the ACK bit by pulling the SDA line low.

Fourthly, when the master device receives an acknowledgment signal from the slave device, it will

start transmitting or receiving data

Fifthly, after transmitting each data frame, the receiving device returns another ACK bit to the

sender to confirm that the frame is successfully received, and then the sender continues to transmit

the data frame, and so on.

Lastly, when the data transfer is completed, the master device will send a stop signal which signals

the release of the bus to other devices and the bus will enter an idle state.

25

Fig 4.18:I²C communication protocol message

SPI- Serial Peripheral Interface (SPI)

 A serial peripheral interface (SPI) is an interface that enables the serial (one bit at a time)

exchange of data between two devices, one called a master and the other called a slave .

 It provides serial exchange of data between two devices(Master,Slave)

 Moving data simply and quickly from one device to another

 Features

 Master/Slave -Supports up to 15 external devices Supports SPI modes 0, 1, 2 & 3

 8 to 16 bit Data Length

 Primarily intended for on-board communication.

 Flexible clock format.

 Full Duplexed operation.

 MSB or LSB first.

 Communication may be interrupt driven.

 Fixed or Variable peripheral selection

 Bi-directional data exchange

 The Serial Peripheral Interface (SPI) is a synchronous serial communication interface
specification used for short-distance communication, primarily in embedded systems.

 The interface was developed by Motorola in the mid-1980s

 Typical applications include Secure Digital cards and liquid crystal displays.

http://searchcio-midmarket.techtarget.com/definition/serial
http://searchnetworking.techtarget.com/definition/master
http://searchnetworking.techtarget.com/definition/master-slave
https://en.wikipedia.org/wiki/Synchronous_circuit
https://en.wikipedia.org/wiki/Synchronous_circuit
https://en.wikipedia.org/wiki/Embedded_systems
https://en.wikipedia.org/wiki/Motorola
https://en.wikipedia.org/wiki/Secure_Digital
https://en.wikipedia.org/wiki/Liquid_crystal_display

26

 SPI devices communicate in full duplex mode using a master-slave architecture with a
single master.

 The master device originates the frame for reading and writing. Multiple slave-devices are
supported through selection with individual slave select (SS), sometimes called chipselect

(CS), lines.

Fig 4.18:I²C communication protocol message

Fig 4.19: SPI communication

The SPI bus specifies four logic signals:

 SCLK: Serial Clock (output from master)

 MOSI: Master Out Slave In (data output from master)

 MISO: Master In Slave Out (data output from slave)

 SS: Slave Select (often active low, output from master)

MOSI on a master connects to MOSI on a slave. MISO on a master connects to MISO on a slave.

Slave Select has the same functionality as chip select and is used instead of an addressing concept.

Note: on a slave-only device, MOSI may be labeled as SDI (Slave Data In) and MISO may be

labeled as SDO (Slave Data Out)

The signal names above can be used to label both the master and slave device pins as well as the

signal lines between them in an unambiguous way, and are the most common in modern products.

https://en.wikipedia.org/wiki/Full_duplex
https://en.wikipedia.org/wiki/Master-slave_(technology)
https://en.wikipedia.org/wiki/Frame_(networking)
https://en.wikipedia.org/wiki/Slave_select
https://en.wikipedia.org/wiki/Logic_level
https://en.wikipedia.org/wiki/Chip_select

27

Pin names are always capitalized e.g. "Slave Select," not "slave select."

Older products can have nonstandard SPI pin names:

Serial Clock:
SCK

Fig 4.20: SPI Data Transmission

28

SPI Data Loop

Fig 4.21: SPI Data Loop

SSPSR- Synchronous serial port shift register

Internal Shift Register , Loaded by SPI data or from SSPBUF

SSPBUF-Synchronous serial port buffer

Serial Buffer This is the register read and written by your program

SCK- Serial Clock

Master generates the clock the controls the data transfer

SS-Slave Select

Master controls which slave is selected by asserting the slave‗s SS

Applications

SPI is used to talk to a variety of peripherals, such as

 Sensors: temperature, pressure, ADC, touchscreens, video game controllers

 Control devices: audio codecs, digital potentiometers, DAC

 Camera lenses: Canon EF lens mount

 Communications: Ethernet, USB, USART, CAN, IEEE 802.15.4, IEEE 802.11, handheld

video games

 Memory: flash and EEPROM

 Real-time clocks

http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Audio_codec
http://en.wikipedia.org/wiki/Digital-to-analog_converter
http://en.wikipedia.org/wiki/Canon_EF_lens_mount
http://en.wikipedia.org/wiki/IEEE_802.15.4
http://en.wikipedia.org/wiki/IEEE_802.15.4
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/EEPROM

29

 LCD displays, sometimes even for managing image data

 Any MMC or SD card (including SDIO variant)

Advantages

 Full duplex communication

 Higher throughput than I²C or SMBus

 Complete protocol flexibility for the bits transferred

 Not limited to 8-bit words

 Arbitrary choice of message size, content, and purpose

 Extremely simple hardware interfacing

 Typically lower power requirements than I²C or SMBus due to less circuitry (including pullups)

 No arbitration or associated failure modes

 Slaves use the master's clock, and don't need precision oscillators

 Slaves don't need a unique address — unlike I²C or GPIB or SCSI

 Transceivers are not needed

 Uses only four pins on IC packages, and wires in board layouts or connectors, much less than
parallel interfaces

 At most one unique bus signal per device (chip select); all others are shared

 Signals are unidirectional allowing for easy Galvanic isolation

Disadvantages

 Requires more pins on IC packages than I²C, even in the 3-wire variant

 No in-band addressing; out-of-band chip select signals are required on shared buses

 No hardware flow control by the slave (but the master can delay the next clock edge to slow the

transfer rate)

 No hardware slave acknowledgment (the master could be transmitting to nowhere and not know
it)

 Supports only one master device

 No error-checking protocol is defined

 Generally prone to noise spikes causing faulty communication,

 Without a formal standard, validating conformance is not possible

 Only handles short distances compared to RS-232, RS-485, or CAN-bus

 Many existing variations, making it difficult to find development tools like host adapters that
support those variations

Fig 4.22: Comparison of Communication protocol

http://en.wikipedia.org/wiki/MultiMediaCard
http://en.wikipedia.org/wiki/Secure_Digital
http://en.wikipedia.org/wiki/Secure_Digital
http://en.wikipedia.org/wiki/Full_duplex
http://en.wikipedia.org/wiki/I%C2%B2C
http://en.wikipedia.org/wiki/System_Management_Bus
http://en.wikipedia.org/wiki/Address_space
http://en.wikipedia.org/wiki/I%C2%B2C
http://en.wikipedia.org/wiki/GPIB
http://en.wikipedia.org/wiki/SCSI
http://en.wikipedia.org/wiki/Galvanic_isolation
http://en.wikipedia.org/wiki/I%C2%B2C
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://en.wikipedia.org/wiki/Chip_select
http://en.wikipedia.org/wiki/Flow_control
http://en.wikipedia.org/wiki/RS-232
http://en.wikipedia.org/wiki/RS-485
http://en.wikipedia.org/wiki/CAN-bus

30

Table 4.2: Comparison of Communication protocol

Table 4.3: Comparison of SPI and I2C protocol

UNIVERSAL SERIAL BUS:

an external serial bus interface standard for connecting peripheral devices to a computer, as ina

USB port or USB cable.

The most widely used hardware interface for attaching peripherals to a computer. There are

typically at least two USB ports on laptops and four on desktop computers, while USB "hubs"

allow many more connections (see below). After appearing on PCs in 1997, USB quicklybecame

popular for connecting keyboards, mouse, printers and hard drives, eventually replacing the PC's

serial and parallel ports.

A serial bus standard for connecting devices usually peripheral devices to computers.

31

Features

 Single connector type

 Replaces all different legacy connectors with one well-defined standardized USB connector
for all USB peripheral devices

 Hot swappable

 Devices can be safely plugged and unplugged as needed while the computer is running (no

need to reboot)

 Plug and Play

 OS software automatically identifies, configures, and loads the appropriate driver when
connection is made

 High performance

 USB offers data transfer speeds at up to 480 Mbps

 Expandability

 Up to 127 different peripheral devices may theoretically be connected to a single bus at one
time

 Bus-supplied power

 USB distributes the power to all connected devices, eliminating the need for anexternal

power source for low power devices (flash drives, memory cards, Bluetooth)

 Easy to use

 The single standard connector type simplifies the end user‗s task of figuring out what plug
goes into what socket

 Automatic driver loading does all the work for the end user

 Low cost

 The host handles most of the protocol complexity, making the design simple and having a
low cost

Versions

There have been three versions released prior to 3.0

⚫ USB 1.0 in January 1996 – data rates of 1.5 Mbps and 12 Mbps

⚫ USB 1.1 in September 1998 – first widely used version of USB

⚫ USB 2.0 in April 2000

⚫ Major feature revision was the addition of a high speed transfer rate of 480 Mbps

⚫ Important note – all versions are backwards compatible with previous versions of USB

USB 1.0, 2.0 and 3.0

Supporting up to 127 devices, USB 1.0 (1996) and USB 1.1 (1998) provide a Low-Speed 1.5
Mbps subchannel for keyboards and mice and a Full-Speed channel at 12 Mbps.

Hi-Speed USB 2.0 (2001) jumps the top rate to 480 Mbps, while SuperSpeed USB 3.0 (2008)

provides a huge 10x increase to 4.8 Gbps (see USB 3.0).

The USB cable provides four pathways- two power conductors and two twisted signal conductors.

http://www.pcmag.com/encyclopedia_term/0%2C2542%2Ct%3DUSB%2B30%26i%3D58695%2C00.asp

32

The USB device that uses full speed bandwidth devices must have a twisted pair D+ and D-

conductors. The data is transferred through the D+ and D- connectors while Vbus and Gnd

connectors provide power to the USB device.

Architecture of a USB network

Consists of one host device and multiple daisy chained devices

Fig 4.23: Architecture of a USB network

Two kinds of Hubs:

• Bus Powered Hub: Draws power from the host computers USB interface

• Self Powered Hub: Has a built in power supply.

33

Fig 4.24: USB TOPOLOGY

Tier One drives are built from the highest quality memory chips and are recognized as the most

dependable form of USB Flash Drives on the market.

34

Fig 4.25: USB TYPE A

35

Fig 4.26: USB TYPE B

Fig 4.27: USB MINI A& B

36

Fig 4.28: MICRO USB

• Mini-USB. As the name suggests, this is a smaller connection type that's good for mobile

devices. ...

• Micro-USB.

•

37

Fig 4.29:TOKEN PACKETS

Fig 4.30: FIELD OF USB

38

Fig 4.31: FIELD OF USB

There are some important advantages of universal serial bus (USB) are given below,

• The universal serial bus is easy to use.

• It has robust connector system.

• It has low cost.

• It has variety of connector types and size available.

• It has true plug and play nature.

• It has Low power consumption.

• Daisy chain up to 127 USB components / peripherals at the same time to one PC.

• Fits almost all devices that have a USB port.

There are some important disadvantages of universal serial bus (USB) are given below,

• It has limited capability and overall performance.

• Universal Serial Bus does not provide the broadcasting feature, only individual messages can be

communicated between host and peripheral.

• The data transfer not as fast as some other systems.

• What is CAN bus?

http://www.polytechnichub.com/universal-serial-bus/

39

Your car is like a human body:

The Controller Area Network (CAN bus) is the nervous system, enabling communication.

In turn, 'nodes' or 'electronic control units' (ECUs) are like parts of the body, interconnected via the

CAN bus. Information sensed by one part can be shared with another.

So what is an ECU?

In an automotive CAN bus system, ECUs can e.g. be the engine control unit, airbags, audio system

etc. A modern car may have up to 70 ECUs - and each of them may have information that needs to

be shared with other parts of the network.

The CAN bus system enables each ECU to communicate with all other ECUs - without complex

dedicated wiring.

Specifically, an ECU can prepare and broadcast information (e.g. sensor data) via the CAN bus

(consisting of two wires, CAN low and CAN high). The broadcasted data is accepted by all other

ECUs on the CAN network - and each ECU can then check the data and decide whether to receive

or ignore it.

Fig 4.32: CAN BUS

Development of the CAN bus started in 1983 at Robert Bosch GmbH. The protocol was officially

released in 1986 at the Society of Automotive Engineers (SAE) conference in Detroit, Michigan.

The first CAN controller chips were introduced by Intel in 1987, and shortly thereafter by Philips.

https://en.wikipedia.org/wiki/CAN_bus

40

Fig 4.33: CAN BUS CONTROLLER

CAN Applications

• Passenger cars

• Trucks and buses

• Off-highway and off-road vehicles

• Passenger and cargo trains

• Maritime electronics

• Aircraft and aerospace electronics

• Factory automation

• Industrial machine control

41

• Lifts and escalators

• Building automation

• Medical equipment and devices

• Non-industrial control

• Non-industrial equipment

CAN ADVANTAGES

• Simple & low cost

• ECUs communicate via a single CAN system instead of via direct complex analoguesignal

lines - reducing errors, weight, wiring and costs

• Fully centralized

• The CAN bus provides 'one point-of-entry' to communicate with all network ECUs - enabling

central diagnostics, data logging and configuration

• Extremely robust

• The system is robust towards electric disturbances and electromagnetic interference - ideal for

safety critical applications (e.g. vehicles)

• Efficient

• CAN frames are prioritized by ID so that top priority data gets immediate bus access, without

causing interruption of other frames

CAN IMPLEMENTATION

Fig 4.34: STAND ALONE CAN BUS

42

Fig 4.35: INTEGRATED CAN BUS

Fig 4.36: SINGLE-CHIP CAN BUS

43

Fig 4.37: TYPICAL CAN BUS

CAN PROTOCOL

Fig 4.38: TYPICAL STANDARD CAN PROTOCOL

44

Fig 4.38: TYPICAL EXTENDED CAN PROTOCOL

SOF–The single dominant start of frame (SOF) RTR–

The single remote transmission request (RTR) IDE–A

dominant single identifier extension (IDE)

• DLC–The 4-bit data length code (DLC)

CRC–The 16-bit (15 bits plus delimiter) cyclic redundancy check (CRC)

acknowledges (ACK)

EOF–This end-of-frame (EOF), IFS–

This 7-bit interframe space (IFS) The

meaning of the bit fields are:

• SOF–The single dominant start of frame (SOF) bit marks the start of a message, and is used to
synchronize the nodes on a bus after being idle.

• Identifier-The Standard CAN 11-bit identifier establishes the priority of the message. The lower the
binary value, the higher its priority.

• RTR–The single remote transmission request (RTR) bit is dominant when information is required

from another node. All nodes receive the request, but the identifier determines the specified node. The

responding data is also received by all nodes and used by any node interested. In this way, all data

being used in a system is uniform.

• IDE–A dominant single identifier extension (IDE) bit means that a standard CAN identifier with no
extension is being transmitted. • r0–Reserved bit (for possible use by future standard amendment).

• DLC–The 4-bit data length code (DLC) contains the number of bytes of data being transmitted.

• Data–Up to 64 bits of application data may be transmitted.

• CRC–The 16-bit (15 bits plus delimiter) cyclic redundancy check (CRC) contains the checksum

(number of bits transmitted) of the preceding application data for error detection.

• ACK–Every node receiving an accurate message overwrites this recessive bit in the original message

with a dominate bit, indicating an error-free message has been sent. Should a receiving node detect an

error and leave this bit recessive, it discards the message and the sending node repeats the message after

rearbitration. In this way, each node acknowledges (ACK) the integrity of its data. ACK is 2 bits, one is

45

the acknowledgment bit and the second is a delimiter.

• EOF–This end-of-frame (EOF), 7-bit field marks the end of a CAN frame (message) and disables

bitstuffing, indicating a stuffing error when dominant. When 5 bits of the same logic level occur in

succession during normal operation, a bit of the opposite logic level is stuffed into the data.

• IFS–This 7-bit interframe space (IFS) contains the time required by the controller to move a correctly

received frame to its proper position in a message buffer area.

• SRR–The substitute remote request (SRR) bit replaces the RTR bit in the standard message location

as a placeholder in the extended format.

• IDE–A recessive bit in the identifier extension (IDE) indicates that more identifier bits follow. The

18-bit extension follows IDE.

• r1–Following the RTR and r0 bits, an additional reserve bit has been included ahead of the DLC bit

CAN Message Frame

Four types of frames.

 Data frame.Transmits information.

 Remote frame.Request information

 Error frame.Indicates occurance of error.

 Overload frame.Indicates more time required to process message.

Message Types

The Data Frame - The data frame is the most common message type, and comprises the Arbitration

Field, the Data Field, the CRC Field, and the Acknowledgment Field. The Arbitration Field contains an

11-bit identifier in Figure 2 and the RTR bit, which is dominant for data frames. In Figure 3, it contains

the 29-bit identifier and the RTR bit. Next is the Data Field which contains zero to eight bytes of data,

and the CRC Field which contains the 16-bit checksum used for error detection. Last is the

Acknowledgment Field.

The Remote Frame : The intended purpose of the remote frame is to solicit the transmission of data

from another node. The remote frame is similar to the data frame, with two important differences. First,

this type of message is explicitly marked as a remote frame by a recessive RTR bit in the arbitration

field, and secondly, there is no data.

The Error Frame The error frame is a special message that violates the formatting rules of a CAN

message. It is transmitted when a node detects an error in a message, and causes all other nodes in the

network to send an error frame as well. The original transmitter then automatically retransmits the

message. An elaborate system of error counters in the CAN controller ensures that a node cannot tie up

a bus by repeatedly transmitting error frames.

The Overload Frame The overload frame is mentioned for completeness. It is similar to the error

frame with regard to the format, and it is transmitted by a node that becomes too busy. It is primarily

used to provide for an extra delay between messages. A Valid Frame A message is considered to be

error free when the last bit of the ending EOF field of a message is received in the error-free recessive

state. A dominant bit in the EOF field causes the transmitter to repeat a transmission.

46

Fig 4.39: BUS ARTIBRATION

Ethernet is a way of connecting computers together in a local area network or LAN. It has been the

most widely used method of linking computers together in LANs since the 1990s. The basic idea of its

design is that multiple computers have access to it and can send data at any time

The difference between internet and ethernet is that the internet is a wide area network (WAN)

while the ethernet is a local area network (LAN). Internet is a worldwide large network that connects

a large number of devices around the world while ethernet is a network that covers a small

geographical area.

Ethernet is the traditional technology for connecting devices in a wired local area network (LAN) or

wide area network (WAN), enabling them to communicate with each other via a protocol -- a set of

rules or common network language. ... An Ethernet cable is the physical, encased wiring over which

the data travels.

47

Fig 4.40: ETHERNET CABLE

Features

 It is a broadcast protocol

 Most popular packet switched LAN technology

48

• It uses a Bus or Star topology.

• Supports data transfer rates of upto 10 Mbps.

• Bandwidths: 10Mbps, 100Mbps, 1Gbps

• Max bus length: 2500m

– 500m segments with 4 repeaters

• Bus and Star topologies are used to connect hosts

– Hosts attach to network via Ethernet transceiver or hub or switch

• Detects line state and sends/receives signals

– Hubs are used to facilitate shared connections

– All hosts on an Ethernet are competing for access to the medium

• Switches break this model

• Problem: Distributed algorithm that provides fair access

• Preamble is a sequence of 7 bytes, each set to ―10101010‖

– Used to synchronize receiver before actual data is sent

• Addresses

– unique, 48-bit unicast address assigned to each adapter

• example: 8:0:e4:b1:2

• Each manufacturer gets their own address range

– broadcast: all 1s

– multicast: first bit is 1

• Type field is a demultiplexing key used to determine which higher level protocol the frame

should be delivered to

• Body can contain up to 1500 bytes of data

Fig 4.41: ETHERNET MESSAGE FRAME

LAN standards

It defines MAC and physical layer connectivity :

-IEEE 802.3 (CSMA/CD - Ethernet) standard – originally 2Mbps

-IEEE 802.3u standard for 100Mbps Ethernet

-IEEE 802.3z standard for 1,000Mbps Ethernet

CSMA/CD:

Ethernet‗s Media Access Control (MAC) policy

CS = carrier sense.(Send only if medium is idle)

MA = multiple access.

CD = collision detection.

(Stop sending immediately if collision is detected)

Ethernet‗s MAC Algorithm

• In Aloha, decisions to transmit are made without paying attention to what other nodes might be

doing

• Ethernet uses CSMA/CD – listens to line before/during sending
• If line is idle (no carrier sensed)

– send packet immediately

49

– upper bound message size of 1500 bytes

– must wait 9.6us between back-to-back frames

• If line is busy (carrier sensed)

– wait until idle and transmit packet immediately

• called 1-persistent sending

• If collision detected

– Stop sending and jam signal
– Try again later

Ethernet – IEEE 802.3

• 10Base5 – Thick wire coaxial

• 10Base2 – thin wire coaxial / cheaper net

• 10BaseT – Twisted Pair

• 10BaseF – Fiber Optics

100BaseT – Fast Ethernet

Ethernet Technologies

Fig 4.41: ETHERNET TECHNOLOGIES

Ethernet Devices

 Repeater – Restores data and collision signals

 Bridge - Connecting two or more collision domains

 Router - Network layer device

 Switch – Multiport bridge with parallel paths

Advantages

 Ethernets work best under light loads

 Utilization over 30% is considered heavy

 - Network capacity is wasted by collisions

50

 Most networks are limited to about 200 hosts

 Specification allows for up to 1024 bits

 Ethernet is inexpensive, fast and easy to maintenance.

Disadvantages

 Ethernet‗s peak utilization is low .

 Peak output is worst with more hosts.

 More collisions needed to identify single sender due to Smaller packet size

 Collisions take longer to observe, more bandwidth is wasted

Applications

 Digital Camcorders and VCRs

 Direct-to-Home (DTH) satellite audio/video

 Cable TV and MMDS (microwave) set-top boxes

 DVD Players

 Video Games

 Home Theater

TEXT / REFERENCE BOOKS

1. Kenneth. J. Ayala, ―The 8051 Microcontroller Architecture, Programming and Apllications‖, Penram

International, 1996, 2 nd Edition.

2. Sriram. V. Iyer, Pankaj Gupta, ―Embedded Real Time Systems Programming‖, 2004 Tata McGraw Hill

Publishing Company Limited, 2006.

3. Frank Vahid, Tony Givargis, ‗Embedded system Design - A unified Hardware / software Introduction‘,

John Wiley and Sons, 2002.

4. Todd D Morton, ‗Embedded Microcontrollers‘, Reprint by 2005, Low Price Edition.
5. Muhammed Ali Mazidi, Janice Gillispie Mazidi, ‗The 8051 Microcontroller and Embedded Systems‘,

Low Price Edition, Second Impression 2006.

6. Raj Kamal, ‗Embedded Systems-Architecture, Programming and Design‘, Tata McGraw Hill

Publishing Company Limited 2003.

7. Muhammed Ali Mazidi, Rolin D.Mckinlay, Dannycauscy, ―PIC microcontrollers and embedded

systems using assembly and C‖, 1st edition, Pearson, 2007.

1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

PRINCIPLES OF EMBEDDED SYSTEM DESIGN-SECA1706

2

UNIT-V

REAL TIME OPERATING SYSTEMS

3

V. UNIT – V

REAL TIME OPERATING SYSTEMS

SYLLABUS:

Introduction - Desktop OS versus RTOs - Task management - Task scheduling - Race

conditions - Priority Inversion - ISRs and Scheduling - Intertask Communication.

A Real-Time Operating System (RTOS) comprises of two components, viz., ―Real-Time‖ and

―Operating System‖.

An Operating system (OS) is nothing but a collection of system calls or functions which provides an

interface between hardware and application programs. It manages the hardware resources of a computer

and hosting applications that run on the computer. An OS typically provides multitasking,

synchronization, Interrupt and Event Handling, Input/ Output, Inter-task Communication, Timers and

Clocks and Memory Management. Core of the OS is the Kernel which is typically a small, highly

optimised set of libraries.

Real-time systems are those systems in which the correctness of the system depends not only on

the logical result of computation, but also on the time at which the results are produced.

RTOS is therefore an operating system that supports real-time applications by providing logically

correct result within the deadline required. Basic Structure is similar to regular OS but, in addition, it

provides mechanisms to allow real time scheduling of tasks.

Though real-time operating systems may or may not increase the speed of execution, they can provide
much more precise and predictable timing characteristics than general-purpose OS.

RTOS is key to many embedded systems and provides a platform to build applications. All embedded

systems are not designed with RTOS. Embedded systems with relatively simple/small hardware/code

might not require an RTOS. Embedded systems with moderate-to-large software applications require

some form of scheduling, and hence RTOS.

Advantages of a real-time operating system

An RTOS provides a variety of business benefits, including:

Optimizes the system: the RTOS gives an indication of all activities taking place within the system to

ensure that all departments or sections are active. This maximizes production or operations, making

them more reliable.

Links systems: the small size and little interaction involved enables operators to connect systems or

departments, making them easier to monitor and manage.

Shows activeness of processes and procedures: the focus is on what is happening in real time. As such,

it is easier to monitor events, production, activity, etc. Inactive areas can be spotted within a short time

for faster correction or intervention.

Reduces error: the fact that real-time operating systems operate in real time reduces the chances of

error. Any mishap can be corrected quickly.

Tracks efficiently: an RTOS has a memory slot that makes it easier to track changes or activities in

different sections.

http://www.engineersgarage.com/articles/operating-systems-tutorial
http://www.engineersgarage.com/articles/embedded-systems
http://www.engineersgarage.com/articles/embedded-systems
http://www.engineersgarage.com/articles/embedded-systems
https://www.intervalzero.com/products/rtos-platform-vision/

4

RTOS CLASSFICATION

RTOS specifies a known maximum time for each of the operations that it performs. Based upon the

degree of tolerance in meeting deadlines, RTOS are classified into following categories

· Hard real-time: Degree of tolerance for missed deadlines is negligible. A missed deadline can

result in catastrophic failure of the system

· Firm real-time: Missing a deadly ne might result in an unacceptable quality reduction but may

not lead to failure of the complete system

· Soft real-time: Deadlines may be missed occasionally, but system doesn‗t fail and also, system
quality is acceptable

For a life saving device, automatic parachute opening device for skydivers, delay can be fatal.

Parachute opening device deploys the parachute at a specific altitude based on various conditions. If it

fails to respond in specified time, parachute may not get deployed at all leading to casualty. Similar

situation exists during inflation of air bags, used in cars, at the time of accident. If airbags don‗t get

inflated at appropriate time, it may be fatal for a driver. So such systems must be hard real time

systems, whereas for TV live broadcast, delay can be acceptable. In such cases, soft real time systems

can be used.

Soft real-time

 Tasks are performed as fast as possible

 Late completion of jobs is undesirable but not fatal.

 System performance degrades as more & more jobs miss deadlines

 Example: Online Databases

Hard real-time

 Tasks have to be performed on time

 Failure to meet deadlines is fatal

 Example : Flight Control System

 Qualitative Definition

Important terminologies used in context of real time systems

Determinism: An application is referred to as deterministic if its timing can be guaranteed within a

certain margin of error.

Jitter: Timing error of a task over subsequent iterations of a program or loop is referred to as jitter.
RTOS are optimized to minimize jitter.

RTOS Architecture – Kernel

RTOS Architecture

For simpler applications, RTOS is usually a kernel but as complexity increases, various modules like
networking protocol stacks debugging facilities, device I/Os are includes in addition to the kernel.

The general architecture of RTOS is shown in the fig.

5

Fig 5.1: Architecture of RTOS

Kernel

RTOS kernel acts as an abstraction layer between the hardware and the applications. There are three
broad categories of kernels

· Monolithic kernel

Monolithic kernels are part of Unix-like operating systems like Linux, FreeBSD etc. A monolithic

kernel is one single program that contains all of the code necessary to perform every kernel related task.

It runs all basic system services (i.e. process and memory management, interrupt handling and I/O

communication, file system, etc) and provides powerful abstractions of the underlying hardware.

Amount of context switches and messaging involved are greatly reduced which makes it run faster than

microkernel.

· Microkernel

It runs only basic process communication (messaging) and I/O control. It normally provides only the

minimal services such as managing memory protection, Inter process communication and the process

management. The other functions such as running the hardware processes are not handled directly by

microkernels. Thus, micro kernels provide a smaller set of simple hardware abstractions. It is more

stable than monolithic as the kernel is unaffected even if the servers failed (i.e.File

System). Microkernels are part of the operating systems like AIX, BeOS, Mach, Mac OS X, MINIX,

and QNX. Etc

· Hybrid Kernel

6

Hybrid kernels are extensions of microkernels with some properties of monolithic kernels. Hybrid

kernels are similar to microkernels, except that they include additional code in kernel space so that such

code can run more swiftly than it would were it in user space. These are part of the operating systems

such as Microsoft Windows NT, 2000 and XP. DragonFly BSD, etc

· Exokernel

Exokernels provides efficient control over hardware. It runs only services protecting the resources (i.e.

tracking the ownership, guarding the usage, revoking access to resources, etc) by providing low-level

interface for library operating systems and leaving the management to the application.

Fig 5.2: Types of KERNEL

7

Fig 5.3: Types of KERNEL

Firmware is a software program permanently etched into a hardware device such as a keyboards, hard

drive, BIOS, or video cards. It is programmed to give permanent instructions to communicate with

other devices and perform functions like basic input/output tasks.

DIFFERENCE: RTOS v/s General Purpose OS

· Determinism - The key difference between general-computing operating systems and real-time

operating systems is the ―deterministic " timing behavior in the real-time operating systems.

"Deterministic" timing means that OS consume only known and expected amounts of time. RTOS have

their worst case latency defined. Latency is not of a concern for General Purpose OS.

· Task Scheduling - General purpose operating systems are optimized to run a variety of

applications and processes simultaneously, thereby ensuring that all tasks receive at least some

processing time. As a consequence, low-priority tasks may have their priority boosted above other

higher priority tasks, which the designer may not want. However, RTOS uses priority-based preemptive

scheduling, which allows high-priority threads to meet their deadlines consistently. All system calls are

deterministic, implying time bounded operation for all operations and ISRs. This is important for

embedded systems where delay could cause a safety hazard. The scheduling in RTOS is time based. In

case of General purpose OS, like Windows/Linux, scheduling is process based.

· Preemptive kernel - In RTOS, all kernel operations are preemptible

· Priority Inversion - RTOS have mechanisms to prevent priority inversion

8

· Usage - RTOS are typically used for embedded applications, while General Purpose OS are used

for Desktop PCs or other generally purpose PCs.

1. A regular OS focuses on computing throughput while an RTOS focuses on very fast response time

2. OSes are used in a wide variety of applications while RTOSes are generally embedded in devices

that require real time response

3. OSes use a time sharing design to allow for multi-tasking while RTOSes either use a time sharing

design or an even driven design

4. The coding of an RTOS is stricter compared to a standard OS

TABLE 5.1: COMPARE OS VS RTOS

9

Disadvantages of Real Time Operating System:-

There are some disadvantages of RTOS also. So every system has pros and cons so here are

some of bad things about RTOS.

Limited Tasks: – There are only limited tasks run at the same time and the concentration of

these system are on few application to avoid errors and other task have to wait. Sometime there

is no time limit of how much the waiting tasks have to wait.

Use heavy system resources: – RTOS used lot of system resources which is not as good and is

also expensive.

Low multi-tasking: – Multi tasking is done few of times and this is the main disadvantage of

RTOS because these system runs few tasks and stay focused on them. So it is not best for

systems which use lot of multi-threading because of poor thread priority.

Complex Algorithms: – RTOS uses complex algorithms to achieve a desired output and it is

very difficult to write that algorithms for a designer.

Device driver and interrupt signals: – RTOS must need specific device drivers and interrupt
signals to response fast to interrupts.

Thread Priority: – Thread priority is not good as RTOS do less switching of tasks.

Expensive: – RTOS are usually very expensive because of the resources they need to work.

Not easy to program: – The designer have to write proficient program for real time operating
system which is not easy as a piece of cake.

Low Priority Tasks: – The low priority tasks may not get time to run because these systems

have to keep accuracy of current running programs.

Precision of code: – Event handling of tasks is strict so more precision in code needed for

designer to program. Event must be responded quickly and this is not easy for exact precision

for the designer.

Other factors: – There are lot of factors needed to consider like memory management, CPU

and error handling.

In this tutorial article we have discussed advantages and disadvantages of Real time operating

systems. Some of these we have already discussed. There are some other detailed and complex

problems also which is not appropriate for this topic.

Architecture - Task Management

Task Management

· Task Object

In RTOS, The application is decomposed into small, schedulable, and sequential program units

known as ―Task‖, a basic unit of execution and is governed by three time-critical properties;

release time, deadline and execution time. Release time refers to the point in time from which

the task can be executed. Deadline is the point in time by which the task must complete.

Execution time denotes the time the task takes to execute.

10

Each task may exist in following states

· Dormant : Task doesn‗t require computer time

· Ready: Task is ready to go active state, waiting processor time

· Active: Task is running

· Suspended: Task put on hold temporarily

· Pending: Task waiting for resource.

Fig 5.3: TASK MANAGEMENT

During the execution of an application program, individual tasks are continuously changing

from one state to another. However, only one task is in the running mode (i.e. given CPU

control) at any point of the execution. In the process where CPU control is change from one task

to another, context of the to-be-suspended task will be saved while context of the to-be-executed

task will be retrieved, the process referred to as context switching.

A task object is defined by the following set of components:

· Task Control block: Task uses TCBs to remember its context. TCBs are data structures

residing in RAM, accessible only by RTOS

Task Stack: These reside in RAM, accessible by stack pointer.

· Task Routine: Program code residing in ROM

5.

11

TABLE 5.1 TASK CONTROL BLOCK

Task_ID

Task_State

Task_Priority

Task_Stack_Pointer

Task_Prog _Counter

Fig 5.3: TASK MANAGEMENT

Fig 5.4: TASK MANAGEMENT

12

Fig 5.5: TASK MANAGEMENT STATES

Fig 5.6: TASK MANAGEMENT STATES

13

EXAMPLE FOR TASK MANAGEMENT

Operating Systems

 Allow the processor to perform several tasks at virtually the same time

Ex. Web Controlled Car with a camera

• Car is controlled via the internet

• Car has its own webserver (http://mycar/)

• Web interface allows user to control car and see camera images

• Car also has ―auto brake‖ feature to avoid collisions

Fig 5.4: Web interface view

Multiple Tasks

 Assume that one microcontroller is being used

 At least four different tasks must be performed

 Send video data - This is continuous while a user is connected

 Service motion buttons - Whenever button is pressed, may last seconds

 Detect obstacles - This is continuous at all times

 Auto brake - Whenever obstacle is detected, may last seconds

 Detect and Auto brake cannot occur together

 3 tasks may need to occur concurrently

Task Scheduling :

Scheduler

The scheduler keeps record of the state of each task and selects from among them that are ready

to execute and allocates the CPU to one of them. Various scheduling algorithms are used in

RTOS

Polled Loop: Sequentially determines if specific task requires time.

http://mycar/

14

Fig 5.5: Polled loop

Polled System with interrupts. In addition to polling, it takes care of critical tasks.

Fig 5.6: Polled System with interrupts

Round Robin : Sequences from task to task, each task getting a slice of time

Fig 5.7: Round Robin

Hybrid System: Sensitive to sensitive interrupts, with Round Robin system working in

background

· Interrupt Driven: System continuously wait for the interrupts

· Non pre-emptive scheduling or Cooperative Multitasking: Highest priority task

executes for some time, then relinquishes control, re-enters ready state.

15

Fig 5.7: Non pre-emptive scheduling

Preemptive scheduling Priority multitasking: Current task is immediately suspended Control

is given to the task of the highest priority at all time.

Fig 5.8: Pre-emptive scheduling

Dispatcher

The dispatcher gives control of the CPU to the task selected by the scheduler by performing

context switching and changes the flow of execution.

Run to completion [RTC]

An RTC scheduler is very simple. Indeed, I have previously [and only slight inaccurately]

referred to one as a ―one line RTOS‖. The idea is that one task runs until it has completed its

work, then terminates. Then the next task runs similarly. And so forth until all the tasks have

run, when the sequence starts again.

https://blogs.mentor.com/colinwalls/blog/2010/09/06/the-one-line-rtos/

16

Fig 5.9:RTC- Run to completion

The simplicity of this scheme is offset by the drawback that each task‗s allocation of time is

totally affected by all the others. The system will not be very deterministic. But, for some

applications, this is quite satisfactory. An added level of sophistication might be support for task

suspend, which means that one or more tasks may be excluded from the execution sequence

until they are required again.

Round robin [RR]

An RR scheduler is the next level of complexity. Tasks are run in sequence in just the same way [with

task suspend being a possibility], except that a task does not need to complete its work, it just

relinquishes the CPU when convenient to do so. When it is scheduled again, it continues from where it

left off.

Fig 5.10:RR- Round Robin

The greater flexibility of an RR scheduler comes at the cost of complexity. When a task relinquishesthe

CPU, its context [basically machine register values] needs to be saved so that it can be restored next

time the task is scheduled. This process is required for all the other scheduler varieties that I will

discuss.

As with RTC, an RR scheduler still relies of each task behaving well and not hanging on to the

processor for too long. Both RTC and RR are ―cooperative multitasking‖.

Time slice [TS]

A TS scheduler is a straightforward example of ―preemptive multitasking‖. The idea is to divide time

into ―slots‖, each of which might be, say, 1mS. Each task gets to run in a slot. At the end of its allocated

time, it is interrupted and the next task run.

17

Fig 5.11:TS- Time slice

The scheduling is not now dependent on tasks being ―good citizens‖, as time utilization is managed

fairly. A system built with a TS scheduler may be fully deterministic [i.e. predictable] – it is truly real

time.

Time slice with background task [TSBG]

Although a TS scheduler is neat and tidy, there is a problem. If a task finds that it has no work to do, its

only option is to loop – burning CPU time – until it can do something useful. This means that it might

waste a significant proportion of its slot and an indefinite number of further slots. Clearly, the task

might suspend itself [to be woken again when it is needed], but this messes up the timing of the other

tasks.

Fig 5.12: Time slice with background task [TSBG]

This is unfortunate, as the determinism of the system is compromised. A solution is to enhance the

scheduler so that, if a task suspends itself, the remainder of its slot is taken up by a ―background task‖;

this task would also use the full slots of any suspended tasks. This restores the timing integrity.

18

Fig 5.13: Time slice with background task [TSBG]

What the background task actually does depends on the application, but broadly it must be non-time-

citical code – like self-testing. There is, of course, the possibility that the background task will never get

scheduled. Also, this special task cannot be suspended.

Priority [PRI]

A common, more sophisticated scheduling scheme is PRI, which is used in many [most] commercial
RTOS products. The idea is that each task has a priority and is either ―ready‖ [to run] or

―suspended‖.The scheduler runs the task with the highest priority that is ―ready‖. When that task

suspends, it runs the one with the next highest priority. If an event occurs, which may have readied a
higher priority task, the scheduler is run.

Fig 5.14: Priority [PRI]

Although more complex, a PRI scheduler give most flexibility for many applications.

Commercial RTOS products, like our own Nucleus RTOS, tend to use a priority scheduling scheme,

https://www.mentor.com/embedded-software/nucleus/

19

but allow multiple tasks at each priority level. A time slice mechanism is then employed to allocate

CPU time between multiple ―ready‖ tasks of the same priority.

Race Condition

Example, a print spooler. When a process wants to print a file, it enters the file name in a special

spooler directory. Another process, the printer daemon, periodically checks to see if there are

any

files to be printed, and if there are, it prints them and removes their names from the directory.

Imagine that our spooler directory has a large number of slots, numbered 0, 1, 2, ..., each one

capable of holding a file name. Also imagine that there are two shared variables,

out: which points to the next file to be printed

in: which points to the next free slot in the directory.

At a certain instant, slots 0 to 3 are empty (the files have already been printed) and slots 4 to 6

are full (with the names of files to be printed). More or less simultaneously, processes A and B

decide they want to queue a file for printing as shown in the fig.

Process A reads in and stores the value, 7, in a local variable called next_free_slot. Just then a

clock interrupt occurs and the CPU decides that process A has run long enough, so it switches

to process B.

Process B also reads in, and also gets a 7, so it stores the name of its file in slot 7 and updates in

to be an 8. Then it goes off and does other things.

Eventually, process A runs again, starting from the place it left off last time. It looks at

next_free_slot,finds a 7 there, and writes its file name in slot 7, erasing the name that process

B just put there. Then it computes next_free_slot + 1, which is 8, and sets in to 8. The spooler

directory is now internally consistent, so the printer daemon will not notice anything wrong, but

process B will never receive any output.

Fig 5.15: RACE CONDITIONS

20

21

Fig 5.16: MUTUAL EXCLUSION

PRIORITY INVERSION

22

23

Fig 5.17: PRIORITY INVERSION

24

ISR AND SCHEDULING

Fig 5.18: INTERRUPT-ISR

25

interrupt latency is the time that elapses from when an interrupt is generated to when the source

of the interrupt is serviced. For many operating systems, devices are serviced as soon as the

device's interrupt handler is executed.

26

Fig 5.19: PREEMPTIVE KERNELS

27

Fig 5.20: NON-PREEMPTIVE KERNELS

28

Semaphores

• Invented by Edgser Dijkstra in the mid-1960s

• Offered by most multitasking kernels

• Used for:

– Mutual exclusion

– Signaling the occurrence of an event

– Synchronizing activities among tasks

• A semaphore is a key that your code acquires in order to continue execution

• If the key is already in use, the requesting task is suspended until the key is released

• There are two types

• Binary semaphores- 0 or 1

• Counting semaphores ->= 0

Fig 5.21: Semaphores

Intertask communication

Intertask communication involves sharing of data among tasks through sharing of memory

space, transmission of data, etc. Intertask communications is executed using following

mechanisms

· Message queues - A message queue is an object used for intertask communication through

which task send or receive messages placed in a shared memory. The queue may follow 1) First

In First Out (FIFO), 2) Last in First Out(LIFO) or 3) Priority (PRI) sequence. Usually, a

message queue comprises of an associated queue control block (QCB), name, unique ID,

memory buffers, queue length, maximum message length and one or more task waiting lists. A

message queue with a length of 1 is commonly known as a mailbox.

29

Fig 5.22: Intertask communication

Fig 5.23: Message mailbox

30

Fig 5.24: Relationship between tasks, ISRs and Message mail box

TEXT / REFERENCE BOOKS

1. Sriram. V. Iyer, Pankaj Gupta, ―Embedded Real Time Systems Programming‖, 2004 Tata McGraw Hill

Publishing Company Limited, 2006.

2. Frank Vahid, Tony Givargis, ‗Embedded system Design - A unified Hardware / software Introduction‘,

John Wiley and Sons, 2002.

3. Todd D Morton, ‗Embedded Microcontrollers‘, Reprint by 2005, Low Price Edition.

4. Raj Kamal, ‗Embedded Systems-Architecture, Programming and Design‘, Tata McGraw Hill

Publishing Company Limited 2003.

5. Muhammed Ali Mazidi, Rolin D.Mckinlay, Dannycauscy, ―PIC microcontrollers and embedded

systems using assembly and C‖, 1st edition, Pearson, 2007.

