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So what exactly is digital signal processing? The digital signal process takes signals like audio, 

voice, video, temperature, or pressure that has already been digitized and then manipulates them 

mathematically. This information can then be represented as discrete time, discrete frequency, or 

other discrete forms so that the information can be digitally processed. An analog-to-digital 

converter is needed in the real world to take analog signals (sound, light, pressure, or temperature) 

and convert them into 0's and 1's for a digital format. 

UNIT 1 DISCRETE TIME SIGNALS AND SYSTEMS 

Introduction to DSP – Basic elements of DSP-Representation, Sampling theorem - Aliasing 

effect, Characterization and Classifications of Discrete Time (DT) signals, Operations on DT 

signals , Convolution, Advantages of DSP over ASP , Classification of DT systems , properties 

of Discrete time systems-Linearity-Time invariance- causality -stability -Linear time Invariant 

systems-The Z transform- Inverse Z transform-System transfer Function 

Introduction to DSP 

DSP manipulates different types of signals with the intention of filtering, measuring, or 

compressing and producing analog signals. Analog signals differ by taking information and 

translating it into electric pulses of varying amplitude, whereas digital signal information is 

translated into binary format where each bit of data is represented by two distinguishable 

amplitudes. Another noticeable difference is that analog signals can be represented as sine 

waves and digital signals are represented as square waves. DSP can be found in almost any 

field, whether it's oil processing, sound reproduction, radar and sonar, medical image 

processing, or telecommunications-- essentially any application in which signals are being 

compressed and reproduced. 

 

 

Continuous Time signal – If the signal is defined over continuous-time, then the signal is a 

continuous-time signal. 

Ex: Sinusoidal signal, Voice signal, Rectangular pulse function 
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Fig 1 Continuous Time signal 

Discrete Signal and Discrete Time Signal: 

The discrete signal is a function of a discrete independent variable. The independent variable 

is divided into uniform intervals and each interval is represented by an integer. The letter "n" 

is used to denote the independent variable. The discrete or digital signal is denoted by x(n). 

 

 

 

Fig 2: Discrete Time Signal 



 

Digital Signal: The signals that are discrete in time and quantized in amplitude 

are called digital signal. The term "digital signal" applies to the transmission of a 

sequence of values of a discrete-time signal in the form of some digits in the 

encoded form. 

Representation of Discrete Time Signals 

 

1. Functional representation 

 

In functional representation, the signal is represented as a mathematical 

equation, as shown in the following example. 

 

 

 

2. Graphical representation 

 

In graphical representation, the signal is represented in a two-dimensional 

plane. The independent variable is represented in the horizontal axis and the 

value of the signal is represented in the vertical axis as shown below 

 

 

 

Fig 3: Discrete Time Signal 

 

3. Tabular representation 

 

In tabular representation, two rows of a table are used to represent a discrete 

time signal. In the first row, the independent variable "n" is tabulated and in the 

second row the value of the signal for each value of "n" are tabulated as shown in 

the following table I. 

 

Table 1. Tabular representation 
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 Sequence representation 

 

In sequence representation, the discrete time signal is represented as a one- 

dimensional array as shown in the following examples. 

An infinite duration discrete time signal with the time origin, n = 0, indicated 

by the symbol - is represented as, x(n) = { ..... – 0.5, 1.0, –1.0, 0.6, 1.2, 1.5, } 

 

 

A symbol represented with   shows that the signal is starting at the instant n=0. 

An infinite duration discrete time signal that satisfies the condition x(n) = 0 for n 

< 0 is represented as, 

x(n) = { –1.0, 0.6, 1.2, 1.5, ... } or x(n) = {–1.0, 0.6, 1.2, 1.5, . } 

 

A finite duration discrete time signal with the time origin, n = 0, indicated by the symbol - 

is represented as, x(n) = { – 0.5, 1.0, –1.0, 0.6, 1.2, 1.5 } 

A finite duration discrete time signal that satisfies the condition x(n) = 0 for n < 0 

is represented as, 

x(n) = { –1.0, –0.6, 1.2, 1.5 } or x(n) = { –1.0, 0.6, 1.2, 1.5} 

 

Standard Discrete Time Signals 

 

 

 



 

Fig 4: Standard Discrete Time Signals 

 

Classification of Discrete Time Signals 

The discrete time signals are classified depending on their 

characteristics. Some ways of classifying discrete time signals are, 

1. Deterministic and nondeterministic signals 

2. Periodic and aperiodic signals 

3. Symmetric and antisymmetric signals 

4. Energy and power signals 

5. Causal and noncausal signals 

Deterministic and Nondeterministic Signals  

The signals that can be completely specified by mathematical equations are called 

deterministic signals. The step, ramp, exponential and sinusoidal signals are examples of 

deterministic signals. The signals whose characteristics are random in nature are called 

nondeterministic signals. The noise signals from various sources are best examples of 

nondeterministic signals. 

Periodic and Aperiodic Signals 

 

When a discrete time signal x(n), satisfies the condition x(n + N) = x(n) for integer values of N, 

then the discrete time signal x(n) is called periodic signal. Here N is the number of samples of a 

period. 

i. e, if, x(n + N) = x(n), for all n, then x(n) is periodic 

The smallest value of N for which the above equation is true is called fundamental period. If 

there is no value of N that satisfies the above equation, then x(n) is called aperiodic or 

nonperiodic signal. When N is the fundamental period, the periodic signals will also satisfy the 

condition x(n + kN) = x(n), where k is an integer. The periodic signals are power signals. The 

discrete time sinusoidal and complex exponential signals are periodic signals when their 

fundamental frequency, f0 is a rational number. 

 

 

Fig 5. Periodic Discrete Time Signals 

 

Symmetric (Even) and Antisymmetric (Odd) Signals 

The discrete time signals may exhibit symmetry or antisymmetry with respect to n = 0. 

When a discrete time signal exhibits symmetry with respect to n = 0 then it is called an even 

signal. Therefore, the even signal satisfies the condition, x(n)=x(-n) 
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When a discrete time signal exhibits antisymmetry with respect to n = 0, then it is called 

an odd signal. Therefore the odd signal satisfies the condition, 

x(-n) = -x(n) 

Fig 6. Symmetric and antisymmetric Discrete Time Signals 

 

 

Energy and Power Signals 

The energy E of a discrete time signal x(n) is defined as, 

 

 

The energy of a signal may be finite or infinite, and can be applied to complex valued 

and real valued signals. If energy E of a discrete time signal is finite and nonzero, then 

the discrete time signal is called an energy signal. The exponential signals are examples 

of energy signals. The average power of a discrete time signal x(n) is defined as, 

 

 

If power P of a discrete time signal is finite and nonzero, then the discrete time signal is 

called a power signal. The periodic signals are examples of power signals. For energy 

signals, the energy will be finite and average power will be zero. For power signals the 

average power is finite and energy will be infinite. 

 

 

 

Causal, Noncausal and Anticausal signals 

 

A discrete time signal is said to be causal, if it is defined for n ³ 0. Therefore if x(n) is causal, 

then x(n) = 0 for n < 0. A discrete time signal is said to be noncausal, if it is defined for either n 

≤ 0, or for bothn≤0 andn> 0. Thereforeifx(n) isnoncausal, thenx(n) ≠ 0 forn<0. A noncausal signal 

can be conver7ted 

to causal signal by multiplying the noncausal signal by  a unit step signal, u(n). When a 
noncausal 

discretetimesignalisdefinedonlyforn≤0, itis called an anticausal signal. 



 

Convolution 

 A linear shift invariant system can be described as convolution of the input signal. The kernel used in 

the  

convolution is the impulse response of the system. 

 

 

 

 

 

 

A (continuous time) Shift Invariant Linear System is characterized with its impulse response. 

A proof for this fact is easiest for discrete time signals. The proof for discrete time signals is left 

as an exerise for the reader. Here we consider continuous time signals. 

 

Let xx be the input signal to a linear system LL and let the output be y=Lxy=Lx. We can write xx 

as an integration (summation) of shifted pulses: 

x(t)=∫∞−∞x(u)δ(u−t)dux(t)=∫−∞∞x(u)δ(u−t)du 

Because δ(x)=δ(−x)δ(x)=δ(−x) we can also write: 

x(t)=∫∞−∞x(u)δ(t−u)du=∫∞−∞x(u)δu(t)dux(t)=∫−∞∞x(u)δ(t−u)du=∫−∞∞x(u)δu(t

)du 

where δu(t)δu(t) is the function δδ shifted to the left over uu. Now look at LxLx. Because of the 

linearity of LL we may write: 

(Lx)(t)=∫∞−∞x(u)(Lδu)(t)du(Lx)(t)=∫−∞∞x(u)(Lδu)(t)du 

Shift invariance of the operator implies that (Lδu)=(Lδ)u(Lδu)=(Lδ)u, i.e. first shifting and then 

applying the operator is the same as first applying the operator and then shift. 

Obviously LδLδ is the pulse response of the linear system, let’s call it the function hh, then 

we get: (Lx)(t)=y(t)=∫∞−∞x(u)h(t−u)du(Lx)(t)=y(t)=∫−∞∞x(u)h(t−u)du 

or equivalently: 

 

y=x∗h, y=x∗h 

the output of a shift invariant system is given by the convolution of the input signal with the 

impulse response function of the system. In the signal processing literature it is common to 

write: 

 

y(t)=x(t)∗h(t)y(t)=x(t)∗h(t) 

Although this is a bit sloppy notation (for a mathematician this looks like an expression 

involving real numbers not functions) it is used a lot and even in some cases it helps to make 

clear what the functions involved. 

 

Consider the case of discrete time signals. Let x[n]x[n] be the input signal to a linear LTI system 
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that is characterized with its impulse response h[n]h[n]. The output signal then is given by: 

y[n]=x[n]∗h[n]y[n]=x[n]∗h[n] 

So although mathematically quite sloppy this notation allows clear distinction between continuous 

time and discrete time systems. 

 

 A (discrete time) Shift Invariant Linear System is characterized with its impulse response.  

 

Linear Convolution : 

An arbitrary input signal x( n) in to a weighted sum of impulses, We are now ready to determine the 

response of any relaxed linear system to any Input signal. First, we denote the response y(n,k) 

of the system to the input unit Sample sequence at n = k by the special symbol h(n, k), -∞<k < 

∞. T h a t is, 

if the input is the arbitrary signal x(n) that is expressed as a sum of weighted impulses, that is. 

 

then the response of the system to x(n) is the corresponding sum of weighted outputs, that is, 

 

clearly, the above equation follows from the superposition property of linear systems, 

and is know n as the superposition summation.th en by the time-invariance property , the 

response of the system to the delayed unit sample sequence δ(n - k) is 

Consequently , the superposition summation formula in reduces to 

 



 

The above formula gives the response y(n) of the LTI system as a function of the input signal 

x ( n ) and the unit sample (impulse) response h(n) is called a convolution sum. 

 

To summarize, the process of computing the convolution between x ( k ) and h(k) 

involves the following four steps. 
1. Folding. Fold h(k) about k = 0 to obtain h ( - k ) . 

2. Shifting, Shift h ( —k) by n0 to the right (left) if n0 is positive (negative), to obtain h(n0— k).

  

3. Multiplication. Multiply x ( k ) by h(n0— k) to obtain the product sequencev 

n0(k) = x ( k ) h(n0— k). 

4. Summation. Sum all the values o f the product sequence vn0(k) to obtain the value 

of the output at time n = n0. 
Example: 

The impulse response of a linear time-invariant system is Determine the response of the system 

to 

the input signal 

 

Solution : We shall compute the convolution according to its formula. But we shall use 

graphs of the sequences to aid us in the computation. In Fig. below we illustrate the 

input signal sequence x(k) and the impulse response h{k) of the system, using k as the 

time index. The first step in the computation of the convolution sum is to fold h(k). The 

folded sequence h(-k) is illustrated inconsequent figs . Now we can compute the output 

at n = 0. according to the convolution formula which is 

 

Since the shift n = 0, we use h(—k) directly without shifting it. The product 

sequence We continue the computation by evaluating the response of the system 

at n = 1. 

 

Finally, the sum of all the values in the product sequence yields 

 
In a similar manner, we can obtain y(2) by shifting h ( - k ) two units to the right. And 

y(2) = 8. 



 

Then y(3) = 3. y(4) = - 2 , y(5) = -1 .For n >5, we find that y(n) = 0 because the product 

sequences contain all zeros. 

Next we wish to evaluate y(n) for n < 0. We begin with n =-1.Then 

 

  
 

 



 

 

 

 

 

 

 

Finally, summing over the values of the product sequence, we obtain 



 

 

Now we have the entire response of the system for -∞ <n < ∞. which we summarize below as 

 

 

Properties of Convolution: 

1- Commutative law : 

2- Associative law : 

 

3-Distributive law : 

 

 

 

 

 

CORRELATION OF DISCRETE-TIME SIGNALS: 

 

A mathematical operation that closely resembles convolution is correlation .Just as in 

the case of convolution , two signal sequences are involved in correlation. correlation 

between the two signals is to measure the degree to which the two signals are similar 

and thus to extract some information that depends to a large extent on the application. 

Correlation o f signals is often encountered in radar, sonar, digital communications, 

geology, an do the rare as in science and engineering . 

Let us suppose that we have two signal sequences x( n ) and y(n) that we wish to 

compare. In radar and active sonar applications. x( n ) can represent the sampled 

version of the transmitted signal and y{n) can represent the sampled version of the 

received signal at the output of the analog -to -digital (A /D ) converter. If a target is p 

resent in the space being searched by the radar or sonar, the received signal y(n) 

consists of a delayed version of the transmitted signal, reflected from the target. 

 
 

This comparison process is performed by means of the correlation operation of 2 different 



 

types. 

 

Cross-correlation and Autocorrelation Sequences : 
Suppose that we have two real signal sequences x( n ) and y( n) each of which has finite energy. 
T he cross-correlation o f x( n ) and y(n) is a sequence rxy(l), which is defined as 

 

or, equivalently , as 

 

The index l is the (time) shift (or lag) parameter and the subscripts x y on the cross-

correlation se quence rxy(l), indicate the sequences being correlated .If we reverse the 

roles of x(n) an d y(n) and there fore reverse the order of the indices xy. we obtain the 

cross-correlation sequence 

 

 

or, equivalently , 

 
 

By comparing the above 4 equations we conclude that 

 

Hence , ryx(l) provides exactly the same information as rxy(l),with respect to the 

similarity of x ( n) to y(n). 

 
Example: 
Determine the cross-correlation sequence rxy(l) of the sequences 

 

Solution : Let us use the definition of cross-correlation to compute rxy(l). For I = 0 w e have 



 

 

The product sequence v0(n) =x (n) y( n ) is 1 

For I > 0, we simply shift y(n) to the right relative to x(n ) hy l units, compute the 

product sequence vl(n) = x(n)y(n — I), and finally, sum over all values o f the product 

sequence. Thus we obtain 

 

 

 

For l< 0, we shift y(n) to the left relative to x(n) by l units, compute the product sequence vl(n) 

= x(n )y(n — I), and sum over all values of the product sequence. Thus we obtain the 

values of the cross-correlation sequence 

 

 

 

 

Therefore, the cross-correlation sequence of x{n) and y(n) is 

 

 

Then the convolution o f x( n) with y (—n) yields the cross-correlation rxy(l) that is, 



 

Autocorrelation: 

 

when y(n) = x( n), we have the autocorrelation of x(n),which is defined as the sequence 

 

or, equivalently, as 

 
For finite-duration sequences, 

 

and 

 

where i = l, k = 0 for l> 0, and i = 0, k = l for l < 0. 

 

Properties of the Autocorrelation and Cross correlation Sequences : 

 

1- The cross-correlation sequence satisfies the condition that 

when y(n) = x ( n ), reduces to 

 
 

2- Th e normalized auto correlation sequence is defined as 

 

Similarly, we define the normalized cross-correlation sequence 

 

Now \ρxx{l)\ <1 and \ρxy{l)\ < 1, and hence these sequences are independent of 

signal scaling. 3-the cross-correlation sequence satisfies the property 

the autocorrelation sequence satisfies the property Hence the auto correlation function is an even 

function.  
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The One-sided z-Transform: 

 

The one-sided or unilateral z-transform of a signal x(n) is defined by X(z)=∑x n z - n 

 

Properties: 

1. It does not contain information about the signal x(n) for negative values of time. 

2. It is unique only for causal signals. 

3. The one-sided z-transform 𝑋+(𝑧) of x(n) is identical to the two-sided z-transform 

of the signal x(n)u(n). 

 

Circular Convolution 

 

The Circular Convolution property states that if DFT x1(n) X1(k) And N Then x1(n) N DFT 

x2(n) X2(k) Then N DFT x2(n) x1(k) x2(k) N It means that circular convolution of x1(n) & 

x2(n) is equal to multiplication of their DFTs. Thus circular convolution of two periodic 

discrete signal with period N is given by N-1 y(m) = ∑ x1 (n) x2 (m-n)N ……….(4) n=0 

Multiplication of two sequences in time domain is called as Linear convolution while 

Multiplication of two sequences in frequency domain is called as circular convolution. Results 

of both are totally different but are related with each other. There are two different methods 

are used to calculate circular convolution 1) Graphical representation form 2) Matrix 

approach 

 

Concentric Circle Method 

Let x1(n)x1(n) and x2(n)x2(n) be two given sequences. The steps followed for circular 

convolution of x1(n)x1(n) and x2(n)x2(n) are 

• Take two concentric circles. Plot N samples of x1(n)x1(n) on the circumference of the 

outer circle 

maintainingequaldistancesuccessivepointsmaintainingequaldistancesuccessivepoints i 

n anti-clockwise direction. 

• For plotting x2(n)x2(n), plot N samples of x2(n)x2(n) in clockwise direction on the inner 

circle, starting sample placed at the same point as 0th sample of x1(n)x1(n) 

• Multiply corresponding samples on the two circles and add them to get output. 

• Rotate the inner circle anti-clockwise with one sample at a time. 

Matrix Multiplication Method 

Matrix method represents the two given sequence x1(n)x1(n) and x2(n)x2(n) in matrix form. 

• One of the given sequences is repeated via circular shift of one sample at a time to form 

a N X N matrix. 

• The other sequence is represented as column matrix. 

• The multiplication of two matrices give the result of circular convolution. 
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UNIT 2 DISCRETE FOURIER TRANSFORM (DFT) AND FAST FOURIER TRANSFORM 

(FFT) 

Analysis of LTI Discrete Time Systems using DFT, Relation between DTFT and DFT, FFT 

computations using Decimation in time (DIT) algorithms and Decimation in frequency (DIF) 

algorithms, Auto correlation, Cross correlation. Realization of recursive and non recursive 

systems - Direct Form I and Form II - Cascade and parallel realization. 

 

 

Discrete-time Fourier transform (DTFT)  

 

The Discrete Time Fourier Transform (DTFT) is the member of the Fourier transform 

family that operates on aperiodic, discrete signals. The best way to understand the DTFT is 

how it relates to the DFT. To start, imagine that you acquire an N sample signal, and want to 

find its frequency spectrum. By using the DFT, the signal can be decomposed into sine and 

cosine waves, with frequencies equally spaced between zero and one-half of the sampling rate. 

As discussed in the last chapter, padding the time domain signal with zeros makes the period of 

the time domain longer, as well as making the spacing between samples in the frequency 

domain narrower. As N approaches infinity, the time domain becomes aperiodic, and the 

frequency domain becomes a continuous signal. This is the DTFT, the Fourier transform that 

relates an aperiodic, discrete signal, with a periodic, continuous frequency spectrum. 

 

The mathematics of the DTFT can be understood by starting with the synthesis 

and analysis equations 

 

 

The spectrum of the DTFT is continuous, so either f or ω can be used. The common choice is ω, 

because it makes the equations shorter by eliminating the always present factor of 2π. 

Remember, when ω is used, the frequency spectrum extends from 0 to π, which corresponds to DC 

to one-half of the sampling rate. To make things even more complicated, many authors use Ω (an 

upper case omega) to represent this frequency in the DTFT, rather than ω(a lower 

case omega. 

7 
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PROPERTIES OF THE FOURIER TRANSFORM 
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Discrete Fourier Transform (DFT): 

 

 
Inverse Discrete Fourier Transform (IDFT): 

 

The inverse discrete Fourier transform of X(k) is defined as 

 

For notation purpose discrete Fourier transform and inverse Fourier transform can 

be represented by 

 

Formula: 

 

 

 

Where K and n are in the range of 0 ,1,2……N-1 For example, if N=4, K= 0,1,2,3: 

N=0,1,2,3 Alternative Formula: 
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N 

N 

 

 
 

Properties of DFT: 

 

Periodicity property: 

 

If X(k) is the N-point DFT of x(n), then 

 

X(k+N)=X(k) 

 

Linearity property: 

 

If X1(k)=DFT[x1(n)] & X2(k)=DFT[x2(n)], then 

 

DFT[a1x1(n)+a2x2(n)]=a1X1(k)+a2X2(k) 

Convolution property: 

 

If X1(k) = DFT[x1(n)] & X2(k) = DFT[x2(n)], then 

 

DFT[x(n) N x2(n)] = X1(k)X2(k) 

 

Where indicates N-point circular convolution. 

 

Multiplication property: 

 

If X1(k) = DFT[x1(n)] & X2(k) = DFT[x2(n)], then 

DFT[x1(n)x2(n)] = (1/N)[X1(k) N X2(k)] 

Where Indicates N-point circular convolution. 

 

Time reversal property: 

 

If X(k) is the N-point DFT of x(n), then DFT[x(N n)] = X(N k) 

 

Time shift property: 

 

If X(k) is the N-point DFT of x(n), then 
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− 

x (N 

 

 
 

 

Symmetry properties: 

If x(n)=xR(n)+jxI(n) is N-point complex sequence and X(k)=XR(k)+jXI(k) is the 

N- point DFT of x(n) where xR(n) & xI(n) are the real & imaginary parts of x(n) and 

XR(k) & XI(k) are the those of X(k), then 

(i) 

 

(ii) 

 

(iii) 

* * 
DFT[x (n)]=X (N 

* * 
DFT[x (N n)]=X (k) 

DFT[xR(n)]=(1/2)[X(k)+X
*
(N k)] 

(iv) DFT[xI(n)]=(1/2j)[X(k) X
*
(N k)] 

(v) DFT[xce(n)]=XR(k) where xce(n)=(1/2)[x(n)+x
*
(N n)] 

(vi) DFT[xco(n)]=jXI(k) where xco(n)=(1/2)[x(n)  
*
 

If x(n) is real, then 

 

n)] 

 

(i) If x(n) is real, then 

a. X(k)=X
*
(N k) 

b. XR(k)=XR(N k) 

(ii) If x(n) is real, then 

a) X(k)=X
*
(N-k) 

b) XR(k)=XR(N-k) 

c) XI(k)= -XI(N-k) 

d)  |X(k)|=|X(N-k)| 

e)  |X(k)|=|X(N-k)| 

f) ARG X(k)= ANG X(N-k) 

(i) DFT[xce(n)]=XR(k) where xce(n)=(1/2)[x(n)+x(N+n)] 

(ii) DFT[xco(n)]=jXI(k) where xco(n)=(1/2)[x(n)-x(N-n)] 

−k) 
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Problem 

Compute 4-point DFT and 8-point DFT of causal three sample sequence given by 
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Fig 7. Magnitude and phasor representation of N=4,8 pont DFT Time Signals 

 

 

 

[courtesy: DSP by Nagoorkani] 

 

 

Fast Fourier Transform (FFT) 

 

The Fast Fourier Transform (FFT) is a method (or algorithm) for computing the discrete 

Fourier transform (DFT) with reduced number of calculations. The computational 

efficiency is achieved if we adopt a divide and conquer approach. This approach is based on 

the decomposition of an N-point DFT into successively smaller DFTs. This basic approach 

leads to a family of an efficient computational algorithms known collectively as FFT 

algorithms. Radix-r FFT In an N-point sequence, if N can be expressed as N = rm, then the 

sequence can be decimated into r-point sequences. For each r-point sequence, r-point DFT 

can be computed. From the results of r-point DFT, the r2 -point DFTs are computed. From 

the results of r2 -point DFTs, the r3 -point DFTs are computed and so on, until we get rm 

point DFT. This FFT algorithm is called radix-r FFT. In computing N-point DFT by this 

method the number of stages of computation will be m times. 
Radix-2 FFT For radix-2 FFT, the value of N should be such that, N = 2m, so that the N- 

point sequence is decimated into 2-point sequences and the 2-point DFT for each decimated 
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N 

sequence is computed. From the results of 2-point DFTs, the 4-point DFTs can be computed. 

From the results of 4-point DFTs, the 8-point DFTs can be computed and so on, until we get 

N-point DFT. 

 

Number of Calculations in N-point DFT 

 

N2 number of complex multiplications and N(N – 1) number of complex additions 

Number of Calculations in Radix-2 FFT 

N/2log2N complex multiplications and N log2N complex additions. 

 

Radix-2 FFT algorithms: 

Decimation-In-Time (DIT) FFT algorithm: 

The algorithm in which the decimation is based on splitting the sequence x(n) into 

successively smaller sequences is called the decimation-in-time algorithm. 

The N-point DFT of a sequence x(n) is given by 

 

N-1 

X(k)=∑x(n)WN
nk

, 0≤K≤ N-1  (1) 

n=0 
-j(2π/N) 

where WN= e . X(k) is periodic with period N i.e., X(k+N)=X(k). 
Splitting Equ(1) into two, one for even-indexed samples of x(n) and the other for 

odd- indexed samples of x(n), we have 

 

X(k) = ∑x(n)WN
nk 

+ ∑x(n)WN
nk  

(2) 

n even n odd 

Substituting n=2n for n even and n=2n+1 for n odd, we have 

 

N/2- 1 N/2-1 

X(k) = ∑x(2n)WN
2nk 

+∑x(2n+1)W 
(2n+1)k

 

n=0 n=0 

 

8-Point DFT Using Radix-2 DIT FFT 

The input sequence is 8-point sequence. Therefore, N = 8 = 23 = rm. Here, r = 2 and m 

= 3. Therefore, the computation of 8-point DFT using radix-2 FFT, involves three stages of 

computation. The given 8-point sequence is decimated to 2-point sequences. For each 2- 

point sequence, the 2-point DFT is computed. From the results of 2-point DFT, the 4-point 

DFT can be computed. From the results of 4-point DFT, the 8-point DFT can be computed. 
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Let the given sequence be x(0), x(1), x(2), x(3), x(4),x(5), x(6), x(7), which consists of 8 

samples. The 8-samples should be decimated into sequences of 2-samples. Before decimation 

they are arranged in bit reversed order, as shown in table 

 

Fig 8. Bit reversal order of 2 point DFT 

 

Using the decimated sequences as input the 8-point DFT is computed. The fig shows the 

three stages of computation of an 8-point DFT. 

 

 

Fig 9.Block diagram representation of 8 pt DFT 

 

Flow Graph for 8-Point DFT using Radix-2 DIT FFT 

Fig 10.Basic butterfly or flow graph of DIT rad ix-2 FFT. 
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The signal flow graph is also called butterfly diagram since it resembles a butterfly 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 11. 

 

8-point DFT Using Radix-2 DIF FFT 

 

 

The DIF computation for an eight sequence is discussed in detail in this section. Let 

x(n) be an 8-point sequence. Therefore N = 8 = 23  = rm. Here, r = 2 and m = 3. Therefore,  

the computation of 8-point DFT using radix-2 FFT involves three stages of computation. 

The samples of x(n) are, 

x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7). 

 

Flow Graph For 8-point DFT using Radix-2 DIF FFT 

The above basic computation can be expressed by a signal flow graph shown in Fig 
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Fig 12. 

 

Problem: 

An 8-point sequence is given by x(n) = {2, 1, 2, 1, 1, 2, 1, 2}. Compute 8-point DFT of x(n) by 

a) radix-2 DIT-FFT and b) radix-2 DIF-FFT. Also sketch the magnitude and phase 

spectrum. 

 

 

a) 8-point DFT by Radix-2 DIT-FFT 

The given sequence is first arranged in the bit reversed order 

 

The 8-point DFT by radix-2 FFT involve 3 stages of computation with 4-butterfly 

computations in each stage. The sequence rearranged in the bit reversed order forms the 

input to the first stage. For other stages of computation the output of previous stage will be 

the input for current stage. 

 

Second stage computation 
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2 3 8 8 

The input sequence to second stage computation = { 3, 1, 3, 1, 3, 1, 3, 1 } 

The phase factors involved in second stage computation are W 0 and W 1 4 4  
 

   
 

Third stage computation The input sequence to third stage computation = {6, 1j, 0, 

1
, 
+
W

j, 6
a
, 
n
1

d
+j

W
, 0, 1j} The phase factors involved in third stage computation are W 0 , W 1 

8 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 13. Butterfly diagram for third stage of radix-2 DIT FFT 
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b) 8-point DFT by Radix-2 DIF-FFT 

For 8-point DFT by radix-2 FFT we require 3-stages of computation with 4-butterfly 

computation in each stage. The given sequence is the input to first stage. For other stages of 

computations, the output of previous stage will be the input for current stage. 
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8 

First stage computation 

The input sequence for first stage of computation = { 2, 1, 2, 1, 1, 2, 1, 2 } 

The phase factors involved in first stage computation are W8
0 , W8

1 , W8
2 and W 3 

 

 

Fig 14. Butterfly diagram for first stage of radix-2 DIT FFT 

 

 

 

 

Second stage computation 

The input sequence for second stage of computation = 



 

 

Fig 15. Butterfly diagram for second stage of radix-2 DIT FFT 

 

The output sequence of second stage of computation 

 Third stage computation 

Fig 16. Butterfly diagram for third stage of radix-2 DIT FFT 



 

y[n] 

 

 

 
 

 

Unit delay 

Multiplier 

 

 

 

 

Pick-off node 

 

x[n] 

 

A realization is canonic if the realization uses minimum number of delay units. Two 

realizations are equivalent if they have the same transfer function. 

Transpose operation generates an equivalent structure from a given realization by the following steps: 

 

• Interchange input and output nodes 

• Reverse all the paths 

• Replace pick — off nodes with adders and vice — versa. 

 

FIR Filter Structures 

 

An FIR filter has a system function given by 

 

 

From this equation, the impulse response h[n] can be written as 

 

 

h[n] = 

 

the difference equation representation is 

given by 

bj   , 0 ñ n DIY 

O otherwise 

 

y[n] = b x[n] + box [n — l ] -F box[n — 2] -F--- -- - -F by:x [n — M ] 

 

The length of the filter is M+1, and the oriler of the filter is M. 

x[n] 



 

 

1. Direct — Form/Transversal/Tapped Delav Line 

Structure From the above equation, the direct form 

structure is as follows 

Here, the filter has an order of M, it requires M delays/memory locations, M+1 

Multipliers, and M adders. 

Structures in which the multiplier coefficients are directly available as coefficients of 

H(z) are called Direct — Form Structures. 

2. Transposeil version of direct form 

By applying the steps to obtain the transposed form to the above direct — form 

structure, we obtain the following transposed sdvcture. 

 

 

3. Cascade form structure 

To obtain the cascade sdvcture, H(z) is factorized in terms of second — order factors 

and lust — order factors. 

H(z)  = by -F b •   
1  

+   -  -  +  bp z   (“  1 
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M—1 

any[n — k] -1- 

 

 

for M odd 

 

(M— Z)/2  

for  M even 

 

For example, for M=7 (order =6), the cascade sdvcture would be 

fi[0] 

 

 

 

 

 

 

 

 

 

 

 

Where h[0]=bo 

Basic Structures for HR Systems 

 

The convolution sum description of an LTI discrete — time system can, in principle, be 

used to implement the system. However, for an HR system, this approach is not practical, 

since the impulse response is infinite in length. So, we use the input — output relation to 

obtain the realization. 

 

The system function of an HR filter is 

 

 
 

Order = N-1 

The corresponding difference equation is 

 

 

,NAM 

 

y[n] = — box [n —  k ] 

 

Direct Form — I Structure 

 

The transfer function H(z) of the HR system is divided into two parts connected in cascade, with 

the first part Hi(z) containing only the zeroes, and the second part H2(z) containing only the 

poles. 



 

+ 
1 

 

 

Where 

 

 

 

And 
 

" (')' 

k——0 
 

 

 

These equations can be rewritten as 

 

 

 

or in time domain 

 

 

W(z) 
= bk ' 

k——0 

w[n] = b x[n] + box [n — 1] -F- - --- - + bye [n — M] 

 

And 

Y {z ) 1 

Or, in time domain, 

y[n] = w[n] — any[n — 1] — my [n — 2] — 

Realizing the above two equations for Hi(z) and H2(z) using basic building blocks and connecting them in 

cascade, we obtain the Direct Form — I structure as follows 



 

 

 
 

 

This realization requires M+N memory units, M+N+1 multipliers and M+N adders. 

 

 

Direct Form — II Structure 

 

Since, in a cascade aiTangement, the order of the systems is not important, the all — 

pole system H2(z) and the all - zero system Hi(z) can be interchanged .i.e., 

K(z) _ 1 

Or, in time domain, 

r[n] = x[n] —  rim[n  — 1] —  rim[n  — 2] — N [• — N ] 

And 

 

 
 

or in lime domain 

y [n] = bqv [n ] -1- bar[n — 1] 

-I-- - - - -- 

 

-F by v [n — M ] 



 

Both the time domain equations involve the delayed versions of v[n], and hence require a 

single set of delay elements. This results in the Direct — Form II structure as follows 

 

 

 

This structure requires M+N+1 multipliers, M+N additions and maximum(M, N} delays. 

Since this structure minimizes the number of delays, it is called canonic. 

Cascade — Form Structures 

The system function of an HR filter is given by 

 

                                , N  E M 

 

The system is factored into a cascade of second — order subsystems, such that H(z) can be expressed as 

 

H { z ) ——    H ;{ z ) , K —— tritegral part o f    
r=l 

 

IfN is odd, one of the subsystems is of first order. 

 

 

 

In the above equation, each of the subsystems H,(z) has the general form 

 



 

 

Each of the second — order subsystem can be realized either in Direct Form — I, or Direct 

— Form II or transposed form. 

 

Since there are many ways of pairing poles and zeroes, a variety of cascade realizations are possible. 

 

Parallel — Form Structures 

 

A parallel form realization of an HR system can be obtained by performing partial — fraction expansion 

of 

H(z) .i.e., 

 

 

If some poles are complex valued, pairs of complex conjugate poles are combined to get second order 

subsystems. 

H(z) C -F   p     _-  ffg(z), where 
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UNIT 3 DIGITAL FILTER DESIGN 

Design of IIR filters using Impulse invariant and Bilinear transformation method. Review of 

Butterworth and Chebyshev approximations, Frequency selective filters: Ideal filter 

characteristics, low pass, high pass and band pass filters -Linear Phase FIR filter–Phase delay–

Group delay– Design of FIR filter using window method - Rectangular, Hanning and Hamming 

Windows. 

 

 

 Symmetric and Antisymmetric FIR filters 

FIR filters are digital filters with finite impulse response. They are also known as on- recursive 

digital filters as they do not have the feedback (a recursive part of a filter), even though recursive 

algorithms can be used for FIR filter realization. FIR filters can be designed using different 

methods, but most of them are based on ideal filter approximation. The objective is not to achieve 

ideal characteristics, as it is impossible anyway, but to achieve sufficiently good characteristics of 

a filter. The transfer function of FIR filter approaches the ideal as the filter order increases, thus 

increasing the complexity and amount of time needed for processing input samples of a signal 

being filtered. The resulting frequency response can be a monotone function or an oscillatory 

function within a certain frequency range. The waveform of frequency response depends on the 

method used in design process as well as on its parameters. 

This chapter describes the most popular method for FIR filter design that uses window functions. 

The characteristics of the transfer function as well as its deviation from the ideal frequency 

response depend on the filter order and window function in use. 

Each filter category has both advantages and disadvantages. This is the reason why it is so 

important to carefully choose category and type of a filter during design process. 

Obviously, in such cases when it is necessary to have a linear phase characteristic, FIR filters are 

the only option available. If the linear phase characteristic is not necessary, as is the case with 

processing speech signals, FIR filters are not good solution at all. 
 

 
 

Fig.3.1. Illustration of input and output signals of non-linear phase systems. 



The system introduces a phase shift of 0 radians at the frequency of ω, and π radians at 

three times that frequency. Input signal consists of natural frequency ω and one harmonic 

with the same amplitude at three times that frequency. Figure 2-1. shows the block diagram 

of input signal (left) and output signal (right). It is obvious that these two signals have 

different waveforms. The power of signals is not changed, nor the amplitudes of harmonics, 

only the phase of the second harmonic is changed. 

If we assume that the input is a speech signal whose phase characteristic is not of the 

essence, such distortion in the phase of the signal would be unimportant. In this case, the 

system satisfies all necessary requirements. However, if the phase characteristic is of 

importance, such a great distortion mustn’t be allowed. 

In order that the phase characteristic of a FIR filter is linear, the impulse response must be 

symmetric or anti-symmetric, which is expressed in the following way: 

h[n] = h[N-n-1] ; symmetric impulse response (about its middle element) 

h[n] = -h[N-n-1] ; anti-symmetric impulse response (about its middle element) 

One of the drawbacks of FIR filters is a high order of designed filter. The order of FIR filter 

is remarkably higher compared to an IIR filter with the same frequency response. This is 

the reason why it is so important to use FIR filters only when the linear phase characteristic 

is very important. 

A number of delay lines contained in a filter, i.e. a number of input samples that should be 

saved for the purpose of computing the output sample, determines the order of a filter. For 

example, if the filter is assumed to be of order 10, it means that it is necessary to save 10 

input samples preceeding the current sample. All eleven samples will affect the output 

sample of FIR filter. 

The transform function of a typical FIR filter can be expressed as a polynomial of a complex 

variable z-¹. All the poles of the transfer function are located at the origin. For this reason, 

FIR filters are guaranteed to be stable, whereas IIR filters have potential to become 

unstable. 

Finite impulse response (FIR) filter design methods 

Most FIR filter design methods are based on ideal filter approximation. The resulting filter 

approximates the ideal characteristic as the filter order increases, thus making the filter and 

its implementation more complex. 

The filter design process starts with specifications and requirements of the desirable FIR 

filter. Which method is to be used in the filter design process depends on the filter 

specifications and implementation. This chapter discusses the FIR filter design method using 

window functions. 

Each of the given methods has its advantages and disadvantages. Thus, it is very important 

to carefully choose the right method for FIR filter design. Due to its simplicity and 

efficiency, the window method is most commonly used method for designing filters. The 

sampling frequency method is easy to use, but filters designed this way have small 

attenuation in the stopband. 



As we have mentioned above, the design process starts with the specification of desirable 

FIR filter. 

Basic concepts and FIR filter specification 

First of all, it is necessay to learn the basic concepts that will be used further in this book. 

You should be aware that without being familiar with these concepts, it is not possible to 

understand analyses and synthesis of digital filters. 

Figure 3.2 illustrates a low-pass digital filter specification. The word specification actually 

refers to the frequency response specification. 
 

 

Fig.3.2. A low-pass digital filter specification 

ωp – normalized cut-off frequency in the passband; 

ωs – normalized cut-off frequency in the stopband; 

δ1 – maximum ripples in the passband; 

δ2 – minimum attenuation in the stopband [dB]; 



ap – maximum ripples in the passband; and 

as – minimum attenuation in the stopband [dB]. 
 

 

 

Frequency normalization can be expressed as follows: 
 
 

 

 

where: 
 
 

 

 

 

fs is a sampling frequency; 

f is a frequency to normalize; and 

ω is normalized frequency. 

 

 
Table.3.1.Filters 

 

 



The value of variable n ranges between 0 and N, where N is the filter order. A constant M 

can be expressed as M = N / 2. Equivalently, N can be expressed as N = 2M. 

The constant M is an integer if the filter order N is even, which is not the case with odd 

order filters. If M is an integer (even filter order), the ideal filter frequency response is 

symmetric about its Mth sample which is found via expression shown in the table 2-2-1 

above. If M is not an integer, the ideal filter frequency response is still symmetric, but not 

about some frequency response sample. 

Since the variable n ranges between 0 and N, the ideal filter frequency response has N+1 sample. 

If it is needed to find frequency response of a non-standard ideal filter, the expression for 

inverse Fourier transform must be used: 
 
 

 

Non-standard filters are rarely used. However, if there is a need to use some of them, the 

integral above must be computed via various numerical methodes. 

FIR filter design using window functions 

The FIR filter design process via window functions can be split into several steps: 

1. Defining filter specifications; 

2. Specifying a window function according to the filter specifications; 

3. Computing the filter order required for a given set of specifications; 

4. Computing the window function coefficients; 

5. Computing the ideal filter coefficients according to the filter order; 

6. Computing FIR filter coefficients according to the obtained window function and 

ideal filter coefficients; 

7. If the resulting filter has too wide or too narrow transition region, it is necessary to 

change the filter order by increasing or decreasing it according to needs, and after that 

steps 4, 5 and 6 are iterated as many times as needed. 

The final objective of defining filter specifications is to find the desired normalized 

frequencies (ωc, ωc1, ωc2), transition width and stopband attenuation. The window 

function and filter order are both specified according to these parameters. 

Accordingly, the selected window function must satisfy the given specifications. After this 

step, that is, when the window function is known, we can compute the filter order required 

for a given set of specifications. When both the window function and filter order are known, 

it is possible to calculate the window function coefficients w[n] using the formula for the 

specified window function. 



1. Rectangular Window: The rectangular window is what you would obtain if you were to 

simply segment a finite portion of the impulse response without any shaping in the time 

domain: 
 

 

 

 

2. Hanning window 

The Hanningwindow(or more properly, the von Hann window) is nothing more than a raised cosine: 
 

 

= 

3. Hamming window 
 

 
= 

 

After estimating the window function coefficients, it is necessary to find the ideal filter 

frequency samples. The expressions used for computing these samples are discussed in 

section 2.2.3 under Ideal filter approximation. The final objective of this step is to obtain the 

coefficients hd[n]. Two sequencies w[n] and hd[n] have the same number of elements. 

The next step is to compute the frequency response of designed filter h[n] using the 

following expression: 
 

 
 

Lastly, the transfer function of designed filter will be found by transforming impulse response via 

Fourier transform: 
 

 

or via Z-transform: 
 

 

 

If the transition region of designed filter is wider than needed, it is necessary to increase the filter 



order, reestimate the window function coefficients and ideal filter frequency samples, 

multiply them in order to obtain the frequency response of designed filter and reestimate 

the transfer function as well. If the transition region is narrower than needed, the filter 

order can be decreased for the purpose of optimizing hardware and/or software resources. 

It is also necessary to reestimate the filter frequency coefficients after that. 

PROBLEMS 

Use the window design method to design a linear phase FIR filter of order N = 

24 to approximate the following ideal frequency response magnitude 
 

 
The ideal filter that we would like to approximate is a low-pass filter with a cutoff frequency 

= 0.2. With N = 24, the frequency response of the filter that is to be designed has the form 

Therefore, the delay of h( n) is = N/2 = 12, and the ideal unit sample response that is 

to be windowed is 
 

 

All that is left to do in the design is to select a window. With the length of the window fixed, there is a 

trade-off between the width of the transition band and the amplitude of the passband and stopband ripple. With a rectangular 

window, which provides the smallest transition band, 

and the filter is 
 

However, the stopband attenuation is only 21 dB, which is equivalent to a ripple of 

0.089. With a Hamming window, on the other hand, 

and the stopband attenuation is 53 dB, or ? s = 0.0022. However, the width of the transition 

band increases to 

 

which, for most designs, would be too wide. 

Frequency sampling method: 

The frequency  sampling  method  allows us  to  design  recursive and nonrecursive IIR filters for both standard 

frequency selective and filters with arbitrary frequency response. A. No recursive frequency sampling filters : The 



problem of FIR filter design is to find a finite– length impulse response h (n) that corresponds to desired frequency 

response. In this method h (n) can be determined by uniformly sampling, the desired frequency response HD (ω) at the 

N points and finding its inverse DFT of the frequency samples. 

Design of Optimum Equiripple Linear-Phase FIR 

The window method and the frequency-sampling method are relatively simple techniques for designing linear-phase 

FIR filters. However, they also possess some minor disadvantages, , which may render them undesirable for some 

applications. A major problem is the lack of precise control of theoritical frequencies such ws.The filter design method 

described in this section is formulated as a Chebyshev approximation problem . It is viewed as an optimum design 

criterion in the sense that the weighted approximation error between the desired frequency response and the actual 

frequency response is spread evenly across the pass-band and evenly across the stopband of the filter minimizing the 

maximum error. The resulting filter designs have ripples in both the passband and the stop-band.To describe the 

design procedure, let us consider the design of a low-pass filter with pass-band edge frequency a>p and stopband edge 

frequency . 

 

Structure realization of FIR Filters 

In signal processing, a digital filter is a system that performs mathematical operations on a sampled, discrete-time 

signal to reduce or enhance certain aspects of that signal. This is in contrast to the other major type of electronic filter, 

the analog filter, which is an electronic circuit operating on continuous-time analog signals. 

A digital filter system usually consists of an analog-to-digital converter to sample the input signal, followed by a 

microprocessor and some peripheral components such as memory to store data and filter coefficients etc. Finally a 

digital-to- analog converter to complete the output stage. Program Instructions (software) running on the 

microprocessor implement the digital filter by performing the necessary mathematical operations on the numbers 

received from the ADC. In some high performance applications, an FPGA orASIC is used instead of a general 

purpose microprocessor, or a specialized DSP with specific paralleled architecture for expediting operations such as 

filtering. 

Digital filters may be more expensive than an equivalent analog filter due to their increased complexity, but they make 

practical many designs that are impractical or impossible as analog filters. When used in the context of real-time 

analog systems, digital filters sometimes have problematic latency (the difference in time between the input and the 

response)  due  to the associated analog-to-digital and digital-to- analog conversions and anti-aliasing filters, or due to 

other delays in their implementation. 

Digital filters are commonplace and an essential element of everyday electronics such as radios, cellphones, and AV 

receivers. 

Characterization 

A digital filter is characterized by its transfer function, or equivalently, its difference equation. Mathematical analysis 

of the transfer function can describe how it will respond to any input. As such, designing a filter consists of developing 

specifications appropriate to the problem (for example, a second-order low pass filter with a specific cut-off 

frequency), and then producing a transfer function which meets the specifications. 

The transfer function for a linear, time-invariant, digital filter can be expressed as a transfer function in the Z-

domain; if it is causal, then it has the form: 

where the order of the filter is the greater of N or M. See Z-transform's LCCD equation for further discussion 

of  this  transfer function. 

This is the form for a recursive filter with both the inputs (Numerator) and outputs (Denominator), which typically 



leads to an IIR infinite impulse response behaviour, but if the denominator is made equal to unity i.e. no feedback, 

then this becomes an FIR or finite impulse response filter. 

The impulse   response, often denoted           or hk, is a measurement of how a ilter will respond to the Kronecker 

delta function. Digital filters are typically considered in two categories: infinite impulse response (IIR) and finite 

impulse response (FIR). In the case of linear time-invariant FIR filters, the impulse response is exactly equal to the 

sequence of filter coefficients: 

IIR filters on the other hand are recursive, with the output depending on both current and previous inputs as well as 

previous 

outputs. The general form of an IIR filter is thus: 

 

Plotting the impulse response will reveal how a filter will respond to a sudden, momentary disturbance. 

1. Difference equation 

In discrete-time systems, the digital filter is often implemented by converting the transfer function to a linear 

constant- coefficient difference equation (LCCD) via the Z-transform. The discrete frequency-domain transfer 

function is written as the ratio of two polynomials. For example: 

This is expanded: 

and to make the corresponding filter causal, the numerator and denominator are divided by the highest order of 

: 

The coefficients of the denominator, , are the 'feed-backward' coefficients and the coefficients of the numerator are 

the 'feed-forward'  coefficients,  . The resultant linear difference equation is: 

 

or, for the example above: 

 

rearranging terms: 

then by taking the inverse z-transform: 



 
 

 

 and finally, by solving for : 
 

This  equation  shows  how to compute the next  output  sample,  ,  in  terms  of  the  past 

outputs, , the present input, , and the past inputs. Applying the filter to an 

input in this form is equivalent to a Direct Form I or II realization, depending on the exact 

order of evaluationAfter a filter is designed, it must be realized by developing a signal flow 

diagram that describes the filter in terms of operations on sample sequences. 

A given transfer function may be realized in many ways. Consider how a simple expression 

such as could be evaluated – one could also compute the 

equivalent . In the same way, all realizations may be seen as 

"factorizations" of the same transfer function, but different realizations will have different 

numerical properties. Specifically, some realizations are more efficient in terms of the 

number of operations or storage elements required for their implementation, and others 

provide advantages such as improved numerical stability and reduced round-off error. 

Some structures are better for fixed-point arithmetic and others may be better for floating-

point arithmetic. 

1. Direct Form I 

A straightforward approach for IIR filter realization is Direct Form I, where the difference 

equation is evaluated directly. This form is practical for small filters, but may be inefficient 

and impractical (numerically unstable) for complex designs.[3] In general, this form requires 

2N delay elements (for both input and output signals) for a filter of order N. 
 

 

 
 

Direct Form II 

Fig 3.3. Direct form I 



The alternate Direct Form II only needs N delay units, where N is the order of the filter – 

potentially half as much as Direct Form I. This structure is obtained by reversing the order of 

the numerator and denominator sections of Direct Form I, since they are in fact two linear 

systems, and the commutativity property applies. Then, one will notice that there are two 

columns of delays (   ) that tap off the center net, and these can be combined since they are 

redundant, yielding the implementation as shown below. 

The disadvantage is that Direct Form II increases the possibility of arithmetic overflow for 

filters of high Q or resonance.[4] It has been shown that as Q increases, the round-off noise of 

both direct form topologies increases without bounds.[5] This is because, conceptually, the signal 

is first passed through an all-pole filter (which normally boosts gain at the resonant frequencies) 

before the result of that is saturated, then passed through an all-zero filter (which often 

attenuates much of what the all-pole half amplifies). 
 

 
Fig.3.4. Direct form II 

2. Cascaded second-order sections 

A common strategy is to realize a higher-order (greater than 2) digital filter as a cascaded 

series of second-order "biquadratric" (or "biquad")  (see digital biquad filter). The advantage 

of this strategy is that the coefficient range is limited. 

Cascading direct form II sections results in N delay elements for filters of order N. Cascading 

direct form I sections results in N+2 delay elements since the delay elements of the input of any 

section (except the first section) are redundant with the delay elements of the output of the 

preceding section. 

3. Linear-Phase FIR Structures Phase FIR Structures 

The symmetry (or antisymmetry) property of a linear-phase FIR filter can be exploited to 

reduce the number of multipliers into almost half of that in the direct form implementations 

• 

Consider a length-7 Type 1 FIR transfer function with a symmetric impulse response: 

.Rearranging, we get 



 

Fig.3.5. Linear phase FIRI 

 
 

4. PolyphasePolyphase FIR Structures FIR Structures 

The polyphase decomposition of H(z) leads to a parallel form structure. 

To illustrate this approach, consider a causal FIR transfer function H(z) with N = 8: 
 

 
H(z) can be expressed as a sum of two terms, with one term 

containing the even indexed coefficients and the other 

contacioneifnfgictiheentosd:d-indexed 
 

 

Putting  
. 

The subfilters in the polyphase realization of an FIR transfer function are also FIR filters 

and can be realized using any methods. However, to obtain a canonic realization of the 

overall structure, the delays in all subfilters must be shared. 

The filters designed by considering all the infinite samples of impulse response are called 

IIR (Infinite Impulse Response) filters. In digital domain, the processing of infinite samples 

of impulse response is practically not possible. Hence direct design of IIR filter is not 

possible. Therefore, the IIR filters are designed via analog filters. In design of IIR filter, the 

specification of an IIR filter is transformed to specification of an analog filter and an analog 

filter with transfer function, H(s) is designed to satisfy the specification. Then the analog 

filter is transformed to digital filter with transfer function, H(z). We know that the analog 

filter with transfer function H(s) is stable if all its poles lie in the left half of the s-plane. 

Consequently, if the conversion technique is to be effective, it should possess the following 

desirable properties. 1. The imaginary axis in the s-plane should map into the unit circle in 



the z-plane. Thus there will be a direct relationship between the two frequency variables in 

the two domains. 2. The left-half of the s- plane should map into the interior of the unit 

circle in the z-plane. Thus a stable analog filter will 



be converted to a stable digital filter. The analog filter is designed by approximating the 

ideal frequency response using an error function. A number of solutions to the 

approximation problem of analog filter design are well developed. The popular among them 

are Butterworth and Chebyshev approximation. The popular transformation techniques 

used for transforming analog filter transfer function H(s) to digital filter transfer function 

H(z) are bilinear and impulse invariant transformation. The digital transfer function H(z) 

can be realized in a software that runs on a digital hardware (or it can be implemented in 

firmware). The frequency response H(ejw) by letting z = ejw in the transfer function H(z) of 

the filter. 

 
5. Design of IIR filters 

 
The ideal magnitude response, |Hd (jW )| of the four basic types of analog filters are shown 

in fig (a), (b), (c) and (d). The ideal magnitude response has sudden transition from 

passband to stopband which is practically not realizable. Hence the ideal response is 

approximated using a filter approximation function. The approximation problem is solved 

to meet a specified tolerance in the passband and stopband. The shaded areas in the fig 7.1 

shows the tolerance regions of the ideal frequency response. In the passband the magnitude 

is approximated to unity within an error of dp . In the stopband the magnitude is 

approximated to zero within an error of ds . Here the dp and ds are the limits of the 

tolerance in the passband and stopband. The dp and ds are also called ripples. The 

frequency repsonse of practical analog filter shows edges for passband and stopband so that 

the tolerances are within specified limits. Now, the specification of practical analog filter 

will be the following. W p = Passband edge frequency in rad/second. W s = Stopband edge 

frequency in rad/second. Ap = Gain at passband edge frequency As = Gain at stopband edge 

frequency. 



Frequency selective filters: Ideal filter characteristics 

Fig.2.6. Ideal filter characteristics 

 
Impulse Invariant Transformation 

 
The objective of impulse invariant transformation is to develop an IIR filter transfer 

function whose impulse response is the sampled version of the impulse response of the 

analog filter. The main idea behind this technique is to preserve the frequency response 

characteristics of the analog filter. It can be stated that the frequency response of digital 

filter will be identical with the frequency response of the corresponding analog filter if the 

sampling time period T is selected sufficiently small (or the sampling frequency should  be 

high) to minimize (or avoid completely) the effects of aliasing. 



 
 

 

 

Relation Between Analog and Digital Frequency in Impulse Invariant Transformation Let, W = Analog 

frequency in rad/second. 

w = Digital frequency in rad/sample 
 

 
 

 

 
Thus the mapping from the analog frequency W to the digital frequency w is many-to- one. This 

reflects the effects of aliasing due to sampling. 

Useful Impulse Invariant Transformation 
 

 

 

 

 

 

Bilinear Transformation 

 
The bilinear transformation is a conformal mapping that transforms the imaginary axis of 

s-plane into the unit circle in the z-plane only once, thus avoiding aliasing of frequency 

components. In this mapping all points in the left half of s-plane are mapped inside the unit circle in the 

z-plane and all points inthe right half of s- plane are mapped outside the unit circle in the z- plane. 

The bilinear transformation can be linked to the trapezoidal formula for numerical 

integration. Any analog system is governed by a differential equation in time domain. 



In the s-domain transfer function, if "s" is substituted by the term                   the 

resulting transfer function will be z-domain transfer function. 

 

 

 
Relation Between Analog and Digital Filter Poles in Bilinear Transformation 

 
The mapping of s-domain function to z-domain function by bilinear transformation is a one to one 

mapping, that is, for every point in z-plane, there is exactly one corresponding point in s- plane 

and vice versa. The transformation is accomplished when, 

 

 
 

 
Specifications of Digital IIR Lowpass Filter 

 

Let, H(ejw) = Frequency response of IIR filter. 

 
|H(ejw)| = Magnitude response of IIR filter. 

 
The magnitude response, |H(ejw)| of IIR filter will have a passband, transition band and stop band. 

The specification of the IIR filter can be expressed in any one of the following three different ways.  

Case i : Gain at passband and stopband edge frequency 

Case ii : Attenuation at passband and stopband edge frequency  

Caseiii: Rippleatpassbandandstopbandedgefrequency 

The gain can be expressed either in normal values or in decibels (dB). The maximum value 

of normalized gain is unity and so the gain at band edge frequencies will be less than 1. Therefore, 

the dB-gain will be negative. 



Let, wp = Passband edge digital frequency in rad/sample. ws = 

Stopband edge digital frequency in rad/sample. 

Ap = |H(ejw)|w = wp = Gain (or magnitude) at passband edge frequency. As = 

 
|H(ejw)|w = ws = Gain (or magnitude) at stopband edge frequency. 

 
Ap,dB = 20 log [|H(ejw)|w = wp] = dB-Gain (or dB-magnitude) at passband edge frequency. 

 
As,dB = 20 log [|H(ejw)|w = ws] = dB-Gain (or dB-magnitude) at stopband edge frequency. 

ThegaininnormalvaluescanbeconvertedtodB-gainorviceversaas shown below. 

Ap,dB=20logAp 

Ap = 10(Ap,dB/20) 

As,dB=20log As 

As = 10(As,dB/20) 

Theattenuation isusually expressed indecibels (dB). Sincethegain atedge frequencies 

are lessthan 1, theattenuation innormal valueswill be greater than1, and the dB-attenuation is 

positive. 

 

 
Ripple at passband and stopband edge frequency: 



 

 

6. Transfer function of Analog Butterworth Lowpass Filter: 

 
The analog filter transfer function of normalized and unnormalized butterworth lowpassfiltersare 

givenbelow.Let, Nbetheorder ofthefilter. Let, H(sn) bethe normalized Butterworth lowpassfilter 

transfer function. When N is even 

 

 
When N is odd, 

 
 

 

Table. Summary of Butterworth Lowpass Filter Normalized Transfer 

Function 
 
 



7. Order of the Lowpass Butterworth Filter 

 
In Butterworth filters the frequency response of the filter depends on the order, N. Hence the 

order N has to be estimated to satisfy the given specifications. Usually the specifications ofthe 

filter aregivenintermsofgain at apassband and stopband frequency. Let, Ap = Gainor 

Magnitude at a passband frequency W p . 

As = Gain or Magnitude at a stopband frequency W s . 
 
 

 
 

 

 

 

 
8. Design Procedure for Lowpass Digital Butterworth IIR Filter 

 The process of filter design begins with filter specifications which include the filter 

characteristics (Lowpass, high-pass, band-pass, band-stop filter), filter type, passband 

frequency, stopband frequency, transistion width frequency, sampling frequency and 

filter length. ) 

 The second step is obtain filter response, H(ω) 

 Third step is to find the filter coefficient and acceptable filter. 

 Thelast step istoimplement filter coefficient and choose ωappropriate filter 



structure for filter implementation. 

➢ There are 2 commons IIR filter design 

➢ 1. Butterworth (As the Filter Order, N increases, the transition band becomes narrower). 

➢ 2. Chebyshev Type 

➢ The analog filter will be mapped to digital filter using transformation of s-

domain to z- domain. 2 methods to convert the analog filter to digital filter and 

vice versa; 

➢ 1. Impulse Invariance method 

 

2. Bilinear Transformation method 
 



 
 

 

 

 

 

 

 

6. Determine thetransfer functionofdigitalfilter, H(z). Usingthechosen 

transformation in step-1,transform H(s)toH(z). Whenimpulse invariant 

transformationisemployed, ifT<1,thenmultiply H(z)byTtonormalizethe 

magnitude. 



7. Realize the digital filter transfer function H(z) by a suitable structure. 8. Verify the design by 

sketching the frequency response H(ejw). 

 

 
10. Design of Lowpass Digital Chebyshev Filter 

 

The analog Chebyshev filter is designed by approximating the ideal frequency response using an 

error function. The approximation function is selected such that the error is minimized over a 

prescribed band of frequencies. 

 
 

 
 



1 Determine the normal ized refer liinction I I(say, of the 

filter. When the order N is even. 

 

 
Wben tbe order N i.‹ o‹lA, 

 

 

 

 

 

For even vaI ties of N. mud B, such iliai. 
 

j l + w j ' 

For add values o1* N, find B, such that, 

Ig0) — I 

(It is nomal praciice to iake B, — B, — B, ..... BU. 

 

 
4.  Determine theunnormaJLze‹t aoalog ‹fer fuociion Ef(s) of the loa'pass fitier. 

 

 
I lerew,    , -  fl   — Passband edge frequency. 

When The order N is eveN, I I(s) is obtained by letting s, &  sf, in equation7.55). 

 

H(sj ñ 
k • i 



When the order N ie M,   Has} is obtained by letting s 4 in equatiON (7.89}. 

 

 
H(*)= 
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UNIT 4 FINITE WORD LENGTH EFFECTS 

Fixed point and floating point number representations - Comparison - Truncation and 

Rounding errors - Quantization noise - Derivation for quantization noise power -coefficient 

quantization error - Product quantization error - Overflow error - Roundoff noise power - 

limit cycle oscillations due to product round off and overflow errors - signal scaling. 

 
 

In digital representation the signals are represented as an array of binary numbers, and the 

digital system employ a fixed size of binary called “word size or word length” for number 

representation. This finite word size for number representation leads to errors in input 

signals, intermediate signals in computations and in the final output signals. In general, the 

various effects due to finite precision representation of numbers in digital systems are called 

finite word length effects. 

 

Some of the finite word length effects in digital systems are given below. 

· Errors due to quantization of input data. 

· Errors due to quantization of filter coefficients. 

· Errors due to rounding the product in multiplication. 

· Errors due to overflow in addition. 

· Limit cycles in recursive computations. 

The two major methods of representing binary numbers are fixed 

point representation and floating point representation. 

 

Fixed point representation the digits allotted for integer part and fraction part are fixed, and 

so the position of binary point is fixed. Since the number of digits is fixed it is impossible to 

represent too large and too small numbers by fixed point representation. Therefore the range 

of numbers that can be represented in fixed point representation for a given binary word size 

is less when compared to floating point representation. 

In fixed point representation there are three different formats for representing negative 

binary fraction numbers. They are, 

1. Sign-magnitude format 

2. One’s complement format 

3. Two’s complement format 

 
In sign magnitude format the negative value of a given number differ only in sign bit (i.e., 

digit d0). The sign digit d0 is zero for positive number and one for negative number. 

 

In one’s complement format the negative of the given number is obtained by bit 

by bit complement of its positive representation. 

 

In two’s complement format the negative of the given number is obtained by 
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taking one’s complement of its positive representation and then adding one to the least significant bit. 

 

Floating point representation the binary point can be shifted to desired position so 

that number of digits in the integer part and fraction part of a number can be 

varied. This leads to larger range of number that can be represented in floating 

point representation. 

 

Floating point number, Nf = M X2E 

In various digital systems or computers, a variety of formats are employed for 

floating point representation. The IEEE (Institute of Electrical and Electronic 

Engineers) has proposed a standard format for floating point representation, 

which is widely followed in digital computers. The IEEE-754 standard format for 

32-bit single precision floating point number is shown in fig 

 

Fig 4.1 IEEE-754 format for 32 bit-floating point 

number Comparison of Fixed Point and Floating Point Representation 

Fixed point representation Floating point representation 

1. In a b-bit binary the range of 

numbers represented is less when 

compared floating point 

representation. 

1. In a b-bit binary the range of 

numbers represented is large when 

compared to fixed 

point representation. 

2. The position of binary point 

is fixed 

2. The position of binary point 

is variable. 

3. The resolution is 

uniform throughout 

3. The resolution is variable 

 

Truncation and Rounding error 
 

In fixed point or floating point arithmetic the size of the result of an operation (sum or 

product) may be exceeding the size of binary used in the number system. In such cases the 

low order bits has to be eliminated in order to store the result. The two methods of 

eliminating these low order bits are truncation and rounding. This process is also referred 

to as quantization via truncation and rounding. The effect of rounding and truncation is to 
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introduce an error whose value depends on the number of bits eliminated. 

The characteristics of the errors introduced through either truncation or 

rounding depend on the type of number representation. The truncation is the 

process of reducing the size of binary number (or reducing the number of bits 

in a binary number) by discarding all bits less significant than the least 

significant bit that is retained. In the truncation of a binary number to b bits, 

all the less significant bits beyond bth bit are discarded. Rounding is the 

process of reducing the size of a binary number to finite word size of b-bits 

such that the rounded b-bit number is closest to the original unquantized 

number. The rounding process consists of truncation and addition. In 

rounding of a number to b-bits, first the unquantized number is truncated to 

b-bits by retaining the most significant b-bits. Then a zero or one is added to 

the least significant bit of the truncated number depending on the 
 

bit that is next to the least significant bit that is retained. 

Fig 4.2 Probability density function for (a) rounding 

(b) Truncation Quantization Steps 
 

The decimal numbers that are encountered as filter 

coefficients, sum, product, etc., in DSP applications will usually lie in 

the range of –1 to +1. When “B” bit binary is selected to represent the 

decimal numbers, then 2B binary codes are possible. Hence the range 

of decimal numbers has to be divided into 2B steps and each step is 

represented by a binary code. Each step of decimal number is also 

called quantization step. 
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b = B – 1 = Size of binary excluding sign bit 

 

Steady State Output Noise Variance (Power) Due to the Quantization Error Signal 
 

The quantized input signal of a digital system can be represented as a 

sum of unquantized signal x(n) and error signal e(n) as shown in fig 

 

Fig 4.3 Representation of input quantization noise in an LTI 

system. 

 

In fig h(n) is the impulse response of the system and y(n) is the response or output 

of the system due to input and error signal. The response of the system is given by 

convolution of input and impulse response. For linear systems using distributive 

property of convolution the response y¢(n) can be written as shown in equation 

y¢(n) = xq(n) * h(n) 

= [x(n) + e(n)] * h(n) 

= [x(n) * h(n)] + [e(n) * h(n)] 

Let, y¢(n) = y(n) + e(n) 

where, y(n) = x(n) * h(n) = Output due to input signal 

x(n). e(n) = e(n) * h(n) = Output due to error signal 

e(n). 

The variance of the signal e(n) is called output noise power or steady state output 

noise power (or variance) due to the quantization error signal. Using 

autocorrelation function and the definition for variance of a discrete time signal, 

the expression for output noise power is 

where, pi are poles of H(z) H(z –1) z–1 only the poles that lie inside the 
unit circle in z-plane are considered. 

Product Quantization Error 
 

In realization structures of IIR system, multipliers are used to multiply the signal 

by constants. The output of the multipliers i.e, the products are quantized to finite 
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word length in order to store them in registers and to be used in subsequent 
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calculations. The error due to the quantization of the output of multiplier is 

referred to as product quantization error. 

 
The Noise Transfer Function (NTF) is defined as transfer function from the noise 

source to the filter output (i.e., NTF is the transfer function obtained by treating 

the noise source as actual input). 

Quantized product = Q[a x(n)] = a x(n) + 

e(n) where, a x(n) = Unquantized product 

e(n) = Product quantization error signal 
 

Fig 4.4 Product quantization noise models of IIR systems for direct form 

realization 

 

The total steady state noise variance at the output of the system due to product 

quantization errors is given by the sum of the output noise variances due to all the 

noise sources. 

Output Noise Power (Roundoff Noise Power) Due to Product Quantization 

Limit Cycles 
 

During periodic oscillations, the output y(n) of a system will oscillate between a 

finite positive and negative value for increasing n or the output will become 

constant for increasing n. Such oscillations are called limit cycles. These 

oscillations are due to round-off errors in multiplication and overflow in 

addition. 

 

Limit cycle oscillations are clearly unwanted (e.g. may be audible in speech/audio 

applications) 
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Limit cycle oscillations can only appear if the filter has feedback. Hence FIR 

filters cannot have limit cycle oscillations. 
 

Types   
1. zero input limit cycles 

2. Overflow  limit cycles 
 

In recursive systems, if the system output enters a limit cycle, it will continue to 

remain in limit cycle even when the input is made zero. Hence these limit cycles are 

also called zero input limit cycles. In fixed point addition of two binary numbers 

the overflow occurs when the sum exceeds the finite word length of the register 

used to store the sum. The overflow in addition may lead to oscillations in the 

output which is referred to as overflow limit cycles 

In a limit cycle the amplitudes of the output are confined to a range of values, 

which is called the dead band of the filter. For a first-order system described by 

the equation, y(n) = a y(n–1) + x(n), the dead band is given by, 

where, B = Number of binary bits (including sign bit) used to represent the 

product. For a second-order system described by the equation, y(n) = a1 y(n – 1) + 

a2 y(n – 2) + x(n), the dead band of the filter is given by, 

 

 

Scaling to Prevent Overflow 
 

The two methods of preventing overflow are saturation arithmetic and scaling the 

input signal to the adder. In saturation arithmetic, undesirable signal distortion is 

introduced. In order to limit the signal distortion due to frequent overflows, the 

input signal to the adder can be scaled such that the overflow becomes a rare 

event. 
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V MULTIRATE SIGNAL PROCESSING 
 

Introduction to Multirate signal processing 

Single-rate systems: Sampling rates at the input and at the output and all internal 

nodes are the same. 

Multirate systems: DSP systems with unequal sampling rates at various parts of the 

system. 

 
The process of converting a signal from one sampling rate to another sampling rate 

is called sampling rate conversion. 

There are two ways for sampling rate conversion in the digital domain. They are, 

1. Up-sampler / Up- Converter/ Interpolator 

2. Down-sampler/ Decimator / Sub-sample 
 

Downsampling (or Decimation) 
 

Down sampling or decimation is the process of reducing the sampling rate by an 

integer factor D. 

 

Fig.5.1 Decimator. 

x(n) = Discrete time signal 

D = Sampling rate reduction factor (and D is an integer) 

Now, x(Dn) = Downsampled version of x(n) 
 

Fig 5.2 Time domain representation of decimation 



3  

 

Spectrum of Down sampler 
 

The spectrum of Down sampler is given by 

 

Anti-aliasing Filter 
 

When the input signal to the decimator is not bandlimited then the spectrum of decimated 

signal has aliasing. In order to avoid aliasing the input signal should be bandlimited to p/D 

for decimation by a factor D. Hence the input signal is passed through a lowpass filter with 

a bandwidth of p/D before decimation. Since this lowpass filter is designed to avoid 

aliasing in the output spectrum of decimator, it is called anti-aliasing filter. 

 

 
Proble

m 

Fig 5.3 decimator with anti-aliasing filter. 

sketch the spectrum of a down sampled signal for sampling rate reduction factor D = 2, 3 and 4. 
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Fig. 5.4 spectrum of a down sampled signal for sampling rate reduction factor D = 2 

 
Problem 

 

Consider the discrete time signal shown in fig 1. Sketch the down sampled version of the 

signals for the sampling rate reduction factors, a) D = 2 b) D = 3. 
 
 

Sampling rate reduction factor, D = 2. 

 

Sampling rate reduction factor, D = 3. 

 

 

 

 

 

 

 
 

Fig 5.5 Down sampled version of the signals for the sampling rate reduction factors 

D = 2 Upsampling (or Interpolation) 

The upsampling (or interpolation) is the process of increasing the samples of the discrete 
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time signal. 

Let, x(n) = Discrete time signal 

I = Sampling rate multiplication factor (and I is an integer). 

The device which perform the process of upsampling is called upsampler (or interpolator). 

Symbolically, the upsampler can be represented as shown in fig 

Fig 5.6 interpolator 

Up sampling or interpolation is the process of increasing the sampling rate by an integer 

factor I. 

 

 
 

Fig 5.7 Time domain representation of interpolator 
 

 

 

Fig 5.8 Spectrum of a upsampled signal for sampling rate reduction factor 

L = 2 Anti-imaging Filter 
 

The output spectrum of interpolator is compressed version of the input spectrum, 

therefore, the spectrum of upsampled signal has multiple images in a period of 2p. When 
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upsampled by a factor of I, the output spectrum will have I images in a period of 2p, with 

each image band limited to p/I. Since the frequency spectrum in the range 0 to π/I. are 

unique, we have to filter the other images. Hence the output of upsampler is passed 

through a lowpass filter with a bandwidth of π/I. Since this lowpass filter is designed to 

avoid multiple images in the output spectrum, it is called anti-imaging filter. 

 

Fig 5.9. Interpolator with anti-imaging filter. 

 
Poly phase implementation of FIR filters for interpolator and decimator 

Potential computational savings can be made within the process of decimation, 

interpolation, and sampling-rate conversion. Polyphase filters is the name given to certain 

realisations of multirate filtering operations, which facilitate computational savings in both 

hardware and software. 

Polyphase Structure of Decimator 
 

In decimator, a lowpass filter called anti-aliasing filter is employed at the input in order to 

bandlimit the input signal, so that aliasing is avoided in the output spectrum of decimator. 

In order to reduce the computations in FIR filter, polyphase decomposition can be applied 

to FIR filter to decompose into L sub-filters. 

 

 
Fig 5.10 decimator with antialiasing filter 
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Fig 5.11 Decimator with antialiasing filter further deduction of fig 4.10 using 
identity. 

 
Polyphase Structure of Interpolator 

 

In interpolator, a lowpass filter called anti-imaging filter is employed at the output in order to 
eliminate the multiple images in the output spectrum of interpolator. 

 

Fig 5.12 Interpolator with antialiasing filter 
 
 

Fig 5.13 Interpolator with antialiasing filter further deduction of fig 4.12 using identity 
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Sampling rate conversion 
 

A common use of multirate signal processing is for sampling-rate conversion. Suppose a 

digital signal x[n] is sampled at an interval T1, and we wish to obtain a signal y[n] sampled 

at an interval T2. Then the techniques of decimation and interpolation enable this 

operation, providing the ratio T1/T2 is a rational number i.e. L/M. 

Sampling-rate conversion can be accomplished by L-fold expansion, followed by low-pass 

filtering and then M-fold 

Decimation, It is important to emphasis that the interpolation should be performed first 

and decimation second, to preserve the desired spectral characteristics of x[n]. 

Furthermore by cascading the two in this manner, both of the filters can be combined into 

one single low-pass filter. 
 
 

Fig 5.14.Sampling-rate conversion by expansion, filtering, and decimation 

 

An example of sampling-rate conversion would take place when data from a CD is 

transferred onto a DAT. Here the sampling-rate is increased from 44.1 kHz to 48 kHz. To 

enable this process the non-integer factor has to be approximated by a rational number: 
 

 

Design of narrow band filters 
 

A common need in electronics and DSP is to isolate a narrow band of frequencies from a 

wider bandwidth signal. For example, you may want to eliminate 60 hertz interference in 

an instrumentation system, or isolate the signaling tones in a telephone network. Two types 

of frequency responses are available: the band-pass and the band-reject (also called a notch 

filter). Figure 5.15 shows the frequency response of these filters, 
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Figure 5.15 shows the frequency response of narrow band filters 

Applications of Multirate signal processing 

Applications of Multirate DSP Systems 

Multirate signal processing is employed in the following systems. 

1. Sub-band coding of speech signals and image compression 

2. QMF (Quadrature Mirror Filters) for realizing alias-free LTI multirate systems 

3. Narrowband FIR and IIR filters for various applications 

4. Digital transmultiplexers for converting TDM (Time Division Multiplexed) signals to 

FDM (Frequency Division Multiplexed) signals and vice versa 

5. Oversampling A/D (Analog-to-Digital) and D/A (Digital-to-Analog) converters for high 

quality digital audio systems and data loggers (or digital storage systems) 

6. In digital audio systems the sampling rates of broadcasted signal, CD (Compact Disc), 

MPEG (Motion Picture Expert Group) standard CD, etc., are different. Hence to 

access signals from all these devices, sampling rate converters are needed in digital 

audio systems. 

7. In video broadcasting the American standard NTSC (National Television System 

Committee) and European standard PAL (Phase Alternating Line) employ different 

sampling rates. Hence to receive both the signals sampling rate converters are needed 

in video receivers. 

 

Advantages of Multirate Processing 

The advantages of multirate processing of discrete time signals are given below. 

1. The reduction in number of computations 
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2. The reduction in memory requirement (or storage) for filter 

coefficients and intermediate results. 

3. The reduction in the order of the system 

4. The finite word length effects are reduced 

 
 

Digital Filter Banks 

A digital filter bank is a set of bandpass filters. The digital filter banks can be classified 

into two types. They are, 

i) Analysis filter banks 

ii) Synthesis filter 

banks Analysis Filter Banks 

 

An analysis filter bank is a set of bandpass filters with common input. The analysis 

filter bank is used for spectrum analysis in which a signal is divided into a set of sub-band 

signals. The analysis filter bank consists of M numbers of sub-band filters so that the input 

signal x(n) is divided into M-numbers of sub-band signals. 

Figure 5.16 Analysis filter banks 

Synthesis Filter Bank 

A synthesis filter bank is a set of bandpass filters used to combine or synthesis a number of 

sub- band Signals into a single composite signal as shown in fig 9.31. The synthesis filter 

accepts M- numbers of sub-band signals w0(n), w1(n), w2(n), wM–1(n), combined to give 

a signal, y(n). In fact the synthesis filter bank perform the reverse process of analysis filter bank. 
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Figure 5.17 Synthesis Filter Bank 

 
 

Applications of Multirate signal processing 
 

 

In the digital audio industry, it is a common requirement to change the sampling rates 

of band-limited sequences. This arises for example when an analog music waveform x,(t) is 

to be digitized. Assuming that the significant information is in the band 22 kHz a minimum 

sampling rate of 44 kHz is suggested. It is, however, necessary to perform analog filtering 

before sampling to eliminate aliasing of out-of-band noise. Now the requirements on the 

analog filter it should have a fairly flat passband and a narrow transition band (so that 

only a small amount of unwanted energy is let in). Optimal filters for this purpose (such as 

elliptic filters, which are optimal in the minimax sense) have a very nonlinear phase 

response around the bandedge (i.e., around 22 kHz). In highquality music this is considered 

to be objectionable. A common strategy to solve this problem is to oversample x,(t) by a 

factor of two (and often four). Further applications of muItirate fiIter banks in digital 

audio are Subband Coding of Speech and Image Signals. 

 
Sub-band Coding of Speech Signals 

 

 

In sub-band coding of speech signals, the speech signal is divided into sub-bands, 

decimated, encoded and transmitted to the receiver system. On the receiver side the 

subband signals are decoded, interpolated and synthesized into the original speech signal. 

The figure below shows the subband coding of speech signal. 

In the transmission side, the input signal is split into M-numbers of non-overlapping 

frequency bands using an analysis filter bank consisting of M-numbers of bandpass filters. 

The output of each bandpass filter is decimated by a factor of D. The output of decimators 
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are encoded and transmitted. On the reception side, the received sub-band signals are 

decoded and then interpolated to recover the missing samples. The output of interpolators 

are applied to a synthesis filter bank consisting of M-numbers of bandpass filters to recover 

the original signal. 

 

Figure 5.18 Sub-bands Coding of Speech Signals. 

 
 

Speech compression 
 

 

The processing of speech involves the analysis, coding, decoding, and synthesis of 

speech sounds. The speech analyzer consists of normalizers, syllable, segmenters, sound 

recognizers, sequencers, adapters, and memories which convert the speech elements into a 

code. The speech synthesizer converts the code to speech by reproducing prerecorded 

speech elements. There are many applications for the speech analyzer and synthesizer 

ranging from limited vocabulary to complete communication systems. The most important 

systems for the communication of speech information are the telephone, phonograph, 

radio, sound motion picture, and television. 

The main objective in the analysis of speech as applied to communication systems is to 

provide a savings in the channel capacity required for transmission.• There are several 

considerations involved in the use of the different speech elements in communication 

systems as follows: the bit rate for the transmission of speech, the segmentation of speech, 
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the analysis of speech, the synthesis of speech. In order to analyze the different types of 

speech, there must be some means for the segmentation of the flow of speech. The 

segmentation involves sentences, word , syllables and phonemes. 

Segmentation of speech into syllables reduces the number of speech segments and 

Reduction of bandwidth. In conventional speech processing applications, speech signal is 

encoded using fixed number of bits over the entire speech signal band. During the process, 

the bandwidth requirement for speech transmission is relatively high which is of concern. 

The QMF (Quadrature Mirror Filter) banks are the fundamental building blocks for 

spectral splitting. The aim is to design a QMF filter and then pass a speech signal through 

it. In speech signals most of the energy is present in the lower frequency bands. Signal 

coding is the act of transforming the signal at hand to a more compact form, which can 

then be transmitted with considerably smaller memory. The motivation behind this is the 

fact that access to the unlimited amount of bandwidth, which is not possible. 

Therefore there is a need to code and compress speech signals. By taking advantage of the 

fact that most of the energy is present in a particular frequency band we can split the signal 

into various bands depending on the information content and then code the subband 

signals separately. The basic theory of multirate digital signal processing is introduced in 

this section along with the two Sampling rate alteration devices namely up-sampler and 

down-sampler. 

 
Elimination of interference: 

Multirate digital signal processing has a very important role in sub band coding of 

speech, audio ,video and multiple carrier data transmission because of the high 

computational efficiency of the multirate algorithms. The performance of a filter bank 

based interference detection and suppression method to extract the original speech from 

the interference contaminated speech using the perfect reconstruction (PR) property of the 

Cosine Modulated filter bank. 
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Figure 5.18 Segmentation of speech into syllables 
 

Figure 5.19 QMF filter 
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Figure 5.20 Sampled output of speech signal. 

 

 

Figure 5.21 Cosine modulated filter bank. 

Figure 5.22 Signal with added interference 
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Figure 5.23 Simulated response of speech process. 

The interference suppressor is a critically sampled filter bank system. Modulated filter 

banks are used to form analysis-synthesis filter banks that divide the received signal into 

several channels (analysis part), and reconstruct the original signal from the sub-channels 

(synthesis part). When a signal with added interference is applied to the analysis filter 

banks, the signal interference appears at the output of one of the filter banks. The spectrum 

of each sub band signal is estimated to identify the interference bands. For interference 

suppression, the sub channels affected by the interference are not included in the synthesis 

filter bank, resulting in notch filtering 

Adaptive filter 
 

 

The goal of adaptive filters are to maintain or derive desired output signal characteristics 

from a FIR or IIR filter. This goal is obtained via a feedback loop structure that feeds 

measure of undesired signal characteristics (error) to the filter under consideration and 

subsequently the filter updates its filter kernel with the fed coefficients to generate or 

maintain the desired output signal characteristics. The calculation of new coefficients based 

on the error signal feedback which is to be minimized is powered by some adapting 
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algorithms. The error is defined as the deviation of output signal from the desired signal 

characteristics, such that, where d(n) is the desired signal, y(n) is the output signal and e(n) 

is the error signal, then the following formulas holds. 

 

To derive the desired signal from the system, we first have to measure the error signal 

through finding out mathematical correlation between samples of output signal and desired 

signal. In short, from a higher point of view, this error signal is measured by subtracting 

the first signal from the latter signal. Then, this error signal is optimally minimized via 

updating operating filter’s coefficients through a live feedback loop. 

 

The use of adaptive filters can be divided majorly into two groups. Firstly, to 

continuously maintain the output signal unchanged from a running filter. Secondly, to 

approximate a desired signal from the output signal of a filter. These both approach use the 

same fundamental structure of the adaptive filter but they varies in terms of orientation 

and applications. 

 
Adaptive filters can be mainly structurally realized into two ways, namely, spatially 

and functionally. Spatial structure discusses about the organization of filter components 

without restricting corresponding filters desired functional output. On the other hand, 

functional structure discusses about the functional role of the sub-systems of each adaptive 

filter. 

Spatial Structure or Block Diagram 
 

 

The most common used structure are direct form, cascade form, parallel form and 

lattice. Transversal layout of adaptive filters are most commonly used, however, lattice 

layout is also used when its advantages overrides the advantages of transversal layout. 
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Figure 5.24. Spatial Structure or Block Diagram 

 
 

Error signal is the difference between output signal and desired signal. That is to say 

that, error signal is the amount of signal component that adaptive filter optimally removes 

when it converges and thus arriving at the desired condition. 

 
Adaptive control algorithm is the algorithm that adaptive filter uses to iteratively 

calculate the new coefficients that optimally reduces the power of error signal. The choice 

of adaptive control algorithm depends on the data class, memory resources, computational 

time, energy requirements and overall cost. The L-MSE and LSE are two commonly used 

algorithm to calculate the updated coefficients. 

 
Musical sound processing: 

The musical sound generated by a musical instrument is due to mechanical vibrations 

produced by a primary oscillator and then making other parts of the instrument to vibrate. 

For example, in a violin the primary oscillator is a stretched piece of string and it is 

vibrated by drawing a bow across it, which in turn vibrates the wooden body of the violin, 

and these vibrations make the surrounding air to vibrate, which produces the musical 

sound. 
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Figure 5.25. High quality Analog to Digital conversion for digital audio 

 

 

Figure 5.26. Multirate systems are used in a CD player when the music signal is converted 

from digital into analog 

 

 
 

Digital Music Synthesis: Music synthesis plays an important role in multimedia 

applications, modern entertainment, and professional music systems. The various music 

synthesis techniques used in the commercial systems are wavetable synthesis, spectral 

modeling synthesis, nonlinear synthesis ( or FM synthesis ) and physical modeling 

synthesis. In wavetable synthesis method, the digital data of one period of the desired 

musical tone is stored in a table called wavetable. Then, using an IIR filter with no input 

and the stored data as initial condition, the musical signal is constructed whenever needed. 

In spectral modeling synthesis, the mathematical equation representing the sound signal is 

used to generate the required music. The musical sound can be represented by an equation 

consisting of summation of sinusoidal signals. A musical tone consists of a fundamental 

tone frequency and its harmonics. Using suitable signal generation algorithm, thedesired 
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musical tone can be generated. In nonlinear synthesis, the musical sound signal is 

represented as a nonlinear frequency modulated sinusoidal signal containing a 

fundamental frequency and harmonics of modulating signal. Using signal generation 

algorithm, various musical tones can be generated for various fundamental frequency. This 

method cannot be used to generate musics of natural instruments. In physical modeling 

synthesis, a model of musical instrument like transfer function is constructed and the 

system model is implemented in a digital hardware, that can be used to generate the musics 

of an instrument. 

 
The recording of musical programs are generally made in an acoustically inert studio. The 

sound of each instrument is separately recorded using microphones placed closed to it and 

then they are mixed using mixing system by a sound engineer. During mixing phase, 

various audio effects are artificially generated using signal processing circuits and devices. 

The modern trend is to use digital signal processing for these applications. Some of the 

special effects that can be implemented during mixing process are echo generation, 

reverberation, and chorus generation. Also, the musical sound signals can be passed 

through equalizers to provide amplification or attenuation of some of the tone frequencies 

 
Image enhancement. 

 

 

The Mach band phenomenon is a good example of this property of the HVS. In an 

Image 21 consisting of adjacent rectangular bands of different gray levels (called Mach 

band), the perceived gray level near the edges is different than in the middle of the 

rectangles. The edge near the darker band appears lighter and the one near the lighter 

band appears darker than the middle of the rectangle. 

 
For 2-D signals (images) only, however the concepts can be extended to M-D signals. A 

2-D analog signal x a(t) is a function of the variable t which can be defined as a column 

vector 
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D is the sampling matrix made up of sampling vectors T1 and T2 

 
 

The matrix D that generates LAT(D) is not unique and the lattice may or may not be 

separable. A separable lattice is a lattice that can be represented by a diagonal matrix. For 

example, the rectangular lattice has a sampling matrix form of Dr and matrix Dh can 

generate a hexagonal sampling lattice. 

  
 

Figure 5.27 Hexagonal resampling and decimation by 2 of a rectangular grid 
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Figure 5.28 Frequency domain support for hexagonal decimation filters: (a) Hex 

decimation by 2 (b) Hex decimation by 4 
 

Figure 5.29 Two-dimensional separable QMF bank system. 
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Figure 5.30. Two-dimensional non-separable filter bank system 
 

L stands for lowpass branch and H stands for highpass 

branch Figure 5.31. 1-D Subband decomposition 

structures. 


