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UNIT – I - BASIC CONCEPTS IN VHDL – SECA1602 



I. Introduction 

VHDL 

VHDL is an acronym for VHSIC Hardware Description Language (VHSIC is an 
acronym for Very High-Speed Integrated Circuits). It is a hardware description 
language that can be used to model a digital system at many levels of abstraction 
ranging from the algorithmic level to the gate level. The complexity of the digital 
system being modeled could vary from that of a simple gate to a complete digital 
electronic system, or anything in between. The digital system can also be described 
hierarchically. Timing can also be explicitly modeled in the same description. The 
VHDL language can be regarded as an integrated amalgamation of the following 
languages: 

 sequential language 
 Concurrent language 
 net-list language 
 timing specifications 
 Waveform generation language. 

Therefore, the language has constructs that enable you to express the concurrent or 
sequential behavior of a digital system with or without timing. It also allows you to 
model the system as an interconnection of components. Test waveforms can also be 
generated using the same constructs. All the above constructs may be combined to 
provide a comprehensive description of the system in a single model. 

 The language not only defines the syntax but also defines very clear simulation 
semantics for each language construct. Therefore, models written in this language can 
be verified using a VHDL simulator. It is a strongly typed language and is often 
verbose to write. It inherits many of its features, especially the sequential language 
part, from the Ada programming language. Because VHDL provides an extensive 
range of modeling capabilities, it is often difficult to understand. Fortunately, it is 
possible to quickly assimilate a core subset of the language that is both easy and simple 
to understand without learning the more complex features. This subset is usually 
sufficient to model most applications. The complete language, however, has sufficient 
power to capture the descriptions of the most complex chips to a complete electronic 
system. 

Digital system design process: - 

 Digital Systems have conquered the whole world. Every appliances or 
equipment’s we see today are digital. This is because of the very small element called 
Transistor invented by John Bardeen, Walter Brattain & William Shockley in 1947 at 
Bell Labs. This tiny and Powerful transistor changed the future of Electronics. 
Therefore, it is our responsibility to study the analysis and design of this digital system 
as an electronic student. In this chapter we will study the Basic Digital IC Design Flow 
and then we will study what are the tools available for digital design and synthesis. 
Later we are going to study a special hardware description language (VHDL) which 
is used to describe the digital systems. 

Digital Design Flow Process: - 



 

Fig 1.1: Generic IC design flow 

 Based on the specification given, the design team forms a general idea about 
the solution to the problem. System level decisions are made regarding the design and 
a general consensus is reached regarding the major functional blocks that go into the 
making of the chip. At the end of this stage, a general block diagram solution of the 
design is agreed upon. CAD tools are generally not needed at this stage. 

Behavioral Design: 

 Hardware Description Languages (HDLs) are used to model the design idea 
(block diagram). Circuit details and electrical components are not specified. Instead, 
the behavior of each block at the highest level of abstraction is modeled. Simulations 
are then run to see if the blocks do indeed function as expected and the whole system 
performs as a whole. Behavioral descriptions are important as they corroborate the 
integrity of the design idea. Here we don’t have any architectural or hardware details. 

Data Path Design: 

 The next Phase in the design process is the design of the system data path. In 
this phase, the designer specifies the registers and logic units necessary for 
implementation of the system. These components may be interconnected using either 
bidirectional or unidirectional buses. Based on the intended behavior of the system, 
the procedure of controlling the movement of data between registers and logic units 
through buses are developed. Data components in the data part of circuit communicate 
via system busses and the control procedure controls flow of data between these 
components. This phase results in architectural design of the system with specification 
of control flow. 

Logic Design: 



Logic Design is the next phase in the design process and involves the use of primitive 
gates and flip-flops for the implementation of data registers, busses, logic units, and 
their controlling hardware. The result of this design stage is a net list of gates and flip-
flops. Components used and their interconnections are specified in this net list. 

Physical Design: 

This stage transforms the net list into transistor list or layout. This involves the 
replacement of gates and flip-flops with their transistor equivalents or library cells.  

Manufacturing: 

  The final step is manufacturing, which uses the transistor list or layout 
specification to burn fuses of FPGA or to generate masks for Integrated circuit (IC). 

Levels of Abstraction: - 

Hardware Abstraction: 

VHDL is used to describe a model for a digital hardware device. This model specifies 
the external view of the device and one or more internal views. The internal view of 
the device specifies the functionality or structure, while the external view specifies the 
interface of the device through which it communicates with the other models in its 
environment. Fig1.2 shows the hardware device and the corresponding software 
model. 

 The device-to-device model mapping is strictly a one to many. That is, a 
hardware device may have many device models. For example, a device modeled at a 
high level of abstraction may not have a clock as one of its inputs, since the clock may 
not have been used in the description. Also, the data transfer at the interface may be 
treated in terms of say, integer values, instead of logical values. In VHDL, each device 
model is treated as a distinct representation of a unique device, called an entityin this 
text. Fig1.2 shows the VHDL view of a hardware device that has multiple device 
models, with each device model representing one entity. Even though entity I through 
N represent N different entities from the VHDL point of view, in reality they represent 
the same hardware device.  

 The entity is thus a hardware abstraction of the actual hardware device. Each 
entity is described using one model that contains one external view and one or more 
internal views. At the same time, a hardware device may be represented by one or 
more entities. 



 

Fig 1.2 A VHDL view of a device 

Basic Terminology: 

 VHDL is a hardware description language that can be used to model a digital 
system. The digital system can be as simple as a logic gate or as complex as a complete 
electronic system. A hardware abstraction of this digital system is called an entity in 
this text. An entity X, when used in another entity Y, becomes a component for the 
entity Y. Therefore, a component is also an entity, depending on the level at which 
you are trying to model. 

To describe an entity, VHDL provides five different types of primary constructs, 
called design units. They are 

1. Entity declaration  
2. Architecture body  
3. Configuration declaration  
4. Package declaration  
5. Package body 

 An entity is modeled using an entity declaration and at least one architecture 
body. The entity declaration describes the external view of the entity, for example, the 
input and output signal names. The architecture body contains the internal description 
of the entity, for example, as a set of interconnected components that represents the 
structure of the entity, or as a set of concurrent or sequential statements that represents 
the behavior of the entity. Each style of representation can be specified in a different 
architecture body or mixed within a single architecture body Fig1.3 shows an entity 
and its model 

 

Fig 1.3 An entity and its model. 

 A configuration declaration is used to create a configuration for an entity. It 
specifies the binding of one architecture body from the many architecture bodies that 



may be associated with the entity. It may also specify the bindings of components used 
in the selected architecture body to other entities. An entity may have any number of 
different configurations. A package declaration encapsulates a set of related 
declarations such as type declarations, subtype declarations, and subprogram 
declarations that can be shared across two or more design units. A package body 
contains the definitions of subprograms declared in a package declaration. Fig1.4 
shows three entities called El, E2, and E3. Entity El has three architecture bodies, 
EI_AI, EI_A2, and EI_A3. Architecture body EI _AI is a purely behavioral model 
without any hierarchy. Architecture body EI_A2 uses a component called BX, while 
architecture body EI_ A3 uses a component called CX. Entity E2 has two architecture 
bodies, E2_ AI and E2_A2, and architecture body E2_AI uses a component called MI. 
Entity E3 has three architecture bodies, E3_ AI, E3_A2, and E3_A3. Notice that each 
entity has a single entity declaration but more than one architecture body. 

 The dashed lines represent the binding that may be specified in a configuration 
for entity El. There are two types of binding shown: binding of an architecture body 
to its entity and the binding of components used in the architecture body with other 
entities. For example, architecture body, EI_A3, is bound to entity El, while 
architecture body, E2_AI, is bound to entity E2. Component MI in architecture body, 
E2_AI, is bound to entity E3. Component CX in the architecture body, EI _A3, is 
bound to entity E2. However, one may choose a different configuration for entity El 
with the following bindings: 

• Architecture EI_A2 is bound to its entity El 
• Component BX to entity E3 
• Architecture E3_AI is bound to its entity E3 

 

 
Fig 1.4 A configuration for entity El. 

 
Once an entity has been modeled, it needs to be validated by a VHDL system. 
A typical VHDL system consists of an analyzer and a simulator. The analyzer 
reads in one or more design units contained in a single file and compiles them 
into a design library after validating the syntax and performing some static 
semantic checks. The design library is a place in the host environment (that is, 
the environment that supports the VHDL system) where compiled design units 
are stored. The simulator simulates an entity, represented by an entity-
architecture pair or by a configuration, by reading in its compiled description 
from the design library and then performing the following steps: 

1. Elaboration  
2. Initialization  



3. Simulation 

  A note on the language syntax. The language is case insensitive, that is, 
lower case and upper-case characters are treated alike. For example, 
CARRY, CarrY, or CarrY, all refer to the same name. The language is also 
free -format, very much like in Ada and Pascal programming languages. 
Comments are specified in the language by preceding the text with two 
consecutive dashes (-). All text between the two dashes and the end of that 
line is treated as a comment. The terms introduced in this section are 
described in greater detail in the following sections. 

Entity Declaration: 
   The entity' declaration specifies the name of the entity being 
modeled and lists  
the set of interface ports. Ports are signals through which the entity 
communicates with the other models in its external environment. 
 

 
Fig 1.5 A half-adder circuit. 

Here is an example of an entity declaration for the half-adder circuit shown in  
Fig. 1.5. 

entity HALF_ADDER is 
port (A, B: in BIT; SUM, CARRY: out BIT);  
end HALF_ADDER; 
 

The entity, called HALF_ADDER, has two input ports, A and B (the mode in 
specifies input port), and two output ports, SUM and CARRY (the mode out 
specifies output port). BIT is a predefined type of the language; it is an 
enumeration type containing the character literals '0' and '1'. The port types for 
this entity have been specified to be of type BIT, which means that the ports 
can take the values, '0' or '1'. 
 The following is another example of an entity declaration for a 2-to-4 
decoder circuit shown in Fig. 1.6. 
   entity DECODER2x4 is 
    port (A, B, ENABLE: in SIT:  
     Z: out BIT_VECTOR(0 to 3)); 
     end DECODER2x4; 
 

 



Fig 1.6: A 2-to-4 decoder circuit. 
This entity, called DECODER2x4, has three input ports and four output ports. 
BIT_VECTOR is a predefined unconstrained array type of BIT. An unconstrained 
array type is a type in which the size of the array is not specified. The range "0 to 3" 
for port Z specifies the array size. 
  From the last two examples of entity declarations, we see that the entity 
declaration does not specify anything about the internals of the entity. It only 
specifies the name of the entity and the interface ports. 
Architecture Body: 
The internal details of an entity are specified by an architecture body using any of 
the  
following modeling styles: 

1. As a set of interconnected components (to represent structure), 
2. As a set of concurrent assignment statements (to represent dataflow),  
3. As a set of sequential assignment statements (to represent behavior),  
4. Any combination of the above three. 

 

Structural Style of Modeling: 

In the structural style of modeling, an entity is described as a set of interconnected 
components. Such a model for the HALF_ADDER entity, shown in Fig. 1.5, is 
described in an architecture body as shown below. 

   architecture HA_STRUCTURE of  

    HALF_ADDER is component  

    XOR2 

     port (X, Y: in BIT;  

      Z: out BIT);  

     end component;  

    component AND2 

    port (L, M: in BIT;  

                  N: out BIT);  

    end component; 

    begin 

    X1: XOR2 port map (A, B, SUM);  

    A1: AND2 port map (A, B, CARRY); 

   end HA_STRUCTURE; 

The name of the architecture body is HA_STRUCTURE. The entity declaration for 
HALF_ADDER (presented in the previous section) specifies the interface ports for 
this architecture body. The architecture body is composed of two parts: the 
declarative part (before the keyword begin) and the statement part (after the keyword 
begin). Two component declarations are present in the declarative part of the 
architecture body. These declarations specify the interface of components that are 
used in the architecture body. The components XOR2 and AND2 may either be 



predefined components in a library, or if they do not exist, they may later be bound 
to other components in a library. 

  The declared components are instantiated in the statement part of the 
architecture body using component instantiation statements. XI and A1 are the 
component labels for these component instantiations. The first component 
instantiation statement, labeled XI, shows that signals A and B (the input ports of 
the HALF_ADDER), are connected to the X and Y input ports of a XOR2 
component, while output port Z of this component is connected to output port SUM 
of the HALF_ADDER entity. 

  Similarly, in the second component instantiation statement, signals A and 
B are connected to ports L and M of the AND2 component, while port N is 
connected to the CARRY port of the HALF_ADDER. Note that in this case, the 
signals in the port map of a component instantiation and the port signals in the 
component declaration are associated by position (called positional association). 
The structural representation for the HALF_ADDER does not say anything about 
its functionality. Separate entity models would be described for the components 
XOR2 and AND2, each having its own entity declaration and architecture body. 

A structural representation for the DECODER2x4 entity, shown in Fig. 1.6, is shown 
next.  

architecture DEC_STR of  
  DECODER2x4 is component  
  INV 
   port (A: in BIT;  
            Z: out BIT);  
end component;  
component NAND3 
port (A, B, C: in BIT;  
   Z: out BIT);  
end component;  
signal ABAR, BBAR: BIT 

 begin 

 I0: INV port map (A, ABAR);  

 I1: INV port map (B, BBAR); 

 N0: NAND3 port map (ABAR, BBAR, ENABLE, Z(0));  

  N1: NAND3 port map (ABAR, B, ENABLE, Z (1));  

 N2: NAND3 port map (A, BBAR, ENABLE, Z (2));  

 N3: NAND3 port map (A, B, ENABLE, Z (3)); 

 end DEC_STR; 

   In this example, the name of the architecture body is DEC_ STR, and it is 
associated with the entity declaration with the name DECODER2x4; therefore, it 
inherits the list of interface ports from that entity declaration. In addition to the two 
component declarations (for INV and NAND3), the architecture body contains a 
signal declaration that declares two signals, ABAR and BBAR, of type BIT. These 
signals, that represent wires, are used to connect the various components that form 



the decoder. The scope of these signals is restricted to the architecture body, and 
therefore, these signals are not visible outside the architecture body. Contrast these 
signals with the ports of an entity declaration that are available for use within any 
architecture body associated with the entity declaration 

 A component instantiation statement is a concurrent statement, as defined by the 
language. Therefore, the order of these statements is not important. The structural 
style of modeling describes only an interconnection of components (viewed as black 
boxes) without implying any behavior of the components themselves, nor of the entity 
that they collectively represent. In the architecture body DEC_STR, the signals A, B, 
and ENABLE, used in the component instantiation statements are the input ports 
declared in the DECODER2x4 entity declaration. For example, in the component 
instantiation labeled N3, port A is connected to input A of component NAND3, port 
B is connected to input port B of component NAND3, port ENABLE is connected to 
input port C, and the output port Z of component NAND3 is connected to port Z (3) 
of the DECODER2x4 entity. Again, positional association is used to map signals in a 
port map of a component instantiation with the ports of a component specified in its 
declaration. The behavior of the components NAND3 and INV are not apparent, nor 
is the behavior of the decoder entity that the structural model represents 

Configuration Declaration: 

 A configuration declaration is used to select one of the possibly many 
architecture bodies that an entity may have, and to bind components, used to represent 
structure in that architecture body, to entities represented by an entity-architecture pair 
or by a configuration, that reside in a design library. Consider the following 
configuration declaration for the HALF_ADDER entity 

 library CMOS_LIB, MY_LIB;  

 configuration HA_BINDING of 

  HALF_ADDER is for HASTRUCTURE 

   for X1:XOR2 

    use entity 

    CMOS_LIB.XOR_GATE(DATAFLOW); 

   end for; 

   for A1:AND2 

    use configuration MY_LIB.AND_CONFIG;  

   end for; 

   end for; end HA_BINDING; 
 

  The first statement is a library context clause that makes the library names 
CMOS_LIB and MY_LIB visible within the configuration declaration. The name of 
the configuration is HA _BINDING, and it specifies a configuration for the 
HALF_ADDER entity. The next statement specifies that the architecture body 
HA_STRUCTURE (described in Sec. 23.1) is selected for this configuration. Since 
this architecture body contains two component instantiations, two component 
bindings are required. The first statement (for XI: . . . end for) binds the component 



instantiation, with label XI, to an entity represented by the entity-architecture pair, 
XOR_GATE. 

  The architecture body consists of one signal declaration and six concurrent 
signal assignment statements. The signal declaration declares signals ABAR and 
BBAR to be used locally within the architecture body. In each of the signal 
assignment statements, no after clause was used to specify delay. In all such cases, a 
default delay of 0ns is assumed. This delay of 0ns is also known as delta delay, and it 
represents an infinitesimally small delay. This small delay corresponds to a zero delay 
with respect to simulation time and does not correspond to any real simulation time. 

  To understand the behavior of this architecture body, consider an event 
happening on one of the input signals, say input port B at time T. This would cause 
the concurrent signal assignment statements 1,3, and 6, to be triggered. Their right -
hand-side expressions would be evaluated and the corresponding values would be 
scheduled to be assigned to the target signals at time (T+A). When simulation time 
advances to (T+A), new values to signals Z(3), BBAR, and Z(1), are assigned. Since 
the value of BBAR changes, this will in turn trigger signal assignment statements, 2 
and 4. Eventually, at time (T+2A), signals Z(0) and Z(2) will be assigned their new 
values. 

  The semantics of this concurrent behavior indicate that the simulation, as 
defined by the language, is event-triggered and that simulation time advances to the 
next time unit when an event is scheduled to occur. Simulation time could also 
advance a multiple of delta time units. For example, events may have been scheduled 
to occur at times 1,3,4,4+A, 5,6,6+A, 6+2A, 6+3A, 10,10+A, 15, 15+A time units. 

 Entity declaration and the DATAFLOW architecture body, that resides in the 
CMOS_LIB design library. Similarly, component instantiation Al is bound to a 
configuration of an entity defined by the configuration declaration, with name 
AND_CONFIG, residing in the MY_LIB design library. 

  There are no behavioral or simulation semantics associated with a 
configuration declaration. It merely specifies a binding that is used to build a 
configuration for an entity. These bindings are performed during the elaboration 
phase of simulation when the entire design to be simulated is being assembled. 
Having defined a configuration for the entity, the configuration can then be simulated. 
When an architecture body does not contain any component instantiations, for 
example, when dataflow style is used, such an architecture body can also be selected 
to create a configuration. For example, the DEC_DATAFLOW architecture body can 
be selected for the DECODER2x4 entity using the following configuration 
declaration. 
 

configuration DEC_CONFIG of  

DECODER2x4 is for  

DEC_DATAFLOW 

end for; 

end DEC_CONFIG; 

 DEC_CONFIG defines a configuration that selects the DEC_DATAFLOW 
architecture body for the DECODER2x4 entity. The configuration DEC_CONFIG, 



that represents one possible configuration for theDECODER2x4 entity, can now be 
simulated 

Package Declaration 

A package declaration is used to store a set of common declarations like components, 
types, procedures, and functions. These declarations can then be imported into other 
design units using a context clause. Here is an example of a package declaration. 
 

  package EXAMPLE_PACK is 

   type SUMMER is (MAY, JUN, JUL, AUG, SEP);  

   component D_FLIP_FLOP 

    port (D, CK: in BIT; Q,  

           QBAR:out BIT);  

   end component; 

 constant PIN2PIN_DELAY: TIME: =125 ns;  

 function INT2BIT_VEC  

  (INT_VALUE: INTEGER) 

   return 

  BIT_VECTOR; 

 end EXAMPLE_PACK; 

The name of the package declared is EXAMPLE_PACK. It contains type, 
component, constant, and function declarations. Notice that the behavior of the 
function INT2BIT _VEC does not appear in the package declaration; only the 
function interface appears. The definition or body of the function appears in a package 
body (see next section). 

Assume that this package has been compiled into a design library called 
DESIGN_LIB. Consider the following context clauses associated with an entity 
declaration. 

library DESIGN_LIB;  

use DESIGN_LIB.EXAMPLE_P 

ACK.all; entity RX is . . . 
 

The library context clause makes the name of the design library DESIGN_LIB visible 
within this description, that is, the name DESIGN_LIB can be used within the 
description. This is followed by a use context clause that imports all declarations in 
package EXAMPLE_PACK into the entity declaration of RX.It is also possible to 
selectively import declarations from a package declaration into other design units. For 
example, 
 

 library DESIGN_LIB;  



  use 

  DES[GN_LIB.EXAMPLE_PACK.D_FLIP_ FLOP;  

  use  

  DESIGN_LIB.EXAMPLE_PACK.PIN2PIN_DELAY;  

  architecture RX_STRUCTURE of  

  RX is . . . 

 The two use context clauses make the component declaration for D_FLIP_FLOP 
and the constant declaration for PIN2PIN_DELAY, visible within the architecture 
body. Another approach to selectively import items declared in a package is by using 
selected names. For example 

  library DESIGN_LIB;  

  package 

  ANOTHER_PACKAGE is function  

  POCKET_MONEY 

   (MONTH:DESIGN_LIB.EXAMPLE_PAC K.SUMMER)  

   return INTEGER; 

   constant TOTAL_ALU: INTEGER; -- A deferred constant.  

  end ANOTHER_PACKAGE; 

The type SUMMER declared in package EXAMPLE_PACK is used in this new 
package by specifying a selected name. In this case, a use context clause was not 
necessary. Package ANOTHER_PACKAGE also contains a constant declaration 
with the value of the constant not specified; such a constant is referred to as a deferred 
constant. The value of this constant is supplied in a corresponding package body. 
 

Package Body: 

A package body is primarily used to store the definitions of functions and procedures 
that were declared in the corresponding package declaration, and also the complete 
constant declarations for any deferred constants that appear in the package 
declaration. Therefore, a package body is always associated with a package 
declaration; furthermore, a package declaration can have at most one package body 
associated with it. Contrast this with an architecture body and an entity declaration 
where multiple architecture bodies may be associated with a single entity declaration.  

A package body may contain other declarations as well. Here is the package body for 
the package EXAMPLE_PACK declared in the previous section. 

  package body EXAMPLE_PACK is 

   function INT2BIT_VEC (INT_VALUE: INTEGER)  

  return 

   BIT_VECTOR is 



    begin 

   end INT2BIT_VEC;  

  end EXAMPLE_PACK; 
The name of the package body must be the same as that of the package declaration 
with which it is associated. It is important to note that a package body is not necessary 
if the corresponding package declaration has no function and procedure declarations 
and no deferred constant declarations. Here is the package body that is associated with 
the package ANOTHER_PACKAGE that was declared in the previous section. 

 package body ANOTHER_PACKAGE is  

  constant TOTAL_ALU: INTEGER: = 10;  

  function POCKET_MONEY 

  (MONTH:  

  DESIGN_UB.EXAMPLE_PACK.SUMMER) 

  return INTEGER is 

 begin 

  case MONTH is 

   when MAY => return 5;  

   when JUL I SEP => return 6; 

   when others => return 2; 

  end case; end POCKET_MONEY;  

 end ANOTHER_PAC 

Data Operators: 

VHDL will support different types of operations. The following are the types of 
operators available in VHDL 

1. Assignment operator 

2. Logical Operator 

3. Relational Operator 

4. Shift operator 

5. Arithmetic operator 

 Addition Operator 

 Multiplication Operator 

 Miscellaneous operator 
Assignment Operator 

This operator is used to assign values to signals, variables, and  

constants. They are 

1. <= Used to assign a value to signal 



2.: = Used to assign a variable, constant or generic, used for also  

establishing initial values. 

3. => Used to assign values to individual vector or with others. 

Logical Operators 

Used to perform to logical operations. The data must be of type Bit, Std_logic or 
std_ulogic. The logical operators are 

 NOT 
 AND 
 OR 
 NAND 
 NOR, XOR & XNOR 

 Relational Operators: 

Used for making comparisons. The data can be of any types listed  

above. The relational (Comparison) operators listed below: 

1. = Equal to 

2. /= not equal to 

3. < Greater than 

4. > Lesser than 

5. <= Greater than 

6. >= Lesser than 

Shift Operators 

Used for shifting data. 

1. Sll: Shift left logic 

2. Sla: shift left arithmetic 

3. Srl: Shift right logic 

4. Sra: Shift right arithmetic 

5. Rol:Rotateleft 

6. Ror: Rotate right 

Arithmetic Operators 

Used to perform arithmetic operations. The data can be of integer, signed,  

Unsigned or a real. 

The different types of arithmetic operations are: 

1. Addition operator (+) 

2. Subtract Operator (-) 

3. Multiplication operator (*) 



4. Division Operator (/) 

5. Modulus (MOD) 

6. Remainder (REM) 
 

Miscellaneous Operator 

Uses as special cases in VHDL 

1.    Absolute (ABS): 

2.    Exponentiation (**) 

 

DATA TYPES 

All of the objects that are discussed in previous section—the signal, the Variable, 
and the constant—can be declared using a type specification to specify the 
characteristics of the object. VHDL contains a wide range of types that can be used to 
create simple or complex objects. To define a new type, you must create a type 
declaration. A type declaration defines the name of the type and the range of the type. 
Type declarations are allowed in package declaration sections, entity declaration 
sections, architecture declaration sections, subprogram declaration sections, and process 
declaration sections. 

 

Fig 1.7: Data Types in VHDL 

Scalar Types 

Scalar types describe objects that can hold, at most, one value at a time. The type 
itself can contain multiple values, but an object that is declared to be a scalar type can 
hold, at most, one of the scalar values at any point in time. Referencing the name of 



the object references the entire object. Scalar types encompass these four classes of 
types. 

 

1.   Integer types 

2.   Real types 

3.   Enumerated types 

4.   Physical types 

5.   Floating Point 

 

Enumerated Data Types 

An enumerated type is a very powerful tool for abstract modeling. A designer 
can use an enumerated type to represent exactly the values required for a specific 
operation. All of the values of an enumerated type are user-defined. These values can 
be identifiers or single-character literals. An identifier is like a name. 

These are further classified as the following: 

1.   Boolean 

2.   Character 

3.   Bit 

4.   Std_logic 

5.   Severity Level 

Boolean 

This data type is used when we need to convey some true or false conditions. 
For example 

Architecture ………………….. 

Beg
in 
Pro
cess 
(….
) 

Variable        temp 

:boolean 
Begin if a < 
b then 

 
temp <= 
True; Else 

temp <= False; 

end if; 



end process; 

 

Character 

This daa type is used when we need to use all alpha numeric and special characters. 

Bit 

This data type is used when we need to represent binary values (‘0’ and ‘1’) 

Severity Level 

This data type is used in Complex projects where we need to show warnings, 
errors in runtime, 

Failures in runtime. 

Std_ulogic; 

This data types are declared in std_logic_1164.all package of IEEE Library 

U →Uninitialized 

X →Forcing 
unknown Z 
→High Impedence 
W →Weak 
unknown 

‘x‘→don’t care 

0 →Forcing 0 

1 →Forcing 1 

L → Weak 0 

H →Weak 1 

A typical enumerated type for a four-state simulation value system looks like this: 

Type fourval is (‘x’, ‘0’, ‘1’, ‘z’); 

Character literals are needed for values ‘1’ and ‘0’ to separate these values from 
the integer values 1 and 0. It would be an error to use the values 1 and 0 in an enumerated 
type, because these are integer values. The characters X and Z do not need quotes around 
them because they do not represent any other type, but the quotes were used for 
uniformity. 

Integer Data type 

Integers   are   exactly   like   mathematical   integers.   All   of   the   normal   predefined 
mathematical functions like add, subtract, multiply, and divide apply to integer types. 
The VHDL LRM does not specify a maximum range for integers, but does specify the 
minimum  range:  from  -2,147,483,647  to  12,147,483,647.  The  minimum  range  is 
specified by the Standard package contained in the Standard Library. The Standard 
package defines all of the predefined VHDL 

The Standard Library is used to hold any packages or entities provided as standard 
with the language. 



There are two types of declaration for Integer Data type 

1.   Type_integer declaration 

Ex: type <word lengt> is range 0 to 31; 

2.   Object_integer declaration 

Ex: constant <loop number>: <integer><=345; 

Real Data 
Type 

 

Real types are used to declare objects that emulate mathematical real numbers. They 
can be used to represent numbers out of the range of integer values as well as fractional 
values. The minimum range of real numbers is also specified by the Standard package 
in the Standard library, and is from _1.0E_38 to _1.0E_38. 

 

Following are a few examples of some real 
numbers: Architecture test of test is 

Signal a: real; 

begin 

a <= 1.0;         --ok 1 

a <= 1;            --
error 2 a <= -
1.0e10; --ok 3 

a <= 1.5e-20;   --ok 4 

a <= 5.3 ns;    --error 5 

End test; 

Line 1 shows how to assign a real number to a signal of type REAL. All real 
numbers have a decimal point to distinguish them from integer values. Line 2 is an 
example of an assignment that does not work. Signal a is of type REAL, and a real 
value must be assigned to signal a. The value 1 is of type INTEGER, so a type 
mismatch is generated  by  this  line.  Line  3  shows  a  very  large  negative  number.  
The  numeric characters to the left of the character E represent the mantissa of the real 
number, while the numeric value to the right represents the exponent. Line 4 shows how 
to create a very small number. In this example, them exponent is negative so the number 
is very small. Line 5 shows how a type TIME cannot be assigned to a real signal. Even 
though the numeric part of the value looks like a real number, because of the units after 
the value, the value is considered to be of type TIME. 

Physical Data 
types 

Physical types are used to represent physical quantities such as distance, current, 
time, and so on. A physical type provides for a base unit, and successive units are then 
defined in terms of this unit. The smallest unit represent able is one base unit; the 
largest is determined by the range specified in the physical type declaration. An example 
of a physical type for the physical quantity current is shown here: 



Type current is range 0 to 1000000000 

Units 

na; --nano amps 

ua = 1000 na; --micro amps  

ma = 1000 ua; --milli amps 

 a = 1000 ma; --amps 

end units; 

The type definition begins with a statement that declares the name of the type 
(current) and the range of the type (0 to 1,000,000,000). The first unit declared in 
the UNITS section is the base unit. In the preceding example, the base unit is na. 
After the base unit is defined, other units can be defined in terms of the base unit or 
other units already defined. In the preceding example, the unit ua is defined in terms 
of the base unit as 1000 base units. The next unit declaration is ma. This unit is 
declared as 1000 ua. The unit declaration section is terminated by the END UNITS 
clause. More than one unit can be declared in terms of the base unit. In the preceding 
example, the ma unit can be declared as 1000 ma or 1,000,000 na. The range 
constraint limits the minimum and maximum values that the physical type can 
represent in base units. The unit identifiers all must be unique within a single 
type. It is illegal  to have two identifiers with the same name. 

Signal Assignment Statement 
 

Signals are assigned values using a signal assignment statement The simplest form of 
a signal assignment statement is 

signal-object<= expression [after delay-value ]; 

A signal assignment statement can appear within a process or outside of a 
process. If it occurs outside of a process, it is considered to be a concurrent signal 
assignment statement.  When a signal assignment statement appears within a process, 
it is considered to be a sequential signal assignment statement and is executed in 
sequence with respect to the other sequential statements that appear within that process. 

When a signal assignment statement is executed, the value of the expression is 
computed and this value is scheduled to be assigned to the signal after the specified 
delay. It is important to note that the expression is evaluated at the time the statement 
is executed (which is the current simulation time) and not after the specified delay. If no 
after clause is specified, the delay is assumed to be a default delta delay. 

Some examples of signal assignment statements are 

 

COUNTER <= COUNTER+ "0010"; - Assign after a delta delay. 
PAR <= PAR xor DIN after 12 ns; 

Z <= (AO and A1) or (BO and B1) or (CO and C1) after 6 ns; 

 

 



Inertial Delay Model 
 

Inertial delay models the delays often found in switching circuits. It represents 
the time for which an input value must be stable before the value is allowed to 
propagate to the output. In addition, the value appears at the output after the specified 
delay. If the input is not stable for the specified time, no output change occurs. When 
used with signal assignments, the input value is represented by the value of the 
expression on the right-hand-side and the output is represented by the target signal. 

Fig1.8 shows a simple example of a noninverting buffer with an inertial delay of 10 
ns. 

 

 

Fig 1.8: Inertial delay example. 

 

Events on signal A that occur at 5 ns and 8 ns are not stable for the inertial delay duration 
and hence do not propagate to the output. Event on A at 10ns remains stable for more 
than the inertial delay, and therefore, the value is propagated to the target signal Z after 
the inertial delay; Z gets the value 1' at 20 ns. Events on signal A at 

25ns and 28 ns do not affect the output since they are not stable for the inertial delay 
duration. Transition 1' to '0' at time 30 ns on signal A remains stable for at least the 
inertial delay duration, and therefore, a '0' is propagated to signal Z with a delay of 10 
ns; Z gets the new value at 40 ns. Other events on A do not affect the target signal Z. 
Since inertial delay is most commonly found in digital circuits, it is the default delay 
model. This delay model is often used to filter out unwanted spikes and transients on 
signals. 

Transport Delay Model 

Transport delay models the delays in hardware that do not exhibit any inertial delay. 
This delay represents pure propagation delay, that is, any changes on an input is 
transported to the output, no matter how small, after the specified delay. To use a 
transport delay model, the keyword transport must be used in a signal assignment 
statement. Fig 1.9 shows an example of a non-inverting buffer using a transport delay 
of 10 ns. 

 

Fig 1.9: Transport delay example. 

Ideal delay modeling can be obtained by using this delay model. In this case, spikes 
would be propagated through instead of being ignored as in the inertial delay case. 
Routing delays can be modeled using transport delay. An example of a routing delay 
model is 



 

entity WIRE14 is 
port(A: in BIT; Z: out BIT); 

endWIRE14; 

 

architedtureWIRE14_TRANSPORT    of 

WIRE14 is begin 
process( 
A) begin 

Z <= transport A after 

0.1 ms; end process; 

endWIRE14_TRANSPORT; 

 

Concurrent and Sequential assignments 

1.  As a set of concurrent assignment statements (to represent dataflow), 

2.  As a set of sequential assignment statements (to represent be-hav.ior), 

 

Dataflow Style of Modeling(Concurrent assignment) 

 

In this modeling style, the flow of data through the entity is expressed primarily using 
concurrent signal assignment statements. The structure of the entity is not explicitly 
specified in this modeling style, but it can be implicitly deduced. Consider the following 
alternate architecture body for the HALF ADDER entity that  uses this style. 

 

architectureHA_CONCURRENTofHALF_ 
ADDER is  

begin 

SUM <= A xor B after 8 ns; CARRY <= A 
and B after 4 ns; 

endHA_CONCURRENT; 

The dataflow model for the HALF_ADDER is described using two concurrent 
signal assignment statements (sequential signal assignment statements are described 
in the next section). In a signal assignment statement, the symbol <= implies an 
assignment of a value to a signal. The value of the expression on the right-hand-side 
of the statement is computed and is assigned to the signal on the left-hand-side, called 
the target signal. A concurrent signal assignment statement is executed only when any 
signal used in the expression on the right-hand-side has an event on it, that is, the 
value for the signal changes. 

Delay information is included in the signal assignment statements using after 
clauses. If either signal A or B, which are input port signals of HALF_ADDER entity, 
has an event, say at time T, the right-hand-side expressions of both signal assignment 



statements are evaluated. Signal SUM is scheduled to get the new value after 8 ns while 
signal CARRY is scheduled to get the new value after 4 ns. When simulation time 
advances to (T+4) ns, CARRY will get its new value and when simulation time advances 
to (T+8) ns, SUM will get its new value. Thus, both signal assignment statements 
execute concurrently. 

Concurrent signal assignment statements are concurrent statements, and 
therefore, the ordering of these statements in an architecture body is not important. Note 
again that this architecture body, with name HA_CONCURRENT, is also associated 
with the same HALF_ADDER entity declaration. 

 

Here is a dataflow model for the DECODER2x4 entity. 

architscture dec_dataflow of DECODER2x4 

is signal ABAR, BBAR: BIT; 

begin 

Z(3) <=not (A and B and ENABLE);                   -- Statement 1 

Z(0) <=not (ABAR and BBAR and ENABLE);    --- Statement 2 

BBAR <= not B;                                                  -- Statement 3 

Z(2) <= not (A and BBAR and ENABLE);       -- Statement 4 

ABAR <= not A;                                                 -- Statement 5 

Z(1 ) <= not (ABAR and B and ENABLE);           -- Statement 6 

end DEC_DATAFLOW; 
 

The architecture body consists of one signal declaration and six concurrent 
signal assignment statements. The signal declaration declares signals ABAR and BBAR  
to  be  used  locally  within  the  architecture  body.  In each of the signal assignment 
statements, no after clause was used to specify delay. In all such cases, a default delay 
of 0ns is assumed. This delay of 0ns is also known as delta delay, and it represents an 
infinitesimally small delay. This small delay corresponds to a zero delay with respect to 
simulation time and does not correspond to any real simulation time. 

To understand the behavior of this architecture body, consider an event 
happening on one of the input signals, say input port B at time T. This would cause 
the concurrent signal assignment statements 1,3, and 6, to be triggered. Their right - 
hand-side expressions would be evaluated and the corresponding values would be 
scheduled to be assigned to the target signals at time (T+A). When simulation time 
advances to (T+A), new values to signals Z(3), BBAR, and Z(1), are assigned. Since 
the value of BBAR changes, this will in turn trigger signal assignment statements, 2 and 
4. Eventually, at time (T+2A), signals Z(0) and Z(2) will be assigned their new values.



The semantics of this concurrent behavior indicate that the simulation, as 
defined by the language, is event-triggered and that simulation time advances to the next 
time unit when an event is scheduled to occur. Simulation time could also advance a 
multiple of delta time units. For example, events may have been scheduled to occur at 
times 1,3,4,4+A, 5,6,6+A, 6+2A, 6+3A, 10,10+A, 15, 15+A time units. 

The after clause may be used to generate a clock signal as shown in the following 
concurrent signal assignment statement 

CLK <= not CLK after 10 ns; 

This statement creates a periodic waveform on the signal CLK with a time period 
of 20 ns as shown in Fig. 1.10. 

 
 

Fig 1.10: A clock waveform with constant on-off period. 

Behavioral Style of modeling (Sequential assignment) 

In contrast to the styles of modeling described earlier, the behavioral style of 
modeling specifies the behavior of an entity as a set of statements that are executed 
sequentially in the specified order. This set of sequential statements, that are specified 
inside a process statement, do not explicitly specify the structure of the entity but merely 
specifies its functionality. A process statement is a concurrent statement that can appear 
within an architecture body.  For example, consider the following behavioral model for the 
DECODER2x4 entity. 

 

architecture DEC_SEQUENTIAL of DECODER2x4 is 
begin 

process (A, B, ENABLE) 
variable ABAR, BBAR: BIT; 
begin 

ABAR := not A;      BBAR := not B;                                                    if (ENABLE = '1') 
Then             Z(3) <= not (A and B):                      Z(0) <= not (ABAR and BBAR); 

Z(2) <= not (A and BBAR);                      Z(1 ) <= not (ABAR and B); 

Else 

Z<="1111";            end if; end process; end; 

A process statement, too, has a declarative part (between the keywords process and 
begin), and a statement part (between the keywords begin and end process). The statements 
appearing within the statement part are sequential statements and are executed sequentially. 
The list of signals specified within the parenthesis after the keyword process constitutes a 
sensitivity list and the process statement is invoked whenever there is an event on any 
signal in this list. In the previous example, when an event occurs on signals A, B, the 
statements appearing within the process statement are executed sequentially. 

Signal assignment statements appearing within a process are called sequential 
signal assignmentstatements. Sequential signal assignment statements, including variable 
assignment statements, are executed sequentially independent of whether an event occurs 
on any signals in its right-hand-side expression or not; contrast this with the execution of 



concurrent signal assignment statements in the dataflow modeling style. In the previous 
architecture body, if an event occurs on any signal. A, B, statement I which is a 
variable assignment statement, is executed, then statement 2 is executed, and so on. 
Execution of the third statement, an if statement, causes control to jump to the appropriate 
branch based on the value of the signal, ENABLE. If the value of ENABLE is 1', the next 
four signal assignment statements, 4 through 7, are executed independent of whether A, 
B, ABAR, or BBAR changed values, and the target signals are scheduled to get their 
respective values after delta delay.  If ENABLE has a value '0', a value of 'V is assigned 
to each of the elements of the output array, Z. When execution reaches the end of the 
process, the process suspends itself, and waits for another event to occur on a signal in its 
sensitivity list. 

It is possible to use case or loop statements within a process. The semantics and structure 
of these statements are very similar to those in other high-level programming languages 
like C or Pascal. An explicit wait statement can also be used to suspend a process. It can 
be used to wait for a certain amount of time or to wait until a certain condition becomes 
true, or to wait until an event occurs on one or more signals. Here is an example of a 
process statement that generates a clock with a different on-off period. Fig1.11 shows the 
generated waveform. 

 

proces 
begin 

CLK <= '0' 

; wait for 20 
ns; CLK <= 

'1' ; wait for 

12 ns; 

end process; 
 

 

 

Fig 1.11: A clock waveform with varying on-off period. 

This process does not have a sensitivity list since explicit wait statements are 
present inside the process. It is important to remember that a process never terminates. It 
is always either being executed or in a suspended state. All processes are executed once 
during the initialization phase of simulation until they get suspended. Therefore, a process 
with no sensitivity list and with no explicit wait statements will never suspend itself. 

A signal can represent not only a wire but also a place holder for a value, that 

is, it can be used to model a flip-flop. Here is such an example. Port signal Q models a 
level-sensitive flip-flop. 

 

entityLS_DFF is 

port(Q: out BIT;  



       D, CLK:in BIT):  

end LS_DFF; 

architectureLS_DFF_BEH       of LS_DFF is  

begin  

process (D, CLK) 
begin 

if(CLK  =  '1') 

then Q<= D; 

end if;           
end process; 

end LS_DFF_BEH; 

Delta Delay 

A delta delay is a very small delay (infinitesimally small). It does not correspond 
to any real delay and actual simulation time does not advance. This delay models hardware 
where a minimal amount of time is needed for a change to occur, for example, in 
performing zero delay simulation. Delta delay allows for ordering of events that occur 
at the same simulation time during a simulation.  Each unit of simulation time can be 
considered to be composed of an infinite number of delta delays. Therefore, an event 
always occurs at a real simulation time plus an integral multiple of delta delays. For 
example, events can occur at 15 ns, 15 ns+IA, 15 ns+2A,15 ns+3A, 22 ns, 22 ns+A, 27 ns, 
27 ns+A, and so on. 

Consider the AOI_SEQUENTIAL architecture body. Let us assume that an event 
occurs on input signal D (i.e., there is a change of value on signal D) at simulation time T. 
Statement 1 is executed first and TEMPI is assigned a value immediately since it is a 
variable.  Statement 2 is executed next and TEMP2 is assigned a value immediately. 
Statement 3 is executed next which uses the values of TEMPI and TEMP2 computed in 
statements I and 2, respectively, to determine the new value for TEMPI. And finally, 
statement 4 is executed that causes signal Z to get the value of its right -hand-side 
expression after a delta delay, that is, signal Z gets its value only at time T+A; this is shown 
in Fig. 1.12 

 

 

 

Fig 1.12: Delta delay. 

 

Consider the process PZ described in the previous section. If an event occurs on 
signal A at time T, execution of statement I causes VI to get a value, signal Z is then 
scheduled to get a value at time T+A, and finally statement 3 is executed in which 
the old value of signal Z is used, that is, its value at time T, not the value that was scheduled 



to be assigned in statement 2. The reason for this is because simulation time is still at time 
T and has not advanced to time T+A. Later when simulation time advances to T+A, signal 
Z will get its new value. This example shows the important distinction between a variable 
assignment and a signal assignment statement. Variable assignments cause variables to get 
their values instantaneously while signal assignments cause signals to get their values at 
a later time (at least a delta delay later). 

So far we have seen two examples of sequential statements, the variable assignment 
statement and the signal assignment statement. Other kinds of sequential statements are 
described next. 
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PART-A 

1. Distinguish VHDL and Verilog HDL. 

QUESTION BANK

2. Data objects are significant in VHDL Justify. 

3. List the language elements of VHDL 

4. Formulate the syntax of process statement in VHDL. 

5. Classify the programming models in VHDL. 

6. Wait statement is important in VHDL. Support this statement. 

7. Justify how signal declaration is done in VHDL 

8. Distinguish concurrent signal assignment and sequential signal assignment. 

9. Justify the importance and objects in VHDL 

10. List the data types in VHDL 

 

PART-B 

1. In VHDL, data types and operators are the most significant concept, Explain it. 

2. Illustrate the different delay types in VHDL programming. 



3. Illustrate the different language elements in VHDL. 

4. Discuss concurrent and sequential assignment statements. 

5. Identify and illustrate digital system design process and hardware abstraction.



Behavioral Modeling 

This chapter presents the behavioral style of modeling. In this modeling style, the 
behavior of the entity is expressed using sequentially executed, procedural type code, 
A process statement is the primary mechanism used to model the procedural type 
behavior of an entity. This chapter describes the process statement and the various kinds 
of sequential statements that can be used within a process statement to model such 
behavior. 

Irrespective of the modeling style used, every entity is represented using an 
entity declaration and at least one architecture body. The first two sections describe 
these in detail. 

An architecture body describes the internal view of an entity. It describes the 
functionality or the structure of the entity. The syntax of an architecture body is 

 

architecture architecture-name of entity-name is  

[ architecture- item-declarations]

begin  

statements;

end architecture-name; 

Statements are —> 
process-statement 
block-statement 

concurrent-procedure call concurrent 
assertionstatement 

concurrent-signal-assignmentstatement 
 

component-instantiation-statement generate-statement 
 

Process Statement 

A process statement contains sequential statements that describe the functionality of a 
portion of an entity in sequential terms. The syntax of a process statement is 

 

[ process-label:] process [(sensitivity-list)]  

[process- item-declarations]

begin  

sequential-statements; 

these       are       ->



variable- assignment- 
statement signal- 
assignment statement 
wait-statement if- 
statement 

case- 
statement 
loop- 
statement 
null- 
statement 
exit- 
statement 

next-statement 
assertion-statement 
procedure-call- 
statement      return- 
statement. 

end process [process-label]; 

A set of signals that the process is sensitive to is defined by the sensitivity 
list. In other words, each time an event occurs on any of the signals in the sensitivity 
list, the sequential statements within the process are executed in a sequential order, that 
is, in the order in which they appear (similar to statements in a high-level programming 
language like C or Pascal). The process then suspends after executing the last sequential 
statement and waits for another event to occur on a signal in the sensitivity list. Items 
declared in the item declarations part are available for use only within the process. 

The architecture body, AOI _SEQUENTIAL, presented earlier, contains one process 
statement. This process statement has four signals in its sensitivity list and has one 
variable declaration. If an event occurs on any of the signals, A, B, C, or D, the 
process  is  executed.  This  is  accomplished  by  executing  statement  1  first,  then 
statement 2, followed by statement 3, and then statement 4. After this, the process 
suspends (simulation does not stop, however) and waits for another event to occur on 
a signal in the sensitivity list. 

Variable Assignment Statement 

Variables can be declared and used inside a process statement. A variable is assigned 
a value using the variable assignment statement that typically has the form 

variable-object := expression; 

The expression is evaluated when the statement is executed and the computed 
value is assigned to the variable object instantaneously, that is, at the current simulation 
time. Variables are created at the time of elaboration and retain their values throughout 
the entire simulation run (like static variables in C high- level programming language). 
This is because a process is never exited; it is either in an active state, that is, being 
executed, or in a suspended state, that is, waiting for a certain event to occur. A 
process is first entered at the start of simulation (actually, during the initialization 
phase of simulation) at which time it is executed until it suspends because of a wait 
statement (wait statements are described later in this chapter) or a sensitivity list.



Consider the following process statement. 

process (A) 

variable EVENTS_ON_A: INTEGER: = 0;

begin  

EVENTS_ON_A                    :=

EVENTS_ON_A+1; end process; 
 

At start of simulation, the process is executed once. The variable EVENTS_ON_A 
gets initialized to 0 and then incremented by 1. After that, any time an event occurs on 
signal A, the process is activated and the single variable assignment statement is 
executed. This causes the variable EVENTS_ON_A to be incremented. At the end of 
simulation, variable  EVENTS_ON_A  contains  the  total  number  of  events  that 
occurred on signal A plus one. 

Here is another example of a process statement. 

signal A, Z: INTEGER; 

. . . 

PZ: process (A)                                 --PZ is a label for the 
process. 

variable V1, V2: INTEGER;

begin  

V1 := A - V2;                         --statement 1 

Z  <= - V1;                             --statement 2 

V2 := Z+V1 * 2;                    -- statement 3



end process PZ; 

 

If an event occurred on signal A at time T1 and variable V2 was assigned a value, say 
10, in statement 3, then when the next time an event occurs on signal A, say at time 
T2, the value of V2 used in statement 1 would still be 10. 

 

Signal Assignment Statement 

Signals are assigned values using a signal assignment statement The simplest form of 
a signal assignment statement is 

signal-object <= expression [after delay-value ]; 

 

A signal assignment statement can appear within a process or outside of a 
process. If it occurs outside of a process, it is considered to be a concurrent signal 
assignment statement.  When a signal assignment statement appears within a process, 
it is considered to be a sequential signal assignment statement and is executed in 
sequence with respect to the other sequential statements that appear within that process. 

When a signal assignment statement is executed, the value of the expression is 
computed and this value is scheduled to be assigned to the signal after the specified 
delay. It is important to note that the expression is evaluated at the time the statement 
is executed (which is the current simulation time) and not after the specified delay. If no 
after clause is specified, the delay is assumed to be a default delta delay. 

Some examples of signal assignment statements are 
 

COUNTER <= COUNTER+ "0010"; - Assign after a delta delay. 
PAR <= PAR xor DIN after 12 ns; 

Z <= (AO and A1) or (BO and B1) or (CO and C1) after 6 ns; 

Wait Statement 

A process may be suspended by means of a sensitivity list. That is, when a 
process has  a sensitivity list, it always suspends after executing the last sequential 
statement in the process. The wait statement provides an alternate way to suspend the 
execution of a process. There are three basic forms of the wait statement. 

 

wait on sensitivity-list; wait      
until      boolean expression;  

wait     for time-expression; 

They may also be combined in a single wait statement. For example, wait on 
sensitivity-list until boolean-expression for time-expression-, Some examples of wait 
statements are 

wait on A, B, C;                    -- statement 1 
wait until (A = B);                -- statement 2 
wait for 10ns;                        -- statement 3 
wait on CLOCK for 20ns;    -- statement 4 

wait until (SUM > 100) for 50 ms; -- statement 5 



 

In statement 1, the execution of the wait statement causes the process to suspend and 
then it waits for an event to occur on signals A, B, or C. Once that happens, the 
process resumes execution from the next statement onwards.  In statement 2, the process 
is suspended until the specified condition becomes true.  When an event occurs on 
signal A or B, the condition is evaluated and if it is true, the process resumes 
execution from the next statement onwards, otherwise, it suspends again. When the wait 
statement in statement 3 is executed, say at time T, the process suspends for 10 ns 
and when simulation time advances to T+10 ns, the process resumes execution from 
the statement following the wait statement. 

The execution of statement 4 causes the process to suspend and then it waits for 
an event to occur on the signal CLOCK for 20 ns. If no event occurs within 20 ns, the 
process resumes execution with the statement following the wait. In the last statement, 
the process suspends for a maximum of 50 ms until the value of signal SUM is greater 
than 100. The boolean condition is evaluated every time there is an event on signal 
SUM. If the boolean condition is not satisfied for 50 ms, the process resumes from the 
statement following the wait statement. 

It is possible for a process not to have an explicit sensitivity list. In such a case, the 
process may have one or more wait statements.  It must have at least one wait statement, 
otherwise, the process will never get suspended and would remain in an infinite loop 
during the initialization phase of simulation. It is an error if both the sensitivity list and 
a wait statement are present within a process. The presence of a sensitivity list in a 
process implies the presence of an implicit "wait on sensitivity- list" statement as the 
last statement in the process. An equivalent process statement for the process statement 
in the AOLSEQUENTIAL architecture body is 

 

process                                               -- No sensitivity list. 

variable TEMP1, TEMP2: BIT; 

begin 

TEMP1 :=A and B:  

TEMP2 := C and D; 

TEMP1 := TEMP1 or TEMP2; 

 Z<= not TEMP1; 

wait on A, B, C, D;          -- Replaces the sensitivity list. 

end process; 

Therefore, a process with a sensitivity list always suspends at the end of the process and 
when reactivated due to an event, resumes execution from the first statement in the 
process. 

If Statement 

An if statement selects a sequence of statements for execution based on the value of a 
condition. The condition can be any expression that evaluates to a boolean value. The 
general form of an if statement is 

 



if boolean-expressionthen 
sequential-statements 

[ elsifboolean-expressionthen           -- elsif clause; if stmt can have 0 

or 

sequential-statements ]           -- more elsif clauses. 
[ else                                                   -- else clause. 

sequential-statements ] 

end if; 

The if statement is executed by checking each condition sequentially until the first 
true condition is found; then, the set of sequential statements associated with this 
condition is executed. The if statement can have zero or more elsif clauses and an 
optional else clause. An if statement is also a sequential statement, and therefore, the 
previous syntax allows for arbitrary nesting of if statements. Here are some examples. 

 

-- This is a less-than-or-equal-to

if SUM<=100 then 

SUM := SUM+10; 

end if; 

if NICKEL_IN then 

operator.

DEPOSITED 

<=TOTAL_10; 
 --This"<="   is    a    signal 

assignment 

elsif DIME_IN then  -- operator. 
DEPOSITED <=  

TOTAL_15; elsif  
QUARTERJN then   

else 

end if; 

DEPOSITED <= TOTAL_30; 

 

DEPOSITED <= TOTAL_ERROR;

 

if CTRLI='1' then 

if CTRL2 = '0' then 

MUX_OUT<= "0010";

 

 

 

 

else 

else 

end if; 

 

MUX_OUT<= "0001";



if CTRL2 ='0' then 

MUX_OUT <= "1000"; 

else end if; 

MUX_OUT <= "0100"; 

end if; 

 

A complete example of a 2-input nor gate entity using an if statement is shown next. 

 

entity NOR2 is 

port (A, B: in BIT; Z: 

out BIT); end NOR2; 
 

architecture NOR2 of NOR2 is -- Architecture body 
can have-- same name 
as entity.

begin  

PI: process (A, B) 

constant  RISE_TIME:  TIME 

:= 10 ns; constant 
FALL_TIME:  TIME :=  5 ns: 
variable TEMP: BIT; 

begin

TEMP := A  nor 

B;  if  (TEMP  = 

'1') then 

Z <= TEMP after RISE_TIME;

else 

 

end 

if;            end 
process PI; 

end NOR2; 

Case Statement 

The format of a case statement is 

 

Z <= TEMP after FALLJIME;



 

case expression is 

when choices=>sequential-statements          -- branch #1 

when choices=>sequential-statements          -- branch #2 

-- Can have any number of branches. 

[ when others =>sequential-statements ] -- last branch 

end case; 

 

The case statement selects one of the branches for execution based on the value of the 
expression. The expression value must be of a discrete type or of a one-dimensional 
array type. Choices may be expressed as single values, as a range of values, by using I 
(vertical bar: represents an "or"), or by using the others clause. All possible values of 
the expression must be covered in the case statement. "The others clause can be used 
as a choice to cover the "catch-all" values and, if present, must be the last branch in 
the case statement. An example of a case statement is 

 

type  WEEK_DAY is  (MON,  TUE,  WED, THU, 
FRI, SAT, SUN); type DOLLARS is range 0 to 10; 
variable DAY: WEEK_DAY; 

variable POCKET_MONEY: DOLLARS; 

case DAY is 

when TUE => POCKET_MONEY := 6;      -- branch 1 

when MON I WED =>POCKET_MONEY := 2;      -- branch 2 

when FRI to SUN=>POCKET_MONEY := 7;         -- branch 3 

when others =>POCKET_MONEY := 0;    -- branch 4 

end case; 

Branch 2 is chosen if DAY has the value of either MON or WED. Branch 3 covers the 
values FRI, SAT, and SUN, while branch 4 covers the remaining value, THU. The 
case statement is also a sequential statement and it is, therefore, possible to have 
nested case statements. A model for a 4*1 multiplexer using a case statement is shown 
next. 

 

entity MUX is 

port (A, B, C, D: in BIT; CTRL: in BIT_VECTOR(0 to 1); 
Z: out BIT); 

end MUX; 
 

architecture MUX_BEHAVIOR of 
MUX is             constant 
MUX_DELAY: TIME := 10 ns; 



begin 

PMUX: process (A, B, C, D, CTRL) variable TEMP: 
BIT; 

begin 

case CTRL is 

when "00" => TEMP 

:= A:  when  "01" => TEMP := B; when "10" => 
TEMP := C; when "11" => TEMP 

:= D; 

end case; 

Z     <=     TEMP     after  

MUX_DELAY;    end    process 

PMUX; 

end MUX_BEHAVIOR; 

Null Statement 

The statement 

null; 

is a sequential statement that does not cause any action to take place and execution 
continues with the next statement. One example of this statement's use is in an if 
statement or in a case statement where for certain conditions, it may be useful or 
necessary to explicitly specify that no action needs to be performed. 

Loop Statement 

A loop statement is used to iterate through a set of sequential statements. The syntax 
of a loop statement is 

[ loop-label   :   ]   iteration- scheme 

Loop 

Sequential -statements 

end loop [loop-label] ; 

There are three types of iteration schemes. The first is the for-iteration scheme that has 
the form for identifier in range 

An example of this iteration scheme is 

FACTORIAL := 1; 

for NUMBER in 2 to N loop 

FACTORIAL := FACTORIAL * 
NUMBER; end loop; 

 



The body of the for loop is executed (N-1) times, with the loop identifier, 
NUMBER, being incremented by I at the end of each iteration. The object NUMBER 
is implicitly declared within the for loop to belong to the integer type whose values are 
in the range 2 to N. No explicit declaration for the loop identifier is, therefore, necessary. 
The loop identifier, also, cannot be assigned any value inside the for loop. If another 
variable with the same name exists outside the for loop, these two variables are treated 
separately and the variable used inside the for loop refers to the loop identifier. 

The range in a for loop can also be a range of an enumeration type such as 

 

type HEXA is ('0', '1', '2', '3', '4', ' 5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 

'F'): 

. . . 

for NUM in HEXA'('9') downto HEXA'('0') loop 

-- NUM will take values in type HEXA from '9' through '0'. 

. . . 
end loop; 

 

for CHAR in HEXA loop 

-- CHAR will take all values in type HEXA from '0' through 'F'. 

. . . 
end loop; 

Notice that it is necessary to qualify the values being used for NUM [e.g., HEXA'('9')] 
since the literals '0' through '9' are overloaded, once being defined in type HEXA and 
the second time being defined in the predefined type CHARACTER. Qualified 
expressions are described in Chap. 10. 

The second form of the iteration scheme is the while scheme that has the form 

while      boolean-expression 

An example of the while iteration scheme is 

J:=0;SUM:=10; 

WH-LOOP: while J < 20 loop - This loop has a label, 
WH_LOOP. SUM := SUM * 2; 

J:=J+ 

3; end loop; 

The statements within the body of the loop are executed sequentially and repeatedly 
as long as the loop condition, J < 20, is true. At this point, execution continues with 
the statement following the loop statement. 

The third and final form of the iteration scheme is one where no iteration scheme 
is specified. In this form of loop statement, all statements in the loop body are repeatedly 
executed until some other action causes it to exit the loop. These actions can be caused 
by an exit statement, a next statement, or a return statement. Here is an example.



SUM:=1;J:=0; 

L2:  loop  --  This  loop  also  has  a  label. 
J:=J+21; 

SUM := SUM* 10; 

exit when SUM > 100; 

end loop L2;               -- This loop label, if present, must be the same 

-- as the initial loop label. 

In this example, the exit statement causes the execution to jump out of loop L2 when 
SUM becomes greater than 100. If the exit statement were not present, the loop would 
execute indefinitely. 

Exit Statement 

The exit statement is a sequential statement that can be used only inside a loop. It causes 
execution to jump out of the innermost loop or the loop whose label is specified. The 
syntax for an exit statement is 

exit [loop-label] [ when condition ]: 

If no loop label is specified, the innermost loop is exited. If the when clause is used, 
the specified loop is exited only if the given condition is true, otherwise, execution 
continues with the next statement. An alternate form for loop L2 described in the 
previous section is 

SUM  := 1; J 

:= 0; L3: loop 

J:=J+21; 

SUM := SUM* 

10; if (SUM > 

100) then 

exit L3;    -- "exit;" also would have been sufficient. 

end 

if; end loop 

L3; 

Next Statement 

The next statement is also a sequential statement that can be used only inside a loop. 
The syntax is the same as that for the exit statement except that the keyword next 
replaces the keyword exit. Its syntax is 

 

next [loop-label][ when condition ]; 

 

The  next  statement  results  in  skipping  the  remaining  statements  in  the  current 
iteration of the specified loop and execution resumes with the first statement in the 
next iteration of this loop. If no loop label is specified, the innermost loop is assumed. 



In contrast to the exit statement that causes the loop to be terminated (i.e., exits the 
specified loop), the next statement causes the current loop iteration of the specified loop 
to be prematurely terminated and execution resumes with the next iteration. Here is an 
example. 

 

for J in 10 downto 5 loop 

if  (SUM            < 
TOTAL_SUM) 
then    SUM    := 
SUM +2; 

elsif            (SUM            
= TOTAL_SUM) 

then next;

else 

end if; 

 

null; 

 

K:=K



+1; end loop; 

When the next statement is executed, execution jumps to the end of the loop (the last 
statement, K := K+1, is not executed), decrements the value of the loop identifier, J, and 
resumes loop execution with this new value of J. 

The next statement can also cause an inner loop to be exited. Here is such an 
example. 

L4: for K in 10 downto 1 loop 

--statements 
section 1 L5: loop 

-- statements section 2 

next L4 when WR_DONE = '1'; 

--statements 
section 3end loop L5; 

--statements section 4 

end loop L4; 

 

When WR_DONE = 1' becomes true, statements sections 3 and 4 are skipped and 
execution jumps to the beginning of the next iteration of loop L4. Notice that the loop 
L5 was terminated because of the result of next statement. 

Assertion Statement 

Assertion statements are useful in modeling constraints of an entity. For example, you 
may want to check if a signal value lies within a specified range, or check the setup 
and hold times for signals arriving at the inputs of an entity. If the check fails, an error 
is reported. The syntax of an assertion statement is 

assert           boolean- expression 

[ reportstring- expression]        

[ severityexpression]: 
 

If the value of the boolean expression is false, the report message is printed along with 
the severity level. The expression in the severity clause must generate a value of type 
SEVERTTY_ LEVEL (a predefined enumerated type in the language with values 
NOTE, WARNING, ERROR, and FAILURE). The severity level is typically used by 
a simulator to initiate appropriate actions depending on its value. For example, if the 
severity level is ERROR, the simulator may abort the simulation process and provide 
relevant diagnostic information. At the very least, the severity level is displayed. 

Here is a model of a D-type rising-edge-triggered flip-flop that uses assertion 
statements to check for setup and hold times. 

 

entity DFF is 

port (D, CK: in BIT: Q, NOTQ: 



out BIT); end DFF; 

architecture CHECK_TIMES of DFF 
is constant     HOLD_TIME: 
TIME: = 5 ns; constant 
SETUP_TIME: TIME:= 3 ns;

begin  

process (D, CK) 

variable LastEventOnD, LastEventOnCk: TIME;

begin  

--Check for hold 
time:       if       D' 
EVENT then 

assert (NOW = 0ns) or 

((NOW - LastEventOnCk) >= 
HOLD_TIME) report "Hold time too 
short!" 

severity 
FAILURE;LastEventO 
nD := NOW;

end if; 

-- Check for setup time: 

if (CK     =     '1')     and CK'EVENT then  

assert    (NOW    = 0ns) or
 

 

 

 

 

end if;

((NOW - LastEventOnD) >= SETUP_TIME) 
report "Setup time too short!" 

severity 
FAILURE; 

LastEventOnCk := NOW;



-- Behavior of FF: 

if (CK    =    '1'    )    and 
CK'EVENT then 
Q<=D; 

NOTQ <= not D; 

end if;          

end process; 

end CHECK_TIMES; 

 

EVENT is a predefined attribute of a signal and is true if an event (a change of 
value) occurred on that signal at the time the value of the attribute is determined. 
Attributes are described in greater detail in Chap. 10. NOW is a predefined function that 
returns the current simulation time. In the previous example, the process is sensitive to 
signals D and CK. When an event occurs on either of these signals, the first if 
statement is executed. This checks to see if an event occurred on D. If so, the assertion 
is checked to make sure that the difference between the current simulation time and the 
last time an event occurred on signal CK is greater than a constant HOLD_TIME delay. 
If not, a report message is printed and the severity level is returned to the simulator. 
Similarly, the next if statement checks for the setup time. The last if statement describes 
the latch behavior of the D-type flip-flop. The setup and hold times have been modeled 
as constants in this example.  

package PACK1 is 

constant  MIN_PULSE:  TIME  :=  5 
ns; constant PROPAGATE_DLY: 
TIME := 10 ns; 

end PACK1; 
 

use 
WORK.PACK1.a 
ll; entity INV is 

port (A: in BIT; NOT_A: 

out BIT): end INV; 
 

architecture    CHECK_INV 

of INV is begin 
process (A) 

variable LastEventOnA: TIME := 0 ns;

begin  

assert (NOW = 0ns) or 

((NOW - LastEventOnA) >= 
MIN_PULSE) report "Spike detected on 
input of inverter" severity WARNING; 



LastEventOnA := NOW: 

NOT_A     <=     not     A     
after



PROPAGATE_DLY; end process; 

end CHECK_INV; 

Some other examples of assertion statements are 

assert (DATA <= 255) 

report "Data out of range.'; 

 

assert (CLK = '0') or (CLK = '1'); --CLK is of type ('X', '0', 'I ', 'Z'). 

 

In the last assertion statement example, the default report message "Assertion violation" 
is printed. The default severity level is ERROR if the severity clause is not specified as 
in the previous two examples. 

Dataflow Modeling 

This chapter presents techniques for modeling the dataflow of an entity. A dataflow 
model specifies the functionality of the entity without explicitly specifying its structure. 
This functionality shows the flow of information through the entity, which is expressed 
primarily using concurrent signal assignment statements and block statements. This is 
in contrast to the behavioral style of modeling described in the previous chapter, in 
which the functionality of the entity is expressed using procedural type statements that 
are executed sequentially. This chapter also describes resolution functions and their 
usage. 

Concurrent Signal Assignment Statement 

One of the primary mechanisms for modeling the dataflow behavior of an entity is by 

using the concurrent signal assignment statement. An example of a dataflow model 
for a 2-input or gate, shown in Fig.2.1, follows. 

 

Fig 2.1 An or gate 

entity OR2 is 

port (signal A, B: in BIT;  

signal Z:out BIT);  

end OR2; 

architecture OR2 of 

OR2 is begin 

Z <= A or B after 9 ns;  

end OR2; 

The architecture body contains a single concurrent signal assignment statement 
that represents the dataflow of the or gate. The semantic interpretation of this statement 
is that whenever there is an event (a change of value) on either signal A or B (A and 



B are signals in the expression for Z), the expression on the right is evaluated and 
its value is scheduled to appear on signal Z after a delay of 9 ns. The signals in 
the expression, A and B, form the "sensitivity list" for the signal assignment statement. 
There are two other points to mention about this example. First, the input and output 
ports have their object class "signal" explicitly specified in the entity declaration. If it 
were not so, the ports would still have been signals, since this is the default and the 
only object class that is allowed for ports.  The second point to note is that the 
architecture name and the entity name are the same. This is not a problem since 
architecture bodies are considered to be secondary units while entity declarations are 
primary units and the language allows secondary units to have the same names as the 
primary units. 

An  architecture  body  can  contain  any  number  of  concurrent  signal  
assignment statements. Since they are concurrent statements, the ordering of the 
statements is not important. Concurrent signal assignment statements are executed 
whenever events occur on signals that are used in their expressions. An example of a 
dataflow model for a 1-bit full-adder, whose external view is shown in Fig. 5.2, is 
presented next. 

 

entity FULL_ADDER is 

port  (A,  B,  CIN:  in  BIT;  SUM, 
COUT: out BIT); end FULL_ADDER; 

 

architecture FULL_ADDER of FULL_ADDER is  

begin SUM<=(A xor B) xor CIN after 15 ns; 

COUT <= (A and B) or (B and CIN) or (CIN and A) after 10 ns;  

end FULL_ADDER; 
 

Concurrent versus Sequential Signal Assignment 

The signal assignment statements can also appear within the body of a process 
statement. Such statements are called sequential signal assignment statements, while 
signal assignment statements that appear outside of a process are called concurrent 
signal assignment statements. Concurrent signal assignment statements are event 
triggered, that is, they are executed whenever there is an event on a signal that appears 
in its expression, while sequential signal assignment statements are not event triggered 
and are executed in sequence in relation to the other sequential statements that appear 
within the process. To further understand the difference between these two kinds of 
signal assignment statements, consider the following two architecture bodies. 

 

architecture SEQ_SIG_ASG of 
FRAGMENT1 is  - A,  B  and Z 
are signals.

begin 
 

 

 

 

 

 

 



 

 

end; 

process (B) 

begin -- Following are sequential signal assignment 
statements:A<=B; 

Z<= 
A; end 
process;

 

architecture CON_SIG_ASG of FRAGMENT2 is 
begin -- Following are concurrent signal assignment 

statements:A<=B; 

Z<=A; 

end; 

In architecture SEQ_SIG_ASG, the two signal assignments are sequential signal 
assignments. Therefore, whenever signal B has an event, say at time T, the first signal 
assignment statement is executed and then the second signal assignment statement is 
executed, both in zero time. However, signal A is scheduled to get its new value of B 
only at time T+∆ (the delta delay is implicit), and Z is scheduled to be assigned the 
old value of A (not the value of B) at time T+∆ also. 

In architecture CON_SIG_ASG, the two statements are concurrent signal 
assignment statements. When an event occurs on signal B, say at time T, signal A gets 
the value of B after delta delay, that is, at time T+∆. When simulation time advances to 
T+∆, signal A will get its new value and this event on A (assuming there is a change 
of value on signal A) will trigger the second signal assignment statement that will cause 
the new value of A to be assigned to Z after another delta delay, that is, at time T+2∆. 
The delta delay model is explored in more detail in the next section. 

Aside from the previous difference, the concurrent signal assignment statement is 
identical to the sequential signal assignment statement. 

For every concurrent signal assignment statement, there is an equivalent process 
statement with the same semantic meaning. The concurrent signal assignment statement: 

 

CLEAR <= RESET or PRESET 
after 15 ns; -- RESET and PRESET 
are signals. 

 

is equivalent to the following process statement:. 

proces 
begin 

 

 

CLEAR   <=  RESET   or PRESET 

after   15   ns;   wait   on   RESET,



PRESET; 

end process; 

 

An identical signal assignment statement (this is now a sequential signal assignment) 
appears in the body of the process statement along with a wait statement whose 
sensitivity list comprises of signals used in the expression of the concurrent signal 
assignment statement. 

 

Conditional Signal Assignment Statement 

The conditional signal assignment statement selects different values for the target signal 
based on the specified, possibly different, conditions (it is like an if statement). A typical 
syntax for this statement is 

 

Target - signal <=[ waveform-elements when condition else] 

[ waveform- elements 

When condition else ] 

. . . 

waveform-elements; 

 

The semantics of this concurrent statement are as follows. Whenever an event 
occurs on a signal used either in any of the waveform expressions (recall that a 
waveform expression is the value expression in a waveform element) or in any of the 
conditions, the conditional signal assignment statement is executed by evaluating the 
conditions one at a time. For the first true condition found, the corresponding value (or 
values) of the waveform is scheduled to be assigned to the target signal. For example, 

 

Z <= IN0 after 10ns when S0 = '0' and S1 = '0' else 
IN1 after 10ns when S0 = '1' and S1 = '0' else 
IN2 after 10ns when S0 = '0' and S1 = '1' else 
IN3 after 10 ns; 

 

In this example, the statement is executed any time an event occurs on signals 
IN0, IN1, IN2, IN3, S0, or S1. The first condition (S0='0' and S1='0') is checked; if 
false, the second condition (S0='1' and S1='0') is checked; if false, the third condition 
is checked; and so on. Assuming S0='0' and S1='1', then the value of IN2 is scheduled 
to be assigned to signal Z after 10 ns. 

For a given conditional signal assignment statement, there is an equivalent 
process statement that has the same semantic meaning. Such a process statement has 
exactly one if statement and one wait statement within it. The signals in the sensitivity 
list for the wait statement is the union of signals in all the waveform expressions and 
the signals referenced in all the conditions. The equivalent process statement for this 
conditional signal assignment statement example is 

 



proces 
begin 

if S0 = '0' and S1 = '0' 

then   Z<=   IN0 

after 10 ns; 

elsif S0='1'and S1='0' then 

Z<= IN1 after 10ns; 

elsif S0='0' and S1 = '1' then Z<= IN2 after 10 ns; 

else end if; 

Z<= INS after 10 ns; 

wait on IN0, IN1, IN2, IN3, S0, S1;  

end process; 

Selected Signal Assignment Statement 

The selected signal assignment statement selects different values for a target signal 
based on the value of a select expression (it is like a case statement). A typical syntax 
for this statement is 

 

with expression   select   —This   is   the   select 
expression.target-signal <= waveform- 
elements when choices, 

waveform-elements when choices, 

… 

waveform-elements when choices; 

The semantics of a selected signal assignment statement are very similar to 
that of the conditional signal assignment statement. Whenever an event occurs on a 
signal in the select expression or on any signal used in any of the waveform expressions, 
the statement is executed. Based on the value of the select expression that matches the 
choice value specified, the value (or values) of the corresponding waveform is 
scheduled to be assigned to the target signal. Note that the choices are not evaluated 
in sequence.  All possible values of the select expression must be covered by the choices 
that are specified not more than once. Values not covered explicitly may be covered by 
an "others" choice, which covers all such values. The choices may be a logical "or" of 
several values or may be specified as a range of values. 

Here is an example of a selected signal assignment statement. 

type OP is (ADD, SUB, 
MUL, DIV); signal 
OP_CODE: OP; 

. . . 

with OP_CODE select 



Z <= A+B after ADD_PROP_DLY 
when ADD, A - B after 
SUB_PROP_DLY when SUB, 

A * B after MUL_PROP_DLY 
when MUL, A / B after 
DIV_PROP_DLY when DIV; 

 

In this example, whenever an event occurs on signals, OP_CODE, A, or B, the 
statement is executed. Assuming the value of the select expression, OP_CODE, is SUB, 
the expression "A - B" is computed and its value is scheduled to be assigned to signal Z 
after SUB_PROP_DLY time. 

For every selected signal assignment statement, there is also an equivalent process 
statement with the same semantics. In the equivalent process statement, there is one case 
statement that uses the select expression to branch. The list of signals in the sensitivity 
list of the wait statement comprises of all signals in the select expression and in the 
waveform expressions. The equivalent process statement for the previous example is 



proces  

begin 

case OP_CODE is 

when   ADD    =>   Z<=    A    +B after ADD_PROP_DLY;   

when  SUB  =>Z <= A-B   after   SUB_PROP_DLY;    

when MUL =>Z<= A * B after MUL_PROP_DLY;  

when DIV => Z <= A /B after DIV_PROP_DLY; 

end case; 

wait on OP_CODE, 
A, B; end process; 

 

 

Structural Modeling 

This chapter describes the structural style of modeling. An entity is modeled as a set 
of components connected by signals, that is, as a netlist. The behavior of the entity is 
not explicitly apparent from its model. The component instantiation statement is the 
primary mechanism used for describing such a model of an entity. 

An Example Consider the circuit shown in Fig. 2.2 and its VHDL structural model. 

entity GATING is 

port (A, CK, MR, DIN: in BIT; RDY, 
CTRLA: out BIT); end GATING; 

 

architecture STRUCTURE_VIEW of 

GATING is component AND2 

port (X, Y: in BIT; Z: out BIT);  

end component; 

                                 component DFF 

port (D, CLOCK:   in   BIT;   

 Q, QBAR: out BIT);  

end component; 

component NOR2 

port (A, B: in BIT; Z: out BIT);  

end component;  

signal SI, S2: BIT;

begin  

D1: DFF port map (A, CK, SI, S2); 



 A1: AND2 port map (S2, DIN, CTRLA); 

 N1: NOR2 port map (SI, MR, RDY);



end STRUCTURE_VIEW 

 

 

Fig 2.2: A circuit generating control signals 
 

Three components, AND2, DFF, and NOR2, are declared. These components are 
instantiated in the architecture body via three component instantiation statements, and 
the instantiated components are connected to each other via signals SI and S2. The 
component instantiation statements are concurrent statements, and therefore, their order 
of appearance in the architecture body is not important. A component can, in general, 
be instantiated any number of times. However, each instantiation must have a unique 
component label; as an example, A1 is the component label for the AND2 component 
instantiation. 

Component Declaration 

A component instantiated in a structural description must first be declared using a 
component declaration. A component declaration declares the name and the interface 
of a component. The interface specifies the mode and the type of ports. The syntax of 
a simple form of component declaration is 

component component-name 

port  (list-of-interface- ports ) ;  

end component; 

The component-name may or may not refer to the name of an already ex-isfing entity 
in a library. If it does not, it must be explicitly bound to an entity; otherwise, the 
model cannot be simulated.  

The list-of-interface-ports specifies the name, mode, and type for each port of the 
component in a manner similar to that specified in an entity declaration. "The names 
of the ports may also be different from the names of the ports in the entity to which it 
may be bound (different port names can be mapped in a configuration). An entity of the 
same name as that of the component already exists and that the name, mode, and type 
of each port matches the corresponding ones in the component. Some examples of 
component declarations are 

component NAND2 

port (A, B: in MVL; Z: 

out MVL); end component; 

component MP 

port (CK, RESET, RON, WRN: in BIT;  

DATA_BUS: inout INTEGER range 0     to     255; 
ADDR_BUS:     in BIT_VECTOR (15 downto 0)); 



end component; 

component RX 

port (CK, RESET, ENABLE, DATAIN,  

RD: in BIT; 

DATA_OUT: out INTEGER range 0  to  (2**8  -  1); 
PARITY_ERROR,  

FRAME_ERROR, OVERRUN_ERROR: out BOOLEAN); 

end component; 

Component Instantiation 

A component instantiation statement defines a subcomponent of the entity in 
which it appears. It associates the signals in the entity with the ports of that 
subcomponent. A format of a component instantiation statement is component-label: 
component-name port map(association-list) ',  

The component-label can be any legal identifier and can be considered as the 
name of the instance. The component-name must be the name of a component declared 
earlier using a component declaration. The association-list associates signals in the 
entity, called actuals, with the ports of a component, called locals. An actual must 
be an object of class signal. Expressions or objects of class variable or constant are not 
allowed. An actual may also be the keyword open to indicate a port that is not connected. 
There are two ways to perform the association of locals with actuals: 

 

1. positional association, 

2.named association. 

In positional association, an association-list is of the form 

actuali, actualg, actual3, . . ., actual 

Each actual in the component instantiation is mapped by position with each port in the 
component   declaration.   That   is, the first   port   in   the component declaration 
corresponds to the first actual in the component instantiation, the second with the 
second, and so on. Consider an instance of a NAND2 component. 

--Component declaration:  

component NAND2 

port (A, B: in BIT; Z: 

out BIT); end component; 

--Component instantiation: 

N1: NAND2 port map (S1, S2, S3); 

N1 is the component label for the current instantiation of the NAND2 component. 
Signal S1 (which is an actual) is associated with port A (which is a local) of the NAND2 
component, S2 is associated with port B of the NAND2 component, and S3 is 
associated with port Z. Signals S1 and S2 thus provide the two input values to the 
NAND2 component and signal S3 receives the output value from the component. The 
ordering of the actuals is, therefore, important. 



If a port in a component instantiation is not connected to any signal, the 
keyword open can be used to signify that the port is not connected. For example, 

 

N3: NAND2 port map (S1, open, S3); 

The second input port of the NAND2 component is not connected to any signal. An 
input port may be left open only if its declaration specifies an initial value. For the 
previous component instantiation statement to be legal, a component declaration for 
NAND2 may appear like 

component NAND2 

port (A, B: in BIT := '0'; Z: out BIT); 

1          Both A and B have an initial value of '0'; however, only 

2          the initial value of B is necessary in this case. 

end component; 

A port of any other mode may be left unconnected as long as it is not an unconstrained 
array. In named association, an association- list is of the form 

locale => actual1, local2 => actual2, ..., localn => actualn 

For example, consider the component NOR2 in the entity GATING described in the 
first section. The instantiation using named association may be written as 

N1: NOR2 port map (B=>MR, Z=>RDY, A=>S1); 

In this case, the signal MR (an actual), that is declared in the entity port list, is associated 
with the second port (port B, a local) of the NOR2 gate, signal RDY is associated with 
the third port (port Z) and signal S1 is associated with the first port (port A) of the 
NOR2 gate. In named association, the ordering of the associations is not important 
since the mapping between the actuals and locals are explicitly specified. An important 
point to note is that the scope of the locals is restricted to be within the port map part 
of the instantiation for that component; for example, the locals A, B, and Z of 
component NOR2 are relevant only within the port map of instantiation of component 
NOR2. 

For either type of association, there are certain rules imposed by the language. 
First, the types of the local and the actual being associated must be the same. Second, 
the modes of the ports must conform to the rule that if the local is readable, so must the 
actual and if the local is writable, so must the actual. Since a signal locally declared is 
considered to be both readable and writable, such a signal may be associated with a 
local of any mode. If an actual is a port of mode in, it may not be associated with a local 
of mode out or inout; if the actual is a port of mode out, it may not be associated with a 
local of mode in or inout; if the actual is a port of mode inout, it may be associated with 
a local of mode in, out, or inout. 

Generate Statements 

Concurrent statements can be conditionally selected or replicated during the elaboration 
phase using the generate statement. 

 

 



 There are two forms of the generate statement. 

1.Using the for-generation scheme, concurrent statements can be 
replicated a predetermined number of times. 

2. With   the if-generation   scheme, concurrent   statements   can   be 
conditionally selected for execution. 

The generate statement is interpreted during elaboration, and therefore, has no simulation 
semantics associated with it. It resembles a macro expansion. The generate statement 
provides for a compact description of regular structures such as memories, registers, and 
counters. 

The format of a generate statement using the for-generation scheme is  

generate-label: for generale-identifier in discrete- range   

generate   

concurrent-statements   

end generate[ generate-label]; 

The values in the discrete range must be globally static, that is, they must be computable 
at elaboration time. During elaboration, the set of concurrent statements are replicated 
once for each value in the discrete range. These statements can also use the generate 
identifier in their expressions and its value would be substituted during elaboration 
for each replication. There is an implicit declaration for the generate identifier 
within the generate statement, and therefore, no declaration for t his identifier is 
required. The type of the identifier is defined by the discrete range. Consider the 
following representation of a 4-bit full-adder, shown in Fig. 2.3, using  the generate 
statement. 

entity FULL_ADD4 is 

port (A, B: in BIT_VECTOR(3 downto 0); CIN: in BIT; 
SUM: out BIT_VECTOR(3 downto 0); COUT: out 
BIT); 

end FULL_ADD4: 

architecture FOR_GENERATE of 
FULL_ADD4 is component 
FULL_ADDER 

port (A, B, C: in BIT; COUT, 
SUM: out BIT); end component; 

signal CAR: BIT_VECTOR(4 downto 0);

begin  

CAR(0) <= CIN; 

GK: for K in 3 downto 0 generate 

FA: FULL_ADDER port map (CAR(K), 
A(K),            B(K), 
CAR(K+1),SUM( 
K));



end generate 
GK;COUT <= 
CAR(4); 

end FOR_GENERATE 

 

 

 

Fig.2.3: A 4-bit full-adder. 

After elaboration, the generate statement is expanded to 

FA(3): FULL_ADDER port map (CAR(3), A(3), B(3), CAR(4), 
SUM(3)); 

FA(2): FULL_ADDER port map (CAR(2), A(2), B(2), CAR(3), 
SUM(2)); 

FA(1): FULL_ADDER port map (CAR(1), A(1), B(1), CAR(2), 
SUM(1)); 

FA(0): FULL_ADDER port map (CAR(0), A(0), B(0), CAR(1), 
SUM(0)); 

Components in a generate statement can be bound to entities using a generate block 
configuration. A block configuration is defined for each range of generate labels. Here 
is an example of such a binding using a configuration declaration. 

configuration GENERATE_BIND of FULL_ADD4 is 
use WORK.all; -- Example of a declaration in the 

-- configuration declarative part. 

for FOR_GENERATE           

 -- An architecture body block configuration. 

forGK(1)        --A generate block configuration. 

for FA: FULL_ADDER 

use configuration 

WORK.FA_HA_CON; 

end for; 

end for; 

for GK(2 to 3) 

for FA: FULL_ADDER - No explicit binding. 

-- Use defaults, i.e., use entity FULL_ADDER-- in working library. 



end for; 

end 

for; for 

GK(0) 

for FA: FULL_ADDER 

use entity 
WORK.FULL_ADDER(FA_DA 
TAFLOW); end for; 

end for; 

end for; 

end GENERATE_BIND; 

There are three generate block configurations, one each for GK(1), GK(2 to 3), and 
for GK(0). Each of these block configurations define the bindings for the components 
valid for that generate index. 

The body of the generate statement can also have other concurrent statements. 
For example, in the previous architecture body, the component instantiation statement 
could be replaced by signal assignment statements like this 

 

G2: for M in 3 downto 0 generate 

SUM(M)  <= (A(M)  xor B(M)) xor 
CAR(M); CAR(M+1 ) <= (A(M) and 
B(M)) and CAR(M); 

end generate G2; 

The second form of the generate statement uses the if-generation scheme. The 
format for this type of generate statement is 

genarate-label: H expression 
generate concurrent- 
statements 

end generate [generete-label] ; 
 

The if-generate statement allows for conditional selection of concurrent 
statements based on the value of an expression. This expression must be a globally static 
expression, that is, the value must be computable at elaboration time. 

Here is an example of a 4-bit counter, that is modeled using the if-generate 
statement. 

entity COUNTER4 is 

port   (COUNT,   CLOCK:   in   BIT;    

Q:   buffer BIT_VECTOR (0 to 3));  

end COUNTER4; 



architecture IF_GENERATE of 
COUNTER4 is component 
D_FLIP_FLOP 

port (D, CLK: in BIT; Q: 

out BIT); end component;

begin 

GK:   for   K   in   0   to   3  

generate GKO:  if K= 0 generate 

DFF: D_FLIP_FLOP port map (COUNT, CLOCK, Q(K));  

end generate GK0; 

GK1_3: if K > 0 generate 

DFF: D_FLIP_LOP port map (Q(K-1), CLOCK, Q(K)); end 
generate GK1_3; 

end   generate

GK; end IF_GENERATE; 

Guarded Signals 

A guarded signal is a special type of a signal that is declared to be of a register or a 
bus kind in its declaration. A general form of a signal declaration is 

signal list-of-signals:  resolution-function  

signal-typesignal-kind [: = expression]; 

A guarded signal must be a resolved signal, that is, it must have a resolution 
function associated with it. Also, the signal can only be assigned values under the 
control of a guard expression, for example, using a guarded assignment (guarded option 
used in a concurrent signal assignment statement). This implies that guarded signals can 
only be assigned values within block statements. 

A guarded signal behaves differently from other signals in that when the guard 
expression is false, the driver to the guarded signal becomes disconnected after a specific 
time, called the disconnect time. On the other hand, in an unguarded signal, if the  guard  
expression  is  false,  any  new  events  on  the  signals  appearing  in  the expression do 
not influence the value of the target signal; the driver continues to drive the target signal 
with the old value. To understand this difference better, consider the following guarded 
block BL 

 

architecture GUARDED_EX of EXAMPLE is 
signal    GUARD_SIG:    WIRED_OR 
BIT                register;                signal 
UNGUARD_SIG: WIRED_AND BIT;

begin  

B1:    block    (    guard- 
expression )begin 



GUARD_SIG                             <= guardedexpression1 ; 

UNGUARD_SIG                       <=guardedexpression2; 

end block B1;  

end GUARDED_EX; 

Transforming the guarded signal assignment statement into its equivalent process 
statement, the block B1 now looks like this 

B1:    block    (    guard- expression )begin 

process 

begin 

if GUARD then 

GUARD_SIG <=expression1;

else  

GUARD_SIG<=null;

end if; 

wait on signals-in- expressioni1,GUARD;  

end process;  

process 

 begin

If GUARD then 

UNGUARD_SIG <= expression2; 

end if; 

wait on signals-in- expressions, 

GUARD; end process; 

end block B1; 



The process statement for the guarded signal, GUARD_ SIG, has an explicit signal 
assignment statement that disconnects its driver, while there is no such statement for the 
unguarded signal, UNGUARD_SIG. As this example shows, a driver of a guarded signal 
can be explicitly disconnected by assigning a null value to the signal. Such a statement is 
called a disconnection statement. 

Let us now explore the differences between a register and a bus signal. A bus signal 
represents a hardware bus in that when all drivers to the signal become disconnected (as 
might be the case on a real hardware bus), the value of the signal is determined by calling 
the resolution function with all the drivers off. A register signal, on the other hand, models 
a storage component (that is multiply driven) in which if all drivers to the signal become 
disconnected, the resolution function is not called and the value of the last active driver is 
retained. With a bus signal, the previous value is lost. Also, bus signals may either be ports 
of an entity or locally declared signals, whereas register signals can only be locally declared 
signals. 

The disconnect   time for a guarded   signal   can   be   specified   using   a disconnection 
specification. The syntax of a disconnection specification is 

disconnect guarded-signal-name: signal-type after time-expression; 

This is an example of a disconnection specification. 

disconnect GUARD_SIG: BIT after 8 ns; 

This implies that the driver of signal GUARD_SIG will get disconnected 8 
ns after the corresponding GUARD goes false. 

The disconnection specification is useful in modeling decay times, for example, 
capacitance delay on buses. An alternate way of specifying disconnect time is by assigning 
a value null to the signal in a disconnection statement as shown. 

 

S1 <= null after 10 ns; 

 

This statement specifies that the driver of SI will be disconnected after 10 ns. Thereafter, 
this driver does not contribute to the resolved value of the signal. However, such a statement 
can appear only as a sequential statement and the target signal must be a guarded signal. 

Here is a more comprehensive example. 

use WORK.RF.PACK.all; 

-- Package RF_PACK contains functions WIRED_AND and WIRED_OR. entity 
GUARDED_SIGNALS is 

 port (CLOCK: in BIT;  

N: in INTEGER); 

end; 



architecture EXAMPLE of GUARDED_SIGNALS is 
signal         REG_SIG:         WIRED_AND 
INTEGER   register;   

signal   BUS_SIG: WIRED_OR INTEGER bus;  

disconnect REG_SIG:    INTEGER    after    50    ns;  

disconnect BUS_SIG: INTEGER after 20 ns; 

begin 

BX:    block  (CLOCK='1'    and    (not CLOCK'STABLE))  

begin 

REG_SIG   <=    guarded   N after 15 ns;  

BUS_SIG <= guarded N after 10 ns; 

end block 

BX; end 
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PART-A 

QUESTION BANK

1. Justify how arrays are declared in VHDL 
2. Classify the types of delays in VHDL. 
3. List the styles of description in VHDL. 
4. Develop a VHDL program for 2*1 multiplexer. 
5. List the operators in VHDL. 
6. Develop a VHDL program for 1*2 decoder. 
7. Define Data objects in VHDL 
8. Develop VHDL code for 2-bit adder. 

 

 



PART-B 

1. Distinguish between dataflow modeling and behavioral modeling of VHDL 
2. Develop a VHDL code for full adder circuit in different styles of description. 
3. Discuss with example behavioral modeling of VHDL 
4. Develop a VHDL code for encoder and decoder circuit 
5. Develop a VHDL code for Flip flop circuits 
6. Distinguish between structural modeling and dataflow modeling of VHDL 
7. Discuss with an example structural modeling of VHDL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 UNIT – III - INTRODUCTION TO VERILOG HDL– SECA1602 



INTRODUCTION TO VERILOG HDL 
 

Verilog HDL is a hardware description language that can be used to model a digital system at many 

levels of abstraction ranging from the algorithmic level to the gate level to the switch level. The 

complexity of the digital system being modeled could vary from that of a simple gate to a complete 

electronic digital system, or anything in between. The digital system can be described hierarchically 

and timing can be explicitly modeled within the same description. 

Typical Design Flow 

A typical design flow for designing VLSI IC circuits is shown in Figure 2.1. Un shaded blocks 

show the level of design representation; shaded blocks show processes in the design flow. The design 

flow shown in Figure 3.1 is typically used by designers who use HDLs. In any design, specifications 

are written first. Specifications describe abstractly the functionality, interface, and overall architecture 

of the digital circuit to be designed. At this point, the architects do not need to think about how they 

will implement this circuit. A behavioral description is then created to analyze the design in terms of 

functionality, performance, compliance to standards, and other high-level issues. 

Behavioral descriptions are often written with HDLs 

The behavioral description is manually converted to an RTL description in an HDL. The 

designer has to describe the data flow that will implement the desired digital circuit. From this point 

onward, the design process is done with the assistance of EDA tools. 

Logic synthesis tools convert the RTL description to a gate-level netlist. A gate level netlist is 

a description of the circuit in terms of gates and connections between them. Logic synthesis tools 

ensure that the gate-level netlist meets timing, area, and power specifications. The gate-level netlist 

is input to an Automatic Place and Route tool, which creates a layout. The layout is verified and then 

fabricated on a chip.



 

 

 

Design Methodologies 

Figure 3.1: Typical Design Flow

There are two basic types of digital design methodologies: a top-down design methodology and 

a bottom-up design methodology. In a top-down design methodology, we define the top-level block 

and identify the sub-blocks necessary to build the top-level block. We further subdivide the sub- blocks 

until we come to leaf cells, which are the cells that cannot further be divided. Figure 3.2 shows 

the top-down design process. 

 
 

 

Figure 3.2: Top-down Design Methodology



In a bottom-up design methodology, we first identify the building blocks that are available to us. We 

build bigger cells, using these building blocks. These cells are then used for higher-level blocks until 

we build the top-level block in the design. Figure 3.3 shows the bottom-up design process 

 

 

 

Figure 3.3: Bottom-up Design Methodology 
 

Levels for design description 
 

Verilog supports designing at many different levels of abstraction. Three of them are very important: 

•    Behavioral level 

•    Register-Transfer Level 

•    Gate Level 

Behavioral Level 
 

This level describes a system by concurrent algorithms (Behavioral). Each algorithm itself is 

sequential, that means it consists of a set of instructions that are executed one after the other. Functions, 

Tasks and Always blocks are the main elements. There is no regard to the structural realization of the 

design. 

Register-Transfer Level 
 

Designs using the Register-Transfer Level specify the characteristics of a circuit by operations and the 

transfer of data between the registers.An explicit clock is used. RTL design contains exact timing 

bounds: operations are scheduled to occur at certain times. Modern RTL code definition is "Any 

code that is synthesizable is called RTL code".



Gate Level 
 

Within the logic level the characteristics of a system are described by logical links and their timing 

properties. All signals are discrete signals. They can only have definite logical values (`0', `1', `X', 

`Z`). The usable operations are predefined logic primitives (AND, OR, NOT etc gates). Using gate 

level modeling might not be a good idea for any level of logic design. Gate level code is generated 

by tools like synthesis tools and this netlist is used for gate level simulation and for backend. 

Language Elements 

Identifiers 
 

Identifiers are names given to objects so that they can be referenced in the design. Identifiers are made 

up of alphanumeric characters, the underscore (_), or the dollar sign ($). Identifiers are case sensitive. 

Identifiers start with an alphabetic character or an underscore. 

They cannot start with a digit or a $ sign  

reg value; // reg is a keyword; value is an identifier  

input clk; // input is a keyword, clk is an identifier 

Comments 
 

Comments can be inserted in the code for readability and documentation. There are two ways to 

write comments. A one-line comment starts with "//". Verilog skips from that point to the end of 

line. A multiple-line comment starts with "/*" and ends with "*/". Multiple-line comments cannot be 

nested. However, one-line comments can be embedded in multiple-line comments. 

a = b && c; // This is a one-line comment 

/* This is a multiple line comment */ 

/* This is /* an illegal */ comment */ 

/* This is //a legal comment */ 

Format 

 

Verilog HDl is case sensitive. Identifiers differing only in their case are distinct. Verilog HDL, is 

free format, constructs may be written across multiple lines, or on one line. White space (newline, tab, 

and space characters) has no special significance.



System Tasks and Functions 
 

Verilog provides standard system tasks for certain routine operations. All system tasks appear in the 

form $<keyword>. Operations such as displaying on the screen, monitoring values of nets, stopping, 

and finishing are done by system tasks. 

 

Compiler Directives 

 

Compiler directives are provided in Verilog. All compiler directives are defined by using the 

‘<keyword> construct. We deal with the two most useful compiler directives. 

‘define 

The ‘define directive is used to define text macros in Verilog. 

The Verilog compiler substitutes the text of the macro wherever it encounters a ‘<macro_name>. This 

is similar to the #define construct in C. The defined constants or text macros are used in the Verilog 

code by preceding them with a ‘ (back tick). 

//define a text macro that defines default word 

size //Used as ’WORD_SIZE in the code ’define 

WORD_SIZE 32 

‘include 
 

The ‘include directive allows you to include entire contents of a Verilog source file in another 

Verilog  file  during  compilation.  This  works  similarly  to  the  #include  in  the  C  programming 

language. This directive is typically used to include header files, which typically contain global or 

commonly used definitions. 

Example ‘include Directive 

// Include the file header.v, which contains declarations in the 

// main verilog file design.v. 

’include header.v 

... 

... 

<Verilog code in file design.v> 

... 

... 

 

Two other directives, ‘ifdef and ‘timescale, are used frequently.



Value set 
 

Verilog supports four values and eight strengths to model the functionality of real hardware. 

Strength levels 

 

 
 

Data types 
 

Verilog HDL has two groups of data types 
 

(i) Net type 
 

A net type represents a physical connection between structural elements. Its value is determined 

from the value of its drivers such as a continuous assignment or a gate output. If no driver is connected 

to a net, the net defaults to a value of z. 

(ii) Variable type 

 

A variable type represents an abstract data storage element. It is assigned values only within an always 

statement or an initial statement, and its value is saved from one assignment to the next. A variable 

type has a default value of x. 

Net types 

Here are the different kinds of nets that belong to the net data type wire 
tri wor 

trior wand triand trireg tri1 tri0 

supply0 

supply1 

Variable types 

There are five different kinds of variable types 

reg 



integer 

time 

real 

realti 

me 

Register 
 

Registers represent data storage elements. Registers retain value until another value is placed onto 

them. Register data types are commonly declared by the keyword reg. The default value for a reg 

data type is x. 

 

Example of Register 

reg reset; // declare a variable reset that can hold its value 

begin 

reset = 1’b1; //initialize reset to 1 to reset the digital circuit. 

#100 reset = 1’b0; // after 100 time units reset is de asserted. 

end 

Integer 

 

An integer is a general-purpose register data type used for manipulating quantities. Integers are 

declared by the keyword integer. Although it is possible to use reg as a general-purpose variable, it 

is more convenient to declare an integer variable for purposes such as counting. The default width 

for an integer is the host-machine word size, which is implementation- specific but is at least 32 bits. 

Registers declared as data type reg store values as unsigned quantities, whereas integers store values 

as signed quantities. 

integer counter; // general purpose variable used as a counter. 

initial counter = -1; // A negative one is stored in the counter



Real 
 

Real number constants and real register data types are declared with the keyword real. They can be 

specified in decimal notation (e.g., 3.14) or in scientific notation (e.g., 3e6, which is 3 x 106). Real 

numbers cannot have a range declaration, and their default value is 0. When a real value is assigned 

to an integer, the real number is rounded off to the nearest integer. 

real delta; // Define a real variable called delta 

initial 

begin 

delta = 4e10; // delta is assigned in scientific notation delta = 2.13; 

// delta is assigned a value 2.13 

end 

integer i; // Define an integer i initial 

i = delta; // i gets the value 2 (rounded value of 2.13) 

Time 
 

Verilog simulation is done with respect to simulation time. A special time register data type is used 

in Verilog to store simulation time. A time variable is declared with the keyword time. The width for 

time register data types is implementation specific but is at least 64 bits. The system function $time 

is invoked to get the current simulation time. 

time save_sim_time; // Define a time variable save_sim_time initial 

save_sim_time = $time; // Save the current simulation time 

Arrays 

 

Arrays are allowed in Verilog for reg, integer, time, real, realtime and vector register data types. Multi-

dimensional arrays can also be declared with any number of dimensions. Arrays of nets can also be 

used to connect ports of generated instances. Each element of the array can be used in the same fashion 

as a scalar or vector net. Arrays are accessed by 

<array_name>[<subscript>]. For multi-dimensional arrays, indexes need to be provided for each 

dimension. 

integer count[0:7]; // An array of 8 count variables 

reg bool[31:0]; // Array of 32 one-bit boolean register variables time 

chk_point[1:100]; // Array of 100 time checkpoint variables 

reg [4:0] port_id[0:7]; // Array of 8 port_ids; each port_id is 5 bits wide



Parameters 
 

Verilog allows constants to be defined in a module by the keyword parameter. Parameters cannot be 

used as variables. Parameter values for each module instance can be overridden individually at compile 

time. This allows the module instances to be customized. This aspect is discussed later. Parameter 

types and sizes can also be defined. 

parameter port_id = 5; // Defines a constant port_id 

parameter cache_line_width = 256; // Constant defines width of cache line parameter 

signed [15:0] WIDTH; // Fixed sign and range for parameter WIDTH 

Expressions 

An expression is formed using operands and operators. An expression can be used wherever a value 

is expected. 

 

Operands 
 

Operands can be constants, integers, real numbers, nets, registers, times, bitselect (one bit of vector 

net or a vector register), part-select (selected bits of the vector net or register vector), and memories 

or function calls. 

integer count, final_count; 

final_count = count + 1;//count is an integer operand 

real a, b, c; 

c = a - b; //a and b are real operands 

reg [15:0] reg1, 

reg2; reg [3:0] 

reg_out; 

reg_out = reg1[3:0] ^ reg2[3:0];//reg1[3:0] and reg2[3:0] are //part-select register operands reg 

ret_value; 

ret_value = calculate_parity(A, B);//calculate_parity is a //function type operand 

Operator Types 

Verilog provides many different operator types. Operators can be arithmetic, logical, 

relational, equality, bitwise, reduction, shift, concatenation, or conditional. Some of these 

operators are similar to the operators used in the C programming language. Each operator type 

is denoted by a symbol. The table 2.1 shows the complete listing of operator symbols classified 

by category. 



 

Table 3.1 Operators 

 



 
 

 

 

M
o
d
u
l
e 

The basic unit of description in Verilog is the module. A module describes the 

functionality or structure of a design and also describes the ports through which it 

communicates externally with other modules. The structure of a design is described using 

switch-level primitives, gate- level primitives and user-defined primitives; data flow 

behavior of a design is described using continuous assignments; sequential behavior is 



described using procedural constructs. A module can also be instantiated inside another 

module. 

 

 

 

module module_name 

(port_list ); 

Declarations: 

reg, wire, 

parameter, input, output, inout, function , 
 

task, …. Statements : 
 

Initial 

statement 

Always 

statement 

Module 

instantiation 

Gate 

instantiation 

UDP 

instantiation 

Continuous 

assignment 

Generate 

statement 

end module
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QUESTION BANK



PART-A 

1. Justify how arrays are declared in Verilog HDL. 

2. Classify the types of delays in Verilog HDL. 

3. List the parameters in Verilog HDL. 

4. Formulate the value set of Verilog HDL. 

5. List the language elements of Verilog HDL. 

6. Develop a Verilog HDL program for 2*4 decoder. 

7. Define operands in Verilog HDL 

8. Distinguish between inter assignment delay and intra assignment delay. 

9. Justify the importance of module in Verilog HDL 

10. Develop Verilog HDL code for 2-bit subtraction. 

PART-B 

1. Compare procedural constructs and assignments 

2. Illustrate the different language elements in Verilog HDL. 

3. Operators in verilog are of different types. Support the statement. 

4. Develop a Verilog HDL code for encoder and decoder circuit 

5. Illustrate the different delay types in Verilog HDL programming. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT – IV - STYLES OF MODELLING – SECA3007 



STYLES OF MODELING 

 

Gate Level Modeling: 

 

The Built-in Primitive Gates: 

The following built-in primitive gates are available in Verilog HDL. 

I. Multiple-input gates: and, nand, or,nor,xor,xnor 
II. Multiple-output gates: buf, not 

III. Tristate gates: buflfO, bufifl, notifO, notifl 
IV. Pull gates: pullup, pulldown 70 Multiple-input 
V. MOS switches: cmos, nmos, pmos, rcmos, rnmos, rpmos 

VI. Bidirectional switches: tran, tranifO, tranifl, rtran, rtranifO,rtranifl 

A gate can be used in a design using a gate instantiation. Here is a simple format of a gate 

instantiation. 

gate_type[ instance_name ] ( terml , term2 , . . . , termN); 

Note that the instance_name is optional; gate type is one the gates listed earlier. The terms specify 

the nets and registers connected to the terminals of the gate. Multiple instances of the same gate type 

can be specified in one construct. The syntax for this is the following. 

gate_type 

[ instance_namel ] ( termll , terml2 , . . . , termlN), 

[ instance_name2 ] ( term.21 , term22,. . . , term2N), 

……… 

[ instance_nameM ] ( termMl , termM2 , . . . , terwMN); 

Multiple-input Gates: 

The multiple-input built-in gates are: and nand nor or xorxnor. These logic gates have only one output 

and one or more inputs. Here is the syntax of a multiple-input gate instantiation. 

multiple_input_gate_type I instance_name ] ( OutputA , Input 1 , Input2,..., InputN ); 

The first terminal is the output and all others are the inputs. Here are some examples. The logic 

diagrams are shown in figure 4.1.



 

Figure 4.1: Multiple Input Gates 
 

and A1 (Outl, Inl, In2); 

and RBX (Sty, Rib, Bro, Qit, Fix) ; 

xor (Bar, Bud[0],Bud[l],Bud[2]), 

(Car, Cut[0], Cut[l]), 

(Sar, Sut[2], Sut[l], Sut[0], Sut[3]); 
 

 

 

Figure 4.2: Multiple Input Gate examples 

The first gate instantiation is a 2-input and gate with instance name Al, output Outl and with two 

inputs, Inl and Inl. The second gate instantiation is a 4-input and gate with instance name RBX, output 

Sty and four inputs, Rib, Bro, Qit and Fix. The third gate instantiation is an example of anxor gate 

with no instance name. Its output is Bar and it has three inputs, Bud[0],Bud[1] and Bud[2]. Also, 

this instantiation has two additional instances of the same type. 

The truth tables for these gates are shown next. Notice that a value z at an input is handled like an x; 

additionally, the output of a multiple-input gate can never be a z.



 
 

Figure 4.3: Truth table Multiple input gates 
 

Multiple-output Gates: 

The multiple-output gates are: buf & not 

These gates have only one input and one or more outputs. The basic syntax for this gate instantiation 

is: 

multiple_output_gate_type 

[instance_name] (Outl, 0ut2 , . . . , OutN, InputA ); 

The last terminal is the input; all remaining terminals are the outputs.



 

Figure 4.4: Multiple Output Gates 

Here are some examples. 
 

bufBl [Fan[0], Fan[l], Fan[2],Fan[3],Clk); 
 

notNl {PhA, PhB, Ready); 

 

In the first gate instance, Clk is the input to the buf gate; this gate instance has four outputs, Fan[0] 

through Fan[3]. In the second gate instance, Ready is the only input to the not gate. This instance 

has two outputs, PhA and PhB. The truth table for these gates are shown next. 

 
 

Figure 4.5: Truth table of Multiple output Gates 
 

Tristate Gates: 

The tristate gates are: bufifO, bufifl, notifO, notifl 

These gates model three-state drivers. These gates have one output, one data input and one control 

input. Here is the basic syntax of a tristate gate instantiation. 

tristate_gate[ instance_name] (OutputA, InputB, ControlC); 

The first terminal OutputA is the output, the second terminal InputB is the data input, and the 

control input is ControlC. Depending on the control input, the output can be driven to the high- 

impedance state, that is, to value z. For a bufifO gate, the output is z if control is 1,else data is 

transferred to output. For a bufifl gate, output is a z if control is 0.Fora notifOgate, output is at z if 

control is at 1 else output is the invert of the input data value. For notifl gate, output is at z if control 

is at 0.



 

 

 

 

 

Here are some examples. 

bufifl BF1 [Dbus, MemData, Strobe); 

Figure 4.6: Tristate Gates

notifO NT2 {Addr, Abus, Probe); The bufifl gate BF1 drivesthe output Dbus to high- impedance 

state when Strobe is 0, elseMemData is transferred to Dbus. In the second instantiation, when Probe 

is 1,Addr is in high-impedance state, else Addr gets the inverted value of Abus. The truth tables for 

these gates are shown next. Some entries in the table indicate alternate entries.  For example,0/z 

indicates that the output can either be a 0 or a z depending on the strengths of the data and control 

values. 

 

Figure 4.7: Truth table for Tristate Gates



Pull Gates: 

The pull gates are: pullup & pulldown 

These gates have only one output with no inputs. A pull up gate places a 1 on its output. A 

pulldown gate places a 0 on its output. A gate instantiation is of the form: 

pull_gate I instance_name ] ( Outputs ); 

The terminal list of this gate instantiation contains only one output. Here is an example. 

pullup PUP (Pwr); 

This pullup gate has instance name PUP with output Pwr tied to 1. 

MOS Switch: 

The MOS switches are: cmos, pmos, nmos, rcmos, rpmos, rnmos. 

These gates model unidirectional switches, that is, data flows from input to output and the data flow 

can be turned off by appropriately setting the control input(s). 

The pmos(p-type MOS transistor), nmos (n-type MOS transistor), rnmos ('r' stands for resistive) and 

rpmos  switches  have  one  output,  one  input  and  one  control  input.  The  basicsyntax  for  an 

instantiation is: 

gate_type[ instance_name ] ( Outputs , InputB , ControlC ); 

The first terminal is the output, the second terminal is the input and the last terminal is the control. If 

controlis 0 for nmos and rnmos switches and 1 for pmos and rpmos switches, the switch is turned 

off, that is, output has value z; if control is 1, data at input passes to output; see Figure 5-5. The resistive 

switches (rnmos and rpmos) have a higher impedance(resistance) between the input and output 

terminals as compared to the non-resistive switches (nmos and pmos). Thus when data passes from 

input to output, a reduction in strength occurs for resistive switches. 

 

 
 

Figure 4.8: nMOS and pMOS switches



Here are some examples. 

pmos P1 {BigBus, SmallBus, GateControl); 

rnmos RN1 [ControlBit, ReadyBit, Hold); 

The first instance instantiates a pmos switch with instance name P1. The input to the switch is 

SmallBus and the output is BigBus and the control signal is Gate Control. The truth tables for these 

switches are shown next. Some entries in the table indicate alternate entries. For example, 1/z indicates 

that the output can be either 1 or z depending on the input and control. 

 
 

Figure 4.9: Truth table of MOS switches 

 

The CMOS (Complementary MOS) and rcmos (resistive version of cmos) switches have one data 

output, one data input and two control inputs. The syntax for instantiating these two switches is of 

the form: 

(r)cmos [ instance_name ] ( OutputA , InputB , NControl , PControl); 

The first terminal is the output, the second is the input, the third is the n channel control input and 

the fourth terminal is the p-channel control input. A cmos (rcmos) switch behaves exactly like a 

combination of a pmos (rpmos) and an nmos (rnmos) switch with common outputs and common 

inputs. 

 
 

Figure 4.10: (r)cmos switch
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These switches are bidirectional, that is, data flows both 

ways and there is no delay when data propagates through 

the switches. The last four switches can be turned off by 

setting a control signal appropriately. The tran and rtran 

switches cannot be turned off. The syntax for instantiating 

a tran or a rtran (resistive version of tran) switch is: 

(r)t
ran 
[ 
inst
anc
e_n
am
e ] 
( 
Sig
nal
A , 
Sig
nal
B); 

 

The terminal list has only two terminals and data flows 
unconditionally both ways, that is, from 

SignalA to SignalB and vice versa. The syntax for 
instantiating the other bidirectional switches is: 

 

gate type[ 
instance_name ] 
( SignalA , 
SignalB , 
ControlC); 

 

The first two terminals are the bidirectional terminals, 
that is, data flows from SignalA to SignalB 

and vice versa. The third terminal is the control signal. If 
ControlC is 1for tranifO and rtranifO, and 

0 for tranifl and rtranifl, the bidirectional data flow is 

disabled. For the resistive switches(rtran, rtranifO and 

rtranifl), the strength of the signal reduces when it passes 

through the switch. 



Exam
ples: 

 

4 X 1 
Multiplexer: 

 
 

 

 

 

 

 

 

 

 

 

Figure 4.11: 4 X 1 Multiplexer  

moduleMUX4x1 (Z, DO, Dl, D2, D3, SO, Si); 
output Z;input DO, Dl, D2, D3, SO, SI;  

and (TO, DO, SObar, Slbar), (Tl, Dl, SObar, S1), 

(T2, D2, SO, Slbar), (T3, D3, SO, S1);  

not (SObar,SO), (Slbar, S1); 

or (Z, TO, Tl, T2, T3); 

endmodule 

2 to 4 Decoder: 
 

 

 

 

 

 

 

 

 

Figure 4.12: 2 to 4 Decoder



module DEC2x4 {A, B, Enable, Z) ; 

input A, B, Enable; 

output [0:3] Z; 

wireAbar, Bbar; 

not 
 

V0 (Abar, A) , V1 (Bbar, B);nand 

NO (Z[0], Enable, Abar, Bbar), 

N1 (Z[l], Enable, Abar, B), 

N2 (Z[2], Enable, A, Bbar),

N3 (Z[3] , Enable, A, B); 

endmodule 

 

Master Slave Flip-flop: 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Master Slave Flip-flop
 

module MSDFF (D, C, Q, Qbar); 

input D, C; output Q, Qbar; 

not 

NT1 (NotD, D),  

NT2 (NotC, C),  

NT3 (NotY, Y);

 



nand 

ND1 (Dl, D, C),  

ND2 (D2, C, NotD),  

ND3 (Y, Dl, Ybar),  

ND4 (Ybar, Y, D2),  

ND5 (Yl, Y, NotC), 

ND6 (Y2, NotY, NotC), 

ND7 (Q, Qbar, Yl),  

ND8 (Qbar, Y2, Q); 

endmodule 

Parity Generator: 

 

 

 

 

 

 

 

Figure 4.14: Parity Generator 

 

module Parity_9_Bit (D, Even, Odd); 

input [0:8] D; 

output Even, Odd; 

xor 
 

XEO (E0, D[0] , D[l]),  

XE1 (El, D[2], D[3]) ,  

XE2 (E2,D[4], D[5]) ,  

XE3 (E3, D[6], D[7]), 

 XFO (F0, E0, El), 

XF1 {Fl, E2, E3),  



XHO {HO, FO, Fl),  

XEVEN {Even, D[8], HO) ; 

not 

XODD {Odd, Even); 

endmodule 

USER-DEFINED PRIMITIVES 
(UDP): 

The primitives available in Verilog are the entire gate or switch types. Verilog has the 

provision for the user to define primitives –called “user defined primitive (UDP)” and use them. 

The designers occasionally like to use their own custom-built primitives when developing a 

design. Verilog provides the ability to define User- Defined Primitives (UDP). These primitives 

are self-contained and do not instantiate other modules or primitives. UDPs are instantiated 

exactly like gate level primitives. UDPs are basically of two types – combinational and 

sequential. A combinational UDP is used to define a combinational scalar function and a 

sequential UDP for a sequential function. 

Combinational 
UDPs: 

A combinational UDP accepts a set of scalar inputs and gives a scalar output. An inout 

declaration is not supported by a UDP. The UDP definition is on par with that of a module; that 

is, it is defined independently like a module and can be used in any other module. 

primitiveudp_and(out, 
a, b); 

output 

out; 

input 

a, b; 

table 

// a b: Out; 

0 0: 0; 

0 1: 0; 

1 0: 0 

1 

1: 1; 

endtabl

e 



endprim

itive 

Sequential 
UDPs: 

 

Any sequential circuit has a set of possible states. When it is in one of the specified states, 

the next state to be taken is described as a function of the input logic variables and the present 

state. A sequential UDP can accommodate all these. 

primitive latch(q, d, clock, clear); // d-
latch 

output q; reg q; //q declared as reg to create internal storage 

input d, clock, clear; 

initial q = 0; //initialize output to 
value 0 

table 
 

//state table 

//d clock clear: q : q+ ; 

? ? 1 : ? : 0 ;         //clear condition; 

1 1 0 : ? : 1;         //latchq =data=1 

0 1 0 : ? : 0;        //latchq =data=0 

? 0 0 : ? : - ;        //retain original state if 

clock = 0 endtable 

endprimitive 

Dataflow Modeling: 

For small circuits, the gate-level modeling approach works very well because the numbers 

of gates is limited and the designer can instantiate and connect every gate individually. Also, 

gate-level modeling is very intuitive to a designer with a basic knowledge of digital logic design. 

However, in complex designs the number of gates is very large. Thus, designers can design more 

effectively if they concentrate on implementing the function at a level of abstraction higher than 

gate level. Dataflow modeling provides a powerful way to implement a design. Verilog allows a 

circuit to be designed in terms of the data flow between registers and how a design processes data 

rather than instantiation of individual gates. Later in this chapter, the benefits of dataflow 

modeling will become more apparent. 

With gate densities on chips increasing rapidly, dataflow modeling has assumed great 

importance. No longer can companies devote engineering resources to handcrafting entire designs 



with gates. Currently, automated tools are used to create a gate-level circuit from a dataflow 

design description. This process is called logic synthesis. Dataflow modeling has become a 

popular design approach as logic synthesis tools have become sophisticated. This approach allows 

the designer to concentrate on optimizing the circuit in terms of data flow.  For maximum 

flexibility in the design process, designers typically use a Verilog description style that 

combines the concepts of gate-level, data flow, and behavioral design. In the digital design 

community, the term RTL (Register Transfer Level) design is commonly used for a combination 

of dataflow modeling and behavioral modeling. 

 

Continuous 
Assignments: 

A continuous assignment is the most basic statement in dataflow modeling, used to drive a 

value onto a net. This assignment replaces gates in the description of the circuit and describes the 

circuit at a higher level of abstraction. The assignment statement starts with the keyword assign. 

The syntax of an assign statement is as follows. 

continuous_assign ::= assign [ drive_strength ] [ delay3 ] 
list_of_net_assignments ; 

list_of_net_assignments ::= net_assignment { , 
net_assignment } 

net_assignment ::= net_lvalue = 
expression 

Notice that drive strength is optional and can be specified in terms of strength levels. The default 
value for drive strength is strong1 and strong0. The delay value is also optional and can be used 
to specify delay on the assign statement.  This is  like specifying  delays for gates. Delay 
specification is discussed in this chapter. Continuous assignments have the following 
characteristics: 

1. The left hand side of an assignment must always be a scalar or vector net or a 

concatenation of scalar and vector nets. It cannot be a scalar or vector register. 
2. Continuous assignments are always active. The assignment expression is evaluated as soon 

as one of the right-hand-side operands changes and the value is assigned to the left-hand-

side net. 
3. The operands on the right-hand side can be registers or nets or function calls. Registers 

or nets can be scalars or vectors. 

 

4. Delay values can be specified for assignments in terms of time units. Delay values are used 

to control the time when a net is assigned the evaluated value. This feature is similar to 

specifying delays for gates. It is very useful in modeling timing behavior in real circuits. 

 



Examples of Continuous Assignment: 

Continuous assign - Out is a net. i1 and i2 are 

nets. assign out = i1 & i2; 

Continuous assign for vector nets - addr is a 16-bit vector net addr1 and addr2 are 16-bit 

vector registers. 

assignaddr[15:0] = addr1_bits[15:0] ^ 
addr2_bits[15:0]; 

 

Concatenation - Left-hand side is a concatenation of a scalar net and a 

vector net. assign {c_out, sum [3:0]} = a [3:0] + b[3:0] + c_in; 

Implicit Continuous 
Assignment: 

Instead of declaring a net and then writing a continuous assignment on the net, Verilog 

provides a shortcut by which a continuous assignment can be placed on a net when it is declared. 

There can be only one implicit declaration assignment per net because a net is declared only once. 

In the example below, an implicit continuous assignment is contrasted with a regular 

continuous assignment. 

//Regular continuous 

assignment wire out; 

assign out = in1 & in2; 

//Same effect is achieved by an implicit continuous assignment  

wire out = in1 & in2; 

Implicit Net Declaration 
 

If a signal name is used to the left of the continuous assignment, an implicit net declaration will 

be inferred for that signal name. If the net is connected to a module port, the width of the inferred 

net is equal to the width of the module port. 

wire 
i1, i2; 

assign out = i1 & i2; //Note that out was not declared as a 
wire 

//but an implicit wire declaration for out //is done by the 
simulator 

 



Delays 
 

Delay values control the time between the change in a right-hand-side operand and when the new 

value is assigned to the left-hand side. Three ways of specifying delays in continuous assignment 

statements are regular assignment delay, implicit continuous assignment delay, and net 

declaration delay. 

Regular Assignment 
Delay 

 

The first method is to assign a delay value in a continuous assignment statement. The delay 

value is specified after the keyword assign. Any change in values of in1 or in2 will result in a 

delay of 10-time units before recomputation of the expression in1 & in2, and the result will be 

assigned to out. If in1 or in2 changes value again before 10-time units when the result propagates 

to out, the values of in1 and in2 at the time of recomputation are considered. This property is 

called inertial delay. An input pulse that is shorter than the delay of the assignment statement 

does not propagate to the output. 

assign #10 out = in1 & in2; // Delay in a continuous 
ssign

 

Figure 4.15: 
Delays 

 

The above waveform is generated by simulating the above assign statement. It shows the 

delay on signal out. Note the following change: 

When signals in1 and in2 go high at time 20, out goes to a high 10 time units later (time = 

30). When in1 goes low at 60, out changes to low at 70. 

However, in1 changes to high at 80, but it goes down to low before 10 time units have elapsed. 

Hence, at the time of recomputation, 10 units after time 80, in1 is 0. Thus, out gets the value 0. A 

pulse of width less than the specified assignment delay is not propagated to the output. 

 

 



Implicit Continuous Assignment Delay 

An equivalent method is to use an implicit continuous assignment to specify both a delay 

and an assignment on the net. 

//implicit continuous assignment 

delay wire #10 out = in1 & in2; 

//same as wire out; 

assign #10 out = in1 & in2; 

The declaration above has the same effect as defining a wire out and declaring a 

continuous assignment on out. 

 

Net Declaration Delay: 

A delay can be specified on a net when it is declared without putting a continuous assignment 

on the net. If a delay is specified on a net out, then any value change applied to the net out is 

delayed accordingly. Net declaration delays can also be used in gate-level modeling. 

//Net 
Delays 

wire # 10 out; 

assign out = in1 & in2; 

//The above statement has the same effect as the following.  

wire out; 

assign #10 out = in1 & in2; 

Examples 

Master Slave Flip-flop: 

module MSDFF_DF (D, C, Q, Qbar) ; 

input D, C; output Q, Qbar; 

wireNotC, NotD, NotY, Y, Dl, D2, Ybar, Yl, Y2; 

assignNotD = ~ D; 

assign Note = ~ C; 

assignNotY = ~ Y; 

assign D1= - (D & C) ; 

assign D2 = ~ (C &NotD); 

assign Y = ~ (Dl St Ybar); 



assignYbar = ~ (Y & D2); 

assignYl = ~ (y & Note); 

assign Y2 = - (NotY&NotC); 

assign Q = ~ (Qbar&Yl); 

assignQbar = ~ (Y2 & Q); 

endmodule 

8 bit Magnitude Comparator: moduleMagnitudeComparator 

(A, B, AgtB, AeqB, AltB) ; parameter BUS= 8; 

parameter EQ_DELAY = 5, LT_DELAY = 8, GT_DELAY = 8; 

input [1 : BUS]A, B; 

outputAgtB, AeqB, AltB; 

assign %EQ_DELAY AeqB = A == B; 

assign $GT_DELAY AgtB = A > B; assign $LT_DELAY AltB = A < B; endmodule 

Behavioral Modeling: 

 

Behavioral modeling is the highest level of abstraction in the Verilog HDL. The other modeling 

techniques are relatively detailed. They require some knowledge of how hardware or hardware 

signals work. The abstraction in this modeling is as simple as writing the logic in C language. 

This is a very powerful abstraction technique. All that a designer need is the algorithm of the 

design, which is the basic information for any design. 

Most of the behavioral modeling is done using two important constructs: initial and always. 

All the other behavioral statements appear only inside these two structured procedure 

constructs. 

 

Procedural Constructs: 
 

Initial Construct: 

The statements which come under the initial construct constitute the initial block. The initial block 

is executed only once in the simulation, at time 0. If there is more than one initial block, then all 

the initial blocks are executed concurrently. The initial construct is used as follows: 

initial begin reset=1'b0; clk=1'b1; end 

or initial 

clk = 1'b1; 

 



In the first initial block there is more than one statement hence they are written between begin 

and end. If there is only one statement then there is no needs to put begin and end. 

Always Construct: 
 

The statements which come under the always construct constitute the always block. The 

always block starts at time 0, and keeps on executing all the simulation time. It works like a infinite 

loop. It is generally used to model a functionality that is continuously repeated. 

always 

#5 clk=~clk; 

initial 

clk = 1'b0; 

The above code generates a clock signal clk, with a time period of 10 units. The initial 

blocks initiates the clk value to 0 at time 0. Then after every 5 units of time it toggled, hence we 

get a time period of 10 units. This is the way in general used to generate a clock signal for use in 

test benches. 

always@(posedgeclk, negedge reset) 
 

begin 

a = b + c; d = 1'b1; end 

In the above example, the always block will be executed whenever there is a positive edge in the 

clk signal, or there is negative edge in the reset signal. This type of always is generally 

used in implement a FSM, which has a reset signal. 

always @(b, c, d) 

begin 

a = (b + c)*d; 

e = b | c; 

end 

In the above example, whenever there is a change in b, c, or d the always block will be executed. 

Here the list b, c, and d is called the sensitivity list. 

In the Verilog 2000, we can replace always @(b,c,d) with always @(*), it is equivalent to include 

all input signals, used in the always block. This is very useful when always blocks are used for 

implementing the combination logic. 

Operations & Assignments 

The design description at the behavioral level is done through a sequence of assignments. These 

are called ‘procedural assignments’ – in contrast to the continuous assignments at the data flow 



level. Though it appears similar to the assignments at the data flow level discussed in the last 

chapter, the two are different. The procedure assignment is characterized by the following: 

• The assignment is done through the “=” symbol (or the “<=” symbol) as was the case 
with the continuous assignment earlier. 

• An operation is carried out and the result assigned through the “=” operator to an operand 
• specified on the left side of the “=” sign – for example, N = ~N; 
• Here the content of reg N is complemented and assigned to the reg N itself. The 

assignment is essentially an updating activity. 
• The operation on the right can involve operands and operators. The operands can be 

of different types – logical variables, numbers – real or integer and so on. 

Procedural 
Assignments 

Procedural assignments are used for updating reg, integer, time, real, realtime, and memory 

data types. The variables will retain their values until updated by another procedural assignment. 

There is a significant difference between procedural assignments and continuous assignments. 

Continuous assignments drive nets and are evaluated and updated whenever an input operand 

changes value. Whereas procedural assignments update the value of variables under the control 

of the procedural flow constructs that surround them. 

The LHS of a procedural assignment could 
be: 

• reg, integer, real, realtime, or time data type. 

 

• Bit-select of a reg, integer, or time data type, rest of the bits are untouched. 

 

• Part-select of a reg, integer, or time data type, rest of the bits are untouched. 

 

• Memory word. 

Concatenation of any of the previous four forms can be specified. When the RHS evaluates to 

fewer bits than the LHS, then if the right-hand side is signed, it will be sign-extended to the size 

of the left- hand side. There are two types of procedural assignments: blocking and non- blocking 

assignments. 

Blocking assignments: 

Blocking assignment statements are executed in the order they are specified in a sequential block. 

The execution of next statement begins only after the completion of the present blocking 

assignments. A blocking assignment will not block the execution of the next statement in a 

parallel block. The blocking assignments are made using the operator =. 

initial begin 

a = 1; b = #5 2; c = #2 3; 



end 

In the above example, a is assigned value 1 at time 0, and b is assigned value 2 at time 5, 

and c is assigned value 3 at time 7. 

Non-blocking 
assignments: 

The non-blocking assignment allows assignment scheduling without blocking the 

procedural flow. The non-blocking assignment statement can be used whenever several variable 

assignments within the same time step can be made without regard to order or dependence upon 

each other. Non- blocking assignments are made using the operator <=. 

Note: <= is same for less than or equal to operator, so whenever it appears in expression it is 

considered to be comparison operator and not as non-blocking assignment. 

Initial begin a 

<= 1; 
 

b <= #5 2; c <= #2 3; end 

In the above example, a is assigned value 1 at time 0, and b is assigned value 2 at time 5, and c 

is assigned value 3 at time 2 (because all the statements execution starts at time 0, as they are non- 

blocking assignments). 

 

Conditional (if-else) Statement: 
 

The condition (if-else) statement is used to make a decision whether a statement is executed or 

not. The keywords if and else are used to make conditional statement. The conditional statement 

can appear in the following forms. 

if (conditional_1) 

procedural_statement    1 

{else if ( condition_2) 

procedural_statement_2} 

{else procedural_statement_3 } 

Conditional  (if-else)  statement  usage  is  similar  to  that  if-else  statements  of  C  

programming language, except that parenthesis is replaced by begin and end. 

If conditional evaluates to a non-zero known value, then the procedural_statement_1 is executed. 

If conditional evaluates to a value 0, x or z, the procedural_statement_1 is not executed, and an else 

branch, if it exists, is executed. Here is an example. 



if (Sum < 60) 

begin 

Grade = C; Total_C = Total_C + 1; 

end 

else if [Sum < 75) 

begin 

Grade = B; Total_B = Total_B + 1 ; 

end else begin 

Grade = A; Total A = Total_A + 1; 

end 

Loop Statements 
 

There are four kinds of loop statements. These are: 
 

i. Forever-loop  

ii. ii. Repeat-loop  

iii. While-loop  

iv. For-loop 

procedural_statement 

This loop statement continuously executes the procedural statement. Thus, to get out of such a 

loop, a disable statement may be used with the procedural statement. Also, some form of timing 

controls must be used in the procedural statement, otherwise the forever-loop will loop forever in 

zero delay. Here is an example of this form of loop statement. 

initial 

begin 

Clock 

= 0; 

#5 forever 

# 10 Clock = ~ Clock; 

end 

This example generates a clock waveform; Clock first gets initialized to 0 and stays at 0 until 5 

time units. After that Clock toggles every 10 time units. 

Repeat loop 



This form of loop statement has the form: 

repeat (loop_count) 

procedural_statement 

It executes the procedural statement the specified number of times. If loop count expression is 

an x or a z, then the loop count is treated as a 0. Here are some examples. 

repeat (Count) Sum = Sum + 10; 

repeat (ShiftBy)  

P_Reg = P_Reg<<1; 

The repeat-loop statement differs from repeat event control. Consider, repeat 

(Count) // Repeat-loop statement. 

@ (posedgeClk) Sum = Sum + 1; 

which means for Count times, wait for positive edge of Clk and when this occurs, increment 

Sum. Whereas, 

Sum = repeat (Count) @ (posedgeClk) Sum + 1; // Repeat event 
control 

 

means to compute Sum + 1 first, then wait for Count positive edges on Clk, then assign to left- 

hand side. 

 

While Loop: 

The syntax of this form of loop statement is: 

while 
(condition) 

procedural_statement 

This loop executes the procedural statement until the specified condition becomes false. If the 

expression is false to begin with, then the procedural statement is never executed. If the condition 

is an x or a z, it is treated as a 0 (false). Here are some example 

while (By> 0) 

begin 

Acc = Acc<< 1; By = By - 1; 

end 

For-loop 
Statement: 



This loop statement is of the 
form: 

for (initial_assignment; 
condition;step_assignment) 

procedural_state
ment 

 

A for-loop statement repeats the execution of the procedural statement a certain number of 

times. The initial_assignment specifies the initial value of the loop index. The condition specifies 

the condition when loop execution must stop. As long as the condition is true, the statements in 

the loop are executed. The step_assignment specifiesthe assignment to modify, typically to 

increment or decrement, the step count. 

integer K; 

for (K = 0; K < MAX_RANGE; K = K + 1) 

begin 

if {Abus[K] == 0) 

Abus[K) = 1; 

else if (Abus[K] == 1) Abus[K] = 0; 

else 

$display (\"Abus[K] is an x or a z\"); 
 

end 

Examples: 
 

4x1 Multiplexer 

module mux4( input a, b, c, d 

input [1:0] sel, 

output out ); 

always @(a or b or c or d or sel) 

begin 

if(sel==0) 

out = a; 

else if (sel==1) 

out = b; 



else if ( sel == 2 ) 

out = c ; 

else if ( sel == 3 ) 

out = d; 

end 

endmodule 

D flip-flop 

module RisingEdge_DFlipFlop(D,clk,Q); 

input D;                                // Data input 

input clk;               // clock input 

output Q;               // output Q 
 

always @(posedgeclk)

begin 
 

end 

 

Q <= D;



endmodule 
 

Shift Register (Serial In Serial Out) 

module shift (C, SI, SO); 

input C,SI; output 

SO; reg [7:0] tmp; 

always @(posedge C) 

begin 

tmp = tmp<< 1; 

tmp[0] = SI; 

end 

assign SO = tmp[7]; 

endmodule 

Structural Modelling: 

 

The structural model of Verilog HDL is described using: 

•     Gate instantiation 

•     UDP instantiation 

•     Module instantiation 

Module 

A module defines a basic unit in Verilog HDL. It is of the form: 

modulemodule_name ( port_list ); 

Declarations_and_Statements 

endmodule 

The port list gives the list of ports through which the module communicates with the external 

modules. 

Ports 

A port can be declared as input, output or inout. A port by default is a net. However, it can be 

explicitly declared as a net. An output or an inout port can optionally be redeclared as a regregister. 

In either the net declaration or the register declaration the net or register must have the same size as 

the one specified in the port declaration. Here are some examples of declarations. 

module Micro {PC, Instr, NextAddr); 



 

// Port declarations: 

input [3:1] PC; 

output [1:8] Instr;  

inout [16:1] NextAddr; 

// Redeclarations: 

wire [16:1] NextAddr; 

//Optional; but if specified must have same range as in its port declaration. reg 

[1:8] Instr; 

/* Instr has been redeclared as a reg so that it can be assigned a value within an always statement or 

an initial statement. */ 

endmodule 

 

Module Instantiation 
 

A module can be instantiated in another module, thus creating hierarchy. A module instantiation 

statement is of the form: 

module_name instance_name( port_associations); 

Port associations can be by position or by name; however, associations cannot be mixed. A port 

association is of the form: 

port_expr           // By position. 
 

.PortName (port_expr )// By name. 
 

Where port_expr can be any of the following: 
 

i. an identifier (a register or a net) 
 

ii. a bit-select 

 

iii. a part-select



iv. a concatenation of the above 
 

v. an expression (only for input ports) 
 

In positional association, the port expressions connect to the ports of the module in the specified order. 

In association by name, the connection between the module port and the port expression is explicitly 

specified and thus the order of port associations is not important. Here is an example of a full-adder 

built using two half-adder modules. 

 

Half Adder: 

module HA (A, B, S, C); 

input A, B; 

output S, C; 

parameter AND_DELAY = 1, XOR_DELAY = 2; 

assign #XOR_DELAY s=A ^ B; 

assign #AND_ DELAY C= A & B; 

endmodule 

Full Adder: 

module FA (P, Q, Cin, Sum, Cout); 

input P, Q, Cin; 

output Sum, Cout; parameter 

OR_DELAY = 1; wire SI, CI, 

C2; 

//Two module instantiations: 

HA h1 (P, Q, S1, C1); 

// Associatingby position. 

HA h2 (A(Cin), S(Sum), B(S1), .C(C2));       //Associating by name. 

// Gate instantiation: 

or #OR_DELY 01 (Cout, CI, C2) ; 

endmodule



 
 

 

Figure 4.16: Full Adder using Two Half Adders 
 

In the first module instantiation, HA is the name of the module, h1 is the instance name and ports 

are associated by position, that is, P is connected to module (HA) port A, Q is connected to module 

port B, S1 to S and C1 to module port C. In the second instantiation, the port association is by name, 

that is, the connections between the module (HA) ports and the port expressions are specified 

explicitly. 

Different port length: 

When a port and the local port expression are of different lengths, port matching is performed by 

(unsigned) right justification or truncation. Here is an example of port matching. 

moduleChild (Pba, Ppy) ; 

input [5:0] Pba; 

output [2:0] Ppy; 

endmodule 

module Top; 

wire [1:2] Bdl; 

wire [2:6] Mpr-, Child 

C1 {Bdl, Mpr); 

endmodule 

In the module instantiation for Child, Bdl[2] is connected to Pba[0] and Bdl[1 ]is connected to 

Pba[1]. Remaining input ports, Pba[5], Pba[4], Pba[3] are not connected and therefore have



the value z. Similarly,Mpr[6] is connected to Ppy[0], Mpr[5] is connected to Ppy[l] and Mpr[4] is 

connected to Ppy[2]. 

 

Examples: 

Decade counter: 

 

 

 

 

 

 

 

Figure 4.17: Decade counter 

module Decade_Ctr(Clock, Z); 

input Clock; 

output [0:3] Z; 

wire SI, S2; 

and A1 {SI, Z[2], Z[l]);// Primitive gate instantiation. 

// Four module instantiations: 

JK_FF JK1 (.J(1’b1), .K(1’b1), .ck(Clock), .Q(z[0]), .NQ ( )), 

JK2 (.J(1’b1), .K(1’b1), .ck(Z[0]), .Q(z[1]), .NQ ()), 

JK3 (.J(1’b1), .K(1’b1), .ck(Z[1]), .Q(z[2]), .NQ ()), 

  JK4 (.J(1’b1), .K(1’b1), .ck(Z[0]), .Q(z[1]), .NQ (S2)); 
 

endmodule



3 bit UP-DOWN counter  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: 3 bit UP-DOWN counter
 

 

 

moduleUp_Down {Clk, Cnt_Up, Cnt_Down, Q); 

inputClk, Cnt Up, Cnt_Down; 

output [0:2] Q; 

wire S1, S2, S3, S4, S5,S6, S7, S8; 

JK_FF JK1 (l'bl, l'bl, Clk, Q[Q], S1), 

JK2 (l'bl, l'bl, S4, Q[l], S5), 

JK3 (l'bl, l'bl, S8, Q[2], ); 

and A1 (S2, Cnt_Up, Q[Q]), 

A2 (S3, SI, Cnt_Down), 

A3 (S7, Q[l] ,Cnt_Up), 

A4 (S6, S5, Cnt_Down); 

or 01 (S4, S2, S3), 

   02 (S8,S7, S6); 

endmodule
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PART-A 

1. Justify the importance of gate primitives in Verilog HDL. 

2. List the user defined primitives in Verilog HDL. 

3. Distinguish gate level modeling and dataflow modeling. 

4. Develop a Verilog HDL program for Full Adder using gate level modeling. 

5. List the conditional statements in Verilog HDL. 

6. Develop a Verilog HDL program for 2*4 decoder using dataflow modeling. 

7. Develop a verilog HDL program for XOR gate using switch level modeling. 

8. Formulate any one loop statement in Verilog HDL. 

9. Classify the types of delays in verilog HDL. 

10. Develop Verilog HDL code for 1 bit comparator. 

 

PART-B 

1. Develop a program in Verilog HDL to design a multiplexer using if and case statement. 

2. Discuss with example structural modeling of Verilog HDL. 

3. Develop a Verilog HDL program for SISO and SIPO shift registers 

4. Distinguish between dataflow modeling and behavioral modeling of Verilog HDL 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT – V - FEATURES IN VERILOG HDL– SECA3007 



 

FEATURES IN VERILOG HDL 

Tasks and Functions 

Tasks and functions provide the ability to execute common procedures from several different 

places in a description. They also provide a means of breaking up large procedures into smaller ones 

to make it easier to read and debug the source descriptions. Input, output, and inout argument values 

can be passed into both tasks and functions. 

Differences between Functions and Tasks 

 

 

 

The following rules distinguish tasks from functions: 

 

• A function must execute in one simulation time unit; a task can contain time-controlling 

statements. 

• A function cannot enable a task; a task can enable other tasks and 
functions. 

• A function must have at least one input argument; a task can have zero or more arguments 

of any type. 

• A function returns a single value; a task does not return a value. The purpose of a function 

is to respond to an input value by returning a single value. A task can support multiple goals 

and can calculate multiple result values. However, only the output or inout argumentspass 

result values back from the invocation of a task. A Verilog model uses a function as an 

operand in an expression; the value of that operand is the value returned by the function. 

Task and function declarations specify the following:•  
local variables 

• I/O ports 



• registers 

 

• times 
• integers 
• real 
• events 

These declarations all have the same syntax as for the corresponding declarations in a module 

definition. If there is more than one output, input, and inout port declared in a task these must be 

enclosed within a block. 

Task 

 

• A task begins with keyword task and ends with keyword endtask 
• Inputs and outputs are declared after the keyword task. 
• Local variables are declared after input and output 

declaration. Task declaration and invocation  

Task Declaration syntax 

task <task_name>; <I/O declarations> <variable and event declarations> 

begin 

<statement(s)> 

end 

endtask 

Task invocation syntax 

 

<task_name>; <task_name>(<arguments>); 

begin 

temp_out = (9/5) *( temp_in+ 32) 

end endtask 

endmadule 

Function 

A Verilog HDL function is the same as a task, with very little differences, like function cannot drive 

more than one output, can not contain delays. 

 

• functions are defined in the module in which they are used. It is possible to define functions 

in separate files and use compile directive 'include to include the function in the file which 

instantiates the task. 

 



• functions can not include timing delays, like posedge, negedge, # delay, which means that 

functions should be executed in "zero" time delay. 

• functions can have any number of inputs but only one output. The variables declared within 

the function are local to that function. The order of declaration within the function defines 

how the variables passed to the function by the caller are used. 

• functions can take, drive, and source global variables, when no local variables are 
used. 

• When local variables are used, basically output is assigned only at the end of 

function execution. 

• functions can be used for modeling combinational logic. 
• functions can call other functions, but cannot call tasks. Syntax 

• A function begins with keyword function and ends with keyword endfunction. 
• inputs are declared after the keyword function. 

 

Function Rules 

Functions are more limited than tasks. The following five rules govern their usage: 

• A function definition cannot contain any time-controlled statements—that is, any 

statements introduced with #, @, or wait. 

• Functions cannot enable tasks. 
• A function definition must contain at least one input argument. 
• A function definition must include an assignment of the function result value to the 

internal variable that has the same name as the function.  

 

• A function definition can’t contain an inout declaration or an output declaration 

 

Function Declaration and Invocation 

Declaration syntax: 

function <range_or_type> <func_name>; 

<input declaration(s)> 

<variable_declaration(s)> 

 

begin 

<statements> 

end 

endfunction 

 

 



Invocation syntax: 

<func_name> (<argument(s)>); 

Example 

module simple_function(); 

function myfunction; input 

a, b, c, d; 

begin 

myfunction = ((a+b) + (c-d)); 

end 

endfunction 

endmodule 

SYSTEM TASKS AND FUNCTIONS 

 

Verilog contains the pre-defined system tasks and functions, including tasks for creating output from 

a simulation. All system tasks appear in the form $.Operations such as displaying the screen, 

monitoring values of nets, stopping and finishing are done by system tasks. 

 

DISPLAY TASKS 

 

$display 

 

$display displays information to standard output and adds a newline character to the end of its 

output. 

$monitor 

 

$monitor continuously monitors and displays the values of any variables or expressions specified as 

parameters to the task. Parameters are specified in the same format as for $display. 

 

$monitoron -$monitoron controls a flag to re-enable a previously disabled $monitor. 

Syntax: $monitoron; 

$monitoroff-$monitoroff controls a flag to disable monitoring. 

Syntax: $monitoroff; 

 



$write 

 

$write displays information to standard output without adding a newline character to the end of its 

output. 

Syntax: $write (list_of_arguments); 

 

The default format of an expression argument that has no format specification is decimal. The 

companion $writeb, $writeo, and $writeh tasks specify binary, octal and hex formats, respectively. 

FILE I/O TASKS 

 

$fclose 

 

$fclose closes the channels and prevents further writing to the closed channels. 

Syntax: file_closed_task ::= $fclose ; 

$fdisplay 

 

$fdisplay is the counterpart of $display; it is used to direct simulation data to a file. 

Syntax: $fdisplay ([multi_channel_descriptor], list_of_arguments); 

$fopen 

 

$fopen opens the file specified by a parameter and returns a 32-bit unsigned MCD (integer multi- 

channel-descriptor) uniquely associated the file. $fopen rturns 0 if the file could not be opened. 

Syntax: file_open_function ::= integer multi_channel_descriptor = $fopen(“[name_of_file]”); 

 

$readmemb 

 

$readmemb reads binary numbers from a text file and loads them into a Verilog memory, or sub- 

blocks of a memory, specified by an identifier. 

Syntax: $readmemb (“filename”, memory_name [, start_addr [, finish_addr]]); 

SIMULATION CONTROL TASKS 

$finish 

 

$finish terminates simulation, and returns control to the host operating system. 

Syntax: $finish; 

 



$stop 

 

$stop suspends simulation, issues an interactive prompt, and passes control to the user. 

 

$stop(n) suspends simulation, issues and interactive prompt, and takes the following action, 

depending on the diagnostic control parameter, n: 

n = 0 Prints nothing.n = 1 Prints the simulation time and location 

 

n = 2 Prints simulation time and location 
 

Modeling a Test bench 

Whenever we design a circuit or a system, one step that is most important is “testing”. Testing is 

necessary to verify whether the designed system works as expected or not. 

If we find some error in an IC after fabrication, we are looking at a great loss because now we have 

to re-do the entire chip manufacturing process from scratch right from designing the circuit to 

fabrication. 

Test benches are used to test the RTL (Register-transfer logic) that we implement using HDL 

languages like Verilog and VHDL. 

Verifying complex digital systems after implementing the hardware is not a wise choice. It is 

ineffective in terms of time, money, and resources. Hence, it is essential to verify any design before 

finalizing it. Luckily, in the case of FPGA and Verilog, we can use test benches for testing Verilog 

source code. 

Now we are going to learn how we can use Verilog to implement a test bench to check for errors or 

inefficiencies. We’ll first understand all the code elements necessary to implement    a test bench in 

Verilog. Then we will implement these elements in a stepwise to truly understand the method of writing 

a test bench. 

Design Under Test (DUT) 

A design under test, abbreviated as DUT, is a synthesizable module of the functionality we want to 

test. In other words, it is the circuit design that we would like to test. We can describe our DUT 

using one of the three modeling styles in Verilog, Gate level, Dataflow level and Behavioral level. 

 

 

 

 



For example, 

module and_gate(c,a,b); 

input a,b; 

output c; 

assign c = a & b; 

endmodule 

We have described an AND gate using Dataflow modeling. It has two inputs (a,b) and an output (c). 

We have used continuous assignment to describe the functionality using the logic equation. This AND 

gate can be our DUT. 

So, to test our DUT, we have to write the test bench code. Why 

do we have to take the trouble to write another code? 

With a test bench, we can view all the signals associated with the DUT. No need for physical 

hardware. 

Writing a test bench is a bit trickier than RTL coding. Verifying a system can take up around 60- 

70% of the design process. 

Implementation of test bench 

Let’s learn how we can write a test bench. Consider the AND module as the design we want to test. 

Like any Verilog code, start with the module declaration. 

module and_gate_test_bench; 
 

Reg and wire declarations 

 

Usually, we declare the input and output ports. But, in a test bench, we will use two signal types for 

driving and monitoring signals during the simulation. 

 

The reg datatype will hold the value until a new value is assigned to it. This data type can be 

assigned a value only in the always or initial block. This is used to apply a stimulus to the inputs of 

DUT. 

The wire datatype is similar to that of a physical connection. It will hold the value that is driven   by a  

port,   assign   statement,    or   reg.    This   data   type   cannot   be   used        in initial or always 

blocks. This is used to check the output signals from the DUT. 

reg A, B; 

 

wire C; 



DUT Instantiation 

 

The purpose of a test bench is to verify whether our DUT module is functioning as we wish. Hence, 

we have to instantiate our design module to the test module. The format of the instantiation is: 

<dut_module> <instance name>(.<dut_signal>(test_module_signal),…) 

 

and_gate dut(.a(A), .b(B), .c(C)); 
 

We have instantiated the DUT module and_gate to the test module. The signals with a dot in front 

of   them   are   the   names   for   the   signals   inside   the and_gate module,   while    the wire or 

reg they connect to in the test bench is next to the signal in parenthesis. 

Test bench for AND Gate 

 

We have already written the Verilog file for an AND gate. Let’s see how to write a test bench for 

that DUT. 

 

module and_tb; 
 

Then, let’s have the reg and wire declarations on the way. The input from the DUT is declared as reg 

and wire for the output of the DUT. It is through these data types we can apply the stimulus to the 

DUT. Using upper case letters for signals in the test bench avoids confusion. 
reg A,B; 

 

wire C; 
Then comes the part of performing instantiation. 

and_gate dut(.a(A), .b(B), .c(C)); 
 

We have linked our test bench to the DUT. 

 

initial 

begin 

#5 A =0; B=0; 

 

#5 A =0; B=1; 

 

#5 A =1; B=0; 

 



So our final testbench code will be: 

 

module and_tb; 

 

reg A,B; 

 

wire C; 

 

and_gate dut(.a(A), .b(B), .c(C)); 

 

initial 

begin 

#5 A =0; B=0; 

 

#5 A =0; B=1; 

 

#5 A =1; B=0; 

 

#5 A =1; B=1; 

 

end 

 

end module 

 

Testbench for D-flip flop 

 

For sequential circuits, the clock and reset signals are essential for its functioning. 

 

Let’s test the Verilog code for D-flip flop. Here’s the DUT: 

module dff_behave(clk,rst,d,q,qbar); input 

clk,rst,d; 

output reg q,qbar; 

always@(posedgeclk) begin 

if(rst == 1) begin 

q <= 0; 

 



qbar <= 1; end else 

begin q <= d; qbar <= 

~d; 

end 

end 

endmodule 
 

Let’s start writing a testbench for the above : 

As usual start with the module declaration. Naming the module as dff_tb 

module dff_tb 
Moving on with the reg and wire declaration: 

reg D,CLK,RST; 

 

wire Q, QBAR; Time for DUT instantiation: 

dff_behave dut(.clk(CLK), .rst(RST), .d(D), .q(Q), .qbar(QBAR)); 
 

As we said, a clock signal is essential for working of the flip flop. So, here’s how we create a clock 

stimulus for our testbench. 
always 

 

#10 CLK = ~CLK; 
The above clock will have a 20 ns pulse width. Therefore, we have generated a 50 MHz clock. Let’s 

 

apply the stimulus for our DUT: 

initial 

begin 

RST = 1; 

#10 RST = 0; 

 

#10 D = 0; 

#10 D = 1  

Finally, our testbench code is:



module dff_tb; reg 

CLK = 0; reg 

D,RST; wire 

Q,QBAR; 

dff_behave dut(.clk(CLK), .rst(RST), .d(D), .q(Q), .qbar(QBAR)); 

 

always 

 

#10 CLK = ~CLK; 

 

initial begin RST =1; 

 

#10 RST = 0; 

 

#10 D = 0; 

 

#20 D = 1 

 

end endmodule 

 

Test Bench for Half Adder 

module half_adder_verilog_tb; reg 

a, b; 

wire s, c; 

 

halfadder8 dut (.a(a), .b(b), .s(s), .c(c)); 

 

initial 

begin a = 

0; b = 0; 

#50; 

 

a = 0; 

 

b = 1; 



 

#50; 

 

a = 1; 

 

b = 0; 

 

#50; 

 

a = 1; b = 

1; end 

endmodule 

Concepts of Timing and Delays in Verilog 

 

The concepts of timing and delays within circuit simulations are very important because they allow 

a degree of realism to be incorporated into the modeling process. In Verilog, without explicit 

specification of such constraints, the outputs of pre-defined primitives and user- defined modules are 

all assumed to resolve instantaneously. Some designs, such as high speed microprocessors, may 

have very tight requirements that must be met. Failure to meet these constraints may result in the 

design failing to work at all, or possibly even producing invalid outputs. Thus, the aim of the 

designer may be to produce a circuit that functions correctly, and it is equally important that the circuit 

also conforms to any timing constraints required of it. 

Delays 

 

Delays can be modelled in a variety of ways, depending on the overall design approach that has been 

adopted, namely gate-level modelling, dataflow modelling and behavioural modelling. 

 

Gate level modeling 

 

In real circuits, logic gates have delays associated with them. Gate delays allow the Verilog user to 

specify delays through the logic circuits. Pin-to-pin delays can also be specified in Verilog. 

 

Rise, Fall, and Turn-off Delays 

 

There are three types of delays from the inputs to the output of a primitive gate 

 

Rise delay 



 

The rise delay is associated with a gate output transition to a 1 from another value. 

 

Fall delay 

 

 

 

Turn-off delay 

 

The turn-off delay is associated with a gate output transition to the high impedance value 

(z) from another value. 

If the value changes to X, the minimum of the three delays is considered. 
 

0, 1, x and z take their usual meanings of logic low, logic high, unknown and high impedance. Any 

or all of these delays can be specified for each gate by use of the delay token #. If only one value is 

specified, it is used for all these delays. If two are given, they are used for the rise and fall delays 

respectively. The turn-off delay (the time taken for the output to go to a high impedance state) is 

taken to be the minimum of these values. Alternatively, all three values can be explicitly set. The 

use of delays is illustrated for the 2-input multiplexer. 

module multiplexor_2_to_1(out, cnt, a, b); 

 

/*  

 

* A 2-1 1-bit multiplexor 

  

*/ 

output out; 

input cnt, a, b; 

 

wire          not_cnt, a0_out, a1_out; 

 

not # 2    n0(not_cnt, cnt);         /* Rise=2, Fall=2, Turn-Off=2 */ and 

 

#(2,3) a0(a0_out, a, not_cnt); /* Rise=2, Fall=3, Turn-Off=2 */ and 



 

#(2,3) a1(a1_out, b, cnt); 

 

or #(3,2) o0(out, a0_out, a1_out); /* Rise=3, Fall=2, Turn-Off=2 */ 

 

endmodule /* multiplexor_2_to_1 */ 

Dataflow      modeling 

 

Net Declaration Delay 

 

The delay to be attributed to a net can be associated when the net is declared. Thereafter any 

changes of the signals being assigned to the net will only be propagated after the specified delay. 

e.g.    wire    #10    out; 

 

assign out = in1 & in2; 

 

If either of the values of in1 or in2 should happen to change before the assigment to out has taken 

place, then the assignment will not be carried out, as input pulses shorter than the specified delay are 

filtered out. This is known as inertial delay. 

 

Regular Assignment Delay 

 

This is used to introduce a delay onto a net that has already been declared. 

 

e.g. wire out; assign #10 out = in1 & in2; 

 

This has a similar effect to the code above, computing the value of in1 & in2 at the time that the assign 

statement is executed, and then storing that value for the specified delay (in this case 10 time units), 

before assigning it to the net out. 

 

Implicit Continuous Assignment 

 

Since a net can be implicitly assigned a value at its declaration, it is possible to introduce a delay 

then, before that assignment takes place. 

e.g. wire #10 out = in1 & in2; 

 

It should be easy to see that this is effectively a combination of the above two types of delay, rolled 

into one. 



 

 

 

Behavioural modelling 

 

Regular Delay or Inter-assignment delay 

 

This is the most common delay used - sometimes also referred to as inter-assignment delay control. 

 

e.g. #10 q = x + y; 

 

It simply waits for the appropriate number of timesteps before executing the command. 

 

Intra-Assignment Delay Control 

 

With this kind of delay, the value of x + y is stored at the time that the assignment is executed, but this 

value is not assigned  to q until  after  the  delay  period,  regardless  of  whether  or not x or y have 

changed during that time. 

e.g. q = #10 x + y; 

 

This is similar to the delays used in dataflow modeling. 

 

Timing controls 

 

Timing controls provide a way to specify the simulation time at which procedural statements will 

execute. 

There are three methods of timing control 

 

•  Delay based timing control 

 

•  Event based timing control 

 

•  Level-sensitive timing control 

 

Delay based timing control 

 

Delay-based timing control in an expression specifies the time duration between the statement is 

encountered and when it is executed. Delays are specified by the symbol #. 



There are three types of delay control for procedural assignments 

 

•  Regular delay control 

 

•  Intra-assignment delay control 

 

•  Zero delay control 

 

Regular delay control 
 

Regular delay control is used when a non-zero delay is specified to the left of a procedural 

assignment. Usage of regular delay control is shown below example, 

 

 

 

module clk_gen; 

 

reg clk, reset; 

 

clk = 0; 

 

reset = 0; 

 

#2 reset = 1; 

 

#5 reset = 0; 

#10 $finish; 
 

Intra-assignment delay control 

 

Instead of specifying delay control to the left of the assignment, it is possible to assign a delay to the 

right  of  the  assignment  operator.  Usage  of  intra-assignment  delay  control  is  shown  in  below 

example, 

module intra_assign; 

 

reg a, b; 

 



a = 1; 

 

b = 0; 

 

 

Difference between the intra-assignment delay and regular delay 

 

Regular delays defer the execution of the entire assignment. Intra-assignment delays compute the 

right-hand-side expression at the current time and defer the assignment of the computed value to the 

left-hand-side  variable.  Intra-assignment  delays  are like using  regular  delays  with  a temporary 

variable to store the current value of a right-hand-side expression. 

Zero delay control 

Zero delay control is a method to ensure that a statement is executed last, after all other statements 

in that simulation in that simulation time are executed. This is used to eliminate race conditions. 

However, if there are multiple zero delay statements, the order between them is nondeterministic. 

Usage of zero delay control is shown in below example, 

initial 

begin 

x=0; 

y=0; 

end 

initial 
begin 

 

#0 x=1; 

 

#0 y=1; 

 

end 

 

Above four statements x=0,y=0,x=1,y=1 are to be executed at simulation time 0. However since x=1 

and y=1 have #0, they will be executed last. Thus, at the end of time 0,x will have value 1 and y will 

have value 1. 

 

 

Event based timing control 

 



An event is the change in the value on a register or a net. Events can be utilized to trigger execution 

of a statement or a block of statements. There are four types of event-based timing control. 

•  Regular event control 

 

•  Named event control 

 

•  Event OR control 

 

•  Level-sensitive timing control 

 

Regular event control 

 

The @ symbol is used to specify an event control. Statements can be executed on changes in signal 

value or at a positive or negative transition of the signal value. The keyword posedge is used for a 

negative transition as shown in below example, 

module edge_wait_example(); 

 

reg enable, clk, trigger; 

 

 

always @ (posedge enable) 

 

begin 

 

trigger = 0; 

 

// Wait for 5 clock cycles 

repeat (5) begin 

@ (posedge clk) ; 

 

end 

 

trigger = 1;



 

end 
 

Named event control 

Verilog provides the capability to declare an event and then trigger and recognize the occurrence of 

that event. The event does not hold any data. A named event is declared by the keyword event. An 

event is triggered by the symbol . The triggering of the event is recognized by the symbol @. 

data_buf={data_pkt[0],data_pkt[1]}; 

Example 

 

event received_data; 
always @(posedge clock) 

 

begin 

 

if (last_data_packet) 
end 

 

always @(received_data)  

Event OR control 

 

Sometimes a transition on any one of multiple signals or events can trigger the execution of a statement 

or a block of statements. This is expressed as an OR of events or signals. The list of events or signals

expressed as an OR is also known as a sensitivity list. The keyword or is used to specify multiple 

triggers as shown in below example, 

always @(reset or clock or d) 

 

begin 

if(reset) 

q=1’b0; 

else if (clock) 

 



Level-Sensitive Timing control 

 

Verilog allows a level-sensitive timing control, that is, the ability to wait for a certain condition to be 

true before a statement or a block of statements is executed. The keyword wait is used for level- 

sensitive constructs. 

Example 

 

always 

 

wait (count_enable) #20 count=count+1; 

 

From the above example, the value of count_enable is monitored continuously. If count_enable is 0, 

the statement is not entered. If it is logical 1, the statement count=count+1 is executed after 20 time 

units. If count_enable stays at 1, count will be incremented every 20 time units. 

 

SWITCH LEVEL MODELING 

 

Usually, transistor level modeling is referred to model in hardware structures using transistor 

models with analog input and output signal values. On the other hand, gate level modeling 

refers to modeling hard-ware structures with digital input and output signal values between these 

two   modeling   schemes   is referred   to   as switch   level  modeling. At   this level, a hardware 

component is described at the transistor level, but transistors only  exhibit digital behavior and their 

input, and output signal values are only limited to digital values. At the switch level, transistors behave 

as on-off switches- Verilog uses a 4 value logic value   system,   so   Verilog   switch   input and   

output   signals can take  any   of  the    four 0, 1, Z, and X logic values. 

 

Switch level primitives 

 

Switches  are unidirectional  or  bidirectional and resistive or  nonresistive. For each  group  those 

primitives that switch on with a positive gate {like an NMOS transistor} and those that switch on 

with a negative gate {like a PMOS transistor}. Switching on means that logic values flow from 

input transistor to its input. Switching off means that the output of a transistor is at Z        level 

regardless     of     its      input      value.      A unidirectional      transistor passes   its input value to 

its output when it is switched on. 

A bidirectional transistor conducts both ways. A resistive structure reduces the strength of its input 

logic when passing it to its output. In addition to switch level primitives, pull-primitives that are 

used as pull-up and pull-down resistors for tri-state outputs.



MOS Switches 
 

Two types of MOS switches can be defined with the keywords nmos and pmos. Keyword 

nmos  is used  to model  NMOS  transistors,  Keyword  pmos   is   used   to   model  PMOS 

transistors. The symbols for nmos and pmos switches are shown in figure. 

 

 

 
 

 

 

PMOS and NMOS Switches 

Figure 5.1 : MOS switches

 

In Verilog nmos and pmos switches are instantiated as shown in below 

nmos n1(out, data, control); // instantiate a nmos switch 

pmos p1(out, data, control); // instantiate a pmos switch 

 

 

Since switches are Verilog primitives, like logic gates, the name of the instance is optional. 

Therefore, it is acceptable to instantiate a switch without assigning an instance name 

nmos (out, data , control); // instantiate nmos switch ; no instance name 

pmos (out, data, control); // instantiate pmos switch; no instance name 

Value of the out signal is determined from the values of data and control signals. Logic tables for 

out are shown in table. Some combinations of data and control signals cause the gates to output to 

either a 1 or 0 or to an z value without a preference for either value. The symbol L stands for 0 or Z; 

H stands for 1 or z.



 

 

 

 

Logic Tables of NMOS and PMOS 

 

Thus, the nmos switch conducts when its control signal is 1. If control signal is 0, the output 

assumes a high impedance value. Similarly a pmos switch conducts if the control signal is 0. 

CMOS Switches 
 

CMOS switches are declared with the keyword cmos. A cmos device can be modeled with a nmos 

and a pmos device. The symbol for a cmos switch is shown in figure. 

 

 

Figure 5.2 : CMOS switch



CMOS switch 

A CMOS switch is instantiated as shown in below, 

 

cmos cl(out, data, ncontrol, pcontrol);//instantiate cmos 

gate or 

cmos (out, data, ncontrol, pcontrol); //no instance name given 

 

 

The ncontrol and pcontrol are normally complements of each other. When the ncontrol signal 

is 1 and pcontrol signal is 0, the switch conducts. 

nmos (out, data, ncontrol); //instantiate a nmos 

switch pmos (out, data, pcontrol); //instantiate a 

pmos switch 

Since a cmos switch is derived from nmos and pmos switches, it is possible derive the output 
value 

from Table, given values of data, ncontrol, and pcontrol signals. 

Bidirectional switches 

 

NMOS, PMOS and CMOS gates conduct from drain to source. It is important  to have  devices 

that conduct in both directions. In such cases, signals on either side of the device can be the driver 

signal. Bidirectional  switches  are  provided  for  this  purpose.  Three  keywords       are  used  

to  define bidirectional switches: tran, tranif0, and tranif1. 

Symbols for these switches are shown in figure  
below. 

 

 
 

Figure 5.3 :  Bidirectional switches 

 

 

 



The tran switch  acts  as  a  buffer  between  the  two  signals inoutl and inout2. Either inoutl  

or inout2 can    be    the    driver    signal.     The tranif0 switch     connects     the     two signals 

inoutl and inout2 only   if   the control signal   is   logical   0. If    the control signal    is a 

logical 1, the nondriver signal gets a high impedance value z. The driver signal retains value 

from its driver. The tranifl switch conducts if the control signal is a logical 1. 

These switches are instantiated as shown in 
below. 

 

tran tl(inoutl, inout2); //instance name tl is 
optional 

 

tranifO (inoutl, inout2, control); //instance name is not 
specified 

 

 

Resistive switches reduce signal strengths when signals pass through them. The changes are 

shown below. Regular switches retain strength levels of signals from input to output. The 

exception is that if the input is of supply, the output is of strength strong. Below table shows the 

strength reduction due to resistive switches. 

Input 
strength 

supply pull 
strong pull pull 
weak weak 
medium large 
medium 
medium small 

small small 

high high 

 

Example-CMOS NAND  

 



 

 

 

Figure 5.4 : CMOS NAND

 

 

module my_nand (Out,A,B); input A,B; 

 

ouput Out; 

wire C; 

supply1 Vdd; 

supply0 Vss; 

pmos (Out,A,Vdd) 

pmos (Out,B,Vdd); 

nmos (Out,A,C); 

nmos(C,Vss,B); 

endmodule
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QUESTION BANK 

PART-A 

1. Define system task 

2. List the tristate gates 

3. Distinguish between system task and system function. 

4. Distinguish between unary operators and ternary operators. 

5. Formulate the syntax of event construct 

6. Define functional register 

7. Define path delay 

8. Define net delay 

9. Formulate the syntax of repeat construct. 

10. List the key words in Verilog HDL 

 

PART-B 

1. Write a model for a 4-Bit shift register with serial in data, serial out data using a for loop with 

an always Statement. 

2. Design a moore FSM with an example, Mention the state transition diagram for it. 

3. Design a mealy FSM with an example. Mention the state transition diagram for it. 

4. Develop a verilog code for 4-Bit ALU also obtain its test bench and simulation results. 

5. Design Verilog module for an edge triggered D Flip flop in the data flow model. 


