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UNIT 1 DISCRETE TIME SIGNALS AND SYSTEMS

Introduction to DSP — Basic elements of DSP-Representation, Sampling theorem - Aliasing
effect, Characterization and Classifications of Discrete Time (DT) signals, Operations on DT
signals , Convolution, Advantages of DSP over ASP , Classification of DT systems , properties
of Discrete time systems-Linearity-Time invariance- causality -stability -Linear time Invariant
systems-The Z transform- Inverse Z transform-System transfer Function

Introduction to DSP

DSP manipulates different types of signals with the intention of filtering, measuring, or
compressing and producing analog signals. Analog signals differ by taking information and
translating it into electric pulses of varying amplitude, whereas digital signal information is
translated into binary format where each bit of data is represented by two distinguishable
amplitudes. Another noticeable difference is that analog signals can be represented as sine
waves and digital signals are represented as square waves. DSP can be found in almost any
field, whether it's oil processing, sound reproduction, radar and sonar, medical image
processing, or telecommunications-- essentially any application in which signals are being
compressed and reproduced.
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Analog Signal
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Digital Signal
So what exactly is digital signal processing? The digital signal process takes signals like audio,
voice, video, temperature, or pressure that has already been digitized and then manipulates them
mathematically. This information can then be represented as discrete time, discrete frequency, or
other discrete forms so that the information can be digitally processed. An analog-to-digital
converter is needed in the real world to take analog signals (sound, light, pressure, or temperature)
and convert them into O's and 1's for a digital format.

Continuous Time signal — If the signal is defined over continuous-time, then the signal is a
continuous-time signal.

Ex: Sinusoidal signal, Voice signal, Rectangular pulse function
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Fig 1 Continuous Time signal
Discrete Signal and Discrete Time Signal:

The discrete signal is a function of a discrete independent variable. The independent variable
is divided into uniform intervals and each interval is represented by an integer. The letter "'n"
is used to denote the independent variable. The discrete or digital signal is denoted by x(n).
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Fig 2: Discrete Time Signal



Digital Signal: The signals that are discrete in time and quantized in amplitude
are called digital signal. The term *digital signal’* applies to the transmission of a
sequence of values of a discrete-time signal in the form of some digits in the
encoded form.

Representation of Discrete Time Signals
1. Eunctional representation

In functional representation, the signal is represented as a mathematical
equation, as shown in the following example.

#nl = - 05 n = -2
= 1.0 n = =1
= - 1.0 n = 0
= 0.6 n = 1
= 1.2 n = 2
- 1.5 ; n = 3
- 0 ; other n

2. Graphical representation
In graphical representation, the signal is represented in a two-dimensional

plane. The independent variable is represented in the horizontal axis and the
value of the signal is represented in the vertical axis as shown below
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Fig 3: Discrete Time Signal
3. Tabular representation

In tabular representation, two rows of a table are used to represent a discrete
time signal. In the first row, the independent variable "'n™ is tabulated and in the
second row the value of the signal for each value of *'n** are tabulated as shown in
the following table I.

]
L

Ly S -2 (-1 01
x(n) oo |05 LOf 10 06 | 1.2(1.5




Seqguence representation

In sequence representation, the discrete time signal is represented as a one-
dimensional array as shown in the following examples.

An infinite duration discrete time signal with the time origin, n =0, indicated
by the symbol - is represented as, x(n) ={.....-0.5,1.0,-1.0,0.6, 1.2, 1.5, }

A symbol represented with T shows that the signal is starting at the instantn=0.

An infinite duration discrete time signal that satisfies the condition x(n) = 0 for n
<0 is represented as,

x(n)={-1.0,06,1.2,15,..}orx(n)={1.0,0.6,1.2,15,.}

A finite duration discrete time signal with the time origin, n = 0, indicated by the symbol -
is represented as, x(n) ={-0.5,1.0,-1.0,0.6,1.2,1.5}

A finite duration discrete time signal that satisfies the condition x(n) =0 forn <0
is represented as,

x(n) ={-1.0,-0.6,1.2, 1.5} or x(n) = {-1.0, 0.6, 1.2, 1.5}

Standard Discrete Time Signals

1. Digiral impulse signal or unit sample sequence
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Fig 4: Standard Discrete Time Signals

Classification of Discrete Time Signals
The discrete time signals are classified depending on their
characteristics. Some ways of classifying discrete time signals are,
1. Deterministic and nondeterministic signals
2. Periodic and aperiodic signals
3. Symmetric and antisymmetric signals
4. Energy and power signals
5. Causal and noncausal signals

Deterministic and Nondeterministic Signals

The signals that can be completely specified by mathematical equations are called
deterministic signals. The step, ramp, exponential and sinusoidal signals are examples of
deterministic signals. The signals whose characteristics are random in nature are called
nondeterministic signals. The noise signals from various sources are best examples of
nondeterministic signals.

Periodic and Aperiodic Signals

When a discrete time signal x(n), satisfies the condition x(n + N) = x(n) for integer values of N,
then the discrete time signal x(n) is called periodic signal. Here N is the number of samples of a
period.
i.e, if, x(n + N) = x(n), for all n, then x(n) is periodic

The smallest value of N for which the above equation is true is called fundamental period. If
there is no value of N that satisfies the above equation, then x(n) is called aperiodic or
nonperiodic signal. When N is the fundamental period, the periodic signals will also satisfy the
condition x(n + kN) = x(n), where k is an integer. The periodic signals are power signals. The
discrete time sinusoidal and complex exponential signals are periodic signals when their

fundamental frequency, f0 is a rational number.
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Fig 5. Periodic Discrete Time Signals

Svmmetric (Even) and Antisymmetric (Odd) Signals

The discrete time signals may exhibit symmetry or antisymmetry with respect to n = 0.
When a discrete time signal exhibits symmetry with respect to n = 0 then it is called an even
signal. Therefore, the even signal satisfies the condition, x(n)=x(-n)



When a discrete time signal exhibits antisymmetry with respect to n = 0, then it is called
an odd signal. Therefore the odd signal satisfies the condition,

X(-n) = -x(n)
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Fig 6. Symmetric and antisyfnmetric Discrete Time Signals

Eneray and Power Signals
The energy E of a discrete time signal x(n) is defined as,

Energy, E z |x(n ]|:

n=—

The energy of a signal may be finite or infinite, and can be applied to complex valued
and real valued signals. If energy E of a discrete time signal is finite and nonzero, then
the discrete time signal is called an energy signal. The exponential signals are examples
of energy signals. The average power of a discrete time signal x(n) is defined as,

"

¥, 3 ] :

Power, P = lim —— E |x[|1||
Nesoe IN+1

If power P of a discrete time signal is finite and nonzero, then the discrete time signal is
called a power signal. The periodic signals are examples of power signals. For energy
signals, the energy will be finite and average power will be zero. For power signals the
average power is finite and energy will be infinite.

% Forenergy signal, 0 <E< = and P=0

For power signal, 0 <P < == and E= =0

Causal, Noncausal and Anticausal signals

A discrete time signal is said to be causal, if it is defined for n 3 0. Therefore if x(n) is causal,
then x(n) = 0 for n < 0. A discrete time signal is said to be noncausal, if it is defined for either n
<0, or for bothn<0andn>0.Thereforeifx(n)isnoncausal, thenx(n)#0forn<0. A noncausal signal
can be converyted

to causal signal by multiplying the noncausal signal by a unit step signal, u(n). When a
noncausal

discretetimesignalisdefinedonlyforn<0, itis called an anticausal signal.



Convolution

A linear shift invariant system can be described as convolution of the input signal. The kernel used in
the

convolution is the impulse response of the system.

r(t) | y(t) = (t) = h(t)
h(t) :

h J

A (continuous time) Shift Invariant Linear System is characterized with its impulse response.
A proof for this fact is easiest for discrete time signals. The proof for discrete time signals is left
as an exerise for the reader. Here we consider continuous time signals.

Let xx be the input signal to a linear system LL and let the output be y=Lxy=Lx. We can write xx
as an integration (summation) of shifted pulses:
x(t)=]oo—oox(u)d(u—t)dux(t)=/—cccox(u)d(u—t)du

Because 0(x)=0(—x)0(x)=0(—x) we can also write:

x(t)=Joo—cox(u)3(t—u)du=|co—oox(u)du(t)dux(t)=|—cccox (u)d(t—u)du=/—ccoox(u)du(t

)du
where du(t)ou(t) is the function 86 shifted to the left over uu. Now look at LxLx. Because of the
linearity of LL we may write:

(Lx)(t)=[oo—cox (u)(Lu)(t)du(Lx)(t)=]—ococox(u)(LSu)(t)du
Shift invariance of the operator implies that (Lou)=(Lo)u(Lou)=(Ld)u, i.e. first shifting and then
applying the operator is the same as first applying the operator and then shift.
Obviously LSL3J is the pulse response of the linear system, let’s call it the function hh, then
we get: (Lx)(t)=y(t)=/oo—oox(u)h(t—u)du(Lx)(t)=y(t)=/—cccox(u)h(t—u)du

or equivalently:

y=x*h, y=xxh
the output of a shift invariant system is given by the convolution of the input signal with the
impulse response function of the system. In the signal processing literature it is common to
write:

y(O)=x(t)*h(D)y(t)=x(t)*h(t)
Although this is a bit sloppy notation (for a mathematician this looks like an expression
involving real numbers not functions) it is used a lot and even in some cases it helps to make
clear what the functions involved.

Consider the case of discrete time signals. Let x[n]x[n] be the input signal to a linear LTI system



that is characterized with its impulse response h[n]h[n]. The output signal then is given by:
y[n]=x[n]*h[n]y[n]=x[n]+h[n]

So although mathematically quite sloppy this notation allows clear distinction between continuous

time and discrete time systems.

xrn y[n| = z[n] = hin
) [ | v =l ehnl

A

A (discrete time) Shift Invariant Linear System is characterized with its impulse response.

Linear Convolution :

An arbitrary input signal x( n) in to a weighted sum of impulses, We are now ready to determine the
yin, ky=hn. ky=T[5(n — k)]

response of any relaxed linear system to any Input signal. First, we denote the response y(n,k)

of the system to the input unit Sample sequence at n = k by the special symbol h(n, k), -co<k <

o Thatis,

if the input is the arbitrary signal x(n) that is expressed as a sum of weighted impulses, that is.

xin) = Z xX(k)yd(n —Kk)

k=-n
then the response of the system to x(n) is the corresponding sum of weighted outputs, that is,

vin) = Tlx(m] =T Z x(kydin — k)
-

p—

=

Z A(KYT{8(n — k)]

L=—nC

= Z x(kyhin. k)

h=-—"x

clearly, the above equation follows from the superposition property of linear systems,
and is know n as the superposition summation.th en by the time-invariance property , the
responseof the system to the delayed unit sample sequence d(n - K) is

hin —k)=T[8(n - k)]

Consequently , the superposition summation formula in reduces to

>

viny= Y x(k)hin —k)

k=—x



The above formula gives the response y(n) of the LTI system as a function of the input signal
x ( n) and the unit sample (impulse) response h(n) is called a convolution sum.

To summarize, the process of computing the convolution between x ( k') and h(k)

involves the following four steps.

1. Folding. Fold h(k) about k =0 to obtain h (- k).

2. Shifting, Shift h (—k) by n0 to the right (left) if nQ is positive (negative), to obtain h(n0—Kk).

3. Multiplication. Multiply x ( k) by h(n0— k) to obtain the product sequencev
no(k) = x (k) h(n0— k).
4. Summation. Sum all the values o f the product sequence vn0(k) to obtain the value
of the output at time n = nQ.
Example:
The impulse response of a linear time-invariant system is Determine the response of the system
hin) =(1.2,1, -1}
1
to
the input signal

x(n) ={1,2.31}
T

Solution : We shall compute the convolution according to its formula. But we shall use
graphs of the sequences to aid us in the computation. In Fig. below we illustrate the
input signal sequence x(k) and the impulse response h{k) of the system, using k as the
time index. The first step in the computation of the convolution sum is to fold h(k). The
folded sequence h(-Kk) is illustrated inconsequent figs . Now we can compute the output
at n = 0. according to the convolution formula which is

=

¥ = Y xtk)h(—k)

k= —mx

Since the shift n = 0, we use h(—Kk) directly without shifting it. The product

vk} = x{k)(—=k)
sequence We continue the computation by evaluating the response of the system

atn=1.
ac

w1y = Z x (A — &)

Finally, the sum of all tﬁgT/a ues in the product sequence yields

v(l) = Z: v (k) =8

=

In a similar manner, we can obtain y(2) by shifting h ( - k) two units to the right. And
y(2) =8.



Theny(3) =3.y(4) =-2,y(5) =-1.For n >5, we find that y(n) = 0 because the product
sequences contain all zeros.
Next we wish to evaluate y(n) for n < 0. We begin with n =-1.Then

oo
Y= = Y xbh(-1-k
[ .
hik) x(k)
3{
’ ] .
. T { —
1013 ko 101234 &k
Fold
bk volk !_J'roduct
(=K} sequence
2 2
Xy !
—_— ——
1012 K -10 12 &
@ {b)
Shift v, (k) Product
Wil —k) 4 sequence
—ilyeip—— I 29—
0112 k
(c}
lh{—l—k]
T P
-3
> T + +—a———r—
2101 k
(d)
o
VO =D wikr =4
R —ox



Finally, summing over the values of the product sequence, we obtain



vin) =10 forn < -2

Now we have the entire response of the system for -co <n < co. which we summarize below as

vir)=4{....0.0.1,4.8.8.3.-2.-1.0.0....}
,T.

Properties of Convolution:
1- Commutative law :

x{my=hin)=hn) *x(n)
2- Associative law :

[vin)y = Bt} hatny = x(ay * [hy(n) * ha(n)]
3-Distributive law :

x{n) = [h](m + h:{n)] = x{n)=*xhj(n)+xin)y* hain)

CORRELATION OF DISCRETE-TIME SIGNALS:

A mathematical operation that closely resembles convolution is correlation .Just as in
the case of convolution , two signal sequences are involved in correlation. correlation
between the two signals is to measure the degree to which the two signals are similar
and thus to extract some information that depends to a large extent on the application.
Correlation o f signals is often encountered in radar, sonar, digital communications,
geology, an do the rare as in science and engineering .

Let us suppose that we have two signal sequences x( n ) and y(n) that we wish to
compare. In radar and active sonar applications. x( n ) can represent the sampled
version of the transmitted signal and y{n) can represent the sampled version of the
received signal at the output of the analog -to -digital (A /D ) converter. If a target is p
resent in the space being searched by the radar or sonar, the received signal y(n)
consists of a delayed version of the transmitted signal, reflected from the target.

This comparison process is performed by means of the correlation operation of 2 different



types.

Cross-correlation and Autocorrelation Sequences :
Suppose that we have two real signal sequences x( n) and y( n) each of which has finite energy.
T he cross-correlation o f x( n') and y(n) is a sequence rxy(l), which is defined as

iy 4
Yo ) = Z x{mvin — 1) I =0.=1, 2, ...

n=—="0
or, equwalently as

reyv() = Z x(n + I}vin) I =0, +£1.£2,...

N=—25C
The index | is the (time) shift (or lag) parameter and the subscripts x y on the cross-
correlation se quence rxy(l), indicate the sequences being correlated .If we reverse the

roles of x(n) an d y(n) and there fore reverse the order of the indices xy. we obtain the
cross-correlation sequence

oC

r_\':(“ = Z y(n)x[n - I)
or, equivalently , e

)= Y yin+Dxin)

n=—oc

By comparing the above 4 equations we conclude that
r.t'}‘“) = ryx("’”

Hence , ryx(l) provides exactly the same information as rxy(l),with respect to the
similarity of x ('n) to y(n).

Example:
Determine the cross-correlation sequence rxy(l) of the sequences

x(n)y=1{....002.-1.3.7.1.2. =-3.0.0... .}
T

vir) =1{....0,0.1.-1,2.-2.4.1.-2.5.0.0. ..}
1

Solution : Let us use the definition of cross-correlation to compute rxy(l). For I =0 w e have

vo(m)=1{...,0.0.2.1.6,.-14.4,2.6.0.0. ...}
T

rr_\‘([]‘j = 7



oc

re(0) = Z x(m)vin)

n=-=2C

The product sequence vo(n) =x (n) y(n)is1

For I > 0, we simply shift y(n) to the right relative to x(n ) hy | units, compute the
product sequence vi(n) = x(n)y(n — 1), and finally, sum over all values o f the product
sequence. Thus we obtain

'r,n'{l) = 13| r:;-(z] = —]8. r,,.(S} = 16. _I'“{4] = =7
rx_\-(s) — 5» .",_‘.(6) = _31 r,,(:”} = (. { = 3

For I< 0, we shift y(n) to the left relative to x(n) by | units, compute the product sequence vi(n)

= x(n )y(n — 1), and sum over all values of the product sequence. Thus we obtain the
values of the cross-correlation sequence

rl_h'(-—l) = U. r.l'_\'(—z) = 33- rx:\'{_-3) == -14. r;-;-("_4} = 36
rn(—5) =19, r(—6) = =9, rey(=7) = 10, re.(fy=0.1< -8

Therefore, the cross-correlation sequence of x{n) and y(n) is

ro{f) = {10, =9.19,36. -14,33,0,7, 13, ~18,16. =7. 5, =3}
T

Then the convolution o f x( n) with y (—n) yields the cross-correlation rxy(l) that is,

Foo() = x (I} * y(—1)



Autocorrelation:

when y(n) = x( n), we have the autocorrelation of x(n),which is defined as the sequence

oo

rex(l) = Z x(myx(n = 1)

n—=—0C
or, equivalently, as
a0

rex(l) = Z x(n +x(n)

n=—=0c
For finite-duration sequences,

N— k|-t
reo(f) = Z xin)yin—=1)
and
N—lkj—1

rex(l) = E x(nix(n—=0
n=i
wherei=1l, k=0forI>0,andi=0,k=1forl<O0.

Properties of the Autocorrelation and Cross correlation Sequences :

1- The cross-correlation sequence satisfies the condition that

Irev(Dl < ra Oy (O) = VEE,

when y(n) = x (n), reduces to
if'uUH S rxx(O) = Ex

2-Th e normalized auto correlation sequence is defined as

Frell)
=
p:x I., ) r.r.r (0)
Similarly, we define the normalized cross-correlation sequence
Py 1) = el
T rea @y (@

Now \pxx{I)\ <1 and \pxy{I)\ < 1, and hence these sequences are independent of

signal scaling. 3-the cross-correlation sequence satisfies the property
_ rx;-(f) = ‘_"jv.!_r(_l) _ o
the autocorrelation sequence satisfies the property Hence the auto correlation function is an even
function. Fxx (1} = roy (=)



The One-sided z-Transform:

The one-sided or unilateral z-transform of a signal x(n) is defined by X(z)=)x"z "

Properties:
1. It does not contain information about the signal x(n) for negative values of time.
2. It is unique only for causal signals.
3. The one-sided z-transform X*(z) of x(n) is identical to the two-sided z-transform

of the signal x(n)u(n).
Circular Convolution

The Circular Convolution property states that if DFT x1(n) X1(k) And N Then x1(n) N DFT
x2(n) X2(k) Then N DFT x2(n) x1(k) x2(k) N It means that circular convolution of x1(n) &
x2(n) is equal to multiplication of their DFTs. Thus circular convolution of two periodic
discrete signal with period N is given by N-1 y(m) = > x1 (n) x2 (m-n)N .......... (4) n=0
Multiplication of two sequences in time domain is called as Linear convolution while
Multiplication of two sequences in frequency domain is called as circular convolution. Results
of both are totally different but are related with each other. There are two different methods
are used to calculate circular convolution 1) Graphical representation form 2) Matrix
approach

Concentric Circle Method
Let x1(n)x1(n) and x2(n)x2(n) be two given sequences. The steps followed for circular

convolution of x1(n)x1(n) and x2(n)x2(n) are
o Take two concentric circles. Plot N samples of x1(n)x1(n) on the circumference of the

outer circle
maintainingequaldistancesuccessivepointsmaintainingequaldistancesuccessivepoints i
n anti-clockwise direction.

o For plotting x2(n)x2(n), plot N samples of x2(n)x2(n) in clockwise direction on the inner
circle, starting sample placed at the same point as 0™ sample of x1(n)x1(n)

o Multiply corresponding samples on the two circles and add them to get output.

« Rotate the inner circle anti-clockwise with one sample at a time.

Matrix Multiplication Method
Matrix method represents the two given sequence x1(n)x1(n) and x2(n)x2(n) in matrix form.

« One of the given sequences is repeated via circular shift of one sample at a time to form
a N X N matrix.

o The other sequence is represented as column matrix.

o The multiplication of two matrices give the result of circular convolution.

17
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UNIT 2 DISCRETE FOURIER TRANSFORM (DFT) AND FAST FOURIER TRANSFORM
(FFT)

Analysis of LTI Discrete Time Systems using DFT, Relation between DTFT and DFT, FFT
computations using Decimation in time (DIT) algorithms and Decimation in frequency (DIF)
algorithms, Auto correlation, Cross correlation. Realization of recursive and non recursive
systems - Direct Form I and Form Il - Cascade and parallel realization.

Discrete-time Fourier transform (DTFT)

The Discrete Time Fourier Transform (DTFT) is the member of the Fourier transform
family that operates on aperiodic, discrete signals. The best way to understand the DTFT is
how it relates to the DFT. To start, imagine that you acquire an N sample signal, and want to
find its frequency spectrum. By using the DFT, the signal can be decomposed into sine and
cosine waves, with frequencies equally spaced between zero and one-half of the sampling rate.
As discussed in the last chapter, padding the time domain signal with zeros makes the period of
the time domain longer, as well as making the spacing between samples in the frequency
domain narrower. As N approaches infinity, the time domain becomes aperiodic, and the
frequency domain becomes a continuous signal. This is the DTFT, the Fourier transform that

relates an aperiodic, discrete signal, with a periodic, continuous frequency spectrum.

The mathematics of the DTFT can be understood by starting with the synthesis
and analysis equations

x[n] = ok j X(£2) eif2n dQ synthesis
2w S
+oo
X(2) = Z x[n] e if2n analysis
n=—w
5

x[n]l «<2» X()

X(£2) Re {X(Q)} + jIm{X(2)}

| X(£2) | ei FX(£2)

The spectrum of the DTFT is continuous, so either for » can be used. The common choice is o,
because it makes the equations shorter by eliminating the always present factor of 2a.
Remember, when o is used, the frequency spectrumextends fromOtoz,whichcorrespondsto DC
to one-half of the sampling rate. To make things even more complicated, many authors use Q (an
upper caseomega) torepresent this frequency in theDTFT, rather than w(alower

case omega.



PROPERTIES OF THE FOURIER TRANSFORM

x[n] *z* X(2)

Periodic:
X(Q) = X(Q+27rm)
Symmetry:
x[n] real => X(-Q) = X*(Q)
Re{x(Q)}
even
IX(2)]
mix@ |
X X(£2)
Time shifting:

x[n-n,] *L; e 152 Xx(Q)
Frequency shifting:
%" x[nl . X(2-9,)
Linearity:

ax4 [n] +bx,[n] <§-> aX,(2) + bX,(£2)

Parseval’s relation:

+00
> Ixinl2 = %;fl)((ﬂ)lz ds
=00 27

CONVOLUTION PROPERTY

hin] » x[n] i H(Q) X(Q)

x[n] h(n] h[n] = x[n]
X(Q) H($2) H(Q) X(£2)
aiflon hin] eiSlaM H(y)

H(S2)




Discrete Fourier Transform (DFT):

Definition (Discrete Fourier Transform): Given a finite sequence

x =[x(0), x(1),.... x(N — 1]

its Discrete Fourier Transform (DFT) is a finite sequence

X = DFT (x) =[X(0), X (1),.... X (N — 1]

where
N—1

X(k) = Zx(n)ka”, w, =e

n=0

—j27/N

Inverse Discrete Fourier Transform (IDET):

The inverse discrete Fourier transform of X(k) is defined as

N—1
>  X(K)er* /g = s N —1
k=0

5
For notation purpose discrete Fourier transform and inverse Fourier transform can
be represented by

X (k) = DFT [=(n)]
x(n) = IDFT [X (k)]

Formula:
N —1 "
X(r) = > _ @(m)e IZN
- )
a:-(72) — T Z X (k) ed 275
e foo=—0
Where K and n are in the range of 0 ,1,2...... N-1 For example, if N=4, K=0,1,2,3:

N=0,1,2,3 Alternative Formula:



N —1
X(k) = > zmWhrr « W =%

=0

N—1
x(n) = l § X ()W —Fn,
- fe—0O

Properties of DET:

Periodicity property:
If X(k) is the N-point DFT of x(n), then
X(k+N)=X(k)
Linearity property:
If X1(k)=DFT[x1(n)] & X2(k)=DFT[x2(n)], then

DFT[a1x1(n)+a2x2(n)]=a1X1(k)+a2X2(k)

Convolution property:

If X1(k) = DFT[x1(n)] & X2(k) = DFT[x2(n)], then

DFT[x(n)@ x2(n)] = X1(K)X2(K)

Where@ indicates N-point circular convolution.

Multiplication property:

If X1(K) = DFT[x1(n)] & X2(k) = DFT[x2(n)], then

DFTIxL()x2(n)] = (UN)[X1(K{N) X2(K)]
Where @ Indicates N-point circular convolution.

Time reversal property:

If X(k) is the N-point DFT of x(n), then DFT[x(NTOn)] = X(NOKk)

Time shift property:

If X(K) is the N-point DFT of x(n), then

10



- RXKm
'D}"T‘{x((n—m))\} X(k)e N

Symmetry properties:
If x(n)=xR(n)+jxI(n) is N-point complex sequence and X(K)=XR(k)+jXI(k) is the

N- point DFT of x(n) where xR(n) & xI(n) are the real & imaginary parts of x(n) and
XR(K) & XI(K) are the those of X(k), then

(i)
(ii)

(iii)
(iv)

v)

(vi)

DFT[x*(n)]=X zN —k)

DFT[x (N A)=X (K)

DFTXR()]Z(L2)[X(K)+X (NOK)]
DFTIXI()]=(/2)[X(K)OX (NOK)]

DFT[xce(n)]=XR(K) where xce(n)=(1/2)[x(n)+X (NOIn)]

DET[xco(n)]=jX1(k) where xco(m=(L/2)[x(n)CX (NTIn)]

If x(n) is real, then

()

(ii)

()
(ii)

If x(n) is real, then

a X=X (NOK)
b, XR(K)=XR(NOK)

If x(n) is real, then

a) X(K)=X_ (N-K)

b) XR(K)=XR(N-K)

¢) X1(K)= -X1(N-K)

d) [X(K)I=IX(N-K)|

e) [X(K)[=[X(N-K)]

f) ARG X(K)= ANG X(N-k)
DFT[xce(n)]=XR(k) where xce(n)=(1/2)[x(n)+x(N+n)]
DFT[xco(n)]=jX1(k) where xco(n)=(1/2)[x(n)-x(N-n)]

11



Problem

Compute 4-point DFT and 8-point DFT of causal three sample sequence given by

%xin) = % ; D=n= 2
=0 else
Solution
By the definition of N-point DFT, the k" complex coefficient of X(k), for 0 £k £ N1, is given by,
N -
Xik) = xinje ™
n=10

a) 4-pointDFT(\ N =4)

4-1 j2mkn 2 jmkon =k

X(k)

n=i n=f

|

|
+

|
-]

[*3
-
-]

o k k
- L] : p:k=i1+cm%-jsin%+cmﬂk—jﬁimtk:|

For 4-point DFT, X(k) has to be evaluated fork=0,1, 2, 3.

Whenk = 0; X(0) %II + cosO - jsin0 + cos0 - jsin0]

= %u #1=j0+1-j0) = 1 = 120

Whenk = 1; X(1) 1[1 + cost - jsinE + COST - jﬂinn:]

k1 2 2

1 . . 11
—MN+0=j=1=jl)==j—=—<=n/2=03317-0.5
3[+ ] jm 13 3.5 n/ i "

Whenk = 2; X2}

1
E[I + CO8 T - jSinm + cosdm - isinEnI

1
=30 -1-J0+1-j0) = = = 033320

1
i

Whenk = 3; X(3) %[1 + cnsj—; - i!.in%:It + cosdn - isin?.n]

1 . . .11
=[+0+j=1=j=zj===sa)2=0.333/0.5n
3! im0 =jr=g /

', The 4-point DFT sequence X(k) is given by,

Xk) = {120, 0.3332-05n 033320, 0.33320.51)
~. Magnitude Function, [X(k{={1, 0.333, 0.333, 0.333)
Phase Function, <Xk} ={0, -05n, 0, 05z ]

E e 4 = z wine 2 =xi0)e+x(e 2 +x(2)e ™

Phase angles
are in radians.

12



b) 8-point DFT (\

N = 8)
8-1 - j2nkn 2 ~jnkn Cizk sk
X(k) = Z x(nNNe & = z xine * =x(0)e’+x(e * +x(e ? e'ii= cosgt jsing
ne=0 n=0
l+I e#+ IT* H»cos’tk 'sinﬂk+coswk jsin
= —— - -— s =t —_—
% -3 3 3 A VA O

For 8-point DFT, X(k) has to be evaluated fork=0,1,2,3,4,5,6,7.

When k =

When k =

When k

0; X(0) =

1; X(1) =

2; X(2) =

Whenk = 3; X(3) =

When k

When k

Whenk = 6; X(6) = 3

Whenk = 7;

4 ; X(4)

5; X(5)

%ll-rcoso— jsin0 + cos0 - jsin0]
%(l+l—i0+l-i0)=l = 1£0

l[ I n}
—[1 + cos— -~ jsin— + cos— - jsin—
3 4 4 2 2
0.333 (1 + 0.707 - jO.707 + 0~ j1)

0.568 - j0.568 = 0.803£ - 0.785 = 0.803Z - 0.25n

l[ 7. SRR | v S 2x]
—[1 + cos— ~ jsin— + cos— -~ jsin—
3 4 B 2 2

0.333(1+ 0 - jl =1 - jo)
- j0.333 = 0333Z£-n/2 = 0.333£-0.5n

1[ 3r .. 3¢ 3n _.3::]

—=|1 + cos— - jsin— + cos— - fsin—

3 4 4 2 2

0.333 (1 - 0.707 - jO.707 + O + j1)

0.098 +j0.098 = 0.13920.785 = 0.139£0.25x

1 4n . . 4n 4n . . 4n

=1 + cos— = jsin— + cos— - jsin—
[ 4 4 2 2 ]

0.333 (1-1-j0+1-j0)=0.333 = 033320

L. 1+ cos-s—’E = 'sins—n + coss—x - 'sins—1t

3 i RN

0.333(1 - 0707 + jO.707 + 0 - j1)

0.098 - j0.098 = 0.139£ - 0.785 = 0.139£ - 0.25r

1[ 6r .. 6m [ - 61:]
1+ cos— ~ jsin— + cos— -~ jsin—
4 4 2

2
033301+ 0 + jl -1~ jo)

j0.333 = 0.333<n/2 = 033320510

1 m _ _In i __In

- =1 —_— —_ — —

X(7) 3[1 cos—= - jsin—=+ cos —= - jsin 2]
= 0.333 (1+ 0707 + jO.707 + 0 + j1)

0.568 + j0.568 = 08030785 = 0.803.20.25n

', The 8-point DFT sequence X(k) is given by,
X(k) = {120, 0.8032 - 0.25x, 0.3332 - 0.5r, 0.139.20.25r, 0.333.20, 0.1392 - 0.25x,

0.33320.5x,

0.803.20.25x)

- jmk

k
2

0.785
xn=0.25r

Phase angles
are in radians.

-, Magnitude Function, [X(k)| =1 1, 0.803, 0.333, 0.139, 0.333, 0.139, 0.333, 0.803 ]
ZX(k) = |0, -0.251, -0.51, 0.25%, 0, - 0.251, 0.5, 0.25n )

Phase Function,

13



[xcf 4 ZX(k) 4

1.0 4, 4 0.75 7
0.5 - ‘.“ ",' 0.50 .:: N
0.25 7 ;
0.6 5 7 i
; : 0 S 1 =
-l | ':. % 1 ; 2 3 4 K
: J 0.25n . N, {
'.' "“ ‘-\ K
o kLA X 0.507 b (Y
8 T | <
R ¥
0 1 ! } :}; 0.75x i
1 2 3 4 S !
o 2 Phase spectrum of X(k) for N=4.
Magnitude spectrum of X(k) for N=4.
[x (k)& ZX(k) ¢
104, 0.75% o
0.50 = o |
15 -
0.25 x o
).6 4 ¢ i
.': 0 4
0.4 - .'-‘ _'" ™
3 g 1 0.25n 4
0.2 S Bh '
Yl Xoriikis 0.50% -
a ! ! ! l 1 > 0.75x >
1 2 % 4 % & 7 g 'K

e e r—Q
Phase spectrum of X{k) for N=8

Mugnitude spectrum of X(k) for N=8§. |

Fig 7. Magnitude and phasor representation of N=4.8 pont DFT Time Signals

[courtesy: DSP by Nagoorkani]

Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) is a method (or algorithm) for computing the discrete
Fourier transform (DFT) with reduced number of calculations. The computational
efficiency is achieved if we adopt a divide and conquer approach. This approach is based on
the decomposition of an N-point DFT into successively smaller DFTs. This basic approach
leads to a family of an efficient computational algorithms known collectively as FFT

algorithms. Radix-r FET In an N-point sequence, if N can be expressed as N = rM, then the
sequence can be decimated into r-point sequences. For each r-point sequence, r-point DFT
can be computed. From the results of r-point DFT, the r2 -point DFTs are computed. From
the results of r2 -point DFTs, the r3 -point DFTs are computed and so on, until we get r™M
point DFT. This FFT algorithm is called radix-r FFT. In computing N-point DFT by this
method the number of stages of computation will be m times.

Radix-2 FET For radix-2 FFT, the value of N should be such that, N = 2M, so that the N-
point sequence is decimated into 2-point sequences and the 2-point DFT for each decimated

14



sequence is computed. From the results of 2-point DFTSs, the 4-point DFTs can be computed.
From the results of 4-point DFTs, the 8-point DFTs can be computed and so on, until we get
N-point DFT.

Number of Calculations in N-point DET

N2 number of complex multiplications and N(N — 1) number of complex additions
Number of Calculations in Radix-2 FFT

N/2log2N complex multiplications and N log2N complex additions.

Radix-2 FFT algorithms:
Decimation-1n-Time (DIT) FET algorithm:

The algorithm in which the decimation is based on splitting the sequence x(n) into
successively smaller sequences is called the decimation-in-time algorithm.
The N-point DFT of a sequence x(n) is given by

N-1

X(k):Zx(n)WNnk, 0<K< N-1 @
n=0

-j(2x/N)
where WN=¢e . X(K) is periodic with period N i.e., X(k+N)=X(Kk).
Splitting Equ(1) into two, one for even-indexed samples of x(n) and the other for
odd- indexed samples of x(n), we have

X(K) = Sx(mWN™K + Tx(nwn"K 0

n even n odd

Substituting n=2n for n even and n=2n+1 for n odd, we have

N/2- 1 N/2-1
X)) = yxEo)WNTKerxensyw GrDK
n=0 n=0

8-Point DFT Using Radix-2 DIT FFT

The input sequence is 8-point sequence. Therefore, N =8 = 23 =M Here, r=2and m
= 3. Therefore, the computation of 8-point DFT using radix-2 FFT, involves three stages of
computation. The given 8-point sequence is decimated to 2-point sequences. For each 2-
point sequence, the 2-point DFT is computed. From the results of 2-point DFT, the 4-point

DFT can be computed. From the results of 4-point DFT, the 8-point DFT can be computed.
15



Let the given sequence be x(0), x(1), x(2), x(3), x(4),x(5), x(6), x(7), which consists of 8
samples. The 8-samples should be decimated into sequences of 2-samples. Before decimation

they are arranged in bit reversed order, as shown in table

MNormal order Bit reversed order
x{0) xf 000 w0y 4 D0)
x 1) =(001) xd) = 100
x(2) =010y x2) {0100
x(3) 011 X6} x(110)
x(4) = 100y s 1) x(001)
x(5) ®101) x(5) x(101)
x() =110y x3) =011
x(7) 111 x(T) x(111)

Fig 8. Bit reversal order of 2 point DET

_Using the decimated sequences as input the 8-point DFT is computed. The fig shows the
three stages of computation of an 8-point DFT.

*0) Compule
xi4) —»| Z-point DFT »| Combine > X(0)
2-point DFTs
o L X(1)
2| get 4-point
W2 —» - >
2 Compule FT —
Evpa»,’:‘pn D Bamb —* X(2)
xX6) —p S > .,u"un:?e:
d_.aOIH — X(3)
DFTs 1o X
. get 8-paint »
x(1) . g ) B |5 xias
Compule
of 2-00IN DFT | Combine Jl e
x(5) 2-point DFTs X (5
4 — X(6)
(3 o get 4-point
x(3) —» = op.2
_Cun ,n.l-:- i
(7 Z-point DFT ——
x(7) —f

Fig 9.Block diagram representation of 8 pt DET

Flow Graph for 8-Point DET using Radix-2 DIT FFT

a A_a-bu\',:
K SE
Wy k
b - B=a-bWy

K -1
bW

Fig 10.Basic butterfly or flow graph of DIT rad ix-2 FFT.

16



The signal flow graph is also called butterfly diagram since it resembles a butterfly

0 1 1 ! 1 "
x(Q) X(0)
. 3 1
w 1
l’l.‘ 1 1 1 1
vdw o - o X1
-1 1
1 1 W, : 1 1
2w Xi2)
"'"1- >< W,
MR X(3)
-1
1
K1) el — X(4)
. 1
v
W, 1 1
1(5) g X(5)
! W,
3 o ) - X(6)
0 1 1
W, 1 W,
X‘.v7ll - x'>7
. il -1
Fig 11.

The flow graph (or butterfly diagram) for 8-point DFT via radix-2 DIT FFT.
8-point DFT Using Radix-2 DIF FFT

The DIF computation for an eight sequence is discussed in detail in this section. Let

x(n) be an 8-point sequence. Therefore N =8 = 23 =M Here, r =2 and m = 3. Therefore,
the computation of 8-point DFT using radix-2 FFT involves three stages of computation.
The samples of x(n) are,

x(0), X(1), x(2), x(3), x(4), x(5), x(6), x(7).

Flow Graph For 8-point DFT using Radix-2 DIF FFT
The above basic computation can be expressed by a signal flow graph shown in Fig

1 a*b
a a Asath

w X
"y k
b B-w&~b‘,l\'N
-1 a-d
Basic butterfly or flow graph
of DIF radix-2 FFT.
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x(0) g

N7

a X(0)

P .1 1 1
U
\/ >< :
1 w,
o car 23 e X{4)
><>< 3

R\
NXX

X(3)

W
x(4)

; We g 1
o o & E w X(2)
-1 1
1 1 1]
w, W,
1 : —a X(6)
-1 -1

a X(1)

LXX\

/AN

Wi

1 1 | 1
W. 1 W-i—
5L . YRR, |5 —a X(5)

o X{3)

x(6) ok o
nf?)_/ \'

1 0
—-1 W, 1 1
1
I_‘ 1 1 0
‘AB /\ W;X Wi
< -« & v ® x(7)
-1 A

Fig 12. The flow graph (or butterfly diagram) for 8-point DFT via radix-2 DIF FFT

Problem:

An 8-point sequence is given by x(n) ={2, 1, 2, 1, 1, 2, 1, 2}. Compute 8-point DFT of x(n) by
a) radix-2 DIT-FFT and b) radix-2 DIF-FFT. Also sketch the magnitude and phase

spectrum.

a) 8-point DFT by Radix-2 DIT-FET
The given sequence is first arranged in the bit reversed order

The sequence x(n) The sequence x(n) in
in nermal order bit reversed order
x(0) =2 x(0) =2
x1) =1 u4)=1
x2) =2 %2) =2
x(3) =1 xlb) =1
xid4) =1 w1)=1
w(5) =2 w(5) =2
xlf) =1 %3 =1
67 =2 %7 =12

1-2 = —1
-1

Butterfly diagram for

first stage of radix-2 DIT FFT.

The 8-point DFT by radix-2 FFT involve 3 stages of computation with 4-butterfly
computations in each stage. The sequence rearranged in the bit reversed order forms the
input to the first stage. For other stages of computation the output of previous stage will be

the input for current stage.

Second stage computation

18



The input sequence to second stage computation={3,1,3,1,3,1,3,1}
The phase factors involved in second stage computation are W4 and W 3

t3 3¢3%6
\
1 g | 1o 1{-{)= 14

e @
jrx= 2
Wf:e 1=p"=1 3 3 \\’ 3+3%8
1
; P | . 3 J 1‘ —t o (—1)(—}= —14
W,=e i=zp z 3
1 )
3 3-3%=0
IEANNE. 04
= 12 +Jsml 3 % - o ~1—{=1)(~f}* —1
x
. Butterfly diagram for
=l second stage of radix-2 DIT FFT.

Third stage computation The input sequence to third stage computation = {6, 1j, 0,
14 Ba 211} The phase factors involved in third stage computation are W g, W4
'8 8

o iTmxZ g
W, =e Bzp =1
1 )
jzr = = ju= = = 1 1
w! =e B—pg 4 =—cos—| + jsi —]: -
y osl4] 'r{-t, 2 'h
x ¥ &
2rw = j== -1 -1
w = - Z [&l_] I'{—]:-
L =& e c 2,”5' 5 j
3 An r
2L W o= jm= =3 .. =i 1 1
Wi=e' =g “':CDS(—)+JSIH[—]:- -
a) 2 '

6 - 0- @ 6+6=12 = X(0)

1 1 |- 1 1
(1—§ o b > —_—f—_— =1 ~—t
) .|'( ”[\'2 ]\2 ] ! V2 *;\2

\
f_1_.;1¢{<11-_2_. [=1+0.414 = Xx()
J2 )

2

&

0+0x(-f)=0=X(2)

f \
i 1 1 1 1 2
t1:)+(-1-P - - Et+j+ et |- ——= =1+ [ 1+ |=1 414 = X(3)
(=j+ I)l\ 7 "E +] e B e i ,."2_ +i2 {

6-6=0=X(4)

)| \
n—a-i—hn[—‘——i—i—]d—;—( R '.—1—1[1‘%}?:1—9.“44(5>
J /

4] =
"? v 2 N v2 0'2 v2 v'2
0 Or—e—dier 0—-0x(~f)=0=X(8)
_‘_E-}‘_-Z_ / | f \ { \
I (1+,)—{—1—])l——1——;+J—'1rJ—lL_+;+_~J+_—%I);1+{1—L‘_IJ—‘I—;O.4M—X(7]
= vz 2 V2 V2 V2 W2 V2

Butterfly diagram for third stage of radix-2 DIT FFT of X(k) .

Fig 13. Butterfly diagram for third stage of radix-2 DIT FFT
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b) 8-point DET by Radix-2 DIF-FFT
For 8-point DFT by radix-2 FFT we require 3-stages of computation with 4-butterfly
computation in each stage. The given sequence is the input to first stage. For other stages of

computations, the output of previous stage will be the input for current stage.
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First stage computation
The input sequence for first stage of computation={2,1,2,1,1,2,1,2}

The phase factors involved in first stage computation are wg0 , wel , W82 andaw 3

0
2R x -
Wy =e =]
1 x
22 x = - L2 n 1 .1
W, =e 8=e¢ 4 =cos —]+]sm[——]:—--]—
\ 4 2 JE
2 [ 3 /
25 % - = n |4
Wi =e “:czzcos‘——+ su‘-—):-
(B2 } 2 )
3 in / /
jam = = 1= 3n e 3r) 1 .1
W, =e Bze ‘:cos‘-—]usu{——:- - j
\ 4 \ 4 32 32
x(0) = 2 aeen LE— L
X L
X1)* 1 - 1+2%3
x2) =2 241%3
x3) =1 1#2=3
x{d) =1 2-1=1
[ 1 1) 1 1
x(5) = 2 (1—2'|l—=~1—r= A
V2 V2 42 va2
x(6) = 10 Ot (2 — 1)(~f} = —j
-1 1 | 1 :
» o s I
x7) =2 PO, [F.- 4 3 W 1
A ed '71 WY '(1—2)[——_— —r_)——_'l?
V2. 2 2 Y2

Butterfly diagram for first stage of radix-2 DIF FFT.
Fig 14. Butterfly diagram for first stage of radix-2 DIT FFT

The output sequence of first )
| 1 .1 . 1

@ =:3 3, 3 3, 1, - + s = s + *

stape of computation | e JTI ! e I]-2 ,

Second stage computation
The input sequence for second stage  of computation =

1 .1

[ (P I
413, 3, 3,3,1, —Eijzr = )i E--I—j 2?

I
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3 - - : ®»3+396

0 jexx 2 : 3+43%86
W, =e 4=1
1 R
j27 % = jr= 3 P a3-3%0
W, =e tme 2 /\
- - -1 =)
:COS(TRJ . jsin(Tn] i N u (3-3) () =0
i 1 1
= =) 1w - - () -
1 1 1 L850 00 (0 1 2
=i —=+= =-|—J;x*—'
V2 o2 [ 2 Jz_J t\-z 2 ) 2
-1 T—=(H)*1+|

T g ll el [t S Wy
vz V2% 2 -[[ JZ lu’Z} t\"z_ '0‘2 J} ’ 1{2

Fig 5 : Butterfly diagram for second stage of radix-2 DIF FFT.
Fig 15. Butterfly diagram for second stage of radix-2 DIT FFT

The output sequence of second stage of computation

.. £ .. £
6; 6! 0; 0! I_JJJ_J ]+JJ J_L
l 2 V2 J Third stage computation

6X6+6=12=X(0)
1
6 —Se6 6= 0=X(4)
oXow:o:xm
1
0 6 0 -0 = 0= X(§)
1= (1= ) + |2 =1+ 0.414 = X(1)
JX 4
1
2 . .
-2 1—j) - j=2= = 1— j2.414 = X(5
JJ-2- - (1-1j) JJZ_ j (5)
, 1
1*1X(1+j)+,‘%1+j2.414m3)
1
W 2 .
1-5' g (1+ )=} ‘,2__1-;0.414—X(7)

A Vv
Butterfly diagram for third stage of radix-2 DIF FFT.
Fig 16. Butterfly diagram for third stage of radix-2 DIT FFT



x|n] —(—P—‘ y[n] x[n] ‘_{>A_. yln]

wln| Multiplier
Adder x[n]

x|n| — B xInl : T :

-
S

yinl x[n]

Unit delay

A realization is canonic if the realization uses minimum number of delay units. Two
realizations are equivalent if they have the same transfer function.

Transpose operation generates an equivalent structure from a given realization ) the following steps:

+ Interchange input output nodes
+ Reverse all the paths
« Replace pick — off nodes with and vice — versa.

FIR Filter Structures

An FIR filter has a system function given by

From this equation, the impulse response h[n] can be written as

_bj ,0fn DIY
h[n]= o  otherwise

the difference equation representation is
given by

y[n] = b x[n] + box [n — ] -F box[n — 2] -F----- - -F by:x [n — M ]

The length of the filter is M+1, and the oriler of the filter is M.



1. Direct — Form/Transversal/Tapped Delav Line
Structure From the above equation, the direct form
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structure is as follows

Here, the filter has an order of M, it requires M delays/memory locations, M+1

Multipliers, and M adders.

Structures in which the multiplier coefficients are directly available as coefficients of

H(z) are called Direct — Form Structures.

Transposeil version of direct form

By applying the steps t0 obtain the form
structure, we obtain the following transposed sdvcture.
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3. Cascade form structure

b [

the above direct — form

y(_p)

To obtain the cascade sdvcture, H(z) is factorized in terms of second — order factors

and lust — order factors.
H@) =by-Fbe 1+ - -+ pp

z (“1



(M-1)/2
bo{ 1_[ (14 B2+ szzz)} for M
k=1

H(z) =1 (M—2)/2
Do { (14 byoz™) (14 Byz ™t + Byz72) | ToF Meven
. k=1
For example, for M=7 (order =6), the cascade sdvcture would be
fi[0]

* (D)

Where h[0]=bo
Basic Structures for HR Systems

The convolut