
1

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMMUNICATION

ENGINEERING

UNIT - I

PROGRAMMING IN HDL – SECA1605

2

I. CONCEPTS IN VHDL

INTRODUCTION TO VHDL

VHDL is an acronym for VHSIC Hardware Description Language (VHSIC is an acronym for Very

High Speed Integrated Circuits). It is a hardware description language that can be used to model a

digital system at many levels of abstraction ranging from the algorithmic level to the gate level. The

complexity of the digital system being modeled could vary from that of a simple gate to a complete

digital electronic system, or anything in between. The digital system can also be described

hierarchically. Timing can also be explicitly modeled in the same description.

The VHDL language can be regarded as an integrated amalgamation of the following languages:

 sequential language

 Concurrent language

 net-list language

 timing specifications

 Waveform generation language.

Therefore, the language has constructs that enable you to express the concurrent or sequential

behavior of a digital system with or without timing. It also allows you to model the system as an

interconnection of components. Test waveforms can also be generated using the same constructs.

All the above constructs may be combined to provide a comprehensive description of the system in

a single model.

The language not only defines the syntax but also defines very clear simulation semantics for each

language construct. Therefore, models written in this language can be verified using a VHDL

simulator. It is a strongly typed language and is often verbose to write. It inherits many of its

features, especially the sequential language part, from the Ada programming language. Because

VHDL provides an extensive range of modeling capabilities, it is often difficult to understand.

Fortunately, it is possible to quickly assimilate a core subset of the language that is both easy and

simple to understand without learning the more complex features. This subset is usually sufficient to

model most applications. The complete language, however, has sufficient power to capture the

descriptions of the most complex chips to a complete electronic system.

3

Digital system design process :-

Requirements

Functional Design

Register Transfer
Level Design

Logic Design

Circuit Design

Physical Design

Description for Manufacture

Behavioral Simulation

RTL Simulation
Validation

Logic Simulation

Verification

Timing Simulation

Circuit Analysis

Design Rule Checking

Fault Simulation

Figure 1.1 : Digital system design process

Digital Systems have conquered the whole world. Every appliances or equipment’s we see today are

digital. This is because of the very small element called Transistor invented by John Bardeen,

Walter Brattain & William Shockley in 1947 at Bell Labs. This tiny and Powerful transistor changed

the future of Electronics. Therefore it is our responsibility to study the analysis and design of this

digital system as an electronic student. In this chapter we will study the Basic Digital IC Design

Flow and then we will study what are the tools available for digital design and synthesis. Later we

are going to study a special hardware description language (VHDL) which is used to describe the

digital systems.

Digital Design Flow Process:-

Based on the specification given, the design team forms a general idea about the solution to the

problem. System level decisions are made regarding the design and a general consensus is reached

regarding the major functional blocks that go into the making of the chip. At the end of this stage, a

general block diagram solution of the design is agreed upon. CAD tools are generally not needed at

this stage.

4

Behavioral Design:

Hardware Description Languages (HDLs) are used to model the design idea (block diagram). Circuit

details and electrical components are not specified. Instead, the behavior of each block at the highest

level of abstraction is modeled. Simulations are then run to see if the blocks do indeed function as

expected and the whole system performs as a whole. Behavioral descriptions are important as they

corroborate the integrity of the design idea. Here we don’t have any architectural or hardware

details.

Data Path Design:

The next Phase in the design process is the design of the system data path. In this phase, the designer

specifies the registers and logic units necessary for implementation of the system. These

components may be interconnected using either bidirectional or unidirectional buses. Based on the

intended behavior of the system, the procedure of controlling the movement of data between

registers and logic units through buses are developed. Data components in the data part of circuit

communicate via system busses and the control procedure controls flow of data between these

components. This phase results in architectural design of the system with specification of control

flow.

Logic Design:

Logic Design is the next phase in the design process and involves the use of primitive gates and flip-

flops for the implementation of data registers, busses, logic units, and their controlling hardware.

The result of this design stage is a net list of gates and flip-flops. Components used and their

interconnections are specified in this net list.

Physical Design:

This stage transforms the net list into transistor list or layout. This involves the replacement of gates

and flip-flops with their transistor equivalents or library cells.

Manufacturing:

The final step is manufacturing, which uses the transistor list or layout specification to burn fuses of

FPGA or to generate masks for Integrated circuit (IC).

Basic Terminology

VHDL is a hardware description language that can be used to model a digital system. The digital

system can be as simple as a logic gate or as complex as a complete electronic system. A hardware

5

abstraction of this digital system is called an entity in this text. An entity X, when used in another

entity Y, becomes a component for the entity Y. Therefore, a component is also an entity, depending

on the level at which you are trying to model.

To describe an entity, VHDL provides five different types of primary constructs, called design units.

They are

1. Entity declaration

2. Architecture body

3. Configuration declaration

4. Package declaration

5. Package body

Entity Declaration

The entity' declaration specifies the name of the entity being modeled and lists the set of interface

ports. Ports are signals through which the entity communicates with the other models in its external

environment.

Figure 1.2 : Half adder

Here is an example of an entity declaration for the half-adder circuit

entity HALF_ADDER is

port (A, B: in BIT; SUM, CARRY: out BIT);

end HALF_ADDER;

The entity, called HALF_ADDER, has two input ports, A and B (the mode in specifies input port),

and two output ports, SUM and CARRY (the mode out specifies output port). BIT is a predefined

type of the language; it is an enumeration type containing the character literals '0' and '1'. The port

types for this entity have been specified to be of type BIT, which means that the ports can take the

values, '0' or '1'.

6

The following is another example of an entity declaration for a 2-to-4 decoder circuit

entity DECODER2x4 is

port(A, B, ENABLE: in SIT: Z: out BIT_VECTOR(0 to 3)); end DECODER2x4;

Figure 1.3 : 2*4 decoder

This entity, called DECODER2x4, has three input ports and four output ports. BIT_VECTOR is a

predefined unconstrained array type of BIT. An unconstrained array type is a type in which the size

of the array is not specified. The range "0 to 3" for port Z specifies the array size.

From the last two examples of entity declarations, we see that the entity declaration does not specify

anything about the internals of the entity. It only specifies the name of the entity and the interface

ports.

Architecture Body

The internal details of an entity are specified by an architecture body using any of the following

modeling styles:

1. As a set of interconnected components (structural modeling)

2. As a set of concurrent assignment statements (dataflow modeling)

3. As a set of sequential assignment statements (behavioral modeling)

4. Any combination of the above three (Mixed modeling)

7

Configuration Declaration

A configuration declaration is used to select one of the possibly many architecture bodies that an

entity may have, and to bind components, used to represent structure in that architecture body, to

entities represented by an entity-architecture pair or by a configuration, that reside in a design

library. Consider the following configuration declaration for the HALF_ADDER entity.

library CMOS_LIB, MY_LIB;

configuration HA_BINDING of HALF_ADDER is for HA-STRUCTURE

for X1:XOR2

use entity CMOS_LIB.XOR_GATE(DATAFLOW);

end for;

for A1:AND2

use configuration MY_LIB.AND_CONFIG;

end for;

end for; end HA_BINDING;

Package Declaration

A package declaration is used to store a set of common declarations like components, types,

procedures, and functions. These declarations can then be imported into other design units using a

context clause. Here is an example of a package declaration.

package EXAMPLE_PACK is

type SUMMER is (MAY, JUN, JUL, AUG, SEP); component D_FLIP_FLOP

port (D, CK: in BIT; Q, QBAR: out BIT); end component;

constant PIN2PIN_DELAY: TIME := 125 ns; function INT2BIT_VEC (INT_VALUE: INTEGER)

return BIT_VECTOR;

end EXAMPLE_PACK;

Package Body

A package body is primarily used to store the definitions of functions and procedures that were

declared in the corresponding package declaration, and also the complete constant declarations for

any deferred constants that appear in the package declaration. Therefore, a package body is always

associated with a package declaration; furthermore, a package declaration can have at most one

package body associated with it. Contrast this with an architecture body and an entity declaration

8

where multiple architecture bodies may be associated with a single entity declaration. A package

body may contain other declarations as well.

Here is the package body for the package EXAMPLE_PACK declared in the previous section.

package body EXAMPLE_PACK is

function INT2BIT_VEC (INT_VALUE: INTEGER) return

BIT_VECTOR is

begin

end INT2BIT_VEC;

end EXAMPLE_PACK;

Language elements of VHDL

Basic Language Elements of VHDL are

 Identifiers

 Comments

 Data Objects

 Data Types

 Operators

Identifiers

- Identifiers are used to name items in a VHDL model.

Basic identifier: composed of a sequence of one or more characters, A basic identifier may contain

only capital ‘A’ - ’Z’ , ‘a’ - ’z’, ‘0’ - ’9’, underscore character ‘_’

 first character must be a letter, last character must NOT be an underscore

 Two underscores cannot occur concurrently

 case insensitive: COUNT, count, Count, counT are all the same

 Keywords can not be used as basic identifiers

Extended identifier: sequence of characters written between two backslashes

Any printable characters can be used including %, $, *, etc.

9

 lower case and upper case are distinct

 examples: /2FOR$/ , /countNow!/ , /&#$(@#&!!!/

Comments

 Its non executable or readable parameter for understanding purpose.

 The comments to be proceeded by two consecutive hyphens(--)

Example

entity half_adder is

port (a, b: in std_logic; sum, carry: out std_logic);

end half_adder; -- end of entity with entity name

architecture HA-DF of half_adder is

begin

 sum <= a xor b; -- a xor with b, result assigned to sum

 carry <= a and b; -- a and with b, result assigned to carry

end HA_DF; -- end of architecture with architecture name

Data Objects

– hold a value of a specified type

constant: holds a single value of a specified type and cannot be changed throughout the simulation

constant declaration:

constant RESULT: BIT:=1;

constant FALL_TIME: TIME:=10ns

variable: holds a single value of a specified type but can be changed throughout the simulation

variable ABAR:BIT;

variable STATUS:BIT_VECTOR(3 downto 0);

signal: holds a list of values including current value and a list of possible future values

typically used to model wires and flip-flops

signal DATA_BUS:BIT_VECTOR(0 to 31)

10

file: same as with any computer file, contains data

Data Types

– Is a name which is associated with a set of values and a set of operations.

Major Data Types:

Scalar Type

Composite Type

Access Type

File Type

There can also be user-defined types and subtypes A subtype is a type with a (possibly) added

constraint

syntax: subtype subtype_name is base_type range range_constraint;

example: subtype DIGITS is integer range 0 to 9;

Scalar types

Enumeration – defines a type that has a set of user-defined values

type std_logic is (‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’,’-’);

‘u’ unspecified, ‘x’ unknown, ‘0’ strong zero, ‘1’ strong one

 ‘z’ high impedance, ‘w’ weak unknown, ‘l’ weak zero, ‘h’ weak one, ‘-’ don’t care

Integer – values fall within the specified integer range

type REG_SIZE is range 0 to 31

subtype WORD is REG_SIZE range 0 to 15

Floating Point –real decimal types

Physical – represent measurement of some physical quantity like time, voltage, or current

Composite Types

– a collection of values

Array Types – collection of values all belonging to a single type

11

BIT_VECTOR and STRING are pre-defined one-dimensional array types

type DATA_BYTE is array (0 to 7) of BIT;

type MEMORY is array (0 to 127) of DATA_BYTE;

Record Types – collection of values that may belong to different types

type MODULE is

 record

 SUM : BIT_VECTOR(0 to 7);

 COUT : BIT;

 end record;

Access Type

Values belonging to an access type are pointers to a allocated object of some other type.

Example :

 type PTR is access MODULE;

File Type

Objects of file type represent files in the host environment.

Syntax :

 type file_type_name is file of type_name;

Data Operators

VHDL will support different types of operations. The following are the types of operators available

in VHDL

1. Assignment operator

2. Logical Operator

3. Relational Operator

4. Shift operator

5. Arithmetic operator

5.1 Addition Operator

5.2 Multiplication Operator

5.3 Miscellaneous operator

12

Assignment Operator

This operator is used to assign values to signals, variables, and constants. They are

1. <= Used to assign a value to signal

2. := Used to assign a variable, constant or generic, used for also establishing initial values.

3. => Used to assign values to individual vector or with others.

Logical Operators

Used to perform to logical operations. The data must be of type Bit, Std_logic or std_ulogic. The

logical operators are:

1. NOT

2. AND

3. OR

4. NAND

5. NOR , XOR & XNOR

Relational Operators

Used for making comparisons. The data can be of any types listed above. The relational

(Comparison) operators listed below:

1. = Equal to

2. /= not equal to

3. < Greater than

4. > Lesser than

5. <= Greater than

6. >= Lesser than

Shift Operators

Used for shifting data.

1. Sll: Shift left logic

2. Sla: shift left arithmetic

13

3. Srl: Shift right logic

4. Sra: Shift right arithmetic

5. Rol:Rotateleft

6. Ror: Rotate right

Arithmetic Operators Used to perform arithmetic operations. The data can be of integer,

signed, Unsigned or a real.

The different types of arithmetic operations are:

Addition operator (+)

Subtract Operator (-)

Multiplication operator (*)

Division Operator (/)

Modulus (MOD)

Remainder (REM)

Miscellaneous Operator Uses as special

cases in VHDL

1. Absolute (ABS)

2. Exponentiation (**)

Concurrent and Sequential assignments

1. As a set of concurrent assignment statements (to represent dataflow),

2. As a set of sequential assignment statements (to represent be-hav.ior),

Dataflow Style of Modeling(Concurrent assignment)

In this modeling style, the flow of data through the entity is expressed primarily using concurrent

signal assignment statements. The structure of the entity is not explicitly specified in this modeling

style, but it can be implicitly deduced. Consider the following alternate architecture body for the

HALF..ADDER entity that uses this style.

architecture HA_CONCURRENTof HALF_ADDER is

begin

sum <= A xor B;

14

carry <= A and B;

end HALF_ADDER;

The dataflow model for the HALF_ADDER is described using two concurrent signal assignment

statements (sequential signal assignment statements are described in the next section). In a signal

assignment statement, the symbol <= implies an assignment of a value to a signal. The value of the

expression on the right-hand-side of the statement is computed and is assigned to the signal on the

left-hand-side, called the target signal. A concurrent signal assignment statement is executed only

when any signal used in the expression on the right-hand-side has an event on it, that is, the value

for the signal changes.

Delay information is included in the signal assignment statements using after clauses. If either signal

A or B, which are input port signals of HALF_ADDER entity, has an event, say at time T, the right-

hand-side expressions of both signal assignment statements are evaluated. Signal SUM is scheduled

to get the new value after 8 ns while signal CARRY is scheduled to get the new value after 4 ns.

When simulation time advances to (T+4) ns, CARRY will get its new value and when simulation

time advances to (T+8) ns, SUM will get its new value. Thus, both signal assignment statements

execute concurrently.

Concurrent signal assignment statements are concurrent statements, and therefore, the ordering of

these statements in an architecture body is not important. Note again that this architecture body, with

name HA_CONCURRENT, is also associated with the same HALF_ADDER entity declaration.

Here is a dataflow model for the DECODER2x4 entity.

architscturedec_dataflow of DECODER2x4

is signal ABAR, BBAR: BIT;

begin

Z(3) <=not (A and B and ENABLE); -- Statement 1

Z(0) <=not (ABAR and BBAR and ENABLE); --- Statement 2

BBAR <= not B; -- Statement 3

Z(2) <= not (A and BBAR and ENABLE); -- Statement 4

ABAR <= not A; -- Statement 5

Z(1) <= not (ABAR and B and ENABLE); -- Statement 6

end DEC_DATAFLOW;

The architecture body consists of one signal declaration and six concurrent signal assignment

statements. The signal declaration declares signals ABAR and BBAR to be used locally within the

architecture body. In each of the signal assignment statements, no after clause was used to specify

delay. In all such cases, a default delay of 0ns is assumed. This delay of 0ns is also known as delta

15

delay, and it represents an infinitesimally small delay. This small delay corresponds to a zero delay

with respect to simulation time and does not correspond to any real simulation time.

To understand the behavior of this architecture body, consider an event happening on one of the

input signals, say input port B at time T. This would cause the concurrent signal assignment

statements 1,3, and 6, to be triggered. Their right -hand-side expressions would be evaluated and the

corresponding values would be scheduled to be assigned to the target signals at time (T+A). When

simulation time advances to (T+A), new values to signals Z(3), BBAR, and Z(1), are assigned.

Since the value of BBAR changes, this will in turn trigger signal assignment statements, 2 and 4.

Eventually, at time (T+2A), signals Z(0) and Z(2) will be assigned their new values. The semantics

of this concurrent behavior indicate that the simulation, as defined by the language, is event-

triggered and that simulation time advances to the next time unit when an event is scheduled to

occur. Simulation time could also advance a multiple of delta time units. For example, events may

have been scheduled to occur at times 1,3,4,4+A, 5,6,6+A, 6+2A, 6+3A, 10,10+A, 15, 15+A time

units.

The after clause may be used to generate a clock signal as shown in the following concurrent signal

assignment statement

CLK <= not CLK after 10 ns;

Behavioral Style of modeling (Sequential assignment)

In contrast to the styles of modeling described earlier, the behavioral style of modeling

specifies the behavior of an entity as a set of statements that are executed sequentially in the

specified order. This set of sequential statements, that are specified inside a process

statement, do not explicitly specify the structure of the entity but merely specifies its

functionality. A process statement is a concurrent statement that can appear within an

architecture body. For example, consider the following behavioral model for the

DECODER2x4 entity.

architecture DEC_SEQUENTIAL of DECODER2x4 is

begin

process (A,B)

variable ABAR,BBAR : std_logic;

begin

ABAR := not A;

BBAR := not B;

Z(0) <= (ABAR and BBAR);

Z(1) <= (ABAR and B);

16

Z(2) <= (A and BBAR);

Z(3) <= (A and B):

end process;

Structural Model

 An entity is modeled as a set of components connected by signals, that is, as a net-list. The

behavior of the entity is not explicitly apparent from its model. The component instantiation

statement is the primary mechanism used for describing such a model of an entity. COMPONENT

& PORT MAP statements are used to implement structural modeling. The component instantiation

statements are concurrent statements, and their order of appearance in the architecture body is

therefore not important. A component can be instantiated any number of times.Each instantiation

must have a unique component label.

Component Declaration

A component in a structural description must first be declared using a component declaration. A

component declaration declares the name and the interface of a component (similar to the

entity).The interface specifies the mode and the type of ports.

The syntax of a simple form of component declaration is:

 COMPONENT Component-Name [IS]

 PORT(List-of-Interface-Ports);

 END COMPONENT [Component-Name];

The component-name may or may not refer to the name of an entity already existing in a library. If

it does not, it must be explicitly bound to an entity. The binding information can be specified using

a configuration. The List-of-Interface-Ports specifies the name, mode, and type for each port of the

component in a manner similar to that specified in an entity declaration. The names of the ports

may also be different from the names of the ports in the entity to which it may be bound (different

port names can be mapped in a configuration)

Component Instantiation

A component instantiation statement defines a association of formal and actual parameters. It

associates the signals in the entity with the ports of that component.

A format of a component instantiation statement:

Component-Label: Component-Name PORT MAP (association-list);

17

The Component-Label can be any legal identifier and can be considered as the name of the instance.

The Component-Name must be the name of a component declared earlier using a component

declaration. The association-list, associates signals in the entity, called actuals, with the ports of a

component, called formals.

There are two ways to perform the association of formals with actuals:

 1. Positional association

 2. Named association

In positional association, each actual in the component instantiation is mapped by position with

each port in the component declaration. That is, the first port in the component declaration

corresponds to the first actual in the component instantiation, the second with the second, and so on.

If a port in a component instantiation is not connected to any signal, the keyword OPEN can be

used to signify that the port is not connected.

For example

d1 : dff PORT MAP (data, ck, s1, open);

In named association, an association-list is of the form:

 formal1 => actual1 ,formal2=> actual2, ... formaln=> actualn

For example

 d1 : dff PORT MAP (d => data, clk => ck, q => s1, qb => s2);

In named association, the ordering of the associations is not important since the mapping between

the actual and formal is explicitly specified.

Dataflow Model

The Data-Flow modeling is a collections of concurrent statements. All the statements must be write

only in the architecture body. There is no meaning to the order of the statements.

There are 3 Data-Flow statement:

– Concurrent Signal Assignment

– Conditional Signal Assignment

– Selected Signal Assignment

18

Concurrent Signal Assignment

The syntax is:

 target-signal _1<= expression_1;

 target-signal _2<= expression_2;

–Example:

entity decoder is

port (a, b : in std_logic;

d: out std_logic_vector(0 to 3));

end decoder;

architecture DEC_DF of decoder is

signal s1,s2 : std_logic;

begin

s1 <= not a;

s2 <= not b;

d(0) <= s1 and s2;

d(1) <= s1 and b;

d(2) <= a and s2;

d(3) <= a and b;

end DEC_DF;

Conditional Signal Assignment Statement

 Also called a When-Else Statement.

 Concurrent statement, thus all signals.

 Similar to a sequential IF-THEN-ELSE statement.

 Select one of several values to drive an output signal.

 Selection based on first condition that is TRUE.

Syntax:

 target_signal <= value1 when condition1 else

 value2 when condition2 else

 ...

19

 value9;

Example : 2*4 decoder

Figure 1.4 : 2*4 decoder logic diagram and truth table

entity decoder is

port (a, b : in std_logic;

d: out std_logic_vector(0 to 3));

end decoder;

architecture DEC_CS of decoder is

begin

d <= “0001” when (a = ‘0’ and b = ‘0’) else

 “0010” when (a = ‘0’ and b = ‘1’) else

 “0100” when (a = ‘1’ and b = ‘0’) else

 “1000”;

end DEC_CS;

Selected Signal Assignment Statement

 Also called a With-Select-When statement.

 Concurrent statement, thus all signals.

 Similar to a sequential CASE statement.

 Select one of several values to drive an output signal.

 Selection based on all possible values of a selector expression.

syntax:

with expression select

 target_signal <= value1 when condition1,

20

 value2 when condition2,

 ...

 value9 when condition9;

Example : 2*4 decoder

Figure 1.5 : 2*4 decoder logic diagram and truth table

entity decoder is

port (a : in std_logic_vector (0 to 1);

d: out std_logic_vector(0 to 3));

end decoder;

architecture DEC_SS of decoder is

begin

with a select

d <= “0001” when “00” ,

 “0010” when “01” ,

 “0100” when “10” ,

 “1000” when “11”;

end DEC_SS;

Behavioral Model

The process statement contains sequential statements that describe the functionality of an entity in

sequential terms The sensitivity list is a set of signals which will cause the process to execute in

sequential order when an event occurs.

Syntax

architecture architecture_name of entity_name is

begin

 process(sensitivity_list)

21

 [variable_declarations;]

begin

sequential assignment statements;

end process;

end architecture_name ;

Some of the sequential statements in Behavioral model are

1.Variable Assignment Statement

2.Signal Assignment Statement

3.Wait Statement (wait on, wait until, wait for)

4.If Statement (conditional)

5.Case Statement (Selection)

6.Loop Statement (for loop, while loop, no loop)

7.Null Statement (No operation)

8.Exit Statement (Exit from the loop)

9.Next statement (Exit from one loop, and execute next loop)

10.Assertion Statement (Modelling constrain)

11.Report Statement (Display Message)

12.Procedure call Statement (Linkage)

13.Return Statement

If statement

– selects statements for execution based upon a condition

Syntax

if condition_1 then

sequential_statement_1;

elsif condition_2 then

sequential_statement_2;

:

:

else sequential_statement_n;

22

end if;

Example : 2*4 decoder

Figure 1.6 : 2*4 decoder logic diagram and truth table

entity decoder is

port (a, b : in std_logic; d: out std_logic_vector(0 to 3));

end decoder;

architecture DEC_IF of decoder is

begin

process (a,b)

begin

if (a = ‘0’ and b = ‘0’) then

 d <= “0001”;

elsif (a = ‘0’ and b = ‘1’) then

 d <= “0010”;

elsif (a = ‘1’ and b = ‘0’) then

 d <= “0100”;

else d<= “1000”;

end if;

end process;

end DEC_IF;

Case statement

– selects one branch of execution from a list of many based upon selected expression

23

Syntax:

case expression is

when choice_1 => statement_1;

when choice_2 => statement_2;

:

when choice_n => statement_n;

end case;

Example : 2*4 decoder

Figure 1.7 : 2*4 decoder logic diagram and truth table

entity decoder is

port (a : in std_logic_vector(0 to 1); d: out std_logic_vector(0 to 3));

end decoder;

architecture DEC_CASE of decoder is

begin

process (a)

begin

case a is

when “00” => d <= “0001”;

when “01” => d <= “0010”;

when “10” => d <= “0100”;

when “11” => d <= “1000”;

end case;

24

end process;

end DEC_CASE;

TEXT / REFERENCE BOOKS

1. J.Bhaskar, “A VHDL Primer”, Prentice Hall of India Limited. 3rd edition 2004

2. Stphen Brown, "Fundamental of Digital logic with Verilog Design",3rd edition, Tata

McGraw Hill, 2008

3. J.Bhaskar, “A Verilog HDL Primer”, Prentice Hall of India Limited. 3rd edition 2004

4. Samir Palnitkar” Verilog HDL: A Guide to Digital Design and Synthesis”, Star Galaxy

Publishing; 3rd edition,2005

5. Michael D Ciletti - Advanced Digital Design with VERILOG HDL, 2nd Edition, PHI,

2009.

6. Z Navabi - Verilog Digital System Design, 2nd Edition, McGraw Hill, 2005.

7. Stuart Sutherland, “RTL Modeling With System Verilog for Simulation and

Synthesis: Using System Verilog for ASIC and FPGA Design”,1st Edition, Sutherland

HDL,Inc., 2017.

8. Simon Monk, “Programming FPGAs: Getting Started with Verilog”, 1st Edition, Tata

McGraw Hill,2016.

9. User Guide – “7 Series FPGAs Configurable Logic Block” - (WWW.XILINX.COM)

QUESTION BANK

PART-A

1. Distinguish VHDL and Verilog HDL.

2. Data objects are significant in VHDL Justify.

3. List the operators in VHDL.

4. Formulate the syntax of process statement in VHDL.

5. Develop VHDL code for 2 bit adder.

6. Wait statement is important in VHDL. Support this statement.

7. Justify how signal declaration is done in VHDL

8. Distinguish concurrent signal assignment and sequential signal assignment.

http://www.xilinx.com/

25

9. Justify the importance and objects in VHDL

10. List the data types in VHDL

PART-B

1. In VHDL, data types and operators are the most significant concept, Explain it.

2. Distinguish between dataflow modeling and behavioral modeling of VHDL

3. Illustrate the different language elements in VHDL.

4. Discuss concurrent and sequential assignment statements.

5. Develop a VHDL code for encoder and decoder circuit

26

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMMUNICATION

ENGINEERING

UNIT - II

PROGRAMMING IN HDL – SECA1605

27

II. INTRODUCTION TO VERILOG HDL

Verilog HDL is a hardware description language that can be used to model a digital system at

many levels of abstraction ranging from the algorithmic level to the gate level to the switch level.

The complexity of the digital system being modeled could vary from that of a simple gate to a

complete electronic digital system, or anything in between. The digital system can be described

hierarchically and timing can be explicitly modeled within the same description.

Typical Design Flow

A typical design flow for designing VLSI IC circuits is shown in Figure 2.1. Un shaded blocks show

the level of design representation; shaded blocks show processes in the design flow.

The design flow shown in Figure 2.1 is typically used by designers who use HDLs. In any design,

specifications are written first. Specifications describe abstractly the functionality, interface, and

overall architecture of the digital circuit to be designed. At this point, the architects do not need to

think about how they will implement this circuit. A behavioral description is then created to analyze

the design in terms of functionality, performance, compliance to standards, and other high-level

issues.

Behavioral descriptions are often written with HDLs

The behavioral description is manually converted to an RTL description in an HDL. The designer

has to describe the data flow that will implement the desired digital circuit. From this point onward,

the design process is done with the assistance of EDA tools.

Logic synthesis tools convert the RTL description to a gate-level netlist. A gatelevel netlist is a

description of the circuit in terms of gates and connections between them. Logic synthesis tools

ensure that the gate-level netlist meets timing, area, and power specifications. The gate-level netlist

is input to an Automatic Place and Route tool, which creates a layout. The layout is verified and

then fabricated on a chip.

28

Figure 2.1: Typical Design Flow

Design Methodologies

There are two basic types of digital design methodologies: a top-down design methodology and a

bottom-up design methodology. In a top-down design methodology, we define the top-level block

and identify the sub-blocks necessary to build the top-level block. We further subdivide the sub-

blocks until we come to leaf cells, which are the cells that cannot further be divided. Figure 2.2

shows the top-down design process.

Figure 2.2: Top-down Design Methodology

29

In a bottom-up design methodology, we first identify the building blocks that are available to us. We

build bigger cells, using these building blocks. These cells are then used for higher-level blocks until

we build the top-level block in the design. Figure 2.3 shows the bottom-up design process

Figure 2.3: Bottom-up Design Methodology

Levels for design description

Verilog supports designing at many different levels of abstraction. Three of them are very important:

 Behavioral level

 Register-Transfer Level

 Gate Level

Behavioral Level

This level describes a system by concurrent algorithms (Behavioral). Each algorithm itself is

sequential, that means it consists of a set of instructions that are executed one after the other.

Functions, Tasks and Always blocks are the main elements. There is no regard to the structural

realization of the design.

Register-Transfer Level

Designs using the Register-Transfer Level specify the characteristics of a circuit by operations and

the transfer of data between the registers.An explicit clock is used. RTL design contains exact

timing bounds: operations are scheduled to occur at certain times. Modern RTL code definition is

"Any code that is synthesizable is called RTL code".

Gate Level

Within the logic level the characteristics of a system are described by logical links and their timing

properties. All signals are discrete signals. They can only have definite logical values (`0', `1', `X',

`Z`). The usable operations are predefined logic primitives (AND, OR, NOT etc gates). Using gate

level modeling might not be a good idea for any level of logic design. Gate level code is generated

by tools like synthesis tools and this netlist is used for gate level simulation and for backend.

30

Language Elements

Identifiers

Identifiers are names given to objects so that they can be referenced in the design. Identifiers are

made up of alphanumeric characters, the underscore (_), or the dollar sign ($). Identifiers are case

sensitive. Identifiers start with an alphabetic character or an underscore. They cannot start with a

digit or a $ sign

reg value; // reg is a keyword; value is an

identifier input clk; // input is a keyword, clk is an identifier

Comments

Comments can be inserted in the code for readability and documentation. There are two ways to

write comments. A one-line comment starts with "//". Verilog skips from that point to the end of

line. A multiple-line comment starts with "/*" and ends with "*/". Multiple-line comments cannot be

nested. However, one-line comments can be embedded in multiple-line comments.

a = b && c; // This is a one-line comment

/* This is a multiple line comment */

/* This is /* an illegal */ comment */

/* This is //a legal comment */

Format

Verilog HDl is case sensitive. Identifiers differing only in their case are distinct. Verilog HDL, is

free format, constructs may be written across multiple lines , or on one line. White space (newline,

tab, and space characters) have no special significance.

System Tasks and Functions

Verilog provides standard system tasks for certain routine operations. All system tasks appear in the

form $<keyword>. Operations such as displaying on the screen, monitoring values of nets, stopping,

and finishing are done by system tasks.

Compiler Directives

Compiler directives are provided in Verilog. All compiler directives are defined by using the

31

‘<keyword> construct. We deal with the two most useful compiler directives.

‘define

The ‘define directive is used to define text macros in Verilog.

The Verilog compiler substitutes the text of the macro wherever it encounters a ‘<macro_name>.

This is similar to the #define construct in C. The defined constants or text macros are used in the

Verilog code by preceding them with a ‘ (back tick).

//define a text macro that defines default word

size //Used as ’WORD_SIZE in the code

’define WORD_SIZE 32

‘include

The ‘include directive allows you to include entire contents of a Verilog source file in another

Verilog file during compilation. This works similarly to the #include in the C programming

language. This directive is typically used to include header files, which typically contain global or

commonly used definitions.

Example ‘include Directive

// Include the file header.v, which contains declarations in the

// main verilog file design.v.

’include header.v

...

...

<Verilog code in file design.v>

...

...

Two other directives, ‘ifdef and ‘timescale, are used frequently.

Value set

Verilog supports four values and eight strengths to model the functionality of real hardware.

Strength levels

32

Data types

Verilog HDL has two groups of data types

(i) Net type

A net type represents a physical connection between structural elements. Its value is determined

from the value of its drivers such as a continuous assignment or a gate output. If no driver is

connected to a net, the net defaults to a value of z.

(ii) Variable type

A variable type represents an abstract data storage element. It is assigned values only within an

always statement or an initial statement, and its value is saved from one assignment to the next. A

variable type has a default value of x.

Net types

Here are the different kinds of nets that belong to the net data type

wire

tri

wor

trior

wand

triand

trireg

tri1

tri0

supply0

supply1

33

Variable types

There are five different kinds of variable types

reg

integer

time

real

realti

me

Register

Registers represent data storage elements. Registers retain value until another value is placed onto

them. Register data types are commonly declared by the keyword reg. The default value for a reg

data type is x.

Example of Register

reg reset; // declare a variable reset that can hold its value

begin

reset = 1’b1; //initialize reset to 1 to reset the digital circuit.

#100 reset = 1’b0; // after 100 time units reset is de asserted.

end

Integer

An integer is a general purpose register data type used for manipulating quantities. Integers are

declared by the keyword integer. Although it is possible to use reg as a general-purpose variable, it

is more convenient to declare an integer variable for purposes such as counting. The default width

for an integer is the host-machine word size, which is implementation-specific but is at least 32 bits.

Registers declared as data type reg store values as unsigned quantities, whereas integers store values

as signed quantities.

integer counter; // general purpose variable used as a counter.

initial counter = -1; // A negative one is stored in the counter

Real

Real number constants and real register data types are declared with the keyword real. They can be

34

specified in decimal notation (e.g., 3.14) or in scientific notation (e.g., 3e6, which is 3 x 106). Real

numbers cannot have a range declaration, and their default value is 0. When a real value is assigned

to an integer, the real number is rounded off to the nearest integer.

real delta; // Define a real variable called delta

initial

begin

delta = 4e10; // delta is assigned in scientific notation delta = 2.13;

// delta is assigned a value 2.13

end

integer i; // Define an integer i initial

i = delta; // i gets the value 2 (rounded value of 2.13)

Time

Verilog simulation is done with respect to simulation time. A special time register data type is used

in Verilog to store simulation time. A time variable is declared with the keyword time. The width for

time register data types is implementation specific but is at least 64 bits. The system function $time

is invoked to get the current simulation time.

time save_sim_time; // Define a time variable save_sim_time

initial save_sim_time = $time; // Save the current simulation time

Arrays

Arrays are allowed in Verilog for reg, integer, time, real, realtime and vector register data types.

Multi-dimensional arrays can also be declared with any number of dimensions. Arrays of nets can

also be used to connect ports of generated instances. Each element of the array can be used in the

same fashion as a scalar or vector net. Arrays are accessed by <array_name>[<subscript>]. For

multi-dimensional arrays, indexes need to be provided for each dimension.

integer count[0:7]; // An array of 8 count variables

reg bool[31:0]; // Array of 32 one-bit boolean register variables time

chk_point[1:100]; // Array of 100 time checkpoint variables

reg [4:0] port_id[0:7]; // Array of 8 port_ids; each port_id is 5 bits wide

Parameters

Verilog allows constants to be defined in a module by the keyword parameter. Parameters cannot be

35

used as variables. Parameter values for each module instance can be overridden individually at

compile time. This allows the module instances to be customized. This aspect is discussed later.

Parameter types and sizes can also be defined.

parameter port_id = 5; // Defines a constant port_id

parameter cache_line_width = 256; // Constant defines width of cache line

parameter signed [15:0] WIDTH; // Fixed sign and range for parameter WIDTH

Expressions

An expression is formed using operands and operators. An expression can be used wherever a value

is expected.

Operands

Operands can be constants, integers, real numbers, nets, registers, times, bitselect (one bit of vector

net or a vector register), part-select (selected bits of the vector net or register vector), and memories

or function calls.

integer count, final_count;

final_count = count + 1;//count is an integer operand

real a, b, c;

c = a - b; //a and b are real operands

reg [15:0] reg1,

reg2; reg [3:0]

reg_out;

reg_out = reg1[3:0] ^ reg2[3:0];//reg1[3:0] and reg2[3:0] are //part-select register operands

reg ret_value;

ret_value = calculate_parity(A, B);//calculate_parity is a //function type operand

Operator Types

Verilog provides many different operator types. Operators can be arithmetic, logical, relational,

equality, bitwise, reduction, shift, concatenation, or conditional. Some of these operators are similar

to the operators used in the C programming language. Each operator type is denoted by a symbol.

The table 2.1 shows the complete listing of operator symbols classified by category.

Table 2.1 Operators

36

37

Module

The basic unit of description in Verilog is the module. A module describes the functionality or

structure of a design and also describes the ports through which it communicates externally with

other modules. The structure of a design is described using switch-level primitives, gate-level

primitives and user-defined primitives; data flow behavior of a design is described using continuous

assignments; sequential behavior is described using procedural constructs. A module can also be

instantiated inside another module.

module module_name (port_list);

Declarations:

reg, wire,

parameter, input, output, inout, function , task, ….

Statements :

Initial statement

Always statement

Module instantiation

Gate instantiation

UDP instantiation

Continuous assignment

Generate statement

end module

TEXT / REFERENCE BOOKS

1. J.Bhaskar, “A VHDL Primer”, Prentice Hall of India Limited. 3rd edition 2004

2. Stphen Brown, "Fundamental of Digital logic with Verilog Design",3rd edition, Tata

McGraw Hill, 2008

3. J.Bhaskar, “A Verilog HDL Primer”, Prentice Hall of India Limited. 3rd edition 2004

38

4. Samir Palnitkar” Verilog HDL: A Guide to Digital Design and Synthesis”, Star Galaxy

Publishing; 3rd edition,2005

5. Michael D Ciletti - Advanced Digital Design with VERILOG HDL, 2nd Edition, PHI,

2009.

6. Z Navabi - Verilog Digital System Design, 2nd Edition, McGraw Hill, 2005.

7. Stuart Sutherland, “RTL Modeling With System Verilog for Simulation and

Synthesis: Using System Verilog for ASIC and FPGA Design”,1st Edition, Sutherland

HDL,Inc., 2017.

8. Simon Monk, “Programming FPGAs: Getting Started with Verilog”, 1st Edition, Tata

McGraw Hill,2016.

9. User Guide – “7 Series FPGAs Configurable Logic Block” - (WWW.XILINX.COM)

QUESTION BANK

PART-A

1. Justify how arrays are declared in Verilog HDL.

2. Classify the types of delays in Verilog HDL.

3. List the parameters in Verilog HDL.

4. Formulate the value set of Verilog HDL.

5. List the language elements of Verilog HDL.

6. Develop a Verilog HDL program for 2*4 decoder.

7. Define operands in Verilog HDL

8. Distinguish between inter assignment delay and intra assignment delay.

9. Justify the importance of module in Verilog HDL

10 . Develop Verilog HDL code for 2 bit subtraction.

PART-B

1. Compare procedural constructs and assignments

2. Illustrate the different language elements in Verilog HDL.

3. Operators in verilog are of different types. Support the statement with example.

4. Develop a Verilog HDL code for Flip-flop circuits.

5. Illustrate the different delay types in Verilog HDL programming.

39

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMMUNICATION

ENGINEERING

UNIT - II

PROGRAMMING IN HDL – SECA1605

40

II. INTRODUCTION TO VERILOG HDL

Verilog HDL is a hardware description language that can be used to model a digital system at

many levels of abstraction ranging from the algorithmic level to the gate level to the switch level.

The complexity of the digital system being modeled could vary from that of a simple gate to a

complete electronic digital system, or anything in between. The digital system can be described

hierarchically and timing can be explicitly modeled within the same description.

Typical Design Flow

A typical design flow for designing VLSI IC circuits is shown in Figure 2.1. Un shaded blocks show

the level of design representation; shaded blocks show processes in the design flow.

The design flow shown in Figure 2.1 is typically used by designers who use HDLs. In any design,

specifications are written first. Specifications describe abstractly the functionality, interface, and

overall architecture of the digital circuit to be designed. At this point, the architects do not need to

think about how they will implement this circuit. A behavioral description is then created to analyze

the design in terms of functionality, performance, compliance to standards, and other high-level

issues.

Behavioral descriptions are often written with HDLs

The behavioral description is manually converted to an RTL description in an HDL. The designer

has to describe the data flow that will implement the desired digital circuit. From this point onward,

the design process is done with the assistance of EDA tools.

Logic synthesis tools convert the RTL description to a gate-level netlist. A gatelevel netlist is a

description of the circuit in terms of gates and connections between them. Logic synthesis tools

ensure that the gate-level netlist meets timing, area, and power specifications. The gate-level netlist

is input to an Automatic Place and Route tool, which creates a layout. The layout is verified and

then fabricated on a chip.

41

Figure 2.1: Typical Design Flow

Design Methodologies

There are two basic types of digital design methodologies: a top-down design methodology and a

bottom-up design methodology. In a top-down design methodology, we define the top-level block

and identify the sub-blocks necessary to build the top-level block. We further subdivide the sub-

blocks until we come to leaf cells, which are the cells that cannot further be divided. Figure 2.2

shows the top-down design process.

Figure 2.2: Top-down Design Methodology

42

In a bottom-up design methodology, we first identify the building blocks that are available to us. We

build bigger cells, using these building blocks. These cells are then used for higher-level blocks until

we build the top-level block in the design. Figure 2.3 shows the bottom-up design process

Figure 2.3: Bottom-up Design Methodology

Levels for design description

Verilog supports designing at many different levels of abstraction. Three of them are very important:

 Behavioral level

 Register-Transfer Level

 Gate Level

Behavioral Level

This level describes a system by concurrent algorithms (Behavioral). Each algorithm itself is

sequential, that means it consists of a set of instructions that are executed one after the other.

Functions, Tasks and Always blocks are the main elements. There is no regard to the structural

realization of the design.

Register-Transfer Level

Designs using the Register-Transfer Level specify the characteristics of a circuit by operations and

the transfer of data between the registers.An explicit clock is used. RTL design contains exact

timing bounds: operations are scheduled to occur at certain times. Modern RTL code definition is

"Any code that is synthesizable is called RTL code".

Gate Level

Within the logic level the characteristics of a system are described by logical links and their timing

properties. All signals are discrete signals. They can only have definite logical values (`0', `1', `X',

`Z`). The usable operations are predefined logic primitives (AND, OR, NOT etc gates). Using gate

level modeling might not be a good idea for any level of logic design. Gate level code is generated

by tools like synthesis tools and this netlist is used for gate level simulation and for backend.

43

Language Elements

Identifiers

Identifiers are names given to objects so that they can be referenced in the design. Identifiers are

made up of alphanumeric characters, the underscore (_), or the dollar sign ($). Identifiers are case

sensitive. Identifiers start with an alphabetic character or an underscore. They cannot start with a

digit or a $ sign

reg value; // reg is a keyword; value is an

identifier input clk; // input is a keyword, clk is an identifier

Comments

Comments can be inserted in the code for readability and documentation. There are two ways to

write comments. A one-line comment starts with "//". Verilog skips from that point to the end of

line. A multiple-line comment starts with "/*" and ends with "*/". Multiple-line comments cannot be

nested. However, one-line comments can be embedded in multiple-line comments.

a = b && c; // This is a one-line comment

/* This is a multiple line comment */

/* This is /* an illegal */ comment */

/* This is //a legal comment */

Format

Verilog HDl is case sensitive. Identifiers differing only in their case are distinct. Verilog HDL, is

free format, constructs may be written across multiple lines , or on one line. White space (newline,

tab, and space characters) have no special significance.

System Tasks and Functions

Verilog provides standard system tasks for certain routine operations. All system tasks appear in the

form $<keyword>. Operations such as displaying on the screen, monitoring values of nets, stopping,

and finishing are done by system tasks.

Compiler Directives

Compiler directives are provided in Verilog. All compiler directives are defined by using the

44

‘<keyword> construct. We deal with the two most useful compiler directives.

‘define

The ‘define directive is used to define text macros in Verilog.

The Verilog compiler substitutes the text of the macro wherever it encounters a ‘<macro_name>.

This is similar to the #define construct in C. The defined constants or text macros are used in the

Verilog code by preceding them with a ‘ (back tick).

//define a text macro that defines default word

size //Used as ’WORD_SIZE in the code

’define WORD_SIZE 32

‘include

The ‘include directive allows you to include entire contents of a Verilog source file in another

Verilog file during compilation. This works similarly to the #include in the C programming

language. This directive is typically used to include header files, which typically contain global or

commonly used definitions.

Example ‘include Directive

// Include the file header.v, which contains declarations in the

// main verilog file design.v.

’include header.v

...

...

<Verilog code in file design.v>

...

...

Two other directives, ‘ifdef and ‘timescale, are used frequently.

Value set

Verilog supports four values and eight strengths to model the functionality of real hardware.

Strength levels

45

Data types

Verilog HDL has two groups of data types

(i) Net type

A net type represents a physical connection between structural elements. Its value is determined

from the value of its drivers such as a continuous assignment or a gate output. If no driver is

connected to a net, the net defaults to a value of z.

(ii) Variable type

A variable type represents an abstract data storage element. It is assigned values only within an

always statement or an initial statement, and its value is saved from one assignment to the next. A

variable type has a default value of x.

Net types

Here are the different kinds of nets that belong to the net data type

wire

tri

wor

trior

wand

triand

trireg

tri1

tri0

supply0

supply1

46

Variable types

There are five different kinds of variable types

reg

integer

time

real

realti

me

Register

Registers represent data storage elements. Registers retain value until another value is placed onto

them. Register data types are commonly declared by the keyword reg. The default value for a reg

data type is x.

Example of Register

reg reset; // declare a variable reset that can hold its value

begin

reset = 1’b1; //initialize reset to 1 to reset the digital circuit.

#100 reset = 1’b0; // after 100 time units reset is de asserted.

end

Integer

An integer is a general purpose register data type used for manipulating quantities. Integers are

declared by the keyword integer. Although it is possible to use reg as a general-purpose variable, it

is more convenient to declare an integer variable for purposes such as counting. The default width

for an integer is the host-machine word size, which is implementation-specific but is at least 32 bits.

Registers declared as data type reg store values as unsigned quantities, whereas integers store values

as signed quantities.

integer counter; // general purpose variable used as a counter.

initial counter = -1; // A negative one is stored in the counter

Real

Real number constants and real register data types are declared with the keyword real. They can be

47

specified in decimal notation (e.g., 3.14) or in scientific notation (e.g., 3e6, which is 3 x 106). Real

numbers cannot have a range declaration, and their default value is 0. When a real value is assigned

to an integer, the real number is rounded off to the nearest integer.

real delta; // Define a real variable called delta

initial

begin

delta = 4e10; // delta is assigned in scientific notation delta = 2.13;

// delta is assigned a value 2.13

end

integer i; // Define an integer i initial

i = delta; // i gets the value 2 (rounded value of 2.13)

Time

Verilog simulation is done with respect to simulation time. A special time register data type is used

in Verilog to store simulation time. A time variable is declared with the keyword time. The width for

time register data types is implementation specific but is at least 64 bits. The system function $time

is invoked to get the current simulation time.

time save_sim_time; // Define a time variable save_sim_time

initial save_sim_time = $time; // Save the current simulation time

Arrays

Arrays are allowed in Verilog for reg, integer, time, real, realtime and vector register data types.

Multi-dimensional arrays can also be declared with any number of dimensions. Arrays of nets can

also be used to connect ports of generated instances. Each element of the array can be used in the

same fashion as a scalar or vector net. Arrays are accessed by <array_name>[<subscript>]. For

multi-dimensional arrays, indexes need to be provided for each dimension.

integer count[0:7]; // An array of 8 count variables

reg bool[31:0]; // Array of 32 one-bit boolean register variables time

chk_point[1:100]; // Array of 100 time checkpoint variables

reg [4:0] port_id[0:7]; // Array of 8 port_ids; each port_id is 5 bits wide

Parameters

Verilog allows constants to be defined in a module by the keyword parameter. Parameters cannot be

48

used as variables. Parameter values for each module instance can be overridden individually at

compile time. This allows the module instances to be customized. This aspect is discussed later.

Parameter types and sizes can also be defined.

parameter port_id = 5; // Defines a constant port_id

parameter cache_line_width = 256; // Constant defines width of cache line

parameter signed [15:0] WIDTH; // Fixed sign and range for parameter WIDTH

Expressions

An expression is formed using operands and operators. An expression can be used wherever a value

is expected.

Operands

Operands can be constants, integers, real numbers, nets, registers, times, bitselect (one bit of vector

net or a vector register), part-select (selected bits of the vector net or register vector), and memories

or function calls.

integer count, final_count;

final_count = count + 1;//count is an integer operand

real a, b, c;

c = a - b; //a and b are real operands

reg [15:0] reg1,

reg2; reg [3:0]

reg_out;

reg_out = reg1[3:0] ^ reg2[3:0];//reg1[3:0] and reg2[3:0] are //part-select register operands

reg ret_value;

ret_value = calculate_parity(A, B);//calculate_parity is a //function type operand

Operator Types

Verilog provides many different operator types. Operators can be arithmetic, logical, relational,

equality, bitwise, reduction, shift, concatenation, or conditional. Some of these operators are similar

to the operators used in the C programming language. Each operator type is denoted by a symbol.

The table 2.1 shows the complete listing of operator symbols classified by category.

Table 2.1 Operators

49

50

Module

The basic unit of description in Verilog is the module. A module describes the functionality or

structure of a design and also describes the ports through which it communicates externally with

other modules. The structure of a design is described using switch-level primitives, gate-level

primitives and user-defined primitives; data flow behavior of a design is described using continuous

assignments; sequential behavior is described using procedural constructs. A module can also be

instantiated inside another module.

module module_name (port_list);

Declarations:

reg, wire,

parameter, input, output, inout, function , task, ….

Statements :

Initial statement

Always statement

Module instantiation

Gate instantiation

UDP instantiation

Continuous assignment

Generate statement

end module

TEXT / REFERENCE BOOKS

1. J.Bhaskar, “A VHDL Primer”, Prentice Hall of India Limited. 3rd edition 2004

2. Stphen Brown, "Fundamental of Digital logic with Verilog Design",3rd edition, Tata

McGraw Hill, 2008

3. J.Bhaskar, “A Verilog HDL Primer”, Prentice Hall of India Limited. 3rd edition 2004

51

4. Samir Palnitkar” Verilog HDL: A Guide to Digital Design and Synthesis”, Star Galaxy

Publishing; 3rd edition,2005

5. Michael D Ciletti - Advanced Digital Design with VERILOG HDL, 2nd Edition, PHI,

2009.

6. Z Navabi - Verilog Digital System Design, 2nd Edition, McGraw Hill, 2005.

7. Stuart Sutherland, “RTL Modeling With System Verilog for Simulation and

Synthesis: Using System Verilog for ASIC and FPGA Design”,1st Edition, Sutherland

HDL,Inc., 2017.

8. Simon Monk, “Programming FPGAs: Getting Started with Verilog”, 1st Edition, Tata

McGraw Hill,2016.

9. User Guide – “7 Series FPGAs Configurable Logic Block” - (WWW.XILINX.COM)

QUESTION BANK

PART-A

1. Justify how arrays are declared in Verilog HDL.

2. Classify the types of delays in Verilog HDL.

3. List the parameters in Verilog HDL.

4. Formulate the value set of Verilog HDL.

5. List the language elements of Verilog HDL.

6. Develop a Verilog HDL program for 2*4 decoder.

7. Define operands in Verilog HDL

8. Distinguish between inter assignment delay and intra assignment delay.

9. Justify the importance of module in Verilog HDL

10 . Develop Verilog HDL code for 2 bit subtraction.

PART-B

1. Compare procedural constructs and assignments

2. Illustrate the different language elements in Verilog HDL.

3. Operators in verilog are of different types. Support the statement with example.

4. Develop a Verilog HDL code for Flip-flop circuits.

5. Illustrate the different delay types in Verilog HDL programming.

52

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMMUNICATION

ENGINEERING

UNIT - IV

PROGRAMMING IN HDL – SECA1605

53

IV. FEATURES IN VERILOG HDL

Tasks and Functions

Tasks and functions provide the ability to execute common procedures from several different places

in a description. They also provide a means of breaking up large procedures into smaller ones to

make it easier to read and debug the source descriptions. Input, output, and inout argument values

can be passed into both tasks and functions.

Differences between Functions and Tasks

The following rules distinguish tasks from functions:

• A function must execute in one simulation time unit; a task can contain time-controlling

statements.

• A function cannot enable a task; a task can enable other tasks and functions.

• A function must have at least one input argument; a task can have zero or more arguments of any

type.

• A function returns a single value; a task does not return a value. The purpose of a function is to

respond to an input value by returning a single value. A task can support multiple goals and can

calculate multiple result values. However, only the output or inout argumentspass result values back

from the invocation of a task. A Verilog model uses a function as an operand in an expression; the

value of that operand is the value returned by the function.

54

Task and function declarations specify the following:

 local variables

 I/O ports

 registers

 times

 integers

 real

 events

These declarations all have the same syntax as for the corresponding declarations in a module

definition. If there is more than one output, input, and inout port declared in a task these must be

enclosed within a block.

Task

 A task begins with keyword task and ends with keyword endtask

 Inputs and outputs are declared after the keyword task.

 Local variables are declared after input and output declaration.

Task declaration and invocation

 Task Declaration syntax

task <task_name>; <I/O declarations> <variable and event declarations>

begin

<statement(s)>

end

endtask

 Task invocation syntax

<task_name>; <task_name>(<arguments>);

Example

module simple_ task();

task convert;

input [7:0] temp_in;

output [7:0] temp_out;

55

begin

temp_out = (9/5) *(temp_in+ 32)

end

endtask

endmadule

Function

A Verilog HDL function is the same as a task, with very little differences, like function cannot drive

more than one output, can not contain delays.

 functions are defined in the module in which they are used. It is possible to define functions

in separate files and use compile directive 'include to include the function in the file which

instantiates the task.

 functions can not include timing delays, like posedge, negedge, # delay, which means that

functions should be executed in "zero" time delay.

 functions can have any number of inputs but only one output. The variables declared within

the function are local to that function. The order of declaration within the function defines

how the variables passed to the function by the caller are used.

 functions can take, drive, and source global variables, when no local variables are used.

When local variables are used, basically output is assigned only at the end of function

execution.

 functions can be used for modeling combinational logic.

 functions can call other functions, but cannot call tasks.

Syntax

 A function begins with keyword function and ends with keyword endfunction.

 inputs are declared after the keyword function.

Function Rules

Functions are more limited than tasks. The following five rules govern their usage:

• A function definition cannot contain any time controlled statements—that is, any statements

introduced with #, @, or wait.

• Functions cannot enable tasks.

• A function definition must contain at least one input argument.

• A function definition must include an assignment of the function result value to the internal

variable that has the same name as the function.

56

• A function definition can’t contain an inout declaration or an output declaration

Function Declaration and Invocation

 Declaration syntax:

function <range_or_type> <func_name>;

<input declaration(s)>

<variable_declaration(s)>

begin

<statements>

end

endfunction

 Invocation syntax:

<func_name> (<argument(s)>);

Example

module simple_function();

function myfunction;

input a, b, c, d;

begin

myfunction = ((a+b) + (c-d));

end

endfunction

endmodule

SYSTEM TASKS AND FUNCTIONS

Verilog contains the pre-defined system tasks and functions, including tasks for creating output from

a simulation. All system tasks appear in the form $.Operations such as displaying the screen,

monitoring values of nets, stopping and finishing are done by system tasks.

DISPLAY TASKS

$display

$display displays information to standard output and adds a newline character to the end of its

output.

57

$monitor

$monitor continuously monitors and displays the values of any variables or expressions specified as

parameters to the task. Parameters are specified in the same format as for $display.

$monitoron -$monitoron controls a flag to re-enable a previously disabled $monitor.

Syntax: $monitoron;

$monitoroff-$monitoroff controls a flag to disable monitoring.

Syntax: $monitoroff;

$write

$write displays information to standard output without adding a newline character to the end of its

output.

Syntax: $write (list_of_arguments);

The default format of an expression argument that has no format specification is decimal. The

companion $writeb, $writeo, and $writeh tasks specify binary, octal and hex formats, respectively.

FILE I/O TASKS

$fclose

$fclose closes the channels and prevents further writing to the closed channels.

Syntax: file_closed_task ::= $fclose ;

$fdisplay

$fdisplay is the counterpart of $display; it is used to direct simulation data to a file.

Syntax: $fdisplay ([multi_channel_descriptor], list_of_arguments);

$fopen

$fopen opens the file specified by a parameter and returns a 32-bit unsigned MCD (integer multi-

channel-descriptor) uniquely associated the file. $fopen rturns 0 if the file could not be opened.

Syntax: file_open_function ::= integer multi_channel_descriptor = $fopen(“[name_of_file]”);

$readmemb

$readmemb reads binary numbers from a text file and loads them into a Verilog memory, or sub-

blocks of a memory, specified by an identifier.

Syntax: $readmemb (“filename”, memory_name [, start_addr [, finish_addr]]);

SIMULATION CONTROL TASKS

$finish

$finish terminates simulation, and returns control to the host operating system.

58

Syntax: $finish;

$stop

$stop suspends simulation, issues an interactive prompt, and passes control to the user.

$stop(n) suspends simulation, issues and interactive prompt, and takes the following action,

depending on the diagnostic control parameter, n:

n = 0 Prints nothing.n = 1 Prints the simulation time and location

n = 2 Prints simulation time and location

Modeling a Test bench

Whenever we design a circuit or a system, one step that is most important is “testing”. Testing is

necessary to verify whether the designed system works as expected or not.

If we find some error in an IC after fabrication, we are looking at a great loss because now we have

to re-do the entire chip manufacturing process from scratch right from designing the circuit to

fabrication.

Test benches are used to test the RTL (Register-transfer logic) that we implement using HDL

languages like Verilog and VHDL.

Verifying complex digital systems after implementing the hardware is not a wise choice. It is

ineffective in terms of time, money, and resources. Hence, it is essential to verify any design before

finalizing it. Luckily, in the case of FPGA and Verilog, we can use test benches for testing Verilog

source code.

Now we are going to learn how we can use Verilog to implement a test bench to check for errors or

inefficiencies. We’ll first understand all the code elements necessary to implement a test bench in

Verilog. Then we will implement these elements in a stepwise to truly understand the method of

writing a test bench.

Design Under Test (DUT)

A design under test, abbreviated as DUT, is a synthesizable module of the functionality we want to

test. In other words, it is the circuit design that we would like to test. We can describe our DUT

using one of the three modeling styles in Verilog, Gate level, Dataflow level and Behavioral level.

For example,

module and_gate(c,a,b);

input a,b;

output c;

59

assign c = a & b;

endmodule

We have described an AND gate using Dataflow modeling. It has two inputs (a,b) and an output (c).

We have used continuous assignment to describe the functionality using the logic equation. This

AND gate can be our DUT.

So, to test our DUT, we have to write the test bench code.

Why do we have to take the trouble to write another code?

With a test bench, we can view all the signals associated with the DUT. No need for physical

hardware.

Writing a test bench is a bit trickier than RTL coding. Verifying a system can take up around 60-

70% of the design process.

Implementation of test bench

Let’s learn how we can write a test bench. Consider the AND module as the design we want to test.

Like any Verilog code, start with the module declaration.

module and_gate_test_bench;

Reg and wire declarations

Usually, we declare the input and output ports. But, in a test bench, we will use two signal types for

driving and monitoring signals during the simulation.

The reg datatype will hold the value until a new value is assigned to it. This data type can be

assigned a value only in the always or initial block. This is used to apply a stimulus to the inputs

of DUT.

The wire datatype is similar to that of a physical connection. It will hold the value that is driven by

a port, assign statement, or reg. This data type cannot be used in initial or always blocks. This is

used to check the output signals from the DUT.

We can declare these data types for the test bench of the AND module.

reg A, B;

wire C;

DUT Instantiation

The purpose of a test bench is to verify whether our DUT module is functioning as we wish. Hence,

we have to instantiate our design module to the test module. The format of the instantiation is:

<dut_module> <instance name>(.<dut_signal>(test_module_signal),…)

60

and_gate dut(.a(A), .b(B), .c(C));

We have instantiated the DUT module and_gate to the test module. The signals with a dot in front

of them are the names for the signals inside the and_gate module, while the wire or reg they

connect to in the test bench is next to the signal in parenthesis.

Test bench for AND Gate

We have already written the Verilog file for an AND gate. Let’s see how to write a test bench for

that DUT.

Start with declaring the module as for any Verilog file. We can name the module as and_tb

module and_tb;

Then, let’s have the reg and wire declarations on the way. The input from the DUT is declared

as reg and wire for the output of the DUT. It is through these data types we can apply the stimulus

to the DUT. Using upper case letters for signals in the test bench avoids confusion.

reg A,B;

wire C;

Then comes the part of performing instantiation.

and_gate dut(.a(A), .b(B), .c(C));

We have linked our test bench to the DUT.

Let’s get to applying the stimulus.

initial

begin

#5 A =0; B=0;

#5 A =0; B=1;

#5 A =1; B=0;

#5 A =1; B=1;

end

So our final testbench code will be:

module and_tb;

reg A,B;

wire C;

and_gate dut(.a(A), .b(B), .c(C));

61

initial

begin

#5 A =0; B=0;

#5 A =0; B=1;

#5 A =1; B=0;

#5 A =1; B=1;

end

end module

Testbench for D-flip flop

For sequential circuits, the clock and reset signals are essential for its functioning.

Let’s test the Verilog code for D-flip flop. Here’s the DUT:

module dff_behave(clk,rst,d,q,qbar);

input clk,rst,d;

output reg q,qbar;

always@(posedge clk)

begin

if(rst == 1)

begin

q <= 0;

qbar <= 1;

end

else

begin

q <= d;

qbar <= ~d;

end

end

endmodule

Let’s start writing a testbench for the above :

62

As usual start with the module declaration. Naming the module as dff_tb

module dff_tb

Moving on with the reg and wire declaration:

reg D,CLK,RST;

wire Q, QBAR;

Time for DUT instantiation:

dff_behave dut(.clk(CLK), .rst(RST), .d(D), .q(Q), .qbar(QBAR));

As we said, a clock signal is essential for working of the flip flop. So, here’s how we create a clock

stimulus for our testbench.

always

#10 CLK = ~CLK;

The above clock will have a 20 ns pulse width. Therefore, we have generated a 50 MHz clock.

Let’s apply the stimulus for our DUT:

initial

begin

RST = 1;

#10 RST = 0;

#10 D = 0;

#10 D = 1

end

Finally, our testbench code is:

module dff_tb;

reg CLK = 0;

reg D,RST;

wire Q,QBAR;

dff_behave dut(.clk(CLK), .rst(RST), .d(D), .q(Q), .qbar(QBAR));

always

#10 CLK = ~CLK;

initial

begin

RST = 1;

63

#10 RST = 0;

#10 D = 0;

#20 D = 1

end

endmodule

Test Bench for Half Adder

module half_adder_verilog_tb;

reg a, b;

wire s, c;

halfadder8 dut (.a(a), .b(b), .s(s), .c(c));

initial

begin

a = 0;

b = 0;

#50;

a = 0;

b = 1;

#50;

a = 1;

b = 0;

#50;

a = 1;

b = 1;

end

endmodule

Concepts of Timing and Delays in Verilog

The concepts of timing and delays within circuit simulations are very important because they allow

a degree of realism to be incorporated into the modeling process. In Verilog, without explicit

specification of such constraints, the outputs of pre-defined primitives and user-defined modules are

64

all assumed to resolve instantaneously. Some designs, such as high speed microprocessors, may

have very tight requirements that must be met. Failure to meet these constraints may result in the

design failing to work at all, or possibly even producing invalid outputs. Thus, the aim of the

designer may be to produce a circuit that functions correctly, and it is equally important that the

circuit also conforms to any timing constraints required of it.

Delays

Delays can be modelled in a variety of ways, depending on the overall design approach that has been

adopted, namely gate-level modelling, dataflow modelling and behavioural modelling.

Gate level modeling

In real circuits, logic gates have delays associated with them. Gate delays allow the Verilog user

to specify delays through the logic circuits. Pin-to-pin delays can also be specified in Verilog.

Rise, Fall, and Turn-off Delays

There are three types of delays from the inputs to the output of a primitive gate

Rise delay

The rise delay is associated with a gate output transition to a 1 from another value.

Fall delay

The fall delay is associated with a gate output transition to a 0 from another value.

Turn-off delay

http://3.bp.blogspot.com/_thFijmCERgQ/S1WQ_aTqrFI/AAAAAAAABUM/eZcTGDvYGgg/s1600-h/1.jpg
http://4.bp.blogspot.com/_thFijmCERgQ/S1WRDioKv4I/AAAAAAAABUU/zZVZJhe4RkA/s1600-h/1.jpg

65

The turn-off delay is associated with a gate output transition to the high impedance value (z)

from another value.

If the value changes to X, the minimum of the three delays is considered.

0, 1, x and z take their usual meanings of logic low, logic high, unknown and high impedance. Any

or all of these delays can be specified for each gate by use of the delay token #. If only one value is

specified, it is used for all these delays. If two are given, they are used for the rise and fall delays

respectively. The turn-off delay (the time taken for the output to go to a high impedance state) is

taken to be the minimum of these values. Alternatively, all three values can be explicitly set. The

use of delays is illustrated for the 2-input multiplexer.

module multiplexor_2_to_1(out, cnt, a, b);

 /*

 * A 2-1 1-bit multiplexor

 */

output out;

input cnt, a, b;

wire not_cnt, a0_out, a1_out;

not # 2 n0(not_cnt, cnt); /* Rise=2, Fall=2, Turn-Off=2 */

and #(2,3) a0(a0_out, a, not_cnt); /* Rise=2, Fall=3, Turn-Off=2 */

and #(2,3) a1(a1_out, b, cnt);

or #(3,2) o0(out, a0_out, a1_out); /* Rise=3, Fall=2, Turn-Off=2 */

endmodule /* multiplexor_2_to_1 */

Dataflow modeling

Net Declaration Delay

The delay to be attributed to a net can be associated when the net is declared. Thereafter any

changes of the signals being assigned to the net will only be propagated after the specified delay.

e.g. wire #10 out;

assign out = in1 & in2;

If either of the values of in1 or in2 should happen to change before the assigment to out has taken

place, then the assignment will not be carried out, as input pulses shorter than the specified delay are

filtered out. This is known as inertial delay.

66

Regular Assignment Delay

This is used to introduce a delay onto a net that has already been declared.

e.g. wire out; assign #10 out = in1 & in2;

This has a similar effect to the code above, computing the value of in1 & in2 at the time that

the assign statement is executed, and then storing that value for the specified delay (in this case 10

time units), before assigning it to the net out.

Implicit Continuous Assigment

Since a net can be implicitly assigned a value at its declaration, it is possible to introduce a delay

then, before that assignment takes place.

e.g. wire #10 out = in1 & in2;

It should be easy to see that this is effectively a combination of the above two types of delay, rolled

into one.

Behavioural modelling

Regular Delay or Inter-assignment delay

This is the most common delay used - sometimes also referred to as inter-assignment delay control.

e.g. #10 q = x + y;

It simply waits for the appropriate number of timesteps before executing the command.

Intra-Assignment Delay Control

With this kind of delay, the value of x + y is stored at the time that the assignment is executed, but

this value is not assigned to q until after the delay period, regardless of whether or not x or y have

changed during that time.

e.g. q = #10 x + y;

This is similar to the delays used in dataflow modeling.

Timing controls

Timing controls provide a way to specify the simulation time at which procedural statements will

execute.

There are three methods of timing control

67

 Delay based timing control

 Event based timing control

 Level-sensitive timing control

Delay based timing control

Delay-based timing control in an expression specifies the time duration between the statement is

encountered and when it is executed. Delays are specified by the symbol #.

There are three types of delay control for procedural assignments

 Regular delay control

 Intra-assignment delay control

 Zero delay control

Regular delay control

Regular delay control is used when a non-zero delay is specified to the left of a procedural

assignment. Usage of regular delay control is shown below example,

module clk_gen;

reg clk, reset;

clk = 0;

reset = 0;

#2 reset = 1;

#5 reset = 0;

#10 $finish;

endmodule

Intra-assignment delay control

Instead of specifying delay control to the left of the assignment, it is possible to assign a delay to the

right of the assignment operator. Usage of intra-assignment delay control is shown in below

example,

module intra_assign;

reg a, b;

 a = 1;

68

 b = 0;

 a = #10 0;

 b = a;

endmodule

Difference between the intra-assignment delay and regular delay

Regular delays defer the execution of the entire assignment. Intra-assignment delays compute the

right-hand-side expression at the current time and defer the assignment of the computed value to the

left-hand-side variable. Intra-assignment delays are like using regular delays with a temporary

variable to store the current value of a right-hand-side expression.

Zero delay control

Zero delay control is a method to ensure that a statement is executed last, after all other statements

in that simulation in that simulation time are executed. This is used to eliminate race conditions.

However, if there are multiple zero delay statements, the order between them is nondeterministic.

Usage of zero delay control is shown in below example,

initial

begin

x=0;

y=0;

end

initial

begin

#0 x=1;

#0 y=1;

end

Above four statements x=0,y=0,x=1,y=1 are to be executed at simulation time 0. However since x=1

and y=1 have #0, they will be executed last. Thus, at the end of time 0,x will have value 1 and y will

have value 1.

Event based timing control

An event is the change in the value on a register or a net. Events can be utilized to trigger execution

of a statement or a block of statements. There are four types of event-based timing control.

69

 Regular event control

 Named event control

 Event OR control

 Level-sensitive timing control

Regular event control

The @ symbol is used to specify an event control. Statements can be executed on changes in signal

value or at a positive or negative transition of the signal value. The keyword posedge is used for a

negative transition as shown in below example,

module edge_wait_example();

reg enable, clk, trigger;

always @ (posedge enable)

begin

 trigger = 0;

 // Wait for 5 clock cycles

 repeat (5) begin

 @ (posedge clk) ;

 end

 trigger = 1;

end

Named event control

Verilog provides the capability to declare an event and then trigger and recognize the occurrence of

that event. The event does not hold any data. A named event is declared by the

keyword event. An event is triggered by the symbol . The triggering of the event is recognized by

the symbol @.

Example

event received_data;

always @(posedge clock)

begin

if (last_data_packet)

70

received_data;

end

always @(received_data)

data_buf={data_pkt[0],data_pkt[1]};

Event OR control

Sometimes a transition on any one of multiple signals or events can trigger the execution of a

statement or a block of statements. This is expressed as an OR of events or signals. The list of events

or signals expressed as an OR is also known as a sensitivity list. The keyword or is used to specify

multiple triggers as shown in below example,

always @(reset or clock or d)

begin

if(reset)

q=1’b0;

else if (clock)

q=d;

end

Level-Sensitive Timing control

Verilog allows a level-sensitive timing control, that is, the ability to wait for a certain condition to be

true before a statement or a block of statements is executed. The keyword wait is used for level-

sensitive constructs.

Example

always

wait (count_enable) #20 count=count+1;

From the above example, the value of count_enable is monitored continuously. If count_enable is 0,

the statement is not entered. If it is logical 1, the statement count=count+1 is executed after 20 time

units. If count_enable stays at 1, count will be incremented every 20 time units.

SWITCH LEVEL MODELING

Usually, transistor level modeling is referred to model in hardware structures using transistor

models with analog input and output signal values. On the other hand, gate

level modeling refers to modeling hard-ware structures with digital input and output signal values

71

between these two modeling schemes is referred to as switch level modeling. At this level, a

hardware component is described at the transistor level, but transistors only exhibit digital behavior

and their input, and output signal values are only limited to digital values. At the switch level,

transistors behave as on-off switches- Verilog uses a 4 value logic value system, so Verilog switch

input and output signals can take any of the four 0, 1, Z, and X logic values.

Switch level primitives

Switches are unidirectional or bidirectional and resistive or nonresistive. For each group those

primitives that switch on with a positive gate {like an NMOS transistor} and those that switch

on with a negative gate {like a PMOS transistor}. Switching on means that logic values flow from

input transistor to its input. Switching off means that the output of a transistor is at Z level regardless

of its input value. A unidirectional transistor passes its input value to its output when it is switched

on.

A bidirectional transistor conducts both ways. A resistive structure reduces the strength of its input

logic when passing it to its output. In addition to switch level primitives, pull-primitives that are

used as pull-up and pull-down resistors for tri-state outputs.

MOS Switches

Two types of MOS switches can be defined with the keywords nmos and pmos.

Keyword nmos is used to model NMOS transistors, Keyword pmos is used to model

PMOS transistors. The symbols for nmos and pmos switches are shown in figure.

Figure 4.1 : MOS switches

72

PMOS and NMOS Switches

In Verilog nmos and pmos switches are instantiated as shown in below

nmos n1(out, data, control); // instantiate a nmos switch

pmos p1(out, data, control); // instantiate a pmos switch

Since switches are Verilog primitives, like logic gates, the name of the instance is optional.

Therefore, it is acceptable to instantiate a switch without assigning an instance name

nmos (out, data , control); // instantiate nmos switch ; no instance name

pmos (out, data, control); // instantiate pmos switch; no instance name

Value of the out signal is determined from the values of data and control signals. Logic tables for

out are shown in table. Some combinations of data and control signals cause the gates to output to

either a 1 or 0 or to an z value without a preference for either value. The symbol L stands for 0 or Z;

H stands for 1 or z.

Logic Tables of NMOS and PMOS

Thus, the nmos switch conducts when its control signal is 1. If control signal is 0, the output

assumes a high impedance value. Similarly a pmos switch conducts if the control signal is 0.

CMOS Switches

CMOS switches are declared with the keyword cmos. A cmos device can be modeled with a nmos

and a pmos device. The symbol for a cmos switch is shown in figure.

Figure 4.2 : CMOS switch

http://4.bp.blogspot.com/_thFijmCERgQ/S1WT87WJYuI/AAAAAAAABVE/eiiROwOqtDk/s1600-h/1.jpg
http://4.bp.blogspot.com/_thFijmCERgQ/S1WUDRUvIZI/AAAAAAAABVM/p49apHipVxA/s1600-h/1.jpg

73

CMOS switch

A CMOS switch is instantiated as shown in below,

cmos cl(out, data, ncontrol, pcontrol);//instantiate cmos gate

or

cmos (out, data, ncontrol, pcontrol); //no instance name given

The ncontrol and pcontrol are normally complements of each other. When the ncontrol signal is 1

and pcontrol signal is 0, the switch conducts.

nmos (out, data, ncontrol); //instantiate a nmos switch

pmos (out, data, pcontrol); //instantiate a pmos switch

Since a cmos switch is derived from nmos and pmos switches, it is possible derive the output

value from Table, given values of data, ncontrol, and pcontrol signals.

Bidirectional switches

NMOS, PMOS and CMOS gates conduct from drain to source. It is important to have devices that

conduct in both directions. In such cases, signals on either side of the device can be the driver

signal. Bidirectional switches are provided for this purpose. Three keywords are used to define

bidirectional switches: tran, tranif0, and tranif1.

Symbols for these switches are shown in figure below.

Figure 4.3 : Bidirectional switches

The tran switch acts as a buffer between the two signals inoutl and inout2. Either inoutl

or inout2 can be the driver signal. The tranif0 switch connects the two

signals inoutl and inout2 only if the control signal is logical 0. If the control signal is

a logical 1, the nondriver signal gets a high impedance value z. The driver signal retains value

from its driver. The tranifl switch conducts if the control signal is a logical 1.

These switches are instantiated as shown in below.

 tran tl(inoutl, inout2); //instance name tl is optional

http://3.bp.blogspot.com/_thFijmCERgQ/S1WUH2y4g4I/AAAAAAAABVU/ewQQIJi6BRE/s1600-h/1.jpg

74

tranifO (inoutl, inout2, control); //instance name is not specified

 Resistive switches reduce signal strengths when signals pass through them. The changes are

shown below. Regular switches retain strength levels of signals from input to output. The exception

is that if the input is of supply, the output is of strength strong. Below table shows the

strength reduction due to resistive switches.

Input strength

supply pull

strong pull

pull weak

weak medium

large medium

medium small

small small

high high

Example-CMOS NAND

Figure 4.4 : CMOS NAND

module my_nand (Out,A,B);

input A,B;

ouput Out;

wire C;

supply1 Vdd;

http://2.bp.blogspot.com/_thFijmCERgQ/S1WUT2lv7PI/AAAAAAAABVk/KNP7ErTh7Eo/s1600-h/1.jpg

75

supply0 Vss;

pmos (Out,A,Vdd)

pmos (Out,B,Vdd);

nmos (Out,A,C);

nmos(C,Vss,B);

endmodule

TEXT / REFERENCE BOOKS

1. J.Bhaskar, “A VHDL Primer”, Prentice Hall of India Limited. 3rd edition 2004

2. Stphen Brown, "Fundamental of Digital logic with Verilog Design",3rd edition, Tata

McGraw Hill, 2008

3. J.Bhaskar, “A Verilog HDL Primer”, Prentice Hall of India Limited. 3rd edition 2004

4. Samir Palnitkar” Verilog HDL: A Guide to Digital Design and Synthesis”, Star Galaxy

Publishing; 3rd edition,2005

5. Michael D Ciletti - Advanced Digital Design with VERILOG HDL, 2nd Edition, PHI,

2009.

6. Z Navabi - Verilog Digital System Design, 2nd Edition, McGraw Hill, 2005.

7. Stuart Sutherland, “RTL Modeling With System Verilog for Simulation and

Synthesis: Using System Verilog for ASIC and FPGA Design”,1st Edition, Sutherland

HDL,Inc., 2017.

8. Simon Monk, “Programming FPGAs: Getting Started with Verilog”, 1st Edition, Tata

McGraw Hill,2016.

9. User Guide – “7 Series FPGAs Configurable Logic Block” - (WWW.XILINX.COM)

76

QUESTION BANK

PART-A

1. Define system task

2. List the tristate gates

3. Distinguish between system task and system function.

4. Distinguish between unary operators and ternary operators.

5. Formulate the syntax of event construct

6. Define functional register

7. Define path delay

8. Define net delay

9. Formulate the syntax of repeat construct.

10. List the key words in Verilog HDL

PART-B

1. Discuss with example verilog task and function

2. Develop verilog test bench for half adder and D flip flop

3. Design a moore FSM with an example, Mention the state transition diagram for it.

4. Design a mealy FSM with an example. Mention the state transition diagram for it.

5. Develop a verilog code for 4-Bit ALU also obtain its test bench and simulation results.

6. Design Verilog module for an edge triggered D Flip flop in the data flow model.

77

SCHOOL OF ELECTRICAL AND ELECTRONICS

DEPARTMENT OF ELECTRONICS AND COMMMUNICATION

ENGINEERING

UNIT - V

PROGRAMMING IN HDL – SECA1605

78

V. REALIZING APPLICATIONS IN FPGA

FPGA Design Flow

The ISE® design flow comprises the following steps: design entry, design synthesis, design

implementation, and Xilinx® device programming. Design verification, which includes both

functional verification and timing verification, takes places at different points during the design

flow. This section describes what to do during each step. For additional details on each design step,

click on a link below the following figure.

Figure 5.1 : ISE design flow

 Design Entry

 Design Synthesis and Verification

 Design Implementation and Verification

 Device Programming

 In-Circuit Verification

Design Entry

1. Create an ISE project as follows:

2. Create a project.

3. Create files and add to project, including a user constraints (UCF) file.

4. Add any existing files to project.

5. Assign constraints such as timing constraints, pin assignments, and area constraints.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx10/isehelp/ise_c_design_entry.htm
https://www.xilinx.com/support/documentation/sw_manuals/xilinx10/isehelp/ise_c_design_synthesis.htm
https://www.xilinx.com/support/documentation/sw_manuals/xilinx10/isehelp/ise_c_design_implementation.htm
https://www.xilinx.com/support/documentation/sw_manuals/xilinx10/isehelp/ise_c_configuration_overview.htm
https://www.xilinx.com/support/documentation/sw_manuals/xilinx10/isehelp/ise_c_process_analyze_design_using_chipscope.htm

79

Functional Verification

We can verify the functionality of our design at different points in the design flow as follows:

 Before synthesis, run behavioral simulation (also known as RTL simulation).

 After Translate, run functional simulation (also known as gate-level simulation), using the

SIMPRIM library.

 After device programming, run in-circuit verification.

Design Synthesis

The synthesis process will check code syntax and analyze the hierarchy of our design which ensures

that our design is optimized for the design architecture that we have selected. The resulting netlist is

saved to an NGC file (for Xilinx® Synthesis Technology (XST)) or an EDIF file (for Precision, or

Synplify/Synplify Pro).

The synthesis process can be used with the following synthesis technology tools. Select one of the

following for information about running your synthesis tool:

 Xilinx Synthesis Technology (XST)

 Precision from Mentor Graphics Inc.

 Synplify and Synplify Pro from Synplicity Inc.

Design Implementation

Implementation of design as follows:

1. Implement design, which includes the following steps:

 Translate

 Map

 Place and Route

2. Review reports generated by the Implement Design process, such as the Map Report or Place

& Route Report, and change any of the following to improve our design:

 Process properties

 Constraints

 Source files

3. ynthesize and implement our design again until design requirements are met.

https://www.xilinx.com/support/documentation/sw_manuals/xilinx10/isehelp/ise_c_using_xst_for_synthesis.htm
https://www.xilinx.com/support/documentation/sw_manuals/xilinx10/isehelp/ise_p_using_precision_for_synthesis.htm
https://www.xilinx.com/support/documentation/sw_manuals/xilinx10/isehelp/ise_p_using_synplify_for_synthesis.htm

80

Timing Verification

We can verify the timing of our design at different points in the design flow as follows:

Run static timing analysis at the following points in the design flow:

 After Map

 After Place & Route

Run timing simulation at the following points in the design flow:

 After Map (for a partial timing analysis of CLB and IOB delays)

 After Place and Route (for full timing analysis of block and net delays)

Xilinx Device Programming

Program Xilinx device as follows:

 Create a programming file (BIT) to program our FPGA.

 Generate a PROM or ACE file for debugging or to download to device. Optionally, create a

JTAG file.

 Use iMPACT to program the device with a programming cable.

Xilinx Artix-7 architecture

The Artix-7 FPGA consists of Logic Blocks, Block RAM, DSP blocks, and a global routing

network. We will spend most of our time discussing the Logic Blocks. But before we do, realize that

modern reconfigurable logic exists because logic designs can easily be expressed in terms of

medium scale logic building blocks such as registers, shift registers, multiplexers, counters, adders,

subtractors, and comparators. Consider the following output from the Xilinx ISE during the

synthesis of Lab 4 on the Spartan-6 FPGA.

ISE decomposed my VHDL design into basic building blocks. This is one reason we insisted on

certain coding practices throughout the semester - they increase the likelihood that our design will

be efficiently mapped into these basic building blocks. However, consider how the actual FPGA can

be configured to realize these basic building blocks. This complicated process is what the Xilinx

software does.

Logic Blocks

A configurable logic block (CLB) is a basic block used to implement the logic behind the VHDL

designs we have been working on all semester. In FPGAs, hundreds or thousands of CLBs are laid

out in an array (commonly a switch matrix) known as the global routing network. All of the CLBs

81

on the FPGA are connected to each other. On the Artix-7 (and other Xilinx 7-series boards), each

CLB contains two Logic Slices (discussed in the following section). The logical layout of a CLB can

be seen in the Figure below.

Figure 5.2 : CLB diagram

Logic Slices

The Artix-7 on our board (Artix-7 7A200T) has a total of 33,650 logic slices (16,825 CLBs). Each

logic slice contains four 6-input LUTs and eight flip-flops. This corresponds to 134,600 total6-

inputLUTs.

There are three possible types of logic slices: SLICEM, SLICEL, and SLICEX. However, in the

Artix-7, SLICEX slices are unused; of the 33,650 logic slices, 22,100 are SLICEL and 11,550 are

SLICEM.

In the logic slices, three major SLICEM subsystems can be seen: 1. the four 6-input LUTs, 2. the

eight flip-flops, and 3. the fast carry logic.

1. Look-up tables

If you need a refresher on how a hardware LUT works, In a SLICEM, there are four 64x1 RAMs

which are used to realize 5 or 6-variable functions; the truth table for the function is stored in the

RAM and the inputs are used as the input addresses. As an example, let's try to realize a full adder

using RAM. In class, we will derive the truth table for sum and carry and show how they can be

inserted into a LUT. It is important for the further development of the lecture to point out that sum

= a xor b xor c and that you can represent cout = ((a xor b) and cin) or (a and b) This last form is

pretty nutty, but is also very useful.

2. Flip Flops

There are 8 flip flops in each logic slice.

82

3. Fast Carry Logic

The fast carry logic is designed explicitly to realize a variation of a carry look-ahead adder.

Consider the construction of a 4-bit adder with inputs A=a3,a2,a1,a0 , B=b3,b2,b1,b0 , and a carry

in c0. Each slice of the adder can either generate a carry bit or propagate its carry in to the carry

out.

 Propagate -- pi is equal to 1 when the inputs to a bit slice are such that any carry in will be

propagated.

 Generate -- gi is equal to 1 when the inputs to a bit slice are such that a carry will be

generated.

We can represent the cout of a slice as cout = g + p*cin. This arrangement is effectively what is

happening in the carry logic block in the middle of each logic slice.

Interconnect

A logical figure of how the CLBs on the Artix-7 are interconnected to each other can be seen in the

Figure 5.3

Figure 5.3 : Interconnect diagram

83

DSP Slice

Apart from the slices which make up the CLBs discussed above, the Artix-7 also contains DSP

slices. The Artix-7 we are using contains 700 DSP48E1 slices. Each DSP48E1 slice contains a pre-

adder, a 25 x 18 multiplier, an adder, and an accumulator. A picture of a DSP slice can be seen in

the Figure 5.4.

Figure 5.4 : DSP Slice

Configurable Logic Blocks (CLB)

The 7 series configurable logic block (CLB) provides advanced, high-performance FPGA logic:

 Real 6-input look-up table (LUT) technology

 Dual LUT5 (5-input LUT) option

 Distributed Memory and Shift Register Logic capability

 Dedicated high-speed carry logic for arithmetic functions

 Wide multiplexers for efficient utilization

CLBs are the main logic resources for implementing sequential as well as combinatorial circuits.

Each CLB element is connected to a switch matrix for access to the general routing matrix (shown

in Figure 5.5). A CLB element contains a pair of slices.

84

Figure 5.5 : CLB diagram

The LUTs in 7 series FPGAs can be configured as either a 6-input LUT with one output, or as two

5-input LUTs with separate outputs but common addresses or logic inputs. Each 5-input LUT output

can optionally be registered in a flip-flop. Four such 6-input LUTs and their eight flip-flops as well

as multiplexers and arithmetic carry logic form a slice, and two slices form a CLB. Four flip-flops

per slice (one per LUT) can optionally be configured as latches. In that case, the remaining four flip-

flops in that slice must remain unused. Approximately two-thirds of the slices are SLICEL logic

slices and the rest are SLICEM, which can also use their LUTs as distributed 64-bit RAM or as 32-

bit shift registers (SRL32) or as two SRL16s. Modern synthesis tools take advantage of these highly

efficient logic, arithmetic, and memory features. Expert designers can also instantiate them.

7 Series CLB Features

The 7 series CLB is identical to that in the Virtex®-6 FPGA family. The CLB is very similar to that

of the Spartan®-6 FPGA family with these differences:

 Columnar architecture

 Scales easily to higher densities

 More routing between CLBs

 SLICEL and SLICEM only (no Spartan-6 FPGA SLICEX)

 All slices support carry logic

 More optimized

The common features in the CLB structure simplify design migration from the Spartan-6 and

Virtex-6 families to the 7 series devices. The unique floor plan means that location constraints

should be removed before implementing designs originally targeted to earlier FPGAs. The

85

interconnect routing resources are increased in size, quantity, and flexibility relative to the Virtex-6

FPGA family, improving the quality of automatic place and route results.

Device Resources

The CLB resources are scalable across all the 7 series families, providing a common architecture

that improves efficiency, IP implementation, and design migration. The number of CLBs and the

ratio between CLBs and other device resources differentiates the 7 series families. Migration

between the 7 series families does not require any design changes for the CLBs.

Device capacity is often measured in terms of logic cells, which are the logical equivalent of a

classic four-input LUT and a flip-flop. The 7 series FPGA CLB six-input LUT, abundant flip-flops

and latches, carry logic, and the ability to create distributed RAM or shift registers in the SLICEM,

increase the effective capacity. The ratio between the number of logic cells and 6-input LUTs is

1.6:1.

Recommended Design Flow

CLB resources are inferred for generic design logic and do not require instantiation. Good HDL

design is sufficient. A few items to note:

 CLB flip-flops have either a set or a reset. The designer must not use both set and reset.

 Flip-flops are abundant. Pipelining should be considered to improve performance.

 Control inputs are shared across a slice or CLB. The number of unique control inputs

required for a design should be minimized. Control inputs include clock, clock enable,

set/reset, and write enable.

 A 6-input LUT can be used as a 32-bit shift register for efficient implementation.

 A 6-input LUT can be used as a 64 x 1 memory for small storage requirements.

 Dedicated carry logic implements arithmetic functions effectively.

These steps indicate the recommended design flow:

1. Implement the design using preferred methodologies (HDL, IP, etc.).

2. Evaluate utilization reports to determine resources used. Check to make sure arithmetic logic,

distributed RAM, and SRL are used, when helpful.

3. Consider flip-flop usage. a. Pipeline for performance b. Use dedicated flip-flops at the outputs of

dedicated resources (block RAM, DSP) c. Allow shift registers to use SRL (avoid set/resets)

 4. Minimize the use of set/resets.

86

Pinout Planning

Although the use of most resources affects the resulting device pinout, CLB usage has little effect on

pinouts because they are distributed throughout the device. The ASMBL™ architecture provides

maximum flexibility with CLBs on both sides of most I/Os.

The best approach is to let the tools choose the I/O locations based on the FPGA requirements.

Results can be adjusted if necessary for board layout considerations. The timing constraints should

be set so that the tools can choose optimal placement for the design requirements.

Carry logic cascades vertically up a column, so wide arithmetic buses might drive a vertical

orientation to other logic, including I/O.

While most 7 series devices are available in flip-chip packages, taking full advantage of the

distributed I/O in the ASMBL architecture, the smaller devices are available in wire-bond packages

at a lower cost. In these packages, some pins are naturally closer to the I/Os and special resources

than others, so pin placement should be done after the internal logic is defined.

Slice Description

Every slice contains:

 Four logic-function generators (or look-up tables)

 Eight storage elements

 Wide-function multiplexers

 Carry logic These elements are used by all slices to provide logic, arithmetic, and ROM

functions.

In addition, some slices support two additional functions: storing data using distributed RAM and

shifting data with 32-bit registers. Slices that support these additional functions are called SLICEM;

others are called SLICEL. SLICEM represents a superset of elements and connections found in all

slices. Each CLB can contain two SLICEL or a SLICEL and a SLICEM.

SLICEM and SLICEL

The components discussed after this all exist as pieces within a slice. This fact does not mean that

the whole is simply the sum of its parts! There are some unique features to the slices themselves that

allow an FPGA to expand its functionality.

First, the slices within a CLB are not connected to each other. They are physically oriented in a

similar fashion to the above diagram so that they may be connected with the same slice type

(SLICEM or SLICEL) within CLBs above or below, creating columns. This allows interconnections

between SLICEM or SLICEL in a column to create large scale functions.

87

The distinguishing feature of the two slice types is the configurability of the SLICEM. SLICEM can

be configured so that the look-up tables within it can act as shift registers or as data storage (creating

distributed memory on the chip) in addition to its normal logic functionality.

A note on naming: the ‘M’ may be an indication of its ability to act as distributed memory, while the

‘L’ may be an indication of its exclusive logic functionality. This is just speculative but it can be

helpful to remember which is which.

Figure 5.6 : SLICEM

88

Figure 5.7 : SLICEL

Look-Up Table (LUT)

The function generators in 7 series FPGAs are implemented as six-input look-up tables (LUTs).

There are six independent inputs (A inputs - A1 to A6) and two independent outputs (O5 and O6)

for each of the four function generators in a slice (A, B, C, and D). The function generators can

implement:

 Any arbitrarily defined six-input Boolean function

89

 Two arbitrarily defined five-input Boolean functions, as long as these two functions share

common inputs

 Two arbitrarily defined Boolean functions of 3 and 2 inputs or less

A six-input function uses:

 A1-A6 inputs

 O6 output Two five-input or less functions use:

 A1–A5 inputs

 A6 driven High

 O5 and O6 outputs

The propagation delay through a LUT is independent of the function implemented. Signals from the

function generators can:

 Exit the slice (through A, B, C, D output for O6 or AMUX, BMUX, CMUX, DMUX output

for O5)

 Enter the XOR dedicated gate from an O6 output

 Enter the carry-logic chain from an O5 output

 Enter the select line of the carry-logic multiplexer from O6 output

 Feed the D input of the storage element

 Go to F7AMUX/F7BMUX wide multiplexers from O6 output

In addition to the basic LUTs, slices contain three multiplexers (F7AMUX, F7BMUX, and

F8MUX). These multiplexers are used to combine up to four function generators to provide any

function of seven or eight inputs in a slice.

 F7AMUX: Used to generate seven input functions from LUTs A and B

 F7BMUX: Used to generate seven input functions from LUTs C and D

 F8MUX: Used to combine all LUTs to generate eight input functions.

Functions with more than eight inputs can be implemented using multiple slices. There are no direct

connections between slices to form function generators greater than eight inputs within a CLB.

Storage Elements

There are eight storage elements per slice. Four can be configured as either edge-triggered D-type

flip-flops or level-sensitive latches. The D input can be driven directly by a LUT output via

AFFMUX, BFFMUX, CFFMUX, or DFFMUX, or by the BYPASS slice inputs bypassing the

function generators via AX, BX, CX, or DX input. When configured as a latch, the latch is

transparent when the CLK is Low.

90

There are four additional storage elements that can only be configured as edge-triggered D-type flip-

flops. The D input can be driven by the O5 output of the LUT or the BYPASS slice inputs via AX,

BX, CX, or DX input. When the original four storage elements are configured as latches, these four

additional storage elements cannot be used.

Programmable Interconnect

In Fig 5.8 , a hierarchy of interconnect resources can be seen. There are long lines that can be used

to connect critical CLBs that are physically far from each other on the chip without inducing much

delay. Theses long lines can also be used as buses within the chip.

There are also short lines that are used to connect individual CLBs that are located physically close

to each other. Transistors are used to turn on or off connections between different lines. There are

also several programmable switch matrices in the FPGA to connect these long and short lines

together in specific, flexible combinations.

Three-state buffers are used to connect many CLBs to a long line, creating a bus. Special long lines,

called global clock lines , are specially designed for low impedance and thus fast propagation times.

These are connected to the clock buffers and to each clocked element in each CLB. This is how the

clocks are distributed throughout the FPGA, ensuring minimal skew between clock signals arriving

at different flip-flops within the chip.

In an ASIC, the majority of the delay comes from the logic in the design, because logic is connected

with metal lines that exhibit little delay. In an FGPA, however, most of the delay in the chip comes

from the interconnect, because the interconnect – like the logic – is fixed on the chip. In order to

connect one CLB to another CLB in a different part of the chip often requires a connection through

many transistors and switch matrices, each of which introduces extra delay.

Figure 5.7 : SLICEL

91

Macros

Create macros using multiple design element primitives. Following are the different types of

macros:

 Hard Macro (.nmc)

When we add a hard macro to our design, we are adding an instance of a library hard macro. Our

design can contain multiple instances of the same library hard macro, but each hard macro must

have a unique name. We can use FPGA Editor to create hard macros using either of the following

methods:

 Save a design as a hard macro. For details.

 Create a hard macro. This method is only recommended if we have advanced hand routing

skills and knowledge of our targeted architecture.

Note RPM macros are recommended instead of hard macros wherever possible, because hard

macros do not allow timing analysis. A hard macro is seen as a "black box" by the Xilinx® timing

tools. Timing can be analyzed to the input and output of the hard macro, but we must manually

verify the timing paths within the hard macro.

 Relationally Placed Macro (RPM)

RPMs define the spatial relationship of the primitives that comprise the RPM. We can define the

relative placements of these primitives to create our own RPMs, using constraints in a UCF file.

After create the RPM, we can use FPGA Editor to view the placement of the RPM and to verify that

it was created as expected.

Combinational Logic Implemented by Xilinx XC4000 CLB

Any function of up to four variables, plus any second function of up to four unrelated variables, plus

any third function of up to three unrelated variables ‰

Any single function of five variables ‰

Any function of four variables together with some functions of six variables ‰

Some functions of up to nine variables.

F(a, b, c, d, e) = a•F(a=1) + a’•F(a=0)

- Both F(a=1) and F(a=0) are four-input functions ‰

92

Figure 5.8 : Four variable implementation

Any function of four variables together with some functions of six variables can be implemented by

a single CLB

F(a,b,c,d,e,f) = a•b•F1 + a•b’•F2 + a’•b•F3 + a’•b’•F4

F1 = F(a=1, b=1);

F2 = F(a=1, b=0);

F3 = F(a=0, b=1);

F4 = F(a=0, b=0)

Condition: Among F1-F4, three of them are constant (e.g. F1=1, F2=F3=0)

Figure 5.9 : Four variable CLB implementation

Decoding Circuits

2-to-4 Decoding circuit

93

Figure 5.10 : 2 to 4 decoding circuit

10-to-1024 Decoding circuit

Figure 5.11 : 10 to 1024 decoding circuit

F1= x4•x5•x6•x7

F2= x0•x1•x2•x3

F3= x8•F1•F2 x9

F4= x9•F3

F5= x9’•F3

Disadvantages

 It needs 1024 CLBs; expensive to implement.

 It is a two level implementation, resulting large delay.

94

Dedicated Decoding Circuits in Xilinx FPGAs

Four dedicated programmable decoding circuits are included in Xilinx FPAGs. ‰

The number of decoder inputs ranges from 42 to 132 for different devices. ‰

The decoding circuits use wired-AND gate structures (like the AND plane in PAL).

Figure 5.12 : Dedicated decoding circuit

FPGA Implementation of Sequential Logic

Sequential Circuit: the circuit outputs depend on not only the current values of inputs but also

previous input values.

Figure 5.13 : Sequential Logic

95

Storage Elements in Xilinx CLB

Figure 5.14 : Storage Elements in Xilinx CLB

Each CLB contains two edge-triggered D flip-flops. They can be configured as positive-edge-

triggered or negative-edge-triggered. ‰

Each D flip-flop has clock enable signal E, which is active high. ‰

Each D flip-flop can be set or reset by SR signal. A global reset or reset signal is also available for

set or reset all D flip-flops once the device is powered up.

FPGA Implementation of Finite State Machines

Example of Finite State Machine

96

Figure 5.15 : State transition diagram

Figure 5.16 : State Table

State Encoding

Binary encoding: minimum number of D flip-flops

97

It needs two D flip-flps

Implementation Using Binary Encoding

Excitation table

Implementation Using Binary Encoding

Combinational functions needed to be implemented

D1 = x’+ y + Q0 (F1)

D0 = Q1•Q0 + y’•Q0’ + x’•Q0’ (F2)

a = Q1•Q0’ (F3)

b = Q1’•Q0 (F4)

c = Q1’•Q0’ (F5)

d = Q0’ + Q1’ (F6)

e = Q1’ (F7)

Implementation Using Binary Encoding

FPGA implementation

98

Figure 5.17 : FPGA implementation

TEXT / REFERENCE BOOKS

1. J.Bhaskar, “A VHDL Primer”, Prentice Hall of India Limited. 3rd edition 2004

2. Stphen Brown, "Fundamental of Digital logic with Verilog Design",3rd edition, Tata

McGraw Hill, 2008

3. J.Bhaskar, “A Verilog HDL Primer”, Prentice Hall of India Limited. 3rd edition 2004

4. Samir Palnitkar” Verilog HDL: A Guide to Digital Design and Synthesis”, Star Galaxy

Publishing; 3rd edition,2005

5. Michael D Ciletti - Advanced Digital Design with VERILOG HDL, 2nd Edition, PHI,

2009.

6. Z Navabi - Verilog Digital System Design, 2nd Edition, McGraw Hill, 2005.

99

7. Stuart Sutherland, “RTL Modeling With System Verilog for Simulation and

Synthesis: Using System Verilog for ASIC and FPGA Design”,1st Edition, Sutherland

HDL,Inc., 2017.

8. Simon Monk, “Programming FPGAs: Getting Started with Verilog”, 1st Edition, Tata

McGraw Hill,2016.

9. User Guide – “7 Series FPGAs Configurable Logic Block” - (WWW.XILINX.COM)

QUESTION BANK

PART- A

1. Illustrate ISE design flow

2. Define CLB

3. Describe the Features 7 Series CLB

4. Distinguish between SLICEM and SLICEL

5. List the types of Macros

PART- B

1. Explain the XILINX 7 series FPGA Configurable Logic Block.

2. Illustrate the slices of CLB’s with neat sketches

3. Justify Architecture can be Implemented in FPGA. Discuss the flow.

	SCHOOL OF ELECTRICAL AND ELECTRONICS
	DEPARTMENT OF ELECTRONICS AND COMMMUNICATION ENGINEERING

	SCHOOL OF ELECTRICAL AND ELECTRONICS (1)
	DEPARTMENT OF ELECTRONICS AND COMMMUNICATION ENGINEERING

	SCHOOL OF ELECTRICAL AND ELECTRONICS (2)
	DEPARTMENT OF ELECTRONICS AND COMMMUNICATION ENGINEERING

	SCHOOL OF ELECTRICAL AND ELECTRONICS (3)
	DEPARTMENT OF ELECTRONICS AND COMMMUNICATION ENGINEERING
	Design Under Test (DUT)
	Implementation of test bench
	Reg and wire declarations
	DUT Instantiation
	Test bench for AND Gate
	Testbench for D-flip flop

	SCHOOL OF ELECTRICAL AND ELECTRONICS (4)
	DEPARTMENT OF ELECTRONICS AND COMMMUNICATION ENGINEERING
	Logic Blocks
	Logic Slices
	1. Look-up tables
	2. Flip Flops
	3. Fast Carry Logic

	Interconnect
	DSP Slice

